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Abstract

Description Logics (DLs) are a family of logic-based knowledge representation
formalisms for representing and reasoning about conceptual knowledge. To
represent and reason about concrete qualities of real-world entities such as size,
duration, or amounts, DLs are equipped with concrete domains. Interestingly,
DLs and DLs with concrete domains are useful in many applications, such as
modelling database schemas and the semantic web.

Recently, it has been suggested that the expressive power of DLs with con-
crete domains can be further extended by adding database-like key constraints.
In database schemas, key constraints can be a source of additional inconsisten-
cies, which DLs used in reasoning about database schemas should be able to
capture. Up to now, two different types of key constraints, namely uniqueness
constraints and funtional dependencies, have been considered in the context of
DLs with concrete domains. Surprisingly, to the best of our knowledge the two
types of key constraints have not been investigated in one single logic despite
the fact that in some applications, both of them are needed.

In this paper, we consider the first description logic with concrete domains,
uniqueness constraints, and functional dependencies. It it obtained by extending
the description logic ALC(D) (the basic propositional closed description logic
ALC equipped with a concrete domain D) with key boxes consisting of key
constraints. More precisely, we analyze the impact of the presence of both
types of key constraints on decidability and complexity of reasoning. Following
from previous results, uniqueness constraints and functional dependencies bring
undecidability in the general case and in order to preserve decidability we need to
consider a slightly restricted form of key constraints. In the restricted form, we
are able to show that reasoning w.r.t. both types of key constraints is not harder
than reasoning w.r.t. each of them individually. Furthermore, several extensions
with acyclic TBoxes, general TBoxes, and inverse roles are also discussed.
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Chapter 1

Introduction

Description Logics (DLs) are a family of logic-based knowledge representation
formalisms for representing and reasoning about conceptual knowledge in a
structured and semantically well-understood manner [2, 4]. In DLs, knowledge
is represented based on the notion of concept descriptions, which are built from
atomic concept names (unary predicates) and role names (binary predicates)
by means of concept and role constructors provided by a particular description
logic. For example, the basic propositionally closed description logic is called
ALC (Attribute Language with Complements) [24]. Intuitively, the following
ALC-concept:

Professor ⊓ ∃interested in.DLs ⊓ ∀give lecture.¬Database

describes “The set of professors who are interested in DLs and do not give
any lecture on Database subject”. In the above expression, Professor, DLs, and
Database are atomic concepts, whereas interested in and give lecture are roles.

Based on ALC, more expressive description logics are built by considering
addtional expressiveness means. Among those, the following are considered im-
portant from both theoretical and practical point of view: nominals [1]; number
restrictions [3]; inverse and transitive roles, and role hierarchies [11]. Moreover,
DLs are usually equipped with components expressing terminological knowl-
edge, namely TBoxes, and assertional knowledge, namely ABoxes.

Most DLs are actually fragments of first order logic where the expressivity
is reduced in order to ensure decidability of reasoning. In particular, ALC
corresponds to a first order logic fragment with only two variables, e.g., the
above concept can be translated into the following first order logic formula:

Professor(x) ∧ ∃y.(interested in(x, y) ∧ DLs(y))

∧ ∀y.(give lecture(x, y) → ¬Database(y))

To deduce implicit knowledge from the explicitly represented one, knowledge
representation systems based on DLs provide various reasoning services. The
most important ones are satisfiability and subsumption of concepts. Informally,
a concept is said to be satisfiable if it is consistent whereas deciding concept
subsumption means to determine subconcept-superconcept relationships. In
propositionally closed description logics, those that provide all Boolean connec-
tives, concept satisfiability can be reduced to concept subsumption and vice
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versa. Therefore, in such logics it suffices to develop a procedure deciding con-
cept satisfiability. Usually, satisfiability problem is solved by a tableau algorithm
[6]. In general, tableau algorithms decide satisfiability of a concept by trying to
construct a model for it. Considering complexity of reasoning in various DLs,
it becomes harder as expressivity of DLs grows. For example, it is well-known
that reasoning in ALC is PSpace-complete, but reasoning in extensions of ALC
is PSpace-, ExpTime-, NExpTime-complete, and even undecidable.

In the last decade, DLs have been used in various applications including
reasoning about database conceptual models expressed in entity-relationship
diagrams or object-oriented schemas [9] and reasoning about ontologies for the
semantic web [4]. However, it turns out that even very expressive description
logics are not expressive enough for applications in which it is necessary to
represent information of concrete or quantitative nature, such as age, numbers,
or durations. For example, we want to describe employees whose age is below
55 and whose income is greater than 50000 Euros/year. In order to do this,
obviously it is needed to represent natural numbers (e.g., 55, 50000) and compare
them. Moreover, in reasoning about database schemas, concrete “datatypes”
are needed to capture integrity constraints.

The standard way of integrating numbers and other datatypes into descrip-
tion logics is to extend DLs with so-called concrete domains [3, 17]. Informally,
a concrete domain D consists of a set and predicates associated with a fixed
extension over this set. The integration of concrete domains into description
logics is achieved by adding

1. abstract features, which are functional roles;

2. concrete features, which are (partial) functions that map logical objects
to values from the concrete domain;

3. a concrete domain-based concept constructor of the form ∃u1, . . . , un.P ,
in which ui, called paths, are sequences f1 . . . fkg of k abstract features
f1, . . . , fk followed by a concrete feature g and P is an n-ary predicate
from the concrete domain.

The logic obtained by integrating a concrete domain D with ALC is called
ALC(D). For example, using a concrete domain D based on natural numbers,
the following concept

Employee ⊓ ∃age.<55 ⊓∃(income), (spouse income).>

describes employees whose age is below 55 and whose income is greater than
their spouses’ income. In the example, Employee is a concept, spouse is an ab-
stract feature, age, income are concrete features, and <55, > respectively are
unary and binary predicates with the obvious extension. Besides, the term
∃(income), (spouse income).> is an instance of the concrete domain-based con-
cept constructor.

Concerning complexity of reasoning, it is proved in [15] that adding concrete
domains to ALC does not make reasoning harder, i.e., reasoning in ALC(D) is
PSpace-complete, if reasoning in the concrete domain D is in PSpace. Some
further extensions of ALC(D) are considered in [14].

Unsurprisingly, extending description logics with concrete domains is very
useful in applications. In reasoning about conceptual database models, concrete
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domains are necessary since most databases store “concrete” data, e.g., numbers
and strings, and the used description logic should be able to capture integrity
constraints on such data which are part of the conceptual model [16]. Further-
more, as description logics are languagues for describing ontologies, concrete
domains are also important. For example, to construct an employee ontology,
we need a proper way to formulate concrete datatypes such as age, salary, hiring
years. In fact, the basic description logic SHOQ(D) [12] underlying the web
ontology language OWL is equipped with concrete datatypes.

Recently, it has been proposed in [19, 20] to further extend the expressive
power of DLs with concrete domains by adding key constraints, a popular notion
in databases. It is known that in database schemas, key constraints play an
important role, and thus DLs used in reasoning about conceptual database
models should be able to capture such constraints. Among various types of key
constraints, the most important ones are uniqueness constraints, which describe
a set of properties uniquely identifying objects, and functional dependencies,
which describe that a property is functionally determined by a set of other
properties. For example,

Employees are uniquely identified by their branches’ IDs and personel-
IDs

is a uniqueness constraint whereas the following is a functional dependency:

The extra pay for Microsoft’s employees is detemined by their posi-
tions and the amount of overtime they have worked.

In literature, DLs with uniqueness constraints and functional dependencies
have been analyzed in [7, 8, 13, 25, 26], but in these DLs, concrete domains
have not been taken into account. In the context of DLs with concrete domains,
uniqueness constraints and functional dependencies have separatedly been con-
sidered in [19] and [20] respectively. Formally, in [19] DLs with concrete domains
are equipped with key boxes consisting of uniqueness constraints of the form

(u1, . . . , un keyfor C),

and in [20] ALC(D) is extended with key boxes containing functional dependen-
cies of the form

(u1, . . . , un keyfor C, u),

in which u1, . . . , un and u are paths, and C is a concept. The former key
constraint says that each pair of instances of the class C that have the same
ui-value, 1 ≤ i ≤ n, must be the same individual, whereas the latter states that
each pair of instances of the class C that have the same ui-value, 1 ≤ i ≤ n,
must have the same u-value.

It has been shown that uniqueness constraints and functional dependencies
have a dramatic impact on decidability and complexity of reasoning. In the
general case, although satisfiability of ALC(D)-concepts is PSpace-complete,
adding either uniqueness constraints or functional dependencies makes it unde-
cidable. Decidability is recovered if we restrict ourselves to a certain form of key
boxes. For DLs with concrete domains and functional dependencies, decidability
is preserved when we disallow sub-concepts of the form ∃u1, . . . , un.P in concepts
in key boxes whereas when uniqueness constraints are considered, the condition
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is even more strict. In [19, 20], decidability of reasoning in DLs with concrete
domains and restricted forms of key constraints is shown via tableau algorithms.
Although decidability is preserved, adding restricted uniqueness constraints or
functional dependencies makes reasoning become NExpTime-complete.

Although in many applications both types of key constraints are needed,
for example an employee ontology may need to represent both key constraints
mentioned earlier, surprisingly, to the best of our knowledge they have not been
treated in a single logic. That fact motivates us to integrate both uniqueness
constraints and functional dependencies into DLs with concrete domains.

Moreover, as discussed in [19], there exists a close connection between unique-
ness constraints and so-called nominals, i.e., concept names that have at most
one instance, such as US President. It is not hard to see that uniqueness con-
straints can “simulate” nominals: for example, if we use a concrete domain based
on natural numbers that has unary predicates =n for equality with n ∈ N, then
the uniqueness constraint (g keyfor ⊤), where ⊤ stands for logical truth, ob-
viously makes the concept ∃g. =3 behave like a nominal. For this reason, we
explicitly enrich our logic with nominals as they cannot bring more “harm” to
complexity of reasoning than uniqueness constraints do.

Our aim is to perform an analysis on the impact of the presence of both types
of key constraints on decidability and computational complexity of reasoning.
Intuitively, reasoning becomes undecidable in the general case and in order to
regain decidability, a restriction on key boxes is needed. Although restricting key
boxes recovers decidability, it makes reasoning become NExpTime-complete,
thus not harder than that when only one type of key constraints is considered.

The rest of the paper is organized as follows.
In Chapter 2, we formally introduce the syntax and semantics of the logic

ALCOK(D)FD, which is obtained by adding uniqueness constraints, functional
dependencies, and nominals to ALC(D). Besides, we give the formal definition
of safe key boxes, which help us regain decidability of reasoning. Furthermore,
in Section 2.2 we discuss the undecidability result of reasoning in the general
case, and give an NExpTime lower complexity bound for reasoning w.r.t. safe
key boxes in ALCOK(D)FD.

In Chapter 3, it is shown that admitting only safe key boxes ensures that
reasoning in ALCOK(D)FD is decidable. First, decidability is shown in Sec-
tion 3.1 by a tableau algorithm deciding ALCOK(D)FD-concept satisfiability
w.r.t. safe key boxes. It turns out that a naive combination of the tableau al-
gorithms, which deal with uniqueness constraints and functional dependencies
in [19] and [20] respectively, does not work. Instead, the two types of key con-
straints need to be treated carefully as both uniqueness constraints and strong
functional dependencies may influence the structure of logical models. Then,
termination, soundness, and completeness of the algorithm are proved in Sec-
tion 3.2. Moreover, these proofs yield an NExpTime upper complexity bound
for ALCOK(D)FD-concept satisfiability w.r.t. safe key boxes, which coincides
with the NExpTime lower complexity bound in Chapter 2.

In Chapter 4, we give a discussion on extending ALCOK(D)FD with acyclic
TBoxes, general TBoxes, and inverse roles. We first show that adding acyclic
TBoxes does not make reasoning in ALCOK(D)FD harder. Then we give a
discusssion about the fact that for a large class of concrete domains, adding
either general TBoxes or inverse roles leads to undecidability of reasoning.

Finally, Chapter 5 gives concluding remarks.



Chapter 2

The Description Logic

ALCOK(D)FD

In this chapter, we introduce the description logic ALCOK(D)FD with concrete
domains, uniqueness constraints, and functional dependencies. First, its syntax,
semantics, and reasoning problems in it are defined in Section 2.1. And then,
in Section 2.2 we discuss lower complexity bounds for ALCOK(D)FD.

2.1 ALCOK(D)FD

In this section, syntax and semantics of the description logic ALCOK(D)FD are
formally introduced. We start with the definition of a concrete domain [3, 17].

Definition 1 (Concrete Domain). A concrete domain D is a pair (∆D , ΦD)
where ∆D is a set and ΦD a set of predicate names. Each predicate name P is
associated with an arity n and an n-ary predicate PD ⊆ ∆n

D.

Based on concrete domains, the description logic ALCOK(D) with concrete
domains and uniqueness constraints is proposed in [19], whereas the description
logic ALC(D)FD which includes concrete domains and functional dependencies
is treated in [20]. In the following, we combine the two logics together by
taking into account both uniqueness constraints and functional dependencies in
one logic. First, we define ALCOK(D)FD-concepts, functional dependencies,
uniquess constraints, and key boxes.

Definition 2 (ALCOK(D)FD Syntax). Let NC, NO, NR and NcF be pairwise
disjoint and countably infinite sets of concept names, nominals, role names,
and concrete features. Furthermore, we assume that NR contains a countably
infinite subset NaF of abstract features. A path u is a composition f1 . . . fng
of n abstract features f1, . . . , fn (n ≥ 0) and a concrete feature g. Let D be a
concrete domain. The set of ALCOK(D)FD-concepts is the smallest set such
that

• every concept name and every nominal is a concept, and
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2.1. ALCOK(D)FD 6

• if C and D are concepts, R is a role name, g is a concrete feature,
u1, . . . , un are paths, and P ∈ ΦD is a predicate of arity n, then the fol-
lowing expressions are also concepts:

¬C, C ⊓ D, C ⊔ D, ∃R.C, ∀R.C, ∃u1, . . . , un.P, and g↑

A weak functional dependency is an expression

(u1, . . . , uk wkeyfor C, u),

a strong functional dependency is an expression

(u1, . . . , uk skeyfor C, u),

a uniqueness constraint is an expression

(u1, . . . , uk keyfor C)

where u1, . . . , uk (k ≥ 1) and u are paths, and C is a concept. A finite set of
functional dependencies and uniqueness constraints is called a key box.

As usual, we use ⊤ as abbreviation for an arbitrary propositional tautology,
⊥ as abbreviation for ¬⊤, and C → D as abbreviation for ¬C ⊔ D. It is easily
seen that both ALCOK(D) and ALC(D)FD are fragments of the description
logic ALCOK(D)FD. Beside the two fragments, throughout this paper, we will
also consider several fragments of ALCOK(D)FD such as ALCO(D), obtained
from ALCOK(D)FD by admitting empty key boxes, ALCK(D) and ALC(D)
obtained from ALCOK(D) and ALCO(D) respectively by disallowing nominals,
etc.

Before actually giving the formal semantics of ALCOK(D)FD, let us consider
the following examples showing uniqueness constraints and functional dependen-
cies together in applications.

Example 1.

1. In a bookstore ontology, we assume that bookstores are uniquely identified
by their identification numbers, which can be expressed by the following
uniqueness constraint:

(storeID keyfor Bookstore)

whereas “All books with the same ISBN and sold in the same bookstore
have the same price” can be modelled by

(isbn, sold in storeID skeyfor Book, price)

where Bookstore, Book are concept names, sold in is an abstract feature,
and isbn, storeID and price are concrete features.

2. Again, we reconsider the example about an employee ontology in Chapter
1. We assume that “employees are uniquely determined by their branches’
IDs and their personel IDs”, which can be expressed by the following n-ary
uniqueness constraint:

(branch id, id keyfor Employee)
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Furthermore, it is assumed that “the extra pay for Microsoft’s employees
is determined by their positions and the amount of overtime they have
worked”. This is represented as follows:

(overtime hours, position

wkeyfor Employee ⊓ ∃work for.Microsoft, extra pay)

The concepts Employee and Employee ⊓ ∃work for.Microsoft respectively re-
fer to employees and those who work for Microsoft, branch is an abstract
feature, and id, position, overtime hours and extra pay are concrete features.

In the functional dependency, it is natural to use weak form, since we want
to allow for the case that an arbitrary employee gives up on his extra pay.

3. In an ontology about car dealers, we assume that cars and manufactur-
ers are equipped with identification numbers and that every car is uniquely
identified by the combination of its own identification number and its man-
ufacturer’s one. The following uniqueness constraint expresses this.

(id, manufacturer id keyfor Car)

Moreover, we assume that “the price of a used car is determined by its
model and its mileage”. That constraint is described by the following func-
tional dependency:

(model, manufacturer id, mileage

skeyfor Car ⊓ ∃formerOwner.Human, price)

In the above key constraints, Car, Human are concept names, the con-
cept Car ⊓ ∃formerOwner.Human refers to used cars, formerOwner is a role
name, manufacturer is an abstract feature, and id, model, mileage, price are
concrete features.

We now define the semantics of ALCOK(D)FD, together with the most
common decision problems.

Definition 3 (ALCOK(D)FD Semantics). An interpretation I is a pair (∆I , ·I),
where ∆I is a non-empty set, called the domain, and ·I is the interpretation
function. The interpretation function maps

• each concept name C to a subset CI of ∆I ,

• each nominal N to a singleton subset NI of ∆I ,

• each role name R to a subset RI of ∆I × ∆I ,

• each abstract feature f to a partial function fI from ∆I to ∆I, and

• each concrete feature g to a partial function gI from ∆I to ∆D.

If u = f1 . . . fng is a path and d ∈ ∆I, then uI(d) is defined as
gI(fI

n (. . . (fI
1 (d)) . . .)). The interpretation is extended to arbitrary concepts as
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follows:

(¬C)I := ∆I \ CI

(C ⊓ D)I := CI ∩ DI

(C ⊔ D)I := CI ∪ DI

(∃R.C)I := {d ∈ ∆I | there is e ∈ ∆I with (d, e) ∈ RI and e ∈ CI}

(∀R.C)I := {d ∈ ∆I | for all e ∈ ∆I, if (d, e) ∈ RI then e ∈ CI}

(∃u1, . . . , un.P )I := {d ∈ ∆I | ∃x1, . . . , xn ∈ ∆D : uI
i (d) = xi

and (x1, . . . , xn) ∈ PD}

(g↑)I := {d ∈ ∆I | gI(d) undefined}

Let I be an interpretation. Then I is a model of a concept C iff CI 6= ∅.
Moreover, I satisfies a weak functional dependency (u1, . . . , uk wkeyfor C, u)

if, for all a, b ∈ CI, the following holds: if, for 1 ≤ i ≤ k, uI
i (a) = uI

i (b), and
uI(a) and uI(b) are defined, then uI(a) = uI(b).

I satisfies a strong functional dependency (u1, . . . , uk skeyfor C, u) if, for all
a, b ∈ CI , the following holds: if, for 1 ≤ i ≤ k, uI

i (a) = uI
i (b) and uI(a) is

defined, then uI(b) is defined and uI(a) = uI(b).
I satisfies a uniqueness constraint (u1, . . . , uk keyfor C) if, for all a, b ∈ CI

the following holds: if, for 1 ≤ i ≤ k, uI
i (a) = uI

i (b), then a = b.
I is a model of a key box K iff I satisfies all functional dependencies and

uniqueness constraints in K. A concept C is satisfiable w.r.t. a key box K iff
C and K has a common model. C is subsumed by a concept D w.r.t. a key box
K (written C ⊑K D) iff CI ⊆ DI for all models I of K.

Like in any description logic that provides for negation and conjunction, in
ALCOK(D)FD concept subsumption can be reduced to concept satisfiability
and vice versa: C ⊑K D iff C ⊓¬D is unsatisfiable w.r.t. K, and C is satisfiable
w.r.t. K iff C 6⊑K ⊥. Therefore, it allows us to concentrate only on concept
satisfiability when investigating the comlexity of ALCOK(D)FD.

In order not to commit decision procedures to any particular concrete do-
main, we need a well-defined interface between the decision procedure and the
concrete domain reasoner. Usually, concrete domains are required to be admissi-
ble [3, 14], i.e., satisfiability of finite predicate conjunctions in concrete domains
is decidable.

Definition 4 (D-conjunction, admissibility). Let D be a concrete domain and
V be a set of variables. A D-conjunction is a finite predicate conjunction of the
form

c =
∧

i<k

(x
(i)
0 , . . . , x(i)

ni
) : Pi,

where Pi is an ni-ary predicate for i < k and x
(i)
j are variables from V . A D-

conjunction is satisfiable iff there exists a function δ mapping the variables in

c to elements of ∆D such that (δ(x
(i)
0 ), . . . , δ(x

(i)
ni )) ∈ PD

i for each i < k. Such
a function is called a solution for c.

A concrete domain D is admissible iff it satisfies the following properties:

1. ΦD contains a name ⊤D for ∆D;
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2. ΦD is closed under negation;

3. satisfiability of D-conjunctions is decidable.

We refer to the satisfiability of D-conjunctions as D-satisfiability.

As we will see in the subsequent section, reasoning w.r.t. key boxes intro-
duced so far (i.e., general ones) in ALCOK(D)FD is undecidable. Fortunately,
when restricting ourselves to a certain class of restricted key boxes, we preserve
decidability. This class of key boxes is introduced in the following definition.

Definition 5 (Safe key box). A key box K is called safe if none of concepts
apprearing in functional dependencies and uniqueness constraints in K has a
subconcept of the form ∃u1, . . . , un.P .

Note that requiring a key box to be safe is not a very severe restriction.
As we can see, safe key boxes are expressive enough to model all the discussed
examples.

2.2 Lower Complexity Bounds

In this section, we present lower complexity bounds for reasoning problems in
the description logic ALCOK(D)FD. First of all, it follows from undecidabil-
ity of reasoning w.r.t. general key boxes in fragments of ALCOK(D)FD that
satisfiability of ALCOK(D)FD-concepts w.r.t. general key boxes is undecidable.

Before actually discussing complexity results, let us introduce some nota-
tions. A key box is called unary if it contains functional dependencies of the
form (u depfor C, u′) and uniqueness constraints of the form (u keyfor C) only.
It is called Boolean if all concepts appearing in it are Boolean combinations of
concept names. It is called path-free if it contains paths of length one only, and
it is called weak if it contains weak functional dependencies only. Finally, a
concept is called path-free if it contains paths of length one only.

Now, for ALCOK(D), it is proved in [19] that even when considering unary
key boxes, concept satisfiability w.r.t. general unary key boxes in ALCK(D), a
fragment of ALCOK(D), is undecidable.

Lemma 6 (Theorem 3.3 in [19]). There exists a concrete domain D such that
D-satisfiability is in PTime and satisfiability of ALCK(D)-concepts w.r.t. path-
free unary key boxes is undecidable.

Moreover, a similar result is established in [19] for a large class of concrete
domains, which in fact is quite relevant in applications. These are arithmetic
concrete domains.

Definition 7. A concrete domain D is called arithmetic iff N ⊆ ∆D and ΦD

contains the following predicates:

1. unary predicates =0 with (=0)
D = {0} and 6=0 with (6=0)

D = ∆D\{0},

2. binary equality and inequality predicates,

3. a ternary predicate + with (+)D ∩{(k1, k2, x) | k1, k2 ∈ N and x ∈ ∆D} =
{(k1, k2, k1 + k2) | k1, k2 ∈ N}, and
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4. a ternary predicate ∗ with (∗)D ∩ {(k1, k2, x) | k1, k2 ∈ N and x ∈ ∆D} =
{(k1, k2, k1 ∗ k2) | k1, k2 ∈ N}.

Lemma 8 (Theorem 3.4 in [19]). For an arithmetic concrete domain D, satis-
fiability of ALCK(D)-concepts w.r.t. path-free unary key boxes is undecidable.

For ALC(D)FD, even similar results holds when we admit only unary path-
free weak key boxes.

Lemma 9 (Corollary 1 in [21]). There exists a concrete domain D such that
D-satisfiability is in PTime and ALC(D)FD-concept satisfiability w.r.t. unary
path-free weak key boxes is undecidable.

Lemma 10 (Theorem 2 in [21]). For an arithmetic concrete domain D, satis-
fiability of ALC(D)FD-concepts w.r.t. (general) weak key boxes is undecidable.

Based on above lemmas and the fact that ALCK(D) and ALC(D)FD are
fragments of ALCOK(D)FD, we get unsatisfiability of reasoning w.r.t. general
key boxes in ALCOK(D)FD.

Theorem 11. There exists a concrete domain D such that D-satisfiability is in
PTime and ALCOK(D)FD-satisfiability w.r.t. general key boxes is undecidable.

Theorem 12. Let D be an arithmetic concrete domain. Then, satisfiability of
ALCOK(D)FD-concepts w.r.t. general key boxes is undecidable.

Obviously, Theorems 11 and 12 establish a discouraging undecidability result
about reasoning in ALCOK(D)FD. Fortunately, as discussed in [19] and [21],
restricting to certain classes of key boxes regains decidability of reasoning in
ALCOK(D) and ALC(D)FD. For ALCOK(D), the proposed class of key boxes
is Boolean ones whereas for ALC(D)FD these are safe key boxes. Furthermore,
[19] and [21] show the existence of a concrete domain D such that reasoning
w.r.t. Boolean key boxes in ALCOK(D) and reasoning w.r.t. safe key boxes in
ALC(D)FD become NExpTime-hard.

Lemma 13 (Theorem 3.7 in [19]). There exists a concrete domain D such that
D-satisfiability is in PTime and satisfiability of path-free ALCK(D)-concepts
w.r.t. Boolean unary key boxes is NExpTime-hard.

Lemma 14 (Corollary 2 in [21]). There exists a concrete domain D such that
D-satisfiability is in PTime and ALC(D)FD-concept satisfiability w.r.t. safe
key boxes is NExpTime-hard.

Furthermore, [19] and [21] also point out a large class of concrete domains
such that the NExpTime lower complexity holds for reasoning w.r.t. Boolean
key boxes in ALCK(D) and reasoning w.r.t. safe key boxes in ALC(D)FD,
respectively.

Lemma 15 (Theorem 3.8 in [19]). Let D be a concrete domain. If there exists
a, b ∈ ∆D with a 6= b and P1, P2 ∈ ΦD such that PD

1 = {a} and PD
2 = {b}, then

satisfiability of path-free ALC(D)FD-concepts w.r.t. unary Boolean key boxes is
NExpTime-hard.

Lemma 16 (Theorem 4 in [21]). Let D be a concrete domain such that {0, 1} ⊆
∆D and ΦD contains predicates =0 and =1 with (=0)

D = {0} and (=1)
D = {1}.

Then satisfiability of ALC(D)FD-concepts w.r.t. safe key boxes is NExpTime-
hard.
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Note that safe key boxes are more general than Boolean key boxes, i.e., they
additionally allow for sub-concepts of forms ∃R.C, ∀R.C, or g↑ in key boxes.
We will show that even when we allow for safe key boxes in the presence of
uniqueness constraints, reasoning in ALCOK(D)FD remains decidable. There-
fore, from now on we focus ourselves to reasoning w.r.t. safe key boxes only.

Since ALCK(D) and ALC(D)FD are fragments of ALCOK(D)FD, the fol-
lowing theorem immediately follows from the above lemmas.

Theorem 17. Let D be a concrete domain such that {0, 1} ⊆ ∆D and ΦD

contains predicates =0 and =1 with (=0)
D = {0} and (=1)

D = {1}. Then
satisfiability of ALCOK(D)FD-concepts w.r.t. safe key boxes is NExpTime-
hard.

It is easily seen that conditions on the concrete domain D in Lemmas 15
and 16 are equivalent in the sense that we can do an appropriate renaming to
obtain one from the other. Therefore, Theorem 17 already covers the concrete
domain considered in Lemma 15.

Since concept subsumption is reduced to concept satisfiability using nega-
tion, from Theorem 17 we get the co-NExpTime-hardness of concept subsump-
tion in ALCOK(D)FD.



Chapter 3

A Reasoning Procedure

In this chapter, we present a decision procedure for ALCOK(D)FD. As discussed
in Section 2.2, ALCOK(D)FD-concept satisfiability w.r.t. general key boxes is
undecidable. Fortunately, when restricting ourselves to safe key boxes, we regain
decidability. In Section 3.1, the decision procedure is presented. Then we prove
the termination, soundness, and completeness of the algorithm in Section 3.2.
Based on the bounded model property for ALCOK(D)FD induced by the proofs,
we show an alternative algorithm that yields a NExpTime upper complexity
bound for ALCOK(D)FD with a restricted key box D.

3.1 A Tableau Algorithm for ALCOK(D)FD with

Safe Key Boxes

In this section, a tableau algorithm for ALCOK(D)FD-concept satisfiability
w.r.t. safe key boxes is presented. Like other tableau algorithms (see, e.g.,
[6]), the algorithm decides satisfiability of a concept by trying to construct a
model for it. The algorithm starts with an initial structure induced by the input
concept and the input key box, and applies so-called completion rules step by
step until an obvious contradiction is found or no more rules is applicable. In
the former case, the input concept is not satisfiable whereas in the latter case
it is satisfiable.

To deal with concrete domains, the algorithm works on trees which have two
types of nodes: abstract ones representing individuals of the logical domain, and
concrete ones mapped to values of the concrete domain. In order not to com-
mit the algorithm to any particular concrete domain, an interface between the
tableau algorithm and a concrete domain reasoner is needed. Usually, admissi-
bility of a concrete domain D, which guarantees that D-satisfiability is decidable
(c.f. Definition 4), is enough.

However, due to functional dependencies and uniqueness constraints, be-
sides satisfiability of a given D-conjunction, additionally we need information
about which concrete nodes have to be mapped to the same concrete domain
value. Thus, a stronger condition for concrete domains from [19, 20], called key-
admissibility, is needed for ALCOK(D)FD. We define key-admissibility in a non-
deterministic way since the algorithm for ALCOK(D)FD is non-deterministic.

12
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Definition 18 (key-admissible). A concrete domain D is key-admissible iff it
satisfies the following properties:

1. ΦD contains a name ⊤D for ∆D;

2. ΦD is closed under negation, i.e., for each predicate P ∈ ΦD of arity n,
there exists a predicate P̄ ∈ ΦD such that P̄D = ∆n

D\P
D;

3. there exists an algorithm that takes as input a D-conjunction c, returns
clash if c is unsatisfiable, and otherwise non-deterministically outputs an
equivalence relation ∼ on the set of variables V used in c such that there
exists a solution δ for c with the following property: for all v, v′ ∈ V

δ(v) = δ(v′) iff v ∼ v′.

We say that extended D-satisfiability is in NP if there exists an algorithm
as above running in polynomial time.

Note that key-admissibility is not significantly stronger than admissibility
since it is shown in [19] that every admissible concrete domain that provides for
an equality predicate is also key-admissible. Therefore, throughout this paper,
we assume that the concrete domain D provides for an equality predicate.

Before actually giving the tableau algorithm, we need some prerequisites. A
concept is in negation normal form (NNF) if negation occurs only in front of
concept names and nominals. If D is key-admissible, then every ALCOK(D)FD-
concept can be converted into an equivalent one in NNF by exhaustively apply-
ing the following rewrite rules:

¬(C ⊓ D) ¬C ⊔ ¬D ¬(C ⊔ D) ¬C ⊓ ¬D

¬(∃R.C) ∀R.¬C ¬(∀R.C) ∃R.¬C

¬¬C  C

¬(∃u1, . . . , un.P ) ∃u1, . . . , un.P̄ ⊔ u1↑ ⊔ . . . ⊔ un↑

¬(g↑) ∃g.⊤D

Note that, for a path u = f1 . . . fng, we use u↑ as abbreviation for the concept
∀f1 . . . ∀fn.g↑.

We use ¬̇C to denote the result of converting ¬C into NNF. A keybox K
is in NNF if all concepts occurring in functional dependencies and uniqueness
constraints in K are in NNF. From now on, we assume that all input concepts
and key boxes are in NNF. Let C be an ALCOK(D)FD-concept and K a key
box. We use sub(C) to denote the set of subconcepts of C and con(K) to denote
the set of concepts appearing on the right-hand side of functional dependen-
cies and uniqueness constraints in K. For a set of concepts Γ, sub(Γ) denotes
⋃

C∈Γ sub(C). Moreover, we use cl(K) as abbreviation for the set

sub(con(K)) ∪ {¬̇D | D ∈ sub(con(K))},

and cl(C,K) as abbreviation for the set

sub(C) ∪ cl(K).

Let us now introduce the underlying data structure for the tableau algorithm.
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Definition 19 (Completion system). Let Oa and Oc be disjoint and count-
ably infinite sets of abstract and concrete nodes. A completion tree for
an ALCOK(D)FD-concept C and a key box K is a finite, labelled tree T =
(Va, Vc, E,L) with nodes Va∪Vc such that Va ⊆ Oa, Vc ⊆ Oc, and all nodes from
Vc are leaves. The tree is labelled as follows:

1. each node a ∈ Va is labelled with a subset L(a) of cl(C,K);

2. each edge (a, b) ∈ E with a, b ∈ Va is labelled with a role name L(a, b)
occurring in C or K;

3. each edge (a, x) ∈ E with a ∈ Va, x ∈ Vc is labelled with a concrete feature
L(a, x) occurring in C or K.

For a ∈ Va, we use levT (a) to denote the depth on which a occurs in T (the
root node is on depth 0). A completion system for an ALCOK(D)FD-concept
C and a key box K is a tuple (T,P ,≺,∼), where

• T = (Va, Vc, E,L) is a completion tree for C and K,

• P is a function mapping each P ∈ ΦD of arity n in C to a subset of V n
c ,

• ≺ is a strict, total ordering on Va such that a ≺ b implies levT (a) ≤
levT (b), and

• ∼ is an equivalence relation on Vc.

Let (Va, Vc, E,L) be a completion tree. A node b ∈ Va is an R-successor of a
node a ∈ Va iff (a, b) ∈ E and L(a, b) = R, while a node x ∈ Vc is a g-successor
of a if (a, x) ∈ E and L(a, x) = g. For a path u the notion u-successor if defined
in the obvious way.

Intuitively, the relation ∼ records equalities between concrete nodes that are
found by the tableau algorithm. The relation ∼ then induces an equivalence re-
lation ≈a between abstract nodes, which results in another equivalence relation
≈c⊇∼ between concrete nodes.

Definition 20 (≈a and ≈c Relations). Let S = (T,P ,≺,∼) be a completion
system for a concept C and a key box K with T = (Va, Vc, E,L), and ≈ an
equivalence relation on Va. For each R ∈ NR, a node b ∈ Va is an R/≈-neighbor
of a node a ∈ Va if there exists a node c ∈ Va such that a ≈ c and b is an
R-successor of c. Similarly, for each g ∈ NcF a node x ∈ Vc is a g/≈-neighbor
of a if there exists a node c ∈ Va such that a ≈ c and x is a g-successor of c.
For paths u, the notion u/≈-neighbor is defined inductively as follows:

• if u = g, then x is a u/≈-neighbor of a iff x is a g/≈-neighbor of a.

• if u = f1 . . . fng, then x is a u/≈-neighbor of a iff there exists a node b ∈ Va

such that b is an f1/≈-neighbor of a and x is an f2 . . . fng/≈-neighbor of
b.
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We define a sequence of equivalence relations ≈0
a⊆≈1

a⊆ . . . on Va as follows:

≈0
a={(a, a) ∈ V 2

a }∪

{(a, b) ∈ V 2
a | there is an N ∈ NO such that N ∈ L(a) ∩ L(b)}

≈i+1
a = ≈i

a ∪

{(a, b) ∈ V 2
a | there is a c ∈ Va and an f ∈ NaF such that

a and b are f/≈i
a-neighbors of c}∪

{(a, b) ∈ V 2
a | there is a (u1, . . . , un keyfor D) ∈ K,

ui/≈
i
a-neighbor xi of a for 1 ≤ i ≤ n, and

ui/≈
i
a-neighbor yi of b for 1 ≤ i ≤ n

such that D ∈ L(a) ∩ L(b) and xi ∼ yi for 1 ≤ i ≤ n}

Finally, set ≈a=
⋃

i≥0 ≈i
a. Then define

≈c=∼ ∪{(x, y) ∈ V 2
c |there is an a ∈ Va and a g ∈ NcF such that

x and y are g/≈a-neighbors of a }.

Let D be a key-admissible concrete domain. To decide satisfiability of an
ALCOK(D)FD-concept C0 w.r.t. a safe key box K (both in NNF), the tableau
algorithm starts with the initial completion system

SC0 = (TC0 ,P0, ∅, ∅)

with the initial completion tree

TC0 = ({a0}, ∅, ∅, {a0 7→ {C0}})

where P0 maps each P occurring in C0 to ∅.
The algorithm applies completion rules to the completion system until an

obvious inconsistency (clash) is detected or the rules are not applicable anymore.
The completion rules add new nodes to completion trees by using an operation
defined as follows.

Definition 21 (⊕ operation). An abstract concrete node is called fresh w.r.t.
a completion tree T if it does not appear in T . Let S = (T,P ,≺,∼) be a
completion system with T = (Va, Vc, E,L). We use the following operations:

• S ⊕ aRb (a ∈ Va, b ∈ Oa fresh in T , R ∈ NR) yields a completion system
obtained from S in the following way:

– if R /∈ NaF or R ∈ NaF and a has no R-successors, then add b to Va,
(a, b) to E, and set L(a, b) = R,L(b) = ∅.

– if R ∈ NaF and there is a c ∈ Va such that (a, c) ∈ E and L(a, c) = R
then rename c in T with b.

Moreover, b is inserted into ≺ such that b ≺ c implies levT (b) ≤ levT (c).

• S ⊕ agb (a ∈ Va, x ∈ Oc fresh in T , g ∈ NcF) yields a completion system
obtained from S in the following way:
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– if a has no g-successors, then add x to Va, (a, x) to E, and set
L(a, x) = g;

– if a has a g-successor y, then rename y in T,P, and ∼ with x.

Let u = f1 . . . fng be a path. With S ⊕ aux, where a ∈ Va and x ∈ Oc fresh
in T , we denote the completion system obtained from S by taking distinct nodes
b1, . . . , bn ∈ Oa which are fresh in T and setting

S′ := S ⊕ af1b1 ⊕ . . . ⊕ bn−1fnbn ⊕ bngx

Note that since the tableau algorithm keeps track of equivalences between
abstract and concrete nodes, when adding new nodes to completion trees, it does
not really need to respect the functionality of abstract and concrete features
as it does by the ⊕ operation. In fact, we can use the non-functional “+”
operation from [19] instead. However, in order to be consistent with the tableau
algorithm for ALC(D)FD in [21], and more importantly, to simplify the proof
of the bounded model property, the tableau algorithm in this paper uses the ⊕
operation.

Let us now define what an obvious clash means.

Definition 22 (Clash). Let S = (T,P ,≺,∼) be a completion system for a
concept C0 and a key box K with T = (Va, Vc, E,L). We say that the completion
system S is concrete domain satisfiable iff the conjunction

ζS =
∧

P used in C0

∧

(x1,...,xn)∈P(P )

P (x1, . . . , xn) ∧
∧

x≈cy

= (x, y)

is satisfiable. S is said to contain a clash iff

1. there is an a ∈ Va and an A ∈ NC such that {A,¬A} ⊆ L(a),

2. there are a ∈ Va and x ∈ Vc such that g↑∈ L(a) and x is a g-successor of
a,

3. S is not concrete domain satisfiable.

If S does not contain a clash, S is called clash-free. S is called complete iff
no completion rule is applicable to S.

In order to ensure termination of the algorithm, a cycle detection mechanism,
called blocking, is needed. Informally, we detect nodes in the completion tree
that are “similar” to the previously created ones and “block” them. This means
that completion rules are applied only to unblocked nodes.

Definition 23 (≈u,≈ Relations, Blocking). Let S = (T,P ,≺,∼) be a comple-
tion system for a concept C0 and a key box K with T = (Va, Vc, E,L). Let u
be a path. We say that nodes a, b ∈ Va have similar u/≈a-neighbors (written
a ≈u b) if the following holds:

• if a has a u/≈a-neighbor x, then b has a u/≈a-neighbor y and x ∼ y;

• if b has a u/≈a-neighbor x, then a has a u/≈a-neighbor y and x ∼ y.
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Let suff(C0,K) be the set of all suffixes of paths that appear in a subconcept
∃u1, . . . , un.P ∈ sub(C0), in a functional dependency, or in a uniqueness con-
straint (either on the left- and right-hand side) in the key box K. Moreover,
given a node a ∈ Va, let

L(a) :=
⋃

b≈aa

L(b)

We call abstract nodes a and b similar (written a ≈ b) if

1. L(a) = L(b), and

2. a ≈u b for all u ∈ suff(C0,K).

An abstract node a ∈ Va is directly blocked by its ancestor b ∈ Va if a ≈ b.
An abstract node is blocked if it or one of its ancestors is directly blocked.

The blocking condition here is similar to that in [21] except that in this paper
we consider labels of all equivalent abstract nodes according to the relation ≈a

instead of labels of each node only, and u/≈a-neighbors instead of u-successors.
The reason is that in our context, abstract nodes that are equivalent according
to the relation ≈a describe the same node in the model. Thus, their node labels
and their successors should be identical.

The first part of the blocking condition, which requires each pair of blocking
and directly blocked nodes to have the same labels, is known from tableau
algorithms for other DLs. The second part is introduced due to the presence
of uniqueness constraints and functional dependencies. It guarantees that while
blocking we consider not only abstract nodes and their labels, but also concrete
ones and the concrete equivalence relation. The blocking mechanism is explained
by an example after the completion rules and the algorithm are given. In the
completion rules, if ρ is a binary relation on Vc × Vc, we denote by ρ∗ the
reflexive, symmetric and transitive closure of ρ.

Completion rules:

R⊓ if C1 ⊓ C2 ∈ L(a), a is not blocked, and {C1, C2} 6⊆ L(a) then L(a) :=
L(a) ∪ {C1, C2}.

R⊔ if C1 ⊔ C2 ∈ L(a), a is not blocked, and {C1, C2} ∩ L(a) = ∅ then L(a) :=
L(a) ∪ {C} for some C ∈ {C1, C2}.

R∃ if ∃R.C ∈ L(a), a is not blocked, and there is no R-successor b of a such that
C ∈ L(b), then set S := S⊕aRb for a fresh b ∈ Oa and L(b) := {C}∪L(b)1.

R∀ if ∀R.C ∈ L(a), a is not blocked, and b is an R-successor of a such that
C /∈ L(b), then set L(b) := L(b) ∪ {C}.

R∃c if ∃u1, . . . , un.P ∈ L(a), a is not blocked, and there exist no x1, . . . , xn ∈ Vc

such that xi is a ui-successor of a for 1 ≤ i ≤ n and (x1, . . . , xn) ∈ P(P )
then set S := (S ⊕ au1x1 ⊕ . . . ⊕ aunxn) with x1, . . . , xn ∈ Oc fresh and
P(P ) := P(P ) ∪ {(x1, . . . , xn)}.

1In the case when R is an abstract feature f and a has already had a f -successor c, then
according to the definition of the ⊕ operation, c is renamed with b, and hence the rule must
take into account concepts already in L(b). In other cases, we have L(b) = ∅, and thus there
is no problem with the assignment.
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Rch if there is (u1, . . . , un keyfor C) or (u1, . . . , un depfor C, u) with depfor ∈
{wkeyfor, skeyfor} in K, there exist x1, . . . , xn ∈ Vc such that xi is a ui-
successor of a (not blocked) for 1 ≤ i ≤ n, and {C, ¬̇C} ∩ L(a) = ∅, then
set L(a) := L(a) ∪ {D} for some D ∈ {C, ¬̇C}.

Rwkey if C ∈ L(a) ∩ L(b), (u1, . . . , un wkeyfor C, u) ∈ K, a and b are not
blocked, a has a ui-successor xi, b has a ui-successor yi, xi ∼ yi for
1 ≤ i ≤ n, there is a u-successor x of a and a u-successor y of b, and
(x, y) /∈∼, then set ∼:= (∼ ∪{(x, y)})∗.

Rskey if C ∈ L(a) ∩ L(b), (u1, . . . , un skeyfor C, u) ∈ K, a and b are not
blocked, a has a ui-successor xi, b has a ui-successor yi, xi ∼ yi for
1 ≤ i ≤ n, there is a u-successor x of a and there is no u-successor z
of b such that x ∼ z, then set S := S ⊕ buy with y ∈ Oc fresh and
∼:= (∼ ∪{(x, y)})∗.

Rp if L(b) 6⊆ L(a), a is not blocked, and a ∈ Va is minimal w.r.t. ≺ such that
a ≈a b then set L(a) := L(a) ∪ L(b).

Rcp if a ∈ Va is not blocked, a is minimal w.r.t. ≺ in the set {b ∈ Va | b ≈a a},
a has a u/≈a-neighbor x for some u ∈ suff(C0,K), and a does not have a u-
successor, then set S := S⊕auy with y ∈ Oc fresh and ∼:= (∼ ∪{(x, y)})∗.

Let us give some further remarks on the completion rules. The R⊔ and Rch
are non-deterministic. The first five rules, namely R⊓, R⊔, R∃, R∀, and R∃c,
are known from the existing algorithm for ALC(D)-concept satisfiability (see,
e.g., [14]). The other five rules are introduced to deal with key boxes.

The Rch rule is a so-called “choice rule”: intuitively, for an abstract node a
and a functional dependency (u1, . . . , uk depfor C, u) or a uniqueness constraint
(u1, . . . , uk keyfor C) in the key box K such that a has neighbors for all paths ui,
it guesses whether or not a satisfies C. This is necessary since both possibilities
may have ramifications.

The Rwkey rule dealing with weak functional dependencies and Rskey deal-
ing with strong functional dependencies are similar to those in [20]. We will
demonstrate later that without blocking, the Rskey rule can cause infinite runs
of the algorithm.

The Rp rule dealing with equalities between abstract nodes recorded by the
≈a relation is similar to that in [19]. Intuitively, if a ≈a b then a and b describe
the same node in the model, and thus their node labels should be identical.
However, it suffices to choose one representative among the equivalent nodes
and make sure that this representative’s node labels contains the labels of all
equivalent ones. We choose the node that is minimal w.r.t. the ordering ≺ as
the representative. The Rp does the appropriate copying of node labels.

The Rcp rule, which is new, also deals with equalities between abstract
nodes recorded by the ≈a relation. Let us explain the necessity of the Rcp
by the following example. Let a be an abstract node of the constructed tree
such that a is blocked. Obviously, successors of a are also blocked and are not
considered in the model. However, it may happen that a u-successor of a, for
some u ∈ suff(C0,K), is created by an application of the rule R∃c or Rskey to
an ancestor b of a, and thus, we must “save” information about the u-successor
in order to make b satisfy its labels in the model. A proper way to do it is to
add a new u-successor to an arbitrary node c such that c ≈a a because actually
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a and c refers to the same individual in the model. However, to simplify the
copying, we choose the minimal node w.r.t. ≺ such that it is equivalent to a to
add the u-successor to. While the Rp rule does the copying of node labels, the
Rcp does the appropriate copying of paths.

Let us now present the tableau algorithm in pseudo-code notation. It is
started with sat(SC0). In the algorithm, check refers to the function computing
a concrete equivalence for a given D-conjunction.

Algorithm: procedure sat(S)

do
if S contains a clash then

return unsatisfiable
∼:= check(ζS)
compute ≈a

compute ≈c

while ∼6=≈c

compute ≈
if S contains a clash then

return unsatisfiable
if S is complete then

return satisfiable
S′ :=the application of a completion rule to S
return sat(S′)

Before proving termination, soundness, and completeness of the tableau al-
gorithm, let us show an example explaining the need for the blocking mechanism.

Example 2. Let us reconsider an example in [21], which shows that the Rskey
rule endangers the termination of the algorithm. Consider satisfiability of

C0 = ∃g. = 0 ⊓ ∃(fg). = 0 w.r.t. K = {(g skeyfor ⊤, fg)}.

Without blocking, applications of Rskey generate an infinite f -chain such
that each element has a g-successor that is zero as shown in Figure 3.1. The
second part of the blocking condition is introduced to deal with this effect.

a0 a1 a2

= 0 = 0 = 0

f f

g g g

. . .{C0}

Figure 3.1: An infinite chain created by the tableau algorithm

Note that the tableau algorithm for ALCOK(D)-concept satisfiability intro-
duced in [19] does not need a blocking mechanism. The reason is that it works
only with Boolean key boxes, i.e., those in which concepts are Boolean combi-
nations of concept names. Since there is no strong functional dependency in key
boxes, the problem discussed in Example 2 does not occur, and thus, blocking
mechanism is not necessary.
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3.2 Termination, soundness, and completeness

In this section, we prove termination, soundness, and completeness of the tableau
algorithm given in Section 3.1. We first introduce a few notions.

Definition 24 (Path length, Role depth). Let u = f1 . . . fng be a path. The
length of u is defined as |u| = n + 1.

The role depth of concepts is defined inductively as follows:

rd(A) = rd(N) = rd(g↑) = 0

rd(∃u1, . . . , un.P ) = max{|ui| | 1 ≤ i ≤ n} − 1

rd(C ⊓ D) = rd(C ⊔ D) = max{rd(C), rd(D)}

rd(∃R.C) = rd(∀R.C) = rd(C) + 1

Let C be a concept and K be a key box. By feat(C) and feat(K) we denote
the set of abstract and concrete features appearing in C and the set of those
appearing in functional dependencies and uniqueness constraints in K, respec-
tively. Besides, we use |C| to denote the length of C, i.e., the number of symbols
used to write it down, and |K| to denote

∑

(u1,...,uk keyfor C)∈K

(|u1| + . . . + |un| + |C|)

+
∑

(u1,...,uk depfor C,u)∈K

(|u1| + . . . + |un| + |C| + |u|)

where depfor ∈ {wkeyfor, skeyfor}.
With mpl(C0,K) we denote

max{|u| | u ∈ suff(C0,K)}.

Lemma 25. Let T = (Va, Vc, E,L) be a completion tree constructed during the
run of the tableau algorithm started on an input concept C0 and a safe key box
K. Let a ∈ Va and C ∈ L(a). Then either

C ∈ cl(K) or levT (a) ≤ rd(C0) − rd(C).

Proof. We prove the lemma by induction on the number n of rule applications
after which C is added into L(a).

1. n = 0. Then C ≡ C0 and a is the root node, i.e., levT (a) = 0.

2. n ≥ 1. Assume C /∈ cl(K). Since C ∈ cl(C0,K) = sub(C0)∪cl(K), we have
that C ∈ sub(C0). We distinguish three cases:

• C is added to L(a) via an application of R⊔ or R⊓ rule. Then
there exists an E ∈ L(a) such that E = C ⊔ D or E = C ⊓ D
for some concept D ∈ cl(C0,K). Since C /∈ cl(K), we have that
E /∈ cl(K). Since E is added to L(a) by an earlier rule application,
by induction hypothesis we obtain that levT (a) ≤ rd(C0) − rd(E).
Because rd(E) = rd(C), we have that levT (a) ≤ rd(C0) − rd(C).
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• C is added to L(a) via an application of R∃ or R∀ rule. Then there
is a b ∈ Va such that a is an R-successor of b and there is a D ∈
L(b) with D ∈ {∃R.C, ∀R.C}. Since C /∈ cl(K), we have that D /∈
cl(K). Since D is added to L(b) by an earlier rule application, the
induction hypothesis implies that levT (b) ≤ rd(C0) − rd(D). Using
rd(D) = rd(C)+1 and levT (b) = levT (a)−1, we obtain that levT (a) ≤
rd(C0) − rd(C).

• C is added to L(a) via an application of Rp rule. Then there is a b ∈
Va with C ∈ L(b), and a is minimal w.r.t. ≺ such that a ≈a b. Since
C /∈ cl(K) and C is added to L(b) by an earlier rule application, the
induction hypothesis yields that levT (b) ≤ rd(C0)− rd(C). Moreover,
since a is minimal w.r.t. ≺ such that a ≈a b, we have that levT (a) ≤
levT (b). Therefore, levT (a) ≤ rd(C0) − rd(C).

Similarly to [21], we show in the following lemma and corollary that the
completion tree is of bounded size.

Lemma 26. Let S = (T,P ,≺,∼) with T = (Va, Vc, E,L) be a completion
system constructed during the run of the tableau algorithm started on an input
concept C0 and a safe key box K. Then the following holds:

(a) The out-degree of T is bounded by |sub(C0) ∪ sub(con(K))| + |feat(C0) ∪
feat(K)|;

(b) The concrete equivalence relation ∼ satisfies:

|Vc/∼| ≤ #{c ∈ Vc | levT (c) ≤ rd(C0)} ≤ N rd(C0),where

N = |sub(C0) ∪ sub(con(K))| + |feat(C0) ∪ feat(K)|;

(c) ≈ is an equivalence relation on Va and

|Va/≈| ≤ (n + 1)|suff(C0,K)|.2|cl(C0,K)|, where n = |Vc/∼|;

(d) The depth of T is bounded by |Va/≈| + mpl(C0,K).

Proof. (a) New nodes are created exclusively due to applications of the rules
R∃, R∃c, Rskey, and Rcp. The rule R∃ generates at most one successor for
each ∃R.C ∈ sub(C0) ∪ cl(K). From the fact that cl(K) = sub(con(K)) ∪
{¬̇D | D ∈ sub(con(K))} and the rewrite rule ¬(∀R.C) ∃R.¬C, we have
that

|{∃R.C | ∃R.C ∈ sub(C0)} ∪ {∃R.C | ∃R.C ∈ cl(K)}|
≤ |sub(C0)

∪{∃R.C | ∃R.C ∈ sub(con(K))} ∪ {∀R.C | ∀R.C ∈ sub(con(K))}|
≤ |sub(C0) ∪ sub(con(K))|.

Therefore, the number of successors of a ∈ Va created by applying the rule
R∃ is bounded by |sub(C0) ∪ sub(con(K))|.

The rule R∃c generates at most one successor for every abstract or con-
crete feature appearing in some ∃u1, . . . , un.P ∈ sub(C0) (because K is safe,
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there is no subconcept of the form ∃u1, . . . , un.P in K). Besides, the rule
Rskey generates at most one successor for every abstract or concrete feature
appearing in paths in K, whereas the rule Rcp creates at most one succes-
sor for every abstract or concrete feature appearing in paths in C0 and K.
Due to the definition of the operation ⊕, when dealing with abstract and
concrete features, it does not create any successor if the successor already
exists. Therefore, the number of successors of an abstract node a created by
appling the rules R∃c, Rskey, and Rcp is bounded by |feat(C0) ∪ feat(K)|.

To sum up, the number of successors of a ∈ Va is bounded by |sub(C0) ∪
sub(con(K))| + |feat(C0) ∪ feat(K)|.

(b) In order to prove (b), we first show that the following holds:

(∀c ∈ Vc)(∃c′ ∈ Vc)(levT (c′) ≤ rd(C0) ∧ c ∼ c′) (3.1)

Note that concrete nodes are created only due to applications of the rules
R∃c, Rskey, and Rcp. Let us define rang(c) for c ∈ Vc as:

rang(c) :=

{

0, if c is created via an application of R∃c

i, if c is created via the i-th application of Rskey or Rcp

Now, we prove (3.1) by strong induction on rang(c):

1. rang(c) = 0. Then c is created due to an application of the R∃c rule
to a node a ∈ Va and a concept C ∈ L(a), C = ∃u1, . . . , un.P . Since
K is safe, C /∈ cl(K), and thus by Lemma 25, we have that levT (a) ≤
rd(C0) − rd(C). Due to the definition of rd(∃u1, . . . , un.P ), we obtain
that levT (c) − levT (a) ≤ rd(C). Combining these two inequalities yields
that levT (c) ≤ rd(C0). Since c ∼ c, the base case is proved.

2. rang(c) = n, n ≥ 1. We distinguish two cases:

• c is created due to an application of the Rskey rule to nodes a, b ∈ Va

and a strong functional dependency (u1, . . . , un skeyfor C, u) ∈ K.
The node a has a u-successor x created due to an application of R∃c
or an earlier application of Rskey or Rcp. The node c is a u-successor
of b such that c ∼ x and rang(x) < rang(c) = n. By induction
hypothesis, there is a c′ ∈ Vc such that x ∼ c′ and levT (c′) ≤ rd(C0).
Due to the transitivity of ∼, we get c ∼ c′ and the induction step is
proved.

• c is created due to an application of the Rcp rule to node a ∈ Va and a
path u ∈ suff(C0,K). The node a has a u/≈a-neighbor x created due
to an application of R∃c or an earlier application of Rskey or Rcp.
Therefore, rang(x) < rang(c) = n, and thus by induction hypothesis,
there exists a c′ ∈ Vc such that x ∼ c′ and levT (c′) ≤ rd(C0). From
the Rcp rule, we have that c ∼ x. Due to the transitivity of ∼, we
get c ∼ c′ and the induction step is proved.

According to (a), the out-degree of T is bounded by N = |sub(C0) ∪
sub(con(K))| + |feat(C0) ∪ feat(K)|. Using the fact that concrete nodes are
leaves of the tree T , we get

#{c ∈ Vc | levT (c) ≤ rd(C0)} ≤ N rd(C0)

Finally, combining this result with (3.1), we complete the proof of (b).
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(c) Using the definition of ≈ and the fact that ∼ and ≈a are equivalence rela-
tions, it is not difficult to show that ≈ is also an equivalence relation on Va.
Due to (b), Vc/∼ is of bounded size. Let Vc/∼ = {v1, v2, . . . , vn}. Further-
more, obviously suff(C0,K) is of bounded size. Let m = |suff(C0,K)|. Let
us define a mapping φ : Va → 2suff(C0,K)×Vc/∼ in the following way:

φ(a) = {(u, vk) | u ∈ suff(C0,K), a has a u/≈a-neighbor x and x ∈ vk}

Then, the following holds:

a ≈ b iff φ(a) = φ(b) and L(a) = L(b) (3.2)

Due to the definition of ⊕, the functionality of paths is respected and there-
fore, there are no vi, vj ∈ Vc/∼, for i 6= j, such that {(u, vi), (u, vj)} ⊆ φ(a)
for some a ∈ Va and u ∈ suff(C0,K). Thus, we have that

|{φ(a) | a ∈ Va}| ≤
m

∑

i=0

(

m

i

)

· ni.

In the above sum, every argument
(

m
i

)

·ni corresponds to the situation when
an abstract node has exactly i successors for paths from suff(C0,K). Since
∑m

i=0

(

m
i

)

· ni = (n + 1)m, we get that |{φ(a) | a ∈ Va}| ≤ (n + 1)m =

(n + 1)|suff(C0,K)|. Finally, using (3.2) and the fact that |{L(a) | a ∈ Va}| ≤
2|cl(C0,K)|, we obtain that

|Va/≈| ≤ |{φ(a) | a ∈ Va}| · |{L(a) | a ∈ Va}| ≤ (n + 1)|suff(C0,K)| · 2|cl(C0,K)|

(d) Let M = |Va/≈|. Assume that there is a node a ∈ Va ∪ Vc such that
levT (a) > M + mpl(C0,K). Then a is created due to an application of a
completion rule to an ancestor b ∈ Va of a for which it holds that k =
levT (b) > M . Then there is sequence of abstract nodes a0, a1, . . . , ak such
that ai is a successor of ai−1 for 1 ≤ i ≤ k, a0 is the root node and ak = b.
Since k > M , we have that ai ≈ aj for some i, j with 0 ≤ i < j ≤ k. This
means that b is blocked and contradicts the assumption that a completion
rule was applied to b.

Corollary 27. Let S = (T,P ,≺,∼) with T = (Va, Vc, E,L) be a completion
system constructed during the run of the tableau algorithm started on an input
concept C0 and a safe key box K. Then the following holds:

(a) The out-degree of T is bounded by |C0| + |K|;

(b) |Va/≈| ≤ ((|C0| + |K|)|C0| + 1)|C0|+|K|.22·(|C0|+|K|);

(c) There exists a constant k such that #Vc + #Va is bounded by 22(|C0|+|K|)k

.

Proof. (a) By Lemma 26(a), the out-degree of T is bounded by |sub(C0) ∪
sub(con(K))|+ |feat(C0)∪ feat(K)| ≤ |sub(C0)|+ |sub(con(K))|+ |feat(C0)|+
|feat(K)|. Moreover, it is easily proved by structural induction that |sub(C0)|+
|feat(C0)| ≤ |C0| and |sub(con(K))| + |feat(K)| ≤ |K|. Therefore, the out-
degree of T is bounded by |C0| + |K|.
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(b) From Lemma 26(c) we have that |Va/≈| ≤ (n+1)|suff(C0,K)|.2|cl(C0,K)|, where
n = |Vc/∼|.

By Lemma 26(b), |Vc/∼| ≤ N rd(C0) in which N = |sub(C0)∪ sub(con(K))|+
|feat(C0) + feat(K)|. As shown in Part (a), N ≤ |C0| + |K|. Moreover,
obviously we have that rd(C0) ≤ |C0|. Therefore, |Vc/∼| ≤ (|C0| + |K|)|C0|.

It is easily seen that |suff(C0,K)| ≤ |C0| + |K|. Furthermore, by definition
of cl(C0,K), we have that |cl(C0,K)| ≤ |sub(C0)| + |cl(K)| ≤ |sub(C0)| + 2 ·
|sub(con(K))| ≤ |C0| + 2 ·

∑

C∈con(K) |C| ≤ |C0| + 2 · |K| ≤ 2 · (|C0| + |K|).

Summing it up, we obtain that

|Va/≈| ≤ ((|C0| + |K|)|C0| + 1)|C0|+|K|.22·(|C0|+|K|).

(c) According to Lemma 26(d), we have that the depth of T is bounded by
|Va/≈| + mpl(C0,K). From Part (b), we obtain that

|Va/≈| ≤ ((|C0| + |K|)|C0| + 1)|C0|+|K|.22·(|C0|+|K|).

Furthermore, it is easy to see that mpl(C0,K) ≤ |C0|+ |K|. Therefore, there
exists a constant m such that the depth of T is bounded by 2(|C0|+|K|)m

.

Since the out-degree of T is bounded by |C0|+ |K| by Part (a) and the depth
of T is bounded by 2(|C0|+|K|)m

, we have that the number of nodes in T is
bounded by

(|C0| + |K|)2
(|C0 |+|K|)m−1 − 1

|C0| + |K| − 1
.

Therefore, there is a constant k such that the number of nodes in T is

bounded by 22(|C0|+|K|)k

. The fact that Va ∪ Vc is the set of nodes in T ,
together with that Va and Vc are disjoint, finishes the proof.

Lemma 28. There is a constant k such that, if the tableau algorithm is started
with C0,K, then, in every recursion step, the while loop terminates after at most

22(|C0|+|K|)k

steps.

Proof. Let S = (T,P ,≺,∼) with T = (Va, Vc, E,L) be the argument of the sat

function, ∼1,∼2, . . . be the sequence of concrete equivalences computed in the
while loop, and ≈1

c ,≈
2
c , . . . be the corresponding ≈c relations.

It is not difficult to see that ∼1(∼2( . . .: If the while loop reaches the
i-th step, we have that ∼i−1 6=≈i−1

c after step i − 1. By definition, ∼i−1⊆≈i−1
c ,

and thus ∼i−1(≈i−1
c . By definition of ζS , we have that ≈i−1

c ⊆∼i for i ≥ 0.
Therefore, ∼i−1(∼i.

By Corollary 27(c), there exists a constant k such that #Vc ≤ #Va +#Vc ≤

22(|C0|+|K|)k

. Therefore, # ∼≤ 22·2(|C0|+|K|)k

which, together with the above
claim, implies that the number of steps performed by the while loop is also

bounded by 22·2(|C0|+|K|)k

.

Lemma 29. There is a constant k such that, if the tableau algorithm is started
with an ALCOK(D)FD-concept C0 and a safe key box K, then the number of

recursion calls is bounded by 22(|C0|+|K|)k

.
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Proof. It suffices to establish an appropriate upper bound on the number of rule
applications.

• The R⊓, R⊔, R∃, and R∃c rules can be applied at most once for each
concept in a node label;

• the rules R∀ and Rp can be applied at most once for every concept C ∈
cl(C0,K) and every pair of (abstract) nodes;

• the rule Rch can be applied at most once for every abstract node and
every functional dependency or uniqueness constraint in K;

• the rules Rskey and Rwkey can be applied at most once for every func-
tional dependency in K and every pair of abstract nodes;

• the rule Rcp can be applied at most once for every path u ∈ suff(C0,K)
and every abstract node.

Furthermore, Corollary 27(c) shows that the number of nodes in T is at
most double exponential in |C0| + |K|. Since neither nodes nor concepts in
node labels are ever deleted, the fact that node labels are subsets of cl(C0,K)
and the number of paths in suff(C0,K) is bounded by |C0| + K| thus implies
that the number of applications of these rules is at most double exponential in
|C0| + |K|.

Termination of the algorithm follows immediately from Lemmas 28 and 29.

Lemma 30 (Termination). When started with an ALCOK(D)FD-concept C0

and a safe key box K, both in NNF, the tableau algorithm terminates.

It is easily seen that the tableau algorithm presented in the previous section
is in 2NExpTime. The reason is that the algorithm is non-deterministic and it
constructs in a monotonic way a completion tree whose number of nodes in the
worst case is double-exponential in |C0| + |K|.

Let us now show that the algorithm is sound, i.e., the input concept C0 is
satisfiable w.r.t. the key box K if the algorithm returns satisfiable. It is done by
extracting a model I from the constructed completion tree for C0 and K. The
point is that not all nodes of the completion tree but only “representatives” of
equivalence classes are put into the domain. Doing this way, we obtain a model
whose size is only exponential in |C0| + |K|. This property helps us to show a
NExpTime upper complexity bound in Section 3.3.

Lemma 31 (Soundness). If the tableau algorithm returns satisfiable, then the
input concept C0 is satisfiable w.r.t. the input safe key box K in a model whose
size is not greater than M, where

M = ((|C0| + |K|)|C0| + 1)|C0|+|K|.22·(|C0|+|K|).

Proof. If the tableau algorithm returns satisfiable, then there exists a complete
and clash-free completion system S = (T,P ,≺,∼) for C0 and K. Let T =
(Va, Vc, E,L). By definition of the tableau algorithm, there is a completion
system S′ = (T,P ,≺,∼′) such that a call to check(ζS′) returned ∼. Moreover,
we have ∼=≈c in S. Thus, there exists a solution δ for ζS′ such that

δ(x) = δ(y) iff x ≈c y. (3.3)
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Clearly, δ is also a solution for ζS : since the second component P of S and S′

is identical, δ is a solution for the first part

∧

P used in C0

∧

(x1,...,xn)∈P(P )

P (x1, . . . , xn)

of ζS . Moreover, for each conjunct = (x, y) from the second part of ζS , we have
x ≈c y by definition of ζS and thus δ(x) = δ(y) by (3.3).

We now use S and δ to construct an interpretation I by setting

∆I ={a ∈ Va | a is not blocked and there is no unblocked b ∈ Va such that

a ≈ b ∧ b ≺ a} ∪ {w}

AI ={a ∈ ∆I | A ∈ L(a)}

NI =

{

{a ∈ ∆I | N ∈ L(a) if there is an a ∈ ∆I such that N ∈ L(a)}

{w} otherwise

RI ={(a, b) ∈ ∆I × ∆I | there is a b′ ∈ Va such that b′ is an R-successor of a,

and b ≈ b′}

gI ={(a, δ(x)) ∈ ∆I × ∆D | x is a g-successor of a}

for all A ∈ NC, N ∈ NO, R ∈ NR, and g ∈ NcF.
In order to show that I is a model for C0 and K, we prove the following

claims:
Claim 1. I is well-defined.
Proof.

• NI is a singleton for each N ∈ NO. Assume that there exist a, b ∈ ∆I

such that a 6= b and N ∈ L(a)∩L(b). By definition of ≈a, N ∈ L(a)∩L(b)
implies that a ≈a b. It is easily seen that ≈a⊆≈, and thus a ≈ b. From
a, b ∈ ∆I , we obtain that a, b are not blocked. Since a ∈ ∆I , a ≈ b, and b
is unblocked, the construction of I yields that b 6≺ a. Similarly, we have
that a 6≺ b. Since ≺ is strict and total, a 6≺ b, b 6≺ a, and a 6= b yield a
contradiction.

• for an abstract feature f ∈ NaF and a concrete feature g ∈ NcF, thanks to
the ⊕ operation, we always have that fI and gI are functional.

Claim 2. If a ∈ Va is unblocked or directly blocked, then there exists exactly
one b ∈ ∆I such that a ≈ b. Furthermore, it holds that

(a) L(a) ⊆ L(b), and

(b) if a has a u/≈a-neighbor x, for some u ∈ suff(C0,K), then b has a u-successor
y such that x ∼ y.

Proof. For each a ∈ Va, let Ua := {c ∈ Va | c ≈ a} and b be the minimal
node in Ua w.r.t. ≺. Obviously, a ∈ Ua, and thus Ua is non-empty, which
guarantees the existence of b. It is easily seen that b is not blocked, and thus
due to the construction of I we have that b ∈ ∆I . Moreover, since ≺ is total
and strict, for all a′ ∈ Ua it holds that if a′ 6= b then b ≺ a′. Therefore, due to
the construction of I, we obtain that for all a′ ∈ Ua, if a′ 6= b then a′ /∈ ∆I . In
other words, there is only one b ∈ Ua such that b ∈ ∆I .
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From the definition of ≈, we have that ≈a⊆≈. The equivalence relation ≈a

partitions Ua into equivalence classes U1
a , . . . , Un

a . Let a1, . . . , an be minimal
nodes w.r.t. ≺ in U1

a , . . . , Un
a respectively. Since b is minimal in Ua w.r.t. ≺,

we have that b ∈ {a1, . . . , an}. Moreover, because the relation ≈ is transitive,
ai ≈ aj for all 1 ≤ i, j ≤ n.

(a) Due to non-applicability of the Rp rule, for each 1 ≤ i ≤ n we have L(ai) =
∪c∈Ui

a
L(c), and thus L(ai) = L(c) for all c ∈ U i

a.

Let c1, c2 be two arbitrary nodes in Ua, and 1 ≤ i, j ≤ n such that c1 ∈
U i

a, c2 ∈ U j
a . Because c1, c2 ∈ Ua and the relation ≈ is transitive, we have

c1 ≈ c2. Therefore, L(c1) = L(c2), and thus L(ai) = L(aj). Because c1 and
c2 are arbitrary nodes, it holds that L(ai) = L(aj) for all 1 ≤ i, j ≤ n.

Because b ∈ {a1, . . . , an}, it holds that L(b) = L(ai) for all 1 ≤ i ≤ n.
Since a ∈ Ua, there is i0, 1 ≤ i0 ≤ n, such that a ∈ U i0

a . Therefore,
L(a) ⊆ L(a) = L(ai0) = L(b).

(b) Due to non-applicability of the Rcp rule, for each 1 ≤ i ≤ n and c ∈ U i
a we

have that if c has a u/≈a-neighbor x, for some u ∈ suff(C0,K) then ai has
a u-successor y such that x ∼ y.

Suppose that a ∈ U i0
a , for some 1 ≤ i0 ≤ n, and a has a u/≈a-neighbor x,

for some u ∈ suff(C0,K). Then for each 1 ≤ i ≤ n, we have that a ≈ ai, and
thus by definition of the relation ≈ we obtain that ai has a u/≈a-neighbor
z such that x ∼ z. Hence, due to the above argument, ai has a u-successor
z′ such that z ∼ z′, and thus x ∼ z′ since ∼ is transitive.

Because b ∈ {a1, . . . , an}, the above argument also holds for b. Therefore, b
has a u-successor y such that x ∼ y.

Claim 3. If a ∈ ∆I and u ∈ suff(C0,K), then the following holds

(a) If uI(a) is defined, then a has a u-successor x and uI(a) = δ(x).

(b) If a has a u-successor x, then uI(a) = δ(x).

Proof. We prove the claim by induction on the length of u.

(a) • |u| = 1: true by the construction of I.

• |u| = n+1, n ≥ 1: Let u = f1 . . . fng. Since uI is defined, by definition
of I there exists a b ∈ ∆I such that fI

1 (a) = b and (f2 . . . fng)I(b)
is defined. By induction hypothesis, b has an f2 . . . fng-successor y
such that (f2 . . . fng)I(b) = δ(y). Furthermore, since fI

1 (a) = b, there
exists a b′ ∈ Va such that b′ is an f1-successor of a and b′ ≈ b, and thus
b ≈u b′ for all u ∈ suff(C0,K). Hence, b′ has an f2 . . . fng/≈a-neighbor
z such that z ∼ y. Since b′ is an f1-successor of a, we have that z
is an f1 . . . fng/≈a-neighbor of a. Because a ∈ ∆I , Claim 2(b) yields
that a has an f1 . . . fng-successor x such that x ∼ z. Since ∼ is an
equivalence relation, we have that x ∼ y. Therefore, x is a u-successor
of a such that uI(a) = δ(y) = δ(x).

(b) • |u| = 1: true by the construction of I.
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• |u| = n + 1, n ≥ 1: Let u = f1 . . . fng and b ∈ Va an f1-successor of a.
Since x is an f1 . . . fng-successor of a, we have that x is an f2 . . . fng-
successor of b. Since a ∈ ∆I , we have that b is either unblocked or
directly blocked. Due to Claim 2, there exists a b′ ∈ ∆I such that
b ≈ b′. Thus, definition of I yields that fI

1 (a) = b′. Since b ≈ b′,
we have that b ≈u b′ for all u ∈ suff(C0,K). Therefore, b′ has an
f2 . . . fng/≈a-neighbor y such that x ∼ y. Moreover, since b′ ∈ ∆I ,
Claim 2(b) yields that b′ has an f2 . . . fng-successor z such that y ∼ z.
Because ∼ is an equivalence relation, we have that x ∼ z. Since b′ ∈ ∆I

and f2 . . . fng ∈ suff(C0,K), by induction hypothesis we obtain that
(f2 . . . fng)I(b′) = δ(z). Therefore, we have that uI(a) = δ(z) = δ(x).

Claim 4. For all a ∈ ∆I and C ∈ cl(C0,K), if C ∈ L(a), then a ∈ CI .
Proof. We prove the claim by structural induction:

• C is a concept name. True by the construction of I.

• C = ¬D. Since C is in NNF, D is a concept name. Clash-freeness of S
implies that D /∈ L(a). The construction of I implies that a /∈ DI , which
yields that a ∈ (¬D)I .

• C = D ⊓ E. The completeness of S implies that {D, E} ⊆ L(a). By
induction hypothesis, we have that a ∈ DI and a ∈ EI . Therefore,
a ∈ (D ⊓ E)I .

• C = D ⊔ E. The completeness of S implies that {D, E} ∩ L(a) 6= ∅.
By induction hypothesis, we have that a ∈ DI or a ∈ EI . Therefore,
a ∈ (D ⊔ E)I .

• C = ∃R.D. Non-applicability of the R∃ rule implies that a has an R-
successor b such that D ∈ L(b). Then either b is unblocked or directly
blocked. Due to Claim 2, there is a b′ ∈ ∆I such that b ≈ b′. By the
construction of I, we have that (a, b′) ∈ RI . Furthermore, Claim 2(a)
yields that L(b) ⊆ L(b′), and thus D ∈ L(b′). By induction hypothesis,
we have that b′ ∈ DI , and thus a ∈ CI .

• C = ∀R.D. Let (a, b) ∈ RI . By the construction of I, there is an R-
successor b′ of a such that b′ ≈ b. Since the R∀ rule is not applicable, we
have that D ∈ L(b′). Due to Claim 2(a), we obtain that L(b′) ⊆ L(b), and
thus D ∈ L(b). By induction hypothesis, we have that b ∈ DI . Because
it holds for all b such that (a, b) ∈ RI , we have that a ∈ CI .

• C = ∃u1, . . . , un.P . Since the R∃c rule is not applicable, there exist
x1, . . . , xn ∈ Vc such that xi is a ui-successor of a for 1 ≤ i ≤ n and
(x1, . . . , xn) ∈ P(P ). By Claim 3(b), we have that uI

i (a) = δ(xi) for
1 ≤ i ≤ n. Since (x1, . . . , xn) ∈ P(P ) and δ is a solution for ζS , we obtain
that (δ(x1), . . . , δ(xn)) ∈ PD, and thus a ∈ CI .

• C = g ↑. Since S is clash-free, there is no x ∈ Vc such that x is a g-
successor of a. Thus, by the construction of I, there is no α ∈ ∆D such
that (a, α) ∈ gI .
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Since C0 ∈ L(a0) and a0 ∈ ∆I , Claim 4 implies that I is a model of C0.
The satisfaction of all functional dependencies and uniqueness constraints in K
by I is shown as follows:

• I satisfies all (u1, . . . , un skeyfor C, u) ∈ K: let a, b ∈ CI such that
uI

i (a) = uI
i (b) for 1 ≤ i ≤ n and uI(a) is defined. Since the Rch rule

is not applicable, we have that {C, ¬̇C} ∩ L(a) 6= ∅. If ¬̇C ∈ L(a), then
Claim 4 implies that a ∈ (¬̇C)I , which contradicts a ∈ CI . Therefore,
C ∈ L(a) and for the same reason C ∈ L(b). Using Claim 3(a) and the
fact that uI

i (a) and uI
i (b) are defined for 1 ≤ i ≤ n, we conclude that a has

a ui-successor xi and b has a ui-successor yi such that uI
i (a) = δ(xi) and

uI
i (b) = δ(yi) for 1 ≤ i ≤ n. Moreover, the fact that δ(xi) = δ(yi) implies

that xi ∼ yi, for 1 ≤ i ≤ n. Similarly, we have that a has a u-successor
x such that uI(a) = δ(x). Non-applicability of Rskey yields that b has a
u-successor y such that x ∼ y, and thus δ(x) = δ(y). Claim 3(b) yields
that uI(b) = δ(y), and since δ(x) = δ(y) we obtain that uI(a) = uI(b).

• I satisfies all (u1, . . . , un wkeyfor C, u) ∈ K: let a, b ∈ CI such that
uI

i (a) = uI
i (b) for 1 ≤ i ≤ n, and uI(a) and uI(b) are defined. Simi-

larly to the previous case, we obtain that C ∈ L(a) ∩ L(b). Using Claim
3(a) and the definition of δ, we have that a has a ui-successor xi and b
has a ui-successor yi such that xi ∼ yi for 1 ≤ i ≤ n. Moreover, a has
a u-successor x and b has a u-successor y. Non-applicability of Rwkey
implies that x ∼ y. Using Claim 3(b), we have that uI(a) = δ(x) and
uI(b) = δ(y). Since δ(x) = δ(y), we obtain that uI(a) = uI(b).

• I satisfies all (u1, . . . , un keyfor C) ∈ K: let a, b ∈ CI such that uI
i (a) =

uI
i (b) for 1 ≤ i ≤ n. Similarly to previous cases, we obtain that C ∈

L(a) ∩ L(b). Using Claim 3(a) and the definition of δ, we have that a
has a ui-successor xi and b has a ui-successor yi such that xi ∼ yi for
1 ≤ i ≤ n. Therefore, we have that a ≈a b, and thus a ≈ b. Because
a, b ∈ ∆I and a ≈ b, we have that a = b.

Now, for the size of ∆I , it follows from the construction of I that |∆I | ≤
|Va/≈|. By Corollary 27, we have that

|Va/≈| ≤ ((|C0| + |K|)|C0| + 1)|C0|+|K|.22·(|C0|+|K|).

Finally, we show completeness of the algorithm.

Lemma 32 (Completeness). If the input concept C0 is satisfiable w.r.t. the
safe key box K, then the tableau algorithm returns satisfiable.

Proof. Let I be a model of C0 and K. We use I to guide the non-deterministic
parts of the tableau algorithm in such a way that it constructs a complete
and clash-free completion system. A completion system S = (T,P ,≺,∼) with
T = (Va, Ve, E,L) is called I-compatible if there exist mappings π : Va → ∆I

and τ : Vc → ∆D such that:

(C1) C ∈ L(a) ⇒ π(a) ∈ CI
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(C2) b is an R-successor of a ⇒ (π(a), π(b)) ∈ RI

(C3) x is a g-successor of a ⇒ gI(π(a)) = τ(x)

(C4) (x1, . . . , xn) ∈ P(P ) ⇒ (τ(x1), . . . , τ(xn)) ∈ PD

(C5) x ∼ y ⇒ τ(x) = τ(y)

Let us first prove the following technical claims.
Claim 1. If completion system S is I-compatible, then

(i) a ≈a b implies π(a) = π(b),

(ii) x ≈c y implies τ(x) = τ(y).

Proof. We show by induction on i that a ≈i
a b implies that π(a) = π(b),

which yields (i).

• If a ≈0
a b, then there exists a nominal N such that N ∈ L(a) ∩ L(b). By

(C1) we have that π(a) ∈ NI and π(b) ∈ NI . Definition of the semantics
yields that π(a) = π(b).

• Assuming that a ≈i
a b for i ≥ 1, we distinguish three cases:

1. If a ≈i−1
a b, then π(a) = π(b) by induction hypothesis.

2. There exist a c ∈ Va and an f ∈ NaF such that both a and b are
f/≈i−1

a -neighbors of c. Hence, there exist c1, c2 ∈ Va such that
c ≈i−1

a c1 ≈i−1
a c2, a is an f -successor of c1, and b is an f -successor

of c2. By induction hypothesis, we have that π(c) = π(c1) = π(c2).
Thus, (C2) yields that {(π(c), π(a)), (π(c), π(b))} ⊆ fI , which implies
that π(a) = π(b) by the definition of the semantics.

3. There exist (u1, . . . , un keyfor C) ∈ K, a ui/≈i−1
a -neighbors xi of a,

and a ui/≈i−1
a -neighbors yi of b, for 1 ≤ i ≤ n, such that C ∈ L(a)∩

L(b) and xi ∼ yi for 1 ≤ i ≤ n. (C1) yields that {π(a), π(b)} ⊆ CI .
Using induction hypothesis, (C2), and (C3), it is easy to show that
uI

i (π(a)) = τ(xi) and uI
i (π(b)) = τ(yi) for 1 ≤ i ≤ n. By (C5), this

implies that uI
i (π(a)) = uI

i (π(b)) for 1 ≤ i ≤ n. Since I is a model
of the key box K, this yields that π(a) = π(b) by definition of the
semantics.

For Part (ii). If x ≈c y, then either x ∼ y or there is an a ∈ Va and a
g ∈ NcF such that both x and y are g/≈a-neighbors of a. In the former case,
(C5) that yields τ(x) = τ(y). In the latter case, Part (i) and (C3) yields that
{(π(a), τ(x)), (π(a), τ(y))} ⊆ gI , which implies that τ(x) = τ(y).

We prove the following claim to show that completion rules can be applied
in such a way that I-compatibility is preserved.

Claim 2. If a completion system S is I-compatible and a rule R is applicable
to S, then R can be applied such that an I-compatible completion system S′ is
obtained.

Proof. Let S be an I-compatible completion system, π and τ mappings
satisfying conditions (C1)-(C5), and R a completion rule appliable to S. We
make a case analysis according to the type of R:
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R⊓ The rule is applied to C1⊓C2 ∈ L(a). By (C1), C1⊓C2 ∈ L(a) implies that
π(a) ∈ (C1 ⊓ C2)

I , and hence π(a) ∈ CI
1 and π(a) ∈ CI

2 . Since the rule
adds C1 and C2 to L(a), the obtained completion system is I-compatible
via the same π and τ .

R⊔ The rule is applied to C1 ⊔ C2 ∈ L(a). By (C1), C1 ⊔ C2 ∈ L(a) implies
that π(a) ∈ (C1⊔C2)

I , and hence π(a) ∈ CI
1 or π(a) ∈ CI

2 . Since the rule
adds C1 or C2 to L(a), it can be applied such that the obtained completion
system is I-compatible via the same π and τ .

R∃ The rule is applied to ∃R.C ∈ L(a). By (C1), π(a) ∈ (∃R.C)I and hence
there exists a d ∈ ∆I such that (π(a), d) ∈ RI and d ∈ CI . Since
the rule uses the operation ⊕ to add a new R-successor b of a and sets
L(b) = {C} ∪ L(b), the obtained completion system is I-compatible via
π′ = π ∪ {b 7→ d} and τ .

R∀ The rule is applied to ∀R.C ∈ L(a) and adds C to the label L(b) of an
existing R-successor b of a. By (C1), we have that π(a) ∈ (∀R.C)I . Since
b is an R-successor of a, (C2) yields that (π(a), π(b)) ∈ RI . By definition of
the semantics, we have that π(b) ∈ CI , and thus the obtained completion
system is I-compatible via π and τ .

R∃c The rule is applied to ∃u1, . . . , un.P ∈ L(a) with ui = f
(i)
1 . . . f

(i)
ki

g(i) for

1 ≤ i ≤ n. The rule application generates new abstract nodes b
(i)
j and

concrete nodes x(i) for 1 ≤ i ≤ n and 1 ≤ j ≤ ki such that

• b
(i)
1 is an f

(i)
1 -successor of a for 1 ≤ i ≤ n,

• b
(i)
j is an f

(i)
j -successor of b

(i)
j−1 for 1 ≤ i ≤ n and 1 < j ≤ ki,

• x(i) is gi-successor of b
(i)
ki

for 1 ≤ i ≤ n, and

• (x(1), . . . , x(n)) ∈ P(P ).

(C1) implies that π(a) ∈ (∃u1, . . . , un.P )I and therefore, there exists d
(i)
j ∈

∆I for 1 ≤ i ≤ n and 1 ≤ j ≤ ki and α1, . . . , αn ∈ ∆D such that:

• (π(a), d
(i)
1 ) ∈ (f

(i)
1 )I for 1 ≤ i ≤ n,

• (d
(i)
j , d

(i)
j−1) ∈ (f

(i)
j )I for 1 ≤ i ≤ n and 1 < j ≤ ki,

• (g(i))I(d
(i)
ki

) = αi for 1 ≤ i ≤ n, and

• (α1, . . . , αn) ∈ P(P ).

The obtained completion system is I-compatible via π′ and τ ′, where

π′ = π ∪
⋃

1≤i≤n and 1≤j≤ki

{b
(i)
j 7→ d

(i)
j } and τ ′ = τ ∪

⋃

1≤i≤n

{x(i) 7→ αi}

Rch The rule is applied to an abstract node a and a functional dependency
(u1, . . . , un depfor C, u) ∈ K, where depfor ∈ {skeyfor, wkeyfor}, or a
uniqueness constraint (u1, . . . , un keyfor C) ∈ K, and non-deterministically
adds C or ¬̇C to L(a). By definition of semantics, π(a) ∈ CI or π(a) ∈
(¬̇C)I . Thus, Rch can be applied such that the obtained completion
system is I-compatible via π and τ .
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Rwkey The rule is applied to nodes a, b ∈ Va and a functional dependency
(u1, . . . , un wkeyfor C, u) ∈ K. Then C ∈ L(a)∩L(b), a has a ui-successor
xi, b has a ui-successor yi such that xi ∼ yi for 1 ≤ i ≤ n, a has a
u-successor x, and b has a u-successor y. Due to (C1), {π(a), π(b)} ⊆
CI . By (C2), (C3), and an easy induction on the length of ui and u,
we have that uI

i (π(a)) = τ(xi), u
I
i (π(b)) = τ(yi) for 1 ≤ i ≤ n, and

uI(π(a)) = τ(x), uI(π(b)) = τ(y). Due to (C5), τ(xi) = τ(yi) and thus
uI

i (π(a)) = uI
i (π(b)) for 1 ≤ i ≤ n. Since I is a model of K, we have

that uI(π(a)) = uI(π(b)), which implies that τ(x) = τ(y). The rule sets
∼:= (∼ ∪(x, y))∗. Obviously, (C5) is satisfied and the obtained completion
system is I-compatible via π and τ .

Rskey The rule is applied to nodes a, b ∈ Va and a functional dependency
(u1, . . . , un skeyfor C, u) ∈ K with u = f1 . . . fng. Then C ∈ L(a) ∩ L(b),
a has a ui-successor xi, b has a ui-successor yi such that xi ∼ yi for
1 ≤ i ≤ n, and a has a u-successor x. Due to (C1), {π(a), π(b)} ⊆ CI . By
(C2), (C3), and an easy induction on the length of ui and u, we have that
uI

i (π(a)) = τ(xi), u
I
i (π(b)) = τ(yi) for 1 ≤ i ≤ n, and uI(π(a)) = τ(x).

Due to (C5), τ(xi) = τ(yi) and thus uI
i (π(a)) = uI

i (π(b)) for 1 ≤ i ≤ n.
Since I is a model of K, uI(π(b)) is defined and uI(π(a)) = uI(π(b)).
Hence, there exist d1, . . . , dn ∈ ∆I and α ∈ ∆D such that: (π(b), d1) ∈
fI
1 , (di−1, di) ∈ fI

i for 2 ≤ i ≤ n and gI(dn) = α = τ(x). The rule
application generates new abstract nodes b1, . . . , bn and a new concrete
node y such that: b1 is an f1-successor of b, bi is an fi-successor of bi−1 for
1 < i ≤ n and y is a g-successor of bn. The rule also sets ∼:= (∼ ∪(x, y))∗.
If we set π′ := π ∪

⋃

1≤i≤n{bi 7→ di} and τ ′ := τ ∪ {y 7→ α}, the obtained
completion system is I-compatible via π′ and τ ′.

Rp The rule is applied to a concept C ∈ L(a) and adds C to the label L(b)
of a node b with a ≈a b. By (C1), we have that π(a) ∈ CI . Claim 1(i)
implies that π(a) = π(b), and thus π(b) ∈ CI . Therefore, the obtained
completion system is I-compatible via π and τ .

Rcp The rule is applied to a node a and a path f1 . . . fng ∈ suff(C0,K). Since
a has an f1 . . . fng/≈a-neighbor, there exist abstract nodes a′, b1, . . . bn,
b′1, . . . , b

′
n and a concrete node x such that

• a ≈a a′ and b1 is an f1-successor of a′,

• b′i ≈a bi and bi+1 is an fi+1-successor of b′i, for 1 ≤ i < n, and

• b′n ≈a bn and x is a g-successor of b′n.

The rule application generates new abstract nodes ci, for 1 ≤ i ≤ n, and
an concrete node y such that

• c1 is an f1-successor of a,

• ci is an fi-successor of ci−1, for 1 < i ≤ n, and

• y is a g-successor of cn.

By definitions of ≈a and ≈c, it is easy to see that bi ≈a b′i ≈a ci for
all 1 ≤ i ≤ n and x ≈c y. Therefore, Claim 1(i) yields that π(a) =
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π(a′), π(bi) = π(b′i) = π(ci) for all 1 ≤ i ≤ n, whereas Claim 1(ii) yields
that τ(x) = τ(y).

Since S is I-compatible, (C2) and (C3) yield that (π(a′), π(b1)) ∈ fI
1 ,

(π(b′i), π(bi+1)) ∈ fI
i+1 for 1 ≤ i < n, and gI(π(bn)) = τ(x). Therefore,

we have that (π(a), π(c1)) ∈ fI
1 , (π(ci), π(ci+1)) ∈ fI

i+1 for 1 ≤ i < n, and
gI(π(cn)) = τ(y). Thus, the obtained completion system is I-compatible
via π and τ .

Furthermore, we show in the following Claim that I-compatability implies
clash-freeness.

Claim 3. Every I-compatible completion system is clash-free.
Proof. Let S = (T,P ,≺,∼) be an I-compatible completion system. We

show that S is clash-free by case analysis:

• Assume that there is an a ∈ Va and a concept name A such that {A,¬A} ⊆
L(a). Due to (C1), π(a) ∈ AI and π(a) ∈ (¬A)I , which is a contradiction.

• Assume that there are a ∈ Va and x ∈ Vc such that x is a g-successor of a
and g↑∈ L(a). Then (C1) yields that π(a) ∈ (g↑)I . Moreover, since x is
a g-successor of a, (C3) implies that gI(π(a)) = τ(x), which contradicts
π(a) ∈ (g↑)I .

• According to the properties (C4) and (C5), and Claim 1(ii), τ is a solution
for ζS . Thus S is concrete domain satisfiable.

We can now describe the “guidance” of the tableau algorithm by the model
I in detail: we ensure that, at all times, the considered completion systems are
I-compatible. This obviously holds for the initial completion system

SC0 = (TC0 ,P0, ∅, ∅) with TC0 = ({a0}, ∅, ∅, {a0 7→ C0})

We guide the non-deterministic check function such that, when given a predicate
conjunction ζS with set of variables Vc ⊆ Oc as input, it returns the relation
∼ defined by setting x ∼ y iff τ(x) = τ(y) for all x, y ∈ V . The relation ∼
is a concrete equivalence since τ is a solution for ζS . With this guidance (C5)
is obviously satisfied after each call to check, and the other properties are not
affected by such a call. According to Claim 2, we can apply the completion
rules in such a way that the I-compatibility is preserved. By Lemma 30, the
algorithm always terminates, and thus by Claim 3, no clash will be found and
the algorithm returns satisfiable.

The following theorem follows immediately from Lemmas 30, 31, and 32.

Theorem 33. If D is a key-admissible concrete domain, the tableau algorithm
decides satisfiability of ALCOK(D)FD-concepts w.r.t. safe key boxes.

3.3 Upper Complexity Bound

As discussed in the previous section, the tableau algorithm runs in 2NExp-

Time. However, we show in this section that the upper complexity bound of
reasoning w.r.t. safe key boxes in ALCOK(D)FD matches the NExpTime lower
complexity bound established in Theorem 17.



3.3. Upper Complexity Bound 34

The idea is based on the bounded model property for ALCOK(D)FD yielded
by Lemmas 31 and 32: if an ALCOK(D)FD-concept C0 is satisfiable w.r.t. a
safe key box K, then Lemma 32 implies that the tableau algorithm returns
satisfiable, whereas Lemma 31 implies that C0 and K have a model I such that
|∆I | ≤ b(C0,K), where

b(C0,K) = ((|C0| + |K|)|C0| + 1)|C0|+|K|.22·(|C0|+|K|). (3.4)

It is easily seen that there is an m ∈ N such that b(C0,K) ≤ 2(|C0|+|K|)m

.
Therefore, every ALCOK(D)FD-concept C0 that is satisfiable w.r.t. K has a
model I of size |∆I | ≤ 2(|C0|+|K|)m

. Following this observation, we show that
ALCOK(D)FD-concept satisfiability w.r.t. safe key boxes is in NExpTime,
which coincides with the NExpTime lower complexity bound established in
Theorem 17.

Theorem 34. For a key-admissible concrete domain D such that extended D-
satisfiability is in NP, ALCOK(D)FD-concept satisfiability w.r.t. safe key boxes
is in NExpTime.

Proof. Let us consider an alternative algorithm for deciding satisfiability of a
given ALCOK(D)FD-concept C0 w.r.t. a safe key box K. We first introduce
the notion of a quasi-model:

Let b(C0,K) be defined as (3.4) and V = {v1, . . . , vn} a finite set of variables
where n ≤ (|C0|+ |K|) ·b(C0,K). A quasi-interpretation for C0 and K is a tuple
M = (∆M,PM, ·M), where

• ∆M is a non-empty set such that |∆M| ≤ b(C0,K);

• PM is a function mapping each predicate P of arity n used in C0 to a
subset of V n, and an equality predicate = to a subset of V 2;

• ·M is a quasi-interpretation functions which maps

– each concept name C to a subset CM of ∆M,

– each role name R to a subset RM of ∆M × ∆M,

– each abstract feature f to a partial function fM from ∆M to ∆M,
and

– each concrete feature g to a partial function gM from ∆M to V .

The quasi-interpretation function is extended to paths and arbitrary con-
cepts in the same way as interpretation functions, with the following exception:

(∃u1, . . . , un.P )M := {d ∈ ∆M |∃x1, . . . , xn ∈ V : uM
i (d) = xi

and (x1, . . . , xn) ∈ PM(P )}

A quasi-interpretation M is called a quasi-model for C0 and K if it satisfies
the following conditions:

(C1) the finite predicate conjunction

ζM =
∧

(x1,...,xn)∈PM(P )

P (x1, . . . , xn)∧

∧

(x,y)∈PM(=)

= (x, y) ∧
∧

(x,y)/∈PM(=)

6= (x, y)

is satisfiable;
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(C2) there exists an a ∈ ∆M such that a ∈ CM
0 ;

(C3) the functional dependencies and uniqueness constraints in K are satisfied
via the mapping of = by PM.

It is not difficult to see that there is a quasi-model for an ALCOK(D)FD-
concept C0 and a safe key box K iff C0 is satisfiable w.r.t. K. This follows
immediately from the definition of quasi-models, the bounded-model property
for ALCOK(D)FD w.r.t. safe key boxes obtained in Lemma 31, and the fact
that the number of different concrete features appearing in C0 and K is bounded
by |C0| + |K|.

Now we present an alternative decision procedure for ALCOK(D)FD-concept
satisfiability w.r.t. safe key boxes, based on quasi-models. We first “guess” a
quasi-interpretation for C0 and K (clearly, there are only finitely many such
quasi-interpretations), and then we check whether it is a quasi-model for C0

and K. The latter can be done via the following algorithm:
Algorithm. Let D1, . . . , Dm be all concepts from cl(C0,K), listed in order of

length. Thus we have that if Di is a subconcept if Dj , then i < j. The algorithm
labels every node a of ∆M with L(a) - a set of concepts from cl(C0,K). Initially,
all node labels L(a) are set to the empty set. In the i-th step of the algorithm,
1 ≤ i ≤ m, the following rule is applied to all a ∈ ∆M:

• if Di = A for A a concept name, and a ∈ AM, then add A to L(a);

• if Di = ¬A for A a concept name, and a /∈ AM, then add ¬A to L(a);

• if Di = ∃u1, . . . , un.P and a ∈ (Di)
M, then add ∃u1, . . . , un.P to L(a);

• if Di = g↑ and gM(a) undefined, then add g↑ to L(a);

• if Di = B ⊓ C and {B, C} ⊆ L(a), then add B ⊓ C to L(a);

• if Di = B ⊔ C and {B, C} ∩ L(a) 6= ∅, then add B ⊔ C to L(a);

• if Di = ∃R.B, and there exists a b ∈ ∆M such that (a, b) ∈ RM and
B ∈ L(b), then add ∃R.B to L(a);

• if Di = ∀R.B, and for all b ∈ ∆M such that (a, b) ∈ RM, it holds that
B ∈ L(b), then add ∀R.B to L(a);

An easy induction shows that, after the m-th step of the algorithm, the
following holds: a ∈ DM for D ∈ cl(C0,K) iff D ∈ L(a). Moreover, every
step of the algorithm can be carried out in time O(|∆M|), which is at most
exponential in |C0|+ |K|. Since the number of steps m = |cl(C0,K)| is linear in
|C0| + |K|, the algorithm can be carried out in time exponential in |C0| + |K|.

Now we can check whether M satisfies conditions (C2) and (C3): (C2) is sat-
isfied iff there is an a ∈ ∆M such that C0 ∈ L(a); similarly, (C3) is satisfied if for
every functional dependency (u1, . . . , un depfor C, u), every pair a, b ∈ ∆M such
that C ∈ L(a)∩L(b) and (uM

i (a), uM
i (b)) ∈ PM(=) (i = 1 . . . n), have “correct”

u-successors, and for every uniqueness constraint (u1, . . . , un keyfor C), for ev-
ery pair a, b ∈ ∆M such that C ∈ L(a) ∩ L(b) and (uM

i (a), uM
i (b)) ∈ PM(=)

(i = 1 . . . n), it holds that a = b. Obviously, (C2) and (C3) can be checked
in exponential time, since |∆M| is exponential in |C0| + |K| and the number
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of functional dependencies and uniqueness constraints in K is not greater than
|K|.

Finally, we can employ a concrete domain reasoner to check whether ζM is
satisfiable. Alternatively, if a concrete domain D does not provide for equality
and inequality predicates, the algorithm for extended D-satisfiability can be
employed to check the satisfiability of the D-conjunction

∧

(x1,...,xn)∈PM(P )

P (x1, . . . , xn) ∧
∧

v∈V

⊤D(v).

If successful, it returns an equivalence relation ∼⊆ V × V , and in exponential
time it can be checked whether ∼= PM(=).

Since all described parts of the (non-deterministic) algorithm run in expo-
nential time, and every ALCOK(D)FD-concept C0 and a safe key box K have
a model of size bounded by b(C0,K), we conclude that ALCOK(D)FD-concept
satisfiability w.r.t. safe key boxes can be decided in NExpTime if extended
D-satisfiability is in NP.

Since in ALCOK(D)FD concept subsumption can be polynomially reduced
to concept satisfiability, from Theorem 34 we have that concept subsumption in
ALCOK(D)FD can be decided in NExpTime.



Chapter 4

Extending ALCOK(D)FD

In this chapter, several extensions of ALCOK(D)FD are discussed. First of
all, in Section 4.1 we extend ALCOK(D)FD by taking into account so-called
acyclic TBoxes. We show that admitting acyclic TBoxes does not make reason-
ing in ALCOK(D)FD harder. Generalizing acyclic TBoxes, we consider general
TBoxes in Section 4.2. It turns out that for a large class of concrete domains,
reasoning w.r.t. general TBoxes in ALCOK(D)FD becomes undecidable. Fi-
nally, we discuss an extension of ALCOK(D)FD with inverse roles in Section
4.3 and show a similar undecidability result.

4.1 ALCOK(D)FD with Acyclic TBoxes

Besides a concept language, most description logics provide means for express-
ing terminological knowledge and background knowledge about the application
domain. It is done by introducing a TBox formalism. In this section, we in-
vestigate the complexity of reasoning in ALCOK(D)FD with the presence of
a restricted form of TBoxes, called acyclic TBoxes. First of all, let us define
acyclic TBoxes.

Definition 35 (Acyclic TBox). An expression of the form A
.
= C, where A is

a concept name and C is a concept, is called a concept definition.
Let T be a finite set of concept definitions. A concept name A directly uses

a concept name B in T if there is a concept definition A
.
= C ∈ T such that B

appears in C. By “uses”, we denote the transitive closure of “directly uses”. T
is called an acyclic TBox if

(i) there is no concept A such that A uses itself, and

(ii) the left-hand sides of all concept definitions in T are pairwise distinct.

The size |T | of the TBox T is defined as

|T | :=
∑

A
.
=C∈T

|A| + |C|.

An interpretation I is a model of an acyclic TBox T iff AI = CI for all
A

.
= C ∈ T . A concept C is satisfiable w.r.t. a TBox T and a key box K iff

37
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there exists a model of C, T , and K. A concept D subsumes a concept C w.r.t.
a TBox T and a key box K, written C ⊑T ,K D, iff CI ⊆ DI for all models I
of T and K.

The following is an example of an acyclic TBox:

Male
.
= ¬Female

Woman
.
= Human ⊓ Female

Man
.
= Human ⊓ Male

Mother
.
= Woman ⊓ ∃has child.Human

Father
.
= Male ⊓ ∃has child.Human

Obviously, acyclic TBoxes define concepts, i.e., each concept definition in
acyclic TBoxes assigns a concept name to a complex concept. Therefore, they
can be used to expand concepts such that satisfiability of concepts w.r.t. acyclic
TBoxes is equivalent to satisfiability of concepts without reference to TBoxes.
Before discussing the expansion, let us introduce some notations.

Definition 36. Given an acyclic TBox T , a concept name is called

• defined in T if it occurs on the left-hand side of a concept definition in T ;

• primitive in T if it does not occur on the left-hand side of any concept
definition in T .

A concept C is called unfolded w.r.t. T iff no concept name occurring in C
is defined in T .

Given an acyclic TBox T , a concept C, using the following unfolding algo-
rithm, every concept C can be transformed into a concept C′, which is unfolded
w.r.t. T .

define procedure unfold(C, T )

while C contains a concept name A defined in T do
Let A

.
= E ∈ T .

Replace each occurrence of A in C with E.
return C

Moreover, given a key box K, we use unfold(K, T ) as abbreviation for the
following key box:

{

(u1, . . . , un keyfor unfold(C, T )) | (u1, . . . , un keyfor C) ∈ K
}

∪
{

(u1, . . . , un depfor unfold(C, T ), u) | (u1, . . . , un depfor C, u) ∈ K
}

where depfor ∈ {skeyfor, wkeyfor}. It is easy to prove the following relation
between reasoning w.r.t. acyclic TBoxes and reasoning without reference to
them.

Lemma 37. Given a concept C, an acyclic TBox T , and a key box K, we
have that C is satisfiable w.r.t. T and K iff unfold(C, T ) is satisfiable w.r.t.
unfold(K, T ).
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Hence, using Lemma 37, ALCOK(D)FD-concept satisfiability w.r.t. acyclic
TBoxes and key boxes can be decided by first applying the “unfolding” to the
input concept and key box, and then applying the tableau algorithm presented
in Chapter 3 to the obtained concept and key box. However, as discussed in
[22], unfolding concepts may lead to an exponential blowup in their size. To
illustrate the exponential blowup, let us consider the following TBox T :

C0
.
= A

C1
.
= ∃r1.C0 ⊓ ∃r2.C0

. . .

Cn
.
= ∃r1.Cn−1 ⊓ ∃r2.Cn−1

It is easily seen that the size of the concept unfold(Cn, T ) is exponential in n
(we assume that unary coding is not being used). Therefore, although unfolding
is an appropriate means for obtaining deciability results, it is not adequate to
obtaining tight complexity bounds.

In [14], it is shown that adding acyclic TBoxes does not make reasoning in
ALC harder, i.e., reasoning w.r.t. acyclic TBoxes in ALC is PSpace-complete.
The idea is that instead of using unfolding as a preprocessing step, unfolding
is done on demand, i.e., if the tableau algorithm encounters a concept name
A in the label of some node a, and in the TBox there is a concept definition
A

.
= C, then it adds C to the label of a and does no further unfold at this

stage. Although the technique does not work with every description logics,
e.g., reasoning in ALCF is PSpace-complete whereas reasoning w.r.t. acyclic
TBoxes in ALCF is NExptime-complete (see, e.g., [14, 15]), we show in the
rest of the section that it can be used to prove that admitting acyclic TBoxes
does not make reasoning in ALCOK(D)FD harder.

First, the input TBox is converted into a normal form defined as follows.

Definition 38 (Simple TBox). A TBox T is called simple iff it is acyclic and
satisfies the following conditions:

• the right-hand side of each concept definition in T is of the form ¬A, A1⊓
A2, A1 ⊔ A2, ∃R.A1, ∀R.A1, ∃u1, . . . , un.P, or g ↑ where A, A1, A2 ∈ NC,
g ∈ NcF, u1, . . . , un are paths, and P is a concrete domain predicate;

• if the right hand side of a concept definition in T is ¬A, then A does not
occur on the left hand side of any concept definition in T .

In fact, admitting only simple TBoxes does not reduce expressivity of acyclic
TBoxes, since each acyclic TBox can be converted to an equivalent simple one,
as shown in the following lemma.

Lemma 39. Any acyclic TBox T can be converted into a simple one T ′ in
polynomial time such that T ′ is equivalent to T in the following sense: any
model of T ′ can be extended to a model of T and vice versa.

Proof. It is proved similarly to Lemma 4.3 in [14].

Because concept names appearing in key boxes can be defined in TBoxes,
we need to revise the definition of safe key boxes.
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Definition 40. A key box K is called safe w.r.t. an acyclic TBox T if the key
box unfold(K, T ) is safe.

A pair 〈T ,K〉 is called simple iff

• T is simple, K is safe w.r.t. T ,

• con(K) contains only concept names, and

• for each concept name B in con(K), there exists a concept definition B′ .
=

D in T such that for every model I of T , it holds that (B′)I = ∆I\B
I.

From now on, by B̄T we refer to the concept name B′ which satisfies the
above condition.

We now modify the tableau algorithm presented in Chapter 3 to decide
satisfiability of ALCOK(D)FD-concept names w.r.t. simple pairs of TBoxes
and key boxes. It is noticed that the algorithm also decides satisfiability of
complex concepts w.r.t. acyclic TBoxes and “complex” safe key boxes by first
applying the following preprocessing step: let the input be a concept C, an
acyclic TBox T , and a key box K safe w.r.t. T .

1. introduce a new concept name A that does not appear in T previously
and add a definition A

.
= C to T ;

2. for each concept name B ∈ con(K), we introduce a new concept name B′

that does not appear in T previously and add a definition B′ = ¬B to T ;

3. for each concept D ∈ con(K) that is not a concept name, we introduce
two new concept names B, B′ that do not appear in T previously, then
add two definitions B

.
= D and B′ .

= ¬̇D to T . Let K′ be the key box
obtained from K by replacing each concept D by the concept name B;

4. convert the resulting TBox into an equivalent simple one T ′.

It is not hard to see that

• C is satisfiable w.r.t. T and K iff A is satisfiable w.r.t. T ′ and K′;

• the pair 〈T ′,K′〉 is simple; and

• |T ′| + |K′| is obviously polynomial to |C| + |T | + |K|.

Moreover, given a concept name A, a TBox T , and a key box K, it is easily
seen that if A is primitive in T , then A is always satisfiable w.r.t. T and K.
Therefore, in what follows we assume that A is defined in T .

The modified algorithm uses completion systems of a restricted form as the
underlying data structure: every node label is a set of concept names. We call
such completion systems simple.

Definition 41 (Modified Completion Algorithm). The modified ALCOK(D)FD-
completion algorithm is obtained from the tableau algorithm in Chapter 3 by the
following modifications:

1. Let the input be a concept name A and a simple pair 〈T ,K〉. The algorithm
starts with the initial completion system SA = (TA,P0, ∅, ∅) with the initial
completion tree TA = (a0, ∅, ∅, {a0 7→ {A}}) where P0 maps each predicate
P to ∅.
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2. The rules R⊓, R⊔, R∃, R∀, and R∃c are modified as follows: in the premise
of each completion rule, substitute

”C ∈ L(a)” with ”B ∈ L(a) and B
.
= C ∈ T ”.

For example, in the R⊓ rule, “C1 ⊓ C2 ∈ L(a)” is replaced with “B ∈
L(a) and (B

.
= C1 ⊓ C2) ∈ T ”.

3. The modified Rch rule: if (u1, . . . , un keyfor B) or (u1, . . . , un depfor B, u),
where depfor ∈ {skeyfor, wkeyfor}, in K and there exist x1, . . . , xn ∈ Vc

such that xi is a ui-successor of a (not blocked) for 1 ≤ i ≤ n and
{B, B̄T } ∩L(a) = ∅, then set L(a) := L(a)∪ {D} for some D ∈ {B, B̄T }.

4. The completion rules Rwkey, Rskey, Rp, and Rcp are not modified;

5. The definition of a clash is modified as follows. Let S = (T,P ,≺,∼) be a
simple completion system with T = (Va, Vc, E,L). S is said to contain a
clash iff the

• there is an a ∈ Va and two concept names B, B′ ∈ L(a) such that
there is a concept definition B′ .

= ¬B in the TBox T 1;

• there are a ∈ Va and x ∈ Vc, and a concept name B ∈ L(a) such that
there is a concept definition B

.
= g↑ in T and x is a g-successor of

a; or

• S is not concrete domain satisfiable.

We now show soundness, completeness, and termination of the modified
completion algorithm based on a correspondence between runs of the modified
algorithm on the concept name A, the simple pair 〈T ,K〉 and runs of the original
algorithm on input unfold(A, T ), unfold(K, T ). Similarly to [14], the correspon-
dence is defined based on the notion “variant” of a completion system defined
in as follows.

Definition 42. A simple completion system S = (T,P ,≺,∼), in which T =
(Va, Vc, E,L), is a variant of a completion system S′ = (T ′,P ′,≺′,∼′), in which
T ′ = (V ′

a , V ′
c , E′,L′), w.r.t. a TBox T iff the following holds:

1. Va = V ′
a, Vc = V ′

c ,∼=∼′,≺=≺′, and P = P ′,

2. A ∈ L(a) and unfold(A, T ) = C implies that C ∈ L′(a),

3. C ∈ L′(a) implies that there exists an A ∈ NC such that A ∈ L(a) and
unfold(A, T ) = C,

4. R ∈ L(a, b) iff R ∈ L′(a, b), and

5. x is a g-successor of a in T iff x is a g-successor of a in T ′.

Now, the correspondence between runs of the modified algorithm and runs
of the original one is established in the following lemma.

1From the definition of simple TBoxes and the fact that the TBox T is simple, the concept
name B is primitive.
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Lemma 43. Let S1 be a simple completion system that is a variant of a com-
pletion system S′

1 w.r.t. a simple TBox T .

• If the modified completion algorithm can apply a completion rule R to S1

yielding a completion system S2, then the original tableau algorithm can
apply R to S′

1 yielding a completion system S′
2 such that S2 is a variant

of S′
2 w.r.t. T .

• Conversely, if the original algorithm can apply a completion rule R to S′
1

yielding a completion system S′
2, then the modified completion algorithm

can apply R to S1 yielding a variant S2 of S′
2 w.r.t. T .

Proof. The lemma is proved by case analysis similarly to Lemma 5.55 in [14].

Similarly to Lemma 26 and Corollary 27, we establish an upper bound for
the size of the tree constructed by the modified algorithm. Before showing the
upper bound, let us introduce a few notions. Let CN(T ) be the set of concept
names appearing in T , DC(T ) the set of defined concept names in T , and
PC(T ) = CN(T )\DC(T ), i.e., the set of primitive concept names occurring in
T . Besides, we use feat(T ) to denote the set of abstract and concrete features
appearing in T , suff(T ,K) to denote the set of all suffixes of paths appearing in
T or K, and mpl(T ,K) to denote max{|u| | u ∈ suff(T ,K)}.

Lemma 44. Let A be a concept name and 〈T ,K〉 a simple pair of a TBox T
and a key box K. Let C = unfold(A, T ), K′ = unfold(K, T ). Then, the following
holds:

(a) rd(C) ≤ |T |,

(b) |sub(C) ∪ sub(con(K′))| ≤ |CN(T )| + |con(K)|,

(c) |cl(C,K′)| ≤ 2 · (|T | + |K|),

(d) feat(C) ⊆ feat(T ) and feat(K′) ⊆ feat(T ) ∪ feat(K),

(e) suff(C,K′) ⊆ suff(T ,K) and mpl(C,K′) ≤ mpl(T ,K).

Proof. (a) Given a concept name B, by TB we denote the set of concept def-
initions in T that are used by the run unfold(B, T ). Then by an easy
structural induction, we can prove that for each defined concept B in T , we
have rd(unfold(B, T )) ≤ |TB|, which yields Part (a).

(b) Let PC(K) := {B ∈ con(K) | B is primitive in T } and DC(K) := {B ∈
con(K) | B is defined in T }. Because 〈T ,K〉 is simple, con(K) contains
concept names only. Therefore, concepts in con(K) are either primitive in
T or defined in T , i.e., con(K) = PC(K) ∪ DC(K). Obviously, |PC(K)| ≤
|con(K)|.
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Since C = unfold(A, T ) and K′ = unfold(K, T ), we have that

|sub(C) ∪ sub(con(K′))| =
∣

∣

∣
sub(unfold(A, T )) ∪

⋃

B∈con(K)

sub(unfold(B, T ))
∣

∣

∣

=
∣

∣

∣
sub(unfold(A, T ))∪

⋃

B∈DC(K)

sub(unfold(B, T )) ∪
⋃

B∈PC(K)

B
∣

∣

∣

≤
∣

∣

∣
sub(unfold(A, T )) ∪

⋃

B∈DC(K)

sub(unfold(B, T ))
∣

∣

∣

+ |PC(K)|.

Since A and every concept in DC(K) are defined in T and T is simple,
it is not difficult to see that each concept definition B

.
= D ∈ T that is

used by the run unfold(A, T ) or the run unfold(B, T ), for some B ∈ DC(K),
and each primitive concept in PC(T ) contribute at most one concept into
sub(unfold(A, T )) ∪

⋃

B∈DC(K) sub(unfold(B, T )). Furthermore, since T is
acyclic, the number of concept definitions in T is equal to the number
of defined concept names in T , i.e., |DC(T )|. Thus, |sub(unfold(A, T )) ∪
⋃

B∈DC(K) sub(unfold(B, T ))| is bounded by |DC(T )| + |PC(T )| = |CN(T )|.

Summing it up, we have that

|sub(C) ∪ sub(con(K′))| ≤ |CN(T )| + |PC(K)|

≤ |CN(T )| + |con(K)|.

(c) Since

cl(C,K′) =sub(C) ∪ cl(K′)

=sub(C) ∪ sub(con(K′)) ∪ {¬̇D | D ∈ sub(con(K′))},

it is not difficult to see that |cl(C,K′)| ≤ 2 · |sub(C) ∪ sub(con(K′))|.

By Part (b), we have that |sub(C) ∪ sub(con(K′))| ≤ |CN(T )| + |con(K)|.
Moreover, it is easily seen that |CN(T )| ≤ |T | and |con(K)| ≤ |K|. There-
fore, |cl(C,K′)| ≤ 2 · |T | + |K|.

(d) Since A is a concept name and C = unfold(A, T ), we have that every ab-
stract feature and concrete feature appearing in C also appears in T . There-
fore, feat(C) ⊆ feat(T ).

Moreover, since 〈T ,K〉 is simple and K′ = unfold(K, T ), we have that every
abstract feature and concrete feature appearing in K′ also appears in K or
T . Thus, feat(K′) ⊆ feat(T ) ∪ feat(K).

(e) By a similar argument as above, we have that each path in C or K′ must
appear in T or K. Therefore, obviously suff(C,K′) ⊆ suff(T ,K). And as a
consequence, mpl(C,K′) ≤ mpl(T ,K).
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Corollary 45. Let A be a concept name, 〈T ,K〉 a simple pair of a TBox T and
a key box K, C = unfold(A, T ), and K′ = unfold(K, T ). Let S = (T,P ,≺,∼)
with T = (Va, Vc, E,L) a completion system constructed during the run of the
tableau algorithm in Chapter 3 started on the input concept C and the key box
K′. Then, the following holds:

(a) The out-degree of T is bounded by |T | + |K|;

(b) |Va/≈| ≤ ((|T | + |K|)|T | + 1)|T |+|K| · 22·(|T |+|K|);

(c) There exists a constant k such that #Vc + #Va is bounded by 22(|T |+|K|)k

.

Proof. (a) By Lemma 26(a), we have that the out-degree of T is bounded by
|sub(C) ∪ sub(con(K′))| + |feat(C) ∪ feat(K′)|.

From Lemma 44(b), we have that |sub(C) ∪ sub(con(K′))| ≤ |CN(T )| +
|con(K)|. Besides, Lemma 44(d) yields that feat(C) ∪ feat(K′) ⊆ feat(T ) ∪
feat(K).

Therefore, we have that the out-degree of T is bounded by

|sub(C) ∪ sub(con(K′))| + |feat(C) ∪ feat(K′)|

≤|CN(T )| + |con(K)| + |feat(T ) ∪ feat(K)|

≤|CN(T )| + |con(K)| + |feat(T )| + |feat(K)|

It is easily seen that |CN(T )|+|feat(T )| ≤ |T | and |con(K)|+|feat(K)| ≤ |K|.
Therefore, the out-degree of T is bounded by |T | + |K|.

(b) By Lemma 26(c), we have that |Va/≈| ≤ (n + 1)|suff(C,K′)| · 2|cl(C,K′)| where
n = |Vc/∼|.

According to Lemma 26(b), we have that |Vc/∼| ≤ N rd(C) where N =
|sub(C)∪sub(con(K′))|+ |feat(C)∪ feat(K′)|. Part (a) yields that N ≤ |T |+
|K| whereas Lemma 44(a) implies that rd(C) ≤ |T |. Therefore, |Vc/∼| ≤
(|T | + |K|)|T |.

Lemma 44(e) yields that suff(C,K′) ⊆ suff(T ,K). Furthermore, it is not
difficult to show that |suff(T ,K)| ≤ |T |+|K|. Thus, |suff(C,K′)| ≤ |T |+|K|.

Summing all the above up, together with the fact that |cl(C,K′)| ≤ 2 ·(|T |+
|K|) by Lemma 44(c), we obtain that

|Va/≈| ≤ ((|T | + |K|)|T | + 1)|T |+|K| · 22·(|T |+|K|).

(c) According to Lemma 26(d), we have that the depth of T is bounded by
|Va/≈| + mpl(C,K′). Part (b) implies that

|Va/≈| ≤ ((|T | + |K|)|T | + 1)|T |+|K|.22·(|T |+|K|).

Furthermore, Lemma 44(e) yields that mpl(C0,K′) ≤ mpl(T ,K). Obviously,
mpl(T ,K) ≤ |T | + |K|. Therefore, there exists a constant m such that the
depth of T is bounded by 2(|T |+|K|)m

.

Since the out-degree of T is bounded by |T |+ |K| by Part (a) and the depth
of T is bounded by 2(|T |+|K|)m

, we have that the number of nodes in T is
bounded by

(|T | + |K|)2
(|T |+|K|)m+1 − 1

|T | + |K| − 1
.
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Therefore, there is a constant k such that the number of nodes in T is

bounded by 22(|T |+|K|)k

. The fact that Va ∪ Vc is the set of nodes in T
finishes the proof.

Based on the correspondence between runs of the original tableau algorithm
and runs of the modified algorithm, established in Lemma 43, and the upper
bound for the size of the tree T constructed by the algorithm, established in
Corollary 45, we get the following.

Lemma 46. The modified completion algorithm is sound, complete, and termi-
nating. Moreover, if it is started on a concept name A and a simple pair 〈T ,K〉,
and returns satisfiable, then there exists a model for A, T , and K whose size is
not greater than M , where

M = ((|T | + |K|)|T | + 1)|T |+|K| · 22·(|T |+|K|).

Proof. Soundness and completeness immediately follows from Lemma 43 and

1. the original tableau algorithm is sound, complete, and terminating;

2. the concept name A and the simple pair 〈T ,K〉 have a model iff the concept
C = unfold(A, T ) and the keybox K′ = unfold(K, T ) have a model.

The termination is proved similarly to Lemmas 28 and 29, together with
Corollary 45 which states that the completion tree T is of bounded size.

For the size of the constructed model, it is obvious that |∆I | ≤ |Va/≈|. By
Corollary 45, we have that

|Va/≈| ≤ ((|T | + |K|)|T | + 1)|T |+|K| · 22·(|T |+|K|).

It is easily seen that similarly to the tableau algorithm for ALCOK(D)FD-
concept satisfiability, the modified completion algorithm runs in time double ex-
ponential in |T |+ |K|. Fortunately, as established in Lemma 46, the constructed
model is of bounded size exponential in |T |+ |K|. Similarly to Theorem 34, that
fact suggests a NExpTime upper complexity bound for ALCOK(D)FD-concept
satisfiability w.r.t. acyclic TBoxes and safe key boxes, which coincides with the
NExpTime lower complexity bound established in Theorem 17.

Theorem 47. For a key-admissible concrete domain D such that extended
D-satisfiability is in NP, ALCOK(D)FD-concept satisfiability w.r.t. acyclic
TBoxes and safe key boxes is in NExpTime.

Proof. We consider satisfiability of a concept name A w.r.t. a simple pair 〈T ,K〉.
Let C = unfold(A, T ) and K′ = unfold(K, T ).

Let
B(T ,K) = ((|T | + |K|)|T | + 1)|T |+|K| · 22·|T |+|K|);

and V = {v1, . . . , vn} where n ≤ B(K, T ) · (|T | + |K|).
A quasi-interpretation for A, T , and K is defined similarly to that in the

proof of Theorem 34, except that
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• ∆M is a non-empty set such that |∆M| ≤ B(T ,K);

• beside conditions (C1), (C2), and (C3), to be a quasi-model for A, T , and
K a quasi-interpretation must satisfy the following additional condition:

(C4) M satisfies all concept definitions in T .

It is not difficult to see that there is a quasi-model for the concept name A,
the TBox T , and the key box K iff A is satisfiable w.r.t. T and K.

Based on quasi-models, we present an alternative decision procedure for
deciding satisfiability of concept names w.r.t. simple pairs of TBoxes key boxes.
First, we “guess” a quasi-interpretation for A, T , and K, then we check whether
it is a quasi-model for A, T , and K.

Checking the condition (C2), i.e., if there exists an a ∈ ∆M such that
a ∈ AM, is easy because A is a concept name. Checking the condition (C4),
i.e., if M is a model for T is done via the following algorithm. Let T = {A1

.
=

C1, . . . , An
.
= Cn}, the algorithm is given in pseudo code as follows:

for i := 1 to n do
if AM

i 6= CM
i then

return false
return true

It is easy to see that every step of the algorithm can be carried out in time
O(|∆M|), which is at most exponential in |T | + |K|. Furthermore, the number
of steps is bounded the number of concept definitions in T , which in turn is
bounded by |T |. Therefore, the algorithm can be carried out in time exponential
in |T | + |K|.

Finally, conditions (C1) and (C3) are checked similarly as in the proof of
Theorem 34.

Since all described parts of the non-deterministic algorithm runs in ex-
ponential time, we conclude that ALCOK(D)FD-concept satisfiability w.r.t.
acyclic TBoxes and safe key boxes can be decided in NExpTime if extended
D-satisfiability is in NP.

4.2 ALCOK(D)FD with General TBoxes

Generalizing the notion of acyclic TBoxes, we obtain general TBoxes defined as
follows.

Definition 48 (General TBox). An expression of the form C ⊑ D, where C
and D are concepts, is called a general concept inclusion axiom (or GCI for
short). A finite set T of GCIs is called a general TBox.

An interpretation I is a model of a TBox T iff CI ⊆ DI for all C ⊑ D ∈ T .
A concept C is satisfiable w.r.t. a TBox T and a key box K iff there exists a
model of C, T , and K. A concept D subsumes a concept C w.r.t. a TBox T and
a key box K, written C ⊑T ,K D, iff CI ⊆ DI for all models I of T and K.

Note that a quite common form of TBoxes is obtained by replacing the subset
relation “⊑” in GCIs by the equality “

.
=”, and in that case each expression

C
.
= D is called a concept equation (see, e.g., [6, 14]). It is easily seen that the

two forms of TBoxes are equivalent since each GCI C ⊑ D can be expressed
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by a concept equation C
.
= C ⊓ D and each concept equation C

.
= D can be

represented by two GCIs: C ⊑ D and D ⊑ C.
General TBoxes are a powerful tool for describing background knowledge

about application domains and have been considered in the literature (e.g. [2,
10, 14]). However, in most description logics, the presence of general TBoxes
increases the complexity of reasoning significantly. For example, while reasoning
in ALC is PSpace-complete, referring to general TBoxes makes reasoning in
ALC become ExpTime-complete (see, e.g., [2]).

In [18], it is shown that for a particular concrete domain W, which was
introduced in [15] and is given in the following definition, even reasoning w.r.t.
sets of concept equations in ALC(W), a fragment of ALCOK(W)FD, becomes
undecidable.

Definition 49 (Concrete domain W). Let Σ be an alphabet. The concrete
domain W is defined by setting ∆W := Σ∗ and defining ΦW as the smallest set
containing the following predicates:

• unary predicate word and nword with wordW = ∆W and nwordW = ∅,

• unary predicate =ǫ and 6=ǫ with (=ǫ)
W = {ǫ} and (6=ǫ)

W = Σ+,

• a binary equality predicate = and a binary inequality predicate 6= with the
obvious interpretation, and

• for each w ∈ Σ+, two binary predicates concw and nconcw with

concW
w = {(u, v) | v = uw} and nconcW

w = {(u, v) | v 6= uw}.

As shown in [15], W-satisfiability is in PTime, and thus W is admissible.
This is important since it guarantees that the undecidablity of reasoning in
ALC(W) is not due to undecidability of W-satisfiability.

The undecidability result is shown by a reduction of the well-known undecid-
able Post Correspondence Problem (PCP) [23], which is to be defined explicitly
in Section 4.3, to satisfiability of ALC(W)-concepts. Since GCIs and concept
equations have the same expressive power, the undecidability result also holds
for reasoning w.r.t. general TBoxes.

Lemma 50 (Theorem 5.24 in [18]). ALC(W)-concept satisfiability w.r.t. general
TBoxes is undecidable.

From the fact that ALC(W) is a fragment of ALCOK(W)FD and Lemma
50, we have the following undecidability result.

Corollary 51. ALCOK(W)FD-concept satisfiability w.r.t. general TBoxes is
undecidable.

Moreover, to emphasize that this undecidability result is obtained using
a simple concrete domain, we combine Corollary 51 and the fact that W-
satisfiability is in PTime as follows.

Theorem 52. There exists a concrete domain D such that D-satisfiability is in
PTime and reasoning in ALCOK(D)FD is undecidable.
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Note that the concrete domain W seems unnatural and thus the obtained
undecidability result may be not relevant. However, in [14] it is shown that
words over the alphabet Σ can be encoded as numbers in base #Σ+1 (without
“0” digit). Therefore, the corresponding natural numbers in base 10 can be
used to represent non-empty words, and 0 to represent the empty word. The
concatenation of two words v and w can be represented as vw = v · (#Σ +
1)|w| + w, where |w| denoted the length of the word w. Hence, the concrete
domain W can be replaced by an arithmetic one. Moreover, with the help of
general TBoxes, similarly to [18], we can express exponentiation as multiple
multiplications, multiplications as additions, and additions as incrementations
with one. Therefore, arithmetic concrete domains can be replaced by weaker
concrete domains.

Theorem 53. Let D be a concrete domain. If N ⊆ ∆D and ΦD provides a
unary predicate for equality with 0, a binary equality predicate, and a binary
predicate for incrementation, then ALCOK(D)FD-concept satisfiability w.r.t.
general TBoxes is undecidable.

Because concept subsumption can be reduced to concept satisfiability, un-
satisfiability of concept subsumption w.r.t. general TBoxes in ALCOK(D)FD

with concrete domains specified in Theorem 53 obviously follows.

4.3 Adding Inverse Roles

In this section, we consider the description logic ALCOIK(D)FD, which is ob-
tained by extending ALCOK(D)FD with inverse roles. More precisely, the logic
ALCOIK(D)FD allows the use of inverse roles inside subconcepts of the form
∃R.C or ∀R.C. The reason for not admitting inverse roles of abstract features
inside the concrete domain constructor is that inverse roles of abstract features
are not necessarily functional.

The semantics of inverse roles is defined in the obvious way. Given an inter-
pretation I and a role name S, I is extended to inverse roles as follows

(S−)I := {(b, a) | (a, b) ∈ SI}.

In [14, 18], the description logic ALCI(D) (denoted as ALC−(D) in [14, 18]),
which is ALC(D) extended with inverse roles, is proposed. It is proved that
for an arithmetic concrete domain D, ALCI(D)-concept satisfiability is NExp-

Time-hard. Interestingly, it can be shown that adding nominals to ALCI(D),
which yields the description logic ALCOI(D), makes a dramatic jump in com-
plexity of reasoning from NExpTime-hard to undecidable for an arithmetic
concrete domain D. The idea is based on the undecidability of reasoning w.r.t.
general TBoxes in ALC(D) with an arithmetic concrete domain D and the fact
that using the “spy-point” technique as known from [1], we can “simulate” gen-
eral TBoxes by inverse roles and nominals.

Let W be the concrete domain introduced in Definition 49, which is used
in [18] to show that PCP can be reduced to satisfiability of ALC(W)-concepts
w.r.t. general TBoxes. We adapt the reduction and the “spy-point” technique
in order to obtain undecidability result for reasoning in ALCOI(W). First, let
us explicitly define the well-known undecidable Post Correspondence Problem.
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Definition 54 (PCP). An instance P of the Post Correspondence Problem is
given by a finite, non-empty list (l1, r1), . . . , (lk, rk) of pairs of words over some
alphabet Σ. A sequence of integers i1, . . . , im, with m ≥ 1, is called a solution
for P iff

li1 . . . lim
= ri1 . . . rim

.

The Post Correspondence Problem (PCP) is to decide, for a given instance P ,
whether P has a solution.

We can now discuss the reduction of the PCP to ALCOI(W)-concept sat-
isfiability. Given an instance P = (l1, r1), . . . , (lk, rk) of the PCP, we construct
the following concepts:

CR :=∃l.=ǫ ⊓∃r.=ǫ

CT :=
(

l

(li,ri)∈P

∃l, fil.concli ⊓ ∃r, fir.concri

)

⊓
(

∃l.=ǫ ⊔¬∃l, r.=
)

CP :=Nspy ⊓ ∃u.CR ⊓ ∀u.(
l

1≤i≤k

∀fi.∃u−.Nspy) ⊓ ∀u.CT

in which Nspy is a nominal, f1, . . . , fk are abstract features, u is a role name,
and l, r are concrete features. The idea behind the reduction is that a model of
CP encodes all potential solutions for the PCP P , and moreover, the existence
of such a model guarantees that no potential solution actually is a solution.
Hence, P has a solution iff CP is unsatisfiable. An example model is depicted
in Figure 4.1. The following lemma formulates the reduction formally.

Nspy

u

u uu u

f1 fk f1 fk

l r

l r l r
• • •

• • • • • •

. . . . . .

f1 fkconcl1

concr1

concrk

conclk

Figure 4.1: An example model of CP

Lemma 55. Let P = (l1, r1), . . . , (lk, rk) be a PCP. Then, P has a solution iff
CP is unsatisfiable.

Proof. For both directions, we show the contrapositive.
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(⇐) Assuming that P has no solution, we show that CP is satisfiable by con-
structing an interpretation I that is a model for CP . If w = i1, . . . , in is
a sequence of indices, we use leftconc(w) to denote the concatenation of
the words li1 , . . . , lin

and rightconc(w) to denote the concatenation of the
words ri1 , . . . , rin

. We define

∆I := {i1 . . . in | n ≥ 0 and 1 ≤ ij ≤ k for 1 ≤ j ≤ n} ∪ {spy},

NI
spy := {spy},

fI
i (w) := wi for w ∈ ∆I and 1 ≤ i ≤ k,

lI(w) := leftconc(w) for w ∈ ∆I ,

rI(w) := rightconc(w) for w ∈ ∆I ,

uI := {(spy, a) | a ∈ ∆I\{spy}}.

Note that ∆I also contains the empty sequence of indices. Since P has
no solution, it is readily checked that I is a model for CP .

(⇒) Suppose that CP is satisfied by a model I. Let spy, a0 ∈ ∆I be such that
NI

spy = {spy}, (spy, a0) ∈ uI , and a0 ∈ CI
R.

We must show that P has no solution. Assume to the contrary that
w = i1, . . . , in is a solution for P . By induction on j, it is easy to
show that (fi1 . . . fij

l)I(a0) = leftconc(i1, . . . , ij) and (fi1 . . . fij
r)I(a0) =

rightconc(i1, . . . , ij) for 1 ≤ j ≤ n.

Since spy ∈ CI
P and (spy, a0) ∈ uI , we have that a0 ∈ CI

T . Let b =
(fi1 . . . fin

)I(a0). By induction on n, it is easy to show that (spy, b) ∈ uI ,
and thus b ∈ (CT )I , which yields that b ∈ (∃l. =ǫ ⊔¬∃l, r. =)I . Since
n ≥ 1, it is easily seen that b /∈ (∃l. =ǫ)

I , and thus b ∈ (¬∃l, r. =)I .
Therefore, lI(b) 6= rI(b).

Therefore, since fi1 , . . . , fin
are abstract features, we clearly have that

(fi1 . . . fin
l)I(a0) 6= (fi1 . . . fin

r)I(a0), and thus leftconc(w) 6= rightconc(w).
Hence, w is no solution to P , which is a contradiction to what has been
assumed.

Clearly, the size of the concept CP is polynomial in k. Therefore, we obtain
the following.

Corollary 56. ALCOI(W)-concept satisfiability is undecidable.

From the fact that ALCOI(W) is a fragment of ALCIOK(W)FD , we have
the following.

Corollary 57. Reasoning in ALCOIK(W)FD is undecidable.

Moreover, to emphasize that this undecidability result is obtained using
a simple concrete domain, we combine Corollary 57 and the fact that W-
satisfiability is in PTime as follows.

Theorem 58. There exists a concrete domain D such that D-satisfiability is in
PTime and reasoning in ALCOIK(D)FD is undecidable.
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As dicussed earlier, the concrete domain W can be replaced by an arithmetic
one. Moreover, it is easily noticed that the sub-concept CT in CP is satisfied
in every element of the logical domain that is “reachable” from Nspy via the
role name u, and thus it can be used to simulate general TBoxes. Hence,
we can express exponentiation as multiple multiplications, multiplications as
additions, and additions as incrementations with one. Therefore, arithmetic
concrete domains can be replaced by weaker concrete domains.

Theorem 59. Let D be a concrete domain. If N ⊆ ∆D and ΦD provides a
unary predicate for equality with 0, a binary equality predicate, and a binary
predicate for incrementation, then reasoning in ALCOIK(D)FD is undecidable.



Chapter 5

Conclusion

In this paper, we have investigated the first description logic with concrete do-
mains and both types of key constraints, namely uniqueness constraints and
functional dependencies, thus completing previous work where each of them
was treated separately. More precisely, we have combined both uniqueness con-
straints and functional dependencies in the description logic ALCOK(D)FD.
Moreover, we have also given a discussion on the impact on complexity of reason-
ing of adding acyclic TBoxes, general TBoxes, or inverse roles to ALCOK(D)FD.

Following immediately from the undecidability results of reasoning in DL
with uniqueness constraints [19] and DL with functional dependencies [20], we
have discussed about that in the general case, reasoning in ALCOK(D)FD is
undecidable and in order to preserve decidability, a restricted class of key boxes
is needed. The identified key boxes are safe key boxes, which additionally allow
for sub-concepts of the forms ∃R.C, ∀R.C, and g ↑ besides Boolean connec-
tives in concepts occurring in key constraints. Moreover, being a super-logic
of ALCOK(D) and ALC(D)FD, ALCOK(D)FD inherits the NExpTime lower
complexity bound for reasoning w.r.t. safe key boxes from these logics.

The main contribution of this paper is the tableau algorithm deciding sat-
isfiability of ALCOK(D)FD-concepts w.r.t. safe key boxes. It turns out that
a naive combination of completion rules for DL with uniqueness constraints
in [19] and those for DL with functional dependencies in [20] does not work.
The reason is that we need to take into account two different sources influenc-
ing the structure of logical models, namely uniqueness constraints and strong
functional dependencies. Due to the same reason, the blocking mechanism for
ensuring termination of the algorithm in this paper is more complicated than
that in [20] whereas a blocking mechanism is unnecessary in the case of unique-
ness constraints only. Moreover, based on the bounded model property induced
by the proofs of termination, soundness, and completeness of the tableau algo-
rithm, we have shown the NExpTime upper complexity bound for reasoning
w.r.t. safe key boxes in ALCOK(D)FD, which coincides with the NExpTime

lower complexity bound. Therefore, implicitly we have shown that we can treat
a larger class of uniqueness constraints than ones from [19], which only allow
for Boolean combinations of concept names in uniqueness constraints.

Extending ALCOK(D)FD, we have considered impact of acyclic TBoxes,
general TBoxes, and inverse roles on complexity of reasoning in ALCOK(D)FD.
Unfortunately, most result that we have come up with is discouraging, i.e.,
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providing ALCOK(D)FD with general TBoxes and inverse roles leads to un-
decidability for a large class of concrete domains D. Besides the discouraging
results, we have shown that reasoning w.r.t. acyclic TBoxes is still decidable
and adding acyclic TBoxes to ALCOK(D)FD does not make reasoning harder
in complexity.

For future work, it would be useful to integrate both uniqueness constraints
and functional dependencies into more expressive DLs with concrete domains,
e.g. SHOQ(D). In fact, an extension of SHOQ(D) with uniqueness constraints,
called SHOQK(D), is analyzed in [19]. As it is well-known that combining gen-
eral TBoxes, which is a very important feature of SHOQ(D), and the concrete
domain constructor easily leads to undecidability (see, e.g., [18]), only a path-
free variant of the concrete domain constructor, i.e., only concrete features are
admitted inside the constructor, is allowed in order to regain decidability [12].
Furthermore, in SHOQK(D) only path-free uniqueness constraints are consid-
ered. As proved in [19], reasoning in the restricted SHOQK(D) is NExpTime-
complete. For an extension of SHOQ(D) with both types of key constraints,
since we restricted ourselves to the path-free variant of the concrete domain
constructor and path-free key boxes, functional dependencies cannot influence
the structure of logical models. Thus, we believe that upper complexity bounds
can be preserved and the algorithm can be easily extended in order to treat
path-free key constraints.

Besides, it would be interesting to know if we can combine both types of
key constraints with number restrictions, transitive roles, or role hierarchies in
order to preserve decidability in the case that path-freeness of key constraints is
not strictly required. We are also interested in integrating DLs with uniqueness
constraints and functional dependencies and action formalisms [5].

It remains to do the implementation of the algorithm for ALCOK(D)FD pre-
sented in this paper, and moreover, we find it challenging to do an investigation
on optimization techniques and implement the algorithm efficiently.
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