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Abstract

Automata theory has proven to be a useful tool for solving decision prob-
lems, for example, the satisfiability problem in some logics. This approach
consists basically in reducing the desired problem to the emptiness problem
of automata.

Unfortunately, this reduction leads in some cases to suboptimal methods.
When this happens, it is usually possible to find properties in the specific
automata that allow the emptiness test to be solved in an optimized manner.
This path has been followed many times, but always done solely for the
specific automata at the time.

In this work general conditions are given, under which the emptiness test
can be solved using only logarithmic space on the number of states. These
conditions are later applied to prove that ALC-satisfiability with respect to
empty and acyclic TBoxes is in PSpace.

3



Declaration

Herewith I confirm that I independently pre-
pared this thesis. No further references or
auxiliary means than the ones indicated in
this work were used for the preparation.

Signature:
Rafael Penaloza

4



Chapter 1

Introduction

In a world in which information and knowledge grow at gigantic steps, the
ability to handle them, even in small, specialized parts, agonizes. During
the time required to find and gather a piece of knowledge, new elements are
found and developed. This makes it almost impossible to stay up-to-date
within any knowledge domain.

Human beings have long since resigned to delegate this task to comput-
ers. These machines, with a virtually unlimited memory and ever growing
computing power, seem like the natural prospects to cope with the weight of
this assignment. The ability to store every segment of relevant knowledge,
and process them expeditiously are their main desired properties.

Unfortunately, a transfer from human-based to machine-based knowl-
edge handling is not as easy as it might be aspired to be. On one hand, the
innate inflexibility of computers constrains knowledge to be formally stated.
On the other, one source is usually insufficient to model even relatively lim-
ited and well-examined knowledge areas.

In the search of solving the first of these problems, many formalisms
have been developed and studied. The basic idea in most of them consists
simply in describing the relevant parts of the knowledge domain, and the
relations between them. Well-studied examples of such formalisms are the
logic-based ones; in particular, Description Logics.

Multiplicity of sources for modeling is not a problem per se, apart from
the inconvenience of needing to consult several informants. An unsupervised
increase of authors raises, nonetheless, the possibility of finding contradic-
tions, errors, and misinterpretations of the model.
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Were the only goal of the model mere erudition, such miscues would be
little more than irrelevant nuisances. As the knowledge is intended, on the
contrary, to be employed in solving reasoning tasks, absurdities or mistakes
cannot be tolerated.

One way of distinguishing errors in the model is by means of satisfiability
tests. Whenever a complex concept is defined, it is safe to assume that
this concept should be satisfiable, as there is no need of giving an intricate
construction of inanity. If one such concept results being unsatisfiable within
the knowledge base, it is likely that wrong assertions were executed during
the modeling process.

Inquiring whether concepts define only absurdities or not has, nonethe-
less, more motivation than just error pruning. As usually only the relevant
parts of knowledge are stated explicitly in the model, most of the knowledge
is stated implicitly. This capacity of keeping implicit expertise is desired
on these systems as a matter of efficiency. Reasoning tasks, such as the
satisfiability test, work then as guides to openly express these parts of the
knowledge domain.

Depending on the used formalism, different mechanisms can be used in
order to verify satisfiability of concepts. One common approach relies on
the well-studied Automata Theory. In particular, the problem is usually
reduced to that of verifying whether the language defined by an automaton
is empty or not. This last problem has been deeply considered, and several
methods for solving it have been developed.

But the seek is not to stop there. As these tests are really meant to
be computed, the mere theoretical capacity of performing them is unsatis-
factory. It is also necessary to be able to do it within reasonable resource
bounds.

In other words, it is not enough to find any decision procedure for the
satisfiability test of concepts, but rather one that is optimal in the use of
resources such as time and space.

It turns out that, in many cases, the natural automata theoretic ap-
proach yields to suboptimal procedures; that is, methods that consume more
resources than really required by the problem. However, when this happens,
it is sometimes possible to adapt the method to obtain the optimal decision
procedure.

The readjustment process is usually as follows: reduce the satisfiability
problem of concepts to the emptiness problem of automata, and then verify
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if it is possible to solve this problem with less resources as usual, taking into
account the properties of the resulting automata. These results in a less
costly decision procedure than the initial automaton.

Whenever this process has been followed, the properties of the automata
were examined, and a new decision procedure for the emptiness of these
automata was developed, useful only in these particular automata. This
exclusiveness of use arises from the use of features exclusive of the studied
class of automata.

The question then arises: is it possible to find conditions on the au-
tomata, for which the emptiness problem may be optimized? In other words,
is it within reach to generalize the optimization process, and make it useful
in other applications?

This work focuses in an answer to that inquiry. A class of automata is
defined, for which the emptiness test can be done using logarithmic space in
the number of states, in contrast to the polynomial time required in general.
This means that, if the size of the automaton is exponential in the size of
the concept for which the satisfiability test is to be performed, the overall
process will require polynomial space, which is a significant improvement to
the original exponential time method.

The work is distributed as follows. In Chapter 2, the basic notions of
automata theory, and the description logic ALC are defined. These concepts
will be necessary for the rest of the work. After that, Chapter 3 defines the
class of automata for which the emptiness test can be optimized, and shows
a way to make such a test, proving its correctness.

Chapter 4 holds then an example of how these results may be applied to
show that ALC satisfiability, and ALC satisfiability with respect to acyclic
TBoxes is in PSpace.

Afterwards, the last chapter holds some conclusions for this work, as well
as some ideas regarding future work.
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Chapter 2

Theoretical Background

This chapter introduces the basic concepts and results that will be used
in the following chapters. The first section focuses on defining the basic
concepts of automata theory and the emptiness problem.

The second section defines an instance of a Description Logic called
ALC, and how its decision problems can be related to those of automata.
More precisely, it explains how automata theory can be used to decide the
satisfiability problem of concept terms with respect to general TBoxes using
exponential time in the size of the concept term. This should work as a
motivation for the framework presented in Chapter 3, in which conditions
are defined such that the emptiness problem can be solved in a more efficient
manner for the automata that meet them.

With the help of that theory, two subproblems of satisfiability with re-
spect to general TBoxes can be shown to be solvable using only polynomial
space, as will be seen in Chapter 4.

2.1 Automata Theory

Intuitively, an automaton can be seen as a machine that traverses an input
and decides whether this input is part of a set, called language, or not.
Depending on the type of accepting condition, and the type of input, many
kinds of automata exist.

This section is an introduction to Büchi automata over infinite unlabeled
trees; that is, automata with the Büchi accepting condition that receive
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infinite unlabeled trees as input.

Definition 2.1 A Büchi automaton over infinite k-ary unlabeled trees is a
tuple of the form M = (Q,∆, I, F ) where

• Q is a finite set of states;

• ∆ ⊆ Qk+1 is the transition relation;

• I ⊆ Q is the set of initial states;

• F ⊆ Q is the set of final states.

Automata are usually defined to receive as input labeled trees. For that
reason, they usually include an extra parameter, Σ, which states the alpha-
bet used to label the nodes. For the present framework, such labels are not
necessary, and so they are not considered at all, for sake of simplicity.

An automaton over unlabeled trees can only receive one input: the
unique infinite k-ary unlabeled tree. Hence, it will be always assumed that
this is indeed the input given. For abbreviation, whenever infinite k-ary
unlabeled trees are used, it will simply be written as k-ary trees.

Every node in a k-ary tree will be represented by a word in the set
{1, . . . , k}∗ stating the unique segment of path that must be followed to
reach the node from the root. So, for example, the root node is represented
with the empty word, ε, and the first descendant of the second descendant
of the root is described by 2 · 1.

The acceptance of a k-ary tree by an automaton is defined by means of
runs. A run describes the process that the automaton follows when travers-
ing the input tree, visiting every node only once, having some internal state,
and then changing this state while continuing reading the tree, according to
the transition relation.

Definition 2.2 Let M = (Q,∆, I, F ) be an automaton over k-ary trees. A
run of M is a labeled k-ary tree r such that

• r(ε) ∈ I;

• for all w ∈ {1, . . . , k}∗, (r(w), r(w · 1), . . . , r(w · k)) ∈ ∆.

Such a run is called accepting if every path contains infinitely often a
final state.
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Intuitively, a run is simply a labeling of the input tree in which the root
is labeled with one of the initial states, and the descendants of each node are
labeled following the transition relation ∆. Such a run is accepting if this
labeling is such that over every branch of the tree, the labels found are final
states infinitely often. This is known as the Büchi acceptance condition.

Notice that there might be many different runs. The emptiness problem
of these automata consists simply in deciding whether there exist an accept-
ing run or not. This problem is well known to be solvable using polynomial
time, on the number of states of the automaton [10, 15].

The subclass of Büchi automata in which every state is final, and hence
every run is accepting, will be of special interest in the following chapters.
This kind of automata are called looping, and are represented without the
set of final states, which is implicitly the set of all states.

Definition 2.3 The looping automaton M = (Q,∆, I) is the Büchi au-
tomaton M ′ = (Q,∆, I,Q).

For this subclass of automata, runs and the emptiness problem are de-
fined as for the Büchi automata. Notice that in this case, the emptiness
problem reduces to simply deciding whether there exists a run or not, as
every run is accepting.

In the next section it will be shown that automata can be used to solve
other decision problems. In particular, it will be presented how looping
automata assist in the solution of some decision problems in logic.

It is important to note that there are other kinds of automata, apart
from the ones defined here. In particular, those which receive as input infi-
nite words. The emptiness problem of these automata may also be applied
for solving decision problems in logic [14]. An infinite word can be seen
as a 1-ary infinite tree. In that sense, these automata are treated in the
framework presented in this work for finding optimized methods for solving
the emptiness problem.

Nonetheless, for this particular case, the constraints that will be given
in Chapter 3 turn out to be too restrictive. While the framework requires
conditions in the automata to improve the emptiness test, this test can
always be done with a non-deterministic method using logarithmic space
on the size of automata over infinite words [16], making such conditions
superfluous.

All this means that the method that motivated the framework can always
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be performed when using automata over infinite words. For this reason, this
kind of automata will not be considered on detail in this work.

2.2 Description Logics

Description Logics [2] appear from the need of a formal way of building
knowledge representations that could be used to effectively extract implicit
consequences of the explicit elements in the model. Prior to these logics, a
promising path for this goal was the use of network-based structures [4], such
as semantic networks [9] and frames [7]. The intuition behind this was that
by means of such structures, representation could be done in an simpler way,
and reasoning would be more efficient, taking advantage of the hierarchical
configurations.

The first attempts of modeling with hierarchical structures had the prob-
lem of lacking precise semantics. This meant that the behaviour of a system
could differ greatly from that of another of similar shape. Description Log-
ics give formal semantics to these structures, being a fragment of first-order
logic.

As the name suggests, Description Logics are used to describe a portion
of knowledge, by defining its relevant concepts. This is done, broadly, by
characterizing the relationship between the concepts, and the relationship
between objects and concepts obtaining, this way, a relation between the
objects in the application.

As there are many ways to construct concepts, and also different ways
to describe relations between them, there exist many different Description
Logics. In this section, only one of these logics will be defined. This logic,
called ALC, may be seen as an example for understanding other Description
Logics.

The name ALC stands for attribute language with complement and is an
extension of the language AL as defined in [13]. In this logic, the concepts
define formally the notions of the application domain. It includes also a set
of binary relations called roles. The complete syntax is defined next.

Definition 2.4 (Syntax) Let NR and NC be disjoint sets of role names
and concept names, respectively. The set of ALC-concept terms is defined
inductively as follows:

1. Each concept name A ∈ NC is an ALC-concept term.
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2. > and ⊥ are ALC-concept terms.

3. If C,D are ALC-concept terms, and r ∈ NR, then the following are
also ALC-concept terms:

• C u D,C t D,¬C

• ∀r.C,∃r.C

Example 2.5 Let Positive and Odd be concept names with the intended
meaning of positive and odd numbers, respectively, and has-factor be a role
name with the intended meaning of the second element in the binary relation
being a proper divisor of the first one1. Then,

• Positiveu¬Odd describes the notion of “even number”;

• ¬∃has-factor.Positive describes the notion of “1”.

The formal semantics of ALC is given by interpretations, which can be
seen as mappings from concept terms to a specific domain. This is stated
more formally in the next definition.

Definition 2.6 (Semantics) An interpretation I consists of a non-empty
interpretation domain ∆I and an interpretation function ·I that

• assigns to each A ∈ NC a subset AI ⊆ ∆I,

• assigns to each r ∈ NR a binary relation rI ⊆ ∆I × ∆I.

The interpretation function is then inductively extended to the rest of ALC
concept terms as follows:

• >I = ∆I ,⊥I = ∅

• (C u D)I = CI ∩ DI

• (C t D)I = CI ∪ DI

• (¬C)I = ∆I \ CI

1In this case, divisor is understood in the following sense: a number a is a divisor of

b if there is a natural number c such that b = a · c. It is a proper divisor if, additionally,

a 6= b.
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• (∀r.C)I = {d ∈ ∆I | ∀e ∈ ∆I : (d, e) ∈ rI ⇒ e ∈ CI}

• (∃r.C)I = {d ∈ ∆I | ∃e ∈ ∆I : (d, e) ∈ rI ∧ e ∈ CI}

Example 2.7 A possible interpretation I for the concept names and role
name in Example 2.5 is given by:

• ∆I = {1, 2, 3, . . .}

• Positive
I = ∆I

• Odd
I = {1, 3, 5, . . .}

• has-factor
I = {(i, j) ∈ ∆ × ∆ | j < i and j|i}

It is sometimes convenient to define some concept names as abbreviations
of more complex concept terms. Such abbreviations are useful, for example,
to improve the readability of a model, or to reduce the size of a model
description. This is done with the help of a so called terminology box (TBox).

Definition 2.8 If A ∈ NC and C is a concept term, then A
.
= C is a

concept definition. A finite set T of concept definitions is called acyclic
TBox if the following conditions hold:

1. There exist no A ∈ NC and distinct concept terms C,D such that
{A

.
= C,A

.
= D} ⊆ T ,

2. There are no n ≥ 1 and concept definitions A1
.
= D1, . . . , An

.
= Dn in

T such that

• Di contains Ai+1 for 1 ≤ i < n,

• Dn contains A1.

These two conditions ensure that the elements of an acyclic TBox are
really just definitions for concept terms; that is, abbreviations that can be
replaced by complex concept terms.

The semantics of a TBox are given in a natural way.

Definition 2.9 An interpretation I is a model of an acyclic TBox, T , if
for every concept definition A

.
= C ∈ T , it holds that AI = CI.
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Sometimes it is necessary to express an inclusion relation between con-
cepts. For example, if one is willing to express that every number divisible
by an even number is itself even, there is no way of doing so using only
ALC-concept terms and acyclic TBoxes.

For that, a more general kind of terminology is needed. This leads to
generalized TBoxes, which contain generalized concept inclusion axioms.

Definition 2.10 If C and D are ALC-concept terms, then the expression
C v D is called a generalized concept inclusion axiom (GCI). A finite set
T of GCIs is called a general TBox.

An interpretation I is a model of a general TBox T if for every GCI
C v D ∈ T , it holds that CI ⊆ DI.

Example 2.11 The following GCI expresses the statement “every number
divisible by an even number is even”:

∃has− factor.(Positiveu ¬Odd) v Positiveu ¬Odd.

It must be clear that general TBoxes are more general than acyclic
TBoxes, since every concept definition A

.
= C can be represented using

the two GCIs A v C and C v A, but not every GCI can be expressed using
exclusively concept terms and concept definitions.

Note that every GCI C v D can be also written as > v ¬C t D. As
every concept E term satisfies E v >, the mentioned GCI can be further
represented as >

.
= ¬C t D. With this in mind, it will be assumed that

every GCI in a general TBox is of the form >
.
= C. It is possible then to

define, for a general TBox T the set E(T ) = {D | >
.
= D ∈ T }.

ALC-concept terms and general TBoxes are used to formally describe
the application domain. As it has been said before, these descriptions are
not intended to just stay there as pictures of the current knowledge. Rea-
soning tasks are to be applied to them in order to extract knowledge that is
implicitly defined. One of such reasoning tasks is the satisfiability problem.

Definition 2.12 Let C be an ALC-concept term, and T a general TBox. C
is satisfiable with respect to T if there is a model I of T such that C I 6= ∅.

The satisfiability problem of ALC-concept terms with respect to general
TBoxes consists on deciding whether a given ALC-concept term is satisfiable
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with respect to a general TBox. This is useful in making some knowledge
explicit, as shown in the next example.

Example 2.13 Let T be the TBox containing only the GCI in Example
2.11. The fact every odd number must have only odd divisors is implic-
itly stated by this GCI. To make such knowledge explicit, one may try the
satisfiability of the concept term Odd u ¬(∀has− factor.Odd).

This term will be unsatisfiable. Hence, every element in every model
must either not be odd, or have only odd factors. This implies that every
odd number has only odd divisors.

Two subproblems of this one that will be of interest are satisfiability
with respect to an acyclic TBox, when the TBox consists only of concept
definitions, and satisfiability, when the TBox is empty.

A way of solving the satisfiability problem with respect to general TBoxes
is by means of a reduction to the emptiness problem of automata. For this,
given a general TBox and a concept term, an automaton will be constructed
in such a way that the language accepted by the automaton is not empty if
and only if the concept is satisfiable with respect to the general TBox.

To construct such an automaton, it will be necessary to speak of sets of
sub-concept terms, since they will be used as states.

Definition 2.14 Let C be an ALC-concept term. The set sub(C) of all
sub-concept terms of C is inductively defined by:

• sub(A) = {A}, A ∈ NC ,

• sub(C u D) = {C u D} ∪ sub(C) ∪ sub(D),

• sub(C t D) = {C t D} ∪ sub(C) ∪ sub(D),

• sub(¬C) = {¬C} ∪ sub(C),

• sub(∀r.C) = {∀r.C} ∪ sub(C), sub(∃r.C) = {∃r.C} ∪ sub(C).

If C is a set of ALC-concept terms, then sub(C) =
⋃

C∈C
sub(C).

If C is an ALC-concept term, and T is a general TBox, then subT (C) =
sub(E(T ) ∪ {C}).
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In order to solve the satisfiability problem with respect to a TBox T , it
is necessary to find out if there is a model of T that maps the concept term
C to a non-empty set. For that reason, not only the sub-concept terms of
C, but also those of the elements in T , are of interest. Hence, the need for
defining subT (C). As only C and T come into consideration for solving this
problem, no other concept terms are treated.

Definition 2.15 An ALC-concept term C is in negation normal form if for
every ¬D ∈ sub(C), D ∈ NC .

Notice that by the way the semantics of ALC were defined, all the de
Morgan laws apply. This means that the negations may be pushed inside the
formula. All this implies that for every concept term, there is an equivalent
one that is in negation normal form, which can be constructed in linear time
with respect to the original concept.

With this in mind, without loss of generality, only concept terms in
negation normal form will be considered. Hence, whenever a concept name
is used in the rest of this text, it will be assumed that it has such a form.
This applies also for the concept terms that define TBoxes.

The idea behind the automaton is that every run defines a model for the
concept term, and that every model should be able to be translated into a
run. To do this, the states of the automaton will be sets of concept terms.

Intuitively, the state in which the automaton visits a node will hold
the set of sub-concept terms satisfied by the run on that node. A run is
then seen as a model that has as domain the whole set of nodes, and every
concept name is maped to all the nodes that have the desired concept name
as element of their states. These sets of concepts, called Hintikka sets, must
satisfy the following conditions.

Definition 2.16 Let C be an ALC-concept term, and S ⊆ subT (C), then
S is a Hintikka set if and only if

1. if C1 u C2 ∈ S, then {C1, C2} ⊆ S

2. if C1 t C2 ∈ S, then {C1, C2} ∩ S 6= ∅

3. {A,¬A} 6⊆ S,A ∈ NC
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For a node to satisfy a concept of the form ∃r.D, this node must have
an r-successor that satisfies the concept D. To simplify the process of keep-
ing track of which successor correspond to which existential formula, the
branching factor of the input trees for the automaton will be equal to the
number of existential formulas in subT (C). Given an enumeration of these
existential formulas, the i-th successor of a node, will correspond to the i-th
formula.

In this way, it also becomes unnecessary to keep track of the role by
which a node is successor of the other, as it is implicitly included in the
existential formula. This is very useful, since runs have no labels on the
edges, but only on the nodes.

To ensure that a run is a model, if a node holds the i-th existential
formula, say ∃r.D, then its i-th successor must contain the concept D. Fur-
thermore, for every universal formula using the role r,∀r.E,E must also
belong to this successor. When the states of a node and its descendants
satisfy these conditions, they form an appropriate tuple.

Definition 2.17 Let C be an ALC-concept term, and φ a bijective ordering
function for the existential formulas, φ : {1, . . . , k} → {∃r.D ∈ subT (C)}.

A tuple (S, S1, . . . , Sk) of Hintikka sets is appropriate if and only if when-
ever φ(i) = ∃r.D ∈ S, then D ∈ Si and for all formulas ∀r.E ∈ S,E ∈ Si

A tree T is a Hintikka tree if and only if for every node w ∈ {1, . . . , k}∗,
the tuple (T (w), T (w · 1), . . . , T (w · k)) is appropriate.

A Hintikka tree corresponds then to an interpretation in the way pre-
viously described. In order to be a model, every node must satisfy also all
the GCIs contained in the general TBox. These Hintikka trees are called
T -restricted.

Definition 2.18 A Hintikka tree T is called T -restrictedif for every node
w ∈ {1, . . . , k}∗, E(T ) ⊆ T (w).

The next lemma relates the satisfiability problem to the existence of
T -restricted Hintikka trees [6].

Lemma 2.19 An ALC-concept term C is satisfiable with respect to a gen-
eral TBox T if and only if there is a T -restricted Hintikka tree T such that
C ∈ T (ε).
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By means of this lemma, it is possible to make an automaton MC such
that L(MC) 6= ∅ if and only if C is satisfiable. This is easily achieved with a
looping automaton whose runs are exactly the desired Hintikka trees. This
way, there is a run of MC if and only if C is satisfiable.

Definition 2.20 Let C be an ALC-concept term and T a general TBox
such that subT (C) contains k existential formulas which are linearly ordered.
Then the looping automaton MC = (Q,∆, I) is given by:

• Q = {S | S is a Hintikka set with E(T ) ⊆ S}

• I = {S ∈ Q | C ∈ S}

• ∆ = {(S, S1, . . . , Sk) | (S, S1, . . . , Sk) is appropriate}

Notice that all the transitions of this automaton satisfy the requirement
of Hintikka trees of forming appropriate tuples. Furthermore, the state at
every node contains the set E(T ). This means that the runs of MC are all
T -restricted Hintikka trees.

As the initial states all contain the concept term C, the state at the root
of the run must have C as its element. Thus, the runs of the automaton
MC are exactly all those T -restricted Hintikka trees T such that C ∈ T (ε).
Each of those runs are accepting, since MC is a looping automaton. Hence,
this automaton is the desired decision procedure.

Unfortunately, using all the restricted Hintikka sets as states makes the
size of MC exponential on the size of C. Hence, the emptiness test of
MC , which takes polynomial time on the size of MC , yields an exponential
decision procedure for satisfiability of ALC-concept terms with respect to
general TBoxes. It turns out, nonetheless, that this is an optimal decision
procedure for this problem, as it is well known to be ExpTime-hard [12].

For the two subproblems defined in this section, that is, satisfiability
with respect to empty and with respect to acyclic TBoxes, this optimality
result is not true. In Chapter 4 it will be shown that these problems are in
PSpace.

The idea for showing that will be not to change the automata-based
decision procedure, but to show that these automata satisfy some conditions
that allow the emptiness test to be solved using only space logarithmic on
the number of states. This, with the exponential blow up of the automaton,
gives in the end a PSpace result.
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The next chapter defines a class of automata in which the emptiness
test can be solved with a reduced use of resources, and describes the non-
deterministic method for making that test using logarithmic space, proving
its correctness.
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Chapter 3

Optimization of emptiness

test on reducible automata

This chapter introduces a class of automata for which the emptiness problem
can be solved with an optimized use of resources. For these automata, the
emptiness problem can be solved with a non-deterministic method, which
requires logarithmic space with respect to the number of states of the au-
tomaton, depending solely on the branching factor of the input and the
number of equivalence classes defined by a partition of these states. This
is an important improvement from the polynomial time bound given for
general automata [15].

One idea for making the emptiness test more memory efficient consists
on stopping the verification for existence of a run when reaching particular
states. If there is a set of states for which it is always possible to construct
a labeled tree with all the nodes being final states, then once an element
of this set is reached, the decision procedure can stop checking that section
of the tree for the existence of an accepting run. Starting from that node,
it is known already that the run could be extended, and that it will satisfy
Büchi’s accepting condition. That is the idea behind the following definition.

Definition 3.1 Let M = (Q,∆, I, F ) be a Büchi automaton over m-ary
trees, and Q0 ⊆ F . M is called Q0-looping if for every q ∈ Q0 there exist
q1, . . . , qm ∈ Q0 such that (q, q1, . . . , qm) ∈ ∆.

It is important to notice that from this definition it follows that for
every q ∈ Q0 there exists a tree whose root is labeled with q, such that
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every node is labeled with an element of Q0 and every transition from a
parent to its descendants satisfies the transition relation. This tree can be
seen as a section of a run. As all the elements in Q0 are final states, this
section satisfies additionally the acceptance condition.

This tree may not be unique. For that reason, although to be able to
stop the search for a section of run the only need is to find one of such trees,
the set Tq containing all of them is defined.

Definition 3.2 For every q ∈ Q0, define Tq as the set of all the trees Tq

that satisfy the following conditions:

1. Tq(ε) = q, and

2. for every w ∈ {1, . . . ,m}∗, Tq(w) ∈ Q0 and (Tq(w), Tq(w ·1), . . . , Tq(w ·
m)) ∈ ∆.

As it was argued before, for every q ∈ Q0, Tq is not empty. This will
become important to set a tighter space bound on the decision procedure
for the emptiness problem of a class of automata over m-ary trees. The idea
consists in a procedure that checks only until a state in Q0 is found, and
forgetting the section of the tree under this node. From that point on, a
tree in Tq can be used to complete the accepting run.

First, a simple case, on a very restricted class of automata, will be
treated. This class will be used afterwards find more relaxed conditions,
defining this way a more general class.

3.1 Reducible automata

Suppose that it was possible to decide the existence of a run by checking the
tree it constructs only up to certain depth. In this case, one can accomplish
the test by doing a depth-first search. This kind of search is impossible
in the general case, since the branches in a run are infinite, and then the
rest of the branches could never be checked. Notice that automata are local
mechanisms, in the sense that, in a run, each branch is independent of the
others. For this reason, there is no need to keep in memory the whole
tree, but only the branch being verified at the time, and the backtracking
information necessary for covering every branch.

Sufficient backtracking information for traversing a tree is the set of
descendants of each visited node, along with a pointer stating which branch
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has been visited. Under certain conditions on the branching factor, and the
maximum depth necessary to decide the existence of the run, this yields a
procedure requiring only logarithmic space on the number of states of the
automaton.

One simple idea to be able to perform such a search for run of an au-
tomaton is to find a partition of the states, and an ordering of the classes,
such that every transition leads to a lower class, except for the smallest class
that will be called Q0. In this case, every run will have the property that all
the nodes with sufficient depth, must be labeled with a state in Q0. If this
automaton happens to be also Q0-looping, then the emptiness test can be
reduced to checking the existence of a run up to a certain depth. As there
may be many possible transitions to apply at every node, this procedure will
be non-deterministic.

All this is now stated in a more formal way.

Definition 3.3 An automaton M = (Q,∆, I, F ) is called k-reducible if
there exists a partition Q0, Q1, . . . , Qk of Q such that M is Q0-looping, and
for every (q, q1, . . . , qm) ∈ ∆ if q ∈ Qn, then qi ∈ Q0 ∪

⋃n−1
j=1 Qj for all

1 ≤ i ≤ m.

This definition implies that every node of every run will have a state in
a lower class than each of its predecessors. For that reason, if a state is in
a class different from Q0, its depth cannot be greater than the number of
class the state at the root is in. This is stated in the following theorem.

Theorem 3.4 Let M = (Q,∆, I, F ) be a k-reducible automaton. Then
every run r of M is such that if r(w) /∈ Q0, then |w| ≤ k.

Proof. Let r be a run. As M is k-reducible, if r(w) ∈ Qn for some word
w and some 0 ≤ n ≤ k, then for all 1 ≤ i ≤ m, r(w · i) ∈ Q0 ∪

⋃n−1
j=1 Qj .

Thus, if r(ε) ∈ Qn0
, then for every word w, r(w) is an element of Qn̂, where

n̂ = max{0, n0 − |w|}. As n0 ≤ k, every word w with |w| > k is such that
r(w) ∈ Q0.

Note that this theorem implies that every run of a k-reducible automaton
is accepting, since Q0 ⊆ F and only finitely many nodes of the run are
labeled with a state in a different class.
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With this in mind, one can produce a non-deterministic decision pro-
cedure that requires only logarithmic space on the number of states of the
automaton, as stated in the next corollary.

Corollary 3.5 The emptiness problem can be non-deterministically solved
for a k-reducible automaton over m-ary trees, M = (Q,∆, I, F ), using space
O(log(|Q|) · m · k).

Proof. The non-deterministic procedure defined in Algorithm 3.1 per-
forms the emptiness test using the desired space.

The idea consists simply in guessing a run of the automaton by a depth-
first search.

As k is the number of classes and every transition reduced the class, the
states of all nodes at a depth greater or equal to k in any possible run will
be in the class Q0. As for every element in Q0 there is a transition, and
Q0 ⊆ F (by Definition 3.1), it is sufficient to check the existence of the run
to depth k.

To avoid the exponential blow-up of keeping the complete tree, only one
branch will be checked at a time, keeping additionally the needed back-
tracking information in memory. This information is stored in two words:
TQ keeps record of the transitions that have been selected in the prede-
cessor nodes, while TB stores the path of the next descendant that must
be checked. Thus, TQ ∈ (Qm)∗, and TB ∈ {1, . . . ,m}∗, where m is the
branching number. These words are sufficient to check also the depth of the
run, which is their length.

For example, look at Figure 3.1. It shows the state of the algorithm
inside an iteration of the while loop starting at line 7. The labels over the
nodes are the states given by the guessed transitions, and the circled nodes
represent the path to the node that the algorithm is verifying at the time.
On the right side, the values of TQ and TB are given by the concatenation
from top to bottom of the symbols in the respective column.

Suppose first that L(M) 6= ∅, then there is an accepting run r of M ;
this means, by Theorem 3.4, that if r(w) /∈ Q0, then |w| ≤ k. This run can
be used to construct a run of the algorithm that returns “not empty” as
follows.

For the first two steps, guess the initial state r(ε) and the transition
(r(ε), r(1), . . . , r(m)), which must exist, since r is a run. Thus, at the be-
ginning of the while loop, TQ = (r(1), . . . , r(m)) and TB = 1.
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1: Guess an initial state q ∈ I
2: Guess a transition (q, q1, . . . , qm) ∈ ∆.
3: if there is no such transition then
4: return “empty”
5: end if
6: Set TQ := (q1, . . . , qm), TB = 1.
7: while TB 6= ε do
8: Let w · (q1, . . . , qm) = TQ, and v · n = TB
9: if n > m then {all the descendants have been processed}

10: TQ := w, TB := v {backtrack}
11: else if qn ∈ Q0 then {lowest class reached}
12: TQ := w · (q1, . . . , qm), TB := v · (n + 1) {continue}
13: else
14: Guess a transition (qn, q′1, . . . , q

′
m) ∈ ∆.

15: if there is no such transition then
16: return “empty”
17: end if
18: Set TQ := w · (q1, . . . , qm) · (q′1, . . . , q

′
m), TB := v · (n + 1) · 1

19: end if
20: end while
21: return “not empty”

Algorithm 3.1: Non-deterministically verify the existence of a run of the
automaton, by traversing one branch at a time, and only until an element
of Q0 is reached.

Notice that if TB = n1n2 . . . nl, then the algorithm is checking for a
transition in the node given by (n1 − 1)(n2 − 1) . . . nl, except when nl > m,
but this case is treated by the first condition, on line 9. Call this word
next(TB). As an example, refer to the right-most column of Figure 3.1,
showing the relation between TB and next(TB).

If nl > m then the condition in line 9 is fulfilled and the algorithm enters
the loop again with a shorter TB. If that is not the case and r(next(TB)) is
in Q0, as in line 11, the algorithm enters the loop again, also with a shorter
TB and without failing.

If none of the previous is the case, the algorithm may guess the transition
(r(next(TB)), r(next(TB))·1), . . . , r(next(TB))·m)). This transition exists,
as r is a run, and hence the algorithm does not return “empty” at this point.
Afterwards, the while loop is reentered with the information of checking the
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(q3, q2, q2) 4 3

(q1, q0, q1) 2 2

Figure 3.1: A segment of a run of Algorithm 3.1 for checking emptiness of a
5-reducible automaton over 3-ary trees, where Qi = {qi} for i ∈ {1, . . . , 5}.
On the right, are the values of the variables TQ, TB, and next(TB) when
verifying the existence of a run on the branch marked with circles.

first descendant, defined by this transition.

Thus, every step can be performed and will not leave the while loop by
returning “empty”, which means that the algorithm will return in the end
“not empty”.

Conversely, if the algorithm returns “not empty”, then at lines 1 and
2 of the algorithm, it must have guessed an initial state q and a transition
(q, q0, . . . , qm) ∈ ∆. This transition is used to define the root of a run
r(ε) = q, and its descendants r(i) = qi, i ∈ {1, . . . ,m}.

Let now TQ = w·(q1, . . . , qm), TB = v·n be the ones given in an iteration
of the while loop in line 8. As it was said before, the algorithm is checking
for a transition in the node given by next(TB). If n > m,next(TB) defines
no node of the run, and the algorithm backtracks, to make the transitions
in the next branch. Also, if qn ∈ Q0, then as the automaton is Q0-looping,
there is a T ∈ Tqm

, so defining r(next(TB)·u) = T (u) for all u ∈ {1, . . . ,m}∗

defines all the branches of a run that start with next(TB).

Finally, if none of the previous is the case, then the algorithm guesses a
transition (qn, q′1, . . . , q

′
m) ∈ ∆. Setting r(next(TB) · i) = q′i gives a correct

transition. Note that, as the algorithm runs in order, the transitions of every
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node on the tree are defined, either directly by a non-deterministic guess, or
by using the properties of belonging to Q0. Hence, r is a run. As every run
of a k-reducible automaton is accepting, L(M) 6= ∅.

Thus, the algorithm is a correct decision procedure for the emptiness
problem of k-reducible automata.

The algorithm stores the backtracking information. This means that, at
each step, it stores the set of all the transitions made in the path from the
root of the run to the current node to be checked, and a representation of
such a path by means of the successor nodes that have been chosen.

Each transition is stored as a m-tuple of states. Furthermore, as the al-
gorithm checks until an element in Q0 is found, and every transition reduces
the class in the node, the maximum length of such a path is k. Hence, at ev-
ery step, at most k tuples of m states, and k additional numbers representing
the path, are stored in memory.

Note that each state of the automaton can be represented using only
space O(log(|Q|)). This is easily achieved giving an enumeration of the
states, and using then a binary representation of the corresponding numbers.
This yields the desired representation in logarithmic space. Hence the space
required in total by this algorithm is O(log(|Q|) · m · k).

The conditions required for this corollary, that is, M being a k-reducible
automaton, are very strong. It is in general very difficult to find a partition
of the states in which every transition diminishes the class.

However, it is possible to define a more general class of automata for
which there is an emptiness-equivalent k-reducible automaton that can be
constructed in constant space. This means that the emptiness problem can
be solved for the automata in this general class within the same space bound
stated in Corollary 3.5.

These automata, called weakly-k-reducible automata, are defined in the
next section.

3.2 Weakly reducible automata

The idea behind weakly reducible automata is not to force every transition
to reduce the class, as done with reducible automata, but to ensure that, if
there is a transition, then there is also one that reduces the class. Of course,
this has to be done carefully, since changing the states of the descendant
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nodes may cause that no further transitions are possible in a run, as shown
in the next example.

Example 3.6 Let M = ({q0, q1},∆ = {(q1, q1, q1), (q1, q0, q0)}, {q1}) be a
looping automaton, with the partition given by Q1 = {q1}, and Q0 = {q0}.
Then, for every transition in ∆, there is one that reduces the class. Nonethe-
less, the only possible run of this automaton is the binary tree where all the
nodes are labeled as q1, and changing any transition to the reducing one,
that is, changing the labels of the descendants of a node to q0 would make it
impossible to find another run.

To avoid the problem shown in Example 3.6, some further restriction
have to be fulfilled by the automata, to ensure the possibility of reducing
the class and still obtaining a run. The next definition states adequate
conditions for being able to do such reductions.

Definition 3.7 An automaton M = (Q,∆, I, F ) is called weakly-k reduci-
ble if there exists a partition Q0, Q1, . . . , Qk of Q such that M is Q0-looping,
and for every q ∈ Q there exist a function fq : Q → Q such that the following
hold:

1. if (q, q1, . . . , qm) ∈ ∆, then (q, fq(q1), . . . , fq(qm)) ∈ ∆, and if q ∈ Qn,
then for every i ∈ {1, . . . ,m}, fq(qi) ∈ Q0 ∪

⋃n−1
j=1 Qj

2. if (q′, q1, . . . , qm) ∈ ∆, then (fq(q
′), fq(q1), . . . , fq(qm)) ∈ ∆

As it was said before, for every weakly-k-reducible automaton, there
is an emptiness equivalent k-reducible automaton. This can be obtained
by simply removing all the transitions that are not reducing. The new
automaton generated this way is, obviously, not larger than the original
one.

Definition 3.8 Let M = (Q,∆, I, F ) be a weakly-k-reducible automaton.
The reduced automaton MR of M is the automaton MR = (Q,∆′, I, F ),
where

∆′ = {(q, q1, . . . , qm) ∈ ∆ | if q ∈ Qn, then qi ∈ Q0 ∪
n−1⋃

j=1

Qj , 1 ≤ i ≤ m}.

27



Note that, by definition, the reduced automaton MR is k-reducible, since
for all the transitions in this automaton, the class of the descendant nodes
is strictly smaller than the class of their parent.

Every weakly-k-reducible automaton is emptiness equivalent to its re-
duced automaton, as stated in the next theorem.

Theorem 3.9 Let M = (Q,∆, I, F ) be a weakly-k-reducible automaton,
then L(M) 6= ∅ if and only if L(MR) 6= ∅.

Proof. As MR is a subautomaton of M , the “if” direction is trivial, so
just the “only if” direction will be proved.

Let t be an accepting run of M (such a run exists, as it was assumed that
L(M) 6= ∅). This accepting run is transformed into one of MR by means of
Algorithm 3.2.

1: for all w ∈ {1, . . . ,m}∗ with |w| ≤ k do
2: if t(w) ∈ Q0 then
3: for all v ∈ {1, . . . ,m}+ do
4: Set t̂(w · v) := Tt(w)(v), where Tt(w) ∈ Tt(w)

5: end for
6: else
7: for all v ∈ {1, . . . ,m}+ do
8: Set t̂(w · v) := ft(w)(t(w · v))
9: end for

10: end if
11: Set t := t̂
12: end for
13: Set r := t
14: return r

Algorithm 3.2: Construct a run of MR given a run of M .

The “for” loop in that algorithm is done in a way that shorter words are
processed before longer ones.

Notice first that the “for” loop starting in line 1 is invariant with respect
to runs of M ; that is, if t is a run of M at the beginning of one of such
iterations, then t̂ will also be a run of M at the end of the same iteration.
This is shown next.

Suppose that t is a run, and let w be the selected node in the iteration.
If t(w) ∈ Q0, then the subtree of t̂ obtained by setting the root to w satisfies
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the transition relation ∆, by the way Tt(w) was defined. The rest of the tree
remains unchanged, and hence satisfies also the same transition relation. As
t̂(ε) = t(ε), and t̂(w) = t(w), t̂ is a run of M .

On the other hand, if t(w) /∈ Q0, then the first part of Condition 1
ensures that (t̂(w), t̂(w · 1), . . . , t̂(w · m)) ∈ ∆. By Condition 2, for all v ∈
{1, . . . ,m}+, (t̂(w · v), t̂(w · v · 1), . . . , t̂(w · v ·m)) ∈ ∆. As the rest of the tree
remains unchanged, t̂ is a run of M .

Thus, at every iteration, t is a run of M . To show that r is a run of MR,
the only thing left is to see that at every transition, the class in which the
descendant states are has a lower numbering than the class of the parent
state.

The second part of Condition 1 ensures that if a state is in a class greater
than 0, all its descendants will be in a smaller class. Thus, r is a run of MR.

As it has been pointed out before, every run of a k-reducible automaton
is accepting. Thus r is an accepting run of MR.

As the k-reducible automaton can be constructed in space linear on
the size of the original automaton, using the reduced automaton yields a
decision procedure for emptiness of weakly-k-reducible automata, with the
same space bound that was stated in Corollary 3.5.

Corollary 3.10 The emptiness problem for M = (Q,∆, I, F ), a weakly-k
reducible automaton over m-ary trees, can be non-deterministically solved
using space O(log(|Q|) · m · k).

Proof. By means of Theorem 3.9, the algorithm presented in the proof of
Corollary 3.5 can be used over the k-reducible automaton MR. Furthermore,
as MR differs from M only in that the transitions that are not reduced do
not appear in the former automaton, MR can also be constructed on the fly
during the execution of the algorithm.

This is done by simply verifying, whenever a transition is guessed, that
it is reducing. This verification takes constant space, and hence does not
affect the given space bound.

This corollary yields an optimized space bound for verifying if the lan-
guage accepted by a weakly-n-reducible automaton is empty or not. This
bound states, basically, that the emptiness test can be performed non-
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deterministically, using space logarithmic in the number of states of the
automaton, given some minor conditions.

The class of automata here defined might look as a very limited one.
As a run in a n-reducible automaton must reach final states everywhere,
except for a finite section of the tree, their computational power is at most
that of looping automata. Nonetheless, this power is sufficient for solving
interesting problems, for example, in logic.

In Chapter 4, the bounds given by Corollaries 3.5 and 3.10 will be used
to give PSpace bounds on the satisfiability problem of ALC with respect to
empty and acyclic TBoxes using the automata decision procedure defined
in Section 2.2. This serves as example of the utility of reducible automata.
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Chapter 4

ALC satisfiability

As an example of an application of Corollaries 3.5 and 3.10, it will be shown
in this chapter that the satisfiability problem for ALC concept terms with
respect to empty and acyclic TBoxes can be solved using polynomial space
on the size of the formula. This will be done using the automaton MC

defined in Section 2.2.

One should notice first that the size of each of the states in the automaton
MC is polynomial on the length of the concept term C. Furthermore, as
the branching factor of the input tree is equal to the number of existential
formulas in subT (C), this is linear on the length of C given the TBox T .
Along with Corollaries 3.5 and 3.10 all this implies that, if MC is n-reducible
or weakly-n-reducible, for an n polynomial in the length of C, then this
decision procedure needs in the end only polynomial space in the length of
C.

To check reducibility of the automaton, one must find an appropriate
partition satisfying the conditions of Definition 3.3 or 3.7. A fast search
reveals that the natural partitions for MC do not, in general, satisfy such
requirements. This comes to no surprise, since satisfiability with respect to
general TBoxes is known to be a ExpTime-hard problem [12]. Nonetheless,
there are particular cases in which such a partition can be found. Empty
TBoxes, and acyclic TBoxes are two of those, as will be shown in the fol-
lowing sections.
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4.1 Satisfiability with respect to empty TBoxes

Recall that an interpretation I is a model of a TBox T if for every GCI
C v D ∈ T , it is the case that CI ⊆ DI . Hence, when the TBox has the
property of being empty, every interpretation is a model for it. This means
that the satisfiability problem in this case consists only in finding, for an
ALC-concept term C, an interpretation I such that CI 6= ∅.

In the sense of Lemma 2.19, this means that the existence of any Hintikka
tree with C ∈ T (ε) is enough to verify that C is satisfiable. As the TBox is
empty, the runs of the automaton MC yield all such trees, without any other
restriction. Hence, the same automaton can be used to prove a polynomial
space bound if it can be shown that it is weakly-n-reducible in this particular
case.

Notice that, as the algorithm described in the proof of Corollary 3.5 is
non-deterministic, using this method for making a logarithmic-space test
over the exponentially large automaton would lead in the end to a NPSpace
result. Savitch’s Theorem [11] can then be used to show that this problem
is in PSpace.

It will be shown that MC is a weakly-n-reducible automaton, for some
n, when the TBox is empty. The partition used to prove this will be based
on the maximum number of nested existential or universal role restrictions,
which will be called role depth.

Definition 4.1 Let C be an ALC-concept term. The role depth of C, rd(C)
is inductively defined as follows:

• rd(A) = rd(¬A) = 0, A ∈ NC ,

• rd(C t D) = rd(C u D) = max{rd(C), rd(D)},

• rd(∀r.C) = rd(C) + 1,

• rd(∃r.C) = rd(C) + 1.

If C is a set of ALC-concept terms, then rd(C) = maxC∈C rd(C).

It is now possible to define the set of sub-concept terms, subn(C), with
a role depth smaller than n, except for the case when n equals 0. This sets
will be used to define the functions that reduce the equivalence class, leading
this way to weakly reducible automata.
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Definition 4.2 Let C be a ALC-concept term, and n ≥ 0. Define the set
subn(C) = {D ∈ sub(C) | rd(D) ≤ max{0, n − 1}}.

As it was said before, these sets will be used to define the functions that
reduce the equivalence class on a given transition. The function will consist,
for a given state q, in the intersection of the argument, which is a Hintikka
set, with subn(C), where n is the role depth of q. The idea of these functions
is that, when applying them to the descendants of a node, their role depth
will be strictly smaller than that of the parent. If the equivalence classes
are defined by the role depth, this would reduce the class.

For this functions to be adequate in the sense of Definitions 3.3 and 3.7,
it is necessary to ensure first that when applying the function to a state, the
result will also be a state. This is stated properly in the next lemma.

Lemma 4.3 Let C be a ALC-concept term, S a Hintikka set, and n ≥ 0.
Then subn(C) ∩ S is also a Hintikka set.

Proof. First note that, as S is a Hintikka set, then for every concept
name A ∈ NC , {A,¬A} 6⊆ S. Hence, A ∈ NC , {A,¬A} 6⊆ subn(C) ∩ S.

By the way the role depth was defined, rd(Ci) ≤ rd(C1 t C2) and
rd(Ci) ≤ rd(C1 u C2), for i ∈ {1, 2}.

Now, if C1uC2 ∈ subn(C)∩S, then rd(Ci) ≤ rd(C1uC2) ≤ max{0, n−1},
and {C1, C2} ⊆ S. Thus, {C1, C2} ⊆ subn(C) ∩ S.

Analogously, if C1 t C2 ∈ subn(C) ∩ S, then rd(Ci) ≤ rd(C1 t C2) ≤
max{0, n− 1}, and {C1, C2}∩S 6= ∅. Thus, either C1 or C2 is an element of
S. Suppose, without loss of generality, that C1 ∈ S. But then, this entails
that {C1, C2} ∩ subn(C) ∩ S 6= ∅.

The following lemmas show that, given a partition in which each class
is defined by the role depth of its members, the functions fS(T ) = T ∩
subrd(S)(C), for every Hintikka set S ∈ Q, have the correct properties for
weak reducibility of the automaton.

Lemma 4.4 Let S, S1, . . . , Sk be Hintikka sets such that rd(S) = n. If the
tuple (S, S1, . . . , Sk) is appropriate, then (S, subn(C)∩S1, . . . , subn(C)∩Sk)
is appropriate.

Furthermore, for all 1 ≤ i ≤ k, rd(subn(C) ∩ Si) ≤ max{0, n − 1}.
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Proof. Suppose that φ(i) = ∃r.D ∈ S. Then, as (S, S1, . . . , Sk) is
appropriate, D ∈ Si, and for all formulas ∀r.E ∈ S,E ∈ Si. But rd(D) <
rd(∃r.D) ≤ rd(S) = n, and rd(E) < rd(∀r.E) ≤ rd(S) = n.

Thus, D ∈ subn(C) ∩ Si, and for all ∀r.E ∈ S,E ∈ subn(C) ∩ Si.

The second part is trivial, as for all D ∈ subn(C), it is the case that
rd(D) ≤ max{0, n − 1}.

Lemma 4.5 Let S, S1, . . . , Sk be Hintikka sets, and n ≥ 0. If (S, S1, . . . , Sk)
is appropriate, then (subn(C) ∩ S, subn(C) ∩ S1, . . . , subn(C) ∩ Sk) is also
appropriate.

Proof. If φ(i) = ∃r.D ∈ subn(C) ∩ S, then D ∈ Si and rd(D) <
rd(∃r.D) ≤ max{0, n − 1}, hence D ∈ subn(C) ∩ Si.

If there is a formula ∀r.E ∈ subn(C)∩S, then E ∈ Si and again rd(E)) <
rd(∀r.E) ≤ max{0, n − 1}, and so E ∈ subn(C) ∩ Si.

The previous lemmas show that the functions defined in the way stated
before satisfy the conditions of the definition of weakly reducible automata.
This leads to the following theorem.

Theorem 4.6 Let C be an ALC-concept term, and n = rd(C). Then, MC

is weakly-n-reducible.

Proof. Define the classes Qi = {S ∈ Q | rd(S) = i}, for 0 ≤ i ≤ n. And
define for every S ∈ Q the function fS : Q → Q as fS(T ) = subrd(S)(C)∩T .

Lemmas 4.4 and 4.5 ensure that this partition, with the given set of
functions satisfy Conditions 1 and 2 of Definition 3.7. Hence, the only
remaining part is to show that MC is Q0-looping.

Let S in Q0, then rd(S) = 0. This means that there are no existential
restrictions in S, hence the (k+1)-tuple (S, . . . , S) is appropriate, and thus,
an element of ∆. As MC is a looping automaton, Q0 ⊆ Q = F . Hence, MC

is Q0-looping.

Corollary 4.7 ALC-satisfiability is in PSpace

Proof. Given an ALC-concept term C, construct the automaton MC

which is exponential in the size of C. As MC is weakly-rd(C)-reducible, the
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emptiness test for it can be solved using space O(log(|Q|) · k · rd(C)), where
k is the number of existential formulas in C. As log(|Q|) is polynomial in
the size of C, and k and rd(C) are linear on the length of C, in total only
polynomial space is needed.

In this section it was shown that, whenever the TBox is empty, one can
use the same decision procedure as in the case of general TBoxes, to solve
the emptiness problem. The emptiness of the TBox, nonetheless, adds inter-
esting properties to the automaton, that allow it to be tested for emptiness
with an optimized use of resources. This, in the end, leads to a PSpace
procedure for empty TBoxes, as compared with the ExpTime method on
the general case.

Notice that the partition made on the automaton MC by means of the
role depth can also be defined in the presence of a general TBox T . The
difference would be that, as every Hintikka set must contain the set E(T ),
the minimum role depth of each of those sets will be n = rd(E(T )). Apart
from these difference, whenever a Hintikka set has a role depth greater than
m > n, and there is a transition, the same function defined by the intersec-
tion with the set of sub-concept terms with role depth strictly smaller than
m will lead to a descent of the equivalent class. Then, if Q0 is defined to
be the set of all Hintikka sets having a role depth of n, for every transition
there would be another that decreases the class, except when the parent is
already in Q0.

All this, along with the fact that MC is a looping automaton, might lead
to think that a partition has been found that makes MC weakly reducible.
But on the other hand, it has been said several times that the satisfiability
problem with respect to general TBoxes is in ExpTime. The problem here
relies in that it has not been checked whether the automaton is Q0-looping
or not.

The definition of Q0-looping automata requires that, for every state in
Q0, there must always be a transition that keeps all the descendants in Q0.
In the general case, MC does not satisfy this property, and even for the cases
where it does, verifying it takes polynomial time on the number of states.
Hence, doing such a verification would lead immediately to an ExpTime
algorithm on the size of the original concept term.

The next section shows another example of the application of weakly-
n-reducible automata for optimizing the satisfiability test of concept terms
with respect to acyclic TBoxes. For this new application it will be neces-
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sary to define a new automata-based decision procedure, that uses special
properties of acyclic TBoxes.

4.2 Satisfiability with respect to acyclic TBoxes

Another problem, more general than the one studied in the previous sec-
tion, will be treated now. This problem corresponds to satisfiability with
respect to acyclic TBoxes, that is, TBoxes where all the elements are concept
definitions. It is well known that this problem is also in PSpace [5].

The first idea to prove this would be to proceed as in the case of empty
TBoxes; in other words, to find an appropriate partition of the automaton
MC . Unfortunately, the natural partitions, like the ones defined by the role
depth, or the length of the formula, do not work for this purpose.

Recall that a concept definition is of the form A
.
= C, where A ∈ NC and

C is a concept term. If the concept names occurring on the left-hand side
of such a concept definition are called defined concepts and all the others
are called primitive concepts, then the conditions on acyclicity on the TBox
ensure that the concepts on the right side can always be expanded in a way
that only primitive concept names occur on it. This means that defined
concept names are just macros, or abbreviations, of the concept terms that
define them.

If the automaton MC is used, then the two concept terms ¬A t C and
A t ¬C will appear in every state, and thus, in each label of the nodes of
the run. As all these states are Hintikka sets, this means that every state
will either contain {A,C}, or {¬A,¬C}.

This is a waste of space in two senses: on one hand, every defined concept
name is explicitly stated, either in a positive or in a negative form, in every
node of each run; on the other, both the defined term, and its expansion as
a concept term appear together.

This removes all the sense of having definitions to abbreviate more com-
plex concept terms. It would be the same to expand the formula by sub-
stituting every defined concept name by its definition, and then solve the
problem as in the previous section, given that the remaining TBox is empty.
Nonetheless, this expansion may lead to a concept term exponentially large
on the size of the original concept term, getting this way a suboptimal pro-
cedure.

There is another way of solving the problem. It consists in basically

36



working with the defined concept names, and only expand them when it
is necessary; that is, when the concept name appears by itself either in a
positive or in a negative form. This way, the expansion of defined terms
is done in a lazy manner, only when it is absolutely necessary to know the
concept terms defined by them.

For doing this, it will be necessary to construct another automaton. The
definitions required for this construction are now presented.

Definition 4.8 Let S be a Hintikka set and T an acyclic TBox. S is called
T -expandable if for every A

.
= C ∈ I, the following conditions hold:

• if A ∈ S, then C ∈ S,

• if ¬A ∈ S, then ¬C ∈ S,

A Hintikka tree is T -expandable if every node is T -expandable.

Lemma 4.9 An ALC-concept term C is satisfiable with respect to an acyclic
TBox T if and only if there is a T -expandable Hintikka tree T such that
C ∈ T (ε).

Proof. Suppose first that there is a T -expandable Hintikka tree T with
C ∈ T (ε). Let A1

.
= C1, . . . , An

.
= Cn be all the concept definitions in

T , ordered in such a way that if Ci depends on an Aj , then j < i. This
is always possible, since T is acyclic. It is possible to make a model I =
(∆I , ·I) of the TBox as follows. Define first the primitive interpretation
I0 = ({1, . . . , k}∗, ·I0) by mapping:

• rI0 = {(w,w · i) | φ(i) = ∃r.D ∈ T (w)}

• AI0 = {w | A ∈ T (w)}, where A is a primitive concept name.

For every i ∈ {1, . . . , n}, extend the interpretation Ii−1 by including an
interpretation for the concept name Ai as follows:

• rIi = rIi−1 ,

• AIi = AIi−1 if A is a primitive concept name, or A = Aj for some
j < i,

• AIi

i = {w | w ∈ (Ci)
Ii−1}.
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Notice that this sequence is well defined, because every Ci depends only
on concept names for which the interpretation had been previously defined.
Hence, when defining the interpretation for Ai, the interpretation of Ci is
already known. The interpretation I = In is a model for T .

It is now shown by induction that, for every concept term D using only
primitive concept names, or concept names in the set {A1, . . . , Ai}, and
every node w, if D ∈ T (w), then w ∈ DIi .

If i = 0, then the result is trivial by the definition of I0. Suppose now
that it is true for some i, the result will be shown for i + 1 by induction on
the shape of D. Suppose that D ∈ T (w).

If D is a concept name, then its interpretation was already defined in
Ii, or D = Ai+1. In the first case, the induction hypothesis yields the
result. In the second case, as T is T -expandable, it is also the case that
Ci+1 ∈ T (w), and Ci+1 uses only primitive, or defined concept names with
index at most i, so the induction hypothesis again yields w ∈ (Ci+1)

Ii . And

hence, w ∈ A
Ii+1

i+1 . The induction step depends on the outermost constructor
of D:

¬D1 D1 is then a concept name. If its interpretation was defined already
for Ii, then the induction yields the result. Otherwise, D = ¬Ai+1,
and hence ¬Ci+1 ∈ T (w). Again, as Ci+1 depends only on previously
defined concept names, w ∈ DIi+1 .

D1 u D2 As T is a Hintikka tree, {D1, D2} ⊆ T (w). By induction, w ∈ (D1)
Ii+1 ,

and w ∈ (D2)
Ii+1 . Thus, w ∈ (D1)

Ii+1 ∩ (D2)
Ii+1 = DIi+1

D1 t D2 Analogous to D1 u D2.

∃r.D1 As T is a Hintikka tree, if φ(j) = ∃r.D1, then D1 ∈ T (w · j) and so
w · j ∈ (D1)

Ii+1 . Furthermore, (w,w · j) ∈ rIi+1 . Hence, w ∈ DIi+1 .

∀r.D1 Let (w,w · j) ∈ rIi+1 . Then φ(j) ∈ T (w); but as T is a Hintikka tree,
this implies that D1 ∈ T (w · j). Thus, w · j ∈ (D1)

Ii+1 . As this is true
for every successor, w ∈ DIi+1 .

Thus, as C ∈ T (ε), ε ∈ CI . Which means that C is satisfiable.

Conversely, let I = (∆I , ·I) be a model of T such that there is an x ∈ ∆I

with x ∈ CI . It is possible then to construct a T -expandable Hintikka tree
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T by inductively defining a mapping η : {1, . . . , k}∗ → ∆I ∪ {z}, where
z /∈ ∆I , as follows:

For the beginning of the induction, set

• η(ε) = x

• T (ε) = {D ∈ subT (C) | x ∈ DI}

For the induction step, let w ∈ {1, . . . , k}∗ such that η(w) is already
defined, and i ∈ {1, . . . , k}. The following two cases are distinguished:

1. if η(w) 6= z and φ(i) = ∃r.D ∈ T (w), then select a y ∈ ∆I such that
(η(w), y) ∈ rI and y ∈ DI (such a y must exist, as I is a model). Set
now η(w · i) = y and T (w · i) = {E ∈ subT (C) | y ∈ EI}.

2. in any other case, set η(w · i) = z and T (w · i) = ∅.

By construction, T and η satisfy that, whenever η(w) 6= z, then T (w) =
{D ∈ subT (C) | η(w) ∈ DI}, and T (w) = ∅ if η(w) = z. This implies that
T (w) is a Hintikka set for every w.

By the inductive step, whenever φ(i) = ∃r.D ∈ T (w), then also D ∈
T (w · i). Even more, if there is a concept term of the form ∀r.E in T (w),
as (w,w · i) ∈ rI , then it must be the case that E ∈ T (w · i). Hence, T is a
Hintikka tree.

Again, as I is a model, for every A
.
= D ∈ T , whenever η(w) ∈ AI , it

must be the case that η(w) ∈ DI . Thus, if A ∈ T (w), then also D ∈ T (w).
Thus, T is T -expandable.

The induction start yields C ∈ T (ε), which was the only remaining
property to prove.

This lemma implies that if it is possible to define an automaton whose
runs define the Hintikka trees having the original formula as an element of
the root, then the satisfiability problem can be solved by means of the empti-
ness problem for this automaton. The next definition gives the construction
of the desired automaton.

Definition 4.10 Let C be an ALC-concept term and T an acyclic TBox
such that subT (C) contains k existential formulas. Then the looping au-
tomaton M e

C = (Q,∆, I) is given by:
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• Q = {S | S is a T -expandable Hintikka set}

• I = {S ∈ Q | C ∈ S}

• ∆ = {(S, S1, . . . , Sk) | (S, S1, . . . , Sk) is appropriate}

Obviously, the runs of this automaton are exactly the desired Hintikka
trees. Unfortunately, as in the case of MC , the size of M e

C is exponential
in the size of C. Nonetheless, a partition similar to the one used for empty
TBoxes shows that M e

C is weakly-n-reducible, for some n. This will lead to
the PSpace result.

Before giving the partition, a new concept similar to the role depth, the
expanded role depth, is given.

Definition 4.11 Let T be an acyclic TBox. The expanded role depth of a
concept term C, rde(C), is inductively defined as follows:

• rde(A) = rde(¬A) = 0 if A is a primitive concept name

• rde(A) = rde(¬A) = rde(C) if A
.
= C ∈ T

• rde(C t D) = rde(C u D) = max{rde(C), rde(D)}

• rde(∀r.C) = rde(C) + 1

• rde(∃r.C) = rde(C) + 1

If S is a set of concept terms, then rde(S) = max{rd(D) | D ∈ S}.

Notice that the expanded role depth is well defined for acyclic TBoxes,
and corresponds exactly to the role depth that a concept term would have
if all the defined concept names were substituted by the corresponding def-
inition in the TBox. This is needed to ensure the capability of reducing
the role depth when a defined concept name is substituted, given that the
Hintikka sets must be expandable with respect to the TBox.

The rest of this section consists in proving that M e
C is weakly-n-reducible,

for some n. This is done in a fashion similar to the proof for MC in Sec-
tion 4.1.

Definition 4.12 Let C be an ALC-concept term, T an acyclic TBox, and
n ≥ 0. Then sube

n(C) = {D ∈ subT (C) | rde(D) ≤ max{0, n − 1}}.
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Lemma 4.13 Let C be an ALC-concept term, S a Hintikka set, and n ≥ 0.
Then sube

n(C) ∩ S is also a Hintikka set.

Proof. As S is a Hintikka set, for every A ∈ NC , {A,¬A} 6⊆ S. Hence,
{A,¬A} 6⊆ sube

n(C)∩S. If C1 tC2 ∈ sube
n(C)∩S, then rde(Ci) ≤ rde(C1 t

C2) ≤ max{0, n − 1}, and {C1, C2} ⊆ S. Thus, {C1, C2} ⊆ sube
n(C) ∩ S.

Analogously, if C1 u C2 ∈ sube
n(C) ∩ S, then rde(Ci) ≤ rde(C1 u C2) ≤

max{0, n− 1}, and {C1, C2} ∩S 6= ∅. Thus, {C1, C2} ∩ sube
n(C)∩S 6= ∅.

The following lemmas show that, given the partition defined by the ex-
panded role depth of the states, and the set of functions given by the in-
tersection with the set of all sub-concept terms having a smaller expanded
role depth, the automaton M e

C satisfies the conditions required for being
weakly-n-reducible.

Lemma 4.14 Let S, S1, . . . , Sk be Hintikka sets such that rde(S) = n. If the
tuple (S, S1, . . . , Sk) is appropriate, then (S, sube

n(C)∩S1, . . . , sube
n(C)∩Sk)

is appropriate.

Furthermore, for all 1 ≤ i ≤ k, rde(sube
n(C) ∩ Si) ≤ max{0, n − 1}.

Proof. Recall that a tuple (T, T1, . . . , Tk) is appropriate if whenever the
i-the existential concept φ(i) = ∃r.D is in T , then D must be an element of
Ti, and for all concepts of the form ∀r.E ∈ T , E must also belong to Ti.

Suppose that φ(i) = ∃r.D ∈ S. Then, as (S, S1, . . . , Sk) is appropriate,
D ∈ Si, and for all concept terms ∀r.E ∈ S,E ∈ Si.

By the way rde was defined, rde(D) < rde(∃r.D) ≤ rd(S) = n, and also
rde(E) < rde(∀r.E) ≤ rd(S) = n. Thus, D ∈ sube

n(C) ∩ Si, and for all
∀r.E ∈ S,E ∈ sube

n ∩ Si.

Hence, (S, sube
n(C) ∩ S1, . . . , sube

n(C) ∩ Sk) is appropriate.

Lemma 4.15 Let S, S1, . . . , Sk be Hintikka sets, and n ≥ 0. If the tuple
(S, S1, . . . , Sk) is appropriate, then (sube

n(C)∩S, sube
n(C)∩S1, . . . , sube

n(C)∩
Sk) is appropriate.

Proof. If φ(i) = ∃r.D ∈ sube
n(C) ∩ S, then, as (S, S1, . . . , Sk) is appro-

priate, D ∈ Si. Furthermore, rde(D) < rde(∃r.D) ≤ max{0, n − 1}, and so
D ∈ sube

n(C) ∩ Si.
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If additionally there is a formula ∀r.E ∈ sube
n(C) ∩ S, then E ∈ Si and

rde(E) < rde(∀r.E) ≤ max{0, n − 1}, and so E ∈ sube
n(C) ∩ Si.

Hence, (sube
n(C) ∩ S, sube

n(C) ∩ S1, . . . , sube
n(C) ∩ Sk) is appropriate.

Theorem 4.16 Let C be an ALC-concept term, T an acyclic TBox, and
n = rde(subT (C)). Then, M e

C is weakly-n-reducible.

Proof. Define the classes Qi = {S ∈ Q | rde(S) = i}, for 0 ≤ i ≤ n.
And let fS(T ) = subrde(S)(C) ∩ T for every S, T ∈ Q.

Lemmas 4.14 and 4.15 ensure that this partition, with the given set of
functions, satisfy Conditions 1 and 2 of Definition 3.7. Hence, the only
remaining part is to show that M e

C is Q0-looping.

Let S in Q0, then rde(S) = 0. This means that there are no existential
restrictions in S, hence the k + 1-tuple (S, . . . , S) ∈ ∆. As M e

C is a looping
automaton, Q0 ⊆ Q = F . Hence, MC is Q0-looping.

Corollary 4.17 Satisfiability of ALC-concept terms with respect to acyclic
TBoxes is in PSpace.

Proof. Given an ALC-concept term C, construct the automaton MC

which is exponential in the size of C.

Let n = rde(subT (C)), this number is linear in the size of C. As M e
C

is weakly-n-reducible, the emptiness problem of it can be solved by a non-
deterministic method using space O(log|Q| · k ·n), where k is the number of
existential formulas in subT (C).

As log(|Q|) is polynomial in the size of C, and k is linear on the same
size, only polynomial space is needed, with respect to the length of C.

As the method is non-deterministic, this shows that satisfiability of ALC-
concept terms with respect to acyclic TBoxes is in NPSpace. By Savitch’s
Theorem, it is known that NPSpace=PSpace. Hence, the satisfiability prob-
lem is in PSpace.

Thus, an alternative proof that ALC satisfiability with respect to acyclic
TBoxes is in PSpace has been given. This proof needed a new automaton
created explicitly for this case. Nonetheless, only the properties for weakly-
n-reducibility needed to be proved to find the optimized resource bound for
the solution of the decision problem.
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The framework presented in Chapter 3 generalizes previous results by
using the same method in two different automata, yielding in both cases an
improved emptiness test in them.
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Chapter 5

Conclusions

In this work, a new class of automata, called reducible automata, was de-
fined. It was then proved that, for this class of automata, an emptiness test
can be performed in a way that uses less resources than the regular test for
general automata.

More explicitly, it was proved that the emptiness test for reducible au-
tomata can be solved using only logarithmic space on the number of states
of the automaton, depending solely on the branching factor, and the number
of classes in the partition defining the reducibility of the automaton.

Considering that, for general automata, the emptiness test requires poly-
nomial time, this optimized method yields a considerable improvement.
Such an improvement is more clear when the automaton has a big num-
ber of states.

This class of automata is then used to prove that both satisfiability of
ALC-concept terms, and ALC with respect to acyclic TBoxes is in PSpace.
These results are not new, nonetheless they show that the framework can
be applied to questions of interest.

In the first case, this was done using the same automaton that yields an
exponential decision procedure for ALC satisfiability with respect to general
TBoxes. For this last problem, the exponential procedure is optimal.

For satisfiability with respect to acyclic TBoxes, it was necessary to
build a new automata-based decision procedure, as no adequate partition
was found for showing reducibility, when using the automata for general
TBoxes. This was mainly caused by the way concept definitions are changed
into GCIs, making it impossible for the role-depth to decrease. This by no
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means implies that there exist no such partitions, but only that they were
not found during the research for this work.

Although different automata were used for the two examples, it was
possible to use the exact same framework on both. This shows that the
method works not only for one specific application, but is useful in general.

This framework could then be used for optimally solving other deci-
sion problems. For example, when trying to show that some problem is in
PSpace, it would be sufficient to find out if it is possible to reduce this prob-
lem to the emptiness test of an exponentially large reducible automaton.
This generalization may then be useful beyond the applications shown here.

Possible further work on this topic could be to search for a more general
class of automata that still allows an optimized emptiness test. On an-
other branch, it would be interesting to find more applications of the same
framework, either in logic, or within other areas of knowledge.
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