
TECHNISCHE UNIVERSITÄT DRESDEN

International Masters Programme in Computational Logic
Institute for Theoretical Computer Science

Computer Science

Master Thesis

Integrate Action Formalisms into Linear
Temporal Description Logics

Anees ul Mehdi

Overseeing Professor

Prof. Dr. Franz Baader

Supervisor

Hongkai Liu

Dresden, Germany August, 2009

ii

TECHNISCHE UNIVERSITÄT DRESDEN

Author: Anees ul Mehdi
Matrikel-Nr: 3280409
Title: Integrate Action Formalisms into

Linear Temporal Description Logics
Degree: Master of Science
Date of submision: 06.08.09

Declaration
Hereby I certify that the thesis has been written by me. Any help that I
have received in my research work has been acknowledged. Additionally, I
certify that I have not used any auxiliary sources and literature except those
I cited in the thesis.

Anees ul Mehdi

iii

Abstract

Description logics (DLs) provide expressiveness much beyond the expressive-
ness of propositional logic while still maintaining decidability of reasoning.
This makes DLs a natural choice for formalizing actions. Besides DLs are also
used in several application domains. However representing dynamic aspects
of such application domains is not out of question. As a result, temporal ex-
tensions of DLs have been investigated in literature. In formalizing actions,
sometimes we come across a situation, where we want to be sure of a property
to hold at a certain time. Thus a suitable approach is of using temporalized
DLs in describing such properties meanwhile formalizing actions in DLs. In
this thesis, we present the integration of action formalisms in a temporalized
DL.

We consider the satisfiability problem of an ALCO-LTL formula with
respect to an acyclic TBox, an ABox and actions i.e., we check if there is a
sequence of world states (interpretations) such that the formula is satisfied
in this sequence whereas the semantics of the actions is also respected. We
consider two different cases; a simple case in which we consider unconditional
actions where all the changes imposed by an action hold trivially after the
application of the action and a general case in which we consider conditional
actions. A conditional action requires certain conditions to hold in order
to impose such changes. In the former case, we reduce the problem to the
ABox consistency problem, whereas in the later case, we reduced it to the
emptiness problem of a Büchi automaton and the ABox consistency problem.

iv

Contents

1 Introduction 1
1.1 Description Logics . 1
1.2 Temporal Extensions of DLs 4
1.3 Description Logic and Action Formalisms 5
1.4 Objective . 6
1.5 Structure . 7

2 Preliminaries 9
2.1 Introducing Description Logic ALCO 9

2.1.1 Syntax and Semantics 9
2.1.2 DL Reasoning Problems 12

2.2 Temporalized Description Logic ALCO-LTL 12
2.3 DL-based Action Formalisms 13
2.4 Inference Problem . 16
2.5 Linear Temporal Logic . 17

2.5.1 Syntax and Semantics 17
2.5.2 Büchi Automata and LTL 18

3 Unconditional-Post Condition 23

4 Conditional Actions 35

5 Conclusion 49

References 51

v

vi CONTENTS

Chapter 1

Introduction

This chapter provides an introduction to the topics that we deal with in
this work. In Section 1.1, we present a brief introduction to description
logics (DLs). In the second section of the chapter, we give an introductory
overview of temporal description logics and briefly discuss the need for such
extensions of DLs. Later in Section 1.3, we introduce action formalisms based
on DLs. Finally, we set the objectives of our work in Section 1.4 and outline
the structure of the work in Section 1.5.

1.1 Description Logics

The main focus in knowledge representation is usually not only on providing
a high-level description of the domain of discourse but also some techniques
(reasoning services) to extract implicit consequences from the explicit knowl-
edge represented. Among different knowledge representation formalisms,
logic based formalisms are the most popular one. In such formalisms some
logic is used to provide a formal syntax as well as a formal semantics. De-
scription logics are well-known logic based formalisms with the characteristic
that they allow us to represent and reason about conceptual knowledge in a
structured and well-understood way.

In 1970’s different approaches to knowledge representation were devel-
oped. The logical based formalisms were usually based on predicate logic, and
hence resulting in different decidability/computability issues (Franz Baader
et al., 2003). In non-logical based formalisms, because of the lack of seman-
tics, the interpretations of knowledge represented were quite subjective. The
frame system (Minsky, 1974) and semantic networks (Quillian, 1968) were
the most famous non-logical based formalism for knowledge representation.

1

2 CHAPTER 1. INTRODUCTION

Unlike logic based formalisms, these formalisms were often based on the use
of graphical interfaces by representing knowledge by means of some data
structures. Different procedures were used to manipulate these structures
for accomplishing the reasoning task. The main problem in such formalisms
was the lack of semantics thus causing ambiguities.

On the one hand, we have predicate logic which is very expressive but
mean while undecidable. On the other hand, propositional logic allows de-
cidability, nevertheless expressiveness is compromised. This tradeoff between
the expressiveness of a representation formalism and the difficulty of reason-
ing over the representations built using this formalism, was first observed
by Brachman and Leavesque in (Brachman & Levesque, 1984), where they
also provided the language FL− (Frame Language) as an example. Soon the
focus of research turned towards finding a formalism which would be as a
compromise between expressibility of the formalism and complexity of the
reasoning services provided by it. This led to the birth of description log-
ics. ALC is one of the most basic DLs that was introduced by Schaußand
Smolka (Schmidt-Schauß& Smolka, 1991). It has been extended to many
other more expressive DLs by allowing additional constructors. However,
this addition of constructors possibly increases the complexity of reasoning
services. One can say that DLs are a family of knowledge representation
formalisms which have the expressive power between propositional logic and
predicate logic.

The basic notions in description logics are of concept names (unary pred-
icates), role names (binary predicates) and individual names (constants).
Different constructors are used in different DLs to build concept descrip-
tions to model a domain. DLs are characterized by the set of constructors
they provide (e.g., ALC is a DL with conjunction, disjunction, negation,
existential restriction and value restriction). For example the following con-
cept description expresses “a female student who has studied only medical
courses”:

Student u Female u ∀has-studied.MedicalCourses

In modeling an application domain in DLs, concept descriptions are used
to built statements in a DL knowledge base (KB). Such DL KBs can be
divided into two parts: a terminological one and an assertional one. In
the first part, relevant notions of the domain can be described by stating
properties of concepts and roles, and relationships between them. This part
is called the TBox. A TBox introduces abbreviations (concept names) for a
complex concept description. For example the concept name Father can be

1.1. DESCRIPTION LOGICS 3

used as an abbreviation for the following concept description:

Father ≡ Male u Parent

Such a statement is called a concept definition. A TBox contains finitely
many concept definitions. The assertional part of the knowledge base is used
to to describe the factual knowledge of the domain by stating properties of
individuals. For example to describe that “John is a Student”, “John is a
son of Joseph” and “Marry is not a daughter of John”, one can use the asser-
tions Student(JOHN), sonOf(JOHN, JOSEPH) and ¬daughterOf(Marry,JOHN)
respectively. The first assertion is a concept assertion whereas the second and
third assertions are role assertions. Here “JOHN”, “MARRY” and “JOSEPH”
are individual names that are used to represent the individuals John, Marry
and Joseph respectively. A finite set such assertions is called an ABox.

The semantics for a DL is given in terms of interpretations. An inter-
pretation is composed of a domain which is a non-empty set of individuals
and an interpretation function that assigns a subset of the domain to each
concept name, a binary relation on the domain to each role name and an ele-
ment of the domain to each individual name. The interpretation is extended
to concept descriptions by interpreting each constructor according to the se-
mantics provided by the DL, e.g., conjunction of two concepts is interpreted
as intersection of their interpretations. Satisfiability of a concept description
requires that it is interpreted by a non-empty subset of the domain. In such
a case, the interpretation is said to be a model of the concept description.
We say that an interpretation is a model of a TBox T if and only if the
left-hand side and the right-hand side of every concept definition in T are
interpreted identically. An assertion C(a) for a concept name C and indi-
vidual a is satisfied by an interpretation if a is interpreted by an element of
the C’s interpretation. Similarly for an assertion r(a, b) to be satisfied in an
interpretation, the interpretation of a and b must be in the relation defined
by the interpretation of r. And in case of ¬r(a, b) the interpretation of a and
b must not be in the relation defined by the interpretation of r. We call an
interpretation a model of an ABox A if it satisfies all the assertion in A. An
ABox A is said to be consistent w.r.t. a TBox T if there is a model of the T
that is also a model of A.

In most of the DLs, the basic constructors are conjunction (u), disjunc-
tion (t), negation (¬), existential restriction (∃) and value restriction (∀).
The DL ALC allows only these constructors. In some DLs, an additional
constructor called nominal is allowed, which can be used to describe a con-
cept containing only one individual e.g., {JOHN} is a concept description.

4 CHAPTER 1. INTRODUCTION

Such a concept description is interpreted by the singleton set. The presence
of this additional constructor is indicated by appending the letter O with the
name of the DL. For example, the DL which extends ALC with nominals is
named as ALCO. We will use ALCO in this work. Later on we will explain
the reason for choosing ALCO. In the following section, we describe the
extensions of DLs with temporal operators and the need for such extensions.

1.2 Temporal Extensions of DLs

In many applications it is important to describe temporal patterns. For ex-
ample, using DLs to represent conceptual models of temporal databases (Ar-
tale et al., 2002). As another example, suppose that we want to represent
the fact that “If John is a student and has good grades, he will be a schol-
arship holder sometime in the future”. In order to describe such a temporal
knowledge conveniently, temporal extensions of DLs have been investigated
in literature. Schild was first to consider the combination of DL ALC with
linear temporal logic (LTL) (Schild, 1993), which since then have experienced
constant development in the sense that the DL and the temporal component
have varied. An important issue in temporalizing DLs is deciding to which
pieces of syntax temporal operator can be applied. For example, temporal
operator can occur within a concept descriptions or in front of an assertion.
We use the description logics ALCO in the DL component and the linear
temporal logic (LTL) (Krger & Merz, 2008) in the temporal component,
which we call ALCO-LTL. We allow the application of a temporal opera-
tor to ABox assertions only (Baader et al., 2008b). For example the above
concept can be described as follows:

(
(Student u ∃has.GoodGrades)(JOHN) → 3(hold.Scholarship(JOHN))

)

Where3 is the temporal modality which is usually read as “eventually” (Baier
& Katoen, 2008).

Note that in temporalized DLs, we have two parts, a temporal part and
a DL part. The semantics of a temporalized DL needs to consider both of
the parts. Therefore interpretations of concept names and role names do
not depend only on a DL interpretation but also on a time point. Hence
semantics for a temporalized DL is given in terms of an infinite sequence of
DL interpretations. Such a sequence is usually called a structure. In case
of ALCO-LTL we call such a sequence an ALCO-LTL structure. For some
concept and role names it is not desirable that their interpretation changes

1.3. DESCRIPTION LOGIC AND ACTION FORMALISMS 5

over time (Baader et al., 2008b). Such concept names or role names are
called rigid concept names and rigid role names respectively.

1.3 Description Logic and Action Formalisms

In literature there are several action theories to model dynamic application
domains e.g., Situation Calculus (Reiter, 2001), Fluent Calculus (Thielscher,
2005). Nevertheless these formalisms are usually formulated in predicate
or higher-order logic and hence do not permit decidable reasoning (Milicic,
2008). As a solution, one can go for propositional logic but has to com-
promise on expressiveness. Description Logics (DLs) are a well-known fam-
ily of knowledge representation formalisms and can be viewed as fragments
of predicate logic. On the one hand DLs are considerably more expressive
than propositional logic, on the other hand, they are still decidable unlike
predicate logic (Franz Baader et al., 2003). DLs are also the basis of the
WSC-recommended Web ontology language OWL and hence the availability
of actions in Semantic Web raised the question of formalizing such actions in
DLs.

In (Baader et al., 2005a), an approach of formalizing actions in DLs has
been presented. In this approach, ABox assertions are used to describe world
states and actions, while concept definitions are used as domain constraints
which have to be satisfied no matter how the actions change the world. For
example the action “If John is an applicant for a scholarship and has good
grades then allot him a scholarship” can be expressed by

(Applicant u ∃has.GoodGrades)(JOHN)/∃alloted.Scholarship(JOHN)

An interpretation corresponds to a state of world which is changed by
actions. Therefore if (Applicant u ∃has.GoodGrades)(JOHN) holds in an in-
terpretation then ∃alloted.Scholarship(JOHN) holds in the next interpretation
when the above action is applied.

Note that in temporalized DLs the semantics depends on an infinite se-
quence of interpretations. In action theories, we have sequence of states
of the world. In DL based action formalisms interpretations correspond to
states of the world, hence we have sequence of interpretations. The difference
between such a sequence in temporalized DL and a DL based action formal-
ism is that in temporalized DL, except for the rigid concept and role names,
the interpretations of the other concept names and role names can vary ar-
bitrarily at different time point, whereas in a DL based action formalism,

6 CHAPTER 1. INTRODUCTION

the only changes are due to the application of an action, i.e., the interpreta-
tions of concept and role names stay the same unless an action changes them.

One of the basic reasoning problems in action formalisms is the projection
problem. The projection problem is to check if a given assertion always
holds in every state reached from the initial state through the application
of a given sequence of actions. In (Baader et al., 2005a), it shown that
the use of nominals for solving the projection problem is unavoidable. It
is also shown that this problem is PSpace-Complete. We will see that the
reasoning problem considered in this work is at least as hard as the projection
problem. Hence, we choose ALCO. We could have started with ALC, but
the complexity results we get with ALC and with ALCO coincide.

1.4 Objective

The beauty of description logics is that they are more expressive than propo-
sitional logic as well as they provide decidable reasoning services. In some
application domains one needs to describe temporal patterns. To model such
application domains conveniently, DLs are extended with temporal compo-
nent (Artale et al., 2007; Artale & Franconi, 2000; Wolter & Zakharyaschev,
2000; Artale et al., 2002; Baader et al., 2008a). In action theory community,
DLs are good choice to model actions: reason being again their expressiveness
and the availability of decidable reasoning services. In many applications we
want to be sure about some properties to hold at a certain time before some
actions to be taken. As an example, consider a robot which can perform post
delivery to each office in an organization. Lets call this robot “Postboy‘”.
The set of actions of Postboy can be formulated in a DL. Suppose we want
to make sure that it is never the case that the robot is out of power before
it reaches to its recharge panel. We can describe this condition as following:

¤((¬outOfBattery t hasAccess.RechargePanel)(POSTBOY))

We can model such problems by using temporalized DL to describe the
properties and also use DLs to describe actions. In this thesis, we consider
ALCO for formalizing actions and ALCO-LTL for specifying such proper-
ties. Our objective is to provide a method to check whether there exists a
sequence of world states (interpretations) such that the property is satisfied
in a certain state and the semantics of the actions is respected, i.e., a state
changes to another state only via the application of actions. We call this
the satisfiability problem1. We consider two cases. In the first case, we re-

1In this work, by satisfiability problem we always mean this problem until specified.

1.5. STRUCTURE 7

strict ourselves to those actions (unconditional) where the effects of actions
trivially holds when the actions are applied. In the second case, we consider
actions in general sense where certain properties needs to be satisfied for the
effect of the actions to hold after the application. We call such actions condi-
tional. In each case, we check some properties described in ACLO-LTL given
some actions and a knowledge base formulated in ALCO. We also analyze
the computational complexity of solving the satisfiability problem.

1.5 Structure

In Chapter 2, We introduce notions and theoretical background that we will
depend on throughout the work. In Section 2.1, we present an introduction
to the description logic ALCO. We will also discuss some reasoning prob-
lems in ALCO. In Section 2.2, we introduce the temporalized description
logic ALCO-LTL by discussing its syntax and semantics. Action formalisms
based on DLs are discussed in Section 2.3. Some inference problems like the
satisfiability problem and the validity problem are introduced in Section 2.4.
Finally in Section 2.5, we present a brief introduction to linear temporal
logic(LTL) and Büchi Automata. We also discuss the reduction of the satis-
fiability problem in LTL to the emptiness problem in a Büchi automaton.

In Chapter 3, we consider conditional actions and the the satisfiability
problem introduced in Chapter 2. We will also discuss complexity issues
of this very particular case by reducing the problem into ABox consistency
w.r.t. to an acyclic TBox.

In Chapter 4, we consider the problem in general by allowing conditional
action, we reduce the satisfiability problem to emptiness problem of a Büchi
automaton and ABox consistency w.r.t. an acyclic TBox.

Finally in Chapter 5 of the work, we will present some concluding remarks
and possible extensions of the work.

8 CHAPTER 1. INTRODUCTION

Chapter 2

Preliminaries

In this chapter we provide the theoretical background needed for the thesis.

2.1 Introducing Description Logic ALCO
In this section we will present the description logic ALCO by providing its
syntax and semantics. We will also present some reasoning problems in
ALCO. We will mainly follow the notations as presented in (Baader et al.,
2005b).

2.1.1 Syntax and Semantics

In following, we present the syntax and semantics for the description logic
ALCO.

Definition 2.1. let NC , NR and NI be disjoint and countably infinite sets
of concept names, role names and individual names respectively. The set of
ALCO concept descriptions (or concepts in short) is the smallest set satisfy-
ing the following properties:

• every concept name A ∈ NC is a concept description;

• > (top concept) and ⊥ (bottom concept) are concept descriptions;

• if C and D are ALCO concept descriptions, r is a role name and a is
an individual name then the following are ALCO concept descriptions:

9

10 CHAPTER 2. PRELIMINARIES

¬C (negation)

C uD (conjunction)

C tD (disjunction)

∃r.C (existential restriction)

∀r.C (value restriction)

{a} (nominal)

Every concept description other than a concept name is called a complex
concept.

As an example, the concept Male u ∃hasChild.{John} describes the concept
“father of John”. We abbreviate the concept description ¬C tD by C → D
for concept descriptions C and D.

For the semantics of ALCO we introduce the notion of interpretations.

Definition 2.2. An ALCO interpretation I is a pair (∆I , ·I) where ∆I is
a non-empty set and ·I is a function that assigns

• to each concept name A, a set AI ⊆ ∆I ;

• to each role name r, a binary relation rI ⊆ ∆I ×∆I ;

• to each individual name a, an element aI ∈ ∆I such that for all a, b ∈
NI , if a 6= b then aI 6= bI .

The interpretation of complex concepts is then defined as follows:

({a})I = {aI}
(¬C)I = ∆I \ CI

(C uD)I = CI ∩DI

(C tD)I = CI ∪DI

(∃r.C)I = {x ∈ ∆I | ∃y ∈ ∆Iwith (x, y) ∈ rI and y ∈ CI}
(∀r.C)I = {x ∈ ∆I | ∀y ∈ ∆I if (x, y) ∈ rI , then y ∈ CI}

I is called a model of a concept C if CI 6= ∅.

2.1. INTRODUCING DESCRIPTION LOGIC ALCO 11

The restriction to interprate different individual names by different ele-
ments of the domain enforces the interpretation I to satisfy the unique name
assumption (UNA). The UNA is commonly adopted by action formalisms
community.

As mentioned in Chapter 1, a DL knowledge base is composed of two
parts: a terminological part (called the TBox) and an assertional part(called
the ABox). In the following, we talk about the terminological part.

Definition 2.3. A concept definition is of the form A ≡ C where A is a
concept name and C a concept. A TBox is a finite set of concept definitions
such that there is no concept name which occurs in the left-hand side of
two different concept definitions. We say that a concept name A directly
uses a concept name B w.r.t. to a TBox T if there is a concept definition
A ≡ C ∈ T with B occurring in C. Let uses be the transitive closure of
directly uses. Then a TBox T is acyclic if no concept name uses itself w.r.t.
T .

An interpretation I satisfies a concept definition A ≡ C (written as
I |= A ≡ C) if AI = CI . I is called a model of a TBox T , written I |= T ,
if it satisfies all concept definitions in T .

A concept name A is defined w.r.t to a TBox T if A occurs on the left-
hand side of a concept definition in T , and primitive w.r.t. T otherwise.

To describe a concrete situation by stating properties of individuals we use
the assertional part of the knowledge base which is defined as follows:

Definition 2.4. An assertion (or ABox assertion) is of the form C(a), r(a, b)
or ¬r(a, b), where a, b ∈ NI , C is a concept, and r is a role name. An ABox
is a finite set of assertions. An interpretation I satisfies an assertion

C(a) iff aI ∈ CI ;
r(a, b) iff (aI , bI) ∈ rI ;
¬r(a, b) iff (aI , bI) 6∈ rI .

If ϕ is an assertion, then we write I |= ϕ iff I satisfies ϕ. An interpretation
I is called a model of an ABox A, written I |= A, if I satisfies all assertions
in A.

Definition 2.5. A knowledge base (KB) is a pair (T ,A), where T is a TBox
and A is an ABox. An interpretation I is a model of a KB K = (T ,A)
(written as I |= K) if I |= T and I |= A.

12 CHAPTER 2. PRELIMINARIES

2.1.2 DL Reasoning Problems

Usually inference problems in DLs are defined with respect to a KB consisting
of a TBox and an ABox. But in some special cases we might consider such
problems with the TBox or/and ABox being empty.

Definition 2.6. Given a KB K = (T ,A) with T a TBox and A an ABox,
K is consistent iff it has a model, i.e., there is an interpretation I such that
I |= T and I |= A. An assertion ϕ is satisfiable w.r.t. T if there is a model I
of T such that I |= ϕ . The ABox A is consistent w.r.t. the TBox T iff there
is a model I of T such that I |= A. Consistency problem (or consistency
in short) of an ABox A w.r.t. a TBox T is to check whether A is consistent
w.r.t. T .

2.2 Temporalized Description Logic ALCO-LTL

In practice, we come across situations where we need to represent dynamic
aspects of the application domain. To model such dynamic applications in
a convenient way we need a combination of the standard DLs with standard
temporal logic, where one dimension is for time and the other for the DL
domain (Wolter & Zakharyaschev, 1998). Here we present such a tempor-
alized DL called ALCO-LTL with ALCO in the DL component and linear
temporal logic (LTL) in the temporal component (Gabbay et al., 2003). We
will follow notions as presented in (Baader et al., 2008b).

Definition 2.7. ALCO-LTL formulas are defined by induction:

• if α is an assertion then α is an ALCO-LTL formula;

• if φ, ψ are ALCO-LTL formulas, then so are φ ∧ ψ, φ ∨ ψ, φUψ, and
Xψ.

As usual, we use true as an abbreviation for A(a) ∨ ¬A(a), 3φ as an ab-
breviation for trueUφ (diamond, which should be read as “sometime in the
future”), and 2φ as an abbreviation for ¬3¬φ (box, which should be read
as “always in the future”).

In linear temporal logic we define a temporal (or Kripke) structure for
the semantics (Krger & Merz, 2008). Such a structure is infinite sequence
x0, x1, . . . with xi ∈ 2PL with i ≥ 1 and PL being the set of propositional
variables. By 2PL we mean the set of all the subsets of PL. But in case of
ALCO-LTL formulas, temporal components are attached with ABox asser-
tions. The usual temporal structures, therefore, can not be used to interpret

2.3. DL-BASED ACTION FORMALISMS 13

such assertions at a certain time point. Hence we have to use the notion of
structures which are infinite sequence of ALCO interpretations.

Definition 2.8. An ALCO-LTL structure is a sequence I = (Ii)i=0,1,... of

ALCO interpretations Ii = (∆, .Ii) such that aIi = aIj for all individual
names a and i, j ∈ {0, 1, 2, . . . }.

Given an ALCO-LTL formula φ, an ALC-LTL structure I = (Ii)i=0,1,...,

and a time point i ∈ {0, 1, 2, . . . }, satisfaction of φ in I at time i (written
I, i |= φ) is defined inductively:

• I, i |= φ iff Ii |= φ for an ABox assertion φ

• I, i |= φ ∧ ψ iff I, i |= φ and I, i |= ψ

• I, i |= φ ∨ ψ iff I, i |= φ or I, i |= ψ

• I, i |= ¬φ iff I, i 6|= φ

• I, i |= Xφ iff I, i + 1 |= φ

• I, i |= φUψ iff there is k ≥ i such that I, k |= ψ and I, j |= φ for all j,
i ≤ j < k

2.3 DL-based Action Formalisms

In (Baader et al., 2005b; Baader et al., 2005a), a frame work for formalizing
actions in DLs is proposed. We use their notions of actions.

Definition 2.9. Let T be an acyclic TBox. An action is a finite set of
post-conditions of the form ϕ/ψ, where ϕ is an ABox assertion and ψ is
a primitive literal for T , i.e., an ABox assertion of the form A(a), ¬A(a),
r(a, b), or ¬r(a, b) with A a primitive concept name in T , r a role name, and
a and b individual names.

We will further classify the post-conditions into unconditional and condi-
tional. By unconditional post-conditions we mean that all the post-conditions
are of the form >(a)/ψ for an arbitrary individual name a, i.e., the condition
>(a) trivially holds in all interpretations. All the other post-conditions will
be referred as conditional post-conditions. We call an action α unconditional
if it contains only unconditional post-conditions other we call it conditional.
In unconditional actions, we simply write ψ instead of >(a)/ψ.

Given a set of actions A, an infinite sequence of actions from A is a
function w : N → A such that w(i) is the i-th action in the sequence. We

14 CHAPTER 2. PRELIMINARIES

will be using infinite sequence of actions of the form w = α1 . . . αp(β1 . . . βq)
ω

by which we mean the following:

w(i) :=

{
αi+1 0 ≤ i < p,

β((i−p) mod q)+1 i ≥ p.

where mod is the modulus function.

Intuitively by the post-condition ϕ/ψ we mean that, if ϕ is true before exe-
cuting the action, then ψ should hold afterwards.

Definition 2.10. Let T be an acyclic TBox, an action α for T , and I, I ′
models of T sharing the same domain and agreeing on the interpretation
of all individual names. We say that I ′ is the result of updating I with α,
written I ⇒T

α I ′, if for each primitive concept name A and role name r, we
have

AI′ = (AI ∪ {aI | ϕ/A(a) ∈ α and I |= ϕ}) \ {aI | ϕ/¬A(a) ∈ α and I |= ϕ}
rI

′
= (rI ∪ {(aI , bI) | ϕ/r(a, b) ∈ α and I |= ϕ})

\ {(aI , bI) | ϕ/¬r(a, b) ∈ α and I |= ϕ}

For a sequence of actions α1, . . . , αk, I ′ is the result of updating I by this
sequence(I ⇒T

α1,...,αk
I ′) if there are models I0, . . . , Ik of T with I = I0,

I ′ = Ik, and Ii−1 ⇒T
αi
Ii for 1 ≤ i ≤ k.

Note that only those facts change by the application of an action that
are forced to change by post-conditions of the action, i.e., if I and I ′ are
interpretations, and α is an action for an acyclic TBox T with ψ/φ ∈ α
such that I |= ψ and I ⇒T

α I ′, then we have that I ′ |= φ. Besides these
changes, the semantics of action also requires that nothing else changes in
the interpretation of any primitive concept name or role name. This we will
refer to as the minimization of change. Further note that for acyclic TBoxes,
the actions are deterministic, i.e., for T and α if I ⇒T

α I ′ and I ⇒T
α I ′′ then

I ′ = I ′′. This follows from Definition 2.10 and the fact that acyclic TBoxes
are definitorial : the interpretation of defined concepts is uniquely determined
by the interpretation of the primitive concepts and role names (Baader &
Lutz, n.d.).

We assume that all the given actions are consistent in the sense that for a
given action α with post-conditions ϕ1/ψ,ϕ2/¬ψ ∈ α, it is never the case that
both ϕ1 and ϕ2 are satisfied in an interpretation I, i.e., the ABox {ϕ1, ϕ2}
is inconsistent.

2.3. DL-BASED ACTION FORMALISMS 15

Note that given an acyclic TBox T , an unconditional action α and two
models I and I ′ of T with I ⇒T

α I ′, all the post-condition in α always hold
in I ′ independent of I. Based on this observation we have the following
property:

Lemma 2.11. Let T be an acyclic TBox, α1, α2,, αn be a finite sequence
of unconditional action for T . For any interpretation I, I ′ and I ′′ we have
that: if I ⇒T

α1,α2,....,αn
I ′ ⇒T

α1,α2,....,αn
I ′′ then I ′ = I ′′.

Proof: By Definition 2.10 there are interpretations I = I0, I1, ..., In =
I ′, . . . , I2n = I ′′ such that Ii−1 ⇒T

αi
Ii and In+i−1 ⇒T

αi
In+i for 1 ≤ i ≤ n.

Further ∆I = ∆I0 = = ∆In = = ∆I2n and each individual is in-
terpreted by the same domain element under any of these interpretations.
Since T is acyclic, it suffices to show for each primitive concept B and role
name r, AI′ = AI′′ and rI

′
= rI

′′
. We prove by contradiction. Assume there

is a primitive concept A such that AI′ 6= AI′′ or a role name r such that
rI

′ 6= rI
′′
. We consider the case of the concept A only, the case of role name

r can be treated analogously.
Since AI′ 6= AI′′ , at least one of the following must hold;

1. AIn 6⊆ AI2n

which implies that there is an x ∈ ∆I (here each of the interpretation
shares the common domain) such that x ∈ AIn \ AI2n . But since
In ⇒T

α1
In+1 ⇒T

α2
, . . . ,⇒T

αn
I2n, there is i ∈ {1, . . . , n} such that

• ¬A(a) ∈ αi

• aI = x (again each individual name is interpreted by the same
domain element under each interpretation).

• there is no j ∈ {1, . . . , n} such that j > i and A(a) ∈ αj.

But I = I0 ⇒T
α1
I1 ⇒T

α2
, . . . ,⇒T

αn
In implies that x 6∈ AIi as ¬A(a) ∈

αi, and since there is no j ∈ {1, . . . , n} with j > i and A(a) ∈ αj, hence
x 6∈ AIn which is a contradiction.

2. AI2n 6⊆ AIn

we can reach a contradiction in a similar way as in case 1.

Hence In = I2n, i.e. I ′ = I ′′. 2

One of the most important reasoning problem in actions formalisms is the
projection problem which is defined as follows:

16 CHAPTER 2. PRELIMINARIES

Definition 2.12. For a given acyclic TBox T , α1, . . . , αq actions for T and
an ABox A, an assertion ϑ is a consequence of applying α1, . . . , αq in A w.r.t.
T iff, for all models I of A and T , and all I ′ with T ⇒T

α1,...,αq
I ′, we have

I ′ |= ϑ. The projection problem is to check if ϑ is a consequence of applying
α1, . . . , αq in A w.r.t. T .

It is shown (Baader et al., 2005b) that the projection problem is PSpace-
complete for ALCO.

2.4 Inference Problem

In this section we introduce the satisfiability and validity problems of an
ALCO-LTL formula with respect to a given acyclic TBox, an ABox and an
infinite sequence of actions.

Definition 2.13. Let ϕ be an ALCO-LTL formula. Further suppose that
we are given a TBox T , an ABox A and an infinite sequence of actions w of
the form w = α1, . . . , αp(β1, . . . , βq)

ω all formulated in ALCO, we say that ϕ
is satisfiable with respect to T , A and w iff there is an ALCO-LTL structure
I = (Ii)i=0,1,... such that

• I0 |= A
• Ii ⇒T

w(i) Ii+1 for i ≥ 0.

• I, 0 |= ϕ

We say that ϕ is valid with respect to T , A and w iff for any ALCO-LTL
structure I = (Ii)i=0,1,... with I0 |= A and Ii ⇒T

w(i) Ii+1 for i ≥ 0, we have

that I, 0 |= ϕ.

The validity problem can be polynomially reduced to the satisfiability prob-
lem: ϕ is valid w.r.t A, T and w iff ¬ϕ is unsatisfiable w.r.t A, T and w.

We consider two cases. In the first case, the infinite sequence w of actions
contain unconditional actions only, whereas in the second case we consider
conditional actions . In the following chapters we deal both cases by reduc-
ing the satisfiability problem to the ABox consistency w.r.t. an acyclic TBox
in the first case and to the emptiness problem in a Büchi automaton and
ABox consistency w.r.t. an acyclic TBox in the second case. In both cases
we discuss different complexity issues concerning the reduction. Since the

2.5. LINEAR TEMPORAL LOGIC 17

validity problem can be reduced to the satisfiability problem, we concentrate
on satisfiability problem.

In Chapter 4, we focus on satisfiability problem for conditional case. As
mentioned, besides ABox consistency problem w.r.t. an acyclic TBox, we
reduce the problem to the emptiness problem of a Büchi automaton. The idea
is that we for a given ALCO-LTL formula ϕ we construct its propositional
abstraction by replacing each assertion in ϕ with a propositional variable.
This abstraction formula is hence an LTL formula. We check the satisfiability
of this constructed formula using automata-based approach i.e, we construct
a Büchi automaton to decide the its satisfiability. In the following section we
discuss this approach.

2.5 Linear Temporal Logic

In this section we provide a brief introduction to linear temporal logic (LTL),
which extends propositional logic by temporal operators. The model of time
followed in LTL is linear in the sense that at each moment in time there is
a single successor moment. We refer to (Baier & Katoen, 2008) for further
detail on LTL. We first present the syntax and semantics of LTL and then
define the satisfiability problem in LTL. Later on we provide a brief intro-
duction to Büchi automata. At the end we discuss the emptiness problem in
a Büchi automaton and the reduction of the satisfiability problem in LTL to
this problem.

2.5.1 Syntax and Semantics

As LTL is propositional logic extended with temporal operators, we suppose
that PL is the set of propositional variable. By 2PL we mean the set of all
the subsets of PL. The basic temporal operators we use are the X-operator
and the U-operator.

Definition 2.14. The set of LTL formulas is the smallest set such that

• each propositional variable p ∈ PL is a formula;

• if ϕ is a formula, then so are ¬ϕ and Xϕ;

• if ϕ and ψ are formulas, then so are (ϕ ∧ ψ), (ϕ ∨ ψ) and (ϕUψ).

18 CHAPTER 2. PRELIMINARIES

The temporal modalities 2 (“always”) and 3 (“eventually”) are derived from
U-operator as follows:

3ϕ := trueUϕ 2ϕ := ¬3¬ϕ

where true is abbreviation for (p ∨ ¬p) for a propositional variable p.

In propositional logic, interpretations are subsets of PL (the set of propo-
sitional variable). The satisfiability of a formula in propositional logic de-
pends on the (non)membership of the propositional variable (occurring in
the formula) in the interpretation. In LTL we have to consider time as well,
i.e., for the semantics of a formula in LTL we have to consider propositional
interpretation and a certain time point. Hence LTL interpretations are a
sequence of propositional interpretations.

Definition 2.15. An LTL structure M is an infinite sequence of x0x1 . . .
with xi ∈ 2PL for i ≥ 0. We define satisfaction of LTL formulas in M at time
point n ∈ N as follows:

M,n |= p iff p ∈ xn, for all p ∈ PL

M,n |= ¬ϕ iff M, n 6|= ϕ

M,n |= (ϕ ∧ ψ) iff M, n |= ϕ and M, n |= ψ

M,n |= (ϕ ∨ ψ) iff M, n |= ϕ or M, n |= ψ

M, n |= Xϕ iff M, n + 1 |= ϕ

M, n |= (ϕUψ) iff ∃m ≥ n : M, m |= ψ and ∀k with n ≤ k < m : M,k |= ϕ

An LTL formula ϕ is satisfiable iff there is an LTL structure M such that
M, 0 |= ϕ. The satisfiability problem of an LTL formula ϕ is to check whether
a given LTL formula ϕ is satisfiable.

2.5.2 Büchi Automata and LTL

Note that one can think of LTL structures as an infinite word over 2PL.
Vardi and Wolper were the first to present an automata-based approach for
checking satisfiability of an LTL formula (Vardi & Wolper, 1986). The basic
idea is that we can construct a Büchi automaton from an LTL formula such
that the formula is satisfiable iff the language of the automaton is nonempty.

Definition 2.16. A (non-deterministic) Büchi automaton is a tuple A =
(Q, Σ, I, ∆, F1, . . . , Fn), with n ≥ 0, with

2.5. LINEAR TEMPORAL LOGIC 19

• Q a finite set of states ;

• Σ a finite alphabet ;

• I ⊆ Q a set of initial states ;

• ∆ ⊆ Q×Q a transition relation;

• Fi ⊆ Q a set of accepting states, for 1 ≤ i ≤ n.

Let w = a0a1 · · · ∈ Σω. A run of A on w is a word q0q1 · · · ∈ Qω such
that

• q0 ∈ I;

• (qi, wi, qi+1) ∈ ∆ for all i ≥ 0.

A run q0, q1, . . . is accepting if the the set {i|qi ∈ Fj} is infinite for all j
with 1 ≤ j ≤ n. The ω-language accepted by A is defined as

L(A) := {w ∈ Σω | there is an accepting run of A on w}

.

Note that there are more than one set of accepting states in A but one can
construct a Büchi automaton A′ with only one set of accepting states such
that L(A) = L(A′) (Baier & Katoen, 2008).

The emptiness problem for Büchi automata asks, given an automaton A
whether L(A) = ∅. In (Vardi, 1996), this problem is shown to be decidable
in linear time.

Now we show the reduction of satisfiability problem in LTL to emptiness
problem in a Büchi automaton. This construction assumes ϕ does not con-
tain disjunctions. However this restriction is not problematic as any LTL
formula can be polynomially converted to an equivalent LTL formula with
no disjunctions.

Definition 2.17.

The closure cl(φ) of an LTL formula φ is the smallest set of formulas closed
under taking subformulas of ϕ and closed under single negations, i.e.,

• cl(p) := {p,¬p};
• cl(¬ϕ) := cl(ϕ);

• if ϑ ∈ {ϕ ∧ ψ, ϕUψ}, then cl(ϑ) := {ϑ,¬ϑ} ∪ cl(ϕ) ∪ cl(ψ)

20 CHAPTER 2. PRELIMINARIES

• cl(Xϕ) := {Xϕ,¬Xϕ} ∪ cl(ϕ).

For a given LTL formula ϕ and an LTL structure M = x0x1 . . . one get a
sequence T0T1 . . . of subsets of cl(ϕ) by setting

Ti := {ϑ ∈ cl(ϕ) | M, i |= ϑ}
The sequence T0T1 . . . is said to be realized by M . It follows from the seman-
tics that the formulas occurring in any Ti for each i ≥ 0 satisfy the conditions
specified in the definition of types (that is given below). Hence each Ti in
the sequence T0T1 . . . realized by an LTL structure is a type.

Definition 2.18. A type for an LTL formula ϕ is a subset T ⊆ cl(ϕ) such
that:

• ψ ∈ T iff ¬ψ 6∈ T , for all ¬ψ ∈ cl(ϕ);

• {ψ, ϑ} ⊆ T iff (ψ ∧ ϑ) ∈ T , for all (ψ ∧ ϑ) ∈ cl(ϕ)

We denote the set of types for ϕ by TP(ϕ). For T, T ′ ∈ TP(ϕ), by T →X T ′

we mean

• for all Xψ ∈ cl(ϕ), Xψ ∈ T iff ψ ∈ T ′;

• for all (ψUϑ) ∈ cl(ϕ), we have (ψUϑ) ∈ T iff

– ϑ ∈ T or

– ψ ∈ T and (ψUϑ) ∈ T ′

Let ϕ is an LTL formula with n until (U) formulas occurring in it. Further
suppose that these until formulas are linearly ordered. We construct a Büchi
automaton A such that ϕ is satisfiable iff L(A) 6= ∅. The set of states of this
automaton is the set of types for ϕ. Now A is defined as follows:

Definition 2.19. The automaton Aϕ is defined as (Q, Σ, I, ∆, F1, . . . , Fn):

• Q = TP(ϕ);

• Σ = 2PL;

• I := {T ∈ Q | ϕ ∈ T};
• ∆ := {(T, x, T ′) | x ∩ cl(ϕ) = T ∩ PL and T →X T ′};
• Fi := {T ∈ Q | (ψUϑ) 6∈ T or ϑ ∈ T} (for 1 ≤ i ≤ n) if the i-th until

formula in ϕ is (ψUϑ).

2.5. LINEAR TEMPORAL LOGIC 21

The following lemma shows that the satisfiability of ϕ can be decided by
deciding L(ϕ).

Lemma 2.20. Let M = x0x1 . . . be an LTL structure, then we have the
following:

• M ∈ L(Aϕ) iff M, 0 |= ϕ.

• For all ϑ ∈ cl(ϕ) we have that ϑ ∈ Ti iff M, i |= ϑ

For the proof of the lemma we refer to (Vardi & Wolper, 1994).

22 CHAPTER 2. PRELIMINARIES

Chapter 3

Unconditional-Post Condition

Suppose we are given an acyclic TBox T , an ABox A and an infinite sequence
w = α1α2 . . . αp(β1β2 . . . βq)

ω of unconditional actions for T , all formulated in
ALCO. Let ϕ be an ALCO-LTL formula. Then the satisfiability problem is
to check whether ϕ is satisfiable with respect to T , A and w. In this chapter
we show that this problem is PSpace-complete. The upper bound is shown
by the reduction of this problem to ABox consistency w.r.t. an acyclic TBox
and the lower bound is shown by reducing projection to this problem. We
construct a TBox Tred and ABoxes Ared and Aϕ from T , A, w and ϕ in a
way that we have the following property:

ϕ is satisfiable with respect to A, T and w iff Ared ∪ Aϕ is consistent
w.r.t. Tred.

Before presenting the reduction we introduce some notations. In the
following we call A, T , w and ϕ the input. An ALCO-LTL formula is said
to be in Negation Normal Form (NNF in short) if it contains LTL negation
¬ only in the front of ALCO assertions. Any formula can be transformed to
an equivalent formula in NNF. For this first we introduce the dual operator
R of U (Baier & Katoen, 2008). For an ALCO-LTL structure I = (Ii)i=0,1,...

we have that I, i |= φRψ iff either for all k ≥ i we have that I, k |= ψ or there
exists k ≥ i such that I, k |= φ and for all j with i ≤ j ≤ k, I, j |= ψ. An
ALCO-LTL formula can be transformed into an equivalent formula in NNF
by applying the following equivalence preserving transformation rules to it:

23

24 CHAPTER 3. UNCONDITIONAL-POST CONDITION

¬¬φ −→ φ

¬(φ ∧ ψ) −→ (¬φ ∨ ¬ψ)

¬(φ ∨ ψ) −→ (¬φ ∧ ¬ψ)

¬Xφ −→ X¬φ

¬(φUψ) −→ (¬φR¬ψ)

¬(φRψ) −→ (¬φU¬ψ)

Given ALCO-LTL formula φ in NNF, by definition, the LTL negation
occurs only in front of assertions. We can further push the LTL negation
into assertions by using the following set of rules:

¬(C(a)) −→ ¬C(a)

¬(r(a, b)) −→ ¬r(a, b)

¬(¬r(a, b)) −→ r(a, b)

From now on we assume that all the formulas are in NNF with the LTL
negations pushed to the assertions. We take the approach as presented in
(Baader et al., 2005b) to construct Tred and Ared from T and A, and present
tableau rules for constructing Aϕ from ϕ. The idea of the reduction is to
construct Aϕ, Ared and Tred in a way such that each single model I (we call
it a reduction model) of them encodes a sequence of ALCO interpretations
I0, I1, . . . , In for n = p+2q−1. Through out this chapter we fix n = p+2q−1.
Based on this sequence we define an ALCO-LTL structure I such that the
reduction model I is a model for Tred, Ared, and Aϕ if and only if I is a
witness of the satisfiability of ϕ w.r.t. A, T and w. Note that for the case
unconditional actions Lemma 2.11 holds: If J is an ALCO interpretation
and J ′ is a result of updating J by a sequence γ1, . . . , γm of unconditional
actions then J ′ is a result of updating itself by γ1, . . . , γm. This allows us to
construct I based on I0, . . . , In as follows:

I, i :=

{ Ii 0 ≤ i ≤ n
Ip+q+((i−p) mod q) n < i

In other words I is of the form

(I0, . . . , Ip+q, . . . , Ip+2q−1, Ip+q, . . . , Ip+2q−1, Ip+q, . . .)

We want to make sure that the semantics of the actions is respected,
i.e., changes are only due to the application of some actions and nothing

25

else changes in interpretations of primitive concept names and role names.
We follow the approach as in (Baader et al., 2005b) by distinguishing two
kinds of elements in interpretations. We call an element d ∈ ∆I named if
aI = d for some individual a used in the input and unnamed otherwise.
We make this distinction because the changes caused by an action in con-
cept (non)membership and role (non)membership involving (at least) one
unnamed domain element never occur.

Before presenting the reduction, we present the notations we will use. By
Sub we mean the set of all concepts appearing in the input and this is closed
under taking subconcept. For each C ∈ Sub and every i ≤ n, we introduce
a concept name T

(i)
C to represent the interpretation of concept C in the i-

interpretation encoded by the reduction model. Similarly for every primitive
concept A, to represent its interpretation in i-interpretation encoded by the
reduction model for all i ≤ n, we introduce a concept name A(i). This
interpretation of A involves named elements only. For the unnamed part of
the interpretation of A, since the concept membership of unnamed elements
never changes, we can get it in A(0). Similarly we introduce role name r(i)

for every role name r in the input and every i ≤ n. By r(i) we denote
the interpretation of r in the i-th interpretation encoded by the reduction
model but records role relationships where both involved domain elements
are named. We denote the set of exactly name elements in the interpretations
by concept name N . We denote the set of individual names occurring in the
input with Obj.

Now we discuss the components of Tred. The first component states that
N denotes exactly the named domain elements.

TN := {N ≡
⊔

a∈Obj

{a}}

The second component is TSub. It enforces the restriction of changes in
unnamed elements. Further it also contains one concept definition for every
i ≤ n and every C ∈ Sub that is not defined concept name in T . These
concept definitions ensure that T

(i)
C stands for the interpretation of C in

26 CHAPTER 3. UNCONDITIONAL-POST CONDITION

i-interpretation encoded by the reduction model:

T
(i)
A ≡ (N u A(i)) t (¬N u A(0)) if A is primitive in T

T
(i)
¬C ≡ ¬T

(i)
C

T
(i)
CuD ≡ T

(i)
C u T

(i)
D

T
(i)
CtD ≡ T

(i)
C t T

(i)
D

T
(i)
∃rC ≡ (

N u (∃r(0).(¬N u T
(i)
C) t ∃r(i).(N u T

(i))
C)) t (¬N u ∃r(0).T

(i)
C)

)

T
(i)
∀rC ≡ (

N → (∀r(0).(N t T
(i)
C) u ∀r(i).(N → T

(i))
C)) u (¬N → ∀r(0).T

(i)
C

)

The TBox Tred is now given as follows:

Tred := TSub ∪ TN ∪ {T (i)
A ≡ T

(i)
E | A ≡ E ∈ T , i ≤ n}

The last component of Tred ensures that all definitions from the input TBox
T are satisfied by all interpretations I0, I1, . . . , In encoded by the reduction
model.

Now we discuss the components of the ABoxAred. For any ABox assertion
φ we define φ(i) as follows:

φ(i) :=

T
(i)
C (a) if φ = C(a)

r(i)(a, b) if φ = r(a, b) (*)
¬r(i)(a, b) if φ = ¬r(a, b)

The first component A(i)
post (for 1 ≤ i ≤ n) of Ared formalizes satisfaction of

the post-conditions by Ii in the reduction model I.

A(i)
post =

{
ψ(i)|ψ ∈ w(i− 1)

}

For any given action in w the minimization of change is enforced by the
ABox A(i)

min. For 1 ≤ i ≤ n, A(i)
min contains the following assertion:

• for all a ∈ Obj and primitive concept name A in the input with ¬A(a) 6∈
w(i− 1):

a : (A(i−1) → A(i))

for all a ∈ Obj and A ∈ Prim with A(a) 6∈ w(i− 1):

a : (¬A(i−1) → ¬A(i))

27

• for all a, b ∈ Obj and role name r in the input with ¬r(a, b) 6∈ w(i− 1)
.

a : (∃r(i−1).{b} → ∃r(i).{b})
for all a, b ∈ Obj and role name r with r(a, b) 6∈ w(i− 1) .

a : (∀r(i−1).¬{b} → ∀r(i).¬{b})

The last component of Ared is Aini ensuring that the first interpretation
of the encoded sequence is a model of the input ABox A.

Aini := {φ(0) | φ ∈ A}
Now we define Ared as

Ared := Aini ∪
⋃

1≤i≤n

A(i)
post ∪

⋃
1≤i≤n

A(i)
min

The construction of Tred and Ared is inspired by (Baader et al., 2005b)
and we use the proof of Lemma 15 in their work to formulate the following
lemma.

Lemma 3.1. Given an acyclic TBox T , an ABox A and a sequence of action
w = α1 . . . αp(β1 . . . βq)

ω, and Tred and Ared constructed as above, we have:

• for a sequence of ALCO interpretations I0, . . . , In with I0 |= A and
Ii ⇒T

w(i) Ii+1 for 0 ≤ i < n, there exists an ALCO interpretation J
such that J |= Tred, J |= Ared and for any assertion φ and 0 ≤ i < n,
Ii |= φ iff J |= φ(i).

• for an ALCO interpretation J such that J |= Tred and J |= Ared,
there exists ALCO interpretations I0, . . . , In such that I0 |= A and
Ii ⇒T

w(i) Ii+1 for 0 ≤ i < n, and for any assertion φ and 0 ≤ i < n,

Ii |= φ iff J |= φ(i).

Finally we describe how to construct the ABox Aϕ from the given ALCO-
LTL formula ϕ. First introduce formulas of the form ϕ(i) with ϕ aALCO-LTL
formula and i ∈ N. We call such formulas labeled ALCO-LTL formulas. For
a givenALCO-LTL structure I = (Ii)i=0,1,... the superscript i in ϕ(i) indicates
the interpretation of ϕ under Ii. As mentioned, we reduce the problem of
satisfiability to ABox consistency w.r.t an acyclic TBox. We construct Aϕ

from ϕ such that ϕ is satisfiable with respect to Tred, Ared and w if and only
the ABox Aϕ ∪ Ared is consistent with respect to Tred. For constructing Aϕ

from ϕ we use tableau rules that are presented in Figure 3.1 where we have
the following:

28 CHAPTER 3. UNCONDITIONAL-POST CONDITION

• in ∧-rule:
A′ := A \ {(φ1 ∧ φ2)

(i)} ∪ {φ(i)
1 , φ

(i)
2 }

• in ∨-rule:
A′ := A \ {(φ1 ∧ φ2)

(i)} ∪ {φ(i)
1 }

A′′ := A \ {(φ1 ∧ φ2)
(i)} ∪ {φ(i)

2 }
• in X-rule I:

A′ := A \ {(Xφ)(i)} ∪ {φ(i+1)}
• in X-rule II:

A′ := A \ {(Xφ)(i)} ∪ {φ(p+q)}
• in U-rule I:

Ak := A\{(φ1∧φ2)
(i)} ∪ {φ(i)

1 , . . . , φ
(k−1)
1 , φ

(k)
2 } for all k with i ≤ k ≤ n.

• in U-rule II:
Ak := A \ {(φ1 ∧ φ2)

(i)} ∪ {φ(i)
1 , . . . , φ

(n)
1 , φ

(p+q)
1 , . . . , φ

(k−1)
1 , φ

(k)
2 } for all

k with p + q ≤ k < i.

• in R-rule I:
Ak := A \ {(φ1∧φ2)

(i)} ∪ {φ(i)
2 , . . . , φ

(k)
2 , φ

(k)
1 } for all k with i ≤ k ≤ n.

A′ := {φ(i)
2 , φ

(i+1)
2 , . . . , φ

(p+2q−1)
2 }.

• in R-rule II:
Ak := A \ {(φ1 ∧ φ2)

(i)} ∪ {φ(i)
2 , . . . , φ

(n)
2 , φ

(p+q)
2 , . . . , φ

(k)
2 , φ

(k)
1 } for all k

with p + q ≤ k < i.
A′ := {φ(i)

2 , . . . , φ
(n)
2 , φ

(p+q)
2 , φ

(p+q+1)
2 , . . . , φ

(i−1)
2 }.

We start with the set S0 =
{{ϕ(0)}}, and apply the tableau rules to the

set S0 producing a sequence of sets S0 → S1 → S2 → . . . until no more
rules are applicable. Note that S0 is a set with the only element {ϕ(0)}.
The tableau rules are such that each set in the sequence contains sets of the
labeled ALCO-LTL formulas. Given a set A ∈ Si for some i ≥ 0 we call A
complete if no more rules apply to it.

Lemma 3.2. Let S, S ′ be any two sets in the process of tableau rule appli-
cation such that S ′ is obtained from S by applying a tableau rule to A ∈ S.
Then for any ALCO-LTL structure I = (Ii)i=0,1,... with Ii ⇒T

w(i) Ii+1 for
i ≥ 0, the following statements are equivalent:

• I, i |= φ for all φ(i) ∈ A.

• there exists a set A′ ∈ S ′ \ S such that I, i |= φ for all φ(i) ∈ A′.

29

A ∈ S ∧ (φ1 ∧ φ2)
(i) ∈ A

S ′ := S \ {A} ∪ {A′} ∧-rule

A ∈ S ∧ (φ1 ∨ φ2)
(i) ∈ A

S ′ := A \ {(φ1 ∨ φ2)
(i)} ∪ {A′, A′′} ∨-rule

A ∈ S ∧ (Xφ)(i) ∈ A ∧ i < n

S ′ := S \ {A} ∪ {A′} X-rule I

A ∈ S ∧ (Xφ)(i) ∈ A ∧ i = n

S ′ := S \ {A} ∪ {A′} X-rule II

A ∈ S ∧ (φ1Uφ2)
(i) ∈ A ∧ i ≤ p + q

S ′ := S \ {A} ∪ {Ai, . . . , An} U-rule I

A ∈ S ∧ (φ1Uφ2)
(i) ∈ A ∧ p + q < i

S ′ := S \ {A} ∪ {Ap+q, . . . , An} U-rule II

A ∈ S ∧ (φ1Rφ2)
(i) ∈ A ∧ i ≤ p + q

S ′ := S \ {A} ∪ {Ai, . . . , An, A′} R-rule I

A ∈ S ∧ (φ1Rφ2)
(i) ∈ A ∧ i ≤ p + q

S ′ := S \ {A} ∪ {Ap+q, . . . , An, A
′} R-rule II

Figure 3.1: Tableau rules.

Proof: Suppose that S ′ = S \{A} ∪ {A1, . . . , An} and by the tableau rules
we know that n ≤ p + 2q. Further let φ(i) ∈ A be the formula to which the
tableau rule is applied. According to the tableau rule, each A′ ∈ {B1, . . . , Bn}
is obtained from A by removing φ(i) from A and adding finitely many strict
subformulas of φ(i) to A. It, therefore, suffices to show that I, i |= φ(i)

if and only if I models all the newly added sub formulas in A′ for some
A′ ∈ {A1, . . . , An} . Note that by Lemma 2.11, I is of form:

(I0, . . . , Ip, . . . , Ip+q, . . . , In, Ip+q . . . , In, Ip+q, . . .)

• The lemma holds trivially for ∧-rule and ∨-rule, and for X-rule it follows
from the form of I.

• U-rule I: Let (φ1Uφ2)
(i) be the formula in A removed as the consequence

of the rule application. Then by the conditions of U-rule I, we know

30 CHAPTER 3. UNCONDITIONAL-POST CONDITION

that for all i ≤ p + q we have that:
I, i |= (φ1Uφ2)
iff (by Semantics)
∃k ≥ i : I, k |= φ2 ∧ ∀j(i ≤ j < k) : I, j |= φ1

iff (by Lemma 2.11)
∃k with i ≤ k ≤ n : I, k |= φ2 ∧ ∀j(i ≤ j < k) : I, j |= φ1.
iff
∃k with i ≤ k ≤ n such that I, k |= φ2, I, i |= φ1,. . . , I, (k − 1) |= φ1

iff (by U-rule I)
I, i |= ψ for all newly added subformulas ψ(i) in Ak.

• U-rule II: Let (φ1Uφ2)
(i) with i ≤ p+ q be the formula in A removed as

the consequence of the rule application. By U-rule II we have that:
I, i |= (φ1Uφ2)
iff (by Semantics)
∃k ≥ i : I, k |= φ2 ∧ ∀j(i ≤ j < k) : I, j |= φ1

iff (by Lemma 2.11)

– ∃k with i ≤ k ≤ n such that I, k |= φ2 and I, j |= φ1 for j with i ≤
j < k or

– ∃k with p + q ≤ k < i such that I, k |= φ2 and I, j |= φ1 for all j
with i ≤ j and for all j with p + q ≤ j < k.

iff

– ∃k with i ≤ k ≤ n such that I, k |= φ2, I, i |= φ1, . . . , I, k − 1 |=
φ1 or

– ∃k with p+q ≤ k < i such that I, k |= φ2, I, i |= φ1, . . . , I, n |= φ1

and I, p + q |= φ1, . . . , I, k |= φ1.

It is equivalent to I, i |= ψ for all newly added subformulas ψ(i) in Ak.

Similarly, the case for R-rule I and R-rule II can be proved from the
semantics of these operators and Lemma 2.11. 2

For constructing Aϕ from ϕ we start with the set {{ϕ(0)}} and apply
tableau rules until we get a set S ′ of all complete sets. By applying the
rules we introduced for pushing LTL negation into assertions, it follows from

31

(*) that completes sets can be viewed as ABoxes. One of these complete
sets serves as Aϕ. With non-determinism we know which of the complete
set is Aϕ. In the following lemma we prove that the construction of Aϕ

is in PSpace and hence the termination of the tableau rules application is
immediately implied.

Lemma 3.3. Given an ALCO-LTL formula ϕ, the construction of ϕred from
ϕ, using the tableau rules presented, is in PSpace.

Proof: Let S be a set in some status of the tableau algorithm starting with
{{ϕ(0)}} and let S ′ be the set obtained by an application of one of the
tableau rules to a set A ∈ S. According to the tableau rules, S ′ is obtained
by removing A from S and adding new sets say A1, . . . , Ak (we call them
successors of A) with some k ≤ p + 2q. Now we have following:

• Each set can have at most polynomially many successors, i.e., k ≤
p + 2q, and hence the number of successors of a set is polynomial in
the size of the input.

• According to the tableau rules, each successor Aj of a set A for some
j with 1 ≤ j ≤ k is obtained by removing a labeled formula, say φ(i),
from A and adding polynomially many labeled strict subformulas ψ(i′)

of φ(i) with i′ ≤ n.

• A rule is applicable if and only if there is a set in S containing a labeled
formula with at least one LTL formula occurring in it.

Starting from {{ϕ(0)}}, we non-deterministically generate a complete set Aϕ.
Hence overall this construction is in NPSpace. And by Savitch’s theorem (Pa-
padimitriou, 1993), the construction is in PSpace. 2

In the following we show that the consistency of Ared ∪ Aϕ w.r.t. Tred

indeed decides the satisfiability of ϕ w.r.t T , A and w.

Lemma 3.4. ϕ is satisfiable with respect to A, T and w if and only if Aϕ ∪
Ared is consistent with respect to Tred.

Proof: “⇐=”
Suppose that Aϕ ∪ Ared is consistent with respect to Tred. Then there is a
model J of Tred such that J |= Aϕ ∪ Ared. We have to to show that ϕ is
satisfiable with respect to A, T and w. By Lemma 3.1, there are ALCO
interpretations I0, . . . , Ip+2q−1 such that I0 |= A and Ii−1 ⇒T

w(i−1) Ii for
1 ≤ i ≤ p + 2q − 1. Now let I be the following ALCO-LTL structure:

(I0, . . . , Ip+q, . . . , Ip+2q−1, Ip+q, . . . , Ip+2q−1, Ip+q, . . .)

32 CHAPTER 3. UNCONDITIONAL-POST CONDITION

By Lemma 2.11 we have that Ii ⇒T
w(i) Ii+1 for all i ≥ 0. Further since

J |= Aϕ we have that J |= φ(i) for all φ(i) ∈ Aϕ. By Lemma 3.1 we get that
Ii |= φ and therefore I, i |= φ for all φ(i) ∈ Aϕ. By Lemma 3.2, we get that
I, 0 |= ϕ. Hence ϕ is satisfiable w.r.t. T , A and w.
“⇒”
Let us suppose that ϕ is satisfiable with respect to T , A and w. Therefore
there is an ALCO-LTL structure I = (Ii)i=0,1,... satisfying the following:

• I0 |= A
• Ii ⇒T

w(i) Ii+1 for i ≥ 0.

• I, 0 |= ϕ

Now consider the sequence of ALCO-interpretations I0, . . . , Ip+2q−1. By
Lemma 3.1 there is a model J of Tred such that J |= Ared. We have to show
that J |= Aϕ. But since I, 0 |= ϕ and Aϕ is constructed from ϕ by the
application of tableau rules, it follows from Lemma 3.2 that Ii |= φ for all
φ(i) ∈ Aϕ. Therefore by Lemma 3.1, we get that J |= φ(i) for all φ(i) ∈ Aϕ

and hence J |= Aϕ. Therefore Ared ∪ Aϕ is consistent w.r.t. Tred. 2

Lemma 3.5. Given an acyclic TBox T , an ABox A and an infinite se-
quence of unconditional actions w = α1, . . . , αp(β1, . . . , βq)

ω all formulated
in ALCO, the satisfiability of an ALCO-LTL formula ϕ w.r.t. T , A and w
is in PSpace.

Proof: We have seen that the construction Aϕ of from ϕ is in PSpace. We
also know that the ABox consistency problem w.r.t. to an acyclic TBox
is PSpace-complete for ALCO (Schaerf, 1994). Further since the size of
Ared and Tred are polynomial in the size of the input (Baader et al., 2005b),
Lemma 3.4 immediately yields Lemma 3.5. 2

Theorem 3.6. The satisfiability and validity problems are PSpace-complete.

Proof: We have seen that we can polynomially reduce the validity problem
to the satisfiability problem. Further we have seen in Lemma 3.5 that the
satisfiability problem is in PSpace. Hence validity problem is also in PSpace.
In (Baader et al., 2005b), the projection problem for ALCO is shown to be
PSpace-complete. We reduce the projection problem to the validity problem
as follows: Let ϕ be an assertion, T an acyclic TBox, A an ABox and
α1, . . . , αp be unconditional actions for T all formulated in ALCO. We set
w := α1, . . . , αp(∅)ω. Further we set ϕ̄ := Xpϕ. It is easy to see that ϕ is

33

a consequence of applying α1, . . . , αp in A w.r.t. T iff ϕ̄ is valid w.r.t. T , A
and w. Hence the validity problem is PSpace-complete and therefore, so is
the satisfiability problem. 2

Note that given an an acyclic TBox T , and I and I ′ models of T , for
an unconditional-action α for T with I ⇒T

α I ′ we have that all of the post-
conditions of α always holds in I ′ regardless of I. Hence for unconditional
actions we can show that if an interpretation I ′ is a result of updating an
interpretation I by a sequence of unconditional actions, then we get again I ′
as a result of updating I ′ by the sequence, i.e., a sequence of interpretations
runs into cycle after updating it by a sequence of actions twice (Lemma 2.11).
We have seen that the definition of the witness ALCO-LTL structure in the
reduction depends on this property. In the next chapter we will consider
conditional actions where we will see that in case of conditional actions,
Lemma 2.11 would not hold anymore.

34 CHAPTER 3. UNCONDITIONAL-POST CONDITION

Chapter 4

Conditional Actions

In the previous chapter we dealt with the satisfiability and validity problem
of an ALCO-LTL formula ϕ with respect to a given acyclic TBox T , an ABox
A and an infinite sequence w of unconditional actions for T . We constructed
TBox a Tred, and ABoxes Ared and Aϕ such that we had the following:

ϕ is satisfiable w.r.t. T , A and w iff Ared ∪ Aϕ is consistent w.r.t. Tred.

For unconditional actions we have the property that if an interpretation
I is a result of updating another interpretation by a sequence of uncon-
ditional action, then updating I by this sequence yields I. This we have
shown in Lemma 2.11. This property allowed us to consider finitely many
ALCO interpretations in dealing with the satisfiability problem. Although
an ALCO-LTL is an infinite sequence of ALCO interpretations, we defined
such a structure considering only finitely many interpretations. In other
words, an ALCO-LTL structure for the satisfiability problem is infinite se-
quence of finitely many different interpretations. In this chapter we consider
the general case where we deal with conditional actions. We will see that
Lemma 2.11 does not hold any more when considering conditional actions.
Hence the reduction we used in the previous chapter, does not work. Nev-
ertheless we will see that we still need to consider finitely many different
interpretations in this case and can define a witness ALCO-LTL structure
based on these interpretations for the satisfiability of ϕ w.r.t. T , A and w.

Let us first provide a simple counter example to Lemma 2.11 for the case
of conditional actions. Let T be an acyclic TBox and α = {ϕ/¬φ,¬φ/ψ} an
action for T . Let I, I ′ and I ′′ be interpretations such that I ⇒T

α I ′ ⇒T
α I ′′.

Further suppose that for the interpretation I we have that I |= ϕ, I |= ¬ψ
and I 6|= ¬φ. By Definition 2.10 I ′ |= ¬φ and I ′ |= ¬ψ since the only changes

35

36 CHAPTER 4. CONDITIONAL ACTIONS

are due to the post-conditions. Also that I ′′ |= ψ. Hence we get that I ′ 6= I ′′.

Recall that given an ALCO-LTL formula ϕ, an acyclic TBox T , an ABox
A and an infinite sequence w = α1 . . . αp(β1 . . . βq)

ω of actions for T we say
that ϕ is satisfiable with respect to T , A and w iff there is an ALCO-LTL
structure I = (Ii)i=0,1,... such that

• I0 |= A
• Ii ⇒T

w(i) Ii+1 for i ≥ 0

• I, 0 |= ϕ

The validity of ϕ w.r.t. T , A, and w requires that for each ALCO-LTL
structure I = (Ii)i=0,1,... with I0 |= A and Ii ⇒T

w(i) Ii+1 for i ≥ 0, we have

I, 0 |= ϕ. Note that we are considering an infinite sequence of conditional ac-
tions. Given a Büchi automaton Bact = (Qact, Σact, ∆act, Iact, Fact), we extend
the definition of satisfiability and validity problem in this chapter as follows:

Definition 4.1. We say ϕ is satisfiable with respect to T , A and Bact iff
there is a w ∈ L(Bact) such that ϕ is satisfiable with respect to T , A and w.
ϕ is valid w.r.t. T , A and Bact iff for all w ∈ L(Bact) we have that ϕ is valid
with respect to T , A and w.

The satisfiability (validity) problem asks whether ϕ is satisfiable (valid)
with respect to T , A and Bact. We can reduce the validity problem polyno-
mially to the satisfiability problem: ϕ is valid w.r.t. T , A and Bact iff ¬ϕ
is not satisfiable w.r.t. T , A and Bact. From now on, we concentrate on
satisfiability problem. Note that this case is more general than the case of
unconditional actions in the sense that the satisfiability problem for the case
of unconditional actions can be decided using the method for deciding the
satisfiability problem for conditional actions. Since an infinite sequence of
actions is an infinite word over a set of action, given an infinite sequence w
of actions, we can build a Büchi automata Bw such that L(Bw) = {w}. Now
an ALCO-LTL formula ϕ is satisfiable with respect to an acyclic TBox T ,
an ABox A and w iff it is satisfiable w.r.t. T , A and Bw.

To decide the satisfiability problem, we first introduce some notations.
We call the given T , A, w and ϕ the input. Since any ALCO-LTL formula φ
can be transformed into an equivalent formula φ′ containing no LTL operator
other than ¬, ∧ and U, we will assume that ϕ contains only ¬, ∧ and U as
the LTL operators. We make this assumption because we will construct a
Büchi automaton from an LTL formula ϕ̄ that we will obtain from ϕ and

37

A. In Section 2.5.2 we have seen that such a construction assumes LTL
formula without disjunction. We denote the set of assertions occurring in
the input and assertions of the form A(a) or r(a, b) for each concept name A,
role name r and individual names a, b in the input, by Assert. We introduce
a propositional variable pϑ for each ϑ ∈ Assert, such that there is a 1 − 1
relationship between each ϑ and the corresponding propositional variables pϑ

introduced. We denote the set of these propositional variables by PL. For an
ALCO-LTL formula φ occurring in the input, by φ̂ we mean its propositional
abstraction obtained by replacing each assertion in φ with its corresponding
propositional variable. Note that for an assertion ϑ ∈ Assert and an ALCO
interpretation I, we have either I |= ϑ or I 6|= ϑ but not both. As PL is
finite, for an ALCO-LTL structure I = (Ii)i=0,1,..., there cannot be infinitely
many different sets Xi defined as following:

Xi := {pϑ ∈ PL | Ii |= ϑ and ϑ ∈ Assert}
In other words, for any ALCO-LTL structure, I = (Ii)i=0,1,... there is a set
{X1, . . . , Xk} ⊆ 2PL (we call it the set induced by I) such that for each i ≥ 0
there is a ιi ∈ {1, . . . , k} with Xi = Xιi . We will use this characteristic
of such an ALCO-LTL structure in deciding the satisfiability problem. We
reduce the satisfiability problem to emptiness problem of a Büchi automaton
and knowledge base consistency problem in ALCO. Given an ALCO-LTL
formula ϕ, an acyclic TBox T , an ABox A and a Büchi automaton Bact (with
set of actions as its alphabet), we guess a set S = {X1, . . . , Xk} ⊆ 2PL and
construct a Büchi automaton BS , an acyclic TBox Tred and an ABox AS such
that

ϕ is satisfiable w.r.t. T , A and Bact iff L(BS) 6= ∅ and AS is consistent
w.r.t. Tred.

In the case of unconditional actions, the reduction model was an encoding of a
finite sequence of ALCO interpretations. The witness ALCO-LTL structure
was defined based on these interpretations. In this chapter, we define the
witness ALCO-LTL structure based on a model of Tred ∪AS and elements of
set S. Since S is finite, we have to consider finitely many interpretations in
defining the witness ALCO-LTL structure.

To respect the semantics of actions, we again distinguish between the two
kinds of elements in interpretations; named and unnamed elements. The min-
imization of changes on named elements are achieved by proper encoding of
the states and transition relation of BS whereas that on unnamed elements
are enforced by the TBox Tred. In the following we discuss the idea behind
the reduction.

38 CHAPTER 4. CONDITIONAL ACTIONS

First we construct the Büchi automaton BS . We set

ϕ̄ := ϕ̂ ∧
∧

ϑ∈A
pϑ

Recall that ϕ̂ is the propositional abstraction of ϕ. With out loss of gen-
erality we assume that each variable in PL occurs in ϕ̄. If not we can con-
junct the propositional tautology p ∨ ¬p to the abstraction of ϕ for each
propositional variable p in PL that does not occur in the abstraction. Note
that ϕ̄ is a propositional LTL formula. The closure of the formula ϕ̄ is
defined in the same way as in Definition 2.18 and is denote by cl(ϕ̄). As
discussed Section 2.5.2 we can construct a Büchi automaton to check the
satisfiability of ϕ̄ by checking the emptiness problem of the automaton . Let
BLTL = (TP(ϕ̄), 2PL, ∆LTL, ILTL, F1, . . . , Fn) be the corresponding automaton
for ϕ̄ .

We define BS := (Q, Σ, ∆, I, F ′
1, . . . , F

′
n+1) as following:

1. Q := TP(ϕ̄)×Qact

2. Σ := 2PL × Σact

3. I := {(T, q) | ϕ̄ ∈ T, q ∈ I}
4. 〈(T, q), (x, α), (T ′, q′) ∈ ∆ iff we have the following:

• (T, x, T ′) ∈ ∆LTL

• (q, α, q′) ∈ ∆act

• x ∈ S
• Let pA(a) ∈ PL for a primitive concept name A and an individual

name a occurring in the input:

– if pA(a) ∈ T and there is no φ/¬A(a) ∈ α such that pφ ∈ T
then pA(a) ∈ T ′.

– if ¬pA(a) ∈ T and there is no φ/A(a) ∈ α such that pφ ∈ T
then ¬pA(a) ∈ T ′.

• Let pr(a,b) ∈ PL for a role name r and individual names a, b occur-
ring in the input:

– if pr(a,b) ∈ T and there is no φ/¬r(a, b) ∈ α such that pφ ∈ T
then pr(a,b) ∈ T ′.

– if ¬pr(a,b) ∈ T and there is no φ/r(a, b) ∈ α such that pφ ∈ T
then ¬pr(a,b) ∈ T ′.

39

• For each φ/ϑ ∈ α, if pφ ∈ T then pϑ ∈ T ′.

5. F ′
i := {(T, q) | T ∈ Fi} for 1 ≤ i ≤ n and F ′

n+1 := {(T, q) | q ∈ Fact}
Later on we will define an ALCO-LTL structure based on an accepting run
of BS . Note that the last three points in the definition of ∆ enforces the
transitions of BS to respect the semantics of actions on named elements.
Nevertheless this enforcement is up to propositional level, i.e., up to propo-
sitional abstraction of actions.

Now we switch towards the construction of AS and Tred. As mentioned
previously, we will define an ALCO-LTL structure based on an accepting
run of BS . Nevertheless this is not sufficient. As an example consider that
we have assertions ∀r.A(a), r(a, b) and ¬A(b) in A. Let p, q and r be their
corresponding propositional variables. It might be the case that M, 0 |=
{p, q, r} for an LTL structure M but there is no ALCO interpretation I such
that I |= {∀r.A(a), r(a, b),¬A(b)}. We construct AS in such a way that such
problems are avoided.

A(i) := {ψ(i) | pψ ∈ Xi} ∪ {¬ψ(i) | pψ 6∈ Xi} for 1 ≤ i ≤ k

AS :=
⋃

1≤i≤k

A(i)

where ψ(i) is defined in the same way as in Chapter 3 and the negation ¬ in
¬ψ(i) can be push into ψ by the rules we introduced there.

Besides the above problem, the interpretation I needs to enforce the
domain constraints imposed by T and the restriction of changes on unnamed
elements. This we will achieved by Tred. The definition of Tred is quite similar
as in the previous case of unconditional actions. The only difference is that
we consider i with 1 ≤ i ≤ k in the definition.

Tred := TN ∪ TSub ∪ {T (i)
A ≡ T

(i)
E | A ≡ E ∈ T , 1 ≤ i ≤ k}

Lemma 4.2. ϕ is satisfiable w.r.t. T , A and Bact iff there is a set S ⊆ 2PL

such that L(BS) 6= ∅ and AS is consistent w.r.t. Tred.

Proof: “⇒”
Suppose that ϕ is satisfiable w.r.t. T , A and Bact. Then there is an infinite
sequence of actions w ∈ L(Bact) such that ϕ is satisfiable w.r.t. T , A and
w. Let q0, q1, . . . be the accepting run of Bact on w. Moreover there is an
ALCO-LTL structure I = (Ii)i=0,1,... such that

• I0 |= A;

40 CHAPTER 4. CONDITIONAL ACTIONS

• Ii ⇒T
w(i) Ii+1 for i ≥ 0;

• I, 0 |= ϕ.

Let S = {X1, . . . , Xk} be the set induced by I. We define xi := {pϑ ∈ PL |
Ii |= ϑ and ϑ ∈ Assert} for i ≥ 0. Note that for each i ≥ 0 there is a
ιi ∈ {1, . . . , k} such that xi = Xιi . We set

Ti :={φ̂ ∈ cl(ϕ̄) | I, i |= φ} (4.1)

Recall that φ̂ is the propositional abstraction of φ. It is easy to see that each
Ti satisfies the following:

• ψ ∈ Ti iff ¬ψ 6∈ Ti, for all ¬ψ ∈ cl(ϕ̄);

• {ψ, ϑ} ⊆ Ti iff ψ ∧ ϑ ∈ Ti, for all ψ ∧ ϑ ∈ cl(ϕ̄).

Hence each Ti is a type for ϕ̄. Now we show that T0, T1, . . . is an accepting
run of BLTL on x0x1 By definition

ϕ̄ = ϕ̂ ∧
∧

ϑ∈A
pϑ

Since I, 0 |= ϕ and I0 |= A, we get that ϕ̂ ∈ T0 and {pϑ | ϑ ∈ A} ⊆ T0. By
definition of types we get that ϕ̄ ∈ T0. Hence T0 ∈ ILTL. We now show that
(Ti, xi, Ti+1) ∈ ∆LTL for i ≥ 0 as follows:

• it is easy to see that xi ∩ cl(ϕ̄) = Ti ∩ PL.

• Ti →X Ti+1 for i ≥ 0:

– Let Xφ̂ ∈ cl(ϕ̄). Xφ̂ ∈ Ti iff (by (4.1)) I, i |= Xφ (semantics of
X-operator)iff I, i + 1 |= φ iff (by (4.1)) φ̂ ∈ Ti+1.

– Let (φ̂1Uφ̂2) ∈ cl(ϕ̄). (φ̂1Uφ̂2) ∈ Ti iff (by (4.1)) I, i |= (φ1Uφ2)
iff (by semantics of U-operator) ∃k ≥ i such that I, k |= φ2 and
∀i ≤ j < k we have that I, j |= φ1 iff I, i |= φ2 or ∃k > i such
that I, k |= φ2 and I, j |= φ1 for all j with i ≤ j < k iff (by (4.1))
φ̂2 ∈ Ti or φ̂1 ∈ Ti and (φ̂1Uφ̂2) ∈ Ti+1.

Hence T0T1 . . . is a run of BLTL on x0x1 We have to show that it is an
accepting run. By our assumption BLTL has n sets of final states, namely
F1, . . . , Fn. Suppose that T0T1 . . . is not accepting. It means that for some
j ∈ {1, . . . , n}, the set {i ∈ N | Ti ∈ Fj} is finite and, therefore, there exists

an i0 ∈ N such that Ti 6∈ Fj for all i ≥ i0. Let (φ̂1Uφ̂2) be the j-th until

41

subformula in ϕ̄. By definition of set of the final states of BLTL we get that
(φ̂1Uφ̂2) ∈ Ti and φ̂2 6∈ Ti, for all i ≥ i0. Hence, by (4.1), Ii0 |= (φ1Uφ2) and
Ii 6|= φ2 for all i ≥ i0, which is a contradiction to the semantics of U.

To show that L(BLTL) 6= ∅ we construct a word u = u1u2 . . . such that
u ∈ L(BS) by setting ui := (xi, w(i)). Note that by definition of Σ we have
that u0u1 · · · ∈ Σ∗. We set ri := (Ti, qi) for i ≥ 0 and show that r0r1 . . . is
an accepting run of BS on u0u1 . . . as follows:

• (T0, q0) ∈ I: as T0 ∈ ILTL and q0 ∈ Iact.

• 〈(Ti, qi), (xi, w(i)), (Ti+1, qi+1)〉 ∈ ∆ for all i ≥ 0:

– (Ti, xi, Ti+1) ∈ ∆LTL.

– (qi, w(i), qi+1) ∈ ∆act.

– xi ∈ S follows from the definition of xi

– Let pA(a) ∈ PL for a primitive concept name A and individual
name a occurring in the input.

∗ Suppose that pA(a) ∈ Ti and there is no φ/¬A(a) ∈ w(i) such
that pφ ∈ Ti. We have to show that pA(a) ∈ Ti+1. Suppose, to
contrary, that pA(a) 6∈ Ti+1. By definition of types, therefore,
¬pA(a) ∈ Ti+1. By (4.1) I, i+1 6|= A(a), i.e., Ii+1 6|= A(a). But
as Ii ⇒T

w(i) Ii+1 and there is no φ/¬A(a) ∈ w(i), therefore,

Ii+1 |= A(a) which is a contradiction.

∗ Similarly one can show that if ¬pA(a) ∈ Ti and there is no
φ/A(a) ∈ w(i) such that pφ ∈ Ti, then pA(a) ∈ Ti+1.

– With similar arguments as in the above case, we can show that
for pr(a,b) ∈ Ti with r a role name, and a and b individual names,
occurring in the input:

∗ if pr(a,b) ∈ Ti and there is not φ/¬r(a, b) ∈ w(i) such that
pφ ∈ Ti then pr(a,b) ∈ Ti+1.

∗ if ¬pr(a,b) ∈ Ti and there is not φ/r(a, b) ∈ w(i) such that
pφ ∈ Ti then ¬pr(a,b) ∈ Ti+1.

– Let φ/ϑ ∈ w(i) with pφ ∈ Ti. By 4.1 we have that I, i |= φ and
hence Ii |= φ. It follows from Definition 2.10 that Ii+1 |= ϑ and
hence I, i + 1 |= ϑ. Again by (4.1) we get that pϑ ∈ Ti+1.

• Since T0T1 . . . is an accepting run of BLTL on x0x1 . . . , the set {i | Ti ∈
Fj} is infinite for 1 ≤ j ≤ n. Hence we get that the set {i | ri =

42 CHAPTER 4. CONDITIONAL ACTIONS

(Ti, qi) ∈ F ′
j} for 1 ≤ j ≤ n is infinite as F ′

j = {(T, q) | T ∈ Fj}.
Similarly as q0q1 . . . is an accepting run of Bact on w, the set {i | Ti ∈
Fact} is infinite as well which implies that the set {i | ri = (Ti, qi) ∈
F ′

n+1} is infinite as F ′
n+1 := {(T, q) | q ∈ Fact}. Hence r = r0r1 . . . is

an accepting run of BS on u = u0u1

Therefore we get that u0u1 · · · ∈ L(BS).

Finally we show that the knowledge base AS is consistent w.r.t. Tred. For
this we define an ALCO interpretation J as follows:

• ∆J := ∆I0(= ∆I1 = ∆I2 = . . .)

• aJ := aI0(= aI1 = aI2 = . . .) for an individual name a in the input.

• NJ := {aJ | a ∈ Obj}

• for each i with 1 ≤ i ≤ k there is an ιi ≥ 0 (not necessarily unique)
such that {pϑ | I, ιi |= ϑ} = Xi. Now for each concept name A, role
name r and 1 ≤ i ≤ k:

– (A(i))J := AIιi

– (r(i))J := rIιi

– (T
(i)
C)J := CIιi

• whereas (A(0))J and (r(0))J are defined as follows:

– (A(0))J := AI0

– (r(0))J := rI0

Note that the definition of J implies the following:
Claim 1. For an assertion ϑ ∈ Assert and 1 ≤ i ≤ k:

Iιi |= ϑ iff J |= ϑ(i)

Depending on ϑ we have to make the following case distinctions.

• ϑ = C(a) for a concept name C and individual name a occurring in the
input:
By definition, ϑ(i) = T

(i)
C (a). Now J |= ϑ(i) iff J |= T

(i)
C (a) iff (by

semantics) aJ ∈ (T
(i)
C)J iff (by definition of J) aIιi ∈ (C)Iιi iff Iιi |= ϑ.

43

• ϑ = r(a, b) for a role name r and individual names a and b occurring
in the input:
By definition, ϑ(i) = r(i)(a, b). Now J |= ϑ(i) iff J |= r(i)(a, b) iff (by
semantics) (aJ , bJ) ∈ (r(i))J iff (by definition of J) (aIιi , bIιi) ∈ rIιi iff
Iιi |= r(a, b) = ϑ.

• The case of ϑ = ¬r(a, b) can be proved analogously.

This finishes the proof of Claim 1.

Now we show that J |= Tred. First note that J |= TN follows from the
definition of NJ . Since each Ii for i ≥ 0 is a model of T it follows from the
definition of J that J |= {T (i)

A ≡ T
(i)
E | A ≡ E ∈ T , 1 ≤ i ≤ k}. To show

that J |= TSub it suffices to show that for any concept occurring in the input

J satisfies the every concept definition in TSub with T
(i)
E on the left-hand

side. This we can show by induction on structure of E. For the proof we
refer to (Baader et al., 2005b). However in their work J is defined based on a
sequence of interpretation that satisfy the semantics of the actions. This ad-
ditional property of the interpretation is not required in showing J |= JSub.
At the end we show that J |= AS . Consider the set Xi ∈ S for i ∈ {1, . . . , k}.
For each pϑ ∈ Xi and pψ 6∈ Xi it follows from definition of Xi that Iιi |= ϑ
and Iιi 6|= ψ respectively. Hence it follows from Claim 1 that J |= ϑ(i) and
J 6|= ψ(i) respectively. Therefore we get that J |= A(i) and hence J |= AS .

“⇐”
Let S = {X1, . . . , Xk} with Xi ⊆ PL for 1 ≤ i ≤ k such that L(BS) 6= ∅ and
AS is consistent w.r.t. Tred. Therefore there is a word u0u1 · · · ∈ L(BS) and
a model J of Tred such that J |= AS . As Σ = 2PL × Σact, we suppose that
ui = (xi, w(i)) with xi ∈ 2PL and w(i) ∈ Σact for i ≥ 0. Further let r0r1 . . . ,
with ri = (Ti, qi) for all i ≥ 0, be an accepting run of BS on x0x1 It
follows from the construction of BS that each Ti for i ≥ 0 is a type for ϕ̄.
Now we show that q0q1 . . . is an accepting run of Bact on w(0)w(i) Note
that

• q0 ∈ Iact as r0 = (T0, q0) ∈ I).

• (qi, w(i), qi+1) ∈ ∆act is implied by ∆.

Hence q0q1 . . . is an accepting run of Bact on w(0)w(i) . . . as (T0, q0)(T1, q1) . . .
is accepting BS . Similarly we can show that T0T1 . . . is an accepting run of
BLTL on x0x1

Note that the definition of ∆ implies for each i ≥ 0 we have that xi ∈ S
and as each xi ∈ 2PL , therefore for each i ≥ 0 there is ιi ∈ {1, . . . , k} such

44 CHAPTER 4. CONDITIONAL ACTIONS

that xi = Xιi . Now we define an ALCO-LTL structure I = (Ii)i=0,1,... as
follows:
For each i ≥ 0 and individual name a, concept name A and role name r
occurring in the input:

• ∆Ii := ∆J

• aIi := aJ

• AIi := (T
(ιi)
A)J

• rIi := (r(ιi))J ∩ (NJ ×NJ) ∪ (r(0))J ∩ (∆J × (¬N)J ∪ (¬N)J ×∆J)

It follows from the definition of I that the following holds:

• For individual name a and b and role name r occurring in the input we
have

(aIi , bIi) ∈ rIi iff (aJ , bJ) ∈ (r(ιi))J

For elements x and y of ∆J , such that either x is not occurring in the
input or y, and each role name r occurring in the input we have

(x, y) ∈ rIi iff (x, y) ∈ (r(0))
J

One can also show by structural induction that EIi = (T
(ιi)
E)

J
for every

concept description E in the input or subconcept of E (for proof we refer to
(Baader et al., 2005b)). Based on these properties of I, it is easy to see that
for each assertion ϑ in the input we have:

J |= ϑ(ιi) iff Ii |= ϑ (**)

The proof of (∗∗) is similar to the proof of Claim 1.
Claim 2. For each ψ̂ ∈ cl(ϕ̄) we have the following ψ̂ ∈ Ti iff I, i |= ψ.

By Lemma 2.20 it suffices to show that

M, i |= ψ̂ iff I, i |= ψ

where M is the LTL structure defined as M = x0x1 We prove by induc-
tion on structure of ψ̂.

• If ψ̂ = pψ ∈ PL
M, i |= pψ iff (by Lemma 2.20) pψ ∈ Ti iff (by definition of ∆: Ti∩PL =
xi∩cl(ϕ̄)) pψ ∈ xi iff pψ ∈ Xιi iff (as J |= AS) J |= ψ(ιi) iff (**) Ii |= ψ
and hence I, i |= ψ.

45

• ψ̂ = (ψ̂1Uψ̂2):
M, i |= (ψ̂1Uψ̂2) iff (by semantics of U) ∃k ≥ i such that M, k |= ψ̂2

and for all j with i ≤ j < k we have that M, j |= ψ̂1 iff (induction
hypothesis) ∃k ≥ i such that I, k |= ψ2 and for all j with i ≤ j < k we
have that I, j |= ψ1 iff (by semantics of U) iff I, i |= (ψ1Uψ2).

• Similarly one can prove the case for ψ̂ = ¬φ̂ and ψ̂ = (ψ̂1 ∧ ψ̂2).

This finishes the proof of Claim 2. Now we show that I satisfies the following:

• I, 0 |= ϕ and I0 |= A:
Since T0T1 . . . is an accepting run of BLTL on x0x1 . . . , therefore ϕ̄ ∈ T0.
As T0 is a type hence ϕ̂ ∈ T0 (ϕ̂ is the propositional abstraction of ϕ)
and pϑ ∈ T0 for each ϑ ∈ A. By Claim 2, I, 0 |= ϕ and also that
I, 0 |= ϑ for each ϑ ∈ A. Therefore I0 |= A.

• Ii |= T for i ≥ 0:

As J |= Tred therefore J |= T
(ιi)
A ≡ T

(ιi)
E for each A ≡ E ∈ T and

1 ≤ ιi ≤ k. Therefore by definition of I, Ii |= A ≡ E for all A ≡ E ∈ T
and i ≥ 0. Hence Ii |= T for all i ≥ 0.

• Ii ⇒T
w(i) Ii+1 for all i ≥ 0:

First we introduce the following notations for a primitive concept name
A, role name r and individual name a and b.

A+ = {aIi | ϑ/A(a) ∈ w(i) ∧ Ii |= ϑ} for some ϑ ∈ Assert

A− = {aIi | ϑ/¬A(a) ∈ w(i) ∧ Ii |= ϑ} for some ϑ ∈ Assert

r+ = {(aIi , bIi) | ϑ/r(a, b) ∈ w(i) ∧ Ii |= ϑ} for some ϑ ∈ Assert

r− = {(aIi , bIi) | ϑ/¬r(a, b) ∈ w(i) ∧ Ii |= ϑ} for some ϑ ∈ Assert

Now by Definition 2.10 it suffices to show the following the following:

AIi+1 = (AIi ∪ A+) \ A−

rIi+1 = (rIi ∪ r+) \ r−

First we show that AIi+1 = (AIi ∪ A+) \ A−.
“⊆”:
Let d be an individual name occurring in the input with dIi+1 ∈ AIi+1

and suppose that dIi+1 6∈ (AIi ∪A+) \A−. It means that either dIi+1 6∈
(AIi ∪ A+) or dIi+1 ∈ A−

46 CHAPTER 4. CONDITIONAL ACTIONS

– dIi+1 6∈ (AIi ∪ A+):
Therefore dIi+1 6∈ AIi and dIi+1 6∈ A+. But dIi+1 = dIi 6∈ AIi

implies that Ii 6|= A(d) and therefore by Claim 2 pA(d) 6∈ Ti. Since
Ti is a type therefore ¬pA(d) ∈ Ti. As dIi 6∈ A+, it means that
there is no ϑ/A(d) ∈ w(i) such that Ii |= ϑ. Therefore, there
is no ϑ/A(d) ∈ w(i) such that pϑ 6∈ Ti. But according to the
transitions of BS , ¬pA(d) ∈ Ti+1 and hence by Claim 2 Ii+1 6|=
A(d), equivalently dIi+1 6∈ AIi+1 which is a contradiction.

– dIi+1 ∈ A−:
It means that there is ϑ/¬A(d) ∈ w(i) with Ii |= ϑ. By Claim 2
there is there is ϑ/¬A(d) ∈ w(i) with pϑ ∈ Ti (as I, i |= ϑ). The
transition relation of BS implies that ¬pA(d) ∈ Ti+1. By Claim 2,
therefore, Ii+1 6|= A(d) equivalently dIi+1 6∈ AIi+1 which again is a
contradiction.

Now let x ∈ AIi+1 such that x is an unnamed element. It follows
from the definition of I that x ∈ (T

(ιi+1)
A)J and as J |= TSub therefore

x ∈ (
(N u A(ιi+1) t (¬N u A(0)))

)J
. But as x is an unnamed element,

therefore x ∈ (¬N uA(0))J and hence x ∈ (
(N uA(ιi)t (¬N uA(0)))

)J
.

Again definition of I and J |= TSub implies that x ∈ AIi . Since x 6∈ A−,
we get that x ∈ (AIi ∪ A+) \ A−.

“⊇”:
Let d be an individual name that occurs in the input and dIi ∈ (AIi∪A+)\A−.
It means that dIi ∈ (AIi ∪ A+) (i.e., either dIi ∈ AIi or dIi ∈ A+) and
dIi 6∈ A−.

• dIi ∈ AIi :
By Claim 2 we get that pA(d) ∈ Ti as Ii |= A(d). dIi 6∈ A− implies
that there is no ϑ/¬A(d) ∈ w(i) with Ii |= ϑ, and hence there is no
ϑ/¬A(d) ∈ w(i) with pϑ ∈ Ti. The transition relation of BS enforces
that pA(d) ∈ Ti+1. By Claim 2 we get that I, i + 1 |= A(d) and hence
dIi ∈ AIi+1 .

• dIi ∈ A+:
dIi ∈ A+ implies that there is φ/A(d) ∈ w(i) with Ii |= φ and hence, by
Claim2, pφ ∈ Ti. It follows from the definition of the transition relation
of BS that pA(d) ∈ Ti+1. Therefore by Claim 2, dIi+1 ∈ AIi+1 .

The case of rIi+1 = (rIi ∪ r+) \ r− can be shown with similar arguments.
Hence I is a witness of the satisfiability of ϕ w.r.t. T , A and Bact. 2

47

Note that guessing S requires NExpTime in the size of PL as S ⊆ 2PL and
the size of PL is polynomial in the size of the input. It requires ExpSpace in
the size of the input to store S. Further the size of BLTL is exponential in
the size of φ̂ which is polynomial in the size of input. As the construction of
BS depends on Bact, BLTL and S, by definition of BS , it is easy to see that
constructing BS from Bact, BLTL and S requires polynomial time in their
size. Hence we get that the overall construction of BS is in ExpSpace. The
emptiness problem of a Büchi automaton is decidable in linear time in the
size of the automaton (Vardi, 1996). Hence the emptiness problem of BS can
be decided in ExpTime.

Similarly the construction of both Tred andAS depends on S. The number
of concept definitions in TSub, the number of concept definitions in Tred of the
form T

(i)
A ≡ T

(i)
E for A ≡ E ∈ T , and the number of assertions in AS

depend on the number of elements in S which exponential in the size of the
input. Hence the construction of both Tred and AS requires ExpSpace. The
consistency problem of an ABox w.r.t. an acyclic TBox in ALCO is PSpace-
complete (Schaerf, 1994). Overall the consistency problem of AS w.r.t. Tred,
therefore, is in ExpSpace.

Theorem 4.3. Given an acyclic TBox T and an ABox A both formulated
in ALCO, and a Büchi automaton Bact (with a set of conditional actions,
formulated in ALCO, as it alphabet), the satisfiability and validity of an
ALCO-LTL formula ϕ w.r.t. T , A and Bact is in ExpSpace.

In this chapter we have considered the satisfiability problem of an ALCO-
LTL formula w.r.t. an acyclic TBox, an ABox and a Büchi automaton (with
set of conditional actions as it alphabet). Unlike the reduction in Chapter 3,
we reduced the satisfiability problem for the case of conditional action to the
emptiness problem of a Büchi automaton and ABox consistency w.r.t. an
acyclic TBox in ALCO. We have also shown that the satisfiability problem
in case of conditional actions is in ExpSpace. The lower bound of the problem
is still open.

48 CHAPTER 4. CONDITIONAL ACTIONS

Chapter 5

Conclusion

In this thesis, we have consider merging of temporalized DLs and DL-based
action formalisms. We introduced inference problems like the satisfiability
and validity problems and later on provided results on their computational
complexity. In Chapter 3, we considered the case of unconditional actions and
have shown that the satisfiability and validity problem is PSpace-Complete.
Similarly in Chapter 4, we dealt with the case where we allow for conditional
actions and consider a set of infinite sequence of conditional actions recog-
nized by a Büchi automaton. The reduction we provided in Chapter 4 is more
general in the sense that the satisfiability problem in case of unconditional
actions can be decided by the method provided for the case of conditional ac-
tions. We have seen that allowing conditional actions, the complexity of the
satisfiability and validity problem is in ExpSpace. As the reduction depends
on a set whose cardinality is exponential in the number of assertions in the
input, this causes the exponential space blow up in deciding the satisfiability
problem for the case of conditional actions.

The DL we have considered in this work is ALCO where the ABox con-
sistency with respect to an acyclic TBox problem is already in PSpace com-
plete(Schaerf, 1994). One can study the problems for the fragments of ALCO
and also for more expressive DLs. Yet another open problem is to provide
a lower bound for the satisfiability problem for the case of conditional actions.

The notions of DL-based actions formalisms in this work have been taken
from (Baader et al., 2005b) where an action α is defined as α = (pre, occ, post),
where pre is a finite set of ABox assertions, the pre-conditions which specifies
under which conditions the action is applicable and occ is a set of occlusions
of the form A(a) or r(a, b), with A a primitive concept name and r a role
name. The set of post-conditions is denoted by post. The role of occlu-

49

50 CHAPTER 5. CONCLUSION

sions is to describe primitive literals that can undergo changes regardless of
the post-conditions in the action. In this work, we considered actions with
pre = ∅ and occ = ∅, i.e., we define an action as a set of post-conditions. One
can consider cases where actions contain not only post-conditions, but also
pre-conditions and occlusions.

References

Artale, A., & Franconi, E. (2000). A survey of temporal extensions of descrip-
tion logics. Annals of Mathematics and Artificial Intelligence, 30(1-4),
171–210.

Artale, A., Franconi, E., Wolter, F., & Zakharyaschev, M. (2002). A tempo-
ral description logic for reasoning over conceptual schemas and queries.
Proceedings of the 8th European Conference on Logics in Artificial Intel-
ligence (JELIA-02). Lecture Notes in Artificial Intelligence, vol. 2424.
Springer-Verlag.

Artale, A., Kontchakov, R., Lutz, C., Wolter, F., & Zakharyaschev, M.
(2007). Temporalising tractable description logics. Proceedings of TIME-
07. IEEE Press.

Baader, F., & Lutz, C. Description logic. Blackburn, Patrick, van Benthem,
Johan, & Wolter, Frank (eds), The handbook of modal logic. Elsevier.

Baader, F. Lutz, C. Milicic, M. Sattler, U. & Wolter, F.(̇2005a). Integrating
description logics and action formalisms: First results. Proceedings of
the twentieth national conference on artificial intelligence (AAAI-05).

Baader, F., Milicic, M., Lutz, C., Sattler, U., & Wolter, F. (2005b). Integrat-
ing description logics and action formalisms for reasoning about web ser-
vices. LTCS-Report LTCS-05-02. Chair for Automata Theory, Institute
for Theoretical Computer Science, Dresden University of Technology,
Germany. See http://lat.inf.tu-dresden.de/research/reports.html.

Baader, F., Ghilardi, S., & Lutz, C. (2008a). LTL over Description Logic
Axioms. Proceedings of the 21st International Workshop on Description
Logics (DL2008). CEUR-WS, vol. 353.

Baader, Franz, Ghilardi, Silvio, & Lutz, Carsten. (2008b). LTL over descrip-
tion logic axioms. LTCS-Report 08-01. Chair for Automata Theory, In-

51

52 REFERENCES

stitute for Theoretical Computer Science, Dresden University of Technol-
ogy, Germany. See http://lat.inf.tu-dresden.de/research/reports.html.

Baier, Christel, & Katoen, Joost-Pieter. (2008). Principles of model checking.
The MIT Press, Cambridge, Massachusetts London, England.

Brachman, R. J. & Levesque, H. J.(̇1984). The tractability of subsumption
in framebased description languages. Proceedings of the 4th national
conference of the american association for artificial intelligence (aaai-
84).

Franz Baader, Diego Calvanese, Deborah McGuinness, Daniele Nardi, &
Peter F. Patel-Schneider (eds). (2003). The description logic handbook:
Theory, implementation, and applications. Cambridge University Press.

Gabbay, D., Kurucz, A., Wolter, F., & Zakharyaschev, M. (2003). Many–
Dimensional Modal Logics: Theory and Applications. Elsevier.

Krger, Fred, & Merz, Stephan. (2008). Temporal logic and state systems (texts
in theoretical computer science. an eatcs series). Springer Publishing
Company, Incorporated.

Milicic, M. (2008). Action, time and space in description logics. Ph.D. thesis,
Chair for Automata Theory, Institute for Theoretical Computer Science,
Faculty of Computer Science at TU Dresden.

Minsky, M. (1974). A framework for representing knowledge. Tech. rept.
Cambridge, MA, USA.

Papadimitriou, Christos H. (1993). Computational complexity. Addison Wes-
ley.

Quillian, M. (1968). Semantic memory. Pages 227–270 of: Minsky, M. (ed),
Semantic Information Processing. MIT Press.

Reiter, R. (2001). Knowledge in action. MIT Press.

Schaerf, Andrea. (1994). Reasoning with individuals in concept languages.
Data knowledge engineering, 13(2), 141–176.

Schild, K. (1993). Combining terminological logics with tense logic. Pages
105–120 of: Proceedings EPIA 93. LNCS, vol. 727. Springer.

Schmidt-Schauß, M., & Smolka, G. (1991). Attributive concept descriptions
with complements. Artif. intell., 48(1), 1–26.

REFERENCES 53

Thielscher, M. (2005). Reasoning robots: The art and science of programming
robotic agent. Number 33 in Applied Logic Series. Kluwer.

Vardi, Moshe Y. (1996). An automata-theoretic approach to linear temporal
logic. Pages 238–266 of: Proceedings of the viii banff higher order work-
shop conference on logics for concurrency : structure versus automata.
Secaucus, NJ, USA: Springer-Verlag New York, Inc.

Vardi, Moshe Y., & Wolper, P. (1986). An automata-theoretic approach to
automatic program verification. In proceedings of the first symposium
on logic in computer science.

Vardi, Moshe Y., & Wolper, Pierre. (1994). Reasoning about infinite com-
putations. Information and computation, 115, 1–37.

Wolter, F., & Zakharyaschev, M. (2000). Temporalizing description logics.
Pages 379–401 of: Frontiers of Combining Systems II. LNCS, vol. 1794.
Springer.

Wolter, Frank, & Zakharyaschev, Michael. (1998). Temporalizing description
logics. Pages 104–109 of: In proceedings of frocos’98.

