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Abstra
t

Mat
hing of 
on
epts against patterns is a so-
alled non-standard inferen
e problem

[K�us01℄ in Des
ription Logi
s. For the small des
ription language EL, mat
hing prob-

lems without terminologi
al 
y
les have been investigated in [BK00a℄. In the present

thesis we introdu
e EL-mat
hing problems allowing terminologi
al 
y
les. Among the

three di�erent semanti
s de�ned by Nebel in [Neb91℄ for the interpretation of 
y
li


TBoxes we will argue that gfp-semanti
s is the appropriate one to de�ne mat
hing

problems. Based on de
iding subsumption [Baa02b℄ and 
omputing the least 
ommon

subsumers [Baa02a℄, a mat
hing algorithm is provided whose soundness and 
omplete-

ness is shown. Moreover, the mat
hing algorithm is implemented and tested in the

programming language LISP.
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Chapter 1

Motivation

Des
ription Logi
s (DLs) are a family of knowledge representation languages whi
h use


on
ept des
riptions to represent knowledge. In DLs, 
on
ept des
riptions are built from

atomi
 
on
epts and roles with the help of 
onstru
tors. The 
onstru
tors determine

the expressive power of the DL. Using 
on
ept des
riptions and the symbol \�" we


an introdu
e 
on
ept de�nitions. For example (from [Baa02b℄), tigers and lions 
an be

de�ned in DL by following 
on
ept de�nitions:

Tiger � Animal u 9parent:Tiger

Lion � Animal u 9parent:Lion

Tigers (lions) are viewed as the animals whose parents are also tigers (lions). A set

of su
h 
on
ept de�nitions is 
alled terminology (TBox). We rule out that the same


on
ept name is de�ned more than on
e (multiple de�nitions). In this thesis, we will


onsider the DL language EL whi
h allows for the top-
on
ept (>), 
onjun
tion (u),

and existential restri
tion (9r:C).

1.1 Why do we do mat
hing?

DL-systems 
onsist of two 
omponents. First, a knowledge base, whi
h 
an further be

divided into the TBox and the ABox. Se
ond, a reasoning engine, whi
h implements

the various inferen
e servi
es. Mat
hing in EL, the 
entral problem 
on
erned in this

thesis, is one of these inferen
e servi
es on TBoxes.

Resear
h in the �eld of DLs has mainly been driven by inventing de
ision algorithms

for so-
alled standard inferen
e problems, su
h as subsumption and instan
e 
he
king.

Subsumption is used to des
ribe the relationship between two 
on
ept des
riptions. In

the above example, we 
an see that every tiger has to be an animal, in other words,

an obje
t that is a tiger implies that it is also an animal. In this 
ase, we say that

`Tiger' is subsumed by `Animal'. If two 
on
ept des
riptions subsume ea
h other, then

we say that they are equivalent. De
iding subsumption and equivalen
e are in
luded in

standard inferen
e problems (see [K�us01℄). However, building and maintaining large DL

1



2 Chapter 1. Motivation

knowledge bases requires additional support beyond the set of standard inferen
e servi
es

(see [MPS98℄). Mat
hing is one of non-standard inferen
e servi
es whi
h originally has

been motivated by the problem of pruning large 
on
ept des
riptions, i.e., only printing

the relevant aspe
ts under 
urrent 
ir
umstan
es [BKBM99℄. In fa
t, mat
hing has

already been used su

essfully in some real appli
ations of pruning 
on
ept des
riptions

(see [K�us01℄). Mat
hing 
an also be applied to help dete
t and avoid redundan
ies

[BK00b℄ and to integrate knowledge bases [BS96℄. Another appli
ation is that mat
hing


an be seen as a way to implement query in knowledge bases [BT01℄.

1.2 Why do we fo
us on EL interpreted with gfp-semanti
s?

Although EL is a relatively inexpressive DL, it appears to be adequate for some real

appli
ations. The Gene Ontology (see http://www.geneontology.org) 
an be repre-

sented in EL with an a
y
li
 TBox. Some other examples of EL's appli
ations are in the

�eld of medi
al terminologies: SNOMED (see [KAS97℄) and GALEN (see [RNG93℄).

TBoxes without terminologi
al 
y
les (
on
ept de�nitions depending on themselves) are


alled a
y
li
 TBoxes. Mat
hing problems w.r.t. a
y
li
 TBoxes in EL have already

been studied in [BK00a℄. The mat
hing algorithm in [BK00a℄ is based on �nding ho-

momorphisms between des
ription trees, 
omputing the least 
ommon subsumers (see

[BKM98℄), and testing subsumption.

In this thesis, we will deal with mat
hing problems in the 
ase that we allow for 
y
li
 def-

initions in TBoxes. We have three 
hoi
es of semanti
s to interpret 
y
li
 TBoxes intro-

du
ed by Nebel [Neb91℄, namely des
riptive semanti
s, gfp-semanti
s, and lfp-semanti
s.

The des
riptive semanti
s is de�ned as the usual semanti
s for a
y
li
 TBoxes. Sub-

sumption in 
y
li
 TBoxes w.r.t. these three semanti
s are proven to be de
idable in

[Baa02b℄. For lfp-semanti
s, de
iding subsumption in a 
y
li
 TBox 
an be redu
ed

to subsumption in an a
y
li
 one, where gfp-semanti
s, lfp-semanti
s, and des
riptive

semanti
s 
oin
ide (see [Neb91℄). In this sense, using gfp-semanti
s for 
y
li
 TBoxes in

EL is more interesting than lfp-semanti
s.

For 
y
li
 TBoxes, testing subsumption depends on �nding simulation relations on the

des
ription graph of TBox as it is proven in [Baa02b℄. Moreover, the least 
ommon

subsumers in EL with 
y
li
 terminologies interpreted with gfp-semanti
s always exist

and 
an be 
omputed (see [Baa02a℄). For the 
omputation of least 
ommon subsumers

we might need to extend the original TBox. It is also stated in [Baa02a℄ if we 
hoose

des
riptive semanti
s, the least 
ommon subsumers need not always exist.

All of these good 
omputational properties of gfp-semanti
s make solving mat
hing prob-

lems to be possible in 
y
li
 EL-TBoxes based on the same intuition as a
y
li
 ones.

The obje
tive of this thesis: a suitable de�nition for mat
hing problems w.r.t. 
y
li


terminologies in the DL EL is to be examined. Soundness and 
ompleteness of an ap-

propriate mat
hing algorithm is to be shown formally. A prototype implementation of

this algorithm has to be done in the programming language LISP.
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1.3 The stru
ture of this thesis

Chapter 2 introdu
es the language EL and 
y
li
 TBoxes in EL. We also give def-

initions and 
hara
terizations of two inferen
e problems (subsumption and the least


ommon subsumers) in EL.

In Chapter 3 we extend the notion of 
on
ept des
riptions to 
on
ept patterns in order

to introdu
e variables into 
y
li
 EL-TBoxes. Then we de�ne EL-mat
hing problems

formally. In Chapter 4, our mat
hing algorithm is introdu
ed. Moreover, we show ter-

mination of this algorithm.

We 
on
entrate on proving soundness and 
ompleteness of our mat
hing algorithm in

Chapter 5. In order to prove 
ompleteness, we will restri
t our attention to \interesting"

solutions.

In Chapter 6, we illustrate the implementation of our mat
hing algorithm in the pro-

gramming language LISP. Main data stru
tures and intuitions of important fun
tions

are dis
ussed. Then we explain the strategy of testing our mat
hing algorithm.

In the last 
hapter, we give a summary of this thesis and brie
y 
onsider the 
omplexity

of the mat
hing algorithm.





Chapter 2

Cy
li
 EL-TBoxes

In this 
hapter, we introdu
e the des
ription logi
 language EL. All the de�nitions in

this thesis are based on this language. Then we de�ne TBoxes in EL. The notion of

\mat
hing problems" is 
onstru
ted on these de�nitions.

2.1 The des
ription logi
 EL

At �rst, we �x some sets whi
h are ne
essary to de�ne EL-
on
ept des
riptions. Those

sets will be used throughout this thesis.

� N

C

is set of 
on
ept names,

� N

R

is set of role names,

� X is set of variables.

Any two of these sets have no 
ommon elements, i.e., N

C

\N

R

= ;, N

C

\ X = ;, and

N

R

\ X = ;. Starting from these sets we 
an de�ne 
on
ept des
riptions indu
tively

with the help of 
onstru
tors.

De�nition 1 [Syntax℄

The set of all 
on
ept des
riptions over N

C

and N

R

is indu
tively de�ned as following:

� Every 
on
ept name A 2 N

C

(atomi
 
on
ept) and > (top-
on
ept) are 
on
ept

des
riptions;

� If C and D are 
on
ept des
riptions, then C u D (
onjun
tion) is a 
on
ept de-

s
ription;

� If r 2 N

R

is a role name and C is a 
on
ept des
ription, then 9r:C (existential

restri
tion) is a 
on
ept des
ription.

A terminology (or TBox for short) is a �nite set of 
on
ept de�nitions of the form

A � D, where A is a 
on
ept name and D is a 
on
ept des
ription. In addition, we

5



6 Chapter 2. Cy
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 EL-TBoxes

require that TBoxes do not 
ontain multiple de�nitions, i.e., there 
annot be two distin
t


on
ept des
riptionsD

1

andD

2

su
h that both A � D

1

and A � D

2

belong to the TBox.

Con
ept names o

urring on the left-hand side of a de�nition are 
alled de�ned 
on
epts.

All other 
on
ept names o

urring in the TBox are 
alled primitive 
on
epts. �

Note: We allow for 
y
li
 dependen
ies between the de�ned 
on
epts, i.e., the de�nition

of A may refer (dire
tly or indire
tly) to A itself.

The model-theoreti
 semanti
s of EL is de�ned by spe
ifying a domain and an interpre-

tation fun
tion.

De�nition 2 [Semanti
s℄

Let �

I

be a non-empty set. An interpretation I is de�ned by its domain �

I

and its

interpretation fun
tion �

I

whi
h assigns A

I

� �

I

to ea
h A 2 N

C

and r

I

� �

I

��

I

to ea
h r 2 N

R

. The interpretation fun
tion is extended to 
on
ept des
riptions in the

following way.

� >

I

= �

I

;

� (C uD)

I

= C

I

\D

I

;

� (9r:C)

I

= fx 2 �

I

j 9y : (x; y) 2 r

I

^ y 2 C

I

g.

An interpretation I is a model of the TBox T if and only if it satis�es all its 
on
ept

de�nitions, i.e., A

I

= D

I

for all de�nitions A � D in T . This semanti
s of TBoxes is


alled des
riptive semanti
s by Nebel (see [Neb91℄). �

Nebel introdu
ed three di�erent semanti
s to 
y
li
 TBoxes in des
ription logi
: de-

s
riptive semanti
s, least �xpoint (lfp) semanti
s, and greatest �xpoint (gfp) semanti
s.

Before we de�ne the lfp- and gfp-semanti
s, we re
all some de�nitions given in [Baa02b℄.

De�nition 3

Let T be an EL-TBox 
ontaining the roles N

R

, the primitive 
on
epts N

prim

, and the

de�ned 
on
epts N

def

:= fA

1

; : : : ; A

k

g.

� A primitive interpretation J for T is given by a domain �

J

, an interpretation of

the primitive 
on
epts P 2 N

prim

by subsets P

J

of �

J

, and an interpretation of

the roles r 2 N

R

by binary relations r

J

on �

J

.

� The interpretation I is based on the primitive interpretation if and only if it has

the same domain as J and 
oin
ides with J on N

R

and N

prim

.

� We de�ne

Int(J) := fI j I is an interpretation based on Jg:

� If I

1

;I

2

2 Int(J ), then

I

1

�

J

I

2

if and only if A

I

1

i

� A

I

2

i

for all i; 1 � i � k:
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�

Using Tarski's �xpoint theorem (see [Tar55℄), it is shown in [Neb91℄ that for a given

primitive interpretation J , there is always a greatest and a least (w.r.t. �

J

) model

of T based on J . We 
all these models respe
tively the greatest �xpoint model (gfp-

model) and the least �xpoint model (lfp-model) of T . Greatest (least) �xpoint semanti
s


onsiders only gfp-models (lfp-models) as admissible models.

In this thesis, we 
onsider only greatest �xpoint semanti
s. In Se
tion 2.2, we de�ne

subsumption between de�ned 
on
epts. We 
an restri
t the attention to subsumption

between de�ned 
on
epts sin
e subsumption between arbitrary 
on
ept des
riptions 
an

be redu
ed to this problem by introdu
ing de�nitions for des
riptions.

2.2 Subsumption w.r.t. gfp-semanti
s

We �rst de�ne relationships named \subsumption" and \equivalen
e" between de�ned


on
epts.

De�nition 4 [Subsumption and equivalen
e℄

Let T be an EL-TBox and A, B be de�ned 
on
epts o

urring in T . Then

� A is subsumed by B w.r.t. gfp-semanti
s (A v

gfp;T

B) i� A

I

� B

I

holds for all

gfp-models I of T .

� A is equivalent to B w.r.t. gfp-semanti
s (A �

gfp;T

B) i� A v

gfp;T

B and B v

gfp;T

A.

�

A

ording to this de�nition, the equivalen
e problem is de
idable if the subsumption

problem is de
idable. Before we give the theorem of de
iding subsumption, we introdu
e

the notion of the normal form of EL-TBoxes.

De�nition 5 [Normal form of EL-TBoxes℄

Let T be an EL-TBox, N

def

the set of the de�ned 
on
epts of T , and N

prim

the set of

primitive 
on
epts of T . Then T is 
alled in formal form if and only if A � D 2 T

implies that D is of the form

P

1

u � � � u P

m

u 9r

1

:B

1

u � � � u 9r

l

:B

l

for m; l � 0, P

1

; : : : ; P

m

2 N

prim

, r

1

; : : : ; r

l

2 N

R

, and B

1

; : : : ; B

l

2 N

def

. If m = l = 0,

then D = >. �

We use the TBoxes in normal form to generate the des
ription graphs.

De�nition 6 [EL-des
ription graphs℄

An EL-des
ription graph is a graph G = (V;E;L) where

� V is a set of nodes;
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� E � V �N

R

� V is a set of edges labeled by role names;

� L : V ! 2

N

prim

is a fun
tion that labels nodes with sets of primitive 
on
epts.

�

The normalized TBox T 
an be translated into the following EL-des
ription graph G

T

=

(N

def

; E

T

; L

T

):

� the nodes of G

T

are the de�ned 
on
epts in T ;

� if A is de�ned 
on
ept and

A � P

1

u � � � u P

m

u 9r

1

:B

1

u � � � u 9r

l

:B

l

is its de�nition in T , then

- L

T

(A) = fP

1

; : : : ; P

m

g, and

- A is the sour
e of the edges (A; r

1

; B

1

); : : : ; (A; r

l

; B

l

) 2 E

T

.

Simulations are binary relations between nodes of two EL-des
ription graphs.

De�nition 7 [Simulation℄

Let G

i

= (V

i

; E

i

; L

i

) (i = 1; 2) be two EL-des
ription graphs. The binary relation

Z � V

1

� V

2

is a simulation from G

1

to G

2

i�

(S1) (v

1

; v

2

) 2 Z implies L

1

(v

1

) � L

2

(v

2

); and

(S2) if (v

1

; v

2

) 2 Z and (v

1

; r; v

0

1

) 2 E

1

, then there exists a node v

0

2

2 V

2

su
h that

(v

0

1

; v

0

2

) 2 Z and (v

2

; r; v

0

2

) 2 E

2

.

We write Z : G

1

*

�

G

2

to express that Z is a simulation from G

1

to G

2

. �

From [Baa02b℄, we know that the subsumption problem w.r.t. gfp-semanti
s 
an be

de
ided by test the existen
e of simulation relations on the des
ription graph.

Theorem 8

Let T be an EL-TBox and A, B de�ned 
on
epts in T . Then the following are equivalent:

1. A v

gfp;T

B.

2. There is a simulation Z : G

T

*

�

G

T

with (B;A) 2 Z.

To obtain des
ription graph of TBox, we employ Nebel's approa
h (see [Neb90℄) to

normalize TBox.

In next se
tion, we will give the de�nition of the least 
ommon subsumers (l
s) w.r.t.

gfp-semanti
s in EL. Both de
iding subsumption and 
omputing l
s are preparations

for solving EL-mat
hing problems.
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2.3 The least 
ommon subsumers

Before we introdu
e the de�nition of the least 
ommon subsumers, we de�ne the notion

of 
onservative extension whi
h will be used for 
omputing l
s.

De�nition 9 [Conservative extension℄

Let T

1

and T

2

be TBoxes. Then we say that T

2

is a 
onservative extension of T

1

if and

only if

� T

1

� T

2

and

� T

1

and T

2

have the same primitive 
on
epts and roles.

�

The l
s w.r.t. gfp-semanti
s in EL is formally de�ned as follows:

De�nition 10 [Least 
ommon subsumers℄

Let T

1

, T

2

be EL-TBoxes su
h that T

2

is a 
onservative extension of T

1


ontaining new

de�ned 
on
ept E. Then E in T

2

is a least 
ommon subsumer of A and B in T

1

w.r.t.

gfp-semanti
s (gfp-l
s) i� the following two 
onditions are satis�ed:

1. A v

gfp;T

2

E and B v

gfp;T

2

E.

2. If T

3

is a 
onservative extension of T

2

and F a de�ned 
on
ept in T

3

su
h that

A v

gfp;T

3

F and B v

gfp;T

3

F , then E v

gfp;T

3

F .

�

By this de�nition we know that the l
s 
omputation is asso
iative and 
ommutative.

When we 
ompute gfp-l
s, the produ
t of des
ription graphs is used.

De�nition 11 [Produ
t of des
ription graphs℄

Let G

1

= (V

1

; E

1

; L

1

) and G

2

= (V

2

; E

2

; L

2

) be two des
ription graphs. Their produ
t is

the des
ription graph G

1

�G

2

:= (V;E;L) where

� V := V

1

� V

2

;

� E := f((v

1

; v

2

); r; (v

0

1

; v

0

2

)) j (v

1

; r; v

0

1

) 2 E

1

^ (v

2

; r; v

0

2

) 2 E

2

g;

� L((v

1

; v

2

)) := L

1

(v

1

) \ L

2

(v

2

).

�

The following lemma in [Baa02a℄ shows the relation between the l
s and the graph

produ
t. In prin
iple, the l
s of A, B in T is de�ned in a TBox whose des
ription graph

is the produ
t of G

T

with itself.

Lemma 12

Let T be a normalized EL-TBox 
ontaining de�ned 
on
epts A and B. Then (A;B) in

T

0

is the gfp-l
s of A and B in T , where T

0

:= T

P

[ T , G

T

P

:= G

T

� G

T

.





Chapter 3

Mat
hing in Cy
li
 EL-TBoxes

In this Chapter, we will de�ne EL-mat
hing problems, the mainly 
onsidered problems

in this thesis.

3.1 Introdu
ing variables

In order to de�ne mat
hing problems, we need 
on
ept patterns to introdu
e variables

to our 
on
erning DL language EL.

De�nition 13 [Con
ept patterns℄

The set of all 
on
ept patterns over N

C

, N

R

, X is indu
tively de�ned as follows:

� Every 
on
ept variable X 2 X is a 
on
ept pattern.

� Every EL-
on
ept des
ription over N

C

and N

R

is a 
on
ept pattern.

� If D

1

and D

2

are 
on
ept patterns, then D

1

uD

2

is a 
on
ept pattern.

� If D is a 
on
ept pattern and r 2 N

R

is a role name, then 9r:D is a 
on
ept

pattern.

�

We 
an extend the notion of 
on
ept patterns to EL-TBoxes.

De�nition 14 [Pattern TBox℄

A pattern terminology (or pattern TBox for short) is a �nite set of 
on
ept de�nitions

of the form A � D, where A is a 
on
ept (A 2 N

C

) name or a variable (A 2 X ) and

D is a 
on
ept pattern over N

C

, N

R

, X . In addition, we require that TBoxes do not


ontain multiple de�nitions, i.e., there 
annot be two distin
t 
on
ept des
riptions D

1

and D

2

su
h that both A � D

1

and A � D

2

belong to the TBox. Con
ept names

o

urring on the left-hand side of a de�nition are 
alled de�ned 
on
epts. All other


on
ept names in the TBox are 
alled primitive 
on
epts. The set of de�ned 
on
epts

and the set of primitive 
on
epts are respe
tively denoted by N

def

and N

prim

. We have

11
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that N

C

= N

def

[ N

prim

with N

def

\ N

prim

= ;. Treating variables as 
on
ept names,

we 
an de�ne X

def

and X

prim

also. Analogously, we have that X = X

def

[ X

prim

with

X

def

\ X

prim

= ;. �

Sin
e every des
ription 
on
ept is also a 
on
ept pattern, the usual TBox (
ontaining no

variables) is also a pattern TBox. In this thesis pattern TBoxes are also 
alled TBoxes

for abbreviation.

Introdu
ing variables to TBoxes does not impa
t the normalization of TBoxes if we

treat variables as 
on
ept names. When extending the notion of a simulation relation to

des
ription graphs 
ontaining 
on
ept patterns, we simply ignore the 
on
ept variables,

i.e., (S1) is 
hanged into that (v

1

; v

2

) 2 Z implies (L

1

(v

1

) n X ) � L

2

(v

2

).

Let T be a normalized EL-TBox and C be a de�ned 
on
ept in T . Let G

T

be the

EL-des
ription graphs for T Then we de�ned:

� V ar

T

(C) = fX 2 X j there exists a path in G

T

from C to D for some D 2 N

def

su
h that X is the element of label of Dg.

� V ar

T

=

S

D2N

def

V ar

T

(D).

All of these de�nitions and notations in this se
tion will be used to de�ne mat
hing

problems with terminologi
al 
y
les.

3.2 EL-mat
hing problems

We now have the EL-TBox 
ontaining variables in whi
h we allow for 
y
li
 de�ni-

tions. Giving some 
onstraints to variables makes it possible that some de�ned 
on
epts

are equivalent. Based on this intuition, we de�ne the mat
hing problems formally as

following:

De�nition 15 [EL-mat
hing problems℄

Let T be an EL-TBox 
ontaining the de�ned 
on
epts C and D. C �

?

gfp;T

D is an EL-

mat
hing problem modulo equivalen
e w.r.t. gfp-semanti
s i� the following 
onditions

hold:

� V ar

T

(C) = ; and V ar

T

= V ar

T

(D).

� There are no 
on
ept de�nitions for any variable in T .

�

Similarly, we 
an de�ne mat
hing problems w.r.t. lfp- and des
riptive semanti
s. If we


hange � to v, then we de�ne mat
hing problems modulo subsumption.

A solution of C �

?

gfp;T

D is a TBox obtained by adding de�nitions to some 
onservative

extension of T for variables o

urring in T . This pre
essing is 
alled instantiation.
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De�nition 16 [Instantiation℄

Let C �

?

gfp;T

D be an EL-mat
hing problem modulo equivalen
e w.r.t. gfp-semanti
s

and T

0

be a 
onservative extension of T . Then,

T

00

= T

0

[ fX � D

X

j X 2 V ar

T

(D)g

is an instantiation of T w.r.t. T

0

i� every D

X

is a 
on
ept pattern de�ned using 
on
ept

names, role names, and variables in T

0

. �

De�nition 17 [Mat
hers℄

Let C �

?

gfp;T

D be an EL-mat
hing problem modulo equivalen
e w.r.t. gfp-semanti
s,

T

0

be a 
onservative extension of T and T

00

be an instantiation of T w.r.t. T

0

. We 
alled

T

00

is a mat
her (or solution) of C �

?

gfp;T

D i� C �

gfp;T

00

D. �

We will show later how to �nd mat
hers of a given mat
hing problem. Before that we

use the following example to explain the de�nitions in this se
tion.

Example 18

Let C �

?

gfp;T

D be an EL-mat
hing problem and T := fC � A;D � Xg. Then T

0

:= T

is a 
onservative extension of T and T

00

:= T

0

[ fX � Ag is a mat
her of C �

?

gfp;T

D.





Chapter 4

Solving EL-mat
hing problems

We now show how to solve EL-mat
hing problems modulo equivalen
e w.r.t. gfp-semanti
s.

4.1 Mat
hing algorithm

W.l.o.g., we 
onsider only normalized EL-TBoxes, otherwise we 
an transform it into

normalized one (see [Baa02b℄). Sometimes we need to 
ompute the l
s of more than

two 
on
ept des
riptions, for example, l
s(C;D;E). To this end, we 
al
ulate the n-ary

l
s by means of an (n � 1)-fold binary l
s 
omputation. Based on this intuition, we

introdu
e the following de�nition:

De�nition 19 Let T be an EL-TBox. Then we de�ne

T

1

:= T ;

T

i+1

:= T

i

� T where G

T

i

�T

= G

T

i
� G

T

and i 2 N n f0g:

�

Let C �

?

gfp;T

D be an EL-mat
hing problem. For some simulation relation Z : G

T

=

(N

def

; E

T

; L

T

)

*

�

G

T

and some variable X 2 V ar

T

(D), we de�ne the following set:

Z(X) := fN 2 N

def

j 9M 2 N

def

:(M;N) 2 Z ^X 2 L

T

(M)g:

These notations above will be used in the mat
hing algorithm. We prove now some

properties holding on the produ
t of TBoxes.

Observation 20

Let T be an EL-Tbox, i; j 2 N n f0g with i 6= j and N

T

i

def

, N

T

j

def

be the 
orresponding set

of de�ned 
on
epts o

urring in T

i

, T

j

. Then

N

T

i

def

\N

T

j

def

= ;:

Proof : This is an immediate 
onsequen
e of the de�nition of the produ
t of Tboxes.2

15
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Lemma 21

Let T be an EL-TBox. Then, T [T

i

is a 
onservative extension of T for all i 2 N n f0g.

Proof : Let i 2 N n f0g. T [ T

i

is a 
onservative extension of T sin
e

� T � T [ T

i

� T and T [ T

i

have the same primitive 
on
epts and roles (from 
onstru
tion of

T

i

).

2

We are now ready to de�ne the algorithm of solving EL-mat
hing problems. The input

of the algorithm is an EL-mat
hing problem C �

?

gfp;T

D (w.l.o.g., we assume T is in

normal form). The output of the algorithm is a set of mat
hers to C �

?

gfp;T

D.

Algorithm 22 [Mat
hing algorithm℄

Input: C �

?

gfp;T

D.

Output: a set S of mat
hers to C �

?

gfp;T

D.

S := ;;

For all simulation relations Z : G

T

*

�

G

T

with (D;C) 2 Z do

T

0

:= T [

[

i2fjZ(X)jjX2V ar

T

(D)gnf1g

T

i

;

T

00

:= T

0

[ fX � (A

1

; : : : ; A

n

) j Z(X) = fA

1

; : : : ; A

n

g^

jZ(X)j = n ^X 2 V ar

T

(D)g;

If C w

gfp;T

00

D then S := S [ fT

00

g;

return S.

In this mat
hing algorithm, (A

1

; : : : ; A

n

) is an abbreviation of (: : : (A

1

; A

2

); : : : ; A

n

)

and (: : : (A

1

; A

2

); : : : ; A

n

) in T

0

is l
s(A

1

; : : : ; A

n

) of A

1

; : : : ; A

n

in T (By Lemma 12).

Moreover, for the spe
ial 
ase n = 1, (A

1

) means l
s(A

1

) whi
h 
an be repla
ed by A

1

.

Using the following example, we show that to 
he
k C w

gfp;T

00

D is ne
essary after

obtaining the 
andidate solutions.

Example 23

Let C �

?

gfp;T

D be an EL-mat
hing problem with T 
ontaining the following de�nitions:

C � 9r:A u 9s:B

D � 9r:E u 9s:F

A � P

1

; B � P

2

E � X

F � X

For the simulation relation Z = f(D;C); (E;A); (F;B)g, we have X � l
s(A;B) = >.

However, T [ fX � >g is not a mat
her of C �

?

gfp;T

D.
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4.2 Termination

At the end of this 
hapter, we show termination of our mat
hing algorithm.

Lemma 24

Algorithm 22 is always terminating.

Proof : Let C �

?

gfp;T

D be the inputing EL-mat
hing problem. Sin
e T is �nite, there

are only �nitely many simulation relations between G

T

and itself. For all simulation

relations Z and for all X 2 V ar

T

(D), jZ(X)j � jZj is �nite. Then T

0

is �nite. Sin
e

V ar

T

(D) is �nite, T

00

is �nite. From [Baa02b℄, we know that subsumption w.r.t. gfp-

semanti
s in EL 
an be de
ided in polynomial time. Thus, Algorithm 22 is always

terminating. 2

In next 
hapter, we will show Algorithm 22 is sound and 
omplete.





Chapter 5

Soundness and 
ompleteness

In this 
hapter, we will show that our mat
hing algorithm de�ned in the previous 
hapter

is sound and 
omplete. Every TBox in the output of Algorithm 22 is a solution of the

relevant input mat
hing problem (soundness). Moreover, if the input mat
hing problem

is solvable, then Algorithm 22 
an �nd all so-
alled minimal mat
hers (s-
ompleteness).

5.1 Soundness

We �rst show some auxiliary lemma for proving soundness and 
ompleteness of our

mat
hing algorithm.

Lemma 25

Let C �

?

gfp;T

D be an EL-mat
hing problem and S be the output set generated by the

mat
hing algorithm. Then, for every T

00

2 S obtained from the 
orresponding T

0

and

for every variable X 2 V ar

T

(D), we have that

X � (A

1

; : : : ; A

n

) 2 T

00

=) L

T

0

((A

1

; : : : ; A

n

)) \ V ar

T

(D) = ;

where G

T

0

= (V

T

0

; E

T

0

; L

T

0

).

Proof : Consider X � (A

1

; : : : ; A

n

) 2 T

00

for some X 2 V ar

T

(D). By 
onstru
tion of

T

00

in Algorithm 22 we know that there are de�ned 
on
epts M

1

; : : : ;M

n

in T su
h that

for all i 2 f1; : : : ; ng, X 2 L

T

(M

i

) and (M

i

; A

i

) 2 Z for the 
orresponding simulation

relation Z. For all i 2 f1; : : : ; ng, there exists a path from D to M

i

, sin
e X 2 L

T

(M

i

)

and X 2 V ar

T

(D). Together with (D;C) 2 Z, we have that there exists an index

j 2 f1; : : : ; ng su
h that

� (M

j

; A

j

) 2 Z and

� there is a path from C to A

j

.

L

T

(A

j

) 
ontains no variables by de�nition of mat
hing problems. Hen
e,

L

T

0

((A

1

; : : : ; A

n

)) = L

T

(A

1

) \ � � � \ L

T

(A

n

)

19
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by the 
onstru
tion of T

0

. Thus, L

T

0

((A

1

; : : : ; A

n

)) 
ontains no variables, i.e.,

L

T

0

((A

1

; : : : ; A

n

)) \ V ar

T

(D) = ;:

2

This lemma tells us that no variables o

ur in the 
on
ept de�nition of (A

1

; : : : ; A

n

) in

T

0

if X � (A

1

; : : : ; A

n

) in T

00

for some X 2 V ar

T

(D). This makes it possible that by

repla
ing every variable X in T

0

by its de�nition in T

00

we obtain a variable-free TBox

(to be explained). We now show that every Z 
onsidered in the mat
hing algorithm is

also a simulation relation from G

T

0

to G

T

0

.

Lemma 26

Let C �

?

gfp;T

D be an EL-mat
hing problem and Z : G

T

*

�

G

T

with (D;C) 2 Z be a

simulation relation and T

0

be a TBox as des
ribed in the mat
hing algorithm. Then Z

is a simulation relation on G

0

T

, i.e., Z : G

T

0

*

�

G

T

0

.

Proof : The 
onditions (S1) and (S2) in De�nition 7 hold:

(S1) For all (v

1

; v

2

) 2 Z we have L

T

0

(v

1

) � L

T

0

(v

2

) sin
e Z : G

T

*

�

G

T

and T

0

:=

T [

S

i2fjZ(X)jjX2V ar

T

(D)gnf1g

T

i

.

(S2) Consider some (v

1

; v

2

) 2 Z and (v

1

; r; v

0

1

) 2 E

T

0

. Then, (v

1

; v

2

) 2 Z implies that

v

1

and v

2

are de�ned 
on
epts in T sin
e Z : G

T

*

�

G

T

. Hen
e,

v

1

� � � � u 9r:v

0

1

u � � � 2 T :

Thus, v

0

1

is also a de�ned 
on
ept in T . So there exists a v

0

2

2 V

T

� V

T

0

su
h that

(v

0

1

; v

0

2

) 2 Z and (v

2

; r; v

0

2

) 2 E

T

� E

T

0

sin
e Z : G

T

*

�

G

T

.

2

Let C �

?

gfp;T

D be a mat
hing problem. We view variables in T as primitive 
on
epts

sin
e there is no 
on
ept de�nition for any a variable. T

0

is a 
onservative extension of T

by the 
onstru
tion of T

0

and T

0

is in normal form sin
e it is obtained from a des
ription

graph. However, T

00

is not in normal form sin
e we add 
on
ept des
riptions for every

variable X 2 V ar

T

(D) and X o

urs on the right-hand side of some 
on
ept de�nitions

in T

0

. We 
onstru
t a variable-free TBox T

00

Z

from T

00

by pla
ing every o

urren
e of

variables with the 
orresponding variable's de�nition. Then, we prove that T

00

Z

is in

normal form and C v

gfp;T

00

D i� C v

gfp;T

00

Z

D.

T

00

Z

is 
onstru
ted by the following de�nition:

De�nition 27

Let C �

?

gfp;T

D be an EL-mat
hing problem. Let T

00

be a TBox in the set S, the output

of Algorithm 22 giving C �

?

gfp;T

D as input, and E � D

E

be a 
on
ept de�nition in T

00

.

Then, we de�ne:

� sub(D

E

) is a 
on
ept pattern obtained by repla
ing every o

urren
e of X 2

V ar

T

(D) by P

1

u � � � u P

m

u 9r

1

:B

1

u � � � u 9r

l

:B

l

, where X � (A

1

; : : : ; A

n

) and

(A

1

; : : : ; A

n

) � P

1

u � � � u P

m

u 9r

1

:B

1

u � � � u 9r

l

:B

l

are 
on
ept de�nitions in T

00

.
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� T

00

Z

:= fE � sub(D

E

) j E � D

E

2 T

00

and E 62 V ar

T

(D)g;

�

By Lemma 25, T

00

Z

obtained by this 
onstru
tion is variable-free, i.e., 
ontaining no

variables.

Lemma 28

T

00

Z

generated by above de�nition is in normal form.

Proof : The only di�eren
e between T

0

(obtained in the intermediate step when 
om-

puting T

00

) and T

00

Z

is that we substitute all variables in T

0

by the 
orresponding 
on
ept

des
riptions. As de�ned in the above de�nition, if X � (A

1

; : : : ; A

n

) in T

00

, X is sub-

stituted by the de�nition of (A

1

; : : : ; A

n

) in T

0

. Sin
e T

0

is in normal form, so is T

00

Z

. 2

Sin
e T

00

Z

is in normal form, we 
an translate it into the des
ription graph G

T

00

Z

by the

method de�ned in Chapter 2. Moreover, T

00

and T

00

Z

are equivalent in the sense of

subsumption relations between C and D.

Lemma 29

1. C v

gfp;T

00

D i� C v

gfp;T

00

Z

D;

2. C w

gfp;T

00

D i� C w

gfp;T

00

Z

D.

Proof : In the 
onstru
tion of T

00

Z

substitution of variables does not 
hange semanti
s

of T

00

sin
e substitution happens between equivalent 
on
epts. Removing de�nitions

for variables does not 
hange semanti
s of T

00

, sin
e variables do not o

ur in T

00

Z

after

substitution. 2

To prove C v

gfp;T

00

Z

D, it is enough to 
onstru
t a simulation relation Z

T

00

Z

: G

T

00

Z

*

�

G

T

00

Z

with (D;C) 2 Z. This proves C v

gfp;T

00

D as well by Lemma 29. In the mat
hing

algorithm, we have the simulation relation Z : G

T

*

�

G

T

with (D;C) 2 Z. Now we add

some ne
essary tuples to Z and obtain Z

T

00

Z

. Then we prove that Z

T

00

Z

is a simulation

relation on G

T

00

Z

.

De�nition 30

Let C �

?

gfp;T

D be a EL-mat
hing problem, Z be a simulation relation on G

T


ontaining

(D;C), and T

00

be the TBox obtained by Algorithm 22 using Z. T

00

Z

is obtained by

De�nition 27 
orresponding to T

00

. Then,

Z

T

00

Z

:=Z [ f((A

j;1

; : : : ; A

j;n

); A

j;i

) j 9i 2 f1; : : : ; ng:9j 2 f1; : : : ; lg:9X 2 V ar

T

(D):

X � (A

1

; : : : ; A

n

); (A

1

; : : : ; A

n

) �

P

1

u � � � u P

m

u 9r

1

:(A

1;1

; : : : ; A

1;n

) u : : : u 9r

l

:(A

l;1

; : : : ; A

l;n

) 2 T

00

g:

�
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Note: The 
on
ept de�nition of (A

1

; : : : ; A

n

) in T

00

in the above de�nition is of the

form

P

1

u � � � u P

m

u 9r

1

:(A

1;1

; : : : ; A

1;n

) u : : : u 9r

l

:(A

l;1

; : : : ; A

l;n

):

The reason is the following: Suppose that

(A

1

; : : : ; A

n

) � P

1

u � � � u P

m

u 9r

1

:B

1

u : : : u 9r

l

:B

l

:

(A

1

; : : : ; A

n

) is the least 
ommon subsumer of A

1

,. . . ,A

n

in T

0

. By Observation 20 and

the de�nition of produ
t of TBoxes we know that B

j

is of the form (A

j;1

; : : : ; A

j;n

) where

A

j;i

is a de�ned 
on
ept in T for all j 2 f1; : : : ; lg and for all i 2 f1; : : : ; ng.

Lemma 31

Let C �

?

gfp;T

D be an EL-mat
hing problem, Z : G

T

*

�

G

T

be a simulation relation

with (D;C) 2 Z, and T , T

00

be TBoxes as des
ribed in Algorithm 22. Then Z

T

00

Z

is a

simulation relation on G

T

00

Z

, i.e., Z

T

00

Z

: G

T

00

Z

*

�

G

T

00

Z

.

Proof : Sin
e Z : G

T

*

�

G

T

, by Lemma 26, Z : G

T

0

*

�

G

T

0

. The di�eren
e between

T

0

and T

00

Z

is that we substitute variables by the 
orresponding 
on
ept de�nitions. Let

G

T

0

and G

T

00

Z

be the des
ription graphs of T

0

and T

00

Z

respe
tively. It holds that the

labels of G

T

00

Z

are obtained from G

T

0

by removing all variables and adding primitive


on
epts 
orresponding to the de�nitions of variables in T

00

. Consider the following


on
ept de�nition in T

00

:

X � (A

X

1

; : : : ; A

X

n

X

)

(A

X

1

; : : : ; A

X

n

X

) � P

X

1

u � � � u P

X

m

X

u 9r

X

1

:(A

X

1;1

; : : : ; A

X

1;n

X

) u � � � u 9r

X

l

X

:(A

X

l

X

;1

; : : : ; A

X

l

X

;n

X

)

Then, 8M 2 V

T

00

Z

:L

T

00

Z

(M) = L

T

0

(M) n fX j X 2 V ar

T

(D)g [

S

X2L

T

0

(M)

fP

X

1

; : : : ; P

X

m

X

g.

Moreover, by Algorithm 22, there are M

X

1

; : : : ;M

X

n

X

2 N

def

su
h that

� (M

X

1

; A

X

1

); : : : ; (M

X

n

X

; A

X

n

X

) � Z;

� X 2 L

T

(M

X

1

) \ : : : \ L

T

(M

X

n

X

).

Comparing G

T

00

Z

and G

T

0

, it is 
lear that for every edge in G

T

00

Z

but not in G

T

0

there exist

i 2 f1; : : : ; n

X

g and j 2 f1; : : : ; l

X

g su
h that the edge has the form of

(M

X

i

; r

X

j

; (A

X

j;1

; : : : ; A

X

j;n

X

)):

A

ordingly, in order to obtain Z

T

00

Z

, we add ((A

X

j;1

; : : : ; A

X

j;n

X

); A

X

j;i

) to Z for all i 2

f1; : : : ; n

X

g and for all j 2 f1; : : : ; l

X

g. Now we will show Z

T

00

Z

: G

T

00

Z

*

�

G

T

00

Z

(enough to

show the 
onditions (S1) and (S2) in De�nition 7 hold).

(S1) Consider some (v

1

; v

2

) 2 Z

T

00

Z

. We have to show that L

T

00

Z

(v

1

) � L

T

00

Z

(v

2

).
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Case 1 : (v

1

; v

2

) 2 Z and L

T

0

(v

1

) \ V ar

T

(D) = ;:

L

T

00

Z

(v

1

) = L

T

0

(v

1

)

= L

T

0

(v

1

) n V ar

T

(D)

� L

T

0

(v

2

) sin
e Z : G

T

0

*

�

G

T

0

� L

T

00

Z

(v

2

)

Case 2 : (v

1

; v

2

) 2 Z and L

T

0

(v

1

) \ V ar

T

(D) = fX

1

; : : : ;X

k

g:

L

T

00

Z

(v

1

) = (L

T

0

(v

1

) n V ar

T

(D)) [

k

S

i=1

fP

X

i

1

; : : : ; P

X

i

m

X

i

g.

Case 2.1 : 8P 2 L

T

0

(v

1

)nV ar

T

(D): P 2 L

T

00

Z

(v

2

) sin
e (v

1

; v

2

) 2 Z : G

T

0

*

�

G

T

0

.

Case 2.2 : 8P 2

k

S

i=1

fP

X

i

1

; : : : ; P

X

i

m

X

i

g:9j 2 f1; : : : ; kg:X

j

� (A

X

j

1

; : : : ; A

X

j

n

)

and P 2 L

T

0

(A

X

j

1

)\� � �\L

T

0

(A

X

j

n

). By Algorithm 22, v

2

2 fA

X

j

1

; : : : ; A

X

j

n

g.

Thus, P 2 L

T

00

Z

(v

2

).

Case 3 : (v

1

; v

2

) 2 Z

T

00

Z

n Z:

Then there is an X 2 V ar

T

(D) su
h that X � (A

1

; : : : ; A

n

). There are

M

1

; : : : ;M

n

2 N

def

su
h that f(M

1

; A

1

); : : : ; (M

n

; A

n

)g � Z andX 2 L

T

(M

i

)

for i 2 f1 : : : ; ng. Suppose that

(A

1

; : : : ; A

n

) � P

1

u � � � u P

m

u 9r

1

:(A

1;1

; : : : ; A

1;n

) u � � � u 9r

l

:(A

l;1

; : : : ; A

l;n

)

in T

0

. Then there exist i 2 f1; : : : ; ng and j 2 f1; : : : ; lg su
h that

� v

1

= (A

j;1

; : : : ; A

j;n

) and

� v

2

= A

j;i

.

Hen
e,

L

T

00

Z

(v

1

) =L

T

0

(A

j;1

) \ � � � \ L

T

0

(A

j;n

)

� (L

T

0

(A

j;i

) n V ar

T

(D))

� L

T

00

Z

(A

j;i

)

= L

T

00

Z

(v

2

)

(S2) Consider some (v

1

; v

2

) 2 Z

T

00

Z

and (v

1

; r; v

0

1

) 2 E

T

00

Z

. We have to show that there

exists a node v

0

2

2 V

T

00

Z

su
h that (v

0

1

; v

0

2

) 2 Z

T

00

Z

and (v

2

; r; v

0

2

) 2 E

T

00

Z

.

Case 1 (v

1

; v

2

) 2 Z and (v

1

; r; v

0

1

) 2 E

T

0

. Then there is a node v

0

2

2 V

T

0

= V

T

00

Z

su
h that (v

0

1

; v

0

2

) 2 Z � Z

T

00

Z

and (v

0

1

; r; v

0

1

) 2 E

T

0

� E

T

00

Z

sin
e Z : G

T

0

*

�

G

T

0

.

Case 2 (v

1

; v

2

) 2 Z

T

00

Z

n Z and (v

1

; r; v

0

1

) 2 E

T

0

. Then there exist i 2 f1; : : : ; ng

and j 2 f1; : : : ; lg su
h that v

1

= (A

j;1

: : : ; A

j;n

) and v

2

= A

j;i

. Moreover, v

0

1

is of the form (E

1

; : : : ; E

n

) su
h that f(A

j;1

; r; E

1

); : : : ; (A

j;n

; r; E

n

)g � E

T

0

.

So (A

j;i

; r; E

i

) 2 E

T

0

� E

T

00

Z

.
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Case 3 (v

1

; v

2

) 2 Z and (v

1

; r; v

0

1

) 2 E

T

00

Z

n E

T

0

. Then there exist i 2 f1; : : : ; ng

and j 2 f1; : : : ; lg su
h that v

1

=M

i

, v

2

= A

i

, r = r

j

, and v

0

1

= (A

j;1

: : : ; A

j;n

).

Then De�nition 27 tells us ((A

j;1

: : : ; A

j;n

); A

j;i

) 2 Z

T

00

Z

and (A

i

; r

j

; A

j;i

) 2

E

T

0

sin
e ((A

1

; : : : ; A

n

); r

j

; (A

j;1

: : : ; A

j;n

)) 2 E

T

00

Z

.

Case 4 (v

1

; v

2

) 2 Z

T

00

Z

nZ and (v

1

; r; v

0

1

) 2 E

T

00

Z

nE

T

0

. (v

1

; v

2

) 2 Z

T

00

Z

nZ yields that

v

1

is of the form (A

j;1

; : : : ; A

j;n

). (v

1

; r; v

0

1

) 2 E

T

00

Z

nE

T

0

yields that L

T

0

(v

1

) =

L

T

0

((A

j;1

; : : : ; A

j;n

)) 
ontains some variable. This 
ase is not possible by

Lemma 25.

2

Using the above lemma it is easy to show soundness of our mat
hing algorithm.

Theorem 32

Let C �

?

gfp;T

D be an EL-mat
hing problem. Every T

00

2 S is a mat
her of C �

?

gfp;T

D.

Proof : By Lemma 21 we know that T

0

is a 
onservative extension of T . And T

00

is

an instantiation of T w.r.t. T

0

(by 
onstru
tion of T

00

). To show that T

00

is a mat
her

of C �

?

gfp;T

D, we have to show C �

gfp;T

00

D. From the mat
hing algorithm, for every

T

00

2 D we know that C w

gfp;T

00

D. Thus, it suÆ
es to show that for all T

00

in S we have

C v

gfp;T

00

D. By Lemma 31, we 
an 
onstru
t Z

T

00

Z

: G

T

00

Z

*

�

G

T

00

Z

with (D;C) 2 Z

T

00

Z

.

Thus, by Theorem 8, we have C v

gfp;T

00

Z

D. Then, Lemma 29 yields C v

gfp;T

00

D. 2

5.2 Completeness

In this se
tion we want to show 
ompleteness of our mat
hing algorithm. If there is

more than one solution, we are interested in solutions that 
ontain as mu
h informa-

tion as possible. So in the proof of 
ompleteness, we 
laim that whenever there exists

a mat
her M

00

, our mat
hing algorithm 
an �nd one mat
her whi
h is more spe
i�


w.r.t. subsumption than M

00

. To 
ompare among mat
hers, we introdu
e the following

de�nition:

De�nition 33

Let C �

?

gfp;T

D be an EL-mat
hing problem, T

0

1

, T

0

2

be 
onservative extensions of T ,

T

00

1

be an instantiation of T w.r.t. T

0

1

and T

00

2

be an instantiation of T w.r.t. T

0

2

. By

renaming de�ned 
on
epts and variables in T we 
an make T

00

1

and T

00

2

su
h that they

do not 
ontain 
ommon de�ned 
on
epts and variables. Then,

� T

00

1

is s-subsumed by T

00

2

(T

00

1

v

s

T

00

2

) i� for all X 2 V ar

T

(D), X

T

1

v

gfp;T

00

1

[T

00

2

X

T

2

,

where X

T

1

in T

00

1

and X

T

2

in T

00

2


orrespond to X in T .

� T

00

1

is s-equivalent to T

00

2

(T

00

1

�

s

T

00

2

) i� T

00

1

v

s

T

00

2

and T

00

2

v

s

T

00

1

.

A mat
her M

00

is the least mat
her w.r.t. v

s

i� M

00

v

s

T

00

holds for all mat
hers T

00

.

A mat
herM

00

is a minimal mat
her w.r.t. v

s

i� for all mat
hers T

00

, T

00

v

s

M

00

implies

M

00

�

s

T

00

. �
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The next lemma tells us that the least mat
her is unique up to s-equivalen
e. This is

an immediate 
onsequen
e of De�nition 33.

Lemma 34

Let C �

?

gfp;T

D be an EL-mat
hing problem. If M

00

1

and M

00

2

are two least mat
hers of

C �

?

gfp;T

D then M

00

1

�

s

M

00

2

.

The following example illustrates that the least mat
her of C �

?

gfp;T

D need not exist

even if C �

?

gfp;T

D is solvable.

Example 35

T := fC � 9r:A u 9r:B;D � 9r:X u 9r:Y g. It is easy to see that T [ fX � A; Y � Bg

and T [fX � B;Y � Ag are mat
hers of C �

?

gfp;T

D. However, the least mat
her does

not exist.

We now de�ne our notion of 
ompleteness formally. If a mat
hing problem is solvable,

then our mat
hing algorithm 
an 
ompute an s-
omplete set of mat
hers. It is de�ned

as following:

De�nition 36

Let S

M

be the set of mat
hers of C �

?

gfp;T

D. Then S � S

M

is 
alled s-
omplete i�

8M

00

2 S

M

:9T

00

2 S:T

00

v

s

M

00

. �

Next we want to show that the set S of mat
hers 
omputed by Algorithm 22 is s-


omplete.

Theorem 37

Let C �

?

gfp;T

D be an EL-mat
hing problem. If M

00

is a mat
her of C �

?

gfp;T

D then

there exists T

00

2 S with T

00

v

s

M

00

, where S is the output of Algorithm 22 upon input

C �

?

gfp;T

D.

Proof : Suppose that M

00

is an instantiation of T w.r.t. M

0

. W.l.o.g., we assume that

M

00

is in normal form. Otherwise, we 
an obtain the 
orresponding normalized TBox

M

00

1

using Nebel's approa
h mentioned in [Baa02b℄. Moreover, M

0

1

:=M

00

1

n fX � D

X

j

X 2 V ar

T

(D)g. M

0

1

is a 
onservative extension of T sin
e normalization adds 
on
ept

de�nitions for new 
on
ept names. Normalization does not 
hange the semanti
s of

TBoxes. Thus, M

0

1

is a 
onservative extension of T and M

00

1

is an instantiation of T

w.r.t. M

0

1

.

Sin
e M

00

is a mat
her of C �

?

gfp;T

D, we have that C �

gfp;M

00

D. Thus, C v

gfp;M

00

D

and C w

gfp;M

00

D. Hen
e, C v

gfp;M

00

D implies that there exists a simulation relation

Z

M

00

: G

M

00

*

�

G

M

00

with (D;C) 2 Z

M

00

.

Comparing G

T

with G

M

00

, we observe that adding de�nitions of all variables 
hanges

the state of variables from primitive to de�ned variables. In the normalization of M

00

we repla
e every o

urren
e of a variable on the right-hand side of de�nitions inM

00

by

its \normalized" de�nition. Thus, in the 
orresponding graph, G

T


an be obtained from

G

M

00

by removing edges and some nodes (not only nodes of variables sin
e new de�ned
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on
ept names 
an be introdu
ed by the normalization) in G

M

00

, adding some variables

to the labels of some nodes and at the same time removing the 
orresponding primitive


on
epts from the labels of these nodes. Hen
e, we have

� E

T

� E

M

00

and

� 8v 2 V

T

:(L

T

(v) n V ar

T

(D)) � L

M

00

(v).

Let N

T

def

be the set of de�ned 
on
epts in T . We de�ne a binary relation Y by restri
ting

Z

M

00

to de�ned names in T :

Y := f(v

1

; v

2

) 2 Z

M

00

j fv

1

; v

2

g � N

T

def

g:

It holds that Y is �nite sin
e Z

M

00

is �nite and Y � Z

M

00

. Then we 
ompute a binary

relation Z from Y by means of the following algorithm:

Algorithm

Input: Y

Output: Z

Z := f(D;C)g;

repeat

for every (v

1

; v

2

) 2 Z do

begin

if (v

1

; r; v

0

1

) 2 G

T

then

�nd \one" v

0

2

su
h that (v

2

; r; v

0

2

) 2 G

T

and (v

0

1

; v

0

2

) 2 Y ;

Z := Z [ f(v

0

1

; v

0

2

)g;

end;

until Z is not in
reased;

return Z.

This algorithm always stops sin
e Y is �nite. Moreover, we have that Z � Y sin
e

(D;C) 2 Y and the added elements of Z are also in Y . When 
omputing Z, if there is

more than one v

0

2

satisfying the 
ondition we sele
t arbitrarily one of them.

Claim 1: For every (v

1

; v

2

) 2 Z, if (v

1

; r; v

0

1

) 2 G

T

then v

0

2

as required by the above

algorithm always exists.

Proof of Claim 1: For every (v

1

; v

2

) 2 Z, if (v

1

; r; v

0

1

) 2 G

T

then there exists a v

0

2

su
h

that (v

2

; r; v

0

2

) 2 G

M

00

and (v

0

1

; v

0

2

) 2 Z

M

00

sin
e

� Z

M

00

: G

M

00

*

�

G

M

00

;

� (v

0

1

; v

0

2

) 2 Z � Y � Z

M

00

;

� (v

1

; r; v

0

1

) 2 E

M

00

sin
e (v

1

; r; v

0

1

) 2 E

T

� E

M

00

.

Moreover, (v

2

; r; v

0

2

) 2 G

M

00

implies v

2

� � � � u 9r:v

0

2

u � � � in M

00

.

In the 
omputation of Z, some paths from C are generated a

ording to the 
orrespond-

ing paths from D in G

T

. From the de�nition of EL-mat
hing problems, we know that
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V ar

T

(C) 
ontains no variables. This implies v

2

� � � � u 9r:v

0

2

u � � � in T for every node

v

2

in the path generated path from C. Hen
e, we have that v

0

2

2 N

T

def

. Thus, there

exists a v

0

2

su
h that (v

2

; r; v

0

2

) 2 G

T

and (v

0

1

; v

0

2

) 2 Y .

2 (Claim 1)

Z : G

T

*

�

G

T

sin
e the 
onditions (S1) and (S2) in De�nition 7 (extended to 
on
ept

patterns) hold.

(S1) (v

1

; v

2

) 2 Z implies (L

T

(v

1

) n V ar

T

(D)) � L

T

(v

2

) sin
e

(L

T

(v

1

) n V ar

T

(D)) � L

M

00

(v

1

) � L

M

00

(v

2

) = L

T

(v

2

):

(S2) immediate 
onsequen
e of the 
onstru
tion of Z.

Then we 
ompute T

0

and T

00

by Algorithm 22 starting from Z.

Claim 2: T

00

is a mat
her of C �

?

gfp;T

D and T

00

v

s

M

00

.

Proof of Claim 2: To prove that T

00

is a mat
her of C �

?

gfp;T

D, it remains to show

that C w

gfp;T

00

D. By renaming, we obtain TBoxes T

00

andM

00

satisfying the 
onditions

in De�nition 33. For every variable X we suppose that X

T

� (A

T

1

; : : : ; A

T

n

) in T

00

and X

M

� E

X

in M

00

. X

T

� (A

T

1

; : : : ; A

T

n

) implies that there are de�ned 
on
epts

M

T

1

; : : : ;M

T

n

in T su
h that (M

T

1

; A

T

1

); : : : ; (M

T

n

; A

T

n

) 2 Z and X 2 L

T

(M

T

1

) \ � � � \

L

T

(M

T

n

). We show that

X

T

v

gfp;T

00

[M

00

X

M

:

The relation Z generated by the above algorithm has the property that every node

o

urring in the se
ond 
omponent of tuples in Z is rea
hable from C. This implies

that L

T

(A

T

i

) 
ontains no variables for all i 2 f1; : : : ; ng. From [Baa02a℄ we know that

(A

T

1

; : : : ; A

T

n

) in T

00

is the least 
ommon subsumer of A

T

1

; : : : ; A

T

n

in T

00

. Here we view

T

00

is an 
onservative extension of itself. Hen
e, for all i 2 f1; : : : ; ng, we have

A

T

i

v

gfp;T

00

(A

T

1

; : : : ; A

T

n

):

T

00

[M

00

is a 
onservative extension of T

00

and ofM

00

sin
e T

00

andM

00

have the same set

of primitive 
on
epts and the same set of roles. For every i 2 f1; : : : ; ng, (M

T

i

; A

T

i

) 2 Z

yields (M

M

i

; A

M

i

) 2 Z

M

00

by 
onstru
tion of Z. Thus, A

M

i

v

gfp;M

00

M

M

i

. This yields

A

M

i

v

gfp;T

00

[M

00

M

M

i

:

Moreover, M

T

i

v

gfp;T

X

T

sin
e X 2 L

T

(M

i

) implies M

i

� � � � uX u � � � in T . Thus,

M

M

i

v

gfp;M

X

M

sin
e M is obtained by renaming de�ned 
on
epts in T . Hen
e,

M

M

i

v

gfp;M

00

X

M

and thus

M

M

i

v

gfp;T

00

[M

00

X

M

:

Together with A

M

i

v

gfp;T

00

[M

00

M

M

i

this yields A

M

i

v

gfp;T

00

[M

00

X

M

. For all i 2

f1; : : : ; ng, we have

� A

T

i

v

gfp;T

00

(A

T

1

; : : : ; A

T

n

) and
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� A

T

i

v

gfp;T

00

[M

00

X

M

.

By de�nition of the least 
ommon subsumers, we have

(A

T

1

; : : : ; A

T

n

) v

gfp;T

00

[M

00

X

M

:

This implies

(�) 8X 2 V ar

T

(D):X

T

v

gfp;T

00

[M

00

X

M

sin
e X

T

� (A

1

; : : : ; A

n

) in T

00

. Hen
e, D

T

v

gfp;T

00

[M

00

D

M

. So, we have that

C

T

�

gfp;T

00

[M

00

C

M

w

gfp;T

00

[M

00

D

M

w

gfp;T

00

[M

00

D

T

:

C

T

w

gfp;T

00

[M

00

D

T

implies C

T

w

gfp;T

00

D

T

. Then, T

00

is a mat
her of C �

?

gfp;T

D.

From (�) we have T

00

v

s

M

00

. 2 (Claim 2)

Claim 2 proves Theorem 37. 2



Chapter 6

Implementation

We will illustrate the implementation of Algorithm 22. The programming language is

LISP. The programming environment is Allegro LISP system (see http://www.franz.
om).

6.1 Input C �

?

gfp;T

D and normalization of TBox

The input of Algorithm 22 is an EL-mat
hing problem C �

?

gfp;T

D. C and D are de�ned


on
epts in T . In the implementation we store the TBox T as a �le using standard LISP

syntax. We use the 
onstants (listed in Table 6.1) to represent the 
onstru
tors and top-


on
ept de�ned in EL. The following example will be used in this 
hapter to illustrate

the result of running the mat
hing algorithm step by step.

Example 38

Let T 
ontain the following 
on
ept de�nitions:

D � P

1

uX

2

u 9r

1

:A

1

u 9r

2

:A

2

A

1

� P

2

uX

1

u 9r

2

:D

A

2

� P

1

uX

1

uX

2

u 9r

2

:D

C � P

1

u 9r

1

:A

3

u 9r

2

:A

4

A

3

� P

2

u P

3

u 9r

2

:C

A

4

� P

1

u P

3

u 9r

2

:C

Then this TBox is stored in a �le as

(DEFCONCEPT D (AND P1 var x2 (SOME R1 A1) (SOME R2 A2)))

(DEFCONCEPT A1 (AND P2 var x1 (SOME R2 D)))

(DEFCONCEPT A2 (AND P1 var x1 var x2 (SOME R2 D)))

(DEFCONCEPT C (AND P1 (SOME R1 A3) (SOME R2 A4)))

(DEFCONCEPT A3 (AND P2 P3 (SOME R2 C)))

(DEFCONCEPT A4 (AND P1 P3 (SOME R2 C)))):

An algorithm to normalized EL-TBoxes has been implemented by Suntisrivaraporn (see

[Sun04℄). The normalized TBox is translated into the des
ription graph. In the imple-

mentation, the fun
tion my-start (file-name) initializes two hash tables storing the

29
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onstant value in LISP value in EL

*def
on
ept-keyword* 'DEFCONCEPT �

*top-keyword* 'TOP >

*and-keyword* 'AND u

*some-keyword* 'SOME 9

*varprefixS* 'VAR

Table 6.1: Syntax in LISP

information about the des
ription graph of the normalized TBox in the �le filename.

The two hash tables are named *t-graph-label-hash* and *t-graph-out-edge-hash*.

The key of *t-graph-label-hash* is the nodes of the des
ription graph and the value is

the label of the 
orresponding node. The key of *t-graph-out-edge-hash* 
onsists of

a node and a role name. The value is the list of the 
orresponding node's su

essors. In

the fun
tion init-tbox-t (), we generate the following basi
 information about input

TBox T :

� The list *t-defined-
on
epts*: the set of de�ned 
on
epts.

� The list *t-var*: the set of variables.

� The list *t-n-role*: the set of roles.

The following example shows the values after initialization.

Example 39

Let the input TBox T in Example 38 be stored in the �le input-el-tbox. After running

(my-start "input-el-tbox") and (init-tbox-t) we get two hash tables in Table 6.2

and three lists in Table 6.3.

*t-graph-label-hash* *t-graph-out-edge-hash*

key value key value

C (P1) (C . R1) (A3)

A1 (VAR X1 P2) (D . R2) (A2)

A2 (VAR X2 VAR X1 P1) (C . R2) (A4)

A3 (P3 P2) (A1 . R2) (D)

A4 (P3 P1) (A3 . R2) (C)

D (VAR X2 P1) (D . R1) (A1)

(A2 . R2) (D)

(A4 . R2) (C)

Table 6.2: The hash tables for T
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name value

*t-defined-
on
epts* (A4 A3 A2 A1 D C TOP)

*t-var* (VAR X2 VAR X1)

*t-n-role* (R2 R1)

Table 6.3: The lists

Note that the top-
on
ept > is viewed as a node whose label is the empty set and from

whom there are no out-edges in the des
ription graph of the underlying TBox. TOP is

a member of the set of de�ned 
on
epts *t-defined-
on
epts* sin
e the nodes in a

des
ription graph are 
onsidered as de�ned 
on
epts.

The fun
tion init-tbox-t () is 
alled by the fun
tion mat
hing-el (
 d) whi
h 
or-

responds to Algorithm 22.

6.2 Computation of simulation relations

Let C �

?

gfp;T

D be the input mat
hing problem. In Algorithm 22, we 
onsider all

simulation relations 
ontaining (D;C). This makes some simulation relations 
ontain

redundant tuples, i.e., there are some simulation relations su
h that if we remove some

tuples from them, the obtained relations are still simulation relations. For example, if

Z

1

and Z

2

are simulation relations on G

T

, then it is easy to show that Z := Z

1

[ Z

2

is also a simulation relation on G

T

. However, this implies that the TBox T

00


omputed

from Z by Algorithm 22 is more general than the TBoxes 
omputed from Z

1

and Z

2

.

This is be
ause for every variable X 2 V ar

T

(D), the de�nition of X in T

00

depends

on Z(X) for the 
orresponding simulation relation Z and in this example Z

1

; Z

2

� Z

implies Z

1

(X); Z

2

(X) � Z(X). By Lemma 12, the de�nition of X is the l
s of the

elements in Z(X). Hen
e, Z

1

(X); Z

2

(X) � Z(X) implies the de�nition of X 
omputing

from Z is more general than the ones from Z

1

and Z

2

. Sin
e we are only interested

in the minimal mat
hers, we will only 
onsider the simulation relations 
ontaining no

redundant tuples, i.e., every tuple is ne
essary for being a simulation relation. So, in

the implementation, we 
ompute simulation relations in the following way:

� start from Z := (D;C) (
he
k 
ondition (S1) on (D;C));

� 
he
k 
ondition (S2);

- yes: return Z;

- no: add one possible (to satisfy 
ondition (S1)) and ne
essary (to satisfy 
ondi-

tion (S2)) tuple to Z and store this ba
k
he
king point;

� if �nd one tuple in the last step, then run the last step again, otherwise 
he
k

another possible simulation relation at the ba
k
he
king point.
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C
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r
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2

; X

1

g fP

1

; X

1

; X

2

g fP

2

; P

3

g fP

1

; P

3

g

fP

1

g

Figure 6.1: The des
ription graph of T

When storing the ba
k
he
king points we asso
iated a hash table whi
h labels the


he
ked edges in the des
ription graph G

T

to every possible simulation relation. Using

this strategy, we 
an obtain all simulation relations whi
h generate the minimal mat
h-

ers. In the implementation, the fun
tion find-s-r-
ontaining-d-
-without-var (d


) returns the list of su
h simulation relations.

Example 40

Consider the input mat
hing problem from Example 38. The des
ription graph of T is

depi
ted in Figure 6.1. Then, after running find-s-r-
ontaining-d-
-without-var

(d 
), we get the following list of simulation relations:

(((A1 A3) (D C) (A2 A4)))

Note that 
ertainly there exist other simulation relations on G

T

not listed above. How-

ever, the ones in the returned list above are more useful for the 
onstru
tion of minimal

mat
hers.

6.3 Computation of TBox T

0

In our mat
hing algorithm, the purpose of 
omputing the TBox T

0

is to obtain a 
onser-

vative extension of T where the new de�ned 
on
epts is introdu
ed for the 
omputation

of the least 
ommon subsumers. For a simulation relation Z, T

0

is union of the produ
t

of T whose power is de
ided by the maximal value of jZ(X)j for all X 2 V ar

T

(D). It

should be noti
ed that if we 
ompute T

0

using the formal produ
t's de�nition, too many

(the number of de�ned 
on
epts in T to the power of maxfZ(X) j X 2 V ar

T

(D)g) de-

�ned 
on
epts will be generated many of whom might be irrelevant for the 
omputation

of the result. In order to de
rease the number of de�ned 
on
epts in T

0

, we sort the

lists whi
h are the names of the new de�ned 
on
epts in T

0

in the implementation . For

example, (A

1

; A

2

) and (A

2

; A

1

) are expressed by the same node in the des
ription graph

of T

0

. We 
an do so be
ause both of these two nodes represent the l
s of A

1

and A

2

.

The other advantage of sorting the list is that we 
an 
ompare ordered lists faster than
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non-ordered lists when we 
he
k whether some node has already been generated in the

produ
t of the des
ription graph. Moreover, we extend the des
ription graph of T

0

only

using the nodes those are rea
hable from sorted (A

1

; : : : ; A

n

) for some X 2 V ar

T

(D)

and Z(X) = fA

1

; : : : ; A

n

g. This optimization is also used to de
rease the number of

de�ned 
on
epts in T

0

. The fun
tion get-t-prime (z-x-s-r-hash) 
omputes T

0

a
-


ording to the hash table z-x-s-r-hash storing Z(X) for every X 2 V ar

T

(D) and

returns two hash tables tp-graph-label-hash and tp-graph-out-edge-hash whi
h

store the information about T

0

(similar to the data stru
tures for T ).

Example 41

Let the input be the TBox T from Example 38. Then from the unique simulation

relation in Example 40, we obtain T

0

stored in two hash tables (see Table 6.4).

tp-graph-label-hash tp-graph-out-edge-hash

key value key value

C (P1) (C . R1) (A3)

A1 (VAR X1 P2) (D . R2) (A2)

A2 (VAR X2 VAR X1 P1) (C . R2) (A4)

A3 (P3 P2) (A1 . R2) (D)

A4 (P3 P1) (A3 . R2) (C)

D (VAR X2 P1) (D . R1) (A1)

(A2 . R2) (D)

(A4 . R2) (C)

l
s-A4-C (P1) (l
s-A3-A3 . R2) (l
s-C-C)

l
s-C-C (P1) (l
s-C-C . R2) (l
s-A4-A4)

l
s-A4-A3 (P3) (l
s-C-C . R1) (l
s-A3-A3)

l
s-A3-A3 (P2 P3) (l
s-A4-A3 . R2) (l
s-C-C)

l
s-A4-A4 (P1 P3) (l
s-A4-C . R2) (l
s-A4-C)

(l
s-A4-A4 . R2) (l
s-C-C)

Table 6.4: The hash tables for T

0

Note that the names of new de�ned 
on
epts in T

0

are 
hanged from a list to a string.

For example, (A4 C) is expressed as l
s-A4-C. We do this for a mere te
hni
al reason:

we have to make the 
on
ept names re
ognizable by Suntisrivaraporn's subsumption

algorithm.

6.4 Subsumption testing and output

After the 
omputation of the TBox T

0

, the 
on
ept de�nitions to be assigned to all

variables a

ording to 
urrent simulation relation 
an be returned. For every X 2

V ar

T

(D),

X � (A

1

; : : : ; A

n

)
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where Z(X) = fA

1

; : : : ; A

n

g and jZ(X)j = n. We use the fun
tion get-z-x-s-r-hash

(s-r) to return a hash table z-x-s-r-hash storing Z(X) for every variable X 2

V ar

T

(D), where the argument s-r is the simulation relation Z. From this hash ta-

ble, we 
an generate the de�nitions of variables in the TBox T

00

. The fun
tion

write-t-double-prime-file(output-el-tbox-tpp

tp-graph-label-hash

tp-graph-out-edge-hash

z-x-s-r-hash)

writes the TBox T

00

to a �le named output-el-tbox-tpp. The arguments tp-graph-lab

-el-hash and tp-graph-out-edge-hash are the hash tables providing the information

of the TBox T

0

. Then we 
all the fun
tion (my-start output-el-tbox-tpp) to be

ready for 
he
king subsumption w.r.t. the TBox T

00

. If 
alling the fun
tion (subsumes?


 d) returns 'yes, then we have found a solution to the mat
hing problem. Hen
e, we


all the fun
tion

(run-shell-
ommand

(format nil "
at begin-t-mark ~A >> ~A"

output-el-tbox-tpp output-s-file))

to append the �le named by the value of the variable output-el-tbox-tpp to the result

�le named by the value of the variable output-s-file where the �le begin-t-mark

stores one line to mark the beginning of every TBox T

00

in the result �le. After 
he
king

all of the simulation relations 
ontaining (D;C), we get the result �le storing mat
hers of

C �

?

gfp;T

D. The fun
tion subsumes? (
 d) is provided by the subsumption algorithm

by Suntisrivaraporn (see [Sun04℄).

Example 42

Consider the input TBox T from Example 38. After running our mat
hing algorithm,

the following 
ontents are written into the result �le:

***This is the beginning of TBox T''********************

(DEFCONCEPT C (AND (SOME R2 A4) (SOME R1 A3) P1))

(DEFCONCEPT D (AND (SOME R1 A1) (SOME R2 A2) VAR_X2 P1))

(DEFCONCEPT A1 (AND (SOME R2 D) VAR_X1 P2))

(DEFCONCEPT A2 (AND (SOME R2 D) VAR_X2 VAR_X1 P1))

(DEFCONCEPT A3 (AND (SOME R2 C) P3 P2))

(DEFCONCEPT A4 (AND (SOME R2 C) P3 P1))

(DEFCONCEPT l
s-A4-C (AND (SOME R2 l
s-A4-C) P1))

(DEFCONCEPT l
s-C-C (AND (SOME R1 l
s-A3-A3) (SOME R2 l
s-A4-A4) P1))

(DEFCONCEPT l
s-A4-A3 (AND (SOME R2 l
s-C-C) P3))

(DEFCONCEPT l
s-A3-A3 (AND (SOME R2 l
s-C-C) P2 P3))
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(DEFCONCEPT l
s-A4-A4 (AND (SOME R2 l
s-C-C) P1 P3))

(DEFCONCEPT VAR_X1 l
s-A4-A3)

(DEFCONCEPT VAR_X2 l
s-A4-C)

6.5 Testing

The testing of our EL-mat
hing algorithm is mainly based on the testing data of a
y
li


EL-TBoxes produ
ed by a random generator for EL-mat
hing problems. Instead of

generating C and D independently of ea
h other, we randomly generate a 
on
ept C

and then 
onstru
t a 
on
ept pattern D from C by randomly repla
ing sub-
on
epts

of C by variables. The reason of doing this is that we want the generated mat
hing

problems to be more probably solvable. In [BL04℄, there is more information about the

strategy of generating su
h mat
hing problems. For 
y
li
 EL-TBoxes, testing mat
hing

problems are generated manually.

To test soundness of our mat
hing algorithm, i.e., every TBox T

00

in S is really a mat
her

to the 
orresponding input C �

?

gfp;T

D, it is enough to test whether C �

gfp;T

00

D holds.

Sin
e

C �

gfp;T

00

D () C v

gfp;T

00

D ^D v

gfp;T

00

C;

we 
an redu
e testing equivalen
e to testing subsumption.

For 
ompleteness testing, we 
ompare the results with the output of an existing ALE-

mat
hing algorithm (see [BK00a℄) implemented by Brandt (see [Bra03℄). The ALE-

mat
hing algorithm 
an solve ALE-mat
hing problems without terminologi
al 
y
les.

EL is a sub-language of ALE, so a
y
li
 EL-TBoxes are used as testing data. This

ALE-mat
hing algorithm also generates an s-
omplete set of mat
hers to C �

?

gfp;T

D.

The testing strategy for 
ompleteness is that for ea
h mat
her M

00

generated by ALE-

mat
hing algorithm, we 
he
k whether there exists a mat
her T

00

to the same mat
hing

problem in the output of our EL-mat
hing algorithm su
h that T

00

v

s

M

00

.

We run the mat
hing algorithm on 100 a
y
li
 EL-mat
hing problems of average size 23


osting average time 8.2 millise
onds on a standard PC.





Chapter 7

Con
lusion

In this thesis, we have de�ned formally EL-mat
hing problems with terminologi
al 
y
les

and provided an algorithm for solving the problems w.r.t. the greatest �xpoint seman-

ti
s. Our algorithm follows a strategy analogous to the algorithm in [BK00a℄ for the

a
y
li
 
ase. Soundness and 
ompleteness of the mat
hing algorithm have been shown.

Based on these results, mat
hing, one of non-standard inferen
e problems, 
an be ap-

plied to more powerful DLs.

The theoreti
al 
omplexity of EL-mat
hing problems has not yet been dis
ussed. De-


iding EL-mat
hing problems is at least as hard as de
iding EL-mat
hing problems only


onsidering a
y
li
 TBoxes. The results about 
omplexity in a
y
li
 
ase are listed as

following [K�us01℄:

1. De
iding the solvability of mat
hing problems modulo equivalen
e in EL is an

NP-
omplete problem.

2. The 
ardinality of s-
omplete sets of mat
hers may grow exponentially in the size

of the mat
hing problem.

3. The 
ardinality of s-
omplete sets of mat
hers 
an exponentially be bounded in

the size of the mat
hing problem.

Corresponding to 1, the 
omplexity of de
iding the solvability of mat
hing problems

in 
y
li
 
ase is still an open problem. 2 and 3 lead to the fa
t that the algorithm of


omputing s-
omplete sets of mat
hers for mat
hing problems in 
y
li
 
ase is at least

an exponential time algorithm. For our mat
hing algorithm, transforming an EL-TBox

T into normal form 
an be done in time quadrati
 in jT j (see [Sun04℄). Subsumption

testing 
onsumes polynomial time (see [Baa02b℄). It takes also polynomial time to


ompute Z(X) for every X 2 V ar

T

(D) for some simulation relation Z. However,

it takes exponential time to �nd all simulation relations in the worst 
ase. Dire
tly


omputing the produ
t of TBoxes T leads to exponentially large TBox T

0

in the worst


ase. These two steps make our mat
hing algorithm exponential.
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