; TECHNISCHE Dresden University of Technology
= | UNIVERSITAT Computer Science Institution
*—# DRESDEN International Master Programme in Computational Logic

Master’s Thesis

Matching in Description Logics
with Existential Restrictions
and Terminological Cycles

Hongkai Liu

Overseeing Professor: Prof. Dr. Franz Baader
Supervisor: Sebastian Brandt

March, 2005 Author’s e-mail: §9549913@mail.inf.tu-dresden.de

TECHNISCHE UNIVERSITAT DRESDEN

Author: Hongkai Liu

Matrikel-Nr.: 2990570

Title: Matching in Description Logics with Existential
Restrictions and Terminological Cycles

Degree: Master of Science

Date of submission: 17 March 2005

Declaration

Hereby I certify that the thesis has been written by me. Any help that I have received
in my research work has been acknowledged. Additionally, T certify that I have not used
any auxiliary sources and literature except those I cited in the thesis.

Signature of Author

wEE LGB E, RBREAREMRR, ¥

Abstract

Matching of concepts against patterns is a so-called non-standard inference problem
[Kiis01] in Description Logics. For the small description language &£, matching prob-
lems without terminological cycles have been investigated in [BK00a]. In the present
thesis we introduce £L-matching problems allowing terminological cycles. Among the
three different semantics defined by Nebel in [Neb91] for the interpretation of cyclic
TBoxes we will argue that gfp-semantics is the appropriate one to define matching
problems. Based on deciding subsumption [Baa02b] and computing the least common
subsumers [Baa02a], a matching algorithm is provided whose soundness and complete-
ness is shown. Moreover, the matching algorithm is implemented and tested in the
programming language LISP.

Acknowledgements

I would like to first express gratitude and appreciation to Sebastian Brandt. He helps
me not only in this master’s thesis but also in my seminar and project, not only in the
scientific research but also in technique of programming in LISP and ITEX. Without
his supervision, I could not have finished this thesis. I feel grateful with his patience for
his providing answers of my questions and criticisms of my mistakes.

Thank Professor Franz Baader for giving me the topic of the thesis and trust my research
ability. Also many thanks should go to Doctor Carsten Lutz who gave the lectures of
Logic-based Knowledge Representation. These lectures introduced me to the world
of Description Logics. I would like to thank Boontawee Suntisrivaraporn as well for
implementing algorithm of subsumption which is used in the implementation of my
matching algorithm.

I am thankful to my family for giving me spiritual and financial support on my study.
They keep encouraging me all the time. I love you so much.

Hongkai Liu

iii

Contents

Abstract

Acknowledgements

1

Motivation

1.1 Why do we do matching?

1.2 Why do we focus on £L interpreted with gfp-semantics?
1.3 The structure of this thesis

Cyclic ££-TBoxes
2.1 The description logic EL oL
2.2 Subsumption w.r.t. gfp-semantics

2.3 The least common subsumers

Matching in Cyclic ££-TBoxes
3.1 Introducing variables

3.2 &£L-matching problemso

Solving £L-matching problems
4.1 Matching algorithm

4.2 Termination Lo e

Soundness and completeness
5.1 Soundness

5.2 Completeness oo

Implementation
6.1 Input C Eéfpﬂ- D and normalization of TBox

6.2 Computation of simulation relations

iii

W N = -

© 3 ot

11
11
12

15
15
17

19
19
24

vi CONTENTS
6.3 Computation of TBox 77 32
6.4 Subsumption testing and output o L 33
6.5 Testing L 35

7 Conclusion 37

Bibliography 38

Chapter 1

Motivation

Description Logics (DLs) are a family of knowledge representation languages which use
concept descriptions to represent knowledge. In DLs, concept descriptions are built from
atomic concepts and roles with the help of constructors. The constructors determine
the expressive power of the DL. Using concept descriptions and the symbol “=" we
can introduce concept definitions. For example (from [Baa02b]), tigers and lions can be
defined in DL by following concept definitions:

Tiger = Animal N dparent.Tiger

Lion = Animal N dparent.Lion

Tigers (lions) are viewed as the animals whose parents are also tigers (lions). A set
of such concept definitions is called terminology (TBox). We rule out that the same
concept name is defined more than once (multiple definitions). In this thesis, we will
consider the DL language £L£ which allows for the top-concept (T), conjunction (M),
and existential restriction (3r.C').

1.1 Why do we do matching?

DL-systems consist of two components. First, a knowledge base, which can further be
divided into the TBox and the ABox. Second, a reasoning engine, which implements
the various inference services. Matching in £L£, the central problem concerned in this
thesis, is one of these inference services on TBoxes.

Research in the field of DLs has mainly been driven by inventing decision algorithms
for so-called standard inference problems, such as subsumption and instance checking.
Subsumption is used to describe the relationship between two concept descriptions. In
the above example, we can see that every tiger has to be an animal, in other words,
an object that is a tiger implies that it is also an animal. In this case, we say that
‘Tiger’ is subsumed by ‘Animal’. If two concept descriptions subsume each other, then
we say that they are equivalent. Deciding subsumption and equivalence are included in
standard inference problems (see [Kiis01]). However, building and maintaining large DL

1

2 Chapter 1. Motivation

knowledge bases requires additional support beyond the set of standard inference services
(see [MPS98]). Matching is one of non-standard inference services which originally has
been motivated by the problem of pruning large concept descriptions, i.e., only printing
the relevant aspects under current circumstances [BKBM99]. In fact, matching has
already been used successfully in some real applications of pruning concept descriptions
(see [Kiis01]). Matching can also be applied to help detect and avoid redundancies
[BKOOb] and to integrate knowledge bases [BS96]. Another application is that matching
can be seen as a way to implement query in knowledge bases [BT01].

1.2 Why do we focus on £L interpreted with gfp-semantics?

Although £L is a relatively inexpressive DL, it appears to be adequate for some real
applications. The Gene Ontology (see http://www.geneontology.org) can be repre-
sented in £L£ with an acyclic TBox. Some other examples of ££’s applications are in the
field of medical terminologies: SNOMED (see [IKAS97]) and GALEN (see [RNG93)).
TBoxes without terminological cycles (concept definitions depending on themselves) are
called acyclic TBoxes. Matching problems w.r.t. acyclic TBoxes in ££ have already
been studied in [BK00a]. The matching algorithm in [BK00a] is based on finding ho-
momorphisms between description trees, computing the least common subsumers (see
[BKMO98]), and testing subsumption.

In this thesis, we will deal with matching problems in the case that we allow for cyclic def-
initions in TBoxes. We have three choices of semantics to interpret cyclic TBoxes intro-
duced by Nebel [Neb91], namely descriptive semantics, gfp-semantics, and lfp-semantics.
The descriptive semantics is defined as the usual semantics for acyclic TBoxes. Sub-
sumption in cyclic TBoxes w.r.t. these three semantics are proven to be decidable in
[Baa02b]. For lfp-semantics, deciding subsumption in a cyclic TBox can be reduced
to subsumption in an acyclic one, where gfp-semantics, lfp-semantics, and descriptive
semantics coincide (see [Neb91]). In this sense, using gfp-semantics for cyclic TBoxes in
EL is more interesting than lfp-semantics.

For cyclic TBoxes, testing subsumption depends on finding simulation relations on the
description graph of TBox as it is proven in [Baa02b]. Moreover, the least common
subsumers in ££ with cyclic terminologies interpreted with gfp-semantics always exist
and can be computed (see [Baa02a]). For the computation of least common subsumers
we might need to extend the original TBox. It is also stated in [Baa02a)] if we choose
descriptive semantics, the least common subsumers need not always exist.

All of these good computational properties of gfp-semantics make solving matching prob-
lems to be possible in cyclic ££-TBoxes based on the same intuition as acyclic ones.
The objective of this thesis: a suitable definition for matching problems w.r.t. cyclic
terminologies in the DL £L is to be examined. Soundness and completeness of an ap-
propriate matching algorithm is to be shown formally. A prototype implementation of
this algorithm has to be done in the programming language LISP.

1.3. The structure of this thesis 3

1.3 The structure of this thesis

Chapter 2 introduces the language £L£ and cyclic TBoxes in ££. We also give def-
initions and characterizations of two inference problems (subsumption and the least
common subsumers) in £L.

In Chapter 3 we extend the notion of concept descriptions to concept patterns in order
to introduce variables into cyclic ££-TBoxes. Then we define £L-matching problems
formally. In Chapter 4, our matching algorithm is introduced. Moreover, we show ter-
mination of this algorithm.

We concentrate on proving soundness and completeness of our matching algorithm in
Chapter 5. In order to prove completeness, we will restrict our attention to “interesting”
solutions.

In Chapter 6, we illustrate the implementation of our matching algorithm in the pro-
gramming language LISP. Main data structures and intuitions of important functions
are discussed. Then we explain the strategy of testing our matching algorithm.

In the last chapter, we give a summary of this thesis and briefly consider the complexity
of the matching algorithm.

Chapter 2

Cyclic ££-TBoxes

In this chapter, we introduce the description logic language £L£. All the definitions in
this thesis are based on this language. Then we define TBoxes in ££. The notion of
“matching problems” is constructed on these definitions.

2.1 The description logic £L

At first, we fix some sets which are necessary to define £ L-concept descriptions. Those
sets will be used throughout this thesis.

e N is set of concept names,
e Np is set of role names,
e X is set of variables.

Any two of these sets have no common elements, i.e., No N Ng =0, No N X = 0, and
NrN X = (). Starting from these sets we can define concept descriptions inductively
with the help of constructors.

Definition 1 [Syntax]
The set of all concept descriptions over N¢ and Npg is inductively defined as following:

e Every concept name A € N¢ (atomic concept) and T (top-concept) are concept
descriptions;

e If C' and D are concept descriptions, then C' T D (conjunction) is a concept de-
scription;

e If r € Np is a role name and C' is a concept description, then 3r.C' (existential
restriction) is a concept description.

A terminology (or TBox for short) is a finite set of concept definitions of the form
A = D, where A is a concept name and D is a concept description. In addition, we

6 Chapter 2. Cyclic ££-TBoxes

require that TBoxes do not contain multiple definitions, i.e., there cannot be two distinct
concept descriptions Dy and Ds such that both A = Dy and A = D5 belong to the TBox.
Concept names occurring on the left-hand side of a definition are called defined concepts.
All other concept names occurring in the TBox are called primitive concepts. o

Note: We allow for cyclic dependencies between the defined concepts, i.e., the definition
of A may refer (directly or indirectly) to A itself.

The model-theoretic semantics of £L is defined by specifying a domain and an interpre-
tation function.

Definition 2 [Semantics]

Let Al be a non-empty set. An interpretation Z is defined by its domain AT and its
interpretation function -z which assigns A7 C A? to each A € N¢ and 7 C AT x AT
to each r € Ngi. The interpretation function is extended to concept descriptions in the
following way.

° TIZAI;
e (Cn DY =cCTnD%
o (IO ={zeAl|Ty: (v,y) erf Aye CT}.

An interpretation Z is a model of the TBox T if and only if it satisfies all its concept
definitions, i.e., AZ = D7 for all definitions A = D in 7. This semantics of TBoxes is
called descriptive semantics by Nebel (see [Neb91]). o

Nebel introduced three different semantics to cyclic TBoxes in description logic: de-
scriptive semantics, least fixpoint (1fp) semantics, and greatest fixpoint (gfp) semantics.
Before we define the lfp- and gfp-semantics, we recall some definitions given in [Baa02b].

Definition 3
Let 7 be an ££-TBox containing the roles Ng, the primitive concepts Nprim, and the
defined concepts Ngef := {A1,..., Ax}.

o A primitive interpretation J for T is given by a domain A7, an interpretation of
the primitive concepts P € Nprim by subsets Py of A7 and an interpretation of
the roles € Np by binary relations r7 on A7.

e The interpretation 7 is based on the primitive interpretation if and only if it has
the same domain as J and coincides with J on Nr and Nprim.

e We define
Int(J) :={Z | T is an interpretation based on J}.

o If 7,,75 € Int(J), then

Ty <7 Ty if and only if AT C AP for all i,1 <i < k.

2.2. Subsumption w.r.t. gfp-semantics 7

o

Using Tarski’s fixpoint theorem (see [Tar55]), it is shown in [Neb91] that for a given
primitive interpretation 7, there is always a greatest and a least (w.r.t. <7) model
of T based on J. We call these models respectively the greatest fizpoint model (gfp-
model) and the least fixpoint model (Ifp-model) of T. Greatest (least) fixpoint semantics
considers only gfp-models (Ifp-models) as admissible models.

In this thesis, we consider only greatest fixpoint semantics. In Section 2.2, we define
subsumption between defined concepts. We can restrict the attention to subsumption
between defined concepts since subsumption between arbitrary concept descriptions can
be reduced to this problem by introducing definitions for descriptions.

2.2 Subsumption w.r.t. gfp-semantics

We first define relationships named “subsumption” and “equivalence” between defined
concepts.

Definition 4 [Subsumption and equivalence]
Let 7 be an ££-TBox and A, B be defined concepts occurring in 7. Then

o Ais subsumed by B w.r.t. gfp-semantics (A Cgp, 7 B) iff AT C BT holds for all
gfp-models Z of T.

o Ais equivalent to B w.r.t. gfp-semantics (A =,p, 7 B) iff A Ty, 7 B and B Cygy 7
A.

bod

According to this definition, the equivalence problem is decidable if the subsumption
problem is decidable. Before we give the theorem of deciding subsumption, we introduce
the notion of the normal form of £L£-TBoxes.

Definition 5 [Normal form of ££-TBoxes]

Let 7 be an £L£-TBox, Nger the set of the defined concepts of 7, and Npim the set of
primitive concepts of 7. Then T is called in formal form if and only if A = D € T
implies that D is of the form

P1|_|---|_|Pm|_|E|T1.Bl|_|'--HHT;.B[

for m,[>0, Py,..., Py ENprima ri,...,71 € Ng, and By,...,B; € Nget. f m=1=0,
then D = T. o

We use the TBoxes in normal form to generate the description graphs.

Definition 6 [£L-description graphs]
An EL-description graph is a graph G = (V, E, L) where

e 1 is a set of nodes;

8 Chapter 2. Cyclic ££-TBoxes

e F CV x Ngr xV is a set of edges labeled by role names;
o L:V — 2Nerim i5 a function that labels nodes with sets of primitive concepts.
o

The normalized TBox 7T can be translated into the following £ £-description graph Gy =
(Ndefa ET7 LT):

e the nodes of G are the defined concepts in T;

e if A is defined concept and
AEPl|_|---|_|Pm|_|E|T1.Bl|_|"-HE'T;.B;
is its definition in 7, then

- LT(A> = {Pla"' 7Pm}7 and
- A is the source of the edges (A,r1, By),...,(A,r;, B)) € ET.

Simulations are binary relations between nodes of two £ L-description graphs.

Definition 7 [Simulation]
Let G; = (Vi, E;, L;) (i = 1,2) be two £L-description graphs. The binary relation
Z C V1 x Vi is a simulation from Gy to Gy iff

(S1) (vy,v2) € Z implies Ly(v1) C La(va); and

(S2) if (v1,v2) € Z and (vy,r,v]) € Eq, then there exists a node v5 € V5 such that
(v}, vh) € Z and (vq,r,vh) € Es.

We write Z : G = G2 to express that Z is a simulation from Gy to Gs. o

From [Baa02b], we know that the subsumption problem w.r.t. gfp-semantics can be
decided by test the existence of simulation relations on the description graph.

Theorem 8
Let T be an EL-TBox and A, B defined concepts in T . Then the following are equivalent:

1. A Cafp, T B.
2. There is a simulation Z : Gr = G with (B, A) € Z.

To obtain description graph of TBox, we employ Nebel’s approach (see [Neb90]) to
normalize TBox.

In next section, we will give the definition of the least common subsumers (lcs) w.r.t.
gfp-semantics in ££. Both deciding subsumption and computing lcs are preparations
for solving £ L-matching problems.

2.3. The least common subsumers 9

2.3 The least common subsumers

Before we introduce the definition of the least common subsumers, we define the notion
of conservative extension which will be used for computing lcs.

Definition 9 [Conservative extension]
Let 71 and T2 be TBoxes. Then we say that 7> is a conservative extension of Ty if and
only if

e 71 C 75 and

e 71 and 75 have the same primitive concepts and roles.

The lcs w.r.t. gfp-semantics in £L is formally defined as follows:

Definition 10 [Least common subsumers]

Let 71, T2 be £L£-TBoxes such that 73 is a conservative extension of 77 containing new
defined concept E. Then F in T3 is a least common subsumer of A and B in Ty w.r.t.
gfp-semantics (gfp-les) iff the following two conditions are satisfied:

1. A ngp’f,’2 FE and B ngpjfz E.

2. If 73 is a conservative extension of 75 and F a defined concept in T3 such that
A ngp’frg F and B ngp’frg F, then F ngp’frg F.

b

By this definition we know that the lcs computation is associative and commutative.
When we compute gfp-lcs, the product of description graphs is used.

Definition 11 [Product of description graphs]
Let Gy = (V1, Ey, Ly) and Gy = (Va, Es, Ly) be two description graphs. Their product is
the description graph G; x G5 := (V, E, L) where

o V.= V1 X VQ;
o £:= {((’0171}2),7“, (Ullavé» | (’01,7“, UIl) € E A (0277“7 UIZ) € EZ};
° L((Ul,vg)) = Ll(Ul) ﬂLQ(Ug).
[od

The following lemma in [Baa02a] shows the relation between the lcs and the graph
product. In principle, the lcs of A, B in 7T is defined in a TBox whose description graph
is the product of Gy with itself.

Lemma 12
Let 7 be a normalized ££-TBox containing defined concepts A and B. Then (A, B) in
T' is the gfp-les of A and B in T, where T':=TpUT, G, := G X G7.

Chapter 3

Matching in Cyclic ££-TBoxes

In this Chapter, we will define £ L-matching problems, the mainly considered problems
in this thesis.

3.1 Introducing variables

In order to define matching problems, we need concept patterns to introduce variables
to our concerning DL language £L.

Definition 13 [Concept patterns]
The set of all concept patterns over N¢, Ng, X is inductively defined as follows:

e Every concept variable X € X' is a concept pattern.
e Every £L-concept description over N¢o and Npg is a concept pattern.
e If Dy and D5 are concept patterns, then Dy M D is a concept pattern.

e If D is a concept pattern and r € Np is a role name, then 3r.D is a concept
pattern.

We can extend the notion of concept patterns to £L-TBoxes.

Definition 14 [Pattern TBox]

A pattern terminology (or pattern TBox for short) is a finite set of concept definitions
of the form A = D, where A is a concept (A € N¢) name or a variable (4 € X') and
D is a concept pattern over Ngo, Ngr, X. In addition, we require that TBoxes do not
contain multiple definitions, i.e., there cannot be two distinct concept descriptions Dy
and Dy such that both A = D; and A = Dy belong to the TBox. Concept names
occurring on the left-hand side of a definition are called defined concepts. All other
concept names in the TBox are called primitive concepts. The set of defined concepts
and the set of primitive concepts are respectively denoted by Nger and Nppim. We have

11

12 Chapter 3. Matching in Cyclic ££-TBoxes

that No = Nger U Nprim with Nger N Nppim = (). Treating variables as concept names,
we can define Xger and Aprim also. Analogously, we have that X' = Xger U Apprim with
Xdef N Xprim =0. ¢

Since every description concept is also a concept pattern, the usual TBox (containing no
variables) is also a pattern TBox. In this thesis pattern TBoxes are also called TBoxes
for abbreviation.

Introducing variables to TBoxes does not impact the normalization of TBoxes if we
treat variables as concept names. When extending the notion of a simulation relation to
description graphs containing concept patterns, we simply ignore the concept variables,

e., (S1) is changed into that (vi,v2) € Z implies (L1 (v1) \ X) C La(v2).

Let 7 be a normalized £L£-TBox and C be a defined concept in 7. Let Gy be the
& L-description graphs for 7 Then we defined:

o Vary(C) ={X € X | there exists a path in Gy from C to D for some D € Nyer
such that X is the element of label of D}.

e Varr= |J Varr(D).
DENqget

All of these definitions and notations in this section will be used to define matching
problems with terminological cycles.

3.2 £&L-matching problems

We now have the ££-TBox containing variables in which we allow for cyclic defini-
tions. Giving some constraints to variables makes it possible that some defined concepts
are equivalent. Based on this intuition, we define the matching problems formally as
following:

Definition 15 [£L£-matching problems]
Let T be an ££-TBox containing the defined concepts C' and D. C' = f 7 Disan EL-

matching problem modulo equivalence w.r.t. gfp-semantics iff the followmg conditions
hold:

e Vary(C) =0 and Vary = Vary(D).
e There are no concept definitions for any variable in 7T .
o

Similarly, we can define matching problems w.r.t. Ifp- and descriptive semantics. If we
change = to C, then we define matching problems modulo subsumption.

A solution of C' E;fpﬂ— D is a TBox obtained by adding definitions to some conservative
extension of T for variables occurring in 7. This precessing is called instantiation.

3.2. £L-matching problems 13

Definition 16 [Instantiation]
Let C' E;fp 7 D be an £L-matching problem modulo equivalence w.r.t. gfp-semantics
and 7' be a conservative extension of 7. Then,

T"=T U{X =Dx | X € Vary(D)}

is an instantiation of T w.r.t. T' iff every Dx is a concept pattern defined using concept
names, role names, and variables in 7. o

Definition 17 [Matchers]

Let C ngpﬂ— D be an &£L-matching problem modulo equivalence w.r.t. gfp-semantics,
T be a conservative extension of 7 and 7" be an instantiation of 7 w.r.t. 7'. We called
T" is a matcher (or solution) of C ngpﬂ— D iff C =44, 77 D. o

We will show later how to find matchers of a given matching problem. Before that we
use the following example to explain the definitions in this section.

Example 18
Let C ngpﬂ- D be an £L-matching problem and 7 := {C' = A,D = X}. Then 7' :=T
is a conservative extension of 7 and 7" :=T" U {X = A} is a matcher of C' E;fp +D.

Chapter 4

Solving £ L-matching problems

We now show how to solve £ £L-matching problems modulo equivalence w.r.t. gfp-semantics.

4.1 Matching algorithm

W.Lo.g., we consider only normalized £L-TBoxes, otherwise we can transform it into
normalized one (see [Baa02b]). Sometimes we need to compute the lcs of more than
two concept descriptions, for example, les(C, D, E). To this end, we calculate the n-ary
les by means of an (n — 1)-fold binary les computation. Based on this intuition, we
introduce the following definition:

Definition 19 Let 7 be an ££-TBox. Then we define
T =T;
T .= T x T where Griyr = Gy X Gr and i € N\ {0}.
o

Let C E;fpﬂ- D be an £L-matching problem. For some simulation relation Z : Gy =
(Nget, E7, LT) = G and some variable X € Vary(D), we define the following set:

Z(X):={N € Nget | IM € Nget.(M,N) € ZANX € L7(M)}.

These notations above will be used in the matching algorithm. We prove now some
properties holding on the product of TBoxes.

Observation 20 4 .
Let 7 be an EL-Thox, i,j € N\ {0} with i # j and N, NT} be the corresponding set
of defined concepts occurring in 7°¢, 77. Then

NL.ANL = 0.

Proof: This is an immediate consequence of the definition of the product of Thoxes.O

15

16 Chapter 4. Solving ££-matching problems

Lemma 21
Let 7 be an ££-TBox. Then, T UT" is a conservative extension of 7 for all i € N\ {0}.

Proof: Let i € N\ {0}. 7 UT"is a conservative extension of 7 since
e TCTUT!

e 7 and 7 UT" have the same primitive concepts and roles (from construction of
T°).
O

We are now ready to define the algorithm of solving £ £L-matching problems. The input

of the algorithm is an £L-matching problem C E;fp + D (w.lo.g., we assume 7 is in
normal form). The output of the algorithm is a set of matchers to C E;fp + D.

Algorithm 22 [Matching algorithm)]
Input: C Eéfpﬂ- D.
Output: a set S of matchers to C Eéfpﬂ- D.
S :=0;
For all simulation relations Z : Gy = G7 with (D, C) € Z do
T :=TU U T
i€{|Z(X)||XeVarm(D)}\{1}
T =T'U{X = (A1,...,4,) | Z(X) ={A1,..., A}
|Z(X)|=nAX e Varr(D)};
IfC ;gfpﬂ'll D then § :=8SU {7-”};

return S.

In this matching algorithm, (Aj,...,A,) is an abbreviation of (... (A, A2),...,Ay)
and (... (A1, A2),...,Ap) in T is les(Ay, ..., Ap) of Ay,..., A, in T (By Lemma 12).
Moreover, for the special case n = 1, (A;) means lcs(Ay) which can be replaced by Aj.
Using the following example, we show that to check C' Jgg, 77 D is necessary after
obtaining the candidate solutions.

Example 23
Let C' E;fpﬂ- D be an £ L-matching problem with 7 containing the following definitions:

C=3r.An3ds.B
D=3r.FEN3s.F

AEPl,BEPQ
EF=X
F=X

For the simulation relation Z = {(D,C), (E, A),(F,B)}, we have X =lcs(A,B) = T.
However, T U{X = T} is not a matcher of C' Eéfpﬂ— D.

4.2. Termination 17

4.2 Termination

At the end of this chapter, we show termination of our matching algorithm.

Lemma 24
Algorithm 22 is always terminating.

Proof: Let C' Eéfpﬂ- D be the inputing £L£-matching problem. Since 7T is finite, there
are only finitely many simulation relations between Gy and itself. For all simulation
relations Z and for all X € Vary (D), |Z(X)| < |Z| is finite. Then 7" is finite. Since
Vary(D) is finite, 7" is finite. From [Baa02b], we know that subsumption w.r.t. gfp-
semantics in ££ can be decided in polynomial time. Thus, Algorithm 22 is always
terminating. a
In next chapter, we will show Algorithm 22 is sound and complete.

Chapter 5

Soundness and completeness

In this chapter, we will show that our matching algorithm defined in the previous chapter
is sound and complete. Every TBox in the output of Algorithm 22 is a solution of the
relevant input matching problem (soundness). Moreover, if the input matching problem
is solvable, then Algorithm 22 can find all so-called minimal matchers (s-completeness).

5.1 Soundness

We first show some auxiliary lemma for proving soundness and completeness of our
matching algorithm.

Lemma 25

Let C E;fp,T D be an £L-matching problem and S be the output set generated by the
matching algorithm. Then, for every 7" € S obtained from the corresponding 7' and
for every variable X € Vary (D), we have that

X=(A1,...,4,) €T" = Ly ((Ar,...,An))NVarr(D) =0
where GTI = (VT’a E‘f‘,’/7 L",’I)_

Proof: Consider X = (Ay,...,A,) € T" for some X € Vary(D). By construction of
T" in Algorithm 22 we know that there are defined concepts My, ..., M, in T such that
for all i € {1,...,n}, X € Ly (M;) and (M;, A;) € Z for the corresponding simulation
relation Z. For all i € {1,...,n}, there exists a path from D to M;, since X € Ly (M;)
and X € Vary(D). Together with (D,C) € Z, we have that there exists an index
j €{1,...,n} such that

° (Mj,Aj) € Z and
e there is a path from C' to A;.

L7(A;) contains no variables by definition of matching problems. Hence,

Lr((A1,...,Ap)) = Ly (A1) NN Ly(Ap)

19

20 Chapter 5. Soundness and completeness

by the construction of 7. Thus, Ly ((Ay,...,A;)) contains no variables, i.e.,
L’T’((Ah RN ,An)) n VaTT(D) = V)

O
This lemma tells us that no variables occur in the concept definition of (Ay,..., A,) in
T'ift X = (Ay,...,A,) in T" for some X € Vary(D). This makes it possible that by
replacing every variable X in 7 by its definition in 7" we obtain a variable-free TBox
(to be explained). We now show that every Z considered in the matching algorithm is
also a simulation relation from Gy to Gy.

Lemma 26

Let C = f 7D be an £L-matching problem and Z : Gr = G7 with (D,C) € Z be a
s1mulat10n relation and 77 be a TBox as described in the matching algorithm. Then Z
is a simulation relation on QT, ie, Z:Gr = Grr.

Proof: The conditions (S1) and (S2) in Definition 7 hold:

(S1) For all (vy,v3) € Z we have Ly (vy) C Ly (ve) since Z : Gr = Gr and T’ :=
TU U T
i€{|Z(X)|XeVarT(D)}\{1}
(S2) Consider some (v1,v2) € Z and (vy,r,v]) € Egr. Then, (vi,v2) € Z implies that
v1 and vo are defined concepts in T since Z : Gy = G7. Hence,

vi=---N3Jrw;n--- 7.

Thus, v} is also a defined concept in 7. So there exists a v}, € V- C Vi such that
(Ull,vé) € 7 and (vg,r, Ué) € Er C Ey since Z : Gr = Gr.

O
Let C = gfp,T D be a matching problem. We view variables in 7 as primitive concepts
since there is no concept definition for any a variable. 7" is a conservative extension of 7~
by the construction of 7" and 7" is in normal form since it is obtained from a description
graph. However, 7" is not in normal form since we add concept descriptions for every
variable X € Vary(D) and X occurs on the right-hand side of some concept definitions
in 7'. We construct a variable-free TBox 77 from 7" by placing every occurrence of
variables with the corresponding variable’s definition. Then, we prove that 77 is in
normal form and C ngp,T” Diff C ngp’TZ” D.
T/ is constructed by the following definition:

Definition 27

Let C E;fpﬂ— D be an £L-matching problem. Let 7" be a TBox in the set S, the output
of Algorithm 22 giving C E;fpﬂ— D as input, and E = Dpg be a concept definition in 7.
Then, we define:

e sub(Dpg) is a concept pattern obtained by replacing every occurrence of X €
Vary(D) by PP ---MN Py M 3r1.By N --- N 3r.By, where X = (Ay,..., A,) and
(Ay,...,Ay) =P N---M Py, MN3r;.By M---M3r.B; are concept definitions in 7.

5.1. Soundness 21

e T):={E=sub(Dg) | E=Dg €T" and E & Vary(D)};
3

By Lemma 25, 7, obtained by this construction is variable-free, i.e., containing no
variables.

Lemma 28
7/ generated by above definition is in normal form.

Proof: The only difference between 7' (obtained in the intermediate step when com-
puting 7”) and T is that we substitute all variables in 7' by the corresponding concept
descriptions. As defined in the above definition, if X = (A4y,...,4,) in 7", X is sub-
stituted by the definition of (Ay,..., Ay) in 7'. Since 77 is in normal form, so is 7. O
Since T is in normal form, we can translate it into the description graph ng by the
method defined in Chapter 2. Moreover, 7" and 7/ are equivalent in the sense of
subsumption relations between C' and D.

Lemma 29
1. C ngp,']—u Diff C ngp’TZN D,
2. C Hefp, 77 Diff C ;gfp’TZ” D.

Proof: In the construction of 7/ substitution of variables does not change semantics
of 7" since substitution happens between equivalent concepts. Removing definitions
for variables does not change semantics of 7", since variables do not occur in 7} after
substitution. a
To prove €' Cyp, 7 D, it is enough to construct a simulation relation Zzy : Gy < Gy
with (D,C) € Z. This proves C' Cyp, 7 D as well by Lemma 29. In the matching
algorithm, we have the simulation relation Z : G5 = Gy with (D,C) € Z. Now we add
some necessary tuples to Z and obtain ZTz"' Then we prove that ZTz” is a simulation
relation on ng.

Definition 30

Let C' E?fp’f,- D be a £L-matching problem, Z be a simulation relation on Gy containing
(D,C), and T” be the TBox obtained by Algorithm 22 using Z. T} is obtained by
Definition 27 corresponding to 7”. Then,

ZTZN =Z U {((Aj,la ces 7Aj,n)aAj,i) | di € {1, R ,n}ﬂ] € {1, ces ,l}E‘X € Vary(D).
X = (Alv"'vAn>7(A17"'7An> =
Pim---n Py, N 37”1.(141,1, R aAl,n) M...n 37”1.(14171, R 7Al,n) S T”}.

22 Chapter 5. Soundness and completeness

Note: The concept definition of (Ay,...,A,) in 7" in the above definition is of the
form

P---n Py, N 37”1.(141’1, R 7A1,n) Mm...n E‘rl-(Al,la- .. aAl,n)-

The reason is the following: Suppose that
(Ala---,An) =P n---NP,03r.ByMN...MN3r.B,.

(A1,...,A,) is the least common subsumer of Aj,... A, in 7'. By Observation 20 and
the definition of product of TBoxes we know that B; is of the form (A4;,..., 4, ,) where
Ajiis a defined concept in 7 for all j € {1,...,{} and for all i € {1,...,n}.

Lemma 31

Let C' = f 7 D be an £L-matching problem, Z : Gr = §7 be a simulation relation
with (D, C) € Z,and T, T" be TBoxes as described in Algorithm 22. Then Z7y is a
simulation relation on GTu i.e. ZTu : gTu = gTu

Proof: Since Z : Gr = G5, by Lemma 26, Z : G+ = Gy+. The difference between
T' and T} is that we substitute variables by the corresponding concept definitions. Let
G and Gy be the description graphs of T’ and T} respectively. It holds that the
labels of G7y are obtained from G7v by removing all variables and adding primitive
concepts corresponding to the definitions of variables in 7”. Consider the following
concept definition in 7":

Xz(A{f LAY
(AY, .. Ay) =Pr NPy N3 (AT, AN) T 3 (A 4 AR L)

Then, VM € V. Lyn(M) = Ly (M)\{X | X € Varr(D)}U U {P",..., P}
XELT/(M)
Moreover, by Algorithm 22, there are MIX yenn ,Mi; € Nger such that

o (MY AD),... (M7 AN C Z;

nX7

e X € Ly(M{)N...N Ly (M)

Comparing gTZN and Gy, it is clear that for every edge in ng but not in Gy there exist
i€{l,...,nx}and j € {1,...,Ix} such that the edge has the form of

(M YRR A]an)>

)

X (A¥

Accordingly, in order to obtain Z7y, we add ((A;-fl, . A]an) A]Xl) to Z for all i €

{1,...,nx} and for all j € {1,...,lx}. Now we will ShOW Z7y + Gy = G7y (enough to
show the conditions (S1) and (S2) in Definition 7 hold).

(S81) Consider some (vi,v2) € Z7y. We have to show that L7y (v1) C L7y (v2).

5.1. Soundness 23

Case 1 : (v1,v3) € Z and Ly (vy) N Vary(D) = 0:

Ly (v) = Ly (v1)
= Ly/(v1) \ Vary(D)
C Ly (v9) since Z : G = G
C Lyy(v2)

Case 2 : (v1,v2) € Z and Ly (vy) N Vary(D) ={Xy,..., Xx}:
k
Lyy(v1) = (Ly(v1) \ Vary(D)) U .L_Jl{Pf(% P)

7
Case 2.1 : VP € Ly/(v1)\Vary(D): P € Lyy(vz) since (v1,v2) € Z: G =
g7
k
Case 2.2 : VP € J{P",...,PXi }.3j € {1,...,k}.X; = (A)7,..., A7)
i=1 :
and P € Ly (A7)N --NLy (A77). By Algorithm 22, vy € {A}7 ... AN}
Thus, P € LTZN (v2).
Case 3 : (Ul,vg) € Z’Té’ \ A
Then there is an X € Vary(D) such that X = (Ay,...,A,). There are
My, ..., M, € Ngef such that {(Ml,Al), Cey (MnaAn)} CZand X € LT(Mt)
fori e {1...,n}. Suppose that

(Al, . ,An) =P n---NPk,n 37“1.(14171, . 7A1,n) M1 Hrl.(AlJ,. .. 7Al,n>

in 7'. Then there exist i € {1,...,n} and j € {1,...,l} such that
® V] = (A]'J, . ,Ajﬂ) and
® Vo = AjJ;.
Hence,
Lyy(v1) =Ly (A1) 0 --- N Ly (Ajp)
C (L (Aji) \ Varr(D))
C Ly (A),)

= Ly (v2)

(S2) Consider some (v1,v2) € Zr and (vy,r,v}) € E7». We have to show that there
s / z / / z !
exists a node vy € Vi such that (v, v5) € Z7y and (v2,7,v5) € Egy.

Case 1 (vi,v2) € Z and (vi,7,v}) € E7r. Then there is a node vy € Vir = Vi
such that (v(,v5) € Z C Zry and (v, 1r,v)) € Eyr C Epy since 7 : Gy =
Ggr.

Case 2 (vi,v2) € Z7y \ Z and (v1,7,v}) € E7r. Then there exist i € {1,...,n}
and j € {1,...,l} such that vi = (4;1...,A4;,) and va = A;;. Moreover, v}
is of the form (E4,..., E,) such that {(A;1,7, E1),...,(Ajn, 1, En)} C Epr.
So (Aj,i,r, Ez) € B C ETZN.

24 Chapter 5. Soundness and completeness

Case 3 (vi,v2) € Z and (vi,7,v}) € Egy \ Eyr. Then there exist i € {1,...,n}
and j € {1,... I} suchthat vi = M;, vo = A;, r =rj,and v] = (Aj1...,Ajn).
Then Definition 27 tells us ((Aj;1...,Ajn), 4;i) € Zry and (4,1, A;) €
FE7+ since ((Al, R ,An), Tj, (Aj11 R ,A]"n)) S ETZH.

Case 4 (Ul, Ug) € ZTZ”\Z and (Ul, r, Ull) S ET}’\ET’- (Ul, Ug) € ZTZ”\Z yields that
v1 is of the form (A]'J, e 7Aj,n)- (1,7, v’l) S ETZN \ E7 yields that Ly (v1) =
Ly((Aj1,...,Ajy,)) contains some variable. This case is not possible by
Lemma 25.

Using the above lemma it is easy to show soundness of our matching algorithm.

Theorem 32
Let C ngpﬂ— D be an £L-matching problem. Every T" € S is a matcher of C' Eéfpﬂ- D.

Proof: By Lemma 21 we know that 7' is a conservative extension of 7. And 7" is
an instantiation of T w.r.t. T’ (by construction of 7). To show that 7" is a matcher
of C' = f 7 D, we have to show C' =g, 7 D. From the matching algorithm, for every
T" € D we know that C' Jgg, 77 D. Thus, it suffices to show that for all 7" in S we have
C ngp gn D. By Lemma 31, we can construct ZTZ” gTZN = gTZH with (D C) € ZTZN

Thus, by Theorem 8, we have C' Cy, 72 D. Then, Lemma 29 yields C Cepp, 7 D. O

5.2 Completeness

In this section we want to show completeness of our matching algorithm. If there is
more than one solution, we are interested in solutions that contain as much informa-
tion as possible. So in the proof of completeness, we claim that whenever there exists
a matcher M"”, our matching algorithm can find one matcher which is more specific
w.r.t. subsumption than M”. To compare among matchers, we introduce the following
definition:

Definition 33

Let C Eéfpﬂ- D be an £L-matching problem, 7/, T, be conservative extensions of T,
7! be an instantiation of 7 w.r.t. 7/ and 75" be an instantiation of 7 w.r.t. 7,. B
renaming defined concepts and variables in 7 we can make 7" and 73 such that they
do not contain common defined concepts and variables. Then,

o T is s-subsumed by T;' (T} T, T) iff for all X € Vary (D), X7 Cetp, 777UT X7
where X7t in 7" and X2 in 7, correspond to X in 7.
o T/ is s-equivalent to T (T = T') it T" Cs 7' and T3’ Cs T/".

A matcher M” is the least matcher w.r.t. T iff M” T, T" holds for all matchers 7.
A matcher M" is a minimal matcher w.r.t. Cg iff for all matchers 7", 7" T, M" implies

[/ — U
=, T". o

5.2. Completeness 25

The next lemma tells us that the least matcher is unique up to s-equivalence. This is
an immediate consequence of Definition 33.

Lemma 34
Let C E;fp + D be an £ L-matching problem. If M{ and M3 are two least matchers of

C E;fpﬂ- D then M/ =5, M.

The followmg example illustrates that the least matcher of C' =4 + D need not exist

even if C' = 7 D is solvable.

gfp

Example 35

T:={C=3r.AN3r.B,D =3Ir.X N3IrY}. It is easy to see that TU{X = A,Y = B}
and TU{X = B,Y = A} are matchers of C' E;fpﬂ- D. However, the least matcher does
not exist.

We now define our notion of completeness formally. If a matching problem is solvable,
then our matching algorithm can compute an s-complete set of matchers. It is defined
as following:

Definition 36
Let Syq be the set of matchers of C' = gpr D. Then § C Spq is called s-complete iff
VM" € Sp AT € S.T" Cs M. o

Next we want to show that the set & of matchers computed by Algorithm 22 is s-
complete.

Theorem 37

Let C' = f 7 D be an EL-matching problem. If M" is a matcher of C = f 7 D then
there exzsts T" € 8 with T" Ty M", where S is the output of Algorithm 22 upon input
C= gfpﬂ— D.

Proof: Suppose that M” is an instantiation of 7 w.r.t. M’. W.l.o.g., we assume that
M" is in normal form. Otherwise, we can obtain the corresponding normalized TBox
M using Nebel’s approach mentioned in [Baa02b]. Moreover, M/ := M{\ {X = Dx |
X € Vary(D)}. M is a conservative extension of 7T since normalization adds concept
definitions for new concept names. Normalization does not change the semantics of
TBoxes. Thus, M| is a conservative extension of 7 and MY is an instantiation of T
w.r.t. M.

Since M" is a matcher of C' Eéfpﬂ- D, we have that C' =g pmqv D. Thus, C' Cegp pqr D
and C dggp mr D. Hence, C' Egpp v D implies that there exists a simulation relation
Zar s G = G with (D, C) € Zpgn.

Comparing Gr with Gy, we observe that adding definitions of all variables changes
the state of variables from primitive to defined variables. In the normalization of M"
we replace every occurrence of a variable on the right-hand side of definitions in M” by
its “normalized” definition. Thus, in the corresponding graph, G7 can be obtained from
Gae by removing edges and some nodes (not only nodes of variables since new defined

26 Chapter 5. Soundness and completeness

concept names can be introduced by the normalization) in G, adding some variables
to the labels of some nodes and at the same time removing the corresponding primitive
concepts from the labels of these nodes. Hence, we have

o ET - EMN and
o Vo € Vr(Lr(v) \ Vary(D)) C Ly (v).

Let NV g;f be the set of defined concepts in 7. We define a binary relation Y by restricting
Zaqr to defined names in 7T

Y = {(Ul,Ug) S ZMII | {Ul,UQ} Q Ng;f}.

It holds that Y is finite since Zn,» is finite and Y C Zx». Then we compute a binary
relation Z from Y by means of the following algorithm:

Algorithm
Input: Y
Output: 7

Z:={(D,C)}
repeat
for every (vy,v3) € Z do
begin
if (v1,r,v]) € Gr then
find “one” v}, such that (ve,r,v}) € Gr and (v}, vh) € Y;
Z = ZU{(}, o))}
end;
until Z is not increased;
return 7.

This algorithm always stops since Y is finite. Moreover, we have that Z C Y since
(D,C) €Y and the added elements of Z are also in Y. When computing Z, if there is
more than one v} satisfying the condition we select arbitrarily one of them.

Claim 1: For every (vi,vs) € Z, if (v1,r,0]) € Gr then v} as required by the above
algorithm always exists.

Proof of Claim 1: For every (vy,vs) € Z, if (vy,7,0v]) € G then there exists a v}, such
that (va,r,vh) € G and (v),vh) € Zpgr since

[] ZMN . gMII :\gMII;
. (1)) €ZCY C Znw
o (v1,r,v]) € Epn since (vy,7,v]) € Ex C Epqrr.

Moreover, (v, r,vh) € Gy implies vy = --- M Iy M-+ in M”.
In the computation of Z, some paths from C are generated according to the correspond-
ing paths from D in Gy. From the definition of ££-matching problems, we know that

5.2. Completeness 27

Vary(C') contains no variables. This implies vy = --- M 3r.wh M-+ in T for every node
vy in the path generated path from C. Hence, we have that v}, € N, g;f. Thus, there
exists a vh such that (ve,r,v}) € Gy and (v],v5) € Y.

O (Claim 1)
Z : Gr = Gr since the conditions (S1) and (S2) in Definition 7 (extended to concept
patterns) hold.

(S1) (v1,v2) € Z implies (Ly(v1) \ Vary(D)) C Ly(va) since

(L7(v1) \ Varr(D)) C L (v1) € Lagr(v2) = Ly (va).

(S2) immediate consequence of the construction of Z.

Then we compute 7' and 7" by Algorithm 22 starting from Z.
Claim 2: 7" is a matcher of C :;fp 7D and T" &, M".
Proof of Claim 2: To prove that 7" is a matcher of C' = —gf 7 D, it remains to show
that C' Jgfp, 77 D. By renaming, we obtain TBoxes 7" and M satisfying the conditions
in Definition 33. For every variable X we suppose that X7 = (A7,..., AT) in 7"
and XM = Ex in M". X7 = (A7,..., A]) implies that there are deﬁned concepts
M7, ..., M7 in T such that (M, AT),...,(MT ,AT) € Z and X € Ly(M])n---N
Lr(M]T). We show that

X7 Egtp, 7rumr X -

The relation Z generated by the above algorithm has the property that every node
occurring in the second component of tuples in Z is reachable from C. This implies
that L7(A]) contains no variables for all i € {1,...,n}. From [Baa02a] we know that
(AT,...,AT) in T" is the least common subsumer of A7 ,..., AT in T". Here we view
T" is an conservative extension of itself. Hence, for all i € {1,...,n}, we have

AT Copprn (AT, ... AT).

T"UM" is a conservative extension of 7" and of M" since 7" and M" have the same set
of primitive concepts and the same set of roles. For every ie{l,. } (M],AT) e Z
yields (M; M AM) € Zn by construction of Z. Thus, A ngp M M M. This yields

M M
AM Tty rromn M

Moreover, M, ngpj X7 since X € Ly(M;) implies M; = ---M X M--- in 7. Thus,
MM Cotp, M XM since M is obtained by renaming defined concepts in 7. Hence,
MZ Cgtp, M XM and thus

MM gy i X
Together with AZM Cofp, 7" UM MtM this yields A{M Cefp, T7UM XM For all i €
{1,...,n}, we have

[} AZ- ngp,T” (AZ-, NN ,AT) and

n

28 Chapter 5. Soundness and completeness

o AT Cymprmomn XM
By definition of the least common subsumers, we have
(AT, ..., AT) Capp o XM

This implies
(*) VX e V(LTT(D).XT ngp,T”UM” XM

since X7 = (Ay,...,4,) in T". Hence, DT Cyp, 7rumr DM, So, we have that

cr =sgfp,7"UM" oM efp, T UM pM Jgfp, 7"UM" D7,

CT gty 77usmr DT implies C7 Dy, 7+ DT Then, T is a matcher of C ngpﬂ— D.
From () we have 7" C; M". 0O (Claim 2)
Claim 2 proves Theorem 37. |

Chapter 6

Implementation

We will illustrate the implementation of Algorithm 22. The programming language is
LISP. The programming environment is Allegro LISP system (see http://www.franz.com).

6.1 Input C Eépr- D and normalization of TBox
The input of Algorithm 22 is an £ £-matching problem C' Eéfp,T D. C' and D are defined
concepts in 7. In the implementation we store the TBox T as a file using standard LISP
syntax. We use the constants (listed in Table 6.1) to represent the constructors and top-
concept defined in £L£. The following example will be used in this chapter to illustrate
the result of running the matching algorithm step by step.

Example 38
Let T contain the following concept definitions:

D = P1 M X2 M E|7“1.Al M 37‘2.142
Ay = P,nXy{M3re.D

AQ = P1|_|X1 |_|X2|_|E|7“2.D

C = P ndr A3 drg Ay

A3 = PQ M P3 M 37“2.0

Ay = PN Py0dry.C

Then this TBox is stored in a file as

(DEFCONCEPT D (AND P1 var x2 (SOME R1 A1) (SOME R2 A2)))
DEFCONCEPT A1 (AND P2 var_xl (SOME R2 D)))

DEFCONCEPT A2 (AND P1 var_xl var_x2 (SOME R2 D)))
DEFCONCEPT C (AND P1 (SOME R1 A3) (SOME R2 A4)))
DEFCONCEPT A3 (AND P2 P3 (SOME R2 C)))

(DEFCONCEPT A4 (AND P1 P3 (SOME R2 C)))).

P e e e

An algorithm to normalized £ L-TBoxes has been implemented by Suntisrivaraporn (see
[Sun04]). The normalized TBox is translated into the description graph. In the imple-
mentation, the function my-start (file-name) initializes two hash tables storing the

29

30

Chapter 6. Implementation

constant value in LISP value in £L£
defconcept-keyword ’DEFCONCEPT =
xtop-keyword* *TOP T
and-keywordx > AND M
*xsome-keywordsx ’SOME 3
varprefixS ’VAR_

Table 6.1: Syntax in LISP

information about the description graph of the normalized TBox in the file filename.
The two hash tables are named *t-graph-label-hash* and *t-graph-out-edge-hashx*.
The key of *t-graph-label-hash* is the nodes of the description graph and the value is
the label of the corresponding node. The key of *t-graph-out-edge-hash* consists of
a node and a role name. The value is the list of the corresponding node’s successors. In
the function init-tbox-t (), we generate the following basic information about input

TBox T

e The list *t-defined-concepts*: the set of defined concepts.

e The list *t-varx*: the set of variables.

o The list *t-n-rolex*: the set of roles.

The following example shows the values after initialization.

Example 39

Let the input TBox 7 in Example 38 be stored in the file input-el-tbox. After running
(my-start "input-el-tbox") and (init-tbox-t) we get two hash tables in Table 6.2
and three lists in Table 6.3.

t-graph-label-hash

t-graph-out-edge-hashx

key value | key value
C (P1) | (C . RD) (A3)
Al (VARX1 P2) | (D . R2) (A2)
A2 (VARX2 VARX1 P1) | (C . R2) (A4)
A3 (P3 P2) | (A1 . R2) (D)
A4 (P3 P1) | (A3 . R2) (©
D (VARX2 P1) | (D . R1) (A1)

(A2 . R2) (D)

(A4 . R2) (©

Table 6.2: The hash tables for T

6.2. Computation of simulation relations 31

name value
xt-defined-concepts* (A4 A3 A2 A1 D C TOP)
*t-varx (VAR_X2 VAR X1)
xt-n-rolex* (R2 R1)

Table 6.3: The lists

Note that the top-concept T is viewed as a node whose label is the empty set and from
whom there are no out-edges in the description graph of the underlying TBox. TOP is
a member of the set of defined concepts *t-defined-concepts* since the nodes in a
description graph are considered as defined concepts.

The function init-tbox-t () is called by the function matching-el (c d) which cor-
responds to Algorithm 22.

6.2 Computation of simulation relations

Let C E7fp,7- D be the input matching problem. In Algorithm 22, we consider all
simulation relations containing (D, (). This makes some simulation relations contain
redundant tuples, i.e., there are some simulation relations such that if we remove some
tuples from them, the obtained relations are still simulation relations. For example, if
Z1 and Zs are simulation relations on G, then it is easy to show that Z := Z; U Zs
is also a simulation relation on G7. However, this implies that the TBox 7" computed
from Z by Algorithm 22 is more general than the TBoxes computed from Z; and Zs.
This is because for every variable X € Vary (D), the definition of X in 7" depends
on Z(X) for the corresponding simulation relation Z and in this example 71,7, C Z
implies Z1(X), Z3(X) C Z(X). By Lemma 12, the definition of X is the lcs of the
elements in Z(X). Hence, Z1(X), Z2(X) C Z(X) implies the definition of X computing
from Z is more general than the ones from Z; and Z5. Since we are only interested
in the minimal matchers, we will only consider the simulation relations containing no
redundant tuples, i.e., every tuple is necessary for being a simulation relation. So, in
the implementation, we compute simulation relations in the following way:

e start from Z := (D, C) (check condition (S1) on (D, C));
e check condition (S2);

- yes: return Z;
- no: add one possible (to satisfy condition (S1)) and necessary (to satisfy condi-

tion (S2)) tuple to Z and store this backchecking point;

e if find one tuple in the last step, then run the last step again, otherwise check
another possible simulation relation at the backchecking point.

32 Chapter 6. Implementation

{7, Xq} {P, Xq, Xo} {2, P} {1, P}

Figure 6.1: The description graph of T

When storing the backchecking points we associated a hash table which labels the
checked edges in the description graph G to every possible simulation relation. Using
this strategy, we can obtain all simulation relations which generate the minimal match-
ers. In the implementation, the function find-s-r-containing-d-c-without-var (d
c) returns the list of such simulation relations.

Example 40

Consider the input matching problem from Example 38. The description graph of 7T is
depicted in Figure 6.1. Then, after running find-s-r-containing-d-c-without-var
(d c), we get the following list of simulation relations:

(((A1 A3) (D C) (A2 A4)))

Note that certainly there exist other simulation relations on G not listed above. How-
ever, the ones in the returned list above are more useful for the construction of minimal
matchers.

6.3 Computation of TBox 7’

In our matching algorithm, the purpose of computing the TBox 7" is to obtain a conser-
vative extension of 7 where the new defined concepts is introduced for the computation
of the least common subsumers. For a simulation relation Z, 7" is union of the product
of 7 whose power is decided by the maximal value of |Z(X)| for all X € Vary(D). It
should be noticed that if we compute 7' using the formal product’s definition, too many
(the number of defined concepts in 7 to the power of max{Z(X) | X € Varr(D)}) de-
fined concepts will be generated many of whom might be irrelevant for the computation
of the result. In order to decrease the number of defined concepts in 7', we sort the
lists which are the names of the new defined concepts in 7 in the implementation . For
example, (Aq, Ay) and (As, A1) are expressed by the same node in the description graph
of 7. We can do so because both of these two nodes represent the lcs of A; and As.
The other advantage of sorting the list is that we can compare ordered lists faster than

6.4. Subsumption testing and output 33

non-ordered lists when we check whether some node has already been generated in the
product of the description graph. Moreover, we extend the description graph of 7" only
using the nodes those are reachable from sorted (A, ..., A,) for some X € Vary(D)
and Z(X) = {A1,...,Ay}. This optimization is also used to decrease the number of
defined concepts in 7'. The function get-t-prime (z-x-s-r-hash) computes 7' ac-
cording to the hash table z-x-s-r-hash storing Z(X) for every X € Vary(D) and
returns two hash tables tp-graph-label-hash and tp-graph-out-edge-hash which
store the information about 7' (similar to the data structures for 7).

Example 41
Let the input be the TBox 7 from Example 38. Then from the unique simulation
relation in Example 40, we obtain 7' stored in two hash tables (see Table 6.4).

tp-graph-label-hash tp-graph-out-edge-hash
key value | key value
C (P1) (C . R (A3)
Al (VAR X1 P2) (D . R2) (A2)
A2 (VARX2 VAR X1 P1) | (C . R2) (A4)
A3 (P3 P2) (A1 . R2) (D)
Ad (P3 P1) (A3 . R2) (©
D (VAR X2 P1) (D . RD) (A1)
(A2 . R2) (D)
(A4 . R2) (©)
lcs-A4-C (P1) (1cs-A3-A3 . R2) (1cs-C-C)
lcs-C-C (P1) | (les-C-C . R2) (lcs-A4-A4)
lcs-A4-A3 (P3) (les-C-C . R1) (1cs-A3-A3)
lcs-A3-A3 (P2 P3) (1cs-A4-A3 . R2) (1cs-C-C)
lcs-A4-A4 (P1 P3) (1cs-A4-C . R2) (1cs-A4-C)
(l1cs-A4-A4 . R2) (1cs-C-C)

Table 6.4: The hash tables for T’

Note that the names of new defined concepts in 7' are changed from a list to a string.
For example, (A4 C) is expressed as 1cs-A4-C. We do this for a mere technical reason:
we have to make the concept names recognizable by Suntisrivaraporn’s subsumption
algorithm.

6.4 Subsumption testing and output

After the computation of the TBox 7, the concept definitions to be assigned to all
variables according to current simulation relation can be returned. For every X €&

Varr(D),
X = (Ala---,An)

34 Chapter 6. Implementation

where Z(X) = {A1,...,A,} and |Z(X)| = n. We use the function get-z-x-s-r-hash
(s-r) to return a hash table z-x-s-r-hash storing Z(X) for every variable X €
Varr(D), where the argument s-r is the simulation relation Z. From this hash ta-
ble, we can generate the definitions of variables in the TBox 7”. The function

write-t-double-prime-file(output-el-tbox-tpp
tp-graph-label-hash
tp-graph-out-edge-hash

z-x-s-r-hash)

writes the TBox 7" to a file named output-el-tbox-tpp. The arguments tp-graph-1lab
-el-hash and tp-graph-out-edge-hash are the hash tables providing the information
of the TBox 7'. Then we call the function (my-start output-el-tbox-tpp) to be
ready for checking subsumption w.r.t. the TBox 7. If calling the function (subsumes?
c d) returns ’yes, then we have found a solution to the matching problem. Hence, we
call the function

(run-shell-command
(format nil "cat begin-t-mark A >> "A"
output-el-tbox-tpp output-s-file))

to append the file named by the value of the variable output-el-tbox-tpp to the result
file named by the value of the variable output-s-file where the file begin-t-mark
stores one line to mark the beginning of every TBox 7" in the result file. After checking
all of the simulation relations containing (D, C'), we get the result file storing matchers of
C E7fp,7- D. The function subsumes? (c d) is provided by the subsumption algorithm
by Suntisrivaraporn (see [Sun04]).

Example 42
Consider the input TBox 7 from Example 38. After running our matching algorithm,
the following contents are written into the result file:

*+*This is the beginning of TBox T’ ?kkkskkkkkkkskokkkkkkkkk

(DEFCONCEPT C (AND (SOME R2 A4) (SOME R1 A3) P1))

(DEFCONCEPT D (AND (SOME R1 A1) (SOME R2 A2) VAR_X2 P1))

(DEFCONCEPT A1 (AND (SOME R2 D) VAR_X1 P2))

(DEFCONCEPT A2 (AND (SOME R2 D) VAR_X2 VAR_X1 P1))

(DEFCONCEPT A3 (AND (SOME R2 C) P3 P2))

(DEFCONCEPT A4 (AND (SOME R2 C) P3 P1))

(DEFCONCEPT 1lcs-A4-C (AND (SOME R2 lcs-A4-C) P1))

(DEFCONCEPT 1lcs-C-C (AND (SOME R1 1lcs-A3-A3) (SOME R2 lcs-A4-A4) P1))
(DEFCONCEPT 1lcs-A4-A3 (AND (SOME R2 1lcs-C-C) P3))

(DEFCONCEPT 1cs-A3-A3 (AND (SOME R2 1lcs-C-C) P2 P3))

6.5. Testing 35

(DEFCONCEPT lcs-A4-A4 (AND (SOME R2 1lcs-C-C) P1 P3))
(DEFCONCEPT VAR_X1 1lcs-A4-A3)
(DEFCONCEPT VAR_X2 1lcs-A4-C)

6.5 Testing

The testing of our £ £-matching algorithm is mainly based on the testing data of acyclic
EL-TBoxes produced by a random generator for £L-matching problems. Instead of
generating C' and D independently of each other, we randomly generate a concept C
and then construct a concept pattern D from C' by randomly replacing sub-concepts
of C' by variables. The reason of doing this is that we want the generated matching
problems to be more probably solvable. In [BL04], there is more information about the
strategy of generating such matching problems. For cyclic £ £-TBoxes, testing matching
problems are generated manually.

To test soundness of our matching algorithm, i.e., every TBox 7" in § is really a matcher
to the corresponding input C' E;fpﬂ— D, it is enough to test whether C' =4, 7+ D holds.
Since

C =gfp, 7" D = C ngp,’l’” DAD ngp,’l’” C,

we can reduce testing equivalence to testing subsumption.

For completeness testing, we compare the results with the output of an existing ALE-
matching algorithm (see [BK00a]) implemented by Brandt (see [Bra03]). The ALE-
matching algorithm can solve ALE-matching problems without terminological cycles.
EL is a sub-language of ALE, so acyclic £L£-TBoxes are used as testing data. This
ALE-matching algorithm also generates an s-complete set of matchers to C ngpﬂ- D.
The testing strategy for completeness is that for each matcher M” generated by ALE-
matching algorithm, we check whether there exists a matcher 7" to the same matching
problem in the output of our ££-matching algorithm such that 7" C, M”.

We run the matching algorithm on 100 acyclic £ £-matching problems of average size 23
costing average time 8.2 milliseconds on a standard PC.

Chapter 7

Conclusion

In this thesis, we have defined formally £ £-matching problems with terminological cycles
and provided an algorithm for solving the problems w.r.t. the greatest fixpoint seman-
tics. Our algorithm follows a strategy analogous to the algorithm in [BK00a] for the
acyclic case. Soundness and completeness of the matching algorithm have been shown.
Based on these results, matching, one of non-standard inference problems, can be ap-
plied to more powerful DLs.

The theoretical complexity of £L-matching problems has not yet been discussed. De-
ciding £L£-matching problems is at least as hard as deciding £ £-matching problems only
considering acyclic TBoxes. The results about complexity in acyclic case are listed as
following [Kiis01]:

1. Deciding the solvability of matching problems modulo equivalence in ££ is an
NP-complete problem.

2. The cardinality of s-complete sets of matchers may grow exponentially in the size
of the matching problem.

3. The cardinality of s-complete sets of matchers can exponentially be bounded in
the size of the matching problem.

Corresponding to 1, the complexity of deciding the solvability of matching problems
in cyclic case is still an open problem. 2 and 3 lead to the fact that the algorithm of
computing s-complete sets of matchers for matching problems in cyclic case is at least
an exponential time algorithm. For our matching algorithm, transforming an ££-TBox
T into normal form can be done in time quadratic in |7 (see [Sun04]). Subsumption
testing consumes polynomial time (see [Baa02b]). It takes also polynomial time to
compute Z(X) for every X € Vary(D) for some simulation relation Z. However,
it takes exponential time to find all simulation relations in the worst case. Directly
computing the product of TBoxes 7 leads to exponentially large TBox 7 in the worst
case. These two steps make our matching algorithm exponential.

37

Bibliography

[Baa02a]

[Baa02b]

[BK00a]

[BKOOD]

[BKBM99]

[BKMOS]

[BLOA]

F. Baader. Least common subsumers, most specific concepts, and role-value-
maps in a description logic with existential restrictions and terminological
cycles. LTCS-Report LTCS-02-07, Chair for Automata Theory, Institute for
Theoretical Computer Science, Dresden University of Technology, Germany,
2002. See http://lat.inf.tu-dresden.de/research/reports.html.

F. Baader. Terminological cycles in a description logic with existential re-
strictions. LTCS-Report LTCS-02-02, Chair for Automata Theory, Institute
for Theoretical Computer Science, Dresden University of Technology, Ger-
many, 2002. See http://lat.inf.tu-dresden.de/research/reports.html.

F. Baader and R. Kiisters. Matching in description logics with existential
restrictions. In A.G. Cohn, F. Giunchiglia, and B. Selman, editors, Proceed-
ings of the Seventh International Conference on Knowledge Representation
and Reasoning (KR2000), pages 261-272, San Francisco, CA, 2000. Morgan
Kaufmann Publishers.

A. Borgida and R. Kiisters. What’s not in a name: Some Properties of
a Purely Structural Approach to Integrating Large DL Knowledge Bases.
In F. Baader and U. Sattler, editors, Proceedings of the 2000 Interna-
tional Workshop on Description Logics (DL2000), number 33 in CEUR-
WS, Aachen, Germany, 2000. RWTH Aachen. Proceedings online available
from http://SunSITE.Informatik. RWTH-Aachen.DE/Publications/ CEUR-
WS/Vol-33/.

F. Baader, R. Kiisters, A. Borgida, and D. McGuinness. Matching in de-
scription logics. Journal of Logic and Computation, 9(3):411-447, 1999.

F. Baader, R. Kiisters, and R. Molitor. Computing least common subsumers
in description logics with existential restrictions. LTCS-Report LTCS-98-09,
LuFG Theoretical Computer Science, RWTH Aachen, Germany, 1998. See
http://www-lti.informatik.rwth-aachen.de/Forschung/Papers.html.

Sebastian Brandt and Hongkai Liu. Implementing matching in ALN. In
Proceedings of the KI-2004 Workshop on Applications of Description Logics
(KI-ADL’04), CEUR-WS, Ulm, Germany, September 2004.

39

40

BIBLIOGRAPHY

[Bra03]

[BS96]

[BT01]

[KASOT]

[Kiis01]

[MPS98]

[Neb90]

[Neb91]

[RNGO3]

[Sun04]

[Tar55]

Sebastian Brandt. Implementing matching in ALE—first results. In Proceed-
ings of the 2003 International Workshop on Description Logics (DL2003),
CEUR-WS; 2003.

F. Baader and U. Sattler. Knowledge representation in process engineer-
ing. In Proceedings of the International Workshop on Description Logics,

Cambridge (Boston), MA, U.S.A., 1996. AAAI Press/The MIT Press.

S. Brandt and A.-Y. Turhan. Using non-standard inferences in de-
scription logics — what does it buy me? In Proceedings of the KI-
2001 Workshop on Applications of Description Logics (KIDLWS’01), num-
ber 44 in CEUR-WS, Vienna, Austria, September 2001. RWTH Aachen.
Proceedings online available from http://SunSITE.Informatik. RWTH-
Aachen.DE /Publications/ CEUR-WS/Vol-44/.

Cote RA K. A. Spackman, K. E. Campbell. Snomed rt: A reference ter-
minology for health care. In Proceedings/AMIA Annual Fall Symposium,
pages 640-644, 1997.

R. Kiisters. Non-Standard Inferences in Description Logics, volume 2100 of
Lecture Notes in Artificial Intelligence. Springer-Verlag, 2001. Ph.D. thesis.

Deborah L. McGuinness and Peter F. Patel-Schneider. Usability issues in
knowledge representation systems. In AAAT '98/TAAI ’98: Proceedings of
the fifteenth national/tenth conference on Artificial intelligence/Innovative
applications of artificial intelligence, pages 608-614. American Association
for Artificial Intelligence, 1998.

Bernhard Nebel. Reasoning and revision in hybrid representation systems.
Springer-Verlag New York, Inc., 1990.

B. Nebel. Terminological cycles: Semantics and computational properties.
In J. F. Sowa, editor, Principles of Semantic Networks: Explorations in the
Representation of Knowledge, pages 331-361. Morgan Kaufmann Publishers,
San Mateo (CA), USA, 1991.

A. Rector, W. Nowlan, and A. Glowinski. Goals for concept representa-
tion in the galen project. In Proceedings of the 17th Annual Symposium
on Computer Applications in Medical Care (SCAMC’93), pages 414-418,
Washington DC, USA, 1993.

B. Suntisrivaraporn. Implementation and optimization of subsumption algo-
rithms in the dl el with cyclic tboxes and general concept inclusion axioms.
Master’s thesis, Dresden University of Technology, Germany, 12 2004. See
http://lat.inf.tu-dresden.de/research/reports.html.

Alfred Tarski. A lattice-theoretical fixpoint theorem and its applications.
Pacific Journal of Mathematics, 5:285-309, 1955.

