
Master’s thesis

on topic

Reasoning in the Description Logic EL
Extended with an n-ary Existential Quantifier

by

Eldar Karabaev

Born on 15th June 1979 in Moscow

Technische Universität Dresden
Department of Computer Science

submitted on 23rd August 2005

Overseeing Professor: Prof. Franz Baader
Supervisor: Dr. Carsten Lutz

Abstract

Motivated by a chemical process engineering application, we introduce a new
concept constructor, namely an n-ary variant of the existential restriction, into
the Description Logic (DL) EL. We refer to the resulting logic as EL(n) and to
its fragment that matches the needs of the real world application as restricted
EL(n).

Although the new constructor can be expressed in the DL ALCQ, its trans-
lation is exponential and introduces many expensive constructors, thus making
the translation-based reasoning impractical. In the present work, we design di-
rect algorithms for deciding the main inference problem, namely subsumption,
in restricted EL(n). We show that reasoning in restricted EL(n) is polynomial
when we allow for acyclic TBoxes. Additionally, we examine the complexity of
reasoning in (unrestricted) EL(n) with general TBoxes. In particular, we show
that subsumption in EL(n) with GCIs is ExpTime-complete.

In order to test the practical efficiency of our approach, we implement the
polynomial algorithm for restricted EL(n) with acyclic TBoxes in a system called
Eln. Comparison between Eln and the state-of-the-art DL reasoner Racer demon-
strates a considerable advantage of the direct algorithm over the translation-
based approach.

iii

Contents

1 Introduction 1
1.1 The description logic EL . 2
1.2 The need for a more general existential quantifier 3

2 The Description Logics EL(n) and Restricted EL(n) 5
2.1 Syntax and Semantics . 5
2.2 Graph representation of restricted EL(n)-concept terms 7
2.3 Subsumption in restricted EL(n) 9

3 Reasoning in restricted EL(n) with respect to acyclic TBoxes 14
3.1 Restricted EL(n)-TBoxes . 14
3.2 EL(n)-description forests . 15
3.3 Subsumption in restricted EL(n) with acyclic TBoxes 18

4 Reasoning in unrestricted EL(n) with general TBoxes 25

5 Experimental evaluation 31
5.1 Implementation . 31
5.2 Experimental data and environment 32
5.3 Translation from EL(n) to ALCQ 33
5.4 Experimental results . 34

6 Conclusion 36

Bibliography 38

v

Acknowledgments

First of all, I am deeply grateful to my advisor Carsten Lutz, whose thought-
ful guidance, insightful vision, and continuing support have lead me to grow
immensely over the last year. Carsten’s ability to select interesting problems,
his high standards, and hard work are contagious. I am thankful for the oppor-
tunity to learn from Carsten.

I also want to thank Professor Franz Baader for helpful suggestions and
stimulating discussions on this thesis. I am indebted to him for attracting me
with such interesting and promising research area as Description Logics and
helping to get acquainted with it.

Moreover, I would like to acknowledge the support by a scholarship provided
by the International Quality Network on Rational Mobile Agents for joining the
Computational Logic (CL) Master’s Programme at the Dresden University of
Technology. In particular, I would like to thank Professor Steffen Hölldobler
for his trust in my ability to successfully complete the studies within the CL
programme.

Most importantly, is the endless love, support, and encouragement given to
me by my parents and my wife Olga.

vii

Chapter 1

Introduction

Description logics (DLs) are a family of knowledge representation formalisms
that are designed to represent and reason about terminological knowledge. Fol-
lowing the ideas of semantic networks [Bra79] and frames [Min81], DLs provide
means for representing the knowledge of an application domain in a structured
and formally well-understood way. Similarly to their predecessors, DLs express
knowledge using concepts that capture the important notions of the domain and
roles that reflect relationships between domain objects. Using a variety of con-
cept constructors, concept names and role names that are atomic concepts and
roles, respectively, are combined into concept terms, or concept descriptions. For
example, the following is a concept term in the description logic ALC [SSS91]:

human u ∃has child.human u ∀has child.male,

where human and male are concept names, has child is a role name, and ∃, ∀
and u are concept constructors. In contrast to semantic networks and frames,
DLs are equipped with a formal, logic-based semantics. Recalling the above
example, the meaning of the concept term is uniquely defined based on the
interpretation of the concepts human and male and the role has child. More
precisely, this concept term captures exactly those parents that have only sons.

Usually, a DL-based reasoning system consists of a set of axioms, referred
to as the TBox, or terminology, and a set of assertions, referred to as the ABox.
TBoxes define complex concepts over the simple ones, thereby representing the
concept hierarchy. ABoxes are employed to assert relations between domain
individuals or to assign domain individuals to specific concepts. The stan-
dard inference services in a DL-based system include subsumption that verifies,
whether one of two given concepts is more general than the other one, and
satisfiability that checks whether a concept is consistent or not.

The expressiveness of a particular DL is usually characterized by the set
of constructors available in its syntax. There exists a huge diversity of DLs
varying from the ones of low expressive power, e.g., EL [Baa03] that contains

1

conjunction (C u D) and existential restrictions (∃r.C) as the only possible
constructors, to the very expressive logics, like, e.g., SHIQ [HST00] that along
with standard constructors includes qualified number restrictions, inverse and
transitive roles. In [BL84], it was argued that there is a trade-off between
the expressiveness of a DL language and the tractability of reasoning in that
language. In other words, the more expressive the language, the harder usually
the reasoning. For example, subsumption in EL can be solved in polynomial
time, whereas in SHIQ it becomes ExpTime-complete.

In order to ensure a reasonable behaviour of a DL-based system, inference
problems for the DL underlying the system should be at least decidable, and
preferably of low complexity. Consequently, the expressive power of the DL must
be restricted in an appropriate way. Because of this restriction of the expressive
power of DLs, various application-driven language extensions have been recently
proposed in the literature, e.g., [BH93, CLN94, Sat96]. Some of these extensions
have been integrated into state-of-the-art DL systems [Hor98, HM01].

The present work considers a new concept constructor that is motivated
by a process engineering application [TvW04]. This constructor is an n-ary
variant of the usual existential restriction operator available in most DLs. In
this application, a rather inexpressive DL that provides only the new constructor
together with conjunction is sufficient. Therefore, we opt for EL, that allows for
conjunction and existential restrictions, as the underlying logic for our further
investigations.

1.1 The description logic EL
Having a rather simple syntax, the DL EL enjoys nice algorithmic properties.
It was recently shown that subsumption in EL stays tractable with respect to
both acyclic and cyclic TBoxes [Baa03] and in the presence of general concept
inclusion axioms (GCIs) [Bra04]. Moreover, in [BBL05], it was proven that
EL augmented with the bottom-concept ⊥ (and thus, disjointness statements),
nominals and concrete domains stays polynomial in the presence of GCIs and
role inclusion axioms (RIs).

Despite the simplicity of the syntax of EL, there are application areas where
the expressive power of EL appears to be sufficient. For example, the Sys-
tematized Nomenclature of Medicine, referred to as Snomed, employs EL
with an acyclic TBox [Spa00]. Large parts of the medical knowledge base
Galen [RNG93] can also be expressed in EL with GCIs and transitive roles [RH97].

2

1.2 The need for a more general existential quan-

tifier

The quest for extending the existing DLs by new constructors is always moti-
vated by a specific application area. The main motivation for this work comes
from the area of chemical process engineering, where the use of mathematical
modelling becomes more and more popular [Mar94, vW04]. The reason for us-
ing modelling is that it allows, e.g., to analyze the behaviour of a chemical plant
without building a real one but using a computer instead.

In [TvW04], it was argued that a DL-based reasoning system could be suc-
cessfully used to determine reusable parts of a chemical process or equipment.
The authors have also stated that the underlying DL should be able to ex-
press a more general existential quantifier that they refer to as an n-ary ex-
istential quantifier. We illustrate the need for this new constructor with the
following example. Assume that we want to describe a chemical plant that
has a reactor with a main reaction, and in addition a reactor with a main and
a side reaction. Also assume that concepts Reactor with main reaction and
Reactor with main and side reaction are defined such that the first concept
subsumes the second one. We could try to model this chemical plant using the
usual existential restriction as follows:

Plant u ∃has part.Reactor with main reactionu
∃has part.Reactor with main and side reaction.

However, because of the subsumption relationship between the two reactor con-
cepts, this concept is equivalent to

Plant u ∃has part.Reactor with main and side reaction,

and thus it does not capture the intended meaning of a plant having two reac-
tors, one with main reaction and the other with a main and a side reaction. To
overcome this problem, we consider a new concept constructor of the form

∃r.(C1, . . . , Cn)

with the intended meaning that it describes all domain individuals that have n
different r-successors d1, . . . , dn such that each di belongs to Ci, i = 1, . . . , n.
Given this constructor, our concept can correctly be described as

Plant u ∃has part.(Reactor with main reaction,
Reactor with main and side reaction).

In [TvW04], it has been demonstrated that this new constructor can be ex-
pressed in the DL ALCQ [HB91]. Thus, the n-ary existential quantifier does not

3

extend the expressive power of existing DLs. In fact, the translation of the new
constructor into ALCQ is exponential and, in addition, introduces many expen-
sive constructors such as disjunction and qualified number restrictions. For this
reason, even highly optimized DL systems like Racer [HM01] cannot handle the
translated concepts in a satisfactory way. Moreover, in the process engineer-
ing application [TvW04], the full expressiveness of ALCQ is not needed. The
DL EL augmented in a restricted way with the new n-ary existential quantifier
appears to be sufficient. The resulting logic is referred to as restricted EL(n).

In the present work, we start with the DL EL and investigate the effect
on the complexity of the subsumption problem that is caused by the addition
of the new constructor. We prove that the subsumption problem in restricted
EL(n) remains tractable in the presence of acyclic TBoxes. In addition, we prove
that subsumption in EL(n) in the presence of GCIs is ExpTime-complete. In
order to test the practical efficiency of our approach, we implement the poly-
nomial algorithm for restricted EL(n) with acyclic TBoxes in a system called
Eln. Comparison between Eln and a state-of-the-art DL reasoner Racer shows
a considerable advantage of the direct algorithm over the translation-based ap-
proach.

The present work is organized as follows. In Chapter 2, we introduce the
syntax and semantics of the DL EL(n) and its restricted fragment and show
that subsumption between two restricted EL(n)-concept terms is polynomial.
Chapter 3 defines the notion of a restricted EL(n)-TBox and shows how to ex-
tend the polynomial algorithm developed in Chapter 2 in order to reason with
respect to this kind of TBoxes. In Chapter 4, we consider reasoning in the (unre-
stricted) logic EL(n). We show that subsumption in EL(n) with general TBoxes
in ExpTime-complete. In addition, we demonstrate that subsumption in the
extension of EL(n) with the complement operator ¬ is also ExpTime-complete
in the presence of general TBoxes. In Chapter 5, we present the experimental
evaluation of the polynomial algorithm for solving subsumption in restricted
EL(n) w.r.t. acyclic TBoxes that is developed in Chapter 3 and compare it with
a highly optimized DL system Racer. Finally, we make conclusions and propose
several directions of the future work in Chapter 6.

4

Chapter 2

The Description Logics EL(n)

and Restricted EL(n)

Our primary goal is to augment the DL EL with a new constructor referred to
as the n-ary existential quantifier. In the following, we refer to this new DL as
EL(n). In the next two chapters, we consider a restricted variant of EL(n) that
matches the needs of the process engineering application [TvW04]. We refer to
this fragment as restricted EL(n).

Firstly, we introduce the syntax and semantics of the logic EL(n) and its
restricted fragment, and then we consider the complexity of the main inference
problem in the restricted EL(n), namely the subsumption problem.

2.1 Syntax and Semantics

The set of restricted EL(n)-concept terms is inductively defined with the help
of the set of constructors, starting with a set Nc of concept names and a set Nr

of role names.

Definition 1 (Syntax) Let Nc and Nr be disjoint sets of concept and role
names, respectively. Then the set of EL(n)-concept terms is defined as follows:

• > is an EL(n)-concept term;

• every A ∈ Nc is an EL(n)-concept term;

• If C, D,C1, . . . , Cn are EL(n)-concept terms, for some n > 0, and r ∈ Nr,
then the following are EL(n)-concept terms: C uD, ∃r.(C1, . . . , Cn).

The application that motivates this work does not require the full expres-
sive power of the logic EL(n). We define now the fragment of EL(n) referred to

5

as restricted EL(n) which covers the needs of the process engineering applica-
tion [TvW04]. Reasoning in the (unrestricted) logic EL(n) will be considered in
more details in Chapter 4.

Definition 2 (Restricted EL(n)) Let Nr and Nc be disjoint sets of role and
concept names, respectively. Then the set of restricted EL(n)-concept terms is
defined as follows:

• > is a restricted EL(n)-concept term;

• every A ∈ Nc is a restricted EL(n)-concept term;

• If P1, . . . , Pk ∈ Nc, C1
1 , . . . , C

m
nm

are restricted EL(n)-concept terms and
r1, . . . , rm ∈ Nr, where k, m > 0, n1 ≥ 1, . . . , nm ≥ 1 and ri 6= rj for all
i 6= j, then the following is a restricted EL(n)-concept term:

P1 u . . . u Pk u ∃r1.(C
1
1 , . . . , C

1
n1

) u . . . u ∃rm.(Cm
1 , . . . , Cm

nm
).

In the following, we use r, ri and s to denote role names, A, B to denote concept
names, and C, D, Ci and Di to denote concept terms (i = 1, 2, . . .).

One should note that Definition 2 requires that in a restricted EL(n)-concept
term P1u. . .uPku∃r1.(C

1
1 , . . . , C

1
n1

)u. . .u∃rm.(Cm
1 , . . . , Cm

nm
), all the role names

r1, . . . , rm are distinct. Thus, every role name can appear not more than once
in the same conjunction. This is the reason why we call the logic restricted. In
the Chapters 2 and 3, we will consider the restricted EL(n), only, and sometimes
we omit explicit usage of the word restricted for better readability.

Obviously, any restricted EL(n)-concept term is an EL(n)-concept term. Thus,
it is enough to define the semantics for general EL(n)-concept terms.

Definition 3 (Semantics) The semantics for EL(n)-concept terms is given by
means of interpretations

I = (∆I , ·I),

where ∆I is a non-empty set (usually referred to as the domain of the inter-
pretation I), and ·I is a mapping which maps each concept name A to a set
AI ⊆ ∆I and each role name r to a binary relation rI ⊆ ∆I×∆I. For complex
concept terms, we define the extension inductively as follows:

>I := ∆I

(C1 u C2)
I := C1

I ∩ CI
2(

∃r.(C1, . . . , Cn)
)I

:= {x ∈ ∆I |∃y1 ∈ CI
1 , . . . , yn ∈ CI

n , (x, yi) ∈ rI , 1 ≤ i ≤ n,
yi 6= yj, 1 ≤ i, j ≤ n, i 6= j}

We say, that a concept term C is subsumed by a concept term D, written
C v D, iff for any interpretation I the following holds: CI ⊆ DI.

6

2.2 Graph representation of restricted EL(n)-

concept terms

In order to justify that subsumption between two restricted EL(n)-concept terms
is decidable in polynomial time, we follow [BKM99], where it was shown that
subsumption in EL corresponds to the existence of a homomorphism between
the description trees corresponding to the concept terms. This, in turn, showed
that subsumption between EL-concept terms is decidable in polynomial time
since the existence of a homomorphism between trees is a polynomial time
problem.

For this reason, we represent restricted EL(n)-concept terms as finite trees
referred to as EL(n)-description trees and interpretations as graphs referred to
as EL(n)-description graphs.

Definition 4 (EL(n)-description graph) Let Nr and Nc be the sets of role
and concept names, respectively. An EL(n)-description graph is a triple G =
(V, E, `) where

• V is a set of nodes,

• E ⊆ V ×Nr × V is a set of labeled edges, and

• ` : V → 2Nc is a node labeling function.

An EL(n)-description graph G = (V, E, `) is called EL(n)-description tree if
(V, E) is a tree. A subtree of an EL(n)-description tree T with the root node
v, is denoted T (v).

Considering an EL(n)-description graph G = (V, E, `), we define, for every
role name r ∈ Nr, an additional successor-function SE

r : V −→ 2V as follows:
SE

r (v) :=
{
w|(v, r, w) ∈ E

}
.

In order to construct an EL(n)-description tree for some restricted EL(n)-
concept term C, we use the notion of role depth of C denoted as rdepth(C)
which is inductively defined as follows:

• rdepth(>) = rdepth(P1 u . . . u Pk) := 0, for any P1, . . . , Pk ∈ Nc, k > 0;

• rdepth
(
P1 u . . . u Pk u ∃r1.(C

1
1 , . . . , C

1
n1

) u . . . u ∃rm.(Cm
1 , . . . , Cm

nm
)
)

:=
1 + max

(
rdepth(C1

1), . . . , rdepth(Cm
nm

)
)
, if m > 0.

Each restricted EL(n)-concept term C = P1 u . . . u Pk u ∃r1.(C
1
1 , . . . , C

1
n1

) u
. . . u ∃rm.(Cm

1 , . . . , Cm
nm

), can be inductively translated into the corresponding
EL(n)-description tree TC = (V, E, `) as follows:

• If rdepth(C) = 0, then V := {v0}, E := ∅ and `(v0) := {P1, . . . , Pk}\{>}.

7

• If rdepth(C) > 0, then for 1 ≤ i ≤ m, 1 ≤ j ≤ ni let T i
j = (V i

j , Ei
j, `

i
j) be

the inductively defined EL(n)-description trees corresponding to Ci
j, where

w.l.o.g., all the V i
j are pairwise disjoint. Let vi

j denote the root of the tree
T i

j . Then

– V := {v0} ∪
⋃

1≤i≤m,1≤j≤ni

V i
j ,

– E :=
{
(v0, ri, v

i
j)|1 ≤ i ≤ m, 1 ≤ j ≤ ni

}
∪

⋃
1≤i≤m,1≤j≤ni

Ei
j,

– `(v) :=

{
{P1, . . . , Pk}\{>}, v = v0

`i
j(v), v ∈ V i

j , 1 ≤ i ≤ m, 1 ≤ j ≤ ni.

One can observe that the size of every component of the tree TC is linearly
bounded by the size of C. Thus, the size of the tree TC is linear in the size of
C.

Conversely, any EL(n)-description tree T can be translated into the corre-
sponding EL(n)-concept term CT . For any EL(n)-description tree T = (V, E, `)
with root node v0, we denote the length of the maximal path in T as depth(T).
The translation procedure can now be defined by induction on depth(T):

• If depth(T) = 0 we know that V = {v0} and E = ∅. If l(v0) = ∅,
then CT := >, otherwise, let `(v0) = {P1, . . . , Pk}, k > 0, and we define
CT := P1 u . . . u Pk.

• If depth(T) > 0, then let `(v0) = {P1, . . . , Pk}, k ≥ 0. We define

– C(v) to be the inductively defined EL(n)-concept term corresponding
to the subtree T (v) of T , for each v ∈ V , and

– For every role name r ∈ Nr, Er := ∃r.
(
C(v1), . . . , C(vn)

)
Finally, we define CT := P1 u . . . u Pk u

d

r∈Nr,SE
r (v0) 6=∅

Er.

Similarly, any interpretation I can be translated into an EL(n)-description
graph GI = (VI , EI , `I) by setting

• VI := ∆I ,

• EI :=
⋃

r∈Nr

{
(v, r, w)|(v, w) ∈ rI

}
, and

• `I(v) := {P ∈ Nc|v ∈ P I}.

Example 1 Let Nc = {P, Q,R} and Nr = {r, s}. Figure 2.1 shows the EL(n)-
description tree TC and the graph GI for the following EL(n)-concept term C
and the interpretation I:

8

v
4

v
1

v
2

v
3

v
0

r r,s

b c

a

{P}

{Q,R}

d

{P,R}r,s{P,Q}

s s

a b

{P}

{R} {R} {P} {Q}

s s r r

Figure 2.1: EL(n)-description tree TC for the restricted EL(n)-concept term C (a)
and the EL(n)-description graph GI for the interpretation I (b) from Example 1.

• C := P u ∃s.(R,R) u ∃r.(P, Q),

• ∆I := {a, b, c, d}, P I := {a, b, c}, QI := {b, d}, RI := {c, d}, rI :=
{(a, b), (a, c), (a, d)}, sI := {(a, c), (a, d), (b, d), (c, d)}.

2.3 Subsumption in restricted EL(n)

In this section, we show that subsumption between two restricted EL(n)-concept
terms corresponds to the existence of a local monomorphism between the cor-
responding EL(n)-description trees. In addition, we demonstrate that subsump-
tion in restricted EL(n) is decidable in polynomial time, since the existence of
a local monomorphism between EL(n)-description trees is a polynomial time
problem.

Definition 5 (Local monomorphism) Let Gi = (Vi, Ei, `i), i = 1, 2 be two
EL(n)-description graphs. A mapping h : V1 −→ V2 is called local monomor-
phism from G1 to G2 if the following conditions are satisfied for every node
v ∈ V1:

(h1) `1(v) ⊆ `2

(
h(v)

)
, and

(m1) For all r ∈ Nr, if SE1
r (v) = {w1, . . . , wn} for some n > 0, then there

exist pairwise distinct w′
1, . . . , w

′
n ∈ SE2

r

(
h(v)

)
such that w′

i = h(wi), for
i = 0, . . . , n.

Recalling Example 1, we note that for the concept term C and the interpre-
tation I, there exists a local monomorphism h : TC −→ GI that can be defined,
e.g., as follows: h(v0) := a, h(v1) := d, h(v2) := c, h(v3) := b, h(v4) := d.

9

Indeed, h satisfies all conditions that a local monomorphism should satisfy ac-
cording to the Definition 5.

Theorem 1 Let C be a restricted EL(n)-concept term, TC = (V1, E1, `1) the
corresponding EL(n)-description tree with root v0, and I = (∆I , ·I) an interpre-
tation with the corresponding graph GI = (V2, E2, `2). Then for every a ∈ ∆I,
the following are equivalent:

1. a ∈ CI

2. There exists a local monomorphism h : TC −→ GI with h(v0) = a.

Proof

(1 → 2) Let a ∈ CI . We prove the existence of an appropriate local monomor-
phism h by induction on rdepth(C).

Base case. Let rdepth(C) = 0. Then C = P1 u . . . u Pk, i.e., `1(v0) =
{P1, . . . , Pk}. Since a ∈ CI , then in particular a ∈ P I

1 ∩. . .∩P I
k , i.e., {P1, . . . , Pk}

⊆ `2(a). Thus, `1(v0) ⊆ `2(a), and the mapping h such that h(v0) = a satisfies
Condition (h1) from Definition 5. Condition (m1) is trivially satisfied by h
since SE1

r = ∅ for each role name r ∈ Nr.
Induction step. Let rdepth(C) = n, for some n > 0. Assume that C = P1 u

. . .uPku∃r1.(C
1
1 , . . . , C

1
n1

)u. . .u∃rm.(Cm
1 , . . . , Cm

nm
). Since a ∈ CI , for every i ∈

{1, . . . ,m}, there exist ni pairwise distinct ri-successors bi
1, . . . , b

i
ni

of the node a

such that bi
1 ∈

(
Ci

1

)I
, . . . , bi

ni
∈

(
Ci

ni

)I
. Let T i

1 , . . . , T i
ni

be the EL(n)-description
trees corresponding to Ci

1, . . . , C
i
ni

, respectively. Let vi
j denote the root of the

EL(n)-description tree T i
j , for each j = 1, . . . , ni, and assume without loss of

generality that all the trees T i
j are disjoint. Obviously, rdepth(Ci

j) < n for all j,
which by induction hypothesis yields the existence of a local monomorphisms
hi

j : T i
j −→ GI with hi

j(v
i
j) = bi

j, for each j = 1, . . . , ni. We define the mapping
h as follows:

h(v) :=

{
a, if v = v0

hi
j(v), if v is a node of some tree T i

j

and show that h satisfies the conditions (h1) and (m1), for every node v of the
tree TC . Let v ∈ V1 be an arbitrary node of TC . We make a case distinction.

Case v = v0. Analogously to the base case, `1(v) = {P1, . . . , Pk} ⊆ `2(a)
satisfying (h1). The condition (m1) is satisfied for v = v0 since by construction
of h, h(vi

j) = bi
j, for every i ∈ {1, . . . ,m}, j ∈ {1, . . . , ni}, where {vi

1, . . . , v
i
ni
} =

SE1
ri

(v0) and {bi
1, . . . , b

i
ni
} ⊆ SE2

ri
(a) with all the bi

j pairwise distinct.
Case v 6= v0. Since v 6= v0, v is a node of a tree T i

j , for some i, j. The
mapping h satisfies the conditions (h1) and (m1) for v, since for all nodes w of
the tree T i

j , h(w) = hi
j(w) and hi

j is a local monomorphism from T i
j to GI .

(2 → 1) Let h be a local monomorphism from TC to GI such that h(v0) = a.
We show that a ∈ CI by induction on depth(TC).

10

Base case. Let depth(TC) = 0. Then C = P1u. . .uPk and V1 = {v0}, E1 = ∅.
Since h(v0) = a and h satisfies (h1), we know that {P1, . . . , Pk} = `1(v0) ⊆ `2(a).
Thus, a ∈ P I

1 ∩ . . . ∩ P I
k = CI .

Induction step. Let depth(TC) = n, for some n > 0. Then C ≡ P1 u . . . u
Pk u∃r1.(C

1
1 , . . . , C

1
n1

)u . . .u∃rm.(Cm
1 , . . . , Cm

nm
). Analogously to the base case,

we know that a ∈ P I
1 ∩ . . .∩P I

k . We show now that, for every ri ∈ {r1, . . . , rm},
a ∈ ∃ri.(C

i
1, . . . , C

i
ni

). Since h satisfies (m1), we know that there exist pair-
wise distinct nodes bi

1, . . . , b
i
ni
∈ SE2

ri
(a) such that h(vi

1) = bi
1, . . . , h(vi

ni
) =

bi
ni

, where vi
j is the root of the tree T i

j corresponding to the concept term
Ci

j, for every j = 1, . . . , ni. Induction hypothesis then yields the following:

bi
1 ∈

(
Ci

1)
I , . . . , bi

ni
∈

(
Ci

ni
)I , making a ∈ ∃ri.(C

i
1, . . . , C

i
ni

). Thus, a ∈ CI . �

We are now ready to characterize subsumption in EL(n).

Theorem 2 For any restricted EL(n)-concept terms C and D, the following are
equivalent:

1. C v D

2. There exists a local monomorphism h : TD −→ TC which maps the root of
the EL(n)-description tree TD to the root of the EL(n)-description tree TC.

Proof (2 → 1) It suffices to show that, for each interpretation I = (∆I , ·I) and
each a ∈ ∆I , we have a ∈ CI implies a ∈ DI .

Assume a ∈ CI . Then, Theorem 1 yields existence of a local monomorphism
g : TC −→ GI such that g(w) = a, where w is the root of the tree TC . The
composition g ◦ h : TD −→ GI that is defined as (g ◦ h)(u) := g

(
h(u)

)
is a local

monomorphism with g
(
h(v)

)
= g(w) = a, where v is the root of the tree TD.

Again, with Theorem 1, we obtain that a ∈ DI .
(1 → 2) Assume that there exists no local monomorphism from TD to TC such
that v is mapped to w. The EL(n)-description tree TC can be viewed as an
EL(n)-description graph, i.e., there exists an interpretation I such that the
EL(n)-description graph GI of I coincides with TC . For the element w ∈ ∆I , we
have:

• w ∈ CI , since the identity mapping is a local monomorphism from TC to
TC = GI that maps w to w.

• w /∈ DI , since there exists no local monomorphism from TD to TC that
maps v to w.

This yields the desired result C 6v D. �

11

Theorem 2 establishes the correspondence between the subsumption prob-
lem in restricted EL(n) and the existence of a local monomorphism between
EL(n)-description trees. In order to show that subsumption in restricted EL(n)

is polynomial, we have to show that the existence of a local monomorphism
between the respective trees can be decided in polynomial time. For this, we
employ a slight modification of the algorithm proposed in [BKM99]. But before
doing so, we revise some additional notions from graph theory.

Definition 6 (Bipartite graph) A triple G = (I, O,E) is called a bipartite
graph if I and O are disjoint sets of vertices and E ⊆ I × O is a set of edges
such that each edge e ∈ E is incident to two nodes a ∈ I and b ∈ O.

The partitioning of the set of vertices of a bipartite graph into two partitions
I and O is crucial in the context of finding the so-called matching within the
graph.

Definition 7 (Matching) Let G = (I, O,E) be a bipartite graph. A matching
in G is a set of edges M ⊆ E, such that for all m1, m2 ∈ M , if m1 = (a1, b1)
and m2 = (a2, b2) then m1 6= m2 implies a1 6= a2 and b1 6= b2. A matching M
is called maximum in G if it has the maximum cardinality among all possible
matchings in G. A matching M is called left-total if for each a ∈ I there exists
a node b ∈ O such that (a, b) ∈ M .

One should note that a maximum matching in a bipartite graph must not
be unique. It is possible to have several different maximum matchings with the
same cardinality.

Let TC = (V1, E1, `1), and TD = (V2, E2, `2) be two EL(n)-description trees
with root nodes v1 and v2, respectively. Assume that we check the existence of
a local monomorphism from TD to TC .

First, we introduce an additional marking function `′ : V2 −→ 2V1 . The
meaning of `′ can be described as follows: w ∈ `′(v) iff there exists a local
monomorphism h′ : TD(v) −→ TC(w) with h′(v) = w. Thus, the required local
monomorphism h : TD −→ TC exists if v1 ∈ `′(v2).

The marking function is constructed bottom-up. Namely, for a node v ∈ V2,
we check whether the following conditions are satisfied, for each node w ∈ V1:

(h1’) `2(v) ⊆ `1(w),

(m1’) For each r ∈ Nr, there exists a left-total matching M in the bipartite graph
G =

(
SE2

r (v), SE1
r (w), E

)
, where E :=

{
(a2, a1) ∈ SE1

r (w) × SE2
r (v)|a1 ∈

`′(a2)
}
.

The marking function `′(v) contains precisely those nodes w ∈ V1 that satisfy
the above Conditions (h1’) and (m1’). Due to the bottom-up construction, the

12

relevant markings for the nodes from V2 that are successors of v have already
been computed before processing the node v itself. The algorithm performs
O

(
n3µM(n)

)
steps, where n is the size of the input and µM(n) is the complexity

of the problem of finding a left-total matching in a bipartite graph G = (I, O,E)
with |I∪O| = n. This problem can be reduced to finding a maximum matching
M in G and checking, whether |M | ≥ |I|. In the literature, there exist sev-
eral algorithms for solving the maximum matching problem, including the one
in [HK73] with the complexity bounds of O(n5/2).

The following Lemma states the correctness of the algorithm for construction
the marking function `′.

Lemma 3 Let Ti = (Vi, Ei, `i), i = 1, 2, be two EL(n)-description trees. Then,
for every v1 ∈ V1 and every v2 ∈ V2, if v1 ∈ `′(v2) then there exists a local
monomorphism h : T2(v2) −→ T1(v1) with h(v2) = v1.

Proof We reason by induction on depth
(
T2(v2)

)
.

Base case. Let depth
(
T2(v2)

)
= 0, i.e., v2 is a leaf node. By construction of

the marking function `′, for every v1 ∈ V1, v1 ∈ `′(v2) iff `2(v2) ⊆ `1(v1). But
then, a mapping h : T2(v2) −→ T1(v1) with h(v2) = v1 satisfies the condition
(h1) of being a local monomorphism. The condition (m1) is trivially satisfied
by h, since SE2

r (v2) = ∅, for each r ∈ Nr.
Induction step. Let depth

(
T2(v2)

)
= n, for some n > 0. Let v1 be an

arbitrary node of the tree T1 such that v1 ∈ `′(v2). Since v1 ∈ `′(v2), we know
by condition (h1’) that `2(v2) ⊆ `1(v1). The condition (m1’) together with the
definition of a left-total matching imply that for every role name r, if SE2

r (v2) =
{wr

1, . . . , w
r
n} then there exist pairwise distinct nodes ur

1, . . . , u
r
n ∈ SE1

r (v1) such
that ur

1 ∈ `′(wr
1), . . . , u

r
n ∈ `′(wr

n). By induction hypothesis, the latter implies
the existence of local monomorphisms hr

i : T1(w
r
i) −→ T2(u

r
i) with hr

i (w
r
i) = ur

i ,
for i = 1, . . . , n.

Thus, we can construct a local monomorphism h : T1(v1) −→ T2(v2) as
follows:

h(v) :=

{
v2, if v = v1

hr
i (v), if v is a node of T1(w

r
i), for some r ∈ Nr, wr

i ∈ SE1
r (v1)

�
Based on the aforementioned observations, we can now state the main result

of this section.

Theorem 4 Subsumption in restricted EL(n) can be decided in polynomial time.

13

Chapter 3

Reasoning in restricted EL(n)

with respect to acyclic TBoxes

In the previous chapter, we have shown that subsumption between two restricted
EL(n)-concept terms can be decided in polynomial time. In this chapter, we
investigate the complexity of subsumption in restricted EL(n) with respect to
acyclic terminologies (or TBoxes, for short).

Similar to the case of restricted EL(n)-concept terms, we show that sub-
sumption in restricted EL(n) w.r.t. acyclic TBoxes corresponds to the existence
of an embedding between the corresponding EL(n)-description forests. We also
provide a polynomial time algorithm for verifying the existence of such an em-
bedding.

3.1 Restricted EL(n)-TBoxes

Here, we define formally the notion of a TBox and then we look closely at how
allowing for TBoxes influences the complexity of subsumption.

A concept definition is a definition of the form A ≡ D, where A is a concept
name and D is an EL(n)-concept term.

An acyclic EL(n)-TBox is a set of concept definitions T = {A1 ≡ D1, . . . , An ≡
Dn} that contains no definitions B1 ≡ C1, . . . , Bn ≡ Cm ∈ T , m > 0 such that

• Ci contains Bi+1, for 1 ≤ i < m and

• Cm contains B1

and satisfies the condition that, for every concept name A, there is at most one
definition A ≡ D in T , for some EL(n)-concept term D. The concept names
A1, . . . , An are called defined and the set of defined concept names is denoted
with Ndef . The concept names that are not defined are called primitive.

14

Any defined concept name can be expanded with respect to an acyclic TBox
T . By expanding we mean exhaustively replacing every defined concept name
A with the corresponding concept term D, where A ≡ D is the definition of A
in T . Since we consider now only restricted concept terms, we should guarantee
that expanding preserves restrictedness of concept terms.

Definition 8 (Restricted EL(n)-TBox) Let T = {A1 ≡ D1, . . . , An ≡ Dn}
be an acyclic EL(n)-TBox. Its expansion is the set of concept definitions T ′ =
{A1 ≡ D′

1, . . . , An ≡ D′
n}, which is obtained by expanding all concepts on the

right-hand sides of the definitions in T . T is called a restricted EL(n)-TBox,
if in the expansion T ′ of T , every D′

i is a restricted EL(n)-concept term, for
i = 1, . . . , n.

In the rest of this chapter we will use the notions of restricted EL(n)-TBox
and EL(n)-TBox interchangeably, with both terms meaning a restricted EL(n)-
TBox.

Definition 9 (Semantics) An interpretation I = (∆I , ·I) is called a model
for a TBox T iff, for every A ≡ D ∈ T , AI = DI. A concept term C is said
to be subsumed by a concept term D with respect to T , written C vT D iff
CI ⊆ DI for every model I of T .

The notion of an EL(n)-TBox is illustrated with the following example.

Example 2 Let T be the following set of concept definitions:
T :=

{
A1 ≡ P1 u ∃r1.(P1, P2, P3)
A2 ≡ A1 u A3 u P2 u ∃r2.(P3, P4)
A3 ≡ P2 u P3 u ∃r3.(A1 u P2, P3)

}
,

where P1, P2, P3 are primitive concept names and r1, r2, r3 are role names. It is
easy to see that T is an acyclic EL(n)-TBox. In order to check whether T is
restricted, we build the expansion T ′ of T :
T ′ :=

{
A1 ≡ P1 u ∃r1.(P1, P2, P3)
A2 ≡ P1 u P2 u P3 u ∃r1.(P1, P2, P3) u ∃r2.(P3, P4) u ∃r3.(A1 u P2, P3)
A3 ≡ P2 u P3 u ∃r3.(A1 u P2, P3)

}
,

Since all the concept terms on the right-hand sides of the definitions in T ′

are restricted EL(n)-concept terms, T is indeed a restricted EL(n)-TBox.

3.2 EL(n)-description forests

In this section, we extend the notion of EL(n)-description tree from a single con-
cept term to a TBox. When building such extension, one should be particularly

15

careful since one concept definition in a TBox may contain concept names de-
fined in other concept definitions. The extended structure should reflect these
dependencies.

Definition 10 An extended EL(n)-description graph is a structure G = (V, E, `, E),
where

• (V, E, `) is an EL(n)-description graph, and

• E is a binary relation on V .

An extended EL(n)-description graph G = (V, E, `, E) is called EL(n)-description
forest if (V, E) is a forest.

EL(n)-description forests are used to represent EL(n)-TBoxes, whereas ex-
tended EL(n)-description graphs represent interpretations. The construction
of extended EL(n)-description graphs and EL(n)-description forests proceeds as
follows.

Let I = be an interpretation. The extended EL(n)-description graph corre-
sponding to I is the tuple GI = (V, E, `, E), where

• (V, E, `) is the EL(n)-description graph corresponding to I,

• E is the empty relation.

Let T = {A1 ≡ D1, . . . , An ≡ Dn}, n > 0, be a restricted EL(n)-TBox. For
1 ≤ i ≤ n, let Ti = (Vi, Ei, `i) be the EL(n)-description tree corresponding to
Di with vi denoting the root of Ti. W.l.o.g., assume that all Vi are pairwise
disjoint. The EL(n)-description forest FT := (V, E, `, E) corresponding to T is
defined as follows:

• V :=
⋃

1≤i≤n

Vi,

• E :=
⋃

1≤i≤n

Ei,

• for every v ∈ Vi, `(v) := `i(v) \Ndef , 1 ≤ i ≤ n,

• E ⊆ V × {v1, . . . , vn} is defined as follows:

E := {(v, vi)|∃j ∈ {1, . . . , n}.v ∈ Vj, Ai ∈ `j(v)}.

The binary relation E in the definition of an extended EL(n)-description
graph G = (V, E, `, E) plays a crucial role in the construction of the EL(n)-
description forests for restricted EL(n)-TBoxes. Thus, we state the meaning of
E explicitly.

16

Two nodes v1 and v2 are in the reflexive-transitive closure E∗ of E , i.e.,
(v2, v1) ∈ E∗ if the node v2 in addition to its own labels and connected nodes,
inherits those of the node v1.

Assume that we are given a TBox T consisting of two concept definitions
A1 ≡ C and A2 ≡ A1 u D, where C and D are EL(n)-concept terms. Note,
that the definition of A2 contains the defined concept name A1 as a top-level
conjunct. If we were to construct an EL(n)-description tree T2 for the definition
of A2 with respect to T , we would need to insert a copy of the EL(n)-description
tree T1 built for the definition of A1 into T2. In general, such expanding of
concept definitions and their corresponding EL(n)-description trees leads to an
exponential blow-up.

In order to prevent such expensive construction, we employ the so-called
structure sharing technique by means of the relation E . Namely, in order to
reflect the top-level dependency between concept names A1 and A2, we simply
require that the root nodes v1 and v2 of the corresponding trees T1 and T2 are
in the relation E .

We illustrate the construction of an EL(n)-description forest and the impor-
tance of the relation E by the following example

Example 3 Let T be the TBox defined in Example 2, i.e.
T :=

{
A1 ≡ P1 u ∃r1.(P1, P2, P3)
A2 ≡ A1 u A3 u P2 u ∃r2.(P3, P4)
A3 ≡ P2 u P3 u ∃r3.(A1 u P2, P3)

}
.

Figure 3.1 shows the EL(n)-description forest FT that corresponds to the TBox
T . The relation E is depicted by means of dashed lines.

One should note that the relation E in the EL(n)-description forest corre-
sponding to the expansion T ′ of some TBox T is always empty, and thus, such
a forest can be seen as an extended EL(n)-description graph corresponding to
some interpretation I.

In order to exploit the structure sharing technique explained above, it is
necessary to introduce additional notions.

Definition 11 Let F = (V, E, `, E) be an EL(n)-description forest. Let E∗ be
the reflexive-transitive closure of E, and let E∗(x) := {x′|(x, x′) ∈ E∗}. We
define an additional labeling function `∗ : V → 2Nc as follows:

`∗(x) :=
⋃

x′∈E∗(x)

`(x′).

Similarly to the case of EL(n)-description trees, we define the EL(n)-concept
term C(v) corresponding to a node v ∈ V as follows:

17

v1
{ }P1

{ } { }

r1 r1r1

v2

2r 2r

3r 3r

{ , }

P{ }2

v3

PP{ }3 { }4

PP

P P2 3

2 3{ }{ }P2 P3P1{ }

Figure 3.1: EL(n)-description forest FT for the TBox T from Example 3.

C(v) :=
d

P∈`∗(v)

P u
d

r ∈ Nr,
w ∈ E∗(v),

∅ 6= {v1, . . . , vn} = SE
r (w)

u ∃r.
(
C(v1), . . . , C(vn)

)
,

where SE
r (w) = {u|(w, r, u) ∈ E}.

Note that C(v) does not contain defined concept names; it is an EL(n)-concept
term that is expanded with respect to the underlying TBox. Thus, in particular,
C(v) is restricted if the TBox is restricted.

3.3 Subsumption in restricted EL(n) with acyclic

TBoxes

Analogously to the case of restricted EL(n)-concept terms, we exploit graph
representations in order to prove the tractability of subsumption in restricted
EL(n) w.r.t. acyclic TBoxes. We characterize the subsumption problem between
two concept names A and B defined in an EL(n)-TBox T by the existence of
an embedding between the roots of the EL(n)-description trees corresponding
to the definitions of A and B, respectively.

Let F = (V, E, `, E) be an extended EL(n)-description graph. We define the
function reach : V → 2V as follows: For each w ∈ V , reach(w) ⊆ V is the
smallest set such that

• w ∈ reach(w),

18

• if v ∈ reach(w) and (v, r, u) ∈ E, for some r ∈ Nr, then u ∈ reach(w),

• if v ∈ reach(w) and (v, u) ∈ E , then u ∈ reach(w).

Intuitively, reach(w) contains exactly those nodes v ∈ V , that are reachable
from w via the edges from E ∪ E .

Definition 12 (Embedding) Let Gi = (Vi, Ei, `i, Ei), i = 1, 2, be two extended
EL(n)-description graphs. Let v1 ∈ V1 and v2 ∈ V2. An embedding from v1 to
v2 is a binary relation H ⊆ reach(v1) × reach(v2) with (v1, v2) ∈ H such that,
for each (v, u) ∈ H:

(s1) `∗1(v) ⊆ `∗2(u), and

(s2) for all r ∈ Nr, if SE1
r (v′) = {v1, . . . , vn}, for some n > 0, v′ ∈ E∗1 (v), then

there exists u′ ∈ E∗2 (u) and pairwise distinct u1, . . . , un ∈ SE2
r (u′) such that

(vi, ui) ∈ H, for i = 1, . . . , n.

v1 is embeddable into v2 if there exists an embedding from v1 to v2.

The notion of embedding allows us to characterize a relation between ele-
ments of an interpretation and the nodes of an EL(n)-description forest.

Theorem 5 Let T be a TBox with the corresponding EL(n)-description for-
est FT = (V1, E1, `1, E1), and I an interpretation with the extended EL(n)-
description graph GI = (V2, E2, `2, E2). Then for every w ∈ V1, a ∈ V2, the
following are equivalent:

1. a ∈ C(w)I,

2. There exists an embedding H from w to a.

Proof (1 → 2). Let a ∈ C(w)I . We prove the existence of the embedding H
from w to a by induction on cdepth

(
C(w)

)
.

Base case. Let cdepth
(
C(w)

)
= 0, i.e., C(w) = P1 u . . . u Pk. Then

`∗1(w) = {P1, . . . , Pk}, SE1
r (u) = ∅, for each u ∈ E∗1 (w) and each r ∈ Nr. Thus,

reach(w) = E∗1 (w). We define the embedding H as follows: H :=
⋃

u∈E∗
1 (w)

{(u, a)}.

Obviously, since w ∈ E∗1 (w), we have that (w, a) ∈ H, and now we show that H
satisfies Conditions (s1) and (s2) from Definition 12.
(s1) holds since the assumption that a ∈ C(w)I implies that, for each u ∈ E∗1 (w),
`∗1(u) ⊆ `∗1(w) = {P1, . . . , Pk} ⊆ `2(a) = `∗2(a).
Condition (s2) is trivially satisfied since SE1

r (u) = ∅, for each u ∈ E∗1 (w), r ∈ Nr.
Induction step. Let cdepth

(
C(w)

)
= n > 0, i.e., C(w) = P1 u . . . u Pk u

∃r1.(C
1
1 , . . . , C

1
n1

)u. . .u∃rm.(Cm
1 , . . . , Cm

nm
). For each i = 1, . . . ,m, j = 1, . . . , ni,

19

let T i
j denote the EL(n)-description tree corresponding to Ci

j in the EL(n)-
description forest FT . With vi

j we denote the root of T i
j . We note that

any node from reach(w) either equals w or is a node of some tree T i
j . Since

a ∈ C(w)I then, in particular, for every i = 1, . . . ,m, a ∈
(
∃ri.(C

i
1, . . . , C

i
ni

)
)I

and thus there exist pairwise distinct nodes bi
1, . . . , b

i
ni
∈ SE2

r (a) such that

bi
1 ∈

(
Ci

1

)I
, . . . , bi

ni
∈

(
Ci

ni

)I
. By induction hypothesis, there exist embed-

dings Hi
j from vi

j to bi
j, for each i = 1, . . . ,m, j = 1, . . . , nj. We define now the

embedding H as follows:

H :=
⋃

u∈E∗
1 (w)

{(u, a)} ∪
⋃
i,j

Hi
j

and show now that H satisfies the conditions (s1) and (s2).
(s1). Let (u, b) ∈ H. Case b = a. Then `∗1(u) ⊆ `∗2(w) = {P1, . . . , Pk}. Since

a ∈ C(w)I , {P1, . . . , Pk} ⊆ `∗2(a), and thus `∗1(u) ⊆ `∗2(b). Case b 6= a. Then
(s1) is satisfied by H, since (u, b) ∈ Hi

j and Hi
j is an embedding.

(s2). Let (u, b) ∈ H, r ∈ Nr and SE1
r (u) = {u1, . . . , un}. Case b = a.

Then r = ri, for some i ∈ {1, . . . ,m} and {u1, . . . , un} = {vi
1, . . . , v

i
ni
}. By

construction of H we have that
(vi

1, b
i
1) ∈ H, . . . , (vi

ni
, bi

ni
) ∈ H with all bi

1, . . . , b
i
ni

being pairwise distinct
elements of SE2

ri
(a). Thus, (s2) is satisfied. Case b 6= a. Then (s2) is satisfied

by h for u since in this case (u, b) ∈ Hi
j and Hi

j is an embedding.
(2 → 1). Let H be an embedding from w to a. We prove by induction on

cdepth
(
C(w)

)
that a ∈ C(w)I .

Base case. Let cdepth
(
C(w)

)
= 0, i.e., C(w) = P1,u . . .uPk. Then `∗1(w) =

{P1, . . . , Pl}. By condition (s1) we know that {P1, . . . , Pk} ⊆ `∗2(a) = `2(a).
Thus, a ∈ P I

1 ∩ . . . ∩ P I
k = C(w)I .

Induction step. Let cdepth
(
C(w)

)
= n > 0, i.e., C(w) = P1 u . . . u Pk u

∃r1.(C
1
1 , . . . , C

1
n1

)u. . .u∃rm.(Cm
1 , . . . , Cm

nm
). For each i = 1, . . . ,m, j = 1, . . . , ni,

let T i
j denote the EL(n)-description tree corresponding to Ci

j with vi
j denoting

the root of T i
j . Analogously to the base case, we have that a ∈ P I

1 ∩ . . . ∩ P I
k .

We show now that a ∈ ∃ri.(C
i
1, . . . , C

i
ni

)I , for an arbitrary index i ∈ {1, . . . ,m}.
By condition (s2), we know that there exist pairwise distinct nodes bi

1, . . . , b
i
ni
∈

SE2
ri

(a) such that (vi
1, b

i
1) ∈ H, . . . , (vi

ni
, bi

ni
) ∈ H.

Since H is an embedding from w to a then, in particular, the conditions (s1)
and (s2) are satisfied, for each (u, b) ∈ H.

We define now relations Hi
1, . . . ,Hi

ni
by setting Hi

j := {(u, b) ∈ H|u ∈
reach(vj

i)}, for each j = 1, . . . , ni. Obviously, reach(vi
j) ⊆ reach(w), and thus

each Hi
j is, by construction, an embedding from vi

j to bi
j. By induction hy-

pothesis, we have that bi
j ∈

(
C(vi

j)
)I

=
(
Ci

j

)I
, for j = 1, . . . , ni. Since all bi

j

are pairwise distinct, we obtain the required result that a ∈ ∃ri.(C
i
1, . . . , C

i
ni

)I .
Thus, a ∈ C(w)I . �

20

Theorem 5 establishes a connection between a node of an EL(n)-description
forest and a node of an interpretation. Let T = {A1 ≡ D1, . . . , An ≡ Dn} be an
acyclic EL(n)-TBox, for some n > 0, with the corresponding EL(n)-description
forest FT = (V, E, `, E). Let vi ∈ V be the root of the EL(n)-description tree
Ti corresponding to the EL(n)-concept term Di, for some i ∈ {1, . . . , n}. From
the definition of the function C(w), it follows that C(vi) is the EL(n)-concept
term Di expanded with respect to the TBox T . Or alternatively, C(vi) = D′

i,
where {A1 ≡ D′

1, . . . , An ≡ D′
n} is the expansion T ′ of T . Since any TBox T

is equivalent to its expansion T ′ [BCM+03], the EL(n)-concept terms Di and
D′

i are equivalent, i.e., for any interpretation I = (∆I , ·I), for each a ∈ ∆I ,
a ∈ DI

i if and only if a ∈ D′I
i . Thus, Di and C(vi) are equivalent, which lets us

conclude with the following proposition.

Theorem 6 Let T = {A1 ≡ D1, . . . , An ≡ Dn} be a TBox with the corre-
sponding EL(n)-description forest FT and I an interpretation with the extended
EL(n)-description graph GI = (V2, E2, `2, E2). Then for every defined concept
name Ai, i ∈ {1, . . . , n} and any node a ∈ V2, the following are equivalent:

1. a ∈ AI
i ,

2. There exists an embedding H from vi to a,

where vi is the root of the EL(n)-description tree Ti corresponding to Di in FT .

In the following, we extend the polynomial algorithm that has been intro-
duced in Chapter 2 for deciding subsumption between restricted EL(n)-concept
terms to the case of EL(n)-TBoxes. Let C1 and C2 be two EL(n)-concept terms,
T a TBox and assume that we are requested to decide whether C2 subsumes
C1 with respect to T , i.e., whether C1 vT C2. We reduce the subsumption
problem from restricted concept terms to defined concept names by introducing
two new concept definitions A1 ≡ C1 and A2 ≡ C2 to T , where A1 and A2

are new concept names. In effect, we obtain a new TBox T ′ and the problem
of whether C2 subsumes C1 w.r.t. T is reduced to the problem of whether A2

subsumes A1 w.r.t. T ′.
The following Theorem establishes the characterization of the subsump-

tion problem between two defined concept names A1 and A2 with respect to
a TBox through the existence of an embedding between the roots of the EL(n)-
description trees that correspond to the definitions of A1 and A2 in the expanded
EL(n)-description forest (i.e., in the EL(n)-description forest corresponding to
the expansion of the TBox).

Theorem 7 Let T be a TBox, T̂ its expansion and A1, A2 two defined concept
names. Let F̂ be the EL(n)-description forest corresponding T̂ , and v1 and v2

the roots of EL(n)-description trees T̂1 and T̂2 in F̂ that correspond to A1 and
A2, respectively. Then the following are equivalent:

21

1. A1 vT̂ A2.

2. There exists an embedding Ĥ from v2 to v1.

Proof (2 → 1). It suffices to show that, for an arbitrary model I = (∆I , ·I) of
T̂ and each a ∈ ∆I , we have that a ∈ AI

1 implies a ∈ AI
2 .

Assume a ∈ AI
1 . By Theorem 6, there exists an embedding G from v1 to

a. Since the relational composition G ◦ Ĥ := {(u, w) ∈ V2 × V1|∃v.(u, v) ∈
Ĥ ∧ (v, w) ∈ G} is an embedding from v2 to a, by Theorem 6, we obtain that
a ∈ AI

2 .
(1 → 2) Assume that there exists no embedding from v2 to v1. Let I = (∆I , ·I)
be the interpretation such that its corresponding extended EL(n)-description
graph is F̂ . For the element v1 ∈ ∆I , we have:

• v1 ∈ AI
1 , since the identity relation is an embedding from v1 to v1.

• v1 /∈ AI
2 , since there exists no embedding from v2 to v1.

Hence, A1 6vT ′ A2. �

Theorem 7 uses embeddings in the expanded EL(n)-description forest as a char-
acterization of subsumption. However, working with expanded TBoxes and
forests is very inefficient, since they are of exponential size in the size of the
original TBox or forest. We now establish a similar characterization of sub-
sumption using embeddings in (unexpanded) EL(n)-description forests.

Before doing so, we look more closely at expanded EL(n)-description forests.
As we mentioned above, similarly to building the expansion T̂ of a TBox T ,
one can see the construction of the EL(n)-description forest F̂ corresponding to
T̂ as the expansion of the forest F = (V, E, `, E) corresponding to T . During
the expansion of the forest F , one should eliminate all E-links as follows: for
every (u, v) ∈ E , one makes a copy of the tree in F which has the root node v
and plugs a copy under the node u. After this operation is done, the pair (u, v)
can be removed from E , and one proceeds until E = ∅.

When the expansion process of F is accomplished, one should observe the
following properties of the resulting EL(n)-description forest F̂ = (V̂ , Ê, ˆ̀, Ê):

(e1) Ê = ∅ and thus, for every u ∈ V̂ : Ê∗(u) = {u} and ˆ̀∗(u) = ˆ̀(u);

(e2) there are families of nodes {u1, . . . , un} ⊆ V̂ that consist of copies of some
node u ∈ V . For each u ∈ V , we denote the set of all copies of u (including
u itself) that have been created during expansion as δ(u). Thus, in our
example, δ(u) = {u, u1, . . . , un};

(e3) For each u ∈ V , if δ(u) = {u, u1, . . . , un}, for some n ≥ 0, then `∗(u) =
ˆ̀∗(u1) = . . . = ˆ̀∗(un) = ˆ̀(u1) = . . . = ˆ̀(un).

22

For simplicity we assume that V ⊆ V̂ and E ⊆ Ê, i.e., that the expansion F̂
of a forest F contains F itself. Thus, for every node u ∈ V̂ , u ∈ δ(v), for some
v ∈ V , i.e., every node in the expanded forest is either a node in the original
one or a copy of such a node. The same holds for the edges in Ê.

The latter observation lets us show that embeddability is preserved under
the expansion of an EL(n)-description forest. Indeed, assume that, for some
v1, v2 ∈ V , there is an embedding H from v1 to v2 in F and we need to construct
an embedding Ĥ from v1 to v2 in F̂ . Since F̂ consists of F and additionally
copies of nodes and edges from F , we need to extend H using the function δ as
follows: Ĥ := {(u′, v′)|∃u, v ∈ Vi.(u, v) ∈ H, (u′, v′) ∈ δ(u)× δ(v)}.

Conversely, suppose that Ĥ is an embedding from v1 to v2 in F̂ . Note that
we can construct an embedding H from v1 to v2 in F only if v1, v2 ∈ V . This is
the case, e.g., when v1, v2 are the root nodes of the EL(n)-description trees that
correspond to definitions of some defined concept names A1, A2, respectively. If
v1, v2 ∈ V then, in particular vi ∈ δ(vi), i = 1, 2 and the following restriction H
of Ĥ is an embedding from v1 to v2 in F : H := Ĥ ∩ (V × V).

Thus, we can conclude that, for any nodes v, u ∈ V , there exists an embed-
ding H from v to u in F iff there exists an embedding Ĥ from v to u in F̂ . The
latter statement together with Theorem 7 results in the following characteriza-
tion of subsumption in EL(n) w.r.t. restricted EL(n)-TBoxes.

Theorem 8 Let T be a restricted EL(n)-TBox with the corresponding EL(n)-
description forest F . For i = 1, 2, let Ai be a defined concept name and vi be
the root of the EL(n)-description tree in F that corresponds to the definition of
Ai in T . Then the following are equivalent:

1. A1 vT A2.

2. There exists an embedding H from v2 to v1.

It remains to provide an algorithm for verifying the existence of an embed-
ding and to show the polynomial runtime of the algorithm. Let FT = (V, E, `, E)
be the EL(n)-description forest corresponding to the TBox T . Let vi be the root
of the EL(n)-description tree corresponding to the definition of Ai in T , i = 1, 2.
Analogously to the case of single EL(n)-concept terms in Chapter 2, we introduce
an additional marking function `′ : reach(v2) −→ 2reach(v1), with the following
intended meaning: w ∈ `′(v) iff there exists an embedding H′ from v to w.
Obviously, there exists an embedding H from v2 to v1, if v1 ∈ `′(v2).

The marking function is constructed bottom-up, i.e., starting with the nodes
that have no successors with respect to E and E and terminating at the node
v2. For a node v ∈ reach(v2), we check for each node w ∈ reach(v1), whether
the following conditions are satisfied:

• `∗(v) ⊆ `∗(w),

23

• For each r ∈ Nr and for each v′ ∈ E∗(v), there exist w′ ∈ E∗(w) and
a left-total matching M in the bipartite graph G = (SE

r (v′), SE
r (w′), E ′),

where E ′ := {(a2, a1) ∈ SE
r (v′)× SE

r (w′)|a1 ∈ `′(a2)}.

The marking function `′(v) contains precisely those nodes w ∈ reach(v1)
that satisfy these conditions. Due to the bottom-up construction, the relevant
markings for the nodes from reach(v2) that are successors of v have already
been computed before processing the node v itself. The algorithm performs
O

(
n5µM(n)

)
steps, where n is the size of the input, µM(n) is the complexity of

the problem of finding a left-total matching in a bipartite graph G that contains
n nodes. As we have shown in Chapter 2, µM(n) is polynomial in n.

Thus, our algorithm for verifying the existence of an embedding is of polyno-
mial complexity in the size of input. It implies the major result of this chapter
which is reflected in the following theorem.

Theorem 9 The subsumption problem in restricted EL(n) with acyclic TBoxes
can be decided in polynomial time.

24

Chapter 4

Reasoning in unrestricted EL(n)

with general TBoxes

In the previous chapters, we were considering the restricted extension of the
description logic EL with the new constructor ∃r.(C1, . . . , Cn) that we called
restricted EL(n). We have shown that subsumption in restricted EL(n) is poly-
nomial when we consider two isolated concept terms as well as in the presence
of restricted acyclic TBoxes. In this chapter, we investigate the complexity of
subsumption in unrestricted EL(n) with respect to general TBoxes. We show
that, in this case, reasoning is no longer tractable since it becomes ExpTime-
complete.

The syntactic restriction adopted in restricted EL(n) was that in a concept
term, it is disallowed to have more than one existential restriction for the same
role name at the same conjunction level. In this chapter, we abolish this require-
ment. Additionally, we no longer require TBoxes to be acyclic and to contain
concept definitions, only.

The syntax and semantics of the logic EL(n) were defined in Chapter 2. Now
we define the notions of a general concept inclusion axiom and a general TBox.

A general concept inclusion(GCI) axiom is an axiom of the form C v D,
where both C and D are EL(n)-concept terms. A general TBox is a finite set of
GCIs. General TBoxes can also express concept definitions of the form A ≡ C
with the help of two GCIs: A v C and C v A.

An interpretation I is a model of a general TBox T if for every C v D ∈ T ,
we have that CI ⊆ DI . As before, we say that a concept term C1 is subsumed
by a concept term C2 with respect to a general TBox T , written C1 vT C2, if
CI

1 ⊆ CI
2 , for every model I of T .

In the following, we show that allowing for unrestricted EL(n)-concept terms
and GCIs dramatically effects the complexity of the subsumption problem.
Namely, subsumption becomes ExpTime-complete.

As usual, we prove ExpTime-completeness of subsumption in EL(n) with

25

general TBoxes in two phases. Firstly, we show that subsumption is ExpTime-
hard, and secondly, that it is in ExpTime.

Theorem 10 (ExpTime-hardness) Subsumption in EL(n) is ExpTime-hard
in the presence of general TBoxes.

Proof The result follows directly from the fact that the logic EL≥2, which is
the extension of EL with at-least restrictions of the form (≥ 2 r), is ExpTime-
complete in the presence of general TBoxes. The logic EL≥2 is a fragment
of EL(n), since the constructors > and u are present in EL(n) directly, and
the remaining constructors of EL≥2 can be linearly translated to EL(n) ones as
follows:

• ∃r.C ≡ ∃r.(C);

• (≥ 2 r) ≡ ∃r.(>,>).

The proof of the ExpTime-completeness of subsumption in EL≥2 can be
found in [BBL05].

�
Now, we prove that subsumption in EL(n) with general TBoxes is in ExpTime

by showing that subsumption in ALC(n), the extension of EL(n) with the com-
plement operator ¬, is in ExpTime in the presence of general TBoxes. We
introduce syntax and semantics of ALC(n) explicitly.

As before, let Nc and Nr be disjoint sets of concept and role names, respec-
tively. The set of ALC(n)-concept terms is defined inductively as follows:

• > is an ALC(n)-concept term;

• A is an ALC(n)-concept term, for every A ∈ Nc;

• if C, D,C1, . . . , Cn are ALC(n)-concept terms, for some n > 0, and r is
a role name, then the following are ALC(n)-concept terms: ¬C, C u D,
∃r.(C1, . . . , Cn).

Semantics of the constructors >, u and ∃r.(C1, . . . , Cn) has already been given
in Chapter 2. The complement constructor ¬ is interpreted as follows. Let
I = (∆I , ·I) be an interpretation. Then, for any ALC(n)-concept term C,
(¬C)I := ∆I \ CI .

Note that the following constructors can be expressed in ALC(n), although
we do not introduce them explicitly:

⊥ = ¬>
C tD = ¬

(
¬C u ¬D

)
∀r.C = ¬

(
∃r.(C)

)
26

In the following, we use the notion of satisfiability of a concept term which
is formally defined as follows: an ALC(n)-concept term C is satisfiable (w.r.t. a
general TBox T), if there is an interpretation I (which is a model of T) such
that CI 6= ∅.

In order to show that subsumption in ALC(n) is in ExpTime, we first reduce
it to satisfiability: for arbitrary ALC(n)-concept terms C, D and a TBox T , the
following are equivalent:

• C vT D

• C u ¬D is unsatisfiable w.r.t. T .

We note that this reduction is valid in any logic that is closed under the con-
structors u and ¬.

We show now that satisfiability (and hence, subsumption) in ALC(n) is in
ExpTime. For this, we use a technique similar to the elimination of Hintikka
sets approach that is used in [BdRV01] to prove that satisfiability in proposi-
tional dynamic logic is in ExpTime.

We have to introduce some notions. Let C0 be an ALC(n)-concept term and
T a general TBox such that it is to be decided whether C0 is satisfiable w.r.t. T .
We use the abbreviations sub and cl that are defined, for any EL(n)-concept term
C and any TBox T , as follows:

• sub(C) := {C ′|C ′ is a subconcept of C};

• sub(T) :=
⋃

DvE∈T

(
sub(D) ∪ sub(E)

)
;

• sub(C, T) := sub(C) ∪ sub(T), and

• cl(C, T) := sub(C, T) ∪ {¬D|D ∈ sub(C, T)}.

We use cl(C) as an abbreviation for cl(C, ∅). Now, we introduce the notion of
type which plays an important role in the rest of this chapter.

Definition 13 (Type) A set Ψ ⊆ cl(C0, T) is a type for C0, T if the following
conditions are satisfied:

(t1) for all ¬C ∈ sub(C0, T), ¬C ∈ Ψ iff C 6∈ Ψ;

(t2) for all C uD ∈ sub(C0, T), C uD ∈ Ψ iff {C, D} ⊆ Ψ;

(t3) for all ¬(C uD) ∈ sub(C0, T), ¬(C uD) ∈ Ψ iff {C, D} ∩Ψ 6= ∅;

(t4) for all D v E ∈ T , D ∈ Ψ implies E ∈ Ψ.

27

Let Ψ be a type for C0, T , Φ0, . . . , Φn−1 a (possibly empty) sequence of types
for C0, T , and r a role name. Then Φ0, . . . , Φn−1 is a successor candidate for
Ψ w.r.t. r if for all ∃r.(C1, . . . , Ck) ∈ cl(C0, T), we have ∃r.(C1, . . . , Ck) ∈ Ψ iff
there are i1, . . . , ik < n such that Cj ∈ Φij for all j = 1, . . . , k and ij 6= i` for all
j, `, 1 ≤ j < ` ≤ k.
For a set of concept terms Γ, we define

rol∃(Γ) := {r ∈ Nr|∃r.(C1, . . . , Cn) ∈ cl(C0, T), for some C1, . . . , Cn}

and for every r ∈ rol∃(Γ),

Nr(Γ) :=
∑

∃r.(C1,...,Ck)∈Γ

k

The following Lemma shows tractability of deciding whether a sequence
Φ0, . . . , Φn−1 of sets of concepts is a successor candidate for Ψ w.r.t. r and Γ.

Lemma 11 Let Ψ, Φ0, . . . , Φn−1 subsets of cl(C0, T). It is decidable in polyno-
mial time whether Φ0, . . . , Φn−1 is a successor candidate for Ψ w.r.t. r.

Proof Firstly, we define an additional notion. A system of distinct repre-
sentatives (SDR) for a family of sets S1, . . . , Sk is a k-tuple (a1, . . . , ak) such
that ai ∈ Si for i = 1, . . . , k and all ai are distinct, i.e., ai 6= aj, for all i, j,
1 ≤ i < j ≤ k.

It is enough to show that, for each ∃r.(C1, . . . , Ck) ∈ cl(C0, T), it is decidable
in polynomial time whether there are indices i1, . . . , ik < n such that Cj ∈ Φij

for 1 ≤ j ≤ k and ij 6= il for 1 ≤ j < l ≤ k.
For each j = 1, . . . , k, we define the set

Sj := {i|0 ≤ i < n and Cj ∈ Φi}.

Then there are indices i1, . . . , jk < n as required iff (S1, . . . , Sk) has an SDR. The
existence of an SDR can be decided in polynomial time by a reduction to the
maximum bipartite matching problem, which is known to be polynomial [HK73].

�
A type Γ is called bad w.r.t. a set of types T if there exists a role name

r ∈ rol∃(Γ) such that there is no sequence Φ0, . . . , Φn−1 ∈ T with n ≤ Nr(Γ)
that is a successor candidate for Γ w.r.t. r.

Figure 4.1 presents a procedure ALC(n)-Elim that decides satisfiability of an
ALC(n)-concept term C0 w.r.t. a TBox T . The following proposition uses the
procedure ALC(n)-Elim to show the exponential upper bound for satisfiability
in ALC(n).

Proposition 1 The procedure ALC(n)-Elim introduced in Fig. 4.1 decides sat-
isfiability of C0 w.r.t. T in exponential time.

28

define procedure ALC(n)-Elim(C0, T)
Set i := 0 and T0 to the set of all types for C and T
repeat

Ti+1 := {Γ ∈ Ti | Γ is not bad w.r.t. Ti}
i := i + 1

while Ti 6= Ti−1

if there exists a type Γ ∈ Ti with C ∈ Γ then
return true

return false

Figure 4.1: Procedure ALC(n)-Elim(C0, T)

Proof First, we show that the procedure ALC(n)-Elim defined in Fig. 4.1 termi-
nates after at most exponentially many steps. The repeat loop is executed at
most exponentially many times since there are exponentially many types and, in
each iteration at least one type is eliminated. Checking whether a type is bad
can be done in exponential time since there are at most exponentially many
sequences of types of length at most Nr

(
cl(C0, T)

)
. By Lemma 11, for each

such sequence, it can be checked in polynomial time whether it is a successor
candidate. Thus, ALC(n)-Elim is a deterministic exponential time procedure.

We show now that ALC(n)-Elim(C0, T) answers true iff C0 is satisfiable w.r.t.
T . Assume that ALC(n)-Elim terminates returning true. We construct an in-
terpretation I such that CI

0 6= ∅. Let T be the set of types that have not
been eliminated. We denote with ΓC0 ∈ T a type with C0 ∈ ΓC0 . Let Γ ∈ T

and r ∈ rol∃(Γ). Since Γ was not eliminated, it has a successor candidate
Ψ0, . . . , Ψn−1 with all the Ψi ∈ T. These types, however, need not to be all
distinct. For this reason, it is not enough to take just the types in T as the
domain elements of I. To have enough copies of each type available, we define

N := max
{
Nr

(
cl(C0, T)

)
|r ∈ rol∃

(
cl(C0, T)

)}
,

and generate N copies of each type in T. Now, we define the interpretation I
as follows:

• ∆I := {(Γ, i)|1 ≤ i ≤ N and Γ ∈ T}.

• AI := {(Γ, i) ∈ ∆I |A ∈ Γ}, for all concept names A.

• Let (Γ, i) ∈ ∆I and r ∈ rol∃(Γ). Since Γ was not eliminated, there exists a
successor candidate Ψ1, . . . , Ψn for Γ w.r.t. r. By the definition of Nr(Γ),
we know that

∑m
i=1 nj ≤ Nr(Γ) ≤ N . Thus, we can define the set

{(Ψi, i)|1 ≤ i ≤ n}

29

to be the set of r-successors of Γ in I.

We prove now by structural induction on C the fact that, for all (Γ, i) ∈ ∆I

and all C ∈ cl(C, T), we have (Γ, i) ∈ CI iff C ∈ Γ.
Base case. Let C be a concept name. Then the fact that (Γ, i) ∈ CI iff C ∈

Γ follows directly from the above definition of I.
Induction step. Let C = ¬C ′. Then (Γ, i) ∈ CI iff (Γ, i) 6∈ C ′I iff (by

I.H.) C ′ 6∈ Γ which, by definition of a type, is equivalent to ¬C ′ ∈ Γ. Thus,
(Γ, i) ∈ CI iff C ∈ Γ.
Let C = C ′ u D′. Then (Γ, i) ∈ CI iff (Γ, i) ∈ C ′I ∧ (Γ, i) ∈ D′I iff (by I.H.)
C ′ ∈ Γ ∧D′ ∈ Γ iff C ′ uD′ ∈ Γ.
Let C = ∃r.(C1, . . . , Cn), for some r ∈ Nr. Then since Γ has a successor
candidate w.r.t. r, we know that there exist Ψ1, . . . , Ψn ∈ T with Ck ∈ Ψk, for
k = 1, . . . , n. By I.H., the latter is equivalent to (Ψk, jk) ∈ CI

k , for k = 1, . . . , n
and some jk. Again by definition of I we know that all the pairs (Ψk, jk) are
r-successors of (Γ, i) and thus (Γ, i) ∈ ∃r.(C1, . . . , Cn)I = CI .

Now we have that (ΓC0 , 1) ∈ CI
0 . In addition, if D v E ∈ T and (Γ, i) ∈ DI ,

then D ∈ Γ, and thus, by Condition (t4) of the definition of type, E ∈ Γ, which
implies (Γ, i) ∈ EI . Thus, we have constructed the required interpretation I
with CI 6= ∅.

Conversely, assume that C0 is satisfiable w.r.t. T , and let I be the model
of T such that x0 ∈ CI

0 , for some x0 ∈ ∆I . For x ∈ ∆I , we define

tp(x) :=
{
C ∈ cl(C, T)|x ∈ CI}.

Similarly to the inductive proof above, it is easy to prove by structural induction
on C0 that no type in T := {tp(x)|x ∈ ∆I} is eliminated by ALC(n)-Elim(C0, T).
Since tp(x0) contains C0, ALC(n)-Elim returns true.

�
Summing up, we can conclude that satisfiability and, hence, subsumption in
ALC(n) w.r.t. general TBoxes is in ExpTime. This upper bound translates
to EL(n), which is a fragment of ALC(n). The next theorem states that the
ExpTime lower bound for subsumption in EL(n) with general TBoxes is indeed
optimal.

Theorem 12 The subsumption problem in EL(n) and ALC(n) with respect to
general TBoxes is ExpTime-complete.

30

Chapter 5

Experimental evaluation

Since in the process engineering application, that motivated our work, the rea-
soning is performed in restricted EL(n) with restricted TBoxes, we have imple-
mented the polynomial algorithm for deciding subsumption that is developed in
Chapter 3. The resulting system is referred to as Eln. In addition, we compared
the performance of Eln with the state-of-the-art DL reasoner Racer [HM01].

5.1 Implementation

Eln is a straightforward C-implementation of the polynomial algorithm for de-
ciding subsumption in EL(n) with acyclic TBoxes that was developed in Chap-
ter 3. It accepts the input data in the XML-based format DIG-1.0 [Bec02]
recommended by the Description Logics Implementation Group (DIG). Usually,
a DIG-1.0 task description consists of two parts: Tells and Asks. The Tells part
contains TBox axioms like, e.g.,

<equalc>

<catom name="C"/>

<and>

<catom name="D"/>

<catom name="E"/>

</and>

</equalc>

which encodes the axiom C ≡ D u E. The Asks part enumerates queries like
the following ones:

<satisfiable>

<catom name="C"/>

</satisfiable>

31

<subsumes>

<catom name="C"/>

<catom name="D"/>

</subsumes>

that should be read as follows: is C satisfiable? and does D v C hold?,
respectively. Note that since any EL(n)-concept term is trivially satisfiable, we
concentrate on subsumption tests only. All the queries in the Asks part are
considered with respect to the TBox defined in the Tells part. We have taken
the EL-relevant fragment of DIG-1.0 and extended it with the n-ary existential
quantifier such that the concept term ∃r.(C, D,E) is encoded as follows:

<someN>

<ratom name="r"/>

<catom name="C"/>

<catom name="D"/>

<catom name="E"/>

</someN>

Eln uses the library Libxml to parse the input data and to perform all oper-
ations on XML-trees. After reading the input file, Eln performs the following
manipulations:

• Syntax checking: Any syntactic element that is not a valid EL(n)-construction
is removed with printing out the corresponding warning message;

• Acyclicity test: If the input TBox T contains a set of cyclic definitions,
the program terminates with the respective error message;

• Graph construction: An EL(n)-description forest FT is constructed for T ;

• Queries execution: For every subsumption test C v D encoded in the
Asks part, check the existence of a subsumption mapping from D to C in
FT .

In order to solve the maximum bipartite matching problem, Eln employs the
Leda library that implements highly optimized graph algorithms [MN99].

5.2 Experimental data and environment

In our experiments, we use two sources of input data. The first one is a family
of artificially created TBoxes Tn, for n > 0, that are of the following form:

32

Tn :=
{

C ≡ ∃r.(C1, . . . , Cn)
D ≡ ∃r.(A1, . . . , An)
C1 ≡ A1 uB1
...

Cn ≡ An uBn

}
It is easy to see that the ontologies Tn, n ≥ 0 are restricted EL(n)-TBoxes. Note,
that for each n > 0, C vTn D and D 6vTn C, i.e., C is subsumed by D w.r.t. Tn

but not vice versa.
The second type of input data is a real world ontology from the chemical

process engineering that is referred to as PEN (Process ENgineering). The
PEN ontology is a restricted EL(n)-TBox that contains 109 concept defini-
tions. About 30 of them use the n-ary existential quantifier ∃r.(C1, . . . , Cn)
with n ∈ {2, 3, 4, 5, 31}. The comparison between Eln and Racer on the PEN on-
tology is performed by means of a testing procedure that generates 500 random
subsumption tests between concept names defined in these 30 definitions.

As for Tn-TBoxes, both reasoners were to answer the queries C v?
Tn

D and
D v?

Tn
C with the growing value of n.

All experiments presented in this chapter were carried out on a Pentium IV
machine with 2.7GHz CPU and 3GB of RAM. The runtime for every subsump-
tion test was limited by 600 seconds. A task was considered to be solved if a
reasoner could provide the correct answer within the given time interval. The
experimental results themselves are presented in Chapter 5.4.

5.3 Translation from EL(n) to ALCQ
In fact, the n-ary existential quantifier introduced in this work is not explicitly
present in the syntax of existing DLs. Therefore, in order to run Racer on
knowledge bases containing this new constructor, the latter should be translated
into some DL supported by Racer.

In our experiments, we used the translation procedure proposed in [TvW04].
The idea of this translation is based on the fact that semantics of an EL(n)-
concept term ∃r.(C1, . . . , Cn) is closely related with the notion of a system of
distinct representatives (SDR) introduced in Section 4. We remind here that
an SDR for a family of sets S1, . . . , Sk is a k-tuple (a1, . . . , ak) such that ai ∈ Si

for i = 1, . . . , k and all ai are distinct, i.e., ai 6= aj, for all i, j, 1 ≤ i < j ≤ k.
Indeed, let us consider an interpretation I = (∆I , ·I) and some domain indi-

vidual a ∈ ∆I . We denote the set of all r-successors of a as Sr(a). The following

is a consequence of the semantics of ∃r.(C1, . . . , Cn): a ∈
(
∃r.(C1, . . . , Cn)

)I
iff

there exists an SDR for
(
Sr(a) ∩ CI

1 , . . . , Sr(a) ∩ CI
n

)
. Hall’s theorem [Hal35]

gives necessary and sufficient condition of existence of an SDR for a family of
sets.

33

C v?
Tn

D (yes) D v?
Tn

C (no)
n Racer time, sec. Eln time, sec Racer time, sec. Eln time, sec

1 0.10 0.10 0.11 0.10
2 0.24 0.10 0.36 0.10
3 0.88 0.11 0.59 0.10
4 > 600 0.12 0.81 0.10
5 - 0.12 1 0.11
6 - 0.14 27 0.11
7 - 0.14 > 600 0.12
8 - 0.14 - 0.12
9 - 0.15 - 0.12
10 - 0.15 - 0.13

Figure 5.1: Runtime of Racer and Eln on subsumption tests w.r.t. ontologies Tn.

Theorem 13 (Hall’s theorem) A family of sets S1, . . . , Sn has an SDR iff
for any i1, . . . , ik ∈ {1, . . . , n}, 1 ≤ k ≤ n, the following holds:

|Si1 ∪ . . . ∪ Sik | ≥ k.

The condition stated in Hall’s theorem is expressible in ALCQ, which is
accepted by Racer. Thus, we obtain the equivalence preserving translation from
EL(n) to ALCQ proposed in [TvW04]:

∃r.(C1, . . . , Cn) ≡
d

M⊆{1,...,n}

(
≥ |M|r.

(⊔
j∈M

Cj

))
.

This translation shows that augmenting the logic ALCQ with the n-ary
existential restriction constructor does not extend its expressive power. But on
the other hand, this translation is exponential in the size of the input and has
an PSpace-hard target logic. Thus, one can suppose that translation-based
reasoning algorithms for EL(n) do not scale well in comparison to direct ones.
We present evidence of this fact in the next section.

5.4 Experimental results

We start with evaluating both reasoners Racer and Eln on the artificially created
ontologies Tn described in Section 5.2. The timing results for these tests are
depicted in Figure 5.1. We note that even for small values of n, namely n =
1, . . . , 10, Eln demonstrates advantageous behaviour in comparison to Racer.
For small n, Eln finds the subsumption relationship immediately, i.e., with no
measurable runtime. Whereas, Racer does not scale up to the problems with n

34

0

20

40

60

80

100

120

140

160

50 100 150 200 250 300 350 400 450

R
un

tim
e,

 s
ec

.

Parameter n

positive subsumption tests
negative subsumption tests

Figure 5.2: Runtime of Eln on ontologies Tn with the growth of n.

larger than 7. The latter observations are true for both kinds of subsumption
tests. Namely, for positive ones of the kind C v?

Tn
D, where the subsumption

between C and D holds, and for negative ones of the kind D v?
Tn

C, where the
subsumption does not hold.

In order to analyze the computational behaviour of Eln on larger problems,
we have executed the same subsumption tests, i.e., C v?

Tn
D and D v?

Tn
C, with

n = 50, 100, . . . , 500. The results of these experiments are shown in Figure 5.2.
One should observe that even for n = 100 the runtime of our unoptimized

implementation is just 1 second. We also note that Eln requires additional op-
timizations in order to scale up to problems of the size larger than n=400. We
believe that optimized search procedures using, e.g., hash tables, or caching
techniques would bring a substantial gain to our yet straightforward implemen-
tation. Moreover, we have realized that our choice to use XML trees for storing
EL(n)-description graphs implies an unacceptably high memory consumption.
In the future, it would be necessary to use more efficient data structures.

In addition to artificially created ontologies Tn, we compare the computa-
tional behaviour of both reasoners on the real world ontology PEN that was
presented in Section 5.2. As mentioned above, this experiment consisted of
500 random subsumption tests between PEN concept names that were defined
using the n-ary existential quantifier. As the result, Eln could solve all of the
500 subsumption tests taking not more than 1 second per single test. Whereas
Racer could not solve any test due to an extremely large size of the ontology
after its translation into the DL ALCQ.

35

Chapter 6

Conclusion

Motivated by the chemical process engineering application, we have extended
the description logic EL by the n-ary existential quantifier. This constructor
generalizes both the standard existential quantifier (∃r.C) and the qualified
number restrictions (≥ nr.C). The resulting logic is referred to as EL(n). A
fragment of EL(n), referred to as restricted EL(n) allows to formalize process
engineering terminologies in a natural and concise way.

We have investigated the complexity of reasoning in restricted EL(n). In par-
ticular, we have shown that the following instances of the subsumption problem
are of polynomial complexity: Subsumption between concept terms (Chapter 2)
and subsumption with respect to acyclic restricted TBoxes (Chapter 3).

Furthermore, we have justified that subsumption with respect to general
TBoxes, i.e., TBoxes containing general concept inclusion axioms, is ExpTime-
complete in EL(n) as well as in ALC(n), which is the extension of EL(n) with the
complement operator (Chapter 4).

We note that in the process engineering application, it is sufficient to re-
strict the subsumption problem to the case of restricted EL(n)-TBoxes. There-
fore, we have implemented the polynomial algorithm for solving subsumption
in restricted EL(n) with respect to restricted TBoxes in a system Eln. Since the
state-of-the-art DL reasoners like, e.g., Racer, do not allow for the n-ary exis-
tential quantifier, the latter should be translated using constructors available in
existing DLs. In order to compare the performance of Eln with Racer, we have
relied on the translation procedure that was recently developed in [TvW04].
This procedure demonstrates how the n-ary existential quantifier can be ex-
pressed in the DL ALCQ. The comparison analysis between Eln and Racer has
provided the first justification of the fact that the direct treatment of the n-
ary existential quantifier leads to dramatic computational improvements. The
latter result is valid for artificially constructed ontologies as well as for a real
world ones from process engineering application.

One promising direction for future work could be investigating the com-

36

plexity of reasoning in restricted EL(n) in the presence of cyclic terminologies
w.r.t. greatest fixpoint and descriptive semantics. For this we would expect
to use the simulation based approach that was recently introduced in [Baa03]
in order to analyze the complexity of the similar problem in EL. It would be
also challenging to check whether the tractability results presented in this work
can be translated to the case of reasoning with ABoxes. It would also be very
interesting, to extend tableaux algorithms for expressive DLs with the ability
to treat the n-ary existential quantifier.

37

Bibliography

[Baa03] Franz Baader. Terminological cycles in a description logic with existential
restrictions. In Georg Gottlob and Toby Walsh, editors, Proceedings of
the 18th International Joint Conference on Artificial Intelligence, pages
325–330. Morgan Kaufmann, 2003.

[BBL05] Franz Baader, Sebastian Brandt, and Carsten Lutz. Pushing the EL
envelope. In Proceedings of the Nineteenth International Joint Confer-
ence on Artificial Intelligence IJCAI-05, Edunburgh, UK, 2005. Morgan-
Kaufmann Publishers.

[BCM+03] Franz Baader, Diego Calvanese, Deborah McGuinness, Daniele Nardi,
and Peter F. Patel-Schneider, editors. The Description Logic Handbook:
Theory, Implementation, and Applications. Cambridge University Press,
2003.

[BdRV01] Patrick Blackburn, Maarten de Rijke, and Yde Venema. Modal Logic, vol-
ume 53 of Cambridge Tracts in Theoretical Compute Science. Cambridge
University Press, 2001.

[Bec02] Sean Bechhofer. The DIG Description Logic Interface: DIG/1.0. Univer-
sity of Manchester, Oxford Road Manchester M13 9PL, October 2002.

[BH93] F. Baader and P. Hanschke. Extensions of concept languages for a me-
chanical engineering application. In Proceedings of the 16th German AI-
Conference, GWAI-92, volume 671 of Lecture Notes in Computer Science,
pages 132–143, Bonn (Germany), 1993. Springer–Verlag.

[BKM99] F. Baader, R. Küsters, and R. Molitor. Computing least common sub-
sumers in description logics with existential restrictions. In T. Dean, ed-
itor, Proceedings of the 16th International Joint Conference on Artificial
Intelligence (IJCAI’99), pages 96–101. Morgan Kaufmann, 1999.

[BL84] Ronald J. Brachman and Hector J. Levesque. The tractability of sub-
sumption in frame-based description languages. In Proceedings of the
Fourth National Conference on Artificial Intelligence AAAI-84, pages 34–
37, 1984.

38

[Bra79] Ronald J. Brachman. On the epistemological status of semantic net-
works. In Nicholas V. Findler, editor, Associative networks, pages 3–50.
Academic Press, 1979.

[Bra04] Sebastian Brandt. On ubusmption and instance problem in ELH w.r.t.
general tboxes. In Proceedings of the 2004 International Workshop on
Description Logics(DL2004), CEUR-WS, 2004.

[CLN94] Diego Calvanese, Maurizio Lenzerini, and Daniele Nardi. A unified frame-
work for class based representation formalisms. In J. Doyle, E. Sandewall,
and P.Torasso, editors, Proceedings of the fourth International COnference
on the Principles of Knowledge Representation and Reasoning (KR’94),
pages 109–120. Morgan Kaufmann, 1994.

[Hal35] Philip Hall. On representatives of subsets. The Journal of the London
Mathematical Society, 10:26–30, 1935.

[HB91] B. Hollunder and F. Baader. Qualifying number restrictions in concept
languages. In Proceedings of the Second International Conference on Prin-
ciples of Knowledge Representation and Reasoning,KR-91, pages 335–346,
Boston (USA), 1991.

[HK73] John E. Hopcroft and Richard M. Karp. An n5/2 algorithm for maximum
matchings in bipartite graphs. SIAM J. Comput., 2(4):225–231, 1973.

[HM01] Volker Haarslev and Ralf Möller. RACER system description. In Ra-
jeev Goré, Alexander Leitsch, and Tobias Nipkow, editors, Proceedings
of the First International Joint Conference on Automated Reasoning (IJ-
CAR’01), number 2083 in Lecture Notes in Artifical Intelligence, pages
701–705. Springer-Verlag, 2001.

[Hor98] Ian Horrocks. Using an expressive description logic: Fact or fiction? In
Proceedings of the Sixth International Conference on the Principles of
Knowledge Representation and Reasoning (KR98), pages 636–647, 1998.

[HST00] Ian Horrocks, Ulrike Sattler, and Stephan Tobies. Practical reasoning for
very expressive Description Logics. Journal of the Interest Group in Pure
and Applied Logic, 8(3):239–264, 2000.

[Mar94] Wolfgang Marquardt. Modelbildung als grundlage der prozesssimulation.
In H. Schuler, editor, Prozesssimulation. Verlag Chemie Weinheim, 1994.

[Min81] Marvin Minsky. A framework fo representing knowledge. In J. Haugeland,
editor, Mind Design. The MIT Press, 1981.

[MN99] K. Mehlhorn and S. Näher. The LEDA platform of combinatorial and
geometric computing. Cambridge University Press, 1999.

39

[RH97] Alan Rector and Ian Horrocks. Experience building a large, re-usable
medical ontology using a description logic with transitivity and concept
inclusions. In Proc. of the Workshop on Ontological Engineering, 1997.

[RNG93] A. L. Rector, W. A. Nowlan, and A. Glowinski. Goals for concept repre-
sentation in the Galen project. In 17th Annual Symposium on Computer
Applications in Medical Care (SCAMC ’93), pages 414–418, Washington
DC, USA, 1993.

[Sat96] Ulrike Sattler. A concept language extended with different kinds of tran-
sitive roles. In G. Görz and S. Hölldobler, editors, 20. Deutsche Jahresta-
gung für Künstliche Intelligenz, number 1137 in Lecture Notes in Artificial
Intelligence. Springer Verlag, 1996.

[Spa00] K.A. Spackman. Managing clinical terminology hierarchies using algorith-
mic calculation of subsumption: Experience with SNOMED-RT. Journal
of the American Medical Information Association, 2000.

[SSS91] M. Schmidt-Schauß and G. Smolka. Attributive concept descriptions with
complements. Artificial Intelligence, 48(1):1–26, 1991.

[TvW04] Manfred Theißen and Lars von Wedel. The need for an n-ary existential
quantor in description logics. In Sean Bechhofer, Volker Haarslev, Carsten
Lutz, and Ralf Moeller, editors, Proceedings of the KI-04 Workshop on
Applications of Description Logics, 2004.

[vW04] Lars von Wedel. An environment for heterogeneous management in chemi-
cal process engineering. PhD thesis, Lehrstuhl fuer Prozesstechnik, RWTH
Aachen University, 2004.

40

Statement of academic honesty

I hereby declare that this thesis was written by me and I have not used any aux-
iliary sources for the present work other than have been cited in my thesis.

Hiermit versichere ich, dass die vorliegende Diplomarbeit von mir selbständig
verfaßt wurde und keine anderen als die angegebenen Quellen und Hilfsmittel benutzt
wurden.

Dresden, 22nd August 2005 Eldar Karabaev

41

