
TECHNISCHE UNIVERSITÄT DRESDEN

International Masters Programme in Computational Logic
Institute for Theoretical Computer Science

Computer Science

Master Thesis

Branching Temporal Description Logics:
Reasoning about CTLALC and CTLEL concepts

VICTOR GUTIERREZ-BASULTO

Overseeing Professor

Prof. Dr. Franz Baader

Supervisor

Prof. Dr. Carsten Lutz

Dresden, Germany January, 2009

ii

TECHNISCHE UNIVERSITÄT DRESDEN

Author: Vı́ctor Didier Gutiérrez Basulto
Matrikel-Nr: 3361795
Title: Branching Temporal Description Logics:

Reasoning about CTLALC and CTLEL concepts
Degree: Master of Science
Date of submision: 19.01.09

Declaration
Hereby I certify that the thesis has been written by me. Any help that I
have received in my research work has been acknowledged. Additionally, I
certify that I have not used any auxiliary sources and literature except those
I cited in the thesis.

Vı́ctor Didier Gutiérrez Basulto

iii

Abstract

In many applications of description logics (DLs) it is no longer enough to
describe the static aspects of the application domain. In particular, there is
a need to formalize the temporal evolution of an application domain. This
is the case, for example, if we want to use DLs as conceptual modeling lan-
guages for temporal databases. Another example are medical ontologies,
where the representation of concepts often requires reference to temporal
patterns. However, description logics have been designed and used as a for-
malism for knowledge representation and reasoning only in static application
domains. Therefore, DLs are not able to express temporal aspects of knowl-
edge. The previous observations have resulted in diverse proposals of tem-
poral description logics (TDLs). In particular, one approach is to combine
standard description logics, such as ALC and EL, with standard temporal
logics, such as LTL, CTL and CTL∗.

In this thesis, we follow the mentioned approach. More precisely, we use
the description logics ALC and EL in the DL component and the temporal
logic computation tree logic (CTL) in the temporal component. These com-
binations result in two TDLs, namely CTLALC from the combination of ALC
and CTL, and CTLEL from the combination of CTL and EL. In CTLALC and
CTLEL, we focus on temporal reasoning about concepts, i.e., we apply tem-
poral operators only to concepts. After introducing CTLALC and CTLEL, we
determine the computational complexity for reasoning problems in the men-
tioned logics. More precisely, we show that satisfiability w.r.t. TBoxes with
expanding domains in CTLALC is EXPTIME-complete. We show also that
subsumption w.r.t. TBoxes with expanding domains in CTLEL is intractable,
in particular, it is EXPTIME-complete.

iv

Acknowledgments

First of all, I would like to thank my supervisor, Carsten Lutz for his
infinite patience, his friendly guidance and his excellent comments and ideas.
Without his supervision this thesis had not been successfully finished. More-
over, I would like to thank Prof. Franz Baader for introducing me to the
fascinating topic of description logics. Finally, I want to thank Prof. Stephen
Hoelldobler for his advice along my stay in the computational logic program.

Many thanks goes to my colleagues in the CL program. Specially, I ap-
preciate all the trips we did together, the cooking and drinking time and all
the hanging around. Special thanks to my Latinamerican, German, Pakista-
nis and Indian friends.

I appreciate the financial support given me by the Mexican National
Council for Science and Technology and the German Service of Academic
Exchange that made possible my studies in the CL programm.

I would like to thank my beloved wife Angelica for all her love, patience
and scientific ideas. Nothing of this would be real without her. Last but not
least, I thank my parents and brother for being who and how they are.

Contents

1 Introduction 1
1.1 Description logics . 1

1.1.1 Syntax . 2
1.1.2 Knowledge bases . 2
1.1.3 Semantics and inferences 3
1.1.4 Complexity of inference problems 4
1.1.5 DLs and other logics 4

1.2 Temporal description logics 5
1.3 A temporal logic: CTL . 6
1.4 Objective and structure . 7

2 Preliminaries 11
2.1 Introducing ALC . 11
2.2 Introducing EL . 14
2.3 Introducing CTL . 14

3 Temporal concepts: CTLALC concepts 19
3.1 Introducing CTLALC . 19

3.1.1 CTLALC syntax . 20
3.1.2 CTLALC semantics . 21

3.2 CTLALC fusion semantics . 23
3.3 Relating CTLALC temporal and fusion semantics 24
3.4 Introducing the µ-calculus . 37

3.4.1 µ-calculus syntax . 37
3.4.2 µ-calculus semantics 38

3.5 Relating CTLALC and the µ-calculus 39

4 Temporal concepts: CTLEL concepts 41
4.1 CTLEL syntax . 41
4.2 CTLEL semantics . 42
4.3 CTLEL computational complexity 43

v

vi CONTENTS

4.3.1 From ALC satisfiability to CTLEL subsumption 43

5 Conclusions 53

References 55

Chapter 1

Introduction

In this chapter, we give an introduction to the topics that we treat throughout
this thesis. In the first section, we present the main ideas behind description
logics. Then, in the second section, we introduce temporal description logics.
Thereafter, in the third section, we introduce the temporal logic computation
tree logic. Finally, in the fourth section, we set the objective and describe
the structure of this work.

1.1 Description logics

Description logics (DLs) are a well known family of logic-based knowledge
representation formalisms that allow to represent and reason about concep-
tual knowledge in a structured and well-understood way. An important char-
acteristic of DLs is that they provide a formal way to construct a knowledge
representation. We use description logics in knowledge-based systems that
offer reasoning services. These reasoning services allow to effectively extract
implicit consequences from the explicitly represented knowledge.

In the 1970’s –prior to description logics– two approaches to represent
knowledge arose, namely semantic networks (Quillian, 1968) and frames
(Minsky, 1974). These formalisms, semantic networks and frames, use sim-
ple graphs and structured objects to represent knowledge, respectively. The
intuition behind semantic networks and frames was that, by means of the
mentioned structures, representation could be simpler than in powerful logic-
based approaches and thus reasoning would be more efficient. The main
deficit of semantic networks and frames was the lack of semantics, and as a
result, the problem of ambiguities.

1

2 CHAPTER 1. INTRODUCTION

Description logics appeared as a sort of compromise between, on the
one hand, the features of semantic networks and frames, and on the other,
logic-based formalisms. The earliest DL system is KL-ONE (Brachman &
Schmolze, 1985), introduced in 1985. Later on, Schimdt-Schauß showed
that KL-ONE is undecidable (Schmidt-Schauß, 1989). In 1991, Schimdt-
Schauß and Smolka introduced the decidable languageALC (Schmidt-Schauß&
Smolka, 1991).

1.1.1 Syntax

The basic notions in description logics are concept names (unary predicates)
and roles (binary relations). A specific DL is mainly characterized by the set
of constructors it provides to build more complex concepts and roles out of
atomic ones. Particular description logics have individual names, e.g., ALC,
EL and ALCN .

In description logics, concept descriptions are the basis for expressing
knowledge. To construct concept descriptions, we use concept names, roles
and constructors. Concept names denote classes of objects in a certain do-
main, e.g., Mother, Human, Number, etc. Roles are binary relations between
objects of the domain, e.g., has, loves.

The description logic ALC is the “smallest” DL that is propositionally
closed, i.e., that provides for all Boolean connectives. More precisely, ALC
provides the constructors: negation (¬), conjunction (⊔), disjunction (⊓),
and existential (∃) and universal (∀) restriction. The following is a concept
description in ALC.

Human ⊓Male ⊓ ∃has child.⊤ (1.1)

Here, Human and Male are concept names, has child is a role name and
⊤,⊓ are constructors. ⊤ is an abbreviation for some fixed propositional
tautology such as A ⊔ ¬A. The concept description (1.1) defines the notion
of “father”.

1.1.2 Knowledge bases

Description logic knowledge bases usually consist of two components, namely
a TBox and an ABox. A TBox stores terminological knowledge and back-
ground knowledge about an application domain. An ABox stores assertional

1.1. DESCRIPTION LOGICS 3

knowledge about the individuals, i.e., knowledge about the state of affairs in
a particular “world”.

There are several kinds of TBoxes. The most common TBoxes are acyclic
TBoxes and general TBoxes. Acyclic TBoxes consist of concept definitions of
the form A

.
= C, defining the concept name A as a complex concept C. We

call a TBox acyclic if and only if the definition of no concept refers directly or
indirectly to itself and the left-hand sides of all concept definitions are pair-
wise distinct. General TBoxes allow for general concept inclusions (GCIs). A
GCI is of the form C ⊑ D, where C and D are (possibly) complex concepts,
and states that C implies D. We use general TBoxes to formulate general
constraints and acyclic TBoxes to define concepts, i.e., acyclic TBoxes assign
concept names to complex concepts thus they define abbreviations.

The following ALC-TBox defines the concepts of Parent, Mother and Fa-
ther, and requires that every Human has only human children.

Parent
.
= Human ⊓ ∃has child.⊤

Mother
.
= Parent ⊓ Female

Father
.
= Parent ⊓Male

Human ⊑ ∀has child.Human

Moreover, the following ABox states that yazmin is a female human with
a human child carmen.

A := {(Human⊓Female) (yazmin), has child(yazmin,carmen), Human(carmen)}.

Due to the objective of this thesis, in the sequel we do not consider
ABoxes.

1.1.3 Semantics and inferences

The semantics of concept descriptions is given in terms of an interpretation.
An interpretation consists of a non-empty set of individuals, the interpre-
tation domain, and an interpretation function. The latter assigns concept
names to sets of elements of the interpretation domain, and role names to a
binary relation on the interpretation domain. The interpretation function is
inductively extended to arbitrary concept descriptions. Thus, we interpret
concept descriptions as subsets of the interpretation domain. The following
interpretation gives the semantic of the concept description (1.1), where ∆I

is the interpretation domain and ·I is the interpretation function.

4 CHAPTER 1. INTRODUCTION

∆I = {PETER, JOHN, KATE, ROSE , HILLARY},
HumanI = ∆I , MaleI = {PETER, JOHN},
has childI = {(PETER,KATE), (JOHN,HILLARY), (JOHN,PETER)}.

We say that an interpretation I is a model of a TBox T if and only if
the left-hand side and the right-hand side of every concept definition in T is
interpreted identically, and the extension of C is contained in the extension
of D for every GCI C ⊑ D in T .

The standard reasoning problems in description logics are satisfiability
and subsumption. A concept C is satisfiable if there exists an interpretation
I such that CI 6= ∅. We say that I is a model of C. A concept D subsumes
a concept C (written C ⊑ D) if CI ⊆ DI for all interpretations I. Sat-
isfiability and subsumption can take into account TBoxes. A concept C is
satisfiable w.r.t. a TBox T if and only if there exists a model of T such that
C is interpreted as a non-empty set. C is subsumed by a concept D w.r.t. T
if and only if C is more specific than D in the sense that, w.r.t. every model
of T , the interpretation of C is a subset of that of D.

1.1.4 Complexity of inference problems

The computational complexity of satisfiability and subsumption depends on
the expressivity of the underlying description logic.

ALC-concept satisfiability is PSPACE-complete (Schmidt-Schauß& Smolka,
1991). The complexity increases if we take into account TBoxes. More
precisely, ALC-concept satisfiability w.r.t. general TBoxes is EXPTIME-
complete (Schild, 1991; Schild, 1994). There are also DLs with polynomial
inference problems, such as EL. The description logic EL provides only ex-
istential quantification, conjunction, and the top concept. EL-concept sub-
sumption w.r.t. TBoxes is decidable in polynomial time (Brandt, 2004).

1.1.5 DLs and other logics

There exists a connection between description logics and various other logics.
This connection can be used to transfer complexity and (un)decidability re-
sults between the DLs and other logics. In particular, there exists a close con-
nection between modal logic (Blackburn et al., 2006) and description logics.

1.2. TEMPORAL DESCRIPTION LOGICS 5

Schild (Schild, 1991) observed that ALC is a syntactic variant of the multi-
modal logic Kω. Kripke structures and description logics interpretations can
be translated into one another. Hence, DL concept satisfiability is modal
logic formula satisfiability. Since formula satisfiability in Kω is PSPACE-
complete, we can obtain an alternative proof of the PSPACE-completeness
of ALC-concept satisfiability by using the correspondence between ALC and
Kω. Description logics is not only related with modal logics. In particu-
lar, there exists also a connection between description logics and decidable
fragments of first order logics (Lutz et al., 2001).

1.2 Temporal description logics

In many applications of description logics (Baader et al., 2003) is necessary
to describe the temporal aspect of the application domain. This is the case,
when we use DLs to represent conceptual models of temporal databases (Ar-
tale et al., 2002). Another example is the use of DLs as ontology languages
or conceptual modeling languages, where the description of a concept may
involve reference to temporal patterns. As an example, consider the concept
Mortal. A faithful representation of Mortal should say that a mortal is a
living being who is alive until he dies.

The expressiveness of pure description logics is not sufficient to describe
temporal aspects of knowledge. Hence, DLs cannot describe concepts that
refer to temporal patterns, such as Mortal. Due to this observation, a di-
verse literature on temporal description logics (TDLs) has emerged. Pro-
posals for TDLs include the combination of description logics with Halpern
and Shoham’s logic of time intervals (Schmiedel, 1990), formalisms inspired
by action logics (Artale & Franconi, 1998), the treatment of time points and
intervals as a datatype (Lutz, 2004) and the combination of standard descrip-
tion logics with standard (propositional) temporal logics into logics with a
two-dimensional semantics, where one dimension is for time and the other for
the DL domain (Schild, 1993; Wolter & Zakharyaschev, 2000; Gabbay et al.,
2003). In 1993, Schild proposed the latter combinations (Schild, 1993), which
since then have experienced constant development in the sense that the DL
and the temporal component have varied. For more information about the
proposals presented here, see the surveys (Artale & Franconi, 2000; Artale
& Franconi, 2005; Lutz et al., 2008).

In this thesis, we follow the last approach, where we use the description
logics ALC and EL in the DL component and the temporal logic computation

6 CHAPTER 1. INTRODUCTION

tree logic (CTL) (Clarke & Emerson, 1982) in the temporal component. After
we fix the description logic and the temporal logic that we combine, there
remain several degrees of freedom when we define the resulting temporal
description logic. An important decision is whether to apply the temporal
operators to DL concepts, roles, TBoxes or ABoxes. As we could expect,
the resulting TDLs differ in many aspects, in particular, expressiveness and
computational properties. In this thesis, we use temporal operators only as
concept constructors.

1.3 A temporal logic: CTL

Temporal logic is a type of modal logic (Gabbay et al., 1994). A temporal
logic allows for the specification of the relative order of events. Some exam-
ples are “the car stops once the driver pushes the brake”, or “the message is
received after it has been sent”. However, a temporal logic does not support
any means to refer to the precise timing of events. One might thus say that
the modalities in temporal logic are time-abstract. Due to these characteris-
tics, temporal logics have been adopted as a powerful tool for specifying and
verifying concurrent programs (Pnueli, 1977).

Temporal logics are often classified according to whether time is assumed
to have a linear or a branching structure (Lamport, 1980). In linear temporal
logics, each moment in time has a unique possible future while in branching
temporal logics each moment in time may split time into several possible
futures. In this thesis, we focus on branching time temporal logics (Gabbay
et al., 2000), in particular, computation tree logic (CTL) (Clarke & Emerson,
1982).

Computation tree logic provides temporal branching connectives that are
composed of a path quantifier immediately followed by a single linear tempo-
ral connective (Emerson, 1990). The path quantifiers are A (“for all paths”)
and E (“for some path”). The linear time connectives are© (“next”) and U
(“until”). For example, the formula E(pU q) says that there is a computation
starting at the current time point along which p holds until q holds.

Computation tree logic enables us to make powerful assertions about
the behavior of a program. For example, E(trueU q) says that there is a
computation starting at the current time point along which q eventually
holds. We abbreviate this by E3q. Another example, consider the formula
A(trueU ¬q). The last formula holds in a state s if along every path start-

1.4. OBJECTIVE AND STRUCTURE 7

ing at s eventually ¬q holds, abbreviated by (A3¬q). It may seem that
all temporal connectives talk about finite computations. However, we can
combine temporal and Boolean connectives to form assertions about infinite
computations. For example, ¬A3¬q says that there is an infinite path start-
ing at the current time point along which q always holds, abbreviated by E2q.

The semantics of computation tree logic is defined in terms of an infinite,
directed tree of states or time instants. A direct edge from node s to node
t means that it is possible to pass from s to t, or that t is a possible future
from s. Each transversal of a tree starting in its root represents a single
path. A tree itself thus represents all possible paths. A tree rooted at state
s represents all possible infinite computations that start in s.

1.4 Objective and structure

As we have stated above, in many applications of description logics, being
able to represent temporal aspects of the domain is quite useful. To allow
DLs to express temporal aspects, we can choose among several approaches.
In this thesis, we focus on the temporal extensions of description logics that
emerge from the combination of standard DLs with standard temporal logics.
In particular, we treat combinations that use computation tree logic (CTL)
in the temporal component. We have decided to consider CTL due to two
important reasons. First, as argued in (Lutz et al., 2008), linear temporal
logics, such as linear temporal logic (LTL); see e.g., (Gabbay et al., 1994),
are not able to distinguish between possible, actual, and necessary future
developments. Suppose, for example, that we want to describe countries
that can join the EU in the future. The GCI

EU candidate ⊑ 3EU member,

expresses that, sooner or later, every EU candidate will join the EU.
However, the last statement seems too strong. What we actually mean is
that, under certain circumstances, an EU candidate may join the EU in the
future. CTL allows to formalize statements of the previous sort. If E is
understood as “it is possible that” and A as “it is necessary that”, then

EU candidate ⊑ E3EU member

means that each EU candidate has the possibility to join the EU.

8 CHAPTER 1. INTRODUCTION

The second reason to choose CTL is that, most of the research on com-
binations of DLs and temporal logics concentrates on the case where LTL
is used in the temporal dimension (Schild, 1993; Artale et al., 2007; Baader
et al., 2008; Lutz et al., 2008). In particular, in branching time TDLs –in
contrast to linear time TDLs– two problems remain open:

1. No tight complexity results are known.

2. Simpler reasoning problems than satisfiability of temporal CTLALC

TBoxes have not yet been investigated, where CTLALC is the temporal
description logic that emerges from the combination of ALC and CTL.

In this thesis, we introduce two temporal description logics, namely CTLALC

and CTLEL. These TDLs, CTLALC and CTLEL, result from the combination
of CTL with ALC and EL, respectively. However, even after we fix the DL
and the temporal logic to be combined, we have to make another decision,
namely to which pieces of syntax we apply temporal operators. In this the-
sis, we treat temporal reasoning about concepts, i.e., we only apply temporal
operators to concepts.

After setting the temporal description logics to investigate, we show that
satisfiability of CTLALC temporal concepts w.r.t. TBoxes with expanding
domains is EXPTIME-complete. Since satisfiability in ALC with TBoxes is
EXPTIME-complete and satisfiability in CTL is EXPTIME-complete as well,
we can consider CTLALC as rather well-behaved, i.e., concept satisfiability is
not harder than in the component logics.

Thereafter, we prove that subsumption of temporal concepts w.r.t. TBoxes
with expanding domains in CTLEL is EXPTIME-complete. Thus, reasoning
in CTLEL does not remain tractable as in pure EL.

Recall that CTL –in contrast to LTL– can distinguish between possible,
actual, and necessary future developments. The results obtained in this the-
sis show that the last fact does not increase the computational complexity
for reasoning problems in CTLALC (CTLEL) with respect to the computa-
tional complexity for those in LTLALC (LTLEL). More precisely, satisfiability
of LTLALC concepts w.r.t. TBoxes with expanding domains is EXPTIME-
complete and subsumption of temporal concepts w.r.t. TBoxes with expand-
ing domains in LTLEL is EXPTIME-complete.

Regarding branching temporal description logics, the results presented in
this thesis are the first tight complexity results known.

1.4. OBJECTIVE AND STRUCTURE 9

We structure this thesis as follows:

• In Chapter 2, we introduce the theoretical background. We introduce
the basics of description logics: their syntax, semantics and standard
reasoning problems. Next, we present the formal preliminaries of the
temporal logic computation tree logic.

• In Chapter 3, we introduce the temporal description logic CTLALC: its
syntax and semantics. Next, we give a characterization of the semantics
of CTLALC in terms of fusion models. Moreover, this characterization
allows to establish a connection between CTLALC and the standard
µ-calculus. Thereafter, using this connection, we determine the com-
plexity of reasoning in CTLALC.

• In Chapter 4, we introduce the temporal description logic CTLEL.
Thereafter, we determine the complexity of reasoning in the mentioned
logic. To prove the lower bound, we reduce satisfiability w.r.t. TBoxes
in ALC to subsumption w.r.t. TBoxes in CTLEL.

• In Chapter 5, we summarize the results of this thesis and briefly discuss
future prospects.

10 CHAPTER 1. INTRODUCTION

Chapter 2

Preliminaries

In this chapter, we introduce the basic notions that we use throughout
the following chapters. In the first two sections, we present the basics of
the description logics ALC and EL. In the last section, we give a formal
definition of the temporal logic CTL.

2.1 Introducing ALC

The description logic ALC, was first introduced by Schmidt-Schauß and
Smolka (Schmidt-Schauß& Smolka, 1991). The name ALC stands for At-
tribute Language with Complements. ALC is the “smallest” description logic
that is propositionally closed, i.e., that provides for all Boolean connectives.
More precisely, ALC concepts are built from the Boolean connectives and
so-called existential and universal value restrictions.

Definition 2.1 (ALC syntax). Let NC and NR be disjoint sets of concept
names and role names, respectively. The set of ALC-concept descriptions is
defined inductively as follows:

1. Each concept name A ∈ NC is an ALC-concept description.

2. ⊤ and ⊥ are ALC-concept descriptions.

3. If C,D are ALC-concept descriptions, and r ∈ NR, then the following
are also ALC-concept descriptions:

• C ⊓D, C ⊔D, ¬C,

11

12 CHAPTER 2. PRELIMINARIES

• ∃r.C, ∀r.C.

Example 2.2.
Animal ⊓ ∃ eats.Meat

This concept description describes the class of carnivores.

We give the formal semantics of ALC by interpretations. We can see an
interpretation as a mapping from concept descriptions to an specific domain.
In particular, we interpret concepts as unary predicates over the domain and
roles as binary relations over the domain.

Definition 2.3 (ALC semantics). An interpretation I consists of a non-
empty interpretation domain ∆I and an interpretation function ·I that

• assigns to each A ∈ NC a subset AI ⊆ ∆I ,

• assigns to each r ∈ NR a binary relation rI ⊆ ∆I ×∆I .

The interpretation function is then inductively extended to the rest of ALC-
concept descriptions as follows:

• ⊤I = ∆I , ⊥I = ∅,

• (C ⊓D)I = CI ∩DI ,

• (C ⊔D)I = CI ∪DI ,

• (¬C)I = ∆I \ CI ,

• (∃r.C)I = {d ∈ ∆I | there is an e ∈ ∆I with (d, e) ∈ rI and e ∈ CI},

• (∀r.C)I = {d ∈ ∆I | for all e ∈ ∆I , (d, e) ∈ rI implies e ∈ CI}.

Next, we introduce a normal form for ALC-concepts.

Definition 2.4 (ALC NNF). An ALC-concept C is in negation normal
form (NNF) if negation occurs only in front of concept names. Every ALC-
concept can be converted into an equivalent one in NNF by exhaustively
applying the following rules:

¬¬C ≡ C
¬(C ⊓D) ≡ ¬C ⊔ ¬D ¬(∃r.C) ≡ ∀r.¬C
¬(C ⊔D) ≡ ¬C ⊓ ¬D ¬(∀r.C) ≡ ∃r.¬C.

2.1. INTRODUCING ALC 13

In description logics, we use TBoxes to capture the background knowl-
edge about the world. In this thesis, we use general TBoxes which introduce
constraints of the form “for all the domain elements where C holds, D holds
as well”.

Definition 2.5 (GCI, general TBox). If C and D are ALC-concept de-
scriptions, then the expression C ⊑ D is called a generalized concept inclusion
axiom (GCI). A finite set T of GCIs is called a general TBox or TBox.

An interpretation I is a model of a general TBox T if for every GCI
C ⊑ D ∈ T , it holds that CI ⊆ DI .

Various reasoning problems are considered for DLs. For the purpose of
this thesis, it is sufficient to introduce only two of them: concept satisfiability
and concept subsumption.

Definition 2.6 (DL reasoning problems). Let C be anALC-concept de-
scription, and T a general TBox. Then,

• C is satisfiable w.r.t. T if there is a model I of T such that CI 6= ∅.

• C is subsumed by D w.r.t. T (written C ⊑T D) if and only if CI ⊆ DI

for all models I of T .

Note that, in a description logic providing the Boolean connectives, sub-
sumption can be reduced to (un)satisfiability since C ⊑ D iff C ⊓ ¬D is
unsatisfiable. The converse also holds since C is unsatisfiable iff C is sub-
sumed by ⊥. The previous observations imply that, when establishing lower
and upper complexity bounds we may restrict ourselves to satisfiability since
all the obtained results are also valid for subsumption.

The next definitions introduce a special kind of model.

Definition 2.7. Let C be a concept and T a TBox. C has a tree-model w.r.t.
T if the following holds, if C is satisfiable w.r.t. T , then C is satisfiable in a
model of T that is tree-shaped and whose root belongs to C.

Definition 2.8. A description logic L has the tree-model property iff every
concept that is satisfiable w.r.t. a TBox has a tree-model w.r.t. this TBox.

Proposition 2.9. ALC has the tree-model property.

14 CHAPTER 2. PRELIMINARIES

2.2 Introducing EL

The description logic EL is one of the most basic description logics. The
name EL stands for Existential Language. EL is less expressive than ALC.
More precisely, EL allows only for existential quantification (∃), conjunction
(⊓), and the top concept (⊤).

Definition 2.10 (EL syntax). Let NC and NR be disjoint sets of concept
names and role names, respectively. The set of EL-concept descriptions is
defined inductively as follows:

1. Each concept name A ∈ NC is an EL-concept description.

2. ⊤ is an EL-concept description.

3. If C,D are EL-concept descriptions and r ∈ NR, then C ⊓D and ∃r.C
are also EL-concept descriptions.

We define the semantics of EL-concept descriptions as we did for ALC.
Since EL does not allow for negation, the satisfiability problem is not in-
teresting (every concept term is satisfiable). However, subsumption is not
trivial. A special property of EL is that checking subsumption w.r.t. TBoxes
can be done in polynomial time (Brandt, 2004).

2.3 Introducing CTL

The branching temporal logic CTL, was first introduced by Clarke and
Emerson (Clarke & Emerson, 1982). The name CTL stands for Computa-
tion Tree Logic. CTL is based on propositional logic with a discrete notion of
time, and only future modalities. CTL is sufficiently expressive to formulate
an important set of so-called system properties.

Definition 2.11 (CTL syntax). Let PL be the set of atomic propositions.
The class of computation tree logic formulas is the smallest set such that

• each propositional letter p ∈ PL is a formula;

• if φ and ψ are formulas, then ¬φ, φ ∨ ψ and φ ∧ ψ are formulas;

• if φ and ψ are formulas, then A©φ, E©φ, A(φU ψ) and E(φU ψ) are
formulas.

2.3. INTRODUCING CTL 15

The symbols A and E are called path quantifiers. Apart from Boolean
abbreviations, we use

A3ψ for A(⊤U ψ),
E3ψ for E(⊤U ψ),
A2ψ for ¬E3¬ψ,
E2ψ for ¬A3¬ψ.

Example 2.12. CTL formulae of the form

A2A3ψ

expresses that ψ is infinitely true in all paths. The CTL formula

(A2A3crit1) ∧ (A2A3crit2)

thus requires each process to have access to the critical section infinitely
often. In case of a traffic light, the safety property “each red light phase is
preceded by a yellow light phase” can be formulated in CTL by

A2(yellow ∨ A©¬red),

intuitively a safety property asserts that “nothing bad happens”. Finally, the
liveness property “the traffic light is infinitely often green” can be formulated
as

A2A3green,

intuitively a liveness property asserts that “something good will happen”.

We define the semantics of CTL with respect to a Kripke structure.

Definition 2.13 (Kripke structure). A Kripke structure M is a triple
〈S,R, L〉, such that

• S is a set of states,

• R ⊆ S × S is a total relation, i.e., for all states s ∈ S there exists a
state s′ ∈ S such that (s, s′) ∈ R, and

• L : S → 2LP is a function that labels each state with the set of atomic
propositions true in that state.

A path in M is an infinite sequence of states, π = s0, s1 . . . such that for
every i ≥ 0, (si, si+1) ∈ R.

16 CHAPTER 2. PRELIMINARIES

Definition 2.14 (CTL semantics). LetM = 〈S,R, L〉 be a Kripke struc-
ture. We define satisfaction of CTL formulas inM at state s ∈ S as follows:

M, s � p iff p ∈ L(s);
M, s � ¬φ iff M, s 6� φ;
M, s � φ ∧ ψ iff M, s � φ andM, s � ψ;
M, s � E©φ iff M, t � φ for some t ∈ S with (s, t) ∈ R;
M, s � A©φ iff M, t � φ for all t ∈ S with (s, t) ∈ R;
M, s � E(φU ψ) iff there exists a path s0, s1, . . . inM with s0 = s

such that there is an m ≥ 0 withM, sm � ψ and
M, sk � φ for all k < m;

M, s � A(φU ψ) iff for all paths s0, s1, . . . inM with s0 = s, there is
an m ≥ 0 such thatM, sm � ψ andM, sk � φ for
all k < m.

Example 2.15. In the Figure 2.1, we present a visualization of the semantics
of the formulas: (1) A3 Black, (2) E2 Black and (3) E(GrayU Black).

Any CTL formula can be transformed into a canonical form, the so called
negation normal form (NNF). In order to transform any CTL formula into
NNF, for each operator a dual operator needs to be incorporated into the
syntax of NNF formulae. To this aim, we introduce the operator R (called
release) as the dual of U . We define the release operator as follows:

E(φRψ) ≡ ¬A(¬φU¬ψ)
A(φRψ) ≡ ¬E(¬φU¬ψ).

Definition 2.16 (CTL NNF). A CTL formula is in negation normal form
(NNF) if negation occurs only in front of atomic propositions. Every CTL
formula can be transformed into an equivalent one in NNF by exhaustively
applying the following rules:

¬¬φ ≡ φ ¬A©φ ≡ E©¬φ
¬(φ ∧ ψ) ≡ ¬φ ∨ ¬ψ ¬E(φU ψ) ≡ A(¬φR¬ψ)
¬E©φ ≡ A©¬φ ¬A(φU ψ) ≡ E(¬φR¬ψ).

We present a definition that is useful in the next chapter.

Definition 2.17. A tree is a pair T = (S,R) consisting of a set S of states
and a total relation R ⊆ S × S such that

2.3. INTRODUCING CTL 17

• there is a state s0 with {s ∈ S | (s, s0) ∈ R} = ∅,

• for every s ∈ S \ {s0} there is exactly one s′ ∈ S with (s′, s) ∈ R and,
s0R

∗s with R∗ the transitive closure of R on S.

We call s0 the root.

18 CHAPTER 2. PRELIMINARIES

White

White Black Black

Black Black Black White White

(1)

A3 Black

Black

Black White White

White Black White Black White

(2)

E2 Black

Gray

Gray White Black

Black Black White White Gray

(3)

E(GrayU Black)

Figure 2.1: Visualization of the semantics of some CTL formulas

Chapter 3

Temporal concepts: CTLALC
concepts

In this chapter, we investigate the temporal description logic CTLALC.
First, we introduce its syntax and semantics. Thereafter, we give an alter-
native semantics of CTLALC. Finally, we establish a relation between the
µ-calculus and CTLALC. Moreover, this relation allows to determine the
complexity of reasoning in CTLALC.

3.1 Introducing CTLALC

During the last 15 years, various approaches to temporal reasoning with
description logics have been proposed (Artale & Franconi, 2000; Artale &
Franconi, 2005; Lutz et al., 2008). An important one is the combination of
description logics with standard temporal logics, which has first been sug-
gested in (Schild, 1993). In this section, we introduce the temporal descrip-
tion logic CTLALC. We construct CTLALC using the previous approach.

The temporal description logic CTLALC emerges from the combination
of the description logic ALC and the temporal logic computation tree logic
(CTL). Besides choosing the DL and the temporal logic to combine, some
other design decisions have to be made. In particular, we have to decide
which pieces of syntax temporal operators can be applied to. In this work,
our interest focuses on the temporal evolution of concepts. Thus, we de-
fine the temporal description logic CTLALC whose concepts are formed using
the concept constructors of ALC (as in Section 2.1) enriched with the CTL
temporal operators.

19

20 CHAPTER 3. TEMPORAL CONCEPTS: CTLALC CONCEPTS

3.1.1 CTLALC syntax

Definition 3.1 (CTLALC syntax). Let NC and NR be disjoint sets of con-
cept names and role names, respectively. The set of CTLALC-concept descrip-
tions is defined inductively as follows:

1. Each concept name A ∈ NC is a CTLALC-concept description.

2. ⊤ and ⊥ are CTLALC-concept descriptions.

3. If C,D are CTLALC-concept descriptions, and r ∈ NR, then the follow-
ing are also CTLALC-concept descriptions:

• C ⊓D, C ⊔D, ¬C,

• ∃r.C, ∀r.C,

• A©C, E©C, A(CUD), E(CUD).

Example 3.2.

The following concept describes processes which necessarily have subpro-
cesses that start in the next time.

Process ⊓ A©(∃ starting.SubProcess)

The next concept describes processes that necessarily have access to their
critical section infinitely often.

Process ⊓ A2A3(∃ has access.CriticalSection)

We define TBoxes in the same way as in the case of ALC, but now using
CTLALC concepts instead of ALC concepts.

Example 3.3. The following GCI says that the property that at each mo-
ment of time each red light phase is necessarily preceded by a yellow light
phase implies a safety property of a traffic light system.

A2(YellowPhase ⊔ A©¬RedPhase) ⊑ SafetyProperty.

The next GCI states that, each single man has the possibility at some
point in the future to have a woman until he dies.

Male ⊓ Single ⊑ E3A(∃has.FemaleU¬LivingBeing).

3.1. INTRODUCING CTLALC 21

3.1.2 CTLALC semantics

We interpret CTLALC in models based on a tree in which every state s comes
equipped with an ALC-model describing the domain at state s. In partic-
ular, we focus on temporal interpretations with expanding domains, i.e., it
is assumed that the domain of the ALC-model at state s is included in all
states following s. In other words, objects can be created over time, but not
destroyed.

Definition 3.4 (CTLALC semantics).

A temporal interpretation J = (S,<, I) consists of a tree T = (S,<) and
a function I associating with each s ∈ S an ALC-interpretation

I(s) = (∆I(s), ·I(s))

such that

* for all s, s′ ∈ S, s < s′ implies ∆I(s) ⊆ ∆I(s′),

* for every individual name a ∈ NI , a
I(s) = aI(s′) for any s, s′ ∈ S.

The temporal interpretation of

• a concept name A ∈ NC is the set AJ = {(s, d) | s ∈ S and d ∈ AI(s)},

• a role name r ∈ NR is the set rJ = {(s, d1, d2) | s ∈ S and (d1, d2) ∈
rI(s)}.

The temporal interpretation is then inductively extended to the rest of
CTLALC concept descriptions as follows, we use the same clauses as in Sec-
tion 2.1 for the Booleans, plus the following ones:

• (∀r.C)J = {(s, d) | (s, d, d1) ∈ r
J implies (s, d1) ∈ C

J},

• (∃r.C)J = {(s, d) | ∃(s, d1) ∈ C
J with (s, d, d1) ∈ r

J},

• (E©C)J = {(s, d) | ∃s1 ∈ S with s < s1 and (s1, d) ∈ C
J},

• (A©C)J = {(s, d) | ∀s1 ∈ S, s < s1 implies (s1, d) ∈ C
J},

22 CHAPTER 3. TEMPORAL CONCEPTS: CTLALC CONCEPTS

• (E(CUD))J = {(s, d) | ∃s0 < s1 < s2 . . . with s = s0 such that
there is an m ≥ 0 with (sm, d) ∈ D

J and
(sk, d) ∈ C

J for all k < m},

• (A(CUD))J = {(s, d) | ∀s0 < s1 < s2 . . . with s = s0 implies
there is an m ≥ 0 with (sm, d) ∈ D

J and
(sk, d) ∈ C

J for all k < m},

• (E(CRD))J = {(s, d) | ∃s0 < s1 < s2 . . . with s = s0 such that
for all j ≥ 0 : if (sk, d) /∈ C

J for all k < j then
(sj, d) ∈ D

J },

• (A(CRD))J = {(s, d) | ∀s0 < s1 < s2 . . . with s = s0 implies
for all j ≥ 0 : if (sk, d) /∈ C

J for all k < j then
(sj, d) ∈ D

J }.

As in the case of CTL, we introduce the release operator as the dual of
the until operator, see Section 2.3.

A temporal interpretation J = (S,<, I) is a model of a concept C if C
is satisfied in the root of (S,<), i.e., (s0, d) ∈ C

J such that s0 is the root of
(S,<). It is a model of a TBox T if and only if CJ ⊆ DJ for all C ⊑ D. Thus,
the GCIs are regarded as temporally global constraints in the sense that they
should hold at every state. A CTLALC concept C is satisfiable with respect
to a TBox T if there is a common model of C and T .

Recall that in description logics providing all the Boolean connectives,
there are mutual polynomial-time reductions between satisfiability and sub-
sumption, see Section 2.1. Therefore, we restrict ourselves to the satisfiability
problem in CTLALC.

An important remark regarding expanding domains and constant do-
mains, i.e., it is assumed that the domain of the ALC-model is the same
at every state, is that they give rise to different versions of concept sat-
isfiability. For example, the following TBox has a (temporal) model with
expanding domains, but no model with constant domains:

⊤ ⊑ A©(A ⊓ ∃r.¬A). (3.1)

3.2. CTLALC FUSION SEMANTICS 23

We can transform any CTLALC formula into a canonical form, the so-
called negation normal form.

Definition 3.5 (CTLALC NNF). A CTLALC concept C is in negation nor-
mal form (NNF) if negation occurs only in front of concept names. Given a
CTLALC concept, we can transform this concept into an equivalent CTLALC

concept in NNF. To this aim, we can use the standard rules for the Booleans,
see Section 2.1, plus the following rules:

¬E©C ≡ A©¬C ¬A(C U D) ≡ E(¬CR¬D)
¬A©C ≡ E©¬C ¬E(CRD) ≡ A(¬C U¬D)

¬E(C U D) ≡ A(¬CR¬D) ¬A(CRD) ≡ E(¬C U¬D).

3.2 CTLALC fusion semantics

An important observation regarding CTLALC with expanding domains is
that, CTLALC is closely connected to the fusion of CTL and ALC. A fu-
sion is a general combination method for modal logics (Baader et al., 2002;
Gabbay et al., 1994). To make the previous connection explicit, we introduce
an alternative semantics for CTLALC.

Definition 3.6 (CTLALC fusion semantics). Let succ /∈ NR be a special
role name. A (non temporal) interpretation I is a fusion interpretation if
and only if succI is a total role, i.e., for each d ∈ ∆I , there is a d′ ∈ ∆I

such that (d, d′) ∈ succI . To interpret a CTLALC concept in I, we use ALC
clauses together with the following clauses

• (E©C)I = { d ∈ ∆I | ∃ d1 ∈ ∆I with (d, d1) ∈ succI and d1 ∈ C
I},

• (A©C)I = { d ∈ ∆I | ∀ d1 ∈ ∆I , (d, d1) ∈ succI implies d1 ∈ C
I},

• (E(CUD))I = { d ∈ ∆I | ∃ d0, d1, d2, . . . ∈ ∆I with (di, di+1) ∈ succI for
all i ≥ 0 and d = d0 such that there is an m ≥ 0 with
dm∈D

I and dk ∈ C
I for all k < m},

• (A(CUD))I = { d ∈ ∆I | ∀ d0, d1, d2, . . . ∈ ∆I , (di, di+1) ∈ succI for all
i ≥ 0 and d = d0 implies there is an m ≥ 0 with dm∈D

I

and dk ∈ C
I for all k < m},

24 CHAPTER 3. TEMPORAL CONCEPTS: CTLALC CONCEPTS

• (E(CRD))I = { d ∈ ∆I | ∃ d0, d1, d2, . . . ∈ ∆I with (di, di+1) ∈ succI for
all i ≥ 0 and d = d0 such that for all j ≥ 0 : if dk /∈ C

I

for all k < j then dj ∈ D
I },

• (A(CRD))I = { d ∈ ∆I | ∀ d0, d1, d2, . . . ∈ ∆I , (di, di+1) ∈ succI for all
i ≥ 0 and d = d0 implies for all j ≥ 0 : if dk /∈ C

I for
all k < j then dj ∈ D

I }.

Recall that, ALC has the tree-model property, see Section 2.1. Thus, we
can assume w.l.o.g. that a fusion model I is tree-shaped.

3.3 Relating CTLALC temporal and fusion se-

mantics

In this section, we establish a connection between CTLALC temporal and fu-
sion semantics. More precisely, we construct a temporal model of a concept
and TBox given a fusion model of this concept and TBox, and vice versa.
First, we focus on the former problem.

Recall that we consider temporal interpretations with expanding domains,
i.e., we can create elements over the time, but do not destroy them. The con-
structed temporal model has to conform with the latter notion. However, a
fusion model neither uses the notion of expanding domains nor codifies it in a
natural way. In order to solve this problem, we have to identify the elements
that should be part of the domain.

We differentiate in a fusion model between two types of elements, namely
DL elements and temporal elements. The former, are part of the domain
of the temporal model to be constructed. We use the temporal elements to
define the states of the temporal model.

Definition 3.7 (Temporal & DL element). Let I be a tree-shaped fu-
sion model. e ∈ ∆I is a temporal element if (d, e) ∈ succI for some d ∈ ∆I

or e is the root node. We call e a DL element if (d, e) ∈ rI for some d ∈ ∆I

and r ∈ NR or e is the root node.

3.3. RELATING CTLALC TEMPORAL AND FUSION SEMANTICS 25

I : d0
r succ

e0
succ

d1
succ succ

e1 d2

succ

d′2
r1 succ

f0
r2 succ

d3

succ

g0 f1

Figure 3.1: An example of a tree-shaped fusion model

Note that, the root node is a temporal and a DL element.

Example 3.8. In the tree-shaped fusion model of the Figure 3.1, the ele-
ments d0, e0, f0, g0 are DL elements and d0, d1, d2, d

′
2, d3, d4, e1, f1 are temporal

elements.

The next definition allows to relate a temporal element with a DL ele-
ment. We can see a temporal element d as a possible temporal evolution of
the DL element µb(d).

Definition 3.9 (Function µb). Let I be a tree-shaped fusion model. We
define µb : ∆I → ∆I as follows

µb(d) = e if there are d0, . . . , dn ∈ ∆I , n ≥ 0 such that (di, di+1) ∈ succI

for all i < n with d0 the DL element e and dn = d.

Example 3.10. In the fusion model of the Figure 3.1, µb(di) = d for all
0 ≤ i ≤ 4, µb(fj) = f for all 0 ≤ j ≤ 1, µb(ek) = e for all 0 ≤ k ≤ 1, and
µb(g0) = g0.

The following definition allows to decide if an element is at a certain
“succ-distance” from another.

26 CHAPTER 3. TEMPORAL CONCEPTS: CTLALC CONCEPTS

I : d0
r succ

e0
succ

d1
succ succ

e1 d2 d3
r1 succ

f0
r2 succ

d4

g0 f1

Figure 3.2: A 2-succ path from d0 to g0

Definition 3.11 (n-succ path).

Let I be a tree-shaped fusion model and n ∈ N. We say that e0, . . . , ek ∈
∆I , k ≥ 0 is an n-succ path from e0 to ek if there are r0, . . . , rk−1 ∈ NR ∪
{succ} such that (ei, ei+1) ∈ r

I
i for all i < k and |{i | i < k and ri = succ}| =

n.

Then, in an n-succ path from e0 to ek, we can think of n as the number of
time-steps needed to travel from e0 to ek. Figure 3.2 shows a 2-succ path.

We define a special role name ch /∈ NR with chI a total function, chI(d) =
e such that (d, e) ∈ succI . We should remark that ch serves as a choice func-
tion and we can choose it arbitrarily.

Definition 3.12 (n-ch path).

Let I be a tree-shaped fusion model and n ∈ N. We say that e0, . . . , ek ∈
∆I , k ≥ 0 is an n-ch path from e0 to ek if there are r0, . . . , rk−1 ∈ NR ∪ {ch}
such that (ei, ei+1) ∈ r

I
i or rIi (ei) = ei+1 for all i < k and |{i | i < k and ri =

ch}| = n.

Note that, we define an n-ch path analogously as we do for an n-succ
path, but we replace succ with ch.

Definition 3.13 (Relevant).

Let I be a tree-shaped fusion model. We say that d ∈ ∆I is relevant to
a temporal element e ∈ ∆I , if there is a d′ ∈ ∆I such that there is an n-succ

3.3. RELATING CTLALC TEMPORAL AND FUSION SEMANTICS 27

I : d0
r succ

e0
succ

d1
succ succ

e1
succ

d2

succ

d′2
r1 succ

e2
succsucc

d3 f0

succ

d′3
r

e3 e′3 f1 g0

Figure 3.3: n succ depth

path e0, . . . , ek from d′ to e, an n-ch path e′0, . . . , e
′
k′ from d′ to d for some

n ≥ 0, and for each 0 < i ≤ k, 0 < j ≤ k′ µb(ei) 6= µb(e
′
j).

The last definition relates elements that have walked the same number of
“time-steps” starting from a common element. In other words, we relate a
temporal element to an element that is at the same “succ-depth” –we do not
count role edges– in a tree-shaped fusion model. Note that, we can not relate
a temporal element with all the elements at the same “succ-depth”. More
precisely, we relate a temporal element at succ-depth n with only one of the
temporal evolutions at succ-depth n of a DL-element. The last statement
holds in the Definition 3.13, thanks to the definition of n-ch path and, to the
condition that for each 0 < i ≤ k, 0 < j ≤ k′ µb(ei) 6= µb(e

′
j).

Example 3.14. We want to identify in the model of the Figure 3.3 some of
the elements that are relevant to d′3. The circled elements in the Figure 3.3
are those that are at d′3’s succ-depth. However, not all the circled elements
are relevant to d′3. As an instance, if we choose chI(d1) = d2, then there is a
3-ch path from d0 to d3 and a 3-succ path from d0 to d′3 but µb(d3) = µb(d

′
3).

Thus, d3 is not relevant to d′3. Another example, if we choose chI(e2) = e3,
then there is no ch path from some d′ ∈ ∆I to e′3. Thus, e′3 is not relevant
to d′3.

The following are some positive examples. There exists a 1-ch path from
d′2 to f1 and a 1-succ path from d′2 to d′3, such that f0 = µb(f1) 6= µb(d

′
3).

Thus, f1 is relevant to d′3. Analogously, there is a 0-ch path from d′3 to g0 and

28 CHAPTER 3. TEMPORAL CONCEPTS: CTLALC CONCEPTS

I : d0
r succ

e0
succ

d1
succ succ

e1
succ

d2

succ

d′2
r1 succ

e2
succsucc

d3 f0

succ

d′3
r

e3 e′3 f1 g0

Figure 3.4: Relevant elements to d′3

a 0-succ path from d′3 to d′3, such that µb(g0) 6= µb(d
′
3), then g0 is relevant to

d′3. In the figure 3.4, the squared elements are the relevant elements to d′3, if
chI(e2) = e3.

Now, we identify some of the elements that are relevant to f1. First, we
present some negative examples. If we choose chI(e2) = e3, then there is no
ch path from some d′ ∈ ∆I to e′3. Thus, e′3 is not relevant to f1. Another ex-
ample, if we choose chI(d1) = d2, then there is a 2-ch path from d1 to d3 and
a 2-succ path from d1 to f1 but µb(d3) = µb(d

′
2). Thus, d3 is not relevant to f1.

The following are some positive examples. There exists a 1-ch path from
d′2 to d′3 and a 1-succ path from d′2 to f1, such that f0 = µb(f1) 6= µb(d

′
3).

Another example, there exists a 1-ch path from d′2 to g0 and a 1-succ path
from d′2 to f1, such that f0 = µb(f1) 6= g0 and f0 = µb(f1) 6= µb(d

′
3).

Next, we introduce the notion of “temporal paths” to define the states
of the temporal model to be constructed. The main idea is that, beginning
from the root, we unravel the temporal evolutions of the elements in a fusion
model.

Definition 3.15. Let I be a fusion model and e ∈ ∆I a temporal element.
We define S(e) as the set of all temporal elements e′ ∈ ∆I such that there is
a d ∈ ∆I ,

• d is relevant to e, and

3.3. RELATING CTLALC TEMPORAL AND FUSION SEMANTICS 29

• (d, e′) ∈ succI .

Definition 3.16 (Temporal path). Let I be a fusion model. A temporal
path is a sequence e0, . . . , en ∈ ∆I of temporal elements such that

• e0 is the root node, and

• ei+1 ∈ S(ei) for all i < n.

An element d ∈ ∆I is relevant to the temporal path e0, . . . , en if d is relevant
to en.

Example 3.17. In the model of the Figure 3.4, we can construct the tem-
poral paths: d0, d0d1, d0e1, d0d1d2, d0d1d

′
2, d0e1e2, . . .

The following lemma establishes the conditions to define how to interpret
the elements of the fusion model into the temporal model we are attempting
to construct. In particular, we want to guarantee that under the previous
conditions we have a unique way to interpret an element in a particular state.

Lemma 3.18. Let I be a tree-shaped fusion model, d ∈ ∆I a temporal el-
ement and e, e′ ∈ ∆I. If e and e′ are relevant to d, µb(e) = µb(e

′) implies
e = e′.

Proof: This proof is by contradiction. We suppose that e 6= e′.

Let µb(e) = µb(e
′). Then, by definition of µb, there are d0, . . . , dm ∈

∆I , m ≥ 0 such that (di, di+1) ∈ succI for all i < m, d0 = µb(e) a DL ele-
ment and dm = e. Analogously, there are d′0, . . . , d

′
m1
∈ ∆I , m1 ≥ 0 such

that (d′i, d
′
i+1) ∈ succI for all i < m1, d

′
0 = d0 and d′m1

= e′.

Since e is relevant to d, there is a d′ ∈ ∆I such that there is an n-succ
path e0, . . . , ek from d′ to d and a n-ch path e′0, . . . , e

′
k′ from d′ to e for some

n ≥ 0. Analogously, since e′ is relevant to d, exists a d′′ ∈ ∆I such that there
is an n1-succ path f0, . . . , fk1 from d′′ to d and an n1-ch path f ′

0, . . . , f
′
k′
1

from

d′ to e for some n1 ≥ 0.

We can distinguish two cases.

(d′ = d′′) W.l.o.g. we assume that m1 ≥ m. First, assume m1 = m. Since I
is tree-shaped, d′ = d′′ and e 6= e′, there is di = d′i = e′j = f ′

j, 0 ≤ i <

m, 0 ≤ j < k′ = k′1 such that chI(e′j) 6= chI(f ′
j). But e′j = f ′

j and ch is

30 CHAPTER 3. TEMPORAL CONCEPTS: CTLALC CONCEPTS

a function, then this yields a contradiction. Therefore, e = e′.

Assume m1 > m. Since I is tree shaped and e 6= e, n1 > n. e, e′ are
relevant to d, then there is a n1-succ path from d′ to d and a n-succ
path from d′ to d. But n1 > n and I is tree-shaped, then this yields a
contradiction. Therefore, e = e′.

(d′ 6= d′′) W.l.o.g. we assume that there are d′′0, . . . , d
′′
l ∈ ∆I , l > 0 such that

there are r0, . . . , rl−1 ∈ NR ∪ {succ} with (d′′i , d
′′
i+1) ∈ r

I
i for all i < l,

d′′ = d0 and d′ = dl.

Note that, if all ri ∈ NR, then we are in the case (d = d′). Analogously,
d′ = di for some 0 < i ≤ m, otherwise we are in the case (d = d′).

Then, by definition of succ path, d′ = fj for some 0 ≤ i ≤ k1. Since
I is tree-shaped and µb(e) = µb(e

′), µb(d
′) = µb(e

′). But d′ is part
of the n1-succ path and e′ is part of the n1-ch path. This yields a
contradiction. Therefore, e = e′.

Now, we introduce the function that establishes how to interpret the
elements of the fusion model into the constructed temporal model. More
precisely, we interpret an element e at state s with the temporal evolution of
e that is relevant to s.

Definition 3.19. Let I be a tree-shaped fusion model and s = e0, . . . , en a
temporal path. µs

b is the restriction of µb to {d ∈ ∆I | d is relevant to s}.
The function µs

f is the converse of µs
b.

The following lemma shows that the temporal interpretations with ex-
panding domains and fusion interpretations are equivalent for CTLALC con-
cepts and TBoxes.

Lemma 3.20. Let C be a CTLALC concept and T a TBox. Then there is a
temporal model of C and T with expanding domains if and only if there is a
fusion model of C and T .

Proof: For the ‘if’ direction, let I be a tree-shaped fusion model of C and
T . We define the temporal interpretation J = (TP,<, I) such that

3.3. RELATING CTLALC TEMPORAL AND FUSION SEMANTICS 31

• TP is the set of all temporal paths in I;

• <= {(s, s′) ∈ TP | s′ = se for some temporal element e};

• For s ∈ TP , we define I(s) as follows

∆I(s) = {µb(d) | d ∈ ∆I and d is relevant to s };
AI(s) = {d | d ∈ ∆I and µs

f (d) ∈ A
I } for all A ∈ NC ;

rI(s) = {(d, e) | d, e ∈ ∆I and (µs
f (d), e) ∈ r

I } for all r ∈ NR.

Example 3.21 (Expanding domains). Given the model of the Figure 3.4,
we construct a temporal interpretation J = (TP,<, I), where TP = {d0, d0d1,
d0e1, d0d1d2, d0d1d

′
2, d0e1e2, d0d1d

′
2d

′
3 . . .}. As an instance, it is not hard to

see that, ∆I(d0d1d′2) ⊆ ∆I(d0d1d′2d′3).

Claim : J is a temporal model with expanding domains of C and T .

1. For all r ∈ NR, s ∈ TP and e, µs
f (d) ∈ ∆I , we show that

(µs
f (d), e) ∈ r

I implies (d, e) ∈ rI(s).

Since µs
f (d) is relevant to s and (µs

f (d), e) ∈ r
I , e is relevant to s.

Then, by definition of µs
f and ∆I(s), d ∈ ∆I(s). Analogously, by defini-

tion of µb and ∆I(s), e ∈ ∆I(s).

Therefore, by definition of rI(s), (d, e) ∈ rI(s).

2. For all concept D1, s ∈ TP and µs
f (d) ∈ ∆I , we show that

µs
f (d) ∈ D

I
1 implies d ∈ DI(s)

1

This proof is by induction on the structure of D1.

• D1 = A ∈ NC

It holds, by definition of J.

• D1 = ¬A ∈ NC

It holds, by definition of J.

32 CHAPTER 3. TEMPORAL CONCEPTS: CTLALC CONCEPTS

• D1 = C ⊔D
By definition of I, µs

f (d) ∈ (C⊔D)I implies µs
f (d) ∈ C

I or µs
f (d) ∈

DI .

By definition of µs
f and ∆I(s)

, d ∈ ∆I(s)
.

By induction hypothesis, d ∈ CI(s) or d ∈ DI(s). Therefore,
d ∈ (C ⊔D)I(s).

• D1 = C ⊓D
By definition of I, µs

f (d) ∈ (C ⊓ D)I implies µs
f (d) ∈ CI and

µs
f (d) ∈ D

I .

By definition of µs
f and ∆I(s)

, d ∈ ∆I(s)
.

By induction hypothesis, d ∈ CI(s) and d ∈ DI(s). Therefore,
d ∈ (C ⊓D)I(s).

• D1 = ∃r.D
By definition of I, µs

f (d) ∈ (∃r.D)I implies that there is an e ∈ ∆I

with e ∈ DI and (µs
f (d), e) ∈ r

I .

Since µs
f (d) is relevant to s and (µs

f (d), e) ∈ r
I , e is relevant to s.

Then, by definition of µs
f (d) and ∆I(s)

, d ∈ ∆I(s)
. Analogously, by

definition of µb and ∆I(s), e ∈ ∆I(s).

By point 1, (d, e) ∈ rI(s) and, by induction hypothesis, e ∈ DI(s).
Therefore, d ∈ (∃r.D)I(s).

• D1 = ∀r.D
By definition of I, µs

f (d) ∈ (∀r.D)I implies that for all e ∈ ∆I ,
(µs

f (d), e) ∈ r
I implies e ∈ DI .

Let e1 ∈ ∆I such that (µs
f (d), e1) ∈ rI . We have that µs

f (d) is
relevant to s and (µs

f (d), e1) ∈ r
I , then e1 is relevant to s .

By definition of µs
f and ∆I(s)

, d ∈ ∆I(s)
. Analogously, by definition

of µb and ∆I(s), e1 ∈ ∆I(s).

By point 1, (d, e1) ∈ r
I(s) and, by induction hypothesis, e1 ∈ D

I(s).
Therefore, d ∈ (∀r.D)I(s).

• D1 = (E©C)
By definition of I, µs

f (d) ∈ (E©C)I implies that there is a d1 ∈ ∆I

with (µs
f (d), d1) ∈ succI and d1 ∈ C

I .

3.3. RELATING CTLALC TEMPORAL AND FUSION SEMANTICS 33

By definition of temporal path, there is an sd1 ∈ TP such that
sd1 = sd1.

By definition of µs
f (d) and ∆I(s)

, d ∈ ∆I(s)
. Analogously, since I is

tree-shaped and d1 is relevant to sd1 , d ∈ ∆I(sd1)
.

By construction, s < sd1 and, by induction hypothesis, d ∈ CI(sd1).
Therefore, d ∈ (E©C)I(s).

• D1 = (A©C)
By definition of I, µs

f (d) ∈ (A©C)I implies that for all e ∈
∆I , (µs

f (d), e) ∈ succI implies e ∈ CI .

Let e1 ∈ ∆I such that (µs
f (d), e1) ∈ succI . Since (µs

f (d), e1) ∈
succI and µs

f (d) is relevant to s, there is an se1 ∈ TP such that
se1 = se1.

By definition of µs
f (d) and ∆I(s)

, d ∈ ∆I(s)
. Analogously, since I

is tree-shaped and e1 is relevant to se1 , d ∈ ∆I(se1)
.

By construction, s < se1 and, by induction hypothesis, d ∈ CI(se1).
Therefore, d ∈ (A©C)I(s).

• D1 = (E(CUD))
By definition of I, µs

f (d) ∈ (E(CUD))I implies that there are
d0, d1, d2, . . . ∈ ∆I such that (di, di+1) ∈ succI for all i ≥ 0 and
µs

f (d) = d0 : there is an m ≥ 0 (dm ∈ DI and dk ∈ CI for all
k < m).

By definition of temporal path, there is an sdi ∈ TP for all i > 0
such that sdi = s, . . . , di. By construction, sdi < sdi+1 .

By definition of µs
f (d) and ∆I(s)

, d ∈ ∆I(s)
. Analogously, since I

is tree-shaped and di is relevant to sdi , d ∈ ∆I(sdi)
for all i > 0.

We can construct sdm = s, . . . , dm, m ≥ 0 and sdk = s, . . . , dk,
k < m. By induction hypothesis, d ∈ DI(sdm) and d ∈ CI(sdk) for
all k < m. Therefore, d ∈ (E(CUD))I(s).

• D1 = (A(CUD))
By definition of I, µs

f (d) ∈ (A(CUD))I implies that for all
d0, d1, d2, . . . ∈ ∆I , (di, di+1) ∈ succI for all i ≥ 0 and µs

f (d) = d0

implies there is an m ≥ 0 (dm ∈ D
I and dk ∈ C

I for all k < m).

Let d′0, d
′
1, d

′
2, . . . ∈ ∆I such that (d′i, d

′
i+1) ∈ succI for all i ≥ 0 and

µs
f (d) = d′0. By definition of temporal path, there is an sd′i ∈ TP

for all i > 0 such that sd′i = s, . . . , d′i. By construction, sd′i < sd′i+1 .

34 CHAPTER 3. TEMPORAL CONCEPTS: CTLALC CONCEPTS

By definition of µs
f (d) and ∆I(s)

, d ∈ ∆I(s)
. Analogously, since I

is tree-shaped and d′i is relevant to sd′i , d ∈ ∆I(s
d′i)

for all i > 0.

We can construct sd′m = s, . . . , d′m, m ≥ 0 and sd′
k = s, . . . , d′k,

k < m. By induction hypothesis, d ∈ DI(sd′m) and d ∈ CI(sd′
k) for

all k < m. Therefore, d ∈ (A(CUD))I(s).

• D1 = (E(CRD))
By definition of I, µs

f (d) ∈ (E(CRD))I implies that there are
d0, d1, d2, . . . ∈ ∆I such that (di, di+1) ∈ succI for all i ≥ 0 and
µs

f (d) = d0 such that for all j ≥ 0 : if dk /∈ CI for all k < j then
dj ∈ D

I .

By definition of temporal path, there is an sdi ∈ TP for all i > 0
such that sdi = s, . . . , di. By construction, sdi < sdi+1 .

By definition of µs
f (d) and ∆I(s)

, d ∈ ∆I(s)
. Analogously, since I

is tree-shaped and di is relevant to sdi , d ∈ ∆I(sdi)
for all i > 0.

We can construct sdj = s, . . . , dj, j ≥ 0 and sdk = s, . . . , dk, k < j.

By induction hypothesis, d /∈ CI(sdk) for all k < j and d ∈ DI(sdj).
Therefore, d ∈ (E(CRD))I(s).

• D1 = (A(CRD))
By definition of I, µs

f (d) ∈ (A(CRD))I implies that for all d0, d1, d2, . . . ∈
∆I , (di, di+1) ∈ succI for all i ≥ 0 and µs

f (d) = d0 implies that for
all j ≥ 0 : if dk /∈ C

I for all k < j then dj ∈ D
I .

Let d′0, d
′
1, d

′
2, . . . ∈ ∆I , such that (d′i, d

′
i+1) ∈ succI for all i ≥ 0 and

µf (d) = d′0. By definition of temporal path, there is an sd′i ∈ TP
for all i > 0 such that sd′i = s, . . . , d′i. By construction, sd′i < sd′i+1 .

By definition of µs
f (d) and ∆I(s)

, d ∈ ∆I(s)
. Analogously, since I

is tree-shaped and d′i is relevant to sd′i , d ∈ ∆I(s
d′i)

for all i > 0.

We can construct sd′j = s, . . . , d′j, j ≥ 0 and sd′
k = s, . . . , d′k, k < j.

By induction hypothesis, d /∈ CI(sd′
k) for all k < j and d ∈ DI(s

d′j).
Therefore, d ∈ (A(CRD))I(s).

Therefore, given a tree-shaped fusion model I of C and T , such that
d ∈ CI with d the root of I we can construct a temporal model J of C and
T with expanding domains such that µb(d) ∈ C

I(d)
.

3.3. RELATING CTLALC TEMPORAL AND FUSION SEMANTICS 35

For the ‘only if’ direction, let J = (S,<, I) a temporal model of C and
T . We define a fusion interpretation I = (∆I , ·I) such that

∆I ⊆ {(s, d) | d ∈ ∆I(s), s ∈ S};

AI = {(s, d) | s ∈ S and d ∈ AI(s)
} for all A ∈ NC ;

rI = {((s, d), (s, e)) | s ∈ S and (d, e) ∈ rI(s)
} for all r ∈ NR;

succI = {((s, d), (s′, d)) | s, s′ ∈ S, s < s′, d ∈ ∆I(s)
and d ∈ ∆I(s′)}.

Claim: I is a fusion model for C and T .

1. For all r ∈ NR, d, e ∈ ∆J and s ∈ S, we show that

(s, d, e) ∈ rJ implies ((s, d), (s, e)) ∈ rI .

By definition of J, (s, d, e) ∈ rJ implies that s ∈ S and (d, e) ∈ rI(s)
.

Therefore, by definition of rI , ((s, d), (s, e)) ∈ rI .

2. For all concept C1, d ∈ ∆J and s ∈ S, we show that,

(s, e) ∈ CJ
1 implies (s, e) ∈ CI

1 .

This proof is by induction on the structure of C1. We proof only some
cases.

• C1 = A ∈ NC

It holds, by definition of I.

• C1 = ¬A ∈ NC

It holds, by definition of I.

• C1 = C ⊓D
By definition of J , (s, e) ∈ (C ⊓ D)J implies that s ∈ S, e ∈

CI(s)
and e ∈ DI (s).

By induction hypothesis, (s, e) ∈ CI and (s, e) ∈ DI . Therefore,
(s, e) ∈ (C ⊓D)I .

• C1 = ∃r.D
By definition of J, (s, e) ∈ (∃r.D)J implies that there is an e1 ∈

∆I(s)
with (s, e1) ∈ D

J and (s, e, e1) ∈ r
J.

36 CHAPTER 3. TEMPORAL CONCEPTS: CTLALC CONCEPTS

We have that, (e, e1) ∈ rI(s)
then, by point 1, ((s, e), (s, e1)) ∈

rI . By induction hypothesis, (s, e1) ∈ DI . Therefore, (s, e) ∈
(∃r.D)I .

• C1 = (E©D)
By definition of J, (s, e) ∈ (E©D)J implies that there is an s1 ∈
S with s < s1 and (s1, e) ∈ D

J.

We have that, e ∈ ∆I(s1) and, by definition of I(s), ∆I(s) ⊆ ∆I(s1)

then e ∈ ∆I(s). Then, since s < s1, ((s, e), (s1, e)) ∈ succI . By
induction hypothesis, (s1, e) ∈ D

I . Therefore, (s, e) ∈ (E©D)I .

• C1 = (E(DUD1))
By definition of J, (s, e) ∈ (E(DUD1))

J implies that there are
s0 < s1 < s2 . . . with s = s0 : ∃m ≥ 0 ((sm, e) ∈ D

J
1 and (sk, e) ∈

DJ for all k < m).

By definition of I, there are (s0, e), (s1, e), (s2, e) . . . ∈ ∆I such
that ((e, si), (e, si+1)) ∈ succI for all i ≥ 0 and (s, e) = (s0, e).

By induction hypothesis, (sm, e) ∈ DI
1 , m ≥ 0 and (sk, e) ∈ D

I

for all k < m. Therefore, (s, e) ∈ (E(DUD1))
I .

• C1 = (E(DRD1))
By definition of J, (s, e) ∈ (E(DRD1))

J implies there are s0 <
s1 < s2 . . . with s = s0 such that for all j ≥ 0 : if (sk, e) /∈ D

J for
all k < j then (sj, e) ∈ D

J
1 .

By definition of I, there are (s0, e), (s1, e), (s2, e) . . . ∈ ∆I such
that ((e, si), (e, si+1)) ∈ succI for all i ≥ 0 and (s, e) = (s0, e).

By induction hypothesis, for all j ≥ 0, (sk, e) /∈ D
I for all k < j

and (sj, e) ∈ D
I
1 . Therefore, (s, e) ∈ (E(DRD1))

I .

Thus, given a temporal model J of C and T we can construct a
fusion model I of C and T .

Therefore, there is a temporal model of C and T if and only if
there is a fusion model of C and T . �

3.4. INTRODUCING THE µ-CALCULUS 37

3.4 Introducing the µ-calculus

In 1983, Dexter Kozen introduced the µ-calculus (Kozen, 1983; Kozen &
Parikh, 1983). The µ-calculus comes not from the philosophical tradition
of modal logic, but from the application of modal and temporal logics to
program verification. This logic, the µ-calculus, is a propositional modal logic
augmented with least and great fixpoint operators. Intuitively, the µ-calculus
makes it possible to characterize the modalities in terms of recursively defined
tree-like patterns.

3.4.1 µ-calculus syntax

Definition 3.22 (µ-calculus syntax). Formulae φ, ψ, . . . are formed in-
ductively from atomic formulae A, . . . and variables X, . . . according to the
following abstract syntax:

φ, ψ ::= A | ⊤ | ⊥ | ¬ψ | ψ ∧ φ | ψ ∨ φ | 〈a〉ψ | [a]ψ | µX.ψ | νX.ψ | X

where a is a generic element of a set of labels L, and every bounded
occurrence of every variable X must be in the scope of an even number of
negation signs.

We call µ and ν fixpoint operators. A sentence is a formula without free
variables.

Example 3.23. We can use the µ-calculus to express the usual operators of
temporal logics. As an instance, consider the CTL formula A2φ. Another
way of expressing A2φ is the following: there is a property X such that if X
is true, then φ is true, and wherever we go next, X remains true. The last
statement can be be described by the next formula.

νZ.φ ∧ [−]Z

The following formula states that,“on some a-path, P holds until Q
holds”.

µZ.Q ∨ (P ∧ 〈a〉Z)

38 CHAPTER 3. TEMPORAL CONCEPTS: CTLALC CONCEPTS

3.4.2 µ-calculus semantics

The semantics of the µ-calculus is based on the notions of a structure and a
valuation. A Kripke structure M is a triple (S, {Ri | i ∈ L},V), where S is
a set of states, each Ri is a binary relation on S, and V is a mapping from
atomic formulae to subsets of S. A valuation ρ on M is a mapping from
the variables to subsets of S. Given a valuation ρ, we denote by ρ[X/E] the
valuation identical to ρ except for ρ[X/E](X) = E .

Definition 3.24 (µ-calculus semantics). Let M be a Kripke structure
and ρ a valuation on M. The extension function ·Mρ is inductively defined
as follows:

XM
ρ = ρ(X) ⊆ S,

AM
ρ = V(A) ⊆ S,
⊤M

ρ = S,
⊥M

ρ = ∅,

(¬Φ)Mρ = S \ ΦM
ρ ,

(Φ ∧Ψ)Mρ = ΦM
ρ ∩ΨM

ρ ,

(Φ ∨Ψ)Mρ = ΦM
ρ ∪ΨM

ρ ,

(〈a〉Φ)Mρ = {s ∈ S | ∃s′ with (s, s′) ∈ Ra and s′ ∈ ΦM
ρ },

([a]Φ)Mρ = {s ∈ S | ∀s′, (s, s′) ∈ Ra implies s′ ∈ ΦM
ρ },

(µX.Φ)Mρ =
⋂
{E ⊆ S | ΦM

ρ[X/E] ⊆ E },

(νX.Φ)Mρ =
⋃
{E ⊆ S | E ⊆ ΦM

ρ[X/E] }.

A formula Φ is satisfiable if there exists a Kripke structure M and a
valuation ρ on M such that ΦM

ρ 6= ∅. If Φ is a sentence we can omit the
valuation.

Definition 3.25. A Kripke structure M = (S, {R | i ∈ L},V) is rooted if
there is a s0 ∈ S such that S = {s ∈ S | s0R

∗s}, where

R =
⋃

i∈L

Ri.

Definition 3.26. LetM be a Kripke structure, ρ a valuation onM and Φ
a formula. M is a rooted model for Φ ifM is rooted and s0 ∈ ΦM

ρ where s0

is the root ofM.

Lemma 3.27 ((Vardi, 1997)). Every µ-calculus formula has a rooted model
M.

3.5. RELATING CTLALC AND THE µ-CALCULUS 39

3.5 Relating CTLALC and the µ-calculus

In this section, we relate satisfiability in CTLALC with satisfiability in the
µ-calculus. First, we show that we can view a Kripke structure as a DL
interpretation and vice versa.

Given a Kripke structure M = (S, {Ri | i ∈ L},V), we can construct a
DL interpretation IM such that ∆IM = S; rIMi = Ri for each i ∈ L and
AIM = V(A) for each atomic formula A. Vice versa, given a DL interpreta-
tion I = (∆I , ·I), we can construct a Kripke structure MI = (∆I , {Ri | i ∈
L},V) such that L = NR; Rr = rI for each r ∈ NR and V(A) = AI for each
A ∈ NC .

Now, we set the correspondence between CTLALC and the µ-calculus. To
this aim, we define the translation ·† of CTLALC concepts into the µ-calculus
formulas.

A ∈ NC
† = A,

(¬C)† = ¬C†,

(C ⊓D)† = C† ∧D†,

(∃r.C)† = 〈r〉C†,

(∀r.C)† = [r]C†,

(E©C)† = 〈succ〉C†,

(A©C)† = [succ]C†,

(E(CUD))† = µY.(D† ∨ (C† ∧ 〈succ〉Y)),

(A(CUD))† = µY.(D† ∨ (C† ∧ [succ]Y)),

(E(CRD))† = νY.(D† ∧ (C† ∨ 〈succ〉Y)),

(A(CRD))† = νY.(D† ∧ (C† ∨ [succ]Y)).

We define the translation of the pair (C, T) as follows

(C, T)† = C† ∧ νY.(C†
T ∧ [succ]Y),

where C is a concept, T = {C1 ⊑ D1, . . . , Cq ⊑ Dq} and CT = (¬C1⊔D1)⊓
. . . ⊓ (¬Cq ⊔Dq).

Lemma 3.28. Let C be a CTLALC concept and T a TBox.

1. If I is a model of C and T , then MI is a model of (C, T)†.

40 CHAPTER 3. TEMPORAL CONCEPTS: CTLALC CONCEPTS

2. If M is a rooted model of (C, T)†, then IM is a model of C and T .

Proof Sketch: For 1 , let I be a model of C and T . We can define the
Kripke structureMI as above. Then, we have to prove that for all concepts
D and for all d ∈ ∆I

d ∈ DI implies d ∈ (D†)MI .

Note that, any resulting µ-calculus formula from ·† is a sentence. Thus, we
can omit the valuation.

We can prove the last statement by induction on the structure of D.

Since I is a model of T , T holds in every state. Therefore, MI is a model
of (C, T)†.

For 2 , letM be a rooted model of (C, T)†. We can define a DL interpre-
tation IM as above. Then, we have to prove that for all concepts D and for
all d ∈ S

d ∈ (D)M implies d ∈ DIM .

We can prove this by induction on the structure of D.

Since M is a rooted model of (C, T)†, by definition of (C, T)†, IM is a
model of C and T . �

Theorem 3.29. Concept satisfiability w.r.t. TBoxes with expanding do-
mains in CTLALC is EXPTIME-complete.

The satisfiability problem for the µ-calculus is EXPTIME complete (Emer-
son & Jutla, 1988), by lemma 3.28, EXPTIME is transfered as the upper
bound for concept satisfiability w.r.t. TBoxes with expanding domains in
CTLALC and the lower bound carries over from ALC.

Note that, in the constant domain case Lemma 3.20 does not hold. For
example, the TBox 3.1 has a fusion model, but no temporal model with
constant domains. Thus, in the constant domain case, we cannot use the
translation ·† to relate CTLALC with the µ-calculus.

Chapter 4

Temporal concepts: CTLEL
concepts

In this chapter, we investigate the temporal description logic CTLEL. First,
we introduce its syntax and semantics. Thereafter, we determine the com-
putational complexity of reasoning in CTLEL.

We combine the description logic EL and the temporal logic computation
tree logic (CTL) to construct the temporal description logic CTLEL. As in
the case of CTLALC, we focus on the temporal evolution of concepts. Thus,
we define the temporal description logic CTLEL whose concepts are formed
using the constructors of EL enriched with the CTL temporal operators.

4.1 CTLEL syntax

Definition 4.1 (CTLEL syntax). Let NC and NR be disjoint sets of con-
cept names and role names, respectively. The set of CTLEL-concept descrip-
tions is defined inductively as follows:

1. Each concept name A ∈ NC is a CTLEL-concept description.

2. ⊤ is a CTLEL-concept description.

3. If C,D are CTLEL-concept descriptions and r ∈ NR, then

• C ⊓D and ∃r.C are also CTLEL-concept descriptions.

• A©C, E©C, A(CUD), E(CUD) are also CTLEL-concept de-
scriptions.

41

42 CHAPTER 4. TEMPORAL CONCEPTS: CTLEL CONCEPTS

Example 4.2. The following concept describes processes which necessarily
have subprocesses that start at some point in the future.

Process ⊓ A3(∃ starting.SubProcess)

The next concept describes processes that have the possibility to access
their critical section.

Process ⊓ E3(∃ has access.CriticalSection)

We define TBoxes in the same way as in the case of EL but now using
CTLEL concepts instead of EL concepts.

Example 4.3. The following GCI states that, there is the possibility that
exists a time in the future which on US citizens will always have health
insurance.

UScitizen ⊑ A2E3(∃insured by.HealthInsurer)

4.2 CTLEL semantics

We interpret CTLEL in models based on a tree in which every state s comes
equipped with an EL-model describing the domain at state s. In particular,
we focus on temporal interpretations with expanding domains, i.e., it is as-
sumed that the domain of the EL-model at state s is included in all states
following s. In other words, objects can be created over time, but do not
destroyed.

Definition 4.4 (CTLEL semantics). We define the semantics of CTLEL

concept descriptions as we did for CTLALC, see Definition 3.4. Next, we give
the semantics of A3 and E3. Let J = (S,<, I) be a temporal interpretation.
Then,

• (E3C)J = {(s, d) | ∃s0 < s1 < s2 . . . with s = s0 such that
there is a k > 0 : (sk, d) ∈ C

J},

• (A3C)J = {(s, d) | ∀s0 < s1 < s2 . . . with s = s0 implies
there is a k > 0 : (sk, d) ∈ C

J}.

As in the case of EL, the satisfiability problem in CTLEL is not interest-
ing. Observe that every concept is satisfiable w.r.t. every TBox: they are

4.3. CTLEL COMPUTATIONAL COMPLEXITY 43

satisfied in the model where all the concepts and roles are interpreted by the
whole domain at every state. In fact, the interesting reasoning problem for
CTLEL is concept subsumption.

A temporal interpretation J is a model of a TBox T if and only if CJ ⊆ DJ

for all C ⊑ D ∈ T . Thus, the GCIs are regarded as temporally global
constraints in the sense that they should hold at every state. A CTLEL

concept C is subsumed by a CTLEL concept D w.r.t. T (C ⊑T D) if and
only if CJ ⊆ DJ for all models J of T .

4.3 CTLEL computational complexity

In the following theorem, we prove that the computational complexity of
reasoning in CTLEL does not remain tractable as in the case of pure EL.
More precisely, we prove that the computational complexity of reasoning in
CTLEL is EXPTIME-complete.

Theorem 4.5. Concept subsumption w.r.t. TBoxes with expanding domains
in CTLEL is EXPTIME complete.

The upper bound follows from CTLEL being a fragment of CTLALC. For
the lower bound, we reduce the satisfiability problem w.r.t. TBoxes for ALC
to the subsumption problem w.r.t. TBoxes for CTLEL. Recall that, the
former is EXPTIME-hard.

4.3.1 From ALC satisfiability to CTLEL subsumption

In this section, we give a stepwise reduction fromALC satisfiability to CTLEL

subsumption.

Suppose that an ALC concept C and a TBox T are given. We assume
that in C and T do not occur subconcepts of the form ∀r.D, i.e., for all
restrictions are given in terms of existential restrictions and negation. First,
we perform a number of satisfiability preserving operations.

(ALC → ALC1) We ensure that negation occurs only in front of concept
names. For every concept ¬D with D complex,

1. we introduce a fresh concept name A′,

2. we replace ¬D with ¬A′,

44 CHAPTER 4. TEMPORAL CONCEPTS: CTLEL CONCEPTS

3. we add A′ ⊑ D and D ⊑ A′ to T .

We denote the resulting concept by C0 and the TBox by T0. We have
to show that C is satisfiable w.r.t. T iff C0 is satisfiable w.r.t. T0.

Proof Sketch: (→) Let I be a model of C and T . We construct the
interpretation J as follows

∆J = ∆I ,
AJ = AI for all A ∈ NC ,
rJ = rI for all r ∈ NR,

(¬A′)J = (¬D)I .

We have to prove that for all concepts C ′ and for all d ∈ ∆I

d ∈ C ′I iff d ∈ C ′J .

We can show the last statement by induction on the structure of C ′.

We have to show that J is a model of T0. Then, we have to prove that
J is a model of every GCI in T0. First, we show that J is a model
of the GCIs added at point 3, i.e., {A′ ⊑ D, D ⊑ A′}. We must show
that d ∈ A′J implies d ∈ DJ and d ∈ DJ implies d ∈ A′J . We sup-
pose that d ∈ A′J = ∆J \ (¬A′)J = ∆I \ (¬D)I = ∆I \ (∆I \DI) =
∆J \ (∆J \DJ) = ∆J \ (¬D)J = DJ . Because of the statement above
J is a model of the rest of the GCIs in T0.

(←) Analogously. �

(ALC1 → ALC2) We ensure that negation does not occur at all (except for
⊥, which abbreviates ¬⊤), neither in C0 nor in T0. For every concept
¬A,

1. we introduce a fresh concept name Ā,

2. we replace every occurrence of ¬A with Ā,

3. we add ⊤ ⊑ A ⊔ Ā and A ⊓ Ā ⊑ ⊥ to T0.

We denote the resulting concept by C1 and the TBox by T1. We have
to show that C0 is satisfiable w.r.t. T0 iff C1 is satisfiable w.r.t. T1.

4.3. CTLEL COMPUTATIONAL COMPLEXITY 45

Proof Sketch: (→) Let I be a model of C0 and T0. We construct the
interpretation J as follows

∆J = ∆I ,
AJ = AI for all A ∈ NC ,
rJ = rI for all r ∈ NR,
ĀJ = (¬A)I .

We have to show that for all concepts D and for all d ∈ ∆I

d ∈ DI iff d ∈ DJ .

We can show the last statement by induction on the structure of D.

We have to show that J is a model of T1. Then, we have to prove that
J is a model of every GCI in T1. First, we show that J is a model of
the GCIs added at point 3, i.e., {⊤ ⊑ Ā ⊔ A, Ā ⊓ A ⊑ ⊥}. We must
show that d ∈ ⊤J implies d ∈ (Ā ⊔ A)J and d ∈ (Ā ⊓ A)J implies
d ∈ ⊥J . First, we prove the former. We suppose that d ∈ ⊤J = ∆J =
∆I = AI ∪ (¬A)I = AJ ∪ ĀJ = (A ⊔ Ā)J . Thus, d ∈ (A ⊔ Ā)J Now,
we prove the latter. We suppose that d ∈ (A ⊓ Ā)J = AJ ∩ ĀJ =
AI ∩ (¬A)I = ∅ = ⊥J . Because of the statement above J is a model
of the rest of the GCIs in T1.

(←) Analogously. �

(ALC2 → ALC3) We ensure that disjunction does not occur at all in C1.
For every concept D1 ⊔D2 in C1

1. we introduce a fresh concept name A∗,

2. we replace D1 ⊔D2 with A∗,

3. we add A∗ ⊑ D1 ⊔D2 and D1 ⊔D2 ⊑ A∗ to T1.

We denote the resulting concept by C2 and the TBox by T2. We have
to show that, C1 is satisfiable w.r.t. T1 iff C2 is satisfiable w.r.t. T2.

The proof is similar to the proofs above.

46 CHAPTER 4. TEMPORAL CONCEPTS: CTLEL CONCEPTS

(ALC3 → CTLEL⊥
) We ensure that disjunction ⊔ does not occur at all in

T2. We assume that the only occurrences of disjunction ⊔ in T2 are of
the form

(i) A ⊔B ⊑ D
(ii) D ⊑ A ⊔B

where A,B are concept names and D is disjunction free.

1. We replace (i) in T2 by A ⊓M ⊑ D and B ⊓M ⊑ D.

2. We replace (ii) in T2 with the following GCIs

(a) M ⊓D ⊑ A3X ⊓ A3Y,

(b) M ⊓D ⊓ E3(X ⊓ E3Y) ⊑ A,

(c) M ⊓D ⊓ E3(Y ⊓ E3X) ⊑ A,

(d) M ⊓D ⊓ E3(X ⊓ Y) ⊑ B,

where M, X and Y are fresh concept names (for each D ⊑ A⊔B).

3. We replace every subconcept ∃r.E of C2 with ∃r.(E ⊓M).

4. For every GCI C ⊑ D ∈ T2, we replace C with C ⊓M and every
subconcept ∃r.E of D with ∃r.(E ⊓M).

We denote the resulting concept by C3 and the TBox by T3. We have
to show that C2 is satisfiable w.r.t. T2 iff C3 ⊓M is satisfiable w.r.t.
T3.

Proof: (→) Let I be a model of C2 and T2. We construct a temporal
interpretation J = (S,<, I) as follows

• (S,<) is a tree.

• For all s ∈ S, we define I(s) as follows

∆I(s) = ∆I ,
AI(s) = AI for all A ∈ NC \ {M,X, Y },
rI(s) = rI for all r ∈ NR.

We interpret M,X, Y as follows,

4.3. CTLEL COMPUTATIONAL COMPLEXITY 47

If s is the root of (S,<), then

- M I(s) = ⊤I(s).

Let d ∈ DI . Then, by the GCI D ⊑ A⊔B, d ∈ (A⊔B)I .

- If d ∈ BI , then d ∈ XI(s′) and d ∈ Y I(s′) for all s′ > s.

- If d ∈ AI \ BI , then d ∈ XI(s′) and d ∈ Y I(s′′) for all
s′′ > s′ > s.

If s is not the root of (S,<), then

- M I(s) = ∅

- XI(s′′) = Y I(s′′) = ∅ for all s < s′ < s′′.

We have to prove that for all concepts C ′ and for all d ∈ ∆I(s0)

d ∈ C ′I iff d ∈ C ′I(s0)
(∗)

where s0 is the root of (S,<).

We can prove the last statement by induction on the structure of C ′.
For the proof, note that X,Y do not occur in all C ′ and M I(s0) = ⊤I(s0).
Now, since M I(s0) = ⊤I(s0), C3 ⊓M is satisfiable.

It remains to show that J is a model of T3. Then, we have to prove
that J is a model of every GCI in T3. First, we prove that J is a model
of the GCIs added at points 1 and 2.

(i) We have to prove that d ∈ (A ⊓ M)J implies d ∈ DJ and d ∈
(B ⊓M)J implies d ∈ DJ. First, we prove the former. Let d ∈
(A ⊓M)I(s) with s the root of (S,<). Since M I(s) = ⊤I(s), (A ⊓
M)I(s) = AI . Then, d ∈ (A ⊔ B)I . By the GCI A ⊔ B ⊑ D,
d ∈ DI = DI(s). Analogously for the latter.

(ii) (a) Let d ∈ (M ⊓D)I(s) with s the root of (S,<). Since M I(s) =
⊤I(s), (M ⊓ D)I(s) = DI . Then, by the GCI D ⊑ A ⊔ B,
d ∈ (A ⊔B)I . We can distinguish two cases.

- If d ∈ BI , then d ∈ XI(s′) and d ∈ Y I(s′) for all s′ > s.
Therefore, d ∈ (A3X)I(s) and d ∈ (A3Y)I(s). Hence,
d ∈ (A3X ⊓ A3Y)I(s)

- If d ∈ AI \BI , then d ∈ XI(s′) and d ∈ Y I(s′′) for all s′′ >
s′ > s. Therefore, d ∈ (A3X)I(s) and d ∈ (A3Y)I(s).
Hence, d ∈ (A3X ⊓ A3Y)I(s)

48 CHAPTER 4. TEMPORAL CONCEPTS: CTLEL CONCEPTS

(b) Let d ∈ (M ⊓ D ⊓ E3(X ⊓ E3Y))I(s) with s the root of
(S,<). Thus, d ∈ (M I(s) ∩DI(s) ∩ E3(X ⊓ E3Y)I(s)). Since
M I(s) = ⊤I(s), d ∈ (DI(s) ∩ E3(X ⊓ E3Y)I(s)). Then, by the
GCI D ⊑ A⊔B, d ∈ ((A⊔B)I ∩ E3(X ⊔ E3Y)I(s)). Hence,
there is a s′′ > s′ > s such that d ∈ XI(s′) and d ∈ Y I(s′′), and
d ∈ (A ⊔ B)I . Then, by construction, d ∈ AI \ BI = AI =
AI(s).

(c) Let d ∈ (M ⊓ D ⊓ E3(Y ⊓ E3X))I(s) with s the root of
(S,<). Thus, d ∈ (M I(s) ∩DI(s) ∩ E3(Y ⊓ E3X)I(s)). Since
M I(s) = ⊤I(s), d ∈ (DI(s) ∩ E3(Y ⊓ E3X)I(s)). Then, by the
GCI D ⊑ A⊔B, d ∈ ((A⊔B)I ∩ E3(Y ⊔ E3X)I(s)). Hence,
there are s′′ > s′ > s such that d ∈ Y I(s′) and d ∈ XI(s′′), and
d ∈ (A ⊔B)I . Thus, no such d exists.

(d) Let d ∈ (M ⊓D ⊓ E3(X ⊓ Y))I(s) with s the root of (S,<).
Thus, d ∈ (M I(s)∩DI(s)∩E3(X⊓Y)I(s)). SinceM I(s) = ⊤I(s),
d ∈ (DI(s) ∩ E3(X ⊓ Y)I(s). Then, by the GCI D ⊑ A ⊔ B,
d ∈ ((A⊔B)I ∩E3(X ⊓Y)I(s)). Hence, there is a s′ > s such
that d ∈ Y I(s′) and d ∈ XI(s′′), and d ∈ (A ⊔ B)I . Then, by
construction, d ∈ BI = d ∈ BI(s).

By the statement (∗) and the fact that M = ⊤I(s), I(s) is a model
of the rest of the GCIs in T3.

If s is not the root, then since M I(s) = ∅ and M appears inter-
secting in the lefthand side of each GCI in T3, I(s) is a model of T3.

Therefore, J is a model of T3.

(←) Let J = (S,<, I) be a model of C3 ⊓M and T3. We construct the
interpretation I = (∆I , ·I) as follows

∆I = M I(s0),
AI = AI(s0) ∩∆I for all A ∈ NC \ {X,Y },
rI = rI(s0) ∩∆I ×∆I for all r ∈ NR,

where s0 is the root of (S,<).

We have to prove that for all ALC concepts C ′ and for all d ∈ ∆I(s0)

d ∈ ∆I(s0) implies d ∈ ∆I (∗), and

4.3. CTLEL COMPUTATIONAL COMPLEXITY 49

d ∈ (C ′ ⊓M)I(s0) implies d ∈ C ′I (∗∗).

Observe that all concepts occurring in C3 and T3 are ALC concepts.
We can prove the last statement by structural induction.

Now, it remains to prove that I is a model of T2. First, we prove that
I is a model of (i) and (ii). We have to show that d ∈ (A ⊔ B)I im-
plies d ∈ DI and d ∈ DI implies d ∈ (A ⊔ B)I . First, we prove the
former. d ∈ (A ⊔B)I = ((A ⊔B) ⊓M)I(s0). Then, d ∈ (A ⊓M)I(s0) or
d ∈ (B ⊓M)I(s0). By the GCI A ⊓M ⊑ D, d ∈ (A ⊓M)I(s0) implies
d ∈ DI(s0). Then, d ∈ DI , and by the GCI B⊓M ⊑ D, d ∈ (B⊓M)I(s0)

implies d ∈ DI(s0). Then, d ∈ DI .

Now, we prove the latter. Let d ∈ DI = (D ⊓M)I(s0). Then, by the
GCI D ⊓M ⊑ A3X ⊓ A3Y , d ∈ (A3X ⊓ A3Y)I(s0). Hence, for all
s0 < s1 < s2 . . . there are k, k′ > 0 such that d ∈ XI(sk) and d ∈ Y I(sk′).
We can distinguish three cases, k = k′, k > k′ or k′ > k.

• If k = k′, there is a s0 < s1 < s2 . . . such that XI(sk) and Y I(sk).
Then, d ∈ E3(Y ⊓X)I(s0).

• If k > k′, there is a s0 < s1 < s2 . . . such that XI(sk) and Y I(sk′).
Then, d ∈ E3(X ⊓ E3Y)I(s0).

• If k′ > k, there is a s0 < s1 < s2 . . . such that XI(sk) and Y I(sk′).
Then, d ∈ E3(Y ⊓ E3X)I(s0).

Therefore, d ∈ (A3X⊓A3Y)I(s0) = E3(X⊓Y)I(s0)∪E3(X⊓E3Y)I(s0)∪
E3(Y ⊓ E3X)I(s0). Then, by the GCIs (a)–(d), d ∈ (AI(s0) ∪BI(s0)) =
(A ⊔B)I(s0). Therefore (A ⊔B)I .

By the statement (∗∗), I is a model of the rest of the GCIs in T2. �

Now, we can reduce satisfiability in CTLEL⊥
to subsumption in CTLEL.

(CTLEL⊥
→ CTLEL) We ensure that ⊥ does not occur at all, neither in C3

nor in T3.

1. We introduce a fresh concept name L.

2. We replace every occurrence of ⊥ with L.

3. We extend T3 with (a)∃r.L ⊑ L for every role from C3 and T ′.

50 CHAPTER 4. TEMPORAL CONCEPTS: CTLEL CONCEPTS

4. We add the following GCI to T3 (b)E3L ⊑ L.

We denote the resulting concept by C4 and the TBox by T4. We have
to show that C3 is satisfiable w.r.t. T3 iff C4 6⊑T4 L.

Proof: (→) Let I = (S,<, I) be a model of C3 and T3. We construct
the interpretation J = (S,<, J) as follows

• (S,<) is a tree.

• For s ∈ S, we define J(s) as follows

∆J(s) = ∆I(s),
AJ(s) = AI(s) for all A ∈ NC \ {L},
rJ(s) = rI(s) for all r ∈ NR,
LJ(s) = ⊥I(s).

We have to prove that for all concepts D and for all d ∈ ∆I

d ∈ DI iff d ∈ DJ (∗)

We can prove the last statement by induction on the structure of D.

Then, by the previous statement, C4
J 6= ∅ and LJ = ∅. Therefore,

C4
J 6⊆ LJ.

It remains to show that J is a model of T4. First, we prove that J is
model of the GCIs added at points 3 and 4.

(a) Let (s, d) ∈ ∃r.L. Then, there is a (s, e) ∈ LJ = ⊥I = ∅ with
(s, d, e) ∈ rJ. Thus, no such (s, d) exists.

(b) Let (s, d) ∈ (E3L)J. Then, there exists s0 < s1 < s2 . . . with s =
s0 such that there is a k > 0 : (sk, d) ∈ L

J = ⊥I = ∅. Thus, no
such (sk, d) exists.

By the statement (∗) J is a model of the rest of the GCIs in T4

(←) Consider the contrapositive. Then, C3 is not satisfiable w.r.t. T3,
i.e., for all models I of T3, C

I
3 = ∅.

Let I = (S,<, I) be a model of T3. We construct an interpretation
J = (S,<, J) as follows

4.3. CTLEL COMPUTATIONAL COMPLEXITY 51

• (S,<) is a tree.

• For s ∈ S, we define J(s) as follows

∆J(s) = ∆I(s),
AJ(s) = AI(s) for all A ∈ NC \ {L},
rJ(s) = rI(s) for all r ∈ NR,
LJ(s) = ⊥I(s).

We have to prove that for all concepts D and for all d ∈ ∆I

d ∈ DI iff d ∈ DJ. (∗∗)

We can prove the last statement by induction on the structure of D.

Then, by the last statement and since C3 is not satisfiable w.r.t T3,
CJ

4 = ∅ and LJ = ⊥I = ∅. Therefore, CJ
4 ⊆ LJ.

It remains to show that J is a model of T4. First, we prove that J is
model of the GCIs added at points 3 and 4.

(a) Let (s, d) ∈ ∃r.L. Then, there is a (s, e) ∈ LJ = ⊥I = ∅ with
(s, d, e) ∈ rJ. Thus, no such (s, d) exists.

(b) Let (s, d) ∈ (E3L)J. Then, there exists s0 < s1 < s2 . . . with s =
s0 such that there is a k > 0 : (sk, d) ∈ L

J = ⊥I = ∅. Thus, no
such (sk, d) exists.
By the statement (∗∗) J is a model of the rest of the GCIs in
T4 �

52 CHAPTER 4. TEMPORAL CONCEPTS: CTLEL CONCEPTS

Chapter 5

Conclusions

This chapter summarizes the work we developed in this thesis and presents
some possibilities of future work.

The main goal of this thesis was to investigate branching temporal ex-
tensions of description logics. To this aim, we decided to investigate the
combination of description logics with the temporal branching logic compu-
tation tree logic (CTL). We obtained the temporal description logics (TDLs),
CTLALC and CTLEL from the combination of CTL with ALC and EL, re-
spectively. In CTLALC and CTLEL, we focused our attention on the temporal
evolution of concepts. More specifically, we proved complexity results of rea-
soning in CTLALC and CTLEL. On the one hand, we showed that satisfiability
w.r.t. TBoxes with expanding domains in CTLALC is EXPTIME -complete.
Therefore, we consider CTLALC as computationally rather well-behaved, i.e.,
concept satisfiability is not harder than in the component logics. The key
observation in the proof of the upper bound was the close relation of CTLALC

with the fusion of CTL and ALC. Moreover, the previous observation allows
to establish a connection between CTLALC and the standard µ-calculus. Fi-
nally, we use the latter connection to determine the complexity of reasoning
in CTLALC. On the other hand, we showed that concept subsumption in
CTLEL is not tractable as in the case of pure EL. More precisely, reason-
ing in CTLEL is EXPTIME-complete, i.e., it is equally complex to reason in
CTLALC. To obtain the lower bound, we reduced satisfiability in ALC to
CTLEL subsumption.

As we have discussed, in the design of a temporal description logic there
are several degrees of freedom. The previous fact, gives a wide spectrum of
future work. In the immediate future, we can extend this work in the follow-

53

54 CHAPTER 5. CONCLUSIONS

ing ways. First, in the case of CTLALC, we can continue reasoning about the
temporal evolution of concepts but in the “constant domain” case. Then, we
can constrain to the case of “rigid roles” to increase the expressive power.
Second, in the case of CTLEL, we can look for polytime fragments.

Another important extension is to reason about the temporal evolution
of axioms. For example, as discussed in (Baader et al., 2008). We can also
vary the DL component. For example, we can establish similar results for
the DL-Lite family as in (Artale et al., 2007). Finally, we can sketch some
application scenarios in which the decision procedures could be optimized.

References

Artale, A., & Franconi, E. (1998). A temporal description logic for reasoning
about actions and plans. Journal of Artificial Intelligence Research,
463–506.

Artale, A., & Franconi, E. (2000). A survey of temporal extensions of descrip-
tion logics. Annals of Mathematics and Artificial Intelligence, 30(1-4),
171–210.

Artale, A., & Franconi, E. (2005). Temporal description logics. Pages 375–
388 of: Handbook of Time and Temporal Reasoning in Artificial Intelli-
gence. Elsevier.

Artale, A., Franconi, E., Wolter, F., & Zakharyaschev, M. (2002). A tempo-
ral description logic for reasoning over conceptual schemas and queries.
Proceedings of the 8th European Conference on Logics in Artificial Intel-
ligence (JELIA-02). Lecture Notes in Artificial Intelligence, vol. 2424.
Springer-Verlag.

Artale, A., Kontchakov, R., Lutz, C., Wolter, F., & Zakharyaschev, M.
(2007). Temporalising tractable description logics. Proceedings of TIME-
07. IEEE Press.

Baader, F., Lutz, C., Sturm, H., & Wolter, F. (2002). Fusions of description
logics and abstract description systems. Journal of Artificial Intelligence
Research, 16, 1–58.

Baader, F., Calvanese, D., McGuinness, D., Nardi, D., & Patel-Schneider,
P. F. (eds). (2003). The Description Logic Handbook: Theory, Imple-
mentation, and Applications. Cambridge University Press.

Baader, F., Ghilardi, S., & Lutz, C. (2008). LTL over Description Logic
Axioms. Proceedings of the 21st International Workshop on Description
Logics (DL2008). CEUR-WS, vol. 353.

55

56 REFERENCES

Blackburn, P., van Benthem, J. F. A. K., & Wolter, F. (2006). Handbook of
modal logic. New York, NY, USA: Elsevier Science Inc.

Brachman, R. J., & Schmolze, J. (1985). An Overview of the KL-ONE
Knowledge Representation System. Cognitive science, 9(2), 171–216.

Brandt, S. (2004). Polynomial time reasoning in a description logic with
existential restrictions, GCI axioms, and—what else? Pages 298–302 of:
Proceedings of the 16th European Conference on Artificial Intelligence
(ECAI-2004). IOS Press.

Clarke, E. M., & Emerson, E. A. (1982). Design and Synthesis of Synchro-
nization Skeletons Using Branching-Time Temporal Logic. Pages 52–71
of: Logic of programs, workshop. London, UK: Springer-Verlag.

Emerson, E. A. (1990). Temporal and modal logic. Pages 995–1072 of:
Handbook of Theoretical Computer Science (vol. b): Formal Models and
Semantics. MIT Press.

Emerson, E. A. & Jutla, C. (̇1988). The complexity of tree automata and
logics of programs. Pages 368–377 of: Proceedings of the 29th IEEE
Symposium of Foundations of Computer Science. White Plains.

Gabbay, D., Hodkinson, I., & Reynolds, M. (1994). Temporal Logic: Math-
ematical Foundations and Computational Aspects. Vol. 1. Oxford Uni-
versity Press.

Gabbay, D., Reynolds, M., & Finger, M. (2000). Temporal Logic: Mathemat-
ical Foundations and Computational Aspects. Vol. 2. Oxford University
Press.

Gabbay, D., Kurucz, A., Wolter, F., & Zakharyaschev, M. (2003). Many–
Dimensional Modal Logics: Theory and Applications. Elsevier.

Kozen, D. (1983). Results on the propositional µ- calculus. Theoretical
Computer Science, 27(3), 333–354.

Kozen, D., & Parikh, R. (1983). A decision procedure for the propositional
µ-calculus. Pages 313–325 of: Proceedings of the 2nd Workshop on Logic
Programs. LNCS, no. 164. Springer-Verlag.

Lamport, L. (1980). “sometime” is sometimes “not never”: on the temporal
logic of programs. Pages 174–185 of: POPL ’80: Proceedings of the 7th
Symposium on Principles of Programming Languages. ACM.

REFERENCES 57

Lutz, C. (2004). Combining interval-based temporal reasoning with general
TBoxes. Artificial Intelligence, 152(2), 235–274.

Lutz, C., Sattler, U., & Wolter, F. (2001). Description logics and the two
variable fragment. Pages 66–75 of: McGuiness, I D., Pater-Schneider,
P., Goble, C., & Mller, R. (eds), Proceedings of the 2001 International
Workshop in Description Logics (DL’01).

Lutz, C., Wolter, F., & Zakharyaschev, M. (2008). Temporal description
logics: A survey. Proceedings of the Fifteenth International Symposium
on Temporal Representation and Reasoning. IEEE Computer Society
Press.

Minsky, M. (1974). A framework for representing knowledge. Tech. rept.
Cambridge, MA, USA.

Pnueli, A. (1977). The temporal logic of programs. Pages 46–57 of: Proceed-
ings of the 18th IEEE Symposium on Foundations of Computer Science.

Quillian, M. (1968). Semantic memory. Pages 227–270 of: Minsky, M. (ed),
Semantic Information Processing. MIT Press.

Schild, K. (1991). A correspondence theory for terminological logics: prelim-
inary report. Pages 466–471 of: In proceedings of the 12th International
Joint Conference on Artificial Intelligence (IJCAI-91).

Schild, K. (1993). Combining terminological logics with tense logic. Pages
105–120 of: Proceedings EPIA 93. LNCS, vol. 727. Springer.

Schild, K. (1994). Terminological cycles and the propositional µ-calculus.
Pages 509–520 of: Doyle, P. T. J., & Sandewall, E. (eds), Proceedings of
the Fourth International Conference on Principles of Knowledge Repre-
sentation and Reasoning (KR’94). Morgan Kaufmann.

Schmidt-Schauß, M. (1989). Subsumption in KL-ONE is undecidable. Page
21 of: Brachman, R. J., Levesque, H. J., & Reiter, Raymond (eds),
Proceedings of the First International Conference on the Principles of
Knowledge Representation and Reasoning (KR-89). Morgan Kaufmann.

Schmidt-Schauß, M., & Smolka, G. (1991). Attributive concept descriptions
with complements. Artif. intell., 48(1), 1–26.

Schmiedel, A. (1990). Temporal terminological logic. Dietterich, W., &
Swartout, T. (eds), Proceedings of AAAI-90. MIT press.

58 REFERENCES

Vardi, M. Y.(̇1997). What makes modal logic so robustly decidable? Pages
149–183 of: Descriptive Complexity and Finite Moldels. American
Mathematical Society.

Wolter, F., & Zakharyaschev, M. (2000). Temporalizing description logics.
Pages 379–401 of: Frontiers of Combining Systems II. LNCS, vol. 1794.
Springer.

