
Action, Time and Space

in Description Logics

Dissertation

zur Erlangung des akademischen Grades
Doktor rerum naturalium (Dr. rer. nat.)

vorgelegt an der
Technischen Universität Dresden

Fakultät Informatik

eingereicht von
Dipl.-Inform. Maja Miličić

geboren am 9. Mai 1978 in Belgrad

Gutachter:

Prof. Dr.-Ing. Franz Baader
Technische Universität Dresden

Prof. Dr. rer. nat. Bernhard Nebel
Albert-Ludwigs-Universität Freiburg

Prof. Dr. rer. nat. habil. Michael Thielscher
Technische Universität Dresden

Tag der Verteidigung:
19. Juni 2008

Dresden, im September 2008

Acknowledgements

I am deeply indebted to Carsten Lutz for his friendly supervision and for many excellent
ideas he provided. Without his guidance this thesis would not exist. I am greatly thankful
to Franz Baader for providing a relaxed working environment and for giving me a financial
support for the whole period of my PhD studies. I would also like to thank Frank Wolter
and Ulrike Sattler for many great ideas and their support.

A big thanks goes to my colleagues Hongkai Liu, Conrad Drescher and Barış Sertkaya for
reading parts of the preliminary version of this work and giving me their invaluable comments.
Moreover, I would like to thank all members of the Chair for Automata Theory for their
friendship and support. Most of all I want to thank my dear officemate Barış for sharing
with me all ups and downs during the last four years, as well as our wonderful secretary
Kerstin Achtruth for her caring attitude and warm support. Many thanks to my dear former
flatmates Jelka and Yvonne for their encouragement, friendship, and care. Thanks to all my
friends from Belgrade and Dresden, scattered around the world, for staying close despite the
physical distance.

I want to thank my dear parents and brothers for their love, encouragement and contin-
uous and unconditional support. I know that there is no one more proud and happy about
this dissertation than my parents, and I dedicate this work to them. Finally, I want to thank
my beloved Sebastian for suffering together through my PhD time, for proof-reading parts of
this work and improving the language, and for his love which has kept me going.

This PhD thesis has been written with the financial support of the DFG graduate pro-
gramme 334 “Specification of discrete processes and systems of processes by operational
models and logics”, the DFG project TH 541/14 and the EU project “Thinking ONtologiES”
(TONES).

iv

Contents

Acknowledgements iii

1 Introduction 1

1.1 Description Logics . 1

1.2 Action and Planning Formalisms . 4

1.3 Integrating DLs with Action Formalisms . 9

1.3.1 Motivation . 9

1.3.2 Contributions and Results . 10

1.3.3 Related Work . 14

1.4 Description Logics with Concrete Domains . 17

1.4.1 Concrete Domains . 17

1.4.2 Contributions and Results . 18

1.5 Structure of the Thesis . 19

2 Formal Preliminaries 23

2.1 Description Logics . 23

2.2 Situation Calculus . 29

3 Action Formalism A1: Simple Post-Conditions and Acyclic TBoxes 33

3.1 The Formalism . 34

3.1.1 Action Descriptions . 34

3.1.2 Reasoning about Actions . 37

3.1.3 Relation to Situation Calculus . 38

3.2 Deciding Executability and Projection . 42

3.2.1 Reduction to DL Reasoning . 42

3.2.2 Hardness Results . 52

4 Restrictions and Extensions of A1 55

4.1 Restrictions . 55

4.1.1 Projection in EL with empty TBoxes 56

4.1.2 Projection in EL with acyclic TBoxes 60

4.2 Extensions . 68

4.2.1 Role Inclusions . 68

4.2.2 Problematic Extensions . 72

4.3 Complex Concepts in Post-Conditions and GCIs: PMA 74

4.3.1 PMA Semantics of Generalized A1-Actions 74

4.3.2 Drawbacks of PMA . 75

vi CONTENTS

5 Action Formalism A2: Complex Post-Conditions and GCIs 79
5.1 The Formalism . 80

5.1.1 Action Descriptions . 80
5.1.2 Reasoning about Actions . 83
5.1.3 Relation to A1 . 84

5.2 Deciding Projection . 86
5.2.1 Projection in ExpTime . 86
5.2.2 Projection beyond ExpTime . 92

5.3 Undecidability of Strong Consistency . 96
5.4 Practicability . 97

6 Planning 101
6.1 Planning Problem . 102
6.2 Unconditional PLANEX . 105
6.3 Conditional PLANEX . 108
6.4 Results on Planning in EL . 111

6.4.1 Hardness Results for Unconditional PLANEX in EL 112
6.4.2 Hardness Results for Conditional PLANEX in EL 113

7 Description Logics with Concrete Domains 117
7.1 Constraint Systems . 118

7.1.1 RCC8 . 118
7.1.2 Allen’s Relations . 119
7.1.3 Properties of Constraint Systems . 120

7.2 Description Logic ALC(C) . 126
7.3 A Tableau Algorithm for ALC(C) . 128

7.3.1 Normal Forms . 128
7.3.2 Data Structures . 130
7.3.3 The Tableau Algorithm . 132

7.4 Correctness . 133
7.5 Practicability . 142

8 Conclusion 145
8.1 Description Logic Actions . 145

8.1.1 Summary . 145
8.1.2 Future Work . 146

8.2 Description Logics with Concrete Domains . 147

Bibliography 149

Chapter 1

Introduction

In the 1960s and 1970s it was recognized that knowledge representation (KR) and reasoning
is the main part of any intelligent system. Nowadays, research on KR and reasoning plays
an essential role in the area of artificial intelligence (AI). Various KR formalisms have been
developed for different purposes. The central place in this thesis will have description logics,
a prominent class of logic-based KR formalisms suited for the representation of and decidable
reasoning about static knowledge; and action formalisms, formalisms based on classical logic
dedicated to the modelling of and reasoning about dynamic systems. The largest part of this
thesis is dedicated to integrating these two fields, by designing action formalisms underlined
by description logics, with the main goal of ensuring decidability of standard reasoning prob-
lems about actions. A smaller part of the thesis is related to extensions of description logics
with concrete datatypes, most importantly with those allowing to refer to the notions of space
and time. We start by introducing description logics in Section 1.1 and action and planning
formalisms in Section 1.2. Novel contributions on combining description logics with action
formalisms are described in Section 1.3, while in Section 1.4 novel results on description logics
equipped with concrete datatypes are presented.

1.1 Description Logics

Description logics (DLs) are a family of logic-based knowledge representation formalisms
designed to represent and reason about conceptual knowledge in a structured and seman-
tically well-understood way [BCM+03]. DLs evolved from early knowledge representation
formalisms such as semantic networks [Qui68] and frames [Min75]. These used simple graphs
and structured objects, respectively, to represent knowledge and many algorithms were de-
veloped to manipulate these data structures. However, the major drawback of these early
KR systems was a lack of formal semantics. This gave rise to the creation of so-called concept
languages which allow to define concepts as formulae over fragments of first-order logic. The
name changed to “concept description logics”, “terminological logics”, and finally to descrip-
tion logics. The earliest DL system was KL-ONE [BS85], introduced by Ron Brachman in
1985. Although it was later shown that reasoning about KL-ONE knowledge bases is unde-
cidable [SS89], this early DL system laid the foundations of syntax, semantics, and reasoning
problems for modern description logics. Most modern DLs can be viewed as well-behaved
fragments of first-order logic that sacrifice some of the expressivity of first-order logic in order
to regain decidability of reasoning.

2 Introduction

The basic notions in DLs are concepts (unary predicates) and roles (binary relations).
A specific DL is mainly characterized by the set of constructors it provides to build more
complex concepts and roles out of atomic ones. The smallest propositionally closed DL,
ALC [SSS91], is a notational variant of the multi-modal logic Kω [Sch91] and provides the
following constructors: negation (¬), conjunction (u), disjunction (t), and existential (∃)
and universal (∀) restriction. As a simple example of an ALC-concept, we might describe the
concept of a mother as follows:

Female u Human u ∃has child.Human.

More expressive DLs are obtained from ALC by adding inverse roles, nominals (constants),
number restrictions, transitive roles, role hierarchies, etc. Among DLs that are not proposi-
tionally closed, an important role has the description logic EL which provides conjunction,
existential restriction, and the top (>) constructor.

Description logic knowledge bases usually consist of a terminological part, called a TBox,
and an assertional part, called an ABox. TBoxes come in several flavours, most importantly
acyclic TBoxes and general TBoxes. Acyclic TBoxes consist of concept definitions of the form
A

.
= C, defining the concept name A as a complex concept C. TBoxes are called acyclic if

and only if the definition of no concept refers directly or indirectly to itself. General TBoxes
allow for general concept inclusions (GCIs) of the form C v D, where C and D are (possibly)
complex concepts, stating that C implies D. While acyclic TBoxes just introduce (possibly
exponentially more succinct) representations for complex concepts, general TBoxes are able
to capture complex domain constraints. ABoxes are used to give incomplete descriptions of
the world, giving assertions about individuals, either by assigning individuals to concepts or
by establishing binary relations between individuals via roles. We illustrate description logic
knowledge bases with one example.

Example 1.1.1. Let Human and Female be atomic concepts and let has child be a role. Then
has child− denotes the inverse of has child, i.e. the has-parent relation. The TBox T

Parent
.
= Human u ∃has child.Human

Mother
.
= Female u Parent

Father
.
= ¬Female u Parent

Human v (= 1 has child−.Mother) u (= 1 has child−.Father)

Human v ∀has child.Human

defines concepts of parent, mother and father and requires that every human has exactly one
mother and one father, as well as that humans have only human children. Moreover, the
ABox

A := {(Female u Human)(anna) , has child(anna,mia) , Human(mia)}

states that anna is a female human with a human child mia.

Description logics have a model-theoretic semantics, hence the meaning of DL concepts
is given by means of interpretations. An interpretation is a tuple I = (∆I , ·I), where ∆I

is a domain, and ·I is an interpretation function. The interpretation function maps atomic
concepts to subsets of the domain, roles to binary relations over the domain, and individuals
to domain elements. The semantics of complex concepts is defined inductively based on

1.1 Description Logics 3

the constructors used in the concept description. Interpretations can be viewed as complete
world descriptions. An interpretation I is said to be a model of a TBox T if and only if
the left-hand side and the right-hand side of every concept definition in T is interpreted
identically, and the extension of C is contained in the extension of D for every GCI C v D
in T . Similarly, I is a model of an ABox A if and only if for every assertion C(a) in A, the
interpretation of a is contained in the interpretation of C, and for each r(a, b) in A, the tuple
of interpretations of a and b is contained in the interpretation of r. The semantics of ABoxes
is open world semantics, which means that the absence of information about an individual is
not interpreted as negative information but only indicates a lack of knowledge.

Reasoning services on knowledge bases enable us to deduce implicit consequences from
the explicitly represented knowledge. The standard reasoning problems considered in DLs
are satisfiability and subsumption of concepts. A concept C is said to be satisfiable w.r.t. a
TBox T if and only if there exists a model of T in which C is interpreted as a non-empty set.
C is subsumed by a concept D w.r.t. T if and only if C is more specific than D in the sense
that, w.r.t. every model of T , the interpretation of C is a subset of that of D. To classify
a TBox T means to compute all subsumption relationships between concepts occurring in
T . Further standard reasoning problems are knowledge base consistency and the instance
problem1. An ABox A is consistent w.r.t. a TBox T if and only if they have a common
model. An individual a is an instance of a concept C w.r.t. A and T if and only if in all
joint models of A and T , the interpretation of a is contained in the interpretation of C. In
Example 1.1.1, the ABox A is consistent w.r.t. the TBox T , the concept Mother u Father is
not satisfiable w.r.t. T , Mother is subsumed by Female w.r.t. T , and the individual anna is
an instance of Mother w.r.t. A and T .

Unsurprisingly, the computational complexity of the above reasoning tasks increases with
the expressivity of the underlying DL. ALC-concept satisfiability is a PSpace-complete prob-
lem [SSS91], and various decidable extensions of ALC are PSpace-, ExpTime-, and NExp-

Time-complete. While on one side, a substantial part of research on DLs was dedicated to
pushing decidability borders by designing algorithms for very expressive DLs such as SHOIQ
[HS05], there has also been a significant amount of research on so-called lightweight DLs such
as EL and its carefully designed extensions [BBL05] and DL-lite [CGL+05], in which reasoning
is tractable.

Due to their formally defined semantics, good computational properties, and expressivity
far beyond propositional logic, DLs are increasingly used as ontology languages. Ontolo-
gies provide a common vocabulary for a domain of interest together with descriptions of the
meanings of terms built from the vocabulary and relationships between them. In the context
of description logics, ontology is a synonym for a knowledge base. DL ontologies are success-
fully used in the life sciences and play a key role in the Semantic Web. We shall now briefly
describe the role ontologies play in these two domains.

Ontologies in life sciences

Life sciences are natural sciences dedicated to the study of living organisms, including medicine,
biology, biomedicine, and biochemistry. Given the complexity of the human anatomy, phys-
iological processes in single cells, or the distribution and causes of diseases studied in epi-
demiology, the need for representing and classifying knowledge in a systematic way arose

1Throughout the present thesis, we will refer to the instance problem as the consequence problem: C(a) is
a consequence of a knowledge base iff a is an instance of C w.r.t. the same knowledge base.

4 Introduction

naturally. Nowadays, DLs found a very successful application as ontology languages in the
life sciences [Spa01, BC07, SAW+07, BSL06, GZB06]. An interesting characteristic of ontolo-
gies in this domain is that they usually comprise a very large number of concepts, but are
defined over relatively inexpressive DLs such as EL. This holds for one of the most promi-
nent life science ontologies, the general-purpose medical ontology SNOMED [Spa01], that
is accepted as a standard of the International Health Terminology Standards Development
Organization. Further examples are the National Cancer Institute’s ontology [SdCH+06], the
medical ontology GALEN [RH97], and the GeneOntology [The00].

The Semantic Web

The Semantic Web [BLHL01, BHS03] is an evolving extension of the World Wide Web in
which web content can be expressed in a format readable by software agents, thus per-
mitting them to find, share, and integrate information more easily. This is achieved by a
semantic markup, while the meaning of terms used in the markup is defined in ontologies.
In 2004, the World Wide Web Consortium (W3C) recommended the DL-based formalism
OWL2 [HPSvH03] as a standard ontology web language. OWL is underlined by the expres-
sive description logic SHOIQ, but unlike the usual DL syntax it uses an RDF3/XML syntax.
The fact that a crucial component of the Semantic Web is supposed to be based on DLs is a
strong motivation for the ongoing DL research and opens a potentially large field for future
applications.

DL reasoning services provide reasoning support for ontology engineering, such as their
creation, usage, maintenance, integration, etc. Besides the standard ones, further DL reason-
ing services such as answering queries or finding explanations for inconsistencies were inspired
by needs of ontology engineers and users. These services are provided by state-of-the-art
DL reasoners such as FaCT++ [TH06], Pellet [SPG+07], RacerPro [HM01b], and CEL
[BLS06]. The reasoners FaCT++, RacerPro and Pellet support expressive description
logics and their cores are successful implementations of the tableau algorithm for SHOIQ,
using special techniques to avoid non-determinism and ensure termination. The CEL reasoner
implements tractable reasoning in lightweight description logics such as EL. Many of these
reasoners are integrated with modern DL ontology editors such as Protégé [HTR06].

The main research goals in the area of description logics may be seen as, on the one
hand, providing a toolbox of decidable logics such that, for a given application, one can
select a DL with adequate expressivity; and on the other hand, introducing and investigating
new reasoning services needed in various applications. For a comprehensive introduction to
description logics and its applications we refer the reader to [BCM+03].

1.2 Action and Planning Formalisms

In AI, the notion of an action plays a central role in two different research communities, one
dealing with planning and the other with reasoning about action. In both communities, an
action denotes an entity whose execution (by some agent) causes changes to the world.

The research on reasoning about action has mainly been driven by the so-called frame
problem since it was described by McCarthy and Hayes in [MH69]. The frame problem is the

2Web Ontology Language, see also http://www.w3.org/TR/owl-ref/
3Resource Description Framework, see also http://www.w3.org/RDF

1.2 Action and Planning Formalisms 5

challenge of representing the effects of action without explicitly having to represent a large
number of intuitively obvious non-effects. Intuitively, this means that actions affect only a
tiny part of the world. By the law of inertia, everything that is not affected by an action
stays the same. Another problem well-known in the reasoning-about-action community is
the ramification problem. This problem is concerned with indirect consequences of an action.
It might be phrased as the challenge to represent the implicit effects of an action or how
to control secondary and tertiary action effects which appear due to general state (domain)
constraints.

In the present section, we briefly introduce well-known action formalisms such as the
Situation Calculus and the Fluent Calculus, as well as their solutions to the frame and the
ramification problem. In the area of reasoning about actions, the most prominent reasoning
problems are projection, the problem of determining what holds after executing an action,
and executability, the problem of whether an action is applicable. Although planning, the
problem of checking whether there exists a sequence of actions that achieves a certain goal,
can be formulated in action formalisms, it has been independently, and more exhaustively
studied within the area of planning formalisms. We will also present the most important
planning formalisms and planners.

Action Formalisms

The oldest action formalism, the Situation Calculus (SitCalc), is a language specifically de-
signed for representing dynamically changing worlds. It was first introduced by McCarthy
in 1963 [McC63] and elaborated in [MH69]. Since then, many different versions of SitCalc
were proposed, while the standard version is considered to be the one introduced by Reiter in
[Rei01]. Formally, the Situation Calculus is a three-sorted second-order theory, with the three
sorts being actions, situations, and objects. Situations are sequences of actions, built from
the constant symbol s0 representing the initial situation, and the binary function symbol do:
do(a, s) denotes the situation obtained by executing action a in the situation s. Properties
whose truth depends on the situation are represented by predicates that have one additional
parameter denoting the situation. For example, “likes(b, c, s)” would be read as “b likes c in
situation s”. Such situation dependent predicates (and functions) are called fluents. In its
most common form, the Situation Calculus is restricted to deterministic effects of actions.
Action pre-conditions are expressed by means of the predicate Poss. Axioms of the form
Poss(A(x), s) ≡ ΠA(x, s) express that it is possible to execute action A(x) in situation s iff
ΠA(x, s) holds. It is required that ΠA(x, s) is a first order formula uniform in s, i.e., that it
does not depend on any other situation term than s. In early versions of the Situation Calcu-
lus [LPR88, Rei91], action effects are specified in terms of positive and negative effect axioms.
For each relational fluent F , first order formulae γ+

F (x, a, s) and γ−F (x, a, s) are assumed to
characterize all the conditions under which action a causes F to become true (or false) in the
successor situation. The frame problem is solved by compiling positive and negative effects
into fluent-centred successor state axioms:

F (x, do(a, s)) ≡ (F (x, s) ∨ γ+
F (x, a, s)) ∧ ¬γ−F (x, a, s)

These axioms ensure that the value of the fluent F differs in the situations s and do(a, s) iff it is
enforced by action effects. In the standard version of SitCalc [Rei01], no particular syntactic
form of successor state axioms is assumed; they are simply of the form F (x, do(a, s)) ≡
ΦF (x, a, s) where ΦF is uniform in s. Standard domain specification in the Situation Calculus

6 Introduction

is comprised out of the following axioms: (i) (second order) foundational axioms for situations;
(ii) the initial database (initial situation axioms describing s0); (iii) unique name axioms for
actions; (iv) action pre-condition axioms; and (v) successor state axioms.

Projection (the problem of finding consequences of action application) and action exe-
cutability are solved in the Situation Calculus mainly by a method called regression. Regres-
sion is the iterative process of expressing situations of the form do(a, s) in terms of a formula
containing the action a and the situation s, but not the situation do(a, s), which leads to
obtaining an equivalent formula that contains only the initial situation s0. Alternatively to
regression, consequences can be proved by its dual, progression, which denotes the compu-
tation of updates of the initial database [LR97, VL07]. However, progression of arbitrary
formulae is not always first-order definable in SitCalc.

The second important action formalism, the Fluent Calculus [Thi05a, Thi05b], has its
roots in the logic programming formalism of [HS90]. It was developed to solve not only the
representational, but also the inferential frame problem. In contrast to the former problem
which is concerned only with specifying all non-effects of actions, the latter is the problem of
actually inferring these non-effects.

The Fluent Calculus extends SitCalc with the predefined sort for states and its sub-
sort fluent. SitCalc fluents are reified which means that fluents are represented as logic
terms, rather than predicates. Hence second-order quantifiers are not needed in order to
quantify over fluents, which ensures that, unlike in SitCalc, progression in the Fluent Calculus
is first-order definable. A fluent is, for example, the term on(box , table), where on is a
binary function. States represent facts that hold in a situation and they are obtained by
concatenating fluents with a binary function symbol ◦. This function is assumed to be
associative, commutative, and idempotent, ensuring that states can be viewed as sets of
fluents. Central to the axiomatization technique of the Fluent Calculus is a function State(s)
which relates a situation s to the state of the world in that situation. It can be expressed that
the box is on the table in the situation s with the formula Holds(on(box , table),State(s)),
where the macro Holds(f, z) is defined as Holds(f, z) ≡ (∃z ′)z = f ◦ z′. The inferential frame
problem is solved by action-centred state update axioms that are designed in such a way
that only one such axiom suffices to infer the entire change caused by the action in question,
contrasting SitCalc successor state axioms which update single fluents. The state update
axioms assert that the situation after the execution of an action is identical to the one before
but for the fluents changed by the action. This is achieved by expressions of the form:

State(do(A(x), s)) = State(s) − ϑ− + ϑ+

where finite states ϑ+ and ϑ− are the positive and negative effects of the action A(x) in
situation s if a condition ∆(s) is satisfied. The operation “+” simply denotes ◦-concatenation,
while z − f = z′ holds if and only if (z′ = z ∨ z′ ◦ f = z′) ∧ ¬Holds(f, z′), for a fluent f and
can easily be recursively extended to subtraction of finite states.

Domain specifications in the Fluent Calculus are comprised of similar axioms as in SitCalc,
with the difference that foundational axioms define properties of the ◦ operation and states
(instead of situations); and that successor state axioms are replaced with state update axioms.
It is shown in [Thi99, ST06] that standard domain axomatizations in the Situation Calculus
and the Fluent Calculus are mutually translatable in case of deterministic actions.

In the versions of the Situation Calculus and Fluent Calculus that additionally provide
state constraints, i.e., axioms describing general constraints on the domain, solutions to the
ramification problem had to be worked out as well. In [LR94, Lif90, Lin95, McI00] it has been

1.2 Action and Planning Formalisms 7

suggested to use the circumscription formalism in order to address this problem. In particular,
the approaches of [Lin95, McI00] rely on an acyclic causality relation between fluents and
employ prioritized circumscription [Lif94] – in this special case, the result of circumscription
is first-order definable. An advantage of the causality relation mentioned above is that it
can be used to eliminate non-intuitive results of action application. A similar approach was
followed in [Thi97], where causal relationships between fluents define conditions under which
indirect effects are expected. Successor states are obtained by first computing direct effects
of an action and then applying a chain of casual relationships in order to compute indirect
effects as well. We would like to emphasize that the ramification problem is considered to be a
very hard problem in the reasoning-about-action community, and to our best knowledge there
is no generally accepted solution to this problem. There exist even some extreme opinions
[Sch90, Rei01], arguing that the ramification problem need not be taken seriously, and that
an axiomatizer should take ramifications into account when writing effect axioms. However,
in domains with complex chains of causal influences that often occur in engineering systems
(see [McI00]), it is far from easy to pre-compute all ramifications.

GOLOG and FLUX, languages for designing and programming intelligent agents, are un-
derpinned by the Situation Calculus and the Fluent Calculus, respectively. GOLOG (alGOl
in LOGic) [LRL+97] is a high-level language implemented in Prolog that combines control
structures from classical programming with reasoning about actions. At its core, GOLOG
uses the SitCalc action theory to define the meaning of its primitive actions and the initial
situation. Based on these primitives, complex actions can be formed using constructs from
imperative programming languages such as: sequence, non-deterministic choice of programs
or parameters, non-deterministic iteration, if-then-else, and while. FLUX (FLUent eXecu-
tor) [Thi05a] is a constraint logic programming method based on the Fluent Calculus. Unlike
GOLOG, where the description of the current state is implicitly given via the initial state
and the actions that have been performed to reach that state, FLUX has an explicit state
representation as its fundamental concept. While GOLOG reasoning is based on regression,
FLUX uses the progression principle and scales better to the control of agents over extended
periods. Both FLUX and GOLOG perform sound but incomplete reasoning w.r.t. underlying
theories.

Planning formalisms

An important prerequisite of intelligent systems as envisioned by AI research is the ability
to reach complex goals without explicitly being told all the necessary steps. Consequently,
planning has been seen as an important research area in AI since its very beginning. Infor-
mally, planning is the problem of finding a sequence of actions (called plan) that leads to
a world state where a certain goal is satisfied. The associated decision problem is the plan
existence problem (PLANEX), i.e. given a description of the initial situation, the available
actions and the goal, the problem of whether such a sequence of actions exists.

The Situation Calculus has occasionally served as a theoretical device for the study of
planning in AI, but except for a short period in the early 1970s, it has never been taken
seriously for the implementations of planning systems. A part of the problem was that no
solution to the frame problem existed for a while, and this led to the creation of the STRIPS
formalism dedicated exclusively to planning in 1971. Although solutions to the frame problem
in the Situation Calculus and the Fluent Calculus have been worked out in the meantime,
and, in principle, GOLOG and FLUX support planning, the creation of STRIPS and first

8 Introduction

efficient planners supporting STRIPS led the research on planning to take a new course,
independent of the one taken by the reasoning-about-action community.

The STRIPS language [FN71] describes operators (parameterized actions which contain
variables in place of individuals) in terms of their pre-conditions and effects. The effects of
an operator are given by so-called add- and delete-lists, which are sets of positive literals
(fluents). For example, moving an object x from the top of the object y to the table is
described via the the operator moveToTable(x, y):

pre : clear(x) ∧ on(x, y)
add : clear(y), onTable(x)

delete : on(x, y)

STRIPS suffered for some time from the lack of a formal semantics for its operators.
The first attempt to provide a logic-based semantics for STRIPS was by Lifschitz [Lif86].
Lifschitz proposed a notion of sound operators, for which it is possible to introduce transition
semantics in a well-defined manner. In the approach of Pednault [Ped89], STRIPS operators
are mappings from first-order structures to first-order structures, where the addition and
deletion of tuples are applied to the relations of the structure.

In basic (propositional) STRIPS, the initial state and goal state are completely described
as conjunctions of positive literals under CWA. In this case, the state obtained by applying
a (grounded) operator is simply obtained by subtracting fluents contained in the delete list
from the current state, and adding fluents contained in the add-list. It was shown in [Byl94]
that the plan existence problem is PSpace-complete in basic STRIPS. Intuitively, the reason
is that one may construct planning problems that can be solved only with exponentially long
sequences of actions: think of a binary counter C of length n. The initial state describes that
all bits of C are 0, the goal state requires that all bits of C are set to 1, and only a single
operator inc is available that increments C by 1. The complexity of more expressive variants
of STRIPS is extensively investigated in [ENS95].

ADL [Ped89, Ped94] relaxed some of the restrictions of the STRIPS language by sup-
porting equality, conditional effects, and typing; as well as allowing disjunction, negation,
and quantifiers in operator pre-conditions. The Problem Domain Description Language
(PDDL) [FL03] was introduced as a computer-parsable, standardized syntax for represent-
ing STRIPS, ADL, and other languages. PDDL is now the standard language for planning
competitions. For the study of comparative expressiveness of propositional planning for-
malisms ranging from basic STRIPS to propositional ADL, based on the notion of compil-
ability see [Neb00]. Note that the generally accepted semantics of ADL is based on Lifschitz’
approach [Lif86], and that world states are simply sets of propositional literals, while ex-
ecution of operators which may result in the states not representable as sets of literals is
forbidden.

There are several well-known planners supporting basic STRIPS. Most of these search for
plans of a bounded size and use different heuristics for an efficient state-space search. Note
that the complexity of STRIPS planning drops to NP if only plans of polynomial length
in the size of the planning problem are considered. The best known STRIPS planners are
GRAPHPLAN [BF97] based on processing the planning graph by using a backward search to
extract a plan, SATplan [KS96] using planning-as-satisfiability approach [KS92] and BLACK-
BOX [KS98] combining ideas from the previous two. Recently, planners supporting ADL and
other expressive fragments of PDDL beyond STRIPS have been developed. Among them
is the FF (FAST-FORWARD) planner [HN01] which implements a successful state-search ap-

1.3 Integrating DLs with Action Formalisms 9

proach, combining forward and local search, and using a simplified planning graph heuristic
for pruning the branches of the search tree that cannot provide a plan.

There has been significantly less work on so-called conformant planning, i.e. planning
in case only incomplete world descriptions are available (open world assumption) and with-
out any sensing capabilities during plan execution. The word “conformant” describes the
requirement that the same plan leads to goal satisfaction, independently of the initial sit-
uation. Conformant planning can be transformed into a search problem in the space of
belief states, where belief states represent sets of possible world states. It has been shown
that the conformant plan existence problem is ExpSpace-complete in the propositional case
[HJ99, Rin04], thus being much harder than basic propositional STRIPS planning. It fol-
lows from [Tur02] that, in the propositional case, finding conformant plans of polynomial
size is ΣP

2 -complete. Among conformant planners, well-known representatives are: Confor-
mant GraphPlan [SW98], SAT-based conformant planners [FG00, CGT03, PG06], the model
checking approach [CR00], and Conformant FF [HB06]. Besides adapting search heuristics
from their classic counterparts to the conformant case, conformant planners face the new
challenge of compactly representing belief states whose size may be exponential in the size of
the input.

Recently, there have been attempts to bridge the gap between action and planning for-
malisms. It has been shown in [CL06, CELN07] how to define the semantics of ADL in
terms of progression in the Situation Calculus. Moreover, it has been suggested to integrate
GOLOG with an ADL planner such that planning problems can be solved by a modern plan-
ner during the execution of a GOLOG program. Such attempts might enable a convergence
of the reasoning-about-action and planning communities which have been pursuing different
paths ever since the introduction of STRIPS.

1.3 Integrating DLs with Action Formalisms

1.3.1 Motivation

Action theories such as the Situation Calculus (SitCalc) and the Fluent Calculus [Rei01,
Thi05b] are formulated in first- or higher-order logic and do not permit decidable reason-
ing. For reasoning about actions in practical applications, such theories are thus not directly
suited. There are two obvious remedies to this problem. The first one is to accept un-
decidability and replace reasoning by programming – this route is taken by the inventors
of action-oriented programming languages, such as GOLOG [LRL+97] and FLUX [Thi05a].
The second approach is to identify fragments of action theories such as SitCalc that are suf-
ficiently expressive to be useful in applications, but nevertheless admit decidable reasoning.
For example, a simple fragment of that kind is obtained by allowing only propositional logic
for describing the state of the world and pre- and post-conditions of actions, as in proposi-
tional STRIPS [Byl94]. This implies that one has to choose between a very expressive but
undecidable action formalism, and a decidable but only propositional one.

Motivated by this dichotomy among available action formalisms, we propose to investigate
the middle ground and try to find a compromise between the two extremes. Investigating
a fragment of SitCalc based on description logics appears to be a very natural choice, since
DLs are known to have the properties we are looking for: they provide expressivity much
beyond the propositional case while still maintaining decidability of reasoning. By “based on
description logics”, we mean that ABox assertions are used to describe world states and pre-

10 Introduction

and post-conditions of actions, while TBoxes serve as state constraints. From the perspective
of the DL community, our work can be seen as “importing” reasoning problems about actions
into the DL world and relating them to standard DL reasoning problems. Our results, which
are going to be described in more detail in the following sections, show that important
reasoning problems, such as projection, executability, and the plan existence problem, are
decidable in DL-based action formalisms.

Although our work has mainly a theoretical motivation, applications of DLs as ontology
languages support our belief that description logic actions can find useful practical applica-
tions in the future. In medical applications, ABoxes can be used to describe states of the
world, such as patient data in the medical domain. In this context, actions can naturally
be used to represent the diagnostic and therapeutic steps taken during the treatment of a
patient. Executability and projection could help to determine whether a certain therapy is
applicable to the patient or not, as well as whether it has contra-indications.

Research related to the Semantic Web is not limited to the development of a semantic
markup language for static web pages. In addition, there is ongoing research on annotating
web services which allow their users to perform various actions, like buying a book or opening
a bank account. The OWL-S initiative [MBM+07] uses OWL to develop an ontology of
services, covering different aspects of web services. However, a faithful representation of the
dynamic behaviour of processes (the changes they cause to the world) is beyond the scope
of a static ontology language like OWL. In order to formalize the dynamic aspects of web
services and to describe their composition, different approaches are used: translating OWL-S
process models into the Situation Calculus/GOLOG [MSZ01, MS02] or Petri Nets [NM02].
Still, none of the existing approaches enables sound and complete reasoning about services,
neither was any of them widely accepted and successful.

Without pretending that the formalism introduced in the present work can capture the
full functionality of web services, we argue that it lays a theoretical foundation for future
work on decidable reasoning about semantic web services. Our composite DL actions can
be viewed as sequences of simple world altering web services. In this context, projection,
executability, and planning are very important reasoning tasks as they support, e.g., web
service discovery which is needed for automatic service execution.

1.3.2 Contributions and Results

We propose action formalisms in which the state of the world and the pre- and post-conditions
of actions can be described using DL concepts. The proposal is generic in the sense that our
framework can be instantiated with many standard DLs. We use a STRIPS-like syntax for
actions, where atomic actions are defined as triples consisting of pre-conditions, occlusions,
and post-conditions. Pre-conditions are simply represented by DL ABoxes, and they describe
conditions under which the action is applicable. Conditional post-conditions are specified by
expressions of the form ψ/ϕ, where ψ and ϕ are ABox assertions, describing that if ψ holds
before executing the action then ϕ should hold after. Composite actions are defined to be
sequences of atomic actions.

Naturally, DL ABoxes are used to give (incomplete) world state descriptions and TBoxes
to capture state constraints. We develop two action formalisms, A1 and A2. Formalism A1

supports only atomic concepts in action post-conditions and acyclic TBoxes while formalism
A2 extends A1 by supporting complex concepts in post-conditions and handling ramifications
introduced by general TBoxes. Occlusions play a different role in A1 and A2: they are

1.3 Integrating DLs with Action Formalisms 11

only a source of limited non-determinism in the former, but have an important function in
fine-tuning the ramifications in the latter. Composite actions are defined to be sequences
of atomic actions. When defining the semantics of actions, we assume that states of the
world correspond to interpretations. Thus, the semantics of actions is defined by means of a
transition relation on interpretations, similar to Pednault’s STRIPS semantics [Ped94]. We
have investigated the reasoning problems projection and executability in A1 and A2, as well
as planning in A1. The remainder of this subsection gives an account of the obtained novel
results.

Atomic Concepts in Action Post-Conditions

It is ensured that changes induced by A1-actions may occur only at an atomic level by
forbidding complex concepts in the right-hand sides of post-conditions ψ/ϕ. Hence, ϕ has
to be of the form A(a), ¬A(a), r(a, b), or ¬r(a, b), where A is an atomic primitive concept.
This means that A is not defined in the acyclic TBox T that describes the background
knowledge. The semantics of A1-actions is such that the changes induced by action execution
are minimized. More precisely, an action α transforms an interpretation I into I ′ if and only
if the following conditions hold: I and I ′ (i) are models of T , (ii) satisfy the conditional
post-conditions of α, (iii) have the same domain and interpret all individuals in the same
way, and (iv) coincide on the interpretation of all primitive concepts and roles in those parts
of the domain not affected by the post-conditions and not specified by occlusions.

We illustrate the components of A1 with an example from the medical domain.

Example 1.3.1. Let the background knowledge about the types of drugs and their chemical
ingredients be represented by the following TBox T :

Drug
.
= Antibiotic t ChemotherapyDrug t . . .

PBA
.
= Antibiotic u ∃basedOn.Penicillin

MBD
.
= ChemotherapyDrug u ∃basedOn.Methotrexate

Moreover, let the initial world state be described with the ABox A = Adrugs ∪ Apatient. The
first component of A, the ABox Adrugs, contains the knowledge about specific drugs and their
compatibility:

Adrugs := {PBA(amoxil),MBD(trexall),¬compatible(amoxil, trexall), . . . }

The second ABox Apatient contains patient data, including patient’s symptoms and the list of
admissible and requested drugs for the chosen patient. Initially, all those drugs the patient is
not allergic to may be described as admissible.

Apatient := {Patient(p), ∃hasSymptom.HighBloodPressure(p), . . . ,

admissible(p, amoxil), admissible(p, trexall), . . . ,

requested(p, amoxil), requested(p, trexall), . . . }

The parameterized action administer(p, x) describes the administration of a drug x to a patient
p. Conditional post-conditions of the form ¬compatible(x, y)/¬admissible(p, y) ensure that, if
a drug y is not compatible with the administered drug x, then y is not admissible anymore

12 Introduction

for the patient p.

pre : {Patient(p),Drug(x), requested(p, x), admissible(p, x)}

post : {¬requested(p, x), administered(p, x),
¬compatible(x, amoxil)/¬admissible(p, amoxil),
¬compatible(x, trexall)/¬admissible(p, trexall), . . . }

If the sequence of actions administer(p, amoxil); administer(p, trexall) is executable, this means
that the corresponding treatment is applicable to the patient p. If it is executable, projec-
tion may be used to check whether the assertion (∃administered.∃basedOn.Penicillin)(p) is a
consequence of applying this sequence of actions.

We show that instantiations of A1 with expressive DLs can be viewed as fragments of the
Situation Calculus and thus inherit SitCalc’s well-established solution of the frame problem
[Rei91, Rei01].

Concerning reasoning, we focus on the basic tasks of executability and projection, which
are mutually polynomially reducible in our framework. For a large number of standard de-
scription logics L that contain the basic DL ALC, we establish a close connection between
projection in A1 instantiated with L, and standard DL reasoning tasks in a moderate ex-
tension of L. More precisely, by using a method similar to regression in SitCalc, we show
that projection in L can be polynomially reduced to ABox consequence in LO, the extension
of L with nominals, i.e., singleton concepts. This reduction allows us to prove decidability
and upper complexity bounds for executability and projection in the action formalism A1

instantiated with DLs between ALC and ALCQIO (i.e., the extension of ALC with number
restrictions, inverse roles and nominals). Since standard reasoning in ALCQIO is supported
by standard DL reasoners such as FaCT++, RacerPro, or Pellet, reasoning about action
can be delegated to these.

Thus, we give a positive answer to the question whether there exists a decidable com-
promise between propositional and FO action theories. To pinpoint the exact computational
complexity of our formalism, we show that, in a certain sense, the reduction mentioned above
can be reversed: standard DL reasoning in LO can polynomially be reduced to projection
in L. In particular, this means that the additional computational complexity (sometimes)
caused by the introduction of nominals cannot be avoided. By combining the two reductions,
we obtain tight complexity bounds for projection in DLs between ALC and ALCQIO, where
the complexity ranges from PSpace-complete to co-NExpTime-complete.

Further complexity results for the lightweight DL EL shed even more light on the nature
of the projection problem. Although standard reasoning problems such as subsumption and
ABox consequence are tractable in EL (compared to PSpace-complete in ALC), projection
in EL is PSpace-hard and thus as hard as projection in ALC. If we disallow TBoxes, the
complexity of projection in EL drops to co-NP-complete, and is thus still not tractable. The
additional complexity comes from the fact that, by exploiting negative assertions in action
post-conditions and existential restrictions in the ABox, disjunction can be simulated even
by means of simple unconditional post-conditions.

We also consider several natural extensions of the formalism A1 and point out some of
the problems encountered with these extensions. While the semantics of actions can easily be
adapted to account for ramifications introduced by role hierarchies, transitive roles introduce
a serious non-determinism that cannot be trivially resolved. Similarly, allowing cyclic concept
definitions in the background TBox is shown to cause semantic problems.

1.3 Integrating DLs with Action Formalisms 13

Complex Concepts in Action Post-Conditions

The restrictions adopted in the action formalism A1, such as allowing only acyclic TBoxes
and atomic primitive concepts in action post-conditions, defuse the TBox ramification prob-
lem. This problem inevitably occurs, however, in case of the more powerful general TBoxes.
Since general TBoxes do not allow for a distinction between defined and primitive concept
names, admitting general TBoxes as state constraints means admitting complex concepts
in action post-conditions as well. Hence, we have to reconsider the frame problem, as the
straightforward action semantics suited for atomic changes in A1 cannot be applied in case
of complex concepts in post-conditions.

We discuss how attempts to automatically solve the frame problem and general TBox ram-
ification problem, e.g., by adopting a Winslett-style PMA semantics [Win88], lead to semantic
and computational problems: counter-intuitive results and undecidability of reasoning are the
consequence of adopting such a semantics. Since there appears to be no general automated
solution to the general TBox ramification problem other than resorting to very inexpressive
DLs [GLPR06], we propose to leave it to the designer of an action description to fine-tune the
ramifications of the action. In SitCalc and the Fluent Calculus, the ramification problem is
addressed similarly: the designer of an action description can control the ramifications of the
action by specifying causal relationships between predicates [Lin95, Thi97]. While causal-
ity appears to be a satisfactory approach for addressing the ramification problem induced
by Boolean state constraints, it seems not powerful enough for attacking the ramifications
introduced by general TBoxes which usually involve complex quantification patterns. We
therefore advocate a different approach: when describing an action, the user can specify the
predicates that may change through the execution of the action, as well as those that may not
change. In the action formalism A2 that supports complex post-conditions, in order to allow
an adequate fine-tuning of ramifications, we admit complex statements in action occlusions
about the change of predicates. These can be of the form “the concept name A can change
from positive to negative only at the individual a, and from negative to positive only where
the complex concept C was satisfied before the action was executed”.

Example 1.3.2. Assume that the TBox T from Example 1.3.1 is extended with the following
GCI:

∃administered.∃basedOn.Penicillin v ∀admissible.¬(∃basedOn.Methotrexate)

It describes that, if a penicillin-based drug is administered, methotrexate-based drugs are not
admissible. If an action post-condition contains the assertion administered(p, amoxil), then,
∀admissible.¬(∃basedOn.Methotrexate) should also hold for p as an indirect effect of the ac-
tion. Although this complex concept can be satisfied in many different ways, intuitively, we
expect that only the interpretation of admissible might change, while basedOn and Methotrexate
remain the same. We can tune the action ramifications by stating that, after action execu-
tion, only admissible may change from positive to negative, and only for the pairs whose first
component is p, and the second component satisfies ∃basedOn.Methotrexate.

We show that, for many standard extensions of ALC, the reasoning problems executability
and projection in A2 are decidable. We also pinpoint the exact computational complexity
of these reasoning problems. As a rule of thumb, our results show that reasoning in A2

instantiated with a description logic L is of the same complexity as ABox consequence w.r.t.
general TBoxes in L extended with nominals. For fine-tuning the ramifications, consistency

14 Introduction

of actions is an important property. We introduce two notions of consistency (weak and
strong) and show that weak consistency is of the same complexity as deciding projection
while strong consistency is undecidable even when the action formalism is instantiated with
the basic DL ALC.

Planning

We complete our research of action reasoning problems in the context of description logics
by investigating planning in the action formalism A1. A planning task is described as a
tuple consisting of DL ABoxes A and Γ, (incompletely) describing the initial and goal world
state, respectively; an acyclic TBox T defining concepts used in A and Γ; a set of operators
Op (parameterized A1-actions), and a set Ind of individuals that can be used to instantiate
operators. Intuitively, the plan existence problem is the following: is there a plan (a sequence
of actions, i.e., grounded operators) which “transforms” A into a state where Γ is satisfied?.

Using standard planning terminology, we may say that we investigate “DL conformant
planning” as world states are incompletely described with ABoxes and we require that plans
are uniform, i.e., that the same plan achieves the goal, independently of the model of the
initial ABox (world state). We investigate the computational complexity of the plan existence
problem for description logics between ALC and ALCQIO as well as in the lightweight
EL. Our results show that planning is harder with operators that contain conditional post-
conditions than with those that have only unconditional ones.

If we allow only for actions with unconditional post-conditions, we show that, in these
logics the plan existence problem is decidable and of the same computational complexity
as projection. By using a compact representation of the possible states obtained by action
application, we show that the search space is exponential in the size of the planning task.
Hence the plan existence problem can be solved by a PSpace (graph reachability) algorithm
with a “projection oracle”. As a consequence, we obtain that, in logics between ALC and
ALCQIO, the complexity of the plan existence problem ranges from PSpace-complete to
co-NExpTime-complete.

If conditional post-conditions are allowed, it is not possible to represent states of the search
space by means of accumulated action post-conditions. The reason is that different models of
the initial ABox A may cause different post-conditions to be triggered. Using combinatorial
methods, we show that the plan existence problem in this case is in 2-ExpSpace. Since the
only known lower complexity bound is inherited from propositional logic (ExpSpace-hard),
we leave the exact computational complexity of “conditional” PLANEX as an open problem.

Finally, we show that hardness results for propositional planning carry over to planning
in the lightweight description logic EL.

1.3.3 Related Work

Early Results

In the early papers from the 1990s on representing actions in description logics [DL96,
HKNP92, AF98], actions and plans were represented statically as description logic concepts.
The emphasis was on classification-based reasoning, i.e., computing subsumption relations
between actions and plans.

Motivated by the need to represent plan-like knowledge in the domain of telephone switch-
ing software, Litman and Devanbu [DL96] developed the Clasp system designed to represent

1.3 Integrating DLs with Action Formalisms 15

and reason about large collections of plan descriptions. In their system, the notions of sub-
sumption and classification are extended from concepts to plans and actions. Actions are
represented as concepts written in the early DL system classic by means of (essentially
propositional) pre- and post-conditions. Plans are built out of actions by using constructors
corresponding to regular expressions which allow to express disjunction, sequences, and iter-
ations of actions. Subsumption algorithms for plans integrate the work on finite automata
with concept subsumption algorithms. Clasp also provides a limited support of reasoning
about action, based on the propositional STRIPS semantics.

In the RAT system [HKNP92] by Heinsohn et al., built on top of the early DL system
KRIS, a similar approach was followed, while increasing the expressiveness of action pre-
and post-conditions and limiting plans to linear sequences of actions. Plans and actions
are treated as concepts, and their instances are treated as DL individuals. Moreover, like
in [DL96], several notions of subsumption between actions and plans are considered. One
of them, called abstraction-subsumption means that an action α1 subsumes an action α2

if and only if the same holds for the pre- and post-conditions of α1 and α2. The meaning
of actions is specified via syntax-based updates of ABoxes. RAT provides the service of
simulated execution of plans, thus checking the feasibility of plans, i.e., checking whether all
the intermediate states obtained by the plan execution are consistent.

In [AF98], Artale and Franconi proposed a temporal description logic whose concepts
can be used to describe actions and plans. The proposed temporal DL is a hybrid between
Allen’s interval algebra and DLs such as ALC with feature agreements. Action concepts
describe what is true before and after executing the action, while plans are constructed
by using temporal Allen relations to relate actions and world states. Moreover, decision
procedures for concept subsumption in the proposed temporal DLs can be used to decide
subsumption between actions and plans. However, no satisfactory solution to the frame
problem is presented.

In contrast to the previously described papers, the focus of De Giacomo et al. in [GINR96]
was on representing and reasoning about actions. In this proposal based on epistemic de-
scription logics, a distinction is made between two kinds of description logic roles: standard
static roles and functional action roles. Concept inclusions employing a knowledge operator
are used to specify pre- and post-conditions of actions. This work was extended in [GINR97]
in order to model sensing actions. However, the frame problem is handled properly only
for sensing actions and neglected for the world altering ones. The authors extended the DL
system classic in order to handle epistemic operators and even developed a mobile robot
with planning support.

Recent Results

Recent results on actions in description logics were inspired by the formalisms and results
presented in this thesis, or came as their follow-up.

In [LLMW06c], Liu et al. considered the problem of updating ABoxes when the state
changes. It was assumed that changes are described at an atomic level like in A1, i.e., in
terms of updates consisting of possibly negated ABox assertions that involve only atomic
concepts and roles. For an ABox A and an update U , the updated ABox A ∗ U has exactly
the models I ′ obtained by updating all models I of A with U . Thus, the updated ABox A∗U
has exactly the same consequences as those of applying U in A. Obviously, updating ABoxes
enables an explicit representation of updated states and thus follows the progression approach

16 Introduction

to deciding projection, an alternative to the regression-based approach considered in this
work. It turns out that DLs have to include nominals and the “@” constructor known from
hybrid logic (or, equivalently, admit Boolean ABoxes) for updated ABoxes to be expressible.
Algorithms to compute updated ABoxes in DLs between ALC and ALCQIO were devised.
Moreover, it was shown that an exponential blowup in the size of the whole input (original
ABox together with update information) cannot be avoided unless every PTime problem
is LogTime-parallelizable. An exponential blowup in the size of the original ABox can be
avoided by introducing abbreviations for complex concepts in an acyclic TBox.

In [GLPR06], De Giacomo et al. investigated ABox updates in the description logic
DL-Lite in the presence of concept inclusions, under PMA semantics. DL-lite is a family of
lightweight DLs. The DL-Lite version considered in [GLPR06] allows for unqualified exis-
tential restrictions (∃R), concept negation, inverse and functional roles; concept inclusions
C v D may contain negation only on the right hand-side. The advantage of DL-Lite is
that basic reasoning problems are computationally tractable. It is shown that updates of
DL-Lite ABoxes can be computed in polynomial time, and that they are of polynomial size
in the size of the original knowledge base. However, in order to express updates, the authors
allowed parameterized ABox assertions. Intuitively, such an assertion C(z) describes that C
holds “somewhere” in the domain. Without parameterized assertions, ABox updates are not
expressible in DL-Lite, just like in case of more expressive DLs. In order to overcome this
problem, the authors in [GLPR07] propose to compute maximal approximations of ABox
updates in DL-lite. This means to compute DL-lite ABoxes whose set of models is a mini-
mal set containing interpretations obtained by updating models of the original ABox. It is
shown in [GLPR07] that maximal approximated ABox updates exist in DL-lite and that the
algorithm from [GLPR06] can be adapted to compute approximated updates in polynomial
time. Based on a (radical) functional view of ontologies, first ideas on how to define actions
and GOLOG-like programs over DL-Lite ontologies were presented in [CGLR07].

In [GS07], Gu and Soutchanski considered a decidable fragment of SitCalc based on C2,
a two-variable fragment of first order logic with counting quantifiers. It is assumed that
changes may occur only at an atomic level, like in A1. The logic C2 is more expressive than
the description logics we consider in the present thesis. Its expressiveness corresponds to that
of the description logic ALCQIO extended with role inclusions and Boolean operators on
roles. [GS07] follows the axiomatizing tradition of the Situation Calculus, while the initial
theory, pre-condition, and successor state axioms are written in C2. Moreover, decidability
of projection and executability are proved by showing that the regression approach to projec-
tion from [Rei01] works within the decidable two-variable fragment, by employing a careful
substitution of variables.

In [DT07], Drescher and Thielscher investigated a decidable fragment of the Fluent Cal-
culus based on description logics. In this fragment, ABoxes are used as state descriptions.
The semantics for ABox updates is captured by Fluent Calculus state update axioms. This
lays theoretical foundations for a practical action programming language built on top of
description logic reasoners.

1.4 Description Logics with Concrete Domains 17

1.4 Description Logics with Concrete Domains

1.4.1 Concrete Domains

Overview

In order to use description logics in an application, it is crucial to identify a DL that is
sufficiently expressive to represent the relevant notions of the application domain, but for
which reasoning is still decidable. For several relevant applications of DLs, there is a need
for DLs that can represent and reason about information of a more “concrete” nature, such
as weights, amounts, durations, and spatial extensions.

As an example, consider an ontology designed to run an on-line business in the Semantic
Web. In order to define the notion of a valid credit card in such an ontology, we need a
means of storing the expiry year of the credit card and of checking whether it is greater than
the current year. In ontologies for the life sciences, numbers and relations are of elementary
importance for the representation of measurements, clinical findings, patients’ vital parame-
ters, or classifications based on those. In geo-spatial ontologies, it is highly desirable that the
relations such as spatially contains and spatially overlaps are no standard roles, but “concrete”
spatial relations, where spatial reasoning applies to.

The standard way of integrating numbers and other datatypes (spatial, temporal, etc.)
into description logics is to divide the set of logical objects into two disjoint sets, one con-
taining abstract objects and the other containing concrete objects. Real numbers and spatial
regions would fall into the second set. Abstract objects can be related to concrete ones via
functional concrete features, such as has magnitude or has area. Relations between concrete
objects are described by a set of domain-specific predicates. The pair consisting of a set
of concrete objects and predicates with a fixed extension over this set is called a concrete
domain [BH91]. Concrete domains can be, for example:

• Numerical: The set of natural numbers N with the following predicates: unary ≥0,
binary = and >.

• Spatial: A set of regions in the real plane with RCC8 [RCC92] spatial relations as
predicates. RCC8 relations between regions are: eq (equal), dc (disconnected), ec
(externally connected), po (partially overlap), as well as tpp (tangential proper part),
ntpp (non-tangential proper part) and their inverses tppi and ntppi.

• Temporal: A set of real intervals with temporal relations of Allen’s interval alge-
bra [All83] as predicates. Allen relations between intervals are = (equality), b (before),
a (after), as well as: m (meet), o (overlap), d (during), s (starts), f (finishes) and their
inverse relations mi, oi, di, si, fi.

A sequence of abstract features, i.e. functional roles, followed by a single concrete feature
(f1 · · · fkg) is called a path. By means of paths one can refer not only to concrete properties of
an object, but also to concrete properties of other objects related to that object. For example,
we may talk about the age of one’s mother by using the sequence of features (mother age).
It is also common to allow paths of the form rg, where r is a standard role.
The integration of concrete domains into description logics is usually achieved by adding a
concrete domain concept constructor of the form ∃u1, . . . , un.P (and ∀u1, . . . , un.P), where
u1, . . . , un are paths, and P is an n-ary predicate from the concrete domain. The intended
interpretation is that ui-values are related by the predicate P . For example, such an integra-
tion of the basic DL ALC with a concrete domain D is denoted by ALC(D). Returning to

18 Introduction

the motivating example above, the notion of a a valid credit card might then be defined as:

CreditCard u ∃expiry year, current year. ≥ .

Relevant Existing Work

Concrete domains in the context of DLs were first introduced in [BH91], where the first
tableau algorithm for deciding consistency of ALC(D)-ABoxes was developed. The algorithm
is independent of a particular concrete domain D. Instead, it is required that D is admissible
– which in particular means that deciding satisfiability of predicate conjunctions in D is
decidable. Moreover, it is shown that two and more admissible concrete domains can be
combined into one, retaining admissibility. It is proved in [Lut02b] that reasoning in ALC(D)
is PSpace-complete if reasoning with the concrete domain D is in PSpace.

Various extensions of ALC(D) were treated in [HLM98, HLM99, Lut04b, Lut02b], in-
cluding extensions with acyclic concept definitions, feature agreements, and a role-forming
concrete domain operator. Even seemingly harmless extensions were shown to lead to NEx-

pTime-complete reasoning and some of them even to undecidability.

It is shown in [Lut04b] that combining concrete domains with general TBoxes easily leads
to undecidability. For example, the basic DL ALC extended with general TBoxes and a
rather inexpressive concrete domain based on the natural numbers together with equality
and incrementation predicates is undecidable, see also the survey paper [Lut03]. In view
of this discouraging result, it was a natural question whether there are any useful concrete
domains that can be combined with general TBoxes in a decidable DL. A positive answer
to this question has been given in [Lut04a] and [Lut02a], where two such well-behaved con-
crete domains are identified: a temporal one based on the Allen relations for interval-based
temporal reasoning, and a numerical one based on the real numbers equipped with various
unary and binary predicates, such as “≤”, “>5”, and “6=”. Using an automata-based ap-
proach, it has been shown in [Lut04a, Lut02a] that reasoning in the DLs ALC and SHIQ
extended with these concrete domains and general TBoxes is decidable and, more precisely,
ExpTime-complete.

Despite a number of theoretical results on concrete domains, only very limited concrete
domains have found their way into actual implementations of DL reasoners. One reason for
this may be the lack of practicable algorithms. One exception is the reasoning procedure
presented in [HS01], designed for SHOQ(D), an expressive DL with a numerical concrete
domain underlying the web ontology language OWL [BvHH+04]. However, paths appearing
in the definition of concepts are restricted to concrete features, and only unary predicates
(called datatypes) are permitted. The same restrictions apply to datatypes in the current ver-
sion of OWL. The state-of-the-art OWL DL reasoners FaCT++ [TH06], Pellet [SPG+07],
and RacerPro [HM01b, HMW01] support simple numerical datatypes and strings within
the above limitations. Nevertheless, the W3C OWL 1.1 working group has expressed interest
in an extension to more powerful concrete domain predicates.

1.4.2 Contributions and Results

For several relevant applications of DLs such as the Semantic Web, life sciences and reasoning
about ER and UML diagrams, there is a need for DLs that include, among others, both
concrete domains and general TBoxes [BHS03, CLN98, Lut02c].

1.5 Structure of the Thesis 19

The purpose of our work is to advance the knowledge about decidable DLs with both
concrete domains and general TBoxes. Our contribution is two-fold: first, instead of fo-
cusing on particular concrete domains as in previous work [Lut04a, Lut02a], we identify a
general property of concrete domains, called ω-admissibility, that is sufficient for proving
decidability of DLs equipped with concrete domains and general TBoxes. For the definition
of ω-admissibility, we concentrate on a particular family of concrete domains: constraint sys-
tems. Roughly, a constraint system is a concrete domain that only has binary predicates
interpreted as jointly exhaustive and pairwise disjoint (JEPD) relations. Intuitively, a con-
straint system is ω-admissible if the satisfiability problem for finite networks (i.e., sets of
constraints) is decidable, and if finite and countably infinite unions of satisfiable networks
are also satisfiable. We show that two useful constraint systems that are ω-admissible: a
temporal one based on the total ordering on real numbers and the Allen relations [All83],
and a spatial one based on the real plane and the RCC8 relations [EF91, Ben97, RCC92].
The proof of ω-admissibility turns out to be relatively straightforward in the Allen case, but
is somewhat cumbersome for RCC8. We believe that there are many other useful constraint
systems that can be shown to be ω-admissible.

The second part of our contribution is to develop a tableau algorithm for DLs with both
general TBoxes and concrete domains. Since the existing decidability proofs for these logics
use a theoretical automata-based approach [Lut04a, Lut02a], our tableau algorithm comes
as the first implementable reasoning procedure for DLs with general TBoxes and concrete
domains. Informally, tableau algorithms decide whether a concept is satisfiable by trying to
construct a model for it. We employ such an algorithm to establish a general decidability
result for the concept satisfiability and subsumption problem in ALC equipped with general
TBoxes and any ω-admissible concrete domain. In particular, we obtain that satisfiability
and subsumption are decidable w.r.t. general ALC TBoxes extended by the Allen relations
as first established in [Lut04a]. As a new result, we prove decidability of analogous decision
problems w.r.t. general ALC TBoxes extended by the RCC8 relations as a concrete domain.
Due to the interleaving influences of concrete domains and general concept inclusions, we
had to invent a sophisticated blocking technique in order to prevent the explicit creation
of an infinite number of domain elements, and thus ensure termination of the algorithm. In
contrast to existing tableau algorithms [HMW01, HS01], we do not impose any restrictions on
the concrete domain constructor. As state-of-the-art DL reasoners such as FaCT++ [TH06]
and RacerPro [HM01b] are based on tableau algorithms similar to the one described in
this chapter, we view our algorithm as a first step towards a practical implementation of
description logics with (ω-admissible) concrete domains and general TBoxes. In particular,
we identify an expressive fragment of our logic that should be easily integrated into existing
DL reasoners.

1.5 Structure of the Thesis

• In Chapter 2 we introduce the basics of description logics: their syntax, semantics,
and standard reasoning problems. Moreover, we present formal preliminaries of the
Situation Calculus.

• In Chapter 3 we introduce the generic DL action formalism A1 that admits atomic
concepts in the post-conditions of actions and a background knowledge in the form of
acyclic TBoxes. We also define the semantics of actions as well as the standard reason-

20 Introduction

ing tasks executability and projection. We show that the formalism A1 can be viewed
as a fragment of the Situation Calculus and thus inherits SitCalc’s solution to the frame
problem. In this chapter we focus on instantiations of A1 with propositionally closed
description logics L. We cover the case of ALC and its extensions with (all possible
combinations of) number restrictions, inverse roles, and nominals. We show that pro-
jection in A1 instantiated with L can be polynomially reduced to ABox consequence
in LO, the extension of L with nominals. Finally, we show that the additional com-
putational complexity (sometimes) caused by the introduction of nominals cannot be
avoided, since standard DL reasoning in LO can polynomially be reduced to projection
in L.

• In Chapter 4, we consider instantiations of A1 with lightweight description logics as
well as several extensions of A1. We show that deciding projection in A1 instantiated
with EL is PSpace-hard, and thus not easier than for ALC. Moreover, projection for
EL without TBoxes is shown to be co-NP-complete. Considering possible extensions,
we show that the semantics of A1 can easily be extended to account for ramifications
introduced by role inclusions. Moreover, we show that the same holds for the reduction
of projection to ABox consequence from the previous chapter. However, we show that
extensions involving transitive roles or acyclic TBoxes introduce semantic problems.
Finally, allowing complex concepts in post-conditions of A1-actions and adopting PMA
semantics is shown to lead to computational problems.

• In Chapter 5 we introduce the action formalism A2 that allows complex concepts in
post-conditions of actions and supports general TBoxes as state constraints. Since
A2-actions contain complex occlusion patterns for fine-tuning the ramifications, consis-
tency of actions is introduced as an important reasoning task besides executability and
projection. We show that the formalism A2 generalizes A1. Moreover, we show that, for
many standard propositionally closed DLs, the reasoning problems executability and
projection in A2 are decidable. For DLs contained in ALCIO, we use a type-elimination
method to show that projection in A2 is ExpTime-complete. For the DLs ALCQI and
ALCQIO, we show how to reduce projection to ABox consequence in ALCQIO ex-
tended with Boolean operations on roles, thus proving that projection for these logics
is co-NExpTime-complete. We show that the weak kind of action consistency can be
reduced to projection, while strong consistency is undecidable already for ALC.

• In Chapter 6 we investigate planning in A1. We introduce the notion of a planning
task and define the plan existence problem. We show that the plan existence problem
is decidable for actions described in fragments of ALCQIO. More precisely, we show
that its computational complexity coincides with the one of projection for DLs between
ALC and ALCQIO where operators contain only unconditional post-conditions. If
we allow for conditional post-conditions the plan existence problem is shown to be in
2-ExpSpace. Finally, we show that hardness results for propositional planning carry
over to planning in the lightweight description logic EL.

• Chapter 7 is dedicated to description logics with concrete domains. We introduce a
special type of concrete domains called constraint systems and define ω-admissibility
– the property of constraint systems which ensures that they can be combined with
general TBoxes in a decidable DL. We show that some useful concrete domains, such

1.5 Structure of the Thesis 21

as a spatial one based on RCC8 and a temporal one based on Allen’s relations, are
ω-admissible. Moreover, we introduce the description logic ALC(C) that incorporates
constraint systems and general TBoxes. The tableau algorithm for deciding satisfiability
in ALC(C) equipped with an ω-admissible constraint system is developed. Finally, we
discuss the feasibility of our algorithm and identify a fragment for which the tableau
algorithm is implementable in a particularly straightforward way.

• In Chapter 8 we give a summary of our results and discuss possible future extensions
of our work.

Most of the results presented in this work have already been published. The first results
on integrating expressive description logics with action formalisms from Chapter 3 were pub-
lished in [BLM+05b, BLM+05c, BLM+05a]. The results on projection in EL from Chapter 4
were published in [LLM08]. The results on reasoning about actions in the presence of general
TBoxes from Chapter 5 were published in [LLMW06b, LLMW06a], while the results on plan-
ning presented in Chapter 6 appeared in [Mil07]. Finally, the results on DLs with concrete
domains and general TBoxes from Chapter 7 were published in [LM05a, LM05b, LM07]. The
results on ABox updates in expressive DLs mentioned in the “related work” Section 1.3.3
and published in [LLMW06c] are going to become a part of the PhD dissertation of Hongkai
Liu.

22 Introduction

Chapter 2

Formal Preliminaries

In Section 2.1 we give basics of description logics that are of interest for the present work,
while in Section 2.2 we give an introduction to the Situation Calculus.

Throughout this work, we will use #S or |S| to denote the cardinality of a set S, while
we use 2S to denote the power set of S, i.e. 2S = {T | T ⊆ S}.

2.1 Description Logics

In description logics, concepts are inductively defined with the help of a set of constructors
which determine the expressive power of the specific DL. We introduce the constructors
available in ALCQIO and explain how its fragments discussed in this work can be obtained
by omitting constructors.

Definition 2.1.1 (ALCQIO Syntax). Let NC, NR, and NI be disjoint and countably infinite
sets of concept names, role names, and individual names. A role is either a role name or the
inverse r− of a role name r. The set of ALCQIO-concepts is the smallest set satisfying the
following properties:

• each concept name A ∈ NC is a concept;

• if C and D are concepts, r is a role, a an individual name, and n a natural number,
then the following are also concepts:

{a} (nominal)

¬C (negation)

C uD (conjunction)

C tD (disjunction)

∃r.C (existential restriction)

∀r.C (universal restriction)

(> n r C) (at-most number restriction)

(6 n r C) (at-least number restriction)
4

It is convenient to introduce some abbreviations. As usual, we use the Boolean standard
abbreviations → and ↔. We use (= n r C) to abbreviate the conjunction of (> n r C) and

24 Formal Preliminaries

Constructor EL EL(¬) ELU ALC
u, ∃, > • • • •
¬A • •
t • •

∀, ¬ •

Figure 2.1: ALC and its “EL”-like sublanguages.

Sym. Constr. ALC ALCO ALCQ ALCI ALCQO ALCIO ALCQI ALCQIO
Q (6 n r C) • • • •

(> n r C)
I r− • • • •
O {a} • • • •

Figure 2.2: Description logics between ALC and ALCQIO.

(6 n r C). Additionally, we use > (top) for a propositional tautology and ⊥ (bottom) for
¬>.

The DL that allows only for negation (¬), conjunction (u), disjunction (t), and universal
(∀) and existential (∃) restriction is called ALC. The DL ALC is the smallest propositionally
closed description logic and usually considered to be a “prototypical” DL. In our work, we
will also consider several description logics that are less expressive than ALC. The DL that
allows only for conjunction (u), existential restriction (∃), and top (>) is called EL, while
EL(¬) and ELU denote its extensions with atomic negation (¬A) – i.e., negation that may
occur only in front of concept names, and disjunction (t), respectively. The features of the
mentioned languages are summarized in Figure 2.1.

Considering extensions of ALC, the availability of additional constructors is indicated
by concatenation of a corresponding letter: Q stands for number restrictions; I stands for
inverse roles, and O for nominals. This explains the name ALCQIO, and also allows us to
refer to its sublanguages as indicated in Figure 2.2.

If a language L1 is a sublanguage of a language L (including L), and L is a sublanguage
of a language L2 (including L2), we say that L is between L1 and L2. Moreover, for a DL L,
by L-concepts we denote concepts that are built by using only constructors provided by L.

In order to refer to the computational complexity of reasoning tasks later on, we need to
define the size of concepts. Intuitively, the size of a concept C is the number of characters
needed to write it down.

Definition 2.1.2 (Concept Size). The size of concepts over NI, NR, and NI is inductively
defined as follows:

• |>| = |⊥| = |A| = |{a}| := 1, for all A ∈ NC and a ∈ NI;

• |C uD| = |C tD| := |C| + |D| + 1; |¬C| = |∀r.C| = |∃r.C| := |C| + 1, for all concepts
C and D and roles r;

• |(> n r C)| = |(6 n r C)| = [log2(max{2, n})] + |C| + 1, for all natural numbers n,
roles r, and concepts C.

4

Note that, usually, binary coding is assumed for number restrictions.

2.1 Description Logics 25

Throughout this thesis, we will use the notion of a subconcept of a concept. This notion is
introduced in the next definition.

Definition 2.1.3 (Subconcepts). The set of subconcepts sub(E) of a concept E is induc-
tively defined as follows:

• sub(E) := {E}, if E is >, ⊥, a concept name A, or a nominal {a};

• sub(E) := {E} ∪ sub(C) ∪ sub(D), if E is of the form C uD or C tD;

• sub(E) := {E} ∪ sub(C), if E is of the form ¬C, ∀r.C, ∃r.C, (> n r C), or (6 n r C).

4

The semantics of concepts is defined w.r.t. a model-theoretic semantics, meaning that concepts
are interpreted as subsets of the interpretation domain.

Definition 2.1.4 (ALCQIO Semantics). An interpretation I is a pair (∆I , ·I) where ∆I

is a non-empty set and ·I is a mapping that assigns

• to each concept name A, a set AI ⊆ ∆I ;

• to each individual name a, an element aI ∈ ∆I ;

• to each role name r, a binary relation rI ⊆ ∆I × ∆I .

The interpretation of inverse roles and complex concepts is then defined as follows:

(r−)I = {(e, d) | (d, e) ∈ rI}

({a})I = {aI}

(¬C)I = ∆I \ CI

(C uD)I = CI ∩DI

(C tD)I = CI ∪DI

(∃r.C)I = {d | there exists e such that (d, e) ∈ rI and e ∈ CI}

(∀r.C)I = {d | for all e such that (d, e) ∈ rI it holds that e ∈ CI}

(6 n r C)I = {d | #{e ∈ CI | (d, e) ∈ rI} ≤ n}

(> n r C)I = {d | #{e ∈ CI | (d, e) ∈ rI} ≥ n}

An interpretation I is called a model of a concept C if CI 6= ∅ 4

Note that the existential restriction ∃r.C is an abbreviation for (> 1 r C), while the universal
restriction ∀r.C abbreviates (6 0 r ¬C). For this reason, in sublanguages of ALCQIO that
provide number restrictions, we will not treat existential and universal restrictions explicitly.

Although not standard in description logics, we will often require interpretations to respect
the unique name assumption (UNA) on individual names, since it is natural in reasoning
about actions.

Definition 2.1.5 (Unique Name Assumption (UNA)). An interpretation I respects
unique name assumption (UNA) on individual names iff for all a, b ∈ NI, a

I = bI implies
a = b. 4

26 Formal Preliminaries

Note that, since the set of individual names NI is countably infinite, interpretations that
respect UNA on individual names, strictly speaking, also have to have infinite domains. In
the coming chapters, in order to be able to work with finite domains, we may assume that
interpretations interpret only individual names from a finite set of individuals Ind, and respect
UNA on Ind.

Besides interpretations, we will use the notion of a frame. Intuitively, frames are inter-
pretations that interpret only role names.

Definition 2.1.6 (Frame). A frame is a pair (∆F , ·F), where ∆F is a non-empty set and ·F

maps each role name r to a binary relation rF ⊆ ∆F ×∆F . An interpretation I is said to be
based on F if ∆F = ∆I and ·F and ·I agree on the interpretation of all role names. A frame
F validates a concept C if and only if CI = ∆I for all interpretations I based on F . 4

In description logics, TBoxes are used to capture the background knowledge about the
world. They come in several flavours: the most simple, acyclic TBoxes, introduce defined
concept names as abbreviations for complex concepts, while the powerful general TBoxes
introduce constraints of the form “for all domain elements where C holds, D holds as well.”

Definition 2.1.7 (Concept Definition, Acyclic TBox). A concept definition is of the
form A

.
= C, where A is a concept name and C a concept. A TBox is a finite set of concept

definitions with unique left-hand sides. We say that a concept name A directly uses a concept
name B w.r.t. T if there is a concept definition A

.
= C ∈ T with B occurring in C. Let uses

be the transitive closure of directly uses. Then a TBox T is acyclic if no concept name uses
itself w.r.t. T . Otherwise, it is called cyclic.

An interpretation I satisfies a concept definition A
.
= C (written I |= A

.
= C) if AI = CI .

I is called a model of a TBox T , written I |= T , if I satisfies all concept definitions in T .
4

We call a concept name A defined in a TBox T if A occurs on the left-hand side of a concept
definition in T , and primitive in T otherwise. Note that, in the case of acyclic TBoxes,
interpretations of primitive concept names and role names uniquely determine interpretations
of defined concept names, which is not the case for cyclic TBoxes.

Note that acyclic TBoxes do not introduce additional expressiveness, as they can be
compiled away by a process called unfolding – exhaustive replacement of defined concept
names by their definitions. However, acyclic TBoxes enable an exponentially more succinct
representation of concepts. Consider the following acyclic TBox T :

A0
.
= ∃r.A1 u ∃s.A1

A1
.
= ∃r.A2 u ∃s.A2

...

An
.
= ∃r.P u ∃s.P

It is not difficult to see that when unfolding A0 w.r.t. T , we obtain a concept whose size is
exponential in n.

Definition 2.1.8 (GCI, General TBox). A general concept inclusion axiom (GCI) is an
expression of the form C v D, where C and D are concepts. An expression C

.
= D is an

abbreviation for two GCIs C v D and D v C. A general TBox T is a finite set of GCIs.

2.1 Description Logics 27

An interpretation I satisfies a GCI C v D iff CI ⊆ DI . We denote satisfaction of a GCI
C v D by an interpretation I with I |= C v D. An interpretation I is called a model of a
general TBox T , written I |= T , if I satisfies all GCIs in T . 4

It is obvious that general TBoxes generalize acyclic and cyclic ones. General TBoxes
are highly desirable in knowledge representation, as they can capture complex constraints
and dependencies in the application domain. However, they usually increase complexity of
reasoning, and may introduce semantic and computational problems, as discussed in the
coming chapters.

In DLs, a complete description of the state of the world corresponds to an interpretation.
However, it is realistic to assume that only an incomplete knowledge is available. This
incomplete knowledge about the current state of the world is represented in an ABox.

Definition 2.1.9 (ABox). A concept assertion is of the form C(a), and a role assertion
is of the form r(a, b) or ¬r(a, b), where a, b ∈ NI, C is a concept, and r a role. An ABox
assertion (or just assertion) is a concept assertion or a role assertion. An ABox is a finite
set of assertions. An interpretation I satisfies an assertion

C(a) iff aI ∈ CI ;
r(a, b) iff (aI , bI) ∈ rI ;
¬r(a, b) iff (aI , bI) /∈ rI .

If ϕ is an assertion, then we write I |= ϕ iff I satisfies ϕ. An interpretation I is called a
model of an ABox A, written I |= A, if I satisfies all assertions in A. 4

To improve readability, we will sometimes write the assertion C(a) in the form a : C. Negated
role assertions are usually not considered in DL, but they are very useful as pre- and post-
conditions in action definitions. As described below, reasoning with such assertions can easily
be reduced to reasoning without them if the DL under consideration allows for universal
restriction and atomic negation.

Although they will not be in the main focus of this work, we will also shortly consider
role boxes.

Definition 2.1.10 (Role inclusion, Role box). A role inclusion is an expression of the
form r v s, where r and s are (possibly inverse) roles. A role box is a finite set of role
inclusions.

An interpretation I satisfies a role inclusion r v s iff rI ⊆ sI . An interpretation I is
called a model of a role box R, written I |= R, if I satisfies all role inclusions in R. 4

Role boxes are also called role hierarchies in the literature, and description logics that
provide for role boxes usually contain the letter H in their name. In this work, we will
consider the description logic ALCQIOH, which extends ALCQIO with role boxes.

Throughout this work we will use abbreviations such as I |= T ,A for I |= T and I |= A;
or I |= T ,R for I |= T and I |= R. In the next definition, we define the size of TBoxes,
ABoxes and role boxes.

Definition 2.1.11 (Size of TBoxes, ABoxes and role boxes). The size of a (general)
TBox T is defined as follows:

|T | =
∑

C
.
=D∈T

(|C| + |D|) +
∑

CvD∈T

(|C| + |D|)

28 Formal Preliminaries

The size of an ABox A is defined as |A| =
∑
ϕ∈A

|ϕ|, where |ϕ| = 2 if ϕ = r(a, b) or

ϕ = ¬r(a, b) and |ϕ| = |C| if ϕ = C(a).
The size of a role box R is defined as the cardinality of set R. 4

Various reasoning problems are considered for DLs. For the purpose of this work, it is
sufficient to introduce only four of them: concept satisfiability, concept subsumption, ABox
consistency, and ABox consequence.

Definition 2.1.12 (DL Reasoning Problems). Let C and D be a concepts, A an ABox,
and T a (general) TBox. Then

• C is satisfiable w.r.t. the TBox T iff there exists an interpretation I that is a model of
both C and T ;

• C is subsumed by D w.r.t. the TBox T (written C vT D) iff for all models I of T it
holds that CI ⊆ DI ;

• A is consistent w.r.t. the TBox T iff there exists an interpretation I that is a model of
both T and A.

• an assertion ϕ is a consequence of an ABox A w.r.t. a TBox T (written T ,A |= ϕ) if
every model of A and T satisfies ϕ.

4

If the TBox T is empty in the afore defined reasoning problems, we simply drop the phrase
“w.r.t. T ” instead of writing w.r.t. ∅. Similarly, we may define concept satisfiability and
subsumption, as well as ABox consistency and consequence w.r.t. a role box R, by requiring
additionally that interpretations I are models of R. Moreover, we will refer to ABox con-
sistency and ABox consequence under UNA, to denote ABox consistency and consequence
where only models I of the ABox respecting UNA on individual names are taken into account.

ABox consequence will play an important role in this work. As it is a slightly unusual
DL reasoning problem, we briefly show that ABox consequence with negated role assertions,
i.e. assertions of the form ¬r(a, b), can be polynomially reduced to ABox consistency with-
out negated role assertions, and vice versa. From these reductions, it follows that ABox
consistency and ABox consequence are of the same complexity. We proceed in two steps:

Firstly, we reduce ABox consequence (under UNA) with negated role assertions to ABox
consistency (under UNA) with negated role assertions, and vice versa. For an assertion ϕ,
let ¬ϕ = ¬C(a) if ϕ = C(a), ¬ϕ = ¬r(a, b) if ϕ = r(a, b), and ¬ϕ = r(a, b) if ϕ = ¬r(a, b).
Then ϕ is a consequence (under UNA) of A w.r.t. T iff A∪{¬ϕ} is inconsistent (under UNA)
w.r.t. T . Conversely, an ABox A is consistent w.r.t. a TBox T iff ⊥ is not a consequence of
A w.r.t. T .

Second, since ABoxes with negated role assertions are slightly unusual, we show how
to reduce ABox consistency with negated role assertions to ABox consistency without such
assertions. Given an ABox A, introduce a concept name Xa not used in A for each individual
name a used in A. Then replace each assertion ¬r(a, b) with the two assertions (∀r.¬Xb)(a)
and Xb(b). Clearly, the resulting ABox A′ is consistent iff the original one is, and A′ is of
size linear in the size of A.

Finally, ABox consistency under UNA can be reduced to ABox consistency without UNA
in the following way: Given an ABox A, and a TBox T , let a1, . . . , an be all different individual

2.2 Situation Calculus 29

names that appear in A and T . We introduce k = [log2(n+1)] concepts X1, . . . , Xk not used
in A and T , and add assertion Xi(aj) if i-th bit of (the binary representation of) j is 1, and
¬Xi(aj) if i-th bit of j is 0. In other words, for each aj , X1, . . . , Xk represent the bits 1, . . . , k
of j. Thus, in models I of the resulting A′, aj 6= al implies that aIj 6= aIl . Moreover, A′ is of
size polynomial in the size of A.

Throughout the present work, we consider arbitrary, but fixed, sets of concept names NC,
role names NR, and individual names NI. Moreover, concept names are usually denoted by
uppercase letters, e.g. A,B, . . . , while lowercase letters are used for roles, e.g. r, s, . . . , and
individuals, e.g. a, b,

For a given DL L, we speak of an L-(general) TBox T iff only L-concepts appear in
concept definitions and GCIs in T . Similarly, we speak of an L-ABox A iff only L-concepts
appear in A.

2.2 Situation Calculus

In order to establish a formal relation between our DL-based action formalisms and the
Situation Calculus, we give a short introduction to this well-known standard action formalism.
The Situation Calculus (SitCalc) is a language specifically designed for the representation of
dynamically changing worlds, first introduced by McCarthy in 1963 [McC63]. Since then,
many different versions of SitCalc were proposed. In this work, we relate to the standard
version introduced by Reiter in [Rei01].

Formally, the language Lsitcalc is a three-sorted second-order theory with equality, with the
three sorts being actions, situations, and objects for everything else depending on the domain
of application. Besides the standard logical symbols, infinitely many constants of sort object,
infinitely many variable symbols of each sort and infinitely many predicate variables of all
arities, the alphabet of Lsitcalc includes: 1

• two function symbols of sort situation:

1. A constant s0, denoting the initial situation.

2. A binary function symbol do : action × situation → situation. The intended
interpretation is that situations are finite sequence of actions, and do(a, s) denotes
the sequence formed by adding action a to the sequence s.

• A binary predicate symbol @: situation × situation, defining an ordering relation on
situations. Since the intended interpretation of situations is as finite action sequences,
s @ s′ means that s is a proper subsequence of s′. Moreover, s v s′ abbreviates
s @ s′ ∨ s = s′.

• A binary predicate symbol Poss : action × situation. The intended interpretation of
Poss is that it is possible to apply action a in situation s.

• For each n ≥ 0, a finite or countably infinite number of function symbols of sort
(action ∪ object)n → action. They are called action functions, and are used to denote
actions like move(x, y).

1Note that in [Rei01], Lsitcalc also includes functions of sort (action ∪ object)n → object and (action ∪
object)n × situation → object (so-called functional fluents). We leave them out as DLs are function-free, and
thus a “function-free” fragment of SitCalc is sufficient to embed our DL action formalism into SitCalc; for
details see Section 3.1.3.

30 Formal Preliminaries

• For each n ≥ 0, countably infinitely many predicate symbols with arity n, and sorts
(action ∪ object)n. They are used to denote situation independent relations.

• For each n ≥ 0, a finite or countably infinite number of predicate symbols with arity
n + 1, and sorts (action ∪ object)n × situation. They are called fluents, and are used
to denote properties whose truth depends on the situation. For example, “likes(b, c, s)”
would be read as “b likes c in situation s”.

The main purpose of the Situation Calculus is to provide a framework for axiomatizing
(i) in which situations an action can be applied and (ii) the effect that actions have on
situations. The former is achieved through so-called action pre-condition axioms while the
effects of actions are described using so-called successor state axioms.

In order to define these axioms, we need to introduce the notion of a uniform formula.
A formula of Lsitcalc is said to be uniform in term σ of sort situation iff it does not mention
the predicates Poss or @, it does not quantify over variables of sort situation, it does not
mention equality on situations, and whenever it mentions a term of sort situation in the
situation argument position of a fluent, then that term is σ.

A basic action theory D is defined in [Rei01] as

D = Σ ∪ Ds0 ∪ Dss ∪ Dap ∪ Duna,

where: 2

• Σ is the set of the four foundational axioms for situations,

do(a1, s1) = do(a2, s2) → a1 = a2 ∧ s1 = s2

∀P.
(
P (s0) ∧ ∀a, s.(P (s) → P (do(a, s))) → ∀s.P (s)

)

¬s @ s0

s @ do(a, s′) ↔ s v s′

• Dss is a set of successor state axioms, i.e. sentences of the form

F (x1, . . . , xn, do(a, s)) = ΦF (x1, . . . , xn, a, s)

where F is an (n+1)-ary relational fluent, and ΦF (x1, . . . , xn, a, s) is a formula uniform
in s, all of whose free variables are among a, s, x1, . . . , xn.

• Dap is the set of action pre-condition axioms, i.e. sentences of the form

Poss(A(x1, . . . , xn), s) = ΠA(x1, . . . , xn, s)

where A is an n-ary action function symbol, and ΠA(x1, . . . , xn, s) is a formula uniform
in s, all of whose free variables are among s, x1, . . . , xn.

• Duna is the set of unique name axioms for actions;

• Ds0 is the description of the initial situation. It is a set of first-order sentences that are
uniform in s0, so that s0 is the only term of sort situation mentioned by the sentences
of Ds0 .

2Here, all free variables are assumed to be universally quantified.

2.2 Situation Calculus 31

The uniformity requirement on ΦF in successor state axioms guarantees that the truth
value of F in the successor situation do(a, s) is determined by the current situation s.
Similarly, the uniformity requirement on ΠA in pre-condition axioms ensures that the pre-
conditions for the executability of the action A are determined entirely by the current situa-
tion s.

Successor state axioms of a special syntactic form are called context-free. These are of
the form

F (x1, . . . , xn, do(a, s)) ≡ (γ+
F (x1, . . . , xn, a) ∨ F (x1, . . . , xn, s)) ∧ ¬γ−F (x1, . . . , xn, a),

where both γ+
F (x1, . . . , xn, a) and γ−F (x1, . . . , xn, a) are independent of the situation s. In-

tuitively, a successor state axiom for a fluent F is context-free iff the truth value of F in
the next situation do(a, s) depends on the truth value of F in the current situation s, but is
independent of the truth values of any other fluents in s.

Note that a basic action theory D as defined in [Rei01] does not include state constraints.
In more expressive variants of SitCalc [LR94, Lin95], state constraints describe global prop-
erties that must hold in all situations. In general, they are of the form

∀s.∀x1. . . .∀xn.Θ(x1, . . . , xn, s)

where Θ(x1, . . . , xn, s) is uniform in s.

Let a1, . . . , an be action constants. The reasoning tasks executability and projection are
defined as follows:

Executability. We introduce the following abbreviation:

executable(s) := ∀a, s′ :
(
(do(a, s′) v s) → Poss(a, s′)

)

In the Situation Calculus, the sequence of actions a1, . . . , an is executable in a situation s
w.r.t. the basic action theory D if D |= executable(do(an, do(an−1, · · · , do(a1, s) · · ·).

Projection. Let ϕ(s) be a Situation Calculus formula with one free situation-typed vari-
able s. Then ϕ is a consequence of applying the sequence of actions a1, . . . , an in the ini-
tial situation s0 described by Ds0 w.r.t. the basic action theory D iff we have that D |=
ϕ(do(an, do(an−1, · · · , do(a1, s0) · · ·).

Consequences in the Situation Calculus are often proved by a mechanism called regression.
Regression is based on expressing a formula containing the situation do(a, s) in terms of a
formula containing the action a and the situation s, but not the situation do(a, s). By
iterating this procedure, one can end up with an equivalent formula (called regressed formula)
containing only the initial situation s0. Proving consequences is usually simpler from this
formula than from the original one, as one does not have to consider all axioms from the basic
action theory D, but only those related to the initial situation s0, i.e. axioms from Ds0∪Duna.
Naturally, axioms from Σ∪Dss ∪Dap are applied in order to compute the regressed formula.
Regression is usually easier to apply if successor state axioms are context-free [Rei01].

Planning is normally not conceptualized within the Situation Calculus, but within plan-
ning formalisms, such as STRIPS [FN71]. However, it is possible to define the notion of
a plan is SitCalc. Let G(s) be a SitCalc formula with one free situation-typed variable s,
and let σ be variable-free situation term. Then σ is a plan for G (relative to a basic action
theory D) iff D |= executable(σ)∧G(σ). One way to prove existence of a plan is to show that
D |= ∃s.(executable(s) ∧G(s)).

32 Formal Preliminaries

Chapter 3

Action Formalism A1: Simple

Post-Conditions and Acyclic

TBoxes

In this chapter we introduce the generic action formalism A1 that corresponds to a fragment
of the standard Situation Calculus. The corresponding fragment of SitCalc is obtained by
restricting the logic for describing pre- and post-conditions as well as the state of the world
to a certain decidable description logic L.

Using a STRIPS-like syntax, atomic actions in A1 are described as triples consisting of pre-
conditions, occlusions (specifying atomic assertions that may change freely), and conditional
post-conditions. ABox assertions are used to describe all three components, as well as states of
the world. For example, by means of ABox assertions we may state that in the current world
state, Dirk holds an electricity contract. Moreover, the pre-condition of obtaining a bank
account is that the customer holds a proof of the address. The conditional post-conditions
of this action state that, if the customer holds an employer’s letter, the bank account comes
with a credit card, and otherwise without it. In A1, acyclic TBoxes are used to give concept
definitions. For example, the proof of the address can be defined to be either an electricity
contract or a lease. By disallowing defined or complex concepts in post-conditions of A1-
actions, we ensure that changes may occur only at an atomic level.

Semantics of actions is given via transition relation on DL interpretations. This transition
relation ensures that extensions of primitive concept names and role names before and after
action execution differ only if stated so by action post-conditions or occlusions. Possible action
ramifications are related to extensions of TBox defined concept names: they may change after
action execution, although this is not explicitly specified by action post-conditions.

Although A1 is a generic formalism that can be instantiated with any decidable description
logic, in this chapter we focus on its instantiations with propositionally closed fragments of
ALCQIO. The reason for choosing ALCQIO is that it forms the core of OWL DL, the
description logic variant of OWL.

The rest of this chapter is organized as follows. In Section 3.1.1 we define syntax and
semantics of A1-actions. In Section 3.1.2 we define the standard reasoning problems ex-
ecutability and projection for A1-actions. Executability is the problem of whether action
pre-conditions are satisfied, i.e. whether the action is applicable in the current state, while
projection is the problem of determining consequences of actions. Moreover, we show that

34 Action Formalism A1: Simple Post-Conditions and Acyclic TBoxes

these two reasoning problems are mutually polynomially reducible in A1. In Section 3.1.3, we
show that the formalism A1 instantiated with ALCQIO can be viewed as a fragment of the
Situation Calculus and thus inherits SitCalc’s solution to the frame problem. We perform
a detailed investigation on how the choice of a description logic influences the complexity
of reasoning in A1. In Section 3.2.1 we show that, for description logics L between ALC
and ALCQIO, projection in A1 instantiated with L can be polynomially reduced to ABox
consequence in LO, the extension of L with nominals. Since standard reasoning in ALCQIO
is supported by the efficient DL reasoners, this means that reasoning about action can be
passed on to the standard DL reasoners. In Section 3.2.2, we show that the additional compu-
tational complexity (sometimes) caused by the introduction of nominals cannot be avoided,
since standard DL reasoning in LO can polynomially be reduced to projection in L. By
combining the two reductions, we obtain tight complexity bounds for projection in A1 for
DLs between ALC and ALCQIO, where the complexity ranges from PSpace-complete to
co-NExpTime-complete.

3.1 The Formalism

3.1.1 Action Descriptions

The framework for reasoning about actions proposed in this section is not restricted to a
particular description logic, but can be instantiated with any description logic that seems
appropriate for the application domain at hand. For simplicity, we concentrate on ground
actions, i.e., actions where the input parameters have already been instantiated by individual
names. Parameterized actions (operators), which contain variables in place of individual
names, should be viewed as a compact representation of all its ground instances: an operator
simply represents the set of all ground actions obtained from the parameterized action by
replacing variables with individual names.

The handling of such parameterized actions takes place “outside” of our formalism and
is not discussed in detail in the current chapter. We may safely restrict ourselves to ground
actions since all the reasoning tasks considered in this chapter presuppose that parameterized
actions have already been instantiated. For other tasks, such as planning, we will work
directly with parameterized actions; see Chapter 6 for more details.

Definition 3.1.1 (A1-Action). Let T be an acyclic TBox. An atomic A1-action for T is a
triple α = (pre, occ, post) which consists of

• a finite set pre of ABox assertions, the pre-conditions;

• a finite set occ of occlusions of the form A(a) or r(a, b), with A a primitive concept
name in T , r a role name, and a, b ∈ NI;

• a finite set post of conditional post-conditions of the form ϕ/ψ, where ϕ is an ABox
assertion and ψ is a primitive literal for T , i.e., an ABox assertion A(a), ¬A(a), r(a, b),
or ¬r(a, b) with A a primitive concept name in T and r a role name.

A composite A1-action for T is a finite sequence α1, . . . , αk of atomic actions for T . 4

We call post-conditions of the form >(a)/ψ unconditional and write just ψ instead. Moreover,
an action of the form U = (∅, ∅, {>(a)/ψ1, . . . ,>(a)/ψn}) is called update (for a TBox T)
and we write only U = {ψ1, . . . , ψn} instead.

3.1 The Formalism 35

Intuitively, the pre-conditions specify under which conditions the action is applicable.
The conditional post-condition ϕ/ψ says that, if ϕ is true before executing the action, then
ψ should be true afterwards. By the law of inertia, only those facts that are forced to change
by the post-conditions should be changed by applying the action. However, it is well-known
that enforcing this minimization of change strictly is sometimes too restrictive [Lif90, San94].
The rôle of occlusions is to indicate those primitive literals that can change arbitrarily.

In order to refer to the computational complexity of reasoning tasks later on, we need to
define the size of A1-actions:

Definition 3.1.2 (Size of A1-Actions). The size of an atomic A1-action α = (pre, occ, post)
is defined with |α| = |pre| + |occ| + |post|, where |pre| and |occ| are sizes of the ABoxes pre
and occ, and |post| =

∑
ϕ/ψ∈post(|ϕ| + |ψ|). The size of a composite A1-action α1, . . . , αn is

defined with |α1, . . . , αk| = |α1| + · · · |αk|. 4

Throughout this and the next chapter, only A1-actions will be considered, and we just write
“action” instead of “A1-action”.

Example 3.1.3. To illustrate the definition of actions, consider the actions of opening a
bank account and applying for child benefit in the UK. Suppose the pre-condition of opening
a bank account is that the customer a is eligible for a bank account in the UK and holds a
proof of address. Moreover, suppose that, if a letter from the employer is available, then the
bank account comes with a credit card, otherwise not. This can be formalized by the following
action α1, for which the set of occlusions is empty:

pre : {Eligible bank(a), ∃holds.Proof address(a)}

post : {holds(a, b),
∃holds.Letter(a)/B acc credit(b),
¬∃holds.Letter(a)/B acc no credit(b)}

Suppose that one can apply for child benefit in the UK if one has a child and a bank ac-
count. The action α2 that offers this application then looks as follows, where again the set of
occlusions is empty:

pre : {parent of(a, c), ∃holds.B acc(a)}

post : {receives c benef for(a, c)}

The meaning of the concepts used in α1 and α2 are defined in the following acyclic TBox T :

Eligible bank
.
= ∃permanent resident.{UK}

Proof address
.
= Electricity contract t Lease

B acc
.
= B acc credit t B acc no credit

When defining the semantics of actions, we assume that states of the world correspond to
interpretations. Thus, the semantics of actions can be defined by means of a transition
relation on interpretations. Let T be an acyclic TBox, α = (pre, occ, post) an action for T ,
and I an interpretation. For each primitive concept name A and role name r, set:

αI
+(A) := {bI | ϕ/A(b) ∈ post ∧ I |= ϕ}
αI
−(A) := {bI | ϕ/¬A(b) ∈ post ∧ I |= ϕ}

DI
α(A) := (∆I \ {bI | A(b) ∈ occ}) ∪ (αI

+(A) ∪ αI
−(A))

αI
+(r) := {(aI , bI) | ϕ/r(a, b) ∈ post ∧ I |= ϕ}
αI
−(r) := {(aI , bI) | ϕ/¬r(a, b) ∈ post ∧ I |= ϕ}

DI
α(r) := ((∆I × ∆I) \ {(aI , bI) | r(a, b) ∈ occ}) ∪ (αI

+(r) ∪ αI
−(r))

36 Action Formalism A1: Simple Post-Conditions and Acyclic TBoxes

The transition relation on interpretations should ensure that αI
+(A) ⊆ AJ and αI

−(A)∩AJ =
∅ if J is the result of applying α in I. It should also ensure that nothing else changes, with the
possible exception of the occluded literals. Intuitively, DI

α(A) and DI
α(r) describe those parts

of the model that are not exempted from this restriction by the presence of an occlusion.
Since we restrict our attention to acyclic TBoxes, for which the interpretation of defined
concepts is uniquely determined by the interpretation of primitive concepts and role names,
it is not necessary to consider defined concepts when defining the transition relation.

Definition 3.1.4. Let T be an acyclic TBox, α = (pre, occ, post) an action for T , and
I, I ′ models of T sharing the same domain and interpretation of all individual names and
respecting UNA on individual names. We say that α may transform I to I ′ w.r.t. T (I ⇒T

α

I ′) iff, for each primitive concept A and role name r, we have

αI
+(A) ∩ αI

−(A) = ∅ and αI
+(r) ∩ αI

−(r) = ∅

AI′
∩DI

α(A) = ((AI ∪ αI
+(A)) \ αI

−(A)) ∩DI
α(A)

rI
′
∩DI

α(r) = ((rI ∪ αI
+(r)) \ αI

−(r)) ∩DI
α(r).

The composite action α1, . . . , αk may transform I to I ′ (I ⇒T
α1,...,αk

I ′) iff there are models

I0, . . . , Ik of T with I = I0, I
′ = Ik, and Ii−1 ⇒T

αi
Ii for 1 ≤ i ≤ k. 4

One remark is in order. By definition of I ⇒T
α I ′, interpretations I and I ′ are supposed

to respect UNA on individual names. As already discussed in Section 2.1, since the set
of individual names NI is countably infinite, this implies that all interpretations I and I ′

related by ⇒T
α have infinite domains. However, in the coming chapters, in order to be able

to work with finite models, we may “relax” the requirement that interpretations interpret all
individuals from NI, and assume that they interpret only individual names from a finite set
Ind and respect UNA on this set.

Note that acyclic TBoxes in A1 do not correspond to state constraints in the standard
sense. By semantics of A1-actions, TBoxes do not constrain the initial and successor inter-
pretations, except for specifying how defined concept names depend on primitive concept and
role names. In this light, acyclic TBoxes can be used to capture acyclic causality relations
between concept names, similar to those from [Lin95, Thi97]. In A1, only primitive concept
names can appear in consequences of action post-conditions and hence their interpretations
may change as a direct effect of action execution, while interpretations of defined concept
names change as a ramification of action application.

Because of our restriction to acyclic TBoxes and primitive literals in the consequence part
of post-conditions, actions without occlusions are deterministic, i.e., for any model I of T
there exists at most one model I ′ such that I ⇒T

α I ′. First note that there are indeed cases
where there is no successor model I ′. In this case, we say that the action is inconsistent with
I. It is easy to see that this is the case iff there are post-conditions ϕ1/ψ, ϕ2/¬ψ ∈ post such
that both ϕ1 and ϕ2 are satisfied in I. Second, assume that α is consistent with I. The
fact that there is exactly one model I ′ such that I ⇒T

α I ′ is an easy consequence of the next
lemma, whose proof we leave as an easy exercise.

Lemma 3.1.5. Let T be an acyclic TBox, α = (pre, ∅, post) an atomic action for T , and
I ⇒T

α I ′ for models I, I ′ of T . If A is a primitive concept and r a role name, then

AI′
:=
(
AI ∪ {bI | ϕ/A(b) ∈ post and I |= ϕ}

)
\ {bI | ϕ/¬A(b) ∈ post and I |= ϕ},

rI
′
:=
(
rI ∪ {(aI , bI) | ϕ/r(a, b) ∈ post and I |= ϕ}

)
\

{(aI , bI) | ϕ/¬r(a, b) ∈ post and I |= ϕ}.

3.1 The Formalism 37

Since the interpretation of the defined concepts is uniquely determined by the interpretation
of the primitive concepts and the role names, it follows that there cannot exist more than
one I ′ such that I ⇒T

α I ′.

3.1.2 Reasoning about Actions

Assume that we want to apply a composite action α1, . . . , αk for the acyclic TBox T . Usually,
we do not have complete information about the world (i.e., the model I of T is not known
completely). All we know are some facts about this world, i.e., we have an ABox A, and all
models of A together with T are considered to be possible states of the world.

Before trying to apply the action, we want to know whether it is indeed executable, i.e.,
whether all necessary pre-conditions are satisfied. If the action is executable, we may want
to know whether applying it achieves the desired effect, i.e., whether an assertion that we
want to make true really holds after executing the action. These problems are basic inference
problems considered in the reasoning about action community, see e.g. [Rei01] (and Section
2.2). In our setting, they can formally be defined as follows:

Definition 3.1.6 (Reasoning Problems). Let T be an acyclic TBox, α1, . . . , αk an action
for T with αi = (prei, occi, posti), and A an ABox.

• Executability: α1, . . . , αk is executable in A w.r.t. T iff the following condition is true
for all models I of A and T :

– I |= pre1

– for all i with 1 ≤ i < k and all interpretations I ′ with I ⇒T
α1,...,αi

I ′, we have
I ′ |= prei+1.

• Projection: an assertion ϕ is a consequence of applying α1, . . . , αk in A w.r.t. T (written
T ,Aα1,...,αk |= ϕ 1) iff, for all models I of A and T , and all I ′ with I ⇒T

α1,...,αk
I ′, we

have I ′ |= ϕ.

We may refer to the assertion ϕ as a query.

If T is empty, we simply drop the phrase “w.r.t. T ” instead of writing “w.r.t. the empty
TBox ∅”. 4

Note that executability alone does not guarantee that we cannot get stuck while executing
a composite action. It may also happen that the action to be applied is inconsistent with
the current interpretation. This cannot happen if we additionally know that all actions αi
are consistent with T in the following sense: αi is not inconsistent with any model I of T .
Summing up, to achieve an effect ϕ (an ABox assertion) starting from a world description A
and given a TBox T , we need an action α1, . . . , αk such that α1, . . . , αk is executable in A
w.r.t T , αi is consistent with T for 1 ≤ i ≤ k, and ϕ is a consequence of applying α1, . . . , αk
in A w.r.t. T .

We do not view consistency with the considered acyclic TBox T as a reasoning task2,
but rather as a condition that we generally expect to be satisfied by all well-formed actions.

1Analogously, we will write T ,Aα1,...,αk 6|= ϕ to denote that ϕ is not a consequence of applying α1, . . . , αk

in A w.r.t. T .
2Note that in the action formalism A2 (to be defined in Chapter 5), which is designed to handle general

TBoxes, consistency becomes a real reasoning task; see Section 5.1.2.

38 Action Formalism A1: Simple Post-Conditions and Acyclic TBoxes

Still, we should be able to decide whether an action is consistent with a TBox. This can be
done by a reduction to standard DL reasoning: given the characterization of consistency with
a model stated above Lemma 3.1.5, it is not difficult to see that an atomic action α with
post-conditions post is consistent with a TBox T iff {ϕ1/ψ, ϕ2/¬ψ} ⊆ post implies that the
ABox {ϕ1, ϕ2} is inconsistent w.r.t. T .

In Example 3.1.3, both actions are consistent with T . Given the ABox

A = {parent(a, c), permanent resident(a,UK), ∃holds.Electricity contract(a)},

the composite action α = α1, α2 is executable, and receives c benef for(a, c) is a consequence
of applying α1, α2 in A w.r.t. T . Note that the presence of the TBox is crucial for this result.

The main aim of this chapter is to show how the two reasoning tasks executability and
projection can be decided in the description logics between ALC and ALCQIO, and how
their complexity depends on the description logic used within our framework. There is one
particularly simple case: for atomic actions α, deciding executability boils down to standard
DL reasoning: α is executable in A w.r.t. T iff T ,A |= ϕ for all ϕ ∈ pre. Executability
for composite actions is less trivial, and the same holds for projection of both atomic and
composite action. We show now that the two reasoning problems can be polynomially reduced
to each other. This allows us to concentrate on projection when proving decidability and
complexity results.

Lemma 3.1.7. Executability and projection can be reduced in polynomial time to each other.

Proof. Let α1, . . . , αk with αi = (prei, occi, posti) be a composite action for the acyclic TBox
T . This action is executable in the ABox A iff

(i) pre1 is satisfied in every model of A and T and, for 1 ≤ i < k,

(ii) all assertions in prei+1 are consequences of applying α1, . . . , αi in A w.r.t. T .

Condition (ii) is obviously a projection problem. Condition (i) can also be seen as a projection
problem for the empty action (∅, ∅, ∅).

Conversely, assume that we want to know whether ϕ is a consequence of applying α1, . . . , αk
in A w.r.t. T . We consider the composite action α′

1, . . . , α
′
k, α

′, where α′
i = (∅, occi, posti) for

1 ≤ i ≤ k, and α′ = ({ϕ}, ∅, ∅). Then ϕ is a consequence of applying α1, . . . , αk in A w.r.t. T
iff α′

1, . . . , α
′
k, α

′ is executable. o

It is interesting to note that the reduction of projection of a composite action α = α1, . . . , αk
is to executability for actions of length k + 1. Indeed, we shall later see that, for some
description logics, projection of atomic actions is computationally harder than executability
of atomic actions.

3.1.3 Relation to Situation Calculus

We compare the action formalism A1 with one of the most prominent (families of) formalisms
for reasoning about actions, the Situation Calculus [Rei01]. The preliminaries of the Situation
Calculus are given in Section 2.2. We show how to translate the components of our formalism,
i.e., ABoxes, TBoxes, and actions, into the Situation Calculus. Based on this translation, we
then establish a correspondence between the reasoning problems. This correspondence shows

3.1 The Formalism 39

that the consequences of an action application computed in our framework are identical to the
consequences that would be computed in the Situation Calculus. In particular, this means
that our solution of the frame problem is identical to Reiter’s as initially proposed in [Rei91].

Since it was shown in [Thi99, ST06] that standard domain specifications in the Situation
Calculus and the Fluent Calculus are mutually translatable, we conclude that our formalisms
can also be embedded into the Fluent Calculus. This was also explicitly shown in [DT07].

Actions of the Situation Calculus correspond to our atomic actions, while situations can be
viewed as first-order structures and roughly correspond to interpretations in our framework.
In its most common form, as described in Section 2.2, the Situation Calculus is restricted to
deterministic effects of actions. Therefore, in this section we restrict ourselves to deterministic
actions, i.e., to actions without occlusions—c.f. Lemma 3.1.5.

The foundation for translating the action formalism A1 into the Situation Calculus is pro-
vided by the standard translation of description logics into first order logic [BCM+03, Bor96].
For our purposes, this translation needs to be slightly modified: in the standard translation,
concept names correspond to unary predicates, concepts correspond to first-order formulae
with one free variable, and role names correspond to binary predicates. In the Situation Cal-
culus, all concept names and role names correspond to fluents since their extension depends
on the actual situation. Thus, we need to extend the predicates corresponding to concept
names and role names by one additional argument of type situation.

We now describe the modified translation for ALCQIO-concepts. The translation is
based on two recursive mappings πx,s(·) and πy,s(·), which translate ALCQIO-concepts into
a formula with one free object variable x or y and one free situation variable s. For each
concept name A, we introduce a binary predicate of the same name with one place for objects
and one for situations. For each role name r, we introduce a ternary predicate of the same
name with two places for objects and one for situations. And for each individual name a,
we introduce an object-typed constant a. The mapping πx,s is defined as follows, and the
mapping πy,s is defined like πx,s with the roles of x and y swapped:

πx,s(A) = A(x, s), for concept names A ∈ NC

πx,s({a}) = (x = a), for individuals a ∈ NI

πx,s(¬D) = ¬πx,s(D),

πx,s(C uD) = πx,s(C) ∧ πx,s(D),

πx,s(C tD) = πx,s(C) ∨ πx,s(D),

πx,s(./ n r C) = ∃./ny.r(x, y, s) ∧ πy,s(C),

πx,s(./ n r
−C) = ∃./ny.r(y, x, s) ∧ πy,s(C).

where ./ ∈ {≥,≤}.

The next step is to translate ABoxes into first-order logic. This is easily achieved using
the mapping πx,s that we have just introduced. In the following, ϕ[x/a] denotes the result of
replacing each free occurrence of x in ϕ with the object constant a:

πs(A) =
∧

C(b)∈A

πx,s(C)[x/b] ∧
∧

r(b,c)∈A

r(b, c, s) ∧
∧

¬r(b,c)∈A

¬r(b, c, s)

To translate an A1-action into a description of an action in Situation Calculus form, we need
to translate the pre-conditions into action pre-condition axioms and the post-conditions into

40 Action Formalism A1: Simple Post-Conditions and Acyclic TBoxes

successor state axioms. We begin with the former. For each action α = (pre, ∅, post), we
introduce an action-typed constant u and define an action pre-condition axiom

Poss(u, s) ≡ πs(pre),

which specifies whether it is possible to carry out the action u in a situation s.3

To define successor state axioms, we fix a finite set of actions α1, . . . , αn with αi =
(prei, ∅, posti) and associated action constant ui, for 1 ≤ i ≤ n. Then, for each concept name
A and each role name r, we introduce successor state axioms as follows, where u denotes an
action-typed variable

A(x, do(u, s)) ≡ ΦA(x, u, s) and r(x, y, do(u, s)) ≡ Φr(x, y, u, s)

with ΦA(x, u, s) and Φr(x, y, u, s) defined as follows:

ΦA(x, u, s) :=
∨

{(ϕ,b,i) | ϕ/A(b)∈posti}

(
πs({ϕ}) ∧ x = b ∧ u = ui

)
∨

A(x, s) ∧ ¬
∨

{(ϕ,b,i) | ϕ/¬A(b)∈posti}

(
πs({ϕ}) ∧ x = b ∧ u = ui

)

Φr(x, y, u, s) :=
∨

{(ϕ,b,c,i) | ϕ/r(b,c)∈posti}

(
πs({ϕ}) ∧ x = b ∧ y = c ∧ u = ui

)
∨

r(x, y, s) ∧ ¬
∨

{(ϕ,b,c,i) | ϕ/¬r(b,c)∈posti}

(
πs({ϕ}) ∧ x = b ∧ y = c ∧ u = ui

)

It is easily seen that the syntactic form of the formulas ΦA and Φr is as required for successor
state axioms in the Situation Calculus, i.e. they are uniform in the situation variable s. Reiter
identifies a special form of successor state axioms, so-called context-free ones (c.f. Section 2.2),
for which there exists a particularly simple algorithm for regression, the basic computational
mechanism of the Situation Calculus. It is interesting to note that our successor state axioms
are context-free iff only unconditional post-conditions are used in actions.

The only component of our formalism for reasoning about actions that we have not yet
translated into a Situation Calculus form are TBoxes. Indeed, there is no need to translate
them, which can be seen as follows. Since we assume TBoxes to by acyclic, we may completely
eliminate TBoxes using a process called unfolding : first, exhaustively replace each defined
concept name appearing on the right-hand side of a concept definition in the TBox T with
its defining concept description as given by A

.
= C ∈ T . Second, replace all defined concept

names in the ABox and action descriptions by their defining concept descriptions and drop
the TBox [BCM+03]. This unfolding process preserves executability and consequences. For
example, if A′, α′, and ϕ′ are the result of unfolding a TBox T given the ABox A, the
atomic action α, and the assertion ϕ, then ϕ is a consequence of applying α in A w.r.t. T
iff ϕ′ is a consequence of applying α′ in A′. Note that the unfolding of TBoxes may lead
to an exponential blowup in the size of ABox and actions. For our purposes, however, this
is irrelevant: we only carry out the translation to compare reasoning in the two formalisms,
and not to actually use it for practical reasoning.

3We use u for action constants and u for action variables instead of the more common a and a to avoid
confusion with individual names and corresponding object constants.

3.1 The Formalism 41

Now that all components of our framework have been translated to counterparts in the
Situation Calculus, we show how an ABox A and a set of atomic actions α1, . . . , αn can be
translated into a basic action theory as defined in Section 2.2 (and [Rei01]), where all free
variables are assumed to be universally quantified:

• Σ is the set of the four foundational axioms for situations, as defined in Section 2.2.

• Dss is the set of successor state axioms, one for each concept and role name occurring
in A as defined above,

• Dap is the set of action pre-condition axioms, one for each action-typed constant
u1, . . . ,un corresponding to the actions α1, . . . , αn as defined above,

• Duna is the set of unique name axioms for actions:

∧

1≤i<j≤n

ui 6= uj

• Ds0 := πs0(A) is the description of the initial situation.

We use D(A, α1, . . . , αn) to denote the basic action theory obtained from A and α1, . . . , αn,
i.e., Σ ∪ Ds0 ∪ Dss ∪ Dap ∪ Duna.

Finally, we compare our framework with reasoning in the Situation Calculus. We formu-
late the main theorem of this section stating that reasoning in our formalism coincides with
reasoning in the Situation Calculus.

Theorem 3.1.8. Let A be an ABox, α = α1, . . . , αn a composite action, and ϕ an assertion.
Then

1. α is executable in A iff the sequence u1, . . . ,un is executable in s0 w.r.t. the basic action
theory D(A, α1, . . . , αn).

2. ϕ is a consequence of applying α in A iff πs({ϕ}) is a consequence of applying the
sequence u1, . . . ,un in s0 w.r.t. the basic action theory D(A, α1, . . . , αn).

Thus, the framework for reasoning about actions presented in this chapter is fully compat-
ible not only with ontology languages based on description logics, but also with the Situation
Calculus.

We would like to note that there is a more explicit way for dealing with TBoxes than
unfolding: TBoxes can be translated into state constraints of the Situation Calculus:

πs(T) =
∧

A
.
=C∈T

∀x.πx,s(A) ↔ πx,s(C).

To obtain an analogue of Theorem 3.1.8, we can then devise successor state axioms only
for primitive concepts and role names, but not for defined concepts—although the latter are
fluents. This corresponds to not minimizing defined concepts in Definition 3.1.4. Note that,
if we admitted also cyclic TBoxes, then the unfolding approach could not be used any more
and we would be forced to translate TBoxes into state constraints. This would pose semantic
problems as discussed in more detail in Section 4.3, in Appendix B of [Rei01], and in [Lif90].

42 Action Formalism A1: Simple Post-Conditions and Acyclic TBoxes

3.2 Deciding Executability and Projection

The purpose of this section is to develop reasoning procedures for the reasoning problems
introduced in Section 3.1.2, and to analyze the computational complexity of executability and
projection in the description logics between ALC and ALCQIO. Throughout this section,
we assume that all actions are consistent with their TBox, and that TBoxes are acyclic.

By Lemma 3.1.7, we can restrict the attention to the projection problem. Basically, we
solve this problem by an approach that is similar to the regression operation used in the
Situation Calculus approach [Rei01]. The main idea is to reduce projection, which considers
sequences of interpretations I0, . . . , Ik obtained by action application, to standard reasoning
tasks for a single interpretation I.

We show that the theory we obtain can again be expressed by a description logic TBox and
ABox. This way, projection is reduced to ABox consequence in DL, from which we obtain
decidability results and upper complexity bounds. Interestingly, when taking this approach,
we cannot always stay within the DL we started with since we need to introduce nominals in
the reduction. We prove lower complexity bounds for projection showing that the increase
in complexity that is sometimes obtained by introducing nominals cannot be avoided.

The following results are proved in this section:

Theorem 3.2.1. Executability and projection of composite A1-actions w.r.t. acyclic TBoxes
are

1. PSpace-complete for ALC, ALCO, ALCQ, and ALCQO;

2. ExpTime-complete for ALCI and ALCIO;

3. co-NExpTime-complete for ALCQI and ALCQIO.

Points 1 and 3 hold regardless of whether numbers in number restrictions are coded in unary
or binary. Thus, in all cases considered, the complexity of executability and projection for a
description logic L coincides with the complexity of ABox consequence in LO, the extension
of L with nominals.

3.2.1 Reduction to DL Reasoning

We reduce projection in fragments L of ALCQIO to ABox consequence in the extension LO
of L with nominals.

Theorem 3.2.2. Let L be a DL from the set {ALC,ALCI,ALCO,ALCIO,ALCQ,ALCQO,
ALCQI,ALCQIO}. Then projection of composite actions formulated in L can be polynomi-
ally reduced to ABox consequence in LO w.r.t. acyclic TBoxes under UNA.

Let L be one of the languages listed in Theorem 3.2.2, and let A be an ABox, α1, . . . , αn
a composite action with αi = (prei, occi, posti), T an acyclic TBox, and ϕ0 an assertion,
all formulated in L. We are interested in deciding whether ϕ0 is a consequence of applying
α1, . . . , αn in A0 w.r.t. T . Without loss of generality, we assume that ϕ0 is of the form A0(a0),
for a concept name A0:

1. Assertions r(a, b) and ¬r(a, b) can be replaced with (∃r.{b})(a) and (∀r.¬{b})(a), re-
spectively. This presupposes nominals, but nominals will be used in our reduction,
anyway.

3.2 Deciding Executability and Projection 43

2. If ϕ = C(a) with C not a concept name, we add a concept definition A0
.
= C to the

TBox T , and then consider ϕ = A0(a).

In the following, we call A, T , α1, . . . , αn, and ϕ0 the input. We devise a reduction ABox
Ared, an (acyclic) reduction TBox Tred, and a reduction assertion ϕred such that

ϕ0 is a consequence of applying α1, . . . , αn in A w.r.t. T iff Ared, Tred |= ϕred.

The main idea of the reduction is to define Ared and Tred such that each single model of them
encodes a sequence of interpretations I0, . . . , In obtained by applying α1, . . . , αn in A (and
all such sequences are encoded by reduction models). To ensure this, we use the following
intuitions:

• The reduction ABox states that (i) the “I0-part” of a reduction model I is a model of
A, and that (ii) the Ii-part of I satisfies the post-conditions posti, for 1 ≤ i ≤ n.

• The reduction TBox states that each Ii part of I is a model of T , for i ≤ n.

• We need to describe the law of inertia, i.e., the fact that we want to minimize the
changes that are performed when applying an action. This task is split among the
reduction ABox and TBox.

To understand the splitting mentioned in the third item, it is important to distinguish two
kinds of elements in interpretations: we call an element d ∈ ∆I named if aI = d for some
individual a used in the input, and unnamed otherwise. Intuitively, the minimization of
changes on named elements can be described in a direct way through the ABox Ared, while
the minimization of changes on unnamed elements is achieved through a suitable encoding
of T in Tred. Indeed, minimizing changes on unnamed elements boils down to enforcing
that changes in concept (non)membership and role (non)membership involving (at least) one
unnamed domain element never occur: due to the restriction to primitive concept names in
post-conditions, our actions are not expressive enough to enforce such changes.

In the reduction, we use the following concept names, role names, and individual names:

• The smallest set that contains all concepts appearing in the input and is closed under
taking subconcepts is denoted with Sub. For every C ∈ Sub and every i ≤ n, we

introduce a concept name T
(i)
C . It will be ensured by the TBox Tred that the concept

name T
(i)
C stands for the interpretation of C in the i-th interpretation.

• We use a concept name A(i) for every primitive concept name A used in the input
and every i ≤ n. Intuitively, A(i) represents the interpretation of the concept name A
in the i-th interpretation, but only with respect to the named domain elements. Since
concept membership of unnamed elements never changes, the “unnamed part” of the
interpretation of the concept name A can always be found in A(0).

• We use a role name r(i) for every role name r used in the input and every i ≤ n. Similarly
to concept names, r(i) stands for the interpretation of r in the i-th interpretation, but
only records role relationships where both involved domain elements are named.

• We use a concept name N that will be used to denote “named elements” of interpreta-
tions.

44 Action Formalism A1: Simple Post-Conditions and Acyclic TBoxes

• The set of individual names used in the input is denoted with Ind. For every a ∈ Ind,
we introduce an auxiliary role name ra.

• An auxiliary individual name ahelp /∈ Ind.

The reduction TBox Tred consists of several components. The first component simply states
that N denotes exactly the named domain elements:

TN :=
{
N

.
= t

a∈Ind
{a}

}
.

The second component Tsub contains one concept definition for every i ≤ n and every concept

C ∈ Sub that is not a defined concept name in T . These concept definitions ensure that T
(i)
C

stands for the interpretation of C in the i-th interpretation as desired:

T
(i)
A

.
= (N uA(i)) t (¬N uA(0)) if A primitive in T (a)

T
(i)
{a}

.
= {a} (b)

T
(i)
¬C

.
= ¬T

(i)
C (c)

T
(i)
CuD

.
= T

(i)
C u T

(i)
D (d)

T
(i)
CtD

.
= T

(i)
C t T

(i)
D (e)

T
(i)
(>m r C)

.
=
(
N u t

0≤j≤min{m,|Ind|}

(
(> j r(i) (N u T

(i)
C)) u (> (m− j) r(0) (¬N u T

(i)
C))

))
(f)

t
(
¬N u (> m r(0) T

(i)
C)
)

T
(i)
(6m r C)

.
=
(
N u t

0≤j≤min{m,|Ind|}

((
(6 j r(i) (N u T

(i)
C)) u (6 (m− j) r(0) (¬N u T

(i)
C))

))
(g)

t
(
¬N u (6 m r(0) T

(i)
C)
)

where r−
(i)

denotes (r(i))− in the concept definitions for number restrictions. Line (a) reflects
the fact that concept names A(i) only represent the extension of A in the i-th interpretation for

named domain elements. To get T
(i)
A , the full extension of A in the i-th interpretation, we use

A(i) for named elements and A(0) for unnamed ones. A similar splitting of role relationships
into a named part and an unnamed part is reflected in the translation of number restrictions
given in the last two lines.

Now we can assemble the reduction TBox Tred:

Tred := Tsub ∪ TN ∪ {T
(i)
A

.
= T

(i)
E | A

.
= E ∈ T , i ≤ n}

The last summand of Tred ensures that all definitions from the input TBox T are satisfied by
all interpretations I0, . . . , In.

The reduction ABox Ared also consists of several components. The first component ensures
that, for each individual a occurring in the input, the auxiliary role ra connects each individual
(including ahelp) with a, and only with a. This construction will simplify the definition of the
other components of Ared:

Aaux :=
{
a :
(
∃rb.{b} u ∀rb.{b}

)
|a ∈ Ind ∪ {ahelp}, b ∈ Ind

}
.

3.2 Deciding Executability and Projection 45

To continue, we first introduce the following abbreviations, for i ≤ n:

pi(C(a)) := ∀ra.T
(i)
C

pi(r(a, b)) := ∀ra.∃r
(i).{b}

pi(¬r(a, b)) := ∀ra.∀r
(i).¬{b}.

The next component of Ared formalizes satisfaction of the post-conditions. Note that its
formulation relies on Aaux. For 1 ≤ i ≤ n, we define

A
(i)
post :=

{
ahelp :

(
pi−1(ϕ) → pi(ψ)

)
| ϕ/ψ ∈ posti

}
.

The following component formalizes the minimization of changes on named elements. For

1 ≤ i ≤ n the ABox A
(i)
min contains

1. the following assertions for every a ∈ Ind and every primitive concept name A with
A(a) /∈ occi:

a :
((
A(i−1) u u

ϕ/¬A(a)∈posti

¬pi−1(ϕ)
)
→ A(i)

)

a :
((

¬A(i−1) u u
ϕ/A(a)∈posti

¬pi−1(ϕ)
)
→ ¬A(i)

)
;

2. the following assertions for all a, b ∈ Ind and every role name r with r(a, b) /∈ occi:

a :
((

∃r(i−1).{b} u u
ϕ/¬r(a,b)∈posti

¬pi−1(ϕ)
)
→ ∃r(i).{b}

)

a :
((

∀r(i−1).¬{b} u u
ϕ/r(a,b)∈posti

¬pi−1(ϕ)
)
→ ∀r(i).¬{b}

)
.

The ABox Aini ensures that the first interpretation of the encoded sequence is a model of the
input ABox A:

Aini := {T
(0)
C (a) | C(a) ∈ A} ∪

{r(0)(a, b) | r(a, b) ∈ A} ∪

{¬r(0)(a, b) | ¬r(a, b) ∈ A}.

We can now assemble Ared:

Ared := Aini ∪ Aaux ∪

A
(1)
post ∪ · · · ∪ A

(n)
post∪

A
(1)
min ∪ · · · ∪ A

(n)
min.

Finally, the reduction assertion ϕred is defined as T
(n)
A0

(a0). Then we have the following.

Lemma 3.2.3. ϕ is a consequence of applying α1, . . . , αn in A w.r.t. T iff Ared, Tred |= ϕred

under UNA.

46 Action Formalism A1: Simple Post-Conditions and Acyclic TBoxes

Proof. We first introduce a few notions that we are going to use in the proof. With Con, we
denote the set of concept names that appear in the input, with Prim concept names from the
input which are primitive in T , and with Rol the set of role names that appear in the input.
Moreover, if I is an interpretation, we denote with IndI the set {aI | a ∈ Ind}. Finally, Assert
will denote the set of assertions that appear in the input.

“⇒” We prove this direction by contraposition. Assume that Ared, Tred 6|= ϕred. This

means that there is an interpretation J such that J |= Ared, J |= Tred, and J 6|= T
(n)
A0

(a0).
In order to show that ϕ = A0(a0) is not a consequence of applying α1, . . . , αn in A w.r.t. T ,
we have to find interpretations I0, . . . , In such that I0 |= A, Ii−1 ⇒T

αi
Ii for 1 ≤ i ≤ n, and

In 6|= A0(a0).
Let us define interpretations I0, . . . , In, based on J , in the following way:

• ∆Ii := ∆J

• aIi := aJ for a ∈ Ind

• AIi := (T
(i)
A)J for A ∈ Con

• rIi := (r(i))J ∩ (NJ ×NJ) ∪ (r(0))J ∩
(
∆J × (¬N)J ∪ (¬N)J × ∆J

)
for r ∈ Rol

Claim 1. For i ≤ n, the following holds:

(a) If a ∈ Ind, then aIi ∈ AIi iff aJ ∈ (A(i))J , for all A ∈ Prim
If x 6∈ IndJ , then x ∈ AIi iff x ∈ (A(0))J , for all A ∈ Prim

(b) If a, b ∈ Ind then, for all r ∈ Rol:

(aIi , bIi) ∈ rIi iff (aJ , bJ) ∈ (r(i))J

If x 6∈ IndJ or y 6∈ IndJ then, for all r ∈ Rol:

(x, y) ∈ rIi iff (x, y) ∈ (r(0))J

(c) EIi = (T
(i)
E)J for every E ∈ Sub

(d) Ii |= ϕ iff J |= a : pi(ϕ) for all ϕ ∈ Assert and a ∈ Ind ∪ {ahelp}

Proof.

(a) follows from the fact that AIi = (T
(i)
A)J = ((A(i))J ∩ NJ) ∪ ((A(0))J ∩ (¬N)J) and

NJ = {aJ | a ∈ Ind} (due to J |= Tred and the definition of AIi).

(b) follows directly from the definition of rIi .

(c) is proved by structural induction on E:

– E = A, where A ∈ Con. We have that AIi = (T
(i)
A)J by definition of Ii

– E = {a}, where a ∈ Ind. We have that {a}Ii = (T
(i)
{a})

J = {a}Ii since aIi = aJ

3.2 Deciding Executability and Projection 47

– E = ¬C: (¬C)Ii = ∆Ii \ CIi = ∆J \ (T
(i)
C)J = (¬T

(i)
C)J = (T

(i)
¬C)J holds since

CIi = (T
(i)
C)J by induction, and since J satisfies (c) of Tsub.

– E = CuD: (CuD)Ii = CIi ∩DIi = (T
(i)
C)J ∩ (T

(i)
D)J = (T

(i)
C uT

(i)
D)J = (T

(i)
CuD)J

holds since CIi = (T
(i)
C)J and DIi = (T

(i)
D)J by induction, and since J satisfies

(d) of Tsub.

– E = C tD is similar to the previous case.

– E = (≥ m r C): since J satisfies (f) of Tsub, we have that x ∈ (T
(i)
(≥m r C))

J iff
one of the following holds:

x ∈

(
N u t

0≤j≤min{m,|Ind|}

((
≥ j r(i) (N uT

(i)
C)
)
u
(
≥ (m−j) r(0) (¬N uT

(i)
C)
)))J

or x ∈

(
¬N u

(
≥ m r(0) T

(i)
C

))J

Thus, we obtain that:

x ∈ NJ ∧
∨

0≤j≤min{m,|Ind|}

(
#{y | (x, y) ∈ (r(i))J ∧ y ∈

(
NJ ∩ (T

(i)
C)J

)
} ≥ j ∧

#{y | (x, y) ∈ (r(0))J ∧ y ∈
(
(¬N)J ∩ (T

(i)
C)J

)
}

≥ (m− j)
)

or x ∈ (¬N)J ∧ #{y | (x, y) ∈ (r(0))J ∧ y ∈
(
(¬N)J ∩ (T

(i)
C)J

)
} ≥ m

By induction, we have that CIi = (T
(i)
C)J . Thus, using the definition of rIi , we

have that the above disjunction holds iff:

x ∈ NJ ∧
∨

0≤j≤min{m,|Ind|}

(
#{y | (x, y) ∈ rIi ∧ y ∈

(
NJ ∩ CIi

)
} ≥ j∧

#{y | (x, y) ∈ rIi ∧ y ∈
(
(¬N)J ∩ CIi

)
} ≥ (m− j)

)

or x ∈ (¬N)J ∧ #{y | (x, y) ∈ rIi ∧ y ∈
(
(¬N)J ∩ CIi

)
} ≥ m

By the semantics, and since |NJ | = |Ind|, this is equivalent to:

x ∈ (≥ m r C)Ii .

– E = (≤ m r C): similar to the previous case

(d) follows directly from (b), (c), and the fact that

J |= {a : (∃rb.{b} u ∀rb.{b}) | a ∈ Ind ∪ {ahelp}, b ∈ Ind}.

This finishes the proof of the claim. Next, we will show that I0 |= A, Ii−1 ⇒T
αi

Ii for all
1 ≤ i ≤ n, and In 6|= A0(a0):

• I0 |= A: this follows immediately from Claim 1 ((b) and (c)) and J |= Aini.

48 Action Formalism A1: Simple Post-Conditions and Acyclic TBoxes

• Ii−1 ⇒T
αi

Ii for all 1 ≤ i ≤ n is split into three sub-tasks showing that the conditions
from Definition 3.1.4 are satisfied:

(i) Let A ∈ Prim. Then αi
Ii−1
+ (A) ∩ αi

Ii−1
− (A) = ∅ since αi is consistent with T . It

remains to show that if x ∈ D
Ii−1
αi (A), then

x ∈ AIi iff x ∈ (AIi−1 ∪ αi
Ii−1
+ (A)) \ αi

Ii−1
− (A) (∗)

We distinguish among the following cases for x ∈ D
Ii−1
αi (A):

∗ x 6∈ IndJ : Then Claim 1(a) implies that x ∈ AIi iff x ∈ (A(0))J iff x ∈ AIi−1 .

Since x 6∈ αi
Ii−1
+ (A)) ∪ αi

Ii−1
− (A)), we have shown (∗).

∗ x = aJ , a ∈ Ind. Then Claim 1(a),(d), together with J |= A
(i)
post, J |= A

(i)
min,

gives us the following implications: aJ ∈ αi
Ii−1
+ (A) implies aJ ∈ AIi , aJ ∈

αi
Ii−1
− (A) implies aJ 6∈ AIi . If A(a) 6∈ occi, we have that: aJ ∈ AIi−1 \

αi
Ii−1
− (A) implies aJ ∈ AIi , and aJ ∈ AIi implies aJ ∈ AIi−1 ∪ αi

Ii−1
+ (A). It

is not difficult to see that (∗) is implied.

Thus, we have shown that

AIi ∩D
Ii−1
αi (A) = ((AIi−1 ∪ αi

Ii−1
+ (A)) \ αi

Ii−1
− (A)) ∩D

Ii−1
αi (A).

(ii) Let r ∈ Rol. Then αi
Ii−1
+ (r)∩αi

Ii−1
− (r) = ∅ since αi is consistent with T . Showing

rIi ∩D
Ii−1
αi (r) = ((rIi−1 ∪ αi

Ii−1
+ (r)) \ αi

Ii−1
− (r)) ∩D

Ii−1
αi (r) is analogous to (i).

(iii) Ii |= T , i ≤ n, is an immediate consequence of Claim 1(c): Let A
.
= E be a

concept definition in T . We have that T
(i)
A

.
= T

(i)
E ∈ Tred and, since J |= Tred,

obtain (T
(i)
A)J = (T

(i)
E)J . Claim 1(c) gives us that AIi = (T

(i)
A)J = (T

(i)
E)J = EIi .

• Finally, it is obvious that Claim 1(c) and J 6|= T
(n)
A0

(a0) imply In 6|= A0(a0).

“⇐”: For this direction, we also show the contrapositive. Assume that ϕ = A0(a0) is not a
consequence of applying α1, . . . , αn in A w.r.t. T . Then there are interpretations I0, . . . , In
such that I0 |= A, Ii−1 ⇒T

αi
Ii for 1 ≤ i ≤ n, and In 6|= A0(a0). We show that, then, T

(n)
A0

(a0)
is not a consequence of Ared w.r.t. Tred.

Claim 2 The interpretations I0, . . . , In satisfy the following:

(a) For all a ∈ Ind and A ∈ Prim such that A(a) 6∈ occi, the following holds:

if Ii−1 |= A(a) and, for each ϕ/¬A(a) ∈ posti, Ii−1 6|= ϕ, then Ii |= A(a), and

if Ii−1 |= ¬A(a) and, for each ϕ/A(a) ∈ posti, Ii−1 6|= ϕ, then Ii |= ¬A(a).

For all a, b ∈ Ind and r ∈ Rol such that r(a, b) 6∈ occi, the following holds:

if Ii−1 |= r(a, b) and, for each ϕ/¬r(a, b) ∈ posti, Ii−1 6|= ϕ, then Ii |= r(a, b)

if Ii−1 |= ¬r(a, b) and, for each ϕ/r(a, b) ∈ posti, Ii−1 6|= ϕ, then Ii |= ¬r(a, b).

3.2 Deciding Executability and Projection 49

(b) If x 6∈ IndI0 , then x ∈ AIi iff x ∈ AI0 , for all A ∈ Prim

(c) If x 6∈ IndI0 or y 6∈ IndI0 , then (x, y) ∈ rIi iff (x, y) ∈ rI0 , for all r ∈ Rol

Proof.
(a) Let A ∈ Prim. Since A(a) 6∈ occi, we have that aIi−1 ∈ D

Ii−1
αi (A). Thus, since Ii−1 ⇒T

αi
Ii,

we have that aIi−1 ∈ AIi iff aIi−1 ∈ ((AIi−1 ∪αi
Ii−1
+ (A))\αi

Ii−1
− (A)). Therefore, Ii−1 |= A(a)

and aIi−1 6∈ αi
Ii−1
− (A) imply Ii |= A(a).

Other cases, including those for r ∈ Rol are analogous.
(b) In a similar way to (a), we can show that x ∈ AIi iff x ∈ AIi−1 for all x 6∈ IndI0 and
1 ≤ i ≤ n. As an immediate consequence, we obtain (b).
(c) Analogous to (b).

This finishes the proof of Claim 2.

We define an interpretation J in the following way:

• ∆J := ∆I0 (= ∆I1 = · · · = ∆In)

• aJ := aI0 (= aI1 = · · · = aIn) for a ∈ Ind

• aJhelp := d, for an arbitrary d ∈ ∆J

• NJ := {aJ | a ∈ Ind}

• rJb := {(aJ , bJ) | a ∈ Ind ∪ {ahelp}}, for all b ∈ Ind

• (A(i))J := AIi for A ∈ Con and i ≤ n

• (r(i))J := rIi for r ∈ Rol and i ≤ n

• (T
(i)
C)J := CIi for all C ∈ Sub and i ≤ n

Please note that the definition of J implies that, for all i ≤ n, ϕ ∈ Assert, and a ∈ Ind∪{ahelp},
we have the following:

Ii |= ϕ iff J |= a : pi(ϕ) (∗∗)

We will show now that J |= Ared, J |= Tred, and J 6|= TA0(a0).

(i) J |= Ared:

• J |= Aini follows directly from I0 |= A and the definition of J .

• J models Aaux by definition of rJb .

• J |= A
(i)
post, for each 1 ≤ i ≤ n: by (∗∗), we obtain that:

If Ii−1 |= ϕ implies Ii |= ψ, then J |= ahelp : (pi−1(ϕ) → pi(ψ))

for every ϕ/ψ ∈ posti. Since Ii−1 ⇒T
αi

Ii, we have that J satisfies A
(i)
post.

50 Action Formalism A1: Simple Post-Conditions and Acyclic TBoxes

• J |= A
(i)
min, for each 1 ≤ i ≤ n: by (∗∗) and definitions of (A(i))J , we have that

If Ii−1 |= A(a) and, for all ϕ/¬A(a) ∈ posti, Ii−1 6|= ϕ imply Ii |= A(a),

then J |= a :
((
A(i−1) u u

ϕ/¬A(a)∈posti

¬pi−1(ϕ)
)
→ A(i)

)

The symmetric case for (¬A)J and the cases for (r(i))J can be considered in a similar

way. Thus, by Claim 2(a), we have that J satisfies A
(i)
min.

(ii) J |= Tred:

• J satisfies the concept definition N
.
= t

a∈Ind
{a} by definition of NJ .

• J satisfies every concept definition T
(i)
A

.
= T

(i)
C , where A

.
= C ∈ T and i ≤ n: by

definition of (T
(i)
A)J and since Ii |= T , we have that (T

(i)
A)J = AIi = CIi = (T

(i)
C)J .

• Finally, we will show that J |= Tsub. By structural induction on E ∈ Sub, we show that

J satisfies every concept definition with T
(i)
E on the left-hand side:

– E = A, where A ∈ Prim. We have:

(T
(i)
A)J = AIi = NJ ∩AIi ∪ (¬N)J ∩AIi

= NJ ∩AIi ∪ (¬N)J ∩AI0 = NJ ∩ (A(i))J ∪ (¬N)J ∩ (A(0))J =

= ((N uA(i)) t (¬N uA(0)))J

The first equality holds by definition of (T
(i)
A)J , the second one by the semantics,

the third one by Claim 2 (b) and the definition of NJ , the fourth one by definition
of (A(j))J , and the last one by the semantics.

– E = ¬C. By definition of (T
(i)
¬C)J and (T

(i)
C)J , we have the following:

(T
(i)
¬C)J = (¬C)Ii = ¬CIi = ¬(T

(i)
C)J .

– E = C uD. By definition of (T
(i)
CuD)J , (T

(i)
C)J and (T

(i)
D)J , we have the following:

(T
(i)
CuD)J = (C uD)Ii = CIi ∩DIi = (T

(i)
C)J ∩ (T

(i)
D)J = (T

(i)
C u T

(i)
D)J

– E = C tD is similar to the previous case.

– E = (≥ m r C). By definition of J , we have that x ∈ (T
(i)
(≥m r C))

J iff x ∈

(≥ m r C)Ii . Due to the definition of the semantics, the latter is the case iff
#{y | (x, y) ∈ rIi ∧ y ∈ CIi} ≥ m.

By Claim 2(c) and NJ = {aJ | a ∈ Ind}, the above expression is equivalent to the
following disjunction:

x ∈ NJ ∧
∨

0≤j≤min{m,|Ind|}

(
#{y | (x, y) ∈ rIi ∧ y ∈

(
NJ ∩ CIi

)
} ≥ j∧

#{y | (x, y) ∈ rI0 ∧ y ∈
(
(¬N)J ∩ CIi

)
} ≥ (m− j)

)

or
x ∈ (¬N)J ∧ #{y | (x, y) ∈ rI0 ∧ y ∈ CIi} ≥ m

3.2 Deciding Executability and Projection 51

Using the definitions of (T
(i)
C)J and (r(i))J , we obtain:

x ∈ NJ ∧
∨

0≤j≤min{m,|Ind|}

(
#{y | (x, y) ∈ (r(i))J ∧ y ∈

(
NJ ∩ (T

(i)
C)J

)
} ≥ j ∧

#{y | (x, y) ∈ (r(0))J ∧ y ∈
(
(¬N)J ∩ (T

(i)
C)J

)
}

≥ (m− j)
)

or

x ∈ (¬N)J ∧ #{y | (x, y) ∈ (r(0))J ∧ y ∈ (T
(i)
C)J } ≥ m,

which is equivalent to:

x ∈

[(
N u t

0≤j≤min{m,|Ind|}

((
≥ j r(i) (N u T

(i)
C)
)
u

(
≥ (m− j) r(0) (¬N u T

(i)
C)
)))

t

(
¬N u

(
≥ m r(0) T

(i)
C

))]J
.

– E = (≤ m r C) is similar to the previous case.

Hence J satisfies Tsub.

(iii) Finally, it is easy to see that (A0)
In = (T

(n)
A0

)J and In 6|= A0(a0) imply J 6|= T
(n)
A0

(a0).
o

Observation 3.2.4. The previous reduction can easily be adapted to the more general case
where we want to decide if T ,Aα1,...,αn |= B, where B is an ABox, i.e. a set of assertions,
rather then a single ABox assertion ϕ.

Proof. Similarly to the assumption from the afore presented reduction, we may assume
that B = {A0(a0), A1(a1), . . . , Al(al)}, where Aj are concept names for j ≤ l, possibly defined

in T . Then it suffices to modify ϕred. We set ϕred := T
(n)
B (a0), where

T
(n)
B := T

(n)
A0

u ∃ra1 .T
(n)
A1

u · · · u ∃ral
.T

(n)
Al
.

It is easy to show that the modified reduction is correct. o

Since the size of Ared, Tred, and ϕred are clearly polynomial in the size of the input,
Lemma 3.2.3 immediately yields Theorem 3.2.2. Thus, for the DLs L considered in Theo-
rem 3.2.2, upper complexity bounds for ABox consequence in LO carry over to projection
in L. Many such upper bounds are available from the literature. Lower complexity bounds
carry over from ABox consequence in a DL L to projection in the same DL: T ,A |= ϕ iff ϕ
is a consequence of applying the empty action (∅, ∅, ∅) in A w.r.t. T . Thus, we obtain tight
bounds for projection in those DLs L where the addition of nominals does not increase the
complexity of reasoning. Please note, that due to Observation 3.2.4, the upper bounds hold
also in a more general case where the assertion ϕ is replaced by an ABox B.

Corollary 3.2.5. Executability and projection in A1 w.r.t. acyclic TBoxes are

1. PSpace-complete for ALC, ALCO, ALCQ, and ALCQO;

52 Action Formalism A1: Simple Post-Conditions and Acyclic TBoxes

2. in ExpTime for ALCI;

3. ExpTime-complete for ALCIO;

4. in co-NExpTime for ALCQI;

5. co-NExpTime-complete for ALCQIO.

Points 1, 4, and 5 hold even if numbers in number restrictions are coded in binary.

Proof. The corollary is a consequence of Theorem 3.2.2 and the following results: ABox
consequence in

• ALC w.r.t. acyclic TBoxes is PSpace-hard [SSS91] (yields lower bounds of Point 1);

• ALCQO w.r.t. acyclic TBoxes is in PSpace [BLM+05d] (yields upper bounds of Point 1);

• ALCIO w.r.t. acyclic TBoxes is ExpTime-complete, as follows from results in [ABM99]
(yields Points 2 and 3);

• ALCQIO is co-NExpTime-complete as follows from results in [Tob00] and [PST00]
(yields Points 4 and 5).

The bounds for executability are then obtained by the reductions of executability to projection
and vice versa. o

In Section 3.2.2, we prove matching lower bounds for Points 2 and 4 of Corollary 3.2.5.

3.2.2 Hardness Results

The aim of this section is to prove that the upper bounds for projection obtained in the
previous two sections are tight, i.e., that they have matching lower bounds. In Section 3.2.1,
we have already obtained tight lower bounds for those DLs L where the complexity of ABox
consequence in L coincides with the complexity of ABox consequence in LO, L’s extension
with nominals. It thus remains to consider cases where ABox consequence in LO is more
difficult than in L: we prove an ExpTime lower bound for projection in ALCI and a co-
NExpTime lower bound for projection in (a fragment of) ALCQI.These bounds match
Points 2 and 4 of Corollary 3.2.5. The results established in this section show that the
additional complexity that is obtained by introducing nominals in the reduction of projection
to ABox consequence cannot be avoided.

The idea for proving the lower bounds is to reduce, for L ∈ {ALCI,ALCQI}, unsat-
isfiability of LO concepts to projection in L. In the case of ALCQI, we can even obtain
a slightly stronger result by reducing concept unsatisfiability in ALCFIO to projection in
ALCFI, where ALCFIO is ALCQIO with numbers occurring in number restrictions limited
to {0, 1}, and ALCFI is obtained from ALCFIO by dropping nominals.4

Theorem 3.2.6. There exists an ABox A and an atomic action α formulated in ALCI
(ALCFI) such that, given an ALCI-assertion (ALCFI-assertion), the following tasks are
ExpTime-hard (co-NExpTime-hard):

• decide whether ϕ is a consequence of applying α in A;

• decide whether α, ({ϕ}, ∅, ∅) is executable in A.

4We have to admit the number 0 for being able to still use the abbreviation ∀r.C that stands for (6 0 r ¬C).

3.2 Deciding Executability and Projection 53

Note that we cannot obtain the same hardness results for executability of atomic actions for
the following reasons: (i) executability of atomic actions in any DL L can trivially be reduced
to ABox consequence in L, and (ii) the complexity of ABox consequence is identical to the
complexity of concept unsatisfiability in ALCI and ALCFI.

For the proof of Theorem 3.2.6, let L ∈ {ALCIO,ALCFIO} and C an L-concept whose
(un)satisfiability is to be decided. For simplicity, we assume that C contains only a single
nominal {n}. This can be done w.l.o.g. since the complexity of (un)satisfiability in ALCIO
and ALCFIO is oblivious to the number of available nominals [ABM99, Tob00, Tob01]. We
reserve two concept names O and AN and a role name u that do not occur in C. Let

rol(C) := {r, r− | r ∈ NR used in C}

and let C[{n}/AN] denote the result of replacing the nominal {n} in C with the concept
name AN . We define an ABox A, an atomic action α = (∅, ∅, postα), and a concept DC as
follows:

AC := {a : (¬O u ∀u.¬O u ∀u. u
r∈rol(C)

∀r.∃u−.¬O)}

postα := a : O

DC := AN u ∃u.C[{n}/AN] u (∀u. u
r∈rol(C)

∀r.∀u−.O) u (∀u.(AN ↔ O))

This reduction does not involve any TBoxes since, on the one hand, we do not need one
to carry out the reduction and, on the other hand, concept unsatisfiability is already Exp-

Time-complete in ALCIO [ABM99] and co-NExpTime-complete in ALCFIO, even without
TBoxes. Hence the following lemma immediately yields Theorem 3.2.6.

Lemma 3.2.7. The following statements are equivalent:

(1) C is satisfiable.

(2) there are interpretations I and I ′ such that I |= AC , I ⇒α I ′, and I ′ |= a : DC .

(3) a : ¬DC is not a consequence of applying α in AC .

(4) the composite action α, ({a : ¬DC}, ∅, ∅) is not executable in AC .

Proof. We only prove that (1) and (2) are equivalent since the other equivalences are
immediate consequences of the definitions of projection and executability.

(2) implies (1). Assume that there are interpretations I and I ′ such that I |= AC , I ⇒α I ′,
and I ′ |= a : DC . By the first conjunct of (the concept in the only assertion of) AC , by
postα, and Lemma 3.1.5, we have that I is identical to I ′ with the only exception that
aI = aI

′
∈ OI′

\ OI . For simplicity, we will call this relationship quasi-identity of I and
I ′ in what follows. By the second conjunct of DC , there is an x0 ∈ ∆I = ∆I′

such that
(aI

′
, x0) = (aI , x0) ∈ uI

′
= uI , and x0 ∈ C[{n}/AN]I

′
= C[{n}/AN]I . The last equality

holds since O does not occur in C[{n}/AN] and by the quasi-identity of I and I ′. We first
identify the “relevant part” of I and I ′: set

rel0 := {x0}

reli+1 := reli ∪ {x ∈ ∆I | (y, x) ∈ rI for some y ∈ reli and r ∈ rol(C)}

rel :=
⋃

i≥0

reli

54 Action Formalism A1: Simple Post-Conditions and Acyclic TBoxes

The relevant part of I ′ can be defined analogously. Due to quasi-identity of I and I’, it is
identical to the relevant part of I. We now show the following:

Claim 1. For all x ∈ rel, we have (aI , x) = (aI
′
, x) ∈ uI = uI

′
.

The proof of the claim is by induction on the smallest i such that x ∈ reli. First let i = 0.
Then x = x0 and the claim holds since (aI , x0) ∈ uI by choice of x0. Now let i > 0.
Since i is smallest with x ∈ reli, there is a y ∈ reli−1 such that (y, x) ∈ rI = rI

′
for some

r ∈ rol(C). By induction, we have (aI , y) ∈ uI = uI
′
. Thus, the third conjunct of AC

implies that y ∈ (∀r.∃u−.¬O)I , and thus x ∈ (∃u−.¬O)I . Let z be the witness for this,
i.e. (z, x) ∈ uI = uI

′
and z /∈ OI . Since (aI , y) ∈ uI

′
, (y, x) ∈ rI

′
, and (z, x) ∈ uI

′
, we

have z ∈ OI′
by the third conjunct of DC . Since the only difference between I and I ′ is

aI ∈ OI′
\ OI , z ∈ OI′

\ OI implies z = aI . Since we have already shown that (z, x) ∈ uI ,
we are done.

This finishes the proof of Claim 1. Now we show that the concept name AN may serve as a
nominal on the relevant part of I ′ extended with aI

′
.

Claim 2. AI′

N ∩ (rel ∪ {aI
′
}) is a singleton.

Proof: By the first conjunct of DC , we have aI
′
∈ AI′

N . Thus, AI′

N is non-empty. Now let
x ∈ AI′

N ∩ rel. By Claim 1, we have (aI
′
, x) ∈ uI

′
. Thus, the fourth conjunct of DC together

with x ∈ AI′

N implies x ∈ OI′
. Claim 1 and the third conjunct of AC yield x /∈ OI . Since

the only difference between I and I ′ is aI
′
∈ OI′

\ OI , this is implies that x = aI
′
. Hence,

AI′

N ∩ (rel ∪ {aI
′
}) is a singleton.

Now define an interpretation J as I ′ extended with {n}J := AI′

N ∩ (rel∪{aI
′
}). By Claim 2,

{n}J is a singleton as required. It is standard to prove the following claim by structural
induction. The only interesting aspects are the case of the nominal {n} where we use that
{n}J = AI′

N , and the fact that all domain elements encountered during the proof are from
rel.

Claim 3. For all x ∈ rel and all subconcepts D of C, we have x ∈ D[{n}/AN]J iff x ∈ DJ .

Finally, x0 ∈ C[{n}/AN]I
′
yields x0 ∈ CJ by Claim 3, and thus C is satisfiable.

(1) implies (2). Let J be a model of C, and let x0 ∈ CJ . Let I be the interpretation that is
identical to J , but for the following modifications:

• AI
N = {n}J ;

• OI = ∅;

• aI = nJ ;

• uI = {(aI , x) | x ∈ ∆I}.

Moreover, let I ′ be the interpretation that is identical to I except that OI′
= {n}J . It is

readily checked that I |= AC , I ⇒α I ′, and I ′ |= a : DC . o

Chapter 4

Restrictions and Extensions of A1

The previous chapter was dedicated to the instantiations of the action formalism A1 with
DLs between ALC and ALCQIO. In this chapter, we investigate instantiations of A1 with
less and more expressive description logics. Section 4.1 is dedicated to the instantiations of
A1 with the lightweight DLs EL and EL(¬), with and without TBoxes. A1 based on various
extensions of ALCQIO is investigated in Section 4.2. It turns out that A1 can easily be
modified to account for role inclusions, while expressive means such as transitive roles and
acyclic TBoxes introduce semantic and/or computational problems. Finally, in Section 4.3
we show that if we generalize A1 by admitting complex concepts in action post-conditions
and adopt the possible model approach (PMA) semantics, this leads to both non-intuitive
results and undecidability of reasoning.

4.1 Restrictions

In this section, we investigate the projection problem in A1 instantiated with the description
logics EL and EL(¬). Recall that EL is a lightweight DL which provides only for the following
constructors: conjunction (u), existential restriction (∃), and top (>), and EL(¬) is the
extension of EL that allows for atomic negation. Note that we allow negation in consequences
of action post-conditions although EL does not provide negation. The reason is that we believe
that actions without negated post-conditions are too restrictive to be useful.

As already mentioned, EL plays an important role in modelling life science ontologies
[BC07, Spa01]. Many of such ontologies consist of acyclic TBoxes and can thus be used
together with the action formalism A1. Most importantly, standard reasoning tasks such as
ABox consequence or subsumption are tractable in EL [Baa03, Bra04, BBL05].

Our results show that, in general, tractability does not transfer from ABox consequence
to projection. Even for EL without TBoxes, the latter problem is shown to be co-NP-hard
in Section 4.1.1. We remark that co-NP-hardness does not follow from hardness results
for propositional action formalisms since EL does not have disjunction and negation occurs
nowhere except in post-conditions. We also prove a matching co-NP upper bound for EL(¬).
Moreover, if we allow for acyclic TBoxes, we show in Section 4.1.2 that the projection problem
in EL is PSpace-hard and thus not easier than in ALC. This shows that the reduction of
projection to ABox consequence from Section 3.2.1, although developed for expressive DLs, is
optimal with respect to complexity of reasoning even for the lightweight EL if acyclic TBoxes
are allowed. An intuitive explanation for projection being a hard problem in the lightweight

56 Restrictions and Extensions of A1

EL is that, even with unconditional action post-conditions, one can “simulate” disjunction.
The source of intractability turn out to be existential restrictions in the initial ABox together
with negated assertions in post-conditions.

In hardness proofs, we use actions of a restricted form: only atomic actions are admit-
ted, the sets of pre-conditions and occlusions are empty, and post-conditions are uncon-
ditional. Recall that we call such actions updates and write U = {ψ1, . . . , ψn} instead of
U = (∅, ∅, {>(a)/ψ1, . . . ,>(a)/ψn}). For an interpretation I, we will use IU

T to denote the
unique interpretation I ′ such that I ⇒T

U I ′. If T is empty, we just write IU instead.

4.1.1 Projection in EL with empty TBoxes

In [Sch93], Schaerf proves that instance checking (ABox consequence) in EL(¬) w.r.t. empty
TBoxes is co-NP-hard regarding data complexity (ABox size). He uses a reduction from a
variant of SAT that he calls 2+2-SAT. We use a similar reduction.

A 2+2 clause is of the form (p1 ∨ p2 ∨ ¬n1 ∨ ¬n2), where each of p1, p2, n1, n2 is a
propositional variable or a truth constant >, ⊥. A 2+2 formula is a finite conjunction of 2+2
clauses. Now, 2+2-SAT is the problem of deciding whether a given 2+2 formula is satisfiable.
It is shown in [Sch93] that 2+2-SAT is NP-complete.

Let ϕ = c1 ∧ · · · ∧ cn be a 2+2-formula in m propositional variables q1, . . . , qm. Let
ci = pi,1 ∨ pi,2 ∨ ¬ni,1 ∨ ¬ni,2 for all 1 ≤ i ≤ n. We use f , x, y, the propositional variables
q1, . . . , qm, and the clauses c1, . . . , cn as individual names. Moreover, we introduce individual
names q> and q⊥ corresponding to the truth constants > and ⊥. Define the ABox Aϕ as
follows, where c, p1, p2, n1, n2, and t are role names:

Aϕ := {c(f, c1), . . . , c(f, cn)}

∪
⋃

1≤i≤n{p1(ci, pi,1), p2(ci, pi,2), n1(ci, ni,1), n2(ci, ni,2)}

∪ {(A uA)(x), A(y), t(q>, y), t(q⊥, x)}

∪ {∃t.A(q1), . . . , ∃t.A(qm)}

Let U = {¬A(x)} and ψ = Cϕ(f), where

Cϕ := ∃c.(∃p1.∃t.A u ∃p2.∃t.A u ∃n1.∃t.A u ∃n2.∃t.A)

Intuitively, for models I of Aϕ, interpretations J = IU are supposed to represent truth
assignments as follows: for z ∈ {q>, q⊥, q1, . . . , qm}, the truth value of z is > if zJ ∈ (∃t.A)J

and ⊥ if zJ ∈ (∃t.A)J . Observe that, due to the t-links from q> and q⊥ to x and y and
since we adopt the UNA, qI> ∈ (∃t.A)I and qI⊥ ∈ (∃t.A)I as required. It can be seen as
follows that every z ∈ {q1, . . . , qm} satisfies ∃t.A or ∃t.A. Since {∃t.A(z), A(x)} ⊆ Aϕ, we
may distinguish two cases: in every model I of Aϕ, we have (i) (zI , xI) ∈ tI or (ii) there is
a d 6= xI such that (zI , x) ∈ tI and x ∈ AI . Let J = IU . In Case (i), we have zI ∈ (∃t.A)J .
And in Case (ii), we have zI ∈ (∃t.A)J .

There is one complication: we may have ill-behaved models of Aϕ in which there is
a z ∈ {q>, q⊥, q1, . . . , qm} that satisfies both ∃t.A and ∃t.A. Clearly, such interpretations
do not correspond to truth assignments. To solve this problem, consider the query ψ. It
expresses that the formula is false, i.e., that there is a clause that is not satisfied because
all its positive and negative literals are violated. What we want to achieve is that AU

ϕ 6|= ψ
iff ψ is satisfiable. The problem with ill-behaved models is that the counter-model showing

4.1 Restrictions 57

AU
ϕ 6|= ψ may be ill-behaved, and thus we cannot guarantee satisfiability of ψ. To solve this,

we extend the ABox Aϕ such that all ill-behaved models of the resulting ABox satisfy the
query ψ. Let d>, d⊥, d1, . . . , dm be additional individual names and define

A′
ϕ := {c(f, d>), c(f, d⊥), c(f, d1), . . . , c(f, dm)}

∪
⋃
i∈{>,⊥,1,...,m}{p1(di, qi), p2(di, qi), n1(di, qi), n2(di, qi)}

We can show the following.

Lemma 4.1.1. ϕ is satisfiable iff ψ is not a consequence of applying U in Aϕ ∪ A′
ϕ.

Proof. “⇒” Let ϕ be satisfiable. Then there exists a valuation v : {q0. . . . qm} → {>,⊥}
such that v(ϕ) = >. Additionally, we set v(q>) := > and v(q⊥) := ⊥. We will use v to
construct a model I = (∆I , ·I) of Aϕ ∪ A′

ϕ such that IU |= ¬ψ.

Let ∆I ⊇ {f, c1, . . . cn, q>, q⊥, q1, . . . qm, d>, d⊥, d1, . . . dm, x, y}. Moreover, we set: fI :=
f, cIi := ci for i ∈ {1, . . . , n}, qIi := qi and dIi := di for i ∈ {>,⊥, 1, . . . ,m}, xI := x and
yI := y. Finally, we define:

AI := {x, y}

(A)I := {x}

cI := {(f, c1), . . . , (f, cn), (f, d>), (f, d⊥), (f, d1), . . . , (f, dm)}}

pIj := {(ci, qj) | qj is the jth positive variable of ci} ∪ {(di, qi) | i ∈ {>,⊥, 1, . . . ,m}}

nIj := {(ci, qj) | qj is the jth negative variable of ci} ∪ {(di, qi) | i ∈ {>,⊥, 1, . . . ,m}}

tI := {(q⊥, x), (q>, y)} ∪ {(qi, x) | v(qi) = ⊥} ∪ {(qi, y) | v(qi) = >}

Here, j ∈ {1, 2}. Obviously, I is a model of Aϕ ∪ A′
ϕ. The interpretation IU disagrees

with I only in the extension of A; namely AIU
= {y}. Since AIU

= AI \ {x}, and tI
U

= tI ,
we obtain the following for i ∈ {>,⊥, 1, . . . ,m}:

IU |= (∀t.¬A)(qi) iff v(qi) = > and IU |= (∀t.¬A)(qi) iff v(qi) = ⊥

Moreover, since ¬Cϕ ≡ ∀c.(∀p1.∀t.¬A t ∀p2.∀t.¬A t ∀n1.∀t.¬A t ∀n2.∀t.¬A), and since v
evaluates ϕ to true, we have that IU |= ¬Cϕ(f).

“⇐”Let I be an interpretation such that I |= Aϕ ∪ A′
ϕ and IU |= ¬Cϕ(f). Let i ∈

{1, . . . ,m}. Since {∃t.A(qi), A(x)} ⊆ Aϕ, we may distinguish two cases: (i) If (qIi , x
I) ∈ tI

then qIi ∈ (∃t.A)J ; and (ii) if there is a d 6= xI such that (qIi , x) ∈ tI and x ∈ AI , then
qIi ∈ (∃t.A)J . Thus, we obtain that IU |= (∃t.A t ∃t.A)(qi) for all 1 ≤ i ≤ m. Since the
update U affects only the truth value of A(x), we obtain that IU |= A′′

ϕ ∪A′
ϕ ∪ U , where the

ELU ABox A′′
ϕ is defined with:

A′′
ϕ := {c(f, c1), . . . , c(f, cn)}

∪
⋃

1≤i≤n{p1(ci, pi,1), p2(ci, pi,2), n1(ci, ni,1), n2(ci, ni,2)}

∪ {A(x), A(y), t(q>, y), t(q⊥, x)}

∪ {(∃t.A t ∃t.A)(q1), . . . , (∃t.A t ∃t.A)(qm)}

Moreover, since IU |= A′
ϕ ∪ {¬Cϕ(f)} we obtain that IU satisfies either ∃t.A(qi) or

∃t.A(qi), but not both. To see this, assume that for an l, 1 ≤ l ≤ n, it holds that IU |=

58 Restrictions and Extensions of A1

(∃t.A u ∃t.A)(ql). But then IU |= A′
ϕ implies that IU |= (∃p1.∃t.A u ∃p2.∃t.A u ∃n1.∃t.A u

∀n2.∃t.A)(dl). Since IU |= c(f, dl), we obtain IU |= Cϕ(f), which is a contradiction.
Thus, the valuation v : {q1, . . . , qn} → {>,⊥} defined with:

• v(qi) = > iff IU |= ∃t.A(qi); and

• v(qi) = ⊥ iff IU |= ∃t.A(qi).

is well defined. IU |= A′′
ϕ ∪ {¬Cϕ(f)} implies that v(ϕ) = >, i.e. ϕ is satisfiable. o

Theorem 4.1.2. Projection in EL with empty TBoxes is co-NP-hard, even for a singleton
update.

Upper Bounds

We will use the bounded model property of counter-models for projection in order to show
that projection in EL(¬) is in co-NP. More precisely, we will show that, if an assertion ϕ is
not a consequence of applying an action α in an ABox A, all formulated in EL(¬), then there
exist counter-models I, I ′ against Aα |= ψ whose size is linearly bounded by |A| + |α|, i.e.
there exist interpretations I, I ′ such that:

• I |= A, I ⇒α I ′ and I ′ |= ¬ϕ;

• |∆I | = |∆I′
| is bounded by |A| + |α|.

Since I and I ′ respect UNA on individual names, we need to assume that I and I ′ interpret
only those individual names that appear in A, α, and ϕ.

We start by defining the notion of a filtration of an interpretation w.r.t. an EL(¬)-concept.
We first introduce a few notions.

Definition 4.1.3 (Role depth, Top Existentials). The role depth (written rd(E)) of
concepts is defined inductively as follows:

rd(A) = rd(¬A) := 0 for A a concept name

rd(C uD) := max{rd(C), rd(D)}

rd(∃R.C) := rd(C) + 1

The set of top existentials (written topex(E)) of concepts is defined inductively as follows:

topex(A) = topex(¬A) := ∅ for A a concept name

topex(C uD) := topex(C) ∪ topex(D)

topex(∃R.C) := {∃R.C}

4

Definition 4.1.4 (Filtration w.r.t. a concept). Let C0 be an EL(¬)-concept, I be an
interpretation and d0 be an element of ∆I such that d0 ∈ CI

0 . A node in I is a pair (d,C),
with d ∈ ∆I and C ∈ sub(C0) such that d ∈ CI . An edge in I is a triple (d, e, r) such
that (d, e) ∈ rI . An interpretation J is called a filtration of I w.r.t. C0 and d0 if it can
be constructed from I in the following way. For each node (d, ∃r.D) in I, fix a witness
τ(d, ∃r.D) ∈ ∆I such that (d, τ(d, ∃r.D)) ∈ rI and τ(d, ∃r.D) ∈ DI . Determine a set of
selected nodes and a set of selected edges in rd(C0) + 1 rounds as follows:

4.1 Restrictions 59

• In round 0, select (d0, C0) (no edges are selected).

• In round i with 0 < i ≤ rd(C0), do the following: for all nodes (d,C) that have been
selected in round i − 1 and for every ∃r.D ∈ topex(C) select the node (τ(d, ∃r.D), D)
and the edge (d, τ(d, ∃r.D), r).

Define the interpretation J as the restriction of I to the set of selected nodes and edges, i.e.,

∆J := {d ∈ ∆I | (d,C) is selected for some C ∈ sub(C0)},

AJ := AI ∩ ∆J for all A ∈ NC,

rJ := {(d, e) ∈ rI | (d, e, r) is selected} for all r ∈ NR.

The object d0 is called the root of J . 4

It is easy to show by induction on the role depth of a concept C0, that a filtration J of
a model of the concept C0 is also a model of C0. Moreover, additionally to the root, ∆J

contains at most one element for every occurrence of a subconcept of the form ∃r.D in C0.
Thus, |∆J | is bounded by the size of C0.

Lemma 4.1.5. If I is a model of C0 and J is a filtration of I w.r.t. C0 and d0, then J is
also a model of C0 and |∆J | is bounded by |C0|.

Lemma 4.1.6. Let A be an ABox, α = α1, . . . αn with αi = (prei, occi, posti) a composite
action and ϕ0 an assertion, all formulated in EL(¬). Let Ind be the set of individual names
which appear in α, A, and ϕ0. If ϕ0 is not a consequence of applying α in A, then there
exist interpretations J0, J1, . . . , Jn interpreting only individuals from Ind such that J ′

0 |= A,
Ji−1 ⇒αi

Ji for 1 ≤ i ≤ n, Jn 6|= ϕ0, and |∆Ji | is not greater than |A|+ |post1|+ · · ·+ |postn|.

Proof. Since ϕ0 is not a consequence of applying α in A, there exist interpretations I0, I1,

. . . , In such that I0 |= A, Ii−1 ⇒αi
Ii for 1 ≤ i ≤ n, and In 6|= ϕ0. Let I

C(a)
i be the filtration

of Ii w.r.t. C and aIi . We define ∆ to be the smallest set such that:

• aI0 is in ∆, for all individuals a from Ind;

• ∆
I

C(a)
0

⊆ ∆ for all C(a) ∈ A;

• ∆
I

D(b)
i

⊆ ∆ for all D(b) and 0 ≤ i < n such that D(b)/ψ ∈ posti and Ii−1 |= D(b).

Obviously, |∆| is bounded by |A|+|post1|+· · ·+|postn|. Moreover, let us define interpretations
Ji for i ≤ n as follows:

∆Ji := ∆,

AJi := AIi ∩ ∆ for all A ∈ NC,

rJi := rIi ∩ (∆ × ∆) for all r ∈ NR,

aJi := aIi for all a ∈ Ind.

From the properties of filtrations and the definition of ∆ and Ji, we obtain as an easy
consequence that J0 |= A and Ji−1 |= {ϕ | ϕ/ψ ∈ posti, Ii−1 |= ϕ}, 1 ≤ i ≤ n. Moreover,
it is not difficult to see that for EL(¬) assertions that are not satisfied in Ii, it also holds that
they are not satisfied in Ji (obtained by restricting the domain of Ii to ∆). Thus, we have
that Ii−1 6|= ϕ implies Ji−1 6|= ϕ for ϕ/ψ ∈ posti and 1 ≤ i ≤ n and Jn 6|= ϕ0. Summing up,
we have shown that Ji−1 ⇒αi

Ji for 1 ≤ i ≤ n. o

60 Restrictions and Extensions of A1

The previous lemma implies that non-projection in EL(¬) without TBoxes is in NP: Let
A be an ABox, α a composite action, and ϕ0 an assertion, all formulated in EL(¬). Guessing
interpretations I0, I1, . . . , In such that and |∆I0 | ≤ |A| + |α| 1, and checking if I0 |= A,
Ii−1 ⇒αi

Ii for 1 ≤ i ≤ n and In |= ¬ϕ can be done in a non-deterministic time which is
polynomial in |A| + |α|. Thus we obtain the following:

Lemma 4.1.7. Projection in EL(¬) with empty TBoxes is in co-NP.

The previous Lemma together with Theorem 4.1.2 gives us the following result:

Theorem 4.1.8. Projection in EL and EL(¬) with empty TBoxes is co-NP-complete.

4.1.2 Projection in EL with acyclic TBoxes

In this section we show that, if we allow for acyclic TBoxes, projection in EL becomes
PSpace-hard. This result holds even if we compute projection w.r.t. an update, e.g. an atomic
action with empty pre-conditions and occlusions, and only unconditional post-conditions.

To this end, we reduce validity of quantified Boolean formulas (QBF) to projection in EL.

Definition 4.1.9 (Quantified Boolean Formula (QBF)). A quantified Boolean formula
(QBF) is of the form

φ = Q1p1. . . . Qnpn.ϕ(p1, . . . , pn),

where Qi ∈ {∀, ∃}, and ϕ(p1, . . . , pn) is a propositional formula using only the propositional
variables p1, . . . , pn.

Validity of QBF is defined via induction on the length of quantifier prefix. For a proposi-
tional formula ϕ, we define ϕ[p/v], v ∈ {>,⊥}, to be the propositional formula obtained by
replacing p with v in ϕ. The QBF φ is valid iff:

1. Q1 = ∀: Q2p2. . . . Qnpn.ϕ[p1/>] and Q2p2. . . . Qnpn.ϕ[p1/⊥] is valid;

2. Q1 = ∃: Q2p2. . . . Qnpn.ϕ[p1/>] or Q2p2. . . . Qnpn.ϕ[p1/⊥] is valid.
4

It is known that validity of QBF is a PSpace-hard problem, even if the matrix ϕ(p1, . . . , pn)
is in CNF [SM73]. To every QBF we can assign a “graphical” representation, called quantifier
tree.

Definition 4.1.10 (Quantifier Tree). A quantifier tree of the QBF φ = Q1p1. . . . Qnpn.
ϕ(p1, . . . , pn) is a tree of branching factor at most 2 such that:

• each level of the tree (except the leaves) corresponds to one of the quantifiers of φ;

• in ∀pi-levels, each node has two successors, one for pi = >, and one for pi = ⊥;

• in ∃pi-levels, each node has one successor, either for pi = >, or for pi = ⊥.

Thus, every branch of a quantifier tree corresponds to a truth assignment to the variables
p1, . . . , pn. A tree is valid iff on each branch of the tree, the propositional formula ϕ evaluates
to true (>).

4

1Obviously, it suffices to guess only extensions of concept and role names appearing in A, α, and ϕ0

4.1 Restrictions 61

It is not difficult to show that a QBF φ is valid iff it has a valid quantifier tree.
Let φ = Q1p1. . . . Qnpn.ϕ where Qi ∈ {∀, ∃}, be a quantified Boolean formula with ϕ in

CNF. We define an EL acyclic TBox Tφ, ABox Aφ, a query ψφ, and an update U such that
Tφ,A

U
φ 6|= ψφ iff φ is valid. As in Section 4.1.1, we call models I and J of T counter-models

against Tϕ,A
U
ϕ |= ψφ iff I |= Aϕ, I ⇒T

U J , and J 6|= ψφ. The general idea of the reduction
is to achieve that, if I,J are such counter-models, then J encodes a valid quantifier tree for
φ. The purpose of the reduction TBox Tϕ is to establish a tree structure in I and J that is
the core of this encoding. We use a role name r to represent the edges of the quantifier tree,
and the concept names L0, . . . , Ln to identify its n levels. The truth values of the variables
p1, . . . , pn are represented via the concept names P1, . . . , Pn (indicating truth) and P 1, . . . , Pn
(indicating falsity). We also use role names t, s and concept names A1, . . . , An, A1, . . . , An,
to be explained later.

We first define Tφ as:

Tφ := {Li−1
.
= u

1≤j<i
∃t.Aj u ∃r.(Pi u Li) u ∃r.(P i u Li) | 1 ≤ i ≤ n,Qi = ∀}

∪{Li−1
.
= u

1≤j<i
∃t.Aj u ∃r.Li | 1 ≤ i ≤ n,Qi = ∃}

∪{Ln
.
= u

1≤j≤n
∃t.Aj}

The reduction ABox Aϕ will include an assertion L0(a). The TBox Tϕ thus establishes
a binary tree of depth n rooted at aI in I with the right number of successors at each level
and with the concept names Pi, P i set appropriately in levels Li with Qi = ∀. Since none of
the Li, Pi, P i, and r will occur in the update, aJ is a root of the same tree in J . To make
this tree a valid quantifier tree for φ, it remains to ensure that the tree in J satisfies the
following:

(a) On every branch of the tree, every variable is interpreted as true or false (not yet
guaranteed since both Pi and P i may be false in a level Li with Qi = ∃).

(b) On no branch, a variable is interpreted as both true and false.

(c) Every branch describes a truth assignment that satisfies ϕ.

To enforce (a)-(c), we introduce a second representation of truth values, which is used as the
main such representation from now on: ∃t.Aj indicates truth of pj and ∃t.Aj indicates falsity.
In contrast to the representation via Pj and P j , in which the truth value of pj is only stored
at level j, the representation via ∃t.Aj and ∃t.Aj stores the truth value of pj at any level
i ≥ j. In particular, this means that the (unique) leaf of a branch stores the whole truth
assignment associated with the branch, and thus we can ensure (c) locally at the leaves.

We start using the new representation by enforcing a central property:

If d ∈ LI
j , then d ∈ (∃t.Ai)

J or (∃t.Ai)
J is true, for 1 ≤ i ≤ j ≤ n. (∗)

To establish (∗), we exploit the same effect as in the co-NP-hardness proof in Section 4.1.1.

More precisely, we use (i) the concepts u
1≤j<i

∃t.Aj in Tϕ, (ii) assertions (A1uA1)(b1), . . . , (Anu

An)(bn) which will be in Aφ, and (iii) the reduction update, which is defined as

U := {¬A1(b1), . . . ,¬An(bn)}.

62 Restrictions and Extensions of A1

Due to the u
1≤j<i

∃t.Aj concepts, each d ∈ LI
j satisfies ∃t.Aj in I. The choice in (∗) then

corresponds to whether or not the r-successor stipulated by this concept is bj .
Obviously, (∗) guarantees (a). The definition of U explains why we cannot use the second

representation of truth assignments already in Tφ. Namely, Tφ is used together with the
assertion L0(a) ∈ Aφ, and thus talks about I. Since A1, . . . , An occur negated in U , truth of
concepts ∃t.Ai and ∃t.Ai in I may be destroyed when moving with U from I to J .

We proceed by ensuring that every node d ∈ LI
i satisfies the following three properties:

1. if d is in PJ
i , then it is in (∃t.Ai)

J , and likewise for P i and ∃t.Ai;

2. d is in at most one of (∃t.Aj)
J and (∃t.Aj)

J , for 1 ≤ j ≤ i.

3. if d is in (∃t.Aj)
J with 1 ≤ j ≤ i, then so are all its r-successors; and likewise for ∃t.Aj ;

Note that Point 1 links the two representations of truth values, Point 2 addresses (b), and
Point 3 ensures that truth values stored via the second representation are pushed down
towards the leafs.

We define a set of concepts C such that, to enforce Points 1 to 3, it suffices to ensure that
all concepts in C are false at the root of the quantifier tree in J :

C := {∃ri.(Pi u ∃t.Ai), ∃r
i.(P i u ∃t.Ai) | 1 ≤ i ≤ n} ∪

{∃ri.(∃t.Aj u ∃r.∃t.Aj), ∃r
i.(∃t.Aj u ∃r.∃t.Aj) | 1 ≤ j ≤ i < n} ∪

{∃ri.(∃t.Aj u ∃t.Aj) | 1 ≤ j ≤ i ≤ n}

Note that the i-th line in the definition of C corresponds to Point i above. Also note that the
first two lines of C rely on (∗) to have the desired effect.

Before we describe how C can be incorporated into the reduction, let us describe how
to ensure that, at every leaf, the formula ϕ evaluates to true. The idea is to come up with
another set of concepts D that are made false at the root of the quantifier tree in J . We use
ϕ to denote the dual of ϕ, i.e. the formula obtained from ϑ by swapping ∨ and ∧ and pi and
¬pi, for 1 ≤ i ≤ n. Obviously, ϕ is equivalent to ¬ϕ, ϕ is of the same length as ϕ, and ϕ is
in DNF. Let ϕ = ϕ1 ∨ · · · ∨ ϕm, where the ϕi are conjunctions of literals. Now D consists of
the concepts Cϕi

, for 1 ≤ i ≤ m, where:

Cϕi
:= ϕi[pj/∃t.Aj ,¬pj/∃t.Aj ,∧/u]

Clearly, D is as required. If EL would include disjunction, we could now easily put C and D

to work and thus finish the reduction by setting ψφ := t
C∈C∪D

C(a), where a denotes the root

of the quantifier tree. Since J is a part of a counter-model and thus violates ψφ, this has the
desired effect that all concepts in C ∪ D are false at a. Alas, there is no disjunction in EL
and we need to invest more work to employ C and D.

We introduce individual names a0, a1, . . . , ak, where ak denotes the root of the quantifier
tree. Suppose we ensure that J is a model of the ABox

A = {s(ai, ai+1), s(ai, ak) | 0 ≤ i < k} ∪ {Ci(ai), Di+1(ak) | 1 ≤ i < k}.

Then the structure of J is as shown in Figure 4.1. Let C ∪D = {C1, . . . , Ck}, and recursively
define concepts D1, . . . , Dk as follows:

Di := ∃s.(Ci uDi+1), for 1 ≤ i ≤ k − 1,

Dk := ∃s.Ck

4.1 Restrictions 63

a0
?
s

a1C1
?
s

a2C2
...

?
s

ak−1Ck−1
?
s

akD2, . . . , Dk

s

s
s

s

ª¼

...

A1, A1
· · ·

An, An
b1 bn

L0

L1

Ln

Figure 4.1: Structure of the reduction ABox Aψ.

To enforce that all concepts C1, . . . , Ck are false at ak in the model J in Figure 4.1, we can
choose

ψϕ := D1(a0).

To see that this has the intended effect, note that the above choice of ψφ enforces that
¬D1 ≡ ∀s.(¬C1 t ¬D2) is true at a0. Thus, ¬C1 is true at ak and ¬D2 is true at a1. It
remains to repeat this argument k − 1 times.

Unfortunately, including the ABox A as part of Aφ does not result in J being a model of
A. The reason is that if the part of I that witnesses the truth of the assertions Ci(ai), Di+1(ak)
in Aφ involves the individuals b1, . . . , bn that occur in U , then these assertions may be in-
validated by U while transforming I to J . The solution to this problem is as follows.
For any concept C and individual name a, let treeC(a) be an ABox that enforces a tree-
shaped structure of connected individual names such that C is true at a. For example, if
C = ∃r.(A u ∃s.B u ∃r.(A uB)), then

treeC(a) = {r(a, c), A(c), s(c, c′), B(c′), r(c, c′′)A(c′′), B(c′′)}.

W.l.o.g., we assume that the individuals b1, . . . , bn do not occur in such ABoxes. In Aφ, we
now use ABoxes of the form treeC(a) instead of the original assertions Ci(ai) and Di+1(ak).
Since b1, . . . , bn are the only individuals occurring in U and we adopt the UNA, the generated
structures are left untouched when U transforms I into J . Summing up, the ABox Aφ is
thus as follows:

Aφ :=
⋃

0≤i<k

{s(ai, ai+1), s(ai, ak)} ∪
⋃

1≤i<k

treeCi(ai) ∪
⋃

1≤i<k

treeDi+1(ak)

∪
⋃

1≤j≤n

{(Aj uAj)(bj)} ∪ {L0(ak)}

Then the following lemma holds:

Lemma 4.1.11. QBF φ is valid iff ψφ is not a consequence of applying U in Aφ w.r.t. Tφ.

64 Restrictions and Extensions of A1

Proof. Let us first define a sequence of ELU concepts L′
0, L

′
1, . . . , L

′
n:

L′
i−1 :=





u
1≤j<i

(∃t.Aj t ∃t.Aj) u ∃r.(Pi u L
′
i) u ∃r.(P i u L

′
i), Qi = ∀

u
1≤j<i

(∃t.Aj t ∃t.Aj) u ∃r.L′
i, Qi = ∃

1 ≤ i ≤ n

L′
n := u

1≤j≤n
(∃t.Aj t ∃t.Aj)

Moreover, we define an ELU ABox A′
φ as

A′
φ :=

⋃

0≤i<k

{s(ai, ai+1), s(ai, ak)} ∪
⋃

1≤i<k

treeCi(ai) ∪
⋃

1≤i<k

treeDi+1(ak)

∪
⋃

1≤j≤n

{Aj(bj)} ∪ {L′
0(ak)}

We divide the proof into several claims:

Claim 1. For every I, I ′ such that I |= Aφ, Tφ and I ⇒U I ′ it holds that I ′ |= A′
φ.

Proof: Recall the ABoxes treeCi(ai) and treeDi+1(ak) contain only atomic assertions and do
not use individuals {b1, . . . , bn}. Thus, since I |= Aφ, and since I and I ′ differ only on the
interpretation of Aj for bj , 1 ≤ j ≤ n, by definition of Aφ and UNA we have that

I ′ |=
⋃

0≤i<k

{s(ai, ai+1), s(ai, ak)} ∪
⋃

1≤i<k

treeCi(ai) ∪
⋃

1≤i<k

treeDi+1(ak)

∪
⋃

1≤j<n

{Aj(bj)}

The only non-trivial part is to show that I ′ |= L′
0(ak): Let x be such that x ∈ (∃t.Aj)

I , for
some 1 ≤ j ≤ n. If (x, bIj) 6∈ tI , it holds that x ∈ (∃t.Aj)

I′
. If (x, bIj) ∈ tI , we have that

x ∈ (∃t.Aj)
I′

. In both cases it holds that x ∈ (∃t.Aj t ∃t.A)I
′
. We obtain the following for

1 ≤ i ≤ n:

x ∈ (t
1≤j≤i

∃t.Aj)
I implies x ∈ (t

1≤j≤i
(∃t.Aj t ∃t.A))I

′
(∗)

By using (∗) it is easy to show by induction on i that x ∈ LI
n−i implies that x ∈ (L′

n−i)
I′

.
Since I |= Aφ, it holds that I |= L0(ak), and thus we obtain that I ′ |= L′

0(ak).

This completes the proof of Claim 1.

Claim 2. There exist interpretations I, I ′ such that I |= Tφ,Aφ, I ⇒U I ′ and I ′ |= ¬ψφ iff

L′
0 u u

1≤i≤k
¬Ci is satisfiable.

Proof: “⇒” Let I be such that I |= Tφ,Aφ, I ⇒U I ′, and I ′ |= ¬ψφ. By Claim 1, we have
that I ′ |= A′

φ and thus I ′ |= L′
0(ak). It remains to show that I ′ |= ¬Ci(ak) for all 1 ≤ i ≤ k.

Since I ′ |=
⋃

1≤i<kACi(ai)∪
⋃

1≤i<kADi+1(ak) and ACi(ai) |= Ci(ai), ADi+1(ak) |= Di+1(ak) for
1 ≤ i < k, we have that I ′ |= Ci(ai), I

′ |= Di+1(ak) for 1 ≤ i < k.
We show that the following holds for all 1 ≤ i ≤ k: (i) I ′ |= ¬Di(ai−1); (ii) I ′ |= ¬Ci(ak).

Proof is by induction on i:

4.1 Restrictions 65

• i = 1. (i) I ′ |= ¬D1(a0) holds since I ′ |= ¬ψφ and ψφ = D1(a0). (ii) I ′ |= A′
φ implies

I ′ |= s(a0, ak) and I ′ |= D2(ak). Thus I ′ |= ¬D1(a0) and ¬D1 ≡ ∀s.(¬C1 t¬D2) imply
that I ′ |= ¬C1(ak).

• i = m, 2 ≤ m ≤ k. (i) By I.H., we have that I ′ |= ¬Dm−1(am−2). I ′ |= A′
ϕ

implies I ′ |= s(am−2, am−1) and I ′ |= Cm−1(am−1). Thus I ′ |= ¬Dm−1(am−2) and
¬Dm−1 ≡ ∀s.(¬Cm−1 t ¬Dm) imply that I ′ |= ¬Dm(am−1). (ii) Case m ≤ k − 1 is
similar to the base case. For m = k, by I.H., we have that I ′ |= ¬Dk(ak−1). I ′ |= A′

φ

implies I ′ |= s(ak−1, ak), and since ¬Dk ≡ ∀s.¬Ck, we obtain I ′ |= ¬Ck(ak).

We have found an interpretation I ′ such that I ′ |= (L′
0 u u

1≤i≤k
¬Ci)(ak), thus L′

0 u u
1≤i≤k

¬Ci

is satisfiable.

“⇐” Let L′
0 u u

1≤i≤k
¬Ci be satisfiable. Then there is an interpretation J = (∆J , ·J) with

ak ∈ ∆J such that ak ∈ (L′
0 u u

1≤i≤k
¬Ci)

J .

We show how to construct an interpretation I ′ = (∆I′
, ·I

′
) such that

I ′ |= A′
φ ∪ {(u

1≤i≤k
¬Ci)(ak)} ∪ U .

Let Ii = (∆i, ·
Ii) be models of treeCi(ai) for 1 ≤ i ≤ k − 1, and let Ik = (∆k, ·

Ik) be a
model of

⋃
1≤i≤k−1 treeDi+1(ak) satisfying the following conditions:

(i) aIi

i = ai, with ai ∈ ∆i, for 1 ≤ i ≤ k

(ii) ∆i ∩ ∆J = ∅ for 1 ≤ i ≤ k − 1

(iii) ∆k ∩ ∆J = {ak}

Moreover, let b1, . . . , bn be such that {b1, . . . , bn} ∩ (∆J ∪
⋃

1≤i≤k
∆k) = ∅.

We set ∆I′
:= {a0, . . . , ak} ∪ {b1, . . . , bn} ∪ ∆J ∪

⋃
1≤i≤k

∆k.

aI
′

i := ai, 0 ≤ i ≤ k

bI
′

j := bj , 1 ≤ j ≤ n

sI
′

:=
⋃

1≤i≤k

{(ai−1, ai), (ai−1, ak)} ∪ s
Ik

rI
′

:= rJ ∪
⋃

1≤i≤k

rIi

AI′

j := AJ
j ∪

⋃

1≤i≤k

AIi

j , 1 ≤ j ≤ n

A
I′

j := A
J
j ∪

⋃

1≤i≤k

A
Ii

j ∪ {bj}, 1 ≤ j ≤ n

P I′

j := PJ
j ∪

⋃

1≤i≤k

P Ii

j , 1 ≤ j ≤ n

P
I′

j := P
J
j ∪

⋃

1≤i≤k

P
Ii

j , 1 ≤ j ≤ n

66 Restrictions and Extensions of A1

tI
′

:= tJ ∪
⋃

1≤i≤k

rIi ∪ {(d, bj) | d ∈ ∆J , d ∈ (∃t.Aj)
J }

It is not difficult to see that I ′ indeed models A′
φ ∪ {(u

1≤i≤k
¬Ci)(ak)} ∪ U : Note that for

d ∈ ∆J , it holds that d ∈ (∃t.Aj)
J iff d ∈ (∃t.Aj)

I′
. As a direct consequence we obtain that

J |= (L′
0 u u

1≤i≤k
¬Ci)(ak) implies I ′ |= (L′

0 u u
1≤i≤k

¬Ci)(ak). The rest follows directly from

the definition of I ′ and requirements (i)-(iii) on interpretations I1, . . . , Ik.
In the next step we show by reverse induction that I ′ |= ¬Di(ai−1) for 1 ≤ i ≤ k:

(i) i = k: Since ¬Dk ≡ ∀s.¬Ck, s
I′

(ak−1) = {ak}, and ak ∈ (¬Ck)
I′

, we obtain that
ak−1 ∈ (¬Dk)

I′
;

(ii) i = m < k. Since ¬Dm ≡ ∀s.(¬Cm t¬Dm+1), s
I′

(am−1) = {ai, ak}, ak ∈ (¬Cm)I
′
, and

ai ∈ (¬Dm+1)
I′

(by I.H.), we obtain that am−1 ∈ (¬Dm)I
′
.

Since ψφ = D1(a0), we obtain as a direct consequence that I ′ |= ¬ψφ.
Finally, having I ′ = (∆I′

, ·I
′
), we construct I = (∆I′

, ·I) such that: (i) I interprets
all primitive concept, role and individual names as I ′, with the following exception: AI

j :=

AI′

j ∪ {bj} for 1 ≤ j ≤ n; (ii) I |= Tφ.
Obviously, we have that I ⇒U I ′. It remains to show that I |= Aφ. The only non-trivial

part is to show that I |= L0(ak), the rest is analogous to the proof of Claim 1. The definition
of tI

′
and the fact that bj ∈ (Aj)

I imply that for x ∈ ∆J , the following holds:

x ∈ (∃t.Aj t ∃t.Aj)
I′

implies x ∈ (∃t.Aj)
I . (∗∗)

Since I ′ |= L′
0(ak), as an easy consequence of (∗∗) we obtain that I |= L0(ak).

Thus, we have found interpretations I, I ′ such that I |= Tφ,Aφ, I ⇒U I ′ and I ′ |= ¬ψφ.

This finishes the proof of Claim 2.

Claim 3. φ is valid iff L′
0 u u

1≤i≤k
¬Ci is satisfiable.

Proof. Recall that:

u
1≤i≤k

¬Ci = u
1≤j≤i<n

(¬∃ri.(∃t.Aj u ∃r.∃t.Aj)) u ¬∃ri.(∃t.Aj u ∃r.∃t.Aj))

u u
1≤j≤i<n

(¬∃ri.(Pj u ∃t.Aj) u ¬∃ri.(P j u ∃t.Aj) u ¬∃ri.(∃t.Aj u ∃t.Aj))

u u
1≤i≤m

¬∃rn.Cϕi

Thus, it holds that u
1≤i≤k

¬Ci ≡ C, where

C := u
1≤j≤i<n

∀ri.(∃t.Aj → ∀r.(¬∃t.Aj)) u ∀ri.(∃t.Aj → ∀r.(¬∃t.Aj))

u u
1≤j≤i<n

(∀ri.(Pj → ¬∃t.Aj) u ∀ri.(P j → ¬∃t.Aj) u ∀ri.¬(∃t.Aj u ∃t.Aj))

u∀rn.Cϕ

4.1 Restrictions 67

with Cϕ := ϕ[pj/∃t.Aj ,¬pj/∃t.Aj ,∧/u,∨/t].

“⇐” If φ is valid, then φ has a valid quantifier tree Tφ. We use Tφ to construct a model I of

L′
0 u u

1≤i≤k
¬Ci. We define the domain ∆I as

∆I := {d | d is a vertix of Tφ} ∪ {c1, . . . , cn} ∪ {b1, . . . , bn}

We set AI
j := {cj} and A

I
j := {bj} for 1 ≤ j ≤ n. Finally, we define:

rI := {(d, d′) | d′ is a successor of d′ in Tφ}

P I
j := {d | d or an ancestor of d has an incoming edge labelled with pj = >}

P
I
j := {d | d or an ancestor of d has an incoming edge labelled with pj = ⊥}

tI :=
⋃

1≤j≤k

{(d, cj) | d or an ancestor of d has an incoming edge labelled with pj = >}

∪
⋃

1≤j≤k

{(d, bj) | d or an ancestor of d has an incoming edge labelled with pj = ⊥}

It is not difficult to see that I is indeed a model of L′
0 u C.

“⇒” Let L′
0 u C be satisfiable, and let I be its model with y ∈ (L′

0 u C)I . We extract a valid
quantifier tree Tφ of φ by unravelling I at y in the following way:

T1 y ∈ (L′
0)

I is the root of Tφ

T2 if x ∈ (L′
i−1)

I is a node of Tφ and Qi = ∀, then choose x1, x2 ∈ LI
i such that (x, x1) ∈ rI ,

(x, x1) ∈ rI and x1 ∈ (∃t.Ai)
I , x2 ∈ (∃t.Ai)

I , and make them children of x in Tφ. The
edge (x, x1) is labelled with pi = > and (x, x2) is labelled with pi = ⊥.

T3 if x ∈ (L′
i−1)

I is a node of Tφ and Qi = ∃, then choose a x1 ∈ LI
i such that (x, x1) ∈ rI

and make it a child of x in Tφ. If x1 ∈ (∃t.Ai)
I , then the edge (x, x1) is labelled with

pi = > and if x1 ∈ (∃t.Ai)
I , it is labelled with pi = ⊥.

We will show that Tφ is well-defined and valid. Let x be a node of Tφ.

(i) The definition of L′
i ensures that for x ∈ (L′

i)
I it holds that x ∈ (∃t.Ai)

I ∪ (∃t.Ai)
I .

Moreover, y ∈ CI , and the conjunct ∀ri.¬(∃t.Ai u ∃t.Ai) ensure that x 6∈ (∃t.Ai)
I ∩ (∃t.Ai)

I .
Thus, the incoming edge of Tφ is labelled with exactly one label: either pi = > or pi = ⊥.

(ii) The definition of L′
i−1 for Qi = ∀ ensures that x ∈ (L′

i−1)
I has r-successors x1 and x2

with x1 ∈ (L′
i u Pi)

I and x2 ∈ (L′
i u P i)

I . Since x1, x2 ∈ (L′
i)
I , by (i) we have that for

j = 1, 2: either xj ∈ (∃t.Ai)
I or xj ∈ (∃t.Ai)

I . Then the conjuncts ∀ri.(Pj → ¬∃t.Aj) and
∀ri.(Pj → ¬∃t.Aj) of C imply that x1 ∈ (∃t.Ai)I and x2 ∈ (∃t.Ai)I , i.e. it is ensured that the
successors x1, x2 required in the step T2 indeed exist.

(iii) Conjuncts ∀ri.(∃t.Aj → ∀r.(¬∃t.Aj)) and ∀ri.(∃t.Aj → ∀r.(¬∃t.Aj)), together with
∀ri.¬(∃t.Aj u ∃t.Aj) and the fact that for each node x(i) of Tφ such that x(i) ∈ (L′

i)
I it holds

that x(i) ∈
⋃

1≤j≤i(∃t.Ajt∃t.Aj)
I ensure that the labels “∃t.Aj” and “∃t.Aj” are propagated

from x ∈ (L′
j)

I to its successors, most importantly to the leaves of Tφ. The conjunct ∀rn.Cϕ

68 Restrictions and Extensions of A1

ensures that the formula ϕ evaluates to true at all the leaves of Tφ.

Since φ has a valid quantifier tree Tφ, φ is valid. This finishes the proof of Claim 3.

Claim 2 and Claim 3 show that a QBF φ is valid iff there exist interpretations I, I ′ such that
I |= Tφ,Aφ, I ⇒U I ′ and I ′ |= ¬ψφ. This completes the proof of the lemma. o

Since the size of Tφ, Aφ, ψφ and U is polynomial in n, we have proven the following:

Lemma 4.1.12. Projection in EL with acyclic TBoxes is PSpace-hard.

Since EL is a sublogic of ALC and projection in ALC is in PSpace (see Theorem 3.2.1),
we obtain the following result:

Theorem 4.1.13. Projection in EL with acyclic TBoxes is PSpace-complete.

The PSpace-hardness reduction from this section and the co-NP-hardness reduction from
the previous section exploit only (weaker) unconditional post-conditions. With conditional
post-conditions, disjunction does not have to be simulated by means of a complex construction
in the reduction ABox; it is obtained almost for free. Consider the set of post-conditions

P := {C1(a)/X(b), C2(a)/X(b), . . . , Ck(a)/X(b)}.

Then X(b) is a consequence of applying the action (∅, ∅,P) in an ABox A if and only if
(C1tC2t· · ·tCk)(a) is a consequence of A. This means that with conditional post-conditions
we can simulate disjunction even in the fragment of EL without quantifiers. Hence we want
to emphasize that our hardness results rely on the new source of complexity introduced by
existential restrictions, and not on conditional post-conditions, as it would be the case in the
propositional fragment of EL.

4.2 Extensions

In this section we will consider instantiations of A1 with extensions of ALCQIO towards
OWL DL. We will show that for some of the expressive means, such as role inclusions, the
syntax and semantics of A1-actions can easily be extended in order to account for them. The
only reason why we did not consider role inclusions by default in A1 was our wish to keep
semantics of A1-actions as simple as possible. We show that, in the extended formalism,
reasoning about actions can be reduced to standard DL reasoning, similar to the reduction
from Section 3.2.1. On the other hand, expressive means such as transitive roles or cyclic
TBoxes impose semantic problems, which will be discussed in Section 4.2.2.

4.2.1 Role Inclusions

Description logics underlying the web ontology language OWL provide for role inclusions.
Please recall that role inclusions are expressions of the form:

r v s

where r and s are (possibly inverse) roles. Moreover, recall that a role box R is a finite
set of role inclusions. We use Inv(s) to denote s− if s is a role name, and to denote r if

4.2 Extensions 69

s = r−, for a role name r. With v∗
R we denote the transitive-reflexive closure of v relation

in R∪ {Inv(r) ⊆ Inv(r) | r ⊆ s ∈ R}.
In this section we will show that role inclusions do not impose any semantic and compu-

tational problems if considered together with A1 actions. We first modify the semantics of
A1-actions in order to account for ramifications caused by role inclusions, and then adapt the
reduction of projection to DL reasoning such that it corresponds to the new semantics.

Semantics of Actions

We modify the semantics of A1-actions in order to account for background role inclusions.
Let I be an interpretation, R a role box and α = (pre, occ, post) an A1-action. Since R may
contain inverse roles, we define occ and post to be closures of occ and post under role inverses:

occ := occ ∪ {r−(b, a) | r(a, b) ∈ occ}

post := post ∪ {ϕ/r−(b, a) | ϕ/r(a, b) ∈ post} ∪ {ϕ/¬r−(b, a) | ϕ/¬r(a, b) ∈ post}

Let α transform the interpretation I into I ′ and let s and r be (possibly) inverse roles. There
are two types of ramifications we need to take into account:

(i) If I |= ϕ, ϕ/s(a, b) ∈ post and s v∗
R r, we expect that not only (aI , bI) ∈ sI

′
, but also

(aI , bI) ∈ rI
′
.

(ii) Since A1-actions contain occlusions, we want to ensure that if s(a, b) ∈ occ and s v∗
R

r, then not only s(a, b) may “change freely”, but also r(a, b), however only in case
(aI , bI) 6∈ rI .

In order to account for these two cases, we will modify DI
α(r) from Definition 3.1.4, rather

than changing αI
+(r) and αI

−(r). Intuitively, in order to handle case (i), we ensure that
(aI , bI) is not in DI

α(r) – i.e., it is not in the part of the domain for which we can determine
the extension of r in I ′ “automatically”. However, it does not mean that r(a, b) may change
freely since we will ensure that (aI , bI) ∈ rI

′
in this case by requiring that both the pre-

interpretation I and the post-interpretation I ′ are models of the role box R.
We extend the notions of αI

+(r), αI
−(r) from Definition 3.1.4 and define occI(r) for r a

possibly inverse role:

αI
+(r) := {(aI , bI) | ϕ/r(a, b) ∈ post ∧ I |= ϕ}

αI
−(r) := {(aI , bI) | ϕ/¬r(a, b) ∈ post ∧ I |= ϕ}

occI(r) := {(aI , bI) | r(a, b) ∈ occ}

We modify DI
α(r) in the following way:

DI
α(r) := ((∆I × ∆I) \ occIα(r)) ∪ (αI

+(r) ∪ αI
−(r))

where

occIα(r) := {(aI , bI) ∈ rI | (aI , bI) ∈ αI
−(s) ∪ occI(s) for some r v∗

R s

or (bI , aI) ∈ αI
−(s) ∪ occI(s) for some r− v∗

R s} ∪

{(aI , bI) 6∈ rI | (aI , bI) ∈ αI
+(s) ∪ occI(s) for some s v∗

R r

or (bI , aI) ∈ αI
+(s) ∪ occI(s) for some s v∗

R r−}

For concept names A, the notions of αI
+(A), αI

−(A) and DI
α(A) are defined as in Definition

3.1.4. Now we are ready to define a modified semantics of actions.

70 Restrictions and Extensions of A1

Definition 4.2.1. Let T be an acyclic TBox, R a role box, α = (pre, occ, post) an action for
T , and I, I ′ models of T and R sharing the same domain and interpretation of all individual
names and respecting UNA for individual names. We say that α may transform I to I ′ w.r.t.
T and R (written I ⇒T ,R

α I ′) iff, for each primitive concept A and role name r, we have

αI
+(A) ∩ αI

−(A) = ∅ and αI
+(r) ∩ αI

−(s) = ∅ if r v∗
R s

AI′
∩DI

α(A) = ((AI ∪ αI
+(A)) \ αI

−(A)) ∩DI
α(A)

rI
′
∩DI

α(r) = ((rI ∪ αI
+(r)) \ αI

−(r)) ∩DI
α(r)

4

Note that we replaced the requirement αI
+(r) ∩ αI

−(r) = ∅ from the definition of I ⇒T
α I ′

(c.f. Definition 3.1.4) with the stronger one:

αI
+(r) ∩ αI

−(s) = ∅ if r v∗
R s

We say that an action α = (pre, occ, post) is consistent w.r.t. acyclic TBox T and a role box
R iff for every interpretation I, there exists I ′ such that I ⇒T ,R

α I ′. It is not difficult to see
that an action α is consistent iff the following conditions are satisfied:

1. for all ϕ1/A(a), ϕ2/¬A(a) ∈ post it holds that {ϕ1, ϕ2} is inconsistent w.r.t. T and R.

2. for all ϕ1/r(a), ϕ2/¬s(a) ∈ post with r v∗
R s it holds that {ϕ1, ϕ2} is inconsistent w.r.t.

T and R.

In what follows, we assume that actions are consistent with respect to background TBoxes
and role boxes. The reasoning problems projection and executability, i.e. notions of conse-
quence of applying α in A w.r.t. T and R, and executable A w.r.t. T and R are defined as
the analogous notions from Definition 3.1.6, with the exception that the relation ⇒T ,R

α is
used instead of ⇒T

α . Projection and executability are mutually reducible in polynomial time.
The proof is analogous to the proof of Lemma 3.1.7.

Reduction to DL reasoning

The reduction of projection to ABox consequence from Section 3.2.1 can easily be modified
to account for role inclusions. We assume that the underlying DL is ALCQIOH, i.e., the
extension of ALCQIO with role inclusions. Let A be an ABox, α1, . . . , αn a composite action
with αi = (prei, occi, posti), T an acyclic TBox, R a role box, and ϕ0 an assertion. We are
interested in deciding whether ϕ0 is a consequence of applying α1, . . . , αn in A0 w.r.t. T and
R. We use the same notation and introduce the same concept, role and individual names for
the reduction as in Section 3.2.1.

Let Tred and ϕred be defined as in Section 3.2.1. Moreover, we define Rred as follows:

Rred = {r(i) v s(i) | r v s ∈ R, i ≤ n}.

Finally, we define ABoxes A
(i)
minr

in the following way: Part 1 tackling minimization of

changes for concept names is defined in the same way as in A
(i)
min from Section 3.2.1. Con-

cerning Part 2, A
(i)
minr

contains the following assertions for all a, b ∈ Ind and every role name
r with

4.2 Extensions 71

• s(a, b) 6∈ occi for all (possibly inverse) roles s with r v∗
R s and s(b, a) 6∈ occi for all

(possibly inverse) roles s with r− v∗
R s:

a :
((

∃r(i−1).{b} u u
rv∗

Rs
u

ϕ/¬s(a,b)∈posti

¬pi−1(ϕ)

u u
r−v∗

Rs
u

ϕ/¬s(b,a)∈posti

¬pi−1(ϕ)
)
→ ∃r(i).{b}

)

• s(a, b) 6∈ occi for all (possibly inverse) roles s with s v∗
R r and s(b, a) 6∈ occi for all

(possibly inverse) roles s with s v∗
R r−:

a :
((

∀r(i−1).¬{b} u u
sv∗

Rr
u

ϕ/s(a,b)∈posti

¬pi−1(ϕ)

u u
sv∗

Rr
−

u
ϕ/s(b,a)∈posti

¬pi−1(ϕ)
)
→ ∀r(i).¬{b}

)
.

Ar
red is obtained by replacing A

(i)
min in the definition of Ared from Section 3.2.1 by A

(i)
minr

for
i ≤ n.
Then the following lemma holds:

Lemma 4.2.2. ϕ is a consequence of applying α1, . . . , αn in A w.r.t. T and R iff ϕred is a
consequence of Ar

red w.r.t. Tred and Rred under UNA.

Proof. We do not present all proof details, as a proof is an easy modification of the proof of
Lemma 3.2.3. Thus we only show how the modified parts of the reduction correspond to the
modified semantics of actions.

“⇒” Proof by contraposition. Assume that ϕred is not a consequence of Ar
red w.r.t. Tred

and Rred. i.e. there is a joint model J of Ared, Tred, Rred and ¬ϕred.
We define interpretations I0, . . . , In, based on J , as in the proof of Lemma 3.2.3. Recall

that I0, . . . , In share the same domain and interpretation of individual names with J . More-

over, for concept names A, AIi := (T
(i)
A)J , while for role names r, rIi := (r(i))J ∩ (NJ ×

NJ) ∪ (r(0))J ∩
(
∆J × (¬N)J ∪ (¬N)J × ∆J

)
.

It remains to show that: (i) I0 |= A; (ii) Ii−1 ⇒T ,R
αi Ii for all 1 ≤ i ≤ n; and (iii) In 6|= ϕ.

Since (i) and (iii) can be shown in the same way as in the proof of Lemma 3.2.3, as well as the
following subtasks of (ii): Ii |= T , i ≤ n and the required correlation between interpretations
AIi and AIi+1 for primitive concept names A. Thus we focus on the remaining subtasks of
(ii):

• Ii |= R is a direct consequence of J |= Rred and the definition of rIi for i ≤ n.

• Let r be a role name and let αi
Ii−1
+ (r), αi

Ii−1
− (r), occ

Ii−1
αi (r), and D

Ii−1
αi (r) be defined

as in Definition 4.2.1. Then αi
Ii−1
+ (r) ∩ αi

Ii−1
− (s) = ∅ for all s such that r v∗

R s since

αi is consistent with T and R. It remains to show that if (x, y) ∈ D
Ii−1
αi (r), then

x ∈ rIi iff x ∈ (rIi−1 ∪ αi
Ii−1
+ (r)) \ αi

Ii−1
− (r) (∗)

Since the case (x, y) 6∈ NJ × NJ is trivial, we assume that (x, y) = (aJ , bJ), where
a, b ∈ Ind.

Since J |= A
(i)
post, we obtain the following implications:

72 Restrictions and Extensions of A1

(i) (aJ , bJ) ∈ αi
Ii−1
+ (r) implies (aJ , bJ) ∈ rIi , and

(ii) (aJ , bJ) ∈ αi
Ii−1
− (r) implies (aJ , bJ) 6∈ rIi .

Moreover, J |= A
(i)
minr

implies that:

(iii) (aJ , bJ) ∈ rIi−1 \ occ
Ii−1
αi (r) implies (aJ , bJ) ∈ rIi , and

(iv) (aJ , bJ) ∈ rIi ∪ occ
Ii−1
αi (r) implies (aJ , bJ) ∈ rIi−1 .

It is not difficult to see that (∗) follows from (i)-(iv) and the definition of occ
Ii−1
αi (r)

and D
Ii−1
αi (r).

“⇐” This direction as also an easy adaption of the corresponding direction of the proof
of Lemma 3.2.3. o

Since ABox consequence is known to be in co-NExpTime in ALCQIOH (as a sublogic
of C2) [PST00], we conclude that projection in ALCQIOH is in co-NExpTime. Since
projection is co-NExpTime-hard already in ALCQI, c.f. Theorem 3.2.6, we obtain the
following result:

Theorem 4.2.3. Projection in ALCQIOH is co-NExpTime-complete, even if numbers in
number restrictions are coded in binary.

4.2.2 Problematic Extensions

In the previous section we have shown that allowing for role inclusions along with the action
formalism A1 does not cause any semantic or computational problems. In this section, we
show that two other natural extensions, such as allowing for transitive roles, or cyclic instead
of acyclic TBoxes cause semantic and/or computational problems.

Transitive Roles

Transitive roles are offered by most modern DL systems [TH06, HM01a], and also by the
ontology language OWL [HPSvH03]. They can be added to ALCQIO by reserving a subset
of roles NtR of NR such that all r ∈ NtR are required to be interpreted as transitive relations
rI in all models I. We will show that admitting the use of transitive roles in post-conditions
yields semantic problems.

By Lemma 3.1.5, A1-actions without occlusions α = (pre, ∅, post) are deterministic in the
sense that I ⇒T

α I ′ and I ⇒T
α I ′′ implies I ′ = I ′′. This is not any more the case for actions

referring to transitive roles.

Consider the action α = (∅, ∅, {¬has-part(car, valve)}) that removes a valve from a car.
Let has-part be a transitive role and take the model

∆I := {car, engine, valve}

has-partI := {(car, engine), (engine, valve), (car, valve)}

zI := z for z ∈ ∆I .

4.2 Extensions 73

Due to transitivity of has-part, it does not suffice only to remove the edge has-part(car, valve)
when applying α in I. Indeed, we also need to remove either (car, engine) or (engine, valve)
(or even both). Thus, both interpretations I ′ and I ′′, where I ′ is obtained from I by setting

has-partI
′
:= {(car, engine)}

and I ′′ is obtained from I by setting

has-partI
′′

:= {(engine, valve)}.

are possible outcomes of executing action α in I.

In the area of reasoning about actions, it is well-known that non-determinism of this kind
requires extra effort to obtain sensible consequences of action executions [Lin96, Thi00]. In
the above example, it is unlikely that both outcomes of the action application are equally
desirable. Thus, we need a mechanism for eliminating unwanted outcomes or preferring the
desired ones. We leave such extensions as future work.

Cyclic TBoxes

Assume that we admit cyclic TBoxes as defined in Section 2.1. For cyclic TBoxes, just like
for acyclic ones, we can differentiate between primitive and defined concept names. Hence
we can define the semantics of actions in the presence of cyclic TBoxes in the same way as
for the acyclic ones, c.f. Definition 3.1.4.

However, semantic problems arise due to a crucial difference between cyclic and acyclic
TBoxes: for acyclic TBoxes, the interpretation of primitive concepts uniquely determines the
extension of the defined ones, while this is not the case for cyclic ones. Together with the fact
that the transition relation between interpretations ⇒T

α only takes into account primitive
concepts, this means that the minimization of changes induced by action application does
not work as expected. To see this, consider the following example:

A := {Dog(a)}

T := {Dog
.
= ∃parent.Dog}

post := {Cat(b)}

Then, Dog(a) is not a consequence of applying α = (∅, ∅, post) in A w.r.t. T , as one would
intuitively expect. This is due to the following counter-model. Define an interpretation I as
follows:

∆I := {b} ∪ {d0, d1, d2, . . .}

DogI := {d0, d1, d2, . . .}

CatI := ∅

parentI := {(di, di+1) | i ∈ }

aI := d0

bI := b

The interpretation I ′ is defined as I, with the exception that CatI
′
= {b} and DogI

′
:= ∅.

Using the fact that Dog is a defined concept and thus not considered in the definition of ⇒T
α ,

it is easy to see that I |= A, I ⇒T
α I ′, and I ′ 6|= Dog(a).

74 Restrictions and Extensions of A1

There appears to exists a way how to solve this problem: if we adopt the least or greatest
fixpoint semantics for TBoxes as first proposed by Nebel [Neb91], it is indeed the case that
primitive concepts uniquely determine defined concepts. Thus, it may be interesting to
analyze actions with cyclic TBoxes under fixpoint semantics as future work. Moreover, in
the next chapter we will present a more general action formalism, designed to account for
general TBoxes, thus being also suitable for cyclic TBoxes.

4.3 Complex Concepts in Post-Conditions and GCIs: PMA

Even more general than admitting cyclic TBoxes is to allow general concept inclusions (GCIs).
Recall that a GCI is an expression C v D, with C and D (possibly complex) concepts. Since
(sets of) GCIs strictly generalize cyclic TBoxes, when admitting GCIs in connection with
actions, we run into the same problems as with cyclic TBoxes. However, the problems are
even more serious in the case of GCIs: first, GCIs do not allow an obvious partitioning of
concept names into primitive and defined ones. Thus, in the definition of ⇒T

α , the only choice
is to minimize all concept names. Second, the vanished distinction between primitive and
defined concepts means that we can no longer restrict concepts C in post-conditions ϕ/C(a)
to literals over primitive concept names. The best we can do is to restrict such concepts
to literals over arbitrary concept names. However, together with the two GCIs A v C and
C v A with C a complex concept, the literal post-condition ϕ/A(a) is equivalent to the
complex one ϕ/C(a). Thus, it seems that GCIs cannot be admitted without simultaneously
admitting arbitrarily complex concepts in post-conditions.

Let a generalized A1-action be an action where post-conditions are of the form ϕ/ψ for
arbitrary assertions ϕ and ψ. In other words, ψ is no longer restricted to be a literal over
primitive concepts. One possible way to define the semantics of generalized A1-actions is to
adopt the possible model approach (PMA) semantics. PMA was first introduced by Winslett
[Win88] and further elaborated e.g. in [Win90, EG92, Her96]. The idea is to introduce
a proximity relation ¹I between interpretations. Intuitively, I ′ ¹I I ′′ means that I ′ is
“closer” to I than I ′′ is. Then an action α may transform I into I ′ iff: (i) I ′ satisfies post-
conditions of α; and (ii) I ′ is the “closest” interpretation to I satisfying (i). For description
logic interpretations I and I ′ this means that the difference in interpretations of concept and
role names in I and I ′ is minimized.

As we will see in the next section, PMA semantics can be defined for generalized A1-
actions in a clean and elegant way. Moreover, it is a generalization of the standard A1- actions
semantics (c.f. Definition 3.1.4) in the sense that not only the minimization of changes for
primitive, but for all concept names is enforced. This inevitably boils down to minimizing
changes of complex concepts, which turns out to cause both semantic and computational
problems. These problems are going to be discussed in Section 4.3.2.

4.3.1 PMA Semantics of Generalized A1-Actions

We start by formally introducing the proximity relation 4I,α

Definition 4.3.1 (Preferred Interpretations). Let α = (pre, occ, post) be a generalized
A1-action, let T be general TBox, and I a model of T . We define the binary relation 4I,α

on models of T by setting I ′ 4I,α I ′′ iff

• ((AIOAI′
) \ {aI | A(a) ∈ occ}) ⊆ AIOAI′′

;

4.3 Complex Concepts in Post-Conditions and GCIs: PMA 75

• ((rIOrI
′
) \ {(aI , bI) | r(a, b) ∈ occ}) ⊆ rIOrI

′′
.

for all concept names A and role names r. 4

Intuitively, applying the action α transforms the interpretation I into the interpretation
I ′ if I ′ satisfies the post-conditions and is closest to I (as expressed by 4I,α) among all
interpretations satisfying the post-conditions. Since we consider conditional post-conditions,
defining when they are satisfied actually involves both I and I ′. We say that the pair of
interpretations I, I ′ satisfies the set of post-conditions post (I, I ′ |= post) iff the following
holds for all post-conditions ϕ/ψ in post: I ′ |= ψ whenever I |= ϕ.

Definition 4.3.2 (PMA Semantics of Actions). Let T be a general TBox, α = (pre, occ, post)
a generalized A1-action, and I, I ′ models of T sharing the same domain and interpretation
of all individual names and respecting UNA for individual names. Then α may transform I
to I ′ (I ⇒T

α I ′) iff

1. I, I ′ |= post, and

2. there does not exist a model J of T such that I,J |= post, J 6= I ′, and J 4I,α I ′.
4

It is not difficult to see that the PMA semantics is equivalent with the semantics of
standard A1-actions from Definition 3.1.4, if the precedence relation 4I,α does not take into
account defined concept names.

4.3.2 Drawbacks of PMA

For simplicity, we assume that occlusions are disallowed and that GCIs are not admitted. As
we shall discuss in the following, there are both semantic and computational problems with
generalized A1-actions: first, they offer an expressivity that is difficult to control and often
yields unexpected consequences. Second, reasoning with generalized actions easily becomes
undecidable.

Semantic Problems

Clearly, generalized actions such as the trivial α = (∅, ∅, {a : A t B} are not deterministic
and thus introduce similar complications as discussed for transitive roles in Section 4.2.2.
However, disjunction is not the only constructor to introduce non-determinism when allowed
in post-conditions. An even “higher degree” of non-determinism is introduced by existential
and universal value restrictions:

• If a post-condition contains a : ∃r.A and this assertion was not already satisfied before
the execution of the action, then the non-determinism lies in the choice of a witness
object, i.e., any domain element x ∈ ∆I may be chosen to satisfy (aI , x) ∈ rI and
x ∈ AI after execution of the action. Note that some such x may already satisfy the
former condition, some may satisfy the latter, and some neither.

The fact that any domain element is a potential witness object implies that, e.g.,
mary : Female is not a consequence of applying the action

(∅, ∅, {mary : ∃has-child.¬Female})

in the ABox {mary : Female}—an effect that may not be intended.

76 Restrictions and Extensions of A1

• If a post-condition contains a : ∀r.A and this assertion was not already satisfied before
the execution of the action, we also have a non-deterministic situation: for each object
x ∈ ∆I such that (aI , x) ∈ rI and x 6∈ AI holds before the execution of the action, we
have to decide whether (aJ , x) /∈ rJ or x ∈ AJ should be satisfied after execution of
the action.2

Similarly to the existential case, we may obtain surprising results due to the fact that
any domain element x ∈ ∆I may satisfy (aI , x) ∈ rI and x ∈ AI unless explicitly
stated otherwise. This means that, e.g., tire2:¬Filled is not a consequence of applying
the action

(∅, ∅, {car1:∀tire.Filled})

in the ABox {tire(car2, tire2), tire2:¬Filled}.

Complex concepts with many nested operators may obviously introduce a rather high degree
of non-determinism. While simple non-determinism such as the one introduced by transitive
roles or post-conditions a : C t D may be dealt with in a satisfactory way [Lin96, Thi00],
none of the mainstream action formalisms allows arbitrary formulas in post-conditions to
avoid having to deal with the resulting massive degree of non-determinism. Indeed, most
formalisms such as the basic situation calculus restrict themselves to literals in post-conditions
[Rei01]—just as our standard A1-actions do.

Computational Problems

To illustrate the surprising expressivity of generalized actions, we give an example of “abus-
ing” complex post-conditions to enforce certain properties of models. We will show how to
enforce an infinite grid structure, which is the essential part of many undecidability proofs.

Let roles x and y denote the horizontal and vertical grid successors respectively. Similarly
as in the proof of Theorem 3.2.6, we can simulate (a localized version of the) reflexive-
transitive closure of roles. Thus we may assume that a role u connects a fixed individual a
(which stands for the (0, 0) point of the grid) with all domain elements that are reachable by
chains of x- and y-roles from a. In order to form an infinite (x, y)-grid, it suffices to enforce
that: (i) x, y and their inverses are functional; (ii) x · y and y · x commute.

Consider an ABox A, action α = (∅, ∅, postα), and assertion ϕ = ¬C(a), where

A := {a : ∀u.¬B}

postα := {a : ∀u.
(
∀x−.∀y−.(∀x.∀y.B u ∀y.∀x.¬B) tB

)
}

C := ∀u.B u ∀u.
(
(= 1 x >) u (= 1 y >) u (= 1 x− >) u (= 1 y− >)

)

Let I, I ′ be interpretations such that I |= A, I ⇒α I ′, and I ′ 6|= ϕ (i.e. I ′ |= C(a)). Then
∆I = ∆I′

and aI = aI
′
. As we already discussed, we may assume that u has the following

property: for all d ∈ ∆I , (aI , d) ∈ uI ∩ uI
′

– i.e. all domain elements can be reached by u
from a. Obviously, then the second conjunct of C implies that (i) holds in I ′.

Now we give an intuitive explanation why (ii) holds in I ′. Since I |= A, we have that
BI = ∅. Note that when satisfying the post-condition postα, for every domain element d,
there is a choice: either change ¬B to B at d, or satisfy ∀x−.∀y−.(∀x.∀y.B u ∀y.∀x.¬B).
Obviously, the latter is preferred by the change minimizing PMA semantics – if at only one

2There may even be cases where it is intended that both conditions are satisfied after action execution;
this is, however, not justified by the PMA semantics of generalized actions.

4.3 Complex Concepts in Post-Conditions and GCIs: PMA 77

d, ∀x−.∀y−.(∀x.∀y.B u ∀y.∀x.¬B) could be satisfied in I ′, d could remain in ¬B. However,
since after action application we have that BI′

= ∆I′
, it means that ¬(∀x.∀y.B u∀y.∀x.¬B)

is valid in the frame F3 that I ′ is based upon. It is not difficult to see that in such a frame
(where it also holds that x and y are bijections) x · y and y · x commute.

Executability and projection for generalized A1-actions under PMA semantics easily be-
comes undecidable. This holds already for actions formulated in the DL ALCFI that has
been introduced in Section 3.2.2. Recall that ALCFI is obtained from ALCQI by limiting
numbers occurring in number restrictions to {0, 1}. This result should be contrasted with
the fact that, by Theorem 3.2.1, reasoning with standard A1-actions is decidable even for
powerful extensions of ALCFI. It is still an open problem whether this undecidability result
can be strengthened to simpler description logics, in particular ALC.

The (technically involved) proof of the following theorem is by reduction of the unde-
cidable domino problem [Ber66] to non-consequence and non-executability. It uses the afore
presented technique to enforce a × -grid.

Theorem 4.3.3 ([BLM+05d]). There exists a generalized atomic action α and an ABox
A formulated in ALCFI such that the following problems are undecidable, even w.r.t. the
empty TBox: given a concept C,

• decide whether the assertion a : C is a consequence of applying α in A;

• decide whether the composite action α, α′ is executable in A, where α′ = ({C(a)}, ∅, ∅).

3Frames are introduced in Definition 2.1.6.

78 Restrictions and Extensions of A1

Chapter 5

Action Formalism A2: Complex

Post-Conditions and GCIs

Description logic ontologies frequently consist of general TBoxes that describe complex rela-
tions between concepts. For example, a general TBox may describe relevant concepts from
the domain of universities such as lecturers, students, courses, and libraries. From the rea-
soning about actions perspective, TBoxes correspond to state constraints. A general TBox
for the university domain could state that every student that is registered for a course has
access to a university library. If we execute an action that registers the student Dirk for a
computer science course, then after the action Dirk should also have access to a university
library to comply with the state constraint imposed by the TBox. Thus, general TBoxes as
state constraints induce a ramification problem which we henceforth call the TBox ramifica-
tion problem. Moreover, since there is no clear notion of a concept name “being defined” in
a general TBox, an action formalism supporting general TBoxes has to allow for all concept
names in action post-conditions, as well as complex concepts.

We have shown in Section 4.3.1 that an attempt to automatically solve the frame problem
in the presence of complex concepts in post-conditions (and TBox ramification problem), by
adopting a Winslett-style PMA semantics [Win88], leads to semantic and computational
problems. Since there appears to be no general automated solution to the TBox ramification
problem other than resorting to very inexpressive DLs [GLPR06], we propose to leave it to
the designer of an action description to fine-tune the ramifications of the action. A similar
approach is taken in the SitCalc and the Fluent Calculus: the ramifications of the action
can be controlled by specifying causal relationships between predicates [Lin95, Thi97]. While
causality appears to be a satisfactory approach for addressing the ramification problem that
is induced by Boolean state constraints, it seems not powerful enough for attacking the
ramifications introduced by general TBoxes, which usually involve complex quantification
patterns.1 We therefore advocate a different approach: when describing an action, the user
can specify the predicates that can change through the execution of the action, as well as those
that cannot change. To allow an adequate fine-tuning of ramifications, we admit complex
statements about the change of predicates such as “the concept name A can change from
positive to negative only at the individual a, and from negative to positive only where the
complex concept C was satisfied before the action was executed”.

1As discussed in Chapter 3, in A1 acyclic TBoxes can be used to capture causality relations between concept
names.

80 Action Formalism A2: Complex Post-Conditions and GCIs

The rest of this chapter is organizes as follows. In Section 5.1.1 we introduce the action
formalism A2 that admits complex concepts in action post-conditions and supports general
TBoxes as state constraints. The relation between action formalisms A1 and A2 is discussed
in Section 5.1.3. Since A2-actions contain complex occlusion patterns for fine-tuning the ram-
ifications, besides executability and projection, consistency of actions becomes an important
reasoning task. In Section 5.1.2, we introduce two notions of consistency (weak and strong).
We show that, for many standard propositionally closed DLs, the reasoning problems exe-
cutability, projection, and weak action consistency in A2 are decidable. For DLs contained in
ALCIO, we use a type-elimination method in Section 5.2.1 to show that projection in A2 is
ExpTime-complete. For DLs ALCQI and ALCQIO, in Section 5.2.2 we show how to reduce
projection to ABox consequence in ALCQIO extended with the Boolean operations on roles,
thus proving that projection for these logics is co-NExpTime-complete. As a rule of thumb,
our results show that reasoning in the action formalism A2 instantiated with a description
logic L is of the same complexity as standard reasoning in LO with general TBoxes. In
Section 5.3 we show that strong consistency is undecidable even when the action formalism is
instantiated with the basic DL ALC. Finally, in Section 5.4, we discuss the practicability of
A2 and single out its natural fragment for which reasoning can be passed on to the standard
DL reasoners.

5.1 The Formalism

5.1.1 Action Descriptions

The action formalism A2 proposed in this chapter is, just like A1, not restricted to a particular
DL. However, for our complexity results we consider the description logics between ALC and
ALCQIO.

Like in A1, the main syntactic ingredients of our approach to reasoning about actions are
action descriptions, ABoxes for describing the current knowledge about the state of affairs
in the application domain, and general TBoxes for describing general knowledge about the
application domain similar to state constraints in the SitCalc and Fluent Calculus. On the
semantic side, interpretations are used to describe the state of affairs in the application
domain. Before we go deeper into the semantics, we introduce the syntax of A2-action
descriptions. Recall that we use LO to denote the extension of a description logic L with
nominals. A concept literal is a concept name or the negation thereof, and a role literal is
defined analogously.

Definition 5.1.1 (A2-Action). Let L be a description logic. An atomic L-A2-action α =
(pre, occ, post) consists of

• a finite set pre of L ABox assertions, the pre-conditions;

• the occlusion pattern occ which is a set of mappings {occϕ1 , . . . , occϕn} indexed by L
ABox assertions ϕ1, . . . , ϕn such that each occϕi

assigns

– to every concept literal B an LO-concept occϕi
(B),

– to every role literal s a finite set occϕi
(s) of pairs of LO-concepts.

Moreover, the number of concept literals B such that occϕi
(B) 6= ⊥ and role literals s

such that occϕi
(s) 6= {(⊥,⊥)}, for some occϕi

∈ occ, is finite.

5.1 The Formalism 81

• a finite set post of conditional post-conditions of the form ϕ/ψ, where ϕ and ψ are L
ABox assertions.

A composite A2-action is a finite sequence of atomic actions α1, . . . , αk. 4

Definition 5.1.2 (Size of A2-Actions). The size of an atomic A2-action α = (pre, occ, post)
is defined as |α| = |pre| + |occ| + |post|, where:

• |pre| is the size of the ABox pre,

• |occ| =
∑

occϕi
∈occ

(∑
occϕi

(B)6=⊥

|occϕi
(B)| +

∑
occϕi

(s)6={(⊥,⊥)}

∑
(C,D)∈occϕi

(s)

(|C| + |D|)
)

• |post| =
∑

ϕ/ψ∈post

(|ϕ| + |ψ|)

The size of a composite A2-action α1, . . . , αn is defined with |α1, . . . , αk| = |α1| + · · · + |αk|.
4

Pre-conditions and post-conditions have the same role as in the action formalism A1. The
purpose of the occlusion patterns is to control ramifications: they provide a description of
where concept and role names may change during the execution of an action. More precisely,
suppose occ = {occϕ1 , . . . , occϕn} and ϕi1 , . . . , ϕim are the assertions which are true before
the action was executed. If A is a concept name, then instances of the concept

occϕi1
(A) t · · · t occϕim

(A)

may change from A to ¬A during the execution of the action provided, but instances of
¬(occϕi1

(A) t · · · t occϕim
(A)) may not. Likewise, instances of

occϕi1
(¬A) t · · · t occϕim

(¬A)

may change from ¬A to A. For role names, (C,D) ∈ occϕik
(r) means that pairs from

CI ×DI that have been connected by r before the action may lose this connection through
the execution of the action, and similarly for the occlusion of negated role names. More
details on how occlusions relate to ramifications will be given after we have introduced the
semantics.

For defining the semantics in a succinct way, it is convenient to introduce the following
abbreviation. For an action α with occ = {occϕ1 , . . . , occϕn}, an interpretation I, a concept
literal B, and a role literal s, we set

(occ(B))I :=
⋃

I|=ϕi

(occϕi
(B))I

(occ(s))I :=
⋃

(C,D)∈occϕi
(s), I|=ϕi

(CI ×DI)

Thus, occ(B)I describes those elements of ∆I that may change from B to ¬B when going to
I ′, and similarly for occ(s)I . By syntax of A2-actions, (occ(X))I 6= ∅ only for finitely many
concept and role literals X.

Definition 5.1.3 (Action semantics). Let α = (pre, occ, post) be an atomic A2-action and
I, I ′ interpretations sharing the same domain and interpretation of all individual names and
respecting UNA on individual names. We say that α may transform I to I ′ w.r.t. a TBox T
(I ⇒T

α I ′) iff the following holds:

82 Action Formalism A2: Complex Post-Conditions and GCIs

• I, I ′ are models of T ;

• for all ϕ/ψ ∈ post: I |= ϕ implies I ′ |= ψ (written I, I ′ |= post);

• for each A ∈ NC and r ∈ NR, we have

AI \AI′
⊆ (occ(A))I (¬A)I \ (¬A)I

′
⊆ (occ(¬A))I

rI \ rI
′

⊆ (occ(r))I (¬r)I \ (¬r)I
′
⊆ (occ(¬r))I

The composite A2-action α1, . . . , αn may transform I to I ′ w.r.t. T (I ⇒T
α1,...,αn

I ′) iff there

are models I0, . . . , In of T with I = I0, I
′ = In, and Ii−1 ⇒T

αi
Ii for 1 ≤ i ≤ n. 4

Example 5.1.4. Let us consider an example in order to to explain how occlusions provide
a way to control the ramifications induced by general TBoxes. The TBox T contains the
following GCIs which say that everybody registered for a course has access to a university
library, and that every university has a library:

∃registered for.Course v ∃access to.Library

University v ∃has facility.Library

The upper GCI cannot be expressed in terms of an acyclic TBox and is thus outside the scope
of the formalism A1. The ABox A which describes the current state of the world (in an
incomplete way) says that computer science is a course held at TU Dresden, SLUB is the
library of TU Dresden, and Dirk is neither registered for a course nor has access to a library:

Course(cs) held at(cs, tud) ¬∃registered for.Course(dirk)
University(tud) has facility(tud, slub) ¬∃access to.Library(dirk)
Library(slub)

The action
α := (∅, occ, {taut/registered for(dirk, cs)})

describes the registration of Dirk for the computer science course. For simplicity, the set of
pre-conditions is empty and taut is some ABox assertion that is trivially satisfied, say >(cs).
To obtain occ, we may start by strictly following the law of inertia, i.e., requiring that the
only changes are those that are explicitly stated in the post-condition. Thus, occ consists of
just one mapping occtaut such that

occtaut(¬registered for) := {({dirk}, {cs})}

and all concept and role literals except ¬registered for are mapped to ⊥ and {(⊥,⊥)}, re-
spectively. This achieves the desired effect that only the pair (dirk, cs) can be added to
“registered for” and nothing else can be changed.

It is not hard to see that this attempt to specify occlusions for α is too strict. Intuitively,
not allowing any changes is appropriate for Course, Library, University, held at, has facility
and their negations since the action should have no impact on these predicates. However, not
letting ¬access to change leads to a problem with the ramifications induced by the TBox: as
Dirk has no access to a library before the action and ¬access to is not allowed to change, he
cannot have access to a library after execution of the action as required by the TBox. Thus,

5.1 The Formalism 83

the action is inconsistent in the following sense: there is no model I of A and T and model
I ′ of T such that I ⇒T

α I ′. To take care of the TBox ramifications and regain consistency,
we can modify occ. One option is to set

occtaut(¬access to) := {({dirk}, Library)}

and thus allow Dirk to have access to a library after the action. Another option is to set

occtaut(¬access to) := {({dirk}, {slub})}

which allows Dirk to have access to SLUB after the action, but not to any other library.

Two remarks regarding this example are in order. First, the occlusion occ consists only
of a single mapping occtaut. The reason for this is that there is only a single post-condition
in the action. If we have different post-conditions ϕ/ψ and ϕ′/ψ such that ϕ and ϕ′ are not
equivalent, there will usually be different occlusion mappings (indexed with ϕ and ϕ′) to deal
with the ramifications that the TBox induces for these post-conditions. Second, the example
explains the need for extending L to LO when describing occlusions (c.f. Definition 5.1.1):
without nominals, we would not have been able to properly formulate the occlusions although
all other parts of the example are formulated without using nominals (as a concept-forming
operator).

5.1.2 Reasoning about Actions

As illustrated by the example, it is important for the action designer to decide consistency
of actions to detect ramification problems that are not properly addressed by the occlusions.
In the following, we propose two notions of consistency.2

Definition 5.1.5 (Consistency). Let α = (pre, occ, post) be an atomic action and T a
TBox. We say that

• α is weakly consistent with T iff there are models I, I ′ of T such that I |= pre and
I ⇒T

α I ′.

• α is strongly consistent with T iff for all models I of T and pre, there is a model I ′ of
T such that I ⇒T

α I ′.
4

Intuitively, strong consistency is the most desirable form of consistency: if the preconditions
of an action are satisfied by an interpretation I, then the action can transform I into a
new interpretation I ′. Unfortunately, strong consistency will turn out to be undecidable.
For this reason we introduce also weak consistency, which is still sufficient to detect serious
ramification problems. In the example above, the first attempt to define the occlusions results
in an action that is not even weakly consistent. After each of the two possible modifications,
the action is strongly consistent. We will see later that weak consistency is decidable while
strong consistency is not.

We do not define the reasoning tasks executability and projection in A2 as we assume that
they are defined in the same way as for A1-actions in Definition 3.1.6 (but w.r.t. the transition

2Note that (strong) consistency was also defined in the action formalism A1, but was not treated as a
proper reasoning task.

84 Action Formalism A2: Complex Post-Conditions and GCIs

relation ⇒T
α from Definition 5.1.3). To make sure that a composite action α = α1, . . . , αn can

be successfully executed, α has to be executable and the atomic actions α1, . . . , αn have to
be strongly consistent: without strong consistency, it could be that although the action α is
executable w.r.t. the ABox A describing the knowledge about the current state of the world,
the actual state of the world I is such that there is no interpretation I ′ with I ⇒T

α I ′. Even
worse, such a situation may arise also after we have already executed some of the atomic
actions in the sequence α.

It is not difficult to see that the action formalism A2 is a generalization of the the action
formalism A1 that is introduced in Chapter 3, for details see Section 5.1.3. Executability and
projection can be mutually reduced in a polynomial time, and the proof is the same as the
proof of Lemma 3.1.7.

It can also be seen that an action α weakly consistent with a TBox T iff ⊥(a) is not a con-
sequence of applying α in pre w.r.t. T ; (ii) ϕ is a consequence of applying α = (pre, occ, post)
in A w.r.t. T iff the action (A ∪ pre, occ, post ∪ {taut/¬ϕ}) is not weakly consistent with T .
Here and in the coming sections, taut denotes an arbitrary valid assertion, such as >(a). We
have shown that weak consistency can be reduced to (non-)projection and vice versa and
hence complexity results carry over from one to the other. In the following sections, we will
concentrate on projection.

5.1.3 Relation to A1

We show that the action formalism A2 introduced in this chapter is a generalization of the
action formalism A1 introduced in Chapter 3. Obviously, general TBoxes generalize acyclic
TBoxes. Actions in Chapter 3 are more restricted than the actions introduced in this paper.
For example, the former do not allow post-conditions ϕ/C(a) with C a complex concept or
defined concept name. Thus, in post-conditions of this form, C must be a primitive concept
name.

Let T be an acyclic TBox and α = (pre, occ, post) an A1-action. We use P to denote the
set {ϕ | ∃ψ : ϕ/ψ ∈ post}. We now construct an A2-action α′ that is equivalent to α in the

sense that for all models I, I ′ of T , I ⇒A1,T
α I ′ iff I ⇒A2,T

α′ I ′ 3. Set α′ := (pre, occ′, post),
where the occlusion pattern is defined as

occ′ := {occtaut} ∪ {occϕ | ϕ/ψ ∈ post},

with the components occtaut and occϕ, ϕ/ψ ∈ post are as follows:

• for every primitive concept name A and ϕ ∈ P ,

– occtaut(A) := occtaut(¬A) := t
A(a)∈occ

{a};

– occϕ(A) := t
ϕ/¬A(a)∈post

{a};

– occϕ(¬A) := t
ϕ/A(a)∈post

{a};

• for every role name r and ϕ ∈ P ,

3We added the superscripts ·A1 and ·A2 in order to differentiate between transition relations ⇒T
α in A1 and

A2.

5.1 The Formalism 85

– occtaut(r) := occtaut(¬r) :=
⋃

r(a,b)∈occ

{({a}, {b})};

– occϕ(r) :=
⋃

ϕ/¬r(a,b)∈post

{({a}, {b})};

– occϕ(¬r) :=
⋃

ϕ/r(a,b)∈post

{({a}, {b})};

• for every defined concept name C and ϕ ∈ P ,

occtaut(C) = occtaut(¬C) = occϕ(C) = occϕ(¬C) := >.

The following lemma shows that α and α′ are indeed equivalent.

Lemma 5.1.6. For all models I and I ′ of T , I ⇒A1,T
α I ′ iff I ⇒A2,T

α′ I ′.

Proof. “⇒”. Let I ⇒A1,T
α I ′. We show that this implies I ⇒A2,T

α′ I ′. This amounts to
verifying the conditions from Definition 5.1.3.

• I and I ′ are models of T and share the same domains and interpret individuals in the
same way by definition of ⇒A1,T

α .

• I, I ′ |= post: Let ϕ/ψ ∈ post and I |= ϕ. We assume that ψ = A(a), as the cases
¬A(a), r(a, b), or ¬r(a, b) can be treated similarly. Then it holds that aI ∈ αI

+(A)
and aI ∈ DI

α(A). Since αI
+(A) ∩ αI

−(A) = ∅, we have that aI 6∈ αI
−(A). Then, since

AI′
∩ DI

α(A) = ((AI ∪ αI
+(A)) \ αI

−(A)) ∩ DI
α(A), we have that aI

′
= aI ∈ AI′

and
thus, I ′ |= ψ.

• Let A be a concept name.

– If A is primitive, then for every x ∈ AI \ AI′
, we have either x ∈ αI

−(A) or

x 6∈ DI
α(A) since AI′

∩DI
α(A) = ((AI ∪ αI

+(A)) \ αI
−(A))∩DI

α(A). From either of

them, we can get x ∈ (occ′(A))I , and thus AI \AI′
⊆ (occ′(A))I holds. It can be

shown analogously that (¬A)I \ (¬A)I
′
⊆ (occ′(¬A))I .

– If A is defined in T , we have (occ′(A))I = (occ′(¬A))I = ∆I . Thus, AI \ AI′
⊆

(occ′(A))I and AI′
\AI ⊆ (occ′(¬A))I

• Let r be a role name. We need to show that rI \ rI
′
⊆ (occ′(r))I and (¬r)I \ (¬r)I

′
⊆

(occ′(¬r))I . This case is analogous to the one of primitive concept names.

“⇐”. Assume I ⇒A2,T
α′ I ′. We show that then, I ⇒A1,T

α I ′. This amounts to checking the
conditions from Definition 3.1.4.

• I and I ′ are models of T and share the same domains and interpret individuals in the
same way by definition of ⇒A2,T

α′ ;

• αI
+(A) ∩ A− = ∅: Assume the opposite. Then there are ϕ1/A(a), ϕ2/¬A(a) ∈ post

such that I |= ϕ1 and I |= ϕ2. But then I ′ |= A(a), I ′ |= ¬A(a), which is impossible.
Analogously, we have that αI

+(r) ∩ αI
−(r) = ∅.

• for every primitive concept name A, it holds that AI′
∩ DI

α(A) = ((AI ∪ αI
+(A)) \

αI
−(A)) ∩DI

α(A):

Consider an arbitrary x ∈ DI
α(A) with x ∈ ((AI ∪ αI

+(A)) \ αI
−(A)). Since αI

+(A) ∩
αI
−(A) = ∅, there are two cases to consider:

86 Action Formalism A2: Complex Post-Conditions and GCIs

– If x 6∈ αI
+(A), then x ∈ AI \ αI

−(A). Thus x ∈ DI
α(A) \ (αI

+(A) ∪ αI
−(A)). By

definition of occ′, we have that x 6∈ (occ′(A))I . By definition of ⇒A2,T
α′ , x ∈

AI \ (occ′(A))I implies x ∈ AI′
.

– If x ∈ αI
+(A), then there is a ϕ/A(a) ∈ post with aI = x and I |= ϕ. By definition

of I ⇒A2,T
α′ I ′ we obtain that I ′ |= A(a). Thus, x ∈ AI′

.

For the other direction, consider an arbitrary x with x ∈ AI′
∩DI

α(A). Then x ∈ AI′

implies that x 6∈ αI
−(A) by definition of I ⇒A2,T

α′ I ′. It is enough to show x ∈ AI ∪

αI
+(A). Assume that x 6∈ AI . We show that then x ∈ αI

+(A). From x 6∈ AI and x ∈ AI′

we obtain that x ∈ (occ′(¬A))I by definition of ⇒A2,T
α′ . Thus x ∈ DI

α(A)\αI
−(A) implies

that x ∈ αI
+(A).

• It can be shown that rI
′
∩DI

α(r) = ((rI ∪ αI
+(r)) \ αI

−(r)) ∩DI
α(r) for every role name

r analogously.
o

5.2 Deciding Projection

5.2.1 Projection in ExpTime

We show that projection and weak consistency are ExpTime-complete for A2-actions formu-
lated in ALC, ALCO, ALCI, ALCIO. Thus, in these DLs reasoning about actions is not
more difficult than the standard DL reasoning problems such as concept satisfiability and
subsumption w.r.t. general TBoxes. The complexity results established in this section are
obtained by proving that projection in ALCIO is in ExpTime. We use a Pratt-style type
elimination technique as first proposed in [Pra79]. From this point, we may omit “A2-” when
talking about A2-actions in this chapter.

Let α1, . . . , αn be a composite action with αi = (prei, occi, posti) for 1 ≤ i ≤ n, T a general
TBox, A0 an ABox and ϕ0 an assertion. We want to decide whether ϕ0 is a consequence of
applying α1, . . . , αn in A0 w.r.t. T . In what follows, we call α1, . . . , αn, T , A0 and ϕ0 the
input. W.l.o.g. we make the following assumptions:

• concepts used in the input are built only from the constructors {a}, ¬, u, and ∃r.C;

• ϕ0 is of the form ϕ0 = C0(a0), where C0 is a (complex) concept;

• A0 and α1, . . . , αn contain only concept assertions.

The last two assumptions can be made because every assertion r(a, b) can be replaced with
(∃r.{b})(a), and every ¬r(a, b) with (¬∃r.{b})(a).

Before we can describe the algorithm, we introduce several notions and abbreviations.
With Sub, we denote the set of subconcepts of the concepts which occur in the input. With
Ind, we denote the set of individual names used in the input, and set Nom := {{a} | a ∈ Ind}.
The algorithm that we give in the following checks for the existence of a counter-model
witnessing that ϕ0 is not a consequence of applying α1, . . . , αn in A0 w.r.t. T . Such a counter-
model consists of n+1 interpretations I0, . . . , In such that I0 |= A0, I0 ⇒T

α1
I1, . . . , In−1 ⇒T

αn

In, and In 6|= ϕ0. To distinguish the extension of concept and role names in the different

5.2 Deciding Projection 87

interpretations, we introduce concept names A(i) and role names r(i) for every concept name
A and role name r used in the input, and every i ≤ n. For a concept C ∈ Sub that is not
a concept name, we use C(i), i ≤ n, to denote the concept obtained by replacing all concept
names A and role names r occurring in C by A(i) and r(i) respectively. We define the set of
concepts Cl as:

Cl =
⋃

i≤n

{C(i),¬C(i) | C ∈ Sub ∪ Nom}

The notion of a type plays a central role in the projection algorithm to be devised.

Definition 5.2.1. A set of concepts t ⊆ Cl is a type for Cl iff it satisfies the following
conditions:

• for all ¬D ∈ Cl: ¬D ∈ t iff D 6∈ t;

• for all D u E ∈ Cl: D u E ∈ t iff {D,E} ⊆ t;

• for all C v D ∈ T and i ≤ n, C(i) ∈ t implies D(i) ∈ t;

• for all a, b ∈ Ind: {{a}, {b}} ⊆ t implies a = b.

A type is anonymous if it does not contain a nominal. Let Tano be the set of all anonymous
types. 4

Intuitively, a type describes the concept memberships of a domain element in all n + 1
interpretations. Our algorithm starts with a set containing (almost) all types, then repeatedly
eliminates those types that cannot be realized in a counter-model witnessing that ϕ0 is not a
consequence of applying α1, . . . , αn in A0 w.r.t. T , and finally checks whether the surviving
types give rise to such a counter-model. The picture is slightly complicated by the presence
of ABoxes and nominals. These are treated via core type sets to be introduced next.

Definition 5.2.2. TS is a core type set iff TS is a minimal set of types such that, for all
a ∈ Ind, there is a t ∈ TS with {a} ∈ TS .

A core type set TS is called proper if the following conditions are satisfied:

1. for all C(a) ∈ A0, {a} ∈ t ∈ TS implies C(0) ∈ t;

2. for all C(a)/D(b) ∈ posti, 1 ≤ i ≤ n: if there is a t ∈ TS with {{a}, C(i−1)} ⊆ t then
there is a t′ ∈ TS with {{b}, D(i)} ⊆ t′.

4

Intuitively, a core type set carries information about the “named” part of the interpretations
I0, . . . , In, where the named part of an interpretation consists of those domain elements that
are identified by nominals. Let m be the size of the input. It is not difficult to check that
the number of core type sets is exponential in m. Also, checking whether a core type set is
proper can be done in linear time.

The following definition specifies the conditions under which a type is eliminated. We start
with introducing some convenient abbreviations. Consider an action α` = (pre`, occ`, post`).
For a role name r and occϕ ∈ occ`, we set occϕ(r−) := {(Y,X) | (X,Y) ∈ occϕ(r)}, and
analogously for occ(¬r−). Let t, t′ be types, T a set of types, C(a) an ABox assertion, B a
concept literal, and s a role literal. We write

88 Action Formalism A2: Complex Post-Conditions and GCIs

• T |= C(a) if there exists a t ∈ T with {{a}, C} ⊆ t;

• t,T |= occ`(B) if there is an occC(a) ∈ occ` such that (i) T |= C(a) and (ii) for the

concept D = occC(a)(B), we have D(`) ∈ t;

• t, t′,T |= occ`(s) if there is an occC(a) ∈ occ` and a pair (D,E) ∈ occC(a)(s) such that

(i) T |= C(a), (ii) D(`) ∈ t, and (iii) E(`) ∈ t′.

Intuitively, t,T |= occ`(B) states that when the action α` is executed in a model that realizes
only types from T, then instances of t may change from B to ¬B.

Recall that for a role r, we use Inv(r) to denote r− if r is a role name and s if r = s−.

Definition 5.2.3. Let T be a set of types for Cl. Then a type t ∈ T is good in T iff

• for all concept names A and i < n:

(C1) if {A(i),¬A(i+1)} ⊆ t, then t,T |= occi+1(A);

(C2) if {¬A(i), A(i+1)} ⊆ t, then t,T |= occi+1(¬A).

• for all (∃r.C)(i) ∈ t, there exists a type t′ ∈ T and a set ρ ⊆ {0, . . . , n} such that for all
` ≤ n, the following conditions are satisfied:

(R1) C(i) ∈ t′ and i ∈ ρ;

(R2) if (¬∃r.D)(`) ∈ t and ` ∈ ρ, then ¬D(`) ∈ t′;

(R3) if (¬∃Inv(r).D)(`) ∈ t′ and ` ∈ ρ, then ¬D(`) ∈ t;

(R4) if n > ` ∈ ρ and `+ 1 6∈ ρ then t, t′,T |= occ`+1(r);

(R5) if n > ` 6∈ ρ and `+ 1 ∈ ρ then t, t′,T |= occ`+1(¬r).
4

Intuitively, the above definition checks whether there can be any instances of t in an inter-
pretation in which all domain elements have a type in T. More precisely, t′ is the type that is
needed to satisfy the existential restriction (∃r.C)(i) ∈ t. The set ρ determines the extension
of the role r: if ` ∈ ρ, then the instance of t′ that we introduce as a witness for (∃r.C)(i) is
reachable via an r-edge from the instance of t in the interpretation I`.

The type elimination algorithm is given in a pseudo-code notation in Figure 5.1, where
C0 is the concept from the ABox assertion ϕ0 = C0(a0).

Lemma 5.2.4. ALCIO-elim(A0, T , α1, . . . , αn, ϕ0) returns true iff ϕ0 is a consequence of
applying α1, . . . , αn in A0 w.r.t. T .

Proof. “⇒”. We prove this direction by contraposition. Assume that ϕ0 is not a consequence
of applying α1, . . . , αn in A0 w.r.t. T . Then there are I0, . . . , In such that Ii ⇒

T
αi+1

Ii+1 for
all i < n, I0 |= A0, and In 6|= C0(a0). We show that the algorithm returns false in this case.
Let ∆ := ∆I0 (= · · · = ∆In) and x ∈ ∆. We define

tCl(x) := {C(i) ∈ Cl | x ∈ CIi for some i ≤ n}.

Claim 1. For all x ∈ ∆, tCl(x) is a type for Cl.

Proof: For all x ∈ ∆ and all j ≤ n, the following holds:

5.2 Deciding Projection 89

ALCIO-elim(A0, T , α1, . . . , αn, ϕ0)
for all proper core type sets TS do
i := 0;
T0 := TS ∪ Tano

repeat
Ti+1 := {t ∈ Ti | t is good in Ti};
i := i+ 1;

until Ti = Ti−1;

if TS ⊆ Ti and there is a t ∈ Ti with {{a0},¬C
(n)
0 } ⊆ t then

return false
endif

endfor
return true

Figure 5.1: The type elimination algorithm.

• for all ¬C(j) ∈ Cl: (¬C)(j) ∈ tCl(x) iff x ∈ (¬C)Ij iff x 6∈ CIj iff C(j) 6∈ tCl(x);

• for all (C uD)(j) ∈ Cl: (C uD)(j) ∈ tCl(x) iff x ∈ (C uD)Ij iff x ∈ CIj and x ∈ DIj iff
C(j) ∈ tCl(x) and D(j) ∈ tCl(x) iff {C,D} ⊆ tCl(x);

• for all C v D ∈ T , Ij |= T implies that if x ∈ CIj , then x ∈ DIj . Thus, C(j) ∈ tCl(x)
implies D(j) ∈ tCl(x);

• for all a, b ∈ Ind, {{a}, {b}} ⊆ tCl(x) iff x = aI0 = bI0 . Since I0 satisfies UNA on
individual names, this can be the case only if a = b.

This finishes the proof of Claim 1. We set TS := {tCl(a
I0) | a ∈ Ind} and T := {tCl(x) | x ∈

∆}. Then we have the following:

Claim 2: TS is a proper core type set.

Proof: By the definition of TS , it is easy to see that it is a core type set. Moreover, it is
proper:

1. for all C(a) ∈ A0, I0 |= A0 implies I0 |= C(a). Thus, we know that aI0 ∈ CI0 .
{a} ∈ t ∈ TS implies C(0) ∈ t(= tCl(a

I0));

2. for all C(a)/D(b) ∈ posti, 1 ≤ i ≤ n: if there is a t ∈ TS with {{a}, C(i−1)} ⊆ t then
aIi−1 ∈ CIi−1 . Thus, Ii−1 |= C(a). Since Ii−1 ⇒T

αi
Ii, we know that Ii |= D(b). Hence,

bIi ∈ DIi . Let t′ := tCl(b
Ii). bIi ∈ DIi implies {{b}, D(i)} ⊆ t′.

Claim 3. For every t ∈ T, t is good in T.

Proof: Let t = tCl(x), for an x ∈ ∆.

(i) for all concept names A and i < n, {A(i),¬A(i+1)} ⊆ tCl(x) holds iff x ∈ AIi \ AIi+1 ,
which is, by the semantics of actions, equivalent to x ∈ (occi+1(A))Ii . It is not difficult
to show that this holds iff t,T |= occi+1(A). The case {¬A(i), A(i+1)} ⊆ tCl(x) is similar.

90 Action Formalism A2: Complex Post-Conditions and GCIs

(ii) Let r be a role and let (∃r.C)(i) ∈ t. Thus x ∈ (∃r.C)Ii and there is a y ∈ ∆, such that
(x, y) ∈ rIi and y ∈ CIi . We define t′ := tCl(y) and ρ := {i | (x, y) ∈ rIi}. It is not
difficult to check that t′ and ρ satisfy Conditions (R1) to (R5) from Definition 5.2.3.

This finishes the proof of Claim 3. Let T0 := TS∪Tano and let T′ be the set of types which “sur-
vive” type elimination when it is started with T0. By Claim 3 and since a type t being good
in a type set T implies that t is good in any set T′ ⊇ T, we have that TS ⊆ T ⊆ T′. Moreover,

since In |= ¬C0(a0), we have that ¬C
(n)
0 ∈ tCl(a

In
0), and thus {{a0},¬C

(n)
0 } ⊆ tCl(a

In
0) ∈ T′.

“⇐”. For this direction, we also show the contrapositive. Assume that ALCIO-elim returns
false for the input A0, T , α1, . . . , αn, ϕ0. We show that ϕ0 is not a consequence of applying
α1, . . . , αn in A0 w.r.t. T . To this end, we construct I0, . . . , In such that I0 |= A0, Ii ⇒

T
αi+1

Ii+1 for all i ≤ n, and In 6|= C0(a0).

Since the algorithm returns false, there exists a proper core type set TS and a type set T

such that:

• TS ⊆ T and T \ TS ⊆ Tano

• for every t ∈ T, t is good in T

• there is a t0 ∈ T with {{a0},¬C
(n)
0 } ⊆ t0

The types from T will be the elements of the domains of Ii. Let t ∈ T. Since t is good in
T, for every D = (∃r.C)(i) ∈ t we can choose a type t′ and a set of indices ρ which satisfy
Conditions (R1) to (R5) of Definition 5.2.3. Then, we call the chosen t′ a (ρ, r)-successor of
t. For t, t′ ∈ T and r a role, set

R(r, t, t′) :=
⋃

{ρ | t′ is a (ρ, r)-successor of t}

Since TS is a core type set and T \ TS ⊆ Tano, for every a ∈ Ind there is exactly one type
t ∈ T such that {a} ∈ t. For every a ∈ Ind, we denote this type with ta. Now we can define
I0, . . . , In as follows: for all i ≤ n,

∆Ii := T

AIi := {t ∈ T | A(i) ∈ t}

rIi := {(t, t′) ∈ T × T | i ∈ R(r, t, t′) ∪R(r−, t′, t)}

aIi := ta

Note that the definition of type ensures that interpretations I0, . . . , In respect UNA on the
individuals from Ind. Indeed, for all a, b ∈ Ind, bIi = aIi implies that {{a}, {b}} ⊆ ta(= tb).
The definition of type implies that a = b.

Claim 4: For all t ∈ T and C(i) ∈ Cl, we have t ∈ CIi iff C(i) ∈ t.

Proof. We prove the claim by induction on the structure of C.

• C = A and C = {a}: trivial by definition of I0, . . . , In.

• C = ¬D and C = D u E: easy by definition of type.

5.2 Deciding Projection 91

• C = ∃s.D, where s is a (possibly inverse) role:

“only if”. t ∈ (∃s.D)Ii implies that there exists a t′ such that (t, t′) ∈ sIi and t′ ∈ DIi .
By induction, we have that D(i) ∈ t′. Assume that (∃s.D)(i) 6∈ t. Then (¬∃s.D)(i) ∈ t.
By definition of Ii, (t, t′) ∈ sIi implies that one of the following cases applies:

(i) i ∈ R(s, t, t′). Then (¬∃s.D)(i) ∈ t and Condition (R2) of Definition 5.2.3, imply
¬D(i) ∈ t′, which is a contradiction to t′ being a type.

(ii) i ∈ R(Inv(s), t′, t). Then (¬∃s.D)(i) ∈ t and Condition (R3) of Definition 5.2.3,
imply ¬D(i) ∈ t′, which is a contradiction to t′ being a type.

Thus (∃s.D)(i) ∈ t.

“if”. Let (∃s.D)(i) ∈ t. Since t is a good type in T, there exists a type t′ ∈ T and
a set ρ 3 i, such that R(s, t, t′) ⊇ ρ and D(i) ∈ t. By definition of sIi , we have that
(t, t′) ∈ sIi . Moreover, since D(i) ∈ t′, by induction we have that t′ ∈ DIi . Thus, it
holds that t ∈ (∃s.D)Ii .

Using Claim 4, the next claim is easily shown.

Claim 5. Let t, t′ ∈ T. For all 0 ≤ i < n the following holds:

(i) for all concept literals B from the input, t,T |= occi+1(B) implies t ∈ (occi+1(B))Ii .

(ii) for all role literals s from the input, t, t′,T |= occi+1(s) implies (t, t′) ∈ (occi+1(s))
Ii .

We use Claims 4 and 5 to show that I0 |= A0, Ii ⇒
T
αi

Ii+1 for all i ≤ n, and that I0 |=
¬C0(a0).

• I0 |= A0: Let C(a) ∈ A0. Since TS is proper, C(0) ∈ ta and, by Claim 4, we have that
aI0 = ta ∈ CI0 .

• Ii ⇒
T
αi

Ii+1 for all i ≤ n:

– Ii are models of T : Let C v D ∈ T and t ∈ CIi . By Claim 4, we have C(i) ∈ t,
and since t is a type for Cl, C(i) ∈ t implies D(i) ∈ t. Hence, t ∈ DIi .

– Let C(a)/D(b) ∈ posti and let Ii |= C(a). This means that ta = aIi ∈ CIi ,
and thus {{a}, C(i)} ⊆ ta. Since TS is proper, there exists a t ∈ TS , such that
{{b}, D(i+1)} ⊆ t. Obviously, t = tb, and thus tb = bIi ∈ DIi+1 , i.e. Ii+1 |= D(b).

– for each A ∈ NC and i < n, we have: AIi \AIi+1 ⊆ (occi+1(A))Ii and AIi+1 \AIi ⊆
(occi+1(¬A))Ii . We show only the former since the latter can be shown in a
similar way. Let t ∈ AIi and t 6∈ AIi+1 . By Claim 4, this implies A(i) ∈ t and
(¬A)(i+1) ∈ t. Since t is good in T, we have that t,T |= occi+1(A), and by Claim
5 we obtain that t ∈ (occi+1(A))Ii .

– for each r ∈ NR and i < n, we have: rIi \ rIi+1 ⊆ (occi+1(r))
Ii and rIi+1 \

rIi ⊆ (occi+1(¬r))
Ii . Again, we show only the former as the latter can be shown

in a similar way. Let (t, t′) ∈ rIi and (t, t′) 6∈ rIi+1 . By the definition of rIi ,
i ∈ R(r, t, t′) ∪R(r−, t′, t) and i+ 1 6∈ R(r, t, t′) ∪R(r−, t′, t).

92 Action Formalism A2: Complex Post-Conditions and GCIs

(i) Let i ∈ R(r, t, t′). By definition of R, t′ is a (ρ, r)-successor of t for a ρ 3 i.
Since i + 1 6∈ R(r, t, t′), we obtain that i + 1 6∈ ρ. Since t is good in T, by
Condition (R4) of Definition 5.2.3, we have that t, t′,T |= occi+1(r). By Claim
5, we obtain that (t, t′) ∈ (occi+1(r))

Ii .

(ii) Let i ∈ R(r−, t′, t). Since i+1 6∈ R(r−, t′, t) and t′ is good in T, similarly as in
(i), by Condition (R4) of Definition 5.2.3, we have that t′, t,T |= occi+1(r

−),
which is equivalent to t, t′,T |= occi+1(r). By Claim 5, we obtain that (t, t′) ∈
(occi+1(r))

Ii .

• In |= ¬C0(a0): Since (C0)
(n) ∈ ta0 , by Claim 4, it holds that ta0 = aIn

0 ∈ (C0)
In

o

The algorithm runs in exponential time: first, we have already argued that there are only
exponentially many core type sets. Second, the number of elimination rounds is bounded by
the number of types, of which there are only exponentially many. And third, it is easily seen
that it can be checked in exponential time whether a type is good in a given type set.

Moreover, for an ALC-concept C and a general TBox T , it is easy to see that the following
holds: C is satisfiable w.r.t. T iff ¬C(a) is not a consequence of applying the empty action
(∅, ∅, ∅) in ∅ w.r.t. T . Thus, since concept satisfiability w.r.t. general TBoxes is ExpTime-
hard in ALC [BCM+03] and concept satisfiability can be reduced to (non-)projection, we
obtain the following result.

Theorem 5.2.5. Projection, executability and weak consistency in A2 are ExpTime-com-
plete for ALC, ALCO, ALCI, and ALCIO.

It is not too difficult to adapt the algorithm given in this section to the DL ALCQO. There-
fore, the reasoning problems from Theorem 5.2.5 are also ExpTime-complete for ALCQ and
ALCQO.

5.2.2 Projection beyond ExpTime

In the previous section, we have identified a number of DLs for which both reasoning about
actions and standard DL reasoning are ExpTime-complete. Another candidate for a DL with
such a behaviour is ALCQI, in which satisfiability and subsumption are ExpTime-complete
as well [Tob00]. However, since the action formalism A2 is a generalization of the action
formalism A1, Theorem 3.2.6 implies the following.

Lemma 5.2.6. Projection and executability (weak consistency) in A2 are co-NExpTime-hard
(NExpTime-hard) for ALCQI even if occlusions for roles are disallowed and only nominals
are allowed in the occlusions of concept names.

In the following, we show that projection for ALCQI is in fact co-NExpTime-complete, and
that the same holds for the DL ALCQIO. Note that, for the latter DL, also concept subsump-
tion is co-NExpTime-complete. The proof proceeds by reducing projection in ALCQIO to
ABox consequence in ALCQIO¬,∩,∪, i.e., the extension of ALCQIO with the Boolean role
constructors ¬, ∩, and ∪ with the following semantics:

(¬r)I := (∆I × ∆I) \ rI

(r ∩ s)I := rI ∩ sI

(r ∪ s)I := rI ∪ sI

5.2 Deciding Projection 93

Let α1, . . . , αn be a composite action with αi = (prei, occi, posti) for i = 1, . . . , n, and let T
be a general TBox, A0 an ABox and ϕ0 an assertion. We are interested in deciding whether
ϕ0 is a consequence of applying α1, . . . , αn in A0 w.r.t. T . In what follows, we call α1, . . . , αn,
T , A0 and ϕ0 the input. W.l.o.g., we make the following assumptions:

• ϕ0 is of the form ϕ0 = C0(a0), where C0 is a (possibly complex) concept.

As in the previous section, this assumption can be made because an assertion r(a, b)
can be replaced with (∃r.{b})(a), and ¬r(a, b) with (¬∃r.{b})(a).

• Each occlusion pattern occi contains exactly one occlusion pattern that is unconditional
(i.e., indexed by taut) and formulated in ALCQIO¬,∩,∪.

An occlusion pattern {occϕ1 , . . . , occϕn} can be converted into an occlusion pattern
{occtaut} formulated in ALCQIO¬,∩,∪ as follows. First, we may assume w.l.o.g. that
ϕi is of the form Ci(ai) for 1 ≤ i ≤ n (see previous point). For 1 ≤ i ≤ n, let Pi denote
the concept ∀U.({ai} → Ci), where U denotes the universal role, i.e. r ∪ ¬r for some
r ∈ NR. Then, define for each concept literal A

occtaut(A) := t
1≤i≤n

(Pi u occϕi
(A)

)

Likewise, for each role literal r, define

occtaut(r) := {(Pi u C,Pi uD) | (C,D) ∈ occϕi
}.

Having the occlusion pattern formulated in ALCQIO¬,∩,∪ is unproblematic since our
reduction is to ALCQIO¬,∩,∪ anyway. In the following, we slightly abuse notation and
confuse the singleton set occi with the (unconditional) occlusion mapping contained in
it.

The idea of the reduction is to define an ABox Ared and a TBox Tred such that a single
model of them encodes a sequence of interpretations I0, . . . , In such that I0 |= A0, T and
Ii−1 ⇒T

αi
Ii for i = 1, . . . , n. As in the previous section, we use Sub to denote the set of

subconcepts of the concepts which occur in the input and introduce concept names A(i) and
role names r(i) for every concept name A and every role name r used in the input, for all
i ≤ n. For a complex concept C ∈ Sub, we use C(i), for i ≤ n, to denote the concept
obtained by replacing all concept names A and role names r occurring in C by A(i) and r(i)

respectively.

We start by assembling the reduction ABox Ared. First, define a “copy” Aini of the input
ABox A0 as:

Aini := {C(0)(a) | C(a) ∈ A0}∪

{r(0)(a, b) | r(a, b) ∈ A0} ∪ {¬r(0)(a, b) | ¬r(a, b) ∈ A0}

Then, introduce abbreviations, for i ≤ n:

pi(C(a)) := ∀U.({a} → C(i)),

pi(r(a, b)) := ∀U.({a} → ∃r(i).{b}),

pi(¬r(a, b)) := ∀U.({a} → .∀r(i).¬{b}),

94 Action Formalism A2: Complex Post-Conditions and GCIs

Now we can define the components of Ared that take care of post-condition satisfaction. For
1 ≤ i ≤ n, we define:

A
(i)
post := {

(
pi−1(ϕ) → pi(ψ)

)
(a0) | ϕ/ψ ∈ posti}

We assemble Ared as

Ared := Aini ∪
⋃

1≤i≤n

A
(i)
post.

Next, we define the components of the TBox Tred. Since all interpretations I0, . . . , In have
to be models of the input TBox T , we define for each i ≤ n, a copy T (i) of T in the obvious
way:

T (i) = {C(i) v D(i) | C v D ∈ T }.

To deal with occlusions, we introduce auxiliary role names r
(i)
Dom(C) and r

(i)
Ran(D) for 0 ≤ i < n

and all concepts C,D such that (C,D) ∈ occi(s) for some role literal s. The following TBox

T
(i)
aux ensures that r

(i)
Dom(C) and r

(i)
Ran(D) are interpreted as C(i) ×> and >×D(i), respectively.

It contains the following axioms, for all concepts C,D as above:

C(i) v ∀¬r
(i)
Dom(C).⊥ > v ∀r

(i)
Ran(D).D

(i)

¬C(i) v ∀r
(i)
Dom(C).⊥ > v ∀¬r

(i)
Ran(D).¬D

(i)

The following TBox T
(i)
fix ensures that concept and role names do not change unless this is

allowed by the occlusion pattern:

• for every concept name A in the input,

A(i) u ¬A(i+1) v (occi+1(A))(i)

¬A(i) uA(i+1) v (occi+1(¬A))(i)

• for every role name r in the input,

> v ∀¬
(⋃

(C,D)∈occi+1(r)

(r
(i)
Dom(C) ∩ r

(i)
Ran(D))

)
∩ (r(i) ∩ ¬r(i+1)).⊥

> v ∀¬
(⋃

(C,D)∈occi+1(¬r)

(r
(i)
Dom(C) ∩ r

(i)
Ran(D))

)
∩ (¬r(i) ∩ r(i+1)).⊥

Finally, we can construct Tred as

Tred :=
⋃

0≤i≤n

T (i) ∪
⋃

0≤i<n

T
(i)
aux ∪

⋃

0≤i<n

T
(i)
fix .

Then the following lemma holds:

Lemma 5.2.7. C0(a0) is a consequence of applying α1, . . . , αn in A0 w.r.t. T iff C
(n)
0 (a0) is

a consequence of Ared w.r.t. Tred (under UNA).

5.2 Deciding Projection 95

Proof. “⇒”: We prove this direction by contraposition. Assume that C
(n)
0 (a0) is not a

consequence of Ared w.r.t. Tred. Thus, there exists a J such that J |= Tred, J |= Ared, and

J |= ¬C
(n)
0 (a0). In order to prove that C0(a0) is not a consequence of applying α1, . . . , αn

in A0 w.r.t. T we show that there are I0, . . . , In such that Ii−1 ⇒T
αi

Ii for all 1 ≤ i ≤ n,
I0 |= A0, and In 6|= C0(a0).

We construct Ii for i ≤ n as following:

• ∆Ii := ∆J ;

• AIi := (A(i))J for every concept name A;

• rIi := (r(i))J for every role name r;

• aIi := aJ for every individual name a.

By definition of C(i), it is obvious that for all x ∈ ∆J , C ∈ Sub and i ≤ n:

x ∈ CIi iff x ∈ (C(i))J (∗)

We have that Ii−1 ⇒T
αi

Ii for all 1 ≤ i ≤ n since

• Ii |= T : for all C v D ∈ T , we have C(i) v D(i) ∈ Tred. J |= Tred implies J |= C(i) v
D(i). For all x ∈ ∆Ii = ∆J , we have x ∈ (C(i))J implies x ∈ (D(i))J . By (∗), this
yields that x ∈ CIi implies x ∈ DIi .

• Ii−1, Ii |= posti: It follows from the definition of pi that for all ABox assertions ϕ and
for all i ≤ n, we have (pi(ϕ))J = ∆J if Ii |= ϕ and (pi(ϕ))J = ∅ otherwise. For
all ϕ/ψ ∈ posti, we have (pi−1(ϕ) → pi(ψ))(a0) ∈ Ared. Assume Ii−1 |= ϕ. Then
(pi−1(ϕ))J = ∆Ii−1 by (∗). Thus, J |= Ared yields (pi−1(ψ))J = ∆J , which implies
Ii |= ψ by (∗).

• AIi−1 \AIi ⊆ (occi(A))Ii−1 and AIi \AIi−1 ⊆ (occi(¬A))Ii−1 follow from J |= T
(i)
fix .

• rIi−1 \ rIi ⊆ (occi(r))
Ii−1 : Let (x, y) ∈ rIi−1 \ rIi . By the construction of Ii−1 and Ii,

we have (x, y) ∈ (r(i−1) ∩ ¬r(i))J . Then J |= T
(i)
fix implies

(x, y) ∈
(⋃

(C,D)∈occi(r)

(r
(i−1)
Dom(C) ∩ r

(i−1)
Ran(D))

)J
.

Hence, there exists a pair (C,D) ∈ occi(r) such that (x, y) ∈ (r
(i−1)
Dom(C) ∩ r

(i−1)
Ran(D))

J .

Moreover, J |= T
(i)
aux implies x ∈ (C(i−1))J and y ∈ (D(i−1))J .

Thus, by (∗) we have x ∈ CIi−1 and y ∈ DIi−1 which implies (x, y) ∈ (occi(r))
Ii−1 .

Analogously, it can be shown that rIi \ rIi−1 ⊆ (occi(¬r))
Ii−1 holds.

I0 |= A0: for all concept assertions C(a) ∈ A, we have C (0)(a) ∈ Ared. J |= Ared implies
aJ ∈ (C(0))J . Then, by (∗) we know aI0 ∈ CI0 . We can prove the same result for all role
assertions in A from the definition of rI0 and J |= Ared.

96 Action Formalism A2: Complex Post-Conditions and GCIs

In 6|= C0(a0): J |= ¬C
(n)
0 (a0) implies aJ0 ∈ (¬C

(n)
0)J . Thus, by (∗) we know aJ0 = aIn

0 ∈
(¬C0)

In .

“⇐”: This direction can also be proved by contraposition. Assume that C0(a0) is not a
consequence of applying α1, . . . , αn in A0 w.r.t. T . Thus, there are I0, . . . , In such that
Ii−1 ⇒T

αi
Ii for all 1 ≤ i ≤ n, I0 |= A0, and In 6|= C0(a0). We define an interpretation

J = (∆J , ·J) as follows:

• ∆J := ∆I0(= ∆I1 = · · · = ∆In);

• (A(i))J := AIi for all concept names A and for all i ≤ n;

• (r(i))J := rIi for all role names r and for all i ≤ n;

• aJ := aI0(= aI1 = · · · = aIn) for all individual names a;

• (r
(i)
Dom(C))

J := {CIi × ∆Ii} and (r
(i)
Ran(D))

J := {∆Ii ×DIi} for all i < n.

By definition of C(i), it obvious that for all x ∈ ∆J , C ∈ Sub and i ≤ n:

x ∈ CIi iff x ∈ (C(i))J

Using this observation and the semantics of actions, it is not difficult to show that indeed

J |= Ared, J |= Tred, and J |= ¬C
(n)
0 (a0). Thus, C

(n)
0 (a0) is not a consequence of Ared w.r.t.

Tred. o

Since ALCQIO¬,∩,∪ is a fragment of C2 (the 2-variable fragment of first-order logic with
counting), ABox inconsistency in ALCQIO¬,∩,∪ is in co-NExpTime even if numbers are
coded in binary [PH05]. Since Ared and Tred are polynomial in the size of the input, Lemma
5.2.7 gives us a co-NExpTime upper bound for projection in ALCQIO and ALCQI. To-
gether with Lemma 5.2.6 we obtain the following:

Theorem 5.2.8. Projection and executability in A2 are co-NExpTime-complete, while weak
consistency is NExpTime-complete for ALCQIO and ALCQI.

5.3 Undecidability of Strong Consistency

Unlike projection, executability, or weak consistency, strong consistency is undecidable. We
show that it is undecidable already in ALC. The proof consists of a reduction of the unde-
cidable semantic consequence problem from modal logic. Before formulating the DL version
of this problem, we need some preliminaries. We use ALC concepts with only one fixed role
name r, which we call ALCr-concepts. Accordingly, we also assume that interpretations in-
terpret only concept names and the role name r. An r-frame is a structure F = (∆F , rF)
where ∆F is a non-empty set and rF ⊆ ∆F × ∆F . An interpretation I = (∆I , ·I) is based
on an r-frame F iff ∆I = ∆F and rI = rF . We say that a concept C is valid on F (written
F |= C) iff CI = ∆I for every interpretation I based on F .

Definition 5.3.1 (Semantic consequence problem). Let D and E be ALCr-concepts.
We say that E is a semantic consequence of D iff for every r-frame F = (∆F , rF) such that
F |= D, it holds that F |= E. 4

5.4 Practicability 97

In [Tho75], it is proved that for ALCr-concepts D and E, the problem “Is E a semantic
consequence of D?” is undecidable. We now show that the semantic consequence problem
can be reduced to strong consistency. For ALCr-concepts D and E, we define the action
αD = (pre, {occtaut}, post) where pre := {¬E(a)}, post := {>(a)/(∃u.¬D)(a)} (u a role
name), and occtaut maps r and ¬r to {(⊥,⊥)}, all other role literals to {(>,>)}, and all
concept literals to >. Then the following holds.

Lemma 5.3.2. The action αD is strongly consistent with the empty TBox iff E is a semantic
consequence of D.

Proof. “⇒” We show the contraposition. Assume that E is not a semantic consequence of D.
Then there exists an r-frame F = (∆F , rF) such that F |= D and there is an interpretation
I based on F such that EI 6= ∆I . We take I based on F such that aI 6∈ EI , thus I |= pre.
But every I ′ such that I ⇒∅

αD
I ′ must be based on F (since rI

′
= rI = rF) and must satisfy

DI′
6= ∆I′

(by the post-condition of α). Since F |= D, there is no such I ′. Thus, αD is not
strongly consistent with the empty TBox.

“⇐” Assume that E is a semantic consequence of D. Let I |= pre. By definition of pre, we
have that aI 6∈ EI , and thus I is not based on an r-frame F = (∆F , rF) validating E. Since
E is a semantic consequence of D, F is not validating D either, and there is an interpretation
I ′ based on F such that DI′

6= ∆I′
. Take y ∈ ∆I′

such that y 6∈ DI′
. Since D is an ALCr-

concept, we may assume that uI
′

= {(aI
′
, y)}. Obviously, we have that I ⇒∅

αD
I ′, and,

consequently, αD is strongly consistent with the empty TBox. o

As an immediate consequence, we obtain the following theorem.

Theorem 5.3.3. Strong consistency of ALC-actions in A2 is undecidable, even with the
empty TBox.

5.4 Practicability

Practical Projection Algorithms

Together with a reasoner that is capable of deciding ABox consistency in the description logic
ALCQIO¬,∩,∪, the reduction developed in Section 5.2.2 can be used for practical reasoning
with ALCQIO actions. Unfortunately, to the best of our knowledge there exists no available
DL reasoner that supports the Boolean operators on roles.

Here we identify a (natural) restricted version of the action formalism A2 in which the
reduction of projection to ABox consistency does not need the Boolean role constructors an
thus projection can be reduced to standard reasoning problems in DLs that are implemented
in DL reasoners such as RacerPro and FaCT++.

We call an A2-action α = (pre, occ, post) restricted iff:

(i) for every role name r, and occϕ ∈ occ such that ϕ 6= taut, occϕ(r) and occϕ(¬r) are
subsets of {({a}, {b}) | a, b ∈ NI};

(ii) if occtaut ∈ occ, then occtaut(r) = occtaut(¬r) for all role names r; and

(iii) for every role name r, occtaut(r) is a subset of

{({a}, {b}), ({a},>) | a, b ∈ NI} ∪ {(>,>), (⊥,⊥)}

98 Action Formalism A2: Complex Post-Conditions and GCIs

For this restricted fragment, projection in L can be reduced to ABox (in)consistency in
LO, the extension of L with nominals. We restrain ourselves from presenting the reduction
in detail, as it is a combination of (adapted parts of) the reductions from Section 3.2 and
Section 5.2.2. Since the minimization of changes for concept names can be achieved with GCIs
without introducing Boolean role constructors, as shown in Section 5.2.2, we just show that
the technique from Section 3.2 can be used in order to ensure the minimization of changes in
role interpretations in the non-occluded part of the domain.

Assume that we want to decide projection with respect to a composite action α1, . . . , αn
with all αi = (prei, occi, posti) restricted. As in previous reductions, we use a role name r(i)

for every role name r used in the input and every i ≤ n. Moreover, we make a distinction
between named (i.e. d such that d = aI for some individual a used in the input) and unnamed
domain elements. Intuitively, the extension of r in the i-th interpretation can be assembled
from the extensions of r(0), . . . , r(n) as follows:

• regarding pairs (x, y) with both x, y named, we consider r(i);

Occlusions of role names on named elements are formalized by the reduction ABox Ared

by means of assertions similar to those in A
(i)
min in the reduction presented in Section

3.2.

• regarding pairs (x, y) with one of x, y not named, we consider r(j), where j ∈ {1, . . . , i}
is maximal such that occj taut

(r) contains the global occlusion (>,>) if x is unnamed;
and where where j ∈ {1, . . . , i} is maximal such that occj taut

(r) contains either ({a},>)
or (>,>) if x = aIi (and j = 0 if there is no such j).

Thus, in order to check the membership in rIi of pairs (x, y) with x or y unnamed, we
“go back” to the last interpretation before which (x, y) was occluded. This can easily
be ensured by acyclic concept definitions similar to those in the TBox Tsub from Section

3.2. The concept name T
(i)
(>m r C) stands for (> m r C) in the i-th interpretation:

T
(i)
(>m r C)

.
= t

a∈Ind

(
{a} u t

0≤j≤m

(
(> j r(i) (N u T

(i)
C))

u(> (m− j) r(ol
i
a,r) (¬N u T

(i)
C))

))

t
(
¬N u (> m r(ol

i
r) T

(i)
C)
)

where

loia,r := max{ ` | 1 ≤ ` ≤ i ∧ {({a},>), (>,>)} ∩ occ`taut(r) 6= ∅ }

loir := max{ ` | 1 ≤ ` ≤ i ∧ (>,>) ∈ occ`taut(r) }

The reduction works for ALC extended with any combination of inverses, nominals, and
number restrictions.

Strong Consistency

Our only negative result concerns the undecidability of strong consistency. To discuss the
impact of this result, let us briefly review the relevance of strong consistency for the action
designer and for the user of the action (the person who applies the action).

5.4 Practicability 99

For the action designer, an algorithm for checking strong consistency would be useful for
fine-tuning the ramifications of his action. However, it is worth noting that deciding strong
consistency could not replace manual inspection of the ramifications. For example, occluding
all concept names with > and all role names with {(>,>)} usually ensures strong consistency
but does not lead to an intuitive behaviour of the action. With weak consistency, we offer at
least some automatic support to the action designer for detecting ramification problems.

For the user of the action, strong consistency is required to ensure that the execution of an
action whose preconditions are satisfied will not fail. If the action is such that failure cannot
be tolerated (because executing the action is expensive, dangerous, etc), strong consistency
is thus indispensable and should already be guaranteed by the action designer. Also when
working with composite actions, strong consistency has to be required: if an action execution
fails after previous actions in the sequence have been successfully executed, then we have
already changed the state of affairs and it may not be possible to revert these changes to use
a different composite action for reaching the desired goal. However, in the case of atomic
actions it is conceivable that an execution failure does not have any negative effects. If this
is the case, the action user only needs to check that the action is executable, and strong
consistency is not strictly required.

100 Action Formalism A2: Complex Post-Conditions and GCIs

Chapter 6

Planning

In this chapter, we complete our work on description logic actions by investigating planning in
A1. For possible applications of DL actions, planning is a very important reasoning task. For
example, in the context of semantic web services, planning can support web service discovery,
which is needed for an automatic service execution.

We assume that in planning tasks, available operators are parameterized A1-actions, i.e.,
A1-actions where variables may occur in place of individuals. Moreover, we assume that these
operators can be instantiated with individuals from a finite set of individuals Ind. Intuitively,
the plan existence problem is: given an acyclic TBox T which defines abbreviations for
complex concepts, ABoxes A and Γ giving incomplete descriptions of the initial and the goal
state, and a set of operators Op, is there a plan (sequence of actions obtained by instantiating
operators from Op) which ”transforms” the state described by A into a state where Γ is
satisfied? For example, given an incomplete knowledge about Dirk in the initial state, and
a set of operators for obtaining a lease, a letter from the employer and a bank account, one
might want to know which actions, and in which order, have to be executed in order to achieve
that Dirk obtains a bank account with a credit card. We require that plans are uniform, i.e.,
that the same plan achieves the goal, independently of the model of the ABox describing the
initial world state. Hence one may say that we investigate conformant DL planning.

It is known that, already in the propositional case, planning is a hard problem. For
example, the plan existence problem for propositional STRIPS-style actions with complete
state descriptions is PSpace-complete [Byl94], while it is ExpSpace-complete for confor-
mant planning (incomplete state descriptions) where actions have conditional post-conditions
[HJ99, Rin04].

In the largest part of this chapter we investigate the computational complexity of the plan
existence problem for the propositionally closed fragments of ALCQIO. If we allow only for
actions with unconditional post-conditions, we show that, in these logics, the plan existence
problem is decidable and of the same computational complexity as projection, ranging from
PSpace-complete to co-NExpTime-complete. This is done by using a compact representa-
tion of possible states obtained by action application: every state of the search space can
implicitly be described by means of the initial ABox A and the set of accumulated action
post-conditions. If conditional post-conditions are allowed, such a compact representataion
of the states of the search space is no longer posssible, since different models of the initial
ABox A may cause different post-conditions to be triggered. Using a combinatorial method
we show that the plan existence problem in this case is in 2-ExpSpace. Since the only known
lower complexity bound is inherited from propositional logic (ExpSpace-hard), we leave the

102 Planning

exact computational complexity of conditional PLANEX as an open problem.

Finally, we investigate the complexity of planning in the lightweight description logic EL.
We show that hardness results for propositional planning carry over to planning in EL, by
adapting reductions from [Byl94] and [Rin04].

The rest of this chapter is organized as follows. In Section 6.1 we introduce the notion
of a planning task and define the plan existence problem. In Section 6.2 we present the
complexity results for planning if only unconditional post-conditions are allowed. Section 6.3
is dedicated to planning where we admit conditional post-conditions. Finally, in Section 6.4
we present complexity results for planning in EL.

6.1 Planning Problem

In this section, we formally introduce the notion of the planing task based on the action
formalism A1, as well as the plan existence problem. Since so far we focused on the reasoning
problems projection and executability, it sufficed to deal with ground A1-actions, as intro-
duced in Definition 3.1.1. In order to address planning, we need to introduce parameterized
actions, called operators:

Definition 6.1.1 (Operator). Let NX be a countably infinite set of variables, disjoint with
the set of individuals NI. Let T be an acyclic TBox. An operator for T is a parameterized
atomic A1-action for T , i.e., an action in whose definition variables from NX may occur in
place of individual names. 4

If o is an operator (for a TBox T), we use var(o) to denote the set of variables in o.
A substitution v for o is a mapping v : var(o) → NI. The action α that is obtained by
applying a substitution v to o is denoted with α := o[v]. We assume that operators can be
instantiated with individuals from a finite set Ind ⊂ NI. Moreover, we assume that T , A and
Γ contain only individuals from Ind (we say that they are based on Ind). For an operator
o, we set o[Ind] := {o[v] | v : var(o) → Ind}. Moreover, for a set of operators Op, we set
Op[Ind] := {o[Ind] | o ∈ Op}, i.e. Op[Ind] is the set of all actions obtained by instantiating
operators from Op with individuals from Ind. The following definition formally introduces
the notion of a planing task: 1

Definition 6.1.2 (Planning task). A planning task is a tuple Π = (Ind, T ,Op,A,Γ), where

• Ind is a finite set of individual names;

• T is an acyclic TBox based on Ind;

• Op is a finite set of operators for T ;

• A (initial state) is an ABox based on Ind;

• Γ (goal) is an ABox based on Ind.

A plan in Π is a composite action α = α1, . . . , αk, such that αi ∈ Op[Ind] and αi is consistent
with T 2, i = 1..k. A plan α = α1, . . . , αk in Π is a solution to the planning task Π iff:

1The notion of a planing task is defined along the lines with standard STRIPS definitions. One difference
is that our planning task has an additional component – an acyclic TBox.

2Recall that α is consistent with T iff for all models I of T , there exists I ′ such that I ⇒T
α I′; c.f. Section

3.1.2.

6.1 Planning Problem 103

1. α is executable in A w.r.t. T ; and

2. for all interpretations I and I ′ such that I |= A, T and I ⇒T
α I ′, it holds that I ′ |= Γ.

4

A planning task Π = (Ind, T ,Op,A,Γ) is called unconditional if all operators in Op have
only unconditional post-conditions, and conditional, otherwise.

Example 6.1.3. We illustrate the previous definition by the following example describing a
(simplified) process of opening a bank account in the UK.

Let the set of individuals be defined as

Ind = {dirk, uni liv, yoga center,UK, el, el′, l, ba}.

Here, el and el′ denote employers’ letters, l stands for a lease and ba for a bank account.

The initial state - ABox A states that Dirk is a resident of the UK who has gotten two
jobs – at the University of Liverpool and in the Yoga Center, but still does not hold a bank
account in the UK.

A := {resident(dirk,UK), employs(uni liv, dirk), employs(yoga center, dirk),

University(uni liv),¬∃holds.(B acc u ∃in.{UK})(dirk)}

Moreover, the set Op contains the operators for obtaining a lease, a letter from employer, and
a bank account. The set of occlusions occ is empty for all three operators, so we will state
only their sets of pre- and post-conditions pre and post.

• Suppose the pre-condition of obtaining a lease is that the customer x holds a letter from
his employer. This is formalized by the operator get Lease:

pre : {∃holds.EmployerLetter(x)}

post : {holds(x, y), Lease(y)}

• The operator get Letter describes the process of an employee x getting a letter y from
his employer z:

pre : {employs(z, x)}

post : {holds(x, y),EmployerLetter(y), signed(z, y)}

• Suppose the pre-condition of opening a bank account is that the customer x is a resi-
dent in the UK and holds a proof of address. Moreover, suppose that, if x is rated as
“reliable”, then the bank account comes with a credit card, otherwise not. This service
can be formalized by the following operator get B acc:

pre : {∃resident.{UK}(x), ∃holds.Proof address(x)}

post : {holds(x, y), in(y,UK),
Reliable(x)/B acc credit(y),
¬Reliable(x)/B acc no credit(y)}

104 Planning

The meaning of the concepts used in A and Op is defined in the following acyclic TBox T :

Reliable
.
= ∃holds.(B acc u Good credit rating u ∃in.{UK})

t∃holds.(EmployerLetter u ∃signed−.University)

Proof address
.
= Electricity contract t Lease

B acc
.
= B acc credit t B acc no credit

The first concept definition tells us that a person is rated as reliable if and only if he already
holds a bank account in the UK with a good credit rating, or holds a letter stating that he is
employed at the university. The second definition defines a proof of the address to be either
an electricity contract or a lease, while the last one states that a bank account can come either
with or without a credit card.

Finally, we have two goals, Γ1 = {∃holds.(B acc u ∃in.{UK})(dirk)}, requiring that Dirk
holds a bank account in the UK, and a more ambitious one, Γ2 = {∃holds.(B acc credit u
∃in.{UK})(dirk)}, namely that Dirk holds a bank account in the UK with a credit card.
We define corresponding planing tasks Π1 and Π2 as Π1 = (Ind, T ,Op,A,Γ1) and Π2 =
(Ind, T ,Op,A,Γ2). It is not difficult to see that the plan:

get Letter[x/dirk, y/el, z/yoga center], get Lease[x/dirk, y/l], get B acc[x/dirk, y/ba]

is a solution to Π1, but not Π2, while the plan:

get Letter[x/dirk, y/el′, z/uni liv], get Lease[x/dirk, y/l], get B acc[x/dirk, y/ba]

is a solution both to Π1 and Π2.WHY?

The most common planning problem, PLANEX, c.f. [ENS95], is defined below:

Definition 6.1.4 (PLANEX). The plan existence problem (PLANEX), is the problem of
whether a given planning task Π has a solution.

If Π is an unconditional planning task, we call it unconditional PLANEX, and otherwise
conditional3 PLANEX. 4

In the next two sections, we will present algorithms for deciding unconditional and con-
ditional PLANEX. In order to be able to determine the computational complexity of the
algorithms (and PLANEX), we define the size of a planning task as follows.

Definition 6.1.5 (Size of Planning Task). Let Π = (Ind, T ,Op,A,Γ) be a planning task.
The size of Π (written |Π|) is defined as:

|Π| := |Ind| + |T | +
∑

o∈Op

|o| + |A| + |Γ|

4

3Note that, in the literature on planning, the term “conditional planning” is usually used in a different
context: it describes the existence of a precedence relation on actions which determines in which order they
have to be executed.

6.2 Unconditional PLANEX 105

6.2 Unconditional PLANEX

In this section, we focus on the plan existence problem in the case operators have only
unconditional post-conditions. It turns out that unconditional PLANEX is not harder, at
least in theory, than projection in the propositionally closed fragments of ALCQIO.

Obviously, the plan existence problem is closely related to projection and executability.
We start by introducing some notation. Let A and B be ABoxes, T an acyclic TBox, and α
a (possibly composite) action. We will write T ,Aα |= B iff T ,Aα |= ϕ (ϕ is a consequence of
applying α in A w.r.t. T) for all ϕ ∈ B.

Let Π = (Ind, T ,Op,A,Γ) be a planning task for which we want to decide if it has a
solution. This means that we want to check if there is a finite sequence of actions from
Op[Ind] which transform the initial state (described by A) into a state where goal Γ holds.

Intuitively, planning is related to a step-wise computation of the next state – which
corresponds to computing updated ABoxes (c.f. Section 1.3.3). However, in [LLMW06c], it is
shown that an updated ABox may be exponentially large in the size of the initial ABox and
the update, which makes this approach unsuitable. We base our approach on the following
observation: instead of computing a sequence of (exponentially large) updated ABoxes, it
suffices to compute a sequence of updates which are applied to the initial ABox A. Intuitively,
these updates are lists of accumulated triggered post-conditions of action sequences. Since
post-conditions are unconditional, every chosen action sequence can be represented by the
same update, independently of the model of the initial ABox. Similarly, we keep track of
accumulated occlusions. Thus, states of the search space can compactly be described as pairs:
(occlusion, update).

We define the set of possible atomic changes as:

Lpost := {ψ | ψ ∈ post, α = (pre, occ, post), α ∈ Op[Ind]}

and the set of possible occlusions:

Locc := {ψ | ψ ∈ occ, α = (pre, occ, post), α ∈ Op[Ind]}

An update for Π is a consistent subset of Lpost. Let U be a set of all updates for Π. Moreover,
let O := 2Locc . Then O× U is our search space, the size of which is exponential in the size of
Π. Let ¬̇l denote ¬l if l is a positive assertion, and l′ if l = ¬l′. For a U ∈ U, we set

¬U := {¬̇l | l ∈ U}; and

U := {l | l ∈ U ∪ ¬U and l positive}.

Intuitively, (∅, ∅) represents the initial state of the search space, and all tuples (O,U) ∈ O×U

such that T ,A(∅,O,U) |= Γ represent goal states.

In the next step, we define the transition relation “
α
→” on O×U. Let α = (pre, occ, post) be

a consistent action from Op[Ind] 4 and let (O,U),(O′,U ′) ∈ O×U. We say that α transforms
(O,U) into (O′,U ′) (written (O,U)

α
→ (O′,U ′)) iff:

(i) O′ = (O ∪ occ) \ post

(ii) U ′ = (U \ (occ ∪ ¬occ ∪ ¬post)) ∪ post

4Since post is a set of unconditional post-conditions, α is consistent iff post is consistent.

106 Planning

Obviously, the relation “
α
→” is functional for every α. In the following lemma, we show

that “
α
→” simulates “⇒T

α ” on the set O × U.

Lemma 6.2.1. Let Π = (Ind, T ,Op,A,Γ) be a planning task and let α = α1, . . . , αk with
αi = (prei, occi, posti) be a plan in Π. Let U0 = O0 := ∅ and let (O1,U1), . . . , (Ok,Uk) be such
that

(O0,U0)
α1→ (O1,U1) · · ·

αk→ (Ok,Uk)

Then the following holds:

(a) (Oi,Ui) ∈ O × U for all i ≤ k:

(b) For all interpretations I, I ′ such that I |= A and for all i ≤ k, we have that I ⇒T
α1,...,αi

I ′ iff I ⇒T
(∅,Oi,Ui)

I ′.

(c) T ,A(∅,Oi,Ui) |= prei+1 for all i < k iff α1, . . . , αk is executable in A w.r.t. T .

Proof. (a) Since α1, . . . , αk are consistent by definition of a plan, it is easy to see that

the definition of
αi→ implies that (∅,Oi,Ui) are consistent for all i ≤ k. Thus, (Oi,Ui) ∈ O×U

for all i ≤ k.
(b) Proof is by induction on i. For i = 0, trivially true. Assume that the claim holds

for i = m, and let us prove that it implies the same for i = m + 1. Let I |= A and let
I ⇒T

α1,...,αm+1
I ′. The latter holds iff there exists I ′′ such that I ⇒T

α1,...,αm
I ′′ and I ′′ ⇒T

αm+1

I ′. By I.H., we have that for I |= A it holds that I ⇒T
α1,...,αm

I ′′ iff I ⇒T
(∅,Om,Um) I ′′.

Finally, since (∅,Om,Um) is consistent, the points (i) and (ii) of the definition of
αm+1
→ imply

that there exists I ′′ such that I ⇒T
(∅,Om,Um) I

′′ and I ′′ ⇒T
(∅,occm+1,postm+1) I

′ iff it holds that

I ⇒T
(∅,Om+1,Um+1) I

′.

(c) follows directly from (b) and the definition of executability. o

A non-deterministic procedure which decides whether the planning task Π has a solution
is presented in Figure 6.1. The procedure searches for an executable sequence of consistent
actions from Op[Ind] which transforms the initial state S0 = (∅, ∅) into a state SΓ = (OΓ,UΓ) ∈
O × U such that T ,ASΓ |= Γ 5 (goal state). We use ε do denote the empty action (∅, ∅, ∅).
Since the size of the search space O×U is bounded by 2|Locc|+|Lpost|, there is no need to search
for longer sequences than n := 2|Locc|+|Lpost|.

Lemma 6.2.2. Let Π = (Ind, T ,Op,A,Γ) be an unconditional planning task. Then Π has a
solution iff PLANEX(Π) returns “TRUE”.

Proof. “⇒” Let the plan α1, . . . , αk be a solution to Π such that k ≤ n. Let α1, . . . , αn=
α1, . . . , αk, ε, . . . , ε be obtained by appending n − k empty actions to α1, . . . , αk. Since
α1, . . . , αk is a solution to Π, we have that (i) α1, . . . , αn is executable in A w.r.t. T ; (ii)
T ,Aα1,...,αn |= Γ; and (iii) αi is consistent for 1 ≤ i ≤ n. By Lemma 6.2.1, we have that the
run of PLANEX(Π) which guesses the sequence of actions α1, . . . , αn, returns “TRUE”.

“⇐” Let PLANEX(Π) returns “TRUE”. Then there exists a sequence of consistent

actions α1, . . . , αn such that S0
α1→ S1 · · ·

αm→ Sn and (i) T ,ASi−1 |= prei for 1 ≤ i < n; (ii)
T ,ASn |= Γ. Let i1 < · · · < ik be such that {i1, . . . , ik} is maximal subset of {1, . . . , n}
with αi ∈ Op[Ind] (or alternatively αi 6= ε, if ε 6∈ Op[Ind]). By Lemma 6.2.1, we have that
αi1 , . . . , αik is a solution to Π. o

5From now on, if S = (O,U), we write S as an abbreviation for the action (∅,O,U).

6.2 Unconditional PLANEX 107

PLANEX(Π)
i := 0; S0 := (∅, ∅); n := 2|Locc|+|Lpost|;
while i < n

guess α = (pre, occ, post) ∈ Op[Ind] ∪ {ε}
if post inconsistent or T ,ASi 6|= pre

then return “FALSE”
compute Si+1 such that Si

α
→ Si+1

i := i+ 1
if T ,ASn 6|= Γ

then return “FALSE”
return “TRUE”

Figure 6.1: (Non-deterministic) Unconditional PLANEX Algorithm

Clearly, PLANEX(Π) works in NPSpace with a “projection oracle”. If projection is in
PSpace, then PLANEX is obviously in NPSpace. By using Savitch’s result [Sav70] that
PSpace = NPSpace, we obtain that PLANEX is then in PSpace. Similarly, if projection
is in ExpTime, since NPSpace ⊆ ExpTime, we have that PLANEX can be decided in
ExpTime.

Finally, we will show the less straightforward result that PLANEX is in co-NExpTime if
projection is in co-NExpTime. To this end, we develop an alternative NExpTime algorithm
which returns “TRUE” iff the planning task Π has no solution. Note that Π has no solution
iff in every run of the PLANEX(Π) algorithm (corresponding to a different plan α1, . . . , αn
in Π), at least one of the tests T ,ASi |= prei+1 or T ,ASn |= Γ fails.

Let S := O × U and Q := {pre | α = (pre, occ, post) ∈ Op[Ind] and α consistent} ∪ {Γ}.
The alternative (non-deterministic) algorithm noPLANEX(Π) has three steps:

(i) guess a subset T of S × Q;

(ii) check whether for all tuples (S,Q) ∈ T it holds that T ,AS 6|= Q;

(iii) check if the following holds: in every run of the original PLANEX(Π) procedure, there
is at least one projection test T ,AS |= Q? such that (S,Q) ∈ T .

If (ii) and (iii) give positive answers, noPLANEX(Π) returns “TRUE”, and otherwise
“FALSE”. It is not difficult to see that (i) and (ii) can be executed in NExpTime and that
(iii) can be checked in ExpTime. Thus, noPLANEX(Π) can be executed in NExpTime.
We obtained the following lemma:

Lemma 6.2.3. Let L ∈ {ALC,ALCO,ALCI,ALCQ,ALCIO,ALCQO,ALCQI,ALCQIO}.
Unconditional PLANEX in L has the same upper complexity bound as projection in L.

We show that the upper complexity bounds established in Lemma 3.2.1 are tight by the
following easy reduction of projection to PLANEX. Let A be an ABox, α an update (i.e., an
action with empty pre-conditions and empty occlusions and only with unconditional post-
conditions), and ϕ an assertion, such that Aα 6|= ϕ. We define the planning task ΓA,α,ϕ

as

ΓA,α,ϕ := (∅, ∅, {α},A, {ϕ}).

108 Planning

Note that, in case of an update, it does not make a difference whether it is applied one or
more times. It is not difficult to see that Aα |= ϕ iff ΓA,α,ϕ has a solution.

Since the lower bounds for projection from Theorem 3.2.1 hold already in the case of the
empty TBox and an update, we conclude that the complexity bounds from Lemma 6.2.3 are
optimal, i.e., the unconditional plan existence problem is of exactly the same computational
complexity as projection.

Theorem 6.2.4. The unconditional plan existence problem is:

(a) PSpace-complete in ALC, ALCO, ALCQ, and ALCQO;

(b) ExpTime-complete in ALCI and ALCIO;

(c) co-NExpTime-complete in ALCQI and ALCQIO.

6.3 Conditional PLANEX

If we allow for conditional post-conditions in operators, the complexity results from the
previous section do not hold anymore. With conditional post-conditions, already in the
propositional case, conformant PLANEX is ExpSpace-hard [HJ99, Rin04]. In this section
we will show that conditional PLANEX is decidable for DLs between ALC and ALCQIO.
Decidability will be shown by a 2-ExpSpace algorithm.

Let Π = (Ind, T ,Op,A,Γ) be a conditional planning task for which we want to decide if
it has a solution. For the sake of simplicity, we assume that occlusions in operators from Op
are empty, i.e. operators are of the form (pre, post). Non-empty occlusions can be treated
similarly as in the previous section. We will also use abbreviations introduced in the previous
section.

In case of unconditional planning, which was treated in the previous section, the states
of a search space could compactly be described as updates (assuming that occlusions are
empty). Intuitively, a state (update) U stands for the interpretation IU

T
6, for all initial

models I of A and T . If U describes the state obtained by applying a sequence of actions
α1, . . . , αk in I, then U is simply obtained by “merging” the unconditional post-conditions
of α1, . . . , αk. Thus, to every fixed sequence of actions α1, . . . , αk, the same U corresponds,
independently of the initial interpretation I. However, in conditional planning, this is not the
case: different initial models I of A and T cause different combinations of αi-post-conditions
to be triggered, and thus there is no single update which can compactly describe the effect
of applying α1, . . . , αk in all initial models I. Instead, we partition the set of all initial I
into finitely (double-exponentially) many classes Ii, such that for all I from the same class
Ii, the same update Ui describes the effects of α1, . . . , αk. Thus, the search space will be a
mapping, assigning an update Ui to every class Ii.

Formally, we set

Lpost := {ψ | ϕ/ψ ∈ post, α = (pre, post), α ∈ Op[Ind]}

and

Cpost := {ϕ | ϕ/ψ ∈ post, α = (pre, post), α ∈ Op[Ind]}.

6Recall that IU
T denotes the unique interpretation I ′ such that I ⇒T

U I′.

6.3 Conditional PLANEX 109

An update in Π is a consistent subset of Lpost. Let U be the set of all updates in Π. A context
C in Π is a consistent subset of Cpost ∪¬Cpost such that for every ϕ ∈ Cpost, it is the case that
either ϕ ∈ C or ¬ϕ ∈ C. Moreover, let C be the set of all contexts in Π.

Let m be a mapping m : U → C. With m we associate a set I(m) of models of A and T
defined with:

I(m) := {I | I |= T ,A and IU
T |= m(U) for all U ∈ U}

We say that m is admissible iff I(m) 6= ∅, i.e. m stands for a non-empty class of models of
A and T . Intuitively, if m(U) = C, it means that after updating an I ∈ I(m) with U , all
assertions from C will hold. Let M be the set of all admissible mappings m : U → C.

Lemma 6.3.1. Let I be a model of T and A. Then there exists a unique m ∈ M such that
I ∈ I(m).

Proof. For U ∈ U, we set: m(U) = {ϕ | ϕ ∈ Cpost ∪ ¬Cpost and IU
T |= ϕ}. Then m(U) is

obviously a context in Π for all U ∈ U, and thus m maps U to C. Moreover, it is obvious that
I ∈ I(m), which implies that m is admissible, i.e., m ∈ M.

It remains to show that m is unique. Assume, to the contrary, that there exists an
m′ ∈ M, m 6= m′, such that I ∈ I(m′). Let U ∈ U be such that m(U) 6= m′(U). Since m(U)
and m′(U) are both contexts in Π, this means that there is a ϕ̂ ∈ Cpost ∪ ¬Cpost such that
ϕ̂ ∈ m(U) and ¬ϕ̂ ∈ m′(U). But then I ∈ I(m) ∩ I(m′) implies that IU

T |= ϕ̂ and IU
T |= ¬ϕ̂,

which is a contradiction. o

The search space S is the set of all mappings S : M → U. Every S ∈ S should be
understood in the following way: if the “initial model” I of A and T is in I(m), then the
state described by S corresponds to IU

T , where U = S(m).

If B is an ABox, we write T ,AS |=∗ B iff for all I such that I |= A, T the following holds:

if m is (the unique) element of M such that I ∈ I(m), then I
S(m)
T |= B.

Intuitively, S0 ∈ S such that S0(m) = ∅ for all m ∈ M represents the initial state of the
search space, and all S ∈ S such that T ,AS |=∗ Γ represent goal states. Similarly as in the
previous section, we define the transition relation

α
→ on S × S. For S,S ′ ∈ S, m ∈ M, and

α = (pre, post) we set

postα,S,m := {ψ | ϕ/ψ ∈ post, ϕ ∈ m(S(m))}.

We say that α transforms S into S ′ (written S
α
→ S ′) iff

S ′(m) = (S(m) \ ¬postα,S,m) ∪ postα,S,m for all m ∈ M

Then the following lemma holds:

Lemma 6.3.2. Let Π = (Ind, T ,Op,A,Γ) be a planning task and let α = α1, . . . , αk with
αi = (prei, posti) be a plan in Π. Let S0 ∈ S be defined with S0(m) = ∅ for all m ∈ M.
Moreover, let S1, . . . ,Sk be such such that

S0
α1→ S1 · · ·

αk→ Sk.

Then the following holds:

(a) Si ∈ S for all i ≤ k:

110 Planning

condPLANEX(Π)
i := 0; S0(m) = ∅ for all m ∈ M;

while i < 2|Lpost|·2
|Cpost|·2

|Lpost|

if T ,ASi |=∗ Γ
then return “TRUE”

guess a α = (pre, post) ∈ Op[Ind]
if α inconsistent or T ,ASi 6|=∗ prei+1

then return “FALSE”
compute Si+1 such that Si

α
→ Si+1

i := i+ 1
return “FALSE”

Figure 6.2: Conditional PLANEX Algorithm

(b) Let I be an interpretation such that I |= A, T , and let m ∈ M be such that I ∈ I(m).
Then for all interpretations I ′ and for all 1 ≤ i ≤ k, we have that I ⇒T

α1,...,αi
I ′ iff

I ⇒T
Si(m) I

′.

(c) T ,ASi |=∗ B iff T ,Aα1,...,αi |= B for an ABox B, for all i ≤ k.

(d) T ,ASi |=∗ prei+1 for all i < k iff α1, . . . , αk is executable in A w.r.t. T .

Proof. (a) Since actions α1, . . . , αk are consistent with T (by definition of a plan in Π), and
m ∈ M are admissible we have that Si(m) is consistent for all i ≤ k and m ∈ M, and thus
Si(m) ∈ U. Hence Si ∈ S for all i ≤ k.

(b) Proof by induction on i. For i = 0 trivial since S0(m) = ∅ for all m ∈ M. Assume
that the claim holds for i = l. We show that then the same for i = l + 1 is implied. Let
I ⇒T

α1,...,αl,αl+1
I ′. This holds iff there exists an I ′′ such that I ⇒T

α1,...,αl
I ′′ and I ′′ ⇒T

αl+1
I ′.

By I.H., this is further equivalent to I ⇒T
Sl(m) I ′′ and I ′′ ⇒T

αl+1
I ′ (i.e. I

Sl(m)
T ⇒T

αl+1
I ′).

Since I ∈ I(m), it holds that I
Sl(m)
T |= m(Sl(m)). This means that for all ϕ/ψ ∈ postl+1,

it holds that I
Sl(m)
T |= ϕ iff ϕ ∈ m(Sl(m)). This implies that postαl+1,Sl,m

:= {ψ | ϕ/ψ ∈

postl+1, I
Sl(m)
T |= ϕ}. By definition of

αl+1
→ we have that I

Sl(m)
T ⇒T

αl+1
I ′ iff I ′ = I

Sl+1(m)
T .

(c) is a direct consequence of (b) and the definition of |=∗;

(d) is a direct consequence of (c) and the definition of executability. o

The number of different mappings m : U → C is at most 2|Cpost|·2
|Lpost|

, and thus |M| ≤

2|Cpost|·2
|Lpost|

. Thus, for the search space S, we have that |S| ≤ 2|Lpost|·2
|Cpost|·2

|Lpost|

. The (non-
deterministic) algorithm condPLANEX(Π) for conditional PLANEX is presented in Figure
6.2.

Lemma 6.3.3. condPLANEX(Π) returns “TRUE” iff the conditional planning task Π has
a solution.

Proof. The claim of this lemma holds as an easy consequence of Lemma 6.3.2 and the fact

that the size of the search space |S| is at most 2|Lpost|·2
|Cpost|·2

|Lpost|

: o

6.4 Results on Planning in EL 111

Lemma 6.3.4. For DLs between ALC and ALCQIO:
(a) it can be decided in a double exponential space (in the size of the planning task Π)

whether a mapping m : U → C is admissible;
(b) it can be decided in a double exponential space (in the size of Π) whether T ,AS |=∗ B,

where B is an ABox from the set {pre | α = (pre, post) ∈ Op[Ind]} ∪ {Γ}

Proof. (a) Let m : U → C. The problem of whether m is admissible can be reduced to
ABox consistency. A reduction is analogous to the one presented in Section 3.2.1 and we
restrain ourselves from presenting it in detail. The idea is to introduce concept names A(U)

and T
(U)
C and role names r(U) for all U ∈ U and for all concept names A, complex concepts

C and role names r from Π respectively. They stand for extensions of A, C and r in the
interpretation IU

T , respectively. The reduction acyclic TBox Tm, similarly to Tred from Section

3.2.1, ensures that T
(U)
C is indeed interpreted as C in the interpretation IU

T . The reduction
ABox Am, analogously to Ared from Section 3.2.1, ensures that the assertions from the initial
ABox hold in the interpretation I∅

T , and that A(∅) and A(U) (and r(∅) and r(U)) are related
in the correct way for every U ∈ U \ {∅}. Finally, Am contains the following assertions for
every U ∈ U:

{T
(U)
C (a) | C(a) ∈ m(U)} ∪ {r(U)(a, b) | r(a, b) ∈ m(U)} ∪ {¬r(U)(a, b) | ¬r(a, b) ∈ m(U)}

Then Am is consistent w.r.t. Tm iff m is admissible. Moreover, the size of Am and Tm is
exponential in the size of Π (since |U| is exponential in |Π|). Since in ALCQIO and its
sublogics, ABox consistency can be decided in a space exponential in the size of input ABox
and TBox, we conclude that admissibility of m can be decided in a space double exponential
in |Π|.

(b) It can be decided whether T ,AS |=∗ B in the following way: For every m ∈ M, we

construct an ABox Am and an acyclic TBox Tm as described in (a). Moreover, let T
S(m)
B be

defined analogously to T
(n)
B from Observation 3.2.4. It is not difficult to see that T ,AS |=∗ B

iff Tm,Am |= T
S(m)
B for all m ∈ M. Obviously, this boils down to double-exponentially many

ABox consequence checks (each of them can be performed in a space double exponential in
|Π|). We have thus shown that (b) holds. o

Lemma 6.3.4 (a) implies the set M of admissible mappings m : U → C can be constructed
and stored in 2-ExpSpace. Moreover, the search space S is 3-exponential in the size of
Π, and thus condPLANEX(Π) requires 2-NExpSpace with a “|=∗ oracle”. Since |=∗ can
be decided in 2-ExpSpace by Lemma 6.3.4 (b), conditional PLANEX is in 2-NExpSpace.
Since 2-NExpSpace =2-ExpSpace [Sav70], we obtain the following theorem:

Theorem 6.3.5. The conditional plan existence problem is in 2-ExpSpace in the DLs be-
tween ALC and ALCQIO.

The obtained 2-ExpSpace upper complexity bound for conditional PLANEX does not
match the ExpSpace lower complexity bound inherited from the propositional logic. We
leave the exact computational complexity of conditional PLANEX in ALC and its extensions
as open problem.

6.4 Results on Planning in EL

In this section we will present adaptations of hardness reductions for PLANEX in the propo-
sitional logic by Bylander [Byl94] and Rintanen [Rin04] to PLANEX in EL. Thus we show

112 Planning

that (PSpace and ExpSpace) hardness results from propositional planning carry over to
(conditional and unconditional) planning in EL.

6.4.1 Hardness Results for Unconditional PLANEX in EL

Bylander [Byl94] showed that PLANEX in basic (propositional) STRIPS is PSpace-hard by
reducing the acceptance problem of a deterministic Turing machine with a polynomial space
bound to PLANEX. We will present a variation of his reduction, using DL syntax. Since
the reduction uses negated assertions only in (unconditional) post-conditions, we obtain that
unconditional PLANEX in EL without TBoxes is also PSpace-hard.

Recall that a deterministic Turing machine is a tuple (Q,Σ, δ, q0, F), where

• Q = {q0, . . . , qn} a finite set of states;

• Σ = {blank, a1, . . . , al} a finite alphabet;

• δ : Q× Σ → Q× Σ × {L,R} is a transition function;

• q0 is the initial state;

• F ⊆ Q is the set of final states.

LetM = (Q,Σ, δ, q0, F) be a deterministic Turing machine with a polynomial space bound
p(x), and let a = ai0 , . . . aik ∈ Σ∗ be an input word. This means that M will use m = p(k)
tape cells in its run.

We define a planning task ΠM,a = (IndM,a, ∅,OpM,a,AM,a,ΓM,a) such that a planner for Π
simulates moves of the Turing MachineM . In the reduction, we use concept namesQ0, . . . , Qn
to represent the states q0, . . . , qn, concept names Blank, A1, . . . , Al, to represent elements of
alphabet Σ, concept name Accept which denotes the acceptance of the Turing machine and the
role name right denoting the next tape cell on the right. Moreover, individuals t0, t1, . . . , tm
denote the tape cells of M .

The set of individuals IndM,a, the initial state AM,a, the goal ΓM,a, and the set of operators
OpM,a are defined with:

IndM,a := {t0, t1, . . . , tm}

AM,a := {Q0(t0), Ai0(t0), . . . , Aik(tk),Blank(tk+1), . . . ,Blank(tm)}

∪{right(t0, t1), . . . , right(tm−1, tm)}

ΓM,a := {Accept(t0)}

OpM,a :=
⋃

qf∈F

{acceptqf (x)} ∪

⋃

δ(q,a)=(q′,b,R)

{rightq,a,q′,b(x, y)} ∪
⋃

δ(q,a)=(q′,b,L)

{leftq,a,q′,b(x, y)}

6.4 Results on Planning in EL 113

where the single operators (of the form (pre, post), occ = ∅ for all operators) are defined as
follows:7

rightq,a,q′,b(x, y) := ({Q(x), A(x), right(x, y)}, {¬Q(x),¬A(x), B(x), Q′(y)})

leftq,a,q′,b(x, y) := ({Q(x), A(x), right(y, x)}, {¬Q(x),¬A(x), B(x), Q′(y)})

acceptqf (x) := ({Qf (x)}, {Accept(t0)})

Although the reduction we presented is syntactically very similar to the one from [Byl94],
the explanation of why it is correct is slightly different. Unlike in [Byl94], the ABox AM,a

is interpreted w.r.t. open world semantics, which means that it also admits models in which
the Turing machine may initially be in more than one state, and in which tape cells can
be multiply labelled. However, the potential plan has to achieve the goal starting from
any model of AM,a, including also its minimal model I0 satisfying only atomic assertions
listed in AM,a. It is not difficult to see that I0 can be transformed by a sequence of OpM,a

operators into I such that I |= Accept(t0) iff the Turing machine M accepts the input a.
Moreover, a plan successful for I0 is successful for any other model of AM,a. Hence the
Turing machine M accepts the input a iff there is a solution to the planning task ΠM,a =
(IndM,a, ∅,OpM,a,AM,a,ΓM,a).

As a consequence we obtain the following lemma.

Lemma 6.4.1. The unconditional plan existence problem in EL is PSpace-hard, even if the
TBox in the planning task is empty.

The matching upper complexity bound for unconditional PLANEX in EL with TBoxes
follows from results for ALC in Theorem 6.2.4.

Theorem 6.4.2. The unconditional plan existence problem in EL is PSpace-complete, both
with empty and non-empty (acyclic) TBoxes.

6.4.2 Hardness Results for Conditional PLANEX in EL

Rintanen [Rin04] showed that conformant PLANEX in propositional logic is ExpSpace-hard
by reducing the acceptance problem of a deterministic Turing machine with an exponential
space bound to conformant PLANEX. Since Rintanen’s reduction makes a heavy use of
disjunction in order to express the uncertainty about the initial state, as well as negation, we
have to find a way to simulate both negation and disjunction in the initial ABox and action
pre-conditions. Our adaption of Rintanen’s reduction shows that conditional PLANEX in
EL without TBoxes is also ExpSpace-hard.

Let M = (Q,Σ, δ, q0, F) be a deterministic Turing machine with an exponential space
bound 2p(x), and let a = ai0 , . . . aik ∈ Σ∗ be an input word. This means that M will use
m = 2p(k) tape cells in its run. The idea od Rintanen’s reduction is to keep track of only
one tape cell, called the watched tape cell, rather than encoding all tape cells in the planing
task. The uncertainty in the initial state of Rintanen’s reduction is about which tape cell is
watched.

7Operators rightq,a,q′,b(x, y) and leftq,a,q′,b(x, y) are defined under assumption that a 6= b. In case a = b,
the post-condition of these operators should simply be {¬Q(x), Q′(y)}.

114 Planning

Let Σ = {blank, a1, . . . , al} and Q = {q0, . . . , qn}. As in the previous reduction, we
use concept names Q0, . . . , Qn to represent the states of Q and the concept name Accept
to denote the acceptance of the input. Concept names H0, H1, . . . , Hp(k)−1 are used as the
binary representation of the position of the head of the Turing machine, while concept names
W0,W1, . . . ,Wp(k)−1 represent the position of the watched tape cell. Contents of the watched
tape cell will be represented by concepts Cblank,Ca1 , . . . ,Cal

. Moreover, we will use concept
names GOright and GOleft to describe that the head can move right or left, respectively.
Finally, we introduce auxiliary concept names Start1, Start2, Aux, HeqW and OKc for c ∈ Σ,
to be explained later. In order to simulate negation in action pre-conditions, we introduce
concept names H0, H1, . . . , Hp(k)−1, and W 0,W 1, . . . ,W p(k)−1, such that H i stands for ¬Hi,

and similar for W i.
Let m < 2p(k), and let Wm

i denote Wi if ith bit of m is 1, and W i, otherwise. Then the
abbreviation Watched=m, defined with

Watched=m := Wm
0 u · · · u Wm

p(k)−1.

denotes that the position of the watched tape cell is m. Moreover, let d = [log2(m+ 1)] + 1.
Then Watched>m denotes the following set of concepts which describe that the position of
the watched tape cell is greater than m:

Watched>m := {Watched=i | m ≤ i ≤ 2d − 1} ∪ {Wi | d ≤ i ≤ p(k) − 1}.

The reduction we present is essentially propositional, and all ABox assertions we use are
of the form C(m), where C is a conjunction of concept names (or a negated concept name),
and m is a fixed individual name. For better readability we will abuse the notation and write
only C instead of C(m). Moreover, we will use ϕ/{ψ1, ψ2} to abbreviate ϕ/ψ1, ϕ/ψ2 in the
post-conditions of actions. We define Head++ to be a set of conditional post-conditions that
increase the position of the head by one:

Head++ := {H0/{H0,¬H0}, H0/{H0,¬H0},

H1 uH0/{H1,¬H1}, H1 uH0/{H1,¬H1},

. . .

Hp(k)−1 uHp(k)−2 u · · · uH1 uH0/{Hp(k)−1,¬Hp(k)−1}}

In a similar way, we can define Head−−, a set of conditional post-conditions that decrease
the position of the head by one. Now we define a planning task

ΠM,a = (∅, ∅,OpM,a,AM,a,ΓM,a)

such that a planner for Π simulates moves of the Turing Machine M . The initial state AM,a,
the goal ΓM,a, and the set of operators OpM,a are defined with:

AM,a := {H0, . . . , Hp(k)−1,W 0,W 1, . . . ,W p(k)−1,GOright, Start1}

ΓM,a := {Accept}

OpM,a := {start1, start2, accept} ∪
⋃

a∈Σ

auxa

⋃

δ(q,a)=(q′,b,R)

{rightq,a,q′,b} ∪
⋃

δ(q,a)=(q′,b,L)

{leftq,a,q′,b}

6.4 Results on Planning in EL 115

For all operators from OpM,a, sets of occlusions are empty, and we will write them in the
form (pre, post). The operators start1 and start2 are designed in such a way that their pre-
conditions ensure that start1, start2 is a prefix of every plan that solves ΠM,a. This is enforced
by concepts Start1 and Start2 in their pre-conditions. Post-conditions of start1 ensure that
H i is equivalent to ¬Hi and W i is equivalent to ¬Wi, for i < p(k). Post-conditions of start2
ensure that, after its execution:

• the machine is in the initial state q0, and only in that state.

• if the watched cell position is m, then the contents of the cell is am, for m ≤ k, and the
contents is blank, if m > k.

Note that world states obtained after executing start1, start2 in AM,a correspond to the
initial state from Rintanen’s [Rin04] reduction.

start1 := ({Start1}, {>/¬Hi,Wi/¬W i | i < p(k)} ∪ {¬Start1, Start2})

start2 := ({Start2}, {Q0,¬Q1, . . . ,¬Qn,¬Start2

¬OKa1 , . . . ,¬OKal
,¬OKblank,

Watched=0/Cai0
, . . . ,Watched=k/Caik

} ∪

{X/Cblank | X ∈ Watched>k})

The auxiliary operators auxa, for a ∈ Σ are supposed to precede “transition” operators
rightq,a,q′,b and leftq,a,q′,b. Truth values of Aux and OKa ensure that auxa and rightq,a,q′,b (or
leftq,a,q′,b) are executed alternatingly. The purpose of auxa is to evaluate concepts HeqW and
OKa, which appear in the pre-conditions and the premises of post-conditions of the transition
operators. It is ensured that

HeqW ≡ ¬
(
(H0 uW 0) t (H0 uW0) t · · · t (Hp(k)−1 uWp(k)−1)

)

i.e., HeqW holds if and only if the head position and the watched cell position coincide.
Moreover, it is achieved that OKa ≡ HeqW → Ca, i.e., OKa is true iff the following holds: if
the head points at the watched cell, then the content of the cell is a. Finally, GOright is set
to false if the head is at the rightmost tape cell, and similar for GOleft.

auxa := ({Aux}, {>/¬Aux, Ca/OKa,

H0 uW 0/{OKa,¬HeqW},

H0 uW0/{OKa,¬HeqW},

. . .

Hp(k)−1 uW p(k)−1/{OKa,¬HeqW},

Hp(k)−1 uWp(k)−1/{OKa,¬HeqW},

H0 uH1 u · · · uHp(k)−1/¬GOright,

H0 uH1 u · · · uHp(k)−1/¬GOleft}),

116 Planning

The transition operators and the accepting operator are defined as follows:8

rightq,a,q′,b := ({Q,OKa,GOright}, {¬Q, Q′, HeqW/{¬Ca,Cb},

GOleft, ¬OKa, Aux, HeqW} ∪ Head++)

leftq,a,q′,b := ({Q,OKa,GOleft}, {¬Q, Q′, HeqW/{¬Ca,Cb},

GOright, ¬OKa, Aux, HeqW} ∪ Head−−)

accept := (∅, {Qf/Accept | qf ∈ F})

A correct simulation of the Turing Machine is obtained assuming that when operator rightq,a,q′,b
(or leftq,a,q′,b) is executed, the current tape symbol is a. Post-conditions HeqW/{¬Ca,Cb} de-
scribe that the new symbol in the watched tape cell is b and not a anymore. It is not difficult
to see that the Turing machine M accepts the input a iff there is a solution to the planning
task ΠM,a = (∅, ∅,OpM,a,AM,a,ΓM,a). As a consequence we obtain the following result.

Theorem 6.4.3. The conditional plan existence problem in EL is ExpSpace-hard, even if
the TBox in the planning task is empty.

Our adaption of the reduction from [Rin04] shows that the ExpSpace-hardness result
holds for propositional logic even if we disallow disjunction and negation in operator pre-
conditions and premises of post-conditions.

We conjecture that conditional PLANEX in EL is ExpSpace-complete. To show the
matching upper complexity bound, one would have to modify the filtration method from
Section 4.1.1 in such a way that the size of counter-models for projection is bounded by
the size of the initial ABox and the sizes of concept assertions appearing in pre- and post-
conditions of all ground instances of the operators.

8As in the previous section, we assume that a 6= b in the definitions of operators rightq,a,q′,b and leftq,a,q′,b.
If a = b, HeqW/{¬Ca, Cb} should be omitted from their post-conditions.

Chapter 7

Description Logics with Concrete

Domains

This technical chapter is different from the previous ones in the sense that it is dedicated
to decidable extensions of description logics. Its goal is to advance the knowledge about
decidable DLs that include the expressive means concrete domains and general TBoxes.
As already discussed in the introduction, the purpose of concrete domains is to enable the
definition of concepts with reference to concrete qualities of their instances such as the weight,
age, duration, and spatial extension. General TBoxes play an important role in modern
DLs as they allow to represent background knowledge of application domains by stating via
inclusions C v D that the extension of a concept C is included in the extension of a concept
D.

Our contribution is two-fold: first, instead of focusing on particular concrete domains
as in previous work [Lut04a, Lut02a], we identify a general property of concrete domains,
called ω-admissibility, that is sufficient for proving decidability of DLs equipped with concrete
domains and general TBoxes. For defining ω-admissibility, we concentrate on a particular
kind of concrete domains: constraint systems. Constraint systems and ω-admissibility are
introduced in Section 7.1. Roughly, a constraint system is a concrete domain that only has
binary predicates, which are interpreted as jointly exhaustive and pairwise disjoint (JEPD)
relations. We exhibit two example constraint systems that are ω-admissible: a temporal one
based on the real line and the Allen relations [All83], and a spatial one based on the real
plane and the RCC8 relations [EF91, RCC92]. In Section 7.2, we introduce the description
logic ALC(C) that incorporates the constraint system C into the basic DL ALC.

Second, in Section 7.3 we develop a tableau algorithm for ALC(C) with general TBoxes.
This algorithm is used to establish a general decidability result for the concept satisfiabil-
ity and subsumption problem in ALC equipped with general TBoxes and any ω-admissible
concrete domain C. Soundness, completeness and termination of the algorithm are proved in
Section 7.4. As state-of-the-art DL reasoners are based on tableau algorithms similar to the
one described in this chapter, we view our algorithm as a first step towards an efficient im-
plementation of description logics with (ω-admissible) concrete domains and general TBoxes.
In contrast to existing tableau algorithms [HMW01, HS01], we allow the concrete domain
constructor to have feature chains of length greater than one. In particular, in Section 7.5
we identify an expressive fragment of our logic that should be easily integrated into existing
DL reasoners.

118 Description Logics with Concrete Domains

7.1 Constraint Systems

We introduce a general notion of constraint system that is intended to capture standard
constraint systems based on a set of jointly-exhaustive and pairwise-disjoint (JEPD) binary
relations. Examples for such systems include spatial constraint networks based on the RCC8
relations [EF91, Ben97, RN99] or on cardinal direction relations [Fra96], and temporal con-
straint networks based on Allen’s relations of time intervals [All83, VKvB90, NB95] or on
relations between time points [VK86, VKvB90].

Definition 7.1.1 (Rel-network). Let Var be a countably infinite set of variables and Rel a
finite set of binary relation symbols. A Rel-constraint is an expression (x r y) with x, y ∈ Var
and r ∈ Rel. A Rel-network is a (finite or infinite) set of Rel-constraints. For N a Rel-network,
we use VN to denote the variables used in N . We say that N is complete if, for all x, y ∈ VN ,
there is exactly one constraint (x r y) ∈ N . 4

We define the semantics of Rel-network by using complete Rel-networks as models. Intuitively,
the nodes in these complete networks should be viewed as concrete values rather than as
variables. Equivalently to our network-based semantics, we could proceed as in constraint
satisfaction problems, associate each variable with a set of values, and view relations as
constraints on these values, see e.g. [RN95].

Definition 7.1.2 (Model, Constraint System). Let N be a Rel-network and N ′ a com-
plete Rel-networks. We say that N ′ is a model of N if there is a mapping τ : VN → VN ′ such
that (x r y) ∈ N implies (τ(x) r τ(y)) ∈ N ′.

A constraint system C = 〈Rel,M〉 consists of a finite set of binary relation symbols Rel
and a set M of complete Rel-networks (the models of C). A Rel-network N is satisfiable in C
if M contains a model of N . 4

To emphasize the different role of variables in Rel-networks and in models, we denote variables
in the former with x, y, . . . and in the latter with v, v′, etc. Note that Rel-networks used as
models have to be complete, which corresponds to the relations in Rel to be jointly exhaustive
and mutually exclusive.

Equivalently to our network-based semantics, we could proceed as in constraint satisfac-
tion problems, associate each variable with a set of values, and view relations as constraints
on these values, see e.g. [RN95].

In the following two subsections, we introduce two example constraint systems: one for
spatial reasoning based on the RCC8 topological relations in the real plane, and one for
temporal reasoning based on the Allen relations in the real line.

7.1.1 RCC8

The RCC8 relations, which are illustrated in Figure 7.1, are intended to describe the relation
between regions in topological spaces [RCC92]. In this chapter, we will use the standard
topology of the real plane which is one of the most appropriate topologies for spatial reasoning.
Let

RCC8 = {eq, dc, ec, po, tpp, ntpp, tppi, ntppi}

denote the RCC8 relations. Recall that a topological space is a pair T = (U, I), where U is a

7.1 Constraint Systems 119

s t s t ts ts

s po t s eq t

stt ss t s t

s ntppi ts tppi t

s tpp t s ntpp ts dc t s ec t

Figure 7.1: The eight RCC8 relations.

set and I is an interior operator on U , i.e., for all s, t ⊆ U , we have

I(U) = U I(s) ⊆ s

I(s) ∩ I(t) = I(s ∩ t) II(s) = I(s).

As usual, the closure operator C is defined as C(s) = I(s), where t = U \ t, for t ⊆ U . As the
regions of a topological space T = (U, I), we use the set of non-empty, regular closed subsets
of U , where a subset s ⊆ U is called regular closed if CI(s) = s. Given a topological space
T and a set of regions UT, we define the extension of the RCC8 relations as the following
subsets of UT × UT:

(s, t) ∈ dcT iff s ∩ t = ∅
(s, t) ∈ ecT iff I(s) ∩ I(t) = ∅ ∧ s ∩ t 6= ∅
(s, t) ∈ poT iff I(s) ∩ I(t) 6= ∅ ∧ s \ t 6= ∅ ∧ t \ s 6= ∅
(s, t) ∈ eqT iff s = t

(s, t) ∈ tppT iff s ∩ t = ∅ ∧ s ∩ I(t) 6= ∅ ∧ s 6= t

(s, t) ∈ ntppT iff s ∩ I(t) = ∅ ∧ s 6= t

(s, t) ∈ tppiT iff (t, s) ∈ tppT

(s, t) ∈ ntppiT iff (t, s) ∈ ntppT.

Let T �
2 be the standard topology on 2 induced by the Euclidean metric, and let RS �

2 be
the set of all non-empty regular closed subsets of T �

2 . Then we define the constraint system

RCC8 �
2 = 〈RCC8,M �

2〉

by setting M �
2 := {N �

2}, where N �
2 is defined by fixing a variable vs ∈ Var for every

s ∈ RS �
2 and setting

N �
2 := {(vs r vt) | r ∈ RCC8, s, t ∈ RS �

2 and (s, t) ∈ rT � 2}.

Note that using only regular closed sets excludes sub-dimensional regions such as points and
lines. This is necessary for the RCC8 relations to be jointly exhaustive and pairwise disjoint.

7.1.2 Allen’s Relations

In artificial intelligence, constraint systems based on Allen’s interval relations are a popular
tool for the representation of temporal knowledge [All83]. Let

Allen = {b, a,m,mi, o, oi, d, di, s, si, f, fi,=}

120 Description Logics with Concrete Domains

black b gray
gray a black

black m gray
gray mi black

black o gray
gray oi black

black d gray
gray di black

black s gray
gray si black

black f gray
gray fi black

Figure 7.2: The thirteen Allen relations.

denote the thirteen Allen relations. Examples of these relations are given in Figure 7.2. As
the flow of time, we use the real numbers with the usual ordering. Let Int � denote the set
of all closed intervals [r1, r2] over with r1 < r2, i.e., point-intervals are not admitted. The
extension r

�
of each Allen relation r is a subset of Int � × Int � . It is defined in terms of the

relationships between endpoints in the obvious way, c.f. Figure 7.2. We define the constraint
system

Allen � = 〈Allen,M � 〉

by setting M � := {N � }, where N � is defined by fixing a variable vi ∈ Var for every i ∈ Int �

and setting
N � := {(vi r vj) | r ∈ Allen, i, j ∈ Int � and (i, j) ∈ r

�
}.

We could also define the constraint system Allen � based on the rationals rather than on the
reals: this has no impact on the satisfiability of finite and infinite Allen-networks (which are
countable by definition). If we use the natural numbers or the integers, this still holds for
finite networks, but not for infinite ones: there are infinite Allen-networks that are satisfiable
over the reals and rationals, but not over the natural number and integers.

7.1.3 Properties of Constraint Systems

We will use constraint systems as a concrete domain for description logics. To obtain sound
and complete reasoning procedures for DLs with such concrete domains, we require that
constraint systems satisfy certain properties. First, we need to ensure that satisfiable networks
(satisfying some additional conditions) can be “patched” together to a joint network that is
also satisfiable. This is ensured by the patchwork property.

Definition 7.1.3 (Patchwork Property). Let C = 〈Rel,M〉 be a constraint system, and
let N,M be finite complete Rel-networks such that, for the intersection parts

IN,M := {(x r y) | x, y ∈ VN ∩ VM and (x r y) ∈ N}

IM,N := {(x r y) | x, y ∈ VN ∩ VM and (x r y) ∈M}

we have IN,M = IM,N . Then the composition of N and M is defined as N ∪M . We say that
C has the patchwork property if the following holds: if N and M are satisfiable then N ∪M
is satisfiable. 4

7.1 Constraint Systems 121

The patchwork property is similar to the property of constraint networks formulated by
Balbiani in [BC02], where constraint networks are combined with linear temporal logic.

For using constraint systems with the DL tableau algorithm presented in this chapter,
we must be sure that, even if we patch together an infinite number of satisfiable networks,
the resulting (infinite) network is still satisfiable. This is guaranteed by the compactness
property.

Definition 7.1.4 (Compactness). Let C = 〈Rel,M〉 be a constraint system. If N is a
Rel-network and V ⊆ VN , we write N |V to denote the network {(x r y) ∈ N | x, y ∈ V } ⊆ N .
Then C has the compactness property if the following holds: a Rel-network N with VN infinite
is satisfiable in C if and only if, for every finite V ⊆ VN , the network N |V is satisfiable in
C. 4

Finally, our tableau algorithm has to check satisfiability of certain C-networks. Thus, we have
to assume that C-satisfiability is decidable. The properties of constraint systems we require
are summarized in the following definition.

Definition 7.1.5 (ω-admissible). Let C = (Rel,M) be a constraint system. We say that C
is ω-admissible iff the following holds:

1. satisfiability of finite C-networks is decidable;

2. C has the patchwork property (c.f. Definition 7.1.3);

3. C has the compactness property (c.f. Definition 7.1.4).
4

In the sections 7.1.3 and 7.1.3, we prove that RCC8 �
2 and Allen � satisfy the patchwork

property and the compactness property. Moreover, satisfiability of finite networks is decidable
in both systems: it is tractable for RCC8 �

2 [RN99] and NP-complete for Allen � [VKvB90].
Thus, RCC8 �

2 and Allen � are ω-admissible.

Properties of RCC8

We show that RCC8 �
2 has the patchwork property and the compactness property. To this

end, we consider a different variant of the constraint system RCC8 �
2 . To introduce it, we

need a couple of definitions. A fork F is a structure 〈WF , RF , πF 〉, where

• WF is a set {bF , rF , `F } of cardinality three,

• RF is the reflexive closure of {(bF , rF), (bF , `F)}, and

• πF : Var → 2WF is a valuation such that, for each x ∈ Var, we have

bF ∈ πF (x) iff `F ∈ πF (x) or rF ∈ πF (x).

A fork model M is a (finite or infinite) disjoint union of forks F0, F1, We write WM

for
⋃
i≥0WFi

, RM for
⋃
i≥0RFi

, and πM (x) for
⋃
i≥0 πFi

(x). We may interpret the RCC8
relations on a fork model M by associating a topological space TM with M : define an
interior operator IM by setting, for all X ⊆WM ,

IMX := {x ∈
⋃

i≥0

WM | ∀y (xRMy → y ∈ X)}

122 Description Logics with Concrete Domains

(and thus CMX = {x ∈WM | ∃y (xRMy ∧ y ∈ X)}). Let RSM denote the set of non-empty
regular closed subsets of WM . We now define the constraint system

RCC8Fork := 〈RCC8,MFork〉

by setting MFork := {NM | M a fork model}, where NM is defined by fixing a variable
vX ∈ Var for every X ∈ RSM and setting

NM := {(vX r vX′) | r ∈ RCC8, X,X ′ ∈ RSM , and (X,X ′) ∈ rTM }.

It was shown by Renz and Nebel that satisfiability of finite constraint networks in RCC8 �
2

coincides with satisfiability in RCC8Fork [RN99]. This was extended to infinite networks in
[LW06]:

Theorem 7.1.6. An RCC8-network is satisfiable in RCC8 �
2 iff it is satisfiable in RCC8Fork.

Due to Theorem 7.1.6, it suffices to prove the patchwork property and compactness for
RCC8Fork. This is what we do in the following. Our proof of the patchwork property is based
on a result of Gabbay et al. [GKWZ03]. To formulate it, we need to introduce the standard
translation [Ben97, RN99] of RCC8-networks to the modal logic S4u, i.e., Lewis’ (uni-modal)
S4 enriched with the universal modality. We refrain from giving the syntax and semantics of
S4u and refer, e.g., to [GKWZ03] for more information. Note, however, that formulas of S4u
can be interpreted in fork models.

We use I to denote the S4 box operator, ¤u to denote the universal box, and write ♦uϕ for
¬¤u¬ϕ as usual. Given an RCC8-constraint (x r y), we define a corresponding S4u-formula
(x r y)./ as follows:

(x eq y)./ = ¤u(x↔ y)

(x dc y)./ = ¤u(¬x ∨ ¬y)

(x ec y)./ = ♦u(x ∧ y) ∧¤u(¬Ix ∨ ¬Iy)

(x po y)./ = ♦u(Ix ∧ Iy) ∧ ♦u(x ∧ ¬y) ∧ ♦u(¬x ∧ y)

(x tpp y)./ = ¤u(x→ y) ∧ ♦u(x ∧ ¬Iy) ∧ ♦u(¬x ∧ y)

(x ntpp y)./ = ¤u(x→ Iy) ∧ ♦u(¬x ∧ y)

Constraints (x tppi y) and (x ntppi y) are converted into (y tppx) and (y ntppx), respectively,
and then translated as above. Observe that variables of the network are translated into propo-
sitional variables of S4u. For every RCC8-constraint network N , we define a corresponding set
of S4u formulas N./ by setting N./ := {(x r y)./ | (x r y) ∈ N}. The most important property
of the translation ·./ is the following, as established in [RN99]:

Theorem 7.1.7. Let N be a finite RCC8-network. Then N is satisfiable in RCC8Fork iff the
set of S4u formulas N./ is satisfiable in a fork model.

For a constraint (x r y), we use (x r y)∀ to denote the formula obtained from (x r y)./ by
dropping all conjuncts starting with ♦u (assuming that (x r y)∀ is the constant true if all
conjuncts are dropped), and likewise for (x r y)∃ and ¤u. For networks, the notions N∀ and
N∃ are defined in the obvious way.

For what follows, it will be important to identify a particular class of forks induced by a
constraint network. Intuitively, this class of forks can be viewed as a canonical model for the
inducing network, if this network is satisfiable. For N an RCC8-network, we set

ForkN := {F a fork | F satisfies N∀}.

7.1 Constraint Systems 123

We say that two forks F and F ′ are V -equivalent, for V a set of variables, when for all x ∈ V ,
we have that (i) rF ∈ πF (x) iff rF ′ ∈ πF ′(x) and (ii) `F ∈ πF (x) iff `F ′ ∈ πF ′(x) (recall that
by definition of forks, the value of bF is determined by those of rF and `F). The following
theorem forms the basis for our proof that RCC8Fork has the patchwork property. It is a
reformulation of Theorem 16.17 in [GKWZ03]. For r ∈ RCC8, we use Inv(r) to denote the
inverse of the relation r, e.g. Inv(po) = po.

Theorem 7.1.8 (Gabbay et al.). Let N be a finite, complete, satisfiable RCC8-network,
x /∈ VN , and

N ′ = N ∪ {(x ry y), (y Inv(ry) x) | y ∈ VN}

for some family of relations (ry)y∈VN
, such that N ′ is satisfiable. Then, for each F ∈ ForkN ,

there exists an F ′ ∈ ForkN ′ such that F and F ′ are VN -equivalent.

The following corollary is easily proved by induction on the cardinality of VM \ VN .

Corollary 7.1.9. Let N and M be two finite complete satisfiable RCC8-networks, such that
N ⊆ M . Then, for each F ∈ ForkN , there exists an F ′ ∈ ForkM such that F and F ′ are
VN -equivalent.

We may now establish the patchwork property.

Lemma 7.1.10. RCC8 �
2 has the patchwork property.

Proof. By Theorem 7.1.6, it suffices to show that RCC8Fork has the patchwork property. Let
N and M be finite and complete RCC8-networks that are satisfiable in RCC8Fork and whose
intersection parts IN,M and IM,N (as defined in Definition 7.1.3) are identical. We have
to prove that N ∪M is also satisfiable in RCC8Fork. By Theorem 7.1.7, it suffices to show
that (N ∪M)./ is satisfiable in a fork model. We show that a satisfying model is provided
by FN,M := ForkN ∩ ForkM . We distinguish between the universal and existential part of
(N ∪M)./.

(i) FN,M satisfies (N ∪M)∀ = N∀ ∪M∀. It suffices to show that every F ∈ FN,M satisfies
N∀ and M∀. The former is an immediate consequence of FN,M ⊆ ForkN and the
definition of ForkN . The argument for the latter is analogous.

(ii) FN,M satisfies (N ∪M)∃ = N∃ ∪M∃. To show this, it is sufficient to show that (a) for
every F ∈ ForkN , there is an F ′ ∈ FM,N which is VN -equivalent to F and (b) for every
F ∈ ForkM , there is an F ′ ∈ FM,N which is VM -equivalent to F . Then, since ForkN
satisfies N./, all ♦uϕ ∈ N∃ will be satisfied by FM,N , and likewise for M . We only show
(a) as (b) is analogous. For brevity, let I denote IN,M (=IM,N). Take an F ∈ ForkN .
Clearly, since I ⊆ N , we have that F ∈ ForkI . Moreover, I is finite, complete, and
satisfiable since N and M are. Thus, by Corollary 7.1.9 there exists an F ′ ∈ ForkM
that is VI -equivalent to F . Now define a fork F ′′ = (WF ′′ , RF ′′ , πF ′′) as follows:

πF ′′(x) :=

{
πF (x) if x ∈ VN
πF ′(x) otherwise

It is not difficult to see that F ′′ is VN -equivalent to F and VM -equivalent to F ′. Since
VN is clearly closed under VN -equivalence (and likewise for VM), this yields F ′′ ∈
ForkN ∩ ForkM = FM,N .

o

124 Description Logics with Concrete Domains

It remains to treat compactness.

Lemma 7.1.11. RCC8 �
2 has the compactness property.

Proof. It is easily seen that satisfiability of an infinite RCC8-network N implies satisfiability
of N |V , for every finite V ⊆ VN . To show the converse, we give a satisfiability preserving
translation of RCC8-networks N to a set Γ(N) of first-order sentences in the following signa-
ture: a binary predicate R representing the partial order in fork frames and unary predicates
(Px)x∈Var for variables. We then use compactness of first-order logic to deduce that RCC8Fork

has the compactness property. By Theorem 7.1.6, it follows that RCC8 �
2 has the compact-

ness property. Let N be a (possibly infinite) RCC8-network. The set of first-order sentences
Γ(N) consists of the following:

• a formula stating that R is a disjoint union of forks:

∀w∃x, y, z(xRx ∧ yRy ∧ zRz ∧ xRy ∧ xRz∧
∀u(xRu→ (u = x ∨ u = y ∨ u = z))∧
∀u(yRu→ u = y)∧
∀u(zRu→ u = z)∧
∀u(uRx→ u = x)∧
∀u(uRy → (u = x ∨ u = y))∧
∀u(uRz → (u = x ∨ u = z))∧
x 6= y ∧ x 6= z ∧ y 6= z∧
(w = x ∨ w = y ∨ w = z))

• to ensure the restriction that is imposed on valuations of fork models, for each unary
predicate P , we add the following formula:

∀x(root(x) → (P (x) ↔ ∃y(xRy ∧ x 6= y ∧ P (y))))

where root(x) := ∀y(yRx→ x = y) expresses that x is the root of a fork.

• the translation of each constraint in N . We only treat the case (x ec y) explicitly:

∃z(Px(z) ∧ Py(z)) ∧ ¬∃z(Intx(z) ∧ Inty(z))

where Intx(z) := Px(z) ∧ ∀z′(zRz′ → Py(z
′)) describes the interior points of Px (to see

this, consider the way in which fork frames induce topologies). The other cases are
easily obtained by referring to the semantics of the RCC8 relations.

Now let N be an infinite RCC8-network such that N |V is satisfiable in RCC8Fork for every
finite V ⊆ VN . We have to show that N is satisfiable. Let Ψ be a finite subset of Γ(N),
and let N ′ be the fragment of N that contains precisely those constraints whose translation
is in Ψ. By Theorem 7.1.7, N ′ has a model that is the topology of a fork model M . Define
a first-order structure M with domain WM by setting RM := RM and PM

x := πM (x) for all
x ∈ V . It is readily checked that M is a model of Ψ. Thus, every finite subset of Γ(N) is
satisfiable and compactness of first-oder logic implies that Γ(N) is satisfiable. Take a model
N of Γ(N) with domain A. Clearly, M ′ = (A, RN, {x 7→ PN

x }) is a fork model. It is readily
checked that the topology TM ′ is a model of N . o

7.1 Constraint Systems 125

Properties of Allen

We prove that the constraint system Allen � has both the patchwork property and the com-
pactness property.

Lemma 7.1.12. Allen � has the patchwork property.

Proof. Let N and M be finite complete Allen-networks that are satisfiable in Allen � and
whose intersection parts IN,M and IM,N (defined as in Definition 7.1.3) are identical. We
have to prove that N ∪M is also satisfiable. Satisfiability of N means that there exists a
mapping τN : VN → Int � such that (x r y) ∈ N implies (τN (x), τN (y)) ∈ r

�
, and an analogous

mapping τM for M . Define

SN := {(x, L, r) | x ∈ VIN,M
and τN (v) = [r, r′] for some r′ ∈ }∪

{(x,R, r) | x ∈ VIN,M
and τN (v) = [r′, r] for some r′ ∈ }

Now arrange the elements of SN in a sequence (v0, D0, r0), . . . , (vk, Dk, rk) such that i < j
implies ri ≤ rj . Define a corresponding sequence (v0, D0, r

′
0), . . . , (vk, Dk, r

′
k) forM by setting,

for i ≤ k,

r′i :=

{
r if Di = L and τM (xi) = (r, r′) for some r′ ∈

r if Di = R and τM (xi) = (r′, r) for some r′ ∈ .

Since IN,M = IM,N , we have that i < j implies r′i ≤ r′j . Fix, for each i < k, a bijection πi from
the interval [r′i, r

′
i+1) to the interval [ri, ri+1) that is an isomorphism w.r.t. “<”. Moreover,

fix additional isomorphisms π∗ : (−∞, r′0) to (−∞, r0) and π† : [r′k,∞) to [rk,∞). For r ∈ ,
set

π(r) :=





π∗(r) if r < r′0
πi(r) if ri ≤ r < r′i+1

π†(r) if r ≥ rk

Now define a mapping τ ′M : VM → Int � by setting τ ′M (x) := [π(r), π(r′)] if τM (x) = [r, r′]. It
is readily checked that τN and τ ′M agree on VIN,M

, and that τN ∪ τ ′M witnesses satisfaction of
N ∪M in Allen � . o

Lemma 7.1.13. Allen � has the compactness property.

Proof. As in the case of RCC8, it is easily seen that satisfiability of an infinite Allen-network
N implies satisfiability of N |V , for every finite V ⊆ VN . To show the converse, we give a
satisfiability preserving translation of Allen-networks N to a set Γ(N) of first-order sentences
in the following signature: a binary predicate < representing the ordering on , and constants
(bx)x∈Var and (ex)x∈Var denoting the begin and end points of intervals. Let N be a (possibly
infinite) constraint network. The set of first-order sentences Γ(N) consists of the following:

• one sentence for each constraint in N . The translation is easily read off from the
definition of the Allen relations. E.g., (x m y) translates to ex = by;

• for each x ∈ VN , a sentence ensuring the correct ordering of endpoints: bx < ex.

It is easily seen that each finite or infinite Allen-network N is satisfiable in Allen � iff Γ(N) is
satisfiable in a structure (, <, PM

1 , PM
2 , . . .). Thus, compactness of first-order logic on such

structures implies that Allen � has the compactness property. o

126 Description Logics with Concrete Domains

7.2 Description Logic ALC(C)

We introduce the description logic ALC(C), an extension of the basic DL ALC, that allows to
define concepts with reference to the constraint system C. Different incarnations of ALC(C)
are obtained by instantiating it with different constraint systems.

Definition 7.2.1 (ALC(C) Syntax and Semantics). Let C = (Rel,M) be a constraint
system, and let NC, NR, and NcF be mutually disjoint and countably infinite sets of concept
names, role names, and concrete features. We assume that NR is partitioned into two count-
ably infinite subsets NaF and NrR. The elements of NaF are called abstract features and the
elements of NrR standard roles. A path of length k + 1 with k ≥ 0 is a sequence R1 · · ·Rkg
consisting of roles R1, . . . , Rk ∈ NR and a concrete feature g ∈ NcF. A path R1 · · ·Rkg with
{R1, . . . , Rk} ⊆ NaF is called feature path. The set of ALC(C)-concepts is the smallest set
such that

1. every concept name A ∈ NC is a concept,

2. if C and D are concepts and R ∈ NR, then ¬C, C u D, C t D, ∀R.C, and ∃R.C are
concepts;

3. if u1 and u2 are feature paths and r1, . . . , rk ∈ Rel, then the following are also concepts:

∃u1, u2.(r1 ∨ · · · ∨ rk) and ∀u1, u2.(r1 ∨ · · · ∨ rk);

4. if U1 and U2 are paths of length at most two and r1, . . . , rk ∈ Rel, then the following
are also concepts:

∃U1, U2.(r1 ∨ · · · ∨ rk) and ∀U1, U2.(r1 ∨ · · · ∨ rk);

Observe that we restrict the length of paths inside the constraint-based constructor to two
only if at least one of the paths contains a standard role.

Interpretations for ALC(C), relative to those defined in Section 2, have as an additional
argument a network MI from the set of models M of C. Thus, an ALC(C)-interpretation I is
a tuple (∆I , ·I ,MI), where ∆I is the interpretation domain, ·I is the interpretation function,
and MI ∈ M. The interpretation function maps concept and role names as defined in Section
2, and:

• each abstract feature f to a partial function f I from ∆I to ∆I ;

• each concrete feature g to a partial function gI from ∆I to the set of variables VMI
of

MI .

If r = r1 ∨ · · · ∨ rk, where r1, . . . , rk ∈ Rel, we write MI |= (x r y) iff there exists an
i ∈ {1, . . . , k} such that (x ri y) ∈ MI . The interpretation function is then extended to
the concepts of the form ¬C, C u D, C t D, ∃R.C and ∀R.C as defined in Section 2, and
additionally:

(∃U1, U2.r)
I := {d ∈ ∆I | ∃v1 ∈ UI

1 (d) and v2 ∈ UI
2 (d)

with MI |= (v1 r v2)},

(∀U1, U2.r)
I := {d ∈ ∆I | ∀v1 ∈ UI

1 (d) and v2 ∈ UI
2 (d),

we have MI |= (v1 r v2)}

7.2 Description Logic ALC(C) 127

Room

CarPark

Reception

Hotel

Figure 7.3: An example of a CarFriendlyHotel.

where for a path U = R1 · · ·Rkg and d ∈ ∆I , UI(d) is defined as

{v ∈ VMI
| ∃e1, . . . , ek+1 : d = e1,

(ei, ei+1) ∈ RI
i for 1 ≤ i ≤ k, and gI(ek+1) = v}.

The reasoning problems concept satisfiability and subsumption (w.r.t. TBoxes) in ALC(C)
are defined as in Chapter 2, assuming that models are ALC(C)-interpretations. 4

Observe that the network MI in the previous definitionis a model of the constraint system
C, whence variables in this network correspond to values in C and are denoted with v, v ′ rather
than x, y.

Example 7.2.2. The following example general TBox formulated in ALC(C) describes some
properties of a hotel using the constraint system RCC8 �

2, where has-room is a role, has-reception
and has-carpark are abstract features (assuming that a hotel has at most a single reception
and car park), loc is a concrete feature, and all capitalized words are concept names.

Hotel v ∀has-room.Room u ∀has-reception.Reception

u ∀has-carpark.CarPark

Hotel v ∀(has-room loc), (loc).tpp ∨ ntpp

u ∀(has-room loc), (has-room loc).dc ∨ ec ∨ eq

CarFriendlyHotel
.
= Hotel u ∃(has-reception loc), (loc).tpp

u ∃(has-carpark loc), (loc).ec

u ∃(has-carpark loc), (has-reception loc).ec

The first concept inclusion expresses that hotels are related via the three roles to objects of
the proper type. The second concept inclusion says that the rooms of a hotel are spatially
contained in the hotel, and that rooms do not overlap. Finally, the last concept inclusion
describes hotels that are convenient for car owners: they have a car park that is directly next
to the reception. This situation is illustrated in Figure 7.3.

128 Description Logics with Concrete Domains

7.3 A Tableau Algorithm for ALC(C)

We present a tableau algorithm that decides satisfiability of ALC(C)-concepts w.r.t. general
TBoxes. It is well-known that subsumption can be reduced to (un)satisfiability: C vT D iff
C u¬D is unsatisfiable w.r.t. T . This allows us to concentrate on concept satisfiability when
devising reasoning procedures. Tableau algorithms are among the most popular decision
procedures for description logics since they are amenable to various optimization techniques
and often can be efficiently implemented. Therefore, we view the algorithm presented in
this chapter as a first step towards practicable reasoning with concrete domains and general
TBoxes. On the flipside, algorithms such as the one developed in this section usually do not
yield tight upper complexity bounds.

The algorithm developed in the following is independent of the constraint system C. This
is achieved by delegating reasoning in C to an external reasoner that decides satisfiability of
C-networks. Throughout this section, we assume C to be ω-admissible.

7.3.1 Normal Forms

It is convenient to first convert the input concept and general TBox into an appropriate
syntactic form. More precisely, we convert concepts and TBoxes into negation normal form
(NNF) and restrict the length of paths that appear inside the constraint-based concept con-
structors. We start with describing NNF conversion. A concept is said to be in negation
normal form if negation occurs only in front of concept names. The following lemma shows
that NNF can be assumed without loss of generality. For a path U = R1 · · ·Rkg, we write
ud(U) to denote the concept ∀R1. · · · ∀Rk.(∀g, g.r u ∀g, g.r′) where r, r′ ∈ Rel are arbitrary
such that r 6= r′.1

Lemma 7.3.1 (NNF Conversion). Exhaustive application of the following rewrite rules
translates ALC(C)-concepts to equivalent ones in NNF.

¬¬C Ã C

¬(C uD) Ã ¬C t ¬D ¬(C tD)Ã ¬C u ¬D

¬(∃R.C) Ã (∀R.¬C) ¬(∀R.C)Ã (∃R.¬C)

¬(∀U1, U2.(r1 ∨ · · · ∨ rk)) Ã





⊥ if Rel = {r1, . . . , rk}

∃U1, U2.
(∨

r∈Rel\{r1,...,rk}

r
)

otherwise

¬(∃U1, U2.(r1 ∨ · · · ∨ rk)) Ã





ud(U1) t ud(U2) if Rel = {r1, . . . , rk}

∀U1, U2.
(∨

r∈Rel\{r1,...,rk}

r
)

otherwise

By nnf(C), we denote the result of converting C into NNF using the above rules.

1This presupposes the natural assumptions that Rel has cardinality at least two.

7.3 A Tableau Algorithm for ALC(C) 129

In Lemma 7.3.1, the last two transformations are equivalence preserving since the Rel-
networks used as models in C are complete.

We now show how to restrict the length of paths by converting concepts and TBoxes into
path normal form. This normal form was first considered in [Lut04a] in the context of the
description logic T DL and in [Lut02a] in the context of -SHIQ.

Definition 7.3.2 (Path Normal Form). An ALC(C)-concept C is in path normal form
(PNF) if it is in NNF and for all subconcepts

∃U1, U2.(r1 ∨ · · · ∨ rk) and ∀U1, U2.(r1 ∨ · · · ∨ rk)

of C, the length of U1 and U2 is at most two. An ALC(C)-TBox T is in path normal form iff
T is of the form {> v C}, with C in PNF. 4

The following lemma shows that we can w.l.o.g. assume ALC(C)-concepts and TBoxes to be
in PNF.

Lemma 7.3.3. Satisfiability of ALC(C)-concepts w.r.t. TBoxes can be reduced in polynomial
time to satisfiability of ALC(C)-concepts in PNF w.r.t. TBoxes in PNF.

Proof. We first define an auxiliary mapping and then use this mapping to translate ALC(C)-
concepts into equivalent ones in PNF. Let C be an ALC(C)-concept. By Lemma 7.3.1, we
may assume w.l.o.g. that C is in NNF. For every feature path u = f1 · · · fng used in C,
we assume that [g], [fng], . . . , [f1 · · · fng] are fresh concrete features. We inductively define a
mapping λ from feature paths u in C to concepts as follows:

λ(g) = >

λ(fu) = (∃f [u], [fu]. =) u ∃f.λ(u)

For every ALC(C)-concept C, a corresponding concept ρ(C) is obtained as follows: first
replace all subconcepts ∀u1, u2.(r1 ∨ · · · ∨ rk) (with u1, u2 feature paths) with

ud(u1) t ud(u2) t ∃u1, u2.(r1 ∨ · · · ∨ rk)

Then replace all subconcepts ∃u1, u2.(r1 ∨ · · · ∨ rk) with

∃[u1], [u2].(r1 ∨ · · · ∨ rk) u λ(u1) u λ(u2).

We extend the mapping ρ to TBoxes. For a TBox T we define

DT := u
CvD∈T

nnf(C → D).

and set
ρ(T) = {> v ρ(DT)}.

Clearly, ρ(C) and ρ(T) are in PNF and the translation can be done in polynomial time.
Moreover, it is easy to check that C is satisfiable w.r.t. T iff ρ(C) is satisfiable w.r.t. ρ(T):
if I is a model of ρ(C) and ρ(T), then it can be seen that I is also a model of C and T as
well. For the other direction, let I be a model of C and T . A model J of ρ(C) and ρ(T)
is obtained by extending I with the interpretation of freshly introduced concrete features in
the following way:

[f1 . . . fng]
J := fJ1 ◦ · · · ◦ fJn ◦ gJ .

o

130 Description Logics with Concrete Domains

The previous lemma shows that, in what follows, we may assume w.l.o.g. that all concepts
and TBoxes are in PNF.

7.3.2 Data Structures

We introduce the data structures underlying the tableau algorithm, an operation for extending
this data structure, and a cycle detection mechanism that is needed to ensure termination of
the algorithm. As already said, we assume that the input concept C0 is in PNF, and that
the input TBox T is of the form T = {> v CT }, where CT is in PNF.

The main ingredient of the data structure underlying our algorithm is a tree that, in case
of a successful run of the algorithm, represents a single model of the input concept and TBox.
Due to the presence of the constraint system C, this tree has two types of nodes: abstract ones
that represent individuals of the logic domain ∆I and concrete ones that represent values of
the concrete domain. We use sub(C) to denote the set of subconcepts of the concept C and
set sub(C0, T) := sub(C0) ∪ sub(CT).

Definition 7.3.4 (Completion system). Let Oa and Oc be disjoint and countably infinite
sets of abstract nodes and concrete nodes. A completion tree for an ALC(C)-concept C
and a TBox T is a finite, labelled tree T = (Va,Vc, E,L) with nodes Va ∪ Vc and edges
E ⊆ (Va × (Va ∪ Vc)) such that Va ⊆ Oa and Vc ⊆ Oc. The tree is labelled as follows:

1. each node a ∈ Va is labelled with a subset L(a) of sub(C, T),

2. each edge (a, b) ∈ E with a, b ∈ Va is labelled with a role name L(a, b) occurring in C
or T ;

3. each edge (a, x) ∈ E with a ∈ Va and x ∈ Vc is labelled with a concrete feature L(a, x)
occurring in C or T .

A node b ∈ Va is an R-successor of a node a ∈ Va if (a, b) ∈ E and L(a, b) = R, while x ∈ Vc

is a g-successor of a if (a, x) ∈ E and L(a, x) = g. The notion U -successor for a path U is
defined in the obvious way.

A completion system for an ALC(C)-concept C and a TBox T is a pair S = (T,N) where
T = (Va,Vc, E,L) is a completion tree for C and T and N is a Rel-network with VN = Vc.

4

We now define an operation that is used by the tableau algorithm to add new nodes to
completion trees. The operation respects the functionality of abstract and concrete features.

Definition 7.3.5 (⊕ Operation). An abstract or concrete node is called fresh in a com-
pletion tree T if it does not appear in T . Let S = (T,N) be a completion system with
T = (Va,Vc, E,L). We use the following operations:

• if a ∈ Va, b ∈ Oa fresh in T , and R ∈ NR, then S ⊕ aRb yields the completion system
obtained from S in the following way:

– if R 6∈ NaF or R ∈ NaF and a has no R-successors, then add b to Va, (a, b) to E
and set L(a, b) = R, L(b) = ∅.

– if R ∈ NaF and there is a c ∈ Va such that (a, c) ∈ E and L(a, c) = R then rename
c in T with b.

7.3 A Tableau Algorithm for ALC(C) 131

• if a ∈ Va, x ∈ Oc fresh in T , and g ∈ NcF, then S ⊕ agx yields the completion system
obtained from S in the following way:

– if a has no g-successors, then add x to Vc, (a, x) to E and set L(a, x) = g;

– if a has a g-successor y, then rename y in T and N with x.

Let U = R1 · · ·Rng be a path. With S ⊕ aUx, where a ∈ Va and x ∈ Oc is fresh in T , we
denote the completion system obtained from S by taking distinct nodes b1, ..., bn ∈ Oa which
are fresh w.r.t. T and setting

S′ := S ⊕ aR1b1 ⊕ · · · ⊕ bn−1Rnbn ⊕ bngx

4

The tableau algorithm works by starting with an initial completion system that is then suc-
cessively expanded with the goal of constructing a model of the input concept and TBox.
To ensure termination, we need a mechanism for detecting cyclic expansions, which is com-
monly called blocking. Informally, we detect nodes in the completion tree that are similar
to previously created ones and then block them, i.e., stop further expansion at such nodes.
To introduce blocking, we start with some preliminaries. For a ∈ Va, we define the set of
features of a as

feat(a) := { g ∈ NcF | a has a g-successor }.

Next, we define the concrete neighborhood of a as the constraint network

N (a) := { (x r y) | there exist g, g′ ∈ feat(a) s.t. x is a g-succ.
of a, y is a g′-succ. of a, and (x r y) ∈ N }

Finally, if a, b ∈ Va and feat(a) = feat(b), we write N (a) ∼ N (b) to express that N (a)
and N (b) are isomorphic, i.e., that the mapping π : VN (a) → VN (b) defined by mapping the
g-successor of a to the g-successor of b for all g ∈ feat(a) is an isomorphism.

If T is a completion tree and a and b are abstract nodes in T , then we say that a is an
ancestor of b if b is reachable from a in the tree T .

Definition 7.3.6 (Blocking). Let S = (T,N) be a completion system for a concept C0 and
a TBox T with T = (Va,Vc, E,L), and let a, b ∈ Va. We say that a ∈ Va is potentially blocked
by b if the following holds:

1. b is an ancestor of a in T,

2. L(a) ⊆ L(b),

3. feat(a) = feat(b).

We say that a is directly blocked by b if the following holds:

1. a is potentially blocked by b,

2. N (a) and N (b) are complete, and

3. N (a) ∼ N (b).

Finally, a is blocked if it or one of its ancestors is directly blocked. 4

132 Description Logics with Concrete Domains

Ru if C1 u C2 ∈ L(a), a is not blocked, and {C1, C2} 6⊆ L(a),
then set L(a) := L(a) ∪ {C1, C2}

Rt if C1 t C2 ∈ L(a), a is not blocked, and {C1, C2} ∩ L(a) = ∅,
then set L(a) := L(a) ∪ {C} for some C ∈ {C1, C2}

R∃ if ∃R.C ∈ L(a), a is not blocked, and there is no R-successor b of
a such that C ∈ L(b)
then set S := S ⊕ aRb for a fresh b ∈ Oa and L(b) := L(b) ∪ {C}

R∀ if ∀R.C ∈ L(a), a is not blocked, and b is an R-successor of a
such that C 6∈ L(b)
then set L(b) := L(b) ∪ {C}

R∃c if ∃U1, U2.(r1 ∨ · · · ∨ rk) ∈ L(a), a is not blocked, and there exist no
x1, x2 ∈ Vc such that xi is a Ui-successor of a for i = 1, 2 and
(x1 ri x2) ∈ N for some i with 1 ≤ i ≤ k
then set S := S ⊕ aU1x1 ⊕ aU2x2 with x1, x2 ∈ Oc fresh and
N := N ∪ {(x1 ri x2)} for some i with 1 ≤ i ≤ k

R∀c if ∀U1, U2.(r1 ∨ · · · ∨ rk) ∈ L(a), a is not blocked, and there are
x1, x2 ∈ Vc such that xi is a Ui-successor of a for i = 1, 2 and
(x1 ri x2) 6∈ N for all i with 1 ≤ i ≤ k
then set N := N ∪ {(x1 ri x2)} for some i with 1 ≤ i ≤ k

Rnet if a is potentially blocked by b or vice versa and N (a) is not complete
then non-deterministically guess a completion N ′ of N (a) and set
N := N ∪N ′

Rtbox if CT 6∈ L(a)
then set L(a) := L(a) ∪ {CT }

Figure 7.4: The completion rules.

7.3.3 The Tableau Algorithm

To decide the satisfiability of an ALC(C)-concept C0 w.r.t. a TBox T , the tableau algorithm
is started with the initial completion system SC0 = (TC0 , ∅), where the initial completion tree
TC0 is defined by setting

TC0 := ({a0}, ∅, ∅, {a0 7→ {C0}}).

The algorithm then repeatedly applies the completion rules given in Figure 7.4. In the
formulation of Rnet, a completion of a Rel-network N is a satisfiable and complete Rel-
network N ′ such that VN = VN ′ and N ⊆ N ′. Later on, we will argue that the completion
to be guessed always exists.

As has already been noted above, rule application can be understood as the step-wise
construction of a model of C0 and T . Among the rules, there are four non-deterministic ones:
Rt, R∃c, R∀c, and Rnet.2 Rules are applied until an obvious inconsistency (as defined below)
is detected or the completion system becomes complete, i.e., no more rules are applicable.
The algorithm returns “satisfiable” if there is a way to apply the rules such that a complete
completion system is found that does not contain a contradiction. Otherwise, it returns
“unsatisfiable”.

All rules except Rnet are rather standard, see for example [BH91, Lut02b].3 The purpose

2By disallowing disjunctions of relations in the constraint-based concept constructors, R∃c and R∀c can
easily be made deterministic.

3Note that our version of the R∃ rule uses the operation S ⊕ aRb which initializes the label L(b), and thus

7.4 Correctness 133

procedure sat(S)
if S contains a clash then return unsatisfiable
if S is complete then return satisfiable
if Rnet is applicable
then S′ := application of Rnet to S
else S′ := application of any applicable completion rule to S

return sat(S ′)

Figure 7.5: The (non-deterministic) algorithm for satisfiability in ALC(C).

of Rnet is to resolve a potential blocking situation between two nodes a and b into either
an actual blocking situation or a non-blocking situation. This is achieved by completing
the networks N (a) and N (b). For ensuring termination, an appropriate interplay between
this rule and the blocking condition is crucial. Namely, we have to apply Rnet with highest
precedence. It can be seen that the blocking mechanism obtained in this way is a refinement
of pairwise blocking as known from [HST99]. In particular, the conditions L(a) ⊆ L(b) and
feat(a) = feat(b) are implied by the standard definition of pairwise blocking due to path
normal form.

We now define what we mean by an obvious inconsistency. As soon as such an inconsis-
tency is encountered, the tableau algorithm returns “unsatisfiable”.

Definition 7.3.7 (Clash). Let S = (T,N) be a completion system for a concept C and a
TBox T with T = (Va,Vc, E,L). S contains a clash if one of the following conditions holds:

1. there is an a ∈ Va and an A ∈ NC such that {A,¬A} ⊆ L(a);

2. N is not satisfiable in C.

If S does not contain a clash, S is called clash-free. 4

We present the tableau algorithm in pseudo-code notation in Figure 7.5. It is started with
the initial completion system as argument, i.e., by calling sat(SC0).

Note that checking for clashes before rule application is crucial for Rnet to be well-defined:
if Rnet is applied to a node a, we must be sure that there indeed exists a completion N ′ of
N (a) to be guessed, i.e., a satisfiable network N ′ such that V ′

N = VN (a) and N (a) ⊆ N ′.
Clash checking before rule application ensures that the network N is satisfiable when Rnet
is applied. Clearly, this implies the existence of the required completion.

7.4 Correctness

We prove termination, soundness and completeness of the presented tableau algorithm. In
the following, we use |M | to denote the cardinality of a set M . With NC0,T

C , NC0,T
R and

NC0,T
cF , we denote the sets of concept names, role names, and concrete features that occur in

the concept C0 and the TBox T . We use |C| to denote the length of a concept C and |T | to
denote

∑
CvD∈T

(|C| + |D|).

Lemma 7.4.1 (Termination). The tableau algorithm terminates on every input.

the rule only adds C to the already existing label.

134 Description Logics with Concrete Domains

Proof. Let S0, S1, . . . be the sequence of completion systems generated during the run of
the tableau algorithm started on input C0, T , and let Si = (Ti,Ni). Set n := |C0| + |T |.
Obviously, we have |sub(C0, T)| ≤ n. We first show the following:

(a) For all i ≥ 0, the out-degree of Ti is bounded by n.

(b) For i ≥ 0, the depth of Ti is bounded by ` = 22n · |Rel|n
2
+ 2.

First for (a). Nodes from Vc do not have successors. Let a ∈ Va. Successors of a are created
only by applications of the rules R∃ and R∃c. The rule R∃ generates at most one abstract
successor (i.e., element of Va) of a for each ∃R.C ∈ sub(C0, T), and R∃c generates at most
two abstract successors of a for every ∃U1, U2.(r1 ∨ · · · ∨ rk) ∈ sub(C0, T). Moreover, R∃c
generates at most one concrete successor for every element of NC0,T

cF . It is not difficult to
verify that this implies that the number of (abstract and concrete) successors of a is bounded
by n.

Now for (b). Assume, to the contrary of what is to be shown, that there is an i ≥ 0 such that
the depth of Ti exceeds ` = 22n · |Rel|n

2
+ 2. Moreover, let i be smallest with this property.

This means that Si has been obtained from Si−1 by applying one of the rules R∃ and R∃c to
a node on level `, or by applying R∃c to a node on level `− 1.

Let Ti−1 = (Va,Vc, E,L). Since Ti is obtained from Ti−1 by application of R∃ or R∃c and
since Rnet is applied with highest precedence, Rnet is not applicable to Ti−1. This means
that, for every a, b ∈ Va such that b is potentially blocked by a, Ni−1(a) and Ni−1(b) are
complete. Let us define a binary relation ≈ on Va as follows:

a ≈ b iff L(a) = L(b), feat(a) = feat(b), and Ni−1(a) ∼ Ni−1(b).

Obviously, ≈ is an equivalence relation on Va. The definition of blocking implies that if a
is an ancestor of b and a ≈ b, then b is blocked by a in Si−1. Let Va/≈ denote the set
of ≈-equivalence classes and set m := |NC0,T

cF |. Since L(a) ⊆ sub(C0, T), and Ni−1(a) is a
complete Rel-network with |VNi−1(a)| ≤ m for all a ∈ Va, it is not difficult to verify that

|Va/≈| ≤ 2|sub(C0,T)|
m∑

i=0

(
m

i

)
|Rel|i

2

Since m ≤ n, we obtain |Va/≈| ≤ 2n · 2n · |Rel|n
2

= 22n · |Rel|n
2
. Let a ∈ Va be the node to

which a rule is applied in Ti−1 to obtain Ti. As already noted, the level k of a in Ti−1 is at
least `− 1 ≥ |Va/≈|+ 1. Let a0, . . . , ak be the path in Ti−1 leading from the root to a. Since
k > |Va/≈|, we have ai ≈ aj for some i, j with 0 ≤ i < j ≤ k. This means that a is blocked
and contradicts the assumption that a completion rule was applied to a. Thus, the proof of
(b) is finished.

The tableau algorithm terminates due to the following reasons:

1. It constructs a finitely labelled completion tree T of bounded out-degree and depth (by
(a) and (b)) in a monotonic way, i.e., no nodes are removed from T and no concepts
are removed from node labels. Also, no constraints are removed from the constraint
system N ;

2. every rule application adds new nodes or node labels to T , or new constraints to N ;

7.4 Correctness 135

3. the cardinality of node labels is bounded by |sub(C0, T)| and the number of constraints
in N is bounded by |Rel| · k2, with k the (bounded) number of concrete nodes.

o

Lemma 7.4.2 (Soundness). If the tableau algorithm returns satisfiable, then the input
concept C0 is satisfiable w.r.t. the input TBox T .

Proof. If the tableau algorithm returns satisfiable, then there exists a complete and clash-free
completion system S = (T,N) for C0 and T . Our aim is to use S for defining a model I for
C0 and T . We start with a brief outline of the proof.

To obtain the desired model I, the completion tree T is unravelled to another (possibly
infinite) tree by replacing directly blocked nodes with nodes that block them. The second
condition of “potentially blocked” ensures that by doing this, we do not violate any existential
or universal conditions in the predecessor of a directly blocked node. This yields only the
abstract part of I. Defining the concrete part is less straightforward. To start with, the
described unravelling process can be seen as follows. We start with the tree T where all
indirectly blocked nodes are dropped, and then repeatedly patch subtrees of T to the existing
tree. More precisely, such a patched subtree is rooted by a node that blocks the node onto
which the root of the subtree is patched. The third condition of “directly blocked” ensures
that the networks N (a) and N (b) (which comprise only the concrete successors a and b)
are complete and identical if a is blocked by b. This means that we can obtain a (possibly
infinite) constraint network N that corresponds to the unravelled tree by patching together
fragments of N which coincide on overlapping parts. Since N is satisfiable, patchwork and
compactness property ensure that the network N is satisfiable as well and thus we can use a
model of N to define the concrete part of the model I.

Formally, we proceed in several steps. Let S = (T,N) be as above, T = (Va,Vc, E,L),
and let root ∈ Va denote the root of T . Let blocks be a function that for every directly
blocked b ∈ Va, returns an unblocked a ∈ Va such that b is blocked by a in S. It is easily
seen that, by definition of blocking, such node a always exists. A path in S is a (possibly
empty) sequence of pairs of nodes a1

b1
, . . . , an

bn
, with a1, . . . , an and b1, . . . , bn nodes from Va,

such that, for 1 ≤ i < n, one of the following holds:

1. ai+1 is a successor of ai in T , ai+1 is unblocked, and bi+1 = ai+1;

2. bi+1 is a successor of ai in T and ai+1 = blocks(bi+1).

Intuitively, a path a1
b1
, . . . , an

bn
represents the sequence of nodes a1, . . . , an, and the bi provide

justification for the existence of the path in case of blocking situations. Observe that bi+1

is always a successor of ai. We use Paths to denote the set of all paths in S including the
empty path. For p ∈ Paths nonempty, tail(p) denotes the last pair of p. We now define the
“abstract part” of the model I we are constructing:

∆I := {p ∈ Paths | p non-empty and first pair is
root

root
}

AI := {p ∈ ∆I | tail(p) =
a

b
and A ∈ L(a)}, A ∈ NC0,T

C

RI := {(p, p ·
a

b
) ∈ ∆I × ∆I | tail(p) =

a′

b′
and b is

R-successor of a′ in T }, R ∈ NC0,T
R

Observe that

136 Description Logics with Concrete Domains

(i) ∆I is non-empty, since root
root

∈ ∆I .

(ii) fI is functional for every f ∈ NaF: this is ensured by the “⊕” operation which generates
at most one f -successor per abstract node, and by the definition of Paths in which we
choose only a single blocking node to be put into a path.

Intuitively, the abstract part of I as defined above is obtained by “patching together” parts
of the completion tree T . For defining the concrete part of I, we make this patching explicit:
For p ∈ ∆I , p is called a hook if p = root

root
or tail(p) = a

b with a 6= b (and thus b is blocked by
a). We use Hooks to denote the set of all hooks. Intuitively, the hooks, which are induced by
blocking situations in T , are the points where we patch together parts of T . The part of T
patched at a hook p with tail(p) = a

b is comprised of (copies of) all the nodes c in T that are
reachable from a, except indirectly blocked ones. Formally, for p ∈ ∆I and q ∈ Hooks, we
call p a q-companion if there exists q′ ∈ Paths such that p = qq′ and all nodes a

b in q′ satisfy
a = b, with the possible exception of tail(q′). Then, the part of I patched at p is defined as

P (p) := {q ∈ ∆I | q is a p-companion}.

For p, q ∈ Hooks, q is called a successor of p if q is a p-companion and p 6= q. Observe that,
for each hook p, P (p) includes p and all successor hooks of p. Intuitively, this means that the
parts patched together to obtain the abstract part of I are overlapping at the hooks.

To define the concrete part of I, we need to establish some additional notions. Since S is
clash-free, N is satisfiable. It is an easy exercise to show that then there exists a completion
of N . We fix such a completion N c with the nodes renamed as follows: each concrete node x
that is a g-successor of an abstract node a is renamed to the pair (a, g). This naming scheme
is well-defined since the “⊕” operation ensures that every abstract node a has at most one
g-successor, for every g ∈ NcF. We now define a network N which, intuitively, describes the
constraints put on the concrete part of the model. If q ∈ Hooks, p ∈ P (q), and tail(p) = a

b ,
we set

repq(p) :=

{
b if p 6= q and a 6= b

a otherwise

Intuitively, this notion is needed for the following reason: let p, q ∈ Hooks with q a successor
of p. Then tail(q) = a

b with b blocked by a, q ∈ P (p), and q ∈ P (q). As part of P (p),
q represents the blocked node b. As part of P (q), q represents the blocking node a. This
overlapping of patched parts at hooks is made explicit via the notion repq(p). Now define N
as follows:

N := {((p, g) r (p′, g′)) | there is a q ∈ Hooks such that p, p′ ∈ P (q)

and ((repq(p), g) r (repq(p
′), g′)) ∈ N c}

Our next aim is to show that N is satisfiable. To this end, we first show that N is patched
together from smaller networks: every hook p gives rise to a part of N as follows:

N(p) := N|{(q,g)∈VN|q∈P (p)},

i.e, N(p) is the restriction of N to those variables (q, g) such that q is a p-companion.

The following claim shows that N is patched together from the networks N(p), p ∈ Hooks.

Claim 1. The following holds:

7.4 Correctness 137

(a) N =
⋃
p∈HooksN(p).

(b) if p, q ∈ Hooks, p 6= q, q is not a successor of p, and p is not a successor of q, then
VN(p) ∩ VN(q) = ∅;

(c) if p, q ∈ Hooks and q is a successor of p, then N(p)|VN(p)∩VN(q)
= N(q)|VN(p)∩VN(q)

;

Proof. (a) As N ⊇
⋃
p∈HooksN(p) is immediate by definition of N(p), it remains to show

N ⊆
⋃
p∈HooksN(p). Thus, let ((p, g) r (p′, g′)) ∈ N. Then there is a q ∈ Hooks such that

p, p′ ∈ P (q). By definition of N(q), this implies ((p, g) r (p′, g′)) ∈ N(q).

(b) We show the contrapositive. Let (q∗, g) ∈ VN(p) ∩VN(q). It follows that q∗ ∈ P (p)∩P (q),
i.e., there are q′, q′′ ∈ Paths such that (i) q∗ = pq′, q∗ = qq′′, and (ii) all nodes a

b in q′, q′′

satisfy a = b, with the possible exception of the last one. Due to (i), p = q, p is a prefix of
q, or vice versa. In the first case, we are done. In the second case, since q ∈ Hooks we have
that tail(q) = a

b for some a, b with a 6= b. Together with q∗ = pq′, (ii), and since p is a prefix
of q is a prefix of q∗, this implies that q = q∗. Thus q = pq′. Again by (ii), we have that q is
a successor of p. The third case is analogous to the second.

(c) By definition of N(p) and N(q), we have N(p)|VN(p)∩VN(q)
=

N|VN(p)∩VN(q)
= N(q)|VN(p)∩VN(q)

for all p, q ∈ Hooks.

Claim 1 shows that N is patched together from smaller networks. Our aim is to apply
the patchwork and compactness property to derive satisfiability of N. For being able to do
this, we additionally need to know that the smaller networks are complete and satisfiable,
and that they agree on overlapping parts. Before we prove this, we establish some crucial
properties.

(P1) If q, q′ ∈ Hooks with q′ successor of q, then VP (q) ∩ VP (q′) = {q′}.

(P2) If ((q, g) r (q′, g′)) ∈ N(p) then ((repp(q), g) r (repp(q
′), g′)) ∈ N c.

(P1) is obvious by definition of hooks and q-companions. For (P2), let ((q, g) r (q ′, g′)) ∈ N(p).
Then q, q′ ∈ P (p). Since N(p) ⊆ N, there is a p′ ∈ Hooks such that q, q′ ∈ P (p′) and

(∗) ((repp′(q), g) r (repp′(q
′), g′)) ∈ N c.

If p = p′, we are done. Thus, let p 6= p′. By Claim 1(b) and (P1), q, q′ ∈ P (p)∩P (p′) implies
that q = q′ = p and p is a successor-hook of p′, or q = q′ = p′ and p′ is a successor-hook of
p. W.l.o.g., assume that the former is the case. Let tail(q) = a

b . Since q = p and p is a hook,
we have a 6= b, and thus b is blocked by a in T . By definition of rep, we have repp′(q) = b
and repp(q) = a. Thus, (∗) yields ((b, g) r (b, g′)) ∈ N c. Since b is blocked by a, the blocking
condition yields ((a, g) r (a, g′)) ∈ N c and we are done. This finishes the proof of Claim 1.

Claim 2. For every p ∈ Hooks, N(p) is finite, complete, and satisfiable.

Proof. Let p ∈ Hooks. Since the completion tree T is finite, so are P (p) and N(p).
Next, we show that N(p) is complete. This involves two subtasks: showing that (i) for
all (q, g), (q′, g′) ∈ VN(p), there is at least one relation r with ((q, g) r (q′, g′)) ∈ N(p); and
(ii) there is at most one such relation.

For (i), let (q, g), (q′, g′) ∈ VN(p). By (P2), we obtain that (repp(q), g), (repp(q
′), g′) ∈ VN c .

Since N c is complete, there is an r such that ((repp(q), g) r (repp(q
′), g′)) ∈ N c. By definition

of N and N(p), we have ((q, g) r (q′, g′)) ∈ N(p). For (ii), assume that ((q, g) r (q′, g′)) ∈

138 Description Logics with Concrete Domains

N(p), for each r ∈ {r1, r2}. Then, (P2) implies ((repp(q), g) ri (repp(q
′), g′)) ∈ N c for each

r ∈ {r1, r2}. Thus, completeness of N c implies that r1 = r2 as required.
Finally, we show satisfiability of N(p). By (P2), ((q, g) r (q′, g′)) ∈ N(p) implies

((repp(q), g) r (repp(q
′), g′)) ∈ N c. Thus, satisfiability of N c, yields satisfiability of N(p).

We are now ready to apply the patchwork and compactness properties.

Claim 3. N is satisfiable.

Proof. First assume that there are no blocked nodes in S. Then, Hooks = { root
root

}. By Claim
1(a), we have that N = N(root

root
), and by Claim 2 we obtain that N is satisfiable. Now assume

that there are blocked nodes in S. Since Va is finite (c.f. Lemma 7.4.1), Hooks is a countably
infinite set. Moreover, the “successor” relation on Hooks is easily seen to arrange Hooks in
an infinite tree whose out-degree is bounded by the cardinality of Va. Therefore, we can fix
an enumeration {p0, p1, ...} of Hooks such that:

• p0 = root
root

,

• if pi is a successor of pj , then i > j.

By Claim 1(a), we have that N =
⋃
i≥0N(pi). We first show by induction that, for all k ≥ 0,

the network Nk :=
⋃

0≤i≤kN(pi) is satisfiable.

• k = 0: N0 = N(p0) is satisfiable by Claim 2.

• k > 0. We have that Nk = Nk−1 ∪ N(pk). By induction, Nk−1 is satisfiable. Let
Nc
k−1 be a completion of Nk−1 and let N′

k = Nc
k−1 ∪ N(pk). There exists a unique

pn ∈ Hooks, n < k, such that pk is a successor of pn. By definition of Nk−1 and Claim
1(b), and since VNc

k−1
= VNk−1

, we have that

VNc
k−1

∩ VN(pk) = VN(pn) ∩ VN(pk).

Moreover, by Claim 2, N(pn) is complete, and thus

Nc
k−1|VN(pn)∩VN(pk)

= N(pn)|VN(pn)∩VN(pk)
.

Finally, Claim 1(c) yields

N(pn)|VN(pn)∩VN(pk)
= N(pk)|VN(pn)∩VN(pk)

.

Summing up, we obtain that the intersection parts of Nc
k−1 and N(pk) are identical:

Nc
k−1|VNc

k−1
∩VN(pk)

= Nc
k−1|VN(pn)∩VN(pk)

= N(pn)|VN(pn)∩VN(pk)

= N(pk)|VN(pn)∩VN(pk)

= N(pk)|VNc
k−1

∩VN(pk)

By Claim 2, we have that N(pk) is finite, complete and satisfiable. The same holds for
Nc
k−1. Thus, the patchwork property of C yields that N′

k is satisfiable. Since Nk ⊆ N′
k,

Nk is satisfiable.

7.4 Correctness 139

Now, satisfiability of the networks Nk, k ≥ 0, and the compactness property of C imply
satisfiability of N. This finishes the proof of Claim 3.

We are now ready to define the concrete part of the model I. Since N is satisfiable, there is
an MI ∈ M and a mapping τ : VN → VMI

such that (x r y) ∈ N implies (τ(x) r τ(y)) ∈ VMI
.

Define I = (∆I , ·I ,MI) with ∆I and ·I defined as above, and, additionally:

gI := {(p, τ(p, g)) ∈ ∆I × VMI
| tail(p) =

a

b
and g ∈ feat(a)}, g ∈ NC0,T

cF

Note that, by definition, gI is functional for every g ∈ NcF. In order to show that I is a
model of C0 and T , we require one more claim:

Claim 4. For all s ∈ ∆I and C ∈ sub(C0, T), if tail(s) = a
b and C ∈ L(a), then s ∈ CI .

Proof. We prove the claim by structural induction on C. Let s ∈ ∆I , tail(s) = a
b , and

C ∈ L(a). In the following, we will implicitly use the fact that, by construction of Paths, a is
not blocked in S. We make a case distinction according to the topmost operator in C:

1. C is a concept name. By construction of I, we have s ∈ CI .

2. C = ¬D. Since C is in NNF,D is a concept name. Clash-freeness of S impliesD 6∈ L(a).
The construction of I implies s 6∈ DI which yields s ∈ (¬D)I .

3. C = D u E. The completeness of S implies {D,E} ⊆ L(a). The induction hypothesis
yields s ∈ DI and s ∈ EI , therefore s ∈ (D u E)I .

4. C = DtE. The completeness of S implies {D,E}∩L(a) 6= ∅. By induction hypothesis
it holds that s ∈ DI or s ∈ EI , and therefore s ∈ (D t E)I .

5. C = ∃R.D. Since the R∃ rule is not applicable, a has an R-successor c such that
D ∈ L(c). By definition of I, there is a t = s · dc ∈ ∆I such that either c = d or c
is blocked by d in S. Since L(c) ⊆ L(d) in both cases, we have that D ∈ L(d). By
induction, it holds that t ∈ DI . By definition of I, we have (s, t) ∈ RI and this implies
s ∈ CI .

6. C = ∀R.D. Let (s, t) ∈ RI . By construction of I, t = s · dc such that c is an R-successor
of a. Since R∀ is not applicable, we have that D ∈ L(c). Since L(c) ⊆ L(d) (as in
the previous case), we have C ∈ L(d), and by induction t ∈ CI . Since this holds
independently of the choice of t, we obtain s ∈ CI .

7. C = ∃U1, U2.(r1 ∨ · · · ∨ rk). Since C is in PNF, Ui is either a concrete feature or of
the form Rg, for each i ∈ {1, 2}. We consider only the case U1 = R1g1, U2 = R2g2,
as the remaining cases are similar but easier. Since the R∃c rule is not applicable,
there exists an Rj-successor cj of a and a gj-successor yj of cj for j = 1, 2 such that
(y1 ri y2) ∈ N for some 1 ≤ i ≤ k. Then ((c1, g1) ri (c2, g2)) ∈ N c. Moreover, there is

a tj = s ·
dj

cj
∈ ∆I such that cj = dj or cj is blocked by dj , j = 1, 2. By definition of

RI
j , we have that (s, tj) ∈ RI

j , j = 1, 2. Moreover, since a is not blocked and c1 and
c2 are its successors, there is a p ∈ Hooks such that t1 and t2 are p-companions and
repp(t1) = c1, repp(t2) = c2. Thus, by definition of N we obtain ((t1, g1) ri (t2, g2)) ∈ N,

implying (τ(t1, g1) ri τ(t2, g2)) ∈ MI . Since gI1 (t1) = τ(t1, g1) and gI2 (t2) = τ(t2, g2),
we obtain that s ∈ CI .

140 Description Logics with Concrete Domains

8. C = ∀U1, U2.(r1 ∨ · · · ∨ rk). As in the previous case, we will assume that U1 and
U2 are of the form U1 = Rg1, U2 = R2g2. Let t1, t2 be such that (s, tj) ∈ RI

j and

gIj (tj) is defined, j = 1, 2. By definition of I, we have that tj = s ·
dj

cj
∈ ∆I such

that cj is an Rj-successor of a, j = 1, 2. Moreover, there is a gj-successor yj of cj
for j = 1, 2. Since R∀c is inapplicable, ∀U1, U2.(r1 ∨ · · · ∨ rk) ∈ L(a) implies that
(y1 ri y2) ∈ N for some 1 ≤ i ≤ k. Thus, ((c1, g1) r (c2, g2)) ∈ N c. Moreover, since a is
unblocked there is a p ∈ Hooks such that t1 and t2 are p-companions and repp(t1) = c1,
repp(t2) = c2. Thus, by definition of N, we have that ((t1, g1) ri (t2, g2)) ∈ N, which

implies (τ(t1, g1) ri τ(t2, g2)) ∈MI . Thus, s ∈ CI .

This finishes the proof of Claim 4.

Since C0 ∈ L(root) and root
root

∈ ∆I , Claim 4 implies that I is a model of C0. Finally,
let us show that I is a model of the input TBox T = {> v CT }. Choose an s ∈ ∆I . Let
tail(s) = a

b . Since S is complete, Rtbox is not applicable, and thus CT ∈ L(a). By Claim 4
we have that s ∈ CI

T . Since this holds independently of the choice of s, we have CI = ∆I as
required. o

Lemma 7.4.3 (Completeness). If the input concept C0 is satisfiable w.r.t. the input TBox
T , then the algorithm returns satisfiable.

Proof. Let C0 be satisfiable w.r.t. T , I = (∆I , ·I ,MI) a common model of C0 and T , and
a0 ∈ ∆I such that a0 ∈ CI

0 . We use I to guide (the non-deterministic parts of) the algorithm
such that it constructs a complete and clash-free completion system. A completion system
S = (T,N) with T = (Va,Vc, E,L) is called I-compatible if there exist mappings π : Va → ∆I

and τ : Vc → VMI
(i.e., to the variables used in MI) such that

(Ca) C ∈ L(a) ⇒ π(a) ∈ CI

(Cb) b is an R-successor of a⇒ (π(a), π(b)) ∈ RI

(Cc) x is a g-successor of a ⇒ gI(π(a)) = τ(x)

(Cd) (x r y) ∈ N ⇒ (τ(x) r τ(y)) ∈MI

We first show the following.

Claim 1: If a completion system S is I-compatible and a rule R is applicable to S, then R
can be applied such that an I-compatible completion system S ′ is obtained.

Proof. Let S = (T,N) be an I-compatible completion system with T = (Va,Vc, E,L), let π
and τ be functions satisfying (Ca) to (Cd), and let R be a completion rule applicable to S.
We make a case distinction according to the type of R.

Ru The rule is applied to a concept C1 u C2 ∈ L(a). By (Ca), C1 u C2 ∈ L(a) implies
π(a) ∈ (C1 uC2)

I and hence π(a) ∈ CI
1 and π(a) ∈ CI

2 . Since the rule adds C1 and C2

to L(a), it yields a completion system that is I-compatible via π and τ .

Rt The rule is applied to C1 t C2 ∈ L(a). C1 t C2 ∈ L(a) implies π(a) ∈ CI
1 or π(a) ∈ CI

2 .
Since the rule adds either C1 or C2 to L(a), it can be applied such that it yields a
completion system that is I-compatible via π and τ .

7.4 Correctness 141

R∃ The rule is applied to ∃R.C ∈ L(a). By (Ca), π(a) ∈ (∃R.C)I and hence there exists a
d ∈ ∆I such that (π(a), d) ∈ RI and d ∈ CI . By definition ofR∃ and the “⊕” operation,
rule application either (i) adds a new R-successor b of a and sets L(b) = {C}; or (ii) re-
uses an existing R-successor, renames it to b in T and sets L(b) = L(b)∪{C}. Extend π
by setting π(b) = d. The resulting completion system is I-compatible via the extended
π and the original τ .

R∀ The rule is applied to ∀R.C ∈ L(a) and it adds C to the label L(b) of an existing R-
successor of a. By (Ca), π(a) ∈ (∀R.C)I and by (Cb), (π(a), π(b)) ∈ RI . Therefore,
π(b) ∈ CI and the resulting completion system is I-compatible via π and τ .

R∃c The rule is applied to a concept ∃U1, U2.(r1∨· · ·∨rk) ∈ L(a). We assume that U1 = R1g1
and U2 = R2g2. The case where one or both of U1, U2 are only concrete features is
similar, but easier. The rule application generates new abstract nodes b1 and b2 and
concrete nodes x1 and x2 (or re-uses existing ones and renames them) such that

• bj is an Rj-successor of a and

• xj is a gj-successor of bj for j = 1, 2.

By (Ca), we have π(a) ∈ (∃U1, U2.(r1 ∨ · · · ∨ rk))
I . Thus, there exist d1, d2 ∈ ∆I ,

v1, v2 ∈ VMI
and an i with 1 ≤ i ≤ k such that

• (π(a), dj) ∈ RI
j ,

• gIj (dj) = vj for j = 1, 2, and

• (v1 ri v2) ∈MI .

Thus, the rule can be guided such that it adds (x1 ri x2) to N . Extend π by setting
π(bj) := dj , and extend τ by setting τ(xj) := vj for j = 1, 2. It is easily seen that the
resulting completion system is I-compatible via the extended π and τ .

R∀c The rule is applied to an abstract node a with ∀U1, U2. (r1 ∨ · · · ∨ rk) ∈ L(a) such
that there are x1, x2 ∈ Vc with xi a Ui-successor of a, for i = 1, 2. By (Ca), π(a) ∈
(∀U1, U2.(r1∨· · ·∨rk))

I . By (Cb) and (Cc), we have (π(a), τ(x1)) ∈ UI
1 and (π(a), τ(x2)) ∈

UI
2 . By the semantics, it follows that there is an i with 1 ≤ i ≤ k such that

(τ(x1) ri τ(x2)) ∈ MI . The application rule can be guided such that it adds (x1 ri x2)
to N . Thus, the resulting completion system is I-compatible via π and τ .

Rnet The rule is applied to an abstract node a such that a is potentially blocked by an
abstract node b and N (a) is not complete (the symmetric case is analogous). The rule
application guesses a completion N ′ of N (a), and sets N := N ∪N ′. Define

N ′ := {(x r y) | x is a g-successor of a,

y is a g′-successor of a, and (τ(x) r τ(y)) ∈MI}.

By definition of N (a), we have VN (a) = VN ′ . By (Cd), we have N (a) ⊆ N ′. Since MI

is complete, N ′ is complete. Finally, τ witnesses that MI is a model of N ′, and thus
N ′ is satisfiable. It follows that N ′ is a completion of N (a). Apply Rnet such that N ′

is guessed. Then, the resulting completion system is I-compatible via π and τ .

142 Description Logics with Concrete Domains

Rtbox The rule application adds CT to L(a), for some a ∈ Va. Since I is a model of T , we
have π(a) ∈ CI

T . Thus, the resulting completion system is I-compatible via π and τ .

We now show that I-compatibility implies clash-freeness.

Claim 2: Every I-compatible completion system is clash-free.

Proof. Let S = (T,N) be an I-compatible completion system with T = (Va,Vc, E,L).
Consider the two kinds of a clash:

• Due to (Ca), a clash of the form {A,¬A} ∈ L(a) contradicts the semantics.

• Property (Cd) implies that MI is a model of N . Thus, N is satisfiable.

We can now describe the “guidance” of the tableau algorithm by the model I: we ensure
that, at all times, the considered completion systems are I-compatible. This obviously holds
for the initial completion system. By Claim 1, we can guide the rule applications such that
only I-compatible completion systems are obtained. By Lemma 7.4.1, the algorithm always
terminates, hence also when guided in this way. Since, by Claim 2, we will not find a clash,
the algorithm returns satisfiable. o

As an immediate consequence of Lemmas 7.4.1, 7.4.2 and 7.4.3, we get the following theorem:

Theorem 7.4.4. If C is an ω-admissible constraint system, the tableau algorithm decides
satisfiability of ALC(C) concepts w.r.t. general TBoxes.

A close inspection of our algorithm shows that it runs in 2-NExpTime if C-satisfiability
is in NP. We conjecture that, by mixing the techniques from the previous section with
those from [Lut04a, Lut02a], it is possible to prove ExpTime-completeness of satisfiability
in ALC(C) provided that satisfiability in C can be decided in ExpTime.

7.5 Practicability

With Theorem 7.4.4, we have achieved the main aim of this chapter: providing a general
decidability result for description logics with both general TBoxes and concrete domains.
Our second aim is to identify an algorithm that is more practicable than the existing ap-
proaches based on automata [Lut04a, Lut02a], i.e., that can be implemented such that an
acceptable runtime behaviour is observed on realistic inputs. Since we have not yet imple-
mented our algorithm,4 an empirical evaluation is out of reach. In the following, we discuss
the practicability on a general level.

Regarding an efficient implementation, the main difficulties of our algorithm compared
with successfully implemented tableau algorithms such as the ones in [SSS91, HS99] are the
following:

• Our algorithm requires satisfiability checks of the network N constructed as part of
the completion system. The problem is that this check involves the whole network N
rather than only small parts of it. In practice, the constructed completion systems (and
associated networks) are often too large to be considered as a whole.

4This is a non-trivial task since a large number of sophisticated optimization techniques is required, c.f.
[HPS99].

7.5 Practicability 143

• The rules R∃c, R∀c, and Rnet introduce additional non-determinism. In implementa-
tions, this non-determinism induces backtracking.

It is possible that these difficulties can be overcome by developing appropriate heuristics and
optimization techniques. However, there is also an easy way around them. In the following,
we argue that there is a fragment of our language that still provides interesting expressive
power and in which the implementation difficulties discussed above are non-existent.

The fragment of ALC(C) that we consider is obtained by making the following assump-
tions:

• There is only a single concrete feature g. Note that this is acceptable with constraint
systems such as RCC8 �

2 and Allen � , where g could be has-extension and has-lifetime,
respectively.

• There are no paths of length greater than 2, i.e., Clause 3 is eliminated from Defini-
tion 7.2.1. This is necessary since we need to introduce additional concrete features to
establish path normal form if Clause 3 is present. We believe that paths of length three
or more are only needed in exceptional cases, anyway.

• There exists a unique equality predicate eq in C, i.e., for all models N ∈ M and all
v ∈ VN , we have (v eq v) ∈ N .

Going to this fragment of ALC(C) allows the following simplification of our tableau algorithm.

1. The non-deterministic Rnet rule can simply be dropped because, for each abstract node
a, the network N (a) is either empty or consists of a single node that is related to itself
via eq. Thus, every potential blocking situation is an actual blocking situation.

2. We can localize the satisfiability check of the network N as follows. For a ∈ Va, let
N̂ (a) denote the restriction of N to the g-successor of a and the g-successors of all
abstract successors of a. Instead of checking the whole network N for satisfiability, we
separately check, for each a ∈ Va, satisfiability of N̂ (a). It can be seen as follows that
this is equivalent to a global check: first, C has the patchwork property. Second, due
to the fact that there is only a single concrete feature g, the networks N̂ (a) overlap
at single nodes only. Due to the presence of the equality predicate eq, the overlapping
part of two such networks is thus complete. Finally, it is easy to see that the patchwork
property implies a more general version of itself where only the overlapping part of the
two involved networks is complete, but the networks themselves are not.

Hence, the only difficulty that remains is the non-determinism of the rules R∃c and R∀c.
However, we believe that this non-determinism is not too difficult to deal with. To see this,
observe that the non-deterministic choices made by these rules have only a very local impact:
they only influence the outcome of the satisfiability check of the relevant local network N̂ (a).
Therefore, it does not seem necessary to implement a complex backtracking/backjumping
machinery. If the concrete domain reasoner used for deciding C-satisfiability supports dis-
junctions, it is even possible to push the non-determinism out of the tableau algorithm into
the reasoner for C-satisfiability. Roughly, one would need to allow disjunctions in the con-
straint network N and pass these on to the reasoner for C.

144 Description Logics with Concrete Domains

Chapter 8

Conclusion

8.1 Description Logic Actions

8.1.1 Summary

In this thesis, we have presented foundational work on integrating description logics with
action formalisms.

We have introduced action formalisms based on description logics and have investigated
the standard reasoning problems executability and projection, as well as the plan existence
problem in this context. In these action formalisms, ABox assertions are used to describe
states of the world as well as pre- and post-conditions of actions. TBoxes have a different
role in the two action formalisms A1 and A2 that we have developed. While in the action
formalism A1, acyclic TBoxes are used to define abbreviations for complex concepts, in the
action formalism A2 general TBoxes serve as state constraints. By forbidding complex or
defined concepts in post-conditions of A1-actions we ensure that changes induced by these
actions may occur only at an atomic level. We have shown that instantiations of A1 with
expressive DLs can be viewed as fragments of the standard Situation Calculus, and thus
inherit its solution to the frame problem. Possible ramifications of executions of A1-actions
are specified by the accompanying acyclic TBox: when interpretations of atomic concepts and
roles change, interpretations of concepts defined in the TBox need to change accordingly. The
action formalism A2, besides supporting general TBoxes, allows for complex concepts in action
post-conditions; thus raising the frame problem and general TBox ramification problem.
Since the attempt to automatically solve these problems turns out to lead to semantic and
computational problems, we have adopted an alternative approach: action designers are
supposed to fine-tune ramifications of A2-actions by means of complex occlusion patterns.
Occlusions are used to describe in which part of the domain interpretations of concept and
role names may change and in which they may not. Besides projection and executability,
consistency of A2-actions has emerged as an important (non-trivial) reasoning task.

One of the main technical results of this thesis is that standard problems in reasoning
about action (projection, executability) become decidable if one restricts the logic for describ-
ing pre- and post-conditions as well as the state of the world to certain decidable description
logics L. Hence, we give a positive answer to the question of whether there exist decidable
action formalisms with expressivity beyond propositional logic. For a propositionally closed
L, the complexity of projection and executability is determined by the complexity of standard
DL reasoning in L extended with nominals. This means that the complexity of these infer-

146 Conclusion

Logic Projection/Executability

EL and EL(¬) without TBoxes co-NP-complete
between EL and ALCQO PSpace-complete

ALCI, ALCIO ExpTime-complete
ALCQI, ALCQIO co-NExpTime-complete

Figure 8.1: Complexity of projection and executability in A1

Logic Projection/Executability Weak Consistency
ALC, ALCO, ALCI, ALCIO ExpTime-complete ExpTime-complete

ALCQ, ALCQO
ALCQI, ALCQIO co-NExpTime-complete NExpTime-complete

Figure 8.2: Complexity of projection, executability, and weak consistency in A2

ences in ALC and its extensions is ranging from PSpace-complete to co-NExpTime-complete
for A1-actions in the presence of acyclic TBoxes. It is ExpTime-complete or co-NExpTime-
complete for A2-actions in the presence of general TBoxes. Our results have shown that,
even in the lightweight description logic EL, projection is not tractable. Even if we disal-
low TBoxes, projection in EL is co-NP-complete, while in presence of acyclic TBoxes it is
PSpace-hard and thus not easier than in ALC. One negative result we have obtained is the
undecidability of strong consistency of A2-actions. However, weak consistency of A2-actions,
still very useful for detecting errors in action design, is polynomially reducible to projection
and thus decidable. Complexity results for A1 and A2 are summarized in Figures 8.1 and 8.2.

Most of the decidability (and complexity) results for projection and executability in this
thesis have been obtained by polynomial reductions of these inferences to ABox consequence.
This shows that reasoning about actions in expressive description logics can be delegated to
standard DL reasoners.

We have also investigated the complexity of the plan existence problem for planning with
A1-actions in the presence of acyclic TBoxes. We have shown that the plan existence problem
(PLANEX) is decidable and of the same computational complexity as projection in the
logics between ALC and ALCQIO if operators have only unconditional post-conditions, thus
ranging from PSpace-complete to co-NExpTime-complete. If operators have conditional
post-conditions, PLANEX is shown to be in 2-ExpSpace. Since the only known lower
complexity bound is inherited from propositional logic (ExpSpace-hard), we leave the exact
computational complexity of conditional PLANEX as an open problem. Finally, we have
shown that the complexity results for propositional planning carry over to planning in the
lightweight description logic EL.

8.1.2 Future Work

The foundational results we have presented provide promising starting points for possible
implementations and extensions. The first natural step would be to implement practicable
variants of the algorithms for projection and executability defined in this thesis, in particular
the reduction of the projection problem to the ABox consequence problem from Section 3.2.1.
Considering implementations of DL planners, it would be reasonable to start with lightweight
DLs, such as EL or EL(¬), for which projection is in co-NP, and to try to adapt some of the
known techniques for propositional conformant planning.

8.2 Description Logics with Concrete Domains 147

Regarding possible extensions, there are several ways to continue.

• For different applications, it might be useful to have concrete datatypes in DLs under-
lying an action formalism. We are convinced that concrete datatypes can be treated
without major problems within our action formalisms.

• Instead of focusing only on sequences of atomic actions, it would be interesting to
investigate more complex operators, such as PDL- or GOLOG-like programs over atomic
actions. Such programs would be very useful in the context of services in the Semantic
Web. Moreover, for the same application it would be of great interest to formalize
and investigate sensing actions – they naturally correspond to “information-gathering”
services such as Google.

• The action formalisms introduced in this thesis are general-purpose formalisms, devel-
oped without taking into account features of specific application domains. We hope that
a careful investigation of TBoxes in use, e.g., in the medical domain, could give us more
insight into the nature of action ramifications that can be expected. We also suspect
that various additional constructs in action definitions may be desired in medical and
other applications. One such example are universally quantified post-conditions of the
form ∀x.ϕ(x)/ψ(x).

• We have shown that conditional post-conditions make planning harder due to the un-
certainty about which post-conditions are triggered. For applications, it would make
sense to adopt a more pragmatic semantics of conditional post-conditions which would
enable a compact representation of states of the search space by means of the initial
ABox and updates. Intuitively, post-conditions ϕ/ψ would be interpreted as follows: if
it can be proved that ϕ holds in the current state then ψ holds in the successor state.
This semantics would be along the lines with operational ADL semantics.

• Finally, instead of using an approach similar to regression in order to decide the pro-
jection problem, one could also try to apply progression, i.e., to calculate an updated
ABox that has as its models all the successors of the models of the original ABox. This
approach has already been followed in [LLMW06c] and showed that updated ABoxes
may be exponentially large in the size of the original ABox and the update. For appli-
cations it would be interesting to investigate approximated or projective ABox updates
of polynomial size.

8.2 Description Logics with Concrete Domains

The second part of this thesis was dedicated to concrete domains. We have identified a general
property of concrete domains, called ω-admissibility, that is sufficient for proving decidability
of DLs with both concrete domains and general TBoxes. For defining ω-admissibility, we
have concentrated on a particular kind of concrete domains: constraint systems – concrete
domains that only have binary predicates interpreted as JEPD relations. We have exhibited
some useful constraint systems with this property, most notably a spatial one based on the
RCC8 relations and a temporal one based on Allen relations.

We have also exhibited the first tableau algorithm for DLs with concrete domains and
general TBoxes in which the concrete domain constructors are not limited to concrete features.

148 Conclusion

Although we have focused on ALC(C), a combination of ALC with a constraint system C,
various language extensions such as transitive roles and number restrictions should also be
possible in a straightforward way. The algorithm has some aspects likely to have a negative
impact on practicability unless addressed by dedicated optimization techniques. However, we
have identified a useful fragment of ALC(C) in which these impairing aspects of the algorithm
can be avoided, thus ensuring that it can be easily integrated into existing DL reasoners such
as FaCT++ and RacerPro.

While we have proved that requiring a concrete domain C to be an ω-admissible constraint
system is a sufficient condition for decidability of ALC combined with C, it is not clear whether
it is also a necessary one. We conjecture that ω-admissibility is not a necessary condition.
One obvious relaxation would be to admit certain unary predicates in C, as in [Lut02a].

Bibliography

[ABM99] C. Areces, P. Blackburn, and M. Marx. A Road-map on Complexity for Hybrid
Logics. In J. Flum and M. Rodŕıguez-Artalejo, eds., Computer Science Logic,
number 1683 in Lecture Notes in Computer Science, pp. 307–321. Springer-
Verlag, 1999.

[AF98] A. Artale and E. Franconi. A Temporal Description Logic for Reasoning about
Actions and Plans. Journal of Artificial Intelligence Research (JAIR), 9:463–
506, 1998.

[All83] J. F. Allen. Maintaining Knowledge about Temporal Intervals. Communications
of the ACM , 26(11):832–843, 1983.

[Baa03] F. Baader. The instance problem and the most specific concept in the de-
scription logic EL w.r.t. terminological cycles with descriptive semantics. In
In Proceedings of 26th Annual German Conference on Artificial Intelligence
(KI2003), volume 2821 of Lecture Notes in Artificial Intelligence, pp. 64–78.
Springer, 2003.

[BBL05] F. Baader, S. Brandt, and C. Lutz. Pushing the EL Envelope. In In Proceedings
of the 19th International Joint Conference on Artificial Intelligence (IJCAI-
2005), pp. 364–369. Morgan-Kaufmann Publishers, Edinburgh, UK, 2005.

[BC02] P. Balbiani and J.-F. Condotta. Computational complexity of propositional
linear temporal logics based on qualitative spatial or temporal reasoning. In
Frontiers of Combining Systems (FroCoS 2002), number 2309 in LNAI, pp.
162–176. Springer, 2002.

[BC07] C. J. Baker and K.-H. Cheung, eds. Semantic Web: Revolutionizing Knowledge
Discovery in the Life Sciences. Springer, 2007.

[BCM+03] F. Baader, D. Calvanese, D. McGuinness, D. Nardi, and P. F. Patel-Schneider,
eds. The Description Logic Handbook: Theory, Implementation, and Applica-
tions. Cambridge University Press, 2003.

[Ben97] B. Bennett. Modal Logics for Qualitative Spatial Reasoning. Journal of the
Interest Group in Pure and Applied Logic, 4(1), 1997.

[Ber66] R. Berger. The Undecidability of the Dominoe Problem. Memoirs of the Amer-
ican Mathematical Society , 66, 1966.

150 BIBLIOGRAPHY

[BF97] A. L. Blum and M. L. Furst. Fast planning through planning graph analysis.
Artificial Intelligence, 90(1-2):281–300, 1997.

[BH91] F. Baader and P. Hanschke. A Scheme for Integrating Concrete Domains into
Concept Languages. In Proceedings of the 12th International Joint Conference
on Artificial Intelligence, IJCAI-91 , pp. 452–457. Sydney (Australia), 1991.

[BHS03] F. Baader, I. Horrocks, and U. Sattler. Description Logics as Ontology Lan-
guages for the Semantic Web. In D. Hutter and W. Stephan, eds., Festschrift
in honor of Jörg Siekmann, Lecture Notes in Artificial Intelligence. Springer-
Verlag, 2003.

[BLHL01] T. Berners-Lee, J. Hendler, and O. Lassila. The Semantic Web. Scientific
American, 284(5), 2001.

[BLM+05a] F. Baader, C. Lutz, M. Milicic, U. Sattler, and F. Wolter. A Description
Logic Based Approach to Reasoning about Web Services. In Proceedings of
the WWW 2005 Workshop on Web Service Semantics (WSS2005). Chiba City,
Japan, 2005.

[BLM+05b] F. Baader, C. Lutz, M. Milicic, U. Sattler, and F. Wolter. Integrating De-
scription Logics and Action Formalisms: First Results. In Proceedings of the
Twentieth National Conference on Artificial Intelligence (AAAI-05), pp. 572–
577. Pittsburgh, USA, 2005.

[BLM+05c] F. Baader, C. Lutz, M. Milicic, U. Sattler, and F. Wolter. Integrating De-
scription Logics and Action Formalisms: First Results. In Proceedings of the
2005 International Workshop on Description Logics (DL2005), number 147 in
CEUR-WS. 2005.

[BLM+05d] F. Baader, C. Lutz, M. Milicic, U. Sattler, and F. Wolter. Integrating
Description Logics and Action Formalisms for Reasoning about Web Ser-
vices. LTCS-Report 05-02, TU Dresden, Germany, 2005. See http://lat.inf.tu-
dresden.de/research/reports.html.

[BLS06] F. Baader, C. Lutz, and B. Suntisrivaraporn. CEL—A Polynomial-time Rea-
soner for Life Science Ontologies. In Proceedings of the 3rd International Joint
Conference on Automated Reasoning (IJCAR’06), volume 4130 of Lecture Notes
in Artificial Intelligence, pp. 287–291. Springer-Verlag, 2006.

[Bor96] A. Borgida. On the relative Expressiveness of Description Logics and Predicate
Logics. Artificial Intelligence, 82(1 - 2):353–367, 1996.

[Bra04] S. Brandt. Polynomial Time Reasoning in a Description Logic with Existen-
tial Restrictions, GCI Axioms, and—What Else? In Proceedings of the 16th
European Conference on Artificial Intelligence (ECAI-2004), pp. 298–302. IOS
Press, 2004.

[BS85] R. J. Brachman and J. Schmolze. An Overview of the KL-ONE Knowledge
Representation System. Cognitive Science, 9(2):171–216, 1985.

BIBLIOGRAPHY 151

[BSL06] S. Bechhofer, R. D. Stevens, and P. W. Lord. GOHSE: Ontology driven linking
of biology resources. Journal of Web Semantics, 4(3):155–163, 2006.

[BvHH+04] S. Bechhofer, F. van Hamerlen, J. Hendler, I. Horrocks, D. L. McGuinness,
P. Patel-Schneider, and L. Stein. OWL Web Ontology Language reference.
W3C Recommendation, 2004. Http://www.w3.org/TR/owl-ref/.

[Byl94] T. Bylander. The Computational Complexity of Propositional STRIPS Plan-
ning. Artificial Intelligence, 69(1-2):165–204, 1994.

[CELN07] J. Claßen, P. Eyerich, G. Lakemeyer, and B. Nebel. Towards an Integration of
Golog and Planning. In Proceedings of the 20th International Joint Conference
on Artificial Intelligence (IJCAI-07). AAAI Press, 2007.

[CGL+05] D. Calvanese, G. D. Giacomo, D. Lembo, M. Lenzerini, and R. Rosati. DL-Lite:
Tractable Description Logics for Ontologies. In Proceedings of the Twentieth
National Conference on Artificial Intelligence (AAAI-05), pp. 602–607. 2005.

[CGLR07] D. Calvanese, G. D. Giacomo, M. Lenzerini, and R. Rosati. Actions and Pro-
grams over Description Logic Ontologies. In Proceedings of The Twentieth In-
ternationa Workshop on Description Logics (DL-2007). 2007.

[CGT03] C. Castellini, E. Giunchiglia, and A. Tacchella. SAT-based planning in complex
domains: Concurrency, constraints and nondeterminism. Artificial Intelligence,
147(1-2):85–117, 2003.

[CL06] J. Claßen and G. Lakemeyer. A Semantics for ADL as Progression in the
Situation Calculus. In Proceedings of the 11th Workshop on Nonmonotonic
Reasoning . 2006.

[CLN98] D. Calvanese, M. Lenzerini, and D. Nardi. Description Logics for Conceptual
Data Modeling. In J. Chomicki and G. Saake, eds., Logics for Databases and
Information Systems, pp. 229–263. Kluwer Academic Publisher, 1998.

[CR00] A. Cimatti and M. Roveri. Conformant Planning via Symbolic Model Checking.
Journal of Artificial Intelligence Research, 13:305–338, 2000.

[DL96] P. T. Devanbu and D. J. Litman. Taxonomic Plan Reasoning. Artificial Intel-
ligence, 84(1-2):1–35, 1996.

[DT07] C. Drescher and M. Thielscher. Integrating Action Calculi and Description
Logics. In Proceedings of 30th Annual German Conference on AI (KI 2007),
pp. 68–83. 2007.

[EF91] M. J. Egenhofer and R. Franzosa. Point-set topological spatial relations. Inter-
national Journal of Geographical Information Systems, 5(2):161–174, 1991.

[EG92] T. Eiter and G. Gottlob. On the Complexity of Propositional Knowledge Base
Revision, Updates, and Counterfactuals. Artificial Intelligence, 57(2-3):227–
270, 1992.

152 BIBLIOGRAPHY

[ENS95] K. Erol, D. S. Nau, and V. S. Subrahmanian. Complexity, decidability and
undecidability results for domain-independent planning. Artificial Intelligence,
76(1-2):75–88, 1995.

[FG00] P. Ferraris and E. Giunchiglia. Planning as Satisfiability in Nondeterministic
Domains. In Proceedings of the Seventeenth National Conference on Artificial
Intelligence (AAAI’2000), pp. 748–753. 2000.

[FL03] M. Fox and D. Long. PDDL2.1: An Extension to PDDL for Expressing Tem-
poral Planning Domains. Journal of Artificial Intelligence Research (JAIR),
20:61–124, 2003.

[FN71] R. E. Fikes and N. J. Nilsson. STRIPS: a new approach to the application
of theorem proving to problem solving. Artificial Intelligence, 2(3-4):189–208,
1971.

[Fra96] A. Frank. Qualitative Spatial Reasoning: Cardinal Directions as an Exam-
ple. International Journal of Geographical Information Systems, 10(3):269–290,
1996.

[GINR96] G. D. Giacomo, L. Iocchi, D. Nardi, and R. Rosati. Moving a Robot: the
KR&R Approach at Work. In Proceedings of the Fifth International Conference
on Knowledge Representation and Reasoning (KR-96), pp. 198–209. 1996.

[GINR97] G. D. Giacomo, L. Iocchi, D. Nardi, and R. Rosati. Planning with Sensing for
a Mobile Robot. In Preprints of the Fourth European Conference on Planning ,
pp. 156–168. 1997.

[GKWZ03] D. M. Gabbay, A. Kurucz, F. Wolter, and M. Zakharyaschev. Many-
Dimensional Modal Logics: Theory and Applications. Number 148 in Studies
in Logic and the Foundations of Mathematics. Elsevier, 2003.

[GLPR06] G. D. Giacomo, M. Lenzerini, A. Poggi, and R. Rosati. On the Update of De-
scription Logic Ontologies at the Instance Level. In Proceedings of The Twenty-
First National Conference on Artificial Intelligence (AAAI’06). Boston, Mas-
sachusetts, USA, 2006.

[GLPR07] G. D. Giacomo, M. Lenzerini, A. Poggi, and R. Rosati. On the Approximation
of Instance Level Update and Erasure in Description Logics. In Proceedings of
The Twenty-Second National Conference on Artificial Intelligence (AAAI’07),
pp. 403–408. Vancouver, British Columbia, Canada, 2007.

[GS07] Y. Gu and M. Soutchanski. Decidable Reasoning in a Modified Situation Cal-
culus. In Proceedings of the 20th International Joint Conference on Artificial
Intelligence (IJCAI 2007), pp. 1891–1897. Hyderabad, India, 2007.

[GZB06] C. Golbreich, S. Zhang, and O. Bodenreider. The foundational model of
anatomy in OWL: Experience and perspectives. Journal of Web Semantics,
4(3):181–195, 2006.

[HB06] J. Hoffmann and R. I. Brafman. Conformant planning via heuristic forward
search: a new approach. Artificial Intelligence, 170(6):507–541, 2006.

BIBLIOGRAPHY 153

[Her96] A. Herzig. The PMA revisited. In Proceedings of the 5th International Confer-
ence on the Principles of Knowledge Representation and Reasoning (KR-96).
Morgan Kaufmann, 1996.

[HJ99] P. Haslum and P. Jonsson. Some Results on the Complexity of Planning with
Incomplete Information. In Proceedings of 5th European Conference on Planning
ECP’99 , pp. 308–318. 1999.

[HKNP92] J. Heinsohn, D. Kudenko, B. Nebel, and H.-J. Profitlich. RAT: Representation
of Actions using Terminological Logics. Technical report, DFKI, 1992.

[HLM98] V. Haarslev, C. Lutz, and R. Möller. Foundations of Spatioterminological Rea-
soning with Description Logics. In Principles of Knowledge Representation and
Reasoning: Proceedings of the Sixth International Conference (KR’98), pp. 112–
124. Morgan-Kaufmann Publishers, 1998.

[HLM99] V. Haarslev, C. Lutz, and R. Möller. A Description Logic with Concrete Do-
mains and Role-forming Predicates. Journal of Logic and Computation, 9(3),
1999.

[HM01a] V. Haarslev and R. Möller. High Performance Reasoning with Very Large
Knowledge Bases: A Practical Case Study. In B. Nebel, ed., Proceedings of
the Seventeenth International Joint Conference on Artificial Intelligence (IJ-
CAI’01), pp. 161–166. Morgan-Kaufmann, 2001.

[HM01b] V. Haarslev and R. Möller. RACER system description. In R. Goré, A. Leitsch,
and T. Nipkow, eds., Proceedings of the First International Joint Conference on
Automated Reasoning (IJCAR’01), number 2083 in Lecture Notes in Artifical
Intelligence, pp. 701–705. Springer-Verlag, 2001.

[HMW01] V. Haarslev, R. Möller, and M. Wessel. The Description Logic ALCNHR+

Extended with Concrete Domains: A Practically Motivated Approach. In Pro-
ceedings of the First International Joint Conference on Automated Reasoning
IJCAR’01 , pp. 29–44. 2001.

[HN01] J. Hoffmann and B. Nebel. The FF Planning System: Fast Plan Generation
Through Heuristic Search. Journal of Artificial Intelligence Research (JAIR),
14:253–302, 2001.

[HPS99] I. Horrocks and P. F. Patel-Schneider. Optimizing Description Logic Subsump-
tion. Journal of Logic and Computation, 9(3):267–293, 1999.

[HPSvH03] I. Horrocks, P. F. Patel-Schneider, and F. van Harmelen. From SHIQ and RDF
to OWL: The Making of a Web Ontology Language. Journal of Web Semantics,
1(1):7–26, 2003.

[HS90] S. Hölldobler and J. Schneeberger. A new deductive approach to planning. New
Generation Computing , 8(3):225–244, 1990.

[HS99] I. Horrocks and U. Sattler. A Description Logic with Transitive and Inverse
Roles and Role Hierarchies. Journal of Logic and Computation, 9(3):385–410,
1999.

154 BIBLIOGRAPHY

[HS01] I. Horrocks and U. Sattler. Ontology Reasoning in the SHOQ(D) Description
Logic. In Proceedings of the Seventeenth International Joint Conference on
Artificial Intelligence. 2001.

[HS05] I. Horrocks and U. Sattler. A Tableaux Decision Procedure for SHOIQ. In
Proceedings of the Nineteenth International Joint Conference on Artificial In-
telligence (IJCAI-05), pp. 448–453. 2005.

[HST99] I. Horrocks, U. Sattler, and S. Tobies. Practical Reasoning for Expressive De-
scription Logics. In H. Ganzinger, D. McAllester, and A. Voronkov, eds., Pro-
ceedings of the 6th International Conference on Logic for Programming and
Automated Reasoning (LPAR’99), number 1705 in Lecture Notes in Artificial
Intelligence, pp. 161–180. Springer-Verlag, 1999.

[HTR06] M. Horridge, D. Tsarkov, and T. Redmond. Supporting Early Adoption of OWL
1.1 with Protege-OWL and FaCT++. In Proceedings of the OWL Experiences
And Directions Workshop. Athens, Georgia, USA, 2006.

[KS92] H. A. Kautz and B. Selman. Planning as Satisfiability. In Proceedings of the
Tenth European Conference on Artificial Intelligence (ECAI’92), pp. 359–363.
1992.

[KS96] H. Kautz and B. Selman. Pushing the Envelope: Planning, Propositional Logic,
and Stochastic Search. In Proceedings of In Proceedings of the 14th National
Conference on Artificial Intelligence (AAAI-96), pp. 1194–1201. Menlo Park,
California, 1996.

[KS98] H. Kautz and B. Selman. BLACKBOX: A New Approach to the Application
of Theorem Proving to Problem Solving. In In Working notes of the AIPS98
Workshop on Planning as Combinatorial Search. 1998.

[Lif86] V. Lifschitz. On the semantics of STRIPS. In M. P. Georgeff and A. L. Lansky,
eds., Reasoning about Actions and Plans: Proceedings of the 1986 Workshop,
pp. 1–9. Morgan Kaufmann, 1986.

[Lif90] V. Lifschitz. Frames in the Space of Situations. Artificial Intelligence Journal ,
46:365–376, 1990.

[Lif94] V. Lifschitz. Circumscription. In D. Gabbay, C. J. Hogger, and J. A. Robin-
son, eds., Handbook of Logic in Artificial Intelligence and Logic Programming,
Volume 3: Nonmonotonic Reasoning and Uncertain Reasoning , pp. 298–352.
Oxford University Press, 1994.

[Lin95] F. Lin. Embracing Causality in Specifying the Indirect Effects of Actions. In
C. S. Mellish, ed., Proceedings of the 14th International Joint Conference on
Artificial Intelligence (IJCAI-95), pp. 1985–1991. Morgan Kaufmann, Montreal,
Canada, 1995.

[Lin96] F. Lin. Embracing Causality in Specifying the Indeterminate Effects of Actions.
In B. Clancey and D. Weld, eds., Proceedings of the 14th National Conference
on Artificial Intelligence (AAAI-96), pp. 670–676. MIT Press, Portland, OR,
1996.

BIBLIOGRAPHY 155

[LLM08] H. Liu, C. Lutz, and M. Milicic. The Projection Problem for EL Actions. In Pro-
ceedings of the 2008 International Workshop on Description Logics (DL2008),
CEUR-WS. 2008.

[LLMW06a] H. Liu, C. Lutz, M. Milicic, and F. Wolter. Description Logic Actions with gen-
eral TBoxes: a Pragmatic Approach. In Proceedings of the 2006 International
Workshop on Description Logics (DL2006), number 189 in CEUR-WS. 2006.

[LLMW06b] H. Liu, C. Lutz, M. Milicic, and F. Wolter. Reasoning about Actions using
Description Logics with general TBoxes. In Proceedings of the 10th European
Conference on Logics in Artificial Intelligence (JELIA 2006), volume 4160 of
Lecture Notes in Artificial Intelligence, pp. 266–279. Springer-Verlag, 2006.

[LLMW06c] H. Liu, C. Lutz, M. Milicic, and F. Wolter. Updating Description Logic ABoxes.
In Proceedings of the 10th International Conference on Principles of Knowledge
Representation and Reasoning (KR2006), pp. 46–56. AAAI Press, 2006.

[LM05a] C. Lutz and M. Milicic. A Tableau Algorithm for Description Logics with Con-
crete Domains and GCIs. In Proceedings of the 14th International Conference on
Automated Reasoning with Analytic Tableaux and Related Methods TABLEAUX
2005 , number 3702 in LNAI, pp. 201–216. Springer, Koblenz, Germany, 2005.

[LM05b] C. Lutz and M. Milicic. A Tableau Algorithm for DLs with Concrete Domains
and GCIs. In Proceedings of the 2005 International Workshop on Description
Logics (DL2005), number 147 in CEUR-WS. 2005.

[LM07] C. Lutz and M. Milicic. A Tableau Algorithm for Description Logics with Con-
crete Domains and General TBoxes. Journal of Automated Reasoning. Special
Issue on on Automated Reasoning with Analytic Tableaux and Related Methods,
38(1-3):227–259, 2007.

[LPR88] H. Levesque, F. Pirri, and R. Reiter. Foundations for the Situation Calcu-
lus. Linköping Electronic Articles in Computer and Information Science, 3(18),
1988.

[LR94] F. Lin and R. Reiter. State constraints revisited. Journal of Logic and Compu-
tation, 5:655–678, 1994.

[LR97] F. Lin and R. Reiter. How to progress a database. Artificial Intelligence, 92(1-
2):131–167, 1997.

[LRL+97] H. J. Levesque, R. Reiter, L. Lesperance, F. Lin, and R. B. Scherl. golog:
a Logic Programming Language for Dynamic Domains. Journal of Logic Pro-
gramming , 31(1-3):59–83, 1997.

[Lut02a] C. Lutz. Adding Numbers to the SHIQ Description Logic—First Results. In
Proceedings of the Eighth International Conference on Principles of Knowledge
Representation and Reasoning (KR2002), pp. 191–202. Morgan Kaufman, 2002.

[Lut02b] C. Lutz. PSpace Reasoning with the Description Logic ALCF(D). Logic Jour-
nal of the IGPL, 10(5):535–568, 2002.

156 BIBLIOGRAPHY

[Lut02c] C. Lutz. Reasoning about Entity Relationship Diagrams with Complex At-
tribute Dependencies. In Proceedings of the International Workshop in Descrip-
tion Logics 2002 (DL2002), number 53 in CEUR-WS (http://ceur-ws.org/), pp.
185–194. 2002.

[Lut03] C. Lutz. Description Logics with Concrete Domains—A Survey. In P. Balbiani,
N.-Y. Suzuki, F. Wolter, and M. Zakharyaschev, eds., Advances in Modal Logics
Volume 4 , pp. 265–296. King’s College Publications, 2003.

[Lut04a] C. Lutz. Combining Interval-based Temporal Reasoning with General TBoxes.
Artificial Intelligence, 152(2):235–274, 2004.

[Lut04b] C. Lutz. NExpTime-complete Description Logics with Concrete Domains. ACM
Transactions on Computational Logic, 5(4):669–705, 2004.

[LW06] C. Lutz and F. Wolter. Modal Logics of Topological Relations. Logical Methods
in Computer Science, 2(2), 2006.

[MBM+07] D. Martin, M. Burstein, D. McDermott, S. McIlraith, M. Paolucci, K. Sycara,
D. McGuinness, E. Sirin, and N. Srinivasan. Bringing Semantics to Web Services
with OWL-S. World Wide Web Journal , 10(3):243–277, 2007. Special Issue:
Recent Advances in Web Services.

[McC63] J. McCarthy. Situations, actions and causal laws. Technical report, Stanford
University, 1963. Reprinted in Semantic Information Processing (M. Minsky
ed.), MIT Press, Cambridge, Mass., 1968, pages 410-417.

[McI00] S. McIlraith. An axiomatic solution to the ramification problem (sometimes).
Artificial Intelligence Journal , 116(1–2):87–121, 2000.

[MH69] J. McCarthy and P. J. Hayes. Some philosophical problems from the standpoint
of artificial intelligence. Machine Intelligence, 4:463–502, 1969.

[Mil07] M. Milicic. Complexity of Planning in Action Formalisms Based on Description
Logics. In Proceedings of the 14th International Conference on Logic for Pro-
gramming, Artificial Intelligence, and Reasoning (LPAR 2007), Lecture Notes
in Artificial Intelligence, pp. 408–422. Springer-Verlag, 2007.

[Min75] M. Minsky. A framework for representating knowledge. In P. H. Winston, ed.,
The Psychology of Computer Vision, pp. 211–277. McGraw-Hill, New York,
USA, 1975.

[MS02] S. McIlraith and T. Son. Adapting Golog for Composition of Semantic Web
Services. In Proceedings of the Eighth International Conference on Knowledge
Representation and Reasoning (KR2002), pp. 482–493. Toulouse, France, 2002.

[MSZ01] S. McIlraith, T. Son, and H. Zeng. Semantic Web Services. IEEE Intelligent
Systems. Special Issue on the Semantic Web, 16(2):46–53, 2001.

[NB95] B. Nebel and H.-J. Bürckert. Reasoning about Temporal Relations: A Maximal
Tractable Subclass of Allen’s Interval Algebra. Journal of the ACM , 42(1):43–
66, 1995.

BIBLIOGRAPHY 157

[Neb91] B. Nebel. Terminological Cycles: Semantics and Computational Properties. In
J. F. Sowa, ed., Principles of Semantic Networks: Explorations in the Repre-
sentation of Knowledge, pp. 331–361. Morgan Kaufmann, 1991.

[Neb00] B. Nebel. On the Compilability and Expressive Power of Propositional Planning
Formalisms. Journal of Artificial Intelligence Research (JAIR), 12:271–315,
2000.

[NM02] S. Narayanan and S. McIlraith. Simulation, Verification and Automated Com-
position of Web Services. In Proceedings of the Eleventh International World
Wide Web Conference (WWW-11), pp. 77–88. Honolulu, Hawaii, USA, 2002.

[Ped89] E. P. D. Pednault. ADL: Exploring the Middle Ground Between STRIPS and
the Situation Calculus. In Proceedings of the First International Conference on
Knowledge Representation and Reasoning (KR’89), pp. 324–332. 1989.

[Ped94] E. P. D. Pednault. ADL and the State-Transition Model of Action. Journal of
Logic and Computation, 4(5):467–512, 1994.

[PG06] H. Palacios and H. Geffner. Compiling Uncertainty Away: Solving Conformant
Planning Problems using a Classical Planner (Sometimes). In Proceedings of The
Twenty-First National Conference on Artificial Intelligence (AAAI’06). 2006.

[PH05] I. Pratt-Hartmann. Complexity of the Two-Variable Fragment with Counting
Quantifiers. Journal of Logic, Language and Information, 14(3):369–395, 2005.

[Pra79] V. R. Pratt. Models of Program Logics. In Proceedings of the Twentieth Annual
Symposium on Foundations of Computer Science. San Juan, Puerto Rico, 1979.

[PST00] L. Pacholski, W. Szwast, and L. Tendera. Complexity Results for First-Order
Two-Variable Logic with Counting. SIAM Journal on Computing , 29(4):1083–
1117, 2000.

[Qui68] M. R. Quillian. Semantic Memory. In M. Minsky, ed., Semantic Information
Processing , pp. 227–270. MIT Press, Cambridge, MA, USA, 1968.

[RCC92] D. A. Randell, Z. Cui, and A. G. Cohn. A spatial logic based on regions and
connection. In Proceedings of the Third International Conference on Principles
of Knowledge Representation and Reasoning (KR’92), pp. 165–176. Morgan
Kaufman, 1992.

[Rei91] R. Reiter. The frame problem in the situation calculus: A simple solution
(sometimes) and a completeness result for goal regression. In V. Lifschitz, ed.,
Artificial Intelligence and Mathematical Theory of Computation, pp. 359–380.
Academic Press, 1991.

[Rei01] R. Reiter. Knowledge in Action. MIT Press, 2001.

[RH97] A. Rector and I. Horrocks. Experience Building a Large, Re-usable Medical
Ontology using a Description Logic with Transitivity and Concept Inclusions.
In Proceedings of the Workshop on Ontological Engineering, AAAI Spring Sym-
posium (AAAI-97). AAAI Press, 1997.

158 BIBLIOGRAPHY

[Rin04] J. Rintanen. Complexity of Planning with Partial Observability. In Proceed-
ings of the Fourteenth International Conference on Automated Planning and
Scheduling (ICAPS 2004), pp. 345–354. 2004.

[RN95] S. Russell and P. Norvig. Artificial Intelligence: A Modern Approach. Prentice-
Hall, 1995.

[RN99] J. Renz and B. Nebel. On the Complexity of Qualitative Spatial Reasoning:
A Maximal Tractable Fragment of the Region Connection Calculus. Artificial
Intelligence, 108(1–2):69–123, 1999.

[San94] E. Sandewall. Features and Fluents. Oxford University Press, 1994.

[Sav70] W. J. Savitch. Relationship between Nondeterministic and Deterministic Tape
Complexities. Journal of Computer and System Sciences, 4:177–192, 1970.

[SAW+07] R. Stevens, M. E. Aranguren, K. Wolstencroft, U. Sattler, N. Drummond,
M. Horridge, and A. Rector. Using OWL to model biological knowledge. Inter-
national Journal of Human-Computer Studies, 65(7):583–594, 2007.

[Sch90] L. Schubert. Monotonic Solution of the Frame Problem in the Situation Cal-
culus: An Efficient Method for Worlds with Fully Specified Actions. In H. E.
Kyburg, R. P. Loui, and G. N. Carlson, eds., Knowledge Representation and De-
feasible Reasoning , volume Volume 5, pp. 23–67. Kluwer Academic Publishers,
1990.

[Sch91] K. Schild. A correspondence theory for terminological logics: preliminary re-
port. In Proceedings of the 12th International Joint Conference on Artificial
Intelligence (IJCAI-91), pp. 466–471. Sidney, Australia, 1991.

[Sch93] A. Schaerf. On the Complexity of the Instance Checking Problem in Concept
Languages with Existential Quantification. Journal of Intelligent Information
Systems, 2:265–278, 1993.

[SdCH+06] N. Sioutos, S. de Coronado, M. Haber, F. Hartel, W. Shaiu, and L. Wright. NCI
Thesaurus: a semantic model integrating cancer-related clinical and molecular
information. Journal of Biomedical Informatics, 40(1):30–43, 2006.

[SM73] L. J. Stockmeyer and A. R. Meyer. Word Problems Requiring Exponential
Time. In ACM Symposium on Theory of Computing (STOC ’73), pp. 1–9.
ACM Press, New York, USA, 1973.

[Spa01] K. Spackman. Normal forms for description logic expressions of clinical con-
cepts in snomed rt. Journal of the American Medical Informatics Association,
(Symposium Supplement), 2001.

[SPG+07] E. Sirin, B. Parsia, B. C. Grau, A. Kalyanpur, and Y. Katz. Pellet: A practical
OWL-DL reasoner. Journal of Web Semantics, 5(2):51–53, 2007.

[SS89] M. Schmidt-Schauß. Subsumption in KL-ONE is Undecidable. In KR’89:
Principles of Knowledge Representation and Reasoning , pp. 421–431. Morgan-
Kaufmann Publishers, 1989.

BIBLIOGRAPHY 159

[SSS91] M. Schmidt-Schauß and G. Smolka. Attributive concept descriptions with com-
plements. Artificial Intelligence, 48(1):1–26, 1991.

[ST06] S. Schiffel and M. Thielscher. Reconciling Situation Calculus and Fluent Cal-
culus. In Proceedings of The Twenty-First National Conference on Artificial
Intelligence (AAAI’06). Boston, Massachusetts, USA, 2006.

[SW98] D. E. Smith and D. S. Weld. Conformant Graphplan. In AAAI ’98/IAAI
’98: Proceedings of the fifteenth national/tenth conference on Artificial intelli-
gence/Innovative applications of artificial intelligence, pp. 889–896. American
Association for Artificial Intelligence, 1998.

[TH06] D. Tsarkov and I. Horrocks. FaCT++ Description Logic Reasoner: System De-
scription. In Proceedings of the International Joint Conference on Automated
Reasoning (IJCAR 2006), volume 4130 of Lecture Notes in Artificial Intelli-
gence, pp. 292–297. Springer, 2006.

[The00] The Gene Ontology Consortium. Gene Ontology: Tool for the Unification of
Biology. Nature Genetics, 25:25–29, 2000.

[Thi97] M. Thielscher. Ramification and Causality. Artificial Intelligence Journal , 89(1–
2):317–364, 1997.

[Thi99] M. Thielscher. From situation calculus to fluent calculus: state update axioms
as a solution to the inferential frame problem. Artificial Intelligence, 111(1-
2):277–299, 1999.

[Thi00] M. Thielscher. Nondeterministic Actions in the Fluent Calculus: Disjunctive
State Update Axioms. In S. Hölldobler, ed., Intellectics and Computational
Logic, pp. 327–345. Kluwer Academic, 2000.

[Thi05a] M. Thielscher. FLUX: A logic programming method for reasoning agents.
TPLP , 5(4-5):533–565, 2005.

[Thi05b] M. Thielscher. Reasoning Robots: The Art and Science of Programming Robotic
Agents. Number 33 in Applied Logic Series. Kluwer, 2005.

[Tho75] S. K. Thomason. The logical consequence relation of propositional tense logic.
Z. Math. Logik Grundl. Math., 21:29–40, 1975.

[Tob00] S. Tobies. The Complexity of Reasoning with Cardinality Restrictions and
Nominals in Expressive Description Logics. Journal of Artificial Intelligence
Research, 12:199–217, 2000.

[Tob01] S. Tobies. Complexity Results and Practical Algorithms for Logics in Knowledge
Representation. Ph.D. thesis, RWTH Aachen, 2001.

[Tur02] H. Turner. Polynomial-Length Planning Spans the Polynomial Hierarchy. In
Proceedings of the European Conference on Logics in Artificial Intelligence
(JELIA ’02), pp. 111–124. Springer-Verlag, 2002.

160 BIBLIOGRAPHY

[VK86] M. B. Vilain and H. A. Kautz. Constraint Propagation Algorithms for Tem-
poral Reasoning. In Proceedings of the 5th National Conference on Artificial
Intelligence (AAAI-86), pp. 377–382. 1986.

[VKvB90] M. Vilain, H. Kautz, and P. van Beek. Constraint propagation algorithms for
temporal reasoning: a revised report. In Readings in qualitative reasoning about
physical systems, pp. 373–381. Morgan Kaufmann, San Francisco, CA, USA,
1990.

[VL07] S. Vassos and H. J. Levesque. Progression of Situation Calculus Action Theories
with Incomplete Information. In Proceedings of the 20th International Joint
Conference on Artificial Intelligence (IJCAI-07), pp. 2029–2024. 2007.

[Win88] M. Winslett. Reasoning about Action Using a Possible Models Approach. In
Proceedings of the 7th National Conference on Artificial Intelligence (AAAI-88),
pp. 89–93. Saint Paul, MN, 1988.

[Win90] M. Winslett. Updating Logical Databases. Cambridge University Press, Cam-
bridge, England, 1990.

	Acknowledgements
	Introduction
	Description Logics
	Action and Planning Formalisms
	Integrating DLs with Action Formalisms
	Motivation
	Contributions and Results
	Related Work

	Description Logics with Concrete Domains
	Concrete Domains
	Contributions and Results

	Structure of the Thesis

	Formal Preliminaries
	Description Logics
	Situation Calculus

	Action Formalism A1: Simple Post-Conditions and Acyclic TBoxes
	The Formalism
	Action Descriptions
	Reasoning about Actions
	Relation to Situation Calculus

	Deciding Executability and Projection
	Reduction to DL Reasoning
	Hardness Results

	Restrictions and Extensions of A1
	Restrictions
	Projection in EL with empty TBoxes
	Projection in EL with acyclic TBoxes

	Extensions
	Role Inclusions
	Problematic Extensions

	Complex Concepts in Post-Conditions and GCIs: PMA
	PMA Semantics of Generalized A1-Actions
	Drawbacks of PMA

	Action Formalism A2: Complex Post-Conditions and GCIs
	The Formalism
	Action Descriptions
	Reasoning about Actions
	Relation to A1

	Deciding Projection
	Projection in ExpTime
	Projection beyond ExpTime

	Undecidability of Strong Consistency
	Practicability

	Planning
	Planning Problem
	Unconditional PLANEX
	Conditional PLANEX
	Results on Planning in EL
	Hardness Results for Unconditional PLANEX in EL
	Hardness Results for Conditional PLANEX in EL

	Description Logics with Concrete Domains
	Constraint Systems
	RCC8
	Allen's Relations
	Properties of Constraint Systems

	Description Logic ALC(C)
	A Tableau Algorithm for ALC(C)
	Normal Forms
	Data Structures
	The Tableau Algorithm

	Correctness
	Practicability

	Conclusion
	Description Logic Actions
	Summary
	Future Work

	Description Logics with Concrete Domains

	Bibliography

