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Abstract

During the last years, it has been shown that the description logic EL is well-suited
for tractable reasoning. In particular, reasoning is even tractable w.r.t. general concept
inclusion axioms, and various extensions of EL and their effects on the complexity of
subsumption w.r.t. general concept inclusion axioms have been studied.

In this thesis, we sharpen the border between tractability and intractability of sub-
sumption in extensions of EL w.r.t. cyclic TBoxes. We provide two new extensions
EL⊔,⊓,¬(D) and EL⊔,⊓,≥ for which subsumption can be computed in polynomial time
w.r.t. cyclic TBoxes. The first extends EL by role con- and disjunction in disjunctive
normal form, primitive negation and p-admissible concrete domains, and the second by
role con- and disjunction in disjunctive normal form and at-least restrictions. More-
over, we show that a combination of EL⊔,⊓,¬(D) and EL⊔,⊓,≥ leads to intractability
of subsumption w.r.t. cyclic TBoxes, as well as EL extended by negation, disjunction,
transitive closure over role names, functionality and concrete domains with abstract fea-
ture chains. This justifies the fact that—except for inverse roles which remain an open
problem—both EL⊔,⊓,¬(D) and EL⊔,⊓,≥ are maximal in the sense that they cannot be
further extended without losing tractability of subsumption w.r.t. cyclic TBoxes.
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Chapter 1

Introduction

1.1 Description Logics

Description logics are a logic-based family of formalisms for knowledge representation,
which is a subfield of Artificial Intelligence. They are used in knowledge-based systems
that offer reasoning services which allow for finding implicit consequences from explic-
itly stored knowledge and are sound and complete. Approaches to represent knowledge
began to arise in the 1970’s. In contrast to early proposals, description logics enjoy
a well-defined syntax and semantics. A detailed introduction to description logics and
their history can be found in “The Description Logic Handbook” (Baader, Calvanese,
McGuinness, Nardi & Patel-Schneider 2003). Particular description logics have indi-
vidual names, e.g., EL, ALC or ALCN . In this thesis, we are going to investigate the
complexity of the reasoning task subsumption in extensions of the description logic EL.

Concept descriptions can been seen as the basis for expressing knowledge in descrip-
tion logics. They are built upon concept names, role names and concept constructors.
The semantics of concept descriptions is given in terms of an interpretation. It consists
of a non-empty set of individuals, the interpretation domain, and an interpretation func-
tion. The latter assigns concept names to sets of elements of the interpretation domain,
and role names to a binary relation on the interpretation domain. The interpretation
function is then inductively extended to arbitrary concept descriptions, and thus concept
descriptions are interpreted as subsets of the interpretation domain.

Let us now consider an example of a concept description of the description logic ALC
that describes the set of those humans who are female, have a child and whose children
are all male:

Human ⊓ Female ⊓ ∃has child.⊤ ⊓ ∀has child.Male (1.1)

Here, Human, Female and Male are concept names, has child is a role name, and ⊤, ⊓,
∀ and ∃ are concept constructors. In this context, ⊤ (top) can be read as a wild-card
concept name, ⊓ as “and” (disjunction), ∃ as “there exists” (existential restriction)
and ∀ as “for all” (value restriction). The following interpretation I gives semantics
to the concept description above, where ∆I is the interpretation domain and ·I is the
interpretation function:

1



Chapter 1 Introduction

• ∆I := {ANNA,MARIA,BOB,ALICE}

• HumanI := ∆I ; FemaleI := {ANNA,MARIA,ALICE}; MaleI := {BOB}

• has childI := {(ANNA,BOB), (MARIA,ALICE)}

Under I, the concept description (1.1) is interpreted as {ANNA}, from which we can
conclude that Anna is a women that has a child and whose children are all male in the
interpretation I.

For the purpose of structuring knowledge and abbreviating complex concept descrip-
tions, terminology formalisms—also known as TBoxes—have been introduced. In the
context of the example from above, the following ALC-TBox describes the relationships
in families:

Parent ≡ Human ⊓ ∃has child.⊤

Mother ≡ Female ⊓ Parent

Father ≡ Male ⊓ Parent

Mother of male ≡ Mother ⊓ ∀has child.Male

An interpretation is a model of a TBox if it “respects” the concept definitions in the
TBox. A TBox may contain cyclic definitions, i.e., concept definitions that directly
or indirectly refer to themselves. Moreover, there are general TBoxes that allow to
formulate so-called general concept inclusion axioms.

Particular description logics differ in which concept constructors they allow. For
example, in ALC we cannot describe the set of mothers that have at least three children.
However, for n being a positive integer and r a role name, if we introduce the additional
concept constructor ≥ nr, we could express this as follows:

Human ⊓ Female ⊓ ≥3 has child

Amongst others, this concept constructor is present in the concept language ALCN .
A main reasoning task in description logics is subsumption. Given two concept de-

scriptions C,D, we say C is subsumed by D (C ⊑ D) whenever for every interpretation
I, the set described by C is a subset of the set described by D (CI ⊆ DI). If C ⊑ D, we
can think of D as being more general than C. Subsumption may also take TBoxes into
consideration, i.e., C is subsumed by D w.r.t. a TBox T (C ⊑T D) whenever CI ⊆ DI

for all models I of T .
The complexity of reasoning is of special interest in description logics. This is mainly

motivated by the fact that an extensive study of the complexity of reasoning in a par-
ticular concept language allows to make qualitative statements about its usability for
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Chapter 1 Introduction

certain application domains. For example, in embedded systems, reasoners would need
to respond quickly, whereas in a web-information system it is acceptable to wait a second
for a query response. There are several sources of complexity for reasoning in a concept
language (Baader et al. 2003). The complexity may rise depending on the presence and
combination of concept constructors as well as the presence and the sort of TBoxes.
Furthermore, the interplay of some concept constructors can even lead to undecidability
of a reasoning task. We say a reasoning task is tractable in a description logic when it
can be decided in polynomial time w.r.t. the size of the input, i.e., a concept description,
a TBox or both. Otherwise, reasoning is said to be intractable.

1.2 EL as a Tractable Description Logic

The quest for tractable description logics arose in the 1980’s after the first intractability
results were shown. This was mainly grounded in the opinion that a knowledge-based
system should be able to answer “in time”, and this was put on a level with tractability.
In many cases, the small description logic FL0—which only allows for conjunction and
value restriction—was the starting point of the search for tractable concept languages.
Around this time, various extensions of FL0 have been considered for which subsumption
is tractable without TBoxes, see e.g. (Donini, Lenzerini, Nardi & Nutt 1991). More-
over, polynomial time reasoners like Classic (Brachman, McGuiness, Patel-Schneider
& Resnick 1990) were developed. However, it was Nebel who showed in 1990 that as
soon as terminologies come into play, subsumption even in FL0 becomes intractable
(Nebel 1990b). Since terminologies have been considered to be important in modeling
knowledge, the search for tractable description logics was given up. Instead, one success-
fully concentrated on expressive description logics and highly optimized algorithms for
practical implementations. It turned out that despite the high worst case complexity of
expressive description logics, reasoning in real world problems is manageable. Nowadays,
the Semantic Web is the most popular application of expressive description logics. Its
underlying description logic is the Ontology Web Language (OWL) (Baader, Horrocks
& Sattler 2005).

However, Baader showed in 2002 that in the description logic EL —which allows for
conjunction and existential restriction—subsumption w.r.t. cyclic TBoxes can surpris-
ingly be decided in polynomial time (Baader 2003). It furthermore turned out that even
w.r.t. general TBoxes subsumption is polynomial (Brandt 2004). Building upon that,
in (Baader, Brandt & Lutz 2005a) the description logic EL++ has been presented to
be a very expressive extension of EL for which subsumption is tractable w.r.t. general
TBoxes. Interestingly, EL had not been investigated in this depth before. Basically,
this had historical reasons: Arcs in semantic networks and slots in frames, which can be
seen as predecessors of description logics, were considered to be read as value restrictions
rather than existential restrictions.
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Chapter 1 Introduction

From a first impression, one might ask whether a relatively small concept language
like EL is sufficient to find usage in practical applications. However, this is the case:
For instance, the Systematized Nomenclature of Medicine (Snomed) corresponds to an
acyclic EL-TBox (Baader, Brandt & Lutz 2005a). Moreover, it has recently been shown
that even relatively straight-forward implementations of EL-subsumption algorithms can
outperform current state of the art reasoners (Baader, Lutz & Suntisrivaraporn 2007).

1.3 Objective and Structure of this Thesis

As stated before, the complexity of reasoning in extensions of EL w.r.t. general ter-
minologies has been extensively studied in (Baader, Brandt & Lutz 2005a). However,
general terminologies are not always a compulsory premise for practical applications, as
seen above for Smoned. It is an open question whether there are extensions of EL for
which subsumption remains tractable w.r.t. cyclic terminologies—and this is the main
objective of this thesis. We will sharpen the tractability border for subsumption in ex-
tensions of EL w.r.t. cyclic TBoxes and identify maximal extensions of EL such that
subsumption is tractable. Moreover, we prove intractability of subsumption w.r.t. cyclic
TBoxes for a variety of other extensions. We will furthermore present exact complexities
of subsumption in extensions of EL without and with TBoxes.

This thesis is structured as follows: In Chapter 2, we are going to lay the foundations
for this thesis. We formally introduce EL, its syntax, semantics and the extensions
that we are going to consider. Moreover, we introduce terminology boxes. Thereafter,
we consider in Chapter 3 two extensions EL⊔,⊓,¬(D) and EL⊔,⊓,≥ of EL for which the
subsumption problem is tractable w.r.t. cyclic TBoxes. The first extends EL by primitive
negation, con- and disjunction of role names in disjunctive normal form and p-admissible
concrete domains. The latter is EL extended by role con- and disjunction in disjunctive
normal form and at-least restrictions. A combination of both EL⊔,⊓,¬(D) and EL⊔,⊓,≥

is considered in Chapter 4, as well as the extension of EL by negation, disjunction,
transitive closure over role names, functionality and concrete domains with abstract
feature chains, for which subsumption becomes intractable w.r.t. cyclic terminologies.
We summarize the results of this thesis and briefly discuss future prospects in Chapter
5.

It is assumed that the reader has a basic understanding of mathematics. In particular,
knowledge about the basic essentials of complexity theory, set theory and first-order
predicate logic are required.
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Chapter 2

Preliminaries

2.1 Introducing EL

In description logics, concept descriptions are inductively defined with the help of concept
constructors starting with pairwise disjoint countably infinite sets of concept names NC

and role names NR. In the following, we introduce the concept descriptions of the
concept language EL that is the basis of all concept languages considered in this thesis.

Definition 1 (EL-concept descriptions) Let A be a concept name and r a role
name. The set of EL-concept descriptions is defined according to the following syn-
tax rule:

C,D −→ A (concept name)
⊤ (top concept)
∃r.C (existential restriction)
C ⊓D (conjunction)

♦

Subsequently, we will use A and B to denote concept names, r and s for role names, and
C and D for concept descriptions. The size |C| of an EL-concept description C is defined
to be the number of symbols used to write it down, and likewise for the extensions of
EL considered in this thesis. For an EL-concept description C, we inductively define the
role depth of C by induction on the structure of C:

rdepth(A) := rdepth(⊤) := 0

rdepth(∃r.C) := rdepth(C) + 1

rdepth(C1 ⊓ C2) := max (rdepth(C1), rdepth(C2))

Now, let us consider two examples of concept descriptions and their informal meaning.

5



Chapter 2 Preliminaries

Example 1.

Female ⊓ ∃has child.⊤

Male ⊓ ∃likes.(Female ⊓ ∃child.(∃member in.Choir))

The first concept description describes persons who are female and have a child, and the
second all men who like women who have children who are member in a choir. �

The formal semantics of concept descriptions is given in terms of a Tarski-style interpre-
tation.

Definition 2 (EL semantics) An interpretation I is a tuple (∆I , ·I), where ∆I is the
nonempty interpretation domain, and ·I the interpretation function. The latter maps

• every concept name A to a subset of ∆I

• every role name r to a subset of ∆I × ∆I .

The interpretation function is inductively extended to complex concept descriptions as
follows:

(⊤)I := ∆I

(C ⊓D)I := CI ∩DI

(∃r.C)I := {x ∈ ∆I | ∃y ∈ ∆I .((x, y) ∈ rI ∧ y ∈ CI)}

The union I = I1∪I2 of two interpretations is defined to be the union of the components
of I1 and I2. ♦

An EL-concept description C is satisfiable iff there exists an interpretation I such that
CI 6= ∅. A concept description C is subsumed by D iff CI ⊆ DI for all interpretations
I. We write C ⊑ D iff C is subsumed by D. Both satisfiability and subsumption are
standard reasoning tasks in description logics. For EL-concept descriptions, satisfiability
is trivial in the sense that every EL-concept description is satisfiable. Therefore, our main
focus in this thesis will be on the complexity of subsumption. A special property of EL
is that checking subsumption of EL-concept descriptions C,D can be done in polynomial
time in |C| + |D|, which will be proven later.

A further popular standard reasoning task is instance checking. Given a snapshot of
a world, instance checking is to determine whether some object of the world belongs to
a concept description. We will not consider instance checking in this thesis. For EL
and its extensions, the complexity of instance checking has been widely investigated in
(Krisnadhi 2007).

Apart the standard reasoning tasks, so-called non-standard inferences have been con-
sidered in the literature (Küsters 2001). That is, for instance, the least common sub-
sumer of concept descriptions. In this thesis, we will not consider these reasoning tasks.

6



Chapter 2 Preliminaries

Name Syntax Semantics Symbol

Role
conjunction

R ⊓ S RI ∩ SI ⊓

Role
disjunction

R ⊔ S RI ∪ SI ⊔

Inverse role R− {(x, y)∆I × ∆I | (y, x) ∈ RI} I

Transitive
closure

R+
⋃

i≥1(R
I)i +

Table 2.1: Additional role constructors.

2.2 Extensions of EL

It is not hard to see that the expressiveness of EL is rather limited for some applications.
For example, we are not able to define a concept description that describes a mother that
has more than two children. Therefore, we subsequently introduce several extensions of
EL that increase expressiveness, but may also increase the complexity of reasoning.

Role Constructors

Firstly, we introduce role constructors as a possible extension, which allow to construct
complex roles from role names. The role constructors considered in this thesis and their
syntax and semantics are presented in Table 2.1. There and in the following, R and S
denote complex roles and R and S are equivalent iff RI = SI for all interpretations I.
Moreover, in the definition of transitive closure, for a relation R ⊆M ×M and n > 0,

R0 := IdM

R1 := R

Rn+1 := Rn ∪ {(x, y) | ∃z ∈M.((x, z) ∈ Rn ∧ (z, y) ∈ Rn)}

R(x) := {y | (x, y) ∈ R}

For convenience, if R(x) = {y} is a singleton, we sometimes write R(x) = y.
When complex roles are present in a given extension of EL, they can be used in

existential restrictions in an obvious way. For an interpretation I, we define x ∈ (∃R.C)I

iff x ∈ {y | ∃z ∈ ∆I .((y, z) ∈ RI ∧ z ∈ CI)}. Extending EL by a set of particular role
constructor yields a particular EL-language. Each such language is named by a string
of the form

EL[I][⊓][⊔][+]

7



Chapter 2 Preliminaries

For instance, ELI⊔ is the concept language allowing for top, concept names, conjunction,
existential restriction, inverse roles and role disjunction.

The following three examples illustrate possible applications of the additional role
constructors.

Example 2.

∃has child+.Female

Female ⊓ ∃(has child ⊔ has adopted).⊤

Male ⊓ ∃has child−.⊤

The first concept description describes persons that have a female offspring. Next,
mothers are described, i.e., women that have a child or have adopted somebody. Lastly,
sons are defined to be male persons that are the child of somebody. �

Concept Constructors

Next, we consider additional concept constructors. Their syntax, semantics and symbols
are presented in the second part in Table 2.2. There, for a set M , by #M we denote
the cardinality of M . Existential restriction, conjunction and top occur in Table 2.2
for the sake of completeness. Negation is also called complement. It allows for fully
negating concept descriptions, i.e., to express that some concept description must not
hold. Primitive negation on the other hand only allows for negation only occurring in
front of concept names. Functionality is a special case of at-most restrictions, which
allows to define a maximum number of r-successors at some point. In this thesis, we will
not consider at-most restrictions directly, but obviously hardness results for extensions
of EL involving functionality carry over to extensions of EL with at-most restrictions.
Value restriction and bottom are separated in Table 2.2, since we will only need them
to define concept languages different that are not member in the EL family.

Let us have a look at some examples of concept descriptions that make use of the
additional concept constructors.

Example 3.

∃has child.Female ⊔ ∃has adopted.Female

Male⊓ ≥ 3 has child

Female ⊓ ∃has profession.Academic ⊓ ¬∃has child.⊤

The first concept description describes persons that have a daughter or have adopted
a daughter. Next, fathers with more than two children are described. Finally, the last
concept description describes women who are academics and do not have a child. �

8



Chapter 2 Preliminaries

Name Syntax Semantics Symbol

Concept
name

A AI

Top ⊤ ∆I

Conjunction C ⊓D CI ∩DI

Existential
restriction

∃r.C {x ∈ ∆I | ∃y ∈ ∆I .((x, y) ∈ rI ∧ y ∈ CI)} E

Negation ¬C ∆I\CI C

Primitive
negation

¬A ∆I\AI ¬

Disjunction C ⊔D CI ∪DI U

At-least
restrictions

≥ nr {x ∈ ∆I | #{y ∈ ∆I | (x, y) ∈ rI} ≥ n} ≥

At-most
restrictions

≤ nr {x ∈ ∆I | #{y ∈ ∆I | (x, y) ∈ rI} ≤ n} ≤

Functionality ≤ 1r {x ∈ ∆I | #{y ∈ ∆I | (x, y) ∈ rI} ≤ 1} F

Bottom ⊥ ∅

Value ∀R.C {x ∈ ∆I | ∀y ∈ ∆I .((x, y) ∈ RI → A

restriction y ∈ CI)}

Table 2.2: Concept constructors considered in this thesis.

9
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As for role constructors, depending on the presence of additional concept constructors,
the name of the resulting concept language is a string of the form

[A][E ]L[C][U ][F ][¬][≥][≤]

Concrete Domains

One limitation of description logics is that all knowledge has to be described on an
abstract level. In particular, it is hard to adequately express knowledge about concrete
qualities, e.g., length, duration or temperature. To overcome this problem, Baader and
Hanschke introduced concrete domains in (Baader & Hanschke 1991). They have widely
been investigated by Lutz in (Lutz 2003).

Definition 3 (Concrete Domain) A concrete domain D is a pair (∆D,ΦD), where
∆D is a set and ΦD is a set of predicates names. Each predicate name p is associated
with an arity n and an n-ary predicate pD ⊆ ∆n

D. ♦

Firstly, let us introduce an example of a concrete domain from (Lutz 2002). The concrete
domain E is defined by setting

∆E := N

ΦE := {⊤E,⊥E} ∪ {Pr | P ∈ {=, 6=, <,>,≤,≥}, r ∈ ∆E}

Both ⊤E and ⊥E have arity zero, and the other predicates are unary. All predicates have
the obvious extension, e.g.,

(≥7)
E = {n ∈ N | n ≥ 7}

When a concept language is equipped with a concrete domain D, we write D in brackets
after its name, e.g., EL(E). In the presence of concrete domains, we assume the set of
role names to contain an infinite subset of abstract features NaF . Moreover, there is a
countably infinite set of concrete features NcF such that NcF ∩ (NR ∪NC) = ∅. A path
of features g is a concatenation r1 . . . rnf of abstract features r1, . . . , rn and a concrete
feature f .

Definition 4 (EL(D) syntax and semantics) Let D be a concrete domain and NaF

be a countably infinite subset of NR of abstract features. Let NcF be a countably infinite
set of concrete features such that NcF ∩ (NR ∪ NC) = ∅. EL(D) is obtained from EL
by allowing for the additional concrete domain constructor : For any n-ary predicate
p ∈ ΦD, p(g1, . . . , gn) is an EL(D)-concept description, where g1, . . . , gn are paths of
features. For an interpretation I,

• r ∈ NaF is interpreted as a partial function from ∆I to ∆I ,

10



Chapter 2 Preliminaries

• f ∈ NcF is interpreted as a partial function from ∆I to ∆D, and

• a path of features g = r1 . . . rnf is interpreted as rI1 ◦ . . . ◦ rIn ◦ fI .

The semantics of the concrete domain constructor is as follows:

p(g1, . . . , gn)I := {x ∈ ∆I | ∃d1, . . . , dn ∈ ∆D.(g
I
1 (x) = d1 ∧ . . . ∧ g

I
n(x) = dn ∧

(d1, . . . , dn) ∈ pD)} ♦

For our tractable extensions of EL in Chapter 3, we disallow abstract features, i.e., only
concrete features must occur in concrete domain constructors. We call p(f1, . . . , fn) an
atom, where fi ∈ NcF , 1 ≤ i ≤ n. Given a conjunction ψ of atoms over the concrete
features f1, . . . , fn, δ : NcF → ∆D is called a solution to ψ iff ψ[f1/δ(f1), . . . , fn/δ(fn)]
evaluates to true in D. We say ψ is satisfiable iff there exists a solution to ψ, and ψ1

implies ψ2 iff every solution to ψ1 is a solution to ψ2. For the remainder of this thesis,
we restrict satisfiability and implication in the concrete domains that we deal with to be
computable in polynomial time.

Definition 5 A concrete domain D is p-admissible iff satisfiability and implication in D
can be decided in polynomial time. Furthermore, D is convex iff whenever a conjunction
of atoms implies a disjunction of atoms, then it also implies one of its disjuncts. ♦

The following proposition was shown in (Lutz 2003).

Proposition 1 The concrete domain E is p-admissible.

However, E is not convex. For example,

≥7(f) ∧ ≤8(f) implies =7(f) ∨ =8(f),

but neither =7(f) is implied, nor =8(f). For EL++, concrete domains are required to
be convex (Baader, Brandt & Lutz 2005a). This is not the case in this thesis. We close
this section with two examples of EL(E)-concept descriptions.

Example 4.

Human ⊓ ≥13(has age) ⊓ ≤19(has age)

Human ⊓ Male ⊓ ≥67(has age)

The first concept description describes teenagers and the second male retirees. �
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Name Restriction Symbol

Global
functionality

∀ I, x ∈ ∆I , r ∈ NR.#r
I(x) ≤ 1 f

Totality ∀ I, x ∈ ∆I , r ∈ NR.#r
I(x) ≥ 1 t

Table 2.3: Additional concept constructors considered in this thesis.

Restrictions on Interpretations

The last extension of EL we consider are restrictions on interpretations. Namely, we
will consider global functionality and totality requirements of the interpretation of role
names. Both extensions are presented in Table 2.3. Global functionality requires that in
all admissible interpretations, all nodes have at most at most one successor node of each
role name, and totality requires them to have at least one successor. Note, that we will
subsequently use the notation of “totality” and “functionality” for arbitrary relations as
well.

2.3 EL-Concept Descriptions as Graphs

An important observation is that EL-concept descriptions can be viewed as directed
labeled graphs. This allows to decide subsumption between EL-concept descriptions in
terms of the existence of a homomorphism between the graphs of the concept descrip-
tions.

Definition 6 (Directed Labeled Graph) Let LE be a set of edge labels and LV a
set of node labels. A directed labeled graph G = (V,E, ℓ) over LE and LV consists of
a set of nodes V , a set of labeled edges E ⊆ V × LE × V , and a node labeling function
ℓ : V → LV . ♦

If not stated otherwise, in the following we will call a directed labeled graph just a
graph. The size of a graph is defined to be the number of its vertices. For an edge
(v, r, w) ∈ E, we call w an (r-)successor of v, and v an (r-)predecessor of w. We say

x1
r1−→ x2

r2−→ . . .
rn−→ xn+1 is a path in G of length n iff (xi, ri, xi+1) ∈ E for 1 ≤ i ≤ n.

For a path p = x1
r1−→ . . .

rn−→ xn+1 and a node v ∈ V , v ∈ p iff v = xi for some
1 ≤ i ≤ n+ 1. A graph contains a cycle iff there is a path x

r1−→ . . .
rn−→ x in G.

EL-description graphs are directed labeled graphs, whose edges are labeled with role
names from NR and vertices with finite subsets of NC . EL-concept descriptions are rep-
resented by EL-description trees. An EL-description tree is a connected EL-description-
graph t that does not contain any cycle, has a distinguished node called the root of t

12
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that has no predecessor, and every other node has exactly one predecessor. As a nam-
ing convention, if not stated otherwise, for a concept description C, its corresponding
EL-description tree is called tC and its root xC . Nodes that do not have any successor
are called leaves. For a tree, we use path and branch synonymously. Let t be a tree and
x ∈ Vt a node, depth(x) := max{n | x

r1−→ . . .
rn−→ xn+1}.

The EL-description tree t = (Vt, Et, ℓt) with root x corresponding to an EL-concept
description C is defined via induction on d = rdepth(C ):

d = 0 : So C = P1 ⊓ . . . ⊓ Pk and Vt := {x}, Et := ∅ and ℓt := x 7→ {P1, . . . , Pk}.

d→ d+ 1 : We have C = P1⊓ . . .⊓Pk⊓∃r1.C1⊓ . . .⊓∃rm.Cm. By the induction hypoth-
esis, there exist trees t1, . . . , tm with roots x1, . . . , xm for the concept descriptions
C1, . . . , Cm. W.l.o.g. we assume the set of vertices of t1, . . . , tm to be disjoint. We
define Vt :=

⋃

1≤i≤m Vti ·∪{x}, Et :=
⋃

1≤i≤mEti ∪ {(x, ri, xi) | 1 ≤ i ≤ m} and

ℓt(v) :=

{
{P1, . . . , Pk} if v = x
ℓti(v) if v ∈ Vti , 1 ≤ i ≤ m

We can also view interpretations as graphs. Let I = (∆I , ·I) be an interpretation.
The EL-description graph GI = (VI , EI , ℓI) corresponding to I is defined as follows:

• x ∈ VI iff x ∈ ∆I

• (x, r, y) ∈ EI iff (x, y) ∈ rI

• P ∈ ℓI(x) iff x ∈ P I

Note, that this definition also allows us to view EL-description graphs as interpretations.
In particular in the remainder of this thesis, we will heavily use EL-description trees as
interpretations. For convenience, given an EL-concept description C, its corresponding
EL-description tree tC with root xC and some EL-concept description D, we will lazily
write “xC ∈ DtC” instead of “xC ∈ DI , where I is the interpretation corresponding to
tC”.

Let us now introduce homomorphisms between EL-description graphs and their rela-
tionship to interpretations.

Definition 7 (Homomorphism) Let G1,G2 be EL-description graphs. A homomor-
phism from x ∈ VG1 to y ∈ VG2 is a functional binary relation H ⊆ VG1 × VG2 such
that:

• (x, y) ∈ H

• For all (v, w) ∈ H:

– ℓ(v) ⊆ ℓ(w)

13
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Figure 2.1: The EL-description-graph tC corresponding to the concept description C =
P1⊓∃r.(∃s.(P1⊓P2)⊓∃r.⊤) (left) and GI corresponding to an interpretation
I (right). The dashed arrows illustrate a homomorphism from tC to GI .

– For every (v, r, v′) ∈ EG1 there is (w, r, w′) ∈ EG2 such that (v′, w′) ∈ H ♦

Figure 2.1 illustrates the EL-description tree for the EL-concept description C =
P1 ⊓ ∃r.(∃s.(P1 ⊓ P2) ⊓ ∃r.⊤), an interpretation I and a homomorphism from tC to I.

Lemma 1 Let C be an EL-concept description with the corresponding concept descrip-
tion tree tC with root xC , and let I be an interpretation with x ∈ ∆I and the correspond-
ing EL-description graph G = (V,E, ℓ). Then, the following are equivalent:

1. x ∈ CI

2. There exists a homomorphism from xC to x.

Proof. The proof is by induction on d = rdepth(C) in both directions.
(1 ⇒ 2) For the induction base case, let d = 0 and x ∈ (P1 ⊓ . . . ⊓ Pk)

I . Define
H := {(xC , x)}, which obviously is a homomorphism. Now for the induction step, let
x ∈ (P1 ⊓ . . . ⊓ Pk ⊓ ∃r1.C1 ⊓ . . . ⊓ ∃rm.Cm)I . There are (x, xi) ∈ rIi such that xi ∈ CI

i ,
(xC , ri, xCi

) ∈ EtC and by the induction hypothesis there exist homomorphisms Hi from
xCi

to xi for 1 ≤ i ≤ m. Hence, H :=
⋃

1≤i≤m Hi ∪ {(xC , x)} is a homomorphism from
xC to x.

(2 ⇒ 1) For the induction base case, let d = 0 and C = P1 ⊓ . . .⊓Pk. Since ℓtC (xC) ⊆
ℓI(x), x ∈ CI . For the induction step, let C = P1 ⊓ . . . ⊓ Pk ⊓ ∃r1.C1 ⊓ . . . ⊓ ∃rm.Cm

and H be a homomorphism from xC to x. There are (xC , ri, xCi
) ∈ EtC and by the

homomorphism conditions, there are also (x, xi) ∈ rIi for 1 ≤ i ≤ m. Now H is a
homomorphism from each xCi

to xi, and hence by the induction hypothesis xi ∈ CI
i .

Consequently, x ∈ CI .

The previous lemma allows us to establish the connection between the existence of a
homomorphism between EL-description trees and subsumption.

14
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Algorithm 1 EL-subsumption algorithm

Require: EL-concept descriptions C,D
H := ∅
for i = 0 to depth(xD) do

for all x ∈ VtD with depth(x) = i and y ∈ VtC do
if ℓtD(x) ⊆ ℓtC (y) ∧ ∀(x, r, x′) ∈ EtD .∃(y, r, y′) ∈ EtC .(x

′, y′) ∈ H then
H := H ∪ {(x, y)}

end if
end for

end for
if (xD, xC) ∈ H then

return C ⊑ D
else

return C 6⊑ D
end if

Lemma 2 Let C,D be EL-concept descriptions with their corresponding EL-description
trees tC , tD with roots xC and xD. Then, the following are equivalent:

1. C ⊑ D

2. There exists a homomorphism from xD to xC .

Proof. (1 ⇒ 2) We show the contrapositive. Assume there does not exist a homomor-
phism from xD to xC . Now the identity on the vertices of tC is a homomorphism from
xC to xC and hence xC ∈ CtC . Since there does not exist a homomorphism from xD to
xC , by the previous lemma xC /∈ DtC .

(2 ⇒ 1) Let H be a homomorphism from xD to xC , and let I be an interpretation
and y ∈ CI . By the previous lemma, there exists a homomorphism H′ from xC to y.
Clearly, the composition H′ ◦H yields a homomorphism from xD to y. Hence y ∈ DI .�

Taking the previous lemma together with Lemma 1, we can derive Algorithm 1 that
decides subsumption between EL-concept descriptions C,D in polynomial time in |C|+
|D|. Basically, the algorithm labels bottom-up the EL-description tree tC of C with
subsets of vertices of tD and returns subsumption of C and D if at the end the root xC

of tC is labeled by xD.

Theorem 1 Subsumption in EL can be decided in polynomial time.

2.4 Terminologies

Most description logics do not only offer a concept language, but also additionally provide
some terminology (TBox) formalism. In the following, we introduce standard TBoxes
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and general TBoxes. Although we make the definitions in the context of EL, they can
be adapted in an obvious way to arbitrary concept languages.

2.4.1 Standard Terminology Boxes

Standard terminology boxes introduce abbreviations for complex concepts and store ter-
minological knowledge about the application domain. In the following, we call standard
terminology boxes just TBoxes.

Definition 8 (EL-TBox) Let C be an EL-concept description and A ∈ NC . Then,
A ≡ C is called a concept definition. A finite set T of concept definitions that does not
contain multiple concept definitions is called an EL-TBox. ♦

Formally, a set T contains multiple concept definitions if there are {A ≡ C,A ≡ D} ⊆ T
such that C 6= D. If the underlying concept language is clear from the context, we will
drop the language prefix and just talk about TBoxes. We call the concept names that
occur on the left-hand side of a TBox defined concepts, and for a given TBox T their
set is denoted by Ndef (T ). All other concept names occurring in T are called primitive
concepts, whose set is denoted by Nprim(T ). When we consider EL extended by primitive
negation, we additionally do not allow negation to be used in front of defined concept
names. Note, that the TBox definition allows for cyclic definitions, i.e., there might be
concept definitions {A1 ≡ D1, . . . , An ≡ Dn} ⊆ T such that

• Di contains Ai+1 for 1 ≤ i < n

• Dn contains A1

The size |T | of a TBox T is defined as

|T | :=
∑

A≡C∈T

|A| + |C|

Let us now have a look at an example TBox.

Example 5. Consider the following acyclic TBox Tfamily:

Parent ≡ ∃has child.⊤

Mother ≡ Female ⊓ Parent

Father ≡ Male ⊓ Parent

Grandmother ≡ Mother ⊓ ∃has child.Parent

Grandfather ≡ Father ⊓ ∃has child.Parent

It defines parts of the relations in families. �
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Algorithm 2 Unfolding algorithm

Require: Acyclic TBox T and EL-concept description C
while C contains some A ∈ Ndef (T ) do

Let A ≡ D ∈ Ndef (T )
Replace any occurrence of A in C by D

end while
return C

When we consider the semantics of TBoxes, we cannot allow arbitrary interpretations.
The admissible interpretations have to fulfill the concept definitions of the TBox.

Definition 9 (Descriptive semantics) An interpretation I is a model of a TBox T
iff AI = CI for all concept definitions A ≡ C ∈ T . ♦

For cyclic TBoxes, apart from descriptive semantics, least and greatest fixed point se-
mantics have been introduced by Nebel (Nebel 1991). Informally speaking, they offer
different ways of how to interpret cyclic concept definitions. In this thesis, we will only
deal with descriptive semantics.

For the remainder of this thesis, subsumption w.r.t. TBoxes will be our main point of
interest.

Definition 10 (Subsumption and satisfiability w.r.t. TBoxes) Let T be a TBox
and C,D be EL-concept descriptions. Then, C is subsumed by D w.r.t. T (C ⊑T D)
iff CI ⊆ DI for all models I of T . Moreover, C is satisfiable w.r.t. T iff there exists a
model I of T such that there is x ∈ CI . ♦

Note, that it suffices to only consider subsumption of concept names w.r.t. TBoxes.
Subsumption between arbitrary concept descriptions C,D w.r.t. a TBox T can be re-
duced to subsumption of concept names w.r.t. a TBox: C ⊑T D iff A ⊑T ′ B, where
T ′ = T ·∪{A ≡ C,B ≡ D}.

Concept definitions in acyclic TBoxes may be viewed as macro definitions and can be
expanded in a natural way like macros. This allows us to rephrase subsumption w.r.t.
an acyclic TBox as subsumption without a TBox. Formally, for a concept description C
and an acyclic TBox T , C is unfolded w.r.t. T iff no A ∈ Ndef (T ) occurs in C. Using

Algorithm 2, every concept C can be transformed to an unfolded concept Ĉ w.r.t. T
such that C ≡T Ĉ. Termination of the algorithm is an immediate consequence of T
being acyclic. For concept descriptions C,D and their unfoldings Ĉ, D̂ w.r.t. T , it is
easily seen that we have Ĉ ⊑ D̂ iff Ĉ ⊑T D̂ iff C ⊑T D. Unfolding might lead to an
exponential blowup of |Ĉ| in |C| + |T |. Thus, unfolding is not suitable for providing
complexity bounds, but can provide a helpful tool in proofs.

For an acyclic TBox T and A ≡ C ∈ T , we define the role depth of A w.r.t. T ,
rdepthT (A) := rdepth(Ĉ). However, due to the potentially exponential blow-up of |Ĉ|,
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(n1) replace A ≡ ∃r.C ′ ∈ T by {A ≡ ∃r.B,B ≡ C}

(n2) replace A ≡ C ⊓ C ′ ∈ T by {A ≡ C ⊓B,B ≡ C ′}

where C ′ /∈ Ndef (T ) and (n2) is applied modulo commutativity

Table 2.4: Normalization rules

we cannot calculate the role depth w.r.t. T in polynomial time by naively unfolding
C. Nevertheless, calculating first the role depths of the concept descriptions containing
no defined concept name, and then bottom-up calculating the role depths for concept
definitions that contain defined concept names for which the role depth has already been
calculated gives us a way to calculate role depth w.r.t. acyclic TBoxes in polynomial time
w.r.t. the size of the input TBox.

2.4.2 Normalized EL-TBoxes

In the following we introduce two normal forms of EL-TBoxes. They make the handling
of TBoxes easier in algorithms and proofs.

Definition 11 (Normal form) An EL-TBox T is in normal form iff for everyA ≡ C ∈
T , C is of the form ⊤ or B; ∃r.B1; or B1 ⊓B2, where B ∈ NC , and B1, B2 ∈ Ndef (T ).♦

It is easily seen that by exhaustively applying the rules from Table 2.4, subsumption in
EL w.r.t. TBoxes can be reduced to subsumption in EL w.r.t. a TBox in normal form
in polynomial time. In Table 2.4, B is a fresh, previously unused concept name.

Proposition 2 Subsumption w.r.t. an EL-TBox can be reduced in polynomial time to
subsumption w.r.t. an EL-TBox in normal form.

In order to represent EL-TBoxes as graphs, Baader introduced in (Baader 2003) a further
TBox normal form.

Definition 12 (Extended normal form) An EL-TBox T is in extended normal form
iff for each concept definition A ≡ C ∈ T , C is of the form

P1 ⊓ . . . ⊓ Pk ⊓ ∃r1.B1 ⊓ . . . ⊓ ∃rℓ.Bℓ

for k, ℓ ≥ 0, P1, . . . , Pk ∈ Nprim(T ), r1, . . . , rℓ ∈ NR and B1, . . . , Bℓ ∈ Ndef (T ). ♦

Since we rely on this normal form for extensions of EL in Chapter 3, we explicitly show
the normalization process. Subsequently, we follow Baader (Baader 2003) and firstly
illustrate it with the help of an example. Let T be defined as follows:

A1 ≡ P1 ⊓ ∃r.(P2 ⊓A2)

A2 ≡ P3 ⊓A3

A3 ≡ A2 ⊓ ∃r.P1
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It is not hard to see how we can enforce only defined concepts to occur in the scope of
existential restrictions by introducing auxiliary concept definitions B1 and B2:

A1 ≡ P1 ⊓ ∃r.B1

B1 ≡ P2 ⊓A2

A2 ≡ P3 ⊓A3

A3 ≡ A2 ⊓ ∃r.B2

B2 ≡ P1

However, T ′ is not yet in normal form. The definitions of B1, A2 and A3 still contain
defined concept names in their top-level.

Let us first have a look at the definitions of A2 and A3. We note that A2 and A3

mutually include each other on their top-level. Thus, both A2 and A3 are interpreted
by the same set in all models of T . Moreover, A2 (and A3) is subsumed by P3 ⊓
∃r.B2. However, we cannot express such inclusions in T , but employ Nebel’s approach
(Nebel 1990a) to turn this inclusion constraint into a concept definition by introducing
a fresh primitive concept name Ā2 and defining A2 ≡ Ā2 ⊓ P3 ⊓ ∃r.B2. In order to get
rid of A2 in the top-level of the definition of B1, we just replace it by the new definition
of A2. So we end up with the following TBox, which is normalized:

A1 ≡ P1 ⊓ ∃r.B1

B1 ≡ P2 ⊓ Ā2 ⊓ P3 ⊓ ∃r.B2

A2 ≡ Ā2 ⊓ P3 ⊓ ∃r.B2

A3 ≡ Ā2 ⊓ P3 ⊓ ∃r.B2

B2 ≡ P1

A generalization of this approach for arbitrary TBoxes T is not too far away. First—as
shown in the example—exhaustively introduce auxiliary concept definitions for complex
concepts in existential restrictions, and replace the complex concepts by their newly
introduced defined concept names. Now in order to remove defined concept names
from the top-level of concept definitions of T , we view the TBox as a directed graph
G = (V,E), where V := Ndef (T ) and (A,B) ∈ E iff B occurs on the top-level of the
definition of A. Let E∗ be the reflexive transitive closure of E, which can be computed
in polynomial time. We define the following equivalence relation on Ndef (T ):

A ∼= B iff (A,B) ∈ E∗ and (B,A) ∈ E∗

Now all equivalence classes [C] := {C ′ | C ∼= C ′} are interpreted in every model by the
same set. So we start with some equivalence class [C], treat all concepts of C like A2 and
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A3 in the example above, and replace the occurrence of any C ′ ∈ [C] on the top-level
of any concept definition by the newly introduced concept definition. We then continue
with the next equivalent class until we have proceeded all equivalence classes. The
fact that we only replace defined concept names on the top-level of concept definitions
prevents an exponential blow-up of the size of T , due to the idempotency of ⊓. Summing
up, this algorithm sketches the proof for the following proposition:

Proposition 3 Subsumption w.r.t. an EL-TBox can be reduced in polynomial time to
subsumption w.r.t. a TBox in extended normal form.

2.4.3 General Terminology Boxes

Besides our standard TBoxes, there is another popular terminology box formalism that
we briefly introduce, general terminology boxes (general TBoxes).

Definition 13 (General EL-TBox) Let C,D be EL-concept descriptions. Then, C ⊑
D is called a general concept inclusion (GCI). A general EL-TBox T is a finite set of
general concept inclusions. An interpretation I is a model of T iff CI ⊆ DI for all
C ⊑ D ∈ T . We say A is subsumed by B w.r.t. T (A ⊑T B) for concept names A,B
iff AI ⊆ BI for all models I of T . Moreover, A is satisfiable w.r.t. T iff there exists a
model I of T such that there is an x ∈ AI . ♦

As the name suggests, general TBoxes generalize TBoxes. Every TBox T can be trans-
formed into an equivalent general TBox T ′: For every concept definition A ≡ C ∈ T
add A ⊑ C and C ⊑ A to T ′. It is easily seen that A ⊑T B if and only if A ⊑T ′ B.

General TBoxes are very expressive. Moreover, subsumption in EL w.r.t. general
TBoxes is polynomial w.r.t. the size of the input general TBox (Brandt 2004). In the
remainder of this subsection, we show that it is even PTime-complete. The reduction is
done by reducing satisfiability of Horn formulas to non-subsumption in EL w.r.t. general
TBoxes. Although the correspondence is quite obvious, to the best of the author’s
knowledge it has not been considered yet.

Definition 14 (Horn-satisfiability) A Horn clause is a clause that contains at most
one positive literal and any finite number of negative literals. A Horn formula is a
conjunction of Horn clauses. The Horn-satisfiability problem (Horn-SAT) is to determine
for a given Horn formula whether there is a valuation of the atomic variables such that
the Horn formula evaluates to true. ♦

Horn-SAT is a PTime-complete problem (Greenlaw, Hoover & Ruzzo 1992). It is widely
believed that PTime-complete problems cannot be effectively parallized, thus proving
PTime-completeness of subsumption in EL w.r.t. general TBoxes has also practical
implications for implementations of subsumption algorithms.
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Let H be an instance of Horn-SAT over the atomic variables a1, . . . , ag containing k
clauses, each containing mi ≥ 0 negative literals ¬ni

1, . . . ,¬n
i
mi

and at most one positive
literal pi, 1 ≤ i ≤ k. We translate H into a general TBox T , and thus every clause into
a GCI. In case the i-th clause contains one positive and at least one negative literal, we
add the following GCI to T , where P i, N i

j ∈ {A1, . . . , An} ⊆ NC , 1 ≤ j ≤ mi:

N i
1 ⊓ . . . ⊓N

i
mi

⊑ P i

In case mi = 0 we set the left-hand side of the GCI to ⊤, and if there is no positive
literal present we set the right-hand side to some arbitrary, but fixed P ∈ NC not equal
to any introduced concept name for a literal. Clearly, T is linear in the size of H.

Lemma 3 Let H be an instance of Horn-SAT and T the general EL-TBox corresponding
to H. Then, the following are equivalent:

1. H is satisfiable

2. ⊤ 6⊑T P

Proof. (1 ⇒ 2) Let a1, . . . , ag be the atomic variables used in H and V : {a1, . . . , ag} →
{0, 1} the valuation such thatH is true under V . We define an interpretation I as follows:
∆I := {x}, P I := ∅, AI

i := {x | V (ai) = 1}, 1 ≤ i ≤ g. Clearly, ⊤I = {x} 6⊆ ∅ = P I , so
it remains to show that I is a model of T . Let pi ∨ ¬ni

1 ∨ . . . ∨ ¬ni
mi

be the i-th clause
in H. Since H is satisfiable we have V (pi) is true or V (ni

j) is false for some 1 ≤ j ≤ mi.

Thus, we have (N i
1 ⊓ . . .⊓N

i
m)I ⊆ (P i)I . The argumentation holds similarly for clauses

that do not contain a positive or negative literals.
(2 ⇒ 1) Let I be a model of T such that x /∈ P I . Let a1, . . . , ag be the atomic

variables used in H. For 1 ≤ i ≤ g we define

V (ai) :=

{
1 if x ∈ AI

i

0 if x /∈ AI
i

Then V is a solution to H: Let pi ∨ ¬ni
1 ∨ . . . ∨ ¬ni

m be the i-th clause in H. Since I is
a model we have x ∈ (P i)I or x /∈ (N i

1 ⊓ . . . ⊓N
i
mi

)I . The latter is the case if for some
N i

j , 1 ≤ j ≤ mi, x /∈ (N i
j)

I . Thus V makes the clause true. It is not hard to see that V
also makes clauses true that do not contain a positive literal or negative literals. �

Since PTime is a deterministic class, we have proved the following theorem.

Theorem 2 Subsumption in EL w.r.t. general TBoxes is PTime-complete.
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Tractable Extensions of EL

As stated in the introduction, one of the main goals of this thesis is to find extensions
of EL that provide more expressiveness and for which the subsumption problem w.r.t.
cyclic TBoxes remains tractable. In this chapter, we consider two such extensions. In the
first section, we extend EL by primitive negation, con- and disjunction of role names in
disjunctive normal form (DNF) and p-admissible concrete domains. We show that sub-
sumption is tractable w.r.t. cyclic TBoxes. The second section considers EL extended by
at-least restrictions and con- and disjuncion of role names in DNF. Again, subsumption
in this extension is tractable. A combination of the two extensions is considered in the
next chapter, and it is shown there that subsumption in this combination is intractable.

3.1 EL⊔,⊓,¬(D)

Let EL⊔,⊓,¬(D) be EL extended by primitive negation, role con- and disjunction and p-
admissible concrete domains. We require the complex roles to be in disjunction normal
form.

Definition 15 Let R be a complex role over the role constructors con- and disjunction.
Then, R is in disjunctive normal form (DNF) iff R is of the form

(r11 ⊓ . . . ⊓ r
1
k1

) ⊔ . . . ⊔ (rn
1 ⊓ . . . ⊓ rn

kn
)

♦

It is not the case that any arbitrary complex role R can be transformed into an equivalent
complex role in DNF that is polynomial in the size of R, e.g., for R = (r11 ⊔ . . . ⊔ r

1
k1

) ⊓

. . . ⊓ (rn
1 ⊔ . . . ⊔ rn

kn
). We say R implies S iff RI ⊆ SI for all interpretations I. It is

easily seen that ∃R.C ⊑ ∃S.D iff R implies S and C ⊑ D. Moreover, if R and S are in
disjunctive normal form, checking for implication is polynomial in |R| + |S|, similar to
checking implication of propositional formulas in disjunctive normal form.
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Let us now briefly discuss the features of EL⊔,⊓,¬(D). Primitive negation allows for
making concepts disjoint, e.g., we can define:

Parent ≡ Human ⊓ ∃has child.⊤

Mother ≡ Parent ⊓ Female ⊓ ¬Male

Father ≡ Parent ⊓ Male ⊓ ¬Female

Role disjunction is another advantage. It allows for expressing some limited sort of
“real” disjunction:

∃r.C ⊔ ∃s.C iff ∃(r ⊔ s).C

Last but not least, in particular the property that concrete domains do not have to be
convex makes EL⊔,⊓,¬(D) really expressive. For example, we can express

Teenager ≡ Human ⊓ ≥13(has age) ⊓ ≤19(has age)

Non-convex concrete domains have a high potential to find application in areas where it
is important to reason about concrete qualities, e.g., in medical applications.

In the following, we present an algorithm that decides subsumption in EL⊔,⊓,¬(D)
w.r.t. cyclic TBoxes in polynomial time w.r.t. the size of the input TBox. We define
an extended normal form of EL⊔,⊓,¬(D)-TBoxes that is required by the subsumption
algorithm.

Definition 16 An EL⊔,⊓,¬(D)-TBox T is in extended normal form iff for each concept
definition A ≡ C ∈ T , C is of the form

⊓
1≤i≤j

Pi ⊓ ⊓
1≤i≤k

¬Ni ⊓ ⊓
1≤i≤ℓ

∃Ri.Bi ⊓ ⊓
1≤i≤m

pi(f
i
1, . . . , f

i
ni

)

for j, k, ℓ,m ≥ 0, P1, . . . , Pj , N1, . . . , Nk ∈ Nprim(T ); R1, . . . , Rℓ being complex roles in
DNF; B1, . . . , Bℓ ∈ Ndef (T ); p1, . . . , pm ∈ ΦD, ni ≥ 0 and f i

1, . . . , f
i
ni

∈ NcF , 1 ≤ i ≤ m.♦

Firstly, let us first introduce some abbreviations. Let T be a TBox in extended normal
form and A ≡ C ∈ T . Then,

• PT (A) := {Pi | 1 ≤ i ≤ j}

• P̄T (A) := {Ni | 1 ≤ i ≤ k}

• ET (A) := {∃Ri.Bi | 1 ≤ i ≤ ℓ}

• FT (A) := {pi(f
i
1, . . . , f

i
ni

) | 1 ≤ i ≤ m}

•
∧D

A is the conjunction of p(f1, . . . , fm) ∈ FT (A) in D
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It is not hard to see that we can modify the algorithm from Section 2.4.2 that brings
EL-TBoxes into extended normal form to an algorithm that brings EL⊔,⊓,¬(D)-TBoxes
into extended normal form. Obviously, negated primitive concept names and the con-
crete domain concept constructors can be treated in the same way as primitive concept
names. Complex roles can also be treated like simple role names by the algorithm.

Proposition 4 Subsumption w.r.t. EL⊔,⊓,¬(D)-TBoxes can be reduced in polynomial
time to subsumption w.r.t. EL⊔,⊓,¬(D)-TBoxes in extended normal form.

The presence of primitive negation and concrete domains may lead to unsatisfiable
concept definitions. A defined concept name A ∈ Ndef (T ) in extended normal form can
be unsatisfiable w.r.t. T for three reasons:

1. There is P ∈ PT (A) such that P ∈ P̄T (A).

2.
∧D

A is unsatisfiable

3. There is ∃R.B ∈ ET (A) and B is unsatisfiable w.r.t. T

We can view checking satisfiability of the concept definitions as part of the normalization
process: Firstly, we apply the usual normalization algorithm. Then, we check for every
concept definition if one of the first two reasons for unsatisfiability applies. If so for
A ≡ C, we replace this concept definition by A ≡ ⊥. Afterwards, we can exhaustively
check every A ≡ C ∈ T if C contains ∃R.B and B ≡ ⊥ ∈ T . Again, if so, A ≡ C is
replaced by A ≡ ⊥. At the end, the right-hand side of every concept definition of an
unsatisfiable concept name w.r.t. T is replaced by ⊥. It is easily seen that this extended
normalization can be done in polynomial time and does not blow up the TBox.

Lemma 4 Let T be a TBox in extended normal form and A,B ∈ Ndef (T ). Then, if A
is unsatisfiable w.r.t. T , checking A ⊑T B or B ⊑T A can be done in polynomial time.

Proof. As seen above, checking satisfiability of defined concepts can be done in polyno-
mial time. Clearly, we have A ⊑T B for all B ∈ Ndef (T ). If also B is unsatisfiable w.r.t.
T , we have B ⊑T A. Otherwise, B 6⊑T A. �

Since checking subsumption for unsatisfiable concept definitions is rather trivial, we
assume for our subsumption algorithm that every concept definition in the input TBox
is satisfiable.

The EL⊔,⊓,¬(D)-subsumption algorithm, Algorithm 3, takes a TBox T in extended
normal form as input, that does not contain unsatisfiable concept definitions. It com-
putes a subsumption relation S ⊆ Ndef (T )×Ndef (T ). Starting from the identity on the
concept names, it exhaustively checks for every tuple of defined concept names of T if
all of the completion conditions from Table 3.1 apply, and if so, these tuples are added
to S. When the algorithm finishes, we have (A,B) ∈ S iff A ⊑T B.

Let us first have a look at the complexity of the algorithm.
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(s1) PT (B) ⊆ PT (A)

(s2) P̄T (B) ⊆ P̄T (A)

(s3) For each (∃RB.B
′) ∈ ET (B) there is (∃RA.A

′) ∈ ET (A) such
that RA implies RB and (A′, B′) ∈ S

(s4)
∧D

A implies
∧D

B

Table 3.1: EL⊔,⊓,¬(D) completion conditions

Algorithm 3 EL⊔,⊓,¬(D)-subsumption algorithm

Input: EL⊔,⊓,¬(D)-TBox T in extended normal form not containing any unsatisfiable
defined concept name
S := {(A,A) | A ∈ Ndef (T )}
while there are (A,B) /∈ S and completion condition (s1)-(s4) apply for A and B do
S := S ∪ {(A,B)}

end while
return S

Lemma 5 Algorithm 3 runs in polynomial time.

Proof. The algorithm produces a sequence of relations S0, . . . , Sn. In every successor
relation, one tuple is added, and thus n ≤ |Ndef (T )|2. In every step, the completion
conditions from Table 3.1 have to be checked for at most |Ndef (T )|2 tuples. Checking the
completion conditions is polynomial, since implication between complex roles in DNF
and implication in D can be checked in polynomial time. �

Concerning the correctness, it is obvious that the algorithm terminates, and it is
not hard to see that it is sound. Proving completeness is the harder part. When the
algorithm has terminated for some TBox T and we have some (A0, B0) /∈ S, some
completion condition from Table 3.1 does not hold for (A0, B0). Depending on which
it is, we construct an interpretation by guided unwinding of T . Then, at the root of
the interpretation A0 does hold whereas B0 does not. However, since role disjunction
and the concrete domains are not convex, this interpretation does not directly lead to a
model of T .
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Consider the following example TBox T :

A1 ≡ ∃(r ⊔ s).B

A2 ≡ ∃r.B

A3 ≡ ∃s.B

B ≡ ⊤

Obviously, A1 6⊑ A2 and A1 6⊑ A3, but A1 ⊑ A2 ⊔ A3. So, if we want to construct a
counter-model I of T for A1 6⊑ A2 such that x ∈ AI

1 \A
I
2 , we have x ∈ AI

3 . However, for
S being the subsumption relation produced by the algorithm, we would not and must
not have (A1, A3) ∈ S. For that reason, S cannot completely guide the construction of a
counter-model. However, it can lead to an interpretation that can easily be extended to
become a counter-model. In the completeness proof, the function OT is used therefor.

Definition 17 Let Int be the set of all interpretations. A TBox T induces a function
OT on Int with OT (I) = J iff

• ∆J = ∆I

• PJ = P I for all P ∈ Nprim(T )

• rJ = rI for all role names r occurring in T

• fJ = fI for all concrete feature names occurring in T

• AJ = CI for all A ≡ C ∈ T ♦

Informally speaking, the exhaustive application of OT allows for making a model of T
of a given interpretation, due to the monotonicity of OT .

Lemma 6 Let T be an EL⊔,⊓,¬(D)-TBox, I an interpretation such that AI ⊆ CI for
all A ≡ C ∈ T and J = OT (I). Then, AJ ⊆ CJ for all A ≡ C ∈ T .

Proof. Instead of proving the lemma directly, we show by structural induction DI ⊆ DJ

for all EL⊔,⊓,¬(D)-concept descriptions D, since then AJ = CI ⊆ CJ . For the induction
base case, let D = A for A ≡ C ∈ T . We have AI ⊆ CI and by definition of OT ,
AJ = CI . Thus, AI ⊆ AJ . The cases of primitive concepts, negated primitive concepts
and concrete domain constructors are trivial. For the induction step, let D = ∃R.D1.
We have RI = RJ , the induction hypothesis yields DI

1 ⊆ DJ
1 and thus DI ⊆ DJ . For

D = D1 ⊓ D2, we have by the induction hypothesis DI
i ⊆ DJ

i , i ∈ {1, 2} and hence
DI ⊆ DJ . �

We are now prepared for proving soundness and completeness of Algorithm 3.
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Lemma 7 (Soundness and completeness) Let S0, . . . , Sn = S be the sequence of
relations produced by the algorithm. Then, the following are equivalent:

1. A0 ⊑T B0

2. (A0, B0) ∈ S

Proof. (2 ⇒ 1) Instead of proving the statement directly, we show by induction on i the
following statement:

(A,B) ∈ Si implies A ⊑T B

For the induction base case, we clearly have A ⊑T A′. Now for the induction step, take
(A,B) ∈ Si+1\Si and a model I of T . Recall that conditions (s1)-(s4) are fulfilled for A
and B, and let x ∈ AI . In order to show x ∈ BI , we show x ∈ DI for every conjunct D
of the concept definition of B:

D ∈ PT (B): We have by (s1) PT (B) ⊆ PT (A), and hence x ∈ DI .

D ∈ P̄T (B): By (s2), P̄T (B) ⊆ P̄T (A). Hence x ∈ DI .

D ∈ ET (B): Let D = ∃RB.B
′. By (s3), there is (∃RA.A

′) ∈ ET (A) such that RA

implies RB and (A′, B′) ∈ S. Induction hypothesis yields A′ ⊑T B′, hence x ∈ DI .

D ∈ FT (B): By (s4), we have
∧D

A implies
∧D

B. Thus, for all p(f1, . . . , fk) ∈ FT (B),
x ∈ p(f1, . . . , fk)

I . Hence x ∈ DI .

(1 ⇒ 2) We show the contrapositive and assume (A0, B0) /∈ S. We construct a model
I of T such that there is an x ∈ AI

0 and x /∈ BI
0 . We unwind T starting at A0 and

inductively define a sequence Mi = (Ji, pi, ni), i ≥ 0, where Ji is an interpretation and
pi, ni ⊆ ∆Ji × Ndef (T ). During the construction process, we ensure that pi is totally
functional and ni partial functional. The intention of pi is to indicate which concept
definition of T is or will be unwinded at every point of Ji. Additionally, if ni is defined
at some point it states which defined concept must not hold at this point. Moreover, for
the construction of the Mi, we ensure that the following invariant holds for all y ∈ ∆Ji :

pi(y) = A and ni(y) = B implies (A,B) /∈ S (3.1)

We have (A,B) /∈ S if some completion condition from Table 3.1 does not hold, and
that is what we are going to exploit during the construction of the Mi.

M0: We set ∆J0 := {x}. All other sets, relations and concrete features are interpreted
by the empty set, empty relation, and are undefined respectively. We define p0 :=
{(x,A0)} and n0 := {(x,B0)}. Clearly, the invariant (3.1) holds in M0.
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Mi+1: For the beginning, we set Mi+1 := Mi. We iterate over all leaves y ∈ ∆Ji and
extend Ji+1. Let pi(y) = A. We add y to AJi+1 and to every PJi+1 for P ∈ PT (A).

Firstly, we consider the case in which ni is undefined in y, which we call the default
case. In this case, we add a fresh node y′ to ∆Ji+1 for every ∃RA.A

′ ∈ ET (A).

Moreover, we choose a role conjunct r1⊓ . . .⊓rk of RA, add (y, y′) to r
Ji+1

j , 1 ≤ j ≤
k, set pi+1(y

′) := A′ and leave ni+1 undefined in y′. Now for the concrete features,
let δ be a solution to

∧D
A , which contains concrete features names f1, . . . , fk. We

set fj(y)
Ji+1 := δ(fj), 1 ≤ j ≤ k and leave f

Ji+1

j unchanged for all the other nodes

of ∆Ji+1 .

For the other case, if ni(y) = B, we have (A,B) /∈ S by (3.1). We choose exactly
one completion condition that does not hold for A and B and continue depending
on it:

(s1): Then we can extend Mi+1 as in the default case.

(s2): So P̄ (B) 6⊆ P̄ (A), i.e., there is some P ∈ P̄ (B)\P̄ (A). Then we extend Mi+1

as in the default case, but additionally add y to PJi+1 .

(s3): There is some (∃RB.B
′) ∈ ET (B) and for all (∃RA.A

′) ∈ ET (A) we have
(a) RA does not imply RB, or (b) (A′, B′) /∈ S. Basically, we proceed as in
the default case, except for the existential restrictions (∃RA.A

′) ∈ ET (A), for
which we choose in case of (a) some role disjunct of RA that does not imply
RB. Otherwise, in case of (b), we set ni+1(y

′) := B′, for the successor node
y′ of y introduced by (∃RA.A

′). We note that (3.1) holds.

(s4): There is a solution δ to
∧D

A that is not a solution to
∧D

B. Again, we proceed
as in the default case, except that we interpret fj(y)

Ji+1 := δ(dj), 1 ≤ j ≤ k.

Let Mω := (Jω, pω, nω), where Jω :=
⋃

i≥0 Ji, pω :=
⋃

i≥0 pi and ni :=
⋃

i≥0 ni. Obvi-
ously, Jω is not yet a model of T . In order to obtain a model from Jω, we extend Jω

infinitely w.r.t. T , i.e., define I0 := Iω and In+1 := OT (In). Then

I :=
⋃

i≥0

Ii

We have that the following three facts hold:

Fact 1: AI ⊆ CI for all (A ≡ C) ∈ T . By the construction of Jω this holds for I0, and
the application of OT preserves this fact by Lemma 6.

Fact 2: CI ⊆ AI for all (A ≡ C) ∈ T . Assume there is y ∈ CI and y /∈ AI . By the
construction of I, there is an i such that y ∈ CIi . But then, y ∈ AOT (Ii) = AIi+1

and hence y ∈ AI .
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Fact 3: nω(y) = B implies y /∈ BI for all y ∈ ∆I . In order to show this, we prove by
induction on i the following statement:

nω(y) = B implies y /∈ BIi (3.2)

For the induction base case, we have constructed Jω such that (3.2) holds. Now
for the induction step, let nω(y) = B and pω(y) = A, and assume y ∈ BIi+1 . By
(3.1), we have that (A,B) /∈ S. The application of OT does neither change the
interpretation of the primitive concept names, roles names nor concrete features.
Hence, (s3) does not hold for (A,B), since otherwise y /∈ BIi+1 . So, there is an
existential restriction (∃RB.B

′) ∈ ET (B) and there is no (∃RA.A
′) ∈ ET (A) with

(A′, B′) ∈ S. For every R-successor y′ of y in Jω, if R implies RB, we have by the
construction of Jω that nω(y′) = B′. Now y′ /∈ B′Ii by the induction hypothesis,
and hence y /∈ BIi+1 .

Taking together the three facts, we have that I is a model of T , x ∈ AI
0 and x /∈ BI

0 . �

Theorem 3 Let D be a p-admissible concrete domain. Then, subsumption in EL⊔,⊓,¬(D)
w.r.t. cyclic TBoxes is in PTime.

Interestingly, the sole extension of EL by role disjunction or non-convex p-admissible
concrete domains directly leads to ExpTime-completeness of the subsumption problem
w.r.t. general TBoxes (Baader, Brandt & Lutz 2005a). This big gap between cyclic and
general TBoxes is quite surprising.

3.2 EL⊔,⊓,≥

We now consider EL⊔,⊓,≥, which extends EL by at-least restrictions, and the role con-
and disjunction constructor. Again, we restrict the complex roles to be in DNF and
do not allow them to occur inside number restrictions. We provide an algorithm for
subsumption in EL⊔,⊓,≥ w.r.t. cyclic TBoxes which runs in polynomial time w.r.t. the
size of the input TBox. The algorithm and its correctness proof are very similar to the
EL⊔,⊓,¬(D) case. For that reason, this section is a bit compact.

The algorithm also requires the input EL⊔,⊓,≥-TBoxes to be in extended normal form.

Definition 18 An EL⊔,⊓,≥-TBox T is in extended normal form iff for each concept
definition A ≡ C ∈ T , C is of the form

⊓
1≤i≤j

Pi ⊓ ⊓
1≤i≤k

∃Ri.Bi ⊓ ⊓
1≤i≤ℓ

≥ niri

for j, k, ℓ ≥ 0, P1, . . . , Pj ∈ Nprim(T ); R1, . . . , Rℓ being complex roles in DNF;B1, . . . , Bℓ ∈
Ndef (T ); ni ≥ 2, 1 ≤ i ≤ ℓ; r1, . . . , rℓ ∈ NR and ri 6= rj , 1 ≤ i < j ≤ ℓ. ♦
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(s1) PT (B) ⊆ PT (A)

(s2) For each (∃RB.B
′) ∈ ET (B) there is (∃RA.A

′) ∈ ET (A) such
that RA implies RB and (A′, B′) ∈ S

(s3) For each (≥ mr) ∈ N(B) there is (≥ nr) ∈ N(A) such that
n ≥ m

Table 3.2: EL⊔,⊓,≥ completion conditions

Algorithm 4 EL⊔,⊓,≥ -subsumption algorithm

Input: EL⊔,⊓,≥-TBox T in extended normal form
S := {(A,A) | A ∈ Ndef (T )}
while there are (A,B) /∈ S and completion conditions (s1)-(s3) hold for A and B do
S := S ∪ {(A,B)}

end while

Let T be an EL⊔,⊓,≥-TBox into extended normal form and A ≡ C ∈ T . We use the
following abbreviations to have easy access to the conjuncts of C:

• PT (A) := {Pi | 1 ≤ i ≤ j}

• ET (A) := {∃Ri.Bi | 1 ≤ i ≤ k}

• NT (A) := {≥ niri | 1 ≤ i ≤ ℓ}

In order to bring an arbitrary EL⊔,⊓,≥-TBox T into extended normal form, we apply
the normalization algorithm for EL-TBoxes from Section 2.4.2 first, which can easily be
modified to also work with at-least restrictions. Basically, at-least restrictions can be
handled in an obvious way like primitive concept names. In the normalization process
we additionally remove ≥ mr in all concept definitions that contain ≥ nr and ≥ mr
such that n > m. We thus end up with an EL⊔,⊓,≥-TBox in extended normal form. For
EL⊔,⊓,≥, we do not have to take care of concept satisfiability, since every EL⊔,⊓,≥-concept
description is satisfiable.

Proposition 5 Subsumption w.r.t. an EL⊔,⊓,≥-TBox can be reduced in polynomial time
to subsumption in EL⊔,⊓,≥ w.r.t. an EL⊔,⊓,≥-TBox in extended normal form.

The EL⊔,⊓,≥-subsumption algorithm, Algorithm 4, takes a TBox T in extended nor-
mal form as input and computes a subsumption relation S ⊆ Ndef (T ) × Ndef (T ) in
polynomial time w.r.t. the size of the input TBox. It is similar to the previous sub-
sumption algorithm. When it terminates, which obviously is always the case, we have
(A,B) ∈ S iff A ⊑T B.
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Lemma 8 Algorithm 4 runs in polynomial time.

Proof. The algorithm produces a sequence of relations S0, . . . , Sn. In every successor
relation, one tuple is added, and thus n ≤ |Ndef (T )|2. In every step, the completion
conditions from Table 3.2 have to be checked for at most |Ndef (T )|2 tuples. Checking the
completion conditions is polynomial, since implication between complex roles in DNF
can be checked in polynomial time. �

In the proof of completeness of the EL⊔,⊓,≥-subsumption algorithm, we also rely on
the monotonicity of OT .

Lemma 9 Let T be an EL⊔,⊓,≥-TBox, I an interpretation such that AI ⊆ CI for all
A ≡ C ∈ T and J = OT (I). Then, AJ ⊆ CJ for all A ≡ C ∈ T .

Proof. Instead of proving the lemma directly, we show by structural induction DI ⊆ DJ

for all EL⊔,⊓,≥-concept descriptions D. For the induction start, let D = A for A ≡ C ∈
T . We have AI ⊆ CI and by definition of OT , AJ = CI . Thus, AI ⊆ AJ . The cases
of primitive concepts and number restrictions are trivial. For the induction step, let
D = ∃R.D1. We have RI = RJ , the induction hypothesis yields DI

1 ⊆ DJ
1 and thus

DI ⊆ DJ . For D = D1 ⊓D2, we have by the induction hypothesis DI
i ⊆ DJ

i , i ∈ {1, 2}
and hence DI ⊆ DJ . �

Lemma 10 (Soundness and completeness) Let S0, . . . , Sn = S be the sequence of
relations produced by the algorithm. Then, the following are equivalent:

1. A0 ⊑T B0

2. (A0, B0) ∈ S

Proof. (2 ⇒ 1) Instead of proving the statement directly we show by induction on i the
following:

(A,B) ∈ Si implies A ⊑T B

For the induction base case, clearly A ⊑T A. Now for the induction step, take (A,B) ∈
Si+1\Si and a model I of T . Recall that completion conditions (s1)-(s3) are fulfilled for
A and B. Let x ∈ AI , we show x ∈ DI for every conjunct D of the concept definition
of B, and thus x ∈ BI :

• D ∈ PT (B) : By (s1) we have PT (B) ⊆ PT (A) and hence x ∈ DI .

• D ∈ ET (B): Let D = ∃RB.B
′. By (s2), there is (∃RA.A

′) ∈ ET (A) such that RA

implies RB and (A′, B′) ∈ S. Induction hypothesis yields A′ ⊑T B′, hence x ∈ DI .

• D ∈ NT (B) : Let D = (≥ mr). Then, by (s3) there is (≥ nr) ∈ NT (A), n ≥ m
and x ∈ (≥ nr)I . Hence x ∈ DI .
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(1 ⇒ 2) We show the contrapositive. Assume (A0, B0) /∈ S. As in the EL⊔,⊓,¬(D)
case, we construct a model I of T such that there is x ∈ AI

0 and x /∈ BI
0 . We unwind

T starting at A0. Therefore, we inductively define a sequence Mi = (Ji, pi, ni), i ≥ 0
where Ji is an interpretation, pi ⊆ ∆Ji × P(Ndef (T )), and ni ⊆ ∆Ji × Ndef (T ). We
ensure pi to be totally functional, and ni to be partial functional. The intention of pi is
that it keeps the set of concept definitions that have been or will be unwinded at some
point of Ji. In the process of the construction of the Mi, we need the possibility to
expand more than one defined concept in a single point. For that reason, pi maps to a
subset of Ndef (T ). Again, if ni is defined for some node of Ji, it indicates which defined
concept must not hold there. We construct the Mi such that the following invariant
holds for all y ∈ ∆Ji :

pi(y) = {A} and ni(y) = B implies (A,B) /∈ S (3.3)

Note, that pi(y) is a singleton in the precondition of (3.3). If (A,B) /∈ S, we have
that some completion condition from Table 3.2 does not hold, and this will guide the
construction of the Mi.

In the following, if we do not explicitly define pi or ni for some node y, then pi(y) := ∅
and ni is undefined in y. Let m := max{n | A ∈ Ndef (T ), (≥ nr) ∈ NT (A)}.

M0: For M0, we set ∆J0 := {x, z1, . . . , zm}. All other concepts and roles are inter-
preted by the empty set and the empty relation respectively. We define n0 :=
{(x,B0)} and

p0(y) :=

{
{A0} if y = x
∅ otherwise

We note that (3.3) holds in M0.

Mi+1: At the beginning we set Mi+1 := Mi. We iterate over all leaves y ∈ ∆Ji , all
A ∈ pi(y), and extend Ji+1.

Firstly, we consider the default case where ni is not defined in y. We fix the
interpretation of the concept names in y, add y to AJi+1 and to PJi+1 for all
P ∈ PT (A). For the existential restrictions, we introduce only one fresh successor
y′. So for each (∃RA.A

′) ∈ ET (A), we choose a role conjunction r1 ⊓ . . . ⊓ rk
from RA, add (y, y′) to r

Ji+1

j , 1 ≤ j ≤ k and A′ to pi+1(y
′). Now for the at-

least restrictions (≥ nr) ∈ NT (A): If (y, y′) has been added to rJi+1 , we add
{(y, z1), . . . , (y, zn−1)} to rJi+1 , and {(y, z1), . . . , (y, zn)} to rI otherwise. We thus
have ensured that y has exactly n r-successors.

For the other case let ni(y) = B. We have (A,B) /∈ S by invariant (3.3). Depending
on which completion condition from Table 3.2 does not hold, we extend Mi+1:
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(s1): Then we can extend Mi+1 as in the default case.

(s2): So there is an existential restriction (∃RB.B
′) ∈ ET (B) and for every ex-

istential restriction (∃RA.A
′) ∈ ET (A) (a) RA does not imply RB or (b)

(A′, B′) /∈ S. For those existential restrictions that fall under case (a) we
introduce a fresh node y′, choose a role conjunction r1⊓ . . .⊓ rk from RA that
does not imply RB, add (y, y′) to r

Ji+1

j , 1 ≤ j ≤ k and set pi+1(y
′) := {A′}.

For existential restrictions that fall under (b), we choose a role conjunc-

tion r1 ⊓ . . . ⊓ rk from RA, introduce a fresh y′, add (y, y′) to r
Ji+1

j , set
pi+1(y

′) := {A′} and ni+1(y
′) := B′. Again, the invariant (3.3) holds in Mi+1.

In order to ensure that the at-least restrictions hold, for each (≥ nr) ∈ NT (A),
we add {(y, z1), . . . , (y, zm)} to rIi+1 .

(s3): We extend Mi+1 as in the default case.

Let Mω := (Jω, pω, nω), where Jω :=
⋃

i≥0 Ji, pω =
⋃

i≥0 pi and nω =
⋃

i≥0 ni. Obvi-
ously, Jω is not a model of T . For that reason, we apply T infinitely often to Jω. Let
I0 := Jω and In+1 := OT (In). We define

I :=
⋃

i≥0

Ii.

The following three facts hold:

Fact 1: AI ⊆ CI for all (A ≡ C) ∈ T . By the construction of Jω this holds for I0, and
the application of OT preserves this fact due to the monotonicity of OT .

Fact 2: CI ⊆ AI for all (A ≡ C) ∈ T . Assume there is y ∈ CI . By the construction
of I, there is an i such that y ∈ CIi . But then y ∈ AOT (Ii) = AIi+1 , and hence
y ∈ AI .

Fact 3: nω(y) = B implies y /∈ BI for all y ∈ ∆I . In order to show the fact, we prove
by induction on i the following statement:

nω(y) = B implies y /∈ BIi (3.4)

For the induction base case, we have constructed Jω such that (3.4) holds. Now
for the induction step, let nω(y) = B and pω(y) = {A}, and assume y ∈ BIi+1 . By
(3.3), we have that (A,B) /∈ S. The application of OT does neither change the
interpretation of the primitive concept nor roles names. Thus, if (s1) does not hold
for (A,B), y /∈ BIi+1 . If (s3) does not hold for (A,B), there is (≥ mr) ∈ NT (B)
and no (≥ nr) ∈ NT (A) such that n ≥ m. By the construction, we have ensured
that y has less than m r-successors. Hence, y /∈ BIi+1 . Lastly, in case (s2) does
not hold for (A,B), there is an existential restriction (∃RB.B

′) ∈ ET (B) and there
is no (∃RA.A

′) ∈ ET (A) such that RA implies RB and (A′, B′) ∈ S. For every
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Chapter 3 Tractable Extensions of EL

R-successor y′ of y in Jω, if R implies RB, we have by the construction of Jω that
nω(y′) = B′. Now y′ /∈ B′Ii by the induction hypothesis, and hence y /∈ BIi+1 .

Taking together the three facts, we have that I is a model of T , x ∈ AI
0 and x /∈ BI

0 . �

Theorem 4 Subsumption in EL⊔,⊓,≥ can be decided in polynomial time.

Again, it is interesting that the sole extension of EL by at-least restrictions directly
leads to ExpTime-completeness of subsumption w.r.t. general TBoxes (Baader, Brandt
& Lutz 2005a).
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Chapter 4

Intractable Extensions of EL

In this chapter, we investigate extensions of EL for which the subsumption problem
becomes intractable w.r.t. cyclic TBoxes. Firstly, we show that in a combination of
the extensions presented in the previous chapter, subsumption is intractable. Moreover,
we justify the requirement of the complex roles to be in DNF made in Chapter 3. We
then continue having a look at subsumption in EL extended by negation, disjunction,
transitive closure over role names, functionality and concrete domains with abstract
feature chains. We close the chapter with a short discussion on EL extended by inverse
roles, which remains an open question of this thesis.

For most extensions of EL, concept satisfiability is trivial in the sense that every
concept description is satisfiable without or w.r.t. acyclic and cyclic TBoxes. For that
reason, we only consider concept satisfiability in EL if it is not trivial.

4.1 A Combination of EL⊔,⊓,¬(D) and EL⊔,⊓,≥

In the previous chapter, we have seen two different extensions of EL, for which the
subsumption problem can be decided in polynomial time w.r.t. the size of input TBox.
Naturally, the question comes up, whether we can combine both extensions in order
to obtain an even more expressive, tractable description logic. We show in the follow-
ing, that both the combination of at-least restrictions and primitive negation, and the
combination of at-least restrictions and concrete domains lead to intractability of sub-
sumption. Thus, subsumption in the combination of the two tractable description logics
presented in the previous chapter is intractable.

Let EL≥,¬ be EL extended by at-least restrictions and primitive negation. As we will
see in the following, subsumption in EL≥,¬ is co-NP-complete. The upper bound comes
from the description logic ALUN , which allows for the concept constructors bottom,
value restriction, conjunction, disjunction, primitive negation, number restrictions, and
unqualified existential restriction (∃r.⊤). It has been shown in (Francesco M. Donini &
Nutt 1997) that subsumption in ALUN is co-NP-complete. Given two EL≥,¬-concept
descriptions C,D, we have C ⊑ D iff ¬D ⊑ ¬C. Bringing ¬C and ¬D into negation
normal form gives us two ALUN -concept descriptions, and thus subsumption in EL≥,¬

is also in co-NP.
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Colors := ∃r.(R ⊓ ¬G ⊓ ¬B) ⊓

∃r.(¬R ⊓G ⊓ ¬B) ⊓

∃r.(¬R ⊓ ¬G ⊓B)

Coloring := ⊓
v∈V

(

∃r.(Pv ⊓ ⊓
{v,w}∈E

¬Pw)

)

C := Colors ⊓ Coloring

Table 4.1: The EL≥,¬-concept description C for the reduction of an instance G = (V,E)
of 3-Colorability to non-subsumption in EL≥,¬.

For the lower bound, we reduce Graph 3-Colorability to non-subsumption in EL≥,¬.

Definition 19 (Graph 3-Colorability) For a given graph G = (V,E), the Graph 3-
Colorability Problem (3-Colorability) is to determine whether there exists a coloring
function f : V → {1, 2, 3} such that f(u) 6= f(v) whenever {u, v} ∈ E. ♦

3-Colorability is known to be NP-complete (Garey & Johnson 1990). For a given instance
G = (V,E) of 3-Colorability, Table 4.1 defines an EL≥,¬-concept description C that we
will use for the reduction. Obviously, C is linear in the size of G. Firstly, let us explain
the intention of C. For an interpretation I and x ∈ CI , Colors ensures that x has
three r-successors with three different concept names, R, G and B, that represent three
colors. Then, Coloring requires x to have a successor for each vertex of G that does not
overlap with any adjacent vertices. Clearly, C itself does not constrain the number of
r-successors of x, but if there is a coloring function for G, then there is an interpretation
where x has exactly three r-successors.

Lemma 11 Let G = (V,E) be an instance of 3-Colorability. Then, the following are
equivalent:

1. G has a solution

2. C 6⊑ (≥ 4r)

Proof. (1 ⇒ 2) Let f be the coloring function. We define an interpretation I with
∆I := {x, y1, y2, y3} and set rI := {(x, yi) | i ∈ {1, 2, 3}}, RI := {y1}, G

I := {y2} and
BI := {y3}. Now for every v ∈ V , we set P I

v := {yf(v)}. Obviously, we have x ∈ CI

and x /∈ (≥ 4r)I .
(2 ⇒ 1) Let I be an interpretation such that x ∈ CI , {(x, yi) | i ∈ {1, 2, 3}} ⊆ rI and

x /∈ (≥ 4r)I . We define a coloring function f . For every vertex v ∈ V , there are possibly
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Colors := ∃r.(=d(fR) ⊓ 6=d(fG) ⊓ 6=d(fB)) ⊓

∃r.(6=d(fR) ⊓ =d(fG) ⊓ 6=d(fB)) ⊓

∃r.(6=d(fR) ⊓ 6=d(fG) ⊓ =d(fB)) ⊓

Coloring := ⊓
v∈V

(

∃r.(=d(fv) ⊓ ⊓
{v,w}∈E

6=d (fw))

)

C := Colors ⊓ Coloring

Table 4.2: The EL≥(D)-concept description C for the reduction of an instance G = (V,E)
of 3-Colorability to non-subsumption in EL≥(D), for fR, fG, fB, fv ∈ NcF , v ∈
V .

more than one yi, i ∈ {1, 2, 3} such that yi ∈ P I
v . Nevertheless, through Coloring it is

ensured that in every yi for every adjacent w of v, yi /∈ P I
w . Thus, for every v ∈ V , we

set f(v) := i, where i ∈ {1, 2, 3} is chosen such that yi ∈ P I
v . �

Theorem 5 Subsumption in EL≥,¬ is co-NP-complete.

One proves similarly intractability of subsumption in EL extended by at-least restric-
tion and a wide variety of concrete domains, EL≥(D). Any concrete domain with unary
predicates =d and 6=d for some d ∈ ∆D with the obvious extension can be used together
with at-least restrictions to also encode an instance G = (V,E) of 3-Colorability. The
concept description C used for the reduction is presented in Table 4.2, which is very
similar to Table 4.1. One can easily verify that G has a solution iff C 6⊑ (≥ 4r).

Theorem 6 Subsumption in EL≥(D) is co-NP-hard.

For subsumption w.r.t. TBoxes in a combination of all extensions from EL⊔,⊓,¬(D) and
EL⊔,⊓,≥, to the best of the author’s knowledge, no upper bounds are currently known.

4.2 Arbitrary Role Con- and Disjunction

A restriction made in the previous chapter was to require the complex roles to be in
disjunctive normal form for both tractable extensions of EL. We will see in the following
that allowing an arbitrary nesting of con- and disjunction role constructors leads to co-

NP-hardness of subsumption. In the following, EL⊓,⊔ denotes EL extended by arbitrary
role con- and disjunction.

We show co-NP-hardness of subsumption in EL⊓,⊔ by reducing 3-Colorability to non-
subsumption in EL⊓,⊔. Let G = (V,E) be an instance of 3-Colorability and |V | = n. We
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Coloring := ⊓
1≤i≤n

(ci1 ⊔ c
i
2 ⊔ c

i
3)

Multicolored :=
⊔

1≤i≤n

((ci1 ⊓ c
i
2) ⊔ (ci1 ⊓ c

i
3) ⊔ (ci2 ⊓ c

i
3))

Neighbors :=
⊔

{vj ,vk}∈E
i∈{1,2,3}

(cji ⊓ c
k
i )

Table 4.3: The definitions of the complex roles used in the reduction from 3-Colorability
to non-subsumption in EL⊓,⊔.

introduce role names c11, . . . , c
n
1 , c

1
2, . . . , c

n
2 and c13, . . . , c

n
3 that represent the three possible

colors of each vertex. The complex roles used to encode 3-Colorability for G are shown in
Table 4.3. The intention of the definition of Coloring is that it requires each node of the
graph to be colored by at least one color. The remaining two complex role definitions
describe wrong coloring: Multicolored signals that a vertex is multicolored and Neighbors

that two adjacent vertices have the same color. Clearly, the sizes of Coloring, Multicolored

and Neighbors are linear w.r.t. to the size of G.

Lemma 12 Let G = (V,E) be an instance of 3-Colorability. Then, the following are
equivalent.

1. G has a solution

2. ∃Coloring.⊤ 6⊑ ∃(Multicolored ⊔ Neighbors).⊤

Proof. (1⇒2) Let f be the coloring function. We define an interpretation I with ∆I :=
{x, y}. For each vertex vi, 1 ≤ i ≤ n, we set (cif(Vi)

)I := {(x, y)} and for j 6= f(Vi),

cij is interpreted by the empty relation. Clearly, x ∈ (∃Coloring.⊤)I \ (∃(Multicolored ⊔

Neighbors).⊤)I .
(2⇒1) Let I be an interpretation and (x, y) ∈ ColoringI \ (Multicolored⊔Neighbors)I .

We define a coloring function f as follows:

f(vi) := j if (x, y) ∈ (cij)
I , j ∈ {1, 2, 3}

The facts that (x, y) ∈ ColoringI and (x, y) /∈ MulticoloredI ensure that f is well-defined.
Moreover (x, y) /∈ NeighborsI guarantees that f does not assign the same colors to any
adjacent vertices. �
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Theorem 7 Subsumption in EL⊓,⊔ is co-NP-hard.

Lastly, it is not too hard to see that this lower bound for subsumption in EL⊓,⊔ is tight.
Similar to EL, one can use a homomorphism approach that in the induction step checks
for implication of the complex roles, which is in NP for arbitrary combinations of role
con- and disjunction. For subsumption in EL⊓,⊔ w.r.t. TBoxes, the best known upper
bound is ExpTime, coming from EL⊓,⊔ being a notational fragment of ALCreg, which is
ALC extended by regular expressions over role names. Schild showed (Schild 1991) that
ALCreg corresponds to Propositional Dynamic Logic (PDL) (Fischer & Ladner 1979)
and for that reason subsumption in ALCreg is ExpTime-complete.

4.3 Negation

Let ELC denote EL extended by negation. Since ELC is a notational variant of ALC,
which allows for the concept constructors top, negation and conjunction, the complexity
of subsumption in ALC (Schmidt-Schauß & Smolka 1991, Schild 1994) directly carries
over to ELC, and concept satisfiability is no longer trivial.

Theorem 8 Concept satisfiability, subsumption and subsumption w.r.t. acyclic TBoxes
in ELC is PSpace-complete and ExpTime-complete w.r.t. cyclic and general TBoxes.

Note, that in the proofs of hardness of satisfiability in ALC only one role name is used
(Schild 1991, Schild 1994). Thus, for reductions we may assume that only one role name
occurs in ELC-TBoxes.

We now introduce a normal form of ELC TBoxes. Basically, it is the same normal
form as for EL-TBoxes from Section 2.4.2, but additionally restricts negation symbols
to only occur in front of defined concept names.

Definition 20 An ELC-TBox T is in normal form iff for each A ≡ C ∈ T , C is either
of the form ⊤ or P ; ¬B; ∃r.B; or B1 ⊓B2, for P ∈ NC and B,B1, B2 ∈ Ndef (T ). ♦

Using a similar normalization algorithm as in Section 2.4.2, it is not hard to see that
every ELC-TBox T can be transformed in polynomial time into an equivalent ELC-TBox
in normal form that is linear in the size of T .

Proposition 6 Subsumption in ELC w.r.t. TBoxes can be reduced in polynomial time
to subsumption in ELC w.r.t. TBoxes in normal form.

4.4 Disjunction

We now consider the extension of EL by disjunction, denoted by ELU . Brandt showed
in (Brandt 2006) that subsumption in ELU is co-NP-complete. In the following, we
present exact complexities of subsumption in ELU w.r.t. to acyclic and cyclic TBoxes.
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Chapter 4 Intractable Extensions of EL

Figure 4.1: An example of a quantifier tree for Q = ∀p1.∀p2.∃p3.p1 → (p2 ∨ p3).

For the case of acyclic TBoxes, subsumption in ELU is PSpace-complete. In order
to obtain the lower bound, we reduce validity of Quantified Boolean Formulas to non-
subsumption in ELU .

Definition 21 (Quantified Boolean Formula) A Quantified Boolean Formula (QBF)
is of the form

Q1p1. . . . Qnpn.φ(p1, . . . , pn)

where Qi ∈ {∃,∀} and φ(p1, . . . , pn) is a propositional formula using only propositional
variables p1, . . . , pn. ♦

Validity of a QBF Q = Q1p1. . . . Qnpn.φ(p1, . . . , pn) is defined via induction on the length
of the quantifier prefix. For a propositional formula φ we define φ[p/i], i ∈ {0, 1} to be
the propositional formula that is obtained by replacing p by i in φ. The QBF Q is valid
iff

1. Q1 = ∀: Q2p1. . . . Qnpn.φ[p1/0] and Q2p1. . . . Qnpn.φ[p1/1] is valid

2. Q1 = ∃: Q2p1. . . . Qnpn.φ[p1/0] or Q2p1. . . . Qnpn.φ[p1/1] is valid

We thus obtain a Boolean combination of truth values that is valid iff it evaluates to 1.
Deciding validity of QBFs is known to be PSpace-complete (Garey & Johnson 1990).

We can view QBFs as quantifier trees. Let Q = Q1p1. . . . Qnpn.φ(p1, . . . , pn) be a
QBF, its quantifier tree is characterized as follows:

• Each level of the tree corresponds to one quantifier

• Each path starting from the root to a leaf has length n

• In ∀-levels each node has two successors, one for pi = 0 and one for pi = 1

• In ∃-levels each node has one successor: It suffices to explore one of the possibilities
pi = 0 or pi = 1
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Li ≡ ⊓
1≤j<i

(Pj ⊔ P̄j) ⊓

{
∃r.(Pi ⊓ Li+1) ⊓ ∃r.(P̄i ⊓ Li+1) if Qi = ∀
∃r.Li+1 if Qi = ∃

Ln+1 ≡ ⊓
1≤j≤n

(Pj ⊔ P̄j) ⊓ τ(φ(p1, . . . , pn))

M ≡
⊔

1≤k≤j≤n

∃r. . . .∃r
︸ ︷︷ ︸

j times

.
(
(Pk ⊓ ∃r.P̄k) ⊔ (P̄k ⊓ ∃r.Pk) ⊔ (Pk ⊓ P̄k)

)

Table 4.4: The TBox TQ for the reduction of an instance Q =
Q1p1. . . . Qnpn.φ(p1, . . . , pn) of QBF to non-subsumption in ELU for
1 ≤ i ≤ n.

• On each branch, the Boolean formula φ evaluates to 1

It is not hard to see that a QBF Q is valid iff there exists a quantifier tree of Q. Figure
4.1 exemplarily shows the quantifier tree of Q = ∀p1.∀p2.∃p3.p1 → (p2 ∨ p3).

Let Q = Q1p1. . . . Qnpn.φ(p1, . . . , pn) be a QBF. It is assumed w.l.o.g. that φ is in
negation normal form, i.e., negation occurs only in front of the pi, 1 ≤ i ≤ n. We define
a TBox TQ, shown in Table 4.4, that corresponds to Q and introduce concept names
P1, . . . , Pn, P̄1, . . . , P̄n that represent the Boolean variables p1, . . . , pn and their negation
respectively. It is easily seen that TQ is linear in the size of Q and acyclic.

The TBox TQ contains the defined concepts L1, . . . , Ln that represent the quantifier
levels, and Ln+1 which represents φ. In the definition of Ln+1, τ(φ(p1, . . . , pn)) is the
concept description corresponding to φ(p1, . . . , pn). It is obtained by simply replacing ∧
by ⊓, ∨ by ⊔, pi by Pi and ¬pi by P̄i. Furthermore, the additional defined concept M
covers wrong behavior, i.e., M holds if there is up to depth n an incorrect propagation
of the truth values or if some Pi and P̄i hold simultaneously.

Lemma 13 Let Q = Q1p1. . . . Qnpn.φ(p1, . . . , pn) be a QBF and TQ the TBox corre-
sponding to Q. Then, the following are equivalent:

1. Q is valid

2. L1 6⊑TQ
M

Proof. (1 ⇒ 2) Q is valid and thus there exists a quantifier tree. Clearly, this tree yields
a model I of TQ: Its interpretation domain are the vertices of the tree, and if two vertices
v1, v2 are connected, then (v1, v2) ∈ rI . Moreover, if pi = 0 at the incoming edge of some
node v, then v ∈ P̄i and w ∈ P̄i for all nodes w below v. The case in which pi = 1 at the
incoming edge of node v is defined similarly. For Li, 1 ≤ i ≤ n+ 1, we define v ∈ LI

i iff
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depth(v) = n + 1 − i. Moreover, we set MI := ∅. Thus, I is a model for TQ, L1 holds
at the root of I. Hence, L1 6⊑TQ

M .

(2 ⇒ 1) Let I be a model of TQ and x ∈ LI
1 \MI . Due to the tree model property

(Baader et al. 2003), we may assume that x is the root of a tree. Let t be the sub-tree
obtained from I that contains all nodes reachable via r-edges along paths starting from x
of length n. In order to make a quantifier tree of t, for every node y with depth(y) = i and

a successor node y′, the connecting edge is labeled with pn+1−i = 0 if y′ ∈ P̄i
I
, and with

pn+1−i = 1 if y′ ∈ P I
i . If there exist ∃-levels that have more than one successor, in each

such level all successor branches except one are dropped. Likewise, if there are ∀-levels
that have more than two successors, only two successors branches that define different
truth values are kept and the rest is dropped. Since x /∈ MI , we have ensured that all
Pi’s are correctly propagated along the tree, and that no Pi and P̄i hold simultaneously.
Thus, we have constructed a quantifier tree for Q and Q is valid. �

The lemma yields a PSpace lower bound for non-subsumption in ELU w.r.t. acyclic
TBoxes. Since PSpace is a deterministic class, we have that subsumption in ELU
is PSpace-hard w.r.t. acyclic TBoxes. The PSpace upper bound is an immediate
consequence of ELU being a notational fragment of ALC.

Theorem 9 Subsumption in ELU w.r.t. acyclic TBoxes is PSpace-complete.

For the case of subsumption in ELU w.r.t. cyclic TBoxes, we reduce satisfiability in
ELC to non-subsumption in ELU . Thus, let T = {A1 ≡ C1, . . . , An ≡ Cn} be a cyclic
ELC-TBox in normal form with only one role name occurring in it. Let Ā1, . . . , Ān be
concept names not occurring in T . Their intention is to simulate negation, i.e., Ā should
hold at some point iff A does not hold at this point. In order to obtain an ELU-TBox
T ′ corresponding to T , for B ∈ Ndef (T ) we

1. replace any A ≡ ∃r.Aj ∈ T by

A ≡ ∃r.(Aj ⊓ ⊓
1≤i≤n

(Ai ⊔ Āi))

2. replace any A ≡ ¬Aj ∈ T by A ≡ Āj , 1 ≤ j ≤ n.

Finally, we introduce the following additional concept definition:

M ≡ ∃r.M ⊔
⊔

1≤i≤n

(Ai ⊓ Āi)

The replacements in the first step ensure that Aj or Āj hold at every relevant point
of connected models, except for the root node, which will be treated analogously. The
replacements in the second step remove any negations occurring in T , making T ′ an
ELU-TBox. The additional concept definition M signals a simultaneous occurrence of
some Aj and Āj at some point of connected models 1 ≤ j ≤ n. It is easily seen that T ′

is linear in the size of T .
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Lemma 14 Let T = {A1 ≡ C1, . . . , An ≡ Cn} be an ELC-TBox in normal form with
only one role name r occurring in it, T ′ the ELU-TBox corresponding to T and A ∈
Ndef (T ). Furthermore, let

F := ⊓
1≤i≤n

(Ai ⊔ Āi).

Then, the following are equivalent:

1. A is satisfiable w.r.t. T

2. A ⊓ F 6⊑T ′ M

Proof. (1 ⇒ 2) Let I be a model of T and x ∈ AI . Let I ′ be defined as I and additionally

interpret Āi
I′

:= ∆I′

\ AI′

i , 1 ≤ i ≤ n and MI′

:= ∅. The construction ensures that at
every point of I ′ either Ai or Āi hold for every 1 ≤ i ≤ n. Consequently, I ′ is also a
model of T ′, and x ∈ (A ⊓ F )I

′

\MI′

. Hence, A ⊓ F 6⊑T ′ M .
(2 ⇒ 1) Let I be a model of T ′ and x ∈ (A ⊓ F )I \MI . In order to obtain a model

I ′ of T , we need to strip I. For a relation R ⊆ M ×M , in order to obtain its reflexive
transitive closure, we redefine R1 := R0 ∪R and for i ≥ 0, we set

∆I′

i := (rI)i(x) ∩ F I

rI
′

i := rI ∩ (∆I′

i × ∆I′

i)

AI′

i := AI ∩ ∆I′

i , A ∈ NC .

Then,

∆I′

:=
⋃

i≥0

∆I′

i , rI
′

:=
⋃

i≥0

rI
′

i , AI′

j :=
⋃

i≥0

rI
′

i , 1 ≤ j ≤ n.

In order to prove that I ′ is a model of I, we prove by induction on m the following
statement, where Aj ≡ Cj ∈ T , 1 ≤ j ≤ n:

A
I′

m

j ⊆ C
I′

m+1

j

It suffices to only consider the case Cj = ∃r.B and Cj = ¬B in the induction step. First

of all, it is easily seen that ∆I′
0 ⊆ ∆I′

1 ⊆ . . .. Let Cj = ∃r.B and y ∈ A
I′

m+1

i \ A
I′

m

i .
Since y ∈ (∃r.(B ⊓ F ))I , there is a z ∈ (B ⊓ F )I such that (y, z) ∈ rI . Consequently,
z ∈ ∆I′

m+2 and (y, z) ∈ rI
′
m+2 . Hence, y ∈ (∃r.B)I

′
m+2 . For the other case, let Cj = ¬B

and y ∈ AI′
m+1 . We have y ∈ B̄I and since y ∈ F I \MI , y /∈ BI′

m+2 . It is not hard
to see that CI′

⊆ AI′

for all A ≡ C ∈ T . Thus, we have that I ′ is a model of T and
x ∈ AI′

. �

The reduction gives an ExpTime lower bound for non-subsumption in ELU w.r.t. cyclic
TBoxes. Again, since ExpTime is a deterministic class, this also yields an ExpTime

lower bound for subsumption in ELU .The ExpTime upper bound is an immediate con-
sequence of ELU being a notational fragment of ALC.
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Theorem 10 Subsumption in ELU w.r.t. cyclic TBoxes is ExpTime-complete.

4.5 Transitive Closure over Role Names

We are now going to investigate the complexity of reasoning in EL+, that is EL extended
by transitive closure over role names. It turns out that EL+ is as difficult as ELU from
a complexity theory point of view.

There is a close relationship between subsumption in EL+ and query containment in
the XPath fragment XP

{[],∗,//}, which is investigated by Miklau and Suciui in (Miklau
& Suciu 2002). XPath (Clark & DeRose 1999) is a query language to select sets of
nodes in XML-documents. An XPath query q1 is contained in a query q2 iff for all
XML-documents the set of nodes selected by q1 is a subset of the nodes selected by q2.
Due to the close relationship between XP

{[],∗,//} and EL+, we will subsequently employ
techniques from (Miklau & Suciu 2002).

Let us first introduce some notions that we will frequently use in the following. We
call an existential restriction ∃r+.C a transitive existential restriction. For EL+-concept
descriptions, we define rdepth similarly as for EL such that transitive existential restric-
tions are treated in the same way as existential restrictions. A path x

r
−→ . . .

r
−→ y in a

graph is called an r-chain from x to y. EL+-descriptions trees are defined in an obvious
way like EL-description trees which additionally may have transitive edges, i.e., edges
labeled with r+, r ∈ NR. Let C be an EL+-concept description. In order to translate the
corresponding EL+-description tree tC into an EL-description tree, we expand the tran-
sitive edges of t. To do so, we need an order on the edges of tC . Let �NR

be a well-order
on NR and VtC = {v1, . . . , vn}. We define (vi1 , r

+
1 , vj1) ∈ EtC � (vi2 , r

+
2 , vj2) ∈ EtC iff

r1 �NR
r2, i1 ≤ i2 and j1 ≤ j2. Let e1 = (v1, r

+, v′1), . . . , en = (vn, r
+, v′n) be all r+-edges

of tC such that e1 � . . . � en. Then, for 1 ≤ i ≤ n, ei is called the i-th transitive edge
of tC . Let tC contain m different role names, that occur as transitive edges in tC , each
ki ≥ 0 times, 1 ≤ i ≤ m. We call U = (u1

1, . . . , u
1
k1
, . . . , um

1 , . . . , u
m
km

) an expansion vector
of tC , whose components are all positive integers. The canonical EL-description tree
induced by tC and U , written as tC [U ], is obtained by replacing the i-th transitive edge
of rj , (v, r

+
j , w) ∈ EtC , by (v, rj , v2), . . . , (vuj

i
, rj , w) for fresh nodes v2, . . . , vuj

i−1
. For an

EL+-concept description C with the corresponding EL+-description tree tC and an ex-
pansion vector U of tC , we denote by C[U ] the EL-concept description that corresponds
to tC [U ]. We define UtC to be the set of all expansion vectors of tC , and for n > 0, U

n
tC

to be the set of all expansion vectors of tC whose components are all smaller or equal to
n. Similarly, for an EL+-concept description C, UC := UtC and U

n
C := U

n
tC

. We recall
that we make no distinction between an EL-description tree t and the interpretation I
induced by t.

Figure 4.2 illustrates the expansion of the EL+-description tree tC corresponding to
C = ∃s+.P1 ⊓ ∃r.(∃s.(P1 ⊓ P2) ⊓ ∃r+.⊤) with the expansion vector U ∈ U

2
C = (r11, s

1
1) =
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Figure 4.2: Expansion of tC with expansion vector U = (r11, s
1
1) = (1, 2), for r �NR

s and
C = ∃s+.P1 ⊓ ∃r.(∃s.(P1 ⊓ P2) ⊓ ∃r+.⊤).

(1, 2), where r �NR
s. The result is an EL-description tree, that corresponds to C ′ =

∃s.(∃s.P1) ⊓ ∃r.(∃s.(P1 ⊓ P2) ⊓ ∃r.⊤).
Before we begin having a look at subsumption in EL+, let us figure out two special

properties of EL+. Firstly, transitive existential restrictions allow some sort of disjunc-
tion that we will later use to encode truth values. Let I be an interpretation, x ∈ ∆I

and P ∈ NC , then
x ∈ (∃r+.P )I iff x ∈ (∃r.P ⊔ ∃r.∃r+.P )I .

Secondly, in (Miklau & Suciu 2002) a neat technique has been introduced in order to
express C ⊑ C1 ⊔ . . . ⊔ Cn for EL+-concept descriptions C,C1, . . . , Cn.

Lemma 15 Let C,C1, . . . , Ck be EL+-concept descriptions, k > 0. For m > 0, we
define

C := ⊓
1≤i≤k

Ci

C1(D) := ∃r.C ⊓D

Cm+1(D) := ∃r.C ⊓ ∃r.Cm(D)

Cℓ := ∃r.Ck−1(∃r.(∃r.C ⊓ ∃r.Ck−1(⊤)))

Cr := ∃r+.(∃r.C1 ⊓ ∃r.(∃r.C2 ⊓ . . .∃r.Ck . . .))

Then, the following are equivalent:

1. C ⊑ C1 ⊔ . . . ⊔ Ck

2. Cℓ ⊑ Cr

A detailed proof can be found in (Miklau & Suciu 2002). Figure 4.3 visualizes Cℓ and Cr.
Intuitively, it is clear that C ⊑ Cj , 1 ≤ j ≤ k and that if C ⊑ Cj for some 1 ≤ j ≤ k, r+
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Figure 4.3: The EL+-concept description trees of Cℓ and Cr constructed in Lemma 15.

in Cr can be replaced by an r-chain of length j such that there exists a homomorphism
from the root of Cr to the root of Cℓ. For the other direction, if C 6⊑ Cj for all 1 ≤ j ≤ k,
we cannot expand r+ in Cr such that there exists a homomorphism from the root of Cr

to the root of Cℓ, since every possible expansion will “shift” some Cj such that C would
need to be subsumed by Cj , 1 ≤ j ≤ k.

The lemma provides a strong tool, and we will implicitly use it, i.e., directly write
C ⊑ C1 ⊔ . . . ⊔ Ck. Moreover, we write ∃r∗.C in order to abbreviate C ⊔ ∃r+.C.

Subsumption in EL+

In order to obtain a lower bound for subsumption in EL+, we reduce 3-SAT to non-
subsumption in EL+. The approach for the reduction is due to Miklau and Suciu (Miklau
& Suciu 2002).

Definition 22 (3-SAT) A 3-SAT-formula is a propositional formula in conjunctive
normal form, such that each clause contains exactly three literals. The 3-SAT problem
(3-SAT) is to determine for a given 3-SAT-formula, whether there exists a valuation of
the propositional variables such that the 3-SAT-formula evaluates to true. ♦

It is well-known that 3-SAT is NP-complete (Garey & Johnson 1990). Let φ be an
instance of 3-SAT over the propositional variables p1, . . . , pn. Then, φ has no solution iff
every possible valuation makes some clause false. We encode the possible truth values
of the propositional variables with the help of transitive existential restrictions. For an
interpretation I and x ∈ ∆I , our intention is that x ∈ (∃r.Pi)

I encodes that pi is true
in x, and x ∈ (∃r.∃r+.Pi) that pi is false in x. Thus, stating ∃r+.Pi at some point gives
us a way to choose a truth value.
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Lemma 16 Let φ = ψ1 ∧ . . . ∧ ψk, ψj = ℓj1 ∨ ℓ
j
2 ∨ ℓ

j
3, 1 ≤ j ≤ k be an instance of 3-SAT

over the propositional variables p1, . . . , pn. Furthermore, let

τ(ℓ) :=

{
∃r.Pi if ℓ = ¬pi

∃r.∃r+.Pi if ℓ = pi

and Ci := τ(ℓi1) ⊓ τ(ℓ
i
2) ⊓ τ(ℓ

i
3), 1 ≤ i ≤ k. Then, the following are equivalent:

1. φ has a solution

2. ∃r+.P1 ⊓ . . . ⊓ ∃r+.Pn 6⊑ C1 ⊔ . . . ⊔ Ck

Proof. (1 ⇒ 2) Let V : {p1, . . . , pn} → {0, 1} be the valuation function such that φ
is true under V . We define an interpretation I with ∆I := {x, y2, . . . , y2k+1} and set
P I

i := y2i if V (pi) = 1 and P I
i := y2i+1 if V (pi) = 0 for 1 ≤ i ≤ k. We furthermore

add (x, y2i) to rI if V (pi) = 1, and (x, y2i) and (y2i, y2i+1) to rI if V (pi) = 0. Clearly,
x ∈ (∃r+.P1 ⊓ . . . ⊓ ∃r+.Pk)

I . Now assume x ∈ CI
i for some 1 ≤ i ≤ k. By the

construction of Ci and I this would imply that the i-th clause is false under V , which
contradicts V being a valuation function that makes φ true.

(2 ⇒ 1) Let I be an interpretation such that x ∈ (∃r+.P1 ⊓ . . .⊓∃r+.Pk)
I \ (C1 ⊔ . . .⊔

Ck)
I . We define a valuation function V for 1 ≤ i ≤ n as follows:

V (pi) :=

{
0 if x ∈ (∃r.∃r+.Pi)

I \ (∃r.Pi)
I

1 otherwise

Assume some clause ψi is false under V, 1 ≤ i ≤ k. This is the case if V makes every
literal of ψi false. However, by the definition of V and the construction of Ci, this implies
x ∈ CI

i . �

For the upper bound, we prove containment of subsumption in EL+ in co-NP by gen-
eralizing the proof of containment of XPath query containment in co-NP from (Miklau
& Suciu 2002). The generalization is needed since XPath queries allow for neither mul-
tiple role names nor multiple labels on nodes.

We define homomorphisms between EL+-description graphs and EL-description graphs
that serve as the basis for testing subsumption.

Definition 23 Let G1 be an EL+-description graph, G2 an EL-description graph and
xi ∈ Gi, i ∈ {1, 2}. A functional binary relation H ⊆ VG1 × VG2 is a homomorphism from
x1 to x2 iff

• (x1, x2) ∈ H

• If (v, w) ∈ H then:
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(h1) ℓ(v) ⊆ ℓ(w)

(h2) For all (v, r, v′) ∈ EG1 there is (w, r, w′) ∈ EG2 and (v′, w′) ∈ H

(h3) For all (v, r+, v′) ∈ EG1 there is an r-chain w
r
−→ . . .

r
−→ w′ in G2 such that

(v′, w′) ∈ H. ♦

If G1 and G2 are trees, checking the existence of a homomorphism is polynomial in
|G1| + |G2| (Miklau & Suciu 2002).

Again, we establish a connection between the description tree of an EL+-concept
description C and an interpretation of in terms of a homomorphism.

Lemma 17 Let C be an EL+-concept description with the corresponding EL+-concept
description tree tC , and I an interpretation with the corresponding EL-description graph
GI . Then, the following are equivalent:

1. x ∈ CI

2. There exists a homomorphism from the root xC of tC to x.

Proof. The proof is by induction on rdepth(C). We only show the induction step for
C = P1 ⊓ . . . ⊓ Pk ⊓ ∃r1.C1 ⊓ . . . ⊓ ∃rm.Cm ⊓ ∃s+1 .D1 ⊓ . . . ⊓ ∃s+n .Dn.

(1 ⇒ 2) Since x ∈ CI , ℓtC (xC) ⊆ ℓI(x). We have that there are yCi
such that

(x, yCi
) ∈ rIi and yCi

∈ CI
i , 1 ≤ i ≤ m, and yDi

such that (x, yDi
) ∈ (sIi )+ and

yDi
∈ DI

i , 1 ≤ i ≤ n. By the induction hypothesis, there exist homomorphisms HCi
from

xCi
to yCi

, where (xC , ri, xCi
) ∈ EtC , 1 ≤ i ≤ m. Likewise, there exist homomorphisms

HDi
from xDi

to yDi
, where (xC , r

+
i , xDi

) ∈ EtC , 1 ≤ i ≤ n. Now H := {(xC , x)} ∪
⋃

1≤i≤m HCi
∪
⋃

1≤i≤n HDi
is obviously a homomorphism from xC to x.

(2 ⇒ 1) Let H be a homomorphism from xC to x. By (h3), there are (x, yDi
) ∈ (rIi )+

such that for all (xC , r
+
i , xDi

) ∈ EtC , (xDi
, yDi

) ∈ H, 1 ≤ i ≤ m. Clearly, H is also
a homomorphism from xDi

to yDi
. Thus by the induction hypothesis, yDi

∈ DI
i . The

argumentation holds similarly for the existential restrictions in C. For the concept names
P1, . . . , Pk, we have x ∈ P I

i , 1 ≤ i ≤ k, since ℓtC (xC) ⊆ ℓI(x). Hence, x ∈ CI . �

Lemma 18 Let C,D be EL+-concept descriptions. Then, the following are equivalent:

1. C ⊑ D

2. C[U ] ⊑ D for all expansion vectors U ∈ UC

Proof. We show the contrapositive in both directions.
(1 ⇒ 2) Let I be an interpretation such that x ∈ C[U ]I \DI . By the previous lemma,

there exists a homomorphism H from xC[U ] to x. Now define H′ := H ∩ VtC × VtC .

Obviously, H′ is a homomorphism from the root xC of tC to x. Hence, x ∈ CI .
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(2 ⇒ 1) Let I be an interpretation such that x ∈ CI \DI . By Lemma 17, there exists
a homomorphism H from the root xC of tC to x. For the i-th transitive r+j -edge of tC ,

(v, r+j , v
′) ∈ EtC , let (v, y) ∈ H and (v′, y′) ∈ H. We define the component uj

i of U to be
the length of the shortest r-chain from y to y′. Now H can be extended in an obvious
way to become a homomorphism H′ from the root xC[U ] of tC[U ] to x. Again by Lemma

17, x ∈ C[U ]I and consequently C[U ] 6⊑ D. �

The following lemma is a consequence of the previous lemma together with Lemma 17.

Lemma 19 Let C,D be EL+-concept descriptions. Then, the following are equivalent:

1. C ⊑ D

2. xC[U ] ∈ DtC [U ] for all U ∈ UC

Proof. (1 ⇒ 2) By the previous lemma, for all U ∈ UC , C[U ] ⊑ D. Since xC[U ] ∈ CtC[U ] ,
xC[U ] ∈ DtC[U ] .

(2 ⇒ 1) We show the contrapositive and assume C 6⊑ D. By the previous lemma,
there exists an expansion vector U ∈ UC such that C[U ] 6⊑ D and by lemma 17, there
does not exist a homomorphism from xD to xC[U ]. Hence, xC[U ] /∈ DtC[U ] . �

Thus, in order to show C 6⊑ D, it suffices to search all expansion vectors of C for
a canonical interpretation witnessing non-subsumption. However, there are infinitely
many expansion vectors. For that reason, we now show that it suffices to only expand
each transitive existential restriction in C to at most rdepth(D) + 1.

Lemma 20 Let C,D be EL+-concept descriptions such that C 6⊑ D, and let n :=
rdepth(D) + 1. Then, there exists an expansion vector W ∈ U

n
C such that C[W ] 6⊑ D.

Proof. By the previous lemma, there exists an expansion vector

U = (u1
1, . . . , u

1
k1
, . . . , um

1 , . . . , u
m
km

)

of tC such that xC[U ] /∈ DtC [U ]. Now define

W := (min(u1
1, n), . . . ,min(u1

k1
, n), . . . ,

min(um
1 , n), . . . ,min(um

km
, n))

We show that xC[W ] ∈ DtC [W ] implies xC[U ] ∈ DtC [U ], an obvious contradiction.
By Lemma 17, there exists a homomorphism H from xD to xC[W ]. We show how H

can be modified to become a homomorphism H′ from xD to xC[U ]. Let E′ ⊆ EtD be set
the of transitive edges (v, r+, v′) whose expansion differs in tC[W ] and tC[U ]. In order to
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have proper naming of the nodes along expansions of transitive edges, w.l.o.g. we assume
that e = (v, r+, v′) ∈ E′ is expanded in tC [W ] by an r-chain of length n as

v = v1
r
−→ . . .

r
−→ vn+1 = v′,

and in tC [U ] by an r-chain of length u > n as

v = v1
r
−→ . . .

r
−→ vn+1

r
−→ . . .

r
−→ vu+1 = v′.

Let Ve := {v2, . . . , vn}. We define the set We of all paths of maximal length of tD that
are affected by the expansion of e, where N+

R := NR ∪ {r+ | r ∈ NR}:

We := {w1
r1−→ . . .

rk−→ wk+1 | ∀1 ≤ i ≤ k + 1.H(wi) ∈ Ve ∧

∀w′ ∈ VtD , r ∈ N+
R .((w

′, r, w1) /∈ EtD ∨

(w′, r, w1) ∈ EtD → H(w′) /∈ Ve) ∧

∀w′ ∈ VtD , r ∈ N+
R .((wk+1, r, w

′) /∈ EtD ∨

(wk+1, r, w
′) ∈ EtD → H(w′) /∈ Ve)}

Let us now define H′. For all edges e ∈ E′, p = w1
r1−→ . . .

rk−→ wk+1 ∈ We, let
wi ∈ p, 1 ≤ k + 1. We define H′(wi) by distinguishing three cases. Let u be the length
that e is expanded to in tC [U ].

(a) If w1 has an incoming r+-edge, we define H′(wi) := vq+u−n, where H(wi) = vq, 2 ≤
q ≤ n.

(b) If (a) does not apply and there is a smallest j ≤ k such that rj = r+ and i > j,
H′(wi) := vq+u−n, where H(wi) = vq, 2 ≤ q ≤ n.

(c) If (a) and (b) do not apply, H′(wi) := H(wi)

For all other nodes w ∈ VtD , that are not affected by the different expansions of transitive
edges in tC [W ] and tC [U ], H′(w) := H(w).

We claim that H′ is a homomorphism from xD to xC[U ]. Let r1, . . . , rm ∈ N+
R be the

role names occurring in tD and for 1 ≤ i ≤ m

rtD
i := {(w,w′) | (w, r, w′) ∈ EtD}

R∗ :=
⋃

i≥0
1≤j≤m

(rtD
j )i.

For a node w ∈ VtD , R∗(w) consists of all nodes of the subtree starting at w. For all
nodes w ∈ VtD , we prove by induction on depth(w) the following statement:

H′
w := H′ ∩ (R∗(w) ×R∗(w)) is a homomorphism from w to H′(w) (4.1)
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For the induction base case, let depth(w) = 0. If H′
w(w) = H(w), then H′

w is obviously
a homomorphism from w to H′

w(w). Otherwise, let e be the transitive edge such that
there is a p ∈We and H(w) = vi ∈ p, and let u > n be the length that e is expanded in
tC [U ]. Hence, H′

w(w) = vi+u−n. We have ℓtD(w) = ∅, since ℓtC [W ](vi) = ∅ and thus H′
w

is a homomorphism from w to vi+u−n.
For the induction step, let us exemplarily consider the case H′

w(w) = H(w) = v.
Clearly, (h1) holds. For proving (h2), let (w, r, w′) ∈ EtD . Thus, w′ has no incoming
r+-edge and consequently, H′

w(w′) = H(w′) and (H′
w(w), r,H′

w(w′)) ∈ EtC [U ]. By 4.1
and the induction hypothesis, we have that H′

w′ is a homomorphism from w′ to the
subtree starting at H′

w′(w′). Moreover, H′
w′ ⊆ H′

w. Now for the r+-successors, let
(w, r+, w′) ∈ EtD . In case H′

w(w′) 6= H(w′), let e be the transitive edge such that there
is a path p ∈ We and H(w′) = vi ∈ p, and let u > n be the length that e is expanded
in tC[U ]. By the construction, H′

w(w′) = vi+u−n and there is an r-chain between vi and
vi+u−n in tC[U ]. Hence, (h3) holds for H′

w. Moreover, H′
w′ is a homomorphism from w′ to

the subtree starting at H′
w(w′) and H′

w′ ⊆ H′
w. Summing up, if H′

w(w) = H(w), then H′
w

is a homomorphism from w to H′(w), since the homomorphism conditions are fulfilled
for w and all nodes of subtrees of successors of w. The last case, when H′

w(w) 6= H(w),
can be handled similarly to the previous case. One can exploit the fact that the relevant
r- and r+-successors of w are also shifted in the image of H′

w along r-chains in tC[U ].
Since H(xD) = xC[W ] = xC[U ] = H′

xD
(xD), we thus have that H′ = H′

xD
is a homo-

morphism from xD to xC[U ] and hence C[U ] ⊑ D. �

We are now prepared to prove the main lemma of this subsection from which we
can immediately derive an algorithm for deciding non-subsumption in EL+ that runs in
non-deterministic polynomial time.

Lemma 21 Let C,D be EL+-concept descriptions, n := rdepth(D) + 1 and m :=
rdepth(C) · n. Then the following are equivalent:

1. C 6⊑ D

2. There is U ∈ U
n
C and for all W ∈ U

m
D , C[U ] 6⊑ D[W ]

Proof. (1 ⇒ 2) By the previous lemma, we have that there exists an expansion vector
U ∈ U

n
C such that C[U ] 6⊑ D. Thus, in particular C[U ] 6⊑ D[W ] for W ∈ U

m
D .

(2 ⇒ 1) We show the contrapositive and assume C ⊑ D. For every expansion vector
U ∈ U

n
tC

, we obviously have

rdepth(C[U ]) ≤ rdepth(C) · n.

By Lemma 19, we have xC[U ] ∈ DtC [U ] for all expansion vectors U ∈ U
n
C . Thus,

there exists a homomorphism H from xD to xC[U ]. For every (v, r+, v′) ∈ EtD and
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Algorithm 5 EL+-subsumption algorithm

Input: EL+-concept descriptions C,D
n := rdepth(D) + 1
non-deterministically guess U ∈ U

n
C such that C[U ] 6⊑ D

return C 6⊑ D

(v, w), (v′, w′) ∈ H, the length of the r-chain between w and w′ is less or equal than m,
since tC is a tree not deeper than m. Thus, we can find an expansion vector W ∈ U

m
W as

shown in the proof of Lemma 18 such that xC[U ] ∈ D[W ]tC [U ]. Hence, C[U ] ⊑ D[W ]. �

Algorithm 5, which decides non-subsumption between EL+-concept descriptions, can
directly be derived from the previous lemma. Recall, that checking for subsumption
between EL- and EL+-concept descriptions can be done in polynomial time. Thus, it
is obvious that the algorithm runs in non-deterministic polynomial time. Its soundness
and completeness follow from the previous lemma.

Theorem 11 Subsumption in EL+ is co-NP-complete.

Subsumption in EL+ w.r.t. TBoxes

Let us now examine the complexity of subsumption in EL+ w.r.t. acyclic and cyclic
TBoxes. For the lower bound, we reduce concept satisfiability in ELC w.r.t. TBoxes
to non-subsumption in EL+ w.r.t. TBoxes. Let T = {A1 ≡ C1, . . . , An ≡ Cn} be an
ELC-TBox in normal form. Again, we assume that only one role name r occurs in T .
In order to obtain an EL+-TBox T ′ corresponding to T , we

• introduce fresh concept names P1, . . . , Pn,

• replace every existential restriction Ai ≡ ∃r.Aj by

Ai ≡ ∃r.(Aj ⊓ ⊓
1≤i≤n

∃s+.Pi)

• replace every Ai ≡ ¬Aj by Ai ≡ ∃s.∃s+.Pj .

Basically, we do the same thing as in the ELU case. The extension ensures that at the
relevant points of connected models, ∃s+.Pi holds for every 1 ≤ i ≤ n, except for the
root node which will be treated analogously. Our intention is that ∃s.∃s+.Pi holds at
some point of an interpretation iff Ai does not hold at the respective point. Therefore,
we introduce a concept M that signals points of models that contradict this intention.
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Lemma 22 Let T = {A1 ≡ C1, . . . , An ≡ Cn} be an ELC-TBox in normal form, A a
defined concept in T and T ′ the EL+-TBox corresponding to T . Furthermore, let

F := ⊓
1≤i≤n

∃s+.Pi

M :=
⊔

1≤i≤n

∃r∗.(∃s.Pi ⊓ ∃s.∃s+.Pi) ⊔
⊔

1≤i≤n

∃r∗.(Ai ⊓ ∃s.∃s+.Pi)

Then, the following are equivalent:

1. A is satisfiable w.r.t. T

2. A ⊓ F 6⊑T ′ M

Proof. (1 ⇒ 2) Let I be a model of T such that x ∈ AI . We extend I to obtain a model
I ′ of T ′. For every y ∈ AI

i , 1 ≤ i ≤ n, we add some fresh y1 to ∆I′

, (y, y1) to sI
′

and y1

to P I′

i . Likewise for every y /∈ AI
i , we add some fresh y1, y2 to ∆I′

, (y, y1) and (y1, y2)
to sI

′

, and y2 to P I′

i . We thus have y /∈ AI′

i iff y ∈ (∃s.∃s.Pi)
I′

and I ′ is a model of
T ′. Clearly, x ∈ (A⊓F )I

′

. On the other hand, x /∈MI′

. On all points reachable via an
r-chain starting from x, the construction of I ′ ensures that on any s-branch, Pi occurs
either on the first node of the branch or at some deeper node.

(2 ⇒ 1) Let I be a model of T and x ∈ (A⊓F )I \MI . In order to obtain a model I ′

of T , we need to strip I. For a relation R ⊆M ×M , we redefine R1 := R0 ∪R and set

∆I′

i := (rI)i(x) ∩ F I

rI
′

i := rI ∩ (∆I′

i × ∆I′

i)

AI′

i := AI ∩ ∆I′

i , A ∈ NC .

Then,

∆I′

:=
⋃

i≥0

∆I′

i , rI
′

:=
⋃

i≥0

rI
′

i , AI′

j :=
⋃

i≥0

A
I′

i

j , 1 ≤ j ≤ n.

In order to prove that I ′ is a model of T , we prove by induction on m the following
statement, where Aj ≡ Cj ∈ T , 1 ≤ j ≤ n:

A
I′

m

j ⊆ C
I′

m+1

j

It suffices to only consider the case Cj = ∃r.B and Cj = ¬Ai in the induction step. First

of all, it is easily seen that ∆I′
0 ⊆ ∆I′

1 ⊆ . . .. Let Cj = ∃r.B and y ∈ A
I′

m+1

j \A
I′

m

j . Since

y ∈ (∃r.(B ⊓ F ))I , there is a z such that (y, z) ∈ rI and z ∈ (B ⊓ F )I . Consequently,
z ∈ ∆I′

m+2 and (y, z) ∈ rI
′
m+2 . Hence, y ∈ (∃r.B)I

′
m+2 . For the other case, let Cj = ¬Ai

and y ∈ A
I′

m+1

j . We have y ∈ (∃s.∃s+.Pi)
I and since y ∈ F I \MI , x /∈ A

I′
m+2

i . It is not

hard to see that CI′

⊆ AI′

for all A ≡ C ∈ T . Thus, we have that I ′ is a model of T
and x ∈ AI′

. �
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The lemma gives us a PSpace lower bound for non-subsumption in EL+ w.r.t. to acyclic
TBoxes, and an ExpTime lower bound for non-subsumption in EL+ w.r.t. cyclic TBoxes.
The ExpTime upper bound for subsumption in EL+ w.r.t. cyclic TBoxes comes from
EL+ being a notational fragment of ALCreg.

Theorem 12 Subsumption in EL+ is ExpTime-complete w.r.t. cyclic TBoxes.

However, subsumption in ALCreg is also ExpTime-complete w.r.t. acyclic TBoxes. In
order to obtain a PSpace-upper bound, we reduce subsumption in EL+ w.r.t. acyclic
TBoxes to subsumption in ELU w.r.t. acyclic TBoxes, whereof we already know that
it is PSpace-complete. We exploit the fact that we can “simulate” bounded expansion
vectors in ELU . For instance, let C = ∃r+.P be an EL+-concept description, n > 0
and I an interpretation. Then, there exists an expansion vector (i) ∈ Un

C such that
x ∈ C[(i)]I iff

x ∈ (∃r.P ⊔ . . . ⊔ ∃r. . . .∃r
︸ ︷︷ ︸

n times

.P )I

Now it is kind of obvious what to do for the reduction. Basically, for a given TBox, we
replace all transitive existential restrictions by an appropriate number of disjunctions.
Since these disjunctions “simulate” expansion vectors, we then unfold the desired concept
definitions and use Lemma 21 to establish the connection between EL+ and ELU .

Firstly, we introduce a normal form for EL+-TBoxes.

Definition 24 An EL+-TBox T is in normal form iff for each A ≡ C ∈ T , C is either
of the form ⊤ or P ; ∃r.B; ∃r+.B; or B1 ⊓B2, for P ∈ NC and B,B1, B2 ∈ Ndef (T ). ♦

Using a similar normalization algorithm as in Section 2.4.2, it is not hard to see that
every EL+-TBox T can be transformed in polynomial time into an equivalent EL+-TBox
in normal form, that is linear in the size of T .

Let T = {A1 ≡ C1, . . . , Ak ≡ Ck} be an acyclic EL+-TBox in normal form. For
A,B ∈ Ndef (T ), let n := rdepthT (B) + 1 and m := rdepthT (A) · n. Let T1 be the TBox
obtained from T by

• replacing every ∃r+.A′ by
⊔

1≤i≤n

∃r. . . .∃r
︸ ︷︷ ︸

i times

.A′

• renaming every defined concept A ∈ Ndef (T ) to A1

Similarly, let T2 be the TBox obtained from T by

• replacing every ∃r+.A′ by
⊔

1≤i≤m

∃r. . . .∃r
︸ ︷︷ ︸

i times

.A′
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Chapter 4 Intractable Extensions of EL

• renaming every defined concept A ∈ Ndef (T ) to A2

Lemma 23 Let T be an EL+-TBox in normal form, A,B ∈ Ndef (T ) and T ′ := T1 ∪T2

be the ELU-TBox obtained from T as shown above. Then, the following are equivalent:

1. A ⊑T B

2. A1 ⊑T ′ B2

Proof. We show the contrapositive in both directions.
(1 ⇒ 2) We have A1 6⊑T ′ B2. Thus, for the unfoldings Â1 and B̂2 of A1 and B2 w.r.t.

T ′, we have Â1 6⊑ B̂2. Let I be an interpretation such that x ∈ Â1
I
\ B̂2

I
. Since in Â1

we have replaced transitive existential restrictions by n disjunctions, it is not hard to
see that there is an expansion vector U ∈ U

n
Â

such that x ∈ Â[U ]I for the unfolding Â

of A w.r.t. T . Likewise, for all expansion vectors W ∈ U
m
B̂

, x /∈ B̂[W ]I for the unfolding

B̂ of B w.r.t. T . By Lemma 21, Â 6⊑ B̂ and hence A 6⊑T B.
(2 ⇒ 1) We have A 6⊑T B. Thus, for the unfoldings Â and B̂ of A and B w.r.t.

T , Â 6⊑ B̂. By Lemma 21, there exists an expansion vector U ∈ U
n
Â

such that for all

expansion vectors W ∈ U
m
B̂

, Â[U ] 6⊑ B̂[W ]. Thus, for the unfoldings Â1 and B̂2 of A1

and B2 w.r.t. T ′, Â1 6⊑ B̂2. Hence, A1 6⊑T ′ B2. �

Theorem 13 Subsumption in EL+ w.r.t. acyclic TBoxes is PSpace-complete.

4.6 Functionality

Functionality restricts role names to be interpreted as partial functions. We start having
a look at the case of global functionality and then continue with local functionality.

Global Functionality

Let ELf be EL extended by global functionality, i.e., ELf has the same syntax as EL, but
additionally restricts role names to be interpreted as partial functions. It has been shown
in (Baader, Brandt & Lutz 2005b) that ELf is closely related to the description logic

FLtf
0 , which enforces role names to be interpreted as total functions in interpretations

of FL0. The latter allows for value restriction, conjunction and top only. Using Lemma
23 from (Baader, Brandt & Lutz 2005b), we obtain the following proposition.

Proposition 7 Subsumption in FLtf
0 is in PTime, co-NP-complete w.r.t. acyclic TBoxes,

and PSpace-complete w.r.t. cyclic TBoxes.
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Chapter 4 Intractable Extensions of EL

The connection between ELf and FLtf
0 is quite obvious. The requirement that role

names have to be interpreted as partial functions in ELf makes ∃-quantifiers “act” like
∀-quantifiers. Basically, an ELf -concept description can be translated into an FLtf

0 -
concept description by just replacing the ∃-quantifiers by ∀-quantifiers. However, the
top-concept requires a special treatment. In order to reduce subsumption in FLtf

0 to
ELf and vice versa, we define how to convert TBoxes appropriately.

It is not hard to see that any FLtf
0 -TBox can be transformed into a TBox in normal

form that is linear in their size, similar to the normal form of EL-TBoxes presented in
Section 2.4.2.

Definition 25 An FLtf
0 -TBox T is in normal form iff for each concept definition A ≡

C ∈ T , C is of the form P , ∃r.B or B1 ⊓B2 for P ∈ NC and B,B1, B2 ∈ Ndef (T ). ♦

Note, that no top-concept occurs in a TBox in normal form. That is justified by the
facts that in FLtf

0 , ∀r.⊤ ≡ ⊤ and C ⊓ ⊤ ≡ C.

Let T be an FLtf
0 -TBox in normal form. The ELf -TBox T ′ corresponding to T is

obtained from T by replacing every concept definition A ≡ ∀r.B ∈ T by A ≡ ∃r.B.

Lemma 24 Let T be an FLtf
0 -TBox in normal form and T ′ the ELf -TBox correspond-

ing to T . Then, the following are equivalent:

1. A ⊑T B

2. A ⊑T ′ B

Proof. (1 ⇒ 2) We show x ∈ (∀r.B)I implies x ∈ (∃r.B)I for all models of T , and thus
every model I of T is also a model of T ′. So, let x ∈ (∀r.B)I . Because r is interpreted
in I as a total function, there is y ∈ BI and (x, y) ∈ rI . Consequently, x ∈ (∃r.B)I .

(2 ⇒ 1) Let I be a model of T ′. Let I ′ be obtained from I by adding one distinct y
to the interpretation domain and, for all role names r occurring in T , adding (y, y) to
rI

′

, and (x, y) to rI
′

iff x ∈ ∆I has no r-successor in I. Now I ′ is also a model of T ′,
since no top-concept occurs in T ′. Moreover, all role names are interpreted in I ′ as total
functions and x ∈ (∃r.B)I

′

iff x ∈ (∀r.B)I
′

. Hence, I ′ is also a model a model of T . �

For the reduction in the other direction, let T be an ELf -TBox in normal form and
T ′ be the FLtf

0 -TBox corresponding to T . It is obtained from T by replacing every
A ≡ ∃r.B ∈ T by A ≡ ∀r.(P ⊓B), where P is a fresh concept name.

Lemma 25 Let T be an ELf -TBox in normal form and T ′ be the FLtf
0 -TBox corre-

sponding to T . Then, the following are equivalent:

1. A ⊑T B

2. A ⊑T ′ B
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Proof. (1 ⇒ 2) Let I be a model of T and let I ′ be obtained from I by setting ∆I′

:=
∆I ·∪{y}, interpreting P I′

:= ∆I ,adding (x, y) to rI
′

iff x has no r-successor in I and
(y, y) to rI

′

for all role names r occurring in T . For all A ≡ ⊤ ∈ T , we moreover set
AI′

:= AI ∪ {y}. We have y ∈ (∃r.B)I iff y ∈ (∀r.(P ⊓B))I
′

and I ′ is a model of T ′.
(2 ⇒ 1) We show the contrapositive. Let I be a model of T such that there is

x ∈ AI \ BI . The interpretation I ′ is obtained from I by setting ∆I′

:= ∆I ·∪{y},
interpreting P I′

:= ∆I , adding (x, y) to rI
′

iff x has no r-successor in I and (y, y) to rI
′

for all role names r occurring in T . For all A ≡ ⊤ ∈ T , we moreover set AI′

:= AI ∪{y}.
We have y ∈ (∃r.B)I iff y ∈ (∀r.(P ⊓B))I

′

and I ′ is a model of T ′ witnessing A 6⊑T B.�

Theorem 14 Subsumption in ELf is co-NP-complete w.r.t. acyclic TBoxes and PSpace-
complete w.r.t. cyclic TBoxes.

Usually, one is not interested in requiring all role names to be interpreted as partial
functions in ELf . In this case, subsumption is co-NP-hard w.r.t. acyclic TBoxes and
PSpace-hard w.r.t. cyclic TBoxes respectively. The reduction from subsumption in
FLtf

0 w.r.t. TBoxes to subsumption in ELf w.r.t. TBoxes where not all role names
have to be interpreted by partial functions can be done in the same manner as above.
However, it is unknown whether the lower bounds are tight. We address to known upper
bounds and subsumption in ELf in the following subsection.

Local Functionality

Let ELF be EL extended by the functionality concept constructor. This constructor
allows for restricting role names to be locally interpreted as partial functions. In order
to have an induction argument, we define for any role name r ∈ NR, rdepth(≤ 1r) := 0.
For the other cases, rdepth is defined as in the EL case.

Let us now consider subsumption in ELF without TBoxes. We define a function
τ that translates ELF-concept descriptions into EL-concept descriptions and preserves
subsumption relations. Informally speaking, what τ does is that it merges existential
restrictions that are functionally constrained and replaces functionality restrictions by
additional concept names. Let C,D be ELF-concept descriptions. We define τ via
induction on rdepth(C). For rdepth(C ) = 0, i.e., C = P1 ⊓ . . . Pk⊓ ≤ 1s1⊓ ≤ 1sm,
τ(C) := P1 ⊓ . . . ⊓ Pk ⊓ Ps1 ⊓ . . . ⊓ Psm .

For rdepth(C) = n+ 1, we have that C is of the form

P1 ⊓ . . . ⊓ Pk ⊓ ∃r1.C1 ⊓ . . . ⊓ ∃rm.Cm⊓ ≤ 1s1 ⊓ . . .⊓ ≤ 1sn

Let I := {s1, . . . , sn} and NC
R := {r1, . . . , rm}. We define

τ(C) := P1 ⊓ . . . ⊓ Pk ⊓ ⊓
ri∈NC

R
\I

∃ri.τ(Ci) ⊓ ⊓
ri∈I∩NC

R

∃ri.τ( ⊓
rj=ri

Cj) ⊓ ⊓
si∈I

Psi
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The Ps are chosen such that they do not occur in C. Obviously, for all ELF-concept
descriptions C, τ(C) yields an EL-concept description that is linear in the size of C.

Lemma 26 Let C be an ELF-concept description. Then, the following are equivalent:

1. C ⊑ D

2. τ(C) ⊑ τ(D)

Proof. We show the contrapositive in both directions.
(2 ⇒ 1) We prove this direction by induction on max (rdepth(C), rdepth(D)). For the

induction step, let max (rdepth(C), rdepth(D)) = o+ 1. We have

C = PC
1 ⊓ . . . ⊓ PC

kC
⊓ ∃rC

1 .C1 ⊓ . . . ⊓ ∃rC
mC
.CmC

⊓ ≤ 1sC
1 ⊓ . . .⊓ ≤ 1sC

nC

D = PD
1 ⊓ . . . ⊓ PD

kD
⊓ ∃rD

1 .D1 ⊓ . . . ⊓ ∃rD
mD

.DmD
⊓ ≤ 1sD

1 ⊓ . . .⊓ ≤ 1sD
nD

and thus, for IC := {sC
1 , . . . , s

C
nC

}, NC
R := {rC

1 , . . . , r
C
mC

}, ID := {sD
1 , . . . , s

C
nC

} and
ND

R := {rD
1 , . . . , r

D
mD

},

τ(C) = PC
1 ⊓ . . . ⊓ PC

kC
⊓ ⊓

rC
i ∈ND

R
\IC

∃rC
i .τ(Ci) ⊓ ⊓

rC
i ∈NC

R
∩IC

∃rC
i .τ( ⊓

rC
j =rC

i

Cj) ⊓ ⊓
sC
i ∈IC

PsC
i

τ(D) = PD
1 ⊓ . . . ⊓ PD

kD
⊓ ⊓

rD
i ∈ND

R
\ID

∃rD
i .τ(Di) ⊓ ⊓

rD
i ∈ND

R
∩ID

∃rD
i .τ( ⊓

rD
j =rD

i

Dj) ⊓ ⊓
sD
i ∈ID

PsD
i

If there is a primitive concept name PD
i , 1 ≤ i ≤ kD on the top-level of D not occurring

on the top-level of C, then obviously τ(C) 6⊑ τ(D). Likewise, if there is a functionality
constraint ≤ 1sD

i , 1 ≤ i ≤ nD on the top-level of D not occurring on the top-level of C,
then τ(C) 6⊑ τ(D). Lastly, if there is an existential restriction ∃rD

i .Di, 1 ≤ i ≤ mD on
the top-level of D, such that C 6⊑ ∃rD

i .Di we distinguish two cases:

(a) rD
i is bound by a functionality restriction in C

(b) rD
i is not bound by a functionality restriction in C

In case of (a), we have for 1 ≤ j ≤ mC :

∃rD
i . ⊓

rC
j =rD

i

Cj 6⊑ ∃rD
i .Di

By the induction hypothesis,

τ( ⊓
rC
j =rD

i

Cj) 6⊑ τ(Di)
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and hence τ(C) 6⊑ τ(D). In case of (b), we have for every j such that rD
i = rC

j , ∃rC
j .Cj 6⊑

∃rD
i .Di. Again, by the induction hypothesis, τ(Cj) 6⊑ τ(Di) and hence τ(C) 6⊑ τ(D).
(1 ⇒ 2) For the induction step, let max (rdepth(C), rdepth(D)) = o+ 1. We have

C = PC
1 ⊓ . . . ⊓ PC

kC
⊓ ∃rC

1 .C1 ⊓ . . . ⊓ ∃rC
mC
.CmC

⊓ ≤ 1sC
1 ⊓ . . .⊓ ≤ 1sC

nC

D = PD
1 ⊓ . . . ⊓ PD

kD
⊓ ∃rD

1 .D1 ⊓ . . . ⊓ ∃rD
mD

.DmD
⊓ ≤ 1sD

1 ⊓ . . .⊓ ≤ 1sD
nD

and thus, for IC := {sC
1 , . . . , s

C
nC

}, NC
R := {rC

1 , . . . , r
C
mC

}, ID := {sD
1 , . . . , s

C
nC

} and
ND

R := {rD
1 , . . . , r

D
mD

},

τ(C) = PC
1 ⊓ . . . ⊓ PC

kC
⊓ ⊓

rC
i ∈ND

R
\IC

∃rC
i .τ(Ci) ⊓ ⊓

rC
i ∈NC

R
∩IC

∃rC
i .τ( ⊓

rC
j =rC

i

Cj) ⊓ ⊓
sC
i ∈IC

PsC
i

τ(D) = PD
1 ⊓ . . . ⊓ PD

kD
⊓ ⊓

rD
i ∈ND

R
\ID

∃rD
i .τ(Di) ⊓ ⊓

rD
i ∈ND

R
∩ID

∃rD
i .τ( ⊓

rD
j =rD

i

Dj) ⊓ ⊓
sD
i ∈ID

PsD
i

If there is a primitive concept name PD
i , 1 ≤ i ≤ kD on the top-level of τ(D) not

occurring on the top-level of τ(C), then obviously C 6⊑ D. Likewise, if there is a Ps on
the top-level of τ(D) not occurring on the top-level of τ(C), then ≤ 1s occurs on the
top-level of D, but not on the top-level of C. Hence, C 6⊑ D. Lastly, concerning the
existential restriction, we exemplarily consider the most special case. The other cases
follow similarly. Let ∃rD

i .τ(⊓rD
j =rD

i
Dj), r

D
i ∈ ND

R ∩ ID be an existential restriction on

the top-level of τ(D) such that rD
i is bound by a functional constraint in D and

τ(C) 6⊑ ∃rD
i .τ( ⊓

rD
j =rD

i

Dj)

Exemplarily, assume rD
i ∈ NC

R ∩ IC . We then have

∃rD
i .τ( ⊓

rC
j =rD

i

Cj) 6⊑ ∃rD
i .τ( ⊓

rD
j =rD

i

Dj)

By the induction hypothesis,

⊓
rC
j =rD

i

Cj 6⊑ ⊓
rD
j =rD

i

Dj

Hence,

⊓
rC
j =rD

i

∃rC
j .Cj⊓ ≤ 1rD

i 6⊑ ⊓
rD
j =rD

i

∃rD
j .Dj⊓ ≤ 1rD

i

Consequently, C 6⊑ D. �

Let us have a look at an example to actually see what τ does.
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Example 6. Let C,D be defined as follows:

C := P1 ⊓ ∃r.(P2 ⊓ ∃s.⊤) ⊓ ∃r.P1⊓ ≤ 1r⊓ ≤ 1s

D := ∃r.(P1 ⊓ ∃s.⊤)⊓ ≤ 1s

Then,

τ(C) = P1 ⊓ ∃r.(P1 ⊓ P2 ⊓ ∃s.⊤) ⊓ Pr ⊓ Ps

τ(D) = ∃r.(P1 ⊓ ∃s.⊤) ⊓ Ps

Obviously, both C ⊑ D and τ(C) ⊑ τ(D). �

Theorem 15 Subsumption in ELF is in PTime.

Concerning subsumption in ELf , given ELf -concept descriptions C,D, it is not hard
to see how we translate C and D to ELF-concept descriptions C ′ and D′ such that
C ⊑ D iff C ′ ⊑ D′. Basically, in every rdepth-level of C and D, every role name r
occurring in C or D has to be functionally constrained in C ′ with ≤ 1r. This translation
leads only to a polynomial blow-up in the size of C ′ and D′.

Theorem 16 Subsumption in ELf is in PTime.

However, we cannot employ the approach of merging existential restrictions and in-
troducing additional primitive concept names for subsumption in ELF w.r.t. TBoxes,
which turns out to be intractable. Basically, this comes from the possible exponential
blow-up that would occur if we would merge existential restrictions that are functionally
constrained in a concept definition.

In the following, we show co-NP-hardness of subsumption in ELF w.r.t. acyclic
TBoxes and reduce 3-SAT to non-subsumption in ELF w.r.t. acyclic TBoxes. Let φ
be an instance of 3-SAT, containing k clauses over n propositional variables p1, . . . , pn.
The TBox Tφ for the reduction is presented in Table 4.5. Firstly, we note that Tφ is
indeed acyclic and linear in the size of φ. The concept definitions Ci

1, 1 ≤ i ≤ in Tφ

encode paths that represent those valuations for which the i-th clause of φ becomes

false. A path x1
ri1−−→ . . .

rin−−→ xn+1, rj ∈ {0, 1}, 1 ≤ j ≤ n represents the valuation
V (pj) := ij , 1 ≤ j ≤ n. If every valuation makes some clause of φ false, we have through
the functionality constraints in each Ci

j that in every model I of Tφ, we can span a

complete binary tree starting at x ∈ CI , and thus also x ∈ LI
1 .

Lemma 27 Let φ = ψ1 ∧ . . . ∧ ψk, ψj = ℓj1 ∨ ℓ
j
2 ∨ ℓ

j
3, 1 ≤ j ≤ k be an instance of 3-SAT

and Tφ the ELF-TBox corresponding to φ. Then, the following are equivalent:

1. φ has a solution

2. C 6⊑Tφ
L1
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Cj
i ≡







∃r0.C
j
i+1⊓ ≤ 1r0 if pi ∈ {ℓj1, ℓ

j
2, ℓ

j
3}

∃r1.C
j
i+1⊓ ≤ 1r1 if ¬pi ∈ {ℓj1, ℓ

j
2, ℓ

j
3}

∃r0.C
j
i+1 ⊓ ∃r1.C

j
i+1⊓ ≤ 1r0⊓ ≤ 1r1 otherwise

Cj
n+1 ≡ ⊤

C ≡ ⊓
1≤j≤k

Cj
1

Li ≡ ∃r0.Li+1 ⊓ ∃r1.Li+1

Ln+1 ≡ ⊤

Table 4.5: The ELF-TBox Tφ for the reduction of an instance φ = ℓ11∨ ℓ
1
2∨ ℓ

1
3∧ . . .∧ ℓ

k
1 ∨

ℓk2 ∨ ℓk3 of 3-SAT over the propositional variables p1, . . . , pn, where 1 ≤ i ≤ n
and 1 ≤ j ≤ k.

Proof. For the proof, let Ĉ and L̂1 be the unfolding of C and L1 w.r.t. Tφ. Furthermore,

by J we denote the interpretation corresponding to the EL-description tree of τ(Ĉ) with
root x. For a given valuation V of φ, we define

CV := ∃rV (p1).(. . . (∃rV (pn).⊤) . . .)

(1 ⇒ 2) There exists a valuation V such that V does not make any clause of φ
false. Hence, J is an incomplete binary tree with root x, because there is no path

x
rV (p1)
−−−−→ . . .

rV (pn)
−−−−→ y. So because of x ∈ ĈJ and x /∈ CJ

V , we have C 6⊑Tφ
CV . However,

we obviously have L̂1 ⊑ CV . Hence C 6⊑Tφ
L1.

(2 ⇒ 1) We have C 6⊑Tφ
L1 and Ĉ 6⊑ L̂1. Since L̂1 is an EL-concept description, we

have τ(L̂1) = L̂1 and by Lemma 26, τ(Ĉ) 6⊑ L̂1. Consequently, x /∈ L̂1
J

. The only
reason for the latter fact is, that there are some a1, . . . , an ∈ {0, 1} such that there is no

path x
ra1−−→ . . .

ran−−→ y in J . Thus, V (pj) := aj , 1 ≤ j ≤ n is a valuation that does not
make any clause of φ false, and hence V is a solution to φ. �

Theorem 17 Subsumption in ELF w.r.t. acyclic TBoxes is co-NP-hard.

It is a justified question, why we have not made a reduction from subsumption in
ELf to subsumption in ELF . Basically, the 3-SAT reduction hopefully gives a better
intuition on why subsumption in ELF is co-NP-hard1. Nevertheless, for the case of

1Indeed, one could similarly prove co-NP-hardness of the language inclusion problem of acyclic finite
state automata.
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cyclic TBoxes, we make the easier reduction from subsumption in ELf to subsumption
in ELF .

Lemma 28 Let T = {A1 ≡ C1, . . . , An ≡ Cn} be an ELf TBox in normal form in
which m different role names r1, . . . , rm occur. Let T ′ be the ELF TBox obtained from
T by adding the concept definition

F ≡ ⊓
1≤i≤m

≤ 1ri

and replacing every A ≡ ∃r.B ∈ T by A ≡ ∃r.(F ⊓ B). Then, for the defined concepts
A,B ∈ Ndef (T ), the following are equivalent:

1. A ⊑T B

2. A ⊓ F ⊑T ′ B

Proof. We show the contrapositive in both directions.
(1 ⇒ 2) Let I be a model of T ′ such that x ∈ (A ⊓ F )I \ BI . In order to obtain a

model I ′ of T , we need to strip I. For a relation R ⊆M ×M , we redefine R1 := R0 ∪R
and set

∆I′

i := (
⋃

1≤i≤n

rIi )i(x) ∩ F I

r
I′

i

j := rIj ∩ (∆I′

i × ∆I′

i), 1 ≤ j ≤ m

AI′

i := AI ∩ ∆I′

i , A ∈ NC .

Then,

∆I′

:=
⋃

i≥0

∆I′

i , rI
′

j :=
⋃

i≥0

r
I′

i

j , 1 ≤ j ≤ m, AI′

j :=
⋃

i≥0

, A
I′

i

j , 1 ≤ j ≤ n.

In order to prove that I ′ is a model of I, we prove by induction on m the following
statement, where Aj ≡ Cj ∈ T , 1 ≤ j ≤ n:

A
I′

m

j ⊆ C
I′

m+1

j

It suffices to only consider the case C = ∃r.B in the induction step. First of all, it is
easily seen that ∆I′

0 ⊆ ∆I′
1 ⊆ . . .. Let y ∈ AI′

m+1 \ AI′
m . Since y ∈ (∃r.(B ⊓ F ))I , there

is a z ∈ (B ⊓ F )I such that (y, z) ∈ rI . Consequently, z ∈ ∆I′
m+2 and (y, z) ∈ rI

′
m+2 .

Hence, y ∈ (∃r.B)I
′
m+2 . It is not hard to see that CI′

⊆ AI′

. Moreover, ∆I′

⊆ ∆I ∩F I .
Thus, we have that I ′ is a model of T and x ∈ AI′

\BI′

.
(2 ⇒ 1) This direction is trivial, since any model I of T witnessing A 6⊑T B is also a

witness for A ⊓ F 6⊑T ′ B, when we interpret F I := ∆I . �
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Theorem 18 Subsumption in ELF w.r.t. cyclic TBoxes is PSpace-hard.

The upper bounds of the complexity of subsumption in ELF w.r.t. acyclic and cyclic
TBoxes remain an open question of this thesis. The best known upper bounds come
from ELF being a notational fragment of ALCN . Thus, subsumption in ELF w.r.t.
acyclic TBoxes is in PSpace and in ExpTime w.r.t. cyclic TBoxes (Baader et al. 2003).
However, without going into further details, the author’s speculation is that in both
cases, the lower bounds are tight.

4.7 Concrete Domains with Abstract Feature Chains

Last but not least, we will examine concept-satisfiability and subsumption in EL ex-
tended by concrete domains with abstract feature chains. For the tractable extension
EL⊔,⊓,¬(D) in Chapter 3, we did not allow abstract feature chains and in the following
we will see the reason for that.

Firstly, we introduce a popular family of concrete domains, so-called arithmetic con-
crete domains, which have been introduced in (Lutz 2002). They allow to represent the
natural numbers and operations thereon.

Definition 26 A concrete domain D is called arithmetic iff

1. ∆D contains the natural numbers and

2. ΦD contains

• unary predicates for equality and inequality with zero

• binary predicates for equality and inequality

• a binary predicate expressing addition with 1, and

• a ternary predicate expressing addition ♦

It has been shown by Lutz in (Lutz 2002) that subsumption and satisfiability in
EL extended by arithmetic concrete domains become undecidable in the presence of
general TBoxes2. We show in the following that these undecidability results carry over
to satisfiability and subsumption in EL extended by arithmetic concrete domains w.r.t.
cyclic TBoxes by a reduction of the Post Correspondence Problem.

Definition 27 (PCP) An instance P of the Post Correspondence Problem is given by
a finite, non-empty list (ℓ1, r1), . . . , (ℓk, rk) of pairs of words over some alphabet Σ. A
sequence of integers i1, . . . , im with m ≥ 1 is a solution to P iff

ℓi1 . . . ℓim = ri1 . . . rim
2Strictly speaking, in (Lutz 2002) this has only been shown for ALC(D) with abstract feature chains

and general TBoxes. However, the reductions in the proof for undecidability only use EL syntax.
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CP := =ǫ(ℓ) ⊓ =ǫ(r) ⊓ ⊓
(ℓi,ri)∈P

(concℓi
(ℓ, fiℓ) ⊓ concri

(r, fir)) ⊓ ⊓
1≤i≤k

∃fi.L

TP :=

{

L ≡ ⊓
(ℓi,ri)∈P

(concℓi
(ℓ, fiℓ) ⊓ concri

(r, fir)) ⊓ 6=(ℓ, r) ⊓ ⊓
1≤i≤k

∃fi.L

}

Table 4.6: The EL(W)-concept description CP and EL(W)-TBox TP for the reduction
from an instance P = (ℓ1, r1), . . . , (ℓk, rk) of PCP to unsatisfiability in EL(W).

The Post Correspondence Problem (PCP) is to decide for a given instance P , whether
P has a solution. ♦

The Post Correspondence Problem is known to be undecidable (Post 1947). As in
(Lutz 2002), we employ the concrete domain W for the reduction. For Σ being an
alphabet, W is defined by setting ∆W := Σ∗ and ΦW to be the smallest set containing:

• unary predicates =ǫ and 6=ǫ with =W
ǫ = {ǫ} and 6=W

ǫ = Σ+

• a binary equality predicate = and a binary inequality predicate 6= with the obvious
interpretation

• for each w ∈ Σ+, a binary predicate concw with

concW

w = {(u, v) | v = uw}

The concrete domain W is p-admissible (Lutz 2002). In the following, let EL(W) denote
EL extended by the concrete domain W with abstract feature chains. Table 4.7 shows
the definitions of the concept description CP and the cyclic TBox TP that we will use
for the reduction.

Lemma 29 Let P = (ℓ1, r1), . . . , (ℓk, rk) be a PCP. Then, the following are equivalent:

1. P has a solution

2. CP is unsatisfiable w.r.t. TP .

Proof. The proof is similar to the proof of undecidability of satisfiability in ALC(W)
w.r.t. general TBoxes, as presented in (Lutz 2002).

(1 ⇒ 2) Let i1, . . . , im be a sequence of integers such that ℓi1 . . . ℓim = ri1 . . . rim .
Assume there exists a model I of TP , let x ∈ CI

P and y = (f1 ◦ . . . ◦ fim)I(x) ∈ LI .
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However, ℓI(y) = rI(y), in contradiction to y ∈ LI . Thus, I is not a model of TP . Hence
CP is unsatisfiable.

(2 ⇒ 1) We show the contrapositive and assume that P has no solution. We con-
struct a model I of TP such that CP holds in I. Let w = i1 . . . in be a sequence of
indices. We denote by leftconc(w) the concatenation of ℓi1 . . . ℓin , and by rightconc(w)
the concatenation of ri1 . . . rin . Then, I is defined as follows:

∆I := {i1 . . . in | n ≥ 0, 1 ≤ ij ≤ k, 1 ≤ j ≤ n}

fIi (w) := wi for 1 ≤ i ≤ k

ℓI(w) := leftconc(w)

rI(w) := rightconc(w)

LI := ∆I \ {iǫ} where iǫ denotes the empty sequence

P has no solution, and thus it is readily checked that I is a model of TP and iǫ ∈ CI
P .

Hence, CP is satisfiable w.r.t. TP . �

We thus have shown that EL(W)-concept satisfiability is undecidable. Moreover, CP is
satisfiable w.r.t. TP iff CP 6⊑TP

⊥ iff CP 6⊑TP
6=(ℓ, ℓ).

Theorem 19 EL(W)-concept satisfiability and subsumption w.r.t. cyclic TBoxes is un-
decidable.

The main causes for undecidability come from the expressiveness of concrete domains
and the functionality constraints on abstract features together with the fact that cyclic
TBoxes allow to “reach” every domain element in connected models.

For ALC(D), it has been shown in (Lutz 2002) that W can be replaced by any arith-
metic concrete domain. The reduction only uses EL syntax, and for that reason this
result carries over to EL(D).

Corollary 1 Let D be an arithmetic concrete domain. Then, EL(D)-concept satisfia-
bility and subsumption w.r.t. cyclic TBoxes and abstract feature chains is undecidable.

4.8 Inverse Roles

Until now, we have seen in this chapter quite a number of extensions of EL that lead
to intractability of the subsumption problem w.r.t. cyclic TBoxes. However, as an open
question remains ELI, which extends EL by inverse roles. In (Baader, Molitor & Tobies
1999), the description logic ELIRO1 has been studied, which extends EL by inverse
roles, conjunction of roles and constants. Using a homomorphism approach, it has
been shown that subsumption in ELIRO1 can be decided in polynomial time, and thus
subsumption in ELI is polynomial.
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However, the complexity of subsumption w.r.t. standard TBoxes remains open. For
general TBoxes, it is known that subsumption is ExpTime-complete3. For the moment,
the only known upper bounds for subsumption in ELI come from ELI being a notational
fragment of ALCQIreg, for which subsumption is ExpTime-complete w.r.t. TBoxes
(Baader et al. 2003).

3This result has not been published yet. For a proof of a PSpace-lower bound, see (Baader, Brandt &
Lutz 2005a).
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Conclusion

The main goal of this thesis was to investigate which further extensions of EL can be
made so that subsumption remains tractable without or w.r.t. standard TBoxes.

In Chapter 3, we have introduced two such extensions, EL⊔,⊓,¬(D) and EL⊔,⊓,≥, for
which subsumption w.r.t. cyclic TBoxes is tractable. We have shown in Chapter 4 that in
a combination of both extensions subsumption is no longer tractable. Moreover, we have
examined the complexity of subsumption of several other extensions, which all have in
common that subsumption is intractable w.r.t. cyclic TBoxes. Thus, except for the open
question of inverse roles, both EL⊔,⊓,¬(D) and EL⊔,⊓,≥ are maximal in the sense that
they cannot be further extended without losing tractability of subsumption w.r.t. cyclic
TBoxes. We have noted as an interesting fact that, except for role conjunction, the sole
addition of any of the extensions of EL⊔,⊓,¬(D) and EL⊔,⊓,≥ to EL leads to ExpTime-
completeness of subsumption w.r.t. general TBoxes. A summary of the complexity
results of subsumption in extensions of EL obtained in this thesis can be found in Table
5.1.

There also remain some interesting open problems that have not been solved in this
thesis. Most notably, the complexity of subsumption in ELI w.r.t. standard TBoxes.
Furthermore, the exact complexity of subsumption w.r.t. standard TBoxes in ELF is
still open. It is likely that the co-NP-lower bound for subsumption w.r.t. acyclic TBoxes
is tight, as well as the PSpace-upper bound for subsumption w.r.t. cyclic TBoxes. De-
veloping an algorithm that checks subsumption in ELF w.r.t. acyclic TBoxes in co-NP

could result in a deeper general understanding of the complexity of subsumption in the
EL family. Moreover, it would be interesting to see whether such an algorithm can
also be employed for obtaining a co-NP-upper bound and a PSpace upper bound for
subsumption in ELI w.r.t. acyclic and cyclic TBoxes respectively.

For future work, in order to make use of the tractable extension of EL, the subsump-
tion algorithms offer some potential of optimization and an ABox formalism has to be
introduced. At the moment, the subsumption algorithms always naively check the all
completion conditions. Introducing some heuristics for which and when to check comple-
tion conditions will likely increase the overall performance significantly. Concerning the
introduction of an ABox formalism, it becomes problematic that instance checking in
the presence of at-least restrictions as well as role disjunction is co-NP-complete w.r.t.
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acyclic TBoxes (Krisnadhi 2007).
A further extension of EL that calls for investigation is the concept constructor intro-

duced in (Baader, Lutz, Karabaev & Theißen 2005) that generalizes existential restric-
tions and qualified number restrictions. There, it has been shown that subsumption in
EL extended by this new concept constructor is tractable w.r.t. acyclic TBoxes. It would
be interesting to see whether this is also the case w.r.t. cyclic TBoxes, and whether this
concept constructor can be combined with the tractable extensions of EL considered in
this thesis.

Lastly, we briefly have attended to the correspondence of subsumption in EL and
XPath query containment. Although for all extension of EL considered in Chapter 4
subsumption is intractable w.r.t. cyclic TBoxes, subsumption is tractable for some of
them, e.g., for functionality. It would be interesting to identify a maximal extension of
EL such that subsumption is tractable. These results could then be used to obtain a
very expressive fragment of XPath for which query containment is tractable.
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Extension TBox Complexity of subsumption Page

C
empty

PSpace-complete
39acyclic

cyclic ExpTime-complete

¬
empty

in PTime 24acyclic
cyclic

U
empty co-NP-complete 39
acyclic PSpace-complete 42
cyclic ExpTime-complete 44

F
empty in PTime 60
acyclic co-NP-hard 61
cyclic PSpace-hard 63

≥
empty

in PTime 34acyclic
cyclic

(D)1
empty

in PTime 24acyclic
cyclic

⊔
empty

in PTime 24acyclic
cyclic

⊓
empty

in PTime 24acyclic
cyclic

+
empty co-NP-complete 52
acyclic PSpace-complete 55
cyclic ExpTime-complete 54

I
empty in PTime

66acyclic
in ExpTime

cyclic

f
empty in PTime 60
acyclic co-NP-complete

57
cyclic PSpace-complete

1when D is a p-admissible concrete domain

Table 5.1: Complexity results of subsumption in extensions of EL considered in this
thesis.
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