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1.1 Knowledge representation with Description Logics

In general, the term knowledge representation (KR) stands for the approach to store
knowledge about a given domain of discourse in explicit form in a knowledge base, and
to automatically infer all implicit consequences of the information stored. The algorithm
performing this inference hereby depends only on the general syntactic format of the
knowledge base but is independent of its actual domain-specific content. Such a KR

system, i.e., a knowledge base together with an inference algorithm, is distinguished by
the underlying representation formalism.

Origin

Description Logics are one class of such representation formalisms that evolved from ear-
lier logic based KR formalisms, especially semantic networks [Qui67] and frames [Min81].
Though very dissimilar on the surface, both predecessors aim to represent classes of indi-
viduals and relations between such classes.

In the case of semantic networks, this is accomplished by labeled directed graphs in which
labeled vertices represent concepts or individuals and labeled edges represent relations be-
tween them. More precisely, ‘is-a’-edges are used either to denote subconcept-superconcept
relations between concepts or to specify the type of an individual by a concept. Edges with
other labels, e.g., ‘has colour’, can be used to denote properties of concepts or individuals.

In basic frame systems, concepts are represented by frames for each of which a name, a
list of direct super-frames, and a list of slots can be specified. Slots are used to denote
properties of concepts by linking to other frames, e.g., a slot ‘colour’ might be filled by
the name of a frame representing a colour.

Both semantic networks and frame systems lacked a formally well-defined semantics. As
a consequence, two different KR systems based on one of these formalisms could give con-
tradictory answers upon the same input. In order to overcome this problem, the meaning
of a knowledge base had to be defined independently of any specific reasoning algorithm.
In the case of frame systems, this was accomplished by means of first-order logics [Hay79].
More precisely, it was observed that restricted semantic networks and basic frame systems
could be translated into relatively small fragments of first-order logics [BL85], in which
reasoning problems are decidable. Furthermore, simpler specialized algorithms instead
of theorem provers could be used to reason w.r.t. these fragments. These findings gave
rise to so-called ‘concept languages’ which allow to define concepts by means of formulae
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Figure 1.1.1: A typical editor for DL knowledge bases

over fragments of first-order logics. Probably in order to emphasize the fact that formulae
are used to describe concepts with an underlying semantics based on first-order logics,
the name gradually changed from ‘concept languages’, e.g., [HB91], ‘concept description
languages’, e.g., [Sch92], or ‘terminological logics’, e.g., [Bra91], to Description Logics (DL).

Usually, KR systems based on DLs are called DL systems. The earliest system that is today
called a DL system was KL-ONE [BS85] by Ron Brachman, presented . Although it was
shown later on that reasoning w.r.t. KL-ONE knowledge bases is undecidable [SS89], KL-
ONE anticipated many aspects of syntax, semantics, and reasoning services of modern DL

systems. The most well-known modern DL reasoners are FaCT [Hor98], Racer [HM01b],
and, more recently, Pellet [SP04]. Modern DL systems are typically modularized, com-
prising a DL reasoner and an independent knowledge editor, communicating to each other
via a standardized protocol, the DIG1 interface [BMC03]. An example of a modern knowl-
edge editor is Protégé [GMF+03] shown in Figure 1.1.1, which will be discussed in more
detail after the introduction of the syntax of DL.

DL Syntax

When introducing DL syntax, it should be clarified that the term DL does not denote
exactly one KR formalism. Instead, there exist many DLs of different expressive power,
mostly2 corresponding to fragments of first-order logics. Each DL is characterized by the
constructors available to build complex terms, called concept descriptions, from a fixed

1Description Logics Implementation Group
2Some DLs provide constructors, e.g., transitive closure of relations, that cannot be characterized by

first-order logics.
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set of atomic concepts. Apart from basic propositional constructors, most DLs provide
so-called roles by which binary relations between concepts can be expressed.

In a DL system, the knowledge base typically comprises two sets, the terminological box
(TBox) and the assertional box (ABox). In its most basic form, the TBox contains concept
definitions of the form A ≡ C which define a concept name A by a concept description
C. Concept descriptions are terms built from primitive concepts and roles by means of
constructors provided by the DL. If present, the ABox on the other hand contains assertions
about individuals, either assigning individuals to concepts or establishing binary relations
between individuals via roles. The following example shows how a simple DL knowledge
base, i.e., a TBox together with an ABox, might look like.

Example 1.1.1 Assume that we have atomic concepts Person and Female and a role
has child. In a DL providing conjunction (u) and existential restriction (∃), we can now
define a TBox T as follows.

T := { Parent ≡ Person u ∃has child.Person,

Mother ≡ Parent u Female }

Hence, a parent is a person in has-child relation to another person and a mother is a
parent and is female. Given individuals Alice, Bob, and Charles, an ABox A using the
above definitions might look as follows.

A := { Mother(Alice), Person(Charles), Person(Bob), has child(Bob,Charles) }

In this example, A states that Alice is a mother and that the person Charles is in has-child
relation to the person Bob. ���

In order to see how a DL knowledge base appears from the perspective of the user of a
modern knowledge editor, consider Figure 1.1.1. In the column on the left labeled ‘Protégé
Navigato...’, the user has selected a knowledge base named ‘newspaper.pprj’ which is
opened for editing in the large sub-window on the right labeled ‘newspaper.pprj’. There,
a sub-window labeled ‘Classes’ shows a ‘Class Browser’ and a ‘Class Editor’. The class
browser shows a list containing the concepts defined in the TBox of ‘newspaper.pprj’, e.g.,
Content, Advertisement, Article, etc. In our case, the user has selected the concept Article

for inspection in the class editor, where the main part of the definition of Article is shown in
the list labeled ‘Template Slots’. For example, the line ‘author – single – Instance of Author’
corresponds to the concept description ∃author.Author with the additional restriction that
every article has at most one author. Note that Author also occurs in the class browser.
Thus, every line in the list ‘Template Slots’ corresponds to a conjunct in the definition
of Article. The ABox of ‘newspaper.pprj’ is hidden in the sub-window labeled ‘Instances’.
One reason for not presenting a knowledge base in the actual DL syntax is to support
domain experts not familiar with the underlying formalism.

DL Semantics

As mentioned above, the distinguishing feature of DL over older KR formalisms is a well-
defined semantics. The meaning of concepts and roles is defined w.r.t. an interpretation
I which consists of a universe ∆I and an interpretation function ·I . By means of the
interpretation function, every concept occurring in a DL-TBox is interpreted as a subset
of ∆I , every role as a binary relation on ∆I , and every individual occurring in the ABox
as one element of ∆I . The interpretation of complex concept descriptions is inductively
defined by the semantics of the constructors provided by the DL under consideration.
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For instance, the conjunction Parent u Female is interpreted by the intersection of the
interpretations of Parent and Female. An interpretation I satisfies a TBox T if and only
if left-hand side and right-hand side of every definition in T are interpreted identically.
In this case, I is called a model of T . Similarly, I satisfies an ABox if and only if for
every assertion A(a) in A, the interpretation of a is contained in the interpretation of A,
and for each r(a, b) in A, the interpretation of r contains the pair of the interpretations
of a and b. Moreover, often the unique name assumption holds, i.e., distinct individuals
do not have the same interpretation. This kind of semantics is usually called descriptive
semantics [Neb91]. Note that another kind of semantics relevant for the present work will
be introduced later on, namely greatest-fixedpoint semantics.

Example 1.1.2 Consider the knowledge base from Example 1.1.1. Let I be an interpre-
tation with universe ∆I := {a, b, c, d} and an interpretation function that interprets the
primitive concepts, roles, and individuals from T and A as follows: PersonI = {a, b, c, d},
FemaleI = {a, d}, ParentI = {a, b}, MotherI = {a}, AliceI = a, BobI = b, CharlesI = c,
and has childI = {(a, d), (b, c)}. Then I is a model of T together with A. Note that in I,
Bob is a parent although the ABox did not explicitly specify this. ���

The main asset of KR systems is their ability to reason over the knowledge base, i.e.,
to make implicitly hidden knowledge explicit. For instance, in Example 1.1.2 one might
suspect that Bob must be contained in the interpretation of Parent in every model of T
and A, which would make Bob being a parent an implicit consequence of the knowledge
base. Questions of this nature can be answered by means of certain inference services.

Reasoning

In the context of DL systems, two classes of inference services are distinguished, namely
terminological ones, taking into account only the TBox, and assertional ones, additionally
considering the ABox. Throughout this work, we will mostly be concerned with termi-
nological inference services. We shall also discuss ways to reduce assertional reasoning to
terminological reasoning under certain circumstances.

The most basic terminological inference services supported by most DL systems are satis-
fiability and subsumption. A concept is satisfiable w.r.t. a given TBox if and only if the
TBox has a model in which the interpretation of the concept is not empty. A concept
A is subsumed by a concept B w.r.t. a TBox T if and only if A is more specific than
B in the sense that, w.r.t. every model of T , the interpretation of A is a subset of that
of B. For instance, in Example 1.1.1, Mother is subsumed by Parent w.r.t. T , which is
in turn subsumed by Person. To classify a TBox T means to compute all subsumption
relationships between concepts occurring in T . Usually, classification is the main system
service of a DL reasoner.

The two most common assertional inference services are the consistency and the instance
problem. An ABox is consistent w.r.t. a TBox if ABox and TBox have a common model.
An individual a is an instance of a concept description C w.r.t. a TBox and an ABox if
and only if the interpretation of a is an element of the interpretation of C w.r.t. every
model of the TBox together with the ABox.

In the remainder of the present subsection, we introduce a more powerful TBox formalism
supported by many modern DL systems, such as FaCT, Racer, or Pellet. Moreover,
we discuss quality criteria for DL terminologies.
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General TBoxes

General TBoxes are sets of so-called general concept inclusion (GCI) axioms of the form
C v D, where both C and D are arbitrary concept descriptions, i.e., not necessarily atomic
concepts. An interpretation satisfies a GCI C v D if and only if the interpretation of C
is a subset of that of D. Hence, D is implied whenever C holds. General TBoxes extend
our previous definition of TBoxes in the sense that every definition A ≡ C is equivalent
to the set of GCIs {A v C,C v A}. The utility of GCIs for KR applications has been
examined in depth; see, e.g., [RNG93, Rec03, HRG96]. Apart from constraining models of
a terminology further without explicitly changing all definitions in the terminology, using
GCIs can lead to smaller, more readable TBoxes, and can facilitate the re-use of data in
applications of different levels of detail. As a consequence, GCIs are supported by most
modern DL systems. An example giving an impression how GCIs can be used in practice
will be discussed in Section 1.2.

This completes our overview of the basic features of DL systems. In the remainder of the
present work, we will call a DL language together with a TBox formalism, e.g., ordinary,
cyclic, or general TBoxes, a DL formalism.

Concerning the way domain knowledge is represented by a TBox, we have so far only stated
that all terms ‘relevant’ to the domain of discourse should be contained. The question of
what distinguishes an adequate terminology from an inadequate one constitutes a research
area on its own, especially the field of formal ontology. In the context of formal ontology,
the term ontology is defined as a specification of a conceptualization [Gru93b]. In this
context, conceptualization usually stands for the objects, concepts, and other entities that
are assumed to exist in some area of interest and the relationships among them [GN87]. A
specification gives names to the relevant objects, concepts, entities, and relationships, and
constrains the possible interpretations of these names by formal axioms [Gru93b]. Hence,
a terminology in the DL sense, i.e., a TBox, can be seen as a special form of an ontology
in the formal ontology sense.

In order to cast some light on the question of the adequacy of a terminological represen-
tation of domain knowledge, we conclude the present section by presenting some quality
criteria for DL-based terminologies from formal ontology.

Quality criteria for terminologies

In [Gru93a], five basic quality criteria for formal ontologies have been proposed, which also
apply to DL terminologies. Since these are of interest for the remainder of the present
chapter, we summarize the relevant points from [Gru93a].

• Clarity : an ontology should effectively communicate the meaning of defined terms.
To this end, the meaning of terms defined by the ontology should be fixed indepen-
dently of computational (or social) contexts, if possible by means of logical axioms.
Complete definitions providing all necessary and sufficient conditions are preferred
over incomplete ones providing only necessary conditions.

• Coherence: the ontology as a whole should be logically consistent, i.e., no implicit
consequence derived from explicit information should contradict this information.

• Extensibility : it should be possible to extend an ontology or refine parts of it mono-
tonically, i.e., preserving the meaning of already existing terms and preserving ex-
isting implicit consequences.

• Minimal encoding bias: the ontology should be specified without dependency on
a specific symbol-level encoding. For instance, the concept of a physical quantity
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should not be defined as a ‘double-float value’ together with a ‘string’ but rather as
a real number together with a unit of measure. Furthermore, language features of
the underlying representation formalism should, if possible, not be selected purely
because of computational properties or notational convenience. For instance, lan-
guage constructs that make reasoning more complex should not be removed from
the representation formalism without ascertaining that their expressive power is not
vitally needed.

• Minimal ontological commitment : the ontology should be minimal in that only terms
essential for the intended use of the ontology are defined. As few additional restric-
tions as possible about the domain of discourse should be included. Moreover, the
terms defined in the ontology should be interpreted by the weakest theory, thus
admitting the largest number of potential models.

Note that DL terminologies naturally promote several of the above criteria. Concepts can
be defined by means of logical axioms, and are interpreted independently of an inference
algorithm by a model-theoretic semantics. Since reasoning w.r.t. the majority of DLs is
decidable, consistency of DL-TBoxes can be checked automatically. As a fragment of first-
order logics, reasoning w.r.t. DLs is monotonic by definition. Furthermore, the semantics
of DL knowledge bases is an open-world semantics which is weaker than closed-world
semantics. In this sense, minimal ontological commitment is respected.

In the following section, we introduce an application domain in which KR systems are
increasingly popular, namely the life sciences and healthcare.

1.2 Knowledge representation for the Life Sciences

History

The term Life Sciences denotes all natural sciences directly related to the study of liv-
ing organisms, especially medicine, biomedicine, biochemistry, and biology. Given the
complexity of the human anatomy, or physiological processes even in single cells, it is not
surprising that, long before the advent of computers, these branches of science encountered
the problem of representing knowledge in a systematic way.

This can be illustrated in epidemiology, the branch of medicine studying the distribution
and determinants of diseases in human populations [RG98]. At first glance, the task seems
a quantitative one: to determine how many individuals in a given domain contracted, or
died of, which diseases. Without a proper qualitative classification of diseases, however,
the data obtained thus is of little value. For instance, in order to assess the incidence
of inflammatory diseases it must be known beforehand for every disease occurring in
epidemiological records whether it falls into this class or not.

One of the first classification schemes of diseases known internationally was the ‘Bertillon
Classification of Causes of Death’ from  by Jacques Bertillon [Chu00]. It was adopted
in revised form by the World Health Organization as the ‘International Classification of
Diseases (ICD)’ which today, in its th revision, serves as a main standard for epidemio-
logical data in research and healthcare. Similarly, the College of American Pathologists in
 released the ‘Systematized Nomenclature of Pathology (SNOP)’ which was extended
to the ‘Systematized Nomenclature of Medicine (SNOMED)’ [CRP+93] in . Intended
for use not only in pathology, the SNOMED classification was not limited to diseases but
also contained anatomical structures and medical procedures. An electronic version was
released in , which might be regarded as an ancestor of general-purpose medical KR

systems. Since then, SNOMED has been revised continually and nowadays exists in the
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form of a DL terminology [Spa01]. In its current release, SNOMED contains , con-
cepts and  roles [BLS05].

In , the European project GALEN3 has been launched in order to facilitate the inte-
gration of medical information systems by means of a common reference model for medical
terminology. In contrast to the College of American Pathologists, which translated an al-
ready existing classification system into DL, the strategy of the GALEN project was to
develop a suitable KR formalism before building the actual terminology. To this end,
requirements specific to the medical domain were assessed and an adequate terminology
language was developed, the ‘GALEN Representation and Integration Language (GRAIL)’,
based on a DL [RH97]. As the underlying requirements are relevant to KR in the Life Sci-
ences in general, we shall come back to the major points observed by the GALEN project.
A unique feature of the GALEN terminology is that it makes use of GCIs instead of purely
relying on concept definitions to represent medical knowledge. Currently, GALEN com-
prises , concept definitions and , GCIs [BLS05].

In biology, one motivation behind classifying relevant terms by means of a KR system
arose from the need to share information among large genome databases. For instance, in
, the genome projects FlyBase [Con98], Mouse Genome Informatics [BER+98], and the
Saccharomyces Genome Database [CAB+98] founded the Gene Ontology (GO) Consortium
with the goal to produce a ‘structured, precisely defined, common, controlled vocabulary
for describing the roles of genes and gene products in any organism’ [Con00]. By means
of the GO, gene products in multiple organisms can be annotated in such a way as to
enable uniform queries over their properties, and to combine knowledge stored in separate
genome databases. The GO corresponds to a DL knowledge base of , concepts with
only one transitive role [BLS05].

KR requirements for the Life Sciences

The above mentioned biomedical KR projects have cast light on potential KR requirements
specific to the biomedical domain. In the following, we present the lessons learnt, especially
in the context of the GALEN project.

Firstly, a KR formalism for the biomedical domain should support general axioms, i.e.,
GCIs in the DL case, which proved useful especially for three purposes.

• To indicate the status of objects: instead of introducing several definitions for the
same concept in different states, e.g., normal insulin secretion, abnormal but harmless

insulin secretion, and pathological insulin secretion, only insulin secretion is defined
while the status, i.e., normal, abnormal but harmless, and pathological, is implied by
GCIs of the form . . . (necessary condition) . . . v ∃has status.pathological.

• To bridge levels of granularity and to add implied meaning : A classical exam-
ple [HRG96] is to use a GCI like

ulcer u ∃has loc.stomach v ulcer u ∃has loc.(lining u ∃is part of.stomach)

to render the description of a defined concept for ‘ulcer of stomach’ more precisely
to ‘ulcer of lining of stomach’ if it is known that ulcer of the stomach is specific to
the lining of the stomach.

• To add spacial information: For instance, in order to define that any hollow body
structure defines a cavity without changing the definitions of all structures in ques-

3Generalized Architecture for Languages, Enzyclopaedias and Nomenclatures in Medicine, see also
http://www.OpenGALEN.org.
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tion, a GCI similar to the following is added.

BodyStructure u ∃has topology.has absolute state.Hollow v ∃defines space.BodyCavity

Note that in GALEN, the topology of a body structures can change. This is modeled
by means of the roles has absolute state and has change in state, via which a change
of state can be expressed.

Moreover, it has been argued that the use of GCIs facilitates the re-use of data in ap-
plications of different levels of detail [HRG96, RBG+97]. For instance, in some contexts
additional information, e.g., the precise location of ulcer in the stomach, might be un-
necessary. In this case, one can simply ignore GCIs by which additional information is
supplied and focus on the un-refined definitions in question. Note that distinctions of level
of detail occur naturally in the medical domain. For instance, an epidemiologist usually
only documents a ‘fracture of the finger’ when a surgeon has treated a ‘fracture of the
proximal phalanx of the fourth left finger’.

Secondly, a biomedical KR formalism should allow to declare relations transitive.

• Transitive relations occur naturally in the biomedical domain. Describing the anatomy
of complex organisms, for instance, necessarily produces deep partonomic hierarchies
that are transitive in nature, e.g., mitral valve cusp part-of mitral valve part-of heart
part-of cardiovascular system. The same holds for causality relations between pro-
cesses in living organisms, e.g., severe hypertension causes coronary hypertrophy
causes insufficient coronary perfusion, and also for medical procedures.

• Without support of transitive relations, either crucial information is lost, e.g., mitral
valve cusp part of heart, compromising the quality of reasoning, or the transitive
closure of all relevant relations must be added explicitly to the knowledge base.
The latter option, however, seems inexpedient for at least two reasons. Firstly, the
often enormous size of biomedical knowledge bases already poses a challenge to KR

systems, so that adding, e.g., all explicit parthood relations might be impracticable.
Secondly, removing or inserting new concepts into a knowledge base becomes much
more difficult if hundreds (or more) of relations to other concepts must be deleted
or established.

• Simulating transitive relations by means of auxiliary concepts [SH02] also increases
the size of a knowledge base severely.

Thirdly, a KR formalism for the biomedical domain should support so-called right-identities.
Written in DL syntax, a right-identity is an axiom of the form r ◦ s v r, where r, s are role
names and ◦ represents a composition operator on roles. Semantically, a model I satisfies
a right-identity of the above form if and only if the following holds for all elements x, y, z
of ∆I : if x, y are related via rI and y, z are related via sI then x is related to z via rI .

As an example from pathology, consider a hematoma in the temporal lobe of the brain. The
hematoma is located in the temporal lobe without being a part of it while the temporal
lobe is a part of the brain and not located in it. Clearly, we would like a KR system
to infer that the hematoma is located in the brain. However, using transitive relations
‘has-location’ and ‘part-of’ does not suffice because both relations occur exactly once.
On the other hand, manually adding all missing relations to the knowledge base causes
similar problems as manually adding the transitive closure: the knowledge base is likely to
increase in size severely, and maintenance is complicated. The desired inference can easily
be expressed by means of right-identities. In case of a DL knowledge base, it suffices to add
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the axiom has location ◦ part of v has location.4 In the biomedical domain, many similar
examples exist. For instance, a finding at a part of an anatomical structure often implies
a finding at the whole, e.g., a lesion at the hand implies a lesion at the upper extremities.
The relevance of right-identities for KR in the biomedical domain has also been observed
in [Spa00]. Note that right-identities can express transitivity of relations. Written in DL

syntax, the right-identity r ◦ r v r makes r a transitive role.

In contrast to the above, several other constructs known from more expressive DLs proved
to be of little value for biomedical classification systems. As observed in [RH97] in the
context of the GALEN project, the fraction of terms in common medical nomenclatures
requiring explicit cardinality restrictions in their definitions is less than 1%. For similar
reasons, disjunction, negation, and universal quantification5 have not been included in the
GRAIL language.

It should be noted that some features desirable from a medical KR point of view are not
supported in GRAIL. Firstly, it is not possible to faithfully represent contiguous anatomical
structures [RH97]. For instance, the gastrointestinal tract of the human body is a single
contiguous structure, leading from the mouth via the oesophagus to the stomach and
so on, without any strict boundaries between its components. The notion of contiguity
can only be represented to some extent by the weaker part-of relation or subrelations
thereof. Similar problems occur with respect to the vascular system, where no structural
boundaries exist at the transitions of many vessels. E.g., the external iliac artery becomes
the femoral artery without any structural or topological border. Similar problems are
faced when representing surface regions of the human body.

A second desirable feature not present in any of the biomedical knowledge bases cited
above are same-as references in concept definitions [RH97]. For instance, the above ulcer
example could be generalized to all gastrointestinal organs as follows: if an ulcer occurs in
an organ of the gastrointestinal tract then it occurs in the lining of the same organ. This
same-as constraint cannot be represented faithfully without naming all relevant organs,
i.e., oesophagus, stomach, etc., and introducing specialization axioms for every single one.

To sum up our overview of the Life Sciences as an application domain for KR systems, we
have seen that here, as a natural consequence of the complexity of the domain, knowledge
bases usually comprise a very large number of concepts, sometimes more than ,, but
on the other hand are defined over relatively inexpressive KR formalisms that correspond
to DL terminologies. The value of general axioms, transitive relations and right-identities
has been explicitly noted while many other common constructors, such as disjunction
or general negation, do not offer a substantial benefit. Efficient reasoning in relatively
inexpressive DLs w.r.t. GCIs is studied in depth in Chapter 3. For an overview of the
existing results on reasoning w.r.t. GCIs, see Section 1.5.1. Our contributions to this topic
are summarized in Section 1.6.1.

The overview of their history also shows that biomedical knowledge bases are usually
developed by entire groups of domain experts over several years. In order to maintain
the quality of the resulting knowledge bases, e.g., avoid inconsistencies, redundancies,
modeling errors, etc., an appropriate maintenance methodology is required as well as
reliable maintenance tools for their support. In Section 1.4, we will return to the topic of
knowledge maintenance and argue in favor of so-called non-standard inference services as
the tools of choice to support the construction and maintenance of DL knowledge bases in
a formally well-defined way.

Apart from the Life Sciences, there is another application domain of DL based KR systems
that has recently attracted considerable attention: the Semantic Web. In the following

4In GRAIL syntax, the axiom reads: has location specialisedBy part of.
5For a formal definition of these constructs, see Definitions 2.1.1 and 2.1.3.
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section, we introduce the main ideas related to this domain and the connection to the
main topics of our work.

1.3 Knowledge representation for the Semantic Web

In the seminal paper [BLHL01], a vision of the future World Wide Web (Web for short)
has been proposed that centers around the idea to annotate Web content by a formal
representation of its meaning and thereby enable Web-based software to greatly increase
the complexity of tasks they can perform without human guidance.

The authors have argued that an elementary prerequisite for the realization of this vision
is an ontology by means of which every Web-resource, every item of data occurring on a
Web-page, and every Web-service can be assigned a formally defined meaning, or type.
In the context of the Semantic Web, the term ontology is usually strongly preferred over
‘terminology’ or ‘knowledge base’. One motive behind this might be to stress that the
interesting aspect of a knowledge base is the meaning given to objects and their inter-
relations rather than the syntactical formalism by which terms can be constructed. The
following example illustrates how an ontology might be used to annotate Web-content.

Example 1.3.1 The homepage of one of the authors of [BLHL01], J. Hendler, demon-
strates a Semantic Web annotation of a classical Web-page. An excerpt of the source-code
shows the following tags.

<INSTANCE KEY="http://www.cs.umd.edu/users/hendler/">

<USE-ONTOLOGY ID="cs-dept-ontology" VERSION="1.0" PREFIX="cs"

URL=" http://www.cs.umd.edu/projects/plus/SHOE/cs.html" />

<CATEGORY NAME="cs.Professor" FOR="http://www.cs.umd.edu/users/hendler/"/>

<RELATION NAME="cs.name">

<ARG POS=2 VALUE="Dr. James Hendler"></RELATION>

<RELATION NAME="cs.doctoralDegreeFrom">

<ARG POS=1 VALUE="http://www.cs.umd.edu/users/hendler/">

<ARG POS=2 VALUE="http://www.brown.edu"></RELATION>

The annotation states that the web page provides information about an instance of the
category6 cs.Professor defined in the ontology cs-dept-ontology. This instance is in relation
cs.name to the string ‘Dr. James Hendler’ and in relation cs.doctoralDegreeFrom to an ob-
ject specified by the URL ‘http://www.brown.edu’. In the relevant ontology, the category
cs.Professor is a sub-category of Faculty, which specializes Worker, which is a sub-category
of Person. Moreover, type restrictions for the occurring relations imply that cs.name links
an instance of the category Person to a string, and that cs.doctoralDegreeFrom similarly
links an instance of Person to University, a sub-category of Organization. ���

As argued in [BLHL01], annotations of the kind shown above enhance the capabilities
of automated services offered over the Web. For instance, searching the Web for the
homepage of James Hendler usually cannot be done in any smarter way than just looking
for Web-pages containing the phrase ‘James Hendler’. It cannot be assumed, and in fact
is not the case, that the homepage in question contains the phrase ‘homepage’. Such a
search, however, will produce a significant number of pages on which the search phrase
occurs for reasons other than designating the homepage of a person under that name.

With an annotation and an ontology of the above kind in the background, a search could
be conducted for a Web-page about a professor under the name ‘James Hendler’. Thus,

6The above mentioned ontology is represented in the frame-based formalism SHOE [HHL99], where
so-called ‘categories’ correspond to the notion of concepts in a DL-knowledge base.
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Web-pages could be excluded on which the relevant name is only mentioned in some other
context, or which do not belong to a professor. Note that even in this simple case, the
query system has to infer from the ontology that a professor is especially a person because
the relation cs.name is restricted to instances of the category Person.

In the context of Semantic Web research, it is emphasized that not only Web-pages, but
also Web-services will be described by means of ontologies [MM03, MSZ01]. Hence, search
engines, Internet shops, on-line databases, and other businesses are supposed to formally
describe their offered services or products. The intended benefit is that complex tasks
involving data entry on Web-sites and interpretation of query results will be executed
partly autonomously by Semantic Web Agents [Hen01].

The vision of the Semantic Web sketched above clearly poses the question of an adequate
KR formalism for the ontologies underlying the Semantic Web. In , the W3C Con-
sortium responsible for the management of development efforts related to the Semantic
Web recommended the DL-based formalism OWL7 [HPSvH03] for this purpose. The KR

formalism OWL is the result of the union of the European research project OIL [FvHH+01]

and the US research project DAML [Shi01]; see [HPSvH03] for an overview.

In fact, OWL does not only provide one but three KR formalisms of increasing expressive
power, OWL-Lite, OWL-DL, and OWL-Full. Without going into detail, let it suffice to
say that OWL-Lite corresponds to the very expressive DL SHIF(D) with general TBoxes
and ABoxes. OWL-DL corresponds to the more expressive DL SHOIN (D) and supports
general TBoxes and ABoxes likewise. Finally, OWL-Full extends the expressive power of
OWL-DL by admitting constructs from RDF8 and RDFS9. Since the semantics of RDF and
RDFS cannot be expressed properly in first-order logics, OWL-Full cannot be viewed as a
DL any more.

A peculiarity of all OWL dialects is their syntax. In contrast to the usual DL syntax
sketched previously, OWL ontologies are represented in RDF-syntax derived from XML.
The following example shows a concept definition in OWL.

Example 1.3.2 Recall our simple definition of the concept Parent from Example 1.1.1.
The corresponding definition in an OWL ontology in standard syntax would be as follows.

<owl:Class rdf:ID="Parent">

<owl:intersectionOf rdf:parseType="Collection">

<owl:Class rdf:about="#Person" />

<owl:Restriction>

<owl:onProperty rdf:resource="#has_child" />

<owl:hasValue rdf:resource="#Person" />

</owl:Restriction>

</owl:intersectionOf>

</owl:Class>

As described in the OWL Web Ontology Language Guide10, OWL concepts are called
‘classes’, roles are called ‘properties’, and conjunction is called ‘intersection’. An ex-
istential restriction is denoted by a ‘restriction’ of the type ‘hasValue’—as opposed to
‘allValuesFrom’ for value restrictions. ���

The fact that a crucial component of the Semantic Web is supposed to be based on DL

systems is currently a strong motivation for DL research and points to a potentially major

7Ontology Web Language, see also http://www.w3.org/2004/OWL/.
8Resource Description Framework, see also http://www.w3.org/RDF/.
9RDF Schema, see also http://www.w3.org/TR/rdf-schema/.

10See http://www.w3.org/TR/owl-guide/.
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field of future applications. Given the amount of data available even on the Web of
today, it seems clear that the Semantic Web poses a major challenge to the efficiency of
reasoning w.r.t. very large knowledge bases. It should, however, be noted that the most
common case of using the Semantic Web, i.e., searching for information, means looking
for assertional information stored in the ABox-part of a DL knowledge base. It does
not necessitate actively classifying ontologies, but only passively using their, probably
pre-computed, subsumption hierarchy. Consequently, this kind of interaction with the
Semantic Web might be handled by a technology not that far remote from the highly
optimized databases behind the Web of today.

Another consequence of the Semantic Web vision for the research area DL-based KR is a
demand for reasoners and knowledge editors capable of handling ontologies, or TBoxes,
of considerable size. It is also to be expected that ontologies for the Semantic Web will
be designed by a very large number of domain experts and will evolve over time. Just
as pointed out in the context of the application domain Life Sciences in Section 1.2, this
motivates the question of a standard methodology for the maintenance of knowledge bases
and appropriate tools for this purpose. In the following section, the tasks related to
knowledge maintenance will be discussed in further detail.

Note that the results of the present work are relevant to the Semantic Web in that they
examine how tractable reasoning and expressive DL formalisms can be reconciled, and in
that they discuss non-standard inference services by which maintenance of DL knowledge
bases can be supported in a formally well-defined way. On the other hand, we would like
to stress that our work is not specifically tailored to Semantic Web applications and does
not further examine the specific requirements of this emerging application domain.

1.4 Knowledge maintenance

In our overview of DL-based KR, we have so far taken for granted that knowledge bases
for a given domain of discourse are readily available. The task of creating a knowledge
base and maintaining it over time, however, poses challenges that need to be discussed in
further detail. In particular, extending a DL terminology in an unstructured way puts at
risk the quality criteria from Section 1.1. In order to support users in this task, we present
an approach to knowledge maintenance that goes beyond mere tools embedded in the user
interface of knowledge editors.

One distinguishing property that has led to DLs being preferred over other knowledge rep-
resentation formalisms is their well-defined model theoretic semantics. For every concept
in the terminology we can exactly and unambiguously state what this concept means as
such. It is only coherent to preserve this quality in the design of reliable tools aimed to
support users extending or maintaining DL terminologies. Hence, one starts by finding
appropriate well-defined logical inference services whose effect can be stated exactly, un-
ambiguously, and independently of the algorithm implementing it. Then, one embeds an
implementation of these inference services in a DL system and provides a user-interface
for the relevant ontology editor, thereby providing the user with the desired maintenance
tools.

1.4.1 Constructing knowledge bases

We consider three typical scenarios in which a user, i.e., a domain expert, wants to extend
an existing DL-TBox. For each of these, we introduce so-called non-standard inference
services for DL-TBoxes and show how these can be used to support the user. The attribute
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‘non-standard’ stems from the fact that these inference services are not supported by
conventional DL systems and cannot even be simulated by standard inference services,
such as satisfiability or subsumption. The relevant scenarios for the extension of DL-
TBoxes are top-down extension, bottom-up extension and extension by import.

Top-down extension

In the most straightforward case, the user simply is faced with a TBox in which he finds
only concepts too general to represent a particular new notion. In this case, the user locates
a suitable structurally similar concept in the terminology and produces a specialization of
it by re-using the definition of the general concept. To this end, concept or role names are
modified and additional constraints included. This approach is sometimes referred to as
‘top-down’ [BT01] approach.

The key question for this approach is: how to locate a structurally similar concept in the
TBox from whose definition the new concept can be derived? Note that the newly defined
concept is inserted into the subsumption hierarchy of the TBox automatically by the DL

system and not manually by the user. Therefore, our query for an appropriate concept is
driven only by the desired structure of the new definition and not by the expected position
in the subsumption hierarchy.

In order to find concepts of a certain syntactic structure in DL-TBoxes, we propose the non-
standard inference service matching. A matching problem (modulo equivalence) consists
of a concept description C and a concept pattern, i.e., a concept description in which,
additionally, variables may occur in places of atomic concepts. A matcher of a given
matching problem is a substitution assigning concept descriptions to the variables in the
concept pattern in such a way that equivalence to C holds. A matching problem can
be viewed either as a decision problem, where the task is just to decide whether or not
a matcher exists, or as a computation problem, where all (interesting) matchers are to
be computed. Matching problems can also be defined modulo subsumption. In this case,
a matcher only has to make the input concept pattern subsume the input concept C.
Note, however, that matching modulo subsumption can be expressed by matching modulo
equivalence because a subsumption C1 v C2 holds if and only if C1 ≡ C1 u C2.

Matching can be utilized as a retrieval mechanism over DL-TBoxes in a straightforward
way. The user specifies a concept pattern with the syntactic structure he has in mind.
The DL system then retrieves all concepts in the TBox for which a matcher w.r.t. the
given pattern exists. From the resulting set, the user selects the one most suitable for his
purpose and modifies it, producing a new definition to be added to the TBox.

The fact that variables in concept patterns are named, in contrast to, e.g., wildcards
(‘∗’) known from standard database queries, allows to search the TBox for concepts with
specific structural properties. As an example from engineering, consider a TBox con-
taining concept definitions representing technical devices. Matching against the pattern
Device u ∃has unit.X u ∃has backup unit.X returns only those concepts which represent
devices containing a sub-unit and a backup unit of the same type. We shall discuss later
on how to rule out too general solutions in such cases, e.g., matchers that replace X by
the top-concept.

For an overview of origin and existing results on DL-matching algorithms, see Section 1.5.2.
Our new contributions to matching are summarized in Section 1.6.2.
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Figure 1.4.1: Bottom-up extension of knowledge bases

Bottom-up extension

In order to motivate bottom-up extensions, consider a DL knowledge base consisting of a
TBox T and an ABox A, the TBox containing concept definitions and the ABox assertions
for individuals. In our case, the domain expert detects the following scenario for one
concept A defined in T : in the TBox, A is the most specific concept representing the
individuals a1, . . . , am, am+1, . . . , an. However, the domain expert feels that the subset
{a1, . . . , am} of individuals should be more adequately represented by a concept more
specific than A. In other words, he wants to extend the TBox by a new concept which is
more specifically tailored to represent the properties of the individuals a1, . . . , am.

This situation is illustrated schematically in Figure 1.4.1 (before). The upper box shows
the subsumption hierarchy of the TBox T , where every circle represents one concept
defined in T and every edge a direct subsumption relation. Every dot in the lower box
represents an individual name occurring in the ABox A. Relations between individuals
are not shown. Dotted lines show concept-instance relationships, i.e., all instances of A
are contained in the dotted box inside the ABox A.

This extension task can be accomplished by a combination of the three non-standard in-
ference services, most-specific concept (msc), least-common subsumer (lcs), and rewriting.
Intuitively, the msc is used to construct a concept description Ci for every single individual
ai. The lcs then extracts the commonalities of all Ci, producing a new concept description
C1m. This is simplified to C ′

1m by rewriting. Describing this strategy in more detail, we
begin by defining the msc.

Given an ABox-individual a described w.r.t. a TBox T , the msc of a is defined as the
most specific concept description a is an instance of that can be constructed w.r.t. T .
Hence, the msc does not retrieve a concept from T , but rather constructs a new concept
description representing a as specific as possible. In the case of the above example, the
DL system would, in the first step, construct the concept descriptions C1 := msc(a1), . . . ,
Cm := msc(am).

In the second step, the lcs inference is used. The lcs of a set of concept descriptions
C1, . . . , Cm w.r.t. a TBox T is a concept description C1m that is more general than every
Ci, and is the most specific one with this property w.r.t. T . Note that, again, the lcs is
not merely obtained from the TBox by retrieval but actually constructed. In the above
example, the DL system computes C1m as lcs{msc(a1), . . . ,msc(am)}, a concept description
representing the common properties of the individuals a1, . . . , am.

The last computation step of our bottom-up strategy, rewriting, is aimed at simplifying
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the concept description C1m obtained from the lcs computation in the second step. To
this end, the DL system tries to find sub-descriptions of C1m for which a name has been
defined in the TBox T . In such a case, the sub-description is replaced by the corresponding
defined name from T , producing the concept description C ′

1m. The construction process is
illustrated in Figure 1.4.1 (construction). Again, dotted lines represent instance relations
and solid edges subsumption relations. Note that the direction of construction is upwards
while subsumption and instance relations point downwards.

Finally, the simplified concept description C ′
1m is presented to the domain expert for in-

spection. Probably after applying some manual modifications, the domain expert provides
a new name A′

1m and extends the TBox by the new definition A′
1m ≡ C ′

1m. As a result,
the most specific concept representing the ABox individuals a1, . . . , am is now A′

1m. The
resulting knowledge base is illustrated in Figure 1.4.1 (after). This approach is usually
called ‘bottom-up’ approach [BKM99, BT01].

A slightly simpler instance of the bottom-up extension strategy refers only to the TBox.
In this case, the domain experts finds a concept A in the TBox with a large number of
concepts A1, . . . , Am, Am+1, . . . , An directly subsumed by A. However, the domain expert
feels that the concepts, A1, . . . , Am deserve a super-concept more specific than A. By
means of the lcs inference and rewriting, the DL system could similarly present the lcs of
A1, . . . , Am as a candidate for the super-concept in question. The domain expert could
then again inspect the result and add the corresponding definition to the TBox, thus
moving from a wide and shallow subsumption hierarchy to a deeper and narrower one.
One advantage of the latter is that browsing through the subsumption hierarchy of a TBox
is simplified.

Although three non-standard inferences play a role in the bottom-up approach described
above, the present work is, among these, only concerned with the lcs. For an overview of
existing results on the lcs, see Section 1.5.2. Our new contributions are summarized in
Section 1.6.2.

Extension by import

In the last case to discuss, the domain expert wants to extend a terminology by a concept
definition he has found in another terminology defined over a different DL language. In
this case, there is a mechanism needed to import, or, more precisely, to translate the
concept into the language of the destination terminology.

This task can be facilitated by the non-standard inference approximation. Given a concept
description C defined over a source DL language L, and given a destination DL language
L′, the (upper) L′-approximation of C is defined as the most specific concept description
C ′ expressible in L′ that subsumes C. Intuitively, C ′ is the translation of C into L′ with
a minimized loss of information. In particular, if C is expressible in L′ then C and C ′ are
equivalent.

A natural generalization of the above scenario is the translation of an entire DL knowl-
edge base into another DL language. One motive behind this might simply be to merge
the translated knowledge base with another one represented in the destination language.
Alternatively, the translation might serve as a starting point to build up a new knowledge
base, possibly using language constructs or TBox constructs unavailable in the source DL

or TBox formalism. For instance, in comparison to the source knowledge base, the desti-
nation language might be lacking disjunction but providing GCIs in the underlying TBox
formalism.

Existing results for approximation are discussed in Section 1.5.2. Our new contributions
to this non-standard inference are summarized in Section 1.6.2.
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1.4.2 Other maintenance tasks

The above mentioned non-standard inference services, i.e., matching, least-common sub-
sumer and approximation, have several more applications related to knowledge mainte-
nance tasks or support of domain experts using DL systems. To provide further motivation
for their study, we briefly describe other application scenarios for each non-standard in-
ference in question.

Detecting redundancies

As the examples in Section 1.2 suggest, real-world knowledge bases are usually large,
containing thousands of concepts, and are often maintained by a large number of domain
experts over a period of several years. In this situation, different knowledge engineers
might extend their terminology by similarly defined, yet different, concepts. This would
compromise clarity, one of our quality criteria for terminologies. Obviously, standard
reasoning services can be used to find such cases in DL knowledge bases to some extent:
concepts coincide in the subsumption hierarchy if they are equivalent.

Apart from perfect equivalence, however, other more general sources of redundancy ap-
ply to our scenario. Consider a case where two domain experts independently intend to
introduce the same concept but define it with reference to different concept names. For
instance, recall our trivial TBox T from Example 1.1.1, in which Parent is defined. An-
other knowledge engineer might have defined a similar concept, e.g., FatherOrMother by
Humanu∃has child.Human, which due to the difference between the atomic concepts Person

and Human is not equivalent to Parent. Clearly, both definitions attempt to represent the
same notion.

By means of matching, such redundancies can sometimes be detected. For instance, after
extension by the definition of FatherOrMother , the TBox T could be queried for con-
cepts matching the concept pattern X u ∃has child.X. The resulting set, i.e., {Parent,
FatherOrMother}, could then be used to resolve the problem. A similar case is described
in [Küs01]. Note, however, that concepts are not generally redundant if they can be
matched against the same pattern. Nonetheless, in search of redundancies matching can
provide valuable clues.

Integrating knowledge bases

As in the case of the Gene Ontology mentioned above, knowledge bases can be a by-
product of the merger of organizations, thus creating a need for a coherent representation
of their combined domain knowledge. Assuming that the relevant knowledge sources are
already represented by, or could be translated into, DL-TBoxes, the question is how to
integrate them into one coherent TBox.

It has been shown in [BK00b] that, to some extent, the answer can be matching (under side
conditions, see Section 1.5.2). More precisely, matching is used to find so-called conflict
free mappings between the TBoxes to merge, where conflicts are defined only taking into
account the structure of a concept definition, disregarding the actual names of atomic
concepts and roles. For related work on the topic of integrating knowledge bases, see
Section 1.7.2.

Supporting inexperienced users

From a KR perspective, the flexibility of DL knowledge bases, admitting arbitrarily com-
plex concept descriptions in definitions or even in GCIs, clearly is an asset. Nevertheless,
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users of DL systems are typically domain experts with limited initial knowledge represen-
tation expertise. Such users may have difficulties to understand and make use of the full
expressive power of the DL language underlying the DL system.

In order to provide a simplified view on the knowledge base, some DL systems have been
equipped with a simplified frame-based user interface built on top of a more powerful
knowledge editor. Examples of systems with this dual architecture are the TAMBIS sys-
tem [BBB+98] and the knowledge editors OilEd [BHGS01] and Protégé [GMF+03]. In
particular, observe that the sub-window labeled ‘Class Editor’ in Figure 1.1.1 shows such a
simplified interface. On several occasions, these knowledge editors present concept descrip-
tions to the user for editing, inspection, or as a solution of inference problems. Operating
in the simplified frame-based mode, these concept descriptions need not always fit into the
restricted slots of the frames representing the concepts in question.

In such cases, approximation might serve as a means to translate the original concept
description into a restricted language compatible with the frame-based representation,
thus adapting to the users’ level of expertise. Furthermore, the aspects not captured by
the frame-based representation could be computed for further inspection by means of a
difference operator for concept descriptions [BKT02b].

Non-standard inferences for expressive DLs

In the context of the bottom-up extension of DL knowledge bases described in Section 1.4.1,
we have presented the non-standard inference least-common subsumer as a means to ex-
tract the commonalities of concept descriptions. Given concept descriptions C1, . . . , Cn,
their lcs is defined as the most specific (w.r.t. subsumption) concept description subsum-
ing every Ci. In DLs providing a disjunction operator (t), this definition can be satisfied
trivially by the disjunction of all Ci. The disjunction, however, does not explicitly show
the commonalities of the input concepts, so that no further insight is obtained by a domain
expert inspecting the disjunction.

This can be overcome to some extent by approximation. Instead of computing the lcs of
C1, . . . , Cn at once, the commonalities of the relevant concepts can be made explicit by
first approximating every Ci in a DL language without disjunction and then computing the
lcs. Note, however, that information might be lost in this process due to approximation.

A similar strategy can be used to solve matching problems in DLs too expressive for
currently available matching algorithms. For several reasons, matching is, like the lcs,
unavailable in DLs providing disjunction or general negation, see Section 1.5.2 for details.

1.5 Relevant existing results

In order to specify precisely the contribution of the present work, we begin by relating
currently existing results on the topics directly relevant to us, especially reasoning w.r.t.
general TBoxes and non-standard inferences. Related work motivated by similar appli-
cation scenarios is discussed in Section 1.7. For a broader overview over the field of DL

research, see, e.g., [NB03, BN03].

In the remainder of this chapter, it will be necessary to refer to some notions from DL

research, especially specific DLs and TBox formalisms, that have not been introduced
formally in our overview so far. Readers not familiar with the common vocabulary of the
DL domain might refer to Section 2.1 for a formal definition of syntax and semantics of all
relevant DLs, TBox formalisms and semantics mentioned in the remainder of this chapter.
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1.5.1 Standard inferences

Initially, DL research was motivated by the goal to provide a formal semantics for semantic
networks and frame systems, see Section 1.1. In this context, property arcs in semantic
networks and slots in frames were interpreted as universal restrictions on the relevant
relations. For that reason, the first complexity analyses were carried out for DLs providing
value restrictions.

As soon as terminologies were taken into account, however, reasoning even w.r.t. very
small DLs proved to be intractable. Even with the simplest form of acyclic TBoxes,
subsumption in the small DL FL0, providing only conjunction and value restriction, is co-
NP-hard [Neb90]. The hardness result carries over to every extension of FL0. Admitting
cycles in TBoxes even increases the complexity to PSPACE-completeness, both for fixed
point semantics [Baa96] and descriptive semantics [KN03].

Due to the above mentioned intractability results for very basic DLs even w.r.t. acyclic
TBoxes, the tractability question for more complex TBox formalisms has hardly been con-
sidered. On the contrary, research on general TBoxes has been mainly focused on very
expressive DLs, reaching as far as, e.g., ALCNR [BDS93] and SHIQ [HST99], where de-
ciding subsumption of concepts w.r.t. general TBoxes is EXPTIME-hard. More recently, a
subsumption algorithm for SHOIQ has been presented [HS05] which can be used to decide
subsumption in the slightly weaker OWL-DL, one of the DL languages recommended as a
standard for the Semantic Web. In SHOIQ, reasoning is known to be even NEXPTIME-
complete [Tob00].

Research in the direction of less expressive DLs suggested that, for reasoning w.r.t. gen-
eral TBoxes, the EXPTIME lower bound would not give way easily. In [GMWK02], the
problem has been shown to remain EXPTIME-complete for FLE , a DL providing only top
concept, conjunction, value restriction and existential restriction. The same holds for the
small DL AL which provides conjunction, value and unqualified existential restriction, and
primitive negation [Don03]. Even restricting general TBoxes to primitive ones, where only
concept names are admitted on left-hand sides of GCIs, hardly improves the complex-
ity of reasoning. As shown in [Cal96], reasoning w.r.t. primitive general TBoxes remains
EXPTIME-complete for the DLs ALC and ALU , and is PSPACE-complete for ALE .

In the light of the above intractability results, it came as a surprise that subsumption w.r.t.
cyclic EL-TBoxes is tractable [Baa03b], i.e., decidable in polynomial time. In particular,
tractability of subsumption has not only been shown for (standard) descriptive semantics,
but also both for greatest-fixedpoint and least-fixedpoint semantics.

1.5.2 Non-standard inferences

While most standard inference problems are decision problems used to reason over an al-
ready existing DL knowledge base, most non-standard inference problems are computation
problems tailored to the purpose of supporting build-up and maintenance of knowledge
bases. For an overview over the topic of non-standard inferences in DL, see [Küs01]. For the
scope of the present work, the non-standard inferences matching, least-common subsumer,
and approximation will be of particular interest.

Matching

Matching in DL has first been utilized as a pruning mechanism in the context of the DL

system CLASSIC developed at AT&T [BBMR89, BMPS+91]. In industrial applications, the
concept definitions contained in CLASSIC knowledge bases turned out to be much too large
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to be presented to human users [McG96]. In order to reduce the amount of information,
users could specify ‘interesting’ aspects of a concept by means of a concept pattern, causing
the system to display only those parts of concept definitions that could be matched against
the pattern [BM96]. For instance, specifying the pattern ∃has unit.X causes every concept
definition to be pruned to existential restrictions referring to the role has unit.

The matching algorithm implemented for the CLASSIC system could not handle arbi-
trary patterns and was incomplete even on restricted ones [Küs01]. The first complete,
truly general DL-matching algorithm has been presented in [BN98] for the small DL FL0.
Subsequently, matching algorithms for several other DLs have been developed: for ALN
and sublanguages [BKBM99], for EL and ALE [BK00a]. It has been shown that deciding
the solvability of EL-matching problems modulo equivalence is NP-complete, while the
decision problem is tractable for EL-matching problems modulo subsumption. Both de-
cision problems are NP-complete in ALE . Furthermore, sound and complete matching
algorithms for ALN ∗ and ALNS have been presented in [Küs01]. Despite their strong
practical motivation, none of the above algorithms have initially been implemented. The
first implementations are part of the present work, see Section 1.6.2.

Usually, even in relatively inexpressive DLs, matching problems can have many solutions.
As an example, consider the simple matching problem P u Q ≡? X u Y with atomic
concepts P,Q and variables X,Y . This matching problem has 23 − 1 solutions, two of
them being {X 7→ P, Y 7→ Q} and {X 7→ P uQ,Y 7→ P uQ}. In order to further specify
desired solutions of matching problems by imposing additional restrictions on admissible
values for variables, side conditions have been proposed [MRI95, McG96] and have been
examined in depth for the DL ALN and sublanguages in [BKBM99].

A side condition is an expression of the form X v D, called subsumption condition, or
X @ D, called strict subsumption condition, where X is a variable and D a concept
pattern. A matching problem under side conditions is a matching problem together with
at most one side condition for every variable occurring in the matching problem. A matcher
σ satisfies a subsumption condition X v D if and only if σ(X) v σ(D) and analogous
for strict subsumption conditions. Hence, side conditions correspond to equation systems
imposing further constraints between the variables in the matching problem. In the above
example, the strict subsumption condition X @ P u Y reduces the number of admissible
solutions to one, namely {X 7→ P uQ,Y 7→ P}.

It has been shown in [BKBM99] that deciding the solvability of matching problems under
strict subsumption conditions is NP-hard in the DL ALN and its sublanguages FL⊥ and
FL¬. Moreover, matching in ALN under subsumption conditions is polynomial, even if
the relevant system of subsumption conditions contains cycles [Bra00, BBK01].

With respect to further extensions of the underlying DL language, matching proved to be
a hard problem. Especially, in a DL that provides full negation, such as ALC, matching
becomes equally hard as unification, where variables are admitted on both sides of the
equation. A unification problem D1 ≡? D2 with concept patterns D1, D2 is solved by a
substitution σ if and only if σ solves the matching problem ⊥ ≡? (¬D1uD2)t(D1u¬D2),
where ⊥ denotes the unsatisfiable concept. It is open how to solve unification problems in
ALC or in the corresponding multi-modal logic Km. For more particulars on unification,
see Section 1.7.2.

Least-common subsumer (and most-specific concept)

The least-common subsumer has first been introduced for the DLsALN and LS in [CBH92].
The results for LS have been extended by introducing value restrictions in [CH94a, CH94b],
thus reaching CORE CLASSIC, a subset of the DL language underlying the CLASSIC sys-
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tem. Moreover, an lcs algorithm for full CLASSIC has been presented in [FP96]. It has
been observed in [Küs01], however, that the algorithm in [FP96] is flawed because incon-
sistencies are not handled correctly. More importantly, the lcs algorithms cited above
do not distinguish between total and partial functions when interpreting attributes. As
shown in [Küs01], this difference must be strictly observed when computing the lcs in the
languages mentioned above. In particular, the lcs of two ALNS-concept descriptions with
partial attributes always exists and can be computed in polynomial time; while in the case
of total attributes the lcs does not always exist and, if it exists, can be of exponential size
in the size of the input ALNS-concept descriptions.

For the DLs EL andALE , a sound and complete lcs algorithm has been presented in [BKM99].
In [Küs01], an lcs algorithm for the DLs ALNS and ALN ∗ is proposed which deals correctly
with partial and total attributes. An lcs operator for the full CLASSIC language has been
presented in [KB01]. In [KM01b], an lcs algorithm for ALEN is presented.

The above mentioned contributions to the lcs have in common that only acyclic TBoxes
are supported. In fact, most lcs algorithms are defined without underlying TBox. In
order to compute the lcs of concepts defined in a TBox, the concepts must be expanded
beforehand, i.e., every occurring defined concept is be replaced by its definition until only
atomic concepts remain.

More recently, an lcs algorithm for possibly cyclic EL-TBoxes has been proposed in [Baa03a].
In particular, it has been shown that the lcs need not exist when interpreting the TBox
with the standard semantics, i.e., descriptive semantics. For greatest-fixedpoint semantics,
however, it has been shown that the lcs always exists, that the binary lcs can be computed
in polynomial time, and an optimal computation algorithm has been presented.

The computational complexity of the above lcs algorithms has been studied in depth. The
binary lcs, i.e., the lcs applied to a set of only two concept descriptions, can be computed
in polynomial time in the DL EL, but can grow exponentially large in the size of the input
concepts in ALE [BKM99]. Note that therefore any lcs algorithm in ALE is necessarily
worst-case exponential. Without the restriction to two input concepts, the lcs can grow
exponentially large in the size of the input concepts both in EL and ALE [BKM99]. In
ALN ∗, the binary lcs can be computed in exponential time [Küs01] but it is open whether
it can grow exponentially large in the size of the input concepts and whether a PSPACE-
algorithm exists to compute it. The general lcs in ALN ∗ can grow exponentially large in
the size of the input concepts and there exists an EXPTIME-algorithm to compute it. The
binary lcs w.r.t. cyclic EL-TBoxes interpreted with greatest-fixedpoint semantics can be
computed in polynomial time [Baa03a], implying that it is of at most polynomial size in
the size of the input concepts.

The non-standard inference most-specific concept has initially been suggested in the con-
text of the early DL system KL-ONE as a means to reduce the instance problem to sub-
sumption [SL83] and has subsequently also been employed withing the DL system CLASSIC.
In contrast to the lcs, the msc does not always exist for many standard DLs. This has been
shown in [BK98] for individuals defined w.r.t. acyclic ALN -TBoxes and in [Mol00, KM01a]

for acyclic ALE-TBoxes. In order to overcome this problem, it has been shown in [BK98]

that the msc w.r.t. cyclic ALE-TBoxes does always exist. Hence, the msc of an individual
defined w.r.t. an ALN -TBox can always be expressed by introducing (possibly) cyclic def-
initions. In [KM01a], it has been shown for the case of ALE how an approximate msc can
be computed whose maximum role depth is limited to some constant k. For the purpose
of the present work, the only relevant result on the msc, see [Baa03a], shows how the msc
of an individual defined w.r.t. an ABox and a cyclic EL-TBox with fixedpoint semantics
can be computed in polynomial time.
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Approximation

Approximation has first been suggested as a DL inference service in [BKM00]. The first
in-depth examination of approximation, however, has only been done in the context of the
present work. See Section 1.6.2 for details.

1.6 New results

In our overview so far, we have highlighted two main directions of DL research; firstly, DL

formalisms that provide expressive TBox formalisms, such as GCIs, but still allow TBoxes
to be classified in polynomial time; and secondly, non-standard inference services for the
support of knowledge maintenance tasks.

The present work provides new results in both of these directions. In the following section,
we summarize all new results on standard inferences. Apart from subsumption as the main
inference in terminological reasoning, the instance problem, i.e., assertional reasoning, will
also be of interest. On the topic of non-standard inferences, we mainly present new results
on matching and approximation. Our findings, however, will have some implications on
the least-common subsumer and the most-specific concept.

In general, our work is not limited to examinations of the computational complexity of new
instances of the above reasoning problems, but also provides practical decision and com-
putation algorithms, several prototypical implementations, and systematic performance
evaluations.

1.6.1 Standard inferences

Concerning the standard inference problem subsumption, the present work aims to find a
DL language together with a TBox formalism with the following two properties.

• It should be as expressive as possible to be useful in practice, in particular for KR in
the Life Sciences and to some extent the Semantic Web. As discussed in Sections 1.2
and 1.3, a TBox formalism supporting GCIs is highly desirable.

• Given the considerable size of knowledge bases in particular in the Life Sciences,
reasoning should be tractable.

Note that an additional third property, the ability to support non-standard inference
services, is discussed in more detail in Section 1.6.2.

In the light of the negative results for many well-known DLs shown in Section 1.5.1, clearly,
tractable reasoning w.r.t. general TBoxes appears to be hard to achieve. Nevertheless,
encouraged by the tractability result for cyclic EL-TBoxes [Baa03b], the present work
takes EL as a starting point of a systematic search for a DL with the above properties.

Intractability results

As every DL is characterized by the set of language constructors it provides, we begin
by presenting intractability results obtained from extending EL by single additional con-
structors. Depending on the constructor in question, the subsumption problem becomes
intractable already w.r.t. the empty TBox or acyclic TBoxes, implying intractability for
general TBoxes. All new contributions to the complexity of subsumption problems are
summarized in Table 1.6.1.
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TBox Extension of EL by Deciding subsumption is Proof in Section

empty Disjunction co-NP-complete 3.1.1, Th. 3.1.4
Number restrictions co-NP-complete 3.1.1, Th. 3.1.8

acyclic Allsome, but no exist. restr. co-NP-complete 3.1.2, Th. 3.1.20
Allsome co-NP-hard 3.1.2, Th. 3.1.20

general Value restr., but no exist. restr. EXPTIME-complete 3.2.4, Th. 3.2.13
Atomic negation EXPTIME-complete 3.1.3, Th. 3.1.23
Disjunction EXPTIME-complete 3.1.3, Th. 3.1.24
Inverse roles PSPACE-hard 3.1.3, Th. 3.1.25
Functional roles EXPTIME-complete 3.1.3, Th. 3.1.28
At-most11restriction EXPTIME-complete 3.1.3, Th. 3.1.29
At-least12restriction EXPTIME-complete 3.1.3, Th. 3.1.30
Non-p-admissible concr. dom. EXPTIME-complete 3.1.3, Th. 3.1.32
Role negation EXPTIME-complete 3.1.3, Th. 3.1.34
Role union EXPTIME-complete 3.1.3, Th. 3.1.34
Refl.-trans. closure on roles EXPTIME-complete 3.1.3, Th. 3.1.34

Table 1.6.1: New contributions to the complexity of subsumption

For EL extended by the the constructors disjunction (t) or number restrictions ((6 n r), (>
n r)), co-NP-completeness of subsumption is shown w.r.t. the empty TBox, see Sec-
tion 3.1.1, Theorems 3.1.4 and 3.1.8. Adding the constructor allsome (∀∃) to EL makes
subsumption co-NP-hard already w.r.t. acyclic TBoxes, see Section 3.1.2, Theorem 3.1.20.
It is open whether this lower bound is tight, i.e., whether a non-deterministic polynomial
time algorithm deciding non-subsumption exists. Without existential restrictions, how-
ever, i.e., in a DL providing only top concept, conjunction, and allsome, tight complexity
bounds are obtained: we show that subsumption w.r.t. acyclic TBoxes is co-NP-complete.
The relevant results are published in [Bra04b] and summarized in the first four rows of
Table 1.6.1.

As mentioned in Section 1.5.1, extending EL by value restrictions is already known to make
subsumption EXPTIME-complete w.r.t. general TBoxes [GMWK02]. In Section 3.2.4, The-
orem 3.2.13, we improve upon this result by showing that EXPTIME-completeness of the
subsumption problem holds even without existential restrictions, i.e., w.r.t. general FL0-
TBoxes. Our result thereby also improves the known PSPACE-hardness of subsumption
w.r.t. general FL0-TBoxes with descriptive semantics [KN03].

We prove that the same computational complexity, i.e., EXPTIME-completeness, is ob-
tained when extending EL by any of the concept constructors atomic negation (¬P ),
see Theorem 3.1.23, disjunction (t), see Theorem 3.1.24, at-most restrictions (6 n r),
see Theorem 3.1.29, and at-least restrictions (> n r), see Theorem 3.1.30. Moreover,
EXPTIME-completeness of subsumption w.r.t. general TBoxes is also obtained when ex-
tending EL by functional roles, see Theorem 3.1.28, or by any of the role constructors
negation (¬r), union (r ∪ s), or reflexive transitive closure (r∗), see Theorem 3.1.34. For
the inverse role constructor (r−), we could show that subsumption w.r.t. the correspond-
ing extension of EL becomes PSPACE-hard. It is open whether this bound is tight, i.e.,
whether an appropriate polynomial space decision algorithm exists. Finally, reasoning

11Holds even if only (6 1 r)-number restrictions are admitted.
12Holds even if only (> 2 r)-number restrictions are admitted.
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TBox Language Proof in Section

EL++ general TBox EL + bottom concept 3.2, Th. 3.2.7
+ restr. role value maps + nominals

+ p-admissible concr. dom.

ELHy hybrid TBox EL 3.3.2, Cor. 3.3.19
(general + cyclic TBox)

Table 1.6.2: New contributions to tractable subsumption algorithms

w.r.t. general TBoxes becomes EXPTIME-hard when extending EL by a concrete domain
that is not p-admissible, see Theorem 3.1.32.

Note that Theorem 3.1.8 also shows NP-hardness of the satisfiability problem w.r.t. the
empty TBox in EL extended by number restriction. Moreover, Theorems 3.1.30 and 3.1.29
show that EXPTIME-hardness for number restrictions holds even when restricting at-most
restrictions (6 n r) to the case n = 1 or at-least restrictions (> n r) to the case n = 2.

The relevant results are published in [BBL05]. Note that, trivially, all intractability results
carry over to further extensions of EL. For instance, subsumption w.r.t. general TBoxes
in EL extended by number restrictions is also EXPTIME-complete.

Tractability results

Despite the abundance of intractability results shown above, our search for an appropriate
DL in which subsumption w.r.t. general TBoxes is tractable has not only produced negative
results. In a first positive step, we could answer the hitherto open question for EL: it is
shown in [Bra04b] that subsumption w.r.t. general TBoxes in EL is not only tractable, but
remains so even when extending the underlying TBox formalism by role hierarchies. The
result is further improved in [Bra04a], where the instance problem w.r.t. general EL-TBoxes
with role hierarchies is also shown to be tractable. In both cases, tractability is shown by
devising a sound and complete decision algorithm that can be used in practice.

Using similar techniques for an extended subsumption procedure, we show in Section 3.2
that the subsumption problem remains tractable when, firstly, extending EL by the bot-
tom concept (⊥), nominals, and p-admissible concrete domains, and secondly, extending
general TBoxes by restricted13 role value maps (RVMs). The resulting formalism is called
EL++-CBoxes, where EL++ symbolizes the language extension of EL, and CBox stands for
Constraint-Box, emphasizing that GCIs and restricted RVMs are admitted in the TBox
formalism. In Section 3.2.2, Theorem 3.2.7, we prove that not only subsumption w.r.t.
EL++-CBoxes is tractable, but also satisfiability, ABox consistency, and the instance prob-
lem, if an EL++-ABox is additionally taken into account.

Hence, all relevant DL standard reasoning tasks, terminological as well as assertional, are
tractable. Taking into account the above intractability results, it might be claimed that
EL++-CBoxes are optimal in that every additional standard DL constructor, or every more
powerful concrete domain, makes reasoning intractable. The features of EL++-CBoxes are
summarized in the first row of Table 1.6.2. All relevant results are published in [BBL05].
We also show in Theorem 3.2.8 that EL++-CBoxes exhibit a small-model property, i.e.,
every satisfiable EL++-CBox has a model of linear size in the size of the CBox, every

13It has been shown in [Baa03b] that subsumption becomes undecidable even w.r.t. cyclic EL-TBoxes
when arbitrary RVMs are admitted.
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non-subsumption w.r.t. an EL++-CBox has a countermodel of linear size, and analogously
for assertional reasoning problems.

The claim that EL++-CBoxes are expressive enough for practical applications is substan-
tiated further in Section 3.2. Without going into detail, let us sum up that EL++-CBoxes
provide the means to express GCIs, role hierarchies, transitive roles, right identities, dis-
jointness constraints, the unique name assumption, and domain restrictions on roles. Fur-
thermore, examples of practically relevant p-admissible concrete domains are discussed in
Section 3.2.3.

Having identified EL++-CBoxes as a solution of maximum expressivity in our search for
tractable DL formalisms supporting GCIs, our further investigation is motivated by an
additional goal: to support knowledge maintenance tasks by non-standard inference ser-
vices in the manner described in Section 1.4. This leads to a novel TBox formalism,
so-called hybrid EL-TBoxes, where both GCIs and non-standard inferences, such as the lcs
or matching, are supported. Tractability of subsumption w.r.t. hybrid EL-TBoxes is shown
in Section 3.3.2, Corollary 3.3.19. The proof is by a polynomial reduction to cyclic EL-
TBoxes for which a tractable subsumption algorithm exists [Baa03a], see also Table 1.6.2.
The relevant results on subsumption w.r.t. hybrid EL-TBoxes are published in [BM05].
As their main underlying motivation are non-standard inferences, our results on hybrid
TBoxes are presented in more detail in Section 1.6.2.

Publications on standard inferences

The following publications document our contributions appertaining to standard inference
services. As mentioned above, intractability results w.r.t. empty and acyclic TBoxes as well
as the initial polynomial subsumption algorithm for general EL-TBoxes extended by role
hierarchies are contained in [Bra04b], while a polynomial algorithm for the instance problem
is presented in [Bra04a]. The improvement of intractability results to general TBoxes
and the extension of tractability results to EL++-CBoxes [BBL05] has been achieved in
collaboration with coauthors. Our results on subsumption w.r.t. hybrid EL-TBoxes [BM05]

have been obtained in collaboration with a coauthor.

• [BBL05]
F. Baader, S. Brandt, and C. Lutz. Pushing the EL envelope. In Proceedings of
the Nineteenth International Joint Conference on Artificial Intelligence (IJCAI-05),
Edinburgh, UK, 2005. Morgan-Kaufmann Publishers.

• [BM05]
S. Brandt and J. Model. Subsumption in EL w.r.t. hybrid TBoxes. In Proceedings of
the 28th Annual German Conference on Artificial Intelligence, (KI 2005), Lecture
Notes in Artificial Intelligence. Springer-Verlag, 2005.

• [Bra04a]
S. Brandt. On subsumption and instance problem in ELH w.r.t. general TBoxes.
In Proceedings of the 2004 International Workshop on Description Logics (DL2004),
CEUR-WS, 2004.

• [Bra04b]
S. Brandt. Polynomial time reasoning in a description logic with existential restric-
tions, GCI axioms, and—what else? In R. López de Mantáras and L. Saitta, editors,
Proceedings of the 16th European Conference on Artificial Intelligence (ECAI-2004),
pages 298–302. IOS Press, 2004.
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Matching modulo equiv. TBox Language Computation problem is Proof in Section

under side conditions empty FL⊥ n.p., tight 4.3.3, Th. 4.3.16
FL¬ n.p., tight 4.3.3, Th. 4.3.16
ALN n.p., tight 4.3.3, Th. 4.3.16

no side conditions cyclic EL exptime, tight 4.4.4, Cor. 4.4.32
hybrid EL exptime, tight 4.4.4, Cor. 4.4.32

Table 1.6.3: New contributions to the matching problem in DL

1.6.2 Non-standard inferences

The present work extends theoretical results on the non-standard inference matching and
investigates in depth the novel non-standard inference approximation. Additionally, we
present and evaluate the, to the best of our knowledge, first implementations of general
purpose matching algorithms for DLs.

Matching

Our contributions to matching are threefold. Firstly, we present non-deterministic polyno-
mial-time algorithms to solve matching problems under acyclic side conditions in ALN and
two sublanguages, thereby also proving NP-completeness of the relevant decision problems.
Secondly, we show how to solve matching problems w.r.t. cyclic EL-TBoxes and in the
presence of GCIs; and thirdly, we describe our implementation and empirical evaluation
of matching algorithms for two common DLs, namely ALE and ALN .

In Section 4.3.1, we devise non-deterministic polynomial-time algorithms to solve matching
problems under side conditions in the DLsALN and its sublanguages FL⊥ and FL¬. As de-
ciding the solvability of matching problems under side conditions is known to be NP-hard in
the relevant languages [BKBM99], our algorithms are optimal and prove NP-completeness
of the decision problems. Moreover, all algorithms compute the least matcher, i.e., the
solution that contains as much information as possible. Note that, in contrast to subsump-
tion, complexity upper bounds for matching do not automatically transfer to sublanguages
and complexity lower bounds not automatically to superlanguages. The relevant results
are published in [BBK01] and summarized in the first three rows of Table 1.6.3, where ‘n.p.,
tight’ denotes that a non-deterministic polynomial time computation algorithm has been
devised and that this is optimal because the corresponding decision problem is already in
NP.

In Section 4.4.4 we devise a deterministic exponential-time algorithm to solve matching
problems w.r.t. cyclic EL-TBoxes interpreted with greatest-fixedpoint semantics. The
algorithm is sound and complete in the sense that all minimal14 matchers are computed.
Regarding the computational complexity, our algorithm is optimal because, as shown in
Theorem 4.4.20, minimal matchers of matching problems w.r.t. cyclic EL-TBoxes with
greatest-fixedpoint semantics can be of exponential size in the input matching problem.
Our matching algorithm generalizes matching in EL w.r.t. the empty TBox, as we show in
Lemma 4.4.19. Together with the hardness result from [BK99], this implies that deciding
the solvability of matching problems modulo equivalence w.r.t. cyclic EL-TBoxes is NP-
hard. It is open whether this bound is tight, i.e., whether a non-deterministic polynomial

14Even w.r.t. the empty TBox the least matcher to an EL-matching problem does not always exist.
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time decision algorithm exists. For matching problems modulo subsumption w.r.t. cyclic
EL-TBoxes, the decision problem is tractable.

The practical utility of GCIs and non-standard inferences motivates the question for a
DL formalism in which both can be provided. The underlying problem here is one of
appropriate choice of semantics. General TBoxes have to be interpreted w.r.t. descriptive
semantics. As mentioned in Section 1.5.2, for this kind of semantics the lcs (and msc) need
not always exist, even w.r.t. cyclic EL-TBoxes [Baa03b]. This result carries over to general
TBoxes and many extensions of the DL EL. As the lcs can be reduced to matching, the
same problem also occurs for matching problems.

In order to provide lcs and msc without sacrificing the convenience of GCIs, we propose
hybrid TBoxes. A hybrid EL-TBox is a pair (F , T ) of a general TBox F (‘foundation’) and
a possibly cyclic TBox T (‘terminology’) defined over the same set of atomic concepts and
roles. F serves as a foundation of T in that the GCIs in F define relationships between
concepts used as atomic concept names in the definitions in T . Hence, F lays a foundation
of general implications constraining T . Hybrid EL-TBoxes cannot be reduced to ordinary
general EL-TBoxes because of a difference in semantics: the foundation F is interpreted
by descriptive semantics while the terminology T is interpreted by greatest-fixedpoint
semantics, see Section 2.4 for details.

In Section 4.4, we show how minimal14 matchers for matching problems w.r.t. hybrid EL-
TBoxes can be computed. Due to the reduction of hybrid EL-TBoxes to cyclic EL-TBoxes
shown in Section 3.3.2, the above mentioned matching algorithm for the latter TBox
formalism can be re-used. In this way, the goal of providing non-standard inferences in
the presence of GCIs is met. As shown in Corollary 4.4.32, minimal matchers of matching
problems w.r.t. hybrid EL-TBoxes can grow exponentially large in the size of the input
matching problem. The results are summarized in the last two rows of Table 1.6.3, where
‘exptime, tight’ denotes that a deterministic exponential time computation algorithm has
been devised and that the solution of the relevant computation problem is of exponential
size in the size of the input in the worst case, implying that any computation algorithm
is worst-case exponential.

In addition to the above theoretical results, the present work also provides implementations
of matching algorithms, namely matching in ALE [BK00a] and sublanguages, and matching
in ALN [BKBM99] and sublanguages. To the best of our knowledge, these are the first
implementations of independent, general matching algorithms for DLs. The implemented
algorithms have been tested on randomly generated matching problems, see Sections 4.5.1
and 4.5.2, respectively, for results of the performance tests. Without going into detail here,
one might state that both algorithms performed well even on relatively large matching
problems.

A prototype implementation of our matching algorithms for cyclic and hybrid EL-TBoxes
have also been finished [Liu05] but have not yet been evaluated thoroughly.

Publications on matching

The following publications contain our new contributions to matching. The relevant results
on matching under side conditions [BBK01] mainly stem from our own work. Apart from
the entire implementation of matching in ALE [Bra03], our part in the implementation of
matching in ALN [BL04] has been the algorithm’s key architecture, data structures, and
conception and implementation of a testbed for performance tests on randomized data.

Knowledge maintenance as one application of matching, see Section 1.4.1, is described in
detail in [BT01]. In collaboration with a coauthor, the paper presents an application from
the domain of chemical process engineering in which knowledge maintenance tasks are
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facilitated by means of non-standard inference services. The results presented in [BT01]

are not related to matching alone but also describe the approach of bottom-up extension,
see Section 1.4.1, and thus can also be seen as contributing to the use of the lcs inference.

• [BBK01]
F. Baader, S. Brandt, and R. Küsters. Matching under side conditions in descrip-
tion logics. In B. Nebel, editor, Proceedings of the Seventeenth International Joint
Conference on Artificial Intelligence, IJCAI-01, pages 213–218, Seattle, Washington,
2001. Morgan Kaufmann.

• [BL04]
S. Brandt and H. Liu. Implementing matching in ALN . In Proceedings of the
KI-2004 Workshop on Applications of Description Logics (KI-ADL’04), CEUR-WS,
Ulm, Germany, September 2004.

• [Bra03]
S. Brandt. Implementing matching in ALE—first results. In Proceedings of the 2003
International Workshop on Description Logics (DL2003), CEUR-WS, 2003.

• [BT01]
S. Brandt and A.-Y. Turhan. Using non-standard inferences in description logics
— what does it buy me? In Proceedings of the KI-2001 Workshop on Applications
of Description Logics (KIDLWS’01), number 44 in CEUR-WS, Vienna, Austria,
September 2001. RWTH Aachen.

Least-common subsumer (and most-specific concept)

Although the non-standard inferences lcs and msc are not in the focus of the present work,
some results on matching have implications on them. Due to our polynomial reduction
from hybrid EL-TBoxes to cyclic EL-TBoxes with greatest-fixedpoint semantics, see Sec-
tion 3.3.2, all non-standard inferences for the latter TBox formalism are made available
for hybrid TBoxes. Hence, building on the results from [Baa03a], we show in Section 4.4.6
how to compute the lcs and msc w.r.t. hybrid EL-TBoxes. Moreover, we can show that the
binary lcs w.r.t. hybrid EL-TBoxes always exists and can be computed in polynomial time
while the lcs of arbitrary arity is EXPTIME-complete, see Corollaries 4.4.24 and 4.4.26.
Given an additional ABox, the most-specific concept w.r.t. this ABox and a hybrid TBox
always exists and can be computed in deterministic polynomial time in the size of the
input.

As shown in Section 4, every lcs computation can be expressed as a least solution to a
matching problem modulo subsumption. Hence, our implementation of matching in ALN
can be used to compute the least-common subsumer w.r.t. ALN and its sublanguages. To
the best of our knowledge, this is the first implementation of an lcs algorithm for ALN
and its sublanguages.

Apart from these derived findings, we have proposed a sound and complete algorithm
to compute the lcs of FLE+-concept descriptions, i.e., in a DL providing top concept,
conjunction, existential and value restriction, and transitive roles [BTK03]. As supporting
general TBoxes seemed the more important goal from an application point of view, this
result will, however, not be presented in detail.

Publications on the least-common subsumer

The following two papers document our results on the least-common subsumer in FLE
extended by transitive roles, which, however, are beyond the scope of the present work.
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Both results have been established in collaboration with coauthors.

• [BT03]
S. Brandt and A.-Y. Turhan. Computing least common subsumers for FLE+. In
Proceedings of the 2003 International Workshop on Description Logics, CEUR-WS,
2003.

• [BTK03]
S. Brandt, A.-Y. Turhan, and R. Küsters. Extensions of non-standard inferences
to description logics with transitive roles. In M. Vardi and A. Voronkov, editors,
Proceedings of the 10th International Conference on Logic for Programming, Artifi-
cial Intelligence, and Reasoning (LPAR 2003), Lecture Notes in Computer Science.
Springer, 2003.

Approximation

As mentioned in Section 1.5.2, concept approximation is a novel non-standard inference
examined in depth for the first time in the present work. Our main result is a sound and
complete algorithm computing upper ALE-approximations of ALC-concept descriptions,
see Section 5.1.2. While ALC provides the constructors top concept, conjunction, disjunc-
tion, negation, and existential and value restrictions, ALE is lacking general negation and
disjunction but provides atomic negation. Hence, the key task is to translate concept
descriptions with disjunctions into such without with minimal loss of information.

The computational complexity of approximation is discussed in Section 5.1.2. We show
that any algorithm computing upper ALE-approximations of ALC-concept descriptions is
worst-case exponential, see Corollary 5.1.13, and that our algorithm is a deterministic
double exponential time algorithm, see Lemma 5.1.14. It is an open problem whether
the upper bound is tight, i.e., whether any approximation algorithm in the above sense
is worst-case double exponential. Our results on ALC-ALE-approximation are published
in [BKT02b].

The high computational complexity of approximating arbitrary ALC-concept descriptions
naturally gives rise to the question whether certain classes of ALC-concept descriptions can
be found where approximations can be computed more easily. It is shown in Section 5.1.3
that so-called nice ALC-concepts can be found for which a much simplified approximation
algorithm produces correct results. The relevant result is published in [BT02b].

We also show in [BKT02b] how to provide clues about information lost during approxi-
mation. To this end, the accuracy of ALC-ALE-approximations is measured by means of
a difference operator. Originally proposed to compute the difference of two ALE-concept
descriptions in [Küs01], we have generalized the difference operator to ALC-ALE-differences.

Moreover, the above mentioned algorithm for upper ALE-approximations of ALC-concept
descriptions is extended by number restrictions in [BKT02a], thus computing upper ALEN -
approximations of ALCN -concept descriptions. Both approximation algorithms, i.e., upper
ALE-approximation of ALC-concepts and upper ALEN -approximation of ALCN -concepts,
have been implemented prototypically, see [BKT02b] and [BKT02a].

The difference operator, ALCN -ALEN -approximation, and all results on implementations
of the relevant algorithms, however, are beyond the scope of this work. The relevant
contributions will be part of the forthcoming Ph.D. thesis by Turhan.
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Publications on approximation

Our publications related to the non-standard inference approximation are listed below.
The ALC-ALE-approximation algorithm is published in [BKT02b], together with results
on an appropriate difference operator. The extended ALCN -ALEN -approximation algo-
rithm is presented in [BKT02a]. Our optimization technique for ALC-ALE-approximation
is presented in [BT02b]. All results have been obtained in collaboration with coauthors.

The results on difference, ALCN -ALEN -approximation, and implementations of all relevant
algorithms will be part of the forthcoming Ph.D. thesis by Turhan.

• [BKT02a]
S. Brandt, R. Küsters, and A.-Y. Turhan. Approximating ALCN -concept descrip-
tions. In Proceedings of the 2002 International Workshop on Description Logics,
2002.

• [BKT02b]
S. Brandt, R. Küsters, and A.-Y. Turhan. Approximation and difference in de-
scription logics. In D. Fensel, F. Giunchiglia, D. McGuiness, and M.-A. Williams,
editors, Proceedings of the Eighth International Conference on Principles of Knowl-
edge Representation and Reasoning (KR2002), pages 203–214, San Francisco, CA,
2002. Morgan Kaufman.

• [BT02]
S. Brandt and A.-Y. Turhan. An approach for optimized approximation. In Proceed-
ings of the KI-2002 Workshop on Applications of Description Logics (KIDLWS’01),
CEUR-WS, Aachen, Germany, September 2002. RWTH Aachen.

1.7 Related work

In order to complete our overview of the present work, we summarize some interesting
results by other researchers in which similar techniques have been applied or which have
been motivated by similar goals. A more detailed account of some of the related work
mentioned below will be provided later on in the context of our technical results.

Analogous to the previous sections, we divide the presentation of related work into those
appertaining to the field of standard inferences and to non-standard inferences.

1.7.1 Standard inferences

The primary motivation of our investigation of standard reasoning problems has been
to devise a DL formalism that provides GCIs, i.e., general TBoxes, and w.r.t. which DL

knowledge bases can be classified in polynomial time. In the following, we mention one
implementation of our tractable DL formalism EL++-CBoxes, and also describe another
approach to tractable reasoning w.r.t. DL knowledge bases.

The
�����

reasoner

For the DL formalism EL++-CBoxes, an appropriate reasoner is currently being imple-
mented. In its current state, the reasoner Cel [BLS05] supports EL+-CBoxes, where EL+

denotes the fragment of EL++ without the bottom concept, nominals, and concrete do-
mains. Both GCIs and RIs are fully supported in the TBox formalism. The performance
of Cel has been evaluated using three biomedical terminologies mentioned above, namely
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SNOMED, GALEN, and GO. In the case of GALEN, an EL+-fragment of the original ter-
minology has been used.

In contrast to current releases of the well-known, highly optimized reasoners FaCT and
Racer, Cel was the only reasoner that could successfully classify all benchmark ter-
minologies, and performed fastest on all but one benchmark. Currently, Cel is being
further optimized and extended to support full EL++-CBoxes. For more details on Cel,
see Section 3.4.

Tractable reasoning with DL-Lite

Apart from the DL formalism EL++-CBoxes proposed in the present work, other DL for-
malisms are motivated by the goal to provide tractable reasoning. Probably the most
notable example is DL-Lite [CDGL+05a]. The usual distinction between DL language and
TBox formalism is not appropriate for DL-Lite-TBoxes because some constructors may
occur only in certain places in the TBox. A DL-Lite-TBox is a set of inclusion axioms of
the form B v C, where B and C are defined by means of the grammar

B ::= P | ∃r | ∃r−

C ::= B | ¬B | C u C,

where P stands for an atomic concept. Furthermore, DL-Lite-TBoxes may contain func-
tionality assertions of the form (funct r) or (funct r−) which enforce that the role r, or r−,
must be interpreted by a functional relation.

Obviously, DL-Lite does not support full EL and does not support arbitrary GCIs, and
thus, no general TBoxes. On the other hand, DL-Lite is well suited to represent concep-
tual data models, such as entity relationship diagrams, and object-oriented formalisms,
such as UML class diagrams. The true strengths of DL-Lite, however, lie in ABox reasoning
and specifically in answering conjunctive queries over ABoxes. Like for our EL++ formal-
ism, ABox reasoning in DL-Lite is tractable. But unlike the standard approach to ABox
reasoning, DL-Lite ABoxes are translated into relational databases, so that reasoning over
DL-Lite ABoxes can be performed by standard Database Management Systems, of which
highly optimized implementations exist. As a consequence, ABoxes even with millions of
instances can be handled in practice. In Section 3.4, some more details of DL-Lite are
discussed. Moreover, in Section 1.7.2 we briefly show how DL-Lite queries are defined.

Other related work

One of our intractability results mentioned above, EXPTIME-hardness of the subsumption
problem in FL0 w.r.t. general TBoxes, has been proven independently by reduction of the
existence of winning strategies in pushdown games [Hof05]. Moreover, after publication
of [BBL05], tractability of subsumption w.r.t. EL++-CBoxes has been re-proven in [Kaz05]

by means of resolution calculi.

1.7.2 Non-standard inferences

On the subject of non-standard inferences, we begin by presenting theoretical results on
unification that are related to matching. Regarding the application of matching as a
query mechanism for DL knowledge bases, we describe other well-known DL-based query
languages and point out important differences to our approach in the underlying motiva-
tion. Although the present work has only minor implications on the lcs inference, some
results related to this non-standard inference are discussed. Furthermore, we describe a
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DL system that makes several non-standard inference services available to modern knowl-
edge editors. Finally, another important inference tasks appertaining to the domain of
non-standard inferences is mentioned, namely explanation. Although explanation has no
immediate relation to the other non-standard inferences presented here, we would like to
mention it in order to complete the picture of non-standard inferences as tools supporting
knowledge engineering.

Unification

As an extension of the non-standard inference service matching, we should mention unifica-
tion. As described above, a matching problem (modulo equivalence) consists of a concept
description C and a concept pattern D containing variables. The task is to assign concept
descriptions to the variables in D in such a way that equivalence to C holds. Unifica-
tion problems extend matching problems in that variables may occur on both sides of the
equation, i.e., both C and D may be concept patterns. A substitution solves a unification
problem if and only if equivalence of C and D holds after application of the substitution
to both patterns. It has been observed in [BN01] that unification can be used to detect
redundancies in DL knowledge bases, and is even better suited for this purpose than the
inference service matching.

Unification has been studied in depth in [BN01], where a sound and complete deterministic
exponential time unification algorithm for the DL FL0 has been presented. It has also
been shown that deciding the solvability of FL0-unification problems is EXPTIME-hard.
For the DL FLreg, the extension of FL0 by the role constructors union, composition,
and transitive closure, a sound and complete deterministic exponential time unification
algorithm has been devised [BK01]. It has also been shown that deciding the solvability
of FLreg-unification problems is EXPTIME-complete and that FLreg-unification problems
always have a least unifier. It has been shown in [BK02] that all properties observed
for FLreg carry over to an extension of FLreg by the bottom concept. As matching is
a special case of unification, the relevant results show how to solve matching problems
in FLreg extended by the bottom concept in deterministic exponential time, show that a
least matcher to such matching problems always exists (and how it can be computed), and
show that the decision problem is in EXPTIME.

Unfortunately, unification problems proved to be particularly hard to solve for DLs extend-
ing the above languages. As a consequence, there are no unification algorithms available
for the DL formalisms of main interest in the present work.

Querying DL knowledge bases

One motivation mentioned above for the non-standard inference matching is querying DL

terminologies for concepts of a certain structure specified by a concept pattern. To the best
of our knowledge, there exist no other results on the topic of TBox querying. Nevertheless,
the question of how to query the ABox of a DL knowledge base has been studied in depth.
In order to clarify the difference between both kinds of querying, we discuss some of the
relevant results.

For the DL formalism DL-Lite mentioned above, a query language has been proposed
in [CDGL+05a, ACDG+05]. The relevant approach supports so-called conjunctive queries
of the form q(~x)← ∃~y.conj (~x, ~y), where ~x denotes a vector of distinguished variables, ~y a
vector of non-distinguished variables, and conj (~x, ~y) a conjunction of atoms of the form
B(z) or r(z1, z2) with the following properties. B denotes a basic concept (see above),
r a role name, and z, z1, z2 stand either for individual names defined in the underlying
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ABox or for variables occurring in the vectors ~x or ~y. To answer a query of the above
form means to substitute the variables in ~x and ~y by names of ABox individuals such that
the expression conj (~x, ~y) is true w.r.t. every model of the underlying DL-Lite knowledge
base. Query answering of this form w.r.t. DL-Lite knowledge bases is supported by the
system QuOnto [ACDG+05]. The system can also decide query containment, i.e., the
question whether one query always returns a subset of the results of another query, and
satisfiability of a given DL-Lite knowledge base.

It should be clarified that the above query formalism aims at ABox querying w.r.t. an
underlying TBox and not at TBox querying. Hence, the purpose is to retrieve ABox
individuals with certain properties and not TBox concepts, as in our case. The topic
of query formalisms for ABoxes is also considered important in the context of reasoning
over the Semantic Web. For instance, significant effort has been invested into defining
standard languages for querying OWL knowledge bases, see, e.g., [FHH04, HT02]. Another
successful approach to defining query languages for the Semantic Web has been presented
in [WM05, GKM05]. Again, we mention these results in order to distinguish our notion of
querying, i.e., querying TBoxes for concept descriptions, from the more common notion
of querying used DL research, i.e., querying for ABox individuals.

Integrating DL knowledge bases

Apart from matching under side conditions, other successful techniques have been proposed
as a means to integrate DL terminologies. In [CDGL02, CDGL+01, CDGL+98], approaches
are presented that are influenced especially by research in the area of relational databases,
where the problem of integrating database schemata by means of interschema assertions
is well-investigated. Moreover, distributed DLs proposed in [ST04, BS03] allow to integrate
several knowledge bases using so-called bridge rules between concepts and correspondences
between (groups of) individuals. It has been observed in [KLWZ04] that distributed DLs
can be seen as a special case of E-connections between abstract description systems, a
generalization of DL, modal logics, epistemic logics, and some logics of time and space.
In [GP04] an approach to integrating OWL-Lite terminologies based on E-connections has
been presented—together with an implementation based on the DL reasoner Pellet.

Extensions of the lcs

Concerning the non-standard inference least-common subsumer, there are approaches to
make use of TBox information differently from just expanding all definitions. For instance,
in [BST04], an algorithm is proposed to compute least-common subsumers of ALE concept
descriptions containing concept names defined over a much more expressive ALC-TBox.
The relevant algorithm uses methods from formal concept analysis [Gan99, GW99] to ex-
tract information from the underlying TBox and approximates the lcs by a so-called good
common subsumer (gcs).

More precisely, formal concept analysis is used to compute the smallest conjunction of
concepts (and their negations) defined in the ALC-TBox that subsume concept names
occurring in the concept descriptions of which a gcs is required. This conjunction is
then used in the gcs construction. The gcs is preferred over the lcs when computing
commonalities w.r.t. a background terminology mainly due to efficiency reasons. It has
also been shown in [BST04] that the lcs of a finite set of ALE-concept descriptions defined
over an acyclic ALC-TBox always exists and can be effectively computed. Hence, it might
be possible in the future to devise a practical algorithm computing the lcs in this scenario.
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Figure 1.7.1: The non-standard inference component SONIC

The SONIC system

From a practical perspective, the arguably most notable contribution to the area of non-
standard inferences is the system SONIC15 [Tur05, TK04]. In contrast to stand-alone DL

systems consisting of reasoner and knowledge editor, SONIC comprises (i) a reasoning
component that uses a DIG-compliant DL reasoner, e.g., FaCT or Racer, and (ii) a user-
interface component that can be plugged into the knowledge editors OilEd [BHGS01] and
Protégé [GMF+03]. The reasoning component implements the non-standard inferences
least-common subsumer, good common subsumer, approximation, and rewriting. More
precisely, SONIC provides the lcs forALEN -concept descriptions defined over acyclicALEN -
TBoxes, the good common subsumer of ALE-concept descriptions defined over acyclic
ALC-TBoxes, ALE-approximations of ALC-concept descriptions defined over acyclic ALC-
TBoxes, ALEN -approximations of ALCN -concept descriptions defined over acyclic ALCN -
TBoxes, and rewriting of ALE-concept descriptions w.r.t. acyclic ALC-TBoxes. In par-
ticular, for ALC-ALE-approximation, an implementation of our approximation algorithm
presented in Section 5.1.2 is used.

The user-interface component of SONIC for the knowledge editor Protégé is shown in Fig-
ure 1.7.1. Two new sub-windows are provided, one for the computation of approximations
(‘ApproxPanel’), and another for lcs or gcs (‘Commonalities’, shown above), depending
on the type of the underlying TBox. The lcs is preferred for concepts defined over acyclic
ALEN -TBoxes, while for ALCN -TBoxes the gcs inference is used. Figure 1.7.1 shows an
example computation of the lcs of the concepts Airbus-340 -Approx and Airbus-300 . Both

15Simple Ontology Non-standard Inference Component
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concepts have been taken from an example TBox hidden under the sub-window ‘OWL

Classes’ and added to a list in the upper left of the sub-window shown above. The button
‘Compute commonalities’ actuates the lcs computation, the result of which is presented to
the user in a box in the middle of the sub-window, labeled ‘LCS of Airbus-340 -Approx and
Airbus-300 ’ in our example. It should be stressed that the SONIC component is fully inte-
grated into the knowledge editor in the sense that input to and output from non-standard
inference computations can be imported from and exported to the TBoxes managed by
the knowledge editor. In the example shown in Figure 1.7.1, it suffices to press the button
‘Cut&Store’ to insert the newly computed concept into the current TBox.

The components of SONIC communicate with the knowledge editor and with the un-
derlying DL reasoner via the standardized DIG interface. Hence, it is relatively easy to
exchange both reasoner and knowledge editor for which to provide additional functional-
ity. In the future, SONIC might be extended to other non-standard inferences, such as the
most-specific concept, thereby supporting the full bottom-up approach to extending DL

knowledge bases described in Section 1.4.1, and matching.

Explanation

As pointed out in Section 1.5.2, the main motivation underlying non-standard inference
services is to support users of DL systems in the task of knowledge engineering, i.e.,
extending and maintaining DL knowledge bases in a controlled and well-structured way.
The non-standard inferences introduced so far mainly serve to retrieve concepts from a
TBox and to construct new concepts by means of tools that help to avoid introducing
redundancies and inconsistencies into a TBox.

Given the enormous size of real-world knowledge bases, and the number of persons main-
taining them simultaneously, it seems unlikely that redundancies and inconsistencies can
be avoided altogether. As mentioned above, the consistency of a DL knowledge base can
easily be checked by modern DL systems. But even if the DL system detects that a new
concept constructed by a domain expert is inconsistent with the TBox, and thus cannot be
added to it, the domain expert might not understand the reason of this inconsistency, for
instance because the overall size of the concept makes it difficult to perceive all its implica-
tions. Situations of this kind can be resolved by an inference service that is able to explain
which parts of an inconsistent concept are actually responsible for the inconsistency.

An basic explanation facility for subsumption and non-subsumption based on deduction
rules was already part of the DL system CLASSIC, see [MB95, McG96]. Although this
approach relied on manual annotations to some extent, it produced relatively concise
explanations even on large TBoxes due to a pruning mechanism based on matching. An
approach to explaining subsumption between ALC-concept descriptions has been presented
in [BFH00, BFH+99], where a modified sequent calculus is used to explain subsumptions
computed by a tableaux algorithm.

The two approaches mentioned above have in common that subsumption or inconsistency
is explained ‘semantically’: they are independent of the actual syntactical form of the
underlying DL knowledge base because the explanation refers to the reasoner, or to a
corresponding calculus. More recently, a weaker ‘syntactical’ approach to explanation
has been discussed, explaining inconsistencies by merely highlighting inconsistent parts of
a given DL knowledge base. This approach has already been studied in depth in [BH95],
where an algorithm is presented to compute minimal inconsistent (and maximal consistent)
subsets of a given ALCF-ABox.

The same strategy has been utilized in [SC03] to devise an explanation facility for acyclic
ALC-TBoxes containing inconsistent concept definitions. The main idea is to identify
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inconsistencies in a TBox T by (i) removing all concept definitions from T which are
not responsible for the inconsistency, and (ii) pruning the remaining definitions as long
as the resulting TBox is still inconsistent. More precisely, the approach does not remove
definitions and subconcepts arbitrarily, but rather employs some optimization techniques
to find those parts of the TBox ‘most responsible’ for the inconsistency.

Recently, an extended version of the explanation facility from [SC03] has been incorporated
into the knowledge editor SWOOP [PSK05]. As a result, the editor can support users
maintaining OWL knowledge bases.

It should be noted, however, that explanation differs from the other non-standard inference
services mentioned above in that the usual perspective of a sound and complete algorithm
solving computation problems does not really apply. The reason is that a meaningful
definition of optimality is missing, i.e., the question of which subdescriptions in which
concept definition are truly responsible for an observed inconsistency defies a well-defined
answer. In this sense, explanation might rather be regarded as a tool enhancing the
functionality of knowledge editors—albeit, a useful and important one.

Other related work

For the new non-standard inference approximation, we could show that ALE-approxima-
tions of ALC-concept descriptions can be computed in double exponential time, leaving
open the question whether or not there exists an exponential time algorithm. In [LDLT02]

an attempt has been made to answer this question in the affirmative by proposing an algo-
rithm to compute ALC-ALE-approximations in deterministic exponential time. This result,
however, has been refuted by the same authors by claiming in [LDLT03] that, even w.r.t. a
certain compact representation of concept descriptions, no deterministic exponential time
algorithm for ALC-ALE-approximations exists. To the best of our knowledge, the relevant
question still has to be considered open.

1.8 The structure of the thesis

The remainder of the present work is organized as follows. Chapter 2 lays the formal foun-
dation necessary for the subsequent presentation of our technical results. In Section 2.1,
syntax and semantics of DLs are defined formally. In Section 2.2, we compare the different
semantics available for cyclic EL-TBoxes, i.e., descriptive semantics and greatest-fixedpoint
semantics. Section 2.3 introduces concrete domains, while Section 2.4 provides a formal
definition of hybrid TBoxes, a novel TBox formalisms proposed in the present work.

Chapters 3 to 5 contain the core of our technical results. In Chapter 3, we examine
the standard reasoning problem subsumption for the DL EL and extensions thereof. All
intractability results, i.e., extensions of EL for which subsumption is intractable, are pre-
sented in Section 3.1. As our main tractability result, we show in Section 3.2 that sub-
sumption w.r.t. EL++-CBoxes is tractable, and incidentally all other terminological and
assertional standard inferences. Our second tractability results is presented in Section 3.3,
where tractability of subsumption is shown for the novel DL formalism hybrid TBoxes.

Our results on the topic of non-standard inferences are presented in Chapters 4 and 5.
Chapter 4 deals with the non-standard inference matching, introducing in Sections 4.1
and 4.2 two known matching algorithms for the DLs ALE and ALN , respectively. We show
in Section 4.3 how matching problems under side conditions can be solved in the DLs
ALN and its sublanguages FL⊥ and FL¬. Section 4.4 introduces an appropriate notion of
matching problems for cyclic and hybrid EL-TBoxes and presents matching algorithms for
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both DL formalisms. The main implementation results of the present work are described in
Section 4.5, where implementations of the matching algorithms from Sections 4.1 and 4.2
are presented.

In contrast to the well-investigated non-standard inferences examined in Chapter 4, we
introduce a novel non-standard inference in Chapter 5, namely approximation. In particu-
lar, we define ALE-approximations of ALC-concept descriptions in Section 5.1 and present
an appropriate approximation algorithm. We have extended our results on approximation
to ALEN -approximations of ALCN -concept descriptions and have also devised a difference
operator by which an ALC-concept description can be compared to its approximation.
These extensions are briefly described in Section 5.2.

Finally, the results achieved in the present thesis will be summarized and discussed in
Chapter 6.
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� � ��� ��� � ��� � � � �

The present chapter formally introduces syntax and semantics of the DL formalisms of in-
terest in the present work. In particular, two different kinds of semantics will be relevant,
namely descriptive semantics, introduced in Section 2.1.1, and greatest-fixedpoint seman-
tics, introduced in Section 2.1.2. The difference between both semantics is discussed in
Section 2.2. A more advanced topic from DL research is introduced in Section 2.3, namely
concrete domains. Finally, hybrid TBoxes are introduced in Section 2.4 as a novel TBox
formalism.

Throughout this work, the word ‘iff’ is used as an equivalent of ‘if and only if’. It should
also be noted that we include 0 in the set of natural numbers, i.e., � is defined as � :=
{0, 1, . . . }. For every set S, we denote the cardinality of S by |S| or #S, and the power
set of S by ℘(S), i.e., ℘(S) := {T | T ⊆ S}. Note also that notions newly introduced in
a definition are set im italic type and that the end of the body of every definition, every
example, and every proof is indicated by a box (���).

2.1 Description logic basics

Concept descriptions are inductively defined by means of a set of concept constructors,
starting with a set Ncon of concept names and a set Nrole of role names. In this work,
we mainly consider the constructors bottom concept (⊥), top concept (>), conjunction
(u), disjunction (t), negation (¬), existential restriction (∃), value restriction (∀), allsome
(∀∃), and number restrictions (6 n, > n). Using an additional set Nnom of individual
names, we will also consider the nominal constructor ({·}).

Definition 2.1.1 (Concept descriptions)
Let Ncon,Nrole,Nnom be pairwise disjoint finite sets. Then the set of concept descriptions
over Ncon, Nrole, and Nnom is inductively defined as follows.

1. >, ⊥, and every P ∈ Ncon is a concept description;

2. if C,D are concept descriptions then so are (C uD), (C tD), ¬C, ∃r.C, ∀r.C, and
∀∃r.C;

3. for every r ∈ Nrole and n ∈ � , (6 n r) and (> n r) are concept descriptions; and

4. for every a ∈ Nnom, {a} is a concept description. ���
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FL0 • •
FL⊥ • • •
FL¬ • • • •
ALN • • • • •
ALE • • • • •
ALC • • • • • • •

>,u ⊥ t ¬P ¬ ∃ ∀ ∀∃ ≤,≥ {a}

EL++ • • • •
ELN • • •
ELU • • •
EL∀∃ • • •
EL∀ • • •
EL • •

Table 2.1.1: Description logics under consideration

In order to refer to the computational complexity of reasoning tasks later on, we need a
measure for the size of concept descriptions. Intuitively, we define the size of a concept
description as the space necessary to write it down.

Definition 2.1.2 The size of a concept description over Ncon, Nrole, and Nnom is induc-
tively defined as follows.

• |>| := |⊥| := |A| := 1 for every A ∈ Ncon, |{a}| := 1 for every a ∈ Nnom;

• |C uD| := |C tD| := 1 + |C|+ |D|, |¬C| := 1 + |C|, |∃r.C| := |∀r.C| := |∀∃r.C| :=
1 + |C| for all concept descriptions C,D and every role r ∈ Nrole; and

• |(6 n r)| = |(> n r)| = dlg(max{2, n})e for every n ∈ � and every role r ∈ Nrole.

Note that, usually, binary encoding is assumed for number restrictions. Every actual de-
scription logic (DL) is characterized by the set of constructors it offers. In this work, several
different DLs are discussed, especially FL0, FL⊥, FL¬, ALN , ALE , ALC, EL, EL∀

1, EL∀∃,
ELU , ELN , and EL++. Table 2.1.1 shows which constructors are available in which DL. For
instance, ELN provides top concept, conjunction, existential restriction, and number re-
strictions. For every DL L, those concept descriptions restricted to the set of constructors
provided by L are called L-concept descriptions.

Concept descriptions are interpreted w.r.t. a model-theoretic semantics, where a given
interpretation assigns to every concept description a subset of the relevant interpretation
domain.

Definition 2.1.3 (Semantics)
Let ∆I be a nonempty set and let ·I be an interpretation function with AI ⊆ ∆I for
every A ∈ Ncon, rI ⊆ ∆I ×∆I for every r ∈ Nrole, and aI ∈ ∆I for every a ∈ Nnom. Then

1EL∀ is also called FLE, e.g. in [Küs01]. In our context, however, this DL is only of minor interest as
an extension of EL, and is therefore called EL∀.
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the interpretation I := (∆I , ·I) is inductively extended to concept descriptions as follows.

top concept >I := ∆I

bottom concept ⊥I := ∅

conjunction (C uD)I := CI ∩DI

disjunction (C tD)I := CI ∪DI

negation (¬C)I := ∆I \ CI

existential restriction (∃r.C)I := {x ∈ ∆I | ∃y : (x, y) ∈ rI ∧ y ∈ CI}

value restriction (∀r.C)I := {x ∈ ∆I | ∃y : (x, y) ∈ rI ⇒ y ∈ CI}

allsome (∀∃r.C)I := (∀r.C u ∃r.>)I

≤-number restriction (6 n r)I := {x ∈ ∆I | #{y | (x, y) ∈ rI} ≤ n}

≥-number restriction (> n r)I := {x ∈ ∆I | #{y | (x, y) ∈ rI} ≥ n}

nominal {a}I := {aI}.

As intersection and union are associative, parentheses can be omitted in aggregate con-
junctions and disjunctions, e.g., P1 u P2 u P3 instead of (P1 u (P2 u P3)). If more than
one type of constructor occurs, the precedence order {¬} > {∃,∀,∀∃} > {u,t} applies.
E.g., ∃r.¬P1 u P2 stands for ((∃r.(¬P1))u P2). Moreover, for every finite set S of concept
descriptions, uC∈S C denotes the conjunction over all elements of S and tC∈S C the
respective disjunction. Define uC∈∅ C := > and tC∈∅ C := ⊥.

As mentioned in Section 1.1, the main purpose of DLs is to be used as underlying represen-
tation language for knowledge bases. The following definition introduces the components
of DL-based knowledge bases formally.

Definition 2.1.4 (TBox, CBox, ABox)
Let Ndef ,Nprim be a partition of Ncon. For every A ∈ Ndef and every concept description
C over Ncon, Nrole, and Nnom, A ≡ C is a definition of A. Every finite set of definitions is a
terminology (TBox) over Ndef , Nprim, Nrole, and Nnom iff it contains at most one definition
of A for every A ∈ Ndef .

A TBox T is acyclic iff T is of the form {Ai ≡ Ci | 1 ≤ i ≤ n} such that for every
i ∈ {1, . . . , n}, only defined names from {A1, . . . , Ai−1} occur in Ci.

For L-concept descriptions C,D over Ncon, Nrole, and Nnom, C v D is a general concept
inclusion (GCI) axiom. For every n ∈ � + and r1, . . . , rn, r ∈ Nrole, r1 ◦ · · · ◦ rn v r is a
role inclusion (RI) axiom. In case of n = 1, an RI is called simple RI (SRI). Every finite
set of GCIs is a general TBox and every finite set of GCIs and RIs is a constraint Box
(CBox) over Ncon, Nrole, and Nnom.

For every a, b ∈ Nnom, C ∈ Ncon, and r ∈ Nrole, C(a) is a concept assertion and r(a, b) is
a role assertion. Every finite set of concept assertions and role assertions is an assertional
Box (ABox). ���

Throughout the present work, we consider arbitrary but fixed sets Ncon = Ndef ] Nprim,
Nrole, and Nnom. Moreover, we consider only 6- and >-number restrictions from arbitrary
but fixed finite sets N6 and N>. Unless otherwise specified, all concept descriptions,
interpretations, TBoxes, CBoxes, and ABoxes are defined over these sets. For every TBox
T , denote by NT

con (NT
def , NT

prim), NT
role, and NT

nom the sets of concept names (defined,
primitive concept names), role names and individual names, respectively, occurring in T .
The same notation is introduced for CBoxes and ABoxes.
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Note that, throughout this work, concept names are usually denoted by uppercase letters,
e.g., A,B, . . . for defined concept names and P,Q, . . . for atomic concept names, and
lowercase letters for roles, e.g., r, s, . . . . In examples with longer concept and role names,
defined concept names are denoted in italics, e.g., Parent, while atomic concepts and roles
are denoted in upright shape, e.g., Person.

For a given DL L, we speak of an L-TBox T , an L-CBox C, or an L-ABox A iff only L-
concept descriptions occur in the definitions of T , in the GCIs of C, and in the assertions of
A. Note that usually complex concept descriptions do not occur in ABoxes. Nevertheless,
these may use concept names defined in a TBox or CBox.

In order to refer to the contents of TBoxes more easily, we introduce some auxiliary
notation used throughout this work.

Definition 2.1.5 (deft, def)
Let T be a TBox and let A ≡ C ∈ T for some A ∈ Ndef and some concept description
C. Then define deftT (A) := C. Moreover, denote by defT (A) the set of all conjuncts
occurring on the toplevel of C.

The following example illustrates our notation.

Example 2.1.6 For A ∈ Ndef and P,Q ∈ Nprim, consider the TBox T := {A ≡ P uQ u
∃r.(A u P )}. Then deftT (A) = P uQ u ∃r.(A u P ) and defT (A) = {P,Q,∃r.(A u P )}.

In the next section, we introduce descriptive semantics, the standard semantics for TBoxes,
CBoxes, and ABoxes. For TBoxes, we additionally introduce greatest-fixedpoint semantics
in Section 2.1.2. Note that both semantics coincide on acyclic TBoxes. A comparison
between both semantics w.r.t. cyclic TBoxes is presented in Section 2.2. We do not
consider least-fixedpoint semantics here because our DL of main interest for fixedpoint
semantics is EL, for which it has been shown in [Baa03b] that least-fixedpoint semantics is
not appropriate.

2.1.1 Descriptive semantics

Definition 2.1.7 (Descriptive semantics)
Every interpretation I is a model of a TBox T (I |= T ) iff AI = CI for every definition
A ≡ C ∈ T . I is a model of a CBox C (I |= C) iff CI ⊆ DI for every GCI C v D ∈ C and
rI1 ◦ · · · ◦ rIn = rI for every r1 ◦ · · · ◦ rn v r ∈ C, where ‘◦’ is interpreted as an associative
binary operator with rI1 ◦ rI2 := {(x, z) | (x, y) ∈ rI1 ∧ (y, z) ∈ rI2 } for every r1, r2 ∈ Nrole.
I is a model of a general TBox T iff it is a model of the CBox T .

I is a model of an ABox A together with a CBox C iff I |= C, aI ∈ CI for every concept
assertion C(a) ∈ A, and (aI , bI) ∈ rI for every role assertion r(a, b) ∈ A. Furthermore,
the unique name assumption applies, i.e., for every pair of individuals a, b ∈ Nnom, a 6= B
implies aI 6= bI . ���

This semantics has been called descriptive semantics by Nebel [Neb91]. In case of an acyclic
TBox T , any interpretation of atomic concept names in T can be uniquely extended to an
interpretation of all defined names in T . This does not hold anymore for cyclic TBoxes
interpreted with descriptive semantics. As an alternative semantics for cyclic TBoxes, we
introduce greatest-fixedpoint semantics in the following section.

Note that every TBox can be interpreted as a general TBox (or CBox) since every definition
A ≡ C is equivalent to the pair of GCIs A v C, C v A.
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One of the most basic inference services provided by DL systems is computing the sub-
sumption hierarchy. The following definition introduces (descriptive) subsumption and
most other standard inference problems formally.

Definition 2.1.8 (Inference problems)
For every CBox C and arbitrary concept descriptions C,D, C is subsumed by D w.r.t. C
(C vC D) iff CI ⊆ DI for every model of C. C is equivalent to D w.r.t. C (C ≡C D) iff
C vC D and D vC C. Moreover, C strictly subsumes D w.r.t. C (C @C D) iff C vC D
and D 6vC C.

A concept description C is satisfiable w.r.t. a CBox C and an ABox A iff A and C have
a common model I such that CI 6= ∅. Otherwise, C is unsatisfiable w.r.t. C and A. An
ABox A is consistent together with a CBox C iff A and C have a common model.

An individual a ∈ Nnom is an instance of a concept description C w.r.t. an ABox A together
with a CBox C iff aI ∈ CI for every common model I of A and C. ���

By the above definition, all inference problems are implicitly defined for (general) TBoxes
as well since every (general) TBox can be viewed as a CBox. Explicit reference to the
empty TBox and the empty ABox may be omitted: if T = ∅, write C v D instead of
C vT D, and analogously for strict subsumption and equivalence. Similarly, we say that,
e.g., C is unsatisfiable iff it is unsatisfiable w.r.t. the empty TBox and the empty ABox.

Reasoning w.r.t. acyclic TBoxes can be reduced to reasoning w.r.t. the empty TBox by
expanding2 all definitions, i.e., by iteratively replacing all defined concept names occurring
on right-hand sides by their respective definitions.

Depending on the underlying DL, inference problems can often be reduced to one another.
The following list shows how all other inference problems can be reduced to subsumption
and vice versa.

• Satisfiability to (non-)subsumption
A concept C is satisfiable w.r.t. a CBox C iff C 6vC ⊥.

• Subsumption to (un-)satisfiability
C vC D iff C u {a} is unsatisfiable w.r.t. the CBox C ∪ {D u {a} v ⊥}, where a is a
fresh individual name. Moreover, C vC D iff C u ¬D is unsatisfiable w.r.t. C.

• Consistency to (non-)subsumption
A is consistent w.r.t. C iff CA 6vC ⊥, where CA is defined as follows, using a fresh
role name u:

CA := u
C(a)∈A

∃u.({a} u C) u u
r(a,b)∈A

∃u.({a} u ∃r.{b}).

• Subsumption to (in-)consistency
C vC D iff the ABox {C(a)} is inconsistent w.r.t. the CBox C ∪ {D u {a} v ⊥}.

• Instance problem to subsumption
An individual a is an instance of a concept C w.r.t. an ABox A and a CBox C iff
{a} u CA vC C, where CA is defined as above.

• Subsumption to the instance problem
C vC D iff a is an instance of D w.r.t. the ABox {C(a)} together with C.

Note that concept satisfiablility is trivial in a DL that cannot express inconsistencies.

2Note that here ‘expanding’ is used in the sense of [Neb90, BN03]. In the literature, this is sometimes
also called ‘unfolding’, e.g. in [Küs01]. The latter term, however, has a different meaning in [Neb90].
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2.1.2 Greatest-fixedpoint semantics

Throughout the present work, greatest-fixedpoint semantics is only relevant for the DL

EL. For this reason, we introduce this semantics only for EL. A gfp-model for a given
EL-TBox T is obtained in two steps. At first, only primitive concepts and roles occurring
in T are interpreted. This primitive interpretation is then extended to defined concept
names by means of a fixedpoint iteration.

Definition 2.1.9 (Primitive interpretation)
Let T be an EL-TBox. A primitive interpretation (∆J , ·J ) of T interprets all primitive
concepts P ∈ Nprim by subsets of ∆J and all roles r ∈ Nrole by binary relations on ∆J .
An Interpretation I := (∆I , ·I) is based on J iff ∆J = ∆I and ·J and ·I coincide on
Nrole and Nprim. The set of all interpretations based on J is denoted by

Int(J ) := {I | I is an interpretation based on J }.

On Int(J ), a binary relation �J is defined for all I1, I2 ∈ Int(J ) by

I1 �J I2 iff AI1 ⊆ AI2 for all A ∈ NT
def . ���

The pair (Int(J ),�J ) is a complete lattice, so that every subset of Int(J ) has a least upper
bound (lub) and a greatest lower bound (glb) w.r.t. �J . Hence, by Tarski’s fixedpoint
theorem [Tar55], every monotonic function on Int(J ) has a fixedpoint. In particular, this
applies to the function OT ,J defined as follows.

Definition 2.1.10 Let T be an EL-TBox and J a primitive interpretation of Nprim and
Nrole. Then OT ,J is defined as follows.

OT ,J : Int(J )→ Int(J )

I1 7→ I2 iff AI2 = CI1 for all A ≡ C ∈ T . ���

As shown in [Baa03b], OT ,J is in fact a fixedpoint operator on Int(J ). As a result, the
following proposition holds.

Proposition 2.1.11 Let I be an interpretation based on the primitive interpretation J .
Then I is a fixedpoint of OT ,J iff I is a model of T .

The general notion of fixedpoint models for EL-TBoxes is defined as follows.

Definition 2.1.12 (Gfp-semantics)
Let T be an EL-TBox. The model I of T is called gfp-model iff there is a primitive
interpretation J such that I ∈ Int(J ) is the greatest fixedpoint of OT ,J . ���

As (Int(J ),�J ) is a complete lattice, the gfp-model is uniquely determined for a given
TBox T and a primitive interpretation J . We may thus refer to the gfp-model gfp(T ,J )
for any given T and J . With this preparation, we define gfp-subsumption as follows.

Definition 2.1.13 (Gfp-subsumption)
Let T be an EL-TBox and let A,B ∈ NT

def . Then, A is subsumed by B w.r.t. gfp-semantics
(A vgfp,T B) iff AI ⊆ BI holds for all gfp-models I of T . ���

Note that descriptive semantics considers a superset of the set of gfp-models, implying
that descriptive subsumption entails gfp-subsumption. Hence, all subsumption relations
w.r.t. vT also hold w.r.t. vgfp,T . Moreover, as mentioned above, both semantics coincide
on acyclic TBoxes. For cyclic TBoxes, there is a notable difference between descriptive
and gfp-semantics which will be discussed in further detail in the next section.
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2.2 Cyclic TBoxes and their semantics

In an acyclic TBox T , a concept definition A ≡ C can be seen as merely the assignment
of a new name A to the complex construct C. This changes in case of cyclic TBoxes
interpreted with descriptive semantics, as the following example from [Baa03b] illustrates.

Example 2.2.1 Let Node ∈ Nprim be an atomic concept and edge ∈ Nrole be a role.
Consider the simple EL-TBox T := {Inode ≡ Node u ∃edge.Inode} in which the concept
Inode is defined to represent nodes on infinite paths in directed graphs.

Consider a primitive interpretation J defined by

∆J := {xn | n ∈ � } ∪ {y}
NodeJ := ∆J

edgeJ := {(xn, xn+1) | n ∈ � } ∪ {(y, y)}.

Hence, J defines an infinite path over elements xn with n ∈ � and additionally a loop
over y. In order to extend J to an interpretation of T , it remains to interpret Inode. To
this end, we define four different extensions of J , I1, . . . , I4 by

InodeI1 := ∅

InodeI2 := {xn | n ∈ � }
InodeI3 := {y}

InodeI4 := ∆J .

It is easy to verify that all of the above interpretations are models of T interpreted with
descriptive semantics. In contrast, only I4 is a gfp-model of T . Clearly, the intuition
behind the definition of Inode is captured only by I4. ���

The restriction of gfp-models to interpret all defined names as large as possible has the
consequence that the names of defined concepts as such are not as important in gfp-
semantics as in descriptive semantics, as the following example from [Baa03b] shows.

Example 2.2.2 Consider a TBox T defined over the set Nprim := {Mammal} of primitive
concepts and the set Nrole := {has parent} of roles. T defines two concepts, Lion and Tiger ,
as follows.

Lion ≡ Mammal u ∃has parent.Lion

Tiger ≡ Mammal u ∃has parent.Tiger

Interpreting T with gfp-semantics makes Lion and Tiger equivalent while they are not if
T is interpreted with descriptive semantics. ���

We sum up our comparison by recalling some of the arguments presented in [Neb91], where
the advantages and disadvantages of descriptive versus fixed-point semantics have been
discussed in depth.

• Descriptive semantics: is conceptually the most straightforward generalization of
the standard semantics for acyclic TBoxes and can be applied to arbitrary DLs.
On the other hand, deciding subsumption w.r.t. descriptive semantics can be more
complicated than in the case of gfp-semantics.
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• Gfp-semantics: naturally extends the property of acyclic TBoxes that the inter-
pretation of defined concepts is determined by that of atomic concepts and roles.
Moreover, fixedpoint semantics seems appropriate when concepts are viewed under
a more structural perspective. On the negative side, gfp-semantics cannot always be
extended to expressive DLs.

It should be added that gfp-semantics cannot be applied to general TBoxes and thus also
not to CBoxes. Moreover, all modern DL systems, such as FaCT or Racer, rely on
descriptive semantics only. Nevertheless, in Section 2.4 we will discuss a TBox formalism
that in some sense combines the advantages of both semantics.

It has been pointed out in [Neb91] that, independently of the choice of semantics, there
are appropriate and inappropriate ways of using cycles in concept definitions, depending
on whether roles are involved in the cycles or not. A concept A in a TBox T is called
component-circular iff the definition of A refers directly or indirectly to itself without using
existential or value restrictions to establish that cycle. Consider the following component-
circular concepts from [Neb91].

Example 2.2.3 Let T be a TBox defined over the set of atomic concepts Nprim :=
{Human} and an empty set of roles. In T , the two concepts Man and MaleHuman are
defined as follows.

Man ≡ Human uMaleHuman

MaleHuman ≡ Human uMan

Obviously, the concept Man is defined as a specialization of MaleHuman and vice versa,
which not only in this case but in general does not seem to make sense. ���

All concepts with a cyclic definition that is not component-circular are called restriction-
circular. Hence, in this case the cyclic definition is established using existential or value
restrictions. Consider the following example, again adapted from [Neb91].

Example 2.2.4 Using the atomic concept RootNode and the role branch, the concept of
binary trees can be defined by means of a restriction-circular concept BinaryTree by

BinaryTree ≡ RootNode u (6 2 branch) u ∀branch.BinaryTree.

According to the definition, binary trees comprise a root node with at most two branches
again pointing to binary trees. ���

In [Neb91], a ‘third kind of terminological cycles’ is discussed, where two restriction-circular
concepts refer to each other, as the following example illustrates.

Example 2.2.5 Using the atomic concepts Vehicle and Engine, and roles engine part and
is engine of, we define the relationship between cars and their engines by

Car ≡ Vehicle u ∃engine part.CarEngine

CarEngine ≡ Engine u ∃is engine of.Car ,

thus specifying a cyclic relationship between Car and CarEngine. ���

It has been pointed in [Neb91] that concept definitions of the above kind are not ‘well-
founded’ in the sense that they admit counterintuitive models. In the following example,
we show how one such model could look like.
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Example 2.2.6 For instance, the above example definitions for cars and their engines are
satisfied by an interpretation I defined by

∆I := {cn | n ∈ � } u {en | n ∈ � }
CarI := VehicleI := {cn | n ∈ � }

CarEngineI := EngineI := {en | n ∈ � }
engine partI := {(cn, en) | n ∈ � }
is engine ofI := {(en, cn+1) | n ∈ � }.

Hence, we have infinitely many instances cn of Car and infinitely many instances en of
CarEngine. As the interpretation of engine part shows, en is the engine of cn for every
n ∈ � . Unfortunately, by the interpretation of is engine of, en is the engine of the next
car, i.e., cn+1 and not cn. It is easy to see that I is a model of T . ���

It should be clarified, however, that similar effects to the ones described above can also
occur for simpler restriction-circular concepts. For instance, the definition of the concept
BinaryTree from Example 2.2.4 can be satisfied by a circular model I defined by, e.g.,
∆I := BinaryTreeI := {x} and branchI := {(x, x)}. In the case of cars and their engines
in Example 2.2.5, inverse roles must be expressible in order to avoid acyclic models, such
as the one from Example 2.2.6.

Note also that unintended models of a TBox T might do little harm as long as the main
interest is in the subsumption relations between concepts in T , because the definition of
subsumption is quantified over all models of the TBox.

In the present work, several DL formalisms are discussed in which cyclic definitions for
concepts can be expressed. This holds for EL++-CBoxes examined in depth in Section 3.2,
for hybrid EL-TBoxes introduced in Section 2.4 and examined further in Section 3.3, and
clearly also for cyclic EL-TBoxes studied in further detail in Section 3.3.1.

2.3 Concrete domains

As defined so far, DL knowledge bases are well suited to define structural properties of
notions relevant in some application domain; especially interrelations between notions,
which can be expressed by means of roles. In real-world applications, however, not only
qualitative but also quantitative properties play an important role, e.g., weights, sizes,
time intervals, spacial relations, etc. For instance, in a healthcare system, it might be
necessary to state that a patient has a systolic blood pressure of  mmHg, and the
underlying KR system might be expected to infer from this information that the patient’s
blood pressure is elevated. Information of this kind cannot be represented adequately by
the DL formalisms introduced above.

In order to refer to domain such as real numbers, rational numbers, integers, or strings
in DL knowledge bases, concrete domains have been devised [BH91, Lut03]. Intuitively, a
concrete domain consists of an arbitrary domain and a fixed set of predicates over this
domain. The predicates can be used in concept descriptions by means of dedicated roles.
Therefore, we require an additional set Nfe of feature names pairwise disjoint to Ncon,
Nrole, and Nnom. Every feature f ∈ Nfe must be interpreted by a (partial) function. We
are now ready to introduce concrete domains formally.

Definition 2.3.1 (Concrete domain)
Let ∆D be a nonempty set and let PD be a set of predicate names such that every p ∈ PD
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has an arity n ∈ � \{0} and an extension pD ⊆ (∆D)n. Then D := (∆D,PD) is a concrete
domain. For every p ∈ PD with arity n and features f1, . . . , fn ∈ Nfe, p(f1, . . . , fn) is
a concrete domain restriction. Given an interpretation I, p(f1, . . . , fn) is interpreted as
follows.

p(f1, . . . , fn)I := {x ∈ ∆I | ∃y1, . . . , yn ∈ ∆D : fI
i (x) = yi for all 1 ≤ i ≤ n

∧ (y1, . . . yn) ∈ pD}. ���

Note that DLs may be equipped with finitely many concrete domains D1, . . . ,Dm as long as
their respective domains ∆D1 , . . . ,∆Dm are pairwise disjoint. The extension of a DL L by
concrete domains D1, . . . ,Dm is usually denoted by L(D1, . . . ,Dm). The following simple
example shows how concrete domains can be used to incorporate quantitative information
in the definition of concepts of GCIs.

Example 2.3.2 Consider the concrete domain Q = ( � Q,PQ) defined over the set of
rational numbers with a predicate set PQ containing the following predicates:

• a unary predicate ≥18 interpreted by ≥Q
18 := {x ∈ � | x ≥ 18}; and

• a binary predicate < interpreted by <Q := {(x, y) ∈ � 2 | x < y}.

Furthermore, let Nfe := {has age, has diastolic bp mmHg, has systolic bp mmHg}. As an
example of an EL(Q)-concept description, we might define the concept of a grown-up
person as a person at least 18 years old, i.e.,

GrownUpPerson ≡ Person u ≥18(has age),

thus using the concrete domain restriction ≥18(has age). Moreover, in order to state that
the diastolic blood pressure of every person is less than or equal than his systolic blood
pressure, we can add the following GCI to our TBox.

<(has systolic bp mmHg, has diastolic bp mmHg) v ⊥ ���

Much more sophisticated concrete domains have been studied in depth. For instance,
temporal extensions of DLs can be defined by a concrete domain representing time in-
tervals. Relationships between time intervals can be expressed by means of the Allen-
relations [All83] which can be represented by concrete domain predicates. Moreover, there
exist concrete domains to represent qualitative spacial relations in topological spaces based
on the RCC-8 relations [RCC92]. For an overview, see [Lut03].

In the context of EL++-TBoxes, we are concerned with a special class of concrete domains,
so-called p-admissible concrete domains. These are defined as follows.

Definition 2.3.3 A concrete domain D is p-admissible iff

1. satisfiability and implication in D are decidable in polynomial time; and

2. D is convex, i.e., if a conjunction of atoms of the form p(f1, . . . , fk) implies a dis-
junction of such atoms, then it also implies one of its disjuncts. ���

We investigate the property of p-admissibility in more detail in Section 3.2.3, where we
also exhibit some useful concrete domains that actually are p-admissible.

Apart from EL++-CBoxes, another novel DL formalism is discussed in the present work,
namely hybrid EL-TBoxes. These are introduced formally in the following section, which
finishes our chapter of formal preliminaries.



� �� . ��� . hybrid tboxes 

T :

F :

ConnTissDisease ≡ Disease u ∃acts on.ConnTissue

BactInfection ≡ Infection u ∃causes.BactParicarditis

BactPericarditis ≡ Inflammation u ∃has loc.Pericardium

u ∃caused by.BactInfection

Disease u ∃has loc.ConnTissue v ∃acts on.ConnTissue

Inflammation v Disease

Pericardium v ConnTissue

Figure 2.4.1: Example hybrid EL-TBox

2.4 Hybrid TBoxes

In Section 3.3, a novel type of terminologies is examined in depth, so-called hybrid TBoxes.
In the present section, their syntax and semantics is defined formally.

Definition 2.4.1 (Hybrid TBox)
For every general L-TBox F over Nprim and Nrole, and every L-TBox T over Ndef , Nprim,
and Nrole, the pair (F , T ) is called a hybrid L-TBox. ���

The semantics of hybrid TBoxes are defined as follows.

Definition 2.4.2 (Semantics)
Let (F , T ) be a hybrid TBox over Nprim, Nrole, and Ndef . A primitive interpretation J is
a model of F (J |= F) iff CJ ⊆ DJ for every GCI C v D in F . A model I ∈ Int(J ) is a
gfp-model of (F , T ) iff J |= F and I a gfp-model of T . ���

Note that F (“foundation”) is interpreted w.r.t. descriptive semantics while T (“terminol-
ogy”) is interpreted w.r.t. gfp-semantics. Note also that every gfp-model of (F , T ) can be
expressed as the greatest fixedpoint gfp(T ,J ) for some primitive interpretation J with
J |= F .

In order to complete the semantics of hybrid TBoxes, we still have to introduce an appro-
priate notion of subsumption.

Definition 2.4.3 (Subsumption w.r.t. hybrid TBoxes)
Let (F , T ) be a hybrid L-TBox over Nprim, Nrole, and Ndef . Let A,B be defined concepts in
T . Then A is subsumed by B w.r.t. (F , T ) (A vgfp,F,T B) iff AI ⊆ BI for all gfp-models
I of (F , T ). ���

The following example is supposed to give an impression of how an actual hybrid TBox
might look like.

Example 2.4.4 Consider Figure 2.4.1, showing a simplified part of a medical terminol-
ogy3 represented by a hybrid TBox (F , T ). T is supposed to define the concepts ‘disease
of the connective tissue’, ‘bacterial infection’ and ‘bacterial pericarditis’. For instance,
bacterial Pericarditis is defined as an inflammation located in the Pericardium caused by
a bacterial infection. Note that T is cyclic. For the primitive concepts in T , the foundation
F states, e.g., that a disease located in connective tissue acts on connective tissue. ���

3Our example is only supposed to show the features of hybrid EL-TBoxes and in no way claims to be
adequate from a Medical KR perspective.
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Hybrid TBoxes generalize cyclic TBoxes with gfp-semantics in the sense that every cyclic
L-TBox T can be viewed as a hybrid TBox with an empty foundation. Thus, gfp-
subsumption w.r.t. T coincides with subsumption w.r.t. the hybrid TBox (∅, T ). Also
note that, every general TBox T ′ can be seen as a hybrid TBox (T ′, ∅). In this case,
a descriptive subsumption P vT ′ Q holds iff AP is subsumed by AQ holds w.r.t. the
normalized instance of (T ′, ∅).

Throughout the present work, we will be concerned only with hybrid EL-TBoxes. In
Section 3.3, we show how to classify hybrid EL-TBoxes in polynomial time. Moreover,
Section 4.4.6 presents a matching algorithm that can be used on hybrid EL-TBoxes. In
this section, we shall also see how to compute the lcs and msc w.r.t. hybrid EL-TBoxes.
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In the present chapter, we discuss several extensions of the small DL EL and study the com-
plexity of the relevant subsumption problems. By ‘extensions’ both additional language
constructors and more expressive TBox formalisms are implied. As mentioned previously,
our main motive is to find ‘useful’ extensions of EL in which terminological reasoning is
still tractable.

In Section 3.1, we begin by showing that tractability of reasoning in extensions of EL is
a property easily lost. For several common DL-constructors, adding one of these to EL
makes the subsumption problem, and thus classification, intractable. Contrasting this,
the main positive result of this chapter is presented in Section 3.2, where the subsumption
problem in a substantial extension of EL is shown to be tractable even w.r.t. CBoxes, an
extension of general TBoxes.

In Section 3.3, a new type of terminologies is discussed, so-called hybrid terminologies.
We show that reasoning in EL w.r.t. hybrid TBoxes is tractable and argue that hybrid
terminologies combine advantages of general TBoxes on the one side and ordinary cyclic
TBoxes on the other.

3.1 Intractable extensions of EL

For several DL-constructors introduced in Definitions 2.1.1 and 2.1.3, we show that extend-
ing EL by one of these constructors renders the subsumption problem intractable. More
precisely, we distinguish between three variants of the subsumption problem, namely sub-
sumption without TBoxes (Section 3.1.1), w.r.t. acyclic TBoxes (Section 3.1.2), or w.r.t.
general TBoxes (Section 3.1.3). Note that all hardness results automatically carry over to
the more general TBox formalism, i.e., from the empty TBox to acyclic TBoxes to general
TBoxes.

3.1.1 Subsumption w.r.t. the empty TBox

We show that adding one of the constructors value restriction (∀), disjunction (t), or
number restrictions (6 n,> n) makes the subsumption problem w.r.t. the empty TBox
intractable. In the case of value restrictions, we show the relevant NP-completeness result
from the literature, while the other cases yield co-NP-hardness by reduction to well-known
intractability results.
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Value restriction

Let EL∀ be the extension of EL by the constructor ∀ introduced in Definitions 2.1.1
and 2.1.3. In [DLN+92], the following theorem has been shown.

Theorem 3.1.1 Deciding subsumption of EL∀-concept descriptions is NP-complete.

Note that in [DLN+92], the DL EL∀ is called FLE−. W.r.t. general EL∀-TBoxes, deciding
subsumption is even EXPTIME-complete, as we show in Section 3.1.3.

Disjunction

We show that subsumption in ELU is co-NP-complete. The upper bound holds due to a co-
NP-result for a complementary DL called ALU in [SSS91]. For arbitrary ELU-concepts C,D,
C v D iff ¬D v ¬C. The negation normal form of ¬C and ¬D can be expressed using
only bottom concept, atomic negation, conjunction, disjunction, and value restriction.
Hence, we obtain concept descriptions in the DL ALU , where all relevant constructors
(plus restricted existential quantification ∃r.>) are provided. Subsumption in ELU can
thus be reduced to subsumption in ALU shown to be co-NP-complete in [SSS91].

The lower bound is by reducing monotone 3sat to non-subsumption of ELU-concept
descriptions. The monotone problem differs from 3sat only in that every clause contains
either only negated or only unnegated literals.

Definition 3.1.2 (monotone 3sat)
Let U be a set of variables and S+, S− be two sets of clauses over U such that every
s ∈ S+ contains exactly 3 un-negated variables and every s ∈ S− exactly 3 negated ones.
Then, P := (U, S+, S−) is called a Monotone 3Sat problem. A solution to P is a truth
assignment t : U → {0, 1} satisfying S+ ∪ S−.

Monotone 3sat is an NP-complete problem [GJ79, p. 259]. We can immediately represent
the clauses in S+ and S− in ELU¬, an extension of ELU by atomic negation. The con-
junction over all clauses is then split into C uD, C containing all positive clauses and D
all negative ones. Satisfiability of C uD is reduced to ELU-non-subsumption by deciding
C 6v nnf(¬D), where nnf denotes the negation normal form of ¬D. The following lemma
provides the formal proof.

Lemma 3.1.3 Let P = (U, S+, S−) be a Monotone 3Sat problem. Then there exist ELU-
concept descriptions C,D such that P has a solution iff C 6v D.

Proof. Let Nprim := U and Nrole := ∅. We can immediately translate S+ ∪ S− into an
ELU¬-concept description CP of the following form:

CP := u
s∈S+
t
u∈s

u u u
s∈S−
t

¬u∈s
¬u.

Clearly, P has a solution iff CP is satisfiable. The satisfiability of CP is equivalent to the
non-subsumption

C := u
s∈S+
t
u∈s

u 6v ¬ u
s∈S−
t

¬u∈s
¬u ≡ t

s∈S−
u

¬u∈s
u =: D.

Observe that both C and D are concept descriptions in ELU . ���

Theorem 3.1.4 Deciding subsumption of ELU-concept descriptions w.r.t. the empty TBox
is co-NP-complete.

The above reduction implies co-NP-completeness of the subsumption problem even for the
very small description logic providing only conjunction and disjunction.
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Number restrictions

We show that subsumption in ELN is co-NP-complete. Membership in co-NP is shown
similarly to the previous case. For ELN -concepts C,D, C v D iff ¬D v ¬C. For every
n ∈ � and every role r ∈ Nrole, the following equivalences hold.

¬(6 n r) ≡ (> n + 1 r)

¬(> 0 r) ≡ ⊥

¬(> n + 1 r) ≡ (6 n r)

Hence, ¬C and ¬D can be expressed by the constructors bottom concept, atomic negation,
conjunction, disjunction, value restriction, and number restriction. These are provided in
the DL ALUN (as well as unqualified existential restriction ∃r.>) examined in [DLNN95],
where co-NP-completeness (in the strong sense) of the subsumption problem and NP-
completeness (in the strong sense) of concept satisfiability have been shown.

The lower bound is by reduction of bin-packing to consistency of ELN concepts. Since
ELN can express inconsistency as (6 0 r) u (> 1 r), inconsistency can be reduced to
non-subsumption of ELN concepts, yielding the desired reduction.

Definition 3.1.5 (bin-packing)
Let U be a nonempty finite set. Let s : U → � + and let b, k ∈ � +. Then, P := (U, s, b, k)
is a Bin-packing problem. A solution to P is a partition of U into k pairwise disjoint sets
U1, . . . , Uk such that for all i ∈ {1, . . . , k} it holds that Σu∈Ui

s(u) ≤ b.

Bin-packing is an NP-complete problem in the strong sense [GJ79, p. 226], implying that
we may assume unary encoding for the numbers in P . Given P , we construct a concept
CP which is satisfiable iff P has a solution.

The intuition behind CP is to use a concept description of fixed depth 2 and, (i) express
on toplevel that at most k bins, i.e., k pairwise disjoint sets U1, . . . , Uk, exist, (ii) express
on the first role level that every bin weighs at most b, and (iii) use the second role level to
represent the weights s(u) of the objects u ∈ U . The following definition formalizes this
notion.

Definition 3.1.6 (Bin-packing concept)
Let P = (U, s, b, k) be a Bin-packing problem. Let ` := dlg(Σu∈Us(u))e. Define NP

prim := ∅

and NP
role := {r} ∪ {r1, . . . , r`}. Let

CP :=

{

`

u
i=1

Ci

∣

∣

∣
Ci ∈ {(6 0 ri), (> 1 ri)}

}

Let fP : {(u, i) | u ∈ U, 1 ≤ i ≤ s(u)} → CP be an injective mapping. The ELN -concept
description CP is defined as follows:

CP := (6 k r) u u
u∈U
∃r.

(

(6 b r) u
s(u)

u
i=1
∃r.fP (u, i)

)

Note that Σu∈Us(u) ≤ |CP | < 2 ·Σu∈Us(u) so that fP in fact exists and can be computed
easily in polynomial time in the size of P with unary number encoding. The above
definition is well-defined only w.r.t. the mapping fP of which in general many different
ones exist. Nevertheless, for our purpose an arbitrary but fixed instance fP suffices.
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The motivation behind the function f(u, i) is to provide a simple method to count binarily
from 0 to Σu∈Us(u), the sum of the weights of all elements in U . The concept descriptions
f(u, i) on the second role level, i.e., in the leaves of CP , enforce that no two leaves can be
represented by the same element in a model of CP . This is guaranteed by the fact that
two arbitrary but different leaves in CP differ in negating or not negating at least one
number restriction for a role ri. The following lemma proves formally that the reduction
is correct.

Lemma 3.1.7 Let P = (U, s, b, k) be a Bin-Packing problem and CP the corresponding
concept description over NP

prim and NP
role. Then,

1. For every u, v ∈ U , i ∈ {1, . . . , s(u)}, and j ∈ {1, . . . , s(v)} it holds that fP (u, i) u
fP (v, j) ≡ ⊥ iff u 6= v or i 6= j.

2. P has a solution iff CP is satisfiable.

Proof. 1. (⇐) If u = v and i = j then fP (u, i) u fP (v, j) ≡ fP (u, i) ∈ CP . Every
concept description in CP is consistent because each of its conjuncts imposes a number
restriction on a different role.

(⇒) Then the injectivity of fP implies that fP (u, i) and fP (v, j) are two distinct concepts
in CP . Hence, there exists an index t such that fP (u, i) contains the conjunct (6 0 rt) and
fP (u, i) contains the conjunct (> 1 rt) or vice versa. Hence, the conjunction fP (u, i) u
fP (v, j) is subsumed by (6 0 rt) u (> 1 rt) ≡ ⊥.

2. (⇒) Denote by U1, . . . , Uk a solution to P . Define a model I of CP as follows:

∆I := {w, z} ∪ {xi | 1 ≤ i ≤ k} ∪ {yuj | u ∈ U, 1 ≤ j ≤ s(u)}.

Let

rI :=

k
⋃

i=1

(

{(w, xi)} ∪ {(xi, yuj) | u ∈ Ui, 1 ≤ j ≤ s(u)}
)

and for every t ∈ {1, . . . , `}, let

rIt := {(yuj , z) | u ∈ U, 1 ≤ j ≤ s(u), fP (u, j) v (> 1 rt)}.

We show that w ∈ CP I
, i.e., w is a witness of CP . The definition of rI shows that w has

exactly k successors w.r.t. the role r, namely x1, . . . , xk. Hence, the number restriction
on the toplevel of CP is satisfied. For the rest of CP , consider an arbitrary u ∈ U and
select i ∈ {1, . . . , k} such that u ∈ Ui. It suffices to show that xi ∈ (6 b r)I and that
xi ∈ (∃r.fP (u, j))I for all 1 ≤ j ≤ s(u).

Due to the definition of rI , xi has exactly one successor yui for every element u ∈ Ui and
for every 1 ≤ j ≤ s(u). Hence, the total number of successors of xi equals Σu∈Ui

s(u)
which does not exceed b, the size limit for every Ui.

Consider an arbitrary j ∈ {1, . . . , s(u)}. Since (xi, yuj) ∈ rI it suffices to show that

yuj ∈ fP (u, j)I . By definition, f(u, j) = u`
t=1 Ct with Ct = (6 0 rt) or Ct = (> 1 rt) for

every t ∈ {1, . . . , `}. For every t, the pair (yuj , z) occurs in rIt iff Ct = (> 1 rt). Hence yuj

has no successor w.r.t. every role rt occurring in a number restriction (6 0 rt) and has t
as successor w.r.t. every role rt occurring in a number restriction (> 1 rt). Thus, yuj is a
witness of fP (u, j).

(⇐) To simplify notation, for all u ∈ U let

Cu := (6 b r) u
s(u)

u
j=1
∃r.fP (u, j).
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Hence, CP can be written as

CP = (6 k r) u u
u∈U
∃r.Cu.

Denote by I a model of CP and denote by w a witness w ∈ CP I
. Due to the number

restriction on the toplevel of CP , w has at most k successors w.r.t. r. The |U | existential
restrictions on the other hand guarantee that at least one successor exists. Denote by
X := {x1, . . . , xk′} the set of r-successors of w. If k′ < k then w.l.o.g., k − k′ isolated
vertices xk′+1, . . . , xk may be added to ∆I .

Define the partition of U as follows: starting from 1, for i = 1, . . . , k let

Ui := {u ∈ U | xi ∈ CuI , ∀j < i : u 6∈ Uj}.

Note that the above definition is well-defined only w.r.t. an order on {1, . . . , k} by which
to compute the Ui. We have to show that U1, . . . , Uk in fact is a partition of U and that
for every 1 ≤ i ≤ k the overall size Σu∈Ui

s(u) does not exceed b.

As w ∈ CP I
, every Cu must have a witness in the set X. Thus, the union over all subsets

Ui yields U . The restriction u 6∈ Uj in the definition of every Ui ensures that for every
u ∈ U at most one index i exists with u ∈ Ui. Hence, U1, . . . , Uk is a partition of U .

Let i ∈ {1, . . . , k}. By definition, Ui contains a subset of all u ∈ U of which xi is a
witness. If Ui is nonempty, then two facts are implied. Firstly, xi has at most b successors
w.r.t. r because of the number restriction in one Cu. Secondly, xi has at least Σu∈Ui

s(u)
successors w.r.t. r. This holds due to the existential restrictions of the form ∃r.f P (u, j)
in every Cu with u ∈ Ui: for every u ∈ Ui and for every j ∈ {1, . . . , s(u)}, denote by yuj

the r-successor of xi implied by ∃r.fP (u, j). Assume that yuj = yu′j′ for some u, v ∈ Ui,
j ∈ {1, . . . , s(u)}, and j′ ∈ {1, . . . , s(u)}. Then, yuj is a witness of fP (u, j)∩ fP (u′, j′), in
contradiction to Claim (1) of the proof. ���

As satisfiability of ELN concepts can be reduced to subsumption, i.e., a concept description
C is satisfiable if and only if C 6v ⊥ ≡ (6 0 r) u (> 1 r), we immediately obtain the
following completeness results:

Theorem 3.1.8 Deciding satisfiability in ELN w.r.t. the empty TBox is NP-complete in
the strong sense. Deciding subsumption in ELN w.r.t. the empty TBox is co-NP-complete
in the strong sense.

3.1.2 Subsumption w.r.t. acyclic TBoxes

We show co-NP-hardness of subsumption w.r.t. acyclic EL∀∃-TBoxes, i.e., of acyclic TBoxes
over EL extended by the constructor allsome, see Definitions 2.1.1 and 2.1.3. The proof is
by reduction of the subsumption problem in FL0 w.r.t. acyclic TBoxes.

Denote by L∀∃ the sublanguage of EL∀∃ in which the usual existential restriction (∃r.C)
is missing. In order to establish the lower bound, we translate acyclic FL0-TBoxes into
subsumption-preserving equivalent ones over L∀∃, thereby reducing the subsumption prob-
lem. To this end, we introduce a normal form for FL0-TBoxes that simplifies the transla-
tion.

Definition 3.1.9 (Translation function)
Let T be an arbitrary FL0-TBox over Ncon and Nrole. T is called reduced iff none of the
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following transformation rules can be applied to any concept description C with A ≡ C ∈ T
or any of its subdescriptions:

∀r.> −→ >

E −→ > iff E ≡ > ∈ T

F u > −→ F ,

where r ∈ NT
role, E is an arbitrary defined concept, and F an arbitrary concept description

over NT
con or >. For a reduced TBox T , the translated TBox trans(T ) is defined by

syntactically replacing all ∀-quantors by ∀∃-quantors: trans(T ) := T {∀/∀∃}. ���

The above definition is meant to be correct only in the sense that all subsumption relations
are preserved. While a model of trans(T ) can always be shown to be a model of T , the
reverse direction need not hold.

To prove correctness of the translation, we first devise a formal-language characterization
of subsumption for L∀∃-concept descriptions. We restrict ourselves to subsumption w.r.t.
the empty TBox since acyclic TBoxes can be expanded until no defined concepts occur on
right-hand sides of concept definitions. In FL0, the equivalence ∀r.(C uD) ≡ ∀r.C u∀r.D
gives rise to a particularly simple representation of concept descriptions, called unfolding
in [Neb90] or concept centered normal form in [BN98]. Given a concept description C, the
idea is to exploit the above equivalence from left to right until conjunction in C occurs
only on toplevel, implying that all value restrictions are of the form ∀r1.∀r2. · · · ∀rn.A
with A ∈ Nprim. The word r1r2 . . . rn can then be used to represent the corresponding
restriction C imposes w.r.t. A.

The same principle holds for L∀∃: a concept description ∀∃r.(C uD) by definition equals
∀r.(C uD)u∃r.(C uD). Because of the propagation from value to existential restrictions,
replacing ∃r.(C u D) by ∃r.> preserves equivalence. Duplicating ∃r.>, the propagation
argument in the reverse direction yields ∀∃r.C u ∀∃r.D.

We will use the above normalization to define so-called role languages for atomic concepts
occurring in concept descriptions. We start by extending the constructors ∀ and ∀∃ to
words over Nrole. In the remainder of this section, we may w.l.o.g. assume that Ncon and
Nrole are not only finite but limited by the concept names and role names occurring in the
concept descriptions C,D for which we want to decide C v D.

Definition 3.1.10 (Word restrictions)
For all A ∈ Nprim, r ∈ Nrole, w ∈ N∗

role, and for Q ∈ {∀,∀∃}, the concept description Qw.A
is inductively defined by:

Qε.A := A

Qrw.A := Qr.Qw.A ���

As we need to refer to the (already existing) role-language characterization for FL0, we
simultaneously introduce role languages for FL0-concept descriptions and L∀∃-concept
descriptions. Obviously, while > can be ignored for FL0, it must be treated as an ordinary
concept name in L∀∃.

Definition 3.1.11 (Role languages)
Let C be an FL0-concept description. Then, for Q = ∀ and for arbitrary A,B ∈ Nprim the



� �� . ��� . intractable extensions of EL 

formal language LA(C) is inductively defined by:

LA(>) := ∅

LA(B) := {ε | A = B}

LA(u
i

Ci) :=
⋃

i

LA(Ci)

LA(Qr.C) := {r} · LA(C)

For L∀∃-concept descriptions (Q = ∀∃) the top-concept > is treated like a primitive
concept. Hence, the inductive definition is extended to arbitrary A,B ∈ Nprim ∪ {>} and
the definition LA(>) := ∅ is removed. To simplify notation, denote LA(C) by C|A. ���

The language C|A contains all words r1 . . . rn over Nrole with C v Qr1. · · ·Qrn.A, where
Q = ∀ in case of FL0 and Q = ∀∃ in case of L∀∃. In [Neb90] it has been shown that the set
of all role languages of a given FL0-concept description in fact characterizes the concept
up to equivalence. The following lemma holds:

Lemma 3.1.12 Let C be an FL0-concept description over Nprim and Nrole. Then, C ≡
u

A∈Nprim

u
w∈C|A

∀w.A

In [BKBM99], subsumption of FL⊥ concept descriptions C v D has been characterized
by the role languages of C and D. For the sublanguage FL0, we can immediately derive
the following characterization of subsumption of FL0-concept descriptions.

Lemma 3.1.13 Let C,D be FL0-concept descriptions. Then, C v D iff C|A ⊇ D|A for
all A ∈ Ncon.

We aim at a similar characterization of subsumption for L∀∃. For arbitrary L∀∃-concept
descriptions C,D and every r ∈ Nrole it holds that ∀∃r.(CuD) ≡ ∀r.(CuD)u∃r.>, which
in turn is equivalent to ∀r.C u∀r.Du∃r.>u∃r.>, which simplifies to ∀∃r.C u∀∃r.D. This
immediately yields the extension of Lemma 3.1.12 to L∀∃-concept descriptions.

Lemma 3.1.14 Let C be an L∀∃-concept description. Then, C ≡ u
A∈Nprim

u
w∈C|A

∀∃w.A u

u
w∈C|>

∀∃w.>.

Note that ∀∃r.> 6≡ > as in the case of FL0. The following lemma gives a role-language
characterization of subsumption of L∀∃-concept descriptions w.r.t. the empty TBox. The
interesting part is the treatment of the >-concept for which an additional equation is
introduced.

Lemma 3.1.15 Let C,D be L∀∃-concept descriptions. Then, C v D iff

1. C|P ⊇ D|P for all P ∈ Nprim; and

2. C|> ∪
⋃

P∈Nprim
C|P ∪ {ε} ⊇ D|>.

Proof. (⇒) Proof by contraposition. If the first condition is violated then there exists
an atomic concept P ∈ Nprim with C|P 6⊇ D|P , implying w ∈ D|P \ C|P for some word
w. We construct a model I of C that is no model of D. Let ∆I := {x0, . . . , x|w|+1}. Let
P I := ∆I \ {x|w|}. For all Q ∈ Nprim \ {P}, let QI := ∆I . For all r ∈ Nrole, define

rI := {(xi, xi+1) | 0 ≤ i ≤ |w|} ∪ {(x|w|+1, x|w|+1)}.
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Thus, every vertex xi has a successor w.r.t. every role r ∈ Nrole. Every vertex except x|w|

is a witness of all atomic concepts Q ∈ Nprim. Only x|w| is a witness of all atomic concepts
except P . Since w 6∈ C|P , x0 is a witness of C but no witness of D, where a w-chain of
successors must lead to a witness of P . Hence, I contradicts C v D.

If the second condition is violated then there is a word w ∈ D|> \ {ε} with w 6∈ C|> and
w 6∈ C|P for every P ∈ Nprim. Since |w| ≥ 1, denote w as vs with v ∈ N∗

role and s ∈ Nrole.
Let ∆J := {x0, . . . , x|w|}. For all P ∈ Nprim, let PJ := ∆J , i.e., all atomic concepts hold
in every vertex of J . For all r ∈ Nrole, define

rJ := {(xi, xi+1) | 0 ≤ i ≤ |v| − 1} ∪ {(x|v|, x|v|+1) | r 6= s} ∪ {(x|v|+1, x|v|+1)}.

In J , every vertex xi except x|v| has a successor w.r.t. every role r ∈ Nrole while x|v| has
a successor w.r.t. every role except s. Hence, x0 is a witness of C but none of D where an
s-successor must be present after traveling a v-path. This contradicts C v D.

(⇐) Then C is equivalent to

u
P∈Nprim

u
w∈C|P

∀∃w.P u u
w∈C|>

∀∃w.>

and analogously for D. Using the subset relations from Condition 1, we write C as

u
P∈Nprim

u
w∈D|P

∀∃w.P u u
P∈Nprim

u
w∈C|P

∀∃w.P u u
w∈C|>

∀∃w.>.

Since ∀∃w.P @ ∀∃w.>, we may (i) add subdescriptions ∀∃w.> for which w also occurs in
a subdescription referring to some P ∈ Nprim; and (ii) add >, obtaining

C ≡ u
P∈Nprim

u
w∈D|P

∀∃w.P u u
P∈Nprim

u
w∈C|P

∀∃w.P

u u
w∈C|>

∀∃w.> u u
w∈

S

P∈Nprim∪{ε} C|P
∀∃w.>.

Exploiting the subset relation in Condition 2, C can be rewritten further to

u
P∈Nprim

u
w∈D|P

∀∃w.P u u
P∈Nprim

u
w∈C|P

∀∃w.P

u u
w∈D|>

∀∃w.> u u
w∈C|>

∀∃w.> u u
w∈

S

P∈Nprim∪{ε} C|P
∀∃w.>

which equals

D u u
P∈Nprim

u
w∈C|P

∀∃w.P

u u
w∈C|>

∀∃w.> u u
w∈

S

P∈Nprim∪{ε} C|P
∀∃w.>.

Hence, C is equivalent to or more specific than D, i.e., C v D. ���

The above characterization of subsumption allows a straightforward proof of correctness
of the translation from FL0 to L∀∃.

Lemma 3.1.16 Let T be an acyclic reduced FL0-TBox. Let A,B ∈ Ndef . Then, A vT B
iff A vtrans(T ) B.

Proof. Let A ≡ C,B ≡ D ∈ T . Denote by T̃ the expansion of T in which defined con-
cepts occur only on left-hand sides of definitions. Let A ≡ C̃0, B ≡ D̃0 ∈ T̃ . Analogously,
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let A ≡ C̃∀∃, B ≡ D̃∀∃ ∈ ˜trans(T ). It suffices to show that C̃0 v D̃0 iff C̃∀∃ v D̃∀∃. As T
is reduced, the translated TBox trans(T ) differs from T only in the quantors occurring on
the right-hand side of concept definitions. This implies C̃0|P = C̃∀∃|P and D̃0|P = D̃∀∃|P
for all P ∈ Nprim.

(⇐) The subsumption C̃∀∃ v D̃∀∃ especially implies C̃∀∃|P ⊇ D̃∀∃|P for all P ∈ Nprim.

As argued above, the equality of the role languages of C̃∀∃ and C̃0, and D̃∀∃ and D̃0,
respectively, immediately yields C̃0|P ⊇ D̃0|P for all P ∈ Nprim. By the characterization

of subsumption for FL0, C̃0 v D̃0.

(⇒) Then, by characterization of subsumption, C̃∀∃|A ⊇ D̃∀∃|A for all A ∈ Nprim. Hence,
it suffices to show

C̃∀∃|> ∪
⋃

A∈Nprim

C̃∀∃|A ∪ {ε} ⊇ D̃∀∃|>.

To this end, we show that either D̃0|> = ∅ or D̃0 = > implying D̃0|> = {ε}. Note that
D̃0|> = D̃∀∃|>. Proof by induction on the cardinality |T | of T .

• |T | = 1
Then T = T̃ = {B ≡ D} and D = D̃0. As T is reduced, D̃0 = > or D̃0 is a
conjunction of atomic concepts, implying D̃0|> = {ε} or D̃0|> = ∅.

• |T | > 1
As T is acyclic and reduced, there is a concept definition E ≡ F ∈ T such that
either F = > or F is a conjunction of atomic concepts. If F 6= > then replacing E
by F on the right-hand side of any definition in T has no effect on D̃0|>. Otherwise,
every occurrence of E on any right-hand side has already been replaced by > by the
second reduction rule. In both cases, we obtain the correct set D̃0|> by regarding E
as an atomic concept and computing D̃0|> w.r.t. T \ {E ≡ F} for which the claim
holds by IH. ���

It has been shown in [Neb90] that the subsumption problem in FL0 w.r.t acyclic TBoxes
(containing only definitions) is co-NP-complete. Hence, due to the above lemma, we obtain
co-NP-hardness of the subsumption problem w.r.t. acyclic L∀∃-TBoxes.

In order to show co-NP-completeness of the subsumption problem w.r.t. acyclic L∀∃-
TBoxes, we adapt the characterization of subsumption from Definition 3.1.15 to acyclic
L∀∃-TBoxes. To this end, we represent the relevant role languages by nondeterministic
finite automata.1 W.l.o.g., we restrict ourselves to normalized acyclic L∀∃-TBoxes where
every Definition is of the form

A ≡
n

u
i=1

Pi u
m

u
j=1
∃rj .Bj ,

where all Pi are atomic concepts and all Bj are defined concepts.

Definition 3.1.17 Let T be a normalized acyclic L∀∃-TBox, A0 ∈ NT
def , and P ∈ NT

prim.

Then the nondeterministic finite automaton AT (A0, P ) is defined by (Nrole,N
T
def , δ, A0, F ),

where Nrole is the alphabet, NT
def the set of states, δ the transition function, A0 the initial

state and F the set of final states. The transition function δ is defined by

δ : NT
def × Nrole −→ ℘(NT

def)

(A, r) 7−→ {B ∈ NT
def | ∃r.B ∈ defT (A)}

and the set of final states is F := {B ∈ NT
def | P ∈ defT (B)}. ���

1Note that our approach is very similar to the one for acyclic FL0-TBoxes shown in [Neb90].
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Note that AT (A0, P ) is acyclic for acyclic TBoxes T . The next lemma shows that the above
automata can be used to characterize subsumption of defined concepts w.r.t. L∀∃-TBoxes
without expanding them first.

Lemma 3.1.18 Let T be an acyclic normalized L∀∃-TBox and A ≡ C ∈ T . Let T̃ be the
expansion of T . Then, deftT̃ (A)|P = L(AT (A,P )) for every P ∈ NT

prim ∪ {>}.

Proof. Let P ∈ NT
prim ∪ {>}. Proof by induction on the cardinality |T | of T .

• |T | = 1
Then T = T̃ = {A ≡ C}, where C is a conjunction of atomic concepts, implying
deftT̃ (A)|P = {ε | P ∈ defT (A)}. By definition, A is the only state in AT (A,P ), A
is a finite state iff P ∈ defT (A), and AT is acyclic. This implies L(AT (A,P )) = {ε |
P ∈ defT (A)}, as required.

• |T | > 1
If defT (A) ⊆ Nprim then the proof is analogous to the case |T | = 1. Otherwise,

def T̃ (A) = u
P∈defT (A)∩Nprim

P u u
∃r.B∈defT (A)

∃r.B,

Consequently,

deftT̃ (A)|P = {ε | P ∈ def T̃ (A)} ∪
⋃

∃r.B∈defT (A)

{r} · deftT̃ (B)|P ,

and since AT (A,P ) is acyclic,

L(AT (A,P )) = {ε | P ∈ defT (A)} ∪
⋃

∃r.B∈defT (A)

{r} · L(AT (B,P )).

By IH, deft(T \{A≡C})̃ (B)|P = L(AT \{A≡C}(B,P )) for every B occurring in the
above conjunction. Since T is acyclic, the definition of every such B does not depend
directly or indirectly on A. This implies, firstly, deft(T \{A≡C})̃ (B)|P = deftT̃ (B)|P ;
and secondly, L(AT \{A≡C}(B,P )) = L(AT (B,P )) because A is unreachable from B
in AT (B,P ). ���

As A vT B iff deftT̃ (A) v deftT̃ (B), Lemma 3.1.15 and Lemma 3.1.18 immediately imply
the following characterization of subsumption w.r.t. acyclic L∀∃-TBoxes.

Corollary 3.1.19 Let T be an acyclic normalized L∀∃-TBox and A,B ∈ NT
def . Then,

A vT B iff

1. L(AT (A,P )) ⊇ L(AT (B,P )) for all P ∈ NT
prim; and

2. L(AT (A,>)) ∪
⋃

P∈NT
prim

L(AT (A,P )) ∪ {ε} ⊇ L(AT (A,>)).

Note that all relevant automata are of linear size in |T |. Especially, the union on the
left-hand side of the second condition can easily be represented by a single acyclic NFA

of linear size in |T |. To this end, introduce an additional automaton to represent {ε}
and construct the union-automaton in the usual way (see, e.g., [MY60]). As the inclusion
problem for acyclic NFA is co-NP-complete [GJ79, p. 265], subsumption w.r.t. acyclic L∀∃-
TBoxes is in co-NP, so that we obtain tight complexity bounds for L∀∃. Altogether, we
yield the following results.
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Theorem 3.1.20 Deciding subsumption in L∀∃ w.r.t. acyclic TBoxes is co-NP-complete.
Deciding subsumption in EL∀∃ w.r.t. acyclic TBoxes is co-NP-hard.

We shall come back to the approach of characterizing subsumption by equations over
formal languages in Section 4.2.1, where the DLs FL⊥, FL¬, and ALN are studied.

3.1.3 Subsumption w.r.t. general TBoxes

For general TBoxes we show that tractability of the subsumption problem is lost when
extending EL by one of the constructs value restriction, role value maps, atomic nega-
tion, disjunction, inverse roles, functional roles, at-most-one restrictions, at-least-two re-
strictions, non-p-admissible concrete domains, and one of the role constructors negation,
union, and transitive closure. But for two exceptions, the subsumption problem in the ex-
tended languages does not only become intractable but leaps to EXPTIME-completeness.
In one case, reasoning does even become undecidable. In the second case, we can currently
only prove a PSPACE lower bound that does not match EXPTIME, the best known upper
bound. We start with two results from the literature, EXPTIME-completeness for value
restrictions and undecidability for role value maps.

Throughout this section, we will often have to refer to general TBoxes. In order to sim-
plify our notation, general TBoxes will more concisely be called IBoxes (‘I’ stands for
‘inclusion’).

Value restrictions

Let EL∀ be the extension of EL by the constructor ∀ introduced in Definitions 2.1.1
and 2.1.3. The following has been shown in [GMWK02].

Theorem 3.1.21 (Givan et al.)
Subsumption in EL∀ w.r.t. IBoxes is EXPTIME-complete.

In Section 3.2.4, we improve upon this result by showing that subsumption w.r.t. IBoxes
is already EXPTIME-complete in the logic FL0 providing only conjunction and value re-
striction.

Role value maps

Consider the extension of EL by role value maps which generalize RIs introduced in Defi-
nition 2.1.4. A role value map is of the form

r1 ◦ · · · ◦ rk v s1 ◦ · · · ◦ s`

with r1, . . . , rk and s1, . . . , s` role names. Analogously to RIs, an interpretation I satisfies
a role value map r1 ◦ · · · ◦ rk v s1 ◦ · · · ◦ s` iff rI1 ◦ · · · ◦ rIk ⊆ sI1 ◦ · · · ◦ sI` m, where ◦ is
interpreted as composition of binary relations. The following has been proved in [Baa03b].

Theorem 3.1.22 (Baader)
Subsumption of EL-concepts w.r.t. finite sets of role value maps is undecidable.

In the following, we discuss several other extensions of EL, and show for each that tractabil-
ity of subsumption w.r.t. IBoxes is not preserved.
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Atomic Negation

Let EL¬ be the extension of EL by the negation constructor introduced in Definitions 2.1.1
and 2.1.3. Analogously, let EL(¬) be the extension of EL by atomic negation.

The DL ALC is a notational variant of EL¬ because every disjunction C tD occurring in
some GCI of an ALC-IBox can be replaced applying the DeMorgan rules, i.e., ¬(¬Cu¬D).
As satisfiability and subsumption in ALC w.r.t. IBoxes are EXPTIME-complete [Sch91], the
same complexity bound is obtained for EL¬.

Moreover, EXPTIME-completeness carries over to EL(¬) since full negation can be ex-
pressed using atomic negation and IBoxes: if some GCI in an EL¬-IBox contains a complex
negated concept ¬C then this can be eliminated in two steps. Firstly, replace ¬C with ¬A
with A a fresh concept name; and secondly, introduce two new GCIs A v C and C v A.
We thus obtain the following.

Theorem 3.1.23 In EL(¬), satisfiability and subsumption w.r.t. IBoxes is EXPTIME-
complete.

Disjunction

Let ELU be the extension of EL with a disjunction constructor introduced in Defini-
tions 2.1.1 and 2.1.3. We show that subsumption in ELU w.r.t. IBoxes is EXPTIME-
complete.

The upper bound is simple since ELU is a fragment of ALC for which subsumption w.r.t.
IBoxes is in EXPTIME. For the lower bound, we reduce satisfiability of EL(¬)-concepts
w.r.t. IBoxes to subsumption of ELU-concepts. Note that the former is EXPTIME-hard by
Theorem 3.1.23. Let C0 be an EL(¬)-concept and C an EL(¬)-IBox. Satisfiability of C0

w.r.t. C is to be decided. W.l.o.g., assume that C0 is a concept name. Otherwise, decide
satisfiability of a fresh concept name A w.r.t. C ∪ {A v C0}. For every concept name A
occurring in C, fix a fresh concept name A′ (i.e., distinct from C0 and not occurring in C).
Also fix an additional fresh concept name L. Then the ELU-IBox C∗ is obtained from C by
first replacing every subconcept ¬A with A′, and then adding the following GCIs:

• > v A tA′ and A uA′ v L for each concept name A occurring in C;

• ∃r.L v L.

Note that the GCI ∃r.L v L is equivalent to ¬L v ∀r.¬L. This lets L act like the bottom
concept in (connected) countermodels of the subsumption C0 vC∗ L. It is easy to see that
C is satisfiable w.r.t. C iff C0 6vC∗ L.

Theorem 3.1.24 In ELU , subsumption w.r.t. IBoxes is EXPTIME-complete.

This theorem improves upon the result that subsumption of ELU concepts w.r.t. IBoxes is
co-NP-hard [Bra04b], see also Theorem 3.1.4, and it improves upon the result of Hladik and
Sattler that satisfiability of ELU concepts extended with functional roles and the bottom
concept w.r.t. IBoxes is EXPTIME-hard [HS03]. Note that satisfiability in ELU w.r.t. IBoxes
is trivial since every concept is satisfiable w.r.t. every IBox.

Inverse Roles

Let ELI be the extension of EL by the concept constructor ∃r−.C with the following
semantics:

(∃r−.C)I := {x ∈ ∆I | ∃y : (y, x) ∈ rI ∧ y ∈ CI}.
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We show that subsumption in ELI w.r.t. IBoxes is PSPACE-hard. Whether or not this lower
bound is tight remains open. The result is established by a reduction of the satisfiability
problem in the DL ALE w.r.t. so-called primitive TBoxes:

• ALE is obtained by extending EL∀ with atomic negation;

• primitive TBoxes are IBoxes whose GCIs are of the form A v C with A a concept
name.

It has been shown by Calvanese that satisfiability in ALE w.r.t. primitive TBoxes is
PSPACE-complete [Cal96].

Let C0 be an ALE concept, and T a primitive ALE-TBox. Satisfiability of C0 w.r.t. T is
to be decided. As usual, assume that C0 is a concept name. We also assume that T is in
normal form, i.e., every GCI is of one of the following forms:

A v B

A v ¬B

A v B uB′

A v ∃r.B

A v ∀r.B,

where A, B, and B′ are concept names. Note that every primitive TBox can be converted
into normal form by normalization rules similar to the ones in Figure 3.2.1. For the
reduction, we reserve a fresh concept name L and define an EL-IBox C with the following
GCIs:

• A v D for all A v D ∈ T if D is a concept name or of the form ∃r.B;

• ∃r−.A v B for all A v ∀r.B ∈ T ;

• A uB v L for all A v ¬B ∈ T ; and

• ∃r.L v L.

As in the case of ELU , the GCI ∃r.L v L is equivalent to ¬L v ∀r.¬L and lets L act like the
bottom concept in (connected) countermodels of the subsumption C0 vC L. Additionally,
∃r−.A v B is equivalent to A v ∀r.B. Thus, it is easy to see that C0 is satisfiable w.r.t.
T iff C0 6vC L.

Theorem 3.1.25 In ELI, subsumption w.r.t. IBoxes is PSPACE-hard.

As in the case of ELU , satisfiability in ELI w.r.t. IBoxes is trivial.

Functional Roles

Let IFBoxes be IBoxes which additionally may contain statements of the form funct(r),
where r is a role name. An interpretation I satisfies funct(r) iff rI is a partial function.
We show that subsumption of EL-concepts w.r.t. IFBoxes is EXPTIME-complete.

The upper bound is an immediate consequence of the fact that functional roles can be
simulated in a DL providing number restrictions: instead of adding the statement funct(r)
to the TBox, it suffices to replace every expression of the form ∃r.C occurring in the IBox
by the conjunction ∃r.C u (6 1 r). Subsumption w.r.t. IBoxes in the DL ALC extended
with number restrictions is in EXPTIME [DGL94].
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For the lower bound, the proof is by reduction of subsumption in the description logic FLtf
0

w.r.t. IBoxes. FLtf
0 is a variation of FL0, where all roles are interpreted as total functions.

As noted below Corollary 12 of [TW05], the following result is an immediate consequence
of the proof of Theorem 11 in the same paper:

Theorem 3.1.26 (Toman, Weddell)
Subsumption in FLtf

0 w.r.t. IBoxes is EXPTIME-complete.

For our reduction, we exclude the >-concept from FLtf
0 . This is justified since the proof

of Theorem 3.1.26 also does not presuppose the presence of the >-concept. Let C0 and
D0 be FLtf

0 -concepts and C an FLtf
0 -IBox. The subsumption C0 vC D0 is to be decided.

Convert C into an EL-IFBox C∗ as follows.

• every value restriction ∀r.C in C is replaced by ∃r.C;

• funct(r) is added to C∗ for all role names r ∈ NC
role.

Moreover, every value restriction ∀r.C in C0 or D0 is replaced by ∃r.C. We now show the
following:

Lemma 3.1.27 C0 vC D0 iff C0 vC∗ D0.

Proof. Proof by contraposition. (⇒) Assume C0 6vC∗ D0, i.e., there is a model I of C∗

and an a0 ∈ CI
0 \ DI

0 . As funct(r) ∈ C∗ for all r ∈ NC
role, every rI is a partial function.

In a new interpretation J , we extend these to total functions using an additional domain
element x⊥: for all A ∈ NC

con and all r ∈ NC
role, define ∆J by

∆J := ∆I ] {x⊥}

AJ := AI

rJ := rI ∪ {(x, x⊥) | (x, y) /∈ rI for all y ∈ ∆I}.

Observe that x⊥ is in the extension of no concept name. It is easy to see that x ∈ CI

iff x ∈ CJ for all x ∈ ∆I and all EL-concepts C in which the >-concept does not occur.
Thus, J is a model of C∗ and a0 ∈ CJ

0 \ DJ
0 . As all r ∈ NC∗

role are interpreted as total
functions, x ∈ (∃r.C)J iff x ∈ (∀r.C)J for all x ∈ ∆J , all EL-concepts C, and all role
names r ∈ NC

role. Hence, since J is a model of C∗, it is one of C as well, and thus C0 6vC D0

as required.

(⇐) Assume C0 6vC D0, i.e., there is a model I of C and an a0 ∈ CI
0 \ DI

0 . Again, all
r ∈ NC

role are interpreted as total functions, implying x ∈ (∃r.C)I iff x ∈ (∀r.C)I for all
x ∈ ∆I , all EL concepts C, and all r ∈ NC

role. Since I is a model of C, it is thus also a
model of C∗, yielding C0 6vC∗ D0 as required. ���

We thus obtain the following theorem.

Theorem 3.1.28 Subsumption in EL w.r.t. IFBoxes is EXPTIME-complete.

Note that satisfiability is trivial since every concept is satisfiable w.r.t. every IFBox.

At-most Restrictions

Let EL61 denote the extension of EL by number restrictions of the form (6 1 r) with the
usual semantics from Definition 2.1.3. We show that subsumption in EL61 w.r.t. IBoxes
is EXPTIME-complete.
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The upper bound is an immediate consequence of the fact that subsumption w.r.t. IBoxes
in the DLALC extended with number restrictions is in EXPTIME [DGL94]. The lower bound
is established by reduction of the subsumption problem w.r.t. IFBoxes, see above. As
shown, EL61-IBoxes can be used to simulate IFBoxes, in which subsumption is EXPTIME-
hard. Thus, the following theorem holds.

Theorem 3.1.29 Subsumption in EL61 w.r.t. IBoxes is EXPTIME-complete.

Note that the above result carries over to the extension of EL by arbitrary at-most restric-
tions and to ELN , the extension of EL by arbitrary number restrictions.

Clearly, every EL61-concept is satisfiable w.r.t. every IBox. Note, however, that concept
satisfiability is non-trivial when admitting number restrictions of the form (6 0 r). In this
case, inconsistencies can be expressed as conjunction ∃r.> u (6 0 r).

At-least Restrictions

Let EL>2
be the extension of EL by an at least-two constructor (> 2 r) with the usual

semantics defined in Definition 2.1.3. We show that subsumption in EL>2
w.r.t. IBoxes is

EXPTIME-complete.

The upper bound is an immediate consequence of the fact that, in the DL ALC extended
with number restrictions, subsumption w.r.t. IBoxes is in EXPTIME [DGL94].

The lower bound is shown by reduction of subsumption in ELU w.r.t. IBoxes, which is
EXPTIME-hard by Theorem 3.1.24. Thus, let C0 and D0 be ELU-concepts and C an ELU-
IBox. W.l.o.g., assume that C is in normal form, i.e., all GCIs in C have one of the following
forms:

C v D

C1 u C2 v C

C v C1 t C2

C v ∃r.D

∃r.C v D,

where C,D,C1, C2 are concept names or >. Every IBox can be converted into normal form
by normalization rules similar to the ones presented in Figure 3.2.1. Note in particular
that C1 t C2 v C can be replaced by the two rules C1 v C and C2 v C, and that
C v C1 uC2 can similarly be replaced by C v C1 and C v C2. As usual, assume that C0

and D0 are concept names. The EL>2
-IBox C∗ is now obtained from C by replacing every

GCI of the form I := C v C1 t C2 ∈ C by the GCIs

C v ∃rI .AI u ∃rI .BI

C u ∃rI .(AI uBI) v C1

C u (> 2 rI) v C2,

where AI , BI are fresh concept names and rI is a fresh role name. It is easy to see that
C0 vC D0 iff C0 vC∗ D0, which establishes the lower bound.

Theorem 3.1.30 In EL>2
, subsumption w.r.t. IBoxes is EXPTIME-complete.

Note that satisfiability is trivial since every concept is satisfiable w.r.t. every EL>2
-IBox.
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Non-p-admissible Concrete Domains

Let D be a concrete domain that satisfies Condition 1 of Definition 2.3.3, but is not convex,
i.e., violates Condition 2. Let EL(D) be the extension of EL by the concrete domain D, see
Section 2.3 for syntax and semantics. We show that subsumption in EL(D) is EXPTIME-
complete.

For the lower bound, we first strengthen Theorem 3.1.24 as follows. Let a d-IBox be an
IBox that, additionally, contains at most one GCI of the form A v B1 tB2 with A,B1, B2

concept names. We show that subsumption of EL-concepts w.r.t. d-IBoxes is EXPTIME-
complete. The lower bound is proved by reduction of subsumption in ELU w.r.t. IBoxes,
which is EXPTIME-hard by Theorem 3.1.24. Thus, let C0 and D0 be ELU-concepts and
C an ELU-IBox. It is to be decided whether C0 vC D0. Assume that C0 and D0 are
concept names, and that C is in normal form as introduced in the previous section on
at-least restrictions. For the reduction, introduce fresh concept names U1, U2 and a fresh
role name rA,B1,B2

for each GCI A v B1 tB2 ∈ C. The d-IBox C∗ is obtained from C by

• replacing each GCI A v B1 tB2 by

> v ∃rA,B1,B2
.>

A u ∃rA,B1,B2
.U1 v B1

A u ∃rA,B1,B2
.U2 v B2;

• adding the GCI

> v U1 t U2.

It is easy to check that C0 vC D0 iff C0 vC∗ D0. Together with the upper bound from
Theorem 3.1.23, we obtain the following.

Theorem 3.1.31 Subsumption of EL-concepts w.r.t. d-IBoxes is EXPTIME-complete.

In order to prove EXPTIME-completeness of subsumption in EL(D) with a non-convex
concrete domain D, we reduce EL-subsumption w.r.t. d-IBoxes. Let C0, D0 be concept
names and C a d-IBox. Since D is not convex, there is a satisfiable D-conjunction c and
a finite set Γ of concepts of the form p(f1, . . . , fk) such that c implies no concept from Γ,
but every solution δ for c satisfies some concept in Γ. Fix a concept X ∈ Γ such that some
solutions of c satisfy X. By choice of X,

1. every solution of c satisfies either X or a concept in Γ \ {X};

2. there is a solution of c that satisfies X; and

3. there is a solution of c that satisfies a concept in Γ \ {X}.

The EL(D)-IBox C∗ is obtained from C by replacing every GCI of the form A v B1 t B2

by the following GCIs.

A uX v B1

A u Y v B2 for every Y ∈ Γ \ {X}.

It is easy to see that C0 vC D0 iff C0 vC∗ D0. Thus, subsumption in EL(D) w.r.t. IBoxes
is EXPTIME-hard. By assumption, D satisfies Condition 1 of Definition 2.3.3, implying a
matching upper bound by immediate consequence of the known EXPTIME-completeness
of subsumption w.r.t. ALC(D)-IBoxes. The relevant result is for ALC extended by concrete
domains where only features (rather than sequences of features) are admitted inside the
concrete domain constructor [Lut02].



� �� . ��� . intractable extensions of EL 

Theorem 3.1.32 Let D be a concrete domain that satisfies Condition 1 of Definition 2.3.3
but violates Condition 2, convexity. Then subsumption in EL(D) w.r.t. IBoxes is EXPTIME-
complete.

For example, this theorem applies to the concrete domains introduced at the end of Sec-
tion 3.2.3.

Corollary 3.1.33 For the following concrete domains D, subsumption in EL(D) w.r.t.
IBoxes is EXPTIME-complete:

• the concrete domain Q<q,>q ;

• any concrete domain S∗ with domain Σ∗ for some finite alphabet Σ and the unary
predicates prefw and suffw for every w ∈ Σ∗;

• any concrete domain S∗ with domain Σ∗ for some finite alphabet Σ, the unary pred-
icates >S∗ and =ε, and the unary predicates prefw, for each w ∈ Σ∗.

Role Constructors

Consider the extension of EL by the role constructors ¬, ∪, or ·∗, with syntax and semantics
defined as follows:

(∃¬r.C)I := {x ∈ ∆I | ∃y : (x, y) /∈ rI ∧ y ∈ CI}

(∃r ∪ s.C)I := {x ∈ ∆I | ∃y : (x, y) ∈ rI ∪ sI ∧ y ∈ CI}

(∃r∗.C)I := {x ∈ ∆I | ∃y : (x, y) ∈ (rI)∗ ∧ y ∈ CI},

where (rI)∗ denotes the reflexive-transitive closure of rI . Let EL¬r, EL∪, and EL∗ denote
the respective extension of EL by one of the above constructors. We show that in all three
cases subsumption w.r.t. IBoxes is EXPTIME-complete.

All lower bounds are established by reduction of subsumption in ELU w.r.t. IBoxes, which
is EXPTIME-hard by Theorem 3.1.24. Let C0 and D0 be ELU concepts and C an ELU-IBox.
It is to be decided whether C0 vC D0. As in the proof of Theorem 3.1.30, we assume that
C is in normal form and that C0 and D0 are concept names. Let A be a fresh concept
name and r, s be fresh role names. From C, we construct an EL¬r-IBox C¬r, by replacing
every GCI of the form I := C v C1 t C2 by a the following GCIs:

C v ∃r.A

C u ∃s.A v C1

C u ∃¬s.A v C2.

Analogously, an EL∪-IBox C∪ is obtained by replacing every I by the GCIs

C v ∃r ∪ s.A

C u ∃r.A v C1

C u ∃s.A v C2.

For the EL∗-IBox C∗, every I is replaced by the GCIs

C v ∃r∗.A

C uA v C1

C u ∃r.∃r∗.A v C2.
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It is easy to see that C0 vC D0 iff C0 vC¬r
D0 and analogously for C∪ and C∗. The EXP-

TIME upper bound holds due to the fact that subsumption w.r.t. IBoxes is in EXPTIME

for ALC extended with the Boolean operators on roles [LS00]. The same holds for the
description logic ALCreg [FL79, Sch91].

Theorem 3.1.34 In EL¬r, EL∪, and EL∗, subsumption w.r.t. IBoxes is EXPTIME-complete.

In all three logics, satisfiability is trivial.

3.2 EL++-CBoxes with concrete domains

At first glance, the multitude of intractability results in the previous section might cast
doubts on the quest for ‘interesting’ extensions of EL with tractable reasoning w.r.t. gen-
eral TBoxes. In the present section, however, we show that there exists such an exten-
sion, namely EL++, in which, firstly, many constructs useful in ontology applications are
provided; and secondly, even an extension of general TBoxes as well as ABoxes can be
handled.

Syntax and semantics of EL++-concept descriptions have been introduced in Section 2.1.
Recall that EL++ extends EL by the bottom concept (⊥) and nominals ({a}). Furthermore,
we consider a finite number of p-admissible concrete domains D1, . . . ,Dn. As underlying
TBox formalism, we admit CBoxes which extend general TBoxes by RIs, together with
ABoxes. Since in EL++ all other standard inference problems can be reduced to subsump-
tion, see Section 2.1.1, we restrict our attention to subsumption w.r.t. EL++(D1, . . . ,Dn)-
CBoxes. To simplify notation, we do not always explicitly mention the concrete domain
extension.

Before turning to decide subsumption w.r.t. EL++-CBoxes, we would like to emphasize
that, though seemingly relatively inexpressive, EL++-CBoxes allow to express several no-
tions important in KR-applications.

• GCIs: As CBoxes extend general TBoxes, GCIs can trivially be expressed.

• Role hierarchies: a role hierarchy states that one role, e.g., specific surface division of,
is more specific than another, e.g., part of. Role hierarchies can be expressed by
simple RIs of the form

specific surface division of v part of.

• Transitive roles: if a role, e.g., part of, is declared transitive then it must always be
interpreted by a transitive relation. Transitivity of roles can be declared by means
of RIs of the form

part of ◦ part of v part of.

• Right-identities: right-identities have been discussed in Section 1.2. They can be
immediately expressed by role inclusions (RIs). For instance, in order to state that
a finding at a part implies the same finding at the whole, we can add the following
RI to the CBox.

finding at ◦ part of v finding at.

• Disjointness constraints: a disjointness constraint between concept A,B enforces
that no element of an interpretation is at the same time a witness of A and B. Such
constraints can be expressed by GCIs. For instance, the GCI

Artery u Vein v ⊥
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enforces that the concept Artery and Vein are disjoint.

• Unique name assumption: the definition of ABox individuals, see Definition 2.1.7,
usually states that the unique name assumption holds. In cases where this is not
stated a priori and the unique name assumption is desired for (some) individuals
occurring in the ABox, it can be expressed by adding GCIs of the form

{a.basilaris} u {a.subclavia} v ⊥

for every pair of individual names for which the UNA is desired. In the above
example, the UNA holds for the ABox individuals a.basilaris and a.subclavia.

• Domain restrictions: domain restrictions on roles are used to specify that only in-
stances of a certain concept can have a successor w.r.t. the role in question. Such
restrictions can be expressed by a GCI of the following form:

∃has patient id.> v Person.

In every model satisfying this GCI, the existence of a successor w.r.t. the role
has patient id implies that the relevant element is in the interpretation of Person.

Our aim is to classify EL++(D1, . . . ,Dn)-CBoxes in polynomial time. To this end, we
introduce a normal form for CBoxes in Section 3.2.1 and show in Section 3.2.2 how this
gives rise to a relatively simple subsumption algorithm based on certain saturation rules.
As our language is restricted to p-admissible concrete domains, we show in Section 3.2.3
that there exist useful concrete domains that fall in this class. The purpose of Section 3.2.4
is to highlight the, to some extent astonishing, difference in computational complexity of
the subsumption problem between extensions of FL0 on the one hand and extensions of
EL on the other.

3.2.1 Formal preliminaries

In order to refer to atomic concepts and other ‘simple’ concept descriptions more easily,
denote by P the following set of concepts.

P := Ncon ∪ {>,⊥} ∪ {{a} | a ∈ Nnom} ∪ {p(f1, . . . , fn) | p ∈ PD ∧ f1, . . . , fn ∈ Nfe}

For a given CBox C, denote by PC the subset of P whose elements actually occur in C. Our
first step towards classifying CBoxes is to devise a normal form for them. By means of
the following definition, we restrict GCIs and RIs occurring in EL++-CBoxes to the most
simple cases.

Definition 3.2.1 (Normal form for EL++-CBoxes)
An EL++-CBox C is in normal form iff

1. all GCIs are of the form C1 v D, C1 u C2 v D, C1 v ∃r.C2, or ∃r.C1 v D with
C1, C2, D ∈ P and C1, C2 6= ⊥;

2. all RIs are of the form r v s or r1 ◦ r2 v s with r, r1, r2, s ∈ Nrole. ���

The above normal form imposes no real restriction on a potential subsumption algorithm
because every EL++-CBox can be normalized easily, as the next lemma shows.

Lemma 3.2.2 For every EL++-CBox C, there is an equivalent EL++-CBox C′ in normal
form such that |C′| is linear in |C|. Moreover, C ′ can be computed in time linear in |C|.
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NF1 r1 ◦ · · · ◦ rk v s −→ {r1 ◦ · · · ◦ rk−1 v u, u ◦ rk v s}

NF2 C u D̂ v E −→ {D̂ v A,C uA v E}

NF3 ∃r.Ĉ v D −→ {Ĉ v A,∃r.A v D}

NF4 ⊥ v D −→ ∅

NF5 Ĉ v D̂ −→ {Ĉ v A,A v D̂}

NF6 B v ∃r.Ĉ −→ {B v ∃r.A,A v Ĉ}

NF7 B v C uD −→ {B v C,B v D}

Ĉ, D̂ 6∈ P, u denotes a fresh role name, and A a fresh concept name.

Figure 3.2.1: Normalization Rules

Proof. We show that C can be converted into normal form using the translation rules
shown in Figure 3.2.1. Note that Ĉ, D̂ denote non-atomic concept descriptions while
B,C,D,E stand for arbitrary concept descriptions. Note also that Rule NF2 is defined
modulo commutativity of conjunction. In order to normalize C, the above rules are applied
in two phases:

1. exhaustively apply rules NF1 to NF4;

2. exhaustively apply rules NF5 to NF7.

Here ‘rule application’ means replacing the GCI on the left-hand side with all GCIs in the
set on the right-hand-side. Normalizing C in the above sense produces a normalized CBox
C′ of linear size in |C| and takes at most |C| rule applications, and thus only linear time.���

Note that applying all normalization rules arbitrarily might cause a quadratic blow-up in
the worst case due to the duplication of the concept B in Rule NF7.

In addition to normalization, we may w.l.o.g. restrict our subsumption algorithm to sub-
sumption between concept names: for every EL++-CBox C and arbitrary EL++-concept
descriptions C,D, C vC D iff A vC∪{AvC,DvB} B, where A,B are fresh concept names.

We are now ready to introduce the actual subsumption algorithm in the following section.

3.2.2 Deciding subsumption w.r.t. EL++-CBoxes

Given a normalized EL++-CBox C, we not only want to decide single subsumption relations,
but to classify C, i.e., decide all subsumption relations w.r.t. pairs of names from C. As
a first step to this end, we introduce implication sets Imp(P ) for simple concepts P ∈ PC

and Imp(r) for role names r occurring in C. The underlying idea is to collect all simple
concepts subsuming a simple concept P ∈ PC in Imp(P ) and all pairs (P,Q) of simple
concepts in Imp(r) iff the concept name P is subsumed by ∃r.Q. For concept names A,B
occurring in C, the subsumption A vC B can then be tested by checking whether B is
contained in Imp(A).

Definition 3.2.3 (Implication sets, conjunctions)
For every P ∈ PC and every r ∈ NC

role, Imp maps P onto a subset of PC ∪ {>,⊥} and r
onto a subset of PC × PC . Initially, let Imp(P ) := {P,>} and Imp(r) := ∅. The mapping
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CR1 If C ′ ∈ Imp(C), C ′ v D ∈ C, and D 6∈ Imp(C)
then Imp(C) := Imp(C) ∪ {D}

CR2 If C1, C2 ∈ Imp(C), C1 u C2 v D ∈ C, and D 6∈ Imp(C)
then Imp(C) := Imp(C) ∪ {D}

CR3 If C ′ ∈ Imp(C), C ′ v ∃r.D ∈ C, and (C,D) /∈ Imp(r)
then Imp(r) := Imp(r) ∪ {(C,D)}

CR4 If (C,D) ∈ Imp(r), D′ ∈ Imp(D), ∃r.D′ v E ∈ C, and E /∈ Imp(C)
then Imp(C) := Imp(C) ∪ {E}

CR5 If (C,D) ∈ Imp(r), ⊥ ∈ Imp(D), and ⊥ /∈ Imp(C),
then Imp(C) := Imp(C) ∪ {⊥}

CR6 If {a} ∈ Imp(C) ∩ Imp(D), C  D, and Imp(D) 6⊆ Imp(C)
then Imp(C) := Imp(C) ∪ Imp(D)

CR7 If conj(Imp(C)) is unsatisfiable in Dj and ⊥ /∈ Imp(C),
then Imp(C) := Imp(C) ∪ {⊥}

CR8 If conj(Imp(C)) implies p(f1, . . . , fk) ∈ PC in Dj and p(f1, . . . , fk) /∈ Imp(C),
then Imp(C) := Imp(C) ∪ {p(f1, . . . , fk)}

CR9 If p(f1, . . . , fk), p′(f ′
1, . . . , f

′
k′) ∈ Imp(C), p ∈ PDj ,

p′ ∈ PD` , j 6= `, fs = f ′
t for some s, t, and ⊥ /∈ Imp(C),

then Imp(C) := Imp(C) ∪ {⊥}

CR10 If (C,D) ∈ Imp(r), r v s ∈ C, and (C,D) /∈ Imp(s)
then Imp(s) := Imp(s) ∪ {(C,D)}

CR11 If (C,D) ∈ Imp(r1), (D,E) ∈ Imp(r2), r1 ◦ r2 v r3 ∈ C, and (C,E) /∈ Imp(r3)
then Imp(r3) := Imp(r3) ∪ {(C,E)}

Table 3.2.1: Completion Rules
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Imp is then extended by means of the completion rules shown in Table 3.2.1 until no more
rule is applicable. Imp(P ) and Imp(r) are called implication sets of P and r, respectively.

Rule CR6 is defined in terms of a binary relation ⊆ PC×PC defined as follows. For every
P,Q ∈ PC , P  Q iff there exists some k ∈ � \ {0} and C1, . . . , Ck ∈ PC with

• C1 = P or C1 = {b} for some b ∈ Nnom;

• for all j ∈ {1, . . . , k − 1} there exists some r ∈ NC
role with (Cj , Cj+1) ∈ Imp(r); and

• Ck = Q.

Rules CR7 and CR8 are defined in terms of the conjunction conj(Imp(C)). For every set
Γ ⊆ PC , conj(Γ) is defined as follows.

conj(Γ) :=
∧

p(f1,...,fk)∈Γ with p∈PDj

p(f1, . . . , fk)

A solution for conj(Γ) is a mapping δ : Nfe → ∆Dj with (δ(f1), . . . , δ(fk)) ∈ pDj for every
conjunct p(f1, . . . , fk) of conj(Γ). ���

Note that the conjunction conj(Γ) merely collects all predicates in Γ that appertain to the
concrete domain Dj . A conjunction conj(S(C)) is satisfiable iff there exists a solution for
it. Denote by δ |= p(f1, . . . , fk) the fact that (δ(f1), . . . , δ(fk)) ∈ pDj .

The following two lemmas show that, after exhaustive application of the above completion
rules, deciding subsumption between names from a given EL++-CBox can be reduced to
looking up names in implication sets. We begin by showing soundness.

Lemma 3.2.4 (Soundness)
Let C be a normalized CBox. Let Imp be the mapping obtained after exhaustive application
of the rules in Table 3.2.1 to C. Let A,B ∈ NC

con. Then A vC B if one of the following
two conditions holds:

S1 Imp(A) ∩ {B,⊥} 6= ∅; or

S2 there is an {a} ∈ PC with ⊥ ∈ Imp({a}).

Proof. Assume that the algorithm is applied to C yielding the sequence of mappings
Imp0, . . . , Impn. Let A0, B0 be two concept names such that (at least) one of the Condi-
tions S1 and S2 is satisfied. To show A0 vC B0, we prove the following.

Claim. For all n ∈ � , all models I of C, all r ∈ NC
role, and all x ∈ CI , it holds that

(a) if D ∈ Impn(C) then x ∈ DI ; and

(b) if (C,D) ∈ Impn(r) then there is a y ∈ ∆I with (x, y) ∈ rI and y ∈ DI .

The claim is proved by induction on n. Let I be a model of C and x ∈ CI .

(n = 0) Trivial because Imp0(C) = {C,>} and Imp0(r) = ∅. Hence, (a) obviously holds
while the precondition of (b) does not.

(n > 0) (a) Assume D ∈ Impn(C) \ Impn−1(C) because otherwise the claim holds by
induction hypothesis (IH). We make a case distinction depending on the rule by which
Impn(C) is extended with D.
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CR1 Then there exists some C ′ ∈ Impn−1(C) and a GCI I := C ′ v D ∈ C. By Claim (a)

of IH, x ∈ C ′I , implying x ∈ DI by I.

CR2 Then there exist C1, C2 ∈ Impn−1(C) and a GCI I := C1uC2 v D ∈ C. By Claim (a)
of IH, C1, C2 ∈ Impn−1(A) yields x ∈ CI

1 and x ∈ CI
2 , implying by I that x ∈ DI .

CR4 Then there exist E,E′ ∈ PC , a role name r ∈ NC
role, and a GCI I := ∃r.E′ v D ∈ C

with (C,E) ∈ Impn−1(r) and E′ ∈ Impn−1(E). By Claim (b) of IH, there is a y ∈ ∆I

with (x, y) ∈ rI and y ∈ EI . By Claim (a) of IH, y ∈ E′I . Thus, I yields x ∈ DI .

CR5 Then D = ⊥ and there is an E ∈ PC such that (C,E) ∈ Impn−1(r) for some r ∈ NC
role

and ⊥ ∈ Impn−1(E). By Claim (b) of IH, there is a y ∈ ∆I with (x, y) ∈ rI and
y ∈ EI . By Claim (a) of IH, y ∈ ⊥I = ∅. Hence, there are no models I of C with
CI 6= ∅. Thus, adding ⊥ to Impn(C) trivially preserves Claim (a).

CR6 Then there exists some E ∈ PC and a ∈ Nnom with {a} ∈ Impn−1(C) ∩ Impn−1(E),
D ∈ Impn−1(E), and there are C1, . . . , Ck ∈ PC such that

(i) C1 = C or C1 = {b} for some individual name b;

(ii) Ck = E;

(iii) for all i ∈ {1, . . . , k − 1} there exists some ri ∈ NC
role with (Ci, Ci+1) ∈

Impn−1(ri).

By Claim (b) of IH and (iii), there are y1, . . . , yk ∈ ∆I with y1 ∈ {x}∪{b
I |b ∈ Nnom},

yk ∈ CI
k = EI , and, for every i ∈ {1, . . . , k − 1}, (yi, yi+1) ∈ rIi for some ri ∈ NC

role.
By Claim (a) of IH, x ∈ CI and {a} ∈ Impn−1(C)∩ Impn−1(E) implies x = aI = yk.
Also by Claim (a), D ∈ Impn−1(E) implies yk ∈ DI . Thus, x ∈ DI as required.

CR7 Then D = ⊥ and conj(Impn−1(C)) is unsatisfiable for some j. Define a function
δ : Nfe → ∆Dj with δ(f) := fI(x) for every f ∈ Nfe. By Claim (a) of IH, x ∈
p(f1, . . . , fk)I for every conjunct p(f1, . . . , fk) of conj(Impn−1(C)). Thus, δ is a
solution for conj(Impn−1(C)), contradicting its unsatisfiability. Hence, there can be
no model I of C with CI 6= ∅. Adding ⊥ to S(C) thus (trivially) preserves Claim (a).

CR8 Then D is of the form p(f1, . . . , fk) with p ∈ PDj for some i, and conj(Impn−1(C))
implies D. As in the previous case, x ∈ p(f1, . . . , fk)I for every conjunct p(f1, . . . , fk)
of conj(Impn−1(C)) by Claim (a) of IH. Since conj(Impn−1(C)) implies D, x ∈ DI

as required.

CR9 Then D = ⊥ and there are p(f1, . . . , fk) ∈ Impn−1(C) and p′(f ′
1, . . . , f

′
k′) ∈ Impn−1(C)

such that p ∈ PDi and p′ ∈ PDj with i 6= j. By Claim (a) of IH, x ∈ p(f1, . . . , fk)I ∩
p′(f ′

1, . . . , f
′
k′)I . Thus fI

i ∈ ∆Di ∩ ∆Dj , contradicting the disjointness of ∆Di and
∆Dj . Again, Claim (a) is trivially preserved.

For (b), assume (C,D) ∈ Impn(r) \ Impn−1(r) and make a case distinction according to
the rule by which Rn(r) is extended by (C,D).

CR3 Then there is a C ′ ∈ PC with C ′ ∈ Impn−1(C) and a GCI I := C ′ v ∃r.D ∈ C. By

Claim (a) of IH, x ∈ CI implies x ∈ C ′I . By I, there is a y such that (x, y) ∈ rI

and y ∈ DI as required.

CR10 Then (C,D) ∈ Impn−1(s) for some s ∈ NC
role with I := s v r ∈ C. By Claim (b) of

IH, there is a y ∈ ∆I such that (x, y) ∈ sI and y ∈ DI . Due to I, (x, y) ∈ rI .
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CR11 Then there is an E ∈ PC such that (C,E) ∈ Impn−1(r1) and (E,D) ∈ Impn−1(r2)
for some r1, r2 ∈ NC

role with I := r1 ◦ r2 v r ∈ C. By Claim (b) of IH, there is a
y ∈ ∆I such that (x, y) ∈ rI1 and y ∈ EI . Another application of Claim (b) yields
the existence of a z ∈ ∆I with (y, z) ∈ rI2 and z ∈ DI . Because of I, (x, z) ∈ rI .

This finishes the proof of our Claim. It is now easy to prove A0 vC B0, distinguishing
whether Condition S1 or S2 is satisfied.

S1 Let B0 ∈ Impm(A0). By Claim (a), x ∈ BI
0 for all models I of C and all x ∈ AI

0 .
In other words, A0 vC B0. Now let ⊥ ∈ Impm(A0). By Claim (a), x ∈ ⊥I for all
models I of C and all x ∈ AI

0 . Hence, there are no models I of C with AI
0 6= ∅,

implying A0 vC B0.

S2 Let ⊥ ∈ Impm({a}) for some a ∈ Nnom. By Claim (a), aI ∈ ⊥I for all models I of
C. Hence, C has no models, implying A0 vC B0. ���

It remains to show that, after exhaustive application of the completion rules, every sub-
sumption relation between names in the CBox C is reflected in the relevant implication
sets.

Lemma 3.2.5 (Completeness)
Let Imp be the mapping obtained after exhaustive application of the rules in Table 3.2.1 for
the normalized CBox C. Let A,B ∈ NC

con. Then A vC B implies that one of the following
two conditions holds:

S1 Imp(A) ∩ {B,⊥} 6= ∅, or

S2 there is an {a} ∈ PC with ⊥ ∈ Imp({a}).

Proof. We show the contrapositive. Assume that S1 and S2 do not hold after exhaustive
rule application. We show that this implies A0 6vC B0 by constructing a model I of C with
a ∈ AI

0 \BI
0 for some a ∈ ∆I .

Let m ∈ � be the least index with Impm = Impm+1. For convenience, denote Impm by
Imp. Let PC

− := {C ∈ PC | A0  C}. Then define a binary relation ∼ ⊆ PC
− × PC

− by:

C ∼ D iff C = D or {a} ∈ Imp(C) ∩ Imp(D) for some a ∈ NC
nom.

Rule CR6 guarantees that ∼ is an equivalence relation on PC
−. For every C ∈ PC

−, denote
by [C] the equivalence class of C w.r.t. ∼. These equivalence classes will be the domain
elements of the model to be constructed. Before actually defining this model, we prove
two claims:

Claim 1. For all C,C ′ ∈ PC
− with C ∼ C ′ and all r ∈ NC

role, we have

(a) Imp(C) = Imp(C ′); and

(b) (C,D) ∈ Imp(r) implies (C ′, D) ∈ Imp(r).

Proof of Claim 1: If Rule CR6 is applied exhaustively then Claim (a) immediately holds.
We show Claim (b) by induction on the smallest index i such that (C,D) ∈ Impi(r).

(i = 0) Trivial because Imp0(r) = ∅.

(i > 0) Let (C,D) ∈ Impi(r)\ Impi−1(r). We make a case distinction for the rule by which
Impi(r) is extended by (C,D).
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CR3 Then there is an E ∈ Impi−1(C) and a GCI E v ∃r.D ∈ C. Since C ∼ C ′, CR6

ensures that E ∈ Impj(C
′) for some j ≥ 0. Thus, CR3 yields (D,E) ∈ Imp(r).

CR10 Then (C,D) ∈ Impi−1(s) for some role name s with s v r ∈ C. By IH, this implies
(C ′, D) ∈ Imp(j)s for some j ≥ 0. Thus, CR12 yields (C ′, D) ∈ Imp(r).

CR11 Then there is an E ∈ PC with (C,E) ∈ Impi−1(r1) and (E,D) ∈ Impi−1(r2) for some
role names r1, r2 with r1 ◦ r2 v r ∈ C. By definition of  , C ∈ PC

− implies D ∈ PC
−.

Thus, the IH yields (C,E) ∈ Impi−1(r1), implying (C ′, E) ∈ Impj(r1) for some j ≥ 0.
CR13 will eventually be applied to (C ′, E) ∈ Imp`(r1) and (E,D) ∈ Imp`(r2) for some
` ≥ 0, yielding (C ′, D) ∈ Imp`+1(r) ⊆ Imp(r).

This finishes the proof of Claim 1. Claim (a) allows us to unambiguously identify a given
equivalence class [C] with the set Imp(C). This will be used implicitly in the following.

Claim 2. For each C ∈ PC
− and each i ∈ {1, . . . , n}, there exist solutions δ([C], i) for

coni(Imp(C)) such that, for all concepts D ∈ PC of the form p(f1, . . . , fk) with p ∈ PDi ,
we have δ([C], t) |= D iff D ∈ Imp(C).

Proof of Claim 2: By Conditions S1 and S2, ⊥ /∈ Imp(A0) and ⊥ /∈ Imp({a}) for all
{a} ∈ PC . Due to Rule CR5 and by definition of PC

−, ⊥ /∈ Imp(C). Thus, by Rule CR7

there exists a solution for coni(Imp(C)). It remains to show that this solution can be
chosen not to satisfy any concept p(f1, . . . , fk) ∈ PC \ Imp(C). Let Γ be the set of all
solutions for coni(Imp(C)). Moreover, assume on the contrary that there exists a set
Ψ ⊆ PC \ Imp(C) of concepts of the form p(f1, . . . , fk) with p ∈ PDi such that each
solution from Γ satisfies a concept from Ψ, i.e., coni(Imp(C)) implies the disjunction of all
concepts in Ψ. By Property 2 of p-admissibility, coni(Imp(C)) implies a single concept X
from Ψ. By Rule CR8, this implies X ∈ Imp(C), in contradiction to X ∈ Ψ.

This finishes the proof of Claim 2. For each C ∈ PC
− and each i ∈ {1, . . . , n}, fix a solution

δ([C], i) for coni(Imp(C)) as in Claim 2. We now define an interpretation I as follows:

∆I := {[C] | C ∈ PC
−}

AI :=

{

{[C] ∈ ∆I | A ∈ Imp(C)} if A ∈ NC
con

∅ otherwise

aI :=

{

[{a}] if {a} ∈ PC

[A0] otherwise

rI :=

{

{([C], [D]) ∈ ∆I ×∆I | ∃D′ ∈ [D] : (C,D′) ∈ Imp(r)} if r ∈ NC
role

∅ otherwise

fI([C]) := δ([C], i) if there exists a p(f1, . . . , fm) ∈ Imp(C) with p ∈ P∆i

and fj = f for some j ∈ {1, . . . ,m} for all f ∈ NC
fe and [C] ∈ ∆I .

Note that aI is well-defined for each a ∈ Nnom since equivalence classes w.r.t. ∼ are used.
Moreover, the assignment aI := [A0] for every {a} 6∈ NC

con is arbitrary. Note also that rI

is well-defined for every r ∈ Nrole because of Claim 1(b), and fI is well-defined for every
f ∈ Nfe since ⊥ /∈ Imp(C) for all C ∈ PC

− and due to CR9. We now establish an additional,
central claim.

Claim 3. For all [C] ∈ ∆I and D ∈ PC ∪ {⊥}, [C] ∈ DI iff D ∈ Imp(C).

The proof distinguishes four cases depending on the form of D:

• D = >. Trivial since > ∈ Imp(C) for all C ∈ PC
−.
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• D = ⊥. Trivial since, as shown in the proof of Claim 2, ⊥ /∈ Imp(C) for all C ∈ PC
−.

• D ∈ NC
con. Then, [C] ∈ DI iff D ∈ Imp(C) immediately by definition of I.

• D = {a} for some a ∈ NC
nom. Then [C] ∈ {a}I implies aI = [C] and thus [C] = [{a}]

by definition of {a}I . This yields {a} ∈ Imp(C) since {a} ∈ Imp0({a}). Conversely,
{a} ∈ Imp(C) implies [C] = [{a}] by definition of ∼. Hence, aI = [C] implying
[C] ∈ {a}I by definition of I and the semantics.

• D = p(f1, . . . , fk) with p ∈ PDi for some i. Then [C] ∈ DI iff δ([C], i) |= D iff
D ∈ Imp(C). The first ‘iff’ is by definition of I and the semantics and the latter by
choice of δ([C], i).

This finishes the proof of Claim 3. We now show that I is a model of C with x ∈ AI
0 \BI

0

for some x ∈ ∆I . Since A0 ∈ PC
−, by definition of PC

−, [A0] ∈ ∆I . By S1, B0 /∈ Imp(A0).
Due to the definition of Imp0, A0 ∈ Imp(A0), implying by Claim 3 that [A0] ∈ AI

0 \ BI
0 .

It remains to show that I is a model of C. To this end, we distinguish four types of GCIs
and two types of RIs in C.

• C v D. Let [C ′] ∈ CI . By Claim 3, C ∈ Imp(C ′). Due to Rule CR1, this implies
D ∈ Imp(C ′) and thus [C ′] ∈ DI by Claim 3.

• C uD v E. Similar to the previous case using Rule CR2.

• C v ∃r.D. Let [C ′] ∈ CI . Then C ∈ Imp(C ′) by Claim 3. Thus, by Rule CR3,
(C ′, D) ∈ Imp(r). By definition of rI , this implies ([C ′], [D]) ∈ rI . Moreover,
D ∈ Imp0(D) implies D ∈ Imp(D). Thus, Claim 3 yields [D] ∈ DI . Together, this
yields [C ′] ∈ (∃r.D)I as required.

• ∃r.C v D. Let [E] ∈ (∃r.C)I . Hence, there is an [F ] ∈ ∆I such that ([E], [F ]) ∈ rI

and [F ] ∈ CI . Thus, by definition of I, there is some F ′ ∈ [F ] with (E,F ′) ∈
Imp(r). Moreover, [F ′] = [F ] ∈ CI implies C ∈ Imp(F ′) by Claim 3. By Rule CR4,
D ∈ Imp(E), implying [E] ∈ DI by Claim 3 as required.

• r v s. Let ([C], [D]) ∈ rI . Then there is a D′ ∈ [D] such that (C,D′) ∈ Imp(r),
implying (C,D′) ∈ Imp(s) by CR10. Thus, by definition of I, ([C], [D′]) = ([C], [D]) ∈
sI as required.

• r1 ◦ r2 v s. Let ([C], [D]) ∈ rI1 and ([D], [E]) ∈ rI2 . Then there are D′ ∈ [D]
and E′ ∈ [E] with (C,D′) ∈ Imp(r) and (D,E′) ∈ Imp(r). By Claim 1(b), the
latter yields (D′, E′) ∈ Imp(r). Hence, (C,E′) ∈ R(s) by CR10. By definition of I,
([C], [E′]) = ([C], [E]) ∈ sI as required.

���

Consequently, implication sets can be used to decide subsumption w.r.t. EL++-CBoxes.
We still have to show that the mapping Imp, i.e., a complete set of implication sets, can
be computed in polynomial time.

Lemma 3.2.6 Let C be a normalized CBox. Then the rules in Table 3.2.1 can only be
applied a polynomial number of times, and each rule application takes only polynomial
time.

Proof. The cardinality of PC and NC
role is bounded by |C|. Applying one rule from

Table 3.2.1 either adds some P ∈ PC ∪ {⊥} to Imp(C) for some C ∈ PC , or adds a new
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tuple (C,D) ∈ PC × PC to Imp(r) for some r ∈ NC
role. Since no elements are removed from

any implication set, the total number of rule applications is polynomial. It is easy to check
that each rule application can be performed in polynomial time. In particular, note that
the relation  can be computed using polynomial time graph reachability. ���

We obtain the following result as a consequence of Lemmas 3.2.2, 3.2.6, and 3.2.4, and the
reduction of satisfiability, consistency, and the instance problem to subsumption shown in
Section 2.1.

Theorem 3.2.7 Satisfiability, subsumption, ABox consistency, and the instance problem
in EL++(D1, . . . ,Dn) can be decided in polynomial time.

Taken together, the proofs of Lemma 3.2.4 and 3.2.5 yield a small model property for EL++.
Taking into account the reductions of satisfiability and ABox consistency to subsumption
from Section 2.1.1, we obtain the following.

Theorem 3.2.8 Let C and D be concepts, A an ABox, and C a CBox. Then:

1. if C is satisfiable w.r.t. C, then C and C have a common model of size linear in
|C|+ |C|;

2. if C is not subsumed by D w.r.t. C, then there exists a model I of C of size linear in
|C|+ |D|+ |C| such that x ∈ CI \DI for some x ∈ ∆I ;

3. If A is consistent w.r.t. C, then A and C have a common model of size linear in
|A|+ |C|;

4. if an individual a is not an instance of C in A w.r.t. C, then there exists a model I
of A and C of size linear in |C|+ |A|+ |C| such that aI /∈ CI .

In order to complete the picture of EL++-CBoxes, it remains to find useful concrete do-
mains matching our definition of p-admissibility.

3.2.3 P-admissible concrete domains

In order to obtain concrete DLs of the form EL++(D1, . . . ,Dn) for n > 0 to which Theo-
rem 3.2.7 applies, p-admissible concrete domains are needed. In the following, we introduce
two p-admissible concrete domains, and show that small extensions of them are no longer
p-admissible. To simplify notation, we call every finite conjunction of atomic formulae
p(f1, . . . , fk) from a concrete domain D a D-conjunction.

Definition 3.2.9 (Concrete domains Q and S)
The concrete domain Q = ( � ,PQ) has as its domain the set � of rational numbers, and
its set of predicates PQ consists of the following predicates:

• a unary predicate >Q with (>Q)Q = � ;

• unary predicates =q and >q for each q ∈ � ;

• a binary predicate =;

• a binary predicate +q, for each q ∈ � , with (+q)
Q = {(q′, q′′) ∈ � 2 | q′ + q = q′′}.

The concrete domain S is defined as (Σ∗,PS), where Σ is the ISO 8859-1 (Latin-1) character
set and PS consists of the following predicates:
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• a unary predicate >S with (>S)S = Σ∗;

• a unary predicate =w, for each w ∈ Σ∗;

• a binary predicate =;

• a binary predicate concw, for each w ∈ Σ∗, with concQw = {(w′, w′′) | w′′ = w′w}. ���

We now show that both Q and S are p-admissible. By Definition 2.3.3, satisfiability and
implication in Q and S must be decidable in polynomial time (Condition 1) and Q and S
must be convex (Condition 2).

Proposition 3.2.10 The concrete domain Q is p-admissible.

Proof. First for Condition 1 of p-admissibility. Assume that, in Q-conjunctions, we
admit the following additional predicates:

• a unary predicate <q for each q ∈ � with (P<)Q = {q′ ∈ � | q′ < q};

• a binary predicate < with the obvious extension.

In this extended set of predicates, Q-implication can be reduced to Q-satisfiability: assume
that we want to decide whether the Q-conjunction c implies a formula p(f1, . . . , fk) with
p ∈ PQ. We make a case distinction according to p:

=q the implication holds if neither c ∧<q(f1) nor c ∧>q(f1) is satisfiable;

>q the implication holds if neither c ∧<q(f1) nor c ∧=q(f1) is satisfiable;

= the implication holds if neither c ∧<(f1, f2) nor c ∧<(f2, f1) is satisfiable;

+q the implication holds if neither c ∧ +q(f1, f) ∧ <(f, f2) nor c ∧ +q(f1, f) ∧ <(f2, f)
is satisfiable, where f is a feature name not appearing in c.

By reduction to linear programming, it is shown in [Lut03] that satisfiability of Q-conjunc-
tions over the extended set of predicates is decidable in polynomial time.

Now for Condition 2 of p-admissibility. Let c be a Q-conjunction, and let Γ be a finite set
of formulae of the form p(f1, . . . , fk) such that c implies no formula from Γ. Obviously, c is
satisfiable. Assume that c implies the disjunction over all formulae in Γ. W.l.o.g., assume
that c does not contain conjuncts of the form >Q(f) since the conjunction obtained from
c by removing such conjuncts is equivalent to c. Moreover, the fact that c does not imply
any formula from Γ means that Γ also contains no predicates of the form >Q(f). Our aim
is to construct a solution δ for c such that δ 6|= C for all C ∈ Γ, in contradiction to our
assumption. To this end, we first define a solution for c that does not satisfy any formula
>q(f) ∈ Γ, and then modify this solution such that no other formulae from Γ are satisfied.

For the first step, start by defining a relation ∼ on the set of features Nfe as follows:

f ∼ f ′ iff f = f ′ or f and f ′ occur jointly in a conjunct of c.

Clearly, the transitive closure ∼∗ of ∼ is an equivalence relation. For each equivalence
class ∆ of ∼∗, we define a distance function d∆ that maps each pair of features f, f ′ ∈ ∆
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to a rational number:

d∆(f, f) := 0

d∆(f, f ′) := 0 if =(f, f ′) ∈ c or =(f ′, f) ∈ c

d∆(f, f ′) := q if +q(f, f ′) ∈ c

d∆(f, f ′) := −q if +q(f
′, f) ∈ c

d∆(f, f ′) := d∆(f, f ′′) + d∆(f ′′, f ′).

Note that d∆ is total on ∆ due to the definition of ∼ and well-defined since c is satisfiable.
We call a feature f fixed by c iff there exists a feature f ′ with f ∼∗ f ′ and =q(f

′) ∈ c for
some q ∈ � . For a given ∼∗-equivalence class, either all contained features are fixed or all
are not fixed. In this sense, entire equivalence classes can be called (not) fixed.

Let ∆1, . . . ,∆k be the equivalence classes of ∼∗. We define a solution δ0 for c. This is
done separately for each ∆i with i ∈ {1, . . . , k}.

1. If ∆i is fixed then take a feature f ∈ ∆i with =q(f) ∈ c and let δ0(f) := q. For all
other features f ′ ∈ ∆i, let δ0(f

′) := δ0(f) + d∆i
(f, f ′).

2. If ∆i is not fixed then choose a feature f ∈ ∆i. Then choose a value δ0(f) ∈ � such
that two conditions hold:

• δ0(f) + d∆i
(f, f ′) > q for all f ′ ∈ ∆i and all q with >q(f

′) ∈ c; and

• δ0(f) + d∆i
(f, f ′) ≤ q for all f ′ ∈ ∆i and all q with >q(f

′) ∈ Γ.

For all other f ′ ∈ ∆i, let δ0(f
′) := δ0(f) + d∆i

(f, f ′).

To verify that a rational number δ0(f) as required above always exists, assume the
contrary. Then there is a >q(f

′) ∈ c and a >q′(f ′′) ∈ Γ with d∆i
(f, f ′)−d∆i

(f, f ′′) =
d∆i

(f ′, f ′′) ≥ q − q′. Hence, by definition of d∆i
, there is no solution δ0 for c that

does not satisfy >q′(f ′′) ∈ Γ, in contradiction to the fact that c does not imply any
element of Γ.

By definition of d∆ and of δ0, δ0 is a solution for c satisfying none of the formulae >q(f)
in Γ. The latter is obvious if ∆i is not fixed (Case 2 above). If ∆i is fixed (Case 1) then
δ(f) > q clearly yields that c implies >q(f), and thus >q(f) /∈ Γ.

Now for the second step which deals with formulae =q(f), =(f, f ′), and +q(f, f ′) in Γ
that may be satisfied ‘accidentally’ by δ0. We destroy such satisfactions by ‘shifting down’
values of δ0. To this end, choose b ∈ � such that the following conditions are satisfied:

1. b > 0;

2. for all conjuncts >q(f) of c, b < δ0(f)− q;

3. for all =q(f) ∈ Γ with δ0(f) 6= q, b < |δ0(f)− q|;

4. for all =(f, f ′) ∈ Γ with δ0(f) 6= δ0(f
′), b < |δ0(f)− δ0(f

′)|; and

5. for all +q(f, f ′) ∈ Γ with δ0(f
′) 6= δ0(f) + q, b < |δ0(f

′)− (δ0(f) + q)|.

Define a new solution δ of c as follows:

δ(f) :=

{

δ0(f)− b if f is not fixed by c

δ0(f) otherwise.
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It is easy to see that δ solves c: conjuncts >q(f) are satisfied by choice of b (Point 2);
conjuncts =q(f) are satisfied since they are satisfied by δ0 and their presence implies that
f is fixed by c; and conjuncts =(f, f ′) and +q(f, f ′) are satisfied since they are satisfied
by δ0 and their presence implies that f is fixed by c iff f ′ is fixed by c.

Moreover, the new solution δ does not satisfy any formula in Γ: formulae >q(f) have not
been satisfied by δ0, and we only shifted down when moving to δ; formulae of the other
form are not satisfied by definition of δ and choice of b. ���

It remains to show that the second concrete domain from Definition 3.2.9 is also p-
admissible.

Proposition 3.2.11 The concrete domain S is p-admissible.

Proof. Condition 1 of p-admissibility: consider the concrete domain S ′ = (Σ∗,PS′

),
with PS′

containing the following predicates:

1. a unary predicate >S as in S;

2. a unary predicate =ε as in S, but only for the empty word, and its negation 6=ε with
the obvious extension;

3. binary predicates = and 6= with the obvious extensions;

4. binary predicates concw and concw for each w ∈ Σ∗, where the extension of concw

is as in S, and the extension of concw is complementary.

We claim that satisfiability and implication in S can be polynomially reduced to satisfia-
bility in S ′:

• To check satisfiability of an S-conjunction c, first extend c with the conjunct =ε (e),
where e is a feature name not occurring in c, and then replace each conjunct =w(f)
in c with w 6= ε by the conjunct concw(e, f). Finally, check satisfiability of the
resulting conjunction c′ in S ′.

• To check whether an S-conjunction c implies a formula p(f1, . . . , fn), first transform
c into c′ as in the satisfiability case above. If p is of the form =ε, =, or concw, then
simply check whether c′ extended by the conjunct p(f1, . . . , fn) is unsatisfiable. If
p is of the form =w with w 6= ε then check whether c′ extended by the conjunct
concw(e, f1) is unsatisfiable.

It has been shown in [Lut01] that satisfiability in S ′ is decidable in polynomial time, which
by the above reduction carries over to satisfiability and implication in S.

Condition 2 of p-admissibility: first, let c be an S-conjunction and Γ a finite set of formulae
of the form p(f1, . . . , fk) such that c implies no formula from Γ. Again, in this case c is
satisfiable. Assume that c implies the disjunction over all formulae in Γ. As in the case
of the concrete domain Q, we may assume that the predicate >S(f) does not occur in
c and Γ. Our aim is to construct a solution δ for c such that δ 6|= C for all C ∈ Γ, in
contradiction to the assumption.

To this end, let δ0 be an arbitrary solution for c. We modify this solution such that no
formula from Γ is satisfied. We begin by defining a relation ∼ on the set Nfe of features
as follows:

f ∼ f ′ iff f = f ′ or f and f ′ occur jointly in a conjunct of c.
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The transitive closure ∼∗ of ∼ is an equivalence relation. Analogous to the case of Q, we
call a feature f fixed by c iff there exists a feature f ′ with f ∼∗ f ′ and =w(f ′) ∈ c for some
w ∈ Σ∗. Again, this gives rise to the notion of (not) fixed equivalence classes. Denote by
α1, . . . , αn the not fixed equivalence classes of ∼∗. Then choose words w1, . . . , wn ∈ Σ∗

with the following properties.

1. for every i ∈ {1, . . . , n}, wi is no prefix of w, and =w is a predicate occurring in Γ;

2. for every i, j ∈ {1, . . . , n} with i 6= j, wi is no prefix of wj ; and

3. for every i ∈ {1, . . . , n} and every f ∈ Nfe occurring in c, wi is no prefix of δ(f).

Now define a new solution δ of c by:

δ(f) :=

{

wi · δ0(f) if f ∈ αi

δ0(f) if there is no such αi .

It remains to show that δ |= c and δ 6|= C for all C ∈ Γ. For the former, we argue as
follows, distinguishing three cases for the different types of predicates occurring in c:

• For all predicates in c of the form =w(f), f is not fixed by definition, implying
δ(f) = δ0(f) = w.

• All predicates in c of the form =(f, g) remain satisfied because their existence implies
that f and g are in the same equivalence class and thus δ(f) = w · δ0(f) and
δ(g) = w · δ0(g) for some w ∈ Σ∗.

• All predicates concw(f, g) remain satisfied for the same reason.

Now for the latter, i.e., δ 6|= C. Again, we distinguish three cases.

• Consider some =w(f) ∈ Γ. If f is fixed and δ0 |= =w(f) then c implies =w(f),
in contradiction to the assumption that c does not imply any element of Γ. Thus,
either f is not fixed or δ0 6|= =w(f). If f is not fixed then δ 6|= =w(f) because of
Property 1 of the words w1, . . . , wn. If f is fixed and δ0 6|= =w(f) then clearly also
δ 6|= =w(f).

• Now consider =(f, g) ∈ Γ. If f and g are in the same equivalence class and δ0 |=
=(f, g) then c implies =(f, g), contradicting our assumption. Thus, either f and g
are not in the same equivalence class or δ0 6|= =(f, g). In f and g are not in the same
equivalence class, δ 6|= =(f, g) due to Properties 2 and 3 of the words w1, . . . , wn. If
they are in the same equivalence class and δ0 6|= =(f, g) then clearly also δ 6|= =(f, g).

• The case concw(f, g) ∈ Γ is analogous. ���

It has been shown in Section 3.1.3 that p-admissibility of a concrete domainD is a necessary
condition for polynomial-time reasoning w.r.t. EL(D)-IBoxes. P-admissibility, however, is
a fragile property, as the following examples suggest:

• Consider the concrete domainQ≤q,>q with domain � that has the predicates (>q)q∈ �
from Q and, additionally, unary predicates (≤q)q∈ � with

(≤q)
Q≤q,>q

:= {q′ ∈ � | q′ ≤ q}.

Then the Q≤q,>q -conjunction c := >0(f
′) does not imply any formula of Γ :=

{≤0(f), >0(f)}, but every solution of c satisfies some formula of Γ.
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• Any concrete domain S∗ with domain Σ∗ for some finite alphabet Σ and the unary
predicates prefw and suffw for every w ∈ Σ∗ with

prefS
∗

w := {w′ | w is a prefix of w′}

suffS∗

w := {w′ | w is a suffix of w′}.

Assume a ∈ Σ. Then the S∗-conjunction c := suffa(f) implies no formula from
Γ := {prefσ(f) | σ ∈ Σ}, but every solution of c satisfies some formula from Γ.

• Any concrete domain S∗ with domain Σ∗ for some finite alphabet Σ, the unary
predicates >S∗ and =ε with the obvious semantics, and the unary predicates prefw,
w ∈ Σ∗, as in the previous example. Then the S∗-conjunction c := >S∗(f) implies
no formula from Γ := {=ε(f)} ∪ {prefσ(f) | σ ∈ Σ}, but every solution of c satisfies
some formula from Γ.

3.2.4 Comparison to FL0

In the previous sections, we have shown that reasoning w.r.t. EL++(D1, . . . ,Dn)-CBoxes
is tractable for p-admissible concrete domains D1, . . . ,Dn and that non-trivial concrete
domains fall into this class. In order to support our notion that this tractability result
is relatively surprising, we compare the computational complexity of EL with that of its
sibling DL FL0. Though seemingly equally harmless as EL, FL0 is far less robust than EL
w.r.t. the addition of TBox formalisms. Summing up the results on EL obtained in this
and previous works, we obtain the following picture:

• Deciding subsumption for EL concepts without TBoxes is tractable [BKM99].

• Deciding subsumption in EL w.r.t. cyclic TBoxes is still tractable [Baa03b]. Note
that general TBoxes are excluded.

• Deciding subsumption in EL plus role hierarchies w.r.t. general TBoxes is still trac-
table [Bra04b].

• Deciding subsumption remains tractable even w.r.t. EL++-CBoxes extended by p-
admissible concrete domains, i.e., even for several extensions of EL both w.r.t. lan-
guage constructors and TBox formalisms [BBL05].

Summarizing the work on FL0 produces a very different picture. Adding a more powerful
TBox formalism usually results in an increase of the complexity of reasoning:

• Deciding subsumption of FL0 concepts without TBoxes is tractable [BL84].

• Deciding subsumption in FL0 w.r.t. acyclic TBoxes is co-NP-complete [Neb90].

• Deciding subsumption in FL0 w.r.t. cyclic TBoxes is PSPACE-complete [Baa90, Baa96,

KN03].

In order to complete the picture for FL0 and to illustrate the robustness of the com-
putational behavior of EL, we prove that subsumption in FL0 w.r.t. general TBoxes is
EXPTIME-complete. As containment in EXPTIME follows from the fact that subsump-
tion in ALC w.r.t. general TBoxes is in EXPTIME, it remains to establish the lower bound.
The proof is by reduction of subsumption in FLtf

0 w.r.t. general TBoxes which is EXPTIME-
hard by Theorem 3.1.26.
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Lemma 3.2.12 Let C0, D0 be FLtf
0 -concepts and T a general FLtf

0 -TBox. Then C0 vT

D0 in FL0 iff C0 vT D0 in FLtf
0 .

Proof. W.l.o.g., assume that C0, D0 are concept names and that T is in normal form,
i.e., only contains concept definitions of the following forms:

A v B

A v B uB′

A v ∀r.B

A uA′ v B

∀r.A v B,

where A,A′, B,B′ are concept names. It is easy to see that every general FLtf
0 -TBox can

be converted into normal form in polynomial time by normalization rules similar to those
in Figure 3.2.1.

(⇒) Proof by contraposition. C0 6vT D0 in FLtf
0 implies C0 6vT D0 in FL0. As every

interpretation witnessing the former is also a witness for the latter, the claim holds trivially.

(⇐) Assume that C0 6vT D0, i.e., there is an FL0 model I of T and an a0 ∈ CI
0 \D

I
0 . Our

aim is to convert I into an FLtf
0 interpretation J witnessing C0 6vT D0 in FLtf

0 . Denote
by S the set of all sequences of role names from NT

role, including the empty sequence ε.
For every S ∈ S and a ∈ ∆I , let SI(a) := {b ∈ ∆I | (a, b) ∈ SI}, where SI is defined in
the obvious way using composition of relations and εI(a) = {a}. Now we construct J as
follows:

∆J := S

AJ := {S | SI(a0) ⊆ AI}

rJ := {(S, S′) | S′ = Sr} for all r ∈ NT
role

By definition of J , ε ∈ CJ
0 \DJ

0 . It is readily checked that all role names are interpreted
as total functions. To show C0 6vT D0, it thus remains to show that J satisfies all concept
inclusions in T :

1. A v B. Let S ∈ AJ . Then SI(a0) ⊆ AI . Since I satisfies A ≡ B, SI(a0) ⊆ BI

and thus S ∈ BJ as required.

2. A uA′ v B. Similar to the previous case.

3. ∀r.A v B. Let S ∈ (∀r.A)J . Then Sr ∈ AJ . Thus, SrI(a0) ⊆ AI , implying
SI(a0) ⊆ (∀r.A)I . Hence, SI(a0) ⊆ BI since I satisfies ∀r.A v B. It follows that
S ∈ BJ as required.

4. A v ∀r.B. Let S ∈ AJ . Then SI(a0) ⊆ AI , and, since I satisfies A v ∀r.B,
SrI(a0) ⊆ BI . This implies Sr ∈ BJ , yielding S ∈ (∀r.B)J since Sr is the only
r-successor of S in J . ���

The following theorem is an immediate consequence of Theorem 3.1.26 and Lemma 3.2.12.

Theorem 3.2.13 Subsumption in FL0 w.r.t. general TBoxes is EXPTIME-complete.

Thus, subsumption w.r.t. general TBoxes is polynomial in the fragment EL of ALC, but
it is EXPTIME-complete in the equally harmless looking fragment FL0—which means,
just as hard as subsumption in full ALC. In parallel to our work, Theorem 3.2.13 was
independently proved by Hofmann by reduction of the existence of winning strategies in
pushdown games [Hof05].
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3.3 Hybrid EL-TBoxes

In Section 2.4, we have formally introduced hybrid EL-TBoxes which comprise a cyclic
EL-TBox T on top of a general EL-TBox F (‘foundation’) in which atomic concepts from
T can be constrained by means of arbitrary GCIs. While the foundation is interpreted by
descriptive semantics, gfp-semantics is used for T . In the present section, we show that
subsumption w.r.t. hybrid EL-TBoxes can be decided in polynomial time.

Before turning to hybrid TBoxes, some technical details related to cyclic EL-TBoxes with
gfp-semantics are recalled in Section 3.3.1. Additionally, we introduce a normal form for
hybrid EL-TBoxes before showing in Section 3.3.2 how subsumption w.r.t. such terminolo-
gies can be decided in polynomial time.

3.3.1 Formal preliminaries

Although gfp-semantics has already been defined in Section 2.1.2, it will be necessary for
our purposes to know, firstly, how gfp-models can actually be computed; and secondly, how
subsumption w.r.t. cyclic EL-TBoxes with gfp-semantics can be decided. Both has been
examined in Detail in [Baa03b]. Finally, we introduce a normal form for hybrid TBoxes on
which our subsumption algorithm for hybrid EL-TBoxes will be based.

Computing gfp-models

In order to show how the gfp-model gfp(T ,J ) can be obtained, we need to introduce the
iteration of the fixed point operator OT ,J introduced in Definition 2.1.10 over ordinals.

Definition 3.3.1 Let T be an EL-TBox and J a primitive interpretation of Nprim and
Nrole. Define Itop

J ∈ Int(J ) by Itop
J (A) := ∆J for every A ∈ Ndef . For every ordinal α,

define

• I↓α
T ,J := Itop

J if α = 0;

• I↓α+1
T ,J := OT ,J (I↓α

T ,J );

• I↓α
T ,J := glb({I↓β

T ,J | β < α}) if α is a limit ordinal. ���

The following corollary now shows that computing gfp(T ,J ) is equivalent to computing

I↓α
T ,J , given an appropriate ordinal α.

Corollary 3.3.2 Let T be an EL-TBox over Nprim, Nrole, and Ndef . Let J be a primitive
interpretation of Nprim and Nrole. Then there exists an ordinal α such that gfp(T ,J ) =

I↓α
T ,J .

Note that if α is a limit ordinal then I↓α
T ,J equals

⋂

β<α I
↓β
T ,J .

Deciding subsumption w.r.t. cyclic EL-TBoxes with gfp-semantics

In [Baa03b], a decision procedure for the subsumption problem w.r.t. cyclic EL-TBoxes with
descriptive semantics has been presented. We repeat the notions central to this procedure
in so far as they are required for our subsumption algorithm w.r.t. hybrid EL-TBoxes.
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Definition 3.3.3 An EL-TBox T is normalized iff A ≡ D ∈ T implies that D is of the
form

P1 u · · · u Pm u ∃r1.B1 u . . . ∃r`.B`,

where for m, ` ≥ 0, P1, . . . , Pm ∈ Nprim and B1, . . . , B` ∈ Ndef . If m = ` = 0 then D = >.
���

The subsumption algorithm in [Baa03b] represents normalized EL-TBoxes by means of
description graphs. These are introduced next.

Definition 3.3.4 (Description graph)
An EL-description graph is a graph G = (V,E,L) where

• V is a set of nodes;

• E ⊆ V × Nrole × V is a set of edges labeled by role names;

• L : V → ℘(Nprim) is a function that labels nodes with sets of primitive concepts. ���

Description graphs can be used to represent both TBoxes and primitive interpretations.
The description graph of a TBox is defined as follows.

Definition 3.3.5 (Description graph of normalized EL-TBoxes)
Let T be a normalized EL-TBox. Then the EL-description graph GT = (NT

def , ET , LT ) of
T is defined as follows:

• the nodes of GT are the defined concepts of T ;

• if A is defined in T and

A ≡ P1 u · · · u Pm u ∃r1.B1 u · · · u ∃r`.B`

is its definition then LT (A) := {P1, . . . , Pm}, and A is the source of the edges
(A, r1, B1), . . . , (A, r`, B`) ∈ ET . ���

Recall Definition 2.1.5, in which an auxiliary definition has been introduced to refer to
the definition of a defined concept more conveniently. For every A ∈ NT

def , LT (A) can
be written as defT (A) ∩ NT

prim. For primitive interpretations, we define the respective
description graphs in the following way.

Definition 3.3.6 (Description graph of primitive interpretations)
Let J = (∆J , ·J ) be a primitive interpretation. Then the EL-description graph GJ =
(∆J , EJ , LJ ) of J is defined as follows:

• the nodes of GJ are the elements of ∆J ;

• EJ := {(x, r, y) | (x, y) ∈ rJ };

• LJ (x) = {P ∈ Nprim | x ∈ PJ } for all x ∈ ∆J . ���

In preparation for the characterization of subsumption we need to introduce simulation
relations on description graphs.
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Definition 3.3.7 (Simulation relation)
Let Gi = (Vi, Ei, Li), i = 1, 2, be two EL-description graphs. The binary relation Z ⊆
V1 × V2 is a simulation relation from G1 to G2 (Z : G1 ⇀∼ G2) iff

(S1) (v1, v2) ∈ Z implies L1(v1) ⊆ L2(v2); and

(S2) if (v1, v2) ∈ Z and (v1, r, v
′
1) ∈ E1 then there exists a node v′

2 ∈ V2 such that
(v′

1, v
′
2) ∈ Z and (v2, r, v

′
2) ∈ E2.

In order to get an impression of how description graphs look like, consider the following
simple example.

Example 3.3.8 Let Nprim := {P,Q,U} and Nrole := {r, s}. In our example TBox T , we
define the concepts A, B, and C as follows.

A ≡ P uQ u ∃r.B u ∃s.C

B ≡ Q u U u ∃r.A

C ≡ Q u ∃r.C

As T is already normalized in the sense of Definition 3.3.3, we immediately obtain the
following description graph:

r

A

{P, Q}

B

{Q, U}

s

C

r

r

{Q}

GT :

where all label sets LT (·) are shown above or underneath the corresponding vertex. It is
easy to check that a valid simulation relation Z : GT ⇀∼ GT is, e.g.,

Z := {(C,A), (C,B)}. ���

It has been shown in [Baa03b] that simulation relations can be concatenated in the sense
of the following lemma.

Lemma 3.3.9 Let Gi := (Vi, Ei, Li), i = 1, 2, 3, be EL-description graphs, and let Z1 : G1 ⇀∼
G2 and Z2 : G2 ⇀∼ G3. Then Z1 ◦ Z2 : G1 ⇀∼ G3, where

Z1 ◦ Z2 := {(v, v′′) | ∃v′ ∈ V2 : (v, v′) ∈ Z1 ∧ (v′, v′′) ∈ Z2}.

One of the main results in [Baa03b] is a characterization of gfp-subsumption w.r.t. cyclic
EL-TBoxes by simulation relations over description graphs. The following results provide
the relevant characterizations.

Proposition 3.3.10 Let T be an EL-TBox over Nprim, Nrole, and Ndef and A ∈ NT
def . Let

J be a primitive interpretation of Nprim and Nrole and let x ∈ ∆J . Then x ∈ Agfp(T ,J )

iff there is a simulation relation Z : GT ⇀∼ GJ such that (A, x) ∈ Z.

Theorem 3.3.11 Let T be an EL-TBox and A,B be defined concepts in T . Then A vgfp,T

B iff there is a simulation relation Z : GT ⇀∼ GT such that (B,A) ∈ Z.
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Since the description graph of a TBox is of polynomial size in the size of the TBox and
since the existence of simulation relations with the required properties can be tested in
polynomial time, the following complexity result is obtained by [Baa03b].

Corollary 3.3.12 Subsumption w.r.t. cyclic EL-TBoxes with gfp-semantics is decidable
in polynomial time.

Normal form for hybrid TBoxes

As a last preparatory step to our subsumption algorithm for hybrid EL-TBoxes, we intro-
duce a normal form for hybrid EL-TBoxes in order to simplify the presentation of our ap-
proach. Since hybrid EL-TBoxes comprise a cyclic EL-TBox ‘on top of’ a general EL-TBox
(see Definition 2.4), it seems natural to normalize the GCIs as defined in Definition 3.2.1
and the cyclic TBox as in Definition 3.3.3.

Definition 3.3.13 (Normalized hybrid TBox)
Let (F , T ) be a hybrid TBox. Then, (F , T ) is normalized iff

1. Every GCI in F is of one of the following forms:

A v B

A1 uA2 v B

A v ∃r.B

∃r.A v B,

where r ∈ Nrole and A,A1, A2, B ∈ Nprim ∪ {>};

2. T is normalized in the sense of Definition 3.3.3; and

3. for every primitive concept P and for every existential restriction ∃r.P occurring in
F , T contains a definition of the form AP ≡ P and A∃r.P ≡ ∃r.P , respectively. ���

The purpose of the third normalization condition will be clarified in the following section.
Note that the first two conditions can be satisfied easily for any hybrid TBox (F , T ), see
Lemma 3.2.2 for F and [Baa03b] for T . For the third condition, a conservative extension
T ′ of T of size at most the size of (F , T ) can be found such that (T ′,F) is normalized.
All subsumption relations between concept names defined in T remain unchanged.

Normalization serves as an internal preprocessing step to classification and does not replace
the original hybrid TBox from the perspective of the user of a DL system.

3.3.2 Deciding Subsumption w.r.t. hybrid EL-TBoxes

In this section we show that subsumption w.r.t hybrid EL-TBoxes (F , T ) can be reduced
to subsumption w.r.t. cyclic EL-TBoxes interpreted by gfp-semantics. The underlying idea
is to use the descriptive subsumption relations induced by the GCIs in F to extend the
definitions in T accordingly. To this end, we view the union of F and T as a general TBox
and ask for all descriptive implications in T directly involving names from F . These
implications are then added to the definitions in T . This notion is formalized as follows.
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BPCTD

BI AInfl

{Infl, Dis}

causes

{Dis}

{CT} {Infe}

{Peri, CT}

acts on

{Infl, Dis, HLCT, AOCT}

ACT

acts on

has loc

{AOCT}

Gf(T ):

acts on

caused by

AAOCT

APeri

Figure 3.3.1: Example EL-description graph

Definition 3.3.14 (F-completion)
Let (F , T ) be a normalized hybrid EL-TBox. For every A ∈ NT

def , let

f(A) := u
P∈{P ′∈NF

prim|AvF∪T P ′}
P u u

r∈NT
role

u
Q∈{Q′∈NF

prim|AvF∪T ∃r.Q′}
∃r.AQ .

The F-completion f(T ) extends the definitions in T as follows.

f(T ) := {A ≡ C u f(A) | A ≡ C ∈ T } ���

Note that f(T ) is still a normalized EL-TBox. To preserve normalization, f(A) adds ∃r.AQ

instead of ∃r.Q whenever A implies ∃r.Q.

Example 3.3.15 Consider the hybrid TBox (F , T ) from Example 2.4.4 in Section 2.4
after normalization. Our goal is to compute the F-completion of T . To this end, for
every defined concept in T , we need to find all descriptive consequences of the form P
and ∃r.P implied by F ∪ T , where P ∈ NF

prim. Obviously, AInflammation implies Disease

and APericardium implies ConnTissue. Moreover, AActsOnConnTissue yields ∃acts on.ConnTissue.
Finally, it is easy to check that BactPericarditis implies both Disease and HasLocConnTissue,
and therefore also ActsOnConnTissue, yielding ∃acts on.ConnTissue.

Using these descriptive consequences, the completion f(A) can be computed for every de-
fined name A. Figure 3.3.1 shows the “interesting” part of the resulting description graph
Gf(T ) of the F-completion f(T ), omitting some isolated vertices. Long concept names
are abbreviated, i.e., the vertex AAOCT stands for the concept AActsOnConnTissue, AHLCT for
AHasLocConnTissue and so on. For every vertex A with a non-empty label set Lf(T )(A), the
label set is denoted above or underneath the relevant vertex. Underlined entries are de-
scriptive consequences absent in the original TBox T . As Lf(T )(CTD) ⊆ Lf(T )(BP) and
as BP has the same successor as CTD w.r.t. the edge acts on, it is easy to check that there
exists a simulation relation Z on Gf(T ) with (CTD,BP) ∈ Z. Therefore, BactPericarditis

is subsumed by ConnTissueDisease w.r.t. f(T ) interpreted with gfp-semantics. ���

Our goal now is to show for a given hybrid EL-TBox (F , T ) and arbitrary names A,B
defined in T that B subsumes A w.r.t. (F , T ) if and only if B subsumes A w.r.t. the
F-completion of T interpreted by gfp-semantics. To this end, we first show that (F , T )
and the F-completed hybrid TBox (F , f(T )) induce the same subsumption relations.

Lemma 3.3.16 Let (F , T ) be a normalized hybrid EL-TBox. Let A,B ∈ NT
def . Then,

A vgfp,F,T B iff A vgfp,F,f(T ) B.
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Proof. We show that gfp(T ,J ) = gfp(f(T ),J ), implying for every primitive interpre-
tation J with J |= F that Agfp(T ,J ) ⊆ Bgfp(T ,J ) iff Agfp(f(T ),J ) ⊆ Bgfp(f(T ),J ), implying
the proposition.

In order to show gfp(T ,J ) = gfp(f(T ),J ), it suffices to show that, firstly, every model
I ∈ Int(J ) of T is also a model of f(T ), implying gfp(Tf ,J ) �J gfp(T ,J ); and secondly,
gfp(Tf ,J ) �J gfp(T ,J ).

Consider some model I ∈ Int(J ) with I |= T and an arbitrary A ∈ NT
def . As I |= T ,

AI = deftT (A)I . Since also J |= F , I respects all descriptive implications of F . Hence,
AI ⊆ f(A)I , implying AI = deftT (A)I ∩ f(A)I = (deftT (A) u f(A))I . By definition of
f(T ), this yields I |= f(T ).

We show gfp(f(T ),J ) �J gfp(T ,J ) by transfinite induction on the fixedpoint itera-

tion. By Corollary 3.3.2, there exists an ordinal α such that gfp(f(T ),J ) = I↓α

f(T ),J and

gfp(T ,J ) = I↓α
T ,J . We distinguish the case of α being a successor or a limit ordinal.

(α successor ordinal). Induction base: if α = 0 then I↓α

f(T ),J = Itop
J = I↓α

T ,J , implying

I↓0
f(T ),J �J I

↓0
T ,J . Induction step: for every β < α, assume (IH) that I↓β

f(T ),J �J I
↓β
T ,J .

Consider an arbitrary A ∈ NT
def defined in T by

A ≡ P1 u · · · u Pm u ∃r1.B1 u . . . ∃r`.B`.

We have to show A
I↓β+1

f(T ),J ⊆ AI↓β+1
T ,J . The concept name A is interpreted by I↓β+1

f(T ),J as

A
I↓β+1

f(T ),J =
⋂

1≤i≤m

PJ
i ∩

⋂

1≤j≤`

(∃rj .Bj)
I↓β

f(T ),J ∩ f(A)
I↓β

f(T ),J .

For the original TBox T we analogously have

AI↓β+1
T ,J =

⋂

1≤i≤m

PJ
i ∩

⋂

1≤j≤`

(∃rj .Bj)
I↓β
T ,J .

Hence, it suffices to show for every r ∈ NT
role and every B ∈ NT

def that the subset relation

(∃r.B)
I↓β

f(T ),J ⊆ (∃r.B)I
↓β
T ,J holds. By IH, B

I↓β

f(T ),J ⊆ BI↓β
T ,J . As r

I↓β

f(T ),J = rJ = rI
β
T ,J ,

the subset relation immediately carries over to the interpretations of ∃r.B.

(α limit ordinal). Assume (IH) that I↓β

f(T ),J �J I
↓β
T ,J for every β < α. By definition,

in the limit ordinal case it holds for every B ∈ NT
def that B

I↓α

f(T ),J equals
⋂

β<α B
I↓β

f(T ),J

which due to IH is a subset of
⋂

β<α BI↓β
T ,J which in turn equals BI↓α

T ,J . ���

Hence, the F-completion (F , f(T )) preserves the subsumption relations of the original
hybrid TBox (F , T ). Note that it suffices to show the above for concept names A,B ∈
NT

def only. For arbitrary concept descriptions C,D, the analogous claim holds because
C vgfp,F,T D iff A vgfp,F,T ∪{A≡C,B≡D} B, where A,B are fresh concept names. The
next lemma shows that, after F-completing T , we may ‘forget’ F and still obtain the
same subsumptions.

Lemma 3.3.17 Let (F , T ) be a normalized hybrid EL-TBox and A,B ∈ NT
def . Then,

A vgfp,F,f(T ) B iff A vgfp,f(T ) B

Proof. (⇐) trivial. (⇒) Assume A 6vgfp,f(T ) B. We construct a countermodel show-

ing A 6vgfp,F,f(T ) B, i.e., a primitive interpretation J with J |= F and Agfp(f(T ),J ) 6⊆

Bgfp(f(T ),J ).

Define J =: (∆J , ·J ) as follows.



 chapter ��� . subsumption

• ∆J := {xA | A ∈ N
f(T )
def };

• PJ := {xA ∈ ∆J | P ∈ deff(T )(A)} for all P ∈ N
f(T )
prim ;

• rJ := {(xA, xB) ∈ (∆J )2 | ∃r.B ∈ deff(T )(A)} for all r ∈ N
f(T )
role .

We first show xA ∈ Agfp(f(T ),J ) \ Bgfp(f(T ),J ). By Proposition 3.3.10 it suffices to find a

simulation relation Z : Gf(T ) ⇀∼ GJ with (A, xa) ∈ Z. Define Z := {(A, xA) | A ∈ N
f(T )
def }.

As obviously (A, xA) ∈ Z, it remains to show that Z respects Definition 3.3.7. (S1) For

every (A, xA) ∈ Z, LGf(T )
(A) equals deff(T )(A) ∩ N

f(T )
prim which equals {P ∈ N

f(T )
prim | P ∈

deff(T )(A)} = LGJ
(A). (S2) If (A, xA) ∈ Z and (A, r,B) ∈ EGf(T )

then ∃r.B ∈ deff(T )(A),

implying (xA, xB) ∈ rJ , implying (xA, r, xB) ∈ EGJ
. Moreover, (B, xB) ∈ Z. Hence, by

(S1) and (S2), Z : Gf(T ) ⇀∼ GJ .

Observe that under (S1) we proved equality of LGf(T )
(A) and LGJ

(A). Moreover, (S2)
also holds in the direction from GJ to Gf(T ): whenever (A, xA) ∈ Z and (xA, r, xB) ∈ EGJ

then (A, r,B) ∈ EGf(T )
. Hence, Z−1 : GJ ⇀∼ Gf(T ).

Assume xA ∈ Bgfp(f(T ),J ). Then, by Proposition 3.3.10, there is a simulation relation
Y : Gf(T ) ⇀∼ GJ with (B, xA) ∈ Y . But then, by Lemma 3.3.9, Y ◦ Z−1 is a simulation
relation on Gf(T ) with (B,A) ∈ Y ◦ Z−1, implying A vgfp,f(T ) B, in contradiction to the
assumption.

It remains to show that J |= F . As F is normalized, we have four types of GCIs in F .

1. P ⊆ Q ∈ F . If xA ∈ PJ then P ∈ deff(T )(A), implying A vF∪T Q which implies
f(A) v Q. Hence, Q ∈ deff(T )(A), implying xA ∈ QJ .

2. P1 u P2 ⊆ Q ∈ F . If xA ∈ PJ
1 ∩ PJ

2 then P1, P2 ∈ deff(T )(A). This implies
A vF∪T Q which analogously yields xA ∈ QJ .

3. P v ∃r.Q ∈ F . If xA ∈ PJ then P ∈ deff(T )(A), implying A vF∪T ∃r.Q.
Hence, ∃r.AQ ∈ deff(T )(A), implying (xA, r, xA∃r.Q

) ∈ rJ . By definition, Q ∈
deff(T )(A∃r.Q), implying xA∃r.Q

∈ QJ .

4. ∃r.Q v P ∈ F . If xA ∈ (∃r.Q)J then there exists some xB ∈ ∆J such that
(xA, r, xB) ∈ rJ and xB ∈ QJ . Hence, ∃r.B ∈ deff(T )(A) and Q ∈ deff(T )(B).
This implies A vF∪T P , implying P ∈ deff(T )(A) which yields xA ∈ PJ .

���

As an immediate consequence of Lemmas 3.3.16 and 3.3.17, we obtain the following the-
orem summarizing our reduction from hybrid EL-TBoxes to cyclic EL-TBoxes.

Theorem 3.3.18 Let (F , T ) be a normalized hybrid EL-TBox and A,B ∈ NT
def . Then,

A vgfp,F,T B iff A vgfp,f(T ) B.

It remains to show that subsumption w.r.t. hybrid TBoxes is decidable in polynomial time.

Corollary 3.3.19 Subsumption w.r.t. hybrid EL-TBoxes can be decided in polynomial
time in the size of the hybrid TBox.

Proof. By Corollary 3.3.12, gfp-subsumption w.r.t. cyclic EL-TBoxes can be decided in
polynomial time. Hence, given (F , T ), it suffices to show for every A ∈ NT

def that f(A) is
of polynomial size in the size of (F , T ) and can be computed in polynomial time.
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By definition, every concept description f(A) contains only conjuncts of the form P and
∃r.AP with P ∈ NT

prim and r ∈ NT
role occurring in F . The size of f(A) is therefore linear in

the size of (F , T ). It has been shown in [Bra04b], see also Section 3.2.2, that subsumption
w.r.t. general EL-TBoxes is tractable, implying tractability of subsumption w.r.t. F ∪T .���

In Sections 4.4.5 and 4.4.6, the non-standard inferences least-common subsumer and
matching, respectively, will be introduced for hybrid EL-TBoxes. In particular, we shall
see how the above reduction from hybrid to cyclic TBoxes with gfp-semantics can be used
to compute the lcs and to solve matching problems w.r.t. the more general DL formalism.

3.4 Related work

In this section, we discuss some of the related work mentioned in Section 1.7.2 in more
detail. Especially, we cast more light on the relationship between the ‘theoretical’ sub-
sumption algorithm for EL++-TBoxes presented in Section 3.2.2 and its implementation
for the Cel reasoner. Moreover, we recur to the DL formalism DL-Lite and review its
expressive power more closely.

The
�����

reasoner

As mentioned previously, the reasoner Cel [BLS05] in its current release can handle EL+-
CBoxes, i.e., the bottom concept, nominals, and p-admissible concrete domains are not
yet supported. Hence, all parts of the theoretical algorithm related to these constructs are
missing in the implementation.

For the remaining algorithm, the implementation in Cel exhibits several improvements
over the theoretical algorithm. Although the normalization procedure for a CBox C de-
scribed in Lemma 3.2.2 increases the size of C only linearly, experiments have shown that
the number of auxiliary concept introduced during normalization still poses a problem in
the implementation. For this reason, Cel uses a normal form that is improved in three
respects.

• Synonymous concept names induced by GCIs of the form A ≡ B, are not handled
separately. Instead, the synonym information is stored separately and every occur-
rence of the synonym B in the CBox is replaced by the original name A.

• Whenever a new name A has to be introduced for a concept description C during
the normalization phase, the system checks whether a definition for C has already
been introduced at an earlier stage. In this case, the existing name is used instead
of introducing A.

• In the normal form used in Lemma 3.2.2, only binary conjunctions of concept names
are allowed on left-hand sides of GCIs. In order to reduce the number of auxiliary
concept names, Cel accepts conjunctions of arbitrary arity on the left-hand side as
long as only concept names are involved.

For the actual completion algorithm, the implementation also follows a refined strategy
aimed at improving the system’s overall performance. According to Definition 3.2.3, com-
puting all relevant implication sets for C only means to exhaustively apply the completion
rules from Figure 3.2.1 to appropriately initialized sets. Experience with the implemen-
tation, however, has shown that an arbitrary choice of completion rules leads to an un-
satisfactory performance [BLS05]. In order to overcome this, the authors have adapted
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a strategy known from a linear-time algorithm deciding the satisfiability of propositional
Horn formulae [DG84].

Following this strategy, the Cel reasoner maintains a certain queue for every implication
set to be computed. Depending on the contents of the queues, the reasoner decides which
rule to apply to which implication set in the relevant next computation step. Intuitively,
the queue of an implication set Imp(A) stores all modifications of Imp(A) that still need to
be carried out. One immediate advantage of this strategy is that queues can be restricted
to applicable modifications, i.e., the resulting algorithm never has to look for applicable
completion rules. Moreover, Cel uses a sophisticated selection procedure in order to
execute the modifications stored in the above mentioned queues in such a way that the
overall work is minimized. For details, refer to [BLS05].

DL-Lite

In Section 1.7.2 we have already mentioned the DL formalism DL-Lite [CDGL+05a] as
another interesting approach to tractable reasoning w.r.t. ‘useful’ DL knowledge bases.
Recall that DL-Lite knowledge bases consist of inclusion axioms of the form B v C with
B and C concept descriptions defined by the grammar

B ::= P | ∃r | ∃r− C ::= B | ¬B | C1 u C2,

where P stands for arbitrary atomic concepts. Moreover, DL-Lite-TBoxes may contain
so-called functionality assertions of the form (funct r) or (funct r−) by which roles or their
inverses can be declared functional. The following example from [CDGL+05a] illustrates
what can be expressed in DL-Lite TBoxes.

Example 3.4.1 Assume an underlying DL-Lite TBox T in which the basic concepts
Professor and Student are defined. The following inclusion axioms show an extension
of T in which relations between the two concepts are expressed using the roles has tutor

and teaches to.

Professor v ∃teaches to Student v ∃has tutor

∃teaches to− v Student ∃has tutor− v Professor

Professor v ¬Student (funct has tutor)

As expressed in the left column, the above extension of T specifies that every professor
teaches to someone, that everyone who is taught (by someone) is a student, and that
professors and students are disjoint. Due to the right column, every student has some
tutor and everyone who is tutor (of someone) is a professor. Moreover, every student has
exactly one tutor.

Note that the first two lines on the left imply that every professor teaches to a student and
the first two lines on the right that every student is supervised by a professor. Note also
that both Professor and Student must be basic concepts as defined by the non-terminal
symbol B in the above grammar. Otherwise, they would not be allowed on left-hand
sides of inclusion axioms. Although, e.g., Student may occur in other inclusion axioms,
the means of defining Student any further are limited. For instance, a student could be
defined as anything that has a student ID because the definition

Student ≡ ∃has student id

can be expressed in DL-Lite by two inclusion axioms. However, it is not possible to express
a definition involving conjunction or qualified existential restrictions, e.g.,

Student ≡ Person u ∃has tutor.Student. ���
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It should be noted that both domain and range restrictions on roles can be expressed in
DL-Lite-TBoxes. To restrict a role r to the domain Cd and the range Cr, where Cd, Cr

can be complex concepts, it suffices to add the inclusion axioms ∃r v Cd and ∃r− v Cr

to the TBox.

The combination of inverse roles and inclusion axioms also allows to express a restricted
form of value restrictions in DL-Lite TBoxes: for every basic concept B, every complex
concept C, and every role r it is easy to check that the following equivalences hold.

B v ¬∃r iff B v ∀r.⊥

∃r− v C iff > v ∀r.C

Nevertheless, value restrictions of the form ∀r.B v C or B v ∀r.C cannot be encoded.
Moreover, although the TBox T in Example 3.4.1 implies

Professor v ∃teaches to.Student,

this existential restriction cannot be expressed without at the same time enforcing that
everyone who is being taught is a student. Hence, even simple existential restrictions
representing partonomic structures or causal relations, such as, e.g.,

Heart v ∃has part.Atrium u ∃has part.Ventricle

SevereHypertension v ∃causes.CoronaryHypertrophy

cannot be expressed in DL-Lite TBoxes, because every part of the heart would be both
atrium and ventricle and every phenomenon causing something would also cause coronary
hypertrophy. It should also be clarified that an inclusion axiom of the form ∃r v ∃s is
not equivalent to the RI r v s because the former only implies the existence of a successor
w.r.t. s—but does not force the successors w.r.t. both roles to be the same. Hence, DL-
Lite does not allow to express role hierarchies. As a consequence, the above problem with
partonomic relations cannot be remedied by a work-around of the form

Heart v ∃has atrium.Atrium u ∃has ventricle.Ventricle (∗)

together with the RIs has atrium v has part and has ventricle v has part. Encoded in a
DL-Lite-TBox, the inclusion axioms

Heart v ∃has atrium Heart v ∃has ventricle

∃has atrium− v Atrium ∃has ventricle− v Ventricle

indeed do entail (∗) but the roles has atrium and has ventricle cannot be defined in such a
way as to imply a super-role has part. In case of this particular example, it might also be
worth commenting that several other anatomical structures exist under the name atrium,
e.g., laryngeal atrium and atrium of the ear. In general, most biomedical terminologies
build their partonomic hierarchies by means of a very small number of roles, in case of
the GO even only one. Hence, even if sub-roles were available, they might be rejected for
reasons of inadequate modeling.

On the other hand, DL-Lite does provide constructs unavailable in EL++-CBoxes that
are highly useful for real-world modeling tasks, namely inverse roles, functional roles,
and range restrictions on roles. Moreover, DL-Lite comes with extremely powerful ABox
reasoning capabilities and, as far as experiments show, can handle ABoxes containing
millions of individuals [CDGL+05a]. Moreover, a unique feature of the DL-Lite formalism
is that a powerful query language for conjunctive queries over ABoxes is available that goes
beyond the usual capabilities of ABox reasoning. See [CDGL+05a, ACDG+05] for details.
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It has been pointed out in [CDGL+05b] that the DL EL does not exhibit the highly de-
sirable property that ABox-reasoning can be performed by means of relational Database
Management Systems. As a consequence, this strategy is available neither to an extension
of DL-Lite by qualified existential restrictions nor to EL++-CBoxes.

It should be stressed that the DL formalisms DL-Lite and EL++-CBoxes have quite different
underlying motivations: DL-Lite has been developed to represent conceptual data models,
such as entity relationship diagrams, and object-oriented formalisms, such as UML class
diagrams, and in particular to process queries over very large ABoxes. In contrast, EL++-
CBoxes are intended as an efficient general purpose knowledge representation language,
though tailored with a view to the Life Sciences.
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In the present chapter, we introduce the non-standard inference problem matching for-
mally. In fact, four different types of matching problems (modulo equivalence) will be
discussed, namely concept matching, concept matching under side conditions, matching
w.r.t. cyclic TBoxes, and matching w.r.t. hybrid TBoxes. Common to all types is that
concept descriptions are extended to concept patterns by variables which may occur in
the place of atomic concepts. Solving a concept matching problem means, for a given
concept description and a concept pattern, to replace all variables occurring in the pat-
tern by concept descriptions such that equivalence to the given concept description holds.
Subsumption conditions are suited to express further restrictions on the set of admissible
solutions. Finally, matching w.r.t. cyclic or hybrid TBoxes can be seen as an extension of
concept matching by a background terminology.

Our contribution to plain concept matching is an implementation of already existing
matching algorithms for the DLs ALE and ALN . The underlying algorithms are pre-
sented in Sections 4.1 and 4.2 as starting points for the other, more involved matching
algorithms. In Section 4.3, we show how to solve matching problems under side conditions
in ALN and sublanguages. Matching w.r.t. cyclic and hybrid EL-TBoxes is presented in
Section 4.4. The actual implementations for matching in ALE and ALN are discussed in
Sections 4.5.1 and 4.5.2, respectively.

We begin by introducing the most basic form of matching problems, concept matching
problems modulo equivalence.

Preliminaries

Denote by Nvar a finite set of variables pairwise disjoint to Ncon and Nrole. Concept patterns
extend concept descriptions by variables. In continuation of Definition 2.1.1, we introduce
concept patterns without reference to a specific DL and restrict them later.

Definition 4.0.2 (Concept patterns)
The set of concept patterns over Ncon, Nrole, N6, N>, and Nvar is inductively defined as
follows.

• Every concept description over Ncon, Nrole, N6, and N> is a concept pattern;

• every variable X ∈ Nvar is a concept pattern; and

• if r ∈ Nrole and D1, D2 are concept patterns then so are D1 uD2, ∀r.D1, and ∃r.D1.

���
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Note that concept variables must not be negated. Trivially, every concept description is a
concept pattern. For a given DL L, the set of L-concept patterns is defined as the set of all
concept patterns in which only those constructors provided by L occur. Unless otherwise
specified, in the remainder of this work all concept patterns are defined over the sets
Ncon, Nrole, N6, N>, and Nvar, with Nvar an arbitrary but fixed finite set pairwise disjoint
to the other sets of atomic names. In order to assign values to variables, we introduce
substitutions.

Definition 4.0.3 (Substitution)
A mapping σ from the set of L-concept patterns into the set of L-concept descriptions is
called a substitution iff

• σ(H) = H for every H ∈ Ncon ∪ {¬P | P ∈ Ncon} ∪ {⊥,>} ∪ N6 ∪ N>;

• σ(D1 u D2) = σ(D1) u σ(D2) and σ(Qr.D1) = Qr.σ(D1) for all concept patterns
D1, D2, every Q ∈ {∀,∃}, and every r ∈ Nrole.

For two substitutions σ, τ , σ is more specific than τ (σ v τ) iff σ(X) v τ(X) for every
X ∈ Nvar. Moreover, σ is strictly more specific than τ (σ @ τ) iff σ v τ and σ(X) @ τ(X)
for some X ∈ Nvar, and σ is equivalent to τ (σ ≡ τ) iff σ v τ and τ v σ. ���

Hence, a substitution σ replaces every variable in D by a concept description without
changing D otherwise. We are now prepared to introduce the most basic form of matching
problems formally.

Definition 4.0.4 (Matching problem)
Let C be an L-concept description and D an L-concept pattern. Then, C ≡? D is an
L-matching problem modulo equivalence. A substitution σ is a matcher of C ≡? D iff
C ≡ σ(D).

In general, there are several matchers to a given solvable matching problem. One way
to restrict the attention to ‘interesting’ sets matchers is to compute s-complete sets of
matchers as defined below.

Definition 4.0.5 (s-Completeness)
Let P be an L-matching problem. A matcher σ of P is called minimal w.r.t. P iff, for
every matcher τ of P, τ v σ implies σ ≡ τ . A set S of matchers for P is called s-complete
w.r.t. P iff S contains all minimal matchers of P. Finally, σ is the least matcher of P iff
{σ} is s-complete w.r.t. P. ���

Intuitively, σ v τ iff σ contains more information than τ . In this sense, s-completeness
guarantees that a set of matchers contains those solutions that reflect as many aspects of
the relevant concept description as possible. Note that, by definition, the least matcher is
uniquely determined up to equivalence.

It has been shown in [BKBM99] that the above notion of matching problems can be ex-
tended easily to matching modulo subsumption and finite systems of matching problems.
For arbitrary concept descriptions C1 and C2, C1 v C2 iff C1 ≡ C1 u C2. Therefore,
matching modulo subsumption, i.e., matching problems of the form C v? D, can be
reduced to matching modulo equivalence in linear time. Moreover, a substitution σ is
a matcher of two matching problems C1 ≡

? D1 and C2 ≡
? D2 iff it is a matcher of

Qr1.C1 uQr2.C2 ≡? Qr1.D1 uQr2.D2, where Q ∈ {∃,∀} and r1, r2 are fresh roles. Hence,
finite systems of matching problems can be reduced to single matching problems in lin-
ear time. We will use this generalized form in order to present our solution strategy
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more succinctly. Given a matching problem that computes minimal matchers, we can
reduce every lcs computation of a set of concept descriptions {C1, . . . , Cn} to matching
the pattern Qr1.X u · · · u Qrn.X (modulo subsumption) against the concept description
Qr1.C1u· · ·uQrn.Cn, where Q ∈ {∃,∀} and r1, . . . , rn are fresh role names. In this sense,
our results on matching also have implications for the non-standard inference lcs.

4.1 Matching in ALE

In the present section, we introduce the ALE-matching algorithm from [BK00a]. In prepa-
ration, we require a characterization of subsumption for ALE-concept descriptions to be
introduced in the following subsection.

4.1.1 Formal preliminaries

Subsumption of ALE-concept descriptions has been characterized by means of homomor-
phisms between so-called description trees [BKM99] defined as follows.

Definition 4.1.1 (ALE-description tree)
An ALE-description tree is a tree of the form G = (N,E, n0, L) where

1. N is a finite set of nodes;

2. E ⊆ N × {∃,∀} × Nrole ×N is a finite set of edges each labeled by a quantor and a
role name;

3. n0 is the root node of G;

4. L is a labeling function with L(n) ⊆ {⊥} ∪ Ncon ∪ {¬A | A ∈ Ncon} ∪ Nvar for all
n ∈ N . ���

Description trees correspond to syntax trees of concept descriptions (or concept patterns).
In case of concept patterns, variables are treated like atomic concepts. It is easy to see
that concept descriptions and patterns can be translated into description trees and back
(See [BKM98] for a formal translation). By tree(C) we denote the description tree of the
concept description (or concept pattern) C. For every node n in tree(C) we denote by
C↓n the subdescription obtained by translating the subtree of tree(C) induced by n back
into a concept description. The following example illustrates these notions.

Example 4.1.2 Let Ncon := {P,Q} and Nrole := {r, s}. Then the ALE-concept descrip-
tion

C := P uQ u ∃r.(P u ∃r.> u ∀s.¬P ) u ∀s.(P uQ)

has an ALE-description tree of the following form,

n3 {¬P}

{P, Q}tree(C): n0

∃r ∀s

n2 ∅

∃r

n1 {P}

∀s

{P, Q}n4
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where for every i ∈ {0, . . . , 4}, the label set L(ni) is denoted next to the corresponding
node. It is now easy to check that, e.g., C↓n2

= > and C↓n1
= P u ∃r.> u ∀s.¬P . ���

Subsumption of ALE-concept descriptions has been characterized by means of homomor-
phisms between the relevant description trees. The following definition introduces the
notion of homomorphism used for this purpose.

Definition 4.1.3 (Homomorphism between ALE-description trees)
A mapping ϕ : NG → NH from an ALE-description tree G := (NG , EG , m0, LG) to an
ALE-description tree H := (NH, EH, n0, LH) is called homomorphism iff the following
conditions hold:

1. ϕ(m0) = n0;

2. for all nodes n ∈ NG , LG(n) \ Nvar ⊆ LH(ϕ(n)) or ⊥ ∈ LH(ϕ(n));

3. For all edges (nQr m) ∈ EG , either (ϕ(n)Qr ϕ(m)) ∈ EH, or ϕ(n) = ϕ(m) and
⊥ ∈ LH(ϕ(n)). ���

Note that concept variables are ignored for the definition of homomorphisms. As shown
in [BKM99], subsumption of ALE-concept descriptions can now be characterized as follows.

Theorem 4.1.4 Let C,D be ALE-concept descriptions. Then, C v D iff there exists a
homomorphism ϕ from tree(D) onto tree(C).

Note, however, that the above definition of homomorphism includes the case of D being
a concept pattern while for this case there is no corresponding notion of subsumption. In
preparation for the actual ALE-matching algorithm from [BK00a], we still need to introduce
>-patterns and their normal form.

Definition 4.1.5 (>-pattern, >-normal form)
Let D be an ALE-concept pattern. Then, D′ is called a >-pattern of D iff D′ is obtained
from D by replacing some, i.e., zero or more, variables occurring in D by >. Moreover,
the >-normal form D′> of D′ is defined by exhaustive application of the simplification
rule

∀r.> −→ >,

with r ∈ Nrole, to D′ and all of its subdescriptions.

The following simple example illustrates the notion of >-patterns and their normal forms.

Example 4.1.6 Consider the concept pattern D := ∃r.(X u Y ) u ∀r.X. Replacing X by
> we obtain a >-pattern D′ of D with D′ = ∃r.(> u Y ) u ∀r.>. Consequently, D′> is of
the form ∃r.(> u Y ).

4.1.2 Solving ALE-matching problems

Definition 4.1.7 Let C ≡? D be an ALE-matching problem. The algorithm matchALE is
defined as shown in Figure 4.1.1. ���

It has been shown in [BK99, BK00a] that the above ALE-matching algorithm in fact com-
putes s-complete sets of matchers, that the number of returned matchers is at most ex-
ponential, and that each matcher is of size at most exponential in the size of the input
matching problem.
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Input: ALE-matching problem C ≡? D
Output: s-complete set C of matchers for C ≡? D

C := ∅
For all >-patterns D′ of D do

For all homomorphisms ϕ from G := tree(D′>) into tree(C)

Define σ by σ(X) :=

{

lcs{C↓ϕ(m) | m ∈ NG , X ∈ LG(m)} if X ∈ var(D′)

> otherwise

If C w σ(D) then C := C ∪ {σ}

Return C.

Figure 4.1.1: The ALE-Matching Algorithm

In [BK00a] it is also shown that the matching algorithm is a deterministic exponential
space algorithm. It is still open whether this upper bound is ‘tight’, and especially, if
sets of s-complete matchers can also be computed in exponential time—currently the best
lower bound for this computation problem.

Example 4.1.8 Let Ncon := {A} and Nrole := {r}. Consider the small matching problem
Cex ≡

? Dex with Cex := ∃r.(Au∃r.A) and Dex := XuY u∃r.(AuY u∀r.X). The relevant
description trees are shown below:

In order to apply the matching algorithm shown in Figure 4.1.1, we have to start by
computing all >-patterns D′

ex of Dex. Apart from Dex itself, these are Xu∃r.(Au∀r.X) =:
D′

ex, Y u∃r.(AuY u∀r.>) =: D′′
ex, and ∃r.(Au∀r.>) =: D′′′

ex. The next step is to compute
the respective >-normal forms. Clearly, the >-normal form of Dex and D′

ex is equivalent
to the original concepts. For D′′

ex and D′′′
ex, however, the value restriction ∀r.> is removed.

The description trees of the relevant normalized concepts are shown below.

∃r

∃r

A

A

∃r∃r ∃r

m′′
0

m′′
1 A, Y

Y

tree(D′′>
ex )

∃r

tree(Cex)

n0

n1

n2 X

∀r

m′
1

X

A

m′
0

m′
2X

∀r

A, Y

X, Y

tree(D>
ex)

m0

m1

tree(D′>
ex ) tree(D′′′>

ex )

A

m′′′
0

m′′′
1

m2

Because of the universal r-edge in tree(D>
ex) and tree(D′>

ex ), which is missing in tree(Cex),
no homomorphism exists from tree(D>

ex) or tree(D′>
ex ) onto tree(Cex). However, by mapping

m′′
0 onto n0 and m′′

1 onto n1, we find a homomorphism ϕ from tree(D′′>
ex ) onto tree(Cex).

The next step is to construct a substitution σ according to the definition in Figure 4.1.1.
Since X is no element of var(D′′

ex), σ(X) = >. Moreover, as Y occurs in m′′
0 and m′′

1 , we
have to compute the lcs of Cex↓ϕ(m′′

0 ) and Cex↓ϕ(m′′
1 ). Since ϕ(m′′

0) = n0 and ϕ(m′′
1) = n1,

this means to compute the lcs of Cex and ∃r.A. Thus, we obtain σ(Y ) = ∃r.A. In the
next step of the algorithm, we find that σ(D) = ∃r.A u ∃r.(A u ∃r.A) which is subsumed
by the input concept Cex. Thus, σ is added to the list C of solutions.



 chapter ��� . matching

For the >-pattern D′′′
ex, the only homomorphism ϕ from tree(D′′′>

ex ) onto tree(Cex) clearly
also maps m′′′

0 onto n0 and m′′′
1 onto m1. However, since D′′′>

ex contains no variables,
we immediately obtain the substitution σ′ = {X 7→ >, Y 7→ >}. In this case, the final
subsumption test fails, i.e., Cex 6w σ′(D).

As a result, the set {σ} = {{X 7→ >, Y 7→ ∃r.A}} is returned as solution for the matching
problem Cex ≡

? Dex. ���

In the context of matching w.r.t. cyclic EL-TBoxes in Section 4.4.1, the basic principle
of the above matching algorithm, i.e., computing matchers by finding homomorphisms
between trees and computing the lcs, will be extended to computing matchers by finding
certain relations between directed graphs and again computing the lcs.

How the above ALE-matching algorithm can be implemented is the subject of Section 4.5.1.

4.2 Matching in ALN

Besides ALE , matching in ALN is the second instance of concept matching to introduce.
Although ALN -matching problems look basically like their counterparts from ALE , the
entirely different characterization of subsumption for ALN -concept descriptions suggests
the use of different underlying techniques for matching in ALN . The relevant approach
has first been presented in [BKBM99].

In addition to ALN , we also examine matching in two sublanguages of ALN , namely FL⊥

and FL¬. The main motive behind this is that, for matching problems, the computational
complexity obtained for ALN does not automatically carry over to its sublanguages, i.e.,
the unavailability of some constructs in the sublanguage might make it more difficult to
find a solution.

In the following subsection, we introduce a characterization of subsumption of ALN -
concept descriptions (and sublanguages) based on role languages. Note that a similar
characterization has been used in Section 3.1.2 for the DLs FL0 and L∀∃.

4.2.1 Formal preliminaries

To simplify notation, let ¬Ncon := {¬A | A ∈ Ncon}. Furthermore, denote the set of
primitive concepts by

P := Ncon ∪ ¬Ncon ∪ {⊥} ∪ N6 ∪ N>.

Our aim is to represent ALN -concept descriptions up to equivalence by vectors of formal
languages, one language for each P ∈ P, and to characterize subsumption accordingly.
To this end, we introduce the so-called FL0-normal form [BKBM99] for ALN -concept
descriptions. The name ‘FL0-normal form’ stems from the fact that such a normal form
has first been introduced for FL0-concept descriptions as ‘concept centered normal form’
in [BN98].1

Definition 4.2.1 (FL0-normal form)
For every P ∈ P, let RP denote an arbitrary finite formal language over Nrole. Then

C := u
P∈P
∀RP .P

is an ALN -concept description in FL0-normal form representing the ALN -concept descrip-
tion

u
P∈P
u

n∈ �
u

r1···rn∈RP

∀r1 . . . ∀rn.P .

1A similar normal form is called unfolding in [Neb90].
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For every ALN -concept description D, define ∀∅.D := > and ∀{ε}.D := D. ���

Recall that every RP occurring in the FL0-normal form of C is called a role language.
Concept patterns in FL0-normal form are defined analogously by adding a role language
RX for every X ∈ Nvar. As shown in [BKBM99], every ALN -concept description can be
transformed into FL0-normal form in polynomial time.

As usual, denote by R the complement of any role language R, i.e., R := N∗
role \ R. In

order to refer to the role languages occurring in the FL0-normal form more easily, the
following notation is introduced.

Definition 4.2.2 Let D be an ALN -concept pattern. Then the FL0-normal form of D is
of the form uP∈P∪Nvar

RP .P . For every P ∈ P ∪ Nvar, define C|P := RP . ���

The motive behind introducing the FL0-normal form is a formal-language characterization
of equivalence introduced in [BKBM99]. For the presentation of this characterization,
and also for our solution strategy for matching problems and matching problems under
side conditions, we need to introduce some auxiliary operations on formal languages,
namely the left and right product of words with formal languages, and the left product of
languages.

Definition 4.2.3 (Left and right products)
Let L,M ⊆ N∗

role and w ∈ N∗
role. Then the left product of w and L (w−1 · L), the right

product of w and L (L · w−1), and the left product of L and M (L−1 ·M) are defined as
follows.

w−1 · L := {v ∈ N∗
role | wv ∈ L}

L · w−1 := {v ∈ N∗
role | vw ∈ L}

L−1 ·M :=
⋂

w∈L

w−1 ·M ���

Note that always {w} · (w−1 · L) ⊆ L and (L · w−1) · {w} ⊆ L, which initially motivated
the notation using the ‘inverse’ of w. Similarly, L−1 ·M is the largest language N with
L ·N ⊆M . For every language L it trivially holds that {ε}−1 ·L = L and ∅−1 ·L = N∗

role.
In formal language expressions, we define the left and right product to precede union,
intersection and concatenation. Hence, L−1 ·M ·N stands for (L−1 ·M) ·N , L∪M ·w−1

for L∪ (M ·w−1) and so on. The following simple example illustrates the above operators
further.

Example 4.2.4 Let Nrole := {r, s, t}. Let L := {r, rs, t} and M := {rsst, rst, s, tst}.
Then, e.g., rs−1 · L = {ε}, rs−1 ·M = {st, t}, L · t−1 = {ε}, M · t−1 = {rs, rss, ts}, and
L−1 ·M = {st}. ���.

We are now prepared to introduce the formal-language characterization of equivalence of
ALN -concept descriptions introduced in [BKBM99].

Lemma 4.2.5 (Characterization of equivalence)
Let C1 and C2 be ALN -concept descriptions. Then, C1 ≡ C2 iff for every P ∈ Ncon∪¬Ncon,
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for every (> n r) ∈ N>, and for every (6 n r) ∈ N6 it holds that

EC1
= EC2

(⊥)

C1|P ∪ EC1
= C2|P ∪ EC2

(P )
⋃

m≥n

C1|(>m r) ∪ EC1
=
⋃

m≥n

C2|(>m r) ∪ EC2

⋃

m≤n

C1|(6m r) ∪ EC1
· r−1 =

⋃

m≤n

C2|(6m r) ∪ EC2
· r−1,

where ECi
= {w ∈ N∗

role | Ci v ∀{w}.⊥} for i = 1, 2.

In [Bra00, BBK01], a so-called ‘reduced’ normal form has been introduced in order to
simplify the characterization of subsumption of ALN -concept descriptions further.

Definition 4.2.6 (Reduced normal form)
An ALN -concept description C in FL0-normal form is reduced iff

• C|⊥ = R \ (R · N+
role), where R is a finite language over Nrole with

R · N∗
role = {w ∈ N∗

role | C v ∀{w}.⊥};

• C|P = C|P \ (C|⊥ · N
∗
role) for every P ∈ Ncon ∪ ¬Ncon;

• C|(6n r) =
⋃

m≤n C|(6n r) \ (C|⊥ · N
∗
role · r

−1); and

• C|(>n r) =
⋃

m≥n C|(>n r) \ (C|⊥ · N∗
role). ���

In order to present the relevant characterization of subsumption, we first have to introduce
a relation on formal languages, the so-called multiset order.

Definition 4.2.7 (Multiset order)
Let � ⊆ ℘(N∗

role)×℘(N∗
role) such that, for every L,M ⊆ N∗

role, L �M iff there exist finite
languages X,Y ⊆ N∗

role with:

• ∅ 6= X ⊆M ;

• L = (M \X) ∪ Y ; and

• ∀y ∈ Y ∃x ∈ X : x <pr y. ���

Note that U � V iff U can be transformed into V by performing the following step one or
more times: remove a word u from U and replace it by a finite subset of {u} · N+

role. The
following example illustrates this.

Example 4.2.8 Let Nrole := {r, s, t}. Then, e.g., {r, rs, t} � {rrr, rsr, rstr} because
r can be replaced by rrr and rsr, rs can be replaced by rstr, and t can be removed
without replacement. Moreover, {r, rs, t} � ∅ because all words can be removed without
replacement. On the other hand, {r, rs, t} 6� {r, s} because s does not correspond to an
extension of any of r, rs, or t. ���

Equivalence and subsumption between reduced ALN -concept descriptions can now be
characterized as follows.



��� . � �� . matching in ALN 

Lemma 4.2.9 (Characterization of subsumption for reduced normal forms)
Let C,D be reduced ALN -concept descriptions over Ncon, Nrole, N6, and N>. Then

1. C ≡ D iff C|P = D|P for every P ∈ P;

2. C @ D iff either

• C|⊥ = D|⊥, C|P ⊇ D|P for all P ∈ P \ {⊥}, and C|P 6= D|P for at least one
P ∈ P \ {⊥}; or

• C|⊥ � D|⊥, D|P ⊇ C|P ∪ C|⊥ · N
∗
role for every P ∈ P \ ({⊥} ∪ N6), and

D|P ⊇ C|P ∪ C|⊥ · N∗
role ∪ C|⊥ · r−1 · N∗

role for every P =: (6 n r) ∈ N6.

Note that Definitions 4.2.1 and 4.2.6 implicitly also define (reduced) normal forms for
the sublanguages FL⊥ and FL¬ of ALN . Moreover, as shown in [Bra00, BBK01], the
relevant characterizations of subsumption for FL⊥ and FL¬ correspond to the restriction
of Lemma 4.2.5 to the first two equations and of Lemma 4.2.9 to the first two conditions,
where ¬Ncon = ∅ for FL⊥. It is easy to see for every FL⊥-concept description C that
EC = C|⊥ · Σ

∗ and, analogously,

EC =
(

C|⊥ ∪
⋃

P∈Ncon

C|P ∩ C|¬P

)

· Σ∗

for every FL¬-concept description C. With this preparation, we introduce the actual
ALN -matching algorithm in the following section.

4.2.2 Solving ALN -matching problems

By means of the FL0-normal form, a matching problem can be viewed as a problem over
formal languages. One main result from [BKBM99] shows how the least matcher to a
solvable ALN -matching problem can be constructed.

Lemma 4.2.10 Let C ≡? D be an ALN -matching problem. Then, either C ≡? D is not
solvable or it has a least matcher σ that assigns to each variable X occurring in D the
concept description σ(X) defined by

σ(X) := ∀W X
⊥ .⊥ u u

P∈P
∀(D|−1

X ·W
X
P ) \ (D|−1

X · EC).P ,

where EC = {w ∈ N∗
role | C v ∀{w}.⊥}, W X

⊥ is a role language of polynomial size in C
with WX

⊥ ·N
∗
role = D|−1

X ·EC , and all role languages of the form W X
P with P ∈ P \ {⊥} are

defined as follows.

WX
P :=























C|P ∪ EC if P ∈ Ncon ∪ ¬Ncon
⋃

m≥n

C|(>m r) ∪ EC if P =: (> n r) ∈ N>

⋃

m≤n

C|(6m r) ∪ EC · r
−1 if P =: (6 n r) ∈ N6

There are at least two strategies to decide whether the substitution σ defined above solves
the matching problem C ≡? D. Either ascertain the solvability of C ≡? D before comput-
ing σ, or compute σ first and decide the equivalence C ≡ σ(D) afterwards. In [BKBM99],
the former strategy is taken: a system of formal language equations, so-called ’solvabil-
ity equations’, is proposed which is solvable iff C ≡? D is. Deciding solvability of these
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equations, however, necessitates computing exactly those role languages which occur in
the FL0-normal form of σ(X) constructed in Lemma 4.2.10.

As the second strategy is computationally equivalent but more easily explained, we deviate
from the original in [BKBM99] by computing a candidate solution first and testing for
equivalence afterwards. To this end, we utilize the a characterization of equivalence from
Lemma 4.2.5.

Informally, the ALN -matching algorithm matchALN can now be described as follows. Upon
input C ≡? D, (i) transform C and D into FL0-normal form, (ii) construct the candidate
solution σ defined in Lemma 4.2.10, and (iii) test whether C and σ(D) satisfy the formal
language equations shown in Lemma 4.2.5. If they do, return the least matcher σ, otherwise
return ‘fail’. It remains to provide a method by which to solve Steps (ii) and (iii) in
polynomial time.

To this end, so-called ‘tree-like automata’ [BKBM99], can be utilized. Intuitively, these
are deterministic finite automata whose structure differs from a tree only in that they
either have ordinary leaves or leaves with an r-transition to themselves for every r ∈ Nrole.
Consider the following example.

Example 4.2.11 Let Nrole = {r, s}. Then the role language {ε, s} ∪ {rs} · N∗
role can be

represented by a tree-like automaton A of the form

s

r

s r, s

A

,

where marks the initial state and double circles denote final states. ���

As shown in [Bra00, BKBM99], tree-like automata have the following properties.

• A tree-like automaton A that accepts EC can be constructed in polynomial time in
the size of C. From A, a language U of polynomial size in C with EC = U · N∗

role

can be constructed in linear time.

• The operations union, intersection, and complement on treelike automata can be
defined in such a way that the size of the resulting automaton does not exceed
the maximum of the sizes of the input automata. Moreover, all operations can be
performed in linear time.

• If U, V,W are finite languages, then a tree-like automaton accepting U−1 · (V ∪W ·
N∗

role) can be constructed in polynomial time in the size of the input.2

As a consequence, tree-like automata can be used to construct the candidate solution σ
defined in Lemma 4.2.10 in polynomial time. It remains to show how tree-like automata
can be used to test whether σ actually is a solution.

Consider a matching problem C ≡? D in FL0-normal form with a candidate solution σ as
defined in Lemma 4.2.10. Instantiating the entire system of equations from Lemma 4.2.5
by C and σ(D) is beyond the scope of this section. Nevertheless, as a typical example,
consider Equation (P ) defined for every P ∈ Ncon ∪ ¬Ncon. Inserting the role languages
from C and σ(D), we obtain the following equation.

C|P ∪ EC = D|P ∪ Eσ(D) ∪
⋃

X∈Nvar

D|X ·
(

D|−1
X · (C|P ∪ EC)

)

(∗)

2Note, however, that the relevant paper uses a different notation in that the left product operator is
introduced only for words, i.e., w−1 · L, but not for formal languages, i.e., L−1 · M .
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Assume that Equation (⊥) has already been tested, i.e., EC = Eσ(D). By definition of the
left product, the union over all X ∈ Nvar on the right-hand side of (∗) is always a subset
of the left-hand side of the equation. Hence, Equation (∗) holds iff (i) D|P ⊆ C|A ∪ EC

and (ii) for all u ∈ C|P either (iia) u ∈ D|X ∪Eσ(D) or (iib) u ∈ D|X · (D|
−1
X ·C|P ) or (iic)

u ∈ D|P · (D|
−1
X ·EC). Condition (i) can be decided by testing the tree-like automaton of

D|P ∩ (C|P ∪ EC) for emptiness. For Condition (iia), merely the word problem w.r.t. the
tree-like automaton for D|P ∪ Eσ(D) must be decided for every u ∈ C|P . Since there is
no concatenation defined for tree-like automata, the remaining Conditions (iib) and (iic)
cannot be solved by means of one single treelike automaton. Nevertheless, one can show
that u ∈ D|X · (D|

−1
X ·C|P ) iff {u}−1 ·D|X ∩D|−1

X ·C|P is not empty, which again can be
decided by a tree-like automaton in polynomial time. Case (iic) is analogous. The other
equations from Lemma 4.2.10 can be decided similarly, see [BKBM99] for details.

This completes our overview of matching inALN . Note that the above algorithm matchALN

implicitly also yields matching algorithms for the sublanguages FL⊥ and FL¬: applied to
an FL⊥- or FL¬-matching problem P, matchALN computes the least matcher to P in the
relevant sublanguage iff P is solvable or otherwise returns “fail”. Especially, matchALN

coincides with the dedicated FL⊥- and FL¬-matching algorithms presented in [BKBM99]

when applied to FL⊥- or FL¬-matching algorithms, respectively.

In Section 4.5.2, we will explain how the theoretical algorithm described above can be
implemented. In the following section, we extend the ALN -matching algorithm matchALN

described above to matching in ALN under side conditions.

4.3 Matching in ALN under side conditions

Side conditions are intended to provide a means of restricting the set of admissible solutions
to a matching problem further. Formally, we extend ALN -matching problems by side
conditions as follows.

Definition 4.3.1 (Matching problems under side conditions)
Let L ∈ {FL⊥,FL¬,ALN} and let C ≡? D be an L-matching problem. An L-side
condition for a variable X ∈ Nvar is of the form X ρ? E, where ρ ∈ {v,@} and E is an
L-concept pattern. The side condition is called subsumption condition iff ρ = v and strict
subsumption condition iff ρ = @. A substitution σ satisfies X ρ? E iff σ(X) ρ σ(E).

Let var(D) =: {X1, . . . , X`} with |var(D)| = `. For every k ∈ {1, . . . , `} let Xk ρ?
k Ek be

an L-side condition with var(Ek) ⊆ {X1, . . . , Xk−1}. Then, S := {Xk ρ?
k EK | 1 ≤ k ≤ `})

is a set of acyclic L-side conditions and (C ≡? D,S) an L-matching problem under acyclic
side conditions. A matcher to (C ≡? D,S) is a matcher of C ≡? D satisfying every side
condition in S. ���

If all side conditions are subsumption conditions, we speak of ‘matching under subsumption
conditions’. Whenever the underlying DL L is clear, we may speak of ‘side condition’
instead of L-side condition and so on.

Matching under side conditions is more complex than matching under subsumption condi-
tions. Firstly, for every L ∈ {FL0,FL⊥,FL¬,ALN}, deciding the solvability of L-matching
problems modulo equivalence under subsumption conditions is tractable [BBK01] while it
has been shown in [BKBM99] by reduction of 3sat that deciding the solvability of FL0-
matching problems modulo equivalence under acyclic side conditions is NP-hard. The
same reduction works for the DLs FL⊥, FL¬, and ALN . Hence, assuming P 6= NP, there
is no polynomial time algorithm computing matchers to matching problems under side
conditions.
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Secondly, as the following example shows, solvable matching problems under side condi-
tions no longer need to have a least matcher but rather finitely many minimal matchers.

Example 4.3.2 Consider the FL⊥-matching problem

A1 uA2 ≡
? X1 uX2

under the strict subsumption conditions

{X1 @
? >, X2 @

? X1}.

The only solutions satisfying both the matching problem and the strict subsumption con-
ditions are σ1 := {X1 7→ A1, X2 7→ A1 uA2} and σ2 := {X1 7→ A2, X2 7→ A1 uA2}. Since
the assignments for X2 cannot be chosen more specific, both matchers are minimal. None
is a least matcher, however, since the assignments for X1 are mutually incompatible w.r.t.
subsumption. ���

As a preliminary step towards matching under acyclic side conditions, we introduce a
matching algorithm for subsumption conditions first presented in [Bra00, BBK01]. The
algorithm will be utilized in our matching algorithm for acyclic side conditions in Sec-
tion 4.3.1.

Matching under subsumption conditions

In order to solve L-matching problems under (possibly cyclic) subsumption conditions for

L ∈ {FL0,FL¬,ALN}, an algorithm match
v
L has been proposed in [BBK01] which utilizes

the algorithm matchL for ordinary L-matching problems discussed in Section 4.2.2.

Definition 4.3.3 Let P := (C ≡? D,S) be an L-matching problem under subsumption
conditions. For every substitution σ from Nvar into the set of ALN -concept descriptions,
let

Pσ := {C ≡? D} ∪ {σ(X) v? E | X v? E ∈ S}.

Then, the algorithm match
v
L is defined as follows.

1. σ(X) := ⊥ for all variables X;

2. If matchL(Pσ) returns “fail”, then return “fail”;
else if σ ≡ matchL(Pσ), then return σ;
else σ := matchL(Pσ); continue with 2. ���

For every L ∈ {FL⊥,FL¬,ALN}, it has been shown in [BBK01] that every L-matching

problem P under subsumption conditions is solvable iff match
v
L (P) does not return “fail”.

In this case, the least matcher to P is match
v
L (P) which can be computed in polynomial

time. Note that the ALN -matching algorithm match
v
ALN coincides with match

v
FL⊥

when
its input is restricted to FL⊥-matching problems under non-strict subsumption conditions.
The same correspondence holds w.r.t. FL¬.

Just as matchALN is utilized for match
v
ALN , we show in the following section how the

algorithm match
v
ALN can be employed to solve matching problems under acyclic side con-

ditions.
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Input: L-matching problem under acyclic side conditions (M,S)
Output: least matcher for (M,S) or “fail”.

1. Let Pv := (M,Sv). If match
v
L (Pv) returns “fail” then return “fail”;

2. k := `; σ := match
v
L (P);

3. If k = 0 then return σ;
If σ(Xk) ρk σ(Ek) then continue with 5.

4. Guess modification σ′ of σ for Xk @
? Ek; if σ′(Ek) ≡ σ(Ek) then return “fail”;

P ′ := ({C ≡? D} ∪ {σ′(Xj) v
? Xj | 1 ≤ j ≤ k − 1}, Sv);

If match
v
L (P ′) returns “fail” then return “fail”;

σ := match
v
L (P ′)

5. k := k − 1; continue with 3.

Figure 4.3.1: The algorithm match@
L

4.3.1 Solving matching problems under acyclic side conditions

In the present section we show how to solve L-matching problems under acyclic side con-
ditions for L ∈ {FL⊥,FL¬,ALN}. As mentioned previously, sublanguages are examined
separately because the results obtained for ALN do not automatically carry over to sub-
languages of ALN .

Given that ALN and its sublanguages provide no existential restrictions, handling cyclic
side conditions might appear trivial at first glance: a cyclic relationship of the form X @
∀r.X seems to be solvable only by assigning ⊥ to X. The following example shows that,
however, cyclic strict subsumption conditions can have non-trivial solutions.

Example 4.3.4 Let Ncon := ∅ and Nrole := {r, s}. Consider the matching problem M
defined by

∀rsrs.⊥ ≡? ∀rs.X

under the side condition
X @? ∀rs.X.

In this case, the only solution to M is σ = {X 7→ ∀rs.⊥}, even though σ′ = {X 7→ ⊥} is
a more specific solution of the side condition. ���

Similar more complex examples can easily be constructed. In the present work, we restrict
our attention to the acyclic case. Our algorithm for matching under acyclic side conditions
has been defined for L ∈ {FL⊥,FL¬} in [BBK01]. In the present section, we also discuss
the case L = ALN .

Definition 4.3.5 Let L ∈ {FL⊥,FL¬,ALN} and let P := ({C ≡? D}, S) be an L-
matching problem under acyclic side conditions with var(D) = {X1, . . . , X`} and |var(D)| =
`. Denote by Sv the set of subsumption conditions obtained from S by replacing every ρi

with v. Then, match@
L (P) is defined as shown in Figure 4.3.1. ���

Applied to input P, the algorithm match@
L first calls match

v
L (Pv). If this yields “fail” then

P is also unsolvable because every solution to P also solves Pv. Otherwise, the computed
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substitution σ solves C ≡? D but may still violate some strict subsumption condition.
Starting with the last subsumption condition, the algorithm tries to modify σ such that
every violated subsumption condition is satisfied.

Assume that the highest index of a violated subsumption condition is k. Since σ solves
Xk v

? Ek, σ(Xk) ≡ σ(Ek). Since match
v
L always computes the least solution, strict

subsumption can only be achieved by making σ(Ek) more general. To this end, we (non-
deterministically) try to remove one word from one of the role languages representing
σ(Ek). This is done by modifying the role languages of the values assigned to variables
occurring in σ(Ek). In order to obtain minimal matchers, our modification changes the
original substitution σ as little as possible.

The new substitution σ′ obtained thus satisfies Xk @
? Ek and preserves all subsumption

conditions of variables with index greater or equal k. However, the other subsumption
conditions (even the non-strict versions) as well as the original matching problem need

no longer be solved by σ′. To correct this effect, match
v
L is used to compute the least

substitution that solves Pv and subsumes σ′. The second condition preserves the validity
of the strict subsumption conditions from index k to `.

Clearly, the key point left open in Definition 4.3.5 is to specify exactly how σ is modified
to σ′. Since the relevant strategy depends on the choice of L, we discuss modifications in
detail for all DLs in question in the following section.

4.3.2 How to guess modifications

In Section 4.2.1, a representation of concept descriptions based on formal languages
has been introduced. Based on this representation, we now define modifications as op-
erations on formal languages. In the following, let P := (M,S) be an L-matching
problem (L ∈ {FL⊥,FL¬,ALN}) under acyclic side conditions with M = {C ≡? D},
var(D) = {X1, . . . , X`} and |var(D)| = `. We begin by introducing modifications in the
smallest sublanguage of interest, FL⊥.

Modifications in FL⊥

By the following definition, modifications in FL⊥ are introduced formally. To simplify our
notation, denote the set of primitive concepts by P := {⊥} ∪ Ncon.

Definition 4.3.6 (Modification in FL⊥)
Let P be an FL⊥-matching problem under acyclic subsumption conditions. Let σ be
a reduced substitution solving (M,Sv). Let k be the highest index with ρk = @ and
σ(Xk) ≡ σ(Ek). A modification σ′ of σ is defined by executing one of the following steps:

• ⊥-modification
(Non-deterministically) guess one word û ∈ σ(Xk)|⊥. For all j ∈ {1, . . . , k − 1},
compute

W j
⊥ :=

⋃

w∈Ek|Xj

w−1 · {û}

Thus, W j
⊥ contains all suffixes of û which yield û in the product Ek|Xj

· σ(Xj)|⊥.
Define σ′ by specifying the relevant role languages σ′(Xj)|P for all P ∈ P.

1. σ′(Xj)|⊥ := (σ(Xj)|⊥ \W j
⊥) ∪ (σ(Xj)|⊥ ∩W j

⊥) · Nrole

2. For all P ∈ Ncon, define: σ′(Xj)|P := σ(Xj)|P ∪ (σ(Xj)|⊥ ∩W j
⊥)
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• Ncon-modification
(Non-deterministically) guess one atomic concept P ∈ Ncon. For P , guess one word
û ∈ σ(Xk)|P . Using û, for all j ∈ {1, . . . , k−1} compute W j

P :=
⋃

w∈Ek|Xj
w−1 · {û}.

Then define:

1. σ′(Xj)|P := σ(Xj)|P \W j
P ; and

2. σ′(Xj)|Q := σ(Xj)|Q for all Q ∈ P \ {P}. ���

In case of a ⊥-modification, where w is picked from the role language corresponding to
the ⊥-concept, the removal of some word v from some role language implicitly removes
every continuation vv′ of v. To avoid this, every word in {v} · Nrole is put back for
every v removed. In addition, since v is also implicitly removed from role languages
corresponding to atomic concepts, it is also transferred to these role languages to ensure
that the computed substitution is as specific as possible. Note that W j

⊥ 6= ∅ implies
σ(Xj)|⊥ � σ′(Xj)|⊥.

In an Ncon-modification, w is picked from a role language corresponding to some atomic
concept P ∈ Ncon. In this case, removing certain words from role languages of the variables
in E suffices to obtain a minimal modification.

Note that modifications need not be defined for the first subsumption condition which
contains no variables. We give an example in order to show that (i) modifications deleting
only one word do not always suffice and (ii) matching in Step 4 of the algorithm match@

L

is necessary. In order to simplify notation, denote value restrictions over singleton sets
without parenthesis, e.g., write ∀rr.P instead of ∀{rr}.P .

Example 4.3.7 Let Ncon = {P} and Nrole = {r, s}. Consider the matching problem

∀{rrr, rrs, rs, srr}.⊥ u ∀{rr, sr}.P ≡? ∀rr.X1 u ∀sr.X2 u ∀r.X3 u ∀r.X4

under the following set of subsumption conditions.

{X1 v
? ∀{r, s}.⊥,

X3 @
? ∀{rs, s}.X1 u ∀r.X2,

X4 @
? ∀s.⊥ u ∀{ε, r}.X3}

Executing algorithm match@
FL⊥

yields as initial solution σ in Step 2

{X1 7→ ∀{r, s}.⊥ u ∀{ε}.P,

X2 7→ ∀r.⊥ u ∀{ε}.P,

X3 7→ ∀{rr, rs, s}.⊥ u ∀r.P,

X4 7→ ∀{rr, rs, s}.⊥ u ∀r.P}.

which violates the third subsumption condition, as the test in Step 3 shows: σ(X4) is
equivalent to σ(∀s.⊥ u ∀{ε, r}.X3). In Step 4, we choose a ⊥-modification and pick the
word rs from the role language σ(X4)|⊥ = {rr, rs, s}. Hence, W 3

⊥ = {rs, s}. Thus, rs and
s must be changed in σ(X3)|⊥. The modified solution σ′ now yields

σ′(X3) = ∀{rr, rsr, rss, sr, ss}.⊥ u ∀{r, rs, s}.P ,

while the other variables remain unchanged. We find that σ′ already solves the matching
problem P ′ in Step 4, implying that match

v
FL⊥

(M ′) yields σ′.
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In the second iteration we find in Step 3 that the second subsumption condition is violated,
since σ(X3) is equivalent to σ(∀{rs, s}.X1 u ∀r.X2). We choose an Ncon-modification and
pick the word rs from the role language σ(X3)|P = {r, rs, s} corresponding to P . This
yields W 1

A = {ε} and W 2
P = {s}. Nevertheless, the role language σ(X2)|P = {ε} does not

contain s, while σ(X1)|P = {ε} contains ε. We therefore have

σ′(X1) = ∀{r, s}.⊥,

while the other variables remain unchanged. Again σ′ solves the matching problem P ′ in
Step 4, so that we have σ′ as new substitution σ. In the third iteration, we now find in
Step 3 that the first subsumption condition holds, so that the final result is the following.

{X1 7→ ∀{r, s}.⊥,

X2 7→ ∀r.⊥ u ∀{ε}.P,

X3 7→ ∀{rr, rsr, rss, sr, ss}.⊥ u ∀{r, rs, s}.P,

X4 7→ ∀{rr, rs, s}.⊥ u ∀r.P} ���

The above example might give rise to the question whether solving the matching problem
P ′ in Step 4 of every iteration of the algorithm match@

FL⊥
is necessary at all. The following

example shows that this step is needed.

Example 4.3.8 We examine the matching problem

∀{rrr, rrs}.⊥ u ∀rr.P ≡? ∀rr.X1 u ∀r.X2 uX3 uX4

under the following set of subsumption conditions.

{X3 @
? ∀rr.X1 u ∀r.X2,

X4 @
? X3}

Executing algorithm match@
FL⊥

again computes an initial solution σ in Step 2, yielding:

{X1 7→ ∀{r, s}.⊥ u P,

X2 7→ ∀{rr, rs}.⊥ u ∀r.P,

X3 7→ ∀{rrr, rrs}.⊥ u ∀{rr}.P,

X4 7→ ∀{rrr, rrs}.⊥ u ∀{rr}.P}.

Clearly, in Step 3 we find the second subsumption condition violated, making it necessary
to modify σ(X3). Nevertheless, for the initial solution σ the first subsumption condition
is also violated because σ(X3) is equivalent to σ(∀rr.X1 u ∀r.X2). As a consequence, any
successful modification will result in a substitution σ′ with σ′(X3) 6≡ σ′(∀rr.X1 u ∀r.X2).
Hence, σ′ can be no solution to the matching problem P ′ in Step 4. ���

The above examples may suffice to show how modifications in FL⊥, and thus the algorithm
match@

FL⊥
, work. In the following, the corresponding definitions for modifications in FL¬

and ALN are introduced. Soundness and completeness for FL⊥, FL¬, and ALN are proved
in Section 4.3.3.

Modifications in FL¬

In contrast to FL⊥, inconsistencies in FL¬ can not only be introduced by the ⊥-concept,
but also by interaction between an atomic concept P and its negation ¬P . Nevertheless,
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since only reduced substitutions occur in the algorithm match@
L , such interactions have to

be observed only in the second step of ⊥-modifications: there, the intersection σ(Xj)|⊥ ∩

W j
⊥ must not be added to both σ′(Xj)P and σ′(Xj)¬P for any P ∈ Ncon because this would

render the removal from σ(Xj)|⊥ useless. Instead, we add only a non-deterministically

chosen subset of σ(Xj)|⊥∩W j
⊥. Apart from this, it suffices to extend Ncon-modifications to

negated atomic concepts without further changes. We thus obtain the following definition
for modifications in FL¬.

Again, for the sake of a simpler notation, denote the set of primitive concepts by P :=
{⊥} ∪ Ncon ∪ {¬P | P ∈ Ncon}.

Definition 4.3.9 (Modification in FL¬)
Let P be an FL¬-matching problem under acyclic subsumption conditions. Let σ be
a reduced substitution solving (M,Sv). Let k be the highest index with ρk = @ and
σ(Xk) ≡ σ(Ek). A modification σ′ of σ is defined by executing one of the following steps:

• ⊥-modification
(Non-deterministically) guess one word û ∈ σ(Xk)|⊥. For all j ∈ {1, . . . , k − 1},
compute

W j
⊥ :=

⋃

w∈Ek|Xj

w−1 · {û}

Thus, W j
⊥ contains all suffixes of û yielding û in the product Ek|Xj

·W j
⊥. Define σ′

by specifying the relevant role languages σ′(Xj)|P for all P ∈ P.

1. σ′(Xj)|⊥ := (σ(Xj)|⊥ \W j
⊥) ∪ (σ(Xj)|⊥ ∩W j

⊥) · Nrole

2. For all P ∈ P \ {⊥}, (non-deterministically) choose a subset
Ŵ j

P ⊆ σ(Xj)|⊥ ∩W j
⊥. Then define: σ′(Xj)|P := σ(Xj)|P ∪ Ŵ j

• Ncon-modification
(Non-deterministically) guess one (negated) atomic concept P ∈ P \ {⊥}. For
P , guess one word û ∈ σ(Xk)|P . For all j ∈ {1, . . . , k − 1} compute W j

P :=
⋃

w∈Ek|Xj
w−1 · {û}. Then define:

1. σ′(Xj)P := σ(Xj)P \W j
P ; and

2. σ′(Xj)Q := σ(Xj)Q for all Q ∈ P \ {⊥, P}.

Modifications in ALN

In ALN , an additional source of inconsistencies is introduced by interactions between
number restrictions, e.g., (6 1 r) u (> 2 r). Similar to the case of FL¬, these interactions
must be taken into account only in the second step of ⊥-modifications. Let P := {⊥} ∪
Ncon ∪ {¬P | P ∈ Ncon} ∪ N6 ∪ N>.

Definition 4.3.10 (Modification in ALN )
Let P be an ALN -matching problem under acyclic subsumption conditions. Let σ be
a reduced substitution solving (M,Sv). Let k be the highest index with ρk = @ and
σ(Xk) ≡ σ(Ek). A modification σ′ of σ is defined by executing one of the following steps:

• ⊥-modification
(Non-deterministically) guess one word û ∈ σ(Xk)|⊥. For all j ∈ {1, . . . , k − 1},
compute

W j
⊥ :=

⋃

w∈Ek|Xj

w−1 · {û}
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Thus, W j
⊥ contains all suffixes of û yielding û in the product Ek|Xj

·W j
⊥. Define σ′

by specifying the relevant role languages σ′(Xj)|H for all H ∈ P.

1. σ′(Xj)|⊥ := (σ(Xj)|⊥ \W j
⊥) ∪ (σ(Xj)|⊥ ∩W j

⊥) · Nrole

2. For all P ∈ P \ {⊥}, (non-deterministically) choose a subset
Ŵ j ⊆ σ(Xj)|⊥ ∩W j

⊥. Then define: σ′(Xj)|P := σ(Xj)|P ∪ Ŵ j

• Ncon-modification
(Non-deterministically) guess one (negated) atomic concept or number restriction
P ∈ P\{⊥}. For P , guess one word û ∈ σ(Xk)|P . For all j ∈ {1, . . . , k−1} compute
W j

P :=
⋃

w∈Ek|Xj
w−1 · {û}. Then define:

1. σ′(Xj)P := σ(Xj)P \W j
P ; and

2. σ′(Xj)Q := σ(Xj)Q for all Q ∈ P \ {⊥, P}.

In the next section we show that the algorithm match@
L is correct for every L ∈ {FL⊥,FL¬,

ALN}. Termination of match@
L is an immediate consequence of the fact that match

v
L always

terminates and that a finite number of matching problems under non-strict subsumption
conditions are solved.

4.3.3 Soundness and completeness

With a formal definition of modifications, we are prepared to prove soundness and com-
pleteness of the algorithm match@

L . We first address the case L = FL⊥.

Soundness and completeness in FL⊥

We begin by showing that the modification strategy defined in Definition 4.3.6 does pro-
duce a strict solution for the relevant subsumption condition Xk @

? Ek. Moreover, we
show that modifications can be constructed so as to remain more specific than a given
solution to the relevant matching problem.

Lemma 4.3.11 (Strictness and minimality of modifications in FL⊥)
Let P be an FL⊥-matching problem under acyclic subsumption conditions. Let σ be a
reduced substitution solving (M,Sv) and τ a reduced solution to P with σ @ τ . Let
k ∈ {2, . . . , `} with ρk = @ and σ(Xk) ≡ σ(Ek). Then there exists a modified substitution
σ′ solving (M,Sv) with

1. σ @ σ′;

2. σ′ v τ and σ′(Xk) @ σ′(Ek).

Proof. 1. We show that every possible modification yields the desired property.

⊥-Modification: for every j ∈ {1, . . . , `}, σ(Xj)|⊥ is modified by replacing every word

w ∈ W j
⊥ by the continuations {w} · Nrole. If W j

⊥ = ∅ then σ′(Xj)|P = σ(Xj)|P for all
P ∈ P, implying σ′(Xj) = σ(Xj). Otherwise, σ(Xj)|⊥ � σ′(Xj)|⊥. For every P ∈ P\{⊥},
all words added to σ′(Xj)|P are contained in σ(Xj)|⊥. Hence,

σ′(Xj)|P ⊆ σ(Xj)|P ∪ σ(Xj)|⊥ · N
∗
role

for all P ∈ P \ {⊥}, implying σ(Xj) @ σ′(Xj) by Definition 4.2.9. By construction, the
second case applies to at least one j, implying σ @ σ′.
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Ncon-Modification: then the only difference between σ and σ′ is the deletion of words
in one role language which, again by our characterization of subsumption, immediately
implies the claim.

2. It suffices to find a guessing strategy for a modification σ′ with σ′ v τ and σ′(Xk) @
σ′(Ek). To this end, two cases are distinguished.

Case 1: σ(Ek) and τ(Ek) disagree on the ⊥-concept in the sense that

σ(Xk)|⊥ · N
∗
role = σ(Ek)|⊥ · N

∗
role ⊃ τ(Ek)|⊥ · N

∗
role.

Thus, there is some û ∈ σ(Xk)|⊥ missing in τ(Ek)|⊥ · N
∗
role. This implies û 6∈ Ek|⊥.

Construct σ′ by a ⊥-modification choosing û. By definition, we obtain σ′ with

σ′(Xj)|⊥ = (σ(Xj)|⊥ \W j
⊥) ∪ (σ(Xj)|⊥ ∩W j

⊥) · Nrole (∗)

for every j ∈ {1, . . . , k − 1}, where W j
⊥ =

⋃

w∈Ek|Xj
w−1 · {û}. By definition of W j

⊥,

σ′(Ek)|⊥ · N
∗
role = σ(Ek)|⊥ · N

∗
role \

k−1
⋃

j=1

Ek|Xj
·W j

⊥.

The word û occurs in σ(Ek)|⊥ ·N∗
role and, as û 6∈ Ek|⊥, in at least one product Ek|Xj

·W j
⊥,

implying û 6∈ σ′(Ek)|⊥ · N
∗
role. Hence, we obtain

σ′(Xk)|⊥ · N
∗
role ⊃ σ′(Ek)|⊥ · N

∗
role.

We already know σ v σ′ from (1) and σ′(Xk) = σ(Xk), implying σ′(Xk) v σ′(Ek).
Together with the above strict inclusion, σ′(Xk) @ σ′(Ek) as required.

It remains to show σ′ v τ , i.e., σ′(Xj) v τ(Xj) for every j ∈ {1, . . . , k−1}. If not σ′(Xj) =
σ(Xj) then, by construction of σ′, σ(Xj)|⊥ � σ′(Xj)|⊥. As σ @ τ and σ disagrees with τ

on the ⊥-concept, also σ(Xj)|⊥ � τ(Xj)|⊥. More precisely, every word in σ(Xj)|⊥ ∩W j
⊥

can be replaced by some extensions contained in τ(Xj)|⊥. But since (σ(Xj)|⊥∩W j
⊥) ·Ncon

(i) is the largest set of such extensions and (ii) contains the shortest possible extensions,
we find σ′(Xj)|⊥ � τ(Xj)|⊥. Since σ(Xj) @ τ(Xj) and σ(Xj)|⊥ � τ(Xj)|⊥ we also know
by characterization of subsumption that, for every P ∈ Ncon,

τ(Xj)|P ⊆ σ(Xj)|P ∪ σ(Xj)|⊥ · N
∗
role.

As a consequence of (∗),

σ′(Xj)|⊥ · N
∗
role = (σ(Xj)|⊥ · N

∗
role) \ (σ(Xj)|⊥ ∩W j

⊥).

Moreover, as always σ′(Xj)|P = σ(Xj)|P ∪ (σ(Xj)|⊥ ∩ W j
⊥), we may replace σ by σ′

without changing the right-hand side, obtaining

τ(Xj)|P ⊆ σ′(Xj)|P ∪ σ′(Xj)|⊥ · N
∗
role.

Together with σ(Xj)|⊥ � τ(Xj)|⊥, this implies σ′(Xj) @ τ(Xj). As σ′(Xj) = σ(Xj) for
every j ∈ {k, . . . , `}, trivially implying σ′(Xj) v σ(τ), we finally have σ′ v τ .

Case 2: σ(Ek) and τ(Ek) agree on the ⊥-concept in the sense that

σ(Xk)|⊥ · N
∗
role = σ(Ek)|⊥ · N

∗
role = τ(Ek)|⊥ · N

∗
role.

As σ(Ek) @ τ(Ek), this implies that there is a P ∈ Ncon and a word û ∈ σ(Xk)|P such
that û 6∈ τ(Ek)|P . Construct σ′ by Ncon-modification choosing P and the above û. For σ′

it holds that

σ′(Ek)|P = σ(Ek)|P \
k−1
⋃

j=1

Ek|Xj
·W j

P .
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The word û occurs in σ(Ek)|P since

σ(Xk)|P = pf(σ(Ek)|P ) ⊆ σ(Ek)|P ,

and occurs in at least one product Ek|Xj
·W j

⊥ because otherwise either û 6∈ σ(Ek)|P or
û ∈ Ek|P . Thus, û 6∈ σ′(Ek)|P . As σ′ is obtained from σ only by removing words from role
languages σ(Xj)|P for all j ∈ {1, . . . , k−1}, we have σ′(Xk) @ σ′(Ek). It remains to show
σ′ v τ . For every j ∈ {1, . . . , k − 1}, we again distinguish two cases: if σ(Xj) ≡ σ′(Xj)
then trivially σ′(Xj) v τ(Xj) for all j, implying the proposition. Otherwise, σ(Xj)|⊥ =
σ′(Xj)|⊥, since we have no ⊥-modification, and therefore σ(Xj)|Q = σ′(Xj)|Q for every

Q ∈ Ncon\{P} and σ′(Xj)|P = σ(Xj)|P \W
j
P with σ(Xj)|P∩W j

P 6= ∅. For every j, τ(Xj)|P
contains no word from W j

P because otherwise û ∈ τ(Ek)|P . Hence, σ′(Xj)|P ⊆ τ(Xj)|P
for every j. The fact that σ′(Xj)|Q coincides with σ(Xj)|Q for every Q 6= P and that
σ @ τ implies the proposition σ′ v τ . ���

We have shown that the modified substitution σ′ can be constructed minimal in the sense
that no other solution τ at the same time (i) lies between σ and σ′ in respect to the strict
ordering @ on substitutions, and (ii) satisfies the kth side condition. This minimality
property justifies that no modification makes the left-hand side σ(Xk) more specific when
dealing with a subsumption condition Xk @

? Ek.

We are now prepared to prove soundness of the algorithm match
v
FL⊥

. To this end, we need
to make sure that subsumption conditions remain valid after modification.

Since more than one step in the computation of match@
L is considered, some notation is

required in preparation. Denote by σnew the new solution σ of P ′ computed in Step 4 of
the algorithm. Moreover, denote by σ0 the initial solution computed in Step 2. In the
tth iteration of Steps 3 to 5, t = 0, 1, . . . , denote by σt the substitution σ occurring in
Steps 3 and 4 and by σ′

t the substitution σ′ occurring in Steps 4 and 5. Note that always
σnew = σt+1. By definition, the solution returned by match@

FL⊥
upon input P is σ`.

Lemma 4.3.12 (Soundness)

1. For every modification of σ yielding σ′, it holds that if match
v
FL⊥

(P ′) succeeds in
Step 4 of the algorithm then σ(Xj) ≡ σ′(Xj) ≡ σnew(Xj) for every j ∈ {k, . . . , `}
and σ′ v σnew;

2. for every t ∈ {1, . . . , `}, σt satisfies Subsumption Conditions `− t + 1 to `;

3. if match@
FL⊥

(P) returns the substitution σ then σ solves P.

Proof. 1. For every j ∈ {k, . . . , `}, σ(Xj) = σ′(Xj) by Definition 4.3.6. As Xk to
X` do not occur in the additional matching problems that distinguish P ′ from P,
and as σnew is the least solution to P ′ and a solution to P, it is easy to see that
σ′(Xj) ≡ σnew(Xj).

For every j ∈ {1, . . . , k − 1}, σ′(Xj) v σnew(Xj) holds because of the additional
matching problems modulo subsumption {σ′(Xj) v

? Xj |1 ≤ j ≤ k − 1} in P ′.
Together with the above, this implies σ′ v σnew as required.

2. Let ` ≥ 1 since otherwise the proposition trivially holds. We show for every t ∈
{1, . . . , `} that σt satisfies Subsumption Conditions `− t+1 to `. Proof by induction
over t.

• t = 1: The case ρ1 = v is trivial. Moreover, if σ0(X`) @ σ0(Ek) then σ1 = σ0,
implying the proposition. Otherwise, by Lemma 4.3.11, σ′

0(X`) @ σ′
0(E`). As
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shown above in (1), this implies σ1(X`) = σ′
0(X`). Moreover, by (1), σ′

0 v σ1,
yielding

σ1(X`) = σ′
0(X`) @ σ′

0(E`) v σ1(E`).

• t > 1: By induction hypothesis, σt satisfies Subsumption Conditions ` − t + 1
to `. If ρt = @ then σt+1 = σt, implying the proposition. Otherwise, by
Lemma 4.3.11, σ′

t(X`−t) @ σ′
t(E`−t). By (1), σt(Xk) = σ′

t(Xk) = σt+1(Xk)
for all k > ` − t, implying that σt+1 still satisfies Subsumption Conditions
` − t + 1 to `. Moreover, together with the second claim from (1), we obtain
σt+1(X`−t) @ σt+1(E`−t) as seen for the case (t = 1).

3. Immediate consequence of (2).

���

In order to prove completeness, we have to show that match@
FL⊥

(P) successfully returns a
solution if the input matching problem P is solvable.

Lemma 4.3.13 (Completeness)
Let τ be a reduced solution to P. Then match@

FL⊥
(P) returns a substitution σ solving P.

Proof. If match@
FL⊥

(P) succeeds then, by Lemma 4.3.12, σ` satisfies P. Hence, it suffices
to show that every modification step necessary for the computation of σ` succeeds. If σ0

solves P then the proposition holds trivially. Otherwise, since τ also satisfies (M,Sv) of
which σ0 is the least solution, σ0 v τ . By Lemma 4.3.11, this guarantees the existence of
a modification σ′

0 with σ′
0 v τ . This implies that τ also solves P ′, implying that σnew = σ1

is defined and, by minimality, σ1 v τ . It is easy to see that, iterating the above argument,
we obtain that the computation of σ` succeeds and that σ` v τ . ���

As a consequence of the previous lemma, every minimal matcher (w.r.t. subsumption of
substitutions) is computed by an appropriate run of match@

⊥. This can be readily seen by
replacing τ by a minimal matcher to P.

Soundness and completeness in FL¬

In FL¬-concept descriptions, inconsistencies can additionally be introduced by words oc-
curring in role languages referring to an atomic concept and to its negation. Recall that
our notation C|⊥ allows for this by referring to the reduced version of C where all incon-
sistencies are explicit.

In Lemma 4.3.11 we could prove for every reduced substitution σ that σ v σ′ for every
possible modification σ′. In case of FL¬, this is no longer possible, because we depend
stronger on the properties of a strict solution τ . In the following lemma we therefore begin
by specifying a guessing strategy relative to τ .

Lemma 4.3.14 (Strictness and minimality of modifications in FL¬)
Let P := (M,S) be an FL¬-matching problem under subsumption conditions over Ncon,
Nrole, and Nvar =: {X1, . . . , X`}. Let S = {Xj ρ?

j Ej | 1 ≤ j ≤ `}. Let σ be a reduced
substitution solving (M,Sv). Let k ∈ {2, . . . , `} with ρk = @ and σ(Xk) ≡ σ(Ek). Let τ
be a reduced solution to M with σ @ τ . Then there exists a modified substitution σ ′ solving
(M,Sv) with

1. σ @ σ′;
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2. σ′ v τ and σ′(Xk) @ σ′(Ek).

Proof. 1. We show that there exists a modification in accordance with Definition 4.3.9
such that σ v σ′ and σ′(Xk) @ σ′(Ek). To this end, we present a guessing strategy to find
an appropriate modification σ′, distinguishing two cases.

Case 1: σ(Ek) and τ(Ek) disagree on the ⊥-concept, i.e.,

σ(Xk)|⊥ · N
∗
role = σ(Ek)|⊥ · N

∗
role ⊃ τ(Ek)|⊥ · N

∗
role.

This case is similar to the one for FL⊥ because σ is reduced. Hence, again construct σ′

by a ⊥-modification, picking one word û ∈ σ(Xk)|⊥ missing in τ(Ek)|⊥ ·N∗
role. In contrast

to the case of FL⊥, we additionally choose

Ŵ j
P := σ(Xj)|⊥ ∩W j

⊥ ∩ τ(Xj)|P

for every j ∈ {1, . . . , k−1} and every P ∈ P\{⊥}. As σ′ is still reduced, for every j either
σ′(Xj) ≡ σ(Xj) or both σ(Xj)|⊥ � σ′(Xj)|⊥ and

σ′(Xj)|P ⊆ σ(Xj)|P ∪ σ(Xj)|⊥ · N
∗
role

for every P ∈ P \ {⊥}. Because of û, the second case applies at least once, yielding σ @ σ ′

by Definition 4.2.9. Note that the above subset relation holds independently of our choice
of the sets Ŵ j

P . Nevertheless, choosing Ŵ j
P wrongly compromises the reducedness of σ′.

Case 2: Analogous to the guessing strategy for modifications in FL⊥. If σt(Ek) and τ(Ek)
agree on the ⊥-languages then

σ(Xk)|⊥ · N
∗
role = σ(Ek)|⊥ · N

∗
role = τ(Ek)|⊥ · N

∗
role.

Thus, there is some concept P ∈ P \ {⊥} and some word û ∈ σ(Xk)|P such that
û 6∈ τ(Ek)|P . Construct σ′ by an Ncon-modification choosing P and û. Consequently,
σ′(Xj)|Q = σ(Xj)|Q for all Q ∈ P \ {P} and j ∈ {1, . . . , `} and also for Q = P and
j ∈ {k, . . . , `}. Moreover, σ′(Xj)|P ⊆ σ(Xj)|P for all j ∈ {1, . . . , k − 1} with a strict
inclusion for at least one index j. Consequently, by Definition 4.2.9, σ′(Xj) v σ(Xj) and
a strict subsumption for at least one j, implying σ @ σ′.

2. We show that using the guessing strategy from (1) suffices for our claim. The proof is
analogous to the one for FL⊥.

Case 1: In case of a ⊥-modification,

σ′(Xj)|⊥ = (σ(Xj)|⊥ \W j⊥) ∪ (σ(Xj)|⊥ ∩W j
⊥) · Nrole

for every j ∈ {1, . . . , k − 1}, implying

σ′(Ek)|⊥ · N
∗
role = σ(Ek)|⊥ · N

∗
role \

k−1
⋃

j=1

Ek|Xj
·W j

⊥.

As û ∈ σ(Ek)|⊥ and û 6∈ τ(Ek)|⊥ ·N
∗
role, û 6∈ Ek|⊥ and there is at least one j ∈ {1, . . . , k−1}

with û ∈ Ek|Xj
·W j

⊥. Hence, û 6∈ σ′(Ek)|⊥ · N
∗
role, implying

σ′(Xk)|⊥ · N
∗
role ⊃ σ′(Ek)|⊥ · N

∗
role.

Together with σ @ σ′ from (1), this implies σ′(Xk) @ σ′(Ek). It remains to show σ′ v τ .
As (i) the definition of σ′(Xj)|⊥ for ⊥-modifications in FL¬ is identical to the one for FL⊥,
and (ii) the characterization of subsumption for FL¬ is analogous to the one for FL⊥, we
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analogously obtain for every j ∈ {1, . . . , k − 1} that either σ′(Xj) ≡ σ(Xj), trivially
implying σ′(Xj) v τ(Xj), or both σ′(Xj)|⊥ � τ(Xj)|⊥ and, for every P ∈ P \ {⊥},

τ(Xj)|P ⊆ σ(Xj)|P ∪ σ(Xj)|⊥ · N
∗
role. (∗)

Although again

σ′(Xj)|⊥ · N
∗
role = (σ(Xj)|⊥ · N

∗
role) \ (σ(Xj)|⊥ ∩W j

⊥),

the set σ′(Xj)|P in comparison to the case for FL⊥ is smaller. Therefore, however, ex-
changing σ by σ′ still preserves the subset relation from (∗), yielding

τ(Xj)|P ⊆ σ′(Xj)|P ∪ σ′(Xj)|⊥ · N
∗
role,

for every P ∈ P \ {⊥}, yielding σ′(Xj) v τ(Xj).

Case 2: analogous to the case of FL⊥. ���

Lemma 4.3.12 only depends on the facts (i) that the variables in {Xk, . . . , X`} remain un-

changed in the modification of σt(Ek) , (ii) that match
v
FL⊥

computes least matchers w.r.t.
the ordering v on substitutions, and (iii) that modifications are successful for a solvable
matching problem. These facts also hold for FL¬, as we have already seen. Consequently,
the proof of soundness of the algorithm match@

FL¬
is analogous to Lemma 4.3.12.

The same analogy holds for the proof of completeness. Lemma 4.3.13 only relies on the
minimality of modifications, i.e., Lemma 4.3.11, on Part (2) of Lemma 4.3.12 and on the

fact that match
v
FL⊥

computes least solutions. Therefore, completeness for match@
FL¬

can
be shown analogously.

It remains to show soundness and completeness for L = ALN .

Soundness and completeness in ALN

Similar to the previous cases, we show some basic properties of modifications in ALN
which suffice to prove soundness and completeness in the way seen for the smaller DLs.

Lemma 4.3.15 (Strictness and minimality of modifications in ALN )
Let P := (M,S) be an ALN -matching problem under subsumption conditions over Ncon,
Nrole, and Nvar =: {X1, . . . , X`}. Let S = {Xj ρ?

j Ej | 1 ≤ j ≤ `}. Let σ be a reduced
substitution solving (M,Sv). Let k ∈ {2, . . . , `} with ρk = @ and σ(Xk) ≡ σ(Ek). Let τ
be a reduced solution to M with σ @ τ . Then there exists a modified substitution σ ′ solving
(M,Sv) with

1. σ @ σ′;

2. σ′ v τ and σ′(Xk) @ σ′(Ek).

Proof. 1. Case 1: if σ and τ disagree on the ⊥-concept in the sense introduced in
Lemma 4.3.11 then define σ′ by a ⊥-modification choosing some word û ∈ σ(Xk)|⊥ \
τ(Ek)|⊥ and Ŵ j

P := σ(Xj) ∩W j
⊥ ∩ τ(Xj)|P for every j ∈ {1, . . . , k − 1} and every P ∈

P \ {⊥}. For every j, this implies either σ′(Xj) ≡ σ(Xj) or both σ(Xj)|⊥ � σ′(Xj)|⊥ and

σ′(Xj)|P ⊆ σ(Xj)|P ∪ σ(Xj)|⊥ · N
∗
role

for every P ∈ P \ {⊥}. As û ∈ σ(Ek)|⊥, the second case applies to at least one index j,
implying σ @ σ′ by Definition 4.2.9.
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Case 2: if σ and τ agree on the ⊥-concept then define σ′ by am Ncon-modification choosing
some P ∈ P \ {⊥} and some word û ∈ σ(Xk)|P . Hence, analogous to Lemma 4.3.11,
σ′(Xj)|Q = σ(Xj)|Q for all Q ∈ P \ {P} and all j ∈ {1, . . . , `} and also for Q = P and all
j ∈ {k, . . . , `}. For all j ∈ {1, . . . , k − 1}, σ′(Xj)|P ⊆ σ(Xj)|P with a strict inclusion for
at least one index j. Hence, by Definition 4.2.9, σ @ σ′.

2. We show that the guessing strategy from (1) suffices for our claim. Case 1: in case of
a ⊥-modification, û ∈ σ(Ek)|⊥ \ τ(Ek)|⊥ and û 6∈ Ek|⊥, implying û ∈ Ek|Xk

·W j
⊥ for at

least one j, implying
σ′(Xk)|⊥ · N

∗
role ⊃ σ′(Ek)|⊥ · N

∗
role.

Again, as σ′(Xk) = σ(Xk) and σ @ σ′, implying σ′(Xk) v σ′(Ek), this suffices to prove
the strict subsumption σ′(Xk) @ σ′(Ek).

The proof for σ′ v τ is analogous to Lemma 4.3.11. By construction of σ′, for every
j ∈ {1, . . . , `} either σ′(Xj) = σ(Xj) or σ(Xj)|⊥ � σ′(Xj)|⊥. As σ @ τ and as σ and τ
disagree on the ⊥-concept, also σ(Xj)|⊥ � τ(Xj)|⊥, implying σ′(Xj)|⊥ � τ(Xj)|⊥. With
σ(Xj) @ τ(Xj) we also know by Lemma 4.2.9 that

τ(Xj)|P ⊆ σ(Xj)|P ∪ σ(Xj)|⊥ · N
∗
role

for every P ∈ P \ ({⊥} ∪ N6) and

τ(Xj)|P ⊆ σ(Xj)|P ∪ σ(Xj)|⊥ · N
∗
role ∪ σ(Xj)|⊥ · r

−1

for every P =: (6 n r) ∈ N6. In both cases, every word in (σ(Xj)|⊥ ·N
∗
role)\(σ

′(Xj)|⊥ ·N
∗
role

is either in σ′(Xj)|P or, by choice of W j
P , not contained in τ(Xj)|P . Hence, the above

inclusions hold when replacing σ by σ′, implying by Definition 4.2.9 that σ′(Xj) v τ(Xj)
for every j ∈ {1, . . . , k − 1}. Hence, σ′ v τ .

Case 2: analogous to the case of FL⊥. ���

As seen in Lemmas 4.3.12 and 4.3.13 for the case of FL⊥, soundness and completeness can
be shown using only the facts that (i) match

v
L computes least matchers, (ii) the variables

{Xk, . . . , X`} remain unchanged in a modification step for the kth subsumption condi-
tion, and (iii) modifications are successful for solvable matching problems. Consequently,
soundness and completeness can be shown analogously for ALN .

The successful computation paths of match@
L (P) yield all minimal matchers of P while

the length of each computation path is polynomially bounded. Because matching under
acyclic side conditions in FL⊥, FL¬, ALN is known to be NP-hard [BKBM99], we obtain
the following theorem.

Theorem 4.3.16 For every L ∈ {FL⊥,FL¬,ALN}, deciding the solvability of L-matching
problems under acyclic side conditions is an NP-complete problem. The least solution to an
L-matching problem under acyclic side conditions can be computed by a non-deterministic
polynomial time algorithm.

4.4 Matching in EL w.r.t. hybrid TBoxes

In the present section we show how to solve matching problems w.r.t. a background termi-
nology, in our case, cyclic or hybrid EL-TBoxes. As shown in Section 3.3, hybrid EL-TBoxes
can in polynomial time be reduced to ordinary (cyclic) EL-TBoxes interpreted with gfp-
semantics. Hence, for matching in EL w.r.t. hybrid TBoxes it suffices to devise a matching
algorithm w.r.t. cyclic EL-TBoxes.
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4.4.1 Matching in EL w.r.t. cyclic TBoxes

For the definition of concept matching problems at the beginning of this chapter, we have
extended concept descriptions by variables, yielding concept patterns. As our aim in the
present section is to define matching problems w.r.t. cyclic EL-TBoxes, our first step is to
extend these by variables likewise. To this end, the following definition introduces pattern
TBoxes in which the right-hand side of a definition may be a concept pattern.

Definition 4.4.1 (Pattern TBox)
An EL-pattern TBox T is a finite set of definitions of the form A ≡ C, where A ∈ Ndef

and C is a concept pattern over Nprim, Ndef , Nrole, and Nvar. A is called defined in T and
may occur on the right hand-side of no other definition in T . Denote by NT

var the set of
all variables occurring in T . ���

Note that variables do not occur on left-hand sides of definitions. Denote by NT
var(A) the

set of variables in T ‘reachable’ from A.

Definition 4.4.2 (Matching problem)
Let T be an EL-pattern TBox with A,B ∈ NT

def . Moreover, let NT
var(A) = ∅. Then

A ≡?
gfp,T B is an EL-matching problem modulo equivalence w.r.t. T with gfp-semantics. ���

Throughout this section, we shall refer to ‘EL-matching problem modulo equivalence with
gfp-semantics’ by ‘EL-matching problem’. In order to define solutions to matching prob-
lems appropriately, some preparation is necessary. The following definition introduces
conservative extensions for pattern TBoxes.

Definition 4.4.3 (Conservative extension)
Let T1 be an EL-pattern TBox over Nprim, Ndef , Nrole. and Nvar. Then an EL-pattern

TBox T2 is a conservative extension of T1 iff NT2

prim = NT1

prim, NT2

role = NT1

role, NT1
var ⊇ NT2

var,
and T1 ⊆ T2. ���

Note that the above definition coincides on ordinary TBoxes with the definition of conser-

vative extensions from [Baa03a]. Moreover, since T2 is a pattern TBox, NT1

def ∩N
T2\T1

def = ∅.
In contrast to concept matching, we do not use substitutions to instantiate variables. In-
stead, we simply extend our TBoxes by definitions for the occurring variables. This is
accomplished by means of so-called instantiations.

Definition 4.4.4 (Instantiation)
Let T1 be an EL-pattern TBox over Nprim, Ndef , Nrole, and Nvar. Let T2 be a conservative
extension of T1. For every X ∈ NT1

var, let DX be a concept pattern over Nprim, Ndef , Nrole,
and NT1

var. Then
T3 := T2 ∪ {X ≡ DX | X ∈ NT1

var}

is an instantiation of T1. ���

Intuitively, an instantiation turns variables into defined concepts, and thus turns a pattern
TBox into an ordinary TBox. Using these notions, it is particularly simple to define
solutions to matching problems.

Definition 4.4.5 (Matcher)
Let A ≡?

gfp,T B be an EL-matching problem and let T ′ be an instantiation of T . Then T ′

is a matcher of A ≡?
gfp,T B iff A ≡gfp,T ′ B. ���
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Hence, a matcher to A ≡?
gfp,T B extends the pattern TBox T by definitions for all vari-

ables reachable from B such that A and B become equivalent. Clearly, we may restrict
ourselves to matching problems w.r.t. names because it holds for every concept description
C and every concept pattern D defined over a pattern TBox T that the matching problem
C ≡?

gfp,T D can be simulated by A ≡?
gfp,T ∪{A≡C,B≡D} B with A,B fresh defined names.

Before turning to solving matching problems w.r.t. cyclic EL-TBoxes as defined above,
some preparation is necessary.

4.4.2 Formal preliminaries

Recall that subsumption for cyclic EL-TBoxes with gfp-semantics has already been char-
acterized in Section 3.3.1 by means of simulation relations on description graphs. In
Section 4.1.2, in the context of concept matching in ALE , a superlanguage of EL, we have
seen that the lcs plays an important role in the definition of the relevant matching algo-
rithm. In this sense it is not surprising that our first step towards matching w.r.t. cyclic
EL-TBoxes is to introduce the lcs for cyclic EL-TBoxes. The relevant definitions are due
to [Baa03a].

Definition 4.4.6 (Gfp-lcs)
Let T1 be a cyclic EL-TBox and let A,B ∈ NT1

def . Let T2 be a conservative extension of

T1 with E ∈ NT2

def \ NT1

def . Then E is the least common subsumer of A and B in T1 w.r.t.
gfp-semantics (gfp-lcs) iff the following conditions hold:

1. A vgfp,T2
E and B vgfp,T2

E;

2. if T3 is a conservative extension of T2 and F a defined concept in T3 such that
A vgfp,T3

F and B vgfp,T3
F then E vgfp,T3

F ���

In order to be able to actually compute the lcs, the product of description graphs is
introduced.

Definition 4.4.7 (Graph product)
Let Gi := (Vi, Ei, Li), i = 1, 2 be two description graphs. Their product is the description
graph G1 × G2 := (V,E,L) with

• V := V1 × V2;

• E := {((v1, v2), r, (v
′
1, v

′
2)) | ∀i ∈ {1, 2} : (vi, r, v

′
i) ∈ Ei}; and

• L(v1, v2) := L1(v1) ∩ L2(v2).

For a description graph G = (V,E,L) and n ∈ � \ {0}, the n-ary graph product is
inductively defined as follows.

G1 := G;

Gn+1 := Gn × G ���

Due to associativity and commutativity of the Cartesian product we may denote the ver-
tices of Gn by n-ary tuples (v1, . . . , vn) instead of (. . . (v1, v2), . . . , vn). In order to trans-
form product graphs back to TBoxes, we define TBoxes induced by description graphs.
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Definition 4.4.8 (TBox of G)
Let G := (V,E,L) be a description graph. Then the TBox of G is defined by

tbox(G) := {A ≡ u
P∈L(A)

P u u
(A,r,B)∈E

∃r.B | A ∈ V } ���

Two of the main results from [Baa03a] prove that the gfp-lcs can in fact be computed in
polynomial time by means of the graph product.

Lemma 4.4.9 Let T be a cyclic EL-TBox and A,B ∈ NT
def . Then (A,B) w.r.t. T ∪

tbox(GT × GT ) is the gfp-lcs of A and B w.r.t. T .

Theorem 4.4.10 Let T be a cyclic EL-TBox and A,B ∈ NT
def . Then the gfp-lcs of A and

B w.r.t. T always exists, and it can be computed in polynomial time.

With this preparation, we are ready to introduce our matching algorithm for cyclic EL-
TBoxes in the following section.

4.4.3 Solving matching problems w.r.t. cyclic EL-TBoxes

By treating variables as primitive concepts, pattern TBoxes can, syntactically, be regarded
as ordinary TBoxes. This allows us to define normalized pattern TBoxes analogously to
normalized cyclic TBoxes, and to transform pattern TBoxes into description graphs and
vice versa.

Definition 4.4.11 (n-ary product)
Let T be an EL-pattern TBox and let n ∈ � \ {0}. The n-ary product T n of T is defined
as T n := tbox(Gn

T ). ���

In order to extend the notion of simulation relations to graphs of pattern TBoxes, variables
are simply ignored:

Definition 4.4.12 (Simulation relation)
Let T be a normalized EL-pattern TBox. Then Z is a simulation relation on GT iff
Z : GT ′ ⇀∼ GT ′ , where T ′ = T [X/> | X ∈ NT

var]. ���

Note that in respect to the treatment of variables, the above definition is analogous to
Definition 4.1.3 for homomorphisms on description trees. We can now define our matching
algorithm w.r.t. cyclic EL-TBoxes as follows.

Definition 4.4.13 (match)
Let T be a normalized EL-pattern TBox and let A ≡?

gfp,T B be an EL-matching problem.

For every simulation relation Z : GT ⇀∼ GT and for every X ∈ NT
var, define

Z(X) := {A′ ∈ Ndef | ∃B
′ ∈ Ndef : (B′, A′) ∈ Z ∧X ∈ LT (B′)}.

Then, match(A ≡?
gfp,T B) is defined as shown in Figure 4.4.1. ���

Upon input A ≡?
gfp,T B, our matching algorithm match returns all instantiations TZ for

which, firstly, Z is a simulation relation on GT with (B,A) ∈ Z; and secondly, A subsumes
B w.r.t. TZ interpreted with gfp-semantics.

For a given Z, TZ is defined as an instantiation of a conservative extension of T . We discuss
the conservative extension first and the additional definitions for variables afterwards. For



 chapter ��� . matching

Input: matching problem P := A ≡?
gfp,T B with normalized EL-pattern TBox T

Output: set of matchers of P

Return {TZ | Z : GT ⇀∼ GT ∧ (B,A) ∈ Z ∧A wgfp,TZ
B},

where, for every Z : GT ⇀∼ GT , TZ is defined by:

TZ := T ∪
⋃

i∈{|Z(X)||X∈NT
var(B)}\{1}

(T [X/> | X ∈ NT
var])

i

∪ {X ≡ (A1, . . . , An) | X ∈ NT
var(B)

∧ Z(X) = {A1, . . . , An} ∧ |Z(X)| = n}

∪ {X ≡ > | X 6∈ NT
var(B)}.

Figure 4.4.1: The algorithm match for cyclic EL-TBoxes

every variable X ∈ NT
var, T is extended by the |Z(X)|-ary graph product of T . For every

X, the set Z(X) contains all ‘destination’ vertices onto which vertices in GT labeled by
X are mapped. Hence, whenever Z maps vertices labeled by X onto n different vertices
then T is extended by the n-ary graph product of T . More precisely, the graph product
is computed after removing variables from T . Note that this removal is only done for
convenience to simplify the notation in our proofs and not necessary for correctness or
completeness of the algorithm.

As a result, the relevant conservative extension of T for every X contains a definition of
the lcs over all destination vertices of vertices labeled by X: if Z(X) contains n pairwise
distinct destination vertices {A1, . . . , An} then, by Lemma 4.4.9, the relevant lcs is the
vertex (A1, . . . , An) in the n-ary product of T .

As the second line of the definition of TZ shows, X is finally assigned the lcs over all desti-
nations of X: X ≡ (A1, . . . , An). Note that the condition |Z(X)| = n only ensures pairwise
distinctness of the vertices A1, . . . , An. Without this condition, X might be assigned to
vertices not existing in the relevant extension. Note also that variables unreachable from
B are assigned >.

Some remarks on the analogy between the ALE-concept matching algorithm from Defini-
tion 4.1.7 and the above might help to understand our matching algorithm further.

• The notion of >-patterns used in the definition of matchALE does not occur here
because it is only relevant in the presence of value restrictions.

• While matchALE considers homomorphisms between description trees, the above algo-
rithm generalizes this to simulation relations between description graphs. Especially,
for an EL-concept description C and an EL-concept pattern D, every homomorphism
from tree(D) onto tree(C) can be viewed as a simulation relation Z on G{A≡C,B≡D}

with (B,A) ∈ Z, where A,B are fresh concept names. Conversely, every simulation
relation Z on G{A≡C,B≡D} with (B,A) ∈ Z and fresh names A,B induces a positive
finite number of homomorphisms from tree(D) onto tree(C).

• For every variable X occurring in the respective matching problems, both algorithms
compute the lcs over the concepts induced by all ‘destinations’ of X w.r.t. the relevant
homomorphism or simulation relation, respectively. While matchALE uses the lcs
explicitly, it is implicit in the graph product used in the above definition.
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Figure 4.4.2: Example description graph of an EL-pattern TBox

• The algorithm matchALE returns a set of substitutions while the above algorithm
returns a set of instantiations. However, as we will show in Lemma 4.4.19, the latter
generalizes the former in the sense that every EL-matching problem w.r.t. the empty
TBox can be solved by means of our algorithm for matching w.r.t. cyclic EL-TBoxes.

In order to get an impression how the above matching algorithm works, consider the
following simple example.

Example 4.4.14 Recall Example 2.2.1, where nodes lying on an infinite chain have been
defined. We extend this example by introducing infinite chains of coloured nodes. Let
Nprim := {Red,Blue} and Nrole := {edge, colour, left, right}. In our example pattern TBox
T , we define the concept RedI of infinite chains of red nodes and the concept BlueI of
infinite chains of blue nodes as follows.

RedI ≡ ∃edge.RedI u ∃has colour.Red

BlueI ≡ ∃edge.BlueI u ∃has colour.Blue

A ≡ ∃left.RedI u ∃right.BlueI

B ≡ Y u ∃left.X u ∃right.X

Moreover, T contains a defined concept A with an existential restriction over left to an
infinite red path and an existential restriction over right to an infinite blue path. For the
sake of our example we have added a concept pattern B with a variable Y on the top-level,
and existential restrictions over right and left, both with another variable X. Figure 4.4.2
shows the description graph of T after normalization. For every vertex with a non-empty
label set, the corresponding label set is denoted above or underneath the vertex. Our goal
is to solve the matching problem A ≡?

gfp,T B .

According to the definition of match, we have to consider every simulation relation Z on
GT with (B ,A) ∈ Z. In our case, it is easy see that only two such Z exist, one of which
being

Z = {(B ,A), (B1,RedI ), (B2,BlueI )}.

The only other simulation relation containing (B ,A) swaps the destination vertices of B1

and B2, which need not be considered separately. Hence, the next step is to compute TZ

for the above Z. Clearly, NT
var(B) = {X,Y } and, by definition, Z(X) = {RedI ,BlueI} and

Z(Y ) = {A}, so that obviously |Z(X)| = 2 and |Z(Y )| = 1. Thus, we can already write
down our candidate solution TZ as

TZ := T ∪ (T [X/>, Y/>])2 ∪ {X ≡ (RedI ,BlueI ), Y ≡ A}.
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The definitions of X and Y in the instantiation show that the product TBox is only
interesting insofar as it defines (RedI ,BlueI ), implying that we need not compute the entire
product TBox for our example but only the subgraph induced by this one interesting
vertex. To simplify our notation, let T ′ := T [X/>, Y/>]. It is easy to check that in
G2
T ′ , the vertex (RedI ,BlueI ) is connected via an edge labeled edge to itself and has an

has colour-edge to the vertex (ARed,ABlue). The latter has no outgoing edges and an empty
label set because the vertices ARed and ABlue have no outgoing edges and disjoint label sets
in GT . Hence, the only definitions of T ′2 relevant for TZ are

(RedI ,BlueI ) ≡ ∃edge.(RedI ,BlueI ) u ∃has colour.(ARed,ABlue)

(ARed,ABlue) ≡ >,

so that we can write TZ as the extension of T by the following four definitions.

(RedI ,BlueI ) ≡ ∃edge.(RedI ,BlueI ) u ∃has colour.(ARed,ABlue)

(ARed,ABlue) ≡ >

X ≡ (RedI ,BlueI )

Y ≡ A

Observe that the assignment to X, i.e., the lcs of RedI and BlueI , cannot be expressed
without introducing a new definition for nodes of some colour on infinite paths. It remains
to test whether TZ actually solves the matching problem.

By definition of match, TZ is a solution to the matching problem iff A wgfp,TZ
B . In

order to check this subsumption, we have to normalize TZ in the sense of Definition 3.3.3.
The only definitions violating the normal form are those of B , X, and Y because defined
concepts occur outside of existential quantifiers—note that after instantiation of Y , Y is a
defined concept. Hence, we replace all defined concepts by their corresponding definitions,
obtaining

B ≡ ∃left.RedI u ∃right.BlueI u ∃left.X u ∃right.X

X ≡ ∃edge.(RedI ,BlueI ) u ∃has colour.(ARed,ABlue)

Y ≡ ∃left.RedI u ∃right.BlueI ,

while the rest of TZ remains unchanged. As B syntactically contains the definition of
A, it is easy to check that there exists a simulation relation W on description graph
of the normalized version of TZ with (A,B) ∈ W . Hence, one solution returned by
match(A ≡?

gfp,T B) is TZ . Note that our algorithm computes TZ twice because of the above
mentioned other simulation relation swapping the destinations of B1 and B2. However, as
both results are identical and as the solution of match(A ≡?

gfp,T B) is defined as a set, this
set contains only TZ .

To be quite exact, the our algorithm computes a syntactically larger solution because the
entire TBox T ′2 is part of the actual TZ . For the sake of simplicity, we have restricted our
attention to the relevant part of T ′2. ���

It remains to show that the above algorithm in general correctly solves EL-matching prob-
lems w.r.t. cyclic EL-TBoxes.

4.4.4 Soundness and completeness

The following lemma proves soundness of our algorithm match, i.e., every solution returned
by the algorithm solves the input matching problem.
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Lemma 4.4.15 (Soundness)
Let A ≡?

gfp,T B be an EL-matching problem with normalized T . Let TZ be one instantiation

in match(A ≡?
gfp,T B). Then A ≡gfp,TZ

B.

Proof. By definition of match, A wgfp,TZ
B. To show the reverse direction, it suffices to

construct a simulation relation Y : GTZ
⇀∼ GTZ

with (B,A) ∈ Y .

As description graphs are defined only for normalized TBoxes, we begin by normalizing
TZ . As TZ ‘instantiates’ every variable X in T by a definition for X, every definition
from T containing X on the right-hand side is not normalized any more. Moreover, every
definition of the form X ≡ (A1, . . . , An) is not normalized. Hence, it suffices to modify
the right-hand sides of TZ as follows. Firstly, in every definition from T replace every
occurrence of a variable X by the definition of X, and secondly, in every definition of the
form X ≡ (A1, . . . , An), replace (A1, . . . , An) by its definition. Formally, we can define
the normalized version T ′

Z of TZ by

T ′
Z := T [X/deftTZ

(X) | X ∈ NT
var]

∪
⋃

i∈{|Z(X)||X∈NT
var(B)}\{1}

(T [X/> | X ∈ NT
var])

i

∪ {X ≡ deftTZ
((A1, . . . , An)) | X ≡ (A1, . . . , An) ∈ TZ

∧ deftTZ
((A1, . . . , An)) 6= >}

∪ {X ≡ > | X ≡ > ∈ TZ}.

Define a binary relation Y on GT ′
Z

as follows.

Y := Z ∪ {((A1, . . . , An), Ai) | A1, . . . , An ∈ NT
def ∧ T

n ⊆ TZ ∧ 1 ≤ i ≤ n}

We show that Y is a simulation relation on GT ′
Z
, i.e., that Conditions S1 and S2 in Defi-

nition 3.3.7 are satisfied.

(S1) Consider an arbitrary pair (D,C) ∈ Y . We show LT ′
Z
(D) ⊆ LT ′

Z
(C).

• If (D,C) ∈ Z then LTZ
(D) \NT

var(D) ⊆ LTZ
(C) ⊆ LT ′

Z
(C). If LTZ

(D) contains only
variables X with X ≡ > ∈ TZ then LT ′

Z
(D) = LTZ

(D), implying LT ′
Z
(D) ⊆ LT ′

Z
(C).

Otherwise, X ≡ (A1, . . . , An) ∈ TZ for some variable X ∈ LTZ
(D) and appropri-

ate names A1, . . . , An. In this case, LT ′
Z
(D) instead of X additionally contains the

primitive concepts in LTZ
((A1, . . . , An)). But (D,C) ∈ Z by Definition 4.4.13 im-

plies C ∈ {A1, . . . , An}, implying LTZ
((A1, . . . , An)) ⊆ LTZ

(C) by definition of the
product graph. Hence, the primitive names in LT ′

Z
(D) replacing X are contained in

LTZ
(C) ⊆ LT ′

Z
(C) as required.

• If (D,C) ∈ Y \ Z then either (D,C) = ((A1, . . . , An), Ai) for some 1 ≤ i ≤ n
or (D,C) = (X, (A1, . . . , An)) with X ≡ (A1, . . . , An) ∈ TZ . In the first case,
LT ′

Z
((A1, . . . , An)) = LTZ

((A1, . . . , An)) by definition of T ′
Z , LTZ

((A1, . . . , An)) ⊆
LTZ

(Ai) by definition of the product graph, and LTZ
(Ai) ⊆ LT ′

Z
(Ai). In the second

case, we immediately have defT ′
Z
(X) = defT ′

Z
((A1, . . . , An)), implying the proposi-

tion.

(S2) Consider an arbitrary edge (D, r,D′) ∈ ET ′
Z

with (D,C) ∈ Y . It suffices to find an
edge (C, r, C ′) ∈ ET ′

Z
with (D′, C ′) ∈ Y .

• If (D,C) ∈ Z and (D, r,D′) ∈ ET then Z : GT ⇀∼ GT guarantees that there exists
a defined concept C ′ ∈ NT

def with the desired properties. Since NT
def ⊆ NTZ

def , C ′ also
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occurs in NTZ

def . Moreover, as shown above, (D′, C ′) ∈ Z implies (D′, C ′) ∈ Y , and
(C, r, C ′) ∈ ET implies (C, r, C ′) ∈ ET ′

Z
because GTZ

preserves all edges from GT .

• If (D,C) ∈ Z and (D, r,D′) 6∈ ETZ
then (D, r,D′) corresponds to an existential

restriction added to defT ′
Z
(D) by substituting some variable X with defTZ

(X) in the

definition of D in T ′
Z . But then, by definition of TZ , there are A1, . . . , An ∈ NT

def

and some 1 ≤ i ≤ n such that X ≡ (A1, . . . , An) ∈ TZ and C = Ai. By definition of
the product graph, firstly, there is an r-edge (C, r, C ′) ∈ ET , and secondly, D′ is of
the form (B1, . . . , Bn) with C ′ = Bi. Hence, (D′, C ′) ∈ Y by definition of Y .

• If (D,C) ∈ Z and (D,C) is of the form ((A1, . . . , An), Ai) then (D, r,D′) is of the
form ((A1, . . . , An), r, (B1, . . . , Bn)). By definition of the product graph, (Ai, r, Bi) ∈
ET . By definition of Y , ((B1, . . . , Bn), Bi) ∈ Y as required. ���

Before proving completeness of match, we first introduce an appropriate notion of com-
pleteness for matching problems w.r.t. cyclic EL-TBoxes. For concept matching problems,
Definition 4.0.5 introduced the notion of s-completeness for this purpose. Following the
same idea, i.e., that more specific matchers are more ‘interesting’ because they contain
more information about the input matching problem, we introduce a subsumption relation
for matchers

Definition 4.4.16 Let P := A ≡?
gfp,T B be an EL-matching problem and let T1, T2 be

instantiations of T . Let T ′
1 and T ′

2 be renamed instances of T1 and T2, respectively, such

that N
T ′
1

def ∩ N
T ′
2

def = ∅ and N
T ′
1

var ∩ N
T ′
2

var = ∅. Then

• T1 is more specific than T2 (T1 vs T2) iff for all X ∈ NT
var it holds that XT ′

1 vgfp,T ′
1∪T ′

2

XT ′
2 , where XT ′

i is the renamed instance of X in T ′
i for i = 1, 2.

• T1 is equivalent to T2 (T1 ≡s T2) iff T1 vs T2 and T2 vs T1.

LetM be a matcher of P. ThenM is called minimal w.r.t. P iffN vs M implies N ≡s M
for all matchers N of P. A set of matchers S to P is called s-complete iff S contains all
minimal matchers w.r.t. P. Moreover, M is the least matcher of P iff {M} is s-complete.

���

Note that the least matcher of a matching problem is unique up to s-equivalence. Clearly,
but for the different comparison relation, the above definition is analogous to Defini-
tion 4.0.5. The following example shows that the least matcher need not always exist even
for matching problems w.r.t. acyclic EL-TBoxes.

Example 4.4.17 Let Nprim := {P,Q} and Nrole := {r}. Moreover, let Ndef = {A,B} and
Nvar := {X,Y }. Define a pattern TBox T by T := {A ≡ ∃r.P u ∃r.Q,B ≡ ∃r.X u ∃r.Y }.
Then, M1 := T ∪ {X ≡ P, Y ≡ Q} and M2 := T ∪ {X ≡ Q,Y ≡ P} are both minimal
matchers of A ≡?

gfp,T B. A least matcher does not exist. ���

We now prove that the algorithm match is complete in the sense of Definition 4.4.16.

Theorem 4.4.18 (s-Completeness)
Let P := (A ≡?

gfp,T B) be an EL-matching problem with normalized T . Then, match(P)
is s-complete.

Proof. Let M be a matcher of P. W.l.o.g. let M be normalized. It suffices to show
that TZ vs M for some matcher TZ ∈ match(P). By definition, M is an instantiation of
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T , implying that M extends a conservative extension T ′ of T by a definition for every
variable X ∈ NT

var. Moreover, A ≡gfp,M B, implying a simulation relation ZM : GM ⇀∼ GM
with (B,A) ∈ ZM.

Starting from ZM we iteratively construct a simulation relation Z such that TZ , as defined
in Definition 4.4.13, has the desired properties. Intuitively, Z is a restriction of ZM to GT
that has as few elements as possible while still containing (B,A).

• Z0 := {(B,A)}

• If (B1, r, B2) ∈ GT and (B1, A1) ∈ Zi and (B2, A2) 6∈ Zi for all A2 ∈ VT with
(A1, r, A2) ∈ GT then arbitrarily choose an edge (A1, r, A2) ∈ GT such that (B2, A2) ∈
ZM. Then define Zi+1 := Zi ∪ {(B2, A2)}; and

• let Z := Zn, where n ∈ � is the least index with Zn = Zn+1.

The fact that an edge (A1, r, A2) with the desired properties always exists in the above
iteration is a consequence of (B,A) ∈ ZM and NT

var(A) = ∅. The latter implies that
GTM

(A) and GT (A) are equal. Moreover, Z : GT ⇀∼ GT . S1 holds because all pairs added
to Z are elements of ZM and S2 obviously holds by construction.

We first show TZ vs M. Assume w.l.o.g. that all defined names A ∈ Ndef (and variables
X ∈ Nvar) are renamed to ATZ (XTZ ) in TZ and to AM (XM) in M. It suffices to show
XTZ vgfp,TZ∪M XM for every X ∈ NT

var. By definition of TZ it holds that ATZ

i vgfp,TZ

(ATZ

1 , . . . , ATZ
n ) for every X ≡ (ATZ

1 , . . . , ATZ
n ) ∈ TZ and every 1 ≤ i ≤ n. As TZ ∪M

is a conservative extension of TZ , this subsumption also holds w.r.t. the union TZ ∪M.
Moreover, since Z ⊆ ZM, AM

i vgfp,M MM, where XTZ ≡ (ATZ

1 , . . . , ATZ
n ) ∈ TZ and

XM ≡ MM ∈ M, implying AM
i vgfp,TZ∪M MM. By definition of the lcs, we obtain

(ATZ

1 , . . . , ATZ
n )M vgfp,TZ∪M MM, implying XTZ vgfp,TZ∪M XM.

It remains to show that TZ is a matcher. By construction, A vgfp,TZ
B, so that only

the reverse direction must be shown. As GTZ
(ATZ ) and GM(AM) are equal up to the

renaming ·TZ /·M, clearly (i) ATZ ≡gfp,TZ∪M AM, and (ii) AM ≡gfp,TZ∪M BM because
M is a matcher. As shown above, XTZ vgfp,TZ∪M XM for every X ∈ NT

var. Hence, it is
easy to show (iii) BTZ vgfp,TZ∪M BM because the difference between GTZ∪M(BTZ ) and
GTZ∪M(BM) corresponds to the different definitions for every XTZ and XM. Combining
the three subsumptions yields ATZ wgfp,TZ∪M BTZ , implying A wgfp,TZ

B. ���

Hence, our matching algorithm for cyclic EL-TBoxes with gfp-semantics is sound and s-
complete. As matching w.r.t. cyclic EL-TBoxes generalizes matching in EL w.r.t. the empty
TBox, a natural question is whether match can also be used to solve matching problems
w.r.t. the empty TBox. The following lemma shows that this holds and that, in particular,
all minimal solutions are found.

Lemma 4.4.19 Let C ≡? D be an EL-matching problem. Let T := {A ≡ C,B ≡ D} with
A,B 6∈ Nprim. Then, σ is a minimal solution to C ≡? D iff there exists a minimal matcher
M∈ match(A ≡?

gfp,T B) with X ≡gfp,M σ(X) for every X ∈ Nvar(D).

Proof. (⇒) If σ solves C ≡? D then C ≡ σ(D), implying A ≡{A≡C,B≡σ(D)} B with A,B
fresh defined concept names. Hence, A ≡T ′ B with

T ′ = {A ≡ C,B ≡ D} ∪ {X ≡ σ(X) | X ∈ Nvar(D)} ∪ {Y ≡ > | Y 6∈ Nvar(D)}.

As T ′ is acyclic, descriptive and gfp-semantics coincide, yielding A ≡gfp,T ′ B, so that T ′

is an instantiation of a (trivial) conservative extension of T solving the matching problem
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A ≡?
gfp,T B. Clearly, as T is acyclic, T ′ is a minimal solution because otherwise σ would be

no minimal solution to C ≡? D. Due to the s-completeness of the algorithm match shown
in Theorem 4.4.18, there exists a matcher M ∈ match(A ≡?

gfp,T B) with the required
properties.

(⇐) By definition,M is an instantiation of a conservative extension T2 of T with A ≡gfp,M

B. As T is acyclic it is easy to see from the definition of match that T2 andM are acyclic
as well. Hence, M \ T2, i.e., the part of M instantiating variables, can be expanded,
producing an instantiationM′ in which no defined concept occurs on the right-hand side
of any definition of the form X ≡ CX with X ∈ Nvar. But then

T ′ := T ∪ {X ≡ CX | X ∈ Nvar(D)}

also solves A ≡?
gfp,T B. As descriptive and gfp-semantics coincide on acyclic TBoxes,

A ≡T ′ B. Hence, the substitution σ defined by σ(X) = CX for all X ∈ Nvar(D) solves
C v? D. Again, σ is minimal because otherwise we could construct a solution to A ≡?

gfp,T

B more specific than M. ���

Consequently, our matching algorithm for cyclic EL-TBoxes with greatest-fixedpoint se-
mantics generalizes the EL-matching algorithm w.r.t. the empty TBox presented in [BK00a].
This immediately implies several complexity lower bounds: Firstly, deciding the solvability
of matching problems modulo equivalence w.r.t. cyclic EL-TBoxes is NP-hard. Secondly,
the minimal matchers to matching problems w.r.t. cyclic EL-TBoxes can be of exponen-
tial size in the input TBox. Moreover, the number of minimal matchers can be also be
exponential in the input TBox. Any algorithm solving matching problems w.r.t. cyclic
EL-TBoxes is therefore necessarily worst-case exponential.

Note also that deciding the solvability of matching problems modulo subsumption w.r.t.
cyclic EL-TBoxes can be trivially reduced to subsumption w.r.t. cyclic EL-TBoxes by
replacing all occurring variables by >.

It remains to examine the computational complexity of our algorithm. For a given match-
ing problem A ≡?

gfp,T B, the number of simulation relations Z : GT ⇀∼ GT with (B,A) ∈ Z
can be exponentially large in the input. For every fixed Z, it is easy to see that every
instantiation TZ , as defined in Definition 4.4.13, can be computed in exponential time in
the input TBox. Hence, we obtain the following complexity result.

Theorem 4.4.20 Deciding the solvability of matching problems modulo subsumption w.r.t.
cyclic EL-TBoxes with gfp-semantics is tractable. Deciding the solvability of matching
problems modulo equivalence w.r.t. cyclic EL-TBoxes with gfp-semantics is NP-hard. The
solutions of a matching problem w.r.t. cyclic EL-TBoxes with gfp-semantics can be expo-
nential in number and can be of exponential size in the input matching problem. They can
be computed by a deterministic exponential-time algorithm.

It is open whether the solvability of matching problems modulo equivalence w.r.t. cyclic
EL-TBoxes with gfp-semantics is in NP. It might be interesting to note that matching
w.r.t. cyclic TBoxes becomes simpler under certain conditions. As shown in [Baa03a],
computing the lcs w.r.t. cyclic EL-TBoxes is polynomial for the binary lcs, i.e., if the lcs
of only two concepts has to be computed. For matching problems in which every variable
occurs at most a constant number of times, this implies that every instantiation TZ can
be computed in polynomial time.

In preparation for matching w.r.t. hybrid EL-TBoxes, the following subsection shows how
to reduce the lcs w.r.t. hybrid EL-TBoxes to cyclic EL-TBoxes with gfp-semantics.
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4.4.5 The least-common subsumer w.r.t. hybrid EL-TBoxes

Our aim is to extend the lcs w.r.t. cyclic EL-TBoxes introduced in Definition 4.4.6 to
hybrid EL-TBoxes. To this end, the notion of conservative extensions of EL-TBoxes from
Definition 4.4.3 has to be extended from cyclic to hybrid TBoxes.

Definition 4.4.21 (Conservative extension)
Let (F , T1) be a hybrid EL-Box. Then (F , T2) is a conservative extension of (F , T1) iff T2
is a conservative extension of T1 in the sense of Definition 4.4.3. ���

Hence, a conservative extension of (F , T ) is obtained by fixing F and extending T in the
usual way. We can now define the lcs w.r.t. hybrid TBoxes analogously to the case of
cyclic TBoxes as a conservative extension satisfying certain conditions.

Definition 4.4.22 (Hybrid lcs)
Let (F , T1) be a hybrid TBox and A,B ∈ NT1

def . Let (F , T2) be a conservative extension of

(F , T1) with C ∈ NT2

def . Then, C in (F , T2) is the hybrid least-common subsumer (lcs) of
A,B in (F , T1) iff the following conditions hold.

1. A vgfp,F,T2
C and B vgfp,F,T2

C; and

2. If (F , T3) is a conservative extension of (F , T2) and D ∈ NT3

def such that A vgfp,F,T3
D

and B vgfp,F,T3
D then C vgfp,F,T3

D. ���

In order to compute the lcs w.r.t. hybrid EL-TBoxes, we utilize the reduction from hybrid
to cyclic TBoxes defined in Definition 3.3.14 and the usual gfp-lcs algorithm for cyclic EL-
TBoxes from Section 4.4.2t. The following lemma shows that this strategy in fact yields
the correct result w.r.t. hybrid TBoxes.

Lemma 4.4.23 Let (F , T ) be a normalized hybrid TBox and A,B ∈ NT
def . Then, (A,B)

in (F , f(T ) ∪ f(T )2) is the hybrid lcs of A and B in (F , T ).

Proof. Let U := f(T ) ∪ f(T )2. We have to show that (A,B) in (F ,U) satisfies the two
conditions from Definition 4.4.22.

(1) We show A vgfp,F,U (A,B). By Theorem 3.3.18, this holds iff A vgfp,f(U) (A,B)
which holds iff there exists a simulation relation Y : f(U) ⇀∼ f(U) with ((A,B), A) ∈ Y .
We construct such a Y . By definition of the gfp-lcs, we already know A vgfp,U (A,B),
implying a simulation relation Y1 : U ⇀∼ U with ((A,B), A) ∈ Y1.

Claim 1. There exists a simulation relation Z such that Z : Gf(U) ⇀∼ GU , Z−1 : GU ⇀∼
Gf(U), and the identical relation is a subrelation of Z.

By Lemma 3.3.9, Y := Z◦Y1◦Z−1 is a simulation relation on f(U). Moreover, ((A,B), A) ∈
Y because ((A,B), (A,B)) ∈ Z and (A,A) ∈ Z−1. Hence, (A,B) in f(U) subsumes A,
and by symmetry also subsumes B.

Proof of Claim 1. As (F , T ) is normalized, V := Vf(U) = VU = NT
def ∪ (NT

def)
2. In order to

distinguish between vertices from Gf(U) and vertices from GU , denote every vertex v ∈ GU
by v′. We show that

Z := {(v, v′) | v ∈ NT
def ∪ (NT

def)
2} ∪ {(v, (v, v)′) | v ∈ NT

def}

has the desired properties. Consider Z−1 first. By construction, LU (v′) ⊆ Lf(U)(v) for
every v ∈ V and EU ⊆ Ef(U), implying that the identical subrelation of Z−1 satisfies
Conditions (S1) and (S2) for simulation relations. For every pair in Z−1 of the form
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((v, v)′, v), (S1) holds by definition of the graph product because always LU ((v, v)′) =
LU (v′). (S2) holds for every pair ((v, v)′, v) because every edge ((v, v)′ r (w,w)′) ∈ EU

corresponds to the edge (v′ r w′) ∈ EU which also occurs in Ef(U) (named (v r w)) with
((w,w)′, w) ∈ Z−1.

Now consider Z. In order to show that (S1) holds, we show that Lf(U)(v) ⊆ LU (v′) for
every v. This suffices for Z because Lf(U)(v) ⊇ LU (v′) by construction and Lf(U)(v, v) =
Lf(U)(v) for every v ∈ Vf(U). We distinguish between two cases for v.

If v = A for some A ∈ NT
def then Lf(U)(v) = deff(U)(A) ∩ Nprim. As the F-completion

only adds descriptive consequences from F and as no defined name from NT
def occurs

anywhere in f(T )2, it is easy to see that deff(U)(A) equals deff(f(T ))(A). As descriptive
consequences of F and f(T ) are by definition already descriptive consequences of F and
T , deff(f(T ))(A) equals deff(T )(A), implying Lf(U)(v) = LU (v′).

If v = (A,B) for some (A,B) ∈ NT
def then Lf(U)(v) = deff(U)(A,B) ∩ Nprim. Consider

some P ∈ deff(U)(A,B)∩Nprim. If P ∈ LT 2 then obviously also P ∈ LU (v′). Otherwise, P
is a descriptive consequence of (A,B) w.r.t. F ∪ f(T )2. But then, by definition of the lcs,
P is also a consequence of both A and B in F ∪ f(T ), and thus a descriptive consequence
of A and B in F ∪ T because f(T ) already contains all descriptive consequences of F ∪
f(T ). Thus, P occurs in Lf(T )(A) and in Lf(T )(B), and therefore also in Lf(T )2(A,B) ⊆
LU ((A,B)′), as required.

It remains to show that (S2) holds for Z. Consider some (v r w) ∈ Ef(U) and some u′ ∈ VU

with (v, u′) ∈ Z. We again distinguish two cases for v.

If v = A for some A ∈ NT
def then u′ = A′ or u′ = (A,A)′. In the first case, it is easy to

see that (A′ r w′) ∈ EU because deff(U)(A) = defU (A), as argued above, and (w,w′) ∈ Z
by construction. If u′ = (A,A)′ then ((A,A)′ r (w,w)′) ∈ EU by definition of the graph
product and because (A′ r w′) ∈ EU , as argued above. Moreover, (w, (w,w)′) ∈ Z by
construction.

If v = (A,B) for some (A,B) ∈ NT 2

def and (v, u) ∈ Z then u′ = (A,B)′ and either w ∈ NT
def

or w ∈ NT 2

def . If w ∈ NT 2

def then (v r w) ∈ ET 2 ⊆ EU with (w,w) ∈ Z as required. Otherwise,
w = C for some C ∈ NT

def , implying that C = AP for some P ∈ Nprim and that the edge
((A,B) r AP ) corresponds to the existential restriction ∃r.AP added to the definition of
(A,B) by f . Hence, ∃r.P is a descriptive consequence of (A,B) w.r.t. F ∪ U , implying
that ∃r.P is a descriptive consequence of both A and B w.r.t. F ∪ f(T ) and thus also
a consequence of A and B w.r.t. F ∪ T . Consequently, ∃r.AP occurs in deff(U)(A) and
deff(U)(B). Hence, ∃r.(AP , AP ) ∈ deff(U)2(A,B), implying ((A,B) r (AP , AP )′) ∈ EU

and (AP , (AP , AP )′) ∈ Z as required.

It remains to show that (A,B) in U is the least subsumer of A and B.

(2) Consider a conservative extension (F ,U ∪ V) of (F ,U) and some D ∈ NV
def such that

A vgfp,F,U∪V D and B vgfp,F,U∪V D. By Theorem 3.3.18, this implies A vgfp,f(U∪V) D
and analogous for B.

Claim 2. There exists a modification V ′ of V extending the definitions in V by additional
conjuncts and a simulation relation Z such that Z : Gf(U∪V) ⇀∼ GU∪V′ , Z−1 : GU∪V′ ⇀∼
Gf(U∪V′), and the identical relation is a subrelation of Z.

As a consequence, D in f(U∪V) is equivalent to D in U∪V ′, a conservative extension of U .
But as (A,B) is the gfp-lcs of A and B in U , this by definition implies D vgfp,f(U∪V) (A,B),
which by Theorem 3.3.18 implies D vgfp,F,U∪V (A,B), as required.

Proof of Claim 2. By definition, no defined names from V occur in U , implying that the
F-completion of definitions in U does not depend on V. Hence, f(U ∪V) equals f(U)∪V ′,
where

V ′ = {A ≡ C ∈ f(U ∪ V) | A ∈ NV
def},
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i.e., V ′ is the subset of f(U ∪ V) containing the definitions of concept names from V.
By Claim 1, there exists a simulation relation Z1 between f(U) and U with the desired
properties. Define Z := Z1∪{(A,A′) | A ∈ NV

def}. As f(U∪V) = f(U)]V ′, it immediately
follows that Z satisfies Claim 2. ���

The above Lemma proves that the hybrid lcs of two concepts A,B defined in a hybrid
TBox (F , T ) can be obtained by computing the gfp-lcs of A and B w.r.t. the F-completion
f(T ) of T . As the lcs of arbitrary arity can be reduced to the binary lcs, the above results
immediately carry over to the n-ary lcs. As the reduction from hybrid to cyclic EL-TBoxes
can be computed in polynomial time, see Corollary 3.3.19, and as the lcs algorithm for
cyclic EL-TBoxes with gfp-semantics has already been studied [Baa03a], we obtain an lcs
algorithm for hybrid EL-TBoxes with the following properties.

Corollary 4.4.24 Let (F , T ) be a normalized hybrid EL-TBox and A,B ∈ NT
def . Then the

lcs of A and B always exists and can be computed in polynomial time in the size of (F , T ).
The lcs of arbitrary arity w.r.t. hybrid EL-TBoxes can be computed in exponential time in
the size of the input and is of exponential size in the size of the input in the worst-case.

To complete the picture of non-standard inferences w.r.t. hybrid EL-TBoxes, we extend
the most-specific concept defined for cyclic EL-TBoxes with gfp-semantics in [Baa03a] to
hybrid EL-TBoxes. The underlying idea is the same as seen above for the lcs, i.e., the
usual notion of conservative extensions is replaced by hybrid conservative extensions and
gfp-subsumption is replaced by hybrid subsumption.

Definition 4.4.25 (Hybrid msc)
Let (F , T1) be a hybrid TBox and A an EL-ABox containing the individual name a. Let
(F , T2) be a conservative extension of (F , T1) with C ∈ NT2

def . Then, C in (F , T2) is the
most-specific concept (msc) of a in (F , T1) and A iff the following conditions hold.

1. a is an instance of C w.r.t. (F , T2) and A; and

2. If (F , T3) is a conservative extension of (F , T2) and D ∈ NT3

def such that a is an
instance of D w.r.t. (F , T3) and A then C vgfp,F,T3

D. ���

It can be shown similarly to Lemma 4.4.23 that the hybrid msc of an individual a w.r.t.
(F , T ) and A is obtained by computing the gfp-msc of a w.r.t. the F-completion f(T ) of
T . Hence, we obtain the following corollary for the msc.

Corollary 4.4.26 Let (F , T ) be a normalized hybrid EL-TBox, A be an EL-ABox, and
a ∈ NA

nom an individual name. Then the msc of a w.r.t. (F , T ) and A always exists and
can be computed in polynomial time.

In the following section, we close our theoretical examination of non-standard inferences
by showing how matching problems w.r.t. hybrid EL-TBoxes can be solved.

4.4.6 Solving matching problems w.r.t. hybrid EL-TBoxes

It has been shown in Section 4.4.4 how matching problems w.r.t. cyclic EL-TBoxes with
gfp-semantics can be solved, the main ingredient being the gfp-lcs w.r.t. cyclic EL-TBoxes
with gfp-semantics from [Baa03a]. As the latter has been extended from cyclic to hybrid
TBoxes in the previous subsection, it seems natural to use the same approach in order to
solve matching problems w.r.t. hybrid EL-TBoxes. In order to define a matching algorithm
for hybrid TBoxes, we first have to extend our notion of a pattern TBox to hybrid TBoxes.
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Definition 4.4.27 (Hybrid pattern TBox)
A hybrid EL-pattern TBox T is a pair (F , T ) of a general EL-TBox F defined over Nprim

and Nrole, and an EL-pattern TBox defined over Ndef , Nprim, and Nrole. ���

Hence, hybrid pattern TBoxes extend ordinary pattern TBoxes in the obvious way. Con-
servative extensions and instantiations of hybrid pattern TBoxes are defined analogous to
their cyclic counterparts, i.e., they affect only T and leave F unchanged. We can now
immediately extend the notion of matching problems to hybrid pattern TBoxes.

Definition 4.4.28 (Matching problem)
Let (F , T ) be a hybrid EL-pattern TBox with A,B ∈ NT

def . Moreover, let NT
var(A) = ∅.

Then A ≡?
gfp,F,T B is a hybrid EL-matching problem modulo equivalence w.r.t. (F , T ). ���

Note that, despite the restriction of A to defined concept names from T , concept patterns
can also be matched against concept names defined in F . For instance, in order to match
a concept pattern B defined in T against some P ∈ NT

con from F , it suffices to extend T by
a definition of the form AP ≡ P , with AP a fresh concept name, and solve the matching
problem AP ≡

?
gfp,F,T B. Clearly, one can also define concept patterns using only names

from F .

Solutions to hybrid EL-matching problems can now defined analogous to matchers for
matching problems w.r.t. cyclic TBoxes.

Definition 4.4.29 (Matcher)
Let A ≡?

gfp,F,T B be a hybrid EL-matching problem and let (F , T ′) be an instantiation of

(F , T ). Then (F , T ′) is a matcher of A ≡?
gfp,F,T B iff A ≡gfp,F,T ′ B. ���

Using the reduction from Section 3.3.2, we can now define a matching algorithm for hybrid
TBoxes as follows.

Definition 4.4.30 (matchhy)
Let (F , T ) be a normalized hybrid EL-TBox and let A v?

gfp,F,T B be a hybrid EL-matching
problem. Then define

matchhy(A vgfp,F,T B) := {(F , (T ′ \ f(T )) ∪ T ) | T ′ ∈ match(A vgfp,f(T ) B)}. ���

In the above definition, f(T ) denotes the F-completion of T from Definition 3.3.14 and
match the matching algorithm for cyclic EL-TBoxes from in Definition 4.4.13. Hence,
the algorithm matchhy proceeds in three main steps. Firstly, the input hybrid pattern
TBox (F , T ) is translated into an equivalent3 cyclic pattern TBox f(T ). Secondly, for the
translated matching problem A vgfp,f(T ) B, the algorithm match computes all minimal
solutions and returns them in the form of instantiations T ′ of f(T ). Thirdly, the solution
is returned as a set of instantiations of hybrid pattern TBoxes. How exactly these hybrid
instantiations are defined deserves a closer look.

As every instantiation T ′ returned by the algorithm match is a conservative extension of
f(T ) and not T , T ′ already completely specifies a solution to the initial hybrid matching
problem. Or, in other words, F becomes redundant. As we are interested in hybrid
instantiations of (F , T ), and not of (F , f(T )), we modify every T ′ by removing f(T )
and replacing it by the original TBox T , i.e., compute (T ′ \ f(T ))∪ T . This modification
preserves equivalence as a direct consequence of the correctness of the F-completion shown
in Section 3.3.2. Using the result on the hybrid lcs from Lemma 4.4.23, one can show the
following corollary.

3Treating variables as atomic concepts.
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Corollary 4.4.31 Let (F , T ) be a normalized hybrid EL-TBox and let A vgfp,F,T B be an
EL-matching problem w.r.t. (F , T ). Then, matchhy(A vgfp,F,T B) computes an s-complete
set of matchers to A vgfp,F,T B.

The complexity results obtained in the previous section together with the fact that f(T )
can be computed in polynomial time in the size of (F , T ) immediately imply the following
complexity results.

Corollary 4.4.32 Deciding the solvability of matching problems modulo subsumption w.r.t.
hybrid EL-TBoxes is tractable. Deciding the solvability of matching problems modulo equiv-
alence w.r.t. hybrid EL-TBoxes is NP-hard.

The solutions to a matching problem w.r.t. hybrid EL-TBoxes can be exponential in num-
ber and of exponential size in the input matching problem. They can be computed by a
deterministic exponential-time algorithm.

It is open whether the solvability of matching problems modulo equivalence w.r.t. hybrid
EL-TBoxes is in NP. Note that that additional rewriting might be desirable in order to
present the solutions of matchhy more succinctly because T ′ can contain the n-ary product
of f(T ) which might contain information already implied by F . Moreover, it might be
interesting to apply the above approach to matching problems defined over general TBoxes
if only the decision problem is of interest.

In the remainder of this section, we briefly describe how to utilize the F-completion to
reduce other non-standard inferences from hybrid to cyclic TBoxes.

In the case of the lcs, consider a hybrid EL-TBox (F , T ). We want to compute the lcs of
defined concepts A1, . . . , An ∈ NT

def . Again, note that auxiliary definitions can be added
to T in order to directly use concepts from F . We know by Lemma 4.4.9 that the gfp-
lcs w.r.t. cyclic EL-TBoxes is simply computed by the graph product. Hence, the lcs of
A1, . . . , An ∈ NT

def w.r.t. (F , T ) corresponds to the concept (A1, . . . , An) defined in the
n-ary product f(T )n. Therefore, it suffices to extend (F , T ) to (F , T ∪f(T )n) and return
(A1, . . . , An). Note that the foundation F is not used here, for which reason some kind of
rewriting (using F) might be desirable.

The case of the msc is similar. Given a hybrid EL-TBox (F , T ), an ABox A and some
individual a ∈ NA

nom, we compute the msc of a w.r.t. A and (F , T ) as the msc of a w.r.t.
A and f(T ). The results for the msc from [Baa03a] guarantee that the correct concept is
computed. Moreover, as the msc can be computed in polynomial time in the cyclic case,
we immediately obtain the following corollary.

Corollary 4.4.33 The lcs w.r.t. a hybrid EL-TBox always exists, it can be of exponential
size in the size of the input TBox, and it can be computed in deterministic exponential
time. The binary lcs w.r.t. a hybrid EL-TBox can be computed in polynomial time. The
msc w.r.t. a hybrid EL-TBox and an ABox A always exists and it can be computed in
deterministic polynomial time.

4.5 Implementations

In order to show the practicability of the matching algorithms presented in Sections 4.1
and 4.5.2, prototype implementations for both algorithms have been developed and tested.
Our implementation of matching in ALE is presented in Section 4.5.1 while in Section 4.5.2
deals with the implementation of matching in ALN . The fact that the DLs ALE and ALN
share the common sublanguage FL¬ provides an opportunity to examine at the end of
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Section 4.5.2 how the, as we shall see, quite different architectures of the algorithms
perform in comparison.

4.5.1 Matching in ALE

Recall the ALE-matching algorithm from Figure 4.1.1. Clearly, in order to implement
matchALE , three major subtasks must be solved:

1. generate all >-patterns D′ of the input pattern D;

2. find all homomorphisms ϕ from tree(D′) onto tree(C); and

3. for every variable X, compute the lcs of all subconcepts C↓ϕ(m), where X occurs at

position m in tree(D′>).

The first task only refers to the input concept pattern and requires only simple syntactical
manipulations. Even the computation of the >-normal form D′> of a >-pattern D′ can be
done easily in polynomial time. As (even optimized) implementations of the lcs algorithm
for ALE already exist [BT02a], the third task is simple as soon as D′ and ϕ are determined.
The final subsumption test C w σ(D) can also be carried out by a standard reasoner, such
as FaCT [Hor98] or Racer [HM01b].

The crucial task is the second one. Constructing homomorphisms between two description
trees in the usual top-down way (similar to the lcs algorithms) may lead to subproblems
being solved several times over, resulting in an exponential worst-case complexity. To
overcome this problem, we choose a dynamic-programming strategy and compose homo-
morphisms in a bottom-up fashion, thereby storing and re-using sets of admissible des-
tination nodes for every source node. Hence, only polynomially many subproblems are
solved for the computation of one homomorphism. The dynamic-programming approach,
however, suggests a more sophisticated data structure for the representation of description
trees. It proved expedient not to choose an algebraic data structure (as used for the lcs
implementations), but to represent a description tree by a certain set of arrays that allows
to retrieve ‘interesting’ aspects important for the computation of homomorphisms more
quickly. The following example illustrates this representation.

Example 4.5.1 Consider the ALE-concept pattern D := ∃r.(A uX u ∀r.X u ∀s.Y ). The
representation of D as a description tree is shown below on the left, with nodes labeled
in depth-first order from 0 to 3. In the implementation, D would be represented by nine
arrays shown below on the right. For every node, its depth in the description tree, label
sets, successors and predecessor are represented by the first six arrays. The next two
arrays, valueNode and existNode, are indexed by role name and depth, while varNode is
indexed by variable name.

depthA [0 :2 1 :2 2 :1 3 :0]

labels [0 :∅ 1 :∅ 2 :{A} 3 :∅]

variables [0 :{X} 1 :{Y} 2 :{X} 3 :∅]

valueSucc [0 : [r :∅ s :∅] 1 : [r :∅ s :∅] 2 : [r :{0} s :{1}] 3 : [r :∅ s :∅]]

existSucc [0 : [r :∅ s :∅] 1 : [r :∅ s :∅] 2 : [r :∅ s :∅] 3 : [r :{2} s :∅]]

pred [0 : (2, ∀, r) 1 : (2, ∀, s) 2 : (3, ∃, r)]

3 : ∅

2: {A, X}

∃r

∀s

1: {Y }0: {X}

∀r

valueNode [r : [1 :∅ 2 :{0}] s : [1 :∅ 2 :{1}]]

existNode [r : [1 :{2} 2 :∅] s : [1 :∅ 2 :∅]]

varNode [X :{0, 2} Y :{1}]
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Input: description trees Gs =: (Ns, Es, ns0, Ls), Gd =: (Nd, Ed, nd0, Ld),
ns ∈ Ns, nd ∈ Nd

Output: nd admissible destination of ns? True iff:

• ⊥ ∈ Ld(nd) and

– depth(ns) > depth(nd) or

– depth(ns) = depth(nd) and either ns = ns0 and nd = nd0 or both nodes
are successors w.r.t. the same quantor and role name

• ⊥ 6∈ Ld(nd)

– depth(ns) = depth(nd)

– for every successor n′
s of ns there exists at least one successor n′

d of nd as
admissible destination for n′

s.

Figure 4.5.1: Test for admissible destination nodes

Without going into detail one can see in, e.g., valueNode that there is only one ∀-successor
w.r.t. role r on depth 2, namely node 0. ���

In our implementation, homomorphisms are composed in two steps. In the actual bottom-
up computation, a set of admissible destination nodes is computed for every node of the
source description tree. These sets are then used to compute the actual homomorphisms.
The crucial part in the first step is, for a given source node, to determine whether some
destination node is admissible. This part is shown in further detail in Figure 4.5.1. The
idea is to test for stricter conditions than the ‘local’ part of Definition 4.1.1 in order to de-
tect non-admissible destination nodes sooner. For instance, according to Definition 4.1.1,
a leaf labeled with ⊥ is always an admissible destination node. However, if its depth ex-
ceeds that of the source node then every mapping containing this pair violates Condition 4
of Definition 4.1.3 at some node on the path from the root to the source node. Note that
in case ⊥ 6∈ Ld(nd) a recursive call for n′

s is only performed if this node does not already
occur in the relevant arrays. Note also that no backtracking is necessary because of the
dynamic programming strategy.

In comparison to the theoretical algorithm, the implemented one contains three optimiza-
tions worth mentioning.

• Preprocessing : the input concept pattern and concept description are simplified,
producing smaller description trees.

• Necessary conditions: let >(D) and ⊥(D) denote the concept obtained from the
pattern D by replacing all variables in D by > and ⊥, respectively. If C 6v >(D) or
⊥(D) 6v C then the matching problem C ≡? D has no solution.

• >-patterns: to generate a top-pattern D′ of D is only promising when replacing
variables by > leads to a removal of some subterm in the >-normal form D′> and
hence to a removal of edges in the relevant description tree tree(D′>). Moreover, if
one >-pattern D′> does admit of a homomorphism then every generalization of D′

also does, only yielding solutions potentially not minimal w.r.t. v.

The following section shows some performance tests for the implemented algorithms with
the optimizations discussed above.
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Benchmarks

An obvious approach to benchmarking our implementation of ALE-matching is to use
randomly generated matching problems. Nevertheless, if C and D are generated indepen-
dently of each other then it is unlikely that a matcher for C ≡? D exists. In particular,
due to the second optimization (necessary conditions) such matching problems might be
solved without even invoking the actual matching algorithm.

Therefore, we randomly generate a concept C first and then construct a concept pattern D
from C by randomly replacing subconcepts of C by variables. Matching problems obtained
in this way are not necessarily solvable because of multiple occurrences of variables. As a
simple example, consider C := ∃r.Au∃s.B and D := ∃r.X u∃s.X. The matching problem
C ≡? D has no solution.

Note that assuming the concept pattern D to be smaller than C seems justified especially
when viewing matching as querying over KBs. Note also that benchmarks computed thus
do not make full use of the above optimization techniques, as the necessary-conditions
optimization is never relevant for the problems generated in the above way.

Our implementation uses Common LISP as underlying implementation language. The
benchmarks have been measured on a standard PC with one . GHz Intel Pentium-4 pro-
cessor and  MB of memory. In a first experiment, a total of , matching problems
(in  groups, using different parameters for the random generation) have been exam-
ined. Taking overall averages, the concept description C had an average size of  with
a maximum of , and the concept pattern D had size  with a maximum of .
The matching algorithm on average took . seconds to solve the problem, the observed
maximum was . seconds.

More details on the behaviour of theALE-matching algorithm can be found in Section 4.5.2,
where in a second experiment, matchALE is applied to FL¬-matching problems.

4.5.2 Matching in ALN

In order to implement the ALN -matching algorithm introduced in Section 4.2.2, appropri-
ate data structures for the representation of concept descriptions, concept patterns, and
tree-like automata are necessary.

As the algorithm is defined w.r.t. the role languages of the FL0-normal form of its input,
it seems expedient to begin by translating the input matching problem into an array of
sets of lists over symbols, the symbols representing the alphabet Nrole. Our data structure
for tree-like automata resembles the inductive representation of trees: a vector whose
elements are either atomic objects or again vectors. In our case, we only additionally have
to discriminate non-final from final nodes and ordinary leaves from those accepting N∗

role.
In order to decide word-problems more quickly, vectors representing non-leaf nodes are
implemented as arrays instead of lists.

The overall strategy of the implementation corresponds to the steps described in Sec-
tion 4.2.2:

1. represent the input role languages as tree-like automata;

2. compute a candidate solution σ by operations on tree-like automata; and

3. verify the system of formal language equations from Lemma 4.2.5 in the way de-
scribed above in Section 4.2.2.

As implementation language, we chose Common LISP because it proved well-suited to re-
alize our representation of tree-like automata. Moreover a LISP implementation makes our
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Figure 4.5.2: Benchmarks for matching in ALN

algorithm compatible to the DL system SONIC [Tur05, TK04] which provides an interface
to the knowledge editor Protégé [GMF+03], see also Section 1.1. This may help to make
our algorithm available, and usable, by domain experts using DL systems.

Benchmarks

In order to test the performance of our implementation on a sufficiently large set of data,
we again had to resort to randomly generated matching problems. For the same reason as
described above, random ALN -matching problems were generated in a two stage process,
first randomly generating a concept C and then constructing a concept pattern D from C
by randomly replacing sub-concepts of C by variables.

The generated random matching problems were influenced by a vector of probabilities
controlling the depth and width of the resulting concept C as well as the frequency of the
different constructors available in ALN and the variables in D. Our benchmarks comprise
a total of about , matching problems in  groups, each of which was generated
with a unique probability vector. Moreover, we have generated another , matching
problems which, though random, were constructed to be always solvable. The maximum
problem size, i.e., the sum of the sizes of C and D, was limited by ,. The benchmarks
were measured on a standard PC with one . GHz Pentium-4 processor and  MB of
memory. Computing overall averages, the algorithm takes . seconds to solve a matching
problem of size  with D being two thirds the size of C.

Figure 4.5.2 gives a more detailed account of our findings. Diagram (a) shows the result
of our benchmarks as a scatterplot together with a fitting function computed by the least-
squares method. One dot in the diagram represents one matching problem C ≡? D. In
the diagram, the horizontal position of every dot represents the sum of the sizes C and
D while the vertical position represents the time in milliseconds necessary to solve the
problem.

The fitting function in Figure 4.5.2(a) not only matches the overall average fairly well,
but also shows the general trend of the expected computation time for larger problems.
A problem of size, e.g.,  increases the computation time to about . seconds. Never-
theless, the ‘darker’ cluster below the fitting function indicates that the majority of the
problems are solved in less than one second.

Astonished by the strong dispersion of the scatterplot in Figure 4.5.2(a), we have re-
arranged the plot so that the horizontal position of every dot representing a matching
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Figure 4.5.3: Benchmarks for the ALE-matching algorithm in FL¬

problem C ≡? D is determined by the size of C alone, thus ignoring the size of D. This
rearrangement produces the scatterplot in Figure 4.5.2(b).

Comparing diagrams (a) and (b), the first immediate observation is that the size of C
influences the computation time much stronger than the size of D—although on average
the size of D is two thirds the size of C. Moreover, we observe one cluster of simpler
matching problems and another cluster of ‘hard’ ones, where a problem of size  on
average already seems to take . seconds to solve. Analysis of our data revealed that the
‘hard’ cases comprise exactly those problems which, though random, were designed to be
solvable.

As we do not have the data to verify these findings by matching problems from realistic
applications, we cannot rule out that the above findings are specific to randomly gener-
ated matching problems. Nevertheless, it seems expedient to aim future optimizations of
the ALN -matching algorithm at improving the computation time for solvable matching
problems.

A comparison to the ALE-matching algorithm

The fact that a matching algorithm for the DL ALE has also been implemented offers the
unique opportunity to compare the ALN - to the ALE-matching algorithm head to head on
FL¬-matching problems, the largest DL in the intersection of ALN and ALE . This compar-
ison might be interesting for two reasons. Firstly, both algorithms take a totally different
approach to solving a matching problem C ≡? D. While the ALN -algorithm solves a sys-
tem of formal language equations, the ALE-algorithm tries to construct homomorphisms
from the description tree of D into that of C. Secondly, the ALN -algorithm exploits
the fact that FL¬-matching problems have at most one solution while the ALE-algorithm
might look for several ones.

For our comparison, we have generated a set of , FL¬-matching problems in the way
described above. The results for the ALN -algorithm are very similar to the ones discussed
above. On average, a problem of size  was solved in . seconds by the ALN -algorithm,
compared to just . seconds by the algorithm for ALE . The resulting scatterplots for
the ALN -algorithm applied to FL¬-matching problems are not shown here because they
were almost identical to Figure 4.5.2. The scatterplots for the ALE-algorithm are shown
in Figure 4.5.3.

The plot in Figure 4.5.3(a) shows that the majority of matching problems is solved in less
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than . seconds with relatively fewer cases strongly deviating upwards. Moreover, the
fitting function indicates that even a problem of size , is usually solved in about .
seconds.

The discrimination by ordinary matching problems and those designed to be solvable, see
Figure 4.5.3(b), shows that our findings from the ALN -algorithm are exactly reversed.
The ALE-algorithm apparently had no difficulty with solvable matching problems while
the ‘hard’ cases comprise those problems of which many have no solution.

The above findings suggests to direct further optimization efforts of our ALN -matching
algorithm not to identifying unsolvable problems earlier, but rather to enhancing the
computation of solutions of solvable matching problems. In the case of our ALE-matching
algorithm, this seems exactly reversed.

The overall performance of both matching algorithm suggests a good run-time behaviour:
both algorithms on average solve matching problems of size up to  in less than one sec-
ond. The direct comparison, however, surprisingly shows that the ALE-matching algorithm
performs much better—although at least theoretically, the polynomial ALN -matching al-
gorithm might be expected to outperform the exponential space ALE-matching algorithm.
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Informally, concept approximation means the following: given a concept C defined in a
source DL Ls, find a concept D in a destination DL Ld such that D subsumes C, and D
is the most specific concept in Ld with this property. More precisely, the above describes
upper approximation. In our case, the source DL is ALC and the destination DL ALE . The
relevant approximation algorithm is presented in Section 5.1. A method to speed up the
computation of ALE-approximations of ALC-concept descriptions with certain properties is
presented in Section 5.1.3. Finally, in Section 5.2, we briefly discuss approximation from
ALCN , the extension of ALC by number restrictions, to ALEN , the corresponding extension
of ALE . An in-depth examination of ALCN -ALEN -approximation is beyond the scope of
the present work.

5.1 Approximation from ALC to ALE

Formally, the ALE-approximation of an ALC-concept description is defined as follows.

Definition 5.1.1 (ALE-approximation)
Let C be an ALC-concept description. An ALE-concept description D is an ALE-approxima-
tion of C iff

1. C v D; and

2. D v E for every ALE-concept description E with C v E. ���

Computing ALE-approximations means to eliminate disjunctions from ALC-concept de-
scriptions appropriately. In the simple case of a disjunction C1 tC2 of two ALE-concepts,
the most specific ALE-concept description subsuming C1 tC2 is just the lcs of C1 and C2.
Hence, the disjunction is approximated by the lcs of the disjuncts.

It seems tempting to generalize this approach to approximating every ALC-concept descrip-
tion C by substituting every occurring disjunction with the lcs of the relevant disjuncts.
Hence, define approxtriv(C) as follows: if C ≡ ⊥, C ≡ >, or C ∈ P then approxtriv(C) := C.
Otherwise,

approxtriv(C1 u · · · u Cn) := approxtriv(C1) u · · · u approxtriv(Cn)

approxtriv(C1 t · · · t Cn) := lcs{approxtriv(C1), . . . , approxtriv(Cn)}

approxtriv(Qr.C) := Qr.approxtriv(C) for all Q ∈ {∃,∀}
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This naive approach, however, does not always compute the most specific ALE-concept
description subsuming C, as the following example illustrates.

Example 5.1.2 For atomic concepts A and B, consider Cex := (∀r.B t (∃r.B u ∀r.A)) u
∃r.A.

approxtriv(Cex) ≡ lcs{∀r.B,∃r.B u ∀r.A} u ∃r.A

≡ ∀r.> u ∃r.A

≡ ∃r.A

Clearly, Cex v ∃r.(A u B) @ ∃r.A ≡ approxtriv(Cex). Thus, the algorithm approxtriv does
not find an optimal solution. ���

Another straightforward approach to approximation seems to compute a set of copies of the
original ALC-concept description C, replacing every disjunction by only one disjunct. The
least common subsumer of these modified copies might be the approximation. The pseudo-
approximation approxsplit(C) would thus be defined as approxsplit(C) := lcs(split(C)),
where split(C) is inductively defined as follows:

split(C) := {C} , if C ∈ P(C) ∪ {⊥,>}

split(C1 u · · · u Cn) := {D1 u · · · uDn | Di ∈ split(Ci), 1 ≤ i ≤ n}

split(C1 t · · · t Cn) := split(C1) ∪ · · · ∪ split(Cn)

split(Qr.C) := {Qr.D | D ∈ split(C)} for all Q ∈ {∃,∀}

The above algorithm works correctly for Example 5.1.2: split transforms the input concept
description into a set consisting of ∀r.A u ∃r.B and ∃r.A u ∀r.B u ∃r.B the lcs of which
yields ∃r.(A uB). Nevertheless, other examples show that approxsplit is incorrect.

Example 5.1.3 For atomic concepts A and B, let Dex := ∃r.A u ∃r.B u ∀r.(¬A t ¬B).
Applying the algorithm approxsplit to C yields the following result.

approxsplit(Dex) ≡ lcs(split(Dex))

≡ lcs{∃r.A u ∃r.B u ∀r.¬A,∃r.A u ∃r.B u ∀r.¬B}

≡ ∃r.lcs{A u ¬A,A u ¬B} u ∃r.lcs{A u ¬A,B u ¬B} u . . .

≡ ∃r.(A u ¬B) u ∃r.⊥ u . . .

≡ ⊥

Thus, the returned concept does not even subsume the input. ���

The above examples suggest that, contrary to first glance, eliminating disjunctions from
ALC-concepts appropriately is not trivial. The following sections will show that an ALE-
approximation algorithm consistent with Definition 5.1.1 still relies the lcs inference, but
additionally relies on a normal form for ALC-concept descriptions introduced next.

5.1.1 Formal preliminaries

In the present section, we are concerned with a normal form for ALC-concept descriptions.
This normal is used for a structural characterization of subsumption for the asymmetric
case of subsumption between an ALC-concept description and an ALE-concept description.
With these preliminaries, our algorithm to compute upper approximations of ALC-concept
descriptions is introduced formally in Section 5.1.2.
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For the remainder of this chapter, let Nrole = {r}. All results can easily be generalized to
the case of finitely many roles. To simplify our notation, denote by P the set of (negated)
atomic concepts, i.e., P := Ncon∪{¬A | A ∈ Ncon}. For every concept description D, denote
by P(D) the subset of atomic concepts in P occurring on the toplevel of D. To simplify
our notation, denote by Ex(D) the set of all existential restrictions and by val(D) the
conjunction over all value restrictions occurring in D. For example, Ex(P u∃r.Qu∃r.>) =
{P,>} and val(∀r.P u ∀r.(P uQ)) = P u P uQ.

Normal forms

In [Küs01], a so-called ‘concept-oriented’ normal form for ALE-concepts has been intro-
duced. The idea behind this normal form is to modify ALE-concept descriptions in such
a way that at most one value restriction occurs on top-level and inside every existential
restriction.

Definition 5.1.4 (ALE-normal form)
Let D be an ALE-concept description. D is in ALE-normal form, iff D = ⊥, D = >, or D
is of the form

D = u
A∈P(D)

A u u
C′∈Ex(D)

∃r.C ′ u ∀r.val(D)

where val(D) and every concept in Ex(D) again are in ALE-normal form. ���

Note that P(D) also contains negated atomic concepts. For instance, the ALE-normal form
of A u ∀r.A u ∃r.B u ∀r.¬B yields A u ∃r.B u ∀r.(A u ¬B). Transforming an arbitrary
ALE-concept description into ALE-normal form does not increase its size. We additionally
define a so-called propagated ALE-normal form that makes inconsistencies explicit and
propagates value restrictions to existential restrictions.

Definition 5.1.5 (Propagated ALE-normal form)
Let D be an ALE-concept description. Then D is in propagated ALE-normal form, iff none
of the following normalization rules can be applied at any position in C.

P u ¬P −→ ⊥ , where P ∈ Ncon

E u ⊥ −→ ⊥

∃r.⊥ −→ ⊥

∀r.> −→ >

E u > −→ E

∀r.C u ∀r.D −→ ∀r.(C uD)

∃r.C u ∀r.D −→ ∃r.(C uD) u ∀r.D ���

Observe that the actual propagation in the above sense is done by the last transformation
rule. The propagated ALE-normal form is a specialization of the ALE-normal form for
which the last but one transformation rule suffices. Transforming a concept description
into propagated ALE-normal form, however, can result in exponentially larger concept
descriptions because the last transformation rule duplicates the subconcept D.

In order to extend the (ordinary) ALE-normal form to ALC, we require ALC-concept de-
scriptions to be in negation normal form, and additionally enforce that the bottom concept
is represented uniquely and that every disjunction is in disjunctive normal form.
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Definition 5.1.6 (ALC-normal form)
Let C be an ALC-concept description. C is in ALC-normal form, iff C = ⊥, C = >, or C
is of the form

C = C1 t · · · t Cn,

Ci = u
A∈P(Ci)

A u u
C′∈Ex(Ci)

∃r.C ′ u ∀r.val(Ci)

for all i ∈ {1, . . . , n}, where (i) Ci 6≡ ⊥ for all i and (ii) val(D) and every concept in Ex(D)
again are in ALC-normal form. ���

It is easy to see that every ALC-concept description can be transformed into ALC-normal
form. Consider the following simple example.

Example 5.1.7 For atomic concepts P,Q ∈ Ncon, let C := ¬∀r.(P u Q) u (Q t ∃r.¬P ).
The negation normal form of C yields ∃r.(¬P t ¬Q) u (Q t ∃r.¬P ). By distributing
conjuncts over the disjunction, we obtain (∃r.(¬P t ¬Q) uQ) t (∃r.(¬P t ¬Q) u ∃r.¬P ),
the ALC-normal form of C. ���

Note that the ALC-normal form of a concept C can be exponentially larger than C even if
C contains only atomic concepts. For instance, computing the disjunctive normal form of
(P1 tQ1) u · · · u (Pn tQn) produces a concept description of exponential size in n.

Characterization of subsumption

The normal forms introduced in the previous section will now be utilized for a struc-
tural characterization of subsumption between an ALC-concept description C and an ALE-
concept description D.

Theorem 5.1.8 Let C be an ALC-concept description in ALC-normal form and D an
ALE-concept description in propagated ALE-normal form. Then, C v D iff

1. C ≡ ⊥ or D ≡ >, or

2. C = C1 t · · · t Cn and for every i ∈ {1, . . . , n} it holds that

• P(D) ⊆ P(Ci);

• ∀D′ ∈ Ex(D) ∃C ′ ∈ Ex(Ci) : C ′ u val(Ci) v D′; and

• val(Ci) v val(D).

Proof. (⇒) Proof by contraposition. Assume ⊥ @ C v D @ >.

• Assume P(D) 6⊆ P(Ci) for some i ∈ {1, . . . , n}. Then there exists some P ∈ P(D) \
P(Ci). By definition of the ALC-normal form, Ci is consistent, implying the existence
of a canonical interpretation I of Ci with dCi

∈ CI
i ⊆ ∆I . By definition, dCi

6∈ P I

since P 6∈ P(Ci). Thus, dCi
6∈ DI and therefore C 6v D, in contradiction to the

assumption.

• Assume for some D′ ∈ Ex(D) and some i ∈ {1, . . . , n} that C ′ u val(Ci) 6v D′ for all
C ′ ∈ Ex(Ci). Since Ci is consistent, every C ′ ∈ Ex(Ci) has a tree model IC′ with
dC′ ∈ (C ′ u val(Ci))

IC′ \ (D′)IC′ for some dC′ ∈ ∆IC′ . W.l.o.g., we may assume
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disjoint domains, i.e., ∆IC′ ∩ ∆IC′′ = ∅ for distinct C ′, C ′′ ∈ Ex(Ci). Construct a
new model I with

∆I := {d} ]
⋃

C′∈Ex(Ci)

∆IC′

P I := {d | P ∈ P(Ci)} ∪
⋃

C′∈Ex(Ci)

P IC′ for every P ∈ P

rI := {(d, dC′) | C ′ ∈ Ex(Ci)} ∪
⋃

C′∈Ex(Ci)

rIC′ .

It is easy to see that d ∈ CI . On the other hand d 6∈ DI because for every C ′,
dC′ 6∈ D′IC′ , implying d 6∈ DI , in contradiction to the assumption.

• Assume val(Ci) 6v val(D) for some i ∈ {1, . . . , n}. Then val(Ci) has a tree model Ival
such that dval ∈ val(Ci)

Ival \ val(D)Ival for some dval ∈ ∆Ival . We can now extend
the model I introduced for the previous case by adding dval as an r-successor of d.
Again, assume ∆I ∩∆Ival = ∅. Then, define I ′ by

∆I′

:= ∆I ∪∆Ival

P I′

:= P I ∪ P Ival for every P ∈ P

rI
′

:= {(d, dval)} ∪ rI ∪ rIval .

As a result, d ∈ (CI′

i ) for all i ∈ {1, . . . , n} and thus d ∈ CI′

but on the other hand

d 6∈ DI′

.

(⇐) 1. Trivial. 2. Let i ∈ {1, . . . , n}. It is sufficient to show that Ci v D. Let x ∈ CI
i for

any interpretation I of Ci. Show: x ∈ DI .

• By assumption, x ∈ P I for every P ∈ P(Ci). Since, P(D) ⊆ P(Ci), x ∈ P I for every
P ∈ P(D).

• Consider an arbitrary D′ ∈ Ex(D). By assumption, there is some C ′ ∈ Ex(Ci) with
C ′ u val(Ci) v D′. Since x ∈ (∃r.C ′ u ∀r.val(Ci))

I , x ∈ (∃r.D′)I .

• As val(Ci) v val(D) and x ∈ (val(Ci))
I , x ∈ (val(D))I .

This implies our claim since

DI =
⋂

A∈P(D)

AI ∩
⋂

D′∈Ex(D)

(∃r.D′)I ∩ (val(D))I . ���

We are now prepared to introduce our approximation algorithm formally.

5.1.2 Approximating ALC-concepts in ALE

A definition of the upper approximation is already given by Definition 5.1.1. We now
propose a corresponding algorithm to actually compute the upper approximation of a
given ALC-concept description.

Definition 5.1.9 (approx)
Let C be an ALC-concept description. Then approx(C) is defined as shown in Figure 5.1.1.

���
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Input: ALC-concept description C
Output: ALE-approximation of C

1. If C ≡ ⊥ or C ≡ > then return ⊥ or >, respectively.

2. Otherwise, transform C into ALC-normal form C1 t · · · t Cn and return

u
P∈

T

i P(Ci)
P

u u
(C′

1,...,C′
n)∈Ex(C1)×···×Ex(Cn)

∃r.lcs{approx(C ′
i u val(Ci)) | 1 ≤ i ≤ n}

u ∀r.lcs{approx(val(Ci)) | 1 ≤ i ≤ n}.

Figure 5.1.1: The algorithm approx

Note that C is transformed into ALC-normal form in Step 2. Moreover, value restrictions
are propagated to existential restrictions by computing approx(C ′

i u val(Ci)) instead of
approx(C ′

i) in the recursion. Note also that C ′
i u val(Ci) is not necessarily in ALC-normal

form. Therefore, another normalization is necessary in the recursion computing existential
restrictions. To see how the above algorithm works, let us return to Examples 5.1.2
and 5.1.3.

Example 5.1.10 Consider Cex = (∀r.B t (∃r.B u ∀r.A)) u ∃r.A from Example 5.1.2.
Applying approx to Cex firstly transforms the input into ALC-normal form, yielding (∀r.Bu
∃r.A) t (∃r.B u ∀r.A u ∃r.A). Therefore:

approx(Cex) = approx((∀r.A u ∃r.B) t (∃r.A u ∀r.B u ∃r.B))

= ∃r.lcs{∃r.B u ∀r.A,∃r.A u ∀r.B} u

∃r.lcs{∃r.B u ∀r.A,∃r.B u ∀r.B}

= ∃r.(A uB) u ∃r.B

≡ ∃r.(A uB)

The concept description from Example 5.1.3, Dex = ∃r.Au∃r.Bu∀r.(¬At¬B), is already
in ALC-normal form. Thus, applying approx yields:

approx(Dex) = approx(∃r.A u ∃r.B u ∀r.(¬A t ¬B))

= ∃r.lcs{approx(A u (¬A t ¬B))} u

∃r.lcs{approx(B u (¬A t ¬B))}

= ∃r.approx((A u ¬A) t (A u ¬B)) u

∃r.approx((B u ¬A) t (B u ¬B))

≡ ∃r.(A u ¬B) u ∃r.(B u ¬A) ���

The following theorem proves that the algorithm approx always finds the correct approxi-
mation in the sense of Definition 5.1.1.

Theorem 5.1.11 Let C be an ALC-concept description. Then approx(C) is the upper
ALE-approximation of C, i.e.,

1. C v approx(C), and
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2. approx(C) v D for every ALE-concept description D with C v D.

Proof. Due to the normalization in Step 2 of approx, we may w.l.o.g. assume that C is
in ALC-normal form.

1. It suffices to show by induction over the structure of C that the conditions for sub-
sumption from Theorem 5.1.8 hold. If C ∈ {⊥,>} then trivially approx(C) = C. The
same holds if C ≡ ⊥ or C ≡ >. Otherwise, C = C1 t · · · t Cn. By induction hypothesis
(IH), the claim holds for all subterms of C occurring in existential and value restrictions.

• By definition of approx, P(approx(C)) =
⋂n

i=1 P(Ci) ⊆ P(C).

• For every existential restriction ∃r.lcs{approx(C ′
iuval(Ci)) | 1 ≤ i ≤ n} in approx(C),

C ′
i ∈ Ex(Ci) for every i. By IH, C ′

i u val(Ci) v approx(C ′
i u val(Ci)). Thus, by

definition of the lcs, C ′
i u val(Ci) v lcs{approx(C ′

i u val(Ci)) | 1 ≤ i ≤ n}.

• By IH, val(Ci) v approx(val(Ci)) for every i ∈ {1, . . . , n}. Consequently, by definition
of the lcs, val(Ci) v lcs{approx(val(Ci)) | 1 ≤ i ≤ n}.

2. W.l.o.g., let D be in ALE-normal form. Proof by induction over the structure of C.

If C ∈ {⊥,>}, then approx(C) = C trivially is least. The same holds if C ≡ ⊥ or C ≡ >.
Otherwise, C = C1 t · · · tCn, and by IH, the claim holds for all subterms of C occurring
in existential and value restrictions. As C v D, the following facts are implied:

• P(D) ⊆ P(Ci) for every i ∈ {1, . . . , n}. As P(approx(C)) is the intersection over all
P(Ci), P(D) ⊆ P(approx(C)).

• For all D′ ∈ Ex(D) and for all i ∈ {1, . . . , n}, there is one C ′ ∈ Ex(Ci) with C ′ u
val(Ci) v D′. By IH, C ′ u val(Ci) v approx(C ′ u val(Ci)) v D′ for every i. Hence,
due to the lcs, lcs{approx(C ′ u val(Ci)) | 1 ≤ i ≤ n} v D′.

• For all i ∈ {1, . . . , n}, val(Ci) v val(D). By IH, val(Ci) v approx(val(Ci)) v val(D),
implying lcs{approx(val(Ci)) | 1 ≤ i ≤ n} v val(D).

���

The following simple properties are supposed to give further insight into the relationship
between a concept description and its approximation.

Corollary 5.1.12 Let C,D be ALC-concept descriptions in ALC-normal form. Then,

1. C v D implies approx(C) v approx(D);

2. approx(C uD) v approx(C) u approx(D);

3. not generally approx(C uD) ≡ approx(C) u approx(D);

4. approx(∃r.C) ≡ ∃r.approx(C) and approx(∀r.C) ≡ ∀r.approx(C); and

5. if C has only one disjunct on toplevel then val(approx(C)) ≡ approx(val(C))

Proof. 1. The fact D v approx(D) implies C v D v approx(D). As approx(C) is the
most specific ALE-concept subsuming C, approx(C) v approx(D).

2. Immediate consequence of (1) and C uD v C and C uD v D.

3. See Example 5.1.2.
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4. Trivial.

5. By definition of approx, val(approx(C)) = lcs{approx(val(Ci)) | 1 ≤ i ≤ n}. If only
one disjunct exists, i.e. C = C1, this equals approx(val(C)).

���

Note that equality does not generally hold in (4): approx(∃r.⊥) = ⊥ 6= ∃r.approx(⊥) and
approx(∀r.>) = > 6= ∀r.approx(>)

Having shown correctness, the natural next question regards the computational complexity
of the algorithm approx. Proving an exponential lower bound is an immediate consequence
of the computational complexity of the lcs in ALE .

Corollary 5.1.13 Computing upper ALC-approximations of ALE-concept descriptions is
necessarily worst-case exponential.

Proof. Consider two ALE-concept descriptions C1 and C2 in ALE-normal form. Accord-
ing to the definition, approx(C1tC2) = lcs(C1, C2). It has been shown in [BKM99] that the
binary lcs of ALE-concept descriptions can be of exponential size on the size of the input
concept descriptions. Hence, any computation algorithm is worst-case exponential. ���

In order to establish an upper bound, we show that approx is a double-exponential time
algorithm. It is an open problem whether or not this bound is tight.

Lemma 5.1.14 The algorithm approx can be realized as a double-exponential time algo-
rithm.

Proof. By definition, approx in Step 2 transforms the entire concept C into ALC-normal
form. We show that approx is in double-exponential time if this transformation is done
‘on the fly’, i.e., role level by role level in every recursion step.

The modified computation of approx(C) starts by transforming C into D := D1t· · ·tDn,
with no disjunction on the topmost role level of every Di, while the lower role levels
remain unchanged. On the topmost role level, D therefore has at most exponentially
many disjuncts, i.e., n = 2p(|C|) for some polynome p, each at most of size |C|.

By definition, the following subconcepts are computed for approx(D)

1. SP := u
P∈

T

i P(Di)
P ;

2. S(D′
1,...,D′

n) := ∃r.lcs{approx(D′
i u val(Di)) | 1 ≤ i ≤ n}

for every tuple (D′
1, . . . , D

′
n) with D′

i ∈ Ex(Di) for every i; and

3. S∀ := ∀r.lcs{approx(val(Ci)) | 1 ≤ i ≤ n}.

SP can be computed in polynomial time in the size of D and thus in exponential time in
|C|. As n is exponential in |C| and as the number of existential restrictions D′

i in every
Di is bounded by |Di|, the number of different S(D′

1,...,D′
n) is at most double exponential

in |C|. For every single S(D′
1,...,D′

n), the lcs over a set of exponential cardinality in |C|
must be computed. Each element of such a set is of the form approx(D′

i u val(Di)). Hence,
approx is recursively invoked on a concept description bounded in size by |C| and with
a role depth decreased by one. The same holds for the computation of S∀. Thus, the
computation tree of approx is of double exponential size in |C|. If the lcs is not evaluated
then approx runs in double exponential time. It remains to show that computing all lcs
expressions preserves this complexity.
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Every lcs is defined over an at most exponential number of concepts of at most of double
exponential size in |C|. Every concept is in propagated ALE-normal form (Definition 5.1.5),
since all concepts returned by approx are. As shown in [BKM99], this implies that the size
of the resulting lcs is bounded by the product of the sizes of the input concepts. Evaluating
all lcs expressions in the computation tree for approx(C) in a bottom-up fashion therefore
yields concept descriptions of size at most double exponential in |C|. Since the depth of the
result of every lcs computation is bounded by the role depth of C, the whole computation
takes at most double-exponential time in |C|. ���

It is still an open problem whether the above upper bound is tight, i.e., whether any
deterministic approximation algorithm computing the ALE-approximation of ALC-concept
descriptions is necessarily worst-case double-exponential time. In [LDLT02] an attempt
has been made to answer this question in the negative by proposing a deterministic ex-
ponential time algorithm to compute ALC-ALE-approximations. This result, however, has
been refuted by the same authors by claiming in [LDLT03] that, even w.r.t. a certain com-
pact representation of concept descriptions, no deterministic exponential time algorithm
computing ALC-ALE-approximations exists. To the best of our knowledge, the question is
still open.

Independently of the worst-case complexity of approximation discussed above, there are
ways to speed up approximations significantly in practical applications. In the follow-
ing section, we show that approximations can be computed more quickly under certain
circumstances.

5.1.3 Speeding up approximations

Our aim is to show that approximating an ALC-concept description can be simplified if the
concept description in question satisfies certain syntactic conditions. In order to define
these conditions, we need to refer to the constructs found in a certain depth of the syntax
trees of concepts. The following definition introduces the relevant notation.

Definition 5.1.15 Let C :=
k

t
i=1

Ci be an ALC-concept description in ALC-normal form.

For d ∈ � and for every r ∈ Nrole, the sets Qr(C, d) and Pr(C, d) are inductively defined by:

• Qr(C, 0) :=
{

∃ |
k
⋃

i=1

Exr(Ci) 6= ∅
}

∪
{

∀ |
k

u
i=1

valr(Ci) @ >
}

Pr(C, 0) :=
k
⋃

i=1

P(Ci)

• Qr(C, d + 1) :=
k
⋃

i=1

⋃

C′∈Exr(Ci)

Qr(C
′, d) ∪

k
⋃

i=1

Qr(valr(Ci), d)

Pr(C, d + 1) :=
k
⋃

i=1

⋃

C′∈Exr(Ci)

Pr(C
′, d) ∪

k
⋃

i=1

Pr(valr(Ci), d). ���

For an ALC-concept description C and i ∈ � the quantor set Qr(C, i) denotes the set of
quantors referring to role r used on the ith role-level of C. Hence, every i between 0 and
the maximum role-depth of C, the quantor set Qr(C, i) is a nonempty subset of {∀,∃}.
Similarly, the name set Pr(C, i) denotes the set of atomic concepts used on the ith role
level inside a quantor referring to r.

In the above definition, we write Exr and valr in order to emphasize that in case of more
than one role, Qr and Pr are still defined individually for every role.
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Condition 1 Condition 2

C D C D

∀

∃

¬A→ A×

Figure 5.1.2: Nice ALC-concepts

Example 5.1.16 Let P := {P,Q,R, S} and let C := (∃r.(P u Q) u ∀r.(R t (∃r.¬S))).
Then Qr(C, 0) = {∀,∃}, Qr(C, 1) = {∃} and Qr(C, i) = ∅ for every i ≥ 2. Moreover,
Pr(C, 0) = ∅, Pr(C, 1) = {P,Q,R}, and Pr(C, 2) = {¬S}.

We are now ready to introduce ‘nice’ ALC-concept descriptions.

Definition 5.1.17 Let C be an ALC-concept description in negation normal form. Then
C is nice iff for every d ∈ � and every r ∈ Nrole it holds that

1. |Qr(C, d)| ≤ 1 and

2. Nr(C, d) does not contain a concept name and its negation. ���

Intuitively, C is nice iff (w.r.t. every role r) firstly, on every role level either no ∃- or no
∀-quantors occur, and secondly, a concept name and its negation do not occur on the same
role level. Figure 5.1.2 gives an intuition of how nice concepts looks like for Nrole = {r}.

It has been shown in [BT02b] that nice ALC-concepts can be approximated conjunct by
conjunct, which gives rise to the following theorem.

Theorem 5.1.18 Let C uD be a nice ALC-concept description. Then approx(C uD) is
equivalent to approx(C) u approx(D).

Although this simplification does not improve the worst case complexity obtained in
Lemma 5.1.14, it is easy to see that splitting an ALC-concept descriptions into its con-
juncts before approximation can drastically reduce the number of existential restrictions
generated by the lcs.

Moreover, nice concepts can play an important role when approximating concepts defined
in a TBox. Firstly, by a dynamic programming approach, nice-ness of defined concepts
can be tested in polynomial time in the size of the TBox, i.e., without expanding the
concept in question. Secondly, if several approximations have to be computed w.r.t. a
TBox then nice concepts are good candidates for caching: consider a TBox containing the
definition, e.g., A ≡ B uC such that B is a nice defined concept and C is also nice. Then
the approximation of B can be re-used for the computation of the approximation of A.

5.2 Other approximations

We finish our section about approximation by mentioning an approximation algorithm for
ALEN -approximations of ALCN -concept descriptions. We have shown in [BKT02a] that our
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algorithm from Definition 5.1.9 can be extended to number restrictions. This extension,
however, needs to allow for interactions between number restrictions and existential or
value restrictions. For example, the concept description ∃r.P u∃r.¬P implies the number
restriction (> 2 r). On the other hand, the concept description ∀r.P u (> 2 r) implies
the existential restriction ∃r.P . Moreover, a concept description of the form ∃r.(P uQ) u
∃r.(¬PuQ)u(6 2 r) implies the value restriction ∀r.Q because Q occurs in both existential
restrictions which cannot be interpreted by one single successor w.r.t. the role r. Hence,
all r-successors are witnesses of Q.

In the approximation algorithm shown in [BKT02a], the additional complexity of handling
the above implication effects is hidden in a specific normal form for ALCN -concept descrip-
tions. The approximation algorithm itself is similar to the one for ALC-ALE-approximation
introduced in Definition 5.1.9.

An in-depth examination of ALEN -approximation of ALCN -concept descriptions is beyond
the scope of this thesis. The relevant results will be presented in the forthcoming Ph.D.
thesis by Turhan.
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The present work provides results in three main directions which can be described in a
nutshell as follows.

• Tractable reasoning revisited : In the s, DL research has largely answered the
question for practically relevant yet tractable DL formalisms in the negative. Due to
novel application domains, especially the Life Sciences, and a surprising tractability
result by Baader in [Baa03b], we have re-visited this question, this time looking in a
new direction: general TBoxes and extensions thereof defined over the DL EL and
extensions thereof.

As main positive result, we have devised EL++(D)-CBoxes as a tractable DL for-
malism with optimal expressivity in the sense that every additional standard DL

constructor, every extension of the TBox formalism, or every more powerful con-
crete domain, makes reasoning intractable, as we have proven.

• Non-standard inferences for knowledge maintenance: Non-standard inferences, such
as the lcs, the msc, and matching, can support domain experts in maintaining DL

knowledge bases in a structured and well-defined way. In order to extend their
availability and promote their use, the present work extends the state of the art of
non-standard inferences both w.r.t. theory and implementation.

Our main results are implementations and performance evaluations of known match-
ing algorithms for the DLs ALE and ALN , optimal non-deterministic polynomial time
algorithms for matching under acyclic side conditions in ALN and sublanguages, and
optimal algorithms for matching w.r.t. cyclic (and hybrid) EL-TBoxes.

• Non-standard inferences over GCIs: The utility of GCIs in modern DL knowledge
bases and the relevance of non-standard inferences to knowledge maintenance nat-
urally motivates the question for a tractable DL formalism in which both can be
provided.

As main result, we have proposed hybrid EL-TBoxes as a solution to this hitherto
open question: GCIs are supported, and we have devised both a tractable sub-
sumption algorithm and optimal algorithms to compute the non-standard inferences
matching, lcs, and msc w.r.t. hybrid EL-TBoxes.

In the following, we review in more detail the results obtained in the above mentioned
directions.
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Tractable reasoning with GCIs

Re-visiting the question for practically relevant yet tractable DL formalisms, we have
chosen general EL-TBoxes as a starting point for three reasons: firstly, because of the
well-known utility of GCIs for KR applications; secondly, because EL and small extensions
thereof play a significant role in KR for the Life Sciences; and thirdly, because of the
surprising tractability result for subsumption w.r.t. cyclic EL-TBoxes [Baa03b]. The latter
is in strong contrast to the PSPACE-complete subsumption problem for cyclic FL0-TBoxes,
a seemingly equally inexpressive DL formalism.

As a first step, we have proven in [Bra04b] that subsumption w.r.t. general TBoxes is
tractable in EL even if the underlying TBox formalism is extended by role hierarchies.
Using similar techniques for an extended subsumption procedure, this tractability result
has been notably improved to EL++-CBoxes, a novel DL formalism that extends EL by
the bottom concept, nominals, and p-admissible concrete domains, and extends general
TBoxes by RIs.1 Furthermore, we prove that not only subsumption w.r.t. EL++-CBoxes
is tractable, but also satisfiability, ABox consistency, and the instance problem in case an
ABox is additionally taken into account. Hence, all relevant DL standard reasoning tasks
are tractable.

In order to show optimal expressivity of our EL++-CBoxes, we have proven that sub-
sumption becomes intractable when admitting any other standard DL constructor, any
non p-admissible concrete domain, or any more expressive TBox formalism. Although the
crucial boundary for this optimality argument is NP-hardness, we have studied the exact
complexity of reasoning w.r.t. extensions of EL in further detail. Extending EL by disjunc-
tion or number restrictions makes subsumption w.r.t. the empty TBox co-NP-complete,
while subsumption w.r.t. acyclic TBoxes becomes co-NP-hard when adding the construc-
tor allsome. W.r.t. general TBoxes, subsumption becomes PSPACE-hard when extending
EL by inverse roles, and EXPTIME-complete for any of the constructors atomic negation,
disjunction, at-most restrictions, at-least restrictions, role negation, role union, or reflexive
transitive closure of roles. Extending EL by non p-admissible concrete domains or extend-
ing general TBoxes by functional roles also makes subsumption EXPTIME-complete.

Together with the known EXPTIME-completeness of subsumption w.r.t. general TBoxes
for EL extended by value restrictions [GMWK02] and the undecidability of subsumption
w.r.t. cyclic EL-TBoxes extended by arbitrary role value maps [Baa03a], this completes the
picture of the complexity of reasoning in extensions of EL.

Note that several additional complexity results have been obtained, see Section 1.6.1 for
a complete overview. In particular, we have shown in Theorem 3.2.13 that subsumption
in FL0 w.r.t. general TBoxes is EXPTIME-complete.

As shown above, EL++-CBoxes are optimal in that every extension by a standard DL con-
structor or TBox construct destroys tractability. As shown in Section 3.2, EL++-CBoxes
are sufficient to express many constructors relevant in ontology applications, especially
role hierarchies, transitive roles, right identities, disjointness constraints, the unique name
assumption, and domain restrictions on roles. Furthermore, examples of practically rel-
evant p-admissible concrete domains have been discussed in Section 3.2.3. In particular,
the main requirements of a KR formalism for the Life Sciences discussed in Section 1.2 are
met.

From an expressivity point of view, it might be regretted that inverse roles cannot be
expressed without losing tractability. As pointed out in Section 2.2, there are common
examples of definitions in cyclic TBoxes for which unintuitive models can only be ruled

1Note that that subsumption becomes undecidable even w.r.t. cyclic EL-TBoxes when arbitrary role
value maps are admitted [Baa03b].
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out by inverse roles. Moreover, GCIs together with inverse roles can express domain
restrictions on roles: it is easy to see that the GCI ∃r−.> v C restricts the range of r to
the concept C.

In general, it seems that EL++-CBoxes are not only attractive for KR in the Life Sciences,
but more general also in other contexts, where very large yet relatively inexpressive DL

formalisms are used. One such example might be certain subdomains of the Semantic
Web for which the full expressivity of OWL is not needed and where a tractable reasoning
algorithm has a benefit to offer.

This naturally leads to the question of the performance of reasoning w.r.t. EL++-CBoxes
in practical applications. Experience has shown that the theoretical worst-case complexity
of subsumption w.r.t. the underlying DL formalism is not always a reliable measure for the
performance of the corresponding DL reasoner. For instance, the subsumption problem
was tractable in the DL underlying the DL system CLASSIC [BBMR89, BPS94], while
subsumption is EXPTIME-complete in the DL SHIQ on which the reasoner FaCT [Hor98]

is built. In a practical comparison on the same knowledge bases, however, FaCT on
average performs by far better than CLASSIC.

In the case of EL++-CBoxes, there are not only theoretical results to draw our conclusions
from, but also a prototype implementation: the reasoner Cel implements EL+-CBoxes,
a fragment of EL++-CBoxes without the bottom concept and without nominals. It has
been shown in [BLS05] that Cel outperforms highly optimized tableaux reasoners, such
as FaCT or Racer, on several biomedical ontologies. As discussed in Section 3.4, Cel
is a relatively straightforward implementation of our subsumption algorithm from Sec-
tion 3.2.2. Hence, it seems highly promising to investigate further into optimization tech-
niques for Cel, and thus, into tractable subsumption w.r.t. EL++-CBoxes.

As Cel does not yet support ABoxes, the question about the performance of ABox-
reasoning w.r.t. underlying EL++-CBoxes remains open. It is already known that EL, and
thus EL++ likewise, is too expressive to hand down ABox reasoning to highly optimized
Database Management Systems, an approached pursued successfully for the DL formalism
DL-Lite in [CDGL+05a]. Nevertheless, it should be noted that other approaches to ABox
reasoning exist which performed well w.r.t. large ABoxes [HM01a].

Non-standard inferences

The considerable size of real-world DL knowledge bases together with the fact that typically
entire groups of domain experts develop them over several years motivates the question of
a standard methodology for knowledge maintenance and of appropriate tools to support
knowledge engineers in the relevant tasks. In Section 1.4, we have argued the case for
non-standard inferences as well-defined reasoning services by which the desired tools can
be provided.

In the present work, we have devised sound and complete non-deterministic polynomial-
time algorithms to solve matching problems under acyclic side conditions for the DL ALN
and its sublanguages FL⊥ and FL¬. The algorithms are optimal in terms of computational
complexity because the corresponding decision problem is known to be NP-hard [BKBM99].
As a consequence, our algorithms also show NP-completeness of the corresponding decision
problems. Note that, in contrast to subsumption, complexity results for matching do not
automatically transfer to sublanguages or superlanguages.

Moreover, we have devised a deterministic exponential time algorithm to solve matching
problems w.r.t. cyclic EL-TBoxes with greatest-fixedpoint semantics. The algorithm is
sound and complete in that all minimal matchers are computed, which is optimal since
even w.r.t. the empty TBox the least matcher to an EL-matching problem does not always
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exist. As we have also shown that the solutions of matching problems w.r.t. cyclic EL-
TBoxes with greatest-fixedpoint semantics can be exponential in number and can grow
exponentially large in the size of the input, the relevant algorithm for cyclic EL-TBoxes
is optimal. Moreover, we proved that our matching algorithm generalizes matching in
EL w.r.t. the empty TBox, implying NP-hardness of deciding the solvability of matching
problems modulo equivalence w.r.t. cyclic EL-TBoxes. It remains open whether this bound
is tight. In the case of matching modulo subsumption, deciding the solvability w.r.t. cyclic
EL-TBoxes with greatest-fixedpoint semantics is tractable. See also below for our matching
algorithm w.r.t. hybrid EL-TBoxes.

In addition to the above theoretical results, we have implemented matching algorithms
for the DLs ALE and ALN , and evaluated their performance in detail. To the best of our
knowledge, these are the first implementations of independent, general-purpose matching
algorithms for DLs. Our extensive tests presented in Sections 4.5.1 and 4.5.2 suggest that
even the deterministic exponential space matching algorithm for ALE performs well on
standard hardware even w.r.t. relatively large randomly generated matching problems. In
the case of ALN , the algorithm took an average of . seconds for matching problems of
average size of . For ALE , matching took on average . seconds with an average input
size of . Our direct comparison on FL¬-matching problems even suggests that the
ALE matching algorithm performs better than its ALN counterpart with better worst-case
complexity.

Besides matching, the present work has introduced the novel inference service approxi-
mation first suggested as a DL inference service in [BKM00]. We have devised a sound
and complete deterministic double-exponential time algorithm computing upper ALE-
approximations of ALC-concept descriptions. We were also able to show that the size
of ALE-approximations of ALC-concept descriptions grows exponential in the size of the
input concept description in the worst case. Hence, any ALC-ALE-approximation algorithm
is at least worst-case exponential. Finally, in order to speed-up of the computation of ap-
proximations, we have shown for ALC-concept descriptions of a certain structure, called
nice concepts, that our approximation algorithm can be simplified significantly.

In the case of approximation, the question of the practicability of an implementation
might be even more interesting because of the even higher worst-case complexity. As shown
in [BKT02b], computing approximations w.r.t. a TBox from the domain of chemical process
engineering on standard hardware exhibited good run-times below  seconds despite input
concept sizes of up to . Although we have shown that ALE-approximations of ALC-
concept descriptions can be exponentially large in the input, the approximations computed
for our ‘meaningful’ concepts from a realistic application domain were smaller than the
input: on average, the ALE-approximation had one third the size of the original ALC-
concept.

It should be stressed that non-standard inferences support a unique approach to knowledge
maintenance, with the basic understanding that ontologies with a formally well-defined se-
mantics should be maintained by tools with an equally well-defined semantics. Moreover,
non-standard inferences can be used to have new concept definitions constructed auto-
matically by sound and complete algorithms. In contrast, most common contributions to
methodologies for ontology development, see [CC05, JBCV98] for an overview, deal rather
with the project-management aspect of knowledge maintenance, while low-level tasks,
such as creating or modifying concept definitions, are typically considered to be done fully
manually by domain experts.

By means of the system Sonic [Tur05], several non-standard inference services are made
available to the common knowledge editor Protégé [GMF+03]. Although matching is not
supported at the moment, the modular architecture of Sonic makes it relatively easy to
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add new reasoning services. Due to its recent release, the Sonic system could not yet be
tested by independent domain experts.

Non-standard inferences cannot be defined properly in a DL as expressive as OWL-Lite or
OWL-DL. Hence, any similar inference service for such expressive DLs will have to approx-
imate optimal solutions or resort to heuristics. One example in this direction is the good
common subsumer defined w.r.t. expressive background terminologies, see Section 1.7.2.
Moreover, it has been shown that the lcs, and thus other non-standard inferences, do not
always exist w.r.t. cyclic EL-TBoxes with descriptive semantics. This result carries over to
general TBoxes. However, we have shown in the present work how non-standard inferences
can be provided in the presence of GCIs, see below.

Non-standard inferences over GCIs

In order to combine the advantages of general TBoxes and the utility non-standard in-
ferences, we have introduced hybrid EL-TBoxes as a novel TBox formalism where GCIs
and non-standard inferences are available. A hybrid EL-TBox is a pair (F , T ) of a gen-
eral TBox F (‘foundation’) and a possibly cyclic TBox T (‘terminology’) defined over the
same set of atomic concepts and roles. The foundation F is interpreted by descriptive se-
mantics while the terminology T is interpreted by greatest-fixedpoint semantics. We have
shown that hybrid EL-TBoxes generalize both general EL-TBoxes and cyclic EL-TBoxes
with descriptive semantics.

For hybrid EL-TBoxes, we have devised a tractable, sound and complete subsumption
algorithm based on a polynomial reduction to cyclic EL-TBoxes with greatest-fixedpoint
semantics. For the latter formalism, a tractable subsumption algorithm has been presented
in [Baa03b].

For hybrid EL-TBoxes, we have devised a deterministic exponential time matching algo-
rithm that is sound and complete in the sense that it computes all minimal matchers,
which is optimal since the least matcher to an EL-matching problem does not always ex-
ist. Our algorithm is also optimal w.r.t. computational complexity because we have shown
that matchers of matching problems w.r.t. hybrid EL-TBoxes with greatest-fixedpoint se-
mantics can be exponentially large in the size of the input. The results on hybrid TBoxes
are obtained by a polynomial reduction to cyclic EL-TBoxes with greatest-fixedpoint se-
mantics, and the above mentioned deterministic exponential time matching algorithm for
the latter formalism. By means of the same reduction, and an appropriate lcs and msc
algorithm from [Baa03b], we could also devise a tractable algorithm computing the binary
lcs and msc w.r.t. hybrid EL-TBoxes.

The use of complex TBox formalisms, e.g., cyclic and especially general TBoxes, has been a
barrier to the use of non-standard inferences. The first step to overcome this has been taken
by algorithms to compute the lcs and msc w.r.t. cyclic EL-TBoxes with greatest-fixedpoint
semantics [Baa03a]. By means of hybrid TBoxes proposed in the present work, the lcs,
msc, and matching can now also be provided for GCIs. In particular, as long as matching
is used only as a query mechanism, i.e., only the existence of matchers is interesting, our
matching algorithm can be applied to standard general EL-TBoxes without any changes.

A natural question to discuss is whether hybrid EL-TBoxes can be extended without
sacrificing tractability of subsumption and the availability of non-standard inferences.
Concerning the foundation part of a hybrid TBox, the limit of expressivity is clearly
defined by EL++-CBoxes, as discussed in depth above. It is open, however, whether cyclic
EL++-TBoxes with RIs interpreted with greatest-fixedpoint semantics can be classified in
polynomial time and whether non-standard inferences exist for them.

Nevertheless, an interesting starting point might be to extend hybrid TBoxes by RIs be-
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cause it has already been shown in [Baa03b] that cyclic EL-TBoxes with greatest-fixedpoint
semantics extended by RIs can be classified in polynomial time. The same obviously holds
for general EL-TBoxes with RIs, a sub-formalism of EL++-CBoxes. Hence, it remains
to extend our polynomial reduction by RIs and to devise appropriate lcs and matching
algorithms for cyclic EL-TBoxes extended by RIs.
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