
International Master Programme in Computational Logic

Institute for Theoretical Computer Science

Computer Science Department

Master Thesis

NON-STANDARD INFERENCE FOR EXPLAINING

SUBSUMPTION

IN THE DESCRIPTION LOGIC EL WITH GENERAL CONCEPT

INCLUSIONS AND COMPLEX ROLE INCLUSIONS

By

Huang Changsheng

Professor: Prof. Franz Baader

Supervisor: Boontawee Suntisrivaraporn

c© Copyright by Huang Changsheng, 2007

Technische Universität Dresden

Department Of

Computer Science

The undersigned hereby certify that they have read and recommend to

the Faculty of Graduate Studies for acceptance a thesis entitled “Non-standard

Inference for Explaining Subsumption in the Description Logic EL

with General Concept Inclusions and Complex Role Inclusions”

by Huang Changsheng in partial fulfillment of the requirements for the

degree of Master of Science.

Dated: 01.03.2007

ii

TECHNISCHE UNIVERSITÄT DRESDEN

Date: 01.03.2007

Author: Huang Changsheng

Matrikel-Nr: 2992270

Title: Non-standard Inference for Explaining Subsumption

in the Description Logic EL with General Concept

Inclusions and Complex Role Inclusions

Department: Computational Logic

Degree: M.Sc. Convocation: March Year: 2007

Permission is herewith granted to Technische Universität Dresden to circulate

and to make copies for non-commercial purposes, at its discretion, the above title upon

the request of individuals or institutions.

Signature of Author

THE AUTHOR RESERVES OTHER PUBLICATION RIGHTS, AND NEITHER
THE THESIS NOR EXTENSIVE EXTRACTS FROM IT MAY BE PRINTED OR
OTHERWISE REPRODUCED WITHOUT THE AUTHOR’S WRITTEN PERMISSION.

THE AUTHOR ATTESTS THAT PERMISSION HAS BEEN OBTAINED FOR THE
USE OF ANY COPYRIGHTED MATERIAL APPEARING IN THIS THESIS (OTHER
THAN BRIEF EXCERPTS REQUIRING ONLY PROPER ACKNOWLEDGEMENT IN
SCHOLARLY WRITING) AND THAT ALL SUCH USE IS CLEARLY ACKNOWLEDGED.

iii

To my parents,grandmother and Echo

iv

Abstract

Ontologies [11] are now ubiquitous and many of them are currently being ported into logical

formalisms, most notably description logic (DL) [2]. It is inevitable that such migration

might introduces inconsistencies – both in terms of logically and ontologically – which

could be far from obvious. This motivates the recent research topic of explanation of DL-

based ontologies. Explanation comes in two flavors: pinpointing [5, 21, 15] which addresses

the source of inconsistencies found in the ontology and debugging [14] which recovers the

ontology into a consistent state. Since the latter often requires information from the former,

we consider axiom pinpointing as essential for both flavors of the explanation problem. Much

of the research in this area is focusing on expressive DLs, in which standard reasoning alone

is already highly intractable. In this paper, we investigate this problem in a tractable

extension of EL which is useful in life science applications.

We have discovered that pinpointing is inherently intractable – despite the tractable

logic considered – if all information is required. This is due to the combinatorial blow-up of

possible sets of axioms. We develop a labelled algorithm for axiom pinpointing based on the

EL subsumption algorithm and the known labelling technique used in tableau algorithm.

For implementation purposes, we restrict this algorithm to computation of only partial

information, for which polynomial-time algorithm can be obtained. We have experimented

this approach on GALEN [18] and found that even partial information can already help

ease the way an ontology is being debugged.

v

Acknowledgements

I would like to thank Boontawee (Meng) Suntisrivaraporn, my supervisor, for his many

suggestions during this thesis. Without his patience and constant support I could not have

done this thesis in time.

Professor Franz Baader gave the lecture “Logic Based Knowledge Representation” and

hereby brought me into the field of description logics, I appreciate his guidance and proposal

during this thesis. I had the pleasure of meeting other people in the group. They are

wonderful people. Thanks to Rafael for sharing and providing with me his knowledge of

complexity, to Liu for giving his advice. I am grateful to Dr Barbara Morawska, with who

I have happily worked on my project and seminar. Thanks for the kindness of secretary

Frau Achtruth too.

Of course, I wish to thank the following: as the first reader of my thesis report, Fine

and Margaret always encourage and pray for me. Another reader Lin helps me printing the

first draft. I do not forget my friends in Germany. Thanks all of you to bring me joy in my

life.

Most importantly, I am grateful to my families, for their love and financial support.

Without them this work would never have come into existence. I must mention Echo,

thanks for your love and support during my study in Germany. Particularly, I would like

to dedicate this work to my grandmother.

Dresden Germany Huang Changsheng

Feb 28, 2007

vi

Table of Contents

Abstract v

Acknowledgements vi

Table of Contents vii

Introduction 1

1 The Description Logic EL 6

1.1 EL Concept Language . 6

1.2 EL+ Terminology . 8

1.3 Reasoning problem in EL+ . 9

2 Subsumption of EL with GCIs and CRIs 12

2.1 Normalization of EL+ Ontology . 12

2.2 Classification of EL+ Ontology . 16

2.3 Soundness and Completeness . 18

3 Explaining Subsumption in EL+ by Axiom Pinpointing 20

3.1 The Labelled Algorithm . 22

3.2 Soundness and Completeness . 25

3.3 Minimal Explanation w.r.t Original Ontology 32

3.4 Complexity . 35

4 A Tractable Restriction of Axiom Pinpointing in EL+ 39

4.1 Computing One Explanation . 39

4.2 A First Implementation . 45

4.3 Complexity . 47

5 Experiments on GALEN 49

6 Conclusion and Future Work 53

vii

Bibliography 55

viii

Introduction

Description Logics (DLs) [2] are a successful family of logic-based knowledge representation

(KR) languages, which can be used to represent the conceptual knowledge of an application

domain in a structured and formally well-understood way. As an increasingly large amount

of applications in the field of KR, DLs play a more important role, from the foundation of

logical ontology language which are used in several areas such as databases, the semantic

web, biomedical ontologies, and natural language processing. DLs assume some classes of

objects (concept names) and some binary relationships between objects (role names), then

use these classes and relationships to describe properties of “objects” in a domain of knowl-

edge base. With the help of concept and role names, DLs allow to build complex concept

descriptions via a set of constructors. The language for building descriptions is character-

istic of each DL, and different DLs are distinguished by their description languages. For

example, a typical description logic language ALC (Attributive Language with Comple-

ments) is built from the constructors value restrictions (∀), existential restrictions (∃), and

all Boolean operators such as conjunctions (⊓), disjunctions (⊔), negation (¬), and the top

concept (⊤). Usually, the stronger the expressive power of a description logic, the higher

its complexity.

DLs consist of two components, a TBox and an ABox. A TBox stands for terminology

box which declares general properties of concepts relevant in the domain, while an ABox

contains assertions about individuals which can be related via roles and can be an instance

of of concepts. The most basic form of terminological declarations is a concept definition

1

2

A ≡ C, in which the concept name A was defined by the concept description C. In addition,

the TBox may contain a generic form of terminological axioms or so-called general concept

inclusions (GCIs) denoted by C ⊑ D, where C and D are arbitrary concept descriptions.

GCI represents a universally true implication. If a TBox consists of finite GCIs, we call this

TBox general differing from non-general TBox or TBox without GCIs. In fact, a concept

definition A ≡ C could be expressed by means of two GCIs, that means the defined concept

and the concept description are mutually inclusive such as A ⊑ C and C ⊑ A, but not vice

versa. As a result, we allow the concept definitions in our knowledge base when talking

about general TBox. From the application point of view, besides concept axioms, axioms

statements concerning roles are widely used in the biomedical domain, for instance, the

Galen Medical Knowledge Base (GALEN)[18]. A prominent form of role axioms is called

complex role inclusion or CRI (r1 ◦ r2 ◦ · · · ◦ rn ⊑ s), where ri, s are role name and “◦”

denote the composition of the binary relation from the semantic point of view. In this paper,

we take into account the description logic EL which is built from existential restrictions,

conjunctions, and the top concept. With regards to terminological formalisms, we consider

EL+ terminology, which has EL as its concept language and allows for GCIs and CRIs as

well.

A DL based system not only stores terminologies and assertions, but also offers services

to reason about them. Typical inference problems in DLs are to determine whether a con-

cept description is satisfiable, or whether one concept description is more general than the

other. The latter is known as subsumption problem of two concept descriptions. Computing

the concept subsumption targets a determination of subconcept-superconcept relationship.

In [7], by means of the so-called implication set (IS), it above all computes all subsumers

of every concept name in an EL general TBox, and the decision of subsumption between

two concept names simply boils down to a look-up operation of the subsumer in the IS.

This approach provides a polynomial decision procedure for the language at hand, and was

3

later extended to the more powerful language EL++. A refined algorithm based on [1] has

been proposed for an efficient implementation in [3] and empirical success of this refined

algorithm has been witnessed by the scaliability of the CEL reasoner [4].

Though standard DL reasoning can be used to make implicit consequence explicit, it

does not explain the reasons for a given consequence. This kind of support becomes sig-

nificantly necessary as the size of the DL knowledge base grows. A case in point is the

debugging of OWL in the application Semantic Web [6]. Finding the origin of errors is an

extremely difficult task even for the experts. In this case, following the chain of evidence

or information that is responsible for inconsistency is very important. On the other hand,

when reasoning upon an enormous terminology, for instance, the Galen Medical Knowledge

Base with approximately 4,370 numbers of axioms, explanation provides a more readily evi-

dence for a given consequence. In all circumstances, it needs to pin down to the axioms that

are pertinent to a certain consequence. At the end, one could retrieve the related axioms

leading to the result. We utilize a technique that could retain this kind of information when

reasoning. The approach adopted here is known as pinpointing, which was first introduced

in [5]. Axiom pinpointing is a first step towards providing an explanation. Given a DL

knowledge base and a logical consequence, it computes minimal (maximal) subsets of the

KB from which the consequence follows (does not follow). Another utility of pinpointing

could be found in [21], in that survey, the aim is to provide a complete algorithm for comput-

ing the so-called Minimal Unsatisfiability-Preserving Sub-TBoxes (MUPS) in ALC, that is

to identify the relevant axioms in charge of an unsatisfiable concept. Recently, pinpointing

in tableaus has been investigated in [15]. In this paper, we sketch a pinpointing algorithm

for computing the minimal explanations of subsumption in the description logic EL+. Se-

mantically, minimality is w.r.t set inclusion, i.e the consequence would not hold anymore

if an item is removed from it. Since no concept descriptions are unsatisfiable because of

the absence of negation in EL, we will only consider concept subsumption. In the spirit

4

of naming scheme in [21], we are interested in Minimal Ontology Preserving Subsumption

(MOPS) instead of MUPS or minimal explanation sets. In the following, we use “MOPS”

and “minimal explanation set” interchangeably.

Despite the limited expressive power, EL was used in large biomedical ontologies such

as the Systematized Nomenclature of Medicine (SNOMED), the Gene Ontology. From

the complexity point of view, subsumption in EL can be decided in polynomial time even

admitting GCIs and CRIs [1], and the polynomial time reasoner CEL was successfully

fulfilled. In this thesis, We will first propose a pinpointing algorithm and analyse that the

complexity of pinpointing in EL+ is NP-hard. In order to retain it to tractable, we modify

this pinpointing algorithm a little and compute only one minimal explanation with the help

of brute-force or black box reasoning approach and CEL reasoner. This tractable axiom

pinpointing algorithm was implemented in Common LISP, Allegro CL [12]. Since large

portion of GALEN can be expressed in EL+, we will evaluate our implementation using

the GALEN ontology.

This thesis is organized as follows:

Chapter 1 introduces the relevant definitions of the description logic EL, starting with

the syntax and semantics of its concept language. Then the extended language EL+ of

EL and its terminology is introduced. We also give a brief introduction to the inference

problems in EL+.

In Chapter 2, we introduce the normal form and normalization rule [23] for EL+ termi-

nologies. Then we review the subsumption algorithm through the computation of implica-

tion sets, and show the soundness and completeness [1] of this algorithm.

Subsequently, we extend the algorithm mentioned in Chapter 2 and propose a labelled

algorithm that could pinpoint relevant axioms in Chapter 3. The proof of the soundness

and completeness of the labelled algorithm was reduced to the unlabelled algorithm via

5

a so-called ǫ-projection. Since this labelled algorithm processes on a normalized ontology,

and the computed explanation sets are in normal form as well. When use reverse mapping

from normal from to original form, it leads to non-minimality. In order to obtain the

explanations w.r.t the original axioms, we could use brute force approach. Finally we prove

that the complexity of pinpoint is NP-complete.

In Chapter 4, we restrict the labelled algorithm so that it computes only one explanation

for each subsumption relationships. This algorithm terminates in polynomial time in the

size of the input ontology. However, it cannot produce truly minimal explanation sets. To

obtain minimal ones, we exploit the black box approach with the help of the CEL reasoner.

At the end, we implement a refined version of the algorithm in Common Lisp.

The experiment of the tractable pinpointing algorithm on GALEN will be discussed in

Chapter 5. We present the experimental results on the computation time and the degree of

the non-minimality, e.g how many explanations are not minimal and how many axioms are

unnecessary for a given non-minimal explanation.

Finally, conclusion and future work are discussed in Chapter 6.

Chapter 1

The Description Logic EL

In this chapter we give a formal introduction into the description logic. Since this thesis

concerns the description logic language EL, we start with introducing the syntax and se-

mantics of EL, then the definition of EL+ terminology which is an extension of EL. Finally,

we will also present the main inference problem in this logic, i.e, subsumption. The solution

for this inference problem will be discussed in the next chapter. In the first place, let us

take a look at the syntax and semantics of EL.

1.1 EL Concept Language

Description Logics (DLs) are an important family of formalisms used to represent and

reason about ontologies in the field of knowledge presentations. It assumes some concepts

and binary relation roles and then uses these concepts and relations to describe properties

of objects in a domain of a knowledge base. Concept descriptions or complex concepts are

inductively defined with the help of a set of constructors, starting with a set N⊤
con of concept

names including ⊤ and a set Nrole of role names. The description logic EL allows only for

the constructors of conjunctions (⊓), existential restrictions (∃) and ⊤ concept.

Definition 1. (Syntax) Let N⊤
con and Nrole be disjoint sets of concept names and role

names. The set of EL-concept descriptions is defined inductively as:

• each concept name A ∈ N⊤
con is an EL-concept description

6

1.1. EL Concept Language 7

• if C and D are EL-concept descriptions and r ∈ Nrole, then the conjunction C ⊓ D

and the existential restriction ∃r.C are also EL-concept descriptions.

3

Concept names from Ncon as well as ⊤ referred to as N⊤
con and are called atomic concepts.

Other concepts are called non-atomic or complex.

For instance, in the EL concept description

Person ⊓ ∃attends. Course

Here ’Person’ and ’Course’ are concept names and ’attends’ is a role name. Intuitively this

complex concept describes the class of persons who attend a course. We can describe a

more specific concept such as

Person ⊓ ∃attends. (Course ⊓ ∃has topics. DL)

which describes those who attends the course with the topic description logic. The set

theoretic semantics of the EL concept descriptions can be defined as follows:

Definition 2. (Semantics) An interpretation I is a pair (∆I , ·I), where ∆I is a non-empty

set and the interpretation function ·I maps

• each concept name A ∈ N⊤
con to a subset AI ⊆ ∆I ;

• each role name r ∈ Nrole to a binary relation rI ⊆ ∆I×∆I ;

The extension of ·I to arbitrary concept descriptions is defined inductively as follows:

⊤I := ∆I

(C ⊓D)I := CI ∩DI

(∃r.C)I := {x ∈ ∆I | ∃y : (x, y) ∈ rI ∧ y ∈ CI}

3

Generally, there are two types of terminological formalisms in EL, the first one is EL-TBox

and the second one is general TBox. In this paper, we pay attention to the latter one.

1.2. EL+ Terminology 8

1.2 EL+ Terminology

In DLs, terminology presents a hierarchical structure built to provide an intensional repre-

sentation of the domain of interest. Usually, a basic form of declaration in a terminology is

a concept definition such as A ≡ C which defines a concept name A by a concept descrip-

tion C. A finite set of concept definitions with unique left hand sides is called TBox (or

Terminology).

In contrast to concept definitions, another form of terminological axiom is so-called

general concept inclusion (GCI) axioms denoted by C ⊑ D, where C, D are arbitrary

concept descriptions. Besides concept definitions and GCIs, there is a wildly utilization of

role axioms which are known collectively as complex role inclusions or CRIs r1◦r2 · · ·◦rn ⊑ s,

where ri and s are role names for 1 ≤ i ≤ n. Role inclusions play an important role in some

realistic ontologies, especially in the biomedical domain. Next, we will formally define the

syntax of the EL+ terminology.

Definition 3. (Syntax) Let C and D are EL-concept descriptions and ri, s are role names

for 1 ≤ i ≤ n. Then C ⊑ D is a general concept inclusion (GCI) and r1 ◦ r2 · · · ◦ rn ⊑ s is a

complex role inclusion (CRI). The EL+ terminology or ontology O is a finite set of GCIs

and CRIs. 3

Usually, we call that a EL TBox is general if it contain only a finite set of GCIs. An EL+

ontology can be regarded as a general EL TBox admitting CRIs. EL+ ontology contains

universally true implication GCI, both C and D here can be arbitrary concept descriptions.

In order to differentiate from EL TBoxes, we henceforth use O to denote EL+ ontology. By

the notation CNO, we denote it as the set of all concept names occurring in O. Similarly,

RNO refers to all role names appearing in O. Concept names and ⊤ are expressed by CN⊤
O ,

i.e CN⊤
O = CNO ∪ {⊤}. We allow for concept definitions A ≡ C since a concept definition

can be expressed by means of two GCIs, viz. A ⊑ C and C ⊑ A. The features provided by

EL+ are essential and widely used in the context of medical ontologies such as Galen Medical

Knowledge Base (GALEN) [18], Systematized Nomenclature of Medicine (SNOMED) [16]

1.3. Reasoning problem in EL+ 9

and Gene Ontology (GO) [20]. In particular, role inclusions are practically very useful in

these medical ontologies. Most notably, they generalize transitive role axioms (r ◦ r ⊑ r),

role hierarchies (r ⊑ s), and so-called right-identities on roles (r ◦ s ⊑ r).

Now we can define the semantics of the EL+ terminology. Usually there are two ap-

proaches to interpret terminology formalisms, namely fixpoint or descriptive semantics by

Nebel [13]. In this paper, we take into consideration the descriptive semantics.

Definition 4. (Semantics) An interpretation I = (∆I , ·I) satisfies a general concept inclu-

sion C ⊑ D if CI ⊆ DI , and I satisfies a role inclusion r1◦r2 · · ·◦rn ⊑ s if rI1 ◦r
I
2 · · ·◦rIn ⊆ sI ,

where “◦” denotes composition of binary relation from semantics point of view. I is a model

of a EL+ ontology O if it satisfies all GCIs and CRIs in O. 3

1.3 Reasoning problem in EL+

For terminological reasoning w.r.t an ontology, we distinguish satisfiability from subsump-

tion. Satisfiability of a concept description concerns whether the concept description is free

from contradiction, while subsumption concerns whether given two concept descriptions,

one concept description is a subconcept of the other. Satisfiability problem is uninteresting

in EL+, since without negation, there is no unsatisfiable concept description. We define the

subsumption problem as follows:

Definition 5. (subsumption) Let O be an EL+ terminology and let C,D be arbitrary EL+

concept description. Then C is subsumed by D w.r.t O (C ⊑O D)1 iff CI ⊆ DI for all

models I of O. 3

C and D are equivalent w.r.t O iff they subsume each other. i.e C ≡O D iff C ⊑O D and

D ⊑O C. In fact, the decision of subsumption problem can be reduced to the computation

of the subconcept-superconcept relationships. In [1], it computes so called implication sets

1
C ⊑ D is an axiom with the form of GCI in a terminology, while C ⊑O D is subsumption problem w.r.t

O.

1.3. Reasoning problem in EL+ 10

Endocardium ⊑ Tissue ⊓ ∃cont in. HeartWall

⊓ ∃cont in. HeartValve

HeartWall ⊑ BodyWall ⊓ ∃part of. Heart

HeartValve ⊑ BodyValve ⊓ ∃part of. Heart

Endocarditis ⊑ Inflammation ⊓ ∃has loc. Endocardium

Inflammation ⊑ Diease ⊓ ∃act on. Tissue

Heartdisease ≡ Disease ⊓ ∃has loc. Heart

Endocarditis ⊑ Heartdisease

part of ⊑ cont in

has loc ◦ cont in ⊑ has loc

Figure 1.1: Example EL+ ontology

which are the set of subsumers of a concept names, to decide A ⊑ B just to check if B is in

the implication set of A. In this way, it has been investigated that reasoning in EL and its

extension remains tractable and the polynomial reasoner CEL is based on the algorithm [1]

for the extension of EL+. Subsumption of two concept descriptions can be reduced to the

subsumption of two concept names. i.e, for concept descriptions C,D and C ⊑O D can be

reduced to A ⊑O B for the new concept name A,B by introducing the following GCIs

A ⊑ C D ⊑ B

Let’s have a look an example:

Example 6. As an example of what can be expressed with EL+, consider the example in

Figure 1.1, this EL+ ontology O contains six GCIs, two CRIs and one concept definition. For

example, the Endocardium is Tissue and is contained in the HeartWall and HeartValve. Also

we can say that Endocardium is Tissue and is composed of HeardWall and HeartValve on

account of cont in which is a super role of part of . In this example, the axioms for role are

role hierarchy (part of ⊑ cont in) and right-identities on roles (has loc◦cont in ⊑ has loc)

respectively. Based on this ontology, it is not hard to discern that the concept Endocarditis

1.3. Reasoning problem in EL+ 11

is subsumed by concept Heartdisease. (i.e. Endocarditis ⊑O Heartdisease). ⊣

We say that the ontology O is an explanation or an ontology preserving the subsump-

tion Endocarditis ⊑ Heartdisease. In fact, not all axioms in O are indispensable for this

subsumption. We are more interesting in seeking the minimal sub-ontologies that preserve

the subsumption consequence of a given terminology from application point of view. As

motivated in the introduction, we are interested in explaining subsumption in EL+. We now

give a definition of minimal explanation.

Definition 7. (MOPS) Let O be an EL+ ontology over CN⊤
O and RNO and A, B concept

names from CN⊤
O . Then a Minimal Ontology Preserving Subsumption (MOPS) or minimal

explanation for subsumption A ⊑ B is the minimal sub-ontology O′ of O such that A ⊑O′ B

and for all O′′ ⊂ O′, A 6⊑O′′ B. 3

Intuitively, minimal explanation contains relevant axioms required for the subsumption in

question to hold, i.e., subsumption does not hold any more if an axiom is taken away from it.

In the example 6, a possible minimal explanation set is O′
1 = {Endocarditis ⊑ Heartdisease}

for the subsumption Endocarditis ⊑ Heartdisease.

In this paper, we will denote the size of an ontology O by |O| i.e. for the total number

of occurrence of role names and concept names in O. In the following, we will present the

polynomial time decision procedure of the subsumption problem in EL+.

Chapter 2

Subsumption of EL with GCIs and

CRIs

In terms of terminological inference services, a common method is tableaux-based algo-

rithm which tries to generate a finite structure representative (possibly infinite) models. In

tableaus algorithm, we reduce the satisfiability of a GCI A ⊑ B to the satisfiability problem

of the concept description ¬A ⊔ D which is treated as tautology since no negation in EL.

From complexity point of view, in [8], it has been shown that use of standard tableaux algo-

rithm deciding consistency of a general ALC TBox, which extends EL by value restrictions

(∀), disjunctions (⊔), and negations (¬), takes exponentially many steps in the worst case,

even for the sublanguage EL. Hence, a new approach is required to render tractability. In

this chapter, we will bring in a polynomial algorithm for the concept subsumption. This

algorithm takes an ontology in normal form as input and computes subsumption between

all pairs of concept names in the ontology. First we will formally address the normalization

of an EL+ ontology.

2.1 Normalization of EL+ Ontology

Definition 8. (EL+ Normal Form) Let O be a EL+ ontology over CNO and RNO. Then O

is in normal form iff O contains only GCIs and CRIs of the following forms:

12

2.1. Normalization of EL+ Ontology 13

1. all general concept inclusions have one of the following forms:

A ⊑ B

A1 ⊓A2 ⊑ B

A ⊑ ∃r.B

∃r.A ⊑ B

where A,A1, A2, B represent concept names from CNO or ⊤, r is role name from RNO.

2. all complex role inclusions have one of the following forms:

r ⊑ s

r1 ◦ r2 ⊑ s

where r, r1, r2, s are role names from RNO.

3

Any arbitrary EL+ ontology can be normalized by exhaustively applying the normaliza-

tion rules. Here we will introduce a small extension of the normalization rules first proposed

in [23] as the following:

Definition 9. Let O be a EL+ ontology over CN⊤
O and RNO, the normalization rule are

2.1. Normalization of EL+ Ontology 14

defined as:

NF1 r̂ ◦ s ⊑ t −→ {r̂ ⊑ u, u ◦ s ⊑ t}

NF2 C
.
= D −→ {C ⊑ D, D ⊑ C}

NF3 Ĉ ⊓D ⊑ E −→ {Ĉ ⊑ A, A ⊓D ⊑ E}

NF4 C ⊓ D̂ ⊑ E −→ {D̂ ⊑ A, C ⊓A ⊑ E}

NF5 ∃r.Ĉ ⊑ D −→ {Ĉ ⊑ A, ∃r.A ⊑ D}

NF6 Ĉ ⊑ D̂ −→ {Ĉ ⊑ A, A ⊑ D̂}

NF7 B ⊑ ∃r.D̂ −→ {B ⊑ ∃r.A, A ⊑ D̂}

NF8 B ⊑ D ⊓ E −→ {B ⊑ D, B ⊑ E}

where r̂ denotes a role concatenation of more than one role and u is a new role name not

occurring in O, Ĉ, D̂ denote concept descriptions (complex concepts), A is a new concept

name, B is a concept name, r is a role name and C,D,E could be any arbitrary concept

descriptions. 3

Given a EL+ ontology O, we apply the normalization rule G −→ S to O and change O to

(O \ {G} ∪ S), the normalized EL+ ontology norm(O) could be obtained by applying rules

NF1 to NF5 back and forth (phase 1), and after that, exhaustively applying rule NF6 to NF8

(phase 2). The normalized EL+ ontology can be computed in linear time in the size of O.

Lemma 10. Let O be an EL+ ontology. The normalized EL+ ontology norm(O) can be

computed in linear time in the size of O, the resulting ontology norm(O) is of linear size in

the size of O.

Proof. The exhaustive application of NF1 and NF2 gave rise to the size of O is increased

only linearly, and these two rules will never be applicable as the consequence of Rules NF3

to NF8. Next, we may restrict our attention to Rules NF3 to NF8. A single application of one

2.1. Normalization of EL+ Ontology 15

of the Rules NF3 to NF5 in the first phase increased the size of O only by a constant. Rules

NF3 and NF4 are applicable at most once for each occurrence of ”⊓”, and each application

introduces a new concept name and split one GCI into two. Likewise, Rule NF5 is applicable

at most once for each occurrence of ”∃” and generates a new concept and split one GCI

into two. Therefore, the application in Phase 1 takes linear time and produces a ontology

O′ of size linear in the size of O.

Rule NF6 is applicable at most once for each GCI in O′ and leads to the splitting of two

GCIs of linear size. Rule NF7 and Rule NF8 are applicable at most once for each occurrence

of ∃ and ⊓ on the right hand side of O′ respectively, in both cases split one GCI into two,

which increase the size of O′ by a constant. Therefore, the application of phase 2 yields an

ontology of the size linear in the size of O.

Example 11. Let us look over the terminology from Example 6. Only the sixth GCIs

needs to be normalized w.r.t phase one. In the first place, rule NF2 applies to the sixth GCI

Heartdisease ⊑ Disease ⊓ ∃has loc. Heart

Disease ⊓ ∃has loc. Heart ⊑ Heartdisease

for the second axiom the NF4 generates the following two GCIs as

Disease ⊓X1 ⊑ Heartdisease

∃has loc.Heart ⊑ X1

whichX1 is the new introducing variable and these axioms are already in normal form. Then

apply NF6 to NF8 exhaustively for the rest of ontology, we will get a complete normalized

2.2. Classification of EL+ Ontology 16

ontology looks as:

Disease ⊓X1 ⊑ Heartdisease ∃has loc. Heart ⊑ X1

Endocardium ⊑ Tissue Endocardium ⊑ ∃count in. HeartWall

HeartWall ⊑ BodyWall HeartWall ⊑ ∃part of. Heart

HeartValve ⊑ BodyValve HeartValve ⊑ ∃part of. Heart

Endocarditis ⊑ Inflammation Endocarditis ⊑ ∃has loc. Endocardium

Inflammation ⊑ Disease Inflammation ⊑ ∃act on. Tissue

Heartdisease ⊑ Disease Heartdisease ⊑ ∃has loc. Heart

Endocarditis ⊑ CriticalDisease Endocardium ⊑ ∃cont in. HeartValve

has loc ◦ cont in ⊑ has loc part of ⊑ cont in

⊣

It is important to say that an EL+ ontology O and its normal form norm(O) are equivalent

with respect to concept subsumption.

Proposition 12. Let O be an EL+ ontology over CN⊤
O and RNO, for A,B ∈ CN⊤

O , A ⊑O B

iff A ⊑norm(O) B.

2.2 Classification of EL+ Ontology

The first polynomial time algorithm for classification in EL in presence of GCIs and role

hierarchies was proposed in [7], and this algorithm was further extended the much more

powerful DL EL++ in [1]. We will restrict the algorithm from [1] to EL+.

Somewhere along the way, the strategy for our algorithm is, for every concept name

A ∈ CN⊤
O to compute a set of concept names S(A) which are super concept names or

subsumers of A. Similarly, for every role r we want to represent by R(r). When decide the

subsumption A ⊑ B, only check if B is in the implication set S(A). In the following, we

2.2. Classification of EL+ Ontology 17

Completion Rules

CR1 If A ∈ S(X), g = A ⊑ B ∈ O,
and B /∈ S(X)

then S(X) := S(X) ∪ {B}

CR2 If A1, A2 ∈ S(X), g = A1 ⊓A2 ⊑ B ∈ O,
and B /∈ S(X)

then S(X) := S(X) ∪ {B}

CR3 If A ∈ S(X), g = A ⊑ ∃r.B ∈ O,
and (X,B) /∈ R(r)

then R(r) := R(r) ∪ {(X,B)}

CR4 If (X,Y) ∈ R(r), A ∈ S(Y), g = ∃r.A ⊑ B ∈ O,
and B /∈ S(X)

then S(X) := S(X) ∪ {B}

CR5 If (X,Y) ∈ R(r), g = r ⊑ s ∈ O,
and (X,Y) /∈ R(s)

then R(s) := R(s) ∪ {(X,Y)}

CR6 If (X,Y) ∈ R(r), (Y, Z) ∈ R(s), g = r ◦ s ⊑ t ∈ O,
and (X,Z) /∈ R(t)

then R(t) := R(t) ∪ {(X,Z)}

Table 2.1: Subsumption algorithm for EL+

only take into consideration of the EL+ ontology, which consists of finite set of GCIs and

CRIs. Without lost of generality we assume that the input ontology O is in normal form,

the algorithm computes

• a mapping S assigning to each element of CN⊤
O a subset of CN⊤

O and

• a mapping R assigning to each element of RNO a binary relation on CN⊤
O .

Starting by S(A) = {A,⊤} and R(r) = ∅ for all A ∈ CN⊤
O , r ∈ RNO, then computes

S, R exhaustively by application of the completion rule shown in Table 2.1. Intuitively,

the mappings disclose the implicit subsumption relationships in the sense B ∈ S(A) implies

A ⊑O B and similarly, (A,B) ∈ R(r) implies A ⊑O ∃r.B. This algorithm not only com-

putes the subsumption between two given concept names, but it rather classifies O, i.e., it

concurrently computes the subsumption relationships between all pairs of concept names

in O.

2.3. Soundness and Completeness 18

Lemma 13. Let O be an EL+ ontology in normal form over CN⊤
O and RNO, the subsumption

algorithm shown in Table 2.1 terminates polynomially in the size of O.

Proof. Since O is a finite set of GCIs and CRIs, it is easy to check that both CN⊤
O and

RNO are linear in |O|. The application of each completion rules either adds a concept name

in CN⊤
O to S(A) for some A ∈ CN⊤

O or adds a pair (A,B) ∈ CN⊤
O × CN⊤

O to R(r) for some

r ∈ RNO. Since no rule removes element from S and R, the total number of rule application

is polynomial. It is easy checked that each rule application can be performed in polynomial

time.

2.3 Soundness and Completeness

In this section we will study the soundness and completeness of subsumption algorithm in

EL. Here we only present a proof sketch of soundness for reference in later chapters. The

full proofs of soundness and completeness can be found in [1].

Assume that our algorithm is applied to an ontology O in normal form. The execution

of the algorithm will lead to a sequence of S0, · · · , Sm and R0, · · · , Rm. To prove the

correctness of algorithm, it is sufficient to prove the following claim:

claim: Given concept name A,B ∈ CN⊤
O and role name r ∈ RNO, for all n ∈ IN , models I

of O, and x ∈ AI , the following holds:

(a) if B ∈ Sn(A), then x ∈ BI ;

(b) if (A,B) ∈ Rn(r) then there is a y ∈ ∆I with (x, y) ∈ rI and y ∈ BI .

We prove it by induction on n.

Induction start:

(a) n = 0 then S0(A) = {A,⊤}, x ∈ AI implies x ∈ AI and x ∈ ⊤I , we are done.

(b) n = 0 then R0(r) = ∅ for all r ∈ RNO, trivial.

Induction step:

For (a), we assume that B ∈ Sn(A) \ Sn−1(A)(for otherwise we are done by IH), we make

a case distinction according to the rule that was used to add B to Sn.

2.3. Soundness and Completeness 19

CR1 If CR1 could be applicable, there must be B′ ∈ Sn−1(A) and a concept inclusion

g = B′ ⊑ B ∈ O. By point(a) of IH, x ∈ AI implies x ∈ B′I , by concept inclusion g,

x ∈ B′I implies x ∈ BI .

CR2 If CR2 could be applicable, there must be B1, B2 ∈ Sn−1(A) and a concept inclusion

g = B1 ⊓ B2 ⊑ B ∈ O. By point(a) of IH, x ∈ AI implies x ∈ BI
1 and x ∈ BI

2 , by

concept inclusion g, implies x ∈ BI .

CR4 If CR4 could be applicable, there exist concept names X,Y ∈ CN⊤
O and role name

r ∈ RNO, such that (X,Y) ∈ Rn−1(r), and A ∈ Sn−1(Y) and a concept inclusion

g = ∃r.A ⊑ B ∈ O. By point(b) of IH, there is a y ∈ ∆I with (x, y) ∈ rI and y ∈ Y I .

By point(a) of IH, y ∈ Y I implies y ∈ AI . Then x ∈ (∃r.A)I yields x ∈ BI by g.

For (b), we assume (X,Y) ∈ Rn(r) \Rn−1(r)(for otherwise we are done by IH), we make a

case distinction according to the rule that add the (X,Y) to Rn(r):

CR3 If CR3 could be applied, there must be A ∈ Sn−1(X) and a concept inclusion g = A ⊑

∃r.B ∈ O. By point(a) of IH, x ∈ XI implies x ∈ AI , by concept inclusion g, there

must exist a y ∈ ∆I with (x, y) ∈ rI and y ∈ BI .

CR5 By the precondition of CR5, there exists (X,Y) ∈ Rn−1(r) and a role inclusion g =

r ⊑ s ∈ O. By point(b) of IH and r ⊑ s , x ∈ XI implies there is a y ∈ ∆I with

(x, y) ∈ sI and y ∈ Y I and are done.

CR6 The applicability of CR6 conjecture there exists (X,Y) ∈ Rn−1(r) and (Y,Z) ∈ Rn−1(s)

and a role inclusion g = r◦s ⊑ t. By point(2) of IH, there is a y ∈ ∆I with (x, y) ∈ rI

and y ∈ Y I , and there is a z ∈ ∆I with (y, z) ∈ sI and z ∈ ZI . By g we have

(x, z) ∈ tI and are done.

Theorem 14. Subsumption of EL+ ontology O can be decided in polynomial time.

In order to show decidability in polynomial time it suffices to show 2 phases, (i) O can

be normalized in polynomial time; (ii) the subsumption algorithm on O terminates in

polynomial time. Both of these two phases have been shown.

Chapter 3

Explaining Subsumption in EL+ by

Axiom Pinpointing

In the previous chapter, we have already shown the known result that subsumption in EL+

can be decided in polynomial time. In fact, there already existed such a polynomial time

reasoner CEL [4] for EL+ based ontology. On one hand, the standard DL reasoner CEL

can efficiently reason about for EL+ ontologies, however, it does not give the reason for

the inferred consequences. As the size of ontology grows, this support becomes increas-

ingly important. For instance, inquiring subsumption relationship between Endocarditis

and Heartdisease relative to the GALEN ontology, CEL could correctly answer positively.

Nevertheless, if the user wants to know more which axioms are responsible for this sub-

sumption, there is nothing that CEL could do. By Definition 7 in Chapter 1, we introduce

MOPS or minimal explanation which is a minimal sub-ontology supporting the subsump-

tion. The minimal explanation exactly renders the reason why a given subsumption holds.

As a result, axioms in a minimal explanation can be used to explain the subsumption in

question. Therefore, pinpointing the relevant axioms is the first step towards explanation.

Example 15. Let’s consider the example from the Chapter 1 again. The ontology O with

axiom tagging as shown in Figure 3.1:

For simplicity, we will tag the axioms in the terminology by natural numbers. As we have

20

21

0 : Endocardium ⊑ Tissue ⊓ ∃cont in.HeartWall

⊓ ∃cont in.HeartValve

1 : HeartWall ⊑ BodyWall ⊓ ∃part of. Heart

2 : HeartValve ⊑ BodyValve ⊓ ∃part of. Heart

3 : Endocarditis ⊑ Inflammation ⊓ ∃has loc. Endocardium

4 : Inflammation ⊑ Disease ⊓ ∃acts on. Tissue

5 : Heartdisease ≡ Disease ⊓ ∃has loc. Heart

6 : Endocarditis ⊑ Heartdisease

7 : part of ⊑ cont in

8 : has loc ◦ cont in ⊑ has loc

Figure 3.1: EL+ ontology with labelling

already seen that Endocarditis ⊑O Heartdisease, we can say O is an explanation for this sub-

sumption but not minimal. Furthermore, sub-ontologies {0, 1, 3, 4, 5, 7, 8}, {0, 2, 3, 4, 5, 7, 8}

and {6} support this subsumption as well. All of these sub-ontologies are smaller than O

w.r.t set inclusion and indeed minimal in the sense that i) they are pairwise incomparable;

ii) any proper subsets of them do not entail the subsumption at hand. ⊣

In the light of the awareness of explanation, we extend the EL+ subsumption algorithm

in the previous chapter with labelling technique which had used in [5, 21]. As mentioned

in the previous chapter, since the computation of implication sets is decidable, there is an

obvious “brute-force” solution which tests the subsumption of two concepts with respect

to all subsets of input ontology, and only give as output those minimal subsets from which

the test is positive. In the following we describe a more strategic method of finding these

MOPSs. The method is a combination of the polynomial EL+ algorithm [1] and the labelling

techniques [5, 21], as we shall see below.

3.1. The Labelled Algorithm 22

3.1 The Labelled Algorithm

We will extend the original algorithm by pinpointing the axioms so that we can trace back

the relevant axioms (GCIs and CRIs) that are responsible for the inferred subsumption

relationships. This extension is no longer tractable due to multiple (exponentially many)

occurrences of concept in a subsumer set. First, we define the labelled concept name.

Definition 16. Let O be an EL+ ontology over CN⊤
O and RNO. Then the set of labelled

concept names (labelled pair of concept names) CN⊤
O∗ (RNO∗) is defined as

CN⊤
O∗ = {Alabel | A ∈ CN⊤

O and label ⊆ O}

RNO∗ = {(A,B)label | (A,B) ∈ CN⊤
O × CN⊤

O and label ⊆ O}

3

Now, we could extend the mapping S and R as follows:

• a mapping S assigning to each element of CN⊤
O a set of labelled concept names Alabel

and

• a mapping R assigning to each element of RNO a set of labelled pairs of concept names

(A,B)label.

The intuition is that these mappings make implicit subsumption relationships explicit

and at the same time collect necessary explaining information for those inferred subsumption

relationships, i.e. minimal sets of axioms from which the subsumption follows. In fact,

the computed labels S are the MOPSs or minimal explanations. Axiom pinpointing for

subsumption is carried out incrementally while subsumption is being computed. After a

successful termination of the computation, labels are MOPSs in the sense that

• Blabel ∈ S(A) implies A ⊑label B, and for all l ⊂ label, A 6⊑l B and

• (A,B)label ∈ R(r) implies A ⊑label ∃r.B, and for all l ⊂ label, A 6⊑l ∃r.B

3.1. The Labelled Algorithm 23

Extended Completion Rules

R1 If Al1 ∈ S(X), g = A ⊑ B ∈ O, and
Bl /∈ S(X) for all l ⊆ l1 ∪ {g} then

S(X) := S(X) \
⋃

l1∪{g}⊂l B
l ∪ {Bl1∪{g}}

R2 If Al1
1
, Al2

2
∈ S(X), g = A1 ⊓A2 ⊑ B ∈ O, and

Bl /∈ S(X) for all l ⊆ l1 ∪ {g} then
S(X) := S(X) \

⋃
l1∪l2∪{g}⊂l B

l ∪ {Bl1∪l2∪{g}}

R3 If Al1 ∈ S(X), g = A ⊑ ∃r.B ∈ O, and
(X,B)l /∈ R(r) for all l ⊆ l1 ∪ {g} then

R(r) := R(r) \
⋃

l1∪{g}⊂l(X,B)l ∪ {(X,B)l1∪{g}}

R4 If (X,Y)l1 ∈ R(r), Al2 ∈ S(Y), g = ∃r.A ⊑ B ∈ O, and
Bl /∈ S(X) for all l ⊆ l1 ∪ l2 ∪ {g}
then S(X) := S(X) \

⋃
l1∪l2∪{g}⊂lB

l ∪ {Bl1∪l2∪{g}}

R5 If (X,Y)l1 ∈ R(r), g = r ⊑ s ∈ O,
and (X,Y)l /∈ R(s) for all l ⊆ l1 ∪ {g}

then R(s) := R(s) \
⋃

l1∪{g}⊂l(X,Y)l ∪ {(X,Y)l1∪{g}}

R6 If (X,Y)l1 ∈ R(r), (Y, Z)l2 ∈ R(s), g = r ◦ s ⊑ t ∈ O,
and (X,Z)l /∈ R(t) for all l ⊆ l1 ∪ l2 ∪ {g}

then R(t) := R(t) \
⋃

l1∪l2∪{g}⊂l(X,Y)l ∪ {(X,Z)l1∪l2∪{g}}

Table 3.1: labelled subsumption algorithm for EL+

The algorithm works very much like before. The mappings are initialized by setting

S(A) = {A∅,⊤∅} and R(r) = ∅ for all concept names and role names in the ontology, then

it saturates both mappings by exhaustively applying the label-extended completion rules.

The modified completion rules are shown in Table 3.1. The main differences are that here

labels also determine applicability of rules and that the same pair of concept name can

occur more than once under different labels. There are three possibilities of applying the

extended completion rules in terms of labels. Consider R1 for instance. In the first place, if

there is no such concept name B presenting in the implication set S(X), just directly add

this concept name with current label Bl1∪{g} to S(X). The other possible scenario is the

follows. There exists a concept name B with a label l, l and l1 ∪ {g} are set incomparable,

i.e., neither is subset of the other. In this case, R1 applies adjoining Bl1∪{g} in S(X), though

it already contains Bl, because we could explain a subsumption in different way. Thirdly,

there exists a Bl and the new label is a proper subset of the existing one such like l1∪{g} ⊂ l,

3.1. The Labelled Algorithm 24

Q1

P1

Q2 · · · · · ·

P2 · · · · · · Pn

Qn

A
B

Figure 3.2: Example of exponential many explanations

this means the latest computing label is smaller than the one in the previous computation.

Then replace this old labelled concept by the new one. In Table 3.1, g appearing in all rules

denotes the tag of the axiom under consideration.

It is self-evident that this algorithm always terminate. In fact, this algorithm compute

a set of labelled concept name S(A) and a set of labelled pair of concept name R(r). First,

the concept names is finite, and the input ontology is a finite set of axioms. For the same

concept name with different, incomparable labels, if the rule is applicable, the computed

explanation sets always smaller than the one computed in the previous. As a result there

are only a finite number of concept name accompanying explanation sets. Nevertheless,

the tractability can not be obtained any more, as there could exponentially numbers of

explanations.

Example 17. Consider the following ontology O formulated in a sublogic of EL+ without

existential restrictions.

O := {Pi ⊑ Pi+1 ⊓Qi+1 | 1 ≤ i ≤ n− 1} ∪ {Qi ⊑ Pi+1 ⊓Qi+1 | 1 ≤ i ≤ n− 1}

∪{A ⊑ P1, A ⊑ Q1, Pn ⊑ B,Qn ⊑ B}

For ease of presentation, we can view this ontology as an edge-directed graph as depicted

in Figure 3.2. While nodes in the graph correspond to concepts, edges correspond to GCIs

in normal form, i.e., Pi −→ Pi+1 represents the GCI Pi ⊑ Pi+1. In this example, it is trivial

to infer A ⊑ B. From A there are two outgoing edges to P1 and Q1, and every node Pi, Qi

(1 ≤ i ≤ n − 1) there are two outgoing edges to their successors as well. Finally, we could

3.2. Soundness and Completeness 25

have 2n different paths from A to B. These paths correspond to sets of axioms responsible

for A ⊑ B; therefor, there exists 2n minimal explanations. ⊣

For the purpose of simplicity, in the following when we mention a particular implication

set or role relation, which is clear from the context, we denote these by S and R respectively.

In addition, we will emphasize the difference of the implication sets and role relations of the

extended algorithm, and those of the original algorithm with the quantifier labelled (corre-

sponding completion rule denoting by R1 · · · R6) and unlabelled (corresponding completion

rule denoting by CR1 · · · CR6). For concept name, the labelled (unlabelled) implication set

is a set of CN⊤
O∗ (CN⊤

O), for role name, the labelled (unlabelled) implication set is a set of

RNO∗ (pair of concept names).

Definition 18. Let S be a labelled implication set, R a labelled role relation, and ǫ ⊆ O

a set of axioms. The ǫ-projections of S and R (for short, ǫ(S) and ǫ(R)) are defined as

follows:

ǫ(S) := {A|Aexp ∈ S and exp ⊆ ǫ}

ǫ(R) := {(A,B)|(A,B)exp ∈ R and exp ⊆ ǫ)}

3

Intuitively, ǫ(S(X)) is a restriction of the labelled implication set to those subsumers of X

w.r.t ǫ.

3.2 Soundness and Completeness

By introducing the following two lemmas, we show how application of a rule of the labelled

algorithm to a labelled implication set S (respectively, role relation R) corresponds to

application of a rule of the unlabelled algorithm to ǫ(S) (respectively, ǫ(R)). Then we will

prove the soundness of the labelled algorithm by reducing it to the unlabelled algorithm.

3.2. Soundness and Completeness 26

Lemma 19. Let S, S′ be labelled implication sets such that S′ is obtained from S by applica-

tion of the labelled completion rule R1, R2, or R4 w.r.t. O. Then we either have ǫ(S′) = ǫ(S),

or ǫ(S′) is obtained from ǫ(S) by application of the corresponding unlabelled completion rules

CR1, CR2, CR4, w.r.t. ǫ.

Proof. We prove this lemma distinguishing with the labelled completion rule R1, R2 and

R4.

R1 Assume that R1 is applied to S = S(X) with Aexp ∈ S(X). After this rule application,

we obtain S′ = S′(X) from S(X) by adding a new element Bexp′ with exp′ = exp∪{g}

and g = A ⊑ B ∈ O. If unlabelled completion rule CR1 applicable to ǫ(S(X)), there

must be A ∈ ǫ(S(X)) such that Aexp ∈ S(X) with exp ⊆ ǫ, a GCI g = A ⊑ B ∈ ǫ

and B /∈ ǫ(S(X)).

There are two possibilities for ǫ. First, consider the case where exp′ 6⊆ ǫ. In this

case, we have ǫ(S′(X)) = ǫ(S(X)). In fact, if exp 6⊆ ǫ, then by definition, A is not

present in ǫ(S(X)), unlabelled completion rule CR1 w.r.t ǫ is not applicable, and this

implying ǫ(S′(X)) = ǫ(S(X)). If exp ⊆ ǫ, then g 6∈ ǫ. As for the previous case,

we have ǫ(S′(X)) = ǫ(S(X)), since B is not in ǫ(S′(X)). Second, consider the case

where exp ⊆ exp′ ⊆ ǫ. Since S′(X) is obtained by extending S(X) by Bexp′

, we also

know that B is contained in ǫ(S′(X)). If there already exists Bexp′′, in the case of

exp′ ⊂ exp′′, we will remove Bexp′′ by Bexp′ in S′, but we still have ǫ(S′(X)) = ǫ(S(X))

(otherwise if exp′′ ⊆ exp′,R1 is invalid for S(X)). Under other circumstances, ǫ(S′(X))

is obtained from ǫ(S(X)) by adding B as a result of the application of the unlabelled

CR1 rules.

R2 Assume that R2 is applied to S = S(X) with Aexp1

1 , Aexp2

2 ∈ S(X). After this rule

application, we obtain S′ = S′(X) from S(X) by adding new element Bexp′ with

exp′ = exp1 ∪ exp2 ∪ {g} and g = A1 ⊓ A2 ⊑ B ∈ O. If unlabelled completion

rule CR2 applied to ǫ(S(X)), there must be A1 ∈ ǫ(S(X)) such that Aexp1 ∈ S(X)

with exp1 ⊆ ǫ and A2 ∈ ǫ(S(X)) such that Aexp2 ∈ S(X) with exp2 ⊆ ǫ, a GCI

3.2. Soundness and Completeness 27

g = A1 ⊓A2 ⊑ B ∈ ǫ and B /∈ ǫ(S(X)).

Similarly, there are two cases. In the case exp′ 6⊆ ǫ, we have ǫ(S′(X)) = ǫ(S(X)).

Since if exp1 6⊆ ǫ, by definition, A1 is not present in ǫ(S(X)), that implies ǫ(S′(X)) =

ǫ(S(X)), if exp2 6⊆ ǫ, by definition, A2 is not present in ǫ(S(X)), that implies

ǫ(S′(X)) = ǫ(S(X)), if both exp1, exp2 ⊆ ǫ then g 6⊆ ǫ, by definition, B is not

present in ǫ(S(X)), implies ǫ(S′(X)) = ǫ(S(X)). In the second case, when exp′ ⊆ ǫ,

then we know that A1, A2 are in ǫ(S(X)), and g is an axiom in ǫ. Since S′(X) is

obtained by extending S(X) by Bexp′, we also know that B is contained in ǫ(S′(X)).

If there already exists Bexp′′, in the situation of exp′ ⊂ exp′′, we replace exp′′ by

exp′ in S′(X) and ǫ(S′(X)) = ǫ(S(X)) still holds (otherwise if exp′′ ⊆ exp′, R2 is not

applicable to S(X)). Otherwise, ǫ(S′(X)) is obtained from ǫ(S(X)) by adding B as

a result of the application of the unlabelled CR2 rule.

R4 Assume that R4 is applied to R = R(r) with (X,Y)exp1 ∈ R(r) and S = S(X) with

Aexp2 ∈ S(Y). After this rule application, we get S′ = S′(X) from S(X) by adding

a new element Bexp′ with exp′ = exp1 ∪ exp2 ∪ {g} and g = ∃r.A ⊑ B ∈ O. If

unlabelled completion rule CR4 applied to ǫ(S(X)), there must exist (X,Y) ∈ ǫ(R(r))

with (X,Y)exp1 ∈ R(r) and exp1 ∈ ǫ, A ∈ ǫ(S(Y)) with Aexp2 ∈ S(Y) and exp2 ∈ ǫ,

a GCI g = ∃r.A ⊑ B ∈ ǫ and B /∈ ǫ(S(X)).

Similarly as what have shown above, when the case exp′ 6⊆ ǫ, trivially implies ǫ(S′(X)) =

ǫ(S(X)). We assume that exp′ ⊆ ǫ. Then we know that A ∈ ǫ(S(X)) and (X,Y) ∈

ǫ(R(r)), and g is an axiom in ǫ. Since S′(X) is obtained by extending S(X) of Bexp′,

we also know that B contained in ǫ(S′(X)). If there already exists Bexp′′ , for the case

exp′ ⊂ exp′′, replace Bexp′′ by Bexp′ and still hold ǫ(S′(X)) = ǫ(S(X)) (if exp′′ ⊆ exp′,

R4 is invalid for S(X)). Otherwise, ǫ(S′(X)) is obtained from ǫ(S(X)) by adding B

as a result of the application of the unlabelled CR4 rule.

Lemma 20. Let R,R′ be labelled role relations such that R′ is obtained from R by appli-

cation of the completion rule R3, R5, or R6. Then we either have ǫ(R′) = ǫ(R), or ǫ(R′) is

3.2. Soundness and Completeness 28

obtained from ǫ(R) by application of the corresponding unlabelled completion rules CR3, CR5,

CR6, w.r.t, ǫ.

Proof. The proof is similar to the Lemma 19, we distinguish the cases w.r.t R3, R5 and R6.

R3 Assume that R3 is applied to R = R(r) with Aexp ∈ S(X). After this rule application,

we obtain R′ = R′(r) from R(r) by adding a new binary relation (X,B)exp′ with

exp′ = exp∪{g} and g = A ⊑ ∃r.B ∈ O. If the unlabelled completion CR3 applicable,

there should be a A ∈ ǫ(S(A)) with Aexp ∈ S(A) and exp ⊆ ǫ, a GCI g = A ⊑ ∃r.B ∈ ǫ

and (X,B) /∈ ǫ(R(r)).

There are two possibilities for ǫ. In the case where exp′ 6⊆ ǫ. Then we have exp 6⊆ ǫ, by

definition of ǫ projection, A is not present in ǫ(S(X)), nothing changed for ǫ(R(r)),

implies ǫ(R′(r)) = ǫ(R(r)). If exp ⊆ ǫ, then g 6⊆ ǫ, not satisfied the precondition

of R3, R3 is not applicable, implies ǫ(R′(r)) = ǫ(R(r)). In the case where exp′ ⊆ ǫ.

Since R′(r) is obtained by extending R(r) with (X,B)exp′ , we also know (X,B) is

contained in ǫ(R′(r)). If there already exists (X,B)exp′′ , in the case of exp′ ⊂ exp′′,

replace (X,B)exp′′ by (X,B)exp′ and ǫ(R′(r)) = ǫ(R(r)) still holds (if exp′′ ⊆ exp′,

unfit the precondition of R3,). Otherwise, ǫ(R′(r)) is obtained from ǫ(R(r)) by adding

(X,B) as a result of the application of the unlabelled CR3 rule.

R5 Assume that R5 is applied to R = R(s) with (X,Y)exp ∈ R(r). After application of

this rule, we got R′ = R′(s) from R(s) by adding a new binary relation (X,Y)exp′

with exp′ = exp ∪ {g} and g = r ⊑ s ∈ O. If CR5 applicable ǫ(R(s)), there exists

(X,Y) ∈ ǫ(R(r)) with (X,Y)exp ∈ R(r) and exp ⊆ ǫ, a GCI g = r ⊑ r ∈ ǫ and

(X,Y) /∈ ǫ(R(s)).

For the case where exp′ 6⊆ ǫ, if exp 6⊆ ǫ, by definition of ǫ, (X,Y) is not present in

ǫ(R(r)), implies ǫ(R′(r)) = ǫ(R(r)), if g 6⊆ ǫ, CR5 is not applicable w.r.t ǫ, nothing

and we have ǫ(R′(r)) = ǫ(R(r)). Considering the case where exp′ ⊆ ǫ. Since R′(s)

is obtained by extending R(s) of (X,Y)exp′

, we also know that (X,Y) is included

in ǫ(R′(s)). If there another (X,Y)exp′′ , if exp′ ⊂ exp′′, still give rise to ǫ(R′(r)) =

3.2. Soundness and Completeness 29

ǫ(R(r)) (for otherwise, if exp′′ 6⊆ exp′, R5 is not applicable). Otherwise, ǫ(R′(s)) is

obtained from ǫ(R(s)) by adding (X,Y) as a result of the application of the unlabelled

CR5 rule.

R6 Assume that R6 is applied to R = R(t) with (X,Y)exp1 ∈ R(r), (Y,Z)exp2 ∈ R(s).

After the rule application, we have R′ = R′(t) from R(t) by adding new binary relation

(X,Z)exp′ with exp′ ⊆ exp1 ∪ exp2 ∪ {g} and g = r ◦ s ⊑ t ∈ O. If CR6 is applicable,

there exists (X,Y) ∈ ǫ(R(r)) and (Y,Z) ∈ ǫ(R(s)), a GCI g = r ◦ s ⊑ t ∈ ǫ and

(X,Z) /∈ ǫ(R(t)).

Similarly, the case where exp′ 6⊆ ǫ trivially implies ǫ(R′(t)) = ǫ(R(t)). Assume exp′ ⊆

ǫ, then we know (X,Y) ∈ ǫ(R(s)) and (Y,Z) ∈ ǫ(R(t)), because of R′(t) is generated

from R(t) by adding (X,Z)exp′ , we know (X,Z) is also contained in ǫ(R′(t)). If there

already exists (X,Z)exp′′ for some exp′′ 6⊆ exp′, if exp′ ⊂ exp′′, similar to the previous

case, we have ǫ(R′(t)) = ǫ(R(t)). Otherwise, ǫ(R′(t)) is obtained from ǫ(R(t)) by

adding (X,Z) as a result of the application of the unlabelled CR6 rule.

Lemma 21. (Completeness) Let S and R be a labelled implication set and a labelled role

relation, respectively, to which none of the completion rules of the labeled classification

algorithm in Table 3.1 applies. Then none of the original completion rules of the unlabeled

classification algorithm in Table 2.1 applies to ǫ(S) and ǫ(R), respectively.

Proof. We will distinguish the case for every completion rule.

CR1 For an element A ∈ ǫ(S), and a GCI g = A ⊑ B ∈ ǫ(For otherwise, ǫ does not contain

g, this (unlabeled)rule does not apply). We show that this (unlabeled)rule cannot be

applied. Since A is present in ǫ(S), by definition of ǫ, there must be a label exp ⊆ ǫ

with Aexp ∈ S. Completeness of S implies that the (labeled)rule R1 is not applicable

to Aexp in S. Since the first two preconditions of R1 are fulfilled, this can only mean

that there exists an element Bexp′′ in S for some exp′′ ⊆ exp∪ {g}. However, exp ⊆ ǫ

3.2. Soundness and Completeness 30

and g ∈ ǫ implies exp′′ ⊆ ǫ. By definition, we know that B is present in ǫ(S), which

shows that the (unlabeled) rule CR1 is not applicable to A in ǫ(S).

CR2 There are two element A1, A2 in ǫ(S), and a GCI g = A1 ⊓ A2 ⊑ B ∈ ǫ. For both

A1 and A2 are present in ǫ(S), there must be two labels exp1 ⊆ ǫ, exp2 ⊆ ǫ with

Aexp1

1 ∈ S and Aexp2

2 ∈ S. Completeness of S implies that the (labeled)rule R2 is

unavailable to Aexp1

1 , Aexp2

2 in S. Since the first two preconditions of R2 are fulfilled,

this means that there exists an element Bexp′′ in S for some exp′′ ⊆ exp1∪ exp2∪{g}.

But exp1 ⊆ ǫ,exp2 ⊆ ǫ and g ∈ ǫ implies that exp′′ ∈ ǫ. By definition, we know that

B is present in ǫ(S), which shows that the (unlabeled)rule CR2 is not applicable A1

and A2 in ǫ(S).

CR4 There is binary relation (X,Y) ∈ ǫ(R(r)) and an element A ∈ ǫ(S(Y)), and a GCI

g = ∃r.A ⊑ B ∈ ǫ, we show that CR4 cannot be applied to ǫ(S(X)). Since (X,Y) is

present in ǫ(R(r)), there must be a label exp1 ⊆ ǫ with (X,Y)exp1 ∈ R(r), similarly, A

is present in S(Y), there must be a label exp2 ⊆ ǫ with Aexp2 ∈ S(Y). Completeness

of S implies that the (label)rule R4 is not applicable. Since the first two preconditions

of R1 are satisfied, only if the possibility that there exists an element Bexp′′ in S(X)

with exp′′ ⊆ exp1 ∪ exp2 ∪ {g}. exp1 ⊆ ǫ, exp2 ⊆ ǫ and g ∈ ǫ implies exp′′ ⊆ ǫ, then

we know that B is present in ǫ(S(X)), which shows that the (unlabeled)rule CR4 is

not applicable to B in ǫ(S(X)).

CR3 There is an element A ∈ ǫ(S(X)) and a GCI g = A ⊑ ∃r.B ∈ ǫ. Since A is present

in ǫ(S(X)), there must be a label exp1 ⊆ ǫ with Aexp1 ∈ S(X). Completeness of

S implies that the (label)rule R3 is not applicable. The satisfiability of the first two

preconditions conjecture that there exists a binary relation (X,B)exp′′ in R(r) with

exp′′ ⊆ exp1∪{g}. Since both exp1 ⊆ ǫ and g ∈ ǫ, we obtain exp′′ ⊆ ǫ. By definition of

ǫ(R), we know that (X,B) is included in ǫ(R(r)), which show that the (unlabelled)rule

CR3 cannot be applied to (X,B) for ǫ(R(r)).

CR5 There is an binary relation (X,Y) ∈ ǫ(R(r)) and a CGI g = r ⊑ s ∈ ǫ. Since (X,Y)

3.2. Soundness and Completeness 31

is present in ǫ(R(r)), there must be a label exp ⊆ ǫ with (X,Y)exp ∈ R(r). Since

the (label)rule R5 is not applicable. The first two preconditions of R5 are fulfilled,

this means there exists an binary relation (X,Y)exp′′ in R(s) with exp′′ ⊆ exp ∪ {g}.

We can obtain exp′′ ⊆ ǫ by exp ⊆ ǫ and g ∈ ǫ, from the definition, we know that

(X,Y) are in ǫ(R(s)), it means the (unlabelled)rule CR5 is not applicable to (X,Y)

for ǫ(R(s)).

CR6 There is (X,Y) in ǫ(R(r)), (Y,Z) in ǫ(R(s)) and a GCI g = r◦s ⊑ t ∈ ǫ. Since (X,Y)

is present in ǫ(R(r)), there must be a label exp1 ⊆ ǫ with (X,Y)exp1 ∈ R(r), similarly,

there must be a label exp2 ⊆ ǫ with (Y,Z)exp2 ∈ R(s). We know the (label)rule R6 is

not applicable, but the precondition of first two of R6 is fulfilled, this mean that there

exists an binary relation (X,Z)exp′′ in R(t) with exp′′ ⊆ exp1 ∪ exp2 ∪ {g}. Since

exp1 ⊆ ǫ, exp2 ⊆ ǫ and g ∈ ǫ, implies exp′′ ⊆ ǫ. From the definition, we know that

(X,Z) is present in ǫ(R(t)) and the (unlabelled)rule CR6 is not applicable to (X,Z)

for ǫ(R(t)).

Now let us prove the soundness of the extended subsumption algorithm for EL+.

Theorem 22. (Soundness) Given a normalized ontology O, let S be the mapping obtained

after the application of the rules in Table 3.1 for O has terminated, and let A,B be concept

names occurring in O. Then, the following holds:

1. If Bexp ∈ S(A), then A ⊑exp B.

2. If A ⊑O′ B for O′ ⊆ O, then there is a Bexp ∈ S(A) with exp ⊆ O′.

3. If {Bexp1, . . . , Bexpk} ⊆ S(A), then all expi are “⊆”-incomparable.

Proof. Lemma 19 and Lemma 20 show that, for each application of a (labeled) completion

rule, there is a corresponding application of a (unlabeled) completion rule w.r.t a subset

3.3. Minimal Explanation w.r.t Original Ontology 32

ǫ ⊆ O. Assume that Bexp is in S(A), we set ǫ := exp. Since exp′ ⊆ ǫ for all internal labels

exp′ relevant to get Bexp in S(A), we know that there is a corresponding sequence of rule

applications in the original classification algorithm w.r.t. ǫ, adding B to ǫ(S(A)). By the

soundness of the unlabeled algorithm, it follows that A ⊑exp B.

For point 2, we will show the contrapositive. Given a subset O′ ⊆ O, we assume that

there is no such Bexp in S(A) with exp ⊆ O′ after the termination of the (labeled) classifica-

tion algorithm. By Lemma 21, the original classification algorithm has also terminated with

no more (unlabeled) rules applicable to ǫ(S) and ǫ(R). In particular, O′(S(A)) is complete.

By definition, Bexp /∈ S(A) implies B /∈ O′(S(A)). This together with the completeness of

the unlabeled classification algorithm shows that A 6⊑O′ B.

For point 3, it suffices to show that each application of rule R1, R2, R4 (respectively R3,

R5 or R6) adds a new entry Bexp to S(X)(respectively, (A,B)exp to R(r)) such that exp is

neither subset nor superset of exp′ for all Bexp′ ∈ S(X)((A,B)exp′ ∈ R(r)).

We are done if S(X)(R(r)) does not contain such an entry, otherwise let’s fix an arbitrary

exp′ labeling a corresponding entry. It is immediate by the definition of the extended

completion rules that exp′ 6⊆ exp. It is remain to be shown that exp 6⊂ exp′, fortunately,

it is immediate by the definition of the labeled completion rules as well, since for every

completion rule, if there is a exp′ such that exp ⊂ exp′, in order to keep the minimality, we

replace the exp′ by the relative small explanation exp and exp 6⊂ exp′.

3.3 Minimal Explanation w.r.t Original Ontology

In the previous sections, we have already shown the labelled subsumption algorithm for EL+.

At the first glance, this algorithm yields the classifications for every concept name A with an

implication set S(A) = {Bexp1, Bexp2, Cexp3, · · · }, in which B and C are the super concept

names of A, and the labels exp1, exp2, exp3 are the minimal explanations of corresponding

subsumption relationships. Nevertheless, this algorithm runs on a normalized EL+ ontology.

As a result, the computed explanations are relative to axioms in normal form as well. From

the application stand point, these explanations are not immediately informative. On one

3.3. Minimal Explanation w.r.t Original Ontology 33

Original ontology GCI normalized ontology
a: A ⊑ B ⊓ C 0: A ⊑ B (a,d)
b: B ⊑ C 1: A ⊑ C (a,d)
c: A ⊓ C ⊑ D 2: B ⊑ C (b)
d: A ⊑ B ⊓ C ⊓ E 3: A ⊓ C ⊑ D (c)

4: A ⊑ E (d)

Table 3.2: reverse mapping causes non-minimality

hand, most realistic ontologies are not in our normal form. On the other hand, the user

is not likely to be able to comprehend the explanations equipped with normalized axioms

which consist of newly introduced concept names. The explanations relative to axioms from

the original ontology would be make more sense.

This section concerns the following problem: Given minimal explanations w.r.t normal-

ized axioms, find minimal explanations w.r.t original axioms. Firstly, we tag the original

axioms. It is not difficult to keep these tags under surveillance when normalization. The

normalized axioms are mapped to the generating original axioms. This mapping may not

be functional since multiple original axioms may have generated the same axiom in normal

form. Since these axioms could be mapped back to original axioms we could obtain the

minimal explanations w.r.t original form as well.

Example 23. Let us look at a simple example as in Table 3.2. For the sake of clarity and

simplicity, we will tag the original axioms with letters (i.e. a, b, c, · · ·) and normalized on-

tology with natural number (i.e. 0, 1, 2 · · ·) respectively. The letters behind each normalized

axiom are reverse reference to the respective original axioms that generate it. Note that

in principle there can be multiple original axioms that generate the same normalized one,

hence a set of here. These letters are read disjunctively, i.e. any of them can generate this

normalized axiom. The complete implication set of A computed by the extended algorithm

is

S(A) = {A∅, B{0}, C{1}, C{0,2},D{1,3},D{0,2,3}, E{4},⊤∅}

3.3. Minimal Explanation w.r.t Original Ontology 34

The axiom tags in S are from the normalized ontology. For example, consider both D{0,2,3}

and D{1,3} in S(A) Since either A ⊑{0,2,3} D or A ⊑{1,3} D, both {0, 2, 3} and {1, 3} are

normalized MOPSs for subsumption A ⊑ D. When using the original ontology to explain

this subsumption, we could obtain four original explanations by reverse mapping to original

ontology, either A ⊑{a,b,c} D and A ⊑{b,d,c} D from the minimal normalized explanation set

{0, 2, 3} , or A ⊑{a,c} D and A ⊑{d,c} D from the normalized MOPS {1, 3}. When checking

the minimality of these explanations, the explanations {a, b, c}, {b, d, c} are not minimal

w.r.t the original ontology since we can remove the axiom b (B ⊑ C) and this subsumption

still holds. We can thus conclude from the example above that direct reverse mapping

from normalized axioms to original axioms results in the non-minimality explanations w.r.t

original axioms. ⊣

In the labeled algorithm, we know which facts contribute to a particular subsumption

by MOPSs. In fact, we could view our tags as Boolean propositional variables, and regard

explanations as “monotonic” Boolean formula built from these variables, that is, proposi-

tional formula built from the variables by using conjunction and disjunction only. Given

a minimal explanation in normal form with tags ψ1, · · · , ψn, the subsumption hold if the

Boolean formula ψ1 ∧ · · · ∧ ψn valuates to “true”. Since the same normalized axiom in the

minimal explanation may come more than one way from original ontology, we also obtain

disjunctions in tags. In order to compute the minimal explanation w.r.t the original on-

tology, we viewed the tags of original axioms as φi,1, · · · , φi,ki
by reverse mapping from a

fact ψi in the minimal explanation in normal form and these propositional variables was

read disjunctively. Thus, the tags in the original axioms can be used to describe which of

the original axioms in the input ontology O are responsible for a subsumption problem. In

fact, MOPS w.r.t original ontology directly correspond to minimal valuations satisfying the

formula
∧n

i=1

∨ki

j=1 φi,j . In the following, we will probe how hard it is to decide the existence

of an explanation of a certain size w.r.t the original ontology.

3.4. Complexity 35

3.4 Complexity

It is known that the problem of finding minimal valuations that satisfies a monotonic

Boolean formula is NP-complete. Since φ is in conjunctive normal form, this is just

the well-known problem of finding minimal hitting sets by Reiter [10, 19]. In this section,

we will prove that to decide the existence of an explanation w.r.t original ontology whose

size is at most n (n ∈ IN) for which subsumption holds in EL+ is NP-complete.

Hardness is shown by a reduction from the problem of deciding the existence of a minimal

valuation of size ≤ n satisfying a monotonic Boolean formula. Next, we define the monotonic

Boolean formula and the valuation satisfying a monotonic Boolean formula.

Definition 24. Let P be a set of propositional Boolean variables. A monotonic Boolean

formula φ is built from P and used conjunction and disjunction only. φ is in conjunctive

normal form (CNF) iff it is of the form (P11 ∨ · · · ∨ P1l1) ∧ · · · ∧ (Pk1 ∨ · · · ∨ Pklk), where

Pij ∈ P. 3

Definition 25. Let φ be a monotonic Boolean formula over a set of proposition variables

P. A valuation satisfying φ is a subset VAL ⊆ P that valuates φ to “true” (VAL |= φ). A

valuation V is minimal if V |= φ and W 6|= φ for all W ⊂ V. 3

Example 26. As an example, consider the following Boolean monotonic formula φ over

Boolean propositional variable P = {P1, P2, P3, P4, P5}

φ = (P1 ∨ P2) ∧ (P3 ∨ P4 ∨ P2) ∧ P5

Both {P1, P2, P5} and {P1, P3, P5} satisfy φ, but {P1, P2, P5} is not minimal since by re-

moving P1, φ is still valuated to “true”. In this example, the minimal valuations satisfying

φ are {P1, P3, P5}, {P1, P4, P5} and {P2, P5} ⊣

Given a monotonic Boolean formula φ, we can now construct an EL+ terminology T such

that the existence of minimal explanations corresponds to that of minimal valuations.

3.4. Complexity 36

Definition 27. Let φ = (P11∨P12∨· · ·∨P1l1)∧· · · ∧ (Pk1∨Pk2∨· · ·∨Pklk) be a monotonic

Boolean formula in conjunctive normal form, consisting of k disjunctive clauses over P. We

define EL+ terminology T = Ôφ ∪ Oφ as follows:

• Ôφ = {Pij ⊑ Qi | 1 ≤ i ≤ k and 1 ≤ j ≤ li} ∪ {Q1 ⊓ · · · ⊓Qk ⊑ B} where Pij is the

j-th propositional variable appearing in the disjunctive clause i, and B, Qi /∈ P.

• Oφ = {A ⊑ P} where P ∈ P and A /∈ P.

3

The terminology T consists of two parts Ôφ and Oφ. Both of which have size polynomial of

the size of φ. To reduce the problem of minimal valuation satisfying a monotonic Boolean

formula, we first show the following equivalence.

Lemma 28. Let φ be a monotonic Boolean formula in conjunctive normal form, and A,B be

fresh concept names not occurring propositional letter in φ, then the following are equivalent:

1. there is a minimal valuation of size at most n satisfying the formula φ.

2. there is a sub TBox O′
φ ⊆ Oφ of size at most n such that A ⊑Ôφ∪O

′

φ
B.

Proof.

(1 ⇒ 2) According to the assumption, φ = (P11 ∨ · · · ∨ P1l1) ∧ · · · ∧ (Pk1 ∨ · · · ∨ Pklk) over P,

and a minimal valuation VAL satisfying φ and |VAL| ≤ n. We define O′
φ = {A ⊑

P | P ∈ VAL}. Since VAL ⊆ P, O′
φ ⊆ Oφ, and |VAL| is at most n, then O′

φ of

size at most n. VAL is the minimal valuation satisfying φ, by definition 25, there at

least one Pij was presented for every disjunctive clause i of φ where 1 ≤ i ≤ k. Then

A ⊑ Qi for 1 ≤ i ≤ k. By the GCI Q1 ⊓ · · · ⊓Qk ⊑ B it is trivial A ⊑Ôφ∪O
′

φ
B.

(2 ⇒ 1) From the assumption, A ⊑Ôφ∪O
′

φ
B and |O′

φ| ≤ n. We define VAL = {P | A ⊑ P ∈

O′
φ}. Since O′

φ is of size at most n, VAL is also of size at most n. A ⊑ B then A ⊑ Qi

for all 1 ≤ i ≤ k. VAL satisfies every disjunctive clause i of φ and satisfies φ.

3.4. Complexity 37

This theorem shows that the problem of finding sub TBoxes of size smaller or equal to n is

NP-hard, in the presence of an irrefutable TBox, i.e., Ôφ. We will get rid of the irrefutable

part and obtain the same hardness result.

Lemma 29. There is a TBox O′ ⊆ Ôφ ∪Oφ of the size at most n+k+1 such that A ⊑O′ B

iff there is a sub TBox O′
φ ⊆ Oφ of size at most n such that A ⊑Ôφ∪O

′

φ

B.

Proof. We will prove by both directions.

(⇒) According to the assumption, since A ⊑O′ B, then the GCI Q1⊓· · ·⊓Qk ⊑ B must be

present in O′, otherwise, the interpretation containing all concept names appearing

in Ôφ and Oφ except B would be a model for O′ but A 6⊑ B, in which contradicting

hypothesis. For instance, given a model I such that AI = ∆I , P I
ij = ∆I , QI

i = ∆I and

BI = ∅, since B not in O′, I is a model of O′ but not A ⊑ B. Similarly, it must be the

case that A ⊑O′ Qi for each 1 ≤ i ≤ k as well. Thus, for every 1 ≤ i ≤ k there is a GCI

Pij ⊑ Qi in O′. From the above, it implies that O′∩Ôφ ≥ k+1. Now we can construct

such sub TBox O′
φ. Define O′

φ = O′ \ Ôφ, then, if O′ is of size at most n+ k + 1, O′
φ

is of size at most n, and O′
φ ⊆ Oφ. Furthermore, O′ ⊆ Ôφ ∪ (O′ \ Ôφ) = Ôφ ∪ O′

φ,

and hence, since A ⊑O′ B, it holds also that A ⊑Ôφ∪O
′

φ

B.

(⇐) By assumption, there is a sub TBox O′
φ of Oφ such that A ⊑O′

φ
∪Ôφ

B, we now going

to construct a O′ such that O′ ⊆ Oφ ∪ Ôφ and A ⊑O′ B. In order obtain A ⊑ B,

the GCI Q1 ⊓ · · · ⊓ Qk ⊑ B must be present in O′, and for every 1 ≤ i ≤ k, it

is enough to have with just one GCI Pij ⊑ Qi for every i with A ⊑ Pij ∈ O′
φ to

get the subsumption. Let define the smallest set Ô′ such that 1) P ⊑ Qi ∈ Ô′ if

A ⊑ P ∈ O′
φ and 2) P ′ ⊑ Qi 6∈ Ô′ if P ⊑ Qi ∈ Ô′ and P ′ ⊑ Qi. This Ô′ guarantee

there only one P accompany for every Qi where 1 ≤ i ≤ k. Now, we can define

O′ = O′
φ ∪ Ô′ ∪ {Q1 ⊓ · · · ⊓Qk ⊑ B}, if O′

φ is of size at most n, O′ is of size at most

n+k+1. It is trivial to see that O′ ⊆ Oφ ∪ Ôφ, since Ô′ ∪ {Q1 ⊓ · · · ⊓Qk ⊑ B} ⊆ Ôφ

O′
φ ⊆ Oφ, , and trivially A ⊑O′ B.

3.4. Complexity 38

With the help of Lemma 28 and Lemma 29, we can prove the Theorem 30 that the

hardness of the problem does not depend on the fact that a part of the TBox is irrefutable.

Since finding the minimal valuation that make a monotonic Boolean formula “true” is NP-

hard, each of the solution of the latter problem must also be NP-hard.

Theorem 30. The problem of deciding the existence of a sub TBox of size at most n for

which subsumption holds in EL+ is NP-hard.

It is not hard to see that the decision problem is in NP, given that subsumption is

decidable in polynomial time [1]. In fact, we can i) guess a subontology O′ ⊆ O with

|O′| ≤ n in time polynomial and then ii) check in polynomial time whether O′ entails the

subsumption in question. Hence, the NP completeness is obtained.

Theorem 31. The problem of deciding the existence of a sub TBox of size at most n for

which subsumption holds in EL+ is NP-complete.

Chapter 4

A Tractable Restriction of Axiom

Pinpointing in EL+

We have proved that the extended algorithm presented in the previous chapter is inherently

intractable. It computes all MOPSs which are exponentially many in the worst case as

demonstrated by Example 17. In some applications, however, not all explanations are

required. Now we introduce a revised labelled algorithm by strengthening the preconditions

of the completion rules, so that the algorithm computes and retains only one explanation set

for each subsumption relationship, which in turn reduces the complexity. In this chapter,

we first introduce the modified completion rules for tractable explanation algorithm and

then present a refined version based on the queue techniques used in the CEL reasoner [3]

of this algorithm. Then we discuss a first unoptimized implementation, and finally we show

that one explanation can be computed in polynomial time.

4.1 Computing One Explanation

In order to obtain one explanation for each subsumption relationship, we modify the precon-

ditions of the completion rules from the ones given in Chapter 3 (see Table 4.1). Compared

to the standard labelled algorithm, the preconditions here are stronger in the sense that

they admit less number of rule applications. In fact, the number of rule application is

bounded by a polynomial of the input size as we shall see later in this chapter.

39

4.1. Computing One Explanation 40

Completion Rules

R1 If Al1 ∈ S(X), g = A ⊑ B ∈ O,
and Bl /∈ S(X) for some l

then S(X) := S(X) ∪ {Bl1∪{g}}

R2 If Al1
1
, Al2

2
∈ S(X), g = A1 ⊓A2 ⊑ B ∈ O,

and Bl /∈ S(X) for some l
then S(X) := S(X) ∪ {Bl1∪l2∪{g}}

R3 If Al1 ∈ S(X), g = A ⊑ ∃r.B ∈ O,
and (X,B)l /∈ R(r) for some l

then R(r) := R(r) ∪ {(X,B)l1∪{g}}

R4 If (X,Y)l1 ∈ R(r), Al2 ∈ S(Y), g = ∃r.A ⊑ B ∈ O,
and Bl /∈ S(X) for some l

then S(X) := S(X) ∪ {Bl1∪l2∪{g}}

R5 If (X,Y)l1 ∈ R(r), g = r ⊑ s ∈ O,
and (X,Y)l /∈ R(s) for some l

then R(s) := R(s) ∪ {(X,Y)l1∪{g}}

R6 If (X,Y)l1 ∈ R(r), (Y, Z)l2 ∈ R(s), g = r ◦ s ⊑ t ∈ O,
and (X,Z)l /∈ R(t) for some l

then R(t) := R(t) ∪ {(X,Z)l1∪l2∪{g}}

Table 4.1: Revised completion rules (tractable version)

When it comes to implementation, one of the most important aspects is to develop a

good strategy for finding the next applicable rule. In [3], the authors adopted an effective

and efficient approach inspired by the linear-time algorithm for checking satisfiability of

propositional Horn formulas [9]. The main idea of this method is to use queues and putting

next applicable rules in those queues, then to process the queues until they are empty. In

this thesis, we follow the main tenets of this approach; however, the detailed mechanism

has to be enhanced a little in order to cater for axiom tags, which lie in the heart of axiom

pinpointing.

Our strategy is to employ a set of queues, i.e, one queue for each concept name in the

ontology, to guide the application of completion rule. In order to capture relevant axioms,

we put the axiom to queue. For the purpose of simplicity, we define a mapping Tag : O → IN

which maps each axiom to a unique natural number. So the queue entries are effectively

natural numbers. The possible entries of the queue are of the form

4.1. Computing One Explanation 41

Tag(A ⊑ B), Tag(A ⊓A′ ⊑ B), Tag(A ⊑ ∃r.B) and Tag(∃r.A ⊑ B)

Exp(A,B) is the abbreviation for the computed explanation for A ⊑ B which is a set

of numbers denoting a subset of O. We initialize Exp(A,A) = ∅ and Exp(A,⊤) = ∅ for

A ∈ CN⊤
O . The entry Tag(A ⊑ B) ∈ queue(X) means that A is in S(X) and there must

exist an Exp(X,A), B has to be added to S(X) and at the same time Exp(X,B) has to be

set the union of Tag(A ⊑ B) and Exp(X,A). Tag(A ⊓A′ ⊑ B) ∈ queue(X) means that B

have to be processed w.r.t S(X) if S(X) contain both A′ and A. Since A,A′ ∈ S(X) there

must the explanation for Exp(X,A) and Exp(X,A′), then Exp(X,A), Exp(X,A′) together

with Tag(A ⊓ A′ ⊑ B) form the value for Exp(X,B). For Tag(A ⊑ ∃r.B) ∈ queue(X), it

indicates S(X) contained A, and there exist an explanation Exp(X,A), then (X,B) has to

be added to R(r) and Exp(X,∃r.B) has to be set the union of Exp(X,A) and Tag(A ⊑

∃r.B). Similarly, Tag(∃r.A ⊑ B) ∈ queue(X), then (X,A) ∈ R(r), and an explanation

Exp(X,∃r. A), B has to be added to S(X) and both Exp(X,∃r. A) and Tag(∃r.A ⊑ B)

has to be set for Exp(X,B).

We view the input ontology O (assumed to be in normal form w.l.o.g) as a mapping

Ô which maps to a set of queue entries every concept name and existential restrictions

occurred on left hand side of GCIs in O. More precisely, given A ∈ CN⊤
O , Ô(A) is the

minimal set of queue entries such that:

- if A ⊑ B ∈ O, then Tag(A ⊑ B) ∈ Ô(A);

- if A ⊓A′ ⊑ B ∈ O or A′ ⊓A ⊑ B ∈ O, then Tag(A ⊓A′ ⊑ B) or Tag(A′ ⊓A ⊑ B) ∈

Ô(A), respectively; and

- if A ⊑ ∃r.B ∈ O, then Tag(A ⊑ ∃r.B) ∈ Ô(A)

In a similar manner, Ô(∃r.A) is the minimal set of queue entries such that, if ∃r.A ⊑ B ∈ O,

then Tag(∃r.A ⊑ B) ∈ Ô(∃r.A).

Figure 4.1 depicts how to process each queue entry. The procedure process(A, tag)

performs on concept name A and the axiom specified by tag from queue(A) one by one. Like

that in [3], queue(A) is initialized with Ô(A) ∪ Ô(⊤) since S(A) is initialized with {A,⊤}.

4.1. Computing One Explanation 42

procedure process(A, tag)
tag = Tag(Y ⊑ X) where Y ⊑ X ∈ O
begin

if Y = A1 ⊓A2 and {A1, A2} ⊆ S(A) and X /∈ S(A) then

S(A) := S(A) ∪ {X};
Exp(A,X) := Exp(A,A1) ∪ Exp(A,A2) ∪ {tag};

queue(A) :=queue(A) ∪ Ô(X);
for all concept name B and role name r with (B,A) ∈ R(r) do

if Exp(B, ∃r. X) = ∅ then

Exp(B, ∃r. X) := Exp(A,X) ∪ Exp(B, ∃r. A);

queue(B) :=queue(B) ∪ Ô(∃r. X);
if Y is a concept name or exist restriction and X /∈ S(A) then

S(A) := S(A) ∪ {X};
Exp(A,X) := Exp(A, Y) ∪ {tag};

queue(A) :=queue(A) ∪ Ô(X);
for all concept name B and role name r with (B,A) ∈ R(r) do

if Exp(B, ∃r. X) = ∅ then

Exp(B, ∃r. X) := Exp(A,X) ∪ Exp(B, ∃r. A);

queue(B) :=queue(B) ∪ Ô(∃r. X);
if Y is a concept name and X = ∃r. B and (A,B) /∈ R(r) then

process-new-edge(A, r,B,Exp(A, Y) ∪ {tag});
end;

procedure process-new-edge(A, r,B,Exp)
begin

R(r) = R(r) ∪ {(A,B)};
if Exp(A, ∃r. B) := ∅ then

Exp(A, ∃r. B) := Exp;
for all B′ in S(B) do

if Exp(A, ∃r. B′) = ∅
Exp(A, ∃r. B′) = Exp(B,B′) ∪ Exp;

queue(A) :=queue(A) ∪ Ô(∃r. B′);
for all RI axioms Tag(i) with r on the left hand sides do

if Tag(i) = r ⊑ s ∈ O then

process-new-edge(A, s,B, {Exp, i});
if Tag(i) = r ◦ s ⊑ t ∈ O then

for all (B,B′) ∈ R(s) and (A,B′) /∈ R(t) do

process-new-edge(A, t, B′, {Exp, i, Exp(B, ∃s. B′)});
if Tag(i) = s ◦ r ⊑ t ∈ O then

for all (A′, A) ∈ S(s) and (A′, B) /∈ R(t) do

process-new-edge(A′, t, B, {Exp, i, Exp(A′, ∃s. A)});
end;

Figure 4.1: Processing the queue entries

4.1. Computing One Explanation 43

In addition, R(r) = ∅ for r ∈ RNO, Exp(A,A) = ∅ and Exp(A,⊤) = ∅ for all A ∈ CN⊤
O .

The procedure is invoked repeatly until all queues are empty. Since this algorithm computes

the subsumer sets and the explanation sets at the same time, we discuss these two facets in

terms of our implementation. a) For subsumer set: the first top-most if-clause with regards

to the axiom A1 ⊓ A2 ⊑ X, it applies Rule R2 and part of Rule R4. The second top-most

if-clause with the axiom A ⊑ X or ∃r.A ⊑ X correspond to Rule R1 and part of Rule R4.

The third top-most if-clause with the axiom Y ⊑ ∃r.B implement R3, R5, R6 and part of R4.

The task is carried over to a sub-procedure process−new−edge. b) For explanation set: the

top-most if-clause applies Rule R2 and part of Rule R4. An important thing is the awareness

of the computation of explanation set for R4 because the implementation for Rule R4 is split.

Generally, if (A,B) is in R(r), we have Exp(A,∃r.B). However, only in Rule R3 it is possible

to add a pair of concept name to R. In R4, according to the precondition (X,Y)l1 ∈ R(r)

and Al2 ∈ S(Y), there must be an explanation for Exp(X,∃r.A) = l1 ∪ l2, if (X,A) not in

R(r), we could not obtain this explanation, but Exp(X,∃r.A) maybe useful for the later

computation of explanation. So we need to keep tract of this intermediate explanation in R4

and that is what the second if-clause of the top-most if-clause done. Similarly, the second

top-most if-clause applies R1 and R4, the third top-most implement R3, R5, R6 and part of

R4 as well.

The algorithm shown above computes only a single explanation for each subsumption

relationship. Nevertheless, this algorithm can not guarantee that the computed explanation

is minimal. Let’s look at a snapshot of the computation on the GALEN ontology.

Example 32. In a moment of the execution GALEN, the algorithm processing the concept

name X1581 with the axiom X406 ⊓ Topology ⊑ X110 where Topology is a concept name

from GALEN and X406, X110, X1581 are new concept names introduced by the normal-

ization rule. Before this point, X406,Topology ∈ S(X1581) and X110 /∈ S(X1581), these

assertions satisfy the preconditions of R2, and the application assert X110 to be added the

4.1. Computing One Explanation 44

implication set of X1581 with the following explanation as its label.

Exp(X1581,X110) = {X1581 ⊑ Topology,

TrulyHollow ⊑ Hollow,

X1581 ⊑ ∃hasState.TrulyHollow,

∃hasState.Hollow ⊑ X406,

X406 ⊓ Topology ⊑ X110},

Also, a concept name TruelyHollowBodyStructure had also been related via the role hasTopology

to the concept X1581, i.e, TruelyHollowBodyStructure ⊑ ∃hasTopology. X1581. The com-

puted label was:

Exp(TruelyHollowBodyStructure,∃hasTopology.X1581) =

{TruelyHollowBodyStructure ⊑ BodyStructure

BodyStructure ⊑ SolidStructure

X216 ⊓ SolidStructure ⊑ TrulyHollowStructure

TrulyHollowStructure ⊑ ∃hasTopology.X1581

TruelyHollowBodyStructure ⊑ ∃hasTopology.X1503

X1503 ⊑ ∃hasState.TrulyHollow

∃hasState.TrulyHollow ⊑ X777

X1503 ⊑ Topology

X777 ⊓ Topology ⊑ X675

∃hasTopology.X675 ⊑ X226}

It can be easily verified that the explanations for the corresponding subsumption rela-

tionships are minimal. Since the valueExp(TruelyHollowBodyStructure,∃hasTopology.X110)

4.2. A First Implementation 45

had not been set before, the algorithm would assign to it the union of the previous two ex-

planations

Exp(TruelyHollowBodyStructure,∃hasTopology.X110) =

Exp(X1581,X110) ∪ Exp(TruelyHollowBodyStructure,∃hasTopology.X1581)

Obviously, the explanation computed in this way is not minimal since the following proper

subset also entails the subsumption in question.

{X1503 ⊑ Topology

X1503 ⊑ ∃.hasStateTrulyHollow

TrulyHollow ⊑ Hollow

∃hasState.Hollow ⊑ X406

X406 ⊓ Topology ⊑ X110

TruelyHollowBodyStructure ⊑ ∃hasTopology.X1503}

⊣

In the example above, the reason that caused non-minimality lies in the selection of concept

names, i.e., which concept name should be processed first. If the concept name TruelyHollow

had been processed before X1503, we could have obtained a minimal explanation. This

algorithm performs on every concept name in an arbitrary order. It provides no strategy

nor heuristic search to choose the optimum one. On the contrary, the computed explanation

was compared to previous explanation and fetch the smaller one in each step in the general

labelled subsumption algorithm discussed in Chapter 3.

4.2 A First Implementation

We have mentioned that the algorithm computing one explanation leads to non-minimality,

and the explanation set we talked so far are relative to the normalized ontology, i.e., all

4.2. A First Implementation 46

algorithm

SE

mappingUE

SE: system explanation UE: user explanation

Initilization
Core

Reverse

MOPS

O norm(O)

(O)(norm(O))

Black-box
(CEL)

Figure 4.2: workflow of the first implementation

the axioms are in normal form. It is apparent that the explanations are not minimal as

well when talking about the original terminology. In fact, a minimal explanation relative

to norm(O) could give rise to a non-minimal explanation relative to O. This means that

even the algorithm provides a minimal explanation, the reverse mapping could result in

non-minimality of explanations w.r.t O. In Example 23, given the subsumption A ⊑ D and

its MOPS {A ⊑ B,B ⊑ C,A ⊓C ⊑ D}, one of its original explanation by reverse-mapping

this MOPS to original terminology is {A ⊑ B ⊓ C,B ⊑ C,A ⊓ C ⊑ D}. Obviously, this

original explanation is not minimal for subsumption A ⊑ D.

In order to compute the minimal explanations w.r.t the original ontology, we use the

black box approach with the help of the CEL reasoner in our implementation. The black

box method sweeps through every axiom in the computed explanations, and thereby tests if

the subsumption in question is still satisfied when the axiom under consideration is absent.

We implement this idea in the Common Lisp, Allegro CL [12]. Since it is the first imple-

mentation of the tractable approach to axiom pinpointing, we do not consider efficiency

when choosing the data structures. Figure 4.2 displays four major modules of computation

in our implementation. In the first phase, the input ontology is transformed into normal

form and the data structures, such as S, R, Ô, queues etc, are initialized. In the implemen-

tation, we use hash table to store normalized axioms. The core algorithm is the tractable

4.3. Complexity 47

version of our axiom pinpointing algorithm presented in section 4.1. We call the explana-

tion sets computed by the core algorithm system explanations (SE), An SE is a (possible)

non-minimal explanation w.r.t norm(O). An SE is then reverse mapped to a so-called user

explanations(UE) which is a (possible) non-minimal explanation w.r.t O. Finally, the algo-

rithm yields a MOPS w.r.t O through the black-box reasoning. Note that the whole input

ontology O can be considered a non-minimal explanation indeed, and thus only the black

box approach with the CEL reasoner is in principle sufficient to compute MOPS. However,

this way is rather brute-force and might not work in practice though the orache reasoner

is efficient. We will see the experiment of this implementation on GALEN in the next

chapter, the black box phrase occupies most of the computation time in terms of the whole

computation.

4.3 Complexity

In order to show termination in polynomial time, it suffices to show that each of the four

phases displayed in Figure 4.2 needs polynomial time. For the normalization phase, it has

been proven in Lemma 10 that the transformation to normal form is linear in the size of O.

Corollary 33. Let O is a normalized EL+ ontology over CN⊤
O and RNO, the revised sub-

sumption algorithm shown in Table 4.1 terminates in polynomial time in |O|.

Proof. The only difference compared to the unlabelled subsumption algorithm is that, in

the revised labelled algorithm, each element in S or R is labelled with a set of tags. Due

to the stronger preconditions, {Bl1 , Bl2} ⊆ S(A) implies that l1 = l2 for the implication set

of concept name A ∈ CN⊤
O , and for all labels, i.e., label in Alabel ∈ S(B) are also only of

polynomial size of O. The application of each complete rule of revised labelled algorithm

adds a concept name in CN⊤
O to S or a binary relation (A,B) to R with a subset of O as

its labels. No rule removes elements from S and R. The total number of application can

be performed in polynomial time of |O|.

4.3. Complexity 48

It is easily seen that the reverse mapping can be computed in polynomial time, since it

directly maps each normalized axiom to the generating original axiom. In fact, the reverse

mapping is linear in the size of |O|. As for the black-box reasoning phase, i) CEL is a

polynomial time reasoner, ii) There is only one explanation for each subsumption and the

number of subsumption relationships is bounded by |CN⊤
O |2, so the black box reasoning

with CEL can be done in polynomial time.

Theorem 34. One minimal explanation for subsumption in EL+ can be decided in polyno-

mial time.

Chapter 5

Experiments on GALEN

We implemented the tractable pinpointing algorithm from the previous chapter and evalu-

ated it on GALEN. In fact, we utilize a fragment of the GALEN ontology. Large parts of

GALEN medical knowledge base can be expressed in EL with GCIs and transitive roles [17].

Since the full ontology is beyond the capacity of EL+, we use a stripped-down version in

which inverse role axioms are dropped and functional roles are treated as if they were normal

ones. This stripped-down version can be expressed by EL+, and we present the experimental

results of the implementation on the GALEN ontology in this chapter.

First, we briefly introduce the structure and size of GALEN used here. The ontology

is formulated in the KRSS syntax1. Table 5.1 lists some axioms that are available in the

GALEN ontology corresponding to the syntax of the description logic EL+. Here, CN

ranges over EL+ concept name. C,C1 and C2 are EL+ concept descriptions. RN,RN1 and

RN2 correspond to role names. For instance:

(define-concept ViralInfection (AND Infection

(SOME hasCausalAgent Virus)))

This concept definition defines the concept name “ViralInfection” by the complex concept

description “Infection⊓∃hasCausalAgent. Virus” in terms of EL+ syntax. We could merge

1http://dl.kr.org/krss-spec.ps

49

50

EL+ syntax GALEN syntax

Conjunctions C1 ⊓C2 (AND C1 C2)

Existential restrictions ∃RN. C (SOME RN C)

Primitive concept definition CN ⊑ C (define-primitive-concept CN C)

Concept definition CN ≡ C (define-concept CN C)

General concept inclusion C1 ⊑ C2 (implies C1 C2)

Role transitivity axiom RN ◦RN ⊑ RN (define-primitive-role RN :transitive t)

Role hierarchies RN1 ⊑ RN2 (define-primitive-role RN1 :parents (RN2))

Table 5.1: EL+ syntax versus GALEN syntax

different properties of a role name into one axiom, such as

(define-primitive-role hasFunctionalComponent : parents (FunctionalAttribute)

: transitive t)

which represents both the transitivity and role hierarchy.

The GALEN ontology used in this experiment has a total number of 4,367 axioms, and

699 of them are concept definitions, 2,041 are primitive concept definition, 1,214 are GCIs

and 413 are role axioms. It has 2,748 concept names and 413 role names.

We will display the evaluation results of the implementation on the GALEN ontology.

The experiments were performed on a standard PC with 2.8 GHz Pentium 4 processor and

512 MB of memory. Table 5.2 displays the elapse times spent on each computation stage as

shown in Figure 4.2. From the result, we can see the real time of the core algorithm paltrily

occupies in the whole computation, while the first phase for normalization and initialization

procedure was relatively more time-consuming. The initialization includes normalization,

initializing data structure, such as labelled implication set S, R, queues etc.

The application of the tractable algorithm on the Galen ontology produced 27,973

subconcept-superconcept relationships, all accompanied by a single explanation. As we

have seen before, there are two sources of non-minimality, the core algorithm and the re-

verse mapping from system explanation to user explanation. Since our implementation

only output the user explanation, it is interesting to find out the system explanation as

51

Time(mm:ss) Real Time Percentage

Initialization 07:27 40.6%
Core algorithm 01:35 8.7%

Reverse mapping 01:51 10.2%
Black Box 07:22 40.5%

Total 18:01 100%

Table 5.2: Time Consumption of running one-explanation algorithm on GALEN

well. Table 5.3 shows how many system explanations (in normal form) and how many user

explanation (in original form) are not minimal respectively. The degree of non-minimality

denotes, if an explanation is not minimal, the number of redundant or unnecessary axioms.

The #non-minimal explanations displays the total number of non-minimal explanations

for the computed subconcept-superconcept relationships of concept names 2. For instance,

there are totally 1,065 system explanations which are not minimal, and 604 of which, about

56.7% have 7 unnecessary axioms. Although the tractable algorithm is not able to generate

a minimal explanation for each subsumption relationship, the results show that the degree

of non-minimality is not high, and even acceptable. Approximately 3.8% of the system

explanations and 4.3% of the user explanations which cover very little for whole 27,894

explanations are not minimal. Furthermore for user explanations, there are 723, which

occupy half of the non-minimal explanation, with only 1 redundant axiom. This level of

non-minimality is almost negligible to the use of such a system. That is to say, though

not minimal, the computed set of axioms do explain why subsumption holds. We also dis-

cern the number of non-minimal user explanations is more than the non-minimal system

explanations because of the reverse mapping.

2In fact, the subconcept-superconcept relationships include subsumption relationships between concept
name and value restriction, however, we only provide non-minimal explanations for subsumption between
concept names.

52

Table 5.3: Degree of the Non-minimality

Degree of non-minimality

#non-minimal (%) 1 2 3 4 6 7 8 9 10 11 13

SE 1065 (3.8%) 604 393 5 4 58 1
UE 1224 (4.3%) 723 420 19 17 1 44

SE: system explanation UE: user explanation
#non-minimal: the number of non-minimal explanation

Chapter 6

Conclusion and Future Work

In this thesis, we have developed two labelled algorithms for non-standard inference of ex-

plaining subsumption in the description logic EL with GCIs and CRIs. In general, minimal

explanation is not unique, and there may be exponentially many explanations in the worst

case. We have investigated that the corresponding decision problem of explanation in EL+

is NP-complete. We restricted the labelled algorithm so that one explanation for each sub-

sumption can be computed in polynomial time. This algorithm can not guarantee that all

computed explanations are minimal. From the experiments on the GALEN ontology, the

non-minimal explanations occupy a little in whole computed explanations and the degree

of non-minimality, i.e., the number of redundant axioms, is not high and even acceptable.

That to say, despite not minimal, the computed set of axioms do explain why subsumption

holds. Generally the non-minimality comes from two factors, the core algorithm and the

reverse mapping from system explanations to user explanations. The core algorithm pro-

vides a polynomial time procedure to compute a single explanation for each subsumption

relationship. Though not every explanation is minimal, the minimal one can be computed

in polynomial time with the help of the black-box approach using the CEL reasoner as an

oracle.

Since the standard labelled algorithm potentially requires exponential time, it might not

be immediately enticing to directly implement it. However, there are circumstances when

53

54

all conceivable explanations for a certain logical consequence are necessary. For example,

when the logical consequence in question is not desired, and the ontology developer needs to

dispensed with it. By removing all axioms found in a single explanation, it is not guaranteed

that the consequence is dismissed. A stepwise computation with user interaction might be

a tractable solution – the user is provided with a single explanation, and upon request, the

next explanation (if any) is computed incrementally. This way, users could be satisfied both

in terms of affordable computation times and sufficient explanation output.

Another interesting work for future would be to optimize the algorithm and implemen-

tation. Since we do not mainly consider the efficiency when choosing data structures, it

is worthwhile to revise eligible data structures and use the more efficient ones. Last but

not least is to extend EL+ to the more expressive language EL++, which introduces among

other things nominals and concrete domains.

Bibliography

[1] F. Baader, S. Brandt, and C. Lutz. Pushing the EL envelope. LTCS-Report

LTCS-05-01, Chair for Automata Theory, Institute for Theoretical Computer Sci-

ence, Dresden University of Technology, Germany, 2005. See http://lat.inf.tu-

dresden.de/research/reports.html.

[2] F. Baader, D. Calvanese, Deborah L. McGuinness, Daniele Nardi, and Peter F. Patel-

Schneider. The Description Logic Handbook: Theory, Implementation, and Applica-

tions. Cambridge University Press, 2003.

[3] F. Baader, C. Lutz, and B. Suntisrivaraporn. Is tractable reasoning in extensions of the

description logic EL useful in practice? In Proceedings of the Methods for Modalities

Workshop (M4M-05), Berlin, Germany, 2005.

[4] F. Baader, C. Lutz, and B. Suntisrivaraporn. CEL—a polynomial-time reasoner for

life science ontologies. In U. Furbach and N. Shankar, editors, Proceedings of the 3rd

International Joint Conference on Automated Reasoning (IJCAR’06), volume 4130 of

Lecture Notes in Artificial Intelligence, pages 287–291. Springer-Verlag, 2006.

[5] Franz Baader and Bernhard Hollunder. Embedding defaults into terminological knowl-

edge representation formalisms. Technical Report RR-93-20, Germany, 1993.

[6] Tim Berners-Lee, James Hendler, and Ora Lassila. The semantic web. Scientific

American, 284(5):34–43, 2001.

55

BIBLIOGRAPHY 56

[7] S. Brandt. Polynomial time reasoning in a description logic with existential restric-

tions, GCI axioms, and—what else? In R. López de Mantáras and L. Saitta, editors,

Proceedings of the 16th European Conference on Artificial Intelligence (ECAI-2004),

pages 298–302. IOS Press, 2004.

[8] S. Brandt. Reasoning in ELH w.r.t. general concept inclusion axioms. LTCS-

Report LTCS-04-03, Chair for Automata Theory, Institute for Theoretical Computer

Science, Dresden University of Technology, Germany, 2004. See http://lat.inf.tu-

dresden.de/research/reports.html.

[9] William F. Dowling and Jean H. Gallier. Linear-time algorithms for testing the satis-

fiability of propositional horn formulae. J. Log. Program., 1(3):267–284, 1984.

[10] Michael R. Garey and David S. Johnson. Computers and Intractability: A Guide to

the Theory of NP-Completeness. Mathematical sciences series. Freeman, 1979.

[11] N. Guarino and R. Poli. Formal ontology in conceptual analysis and knowledge repre-

sentation, 1995.

[12] Allegro Common LISP. Franz Inc

See http://www.franz.com.

[13] B. Nebel. Terminological cycles: Semantics and computational properties. In J. F.

Sowa, editor, Principles of Semantic Networks: Explorations in the Representation

of Knowledge, pages 331–361. Morgan Kaufmann Publishers, San Mateo (CA), USA,

1991.

[14] Bijan Parsia, Evren Sirin, and Aditya Kalyanpur. Debugging owl ontologies.

[15] Rafael Penaloza. Pinpointing in tableaus. LTCS-Report LTCS-06-05, Chair for Au-

tomata Theory, Institute for Theoretical Computer Science, Dresden University of

Technology, Germany, 2006. See http://lat.inf.tu-dresden.de/research/reports.html.

BIBLIOGRAPHY 57

[16] R.Cote D.Rothwell J.Palotay R.Beckett and L.Brochu. The systematized nomencla-

ture of human and veterinary medicine. Technical report, SNOMED International,

Northfield,IL, 1993.

[17] A. Rector and I. Horrocks. Experience building a large, re-usable medical ontology

using a description logic with transitivity and concept inclusions, 1997.

[18] A. Rector, W. Nowlan, and A. Glowinski. Goals for concept representation in the galen

project, 1993.

[19] R. Reiter. A theory of diagnosis from first principles. In M. L. Ginsberg, editor,

Readings in Nonmonotonic Reasoning, pages 352–371. Kaufmann, Los Altos, CA, 1987.

[20] B. Smith, J. Williams, and S. Schulze-Kremer. The ontology of the gene ontology,

2003.

[21] S.Schlobach and R.Cornet. Non-standard reasoning services for the debugging of de-

scription loigcal terminologies. In In Proceedings of the International Joint Conference

on Artificial Intelligence - IJCAI’03, Acapulco, Mexico, 2003. Morgan Kaufmann.

[22] B. Suntisrivaraporn. Cel manual, a polynomial-time classifier for the description logic

EL+. See http://lat.inf.tu-dresden.de/systems/cel/.

[23] B. Suntisrivaraporn. Optimization and implementation of subsumption algorithms

for the description logic EL with cyclic tboxes and general concept inclusion axioms.

Master thesis, TU Dresden, Germany, 2005.

	Abstract
	Acknowledgements
	Table of Contents
	Introduction
	The Description Logic EL
	EL Concept Language
	EL+ Terminology
	Reasoning problem in EL+

	Subsumption of EL with GCIs and CRIs
	Normalization of EL+ Ontology
	Classification of EL+ Ontology
	Soundness and Completeness

	Explaining Subsumption in EL+ by Axiom Pinpointing
	The Labelled Algorithm
	Soundness and Completeness
	Minimal Explanation w.r.t Original Ontology
	Complexity

	A Tractable Restriction of Axiom Pinpointing in EL+
	Computing One Explanation
	A First Implementation
	Complexity

	Experiments on GALEN
	Conclusion and Future Work
	Bibliography

