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Abstract

Most commonly used Description Logic reasoning systems provide only limited
support for debugging logically inconsistent knowledge bases. Attempts have
been made to come up with algorithms that solve the debugging problem by sug-
gesting possible resolutions. These algorithms use the method of pinpointing of
the axioms in the knowledge bases that are the possible source of inconsistency.

In this thesis, we analyze two of such pinpointing algorithms devised for
the Description Logic ALC. These algorithms are extensions of the standard
tableau-based reasoning algorithms for the consistency of the knowledge bases
represented in ALC. These pinpointing algorithms calculate maximal satisfi-
able subsets of the original knowledge base by pinpointing minimal sets of the
problematic axioms.

We have shown in the thesis that although these algorithms appear to be
working quite differently from each other but a close analysis reveals that they
use the same idea of axiom pinpointing and execute it in a similar fashion.
Both contain similar rules to expand the knowledge and the rule applications
have similar results in both of the algorithms. But the two algorithms keep the
information about the axioms, that generate a particular knowledge portion, in
different ways.
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Chapter 1

Introduction

In today’s modern world, information and knowledge grow at astonishing steps
and its structure and inference problems are getting more complex as we advance
to devise more sophisticated ways of knowledge representation. For the last two
decades, a quest for viable and better solutions to solve the problems of knowl-
edge representation continues. Initially, we devised relatively simple formalisms
each with its own limitations and applicable only in particular scenarios. Hence,
the search for more general and efficient formalisms continued.

The most efficient way to deal with knowledge and solve the related problems
is logic based. Description Logics (or DLs for short) are a highly successful class
of knowledge representation languages with which to represent and reason with
ontologies. As the scientific community is focusing more on the description
logic OWL being a W3C Recommendation for the Semantic Web, it is expected
that the number of ontologies represented in DL-based ontology languages will
increase in the future.

The DLs solve problems related to the knowledge bases using logic-based
methods. A knowledge base contains individual pieces of information about an
application domain each of which is called an axiom. These axioms express
explicit knowledge about the application domain but if taken together, they
contain a whole lot of implicit knowledge. The reasoning methods may en-
counter inconsistencies while trying to find models for a given concept in an
application domain using its axioms. Developing a coherent knowledge base is
a time consuming and error prone task.

One of the great advantages of a logic-based knowledge representation lan-
guage is that logical errors in the knowledge bases can be detected automatically.
Such errors can have a number of causes. Among the possible sources of these
errors can be lack of realization on the part of designers of the knowledge bases
that separate pieces of knowledge that seem logically correct when considered
individually but are inconsistent when taken together. For example in a simple
case, in the knowledge base of a university it can be mentioned that there is a
professor aged 30 but there is also a constraint that a professor cannot be less
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than 40. These kind of errors may be the result of much complex and many
portions of knowledge when held together. The errors can also be introduced
deliberately in order to resolve ambiguities [4]. It is helpful while transform-
ing a less formal knowledge representations, such as frame-based systems, to a
DL-based representation.

For DL-based ontology languages, optimized DL reasoners like RACER [5],
FaCT [7] and FaCT++ [18] are able to detect logical errors, but they offer a
very little support and need a great deal of human expertise to rectify these
errors.

In most of the work on dealing with such problems, the concept-satisfiability
problem has attracted much of the interest. The concept-satisfiability problem
states that, given a knowledge base for an application domain and a concept,
is there a non-empty model of the knowledge base and the concept in the ap-
plication domain. To explain, we give an example here. We will explain the
syntax of the following knowledge base later, here we just need to understand
the concept-satisfiability problem of the knowledge bases. Consider the follow-
ing part of a knowledge base:

brain =̇ CentralNervousSystem

brain =̇ BodyPart

CentralNervousSystem =̇ NervousSystem u ¬BodyPart

According to this, a brain is a body part as well as a central nervous system,
while the later is a type of the nervous system but necessarily is not a body part.
Although not logically inconsistent, this specification implies that there can be
no instances of the concept brain. Because it implies that brain is a type of
the central nervous system and also of the body part but then it mentions that
central nervous system and body part are exclusively different. This indicates
a modeling error.

The solutions presented to solve the problem are of two types. First, there
are certain algorithms, for example, the work of [8], [9] and [16], which pinpoint
the sources of the problem by identifying the axioms that make a concept unsat-
isfiable with regards to a knowledge base. Then modelers are required to rectify
the errors in whatever way they like to do that. Thus there is a great need of
debugging tools which will facilitate the construction of high-quality knowledge
bases and rectify the logical errors by themselves.

The second way of solving the problem also uses pinpointing but it is more
proactive. It suggests possible resolutions to the problem by excluding minimal
possible knowledge from the knowledge base. Hence, weakening the knowledge
to ensure the satisfiability of concepts. Examples of this type of approach include
the work of [15], [14] and [11].

In this work, we will analyze a couple of works in this direction which fall
into the second category. The first solution is presented in [10] and the second
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one in [3]. In the first method, the authors propose a tableau-like algorithm for
identifying the maximally satisfiable sub-terminologies of an unfoldable termi-
nology represented in the description logic ALC. Their work is closely related
to that of [15] and the algorithm presented in [16] on which it is based. The
information about the axioms of the terminology that are used to produce a
fact are kept in the form of sets where each element represents an axiom. The
tableau applies rules for Boolean constructs and concept definitions and makes
the implicit knowledge explicit. While doing so if some conflict arises in the
knowledge, they have a special expansion rule which tries to solve the conflict
by removing sentences that can be a possible cause of the conflict.

The second solution, that we will compare with the first one, is again a
tableau-like algorithm. It also works on the ALC-knowledge base. This method
is an extension of the tableau-based consistency algorithms for ABoxes described
in [10, 7]. It starts with a set of ABox axioms and adds new assertional facts
with the help of certain rules until the rules are exhausted. Every ABox axiom
is labeled with a unique propositional letter. And the new facts produced during
the algorithm are labeled with Boolean formulas from the propositional letters
which mention that using which axioms the fact was generated. They look for
the maximally satisfiable subsets of the given set of axioms with the help of a
Boolean clash formula which is generated from the labels of the facts once the
rules are exhausted.

The rest of the work is distributed as follows. In chapter 2, the basic notions
of the description logic ALC and, the related terminology and concepts are
defined. These concepts are necessary for the work presented in the following
chapters. Then in chapter 3, those algorithms are presented which solve the
problem of concept-unsatisfiability by calculating maximal satisfiable subsets
of the knowledge base. After that, Chapter 4 analyzes how the two tableaux
are working to keep track of the axioms related to the generation of a fact in
a knowledge base. As the algorithms keep the information about the axioms
related to a fact by assigning labels to every fact, so there we talk about how
the algorithms work with the labels.

In Chapter 5, we talk about the development of a Boolean clash formula in
each of the algorithms which is the collective information about the axioms that
produce conflicting facts about individual objects in an application domain. We
also show that for a given input if the algorithms follow the same steps while
expanding the knowledge base, they present same information in their respective
developing clash formulas at every stage of the tableaux. Which means that they
share the same basic idea of solving the problem.

Afterwords, the last chapter holds some conclusions for this work.
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Chapter 2

Preliminaries

This chapter lays down the theoretical background for the main objective of
the thesis by introducing basic concepts that are used in the later chapters.
The formalisms of Description Logics are introduced and the syntax and the se-
mantics of one of the Description Logics called ALC and its related terminology
and concepts are defined. The system debugging techniques for ALC-knowledge
base, that we will be analyzing in the later chapters, use this logic to represent
knowledge.

2.1 Description Logics

Description Logics [1] are a family of knowledge representation languages which
are used to work much efficiently with domains where the implicit knowledge is
hidden in the explicitly presented knowledge about a model. They are important
formalisms giving logical basis to the already being used well known traditions
such as semantic networks [13] and frames [12] which lacked formal semantics.
The basic purpose of these formalisms is to represent knowledge in a much
simpler way and to make reasoning more efficient because of their hierarchical
configuration.

The main idea of Description Logics is to describe, as apparent from the
name, the world in terms of properties or constraints that specific individuals
have to satisfy. This is basically done by describing relationship between con-
cepts, which are defined portions of knowledge about an application domain,
and relationship between concepts and objects of the domain.

The Description Logics are embodied in several knowledge-based systems
and are used to develop various real-life applications. They have been used for
building a variety of applications including conceptual modeling, information in-
tegration, query mechanisms, view maintenance, software management systems,
planning systems, configuration systems, and natural language understanding.

There are different types of description logics depending on the definition of
concepts and the description of relationships. Each description logic defines a
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number of language constructs (such as intersection, union, role quantification,
etc.) that can be used to define new concepts and roles. This work focuses
on only one of these logics called ALC. Hence, we will define this logic in
this section. ALC may be seen as an instance to understand other Description
Logics.

ALC is the abbreviation for attribute language with complement and extends
the language AL as defined in [17]. In this logic, the concepts define formally
the notions of the application domain using three basic constructs and a set
of binary relations called roles. Now we define the syntax, semantics and the
related terminology that will be used in the subsequent chapters.

Definition 2.1 (Syntax) Let NC and NR be disjoint sets of concept names
and role names, respectively. The set of ALC-concept terms is defined induc-
tively as follows:

1. Each concept name A ∈ NC is an ALC-concept term.

2. > and ⊥ are ALC-concept terms.

3. if C and D are ALC-concept terms, and r ∈ NR, then the following are
also ALC-concept terms:

• C tD, C uD, ¬C
• ∃r.C, ∀r.C

Example 2.2 Let Person and Female be concept names with the intended mean-
ing of human being and woman, respectively, and has-child be a role name
with the intended meaning of the second element in the binary relation being an
immediate descendant of the first one. Then,

• Personu¬Female describes the notion of “man”.

• ∃has-child.Female describes the notion of “parent of a daughter”.

The semantics of ALC is given by interpretations, which are mappings from
concept terms to a specific domain.

Definition 2.3 An interpretation I consists of a non-empty interpretation
domain ∆I and an interpretation function .I that

• assigns to each A ∈ NC a subset AI ⊆ ∆I ,

• assigns to each r ∈ NR a binary relation rI ⊆ ∆I ×∆I .

The interpretation function is then inductively extended to the rest of ALC con-
cept terms as follows:

• >I = ∆I , ⊥I = ∅
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• (C uD)I = CI ∩DI

• (C tD)I = CI ∪DI

• (¬C)I = ∆I\CI

• (∀r.C)I = {d ∈ ∆I |∀e ∈ ∆I : (d, e) ∈ rI ⇒ e ∈ CI}

• (∃r.C)I = {d ∈ ∆I |∃e ∈ ∆I : (d, e) ∈ rI ∧ e ∈ CI}

In order to improve the readability, it is useful to define new concept terms that
represent more complex concept terms in a model. In other words, new concept
names are defined in terms of relatively complex concept terms. Along with
other benefits, it also makes the description of a model compact. The defini-
tions of the concept names are represented in a knowledge base by the so called
terminology box (TBox).

Definition 2.4 If A ∈ NC and C is a concept term, then A=̇C is a con-
cept definition. A finite set T of concept definitions is called acyclic TBox if
following conditions hold:

1. There exists no A ∈ NC and distinct concept terms C, D such that
{A=̇C,A=̇D}⊆T ,

2. There are no n ≥ 1 and concept definitions A1=̇D1, · · · , An=̇Dn ∈ T such
that

• Di contains Ai+1, 1 ≤ i ≤ n,

• Dn=̇A1

The two conditions make sure that in any concept definition of T , right-hand
side contains no direct or indirect reference to left-hand side; i.e. there are no
cyclic definitions.

Intuitively, an acyclic TBox assigns unique labels called concept names to
the concept terms. A concept term can be a description of a very complex
concept and can be referred by its concept name in the description of other
concepts. Hence, improving the readability. The concept names are required to
be unique for distinct concept terms to avoid ambiguity. In the definition of a
concept name Ai with a concept term Ci; i.e. Ai=̇Ci, it is made sure that Ci

does not contain any concept name Aj whose definition depends on Ai directly
or indirectly. In rest of the text, we will use only TBox while referring to an
acyclic TBox.

Example 2.5 A possible TBox T for the concept names and role name in
example 2.2 is given by:

T = {Man =̇ Person u ¬Female,
Parent =̇ Person u ∃has-child.Person}
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The concept ‘Man’ represents someone in an application domain, who is a
human and is not a woman. And the concept ‘Parent’ represents someone who
is human and has at least one human child. More complex concepts can be
defined using already defined concepts such as Parent and Man. For example,
a concept of ‘Grand Father’ is defined as someone who is a man and has a child
who is a parent, as follows:

GrandFather=̇Manu∃has-child.Parent

The semantics of TBox statements is given as follows:

Definition 2.6 An interpretation I is a model of a TBox T , if for every concept
definition A=̇C ∈ T , it holds that AI = CI .

ALC-concepts and TBoxes are used to formally describe the knowledge about
an application domain. But the knowledge is further expanded by applying rea-
soning methods to make implicit knowledge explicit. One such reasoning method
is the satisfiability problem.

Definition 2.7 Given a TBox T and a ALC-concept name C, C is T -satisfiable
if there is a model I of T such that CI 6= ∅.
T is satisfiable iff it is C-satisfiable for every concept name C occurring in
T . Any subset T ′ of T is maximally satisfiable subset if every T ′′ such that
T ′ ⊂ T ′′ ⊆ T is concept-unsatisfiable and T ′ is satisfiable.

The satisfiability problem of an ALC-concept term C with respect to a TBox
T consists of deciding if there is an instance of C that satisfies an interpretation
of T .

In addition to the TBoxes, a Description Logic knowledge-base may also
contain an assertion Box (ABox) which contains facts about individual objects
in the application domain. An object is referred by an individual name. We
can state that an object a belongs to a concept name C by writing a : C, where
a is an individual name. Every element of an ABox represents a fact about an
individual object or a relationship among different objects. Hence, elements of
the ABoxes are called assertional facts or simply assertions. We formally define
an ABox as follows:

Definition 2.8 Let C be a concept term, r be a role name, and a, b be in-
dividual names, then a : C is a concept assertion and r(a, b) is a role assertion.
A finite set A of assertions is called an ABox.

Example 2.9 A possible ABox A for the individual names ana, bob and, cole
and for concept names and role name in example 2.2 is given by:

A = {ana:¬Mother,
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bob:Man,
has-child(bob,cole)}.

The ABox above mentions the facts that an individual named Bob is a man,
a woman named Ana has no children and that Bob is the father of a person
named Cole.

The semantics of ABox statements is given as follows:

Definition 2.10 An interpretation I is a model of an ABox A, if for every
concept assertion a : C ∈ A it holds that aI ∈ CI . And for every role assertion
r(a, b) it holds that(aI , bI) ∈ rI ; where aI , bI are mappings of individual names
a, b to the application domain under the interpretation I.

The satisfiability problem for ABoxes is also a field of inquiry. Which states
that for any given ABox, is there any interpretation that is the model for all
assertional facts of the ABox.

Definition 2.11 A given ABox A is satisfiable iff there is an interpretation
I which is model of A.

In ALC-concept terms, if the negation appears outside of a complex concept
terms, it can be pushed inside such that it only appears next to the concept
names.

Definition 2.12 A concept term C is in negation normal form (NNF) if for
every concept ¬A occurring in C, it holds that A ∈ NC

For a given ALC-concept term, there is an equivalent concept term in nega-
tion normal form that can be constructed in linear time with respect to the
original one.

For simplicity, we will assume that the concept terms mentioned in this text
are in negation normal form. Negation normal form of a term can be obtained
by following the De Morgen laws and the fact that the following pairs of concept
terms are equal: ¬(∃r.C) and ∀r.¬C and, ¬(∀r.C) and ∃r.¬C.

When a group of the axioms is there in a knowledge base every one describing
a piece of knowledge about an application domain, it is quite possible that two
or more axioms describe or imply conflicting knowledge. Which means that
when these axioms are taken together, it is impossible to find a model in the
application domain.

One way out of this situation is to get rid of the minimal number of axioms
such that rest of them are consistent by finding maximal satisfiable subsets
of these axioms. The next chapter presents two tableaux-based algorithms to
find maximal subsets of an ALC-knowledge base. Both of the algorithms are
extensions from the tableaux-based consistency algorithms for ALC.
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Chapter 3

Algorithms

We will introduce and explain, in this chapter, two algorithms that perform
the debugging task for ALC knowledge bases by pinpointing the axioms in the
knowledge bases that are potential source of inconsistency. These algorithms
pinpoint problematic axioms from an ALC knowledge base such that rest of
the knowledge base is satisfiable. But to make a knowledge base satisfiable, the
minimum possible number of axioms are separated from it. In other words, these
algorithms calculate maximal satisfiable subsets of the input ALC knowledge
base.

So this chapter is concerned with the following algorithmic problem: Given
a set of axioms T represented in ALC, find all maximally satisfiable subsets T ′

of T .
Each of the two algorithms is an extension of the tableaux-based consis-

tency algorithms for ALC knowledge base. Every tableau-based consistency
algorithm has a set of expansion rules and on a given knowledge base it applies
rules until the rules are exhausted. Application of the rules adds new knowledge
to the knowledge base which was implicitly there. Hence, making it explicit.
When no rule is applicable, the algorithm decides whether the knowledge base
is consistent or not by looking for obvious contradictions in the knowledge. An
occurrence of two assertional facts of the form a : A and a : ¬A in a knowledge
base is called an obvious contradiction. It is a contradiction because an individ-
ual name belongs to a concept term and its negation simultaneously. We will
also refer to it as a clash.

Before we explain the two algorithms that calculate maximal satisfiable sub-
sets of an ALC knowledge base by extending the tableaux-based ALC consis-
tency algorithms, it seems a good idea to introduce one of the tableaux-based
consistency algorithms as described in [10, 7]. And show how its rules are ap-
plied on a knowledge base to decide its satisfiability. The following rules of
the tableaux-based consistency algorithm for ALC ABoxes are applied in any
order. In the tableaux-based ALC consistency algorithms, an assertional fact
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is denoted by A(a) which means that the individual a belongs to the concept
name A.

Let M be a finite set of ABoxes, and let A0 be an element of M. The
following rules replace A0 by an ABox A1 or by two ABoxes A1 and A2.

• Conjunction rule. Assume that (C u D)(a) ∈ A0, and that A0 does not
contain both assertions C(a) and D(a). The ABox A1 is obtained by
extending A0 by adding C(a) and D(a).

• Disjunction rule. Assume that (C t D)(a) ∈ A0, and that A0 does not
contain C(a) or D(a). The ABox A1 is obtained from A0 by adding C(a)
and the ABox A2 is obtained from A0 by adding D(a).

• Exists-restriction rule. Assume that (∃R.C)(a) ∈ A0, and that A0 does
not contain assertions R(a, c) and C(c) for some individual c. One gener-
ates a new individual name b and obtains A1 from A0 by adding R(a, c)
and C(b).

• Value-restriction rule. Assume that (∀R.C)(a), R(a, b) ∈ A0, and that A0

does not contain assertion C(b). The ABox A1 is obtained from A0 by
adding C(b).

In order to decide if an input ABox A is consistent, the tableau-based con-
sistency algorithm tries to generate a finite model of A. It starts applying the
above mentioned rules on A and adds new assertional facts until the rules are
exhausted and it gives a set of complete ABoxes. An ABox where no expan-
sion rule is applicable is called a complete ABox. The algorithm stops with a
set of ABoxes because of the presence of the disjunction in our language. The
input ABox A is consistent iff one of the ABoxes produced by the algorithm
is consistent. The algorithm decides that an ABox is consistent if it does not
contain any clash, that is, no obvious contradiction, e.g. A(a) and ¬A(a) for
an individual a and a concept name A. The following facts make clear that the
rules of the tableaux-based consistency algorithm provides us with the decision
procedure for the consistency of the ALC ABoxes (for proof see [10, 7]).

Proposition 3.1 1. If A1 is obtained from A0 by application of the conjunc-
tion, exists-restriction, or value-restriction rule, then A0 is consistent iff A1 is
consistent.
2. If A1 and A2 are obtained from A0 by application of the disjunction rule,
then A0 is consistent iff A1 or A2 is consistent.
3. A complete ABox is consistent iff it does not contain any obvious contradic-
tion.
4. The rule application process always terminates.

One of our two algorithms to calculate maximal satisfiable subsets of an
ALC knowledge base extends the above mentioned tableau-based consistency
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algorithm for ALC ABoxes [3]. Because it tries to remove the potential prob-
lematic axioms after the rules are exhausted, we call it Post Rule Solution (PRS)
algorithm. We explain this algorithm next.

3.1 Post Rules Solution Algorithm

PRS extends the tableaux-based ALC consistency algorithm by introducing la-
bels to the assertional facts in ABoxes. Every assertional fact in the input ABox
A is labeled with a unique propositional variable. And every new assertional
fact added to the knowledge base is labeled by a monotonic Boolean formula,
that is, propositional formula built from the variables by using conjunction and
disjunction only, obtained from the labels of the assertional facts that caused its
addition. The label corresponding to an assertion A(a) is denoted by ind(A(a)).
The labeled expansion rules of the algorithm (given below) are applied in any
order until they are exhausted. The following rules of PRS are extension of the
rules for ALC consistency algorithm with labels:

• Conjunction rule. Assume that (C u D)(a) ∈ A0, and that A0 does not
contain C(a) and D(a) whose indices are both implied by ind((CuD)(a)).
The ABox A1 is obtained by extending A0 by C(a) with index ind((C u
D)(a)) and by D(a) with index ind((C uD)(a)).

• Disjunction rule. Assume that (C t D)(a) ∈ A0, and that A0 does not
contain C(a) orD(a) whose index is implied by ind((CtD)(a)). The ABox
A1 is obtained by extendingA0 by C(a) with index ind((CtD)(a)) and the
ABox A2 is obtained by extending A0 by D(a) with index ind((CtD)(a)).

• Exists-restriction rule. Assume that (∃R.C)(a) ∈ A0, and that A0 does
not contain assertions R(a, c) and C(c) whose indices are both implied by
ind((∃R.C)(a)). One generates a new individual name b and obtains A1 by
extending A0 by adding R(a, c) and C(b) both with index ind((∃R.C)(a)).

• Value-restriction rule. Assume that (∀R.C)(a), R(a, b) ∈ A0, and that A0

does not contain assertion C(b) whose index is implied by ind((∀R.C)(a))∧
ind(R(a, b)). The ABox A1 is obtained by extending A0 by C(b) with
index ind((∀R.C)(a))∧ ind(R(a, b)).

The algorithm starts applying the rules on the input ABox A. If during the
consistency test, n assertions with labels ψ1, · · · , ψn give rise to a new fact, this
fact is labeled with ψ1 ∧ · · · ∧ ψn. An assertional fact may arise in more than
one way in an ABox and the distinct labels for the same assertion are joined
by disjunctions. For example, there can be an assertion A(b) in an ABox with
label ψ1 and it is also created with label ψ2, ψ1 and ψ2 being distinct, then it
is written once with label ψ1 ∨ ψ2.

If no ABox among the complete ABoxes A1, · · · ,Am is consistent, hence A
is inconsistent, then it is of interest to know which minimum number of facts of
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A can be dispensed of with, making rest of the A consistent. After the applica-
tion of the rules, every ABox from the set of ABoxes A1, · · · ,Am is searched for
obvious contradictions if any. The labels occurring in these ABoxes can be used
to describe which of the original facts are responsible for the obvious contradic-
tions. The information about the contradictions in the ABoxes is gathered in
the form of a so called clash formula.

Definition 3.2. Let A1, · · · ,An be the complete ABoxes obtained by applying
the labeled consistency algorithm to A. A particular clash A(a),¬A(a) ∈ Ai

is expressed by the propositional formula ind(A(a)) ∧ ind(¬A(a)). Now let
φi,1, · · · , φi,ki be the formulas expressing all the clashes in Ai. The clash for-
mula associated with A is

n∧
i=1

ki∨
j=1

φi,j .

Conjunction is used for a single contradiction because both assertional facts
are required for the contradiction. Any one contradiction is sufficient to make
an ABox inconsistent, thats why disjunction is used to combine the formulas
expressing clashes of a single ABox. Now every complete ABox should be incon-
sistent to make A inconsistent, thats why formulas corresponding to different
ABoxes are combined by conjunction. The next proposition proves that the
formula obtained in this way is actually a clash formula for A (for proof see [3]).

Proposition 3.3 Let ψ be the clash formula associated with A, Q ⊆ A, and w
be the valuation which replaces the propositional variables corresponding to the
Q by ‘true’ and the others by ‘false’. Then A is inconsistent iff ψ evaluates to
‘true’ under w.

Once the clash formula is built, it helps to calculate the maximal satisfiable
subsets of A. Such maximal satisfiable subsets correspond to the maximal val-
uations making the clash formula ‘false’. These valuations are maximal with
respect to set inclusion, i.e. v. The decision problem of finding the maximal
valuations is NP-complete. Moreover, the rules of PRS have an unpleasant
property that checking the application condition is NP-hard problem [3]. The
size of the clash formula associated with A can be exponential in the size of
A. This means that PRS, in general, needs exponential space as compared to
unlabeled consistency algorithm can be realized as a PSPACE-algorithm.

The second algorithm for finding maximal satisfiable subsets of an ALC
knowledge base is presented in [10]. A prominent characteristic of this algorithm
is that it tries to exclude the potential problematic axioms during the rule
application phase wherever it finds an obvious contradiction. Due to this reason,
we call it Run Time Solution (RTS) algorithm. The algorithm is explained next.
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3.2 Run Time Solution Algorithm

RTS is a tableaux-based algorithm to find the maximal satisfiable subsets for a
given TBox T such that a given concept term C is satisfiable with respect to
the subsets. Basically, the algorithm generates a tableau tree for T and C much
in the same way as tableau-based ALC consistency algorithms, and with similar
expansion rules, but with few changes. Along with every assertional fact, the
information about the elements of T used to generate it is stored. Every axiom
of T is labeled with a unique letter. But it is not done in the similar fashion
as in PRS, by a labeling Boolean formula, rather by index-sets. Intuitively, an
index-set mentions what group of axioms of the TBox were used to generate
a particular fact at a node. Another difference is that RTS has an additional
non-deterministic clash-breaking rule. When the algorithm finds an obvious
contradiction (a clash) at a leaf node, it applies this rule which breaks the clash
by excluding axioms involved in the generation of the clashing assertions at the
node. Yet another difference is that the rules for treating facts with existential
and universal role restriction are combined into one. Hence, a single rule treats
an assertional fact with existential role restriction and all the facts with universal
role restriction at a particular node of the tableau tree. Due to the merger of
these two rules, it is required that this ‘combined-rule’ is applied only when
certain other rules have been already applied.

The algorithm starts applying rules for an input TBox T and a concept term
C for which satisfiable subsets of T are to be found. The application of rules to a
root node r labeled with (a : C, ∅), for some individual a and empty set of index-
sets, starts developing a tableau tree. An arbitrary node x of the tableau tree
is labeled with a set of concept assertions, denoted by L(x). Additionally, every
such concept assertion is associated with a set of index-sets I each containing
integers in the range 1, · · · , n. More than one index-sets associated to a fact
means more than one ways to generate the fact on the node. Every index-set
Ii ∈ I represents the responsible axioms for the assertion being at the node. So
instead of looking like a : A as in a ALC tableaux-based consistency algorithm,
assertions in RTS look like (a : A, I) where a is an individual, A a concept name
and I denotes the sets of axioms involved in the generation of the assertional
fact there. Moreover, a node x is also associated with an exclusion-set, denoted
by E(x), containing the indices of the axioms that were excluded when applying
the clash-breaking expansion rule.

The algorithm has rules regarding the concept definitions in the TBox. These
rules are applied to replace a concept name by its definition in the TBox. Once
a concept name in an assertion is replaced by its definition in the TBox, the
assertion is tagged so that the rule is not applied for it more than once. Replac-
ing a concept name by its definition is called lazy unfolding. Notice that lazy
unfolding works only with acyclic TBoxes as for them a situation is attainable
where all untagged assertions contain only undefined concepts. It is assumed
that all the axioms in the acyclic TBox are of the form Ai=̇Ci for i = 1, · · · , n;
where n is the number of axioms in the TBox.
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Definition 3.4 Let K be a set of index-sets. A hitting set of K is an index-set
H ⊆ ∪K such that , for every K ∈ K, |H ∩K| = 1.

The hitting sets are used in the clash breaking rule of RTS. The above defi-
nition for a hitting set is not a conventional one. It places an extra restriction
of every hitting set containing exactly one element from each index-set of K.
This is to suit the clash breaking rule of RTS Where it is required to remove
exactly one element from an index-set labeling an assertion. In the following,
MH(K) denotes the minimal hitting set with respect to set-inclusion, of the set
of index-sets K.

The algorithm consists of the following six rules:

• D+-rule: If (a : Ai, I) is in L(x) and has not been tagged, then Tag
(a : Ai, I) and let L(x) := L(x) ∪ {(a : Ci, {I ∪ {i}|I ∈ I)}

• D− rule: If (a : ¬Ai, I) is in L(x) and has not been tagged, then Tag
(a : ¬Ai, I) and let L(x) := L(x) ∪ {(a : NNF (¬Ci), {I ∪ {i}|I ∈ I)}

• u-rule: If (a : C uD, I) ∈ L(x) then L(x) := L(x)\{(a : C uD, I)} ∪ {(a :
C, I), (a : D, I)}

• t-rule: If (a : C tD, I) ∈ L(x) then create two children y and z of x;
L(y) := L(x)\{(a : C tD, I)} ∪ {(a : C, I)}; E(y) := E(x);
L(z) := L(x)\{(a : C tD, I)} ∪ {(a : D, I)}; E(z) := E(x)

• ∃-rule: If (a : ∃R.C, I) ∈ L(x) and rules 1-4 can’t be applied then
X := {(b : C, I)} ∪ {(b : D,KD)|(a : ∀R.D,J ) ∈ L(x)} (b be a new
unique individual name) L(x) := (L(x)\{(a : ∃R.C, I)}) ∪X; with KD =
{I ∪ J |I ∈ I, J ∈ J }

• ⊥-rule: If (a : A, I) ∈ L(x) and (a : ¬A,J ) ∈ L(x) then
For every K ∈ (MH(I) ∪MH(J )) do:
Create a new child y of x;
L(y) := {(b : D, IK)|(b : D, I ′) ∈ L(x)}; E(y) := E(x) ∪K
EndFor

Note that IK is defined as {I ∈ I ′|K ∩ I = ∅}. It denotes all the index-sets
of I that contain no element from the minimal hitting set K. Intuitively, in the
process of removing an obvious contradiction at a node by applying the ⊥-rule,
all those index-sets of a fact at the node are to be removed that contain any of
the elements from K. This is, because every element of K represents an axiom
of T that is a potential source of the contradiction.

The first two rules perform a version of lazy unfolding. They tag the as-
sertion they are applied to and replace the concept names by their definitions
in the TBox adding the respective index in every index-set associated with the
assertion. The defined concept names in both of the rules, Ai are retained to
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ensure that only maximal satisfiable subsets for Ai are calculated (soundness).
The next two rules are very similar to the standard u- and t-rules for ALC.
The difference is that a rule is still applicable if the constituents (disjuncts or
conjuncts) of the assertion are already there at the node. For example, the u-
rule will be applied to (a : CuD, I), even if (a : C,J ) and (a : D,K) are already
present at the node. It is necessary to ensure that all the maximal satisfiable
subsets of T for C are calculated (completeness). And (a : C uD, I) is removed
so that the rule is not applied more than once for this assertion. But in case
of (a : C tD, I), the assertion is not required to be removed from the node x
because x is no more a leaf node and rules are only applied for assertion at the
leaf nodes.

The ∃-rule is applied to an assertion of the form (a : ∃r.C, I) and it also
treats all the assertions with universal-role restriction at the node. Hence, the
∃-rule in RTS is a combination of ∃- and ∀-rules in a standard ALC algorithm.
Here also the assertion (a : ∃r.C, I), to which the rule is applied, is removed to
make sure that the rule is not applied more than once for it. A new individual
name b is generated by every application of ∃-rule. For every assertion of the
form (a : ∀r.D,J ) at x, a new assertion (b : D,KD) is generated and it is
labeled with the set KD obtained from the union of every index-set in I with
every index-set in J . This is necessary to ensure that all maximal satisfiable
subsets of T for C are calculated. Note that the rule can only be applied if
none of the first four rules is applicable. This is to make sure that when the
∃-rule is applied, all assertions of the form (a : ∀r.D,J ) are already present
and are treated with it and not come after the ∃-rule has been applied. For
example, consider a situation of a node with assertions ((a : ∀r.D) uE,J ) and
(a : ∃r.C, I). If the ∃-rule is applied before the u-rule, the set X calculated as
a part of the rule will not treat (a : ∀r.D,J ), as it should. Note also that the
restriction for applying a rule is for the ∃-rule alone.

The ⊥-rule is added to break clashes. Whenever a clash is detected at a node
x, the ⊥-rule becomes applicable. The idea is, for a clash (a : A, I), (a : ¬A,J ),
to branch by first excluding (a : A) and then excluding (a : ¬A), thereby
resolving the clash. To ensure the removal of all the sources of an assertion
a : A, it is necessary to remove, simultaneously, one of the axioms from every
index-set occurring in I. In other words, a hitting set is to be excluded. But
as the interest here is to exclude as few axioms as possible, the minimal hitting
sets of I are excluded. The same argument goes for (a : ¬A,J ) as well. There
is a branch from x for every K occurring in MH(I) or MH(J ). So the ⊥-rule
creates a new child y of x for every minimal hitting set K and y is labeled only
with concept assertion labeling x but retains only those index-sets which do not
contain any axiom from K. If there is any element in L(y) such that all of its
index-sets are excluded; e.g. (a : A, ∅), then these elements are to be removed
from L(y). The exclusion set E(y) is obtained from E(x) by adding K to it.

When no rule is applicable anymore, the tableau stops. From every leaf node
n of the tableau, the satisfiable subset of T is obtained by removing axioms in
E(n) from the axioms of T . The maximal sets of all these subsets are maximal
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C-satisfiable subsets of the TBox.

From maximal C-satisfiable subsets for every concept C, the maximally sat-
isfiable subsets can be calculated in the following way. Denote by Mj the set
of maximal Cj-satisfiable subsets, for j = 1, · · · , n. Then the set of maximally
satisfiable subsets are the maximal elements of the set {

⋂i≤n
i=1 Xi|Xi ∈ Mi for

i = 1, · · · , n}. The alternative way is, instead of first finding the maximal C-
satisfiable subsets for every concept term C, maximally satisfiable subsets can
be obtained directly by starting the algorithm with the root node labeled with
{(ai : Cj)|i = 1, · · · , n} where ais are all distinct individual names and applying
the rules as before. The maximal sets of the axioms not excluded in the end are
maximally satisfiable subsets of the TBox T . The latter way of the algorithm
uses the fact that concept-satisfiability is equivalent to the DL knowledge base
K = (T , {(ai : Ci)|i = 1, · · · , n}) being satisfiable.

Once the RTS tableau stops, it calculates maximal satisfiable subsets of T
in polynomial time on the size of the output of the tableau. But like the rules
of PRS, its ⊥-rule has an unpleasant property, i.e. calculating minimal hitting
sets is an NP-hard problem.

While explaining the two algorithms, we saw that PRS finds maximal satis-
fiable subsets of an ABox and RTS of a TBox. If we have to make a comparative
analysis of the algorithms then we have to compromise on the form of axioms
in one of the algorithms. Hence, in order to compare the two, we must either
translate RTS to an equivalent pinpointing method for ABoxes or PRS should be
translated into an equivalent pinpointing technique working for TBoxes. Next
section deals with this issue.

3.3 PRS for TBoxes

Given the rules of both the algorithms, a major difference between them is that
RTS treats assertions with the universal role restriction at a node while applying
the ∃-rule for an assertional fact with existential role restriction. But PRS has
two different rules each treating one kind of the assertional facts. If we choose
to translate RTS into an approach that can work for ABoxes then there may be
a problem in a situation where there is no assertional fact with existential role
restriction but one with universal role restriction. RTS cannot apply any rule
in this case while PRS has value-restriction rule to deal with the situation.

For example, consider a situation where an ABox contains a set of asser-
tional facts {r(a, b),A(b),∀r.¬A(a)} and there is no existential restriction on
the role r, then in PRS value-restriction rule is applicable and the ABox will
evolve accordingly leading to a clash. But if a node in RTS tableau contains an
equivalent set of assertional facts then the assertional fact with universal role
restriction will not get treated as there is no ∃-rule applicable. Hence, RTS
does not has the ability to deal with all ABox axioms. On the other hand, we
can make PRS for TBoxes without disturbing the main idea of the algorithm.
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Hence, PRS can treat TBox axioms quite nicely. Thats why in this section we
translate PRS for the TBox axioms.

The statements of ABoxes contain Boolean constructs (u,t) and role re-
strictions (∃,∀) which are present in the statements of TBoxes as well. But
TBoxes consist of definitions of concept names. So PRS has only rules con-
cerning Boolean constructs and role restrictions. Hence, when we translate this
approach for TBoxes, we need to add the rules dealing with concept definitions
to the previously four rules of PRS.

Now we give the rules of PRS that can be applied to an input consisting of
a TBox T and a concept term C whose satisfiability problem is under consider-
ation with regards to T . The algorithm starts with an ABox A containing only
one assertional fact C(a) for an individual a and labeled with ‘true’. The rules
of PRS for finding maximal satisfiable subsets of TBoxes are as follows:

• Axiom+rule. Assume that C(a) ∈ A0, C=̇D ∈ T and A0 does not contain
D(a) whose index is implied by ind(C(a))∧ind(C=̇D), then we get A1

from A0 by adding D(a) labeled with ind(C(a))∧ind(C=̇D).

• Axiom−rule. Assume that ¬C(a) ∈ A0, C=̇D ∈ T and A0 does not con-
tain ¬D(a) whose index is implied by ind(¬C(a))∧ind(C=̇D), then we get
A1 from A0 by adding ¬D(a)NNF labeled with ind(¬C(a))∧ind(C=̇D).

• Conjunction rule. Assume that (C u D)(a) ∈ A0, and that A0 does not
contain C(a) and D(a) whose indices are both implied by ind((CuD)(a)).
The ABox A1 is obtained by extending A0 by C(a) with index ind((C u
D)(a)) and by D(a) with index ind((C uD)(a)).

• Disjunction rule. Assume that (C t D)(a) ∈ A0, and that A0 does not
contain C(a) orD(a) whose index is implied by ind((CtD)(a)). The ABox
A1 is obtained by extendingA0 by C(a) with index ind((CtD)(a)) and the
ABox A2 is obtained by extending A0 by D(a) with index ind((CtD)(a)).

• Exists-restriction rule. Assume that (∃R.C)(a) ∈ A0, and that A0 does
not contain assertions R(a, c) and C(c) whose indices are both implied by
ind((∃R.C)(a)). One generates new individual name b and obtains A1 by
extending A0 by adding R(a, c) and C(b) both with index ind((∃R.C)(a)).

• Value-restriction rule. Assume that (∀R.C)(a), R(a, b) ∈ A0, and that A0

does not contain assertion C(b) whose index is implied by ind((∀R.C)(a))∧
ind(R(a, b)). The ABox A1 is obtained by extending A0 by C(a) with
index ind((∀R.C)(a))∧ ind(R(a, b)).

Note that the last four rules in PRS for TBoxes are exactly same as in the
original PRS. It is because they deal with the language constructs occurring
in the construction of a complex concept term. Hence, no different than the
original PRS, they perform the expansion of an ALC-concept term by adding
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new assertional facts that are constituents (in case of conjunction and disjunc-
tion) or implied by (in case of universal and existential-role restrictions) the
fact to which a rule is applied. The first two rules are the ones that make this
algorithm for TBoxes. They perform a version of lazy unfolding by adding facts
where a defined concept name is replaced by its definition in the TBox. And
label the new assertional fact by the label obtained from the conjunction of
the label of the original assertion and the propositional variable labeling the
concept definition in the TBox that made the rule application possible. Unlike
RTS, the original assertional facts are not required to be tagged because the
application condition of the rules makes sure that the rule is applied only once
for an assertional fact.

After the translation of PRS for TBoxes, we have two algorithms that pin-
point the problematic axioms which make TBoxes unsatisfiable. In order to
remove the bad axioms from the original knowledge base, both the tableau al-
gorithms keep information about the axioms that cause the presence of a certain
assertional fact anywhere in the tableau. So that if an assertional fact makes a
clash with any other fact, the axioms involved in the generation of the conflict-
ing facts are known. But the two algorithms handle the information about the
axioms in different ways. The next chapter focuses on the issue of labels and
shows which algorithm keeps the information in more efficient way.
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Chapter 4

Labels in RTS and PRS

In this chapter, we analyze the ways the two algorithms keep their labels. We
know that the tableaux while trying to exclude bad axioms, keep the information
about the axioms that were responsible to generate a certain assertion as labels
of the assertions. In RTS tableau, indices of the TBox axioms associated with an
assertion are kept as a set of index-sets. It will be shown that this way of keeping
labels is expansive in terms of space. On the other hand, PRS tableau develops
monotonic Boolean formulas to maintain the information about axioms. The
labels in RTS may grow exponentially larger as compared to those in PRS.

The idea behind the index-sets associated with an assertional fact in RTS
is to group together all the axioms in a set which when appear together in an
ontology will generate the assertional fact in the tableau for the concept term
C and the TBox T . So if there are more than one index-sets associated with an
assertional fact as its label, it means there are more than one ways to get the
assertional fact at that specific point in the tableau. For example, at a node x,
(a : A, {{p, q}, {p, r}}) indicates that the assertion a : A can be generated at x
by the axioms represented by p and q together or alternatively by the axioms
represented by p and r. Note that the axiom p is mentioned separately with q
and r because it will be the cause of generating a : A at x independently with
q or r. This can result in quite large labels of assertional facts in RTS. PRS, on
the other hand, can keep the labels in a shorter form. In the above example,
PRS can, if the rules are applied in an appropriate order, mention the label of
the assertional fact a : A with Boolean formula p ∧ (q ∨ r), i.e. mentioning the
axiom p once rather twice.

Hence, in RTS labels are larger than those in PRS. In fact, their size can blow
up exponentially with regards to the size of the labels in PRS. The following
section deals with the expansion of the labels in RTS as compared to those in
PRS.
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4.1 Blow up of Labels in RTS

Although the labels of each assertional fact in RTS are in the form of set (of sets),
they can still be considered as monotonic Boolean formulas. For example, if an
assertion has a labels set {{p, q, r}, {r, s}} then it can be seen as a monotonic
Boolean formula ((p ∧ q ∧ r) ∨ (r ∧ s)). As in RTS, the labels are represented
by index-sets and all the axioms in a set are required (conjunction of all these
axioms) to get the corresponding assertion and a slightly different way, in terms
of the axioms, to get the same assertion needs the whole new index-set to be
written. Hence, at least one of these sets of axioms (disjunction of the sets) is
necessary for the assertion to be there at a certain node. It also points to the fact
that RTS keeps the labels in disjunctive normal form (DNF), i.e. in the form
of a disjunction of conjunctions. In PRS, labels are extended by disjunction if
an assertional fact is produced by more than one different ways but the labels
are not kept in DNF necessarily.

Keeping the labels in DNF can cause an exponential blow up of the labeling
sets of assertional facts in RTS as compared to the labels in PRS for the same
input.

To illustrate, we look into a general form of an input such that for any
given natural number n, there is an input TBox and a concept term such that
while trying to find maximal satisfiable subsets of the TBox with respect to
the concept term, PRS produces an assertional fact whose labeling Boolean
formula is polynomially large on n. For the same input, RTS produces the same
assertional fact whose labeling index-set is exponentially large to n and it is
DNF of the formula for the assertion in PRS.

Consider an input TBox of the form T := {(A1=̇∀r.C)p1 , · · · , (An=̇∀r.C)pn ,
(B1=̇∃r.D)q1 , · · · , (Bn=̇∃r.D)qn}, and a concept term A1u· · ·uAnuB1u· · ·uBn

where pi and qi are propositional variables, with i := 1, · · · , n, labeling the
axioms. Both tableaux start with applying a conjunction rule once or at most
2n− 1 times as the order of rule application may vary.

No matter in which order we apply the rules, every potential assertional fact
in the input of the tableau will be treated finally and same set of the maximal
satisfiable subsets will be calculated in both of the algorithms. But different
order will produce different labels of assertional facts. Which implies that the
clash formula in PRS will be syntactically different for different orders but every
potential clash is treated and mentioned in the clash formula regardless of the
order of the rules.

Due to the greater freedom of choosing an assertional fact for a rule appli-
cation and the way labels are extended as a result of these rule applications, in
PRS one can find an order that keeps labels of the assertional facts and clash
formula succinct to such a degree that even a best possible order in RTS results
into a significantly bigger labels. This fact is explained by applying rules for
both the algorithms for the above mentioned input as follows.

In PRS, after applying the conjunction rule 2n− 1 times there are 2n asser-
tions of the form Ai(a) with empty label. Then for every concept-definition rule
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application on Ai(a), new assertion ∃r.D(a)qi or ∀r.C(a)pi is generated depend-
ing upon the definition of Ai in T . During this process when a new assertion
has to be generated but its already there then the label of already existing
assertion is extended by disjunction. Same order is possible for RTS as well.
After exhausting conjunction and concept definition rules in PRS, there are two
assertions ∀r.C(a)p1∨···∨pn , we denote this assertion by a∀, and ∃r.D(a)q1∨···∨qn ,
we denote this assertion by a∃, on which rules can be applied. For RTS, a∀ is
([a : ∀r.C, {{p1}, · · · , {pn}}]) and a∃ is ([a : ∃r.D, {{q1}, · · · , {qn}}]).

Now PRS applies exists-restriction rule on a∃ and generates a new assertion
with new individual name b, D(b) and a role assertion r(a, b) each with same
label as that of ∃r.D(a). Then value-restriction rule becomes applicable on a∀
and its application generates assertion C(b), we call it the common assertion,
with the label obtained from the conjunction of the labels of ∀r.C(a) and r(a, b)
which is (p1 ∨ · · · ∨ pn) ∧ (q1 ∨ · · · ∨ qn), we call it the compact-label. In RTS,
the ∃-rule treats both the assertions, a∃ and a∀, and generates assertion b : C,
the common-assertion, with the set of index-sets obtained from those of the two
assertions a∃ and a∀ which is {{p1, q1}, {p2, q1}, · · · , {pn, qn}}, lets name it the
expanded-label. We take the number of the propositional variables as the size of a
Boolean formula (and of a set for that matter). It is clear that the compact-label
is polynomial to n with 2n propositional variables while the expanded-label is
exponential to n containing 2n2 propositional variables.

Proposition 4.1 The compact-label of the common-assertion in PRS is se-
mantically equivalent to the expanded-label of the common-assertion in RTS.

Proof: As we have already argued, a representation of axioms in the form
of a set of sets can be considered as a monotonic Boolean formula. The propo-
sitional variables relating to the axioms in an index-set are connected by con-
junction as all these axioms are responsible for an assertion to be present at a
certain node of RTS tableau. These conjunctions of the propositional variables
relating to each individual index-set in a set of index-sets for an assertion a : C
are then connected by disjunction as at least any one of these set of axioms is
necessary for a : C to be there at a certain node.

Hence, the expanded-label {{p1, q1}, {p2, q1}, · · · , {pn, qn}} can be seen as a
monotonic Boolean formula ((p1∧ q1)∨ (p2∧ q1)∨ · · ·∨ (pn∧ qn)). This Boolean
formula is the DNF of the compact-label ((p1∨· · ·∨pn)∧(q1∨· · ·∨qn)) labeling
the common-assertion in PRS. Thus the two labels for the common-assertions
b : D in RTS and D(b) in PRS are equivalent. �

Example 4.2 For n ≡ 2,
Γ ≡ {(A1=̇∀r.C)p1 , (A2=̇∀r.C)p1 , (B1=̇∃r.D)q1 , (B2=̇∃r.D)q2} and,
A0 ≡ {a : A1 uA2 uB1 uB2}

PRS proceeds on this input as follows:
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A0 ≡ {A1 uA2 uB1 uB2(a)}

↓ conjunction rule three times

A1 ≡ A0 ∪ {A1(a), A2(a), B1(a), B2(a)}

↓ axiom+- rule four times

A2 ≡ A1 ∪ {∀r.C(a)p1∨p2 ,∃r.D(a)q1∨q2}

↓ exists-restriction rule

A3 ≡ A2 ∪ {r(a, b)q1∨q2 , D(b)q1∨q2}

↓ value-restriction rule

A4 ≡ A3 ∪ {C(b)(p1∨p2)∧(q1∨q2)}

Note that any other order of rules will produce the same complete ABox A4

with possibly different labels.

RTS will work on the same input as follows:

L(x) ≡ {(a : A1 uA2 uB1 uB2, {})}

↓ u-rule three times

L(x) ≡ {(a : A1, {}), (a : A2, {}), (a : B1, {}), (a : B2, {})}

↓ D+-rule four times

L(x) ≡ {(a : A1, {})tag, (a : A2, {})tag, (a : B1, {})tag, (a : B2, {})tag, (a :
∀r.C, {{p1}, {p2}}), (a : ∃r.D, {{q1}, {q2}})}

↓ ∃-rule

L(x) ≡ {(a : A1, {})tag, (a : A2, {})tag, (a : B1, {})tag, (a : B2, {})tag, (a :
∀r.C, {{p1}, {p2}}), (b : D, {{q1}, {q2}}), (b :
C, {{p1, q1}, {p2, q1}, {p1, q2}, {p2, q2}})}

The ‘tag’ symbol indicates that the assertion is tagged. As we can see that
both the tableaux have produced the common-assertion b : C/C(b) and the la-
beling Boolean formula of C(b) in PRS is polynomial to the given n but the
length of the index-set on b : C in RTS is exponential to n.

Proposition 4.3: There is no order of rule application in PRS such that the
compact-label is greater in length than the length of the expanded-label in RTS
produced by any order of rule application.
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Proof [sketch]: As proposition 4.1 suggests that the compact-label in PRS
and the expanded-label in RTS are semantically equivalent. Furthermore, the
argument given above shows that the expanded-label is always DNF of the
compact-label. No matter how naively rules are applied in PRS, the length of
the compact-label cannot exceed the length of its DNF in worse case of the
order of rule application. Hence, the expanded-label cannot be smaller than
the compact-label. Moreover, RTS cannot apply rules in a more efficient way,
to keep the labels compact, than the one we have shown in the example. It is
because of the rule restriction for the application of the ∃-rule. �

The above argument even works for all kinds of inputs for the two tableaux
and orderings of rule application. In all cases, the labels of assertional facts in
PRS are succinct or in worse case equal in length to those in RTS. And its not
the other way around.

Despite the apparent differences of the rules and the labeling methods of
the two tableaux, there are some amazing similarities between them. The next
chapter talks about these similarities of the two tableaux.
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Chapter 5

Development of the Clash
Formula

In this chapter, we argue about the development of clash formulas in the two
tableaux during the execution of the algorithms; i.e. on-the-fly development.
While explaining their algorithm, Baader and Hollunder do not talk about look-
ing for any clash formula on-the-fly. They only look for the clash formula when
the tableau stops and no more rules are applicable. But obviously this clash
formula is under making during the rule application phase rather they just get
it in the end. On the contrary, in RTS it is not of the interest to calculate a
clash formula for the tableau. But as the clash formula has the information
about clashes in the tableau, it is possible to develop one on-the-fly that con-
tains the information about all clashes in RTS tableau those were resolved by
the clash breaking rule. It will help in the comparison of the two tableaux by
showing that although apparently they look different but internally they work
in a similar fashion.

It will be shown that by adding some appropriate apparatus in each of the
two algorithms, we can develop a clash formula along the rule application phase.
This introduction of the new apparatus does not interfere with the outline of
the original algorithms rather only collects the necessary information about the
clashes and develops a clash formula for the tableau. For this purpose, we need
to give a general notion of a clash formula.

Definition 5.1. Let T be a TBox and C a concept term. Given T ′ ⊆ T ,
wT ′ is the valuation that maps t ∈ T ′ to ‘true’ and others to ‘false’.
A monotonic Boolean formula ψ is a general clash formula for T and C if for
every T ′ ⊆ T it holds that wT ′ satisfies ψ iff C is T ′-unsatisfiable.
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5.1 Development of Clash Formula On-The-Fly

In this section, we try to show that how we can understand the execution of
the algorithms as one producing the clash formula. For PRS, we can look for
the clash formula that is being built during the rule application phase of the
algorithm. We do this by adding a rule into the algorithm that searches for the
clashes on-the-fly. This rule does not undermine the original central idea of the
algorithm.

In PRS, the clash formula is obtained from the labels of the assertions and
all the rules of the algorithm manipulate these labels. So in order to get a rule
for on-the-fly clash formula, we introduce the bottom symbol, ⊥, for every ABox
in the tableau and during the algorithm we develop a clash formula related to
an ABox as the label of ⊥. The bottom rule is the following:

• Bottom rule: Assume that C(a) ∈ A0, ¬C(a) ∈ A0 and ind(⊥) is not
implied by ind(C(a))∧ind(¬C(a)). Then ABox A1 is obtained from A0

by extending ind(⊥) to ind(⊥)∨(ind(C(a))∧ind(¬C(a))).

We refer to PRS with the bottom rule as PRSB. Note that every ABox has,
if it contains any obvious contradiction, its ⊥ symbol which collects the infor-
mation about the clashes in that particular ABox. By adding this rule, the
algorithm will generate everything that was generated before and nothing else
except for the ⊥ symbol for every ABox in the tableau. The bottom rule is
applied upon finding an obvious contradiction between two assertional facts
A(a)ϕ1 and ¬A(a)ϕ2 in an ABox Ai. The propositional formula obtained from
the conjunction of ϕ1 and ϕ2 is added to the label of the ⊥ symbol of Ai as
both of the assertional facts are necessary to produce the clash. The proposi-
tional formulas of individual clashes in Ai are combined with disjunction. At
any point, the developing clash formula of the tableau during rule application
can be obtained from the conjunction of ind(⊥) for every ABox.

For a given input, if we apply the same order of rules in PRSB as in PRS and
the additional bottom-rule in PRSB where applicable then both the tableaux
will generate exactly the same number of ABoxes and for every ABox in PRS
there is an ABox in PRSB containing exactly same assertional facts and a
particular assertional fact is labeled by the same Boolean formula in both the
tableaux. This implies that the clash formula for PRS generated at the end
should be same as the one generated from the labels of the ⊥ symbols in PRSB.

Proposition 5.2. Let ψ be the Boolean formula generated by the conjunc-
tion of all the ind(⊥) of the complete ABoxes of PRSB tableau for a TBox T
and a concept term C. Then ψ is the clash formula associated with T and C.

Proof: Suppose we start with PRS and PRSB for the same input and
follow the same order of the rule application with additional bottom-rule in
PRSB when there is an obvious contradiction in any of the ABoxes. And let
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ψ1 be the clash formula generated by PRS at the end of the tableau and ψ2

be the clash formula generated by PRSB from the labels of the ⊥ symbols.At
the end of the PRS tableau, for every clash A(a)ϕ1 , ¬A(a)ϕ2 in an ABox Ai,
the Boolean formula ϕ1 ∧ ϕ2 is added by disjunction with Boolean formulas
from other clashes in Ai. And ψ1 is obtained from the conjunction of the
Boolean formulas for all ABoxes of the tableau. PRSB also contains Ai with
same assertional facts and labels as in PRS. In PRSB, with every application
of the bottom-rule for a clash A(a)ϕ1 , ¬A(a)ϕ2 ∈ Ai, ind(⊥) is extended by
ϕ1 ∧ ϕ2 disjunctively. Hence, at the end of the PRSB tableau, ind(⊥) is the
disjunction of all formulas for individual clashes in Ai. And ψ2 is obtained from
the conjunction of ind(⊥) for every ABox in the tableau. This is exactly what
we get in PRS. Hence, ψ1 is same as ψ2. �

The proposition above illustrates that both, PRS and PRSB, tableaux gen-
erate exactly similar ABoxes with similar assertions for the same order of rules.
Hence, every clash generated in PRS is also generated in PRSB and as clashes
are generated in the two tableaux, the same clash formula is developing in both
the cases. It shows the fact for which we introduced the bottom rule in PRS,
that is, a clash formula is developing on the fly in PRS tableau.

Now we see if there is a clash formula building up during the application of
rules in RTS. We need to notice here that there are two types of branching in
the RTS tableau. First, when t-rule is applied and two branches are generated
from the node where the rule is applied. Other type of branching is when the
⊥-rule is applied. Each branch removes one of the the two conflicting assertions
by removing the minimal hitting set of its index-sets.

To calculate the clash formula on-the-fly for RTS, we attach a propositional
formula Cx for every leaf node x of the tableau that represents the developing
clash history along the branch of the tableau where x is the leaf node. An
individual clash at x, say between the assertions (a : A, I) and (a : ¬A,J ),
is represented in Cx by the subformula ϕK1 ∨ · · · ∨ ϕKn

where every ϕKi
is a

propositional formula obtained from the conjunction of the propositional vari-
ables in Ki ∈ {I ∪J |I ∈ I, J ∈ J }. For example, a clash between the assertions
(a : A, {{p, q}, {q, r}}) and (a : ¬A, {p1, q1}) is represented by the formula
((p ∧ q ∧ p1 ∧ q1) ∨ (q ∧ r ∧ p1 ∧ q1)). Cx is the disjunction of all the formulas
representing individual clashes in x and its ancestral nodes (preceding x in the
branch up to the root). The overall developing clash formula of the RTS tableau
for a TBox T and a concept term C is obtained from the conjunction of Cns for
every leaf node n. We use this idea to give the definition for the development
of the clash formula in RTS next.

Definition 5.3 Let Cx be the propositional formula representing all the clashes
up till the leaf node x in a branch of the RTS tableau. Applying the ⊥-rule for
a clash between (a : A, I) and (a : ¬A,J ) at x creates Cy:=Cx ∨ϕK1 ∨ · · · ∨ϕKn

for every child node y of x. Where ϕKi is the conjunction of all propositional
variables in Ki ∈ {I ∪ J |I ∈ I, J ∈ J }. The conjunction of all Cns, n being a
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leaf node, gives the developing clash formula for the RTS tableau.

Note that a ϕKi is a conjunction of all the propositional variables pertaining
to the axioms responsible for producing the clashing assertions. Individual
potential causes of the clashes, the sets of TBox axioms, in a branch of the
RTS tableau are combined with disjunctions. Because a single clash in the leaf
node of a branch makes it inconsistent. And the conjunction of all the clash
formulas for the leaf nodes gives the clash formula for the tableau.

It is required to modify the t- and ⊥-rules of RTS to do steps needed to
calculate the clash formula as follows:

• t-rule: If (a : C tD, I) ∈ L(x) then create two children y and z of x;
L(y):=L(x)\{(a : C tD, I)} ∪ {(a : C, I)}; E(y):=E(x); Cy:=Cx;
L(z):=L(x)\{(a : C tD, I)} ∪ {(a : D, I)}; E(z):=E(x); Cz:=Cx;

• ⊥-rule: If (a : A, I) ∈ L(x) and (a : ¬A,J ) ∈ L(x) then
For every K ∈ (MH(I) ∪MH(J )) do:
Create a new child y of x;
L(y) := {(b : D, IK)|(b : D, I ′) ∈ L(x)}; E(y) := E(x) ∪K;
Cy:=Cx ∨ϕK1 ∨ · · · ∨ϕKn , ϕKi being the conjunction of the propositional
variables in Ki ∈ {I ∪ J |I ∈ I, J ∈ J }
EndFor

Note that modification of these rules does not affect the algorithm in any
way but only helps in explicitly showing the development of the clash formula
on-the fly.

As a result of an application of the t- or ⊥-rule, x ceases to be a leaf node.
In case of the t-rule, the child nodes of x; i.e. y and z, simply inherit Cx without
any change. Hence, Cx = Cy = Cz. In case of the ⊥-rule, the information about
a clash at x between the assertions (a : A, I) and (a : ¬A,J ) for which the rule
is applied, must be added to Cx to get Cy for every child node y of x. Therefore,
the information about this clash at x is added in Cx to get Cy.

The responsibility of a clash between two assertional facts (a : A, I) and
(a : ¬A,J ) at a node x in the RTS tableau lies upon the axioms in I and J .
But every Ii ∈ I and Ji ∈ J is independently responsible for the presence of
a : A and a : ¬A at x respectively. This implies that, for I = {I1, · · · , In}
and J = {J1, · · · , Jm}, every element of K := {Ii ∪ Jk|1 ≤ i ≤ n, 1 ≤ k ≤ m}
is a potential cause of the clash. In other words, occurrence of all the axioms
represented in a Ki ∈ K produces the clash.

Proposition 5.4 Let ψ be a Boolean formula generated by the conjunction
of Cns for every leaf node n of a fully expanded tableau tree of RTS for a TBox
T and a concept term C. Then ψ is a clash formula associated with T and C.

Proof : Let T ′ be a subset of T . In the following, the valuation wT ′ is
assumed to be such that it replaces the variables corresponding to the elements
of T ′ by ‘true’ and rest by ‘false’.
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Consider the case where ψ is evaluated to ‘false’ by wT ′ . Then there is a
leaf node n whose associated Cn is evaluated to ‘false’ by wT ′ . Which implies
that there is no ϕKj

in Cn evaluated to ‘true’ by wT ′ . This means that Cn is
free of clashes. Hence, C is T ′-satisfiable.

Now conversely, consider the case where ψ is evaluated to ‘true’ by wT ′ .
Then every Cn in ψ associated with a leaf node n is evaluated to ‘true’ by wT ′ .
Which means that every Cn of ψ contains a ϕKj that is evaluated to ‘true’ by
wT ′ . This implies that every leaf node n of the fully expanded tableau tree
contains clashes. Hence, C is T ′-unsatisfiable. �

It is obvious now that along the RTS tableau as the ⊥-rule is applied, a
clash formula is developing which once developed completely, obtained from the
conjunction of Cns of a fully expanded tableau tree, contains the information
about all the clashes making the given concept term unsatisfiable for a given
TBox. Similarly, PRSB also generates a clash formula while on the run through
the application of the bottom rule. After rules are exhausted, the clash formula
from the conjunction of every ind(⊥) in the tableau contains information about
every clash in the tableau. The interesting question should be if we apply same
order of the rules in both the tableaux, do we get equivalent Boolean formulas
at all stages during the tableaux.

In the previous chapter, we saw that beginning with the same input, similar
assertions in the two tableaux, PRS and RTS, caused by the same axioms of the
TBox have equivalent labels. It seems quite plausible that if PRSB and RTS
start with the same input and apply the same order of rules including the bottom
rules, their respective clash formulas should be equivalent at all stages in the
tableaux. Its mainly so because similar rules in the two tableaux generate similar
new assertions in the knowledge base and the assertions generated by same set
of axioms in the two tableaux have equivalent labels. Obviously, the clash
formulas in both the tableaux are generated from these labels of the conflicting
assertional facts. Which implies that the clash formulas should be equivalent at
all stages provided the order of rule application is same in the two tableaux.

Now we show that if the two tableaux start applying rules in the same
order for a given TBox and a concept term then although apparently they seem
working quite differently but under the surface they both are doing the same
things.

5.2 Parallel Development of Clash Formula in
PRSB and RTS

In this section, we will show that if the two algorithms apply same rules in
the same order for a given input then they get equivalent clash formulas and
contain equivalent knowledge at all stages during the tableaux. Let us remind
ourselves that RTS and PRS are algorithms whose main goal is to calculate
maximally satisfiable subsets of a given ALC-knowledge base. Given the same
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knowledge base, the completeness of the algorithms imply that both must find
all maximally satisfiable subsets of the knowledge base. This implies that both
algorithms discover similar clashes between the assertions and pinpoint same
sets of axioms in the knowledge base that when taken together make the knowl-
edge base inconsistent. Added to the fact that the rules for same constructs and
role-restrictions in the two algorithms add similar knowledge and equivalently
effect the labels of the assertional facts, leads to conclude that if same order of
the rules is followed in the two algorithms then at all stages in the tableaux they
must contain same knowledge and have equivalent developing clash formulas.

We need to define some terms that we will use while comparing the devel-
opment of the clash formulas in the tableaux.

For every assertional fact A(a)ϕ in PRSB, the function f : PRSB → RTS
maps it to an equivalent RTS assertional fact (a : A, I) where I is the set of
index-sets such that the Boolean formula obtained from I, as argued in the
section 4.1, is DNF of the formula ϕ. We refer to an assertional fact a in PRSB
and f(a) in RTS as equivalent assertions and their labels as equivalent labels.
Moreover, for a given rule R in RTS, R′ is its related-rule in PRSB if it treats
the same construct/concept-definition/role-restriction as R treats in RTS.

Notice that for an ∃-rule for an assertional fact f(a) in RTS, its equivalent
rule in PRSB includes exists-restriction rule for a and value-restriction rule for
every assertional fact with universal-role restriction as its main construct at the
node.

Definition 5.5 Suppose x1, · · · , xm are all the leaf nodes (ABoxes) for RTS
(PRSB) with assertional facts and their index-sets (labels). The collection of
these nodes (ABoxes) is called a state for the tableau. The root-node (input-
ABox) is called the initial-state.

In order to compare a given state in the RTS tableau with a state in the
PRSB tableau and the effects of applying equivalent rules, we define a relation-
ship between the states of the two tableaux.

Definition 5.6 Let sk be a state for the RTS tableau with nodes x1, · · · , xm

and the tableau clash formula ψ. Then the state s′k for the PRSB tableau is
called the related-state to sk if the followings hold:

• for every assertion a : B in a node in sk there is an ABox in s′k containing
equivalent assertion B(a) with label equivalent to the index-set of a : B;

• The PRSB (developing) tableau clash formula ψ′ is equivalent to ψ;

• For any rule applicable in sk for assertion a : B, its related-rule is appli-
cable in s′k for assertion B(a) with equivalent label as index-set of a : B.

Note also that all the assertional facts in a state of the RTS tableau are
present in the related state of the PRSB tableau but reverse is not necessarily
true. It is because RTS tableau gets rid of some assertional facts after applying
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rules for them but PRSB keeps all the assertional facts in the successive state.
Hence, a state in RTS tableau is a subset of its related state in PRSB tableau.

Now we claim that if RTS tableau is in state sn and PRSB tableau is in
state s′n, and these two states are related then applying a rule on an assertion
f(ai) in sn and applying the related-rule on the equivalent assertion ai in s′n
will move the two tableaux to related-states. In other words, applying a rule in
the RTS tableau has the same effect in terms of generating new assertions and
clash formula as that of applying the related-rule in the PRSB tableau.

Proposition 5.7 Let sn be the state of RTS tableau and applying a rule R
takes the tableau to a state sn+1. And let s′n be the related-state to s′n of PRSB
tableau and applying a rule R′ takes the tableau to a state s′s+1. If R and R′

are related-rules then sn+1 and s′n+1 are related states.

Proof : Let sn be a state of the RTS tableau with assertional facts {a1, · · · , am}
and the developing tableau clash formula ψ, and s′n be a related stated of sn in
the PRSB tableau with assertions {a1, · · · , an} ⊇ {f(a1), · · · , f(am)} and with
the developing tableau clash formula ψ′ equivalent to ψ.

Suppose a rule R is applicable on an assertion ai at a leaf node x in the RTS
tableau then there is a related-rule R′ applicable to the equivalent assertion
a′i = f(ai) in an ABox in the PRSB tableau. Let applying R rule for ai in the
RTS tableau moves it to a state sn+1 and application of R′ on a′i in the PRSB
tableau moves it to a state s′n+1. To show if sn+1 and s′n+1 are related, we
proceed a follows.

For any rule R, other then the ⊥-rule, applied in the state sn of the RTS
tableau for the assertion ai, the new state sn+1 is obtained by adding some
new knowledge (assertional facts) possibly removing ai. The related-rule R′

would be applicable in the related-state s′n and it will add same new knowledge
to the successive state s′n+1 in PRSB tableau. For example, applying u-rule
to (a : C u D) adds new assertional facts (a : C) and (a : D). The related
conjunction rule of PRSB applied to the equivalent assertional fact C u D(a)
adds the assertional facts C(a) and D(a) that correspond to (a : C) and (a : D)
respectively. Note that in both the cases new assertional facts will get the labels
of the original fact.

After the application of the R and R′ rules, if a rule R1 is applicable in RTS
tableau then there are two possibilities. The first possibility is that its precon-
dition was there before the application of the rule R. Then the precondition for
the application of the related rule R′

1 was also there in PRSB tableau as well
because both the algorithms were in related states. So the new related rules R1

and R′
1 are applicable in there respective tableau. The second possibility is that

the rule R1 became applicable in RTS as the result of the new knowledge added
to the state which made the precondition of the rule application. Then the
same knowledge is added in the new state of PRSB so R′

1 should be applicable
in PRSB as well.
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Suppose R and R′ were the bottom rules in their respective tableaux for the
clashing assertions ai and aj , then the PRSB tableau simply extends ind(⊥) to
ind(⊥)∨(ind(ai)∧ind(aj)) and does not add or remove anything else in s′n+1.

The RTS tableau branches for every minimal hitting set of I for (a : A, I)
and of J for (a : ¬A,J ) at the node x. Each branch removing one of the
clashing assertional facts and the assertional facts which were the cause of this
assertional fact. The overall effective knowledge remains the same in the state
sn+1 as in sn because what is removed in one branch is present in other one. The
developing clash formula Cx for every new child node y of x in ψ is extended
to Cx ∨ (ϕK1) ∨ · · · ∨ ϕKn

) with ϕKi
is the conjunction of the propositional

variables in Ki ∈ {Ii ∪ Jk|1 ≤ n, 1 ≤ m}. On the basis of the argument
used for proposition 4.1, it can be stated that the disjunctive extension of ψ′

in PRSB by (ind(ai)∧ind(aj)) is equivalent to the extension of ψ in RTS by
(ϕK1) ∨ · · · ∨ (ϕKn

) after applying the ⊥-rule. �

It is obvious from the rules of the two algorithms that the application con-
ditions of the related rules for the two tableaux are similar, hence each rule
applicable in RTS is also applicable in PRS and both working on the same as-
sertional fact generate similar new knowledge in the knowledge base. We have
shown that the application of the same order has same effect on the output of
the tableaux.

The order of the rules applied in PRS tableau can be matched with those
applied in RTS but the reverse can not be true as PRS gives a complete freedom
of choosing an assertional fact for applying the rule which is not the case for
RTS. But if the same order of rules is applied in both the algorithms then they
express the same knowledge at the same time. Hence, internally they work in
the same fashion while from the outside they may appear different.
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Chapter 6

Conclusions

In this work, a couple of algorithms from the literature to debug ALC knowledge
bases were analyzed and compared. Both the algorithms use axiom pinpointing
to calculate maximal satisfiable subsets of the knowledge bases. And finally it
was shown that although apparently looking different, actually they do the same
job of removing bad axioms from a knowledge base in a quite similar fashion
using tableaux-like algorithms.

To be more explicit, we introduced RTS and PRS algorithms to find maxi-
mal satisfiable subsets of knowledge bases. PRS which is originally devised to
pinpoint ABox axioms, was translated to pinpoint TBox axioms to facilitate
the comparison between the two. It was done by adding the rules that replace
defined concept names in the knowledge by their definitions in the input TBox.

It was shown that while both the approaches keep the axioms along with an
assertional fact that cause the generation of it but PRS is much more efficient
than RTS and keeps the information about the axioms in a very compact form.
For a given TBox and a concept term, RTS tries to keep every set of axioms
which generate an assertion independently and it leads to the DNF of the labels.
PRS has a better way to keep the labels succinct in the form of Boolean formulas.
This difference gives rise to the expansion of the labels in RTS by exponential
factor as compared to the ones in PRS.

Finally, we proved that for the same input, same order of the rules in the
two tableaux have same effect on the development of the clash formulas in the
respective tableau and generation of the new knowledge. Both the algorithms
produce equivalent clash formulas on-the-fly if equip with necessary apparatus
to calculate the clash formula while applying the rules.

We provided this apparatus to both the algorithms and showed that both
of them produce equivalent clash formulas for the same input and same order
of the rule application. PRS can offers much smarter order of rules application,
thanks to its freedom of applying rule for any assertional fact available, which
allows to keep the tableau smaller and clash formula shorter.

35



The two algorithms we discussed do the debugging job for terminologies
expressed in ALC. It should be of great interest to adopt these algorithms
for more expressive languages and for general TBoxes. It should be also of
particular interest to develop applications focusing on the Semantic Web as these
application are focused upon debugging the existing terminologies and logical
contradictions caused by the transformation or merging of the terminologies.
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