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Abstract

Description Logics (DLs) are logic-based formalisms for representing knowledge
that provide a trade-off in expressivity and reasoning within a formalism. On
one side of the spectrum, there is a light-weight description logic ££ with top
symbol, conjunction and existential restriction, whose expressivity, though very
limited, is sufficient to describe some of the widely used ontologies of today. It
has been shown that the subsumption problem in ££ has polynomial complexity
for terminologies with cyclic definitions w.r.t. greatest fixpoint, least fixpoint,
and descriptive semantics, and for the general terminologies interpreted by de-
scriptive semantics. Recently, the same was shown in these cases by devising
sound and complete proof systems for these semantics.

Hybrid £EL TBozes have been proposed in order to combine the generality of
cyclic definitions and general concept inclusions with certain desirable non-
standard inference services. These terminologies combine two of the semantics,
descriptive and greatest fixpoint semantics. A polynomial subsumption algo-
rithm for theories with hybrid ££ TBoxes and corresponding semantics was
recently proposed.

Motivated by previous results, this thesis looks at the problem of subsumption
w.r.t. hybrid ££ TBoxes from a proof-theoretic point of view. A rule system
is devised, and we show that polynomial proof search in the calculus yields a
polynomial decision procedure for the subsumption problem in ££ w.r.t. hybrid
TBoxes.

In addition, we consider the problem of existence of least common subsumers
of two £L concepts w.r.t. hybrid TBoxes. We give a positive answer to the
existence problem by providing an algorithm for computing such concepts and
showing its correctness in a proof-theoretic manner.
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Chapter 1

Introduction

Knowledge Representation (KR) is a major field of research within Artificial
Intelligence. It investigates the approaches to store knowledge about a given
domain of discourse in an explicit form in a knowledge base, and to automatically
infer implicit consequences of the information stored. A KR system therefore
consists of a knowledge base equipped with an algorithm for inferring implicit
knowledge in domain-independent way.

One of the most prominent examples of such KR systems are Description
Logics (DLs). Description logics ([11]) are a family of logic-based knowledge
representation formalisms designed to represent and reason about conceptual
knowledge in a structured and semantically well-understood way. They are a
family of formal languages that provide specialized inference mechanisms to
account for knowledge classification, while preserving decidability and allowing
for the design of efficient reasoning algorithms. Knowledge is represented in
terms of concepts (i.e., classes of objects) and roles (i.e., binary relationships
between classes).

Description Logics originate form early KR systems, such as frame-based
systems and semantic networks ([14]). These early formalisms were not equipped
with a formal, logic-based semantics, and the development of a formal semantics
led to the notion of DLs. It was shown later that some DLs are in a close
correspondence with representation formalisms used in databases and software
engineering (see Chapter ”Relationship with other formalisms” from [11]). Ever
since, there is an increasing number of applications where DLs play important
role, e.g., in the foundation of logical ontology languages which are used in
several areas such as biomedical ontologies, and natural language processing.

As fragments of first-order logic, DLs sacrifice some of the expressivity of
the entire first-order logic in favor of decidability of reasoning tasks. There is a
clear tradeoff between the complexity of a reasoning task in a description logic
and the expressivity of the logic. On one side of this spectrum there are very
expressive description logics like the ones from the SHOZQ family where some
of the reasoning tasks are N FExpTime-hard, if not undecidable. In contrast,
description logics from the £L£ family are light-weight logics with very restricted



expressivity. Despite its limited expressivity, some of important ontologies or
its significant parts, such as GALEN ([24], [27]), SNOMED ([25], [29]) and
Gene Ontology ([26], [1]) can be described in £L£ and its extensions. Moreover,
much of the reasoning tasks turn out to be tractable for ££, making this logic
interesting for applications. These are the reasons for detailed investigation of
this logic, and this work is another step in that direction.

1.1 Subsumption in ££ - previous results

In [10], Baader has shown that the subsumption problem in ££ has polynomial
complexity for terminologies with cyclic definitions w.r.t. greatest fixpoint, least
fixpoint, and descriptive semantics (as introduced by B. Nebel [22]). The main
tool for the investigation of cyclic definitions in £L is a characterization of sub-
sumption through the existence of a so-called simulation relation on the graph
associated with an ££ terminology, so called description graph. This relation
on graphs can be computed in polynomial time [19]. For descriptive subsump-
tion, a notion of synchronized simulation is introduced on the associated graphs,
and subsumption w.r.t. descriptive semantics is associated with the existence
of synchronized simulation between two graphs.

In [17] and [3], Brandt, Baader and Lutz showed that the subsumption prob-
lem in ££ has polynomial complexity for terminologies with GClIs interpreted
by descriptive semantics. This time, the polynomial decision procedure relays
on so-called implication sets assigned to each concept. These sets are created in
polynomial time by exhaustive application of fixed extension rules on the initial
sets. A concept is subsumed by another one iff the later one belongs to the
implication set of the former one.

Hofmann [20] considers the problem of subsumption in ££ from a different
perspective. He introduces a sound and complete calculus for providing proofs
of subsumption relationships. Two calculi are devised, depending on wether a
subsumption is decided modulo descriptive semantics with GCIs or the greatest
fixpoint semantics w.r.t. cyclic definitions. A subsumption holds iff there is a
proof in the corresponding calculus. The decision procedure for subsumption
problem identifies all provable subsumptions in polynomial time. It is interesting
that unlike the simulation approach, subsumption w.r.t. descriptive semantics
seems to be easier to show, since it is similar to standard Genzen’s sequent
calculus with equality and the CUT rule is admissible. In the case of descriptive
semantics with GClIs, soundness of the calculus is trivial and it can be proven
using induction on derivation. Completeness of the calculus in this setting means
that for every subsumption that follows from the TBox there is a proof for it.
The main tool for showing completeness is 'universal interpretation’ where a
concept is interpreted by the set of provably subsumed concept descriptions.
For the cyclic TBoxes interpreted by greatest fixpoint semantics, the notion of
a proof of a subsumption is different. A subsumption is said to be proven if
there exists certain infinite sequence of derivations rather than a single one.

As noted in [18] by Brandt and Model, there are two somewhat incompatible,



but desirable, features of DL systems: the support of general TBoxes containing
general concept inclusion axioms, and non-standard inference services facilitat-
ing knowledge engineering tasks. It has been pointed out in [4] that some of
the non-standard inference services, namely least-common subsumer and most
specific concept, facilitate 'bottom-up’ construction of DL terminologies. Here
"bottom-up’ building of DL terminologies means beginning of building a termi-
nology by selecting a set of example instances and using them to construct a
new concept description intended to represent them. Having general concept
inclusions in a TBox requires the TBox to be interpreted with descriptive se-
mantics. In the same time it has been proved in [9] that the least-common
subsumer and most specific concept need not exist when a TBox is interpreted
w.r.t. descriptive semantics. That was the main motivation for Brandt and
Model to propose hybrid TBozes for EL.

A hybrid ££ TBox is a pair (F,7T) consisting of a general TBox F and a
(possibly) cyclic TBox T defined over the same set of atomic concepts and roles.
F serves as a foundation of 7 in the sense that the GCI’s of F define relation-
ships between concepts used as primitive concept names in the definitions of
7T, i.e. F lays a foundation of general implications constraining 7. Models of
(F,T) are greatest fixpoint models of 7 that respect all GCI's in F. Hence,
the foundation is interpreted by descriptive semantics, while the terminology is
interpreted by greatest fixpoint semantics.

Brandt and Model also provide a decision procedure for the subsumption
problem w.r.t. the semantics defined for hybrid ££ TBoxes. They introduce
the notion of F-completion that denotes a polynomial reduction of an instance
of the subsumption problem w.r.t. a hybrid ££ TBox (F,T) to an instance of
the subsumption problem w.r.t. the changed theory f(7) interpreted by great-
est fixpoint semantics. The reduction involves interpreting the hybrid TBox
by descriptive semantics, i.e., treating F U7 as a set of GClIs interpreted by
descriptive semantics. Then, all descriptive implications in 7 directly involving
names from F are added to the definitions in 7 in order to obtain f(7).

As mentioned before, the least common subsumer of two defined concepts
is a non-standard inference service that facilitates ’bottom-up’ building of DL
terminologies. For two given defined concepts from an ££ TBox, their least
common subsumer is, as suggested by its name, a concept that subsumes the
both defined concepts, and has the property of minimality, i.e., every other
concept that subsumes the both of the defined concepts also subsumes their least
common subsumer. The least common subsumer is defined in what is called a
conservative extension of the TBox, and it enjoys the property of minimality
in other conservative extensions of the original one. This obviously extends
the syntax of the original TBox and makes the search for the least common
subsumer more difficult. In fact, as mentioned before, it has been proven in
[9] that least common subsumer need not exist if we interpret ££ TBoxes with
descriptive semantics. An algorithm for computing least common subsumer of
two defined concepts from a ££ TBox with cyclic definitions interpreted with
greatest fixpoint semantics is shown by Baader in [8]. A correspondence between



normalized TBoxes with cyclic definitions and the assigned description graphs
was exploited to obtain explicit definitions of least common subsumers from the
so called product description graph. Starting from the TBox, the corresponding
description graph G is constructed, and so is the product graph G x G. Now,
the conservative extension is obtained from the inverse mapping to the one that
maps TBoxes into description graphs.

Following the idea of reducing subsumption problem w.r.t. hybrid ££ TBoxes,
to the one for F-completions interpreted by greatest fixpoint semantics, Brandt
shows in [15] that least common subsumers of two defined concepts from a hybrid
TBox always exist and can be computed from the product description graph of
F-completion of the original TBox. Again, two different kinds of reasoning, the
one for the descriptive semantics and the one for the greatest fixpoint seman-
tics are serialized and the former always precedes the later in order to perform
reasoning in the hybrid case.

1.2 Objectives and structure of the thesis

This paper presents an alternative polynomial decision procedure for the sub-
sumption problem in hybrid ££ TBoxes that is motivated by the proof-theoretic
approach from [20]. This time, rather than reducing the reasoning in a hybrid
TBox to the reasoning with greatest fixpoint semantics, we try to combine the
two existing reasoning techniques into a single one. Again, a rule system is
devised; a notion of the proof is introduced; and soundness and completeness
are proven for the obtained calculus, i.e. we show that every subsumption that
follows form the TBox can be derived in the devised calculus, and vice versa,
every derivable subsumption holds w.r.t. the TBox. Since both ££ TBoxes con-
sisting of GClIs interpreted by descriptive semantics, and €L TBoxes with cyclic
definitions interpreted by greatest fixpoint semantics, are special cases of hybrid
EL TBoxes with the corresponding semantics, one can ask if the resulting rule
system is a fusion of the two systems, the one for GCIs and the one for cyclic
terminologies. This question turns out to be nontrivial, and we give a positive
answer to it in this thesis.

Different rule systems yield different characteristics of the calculus, and thus
different proofs of soundness and completeness are required.

In addition, we present a polynomial decision procedure for the subsumption
problem w.r.t. hybrid TBoxes based on such a calculus.

The second main task solved in this thesis is to develop an algorithm for com-
puting the least common subsumer of two defined concepts from a hybrid ££
TBox. To that purpose, we employ the the developed proof-theoretic technique.

The rest of this thesis is organized as follows:

In Chapter 2 we introduce relevant definitions of the description logic £L,
its syntax and two types of semantics, descriptive and greatest fixpoint. The



notion of a hybrid TBox is introduced as well as the corresponding semantics.
We also briefly introduce to inference problems w.r.t. hybrid TBoxes.

In Chapter 3 we devise a rule system for deciding subsumption w.r.t hybrid
EL TBoxes. The notion of a proof is introduced, some of the properties of the
system are analyzed, and subsequently, soundness and completeness are shown.
In addition, a polynomial time algorithm for deciding subsumption based on
the rule system is given.

Chapter 4 is dedicated to computation of the least common subsumer of two
given concepts from a hybrid ££ TBox. A construction algorithm is given and
its correctness proven.

In Chapter 5 we derive conclusions, take another look at the existing results,
and comment on the practical performance of the implemented system for de-
ciding subsumption w.r.t. hybrid ££ based on our decision procedure. We also
consider other related topics and discuss possible future work.



Chapter 2

Preliminaries

In this chapter, we introduce notions and give formal definitions relevant for
further discussion. Among other things, we present the description logic £L,
its syntax and semantics. Two types of semantics are discussed, depending on
DL knowledge bases used, and hybrid TBoxes introduced. Two definitions of
semantics for hybrid TBoxes are introduced and its equivalence proven. Finally,
we introduce inference problem of deciding subsumption w.r.t. semantics for
hybrid TBoxes.

2.1 Description logic ££

Description logics provide a logical basis for knowledge representation. As such,
they use formal syntax to denote objects of interest (or individuals), classes
of objects (or concepts), and relationships between objects (or roles). As a
particular description logic, £L is characterized by the set of constructors with
which complex concept descriptions can be built from atomic concept names
and role names.

Nprim, Nrote and Ngep will denote sets of primitive concept names, role
names, and defined concept names, respectively. We denote elements of these
sets by P,Q,R,...; r,s,t,...; and X,Y, Z, ..., respectively. Sometimes we may
use indexes.

Complex concept descriptions in £L£ are formed using the constructors top-
concept: (T), conjunction (C' 1 D) and existential restriction (Ir.C'). Formally,

Definition 2.1.1. (£L£ syntaz) Let Nppim, Ngey and Ny, be disjoint sets of
primitive concept names, defined concept names and role names. The set of
EL-concept descriptions (or £L-concepts) is the smallest set that is inductively
defined as follows:

e each P € Ny, is an (primitive, atomic) £L-concept;

e cach X € Ny.y is an (defined, atomic) £L-concept;
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o if ¢, ¢ are £L-concepts and r € N, is a role name, then the top-concept
T, the conjunction ¢ M1 and the existential restriction Jr.¢ are also £.L-
concepts.

Greek letters a, 3, ¢, 1, 0, ... will be used to denote arbitrary concept descrip-
tions.

Definition 2.1.2. (£L£ semantics) The semantics of £L concept descriptions
is defined in terms of interpretation T = (Dz,Z(-)). The domain Dz of 7 is a
non-empty set of individuals, and the interpretation function Z(-) maps each
concept name A € Nppim U Ngep to a subset of Dz and each role 7 € Nyoe
to a binary relation Z(r) on Dz. The extension of Z(:) to arbitrary concept
descriptions is given as follows:

I(T) = Dz
I(CnD) = Z(C)NnZI(D)
IE.C) = {x|3Jy:(x,y) €Z(r)AnyeZ(C)}.

A concept C is satisfiable iff there is an interpretation Z such that Z(C) # 0. In
this case, we say that Z is a model of C. A concept C' is subsumed by a concept
D (written C' C D) iff for every interpretation Z, Z(C) C Z(D). Two concepts
C, D are equivalent (written C = D) iff CC D and D C C.

Sometimes, instead of writing Z(¢), we will write ¢* for readability reasons.

’ Name \ Syntax \ Semantics
concept name A I(A) CDr
role name r I(r) C Dz xDg
top-concept T D1
conjunction cnbD Z(C)NZ(D)
exist. restriction Ir.C {z|3y: (z,y) €eZ(r) Ay € Z(C)}
concept definition | X = ¢x I(X) =Z(¢x)
subsumption P (o) CZ(v)

Table 2.1: Summary - syntax and semantics of ££

As an knowledge representation formalism, DLs facilitate intensional repre-
sentation of the domain of interest through usage of certain hierarchical struc-
tures called terminologies.

Definition 2.1.3. (TBox) A terminological axziom is a concept definition or
a general concept inclusion (GCI). A concept definition is an expression of the
form X = ¢x where X is a concept name from the set Nges and ¢x is a concept
description. A general concept inclusion is an expression of the form ¢ C 1,
where ¢, 1) are concept description. A TBox is a finite set of concept definitions,
while general TBox is a finite set of GCls.
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Let 7 be a TBox that contains only concept definitions. Concept names occur-
ring on the left-hand side of a definition are defined concepts. All other concept
names occurring in the TBox are primitive concepts.

We say that 7 contains multiple definitions iff there are two distinct concepts ¢
and ¢9 such that both X = ¢ and X = ¢4 belong to 7 . We also say that 7 con-
tains a terminological cycle iff there is a subset {X1 = ¢x,, ... Xn = x, } C T
such that

e X,i1 appears in ¢x,, for 1 <4 <n, and
e X, appears in ¢x,,.

T is called an acyclic TBox iff it contains no multiple definition and no termi-
nological cycle.

We say that an interpretation Z is a (descriptive) model of the TBox T iff it
satisfies all its terminological axioms, i.e., Z(X) = Z(¢x) for every X = ¢x in
T, and Z(¢) C Z(¢) for every ¢ C¢pin 7.

A concept ¢ is satisfiable w.r.t. a TBox 7 iff there is a model Z of 7 such that
Z(C) # 0. A concept ¢ is subsumed by a concept ¥ w.r.t. a TBox 7, denoted
by T | ¢ C ¢ iff Z(¢) C Z(¢) for every model Z of T. Two concepts ¢, are
equivalent w.r.t. a TBox 7, denoted by T | ¢ = ¢ iff Z(¢) = Z(¥) for every
model Z of 7.

The definition of general TBoxes given above is to general for our purposes.
In the rest of this thesis we will restrict our attention to the TBoxes without
multiple definitions. However, we will still allow for terminological cycles, i.e.
we will assume that our TBoxes may contain cyclic definitions.

The semantics given above has been introduced as descriptive semantics
by Nebel, [22]. In that context, we speak also of descriptive subsumption and
descriptive equivalence.

Definition 2.1.4. (ABoz) Let Nj be a set of individual names. An assertion
axiom is an expression of the form C(z) (called concept assertion) or r(x,y)
(called role assertion), where x,y € Ny are individual names, C' a concept and
r a role. A concept assertion is called simple if it is of the form A(z) where
A is a concept name. A role assertion is called simple whenever it is of the
form r(x,y) with r a role name, i.e., not a complex role expressions. An ABox
A is a finite set of assertion axioms. Here, A is called simple whenever all of
its assertions are simple. For the semantics, we require every interpretation
additionally, to map each individual name z € Ny to an element Z(z) € Dz.
An interpretation 7 satisfies a concept assertion C(z) iff Z(x) € Z(C) and it
satisfies a role assertion r(z,y) iff (Z(x),Z(y)) € Z(r). It satisfies an ABox A iff
it satisfies every assertion axiom in A. If such an interpretation Z exists, then
we say that A is satisfiable and we say that Z is model of A.

Definition 2.1.5. (Knowledge base) A knowledge base (KB) K = (7,.4) con-
sists of a TBox 7 and an ABox A. An interpretation 7 satisfies I iff 7 is a
model of both 7 and A. In this case, K is satisfiable and we say that 7 is a
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model of K. A concept ¢ is satisfiable w.r.t. a knowledge base K iff there is
a model Z of K such that Z(¢) # 0. A concept ¢ is subsumed by a concept
¥ w.r.t. a knowledge base K iff Z(C) C Z(D) for every model Z of K. Two
concepts ¢, are equivalent w.r.t. a knowledge base K iff Z(C) = Z(D) for
every model Z of K.

Definition of ABoxes given above is introduced for the reasons of complete-
ness of discussion on description logic ££. In the rest of this thesis we will
restrict our attention to reasoning problems w.r.t. TBoxes alone, i.e. we will
always assume that our knowledge base will have empty ABox.

Before proceeding with greatest fixpoint semantics and introducing hybrid
TBoxes, we define notion of subconcept of a concept description. This notion
will be frequently used in the later chapters. This is not surprising, since the
key to most of the proof-theoretic analysis is syntactic structure of the formulae
of discourse.

Definition 2.1.6. Let ¢ be a concept description. Then the set of all subcon-
cepts of concept description ¢ is the least set SC(¢)such that

1. ¢ € SC(¢)
2. if ¢ is of the form ¢1 M ¢, then SC(¢) 2 SC(¢1) U SC(¢2)
3. if ¢ is of the form Jr.¢q, then SC(¢1) C SC(¢).

In addition, we say that 1 is a subconcept that occurs in a TBox 7 if 7 contains
a definition X = ¢x and 9 is a subconcept of X or ¢x, or if 7 contains a GCI
0 C p and v is a subconcept of 8 or p.

2.2 Greatest fixpoint semantics. Hybrid TBoxes.

In previous section we introduced descriptive semantics for ££ TBoxes. Defining
greatest fixpoint (gfp) semantics requires certain preparation. To that purpose,
we recall some of the definitions form [9] and [18].

A gfp-model for a given £L£-TBox 7 is obtained in two steps. In the first
step, only the primitive concepts and roles occurring in 7 are interpreted. The
second step comprises an iteration by which the interpretation of the defined
names in 7 is changed until a fixpoint is reached. The following definition
formalizes the first step.

Definition 2.2.1. Let T be an ££-TBox over Npyim, Nrole, and Ngey. A prim-
itive interpretation (Dy, J(-)) of 7 interprets all primitive concepts P € Npyim
by subsets of Dy and all roles r € N, by binary relations on Ds. An inter-
pretation (Dz,Z(+)) is based on J iff Dy = Dz and J(-) and Z(-) coincide on
Nyote and Nprim. The set of all interpretations based on J is denoted by

Int(J) :={Z | T is an interpretation based on J}.
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On Int(J), a binary relation <7 is defined for all 7;,Z, € Int(J) by
A =7 1> 1ffIl(X) - Ig(X) for all X € Ndef~

Ordered pair (Int(J), <7) is a complete lattice on Int(J). Indeed, it is easy
to see that every subset of Int(J) has a least upper bound (lub) and a greatest
lower bound (glb). Thus, Tarski’s fixpoint theorem [32] can be applied to this
lattice and it will yield the claim that every monotonic function on Int(J) has
a fixpoint.

Definition 2.2.2. Let T be an ££-TBox over Npyim, Nrote, and Ngeyr, and J
a primitive interpretation of Npim, and Nyoe. Then O7 7 is defined as follows.

0773 : I?’lt(j) — Int(J), Il l—>IQ lffIQ(X) :Il(¢X)
forall X =¢x €7 .

It was shown in [9] that O, 7 is in fact monotonous and can be used as a
fixpoint operator on Int(J). As a result, we obtain the following proposition.

Proposition 2.2.1. Let T be an interpretation based on the primitive interpre-
tation J. Then I is a fizpoint of O1 7 iff L is a model of T.

Previous proposition allows ua to define notion of fixpoint models for £.£-
TBoxes as follows.

Definition 2.2.3. (Greatest fixpoint semantics) Let 7 be an ££-TBox. The
model Z of 7T is called gfp-model iff there is a primitive interpretation J such
that Z € Int(J) is the greatest fixpoint of Or ;. Greatest fixpoint semantics
considers only gfp-models as admissible models.

As a complete lattice, (Int(J), =) uniquely determines the gfp-model for a
given TBox 7 and a primitive interpretation J. Thus we refer to the gfp-model
gfp(7,J) for any given 7 and J.

Computing gfp-model gfp(7,J) requires defining iteration of Or 7 over
ordinals.

Definition 2.2.4. Let 7 be an ££-TBox over Nprim, Nyrote and Ngey, and J
a primitive interpretation of Nppim and Nyoe. Define If;p € Int(J) by setting

If;p(X) := Dy for every X € Ngey. For every ordinal o, define

| . gtop ; —0-
. I(;_‘J) =I7"if a=0;
a+1 a .
° I(lT,J.}) = 07,7 (') (1,27
. I(l%j) = glb({I(lﬁjj) | B < a}) if a is a limit ordinal; here, }]| stands for

greatest lower bound.

The following corollary now shows that computing gfp(7,J) is equivalent
to computing I (i; ) given an appropriate ordinal a.
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Corollary 2.2.1. Let T be an EL-TBox over Nprim, Nrole, and Ngey. Let J
be a primitive interpretation of Nprim and Nyoe. Then there exists an ordinal
a such that gfp(T,J) = I(l; 7

If v is a limit ordinal then I(l;‘ 7 equals N, it

(T.7)" Now we are ready to
introduce gfp-subsumption.

Definition 2.2.5. Let 7 be an ££-TBox and let ¢,9 € NdTef. Then, ¢ is
subsumed by ¢ w.r.t. gfp-semantics (¢ Cyypp ) iff Z(¢) C Z(¢)) holds for all
gfp-models Z of 7.

An alternative definition of greatest fixpoint semantics is given in [20]. The
alternative version provides slightly more compact way to check for gfp models
of an £L£ TBox.

Definition 2.2.6. (Greatest fixpoint semantics) Consider a TBox with, possibly
circular, definitions only of the form X = ¢x. A model of such a TBox under
the greatest fixpoint semantics is its descriptive model Z with a domain D7,
which has the further property that whenever J is a function mapping concept
descriptions over Npyim, Nges and Npoe to subsets of Dz in such way that

Jm = I(1) (1)
Jwpy = IPp) (2)
JX) < Jlex) (3)
Jeny) = J@)NITW) (4)
J@Er¢) = Az|IeT(@)Ilr)(z.y)}  (5)

then J(¢) C Z(¢) for all concepts ¢.

What should be mentioned here is that the interpretation Z form the defi-
nition above is unique for a fixed domain and fixed interpretation of primitive
concepts. Even more, Z can be computed from its restriction to primitive con-
cepts and role names, as the union of all functions J satisfying (1) - (5). We
exploit these conclusion to show equivalence of the two definitions of gfp seman-
tics.

Proposition 2.2.2. Definitions Definition 2.2.3 and Definition 2.2.6 are equiv-
alent.

Proof. We show equivalence of the two definitions by showing that they describe
the same models once we fix the domain and the primitive interpretation.
First we fix a domain Dz and a primitive interpretation [J. Then we
consider a gfp model 7 with a domain D7 of a given TBox 7 form the
Definition 2.2.3, such that Z € Int(.7). We proceed by showing that there
is unique interpretation Z from Definition 2.2.6 with a domain Dz such
that Z € Int(J). Finally we prove 7 = 7.
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Let Z € Int(J) be, as announced, the interpretation from Definition 2.2.6,
let S denote the set of all functions from the same definition that satisfy
(1)-(5), and let
£(9) = {J K(@).
Kes

By induction on structure of ¢, we show that £(¢) = Z(¢)

e ¢ =T: then K(T)=L(T)=Z(T) = Dsz.

o » = P € Ny, : then K(P) = J(P) = Z(P) for all K € S, thus

L(P) =Ukes K(P) =Z(P).
o o = X € Ngey @ then K(X) C Z(X) for all £ € S, thus L(X) =

Ukes £(P) € Z(X). On the other hand, 7 obviously fulfills (1)-(4)
form Definition 2.2.6, i.e. Z € S, thus L(X) D Z(X).

e » = ¢ [ ¢y : then ]C(¢1 1 ¢)2) = ’C(¢1) 1 K:(d)g), thus £(¢1 1
$2) = Uges K(91 M d2) = Upes K(¢1) MK(d2) = Uges K(¢1) M
Ukes K(¢2) = L(¢1) M L(¢2). Induction hypothesis applied on both
of the conjuncts yields £(¢1 M ¢2) = Z(¢p1) MZ(¢2) = L(P1 M ¢2).

e ¢ = Ir.gy : then KEr.¢1) = {z | Jy € K(¢1).Z(r)(z,y)}, thus
L(3r.¢1) = Ukesiz | Fy € K(¢1).Z(r)(z,y)}. The last is eqial to
{z | Iy € Ukes K(01) Z(r)(z,9)} = {z | Jy € L(¢1).LZ(r)(z,y)}.
Induction hypothesis yields £(3r.¢1) = {x | Jy € Z(¢1).Z(r)(z,y)} =
Z(3Ir.¢1).

As two interpretations, T and T interpret T as entire domain, therefore 7
fulfills condition (1) form Definition 2.2.6. From Z € Int(J), we conclude
I(P) = J(P) = Z(P), i.e. T fulfills condition (2) form Definition 2.2.6.
In a similar way, Z fulfills condition (3), while condition (4) follows form
the fact that 7 is an interpretation. Condition (5) is fulfilled by Z, since
I(X) = ¢x for every X € Ngoy. Therefore, 7 is in S, and thus £(X) D
Z(X) for all X € Ngey. This implies £ =7 > 7.

On the other hand, Z is an interpretation for which it holds Or 7(Z) = Z,
i.e. Z is a fixpoint of the operator O7 7. Since Z > 7 7, T is the greatest
fixpoint of operator Or, 7, this is only possible if Z(X) = Z(X) for all
X € Nger. This proves the proposition, since Z and 7T already coincide on
role names and primitive concepts. 0

Notice that Definition 2.2.6 requires that J maps all concept descriptions

over Nppim, Naey and Ny.qe to subsets of Dz. However, it suffice to restrict J to
subconcepts occurring in the TBox, as suggested in the following proposition:

Proposition 2.2.3. Consider a TBox T with, possibly circular, definitions only
of the form X = ¢x and its descriptive model T with a domain Dz. Then, T
18 a gfp model of the TBoz iff whenever J is a function mapping subconcepts
occurring in T to subsets of Dz, satisfying conditions (1)-(5) of Definition 2.2.6,
then J(¢) C Z(¢) for all concepts ¢.
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Proof. We begin the proof by imposing an assumption that w.l.o.g., all the
elements of Npyim, Nger and Ny are occuring in 7.

If 7 is a gfp model of 7, then whenever 7 is a function mapping concept
descriptions over Npim, Nger and Ny to subsets of Dz, satisfying con-
ditions (1)-(5) of Definition 2.2.6, then [J(¢) C Z(¢) for all concepts ¢. In
particular, this will hold for all such functions J that map subconcepts
occurring in 7 to subsets of D7.

Suppose now that whenever J is a function mapping subconcepts oc-
curring in 7 to subsets of Dz, satisfying conditions (1)-(5) of Definition
2.2.6, then J(¢) C Z(¢) for all concepts ¢. Let K be an arbitrary func-
tion mapping concept descriptions over Nprim, Ngey and Nyq. to subsets
of Dz, satisfying conditions (1)-(5). We show by induction on ¢ that
K(¢) C Z(¢) for all concepts ¢.

e ¢ = T: by condition (1) of Definition 2.2.6, (T) =Z(T) = Dz;

® ¢ € Nprim : by condition (2) of Definition 2.2.6, IC(¢) = Z(¢);

® ¢ € Ngr : consider the function [J obtained by restricting the K to
the subconcepts occurring in 7. It is clear that J fulfills (1)-(5), and
thus K(¢) = J(¢) € Z();

e ¢ = ¢ Mo : by condition (4) K(¢1 M o) = K(é1) N K(¢2), and
induction hypothesis applied to K(¢1) and K(¢s) yields K(p1 M) =
K(¢1) NK(¢2) € Z(¢p1) NZ(¢2) = Z(P1 M h2);

e ¢ = Jr.¢y : by condition (5), K(¢) = {z | Iy € K(¢1).Z(r)(z,y)}.
Induction hypothesis applied to K(¢1) yields K(¢) = {z | Jy €
K(¢1).Z(r)(z,y)} € {z | Jy € Z(¢1)-Z(r)(x,y)} = Z(¢)-

O

It can easily be seen that gfp semantics is coarser than descriptive seman-
tics. In fact, descriptive semantics considers a superset of the set of gfp-models,
implying that descriptive subsumption entails gfp-subsumption. Hence, all sub-
sumption relations w.r.t. T4 also hold w.r.t. Cg¢, 7. The converse, though,
does not hold, e.g., if the TBox contains the definitions X = P M 3r.X and
Y =Pn3rY, then X Cypp 7 Y holds, while X C7 Y does not hold.

We introduce now the central notion of this thesis, hybrid ££ TBoxes.

Definition 2.2.7. (Hybrid EL-TBozes) A hybrid ££-TBox is a pair (F,7),
where F is a general EL-TBox over Ny.im and N,y (a finite set of GCI's over

Nprim and Nyoe) and 7 is an EL-TBox over Npim, Nrote and Ngey.

Hence, F is a finite set of GCI’s of the form ¢; C v;, and 7 is a finite set of
terminologies of the form X; = ¢x,. An example of a hybrid ££ terminology
on simplified medical knowledge base, taken form [18], is given in Table 2.2.
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It defines concepts ‘disease of the connective tissue’, ‘bacterial infection’ and
‘bacterial pericarditis’ in a cyclic manner, while, for the primitive concepts in
T, the foundation F states, e.g., that a disease located in connective tissue acts
on connective tissue.

Disease M Jacts_on.ConnTissue
Infection M dcauses.BactPericarditis
Inflammation M Jhas_loc.Pericardium
M dcaused_by.BactInfection

T: ConnTissDisease
BactlInfection
BactPericarditis

F : Disease M Jhas_loc.ConnTissue L  dacts_on.ConnTissue
Inflammation LC  Disease
Pericardium C  ConnTissue

Table 2.2: An example of a hybrid ££ TBox

Hybrid ££ TBoxes induce certain fixed semantics. This semantics is intro-
duced in the following definition.

Definition 2.2.8. Let (F,7) be a hybrid ££-TBox over Np,im, Nyote and Nge .
A primitive interpretation J is a model of F (J = F) iff O C D7 for every
GCICC D in F. A model Z € Int(J) is a gfp-model of (F,T) iff 7 = F and
7 is a gfp-model of 7.

We conclude this chapter with definition of subsumption decision problem
w.r.t. hybrid ££ TBoxes.

Definition 2.2.9. Let (F,7) be a hybrid ££-TBox over Ny, im, Nyote and Nge .
Let A, B be defined concepts in 7. Then A is subsumed by B w.r.t. (F,T)

(A Cofp.rr B)iff AT C B? for all gfp-models Z of (F,T).

Solving this problem is the main problem of consideration of this thesis.
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Chapter 3

Deciding subsumption in
EL w.r.t. hybrid TBoxes

This chapter is dedicated to construction of a decision procedure for subsump-
tion problem in ££ w.r.t. hybrid TBoxes. to that purpose, we devise a proof-
system in Section 3.1 whose soundness and and completeness are shown in
sections 3.2 and 3.3, respectively. Coincidence of subsumption relation and
provability will lead to a tractable decision procedure in Section 3.4.

3.1 Calculus

Suppose that a hybrid ££-TBox (F,T) is given, and one has to decide wether
subsumption A C B follows from the given hybrid TBox. As mentioned before,
a Gentzen style calculus will be introduced that will eventually lead to a decision
procedure for subsumption problem w.r.t. hybrid ££-TBoxes. To this purpose,
we define relations C,, for every n > 0 on subconcepts occurring in (F, 7).
Therefore, consider the rule system HC (Hybrid ££ Tbox Calculus), given in
the Table 3.1.

Here, as mentioned, relation C,, is defined for n € N, and ¢, 1, p and 6 will
range over the subconcepts that occur in (F,7). We use notion of sequent to
denote expressions of the form ¢ C,, ¢, where ¢ and ) are some subconcepts
occurring in (F, 7T ), and we refer to them as the left and right-hand side of the
sequent, respectively.

Derivations of sequents in HC are defined in a standard manner.

Definition 3.1.1. (Proof tree)

1. Every instance of the rules (Ax), (Top) and (Start) is a root of a one-
element proof-tree.

2. Let

n|=
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PC, T (Top)

P, p

¢En @ (Ax)
oL, p

PN Epp (AndL1)

¢Cnp 9C,0
¢C,pnd (AndR)
PEn¥
Jr.¢ T, Irap (Ex)
¢ Co (Start)
XC,v (DefL)
YEnox
Y Enpr X (DefR)
PpCna BLE, 9
60 (Concept)

oMY Enp  (AndL2)

for X =¢x €T

for X =¢x €T

foraC e F

Table 3.1: Rule system HC
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be an instance of some of the rules (AndL1), (AndL2), (Ex), (DefL) or
(DefR). If there is a proof tree P with the root R, then

is a proof tree with the root S.

3. Let
Ri Ry

S

be an instance of some of the rules (AndR) or (Concept). If there are two
proof trees P; and P, with roots Ry and Ra, respectively, then

\p}/ \7)}/
R, Rs
S

is a proof tree with the root S.

Definition 3.1.2. Sequent ¢ C,, 1 is proven if there is a proof tree with the
root ¢ T, . We say that ¢ and v are in relation C,,, or we simply write
$ Cn 9.

Also, ¢ E ¥ will denote the claim that ¢ C,, ¥ can be derived for all n € N.

In Table 3.1 we recall the example of what could be a small real-life hybrid
TBox. The derivation below demonstrates how BactPericarditis =,, ConnTiss-
Disease can be derived for every n, therefore, how proof of BactPericarditis C
ConnTissDisease can be obtained.

There are a few characteristics of the calculus HC that should be observed.
First of all, one should notice that the given calculus considers only subconcepts
occurring in the given hybrid ££-TBox (F, 7). It turns out that it is sufficient
to consider only these concepts for the purposes of deciding subsumption. This
fact will be shown in section on the completeness of the calculus, where we will
refer to Proposition 2.2.3. Notice also that for the Ty, every concept description
is subsumed by every other concept description. As n increases, some of the
concept descriptions stop being in C,, relation. One can also easily see that
¢ T, ¥ implies ¢ C,, ¥ for all m < n (proof goes by induction on derivation
of ¢ T, ), i.e. mapping n —L,, is monotone. Further more, C,, is defined on
a finite set, hence there is a fixpoint relation C,,, such that for all n € N and
all subconcepts ¢ and v holds: n > ng implies: (¢ C,, ¢ iff ¢ T, ¢). As a
consequence, ¢ T, v is decidable, even more, it will be shown that this decision
procedure is polynomial.

Before doing so, in the remaining part of this section, we analyze some of
the properties of the proofs in HC.
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T: ConnTissDisease
BactInfection
BactPericarditis

Disease M Jacts_on.ConnTissue
Infection M dcauses.BactPericarditis
Inflammation M Jhas_loc.Pericardium
M dcaused_by.BactInfection

F : Disease M Jhas_loc.ConnTissue C  Jacts_on.ConnTissue
Inflammation L Disease
Pericardium T ConnTissue
(Ax) (Ax)
C C
InflC,, Infl DC, D (Concept)
Infl C,, D (AndL1)
Infilm3hPC, D b (AndR) (Az)
Inflm 3hl.P C,, DM 3hl.CT " Jao0.CT ,, Jao.CT (© )
a Infl 151 P C, Fa0.CT () e oneep
nfl 1 5h1P S, DN Ja0CT ) o "
Inflmm3hl.P M 3cb.BI C,, DM 3Ja0.CT (anL)
BP L, D1320CT [ €
BPC,.; CTD c
(Ax) (Ax)
C C
InflC,, Infl DC,, D (Concept)
Infl C,, D (AndL1)
a:  Infin3hlPLC,D "
(Ax) (Ax)
C C
PCwP CTEaCT (o
PLC .
Jhl.P C,, 3hI.CT (AndL2)

b: Inflm 3hl.P C,, 3nI.CT

Table 3.2: An example of a derivation in HC. Abbreviations used: CTD - Con-
nectionTissDisease, D - Disease, CT - ConnTissue, Bl - BactInfection, BP - Bact-
Pericarditis, Infl - Inflammation, P - Pericardium, ao - acts_on, hl - has_location.
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We begin by introducing an important relation I. This relation denotes
derivations that only operate on the left-hand side of the relations ¢ C 1. This
rather technical relation will serve as an important tool in analyzing proofs in
the defined calculus.

Definition 3.1.3. We write ¢ IF ¢ to denote that judgement ¢ C,, ¥ can be
derived using rules (Ax), (AndL1), (AndL2), (DefL) and (Concept) for some n.

Notice that if ¢ C,, ¢ can be derived using rules (Ax), (AndL1), (AndL2),
(DefLl) and (Concept) for some n, then ¢ C,, ¢ for all n € N.
The following lemmas characterize, to a certain extent, properties of some of
the proofs in the HC calculus.

Lemma 3.1.1. If ¢ IF ¢ and ¥ T, p then ¢ C,, p.

Proof. By induction on derivation of ¢ I 1.

e Base case: the last rule applied - (Ax) ¢ I ¢
here ¥ = ¢, hence ¥ C,, p implies ¢ C,, p

e Suppose the claim holds for all ¢, s.t. there is a derivation P of
¢ IF 1 of the depth n or less.

1. ¢ = ¢1 Mo, and the last rule applied is (AndL1) (depth of P’ is

not greater that n):

(bl En 1/1
P12 En ¥
since 1 C,, p, by the induction hypothesis (IH) ¢; C,, p, hence
¢ C,, p can be derived using (AndL1)
2. ¢ = ¢1 Mo, and the last rule applied is (AndL2) (depth of P’ is

not greater that n):

¢2 En 1/1
¢1 r ¢2 En 1/)
since ¥ C,, p, by (IH) ¢2 C,, p, hence ¢ C,, p can be derived
using (AndL2)
3. ¢ = X and the last rule applied is (DefL) (depth of P’ is not

greater that n):

XCho
¢Xgn'(/}

with X = ¢x € 7. Since ¢ T, p, by (IH) ¢x =, p, hence
X C,, p can be derived using (DefL)

(AndL1)

(AndL2)

(DefL)
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4. the last rule applied is (Concept) (depths of P’ and P” are not
greater that n):

P I
¢ E"L (e /6 ETL ,l/)
PCn

with « C 3 € F. Since ¢ C,, p, by (IH) 8 C,, p, hence ¢ C,, p
can be derived using (Concept)

(Concept)

O

Lemma 3.1.2. Suppose that n > 0.
1. 05, Y1 Mg iff 0 Ty 1 and 0 &, s,
2.0C, 11 X iff 0 C,, ox.

In addition, it will hold 0 T ¥1 M iff 0 Ty 1 and 0 C s, and

Proof. The if directions are immediate using appropriate proof rules (AndR)
and (DefR), respectively.

For the only if directions we proceed by induction on derivations. The
idea is that the only rules applicable are among those rules that define
IF, where inductive argumentation comes through, or else the rule which
decomposes the formula on the right hand side.

1. By induction on derivation of 8 C,, 11 M.

e Last rule used: (Ax) - induction base

Y1 Mapg By 91 M by implies ¢y Maby B, 9y, for i = 1,2

usinf (Ax) and (AndLi)
e Last rule used: (AndR)

ggnwl egnd&

0, bangy )
immediate
e Last rule used: (AndLi) (for ¢ = 1,2)
; C [
OiLn 11V gpari)

01 M6z T, 1 My

(IH) yields 6; C,, ¥ and 6; C,, 19, hence, using (AndLi) 6; N
0 T ¥1 and 01 M0y £, Yo
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e Last rule used: (DefLl) (0 = X)

dx T 1Mo
X En 1;[}1 r 7/]2
(IH) yields ¢x C,, ¥1 and ¢x C,, 19, hence, using (Defl) X C,,
1 and X T, 1o
e Last rule used: (Concept)

(DefL)

0Cna  BEntiMiy
0 o 1 M
(IH) yields 8 C,, ¥ and 8 C,, ¥, hence, using (Concept) 6 C,,
1 and 0 C,, )s.
2. Analogous as for 1. :
o (Ax) XL, X

(Concept) with a C 3 € F

ox Cp dx
X En ¢X (DefL)
e (DefR)
0 En ¢X
I % Eo X (DefR)
immediate
e (AndLi)
=ntl (AndLi)

01102 Cppr X
(IH) yields 6; C,,+1 ¢x, hence 61 M0y C,, 41 ¢x can be derived
using (AndLi)
o (DefL)

¢Y En—&-l X

Y o X (DefL)

(IH) yields ¢y T, 41 ¢x, hence Y C,, 41 ¢x can be derived using
(DefL)
e (Concept)

9 EnJrl « ﬁ EnJrl X
0 En-}-l X

(Concept) with a CE 3 € F
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(IH) yields 8 C,,41 ¢x, hence 8 C,, 11 ¢x can be derived using
(Concept).

The remaining part of the lemma is now easy to show. Indeed, 6 C,
1 Mg iff 0 C,, 1 Mapg for allm > 0iff 0 C,, ¢p1 and 0 &, ¥s, for all n > 0
iff 0 Co 91 and 0 T o. Similarly, § T X iff 6 C,, 41 X foralln > —1
1H’0§n¢xf0ralln201ﬁﬂgoo¢x O

Lemma 3.1.3. Suppose that n > 0.

0C, Iryy iff  there exist o, B, p such that 0 C,, o, B IF Ir.p and p C,, ¥
for some subconcept p of either the T-Bozx, 6, or of Ir.ap,
and o and B being such that either « = 3 =10
or a C 3 being a GCI from F.

Proof. For if direction one has to use (Ex) rule on p T, v in order to ob-
tain Jr.p C,, Ir.p, then Lemma 3.1.1 to conclude 8 C,, Ir.¢p and finally
(Concept) rule to get the claim.

For the only if directions we proceed by induction on derivation 8 C,, Jr.1),
where we distinguish cases depending on the last rule applied:

e (Ax) - base of induction 3r.¢p C,, Ir.y) Here 6 == and p =1
o (Ex)
pEn

Jr.p T, Irap (Ez)

Immediate. Here 0 = a = =3dr.p and p= ¢
e (AndL1)

(91 En 3’/"(/)
0, M0, C, Irap
(IH) can yield 6; I+ 3r.p, p T, v, when the claim follows, since

61 M6y I 3r.p can be derived using (AndL1). Alternatively, (IH) can
yield 6, C,, «, B IF 3r.p, p C,, ¥, and this time claim follows again

by (AndL1).
N

e (AndL2)
92 En H’I"lb

01 |_|92 En E'T"L/)

(IH) can yield 6y IF Jr.p, p C,, ¥, when the claim follows, since
61 M0 Ik Jr.p can be derived using (AndL2). Alternatively, (IH) can
yield 02 C,, «, B IF JIr.p, p E,, ¥, and this time claim follows again
by (AndLi).

(AndL1)

(AndL2)
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o (Defl)

XC, 3y DD

(IH) can yield ¢x IF 3r.p, p C, 9, when the claim follows, since
X I 3r.p can be derived using (DefL). Alternatively, (IH) can yield
ox Cy a, B 3r.p, p E,, 9. Again, claim follows applying (DefL).

e (Concept)

0C,y O0C,dry
0 C, dry

(Concept) withyC § € F

(IH) yields § C,, «, 8 Ik Jr.p, p C, 9, where §,« and S may be
identical. Now, the claim follows since 8 C,, o can be derived using
(Concept) on 0 C,, v and ¢ C,, «.

All the other cases are not applicable. 0

A simple corollary of the previous lemma is the following one.
Lemma 3.1.4.

0 Co Irp  iff  there exist o, B, p such that 0 Eo, «, B1FTr.p and p T ¥
for some subconcept p of either the T-Box, 0, or of dr.1,
and o and B being such that either « = 3 =0
or a C 0 being a GCI from F.

Proof. Having 0 T, 3r.1p means that § C,, Jr.¢p holds for every n. Previous
lemma furnishes «, 8 and p such that 6 C,, a,3 I Ir.p and p C,, ¢ for
every such n. However, there is only a finite choice for a, 8 and p (they are
subconcepts occurring in the TBox), thus there is a combination of «,
and p for which 8 C,, «, 8 IF Jr.p and p C,, ¢ holds for infinitely many n.
By the definition of C, and the fact that C,, 11 CC,,, for those «, 8 and p
it will hold 6 C o, B IF Jr.p and p C . 0

3.2 Soundness

It was announced before that provability of the relation C., will decide sub-
sumption with respect to a hybrid TBox. In order to prove that, soundness and
completeness of HC have to be shown. In this context, soundness means that
if relation ¢ T, 1 is provable, then ¢ C 1 has to be valid in greatest fixpoint

27



semantics that is defined for a given hybrid TBox. Completeness means that
for every valid subsumption ¢ C 1 modulo appropriate semantics there has to
be a proof of ¢ C, 9 in the given calculus.

The standard idea for showing soundness of a calculus by showing validity
of the axioms and soundness of the rules fails in this case. The reason is simple.
Namely, the rule (Start) is not valid! The ’problematic’ rule is the (DefR) rule
that connects derivations of different ’generations’ of C,, relation, =,, and T, 41,
and which can lead a bottom-up derivation to the undesirable (Start) axiom.
Hence, another approach has to be used.

Usually, when analyzing calculi, one is interested in CUT-elimination. CUT
rule in HC calculus actually is the claim about the transitivity of C,,, i.e. when-
ever there is a proof of ¢ T, ¥ and ¢ E, 6, there will be a proof of ¢ C, 6.
CUT-elimination is a strong claim, and a crucial feature of many calculi in
standard proof theory that provides subformula property, analyticity of a cal-
culus, completeness, interpolation theorems, normalization of the proofs, etc.
However, the fact that only subconcepts occurring in the TBox can occur in
derivations in our case makes most of those features unnecessary. By this, we
mean that when performing bottom-up construction of a proof, there is always
finite choice of premises in each step of the construction. This is not the case
in bottom up proof construction in calculi for classical logic with CUT, for in-
stance. In the case of HC, the subformula property of the calculus (concepts in
the premises are subconcepts of the concepts in the conclusion) is already lost
with the rule (Concept) that introduces new concept descriptions. Notice also
that adding the CUT rule into HC system would not change the set of provable
relations. We will show completeness of the HC calculus, so whenever there is
a proof of ¢ Co ¥ and ¢ C, 0, there will be a proof of ¢ C, 0, due to the
transitivity of set-inclusion.

The following lemma shows soundness of IF relation.

Lemma 3.2.1. Let Z be a greatest fizpoint model of a hybrid TBox (F,T). If
@ I+ then I(p) CI(3).

Proof. Again, proof is done by induction on the derivation of ¢ IF . We
distinguish cases depending on the last rule applied.

1. (Ax) - base of induction: ¢ IF ¢ implies Z(¢) C Z(¢)

2. (AndLi) (for i =1,2):

¢1ﬂ¢2 End)

induction hypothesis yields Z(¢;) C Z(v), and since Z is a model,
one has Z(¢1 M ¢2) C Z(¢:) € Z(¢)

(AndLi)
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3. (DefL):

N

¢X Enw
X Cptp

the induction hypothesis yields Z(¢x) C Z(), and since Z is a model
of T,and X = ¢x € 7, one has Z(X) = Z(¢x) C Z(¥)

4. (Concept):

(DefL)

pCpa  BLLY
¢ Tyt

induction hypothesis yields Z(¢) C Z(«),Z(8) C Z(¢), and since 7 is
a model of F, and o« C 8 € F, one has Z(¢) C Z(«a) CZ(B8) C Z(¥).

(Concept) with a C 8 € F

O

So far, only the relation IF is known to be sound in the sense of the previous
lemma. The following two lemmas extends this property to important subsets
of the relations C,,, namely to those pairs where second component is a concept
description that does not contain defined concepts, i.e. it has no subconcept
that is element of Ngey. Notice that in this calculus it does not hold that
0 C, Piff - P, with P € N, As an example, consider the TBox (F,T),
F={3r.PC Q}, T ={X = P}. Then, there is single derivation of Ir.X C,, @:

(Az)
7)]; E’; I; (DefL)
5xc, P P geg WY
X, 0 (Concept)

However, it is obvious that 3r.X ¥ @, due to the usage of the rule (Ex).

Lemma 3.2.2. Suppose n > 0. Let o be a concept description formed using
only concepts from Nprim, i.e. o s a concept description that does not have
any subconcept from Ngey. Then the proof tree for 0 T, o will only include
expressions of the form ¢ T, B, with B being a concept description over the
concepts from Nppim only.

Proof. Proof is done by induction on derivation of 8 C,, . We distinguish cases
depending on the last rule applied, which can be one of the (Ax), (Top),
(AndL1), (AndL2), (DefL) and (Concept). Base of the induction are cases
(Ax) and (Top).
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e (Ax) o T, a. There is nothing to prove, since obviously proof for
0 C,, « contains no sequents with right-hand sides having subcon-
cepts from Ngcs.

e (Top) 6 C,, T. Again, there is nothing to prove, since obviously
proof for 8 C,, o contains no sequents with right-hand sides having
subconcepts from Ngyef.

e (AndLi) (for i=1, 2)

N4

97; En 37“’(/J

(IH) can be applied to the premise of the (AndLi) rule to conclude
that P, and therefore entire proof of 6 C, « contains no sequents
with right-hand sides having subconcepts from Ng.y.

o (DefL)
&

(bX Ena

XC. o (DefL)

(IH) can be applied to the premise of the (DefL) rule to conclude
that P, and therefore entire proof of 6 C, «a contains no sequents
with right-hand sides having subconcepts from Ng.y.

e (Concept)

Pl 7)//
0Cp = .
— H’YE e, J a (Concept) with y C 6 € F

v is a subconcept occuring in F, thus it contains no subconcepts
from Ngcs. Hence, (IH) can be applied to both of the premises of
the (Concept) rule to conclude that P’, P”, and therefore entire
proof of # C,, a contains no sequents with right-hand sides having
subconcepts from Ng.y.

O
Lemma 3.2.3. Suppose n > 0. Let I be a greatest fixpoint model of a hybrid
TBox (F,T) and « be a concept description formed using only concepts from

Nprim, %.€. o is a concept description that does not contain any occurrence of
a concept name from Ngey. If 0 T, «, then 1(0) C I(a).
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Proof. By Lemma 3.2.2 proof of # C,, a contains no sequents with right-hand
sides having subconcepts from Nge¢. In particular, the proof contains no
application of the rule (DefR). This means that the proof for § C,, « has
only instances of (Ax) and (Top) as leafs. Indeed, absence of the (DefR)
rule implies the conclusion that all the rule applications from the proof
have the same relation C,, in conclusion as well as in the premises, i.e. it
is impossible to regress to C,,, with m < n, in bottom-up construction of
the proof tree. Thus, so every branch of the proof tree for 8 C,, o has to
end with a sequent with the same C,, relation.

Since all rules of the calculus except (Start) are sound in the usual sense,
the same approach to proving soundness as the one used in Lemma 3.2.1
can be applied in this case. In other words, given a model Z of the hybrid
TBox, simple inductive argument proves that for every p C,, £ in the proof
tree that has only (Ax) and (Top) instances as leaves, Z(p) C Z(£). In
particular, I(0) C I(«). 0

Finally, previous lemmas allow for a proof of soundness to go through.

Theorem 3.2.1. (Soundness) If 0§ o, ¢ then Z(0) C Z(¢) for any greatest
fizpoint model T of a hybrid EL-TBox (F,T).

Proof. We want to show that for all subconcepts 6, ¢ of the hybrid £L£-TBox
(F,T) and any model Z of (F,7T) we have

0 Coo ¢ = Z(0) C Z(9)

Equivalently, we may try to prove that for each ¢ and interpretation 7

one has

(U z0) c1(9)

0C ¢
Writing J () := U, Z(0) for the left hand side this would follow if we
can prove that J satisfies (dis)equations (1)-(5) form the Definition 2.2.6
of greatest fixpoint semantics. We restrict here 7 to have only subconcepts
occurring in the TBox as a domain. This is because by its definition, J
would interpret all non-subconcepts as &, and this may contradict the
conditions of the Definition 2.2.6. However, due to the Proposition 2.2.3,
this restriction of J to subformulae does not impose a problem since we
can restrict our attention to the subconcepts occurring in the TBox.

Proofs of J fulfilling (1)-(5) from the Definition 2.2.6 are given below.

e (1): Since T C, T by the rule (Ax), J(T)=Z(T)

e (2): Since P C, P by the rule (Ax), J(P) 2 Z(P). Lemma 3.2.3, on
the other hand, states that, for any ¢, ¢ C, P implies Z(¢) C Z(P),
hence J(P) is union of subsets of Z(P), therefore J(P) C Z(P).
Combined with the opposite direction, one has J(P) = Z(P).
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e (3): This disequation follows immediately from Lemma 3.1.2. Indeed,
if x € J(X), then z € Z(0), for some 6 s.t. § T, X. But then, by
Lemma 3.1.2, 6 C, ¢x, therefore x € J(¢x), i.e., T(X) C T (dx)

o (4) This equation follows immediately from Lemma 3.1.2. For some x
of the domain, it follows x € J (¢ M) iff z € Z(6), with 6 Co, ¢ M.
According to the lemma, the last is equivalent to z € Z(6), with
0 Co ¢ and 0 C, 9, which is equivalent to x € J(¢) and z € J(v),
o 2 € J(6) N T ()

o (5) If x € J(3r.¢) then by definition of J there exists a formula 6
such that 8 C, 3r.¢ and x € Z(6). By Lemma 3.1.4, this means that
we can find «, 8 and p such that 6 C o, G IF Ir.p and p C ¢, with
a £ G being a GCI of F or @« = = . Concept « is a subconcept
occurring in F, thus Lemma 3.2.3 can be applied to obtain € Z(a),
and therefore, z € Z(3). Lemma 3.2.1 yields € Z(3r.p) so there
exists y € Z(p) with Z(r)(z,y). Since p Co ¢, y will belong to J(¢),
therefore, if x € J(3r.¢p) then z € {z | Iy € T(¢).Z(r)(z,v)}.
Conversely, if z € {z | Iy € J(¢).Z(r)(2,y)}, then there is y € T (¢)
such that Z(r)(x,y). This means that there is a concept 6 such that
y € I(0), 0 Coo ¢ and Z(r)(x,y). It is clear that § T ¢ implies
Ir.0 Co Ir.¢ (for every n, derivation of § T, ¢ can be extended
to a derivation of 3r.0 T, Jr.¢ by applying (Ex)), thus the last
statement implies 2 € Z(3r.0) and Ir.0 C, Ir.¢. This is exactly the
claim z € J(3r.¢).

O

It is now obvious why it was important to characterize the proofs in the way it
was done in Lemma 3.1.2 and Lemma 3.1.3. Probably the most problematic part
of the proof was handling the existential restriction case, and characteristics of
the relation |- came into play here, as well as the feature of derivations with
concepts over Npyim on the right-hand side, as described in Lemma 3.2.3.

3.3 Completeness

The proof that will be presented uses most of the properties shown before.
The idea is to consider an interpretation that uses subconcepts occurring in
the TBox (with the subsumption query added) as the domain and interprets
a concept description by the set of provably subsumed subconcepts. The fact
that this is well defined interpretation will yield completeness proof.

Theorem 3.3.1. (Completeness) If A C B then A C B.

afp.7.T
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Proof. Define:

Dz = subconcepts occurring in the TBox
Z(r)(¢,) < ¢ Lo aand S IF Ir.e) for some a C § being a GCI in F,
ora=0=¢
{Y|Y E ¢}, if ¢ is a subconcept
occurring in (F,7)
I(¢) = Z(d1) NZ(g2), if ¢ does not occur in (F,T)
and ¢ = ¢ Mhy

{9] there is 0 € Z(¢1)  if ¢ does not occur in (F,7T)
such that Z(r)(v,0)}, and ¢ = Ir.ah

We proceed to show that Z is a gfp-model of the hybrid TBox (F, 7).

In order to show that Z is a gfp model of (F,7) we need to prove that 7
is a well defined interpretation, that it is a descriptive model of 7 and F,
and that it is the gfp model of 7.

In order to show that 7 is an interpretation, it has to be shown that indeed:

o T(p1Mepo) = I(d1)NZI(d2): If ¢1 Mo is not a subconcept occurring in
the Thox, claim follows by definition of Z. Assume now that ¢ M ¢o
occurs in (F,T). For some 6 of the domain, it holds that 8 € Z(¢pM))
iff 0 Coo ¢ M. From Lemma 3.1.2, the last is equivalent to 8 T, ¢
and 6 T v, which is equivalent to § € Z(¢) and 6 € Z(¢), or
0 €I(¢) NI(¥)

o I(Fr.¢1) = {¢ | I € Z(¢1) : (¢p,&) € Z(r)} : If Ir.¢y is not a

subconcept occurring in the Thox, claim follows by definition of Z.
Assume now that Ir.¢y occurs in (F, 7). If o € Z(Ir.¢1) then ¢ C
Jr.¢1, so by Lemma 3.1.3 there exist «, and p such that ¢ T,
a, B IF dr.pand p C,, ¢1, with o C 3 being a GCIL of F or a« = § = ).
Again, as in the proof of Lemma 3.1.3 may furnish a different «, 8
and p for each n, for a global one it suffices to take one (of the finitely
many possible) that occurs for infinitely many n. This means that
Z(r)(¢, p)and p € Z(¢y) as required.
Conversely, if Z(r)(, p) and p Co ¢ for some 3 and p, then there
exist «, 8 and p such that ¥ C, «o,8 IF dr.p p T, ¢1, with a C 3
being a GCI of F or @« = 3 = 4, for every n. If a = 8 = ¢, we
get ¢ I Ir.p, and then ¢ T, Ir.¢y by (Ex) and Lemma 3.1.1. On
the other hand, if & C 3 is a GCI of F, then § IF 3r.¢y by (Ex) and
Lemma 3.1.1, and then ¢ C., 3r.¢y by (Concept).

In order to show that Z is a descriptive model of 7, we have to show that
I(X) =TI(¢x) for every definition X = ¢x of 7.

If0 € Z(X), then § C, X. But then, by Lemma 3.1.2, 0 T, ¢x, therefore
0 € I(¢x), i-e., Z(X) C I(¢px). Converse is also true, i.e., if 0 € Z(¢x),
then 0 Co ¢x and Lemma 3.1.2 yields § T, X. Hence, 6 € Z(X) and
T(px) C T(X).
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Further more, the interpretation Z satisfies F. Indeed, if ¥ C ¢ € F,
and « € Z(), one has a@ T, ¢ and ¢ T ¢, which gives o T, ¢ using
(Concept). Therefore o € Z(¢), i.e 9 C ¢ € F implies Z(¢) C Z(¢).

It remains to show that 7 is indeed the greatest interpretation. To show
this, assume that J is a function from subconcepts occurring in (F,7T) to
subsets of Dz that also satisfies (1)-(5) and coincides with Z on elements
of Nge¢. By Proposition 2.2.3, it suffice to show that J(¢) C Z(v) for all
subconcepts ¢ occurring in the TBox. In other words, if ¢ € J(¢) then
¢ C, ¢ for all n € N. We show this by induction on n and a subsidiary
induction on .

o If ¢y =P, J(P) =ZI(P) by assumption on 7.
o If y = T then J(P) = Z(T) = Dz

o If ¢p = o)1 M1y then ¢ € J(¢;) and we may inductively assume that
¢ Ty 9 50 ¢ Ty, ¥ by (AndR).

e If ¢y = Jrap; then there exists a formula p € J(¢1) and «, 8 such
that ¢ Coo a, B IF r.p, with « C € F or a = § = ¢. The
subordinate induction hypothesis applied to ¥; yields p C, ; and
thus 3r.p C,, Ir.4h; by rule (Ex) and thus 6 C,, ¢ by Lemma 3.1.1.
One more application of (Concept) gives ¢ C,, ¥

e If finally, ¥ = X we distinguish two cases. If n = 0 then ¢ C,, ¥ by
(Start). Otherwise, n =n'+1 and ¢ € J(¢x) since J(X) C T(¢px).
The outer induction hypothesis yields ¢ =, ¢x and we obtain ¢ C,,
X by (DefR).

Finally, if A ngp, FT B, since 7 is indeed a greatest fixpoint model for
the hybrid TBox, it has to be Z(A) C Z(B), i.e. {¢ | (CEx A} C {n |
17 Coo B}. In particular, A € {{ | ( Co A}, hence A € {n | n Co B},
which gives A C, B. 0

3.4 Decision procedure

Previous sections provided tools for developing a decision procedure for the
subsumption problem. The decision procedure will compute the relation C,
i.e. it does not only decide a particular subsumption relationship, it also provides
all pairs ¢,1) such that ¢ T, 1. An important fact that enables polynomial
runtime is that we are able to restrict our attention to the subconcepts occurring
in the TBox. Consideration of all possible subsumption relationships between
concepts that can be built form the subconcepts of the TBox is, of course,
exponential, since one has to deal (among other things) with the power set of
the set of all subconcepts.
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Theorem 3.4.1. The relation ngp T (subsumption under the hybrid seman-
tics) is decidable in polynomial time.

Proof. Completeness of HC reduces deciding of C 7 relation to deciding

fp, 7,
of Co. As already mentioned, one has ;njégn, SO one can compute
these relations by iteration. We maintain two tables of polynomial size to
hold the relations C,, and C,,_1. Size of these tables is quadratic to the
number of subconcepts occurring in the hybrid TBox, thus polynomial
(quadratic in the size of the TBox). Initially, we put n» = 0 and set
C,. to be the total relation in view of rule (Start). If relation C,_; has
already been computed we compute T, from it by iteration, deciding
(in polynomial time) all of the ¢ C,, , and so forth. For every n, C,
can be computed by bottom-up iteration or dynamic programming in the
following way: one sets up an array A, [¢, 1] that contains a boolean entry
for every pair of subconcepts ¢ and . Initially all entries are set to 0.
For every instance of the proof rule with premises o; C,, 7;, (0 <14 < 3)
and the conclusion ¢ C,, ¢ , with A, [0;, 5] = 1, set A,[¢, 9] to 1. Also, if
¢ Cno1 &x, set A[¢, X] to 1. First non-zero values in A,, will be set form
the instances of (Ax), (Top) and (DefR). One stops when the procedure
stabilizes. Notice that for computing A, one needs to know only the
values form A,_;, therefore, as mentioned, it suffice to store only two
arrays for n and n — 1. Number of operations needed for computing C,,
(stabilized A,,) is polynomial in the size of A,. Indeed, the number of
different instances of rules in HC is polynomial in the size of the TBox,
since every rule contains at most 4 subconcepts occurring in the TBox,
and total number of subconcepts is linear in the size of the TBox. Further
more, testing for premises of a rule instance can be done in cycles, and
the number of these cycles is bounded by the size of A,,, thus quadratic
to the size of the input. Algorithms for computing C,, are again discussed
in Chapter 5.

After computing C,, (A,), we proceed with T, 1. As soon as we have
reached an ng for which C,, ;=C,, we may stop since for such ngy one
has Coo=C,, . Butif T, ;CC,, then T, must contain at least one pair
less than C,, which implies that ng exists and is polynomial in 7| + |F|.
The overall time complexity of the procedure is thus bounded by . This
implies a polynomial runtime of the decision procedure. 0
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Chapter 4

Proof-theoretic
computation of least
common subsumer in £L

w.r.t. hybrid TBoxes

This chapter describes a proof-theoretic technique to calculate the least-common
subsumer of two defined concepts with respect to hybrid TBoxes. Notion of
least common subsumer w.r.t. hybrid ££ TBoxes is introduced and a method
for computing it is presented in Section 4.1. The correctness of the compu-
tation is shown in Section 4.2. Through entire chapter we use proof-theoretic
techniques developed in the previous chapters to show many of the properties of
the algorithm, and its correctness. However, soundness and completeness of the
devised calculus HC enables us to use reasoning on the semantics if necessary,
and semantical proofs will be given it will in several occasions.

4.1 Computing least common subsumer in ££
w.r.t. hybrid TBoxes

We start by giving formal definition of the notion of an extension/restriction of
an interpretation, that will be used in this chapter.

Definition 4.1.1. Given an interpretation Z = (Dz,Z(+)) defined on the set
of primitive concepts Nprim, the set of role names N, and a set of defined
concepts Nger, we say that an interpretation J = (Dz, J(-)) defined on the set
of primitive concepts N, ;,,, the set of role names N/, and a set of defined

concepts Nr’ief’ is an extension of Z if Npyim C Ni’n,im, Naey C N(’ief and N,ge C

N! .. and J(z) = Z(x) for all x in Npyim, Nyore and Ngeg. In this case we say
that Z is a restriction of J.
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Notion of extension of an interpretation given here is general, and we will,
if not stated else, consider the extensions/restrictions where Ny = N/ ;...
We proceed by introducing the notion of a conservative extension of a hybrid

EL TBox.

Definition 4.1.2. Given a hybrid ££ TBox (F,7’) we say that the hybrid
TBox (F,T") is a conservative extension of (F,T") it 7' C T"”, and 7’ and
7" have the same primitive concepts and roles.

One important property of conservative extensions of hybrid TBoxes is given
in the following lemma:

Lemma 4.1.1. Let (F,T) be a hybrid TBox, and (F,T') its arbitrary conser-

vative extension. Then ¢ Eg"ﬂ Y iff ¢ Eg’T/) Y, for all subconcepts ¢,
occurring in (F,T).

Proof. Assume ¢ Eg = 1. Every derivation of ¢ E%}—’T) 1) is also a derivation
of ¢ E%}-’T ) ¥ (modulo renaming of the superscripts), and thus ¢ gf,f’”’ )

Y.

Assume now ¢ Q()f ) 1. Then, every derivation of ¢ gEf’T ) 1 does not
involve concepts from N g; f \ N, g; 7+ therefore it can be transformed to a

derivation of ¢ E%}-’T) 1 merely by changing the superscripts from (F,7")
to (F,T). Indeed, looking at the derivations in a bottom-up fashion, the
only rules that may introduce concepts that do not occur in conclusions
are (DefR), (DefL) and (Concept). However, in all three cases, the only
concepts that are introduced are those over Npyim, Nyroie and N, 3; Iz ie.,

concepts form Ng;,f \Ng;f cannot occur in the premises. Now, ¢ c&D W

follows from ¢ E%}-’T) ) for every n. 0

Previous lemma has an important corollary that for a hybrid TBox (f , ’j\'),
its conservative extension (F,7’), and concepts ¢ and ¢ form (F,T), it holds
(F,T)E ¢ C¢iff (F,T') = ¢ C ¢. Thisis due to the fact that (F,7) = ¢ C

iff ¢ Eg 7 1 and the previous lemma. Notice that the same conclusion could
be obtained by semantical argumentation from the definition of conservative ex-
tensions. Still, we chose to employ HC calculus instead in order to demonstrate
its usage.

The following definition introduces notion of least-common subsumer in the
hybrid setting.

Definition 4.1.3. (Hybrid lcs) Let (F,77) be a hybrid ££ TBox and X,Y €
Ng;lf. Let (F,73) be a conservative extension of (F,7;) with Z € Ngjf. Then
Z in (F,7T3) is a hybrid least-common subsumer (lcs) of X, Y in (F,7T;) iff the
following conditions hold:
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1. X Cyfp.F 1o ZandY Cyfp. 7 To Z; and

2. if (F,73) is a conservative extension of (F,72) and D € N;;‘”’f such that
X Cgpprm Dand Y Egpp 7y D then Z Egpp 77y D.

Notice that concept D from the previous definition is an arbitrary concept
defined in some conservative extension (F,73). It would suffice, though, to re-
strict D to be arbitrary concept defined in 73\ 77, i.e. it suffice to consider only
newly defined concepts for testing the condition 2. of the definition above. In-
deed, if we want to test wether Z Ty, 7.7, D for D € N;;lf, we can equivalently
check wether Z Cy¢p 77, Xp, where 74 consists of a definition Xp = D.

Assume now that, given a hybrid TBox (F,7) one wants to know the least
common subsumer of two defined concepts X and Y occurring in a hybrid TBox.
We give a definition of an extension of a hybrid TBox which contains definitions
of lcs of defined concepts occurring in the original TBox.

Before doing so, consider the set S of all subconcepts of concept descriptions
occurring in the TBox (F,7) and consider the sets

E {¢| ¢ € S and there is a r € N, such that Ir.¢ € S},
Npair = {(X)Y)| XY € (Ng;f UE)}, and
G = {¢| ¢ is a subconcept over Ny im and Ny}

Now we define the conservative extension of the TBox as follows.

Definition 4.1.4. Let (F,7) be a hybrid ££ TBox. A conservative extension
(F,Ties) of (F,T) is obtained by adding to the (F,7) definitions

(p,) =01 ...MNON X1 M. NX; M3y (é1,901) M. N I (D, Yim)

for each (¢,v) € Npgir, where:

. 0e{0,....0,) it 470, 0, and 6 € G;
2. Xe{Xy,.,X;} it o= x, T X,
and X € Ng;f;
3. Jr(r,0) € it o7 7, 87 I,
{3r1.(d1,01)s ooy Irm (Doms Y ) and (7,0) € Npgir-

Least common subsumer of two defined concepts X and Y occurring in
the TBox will be newly defined concept (X,Y). Notice that once the ;éf )
relation is computed, computation of the extension (F,7;.s) can be done by a
simple computation in O((|.F| 4|7 |)? * s) steps, where s is total number of pairs
(¢,9) e The algorithm iterates over all combinations for ¢ and 1 and
checks Eg’ﬂ relation for all 6 such that ¢ Eg’ﬂ 0 and v géf’ﬂ 0, for all X
such that ¢ Egj) X and o ;&f’” X, and for all Ir.¢; and Ir.1p; such that
¢ T Ir.gy and ¢ °C7) Irapy. This time complexity is lower than the

one of the algorithm for computing the E(Of D) relation. Therefore, the overall
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time complexity of computation of lcs is dominated by time complexity of the
algorithm for deciding subsumption.

We will show that the definition above provides computation of lcs of two
given concepts, i.e that the least common subsumer of two defined concepts X
and Y occurring in the TBox is the newly defined concept (X,Y). What should
be shown is that conditions 1. and 2. from the Definition 4.1.3 hold for all
(X,Y). In order to do so, we will restrict our attention to those conservative
extensions from the condition 2. for which newly added definitions are of a
certain regular structure, i.e. we will require them to be normalized modulo a
TBozx. Notion of normalized terminologies is introduced in the next subsection.

4.1.1 Normalization of the terminologies

As announced, we will deal with the TBoxes fulfilling certain conditions, namely
the condition of having normalized terminologies (or at least some parts of
terminologies, and modulo a given TBox). Their fixed structure will provide
easier way of showing properties of the TBoxes introduced in Definition 4.1.4.

As defined in [2], we say that the terminology part 7 of a hybrid TBox
(F,T) is normalized if every definition in 7 is of the form:

X = P1 [l P2 M Pm M HTl.Xl M HTQ.XQ M...Mn HTan

Here, P; is a primitive concept or the T symbol, for every i, while X and X;
are defined concepts for every i.

It has been shown in [2] that every terminology consisting of (cyclic) defi-
nitions can be transformed into an equivalent normalized one, which includes
introducing some new concepts. Here we recall the normalization procedure
given in [2] and modify it where necessary.

Assume now that (F,7T) is a hybrid ££ TBox, built over Npim, Nyore and
Ngey. Standard procedure for normalization of the terminology part of hy-
brid £L£ TBoxes consists of three steps. The procedure results in a TBox over
Nprims Nrole and Nc’lef D Ngey which is normalized. Thus, when we say that a
TBox is obtained by normalization of an another TBox, we mean it was obtained
by applying the following:

e NT1: put 7/ =7 and Néef := Nger. Repeat until no longer applicable:
find a definition from 7’ of the form:

X=¢1M...Ngp_1 N Irap M pgr N ... Ny,

where ) is not a defined concept from N/, g It 7T’ contains a definition of
the form

Z =,
replace X = ¢1 M ... ¢p—1 NI M ppq1 M ... 1 @y, With

X=¢1 M1 NI Z N Gpp1 M. Ny
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Otherwise, add to 7 the definition

Z=4,

and add Z to Nc/lef' Also, replace X = ¢1M...Mpg_1M3IrapNpy1M...M oy,
with
X = gf)l M...Mn ¢k_1 Adr.Z M ¢k+1 M. 1 ¢n7

e NT2: identify disjoint classes C'x of mutually equivalent defined concepts

in the following way: search the TBox for the sequences of the form X =
X1, X9,y Xp—1, X, = X, where X, ;1 occurs as a conjunct on the top
level in the definition of X;. For such X; and X, where i < j we say
that they are in ~ relation. Relation ~ is an equivalence relation on Ng.y,
and C'x is the equivalence class containing X. Then, all X; are mutually
equivalent and belong to the same class.
For each of the classes Cy = {Y1,..., Y, }, let Dy be the set off all concept
descriptions that occur as conjuncts at the top level in definitions of some
of the elements of Cy. Let also {¢1,...,¢x} = Dy \ Cy (therefore, ¢;
is either in N(’ief and not in Cy, or in Nppipm, or of the form Ir.Z, with
Z € Ng,z). Then, replace the definitions of all of the Y; by

Yi=¢p1 M. 1 k.

e NT3: Proceed now as follows: repeat until there is no element from N/, f
occurring as a conjunct at the top level of a definition form the TBox:
find the defined concept V' of N, ¢ for which no element of N, e § occurs
in its definition on the top level (and such concept exists!) and replace all
the occurrences of V in 7 by its definition.

Notice that NT1 serves to remove complex concept descriptions and primitive
concepts from existential restrictions. It can be carried out in linear time in
the size of the TBox, since the number of introductions of new definitions is
bounded by the number of existential restrictions. Similarly, size of the new
TBox is linear in the size of the original one, and NT1 yields a terminology with
definitions that are conjunctions of primitive and defined concepts, and concept
descriptions of the form 3r.W, where W is defined concept.

Consider now so called dependency graph of a TBox, a directed graph with
defined concepts as nodes such that there is an edge from X to Y iff Y occurs
as a conjunct at top level conjunction of the definition of X. Finding classes
of equivalence of the ~ relation corresponds to finding strong components, i.e.
subgraphs of the description graph such that there is a path between each two
nodes of a subgraph. In addition, we require these subgraphs to be maximal,
i.e., for every subgraph G it must hold that there is no other subgraph F' of
the description graph such that G is a subgraph of F' and F' is a connected
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graph. It is known that finding strong components of a graph can be carried
out in polynomial time in the size of the graph [28]. Computation of strong
components allows polynomial runtime of the first part of NT2, computation
of ~ relation. As for the remaining part of NT2, computing the sets Dy \ Cy
requires polynomial time, since both, the size of Dy and Cy and the number
of equivalence classes is bounded by the size of the TBox. Replacement of the
definitions is, naturally of polynomial time complexity, since it is bounded by
the number of defined concepts, and resulting TBox is of polynomial size in the
size of the original TBox, since its growth is bounded by the number of defined
concepts times the maximal size of Dy \ Cy, hence polynomial in the size of
the original TBox.

After performing NT2, the dependency graph of the TBox is acyclic. NT3 is
well defined and results in a normalized TBox since it corresponds to iterative
removing of the node of the dependency graph with no edge starting in that
node, until no nodes are left to be removed. A node with no edge starting in
that node always have to exist in a cyclic graph. If we assume the opposite,
starting from any node, we can always come to another node following an edge.
At some point, we will arrive to a node that was already visited, since the
number of nodes is finite. This means that the description graph has a cycle,
which contradicts the assumption. After removing the node with no exit edges,
remaining dependency graph is still acyclic, and a new node can be found with
no exit edge. NT3 can be carried out in polynomial time, since the runtime is
bounded by the number of definitions. NT3 can result in quadratic blowup of
the TBox because every definition can be replaced with something that can be
linear in the size of the TBox.

We saw that normalization requires polynomial time and the result is polyno-
mial (quadratic) in the size of the original TBox. Soundness of the normalization
procedure is shown in the following lemma.

Lemma 4.1.2. Let (F,T) be a hybrid EL TBoz, and (F,T') the one obtained
after normalization. Then every gfp model of (F,T) can be extended to a gfp
model of (F,T") and vice versa, every gfp model of (F,T') can be restricted to
a model of gfp model of (F,T).

Proof. As usual, Npyim, Nger and Nyoe denote sets of primitive-, defined con-
cepts and role names occurring in (F,7T ), respectively, while primitive-,
defined concepts and role names occurring in (F,7’) will be denoted by
Nprim7Né€f and Nyoe. Clearly, Ngep C Nc/lef'

In order to prove the claim, we may choose a model of (F,7) and then try
to find its extension to a model of (F,7”). Also, in that case, we should
choose a model of (F,7") and try to show that it can be restricted to a
model of (F,T).

Notice that a gfp model of a hybrid TBox is determined by its restriction to
primitive concepts and role names. Therefore, alternatively to the previous
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idea, we may try to show that once we fix a primitive interpretation that
is a model of F, corresponding gfp models of (F,7) and (F,7"’) will be
the required models, i.e. the model of (F,7") will be an extension of the
model of (F,7T) and the later will be a restriction of the former one.

Let 7 be the gfp model of (F,T) and Z’ be the gfp model of (F,T’), such
that Z and Z’ coincide on elements of Ny, and Nyoe. Thus, it suffice to
show that Z and Z’ coincide on elements of Ngey.

To that purpose, we extend the interpretation Z to an interpretation Z; of
(F,T") as follows: let {Z1,..., Z,} be all the elements of N, introduced
in NT1, such that Z; does not occur as a subconcept in the definition
of Z;, for j > i. Notice that this is always possible by the way NT1 is
carried out. Then, we extend Z7 by 71(Z;) = Z1(¢z,), for i = 1,...,n,
where ¢, is definition of Z; after NT1. Clearly, Z; is a descriptive model
of T after NT1. We show now that Z;(X) C Z;(¢x) for every definition
X = ¢x after the steps NT2 and NT3. As a descriptive model of the
terminology prior to NT2, 7; clearly interprets the elements of a cycle
in the dependency graph as equal, and so does the elements of the same
class C'x. But then, Z; interprets X as a subset of Z;(Z), where Z is an
arbitrary subconcept occurring as a conjunct at the top level of definitions
of some concept form C'x prior to NT2. Hence, 71 (X) C Z;(¢x) for every
definition X = ¢x after the step NT2. NT3 does not affect this property,
since we replace right-hand side of the definitions by the concept names
that are interpreted by Z; as larger sets.

To conclude, 77 is an extension of Z that fulfills conditions (1)-(5) of
Definition 2.2.6 applied to 7’ and its gfp model Z’. As a consequence,
I(X)=11(X) CT'(X) for all X € Ngey.

On the other hand, 7’ is also a (descriptive) model of the original TBox.
Indeed, notice that if Z’ is a model of the TBox, then it was also a (de-
scriptive) model of the TBox prior to NT3 step of normalization, since
NT3 replaces definitions by other ones that are interpreted by Z’ as the
same sets. As for the NT2 step, Z’ is clearly a model of all of the defini-
tions of the TBox prior to NT2, since those definitions are conjunctions of
either: a subconcept that is a conjunct at the top level from the definition
after NT2, or a defined concept that Z’ interprets as equal. Finally, NT1,
as NT3, replaces equals for equals from the point of Z’, therefore Z’ is a
model of (F,T). In particular, Z’ fulfills conditions (1)-(5) of Definition
2.2.6 applied to 7 and its gfp model Z. This implies Z;(X) C Z(X) for
all X € Ndef~ O

The following is immediate.

Corollary 4.1.1. For all subconcepts ¢ and v occurring in the (F,T), it holds
(FT)ESCTYiff (F.T') = ¢ E.

After showing some of the properties of the normalization, namely that it
preserves the subsumption relation and that, to a certain extent, it preserves
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the models, we proceed by considering conservative extensions of the TBoxes,
augmented by a variant of normalized definitions.

4.1.2 Comnservative extensions with normalized definitions

In order to simplify future discussion on the correctness of the definition of the
lcs given in Definition 4.1.4, we will restrict our attention to a subset of all
possible conservative extensions from Definition 4.1.3.

Definition 4.1.5. We say that a conservative extension (F,7’) of the hybrid
EL TBox (F,T) is obtained by adding normalized definitions modulo (F,T) if
every definition from 7’ \ 7 is of the form:

Z=PN.NP,NXiN..NX,MN3r.Z10...N3r,.Z,

where P; is a primitive concept for every ¢ = 1,...,m, X; is a concept defined
in, 7 for every i = 1,...,k, and Z; is a concept defined in 7'\ 7, for every
=1 ..n.

Notice that (F,7") from the definition above is not normalized as described
in the previous section. However, if we treat concepts defined in 7 as primitive
concepts in definitions from 77\ 7, those definitions are indeed normalized
as described in previous section. This is also the reason for using the term
normalized definitions modulo (F,T).

The following proposition and the lemmas that precede it show that the
property 2. of the Definition 4.1.3 can be, without loss of generality, restricted
to only those conservative extensions of (F,7;.s) that are obtained by adding
the normalized definitions modulo the TBox.

Lemma 4.1.3. For any conservative extension (F, T UB) of a hybrid EL TBox
(F,T), every gfp model of (F,TUB) is also a gfp model of B, where we consider
concepts defined in T as primitive in B when considering gfp models of B.

Proof. Let Nprim, Nrote and Nge¢ denote, the set of primitive concepts, role
names and the set of defined concepts in (F, T ), respectively. We denote
the set of concepts defined in B by N fe Iz

A gfp model T of (F,7 U B) clearly has to be a descriptive model of B.
Assume now that there is a function J satisfying (1)-(5) form Definition
2.2.6 applied to the TBox B and to the model Z. We show J(¢) C Z(¢)
for all ¢ over Nprim, Nrote, Naey and Nfef. Indeed, if J satisfies (1)-(5)
form Definition 2.2.6 applied to the TBox B and Z, then J also satisfies
(1)-(5) form Definition 2.2.6 applied to the TBox 7 UB and Z. Conditions
(1), (4) and (5) are immediately satisfied. For (2), it suffice to notice
that since J(W) = Z(W), for W € Nprim U Ngey, then J(W) = Z(W),
for W € Nppim. For (3), it suffice to notice that J(X) C J(¢x) for
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X e Nfef7 while for X € Ngs it can be noticed that J(X) = Z(X) and
J(¢x) = Z(¢x), since J coincides with Z on Npyim, Nyoe and Nyey.
This further implies J(X) = Z(X) = Z(¢x) = J(¢x), for X € Ngey.
To conclude, J satisfies (1)-(5) form Definition 2.2.6 applied to the TBox
7T UB and Z, and since Z is a gfp model of (F,7 UB), J(¢) C Z(¢) holds
for all ¢ over Nprim, Nrote, Naey and Nfef, i.e. 7 is a gfp model of B.

O

Lemma 4.1.4. Every gfp model I of a conservative extension (F,T UB) of the
hybrid EL TBox (F,T) is an extension of a gfp model of (F,T).

Proof. Again, let Nprim, Nrote and Nger denote, the set of primitive concepts,
role names and the set of defined concepts in (F,7), respectively. We
denote the set of concepts defined in B by N, fe -

A gfp model 7 of (F, T UB) clearly has to be a descriptive model of (F,T).
Assume now that there is a function J satisfying (1)-(5) form Definition
2.2.6 applied to the TBox 7 and to the model Z. We show J(¢) C Z(¢)
for all ¢ over Nprim, Nyote, and Ngey. Indeed, if J satisfies (1)-(5) form
Definition 2.2.6 applied to the TBox 7 and Z, then J also satisfies (1)-(5)
form Definition 2.2.6 applied to the TBox 7 U B and Z. Conditions (1),
(2), (4) and (5) are immediately satisfied, while for (3) follows from the
T CTUB. 0

Proposition 4.1.1. Let (F,T) be a hybrid EL TBozx, and (F,T U A;) some
conservative extension of (F,T). Then, there is a conservative extension (F,TU
As) of (F,T) obtained by adding normalized definitions modulo (F,T) to i,
such that the set of defined concepts in (F,TUA;) is a subset of the set of defined
concepts in (F,TUAg), and (F,TUA) ESC ¢ iff (F,TUA2) = ¢ T ¢ for
every two concepts ¢ and ¢ defined in (F,T U Ay).

Proof. Let Nprim, Nyole and Ngey denote, as before, the sets of primitive con-
cepts, role names and the set of defined concepts in (F,7). We denote
the set of concepts defined in A; by N, ;l}. Let As be the TBox obtained
by applying the normalization algorithm to A;, where we treat elements
of Nprim and Ngey¢ as primitive concepts in A, i.e. we consider only ele-
ments of N;;} to be defined concepts while performing the normalization
steps NT1, NT2 and NT3. Notice that definitions in A, are normalized
modulo (F,T).

Every gfp model Z of (F,7 U A;) is a gfp model of A; by Lemma 4.1.3.
By Lemma 4.1.2 (with empty foundation part of the TBox, treating the
elements of Ny, s as primitive), Z can be extended to J, a gfp model of As.
Now, J is a model of (F,T UA5). Indeed, a gfp model of (F,7 UAy) has
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to be a gfp model of (F,7), by Lemma 4.1.4, therefore, it has to coincide
with Z (also J) on Npyim, Nyote and Nger. A gfp model of (F,T U As),
once fixed on Nprim, Nrote and Ngcs, has to be a gfp model of Ay where
concepts of Ny s are treated as primitive, according to Lemma 4.1.3. Such
model is unique once the interpretation of elements of Npyim, Nyote and
Ny is fixed, so it has to coincide with [ on elements of NV, ;2 , since J is
also a gfp model of A, that coincides with the gfp model of (F,7 U As)
on Nprima Nrole and Ndef~

Vice versa, every model of J of (F,7T UAy) is gfp model of As by Lemma
4.1.3. By Lemma 4.1.2 (with empty foundation part of the TBox), J can
be restricted to Z, a gfp model of A;. Again, 7 is a model of (F,7 UA,).
Indeed, a gfp model of (F,7 U .A;) has to be a gfp model of (F,7), by
Lemma 4.1.4, therefore, it has to coincide with J (also Z) on Nprim, Nrole
and Nger. A gfp model of (F,7 U Ay), once fixed on Nppim, Nyole and
Ngey, has to be a gfp model of A; where concepts of Ng.¢ are treated
as primitive, according to Lemma 4.1.3. Such model is unique once the
interpretation of elements of Nprim, Nyole and Ngey is fixed, so it has to
coincide with Z on elements of N C“é}, since 7 is also a gfp model of A; that
coincides with the gfp model of (F,7 U A1) on Nprim, Nrote and Ngey.

In particular, the previous means that ¢ C 1 holds under all gfp models
of (F,T UA,;), if an only iff it holds under all gfp models of (F,7 U A,).

O

Previous proposition, as announced before, shows that one can restrict the at-
tention to the conservative extensions obtained by adding the normalized defi-
nitions modulo a TBox when checking for the property 2. from the definition of
lcs. Indeed, let @ be a concept defined in a conservative extension (F,7 U.A4;)
of hybrid TBox (F,7), such that ® subsumes both X and Y. By previous
proposition, there is a conservative extension (F,7 U As) of the TBox (F,T)
by normalized definitions modulo (F, T ), such that (X,Y") will be subsumed by
O wrt. (F,7UA,) iff (X,Y) is subsumed by ® w.r.t. (F,7 U Az). In par-
ticular, (X,Y) will be subsumed by all of the ®s that subsume both X and Y
w.r.t. an arbitrary conservative extension of the TBox iff it is subsumed by all of
the ®s that subsume both X and Y w.r.t. conservative extensions of the TBox
obtained by adding normalized definitions modulo (F, 7). This exactly means
that it suffice to consider only the conservative extensions obtained by adding
the normalized definitions modulo a TBox when checking for the property 2.

4.2 Correctness of the procedure

This section is dedicated to proving that (X,Y") form Definition 4.1.4 is indeed
the least-common subsumer of defined concepts X and Y occurring in the ££
TBox (F,T).
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In order to prove that (X,Y") is the lcs of X and Y, one has to show condi-
tions 1. and 2. from the definition of hybrid lcs. This will be done in two steps.
In both cases, soundness and completeness of HC will play crucial role.

We begin by showing one property of the C,, and T, relations.

Lemma 4.2.1. Let ¢, ¥ and 6 be arbitrary subconcepts occurring in a TBox
(F, 7). If  Eso 0 and 0 T, @, then ¢ T, 3.

Proof. Proof is done by induction on derivation of § C,, v». We distinguish cases
depending on the last rule applied. Base of the induction are the cases
where 6 C,, ¢ is obtained by applying (Ax), (Top) or (Start).

(Ax): In this case § = ¢, thus ¢ C,, ¥ follows from ¢ C, v;

(Top): In this case ¥ = T, thus ¢ C,, ¢ follows by applying (Top);
(Start): In this case n = 0, thus ¢ C,, ¢ follows by applying (Start);
(AndLi), for ¢ = 1,2: In this case 8 = 6,102, and 61 M6, C,, ¢ follows
from 6; C,, ©¥. By completeness of HC, ¢ C, 61165 implies ¢ C, 6;,
thus induction hypothesis can be applied and it yields ¢ C,, ¥;
(AndR): In this case ¥ = 11 Mg, and 0 C,, 1 M1 follows from
0 T, ¥ and 0 C,, ¥o. Induction hypothesis can be applied to the
premises and it yields ¢ C,, ¥; and ¢ T, 1. Now, ¢ T, 91 My
follows by applying (AndR);

(DefR): In this case § T, ¢ follows from 6 C,,_1 ¢y, where ¢ = ¢y,
is a definition from 7. Induction hypothesis can be applied and it
yields ¢ C,,_1 ¢y, thus ¢ C,, ¢ follows by applying (DefR);

(DefL): In this case 0 C,, ¢ follows from ¢g C,, 1), where § = ¢y is
a definition from 7. By completeness of HC, ¢ T, ¢y. Induction
hypothesis can be applied and it yields ¢ C,, ¥;

(Concept): In this case 8 C,, ¢ follows from 6 C,, « and 5 C, 1,
where o C 3 is a GCI from F. Induction hypothesis can be applied
and it yields ¢ C,, «, thus ¢ C,, ¥ follows by applying (Concept);
(Ex): In this case § = 3r.0; and ¢y = Irahy, and Ir.6; C,, Irahy
follows from 6 C,, v;. By Lemma 3.1.4 there exist «, # and p such
that ¢ Co «, 0 IF Jr.p and p C, 61, where a C 3 is a GCI in F,
orp=a=p0. If a CGisa GCIin F, induction hypothesis can be
applied to p Co 61 and 61 C,, 91, and it yields p T, ¥1. Applying
(Ex) to p T, 9y yields Ir.p C,, Irap;. By Lemma 3.1.1, applied to
B Ik 3r.p and Jr.p C,, Ir.ahy yields g C,, Ir.apy, thus ¢ T, Iray
follows by applying (Concept).

If = a =, Lemma 3.1.1 can be applied to ¢ I+ Jr.p and Ir.p C,
dr.apy to obtain ¢ C,, Ir.apy.

O
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Lemma 4.2.2. Let ¢ and v be arbitrary concepts from Ncﬁf U E. Then,
10) 7 Tes) (¢,%) and T (¢, ) for every n.

Proof. We give a proof of ¢ E%}-’Tl“) (¢,1), proof of ¥ C,, (¢,) is analogous.

Proof is carried out by induction on n.
Forn =0, ¢ EBF’T’“) (¢, 1) follows from the rule (Start).

Assume now that ¢ El(}-’Tl“) (¢,4) holds for all I < n. We prove that
6 Ty (6,4). Let

(p,) = 0MN..MONX1M ..M Xy, N 381.(P1y, Yy ) Moo M 386 (Dt Yim,)

be the definition of (¢,®) in the extended hybrid TBox (F, 7). One
of the properties of the E%}-’T"“) relation, shown in Lemma 3.1.2, is that
¢ T z it ¢ CT) ¢y, where Z = ¢z is a definition from 7.
In this case, ¢ Egﬁxfcs) (6,) iff ¢ c&%e) gon .. nenN X, MN...n
Xy M 3s1.(d1y, Ymy) Moo M 341, ,%m, ). Therefore, it suffice to show
T T g M0, M X M. X, M 381 (A1 Yy ) M. 1 380 (1, s Yo, ).
One way to show this is to give a prove of ¢ e 0; for i =1,...,k,
10) E%}-’Tl”) X, fori=1,...,u, and ¢ ng’ﬂ“) 355.(¢1;, Ym,) for j =1,...,t.
Then, ¢ C 7 (¢,4) will follow by applying (AndR) several times, and
(DefR) in the end.

o ¢ gSf’le) f;: by Definition 4.1.4, ¢ Eg’ﬁ“) 0;. Therefore, by

definition of Eg’ﬁ”), 1) ng:’ﬂ“) 0;, for i =1,..., k.

e ngj’”) X;: by Definition 4.1.4, ¢ Eg’ﬁ“) X;. Therefore, by
definition of Eg’Tl“)7 1) E%RTZ“) X, fori=1,..., k.

o ¢ TV 35,.(¢1,,9bm,): by Definition 4.1.4, ¢ T 7 35,

therefore ¢ E%}-’T’”) Jsj.¢y,. Since both ¢, and 1, belong to
the Nger U E, induction hypothesis can be applied and it yields
dr, T (1, 00m,). Then, 3s;.¢, T ) 3s,.(dr,, tom,) fol-
lows by applying the rule (Ex). Since ¢ gf,fjl“)

4.2.1 yields ¢ T 7<) 3s;.(¢n,, Ym, )-

ds;.¢1;, Lemma

O

By definition of Eg’ﬂ“), and due to the soundness of HC, both X and Y are
subsumed by (X,Y), for all defined concepts X and Y in (F, 7).

We show now another, rather technical property of conservative extensions
and IFT) relation that will be used in later proofs. Here o IF77) 7 is, as
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before, used to denote that judgement o E%}-’T) 7 can be derived using rules
(Ax), (AndL1), (AndL2), (DefL) and (Concept), for some n.

Lemma 4.2.3. Let (F,T2) be an arbitrary conservative extension of (F,T).
If o is a subconcept occurring in (F,T) and o -T2 Ipr.r, then Ir.7 is a
subconcept occurring in (F,T).

Proof. Proof is done by induction on derivation of o IF(>72) Irjr. Ifo (7 72)
Jr;.7 is derived using the rule (Ax), 3r.7 is a subconcept occurring in
(F,T) by assumption. Suppose now the last rule applied in the derivation
of o IF372) Jr.1 is one of the (AndL1), (AndL2), (DefL) or (Concept).
In all four cases induction hypothesis can be applied to the premisses of
the rules and it will yields the claim of the lemma. 0

Lemma 4.2.4. Let (F,Tz) be a conservative extension of (F,Tj.s) by normal-
ized definitions modulo (F,Tj.s). Let ¢ and v be two concepts from Ng;f UE,

and let ® be a concept defined in To\ T. If ¢ Eg’T’Z) ® and E(()fﬂé) ®, then
(6,9) T ™) &, for every n.

Proof. Assume
P = 91 ..M Hk M X1 ..M Xu 1 3’{'1.(1)1 M...Mn Hrl.q)l

is a definition in 73 \ 7. Here, 0;, for i = 1,.., k, is an element of G (form
the definition of (F,7.s)), (and in the case ® is defined in 73 \ Zjcs), it is
a primitive concept). X;, for i = 1,..,u, is a concept defined in (F, 7j.s)
(in 7 in the case @ is defined in 7j.s), while ®;, for i = 1, ..., 1 is a concept
defined in 73 \ 7 (in 7;s \ 7 in the case @ is defined in ;).

Proof is carried out by induction on n.

For n =0, (¢, ) Eéf’n) ® follows from the rule (Start).
72)

Assume now that (¢, v) Q,(CF’TZ) ® for all k < n. We prove that (¢, ¢) gﬁﬁ’l
®. One of the properties of the ng’Tl“) relation, shown in Lemma 3.1.2,

is that & E;ZFCS) Z iff & E%f’Tl“) ®,, where Z = & is a definition
from 7j.s. In our case, (¢,1)) Efﬁ’f"") o iff (¢,v) E,(f’%) 6, M ..M
0, M XM ..M X, M3ry. @y M ...MN3Jr.®;. Therefore, it suffice to prove
(0, 0) TS 0,1 N6, N X M. 1 X, N 3@ M. 1 3.8, Again,
one way to show this is to give a proof of (¢, 1)) ng’n) 0; fori=1,..k,
(¢,9) T X, for i =1,...,u, and (¢, ) T ™) 3r;. @, for j =1,...,1.
Then, (¢, 1) C,41 © will follow by applying (AndR) several several times,
and (DefR) in the end. Notice that the assumption on normalized defi-
nition modulo (F,7;.s) of ® simplified the discussion to the point that it
suffice to show the following:
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e (¢,9) C,, 0;: by soundness and completeness of HC, ¢ c™ o
implies ¢ Eg T2) 0;, similarly, v ;éf T2) 0;, and therefore ; occurs
on the right-hand side of the definition of (¢,) by Definition 4.1.4,
since 6; belongs to G. Therefore, (¢, ) E%}—’T") 0; follows from com-
pleteness of the HC calculus and the fact that (¢,) C 6; holds in all
models of (F,T).

e (¢,v) C,, X;: we distinguish two cases

1. X;isdefined in 7: by soundness and completeness of HC, ¢ Eg’ﬁ)

& implies ¢ Y7 X;, similarly, v "7 X;, and therefore
X; occurs on the right-hand side of the definition of (¢,%) by

Definition 4.1.4. Thus, (¢,) E%f’Tz) X, follows from complete-
ness of the HC calculus and the fact that (¢,¢) T X; holds in
all models of (F, 7).

2. X; is defined in Tj.s \ 7: then, X; is of the form (v,d). By
soundness and completeness of HC, ¢ gész) ® implies ¢ Eg’ﬁ)
(7, 9), similarly, ¢ géf”?) (7,9). Now, induction hypothesis can
be applied, since (7, 9) is defined in T \ 7 C 72 \ 7, and it
yields (¢, ¥) En (7,9).

o (¢,v) g%f’Tz) Jr;.®;: again, by soundness and completeness of HC,
o] Eg’ﬁ) ® implies ¢ ;é{f@) 3r;.@; and 1 ;é{f@) ® implies
P Eg’TZ) Jr;.®;. By Lemma 3.1.4, this means that there exist
concepts «, 8 and p and such that

6CL™ o, BIFEDR) I pCD) @,
WLy, B IFER) 30y, py £ @,

whereaC e Forp=a=0;a1 Ef € Fory=a;=0;andp
and p; are some concepts occurring in (F, 73).

This further implies ¢ géf T2) 3r;.p by applying rule (Concept) to
¢ E%f’%) «a and (8 E%}-’TQ) Jr;.p for every n. In the same way we
conclude ¢ ;gf’TZ) Ir;.p1.

Lemma 4.2.3 applied to g IF(7>72) Jr;.p and By |-(F.72) 3r;.p1 yields
the fact that 3r;.p and 3r;.p; are concepts from (F, 7). Even more,
they are from F.

Now, induction hypothesis can be applied to p Eg’TZ) ®,; and p; ;S,f’”["’)
®; to obtain (p, p1) c ™ ®;. On the other hand, by Definition
4.1.4, 3r;.(p, p1) is one of the conjuncts in definition of (¢,). Now,
(9, ) cR) 3r;.®; can be derived form (p, p1) c7 ®;, by ap-
plying (Ex) rule, (AndL1) or (AndL2) rules several times and (DefLL)
in the end.

O
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Again, due to the soundness of derivations in HC, considering defined con-
cepts X, Y and the corresponding (X,Y’), we have that (X,Y) is subsumed by
every concept defined in 73\ 7 that subsumes both X and Y. (We use notation
from previous lemma.) By the comment after Definition 4.1.3, this conclusion
is sufficient to show property 2. form the definition of hybrid lcs.

Notice also, that, as shown before, the assumption made on the added defini-
tions within the conservative extensions, namely the assumption of them being
normalized modulo the TBox, does not cause loss of generality.

Combined with the previously shown property 1. form the definition of
hybrid lcs, this proves the following theorem.

Theorem 4.2.1. The concept description (X,Y) form the extended hybrid
TBox (F,Tjcs) is least common subsumer of X and Y w.r.t. the hybrid TBox
(F, 7).
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Chapter 5

Conclusions, related and
future work

In this thesis, we considered the subsumption problem in description logic ££
w.r.t. hybrid TBoxes. The main task was to check whether a proof-theoretic
decision procedure for the subsumption problem for the case of hybrid TBoxes
can be obtained by combining a proof-theoretic decision procedure for the case
of GClIs interpreted by descriptive semantics with a procedure for the TBoxes
containing cyclic definitions interpreted by greatest fixpoint semantics, given in
[20].

We gave a positive answer to this question by devising a sound and complete
calculus for deciding subsumption in ££ w.r.t. hybrid TBoxes. Proofs of the
soundness and completeness required detailed analysis of the calculus. We iden-
tified a provability relation in the calculus with the subsumption relation. A
polynomial runtime decision procedure based on the proof search in the calculus
was obtained. Two important points that enabled the polynomial runtime of
the procedure were the fact that it suffices to consider only the subconcepts oc-
curring in the TBox in order to prove a subsumption, and the fact that the rules
of the calculus are such that they facilitate a polynomial bottom-up proof search.

An implemented subsumption reasoner Hyb for ££ w.r.t. hybrid TBoxes,
based on the mentioned decision procedure, is described in [23]. The imple-
mented reasoner can also be applied for classifying ontologies consisting of GClIs
interpreted by descriptive semantics, or for deciding subsumption for TBoxes
consisting of cyclic definitions interpreted by greatest fixpoint semantics, as spe-
cial cases of hybrid TBoxes. Also, it can be used for ontologies consisting of
definitions where the descriptive and greatest fixpoint semantics coincide. For
that reason, Hyb can be compared with the existing reasoners such as CEL
(http://lat.inf.tu-dresden.de/systems/cel/, [6], [7], [5], [31], [13], [12]) for de-

scriptive semantics, and a subsumption reasoner for terminologies interpreted
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by greatest fixpoint semantics, given in [30]' on large fragments of life science
ontologies such as GALEN. Another existing reasoner is a subsumption reasoner
EL w.r.t. hybrid TBoxes given in [21], which is based on the gfp reasoner from
[30].

Performance of the reasoner based on our decision procedure is, as expected,
considerably worse on the fragments of GALEN than the performance of the
CEL reasoner, since the CEL reasoner is well suited for the descriptive semantics
induced by these life science test ontologies. When compared to a gfp reasoner
from [30] or an existing reasoner described in [21] for deciding subsumption in
EL w.r.t. hybrid semantics, the efficiency of the Hyb reasoner is, somewhat
surprisingly, considerably better than the efficiency of the two existing reason-
ers. In the case of the reasoner w.r.t. the hybrid TBoxes, this can perhaps be
explained by the better worst-case complexity of the decision procedure. (See
[23] for details).

Another issue that was addressed in this thesis is the problem of computing
the least common subsumers. The existing algorithms from [8] and [15] require
normalized TBoxes. One shortcoming of normalization (besides the quadratic
blowup of the size of the TBox) is the fact that if normalization is performed
on a TBox prior to computation of the lcs, computation of the lcs will yield a
TBox that is not a conservative extension of the original TBox. In this thesis
we gave a novel algorithm for computation of the lcs in the case of arbitrary
EL hybrid TBoxes. While the computation itself does not have to be carried
out using a devised proof-theoretic technique, (it can be carried out by any tool
capable of deciding subsumption w.r.t. hybrid TBoxes), the proof of correctness
of the algorithm is essentially proof-theoretic.

There are several natural questions that arise at this point, that could result
in future work extending the results given here. One could ask, for instance,
if it is possible to have a similar, hopefully efficient, proof-theoretic treatment
of extensions of ££ where subsumption is known to be tractable, and if it is
possible to apply a similar techniques outside of the £L family. Another question
is whether a meaningful and efficient treatment of the knowledge bases including
ABoxes could be given. In particular, one might investigate the possibility of
having a proof-theoretic computation of the most specific concept as an inference
service that, combined with the least common subsumer, facilitates the bottom-
up building of the ontologies [16]. Some of those questions were addressed in
[20], and the others are subject to the ongoing investigations.

1Both reasoners were developed at Technische Universitiat Dresden, the first one by Baader,
Lutz, Suntisrivaraporn, et.al., and the later one was a part of the Master’s thesis of B. Sun-
tisrivaraporn
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