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Abstract

The subsumption problem in the description logic (DL) EL has been shown to
be polynomial regardless of whether cyclic or acyclic TBoxes are used. Recently,
it was shown that the problem remains tractable even when admitting general
concept inclusion (GCI) axioms. Motivated by its nice complexity and sufficient
expressiveness for some applications, we propose three decision procedures for
computing subsumption in the DL EL whose run-time is bounded by a low-
degree polynomial. The three decision procedures are for three terminological
settings in EL: TBoxes with greatest fixpoint semantics (ELgfp), TBoxes with
descriptive semantics (ELdesc), and terminologies with GCIs (ELgci).

For subsumption w.r.t. TBoxes, i.e., ELgfp and ELdesc, we use a characteri-
zation through simulations on so-called EL-description graphs—the syntactically
normalized representation of EL-TBoxes. With an efficient algorithm for com-
puting simulations on graphs, we show that ELgfp-subsumption can be decided
in time cubic in the size of the input TBox. We decide ELdesc-subsumption by re-
ducing the simulation problem on graphs to the satisfiability problem of Horn for-
mulae. Then, we apply a linear-time Horn-SAT algorithm to our Horn formulae.
This approach yields a quartic-time decision procedure for ELdesc-subsumption.
Concerning terminologies with GCIs, we employ a different normalization and
characterize subsumption through so-called implication sets. We show that ELgci-
subsumption can be decided in time cubic in the size of the input terminology, by
translating the implication sets into a Horn formula and exploiting the linear-time
Horn-SAT algorithm similarly to ELdesc.

Besides, we implement these decision procedures in the Common LISP lan-
guage and evaluate their efficiency using the Gene Ontology as a benchmark. The
implementation can be used as terminological reasoners that classify ontologies
represented in EL-TBoxes.
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Chapter 1

Introduction

Knowledge Representation (KR) is an indispensable subfield of Artificial Intelli-
gence which focuses on the design of formalisms that are both epistemologically
and computationally adequate for expressing knowledge about a particular do-
main. Since the 1960’s, KR has been concerned with the idea that the knowledge
should be represented by describing classes of objects and relationships among
them. Early KR formalisms such as “semantic networks” [12] and “frame sys-
tems” [13] have been developed based on this idea. However, such formalisms
were initially tailored towards specific applications, and their associated reason-
ing tools were strongly dependent on the implementation strategies. This is due
to a major drawback of these early systems, namely the lack of formal semantics.
A fundamental step towards a logic-based characterization of those early systems
has been accomplished through the work on the KL-ONE system [14], which is
usually regarded as the origin of the research on Description Logics.

Description Logics

Description Logics (DLs)—also known as terminological logics, conceptual lan-
guages, or KL-ONE-like languages—are a family of logic-based knowledge rep-
resentation designed to represent and reason about conceptual knowledge. DLs
collect many ideas stemming from semantic networks and frame-based systems
and provide a logical basis for interpreting objects, classes of objects (or con-
cepts), and relationships between objects (or roles). A specific DL is essentially
characterized by the set of constructors that it provides to build more complex
concept descriptions out of atomic concept names and role names. The expressive
power of a DL depends mainly on its constructors, and so does its complexity.
As a rule, the more constructors a DL provides, the higher in expressive power
and complexity it is likely to be.

Besides a conceptual language, DLs can be equipped with a terminological
component called a TBox. TBoxes comprise terminological statements that assert
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a piece of knowledge about a particular domain. There are two kinds of them:
a concept definition and a general concept inclusion or GCI. The former defines
concept names as abbreviations for complex concept descriptions (A ≡ D) while
the latter asserts the inclusion between two concept descriptions (C ⊑ D). Unlike
concept definitions, GCIs asserts that anything interpreted to be in one concept
(a class of objects) must necessarily also be in another concept, but not vice versa.
In the present paper we are interested in two kinds of TBoxes, namely with and
without GCIs. For the rest of this paper, a TBox with GCIs is called general,
and a non-general TBox (sometimes simply TBox) refers to a terminological
box without GCIs. Non-general TBoxes may contain cyclic dependencies (or
terminological cycles), i.e., a defined concept may refer to itself either directly or
indirectly. In this case, the TBoxes are said to be cyclic, otherwise acyclic. In the
case of general TBoxes, cyclicity does not concern, since it is unclear how cyclic
dependencies should look like in a GCI. In fact, there are no defined concepts in
general TBoxes, on which terminological cycles are defined.

The first thorough investigation of cyclic TBoxes in DLs is due to Nebel [7],
who introduced three distinct semantics for such terminologies: least fixpoint (lfp)
semantics, greatest fixpoint (gfp) semantics, and descriptive semantics. Whilst
gfp-semantics (lfp-semantics) considers only the models that interpret the defined
concepts as large (small) as possible, descriptive semantics considers all models.
For acyclic TBoxes, the three semantics coincide. Since terminological cycles
are undefined in TBoxes with GCIs, it would be nonsensical to apply fixpoint
semantics. So only descriptive semantics makes sense and is considered for general
TBoxes.

Motivation for EL

Early DLs—for example, the basic DL FL0, which allows for the top-concept (⊤),
conjunction (C ⊓D) and value restrictions (∀r.C) only—allowed the use of value
restrictions (∀r.C) but not of existential restrictions (∃r.C). Consequently, such
DLs could express, for example, a parent whose children are all male using value
restriction ∀has child.Male, but not a parent with a son using existential restriction
∃has child.Male. The main reason for having value restriction but not existential
restriction in those early DLs was that, when formulating the logical status of
property arcs in semantic networks (slots in frame-based systems, respectively), it
was determined that arcs (slots, respectively) should be comprehended as value
restrictions (see, e.g., [7]). Later, when more expressive DLs allowing for full
negation were considered, existential restrictions came in as the dual of value
restrictions.

As a quintessential example, ALC (Attributive Language with Complements)
[15] is the smallest propositionally closed Description Logic, which provides for
existential restriction, value restriction and all Boolean operators: top-concept
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(⊤), negation (¬C), conjunction (C ⊓ D) and disjunction (C ⊔ D). Intuitively,
the ALC-concept description

Male ⊓ ∃has child.Male ⊓ ∃has child.¬Male ⊓ ∀has child.(Scientist ⊔ Governor)

represents ‘a father of at least two children, a son and a daughter, and all his
children are either a scientist or governor.’ Here, Male, Scientist and Governor

are concept names while has child is a sole role name. The concept description is
constructed out of these concept and role names.

Thus, for historical reasons, DLs with existential but not value restriction are
somewhat unexplored. In this thesis, we concentrate on the DL EL, which allows
for the top-concept, conjunction, and existential restrictions only. Obviously, this
logic is comparable to the inexpressive DL FL0, but with existential restriction
in place of value restriction, EL can sufficiently express some notions that FL0

cannot. For instance,
∃has child.Human

denotes the notion of parent, and

Animal ⊓ WarmBlooded ⊓ ∃feeds broods with.Milk

represents mammal—the animal Class of Mammalia. If equipped with cyclic
terminologies and an appropriate semantics, EL can be used to express, e.g., the
notion of ‘nodes on an infinite path’ by the following cyclic concept definition:

InfNode ≡ Node ⊓ ∃edge.InfNode.

It should be noted that there are indeed applications where the small DL EL
appears to be adequate. In fact, the Gene Ontology [10] can epistemologically
sufficiently be represented in EL with an acyclic TBox (see Chapter 7). Another
motivation to consider the DL EL is in the domain of medical terminologies: the
widely used medical terminology Snomed [23] corresponds to an EL-TBox [24],
and the Galen [25] medical terminology, in which GCIs are used extensively
[26], can be represented by a general EL-TBox.

Reasoning and Complexity

The most important inference problems in DLs are satisfiability and subsumption
of concept descriptions. A concept description is said to be satisfiable if it is
consistent, i.e., no contradictions occur in it. However, in DLs with no negations
such as FL0 and EL, satisfiability is uninteresting, as all concept descriptions
in such logics are satisfiable. With regards to concept subsumption, we aim
at a determination of subconcept-superconcept relationship. A subconcept is
always subsumed by its superconcepts, i.e., superconcepts are more general while
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subconcepts are more specific. Semantically, a subconcept is always interpreted
as a subset of superconcepts in all models of interest. The subsumption hierarchy
of a TBox is a graph of which nodes are all concepts in question (i.e., all concepts
present in the TBox) and edges are the subconcept-superconcept relationship.

In [2, 3], subsumption w.r.t. cyclic TBoxes in FL0 was characterized with
the help of finite automata, which provided PSpace decision procedures for sub-
sumption in FL0 with cyclic TBoxes for the three types of semantics introduced
by Nebel. Additionally, it was shown that subsumption is PSpace-hard [20].
The PSpace results for FL0 with cyclic TBoxes were extended by Küsters [6] to
the DL ALN , which extends FL0 by atomic negation and number restrictions.
These hardness results immediately imply PSpace-hardness for subsumption in
FL0 and ALN w.r.t. terminologies with GCIs.

Terminological cycles were also considered in more expressive conceptual lan-
guages like ALC, which extends FL0 by full negation. The complexity of the
subsumption problem in this logic with cyclic TBoxes is ExpTime-complete.
This was accomplished under the fact that the DL ALC is a syntactic variant of
the multi-modal logic K and a reduction of ALC with cyclic TBoxes to the modal
µ-calculus [17, 18]. Again, on account of the generality of terminologies with
GCIs, subsumption in ALC w.r.t. general TBoxes is ExpTime-hard. Moreover,
the ExpTime-hardness result has been unveiled also for very expressive DLs such
as ALCNR [21] and SHIQ [22].

Despite these very general results of subsumption in expressive DLs with
cyclic TBoxes, there is still a good reason to explore cyclic terminologies in less
expressive DLs, especially sub-Boolean logics. Definitely, a lower complexity is
anticipated when sacrificing expressive power. For DLs with value restrictions,
this expectation is not gratified, for even in the inexpressive DL FL0, subsump-
tion turns from NP-complete to PSpace-complete if cyclic dependencies are
allowed in TBoxes. Even though this complexity class is better than ExpTime-
completeness for ALC, it still means from the practical point of view that the
subsumption algorithm may need exponential time. In comparison to FL0, the
complexity class of subsumption problem in EL remains unchanged when allowing
terminological cycles. In fact, subsumption in EL can be decided in polynomial
time w.r.t. the three types of semantics introduced by Nebel [1], regardless ter-
minological cyclicity. It has been investigated by Brandt [5] that by admitting
GCIs and so-called simple role inclusion axioms, subsumption in ELH remains
traceable. Hence, polynomial time result holds also for subsumption in EL with
general TBoxes.

Polynomial-time Subsumption Algorithms

As mentioned earlier regarding cyclic TBoxes, there are three relevant semantics:
gfp-semantics, lfp-semantics, and descriptive semantics. It has been shown in
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[1], however, that for the DL EL lfp-semantics is trivial and thus uninteresting.
Indeed, defined concepts with terminological cycles are always interpreted as the
empty set w.r.t. lfp-semantics and thus can be removed from the cyclic TBox. The
remaining TBox turns out to be acyclic on which the three semantics in question
coincide. Concerning general TBoxes, only descriptive semantics is meant and
is considered as an extension of TBoxes with descriptive semantics. Putting
together, in the present paper we consider the subsumption problem in the DL
EL w.r.t. three different combinations of terminologies and semantics: (i) TBoxes
and greatest fixpoint semantics, (ii) TBoxes and descriptive semantics, and (iii)
terminologies with GCIs and (descriptive) semantics.

We propose three algorithms for computing the subsumption hierarchy in EL
w.r.t. the three terminologies and semantics mentioned above. Subsumption in
EL w.r.t. (non-general) TBoxes can be characterized through graph simulation
[1]. We pursue this direction for the first two algorithms. A quadratic-time
algorithm for computing similarity [8] is exploited in the first algorithm, giving us
a cubic time decision procedure. The second algorithm reduces graph simulation
into the Horn-SAT and applies a linear-time algorithm for testing satisfiability of
Horn formulae [9]. With this approach we can compute subsumption in EL w.r.t.
TBoxes and descriptive semantics in quartic (bi-quadratic) time as the worst
case. For general TBoxes, we introduce a new straightforward normal form and
compute subsumption by means of implication sets. This algorithm appears to
be more optimal than the second algorithm, as it needs only cubic time in the
size of the input despite its generality.

Even in the case of acyclic terminologies, e.g., the Gene Ontology, our cubic
and quartic subsumption algorithms improve the usual approach that first unfolds
the TBox, since unfolding can potentially take an exponential number of steps.

The first two algorithms (EL-TBoxes w.r.t. descriptive and gfp-semantics)
are implemented in the Common LISP, Allegro CL. The implementations are
evaluated using the Gene Ontology [10] as a benchmark. Successfully, the Gene
Ontology can be classified with over a hundred thousand subsumption outcomes.

The following chapters of this paper are organized as follows:

The description logic EL is introduced in Chapter 2, beginning with the syn-
tax and semantics of its concept language. Then, two kinds of terminological
formalisms: EL-TBoxes and general EL-TBoxes, together with their (descrip-
tive) semantics are introduced. For EL-TBoxes without GCIs, we additionally
define fixpoint semantics. In this chapter, we also give formal definitions of sub-
sumption between two EL-concept descriptions.

In Chapter 3, we define the notion of normalized EL-TBoxes and EL-description
graphs. We show how such normalized EL-TBoxes can be translated into EL-
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description graphs, which will be used for the characterization of subsumption
w.r.t. EL-TBoxes in succeeding chapters.

In Chapter 4, we give a definition of graph simulation, which is used to char-
acterize subsumption in EL w.r.t. greatest fixpoint semantics. Then, we present
an efficient algorithm for computing such a simulation. Finally, we show that the
subsumption problem w.r.t. greatest fixpoint semantics can be computed in cubic
time.

Chapter 5 is dedicated to a characterization of and an algorithm for subsump-
tion in EL w.r.t. descriptive semantics. We reduce the subsumption problem to
the satisfiability problem of Horn formulae. With the help of a linear-time Horn-
SAT algorithm [9], we show in the end of this chapter that the subsumption
problem w.r.t. descriptive semantics can be computed in quartic time.

For general EL-TBoxes, we only consider descriptive semantics. A charac-
terization of and an algorithm for subsumption w.r.t. general EL-TBoxes are
presented in Chapter 6. We start by introducing GCI-normalized EL-TBoxes
in Section 6.1. Then, implication sets—a characterization of subsumption w.r.t.
GCI-normalized EL-TBoxes—is presented in Section 6.2. Section 6.3 devotes to
an efficient algorithm for computing implication sets by applying a linear-time
Horn-SAT algorithm [9]. We also prove in this section that the subsumption
problem w.r.t. general TBoxes can be computed in cubic time.

The Gene Ontology is used as a benchmark for our subsumption algorithms.
We discuss the Gene Ontology and some facts on it in Section 7.1. The translation
of the Gene Ontology into EL-TBoxes is also given in this section. We perform
a number of experiments, and the results are shown in Section 7.2.

Conclusion and further works are discussed in the Chapter 8.
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Chapter 2

The Description Logic EL

In this chapter, we formally define the syntax and semantics of the description
logic EL, as well as two kinds of terminological formalisms. Then, we introduce
the standard inference problems in EL with respect to the two different termino-
logical formalisms.

We start with introducing the syntax of EL-concept descriptions.

Definition 1 (Syntax of EL-concept descriptions). Let Ncon and Nrole be
disjoint sets of concept names and role names. The set of EL-concept descriptions
is defined inductively as follows:

• each concept name A ∈ Ncon is an EL-concept description;

• if C,D are EL-concept descriptions and r ∈ Nrole, then the top-concept
⊤, conjunction C ⊓D, and existential restriction ∃r.C are also EL-concept
descriptions.

The top-concept and concept names are called atomic denoted by N⊤
con, while

conjunction and existential restriction are called non-atomic or complex. ♦

For example, let Human and has child be a concept name and a role name, re-
spectively. The complex concept description

Human ⊓ ∃has child.Human

literally describes the notion of “parent”. Analogously,

Human ⊓ ∃has child.∃has child.Human

describes the notion of “grandparent”. Formally, we define the semantics of
concept descriptions in terms of interpretations.
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Definition 2 (Semantics of EL-concept descriptions). An interpretation
I = (∆I , ·I) consists of the non-empty interpretation domain ∆I and the in-
terpretation function ·I , which maps each concept name A ∈ Ncon to a subset
AI ⊆ ∆I and each role name r ∈ Nrole to a binary relation rI ⊆ ∆I × ∆I .

The extension of ·I to arbitrary concept descriptions is defined inductively as
follows:

⊤I := ∆I

(C ⊓ D)I := CI ∩ DI

(∃r.C)I :=
{

x ∈ ∆I
∣

∣ ∃y : (x, y) ∈ rI ∧ y ∈ CI
}

.

♦

Next, we introduce 2 kinds of terminological formalisms for the description logic
EL: namely EL-TBoxes and general EL-TBoxes.

2.1 Terminology (TBox)

Definition 3 (Syntax of EL-TBoxes). If A ∈ Ncon and D is an EL-concept
description, then A ≡ D is a concept definition. An EL-TBox T is a finite set
of EL-concept definitions, which must not contain multiple definitions, i.e., there
cannot be two distinct concept descriptions D1 and D2 such that both A ≡ D1

and A ≡ D2 belong to T .
Cyclic definitions (or terminological cycles) are a set of concept definitions

{A1 ≡ D1, . . . , An ≡ Dn} ⊆ T for n ≥ 1 such that

• Di contains Ai+1 for 1 ≤ i ≤ n, and

• Dn contains A1.

An EL-TBox is acyclic if it contains no cyclic definitions, otherwise the EL-TBox
is said to be cyclic.

Concept names occurring on the left-hand side of a definition are called defined
concepts and denoted by Ndef . All other concept names are called primitive
concepts and denoted by Nprim. ♦

For example, let us consider the following concept definitions.

Parent ≡ Human ⊓ ∃has child.Human

German ≡ Human ⊓ ∃has father.German ⊓ ∃has mother.German (∗)

GermanParent ≡ German ⊓ ∃has child.Human

The second definition contains a cyclic dependency through the defined concept
German. But since there are no multiple definitions, the set of these three concept
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definitions is a TBox. Adding the new definition GermanParent ≡ Parent⊓German

to the existing TBox seems natural. However, due to the multiple definitions, the
set of these four concept definitions is not admissible as a TBox in the sense
defined above.

The semantics of TBoxes is defined using models. The natural semantics for
acyclic TBoxes is descriptive semantics. We also consider this kind of semantics
for cyclic TBoxes.

Definition 4 (Descriptive semantics of EL-TBoxes). An interpretation I
satisfies a concept definition A ≡ D if AI = DI . I is a model of an EL-TBox T
if it satisfies all concept definitions in T . ♦

For TBoxes with terminological cycles, there are other kinds of semantics. They
are called fixpoint semantics by Nebel [7]. Before we can give a formal definition
of the fixpoint semantics, we need to introduce some notation.

Definition 5 (Primitive interpretation). Let T be an EL-TBox over the role
names Nrole, the primitive concepts Nprim, and the defined concepts Ndef .

• A primitive interpretation J for T is given by a non-empty interpretation
domain ∆J and an interpretation function ·J that maps each primitive
concept P ∈ Nprim to a subset P I ⊆ ∆J and each role name r ∈ Nrole to a
binary relation rJ ⊆ ∆J × ∆J .

• An interpretation I is based on (an extension of) a primitive interpretation
J iff I has the same interpretation domain as J and, the interpretation
functions ·I and ·J coincide on Nprim and Nrole.

♦

Obviously, a primitive interpretation differs from an interpretation in that it does
not interpret the defined concepts. For a fixed primitive interpretation J , an
interpretation I based on J is determined only by the interpretations of the
concepts in Ndef .

Definition 6 (Fixpoint model). Let J be a primitive interpretation for an
EL-TBox T , and ExtJ the set of all extensions of J . Then the mapping
TJ : ExtJ → ExtJ maps the extension I of J to the extension TJ (I) of J
defined by setting

ATJ (I) := (T (A))I for each defined concept A,

where T (A) denotes the concept description C if A ≡ C ∈ T . An interpretation
I is a model of T iff I is a fixpoint of TJ with J the restriction of J to a primitive
interpretation. I is a greatest (least) fixpoint model of T if AI ⊇ AI′

(AI ⊆ AI′

)
for every defined concept A and every fixpoint I ′ of TJ . ♦
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Intuitively, greatest (least) fixpoint models interpret those defined concepts as
large (small) as possible for a given primitive interpretation.

We are now ready to define the fixpoint semantics of TBoxes.

Definition 7 (Fixpoint semantics of EL-TBoxes). Greatest fixpoint seman-
tics (gfp-semantics) considers only greatest fixpoint models as admissible models,
whereas least fixpoint semantics (lfp-semantics) considers only least fixpoint mod-
els as admissible models. ♦

In the DL EL, least fixpoint semantics is uninteresting since it does not make
any sense (see e.g., [1]). In fact, all defined concepts in terminological cycles
are unsatisfiable w.r.t. lfp-semantics and thus can be removed from the TBox.
The remaining TBox turns out to be acyclic, on which descriptive, gfp- and lfp-
semantics coincide [7].

In the following, we illustrate the intuitive idea of descriptive and gfp-semantics
and their contrast by giving a few examples.

Example 8. Let the following be the only concept definition in the TBox:

TopEntrepreneur ≡ Entrepreneur ⊓ Rich ⊓ ∃deals with.TopEntrepreneur.

Intuition: ‘top-entrepreneurs’ is defined as ‘entrepreneur who are rich and deal
business with at least one top-entrepreneur.’

Now consider the following primitive interpretation J :

∆J := {MATT, ANNA, BOB},

EntrepreneurJ := {MATT, ANNA, BOB},

RichJ := {MATT, ANNA},

deals withJ := {(MATT, ANNA), (ANNA, MATT), (BOB, MATT)}.

Obviously, BOB is not a top-entrepreneur since he is not rich, while MATT and
ANNA could be. Convincingly, MATT and ANNA should be classified as top-
entrepreneurs, as they are rich entrepreneurs and deal business with each other.
Our claim is that there are 2 interpretations based on J : IJ

gfp interprets the

defined concept TopEntrepreneur to the set {MATT, ANNA}, and IJ
∅ assigns the

defined concept to the empty set. Both interpretations are fixpoints of TJ and
therefore admissible as models of the TBox w.r.t. descriptive semantics, whereas
only IJ

gfp is the unique greatest fixpoint model based on J and hence admissible
w.r.t. gfp-semantics. Straightforwardly, only the greatest fixpoint model captures
the intuition underlying the definition of TopEntrepreneur correctly.

Note that in case of least fixpoint semantics, only IJ
∅ —which is the least

fixpoint model based on J—is admissible. Since the defined concept is assigned
to the empty set and thus can be removed from the TBox, the remaining TBox
is acyclic (actually, no definition remains). As noted earlier, this is meaningless.

⊣
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This example suggests that, for some applications, the greatest fixpoint semantics
turns out to be more suitable than descriptive semantics. It should be noted,
however, that in other cases descriptive semantics appears to be more appropriate.
For instance, consider the definitions

German ≡ Human ⊓ ∃has father.German ⊓ ∃has mother.German,

Thai ≡ Human ⊓ ∃has father.Thai ⊓ ∃has mother.Thai.

With gfp-semantics, the defined concepts German and Thai must always be in-
terpreted as the same set which clearly does not reflect the intuition. In fact,
any objects on cyclic or infinite has father- and has mother-paths are always be
classified as both German and Thai w.r.t. gfp-semantics. Whereas this is not the
case for descriptive semantics.

The standard terminological inference problems, i.e., inference problems with
TBoxes, are satisfiability of an EL-concept description and subsumption of two
EL-concept descriptions. The former problem concerns whether a concept de-
scription is free of contradictions, while the latter concerns whether one concept
is a subconcept of the other one. For logics without negation, concept satisfia-
bility is uninteresting since there are no unsatisfiable concept descriptions w.r.t.
descriptive semantics. With respect to gfp-semantics, this is also the case since
gfp-semantics admits only gfp-models, which interpret defined concepts, as well
as concept descriptions containing defined concepts, largest possible. In addition
to concept subsumption, we consider concept equivalence as an abbreviation of
concept subsumption in both direction.

Definition 9 (Subsumption). Let T be an EL-TBox and C,D arbitrary EL-
concept descriptions. Then,

• C is subsumed by D w.r.t. descriptive semantics and T (C ⊑T D) iff CT ⊆
DI holds for all models I of T .

• C is subsumed by D w.r.t. gfp-semantics and T (C ⊑gfp,T D) iff CT ⊆ DI

holds for all gfp-models I of T .

C and D are equivalent w.r.t. descriptive semantics and T iff they subsume
each other, i.e., C ≡T D iff C ⊑T D and D ⊑T C.1 The equivalence w.r.t.
gfp-semantics is defined in a similar fashion to the equivalence w.r.t. descriptive
semantics and denoted by ≡gfp,T . ♦

By introducing new concept definitions in the TBox, subsumption of two arbitrary
concept definitions can be reduced to the same problem of two defined concepts.

1Please note that C ≡ D denotes a concept definition in a TBox, whereas C ≡T D denotes
concept equivalence w.r.t. descriptive semantics and T .
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Formally, let T be an EL-TBox with defined concepts Ndef , and let C,D be EL-
concept definitions. Then, the subsumption C ⊑T D (C ⊑gfp,T D, respectively)
can be reduced to the subsumption A ⊑T B (A ⊑gfp,T B, respectively) by
introducing in T the following concept definitions:

A ≡ C and B ≡ D

where A,B new concept names in Ndef . We can therefore restrict our attention
to subsumption of two defined concepts w.r.t. descriptive and gfp-semantics.

2.2 Terminology with GCIs (General TBox)

In the previous section, we have introduced EL-terminologies, which are sets of
concept definitions (A ≡ D). In this section, we define a new terminological
formalism which is a generalization of TBoxes with descriptive semantics.

Definition 10 (Syntax of general EL-TBoxes). If C and D are EL-concept
descriptions, then C ⊑ D is a general concept inclusion or GCI.2 A general
EL-TBox (or simply a general TBox) T is a finite set of general concept inclusions.

♦

Since we explicitly allow arbitrary concept descriptions on both sides of a GCI, it
is not clear which concept names are defined and which are primitive. Therefore,
for general EL-TBoxes, we do not distinguish defined concepts from primitive
ones. All concept names occurring in a general EL-TBox T are denoted by Ncon,
as role names by Nrole as before. We supplementally define a concept definition as
an abbreviation of two GCIs, i.e., the concept definition A ≡ D is an abbreviation
of A ⊑ D and D ⊑ A.

Unlike TBoxes, it does not make much sense to consider general TBoxes in
respect of fixpoint semantics. In fact, fixpoint semantics of TBoxes is determined
by the interpretations of defined concepts, provided a primitive interpretation.
Since, as mentioned above, we have neither defined concepts nor primitive ones
in general TBoxes, we will only consider them w.r.t. descriptive semantics. Like
TBoxes, the semantics of general TBoxes is defined through interpretations.

Definition 11 (Semantics of general EL-TBoxes). An interpretation I sat-
isfies a GCI C ⊑ D if CI ⊆ DI . I is a model of a general EL-TBox T if it
satisfies all GCIs in T . ♦

In the example on page 8, the TBox contains a single concept definition (∗)
of German

German ≡ Human ⊓ ∃has father.German ⊓ ∃has mother.German,

2Please note that C ⊑ D denotes a GCI in a general EL-TBox, whereas C ⊑T D denotes
concept subsumption w.r.t. descriptive semantics and T .
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whose intuitive meaning is destined for German citizens. Nevertheless, the con-
cept definition does not encode the notion of “citizenship” correctly. German-
born are always citizens of Germany, but at times people receive their German cit-
izenship without having both German father and mother. This situation suggests
that concept definitions (≡) are too strong, and it is sometimes more appropriate
to use GCIs (⊑). The refined TBox should contain the GCI

Human ⊓ ∃has father.German ⊓ ∃has mother.German ⊑ German

in place of the concept definition (∗).
In order to gain a clearer idea of general TBoxes, let us consider the following

example. This example is a simplified version of a similar one in [4], where the
simple role inclusion constraint is omitted.

Example 12. The following general TBox shows a simplified piece of terminology
in a medical knowledge-base.3

Pericardium ⊑ Tissue ⊓ ∃cont in.Heart

Pericarditis ⊑ Inflammation ⊓ ∃has loc.Pericardium

Inflammation ⊑ Disease ⊓ ∃acts on.Tissue

Disease ⊓ ∃has loc.∃cont in.Heart ⊑ Heartdisease ⊓ ∃is state.NeedsTreatment

The TBox contains four GCIs, asserting that pericardium is tissue contained in
the heart, that pericarditis is an inflammation located in the pericardium, that
an inflammation is a disease and acts on tissue, and that a disease located in
the heart is a heart disease and requires treatment. Without going into detail,
one can naturally check that pericarditis would be classified as a heart disease
requiring treatment. ⊣

Similar to the previous section, we are interested in subsumption of two
EL-concept descriptions with respect to general TBoxes and descriptive seman-
tics.

Definition 13 (Subsumption). Let T be a general EL-TBox and C,D arbi-
trary EL-concept descriptions. Then, C is subsumed by D w.r.t. T (C ⊑gci,T D)
iff CI ⊆ DI for all models I of T .

C and D are equivalent w.r.t. T (C ≡gci,T D) iff they mutually subsume each
other, i.e., C ⊑gci,T D and D ⊑gci,T C. ♦

Subsumption of two arbitrary concept descriptions can be reduced to subsumption
of two concept names. Precisely, let T be a general TBox over concept names
Ncon and role names Nrole, and let C,D be arbitrary EL-concept descriptions.

3The example is only supposed to show the features of EL with general TBoxes and by no
means claims to be correct nor adequate from a medical point of view.
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Then, the subsumption C ⊑T D can be reduced to the subsumption A ⊑T B by
introducing in T the following GCIs:

C ⊑ A and B ⊑ D

where A,B are new concept names in Ncon. In the following, we will con-
sider, without loss of generality, subsumption of two concept names w.r.t. general
TBoxes.

As discussed in this chapter, there are three subsumption problems of interest
in the DL EL, two problems w.r.t. TBoxes and one w.r.t. general TBoxes. For
the sake of conciseness and consistency, we will use the following abbreviations
throughout this paper:

• ELgfp : the logic EL and TBoxes interpreted w.r.t. gfp-semantics,

• ELdesc : the logic EL and TBoxes interpreted w.r.t. descriptive semantics,
and

• ELgci : the logic EL and general TBoxes equipped with GCIs.

We denote by ELgfp-subsumption the subsumption problem of two concepts in DL
EL w.r.t. TBoxes and gfp-semantics. ELdesc-subsumption and ELgci-subsumption
denote the corresponding subsumption problems in an obvious way.
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Chapter 3

Normalized EL-TBoxes and
EL-Description Graphs

Subsumption problems in ELgfp and in ELdesc can be characterized through graph
simulation. The characterizations of both problems share the same idea of nor-
malized EL-TBoxes and EL-description graphs, which are defined below in this
chapter. We will also show that EL-TBoxes can be translated into EL-description
graphs, which can be understood as a preprocessing step for the algorithms pre-
sented in Chapter 4 and 5 for ELgfp- and ELdesc-subsumption, respectively. But
before we can do such a translation of TBoxes, we must first normalize them.

3.1 Normalized EL-TBoxes

Definition 14 (Normalized EL-TBoxes). Let T be an EL-TBox with de-
fined concepts Ndef , primitive concepts Nprim, and role names Nrole. Then, T is
normalized (or in normal form) iff A ≡ D ∈ T implies that D is of the form

P1 ⊓ · · · ⊓ Pm ⊓ ∃r1.B1 ⊓ · · · ⊓ ∃rl.Bl,

with m, l ≥ 0, P1, · · · , Pm ∈ Nprim, r1, · · · , rl ∈ Nrole, and B1, · · · , Bl ∈ Ndef . If
m = l = 0, then D = ⊤. ♦

Next, we will show how EL-TBoxes can be converted into normal form. The same
EL-TBox may be normalized to two different normalized EL-TBoxes, depending
on the semantics used. We will see that this is due to different treatments of
cyclic dependencies w.r.t. gfp- and descriptive semantics. First, we illustrate
the normalization process by a typical example. Then, a formal definition of
normalization rules is given.
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Example 15. Let T be an EL-TBox comprising only the following concept def-
initions:

A1 ≡ P1 ⊓ A2 ⊓ ∃r1.∃r2.A3,

A2 ≡ P2 ⊓ A3 ⊓ ∃r2.∃r1.A1,

A3 ≡ P3 ⊓ A2 ⊓ ∃r1.(P1 ⊓ P2).

By introducing auxiliary definitions for complex concepts nested in existential
restrictions, we obtain the new EL-TBox T ′:

A1 ≡ P1 ⊓ A2 ⊓ ∃r1.B1,

B1 ≡ ∃r2.A3,

A2 ≡ P2 ⊓ A3 ⊓ ∃r2.B2,

B2 ≡ ∃r1.A1,

A3 ≡ P3 ⊓ A2 ⊓ ∃r1.B3,

B3 ≡ P1 ⊓ P2.

Due to the occurrences of defined concepts in the top-level conjunction of the
definitions of A1, A2 and A3, none of them are yet normalized.

Let us first detect cyclic dependencies in the top-level conjunction of the
definitions in T ′. Obviously, there is such a top-level cycle through the defined
concepts A2 and A3. The occurrence of A3 in the top-level conjunction of the
definition of A2 implies that A2 is subsumed by A3. By the same argument for
the definition of A3, it also holds that A3 is subsumed by A2. Hence, the defined
concepts A2 and A3 are equivalent.1 Moreover, both A2 and A3 are subsumed by
P2 ⊓ P3 ⊓ ∃r2.B2 ⊓ ∃r1.B3. We can therefore replace the definitions of A2 and A3

by the general concept inclusions (GCIs)

A2 ⊑ P2 ⊓ P3 ⊓ ∃r2.B2 ⊓ ∃r1.B3 and

A3 ⊑ P2 ⊓ P3 ⊓ ∃r2.B2 ⊓ ∃r1.B3,

respectively. We now have the following terminology with two GCIs:

A1 ≡ P1 ⊓ A2 ⊓ ∃r1.B1,

B1 ≡ ∃r2.A3,

A2 ⊑ P2 ⊓ P3 ⊓ ∃r2.B2 ⊓ ∃r1.B3,

B2 ≡ ∃r1.A1,

A3 ⊑ P2 ⊓ P3 ⊓ ∃r2.B2 ⊓ ∃r1.B3,

B3 ≡ P1 ⊓ P2.

1They are interpreted by the same set in all models of the TBox T ′, i.e., A2 ≡T ′ A3 as well
as A2 ≡gfp,T ′ A3.
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This is plainly not a TBox by definition. In order to convert this terminology
back into a TBox, we must remove the two GCIs. How to do this depends on the
semantics used for cyclic definitions.

If we apply gfp-semantics, then the GCIs can respectively be replaced by the
definitions

A2 ≡ P2 ⊓ P3 ⊓ ∃r2.B2 ⊓ ∃r1.B3 and

A3 ≡ P2 ⊓ P3 ⊓ ∃r2.B2 ⊓ ∃r1.B3,

Indeed, these are the largest possible interpretations of A2 and correspondingly
A3 that the the GCIs allow. Let T ′

gfp denote the EL-TBox obtained in this way.
On the contrary, if descriptive semantics is considered for the TBox, then we

introduce a new primitive concept P and replace the GCIs by the definitions

A2 ≡ P ⊓ P2 ⊓ P3 ⊓ ∃r2.B2 ⊓ ∃r1.B3 and

A3 ≡ P ⊓ P2 ⊓ P3 ⊓ ∃r2.B2 ⊓ ∃r1.B3,

The auxiliary primitive concept P here allows A2 and A3 to be interpreted arbi-
trarily as long as the GCIs are satisfied. Let T ′

des denote the EL-TBox obtained
in this way.

Neither T ′
gfp nor T ′

des is already in normal form since the definition A1 still
refers to A2 on the top-level. However, we can now simply replace the top-level
A2 in the definition of A1 by its defining concept description. Ultimately, we
end up with two normalized EL-TBoxes. With respect to gfp-semantics, we thus
obtain the normalized EL-TBox Tgfp:

A1 ≡ P1 ⊓ P2 ⊓ P3 ⊓ ∃r2.B2 ⊓ ∃r1.B3 ⊓ ∃r1.B1,

B1 ≡ ∃r2.A3,

A2 ≡ P2 ⊓ P3 ⊓ ∃r2.B2 ⊓ ∃r1.B3,

B2 ≡ ∃r1.A1,

A3 ≡ P2 ⊓ P3 ⊓ ∃r2.B2 ⊓ ∃r1.B3,

B3 ≡ P1 ⊓ P2;

and w.r.t. descriptive semantics, we obtain the normalized EL-TBox Tdesc:

A1 ≡ P1 ⊓ P ⊓ P2 ⊓ P3 ⊓ ∃r2.B2 ⊓ ∃r1.B3 ⊓ ∃r1.B1,

B1 ≡ ∃r2.A3,

A2 ≡ P ⊓ P2 ⊓ P3 ⊓ ∃r2.B2 ⊓ ∃r1.B3,

B2 ≡ ∃r1.A1,

A3 ≡ P ⊓ P2 ⊓ P3 ⊓ ∃r2.B2 ⊓ ∃r1.B3,

B3 ≡ P1 ⊓ P2.

⊣
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The normalization process illustrated in the above example consists of 3 essential
steps, which are

1. the introduction of auxiliary defined concepts, together with their concept
definitions, for non-defined subconcepts of existential restrictions,

2. the detection and removal of cyclic dependencies of defined concepts in the
top-level conjunction of concept definitions,

3. the substitution of defined concepts that occur in the top-level conjunction
of a concept definition with their defining concept descriptions.

As shown in the example, the second step is carried out differently w.r.t. dif-
ferent semantics, whereas the first and third steps are identical regardless what
semantics is being considered.

We generalize the 3 steps of the normalization process to arbitrary EL-TBoxes
by means of EL-normalization rules.

Definition 16 (Normalization rules). Let T be an EL-TBox, Ndef the defined
concepts of T , Nprim the primitive concepts of T , and Nrole the roles of T . The
normalization rules are defined modulo commutativity of conjunction as follows:

NF1 { A ≡ ∃r.Ĉ ⊓ C } −→ { A ≡ ∃r.B ⊓ C , B ≡ Ĉ},
with B a new concept name

NF2gfp



















A1 ≡ A2 ⊓ C1,

A2 ≡ A3 ⊓ C2,
...

Al ≡ A1 ⊓ Cl



















−→

{

Ai ≡ C1 ⊓ . . . ⊓ Cl

for 1 ≤ i ≤ l

}

NF2desc



















A1 ≡ A2 ⊓ C1,

A2 ≡ A3 ⊓ C2,
...

Al ≡ A1 ⊓ Cl



















−→

{

Ai ≡ P ⊓ C1 ⊓ . . . ⊓ Cl

for 1 ≤ i ≤ l

}

,

with P a new concept name

NF3 { A ≡ A′ ⊓ C , A′ ≡ C̄ } −→ { A ≡ C̄ ⊓ C , A′ ≡ C̄ }

where A,A′, Ai denote concept names, C and Ci any concept descriptions (possi-
bly complex concepts or ⊤), Ĉ a non-defined concept (either primitive or complex
concept), and C̄ a concept definition with no defined concepts occurring in the
top-level conjunction. Multiple occurrences of conjuncts but one are immediately
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eliminated after each application of Rules NF2gfp, NF2desc and NF3 (idempotency
of ⊓).

Applying a rule SLeft −→ SRight to T changes T to (T \SLeft) ∪ SRight. The
normalized EL-TBox of T w.r.t. gfp-semantics—denoted by normgfp(T )—is de-
fined by exhaustively applying Rules NF1; then NF2gfp; and finally, NF3. The nor-
malized EL-TBox of T w.r.t. descriptive semantics—denoted by normdesc(T )—is
defined analogously but with NF2desc instead of NF2gfp. ♦

We write |T | to denote the size of an EL-TBox T , i.e., the total number of all
occurrences of concept names and role names in T . Note that it is crucial to
consider idempotency of conjunction right after each application of the last two
rules. This is to avoid an exponential blow-up as illustrated in the following
example.

Example 17. Consider the following EL-TBox T with n ≥ 2 concept definitions:

A1 ≡ P1 ⊓ P2,

A2 ≡ A1 ⊓ A1,
...

An ≡ An−1 ⊓ An−1,

where P1, P2 and Ai are concept names. Without considering the idempotency of
⊓, the size of the normalized TBox will obviously be exponential in the size of the
original one with many occurrences of P1 and P2. Indeed, the size of normgfp(T )
as well as normdesc(T ) precisely equates to that of T . ⊣

With this EL-TBox reduction, the size of normalized EL-TBoxes may be blown up
quadratically in the size of the original ones. This is a consequence of exhaustive
application of Rules NF2gfp, NF2desc or NF3. We demonstrate this by a couple of
examples as follows.

Example 18. Let T1 be an EL-TBox containing the following concept definitions:

A1 ≡ A2 ⊓ P1,

A2 ≡ A3 ⊓ P2,
...

An ≡ A1 ⊓ Pn,

with Ai defined concepts and Pi primitive concepts for 1 ≤ i ≤ n and n ≥ 1. T1

is already normalized w.r.t. Rule NF1, and its size is linear in n (i.e., |T1| = 3 ·n).
By exhaustive application of Rule NF2gfp, we obtain the normalized EL-TBox
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normgfp(T1) as follows:

A1 ≡ P1 ⊓ P2 ⊓ · · · ⊓ Pn,

A2 ≡ P1 ⊓ P2 ⊓ · · · ⊓ Pn,
...

An ≡ P1 ⊓ P2 ⊓ · · · ⊓ Pn.

This is obviously quadratic in the size of T1 (i.e., |normgfp(T1)| = n · (n + 1)).
Now let us consider another EL-TBox T2 containing the following concept

definitions:

A1 ≡ B,

A2 ≡ B,
...

An ≡ B, and

B ≡ ∃r.A1 ⊓ ∃r.A2 ⊓ · · · ⊓ ∃r.An,

with r a role name and Ai, B defined concepts for 1 ≤ i ≤ n and n ≥ 1. The size
of T2 is linear in n (i.e., |T2| = 4 ·n+1). T2 is also normalized w.r.t. Rule NF1, and
since it contains no cycles, Rule NF2gfp is not applicable. We can however apply
the last normalization rule n times, once to each definition of Ai. As a result, we
obtain the normalized EL-TBox normgfp(T2) as follows:

A1 ≡ ∃r.A1 ⊓ ∃r.A2 ⊓ · · · ⊓ ∃r.An,

A2 ≡ ∃r.A1 ⊓ ∃r.A2 ⊓ · · · ⊓ ∃r.An,
...

An ≡ ∃r.A1 ⊓ ∃r.A2 ⊓ · · · ⊓ ∃r.An,

B ≡ ∃r.A1 ⊓ ∃r.A2 ⊓ · · · ⊓ ∃r.An,

which is quadratic in n (i.e., |normgfp(T2)| = (n + 1) · (2 · n + 1)).
The normalization of T2 w.r.t. descriptive semantics yields the same normal-

ized EL-TBox as w.r.t. gfp-semantics, i.e., normgfp(T2) = normdesc(T2). Never-
theless, this is not the case for T1. normdesc(T1) is slightly bigger than normgfp(T1),
due to the introduction of a new primitive concept. ⊣

Having seen an example of quadratic blow-up, we now want to show that the
normalization will not be worse than this in general.

Lemma 19. Let T be an EL-TBox. The normalized EL-TBoxes normgfp(T )
and normdesc(T ) w.r.t. gfp-semantics and descriptive semantics, respectively, can
be computed in time quadratic in |T |, and the resulting ontologies are of size
quadratic in |T |.
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Proof. Let us fix an EL-TBox T with defined concept names Ndef , primitive
concept names Nprim and role names Nrole. The size of the TBox increases only
linearly by exhaustive application of Rule NF1. To be more precise, Rule NF1 is
applicable at most once for each occurrence of existential restriction in T , and an
application of Rule NF1 increases the size of T only by a constant, introducing a
new defined concept. Let T ′ denote the resulting TBox after this phase of rule
applications, and N′

def (N′
prim) denote the defined (primitive) concept names in

T ′. Clearly, N′
prim remains identical to Nprim. Rule NF2gfp/NF2desc is applicable

once for each cycle of defined concepts in the top-level conjunction in concept
definitions, and this cycle is removed forever from the TBox. For Rule NF2desc,
one primitive concept name is introduced for each application. Since the num-
ber of such cycles is bounded by |N′

def |, Rule NF2gfp/NF2desc can be applied only
linearly many times. Let T ′′ be the resulting TBox after this phase with defined
concepts N′′

def and primitive concepts N′′
prim. With respect to gfp-semantics, nei-

ther primitive nor defined concept names are introduced in this phase, whereas
only linearly many new primitive concepts are introduced in case of descriptive
semantics. Thus, N′′

def and N′′
prim are bounded by |T ′|, implying |T |. Rule NF3 can

be applied once for each defined concept in the top-level conjunction of a concept
definition in T ′′, and then the defined concept is removed from this definition.
Additionally, since no new defined concepts are introduced in the top-level con-
junction by this rule application, the number of such defined concepts decreases.
Due to idempotency of NF2gfp/NF2desc, there can be at most |N′′

def | defined con-
cepts in each definition in T ′′. Since there are |N′′

def | definitions, this rule is
applicable at most |N′′

def |
2 times. This is still quadratic in the size of the original

TBox, i.e., O(|T |2).
Because of idempotency of conjunction of NF2gfp/NF2desc and NF3, each con-

cept definition in normgfp(T )/normdesc(T ) may have at most linearly many con-
juncts: in the worst case every primitive concepts (|N′′

prim|) and existential restric-
tions occurring in T ′′ (bounded by |T |). Moreover, there are only linearly many
concept definitions (|N′′

def |) in these normalized TBoxes. Thus, the size of the
normalized TBox normdesc(T ), as well as normgfp(T ), is quadratic in |T |. ❏

Since the first normalization rule only introduce auxiliary definition, subsumption
between defined concepts in T is preserved. As already claimed in Example 15, all
defined concepts in a cycle in the top-level conjunction are equivalent. Hence, the
last two rules only replace concepts defined in the top-level conjunction with their
equivalent definitions. This obviously preserves subsumption between defined
concepts in T . The following proposition shows that an EL-TBox and its normal
form are equivalent with respect to concept subsumption.

Proposition 20. Let T be an EL-TBox and A,B defined concepts in T . Then,
it holds that A ⊑T B iff A ⊑normdesc(T ) B, and A ⊑gfp,T B iff A ⊑gfp,normgfp(T ) B.
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3.2 EL-Description Graphs

Thus regardless of the complexity, we can now assume without loss of general-
ity that all TBoxes are normalized (w.r.t. either gfp- or descriptive semantics).
Normalized EL-TBoxes can be viewed as graphs whose nodes are the defined
concepts, which are labeled by sets of primitive concepts, and whose edges are
given by the existential restrictions.

Definition 21 (EL-description graphs). Let T be an EL-TBox in normal form
over primitive concepts Nprim and defined concepts Ndef . An EL-description graph
based on Nprim, Ndef and Nrole is a graph G = (V,E, L) where

• V := Ndef is the set of nodes,

• E ⊆ V × Nrole × V is the set of edges labeled by role names,

• L : V → 2Nprim is a function that labels nodes with sets of primitive
concepts.

The corresponding EL-description graph of T , denoted by GT , is a graph
GT = (VT , ET , LT ) such that VT = Ndef and if A is a defined concept with defi-
nition P1 ⊓ · · · ⊓ Pm ⊓ ∃r1.B1 ⊓ · · · ⊓ ∃rl.Bl in T , then

• LT (A) = {P1, · · · , Pm}, and

• A is the source of the edges (A, r1, B1), · · · , (A, rl, Bl) ∈ ET .
♦

The translation from EL-TBoxes to EL-description graphs works in both direc-
tions, i.e., any EL-description graph can also be viewed as an EL-TBox. For ex-
ample, the EL-description graph of the normalized EL-TBox w.r.t. gfp-semantics
(Tgfp) in Example 15 is depicted in Figure 3.1.

In the following, we write |G| to denote the size of an EL-description graph
G = (V,E, L), i.e., the summation of the cardinalities of nodes |V | and edges |E|.

Lemma 22. Let T be an EL-TBox, not necessarily in normal form, and
GT = (VT , ET , LT ) be the corresponding EL-description graph of T . Then,

1. the number of nodes |VT | is linear in the size of T , and the number of edges
|ET | is quadratic in the size of T ; and,

2. the size of GT is quadratic in the size of T .
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Figure 3.1: The EL-description graph of the normalized EL-TBox w.r.t. gfp-
semantics Tgfp in Example 15

Proof. Since the size of GT is determined by the number of nodes and edges in
GT , (2) immediately follows from (1).

Nodes in GT corresponds to defined concepts in the normalized EL-TBox of
T . A new defined concept is introduced by each application of Normalization
Rule NF1 and not by the others. Since the rule is applied only linearly many
times in the size of T , there are a linear number of nodes in GT .

An edge (A, r,B) in GT corresponds to the occurrence of the subconcept ∃r.B

in the top-level conjunction of the definition of A in the normalized EL-TBox T ′

of T . The number of occurrences of such existential restriction is bounded by the
size of T ′, and by Lemma 19 the size of T ′ is quadratic in the size of T . Thus,
|ET | is quadratic in the size of T . ❏
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Chapter 4

A Cubic-time Algorithm for
ELgfp-Subsumption

In this section, we present a cubic-time algorithm for ELgfp-subsumption. This
is attained with the help of the characterization of ELgfp-subsumption through
so-called simulations of EL-description graphs and an efficient algorithm for com-
puting such simulations [8]. More precisely, we have shown how to translate EL-
TBoxes into EL-description graphs w.r.t. gfp-semantics. Next, we will introduce
the notion of a simulation between nodes of an EL-description graph and show
some useful properties of simulations. To put it another way, we reduce ELgfp-
subsumption w.r.t. an EL-TBox to the simulation problem on the corresponding
EL-description graph.

Simulations are binary relations between nodes of two EL-description graphs
that respect labels and edges in the sense defined below.

Definition 23 (Simulation). Let Gi = (Vi, Ei, Li) (for i = 1, 2) be two EL-
description graphs. The binary relation Z ⊆ V1 × V2 is a simulation from G1 to
G2 iff

(S1) (v1, v2) ∈ Z implies L1(v1) ⊆ L2(v2); and

(S2) if (v1, v2) ∈ Z and (v1, r, v
′
1) ∈ E1, then there exists a node v′

2 such that
(v′

1, v
′
2) ∈ Z and (v2, r, v

′
2) ∈ E2.

We write Z : G1 ≃ G2 to express that Z is a simulation from G1 to G2. ♦

It is not hard to convince ourselves that the set of all simulations from G1 to G2 is
closed under set union, i.e., if Z1 : G1 ≃ G2 and Z2 : G1 ≃ G2 are simulations from
G1 to G2, then so is their union Z1 ∪Z2 : G1 ≃ G2. As a result, there always exists
the greatest simulation Ẑ from G1 to G2 that is obtained by taking the union of
all the simulations between those two graphs.
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Definition 23 also covers the case where G1 = G = G2. In this case, we write
Z : G ≃ G to express that Z is a simulation on G. The identity relation on the
nodes of G is a simulation on G and, consequently, is contained in the greatest
simulation on G.

In the following, let T be a normalized EL-TBox w.r.t. gfp-semantics with primi-
tive concepts Nprim, defined concepts Ndef , and roles Nrole. The characterization of
ELgfp-subsumption through simulations on EL-description graph has been shown
in [1]. The result is stated by the following theorem.

Theorem 24. [Baader] Let A,B be defined concepts in T and GT the corre-
sponding EL-description graph of T . Then the following are equivalent:

1. A ⊑gfp,T B.

2. There is a simulation Z : GT ≃ GT such that (B,A) ∈ Z.

This theorem provides us with a means to answer ELgfp-subsumption queries
w.r.t. an EL-TBox T by computing a simulation on the EL-description graph
GT . As mentioned earlier in this chapter, the greatest simulation on GT always
exists and contains all the simulations on GT . Consequently, in order to check
Condition (2) of the above theorem, we may alternatively examine whether the
greatest simulation Ẑ : GT ≃ GT satisfies (B,A) ∈ Ẑ.

In [8], an efficient algorithm EfficientSimilarity for computing the greatest
simulation of a graph is presented. Its time complexity is shown to be O(mn),
where m is the number of edges and n is the number of nodes of the graph
(assuming that m ≥ n). The algorithm takes as an input a graph with un-
labeled edges; in our framework, this corresponds to admitting only a single
role name. Thus, this algorithm cannot be immediately applied to our EL-
description graphs, since the edges of EL-description graphs are labeled with
(potentially different) role names from Nrole. To this end, we present a new
algorithm—called ELgfp-EfficientSimilarity—which is a generalization of the
EfficientSimilarity algorithm to take into account labeled edges. ELgfp-

EfficientSimilarity is shown in Figure 4.1.

For each node v, the set sim(v) contains those nodes that are candidates for
simulating v. Initially, sim(v) contains the nodes that satisfy Condition S1 in
Definition 23 and have an r-successor if v has for all r ∈ Nrole. We denote by
post(u, r) the set of all r-successors of u and similarly by pre(u, r) the set of all r-
predecessors of u. For a set U of nodes, we define pre(U, r) :=

⋃

u∈U pre(u, r). We
use a mapping remove : V ×R → 2V as an auxiliary data structure. Throughout
the WHILE loop, the edge condition of a simulation—i.e., Condition S2 in Defini-
tion 23—is checked. The nodes in remove(v, r) are to be removed from sim(u)
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procedure ELgfp-EfficientSimilarity:

Input: an edge-labeled graph G = (V,E, L), where

E ⊆ (V × R × V ) is a set of R-labeled edges.

Output: for each node v ∈ V , the simulator set sim(v).

{ Initialization }
for all v ∈ V do

sim(v) := { u ∈ V | L(v) ⊆ L(u) and
post(v, r) 6= ∅ ⇒ post(u, r) 6= ∅ for all r ∈ R };

remove(v, r) := pre(V, r)\pre(sim(v), r); for all r ∈ R

pre∗(v) := { (u, r) | u ∈ pre(v, r) for all r ∈ R };
od;

{ Sharpening Loop }
while there is a node v ∈ V and an edge-label r ∈ R

such that remove(v, r) 6= ∅ do
for all u ∈ pre(v, r) do

for all w ∈ remove(v, r) do
if w ∈ sim(u) then

sim(u) := sim(u)\{w};
for all (w′, r′) ∈ pre∗(w) do

if post(w′, r′) ∩ sim(u) = ∅ then
remove(u, r′) := remove(u, r′) ∪ {w′};

fi
od

fi
od

od;
remove(v, r) := ∅;

od;

Figure 4.1: The algorithm for computing the greatest simulation of an EL-
description graph.
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for u ∈ pre(v, r). In this case, we say that sim(u) is sharpened with respect
to the edge u

r
−→ v. In addition to the data structures used in the algorithm

EfficientSimilarity, we have an auxiliary mapping pre∗ : V → 2V ×R, which
maps each node v to the set of all tuples (u, r) if u is an r-predecessor of v.

With the set R singleton, i.e., the graph has no or a single edge-label, our al-
gorithm is more or less identical to EfficientSimilarity. In fact, the mappings
pre, post and remove with the lone edge-label boil down to the corresponding
mappings in EfficientSimilarity without edge-label. The only difference is
Condition S1 of a simulation in Definition 23, where we use a label containment
test in place of a label equivalence test. This is reflected the initialization of
sim(v) in the algorithm.

By applying the same arguments as in [8], it is not hard to prove that
ELgfp-EfficientSimilarity can compute the simulator sets in time O(|V | · |E|)
assuming |V | ≤ |E|. In case of loose graphs, i.e., |V | ≥ |E|, the time complexity
of our algorithm is bounded by O(|V |2).

We are now ready to prove the following corollary.

Corollary 25. Subsumption between concepts in the description logic EL w.r.t.
a TBox T and greatest fixpoint semantics can be computed in cubic time in the
size of T , i.e., O(|T |3).

Proof. Let GT = (VT , ET , LT ) be the corresponding EL-description graph of T .
By Theorem 24, it suffices to show the complexity of ELgfp-EfficientSimilarity

algorithm with respect to GT . By Lemma 22, |VT | is bounded by |T | whereas
|ET | is bounded by |T |2. If |V | ≥ |E|, then the complexity of ELgfp-Efficient-

Similarity is O(|VT | · |ET |), i.e., O(|T |3). Otherwise, the complexity is bounded
by O(|V |2), i.e., O(|T |2). ❏
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Chapter 5

A Quartic-time Algorithm for
ELdesc-Subsumption

Let T be an EL-TBox and GT the corresponding EL-description graph. Since
every gfp-model of T is also a model of T , A ⊑T B implies A ⊑gfp,T B. Con-
sequently, A ⊑T B implies that there is a simulation Z : GT ≃ GT such that
(B,A) ∈ Z. In order for the implication in the other direction to hold, an
additional property on the simulation Z must be satisfied. It has been shown
in [1] that this property is synchronization. In this chapter, we summarize the
characterization of ELdesc-Subsumption and present an essential corollary. Next,
we introduce the notion of EL-description formulae and develop a reduction
from ELdesc-subsumption to the satisfiability problem of Horn formulae (Horn-
SAT). We then use a linear-time algorithm for Horn-SAT [9] to decide ELdesc-
subsumption. Ultimately, we also show that, for a given EL-TBox T , the whole
algorithm for ELdesc-subsumption takes quadratic time in the size of the corre-
sponding EL-description graph GT . That is O(|T |4), since, as shown in Chapter 3,
the size of GT is quadratic in the size of T .

Similar to Chapter 4, we assume without loss of generality that EL-TBoxes are
normalized w.r.t. descriptive semantics. In the following, let T be a normalized
EL-TBox and GT the corresponding EL-description graph of T . Subsumption
w.r.t. T and descriptive semantics can be characterized through synchronized
simulation on GT similarly to Theorem 24, where synchronized simulation is con-
sidered instead of the normal simulation. The exact definition of synchronized
simulation relation is omitted in this paper (please refer to [1] for this).

In order to decide the existence of a synchronized simulation that relates the
defined concepts in question, an appropriate synchronized simulation YT : GT ≃
GT has been introduced in [1] as follows:

Definition 26. Let T be a normalized EL-TBox and GT the corresponding EL-
description graph. The synchronized simulation relation YT is defined as

⋃

n≥0 Yn,

28



where the relations Yn are defined by induction on n: Y0 is the identity on the
nodes of GT . If Yn−1 is already defined, then

Yn := Yn−1 ∪ { (A,B) | (1) LT (A) ⊆ LT (B),
(2) (A, r1, A1), . . . , (A, rl, Al) are all the edges

in GT with source A, and
(3) there are edges (B, r1, B1), . . . , (B, rl, Bl)

in GT such that (A1, B1) ∈ Yn−1,. . . ,

(Al, Bl) ∈ Yn−1. }

♦

The following corollary immediately follows from Theorem 29 and Proposition
36 in [1].

Theorem 27. [Baader] Let T be an EL-TBox, A,B be defined concepts in
T , GT the corresponding EL-description graph of T , and YT the synchronized
simulation relation for T . Then, the following are equivalent:

• A ⊑T B.

• (B,A) ∈ YT .

This provides us with a way to answer subsumption queries in EL w.r.t. de-
scriptive semantics by constructing the corresponding synchronized simulation
relation YT and looking up in this relation the specific pair of defined concepts
in question.

In the following we present a method to compute the relation YT using a
linear-time Horn-SAT algorithm. Before doing this, we must introduce some
notation.

Definition 28 (Syntax of Horn formula). Let P be a set of propositional
letters. Then,

• a literal is either a propositional letter P from P (a positive literal) or the
negation ¬P of a propositional letter P from P (a negative literal);

• a Horn clause is a disjunction of literals, with at most one positive literal;
and,

• a Horn formula is a conjunction (set) of Horn clauses.

A Horn clause with one positive literal P ∨ ¬P1 ∨ . . . ∨ ¬Pl where l ≥ 0 and
{P, P1, . . . , Pl} ⊆ P can be written as an implication P ← P1 ∧ . . . ∧ Pl. We call
P the head of the clause and P1 ∧ . . . ∧ Pl the body of the clause. Horn clauses
with an empty body (no negative literals) are called facts. ♦
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It should be noted that the set of all Horn formulae is a subset of Propositional
Logic. Therefore, the semantics of Horn formulae is defined based on that of
Propositional Logic, i.e., truth assignments. A truth assignment A assigns to each
propositional letter P ∈ P a truth value, either True or False. This is denoted
by PA. A can inductively be extended to arbitrary propositional formulae in the
obvious way. If H is a Horn formula, then an assignment A is a model of H if
HA = True, written A |= H. If A is not a model of H, we write A 6|= H. H is
satisfiable if it has at least one model; otherwise, H is said to be unsatisfiable.

Definition 29 (Logical consequence). Let H be a Horn formula (i.e., a set
of Horn clauses) and P a propositional letter. Then, P is valid in or a (logical)
consequence of H, denoted by H |= P if, and only if

A |= H implies PA = True for every model A of H.

We write H 6|= P if P is not a consequence of H. ♦

Since Horn formulae enjoy the so-called model intersection property (see e.g.,
[19]):

If A1 and A2 are models of H, then so is A1 ∩ A2,

it holds that for each Horn formula H there is a least model MH, i.e., the in-
tersection of all its models. Moreover, in order to check whether a propositional
letter P logically follows from a Horn formulae H it suffices to consider only the
least model MH of H.

Proposition 30. Let H be a Horn formula, MH the least model of H, and P a
propositional letter. Then, H |= P iff MH |= P .

The least model can be computed—inductively on the length of derivation—by
means of a meaning function f : P → P. Let H be a Horn formula. The meaning
function fH of H is defined inductively as follows:

fH ↑ 0 := fH(∅) = {P | P ← ∈ H}
fH ↑ (n + 1) := fH(fH ↑ n) = fH ↑ n ∪ {P | P ← P1 ∧ . . . ∧ Pl ∈ H

and {P1, . . . , Pl} ⊆ fH ↑ n}

The least model H is defined as the least fixpoint of fH:

MH := lfp(fH) =
⋃

n≥0

(fH ↑ n).

First, we transform the relation YT into a Horn formula. Then, we give a char-
acterization of ELdesc-subsumption through satisfiability of Horn formulae.
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Definition 31 (EL-description formulae). Let T be an EL-TBox, GT =
(VT , ET , LT ) the corresponding EL-graph, and YT the corresponding synchro-
nized simulation relation. The corresponding EL-description formula of T de-
noted by HT is the smallest set of Horn clauses containing propositional letters
of the following forms:

• PA,B : if A,B ∈ VT , and

• P(A,r,A′),B : if A,B ∈ VT and (A, r, A′) ∈ ET ;

and containing the following Horn clauses:

(H1) PA,A ←− for all nodes A in VT ,

(H2) P(A,r,A′),B ←− PA′,B′ for all edges (A, r, A′) and
(B, r,B′) in ET ,

(H3) PA,B ←−
∧

(A,r,A′)∈ET
P(A,r,A′),B for all nodes A,B in VT with

LT (A) ⊆ LT (B)

We call an H3 clause H ←− B (i.e., with the head H and the body B) the
supporting clause for H. ♦

Intuitively, the propositional letter PA,B encodes the fact that (A,B) ∈ YT , and
the propositional letter P(A,r,A′),B says whether or not the pair (A,B) respects
the condition (2) and (3) of YT w.r.t. the edge (A, r, A′) in GT , i.e., there is an
edge (B, r,B′) ∈ GT for some B′ ∈ VT such that (A,B) ∈ YT .

While H1 encodes the identity relation on the nodes of GT (Y0), H2 and H3

encode the construction of Yn, provided that Yn−1 has already been computed.
In fact, the existence of the following H3 Horn clause

PA,B ←−
∧

(A,r,A′)∈ET

P(A,r,A′),B

in HT implies that Condition (1) of the construction of Yn for some n > 0 is
satisfied. Condition (2) and (3) of the same construction step are satisfied iff the
body of this Horn clause logically follows from HT (i.e., HT |= P(A,r,A′),B for all
(A, r, A′) in ET ).

Before we state this characterization formally, let us consider an example il-
lustrating the transformation of an EL-description graph into its corresponding
EL-description formula.

Example 32. Let GT = (VT , ET , LT ) be an EL-description graph for an EL-
TBox T , which has at least the nodes and edges shown in Figure 5.1. Let HT be
the corresponding EL-description formula of T . Assume that the labels of nodes
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r1 r2 r2

A

A1 A2 A′
2

r1 r1 r2

B2B′
1B1

Figure 5.1: EL-graph fragments for Example 32

are irrelevant, i.e., the labels of all nodes are identical. With respect to the nodes
A and B, HT contains at least the following Horn clauses:

PA,A ←−

PB,B ←−

P(A,r1,A1),B ←− PA1,B1

P(A,r1,A1),B ←− PA1,B′
1

P(A,r2,A2),B ←− PA2,B2

P(A,r2,A′
2
),B ←− PA′

2
,B2

P(B,r1,B1),A ←− PB1,A1

P(B,r1,B′
1
),A ←− PB′

1
,A1

P(B,r2,B2),A ←− PB2,A2

P(B,r2,B′
2
),A ←− PB2,A′

2

PA,B ←− P(A,r1,A1),B ∧ P(A,r2,A2),B ∧ P(A,r2,A′
2
),B

PB,A ←− P(B,r1,B1),A ∧ P(B,r1,B′
1
),A ∧ P(B,r2,B2),A

⊣

Theorem 33. Let T be a normalized EL-TBox, YT the corresponding synchro-
nized simulation relation of T , and HT the corresponding EL-description formula
of T . If A and B are defined concepts in T , then the following are equivalent:

1. (A,B) ∈ YT

2. HT |= PA,B.
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Proof.

“(1)⇒(2)” (A,B) ∈ YT implies that there exists an n ≥ 0 such that (A,B) ∈
Yn. Hence, it suffices to show that (A,B) ∈ Yn implies HT |= PA,B for all
n ≥ 0. We prove this by induction on n.

n = 0 : Y0 is the identity on the nodes of GT ; thus, A = B. H1 contains a
fact PA,B implying that HT |= PA,B.

n > 0 : (A,B) ∈ Yn iff the pair (A,B) satisfies Conditions (1) to (3) in
Definition 26. By definition of HT , Condition (1) implies the existence
of an H3 clause

PA,B ←− P(A,r1,A1),B ∧ . . . ∧ P(A,rl,Al),B,

where (A, r1, A1), . . . , (A, rl, Al) are all out-going edges from A. Condi-
tions (2) and (3) ensure for each out-going edge (A, ri, Ai) from A that
there exists an out-going edge (B, ri, Bi) from B such that (Ai, Bi) ∈
Yn−1. So, HT must contains an H2 clause P(A,ri,Ai),B ←− PAi,Bi

. By
I.H., it holds that HT |= PAi,Bi

implying HT |= P(A,ri,Ai),B. Since all
conjuncts in the body of the above H3 clause are logical consequences
of HT , so is the head PA,B. That is, HT |= PA,B.

“(2)⇒(1)” With Proposition 30 it suffices to prove that MHT
|= PA,B implies

(A,B) ∈ YT . We prove this by induction on the meaning function of MHT
:

PA,B ∈ fHT
↑ 0 : Thus, there must be a fact PA,B ← in HT , and this can

only be if A = B. Then, by the definition of YT , (A,B) ∈ Y0 ⊆ YT .

PA,B ∈ fHT
↑ (n + 1) : Thus, there must be a supporting clause (H3) of the

form

PA,B ←− P(A,r1,A1),B ∧ . . . ∧ P(A,rl,Al),B (∗)

where (A, r1, A1), . . . , (A, rl, Al) are all out-going edges from A such
that {P(A,r1,A1),B, . . . , P(A,rl,Al),B} ⊆ fHT

↑ n. Let us now concentrate
on each propositional letter P(A,ri,Ai),B with 1 ≤ i ≤ l. Since P(A,ri,Ai),B

is in fHT
↑ n, HT must contains an H2 clause of the form

P(A,ri,Ai),B ←− PAi,Bi

such that PAi,Bi
is in fHT

↑ (n − 1), and thus also in fHT
↑ n.

Hence there must exist an out-going edge (B, ri, Bi) from B. By I.H.,
(Ai, Bi) ∈ YT . The existence of (∗) implies that Condition (1) of Defi-
nition 26 is satisfied for the pair (A,B). Since each PAi,Bi

corresponds
to a part of Condition (2) and (3) of Definition 26 w.r.t. the edge
(A, ri, Ai) and there exists the corresponding edge (B, ri, Bi) such that
(Ai, Bi) ∈ YT , this concludes (A,B) ∈ YT .

❏
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In logics with negation, the problem of logical consequence can be reduced to the
satisfiability problem, i.e., H |= P is equivalent to that H ∪ ¬P is unsatisfiable.
Consequently, Theorem 27 together with Theorem 33 reduces the problem of
ELdesc-subsumption to the satisfiability problem of Horn formula.

We use this reduction to devise an algorithm for ELdesc-subsumption with
the help of a linear-time algorithm for Horn-SAT presented in [9]. For a Horn
formula H, we write |H| to denote its size, i.e., the number of all occurrences of
propositional letters in H. We prove that ELdesc-subsumption can be decided in
time quadratic in the size of the EL-description graph, i.e., O(|GT |

2). Due to the
quadratic size of GT with respect to the size of T , the algorithm will need the
time O(|T |4). Since Horn-SAT is decidable in linear time, it suffices to show that
|HT | is quadratic in |GT |.

Lemma 34. Let T be an EL-TBox and HT the corresponding EL-description
formula of T . Then |H| is bounded by O(|T |4).

Proof. Let GT = (VT , ET , LT ) be the corresponding EL-graph of T . We have
shown in Lemma 22 that the size of GT is quadratic in the size of T . Thus,
it suffices to show that |HT | is quadratic in |GT |. We make a case distinction
according to the the syntactic form of implications in HT . In the following, we
use #outedgesX to denote the number of out-going edges from node X.

H1 : There are |VT | such implications, each with only a single occurrence of a
propositional letter. Hence, the total size of H1 clauses |H1| is bounded by
|GT |.

H2 : Since each clause has exactly 2 occurrences of propositional letters, only the
number of such clauses is relevant. By definition, the number of H2 clauses
is bounded by |ET |

2, which is smaller than |GT |
2.

H3 : For a fixed node B, there are at most |VT | clauses of this form, one for each
node A. The size of each such clause is #outedgesA + 1. So, the total size
of H3 clauses |H3| is

∑

B

∑

A #outedgesA + 1, which is |VT | · (|ET |+ |VT |).
This is bounded by |GT |

2.

Since HT contains only Horn clauses of these forms, its size is bounded by
O(|GT |

2), i.e., quadratic in the size of GT . ❏

Corollary 35. Subsumption between concepts in the description logic EL w.r.t.
a TBox T and descriptive semantics can be computed in quartic time in the size
of T , i.e., O(|T |4).
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Chapter 6

A Cubic-time Algorithm for
ELgci-Subsumption

In the previous two chapters, we have seen characterizations of and algorithms for
subsumption w.r.t. EL-TBoxes. The aim of this chapter is to present a character-
ization of and an efficient algorithm for subsumption w.r.t. general EL-TBoxes
(i.e., sets of general concept inclusions: GCIs). It has been shown in [4] that
ELgci-subsumption can be decided in polynomial time. A natural question is
what is the exact degree of the polynomial.

As mentioned in Chapter 2, both ELgci and ELdesc use descriptive semantics,
but ELgci is more expressive than ELdesc. In other words, an ELdesc-TBox can be
translated to an ELgci-TBox, but not vice versa in general. This means that we
can compute ELdesc-subsumption using the algorithm presented in this chapter
instead of that in Chapter 5. The fact that we can decide ELgci-subsumption—
and thus also ELdesc-subsumption—in time cubic in the size of TBoxes shows
that the algorithm in Chapter 5 is not optimal. The main reason is due to the
normalization in Section 3.1, which potentially leads to quadratic blowup already
in normalization phase.

Since we explicitly allow for GCIs in ELgci, as discussed in Section 2.2 the
boundary between primitive and defined concept names vanishes. As a result,
we can neither use the old notion of normalized EL-TBoxes, nor can we char-
acterize ELgci-subsumption through simulation on EL-description graphs.1 For
this reason together with the quadratic blowup of normalization in Section 3.1,
we will present a fresh notion of normalization and a characterization of ELgci-
subsumption. Similar to Chapter 5, the algorithm for ELgci-subsumption applies
the technique of translating general EL-TBoxes to Horn formulae. Then, the
linear-time algorithm for Horn-SAT [9] is exploited.

1EL-description graphs have defined concepts as nodes and primitive concepts as nodes’
labels.
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We extend the notion |T | to general EL-TBoxes with the same meaning, i.e.,
the total number of occurrences of role and concept names in T . The presented
algorithm needs time cubic in the size of the general EL-TBox T , i.e., O(|T |3).

6.1 ELgci Normalization

Definition 36 (GCI-normalized EL-TBox). Let T be a general EL-TBox
over Ncon and Nrole. T is GCI-normalized (or in GCI-normal form) iff T contains
only GCIs of the following forms:

GCI1 A ⊑ B

GCI2 A1 ⊓ A2 ⊑ B

GCI3 A ⊑ ∃r.B

GCI4 ∃r.A ⊑ B

where A,A1, A2, and B are concept names from Ncon or the top concept ⊤, and
r is a role name from Nrole. ♦

A general EL-TBox can be transformed into GCI-normal form by exhaustively
applying the following normalization rules.

Definition 37 (GCI-normalization rules). Let T be a general EL-TBox over
concept names Ncon and role names Nrole. The GCI-normalization rules are de-
fined as follows:

NF1 C
.
= D −→ { C ⊑ D,D ⊑ C }

NF2 Ĉ ⊓ D ⊑ E −→ { Ĉ ⊑ A,A ⊓ D ⊑ E }

NF3 C ⊓ D̂ ⊑ E −→ { D̂ ⊑ A,C ⊓ A ⊑ E }

NF4 ∃r.Ĉ ⊑ D −→ { Ĉ ⊑ A,∃r.A ⊑ D }

NF5 Ĉ ⊑ D̂ −→ { Ĉ ⊑ A,A ⊑ D̂ }

NF6 B ⊑ ∃r.Ĉ −→ { B ⊑ ∃r.A,A ⊑ Ĉ }

NF7 B ⊑ C ⊓ D −→ { B ⊑ C,B ⊑ D }

where r denotes a role name, B a concept name, and A a new concept name.
Additionally, let Ĉ, D̂ denote non-atomic concept descriptions (i.e., complex) and
C,D,E any concept descriptions (possibly complex).

Applying a rule G −→ S to T changes T to (T \{G}) ∪ S. The GCI-
normalized TBox, denoted by normgci(T ), is defined by exhaustively applying
Rules NF1 to NF4 (Phase 1); and after that, exhaustively applying Rules NF5 to
NF7 (Phase 2). ♦
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Lemma 38. Let T be a general TBox. The GCI-normalized TBox normgci(T )
of T can be computed in linear time in the size of T . The resulting ontology
normgci(T ) is of linear size in the size of T .

Proof. The size of T is increased only linearly by exhaustive application of
Rule NF1. Since this rule will never become applicable as a consequence of the
remaining Rules, we may restrict our attention to Rules NF2 to NF7. Rules NF2

and NF3 are each applicable at most once for each occurrence of “⊓” on the left-
hand side of a GCI in T . Similarly, the number of application of Rule NF4 is
bounded by the occurrences of “∃” on the left-hand side of a GCI in T . A single
application of one of the rules in Phase 1—NF2 to NF4—increases the size of T
only by a constant, introducing a new concept name and splitting one GCI to
two. Therefore, exhaustive application of the rules in Phase 1 takes linear time
and produces a TBox T ′ of size linear in the size of T .

Rule NF5 is applicable at most once for each GCI in T ′ and results in two split
GCIs of linear size. Analogous to Phase 1, NF6 (NF7 respectively) is applicable
once for each occurrence of “∃” (“⊓” respectively) in T ′. A single application of
Rule NF6 increases the size of T ′ only by a constant. This holds also for Rule
NF7, since the left-hand side of the GCIs in this rule is a concept name (i.e.,
of constant size). Thus, exhaustive application of the rules in Phase 2—NF5 to
NF7—yields a TBox of size linear in the size of T . ❏

It is crucial that we divide GCI-normalization rules into two phases and exhaus-
tively apply rules in Phase 1 first. If we allow the rules to be applied arbitrarily,
the size of the resulting GCI-normalized TBox may blow up quadratically in the
original TBox’s size. The following example illustrates this situation.

Example 39. Let us consider a general EL-TBox T with the sole GCI:

A1 ⊓ · · · ⊓ An ⊑ B1 ⊓ · · · ⊓ Bn (∗)

where Ai, Bi are concept names for an n ≥ 3 and 1 ≤ i ≤ n. Note that T is
not yet normalized w.r.t. Phase 1 because the left-hand side of (∗) is an n-ary
conjunction with n ≥ 3. In other words, the rules in Phase 1, e.g., Rule NF2 or
NF3, is applicable.

By exhaustive application of Rule NF7 to (∗), we obtain a general TBox T ′

as follows:

A1 ⊓ · · · ⊓ An ⊑ B1

A1 ⊓ · · · ⊓ An ⊑ B2

...

A1 ⊓ · · · ⊓ An ⊑ Bn

Though T ′ is not yet in GCI-normal form, its size is already quadratic in n, i.e.,
O(n2). The reason is that Rule NF7 replicates for each application the left-hand
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side of the GCI which is A1 ⊓ · · · ⊓ An in this case. This quadratic blowup will
not happen if we exhaustively apply the rules in Phase 1 before. ⊣

Now, let us consider Example 12 back on Page 13. We will illustrate the GCI-
normalization process step by step by applying the GCI-normalization rules to
the medical ontology.

Example 40. Let T be the general TBox presented in Example 12. T comprises
4 GCIs and no concept definitions. Therefore, normalization Rule NF1 is never
applied. The first three GCIs are already normalized with respect to Phase 1.
Rule NF3 applies once to the last GCI

Disease ⊓ ∃has loc.∃cont in.Heart ⊑ Heartdisease ⊓ ∃is state.NeedsTreatment

splitting it up into two GCIs:

{

Disease ⊓ A1 ⊑ Heartdisease ⊓ ∃is state.NeedsTreatment

∃has loc.∃cont in.Heart ⊑ A1

}

The first of which is then normalized with respect to Phase 1, while the second
is not. Applying Rule NF4 to it results again in two GCIs. Let T ′ denote the
normalized TBox with respect to Phase 1; T ′ has 6 GCIs as follows:

Pericardium ⊑ Tissue ⊓ ∃cont in.Heart

Pericarditis ⊑ Inflammation ⊓ ∃has loc.Pericardium

Inflammation ⊑ Disease ⊓ ∃acts on.Tissue

Disease ⊓ A1 ⊑ Heartdisease ⊓ ∃is state.NeedsTreatment

∃has loc.A2 ⊑ A1

∃cont in.Heart ⊑ A2

Now, Rule NF5 is applicable only to the fourth GCI changing it to

{

Disease ⊓ A1 ⊑ A3

A3 ⊑ Heartdisease ⊓ ∃is state.NeedsTreatment

}

The first GCI of the above set, as well as the last two GCIs of T ′, is in GCI-normal
form. The rest will also be GCI-normalized after an application of Rule NF7 once
for each GCI. The final general TBox T ′′ in GCI-normal form is composed of 11
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GCIs as follows:

Pericardium ⊑ Tissue

Pericardium ⊑ ∃cont in.Heart

Pericarditis ⊑ Inflammation

Pericarditis ⊑ ∃has loc.Pericardium

Inflammation ⊑ Disease

Inflammation ⊑ ∃acts on.Tissue

Disease ⊓ A1 ⊑ A3

A3 ⊑ Heartdisease

A3 ⊑ ∃is state.NeedsTreatment

∃has loc.A2 ⊑ A1

∃cont in.Heart ⊑ A2

⊣

It is not hard to see that all GCI-normalization rules preserve concept subsump-
tion. Thus, a general EL-TBox and its GCI-normal form are equivalent with
respect to concept subsumption.

Proposition 41. Let T be a general EL-TBox over concept names Ncon and role
names Nrole. If A,B ∈ Ndef , then A ⊑gci,T B iff A ⊑gci,normgci(T ) B.

6.2 Implication Sets

In the following, we assume without loss of generality that general EL-TBoxes
are GCI-normalized. For the rest of this section, we fix a GCI-normalized EL-
TBox T over concept names Ncon and role names Nrole. To simplify notation, let
N⊤

con := Ncon ∪ {⊤}.
Our strategy is to compute for every concept A ∈ N⊤

con a set of concepts
ST (A) ⊆ N⊤

con with the following property: for all models I = (∆I , ·I) of T and
all individuals x ∈ ∆I , if the concept A holds at x in I (i.e., x ∈ AI) then every
concept in ST (A) also holds at x in I. With the simple structure of GCIs in
GCI-normalized TBoxes, we define such set as follows.

Definition 42 (Implication set). For every concept name A in N⊤
con, the impli-

cation set ST (A) is defined by
⋃

n≥0 Sn(A) where the sets Sn are defined induc-
tively on n: S0(A) := {A,⊤}. If Sn(B) is already defined for all concept names
B ∈ N⊤

con, then Sn+1(A) is the result of exhaustive application of the extension
rules in Figure 6.1. ♦

The set Sn(A) is said to be complete if no extension rules are applicable. We now
present the result showing that implication sets characterize ELgci-subsumption.
For the full proof, please refer to [5].

39



IS1 If A ∈ Sn(B), A ⊑ C ∈ T , and C 6∈ Sn(B)
then Sn+1(B) := Sn(B) ∪ {C}

IS2 If {A1, A2} ⊆ Sn(B), A1 ⊓ A2 ⊑ C ∈ T ,
and C 6∈ Sn(B)
then Sn+1(B) := Sn(B) ∪ {C}

IS3 If A1 ∈ Sn(B), A1 ⊑ ∃r.A2 ∈ T ,
A3 ∈ Sn(A2), ∃r.A3 ⊑ C ∈ T , and C 6∈ Sn(B)
then Sn+1(B) := Sn(B) ∪ {C}

Figure 6.1: Extension Rules for Implication Sets

Theorem 43. Let T be a GCI-normalized EL-TBox over concept names Ncon

and role names Nrole, and A,B concept in N⊤
con. Then, A ∈ ST (B) if and only if

B ⊑T A.

6.3 ELgci-Description Formulae

So far, we have a characterization of ELgci-subsumption through the notion of
implication sets. In this section, we will show how the extension rules depicted
in Figure 6.1 can be encoded using Horn formulae.

Definition 44 (ELgci-description formulae). Let T be a GCI-normalized EL-
TBox over concept names Ncon and role names Nrole. The corresponding ELgci-
description formula of T , denoted by HT , is the smallest set of Horn clauses
containing only propositional letters of the form

Pα,β

where {α, β} ⊆ N⊤
con and comprising the following Horn clauses:

(H0) PC,C ←− for all C ∈ Ncon

P⊤,C ←−

(H1) PB,C ←− PA,C for all C ∈ Ncon and for each
GCI A ⊑ B ∈ T

(H2) PB,C ←− PA1,C ∧ PA2,C for all C ∈ Ncon and for each
GCI A1 ⊓ A2 ⊑ B ∈ T

(H3) PB,C ←− PA,C ∧ PB2,B1
for all C ∈ Ncon and for GCIs
{A ⊑ ∃r.B1,∃r.B2 ⊑ B} ⊆ T .
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We call a clause H ←− B (i.e., with head H and body B) the supporting clause
for H. ♦

Intuitively, the propositional letter PA,B encodes the fact that A ∈ ST (B), which
in turns means that the concept B is subsumed by the concept A. The facts H0

PC,C ←− and P⊤,C ←−

encodes the initialization of the implication sets of the concept name C, i.e.,
S0(C), asserting that C is subsumed by the top-concept and the concept name
C itself.

Horn clauses H1, H2 and H3 correspond to the extension rules IS1, IS2 and
IS3 respectively. The existence of a supporting clause H ←− B together with
the validity of B (HT |= B) implies the applicability of the corresponding rule.
Additionally, as the correspondence of post-condition of the rule application, the
head H becomes valid in the ELgci-description formula, i.e., HT |= H.

The following theorem formally states this characterization.

Theorem 45. Let T be a GCI-normalized EL-TBox over Ncon and Nrole and HT

the corresponding ELgci-description formula of T . If A and B are concept names
in N⊤

con, then the following are equivalent:

1. A ∈ ST (B).

2. HT |= PA,B.

Proof.

“(1)⇒(2)” A ∈ ST (B) implies that there exists an n ≥ 0 such that A ∈ Sn.
Hence, it suffices to show that A ∈ Sn(B) implies HT |= PA,B for all n ≥ 0.
We prove this by induction on the minimal n with A ∈ Sn(A).

n = 0 : Since S0(B) := {⊤, B}, A is either ⊤ or B. It holds trivially by
H0 that HT |= PA,B.

n > 0 : Due to the minimality condition on n, A ∈ Sn(B) but A 6∈
Sn−1(B). So, there must be an extension rule which is applicable to
the implication set Sn−1(B). As we have 3 such extension rules, we
analyse them one by one as follows:

• Applicability of Rule IS1 implies that there exists A′ ∈ N⊤
con such

that A′ ∈ Sn−1(B) and A′ ⊑ A ∈ T . By I.H., HT |= PA′,B. Since
A′ ⊑ A ∈ T and B ∈ Ncon, the definition of HT implies there is
an H1 clause PA,B ←− PA′,B. These altogether yield HT |= PA,B.
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• Applicability of Rule IS2 implies that there exist A1 and A2 in N⊤
con

such that {A1, A2} ⊆ Sn−1(B) and A1 ⊓ A2 ⊑ A ∈ T . By I.H.,
HT |= PA1,B and HT |= PA2,B, i.e., HT |= PA1,B ∧ PA2,B. Since
A1 ⊓ A2 ⊑ A ∈ T and B ∈ Ncon, the definition of HT implies
there is an H2 clause PA,B ←− PA1,B ∧ PA2,B. These altogether
yield HT |= PA,B.

• Applicability of Rule IS3 implies that there exist A1, A2, and A3 in
N⊤

con and r ∈ Nrole such that A1 ∈ Sn−1(B) and A1 ⊑ ∃r.A2 ∈ T
and A3 ∈ Sn−1(A2) and ∃r.A3 ⊑ A ∈ T . By I.H., HT |= PA1,B

and HT |= PA3,A2
, i.e., HT |= PA1,B ∧ PA3,A2

. Since
{A1 ⊑ ∃r.A2,∃r.A3 ⊑ A} ⊆ T and B ∈ Ncon, the definition of
HT implies there is an H3 clause PA,B ←− PA1,B ∧ PA3,A2

. These
altogether yield HT |= PA,B.

“(2)⇒(1)” Let HT |= PA,B and MHT
be the least model of HT . With the help

of Proposition 30, it suffices to prove that MHT
|= PA,B implies A ∈ ST (B).

We prove this by induction on the meaning function fHT
of HT :

PA,B ∈ fHT
↑ 0 : This is the case only when A = ⊤ or A = B. Thus, this

is trivial by the definition of ST . Indeed, {⊤, B} = S0(B) ⊆ ST (B).

PA,B ∈ fHT
↑ (n + 1) : There must be a supporting clause H : H ←− B

such that H := PA,B and every conjunct in B holds in fHT
↑ n (imply-

ing HT |= B). According to the definition of ELgci-description formula,
such a supporting clause falls into either H1, H2, or H3. Together with
the induction hypothesis, the existence of H and that HT |= B implies
the applicability condition of the corresponding extension rule. Hence,
we can conclude that A ∈ ST (B).

❏

As we already mentioned, in Horn logic the consequence problem can be reduced
to the satisfiability problem. Precisely, in order to check if H |= P , we can
instead verify that H ∪ ¬P is unsatisfiable. Consequently, Theorem 45 together
with Theorem 43 reduces the problem of ELgci-subsumption to the satisfiability
problem of Horn formula.

Since the satisfiability problem of Horn formulae is decidable in time linear
in the size of the Horn formula [9], the time complexity of ELgci-subsumption
depends only on the size of the ELgci-description formula. In the following, we
fix a general EL-TBox T . We prove that the size of the corresponding ELgci-
description formulae HT , denoted by |HT |, is cubic in the size of T . This result
immediately implies that ELgci-subsumption is decidable in time cubic in the size
T , i.e., O(|T |3).
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Lemma 46. Let T be a GCI-normalized EL-TBox over Ncon and Nrole and HT

the corresponding ELgci-description formula of T . The size of HT is cubic in the
size of T .

Proof. Since T is in GCI-normal form, it comprises only GCIs of the forms
presented in Definition 36. To simplify the proof, let

#c := number of concept names in T , i.e., |Ncon|,

#r := number of role names in T , i.e., |Nrole|,

#n1 := number of GCI1s in T ,

#n2 := number of GCI2s in T ,

#n3 := number of GCI3s in T , and

#n4 := number of GCI4s in T .

It is easy to see that the size of T is linear in all these numbers (accurately,
|T | = 2 ·#n1 + 3 ·#n2 + 3 ·#n3 + 3 ·#n4). The size of the corresponding ELgci-
description formula |HT | is 2 ·#c + 2 ·#n1 ·#c + 3 ·#n2 ·#c + 3 ·#n3 ·#n4 ·#c,
which is obviously bounded by O(|T |3). ❏

Corollary 47. Subsumption between concepts in the description logic EL w.r.t.
a general TBox T can be computed in time cubic in the size of T , i.e., O(|T |3).
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Chapter 7

Experiments of EL-Subsumptions
on the Gene Ontology

In the preceding three chapters, we have formulated characterizations of and
algorithms for subsumption in three small description logics based on EL. The
time complexity of these algorithms has been theoretically investigated. It is
therefore interesting to know—and, of course, natural to explore—the behaviors
of these algorithms in practice. In this chapter, we will present the results of
experiments on the Gene Ontology.

7.1 The Gene Ontology

An ontology is a domain-specific vocabulary—usually used in a particular field
such as biology and chemistry. The terms in an ontology are defined in a con-
trolled manner and are linked to each other. The Gene Ontology (or GO, for
short) is “controlled ontologies describe gene products in terms of their associated
biological processes, cellular components and molecular functions in a species-
independent manner” (definition from Gene OntologyTM Consortium [10]).

For example, let us consider the following GO concept with its concept defi-
nition:1

1Please note that the term ‘concept definition’ here is not the same as that in a DL sense.
We write ‘EL-concept definition’ for the definition, i.e., A ≡ D in the DL EL.
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[Term]

id: GO:0000019

name: regulation of mitotic recombination

namespace: process

def: ‘‘Any process that modulates the frequency,

rate or extent of DNA recombination during

mitosis.’’ [GO:curators]

is a: GO:0000018

relationship: part of GO:0006312

This is the definition of GO concept GO:0000019, described in words through the
def keyword and indicating relationships with other GO concepts through the
keywords is a and relationship. This GO concept definition can straightfor-
wardly be translated into a general concept inclusion

GO 0000019 ⊑ GO 0000018 ⊓ ∃part of.GO 0006312

in the description logic EL. The reason that we do not translate it into an EL-
concept definition is that this would be too strong. Intuitively, the EL-concept
description GO 0000018 ⊓ part of.GO 0006312 is not necessarily contained in
GO 0000019, but it is known that the reverse containment holds.

The translation of the whole GO yields a general EL-TBox, but not yet an EL-
TBox due to the existence of concept inclusions. In Chapter 3, we have shown how
to get rid of this kind of concept inclusions w.r.t. gfp- and descriptive semantics. It
is more natural to interpret GO w.r.t. descriptive semantics. Nevertheless, for the
experimental benefit, we also take into account gfp-semantics. The corresponding
EL-TBox of GO w.r.t. gfp-semantics, denoted by T GO

gfp , contains a definition

GO 0000019 ≡ GO 0000018 ⊓ part of.GO 0006312

for the above GO concept definition. Similarly, the corresponding EL-TBox of
GO w.r.t. descriptive semantics, denoted by T GO

desc, contains a definition

GO 0000019 ≡ GO 0000019′ ⊓ GO 0000018 ⊓ part of.GO 0006312

for the same GO concept definition, with GO 0000019′ a new primitive concept.

These EL-TBoxes are to be used as inputs of the algorithms for ELgfp- and
ELdesc-subsumption. Before going to the experiments, we would like to discuss
some facts about the Gene Ontology, its corresponding EL-TBoxes, and its cor-
responding EL-description graphs. In the following, we write GGO

gfp and GGO

desc to

represent the corresponding EL-description graphs of T GO

gfp and T GO

desc, respectively.

• There are overall 17,736 GO concepts in the Gene Ontology.
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• 933 GO concepts have no definitions, i.e., they are considered primitive.
Besides, only 3 of these are not marked obsolete and appear as labels of
nodes in the EL-description graphs. They are GO 0005575, GO 0008150

and GO 0003674.

• 16,803 GO concepts have definitions and thus are considered defined con-
cepts in T GO

gfp and T GO

desc.

• T GO

gfp and T GO

desc have the same sets of defined concepts and role names, but

T GO

desc contains considerably more primitive concepts than T GO

gfp does, i.e., a

new primitive concept is introduced for each concept definition in T GO

desc, but
not in T GO

gfp .

• GO has no terminological cycles. Consequently, the EL-description graphs
are acyclic.

• The EL-description graphs—both GGO

gfp and GGO

desc—have 16,803 nodes, 11,275
edges and a singleton edge label which is part of.

• The maximum length of is a-dependency chains in GO, i.e., the paths of
GO concepts linked together by the is a relationship, is 13.

7.2 The Experiments

In this thesis, we have developed three subsumption algorithms for the description
logic EL. Two of them have been implemented: the algorithms for subsumption
w.r.t. non-general TBoxes (with descriptive and gfp-semantics). The reason that
the ELgci algorithm presented in Chapter 6 has not been implemented is that our
aim is to classify the Gene Ontology, and GO can adequately be represented by
an EL-TBox as shown in the previous section. In this section, we present the
results of our experiments using the ELgfp and ELdesc algorithms with GO.

Testing Environment

Both ELgfp and ELdesc algorithms are implemented in the Common LISP2 lan-
guage because it is well-suited to realize the data structure for our EL-description
graphs. Moreover, choosing LISP as the implementation language enables our al-
gorithms to easily read in TBoxes in LISP-like syntax. This is compatible to
highly optimized reasoners for expressive description logics like RACER [27] and
FaCT [28].

The Gene Ontology is first translated into two EL-TBoxes: T GO

gfp and T GO

desc

as mentioned in previous section, both in LISP-like syntax. For instance, the

2We use Allegro c© CL, which is a LISP language implementation from Franz Inc. [11]
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corresponding EL-concept definition for the GO concept GO 0000019 will look
like

(DEFCONCEPT GO 0000019 (AND GO 0000018

(EXIST part of GO 0006312)))

in T GO

gfp and

(DEFCONCEPT GO 0000019 (AND GO 0000019P

GO 0000018

(EXIST part of GO 0006312)))

in T GO

desc. We have generated a number of EL-TBoxes with different numbers of
GO concepts which will used as benchmarks. The benchmarks are measured on a
standard PC with a 1.7GHz Pentium-4 processor and 512MB of memory, running
Linux c©RedHat as the operating system.

Results

As noted in the previous section, the Gene Ontology (GO) contains no cyclic de-
pendencies, and consequently neither do its corresponding TBoxes. Since the
gfp- and descriptive semantics of acyclic EL-TBoxes coincide, we can apply
either ELgfp or ELdesc algorithm to T GO

gfp (T GO

desc, respectively) to compute the

(unique) subsumption hierarchy. We have seen that, in comparison with ELdesc-
subsumption, ELgfp-subsumption enjoys better complexity. Therefore, besides
the typical experiments of ELgfp and ELdesc on the Gene Ontology, we also per-
form an experiment of ELgfp algorithm with T GO

desc as its input. Concisely, we
carry out 3 experiments as follows:

1. the algorithm for ELgfp-subsumption with the input T GO

gfp (ELgfp + T GO

gfp ).

2. the algorithm for ELdesc-subsumption with the input T GO

desc (ELdesc + T GO

desc).

3. the algorithm for ELgfp-subsumption with the input T GO

desc (ELgfp + T GO

desc).

Figure 7.1 depicts the time required for each experiment with different num-
bers of concept definitions. Consider, for example, the curve of Experiment 3:
by adding 200 more definitions from 400 to 600, the time rises 21.92 seconds;
from 800 to 1000, it requires additional 30.79 second time; and adding the same
amount of 200 definitions from 1800 to 2000 soars the time up about 53.88 sec-
onds. To sum up, the time tends to increase faster with a large number of
definitions (the size of input). In fact, the curves of all three experiments reflect
that the time increases polynomially in the number of definitions. Experiment 3
gives the best result, since it needs less time than Experiment 1 and 2, and we will
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Figure 7.1: Experiment results of the EL-subsumption algorithms on the Gene
Ontology

see later in this chapter that only Experiment 3 is able to compute subsumption
w.r.t. the whole Gene Ontology.

Let us now consider Experiment 2 in comparison with Experiment 1. With
a small number of concept definitions, Experiment 2 takes less time than Ex-
periment 1. However, due to the higher degree of the polynomial of the ELdesc

algorithm, Experiment 2 will be worse with greater numbers of concept defini-
tions. More accurately, with 1000 concept definitions, Experiment 2 takes 146.12
seconds, while Experiment 1 needs 176.41 seconds. Now if we input a bigger EL-
TBox, say 2000 concept definitions, Experiment 2 needs 485.48 seconds, whereas
Experiment 1 only takes 428.91 seconds.

We now consider only descriptive semantics for the final result of the subsumption
hierarchy on the whole Gene Ontology, since this reflects the intuition of the Gene
Ontology more than gfp-semantics does. As said above, we can either apply the
ELdesc algorithm or exploit the ELgfp algorithm on T GO

desc, as both are equivalent
on acyclic EL-TBoxes. Experiment 2 and 3 show that the ELgfp algorithm is
more efficient—in the sense that it runs faster for a given number of definitions,
or that it achieves more definitions in the given period of time—at least on the
Gene Ontology.

With Experiment 3, we are able to compute the subsumption hierarchy for
the whole Gene Ontology. The experiment ELgfp + T GO

desc takes approximately
33 minutes, about 18 minutes of which contributes to CPU time. We divide the
algorithm into 3 parts and analyse them, which are (i) the normalization part,
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Time (mm:ss) CPU time Real time

Normalization part 4:05 7:32 23.08%
Initialization part 8:41 16:09 49.49%
Sharpening part 4:49 8:57 27.43%

Total 17:35 32:38

Figure 7.2: Elapse time spent on running ELgfp algorithm with the input T GO

desc

(ii) the initialization part of Procedure ELgfp-EfficientSimilarity, and (iii)
the sharpening part of this procedure. The time consumption with respect to
these three parts are illustrated in Figure 7.2. According to the table, about a
quarter of the time is spent on each of Part (i) and (iii), whilst the rest of the
time, about a half, is spent on Part (ii).

The algorithm yields the subsumption hierarchy on the Gene Ontology with
112,292 subsumption outcomes. For instance, GO concepts that subsume the
example GO concept on Page 45—besides GO 0000019 itself and GO 0000018

which is stated explicitly in the definition through the is a relationship—are
GO 0008150, GO 0019219, GO 0019222, GO 0050789, GO 0050791 and GO 0051052.
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Chapter 8

Conclusion

We have proposed three algorithms to decide subsumption between concepts in
the description logic EL. With respect to (non-general) TBoxes, a characteriza-
tion of EL subsumption through graph simulation has been proposed by Baader
[1]. This characterization shows the tractability of subsumption in EL w.r.t.
TBoxes and the three semantics introduced by Nebel [7]. We have shown fur-
ther that with this approach, ELgfp-subsumption can be decided in time cubic in
the size of the input TBox, whilst ELdesc-subsumption can be decided in quartic
time, i.e., O(|T |4). We have devised the algorithm ELgfp-EfficientSimilarity

to compute the greatest simulation on the EL-description graph, and thus sub-
sumption w.r.t. gfp-semantics. This algorithm generalizes the “efficient similar-
ity” algorithm from [8] by taking into account edge-labeled graphs. Concerning
descriptive semantics, we reduce the subsumption problem w.r.t. TBoxes to the
satisfiability problem of Horn formulae and apply the linear-time algorithm for
Horn-SAT from [9] to our ELdesc algorithm.

In addition, we have proposed an efficient ELgci algorithm to compute concept
subsumption in EL with GCIs. It was shown by Brandt [4] that subsumption in
ELH—the description logic EL admitting GCIs and simple role inclusions—can
be decided in polynomial time. Discarding simple role inclusions, we have proved
that ELgci-subsumption can be computed in cubic time. We have introduced a
new normal form for general TBoxes and proposed a linear-time normalization.
The characterization of ELgci-subsumption through so-called implication sets is
proposed by Brandt [4]. These implication sets can be translated into a Horn
formula. Again, we exploit the linear-time algorithm for Horn-SAT [9] in our
ELgci algorithm. Like the first two algorithms, the ELgci algorithm computes a
subsumption hierarchy once and uses it to answer all subsequent subsumption
queries.

The ELgfp and ELdesc algorithms have been implemented in the Common
LISP language and evaluated using the Gene Ontology [10] as a benchmark.
With the ELgfp algorithm, we are able to classify the whole Gene Ontology with
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more than one hundred thousand subsumption outcomes.

As depicted in Chapter 2, both descriptive and gfp-semantics are significant in
the description logic EL, but their use are not always mutually exclusive. In other
words, there may be an application that requires a portion of the terminology to
be interpreted w.r.t. gfp-semantics, while the rest is interpreted w.r.t. descriptive
semantics. Especially, this could mean the integration of GCIs and EL-concept
definitions w.r.t. gfp-semantics. Therefore, it might be interesting to combine
the ELgfp and ELgci algorithms to compute subsumption w.r.t. such integrated
terminologies.
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[6] R. Küsters. Characterizing the semantics of terminological cycles in ALN
using finite automata. In Proceedings of the Sixth International Conference
on Principles of Knowledge Representation and Reasoning (KR’98), pages
499–510. Morgan Kaufmann, 1998.

[7] Bernhard Nebel. Terminological cycles: Semantics and computational
properties. In John F. Sowa, editor, Principles of Semantic Networks,
pages 331–361. Morgan Kaufmann, Los Altos, 1991.

[8] Monik R. Henzinger, Thomas A. Henzinger, and Peter W. Kopke: Com-
puting simulations on finite and infinite graphs. In 36th Annual Symposium

52



on Foundations of Computer Science, pages 453–462, Milwaukee, Wiscon-
sin, 1995. IEEE Computer Society Press.

[9] William F. Dowling and Jean Gallier. Linear-time algorithms for testing
the satisfiability of propositional horn formulae. Journal of Logic Program-
ming, 1(3):267–284, 1984.

[10] Gene OntologyTM Consortium.
See http://www.geneontology.org/GO.consortiumlist.html.

[11] Allegro c© Common LISP. Franz Inc.
See http://www.franz.com/.

[12] R. M. Quillian. Semantic Memory. In Minsky, editor, Semantic Informa-
tion Processing, pages 216–270. MIT Press, 1968.

[13] M. L. Minsky. A framework for representing knowledge. In Winston, ed-
itor, The Psychology of Computer Vision, pages 211–277. McGraw-Hill,
1975.

[14] Brachman, Ronald J., and James G. Schmolze. An Overview of the KL-
ONE Knowledge Representation System. Cognitive Science 9(2):171–216.

[15] M. Schmidt-Schauß and G. Smolka. Attributive concept descriptive with
complements. Artificial Intelligence, 48(1):1–26, 1991.

[16] A. Rector and I. Horrocks. Experience building a large, re-usable medical
ontology using a description logic with transitivity and concept inclusions.
In Proceeding of the WS on Ontological Engineering, AAAI Spring Sym-
posium (AAAI’97). AAAI Press, 1997.

[17] G. De Giacomo and M. Lenzerini. Concept language with number restric-
tions and fixpoints, and its relationship with µ-calculus. In Proceedings
of the 11th Europe Conference on Artificial Intelligence (ECAI’94), pages
411–415, 1994.

[18] Klaus Schild. Terminological cycles and the propositional µ-calculus. In
J. Doyle, E. Sandewall, and P. Torasso, editors, Proceedings of the 4th
International Conference on the Principles of Knowledge Representation
and Reasoning (KR’94), pages 509–520, Bonn (Germany), 1994. Morgan
Kaufmann, Los Altos.

[19] J. W. Lloyd. Foundations of Logic Programming. Springer, Berlin, Heidel-
berg, 1987.

53



[20] Yevgeny Kazakov and Hans De Nivelle. Subsumption of concepts in FL0

for (cyclic) terminologies with respect to descriptive semantics is PSpace-
complete. In Proceedings of the 2003 International Workshop on Descrip-
tion Logics (DL 2003), CEUR-WS, 2003.

[21] M. Buchheit, F. M. Donini, and A. Schaerf. Decidable reasoning in termi-
nological knowledge presentation systems. Journal of Artificial Intelligence
Research, 1, pages 109–138, 1993.

[22] Ian Horrocks, Ulrike Satler, and Stephan Tobies. Practical reasoning for
expressive description logics. In Harald Ganzinger, David McAllester,
and Andrei Voronkov, editors, Proceedings of Automated Reasoning
(LPAR’99), pages 161–180. Springer-Verlag, 1999.

[23] R. Cote, D. Rothwell, J. Palotay, R. Beckett, and L. Brochu. The system-
atized nomenclature of human and veterinary medicine. Technical report,
Snomed International, Northfield, IL, 1993.

[24] K. Spackman. Normal forms for description logic expressions of clinical
concepts in Snomed RT. Journal of the American Medical Informatics
Association, Symposium Supplement, 2001.

[25] A. Rector, W. Nowlan, and A. Glowinski. Goals for concept representa-
tion in the Galen project. In Proceedings of the 17th annual Symposium
on Computer Applications in Medical Care (SCAMC), Washington, USA,
pages 414–418, 1993.

[26] A. Rector. Medical informatics. In Franz Baader, Diego Calvanese, Deb-
orah McGuinness, Daniele Nardi, and Peter F. Patel-Schneider, editors,
The Description Logic Handbook: Theory, Implementation, and Applica-
tions, pages 406–426, Cambridge University Press, 2003.

[27] Volker Haarslev and Ralf Müller. RACER System Description. In Proceed-
ing of the International Joint Conference on Automated Reasoning (IJ-
CAR’2001), volume 2083 of LNAI, pages 701-706, Siena, Italy, 2001.

[28] I. Horrocks. The FaCT system. In H. de Swart, editor, Automated Reason-
ing with Analytic Tableaux and Related Methods: International Conference
Tableaux’98, number 1397 in Lecture Notes in Artificial Intelligence, pages
307–312. SpringerVerlag, Berlin, May 1998.

54


