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Abstrat

Mathing of onepts against patterns is a so-alled non-standard inferene problem

[K�us01℄ in Desription Logis. For the small desription language EL, mathing prob-

lems without terminologial yles have been investigated in [BK00a℄. In the present

thesis we introdue EL-mathing problems allowing terminologial yles. Among the

three di�erent semantis de�ned by Nebel in [Neb91℄ for the interpretation of yli

TBoxes we will argue that gfp-semantis is the appropriate one to de�ne mathing

problems. Based on deiding subsumption [Baa02b℄ and omputing the least ommon

subsumers [Baa02a℄, a mathing algorithm is provided whose soundness and omplete-

ness is shown. Moreover, the mathing algorithm is implemented and tested in the

programming language LISP.

i





Aknowledgements

I would like to �rst express gratitude and appreiation to Sebastian Brandt. He helps

me not only in this master's thesis but also in my seminar and projet, not only in the

sienti� researh but also in tehnique of programming in LISP and L

A

T

E

X. Without

his supervision, I ould not have �nished this thesis. I feel grateful with his patiene for

his providing answers of my questions and ritiisms of my mistakes.

Thank Professor Franz Baader for giving me the topi of the thesis and trust my researh

ability. Also many thanks should go to Dotor Carsten Lutz who gave the letures of

Logi-based Knowledge Representation. These letures introdued me to the world

of Desription Logis. I would like to thank Boontawee Suntisrivaraporn as well for

implementing algorithm of subsumption whih is used in the implementation of my

mathing algorithm.

I am thankful to my family for giving me spiritual and �nanial support on my study.

They keep enouraging me all the time. I love you so muh.

Hongkai Liu

iii





Contents

Abstrat i

Aknowledgements iii

1 Motivation 1

1.1 Why do we do mathing? . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Why do we fous on EL interpreted with gfp-semantis? . . . . . . . . . 2

1.3 The struture of this thesis . . . . . . . . . . . . . . . . . . . . . . . . . 3

2 Cyli EL-TBoxes 5

2.1 The desription logi EL . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.2 Subsumption w.r.t. gfp-semantis . . . . . . . . . . . . . . . . . . . . . . 7

2.3 The least ommon subsumers . . . . . . . . . . . . . . . . . . . . . . . . 9

3 Mathing in Cyli EL-TBoxes 11

3.1 Introduing variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

3.2 EL-mathing problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

4 Solving EL-mathing problems 15

4.1 Mathing algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

4.2 Termination . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

5 Soundness and ompleteness 19

5.1 Soundness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

5.2 Completeness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

6 Implementation 29

6.1 Input C �

?

gfp;T

D and normalization of TBox . . . . . . . . . . . . . . . 29

6.2 Computation of simulation relations . . . . . . . . . . . . . . . . . . . . 31

v



vi CONTENTS

6.3 Computation of TBox T

0

. . . . . . . . . . . . . . . . . . . . . . . . . . 32

6.4 Subsumption testing and output . . . . . . . . . . . . . . . . . . . . . . 33

6.5 Testing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

7 Conlusion 37

Bibliography 38



Chapter 1

Motivation

Desription Logis (DLs) are a family of knowledge representation languages whih use

onept desriptions to represent knowledge. In DLs, onept desriptions are built from

atomi onepts and roles with the help of onstrutors. The onstrutors determine

the expressive power of the DL. Using onept desriptions and the symbol \�" we

an introdue onept de�nitions. For example (from [Baa02b℄), tigers and lions an be

de�ned in DL by following onept de�nitions:

Tiger � Animal u 9parent:Tiger

Lion � Animal u 9parent:Lion

Tigers (lions) are viewed as the animals whose parents are also tigers (lions). A set

of suh onept de�nitions is alled terminology (TBox). We rule out that the same

onept name is de�ned more than one (multiple de�nitions). In this thesis, we will

onsider the DL language EL whih allows for the top-onept (>), onjuntion (u),

and existential restrition (9r:C).

1.1 Why do we do mathing?

DL-systems onsist of two omponents. First, a knowledge base, whih an further be

divided into the TBox and the ABox. Seond, a reasoning engine, whih implements

the various inferene servies. Mathing in EL, the entral problem onerned in this

thesis, is one of these inferene servies on TBoxes.

Researh in the �eld of DLs has mainly been driven by inventing deision algorithms

for so-alled standard inferene problems, suh as subsumption and instane heking.

Subsumption is used to desribe the relationship between two onept desriptions. In

the above example, we an see that every tiger has to be an animal, in other words,

an objet that is a tiger implies that it is also an animal. In this ase, we say that

`Tiger' is subsumed by `Animal'. If two onept desriptions subsume eah other, then

we say that they are equivalent. Deiding subsumption and equivalene are inluded in

standard inferene problems (see [K�us01℄). However, building and maintaining large DL

1



2 Chapter 1. Motivation

knowledge bases requires additional support beyond the set of standard inferene servies

(see [MPS98℄). Mathing is one of non-standard inferene servies whih originally has

been motivated by the problem of pruning large onept desriptions, i.e., only printing

the relevant aspets under urrent irumstanes [BKBM99℄. In fat, mathing has

already been used suessfully in some real appliations of pruning onept desriptions

(see [K�us01℄). Mathing an also be applied to help detet and avoid redundanies

[BK00b℄ and to integrate knowledge bases [BS96℄. Another appliation is that mathing

an be seen as a way to implement query in knowledge bases [BT01℄.

1.2 Why do we fous on EL interpreted with gfp-semantis?

Although EL is a relatively inexpressive DL, it appears to be adequate for some real

appliations. The Gene Ontology (see http://www.geneontology.org) an be repre-

sented in EL with an ayli TBox. Some other examples of EL's appliations are in the

�eld of medial terminologies: SNOMED (see [KAS97℄) and GALEN (see [RNG93℄).

TBoxes without terminologial yles (onept de�nitions depending on themselves) are

alled ayli TBoxes. Mathing problems w.r.t. ayli TBoxes in EL have already

been studied in [BK00a℄. The mathing algorithm in [BK00a℄ is based on �nding ho-

momorphisms between desription trees, omputing the least ommon subsumers (see

[BKM98℄), and testing subsumption.

In this thesis, we will deal with mathing problems in the ase that we allow for yli def-

initions in TBoxes. We have three hoies of semantis to interpret yli TBoxes intro-

dued by Nebel [Neb91℄, namely desriptive semantis, gfp-semantis, and lfp-semantis.

The desriptive semantis is de�ned as the usual semantis for ayli TBoxes. Sub-

sumption in yli TBoxes w.r.t. these three semantis are proven to be deidable in

[Baa02b℄. For lfp-semantis, deiding subsumption in a yli TBox an be redued

to subsumption in an ayli one, where gfp-semantis, lfp-semantis, and desriptive

semantis oinide (see [Neb91℄). In this sense, using gfp-semantis for yli TBoxes in

EL is more interesting than lfp-semantis.

For yli TBoxes, testing subsumption depends on �nding simulation relations on the

desription graph of TBox as it is proven in [Baa02b℄. Moreover, the least ommon

subsumers in EL with yli terminologies interpreted with gfp-semantis always exist

and an be omputed (see [Baa02a℄). For the omputation of least ommon subsumers

we might need to extend the original TBox. It is also stated in [Baa02a℄ if we hoose

desriptive semantis, the least ommon subsumers need not always exist.

All of these good omputational properties of gfp-semantis make solving mathing prob-

lems to be possible in yli EL-TBoxes based on the same intuition as ayli ones.

The objetive of this thesis: a suitable de�nition for mathing problems w.r.t. yli

terminologies in the DL EL is to be examined. Soundness and ompleteness of an ap-

propriate mathing algorithm is to be shown formally. A prototype implementation of

this algorithm has to be done in the programming language LISP.
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1.3 The struture of this thesis

Chapter 2 introdues the language EL and yli TBoxes in EL. We also give def-

initions and haraterizations of two inferene problems (subsumption and the least

ommon subsumers) in EL.

In Chapter 3 we extend the notion of onept desriptions to onept patterns in order

to introdue variables into yli EL-TBoxes. Then we de�ne EL-mathing problems

formally. In Chapter 4, our mathing algorithm is introdued. Moreover, we show ter-

mination of this algorithm.

We onentrate on proving soundness and ompleteness of our mathing algorithm in

Chapter 5. In order to prove ompleteness, we will restrit our attention to \interesting"

solutions.

In Chapter 6, we illustrate the implementation of our mathing algorithm in the pro-

gramming language LISP. Main data strutures and intuitions of important funtions

are disussed. Then we explain the strategy of testing our mathing algorithm.

In the last hapter, we give a summary of this thesis and briey onsider the omplexity

of the mathing algorithm.





Chapter 2

Cyli EL-TBoxes

In this hapter, we introdue the desription logi language EL. All the de�nitions in

this thesis are based on this language. Then we de�ne TBoxes in EL. The notion of

\mathing problems" is onstruted on these de�nitions.

2.1 The desription logi EL

At �rst, we �x some sets whih are neessary to de�ne EL-onept desriptions. Those

sets will be used throughout this thesis.

� N

C

is set of onept names,

� N

R

is set of role names,

� X is set of variables.

Any two of these sets have no ommon elements, i.e., N

C

\N

R

= ;, N

C

\ X = ;, and

N

R

\ X = ;. Starting from these sets we an de�ne onept desriptions indutively

with the help of onstrutors.

De�nition 1 [Syntax℄

The set of all onept desriptions over N

C

and N

R

is indutively de�ned as following:

� Every onept name A 2 N

C

(atomi onept) and > (top-onept) are onept

desriptions;

� If C and D are onept desriptions, then C u D (onjuntion) is a onept de-

sription;

� If r 2 N

R

is a role name and C is a onept desription, then 9r:C (existential

restrition) is a onept desription.

A terminology (or TBox for short) is a �nite set of onept de�nitions of the form

A � D, where A is a onept name and D is a onept desription. In addition, we

5



6 Chapter 2. Cyli EL-TBoxes

require that TBoxes do not ontain multiple de�nitions, i.e., there annot be two distint

onept desriptionsD

1

andD

2

suh that both A � D

1

and A � D

2

belong to the TBox.

Conept names ourring on the left-hand side of a de�nition are alled de�ned onepts.

All other onept names ourring in the TBox are alled primitive onepts. �

Note: We allow for yli dependenies between the de�ned onepts, i.e., the de�nition

of A may refer (diretly or indiretly) to A itself.

The model-theoreti semantis of EL is de�ned by speifying a domain and an interpre-

tation funtion.

De�nition 2 [Semantis℄

Let �

I

be a non-empty set. An interpretation I is de�ned by its domain �

I

and its

interpretation funtion �

I

whih assigns A

I

� �

I

to eah A 2 N

C

and r

I

� �

I

��

I

to eah r 2 N

R

. The interpretation funtion is extended to onept desriptions in the

following way.

� >

I

= �

I

;

� (C uD)

I

= C

I

\D

I

;

� (9r:C)

I

= fx 2 �

I

j 9y : (x; y) 2 r

I

^ y 2 C

I

g.

An interpretation I is a model of the TBox T if and only if it satis�es all its onept

de�nitions, i.e., A

I

= D

I

for all de�nitions A � D in T . This semantis of TBoxes is

alled desriptive semantis by Nebel (see [Neb91℄). �

Nebel introdued three di�erent semantis to yli TBoxes in desription logi: de-

sriptive semantis, least �xpoint (lfp) semantis, and greatest �xpoint (gfp) semantis.

Before we de�ne the lfp- and gfp-semantis, we reall some de�nitions given in [Baa02b℄.

De�nition 3

Let T be an EL-TBox ontaining the roles N

R

, the primitive onepts N

prim

, and the

de�ned onepts N

def

:= fA

1

; : : : ; A

k

g.

� A primitive interpretation J for T is given by a domain �

J

, an interpretation of

the primitive onepts P 2 N

prim

by subsets P

J

of �

J

, and an interpretation of

the roles r 2 N

R

by binary relations r

J

on �

J

.

� The interpretation I is based on the primitive interpretation if and only if it has

the same domain as J and oinides with J on N

R

and N

prim

.

� We de�ne

Int(J) := fI j I is an interpretation based on Jg:

� If I

1

;I

2

2 Int(J ), then

I

1

�

J

I

2

if and only if A

I

1

i

� A

I

2

i

for all i; 1 � i � k:
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�

Using Tarski's �xpoint theorem (see [Tar55℄), it is shown in [Neb91℄ that for a given

primitive interpretation J , there is always a greatest and a least (w.r.t. �

J

) model

of T based on J . We all these models respetively the greatest �xpoint model (gfp-

model) and the least �xpoint model (lfp-model) of T . Greatest (least) �xpoint semantis

onsiders only gfp-models (lfp-models) as admissible models.

In this thesis, we onsider only greatest �xpoint semantis. In Setion 2.2, we de�ne

subsumption between de�ned onepts. We an restrit the attention to subsumption

between de�ned onepts sine subsumption between arbitrary onept desriptions an

be redued to this problem by introduing de�nitions for desriptions.

2.2 Subsumption w.r.t. gfp-semantis

We �rst de�ne relationships named \subsumption" and \equivalene" between de�ned

onepts.

De�nition 4 [Subsumption and equivalene℄

Let T be an EL-TBox and A, B be de�ned onepts ourring in T . Then

� A is subsumed by B w.r.t. gfp-semantis (A v

gfp;T

B) i� A

I

� B

I

holds for all

gfp-models I of T .

� A is equivalent to B w.r.t. gfp-semantis (A �

gfp;T

B) i� A v

gfp;T

B and B v

gfp;T

A.

�

Aording to this de�nition, the equivalene problem is deidable if the subsumption

problem is deidable. Before we give the theorem of deiding subsumption, we introdue

the notion of the normal form of EL-TBoxes.

De�nition 5 [Normal form of EL-TBoxes℄

Let T be an EL-TBox, N

def

the set of the de�ned onepts of T , and N

prim

the set of

primitive onepts of T . Then T is alled in formal form if and only if A � D 2 T

implies that D is of the form

P

1

u � � � u P

m

u 9r

1

:B

1

u � � � u 9r

l

:B

l

for m; l � 0, P

1

; : : : ; P

m

2 N

prim

, r

1

; : : : ; r

l

2 N

R

, and B

1

; : : : ; B

l

2 N

def

. If m = l = 0,

then D = >. �

We use the TBoxes in normal form to generate the desription graphs.

De�nition 6 [EL-desription graphs℄

An EL-desription graph is a graph G = (V;E;L) where

� V is a set of nodes;
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� E � V �N

R

� V is a set of edges labeled by role names;

� L : V ! 2

N

prim

is a funtion that labels nodes with sets of primitive onepts.

�

The normalized TBox T an be translated into the following EL-desription graph G

T

=

(N

def

; E

T

; L

T

):

� the nodes of G

T

are the de�ned onepts in T ;

� if A is de�ned onept and

A � P

1

u � � � u P

m

u 9r

1

:B

1

u � � � u 9r

l

:B

l

is its de�nition in T , then

- L

T

(A) = fP

1

; : : : ; P

m

g, and

- A is the soure of the edges (A; r

1

; B

1

); : : : ; (A; r

l

; B

l

) 2 E

T

.

Simulations are binary relations between nodes of two EL-desription graphs.

De�nition 7 [Simulation℄

Let G

i

= (V

i

; E

i

; L

i

) (i = 1; 2) be two EL-desription graphs. The binary relation

Z � V

1

� V

2

is a simulation from G

1

to G

2

i�

(S1) (v

1

; v

2

) 2 Z implies L

1

(v

1

) � L

2

(v

2

); and

(S2) if (v

1

; v

2

) 2 Z and (v

1

; r; v

0

1

) 2 E

1

, then there exists a node v

0

2

2 V

2

suh that

(v

0

1

; v

0

2

) 2 Z and (v

2

; r; v

0

2

) 2 E

2

.

We write Z : G

1

*

�

G

2

to express that Z is a simulation from G

1

to G

2

. �

From [Baa02b℄, we know that the subsumption problem w.r.t. gfp-semantis an be

deided by test the existene of simulation relations on the desription graph.

Theorem 8

Let T be an EL-TBox and A, B de�ned onepts in T . Then the following are equivalent:

1. A v

gfp;T

B.

2. There is a simulation Z : G

T

*

�

G

T

with (B;A) 2 Z.

To obtain desription graph of TBox, we employ Nebel's approah (see [Neb90℄) to

normalize TBox.

In next setion, we will give the de�nition of the least ommon subsumers (ls) w.r.t.

gfp-semantis in EL. Both deiding subsumption and omputing ls are preparations

for solving EL-mathing problems.



2.3. The least ommon subsumers 9

2.3 The least ommon subsumers

Before we introdue the de�nition of the least ommon subsumers, we de�ne the notion

of onservative extension whih will be used for omputing ls.

De�nition 9 [Conservative extension℄

Let T

1

and T

2

be TBoxes. Then we say that T

2

is a onservative extension of T

1

if and

only if

� T

1

� T

2

and

� T

1

and T

2

have the same primitive onepts and roles.

�

The ls w.r.t. gfp-semantis in EL is formally de�ned as follows:

De�nition 10 [Least ommon subsumers℄

Let T

1

, T

2

be EL-TBoxes suh that T

2

is a onservative extension of T

1

ontaining new

de�ned onept E. Then E in T

2

is a least ommon subsumer of A and B in T

1

w.r.t.

gfp-semantis (gfp-ls) i� the following two onditions are satis�ed:

1. A v

gfp;T

2

E and B v

gfp;T

2

E.

2. If T

3

is a onservative extension of T

2

and F a de�ned onept in T

3

suh that

A v

gfp;T

3

F and B v

gfp;T

3

F , then E v

gfp;T

3

F .

�

By this de�nition we know that the ls omputation is assoiative and ommutative.

When we ompute gfp-ls, the produt of desription graphs is used.

De�nition 11 [Produt of desription graphs℄

Let G

1

= (V

1

; E

1

; L

1

) and G

2

= (V

2

; E

2

; L

2

) be two desription graphs. Their produt is

the desription graph G

1

�G

2

:= (V;E;L) where

� V := V

1

� V

2

;

� E := f((v

1

; v

2

); r; (v

0

1

; v

0

2

)) j (v

1

; r; v

0

1

) 2 E

1

^ (v

2

; r; v

0

2

) 2 E

2

g;

� L((v

1

; v

2

)) := L

1

(v

1

) \ L

2

(v

2

).

�

The following lemma in [Baa02a℄ shows the relation between the ls and the graph

produt. In priniple, the ls of A, B in T is de�ned in a TBox whose desription graph

is the produt of G

T

with itself.

Lemma 12

Let T be a normalized EL-TBox ontaining de�ned onepts A and B. Then (A;B) in

T

0

is the gfp-ls of A and B in T , where T

0

:= T

P

[ T , G

T

P

:= G

T

� G

T

.





Chapter 3

Mathing in Cyli EL-TBoxes

In this Chapter, we will de�ne EL-mathing problems, the mainly onsidered problems

in this thesis.

3.1 Introduing variables

In order to de�ne mathing problems, we need onept patterns to introdue variables

to our onerning DL language EL.

De�nition 13 [Conept patterns℄

The set of all onept patterns over N

C

, N

R

, X is indutively de�ned as follows:

� Every onept variable X 2 X is a onept pattern.

� Every EL-onept desription over N

C

and N

R

is a onept pattern.

� If D

1

and D

2

are onept patterns, then D

1

uD

2

is a onept pattern.

� If D is a onept pattern and r 2 N

R

is a role name, then 9r:D is a onept

pattern.

�

We an extend the notion of onept patterns to EL-TBoxes.

De�nition 14 [Pattern TBox℄

A pattern terminology (or pattern TBox for short) is a �nite set of onept de�nitions

of the form A � D, where A is a onept (A 2 N

C

) name or a variable (A 2 X ) and

D is a onept pattern over N

C

, N

R

, X . In addition, we require that TBoxes do not

ontain multiple de�nitions, i.e., there annot be two distint onept desriptions D

1

and D

2

suh that both A � D

1

and A � D

2

belong to the TBox. Conept names

ourring on the left-hand side of a de�nition are alled de�ned onepts. All other

onept names in the TBox are alled primitive onepts. The set of de�ned onepts

and the set of primitive onepts are respetively denoted by N

def

and N

prim

. We have

11
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that N

C

= N

def

[ N

prim

with N

def

\ N

prim

= ;. Treating variables as onept names,

we an de�ne X

def

and X

prim

also. Analogously, we have that X = X

def

[ X

prim

with

X

def

\ X

prim

= ;. �

Sine every desription onept is also a onept pattern, the usual TBox (ontaining no

variables) is also a pattern TBox. In this thesis pattern TBoxes are also alled TBoxes

for abbreviation.

Introduing variables to TBoxes does not impat the normalization of TBoxes if we

treat variables as onept names. When extending the notion of a simulation relation to

desription graphs ontaining onept patterns, we simply ignore the onept variables,

i.e., (S1) is hanged into that (v

1

; v

2

) 2 Z implies (L

1

(v

1

) n X ) � L

2

(v

2

).

Let T be a normalized EL-TBox and C be a de�ned onept in T . Let G

T

be the

EL-desription graphs for T Then we de�ned:

� V ar

T

(C) = fX 2 X j there exists a path in G

T

from C to D for some D 2 N

def

suh that X is the element of label of Dg.

� V ar

T

=

S

D2N

def

V ar

T

(D).

All of these de�nitions and notations in this setion will be used to de�ne mathing

problems with terminologial yles.

3.2 EL-mathing problems

We now have the EL-TBox ontaining variables in whih we allow for yli de�ni-

tions. Giving some onstraints to variables makes it possible that some de�ned onepts

are equivalent. Based on this intuition, we de�ne the mathing problems formally as

following:

De�nition 15 [EL-mathing problems℄

Let T be an EL-TBox ontaining the de�ned onepts C and D. C �

?

gfp;T

D is an EL-

mathing problem modulo equivalene w.r.t. gfp-semantis i� the following onditions

hold:

� V ar

T

(C) = ; and V ar

T

= V ar

T

(D).

� There are no onept de�nitions for any variable in T .

�

Similarly, we an de�ne mathing problems w.r.t. lfp- and desriptive semantis. If we

hange � to v, then we de�ne mathing problems modulo subsumption.

A solution of C �

?

gfp;T

D is a TBox obtained by adding de�nitions to some onservative

extension of T for variables ourring in T . This preessing is alled instantiation.
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De�nition 16 [Instantiation℄

Let C �

?

gfp;T

D be an EL-mathing problem modulo equivalene w.r.t. gfp-semantis

and T

0

be a onservative extension of T . Then,

T

00

= T

0

[ fX � D

X

j X 2 V ar

T

(D)g

is an instantiation of T w.r.t. T

0

i� every D

X

is a onept pattern de�ned using onept

names, role names, and variables in T

0

. �

De�nition 17 [Mathers℄

Let C �

?

gfp;T

D be an EL-mathing problem modulo equivalene w.r.t. gfp-semantis,

T

0

be a onservative extension of T and T

00

be an instantiation of T w.r.t. T

0

. We alled

T

00

is a mather (or solution) of C �

?

gfp;T

D i� C �

gfp;T

00

D. �

We will show later how to �nd mathers of a given mathing problem. Before that we

use the following example to explain the de�nitions in this setion.

Example 18

Let C �

?

gfp;T

D be an EL-mathing problem and T := fC � A;D � Xg. Then T

0

:= T

is a onservative extension of T and T

00

:= T

0

[ fX � Ag is a mather of C �

?

gfp;T

D.





Chapter 4

Solving EL-mathing problems

We now show how to solve EL-mathing problems modulo equivalene w.r.t. gfp-semantis.

4.1 Mathing algorithm

W.l.o.g., we onsider only normalized EL-TBoxes, otherwise we an transform it into

normalized one (see [Baa02b℄). Sometimes we need to ompute the ls of more than

two onept desriptions, for example, ls(C;D;E). To this end, we alulate the n-ary

ls by means of an (n � 1)-fold binary ls omputation. Based on this intuition, we

introdue the following de�nition:

De�nition 19 Let T be an EL-TBox. Then we de�ne

T

1

:= T ;

T

i+1

:= T

i

� T where G

T

i

�T

= G

T

i
� G

T

and i 2 N n f0g:

�

Let C �

?

gfp;T

D be an EL-mathing problem. For some simulation relation Z : G

T

=

(N

def

; E

T

; L

T

)

*

�

G

T

and some variable X 2 V ar

T

(D), we de�ne the following set:

Z(X) := fN 2 N

def

j 9M 2 N

def

:(M;N) 2 Z ^X 2 L

T

(M)g:

These notations above will be used in the mathing algorithm. We prove now some

properties holding on the produt of TBoxes.

Observation 20

Let T be an EL-Tbox, i; j 2 N n f0g with i 6= j and N

T

i

def

, N

T

j

def

be the orresponding set

of de�ned onepts ourring in T

i

, T

j

. Then

N

T

i

def

\N

T

j

def

= ;:

Proof : This is an immediate onsequene of the de�nition of the produt of Tboxes.2

15
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Lemma 21

Let T be an EL-TBox. Then, T [T

i

is a onservative extension of T for all i 2 N n f0g.

Proof : Let i 2 N n f0g. T [ T

i

is a onservative extension of T sine

� T � T [ T

i

� T and T [ T

i

have the same primitive onepts and roles (from onstrution of

T

i

).

2

We are now ready to de�ne the algorithm of solving EL-mathing problems. The input

of the algorithm is an EL-mathing problem C �

?

gfp;T

D (w.l.o.g., we assume T is in

normal form). The output of the algorithm is a set of mathers to C �

?

gfp;T

D.

Algorithm 22 [Mathing algorithm℄

Input: C �

?

gfp;T

D.

Output: a set S of mathers to C �

?

gfp;T

D.

S := ;;

For all simulation relations Z : G

T

*

�

G

T

with (D;C) 2 Z do

T

0

:= T [

[

i2fjZ(X)jjX2V ar

T

(D)gnf1g

T

i

;

T

00

:= T

0

[ fX � (A

1

; : : : ; A

n

) j Z(X) = fA

1

; : : : ; A

n

g^

jZ(X)j = n ^X 2 V ar

T

(D)g;

If C w

gfp;T

00

D then S := S [ fT

00

g;

return S.

In this mathing algorithm, (A

1

; : : : ; A

n

) is an abbreviation of (: : : (A

1

; A

2

); : : : ; A

n

)

and (: : : (A

1

; A

2

); : : : ; A

n

) in T

0

is ls(A

1

; : : : ; A

n

) of A

1

; : : : ; A

n

in T (By Lemma 12).

Moreover, for the speial ase n = 1, (A

1

) means ls(A

1

) whih an be replaed by A

1

.

Using the following example, we show that to hek C w

gfp;T

00

D is neessary after

obtaining the andidate solutions.

Example 23

Let C �

?

gfp;T

D be an EL-mathing problem with T ontaining the following de�nitions:

C � 9r:A u 9s:B

D � 9r:E u 9s:F

A � P

1

; B � P

2

E � X

F � X

For the simulation relation Z = f(D;C); (E;A); (F;B)g, we have X � ls(A;B) = >.

However, T [ fX � >g is not a mather of C �

?

gfp;T

D.
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4.2 Termination

At the end of this hapter, we show termination of our mathing algorithm.

Lemma 24

Algorithm 22 is always terminating.

Proof : Let C �

?

gfp;T

D be the inputing EL-mathing problem. Sine T is �nite, there

are only �nitely many simulation relations between G

T

and itself. For all simulation

relations Z and for all X 2 V ar

T

(D), jZ(X)j � jZj is �nite. Then T

0

is �nite. Sine

V ar

T

(D) is �nite, T

00

is �nite. From [Baa02b℄, we know that subsumption w.r.t. gfp-

semantis in EL an be deided in polynomial time. Thus, Algorithm 22 is always

terminating. 2

In next hapter, we will show Algorithm 22 is sound and omplete.





Chapter 5

Soundness and ompleteness

In this hapter, we will show that our mathing algorithm de�ned in the previous hapter

is sound and omplete. Every TBox in the output of Algorithm 22 is a solution of the

relevant input mathing problem (soundness). Moreover, if the input mathing problem

is solvable, then Algorithm 22 an �nd all so-alled minimal mathers (s-ompleteness).

5.1 Soundness

We �rst show some auxiliary lemma for proving soundness and ompleteness of our

mathing algorithm.

Lemma 25

Let C �

?

gfp;T

D be an EL-mathing problem and S be the output set generated by the

mathing algorithm. Then, for every T

00

2 S obtained from the orresponding T

0

and

for every variable X 2 V ar

T

(D), we have that

X � (A

1

; : : : ; A

n

) 2 T

00

=) L

T

0

((A

1

; : : : ; A

n

)) \ V ar

T

(D) = ;

where G

T

0

= (V

T

0

; E

T

0

; L

T

0

).

Proof : Consider X � (A

1

; : : : ; A

n

) 2 T

00

for some X 2 V ar

T

(D). By onstrution of

T

00

in Algorithm 22 we know that there are de�ned onepts M

1

; : : : ;M

n

in T suh that

for all i 2 f1; : : : ; ng, X 2 L

T

(M

i

) and (M

i

; A

i

) 2 Z for the orresponding simulation

relation Z. For all i 2 f1; : : : ; ng, there exists a path from D to M

i

, sine X 2 L

T

(M

i

)

and X 2 V ar

T

(D). Together with (D;C) 2 Z, we have that there exists an index

j 2 f1; : : : ; ng suh that

� (M

j

; A

j

) 2 Z and

� there is a path from C to A

j

.

L

T

(A

j

) ontains no variables by de�nition of mathing problems. Hene,

L

T

0

((A

1

; : : : ; A

n

)) = L

T

(A

1

) \ � � � \ L

T

(A

n

)

19
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by the onstrution of T

0

. Thus, L

T

0

((A

1

; : : : ; A

n

)) ontains no variables, i.e.,

L

T

0

((A

1

; : : : ; A

n

)) \ V ar

T

(D) = ;:

2

This lemma tells us that no variables our in the onept de�nition of (A

1

; : : : ; A

n

) in

T

0

if X � (A

1

; : : : ; A

n

) in T

00

for some X 2 V ar

T

(D). This makes it possible that by

replaing every variable X in T

0

by its de�nition in T

00

we obtain a variable-free TBox

(to be explained). We now show that every Z onsidered in the mathing algorithm is

also a simulation relation from G

T

0

to G

T

0

.

Lemma 26

Let C �

?

gfp;T

D be an EL-mathing problem and Z : G

T

*

�

G

T

with (D;C) 2 Z be a

simulation relation and T

0

be a TBox as desribed in the mathing algorithm. Then Z

is a simulation relation on G

0

T

, i.e., Z : G

T

0

*

�

G

T

0

.

Proof : The onditions (S1) and (S2) in De�nition 7 hold:

(S1) For all (v

1

; v

2

) 2 Z we have L

T

0

(v

1

) � L

T

0

(v

2

) sine Z : G

T

*

�

G

T

and T

0

:=

T [

S

i2fjZ(X)jjX2V ar

T

(D)gnf1g

T

i

.

(S2) Consider some (v

1

; v

2

) 2 Z and (v

1

; r; v

0

1

) 2 E

T

0

. Then, (v

1

; v

2

) 2 Z implies that

v

1

and v

2

are de�ned onepts in T sine Z : G

T

*

�

G

T

. Hene,

v

1

� � � � u 9r:v

0

1

u � � � 2 T :

Thus, v

0

1

is also a de�ned onept in T . So there exists a v

0

2

2 V

T

� V

T

0

suh that

(v

0

1

; v

0

2

) 2 Z and (v

2

; r; v

0

2

) 2 E

T

� E

T

0

sine Z : G

T

*

�

G

T

.

2

Let C �

?

gfp;T

D be a mathing problem. We view variables in T as primitive onepts

sine there is no onept de�nition for any a variable. T

0

is a onservative extension of T

by the onstrution of T

0

and T

0

is in normal form sine it is obtained from a desription

graph. However, T

00

is not in normal form sine we add onept desriptions for every

variable X 2 V ar

T

(D) and X ours on the right-hand side of some onept de�nitions

in T

0

. We onstrut a variable-free TBox T

00

Z

from T

00

by plaing every ourrene of

variables with the orresponding variable's de�nition. Then, we prove that T

00

Z

is in

normal form and C v

gfp;T

00

D i� C v

gfp;T

00

Z

D.

T

00

Z

is onstruted by the following de�nition:

De�nition 27

Let C �

?

gfp;T

D be an EL-mathing problem. Let T

00

be a TBox in the set S, the output

of Algorithm 22 giving C �

?

gfp;T

D as input, and E � D

E

be a onept de�nition in T

00

.

Then, we de�ne:

� sub(D

E

) is a onept pattern obtained by replaing every ourrene of X 2

V ar

T

(D) by P

1

u � � � u P

m

u 9r

1

:B

1

u � � � u 9r

l

:B

l

, where X � (A

1

; : : : ; A

n

) and

(A

1

; : : : ; A

n

) � P

1

u � � � u P

m

u 9r

1

:B

1

u � � � u 9r

l

:B

l

are onept de�nitions in T

00

.
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� T

00

Z

:= fE � sub(D

E

) j E � D

E

2 T

00

and E 62 V ar

T

(D)g;

�

By Lemma 25, T

00

Z

obtained by this onstrution is variable-free, i.e., ontaining no

variables.

Lemma 28

T

00

Z

generated by above de�nition is in normal form.

Proof : The only di�erene between T

0

(obtained in the intermediate step when om-

puting T

00

) and T

00

Z

is that we substitute all variables in T

0

by the orresponding onept

desriptions. As de�ned in the above de�nition, if X � (A

1

; : : : ; A

n

) in T

00

, X is sub-

stituted by the de�nition of (A

1

; : : : ; A

n

) in T

0

. Sine T

0

is in normal form, so is T

00

Z

. 2

Sine T

00

Z

is in normal form, we an translate it into the desription graph G

T

00

Z

by the

method de�ned in Chapter 2. Moreover, T

00

and T

00

Z

are equivalent in the sense of

subsumption relations between C and D.

Lemma 29

1. C v

gfp;T

00

D i� C v

gfp;T

00

Z

D;

2. C w

gfp;T

00

D i� C w

gfp;T

00

Z

D.

Proof : In the onstrution of T

00

Z

substitution of variables does not hange semantis

of T

00

sine substitution happens between equivalent onepts. Removing de�nitions

for variables does not hange semantis of T

00

, sine variables do not our in T

00

Z

after

substitution. 2

To prove C v

gfp;T

00

Z

D, it is enough to onstrut a simulation relation Z

T

00

Z

: G

T

00

Z

*

�

G

T

00

Z

with (D;C) 2 Z. This proves C v

gfp;T

00

D as well by Lemma 29. In the mathing

algorithm, we have the simulation relation Z : G

T

*

�

G

T

with (D;C) 2 Z. Now we add

some neessary tuples to Z and obtain Z

T

00

Z

. Then we prove that Z

T

00

Z

is a simulation

relation on G

T

00

Z

.

De�nition 30

Let C �

?

gfp;T

D be a EL-mathing problem, Z be a simulation relation on G

T

ontaining

(D;C), and T

00

be the TBox obtained by Algorithm 22 using Z. T

00

Z

is obtained by

De�nition 27 orresponding to T

00

. Then,

Z

T

00

Z

:=Z [ f((A

j;1

; : : : ; A

j;n

); A

j;i

) j 9i 2 f1; : : : ; ng:9j 2 f1; : : : ; lg:9X 2 V ar

T

(D):

X � (A

1

; : : : ; A

n

); (A

1

; : : : ; A

n

) �

P

1

u � � � u P

m

u 9r

1

:(A

1;1

; : : : ; A

1;n

) u : : : u 9r

l

:(A

l;1

; : : : ; A

l;n

) 2 T

00

g:

�
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Note: The onept de�nition of (A

1

; : : : ; A

n

) in T

00

in the above de�nition is of the

form

P

1

u � � � u P

m

u 9r

1

:(A

1;1

; : : : ; A

1;n

) u : : : u 9r

l

:(A

l;1

; : : : ; A

l;n

):

The reason is the following: Suppose that

(A

1

; : : : ; A

n

) � P

1

u � � � u P

m

u 9r

1

:B

1

u : : : u 9r

l

:B

l

:

(A

1

; : : : ; A

n

) is the least ommon subsumer of A

1

,. . . ,A

n

in T

0

. By Observation 20 and

the de�nition of produt of TBoxes we know that B

j

is of the form (A

j;1

; : : : ; A

j;n

) where

A

j;i

is a de�ned onept in T for all j 2 f1; : : : ; lg and for all i 2 f1; : : : ; ng.

Lemma 31

Let C �

?

gfp;T

D be an EL-mathing problem, Z : G

T

*

�

G

T

be a simulation relation

with (D;C) 2 Z, and T , T

00

be TBoxes as desribed in Algorithm 22. Then Z

T

00

Z

is a

simulation relation on G

T

00

Z

, i.e., Z

T

00

Z

: G

T

00

Z

*

�

G

T

00

Z

.

Proof : Sine Z : G

T

*

�

G

T

, by Lemma 26, Z : G

T

0

*

�

G

T

0

. The di�erene between

T

0

and T

00

Z

is that we substitute variables by the orresponding onept de�nitions. Let

G

T

0

and G

T

00

Z

be the desription graphs of T

0

and T

00

Z

respetively. It holds that the

labels of G

T

00

Z

are obtained from G

T

0

by removing all variables and adding primitive

onepts orresponding to the de�nitions of variables in T

00

. Consider the following

onept de�nition in T

00

:

X � (A

X

1

; : : : ; A

X

n

X

)

(A

X

1

; : : : ; A

X

n

X

) � P

X

1

u � � � u P

X

m

X

u 9r

X

1

:(A

X

1;1

; : : : ; A

X

1;n

X

) u � � � u 9r

X

l

X

:(A

X

l

X

;1

; : : : ; A

X

l

X

;n

X

)

Then, 8M 2 V

T

00

Z

:L

T

00

Z

(M) = L

T

0

(M) n fX j X 2 V ar

T

(D)g [

S

X2L

T

0

(M)

fP

X

1

; : : : ; P

X

m

X

g.

Moreover, by Algorithm 22, there are M

X

1

; : : : ;M

X

n

X

2 N

def

suh that

� (M

X

1

; A

X

1

); : : : ; (M

X

n

X

; A

X

n

X

) � Z;

� X 2 L

T

(M

X

1

) \ : : : \ L

T

(M

X

n

X

).

Comparing G

T

00

Z

and G

T

0

, it is lear that for every edge in G

T

00

Z

but not in G

T

0

there exist

i 2 f1; : : : ; n

X

g and j 2 f1; : : : ; l

X

g suh that the edge has the form of

(M

X

i

; r

X

j

; (A

X

j;1

; : : : ; A

X

j;n

X

)):

Aordingly, in order to obtain Z

T

00

Z

, we add ((A

X

j;1

; : : : ; A

X

j;n

X

); A

X

j;i

) to Z for all i 2

f1; : : : ; n

X

g and for all j 2 f1; : : : ; l

X

g. Now we will show Z

T

00

Z

: G

T

00

Z

*

�

G

T

00

Z

(enough to

show the onditions (S1) and (S2) in De�nition 7 hold).

(S1) Consider some (v

1

; v

2

) 2 Z

T

00

Z

. We have to show that L

T

00

Z

(v

1

) � L

T

00

Z

(v

2

).
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Case 1 : (v

1

; v

2

) 2 Z and L

T

0

(v

1

) \ V ar

T

(D) = ;:

L

T

00

Z

(v

1

) = L

T

0

(v

1

)

= L

T

0

(v

1

) n V ar

T

(D)

� L

T

0

(v

2

) sine Z : G

T

0

*

�

G

T

0

� L

T

00

Z

(v

2

)

Case 2 : (v

1

; v

2

) 2 Z and L

T

0

(v

1

) \ V ar

T

(D) = fX

1

; : : : ;X

k

g:

L

T

00

Z

(v

1

) = (L

T

0

(v

1

) n V ar

T

(D)) [

k

S

i=1

fP

X

i

1

; : : : ; P

X

i

m

X

i

g.

Case 2.1 : 8P 2 L

T

0

(v

1

)nV ar

T

(D): P 2 L

T

00

Z

(v

2

) sine (v

1

; v

2

) 2 Z : G

T

0

*

�

G

T

0

.

Case 2.2 : 8P 2

k

S

i=1

fP

X

i

1

; : : : ; P

X

i

m

X

i

g:9j 2 f1; : : : ; kg:X

j

� (A

X

j

1

; : : : ; A

X

j

n

)

and P 2 L

T

0

(A

X

j

1

)\� � �\L

T

0

(A

X

j

n

). By Algorithm 22, v

2

2 fA

X

j

1

; : : : ; A

X

j

n

g.

Thus, P 2 L

T

00

Z

(v

2

).

Case 3 : (v

1

; v

2

) 2 Z

T

00

Z

n Z:

Then there is an X 2 V ar

T

(D) suh that X � (A

1

; : : : ; A

n

). There are

M

1

; : : : ;M

n

2 N

def

suh that f(M

1

; A

1

); : : : ; (M

n

; A

n

)g � Z andX 2 L

T

(M

i

)

for i 2 f1 : : : ; ng. Suppose that

(A

1

; : : : ; A

n

) � P

1

u � � � u P

m

u 9r

1

:(A

1;1

; : : : ; A

1;n

) u � � � u 9r

l

:(A

l;1

; : : : ; A

l;n

)

in T

0

. Then there exist i 2 f1; : : : ; ng and j 2 f1; : : : ; lg suh that

� v

1

= (A

j;1

; : : : ; A

j;n

) and

� v

2

= A

j;i

.

Hene,

L

T

00

Z

(v

1

) =L

T

0

(A

j;1

) \ � � � \ L

T

0

(A

j;n

)

� (L

T

0

(A

j;i

) n V ar

T

(D))

� L

T

00

Z

(A

j;i

)

= L

T

00

Z

(v

2

)

(S2) Consider some (v

1

; v

2

) 2 Z

T

00

Z

and (v

1

; r; v

0

1

) 2 E

T

00

Z

. We have to show that there

exists a node v

0

2

2 V

T

00

Z

suh that (v

0

1

; v

0

2

) 2 Z

T

00

Z

and (v

2

; r; v

0

2

) 2 E

T

00

Z

.

Case 1 (v

1

; v

2

) 2 Z and (v

1

; r; v

0

1

) 2 E

T

0

. Then there is a node v

0

2

2 V

T

0

= V

T

00

Z

suh that (v

0

1

; v

0

2

) 2 Z � Z

T

00

Z

and (v

0

1

; r; v

0

1

) 2 E

T

0

� E

T

00

Z

sine Z : G

T

0

*

�

G

T

0

.

Case 2 (v

1

; v

2

) 2 Z

T

00

Z

n Z and (v

1

; r; v

0

1

) 2 E

T

0

. Then there exist i 2 f1; : : : ; ng

and j 2 f1; : : : ; lg suh that v

1

= (A

j;1

: : : ; A

j;n

) and v

2

= A

j;i

. Moreover, v

0

1

is of the form (E

1

; : : : ; E

n

) suh that f(A

j;1

; r; E

1

); : : : ; (A

j;n

; r; E

n

)g � E

T

0

.

So (A

j;i

; r; E

i

) 2 E

T

0

� E

T

00

Z

.
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Case 3 (v

1

; v

2

) 2 Z and (v

1

; r; v

0

1

) 2 E

T

00

Z

n E

T

0

. Then there exist i 2 f1; : : : ; ng

and j 2 f1; : : : ; lg suh that v

1

=M

i

, v

2

= A

i

, r = r

j

, and v

0

1

= (A

j;1

: : : ; A

j;n

).

Then De�nition 27 tells us ((A

j;1

: : : ; A

j;n

); A

j;i

) 2 Z

T

00

Z

and (A

i

; r

j

; A

j;i

) 2

E

T

0

sine ((A

1

; : : : ; A

n

); r

j

; (A

j;1

: : : ; A

j;n

)) 2 E

T

00

Z

.

Case 4 (v

1

; v

2

) 2 Z

T

00

Z

nZ and (v

1

; r; v

0

1

) 2 E

T

00

Z

nE

T

0

. (v

1

; v

2

) 2 Z

T

00

Z

nZ yields that

v

1

is of the form (A

j;1

; : : : ; A

j;n

). (v

1

; r; v

0

1

) 2 E

T

00

Z

nE

T

0

yields that L

T

0

(v

1

) =

L

T

0

((A

j;1

; : : : ; A

j;n

)) ontains some variable. This ase is not possible by

Lemma 25.

2

Using the above lemma it is easy to show soundness of our mathing algorithm.

Theorem 32

Let C �

?

gfp;T

D be an EL-mathing problem. Every T

00

2 S is a mather of C �

?

gfp;T

D.

Proof : By Lemma 21 we know that T

0

is a onservative extension of T . And T

00

is

an instantiation of T w.r.t. T

0

(by onstrution of T

00

). To show that T

00

is a mather

of C �

?

gfp;T

D, we have to show C �

gfp;T

00

D. From the mathing algorithm, for every

T

00

2 D we know that C w

gfp;T

00

D. Thus, it suÆes to show that for all T

00

in S we have

C v

gfp;T

00

D. By Lemma 31, we an onstrut Z

T

00

Z

: G

T

00

Z

*

�

G

T

00

Z

with (D;C) 2 Z

T

00

Z

.

Thus, by Theorem 8, we have C v

gfp;T

00

Z

D. Then, Lemma 29 yields C v

gfp;T

00

D. 2

5.2 Completeness

In this setion we want to show ompleteness of our mathing algorithm. If there is

more than one solution, we are interested in solutions that ontain as muh informa-

tion as possible. So in the proof of ompleteness, we laim that whenever there exists

a mather M

00

, our mathing algorithm an �nd one mather whih is more spei�

w.r.t. subsumption than M

00

. To ompare among mathers, we introdue the following

de�nition:

De�nition 33

Let C �

?

gfp;T

D be an EL-mathing problem, T

0

1

, T

0

2

be onservative extensions of T ,

T

00

1

be an instantiation of T w.r.t. T

0

1

and T

00

2

be an instantiation of T w.r.t. T

0

2

. By

renaming de�ned onepts and variables in T we an make T

00

1

and T

00

2

suh that they

do not ontain ommon de�ned onepts and variables. Then,

� T

00

1

is s-subsumed by T

00

2

(T

00

1

v

s

T

00

2

) i� for all X 2 V ar

T

(D), X

T

1

v

gfp;T

00

1

[T

00

2

X

T

2

,

where X

T

1

in T

00

1

and X

T

2

in T

00

2

orrespond to X in T .

� T

00

1

is s-equivalent to T

00

2

(T

00

1

�

s

T

00

2

) i� T

00

1

v

s

T

00

2

and T

00

2

v

s

T

00

1

.

A mather M

00

is the least mather w.r.t. v

s

i� M

00

v

s

T

00

holds for all mathers T

00

.

A matherM

00

is a minimal mather w.r.t. v

s

i� for all mathers T

00

, T

00

v

s

M

00

implies

M

00

�

s

T

00

. �
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The next lemma tells us that the least mather is unique up to s-equivalene. This is

an immediate onsequene of De�nition 33.

Lemma 34

Let C �

?

gfp;T

D be an EL-mathing problem. If M

00

1

and M

00

2

are two least mathers of

C �

?

gfp;T

D then M

00

1

�

s

M

00

2

.

The following example illustrates that the least mather of C �

?

gfp;T

D need not exist

even if C �

?

gfp;T

D is solvable.

Example 35

T := fC � 9r:A u 9r:B;D � 9r:X u 9r:Y g. It is easy to see that T [ fX � A; Y � Bg

and T [fX � B;Y � Ag are mathers of C �

?

gfp;T

D. However, the least mather does

not exist.

We now de�ne our notion of ompleteness formally. If a mathing problem is solvable,

then our mathing algorithm an ompute an s-omplete set of mathers. It is de�ned

as following:

De�nition 36

Let S

M

be the set of mathers of C �

?

gfp;T

D. Then S � S

M

is alled s-omplete i�

8M

00

2 S

M

:9T

00

2 S:T

00

v

s

M

00

. �

Next we want to show that the set S of mathers omputed by Algorithm 22 is s-

omplete.

Theorem 37

Let C �

?

gfp;T

D be an EL-mathing problem. If M

00

is a mather of C �

?

gfp;T

D then

there exists T

00

2 S with T

00

v

s

M

00

, where S is the output of Algorithm 22 upon input

C �

?

gfp;T

D.

Proof : Suppose that M

00

is an instantiation of T w.r.t. M

0

. W.l.o.g., we assume that

M

00

is in normal form. Otherwise, we an obtain the orresponding normalized TBox

M

00

1

using Nebel's approah mentioned in [Baa02b℄. Moreover, M

0

1

:=M

00

1

n fX � D

X

j

X 2 V ar

T

(D)g. M

0

1

is a onservative extension of T sine normalization adds onept

de�nitions for new onept names. Normalization does not hange the semantis of

TBoxes. Thus, M

0

1

is a onservative extension of T and M

00

1

is an instantiation of T

w.r.t. M

0

1

.

Sine M

00

is a mather of C �

?

gfp;T

D, we have that C �

gfp;M

00

D. Thus, C v

gfp;M

00

D

and C w

gfp;M

00

D. Hene, C v

gfp;M

00

D implies that there exists a simulation relation

Z

M

00

: G

M

00

*

�

G

M

00

with (D;C) 2 Z

M

00

.

Comparing G

T

with G

M

00

, we observe that adding de�nitions of all variables hanges

the state of variables from primitive to de�ned variables. In the normalization of M

00

we replae every ourrene of a variable on the right-hand side of de�nitions inM

00

by

its \normalized" de�nition. Thus, in the orresponding graph, G

T

an be obtained from

G

M

00

by removing edges and some nodes (not only nodes of variables sine new de�ned
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onept names an be introdued by the normalization) in G

M

00

, adding some variables

to the labels of some nodes and at the same time removing the orresponding primitive

onepts from the labels of these nodes. Hene, we have

� E

T

� E

M

00

and

� 8v 2 V

T

:(L

T

(v) n V ar

T

(D)) � L

M

00

(v).

Let N

T

def

be the set of de�ned onepts in T . We de�ne a binary relation Y by restriting

Z

M

00

to de�ned names in T :

Y := f(v

1

; v

2

) 2 Z

M

00

j fv

1

; v

2

g � N

T

def

g:

It holds that Y is �nite sine Z

M

00

is �nite and Y � Z

M

00

. Then we ompute a binary

relation Z from Y by means of the following algorithm:

Algorithm

Input: Y

Output: Z

Z := f(D;C)g;

repeat

for every (v

1

; v

2

) 2 Z do

begin

if (v

1

; r; v

0

1

) 2 G

T

then

�nd \one" v

0

2

suh that (v

2

; r; v

0

2

) 2 G

T

and (v

0

1

; v

0

2

) 2 Y ;

Z := Z [ f(v

0

1

; v

0

2

)g;

end;

until Z is not inreased;

return Z.

This algorithm always stops sine Y is �nite. Moreover, we have that Z � Y sine

(D;C) 2 Y and the added elements of Z are also in Y . When omputing Z, if there is

more than one v

0

2

satisfying the ondition we selet arbitrarily one of them.

Claim 1: For every (v

1

; v

2

) 2 Z, if (v

1

; r; v

0

1

) 2 G

T

then v

0

2

as required by the above

algorithm always exists.

Proof of Claim 1: For every (v

1

; v

2

) 2 Z, if (v

1

; r; v

0

1

) 2 G

T

then there exists a v

0

2

suh

that (v

2

; r; v

0

2

) 2 G

M

00

and (v

0

1

; v

0

2

) 2 Z

M

00

sine

� Z

M

00

: G

M

00

*

�

G

M

00

;

� (v

0

1

; v

0

2

) 2 Z � Y � Z

M

00

;

� (v

1

; r; v

0

1

) 2 E

M

00

sine (v

1

; r; v

0

1

) 2 E

T

� E

M

00

.

Moreover, (v

2

; r; v

0

2

) 2 G

M

00

implies v

2

� � � � u 9r:v

0

2

u � � � in M

00

.

In the omputation of Z, some paths from C are generated aording to the orrespond-

ing paths from D in G

T

. From the de�nition of EL-mathing problems, we know that



5.2. Completeness 27

V ar

T

(C) ontains no variables. This implies v

2

� � � � u 9r:v

0

2

u � � � in T for every node

v

2

in the path generated path from C. Hene, we have that v

0

2

2 N

T

def

. Thus, there

exists a v

0

2

suh that (v

2

; r; v

0

2

) 2 G

T

and (v

0

1

; v

0

2

) 2 Y .

2 (Claim 1)

Z : G

T

*

�

G

T

sine the onditions (S1) and (S2) in De�nition 7 (extended to onept

patterns) hold.

(S1) (v

1

; v

2

) 2 Z implies (L

T

(v

1

) n V ar

T

(D)) � L

T

(v

2

) sine

(L

T

(v

1

) n V ar

T

(D)) � L

M

00

(v

1

) � L

M

00

(v

2

) = L

T

(v

2

):

(S2) immediate onsequene of the onstrution of Z.

Then we ompute T

0

and T

00

by Algorithm 22 starting from Z.

Claim 2: T

00

is a mather of C �

?

gfp;T

D and T

00

v

s

M

00

.

Proof of Claim 2: To prove that T

00

is a mather of C �

?

gfp;T

D, it remains to show

that C w

gfp;T

00

D. By renaming, we obtain TBoxes T

00

andM

00

satisfying the onditions

in De�nition 33. For every variable X we suppose that X

T

� (A

T

1

; : : : ; A

T

n

) in T

00

and X

M

� E

X

in M

00

. X

T

� (A

T

1

; : : : ; A

T

n

) implies that there are de�ned onepts

M

T

1

; : : : ;M

T

n

in T suh that (M

T

1

; A

T

1

); : : : ; (M

T

n

; A

T

n

) 2 Z and X 2 L

T

(M

T

1

) \ � � � \

L

T

(M

T

n

). We show that

X

T

v

gfp;T

00

[M

00

X

M

:

The relation Z generated by the above algorithm has the property that every node

ourring in the seond omponent of tuples in Z is reahable from C. This implies

that L

T

(A

T

i

) ontains no variables for all i 2 f1; : : : ; ng. From [Baa02a℄ we know that

(A

T

1

; : : : ; A

T

n

) in T

00

is the least ommon subsumer of A

T

1

; : : : ; A

T

n

in T

00

. Here we view

T

00

is an onservative extension of itself. Hene, for all i 2 f1; : : : ; ng, we have

A

T

i

v

gfp;T

00

(A

T

1

; : : : ; A

T

n

):

T

00

[M

00

is a onservative extension of T

00

and ofM

00

sine T

00

andM

00

have the same set

of primitive onepts and the same set of roles. For every i 2 f1; : : : ; ng, (M

T

i

; A

T

i

) 2 Z

yields (M

M

i

; A

M

i

) 2 Z

M

00

by onstrution of Z. Thus, A

M

i

v

gfp;M

00

M

M

i

. This yields

A

M

i

v

gfp;T

00

[M

00

M

M

i

:

Moreover, M

T

i

v

gfp;T

X

T

sine X 2 L

T

(M

i

) implies M

i

� � � � uX u � � � in T . Thus,

M

M

i

v

gfp;M

X

M

sine M is obtained by renaming de�ned onepts in T . Hene,

M

M

i

v

gfp;M

00

X

M

and thus

M

M

i

v

gfp;T

00

[M

00

X

M

:

Together with A

M

i

v

gfp;T

00

[M

00

M

M

i

this yields A

M

i

v

gfp;T

00

[M

00

X

M

. For all i 2

f1; : : : ; ng, we have

� A

T

i

v

gfp;T

00

(A

T

1

; : : : ; A

T

n

) and
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� A

T

i

v

gfp;T

00

[M

00

X

M

.

By de�nition of the least ommon subsumers, we have

(A

T

1

; : : : ; A

T

n

) v

gfp;T

00

[M

00

X

M

:

This implies

(�) 8X 2 V ar

T

(D):X

T

v

gfp;T

00

[M

00

X

M

sine X

T

� (A

1

; : : : ; A

n

) in T

00

. Hene, D

T

v

gfp;T

00

[M

00

D

M

. So, we have that

C

T

�

gfp;T

00

[M

00

C

M

w

gfp;T

00

[M

00

D

M

w

gfp;T

00

[M

00

D

T

:

C

T

w

gfp;T

00

[M

00

D

T

implies C

T

w

gfp;T

00

D

T

. Then, T

00

is a mather of C �

?

gfp;T

D.

From (�) we have T

00

v

s

M

00

. 2 (Claim 2)

Claim 2 proves Theorem 37. 2



Chapter 6

Implementation

We will illustrate the implementation of Algorithm 22. The programming language is

LISP. The programming environment is Allegro LISP system (see http://www.franz.om).

6.1 Input C �

?

gfp;T

D and normalization of TBox

The input of Algorithm 22 is an EL-mathing problem C �

?

gfp;T

D. C and D are de�ned

onepts in T . In the implementation we store the TBox T as a �le using standard LISP

syntax. We use the onstants (listed in Table 6.1) to represent the onstrutors and top-

onept de�ned in EL. The following example will be used in this hapter to illustrate

the result of running the mathing algorithm step by step.

Example 38

Let T ontain the following onept de�nitions:

D � P

1

uX

2

u 9r

1

:A

1

u 9r

2

:A

2

A

1

� P

2

uX

1

u 9r

2

:D

A

2

� P

1

uX

1

uX

2

u 9r

2

:D

C � P

1

u 9r

1

:A

3

u 9r

2

:A

4

A

3

� P

2

u P

3

u 9r

2

:C

A

4

� P

1

u P

3

u 9r

2

:C

Then this TBox is stored in a �le as

(DEFCONCEPT D (AND P1 var x2 (SOME R1 A1) (SOME R2 A2)))

(DEFCONCEPT A1 (AND P2 var x1 (SOME R2 D)))

(DEFCONCEPT A2 (AND P1 var x1 var x2 (SOME R2 D)))

(DEFCONCEPT C (AND P1 (SOME R1 A3) (SOME R2 A4)))

(DEFCONCEPT A3 (AND P2 P3 (SOME R2 C)))

(DEFCONCEPT A4 (AND P1 P3 (SOME R2 C)))):

An algorithm to normalized EL-TBoxes has been implemented by Suntisrivaraporn (see

[Sun04℄). The normalized TBox is translated into the desription graph. In the imple-

mentation, the funtion my-start (file-name) initializes two hash tables storing the

29
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onstant value in LISP value in EL

*defonept-keyword* 'DEFCONCEPT �

*top-keyword* 'TOP >

*and-keyword* 'AND u

*some-keyword* 'SOME 9

*varprefixS* 'VAR

Table 6.1: Syntax in LISP

information about the desription graph of the normalized TBox in the �le filename.

The two hash tables are named *t-graph-label-hash* and *t-graph-out-edge-hash*.

The key of *t-graph-label-hash* is the nodes of the desription graph and the value is

the label of the orresponding node. The key of *t-graph-out-edge-hash* onsists of

a node and a role name. The value is the list of the orresponding node's suessors. In

the funtion init-tbox-t (), we generate the following basi information about input

TBox T :

� The list *t-defined-onepts*: the set of de�ned onepts.

� The list *t-var*: the set of variables.

� The list *t-n-role*: the set of roles.

The following example shows the values after initialization.

Example 39

Let the input TBox T in Example 38 be stored in the �le input-el-tbox. After running

(my-start "input-el-tbox") and (init-tbox-t) we get two hash tables in Table 6.2

and three lists in Table 6.3.

*t-graph-label-hash* *t-graph-out-edge-hash*

key value key value

C (P1) (C . R1) (A3)

A1 (VAR X1 P2) (D . R2) (A2)

A2 (VAR X2 VAR X1 P1) (C . R2) (A4)

A3 (P3 P2) (A1 . R2) (D)

A4 (P3 P1) (A3 . R2) (C)

D (VAR X2 P1) (D . R1) (A1)

(A2 . R2) (D)

(A4 . R2) (C)

Table 6.2: The hash tables for T
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name value

*t-defined-onepts* (A4 A3 A2 A1 D C TOP)

*t-var* (VAR X2 VAR X1)

*t-n-role* (R2 R1)

Table 6.3: The lists

Note that the top-onept > is viewed as a node whose label is the empty set and from

whom there are no out-edges in the desription graph of the underlying TBox. TOP is

a member of the set of de�ned onepts *t-defined-onepts* sine the nodes in a

desription graph are onsidered as de�ned onepts.

The funtion init-tbox-t () is alled by the funtion mathing-el ( d) whih or-

responds to Algorithm 22.

6.2 Computation of simulation relations

Let C �

?

gfp;T

D be the input mathing problem. In Algorithm 22, we onsider all

simulation relations ontaining (D;C). This makes some simulation relations ontain

redundant tuples, i.e., there are some simulation relations suh that if we remove some

tuples from them, the obtained relations are still simulation relations. For example, if

Z

1

and Z

2

are simulation relations on G

T

, then it is easy to show that Z := Z

1

[ Z

2

is also a simulation relation on G

T

. However, this implies that the TBox T

00

omputed

from Z by Algorithm 22 is more general than the TBoxes omputed from Z

1

and Z

2

.

This is beause for every variable X 2 V ar

T

(D), the de�nition of X in T

00

depends

on Z(X) for the orresponding simulation relation Z and in this example Z

1

; Z

2

� Z

implies Z

1

(X); Z

2

(X) � Z(X). By Lemma 12, the de�nition of X is the ls of the

elements in Z(X). Hene, Z

1

(X); Z

2

(X) � Z(X) implies the de�nition of X omputing

from Z is more general than the ones from Z

1

and Z

2

. Sine we are only interested

in the minimal mathers, we will only onsider the simulation relations ontaining no

redundant tuples, i.e., every tuple is neessary for being a simulation relation. So, in

the implementation, we ompute simulation relations in the following way:

� start from Z := (D;C) (hek ondition (S1) on (D;C));

� hek ondition (S2);

- yes: return Z;

- no: add one possible (to satisfy ondition (S1)) and neessary (to satisfy ondi-

tion (S2)) tuple to Z and store this bakheking point;

� if �nd one tuple in the last step, then run the last step again, otherwise hek

another possible simulation relation at the bakheking point.
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Figure 6.1: The desription graph of T

When storing the bakheking points we assoiated a hash table whih labels the

heked edges in the desription graph G

T

to every possible simulation relation. Using

this strategy, we an obtain all simulation relations whih generate the minimal math-

ers. In the implementation, the funtion find-s-r-ontaining-d--without-var (d

) returns the list of suh simulation relations.

Example 40

Consider the input mathing problem from Example 38. The desription graph of T is

depited in Figure 6.1. Then, after running find-s-r-ontaining-d--without-var

(d ), we get the following list of simulation relations:

(((A1 A3) (D C) (A2 A4)))

Note that ertainly there exist other simulation relations on G

T

not listed above. How-

ever, the ones in the returned list above are more useful for the onstrution of minimal

mathers.

6.3 Computation of TBox T

0

In our mathing algorithm, the purpose of omputing the TBox T

0

is to obtain a onser-

vative extension of T where the new de�ned onepts is introdued for the omputation

of the least ommon subsumers. For a simulation relation Z, T

0

is union of the produt

of T whose power is deided by the maximal value of jZ(X)j for all X 2 V ar

T

(D). It

should be notied that if we ompute T

0

using the formal produt's de�nition, too many

(the number of de�ned onepts in T to the power of maxfZ(X) j X 2 V ar

T

(D)g) de-

�ned onepts will be generated many of whom might be irrelevant for the omputation

of the result. In order to derease the number of de�ned onepts in T

0

, we sort the

lists whih are the names of the new de�ned onepts in T

0

in the implementation . For

example, (A

1

; A

2

) and (A

2

; A

1

) are expressed by the same node in the desription graph

of T

0

. We an do so beause both of these two nodes represent the ls of A

1

and A

2

.

The other advantage of sorting the list is that we an ompare ordered lists faster than
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non-ordered lists when we hek whether some node has already been generated in the

produt of the desription graph. Moreover, we extend the desription graph of T

0

only

using the nodes those are reahable from sorted (A

1

; : : : ; A

n

) for some X 2 V ar

T

(D)

and Z(X) = fA

1

; : : : ; A

n

g. This optimization is also used to derease the number of

de�ned onepts in T

0

. The funtion get-t-prime (z-x-s-r-hash) omputes T

0

a-

ording to the hash table z-x-s-r-hash storing Z(X) for every X 2 V ar

T

(D) and

returns two hash tables tp-graph-label-hash and tp-graph-out-edge-hash whih

store the information about T

0

(similar to the data strutures for T ).

Example 41

Let the input be the TBox T from Example 38. Then from the unique simulation

relation in Example 40, we obtain T

0

stored in two hash tables (see Table 6.4).

tp-graph-label-hash tp-graph-out-edge-hash

key value key value

C (P1) (C . R1) (A3)

A1 (VAR X1 P2) (D . R2) (A2)

A2 (VAR X2 VAR X1 P1) (C . R2) (A4)

A3 (P3 P2) (A1 . R2) (D)

A4 (P3 P1) (A3 . R2) (C)

D (VAR X2 P1) (D . R1) (A1)

(A2 . R2) (D)

(A4 . R2) (C)

ls-A4-C (P1) (ls-A3-A3 . R2) (ls-C-C)

ls-C-C (P1) (ls-C-C . R2) (ls-A4-A4)

ls-A4-A3 (P3) (ls-C-C . R1) (ls-A3-A3)

ls-A3-A3 (P2 P3) (ls-A4-A3 . R2) (ls-C-C)

ls-A4-A4 (P1 P3) (ls-A4-C . R2) (ls-A4-C)

(ls-A4-A4 . R2) (ls-C-C)

Table 6.4: The hash tables for T

0

Note that the names of new de�ned onepts in T

0

are hanged from a list to a string.

For example, (A4 C) is expressed as ls-A4-C. We do this for a mere tehnial reason:

we have to make the onept names reognizable by Suntisrivaraporn's subsumption

algorithm.

6.4 Subsumption testing and output

After the omputation of the TBox T

0

, the onept de�nitions to be assigned to all

variables aording to urrent simulation relation an be returned. For every X 2

V ar

T

(D),

X � (A

1

; : : : ; A

n

)
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where Z(X) = fA

1

; : : : ; A

n

g and jZ(X)j = n. We use the funtion get-z-x-s-r-hash

(s-r) to return a hash table z-x-s-r-hash storing Z(X) for every variable X 2

V ar

T

(D), where the argument s-r is the simulation relation Z. From this hash ta-

ble, we an generate the de�nitions of variables in the TBox T

00

. The funtion

write-t-double-prime-file(output-el-tbox-tpp

tp-graph-label-hash

tp-graph-out-edge-hash

z-x-s-r-hash)

writes the TBox T

00

to a �le named output-el-tbox-tpp. The arguments tp-graph-lab

-el-hash and tp-graph-out-edge-hash are the hash tables providing the information

of the TBox T

0

. Then we all the funtion (my-start output-el-tbox-tpp) to be

ready for heking subsumption w.r.t. the TBox T

00

. If alling the funtion (subsumes?

 d) returns 'yes, then we have found a solution to the mathing problem. Hene, we

all the funtion

(run-shell-ommand

(format nil "at begin-t-mark ~A >> ~A"

output-el-tbox-tpp output-s-file))

to append the �le named by the value of the variable output-el-tbox-tpp to the result

�le named by the value of the variable output-s-file where the �le begin-t-mark

stores one line to mark the beginning of every TBox T

00

in the result �le. After heking

all of the simulation relations ontaining (D;C), we get the result �le storing mathers of

C �

?

gfp;T

D. The funtion subsumes? ( d) is provided by the subsumption algorithm

by Suntisrivaraporn (see [Sun04℄).

Example 42

Consider the input TBox T from Example 38. After running our mathing algorithm,

the following ontents are written into the result �le:

***This is the beginning of TBox T''********************

(DEFCONCEPT C (AND (SOME R2 A4) (SOME R1 A3) P1))

(DEFCONCEPT D (AND (SOME R1 A1) (SOME R2 A2) VAR_X2 P1))

(DEFCONCEPT A1 (AND (SOME R2 D) VAR_X1 P2))

(DEFCONCEPT A2 (AND (SOME R2 D) VAR_X2 VAR_X1 P1))

(DEFCONCEPT A3 (AND (SOME R2 C) P3 P2))

(DEFCONCEPT A4 (AND (SOME R2 C) P3 P1))

(DEFCONCEPT ls-A4-C (AND (SOME R2 ls-A4-C) P1))

(DEFCONCEPT ls-C-C (AND (SOME R1 ls-A3-A3) (SOME R2 ls-A4-A4) P1))

(DEFCONCEPT ls-A4-A3 (AND (SOME R2 ls-C-C) P3))

(DEFCONCEPT ls-A3-A3 (AND (SOME R2 ls-C-C) P2 P3))
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(DEFCONCEPT ls-A4-A4 (AND (SOME R2 ls-C-C) P1 P3))

(DEFCONCEPT VAR_X1 ls-A4-A3)

(DEFCONCEPT VAR_X2 ls-A4-C)

6.5 Testing

The testing of our EL-mathing algorithm is mainly based on the testing data of ayli

EL-TBoxes produed by a random generator for EL-mathing problems. Instead of

generating C and D independently of eah other, we randomly generate a onept C

and then onstrut a onept pattern D from C by randomly replaing sub-onepts

of C by variables. The reason of doing this is that we want the generated mathing

problems to be more probably solvable. In [BL04℄, there is more information about the

strategy of generating suh mathing problems. For yli EL-TBoxes, testing mathing

problems are generated manually.

To test soundness of our mathing algorithm, i.e., every TBox T

00

in S is really a mather

to the orresponding input C �

?

gfp;T

D, it is enough to test whether C �

gfp;T

00

D holds.

Sine

C �

gfp;T

00

D () C v

gfp;T

00

D ^D v

gfp;T

00

C;

we an redue testing equivalene to testing subsumption.

For ompleteness testing, we ompare the results with the output of an existing ALE-

mathing algorithm (see [BK00a℄) implemented by Brandt (see [Bra03℄). The ALE-

mathing algorithm an solve ALE-mathing problems without terminologial yles.

EL is a sub-language of ALE, so ayli EL-TBoxes are used as testing data. This

ALE-mathing algorithm also generates an s-omplete set of mathers to C �

?

gfp;T

D.

The testing strategy for ompleteness is that for eah mather M

00

generated by ALE-

mathing algorithm, we hek whether there exists a mather T

00

to the same mathing

problem in the output of our EL-mathing algorithm suh that T

00

v

s

M

00

.

We run the mathing algorithm on 100 ayli EL-mathing problems of average size 23

osting average time 8.2 milliseonds on a standard PC.





Chapter 7

Conlusion

In this thesis, we have de�ned formally EL-mathing problems with terminologial yles

and provided an algorithm for solving the problems w.r.t. the greatest �xpoint seman-

tis. Our algorithm follows a strategy analogous to the algorithm in [BK00a℄ for the

ayli ase. Soundness and ompleteness of the mathing algorithm have been shown.

Based on these results, mathing, one of non-standard inferene problems, an be ap-

plied to more powerful DLs.

The theoretial omplexity of EL-mathing problems has not yet been disussed. De-

iding EL-mathing problems is at least as hard as deiding EL-mathing problems only

onsidering ayli TBoxes. The results about omplexity in ayli ase are listed as

following [K�us01℄:

1. Deiding the solvability of mathing problems modulo equivalene in EL is an

NP-omplete problem.

2. The ardinality of s-omplete sets of mathers may grow exponentially in the size

of the mathing problem.

3. The ardinality of s-omplete sets of mathers an exponentially be bounded in

the size of the mathing problem.

Corresponding to 1, the omplexity of deiding the solvability of mathing problems

in yli ase is still an open problem. 2 and 3 lead to the fat that the algorithm of

omputing s-omplete sets of mathers for mathing problems in yli ase is at least

an exponential time algorithm. For our mathing algorithm, transforming an EL-TBox

T into normal form an be done in time quadrati in jT j (see [Sun04℄). Subsumption

testing onsumes polynomial time (see [Baa02b℄). It takes also polynomial time to

ompute Z(X) for every X 2 V ar

T

(D) for some simulation relation Z. However,

it takes exponential time to �nd all simulation relations in the worst ase. Diretly

omputing the produt of TBoxes T leads to exponentially large TBox T

0

in the worst

ase. These two steps make our mathing algorithm exponential.
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