
Technische Universität Dresden
International Master Programme in Computational Logic

Institute for Theoretical Computer Science
Department of Computer Science

Master Thesis

Data Complexity of Instance Checking
in The EL Family of Description Logics

Adila Alfa Krisnadhi
Born on September 6, 1980 in Pringsewu, Indonesia

Submission date: March 9, 2007

Overseeing Professor: Prof. Dr. Franz Baader
Supervisor: Dr. Carsten Lutz

Technische Universität Dresden

Author : Adila Alfa Krisnadhi
Matrikel-Nr. : 3177963
Title : Data Complexity of Instance Checking

in The EL Family of Description Logics
Degree : Master of Science
Date of submission : March 9, 2007

Declaration

Hereby I certify that the thesis has been written by me. Any help that I have received
in my research work has been acknowledged. Additionally, I certify that I have not used
any auxiliary sources and literature except those cited in the thesis.

Adila Alfa Krisnadhi

ii

Abstract

Subsumption in the description logic (DL) EL is known to be tractable even when it is
done with respect to the most general form of terminology, namely a set of general inclu-
sion axioms (GCIs). Recently, this tractability boundary has been clarified by identifying
DL constructors that causes intractability of subsumption when added to EL and that do
not. These results provide us with a characterization of the complexity of subsumption
for the EL family of DLs (i.e., EL and its extensions).

Besides subsumption, there are other standard reasoning problems studied in DL.
Among them, the instance checking problem is the most basic reasoning problem that is
concerned with deriving implicit knowledge about individuals in a DL knowledge base.
Such a knowledge base consists of an intensional part in the form of a terminology (TBox)
and an extensional or data part in the form of assertions about particular individuals in
the domain of the knowledge base (ABox). Like other reasoning problems, complexity of
instance checking is usually measured in the size of the whole input—thus called combined
complexity—which, in this case, consists of a TBox, an ABox, a query concept and an
individual name. On the other hand, it is common to assume that the data (ABox) is
very large compared to the TBox and the query. Therefore, it is often more realistic to
use a complexity measure based only on the size of the ABox, i.e., data complexity.

For the EL family, results for the combined complexity of instance checking can be de-
rived from the complexity results for subsumption. But results which are concerned with
data complexity are still lacking. This motivates us to investigate the data complexity
of instance checking in the EL family. In particular, we are interested in whether there
are extensions of EL which are intractable regarding combined complexity, but tractable
regarding data complexity.

The first part of this thesis establishes coNP-hardness (and even coNP-completeness)
results regarding data complexity of instance checking w.r.t. sets of GCIs for extensions of
EL with negation, disjunction, value restriction, number restriction and role constructors
such as role negation, role union and transitive closures. The lower bounds of data
complexity for these DLs are proved by polynomial reductions from the complement of
2+2-SAT, a variant of propositional satisfiability problem which is NP-complete, whereas
the upper bounds follow from known results of data complexity for ALC and SHIQ.

The second part identifies an extension of EL called ELIf , for which data complexity
of instance checking w.r.t. sets of GCIs is tractable. The DL ELIf is obtained from EL
by adding inverse roles and global functionality. This result is interesting since adding
only one of those two constructors leads to intractability of reasoning w.r.t. combined
complexity. The result is derived by giving an algorithm that decides instance checking
in ELIf w.r.t. sets of GCIs and runs in time polynomial in the size of the input ABox.

iii

Acknowledgements

Alhamdulillah! I would not have been able to write my thesis without You, Allah the
One Lord of the Whole Universe, thus my first and foremost gratitude eternally goes to
Him. I thank Him for the guidance, the love, the life and the belief in You of which I
pray to last the whole of my lifetime.

I am greatly thankful to my family. My wife, Tuntas, for her prayers, enthusiasm, love,
support, and even for just being there for me. My parents, who pray from far away, days
and nights for my success. My other relatives whose names would be a very long list to
be written here, I thank them all for their support and suggestions virtually whenever I
need.

Many many thanks goes to Carsten Lutz with his patience and enthusiasm of helping
and guiding me, not only to finally finish this thesis but also from the time when I was
working on my CL-project. Not only once or twice, but close to infinitely many times
has he given me stimulating advices and questions showing me the right way to finish
my work. Additionally, I am grateful for his willingness to proofread my thesis and to
endure plentiful of mistakes and imprecisions in it, and still to come up with numerous
useful criticisms.

I would like to thank Prof. Franz Baader for his interesting lectures on Logic-Based
Knowledge Representation, and Complexity and Logic. With the first, I was introduced
for the first time to the world of Description Logics and with the second, I learned a
lot of things about theoretical computer science, in particular complexity theory and its
relation to logics.

In addition, I appreciate and feel honored by the opportunity which has been given by
German Academic Exchange Service (DAAD) and Faculty of Computer Science, Univer-
sity of Indonesia through the scholarship, enabling me to complete the Master’s degree
in Germany. I am also greatly indebted to the International Master Programme in Com-
putational Logic, TU Dresden for the eventful time of study, and also for numerous new
knowledge and experience I acquired during my stay in Dresden. Special thanks also
goes to the following professors: Steffen Hölldobler and Horst Reichel of TU Dresden,
also L. Yohanes Stefanus and Benyamin Kusumoputro of University of Indonesia, for
their “gutachten” with which my more-than-two years stay in Dresden was possible.

iv

Contents

Abstract iii

Acknowledgements iv

1 Introduction 1
1.1 Description Logics . 1
1.2 The EL Family and Data Complexity: Previous Results 6
1.3 Objective and Structure of the Thesis . 7

2 General Framework 9
2.1 The EL family . 9
2.2 Description Logic Knowledge Base: TBox and ABox 11
2.3 Reasoning Services and Complexity Measures 12

3 Intractable Extensions of EL Regarding Data Complexity 15
3.1 Extensions of EL with Negation . 16
3.2 Extension of EL with Disjunction . 18
3.3 Extensions of EL with Value Restriction 23
3.4 Extensions of EL with Unqualified Number Restrictions 26
3.5 Extensions of EL with Role Complement, Role Union and Transitive Closures 40
3.6 Summary of the Chapter . 41

4 A Tractable Extension of EL Regarding Data Complexity: ELIf 43
4.1 The Description Logic ELIf . 43
4.2 A Normal Form for ELIf TBoxes . 44
4.3 An Instance Checking Algorithm for ELIf 45
4.4 Termination and Soundness . 47
4.5 Completeness . 49

5 Conclusion 62

Bibliography 65

v

Chapter 1

Introduction

Knowledge Representation (KR) is one of the most prominent subfield in Artificial In-
telligence (AI). Research in KR is mainly focused on building systems that possess the
ability to find implicit consequences from explicitly represented knowledge. Such systems
are known as knowledge-based systems [Nardi & Brachman, 2003].

One of the earliest approaches was the use of network-based structures [Lehmann, 1992],
such as semantic networks [Quillian, 1968] and frames [Minsky, 1974]. This approach
aimed at representing sets of individuals and their relationship by means of the structure
of the network. The intuition was that, with such structures, representation could be
done in a simple way, and reasoning would be efficient.

Both semantic networks and frames were based on the use of graphical interfaces in
which knowledge is represented with the help of ad-hoc data structures and the reasoning
is accomplished by similarly ad-hoc procedures which manipulate the data structures.
Initial attempts on realizing these formalisms suffered from the lack of precise semantic
characterization. Due to this weakness, one cannot guarantee the same behavior of two
KR systems which are built from identical-looking components and identical relationship
names. This gave rise to the line of research on providing a semantics for such repre-
sentation structures in such a way that ease of representation and efficiency of reasoning
could still be retained.

The first important step in this direction was the recognition that frames could be
given semantics relying on first-order logic [Hayes, 1979]. Further investigations showed
that frames and semantics networks could indeed be regarded as fragments of first-order
logic and different features of the representation language would lead to different frag-
ments of first-order logic [Brachman & Levesque, 1985]. Consequently, one could develop
specialized reasoning techniques without necessarily requiring the power of general first-
order logic theorem provers. Furthermore, reasoning in different fragments of first-order
logic leads to different problems in computational complexity. This became the origin
of the research on description logics that was originated from the work on the KL-ONE
system [Brachman & Schmolze, 1985].

1.1 Description Logics

Description logics (DLs) [Baader et al., 2003] are a family of logic-based knowledge rep-
resentation formalisms designed to represent and reason about conceptual knowledge.
As a family of logical formalisms, DLs are equipped with a well-defined—usually Tarski

1

style, extensional—semantics and provide a logical basis for interpreting objects (or in-
dividuals), classes of objects (or concepts), and relationships between objects (or roles).
A particular DL is typically characterized by the set of constructors with which complex
concept descriptions can be built from atomic concept names and role names. For exam-
ple, ALC (Attributive Language with Complement) [Schmidt-Schauß & Smolka, 1991] is
the smallest propositionally closed Description Logic. It provides all Boolean operators,
value restriction, i.e., universal restriction, and existential restriction. The following is
an ALC-concept which describes fathers who has at least two children: a son and a
daughter, and all the children are rich, using concept conjunction (u), negation (¬), and
value restriction (∀) and existential restriction (∃) over the role has_child.

Male u ∃has_child.Male u ∃has_child.¬Male u ∀has_child.Rich

Semantically, concepts are given a set-theoretic interpretation. More precisely, con-
cepts are interpreted as sets of individuals and roles are interpreted as binary relations.
Each DL constructor denotes a particular set construction giving a set of individuals
from sets of individuals denoted by concepts and roles on which the constructor is ap-
plied. For example, concept conjunction is interpreted as set intersection and negation
is interpreted as set complement. [Nardi & Brachman, 2003]. All individuals come from
the domain of interpretation which can be chosen arbitrarily and can be infinite. The
non-finiteness of the domain and the open-world-assumption are important features of
DLs in comparison to modeling languages studied in databases [Baader & Nutt, 2003;
Borgida et al., 2003; Sattler et al., 2003].

Description Logics Knowledge Base: TBox and ABox

The knowledge base of a DL system is made up of two components, namely a terminolog-
ical component or TBox and an assertional component or ABox [Baader & Nutt, 2003].
A TBox is given in the form of a terminology (hence the term “TBox”) which contains
intensional knowledge (or general knowledge) of the problem and describes properties of
concepts that hold in general over the domain. In contrast, the ABox contains exten-
sional knowledge or assertional knowledge (hence the term “ABox”) which is basically
knowledge that is specific to individuals in the domain of the problem.

A TBox is a set of declarative statements. These statements come in two forms, namely
concept definitions and (general) concept inclusions (GCIs). A concept definition is a
statement of the form A ≡ C which defines a concept name A in terms of a possibly
complex concept C. Such a definition is interpreted as logical equivalence and that gives
sufficient and necessary conditions for classifying an individual as a member of the set
denoted by A. A GCI is a statement of the form C v D over arbitrary concepts C and
D, which is interpreted as a logical implication. Notably, a concept definition A ≡ C can
be expressed using two GCIs: A v C and C v A. Due to this, one can view every TBox
as simply a set of GCIs.

In the literature [Baader & Nutt, 2003], one distinguishes different kinds of TBoxes
depending on some syntactic restrictions. The simplest, i.e., the most restrictive ones

2

are the so-called acyclic TBoxes. An acyclic TBox contains only concept definitions such
that for every concept name, no more than one definition is allowed and additionally, the
TBox itself has no terminological cycle (thus the term “acyclic”). A terminological cycle
occurs whenever a concept name is defined directly or indirectly in terms of itself. If we
drop the acyclicity restriction, then the TBoxes are called cyclic TBoxes. Finally, the
most general form of TBoxes are the so-called general TBoxes which may contain GCIs.
As an example, consider the following TBox that formalizes some knowledge about rela-
tionships between people, where ⊥ is interpreted as the empty set. Besides constructors
mentioned in the previous example, the following example also uses disjunction (t) which
is interpreted as set union.

Human ≡ Male t Female

Parent ≡ Human u ∃has_child.Human u ∀has_child.Human

Father ≡ Parent uMale

Mother ≡ Parent u Female

Husband ≡ Male u ∃married_to.Human u ∀married_to.Female

Wife ≡ Female u ∃married_to.Human u ∀married_to.Male

MarriedHuman ≡ Husband tWife

Male u Female v ⊥

The first seven statements in this example introduce Human, Parent, Father, Mother,
Husband, Wife and MarriedHuman in terms of of other concepts. The last statement
introduces the disjointness of concepts Male and Female.

An ABox is a set of assertions which formalizes (parts of) a specific situation involving
certain individuals. Every assertion asserts a fact about one or more individuals denoted
by individual names. There are two forms of assertions which can be expressed in an
ABox, namely concept assertions and role assertions. A concept assertion is an assertion
of the form C(a) stating the fact that the individual denoted by the individual name a
belongs to the set denoted by the concept C. A role assertion is a statement of the form
r(a, b) asserting the fact that the individual a is related to the individual b via the role r.
The following is an example of an ABox which gives a partial description of a particular
family. In this example, ANDRE, STEFFI and JAZ are individual names.

(Male u Parent)(ANDRE), Wife(STEFFI), married_to(STEFFI,ANDRE),
has_child(STEFFI, JAZ), has_child(ANDRE, JAZ)

Reasoning in Description Logics

As a KR formalism, DLs are useful not merely for representing knowledge of a particular
domain, but also for reasoning about that represented knowledge, i.e., deriving implicit
knowledge from the knowledge that is explicitly stated in the knowledge base. In the
literature [Baader & Nutt, 2003], there are several reasoning tasks for DLs that have
been considered. Among others, the following ones are considered as basic reasoning

3

tasks: concept satisfiability, subsumption, knowledge base consistency (satisfiability), and
instance checking. All these problems are casted as decision problems and take a knowl-
edge base as their input. In addition to the knowledge base, concept satisfiability and
subsumption respectively take one and two input concepts, whereas instance checking
take an input concept and an individual. Concept satisfiability decides whether there
is an interpretation satisfying the knowledge base which interprets the given concept
as a nonempty set. Subsumption decides whether for every interpretation that satisfies
the knowledge base, every instance of the first concept is also an instance of the sec-
ond concept. Knowledge base consistency simply determines if there is an interpretation
satisfying the knowledge base. Finally, instance checking decides whether for every inter-
pretation satisfying the knowledge base, the input individual is an instance of the input
concept.

Out of those four basic reasoning tasks, concept satisfiability and subsumption are the
reasoning tasks for which ABoxes have no effect [Buchheit et al., 1993; Nebel, 1990a].
For the other two problems, ABoxes does affect reasoning. Knowledge base consistency
typically concerns with the interaction between TBox and ABox in the knowledge base,
whereas instance checking is the basic reasoning task for deriving implicit knowledge
about individuals in the knowledge base [Schaerf, 1993]. It is well-known that concept
satisfiability, subsumption and knowledge base consistency can be reduced to instance
checking [Donini et al., 1994]. In addition, there is another reasoning task that can be
viewed as a generalization to instance checking, namely query answering or retrieval.
Query answering is the reasoning problem that can be stated as follows: “given a concept
and a knowledge base, find all instances of the given concept in the knowledge base”. It
is easy to see that query answering can be reduced as a set of instance checking tests and
conversely, instance checking can be seen as a special case of query answering involving
only one individual. Due to all these reasons, we focus on instance checking as the main
theme for this thesis.

Complexity Analysis in Description Logics

When analyzing a reasoning problem in DL from a theoretical point of view, one is
interested in finding the exact worst-case complexity of the problem and devising an
algorithm for solving the problem such that its computational complexity match the
worst-case complexity of the problem [Tobies, 2001]. The standard notion of complexity
which is usually considered in the literature is measured in the size of the whole input
of the reasoning problem of interest. For many cases, this standard notion is sufficient
for characterizing the complexity of the problem and providing a good measure of the
performance of the algorithm for solving the reasoning problem in the context.

However, for instance checking whose input consists of a TBox, an ABox, a query
concept, and an individual name, one can also consider a complexity measure that is
based only the size of the ABox. For applications in which the size of the ABox is much
larger than the size of the TBox and the query concept, this complexity notion can give
a more realistic measure of the difficulty of the problem of instance checking, and the
performance of algorithms for solving it [Calvanese et al., 2006; Hustadt et al., 2005].

4

This above distinction between different complexity notions for instance checking is
analogous to the way complexity of query answering is characterized in the database
theory. In fact, there is a clear correspondence between querying a relational database
and instance checking as a basic form of querying a DL knowledge base. In the problem
of querying a relational database, one considers the input of the problem to consist of
one part that constitutes the data and another part that constitutes a query expression.
Moreover, in such situation, the data must obey a kind of structure in the form of database
schema. In the context of instance checking in DLs, the ABox and the TBox can be seen
respectively as the data and the schema part, whereas the query concept corresponds
to the query expression in database. Note that though, in the context of database, the
schema is always considered fixed for any situation of database query, whereas in the
context of DLs, the TBox may vary and thus, unlike database schema, is considered as
part of input of the problem.

For complexity analysis in querying a relational database, one distinguishes between
combined complexity which is measured in the size of the whole input, i.e., the data and
the query expression, data complexity which is measured only in the size of the data and
query complexity which is measured only in the size of the query [Vardi, 1986]1. There,
data complexity is used as a more realistic performance measure for cases when the size
of data is much larger than the size of the query. Likewise, query complexity is a more
realistic performance measure for cases in which the size of query expression is much
larger then the size of the data.

By taking into account the correspondence between DL knowledge base and database,
those complexity notions from database theory described above are borrowed to charac-
terize the complexity of instance checking. Thus, we use the term combined complexity
for the standard notion of complexity of reasoning in DL that is usually considered in
the literature, data complexity for the complexity measure that is based only on the size
of the ABox, and query complexity for the complexity measure that is based only on the
size of the query concept. Note that since the schema is always fixed in database, no
complexity measure is based only on the size of schema. Hence, no particular term is
used for complexity measure that is based only the size of the TBox.

For application of DLs, the analogy to database theory described above is interesting
because the idea of using ontologies (knowledge bases), as a conceptual view over data
repositories is becoming more popular recently. For example, this is used in Enterprise
Application Integration Systems, Data Integration Systems [Lenzerini, 2002] and The Se-
mantic Web [Heflin & Hendler, 2001], where the data consists of instances of ontologies
and its size is typically very large compared to the size of the intentional level of ontolo-
gies. For this reason, the notion of data complexity is also important to DL research and
considered in this thesis.

Finally, note that, despite a close correspondence between DL knowledge bases and
relational databases explained above, there is an important difference between them.
In a database, the closed world assumption is typically assumed, thus admitting only a
single model [Reiter, 1984]. This is in contrast to DL knowledge bases. A DL knowledge

1In [Vardi, 1986], query complexity is actually called expression complexity

5

base typically assumes the open world assumption as first-order theory, thus admitting
an arbitrary (possibly infinite) number of models. This is the reason why reasoning in
DL is intractable in many cases, whereas querying a relational (physical) database is
polynomial w.r.t. data complexity [Schaerf, 1994].

In addition, we also do not consider the notion of query complexity for analysis in this
thesis. This is due to the fact that cases in which the size of knowledge base is negligible
compared to the size of the query concept are uncommon in applications.

1.2 The EL Family and Data Complexity: Previous Results

For historical reasons, DLs with (qualified) existential restriction (∃r.C) but not value
restriction (∀r.C) were not until recently explored [Baader et al., 2005a]. The reason was
that in early DLs which were rooted in semantics networks and frames, it was decided that
arcs in semantic networks and slots in frames should be perceived as value restrictions
rather than existential restrictions. This was also the reason why the search for tractable
DLs (DLs for which reasoning is polynomial-time decidable w.r.t. combined complexity)
which was started after the first intractability results were shown in the 1980s [Brach-
man & Levesque, 1984; Nebel, 1988] was focused on extending the basic language FL0

which allows for the top-concept, conjunction and value restriction. For the subsumption
problem without terminologies, the tractability barrier was investigated in detail in the
early 1990s [Donini et al., 1991]. However, further investigations showed that although
FL0 is tractable without TBoxes [Brachman & Levesque, 1984], it is intractable when
terminologies are involved, as it is coNP-complete for acyclic TBoxes [Nebel, 1990b],
PSpace-complete for cyclic TBoxes [Baader, 1996] and ExpTime-complete for general
TBoxes [Baader et al., 2005a].

On the other hand, the DL EL which allows for the top-concept (>), conjunction
(C u D) and existential restriction (∃r.C) is a simple DL for which subsumption is
tractable w.r.t. acyclic and cyclic TBoxes [Baader, 2003b] and even w.r.t. general TBoxes
[Brandt, 2004b]. This tractability of EL also holds for instance checking w.r.t. acyclic
and cyclic TBoxes [Baader, 2003a] and w.r.t. general TBoxes [Brandt, 2004a].

These results motivated investigations of the EL family, i.e., DLs which are obtained by
extending EL using various DL constructors. Recent results in [Baader et al., 2005a,b]
presented the “largest” extension of EL with standard DL constructors for which the
subsumption problem can be decided in polynomial time even in the presence of GCIs.
This DL, named EL++, is defined by extending EL with the bottom-concept, nominals
and concrete domains. Furthermore, an EL++ terminology allows not only GCIs but also
statements called role inclusion. In addition, Baader et al. [2005a,b] also identified some
intractable extensions of EL which include extensions with negation, disjunction, value
restriction, number restrictions, functionality, inverse roles, role negation, role union, and
transitive closures. For all of the aforementioned extensions of EL, subsumption w.r.t.
general TBoxes were proved to be ExpTime-complete.

The choice of investigating EL and its extensions is also based on the fact that there
are applications where the expressive power of EL or small extensions thereof appear

6

to be sufficient. For example, the Systematized Nomenclature of Medicine (Snomed)
[Cote et al., 1993] corresponds to an acyclic EL TBox [Spackman, 2001]. Large part of
the medical knowledge base Galen is actually expressible in EL with GCIs and transi-
tive roles [Rector & Horrocks, 1997]. Finally, the Gene Ontology [The Gene Ontology
Consortium, 2000] can actually be viewed as an acyclic EL TBox with one transitive role.

Concerning data complexity, there are some previous results that are worth mentioning
here. One of the earliest quite comprehensive treatment of data complexity in DLs was
given in the PhD thesis from Schaerf [1994]. In Schaerf’s thesis, combined complexity
and data complexity were analyzed for extensions of the DL FL−, the DL that provides
conjunction, value restriction, and unqualified existential restrictions (∃r.>). These in-
clude the DL AL which is obtained from FL− by adding the top-concept, the bottom
concept and negation of concept names (atomic negation), as well as extensions of AL
with qualified existential restrictions, disjunction, (full) negation, number restrictions,
nominals, role conjunction, role chain, inverse roles, and role filler. Two more recent
papers about data complexity in DLs are due to [Hustadt et al., 2005] and [Calvanese
et al., 2006]. Hustadt et al. [2005]’s paper dealt with data complexity of reasoning in
the DL SHIQ, an extension of the DL ALC with transitive roles, role hierarchy, inverse
roles and qualified number restrictions, whereas the paper from Calvanese et al. [2006]
studied the data complexity of conjunctive query answering for the family of DL-Lite
languages and its polynomial tractability boundaries.

1.3 Objective and Structure of the Thesis

This thesis aims to map out the data complexity of instance checking in the EL family
of DLs. We basically present two kinds of results. First, we derive several intractability
results regarding the data complexity of instance checking w.r.t. general TBoxes in the
EL family. More precisely, we identify a number of extensions of EL for which instance
checking w.r.t. general TBoxes may be harder than polynomial regarding data complex-
ity. Second, we provide a tractability result on the data complexity of instance checking
w.r.t. general TBoxes in the EL family. We identify an extension of EL for which data
complexity of instance checking w.r.t. general TBoxes is polynomial. In order to prove
this result, we present an algorithm deciding instance checking that runs in time poly-
nomial in the size of the input ABox. The subsequent chapters are thus organized as
follows.

In Chapter 2, we introduce the syntax and semantics of EL along with additional
constructors which are used to define several extensions of EL. Next, we introduce DL
knowledge bases together with their standard semantics. Thereafter, we introduce the
reasoning tasks and notions of complexity measures, especially instance checking and the
notion of data complexity.

In Chapter 3, we present several intractability results for the EL family with respect to
data complexity. More precisely, we show coNP-hardness (and even coNP-completeness)
regarding data complexity of instance checking w.r.t. general TBoxes in several extensions
of EL which include extensions with negation, disjunction, value restriction, number

7

restrictions, and some role constructors: role complement, role union and transitive
closures. The method to derive coNP-hardness is adapted from the method used by
[Schaerf, 1993] to derive coNP-hardness of data complexity in ALE . Whereas, for the
coNP upper bound, we use the result from [Hustadt et al., 2005] which established coNP-
completeness regarding data complexity of instance checking for DLs providing at least
the constructors from the DL ALC and at most the constructors from the DL SHIQ.

Chapter 4 is dedicated to ELIf , the extension of EL with inverse roles and global
functionality. We show that in this DL, data complexity of instance checking w.r.t.
general TBoxes is polynomial. To obtain this result, a sound and complete tableau
algorithm that decides instance checking in ELIf and runs in time polynomial in the
size of the input ABox is presented. This result is interesting because adding either
inverse roles or global functionality yields to an ExpTime-completeness of subsumption
w.r.t. general TBoxes [Baader et al., 2005a,b].

Finally, we summarize this work in Chapter 5. There, we also discuss possible further
work related to the main subject of this thesis.

8

Chapter 2

General Framework

In this chapter, we present the EL-family of description logics. We start with introducing
the syntax and semantics of the DL EL and its extensions. Then, we introduce DL
knowledge bases. Finally, we introduce inference problems and complexity measures
which are relevant for this work. In particular, we focus on the instance checking problem
and the notion of data complexity.

2.1 The EL family

We introduce the syntax and semantics of the DL EL and subsequently, present various
constructors which can be used to extend EL into other members of the EL family.

Definition 2.1 (Syntax of EL-concepts)
Let NC and NR be disjoint sets of concept names and role names. The set of EL-concept
descriptions (or EL-concepts) is the smallest set that is inductively defined as follows:

• each A ∈ NC is an (atomic) EL-concept;

• if C,D are EL-concepts and r ∈ NR is a role name, then the top-concept >, the
conjunction C uD and the existential restriction ∃r.C are also EL-concepts. 3

Definition 2.2 (Semantics of EL-concepts)
An interpretation I = (∆I , ·I) consists of a domain ∆I and an interpretation function
·I . The domain ∆I is simply a nonempty set and its elements are called individuals. The
interpretation function ·I maps each concept name A ∈ NC to a subset AI ⊆ ∆I and
each role name r ∈ NR to a binary relation rI ⊆ ∆I × ∆I . For a role r, we say that
y is an r-filler of x whenever (x, y) ∈ rI . The interpretation function ·I is inductively
extended to nonatomic concepts as follows:

>I := ∆I

(C uD)I := CI ∩DI

(∃r.C)I := {x ∈ ∆I | ∃y : (x, y) ∈ rI ∧ y ∈ CI}

A concept C is satisfiable iff there is an interpretation I such that CI 6= ∅. In this
case, we say that I is a model of C. A concept C is subsumed by a concept D (written
C v D) iff for every interpretation I, CI ⊆ DI . Two concepts C,D are equivalent
(written C ≡ D) iff C v D and D v C. 3

9

Name Syntax Semantics

bottom ⊥ ∅

negation ¬C ∆I \ CI

disjunction C tD CI ∪DI

value restriction ∀r.C {x ∈ ∆I | ∀y ∈ ∆I : (x, y) ∈ rI → y ∈ CI}

at-least restriction (≥ n r) {x ∈ ∆I | #{y ∈ ∆I | (x, y) ∈ rI} ≥ n}

at-most restriction (≤ n r) {x ∈ ∆I | #{y ∈ ∆I | (x, y) ∈ rI} ≤ n}

Table 2.1: Syntax and semantics of various concept constructors

Name Syntax Semantics

inverse roles r− {(y, x) ∈ ∆I ×∆I | (x, y) ∈ rI}

role complement ¬r (∆I ×∆I) \ rI

role union r ∪ s rI ∪ sI

transitive closure r+
⋃
n≥1(r

I)n

Table 2.2: Syntax and semantics of various role constructors

Several extensions of EL can be obtained by adding various constructors given in
Table 2.1 and Table 2.2 to EL. In these tables, C,D denote possibly complex concepts,
r, s are possibly complex roles, n is a nonnegative integer and x, y are individuals. For a
set S, #S denotes the cardinality of S.

For example, let Human, Female and Rich be concept names, and has_child a role
name. The first concept below is expressed in EL and describes the notion of “parent”.
The other concepts are expressed in extensions of EL with various constructors presented
in Table 2.1 and Table 2.2. They respectively describe the notion of “parent of a son”,
“parent who has a child that is either female or rich”, “parent who has only rich children”,
“parent who has precisely two children”, “person who has a rich parent”, and “person
whose one of his decendants (children, grandchildren, etc.) is rich”.

Human u ∃has_child.Human

Human u ∃has_child.(Human u ¬Female)
Human u ∃has_child.(Female t Rich)
Human u ∃has_child.Human u ∀has_child.Rich

Human u (≥ 2 has_child) u (≤ 2 has_child)
Human u ∃has_child−.Rich

Human u ∃has_child+.Rich

10

2.2 Description Logic Knowledge Base: TBox and ABox

We first introduce the intensional component of a description logic knowledge base, called
the TBox. A TBox describes how concepts are related to each other.

Definition 2.3 (TBox)
A terminological axiom is an expression of the form A ≡ C (called concept definition) or
C v D (called general concept inclusion (GCI)), where A is a concept name and C,D
are concepts. A (general) TBox is a finite set of terminological axioms. Let T be a
TBox that contains only concept definitions. We say that T contains multiple definitions
iff there are two distinct concepts C1 and C2 such that both A ≡ C1 and A ≡ C2

belong to T . We also say that T contains a terminological cycle iff there is a subset
{A1 ≡ C1, . . . , An ≡ Cn} ⊆ T such that

• Ai+1 appears in Ci, for 1 ≤ i ≤ n, and

• A1 appears in Cn.

T is called an acyclic TBox iff it contains no multiple definition and no terminological
cycle.

An interpretation I satisfies a concept definition A ≡ C iff AI = CI and a GCI C v D
iff CI ⊆ DI . It satisfies a TBox T iff it satisfies every concept definition and GCI in T .
In this case, T is satisfiable and we say that I is a model of T .

A concept C is satisfiable w.r.t. a TBox T iff there is a model I of T such that CI 6= ∅.
A concept C is subsumed by a concept D w.r.t. a TBox T iff CI ⊆ DI for every model
I of T . Two concepts C,D are equivalent w.r.t. a TBox T iff CI = DI for every model
I of T . 3

Note that, due to the semantics, every concept definition A ≡ C can be expressed by
two GCIs: A v C and C v A. Next, we introduce the ABox, the extensional component
of a description logic knowledge base. An ABox describes a specific state of an application
domain in terms of concepts and roles. It makes particular individuals explicit by giving
them names and asserting their properties using concepts and roles.

Definition 2.4 (ABox)
Let NI be a set of individual names. An assertional axiom is an expression of the form
C(x) (called concept assertion) or r(x, y) (called role assertion), where x, y ∈ NI are
individual names, C a concept and r a role. A concept assertion is called simple if it is
either of the form A(x) or of the form ¬A(x) (when negation is allowed in the language)
where A is a concept name. A role assertion is called simple whenever it is of the form
r(x, y) with r a role name, i.e., not a complex role expressions. An ABox A is a finite set
of assertional axioms. Here, A is called simple whenever all of its assertions are simple.

For the semantics, we require every interpretation additionally, to map each individual
name x ∈ NI to an element xI ∈ ∆I . An interpretation I satisfies a concept assertion
C(x) iff xI ∈ CI and it satisfies a role assertion r(x, y) iff (xI , yI) ∈ rI . It satisfies an
ABox A iff it satisfies every assertional axiom in A. If such an interpretation I exists,
then we say that A is satisfiable and we say that I is model of A. 3

11

In this work, we shall assume that all ABoxes are simple. The motivation is that
ABoxes are viewed as data which is typically not expressed using arbitrary concept
descriptions in many applications. This situation is similar in relational database theory
where one never finds arbitrary (query) expressions as part of the data itself. Besides,
with this assumption, terminological knowledge is strictly separated from assertional
knowledge, and thus, the size of ABox is the measure of “raw” data involved in the
applications [Hustadt et al., 2005]. Finally, given a TBox and an ABox, one can combine
them to obtain a description logic knowledge base.

Definition 2.5 (Knowledge Base)
A knowledge base (KB) K = (T ,A) consists of a TBox T and an ABox A. An interpre-
tation I satisfies K iff I is a model of both T and A. In this case, K is satisfiable and
we say that I is a model of K.

A concept C is satisfiable w.r.t. a knowledge base K iff there is a model I of K such
that CI 6= ∅. A concept C is subsumed by a concept D w.r.t. a knowledge base K iff
CI ⊆ DI for every model I of K. Two concepts C,D are equivalent w.r.t. a knowledge
base K iff CI = DI for every model I of K. 3

From here on, given a knowledge base K (or a TBox T or an ABox A depending on
the context), K |= ϕ denotes the statement “every model of K satisfies ϕ” where ϕ can
be a concept C, a statement of equivalence C ≡ D, a statement of subsumption C v D
or an assertion (C(x) or r(x, y)). When ϕ is the bottom-concept ⊥, the statement is a
shorthand for “K is unsatisfiable”.

2.3 Reasoning Services and Complexity Measures

The purpose of a knowledge representation system based on description logics is not
merely storing concept definitions and assertions [Baader & Nutt, 2003]. The semantics
possessed by the knowledge base — comprising TBox and ABox — makes it equivalent
to a set of axioms in first-order predicate logic. Hence, it contains implicit knowledge
that can be made explicit through inferences. There are various inferences which form
reasoning services of a DL-based knowledge representation system. Some of them which
are considered standard in the literature [Baader & Nutt, 2003] are given below.

Definition 2.6 (Standard Reasoning Services)
Given a knowledge base K, two concepts C and D, and an individual a, we call:

• Concept satisfiability, the problem of deciding whether C is satisfiable w.r.t. K, i.e.,
whether K 6|= C ≡ ⊥.

• (Concept) subsumption, the problem of deciding whether C is subsumed by D w.r.t.
K, i.e., whether K |= C v D.

• Knowledge base satisfiability (consistency), the problem of deciding whether K is sat-
isfiable, i.e., whether K 6|= ⊥.

12

• Instance checking, the problem of deciding whether the assertion C(a) is satisfied in
every model of K, i.e., whether K |= C(a). 3

In this thesis, we single out instance checking as the basic reasoning service. It is
known that all other basic reasoning services can be reduced to instance checking. More
precisely, for a knowledge base K = (T ,A), two concepts C,D, and an individual a, we
have

(T ,A) 6|= C ≡ ⊥ ⇐⇒ (T ,A ∪ {C(a)}) 6|= ⊥(a)
(T ,A) |= C v D ⇐⇒ (T ,A ∪ {C(a)}) |= D(a)

(T ,A) 6|= ⊥ ⇐⇒ (T ,A) 6|= ⊥(a)

This means that concept satisfiability and knowledge base consistency can be reduced to
the complement of instance checking, provided that the language can express the bottom
concept. In addition, we also have that subsumption can be reduced to instance checking.
It thus follows that instance checking is at least as hard as the other reasoning problems,
even strictly harder in some DLs [Schaerf, 1993].

On the other hand, if the DL allows for negation, instance checking can be reduced to
the complement of satisfiability, since (T ,A) |= C(a) iff (T ,A ∪ ¬C(a)) is unsatisfiable.
One can also perform instance checking by combining a technique called abstraction
together with subsumption. Abstraction consists of retrieving all concept and role as-
sertions relevant to a and collecting them into a single concept. The instance checking
(T ,A) |= C(a) is then solved by testing whether C subsumes the concept obtained from
abstraction [Nebel, 1990a; Schaerf, 1993].

Another reasoning problem which is closely related to instance checking is the problem
of query answering or realization. Given a knowledge base K and a concept C, query
answering is the problem of finding all individual names x such that xI ∈ CI for every
model I of K. It thus is clear that query answering is essentially a finite set of instance
checking tests. Moreover, instance checking can be seen as query answering with only one
individual name. Hence, instance checking should be regarded as the central reasoning
task for drawing conclusions upon individuals in knowledge bases.

For computational complexity, we use standard notions from complexity theory as pre-
sented in [Papadimitriou, 1994]. In particular, we will speak about the complexity classes
P, NP, PSpace and ExpTime. The complexity class P (resp. PSpace, ExpTime) is
the class of all decision problems that can be solved by a deterministic Turing Machine
(TM) in polynomial time (resp. polynomial space, exponential time). NP is the class of
all decision problems that can be solved by a nondeterministic TM in polynomial time.
For a complexity class C, the class coC is the set of problems whose complement is in C.

Given a complexity class C, a problem P1 is said to be C-hard if for every problem
P2 in C, there is a reduction from P2 to P1 which is computable in polynomial time. A
C-hard problem is said to be C-complete if it also belongs to C.

The complexity of a problem is generally measured with respect to the size of its
whole input. However, for instance checking, there is more than one piece of input
that is given, namely the knowledge base which comprises the TBox and the ABox, the

13

concept representing the query (query concept) and the individual. Here, the size of an
individual is always constant, thus can be ignored. This leaves us with the size of TBox,
the ABox and the query concept. Depending on which part of the input that dominates
the overall size of the input, we may consider different kind of complexity measures,
analogous to what has been suggested in [Vardi, 1986] for querying relational databases.

From here on, unless stated otherwise, we use | · | to denote the size function, i.e. the
function which returns the size of its argument. In particular, the size of a concept C,
a propositional formula ϕ, a TBox T and an ABox A are all defined as the number of
symbols that are needed to write down C, ϕ, T and A respectively. For a knowledge
base K = (T ,A), we define |K| = |T |+ |A|. For the instance checking problem, i.e., the
problem of deciding whether (T ,A) |= C(a), we call:

• data complexity, the complexity of instance checking w.r.t. |A|;

• query complexity, the complexity of instance checking w.r.t. |C|;

• combined complexity, the complexity of instance checking w.r.t. |T |+ |A|+ |C|+ |a| ≈
|T |+ |A|+ |C|.

There is a clear correspondence between querying DL knowledge base and querying
relational database. The query concept corresponds to the query, the ABox corresponds
to the data and the TBox corresponds to the database schema, i.e., the structure on
which the data must obey [Hustadt et al., 2005]. However in database terminology,
complexity measures are only based on the size of the data and the size of the query,
and no complexity measure is defined in terms of the schema. The reason is because the
schema is not used when doing query answering in database systems. Therefore, we do
not define a separate complexity measure of instance checking that is based on the size
of the input TBox.

The majority of results on the complexity of reasoning in description logics deal with
combined complexity. In particular, for the EL-family, thorough studies can be found
in [Baader, 2003b; Baader et al., 2005a; Brandt, 2004b]. However, for applications in
which the size of data (ABox) is much larger than both the size of the TBox and the size
of the query concept, data complexity becomes a more realistic measure to the actual
performance of a system. There are notably many applications where such assumption
holds, for example, Enterprise Application Integration Systems, Data Integration Sys-
tems [Lenzerini, 2002], and the Semantic Web [Heflin & Hendler, 2001]. Motivated by
this assumption, we thus consider data complexity for further investigations.

14

Chapter 3

Intractable Extensions of EL Regarding
Data Complexity

In this chapter, we study the data complexity of instance checking for several extensions of
EL with some common DL constructors, namely negation, disjunction, value restriction,
unqualified number restrictions (only at-least restrictions, or only at-most restrictions or
both) and some role constructors which include role negation, role union and transitive
closures. For the extensions of EL with any of the aforementioned constructors, combined
complexity of subsumption w.r.t. general TBoxes is ExpTime-complete [Baader et al.,
2005a]. In this chapter, we will show that for those extensions of EL, the data complexity
of instance checking is coNP-hard, and even coNP-complete in most cases. The aim here
is to establish coNP-hardness results regarding data complexity of instance checking
w.r.t. general TBoxes. However, except for one case of extension of EL with at-least
restrictions, coNP-hardness for other cases can be established w.r.t. acyclic TBoxes, or
even without TBoxes at all. Additionally, in order to establish coNP-completeness results
for most cases, we refer to [Hustadt et al., 2005] which established coNP upper bound
(in fact, coNP-completeness) regarding data complexity of instance checking for DLs
providing at least the constructors from the DL ALC and at most the constructors from
the DL SHIQ.

Note that Calvanese et al. [2006] already provided coNP-hardness results of data com-
plexity of instance checking for some very simple DLs which are sublanguages of exten-
sions of EL with negation, disjunction and value restriction. However, the coNP-hardness
proofs in their paper require general TBoxes to be present. This is in contrast to our
results where the coNP-hardness regarding data complexity for extensions of EL with
negation, disjunction and value restriction require at most acyclic TBoxes.

We begin the chapter with a coNP-hardness (and thus coNP-completeness) result re-
garding data complexity for two extensions of EL with negation: atomic and full negation.
As pointed out by Donini [2003], coNP-hardness may arise from a query language that
can express both qualified existential restrictions and a pair of concepts such that their
union is equivalent to the top-concept. In the extension of EL with atomic negation, such
a pair of concepts are A and ¬A. Together with qualified existential restrictions, they
can express a query concept that requires a sort of case analysis by the reasoner. The
actual technique for showing this coNP-hardness result has been used in [Schaerf, 1993]
to obtain coNP-hardness of instance checking regarding data complexity for ALE by a
reduction from the complement of a variant of propositional satisfiability problem, named

15

2+2-SAT. In fact, we can directly use the same reduction to establish coNP-hardness of
instance checking regarding data complexity for extensions of EL with negation because
Schaerf’s proof only uses qualified existential restriction, conjunction and negation which
are all provided by EL plus negation.

The remaining part of the chapter builds upon Schaerf’s idea to establish coNP-
hardness (and coNP-completeness in most cases) of instance checking regarding data
complexity for other extensions of EL. The idea is to find a pair of concepts that be-
have like the pair A and ¬A in the extension of EL with atomic negation, i.e., a pair of
concepts whose union is equivalent to the top-concept. If such a pair of concepts can be
found, then like in EL plus atomic negation, it suffices to use simple ABoxes and suitable
query concepts (no TBoxes) to force a sort of case analysis by the reasoner. However,
as we will see later, we may not always be able to find such a pair of concepts for every
extension of EL considered in this chapter, and therefore, TBoxes may be needed in order
to simulate the behavior of the pair A and ¬A mentioned above.

3.1 Extensions of EL with Negation

Let EL¬ be the extension of EL with negation and EL(¬) be obtained from EL¬ by
restricting the applicability of negation to concept names (atomic negation). We show
that the data complexity of instance checking in EL(¬) is coNP-complete. The coNP
upper bound is derived from the result of [Hustadt et al., 2005] which showed that
for knowledge bases containing simple ABoxes, data complexity of instance checking is
coNP-complete for DLs which provide at least the constructors from ALC and at most
the constructors from SHIQ1, regardless of the TBox formalisms used in the reasoning,
i.e., the coNP lower bound (regarding data complexity) holds without TBoxes and the
coNP upper bound (regarding data complexity) holds w.r.t. general TBoxes. Since EL(¬)

is a sublanguage of ALC and EL¬ is a notational variant of ALC, the data complexity
of instance checking for both extensions of EL is obviously also in coNP.

It thus remains to show the matching hardness result for EL(¬). Here, the coNP-
hardness result will be shown to hold for knowledge bases without TBoxes, by a reduction
from the complement of 2+2-SAT, a variant of the propositional satisfiability problem
(SAT), to instance checking in EL(¬).

We first define the 2+2-SAT problem. Let P be a set of propositional variables and
{true, false} the set of propositional constants. A literal is either an element of P ∪
{true, false} (positive literal) or negation of an element of P ∪ {true, false} (negative
literal). A (2+2-literal) clause is a disjunction of four literals: two positive and two
negative ones. A 2+2-CNF formula is a conjunction of 2+2-literal clauses.

A truth assignment is a function that assigns (evaluates) every element of the set
P ∪ {true, false} to an element of the set {0, 1}. Here, we use 0 and 1 to distinguish
truth values from propositional constants. Let δ be a truth assignment. For propositional
constants, we set δ(true) = 1 and δ(false) = 0. We also have δ evaluates a negative

1SHIQ is an extension of ALC with transitive roles, role hierarchy, inverse roles and qualified number
restrictions, see [Baader et al., 2003] for more detail of their syntax and semantics

16

literal ¬p to 0 if δ(p) = 1, and to 1 if δ(p) = 0. For a 2+2-literal clause C, we define
δ(C) = 1 if at least one of the literals of C is evaluated to 1 by δ, otherwise, we define
δ(C) = 0. For a 2+2-CNF formula ψ, we define δ(ψ) = 1 if every clause of ψ is evaluated
to 1 by δ, otherwise, we define δ(ψ) = 0. We also say that a clause (formula) is satisfiable
if it is evaluated to 1 by some truth assignment, otherwise we say that the clause (formula)
is unsatisfiable.

Definition 3.1 (2+2-SAT)
2+2-SAT is the problem of deciding whether a given 2+2-CNF formula is satisfiable. 3

The 2+2-SAT problem is a variant of the well-known 3-SAT problem which is NP-
complete. In fact, a 3-literal clause mixing positive and negative literals can be trans-
formed into a 2+2-literal clause by adding a fourth disjunct constantly false and an
unmixed 3-literal clause can be replaced with two 2+2-literal clauses by adding a new
variable such that satisfiability is preserved [Schaerf, 1993]. With this transformation,
Schaerf has shown that 2+2-SAT is also NP-complete like 3-SAT.

Theorem 3.2 (Schaerf [1993])
2+2-SAT is NP-complete. 3

We now describe the reduction (also due to [Schaerf, 1993]2) from the complement of
2+2-SAT to instance checking in EL(¬). In this reduction, it is shown that coNP-hardness
holds even for an EL(¬)-knowledge base without TBox, i.e., only ABox.

Let ψ = C1∧· · ·∧Cn be a 2+2-CNF formula with m propositional variables p1, . . . , pm
and for every i = 1, . . . , n, Ci = qi,1+∨qi,2+∨¬qi,1−∨¬qi,2− with qi,1+, qi,2+, qi,1−, qi,2− ∈
{p1, . . . , pm, true, false}. From ψ, we define an EL(¬) ABox Aψ and a query concept Q.
Aψ has an individual pj for each element of {p1, . . . , pm, true, false}, an individual ci
for each clause Ci and an individual f for the whole formula ψ. Aψ uses one primitive
concept A and the following role names: Cl, P1, P2, N1, N2.

Aψ := {A(true),¬A(false),
Cl(f, c1), Cl(f, c2), . . . , Cl(f, cn),
P1(c1, q1,1+), P2(c1, q1,2+), N1(c1, q1,1−), N2(c1, q1,2−), (3.1)
. . .

P1(cn, qn,1+), P2(cn, qn,2+), N1(cn, qn,1−), N2(cn, qn,2−)},
Q := ∃Cl.(∃P1.¬A u ∃P2.¬A u ∃N1.A u ∃N2.A)

Intuitively, an individual q that is associated to an element of {p1, . . . , pm, true, false}
belongs to A (resp. ¬A) iff its associated propositional variable or constant is evaluated
to 1 (resp. 0). Note that true only belongs to A and false only belongs to ¬A. Now,

2Actually, the reduction in [Schaerf, 1993] was used to prove coNP-completeness of the DL ALE but
uses only concept constructors that are actually available in EL(¬). Hence, it is perfectly suitable for
our needs.

17

deciding whether (∅,Aψ) |= Q(f) corresponds to deciding whether the formula ψ is
unsatisfiable, i.e., for every truth assignment of ψ, there exists a clause whose positive
literals are evaluated to 0 and whose negative literals are evaluated to 1. The following
claim is due to [Schaerf, 1993].

Claim: ψ is unsatisfiable if and only if (∅,Aψ) |= Q(f). 3

This claim and the fact that |Aψ| is polynomial in |ψ| yield the coNP-hardness of
instance checking in EL(¬) regarding data complexity. This result also immediately
applies to EL¬ because EL¬ is a superlanguage of EL(¬). Note that EL¬ is a notational
variant of the DL ALC. As data complexity of instance checking for ALC is coNP-
complete even w.r.t. general TBoxes [Hustadt et al., 2005], it is clear that the coNP-
completeness result in the following proposition which also applies for acyclic and general
TBoxes.

Proposition 3.3
Data complexity of instance checking for EL(¬) and EL¬ with simple ABoxes and without
TBoxes are coNP-complete. 3

3.2 Extension of EL with Disjunction

Let ELU be the extension of EL with disjunction. We show that if we allow a TBox as a
part of the input, data complexity of instance checking in ELU is coNP-hard. This result
is, like the one for EL(¬), obtained by a reduction from the complement of 2+2-SAT.

In the EL(¬) case, negation is employed to obtain a pair of concepts A and ¬A whose
union is equivalent to the top-concept. Moreover, both concepts are disjoint. With this
situation, deciding the instance checking problem requires a sort of case analysis, as one
can associate those concepts precisely to truth assignments of propositional variables and
constants in the 2+2-CNF formula ψ.

Now, in ELU case, we use two concept names AT and AF like the pair A and ¬A in the
EL(¬) case, i.e., an individual belongs to AT (resp. AF) if its associated propositional
variable or constant is evaluated to 1 (resp. 0). Notice that, it suffices to consider
only individuals that are associated to propositional variables and constants, since truth
assignments of a 2+2-CNF formula depend only on the truth values of them. Thus, we
need to ensure that AT tAF holds on those individuals. If we allow a non simple ABox
for the reduction, we can obviously modify the ABox in Equation (3.1) by replacing A
with AT and ¬A with AF , and using AT tAF as concept assertions on every individual
in it. But this cannot be done with a simple ABox and therefore, we need a TBox to
associate AT tAF either with the top-concept or with a new concept name.

For the TBox, if we use a general one, then we can just associate the disjunction of
AT and AF with the top-concept using a single GCI > v AT t AF . Here though, the
result would be stronger if we use an acyclic TBox. For the acyclic TBox, we introduce
a new concept name, say Avar, and define it as AT t AF . For the ABox, we then use
Avar in a concept assertion for every individual in the ABox that is associated with a
propositional variable or constant. Notice that the concept definition Avar ≡ AT t AF

18

does not prevent the existence of a model of the input ABox and TBox such that an
individual belongs to AT and AF simultaneously. To deal with this case, we modify the
query concept by adding a disjunct representing this possibility. The reduction in a more
formal form is in the following.

Let ψ = C1∧C2∧· · ·∧Cn be a 2+2-CNF formula where Ci = qi,1+∨qi,2+∨¬qi,1−∨¬qi,2−.
We assume that ψ hasm propositional variables p1, . . . , pm. We define an ELU-ABox Aψ,
an acyclic TBox T and a query concept Q as follows. Aψ has one individual pj for each
propositional variable pj in ψ, one individual ci for each clause Ci, one individual f for the
whole formula ψ, and two individuals true and false for the corresponding propositional
constants. In this reduction, the following concept names are used: Avar, AT , AF ; and
the following role names are used: Cl, P1, P2, N1, N2, R. The ABox, TBox and query
concept are described below.

Aψ := {AT (true), AF (false),
Cl(f, c1), Cl(f, c2), . . . , Cl(f, cn),
P1(c1, q1,1+), P2(c1, q1,2+), N1(c1, q1,1−), N2(c1, q1,2−),
. . . ,

P1(cn, qn,1+), P2(cn, qn,2+), N1(cn, qn,1−), N2(cn, qn,2−), (3.2)
R(f, p1), R(f, p2), . . . , R(f, pm), R(f, true), R(f, false)
Avar(p1), Avar(p2), . . . , Avar(pm), Avar(true), Avar(false)},

T := {Avar ≡ AT tAF },
Q := ∃Cl.(∃P1.AF u ∃P2.AF u ∃N1.AT u ∃N2.AT) t ∃R.(AT uAF)

where p1, p2, . . . , pm are propositional variables in ψ and for every i = 1, . . . , n, it holds
that qi,1+, qi,2+, qi,1−, qi,2− ∈ {p1, p2, . . . , pm, true, false}. Note that AT tAF cannot be
put into the ABox as the ABox is simple.

Claim: ψ is unsatisfiable if and only if (T ,Aψ) |= Q(f).

Proof of Claim: “⇒”. Suppose ψ is unsatisfiable. Let I be a model of (T ,Aψ). Then,
{pI1 , . . . , pIm, trueI , falseI} ⊆ (AT tAF)I . If there is a p ∈ {p1, . . . , pm, true, false} such
that pI ∈ (AT u AF)I , then since I is a model of Aψ, we have (fI , pI) ∈ RI and thus
obtain fI ∈ (∃R.(AT uAF))I , i.e., fI ∈ QI .

Otherwise, for every q ∈ {p1, . . . , pm, true, false}, qI /∈ (AT u AF)I . In this case,
let δI be the truth assignment such that δI(q) = 1 iff qI ∈ AIT and δI(q) = 0 iff
qI ∈ AIF . Since ψ is unsatisfiable, there is a clause Ck = qk,1+ ∨ qk,2+ ∨ ¬qk,1− ∨ ¬qk,2−
that is not satisfied by δI . This implies δI(qk,1+) = δI(qk,2+) = 0 and δI(qk,1−) =
δI(qk,2−) = 1. Thus, qIk,1+, q

I
k,2+ ∈ AIF and qIk,1−, q

I
k,2− ∈ AIT . Hence, we conclude

cIk ∈ (∃P1.AF u ∃P2.AF u ∃N1.AT u ∃N2.AT)I from which it follows that fI ∈ QI .

“⇐”: Suppose ψ is satisfiable. We show that (T ,Aψ) 6|= Q(f), i.e., there is a model
of T and Aψ that does not satisfy Q(f). Let δ be a truth assignment satisfying ψ. We

19

define an interpretation Iδ as follows:

∆Iδ = {f, c1, . . . , cn, p1, . . . , pm, true, false}
xIδ = x, for all x ∈ {f, c1, . . . , cn, p1, . . . , pm, true, false}

AIδ
T = {pIδ | δ(p) = 1, p ∈ {true, p1, . . . , pm}}

AIδ
F = {pIδ | δ(p) = 0, p ∈ {false, p1, . . . , pm}}

AIδ
var = AIδ

T ∪AIδ
F

ρIδ = {(xIδ , yIδ) ∈ ∆Iδ ×∆Iδ | ρ(x, y) ∈ Aψ}, for ρ ∈ {Cl, P1, P2, N1, N2, R}

It is easy to verify that Iδ is a model of both T and Aψ. In addition, since ψ is
satisfiable, for every clause Ci of ψ, at least one of its disjuncts is evaluated to 1, i.e.,
δ(qi,1+) = 1 or δ(qi,2+) = 1 or δ(qi,1−) = 0 or δ(qi,2−) = 0. Hence, for every individual cIδ

i ,
at least one of the following holds: qIδ

i,1+ ∈ AIT , qIδ
i,2+ ∈ AIT , qIδ

i,1− ∈ AIF or qIδ
i,2− ∈ AIF . By

definition of Iδ, we have qIδ
i,1+, qIδ

i,2+, qIδ
i,1− and qIδ

i,2− are respectively the only P1-, P2-, N1-,
and N2-fillers of cIδ

i . We thus obtain that cIδ
i /∈ (∃P1.AF u∃P2.AF u∃N1.AT u∃N2.AT)Iδ

for all i = 1, . . . , n. Consequently, fIδ /∈ (∃Cl.(∃P1.AF u∃P2.AF u∃N1.AT u∃N2.AT))Iδ .
Moreover, since every propositional variable and constant is never evaluated to both 1
and 0 simultaneously, we have (AT u AF)Iδ = ∅. Thus, fIδ /∈ QIδ , i.e., Iδ does not
satisfy Q(f). 3

Observe that |Aψ| is polynomial in |ψ|, and |T | and |Q| do not depend on |ψ|. Hence,
the claim implies that data complexity of instance checking in ELU w.r.t. acyclic TBoxes
is coNP-hard. In addition, since data complexity of instance checking in ALC w.r.t.
general TBoxes is in coNP [Hustadt et al., 2005], and ELU is a sublanguage of ALC,
we obtain the following coNP-completeness result which also holds whenever the TBoxes
are general.

Proposition 3.4
Data complexity of instance checking in ELU w.r.t. simple ABoxes and acyclic TBoxes
is coNP-complete. 3

Notice that the proof of the proposition above requires a TBox as part of the input.
What happens if the input of instance checking does not include a TBox? Let us now
consider the problem of deciding A |= D(a) where A is a simple ELU ABox, D is an
ELU concept and a is an individual. We show that this problem can decided in time
polynomial in the size of A.

First, note that if a does not appear in A, the answer is trivially “no”, i.e., A 6|= D(a),
since for this case, one can easily construct a model I of A such that a belongs to no
concept except the top-concept. Hence, we assume that a is one of the individuals in A.

Let C be an ELU concept. We define sub(C), the set of subconcepts of an ELU , as
the smallest set S that contains C and has the following properties: if C1 t C2 ∈ S,
then {C1, C2} ∈ S; if C1 u C2 ∈ S, then {C1, C2} ∈ S; and if ∃r.C ′ ∈ S, then C ′ ∈ S.
The instance checking A |= D(a) can be decided in an algorithm given as follows. We

20

use a (non-simple) ABox Â as the data structure. We first compute the set sub(D) and
initialize Â to A. We apply the following rules to Â until no more rule is applicable
(where d, d′ are individuals occurring in Â):

(1) if > ∈ sub(D) and >(d) /∈ Â, then Â := Â ∪ {>(d)};

(2) if C1 u C2 ∈ sub(D), {C1(d), C2(d)} ⊆ Â, and (C1 u C2)(d) /∈ Â,
then Â := Â ∪ {(C1 u C2)(d)};

(3) if C1 t C2 ∈ sub(D), {C1(d), C2(d)} ∩ Â 6= ∅, and (C1 t C2)(d) /∈ Â,
then Â := Â ∪ {(C1 t C2)(d)};

(4) if ∃r.C ∈ sub(D), {r(d, d′), C(d′)} ⊆ Â, and (∃r.C)(d) /∈ Â,
then Â := Â ∪ {(∃r.C)(d)}.

Let Aout be the ABox that is obtained by the application of the rules (1)–(4) to a simple
ELU ABox A and an ELU query concept D. The algorithm answers “yes” if a :D ∈ Aout
and “no” if a :D /∈ Aout. The fact that the algorithm terminates as well as the soundness
and the completeness of the algorithm are shown by the following lemma.

Lemma 3.5
Let A be a simple ELU ABox, D an ELU concept. Assume that a is an individual name
occurring in A. Then both of the following hold.

1. The rules (1)–(4) can only be applied a number of times polynomial in the size of A,
and each rule application can be done in time polynomial in the size of A.

2. Let Aout be the ABox that is obtained by the application of the rules (1)–(4) to A
and D. Then we have

D(a) ∈ Aout iff A |= D(a).

Proof.
1. First, the fact that each rule application can be done in time polynomial in the size

of A is obvious. Next, note that the cardinality of sub(D) is linear in |D|. Each rule
application adds a new concept assertion for an individual name whose concept is an
element of sub(D). Since none of these rules removes assertions from A, these rules
can be performed on a particular individual names in a number of times linear in the
size of sub(D). In addition, the number of individual names occurring in A is linear
in the size of A. Therefore, the total number of rule applications is linear in |D||A|
which is linear in |A| because |D| is considered constant.

2. We start with the “only if” direction, i.e., the soundness. Assume D(a) ∈ Aout. We
show that rule applications preserve modelship, i.e., for every rule, if I is a model of
Â before the rule is applied, then I is also a model of A after the rule is applied.

(1): Trivial, since every individual belongs to the top-concept.
(2): Let I be a model of Â before the rule application. Thus, dI ∈ CI1 and d ∈ CI2 ,

i.e., dI ∈ CI1 ∩ CI2 = (C1 u C2)I . Since the rule adds the assertion (C1 u C2)(d)
to Â, we have that I is a model of Â after the rule application.

21

(3): Let I be a model of Â before the rule application. Thus, dI ∈ CI1 or d ∈ CI2 ,
i.e., dI ∈ CI1 ∪ CI2 = (C1 t C2)I . Since the rule adds the assertion (C1 t C2)(d)
to Â, we have that I is a model of Â after the rule application.

(4): Let I be a model of Â before the rule application. Thus, (dI , (d′)I) ∈ rI and
(d′)I ∈ CI . By the semantics, dI ∈ (∃r.C ′)I . As this rule adds the assertion
(∃r.C ′)(d) to Â, we have that I is a model of Â after the rule application.

We now show that A |= D(a). Let I be a model of A. Since rule applications preserve
modelship, I is a model of Aout. As D(a) ∈ Aout, obviously I satisfies D(a).

Next, we proceed with the “if” direction, i.e., the completeness. We will show that
D(a) /∈ Aout implies A 6|= D(a). Suppose D(a) /∈ Aout. Assume w.l.o.g. that
{a1, . . . , an} is the set of all individual names occurring in A. We define an interpre-
tation J = (∆J , ·J) as follows:

• ∆J := {a1, . . . , an}, and aJi = ai for i = 1, . . . , n;

• AJ := {d ∈ ∆J | A(d) ∈ Aout} for every concept name A;

• rJ := {(d, d′) ∈ ∆J ×∆J | r(d, d′) ∈ Aout} for every role name r.

It is easy to see that J is a model of Aout. Furthermore, it also a model of A because
A ⊆ Aout. We now show that aJ /∈ DJ by induction on the structure of D. The
induction base, i.e., for D = A, a concept name, is obvious by definition of J . Assume
for induction that the claim holds for some concepts C1 and C2. We distinguish cases
based on the topmost constructor of D.

• D = C1uC2. (C1uC2)(a) /∈ Aout implies {C1(a), C2(a)} * Aout, because otherwise,
the rule (2) would have been applicable to Aout which is not the case. Thus,
C1(a) /∈ Aout or C2(a) /∈ Aout. By induction hypothesis, we obtain that aJ /∈ CJ1
or aJ /∈ CJ2 . Consequently, aJ /∈ (C1 u C2)J .

• D = C1 t C2. (C1 t C2)(a) /∈ Aout implies {C1(a), C2(a)} ∩ Aout = ∅, because
otherwise, the rule (3) would have been applicable to Aout which is not the case.
Thus, C1(a) /∈ Aout and C2(a) /∈ Aout. By induction hypothesis, we obtain that
aJ /∈ CJ1 and aJ /∈ CJ2 . Consequently, aJ /∈ (C1 t C2)J .

• D = ∃r.C1. (∃r.C)(a) /∈ Aout implies {r(a, b), C1(a)} * Aout for every individual
name b occurring inAout, because otherwise, the rule (4) would have been applicable
to Aout which is not the case. Thus, for every individual name b, r(a, b) /∈ Aout
or C1(a) /∈ Aout. By induction hypothesis and definition of J , we obtain that
(aJ , bJ) /∈ rJ or aJ /∈ CJ1 . Consequently, aJ /∈ (∃r.C1)J .

This finishes the induction and we conclude that J is a model of A that does not
satisfy D(a), i.e., A 6|= D(a). 3

The previous lemma provides with the termination, soundness and completeness of the
algorithm for deciding the instance checking in ELU with simple ABoxes and without

22

TBoxes. In particular, the lemma shows that this decision problem can be solved in
time polynomial in the size of the input ABox. Consequently, this yields the following
proposition.
Proposition 3.6
Data complexity of instance checking for ELU w.r.t. simple ABoxes and without TBoxes
is polynomial. 3

3.3 Extensions of EL with Value Restriction

3.3.1 Adding Sink Restrictions: EL∀r.⊥

We first look at the extension of EL named EL∀r.⊥ which is EL extended with sink
restrictions ∀r.⊥. For EL∀r.⊥, data complexity of instance checking is coNP-hard even
without TBoxes. The coNP-hardness is obtained by a reduction from the complement
of 2+2-SAT. The reduction is similar to the one for EL(¬) given in (3.1) where instead
of using the pair A and ¬A, we use the pair of concepts ∃s.> and ∀s.⊥. The whole
reduction is given below.

Let ψ = C1∧C2∧· · ·∧Cn be a 2+2-CNF formula where Ci = qi,1+∨qi,2+∨¬qi,1−∨¬qi,2−.
We assume that ψ has m propositional variables p1, . . . , pm. We define a simple ABox
Aψ, and an EL∀r.⊥ query concept Q as follows. Aψ has one individual pj for each
propositional variable pj in ψ, one individual ci for each clause Ci, one individual f
for the whole formula ψ, and two individuals true and false for the corresponding
propositional constants. In this reduction, the following role names are used: Cl, P1,
P2, N1, N2, and S. It also holds that for every 1 ≤ i ≤ n, qi,1+, qi,2+, qi,1−, qi,2− ∈
{p1, . . . , pm, true, false}. The ABox, and query concept are described below.

Aψ := {Cl(f, c1), Cl(f, c2), . . . , Cl(f, cn),
P1(c1, q1,1+), P2(c1, q1,2+), N1(c1, q1,1−), N2(c1, q1,2−),
. . . (3.3)
P1(cn, qn,1+), P2(cn, qn,2+), N1(cn, qn,1−), N2(cn, qn,2−)},

Q := ∃Cl.(∃P1∀S.⊥ u ∃P2∀S.⊥ u ∃N1∃S.> u ∃N2∃S.>)

It can easily be verified that (∃S.>)I ∪ (∀S.⊥)I = ∆I and (∃S.>)I ∩ (∀S.⊥)I = ∅
for every model I of Aψ. This clearly simulates the behavior of the pair A and ¬A in
EL(¬). Thus, analogous with the reduction from the complement of 2+2-SAT to instance
checking in EL(¬), we have that ψ is unsatisfiable iff (∅,Aψ) |= Q(f). This establish the
coNP lower bound of data complexity of instance checking in EL∀r.⊥ with simple ABoxes
and without TBoxes. The upper bound is obtained from the fact that in ALC, the
superlanguage of EL∀r.⊥, data complexity of instance checking w.r.t. general TBoxes is
in coNP [Hustadt et al., 2005]. Hence, we establish the following coNP-completeness
result which also holds whenever the TBoxes are acyclic or general.
Proposition 3.7
Data complexity of instance checking in EL∀r.⊥ w.r.t. simple ABoxes and without TBoxes
is coNP-complete. 3

23

3.3.2 Adding Value Restriction without The Bottom-Concept: EL∀

Next, we consider EL∀, the extension of EL with value restriction. Note that EL∀ does
not provide the bottom-concept. But even without using bottom, adding value restriction
to EL makes data complexity of instance checking w.r.t. acyclic TBoxes intractable. This
is proved by a reduction from the complement of 2+2-SAT that is similar to the one for
EL∀r.⊥. Here, we employ a pair of concepts ∃s.> and ∀s.A in a way similar to the way we
used the pair ∃s.> and ∀s.⊥ in the EL∀r.⊥ case. It is easy to see that the union of ∃s.>
and ∀s.A is equivalent to the top-concept, although unlike the pair A and ¬A in EL(¬),
∃s.> and ∀s.A are not necessarily disjoint. In ELU , this is solved by using disjunction in
the query concept. But this cannot be done here, since EL∀ can express neither negation
nor disjunction.

To solve the above problem, we add an additional individual d to the ABox. It per-
forms as a marker that “recognizes” any individuals belonging to both ∃S.> and ∀S.A
simultaneously. The aim is that whenever in a model of Aψ, the concept ∃S.> u ∀S.A
is true at an individual that is associated to a propositional variable or constant occur-
ring in the 2+2-CNF formula ψ, the query assertion Q(f) where Q := ∃Cl.(∃P1∀S.A u
∃P2∀S.A u ∃N1∃S> u ∃N2∃S.>) can still be satisfied. This marking mechanism is ac-
complished by first connecting d through all roles P1, P2, N1 and N2 to all individuals
that represents propositional variables and constants and then connecting the individual
representing the whole formula (on which the query concept is considered) to d via the
role Cl. The reduction is presented in a more formal form in the following.

Let ψ = C1∧C2∧· · ·∧Cn be a 2+2-CNF formula where Ci = qi,1+∨qi,2+∨¬qi,1−∨¬qi,2−.
We assume that ψ hasm propositional variables p1, . . . , pm. We define a simple ABoxAψ,
and an EL∀ query concept Q as follows. Aψ has one individual pj for each propositional
variable pj in ψ, one individual ci for each clause Ci, one individual f for the whole
formula ψ, two individuals true and false for the corresponding propositional constants
and one additional individual d. In this reduction, we use a concept name A; and role
names: Cl, P1, P2, N1, N2, and S.

Aψ := {Cl(f, c1), Cl(f, c2), . . . , Cl(f, cn), Cl(f, d),
P1(c1, q1,1+), P2(c1, q1,2+), N1(c1, q1,1−), N2(c1, q1,2−),
. . . ,

P1(cn, qn,1+), P2(cn, qn,2+), N1(cn, qn,1−), N2(cn, qn,2−),
P1(d, p1), P2(d, p1), N1(d, p1), N2(d, p1),
. . . , (3.4)
P1(d, pm), P2(d, pm), N1(d, pm), N2(d, pm),
P1(d, true), P2(d, true), N1(d, true), N2(d, true),
P1(d, false), P2(d, false), N1(d, false), N2(d, false)},

Q := ∃Cl.(∃P1∀S.A u ∃P2∀S.A u ∃N1∃S.> u ∃N2∃S.>)

where {p1, p2, . . . , pm} is the set of all propositional variables in ψ and for all i = 1, . . . , n,
it holds that qi,1+, qi,2+, qi,1−, qi,2− ∈ {p1, p2, . . . , pm, true, false}.

24

Claim: ψ is unsatisfiable if and only if (∅,Aψ) |= Q(f).

Proof of Claim: For the “only if” part, assume that ψ is unsatisfiable. Note that for
every interpretation J , ∆J = (∃S.>)J ∪ (∀S.A)J . Let I be a model of Aψ. Hence, in
particular, for every q ∈ {p1, . . . , pm, true, false}, qI ∈ (∃S.>)I or qI ∈ (∀S.A)I .

If there is a q ∈ {p1, . . . , pm, true, false} such that qI ∈ (∃S.>)I ∩ (∀S.A)I , then since
qI is a P1-, P2-, N1- and N2-filler of dI , it holds that dI ∈ (∃P1∀S.A)I ∩ (∃P2∀S.A)I ∩
(∃N1∃S.>)I∩(∃N2∃S.>)I = (∃P1∀S.Au∃P2∀S.Au∃N1∃S.>u∃N2∃S.>)I . Hence, since
dI is a Cl-filler of fI , we obtain fI ∈ (∃Cl.(∃P1∀S.Au∃P2∀S.Au∃N1∃S.>u∃N2∃S.>))I ,
i.e., fI ∈ QI .

Otherwise, if for every q ∈ {p1, . . . , pm, true, false}, it holds that qI /∈ (∃S.>)I ∩
(∀S.A)I , then either qI ∈ (∃S.>)I or qI ∈ (∀S.A)I but not both. Let δI be a truth
assignment to all propositional variable q of ψ such that δI(q) = 1 iff qI ∈ (∃S.>)I and
δI(q) = 0 iff qI ∈ (∀S.A)I . Since ψ is unsatisfiable, there is a clause Ci which is not
satisfied by δI . Thus, δI(q1+,i) = δI(q2+,i) = 0 and δI(q1−,i) = δI(q2−,i) = 1. This
implies that P1- and P2-fillers of cIi belong to (∀S.A)I and N1- and N2-fillers of cIi be-
long to (∃S.>)I . Hence, we conclude that cIi ∈ (∃P1∀S.A u ∃P2∀S.A u ∃N1∃S.> u
∃N2∃S.>)I . Since (fI , cIi) ∈ ClI , consequently fI ∈ (∃Cl.(∃P1∀S.A u ∃P2∀S.A u
∃N1∃S.> u ∃N2∃S.>))I , i.e., fI ∈ QI .

For the “if” part, suppose ψ is satisfiable. We show that (∅,Aψ) 6|= Q(f), i.e., there is
a model of Aψ that does not satisfy Q(f). Let δ be a truth assignment that satisfies ψ.
We define an interpretation Iδ as follows:

∆Iδ = {d, f, c1, . . . , cn, p1, . . . , pm, true, false}
xIδ = x, for all x ∈ {d, f, c1, . . . , cn, p1, . . . , pm, true, false}
AIδ = ∅
SIδ = {(pIδ , true) | δ(p) = 1, p ∈ {true, p1, . . . , pm}}
ρIδ = {(xIδ , yIδ) | ρ(x, y) ∈ Aψ} for ρ ∈ {Cl, P1, P2, N1, N2}

It is straightforward to verify that Iδ is a model of Aψ. We now show fIδ /∈ QIδ .
Note that since ψ is satisfiable, for every clause Ci of ψ, at least one of its disjuncts is
evaluated to 1, i.e., δ(qi,1+) = 1 or δ(qi,2+) = 1 or δ(qi,1−) = 0 or δ(qi,2−) = 0. Because
∆I = (∃S.>)I ∪ (∀S.A)I also holds, we have that for every individual cIδ

i , at least one of
the following holds: qIδ

i,1+ ∈ (∃S.>)I , qIδ
i,2+ ∈ (∃S.>)I , qIδ

i,1− ∈ (∀S.A)I or qIδ
i,2− ∈ (∀S.A)I .

By definition of Iδ, qIδ
i,1+, qIδ

i,2+, qIδ
i,1− and qIδ

i,2− are respectively the only P1-, P2-, N1-, and
N2-filler of cIδ

i . Thus, we obtain cIδ
i /∈ (∃P1∀S.A u ∃P2∀S.A u ∃N1∃S.> u ∃N2∃S.>)Iδ

for all i = 1, . . . , n. Finally, we conclude fIδ /∈ (∃Cl.(∃P1∀S.A u ∃P2∀S.A u ∃N1∃S.> u
∃N2∃S.>))Iδ , i.e., fIδ /∈ QIδ . 3

Note that in the reduction above, |Aψ| is polynomial in |ψ|. Moreover, |Q| does
not depend on |ψ|. Consequently, by the previous claim, we obtain the following the
coNP lower bound of data complexity of instance checking in EL∀ with simple ABoxes

25

and without TBoxes. The upper bound is obtained from the fact that in ALC, the
superlanguage of EL∀, data complexity of instance checking w.r.t. general TBoxes is in
coNP [Hustadt et al., 2005]. Hence, we establish the following proposition. Note that
this proposition also applies whenever the TBoxes are acyclic or general.

Proposition 3.8
Data complexity of instance checking in EL∀ w.r.t. simple ABoxes and without TBoxes
is coNP-complete. 3

3.4 Extensions of EL with Unqualified Number Restrictions

3.4.1 Adding Both At-Most and At-Least Restrictions, and Adding Only
At-Most Restrictions: EL≤k1,≥k2, EL≤k and ELkf

We start with the DLs EL≤k1,≥k2 . These are DLs which are obtained by extending EL
with both at-most restrictions (≤ k1 r) and at-least restrictions (≥ k2 r) where k1 and
k2 are fixed nonnegative integers.

For these DLs, the constructor (≥ k2 r) is apparently not needed in establishing coNP-
hardness regarding data complexity of instance checking if the constructor (≤ k1 r) is
used. In other words, for fixed nonnegative integers k1 and k2, the reduction from the
complement of 2+2-SAT to instance checking in EL≤k1,≥k2 is precisely the same as the
reduction from the complement of 2+2-SAT to instance checking in EL≤k1 , DLs which
are obtained by extending EL with at-most restrictions (≤ k1 r) only (see the reduction
on page 27). The reason is because (≥ 0 r) ≡ > and for every integers k2 ≥ 1, (≥ k2 r) is
subsumed by ∃r.>, a constructor that is already provided by EL. Of course, besides using
the reduction mentioned previously, one could also obtained the coNP-hardness result
of data complexity of instance checking in EL≤k1,≥k2 as a direct consequence from the
coNP-hardness result of data complexity in EL≤k1 , since for fixed nonnegative integers
k1 and k2, EL≤k1,≥k2 is a superlanguage of EL≤k1 . Because of these reasons, we will now
just proceed to the extensions of EL with at-most restrictions only.

For DLs EL≤k, extensions of EL with at-most restriction (≤ k r) with k a fixed
nonnegative integer, we first look at the case where k = 0. Obviously, (≤ 0 r) ≡
∀r.⊥. This means that the DL EL≤0 is actually a notational variant of EL∀r.⊥ for which
Proposition 3.7 holds.

For k > 0, the constructor (≤ k r) introduces a form of functionality to the language.
Functionality originally refers to the case in which a particular role is required to have
at most one filler. In this subsection, we introduce k-functionality as a generalization of
the notion of functionality in the sense that the number of fillers of a role is limited to k,
instead of one. In addition, depending on whether k-functionality is required everywhere
or not, we distinguish two kinds of k-functionality: global and local.

Definition 3.9
Let r be a role and a an individual. We say that r is k-functional on a if a has at most
k r-fillers. For the special case where k = 1, we simply say that r is functional on a.

26

Let I be an interpretation with ∆I as its domain. Then we say that r is locally k-
functional if r is k-functional on some individuals in ∆I , and we say that r is globally
k-functional if r is k-functional on every individual in ∆I . 3

It is clear from the definition that local k-functionality implies global k-functionality,
but not conversely. Second, observe that if a role r is locally k-functional, then it may
behave as an ordinary binary relation on some individuals in the domain of interpretation.

On syntactic level, EL with global k-functionality restricts the use of at-most con-
structors (≤ k r) to GCIs of the form > v (≤ k r). In case GCIs are not allowed in
the knowledge base (and thus the constructor (≤ k r) cannot be explicitly expressed
anywhere in the knowledge base and the query concept), we can just divide the set of
all roles into two disjoint sets where the first set contains roles interpreted as ordinary
binary relation and the second set contains roles interpreted as k-functions, i.e., binary
relations with at most k fillers. On the other hand, EL with local k-functionality imposes
no restriction on how or where the constructor (≤ k r) is used, i.e., this constructor is
used like other DL constructors would be used.

In the current section, for some fixed nonnegative integer k, the DLs EL≤k are exten-
sions of EL with local k-functionality, whereas the DLs ELkf are extensions of EL with
global k-functionality. For example, EL≤1 and EL≤2 are extensions of EL with local
functionality and local 2-functionality, respectively. Meanwhile, EL1f is the extension of
EL with global 1-functionality and also known simply as ELf , the extension of EL with
global functionality; and EL2f is the extension of EL with global 2-functionality.

Instance Checking for EL≤k

We now show that data complexity of instance checking is coNP-hard for EL≤k where
k > 0. We use the fact that the union of ∃r.> and (≤ k r) is equivalent to the top-
concept. Note that they are not necessarily disjoint, i.e., ∃r.> u (≤ k r) is satisfiable.
The reduction is very similar to the EL∀ case and presented in the following.

Let ψ = C1∧· · ·∧Cn be a 2+2-CNF formula where Ci = qi,1+∨ qi,2+∨¬qi,1−∨¬qi,2−.
We assume that ψ hasm propositional variables p1, . . . , pm. We define a simple ABoxAψ,
and an EL≤k query concept Q where k > 0 as follows. Aψ has one individual pj for each
propositional variable pj in ψ, one individual ci for each clause Ci, one individual f for
the whole formula ψ, two individuals true and false for the corresponding propositional
constants and one additional individual d which is used for marking mechanism like the
one that was described in the EL∀ case (Subsection 3.3.2). In this reduction, we use role
names: Cl, P1, P2, N1, N2, and S.

Aψ := {Cl(f, c1), Cl(f, c2), . . . , Cl(f, cn), Cl(f, d),
P1(c1, q1,1+), P2(c1, q1,2+), N1(c1, q1,1−), N2(c1, q1,2−),
. . . ,

P1(cn, qn,1+), P2(cn, qn,2+), N1(cn, qn,1−), N2(cn, qn,2−),
P1(d, p1), P2(d, p1), N1(d, p1), N2(d, p1), (3.5)
. . . ,

27

P1(d, pm), P2(d, pm), N1(d, pm), N2(d, pm),
P1(d, true), P2(d, true), N1(d, true), N2(d, true),
P1(d, false), P2(d, false), N1(d, false), N2(d, false)},

Q := ∃Cl.(∃P1.(≤ k S) u ∃P2.(≤ k S) u ∃N1∃S.> u ∃N2∃S.>)

where for all i = 1, . . . , n, qi,1+, qi,2+, qi,1−, qi,2− ∈ {p1, p2, . . . , pm, true, false}.

Claim: ψ is unsatisfiable if and only if (∅,Aψ) |= Q(f).

Proof of Claim: The “only if” part is similar to the one for EL∀ on page 25. Assume
that ψ is unsatisfiable. Note that for every model J of Aψ, (∃S.>)J ∪ (≤ k S)I = ∆J .
Let I be a model of Aψ. If there is an individual name q ∈ {p1, . . . , pm, true, false}
which satisfies qI ∈ ((∃S.>) u (≤ k S))I , i.e., qI has k′ S-fillers, 1 ≤ k′ ≤ k, then we
obtain that dI ∈ (∃P1.(≤ k S) u ∃P2.(≤ k S) u ∃N1∃S.> u ∃N2∃S.>)I . This yields
fI ∈ (∃Cl.(∃P1.(≤ k S) u ∃P2.(≤ k S) u ∃N1∃S.> u ∃N2∃S.>))I = QI . Otherwise,
for every q ∈ {p1, . . . , pm, true, false}, either qI ∈ (∃S.>)I or pI ∈ (≤ k S)I but
not both. In this case, unsatisfiability of ψ implies fI ∈ (∃Cl.(∃P1.(≤ k S) u ∃P2.(≤
k S) u ∃N1∃S.> u ∃N2∃S.>))I = QI via one of cIi , i ∈ {1, . . . , n}.

For the “if” part, suppose ψ is satisfiable and δ is a truth assignment that satisfies ψ.
We show that (∅,Aψ) 6|= Q(f), i.e., there is a model of Aψ that does not satisfy Q(f).
We define an interpretation Iδ as follows:

∆Iδ = {d, f, c1, . . . , cn, p1, . . . , pm, true, false}
xIδ = x, for all x ∈ {d, f, c1, . . . , cn, p1, . . . , pm, true, false}
SIδ = {(pIδ , true) | δ(p) = 1, p ∈ {true, p1, . . . , pm}}
ρIδ = {(xIδ , yIδ) | ρ(x, y) ∈ Aψ} for ρ ∈ {Cl, P1, P2, N1, N2}

It easy to verify that Iδ is indeed a model of Aψ. Moreover, it is straightforward to
show that satisfiability of ψ implies fIδ /∈ QIδ (see the proof of the claim that leads to
Proposition 3.8). 3

It is obvious that |Aψ| is polynomial in |ψ|, and |Q| do not depend on |ψ|. Hence, the
previous claim yields the coNP-hardness regarding data complexity of instance checking
with simple ABoxes and without TBoxes in EL≤k1,≥k2 and EL≤k. In addition, since
EL≤k1,≥k2 and EL≤k are sublanguages of the DL SHIQ, and data complexity of instance
checking in SHIQ w.r.t. simple ABoxes is in coNP [Hustadt et al., 2005], we conclude
the following proposition. Note that the following proposition also holds whenever the
TBoxes are acyclic or even general.
Proposition 3.10
For all fixed nonnegative integers k, k1 and k2, data complexity of instance checking in
EL≤k1,≥k2 and EL≤k w.r.t. simple ABoxes and without TBoxes are coNP-complete. 3

Note that for the cases where k2 = k1 + 1, coNP-hardness result of data complexity
in EL≤k1,≥k2 can also be obtained by observing the fact that the pair (≤ k1 r) and
(≥ (k1 + 1) r) behaves precisely like the pair A and ¬A in EL(¬).

28

Instance Checking for ELkf

The previous result provided us with coNP-completeness of instance checking with simple
ABoxes for EL extended with local k-functionality (regarding data complexity). Now one
could also ask whether an analogous coNP-completeness result can also be obtained if
EL is extended with global k-functionality. Note that in this case, it suffices to establish
a matching coNP-hardness result.

As we will see in the following, we can obtain coNP-hardness regarding data complexity
of instance checking in ELkf when k > 1 by employing a reduction from the complement
of 2+2-SAT. For EL1f , data complexity of instance checking w.r.t. general TBoxes is
polynomial and will be discussed in more detail in Chapter 4.

Here, to express global k-functionality, instead of using GCIs, we assume that there
are two sets of role names. One of them consists of role names which are globally k-
functional and the other consists of role names interpreted in the usual way. We also use
∃F k.C as an abbreviation for

∃F . . . ∃F︸ ︷︷ ︸
k

.C

For the reduction from the complement of 2+2-SAT, we want to find a pair of concepts
that behave like the pair ∃r.> and ∀r.A in the EL∀ case. The idea stems from the
following observation. Whenever an individual name p has k + 1 F -fillers and the role
name F is globally k-functional, then two of these k + 1 fillers must be identified. Such
an identification may force a sort of case analysis because there are k(k+1)

2 possible pairs
of individual names for identification. For the reduction from the complement of 2+2-
SAT, we only need two cases (corresponding to two truth values). We thus distinguish
one individual name b from the other individual names, and derive the following two
cases. First case is where b is identified with one of the other individual names, whereas
the second case is whenever the identification does not involve b, i.e., occurs between
two individual names different from b. This idea can be realized using ABox assertions
described below where we also ensure that there are initially k + 1 F -fillers of p.

F (p, a1), . . . , F (p, ak), F (p, b),
A(a1), . . . , A(ak), B(b),
F (a1, a2), F (a1, a3), . . . , F (a1, ak),
F (a2, a3), . . . , F (a2, ak),
. . . ,

F (ak−1, ak)

Note that every pair of individual names from a1, . . . , ak are also connected through F ,
and each of these individual names has at most k − 1 F -fillers. Now, since F is globally
k-functional, two individual names from a1, . . . , ak, b must be identified. If b is identified
with one of ai then the concept ∃F.(A u B) is true at p. Otherwise, two individual
names ai and aj from a1, . . . , ak are identified which implies F connects ai to itself (a
“loop” occurs). In this case, the concepts ∃Fn.> for n ≥ 1 are true at p. Note that

29

for 1 ≤ n ≤ k, ∃Fn.> is always true at p. Hence, the pair of concepts ∃F k+1.> and
∃F.(A uB) are the pair that we were looking for.

Observe that it suffices to apply the trick described above to individual names repre-
senting propositional variables in a 2+2-CNF formula ψ. More precisely, the individual
name p used in the trick is intended to be those individual names representing proposi-
tional variables. Moreover, the trick does not exclude the case that occurs whenever an
individual (which corresponds to a propositional variable or constant) belongs to both
∃F k+1.> and ∃F.(A u B). To deal with such a case, we employ a marking mechanism
using a new individual name d like the one for EL∀.

We now give a formal reduction from the complement of 2+2-SAT to instance check-
ing for ELkf , k > 1. In this reduction, the following concept names are used: A and B;
and the following role names are used: Cl, P1, P2, N1, N2, F . We assume that F is a
globally k-functional role. We start with a 2+2-CNF formula ψ = C1 ∧ C2 ∧ · · · ∧ Cn
with m propositional variables and n clauses where each clause is of the form Ci =
qi,1+ ∨ qi,2+ ∨¬qi,1− ∨¬qi,2−. We translate ψ to a simple ABox Aψ, and a query concept
Q which are described below. The simple ABox Aψ contains k + 2 individual names
pj , aj,1, . . . , aj,k, bj for each propositional variable pj in ψ, one individual name ci for
each clause Ci, one individual name f for the whole formula ψ, two individual names
true, atrue for the propositional constant true, two individual names false, afalse for
the propositional constant false, and one individual name d for the marking mecha-
nism which deals with the case that occurs whenever an individual corresponding to a
propositional variable or constant belongs to both ∃F k+1.> and ∃F.(A uB).

Aψ := {Cl(f, c1), Cl(f, c2), . . . , Cl(f, cn), Cl(f, d),
P1(c1, q1,1+), P2(c1, q1,2+), N1(c1, q1,1−), N2(c1, q1,2−),
. . . ,

P1(cn, qn,1+), P2(cn, qn,2+), N1(cn, qn,1−), N2(cn, qn,2−),
P1(d, p1), P2(d, p1), N1(d, p1), N2(d, p1),
. . . ,

P1(d, pm), P2(d, pm), N1(d, pm), N2(d, pm),
P1(d, true), P2(d, true), N1(d, true), N2(d, true),
P1(d, false), P2(d, false), N1(d, false), N2(d, false),
F (p1, a1,1), . . . , F (p1, a1,k), F (p1, b1),
. . . ,

F (pm, am,1), . . . , F (p1, am,k), F (p1, bm),
F (a1,1, a1,2), F (a1,1, a1,3), . . . , F (a1,1, a1,k),
F (a1,2, a1,3), . . . , F (a1,2, a1,k),
. . . ,

F (a1,k−1, a1,k),
. . . ,

30

F (am,1, am,2), F (am,1, am,3), . . . , F (am,1, am,k),
F (am,2, am,3), . . . , F (am,2, am,k),
. . . ,

F (am,k−1, am,k),
A(a1,1), . . . , A(a1,k), B(b1),
. . . ,

A(am,1), . . . , A(am,k), B(bm),
F (true, atrue), F (atrue, atrue), F (false, afalse), A(afalse), B(afalse)},

Q := ∃Cl.(∃P1∃F.(A uB) u ∃P2∃F.(A uB) u ∃N1∃F k+1.> u ∃N2∃F k+1.>)

where for all i = 1, . . . , n, qi,1+, qi,2+, qi,1−, qi,2− ∈ {p1, p2, . . . , pm, true, false}.

Claim: ψ is unsatisfiable if and only if (∅,Aψ) |= Q(f).

Proof of Claim: First, we deal with the “only if” direction. Suppose ψ is unsatisfiable.
Let J be a model of Aψ. We first show that

{pJ1 , . . . , p
J
m, true

J , falseJ } ⊆ (∃F k+1.>)J ∪ (∃F.(A uB))J

Since J is a model of Aψ, trueJ ∈ (∃F k+1.>)J , and falseJ ∈ (∃F.(A u B))J . In
addition, for each i = 1, . . . ,m, we have (pJi , a

J
i,1) ∈ FJ , . . . , (pJi , a

J
i,k) ∈ FJ , and

(pJi , b
J
i) ∈ FJ . Since F is globally k-functional, for each i = 1, . . . ,m, there are two

individual names, say x and y, from ai,1, . . . , ai,k, bi which must be identified. We now
distinguish two cases:

• None of x, y is bi. Then for some j1, j2, 1 ≤ j1 < j2 ≤ k, ai,j1 and ai,j2 are identified.
Since (aJi,j1 , a

J
i,j2

) ∈ FJ holds, we have that the individual aJi,j1 = aJi,j2 is its own
F -filler. In this case, it is easy to see that pJi ∈ (∃F k+1.>)J .

• One of x, y is bi. Then for some j, 1 ≤ j ≤ k, ai,j and bi are identified, i.e., aJi,j = bJi .
Since aJi,j ∈ AJ and bJi ∈ BJ , we obtain aJi,j = bJi ∈ (A u B)J . In this case, it is
obvious that pi ∈ (∃F.(A uB))J .

Overall, we conclude that {pJ1 , . . . , pJm, trueJ , falseJ } ⊆ (∃F k+1.>)J ∪ (∃F.(A u B))J

indeed holds.
Next, we show that fJ ∈ QJ . Note that (∃F k+1.>)J ∩(∃F.(AuB))J is not necessarily

empty. If there is a q ∈ {p1, . . . , pm, true, false} with qJ ∈ (∃F k+1.>)J ∩(∃F.(AuB))J ,
then fJ ∈ (∃Cl.(∃P1∃F.(AuB)u∃P2∃F.(AuB)u∃N1∃F k+1.>u∃N2∃F k+1.>))J = QJ

is due to the fact that dJ is a Cl-filler of fJ , and qJ is simultaneously a P1-, P2-, N1-
, and N2-filler of dJ . Otherwise, for all q ∈ {p1, . . . , pm, true, false}, we have either
q ∈ (∃F k+1.>)J or q ∈ (∃F.(A u B))J but not both. In this case, like in the EL∀ case
on page 25, it is not difficult to show that unsatisfiability of ψ implies fJ ∈ QJ via one
of cJi , i = 1, . . . , n.

31

For the “if” direction, assume that ψ is satisfiable and let δ be a truth assignment that
satisfies ψ. We show that (∅,Aψ) 6|= Q(f), i.e., there is a model of Aψ that satisfies Q(f).
We construct an interpretation Iδ below.

• ∆Iδ = {f, c1, . . . , cn, p1, . . . , pm, true, false, d, atrue, afalse, t1, . . . , tk, f1, . . . , fk}

• xIδ = x for all x ∈ {f, c1, . . . , cn, p1, . . . , pm, true, false, d, atrue, afalse}

• for every i = 1, . . . ,m, j = 1, . . . , k − 1, aIδ
i,j =

{
tj , if δ(pi) = 1,
fj , if δ(pi) = 0

• for every i = 1, . . . ,m, aIδ
i,k =

{
tk−1, if δ(pi) = 1,
fk, if δ(pi) = 0

• for every i = 1, . . . ,m, bIδ
i =

{
tk, if δ(pi) = 1,
fk, if δ(pi) = 0

• AIδ = {afalse, t1, . . . , tk−1, f1, . . . , fk}

• BIδ = {afalse, tk, fk}

• F Iδ = F0 ∪ F1 ∪ F2 ∪ {(true, atrue), (atrue, atrue), (false, afalse)}, where

F0 =
k⋃
j=1

{(pIδ , fj) | δ(p) = 0, p ∈ {p1, . . . , pm}}

F1 =
k⋃
j=1

{(pIδ , tj) | δ(p) = 1, p ∈ {p1, . . . , pm}}

F2 = {(tk−1, tk−1)} ∪ {(tj1 , tj2) | 1 ≤ j1 < j2 ≤ k − 1} ∪ {(fj1 , fj2) | 1 ≤ j1 < j2 ≤ k}

• ρIδ = {(xIδ , yIδ) | ρ(x, y) ∈ Aψ}, for ρ ∈ {Cl, P1, P2, N1, N2}

It is straightforward to verify that Iδ is indeed a model of (T ,Aψ). Moreover, it is not
hard to show that satisfiability of ψ implies fIδ /∈ QIδ (see the proof of the claim that
leads to Proposition 3.8 on page 25). 3

Hence, together with the fact that the size of the ABox Aψ is polynomial in the size of
the 2+2-CNF formula ψ, the claim yields the coNP-hardness regarding data complexity
of instance checking in ELkf w.r.t. simple ABoxes and without TBoxes. In addition, since
data complexity of instance checking w.r.t. simple ABoxes for SHIQ, a superlanguage of
ELkf , is in coNP, we establish the following coNP-completeness result which also holds
for acyclic and general TBoxes.

Proposition 3.11
Data complexity of instance checking in ELkf w.r.t. simple ABoxes and without TBoxes
is coNP-complete. 3

32

3.4.2 Adding Only At-Least Restriction (≥ k r): EL≥k

Next, we consider locally adding at-least restriction (≥ k r) to EL. The resulting DLs
are named EL≥k. Obviously, it only makes sense to consider k > 1, because (≥ 0 r)
is trivially equivalent to > and for k = 1, the resulting DL is just EL. For k > 1,
it turns out that we need a nonempty TBox as part of the input of instance checking
to establish coNP-hardness regarding data complexity, because without a TBox, data
complexity of instance checking is polynomial which will also be proved at the end of
this subsection. For the coNP upper bound, like in the previous sections, we refer again
to the result from [Hustadt et al., 2005] which showed that data complexity of instance
checking w.r.t. simple ABoxes for SHIQ, a superlanguage of EL≥k is coNP-complete,
regardless of which TBox formalism that is used.

Instance Checking for EL≥k w.r.t. Acyclic TBoxes

If we require the TBox in the knowledge base input of instance checking to be acyclic,
coNP-hardness regarding data complexity is obtained only for EL≥2, i.e., EL extended
with (≥ 2 r). For k > 2, we left it as an open problem.

In the following, we show that data complexity of instance checking in EL≥2 w.r.t.
acyclic TBoxes is coNP-hard. To establish this lower bound, we employ a reduction
from the complement of 2+2-SAT similar to the one for EL∀. Here, we need to simulate
the way ∃S.> and ∀S.A behave in the EL∀ case. This can be accomplished by using the
pair of concepts (≥ 2 S) and ∃S.(A u B). The union of this pair is equivalent to the
top-concept if > ≡ ∃S.Au∃S.B is satisfied. But > ≡ ∃s.Au∃s.B cannot be expressed by
using acyclic TBoxes. Fortunately, as already seen in the ELU case, it suffices to consider
only individuals that correspond to propositional variables and constants. Hence, we can
use the same trick used in the ELU case (see Section 3.2) in which we use another concept
name Avar, instead of the top-concept. Here, Avar is used in a concept assertion for every
individual in the ABox that is associated with a propositional variable or constant. The
acyclic TBox is then obtained with the following three concept definitions:

Avar ≡ ∃S.A u ∃S.B AT ≡ Avar u ∃S.(A uB) AF ≡ Avar u (≥ 2 S) (3.7)

These concept definitions ensure that the union of AT and AF is equivalent to Avar.
Now it remains to deal with the case in which there is an instance of Avar that is an
instance of both AT and AF . We solve this using an additional individual in the ABox
that performs as a marker for every individual that belongs to AT u AF . This marking
mechanism is the same as the one introduced in the EL∀ case (see Subsection 3.3.2, page
24).

Let ψ = C1 ∧C2 ∧ · · · ∧Cn be a 2+2-CNF formula with m propositional variables and
n clauses where each clause is of the form Ci = qi,1+ ∨ qi,2+ ∨ ¬qi,1− ∨ ¬qi,2−. We use
the same individuals as in ELU ABox given in (3.2), but with an additional individual
d. The simple EL≥2 ABox Aψ then has one individual pj for each propositional variable
pj in ψ, one individual ci for each clause Ci, one individual f for the whole formula
ψ, and two individuals true and false for the corresponding propositional constants.

33

Additionally, it also contains one individual d. In this reduction, the following concept
names are used: Avar, AT , AF , B1, B2; and the following role names are used: Cl, P1,
P2, N1, N2, S. The simple ABox Aψ, the acyclic EL≥2 TBox T and the EL≥2 query
concept Q are described below.

Aψ := {AT (true), AF (false),
Cl(f, c1), Cl(f, c2), . . . , Cl(f, cn), Cl(f, d),
P1(c1, q1,1+), P2(c1, q1,2+), N1(c1, q1,1−), N2(c1, q1,2−),
. . . ,

P1(cn, qn,1+), P2(cn, qn,2+), N1(cn, qn,1−), N2(cn, qn,2−),
P1(d, p1), P2(d, p1), N1(d, p1), N2(d, p1),
. . . , (3.8)
P1(d, pm), P2(d, pm), N1(d, pm), N2(d, pm),
P1(d, true), P2(d, true), N1(d, true), N2(d, true),
P1(d, false), P2(d, false), N1(d, false), N2(d, false),
Avar(p1), Avar(p2), . . . , Avar(pm)},

T := {Avar ≡ ∃S.B1 u ∃S.B2,

AT ≡ Avar u (≥ 2 S),
AF ≡ Avar u ∃S.(B1 uB2)},

Q := ∃Cl.(∃P1.AF u ∃P2.AF u ∃N1.AT u ∃N2.AT)

where for all i = 1, . . . , n, qi,1+, qi,2+, qi,1−, qi,2− ∈ {p1, p2, . . . , pm, true, false}.

Claim: ψ is unsatisfiable if and only if (T ,Aψ) |= Q(f).

Proof of Claim: The “only if” part is very similar to the one in the EL∀ case (the proof
of the claim on page 25), only this time, we use an observation that AIvar = AIT ∪AIF for
every model I of (T ,Aψ).

For the “if” part, suppose ψ is satisfiable. We show that (T ,Aψ) 6|= Q(f), i.e., there
is a model of T and Aψ that does not satisfy Q(f). Let δ be a truth assignment that
satisfies ψ. We define an interpretation Iδ for T ,Aψ and Q as follows:

∆Iδ = {d, e0, e1, e2, f, c1, . . . , cn, p1, . . . , pm, true, false}
xIδ = x, for all x ∈ {d, f, c1, . . . , cn, p1, . . . , pm, true, false}
AIδ
var = {p1, . . . , pm, true, false}

AIδ
T = {pIδ | δ(p) = 1, p ∈ {true, p1, . . . , pm}}

AIδ
F = {pIδ | δ(p) = 0, p ∈ {false, p1, . . . , pm}}

BIδ
1 = {e0, e1}, BIδ

2 = {e0, e2}
SIδ = {(pIδ , e0) | δ(p) = 0, p ∈ {false, p1, . . . , pm}}

∪ {(pIδ , e1) | δ(p) = 1, p ∈ {true, p1, . . . , pm}}

34

∪ {(pIδ , e2) | δ(p) = 1, p ∈ {true, p1, . . . , pm}}
ρIδ = {(xIδ , yIδ) | ρ(x, y) ∈ Aψ} for ρ ∈ {Cl, P1, P2, N1, N2}

It is straightforward to verify that Iδ is a model of (T ,Aψ). Moreover, it is easy to show
that satisfiability of ψ implies fIδ /∈ QIδ (see the proof of the claim on page 25 which
yields Proposition 3.8). 3

Since the size of the ABox Aψ is polynomial in the size of the 2+2-CNF formula ψ, the
previous claim yields the coNP-hardness regarding data complexity of instance checking
w.r.t. simple ABoxes and acyclic TBoxes in EL≥2. Hence, together with the fact that
data complexity of SHIQ, a superlanguage of EL≥2, w.r.t. simple ABoxes is in coNP,
we obtain the following proposition.

Proposition 3.12
Data complexity of instance checking in EL≥2 w.r.t. simple ABoxes and acyclic TBoxes
is coNP-complete. 3

Instance Checking for EL≥k w.r.t. General TBoxes

In view of Proposition 3.12, a natural question is whether analogous results can be
obtained for EL≥k with k > 2. Apparently, this can be done if we allow GCIs in the
TBox.

We first informally describe the idea for the reduction, e.g., for k = 3. The idea of the
reduction follows from an easily proved fact that a TBox containing the following GCIs:

A v ∃S.B1 u ∃S.B2 u ∃S.B3,

A u (≥ 3 S) v A0,

A u ∃S.(B1 uB2) v A1,

A u ∃S.(B1 uB3) v A2,

A u ∃S.(B2 uB3) v A3,

simulates the GCI A v A0 tA1 tA2 tA3. Hence, whenever an individual name belongs
to A, a case analysis is required to determine whether c belongs to A0 A1, A2 or A3.

For establishing a coNP-hardness result, the aforementioned case analysis ought to be
related to the truth assignments of a 2+2-CNF formula. The concept name A in the
above explanation performs as the concept name Avar, the concept name that is true
precisely at every individual name which is associated to either a propositional variable
or constant. Two among these four concept names: A0 A1, A2 and A3 perform as AT and
AF , the pair of concepts associated to the truth values 1 and 0. The remaining concept
name performs as dummy concept names AD, AD′ .

Consider an individual name c that is associated to a propositional variable or constant.
We enforce c to belong to Avar by setting Avar(c) in the ABox. Since Avar is subsumed
by the union of AT , AF , AD, and AD′ , c must belong to at least one of those four concept
names. In this situation, we need to consider three cases of which two are “bad”. The

35

“good” case is whenever c belongs to either AT or AF but not both. In this case, the truth
value of the propositional variable or constant associated to c precisely corresponds to
whether c belongs to AT or AF . The other two “bad” cases are, first, whenever c belongs
to both AT and AF , and second, whenever c belongs to neither AT nor AF . The first
case is solved by employing a new individual name d for a marking mechanism which is
also used in the reduction for EL∀ (see subsection 3.3.2). For the second case, we use
another individual name a for a second marking mechanism that works as follows. The
individual name a belongs to a concept D and is connected through a role R to every
individual which is associated to either a propositional variable or constant. Whenever
c belongs to neither AT nor AF , then it must belong to either AD or AD′ . In this case,
we force a to belong to both AT and AF using two GCIs:

D u ∃R.AD v AT uAF
D u ∃R.AD′ v AT uAF

Finally, this marking mechanism is completed as now a belongs to both AT and AF , and
this can be dealt with using the first marking mechanism.

We describe here a reduction from the complement of 2+2-SAT to instance checking in
EL≥k with k > 2. To illustrate how it is done, we first show an example of such reduction
for k = 3. We start with a 2+2-CNF formula ψ = C1∧C2∧· · ·∧Cn with m propositional
variables and n clauses where each clause is of the form Ci = qi,1+∨qi,2+∨¬qi,1−∨¬qi,2−.
The EL≥3 ABox Aψ has one individual pj for each propositional variable pj in ψ, one
individual ci for each clause Ci, one individual f for the whole formula ψ, and two
individuals true and false corresponding to propositional constants. Additionally, Aψ
also has three other individuals: a, b and d. In this reduction, the following concept
names are used: Avar, AT , AF , AD, AD′ , B1, B2, B3, D; and the following role names
are used: Cl, P1, P2, N1, N2, R, S. The ABox Aψ, the TBox T and the query concept
Q are described below.

Aψ := {AT (true), AF (false),
Cl(f, c1), Cl(f, c2), . . . , Cl(f, cn), Cl(f, d),
P1(c1, q1,1+), P2(c1, q1,2+), N1(c1, q1,1−), N2(c1, q1,2−),
. . . ,

P1(cn, qn,1+), P2(cn, qn,2+), N1(cn, qn,1−), N2(cn, qn,2−),
P1(d, p1), P2(d, p1), N1(d, p1), N2(d, p1),
. . . ,

P1(d, pm), P2(d, pm), N1(d, pm), N2(d, pm),
P1(d, true), P2(d, true), N1(d, true), N2(d, true),
P1(d, false), P2(d, false), N1(d, false), N2(d, false),
P1(d, a), P2(d, a), N1(d, a), N2(d, a),
Avar(p1), Avar(p2), . . . , Avar(pm),
D(a), R(a, p1), . . . , R(a, pm)},

36

T := {Avar v ∃S.B1 u ∃S.B2 u ∃S.B3, (3.9a)
Avar u (≥ 3 S) v AT (3.9b)
Avar u ∃S.(B1 uB2) v AF , (3.9c)
Avar u ∃S.(B1 uB3) v AD, (3.9d)
Avar u ∃S.(B2 uB3) v AD′ , (3.9e)
D u ∃R.AD v AT uAF , (3.9f)
D u ∃R.AD′ v AT uAF }, (3.9g)

Q := ∃Cl.(∃P1.AF u ∃P2.AF u ∃N1.AT u ∃N2.AT)

where for all i = 1, . . . , n, qi,1+, qi,2+, qi,1−, qi,2− ∈ {p1, p2, . . . , pm, true, false}.

Claim: ψ is unsatisfiable if and only if (T ,Aψ) |= Q(f).

Proof of Claim: First, we deal with the “only if” direction. Suppose ψ is unsatisfiable.
Assume that J is a model of T and Aψ. We first show that AJvar ⊆ AJT ∪A

J
F ∪A

J
D∪A

J
D′ .

Suppose x ∈ AJvar. Since J is a model of T , x has one S-filler that belongs to BJ1 ,
one S-filler that belongs to BJ2 and one S-filler that belongs to BJ3 . Consider the set
M = {y | (x, y) ∈ SJ } of all S-fillers of x. Since J is a model of T , it is clear that
x ∈ (∃S.B1u∃S.B2u∃S.B3)J , i.e., M 6= ∅. If |M | ≥ 3 then x ∈ AJT ⊆ AJT ∪A

J
F ∪A

J
D∪A

J
D′ .

Otherwise, there is an S-filler of x, say y, such that either y ∈ BJ1 ∩BJ2 or y ∈ BJ1 ∩BJ3
or y ∈ BJ2 ∩ BJ3 . Hence, either x ∈ AJF or x ∈ AJD or x ∈ AJD′ . This again implies
x ∈ AJT ∪A

J
F ∪A

J
D ∪A

J
D′ as required.

Now we show that fJ ∈ QJ . Since for all pJ ∈ {pJ1 , . . . , pJm}, pJ ∈ AJvar, we have
pJ ∈ AJT ∪A

J
F ∪A

J
D∪A

J
D′ . Moreover, we also have {trueJ , falseJ } ⊆ AJT ∪A

J
F ∪A

J
D∪A

J
D′ .

We now distinguish three cases as follows.

• There is an q ∈ {true, false, p1, . . . , pm} such that qJ /∈ AJT ∪A
J
F . Hence, qJ ∈ AJD ∪

AJD′ . If qJ ∈ AJD then obviously aJ ∈ (AT u AF)J . Similarly, qJ ∈ AJD′ also implies
aJ ∈ (AT uAF)J . From either case, dJ ∈ (∃P1.AF u ∃P2.AF u ∃N1.AT u ∃N2.AT)J .
We thus conclude fJ ∈ (∃Cl.(∃P1.AF u∃P2.AF u∃N1.AT u∃N2.AT))J , i.e., fJ ∈ QJ .

• There is a q ∈ {true, false, p1, . . . , pm} such that qJ ∈ AJT ∩A
J
F . Then we obtain that

dJ ∈ (∃P1.AF u∃P2.AF u∃N1.AT u∃N2.AT)J . Thus, fJ ∈ (∃Cl.(∃P1.AF u∃P2.AF u
∃N1.AT u ∃N2.AT))J , i.e., fJ ∈ QJ .

• For all q ∈ {true, false, p1, . . . , pm}, either q ∈ AJT or q ∈ AJF but not both. In this
case, like in the EL∀ case on page 25, it is not difficult to show that unsatisfiability of
ψ implies fJ ∈ QJ via one of cJi , i = 1, . . . , n.

For the “if” direction, assume that ψ is satisfiable and let δ be a truth assignment that
satisfies ψ. We show that (T ,Aψ) 6|= Q(f), i.e., there is a model Iδ of (T ,Aψ) such that
fIδ /∈ QIδ . Such model Iδ of (T ,Aψ) is constructed below.

∆Iδ = {e0, e1, e2, e3, a, d, f, c1, . . . , cn, p1, . . . , pm, true, false}

37

xIδ = x, for all x ∈ {a, d, f, c1, . . . , cn, p1, . . . , pm, true, false}

DIδ = {a}, AIδ
D = AIδ

D′ = ∅
AIδ
var = {p1, . . . , pm}

BIδ
1 = {e1, e3}, BIδ

2 = {e2, e3}, BIδ
3 = {e0}

AIδ
T = {pIδ | δ(p) = 1, p ∈ {p1, . . . , pm}}

AIδ
F = {pIδ | δ(p) = 0, p ∈ {p1, . . . , pm}}

SIδ = {(pIδ , e0) | p ∈ {p1, . . . , pm}}
∪ {(pIδ , e1) | δ(p) = true, p ∈ {p1, . . . , pm}}
∪ {(pIδ , e2) | δ(p) = true, p ∈ {p1, . . . , pm}}
∪ {(pIδ , e3) | δ(p) = 0, p ∈ {p1, . . . , pm}}

ρIδ = {(xIδ , yIδ) | ρ(x, y) ∈ Aψ} for ρ ∈ {Cl, P1, P2, N1, N2, R}

It is straightforward to verify that Iδ is indeed a model of (T ,Aψ). Moreover, it is not
hard to show that satisfiability of ψ implies fIδ /∈ QIδ (see the proof of the claim that
leads to Proposition 3.8 on page 25). 3

Since the size of the ABox Aψ is polynomial in the size of the 2+2-CNF formula
ψ, we obtain coNP-hardness regarding data complexity for instance checking in EL≥3

w.r.t. general TBoxes. Moreover, as data complexity of instance checking w.r.t. simple
ABoxes in SHIQ, a superlanguage of EL≥3, is in coNP [Hustadt et al., 2005], we have
the following proposition.

Proposition 3.13
Data complexity of instance checking in EL≥3 w.r.t. simple ABoxes and general TBoxes
is coNP-complete. 3

An analogous result as the previous proposition for EL≥k with k > 3, can be derived
in a similar way as above. We only need to modify the TBox for the reduction. In the
TBox, we replace the GCI in (3.9a) with a GCI of the form Avar v ∃S.B1 u . . . u ∃S.Bk
which imposes any individual that belongs to Avar to have at least one S-filler. Consider
an individual which belongs to Avar. First, it can have at least k S-fillers. Thus, we
replace the GCI in (3.9b) with a GCI of the form Avar u (≥ k S) v AT . If it has
less than k S-filler than one of these S-fillers belongs simultaneously to two concepts
among B1, . . . , Bk. There are

(
k
2

)
possible pairs formed from these k concepts. Thus,

we replace all GCIs (3.9c)–(3.9e) with GCIs of the form Avar u ∃S.(Bi uBj) v A where
1 ≤ i < j ≤ k and A ∈ {AF , AD1 , . . . , ADk′}, k

′ =
(
k
2

)
− 1. Here, the concept names

ADn , 1 ≤ n ≤
(
k
2

)
− 1 perform as dummy concept names.

For the reduction, we would like to have a “good” truth assignment only if every
individual name that is associated to a propositional variable or constant belongs to AT
or AF and not both. Thus, whenever such an individual belongs to one of these dummy
concept names, we view it as a “bad” truth assignment. Since the query concept only

38

uses two concept names AT and AF , in order to detect such a bad truth assignment,
there has to be an individual which is an instance of both AT and AF . Thus, we use an
individual a as a marker such that whenever there is an individual belonging to one of the
dummy concept names, a belongs to both AT and AF . This is done by replacing GCIs
(3.9f)–(3.9g) with

(
k
2

)
− 1 GCIs of the form D u ∃R.ADn v AT u AF , 1 ≤ n ≤

(
k
2

)
− 1.

To complete the reduction, we also need to have another individual d which handles the
marking mechanism for detecting any individuals that belong to both AT and AF .

Overall, the size of TBox in the reduction is quadratic in k. But this does not matter
since k does not depend on the size of 2+2-CNF formula ψ. Note that the size of the
ABox Aψ is polynomial in the size of ψ. Hence, together with the coNP upper bound
from the result of [Hustadt et al., 2005], we conclude with the following proposition.

Proposition 3.14
For fixed nonnegative integers k ≥ 3, data complexity of instance checking in EL≥k w.r.t.
simple ABoxes and general TBoxes is coNP-complete. 3

Instance Checking for EL≥k without TBoxes

As already mentioned at the beginning of the current subsection, we now proceed with
the investigation on data complexity of instance checking for EL≥k without TBoxes.
Unlike EL≤k for which data complexity of instance checking is already coNP-complete,
even without the presence of a TBox, data complexity of instance checking in EL≥k is
polynomial if we disallow a TBox as part of the input. Note that in EL≥k, for a simple
ABox A, a role name r, and an individual name d, an at-least restriction (≥ k r) is true
at d iff the number of r-fillers of d which are explicitly asserted in A is at least k, i.e.,

A |= (≥ k r)(d) iff |{r(d, d′) ∈ A}| ≥ k

Thus, we can decide the instance checking in EL≥k without TBoxes using an algorithm
that is similar to the one used for deciding instance checking in ELU without TBoxes
which is described on page 21. In fact, we only need to replace the rule (3) there (which
is the rule for handling disjunction) with the following rule where D is the EL≥k query
concept.

(3) Let d be an individual name occurring in Â.
If (≥ k r) ∈ sub(D), |{r(d, d′) ∈ Â}| ≥ k, and (≥ k r)(d) /∈ Â,
then Â := Â ∪ {(≥ k r)(d)};

Similar to Lemma 3.5, it is easy to show that the resulting algorithm is sound and
complete, and runs in time polynomial in the size of the input ABox. Thus, we obtain
the following proposition

Proposition 3.15
For all nonnegative integers k, data complexity of instance checking in EL≥k with simple
ABoxes and without TBoxes is polynomial. 3

39

3.5 Extensions of EL with Role Complement, Role Union
and Transitive Closures

For this section, we consider ELR¬, EL∪ and EL∗ which are respectively extensions of
EL with role complement, role union and transitive closures. Another extension of EL
with inverse roles (called ELI) is not discussed here since data complexity of instance
checking w.r.t. general TBoxes for ELI can be shown to be polynomial (see Chapter 4).

For ELR¬, data complexity of instance checking is coNP-hard even without the pres-
ence of a TBox. This can be shown by a reduction from the complement of 2+2-SAT
which is similar to the one for EL∀. In fact, the reduction for the ELR¬ translates a
2+2-CNF formula ψ with m variables and n clauses into the same ABox Aψ in Equation
(3.4) and the query concept Q := ∃Cl.(∃P1∃¬S.> u ∃P2∃¬S.> u ∃N1∃S.> u ∃N2∃S.>).
By observing the fact that for every interpretation I, ∆I = (∃S.>)I ∪ (∃¬S.>)I , it is
easy to show that ψ is unsatisfiable iff (∅,Aψ) |= Q(f) where f is the individual name
occurring in Aψ that is associated by the reduction to the whole formula ψ. Thus, we
obtain the following proposition.

Proposition 3.16
Data complexity of instance checking in ELR¬ with simple ABoxes and without TBoxes
is coNP-hard. 3

Data complexity of instance checking w.r.t. acyclic TBoxes for EL∪ and EL∗ can be
proved coNP-hard using reductions that is similar to the one for EL≥2. For a 2+2-CNF
formula ψ with m variables and n clauses, the reduction translates ψ into the same ABox
Aψ as in Equation (3.8). The query concept Q is also the same. The difference is only
on the TBox T which is given below where T1 is for EL∪ and T2 is for EL∗, where R and
S are new role names.

T1 := {Avar ≡ ∃R ∪ S.>, AT ≡ Avar u ∃R.>, AF ≡ Avar u ∃S.>}; (3.10)
T2 := {Avar ≡ ∃R+.>, AT ≡ Avar u ∃R.>, AF ≡ Avar u ∃R∃R+.>} (3.11)

Note that in Equations (3.10) and (3.11), the union of pairs of concepts AT and AF is
equivalent to Avar. Hence, using a very similar reasoning to the one used for EL≥2, with
T given by the previous two equations, the following claim holds:

Claim: ψ is unsatisfiable iff (T ,Aψ) |= Q(f). 3

Thus, analogous with Proposition 3.12, we obtain the following proposition.

Proposition 3.17
Data complexity of instance checking w.r.t. simple ABoxes and acyclic TBoxes for EL∪
and EL∗ are coNP-hard. 3

Now we are going to show that without TBoxes, data complexity of instance checking
for EL∪ and EL∗ are polynomial. The proofs are very similar to the one in the ELU case.

For EL∪, an algorithm that decides instance checking with simple ABoxes and without
TBoxes can be obtained by modifying the similar algorithm used for ELU on page 21.

40

More precisely, we replace the rule (3) which handles disjunction with the following rule
where rol(D) is the set containing precisely every role name and complex roles occurring
in the query concept D.

(3) If r t s ∈ rol(D), {r(d, d′), s(d, d′)} ∩ Â 6= ∅, and (r t s)(d, d′) /∈ Â,
then Â := Â ∪ {(r t s)(d, d′)}.

Beside this, we also modify the rule (4) in order to handle existential concepts with role
union (not just role names).

Meanwhile, for EL∗, we obtain a similar algorithm from the algorithm used for ELU
on page 21 by modifying the rule (4) in order to take care of existential concepts with
transitive closures, and replacing the rule (3) with the following two rules.

(3a) If r+ ∈ rol(D), r(d, d′) ∈ Â, and r+(d, d′) /∈ Â,
then Â := Â ∪ {r+(d, d′)}.

(3b) If r+ ∈ rol(D), {r(d, d′), r+(d′, d′′)} ⊆ Â, and r+(d, d′′) /∈ Â,
then Â := Â ∪ {r+(d, d′′)}.

Like in Lemma 3.5, it is not difficult to show that in both DLs EL∪ and EL∗, the
algorithms decide instance checking without TBoxes and run in time polynomial in the
size of the input ABox. Hence, we obtain the following proposition.

Proposition 3.18
Data complexity of instance checking for EL∪ and EL∗ with simple ABoxes and without
TBoxes are polynomial. 3

3.6 Summary of the Chapter

We end this chapter with a brief summary of all results which has been obtained so far.
These results are listed in Table 3.1. In the table, k, k1 and k2 are fixed nonnegative
integers.

The results of this chapter are about data complexity of instance checking for exten-
sions of EL with respect to TBoxes. As mentioned in the beginning of the chapter, we
intended the results to be established with respect to general TBoxes. But apparently,
general TBoxes is not always necessary. With respect to general TBoxes, all DLs con-
sidered in this chapter have a coNP-hard (most even coNP-complete) instance checking
regarding data complexity, except those DLs which will be discussed in Chapter 4. With
respect to acyclic TBoxes, the results are also almost completely mapped out. The only
missing results are the coNP lower bound for the DL EL≥k, k ≥ 3, as well as the coNP
upper bound for ELR¬, EL∪, and EL∗. Meanwhile, for the case in which TBoxes are
disallowed, the table shows that for some of the extensions of EL considered here, in-
stance checking is polynomial regarding data complexity. Intractability in this case was
established for DLs in which we can express a pair of concepts whose union is equivalent
to the top-concept, i.e., the DLs EL(¬), EL¬, EL∀r.⊥, EL∀, EL≤k1,≥k2 , EL≤k, and ELR¬.

41

Extensions of EL Data complexity of inst. checking with simple ABoxes

without TBoxes w.r.t. acyclic
TBoxes

w.r.t. general
TBoxes

EL(¬), EL¬ coNP-complete coNP-complete coNP-complete

ELU in P coNP-complete coNP-complete

EL∀r.⊥, EL∀ coNP-complete coNP-complete coNP-complete

EL≤k1,≥k2 coNP-complete coNP-complete coNP-complete

EL≤k coNP-complete coNP-complete coNP-complete

ELkf , k ≥ 2 coNP-complete coNP-complete coNP-complete

EL≥2 in P coNP-complete coNP-complete

EL≥k, k ≥ 3 in P in coNP, hardness
still open

coNP-complete

ELR¬ coNP-hard coNP-hard coNP-hard

EL∪, EL∗ in P coNP-hard coNP-hard

Table 3.1: Data complexity of instance checking for various extensions of EL

An exception to this is the DL ELkf , k ≥ 2, for which data complexity of instance check-
ing without TBoxes is coNP-hard, despite we cannot express a pair of concepts whose
union is equivalent to the top-concept.

42

Chapter 4

A Tractable Extension of EL Regarding
Data Complexity: ELIf

This chapter deals with an extension of EL for which data complexity of instance checking
w.r.t. general TBoxes has a polynomial upper bound. The extension of EL which we
are concerned with is obtained by adding inverse roles and global (1-)functionality to
EL. Recall from Chapter 3, Section 3.4 that global functionality allows some roles to be
interpreted as a function everywhere.

In [Baader et al., 2005a,b], it has been shown that subsumption w.r.t. general TBoxes
for extensions of EL with either inverse roles (ELI) or global functionality (ELf) is
ExpTime-complete. This means that regarding combined complexity, instance checking
w.r.t. general TBoxes for ELI and ELf has an ExpTime lower bound. However, if we
consider data complexity, instance checking w.r.t. general TBoxes for those extensions of
EL can be shown to be tractable. In fact, we can show that tractability is retained even
if both inverse roles and global functionality are added to EL.

In this chapter, we present the tractability result of instance checking for ELIf w.r.t.
general TBoxes. The DL ELIf is the extension of EL with inverse roles and global
functionality. This tractability result will be proved by providing an algorithm that
decides instance checking w.r.t. general TBoxes and runs in time polynomial in the size
of the input ABox.

4.1 The Description Logic ELIf

The DL ELIf is obtained by extending EL with inverse roles and global functionality.
Syntax and semantics of inverse roles have been given in Table 2.2. Whereas for global
functionality, the reader may refer to Definition 3.9 on page 26. For presentation in this
chapter, we express global functionality with GCIs of the form > v (≤ 1 r) for every
role r which is required to be interpreted as a function. Note that functionality is only
in one direction, i.e., if a role name r is functional, then its inverse r− is not necessarily
functional. If we require an inverse role r− to be functional, then we simply use the GCI
> v (≤ 1 r−) in the TBox.

The algorithm described in this chapter takes four pieces of inputs, namely a general
TBox, an ABox, a query concept and an individual name. For this algorithm, we assume
that the ABox is simple and the general TBox is normalized appropriately. Thus, we
first introduce the notion of normalized TBoxes below.

43

4.2 A Normal Form for ELIf TBoxes

In the following, for a TBox T , we use BCT to denote the set that contains precisely the
top-concept > and all concept names appearing in T . Here, BC stands for base concepts.

Definition 4.1 (Normalized ELIf TBox)
Let T be a general ELIf TBox. Then T is normalized if every GCI in T has one of the
following forms, where A1, A2, B ∈ BCT :

A1 v B, A1 v ∃r.B, A1 v ∃r−.B > v (≤ 1 r)
A1 uA2 v B, ∃r.A1 v B, ∃r−.A1 v B > v (≤ 1 r−) 3

By introducing new concept names, any ELIf general TBox T can be transformed into
a normalized ELIf TBox T ′ that is a conservative extension of T , i.e., every model
of T ′ is a model of T and every model of T can be extended to a model of T ′ by
appropriately interpreting additional concept names. As the following lemma shows, this
transformation can be done in linear time yielding a normalized TBox whose size is linear
in the size of the original TBox.

Lemma 4.2
For ELIf , instance checking w.r.t. a general TBox T can be reduced in polynomial time
to instance checking w.r.t. a normalized TBox T ′ whose size is linear in the size of T .

Proof. A general ELIf TBox T can be converted into a normalized one by using nor-
malization rules (4.1a)–(4.1g) given below, where B ∈ BCT , C,D and E are concepts,
Ĉ, D̂ /∈ BCT , and A is a new concept name.

C u D̂ v E −→ {D̂ v A,C uA v E} (4.1a)

∃r.Ĉ v D −→ {Ĉ v A,∃r.A v D} (4.1b)

∃r−Ĉ v D −→ {Ĉ v A,∃r−.A v D} (4.1c)

Ĉ v D̂ −→ {Ĉ v A,A v D̂} (4.1d)

B v ∃r.Ĉ −→ {B v ∃r.A,A v Ĉ} (4.1e)

B v ∃r−.Ĉ −→ {B v ∃r−.A,A v Ĉ} (4.1f)
B v C uD −→ {B v C,B v D} (4.1g)

Transformation can be done in linear time resulting in a normalized ELIf TBox T ′
whose size is linear in |T | if the normalization rules are applied in two phases:

1. exhaustively apply rules (4.1a), (4.1b) and (4.1c);

2. exhaustively apply rules (4.1d), (4.1e), (4.1f) and (4.1g).

44

Here, “rule application” means replacing the GCI on the left-hand side with the set
of GCIs on the right-hand side. The rule (4.1a) is applied modulo commutativity of
conjunction. By examining each rule, it is straightforward to verify that a normalized
ELIf TBox T ′ is obtained by at most |T | rule applications and |T ′| is linear in |T |.
Moreover, it is easy to show that every model of T can be extended to a model of T ′
by appropriately interpreting new concept names introduced by the normalization rules.
Since it is clear that every model of T ′ is also a model of T , T ′ is indeed a conservative
extension of T . Thus, given an ABox A, a query concept Q, and an individual d, and
provided that Q uses no new concept name from T ′ which is introduced during rule
applications, it holds that (T ,A) |= Q(d) iff (T ′,A) |= Q(d). 3

First, note that the assumption where Q is not allowed to use the new concept names
from T ′ is really necessary for the correctness of the reduction. But this is not really a
problem since we can always apply normalization rules carefully without violating this
assumption. In addition, the TBox obtained by rule applications above is of linear size
only because the normalization rules are applied in two phases. If they are applied
together in one phase, we obtain a quadratic blowup in the worse case due to duplication
of the concept B in (4.1g).

4.3 An Instance Checking Algorithm for ELIf

As already mentioned in the beginning of the chapter, we will derive the tractability of
instance checking for ELIf regarding data complexity by providing an algorithm that
decides instance checking for ELIf w.r.t. general TBoxes and runs in time polynomial in
the size of the input ABox. In the current section, we will describe this algorithm in more
detail. Because in the previous section, we have shown that, for ELIf , instance checking
w.r.t. general TBoxes can be reduced to instance checking w.r.t. normalized TBoxes, we
assume from now on that the input TBox for the algorithm is already normalized.

The algorithm which will be described here takes four inputs: a normalized ELIf TBox
T , a simple ABox Ain, a query concept Q and an individual name d. We assume that
d is one of the individuals occurring in A, because otherwise, (T ,Ain) 6|= Q(d) trivially
holds. W.l.o.g., we also assume that the query concept is a concept name, since for every
concept D, it is easy to see that (T ,A) |= D(d) iff (T ∪{Aq ≡ D},A) |= Aq(d) where Aq
is a new concept name. For the data structure, we use an ABox A which is initialized to
Ain. The algorithm is realized in the form of a set of completion rules which are used to
manipulate A depending on whether certain preconditions are currently satisfied by A
and T . Since the objective of the algorithm is to decide whether (T ,Ain) |= Q(d), i.e.,
whether Q(d) is a logical consequence of T and Ain, every completion rule manipulate
the ABox A by generating a new logical consequence of T and the current A, and adds
it to A. For ELIf , this logical consequence can have two forms: a new concept assertion
or an identification of two individual names.

Note that one can impose the so-called unique name assumption on A which requires
the mapping from individual names to elements of the domain of an interpretation to be
injective. In combination with identifications of individual names, this assumption may

45

CR1 If {r(x, y), A(y)} ⊆ A, ∃r.A v B ∈ T , and B(x) /∈ A
then A := A ∪ {B(x)}

CR2 If {r(y, x), A(y)} ⊆ A, ∃r−.A v B ∈ T , and B(x) /∈ A
then A := A ∪ {B(x)}

CR3 Let Cx :=
d

A(x)∈A
A.

If Cx vT B and B(x) /∈ A
then A := A ∪ {B(x)}

CR4 If {r(x, y1), r(x, y2)} ⊆ A, and > v (≤ 1 r) ∈ T
then A := A[y2/y1]

CR5 If {r(x1, y), r(x2, y)} ⊆ A, > v (≤ 1 r−) ∈ T
then A := A[x2/x1]

CR6 If {r(y, x), A(y)} ⊆ A, {> v (≤ 1 r), A v ∃r.B} ⊆ T , B(x) /∈ A
then A := A ∪ {B(x)}

CR7 If {r(x, y), A(y)} ⊆ A, {> v (≤ 1 r−), A v ∃r−.B} ⊆ T , B(x) /∈ A
then A := A ∪ {B(x)}

Figure 4.1: Completion rules for instance checking in ELIf

result in an inconsistent ABox which immediately implies any assertions. Therefore, in
order not to complicate the discussion, we simply drop this assumption.

The instance checking algorithm for ELIf works as follows. It takes a simple ABox
Ain, a normalized TBox T , a query concept name Aq, and an individual name d as inputs,
and initializes the ABox (for data structure) A to Ain. The algorithm then exhaustively
applies all completion rules in Figure 4.1 to A (in arbitrary order) until no more rule
applies. We assume here that for every individual name a occurring in Ain, >(a) ∈ Ain
(otherwise, we simply add such assertions to A before applying any rules). Note that
A and B in the completion rules are concept names or >, and x, y, x1, x2, y1 and y2

are individual names in A. Let Aout be A after no more rule applies, and Aq the query
concept name. The algorithm returns “yes” if Aq(d) ∈ Aout and “no” if Aq(d) /∈ Aout.

For rules CR1 and CR2, the formulation should be clear from the Figure 4.1. Each of
them basically adds a new concept name assertion to A, whenever an individual belongs
to some existential restriction and this existential restriction implies the concept in the
new assertion.

For applying CR3, we first need to decide whether Cx vT B. This can be done by
employing a suitable decision procedure for subsumption for any decidable DLs that can
express ELIf , for example, ALCFI. Note that subsumption for such DLs may have
complexity that is worse than polynomial, e.g., for ALCFI, subsumption w.r.t. general

46

TBoxes is ExpTime-complete [Calvanese & De Giacomo, 2003; Donini, 2003]. But the
complexity measure of deciding the subsumption Cx vT B depends only on the size of
T , and not on the size of A. As we aim to characterize the complexity of the algorithm
in terms of the size of ABox and not the TBox, which means that the size of the TBox
is assumed to be constant, this intractability of subsumption can be safely ignored, i.e.,
as if the subsumption Cx vT B can be decided in constant time.

Rules CR4 and CR5 identify two fillers of a functional role. This ensures that func-
tionality restrictions are not violated. We define A[x/y] as the ABox obtained from A by
replacing all occurrences of the individual name x with the individual name y. In gen-
eral, if there are two individuals x1 and x2 that have to be identified, we can arbitrarily
choose between replacing all occurrences of x2 with x1, and replacing all occurrences of
x1 with x2. The only exception is when one of the individual name to be identified is
the input individual name d. In this situation, we always replace all occurrences of the
other individual name with d. This is done in order to ensure that d still occurs in the
ABox A after no more rule applies.

Rules CR6 and CR7 work by propagating concept names which are consequences of
TBox axioms to the appropriate fillers of the functional roles. These rules are necessary
because whenever an individual a is known to be an instance of an existential restriction
∃r.B with r functional and an individual b is known to be an r-filler of a, then obviously,
b must be an instance of the concept B.

4.4 Termination and Soundness

We first prove that the algorithm terminates after a finite number of rule applications
which is polynomial in the size of Ain. Note that in this analysis, the size of T is assumed
to be constant.

Proposition 4.3 (Termination)
For every normalized ELIf TBox T and simple ELIf ABox Ain, the rules in Figure 4.1
can only be applied a number of times polynomial in the size of Ain, and each rule
application can be done in time polynomial in the size of Ain.

Proof. It is easily verified that the cardinality of BCT is linear in |T |. We first consider
applications of the rules CR1–CR3, CR6 and CR7. Each application of these rules by
the algorithm adds a concept assertion for an existing individual name whose concept is
a new element of BCT . None of these rules removes assertions from A. Thus, the number
of times that these rules can be performed on a particular individual is linear in the size
of T . Since the number of individual names occurring in A is linear in the size of Ain,
and no rule adds new individuals to A, the total number of applications of these rules is
linear in |Ain||T |. This is linear in |Ain| because the size of T is considered constant.

For each application of CR4 and CR5, an individual name is removed from A. Since
no rule adds new individuals to A, the number of applications of these rules is bounded
by the number of individual names in Ain which is linear in the size of Ain. Thus, the
total number of rule applications is linear in the size of Ain.

47

Note that the size of A during rule applications is linearly bounded by |Ain||T |, i.e.,
the size of A is always linear in the size of Ain. It is easily verified that each application of
CR1, CR2, CR4–CR7 can be done in polynomial time in the size of A. For CR3, the
rule application involves computing the subsumption relation Cx vT B which employs a
subsumption algorithm w.r.t. general TBoxes for another decidable DL that can express
ELIf . But this computation, albeit possibly worse than polynomial, depends only on the
size of the TBox T and not on the size of the ABox A. Since we consider data complexity
which depends only on the size of the ABox, we conclude that the application of CR3
can be done in polynomial time in the size of ABox A. We thus conclude that each rule
application can be done in polynomial time in the size of Ain. 3

Next, we deal with soundness of the algorithm. Let Aout be the ABox A after the
algorithm terminates, i.e., Aout is obtained by the application of the rules in Figure 4.1
to the input TBox T and the input ABox Ain. We show that if the algorithm returns
“yes”, i.e., the query concept assertion is in Aout, then this assertion is indeed implied by
T and Ain.

Proposition 4.4 (Soundness)
Let Ain be a simple ABox , T a normalized TBox, Aq a query concept name, and d an
individual name. Let Aout be the ABox that is obtained by the application of the rules in
Figure 4.1 to T and Ain. Then we have,

Aq(d) ∈ Aout implies (T ,Ain) |= Aq(d).

Proof. In the following, we use Aj , i = 0, 1, . . . , to denote the ABox after the j-th rule
application. For showing soundness, it suffices to show that after the j-th rule application
(for every j = 0, 1, . . .), ϕ ∈ Aj implies (T ,Ain) |= α. This will be proved by induction
on i in the following. The induction base (j = 0) is trivial, since A0 is initialized to Ain.
Assume for induction that the claim holds after the j-th rule application (for some j ≥ 0).
To prove the induction step, i.e., that the claim holds after j + 1-st rule application, it
suffices to show that everything that is added to Aj on the j + 1-st rule application
is implied by T and Ain. The j + 1-st rule application is always one of CR1–CR7,
therefore, we distinguish seven cases as follows:

CR1: By induction hypothesis, the precondition of CR1 implies (T ,Ain) |= r(x, y) and
(T ,Ain) |= A(y), i.e., for every model I of T and Ain, (xI , yI) ∈ rI and yI ∈ AI ,
for some concept name A, role name r, and individual names x and y occurring
in Aj . By the semantics, it follows that xI ∈ (∃r.A)I . Since I is a model of T
and ∃r.A v B ∈ T for some concept name B, we thus have that xI ∈ BI , i.e.,
(T ,Ain) |= B(x). Hence, the claim holds after applying CR1 on the j+ 1-st rule
application, since Aj+1 = Aj ∪ {B(x)} by CR1.

CR2: Similar to the CR1 case.

CR3: By induction hypothesis, the precondition of CR3 implies (T ,Ain) |= Cx(x) for
some individual name x where Cx :=

d

A(x)∈A
A. Moreover, it follows from the

48

precondition of CR3 that T |= Cx v B for some concept name B. Obviously,
this implies that for every model I of T and Ain, xI ∈ BI , i.e., (T ,Ain) |= B(x).
Hence, the claim holds after applying CR3 on the j + 1-st rule application, as
Aj+1 = Aj ∪ {B(x)} by CR3.

CR4: By induction hypothesis, the precondition of CR4 implies (T ,Ain) |= r(x, y1)
and (T ,Ain) |= r(x, y2), i.e., for every model I of T and Ain, (xI , yI1) ∈ rI and
(xI , yI2) ∈ rI for some role name r and individual names x, y1 and y2 occurring
in A. Since I is a model of T and > v (≤ 1 r) ∈ T , xI must only have one
r-filler. Thus, it must be the case that yI1 = yI2 . Hence, the claim holds after
applying CR4 on the i+ 1-st rule application, since by CR4, Aj+1 = Aj [y1/y2]
or Aj+1 = Aj [y2/y1].

CR5: Similar to the CR4 case.

CR6: By induction hypothesis, the precondition of CR6 implies that (T ,Ain) |= r(y, x)
and (T ,Ain) |= A(y), i.e., for every model I of T and Ain, (yI , xI) ∈ rI and
yI ∈ AI , for some concept name A, role name r, and individual names x and y
occurring in A. Since I is a model of T and > v (≤ 1 r) ∈ T , we have that xI

is the only r-filler of y. Thus, because A v ∃r.B ∈ T for some concept name B,
it must be the case that xI ∈ BI , i.e., (T ,Ain) |= B(x). Hence, the claim holds
after applying CR6 on the j + 1-st rule application, since Aj+1 = Aj ∪ {B(x)}
by CR6.

CR7: Similar to the CR6 case.

This finishes the proof of the claim from which the soundness immediately follows (as
the algorithm terminates). 3

4.5 Completeness

After proving soundness in the previous proposition, we now show that the algorithm is
complete, i.e., if (T ,Ain) |= Aq(d) then the algorithm returns “yes” (i.e., Aq(d) ∈ Aout
where Aout is the ABox after termination). We show this by proving the contrapositive,
namely, if the algorithm returns “no” (i.e., Aq(d) /∈ Aout), then (T ,Ain) 6|= Aq(d). Hence,
from Aout we need to construct a model of (T ,Ain) that does not satisfy Aq(d).

Since Ain ⊆ Aout, a model of Aout is clearly also a model of Ain. But in constructing
a model of T , we cannot just consider individual names occurring in Aout, because there
may be additional individuals which do not explicitly occur in Aout, but are nevertheless
necessary for a model of T . The idea is to consider every individual name in Aout
separately. For each individual name a in Aout, we construct a model of T starting just
from the concept assertions for a. This ensures that the additional individuals which
do not explicit occur in Aout, but are nevertheless necessary for a model of T , are all
properly considered. The desired model is then basically obtained by combining all these
separately constructed models.

49

Definition 4.5 (Closed under T -consequence)
Let T be a normalized TBox and S a set of concept names. Then S is closed under
T -consequence iff for every concept name A,

l

B∈S
B |=T A implies A ∈ S. 3

Note that a set of concept names S is interpreted as a conjunction of its elements.
With a slight abuse of notation, we define for every interpretation I, SI := (

d
A∈S A)I .

For an individual name a occurring in the ABox Aout, let S(a) be the set of all concept
names A such that A(a) ∈ Aout. Because CR3 is not applicable anymore after termina-
tion, it is clear that S(a) is closed under T -consequence. Our claim is that for each set
S that is closed under T -consequence, there is a model I of S and T , and an individual
dI in the domain of I such that the concept names which are true at dI are precisely
the concept names in S.
Lemma 4.6
Let T be a normalized ELIf TBox and S a set of concept names that is closed under
T -consequence. Then there is a model I of S and T , and an individual d ∈ ∆I such that
for all concept name A,

A ∈ S iff d ∈ AI 3

We now prove this lemma. Let S be a set of concept names and T a normalized ELIf
TBox such that S is closed under T -consequence. We construct a (possibly infinite) tree
structure from S and T whose nodes are labeled with sets of subconcepts of S and T .
The construction is done in such a way that the tree describes a model of S and T , and
additionally, there is a homomorphism, i.e., a structure-preserving mapping, from the tree
to every model of S and T . Of course, the notion of homomorphism mentioned before
is still unclear, as its precise definition will only be provided later. But the important
point is that the existence of such a homomorphism is needed to ensure that at the root
of the tree, all occurring concept names belong to S.

Before we proceed, let us first make some notions mentioned in the previous paragraph
more precise with the following definitions.

Definition 4.7 (Subconcepts of concepts, sets of concepts and TBoxes)
For an ELIf concept C, the set sub(C) of subconcepts of C is inductively defined by:

• sub(A) := {A}, for A ∈ {>} ∪ NC;

• sub(C uD) := {C uD} ∪ sub(C) ∪ sub(D);

• sub(∃σ.C) := {∃σ.C} ∪ sub(C) where σ is a role name or an inverse role;

• sub((≤ 1 σ)) := {(≤ 1 σ)} where σ is a role name or an inverse role.

If Ŝ is a set of ELIf concepts, then sub(Ŝ) :=
⋃
C∈Ŝ sub(C).

For a GCI D v D′, we define sub(D v D′) := sub(D) ∪ sub(D′).
For a (general) TBox T̂ , we define the set subT̂ (C) (resp. subT̂ (Ŝ)) of subconcepts of a
concept C (resp. a set of concepts Ŝ) w.r.t. T̂ by:

50

• subT̂ (C) := sub(C) ∪ {E | E ∈ sub(D v D′), D v D′ ∈ T̂ };

• subT̂ (Ŝ) := sub(Ŝ) ∪ {E | E ∈ sub(D v D′), D v D′ ∈ T̂ }. 3

We assume that all existential concepts ∃σ.D in subT (S) are linearly ordered where σ is
either a role name or an inverse role. Additionally, we assume that there are k existential
concepts in subT (S) and that φ(i) denotes the i-th existential concept in subT (S).

Definition 4.8 (Tree for sets of concepts and TBoxes)
A tree for S and T is a (2subT (S), RS,T)-labeled tree TS,T = (∆S,T ,ΓS,T ,ΛS,T) where
2subT (S) is the collection of subsets of subT (S), RS,T is the set of all role names and
inverse roles appearing in T , ∆S,T is the set of nodes satisfying ∆S,T ⊆ {1, . . . , k}∗ with
the empty word ε as the root, ΓS,T is the set of edges labeled with elements of RS,T ,
i.e., it consists of triples of the form (v, σ, v′) where v, v′ are nodes and σ is an element
of RS,T , and ΛS,T is a mapping that maps an element of ∆S,T to an element of 2subT (S).
In this tree, ωi denotes a child of a node ω where i corresponds to the i-th existential
concept φ(i) = ∃σ.A ∈ subT (S), and the edge from ω to ωi is labeled with σ. 3

The aforementioned notion of homomorphism from a tree for S and T to a model of
S and T is defined more precisely in the following.

Definition 4.9 (Homomorphism)
Let TS,T be a tree for S and T , and J = (∆J , ·J) a model of S and T . A homomorphism
from TS,T to J is a mapping τ from the set of nodes ∆S,T ⊆ {1, . . . , k}∗ to ∆J such
that for every node ω ∈ ∆S,T :

(h1) A ∈ ΛS,T (ω) implies τ(ω) ∈ AI for every concept name A;

(h2) if (ω, r, ω′) ∈ ΓS,T then (τ(ω), τ(ω′)) ∈ rI .

(h3) if (ω, r−, ω′) ∈ ΓS,T then (τ(ω′), τ(ω)) ∈ rI . 3

Having defined all needed notions, we can now start proving Lemma 4.6. We begin by
constructing a tree for S and T that describes a model of S and T . We then show that
for every model of S and T , there is a homomorphism from the tree to it. Afterwards, we
show that all concept names occurring at the root of the tree are the ones which precisely
belong to S.

We construct the tree by inductively building ∆S,T ,ΓS,T and ΛS,T starting from the
root. For the construction, induction is done on n ∈ N. We use Vn, En and Λn to denote
∆S,T ,ΓS,T and ΛS,T in the n-th step of the construction.

We start with n = 0, for which we define:

∆0 := {ε} Γ0 := ∅ Λ0(ε) := S ∪ {>}

Next, assume that up to some n ≥ 0, ∆n,Γn are already defined and Λn(v) is also
already defined for all v ∈ ∆n. We choose a node ω ∈ ∆n for which at least one of the
following cases are applicable and |ω| is minimal, and proceed with applying any one of

51

the applicable cases. If there is no such node then we simply set ∆n+1 := ∆n, Γn+1 := Γn
and Λn+1 := Λn. In the following, σ denotes either a role name or an inverse role, and
Inv(σ) denotes the inverse of σ that is defined as:

Inv(σ) =

{
r− if σ = r is a role name
r if σ = r− is an inverse role

(T1) If for some i ∈ {1, . . . , k}, there is an existential concept φ(i) = ∃σ.A ∈ Λn(ω)
such that > v (≤ 1 σ) /∈ T , (ω, σ, ωi) /∈ Γn and ωi /∈ ∆n, then ∆n+1 := ∆n∪{ωi},
Γn+1 := Γn ∪ {(ω, σ, ωi)}, and for every ω′ ∈ ∆n+1,

Λn+1(ω′) :=

{
{A,>} if ω′ = ωi,

Λn(ω′) otherwise

(T2) If for some i ∈ {1, . . . , k}, there is an existential concept φ(i) = ∃σ.A ∈ Λn(ω)
such that > v (≤ 1 σ) ∈ T , then we distinguish three subcases.

a) There is a ω̂ ∈ ∆n such that (ω̂, Inv(σ), ω) ∈ Γn and A /∈ Λn(ω̂).
Then ∆n+1 := ∆n, Γn+1 := Γn, and for every ω′ ∈ ∆n+1,

Λn+1(ω′) :=

{
Λn(ω′) ∪ {A,>} if ω′ = ω̂,

Λn(ω′) otherwise

b) For every ω̂ ∈ ∆n, (ω̂, Inv(σ), ω) /∈ Γn, but there exists ωj ∈ ∆n such that
j 6= i, (ω, σ, ωj) ∈ Γn and A /∈ Λn(ωj). Then ∆n+1 := ∆n, Γn+1 := Γn, and
for every ω′ ∈ ∆n+1,

Λn+1(ω′) :=

{
Λn(ω′) ∪ {A,>} if ω′ = ωj,

Λn(ω′) otherwise

c) For every ω̂ ∈ ∆n, (ω̂, Inv(σ), ω) /∈ Γn, (ω, σ, ωi) /∈ Γn and ωi /∈ ∆n. Then
∆n+1 := ∆n ∪ {ωi}, Γn+1 := Γn ∪ {(ω, σ, ωi)}, and for every ω′ ∈ ∆n+1,

Λn+1(ω′) :=

{
{A,>} if ω′ = ωi,

Λn(ω′) otherwise

(T3) If there is a subset Ŝ ⊆ Λn(ω) such that Ŝ contains concept names or the top-
concept, (

d
A∈Ŝ A) v C ∈ T , and C /∈ Λn(ω), then ∆n+1 := ∆n, Γn+1 := Γn, and

for every ω′ ∈ ∆n+1,

Λn+1(ω′) :=

{
Λn(ω′) ∪ {C,>} if ω′ = ω,

Λn(ω′) otherwise.

52

(T4) If there is a node ω̂ ∈ ∆n such that either (ω, σ, ω̂) ∈ Γn or (ω̂, Inv(σ), ω) ∈ Γn, and
it also holds that ∃σ.A v B ∈ T , A ∈ Λn(ω̂) and B /∈ Λn(ω), then ∆n+1 := ∆n,
Γn+1 := Γn, and for every ω′ ∈ ∆n+1,

Λn+1(ω′) :=

{
Λn(ω′) ∪ {B,>} if ω′ = ω,

Λn(ω′) otherwise.

The resulting tree TS,T = (∆S,T ,ΓS,T ,ΛS,T) is obtained by taking unions over all n:

∆S,T :=
∞⋃
n=0

∆n ΓS,T :=
∞⋃
n=0

Γn ΛS,T :=
∞⋃
n=0

Λn

By construction, it is trivial to see that ∆S,T ⊆ {1, . . . , k}∗, ΓS,T ⊆ ∆S,T ×RS,T ×∆S,T ,
and ΛS,T is indeed a mapping from ∆S,T to 2subT (S). The tree shape is guaranteed
because by construction, each node ω (except ε) has one predecessor ω′ where ω = ω′i
for some i ∈ {1, . . . , k}.

Notice that this tree is finitely branching but may be infinite due to (T1) and (T2c)
of the inductive construction step which generate new nodes. In addition, each induction
step adds one new element from subT (S) to a node label and never removes such elements.
Because subT (S) is finite, obviously each node has a finite set as label. Thus, for each
node ω, (T1)–(T4) can only be applied to ω finitely many times. From this observation
and the fact that in every construction step, we always choose a node ω for which the
length of ω is minimal, it follows that for each node ω, there is a natural number n
such that for every m ≥ n, none of (T1)–(T4) is applicable in the m-th step of the
construction.

We now show that TS,T = (∆S,T ,ΓS,T ,ΛS,T) describes a model of S and T . We define
an interpretation I = (∆I , ·I) with the domain ∆I := ∆S,T , and set

rI := {(ω, ωi) ∈ ∆I ×∆I | (ω, r, ωi) ∈ ΓS,T , i ∈ {1, . . . , k}}
∪ {(ωi, ω) ∈ ∆I ×∆I | (ω, r−, ωi) ∈ ΓS,T , i ∈ {1, . . . , k}} for each role name r

AI := {ω ∈ ∆I | A ∈ ΛS,T (ω)} for each concept name A

Lemma 4.10
I is a model of S and T

Proof. Since by construction, the set of concept names S satisfies S ⊆ ΛS,T (ε), we
obviously have ε ∈ SI , i.e., I is a model of S. It now remains to show that I is also a
model of T . We examine each possible form of GCI in T which is already normalized.

• > v (≤ 1 r) and > v (≤ 1 s−). GCIs of these forms are satisfied since by (T2), every
ω ∈ ∆S,T obeys all functionality restrictions.

• A v C where A is a concept name or >, and C is either a concept name or an existential
concept. Suppose ω ∈ AI . By definition of I, A ∈ ΛS,T (ω). Because after finitely
many construction steps, none of (T1)–(T4) is applicable to ω, (T3) has already been

53

applied to ω. Hence, we have C ∈ ΛS,T (ω). If C is a concept name, then the definition
of I implies that ω ∈ CI . If C is an existential concept, then ω ∈ CI is an immediate
consequence of the definition of I and the fact that either (T1) or (T2) has already
been applied to ω.

• A1 uA2 v B where A1, A2 and B are concept names or >. Assume ω ∈ (A1 uA2)I =
AI1∩AI2 . By definition of I, {A1, A2} ⊆ ΛS,T (ω). Since after finitely many construction
steps, none of (T1)–(T4) is applicable, (T3) must already have been applied to ω.
Consequently, B ∈ ΛS,T (ω). By definition of I, we conclude ω ∈ BI .

• ∃r.A v B where A and B are concept names or >. Suppose ω ∈ (∃r.A)I . Then there
is an ω′ ∈ ∆I such that (ω, ω′) ∈ rI and ω′ ∈ AI which implies A ∈ ΛS,T (ω′) by
definition of I. By definition of rI , either ω′ = ωi or ω = ω′i for some i ∈ {1, . . . , k},
which implies either (ω, r, ω′) ∈ ΓS,T or (ω′, r−, ω) ∈ ΓS,T . For both cases, because
(T1)–(T4) are no longer applicable after finitely many construction steps, (T4) has
been applied to ω. This yields B ∈ ΛS,T (ω). Consequently, by definition of I, ω ∈ BI .

• ∃r−.A v B where A and B are concept names or >. Similar to the previous case.

Since I satisfies all possible form of GCIs in a normalized T , we conclude that I is indeed
a model of T . 3

Next, we show in the following lemma that for every model of S and T , there is a
homomorphism from the tree TS,T to it.

Lemma 4.11
For every model J = (∆J , ·J) of S and T , there exists a homomorphism from TS,T =
(∆S,T ,ΓS,T ,ΛS,T) to J = (∆J , ·J).

Proof. Let J = (∆J , ·J) be any arbitrary model of S and T . We construct an
appropriate mapping τ : ∆S,T 7→ ∆J . The construction is done inductively accord-
ing to the inductive construction of TS,T . We will use τn to denote the mapping
in the n-th step of the construction where n = 0, 1, We also use the notation

(∆n,Γn,Λn)
(T1), ω−−−−−→ (∆n+1,Γn+1,Λn+1), . . . , (∆n,Γn,Λn)

(T4), ω−−−−−→ (∆n+1,Γn+1,Λn+1)
to indicate that the n + 1-st construction step is due to applying (T1)–(T4) to a
node ω ∈ ∆n. During the construction, we maintain the following property for every
n = 0, 1, . . . :

(P1) for every concept name A, A ∈ Λn(ω) implies τn(ω) ∈ AJ for all ω ∈ ∆n;

(P2) for every role name r and nodes ω, ω′ ∈ ∆n, (ω, r, ω′) ∈ Γn implies
(τn(ω), τn(ω′)) ∈ rJ ;

(P3) for every role name r and nodes ω, ω′ ∈ ∆n, (ω, r−, ω′) ∈ Γn implies
(τn(ω′), τn(ω)) ∈ rJ .

54

We start from n = 0, beginning with the root ε. By the construction of the tree,
∆0 = {ε}, Γ0 = ∅ and Λ0 = {(ε, S ∪ {>})}. Since J is a model of S, there is an
individual x0 ∈ ∆J such that x0 ∈ SJ . We thus simply choose such an x0 and set
τ0(ε) := x0, i.e., τ0 := {(ε, x0)}. Note that (P1)–(P3) hold for n = 0.

Assume now for induction that (P1)–(P3) hold for some n ≥ 0. We show that (P1)–
(P3) also hold for n + 1 while at the same time constructing τn+1 from τn. First of
all, if (∆n,Γn,Λn) = (∆n+1,Γn+1,Λn+1) (no change in the tree), then we simply set
τn+1 := τn, whereby it is obvious that (P1)–(P3) are still satisfied. Otherwise, we make
case distinction based on cases of the tree construction. Here, σ denotes a role name or
an inverse role.

• (∆n,Γn,Λn)
(T1), ω−−−−−→ (∆n+1,Γn+1,Λn+1). Due to (T1), for some i ∈ {1, . . . , k}, there

is an existential concept φ(i) = ∃σ.A ∈ Λn(ω), such that > v (≤ 1 σ) /∈ T , (ω, σ, ωi) /∈
Γn and ωi /∈ ∆n, and we have ∆n+1 = ∆n ∪ {ωi}, Γn+1 = Γn ∪ {(ω, σ, ωi)} and
Λn+1 = Λn ∪ {(ωi, {A,>})}. Since (P1) is satisfied for n, we have τn(ω) ∈ (∃σ.A)J .
By the semantics, there is an individual x ∈ ∆J such that (τn(ω), x) ∈ σJ and x ∈ AJ .
Hence, we choose such an x and set τn+1 := τn ∪ {(ωi, x)}, i.e., τn+1(ωi) := x. By this
construction step, (P1), (P2) and (P3) clearly still hold for n+ 1.

• (∆n,Γn,Λn)
(T2), ω−−−−−→ (∆n+1,Γn+1,Λn+1). By (T2), for some i ∈ {1, . . . , k}, there is

an existential concept φ(i) = ∃σ.A ∈ Λn(ω) such that > v (≤ 1 σ) ∈ T and precisely
one of the following holds:

? there is an ω′ ∈ ∆n such that (ω′, Inv(σ), ω) ∈ Γn and A /∈ Λn(ω′) (by (T2a));

? there is no ω′ ∈ ∆n such that (ω′, Inv(σ), ω) ∈ Γn but there is an ωj ∈ ∆n such that
j 6= i and (ω, σ, ωj) ∈ Γn and A /∈ Λn(ωj) (by (T2b));

? neither (ω′, Inv(σ), ω) ∈ Γn nor (ω, σ, ω′) ∈ Γn for every ω′ ∈ ∆n (by (T2c)).

In all three cases, we have that τn(ω) ∈ (∃σ.A)J and τn(ω) ∈ (≤ 1 σ)J since (P1) is
satisfied for n and J is a model of T . Thus, there is a unique individual x ∈ ∆J such
that (τn(ω), x) ∈ σJ and x ∈ AJ .

For the first case, no new node and edge are added. The only change is Λn+1(ω′) =
Λn(ω′) ∪ {A}. Since (P3) is satisfied for n, we already have (τn(ω), τn(ω′)) ∈ σJ .
Moreover, τn(ω′) is the unique σ-filler of τn(ω) because τn(ω) ∈ (≤ 1 σ)J as J is a
model of T . Thus, it must be the case that τn(ω′) = x is satisfied before the current
induction step. As no change is needed to τn, we simply set τn+1 := τn. Note that
(P1), (P2) and (P3) clearly hold for n+ 1 since they hold for n and adding A to the
label of ω′ is the only change.

The second case is very similar to the first one where the only change is Λn+1(ωj) =
Λn(ωj) ∪ {A} with j 6= i. As (P2) is satisfied for n, we have (τn(ω), τn(ωj)) ∈ σJ .
Moreover, τn(ωj) is the unique σ-filler for τn(ω). Thus, τn(ωj) = x already holds
before the current induction step. Thus, like in the first case, we simply set τn+1 := τn.
For n+ 1, (P1), (P2), and (P3) hold similarly like the first case above.

55

For the third case, we have added a new node ωi, a new edge (ω, σ, ωi) and set the
label of ωi with Λn+1(ωi) = {A,>}. For the construction of τn+1, we simply set
τn+1 := τn ∪ {(ωi, x)}, i.e., τn+1(ωi) := x. Like application of (T1), we have that
(P1), (P2) and (P3) hold for n+ 1.

• (∆n,Γn,Λn)
(T3), ω−−−−−→ (∆n+1,Γn+1,Λn+1). Applying (T3) means there is a subset

Ŝ of Λn(ω) containing concept names or > such that (
d
A∈Ŝ A) v D ∈ T where

D /∈ Λn(ω), and either D ∈ BCT or D is an existential concept. Moreover, we have
that ∆n+1 = ∆n, Γn+1 = Γn and Λn+1 = (Λn \ {(ω,Λn(ω))}) ∪ {(ω,Λn(ω) ∪ {D})}.
In this case, we just set τn+1 := τn. By construction of τn+1, induction, and the fact
that J is a model of T , (P1), (P2) and (P3) obviously hold for n+ 1.

• (∆n,Γn,Λn)
(T4), ω−−−−−→ (∆n+1,Γn+1,Λn+1). There is a node ω̂ ∈ ∆n such that either

(ω, σ, ω̂) ∈ Γn or (ω̂, Inv(σ), ω) ∈ Γn, and it also holds that ∃σ.A v B ∈ T , A ∈ Λn(ω̂)
and B /∈ Λn(ω) for A,B ∈ BCT . Furthermore, we have ∆n+1 = ∆n, Γn+1 = Γn and
Λn+1 = (Λn \ {(ω,Λn(ω))})∪{(ω,Λn(ω)∪{B})}. For this case, we set τn+1 := τn. By
construction of τn+1, induction, and the fact that J is a model of T , (P1), (P2) and
(P3) obviously hold for n+ 1.

Thus, we conclude that (P1)–(P3) hold for every n = 0, 1, The mapping τ is
then defined as:

τ :=
∞⋃
n=0

τn

By construction, τ is indeed a well-defined mapping from ∆S,T to ∆J . In addition, as
(P1)–(P3) hold for every n = 0, 1, . . . , (h1)–(h3) of homomorphism (Definition 4.9)
are satisfied by τ , i.e., τ is a homomorphism from TS,T to a model J of S and T . Since
the proof is independent of the choice of J , we conclude that for every model of S and
T , there is always such a homomorphism τ from the tree TS,T to it. 3

Next, we use the previous lemma to show that at the root ε of the tree TS,T , if a
concept name is in its label then the concept name belongs to S.

Lemma 4.12
For every concept name A, A ∈ ΛS,T (ε) implies A ∈ S.

Proof. We show that for every concept name A, A ∈ ΛS,T (ε) implies S |=T A. Suppose
otherwise, i.e., that A ∈ ΛS,T (ε) but S 6|=T A. Then there is a model J of S and T
and an individual y ∈ ∆J such that y ∈ SJ but y /∈ AJ . By Lemma 4.11, there is a
homomorphism τ from TS,T to J such that τ(ε) = y. But due to (h1) of homomorphism,
A ∈ ΛS,T (ε) implies y = τ(ε) ∈ AJ which is a contradiction. Hence, for every concept
name A, A ∈ ΛS,T (ε) implies S |=T A. Finally, the lemma is established since S is closed
under T -consequence. 3

Lemma 4.6 is then established as follows. By definition of TS,T = (∆S,T ,ΓS,T ,ΛS,T)
and using Lemma 4.10, we obtain a model I of S and T whose shape is a tree with ε

56

as its root and whose domain is all nodes of TS,T , i.e., the set ∆S,T . Lemma 4.10 also
shows that for the root ε and every concept name A, A ∈ S ⊆ ΛS,T (ε) implies ε ∈ AI .
In addition, it follows from Lemma 4.10 and Lemma 4.12 that for every concept name
A, ε ∈ AI implies A ∈ ΛS,T (ε) which then implies A ∈ S. Hence, we conclude for
every concept name A, that A ∈ S iff ε ∈ AI . The existence of the individual d is thus
guaranteed by simply setting d := ε.

The completeness is proved by showing that (T ,Ain) |= Aq(d) implies that the algo-
rithm returns “yes”, i.e., Aq(d) ∈ Aout. We show this result by proving the contrapositive,
i.e., Aq(d) /∈ Aout implies (T ,Ain) 6|= Aq(d). The proof constructs a model, say Î, of
(T ,Ain) that does not satisfy Aq(d), provided that Aq(d) /∈ Aout.

The idea is that a part of Î is described by the ABox Aout, because a model of Aout is
clearly also a model of Ain. The other parts of Î are obtained by considering additional
individuals which do not explicitly occur in Aout, but are nevertheless necessary for a
model of T because of the computation of subsumption, i.e., T -consequences, in the rule
CR3. Such parts of Î are constructed by applying Lemma 4.6 to every individual name
occurring in Aout. Î is then obtained by combining all those mentioned parts together.
The combination must be done carefully, in order not to violate functional restrictions
applied to some roles (role names or inverse roles). In particular, we have to take into
account the following situation in which there is a role assertion f(a, b) ∈ Aout for which
f is functional, but on the other hand, an f -filler of a has also been generated due to
Lemma 4.6. In such a situation, in order to obey the functionality restrictions, we need
to ‘cut’ a part of the model T which has been constructed by Lemma 4.6 where this part
is connected from a by the functional role f .

We are now ready for the main result of this subsection, where the above idea will be
made precise.

Proposition 4.13 (Completeness)
Let Ain be a simple ABox , T a normalized TBox, Aq a query concept name, and d an
individual name. Let Aout be the ABox that is obtained by the application of the rules in
Figure 4.1 to T and Ain. Then we have,

Aq(d) /∈ Aout implies (T ,Ain) 6|= Aq(d).

Proof. Suppose Aq(d) /∈ Aout. We construct a model of (T ,Ain) that does not satisfy
Aq(d).

Assume w.l.o.g. that there are m individual names b1, . . . , bm occurring in Ain,
there are n individual names a1, . . . , an occurring in Aout and d = a1. Note that
d ∈ {a1, . . . , an} ⊆ {b1, . . . , bm} and n ≤ m due to applications of rules CR4 and
CR5 which identify some individual names. For each ai, i = 1, . . . , n, we define a set
P (ai) ⊆ {b1, . . . , bm} that satisfies

(1) ai ∈ P (ai); and

(2) bj ∈ P (ai) iff there is a b ∈ P (ai) such that bj was identified with b by CR4 or CR5.

57

It is easy to see that P (ai), i = 1, . . . , n, form partitions of the set of individuals
{b1, . . . , bm} in Ain. Since CR4 and CR5 are sound, if an individual name x is identified
with an individual name y, then xJ = yJ for every model J of T and Ain. Thus, all
elements of P (ai) are interpreted as the same individual in the domain of any model of
T and Ain.

For every individual name ai, i = 1, . . . , n, we define a set Si as follows:

Si := {A | A(ai) ∈ Aout}

Since rule CR3 is not applicable (to Aout) anymore after termination, it is clear that Si
is closed under T -consequence. Thus, by Lemma 4.6, for every ai, i = 1, . . . , n, there is
a tree model Ii of Si and T with aIi

i as its root (by simply mapping ai to the root of the
tree model Ii) such that for every concept name A, A ∈ Si iff aIi

i ∈ AIi .
Due to Lemma 4.10, each model Ii of Si and T is actually defined such that ∆Ii ⊆

{1, . . . , k}∗ where k is the number of existential concepts in subT (S). To distinguish such
models due to different ai’s, we attach a subscript ai for every element of ∆Ii . Thus, εai

is the root of tree model Ii where aIi
i = εai and by using subscripts here, we can assume

that ∆Ij1 ∩ ∆Ij2 = ∅ for every 1 ≤ j1 < j2 ≤ n.
With every individual name ai, i = 1, . . . , n, occurring in Aout, we associate the set

Fi := {r | ∃b : r(ai, b) ∈ Aout,> v (≤ 1 r) ∈ T } ∪
{s− | ∃b : s(b, ai) ∈ Aout,> v (≤ 1 s−) ∈ T }

Observe that Fi consists of roles (role names and inverse roles) that connects ai to another
individual in Aout and is required to be functional.

For each Ii, i = 1, . . . , n, we define an interpretation Ji = (∆Ji , ·Ji) from the tree
model Ii by ‘cutting’ subtrees whose roots are connected from ai via functional roles in
Fi. With each set Fi, we associate a set ΩFi which is defined by

ΩFi := {jωai ∈ ∆Ii | ∃σ ∈ Fi : (εai , jai) ∈ σIi , j ∈ {1, . . . , k}, ω ∈ {1, . . . , k}∗}

It is obvious that ΩFi contains precisely those elements of ∆Ii that form subtrees of Ii
whose roots are connected from aIi

i = εai via some functional role in Fi. Now, for every
1 ≤ i ≤ n, an interpretation Ji is defined below:

∆Ji := ∆Ii \ ΩFi

aJi
i := aIi

i = εai

AJi := AIi ∩∆Ji for each concept name A

rJi := rIi ∩ (∆Ji ×∆Ji) for each role name r

Note that for every Ji, all elements of ∆Ii are retained in ∆Ji except the ones in ΩFi , in
particular, the root εai is still retained as the root of Ji. In addition, like in Ii, for each
Ji, there is only one individual name occurring in Aout, namely ai, that is mapped to
an element of ∆Ji , i.e., the root εai . Thus, in the definition of Ji above, ai only stands

58

for that one particular individual name occurring in Aout, and is not quantified over all
individuals occurring in Aout.

Next, we define an interpretation I = (∆I , ·I) by combining all interpretations Ji,
i = 1, . . . , n as follows:

∆I :=
n⋃
i=1

∆Ji

aIi := aJi
i = εai for every individual name ai, i = 1, . . . , n, occurring in Aout

AI :=
n⋃
i=1

AJi for every concept name A

rI := {(aI , bI) | r(a, b) ∈ Aout} ∪
n⋃
i=1

rJi for every role name r

We show that I is a model of (T ,Ain) that does not satisfy Aq(d). By definition of
AI and Si for every i = 1, . . . , n, Lemma 4.6, the fact that for every individual name ai,
i = 1, . . . , n, occurring in Aout, aIi = aJi

i = aIi
i /∈ ΩFi , and since domains of Jj1 and Jj2

are disjoint for every 1 ≤ j1 < j2 ≤ n, we have for every concept name A and individual
name ai, i = 1, . . . , n,

A(ai) ∈ Aout iff A ∈ Si iff aIi
i ∈ AIi iff aIi = aJi

i ∈ AJi ⊆ AI

Thus, we first obtain that I is a model of Aout. Secondly, it is also a model of Ain because
for every concept assertion B(b) ∈ Ain, if b does not appear in Aout then b ∈ P (ai) for
some 1 ≤ i ≤ n which implies bI = aIi . Additionally, by some applications of CR4
and/or CR5, we must have B(ai) ∈ Aout. This implies bI = aIi ∈ BI . In addition, since
we assume d = a1, dI = aI1 and Aq(d) ∈ Aout iff Aq(a1) ∈ Aout. Thus, if Aq(a1) /∈ Aout
then Aq /∈ S1, which implies dI = aI1 /∈ AIq , i.e., I does not satisfy Aq(d).

It now remains to show that I is a model of T . To prove this, we distinguish cases
based on possible forms of GCIs in T that is already normalized. In the following, we
assume A,A1, A2 and B are concept names or >, and r is a role name. Additionally, we
use the fact that for every 1 ≤ i ≤ n, ISi is a model of T .

• > v (≤ 1 r). Let v ∈ ∆I . If there is no v′ ∈ ∆I such that (v, v′) ∈ rI then we are
done. Thus, suppose there is at least one r-filler v′ ∈ ∆I of v, i.e., (v, v′) ∈ rI . We
distinguish two cases based on whether or not v ∈ {a1, . . . , an}.

? v /∈ {a1, . . . , an}. Then {v, v′} ⊆ ∆Ji\{ai} ⊆ ∆Ii\({ai}∪ΩFi) for some i, 1 ≤ i ≤ n.
Hence, v ∈ (≤ 1 r)I is a consequence of the fact that Ii is a model of T .

? v = aIi for some i, 1 ≤ i ≤ n. First, if r(ai, b) /∈ Aout for any individual name b, then
v′ ∈ ∆Ji and (v, v′) ∈ rJi ⊆ rIi . Hence, like above, v ∈ (≤ 1 r)I is a consequence
of the fact that Ii is a model of T . Second, if r(ai, b) ∈ Aout for some individual
name b occurring Aout, then we show that v′ = bI and it is the only r-filler of v.
Note that since CR4 and CR5 cannot be applied anymore to Aout, we have that,

59

in fact, b is the only individual name occurring in Aout such that r(ai, b) ∈ Aout. It
remains to show that v′ = bI . Notice that r ∈ Fi. Moreover, it must be the case
that v′ /∈ ∆Ii , since otherwise, we would have v′ ∈ ΩFi implying v′ /∈ ∆I which is
a contradiction. Hence, by definition of rI , we obtain that v′ = bI from which it
follows that v ∈ (≤ 1 r)I .

• > v (≤ 1 r−). Similar to the previous case.

• A v B. Let v ∈ ∆I be such that v ∈ AI . By definition of I, we have v ∈ ∆Ji ⊆ ∆Ii

and additionally, v ∈ AJi ⊆ AIi for some i, 1 ≤ i ≤ n. Since Ii is a model of T ,
v ∈ BIi . Moreover, because B is also a concept name and it is obvious that v /∈ ΩFi ,
we obtain v ∈ BJi ⊆ BI by definition of Ji and I. We thus conclude that I satisfies
GCIs of the form A v B.

• A1 uA2 v B. Similar to the previous case.

• A v ∃r.B such that > v (≤ 1 r) /∈ T (r is not functional). Let v ∈ ∆I be such that
v ∈ AI . By definition of I, we have v ∈ ∆Ji and v ∈ AJi ⊆ AIi for some i, 1 ≤ i ≤ n.
Then v ∈ (∃r.B)Ii because Ii is a model of T . Thus, there is a v′ ∈ ∆Ii such that
(v, v′) ∈ rIi and v′ ∈ BIi . If v 6= εai , then obviously v′ /∈ ΩFi . Otherwise, v′ /∈ ΩFi

is due to > v (≤ 1 r) /∈ T , i.e., r /∈ Fi. In either case, we obtain (v, v′) ∈ rJi and
v′ ∈ BJi yielding v ∈ (∃r.B)Ji ⊆ (∃r.B)I . It thus follows that I satisfies GCIs of the
form A v ∃r.B such that > v (≤ 1 r) /∈ T .

• A v ∃r−.B such that > v (≤ 1 r−) /∈ T (r− is not functional). Similar to the previous
case.

• A v ∃r.B such that > v (≤ 1 r) ∈ T (r is functional). Let v ∈ ∆I be such that
v ∈ AI . Thus, v ∈ ∆Ji and v ∈ AJi ⊆ AIi for some i, 1 ≤ i ≤ n. Since Ii is a model
of T , it follows that v ∈ (∃r.B)Ii and v ∈ (≤ 1 r)Ii . By the semantics, there is a
unique v′ ∈ ∆Ii such that (v, v′) ∈ rIi and v′ ∈ BIi . We distinguish two cases.

? v 6= εai or v = εai but there is no assertion r(ai, b) ∈ Aout for some individual b in
Aout. Then v′ /∈ ΩFi , i.e., v′ ∈ ∆Ji . This yields (v, v′) ∈ rJi and v′ ∈ BJi , i.e.,
v ∈ (∃r.B)Ji ⊆ (∃r.B)I .

? v = εai and there is an assertion r(ai, b) ∈ Aout for some individual b in Aout. Then
v′ ∈ ΩFi because r ∈ Fi. We thus have v′ /∈ ∆Ji yielding v /∈ (∃r.B)Ji . But after
termination, CR6 is no longer applicable to ai and we obtain B(b) ∈ Aout. Since
I is a model of Aout, we have (ai, b) ∈ rI and b ∈ BI where aIi = aJi

i = εai = v.
Hence, we conclude v ∈ (∃r.B)I .

In either case, v ∈ AI implies v ∈ (∃r.B)I for a functional r. We thus obtain that I
satisfies A v ∃r.B such that r is functional.

• A v ∃r−.B such that > v (≤ 1 r−) ∈ T (r− is functional). Similar to the previous
case using CR7.

60

• ∃r.A v B. Let v ∈ ∆I such that v ∈ (∃r.A)I . Note that v ∈ ∆Ji ⊆ ∆Ii for some i,
1 ≤ i ≤ n. We distinguish two cases.

? v ∈ (∃r.A)Ji . Then there is a v′ ∈ ∆Ji such that (v, v′) ∈ rJi ⊆ rIi and v′ ∈ AJi ⊆
AIi . Thus, v ∈ (∃r.A)Ii . Since Ii is a model of T , v ∈ BIi . By definition of Ji and
I, we have v ∈ BJi ⊆ BI as B is a concept name and v /∈ ΩFi .

? v /∈ (∃r.A)Ji . Then there is no v′ ∈ ∆Ji such that (v, v′) ∈ rJi and v′ ∈ AJi .
Since such a v′ ∈ ∆I such that v′ ∈ rI and v′ ∈ AI must exist, by definition of
rI , v = εai = aIi and v′ = aIj for some individual name aj , 1 ≤ j ≤ n, such that
r(ai, aj) ∈ Aout. Note that aJj

j = εaj and εaj ∈ AJj ⊆ AIj . Because Ij is obtained
from Lemma 4.6, it holds that A ∈ Sj , i.e., A(aj) ∈ Aout. Thus, precondition of
CR1 is fulfilled. But after termination, CR1 is no longer applicable. This means
B(ai) ∈ Aout holds. Since we have I is a model of Aout, we conclude aIi ∈ BI , i.e.,
v ∈ BI .

In both cases, we have v ∈ (∃r.A)I implies v ∈ BI . Hence, I satisfies GCIs of the
form ∃r.A v B. Observe that this is regardless whether r is functional or not.

• ∃r−.A v B. Similar to the previous case using CR2.

As every form of GCIs is satisfied by I, we conclude that I is indeed a model of T and
a countermodel of (T ,Ain) |= Aq(d). 3

The last proposition finishes our analysis of the data complexity of instance checking
for ELIf . Finally, we sum up everything in the following theorem.

Theorem 4.14
Data complexity of instance checking for ELIf w.r.t. general TBoxes is polynomial. 3

61

Chapter 5

Conclusion

The subject of this work was to map out the data complexity of the instance checking
problem for extensions of EL. Instance checking is the simplest form of query answering
over EL knowledge bases. It is the problem of deciding whether all axioms in the input
TBox and all assertions in the input ABox logically imply that the input individual
belongs to the input concept. In the literature, the complexity of this problem is usually
measured in the size of the whole input which consists of a TBox, an ABox, a query
concept and an individual name, hence named combined complexity. However, we have
argued in Chapter 2 that there is another relevant complexity measure, namely data
complexity, which is measured only in the size of the input ABox. Data complexity is
relevant because in many applications, the size of data, i.e., the number of assertions in
the input ABox is much larger than the size of size of terminologies involved.

Baader et al. [2005a] have shown that adding several common description logic con-
structors to EL yields to several extensions of EL for which the subsumption problem
w.r.t. general TBoxes is ExpTime-complete. In Chapter 3, we have identified among
these extensions of EL, the ones for which data complexity of instance checking w.r.t.
general TBoxes is coNP-hard (and even coNP-complete). These include extensions of EL
with negation, disjunction, value restriction, number restriction and some role construc-
tors including role complement, role union and transitive closures, and for most of them,
coNP-hardness were obtained even without the presence of TBoxes. In order to derive
the coNP-hardness results, we adapted the technique described by Schaerf [1993] using
a polynomial reduction from a variant of SAT, called 2+2-SAT, which was employed to
show the coNP-hardness regarding data complexity of instance checking in the DL ALE .
Whereas, for the coNP upper bound, we refer to [Hustadt et al., 2005] which established
coNP-completeness regarding data complexity of instance checking for DLs which pro-
vide at least the constructors from the DL ALC and at most the constructors from the
DL SHIQ.

In Chapter 4, we have identified one extension of EL for which data complexity of in-
stance checking is polynomial. This language, named ELIf , is obtained by adding inverse
roles and functionality to EL. This result is notable, since Baader et al. [2005a,b] have
shown that by merely adding one of these constructors yields to ExpTime-completeness
of subsumption w.r.t. general TBoxes. The tractability result was proved by providing
an algorithm that decides instance checking w.r.t. general TBoxes and runs in time
polynomial in the size of input ABox.

We summarize all results about data complexity derived in this thesis in Table 5.1.

62

Extensions of EL Data complexity of inst. checking with simple ABoxes

without TBoxes w.r.t. acyclic
TBoxes

w.r.t. general
TBoxes

EL(¬), EL¬ coNP-complete coNP-complete coNP-complete

ELU in P coNP-complete coNP-complete

EL∀r.⊥, EL∀ coNP-complete coNP-complete coNP-complete

EL≤k1,≥k2 coNP-complete coNP-complete coNP-complete

EL≤k coNP-complete coNP-complete coNP-complete

ELkf , k ≥ 2 coNP-complete coNP-complete coNP-complete

EL≥2 in P coNP-complete coNP-complete

EL≥k, k ≥ 3 in P in coNP, hardness
still open

coNP-complete

ELR¬ coNP-hard coNP-hard coNP-hard

EL∪, EL∗ in P coNP-hard coNP-hard

ELIf in P in P in P

Table 5.1: Data complexity of instance checking for various extensions of EL

In the table, k, k1 and k2 are fixed nonnegative integers. Note that ELI and EL1f are
sublanguages of ELIf , and thus share the tractability result of ELIf . Missing results
in the table are the coNP-hardness regarding data complexity of instance checking w.r.t.
acyclic TBoxes for the DL EL≥k, k ≥ 3, as well as some coNP upper bound results of
data complexity of instance checking for ELR¬, EL∪, and EL∗.

From the table, we would like to point out some interesting findings in this thesis.
First, the tractability boundary between combined complexity and data complexity ap-
parently does not coincide due to the data complexity result for ELIf for which combined
complexity is intractable. Second, a slight syntactic difference between local and global
(1)-functionality has turned out to yield a computational “cliff” in terms of data complex-
ity. And finally, our findings showed that in most cases, there is no difference between
adding either general TBoxes or acyclic TBoxes. The difference, if it does exist, turned
out to be between with and without TBox. This can be seen on results for ELU , EL≥2,
EL∪, and EL∗. A possible exception is for EL≥k, k ≥ 3, in which data complexity of
instance checking w.r.t. acyclic TBoxes is not completely characterized.

There are some directions for future work that can be considered. One possible future
work is to investigate the aforementioned missing results and fill up Table 5.1 to make a
more complete general picture. Another possible future work could be extending ELIf
with other constructors from the DL EL++ [Baader et al., 2005a,b]. Since EL++ is

63

known to be tractable even for combined complexity, it is natural to conjencture that
by adding inverse roles and functionality, tractability regarding the data complexity can
still be retained. In addition, one could also generalize the reasoning problem of instance
checking into more complex form of conjunctive query answering. In this direction, it
would be interesting to investigate whether tractability of instance checking regarding
data complexity can also be retained. Finally, since the algorithm which was described
in Chapter 4 was basically provided as a means to prove that instance checking w.r.t.
general TBoxes for ELIf is tractable regarding data complexity, as a future work, one
could also think of a real optimized implementation of the algorithm that behaves well
in practice.

64

Bibliography

F. Baader (1996). Using automata theory for characterizing the semantics of termino-
logical cycles. Annals of Mathematics and Artificial Intelligence, 18(2–4):175–219.

F. Baader (2003a). The instance problem and the most specific concept in the description
logic EL w.r.t. terminological cycles with descriptive semantics. In Proceedings of the
26th Annual German Conference on Artificial Intelligence (KI 2003), vol. 2821 of Lec-
ture Notes of Artificial Intelligence, pp. 64–78. Springer-Verlag, Hamburg, Germany.

F. Baader (2003b). Terminological cycles in a description logic with existential restric-
tions. In G. Gottlob & T. Walsh (eds.), IJCAI-03, Proceedings of the Eighteenth Inter-
national Joint Conference on Artificial Intelligence, Acapulco, Mexico, August 9–15,
2003, pp. 325–330. Morgan Kaufmann.

F. Baader, S. Brandt & C. Lutz (2005a). Pushing the EL envelope. In Proceedings of
the 19th International Joint Conference on Artificial Intelligence (IJCAI’05). Morgan-
Kaufmann Publishers, Edinburgh, UK.

F. Baader, S. Brandt & C. Lutz (2005b). Pushing the EL envelope. LTCS-
Report LTCS-05-01, Chair for Automata Theory, Institute for Theoretical Com-
puter Science, Dresden University of Technology, Germany. See http://lat.inf.tu-
dresden.de/research/reports.html.

F. Baader, D. Calvanese, D. McGuinness, D. Nardi & P. F. Patel-Schneider (eds.) (2003).
The Description Logic Handbook: Theory, Implementation, and Applications. Cam-
bridge University Press.

F. Baader & W. Nutt (2003). Basic description logics. In Baader et al. [2003], chap. 2,
pp. 43–95.

A. Borgida, M. Lenzerini & R. Rosati (2003). Description logics for databases. In Baader
et al. [2003], chap. 16, pp. 462–484.

R. J. Brachman & H. J. Levesque (1984). The tractability of subsumption in frame-based
description languages. In Proceedings of the 4th National Conference on Artificial
Intelligence (AAAI’84), pp. 34–37.

R. J. Brachman & H. J. Levesque (eds.) (1985). Readings in Knowledge Representation.
Morgan Kaufmann, San Mateo, CA.

R. J. Brachman & J. G. Schmolze (1985). An overview of the KL-ONE knowledge
representation system. Cognitive Science, 9(2):171–216.

65

S. Brandt (2004a). On subsumption and instance problem in ELH w.r.t. general TBoxes.
In V. Haarslev & R. Möller (eds.), Description Logics, vol. 104 of CEUR Workshop
Proceedings. CEUR-WS.org.

S. Brandt (2004b). Polynomial time reasoning in a description logic with existential
restrictions, GCI axioms, and—what else? In R. L. de Mantáras & L. Saitta (eds.),
Proceedings of the 16th European Conference on Artificial Intelligence (ECAI 2004),
pp. 298–302. IOS Press.

M. Buchheit, F. M. Donini & A. Schaerf (1993). Decidable reasoning in terminological
knowledge representation systems. Journal of Artificial Intelligence Research, (1).

D. Calvanese & G. De Giacomo (2003). Expressive description logics. In Baader et al.
[2003], chap. 5, pp. 178–218.

D. Calvanese, G. De Giacomo, D. Lembo, M. Lenzerini & R. Rosati (2006). Data com-
plexity of query answering in description logics. In Proceedings of the 10th International
Conference on the Principles of Knowledge Representation and Reasoning (KR 2006),
pp. 260–270.

R. Cote, D. Rothwell, J. Palotay, R. Beckett & L. Brochu (1993). The systematized
nomenclature of human and veterinary medicine. Tech. rep., Snomed International,
Northfield, IL.

F. M. Donini (2003). Complexity of reasoning. In Baader et al. [2003], chap. 3, pp.
96–136.

F. M. Donini, M. Lenzerini, D. Nardi & W. Nutt (1991). The complexity of concept
languages. In J. Allen, R. Fikes & E. Sandewall (eds.), Proceedings of the 2nd In-
ternational Conference on the Principles of Knowledge Representation and Reasoning
(KR’91), pp. 151–162. Morgan Kaufman.

F. M. Donini, M. Lenzerini, D. Nardi & A. Schaerf (1994). Deduction in concept lan-
guages: from subsumption to instance checking. Journal of Logic and Computation,
4(4):423–452.

P. J. Hayes (1979). The logic of frames. In D. Metzing (ed.), Frame Conceptions and
Text Understanding, pp. 46–61. Walter de Gruyter and Co., Berlin. Republished in
Brachman & Levesque [1985].

J. Heflin & J. Hendler (2001). A portrait of the semantic web in action. IEEE Intelligent
Systems, 16(2):54–59.

U. Hustadt, B. Motik & U. Sattler (2005). Data complexity of reasoning in very expressive
description logics. In L. P. Kaelbling & A. Saffiotti (eds.), Proceedings of the 19th
International Joint Conference on Artificial Intelligence (IJCAI 2005), pp. 466–471.
Professional Book Center. URL http://www.ijcai.org/papers/0326.pdf.

66

http://www.ijcai.org/papers/0326.pdf

F. Lehmann (ed.) (1992). Semantic Networks in Artificial Intelligence. Pergamon Press,
Oxford, United Kingdom.

M. Lenzerini (2002). Data integration: A theoretical perspective. In Proceedings of the
21st ACM SIGACT SIGMOD SIGART Symposium on Principles of Database Systems
(PODS 2002), pp. 233–246.

M. Minsky (1974). A framework for representing knowledge. Tech. Rep. 306, Artificial
Intelligence Laboratory, MIT. Republished in Brachman & Levesque [1985].

D. Nardi & R. J. Brachman (2003). An introduction to description logics. In Baader
et al. [2003], chap. 1, pp. 1–40.

B. Nebel (1988). Computational complexity of terminological reasoning in BACK. Ar-
tificial Intelligence, 34(3):371–383.

B. Nebel (1990a). Reasoning and Revision in Hybrid Representation Systems. No. 422
in Lecture Notes in Artificial Intelligence. Springer Verlag, Berlin, Germany.

B. Nebel (1990b). Terminological reasoning is inherently intractable. Artificial Intelli-
gence, 43(2):235–249.

C. H. Papadimitriou (1994). Computational Complexity. Addison Wesley Publishing
Company.

M. R. Quillian (1968). Semantic memory. In M. Minsky (ed.), Semantic Information
Processing, pp. 227–270. MIT Press, Cambridge, Massachusetts.

A. Rector & I. Horrocks (1997). Experience building a large, re-usable medical ontology
using a description logic with transitivity and concept inclusions. In Proceedings of the
Workshop on Ontological Engineering, AAAI Spring Symposium (AAAI’97). Stanford,
CA.

R. Reiter (1984). Towards a logical reconstruction of relational database theory. In
M. Brodie, J. Mylopoulos & J. Schmidt (eds.), On Conceptual Modelling. Springer-
Verlag.

U. Sattler, D. Calvanese & R. Molitor (2003). Relationship with other formalisms. In
Baader et al. [2003], chap. 4, pp. 137–177.

A. Schaerf (1993). On the complexity of the instance checking problem in concept lan-
guages with existential quantification. Journal of Intelligent Information Systems,
2(3):265–278.

A. Schaerf (1994). Query Answering in Concept-Based Knowledge Representation Sys-
tems: Algorithms, Complexity, and Semantic Issues. Ph.D. thesis, Dipartimento di
Informatica e Sistemistica, Università di Roma “La Sapienza”.

67

M. Schmidt-Schauß & G. Smolka (1991). Attributive concept descriptive with comple-
ments. Artificial Intelligence, 48(1):1–26.

K. A. Spackman (2001). Normal forms for description logic expressions of clinical concepts
in Snomed-RT. Journal of the American Medical Informatics Association. Symposium
Supplement.

The Gene Ontology Consortium (2000). Gene ontology: Tool for the unification of
biology. Nature Genetics.

S. Tobies (2001). Complexity Results and Practical Algorithms for Logics in Knowl-
edge Representation. Ph.D. thesis, Fakultät für Mathematik, Informatik und Natur-
wissenschaften der Rheinisch-Westfälischen Technischen Hochschule Aachen. See
http://lat.inf.tu-dresden.de/research/phd/index.html.

M. Vardi (1986). Querying logical database. Journal of Computer and System Science,
33:142–160.

68

	Abstract
	Acknowledgements
	Introduction
	Description Logics
	The EL Family and Data Complexity: Previous Results
	Objective and Structure of the Thesis

	General Framework
	The EL family
	Description Logic Knowledge Base: TBox and ABox
	Reasoning Services and Complexity Measures

	Intractable Extensions of EL Regarding Data Complexity
	Extensions of EL with Negation
	Extension of EL with Disjunction
	Extensions of EL with Value Restriction
	Extensions of EL with Unqualified Number Restrictions
	Extensions of EL with Role Complement, Role Union and Transitive Closures
	Summary of the Chapter

	A Tractable Extension of EL Regarding Data Complexity: ELIf
	The Description Logic ELIf
	A Normal Form for ELIf TBoxes
	An Instance Checking Algorithm for ELIf
	Termination and Soundness
	Completeness

	Conclusion
	Bibliography

