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Chapter 1Introdu
tionExplanations are an essential 
omponent for the development of s
ien
e. Very roughly,s
ienti�
 progress 
an be divided into two steps, ea
h having a 
lose 
onne
tion to adi�erent interpretation of the word explanation: �nding a theory that explains a set ofobservations, and explaining why a given fa
t 
an be dedu
ed from a spe
i�
 theory.When 
onfronted with a set of observations, one 
an try to produ
e a generaltheory that explains them; in other words, one from whi
h all su
h observations area 
onsequen
e. The adje
tive general anteposed to the word theory is intended toexpress that this theory 
an be used to dedu
e not only the given observations, butalso additional, possibly previously unknown, fa
ts. These additional fa
ts allow forour theory to be tested, by designing experiments that 
on�rm or 
ontradi
t them.The theory be
omes stronger with ea
h new observation that 
on�rms it, but themoment one 
ontradi
ting observation is found, the theory needs to be refuted andrepla
ed by a new one that a

ounts also for this observation.A refuted theory needs not be totally wrong; indeed, it is possible that only a minorportion of the whole theory is responsible for the 
ontradi
tion between the dedu
edfa
ts and the new observations. Instead of 
reating a new theory from s
rat
h, one
an try to remove the wrong portions; that is, those from whi
h the 
ontradi
tedfa
ts 
an be dedu
ed, and then extend this theory to a

ount for all the observationsthat do not follow anymore from the redu
ed theory. Finding the wrong portions ofthe theory 
an be seen as explaining the 
ontradi
ted fa
ts, within the 
ontext of thetheory.One famous example of this pro
ess is the dis
overy by Johannes Kepler of theellipti
al shape of planetary orbits, as des
ribed in his Astronomia Nova. Using thevery pre
ise and methodi
 measurements of the position of the planet Mars made byTy
ho Brahe during his lifetime, Kepler found a displa
ement of up to eight minutes ofa degree with respe
t to the position predi
ted by the astronomi
 theory of the time.Convin
ed of the pre
ision of the measurements, this admittedly small displa
ementprompted him to 
orre
t the theory. His �rst step 
onsisted on showing that a 
ir
ularorbit was in
ompatible with Brahe's observations, thus distinguishing the hypothesisof 
ir
ular planetary motion as the sour
e of the disparity between the theory andsaid observations. Keeping the rest of the astronomi
al theory inta
t (for instan
e,still assuming that the sun was a stationary body in spa
e around whi
h all planets1



2 CHAPTER 1. INTRODUCTIONtraveled) Kepler needed only to �nd a shape for planetary orbits that agreed with theset of observations he had. After trying with di�erent ovoid shapes, he �nally settledthat an ellipse with very low e

entri
ity and the sun standing at one of its fo
i, bestdes
ribed the path followed by the planets. This dis
overy is nowadays known as hisFirst Law of planetary motion.It is perhaps worth noti
ing at this point that the term observation is being usedin a very loose manner that 
an express fa
tual observations, su
h as the positionof Mars at a given moment in time, as well as more general theories. For instan
e,Isaa
 Newton's law of universal gravitation 
an be seen as a general theory explaining,among other observations, Galileo's law for free fall of bodies and Kepler's �rst twolaws of planetary motion.The importan
e of explanations in s
ien
e has been long known: it 
an be tra
kedba
k at least as far as Aristotle's Posterior Analyti
s, with more re
ent examplesin
luding Karl Popper [Pop35℄ and John Stuart Mill [Mil43℄. But it was only afterHempel and Oppenheim's logi
-based theory of explanation [HO48℄ that the topi
re
eived a wider interest and was treated in a formal and methodi
al manner. Thework by Hempel and Oppenheim fo
uses on the �rst kind of explanations des
ribedabove, whi
h is 
alled s
ienti�
 explanation in modern Philosophy of S
ien
e: givenan observation E, a theory T explains E if E 
an be derived from T and there are nosuper
uous elements in T ; in other words, if there is no subtheory T 0 of T from whi
hE
an also be derived. In this 
ase, E is 
alled the explanandum and T the explanans.1What distinguishes [HO48℄ from previous studies on s
ienti�
 explanations is theagnisation of the need for a formal de�nition of the terms theory, observation, andderivation. To this end, the authors propose a language based on �rst-order logi
, inwhi
h the explanandum and explanans need to be represented, yielding logi
-basedformal semanti
s to the ideas of s
ienti�
 explanations: theories and observations aresets of formulae and formulae in this language, respe
tively, while derivation is givenby the standard notion of logi
al entailment.Soon, this theory of s
ienti�
 explanations began to be strongly 
riti
ised due to itsex
essive generality. It is interesting that most of these 
riti
isms were not aimed to theintuitive notion of s
ienti�
 explanation, but rather to the representational languageused in their formalisation. Paradigmati
 examples of this view are the trivialisationtheorems [EKM61℄. Roughly, these theorems show that given almost any arbitrarysenten
e E and theory T , it is possible to 
onstru
t a theory T 0, derivable from Tthat works as an explanans for E. In words, what these results say is that when
onfronted with an observation, one 
an �rst 
onstru
t any arbitrary theory, totallyunrelated with the given observation, and from it build an explanation satisfyingHempel and Oppenheim's notion. Several e�orts have been done to solve this problemby either restri
ting the representation language, or imposing additional 
onditions inthe set of formulae that form an explanans. Hempel himself spent twenty years �ne-tuning both, his representation language, and the notion of what is an a

eptableexplanation [Hem65℄.In reality, the trivialisation theorems are less surprising than it might look at �rst1For a survey on the origins and �rst developments of s
ienti�
 explanation, see [Sal89, S
h96℄.



3sight. The language introdu
ed in [HO48℄ is intended to solve two problems simulta-neously: knowledge dis
overy, and knowledge representation. As a 
onsequen
e, therepresentation language needs to be able to des
ribe any 
on
eivable explanans for any
on
eivable explanandum. We aim at a fairly less ambitious goal, where the knowl-edge dis
overy problem has been solved already; we will nonetheless rely on the samenotions of explanation, in dependen
y with the knowledge representation formalism
hosen.Knowledge representation deals with the problem of storing the knowledge of adomain in an eÆ
ient and usable manner. The sear
h for a solution to this problemobtained spe
ial attention from the se
ond half of the past 
entury as an importantmilestone for the area of Arti�
ial Intelligen
e. In a nutshell, before a ma
hine isable to show any intelligent behaviour, it needs to have a me
hanism for storing andmanipulating pie
es of knowledge. The stored knowledge is usually 
alled a knowledgebase or ontology. Rather than having a knowledge base expli
itly stating every pie
eof knowledge, one would prefer to be able to infer additional information that appearsimpli
itly in this knowledge base. For instan
e, knowing that Albert is a Human,and that all Humans are Mammals, it should not be ne
essary to additionally expressthat Albert is a Mammal, as this is a dire
t 
onsequen
e of the other two pie
es ofknowledge. Our representation language should thus be a

ompanied by an inferen
eengine that allows the user to make su
h fa
ts expli
it.Two early knowledge representation formalisms are Semanti
 Networks [Qui67℄,developed by Quillian, and Frames [Min81℄ introdu
ed by Minsky. The main draw-ba
k of these formalisms is their la
k of a formal semanti
s by whi
h the knowledgerepresented in them 
an be unambiguously interpreted. Hen
e, it was impossible to
onstru
t a system that 
ould infer knowledge from arbitrary knowledge bases. Asystem developed for working on su
h ontologies required to make 
hoi
es regardingthe semanti
s of some of the 
onstru
tors, whi
h made it usable only in the spe
i�
appli
ation it was developed for. Des
ription Logi
s arised as a way to alleviate thisproblem, using some of the main ideas of Semanti
 Networks and Frames, but givingthem formal and easy to understand semanti
s.Des
ription Logi
s [BCM+03℄ are a family of logi
-based knowledge representationformalisms with 
lear and well-de�ned semanti
s, built in most 
ases as sublanguagesof �rst-order logi
. The family 
overs a wide range of expressivity levels, with their
orresponding trade-o� in 
omplexity. On the lower part of the expressivity s
aleis the des
ription logi
 EL whose relevant inferen
e problems are de
idable in poly-nomial time [Baa03
, Bra04b℄. This logi
 has been su

essfully applied to representknowledge from the biologi
al and medi
al �elds [Sun09℄. A fairly more expressivedes
ription logi
 is SHOIN (D), the one behind the Web Ontology Language OWL,whi
h was sele
ted by the World Wide Web Consortium as the representation languagefor the Semanti
 Web [HPSvH03℄. Although the inferen
e problems for this logi
 turnout to be intra
table, highly optimized reasoners have been shown to behave well inpra
ti
e [HST00, HS04℄.The existen
e of a formal (and re
ommended) language motivated people to start
onstru
ting realisti
 ontologies and reasoning with them. Su

essful stories rapidly



4 CHAPTER 1. INTRODUCTIONtriggered the proliferation of more and larger knowledge representation e�orts. As thesize of these knowledge bases rapidly in
reases, the need of automati
 explanation and
orre
tion tools be
omes mu
h more obvious. Indeed, ontology development is, justas software development, an error-prone a
tivity. Sin
e large ontologies are typi
allydeveloped by groups of experts, 
lashes in their individual views may a

ount for theexisten
e of errors. On the one hand, it is not un
ommon to �nd experts disagreeingin parti
ular aspe
ts of the area being represented. Su
h disagreements 
an easilyprovoke the insertion of 
ontradi
tory information to the knowledge base. On theother hand, even if all experts 
on
ur on the knowledge being modeled, they 
anstill dissent on the way it should be translated to the representation language. This isdeeply related to the problem of expertise: usually, experts in the domain �eld are notexperts in knowledge representation, and vi
e-versa. An ideal ontology developmentgroup should be pro�
ient in both areas. Furthermore, with large ontologies it isusually hard to predi
t the whole e�e
t of a minor variation, whi
h 
an easily lead tounexpe
ted, if not ne
essarily erroneous, 
onsequen
es. Finally, representation 
hoi
esare sometimes made but not used uniformly or adequatedly along the whole ontology.In any of these 
ases, it is desirable to tra
k ba
k to the spe
i�
 portion of theknowledge base that is responsible for a given 
onsequen
e. In other words, we areinterested in �nding justi�
ations: given a 
onsequen
e E of an ontology T , a portionT 0 of T justi�es E if E is a 
onsequen
e of T 0 and E is not a 
onsequen
e of anystri
t portion of T 0. Obviously, for this de�nition to make any sense, one needs to beable to divide the full ontology in smaller parts. We will give the name axiom to theindivisible segments of the knowledge base. Noti
e that the de�nition of justi�
ation
orresponds exa
tly to the se
ond notion of explanation presented at the beginning ofthis 
hapter.Although �nding justi�
ations by hand may be feasible for very small ontologies,performing this task without the help of an automated tool seems unrealisti
 on
ethe border of the hundreds of axioms has been 
rossed; mu
h more for ontologiesof the kind of Snomed CT [Spa05, SPSW01℄ whi
h has over 340 000 axioms. The
urrent version of Snomed CT 
lassi�es the amputation of a �nger as a sub
on
eptof amputation of hand. In other words, a

ording to this ontology, someone who hasan amputated �nger has also su�ered the amputation of a hand.This erroneous infer-en
e follows from only six axioms of the ontology, and is 
aused by an erroneous useof a representation s
hema developed for des
ribing the transitivity of some proper-ties [BS08℄.2A justi�
ation distinguishes pre
isely those elements of an ontology that are re-sponsible for the derivation of a given 
onsequen
e E. If E is known to be erroneous,then justifying it means to dete
t the sour
es of this error; with this knowledge we 
anthen 
orre
t the ontology and get rid of E. But one should not forget that a single
onsequen
e may have more than one justi�
ation in the given ontology. In orderto ensure that E is not a 
onsequen
e of the 
orre
ted ontology, one would have toa

ount for ea
h of these justi�
ations. Alternatively, we 
an try to �nd a diagnose for2In fa
t, the same problem with transitivity presents itself in more than one example in SnomedCT; for instan
e, amputation of hand is also 
lassi�ed as a sub
on
ept of amputation of arm.



5E: a minimal portion of the ontology T su
h that, if removed from T , E is no morea 
onsequen
e. Returning to our original example, Kepler diagnosed that the sour
eof the disparity between the theoreti
ally-predi
ted and the experimentally-found po-sitions of Mars was the assumption that planets follow a 
ir
ular orbit. Removingthis assumption from the astronomi
al theory led to a theory without the unwanteddisparity. This theory, nonetheless, also was unable to predi
t the position of anyplanet at any time, nor even e
lipses or other important astronomi
al events. In thepro
ess of removing an unwanted 
onsequen
e, we 
an easily get rid also of wanted
onsequen
es; hen
e the need for a diagnose to be minimal, ensuring this way thatthe pruning of the ontology produ
es as small a 
hange as possible.Re
alling the notion of s
ienti�
 explanation, one 
an easily 
on�rm that a jus-ti�
ation for a 
onsequen
e E is in fa
t a s
ienti�
 explanation for E (seen as anexplanandum) where the senten
es of the explanans are restri
ted to belong to theoriginal ontology. Conversely, it is possible to see the 
onstru
tion of an ontology asthe result of knowledge dis
overy, in whi
h 
ase a s
ienti�
 explanation for E is in fa
ta justi�
ation for E over the newly generated ontology.3 Noti
e that neither notionof explanation really depends on the representation language used. This in parti
ularshows that, although mu
h e�ort has been set in dis
rediting and �xing Hempel andOppenheim's notion of s
ienti�
 explanation, along with the logi
-based representa-tion language they use, it is not the language, nor the theory per se that 
ause themain problems of this approa
h, but rather the intermediate task of knowledge dis
ov-ery, where any arbitrary set of senten
es 
an be used as an explanans. Any languagewith suÆ
ient expressivity would be trivialisable under su
h a general attempt forexplanations.With the advent of newer representation languages, the original language des
ribedat [HO48℄, as well as its improved versions, remains relevant not so mu
h as a knowl-edge representation formalism, but as a paradigm for the properties that a languagemust satisfy before a notion of explanation 
an be well de�ned over it. First, this lan-guage must be able to express two kinds of senten
es: axioms and 
onsequen
es, havingformal semanti
s. Additionally, a notion of derivability of a 
onsequen
e from a set ofaxioms is ne
essary. Sin
e the de�nition of explanation requires a minimal portion ofthe ontology from whi
h the 
onsequen
e follows, derivability must be monotoni
 inthe sense that growing the knowledge base will only add more 
onsequen
es withoutremoving any of the previously existent; otherwise, minimality makes no sense at all.Sin
e �rst order logi
 is monotoni
, so is Hempel and Oppenheim's language, andthus is this 
ondition impli
itly satis�ed; nonetheless, on
e we de
ide to work with adistin
t language, this 
ondition must be ensured. Finally, Hempel did realise thatnot every set of axioms 
an be 
onsidered a theory: it might be ne
essary to ensure aninternal 
oheren
e between the axioms used. The notion of 
oheren
e may obviously3A small, but important, distin
tion is in order. In s
ienti�
 explanation one will usually 
onsidera �xed ba
kground theory over whi
h the new theory is being built. Justi�
ations, on the other hand,usually 
onsider ea
h axiom as refutable, in order to obtain the real sour
e for the dedu
tion. Thisdes
ription of s
ienti�
 explanation is 
losely related to the idea of abdu
tion in Arti�
ial Intelligen
e.In this 
ase, knowledge dis
overy would try to �nd a set of plausible axioms, 
alled abdu
ibles; atheory is then extended with a minimal set of abdu
ibles to entail the observations.



6 CHAPTER 1. INTRODUCTION
hange between languages. Thus it is not only ne
essary to de�ne axioms in a spe
i�
language but also whi
h sets of them are admissible as ontologies.A desirable property of any knowledge representation formalism is the ability ofimpli
itly en
oding some pie
es of knowledge that 
an then be summoned by an au-tomati
 pro
edure. In general, we want to have a way to know whether a spe
i�
senten
e is a 
onsequen
e of an ontology; in other words, we require a pro
edure thatde
ides derivability. The answer that su
h a pro
edure yields obviously depends onboth, the possible 
onsequen
e, and the ontology under 
onsideration.To a

ommodate a theory of explanations, we need to make some assumptions onthe theories and the notion of derivability used. First, we assume that any theory 
anbe divided in parts, ea
h of whi
h is itself a theory that 
an be used as an input forthe de
ision; in other words, a theory is 
omposed of subtheories. As said before, wegive to indivisible theories the name of axioms. Se
ond, we require derivability to bemonotonous; that is, if E is derivable from a theory T , then it is also derivable fromany supertheory of T . Minimal subtheories from whi
h an explanandum E is derivableare its explanans.In this work we aim to develop methods for automati
ally �nding justi�
ations anddiagnoses for 
onsequen
es of a theory. Instead of working dire
tly on the representa-tion language, we 
onsider derivability via a given de
ision pro
edure that is 
orre
tfor a monotone notion of derivability. Obviously, explanations depend on derivation,and thus indire
tly also on the pro
edure used for de
iding it. We will hen
e try totransform a given de
ision pro
edure into an explanation pro
edure whose outputs arenot yes or no, but an en
oding of all its justi�
ations or diagnoses.De
ision pro
edures 
an take a wide variety of forms, and trying to en
ompassall of them in our theory of explanation would be a titani
 task. Hen
e, we fo
us ontwo prominent approa
hes: tableau-based and automata-based de
ision pro
edures.These two approa
hes have been widely used in des
ription logi
s, and other areas,where their distin
t 
omplexity and eÆ
ien
y properties have been exploited. But, al-though we will also use des
ription logi
s for motivating our ideas and de�nitions, theappli
ability of our framework is not limited to these parti
ular knowledge represen-tation formalisms. We will, for instan
e, also show its appli
ability to linear temporallogi
 (LTL).In a nutshell, tableau-based de
ision pro
edures start with some expli
it knowledgetranslated from the input, and extend it with the appli
ation of rules depending onthe theory, deriving the fa
ts that are impli
itly en
oded in the input. The de
isiondepends on the expli
it knowledge present on
e the exe
ution of the algorithm halts,by testing for so-
alled 
lashes in the knowledge produ
ed. Automata-based de
isionpro
edures, on the other side, translate the input into an automaton A from whi
ha de
ision is made depending on whether the language a

epted by A is empty ornot. The emptiness test of automata tries to disprove that this language is empty,but without a
tually building any element that would belong to it.It should be noted that in general tableau-based pro
edures 
an de
ide a widerrange of problems than their automata-based 
ounterparts. This follows from thelatter being limited to a

epting languages of obje
ts having a spe
i�
 shape, while



7the rule-based expansion of the former allows for a wider range of options. On theother hand, the arbitrary shape of stru
tures 
onstru
ted makes it harder to ensureeven that the pro
edure will ever terminate, and in some 
ases appropriate te
hniquesare ne
essary to avoid in�nite expansions. This generality will for
e us to look deeperinto tableau-based de
isions and explanations, and ultimately restri
t them to makesure that an answer will be found in �nite time.Stru
ture of the WorkThis work is divided as follows. We �rst dedi
ate Chapter 2 to the introdu
tion ofdes
ription logi
s and the temporal logi
 LTL as well as their main de
ision problems,along with tableau-based and automata-based algorithms for solving them. Thesealgorithms will be used in the next three 
hapters to motivate our approa
h to au-tomated explanations. The 
hapter is meant as a pra
ti
al introdu
tion to tableau-and automata-based de
ision pro
edures and their asso
iated te
hniques; as su
h, the
hapter summarises relevant portions of [BS01, BHP08, WVS83℄.Chapters 3 and 4 deal with the tableau-based approa
h. The former 
hapter for-malises �rst the notion of a tableau-based de
ision algorithm, what we 
all a generaltableau, that re
eive as input an ontology and a senten
e, and de
ide whether thesenten
e is derivable from the ontology. Our notion of general tableaux 
overs alsosome algorithms that are histori
ally not 
onsidered to be tableau-like su
h as res-olution [Rob65, Lei97℄, 
ongruen
e 
losure [NO07℄, and the subsumption algorithmfor the Des
ription Logi
 EL [BBL05℄. We then show how to 
hange these generaltableaux to obtain an algorithm that 
omputes an en
oding of all explanations of theinput senten
e within the input ontology. Our en
oding will be through a so-
alledpinpointing formula: a monotone Boolean formula whose minimal satisfying valua-tions have a one to one 
orresponden
e with justi�
ations. Finally, we show that ourapproa
h has problems with termination, in the sense that the algorithm proposedmay not be able to yield a pinpointing formula in �nite time.In the latter 
hapter we try to solve the problem of termination by taking from theideas of terminating tableaux used in des
ription logi
s, whi
h mainly exploit the tree-shape of the generated models. Termination is a
hieved in two di�erent ways. First,we introdu
e a sub-
lass of tableaux whose so-
alled pinpointing extension alwaysterminates without the need of any spe
ial stopping me
hanism. Afterwards, wefo
us in formalising a notion of blo
king: a method that allows us to dete
t 
y
li

omputations and a

ordingly stop the exe
ution of the algorithm without harmingits 
orre
tness. The introdu
tion of blo
king to the tableau framework for
es us toadapt the pinpointing extention in an appropriate fashion. Thus, 
orre
tness needs tobe proved again for this variant setting. The ideas and results of these two 
hapterswere �rst published in [BP07, BP09℄.We then 
hange our attention in Chapter 5 to the automata-based approa
h. Givenan automaton de
iding a property, we show how to 
onstru
t a weighted automa-ton whose so-
alled behaviour is a pinpointing formula. We then show a bottom-upmethod for 
omputing this behaviour in time polynomial on the size of the automaton.



8 CHAPTER 1. INTRODUCTIONThe results presented here were originally published in [Pe~n08, BP08℄ for the spe
ial
ase of looping automata. Here we present an extended version that 
an deal withgeneralised B�u
hi automata and a wider range of restri
tions.Before giving our 
on
lusions and brief ideas for future work, we �nish in Chapter 6with an analysis of the 
omplexity of explanation divided in three parts: �rst we showthe 
omplexity of �nding justi�
ations; then, we show analogous results for �ndingdiagnoses, and �nish the se
tion by showing that the pinpointing formula 
annot, ingeneral, be represented in spa
e polynomial on the size of the input ontology. These
omplexity results extend those shown for justi�
ations and 
laimed to hold also fordiagnoses in [BPS07a, BPS07b℄. We then return to the tableau-based approa
h toshow that it is impossible to fully 
hara
terise the 
lass of all tableaux having aterminating pinpointing extension.Related WorkThe study of justi�
ations in Des
ription Logi
s has only re
ently begun. To thebest of our knowledge, the �rst attempt to 
ompute the justi�
ations for unwanted
onsequen
es of a DL ontology was done by S
hloba
h and Cornet. In [SC03℄, theauthors show that the standard tableau algorithm for the DL ALC [SS91℄ that de
idessatis�ability w.r.t. so-
alled unfoldable terminologies, 
an be extended with labelsthat keep tra
k of the axioms responsible for an assertion to be generated duringthe exe
ution of the algorithm.4 They also 
oin the term axiom pinpointing, whi
hwe 
ontinue to use, to des
ribe this task. Later on, S
hloba
h [S
h05℄ showed thatdiagnoses 
an be 
omputed from the set of all justi�
ations by means of a Hitting Set
omputation, following Reiter's Theory of Diagnoses [Rei87℄.The problem of �nding justi�
ations and diagnoses in a DL knowledge base wasa
tually 
onsidered one de
ade earlier in a di�erent 
ontext. In [BH95℄, Baader andHollunder 
onsider the problem of extending DLs with default rules, whi
h they solveby introdu
ing a labeled extension of the tableau-based 
onsisten
y algorithm forALC w.r.t. ABoxes [Hol96℄. The two labeling approa
hes, namely [BH95℄ and [SC03℄,follow very similar ideas. Fa
toring for the di�erent kinds of axioms 
onsidered, themain di�eren
e between the algorithms is the shape of the output: while the algorithmin [SC03℄ yields all the justi�
ations dire
tly, the one by Baader and Hollunder outputsa monotone Boolean formula, from whi
h all the justi�
ations 
an then be dedu
ed.The two approa
hes have sin
e then been extended to allow for more expressivelanguages. On one hand, S
hloba
h and Cornet's method [SC03℄ was extended byParsia et al. [PSK05℄ to DLs using a wider variety of 
onstru
tors. On the other, theideas of [BH95℄ were extended by Meyer et al. [LMP06℄ to the 
ase of ALC termi-nologies that use general 
on
ept in
lusion axioms, whi
h are no longer unfoldable.In [HPS08℄ the idea is further extended to deal with portions of axioms, to allow fora more pre
ise understanding of the 
auses of derivability. In reality, the use of theDL ALC in both of the original approa
hes [BH95, SC03℄ was intended to work as aprototype that 
ould be easily extended to other DLs with a tableau-based de
ision4In this 
ase, the unwanted 
onsequen
e was the unsatis�ability of a 
on
ept name.



9pro
edure. However, the extension in [LMP06℄ showed that some te
hniques used intableau algorithms, su
h as blo
king, require spe
ial attention when building theirlabeling extension to keep 
orre
tness. Our tableau-based approa
h to pinpointingtries to show how the same ideas 
an be applied in a more general setting.In our general approa
h we fa
ed the problem of how to ensure that the pinpointingalgorithm will terminate in �nite time. This problem arises already for tableau-basedde
ision pro
edures, and it is dire
tly inherited by their pinpointing extensions. Ageneral solution for de
ision algorithms was proposed in [ST08, ST07℄ in whi
h a ruleis added to the tableau and always eagerly applied. This solution is not satisfa
toryfor us, as we want to allow any possible ordering for rule appli
ation in both, theoriginal tableau and its pinpointing extension.All the previously 
ited approa
hes belong to the 
ategory of glass-box methods, inwhi
h the de
ision algorithm needs to be tempered with to 
reate the algorithm thatoutputs all justi�
ations. Sin
e modern DL reasoners [HM01, Hor98, SP04℄ use severaloptimizations that 
annot be applied to the labeling extension, re
ent resear
h has alsolooked at ways of 
omputing justi�
ations using (unmodi�ed) reasoners as a subpro-
edure. Most of these so-
alled bla
k-box methods [BS08, KPHS07, SHCH07, Sun09℄use a variant of Reiter's Hitting Set algorithm [Rei87℄, while trying to minimize thesear
h spa
e by either synta
ti
al or semanti
al 
onditions. The bla
k-box approa
hhas the 
lear advantage of being able to use the most eÆ
ient reasoner available with-out bigger implementation problems; however, this reasoner may need to be 
alled anexponential number of times before all justi�
ations are found. Trying to 
ouple theadvantages of both glass-box and bla
k-box algorithms, a mixed approa
h has been
onsidered for the EL family of DLs. This mixed approa
h uses a glass-box methodto 
ompute a small (possibly non-minimal) set of axioms from where the 
onsequen
estill follows, whi
h is later minimized using bla
k-box te
hniques [Sun09℄.Although automata-based de
ision pro
edures have been widely used in the DL
ommunity [BHP08, BT01, CDGL99, CDGL02, LS00℄,5 there has been no prior at-tempt to 
onstru
t a glass-box pinpointing algorithm based on the automata approa
h.For our automata-based pinpointing framework, we had to 
onstru
t, and 
ompute theso-
alled behaviour of, weighted automata on in�nite trees. Surprisingly, study on thearea of weighted automata on in�nite trees has only very re
ently begun, with its ori-gin at [DKR08, KL07℄. As a result of this, we needed to develop our own algorithm for
omputing the behaviour of these automata. Sin
e the beginning of our work with au-tomata, a di�erent algorithm was developed independently by Droste et al. [DKR08℄.We will show that, when applied to pinpointing, the algorithm in [DKR08℄ is a
tuallyequivalent to a na��ve bla
k-box method.The problem of axiom pinpointing has arisen, usually with di�erent names, inseveral distin
t resear
h areas. The SAT 
ommunity has 
onsidered the problem of
omputing maximally satis�able and minimally unsatis�able subsets of a set of propo-sitional formulae. Solutions to this problem in
lude bla
k-box approa
hes that 
alla SAT solver [BS05, LS05℄, as well as glass-box methods that extend a resolution-5Up to now, automata-based pro
edures are used mainly for proving theoreti
al results in DLs.However, reasoners based on an automata-based algorithm for the temporal logi
 LTL have beensu

essfully used in pra
ti
e for Model Che
king [GO01, GPVW95, Hol97℄.



10 CHAPTER 1. INTRODUCTIONbased SAT solver [DDB98, ZM03℄. In Linear Programming, several people havebeen interested in �nding irredu
ible infeasible sets (IIS): minimal subsets of lin-ear restri
tions that have no solution. Several methods exist that 
ompute oneIIS [Chi97, CD91, TMJ96℄ using a bla
k-box method. To the best of our knowl-edge, there is no glass-box approa
h to solving this problem. A di�erent idea waspresented by Gleeson and Ryan [GR90℄, showing that there is a bije
tion between theset of IIS and the optimal solutions of a dual linear programming problem. This ideawas later employed by Bruni [Bru05℄ to �nd all minimally unsatis�able subsets froma set of propositional formulae.Another area where 
omputing justi�
ations has a spe
ial interest is Satis�abilityModulo Theories (SMT) (see, for instan
e [ACGM04, BBC+05, GHN+04℄). SMTtries to �nd satisfying valuations of propositional formulae where ea
h propositionalvariable represents a restri
tion from a ba
kground theory. Modern SMT solvers use aglass-box approa
h to �nd a single (possibly non-minimal) 
on
i
ting set of restri
tionsthat voids the 
urrent valuation in as short a time as possible [NOT06℄.Additionally from DLs, we use the temporal logi
 LTL to exemplify our automata-based approa
h. We view the 
onjun
ts of an LTL formula as axioms and the justi�-
ations are minimal unsatis�able subformulae that allow us to understand the overallunsatis�ability of the original formula. Although this setting seems not to have been
onsidered for LTL before, it is 
losely related to the problem of 
omputing unsatis�-able 
ores that has appeared in the SAT 
ommunity [LS04℄.As it was readily mentioned, the task of �nding justi�
ations 
losely resembles thatof abdu
tion. Abdu
tion uses a ba
kground theory and an additional set of axioms
alled abdu
ibles. The reasoning task 
onsists in �nding minimal sets of abdu
iblesthat, when added to the ba
kground theory, entail a given query. Abdu
tion hasbeen studied in several �elds, but of spe
ial importan
e for this work is its appli
a-tion to propositional logi
 (for instan
e, de Kleer's ATMS [dK86a, dK86b, dK86
℄),and in parti
ular the 
omplexity results that have been obtained for Horn formu-lae [EG95a, EM02℄. We will use a similar approa
h for several of our 
omplexityresults in Chapter 6. Re
ently, the problem of abdu
tion has also been 
onsidered inthe DL EL [Bie08℄.It is important to noti
e that for really understanding a 
onsequen
e, 
omputingjusti�
ations and diagnoses is usually insuÆ
ient. Individual axioms may be alreadyhard to interpret, and the relationship between them far from obvious. In the former
ase, one would like to highlight the spe
i�
 portions of the axiom that play a rolein the derivation of the 
onsequen
e [HPS08℄; in the latter, one 
an try to 
ombineseveral axioms in a single, easier to understand, new axiom also 
alled lemma [HPS09℄.



Chapter 2Logi
s and De
ision Pro
eduresThe main goal of this 
hapter is to des
ribe, by means of examples, two of the mostprominent approa
hes to de
iding properties in logi
 in general, and in parti
ular indes
ription logi
s; namely, tableau-based and automata-based de
ision pro
edures.Several logi
s will be used as a show
ase to shine light of the pe
uliarities of ea
h ofthese methods. First we introdu
e the main reasoning problems for members of thefamily of Des
ription Logi
s having di�erent expressivity, for whi
h we will presenttableau-based de
ision pro
edures. These will work as a basis from whi
h our gen-eral notions of tableaux (Chapter 3) and blo
king (Chapter 4) will be 
onstru
ted.For the most expressive Des
ription Logi
 presented in this work, that is, ALC withSI TBoxes, we introdu
e also an automata-based de
ision pro
edure that relies onthe fa
t that this logi
 has the tree-model property by 
onstru
ting representationsof all the tree-shaped models. As an example of an automata-based de
ision pro
e-dure requiring additional a

eptan
e 
onditions, we in
lude the problem of de
idingsatis�ability of Linear Temporal Logi
 formulae. The use of this logi
 to exemplifyour automata-based approa
h is further motivated by the fa
t that automata-basedde
ision pro
edures have been su

essfully applied in pra
ti
e for program veri�
a-tion [Var96℄ or model 
he
king.In the �rst two se
tions of this 
hapter we des
ribe the logi
s under 
onsideration:we �rst give a brief introdu
tion to Des
ription Logi
s and their main reasoning prob-lems in Se
tion 2.1, followed by an introdu
tion to Linear Temporal Logi
. Then, inSe
tion 2.3, we present tableau-based de
ision algorithms for the problems relevant toDes
ription Logi
s. Finally, the automata-based de
ision pro
edures are des
ribed inSe
tion 2.4.2.1 Des
ription Logi
sDes
ription Logi
s (DLs) [BCM+03℄ are a family of logi
-based knowledge represen-tation formalisms 
ommonly used to represent the knowledge of a given appli
ationdomain in a stru
tured manner whi
h is also easy to understand. The main featurerelating all the logi
s in this family is the use of 
on
epts that intuitively des
ribeproperties held by individuals in a domain, and roles, or relations between two su
h11



12 CHAPTER 2. LOGICS AND DECISION PROCEDURESindividuals. What di�erentiates one DL from another is the 
onstru
tors it uses forgenerating 
omplex 
on
epts and roles from a set of primitive ones, also 
alled 
on
ept-and role-names. The 
hoi
e of these 
onstru
tors obviously has an impa
t not onlyon the expressivity of the logi
, but also on the 
omplexity of its reasoning problems.The most basi
 
onstru
tors are the Boolean ones; that is, disjun
tion, 
onjun
-tion and negation { denoted as t;u, and :, respe
tively { with the same intendedmeaning as their propositional logi
 
ounterparts. The quanti�ers 8 and 9 allow us tojump beyond the realm of propositional logi
 and reason about the relations betweenindividuals, ea
h satisfying a given property. The value restri
tion 8r:C is satis�edby ea
h individual x su
h that, if x is related to another individual y via the roler, then y satis�es the 
on
ept C. Likewise, the existential restri
tion 9r:C des
ribesthe individuals that are related via r to some individual belonging to C. One 
anadditionally use the top > and the bottom ? 
on
epts, that are satis�ed by all andnone individuals, respe
tively. The most basi
 DL using all of these 
onstru
tors isALC, an a
ronym that stands for attributive language with 
omplements originallyintrodu
ed in [SS91℄.De�nition 2.1 (Syntax of ALC). Let CN and RN be two disjoint sets of 
on
ept- androle-names, respe
tively. The set of ALC 
on
ept terms is the smallest set 
ontainingCN and su
h that if C;D are two 
on
ept terms and r 2 RN is a role name, thenC uD;C tD;:C;9r:C and 8r:C are all 
on
ept terms.If it is 
lear from the 
ontext we will usually say ALC 
on
ept or even just 
on
eptinstead of using the longer name \ALC 
on
ept term".Let us instantiate De�nition 2.1 with an example. When modeling the domain ofhuman evolution, one 
an des
ribe a des
endant of an Homo ergaster with the 
on
ept9has-an
estor:HErgaster, or a spe
ies whose evolutionary des
endants belong all to thegenus Homo using the 
on
ept 8has-des
endant:Homo.In addition to the 
onstru
tors used by this logi
, several others have been 
on-sidered in the DL literature su
h as (quali�ed or unquali�ed) number restri
tions,nominals, and role 
ompositions, among others (see [BCM+03℄). For the s
ope of thiswork we will fo
us on the DL ALC as well as on the logi
 HL, whi
h is the sub-logi
of ALC that allows only for 
onjun
tion and the top 
on
ept as a 
onstru
tors. Themain de
ision problems for these two logi
s and di�erent sets of axioms will requirethe introdu
tion of several distin
t te
hniques for solving them. These te
hniques willthen be formalised when de�ning general de
ision pro
edures and restri
tions in thefollowing 
hapters.Representing the knowledge of a domain may require the use of spe
i�
 individualsthat 
an a
t as instan
es of 
on
ept terms. These individuals may re
eive any namein the formal des
ription, but must be interpreted as elements of the domain. For thisreason, we will use an additional set IN of individual names disjoint from both CN andRN.Returning to our evolutionary example, we may introdu
e the individual nameLu
y whose intuitive task is to represent the famous Australopithe
us afarensis fossil.The importan
e of DLs as a knowledge representation formalism relies on their



2.1. DESCRIPTION LOGICS 13formal semanti
s based on interpretations that map all 
on
ept- and role-names tosets of individuals and sets of pairs of individuals of a spe
i�
 domain, respe
tively.De�nition 2.2 (Semanti
s of ALC). Let CN, RN and IN be pairwise disjoint setsof 
on
ept-, role- and individual names, respe
tively. An interpretation is a tuple ofthe form I = (�; �I), where � is a set, 
alled the domain of I, and �I is a fun
tionmapping every individual name a 2 IN to an element aI 2 �, every 
on
ept nameA 2 CN to a subset AI � � and every role name r 2 RN to a set of pairs rI � ���.The fun
tion �I is indu
tively extended to all 
on
ept terms as follows:� (C uD)I = CI \DI;� (C tD)I = CI [DI;� (:C)I = � n CI;� (9r:C)I = fd 2 � j there is an e su
h that (d; e) 2 rI and e 2 CIg;� (8r:C)I = fd 2 � j for all e, if (d; e) 2 rI, then e 2 CIg.The domain knowledge is stored using a set of axioms that restri
t the set of admis-sible interpretations by imposing 
onditions on the 
on
epts (terminologi
al axioms),individuals (assertional axioms), or roles (role axioms). We distinguish two kinds ofterminologi
al axioms: 
on
ept de�nitions that, with some appropriate synta
ti
 re-stri
tions, help to de�ne ma
ros or abbreviations of 
on
ept terms, and general 
on
eptin
lusion axioms that express an in
lusion relation between two 
on
epts.De�nition 2.3 (Terminologi
al axiom, (A
y
li
, General) TBox). A 
on
eptde�nition is of the form A := C, where A 2 CN is a 
on
ept name and C is a 
on
eptterm. A general 
on
ept in
lusion axiom (or GCI for short) is an expression of theform C v D with C and D 
on
ept terms.An a
y
li
 TBox is a set T of 
on
ept de�nitions that satis�es the following 
on-ditions:� for every 
on
ept name A, there is at most one 
on
ept de�nition in T of theform A := C; and� there is no sequen
e of 
on
ept de�nitions A1 := C1; A2 := C2; : : : An := Cn su
hthat for every 1 < j � n, Aj appears in Cj�1 and A1 appears in Cn.A general TBox is simply a set of GCIs.Intuitively, the 
onditions imposed on a
y
li
 TBoxes ensure that every 
on
eptname is de�ned only on
e, and the right-hand-side of ea
h de�nition has no dire
tor indire
t referen
e to its left-hand-side. General TBoxes are indeed more generalthan a
y
li
 ones, in the �rst pla
e be
ause ea
h 
on
ept de�nition A := C 
an berepresented with the GCIs A v C;C v A, and se
ond be
ause there is no restri
tion



14 CHAPTER 2. LOGICS AND DECISION PROCEDURESon the left-hand-side elements appearing on the right-hand-side 
on
ept term of aGCI.For example, we 
an de�ne our spe
ies, Homo sapiens, in terms of its evolutionaryan
estors and siblings using the 
on
ept de�nitionHSapiens := 9has-an
estor:HHeidelburgensis u :HNeanderthalensis:6We 
an also express that Homo and Australopithe
us are two disjoint genera, i.e., thatno individual 
an belong to both of them, with the GCI HomouAustralopithe
us v ?.Noti
e that the restri
tions imposed in an a
y
li
 TBox ensure that ea
h 
on
eptde�nition a
tually a
ts as a de�nition of the 
on
ept name appearing in its left-handside as an abbreviation of the (
omplex) 
on
ept term in its right-hand side. Inparti
ular, this means that a
y
li
 TBoxes do not add any expressive power to thelanguage. Nonetheless, they allow us to express 
omplex 
on
ept terms and reasonabout them in a more su

in
t fashion [Neb90, Lut99℄.In some 
ases, restri
ting the 
on
epts does not suÆ
e to fully represent the knowl-edge domain, and we want to spe
ify some individuals as members of spe
i�
 
on
eptterms. For instan
e, in the evolutionary ontology we need to express that Lu
y is anAustralopithe
us afarensis. This fa
t 
an be represented by the so-
alled assertionalaxiom AAfarensis(Lu
y).De�nition 2.4 (Assertional axiom, ABox). An assertional axiom is an expressionof the form C(a), or r(a; b) where a; b 2 IN are individual names, C is a 
on
ept term,and r is a role name. A set of assertional axioms is 
alled an ABox.In the same way that we restri
ted the relations between 
on
ept terms by meansof terminologi
al axioms, we 
an limit the possible interpretations of the roles used intheir 
onstru
tion by imposing a set of role axioms. As in the 
ase of the 
onstru
torsfor 
on
ept terms, several distin
t role axioms have been 
onsidered in the literature[HS04, HKS05, HKS06℄. In the present work we will fo
us solely on axioms that for
eroles to be transitive or inverses of ea
h other.De�nition 2.5 (Role axiom, SI-TBox). Let r; s 2 RN be two distin
t role names.The expressions trans(r) and inv(r; s) denote a transitivity- and inverse axiom, respe
-tively. A role axiom is either a transitivity- or an inverse axiom.An (a
y
li
, general) SI-TBox is a set S = T [R where T is an (a
y
li
, general)TBox and R is a set of role axioms su
h that every r 2 RN appears in at most oneinverse axiom.76Unfortunately, there is at the present no full 
onsensus on the evolutionary history of human-kind.The examples presented here show only one of the most a

epted views, and are are intended only asillustrations for our de�nitions.7The DL ALC extended with transitive and inverse roles, 
alled SI in the DL literature, is usuallyde�ned in a di�erent manner, using an inverse 
onstru
tor instead of axioms restri
ting the interpre-tation of the role. We de
ided to use the equivalent axiomati
 restri
tion sin
e an in
orre
t use ofinverses may lead to unsatis�ability, and we want to be able to dete
t this 
ause when performingpinpointing.



2.1. DESCRIPTION LOGICS 15Syntax Semanti
sA := C AI = CIC v D CI � DIC(a) aI 2 CItrans(r) rI is transitiveinv(r; s) rI is the inverse of sIFigure 2.1: Semanti
s of axiomsOn
e again using the evolutionary ontology as an example, the role has-des
endantshould be interpreted as being transitive, whi
h 
an be enfor
ed by in
luding theaxiom trans(has-des
endant), and as being the inverse role of has-an
estor, whi
h iseasily done with the introdu
tion of the role axiom inv(has-an
estor; has-des
endant).When axioms are used, the semanti
s of ALC and HL 
on
epts are restri
tedto 
onsider only those interpretations that satisfy the restri
tions imposed by thespe
i�ed axioms. Su
h interpretations are 
alled models. In the presen
e of axioms,not all interpretations are taken into a

ount, but only those that model them. Inother words, only those interpretations that satisfy the semanti
 restri
tions imposedby the axioms, as summarized in Figure 2.1, are rendered relevant.De�nition 2.6 (Semanti
s of axioms). Given a set of axioms T , I is a model ofT i� for every axiom t 2 T , I satis�es the semanti
s of t as shown in Figure 2.1.The �rst question that 
an be asked of a set of axioms is whether it is 
onsistent;that is, whether it is possible to 
onstru
t a model for it or not. This questionis typi
ally interesting in the presen
e of assertional axioms sin
e we want to knowwhether some spe
i�
 individualsmay satisfy the restri
tions we are imposing on them.Additionally to 
onsisten
y, two of the main de
ision problems that arise in DLs arethe satis�ability and subsumption problems. The satis�ability problem 
onsists in
he
king whether there exist a model for a given set of axioms that maps a given
on
ept term to a non-empty set. On the other hand, the subsumption problem
he
ks whether every model interprets a 
on
ept as a subset of another 
on
ept. Amore formal de�nition follows.De�nition 2.7 (Consisten
y, satis�ability, subsumption). Let T be a set ofaxioms and C;D two 
on
ept terms. We say that T is 
onsistent i� there is a modelof T . C is satis�able w.r.t. T i� there exists a model I of T su
h that CI 6= ;. C issubsumed by D w.r.t. T (denoted C vT D) i� for every model I of T it holds thatCI � DI .It is worth noti
ing that, in the presen
e of the negation 
onstru
tor, these lasttwo problems are polynomially redu
ible to ea
h other. On one hand, a 
on
ept Cis satis�able w.r.t. T i� C 6vT ?; 
onversely, C vT D i� C u :D is unsatis�ablew.r.t. T . For this reason, it suÆ
es to design an algorithm that de
ides any of thoseproblems in order to solve the other. In this work, we will fo
us on the satis�abilityproblem when dealing with the DL ALC. In the 
ase of the very inexpressive logi




16 CHAPTER 2. LOGICS AND DECISION PROCEDURESHL, there are no means for expressing negation, and hen
e all 
on
epts des
ribed init are always satis�able. For that reason, we will fo
us on the subsumption problemwhen reasoning in this logi
. It is also relevant to realise that de
iding satis�abilityof a 
on
ept C w.r.t. a set of axioms T is equivalent to de
iding 
onsisten
y of the setT [ fC(a)g where a is an individual name not appearing in T . Basi
ally, sin
e C issatis�able w.r.t. T i� there is a model that maps C to a non-empty set, we 
an for
ethe interpretation of C to 
ontain a random element in the domain.Later on in this 
hapter we will des
ribe well known algorithms for solving sub-sumption of HL-
on
epts w.r.t. TBoxes, and satis�ability of ALC 
on
epts w.r.t. tothe distin
t kinds of standard sets of axioms, with an emphasis on the 
hara
teristi
sthat are shared between them, and the spe
i�
 elements that di�erentiate ea
h par-ti
ular 
ase. Before that, we will introdu
e Linear Temporal Logi
 with its relevantde
ision problem.2.2 Linear Temporal Logi
Linear Temporal Logi
 (LTL) is an extension of Propositional Logi
 that allows rea-soning about temporal properties, where time is seen as dis
rete and linear [GPSS80,Pnu77℄. The syntax of this logi
 extends the usual propositional 
onstru
tors withthe 
onstru
tors next, denoted as
, and until, denoted as U . Intuitively, the formula
� expresses that the formula � must be true in the next point in time, while �U istrue if there is a moment in the future where  is true, and � is true at every momentbetween the present and the one satisfying  . We will now formalise these notions.De�nition 2.8 (Syntax of LTL). Let P be a set of propositional variables. The setof LTL formulae is the smallest set where� all propositional variables are LTL formulae;� if � and  are LTL formulae, then so are :�; � ^  ;
� and �U .The semanti
s of this logi
 use the notion of 
omputations, whi
h intuitively 
or-respond to interpretations, as de�ned for DLs, but where the domain is �xed to bethe set of natural numbers.De�nition 2.9 (Semanti
s of LTL). A 
omputation is a fun
tion � : N !P(P),where N represents the set of natural numbers. This fun
tion � is extended to LTLformulae as follows, for every i 2 N:� :� 2 �(i) i� � =2 �(i); � ^  2 �(i) i� f�;  g 2 �(i);� 
� 2 �(i) i� � 2 �(i+ 1); and� �U 2 �(i) i� there is a j � i su
h that  2 �(j) and for all k; i � k < j itholds that � 2 �(k).



2.2. LINEAR TEMPORAL LOGIC 17An LTL formula � is satis�able if there is a 
omputation � su
h that � 2 �(0).One is usually interested in de
iding whether a given LTL formula is satis�ableor not. Sin
e the main goal of this work is related with reasoning with respe
t tosets of axioms, we will be interested in a variation of the satis�ability problem, whereLTL formulae are used as axioms. Given a set of LTL formulae R, we 
onsider theproblem of de
iding whether the 
onjun
tion of all formulae in R is satis�able or not.If this 
onjun
tion is unsatis�able, pinpointing will allow us to dete
t the subsets offormulae, i.e., the 
onjun
ts, responsible for this. We will further assume that thereis a �xed 
onjun
t that is always present. In summary, our problem re
eives as inputa stati
 LTL formula � and a set of refutable LTL formulae R, and de
ides whetherthe 
onjun
tion of all these formulae is satis�able or not. We now formally de�ne thisproblem, whi
h we will 
all axiomati
 satis�ability.De�nition 2.10 (Axiomati
 satis�ability). Let � be an LTL formula and R aset of LTL formulae. We say that � is axiomati
 satis�able w.r.t. R if there is a
omputation � su
h that R[ f�g � �(0).8 In this 
ase, � is 
alled a 
omputation for(�;R).At the end of this 
hapter we will present a pro
edure based on B�u
hi automatathat will allow us to 
orre
tly de
ide axiomati
 satis�ability of LTL formulae.Depending on the 
hara
teristi
s of the logi
 in use and the kind of axioms 
on-sidered, distin
t methods 
an be applied to solve its de
ision problems. In des
riptionlogi
s, the two prominent approa
hes for de
iding 
onsisten
y, subsumption, or satis-�ability of 
on
ept terms are the tableau-based and the automata-based methods. Inthe 
ase of 
onsisten
y or satis�ability of 
on
ept terms, the tableaux-based approa
htries to 
onstru
t a model in a top-down (usually non-deterministi
) fashion, until themodel is �nished or it is 
lear that no adequate interpretation 
an exist. The models
reated this way usually have an underlying tree-shape. For that reason, wheneverthe logi
 in 
onsideration does not have the �nite tree model property (as is the 
aseof ALC with general TBoxes) additional restri
tions need to be spe
i�ed to stop theexe
ution in �nite time while retaining the 
orre
tness of the method. As we will seelater in Se
tion 2.3, in these in�nite models it is possible to �nd a pattern that repeatsafter a �nite number of nodes. Thus, only �nite information is ne
essary to repro-du
e the in�nite model. The idea of stopping the exe
ution of the tableau on
e anappropriate pattern has been found re
eives the name of blo
king in the DL literature.The automata-based approa
h is usually more straightforward. The idea 
onsistsin 
onstru
ting an automaton that a

epts exa
tly all those tree-shaped models. Thedeterministi
 and polynomial-time emptiness test on this automaton yields the desiredde
ision. In DLs, the runs a

epted by su
h an automaton are in fa
t in�nite treemodels, where every node represents an individual. The nodes are then labeled withthe 
on
epts that they satisfy within the interpretation with the help of the transitionrelation of the automaton. The de
ision pro
edure for axiomati
 satis�ability of LTLformulae follows a similar idea, 
onstru
ting an automaton whose a

epted runs 
onsist8Noti
e that this is equivalent to saying that � ^ V 2R  is satis�able.
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omputations for the input. Given the nature of the until operator, whosesatis�ability 
an be delayed as mu
h as desired within the 
omputation, it is ne
essaryto use an a

eptan
e 
ondition that ensures that this delay is not performed forever,but every until formulae is eventually satis�ed.2.3 Tableau-Based De
ision AlgorithmsWe pro
eed now to present several de
ision pro
edures that exemplify the main ideasof tableaux brie
y mentioned above. We �rst present a deterministi
 algorithm thatde
ides subsumption in HL with general TBoxes. This algorithm has the bene�ts ofbeing deterministi
 and running in polynomial time, and hen
e allowing us to dete
tthe in
rease of 
omplexity 
aused by trying to explain the subsumptions that hold,
ompared with merely dete
ting if they follow from the general TBox or not (see Chap-ter 6). We 
ontinue with a des
ription of the tableau-based algorithms for de
iding
onsisten
y of ABoxes and then satis�ability of ALC 
on
epts w.r.t. a
y
li
, general,and SI-TBoxes in
rementally: we re-use the 
onsisten
y algorithm for ABoxes tode
ide satis�ability, by simply adding a series of expansion rules that deal with theaxioms being 
onsidered.The algorithm for HL is a spe
ial 
ase of the subsumption algorithm for the DLEL that also runs in polynomial time [Baa03a, Baa03b℄.9 The other tableau meth-ods are well known algorithms. For a deeper des
ription, in
luding more expressive
onstru
tors not treated here, su
h as number restri
tions and role hierar
hies, and
omplexity and run-time analysis of these methods, refer to [BS01℄.2.3.1 Subsumption in HL with General TBoxesRe
all that in HL, all 
on
ept terms 
onsist of 
onjun
tions of 
on
ept names, andthus all GCIs in this logi
 are of the formA1 uA2 u : : : uAn v B1 uB2 u : : : uBmwhere n;m � 0 and ea
h Ai and Bi is a 
on
ept name in CN. Intuitively, an axiom ofthis form states that if a 
on
ept is subsumed by all the 
on
epts A1 : : :An, then it isalso subsumed by ea
h and every one of the 
on
epts B1 : : :Bm. Our algorithm williteratively make su
h knowledge expli
it based on the expli
it subsumption relationsknown so far. This information will be stored in a set A of pairs of the form (A;B),where A and B are 
on
ept names, with the intended meaning that (A;B) is presentif and only if B subsumes A.The algorithm starts with the trivial knowledge stating that every 
on
ept nameappearing in the general TBox T is subsumed by itself; i.e., it initialises the set Awith A = f(A;A) j A 2 CN appears in T g, and then repeatedly applies the expansionrule hl that is shown in Figure 2.2.Obviously, in order to ensure termination of this expansion method, the rule hlshould only be applied if its appli
ation will result in a real expansion of the set A,9EL is the superlogi
 of HL that allows also for existential restri
tions.



2.3. TABLEAU-BASED DECISION ALGORITHMS 19hl if nui=1Ai v muj=1Bj 2 T and f(A;Ai) j 1 � i � ng � A, thenadd (A;Bj) to A for all 1 � j � m.Figure 2.2: Expansion rule for de
iding subsumption in HLthat is, if there is at least one j su
h that (A;Bj) =2 A. Otherwise, we 
ould loopinde�nitely applying the same rule on
e and again without a
hieving any progress.Given this restri
tion, it is 
lear that the expansion rule is applied at most on
e forea
h GCI and 
on
ept name in T . Thus, the algorithm �nishes in polynomial timemeasured on the size of the TBox. When no more pairs 
an be added to A by anappli
ation of this rule, it is the 
ase that (A;B) 2 A i� A vT B, for all 
on
eptnames A;B appearing in T . As it was said before, this algorithm is in essen
e aspe
ial 
ase of the subsumption algorithm for EL. For a proof of 
orre
tness and itspolynomial exe
ution time, refer to [BBL05, Bra04a℄.2.3.2 Consisten
y of ALC ABoxesWe move now beyond HL to the more expressive logi
 ALC, and 
onsider �rst theproblem of 
onsisten
y of an ABox. This problem 
orresponds to de
iding whetherthere is a model for a given set of assertional axioms. In order to solve it, we begin bystating all the restri
tions imposed by the axioms in the input and then expand thisknowledge a

ording to the semanti
s of the 
onstru
tors used (see De�nition 2.2).When this expansion pro
ess terminates, we either have a model (and hen
e the ABoxis 
onsistent) or there is an obvious 
ontradi
tion. A
tually, due to the presen
e ofdisjun
tion, this pro
ess has a (do not know) non-deterministi
 fa
tor, and possiblyseveral model 
andidates would have to be tried. Ea
h model 
andidate will be rep-resented as a set Ai of assertions of the form C(a) or r(a; b), where C is a 
on
eptterm, r is a role name, and a and b are individuals. In other words, we use ABoxesalso to represent (partial) models. To deal with the non-determinism, we 
onsider allthese ABoxes simultaneously, as elements of a setM, rather than only one at a time.This 
an be thought of as testing all the possible model 
andidates 
on
urrently.The algorithm starts with the only model 
andidate 
onsisting of the input ABoxA0; that is, it initialisesM = fA0g. This set is then modi�ed by su

essive appli
a-tions of the expansion rules shown in Figure 2.3, where a rule is applied to one set AinM at a time. These rules are applied until none of them 
an be applied anymore,extending the set M of model 
andidates. An ABox A 2 M is said to have a 
lashif there is an individual name x o

urring in A and a 
on
ept name A su
h thatfA(x);:A(x)g � A.This expansion pro
ess is guaranteed to �nish after a �nite number of rule appli-
ations, and when it does so, the resulting set M is su
h that the original ABox A0is 
onsistent if and only if there is a model 
andidate A 2M that does not have any
lash [BH91, Hol96℄.Re
all, from the de�nition of satis�ability, that a 
on
ept is satis�able with respe
t
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u if (C uD)(x) 2 A but fC(x);D(x)g 6� A, thenrepla
e A by A0 = A[ fC(x);D(x)g.al
t if (C tD)(x) 2 A but fC(x);D(x)g \ A = ;, thenrepla
e A by the two sets A0 = A[ fC(x)g and A00 = A[ fD(x)g.al
8 if f(8r:C)(x); r(x; y)g � A but C(y) =2 A, thenrepla
e A by A0 = A[ fC(y)g.al
9 if (9r:C)(x) 2 A but there is no individual name zsu
h that fr(x; z); C(z)g � A, thenrepla
e A by A0 = A[ fC(y); r(x; y)g where y is anindividual name not o

urring in A.Figure 2.3: Expansion rules for the tableau algorithm for 
onsisten
y of ALC ABoxesal
 := if A(x) 2 A and A := C 2 T but C(x) =2 A, thenrepla
e A by A0 = A[ fC(x)g.Figure 2.4: Rule al
 := for de
iding satis�ability of ALC 
on
epts w.r.t. a
y
li
 TBoxesto a given TBox if and only if there is a model that maps it to a non-empty set. Inother words, the 
on
ept C is satis�able w.r.t. T i� the ABox fC(a)g is 
onsistent(w.r.t. T ), where a is an arbitrary individual name. If we 
onsider an empty TBox,then the 
onsisten
y algorithm des
ribed in this subse
tion would yield the desiredde
ision pro
edure. In general, nonetheless, we require to extend it to deal with theterminologi
al axioms. The following subse
tions deal with this.2.3.3 Satis�ability of ALC Con
epts with A
y
li
 TBoxesAs noti
ed before, a
y
li
 TBoxes work basi
ally as abbreviations of more 
omplex
on
ept terms and do not add to the expressivity of ALC. In fa
t, reasoning withrespe
t to an a
y
li
 TBox 
an be redu
ed to reasoning with an empty TBox by apro
ess known as unfolding: repla
ing, for every 
on
ept de�nition A := C, everyo

urren
e of the 
on
ept name A by its de�ned 
on
ept C. Unfortunately, thisredu
tion may produ
e a 
on
ept that is exponential in the size of the original TBox(see [Neb90℄ for an example supporting this 
laim).In the DL ALC, one 
an avoid this exponential blow-up by only unfolding at themoments where it is ne
essary to explore deeper in a 
on
ept de�nition [Lut99℄. Thismethod, 
ommonly referred to as lazy unfolding 
an be easily implemented in ourtableau system for de
iding satis�ability of ALC 
on
ept terms, by simply adding therule al
 := (shown in Figure 2.4) to the tableau for ABox 
onsisten
y (Figure 2.3).The pro
edure works exa
tly in the same fashion as the one des
ribed in the pre-
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v if x is an individual name appearing in A but (:C tD)(x) =2 A, thenrepla
e A by A0 = A[ f(:C tD)(x)g.Figure 2.5: Rule al
v for reasoning with GCIsvious subse
tion: it starts with the unique model 
andidate having only the assertionC(a) where C is the 
on
ept being tested for satis�ability and a an arbitrary indi-vidual name. It then repeatedly applies the expansion rules until none is appli
ableanymore. It 
an be easily shown that this pro
ess �nishes after a �nite number ofrule appli
ations, at whi
h point it holds that C is satis�able if and only if there is amodel 
andidate that does not 
ontain any 
lash [Lut99℄.2.3.4 Satis�ability of ALC Con
epts with General TBoxesWhen dealing with general 
on
ept in
lusion axioms, we 
an no longer assume thatthe TBox de�nes abbreviations of more 
omplex 
on
epts, whi
h means that the ideaof lazy unfolding is no longer appli
able. It is thus ne
essary to implement a di�erentmethod that 
an deal with this kind of terminologies. An analysis of the semanti
sof the axioms that 
onstitute general TBoxes reveals that they express a restri
tionon the 
on
epts to whi
h every individual name must belong. More 
learly, a GCI ofthe form C v D expresses that every individual that belongs to the 
on
ept C mustalso belong to D. We 
an also express this by for
ing every individual to either notbelong to C, or otherwise belong to D. In other words, for every individual namea, (:C t D)(a) must hold. The rule al
v shown in Figure 2.5 implements this idea,for
ing every individual name used in the ABox working as a model 
andidate tosatisfy ea
h of the restri
tions imposed by the GCIs. These rules are applied in thesame fashion as in the previous subse
tions, starting with only a model 
andidatestating the non-emptiness of the interpretation of the 
on
ept being tested. Moreformally, we begin with the set M = ffC(a)gg where C is the 
on
ept being testedfor satis�ability, and a an arbitrary individual name. We then apply the expansionrules in any order. Unfortunately, and 
ontrary to the previous methods presented sofar, appli
ation of this set of rules is not guaranteed to �nish after a �nite number ofsteps, as shown in the following example.Example 2.11. Consider the TBox T 
ontaining only one axiom T = fA v 9r:Ag. Ifwe want to test for satis�ability of the 
on
ept A, then the tableau algorithm des
ribedhere will start withM = fA0g, where A0 = fA(a0)g. At this point, only the rule al
vis appli
able to the only model 
andidate present in M. Its appli
ation repla
es A0with A1 = A0 [ f(:A t 9r:A)(a0)g. Again, only one rule is appli
able, whi
h is theal
t rule. Its appli
ation repla
es A1 with the two sets A2 = A1 [ f(9r:A)(a0)g andA02 = A1 [ f:A(a0)g. Noti
e that no rule is appli
able to A02, and that it 
ontainsa 
lash, namely A(a0);:A(a0). On the other hand, the rule al
9 is appli
able to A2whose appli
ation substitutes that model 
andidate with A3 = A2 [ fr(a0; a1); A(a1)g.It is easy to see that the same sequen
e of rule appli
ations is possible, leading to amodel 
andidate having the assertion A(a2) where a2 is a new individual name, and



22 CHAPTER 2. LOGICS AND DECISION PROCEDURESa0 A;A t 9r:A;9r:Aa1 A;A t 9r:A;9r:Aa2 A;A t 9r:A;9r:Arrr...Figure 2.6: An in�nite model
a0 A;A t 9r:A;9r:Aa1 A;A t 9r:A;9r:ArrFigure 2.7: A �nite equivalent modelhen
e the same sequen
e of rule appli
ations is on
e again possible. This leads to anon-terminating sequen
e of rule appli
ations.From this example we know that the algorithm is not ensured to terminate af-ter a �nite number of rule appli
ations. Nonetheless, if we allowed the pro
ess torun inde�nitely, we would noti
e that all the individuals used in the in�nite model
onstru
ted this way satisfy the same 
on
epts (see Figure 2.6). In that sense, one
an say that the algorithm has been trapped in a 
y
le. Furthermore, we noti
e thatan in�nite expansion is only possible by the addition of new individual names; thatis, by the use of so-
alled generating rules. In the present 
ase, the only generatingrule is al
9. To regain termination, we need then to devi
e a me
hanism that dete
tswhen the expansion has found a 
y
le and then avoids generating new individuals byreusing the information of the 
y
le. This me
hanism is 
alled blo
king in the DLliterature [BS01℄.The blo
king me
hanism for ALC w.r.t. general TBoxes is based on the individualnames used in the model 
andidate. We say that an individual name x is blo
kedby the individual name y if y appears in all the assertions in whi
h x appears; moreformally, if fD j D(x) 2 Ag � fD j D(y) 2 Ag. If an individual x is blo
kedby y, then the rule al
9 is not applied when triggered by an assertion of the form9r:C(x). As the 
on
epts satis�ed by a blo
ked node form a subset of those satis�edby the blo
king node, this parti
ular instan
e re
eives the name of subset blo
king.Intuitively, a blo
ked individual x should be able to reuse the role su

essors of yinstead for generating new ones that will have the same shape. In our example, we
ould have avoided generating the new individual a2 by simply reusing the su

essora1 of a0 as the new su

essor of a1 (see Figure 2.7).In order for this idea to work 
orre
tly, we need to restri
t the set of individualnames that are able to blo
k a given individual. Basi
ally, it is ne
essary to avoida situation in whi
h a pair of nodes are blo
king ea
h other, whi
h would produ
ean early termination of the algorithm that might destroy its soundness. For thealgorithm in hand, it is enough to for
e the blo
king node to be a prede
essor ofthe blo
ked node. The in�nite tree-shaped model 
an be re
overed from the modelobtained from blo
king by an unraveling pro
ess that 
reates new su

essors for thosenodes pointing ba
kwards in the tree-like model. This tableau algorithm, with the useof subset blo
king, is always terminating and de
ides satis�ability of a 
on
ept w.r.t.a general TBox in the same way as the one des
ribed in the previous se
tions: C is
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+ if f(8r:C)(x); r(x; y)g � A and trans(r) 2 Tbut (8r:C)(y) =2 A, thenrepla
e A by A0 = A[ f(8r:C)(y)g.al
� if f(8r:C)(y); s(x; y)g � A and finv(r; s); inv(s; r)g \ T 6= ;but C(x) =2 A, thenrepla
e A by A0 = A[ fC(x)g.al
� if f(8r:C)(y); s(x; y)g � A and finv(r; s); inv(s; r)g \ T 6= ; andftrans(r); trans(s)g \ T 6= ; but (8r:C)(x) =2 A, thenrepla
e A by A0 = A[ f(8r:C)(x)g.Figure 2.8: Rules for dealing with transitivity and inverse axiomssatis�able if and only if the algorithm starting with ffC(a)gg yields a model 
andidatethat has no 
lash [BDS93℄.2.3.5 Satis�ability of ALC Con
epts with SI-TBoxesOn
e we introdu
e inverse and transitivity axioms, the de
ision pro
edure be
omesmore 
omplex. To deal with transitivity, it is helpful to noti
e that the only seman-ti
al in
uen
e of these axioms on the 
onstru
tion of a model is with respe
t to theuniversal restri
tions. If r is a transitive role, then a universal restri
tion imposed inan individual x needs to be satis�ed not only by its dire
t r su

essors, but also bytheir own r su

essors and so on. Clearly, we 
an perform this task with the help of atableau rule. The rule al
+ in Figure 2.8, analogous to the one introdu
ed in [Hor98℄for dealing with transitive roles, shows exa
tly this behaviour.Inverse axioms need a similar approa
h. When an inverse axiom is present, therestri
tions may need to be propagated ba
kwards along the inverse roles. In otherwords, if we have r(x; y) and (8s:C)(y), where inv(r; s), then we should be able todedu
e C(x). Rule al
�, shown in Figure 2.8, deals with this fa
t.One has to noti
e still that if a role is transitive, then its inverse must also be tran-sitive. For that reason, whenever a role appears both in a transitivity and an inverseaxiom, we should be able to 
ombine the propagation of universal restri
tions due totransitivity with the ba
kwards propagation due to inverses. Hen
e, we introdu
e therule al
� to the tableaux algorithm dealing with this logi
.Depending on whether we have an a
y
li
 or a general SI TBox, we need to usethe rule al
 := or al
v, a

ordingly, in addition to the rules presented here to deal withthe rest of the axioms appearing in it. Obviously, the rules depi
ted in Figure 2.3 arealso ne
essary.The presen
e of transitive axioms leads to a non-terminating tableau algorithm,even in the 
ase of a
y
li
 SI-TBoxes. Hen
e, we require an appropriate blo
king
ondition that ensures termination after a �nite number of rule appli
ations. Unfor-tunately, due to inverse axioms, we 
annot use subset blo
king as presented in theprevious subse
tion. This is shown in the following example.



24 CHAPTER 2. LOGICS AND DECISION PROCEDURESx A(x); (8r::B)(x)y (8r:8r::B)(y);B(y)z A(z)ss xy B(y)z A(z)w (8r:8r::B)(w)
sssrrFigure 2.9: Failure of subset blo
king with SI-TBoxesExample 2.12 (Failure of subset blo
king). Consider the situation shown in theleft part of Figure 2.9, where we are testing for satis�ability of the 
on
ept A w.r.t.the general SI-TBox T = fA v 9s:(8r:8r::B uB u 9s:A); inv(r; s)g. For brevity, the�gure does not show all the 
on
epts obtained by appli
ation of the al
v rule and thesubsequent expansion by al
t and al
u rules. If we 
onsider subset blo
king, then thenode z is blo
ked by the root node x. This means that the existential rule al
9 is notapplied, and hen
e the expansion stops on this model 
andidate without generating newindividuals. This ABox 
ontains no 
lash, whi
h means that the tableau pro
edure willa

ept A as satis�able. But this answer is not 
orre
t.Sin
e the individual z satis�es A, it must also satisfy, due to the GCI in T , the
on
ept 9s:8r:8r::B; that is, it must have an s su

essor su
h that every two-stepr su

essor satis�es :B. Sin
e r and s are inverses of ea
h other, a two-step sprede
essor must satisfy that restri
tion; hen
e, every s prede
essor of z must do that.See the right side of Figure 2.9, where the dashed arrows represent the r su

essorsobtained by the inverse axiom. This means that y must satisfy :B, but the ABox
ontains already B(y), whi
h leads us to a 
lash in the model 
andidate.The reason why the pro
edure was unable to dete
t the 
lash was that the node zwas not allowed to re
eive the information that it should satisfy the 
on
ept 8r::B,whi
h would be populated upwards by its su

essor node w through appli
ations ofthe rule al
�. This early blo
king problem 
an be properly solved for this tableaupro
edure by simply enfor
ing a stronger 
ondition for blo
king, in whi
h the blo
kedindividual must satisfy exa
tly the same 
on
epts as the individual blo
king it. Moreformally, x is blo
ked by y i� fD j D(x) 2 Ag = fD j D(y) 2 Ag. This is known asequality blo
king [HS99℄.One should noti
e that equality blo
king 
an also be applied to the tableau algo-rithm for satis�ability w.r.t. general TBoxes. Sin
e the 
ondition required for blo
kingis a stronger one, using it would mean that blo
king will 
ome later, and hen
e onemight a
tually lose in eÆ
ien
y within an implementation of the method; nonetheless,it would still be sound and 
omplete. It is for this reason that later on, when weformalise the notion of blo
king for general tableaux in Chapter 4, we will fo
us onlyon equality blo
king.
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ision AlgorithmsA di�erent approa
h for 
onstru
ting a de
ision pro
edure is to use automata to testwhether there is a model of the TBox that maps the 
on
ept to a non-empty set. Givena logi
 that has the tree model property, that is, there is a model for an ontology ifand only if there is a tree shaped model for the same, the idea is to 
onstru
t a treeautomaton whose a

epted language 
orresponds exa
tly to those tree-shaped modelswhere the root satis�es the 
on
ept being tested. Thus, the language a

epted by thisautomaton is empty if and only if the 
on
ept is unsatis�able.Before des
ribing how this idea is applied to ALC w.r.t. SI-TBoxes and LTL,we need to present some basi
 
on
epts of automata theory. We are interested intree automata that work on in�nite trees. Intuitively, these automata try to label aninput (in�nite) tree in su
h a way that the labeling satis�es the automata a

eptan
e
ondition (see De�nition 2.13). If su
h a labeling is possible, then the tree is a

epted;otherwise it is reje
ted. Furthermore, when automata are used to de
ide a property,it is usually suÆ
ient to use unlabeled trees as inputs. This means that, given a �xedarity (i.e., bran
hing fa
tor) k, there is only one su
h input tree; thus, the languagea

epted by one of these automata will be either empty or 
ontain the only unlabeledk-ary tree.Given a positive integer k we use K to denote the set f1; : : : ; kg. We identify thenodes of the input trees by means of words in K� in the usual way: the root node isidenti�ed by the empty word ", and the i-th su

essor of a node u is identi�ed by uifor 1 � i � k. The unique unlabeled in�nite tree of arity k is represented by the setof all its nodes, namely K�. As said before, an automaton tries to label the input treein an appropriate manner. Whenever we are speaking of labeled trees, we will refer tothe label of the node u 2 K� in the tree r by r(u), and in the same fashion we representan in�nite tree r labeled with elements from a set Q as a mapping r : K� ! Q. Wewill also use the abbreviation ��!r(u) to denote the tuple ��!r(u) = (r(u); r(u1); : : : ; r(uk)).Additionally, we need the 
on
ept of a path in this tree. A path is a subset p � K�su
h that " 2 p and for every u 2 p there is exa
tly one i; 1 � i � k with ui 2 p.De�nition 2.13 ((Generalised) B�u
hi tree automaton). A generalised B�u
hitree automaton for arity k is a tuple (Q;�; I; F1; : : : ; Fn), where Q is a �nite set ofstates, � � Qk+1 is the transition relation, I � Q is the set of initial states, andF1; : : : ; Fn � Q are the sets of �nal states. A generalised B�u
hi tree automaton is
alled B�u
hi automaton if it has only one set of �nal states; i.e., if n = 1. It is 
alledlooping tree automaton if n = 0.A run of a generalised B�u
hi automaton on the unlabeled tree K� is a labeled k-arytree r : K� ! Q su
h that ��!r(u) 2 � for all u 2 K�. This run is su

essful if forevery path p and every i; 1 � i � n, there are in�nitely many nodes u 2 p su
h thatr(u) 2 Fi.When using automata as de
ision pro
edures, one is usually interested in solvingthe emptiness problem, whi
h 
onsists in de
iding whether the language a

epted bythe automaton is empty or not.



26 CHAPTER 2. LOGICS AND DECISION PROCEDURESDe�nition 2.14 (Emptiness problem). The emptiness problem for generalisedB�u
hi tree automata for arity k is the problem of de
iding whether a given su
h au-tomaton has a su

essful run r su
h that r(") 2 I or not.Although a dire
t algorithm for de
iding the emptiness of a generalised B�u
hiautomaton is sket
hed in [VW84℄, no proof of 
orre
tness is presented there and in thejournal version of that paper [VW86℄, the idea is simpli�ed by presenting a redu
tionto the emptiness problem for B�u
hi automata. In Chapter 5, we will follow a similarapproa
h for 
omputing the so-
alled behaviour of weighted B�u
hi automata. First,we will show how to 
ompute the behaviour of weighted B�u
hi automata. Later, wewill introdu
e a polynomial redu
tion from weighted generalised B�u
hi automata toweighted B�u
hi automata that preserves the behaviour. Our algorithm for 
omputingthe behaviour of weighted B�u
hi automata generalises the well-known ideas employedto de
ide the emptiness problem in the unweighted 
ase.The emptiness problem for B�u
hi automata 
an be de
ided in time polynomialin the size of the automaton [Rab70, VW86℄. The de
ision pro
edure 
onstru
tsthe set of all states that 
annot o

ur as labels in any su

essful run; we will 
allthese states bad states. We 
an try to disprove that a state is bad by attempting to
onstru
t a �nite partial run where every path ends in a �nal state. Every state forwhi
h this 
onstru
tion fails is 
learly bad, but there may be bad states for whi
h this
onstru
tion su

eeds. The reason is that some of the �nal states rea
hed by the �niterun may themselves bad. Thus, in order to 
ompute all bad states we must iteratethis pro
ess, where in the next iteration the partial run is required to rea
h �nal statesthat are not already known to be bad. Noti
e, however, that the 
onstru
tion of a�nite partial run ending in non-bad �nal states 
an itself be realized by an iterativepro
edure. Hen
e, the de
ision pro
edure for the emptiness problem uses two nestediterations. In the inner loop, we try to 
onstru
t a �nite partial run �nishing in (non-bad) �nal states for every state. In the outer loop, we use the result of the inneriteration to update the set of (known) bad states, and then re-start the inner iterationwith this new information.Let us 
all the states for whi
h there is a �nite partial run �nishing in non-bad�nal states adequate. First, any state q 2 Q for whi
h there is a transition leading toonly non-bad �nal states is 
learly adequate. Then, every state for whi
h there is atransition leading only to states that are either (i) �nal and not bad or (ii) alreadyknown to be adequate is also adequate. Obviously, during this iteration, the set ofadequate states be
omes stable after at most jQj iterations. The outer loop then addsall the states that were found not to be adequate to the set of bad states. The set ofbad states maintained in this outer iteration be
omes stable after at most jQj steps.This yields an emptiness test that runs in time polynomial in the number of states (see[VW86℄ for details). In the 
ase of looping automata, this method 
an be simpli�edto a single bottom-up iteration [BT01℄.In the following subse
tions, we will show how we 
an use automata, and in par-ti
ular the emptiness test just sket
hed, to de
ide satis�ability of ALC 
on
ept termsw.r.t. SI-TBoxes, as well as axiomati
 satis�ability of LTL formulae.



2.4. AUTOMATA-BASED DECISION ALGORITHMS 272.4.1 Satis�ability of ALC Con
epts with SI-TBoxesThe automata-based approa
h for de
iding satis�ability of an ALC 
on
ept term w.r.t.a general SI-TBox is based on the fa
t that a 
on
ept is satis�able i� it has a so-
alled Hintikka tree, whi
h is basi
ally a tree model where every node is labeled withthe 
on
ept terms to whi
h it belongs. Given a 
on
ept C and an SI-TBox, we will
onstru
t a looping tree automaton whose su

essful runs 
orrespond exa
tly to theHintikka trees.In order to simplify the notation, we assume that every 
on
ept term is presentedin negation normal form (NNF); that is, negation appears only in front of 
on
eptnames. This assumption has no impa
t in the generality of the method as every ALC
on
ept term 
an be transformed into NNF in linear time using the de Morgan laws,duality of quanti�ers and elimination of double negations. We will denote the NNFof a 
on
ept term C as nnf(C) and nnf(:C) as vC. Given an ALC 
on
ept term Cand a general SI-TBox T , we will use the abbreviation sub(C;T ) to denote the set
ontaining all the sub
on
epts of C as well as of the 
on
ept vD tE for D v E 2 T .The automaton we 
onstru
t for de
iding satis�ability of 
on
epts w.r.t. generalSI-TBoxes will have so-
alled Hintikka sets as states. Hintikka sets 
ontain as ele-ments sub
on
epts of the input 
on
ept and TBox, as well as information about thetransitivity of 
ertain roles. For this, we will additionally use rol(C;T ) to denote theset of all role names appearing in C or in T .De�nition 2.15 (SI-Hintikka set). A set H � sub(C;T ) [ rol(C;T ) is 
alled anSI-Hintikka set for (C;T ) if the following three 
onditions are satis�ed:(i) if D uE 2 H, then fD;Eg � H;(ii) if D tE 2 H, then fD;Eg \H 6= ;; and(iii) there is no 
on
ept name A 2 CN su
h that fA;:Ag � H.An SI-Hintikka set H is 
ompatible with the GCI D v E 2 T i� either H = ;or vD t E 2 H. It is 
ompatible with the transitivity axiom trans(r) 2 T i� H = ;or r 2 H. Finally, H is 
ompatible with the inverse axiom inv(r; s) 2 T i� it holdsthat r 2 H if and only if s 2 H.The arity k of the input a

epted by our automaton is given by the number ofexistential restri
tions, i.e., 
on
ept terms of the form 9r:D, present in sub(C;T ).For the transition relation, it will be important to know whi
h su

essor in the tree
orresponds to whi
h existential restri
tion being satis�ed; for that reason, we �x anarbitrary bije
tion ' : f9r:D j 9r:D 2 sub(C;T )g ! K. A Hintikka tree is a k-ary treelabeled with Hintikka sets that satis�es additional 
ompatibility 
onditions dealingwith the existential- and value restri
tions appearing in its node labels. To obtain fullk-ary trees, we will add dummy nodes labeled with the empty set (whi
h is itself anSI-Hintikka set, and 
ompatible with every axiom) where appropriate.De�nition 2.16 (Hintikka 
ondition). The tuple (H0;H1; : : : ;Hk) of Hintikka setsfor (C;T ) satis�es the Hintikka 
ondition i� the following two 
onditions hold for everyexistential restri
tion 9r:D 2 sub(C;T ):



28 CHAPTER 2. LOGICS AND DECISION PROCEDURES� if 9r:D 2 H0, then H'(9r:D) 
ontains D as well as every E for whi
h there is avalue restri
tion 8r:E 2 H0; if, additionally, r 2 H0, then also 8r:E belongs toH'(9r:D) for all value restri
tion 8r:E 2 H0; and� if 9r:D =2 H0, then H'(9r:D) = ;.A tuple satisfying the SI-Hintikka 
ondition is 
alled 
ompatible with the GCID v E 2 T (respe
tively 
ompatible with the transitivity axiom trans(r) 2 T ) if allits 
omponents are 
ompatible with D v E (
ompatible with trans(r), respe
tively). Itis 
ompatible with the inverse axiom inv(r; r0) 2 T if all its 
omponents are 
ompatiblewith inv(r; r0) and the following holds for all s 2 fr; r0g and s� 2 fr; r0gnfsg: for every8s:F 2 H'(9s�:D), the set H0 
ontains F and additionally 8s:F if s 2 H0.A tuple of SI-Hintikka sets that satis�es the SI-Hintikka 
ondition is 
ompatiblewith a general SI-TBox T if it is 
ompatible with every axiom t 2 T .We 
an now formally de�ne Hintikka trees.De�nition 2.17 (Hintikka tree). A Hintikka tree for (C;T ) is a k-ary tree Hlabeled with Hintikka sets for (C;T ) su
h that C 2 H(") and for every node u 2 K�the tuple ���!H(u) is 
ompatible with T .The following result shows that testing for satis�ability of a 
on
ept C w.r.t.an SI-TBox T is equivalent to de
iding the existen
e of an SI-Hintikka tree for(C;T ). This lemma 
an be shown by a simple adaptation of the arguments presentedpreviously in [BHP07, BHP08℄.Lemma 2.18. A 
on
ept C is satis�able w.r.t. a general SI-TBox T i� there is aHintikka tree for (C;T ).Given this lemma, we now know that it is enough to 
onstru
t an automaton whosesu

essful runs 
orrespond to su
h Hintikka trees. We 
an then test for satis�abilityof the 
on
ept w.r.t. a SI-TBox by performing an emptiness test on this automaton.In this 
ase, a looping automaton suÆ
es for de
iding the property.De�nition 2.19 (Automaton AsatC;T ). Let C be an ALC 
on
ept term, T a gen-eral SI-TBox and k the number of existential restri
tions in sub(C;T ). The loopingautomaton AsatC;T is given by AsatC;T = (Q;�; I) where� Q is the set of all Hintikka sets for (C;T );� � is the set of all tuples (H0;H1; : : : ;Hk) 2 Qk+1 that satisfy the Hintikka
ondition and are 
ompatible with T ; and� I = fH 2 Q j C 2 Hg.As expe
ted, the su

essful runs of this automaton where the root is labeled withan element of I 
orrespond exa
tly to SI-Hintikka trees for (C;T ). This yields thefollowing result [BHP08℄.
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on
ept term and T an SI-TBox. The automatonAsatC;T has a su

essful run r with r(") 2 I i� C is satis�able w.r.t. T .This theorem shows that the emptiness test sket
hed before 
an be used as ade
ision pro
edure for satis�ability of ALC 
on
ept terms w.r.t. SI-TBoxes. The au-tomation AC;T is a looping automaton, that is, it makes no use of the B�u
hi a

eptan
e
ondition on runs. The automata 
onstru
tion we will show in the next subse
tion forde
iding axiomati
 satis�ability of LTL formulae requires these a

eptan
e 
onditionsfor 
orre
tness.2.4.2 Axiomati
 Satis�ability of LTL FormulaeIn order to de
ide axiomati
 satis�ability of LTL formulae, we will 
onstru
t an au-tomaton whose su

essful runs 
orrespond to 
omputations for the input. Noti
e thata 
omputation � : N ! P(P) 
an be seen also as a unary tree, that is, a tree whereevery node has exa
tly one su

essor. More pre
isely, ea
h node represents one pointin time and the su

essor relation in this tree is given by the standard ordering ofnatural numbers. Thus, the automaton we 
onstru
t will have the unique unlabeledunary tree as input. The states of this automaton will be sets of LTL formulae, whi
hintuitively represent the set of all formulae that are satis�ed at a given point in time.In that sense, these states 
orrespond to the Hintikka sets de�ned in the previoussubse
tion. Noti
e nonetheless that this 
orresponden
e will not be pre
ise sin
e forLTL we will follow the ideas of previous automata 
onstru
tions (e.g. [WVS83℄), andhen
e will not assume that the formulae are in negation normal form. Given an LTLformula � and a set of LTL formulae R, we de�ne the 
losure of (�;R) as the set of allsubformulae of � and R, and their negations, where double negations are 
an
elled.This set is denoted by 
l(�;R).The states of our automaton are so-
alled elementary sets of formulae, whi
h playthe role of the Hintikka sets of the previous subse
tion; that is, they are maximal and
onsistent sets of subformulae in 
l(�;R).De�nition 2.21 (Elementary set). A set H � 
l(�;R) is 
alled an elementary setfor (�;R) if it satis�es the following 
onditions:� :� 2 H i� � =2 H;� � ^  2 H i� f�;  g � H;�  2 H implies �U 2 H;� if �U 2 H and  =2 H, then � 2 HAs we have said before, the automaton for satis�ability of LTL formulae will takeunary trees as inputs; i.e., its runs will be in�nite words over the set of states. Thetransition relation is thus binary. This transition relation makes sure that the temporaloperators are adequately propagated to the su

essor nodes; for instan
e, if we have a
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 in the label of a node, then its su

essor node must 
ontain  . Thisis formalised by the following de�nition.De�nition 2.22 (Compatible). A tuple (H;H 0) of elementary sets is 
alled 
om-patible i� it satis�es the following 
onditions:� for all 
 2 
l(�;R), 
 2 H i�  2 H 0; and� for all  1U 2 2 
l(�;R),  1U 2 2 H i� either (i)  2 2 H or (ii)  1 2 H and 1U 2 2 H 0.The runs of our automaton will be sequen
es of elementary sets where ea
h two
onse
utive ones form a 
ompatible tuple. In 
ontrast to the 
ase for SI, the presen
eof a run of this automaton does not imply the existen
e of a 
omputation. The reasonis that one 
an delay the satisfa
tion of an until formula inde�nitely; that is, everynode in the run may have the formula  1U 2 while none has  2, violating this waythe last 
ondition in the de�nition of a 
omputation for the input (see De�nition 2.9).In order to rule out these kinds of runs and make sure that ea
h until formula iseventually satis�ed, we will impose a generalised B�u
hi 
ondition whi
h introdu
es aset of �nal states for ea
h until formula in 
l(�;R). Intuitively, ea
h su
h set of �nalstates is in 
harge of enfor
ing the eventual satisfa
tion of one spe
i�
 until formula.De�nition 2.23 (Automaton Asat�;R). Let � and R be an LTL formula and a setof LTL formulae, respe
tively, and let �1U 1; : : : ; �nU n be all the until formulae in
l(�;R). The generalised B�u
hi automaton Asat�;R := (Q;�; I; F1; : : : ; Fn) is given by� Q is the set of all elementary sets for (�;R);� � 
onsists of all 
ompatible pairs (H;H 0) 2 Q�Q;� I := fH 2 Q j R [ f�g � Hg;� for 1 � i � n; Fi := fH 2 Q j  i 2 H or �iU i =2 Hg.The su

essful runs of this automaton whose root is labelled with an initial state
orrespond to the 
omputations for the input (�;R). From this, we obtain the follow-ing result [WVS83℄.Theorem 2.24. Let � be an LTL formula and R a set of LTL formulae. The au-tomaton Asat�;R has a su

essful run r with r(") 2 I i� � is axiomati
 satis�able w.r.t.R. From this theorem it follows that axiomati
 satis�ability of LTL formulae 
an bede
ided by an emptiness test on the automaton Asat�;R.In this 
hapter we have des
ribed several previously known algorithms for reason-ing in di�erent logi
s, starting from the fairly inexpressive HL all the way up to the
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lusion of more 
omplex 
onstru
tors and axioms restri
ting the interpretations for
on
epts and roles in DLs. We then left the DL family to in
lude also the temporaloperators for LTL.Broadly, we showed the main 
hara
teristi
s of two di�erent approa
hes for 
on-stru
ting de
ision pro
edures. On one hand, the tableau-based method, that tries to
onstru
t a model while keeping the restri
tions imposed by the axioms (in
luded asexpansion rules). On the other hand is the automata-based approa
h that tries to
onstru
t an automaton for whi
h an emptiness test leads to a 
orre
t de
ision.The parti
ular instan
es of de
ision pro
edures presented in this 
hapter will helpus formalise the notions of general tableau algorithms (in Chapter 3) and so-
alledaxiomati
 automata (in Chapter 5), respe
tively. We will then show how ea
h ofthese de
ision pro
edures 
an be modi�ed to obtain what is 
alled a pinpointingpro
edure; intuitively, one that will allow us to dedu
e how the presen
e of 
ertainaxioms in
uen
es the property being tested. The output of a pinpointing pro
edurewill be the so-
alled pinpointing formula, from whi
h all explanations and diagnoses
an be inferred.
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Chapter 3Tableaux and PinpointingThe previous 
hapter introdu
ed pro
edures that allow us to de
ide if a property,su
h as subsumption or satis�ability of 
on
ept names, follows from a set of axioms.The sets of axioms used 
ould take very di�erent shapes; namely, 
on
ept de�nitions,assertional axioms, or GCIs, in the 
ase of DLs, or LTL formulae. The de
isionpro
edures we presented 
ame in two 
avours: the tableau-like and the automata-based pro
edures. It is the goal of this work to show how to extend them in su
h away that, on
e a de
ision is made, we are able to justify it by retrieving those axiomsthat are relevant for the obtained answer. The approa
h followed in this work 
onsistson �nding a monotone Boolean formula, whi
h we 
all pinpointing formula, from whi
hthe desired sets of axioms 
an be dedu
ed. The present and following 
hapters willdeal with the tableau-like methods, while we delay the treatment of automata-basedpro
edures until Chapter 5.Before we 
an begin with the task of extending any kind of algorithm, we needto formally des
ribe the problem that we are trying to solve; namely, the propertiesthat should be satis�ed by the pinpointing formula. This in turn will require a formalde�nition of the kinds of properties that the original pro
edures de
ide. All thesenotions are introdu
ed in Se
tion 3.1.Afterwards, we pro
eed to des
ribe extensions of tableau-like de
ision pro
eduresthat 
ompute the desired pinpointing formula. In order to improve understanding,this is done in two steps. We �rst fo
us in the spe
ial 
ase of ground tableaux of whi
hthe subsumption algorithm of Se
tion 2.3.1 is an instan
e. We then generalise all thenotions and results to what we 
all general tableaux in Se
tion 3.3. This notion en-
ompasses the pro
edures des
ribed in Se
tions 2.3.2 and 2.3.3, but is not able to dealwith blo
king 
onditions as des
ribed in the last two se
tions of the previous 
hap-ter. The pinpointing extensions of general tableaux are shown to 
orre
tly 
ompute apinpointing formula whenever they terminate.The extension presented in this 
hapter follows the ideas introdu
ed by Baader andHollunder in [BH95℄. There, the 
onsisten
y algorithm for ALC ABoxes is extendedby a labelling te
hnique that ultimately 
omputes a pinpointing formula. A similarapproa
h was followed by S
hloba
h and Cornet [SC03℄ for 
on
ept unsatis�abilitywith respe
t to so-
alled unfoldable ALC terminologies. The main di�eren
e between33
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h and that by S
hloba
h and Cornet is that the lattertries to �nd the sets of axioms that are relevant to unsatis�ability dire
tly, ratherthan by using the intermediary pinpointing formula as done in the former approa
h.In reality, the result obtained using the method in [SC03℄ 
an be seen as a pinpointingformula written in disjun
tive normal form. Although these ideas have been extendedto in
lude additional 
onstru
tors or use di�erent kinds of axioms (see, for instan
e,[PSK05, MLBP06℄), ea
h of these extensions has been made to work spe
i�
ally forthe language being studied. Nonetheless, ex
ept for the 
ase dealing with blo
king[LMP06℄ that needs spe
ial attention, they all follow the same basi
 ideas.Unfortunately, as shown at the end of this 
hapter, there is no warranty thatthe extended algorithm will stop after a �nite number of steps, even if the originaltableau does. This fa
t is spe
ially relevant sin
e none of the papers 
ited so far dealswith termination of the extensions they present. A
tually, termination is usuallydisregarded as trivially following from the same 
auses of termination of the originaltableau, giving no further insight into whi
h these 
auses are in reality. It will be thetask of Chapter 4 to introdu
e a framework where both, tableaux and their pinpointingextensions, are guaranteed to terminate. It is in that 
hapter too that we will introdu
ethe notion of blo
king for general tableaux and their pinpointing extensions.3.1 Basi
 Notions for PinpointingWe begin this se
tion by de�ning the general form of the inputs for the de
ision algo-rithms used along this work. These inputs, 
alled axiomatised inputs, 
onsist of twoparts. Intuitively, one part 
orresponds to a knowledge base, that is, a set of axiomspossibly restri
ted to satisfy additional internal restri
tions, and the other expressesthe instan
e of the inferen
e problem that needs to be tested against this knowledgebase. The internal restri
tions in the set of axioms are ne
essary for modelling e.g.a
y
li
- or SI-TBoxes, where not every set of axioms is allowed. Indeed, a
y
li
TBoxes require every 
on
ept name to appear at most one in the left-hand-side of a
on
ept de�nition, and SI-TBoxes are restri
ted to allow the use of ea
h role namein at most one inverse axioms. But noti
e that in both 
ases, if a set of axioms isallowed to be used as a knowledge base, then any of its subsets is also allowed. In ourgeneral approa
h we keep this property.The 
onsequen
es in whi
h we are interested need to satisfy a monotoni
ity re-stri
tion in the sense that adding axioms to the knowledge base 
an only make more
onsequen
es true, but not falsify any that already follows from the original set ofaxioms. A property is merely a set of axiomatised inputs, and the de
ision prob-lem asso
iated with su
h property 
onsist on de
iding, for a given axiomatised input,whether it belongs to the set or not. A property that models 
onsequen
es satisfyingthe monotoni
ity restri
tion stated above will be 
alled 
onsequen
e property.De�nition 3.1 (Axiomatised input, 
-property). Let I be a set, 
alled the setof inputs, T be a set, 
alled the set of axioms, and let Padmis (T) � Pfin(T) be aset of �nite subsets of T. Padmis (T) is 
alled admissible if T 2 Padmis (T) impliesT 0 2Padmis(T) for all T 0 � T . An axiomatised input for I and Padmis (T) is of the



3.1. BASIC NOTIONS FOR PINPOINTING 35form (I;T ) where I 2 I and T 2Padmis (T).A 
onsequen
e property (or 
-property for short) is a set P � I�Padmis (T) su
hthat (I;T ) 2 P implies (I;T 0) 2 P for every T 0 2Padmis(T) with T 0 � T .The idea behind 
-properties on axiomatised inputs is to model 
onsequen
e re-lations in logi
, i.e., the 
-property P holds if the input I \follows" from the axiomsin T . The monotoni
ity requirement on 
-properties 
orresponds to the fa
t that wewant to restri
t the attention to 
onsequen
e relations indu
ed by monotoni
 logi
s.In fa
t, for non-monotoni
 logi
s, looking at minimal sets of axioms that have a given
onsequen
e does not make mu
h sense.To illustrate De�nition 3.1, 
onsider the set NC of 
on
ept names. Assume thatI is the set of ordered pairs NC � NC and that T 
onsists of all HL-GCIs over these
on
ept names. Then the following is a 
-property a

ording to the above de�nition:P := f((C;D);T ) j C vT Dg: This property represents subsumption w.r.t. generalHL-TBoxes. As a 
on
rete example, 
onsider � := ((A;B);T ) where T 
onsists ofthe following GCIs:ax1: A v C; ax2: A v D; ax3: D v C; ax4: C uD v B (3.1)It is easy to see that � 2 P. Note that De�nition 3.1 is general enough to 
aptureother variants of the example above, for instan
e, where I0 
onsist of tuples of theform (C;D; T1) 2 I �Pfin(T) and the 
-property is de�ned asP 0 := f((C;D; T1);T2) j C vT1[T2 Dg:For example, if we take the axiomatised input �0 := ((A;B; fax3; ax4g); fax1; ax2g),then �0 2 P 0.Due to the monotoni
ity of 
-properties, it may well be that some axioms areirrelevant for dedu
ing a 
onsequen
e. If we are interested in justifying su
h a 
onse-quen
e, we would need to get rid of all those irrelevant axioms and present a minimalknowledge base from whi
h the 
onsequen
e still follows. If, on the 
ontrary, the 
on-sequen
e is dete
ted as an error, we might want to remove only enough axioms to getrid of it but not more, sin
e that might also remove some desired 
onsequen
es.De�nition 3.2 (MinA,MaNA). Given an axiomatised input � = (I;T ) and a 
-property P, a set of axioms S � T is 
alled a minimal axiom set (MinA) for � w.r.t.P if (I;S) 2 P and (I;S 0) =2 P for every S 0 � S. Dually, a set of axioms S � T is
alled a maximal non-axiom set (MaNA) for � w.r.t. P if (I;S) =2 P and (I;S 0) 2 Pfor every T � S 0 � S. The set of all MinAs (MaNAs) for � w.r.t. P will be denotedas MINP(�) (MAXP(�)).Note that the notions of MinA and MaNA are only interesting in the 
ase where� 2 P. In fa
t, otherwise the monotoni
ity property satis�ed by P implies thatMINP(�) = ; and MAXP(�) = fT g. In the above example, where we have � 2 P, itis easy to see that MINP(�) = ffax1; ax2; ax4g; fax2; ax3; ax4gg. In the variant of theexample where only subsets of fax1; ax2g 
an be taken, we have MINP 0(�0) = ffax2gg.



36 CHAPTER 3. TABLEAUX AND PINPOINTINGThe set MAXP(�) 
an be obtained from MINP(�) by 
omputing the minimal hittingsets of MINP(�), and then 
omplementing these sets [SC03, LS05℄. A set S � T is ahitting set of MINP(�) if it has a nonempty interse
tion with every element of MINP(�),and is a minimal hitting set if no stri
t subset of S is itself a hitting set. In ourexample, the minimal hitting sets of MINP(�) are fax1; ax3g; fax2g; fax4g; and thusMAXP(�) = ffax2; ax4g; fax1; ax3; ax4g; fax1; ax2; ax3gg. The intuition behind thisredu
tions is that, to get a set of axioms that does not have the 
onsequen
e, we mustremove from T at least one axiom for every MinA, and thus the minimal hitting setsgive us the minimal sets to be removed.The redu
tion we have just sket
hed shows that it is enough to design an algorithmfor 
omputing all MinAs, sin
e the MaNAs 
an then be obtained by a hitting set
omputation. It should be noted, however, that this redu
tion is not polynomial:there may be exponentially many hitting sets of a given 
olle
tion of sets, and evende
iding whether su
h a 
olle
tion has a hitting set of 
ardinality � n is already anNP-
omplete problem [GJ79℄. Also note that there is a similar redu
tion involvinghitting sets for 
omputing the MinAs from all MaNAs.Instead of 
omputing MinAs or MaNAs, one 
an also 
ompute the pinpointingformula.10 To de�ne the pinpointing formula, we assume that every axiom t 2 T islabeled with a unique propositional variable, whi
h we denote as lab(t). Let lab(T )be the set of all propositional variables labeling an axiom in T . A monotone Booleanformula over lab(T ) is a Boolean formula using (some of) the variables in lab(T ) andonly the 
onne
tives 
onjun
tion and disjun
tion. We further assume that the formula>, whi
h is always evaluated as true, is a monotone Boolean formula. As usual, weidentify a propositional valuation with the set of propositional variables it makes true.For a valuation V � lab(T ), let TV := ft 2 T j lab(t) 2 Vg.De�nition 3.3 (Pinpointing formula). Given a 
-property P and an axiomatisedinput � = (I;T ), a monotone Boolean formula � over lab(T ) is 
alled a pinpointingformula for P and � if the following holds for every valuation V � lab(T ): (I;TV) 2 Pi� V satis�es �.In our example, we 
an take lab(T ) = fax1; : : : ; ax4g as the set of propositionalvariables. It is easy to see that (ax1 _ ax3) ^ ax2 ^ ax4 is a pinpointing formula for Pand �.Valuations have a natural partial order by means of set in
lusion, whi
h allowsus to speak about minimal and maximal valuations. The following is an immediate
onsequen
e of the de�nition of a pinpointing formula [BH95℄.Lemma 3.4. Let P be a 
-property, � = (I;T ) an axiomatised input, and � a pin-pointing formula for P and �. ThenMINP(�) = fTV j V is a minimal valuation satisfying �gMAXP(�) = fTV j V is a maximal valuation falsifying �g10This 
orresponds to what was 
alled the 
lash formula in [BH95℄. Here, we distinguish betweenthe pinpointing formula, whi
h 
an be de�ned independently of a tableau algorithm, and the 
lashformula, whi
h is indu
ed by a run of a spe
i�
 tableau algorithm.



3.2. PINPOINTING IN GROUND TABLEAUX 37This lemma shows that it is enough to design an algorithm for 
omputing a pin-pointing formula to obtain all MinAs and MaNAs. However, like the previous redu
-tion for 
omputing MAXP(�) from MINP(�), the redu
tion suggested by the lemma isnot polynomial. For example, to obtain MINP(�) from �, one 
an bring � into disjun
-tive normal form and then remove disjun
ts implying other disjun
ts. It is well-knownthat this 
an 
ause an exponential blowup. Conversely, however, the set MINP(�) 
andire
tly be translated into the pinpointing formula_S2MINP(�) ŝ2S lab(s): (3.2)Returning to our example, the pinpointing formula obtained in this fashion fromMINP(�) = ffax1; ax2; ax4g; fax2; ax3; ax4gg is (ax1 ^ ax2 ^ ax4) _ (ax2 ^ ax3 ^ ax4);whi
h is equivalent to the pinpointing formula we had dire
tly 
omputed.3.2 Pinpointing in Ground TableauxBefore des
ribing how general tableau-based algorithms 
an be extended to pro
e-dures that 
ompute a pinpointing formula, we show how this is done in a restri
ted
ase that we will 
all ground tableaux. This 
ase is still interesting by itself, sin
e iten
ompasses several de
ision pro
edures, su
h as the subsumption algorithm for HLor the 
ongruen
e 
losure algorithm [NO07℄. The proofs of all the results presentedin this se
tion will be delayed to the more general statements of Se
tion 3.3.De�nition 3.5 (Ground tableau). Let I be a set of inputs and Padmis(T) anadmissible set of sets of elements in T. A ground tableau for I and Padmis (T) is atuple S = (�; �S ;R; C) where� � is a set 
alled a signature;� �S is a fun
tion, 
alled the initial fun
tion, that maps every I 2 I and everyt 2 T to a �nite subset of �;� R is a set of rules of the form (B0;S) ! B where B0 and B are �nite subsetsof � and S is a �nite set of axioms;� C is a set of �nite subsets of �, 
alled 
lashes.A ground tableau de
ides a property with the help of so-
alled S-states that in-tuitively 
ontain all the knowledge that has been dedu
ed during the exe
ution ofthe method. An S-state is a pair S = (A; T ) where A is a �nite subset of � andT 2 Padmis (T) is an admissible set of axioms. In this 
ase, we 
all A and T theassertion- and axiom-
omponent of S, respe
tively. The elements of A are also 
alledassertions. The de
ision pro
edure begins with the initial state (I;T )S that depends



38 CHAPTER 3. TABLEAUX AND PINPOINTINGon the axiomatised input (I;T ) given to the algorithm. This state is found extendingthe initial fun
tion �S as follows:(I;T )S = (IS [ [t2T tS ;T ):Consider for example the pro
edure for de
iding subsumption of HL 
on
eptsdes
ribed in Se
tion 2.3.1. This algorithm stores all the information needed to makethe de
ision in a set of pairs of the form (A;B), where A;B are 
on
ept names. We
an thus 
onsider its signature to be formed by all su
h pairs. That algorithm beginswith all the trivial knowledge stating that every 
on
ept appearing in the input setof axioms is subsumed by itself. We 
an do this by �xing the initial fun
tion to mapevery axiom t of the form nui=1Ai v muj=1Bj to the settS = f(Ai;Ai) j 1 � i � ng [ f(Bj ;Bj) j 1 � j � mg:Now, sin
e we want this pro
edure to work for every subsumption relation we desireto test, and the de
ision made by su
h ground tableaux relies only on the informationstored in its states, we need a way to spe
ify whi
h spe
i�
 subsumption relation isthe one we are 
urrently trying to de
ide. For this reason, we extend the signature toalso in
lude assertions of the form A v? B with A;B 
on
ept names. The presen
eof an assertion of this kind spe
i�es the request for de
iding the subsumption of Aby B. If we 
onsider the en
oding of these inputs as presented in Page 35, then theinitial fun
tion must map every input of the form (A;B) asking for a subsumptiontest to the set 
ontaining the 
orresponding assertion A v? B. More pre
isely, if wetake the axiomatised input � = ((A;B);T ), where T 
ontains the axioms in (3.1),then the initial fun
tion produ
es the S-state�S = (fA v? B; (A;A); (B;B); (C;C); (D;D)g; T ):The rules inR are used then to iteratively extend the �rst 
omponent of an S-stateS depending ex
lusively on the assertions and axioms appearing in S. Returning tothe subsumption pro
edure, the rule hl spe
i�es, intuitively, that whenever we knowthat a 
on
ept name A is subsumed by all the Ais, and the 
onjun
tion of those Aisis subsumed by the 
onjun
tion of some Bjs by means of an axiom in T , then we
an dedu
e that A is also subsumed by ea
h of the Bj , and we 
an thus extend ourexpli
it knowledge a

ordingly. More 
on
retely, sin
e the S-state �S des
ribed above
ontains the assertion (A;A) and the axiom A v D, a rule appli
ation would add theassertion (A;D) to it. That rule 
an be rewritten in a tableau-like shape as follows:hl : (f(A;Ai) j 1 � i � ng; f nui=1Ai v muj=1Bjg)! f(A;Bj) j 1 � j � mg:The following de�nition formalises this behaviour.



3.2. PINPOINTING IN GROUND TABLEAUX 39De�nition 3.6 (Rule appli
ation). Given an S-state S = (A; T ), and a ruleR : (B0;S)! B we say that R is appli
able to S if the following three 
onditions aresatis�ed: (i) S � T , (ii) B0 � A, and (iii) B 6� A.If the rule R is appli
able to the S-state S = (A; T ), then the appli
ation of R toS yields the new S-state (A [ B; T ). If S0 is obtained from S by the appli
ation ofthe rule R, then we write S !R S0 or simply S !S S0 if it is not relevant whi
h ofthe rules of the tableau S was applied.As usual, we denote the re
exive-transitive 
losure of !S by ��!S . The rules areapplied to the S-state until it be
omes saturated; that is, until no rule 
an be appliedanymore. At that point, we 
an use the set of 
lashes to de
ide the property: theaxiomatised input is a

epted (in other words, belongs to the property de
ided by thealgorithm) if and only if it 
ontains an element of C. Returning to subsumption of HL
on
ept names, A is subsumed by B w.r.t. T i� the saturated S-state found in thisway 
ontains the pair (A;B). Thus, in our tableau setting, the set of 
lashes 
onsistsof all sets of the form f(A;B);A v? Bg, where A;B are 
on
ept names.De�nition 3.7 (Saturated state, 
lash). An S-state S = (A; T ) is 
alled saturatedi� there is no S0 su
h that S!S S0. It 
ontains a 
lash i� there is a set C 2 C su
hthat C � A.For a ground tableau to 
orre
tly de
ide a 
-property it needs �rst to be a ter-minating pro
edure and se
ond to adequately �nd a 
lash in the state found aftertermination, as expressed in the following de�nition.De�nition 3.8 (Corre
tness). Let P be a 
-property on axiomatised inputs for Iand Padmis(T), and S a ground tableau for I and Padmis (T). We say that S is
orre
t for P if the following holds for every axiomatised input � = (I;T ) for I and
Padmis (T):1. S terminates on �; that is, there exists no in�nite 
hain of rule appli
ationsS0 !S S1 !S : : : starting with S0 = �S.2. For every 
hain of rule appli
ations S0 ��!S Sn su
h that S0 = �S and Sn issaturated, we have � 2 P i� Sn 
ontains a 
lash.The se
ond 
ondition for 
orre
tness given in this de�nition might seem like astrong restri
tion, sin
e it for
es the algorithm to yield the same result regardlessof the order in whi
h rules are applied, making it suÆ
ient to test only one su
horder to de
ide the property. A
tually, the fa
t that the order in whi
h rules areapplied is irrelevant for the presen
e or absen
e of a 
lash is hard
oded in our notionof ground tableau, as shown in the next proposition. This means that although theorder in whi
h rules are applied 
an be seen as a sour
e of non-determinism, it is ofthe do-not-
are kind, and hen
e we need not worry about it.



40 CHAPTER 3. TABLEAUX AND PINPOINTINGProposition 3.9. Let � be an axiomatised input and S0 = �S. If S and S0 aresaturated S-states su
h that S0 ��!S S and S0 ��!S S0, then S 
ontains a 
lash i� S0
ontains a 
lash.A 
orre
t tableau 
an be used to de
ide whether a given axiomatised input belongsto a property or not. We pro
eed now to show how it 
an be extended to an algorithmthat 
omputes a pinpointing formula. Re
all the assumption made for the de�nition ofthe pinpointing formula that every axiom t 2 T is labeled with a unique propositionalvariable lab(t), and the set of all propositional variables labeling an axiom in T isdenoted by lab(T ).Given an axiomatised input � = (I;T ), the modi�ed algorithm also works on setsof S-states, but now every assertion a o

urring in the �rst 
omponent of an S-stateis equipped with a label lab(a), whi
h is a monotone Boolean formula over lab(T ). We
all su
h S-states labeled S-states. Intuitively, the label of an assertion expresses theaxioms that are ne
essary to produ
e it. Thus, in the initial S-state (A; T ) = (I;T )S ,an assertion a 2 A is labeled with > if a 2 IS and with Wft2T ja2tSg lab(t) otherwise.The intuition of these labels is that, if a 2 IS, then the assertion a will be produ
edby the tableaux algorithm, regardless of the axioms in
luded in the input. Otherwise,the label expresses whi
h axioms are the responsible for its appearan
e in the initialstate.For instan
e, 
onsider again our tableau for subsumption w.r.t. HL TBoxes andthe axiomatised input � = ((A;B);T ), where T has only the axioms in (3.1). Theinitial fun
tion maps � to the S-state having the following set of labeled assertions:11fA v? B>; (A;A)ax1_ax2 ; (B;B)ax4 ; (C;C)ax1_ax3_ax4 ; (D;D)ax2_ax3g: (3.3)The de�nition of rule appli
ation must also take the labels of assertions and axiomsinto a

ount. Let A be a set of labeled assertions and  a monotone Boolean formula.We say that the (unlabeled) assertion a is  -insertable into A if either (i) a =2 A,or (ii) a 2 A, with lab(a) = �, but  6j= �. Given a set B of assertions and a setA of labeled assertions, the set of  -insertable elements of B into A is de�ned asins (B;A) := fb 2 B j b is  -insertable into Ag.12 By  -inserting these insertableelements into A, we obtain the new set of labeled assertions given by:A d B := A [ ins (B;A);where ea
h assertion a 2 A n ins (B;A) keeps its old label lab(a), ea
h assertion inins (B;A) n A gets label  , and ea
h assertion b 2 A \ ins (B;A) gets the new label _ lab(b).De�nition 3.10 (Pinpointing rule appli
ation). Let S = (A; T ) be a labeled S-state and R : (B0;S) ! B a rule. R is pinpointing appli
able to S if (i) S � T ,(ii) B0 � A, and (iii) ins (B;A) 6= ;, where  := Vb2B0 lab(b) ^Vs2S lab(s).11For simpli
ity, we sometimes represent the labels of assertions by means of supers
ripts; i.e., if ais an assertion, then a� denotes the labeled assertion where lab(a) = �.12Noti
e here that the set B 
ontains unlabeled assertions. This is 
onsistent with the fa
t thatrules of a tableau use only unlabeled assertions; the labels are treated by a modi�ed rule appli
ation.



3.2. PINPOINTING IN GROUND TABLEAUX 41Given a labeled S-state S = (A; T ) to whi
h the rule R is pinpointing appli
able,the pinpointing appli
ation of R to S yields the new S-state (A d B; T ), where theformula  is de�ned as above.If S0 is obtained from S by the pinpointing appli
ation of the rule R, then we writeS!Rpin S0, or simply S!Spin S0 if it is not relevant whi
h of the rules of the tableauS was applied. A labeled S-state S is pinpointing saturated if there is no S0 su
hthat S!Spin S0.Returning to our example, we show how pinpointing rule appli
ations modify thelabeled state �S in (3.3). The assertion (A;A) along with axiom ax2 
an trigger therule hl in order to add the assertion (A;D) to this state, with the label (ax1_ax2)^ax2.For the sake of readability, we will simplify this formula. Hen
e, lab((A;D)) = ax2.This newly generated assertion 
an now be used in 
ombination with axiom ax3 toadd the assertion (A;C), whi
h will have as label the 
onjun
tion of lab((A;D))and ax3; i.e., lab((A;C)) = ax2 ^ ax3. Noti
e now that the assertion (A;A) 
analso trigger a rule appli
ation by means of axiom ax1. Sin
e this rule appli
ationwould only add the assertion (A;C) that is already present in the 
urrent S-state,it would be disallowed in the original tableau sense. However, sin
e this shows analternate way to obtain the same assertion, it needs to be allowed by pinpointing ruleappli
ation, as is the 
ase be
ause (ax1 _ ax2) ^ ax1 6j= lab((A;C)). When the rule ispinpointing applied, no assertion is added to the set, but the label of (A;C) is 
hangedto ((ax1 _ ax2) ^ ax1) _ (ax2 ^ ax3), or, equivalently, ax1 _ (ax2 ^ ax3). Finally, theassertions (A;C) and (A;D) 
an be used along axiom ax4 to introdu
e the assertion(A;B), whose label is given by lab((A;C)) ^ lab((A;D)) ^ ax4; that is,(ax1 _ (ax2 ^ ax3)) ^ ax2 ^ ax4:Re
all now that the original tableau de
ides the property by verifying the presen
eof a 
lash. In the subsumption example, the 
lash 
onsists of the set of assertionsfA v? B; (A;B)g. The 
onjun
tion of the labels of both assertions tells us whi
haxioms are ne
essary for the 
lash to exist. In this 
ase, the so-
alled 
lash formula is>^ (ax1 _ (ax2 ^ ax3))^ ax2 ^ ax4. Clearly, it is equivalent to the pinpointing formula(ax1 _ ax3)^ ax2 ^ ax4 that was presented in Se
tion 3.1. In general, 
onsider a 
hainof pinpointing rule appli
ations S0 !Spin : : : !Spin Sn su
h that S0 = �S for anaxiomatised input � and Sn is pinpointing saturated. The label of an assertion in Snexpresses whi
h axioms are needed to obtain this assertion. A 
lash in Sn dependson the joint presen
e of 
ertain assertions. Thus, we de�ne the label of the 
lash asthe 
onjun
tion of the labels of these assertions. Sin
e it is enough to have just one
lash in Sn, the labels of di�erent 
lashes in this state are 
ombined disjun
tively.De�nition 3.11 (Clash set, 
lash formula). Let S = (A; T ) be a labeled S-stateand A0 � A. Then A0 is a 
lash set in S if A0 2 C. The label of this 
lash set is A0 := Va2A0 lab(a).Let S be a labeled S-state. The 
lash formula indu
ed by S is de�ned as S := _A0 
lash set inS A0 :
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Re
all that, given a set T of labeled axioms, a propositional valuation V indu
esthe subset TV := ft 2 T j lab(t) 2 Vg of T . Similarly, for a set A of labeled assertions,the valuation V indu
es the subset AV := fa 2 A j V satis�es lab(a)g. Given a labeledS-state S = (A; T ) we de�ne its V-proje
tion as V(S) := (AV ;TV). The followinglemma is an easy 
onsequen
e of the de�nition of the 
lash formula:Lemma 3.12. Let S be a labeled S-state and V a propositional valuation. Then wehave that V satis�es  S i� V(S) 
ontains a 
lash.There is also a 
lose 
onne
tion between pinpointing saturatedness of a labeledS-state and saturatedness of its proje
tion:Lemma 3.13. Let S be a labeled S-state and V a propositional valuation. If S ispinpointing saturated, then V(S) is saturated.Given a tableau that is 
orre
t for a property P, its pinpointing extension is 
orre
tin the sense that the 
lash formula indu
ed by the pinpointing saturated set 
omputedby a terminating 
hain of pinpointing rule appli
ations is indeed a pinpointing formulafor P and the axiomatised input.Theorem 3.14 (Corre
tness of pinpointing). Let P be a 
-property on axioma-tised inputs for I and Padmis (T), and S a 
orre
t tableau for P. Then the followingholds for every axiomatised input � = (I;T ) for I and Padmis (T):For every 
hain of rule appli
ations S0 !Spin : : : !Spin Sn su
h thatS0 = �S and Sn is pinpointing saturated, the 
lash formula  Sn indu
edby Sn is a pinpointing formula for P and �.In this se
tion we have de�ned ground tableaux and shown how ea
h of them 
an beextended into an algorithm that 
omputes a pinpointing formula for a given propertyand axiomatised input. While this framework suÆ
es to deal with the very inexpres-sive logi
 HL, it la
ks the expressivity for dealing with two phenomena that appearalready in the algorithm for de
iding 
onsisten
y of ALC ABoxes (Se
tion 2.3.2);namely, non-determinism, and assertions with an internal stru
ture. The next se
-tion extends the ideas of ground tableaux, de�ning a more general notion that 
ansu

essfully deal with these phenomena.3.3 Pinpointing in General TableauxIn this se
tion we follow the same path of Se
tion 3.2: we �rst formalise the notionof a tableau-like de
ision pro
edure, and then show how it 
an be modi�ed to obtainan algorithm that 
omputes a pinpointing formula. The stru
ture of these two stepsfollows the same main ideas used in the previous se
tion, but in a more general settingthat 
an deal both with non-deterministi
 rules, and with assertions having an inter-nal stru
ture. For this part, we will use the algorithm des
ribed in Se
tion 2.3.2, in



3.3. PINPOINTING IN GENERAL TABLEAUX 43whi
h both phenomena appear, as an intuitive basis for the notions that will be intro-du
ed. Noti
e, nonetheless, that the 
-property de
ided by that algorithm is a
tuallyin
onsisten
y; analogously, in the algorithms presented in Se
tions 2.3.3 to 2.3.5 wewill be interested in unsatis�ability of 
on
epts.With respe
t to non-determinism, 
onsider the rule al
t shown in Figure 2.3.When our model 
andidate 
ontains a 
on
ept of the form C t D, then we need to
hoose (do-not-know) non-deterministi
ally whi
h of the disjun
ts to use to extendit. In order to represent this, the rules in a general tableau will have on the right-hand side a �nite set of sets of assertions, rather than simply a set of assertions as inthe previous se
tion. More formally, a rule is of the form (B0;S) ! fB1; : : : ; Bmg,where B0; B1; : : : ; Bm are �nite sets of assertions and S is a �nite set of axioms. Thus,ignoring for the moment the variables, the al
t rule 
ould be represented in this settingas al
t : (fC tDg; ;)! ffCg; fDgg:Instead of dealing only with S-states, the de
ision algorithm will operate over setsof S-states, where the appli
ation of a rule R substitutes one of these S-states withas many S-states as there are elements in the right-hand side of R. Basi
ally, ea
hS-state in the set represents one of the non-deterministi
 options that needs to beveri�ed. For instan
e, if we have the singleton set f(fC tDg; ;)g, an appli
ation ofthe rule al
t will lead to the set f(fC t D;Cg; ;), (fC t D;Dg; ;)g, where the �rstelement expresses the path where the 
on
ept C is sele
ted to be satis�ed, and these
ond, that in whi
h D is the satis�ed 
on
ept.Regarding the stru
ture of assertions, noti
e the tableaux-based algorithms forALC use as assertions not merely 
on
ept terms, but have individuals asso
iated withthem; i.e., the assertions have the form C(a) or r(a; b), with C a 
on
ept name, r a rolename and a; b two individuals. In general, we have stru
tured assertions of the formP (a1; : : : ; ak), where P is a k-ary predi
ate and a1; : : : ; ak are 
onstants. Naturally itis not ne
essary to de�ne a rule for ea
h spe
i�
 
onstant; we instead allow variablesto a
t as pla
eholders for them.Furthermore, rules should be able to 
reate new 
onstants. For example, 
onsiderthe rule al
9 appearing also in Figure 2.3. The appli
ation of this rule requires usto 
reate a new individual name. Su
h a rule will be written in the general tableauxsetting as al
9 : (f(9r:C)(x)g; ;) ! ffr(x; y); C(y)gg:In order to apply this rule to an S-state, we need to appropriately repla
e the variablesin the left-hand side by 
onstants. The variable y is what will be 
alled a freshvariable; that is, one that appears only on the right-hand side of a rule. Fresh variablesare repla
ed by 
onstants that do not appear in the S-state to whi
h the rule isbeing applied. In order to avoid that su
h a rule is applied inde�nitely, 
reating newindividuals with ea
h appli
ation, the appli
ability 
ondition needs to be modi�ed to
he
k whether it is possible to repla
e the fresh variables by old 
onstants to obtainassertions in the 
urrent S-state.We begin by formalising all these notions. In the following we will use V and Dto denote 
ountably in�nite sets whose elements are 
alled variables; and 
onstants,
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tively. A signature � is a set of predi
ate symbols, where ea
h predi
ate P 2 �is asso
iated to a (�xed) arity. A �-assertion is of the form P (a1; : : : ; an), where P 2 �is a predi
ate of arity n and a1; : : : ; an are 
onstants from D. Likewise, a �-patternis of the form P (x1; : : : ; xn) where P 2 � is an n-ary predi
ate and x1; : : : ; xn 2 V.Whenever the signature is 
lear from the 
ontext, we will often use it impli
itly andsimply say pattern or assertion. Given a set A of assertions, we will use the expression
ons(A) to denote the set of 
onstants appearing in A. In the same fashion, var(B)denotes the set of variables that appear in a set B of patterns.A substitution is a mapping � : V ! D, where V � V is a �nite set of variables.In this 
ase we say that � is a substitution on V . If B is a set of patterns su
h thatvar(B) � V , then B� denotes the set of assertions obtained from B by repla
ing ea
hvariable by its image under �. If � is a substitution on V and � a substitution on V 0su
h that V � V 0 and �(x) = �(x) for all x 2 V , then we say that � extends �.We are ready now to des
ribe the notion of general tableaux, whi
h generalisesthe ideas of ground tableaux presented in the previous se
tion by allowing non-deterministi
 rules and stru
tured assertions.De�nition 3.15 (General tableau). Let I be a set of inputs and Padmis(T) anadmissible set of sets of elements in T. A general tableau for I and Padmis (T) is atuple S = (�; �S ;R; C) where� � is a signature;� �S is a fun
tion that maps every I 2 I to a �nite set of �nite sets of �-assertionsand every t 2 T to a �nite set of �-assertions;� R is a set of rules of the form (B0;S) ! fB1; : : : ; Bmg where B0; : : : ; Bm are�nite sets of �-patterns and S is a �nite set of axioms;� C is a set of �nite sets of �-patterns, 
alled 
lashes.As for ground tableaux, we extend the fun
tion �S to axiomatised inputs by setting(I;T )S = f(A [ [t2T tS ;T ) j A 2 ISg:Noti
e that in this 
ase, given an axiomatised input � = (I;T ), �S does not de�ne asingle S-state, but rather a whole set of them. Intuitively, ea
h set represents a non-deterministi
 
hoi
e for the algorithm to begin to iterate with. In order to de
ide aproperty aÆrmatively, ea
h of these sets needs to produ
e a 
lash. We need to extendthe notion of a rule appli
ation too. In this 
ase, we 
annot just extend the onlyS-state; instead, rules modify the 
urrent set of S-states M. Ea
h rule appli
ationsele
ts an S-state S fromM and repla
es it by �nitely many new S-states S1; : : : ;Smthat extend the �rst 
omponent of S.



3.3. PINPOINTING IN GENERAL TABLEAUX 45De�nition 3.16 (Rule appli
ation). Suppose we have an S-state S = (A; T ), arule R : (B0;S)! fB1; : : : ; Bmg 2 R and a substitution � on var(B0). We say that Ris appli
able to S with � if the following three 
onditions are satis�ed: (i) S � T , (ii)B0� � A, and (iii) for every i; 1 � i � m and every substitution �0 on var(B0 [ Bi)extending � it holds that Bi�0 6� A.Given a set of S-states M, an S-state S = (A; T ) 2 M and a rule R, if R isappli
able to S with substitution �, then the appli
ation of R to S with � inM yieldsthe new set of S-states M0 = (M n fSg) [ f(A [ Bi�;T ) j 1 � i � mg, where �is a substitution on the variables appearing in R that extends � and maps the freshvariables of R to distin
t new 
onstants; i.e., 
onstants that do not appear in A.IfM0 is obtained fromM by the appli
ation of the rule R, then we writeM!RM0or simply M!S M0 if it is not relevant whi
h rule of the tableau S is applied.The 
onditions of appli
ability ensure that the same rule R 
annot be applied in-de�nitely using the same substitution �, but it may well be the 
ase that the newadded 
onstants trigger repeated rule appli
ations, yielding a non-terminating pro
e-dure. Let us for a moment assume that this is not the 
ase, and we 
an rea
h a set ofS-states where no rule 
an be applied. When no rules are appli
able toM, we 
he
kfor 
lashes in ea
h of the states belonging toM. The de
ision made by the algorithmwill depend on the presen
e or absen
e of these 
lashes.De�nition 3.17 (Saturated, 
lash). The set of S-states M is 
alled saturated ifthere is no M0 su
h that M!S M0.The S-state S = (A; T ) 
ontains a 
lash if there is a set of patterns C 2 C and asubstitution � on var(C) su
h that C� � A; the set of S-states M is full of 
lashes ifea
h of its elements 
ontains a 
lash.To de
ide whether a property holds, we need to 
he
k at the saturated set of S-states rea
hed by the appli
ation of the tableaux rules. In Se
tion 2.3.2, we see thatthe input ABox is in
onsistent if and only if all the states in this set 
ontain a 
lash.The same 
ondition appears in the subsequent se
tion, for de
iding unsatis�ability ofa 
on
ept with respe
t to an a
y
li
 TBox. Thus, in a general tableau, we will saythat the axiomati
 input belongs to a property if after �nitely many rule appli
ationswe rea
h a saturated set of states that is full of 
lashes.De�nition 3.18 (Corre
tness). Let P be a 
-property on axiomatised inputs forI and Padmis (T), and S a general tableau for I and Padmis (T). We say that S is
orre
t for P if the following holds for every axiomatised input � = (I;T ) for I and
Padmis (T):1. S terminates on �; that is, there exists no in�nite 
hain of rule appli
ationsM0 !S M1 !S : : : starting with M0 = �S.2. For every 
hain of rule appli
ations M0 ��!S Mn su
h that M0 = �S and Mnis saturated, we have � 2 P i�Mn is full of 
lashes.



46 CHAPTER 3. TABLEAUX AND PINPOINTINGIt is easy to see that ground tableaux are indeed a spe
ial 
ase of general tableaux,in whi
h the signature 
ontains only nullary predi
ates and all the rules are determin-isti
; that is, they have a singleton set on their right-hand side. Even in the moregeneral setting of this se
tion, we 
an show a result analogous to Proposition 3.9 stat-ing that the rule appli
ation order is irrelevant to the de
ision made by the tableau.Proposition 3.19. Let � be an axiomatised input and M0 = �S. If M and M0 aresaturated sets of S-states su
h that M0 ��!S M and M0 ��!S M0, then M is full of
lashes i�M0 is full of 
lashes.This proposition a
tually follows dire
tly from Lemma 3.31, and hen
e we delayits proof until there. A dire
t proof of the proposition would be almost identi
al tothat presented for Lemma 3.31.Given a general tableau S = (�; �S ;R; C) that is 
orre
t of a property P, we showhow the algorithm for de
iding P indu
ed by S 
an be modi�ed into an algorithm that
omputes a pinpointing formula for P. As in the ground 
ase, the modi�ed algorithmworks in a fashion similar to the original tableau, based on S-states, but now everyassertion a o

urring in the assertion 
omponent of an S-state is equipped with a labellab(a) whi
h is a monotone Boolean formula over lab(T ).The assertions appearing in an initial state are labeled in the same way as in theprevious se
tion; that is, given an initial S-state (A; T ) 2 (I;T )S , an assertion a 2 Ais labeled with > if a 2 IS and with Wft2T ja2tSg lab(t) otherwise.De�nition 3.20 (Pinpointing rule appli
ation). Assume there is a labeled S-stateS = (A; T ), a rule R : (B0;S)! fB1; : : : ; Bmg, and a substitution � on var(B0). Thisrule is pinpointing appli
able to S with � if the following 
onditions hold: (i) S � T ,(ii) B0� � A, and (iii) for every i; 1 � i � m, and every substitution �0 on var(B0[Bi)extending � we have ins (Bi�0; A) 6= ;, where = ^b2B0 lab(b�) ^ ŝ2S lab(s): (3.4)Given a set of labeled S-statesM and a labeled S-state S = (A; T ) 2M to whi
hthe rule R is pinpointing appli
able with substitution �, the pinpointing appli
ation ofR to S with � inM yields the new set of labeled statesM0 = (Mn fSg) [ f(A d Bi�;T ) j 1 � i � mg;where the formula  is de�ned as in Equation (3.4) and � is a substitution on thevariables o

urring in R that extends � and maps the fresh variables of R to distin
tnew 
onstants.If M0 is obtained from M by the pinpointing appli
ation of R, then we writeM !Rpin M0, or simply M !Spin M0 if the rule applied is not relevant. A setof labeled S-states M is 
alled pinpointing saturated if there is no M0 su
h thatM!Spin M0.Consider a 
hain of pinpointing rule appli
ations M0 !Spin : : : !Spin Mn su
hthat M0 = �S for an axiomatised input � and Mn is pinpointing saturated. The



3.3. PINPOINTING IN GENERAL TABLEAUX 47label of an assertion inMn expresses whi
h axioms are needed to obtain said assertion.Thus, we de�ne the label of a 
lash as the 
onjun
tion of the labels of all the assertionsappearing in it. Sin
e it is enough to have just one 
lash per S-state S, the labelsof di�erent 
lashes in S are 
ombined disjun
tively. Finally, sin
e we need a 
lashin every S-state of Mn, the formulae obtained from the single S-states are again
onjoined.De�nition 3.21 (Clash set, 
lash formula). Let S = (A; T ) be a labeled S-stateand A0 � A. Then A0 is a 
lash set in S if there is a 
lash C 2 C and a substitution �on var(C) su
h that A0 = C�. The label of this 
lash set is given by  A0 = Va2A0 lab(a).LetM = fS1; : : : ;Sng be a set of labeled S-states. The 
lash formula indu
ed byM is de�ned as  M = n̂i=1 _A0 
lash set in Si  A0In the previous se
tion we de�ned the V-proje
tion of a labeled S-state S = (A; T )as V(S) = (AV ;TV). We now extend this notion to sets of S-statesM in the obviousway: V(M) = fV(S) j S 2Mg.Lemma 3.22. LetM be a �nite set of labeled S-states and V a propositional valuation.Then V satis�es  M i� V(M) is full of 
lashes.Proof. We will prove the if dire
tion �rst. For that, assume that V(M) is full of
lashes. We know then that for every S-state Si 2 M the proje
tion V(Si) 
ontainsa 
lash. Thus, for every i there is a 
lash set Ai in Si su
h that lab(a) is satis�ed by Vfor every assertion a 2 Ai. This means that V satis�es  Ai , and hen
e V also satis�esthe formula _A0 
lash set in Si  A0 :Sin
e this is true for every Si 2 M, the valuation V satis�es also the 
lash formula M.Conversely, assume for the only if dire
tion that V(M) is not full of 
lashes; i.e.,there exists a Si 2 M su
h that V(Si) does not 
ontain a 
lash. For this to happenit must be the 
ase that for every 
lash set A0 2 Si there is an assertion a 2 A0 su
hthat V does not satisfy lab(a). Consequently, V does not satisfy the label  A0 of anyof the 
lash sets A0 in Si, and thus this valuation 
annot satisfy the disjun
tion ofsu
h labels. This shows that V does not satisfy the 
lash formula.There is also a 
lose 
onne
tion between the pinpointing saturatedness of a set oflabeled S-states and the saturatedness of its proje
tion.Lemma 3.23. LetM be a �nite set of labeled S-states and V a propositional valuation.IfM is pinpointing saturated, then V(M) is saturated.



48 CHAPTER 3. TABLEAUX AND PINPOINTINGProof. Suppose that V(M) is not saturated; in other words, that there is an S-stateS = (A; T ) 2 M and a rule R : (B0;S) ! fB1; : : : ; Bmg su
h that R is appli
able toV(S) with substitution �. We will show that R is pinpointing appli
able to S withthe same substitution �, and hen
eM is not pinpointing saturated.By De�nition 3.6, sin
e R is appli
able to V(S) with substitution �, we know that(i) S � TV , (ii) B0� � AV , and (iii) for every i; 1 � i � m and every substitution�0 on var(B0 [ Bi) extending �, it holds that Bi�0 6� AV . Sin
e S � TV � T andB0� � AV � A, the �rst two 
onditions of the de�nition of pinpointing appli
abilityof rules (De�nition 3.20) are satis�ed. We need now only to show that the third
ondition is also satis�ed. Consider an arbitrary but �xed i and a substitution �0 onvar(B0 [Bi) extending �. We must show that ins (Bi�0; A) 6= ;, where = ^b2B0 lab(b�) ^ ŝ2S lab(s):Noti
e that S � TV and B0� � AV imply that V satis�es  . Sin
e Bi�0 6� AV , theremust exist a b 2 Bi su
h that b�0 =2 AV . This means that either b�0 =2 A or V doesnot satisfy lab(b�0). In the �rst 
ase, b�0 is 
learly  -insertable into A; in the se
ond,it holds that  6j= lab(b�0) sin
e V satis�es  , and thus b�0 is again  -insertable intoA. Hen
e, ins (Bi�0; A) 6= ;, whi
h implies that R is pinpointing appli
able to S withsubstitution �.Given a tableau that is 
orre
t for a property P, its pinpointing extension is 
orre
tin the sense that the 
lash formula indu
ed by the pinpointing saturated set 
omputedby a terminating 
hain of pinpointing rule appli
ations is indeed a pinpointing formulafor P and the input.Theorem 3.24. Let P be a 
-property on axiomatised inputs over I and Padmis (T),and S a 
orre
t tableau for P. Then, for every axiomatised input � = (I;T ) over Iand Padmis (T) it holds thatFor every 
hain of rule appli
ations M0 !Spin : : : !Spin Mn su
h thatM0 = �S andMn is pinpointing saturated, the 
lash formula  Mn indu
edbyMn is a pinpointing formula for P and �.We will prove this theorem by proje
ting 
hains of pinpointing rule appli
ationsto 
hains of tableau rule appli
ations as in De�nition 3.16. Unfortunately su
h aproje
tion 
annot be done in a straightforward manner sin
e in general a pinpointingrule appli
ationM!Spin M0 does not imply that V(M) !S V(M0). There are twopossible reasons for this. First, it 
ould be the 
ase that the assertions and axioms towhi
h the pinpointing rule was applied inM are not present in the proje
tion V(M)be
ause V does not satisfy their labels. In that 
ase, it holds that V(M) = V(M0),although M 6= M0. The se
ond reason is that a pinpointing rule appli
ation of arule may 
hange the proje
tion (that is, V(M) 6= V(M0)), but this 
hange does not
orrespond to the appli
ation of the rule to V(M). For example, 
onsider the rule al
9and assume that we have an S-state 
ontaining the assertions (9r:C)(a) with label ax1and r(a; b); C(b) with label ax2. Clearly, the rule al
9 is pinpointing appli
able, and
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ation adds the new assertions r(a; 
); C(
) both labeled with ax1, where 
 is anew 
onstant. Suppose now that V is a valuation that makes ax1 and ax2 true. Thenthe V-proje
tion of the S-state 
ontains the three assertions (9r:C)(a); r(a; b); C(b).Thus, the existential rule is not appli
able, whi
h means that no new individual 

an be introdu
ed. To over
ome the se
ond reason, we de�ne a modi�ed version ofrule appli
ation in whi
h the third 
ondition for appli
ability from De�nition 3.16 isremoved.De�nition 3.25 (Modi�ed rule appli
ation). Given a S-state S = (A; T ), arule R : (B0;S) ! fB1; : : : ; Bmg, and a substitution � on var(B0), we say that R ism-appli
able to S with � if (i) S � T , and (ii) B0� � A. In this 
ase, we writeM !Sm M0 if S 2 M and M0 = (Mn fSg) [ f(A [ Bi�;T ) j 1 � i � mg, where� is a substitution on the variables o

urring in R that extends � and maps the freshvariables of R to distin
t new 
onstants.Modi�ed rule appli
ations are 
losely related to the \regular" rule appli
ations aspresented in Se
tion 3.3 on one side, and to pinpointing rule appli
ations on the other.In the following lemma, the term saturated refers to saturatedness with respe
t to!S ,as introdu
ed in De�nition 3.16.Lemma 3.26. Let � = (I;T ) be an axiomatised input and M0 = �S.1. Assume that M0 ��!S M and M0 ��!Sm M0 where M and M0 are saturated�nite sets of S-states. Then M is full of 
lashes i�M0 is full of 
lashes.2. Assume that M and M0 are �nite sets of labeled S-states, and V a proposi-tional valuation. Then M !Spin M0 implies that either V(M) !Sm V(M0)or V(M) = V(M0). In parti
ular, this shows that M0 ��!Spin M impliesV(M0) ��!Sm V(M).Proof. The �rst statement of this lemma is a dire
t 
onsequen
e of Lemma 3.31 thatwill be proved later in this se
tion, and so we fo
us this proof only on the se
ondstatement.Assume that M !Spin M0; that is, there is an S-state S = (A; T ) 2 M and arule R : (B0;S)! fB1; : : : ; Bmg su
h that R is pinpointing appli
able to S with somesubstitution � and M0 = (M n fSg) [ f(A d Bi�;T ) j 1 � i � mg where � and  are as in the de�nition of pinpointing appli
ation (De�nition 3.20). Take an S-stateSi = (A d Bi�;T ) 2 M0 that was added by the appli
ation of R. By the de�nitionof  -insertion, we know that (i) every assertion a 2 An ins (Bi�;A) keeps its old labellab(a), (ii) ea
h newly added assertion in ins (Bi�;A) n A gets  as label, and (iii)every assertion b 2 A \ ins (Bi�;A) modi�es its label to  _ lab(b). We will make a
ase analysis, depending on whether V satis�es the formula  or not.If V satis�es  , then it holds that (Ad Bi�)V = AV[Bi� sin
e the label of ea
h ofthe newly added assertions and ea
h of the old assertions that got their label modi�edis implied by  and hen
e also satis�ed by V. This shows that V(M) !Sm V(M0)sin
e the 
onditions of m-appli
ability follow dire
tly from the fa
t that V satis�es  .
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ase where V does not satisfy  . In this 
ase we have that(A d Bi�)V = AV sin
e the label of every newly added assertion is  and hen
e notsatis�ed by V, while the disjun
tion with  modifying the labels of the assertions inA\Bi� does not 
hange the evaluation of the new labels under V. It thus holds thatV(M) = V(M0).If we have an axiomatised input � = (I;T ) and a sequen
e of rule appli
ationsM0 ��!Spin Mn where M0 = �S and Mn is pinpointing saturated, we want to showthat the 
lash formula  =  Mn is in fa
t a pinpointing formula. This follows easilyfrom the following two lemmas.Lemma 3.27. If (I;TV) 2 P then V satis�es  .Proof. Let N0 = (I;TV)S . Sin
e S is a 
orre
t tableau, S must terminate on everyinput, and hen
e there exists a saturated set of S-states N su
h that N0 ��!S N . Bythe same de�nition of 
orre
tness of S and the fa
t that (I;TV) 2 P, we know thatN is full of 
lashes. By Part 2 of Lemma 3.26, we know thatM0 ��!Spin Mn impliesV(M0) ��!Sm V(Mn). Additionally, we know V(M0) = N0, and by Lemma 3.23 thatV(Mn) is saturated. Thus, using 1 of Lemma 3.26 and the fa
t that N is full of
lashes, we 
an dedu
e that V(Mn) is also full of 
lashes. But then, by Lemma 3.22we know that V satis�es  =  Mn .Lemma 3.28. If V satis�es  then (I;TV) 2 P.Proof. Consider as in the previous lemma a 
hain of rule appli
ations of the formN0 ��!S N where N0 = (I;TV)S and N is saturated. As S is a 
orre
t tableau for P,in order to show that (I;TV) 2 P, it suÆ
es to prove that N is full of 
lashes. Asin the proof of the previous lemma, we have that V(M0) ��!Sm V(Mn);V(M0) = N0,and V(Mn) is saturated. Sin
e V satis�es  , by Lemma 3.22 we know that V(Mn) isfull of 
lashes. By 1 of Lemma 3.26 this implies that N is also full of 
lashes.We have now 
ompleted the proof of Theorem 3.24, ex
ept for the �rst statementin Lemma 3.26. Before proving this result, we will introdu
e the notion of a substate.Intuitively, an S-state S is a substate of an S-state S0 if every assertion and axiomin S appears also in S0. However, we want to have a more general notion by allowingdi�erent 
onstants to be used in the S-states as long as one 
an �nd a renaming ofthe 
onstants in S into the ones in S0 su
h that the desired in
lusion between theirsets of assertions holds.De�nition 3.29 (Substate). The S-state S = (A; T ) is a substate of S0 = (A0;T 0),denoted as S � S0 i� T � T 0 and there is a renaming fun
tion f : 
ons(A)! 
ons(A0)su
h that if P (a1; : : : ; ak) 2 A, then P (f(a1); : : : ; f(ak)) 2 A0.One important thing to noti
e is that if we have a pair of S-states S = (A; T ) andS0 = (A0;T 0) su
h that S � S0, then the following property holds: if there is a set Bof patterns and a substitution � on var(B) su
h that B� � A, then the substitution�0 = � Æ f , where f is the renaming fun
tion that yields S � S0, satis�es B�0 � A0.In parti
ular, this fa
t implies that S0 
ontains a 
lash whenever S does.



3.3. PINPOINTING IN GENERAL TABLEAUX 51Lemma 3.30. Let N and N0 be sets of S-states, where N0 is saturated, and letS 2 N and S0 2 N0. If S � S0, then for every N !Rm N 0 there is S0 2 N 0 su
hthat S0 � S0.Proof. If N 0 is obtained by the appli
ation of R to an S-state di�erent from S inN , then S 2 N 0 and thus nothing needs to be shown. Suppose then that the ruleR : (B0;S) ! fB1; : : : ; Bmg is applied to S with some substitution � to obtain N 0,and let S = (A; T ) and S0 = (A0;T0). Sin
e S � S0, it holds that S � T � T0and that there is a substitution �0 on var(B0) su
h that B0�0 � A0. This all meansthat 
onditions (i) and (ii) from the de�nition of rule appli
ability are satis�ed forS0, R and �0. Sin
e N0 is saturated, R 
annot be appli
able to S0 with �0, and hen
e
ondition (iii) 
annot hold. This means that there must exist an i; 1 � i � m and asubstitution % on var(B0 [Bi) extending �0 su
h that Bi% � A0.On the other hand, a substitution � extending � was used to 
onstru
t the newset N 0 of S-states through the appli
ation of the rule R to S. Let S0 = (A[Bi�;T ).Sin
e � maps the fresh variables of R to distin
t new 
onstants, we 
an extend therenaming fun
tion f to f 0 : 
ons(A [Bi�)! 
ons(A0) by setting f 0(�(x)) = %(x) forevery fresh variable x of R appearing in Bi. This de�nes a 
omplete renaming fun
tionf 0 for the 
onstants in A [Bi� and by de�nition this fun
tion satis�es � Æ f 0 = %.We show now that S0 � S0 by means of the new renaming fun
tion f 0. LetP (a1; : : : ; ak) 2 A [Bi�. If this assertion belongs to A, then, sin
e S � S0 with therenaming fun
tion f , it holds that P (f 0(a1); : : : ; f 0(ak)) = P (f(a1); : : : ; f(ak)) 2 A0.If P (a1; : : : ; ak) 2 Bi�, then P (a1; : : : ; ak) = P (�(x1); : : : ; �(xk)) for some variablesx1; : : : ; xk 2 var(B0 [Bi). But sin
e � Æ f 0 = %, we haveP (f 0(a1); : : : ; f 0(ak)) = P (%(x1); : : : ; %(xk)) 2 Bi% � A0;whi
h 
ompletes the proof that S0 � S0.The following lemma generalises the �rst part of Lemma 3.26.Lemma 3.31. Let � be an axiomatised input and M0 = �S. If M and M0 aresaturated sets of S-states su
h thatM0 ��!Sm M andM0 ��!Sm M0, thenM is full of
lashes i�M0 is full of 
lashes.Proof. Re
all that the appli
ation of a rule to a set of S-states removes one of theseS-states and adds a �nite number of S-states that extend the removed one. Thus, forevery S-state S 2M0 there is an S-state S0 2M0 su
h that S0 � S.Consider the 
hain of (modi�ed) rule appli
ationsM0 !Sm M1 !Sm : : :!Sm Mn =Mthat leads fromM0 toM. Sin
eM0 is saturated, we 
an use Lemma 3.30 to dedu
ethat for every S 2 M0 there is an S-state S1 2 M1 su
h that S1 � S. By iteratingthis argument, we obtain that, for every S 2 M0 there is an element Sn 2 M su
hthat Sn � S.Assume now thatM is full of 
lashes; that is, every S-state inM 
ontains a 
lashand take an arbitrary S 2 M0. We must show that S 
ontains a 
lash. As shown in



52 CHAPTER 3. TABLEAUX AND PINPOINTINGthe previous paragraph, there is an element Sn 2 M su
h that Sn � S. The fa
tthat Sn 
ontains a 
lash implies that S 
ontains also a 
lash. This �nishes the proofof the only if dire
tion. A symmetri
 argument 
an be used to prove the 
onversedire
tion.When proving the 
orre
tness of the pinpointing extension of a tableau, we 
onsideronly terminating 
hains of pinpointing rule appli
ations. Unfortunately, although a
orre
t tableau needs to be terminating, this property not ne
essarily transfer to itspinpointing extension. The reason for this is that a rule may be pinpointing appli
ablein 
ases where it is not appli
able in the normal sense, as dis
ussed before. Even ifwe restri
t ourselves to deterministi
 rules, the problem still appears, as shown in thefollowing example.Example 3.32. Consider the tableau S with the following three rules13R1 : (fP (x)g; fax1g)! fr(y; y; y); Q1(y); Q2(y)g;R2 : (fP (x)g; fax2g)! fr(y; y; y); Q1(y); Q2(y)g;R3 : (fQ1(x); Q2(y)g; ;) ! fr(x; y; z); Q1(y); Q2(z)g;where the fun
tion �S maps every input I 2 I to the set fP (a)g and every axiom fromT = fax1; ax2g to the empty set, with Padmis (T) = P(T). For any axiomatised input� = (I;T ), we have �S = (fP (a)g;T ). Depending on the axioms appearing in T ,the rules R1 and/or R2 may be appli
able to this S-state, but R3 is not. Noti
e thatR1 and R2 have the same right-hand side, and thus the appli
ation of any of them to�S leads to the same S-state modulo the 
hosen new 
onstant name introdu
ed for thefresh variable y. Suppose we apply one of these rules and introdu
e the new 
onstantb. The resulting S-state is S = (A; T ) whereA = fP (a); Q1(b); Q2(b); r(b; b; b)g:No rule is then appli
able to S. In fa
t, in order to apply any of the rules R1;R2,the only way to satisfy Condition (ii) from the de�nition of rule appli
ation (De�-nition 3.6) is to use a substitution that maps the variable x to the 
onstant a. Byextending this substitution to map y to the 
onstant b, Condition (iii) from the samede�nition is violated sin
e the assertions Q1(b); Q2(b) and r(b; b; b) already appear inS, after being introdu
ed by the �rst rule appli
ation. To satisfy Condition (ii) for ruleR3, we must 
hoose the substitution � that maps both variables x and y to the 
onstantb. If we extend � to map z to the same 
onstant b we then violate Condition (iii).This all shows that S indeed terminates on every axiomatised input; in fa
t, at mostone rule is appli
able before rea
hing a saturated S-state.However, it is possible to 
onstru
t an in�nite 
hain of pinpointing rule appli
ationsstarting with �S = (fP (a)g; fax1; ax2g), where lab(P (a)) = >. We 
an �rst apply ruleR1 to obtain the S-state S des
ribed above, where all the assertion, with the ex
eptionof P (a), are labeled with ax1. At this point, rule R2 is pinpointing appli
able sin
e,13Sin
e all the rules are deterministi
 and hen
e there will always be only one S-state, we expressonly this state, instead of the set 
ontaining it.



3.3. PINPOINTING IN GENERAL TABLEAUX 53although there is an extension of the substitution under whi
h all the assertions existalready in S, these assertions are labeled with the formula ax1, whi
h is not impliedby ax2. The pinpointing appli
ation of R2 to S adds the assertions Q1(
); Q2(
) andr(
; 
; 
) all with label ax2. It is now possible to apply the rule R3 to the resultingS-state S0 with the substitution � mapping the variables x and y to the 
onstants band 
, respe
tively. Sin
e the S-state S0 does not 
ontain any assertion of the formr(b; 
; ), Condition (iii) 
annot be violated. This rule appli
ation adds the assertionsr(b; 
; d); Q2(d) with label ax1 ^ ax2. It is easy to see that the rule R3 
an be nowrepeatedly applied, produ
ing this way a non-terminating 
hain of pinpointing ruleappli
ations.This example shows that the termination of a tableau S does not ne
essarily implythe termination of its pinpointing extension, even for the restri
ted 
ase of tableauxhaving only deterministi
 rules. In Chapter 6 we will show that it is in general unde-
idable whether the pinpointing extension of a tableau is terminating. Nonetheless,we 
an still sear
h for 
lasses of tableaux that have terminating extensions. Moreover,as shown in Se
tions 2.3.4 and 2.3.5, some tableau algorithms a
tually require addi-tional te
hniques to ensure termination, and those te
hniques need to be adapted topinpointing extensions as well in order to preserve 
orre
tness. The next 
hapter dealswith termination of pinpointing extensions in both fronts. First it introdu
es a 
lassof terminating tableaux whose pinpointing extensions are always terminating. After-wards, it de�nes a general notion of blo
king, taking as model the notion of equalityblo
king from Se
tion 2.3.5, and shows how it 
an be extended to produ
e a 
orre
tand terminating pinpointing pro
edure.
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Chapter 4A Class of Terminating TableauxThe pinpointing extension of general tableaux presented in the previous 
hapter re-quires a relaxation of the rule-appli
ability 
onditions to ensure that all possible waysin whi
h a property 
an be dedu
ed are dete
ted in a single exe
ution. Example 3.32shows that these relaxed appli
ability 
onditions may lead to a non-terminating pro-
edure. This undesired behaviour may arise even in restri
ted s
enarios, as when onlydeterministi
 rules are allowed. Sin
e we are interested in des
ribing a terminatingpro
edure, we turn our attention to the 
auses of termination of known tableau al-gorithms, aiming towards a framework that not only ensures the termination of theoriginal tableau algorithms, but also transfers this result to their pinpointing exten-sions.We identify tableaux that generate tree-like S-states as good 
andidates for termi-nation. On one side, if we are able to bound the breadth and depth of these S-states,there will be no way an in�nite 
hain of rule appli
ations 
an be generated. On theother, even if we are unable to bound the depth of these trees, we 
an reuse the ideasof blo
king to avoid generating an in�nite tree. The tree-like stru
ture is importantfor blo
king for two reasons: �rst, we need a notion of nodes to have one blo
kinganother, and se
ond, the tree shape yields a natural ordering that allows us to forbidmutual blo
king by two nodes, whi
h would lead to an in
orre
t pro
edure. A
tually,we allow for a slightly more general s
enario, in what we will 
all forest tableaux.These tableaux, whi
h are formally de�ned in Se
tion 4.1, may produ
e several treesthat \grow" from an arbitrary graph-like stru
ture. Using this notion, we �rst presentadditional 
onditions that bound the growth of the trees generated by these tableaux,and show that they suÆ
e for ensuring termination in Se
tion 4.2. Finally, in Se
-tion 4.3, we introdu
e a general notion of blo
king analogous to equivalen
e blo
kingintrodu
ed in Chapter 2, and show how it 
an be used to ensure an answer in �nitetime.4.1 Forest TableauxOne of the reasons why tableau algorithms for 
ertain DLs terminate is that they 
reatea tree-like stru
ture for whi
h the out-degree and the depth of the tree are bounded55
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tion of the size of the input formula. The nodes of these trees are labeled,but the input determines a �nite number of possible labels. A typi
al example is thetableau-based de
ision pro
edure for satis�ability of ALC-
on
epts (see Chapter 2).This algorithm generates sets of assertions of the form r(a; b) and C(a), where r isa role and C is an ALC-
on
ept des
ription. The tree stru
ture is indu
ed by roleassertions, and the nodes are labeled by sets of 
on
epts, i.e., node a is labeled withfC1; : : : ; Cng if C1(a); : : : ; Cn(a) are all the 
on
ept assertions involving a. The mainreasons why the algorithm terminates are:� the depth of the tree stru
ture is bounded by the size n of the input, i.e., themaximal length m of 
hains r1(a0; a1); r2(a1; a2); : : : ; rm(am�1; am) in a set ofassertions generated by the algorithm is bounded by n;� the out-degree of the tree stru
ture is bounded by n , i.e., the maximal numbermof assertions r1(a0; a1); r2(a0; a2); : : : ; rm(a0; am) in a set of assertions generatedby the algorithm is bounded by n;� for every assertion C(a) o

urring in a set of assertions generated by the algo-rithm, C is a sub-des
ription of the input 
on
ept des
ription.If we look at the algorithm that de
ides 
onsisten
y of ALC-ABoxes (Se
tion 2.3.2)then things are a bit more 
ompli
ated: rather than a single tree one obtains a forest,more pre
isely, several trees growing out of the input ABox. But these trees satisfythe restri
tions mentioned above, whi
h is enough to show termination.Basi
ally, we want to formalise this reason for termination within the generalframework of tableaux introdu
ed in the previous 
hapter. However, to be as generalas possible, we do not want to restri
t assertions to be built from unary predi
ates(
on
epts) and binary predi
ates (roles) only. For this reason, we allow for predi
atesof arbitrary arity, but restri
t our assertions su
h that states (i.e., sets of assertions)indu
e graph-like stru
tures. This general approa
h allows us to model, among others,the tableaux de
ision algorithm for the n-ary DL GF1� introdu
ed in [LST99℄.In order to have a graph-like stru
ture, we must be able to distinguish betweennodes and edges. For this reason, we now assume that the signature � is partitionedinto the sets � and �, where ea
h predi
ate name P 2 � is equipped with an arityn, while every predi
ate name r 2 � is equipped with a double arity 0 < m < n.Stri
tly speaking, the arity of r 2 � is n; however, the �rst m argument positions aregrouped together, as are the last n�m. Intuitively, the elements of � 
orrespond toDL 
on
epts and form the nodes of the graph-like stru
ture, whereas the elements of� 
orrespond to DL roles and indu
e the edges.If a pattern/assertion p starts with a predi
ate from � (�), we say that p is a�-pattern/assertion (�-pattern/assertion), and write p 2 b� (p 2 b�). In our ALCexample, the set � 
onsists of all ALC-
on
epts, whi
h have arity 1, and � 
onsistsof all role names, whi
h have double arity 1; 2. For the rest of this 
hapter, assertionsand patterns in b� will be denoted using 
apital letters (P;Q;R; : : :), and those in b�using lower-
ase letters (r; s; t; : : :). Given a predi
ate p 2 � with double arity m;n,the sets of parents and des
endants of the pattern r = p(x1; : : : ; xm; xm+1; : : : ; xn) aregiven by  �r = fx1; : : : ; xmg and �!r = fxm+1; : : : ; xng, respe
tively.



4.1. FOREST TABLEAUX 57In the di�erent tableau algorithms presented in Chapter 2 for de
iding propertiesin ALC, the nodes of the trees are de�ned by the 
onstants o

urring in the set ofassertions, and the 
on
ept assertions give rise to the labels of these nodes. In thegeneral 
ase, nodes are not single 
onstants, but rather sets of assertions built over a
onne
ted set of 
onstants.De�nition 4.1 (Conne
ted). Let B be a set of �-patterns (�-assertions), andx; y 2 var(B) (a; b 2 
ons(B)). We say that x and y (a and b) are B-
onne
ted,denoted as x �B y (a �B b), if there are variables x0; x1; : : : ; xn 2 var(B) (
onstantsa0; a1; : : : ; an 2 
ons(B)) and patterns P1; : : : ; Pn 2 B \ b� (respe
tively assertionsP1; : : : ; Pn 2 B\ b�) su
h that x = x0; y = xn (a = a0; b = an) and for every 1 � i � nit holds that fxi�1; xig � var(Pi) (fai�1; aig � 
ons(Pi)).We say that B is 
onne
ted if, for every x; y 2 var(B) (a; b 2 
ons(B)), we havex �B y (a �B b).Conne
ted sets of assertions 
an be viewed as bundles that join the 
onstants
ontained in them. Nodes will be formed by maximal 
onne
ted sets of assertionsfrom b�. An assertion from b� will be treated as a (dire
ted) edge that 
onne
ts a node
ontaining its parent 
onstants with a node 
ontaining its des
endant 
onstants.De�nition 4.2 (Graph stru
ture). Let B be a set of assertions. A maximal 
on-ne
ted subset N � B \ b� is 
alled a node in B. An assertion r 2 B \ b� is 
alledan edge in B if there are two nodes N1 and N2 in B su
h that  �r � 
ons(N1) and
ons(N2) � �!r . In this 
ase, we say that r 
onne
ts N1 to N2.The set B is a graph stru
ture if every r 2 B \ b� is an edge. If B is a graphstru
ture, the 
orresponding B-graph GB 
ontains one vertex vN for every node N ,and an edge (vN ; vM ) if there is an edge 
onne
ting N to M .The notion of a graph stru
ture and of the 
orresponding graph 
an be extended tostates S = (B; T ) in the obvious way: S is a graph stru
ture if B is one, and in this
ase GS := GB.If a set of assertionsB is a graph stru
ture, then the set of nodes forms a partition ofB\b�, and ea
h of its elements either belongs to a node or is a (dire
ted) edge. Observe,however, that an edge r 2 b� may 
onne
t a node with more than one su

essor node.For example, 
onsider the set of assertions B = fP (a); Q(b); R(
); r(a; b; 
)g whereP;Q;R 2 � are unary, and r 2 � has double arity 1; 3. This set forms a graphstru
ture 
onsisting of the nodes N1 := P (a); N2 := Q(b); N3 := R(
) and the edger(a; b; 
). This single edge 
onne
ts N1 to both N2 and N3. GB is then the graph(fv1; v2; v3g; f(v1; v2); (v1; v3)g). This will 
reate no problem in our proofs, but mustbe kept in mind when dealing with graph-stru
tures and their 
orresponding graphs.Re
all that the tableau-based de
ision pro
edure for 
onsisten
y of ALC-ABoxes(Se
tion 2.3.2) starts with an ABox, whi
h 
an be viewed as a graph, but then extendsthis ABox by trees that grow out of the nodes of this graph. The following de�nitionintrodu
es forest tableaux, whi
h show a similar behavior, but are based on the moregeneral notion of a graph stru
ture introdu
ed above.



58 CHAPTER 4. A CLASS OF TERMINATING TABLEAUXDe�nition 4.3 (Forest tableau). The tableau S = (�; �S ;R; C) is 
alled a foresttableau if for every axiomatised input � and every S 2 �S, the state S is a graphstru
ture, every 
lash C 2 C is a 
onne
ted subset of b�, and the following 
onditionshold for every rule (B0;S)! fB1; : : : ; Bmg and every 1 � i � m:1. for every �-pattern r 2 B0 \ b�, there exists a �-pattern P 2 B0 \ b� su
h that �r � var(P ) or �!r � var(P ).2. for every �-pattern r 2 Bi \ b�, there exists a �-pattern P 2 B0 \ b� su
h that �r � var(P ).3. for every �-pattern r 2 Bi \ b�, we have �!r \ var(B0) = ;.4. if r; s 2 Bi \ b� are distin
t patterns, then �!r \�!s = ;.5. for every �-pattern P 2 Bi \ b�, either(i) there is a �-pattern r 2 (B0 [Bi)\ b� su
h that var(P ) � �!r or var(P ) �  �r ,or(ii) there is a Q 2 B0 \ b� with var(P ) � var(Q).6. if B0 \ b� 6= ;, then Bi \ b� = ;.7. B0 \ b� is 
onne
ted.A few intuitive explanations for these 
onditions are in order. Condition 1 ensuresthat every edge triggering a rule appli
ation is 
onne
ted to a node, whi
h may beeither a parent or a des
endant node of this edge. Condition 2 makes sure that forevery newly introdu
ed edge, a parent node was present before the rule is applied.This implies that a rule appli
ation 
annot add new prede
essors to a node, and thatnewly introdu
ed nodes are not dis
onne
ted from the rest of the graph stru
ture.Both of these properties are vital for obtaining forest-like stru
tures. Condition 3states that every newly generated edge has only new 
onstants in its des
endant set.In other words, new edges 
annot 
onne
t old nodes, but only generate new nodesas des
endant. Condition 4 ensures that, even if several edges are added by a singlerule appli
ation, these edges 
onne
t di�erent nodes with the parent node, avoidingthis way that a node is 
onne
ted by multiple edges to a parent node. Condition 5makes sure that we always have a 
onne
ted graph. It states that, whenever a non-edgeassertion is added, it must either belong to an old node, or belong to a des
endant nodeadded by the 
reation of a new edge within the same rule appli
ation. Condition 6states that the addition of new edges must only depend on the assertions belonging tothe parent nodes, but never on the presen
e of other edges. In parti
ular, this ensuresthat ea
h des
endant is 
reated independently from its siblings, as long this is done indistin
t rule appli
ations. Finally, Condition 7 ensures that the non-edge assertionstriggering a rule appli
ation all belong to the same node.The di�erent (disjun
tive) options stated in Conditions 1 and 5(i) require an ad-ditional explanation. They allow the tableau rules to propagate information not just
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essor nodes, but also to prede
essor nodes in the trees. The main reason forin
luding this possibility in our framework is that it makes it general enough to dealwith 
onstru
tors su
h as inverse roles in DLs, and hen
e model SI-TBoxes. Thepri
e to pay for this de
ision is twofold: on the one side, more 
ases must be analysedin the proofs. On the other, the weaker version of blo
king, subset blo
king, will notsuÆ
e to yield a 
orre
t terminating algorithm (see Example 2.12) and we will have touse an analogous to equivalen
e blo
king. Noti
e nonetheless that if the use of subsetblo
king leads to a 
orre
t de
ision pro
edure, using instead equivalen
e blo
king willstill yield a 
orre
t answer, though its eÆ
ien
y may be 
ompromised as the 
y
leswill take longer to be dete
ted.Although this de�nition may seem to 
omplex at �rst sight, all the 
onditions arelo
al for ea
h rule and only impose restri
tions on their synta
ti
 form; thus, they 
anbe easily veri�ed to determine whether a given tableau belongs to the 
lass of foresttableaux or not.The following lemma shows that the S-states of a forest tableau form graph stru
-tures in whi
h every node is 
onne
ted to an initial node via a series of edges. Weshow that it is a
tually the 
ase even for modi�ed rule appli
ations, sin
e we want touse it also for the pinpointing extensions. Its proof is identi
al to that of Lemma 4.7,by simply deleting every referen
e to the ordering relation used there. To avoid afutile repetition of the lengthy proof, we do not present this proof here, but delay itto the following se
tion.Lemma 4.4. Let S be a forest tableau, � an axiomatised input, S0 !Sm S1 !Sm � � �a sequen
e of modi�ed rule appli
ations, and S0 2 �S. Then, for every Si = (Ai;T )and P 2 Ai \ b�, either 
ons(P ) � 
ons(A0) or there are r 2 Ai \ b� and Q 2 Ai \ b�su
h that  �r � 
ons(Q), and 
ons(P ) � �!r .In fa
t, due to Conditions 3 and 4 of De�nition 4.3, we 
an dedu
e that the rdes
ribed by this lemma is unique for every given P . Thus, the S-states of a foresttableau form indeed a forest stru
ture as des
ribed before.Clearly, just ensuring that all states generated by a tableau have a forest-likestru
ture is not suÆ
ient to yield termination. We must also ensure that the trees inthe forest 
annot grow inde�nitely (i.e., that the overall number of nodes that 
an begenerated is bounded), and that the same is true for the nodes (i.e., that the numberof assertions making up a single node is bounded). To bound the number of possibleassertions, we restri
t the set of predi
ate names that 
an be used; this restri
ted setis 
alled a 
over.De�nition 4.5 (Cover). Let S = (�; �S ;R; C) be a tableau and T a set of axioms.A set 
 � � is 
alled a T -
over if, for every rule R : (B0;S) ! fB1; : : : ; Bng su
hthat S � T and B0 
ontains only predi
ates from 
, the sets Bi for i = 1; :::; n also
ontain only predi
ates from 
.The tableau S is 
overed if, for every axiomatised input � = (I;T ), there is a�nite T -
over 
� su
h that every S-state in �S 
ontains only predi
ates from 
�.Given su
h a 
overed tableau, every state that 
an be rea
hed from an initial statein �S by applying rules from S 
ontains only predi
ates from 
�. We will see that



60 CHAPTER 4. A CLASS OF TERMINATING TABLEAUXthis ensures that nodes 
annot grow inde�nitely.To prevent the trees from growing inde�nitely (i.e., to bound the number of nodes),it is enough to enfor
e �nite bran
hing and �nite paths in the trees. Finite bran
hinga
tually already follows from the 
onditions we have stated so far. Hen
e, we needonly to make sure that paths 
annot get inde�nitely long. The next se
tion showshow a partial order 
an be used to ensure this.4.2 Ordered TableauxTo bound the length of paths, we additionally require the predi
ates o

urring in rulesto be de
reasing w.r.t. a given partial order, in su
h a way that nodes farther awayfrom the root will have smaller predi
ates than their prede
essors. Given a stri
tpartial order < on predi
ates, we extend it to patterns (assertions) by de�ning P < Qif the predi
ate of the pattern (assertion) P is smaller than the predi
ate of the pattern(assertion) Q.De�nition 4.6 (Ordered tableaux). A 
overed tableau S is 
alled an orderedtableau if, for every axiomatised input �, there is a stri
t partial ordering <� onthe predi
ate names in 
�\� su
h that, for every rule (B0;S)! fB1; : : : ; Bng, every1 � i � n, and every P 2 B0 \ b� and Q 2 Bi \ b�, we have Q <� P .For example, the tableau-based de
ision pro
edure for 
onsisten
y of ALC-ABoxesis an ordered tableau. It is 
overed sin
e rule appli
ation only adds 
on
ept assertionsC(a) (role assertions r(a; b)) where C is a sub-des
ription of a 
on
ept des
riptiono

urring in the input ABox A0 (where r is a role o

urring in the input ABox A0).Thus one 
an take the set of sub-des
riptions of 
on
ept des
riptions o

urring inA0 together with the roles o

urring in A0 as a 
over. In addition, rule appli
ationonly adds 
on
ept assertions that either have a smaller role-depth (i.e., nesting ofexistential and value-restri
tions) than the one that triggered it, or are sub
on
eptsof it. Thus, ordering 
on
ept des
riptions by their role-depth and by the sub
on
eptrelation yields the desired partial order.Ordered tableaux have the property that, if applied to an axiomatised input �,none of the trees in the generated forest 
an have a depth greater than the 
ardinalityof the 
over 
�. This easily follows from the next lemma.Lemma 4.7. Let S be an ordered forest tableau, � an axiomatised input, S0 2 �S,and S0 !Sm S1 !Sm � � � a sequen
e of modi�ed rule appli
ations. Then, for everySi = (Ai;T ) and P 2 Ai \ b�, either 
ons(P ) � 
ons(A0) or there are r 2 Ai \ b� andQ 2 Ai \ b� su
h that  �r � 
ons(Q), 
ons(P ) � �!r , and P <� Q.Proof. The proof is by indu
tion on i. For S0 the result is trivial. Suppose now thatit holds for Si, and that the rule R : (B0;S) ! fB1; : : : ; Bng is applied to Si toobtain Si+1 = (Ai+1;T ), where Ai+1 = Ai [ Bj� for some substitution � and somej; 1 � j � n. Let P 2 Ai+1 \ b�. If P 2 Ai, then by the indu
tion hypothesis and thefa
t that Ai � Ai+1, the result holds. Otherwise, P was added by the appli
ation of



4.2. ORDERED TABLEAUX 61R. By Condition 5 of De�nition 4.3, we have either (i) an r 2 (B0 [ Bj)� \ b� with
ons(P ) � �!r or 
ons(P ) �  �r , or (ii) there is a Q 2 B0�\ b� with 
ons(P ) � 
ons(Q).We will analyse Case (ii) �rst. Sin
e the rule was applied with substitution �,we have B0� � Ai, and thus Q 2 Ai \ b�. Sin
e S is ordered, we also know thatP <� Q. By the indu
tion hypothesis, either 
ons(Q) � 
ons(A0), or  �r � 
ons(Q0),
ons(Q) � �!r , and Q <� Q0 for assertions r;Q0 2 Ai. In both 
ases, transitivity of <�and of � yield the desired result.We fo
us now on Case (i). Suppose �rst that 
ons(P ) � �!r . If r 2 Bj�, then byCondition 2 of De�nition 4.3, there is a Q 2 B0� � Ai su
h that  �r � 
ons(Q). Sin
eS is ordered, we also have P <� Q, whi
h 
ompletes the proof for the 
ase where
ons(P ) � �!r and r 2 Bj�.Next, we 
onsider the 
ase where 
ons(P ) � �!r and r 2 B0�. Then, by Condition 1of De�nition 4.3, there must exist a Q 2 B0� su
h that �r � 
ons(Q) or �!r � 
ons(Q).In the former 
ase, the proof is analogous to the one for the �rst part of this 
ase. Inthe latter 
ase, we have 
ons(P ) � �!r � 
ons(Q), whi
h is an instan
e of Case (ii).Finally, suppose that 
ons(P ) �  �r . We 
an assume without loss of generalitythat there is no Q 2 B0� \ b� su
h that 
ons(P ) � 
ons(Q). In fa
t, if it existed, wewould be in Case (ii) analysed above. Consequently, r 
annot belong to Bi� sin
e thiswould violate Condition 2 of De�nition 4.3. Hen
e, r 2 B0� and there must exist aQ 2 B0� \ b� su
h that  �r � 
ons(Q) or �!r � 
ons(Q).In the �rst 
ase, we have 
ons(P ) �  �r � 
ons(Q), whi
h brings us ba
k to Case (ii)analysed above. In the other 
ase, we know that P <� Q and Q 2 Ai. Thus, by theindu
tion hypothesis, the statement of the lemma holds for Q.If 
ons(Q) � 
ons(A0), then|due to our assumption in this 
ase stating that�!r � 
ons(Q)|we also have �!r � 
ons(A0). This means that r was not added by anyprevious rule appli
ation as otherwise this would violate Condition 3 of De�nition 4.3.Thus, r must have been already present in A0, whi
h implies  �r � 
ons(A0). Sin
e
ons(P ) � �r , it also holds that 
ons(P ) � 
ons(A0).Now, assume that 
ons(Q) 6� 
ons(A0). By the indu
tion hypothesis, there exists 2 Ai \ b� and R 2 Ai \ b� su
h that  �s � 
ons(R); 
ons(Q) � �!s , and Q <� R.Sin
e 
ons(Q) 6� 
ons(A0), we know that Q and s were added by a (previous) ruleappli
ation. We 
laim that r = s. In fa
t, we have ; 6= �!r � 
ons(Q) � �!s . Ifwe had r 6= s, then this would violate Condition 3 or 4 of De�nition 4.3, whereCondition 3 
overs the 
ase where r and s are introdu
ed by di�erent rule appli
ations,and Condition 4 
overs the 
ase where these two assertions are added by the samerule appli
ation.Overall, we thus know that 
ons(P ) �  �r � 
ons(R) and P <� R. Sin
e R 2 Ai,by the indu
tion hypothesis, we have on
e again that either 
ons(R) � 
ons(A0) orthere exist r0 2 Ai \ b� and Q0 2 Ai \ b� su
h that  �r0 � 
ons(Q0); 
ons(R) � �!r0 , andR <� Q0. In both 
ases, the fa
t that 
ons(P ) � 
ons(R) and P <� R, together withthe transitivity of � and <�, yields the desired result.Noti
e that in this proof, the existen
e of the stated assertions r and Q does notdepend on the fa
t that the tableau is ordered, or even 
overed. Those restri
tions



62 CHAPTER 4. A CLASS OF TERMINATING TABLEAUXare only used for showing that indeed there is a de
reasing sequen
e of predi
ates inea
h Si. Hen
e, removing all referen
es to this ordering yields a proof for Lemma 4.4.An easy 
onsequen
e of Lemma 4.7 is that a path 
onsisting of m new edges in astate generated by rule appli
ations from a state in �S implies a de
reasing sequen
ew.r.t. <� of the same length. Consequently, the length of su
h paths is bounded bythe number of predi
ate symbols o

urring in the �nite 
over 
�.Proposition 4.8. Let S0 ��!Sm S where S0 = (A0;T ) 2 �S and S = (A; T ). Supposethat A 
ontains edges r1; : : : ; rm and nodes N0; : : : ; Nm su
h that for all i; 1 � i � m,ri =2 A0 and ri 
onne
ts Ni�1 with Ni. Then, there exist assertions Q1; : : : ; Qm 2 Asu
h that Q1 >� Q2 >� : : : >� Qm.Proof. Sin
e ri 
onne
ts Ni�1 with Ni for i = 1; : : : ;m, we know by De�nition 4.2 that �ri � 
ons(Ni�1) and 
ons(Ni) � �!ri . This implies that  �ri � ��!ri�1 for all i; 1 < i � m.For ea
h of the edges ri we have assumed that it is new, i.e., ri =2 A0. Thus, rimust have been added by some rule appli
ation. Condition 3 of De�nition 4.3 entailsthen that, for every 1 � i � m, �!ri \ 
ons(A0) = ;, and thus, for every 1 < i � m italso holds that  �ri \ 
ons(A0) = ;, as  �ri � ��!ri�1.Sin
e rm was added by a rule appli
ation, by Condition 2 of De�nition 4.3, theremust be an assertion Qm 2 A\ b� su
h that  �rm � 
ons(Qm). Hen
e, it is the 
ase that
ons(Qm) 6� 
ons(A0). By Lemma 4.7, there exist r 2 A \ b� and Qm�1 2 A \ b� su
hthat  �r � 
ons(Qm�1); 
ons(Qm) � �!r , and Qm <� Qm�1. We have  �rm � ���!rm�1 and �rm � 
ons(Qm) � �!r , whi
h implies that ���!rm�1 \�!r 6= ;. However, Conditions 3 and 4of De�nition 4.3 ensure that distin
t assertions in b� n A0 must have disjoint sets ofdes
endants. Thus, we know that r = rm�1.We 
an now apply the same argument to rm�1 and Qm�1 and obtain an assertionQm�2 su
h that  ���rm�2 � 
ons(Qm�2); 
ons(Qm�1) � ���!rm�2, and Qm�1 <� Qm�2. Byiterating this argument, we thus obtain the desired des
ending 
hain of assertionsQ1 >� Q2 >� : : : >� Qm.The following two remarks will be useful in the proof of the main theorem of thisse
tion. First, re
all that Condition 7 of De�nition 4.3 ensures that the assertionsfrom b� triggering a rule appli
ation all belong to the same node.Se
ond, given a new node N (i.e., one that was not present in the initial state)and an assertion P 2 N , Lemma 4.7 yields an edge r su
h that 
ons(P ) � �!r . Sin
edistin
t edges have disjoint sets of des
endants (Condition 4 of De�nition 4.3) anyother assertion in Q 2 N also satis�es 
ons(Q) � �!r . This shows that the 
onstantso

urring in a node all belong to the des
endant set of the edge whose introdu
tion
reated the node.We are now ready to show termination of the pinpointing extension of any orderedforest tableaux.Theorem 4.9. If S is an ordered forest tableau, then its pinpointing extension ter-minates on every input.Proof. Suppose that there is an input � = (I;T ) for whi
h there is an in�nite sequen
eof pinpointing rule appli
ations S0 !Spin S1 !Spin : : :, with S0 2 �S . Sin
e S is a
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overed tableau, there is a �nite T -
over 
� su
h that, for all i � 0, the assertionsin Si use only predi
ate symbols from 
�. As noted above, for every node there isa �xed �nite set of 
onstants that 
an o

ur in the assertions of this node. This setis either the set of 
onstants o

urring in S0 (for an old node) or it 
onsists of thedes
endants in the unique edge whose introdu
tion 
reated the node (for a new node).Together with the fa
t that the T -
over 
� is �nite, this restri
ts the assertions that
an o

ur in the node to a �xed �nite set. Ea
h of these assertion may repeatedly haveits label modi�ed by appli
ations of the pinpointing rules. However, every appli
ationof a rule makes the label more general in the sense that the new monotone Booleanformula has more models than the previous one. Sin
e these formulae are built overa �nite set of propositional variables, this 
an happen only �nitely often. The sameargument shows that the label of a given edge 
an be 
hanged only �nitely often.Hen
e, to get a non-terminating sequen
e of rule appli
ations, in�nitely many newnodes must be added. By Conditions 5 and 2 of De�nition 4.3, ea
h newly added nodeN is 
reated as su

essor of an existing node w.r.t. a unique edge r 2 b� su
h that the
onstants in N are new 
onstants 
ontained in �!r . If in�nitely many new nodes are
reated, then either there is a node that obtains in�nitely many dire
t su

essors, oran in�nite 
hain of nodes is 
reated, where ea
h is a su

essor of the previous one.Proposition 4.8 implies that the latter 
ase 
annot o

ur. In fa
t, given nodesN0; N1; : : : ; Nm and edges r1; : : : ; rm su
h that, for all i; 1 � i � m, ri 
onne
tsNi�1 to Ni, Proposition 4.8 yields a sequen
e of assertions Q1; : : : ; Qm 2 b� su
h thatQ1 >� Q2 >� : : : >� Qm. However, the length of su
h a des
ending sequen
e isbounded by the 
ardinality of the �nite T -
over 
�. Thus, it is not possible that anin�nite path is 
reated by a sequen
e of rule appli
ations.Now, 
onsider the �rst 
ase, i.e., assume that there is a node N for whi
h in�nitelymany su

essors are 
reated. However, the 
onstants in N are from a �xed �nite setof 
onstants C, and the predi
ate symbols that 
an o

ur in the applied rules mustall belong to the �nite T -
over 
�. Thus, up to variable renaming, there are only�nitely many rules that 
an be applied to N , and there are only �nitely many ways ofrepla
ing the variables in the left-hand side of rules by 
onstants from C. The freshvariables in the right-hand side are always repla
ed by distin
t new 
onstants. Thus,for a �xed rule and a �xed substitution � repla
ing the variables in the left-hand side ofthis rules by 
onstants from C, the assertions introdu
ed by two di�erent appli
ationsof this rule using � only di�er by a renaming of these new 
onstants. By the waypinpointing rule appli
ability is de�ned, su
h renamed variants 
an only be added aslong as their labels are not equivalent. But there are only �nitely many labels upto equivalen
e. Thus, N 
an in fa
t obtain only a �nite number of su

essors. This�nishes the proof that the pinpointing extension of an ordered forest tableau alwaysterminates.Note that termination of the pinpointing extension implies termination of theoriginal tableau. In fa
t, a non-terminating sequen
e of rule appli
ations for theoriginal tableau 
an easily be transformed into a non-terminating sequen
e of ruleappli
ations for its pinpointing extension.Corollary 4.10. An ordered forest tableau terminates on every input.



64 CHAPTER 4. A CLASS OF TERMINATING TABLEAUXThe de�nition of forest tableaux imposes quite a number of restri
tions to besatis�ed. Thus, it is natural to ask whether all these restri
tions are indeed ne
essary.The answer is yes: if any of these restri
tions is removed, then Theorem 4.9 no longerholds. In fa
t, it is possible to 
onstru
t tableaux satisfying all other properties thatdo not terminate. More interesting perhaps is that there are terminating tableauxsatisfying all other properties whose pinpointing extensions do not terminate. Here,we illustrate this fa
t with one example, where we remove Condition 6 of De�nition 4.3.Examples for the other 
onditions 
an be built in a similar way.Example 4.11. Consider the tableau S that has the following four rules:R1 : (fP (x)g; fax1g)! ffR(x); Q1(x)gg;R2 : (fP (x)g; fax2g)! ffR(x); Q2(x)gg;R3 : (fR(x)g; ;) ! ffr(x; y)g; fQ1(x)g; fQ2(x)gg;R4 : (fP (x); r(x; y)g; ;) ! ffT (y); r(x; z)gg;and where the fun
tion �S maps every input I 2 I to the singleton set ffP (a)gg, andea
h axiom in T = fax1; ax2g to the empty set.It is easy to verify that S with the ordering T < Q2 < Q1 < R < P satis�es allthe 
onditions of an ordered forest tableau, ex
ept for Condition 6 of De�nition 4.3violated by the rule R4.For any axiomatised input � = (I;T ), we have �S = f(fP (a)g;T )g, and thusneither R3 nor R4 is appli
able to �S. Depending on whi
h axioms are 
ontained inT , the rules R1 and/or R2 may be appli
able. However, their appli
ation introdu
esQ1(a) or Q2(a) into the set of assertions, and thus the non-deterministi
 rule R3is not appli
able. Obviously, R4 be
omes appli
able only after R3 has been applied.Consequently, S terminates on every axiomatised input �.It is possible, however, to 
onstru
t an in�nite 
hain of pinpointing rule appli
a-tions starting with �S = f(fP (a)g; fax1; ax2g)g where lab(P (a)) = >. In fa
t, we
an �rst apply the rule R1. This adds the assertions R(a) and Q1(a), both with la-bel ax1. An appli
ation of the rule R2 adds the assertion Q2(a) with label ax2, andmodi�es the label of the assertion R(a) to lab(R(a)) = ax1 _ ax2. At this point, wehave rea
hed an S-state S 
ontaining the assertions P (a), R(a), Q1(a), Q2(a) withlabels lab(P (a)) = >, lab(R(a)) = ax1 _ ax2, lab(Q1(a)) = ax1, and lab(Q2(a)) = ax2.The rule R3 is pinpointing appli
able to this S-state. Indeed, although both Q1(a)and Q2(a) are 
ontained in the assertion set of S, their labels are not implied bylab(R(a)). The appli
ation of R3 to S repla
es S by three new S-states. One of thesenew S-states 
ontains the assertion r(a; b) for a new 
onstant b. At this point, ruleR4 be
omes appli
able. Its appli
ation adds the assertions T (b) and r(a; 
) for a new
onstant 
. Sin
e there is no assertion of the form T (
), R4 be
omes again appli
able,and its appli
ation adds a new 
onstant d within an assertion r(a; d). It is easy to seethat we 
an now 
ontinue applying rule R4 inde�nitely.Finding a non-terminating tableau is an easier task. If we 
onsider the tableau thathas only the rule R4 and where every input I 2 I is mapped to ffP (a); r(a; b)gg, then



4.3. BLOCKING IN FOREST TABLEAUX 65this yields an example of a non-terminating tableau that satis�es all the 
onditions ofan ordered forest tableau, ex
ept for Condition 6.4.3 Blo
king in Forest TableauxThe ordered forest tableaux introdu
ed in the previous se
tion 
an be used to modeltableau-based algorithms that try to generate a �nite tree- or forest-shaped model. Inthe presen
e of so-
alled general 
on
ept in
lusion axioms (GCIs) or transitive roles,DLs lose the �nite tree/forest model property, and thus these algorithms need nolonger terminate. Termination 
an be regained, however, by blo
king the appli
ationof generating rules, i.e., rules that generate new nodes, in 
ase that the node to whi
hthe rule is supposed to be applied has a prede
essor node that has the same assertions.A saturated and 
lash-free tableau 
an then be unraveled into an in�nite tree/forestmodel (see, e.g., [HS99℄).In order to illustrate our general model of tableaux with blo
king, we 
onsidera non-terminating forest tableau that 
an be made terminating by blo
king. Notethat the usual tableau-based algorithm for unsatis�ability of ALC 
on
epts w.r.t. SI-TBoxes shows a similar behavior (see Se
tion 2.3.5).Example 4.12. Consider a forest tableau S with the following three (deterministi
)rules R1 : (fC(x)g; ;) ! ffr(x; y);D(y)gg;R2 : (fD(x)g; ;) ! ffr(x; y); C(y)gg;R3 : (fC(x); r(y; x)g; ;) ! ff:D(y)gg;and the 
lash fD(x);:D(x)g. In addition, we assume that the fun
tion �S maps everyinput I 2 I to the singleton set ffC(a0)gg and ea
h axiom in T to the empty set.It is easy to see that S does not terminate sin
e it 
an produ
e an in�nite 
hain ofassertions of the form C(a0); r(a0; a1);D(a1); r(a1; a2); C(a2); : : :. If we apply rule R1followed by R2 to �S = f(fC(a0)g; ;)g, then we obtain the S-state (A; ;) 
onsisting ofthe assertions A := fC(a0); r(a0; a1);D(a1); r(a1; a2); C(a2)g. At this point, blo
kingshould prevent the appli
ation of R1 to the node a2:14 it is the repeated appli
ation ofR1 that 
auses the generation of the above in�nite 
hain of assertions. The reason whyR1 
an be blo
ked is that the node a2 
ontains the same assertions as its prede
essor a0:both have an assertion for C (see Figure 4.1). Note, however, that the appli
ation ofR3 to a2, whi
h adds the assertion :D(a1), should still be possible. In fa
t, otherwisethe 
lash 
ould not be dete
ted. After rule R3 has been applied to this S-state, we rea
hthe S-state (A [ f:D(a1)g; ;) depi
ted in Figure 4.2, where the only appli
able ruleis R1, whi
h is however blo
ked. Thus, the blo
king variant of the tableau terminateswith this blo
king-saturated state.The di�eren
e between the rules R1 and R3 that makes the latter appli
able whilethe former is blo
ked is that an appli
ation of R1 adds new 
onstants. Only this kind of14Sin
e in this forest tableau the elements of � are all unary, nodes are uniquely identi�ed by
onstants.



66 CHAPTER 4. A CLASS OF TERMINATING TABLEAUXa0 Ca1 Da2 CrrFigure 4.1: Rule R1 is blo
ked
a0 Ca1 D;:Da2 CrrFigure 4.2: Blo
king-saturated S-staterules will be blo
ked, while non-generating rules will always be appli
able, regardlessof the relationships between the nodes at the S-state.Before we 
an formalise our notion of tableaux with blo
king, we need to introdu
esome notation. In the following we always assume that we have a forest tableau S.Given an input �, any S-state that 
an be generated from �S by the appli
ations ofthe rules of S is 
alled an S-state for �. We now assume that all the S-states that we
onsider are S-state for some input.The rule (B0;S) ! fB1; : : : ; Bmg is 
alled generating if there is an i; 1 � i � m,su
h that Bi \ b� 6= ;. Note that the de�nition of forest tableaux implies that, ifsu
h a generating rule is appli
able with substitution � in state S, then S 
ontainsa (unique) node N su
h that B0� � N . We 
an thus talk about the node to whi
h agenerating rule is appli
able and/or applied. Given an S-state S for the input �, anode N in S is new if it has been generated by the appli
ation of a generating rule.Note that this is the 
ase i� 
ons(N)\ 
ons(�S) = ;. Only new nodes will be allowedto be blo
ked.Given two nodes N;N 0, we say that they 
ontain the same assertions (writtenN � N 0) if there is a bije
tion f : 
ons(N) ! 
ons(N 0) su
h that P (a1; : : : ; an) 2 Ni� P (f(a1); : : : ; f(an)) 2 N 0.De�nition 4.13 (Blo
king). Given a forest tableau S, and an axiomatised input �,let S be an S-state for �. The blo
king relation � between nodes of S is de�ned asfollows:N1 �N2 i� N1 � N2; N2 is a prede
essor of N1; and N1 is a new node.The node N is blo
ked if either there is a node N 0 su
h that N � N 0, or the parentnode of N is blo
ked. A non-generating rule is �-appli
able if it is appli
able in thesense of De�nition 3.16; a generating rule is �-appli
able if it is appli
able and thenode N to whi
h it is appli
able is not blo
ked.For sets of S-states M;M0 (S-states S;S0) we write M !/S M0 (S !/S S0) ifM !S M0 (S !S S0) using a rule that is �-appli
able. The set of S-states M is

�-saturated if there is no M0 su
h that M!/S M0.In Figures 4.1 and 4.2 the node a2 is blo
ked by the node a0, whi
h we representwith an un�lled 
ir
le. The notion of 
orre
tness of blo
king tableaux is analogous tothe one for general tableaux from the previous 
hapter.
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tness). Let P be a 
-property on axiomatised inputs for Iand Padmis(T), and S a forest tableau for I and Padmis (T). Then S is �-
orre
t forP if it terminates and is sound and 
omplete with respe
t to �-appli
ation, i.e., thefollowing two 
onditions hold for every axiomatised input � = (I;T ):1. there is no in�nite 
hain of rule appli
ations �S =M0 !/S M1 !/S : : :;2. for every 
hain of rule appli
ations �S =M0 !/S : : : !/S Mn su
h that Mn is
�-saturated we have that � 2 P i� Mn is full of 
lashes.In the DL literature, di�erent forms of blo
king have been used. The variantthat we model here is usually 
alled equality blo
king [HS99℄ sin
e it requires thatthe blo
ked and the blo
king nodes have the same set of assertions. In subset blo
king[BBH96℄, it is only required that the blo
king node has all the assertions of the blo
kednode, but not ne
essarily vi
e versa. Our reason for using equality blo
king ratherthan subset blo
king is that it is more appropriate for DLs with inverse roles, and ournotion of forest tableaux 
an model tableau-based algorithms for DLs with inverseroles. DLs that have both inverse roles and number restri
tions require more 
omplexnotions of blo
king, su
h as pair-wise blo
king [HST00℄, that look not just at one nodebut at a node and its neighbors. Sin
e our 
urrent notion of tableaux does not 
apturerules that 
an identify distin
t 
onstants to represent the same individual, as used intableau-based algorithms for DLs with number restri
tions [HB91℄, we have de
idednot to model pair-wise blo
king.The notion of blo
king introdu
ed in De�nition 4.13 ensures that every 
overed for-est tableau terminates with respe
t to �-appli
ation on all inputs. Instead of showingthis dire
tly, we will prove that this is the 
ase even for its pinpointing extension. But�rst, we must adapt the notion of blo
king to the pinpointing extension. Obviously,this notion must take the labels of assertions into a

ount as well.Given an input �, any S-state that 
an be generated from �S by the appli
a-tions of the rules of the pinpointing extension of S is 
alled a labeled S-state for�. Nodes of su
h a labeled S-state will be 
alled labeled nodes. Given two su
hlabeled nodes N;N 0, we say that they 
ontain the same labeled assertions (writtenN �pin N 0) if there is a bije
tion f : 
ons(N)! 
ons(N 0) su
h that P (a1; : : : ; an) 2 Ni� P (f(a1); : : : ; f(an)) 2 N 0, and the labels of these assertions, lab(P (a1; : : : ; an)) andlab(P (f(a1); : : : ; f(an))) are (propositionally) equivalent.De�nition 4.15 (Pinpointing blo
king). Given a forest tableau S, and an ax-iomatised input �, let S be a labeled S-state for �. The blo
king relation �pin betweenlabeled nodes of S is de�ned as follows:N1 �pin N2 i� N1 �pin N2; N2 is a prede
essor of N1; and N1 is a new node.The node N is pinpointing blo
ked if either there is a node N 0 su
h that N �pin N 0,or the parent node of N is pinpointing blo
ked.We de�ne the notions �pin-appli
able and �pin-appli
ation as well as !/Spin and

�pin-saturated in the obvious way.



68 CHAPTER 4. A CLASS OF TERMINATING TABLEAUXOur approa
h for proving termination of the pinpointing extension of a 
overedforest tableau with respe
t to �pin-appli
ation is similar to the one employed forshowing that ordered forest tableaux always terminate. Equipped with Lemma 4.4,we 
an prove the desired termination result.Theorem 4.16. Let S be a 
overed forest tableau. Then the pinpointing extension ofS terminates with respe
t to �pin-appli
ation on every input.Proof. Suppose that there is an input � = (I;T ) for whi
h there is an in�nite sequen
eof pinpointing rule appli
ations S0 !Spin S1 !Spin � � � , where S0 2 �S . Sin
e S is a
overed tableau, there is a �nite T -
over 
� su
h that the assertions in Si use onlypredi
ate symbols from 
�, for every i � 0. As already noted, every node has a �xed�nite set of 
onstants that 
an appear in its assertions. By Lemma 4.4, this set iseither the set of 
onstants o

urring in S0 (for an old node) or the des
endants in theunique edge by whi
h the node was 
reated (for a new node). Sin
e the T -
over is�nite, the assertions that 
an o

ur in a given node form a �nite set. Ea
h of theseassertions may repeatedly have its label modi�ed by pinpointing rule appli
ations;however, every pinpointing rule appli
ation produ
es a more general label, in thesense that the new monotone Boolean formula has more models than the previousone. Sin
e these formulas are built over a �nite set of propositional variables, this 
anhappen only �nitely often. Analogously, the label of a given edge 
an be 
hanged only�nitely often.Hen
e, to produ
e a non-terminating sequen
e of rule appli
ations, in�nitely manynew nodes must be added. Conditions 5 and 2 of De�nition 4.3 ensure that every newlyadded node N is 
reated as a su

essor of an existing node with a unique edge r 2 b�
onne
ting them, and all the 
onstants in N are new 
onstants appearing in �!r . Ifin�nitely many new nodes are 
reated, then either there is a node with in�nitelymany dire
t su

essors, or an in�nite 
hain of nodes, ea
h one being a su

essor of theprevious, is 
reated. The �rst 
ase 
an be treated as in the proof of Theorem 4.9.Thus, we 
on
entrate on the se
ond 
ase. The number of 
onstants o

urring ina new node is bounded by the largest arity of a predi
ate name r 2 b�. Taking intoa

ount that there are also only �nitely many possible labels, this implies that there
an only be �nitely many di�erent labeled nodes, up to 
onstant renaming. Then, forevery 
hain of nodes N0; N1; : : : ; Nm that is suÆ
iently long (i.e., where m is largerthan the maximal number of labeled nodes that are di�erent up to 
onstant renaming),there must exist 1 � k < ` � m su
h that Nk �pin N`, and thus N` is pinpointingblo
ked by Nk. Consequently, all the nodes Nr for r > ` are pinpointing blo
ked,whi
h in parti
ular means that Nm 
annot get a su

essor node. Thus, the se
ond
ase is not possible either, whi
h 
ompletes the proof of the theorem.As in the 
ase of ordered tableaux, termination of the pinpointing extension alsoimplies termination of the original tableau, as stated by the following 
orollary.Corollary 4.17. Let S be a 
overed forest tableau. Then S terminates with respe
tto �-appli
ation on every input.
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r1 r2r3 r1 r3 r2Figure 4.3: Example of folding of an S-stateIt is worth noti
ing here that the tableau from Example 4.11 is also an instan
eof terminating tableaux whose pinpointing extension does not terminate, even whenusing blo
king. This is the 
ase sin
e, for this parti
ular example, the violation ofCondition 6 of De�nition 4.3 leads to a node that has in�nitely many dire
t su

essors,hen
e produ
ing an in�nite tree, even though its depth is �nitely bounded.We have seen that blo
king 
an be used to regain termination of non-terminating
overed forest tableaux, and that this is also the 
ase for the pinpointing extension.However, sin
e blo
king prevents the appli
ation of rules that would be appli
ablein the normal sense, the proof of 
orre
tness of the pinpointing extension given inSe
tion 3.3 does not apply dire
tly to the pinpointing extension of tableaux withblo
king. A new proof is hen
e ne
essary.Our proof of 
orre
tness will rely on the notion of the folded version of an S-state,whi
h is obtained by removing all blo
ked nodes and adding new edges. Let S bea forest tableau and S = (A; T ) an S-state for an input �. Then S is a forest-stru
ture, i.e., it is a graph-stru
ture 
onsisting of a set of tree-like stru
tures growingout of the original graph-stru
ture indu
ed by the input. If we remove all the blo
kednodes that are des
endants of other blo
ked nodes, we obtain a new forest-stru
tureS0 = (A0;T ) in whi
h blo
ked nodes appear only as leafs in the trees. For every pairof nodes N1 and N2 in S0, if N1 is blo
ked by N2, then we know that N1 � N2, andhen
e there is a bije
tion f : 
ons(N1) ! 
ons(N2) su
h that P (a1; : : : ; an) 2 N1 i�P (f(a1); : : : ; f(an)) 2 N2. We modify the edge with destination N1 (i.e., the uniqueassertion r( �r ;�!r ) 2 b�\A0 with 
ons(N1) � �!r ) to r( �r ; f(�!r )) and then remove N1.15Sin
e f(�!r ) 
ontains only 
onstants from N2, this new edge points to N2, i.e., to thenode that blo
ks N1. By applying this modi�
ation for all the remaining blo
kednodes, we obtain the folded version of S, whi
h we denote by S	. If M is a setof S-states, then its folded version is M	 = fS	 j S 2 Mg. Figure 4.3 shows thepro
ess of folding an S-state. The tree in the left shows the tree shape of an S-state,where the two nodes marked as 
 are blo
ked by the root node, and the nodes markedas � are blo
ked sin
e their parent node is blo
ked. When we remove the latter ones,we obtain a tree where only leafs have blo
ked nodes (
enter). Finally, these blo
kednodes are removed, and the previous edges leading to them are modi�ed to lead tothe root node that was blo
king them, represented as dashed ar
s on the right-mostgraph.Let us illustrate folding of S-states in a more 
on
rete way, using the tableau ofExample 4.12. We have seen there that rule appli
ation 
an be used to obtain the15We denote as f(�!r ) the tuple obtained by applying the fun
tion f to ea
h element of �!r .
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�-saturated S-state S = (A; T ) whereA = fC(a0); r(a0; a1);D(a1);:D(a1); r(a1; a2); C(a2)g:The folded version of this S-state does not 
ontain the 
onstant a2 (sin
e the blo
kednode fC(a2)g has been removed), but it makes up for this by an edge from a1 to a0;in other words, S	 = (A	;T ) with A	 = fC(a0); r(a0; a1);D(a1);:D(a1); r(a1; a0)g.The next lemma will allow us to reuse some of the results shown in Se
tion 3.3,by relating �-saturatedness of a state to \normal" saturatedness of the 
orrespondingfolded state.Lemma 4.18. If S is �-saturated, then S	 is saturated.Proof. Let S = (A; T );S	 = (A	;T ) and R : (B0;S)! fB1; : : : ; Bmg be appli
ableto S	 with substitution �. Assume �rst that R is a generating rule, and let N bethe node in A	 to whi
h this rule is applied, i.e., B0� � N � A	. Sin
e foldingnever modi�es any nodes in the graph stru
ture, ex
ept from removing some, N isalso a node in S, i.e., B0� � N � A. As S is �-saturated, R is not �-appli
able to it.This means that either N is blo
ked, or there is a substitution � extending � su
h thatBi� � A for some i; 1 � i � m. Sin
e folding removes all blo
ked nodes and N belongsto A	, the �rst 
ase 
annot o

ur; thus, the se
ond option must be the 
ase. We 
anthen 
onstru
t a substitution �0 extending � su
h that Bi�0 � A	 as follows: for everyx 2 Smj=0 var(Bj), if �(x) is a 
onstant in a non-blo
ked node of A, then we de�ne�0(x) := �(x); if �(x) belongs to a node N1 blo
ked by some non-blo
ked node N2,then in parti
ular N1 � N2, and thus there exists a bije
tion f : 
ons(N1)! 
ons(N2)su
h that P (a1; : : : ; an) 2 N1 i� P (f(a1); : : : ; f(an)) 2 N2 ; in this 
ase, we de�ne�0(x) = f(�(x)). Be
ause these bije
tions are also used when de�ning the foldedstate, it is easy to see that Bi�0 � A	 indeed holds. This 
ontradi
ts our assumptionthat R is appli
able to S	 with substitution �.Suppose now that R is a non-generating rule. If B0� � A, sin
e �-appli
ability
oin
ides with regular appli
ability for non-generating rules, the proof is analogous tothe one for the previous 
ase. Thus, we 
an assume w.l.o.g. that B0� 6� A. Then,B0� must 
ontain edges r that were added by the folding pro
ess; these edges are ofthe form r = p( �r ; fr(�!r )) where fr is the bije
tion ensuring equivalen
e between theblo
ked and the blo
king nodes, and there are 
orresponding edges in A that haveblo
ked nodes as destinations. Using the bije
tions fr to rename 
onstants, we 
ande�ne a substitution �0 su
h that B0�0 � A. Note that this in
lusion depends onour use of equality blo
king. In fa
t, an assertion P� 2 B0� may be an assertion ina blo
king node N , whose 
onstants are renamed in �0 su
h that they belong to anode N 0 blo
ked by N . Thus, we need to know that all the assertions o

urring inthe blo
king node also o

ur (appropriately renamed) in the blo
ked node. This isguaranteed by our de�nition of �.Sin
eS is �-saturated, R is not appli
able to S with substitution �0, whi
h impliesthat there must exist an i; 1 � i � m su
h that Bi�0 � A. We 
laim that Bi� � A	.This is an easy 
onsequen
e of the fa
ts that (i) the assertions of non-blo
ked nodes inA are 
ontained also in A	; and (ii) the assertions of blo
ked nodes in A are 
ontained
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king node (i.e., the node to whi
h the edge leading tothe blo
ked node has been redire
ted).As we did for the 
ase without blo
king in Se
tion 3.3, we will use proje
tions oflabeled S-states to show the 
orre
tness of the pinpointing extension. The next lemmastates a 
lose 
onne
tion between pinpointing �-saturatedness of a set of labeled S-states and �-saturatedness of its proje
tion.Lemma 4.19. LetM be a �nite set of labeled S-states and V a propositional valuation.IfM is pinpointing �-saturated, then V(M) is �-saturated.Proof. Suppose that there is an S-state S = (A; T ) 2 M and a rule of the formR : (B0;S)! fB1; : : : ; Bmg su
h that R is �-appli
able to V(S) with substitution �.For non-generating rules, appli
ability and �-appli
ability 
oin
ide. Consequently, ifR in non-generating, then we 
an re-use the proof of Lemma 3.13, whi
h shows theresult for the 
ase without blo
king.Thus, assume that R is a generating rule. We have that S � TV ; B0� � AV , forevery i; 1 � i � m and every substitution �0 on var(B0[Bi) extending �, it holds thatBi�0 6� AV , and the node N 0 in V(S) to whi
h the rule is applied is not blo
ked.We will show now that R is pinpointing �-appli
able to S with the same sub-stitution �. Sin
e S � TV � T and B0� � AV � A, the �rst two 
onditions ofpinpointing appli
ability are satis�ed. For the third 
ondition, 
onsider an i and asubstitution �0 on var(B0 [ Bi) extending �. We must show that ins(Bi�0; A) 6= ;where  = Vb2B0 lab(b�) ^Vs2S lab(s). Note that S � TV and B0� � AV imply thatV satis�es  . Sin
e Bi�0 6� AV , there is a b 2 Bi su
h that b�0 =2 AV . Thus b�0 =2 A orV does not satisfy lab(b�0). In the �rst 
ase, b�0 is 
learly  -insertable into A. In these
ond 
ase,  6j= lab(b�0) sin
e V satis�es  , and thus b�0 is again  -insertable intoA. We have shown up to now that R is pinpointing appli
able to S with the substi-tution �. It remains to show that the node N � A to whi
h this rule is appli
able(i.e., the node satisfying B0� � N � A) is not pinpointing blo
ked. If N is not anew node, then it 
annot be blo
ked. Thus, we 
an restri
t the attention to the 
asewhere N is a new node. Sin
e B0� � AV , we have B0� � NV . Thus, the node N 0 inV(S) to whi
h the rule R is applied is a subset of NV .16 We know that this node isnot blo
ked. Also note that, sin
e this node belongs to V(S), the sequen
e of edges inS that leads to the node N is also 
ontained in V(S) and leads to this node. In fa
t,the label of an edge is always implied by the labels of assertions o

urring in nodes oras edges below this edge.Assume that N is pinpointing blo
ked. We 
on
entrate on the 
ase where there isa prede
essor node M of N su
h that M �pin N . (The 
ase where the parent node ofN is blo
ked 
an be redu
ed to this 
ase by 
onsidering, instead of N , the (unique)prede
essor node N 0 of N that is blo
ked, but whose parent node is not blo
ked.) Thede�nition of the relation �pin implies that there is a bije
tion f su
h that, for everyassertion P (a1; : : : ; an) 2 N 0 � NV the assertion P (f(a1); : : : ; f(an)) 2MV . The fa
tthat the assertions in N 0 are 
onne
ted implies that their f -images in MV are also16Note that 
onne
tedness of N need not imply 
onne
tedness of NV � N .
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onne
ted, and thus they belong to a node M 0 � MV . This shows, however, that N 0is blo
ked by M 0, whi
h is a 
ontradi
tion.Noti
e that ifM!/S M0, then it is also the 
ase thatM!S M0, and analogouslyfor pinpointing rule appli
ation: ifM!/Spin M0, thenM!Spin M0. This, along with(2) of Lemma 3.26, shows that M !/Spin M0 implies that either V(M) !Sm V(M0)or V(M) = V(M0). In parti
ular,M0 ��!/Spin M implies V(M0) ��!Sm V(M).One last observation before pro
eeding to the proof of 
orre
tness of the pinpoint-ing extension is that the order in whi
h rules are applied has no in
uen
e on the resultof a blo
king tableau.Lemma 4.20. Let � be an axiomatised input, andM0 = �S. If there areM andM0su
h that M0 ��!S M and M0 ��!S M0 and M;M0 are both �-saturated, then M isfull of 
lashes i� M0 is also full of 
lashes.Proof. For every S-state S 2 M0, there is an S-state S0 2 M0 su
h that S0 � S,where the 
orresponding 
onstant renaming fun
tion is the identity. Re
all that foldingonly 
hanges assertions involving blo
ked nodes, and that only new nodes 
an beblo
ked. Consequently, we also have S0 � S	. Sin
e S	 is saturated by Lemma 4.18,Lemma 3.30 thus yields an S-state S0 2M su
h that S0 � S	.Now, assume thatM is full of 
lashes, i.e., every element ofM 
ontains a 
lash. Toshow thatM0 is full of 
lashes, 
onsider S 2 M0. Then there is an element S0 2 Msu
h that S0 � S	. Sin
e M is full of 
lashes, S0 
ontains a 
lash, and thus S	also 
ontains a 
lash. Sin
e S	 is obtained from S by removing blo
ked nodes and
hanging some edges, and sin
e 
lashes 
onsider only single nodes, this implies thatS also 
ontains a 
lash.The other dire
tion 
an be shown analogously.Theorem 4.21 (Corre
tness of pinpointing with blo
king). Let S be a foresttableau for I and Padmis (T) that is �-
orre
t for the 
-property P. Then the followingholds for every axiomatised input � = (I;T ) over I and Padmis(T):For every 
hain of rule appli
ations M0 !/Spin : : : !/Spin Mn su
h thatM0 = �S and Mn is pinpointing �-saturated, the 
lash formula  Mnindu
ed by Mn is a pinpointing formula for P and �.Proof. Let � = (I;T ) be an axiomatised input, and assume that �S =M0 ��!/Spin MnwithMn pinpointing �-saturated. To show that  Mn is a pinpointing formula for P,we have to show that, for every propositional valuation V, it holds that (I;TV) 2 Pi� V satis�es  Mn .Let N0 = (I;TV)S . Sin
e S terminates w.r.t. �-appli
ation, there is a �-saturatedset N su
h that N0 ��!/S N . Also, sin
e M0 ��!/Spin Mn, it must be the 
ase thatV(M0) ��!Sm V(Mn). Additionally, V(M0) = N0 and also V(Mn) is �-saturated.Thus, Lemma 4.20 yields that N is full of 
lashes i� V(Mn) is full of 
lashes. Bythe �-
orre
tness of S for P, we have then that (I;TV) 2 P i� N is full of 
lashes i�V(Mn) is full of 
lashes i� V satis�es  Mn (Lemma 3.12).
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orre
tness expli
itly requires termination w.r.t. �-appli
ation.For 
overed forest tableaux we have seen that this 
ondition is always satis�ed.Corollary 4.22. Let S be a 
overed forest tableau for I and Padmis(T) that is soundand 
omplete w.r.t. �-appli
ation, i.e., for every 
hain of rule appli
ations of the formM0 !/S : : :!/S Mn su
h thatM0 = �S andMn is �-saturated we have that � 2 P i�Mn is full of 
lashes. Then the following holds for every axiomatised input � = (I;T )over I and Padmis (T):1. There is no in�nite 
hain of rule appli
ations �S =M0 !/Spin M1 !/Spin : : :;2. For every 
hain of rule appli
ations �S = M0 !/Spin : : : !/Spin Mn su
h thatMn is pinpointing �-saturated, the 
lash formula  Mn indu
ed by Mn is apinpointing formula for P and �.In this 
hapter we presented some restri
tions that for
e a tableau to produ
estates that have a forest-like stru
ture. If we additionally bound the set of predi
atenames that 
an be used in the 
onstru
tion of states to be �nite, we obtain foreststru
tures with �nite bran
hing. In order to ensure termination, we require also thatthe stru
tures have a �nite depth. We showed two ways to a
hieve this. The �rstone is by obtaining a partial ordering on the predi
ate names su
h that every ruleappli
ation produ
es only smaller assertions. The se
ond method 
onsists on 
hangingthe appli
ability 
onditions of rules in order to implement a blo
king me
hanism. Theblo
king me
hanism used in this work follows the ideas of what is 
alled equalityblo
king in the DL literature, as it is triggered only if the blo
king- and blo
ked-nodeshave both equivalent assertions. The approa
h followed 
learly shows that blo
kingimposes additional diÆ
ulties for de�ning the pinpointing extension, and for provingits 
orre
tness.In the following 
hapter we will leave behind the tableau-based approa
h towardsde
iding a property and fo
us on another prominent method; namely, the automata-based approa
h. We will show that it is possible to �nd a pinpointing formula fora property that is de
ided by a so-
alled axiomati
 automaton. Furthermore, sin
ede
isions in this method are based on an emptiness test that 
an be performed in �nitetime, we do not have to deal with the termination problems presented by the tableauxapproa
h. Perhaps more interesting is that the extension for �nding a pinpointingformula is also terminating, and a
tually requires only polynomial time on the size ofthe original automaton.



74 CHAPTER 4. A CLASS OF TERMINATING TABLEAUX



Chapter 5Automata-based PinpointingIn this 
hapter we leave behind the tableau-based approa
h and fo
us on automata-based de
ision pro
edures. In a nutshell, we will show that if we 
an de
ide a propertyP with an automata-based method, then we 
an also 
ompute a pinpointing formulafor P. As an additional advantage, we will show that the 
omputation of this pin-pointing formula 
an be done in time polynomial in the size of the automaton thatde
ides P.The automata-based approa
h di�ers from the tableau-based in the way the de
i-sions are made. Intuitively, we 
an think of the rule appli
ation in general tableauxas an attempt to build a model that veri�es (or falsi�es) the property being tested;on the other hand, the iterative emptiness test used by the automata-based approa
h
an be seen as an attempt to prove the (non-)existen
e of su
h a model, withouta
tually building it. In other words, tableau-based de
ision pro
edures 
an be seenas 
onstru
tive proofs of the fa
t that the given axiomatised input belongs to theproperty, as opposed to the non-
onstru
tive proofs obtained by means of automata.Consider for instan
e unsatis�ability of ALC 
on
ept terms w.r.t. SI-TBoxes. Anaxiomati
 input (C;T ) belongs to this 
-property if and only if there is no model I ofthe TBox T su
h that CI 6= ;. The tableau-based de
ision pro
edure tries to falsifythis 
ondition by for
ing an interpretation to map the 
on
ept term C to a non-emptyset, and then expanding it to satisfy all the 
onditions required from a model. Onlyif this 
onstru
tion terminates without �nding a 
ontradi
tion is the input reje
ted(see Se
tion 2.3.5). The automata-based de
ision pro
edure for the same 
-propertyredu
es the problem to de
iding the existen
e of a run of a looping automaton whoseroot is labeled with an initial state. But the emptiness test does not try to 
onstru
tsu
h a run; instead, it �nds the set of all states that 
an serve as root for runs of theautomaton, and 
ompares it with the set of initial states (see Se
tion 2.4.1). At nopoint of this pro
ess is the a
tual 
onstru
tion of a run attempted.While a non-
onstru
tive approa
h is 
ertainly enough for de
iding a property,where we want only to test whether a model exists, it is not 
ompletely obvioushow these ideas 
an generalise to the 
omputation of a pinpointing formula, or ingeneral MinAs and MaNAs for the axiomatised input and de
ided property. Basi
ally,with a 
onstru
tive approa
h we 
an also highlight the spe
i�
 steps that need tobe exe
uted for adding a spe
i�
 pie
e to the model, as we did in the pinpointing75
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onstru
tive proof disallowsthe appli
ation of this method. It is in that respe
t that this 
hapter introdu
es anovel idea, showing that not only 
onstru
tive de
ision pro
edures 
an be extended tolabeling methods that ultimately 
ompute a pinpointing formula. Our approa
h makesthe assumptions that individual axioms have an in
uen
e in the 
onstru
tion of theautomaton that is independent of the presen
e or absen
e of other axioms, and thatwe 
an represent this in
uen
e by restri
ting the transition relation and initial statesfrom a weaker automaton. Although these assumptions 
learly a�e
t the generalityof the method, we believe that they are reasonable, and still allow for de
iding andpinpointing several 
-properties of interest.The 
hapter is divided as follows. We �rst show how any automaton de
iding a
-property 
an be transformed into a weighted automaton whose so-
alled behaviour
orresponds to the pinpointing formula. We then present an iterative pro
edure for
omputing the behaviour of weighted automata over any �nite distributive latti
e; theautomaton used for pinpointing being a spe
ial 
ase 
overed by this algorithm. Duringthe development of our work, an alternative algorithm for 
omputing the behaviourof weighted tree automata working on in�nite trees was independently developed in[DKR08℄. We devote the last se
tion of this 
hapter to a 
omparison of the twoalgorithms, with a spe
ial emphasis on their appli
ation to pinpointing.5.1 Pinpointing AutomataAs mentioned already in repeated opportunities, automata 
an also be used to de-
ide properties in DLs and other logi
s. In the 
ase of the algorithm presented inSe
tion 2.4.1, the 
-property under 
onsideration is unsatis�ability of a 
on
ept termw.r.t. a general SI-TBox. Likewise, in Se
tion 2.4.2, we de
ide the 
-property ofaxiomati
 unsatis�ability of LTL formulae. The de
ision pro
edures 
onsisted onperforming an emptiness test on the automaton AsatC;T (see De�nition 2.19) or Asat�;R(De�nition 2.23). The property under 
onsideration holds if and only if the automatonhas no su

essful run whose root is labeled with an initial state.Contrary to the tableau-based approa
h presented in Chapter 3, the axioms arenot used expli
itly for de
iding the property, but are only impli
it in the 
onstru
tionof the automaton. For instan
e, the TBox is used to de�ne the transition relation ofthe automaton AsatC;T by restri
ting the set of usable transitions to only those that were
ompatible with it. In the automaton Asat�;R, the LTL formulae in the set R restri
tthe set of initial states. If the axiomatised input belongs to the property being de
idedby su
h an automaton, it is impossible to distinguish the axioms that are relevant forthis fa
t from those that are super
uous, and thus, the only possible way to 
omputethe set of MinAs and MaNAs is by trial and error, 
onstru
ting one automaton forea
h possible subset of axioms and performing the emptiness test on it.In general, the automata-based approa
h for de
iding a property P 
onsists ontranslating ea
h axiomatised input � = (I;T ) into an automaton A� su
h that � 2 Pif and only if A� has no su

essful runs. Sin
e we want to �nd out how the axiomsrelate to ea
h other with respe
t to the 
-property under 
onsideration, we need to



5.1. PINPOINTING AUTOMATA 77know how the absen
e of some of the axioms in T would in
uen
e the 
onstru
tionof the automaton. We thus assume that for every T 0 � T , the automaton A(I;T 0) 
anbe 
onstru
ted from A� by appropriately restri
ting its set of transitions and initialstates. To this end we will employ two so-
alled restri
ting fun
tions.De�nition 5.1 (Restri
ting fun
tions, restri
ted automaton). Let A be thegeneralised B�u
hi automaton A = (Q;�; I; F1; : : : ; Fn) for arity k and � = (I;T ) anaxiomatised input. The fun
tions �res : T ! P(Qk+1) and Ires : T ! P(Q) are
alled a transition restri
ting fun
tion and an initial restri
ting fun
tion, respe
tively.We extend these restri
ting fun
tions to be appli
able over sets of axioms as follows:�res(T 0) := \t2T 0�res(t) andIres(T 0) := \t2T 0 Ires(t):If T 0 � T , then the T 0-restri
ted subautomaton of A w.r.t. �res and Ires is thegeneralised B�u
hi automaton AjT 0 de�ned asAjT 0 := (Q;� \�res(T 0); I \ Ires(T 0); F1; : : : ; Fn):We will give the name of axiomati
 automata to generalised B�u
hi tree automataequipped with a transition- and an initial-restri
ting fun
tion.De�nition 5.2 (Axiomati
 automaton). Let A = (Q;�; I; F1; : : : ; Fn) be a gener-alised B�u
hi automaton for arity k, � = (I;T ) an axiomatised input, and the fun
tions�res : T ! P(Qk+1) and Ires : T ! P(Q) a transition and an initial restri
tingfun
tion, respe
tively. The tuple (A;�res; Ires) is 
alled an axiomati
 automaton for�. An axiomati
 automaton is 
onsidered 
orre
t for a property P if the restri
tedsubautomata de
ide P for the axiomatised input 
orresponding to ea
h subset ofaxioms.De�nition 5.3 (Corre
tness). Given a 
-property P, (A;�res; Ires) is 
orre
t for� w.r.t. P if for every T 0 � T it is the 
ase that (I;T 0) 2 P i� the restri
ted subau-tomaton AjT 0 has no su

essful run r su
h that r(") 2 I \ Ires(T 0).Consider again the automaton AsatC;T de�ned in Se
tion 2.4.1. This automaton
orre
tly de
ides unsatis�ability w.r.t. general SI-TBoxes but still la
k appropriaterestri
ting fun
tions, a ne
essary 
ondition in the de�nition of axiomati
 automata.It is easy to noti
e that the only pla
e where the axioms in
uen
e the 
onstru
tionof this automaton is in the transition relation �, whi
h is de�ned as the set of alltuples in Qk+1 that satisfy the Hintikka 
ondition and are 
ompatible with all the
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an alternatively remove the se
ond 
ondition in the de�nitionof this transition relation, that is, the 
ondition of 
ompatibility with the TBox, andobtain the same intended behaviour through the transition restri
ting fun
tion. Sin
ein this 
ase the axioms do not in
uen
e the set of initial states, we 
an set the fun
tionIresC;T as the 
onstant fun
tion Q; i.e., the fun
tion that maps every axiom in T tothe set of all states Q.De�nition 5.4 (Axiomati
 automaton for SI). Let C be a 
on
ept term, Ta general SI-TBox and k the number of existential restri
tions in sub(C;T ). Theaxiomati
 automaton (AC;T ;�resC;T ; IresC;T ) has as its �rst 
omponent the loopingautomaton AC;T = (Q;�; I) where� Q is the set of all Hintikka sets for (C;T );� � is the set of all tuples (H0;H1; : : : ;Hk) 2 Qk+1 satisfying the Hintikka 
ondi-tion; and� I = fH 2 Q j C 2 Hg.The transition restri
ting fun
tion �resC;T maps ea
h axiom t 2 T to the set of alltuples in � that are 
ompatible with t. The initial restri
ting fun
tion IresC;T mapsea
h axiom t 2 T to the set Q.One 
an see that for T 0 � T , the T 0-restri
ted subautomaton of AC;T is exa
tlythe automaton AsatC;T 0 . Thus, this 
onstru
tion yields a 
orre
t axiomati
 automatonfor unsatis�ability of ALC 
on
ept terms w.r.t. SI-TBoxes.Theorem 5.5. Let C be an ALC 
on
ept term and T a general SI-TBox. The ax-iomati
 automaton (AC;T ;�resC;T ; IresC;T ) is 
orre
t for (C;T ) w.r.t. unsatis�ability.To obtain an axiomati
 automaton for axiomati
 unsatis�ability of LTL formulae,we 
an follow a similar idea. Noti
e that, in this 
ase, the axioms have no impa
t onthe transition relation of the automaton Asat�;R, but rather in the set of initial states.Thus, we 
an weaken the de�nition of Asat�;R su
h that its set of initial states is nowgiven by all elementary sets that 
ontain the stati
 formula �. Sin
e we do not wantaxioms to a�e
t the transition relation of the restri
ted automaton, we set, for every 2 R, the transition restri
ting fun
tion �res�;R( ) = �. The initial restri
tingfun
tion Ires�;R then maps every LTL formula  2 R to the set of elementary sets
ontaining  .De�nition 5.6 (Axiomati
 automaton for LTL). Let � and R be an LTL formulaand a set of LTL formulae, respe
tively, and let �1U 1; : : : ; �nU n be all the untilformulae in 
l(�;R). The axiomati
 automaton (A�;R;�res�;R; Ires�;R) has as its�rst 
omponent the generalised B�u
hi automaton A�;R := (Q;�; I; F1; : : : ; Fn), where� Q is the set of all elementary sets for (�;R);� � 
onsists of all 
ompatible pairs (H;H 0) 2 Q�Q;



5.1. PINPOINTING AUTOMATA 79� I := fH 2 Q j � 2 Hg;� Fi := fH 2 Q j  i 2 H or �iU i =2 Hg.For every  2 R, the transition restri
ting and initial restri
ting fun
tions are givenby �res�;R( ) := � and Ires�;R( ) := fH 2 Q j  2 Hg, respe
tively.Clearly, for every R0 � R, the R0-restri
ted subautomaton of A�;R is equivalentto the automaton Asat�;R0 . This means that the axiomati
 automaton 
onstru
ted thisway is 
orre
t for (�;R) w.r.t. axiomati
 unsatis�ability.Theorem 5.7. Let � and R be an LTL formula and a set of LTL formulae, respe
-tively. The axiomati
 automaton (A�;R;�res�;R; Ires�;R) is 
orre
t for (�;R) w.r.t.axiomati
 unsatis�ability.Given an axiomati
 automaton that 
orre
tly de
ides a 
-property, we will 
on-stru
t a weighted automaton whose so-
alled behaviour 
orresponds to the pinpoint-ing formula for this property. Weighted automata do not merely a

ept or reje
tan input tree, but rather assign a value to it; these values 
ome from a distributivelatti
e [Gr�a98℄.De�nition 5.8 (Distributive latti
e). A distributive latti
e is a partially orderedset (S;�S) su
h that in�ma and suprema of arbitrary �nite subsets of S always existand distribute over ea
h other. The distributive latti
e (S;�S) is 
alled �nite if its
arrier set S is �nite.As we will see next, any weighted automaton uses as weights only �nitely manyelements of the underlying distributive latti
e. Sin
e �nitely generated distributivelatti
es are �nite [Gr�a98℄, the 
losure of this set under the latti
e operations in�mumand supremum yields a �nite distributive latti
e. For this reason, we will in thefollowing assume without loss of generality that the weights of our weighted B�u
hiautomaton 
ome from a �nite distributive latti
e (S;�S).For the rest of this 
hapter, we will often simply use the 
arrier set S to denotethe distributive latti
e (S;�S). The in�mum (supremum) of a subset T � S will bedenoted byNt2T t (Lt2T t). We will often 
ompute the in�mum (supremum)Ni2I ti(Li2I ti) over an in�nite set of indi
es I. However, the �niteness of the latti
e and theidempoten
y of the operators in�mum and supremum ensure that the sets over whi
hthe operators are a
tually applied are �nite, and hen
e in�mum and supremum arewell-de�ned in this 
ase. For the in�mum (supremum) of two elements, we will alsouse the in�x notation; i.e., write t1 
 t2 (t1 � t2) to denote the in�mum (supremum)of the set ft1; t2g. The least element of S (i.e., the in�mum of the whole set S) willbe denoted by 0, and the greatest element (i.e., the supremum of the whole set S) bythe symbol 1.It should be noted that our assumption that the weights 
ome from a �nite dis-tributive latti
e is stronger than the one usually en
ountered in the literature onweighted automata. In fa
t, for automata working on �nite trees, it is suÆ
ient toassume that the weights 
ome from a so-
alled semiring [Sei94℄. In order to have a



80 CHAPTER 5. AUTOMATA-BASED PINPOINTINGwell-de�ned behaviour also for weighted automata working on in�nite obje
ts, theexisten
e of in�nite produ
ts and sums is required [DR06, Rah07℄. The additionalproperties imposed by our requirement to have a �nite distributive latti
e (in parti
-ular, the idempoten
y of produ
t and sum) will be used to show that we 
an a
tually
ompute the behaviour of our weighted B�u
hi automata (see Se
tion 5.2).17 Sin
e ourmain goal in the use of weighted automata is to 
ompute a pinpointing formula, thesestronger assumption will not be problemati
. As we will see later, the weights used for
omputing this formula a
tually belong to a �nitely generated free distributive latti
e.De�nition 5.9 (Weighted B�u
hi automaton). Let S be a �nite distributive latti
e.A weighted generalised B�u
hi automaton (WGBA) over S for arity k is a tuple of theform A = (Q; in;wt; F1; : : : ; Fn) where:� Q is a �nite set of states,� in : Q! S is the initial distribution,� wt : Qk+1 ! S assigns weights to transitions, and� F1; : : : ; Fn � Q are the sets of �nal states.A WGBA is 
alled weighted B�u
hi automaton (WBA) if n = 1 and weighted loopingautomaton (WLA) if n = 0.A run of a WGBA A is a labeled tree r : K� ! Q. The weight of this runis wt(r) = Nu2K� wt(��!r(u)). This run is su

essful if for every path p and everyi; 1 � i � n, there are in�nitely many nodes u 2 p su
h that r(u) 2 Fi. Let su

Adenote the set of all su

essful runs of A. The behaviour of the automaton A iskAk := Mr2su

A in(r(")) 
 wt(r):
For example, the Boolean semiring B = (f0; 1g;^;_; 1; 0) is a �nite distributivelatti
e, where the partial order is de�ned as 1 �B 0. Note that we have de�ned 1 to besmaller than 0, and thus in this 
ontext 
onjun
tion yields the supremum (i.e., is the\addition" �) and disjun
tion yields the in�mum (i.e., is the \produ
t" 
). Likewise,1 is the least element 0, and 0 is the greatest element 1. Any generalised B�u
hitree automaton A = (Q;�; I; F1; : : : ; Fn) 
an easily be transformed into a WGBAAw on B su
h that the behaviour of Aw is 0 i� A has a su

essful run. In Aw, theinitial distribution maps initial states to 0 and all other states to 1; a tuple in Qk+1re
eives weight 0 if it belongs to �, and weight 1 otherwise. We will now see that thisautomaton behaves just as it was previously 
laimed.17Alternatively to the idempoten
y assumption, one 
an try to ensure 
onvergen
e of these in�nitaryoperators with the help of a so-
alled dis
ounting fun
tion [DK06, Man08, DSV08℄. Sin
e we wantaxioms to have the same in
uen
e over the result, regardless on where in the model they are used, wewill not follow these ideas.



5.1. PINPOINTING AUTOMATA 81The emptiness test for B�u
hi automata sket
hed in Se
tion 2.4 
an be adaptedsu
h that it 
omputes the behaviour of Aw as follows. We will 
onstru
t a fun
tionbad : Q ! f0; 1g su
h that bad(q) = 1 i� q is a bad state. The outer iteration ofthe algorithm will update this fun
tion at every step. In the beginning, no state isknown to be bad, and thus we start the iteration with bad0(q) = 0 for all q 2 Q. Nowassume that the fun
tion badi : Q ! f0; 1g, for i � 0, has already been 
omputed.For the next step of the iteration, we 
all the inner loop to update the set of adequatestates. In this loop, we are going to 
ompute the fun
tion adqi : Q ! f0; 1g. Here,adqi(q) = 1 means that q is not an adequate state, i.e., that it is not possible to
onstru
t a run with q at the root where ea
h path rea
hes at least one �nal state.At the beginning we know nothing about the adequate states, so we set adqi0(q) = 1for all q 2 Q. Assume that we have already 
omputed adqin : Q ! f0; 1g. To knowwhether a state should be
ome adequate in the next step, we need to 
he
k for ea
htransition starting from this state whether the �nal states rea
hed by the transitionare non-bad, and the non-�nal states are already known to be adequate. Thus, wehaveadqin+1(q) = ^(q;q1;:::;qk)2Qk+1 wt(q; q1; : : : ; qk) _ _qj =2F adqin(qj) _ _qj2F badi(qj): (5.1)The fun
tion adqi is the limit of this inner iteration, whi
h is rea
hed after at mostjQj steps. With this fun
tion, we de�nebadi+1(q) = badi(q) _ adqi(q):The fun
tion bad is the limit of this outer iteration, whi
h is also rea
hed after atmost jQj steps. This 
omputation of the fun
tion bad by two nested iterations basi-
ally simulates the 
omputation of all bad states in the emptiness test for B�u
hi treeautomata that we sket
hed in Se
tion 2.4. It is thus easy to show that bad(q) = 1 i�q is a bad state, i.e., 
annot o

ur as a label in a su

essful run of A.Given the de�nition of Aw, it is easy to see that a run r : K� ! Q of Aw hasweight 0 i� it is a run of A that starts with an initial state of A. Consequently, A hasa su

essful run that starts with an initial state i�kAwk = ^r2su

Aw in(r(")) _ wt(r) = 0:Putting these observations together, we thus have: the behaviour of Aw is 0 i� Ahas a su

essful run that starts with an initial state i� there is an initial state q (i.e.,in(q) = 0) that is not bad (i.e., bad(q) = 0). This shows that the behaviour of Awis given by Vq2Q in(q) _ bad(q). Later, we will see that the behaviour of a WBA 
analways be 
omputed by su
h a pro
edure with two nested iterations.Starting from a 
orre
t axiomati
 automaton, we 
an 
onstru
t a weighted au-tomaton whose behaviour 
orresponds exa
tly to a pinpointing formula. Obviously,the semiring used by this automaton needs to have monotoni
 Boolean formulae aselements. We use the T -Boolean semiring. Re
all that every axiom in T is labeled



82 CHAPTER 5. AUTOMATA-BASED PINPOINTINGwith a unique propositional variable, and lab(T ) represents the set of all the labels ofelements in T . The T -Boolean semiring is given by B T = (B̂ (T );^;_;>;?), whereB̂ (T ) is the quotient set of all monotoni
 Boolean formulae over lab(T ) by the propo-sitional equivalen
e relation; in other words, two propositionally equivalent formulae
orrespond to the same element in B̂ (T ). This semiring is indeed a distributive latti
e,where the partial order is de�ned as � �  i�  ! � is a valid propositional formula.Furthermore, as T is a �nite set of axioms, this latti
e is also �nite: it 
orresponds tothe free distributive latti
e over the generators lab(T ). Note that, similar to the 
aseof the Boolean semiring B de�ned above, 
onjun
tion is the semiring addition (i.e.,yields the supremum �) and disjun
tion is the semiring multipli
ation (i.e., yields thein�mum 
). Likewise, > is the least element 0 and ? is the greatest element 1.De�nition 5.10 (Pinpointing automaton). Let (A;�res; Ires) be an axiomati
automaton for the axiomatised input � = (I;T ), with A = (Q;�; I; F1; : : : ; Fn). Theviolating fun
tions �vio : Qk+1 ! B T and Ivio : Q! B T are given by�vio(q0; q1; : : : ; qk) := _ft2T j(q0;q1;:::;qk)=2�res(t)g lab(t); andIvio(q) := _ft2T jq=2Ires(t)g lab(t):The pinpointing automaton indu
ed by (A;�res; Ires) w.r.t. T is the WGBA(A;�res; Ires)pin over B T , given by (A;�res; Ires)pin = (Q; in;wt; F1; : : : ; Fn), wherein(q) = (Ivio(q) if q 2 I> otherwise;wt(q; q1; : : : ; qk) = (�vio(q; q1; : : : ; qk) if (q; q1; : : : ; qk) 2 �> otherwise.Let r be a tree labeled with elements of Q. It is easy to see that if r 
orresponds toa run of the automaton A, then its weight when seen as a run of (A;�res; Ires)pin iswt(r) = Wu2K� �vio(��!r(u)); on the 
ontrary 
ase, its weight is wt(r) = >. Intuitively,the violating fun
tion �vio expresses whi
h axioms are not satis�ed { or \violated" {by a given transition. The weight of a run a

umulates then all the axioms violated byany of the transitions appearing as labels in this run. Additionally, the fun
tion Iviorepresents the axioms that are violated by the initial state of the run. Thus, removingall the axioms appearing in these two formulae would yield a subset of axioms thatare not violated by this run. This means that, if the run is su

essful and the root islabeled with an initial state, due to 
orre
tness, the property does not hold anymoreafter the removal of those axioms. But di�erent runs may lead to di�erent sets ofaxioms that need to be removed, and hen
e we need the 
onjun
tion of all of them toobtain a pinpointing formula.



5.2. COMPUTING THE BEHAVIOUR OF WEIGHTED AUTOMATA 83Theorem 5.11. Let P be a 
-property, and � = (I;T ) an axiomatised input. Ifthe axiomati
 automaton (A;�res; Ires) is 
orre
t for � w.r.t. P, then the behaviourk(A;�res; Ires)pink is a pinpointing formula for � w.r.t. P.Proof. We need to show that, for every valuation V � lab(T ), it holds that V satis�esk(A;�res; Ires)pink i� (I;TV) 2 P. Let V � lab(T ) be an arbitrary valuation.Suppose �rst that (I;TV) =2 P. Sin
e (A;�res; Ires) is 
orre
t for � w.r.t. P,there must be a su

essful run r of AjTV with r(") 2 I \ Ires(TV). Consequently,��!r(u) 2 �res(TV) holds for every u 2 K�, and thus V 
annot satisfy �vio(��!r(u)), forany u 2 K�. Sin
e r is a su

essful run of AjTV , it is also a su

essful run of A, whi
himplies wt(r) = Wu2K��vio(��!r(u)). Thus, V does not satisfy wt(r). Sin
e r(") 2 I, weknow that in(r(")) = Ivio(r(")); additionally, r(") 2 Ires(TV) implies that V does notsatisfy Ivio(r(")). Thus, V does not satisfy in(r(")) _ wt(r). But then V also 
annotsatisfy the 
onjun
tive formula Vr2su

 in(r(")) _ wt(r) = k(A;�res; Ires)pink.Conversely, if V does not satisfy k(A;�res; Ires)pink = Vr2su

 in(r("))_wt(r), thenthere must exist a su

essful run r su
h that V does not satisfy in(r(")) _wt(r). Thisimplies that r(") 2 I\Ires(TV) and that ��!r(u) 2 �res(TV) for all u 2 K�. Consequently,r is a su

essful run of AjTV with r(") 2 I \ Ires(TV), whi
h shows (I;TV) =2 P, by the
orre
tness of the axiomati
 automaton.This theorem shows that it suÆ
es to 
ompute the behaviour of the pinpoint-ing automaton (A;�res; Ires)pin indu
ed by an axiomati
 automaton (A;�res; Ires)in order to obtain a pinpointing formula for the property de
ided by (A;�res; Ires).When we began this work, we were unable to �nd any algorithm for 
omputing thebehaviour of weighted automata in the literature and hen
e had to develop our own,whi
h generalises the ideas used in the iterative emptiness test of unweighted au-tomata (Se
tion 2.4). During the development of our work, an alternative algorithmfor 
omputing the behaviour of weighted tree automata working on in�nite trees hasindependently been developed in [DKR08℄. It turns out, however, that using this al-gorithm in our pinpointing appli
ation basi
ally yields a so-
alled bla
k-box approa
hfor pinpointing, in whi
h the set of all MinAs is obtained by testing for emptinessof the restri
ted subautomaton de�ned by ea
h subset of axioms. The pinpointingformula in disjun
tive normal form is then obtained from this set as des
ribed by theExpression 3.2 in page 37. Instead, our algorithm tries to 
ompute the pinpointingformula within a time bound proportional to the one required for a single emptinesstest. We des
ribe this in more detail in the following se
tions.5.2 Computing the Behaviour of Weighted AutomataIn this se
tion, we �rst show how the behaviour of a weighted B�u
hi automatonover a �nite distributive latti
e 
an be 
omputed by two nested iterations. We thenshow how, if we restri
t the dis
ourse to WLAs, the pro
edure 
an be simpli�ed toa single bottom-up iteration. Afterwards, we prove that for every WGBA one 
an
onstru
t in polynomial time a WBA having the same behaviour, thus obtaining amethod for 
omputing the behaviour of WGBAs also in polynomial time. This latter
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tion follows the ideas that have previously been used for the 
ase of unweightedautomata [VW86℄.5.2.1 Computing the Behaviour of a WBABy de�nition, the behaviour of a weighted B�u
hi automaton is the addition of theweights of all su

essful runs, whi
h themselves 
onsist of the produ
t of the weightsof all transitions that they 
ontain, multiplied by the initial distribution of their rootlabels. Trying to apply this de�nition dire
tly to the 
omputation of the behaviourwill unavoidably lead to failure given the potentially in�nite number of su

essful runsand the in�nite size of ea
h of them. To over
ome this problem, we will generalisethe iterative algorithm for de
iding emptiness of B�u
hi automata that was sket
hed inSe
tion 2.4 and produ
e a method that 
omputes the behaviour in a similar fashion.To introdu
e the ideas, we will 
onsider a B�u
hi automaton as a WBA over theBoolean semiring as des
ribed in page 80. The two iterations des
ribed there, namelythe one that 
omputes the fun
tions adqi (Equation 5.1) and the one that 
omputesthe fun
tion bad, will be generalised to monotone operators that 
an be applied toarbitrary �nite distributive latti
es.For the remaining of this se
tion we will assume that we have an arbitrary but�xed WBA A = (Q; in;wt; F ) over the �nite distributive latti
e S. We will show thatA indu
es a monotone operator Q : SQ ! SQ, where SQ is the set of all mappingsfrom Q to S, and that the behaviour of A 
an easily be obtained from the greatest�xpoint of this operator. The partial order �S 
an be transferred to SQ in the usualway, by applying it 
omponent-wise: if �; �0 2 SQ, then (�� �0)(q) = �(q)� �0(q) forall q 2 Q. It is easy to see that (SQ;�SQ) is again a �nite distributive latti
e. We willuse 
 and � also to denote the in�mum and supremum in SQ. The least (respe
tivelygreatest) element of SQ is the fun
tion e0 (respe
tively e1) that maps every q 2 Q to 0(respe
tively 1).To de�ne this operator Q, we will follow the same ideas sket
hed for the emptinesstest. Intuitively, an appli
ation of this operator 
orresponds to one iteration in the
omputation of the fun
tion bad. In the unweighted 
ase, at ea
h of these steps, weperformed an inner iteration to 
ompute the auxiliary fun
tion adq. Analogously,in order to de�ne the operator Q we need �rst to introdu
e an auxiliary operatorO : SQ ! SQ. We will fo
us �rst on this operator O, whi
h will also be shown tobe monotone. The fun
tion adq used in the unweighted 
ase a
tually depends onknowledge of the bad states that have been 
omputed so far; this dependen
y extendsto the weighted 
ase, in order to allow a 
orre
t iteration of operator Q (see page 89).Thus, we a
tually de�ne one operator Of for ea
h f 2 SQ. Following the idea ofEquation (5.1), the operator Of is de�ned as follows for every � 2 SQ and q 2 Q:Of (�)(q) = M(q;q1;:::;qk)2Qk+1 wt(q; q1; : : : ; qk)
 kOj=1 stepf (�)(qj); (5.2)



5.2. COMPUTING THE BEHAVIOUR OF WEIGHTED AUTOMATA 85where stepf (�)(q) = (f(q) if q 2 F�(q) otherwise.In the inner iteration of the emptiness test, the fun
tion adqi is 
omputed byapplying Equation 5.1 to a previously 
omputed fun
tion adqin until this pro
ess sta-bilizes; that is, until a �xpoint has been found. This iteration is initialized with thefun
tion adqi0 that maps every state to 1. Sin
e 1 is the least element of the latti
eB , the fun
tion adqi0 is the least element of the latti
e SQ. Thus, the limit of thisiteration, i.e., the fun
tion adqi, is in fa
t the least �xpoint of the operator de�nedby Equation 5.1 on the latti
e SQ. With the help of the next lemma, we will showthat the same idea holds in the operators Of ; that is, that one 
an 
ompute its least�xpoint by �nitely many appli
ations of the operator over the in�mum of the latti
eSQ.Lemma 5.12. For every f 2 SQ the operator Of is monotone, i.e., � �SQ �0 impliesOf (�) �SQ Of (�0).Proof. Let �; �0 2 SQ be su
h that � �SQ �0. This implies also stepf (�) �SQ stepf (�0).Thus, we have for every q 2 Q:Of (�)(q) = M(q;q1;:::;qk)2Qk+1 wt(q; q1; : : : ; qk)
 kOj=1 stepf (�)(qj)�S M(q;q1;:::;qk)2Qk+1 wt(q; q1; : : : ; qk)
 kOj=1 stepf (�0)(qj) = Of (�0):Sin
e we know that SQ is �nite, this in parti
ular means that the operator Of is
ontinuous. By Tarski's �xpoint theorem [Tar55℄, this implies that the least �xpoint(lfp) of Of isLn�0Onf (e0). Finiteness of SQ yields that this lfp is rea
hed after �nitelymany iterations; more pre
isely, there exists a smallest m; 0 � m � jSjjQj su
h thatOmf (e0) = Om+1f (e0), and for this m we have Ln�0Onf (e0) = Omf (e0). This gives us abound on the number of iterations that is exponential in the size of the automaton.We will later show (see Theorem 5.18) that it is possible to improve this bound to apolynomial number of iterations, measured in the number of states.Re
all our intuition for the auxiliary operator that is trying to �nd the adequatestates. These states are those from whi
h it is possible to 
onstru
t a �nite partialrun that �nishes in �nal states that are not known to be bad. In the general 
ase,the operators O will help in 
omputing the weights of all su
h runs, whi
h in the endwill allow us to help the weights of all su

essful runs, and hen
e the behaviour of theautomaton. Next, we give a formal de�nition of the notion of a �nite partial run.De�nition 5.13 (Finite run). A �nite tree is a �nite set t � K� that is 
losedunder pre�xes and su
h that, if ui 2 t for some u 2 K� and i 2 K, then for all



86 CHAPTER 5. AUTOMATA-BASED PINPOINTINGj; 1 � j � k; uj 2 t. A node u 2 t is 
alled a leaf if there is no j; 1 � j � k su
h thatuj 2 t. The set of all leaf nodes of a tree t is denoted by lnode(t). The depth of a�nite tree t is the length of the largest word in t.A �nite run is a mapping r : t ! Q, where t is a �nite tree. Given su
h a run,leaf(r) denotes the set of all states appearing as labels of a leaf.We denote as runs1 the set of all runs r of depth at least 1 su
h that for everynode u 6= ", r(u) 2 F if and only if u is a leaf. Additionally, runs�n1 denotes the setof all runs in runs1 having depth at most n. For a state q 2 Q, we de�ne the setsruns1(q) = fr 2 runs1 j r(") = qg; analogously runs�n1 (q) = fr 2 runs�n1 j r(") = qg.The weight of a �nite run r : t! Q is wt(r) =Nu2tnlnode(t) wt(��!r(u)).When we are looking for the states that are adequate, we are a
tually trying to
onstru
t a run in runs1 that starts with ea
h state. Re
all from our intuition thatwe �rst 
all adequate any state q having a transition starting with it and leadingonly to �nal states. This 
ondition is analogous to having a �nite run (of depth 1)in runs1(q). We then 
all adequate any other state p that has a transition leading toadequate or �nal states; i.e., to non-�nal states having a run in runs1 starting withthem, or to �nal states. Con
atenating this transition with the runs in runs1, weobtain a new run in runs1(p). This image is nonetheless in
omplete, sin
e we are notreally interested in any �nite run �nishing in �nal states, but only those whose leafnodes have labels that are not bad. We 
an see this as multiplying the weight of thisrun by the fun
tion bad applied to ea
h of the states labeling a leaf node. In thegeneral 
ase, 
onsider a given fun
tion f : Q! S. We de�ne the f -weight of a run ras wtf (r) = wt(r)
Nq2leaf(r) f(q).We will show that the lfp of the operator Of yields the addition of the f -weightsof all runs in runs1(q) for every state q 2 Q with the help of the following lemma.Lemma 5.14. For all n � 0 and all q 2 Q, Onf (e0)(q) =Lr2runs�n1 (q) wtf (r).Proof. The proof is by indu
tion on n. For n = 0, the result follows from the fa
t thatruns�01 = ;, and hen
eLr2runs�01 (q) wtf (r) = 0 = e0(q) = Onf (e0)(q).Assume now that the identity holds for n. Given a tuple (q1; : : : ; qk) 2 Qk, leti1; : : : ; il be all the indi
es su
h that qij =2 F for all j; 1 � j � l and il+1; : : : ; ik thoseindi
es su
h that qij 2 F for all j; l + 1 � j � k. Appli
ation of the de�nitions of theoperators Of and stepf , respe
tively, yieldsOn+1f (e0)(q) = M(q1;:::;qk)2Qk wt(q; q1; : : : ; qk)
 kOj=1 stepf (Onf (e0))(qj)= M(q1;:::;qk)2Qk wt(q; q1; : : : ; qk)
 lOj=1 Onf (e0)(qij )
 kOj=l+1 f(qij )If 1 � j � l, then we will abbreviate runs�n1 (qij ) as rnnj and leaf(rj) as lfj . In addition,



5.2. COMPUTING THE BEHAVIOUR OF WEIGHTED AUTOMATA 87we use the symbol F as an abbreviation for the produ
tNkj=l+1 f(qij ). We then haveOn+1f (e0)(q) = M(q1;:::;qk)2Qk wt(q; q1; : : : ; qk)
 ( lOj=1 Mrj2rnnj wtf (rj))
 F (5.3)= M(q1;:::;qk)2Qk wt(q; q1; : : : ; qk)
 ( Mr12rnn1 ;:::;rl2rnnl lOj=1 wtf (rj))
 F (5.4)
= M(q1;:::;qk)2Qk wt(q; q1; : : : ; qk)
 ( Mr12rnn1 ;:::;rl2rnnl lOj=1 wt(rj)
Op2lfj f(p))
 F(5.5)= M(q1;:::;qk)2Qk Mr12rnn1 ;:::;rl2rnnl wt(q; q1; : : : ; qk)
Oqj =2F wt(rj)
Op2lfj f(p)
 F (5.6)= Mr2runs�n+11 (q)wt(r)
 Op2leaf(r) f(p) (5.7)= Mr2runs�n+11 (q)wtf (r):Equation (5.3) applies the indu
tion hypothesis. Identity (5.4) uses the fa
t that SQis a distributive latti
e, whi
h allows us to move the addition out of the produ
t,while (5.5) uses the de�nition of f -weight. Identity (5.6) uses again the distributivityto multiply wt(q; q1; : : : ; qk) inside the addition. Finally, Identity (5.7) simpli�es thetwo sums by 
onstru
ting a run of larger depth. Instead of 
onsidering �rst thetransition (q; q1; : : : ; qk) and then runs of depth up to n starting with ea
h qij , wesimply take the 
orresponding run of depth n + 1 starting at q. This run labels theroot with q and the su

essor node i with qi. If qi is a �nal state, then it remains as aleaf, otherwise, below the node i we have the former run starting with qi. Thus, theset of leafs of this larger run is the union of the sets of leafs of the runs rjs and theset of those qis that are �nal states. The last identity merely applies the de�nition off -weight again.The next theorem shows the relation between the f -weights of the runs in runs1and the least �xpoint of the operator Of .Theorem 5.15. Let f 2 SQ and assume that �0 is the lfp of the operator Of . Then,for every q 2 Q, �0(q) =Lr2runs1(q) wtf (r).Proof. By Lemma 5.14 we know thatMn�0Onf (e0)(q) = Mn�0 Mr2runs�n1 (q)wtf (r)= Mr2runs1(q)wtf (r):



88 CHAPTER 5. AUTOMATA-BASED PINPOINTINGTarski's �xpoint theorem states that the least �xpoint of Of is Ln�0Onf (e0), whi
h
ompletes the proof of the theorem.Before des
ribing how the operators Of help in the 
omputation of the behaviourof a weighted automaton, it is worth showing that the number of times it needs to beapplied before rea
hing its lfp is bounded by the number of states of the automaton.The notion of m-�nalising automata will be useful for this.De�nition 5.16 (m-�nalising). A WBA is m-�nalising if for every fun
tion f 2 SQand every partial run r in runs1(q) there is a partial run sr in runs�m1 (q) su
h thatwtf (r) �S wtf (sr).We will �rst show that every WBA is m-�nalising for any m grater to the numberof non-�nal states plus one, i.e. jQnF j+1. Afterwards we will show how this propertyyields a bound on the number of iterations needed to rea
h the least �xpoint of Of .Theorem 5.17. Let A be a WBA with less than m� 1 non-�nal states. Then A ism-�nalising.Proof. Let f 2 SQ and 
onsider a run r 2 runs1(q). If r 2 runs�m1 (q), then we 
an
onsider sr = r, and hen
e there is nothing to prove.Otherwise, if r =2 runs�m1 (q), then there must be a path in the tree of length greaterthan m. As r 2 runs1, in this path there is only one non-root node, namely the leafnode, that is labeled with a �nal state. Thus, there are at least m� 1 nodes labeledwith non-�nal states. Sin
e there are less than m di�erent non-�nal states, there mustbe two non-root nodes u 6= v in this path su
h that r(u) = r(v). Sin
e these nodesare in the same path, we 
an assume w.l.o.g. that v = uv0 for some v0 2 K� n f"g. Wede�ne a new run s as follows: for every node w if there is no w0 for whi
h w = uw0, sets(w) := r(w), otherwise (that is, if w = uw0 for some w0) then set s(uw0) := s(vw0).This 
onstru
tion de�nes an inje
tive fun
tion g from the nodes of s to the nodes of rsu
h that, for every node w of s, we have s(w) = r(g(w)). Noti
e that this fun
tion isnot surje
tive, sin
e there is no w su
h that g(w) = u. Thus, s has less nodes than r.Additionally, s is in runs1(q). Furthermore, every transition in s is also a transitionin r and for every w 2 leaf(s); g(w) 2 leaf(r). This implies that wtf (r) �S wtf (s). Ifs is still not in runs�m1 , then we 
an repeat the same pro
ess to produ
e a smaller runs0 with a smaller f -weight, until we �nd one that is in runs�m1 .We pro
eed now to show that if we have an m-�nalising WBA, then the lfp isfound after at most m appli
ations of the operator Of to the least element e0. Due toTheorem 5.17, this in parti
ular shows that one needs polynomial time, measured onthe number of states of A to 
ompute this lfp.Theorem 5.18. If A is m-�nalising, then Omf (e0) is the lfp of Of .Proof. Let �0 be the lfp of Of . We know that �0 is the supremum of fOnf (e0) j n � 0g;thus, it is suÆ
ient to show that Omf (e0)(q) � �0(q) for all q 2 Q. By Theorem 5.15,we know that �0(q) =Lr2runs1(q) wtf (r). Sin
e A ism-�nalising, we 
an repla
e every



5.2. COMPUTING THE BEHAVIOUR OF WEIGHTED AUTOMATA 89r 2 runs1(q) by the 
orresponding sr 2 runs�m1 (q), obtaining a greater element in thelatti
e. Thus, �0(q) �S Mr2runs1(q)wtf (sr)�S Ms2runs�m1 (q)wtf (s) = Omf (e0)(q);whi
h proves our 
laim.The last two theorems tell us that, in order to 
ompute the lfp of an operatorOf , it suÆ
es to apply this operator jQ n F j + 2 times. Sin
e ea
h of the iterationsteps also requires only polynomial time, measured as a fun
tion of the number ofstates Q, we know that the 
omputation of the lfp needs overall polynomial time inthe number of states. This bound is independent of the latti
e used. As mentionedbefore, this bound greatly improves the trivial one obtained from the �niteness of SQthat is exponential in the number of states of the automaton and also depends on thesize of the latti
e S.We fo
us now on the outer iteration of the algorithm. For this we will de�ne anoperator Q that will allow us to 
ompute the behaviour of A. This operator worksin a similar fashion as the iterative 
omputation of all bad states. Re
all that in said
onstru
tion, the set of bad states was updated to in
lude all the states that weredete
ted not to be adequate. In our general 
ase, we have used the operator O as ananalogous of the 
omputation of adequate states. At ea
h step of the outer iterationfor 
omputing the fun
tion bad, we 
ompute a fun
tion adqi that 
orresponds to theleast �xpoint of the operator from Equation 5.1. This fun
tion adqi was then used toupdate the knowledge of the bad states. Following the same approa
h, we de�ne theoperator Q as follows: for all � 2 SQQ(�) := lfp(O�);where lfp represents the least �xpoint.We show �rst that the operator Q is also monotone and, due to the �niteness ofSQ, its greatest �xpoint 
an be 
omputed by a repeated appli
ation of the operatorto the greatest element of the latti
e SQ.Lemma 5.19. The operator Q is monotone.Proof. Let �; �0 2 SQ su
h that � �SQ �0. Noti
e �rst that, for every run r 2 runs1,this implies that wt�(r) �S wt�0(r). From this we obtain, for every q 2 Q,Q(�)(q) = lfp(O�)(q)= Mr2runs1(q)wt�(r) (5.8)�S Mr2runs1(q)wt�0(r)= lfp(O�0)(q) (5.9)= Q(�0(q);



90 CHAPTER 5. AUTOMATA-BASED PINPOINTINGwhere Identities (5.8) and (5.9) follow from Theorem 5.15 and the inequality is a
onsequen
e of the remark at the beginning of this proof.Again, �niteness of SQ implies that the operator Q is a
tually 
ontinuous, andthus Tarski's �xpoint theorem says that Q has Nn�0Qn(e1) as its greatest �xpoint(gfp). It remains to show how this gfp 
an be used to 
ompute the behaviour of a givenWBA. Let su

A(q) denote the set of all su

essful runs of A whose root is labelledwith q. Consider the fun
tion �k 2 SQ where �k(q) :=Lr2su

A(q) wt(r). Given thisfun
tion, we 
an obtain the behaviour of the WBA A as follows:Lemma 5.20. kAk =Lq2Q in(q)
 �k(q).As it turns out, the fun
tion �k is in fa
t the greatest �xpoint of Q. In orderto prove this 
laim, we will introdu
e some additional notation. We will use theexpression runsn, for n � 1, to denote the set of all �nite runs su
h that every pathfrom the root to a leaf has exa
tly n non-root nodes labeled with a �nal state, the lastof whi
h is the leaf.Given a run r 2 runsn, its preamble is the unique �nite run s 2 runs1 su
h that,for every node u, if s(u) is de�ned, then s(u) = r(u). We will denote the preambleof r by pre(r). Noti
e that if r 2 runsn, for n � 1, then its preamble always exists,and 
an be 
onstru
ted as follows: �rst set pre(r)(") = r(") and pre(r)(i) = r(i) forall i; 1 � i � k. Then, for every node u for whi
h pre(r)(u) is de�ned, if r(u) 2 F ,then u is a leaf of pre(r); otherwise, set pre(r)(ui) = r(ui) for all i; 1 � i � k. This
onstru
tion �nishes sin
e, in every path, we must �nd at least one �nal state, whi
hwill be
ome a leaf in pre(r); thus, it is also the 
ase that pre(r) 2 runs1.For a (�nite) run r and a node u in r, we will denote the subrun of r starting atu as rju. More formally, rju is the run su
h that, for every v 2 K�, if r(uv) is de�ned,then rju(v) = r(uv).The following lemma relates the number of times n that the operator Q has beenapplied to the greatest element e1 of SQ to the weights of the runs in runsn.Lemma 5.21. For all n > 0 and q 2 Q it holds thatQn(e1)(q) = Mr2runsn(q)wt(r):Proof. We prove this fa
t also by indu
tion on n. For n = 1 the result is a dire
t
onsequen
e of Theorem 5.15. Assume now that it holds for n. From Theorem 5.15we know that Qn+1(e1)(q) = lfp(OQn(e1))(q) = Mr2runs1(q)wtQn(e1)(r):Using �rst the de�nition of f -weights and then the indu
tion hypothesis, we obtainQn+1(e1)(q) = Mr2runs1(q)wt(r)
 Op2leaf(r)Qn(e1)(p)= Mr2runs1(q)wt(r)
 Op2leaf(r) Ms2runsn(p)wt(s):



5.2. COMPUTING THE BEHAVIOUR OF WEIGHTED AUTOMATA 91From this equation it then follows thatQn+1(e1)(q) = Mr2runs1(q)wt(r)
 Ou2lnode(r) Ms2runsn(r(u))wt(s) (5.10)= Mr2runs1(q)wt(r)
 Mft2runsn+1(q)jpre(t)=rg Ou2lnode(r)wt(tju) (5.11)= Mr2runs1(q) Mft2runsn+1(q)jpre(t)=rgwt(r)
 Ou2lnode(r)wt(tju) (5.12)= Mr2runs1(q) Mft2runsn+1(q)jpre(t)=rgwt(t) (5.13)= Ms2runsn+1(q)wt(s): (5.14)Identity (5.10) 
hanges the indi
es to run over the set of leaf nodes, rather than by thestates that label them; the idempoten
y of the operators � and 
 implies that this
hange does not alter the result. For Identity (5.11) we use the distributivity of thelatti
e. The de�nition of distributivity says that, in order to ex
hange the operators� and 
, the now external addition needs to range over all fun
tions mapping nodesu 2 lnode(r) to runs s 2 runsn(r(u)). We noti
e that ea
h fun
tion of this kind,together with the run r 2 runs1(q), de�nes exa
tly one �nite run t 2 runsn+1(q). Wethus use this t to represent the fun
tion. Identity (5.12) is an easy 
onsequen
e ofdistributivity. For Identity (5.13), we then use the fa
t that a run in runsn+1 
anbe seen as its preamble (in runs1) 
on
atenated at ea
h of its leafs with a run inrunsn. Finally, for Identity (5.14) we noti
e that the set of all runs in runsn+1 
an bepartitioned by means of their preambles, whi
h means that both sides of the identityrange over the same runs.As it was the 
ase for the auxiliary operator O in the internal iteration, we 
anbound the number of times that Q needs to be applied before rea
hing the greatest�xpoint by the number of states of the automaton. We introdu
e for this the notionof m-
ompleteness of automata.De�nition 5.22 (m-
omplete). A WBA A is m-
omplete if, for every partial runr 2 runsm(q), there is a su

essful run sr 2 su

(q) su
h that wt(r) �S wt(sr).Using the fa
t that 
 is idempotent, it is easy to see that every WBA ism-
ompletefor any m greater than the number of �nal states jF j. The proof is similar to the onegiven in [BHP08℄ for the fa
t that a looping automaton has a run i� it has a partialrun of depth greater than jQj. However we now need also to take into a

ount whi
hstates are �nal, and whi
h are not.Theorem 5.23. Let A be a WBA with less than m �nal states; then A is m-
omplete.Proof. Suppose that we have a partial run r : t ! Q in runsm(q). We will use this rto 
onstru
t a fun
tion � : K� ! t indu
tively. With this fun
tion, we then 
onstru
ta su

essful run sr by setting sr(u) := r(�(u)). The intuitive meaning of �(v) = w is



92 CHAPTER 5. AUTOMATA-BASED PINPOINTINGthat in the run sr, the node v will have the same label as the node w in r. We de�neit as follows:� �(") := ",� for a node v �i, if there is a prede
essor w of �(v)�i su
h that (i) r(�(v)�i) = r(w),and (ii) r(w) 2 F , then set �(v � i) := w; otherwise, set �(v � i) := �(v) � i.Noti
e that for every v 2 K�, we have that �(v) is not a leaf node of t. In fa
t,whenever we �nd a �nal state twi
e in the same path, the mapping � leads always tothe earliest one. Thus, rea
hing a leaf would mean that we have a path rea
hing m�nal states, where none of them repeats, 
ontradi
ting the fa
t that the automatonhas less than m �nal states in total. Hen
e, the fun
tion � is well de�ned.We now show that it is possible to 
onstru
t a su

essful run sr from r by de�ningsr(v) = r(�(v)) for all v 2 K�, and that wt(r) �S wt(sr). Our de�nition of � ensuresthat, for every v 2 K� and i 2 K it holds that sr(v � i) = r(�(v) � i). Thus, for everyv 2 K�, we have that (sr(v); sr(v1); : : : ; sr(vk)) = (r(�(v)); r(�(v) � 1); : : : ; r(�(v) �k)),and hen
e,wt(sr(v); sr(v1); : : : ; sr(vk)) = wt(r(�(v)); r(�(v) � 1); : : : ; r(�(v) � k)):This implies that every fa
tor in the produ
t wt(sr) is also a fa
tor in the produ
twt(r). Sin
e the produ
t 
omputes the in�mum, it holds that wt(r) �S wt(sr).It remains only to show that sr is su

essful. Suppose on the 
ontrary that sr isnot su

essful. Then, there must exist a path p and a node v 2 p su
h that all itssu

essors in p are labeled with non-�nal states. In other words, for every w 2 K�, ifv�w 2 p, then sr(v�w) =2 F . This implies, by our de�nition of �, that �(v�w) = �(v)�w,for all v � w 2 p. Thus, r has an in�nite path, whi
h 
ontradi
ts the assumption thatr 2 runsm.The following theorem states that it is possible to 
ompute the mapping �k for anm-
omplete automaton by applying the Q operator to the greatest element e1 of SQat most m times.Theorem 5.24. If A is an m-
omplete WBA, then Qm(e1) = �k.Proof. Noti
e �rst that by Lemma 5.21, we know that Qm(e1)(q) =Lr2runsm(q) wt(r).Sin
e A is m-
omplete, we 
an repla
e ea
h of these partial runs by a su

essful run,and thus, Qm(e1)(q) �S Mr2runsm(q)wt(sr)�S Ms2su

(q)wt(s) = �k(q):To prove the inequality in the other dire
tion, noti
e that given a su

essful run r, we
an trun
ate it at every path when m �nal states have been found. The result of thisis a �nite run sin
e otherwise, as the tree is �nitely bran
hing, K�onig's Lemma would
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e of an in�nite path in this tree. Sin
e bran
hes are trun
ated on
ewe have found m �nal states, an in�nite path would be one on whi
h less than m�nal states o

ur, 
ontradi
ting the fa
t that r is a su

essful run. Thus, the partialrun rm 
onstru
ted this way belongs to runsm. Noti
e that, for every node u of rm, itholds that rm(u) = r(u). Hen
e, we have that wt(r) �S wt(rm). This yields�k(q) = Mr2su

(q)wt(r) �S Mr2su

(q)wt(rm)�S Ms2runsm(q)wt(s) = Qm(e1)(q):Both inequalities together yield the desired result.In parti
ular, this theorem shows that the mapping �k is indeed the gfp of Q.Corollary 5.25. The mapping �k is the greatest �xpoint of Q.Proof. Sin
e SQ is �nite, the gfp of Q is rea
hed after �nitely many iterations; morepre
isely, if n0 > jSjjQj, then this gfp is Nn�0Qn(e1) = Qn0(e1). Obviously, we 
an
hoose n0 su
h that n0 > jF j. Theorem 5.23 then says that the automaton is n0-
omplete. Thus, by Theorem 5.24, it follows that Qn0(e1) = �k.Overall, we have thus shown how to 
ompute the behaviour of a WBA. ByLemma 5.20, kAk = Lq2Q in(q) 
 �k(q). The above 
orollary says that �k is thegreatest �xpoint of Q, and this �xpoint 
an be 
omputed in mo := jF j + 1 iterationsteps sin
e mo is larger than the number of �nal states of the input WBA (Theo-rems 5.23 and 5.24). Ea
h step of this outer iteration 
onsists of 
omputing the least�xpoint of the operator O�, where � is the result of the previous step. This �xpoint
an be 
omputed in mi = jQ n F j+ 2 iteration steps sin
e mi is larger than the num-ber of non-�nal states of the input WBA (Theorems 5.17 and 5.18). Su
h an inneriteration step requires a polynomial number of latti
e operations (in the 
ardinalityjQj of Q).Thus, to analyze the 
omplexity of our algorithm for 
omputing the behaviourof a WBA, we need to know the 
omplexity of applying the latti
e operations. If weassume that this 
omplexity is 
onstant (i.e., the latti
e S is assumed to be �xed), thenwe end up with an overall polynomial time 
omplexity. However, this is not alwaysa reasonable assumption. In fa
t, we were able to restri
t our attention to �nitedistributive latti
es by taking, for a given WBA, the distributive latti
e generated bythe weights o

urring in it (where these weights may 
ome from an underlying in�nitedistributive latti
e). Thus, the a
tual �nite distributive latti
e used may depend onthe automaton. Let us assume that the latti
e operations 
an be performed usingtime polynomial in the size of any generating set. Sin
e the size of this generatingset is itself polynomial in the number of states of the input WBA A, this assumptionimplies that the latti
e operations 
an be performed in time polynomial in the size ofthe automaton. Thus, under this assumption, we have an overall polynomial bound(measured in the number of states) for the 
omputation of the behaviour of a WBA.
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ase of pinpointing, we use the T -Boolean semiring B T , whi
h is the freedistributive latti
e generated by the set lab(T ). The latti
e operations are 
onjun
-tion and disjun
tion of monotone Boolean formulae. Re
all that, stri
tly speaking,the latti
e elements are monotone Boolean formulae modulo equivalen
e, i.e., equiva-len
e 
lasses of monotone Boolean formulae. However, sin
e equivalen
e of monotoneBoolean formulae is known to be an NP-
omplete problem [GJ79℄, we do not try to
ompute unique representatives of the equivalen
e 
lasses. We 
an instead leave theformulae as they are. Nevertheless, if we are not 
areful, then the 
omputed pinpoint-ing formula may still be exponential in the size of the automaton, though we applyonly a polynomial number of 
onjun
tion and disjun
tion operations. The reason isthat we may have to 
reate 
opies of subformulae. However, this problem 
an easily beavoided by employing stru
ture sharing, i.e., using dire
ted a
y
li
 graphs (DAGs) asdata stru
ture for monotone Boolean formulae. This way, we 
an 
ompute in polyno-mial time (a DAG representation of) the pinpointing formula whose size is polynomialin the size of the automaton.18We have now shown that it is possible to 
ompute the behaviour of a WBA inpolynomial time measured on the number of states that it has. We have presentedtwo examples of axiomati
 automata: a looping automaton for de
iding unsatis�a-bility w.r.t. SI-TBoxes, and a generalised B�u
hi automaton for de
iding axiomati
satis�ability w.r.t. sets of LTL formulae. The pinpointing automata indu
ed by themare thus a WLA and a WGBA, respe
tively. We will show now that the iterativealgorithm for 
omputing the behaviour of WBAs 
an be used also for 
omputing be-haviours of these other two kinds of automata. On one hand, we will see that a WLAis in fa
t a spe
ial 
ase of a WBA, and hen
e the algorithm works dire
tly. For thisspe
ial 
ase, though, the method 
an a
tually be 
ollapsed to a simpler algorithmwhere the inner iteration (that is, the 
omputation of the least �xpoint of the opera-tor O) is performed in a trivial step. On the other hand, we will show that for everyWGBA we 
an e�e
tively 
onstru
t, in polynomial time, a WBA that has the samebehaviour, whi
h allows us to reuse the algorithm so far des
ribed also in this 
ase.5.2.2 The Behaviour of WLARe
all that a WLA is a WGBA that has no set of �nal states. For a run to besu

essful in a WGBA, we require that every path in this run has in�nitely manynodes labeled with elements of Fi, for ea
h set of �nal states Fi. In the spe
ial 
aseof WLA, this 
ondition is trivially satis�ed. Thus, every run of a weighted loopingautomaton is su

essful. Alternatively, we 
an see ea
h WLA (Q; in;wt) as the WBA(Q; in;wt; Q). For
ing every state to be a �nal state ensures that every run of thisautomaton is also su

essful, just as when there were no sets of �nal states. Thus, thesame pro
ess for 
omputing the behaviour of WBAs 
an be applied to WLAs. FromTheorem 5.17 we then have that the operators Of need to be applied at most twi
ebefore rea
hing its least �xpoint. In fa
t, in the parti
ular 
ase of WLAs, this bound18Note that the size of the automata we have 
onstru
ted for SI and LTL is already exponential inthe size of the input. Thus, the pinpointing formula may still be exponential in the size of the input,and 
omputing it may take exponential time in the same measure.
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an be further improved to the point where the pro
edure needs only one iteration,due to a trivialisation of the operator Of , as we will now show.Noti
e �rst that the operator Of depends on the set of �nal states; more pre
isely,the fun
tion stepf used in the de�nition of Of , is divided in two 
ases, depending onwhether the input state is �nal or not:stepf (�)(q) = (f(q) if q 2 F�(q) otherwise.If all the states are �nal, then no 
ase analysis is ne
essary in stepf , and hen
estepf (�)(q) = f(q) for all � 2 SQ and all q 2 Q. This 
ollapses the operator Ofto Of (�)(q) = M(q;q1;:::;qk)2Qk+1 wt(q; q1; : : : ; qk)
 kOj=1 f(qj):Noti
e that in this 
ase Of does not depend on the input �, and hen
e its only�xpoint is rea
hed after exa
tly one iteration. This allows us to a

ordingly simplifythe operator Q in the following way:Q(�)(q) = lfp(O�)(q)= O�(e0)(q)= M(q;q1;:::;qk)2Qk+1 wt(q; q1; : : : ; qk)
 kOj=1 �(qj):The behaviour of a WLA is then the gfp of this operator Q, whi
h 
an be 
omputed bya single iteration without any spe
i�
 
all to Of . The inner iteration of the pro
edurefor WBAs is repla
ed in this spe
ial 
ase by a dire
t appli
ation of the simpli�edde�nition of Q.Let us apply this insight to the pinpointing automaton for SI of De�nition 5.4.This automaton has exponentially many states in the size n of the input (C;T ). Thus,we need exponentially many appli
ations of the operator Q. It is also easy to see thatthe time required by ea
h appli
ation of Q is exponential in n.Corollary 5.26. Let C be an ALC 
on
ept des
ription and T an SI-TBox. The pin-pointing formula for (C;T ) w.r.t. unsatis�ability 
an be 
omputed in time exponentialin the size of (C;T ).Sin
e even de
iding satis�ability of ALC 
on
ept des
riptions w.r.t. general SI-TBoxes is known to be ExpTime-hard [S
h94℄, this bound is optimal.We look now to the more general 
ase of 
omputing the behaviour of WGBAs.5.2.3 The Behaviour of WGBAWe have shown how to 
ompute the behaviour of a WBA in time polynomial inthe number of states. We will now give a polynomial redu
tion in whi
h, for every
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onstru
t a WBA that has the exa
t same behaviour, redu
ing in thisway the problem of 
omputing the behaviour of WGBAs to the spe
ial 
ase of WBAsthat we have already solved. For this redu
tion we on
e again generalise an idea thathas previously been presented for unweighted automata. Intuitively, the redu
tion
onsists in 
reating several 
opies of the set of states, using one 
opy to test the B�u
hi
ondition for a spe
i�
 set of �nal states. When a �nal state of the 
urrent set hasbeen found, we move to the next 
opy. Between two times that we return to test the�rst 
opy, we 
an be sure that �nal states from all sets F1; : : : ; Fn have been found.Thus, it is possible to ensure that the generalised B�u
hi 
ondition is satis�ed. For theunweighted 
ase, this same idea was used to redu
e the emptiness problem for GBAsto the one for BAs [VW86℄. We formalise now this intuition.Let A = (Q; in;wt; F0; : : : ; Fn�1), with n > 0, be a WGBA. We de�ne the WBABA as the tuple BA = (Q0; in0;wt0; F 0), where� Q0 = f(q; i) j q 2 Q; 0 � i � n� 1g,� in0(q; i) = (in(q) if i = 0,0 otherwise� wt0((q0; i); (q1; j); : : : ; (qk; j)) = 8><>:wt(q0; q1; : : : ; qk) if q0 2 Fi; j = i+ 1 mod n,wt(q0; q1; : : : ; qk) if q0 =2 Fi, i = j0 otherwise� F 0 = f(q; n� 1) j q 2 Fn�1g.Noti
e that the automaton BA has n � jQj states, where n is the number of sets of�nal states in A. Sin
e there 
an potentially be 2jQj sets of �nal states, this redu
tionis not polynomial when measured only in the number of states in A, but it is stillpolynomial in the total size of the original automaton A.De�nition 5.27 (Support). Let A be a WGBA. The support of A, denoted assupp(A), is the set of all runs r su
h that in(r("))
 wt(r) 6= 0.The behaviour of a weighted automaton is, by de�nition, the supremum (that is,the addition) of the weights of all su

essful runs multiplied by the initial distributionof their root labels. Obviously, if a run r is su
h that in(r(")) 
 wt(r) = 0, i.e., ifr =2 supp(A), then it will not have any in
uen
e in the 
omputed behaviour, and 
anhen
e be ignored. Our proof of behaviour-equivalen
e of A and BA will show thatthere is a bije
tion between their supports that is weight preserving.Theorem 5.28. If A is a WGBA with at least one set of �nal states and BA is
onstru
ted as above, then kAk = kBAk.Proof. We will introdu
e a bije
tive fun
tion f : supp(A) ! supp(BA) su
h that, forevery run r 2 supp(A), it holds that (i) wt(r) = wt0(f(r)) and (ii) r is su

essful (w.r.t.A) i� f(r) is su

essful (w.r.t. BA).Let r be a run in supp(A). We de�ne the run f(r) of BA re
ursively as follows:



5.2. COMPUTING THE BEHAVIOUR OF WEIGHTED AUTOMATA 97� f(r)(") = (r("); 0);� let u 2 K� and f(r)(u) = (q; i). Then, for all 1 � j � k,f(r)(uj) = ((r(uj); i) if q =2 Fi;(r(uj); i + 1 mod n) if q 2 Fi:Let u 2 K�, and f(r)(u) = (q; i). Then r(u) = q. Furthermore, for all 1 � j � k, itholds that f(r)(uj) = (r(uj); i+1 mod n) if q 2 Fi and f(r)(uj) = (r(uj); i) otherwise.Together with the de�nition of wt0, this implieswt0(f(r)(u); f(r)(u1); : : : ; f(r)(uk)) = wt(r(u); r(u1); : : : ; r(uk)):And thus, we have that wt(r) = wt0(f(r)). Sin
e we also have in0(f(r)(")) = in(r(")),the fa
t that in(r("))
 wt(r) 6= 0 also implies that in0(f(r)(")) 
 wt0(f(r)) 6= 0. Thismeans that f is indeed a fun
tion from supp(A) to supp(BA).It is easy to see that f is inje
tive. We show now that it is also surje
tive. Considera run s 2 supp(BA). We need to show that there exists a run r 2 supp(A) su
hthat s = f(r). We 
onstru
t the run r 2 supp(A) as follows: for every u 2 K�, ifs(u) = (q; i), then r(u) = q. We show now that s = f(r). First, sin
e s 2 supp(BA),it holds that in0(s(")) 
 wt0(s) 6= 0. This in parti
ular means that in0(s(")) 6= 0, andthus, s(") = (q; 0) for some q 2 Q. Consider now a u 2 K� and let s(u) = (q; i).Hen
e, also r(u) = q. Sin
e wt0(s(u); s(u1); : : : ; s(uk)) 6= 0, it must be the 
ase thatfor all j; 1 � j � k it holds that, if q =2 Fi, then s(uj) = (qj ; i), and if q 2 Fi, thens(uj) = (qj ; i+1 mod n), for some qj 2 Q. But then, s satis�es the de�nition of f(r),whi
h shows that f is surje
tive.It remains only to show that r is su

essful (w.r.t. the WGBA A) i� f(r) issu

essful (w.r.t. the WBA BA). Suppose �rst that f(r) is su

essful. Then for everypath there are in�nitely many nodes labeled with elements of the only set of �nal statesF 0 = f(q; n� 1) j q 2 Fn�1g. But noti
e that, a

ording to the way f was de�ned, iff(r)(u) 2 F 0, then f(r)(uj) is of the form (qj ; 0) for all 1 � j � k. All the followingnodes in the path will have labels of the form ( ; 0) until a state from F0 is found; atwhi
h point, the labels will be 
hanged to the form ( ; 1), and so on. Thus, for ea
hu su
h that f(r)(u) 2 F 0 there exist v0; v1; : : : ; vn�1 su
h that for every i; 0 � i < n,there is a qi 2 Fi with f(r)(u � v0 � � � vi) = (qi; i), and hen
e r(u � v0 � � � vi) = qi 2 Fi.This implies that r is su

essful.Conversely, assume that f(r) is not su

essful. Then, there is a path u1; u2; : : :and a l � 0 su
h that for all l0 � l it holds that f(r)(ul0) =2 F 0. Sin
e the se
ond
omponent 
an only in
rease (modulo n) from a node in a path to the other, theremust be a 1 � i0 � n su
h that f(r)(ul0) is of the form (ql0 ; i0) for all l0 � l. But thismeans that for all l0 � l, r(ul0) =2 Fi0 . Thus, r is also not a su

essful run.From this bije
tion between the runs in the supports, the equivalen
e in the be-
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an be dedu
ed as follows.kAk = Mr su

essful run of A in(r(")) 
 wt(r)= Mr su

essful run of A in(r(")) 
 wt(f(r))= Mf(r) su

essful run of BA in(f(r)(")) 
 wt(f(r))= Mr su

essful run of BA in0(r("))
 wt0(r) = kBAk;whi
h 
on
ludes our proof.Given a WGBA with m states and n sets of �nal states, this redu
tion yields aWBA with n � m states. As des
ribed before, 
omputing the behaviour of a WBArequires time polynomial in the size of its state set; in this 
ase, polynomial in n �m.Thus, our method 
omputes the behaviour of a WGBA in time polynomial in theoverall number of states and sets of �nal states that it 
ontains.Let us apply this approa
h for 
omputing the behaviour of a WGBA to the pin-pointing automaton for LTL from De�nition 5.6. This automaton has exponentiallymany states in the size n of the input (�;R) and linearly many set of �nal states in n.Thus, the WBA 
onstru
ted from the WGBA is of size exponential in n. Overall, thetwo nested iterations perform exponentially many steps, whi
h leads to an algorithmwith a total running time that is exponential in the size of the input.Corollary 5.29. Let � be an LTL formula and R a set of LTL formulae. A pinpoint-ing formula for (�;R) w.r.t. a-unsatis�ability 
an be 
omputed in time exponential inthe size of (�;R).5.3 An Alternative Computation of the BehaviourIndependently from the development of the present dissertation, a di�erent algorithmfor 
omputing the behaviour of WBAs over distributive latti
es was developed byDroste et al. [DKR08℄. We will �rst sket
h this alternative approa
h and then 
ompareit to ours, with spe
ial attention to the appli
ation in the pinpointing s
enario.19 Inthe following, we will 
all our method the iterative method and the one from [DKR08℄the prime method.The prime method is based on the following property of distributive latti
es. Let(S;�S) be a distributive latti
e. An element p 2 S is 
alled meet prime if, for everys1; s2 2 S, s1 
 s2 �S p implies that either s1 �S p or s2 �S p. It is known that19We present only a spe
ial 
ase of the algorithm in [DKR08℄, where we allow only unlabeled treesas inputs. Furthermore, we have ex
hanged the use of join prime elements in [DKR08℄ with the useof their meet prime 
ounterparts. This is justi�ed by duality of distributive latti
es, allows for aneasier understanding of how this method works in the pinpointing appli
ation, and makes it easier to
ompare it with our approa
h in this setting.



5.3. AN ALTERNATIVE COMPUTATION OF THE BEHAVIOUR 99any element s of S equals the in�mum of all the meet prime elements greater than orequal to s [Gr�a98℄. If one 
ould de
ide, for a given meet prime element p, whether p isgreater than or equal to the behaviour of a weighted automaton, then this behaviour
ould be readily found from the outputs of su
h de
isions by 
omputing the in�mumof all those meet prime elements for whi
h this de
ision is answered positively.In the prime method, this de
ision problem is solved in the following way. LetA = (Q; in;wt; F ) be the WBA over the distributive latti
e (S;�S) for whi
h we wantto 
ompute the behaviour, and let prime(S) denote the set of all meet prime elementsof S. For every meet prime element p 2 prime(S), 
onstru
t the (unweighted) B�u
hiautomaton Ap = (Q;�; I; F ) where:� � := f(q; q1; : : : ; qk) 2 Qk+1 j wt(q; q1; : : : ; qk) 6�S pg;� I := fq 2 Q j in(q) 6�S pg.It is easy to see that Ap a

epts a non-empty language, i.e., there exists a su

essfulrun of Ap that starts with an initial state, i� there is a su

essful run r of A su
hthat in(r("))
wt(r) 6�S p. Equivalently, the language a

epted by Ap is empty i�, forevery su

essful run r of A, it holds that in(r(")) 
 wt(r) �S p. But this means thatkAk �S p. Thus, if we denote by L(Ap) the language a

epted by the automaton Ap,we have kAk = Ofp2prime(S)jL(Ap)=;g p:In the pinpointing appli
ation, we use the latti
e B T , where the meet prime ele-ments are exa
tly all 
onjun
tions of propositional variables in lab(T ).20 There is thena one-to-one 
orresponden
e between the meet prime elements of B T and all subsetsof axioms appearing in the axiomati
 input for whi
h the pinpointing formula is being
omputed. Take an arbitrary meet prime element p and assume that it 
orresponds tothe set of axioms T 0 � T , i.e., p = Vt2T 0 lab(t). The automaton Ap has a transition(q; q1; : : : ; qk) i��vio(q; q1; : : : ; qk) = wt(q; q1; : : : ; qk) 6�BT p = ^t2T 0 lab(t):Sin
e �vio(q; q1; : : : ; qk) = Wft2T j(q;q1;:::;qk)=2�res(t)g lab(t), this means that for everyt 2 T 0, (q; q1; : : : ; qk) 2 �res(t). But this holds i� (q; q1; : : : ; qk) is a transition of AjT 0(see De�nition 5.1). Analogously, it is easy to see that a state q is an initial state ofAp i� it is an initial state of AjT 0 . Thus, the automaton Ap is identi
al to the T 0-restri
ted subautomaton AjT 0 . Consequently, testing the automaton Ap for emptinessis the same as testing AjT 0 for emptiness. This shows that the prime method a
tually
orresponds to the na��ve bla
k-box approa
h of testing the 
-property for all possiblesubsets of axioms. Unoptimized, this pro
ess will thus always need an exponentialnumber of tests for 
omputing the pinpointing formula. However, this pro
ess allows20Re
all that the latti
e BT uses disjun
tion as its in�mum operator, and 
onjun
tion as the supre-mum. Thus, 
onjun
tions of variables are the only elements of the latti
e that 
annot be written asthe in�mum (disjun
tion) of other elements.
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q0 q1 : : : qn�1Figure 5.1: The looping automaton An from Example 5.30.the use of all the optimizations appli
able to bla
k-box pinpointing algorithms, whi
hare independent of the pro
edure used to de
ide the underlying property. Noti
e,nonetheless, that �nding all prime elements that are greater than or equal to thebehaviour is equivalent to �nding all sets of axioms that 
ontain at least one MinA.As a 
onsequen
e of this, there are 
ases where an exponential number of emptinesstests is ne
essary, even when using bla
k-box optimizations (see Chapter 6).In the examples we have presented in this work (i.e., pinpointing unsatis�ability inSI and LTL), both the iterative and the prime method have an exponential runningtime. For the iterative method, we have a bound that is polynomial in the number ofstates of the 
onstru
ted automata, but this number is itself exponential in the sizeof the input. The prime method performs exponentially many emptiness tests, ea
hof whi
h requires exponential time (sin
e it is performed on an exponentially largeautomaton). Although both approa
hes result in an exponential-time algorithm inthese 
ases, the bound on the iterative method has the advantage of not depending onthe number of meet prime elements of the latti
e, as opposed to the prime method.In the 
ase of pinpointing, the latti
e has always 2n meet prime elements, where n isthe number of input axioms. If the axiomati
 automaton de
iding the property has anumber of states polynomial in the size of the input, then this exponential number oftests will yield a suboptimal pro
edure, as demonstrated by the following examples.Example 5.30. Consider an input I and a set of axioms T = ft0; : : : ; tn�1g, andassume that the 
-property is de�ned as follows: P1 := f(I;T 0) j T 0 � T ; jT 0j > 0g.Let ea
h axiom ti be labelled with the propositional variable pi. Then a pinpointingformula for P1 is given by W0�i<n pi.We 
an 
onstru
t an axiomati
 automaton (An;�res; Ires) for the axiomatisedinput (I;T ) as follows:� An is the looping automaton for arity 1 An := (fq0; : : : ; qn�1g;�; fq0g) depi
tedin Figure 5.1, where� � = f(qi; q(i+1) mod n) j 0 � i < ng;� for every 0 � j � n� 1;�res(tj) = � n f(qj ; q(j+1) mod n)g;� for every t 2 T ; Ires(t) = fq0g.It is easy to see that this axiomati
 automaton is 
orre
t for the property P1. Sin
e Anhas n states and n transitions, the iterative method needs polynomial time to 
omputethe behaviour of the pinpointing automaton indu
ed by (An;�res; Ires), measured inthe number of axioms n. On the other hand, the unoptimized prime method requires2n emptiness tests.



5.3. AN ALTERNATIVE COMPUTATION OF THE BEHAVIOUR 101We will take advantage of this example to illustrate how the iterative method
omputes the behaviour of an automaton (whi
h in this 
ase 
orresponds to the pin-pointing formula). The axiomati
 automaton (An;�res; Ires) indu
es the pinpointingautomaton (A;�res; Ires)pin = (fq0; : : : ; qn�1g; in;wt), where� in(q0) = ? and in(qi) = > for all 0 < i < n; and� wt(qi; qj) equals pi if j = (i+ 1) mod n, and > otherwise.As this is a weighted looping automaton, the iterative method redu
es to an iteratedappli
ation of the simpli�ed operator Q des
ribed in Se
tion 5.2.2. Noti
e that, forevery state qi, there is exa
tly one transition, namely (qi; q(i+1) mod n), having a weightdistin
t from >. Hen
e, for every fun
tion � : Q! B T we have:Q(�)(qi) = ^0�j<nwt(qi; qj) _ �(qj)= wt(qi; q(i+1) mod n) _ �(q(i+1) mod n) = pi _ �(q(i+1) mod n):The pro
ess starts with the fun
tion e1 : Q ! B T that maps every state to ?; thatis, e1(qi) = ? for all 0 � i < n. After the �rst appli
ation of the operator Q, we haveQ(e1)(qi) = pi for all 0 � i < n sin
e pi _ ? is equivalent to pi. Analogously, after miterations we have, for all 0 � i < n, thatQm(e1)(qi) = _0�j<m p(i+j) mod n:This pro
ess rea
hes a �xpoint when m = n, in whi
h 
ase every state qi is mappedto the formula W0�j<n pj . Thus, the behaviour of (A;�res; Ires)pin isk(A;�res; Ires)pink = V0�i<n in(qi) _Qn(e1)(qi)= in(q0) _Qn(e1)(q0)= Qn(e1)(q0) = W0�j<n pj ;whi
h is a pinpointing formula.We present a se
ond example in whi
h the original de
ision pro
edure requiresa generalised B�u
hi a

eptan
e 
ondition. This additional example shows that theexponential blowup in the exe
ution time of the prime method when 
ompared to theiterative method 
an appear also with properties for whi
h the looping a

eptan
e
ondition is not suÆ
ient.Example 5.31. Let Q be an in�nite set of states and let the set of inputs I be theset of all generalised B�u
hi automata using states from Q, and the set of axioms beT := Qk+1. That is, we use the transitions of the automata in I as axioms of ourproperty. We de�ne the 
-property P2 as the set of all tuples of the form (A;�) whereA = (Q;�; I; F1; : : : ; Fn) is a generalised B�u
hi automaton in I, and � � T, su
hthat (Q;� n �; I; F1; : : : ; Fn) has no su

essful run r with r(") 2 I. Intuitively, theaxioms tell whi
h transitions are disallowed in the input automaton A. The 
-property



102 CHAPTER 5. AUTOMATA-BASED PINPOINTINGis satis�ed whenever we remove enough transitions (by adding them to the axiom set)to avoid any su

essful run whose root is labelled with an initial state. It is easy to seethat the axiomati
 automaton (A;�res; Ires) where �res(t) = � n ftg and Ires(t) = Qfor all t 2 � is 
orre
t for the property P and the axiomatised input (A;�). As wehave seen, the iterative method requires time polynomial in the number of states jQjof this axiomati
 automaton to 
ompute the pinpointing formula for this property. Onthe other hand, the prime method needs 2j�j emptiness tests, ea
h polynomial in jQj.We thus have a potentially exponential in
rease in exe
ution time, when 
ompared tothe iterative method.One advantage of the prime method is that it 
an easily be generalised to more
omplex automata models. For instan
e, it is shown in [DKR08℄ how the same ideaworks in the presen
e of a more 
omplex a

eptan
e 
ondition, known as the Muller
ondition. Also note that the prime method 
an possibly be optimized using the ideasunderlying the known optimizations of bla
k-box pinpointing pro
edures, not just inthe 
ase of applying it to pinpointing, but also in a more general setting.In this 
hapter we have introdu
ed a general method for 
omputing the pinpoint-ing formula of any 
-property that 
an be de
ided with an axiomati
 automaton usinga B�u
hi a

eptan
e 
ondition. We do this through the 
onstru
tion of the pinpointingautomaton indu
ed by the original axiomati
 automaton. The pinpointing automatonis a weighted automaton whose behaviour is a pinpointing formula. In order to e�e
-tively 
ompute the formula, we developed an algorithm that 
omputes the behaviourof weighted automata over �nite distributive latti
es. This method generalises theideas employed for the well-known iterative emptiness test on unweighted automata.We also des
ribed how this iterative method 
an be used, along with an adequatedata stru
ture, to 
onstru
t the pinpointing formula in time polynomial in the sizeof the automaton. Sin
e just de
iding the emptiness of automata in general requirespolynomial time in the same measure, the iterative algorithm turns out to be optimalfrom a 
omplexity point of view.We instantiated our approa
h by showing how it 
an be used to 
ompute a pin-pointing formula for unsatis�ability of ALC 
on
ept terms w.r.t. general SI-TBoxes,as well as for axiomati
 unsatis�ability of LTL formulae. In both 
ases, the automa-ton 
onstru
ted has size exponential in the number of axioms, and thus the algorithmrequires exponential time to 
ompute the pinpointing formula. This bound is opti-mal for unsatis�ability of ALC 
on
ept terms w.r.t. general SI-TBoxes, where theunderlying de
ision problem is already ExpTime hard [S
h94℄. On the other hand,de
iding axiomati
 unsatis�ability of LTL formulae is in PSpa
e [SC85℄, and it isun
lear whether the automata-based de
ision pro
edure yields an optimal time boundor not.In the next 
hapter we will look in detail at some 
omplexity results for pinpointing.Although the fo
us on this work has been on 
omputing a pinpointing formula, dueto the fa
t that all MinAs and MaNAs 
an then be dedu
ed from it, our 
omplexitystudy will primarily look at the hardness of �nding these sets of axioms, rather thanthe mentioned formula.



Chapter 6Complexity ResultsSo far in this work we have fo
used on how to 
ompute a pinpointing formula for agiven property P by extending the pro
edure used for de
iding P. For the pinpointingextension of general tableaux, we found a problem even for ensuring a �nite exe
utiontime. We had to settle for a sub
lass of tableaux, 
laiming that it is impossible tofully 
hara
terize the set of all tableaux having a terminating pinpointing extension.Even in the 
ases of termination, it is not 
lear how the labeling me
hanism usedin the pinpointing extension a�e
ts the overall exe
ution time. If we restri
t thedis
ourse to ground tableaux (see De�nition 3.5), then we know that the pinpointingextension will generate the same set of assertions as the original tableau algorithm,but may 
hange their labels exponentially often, in the number of axioms, as there areexponentially many monotone Boolean formulae that 
an label ea
h assertion. Thus,the pinpointing extension of ground tableaux has an exe
ution time exponential inthe number of axioms. This in parti
ular means that the pinpointing extension of thetableau for subsumption of HL 
on
ept names requires exponential time, althoughthe underlying de
ision pro
edure terminates in polynomial time in the number ofaxioms.For the 
ase of automata-based de
ision pro
edures, we showed that the pin-pointing formula 
an be 
omputed in time polynomial in the size of the automa-ton. Sin
e merely de
iding the property requires time polynomial in the same mea-sure, this method is optimal with respe
t to its underlying de
ision pro
edure. Inother words, if the axiomati
 automaton A is an optimal de
ision pro
edure for theproperty P, then the pinpointing automaton indu
ed by A 
omputes the pinpointingformula in optimal time. For instan
e, unsatis�ability of ALC 
on
ept terms w.r.t.general SI-TBoxes is an ExpTime 
omplete problem, and the axiomati
 automaton(AC;T ;�resC;T ; IresC;T ) that de
ides this property has size exponential in the num-ber of axioms. Thus, a pinpointing formula 
an be 
omputed from its pinpointingautomaton in exponential time. But it might well be the 
ase that the automatonused yields a suboptimal de
ision pro
edure. For instan
e, the axiomati
 automaton(A�;R;�res�;R; Ires�;R) has also size exponential in the number of axioms, but theproperty it de
ides, namely axiomati
 unsatis�ability of LTL formulae, is known tobe in PSpa
e [SC85℄. Using the pinpointing automaton to 
ompute the pinpointingformula yields an exponential time algorithm. It is un
lear whether this algorithm is103



104 CHAPTER 6. COMPLEXITY RESULTSoptimal or not.In this 
hapter we try to shine some light on the hardness of solving pinpointing-related problems. We divide this study into two parts. First, we show 
omplexityresults that are independent of the method use for solving the problems. Afterwards,we prove our 
laim from Chapter 3 that it is unde
idable whether the pinpointingextension of a terminating general tableau is also terminating.6.1 Complexity of PinpointingWe start our study of the 
omplexity of pinpointing by showing a trivial upper boundobtained by the simplest bla
k-box algorithm. Let P be a 
-property and � = (I;T )an axiomatised input su
h that � 2 P. Given an arbitrary pro
edure that de
ides P,we 
an �nd the set of all MinAs, all MaNAs and a pinpointing formula for P and �,with a very na��ve bla
k-box algorithm that 
onsists on applying the de
ision pro
edure2jT j times. One simply tests, for ea
h T 0 � T , whether (I;T 0) 2 P or not. Fromthe answers to these tests, the sets MINP(�) and MAXP(�) 
an readily be 
omputed,and hen
e also the pinpointing formula (see Page 37). This in parti
ular means that,if the de
ision pro
edure runs in at most exponential time, then MINP(�), MAXP(�)and the pinpointing formula 
an be 
omputed in exponential time.21 Obviously, forany 
-property whose de
ision problem is ExpTime-
omplete, su
h as unsatis�abilityof ALC 
on
ept terms w.r.t. general TBoxes [S
h91, BCM+03℄, this bound is tight.We will see that even for problems in lower 
omplexity 
lasses, the bound is alsotight. Along with this, we will analyse the 
omplexity of other problems related topinpointing.As we want to identify how mu
h of the 
omplexity is due to pinpointing, asopposed to the original de
ision problem, our results will be based on subsumption ofHL 
on
ept names. Sin
e this property is de
idable in polynomial time, any in
reasein 
omplexity that we en
ounter 
an then be attributed to pinpointing.This se
tion is 
omposed of three parts. In the �rst part we present 
omplexityresults related to the 
omputation of MinAs. Some of these results �rst appearedin [BPS07a℄, where it was also 
laimed, without proof, that their dual results holdalso for the 
omputation of MaNAs. In the se
ond part we present proofs to this
laim. Finally, in Se
tion 6.1.3, we show that there exist axiomatised inputs for whi
hthe pinpointing formula has superpolynomial length, when measured in the numberof axioms. This in parti
ular implies that su
h a formula 
annot be written (nor
omputed) in polynomial time.6.1.1 MinA ComplexityIf we are only interested in �nding one, arbitrary, MinA, then we 
an 
ompute it with abla
k-box algorithm that 
alls the de
ision pro
edure only jT j times [BPS07a, Chi97,KPSG06℄. The idea 
onsists in systemati
ally trying to remove axioms while still21Noti
e that this also implies that if the de
ision pro
edure is at least exponential, then pinpointing-related problems are solvable without an in
rement in the 
omplexity.



6.1. COMPLEXITY OF PINPOINTING 105belonging to the property. Suppose that we have some T 0 � T su
h that (I;T 0) 2 P.We then sele
t an axiom t 2 T 0 that is going to be tested for removal. If the propertystill follows on
e t is removed, i.e., if (I;T 0 n ftg) 2 P, then t is not ne
essary forthe property to hold and hen
e 
an be removed. This pro
ess is then repeated withT 0 n ftg. If, on the 
ontrary, (I;T 0 n ftg) =2 P, then we know that t must belongto all MinAs for T 0, and we hen
e 
ontinue the pro
ess with the set T 0, but nevertesting t for removal again. In this way, every axiom is tested for removal exa
tlyon
e. It 
an be shown that the set of axioms resulting from this pro
edure is indeed aMinA. Thus, the 
omputation of one arbitrary MinA is in the same 
omplexity 
lassas merely de
iding the underlying property, as long as this latter problem is at leastpolynomial. In the 
ase of subsumption of HL 
on
ept names, this means that oneMinA 
an be 
omputed in polynomial time in the size of the TBox.If we further assume that the axioms in the TBox are ordered, then we 
an �ndthe lexi
ographi
al last MinA also in polynomial time. We say that a set of axiomsS is lexi
ographi
ally before another set S0 i� the �rst element at whi
h they disagreeis in S. If we test the axioms for removal in order, then the bla
k-box algorithmdes
ribed above yields the last lexi
ographi
al last MinA.22 Also the additive algo-rithm by Tamiz, Mardle and Jones [TMJ96℄ (see also [Chi97℄) yields as an output thelexi
ographi
al last MinA in polynomial time.Unfortunately, 
omputing one MinA, even the lexi
ographi
al last one, is usuallynot enough. For instan
e, if we are trying to understand why an axiomati
 inputbelongs to a 
-property, then it would be desirable to obtain MinAs that have asfew axioms as possible, as larger sets of axioms are more diÆ
ult to interpret. Thefollowing theorem shows that de
iding the existen
e of a MinA whose 
ardinality isbounded by a given natural number n is an NP-
omplete problem (see [Sun09, BPS07a℄for a proof). Hen
e, it is hard to know whether a given MinA has minimal size or not.Theorem 6.1. Given an HL TBox T ; 
on
ept names A;B o

urring in T , and anatural number n, it is NP-
omplete to de
ide whether or not there is a MinA for Tw.r.t. A v B of 
ardinality � n.Another property of interest when trying to understand a 
-property P is whethera given axiom t is relevant for P; that is, whether there is a MinA that 
ontains t.This knowledge is helpful, for instan
e, when trying to 
ompute the set of all MinAs.In [KPHS07℄, the authors propose the use of Reiter's Hitting Set Tree algorithm [Rei87℄as an improved bla
k-box algorithm for produ
ing the set of all MinAs. This idea hassin
e then been used and further optimised for spe
i�
 de
ision problems [SHCH07,BS08, SQJH08℄. Dete
ting axioms that are relevant would allow us to further improvethis approa
h using the set enumeration pro
edure proposed by Rymon [Rym92℄. Thefollowing theorem shows that de
iding relevan
e of axioms is also an NP-hard problem.Theorem 6.2. Let T be a HL TBox, t 2 T , and A;B two 
on
ept names appearingin T . De
iding whether there exists a MinA S for T w.r.t. A v B su
h that t 2 S isNP-
omplete in the size of T .22This strategy 
orresponds to the na��ve algorithm presented in [BPS07a, Sun09℄



106 CHAPTER 6. COMPLEXITY RESULTSProof. The problem is 
learly in NP as we need only polynomial time to test whethera set of axioms S is a MinA, and whether t 2 S. The 
omplexity hardness 
an beshown by a redu
tion of the following NP-
omplete problem [FGN90, EG95a℄: giventwo sets of propositional variables H;M , a set T of de�nite Horn 
lauses over H [M(i.e., formulae of the form v1 ^ : : : ^ vn ! w with w; vi 2 H [M for all 1 � i � n),and a variable h 2 H, de
ide whether there is a minimal H 0 � H su
h that h 2 H 0and H 0 [ T j=M .Given an instan
e of this problem, we de�ne a 
on
ept name Pi for every hi 2 Hand Qi for every mi 2 M ; additionally, we use two new 
on
ept names A;B. OurTBox has an axiom of the form A v Pi for every hi 2 H, an axiom R1 u : : :uRn v Rfor every v1 ^ : : : ^ vn ! w 2 T , and additionally the axiom umi2M Qi v B. It is easyto see that, given a variable h0 2 H, there is a MinA for A v B 
ontaining A v P0 i�there is a minimal H 0 2 H su
h that h0 2 H 0 and H 0 [ T j=M .As it was already said, �nding the lexi
ographi
al last MinA for subsumption ofHL 
on
ept names requires only polynomial time. If, on the 
ontrary, we are interestedin �nding the lexi
ographi
al �rst MinA, then we en
ounter another hard problem.Theorem 6.3. Given an HL TBox T , 
on
ept names A;B o

urring in T and aMinA S, it is 
oNP-
omplete to tell whether S is the lexi
ographi
al �rst MinA for Tw.r.t. A v B.Proof. The problem is in 
oNP sin
e if S is not the lexi
ographi
al �rst, then we
an prove this by presenting a MinA that appears before S within this ordering. Toprove hardness, we will make a redu
tion from the �rst lexi
ographi
al minimal vertex
over problem. Given a graph G = (V;E), a set C � V is 
alled a vertex 
over iffor every edge (u; v) 2 E either u 2 C or v 2 C. For a graph G and a minimalvertex 
over D, it is 
oNP-
omplete to de
ide whether D is the �rst lexi
ographi
alminimal vertex 
over [JYP88℄. Alternatively, we 
an see this problem as de
iding the�rst lexi
ographi
al hitting set from a 
olle
tion of sets of 
ardinality at most two.Suppose that V = fv1; : : : ; vng and that E = fe1; : : : ; ekg where for every i; 1 � i � k,ei is of the form ei = fv; wg. We use a 
on
ept name Pi for every element vi 2 V ,a 
on
ept name Qj for every edge in ej 2 E and the additional 
on
ept names A;B,and de�ne the TBoxT := fA v Pi j 1 � i � ng [fPi v uvi2ej Qj j 1 � i � ng [ fQ1 u : : : uQk v Bg:Hen
e, there are 2n+ 1 axioms, whi
h we order in the following way: for 1 � m � n,the m-th axiom is A v Pm and the n+m-th axiom is Pm v uvi2ej Qj , with kuj=1Qk v Bas the last axiom. If D is a minimal vertex 
over, then the setSD = fA v Pi; Pi v uvi2ej Qj j vi 2 Dg [ f kuj=1Qj v Bg



6.1. COMPLEXITY OF PINPOINTING 107is a MinA for T w.r.t. A v B. Additionally, if S is a MinA for T w.r.t. A v B, thenS satis�es the following two properties: (i) kuj=1Qj v B 2 S, and (ii) A v Pi 2 S i�Pi v uvi2ej Qj 2 S for all 1 � i � n. Thus, for every MinA S we 
an 
onstru
t theset D = fvi j A v Pi 2 Sg, whi
h is su
h that S = SD. Furthermore, the way theordering was de�ned ensures that a D is lexi
ographi
ally before D0 if and only if SDis lexi
ographi
ally before SD0 . This means that D is the lexi
ographi
al �rst minimalvertex 
over i� SD is the lexi
ographi
al �rst MinA.Sin
e the de
ision problems we have presented in this se
tion depend, in a greateror smaller degree, on the set of all MinAs, it 
ould be argued that their hardness is a
onsequen
e of the fa
t that an axiomati
 input 
an have exponentially many MinAs(see [Sun09, BPS07a℄ for an example). We 
ould instead try to analyse the 
omplexityof enumerating the set of all MinAs [JYP88℄. An algorithm that enumerates all MinAsusing time polynomial in the size of both the input and the output, that is, in the sizeof the TBox and the number of MinAs, will be 
alled output polynomial. If we had anoutput polynomial algorithm, then its exe
ution time would be polynomial wheneverthe axiomati
 input had only polynomially many MinAs.We are interested in the enumeration 
omplexity of 
omputing the set of all MinAsfor an HL-TBox w.r.t. a given subsumption relation. Unfortunately, to the best ofour e�orts we were unable to �nd a tight bound on the 
omplexity of this problem.Hen
e, we settle here for weaker results, in whi
h we allow additional expressivity inthe ontology. We will show that if we either allow a set of irrefutable axioms, or if weextend the syntax of axioms to allow disjun
tion in the left-hand size, then an outputpolynomial algorithm 
omputing all MinAs is impossible.Before proving this, we will present an auxiliary result showing that it is not pos-sible to enumerate all the minimal valuations satisfying a monotone Boolean formulawith an output polynomial algorithm. A proof of this fa
t 
an be found in the te
hni-
al report [EG91℄; sin
e this result is not in
luded in the 
orresponding journal paper[EG95b℄, we provide our own distin
t proof for the sake of 
ompleteness.Theorem 6.4. There is no output polynomial algorithm for 
omputing all minimalsatisfying valuations of monotone Boolean formulae, unless P=NP.To prove this theorem, it is enough to show (see [KSS00℄) that the following de
i-sion problem is NP-hard:Lemma 6.5. Given a monotone Boolean formula � and a set M of minimal valua-tions satisfying �, de
iding whether there exists a minimal valuation V =2M satisfying� is NP-hard in the size of � and M.Proof. The proof is by redu
tion of theNP-hard hypergraph 2-
oloring problem [GJ79℄:given a 
olle
tion H = fE1; : : : ; Emg of subsets of a set of verti
es V , ea
h of them ofsize 3, is there a set C su
h that C \Ei 6= ; and (V n C) \Ei 6= ; for i = 1; : : : ;m.2323In other words, both C and its 
omplement must be hitting sets for E1; : : : ; Em.



108 CHAPTER 6. COMPLEXITY RESULTSLet V = fv1; : : : ; vng and Ei = fvi1; vi2; vi3g for all i = 1; : : : ;m. We representevery vi 2 V by a propositional variable pi, and 
onstru
t the monotone Booleanformula � :=  _Wmi=1  i, where = m̂i=1 pi1 _ pi2 _ pi3 and  i = pi1 ^ pi2 ^ pi3and the setM := fVi := fpi1; pi2; pi3g j 1 � i � m and no stri
t subset of Vi satis�es  g:It is easy to see that the formula � as well as the set M 
an be 
onstru
ted intime polynomial in the size of V and H. Moreover, every valuation Vi 2 M satis�esthe formula  i, and hen
e also �. It is minimal sin
e no stri
t subset of Vi satis�es(i) any of the  j (whi
h require valuations of size at least 3 to be satis�ed) nor (ii)  sin
e otherwise the 
ondition in the de�nition of M would be violated. This showsthat � andM indeed form an instan
e of the problem 
onsidered in the lemma.To 
omplete the proof of NP-hardness of this problem, it remains to be shown thatthere is a minimal valuation V 62 M satisfying � i� there is a set C � V su
h thatC \Ei 6= ; and (V n C) \Ei 6= ; for all 1 � i � m.We show �rst the if dire
tion. Let C be su
h a set, whi
h we assume without lossof generality to be minimal with respe
t to set in
lusion. We de�ne the valuationVC := fpi j vi 2 Cg and 
laim that it is the minimal valuation we are looking for. Forevery 1 � i � m, C\Ei 6= ; implies that there is a 1 � j � 3 su
h that vij 2 C, whi
hmeans that pij 2 VC . This shows that VC satis�es  and thus also �. In addition,sin
e (V n C) \Ei 6= ;, there is a 1 � k � 3 su
h that vik =2 C. Thus, VC is di�erentfrom all the valuations Vi 2M, and it does not satisfy any of the formulae  i.To show that VC is minimal, assume that V 0 � VC . Sin
e C is minimal, the setC 0 := fvi j pi 2 V 0g � C is su
h that there is a 1 � i � m with C 0 \ Ei = ;. Thisimplies that V 0 does not satisfy pi1 _ pi2 _ pi3, and hen
e it does not satisfy  . Asa subset of VC , it also does not satisfy any of the formulae  i, and thus it does notsatisfy �. This shows that VC is a minimal valuation satisfying � that does not belongtoM.For the only-if dire
tion, assume that there is a minimal valuation V 62 M satisfying�. This valuation 
annot satisfy any of the formulae  i. Indeed, (i) for Vi 2 M thiswould imply that V is a superset of one of the valuations in M, whi
h 
ontradi
tseither the minimality of V or the fa
t that it does not belong to M; (ii) for Vi 62 Mthere would be a smaller valuation satisfying  , whi
h 
ontradi
ts the minimality ofV. Sin
e V is a model of �, it must thus satisfy  . De�ne the set CV := fvi j pi 2 Vg.Sin
e V satis�es  , for every 1 � i � m there is a 1 � j � 3 su
h that pij 2 V, andthus vij 2 CV \ Ei. On the other hand, sin
e V does not satisfy any of the formulae i, for every 1 � i � m there must also be a 1 � k � 3 su
h that pik =2 V, whi
hmeans that Ei 6� CV and hen
e (V n C) \Ei 6= ;.Theorem 6.4 follows from this lemma sin
e an output polynomial algorithm whoseruntime is bounded by the polynomial P (j�j; jMj) (where � is the input andM the



6.1. COMPLEXITY OF PINPOINTING 109output) 
ould be used to de
ide the problem introdu
ed in the lemma in polynomialtime as follows: given � andM, run the algorithm for time at most P (j�j; jMj) and
he
k whether the generated valuations are exa
tly those inM.Theorem 6.4 shows that an algorithm for 
omputing all MinAs based on 
omputingthe pinpointing formula and then produ
ing its minimal satisfying valuations 
annotbe output polynomial. We would like to show that there is no algorithm of anykind for 
omputing all MinAs that is output polynomial. Unfortunately, our e�ortstowards this goal have been unfruitful. In this respe
t, we had to settle with a weakerresult dealing with the enumeration of all MinAs in the presen
e of an irrefutableTBox. Assume that the TBox is formed by the disjoint union of a stati
 TBox Tswhose axioms are irrefutable, and a refutable TBox Tr. We will denote this union asT = (Ts ℄ Tr). In this 
ontext, a MinA S for T w.r.t. A v B is a minimal subset ofTr su
h that A vTs[S B. In Chapter 3 we showed that this de�nes a 
-property, andhen
e we 
an use the notions of MinA in it.Theorem 6.6. There is no output polynomial algorithm that 
omputes, for a givenHL TBox T = (Ts ℄ Tr) and 
on
ept names A;B o

urring in T , all MinAs for Tw.r.t. A v B, unless P=NP.Proof. We show that the problem of 
omputing the minimal valuations of monotoneBoolean formulae 
an be redu
ed in polynomial time to the problem of 
omputingthe MinAs of an HL TBox. Given a monotone Boolean formula �, we introdu
e one
on
ept name B for every subformula of  of �, and one additional 
on
ept nameA. We de�ne TBoxes T for the subformulae  of � by indu
tion in a straightforwardmanner: if  = p is a propositional variable, then T := fA v Bpg; if  =  1 ^  2,then T := fB 1 uB 2 v B g; if  =  1 _  2, then T := fB 1 v B ; B 2 v B g.Obviously, the size of T� is linear in the size of �. In T�, we de
lare the GCIsA v Bpwith p a propositional variable to be refutable, and the other GCIs to be irrefutable.With this division of T� into a stati
 and a refutable part, it is easy to see that thereis a one-to-one 
orresponden
e between the minimal satisfying valuations of � andthe MinAs for T� w.r.t. A v B�. In parti
ular, given a MinA S, the 
orrespondingvaluation VS 
onsists of all p su
h that A v Bp 2 S. Thus, if we 
ould 
ompute allMinAs with an output polynomial algorithm, we 
ould do the same for all minimalsatisfying valuations.This theorem shows that, in general, exponential time is ne
essary for 
omputingall the MinAs of a given axiomati
 input, even if there are only polynomially manyof them, when some of the axioms are allowed to be irrefutable. The reason whyirrefutable axioms are ne
essary is to be able to adequately model the disjun
tionsfrom whi
h we are redu
ing the problem. It seems reasonable, thus, that if we allowthe language to in
lude the disjun
tion 
onstru
tor (t), then there will be no need fora stati
 TBox. We will now show that it suÆ
es to allow this 
onstru
tor only on theleft-hand side of the axioms. More formally, we de�ne the set of HLU 
on
ept termsas those that 
an be obtained from the set NC of 
on
ept names using the 
onstru
torsu and t. A disjun
tive TBox is a set of axioms of the form C v D where C is an
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on
ept term and D is an HL 
on
ept term. The semanti
s of this logi
 arede�ned in the obvious way.Theorem 6.7. Let T be a disjun
tive TBox and A;B two 
on
ept names appearingin T . There is no output polynomial algorithm for 
omputing all MinAs for T w.r.t.A v B, unless P = NP .Proof. The proof is very similar to that of Theorem 6.4 through Lemma 6.5. We willredu
e the hypergraph 2-
oloring to the problem of de
iding, given a set of MinAsM,whether there is another MinA for our property that is not an element ofM.Let V = fv1; : : : ; vng and Ei = fvi1; vi2; vi3g for i; 1 � i � m. We will simulateea
h vi 2 V by a 
on
ept name Pi. If we de�ne the axiom tB astB := mui=1(pi1 t pi2 t pi3) t mti=1(pi1 u pi2 u pi3) v B;then we 
onstru
t the disjun
tive TBox T = fA v Pi j 1 � i � ng [ ftBg, and the setof MinAsM := fVi := fA v Pij j 1 � j � 3g [ ftBg j 1 � i � m and Vi is a MinAg:Sin
e the 
on
ept name B appears only in the right-hand side of the axiom tB , anyMinA for T w.r.t. A v B must 
ontain this axiom. Thus, using an argument analogousto the one of Lemma 6.5, we have that there is a MinA S =2 M for T w.r.t. A v Bif and only if there is a set C v V su
h that C \ Ei 6= ; and (V n C) \ Ei 6= ; for alli; 1 � i � m. From this result, our 
laim follows, using the same argument as in theproof of Theorem 6.4.Alternatively one may be interested in knowing how many MinAs there are, ratherthan a
tually obtaining ea
h of them. For these kind of problems, where the interestis in 
ounting the number of solutions, we have to analyse a di�erent kind of 
om-plexity. In the theory of 
ounting 
omplexity, given a de
ision problem, one is notonly interested in whether there is a solution or not, but rather in how many solutionsexist. Clearly, the resour
es ne
essary for 
ounting the number of solutions ex
eedthose needed for merely de
iding the existen
e of one sin
e any number of solutionsgreater to zero implies an aÆrmative answer to the de
ision problem. In the �rst pa-pers introdu
ing this 
omplexity measure, Valiant showed that there exist problemsde
idable in polynomial time for whi
h 
ounting the number of solutions is as hard asfor NP-
omplete problems [Val79a, Val79b℄. Informally, the 
ounting 
omplexity 
lass#P 
ontains all those problems for whi
h a solution to its related de
ision problem 
anbe veri�ed in polynomial time. Thus, the 
ounting problem of every de
ision problemin NP belongs to #P.Theorem 6.8. Given a HL TBox T and two 
on
ept names A;B o

urring in T ,the problem of 
ounting the number of MinAs for T w.r.t. A v B is #P-
omplete.Proof. The problem is in #P sin
e its underlying de
ision problem, whether thereexist a MinA for T w.r.t. A v B is in NP.24 We show #P-hardness by a redu
tion24A
tually, as it has already been said, it is in P.
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over 
ounting problem [Val79b℄: given a set V andE � V � V , 
ount the number of minimal vertex 
overs. In other words, 
ountingthe number of minimal hitting sets of a 
olle
tion of sets of 
ardinality at most two.We use the same redu
tion presented in the proof of Theorem 6.3, and show thatit is parsimonious; i.e. that is preserves the number of solutions. As shown in saidproof, a set C � V is a minimal set having at least one element of ea
h e 2 E i�SC := fA v Pi; Pi v uvi2ej Qj j vi 2 Cg [ f kuj=1Qj v Bg is a MinA for T w.r.t.A v B. We have thus a one-to-one 
orresponden
e between the number of vertex
overs and the number of MinAs. Hen
e, 
ounting the number of MinAs is a #P-hardproblem.Another interesting question regarding 
ounting is, given an axiom t, 
ompute thenumber of MinAs that have t as an element. Solving this problem is relevant, forexample, when 
orre
ting an unwanted 
onsequen
e: those axioms that appear moreoften as 
auses of the error are the most likely to be faulty, and their removal will alsoeliminate the most MinAs possible. This idea has been proposed as an heuristi
 for
orre
ting an error while minimizing the 
hanges in the set of axioms [S
h05, SHCH07℄.Unfortunately, this 
ounting problem is also #P-hard.Theorem 6.9. Given an HL TBox T , an axiom t 2 T , and two 
on
ept names A;Bo

urring in T , the problem of 
ounting the number of MinAs for T w.r.t. A v B
ontaining t is #P-
omplete.Proof. This problem is in #P as its underlying de
ision problem is in NP. We show#P-hardness by giving a parsimonious redu
tion of the problem from Theorem 6.8.Given an HL TBox T and two 
on
ept names A;B appearing in T , we de�ne the newHL TBox T 0 := T [ S0, where S0 = fA v C;B u C v Dg and C and D are 
on
eptnames not o

urring in T . Clearly, a set S � T is a MinA for T w.r.t. A v B i�S [ S0 is a MinA for T 0 w.r.t. A v D. Furthermore, every MinA for T 0 w.r.t. A v Dmust 
ontain the axioms in S0. Thus, there are exa
tly as many MinAs for T w.r.t.A v B as there are MinAs for T 0 w.r.t. A v D 
ontaining the axiom A v C, whi
hentails the hardness result.With this result we �nish our study of 
omplexity of problems related to �ndingMinAs. In the following subse
tion we will show that the same 
omplexity boundshold for the dual problems related to MaNAs.6.1.2 MaNA ComplexityFinding minimal hitting sets has been useful, not only when trying to produ
e the setof all MaNAs from known MinAs and vi
e versa, but also to prove the hardness ofMinA related problems in the previous subse
tion. Given the dual nature of MinAsand MaNAs, it is hardly surprising that the dual problem of hitting sets { that ofindependent sets { will be equally helpful for showing the hardness of MaNA relatedproblems.



112 CHAPTER 6. COMPLEXITY RESULTSAlgorithm 1 Compute one MaNA for T = ft1; : : : ; tng w.r.t. A v B.1: if A 6vT B then2: return no MaNA3: S := ;4: for 1 � i � n do5: if A 6vS[ftig B then6: S := S [ ftig7: return SGiven a 
olle
tionM of sets using elements from V, a set S � V is an independentset i� for everyM 2M it holds thatM 6� S. Noti
e that S is a (maximal) independentset if and only if VnS is a (minimal) hitting set. Thus, all 
omplexity results known for(minimal) hitting sets apply also, in their dual presentation, to (maximal) independentsets, and likewise for the opposite dire
tion. This is, nonetheless, not suÆ
ient for
laiming that all the results from Se
tion 6.1.1 hold also for MaNAs, sin
e the 
-properties 
onsidered 
hange with this polynomial redu
tion.Although not all of the algorithms known for 
omputing a single MinA 
an bedualised, we 
an still 
ompute one MaNA { in fa
t, the lexi
ographi
al �rst MaNA {with only a polynomial overhead, by dualising the naive algorithm presented in [Sun09,BPS07a℄ in su
h a way that adds axioms to the knowledge base, as long as the propertydoes not follow from the enlarged set. This dual version, for the 
ase of subsumptionw.r.t. HL-TBoxes, is shown in Algorithm 1. This algorithm requires polynomiallymany subsumption tests. Furthermore, it is easy to see that its output 
orrespondsto the �rst lexi
ographi
al MaNA.If the sear
h for a MaNA aims to avoiding an unwanted 
onsequen
e, then weare interested in �nding the largest possible MaNA, that is, one with the greatest
ardinality, su
h that the 
hanges to the knowledge base remain minimal. De
idingwhether there is a MaNA of size greater than or equal to a given n is an NP-
ompleteproblem, though.Theorem 6.10. Given an HL TBox T , 
on
ept names A;B appearing in T and anatural number n, it is NP-
omplete to de
ide the existen
e of a MaNA for T w.r.t.A v B of 
ardinality � n.Proof. The problem is obviously in NP. For the hardness, we redu
e the NP-hardproblem of maximal independent sets: given a 
olle
tion of setsM = fS1; : : : ; Skg anda natural number n, de
ide whether there is an independent set forM of 
ardinality� n. For the redu
tion, we use a 
on
ept name P for every element p 2 Ski=1 Siand additional 
on
ept names A;B. We 
onsider that ea
h set Si is of the formSi = fsi1; : : : ; si`ig and 
onstru
t the TBox:T := fA v P j p 2 Ski=1 Sig[f `iuj=1Pij v B j 1 � i � kg



6.1. COMPLEXITY OF PINPOINTING 113We will show that there is an independent set forM of size � n i� there is a MaNAfor T w.r.t. A v B of size � n+ k.Assume �rst that there is su
h an independent set M . The sub-TBoxT 0 = fA v P j p 2Mg [ Swhere S := f `iuj=1Pij v B j 1 � i � kg (6.1)has jM j+ k axioms and is su
h that A 6vT 0 B.Conversely, take a MaNA T 0. Suppose that there is a i; 1 � i � k su
h that`iuj=1Pij v B =2 T 0. Sin
e T 0 is a MaNA, it holds that fA v Pij j 1 � j � `ig � T 0.Take now any element from Si; say pi1. Then, the new sub-TBoxT 0i = (T 0 n fA v Pi1g) [ f `iuj=1Pij v Bgis su
h that (i) jT 0i j = jT 0j, and (ii) A 6vT 0i B. The same pro
ess 
an be applied againto this set T 0i , until we have 
onstru
ted a set of axioms T 00 su
h that A 6vT 00 B andS � T 00, where S is the one of Equation (6.1). The set M = fp j A v P 2 T 00g is anindependent set forM, and jT 00j = jM j+ k.Just as we were interested in the relevan
e of an axiom when dealing with MinAs,one might want to know whether a given axiom ne
essarily appears in every MaNA, orthere is at least one that does not 
ontain it. We show that this problem is equivalentto that of Theorem 6.2.Theorem 6.11. Let T be a HL TBox, t 2 T and A;B 
on
ept names in T . De
idingthe existen
e of a MaNA S for T w.r.t. A v B su
h that t =2 S is NP-
omplete on thesize of T .Proof. Let S be a MaNA su
h that t =2 S. Then, for S [ftg it holds that A vS[ftg B.Thus, there is a MinA S 0 for A v B w.r.t. T su
h that S 0 � S [ ftg. But then, itholds that t 2 S 0 sin
e otherwise S 0 � S, whi
h would 
ontradi
t the fa
t that S 0 is aMinA. Conversely, if S is a MinA su
h that t 2 S, then the subsumption relation doesnot hold for S n ftg. Hen
e, there is a MaNA S 0 
ontaining S n ftg. If t 2 S 0, thenS � S 0, 
ontradi
ting the de�nition of MaNA. Hen
e, there is a MinA 
ontaining t ifand only if there is a MaNA that does not 
ontain t.To �nish with the de
ision 
omplexity results, we show 
oNP-hardness for theproblem of �nding the lexi
ographi
al last MaNA. This follows easily from the hard-ness of �nding the lexi
ographi
al last maximal independent set.Theorem 6.12. Given an HL TBox T , 
on
ept names A;B appearing in T and aMaNA S, it is 
oNP-
omplete to tell whether S is the lexi
ographi
al last MaNA forT w.r.t. A v B.
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oNP sin
e we 
an verify a 
ounterexample in polynomialtime. For the hardness, we use the result from [JYP88℄ by whi
h �nding the lexi
o-graphi
al last maximal independent set is 
oNP-hard. We use the same redu
tion fromthe proof of Theorem 6.10 and order the axioms as follows: �rst all the axioms of theform A v P , and then all the other axioms. It is easy to see that M is the last lexi
o-graphi
al maximal independent set forM if and only if T 0 = fA v Pj j pj 2Mg [ S,with S as in Equation (6.1), is the last lexi
ographi
al MaNA for T w.r.t. A v B.We fo
us now on the 
omplexity of enumerating all MaNAs. For a �xed naturalnumber n, 
onsider the HL TBoxTn = fA v Pi; Pi v B j 1 � i � ng:Tn has 2n axioms, but for every set N � f1; : : : ; ng, the sub-TBoxfA v Pi j i 2 Ng [ fPj v B j j =2 Ngis a MaNA for Tn w.r.t. A v B. Sin
e ea
h di�erent N de�nes a di�erent MaNA, thisaxiomati
 input has 2n MaNAs. This example shows that a given axiomati
 inputmay have exponentially many MaNAs, measured on the number of axioms. We willshow that they 
annot be enumerated using an output polynomial algorithm, in thepresen
e of an irrefutable TBox. As it was the 
ase for MinAs, we will show �rstan auxiliary result regarding the 
omputation of all maximal valuations falsifying amonotone Boolean formula.Lemma 6.13. Given a monotone Boolean formula � and a setM of maximal valua-tions falsifying �, de
iding whether there exists a maximal valuation V =2M falsifying� is NP-hard in the size of � and M.Proof. For the proof, we on
e again use the NP-hard hypergraph 2-
oloring problem.Our redu
tion in this 
ase will be very similar to the one used in Lemma 6.5, takingadvantage of the duality of the problems. Let V = fv1; : : : ; vng and Ei = fvi1; vi2; vi3gfor all i = 1; : : : ;m. We represent every vi 2 V by a propositional variable pi, 
all Pthe set of all propositional variables representing a v 2 V . and 
onstru
t the monotoneBoolean formula � :=  ^Vmi=1  i, where = m_i=1 pi1 ^ pi2 ^ pi3 and  i = pi1 _ pi2 _ pi3and the setM := fVi := P n fpi1; pi2; pi3g j 1 � i � m and no stri
t superset of Vi falsi�es  g:It is easy to see that the formula � as well as the set M 
an be 
onstru
ted intime polynomial in the size of V and H. Moreover, every valuation Vi 2 M falsi�esthe formula  i, and hen
e also �. It is maximal sin
e no stri
t superset of Vi falsi�es(i) any of the  j (whi
h require valuations of size at most n � 3 to be falsi�ed) nor
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e otherwise the 
ondition in the de�nition of M would be violated. Thisshows that � andM indeed form an instan
e of the problem 
onsidered in the lemma.To 
omplete the proof of NP-hardness of this problem, it remains to be shown thatthere is a maximal valuation V 62 M falsifying � i� there is a set C � V su
h thatC \Ei 6= ; and (V n C) \Ei 6= ; for all 1 � i � m.We show �rst the if dire
tion. Let C be su
h a set, whi
h we assume without lossof generality to be minimal with respe
t to set in
lusion. We de�ne the valuationVC := P n fpi j vi 2 Cg and 
laim that it is the maximal valuation we are lookingfor. For every 1 � i � m, C \ Ei 6= ; implies that there is a 1 � j � 3 su
h thatvij 2 C, whi
h means that pij =2 VC . This shows that VC falsi�es  and thus also �.In addition, sin
e (V n C) \Ei 6= ;, there is a 1 � k � 3 su
h that vik 2 C. Thus, VCis di�erent from all the valuations Vi 2M, and it satis�es all of the formulae  i.To show that VC is maximal, assume that V 0 � VC . Sin
e C is minimal, the setC 0 := fvi j pi =2 V 0g � C is su
h that there is a 1 � i � m with C 0 \ Ei = ;. Thisimplies that V 0 satis�es pi1 ^ pi2 ^ pi3, and hen
e it also satis�es  . As a superset ofVC , it also satis�es all of the formulae  i, and thus it must satisfy �. This shows thatVC is a maximal valuation falsifying � that does not belong toM.For the only-if dire
tion, assume that there is a maximal valuation V 62 M falsifying�. This valuation 
annot falsify any of the formulae  i. Indeed, (i) for Vi 2 M thiswould imply that V is a subset of one of the valuations inM, whi
h 
ontradi
ts eitherthe maximality of V or the fa
t that it does not belong to M; (ii) for Vi 62 M therewould be a larger valuation falsifying  , whi
h 
ontradi
ts the maximality of V.Sin
e V is not a model of �, it must thus falsify  . De�ne for this valuation theset CV := fvi j pi =2 Vg. Sin
e V falsi�es  , for every 1 � i � m there is a 1 � j � 3su
h that pij =2 V, and thus vij 2 CV \Ei. On the other hand, sin
e V does not falsifyany of the formulae  i, for every 1 � i � m there must also be a 1 � l � 3 su
h thatpi;k 2 V, whi
h means that Ei 6� CV and hen
e (V n C) \Ei 6= ;.From this lemma, we get the following theorem, whose proof is identi
al to theone for Theorem 6.4 presented in the previous subse
tion.Theorem 6.14. There is no output polynomial algorithm for 
omputing all maximalfalsifying valuations of monotone Boolean formulae, unless P=NP.In the proof of Theorem 6.6, we presented a one to one 
orresponden
e betweenMinAs using an irrefutable TBox, and minimal valuations satisfying a Boolean for-mula. It is easy to see that the same redu
tion yields also a bije
tion between the setof MaNAs for the same property and the maximal valuations falsifying the formula.We thus obtain the next result.Theorem 6.15. There is no output polynomial algorithm that 
omputes, for a givenHL TBox T = (Ts ℄ Tr) and 
on
ept names A;B o

urring in T , all MaNAs for Tw.r.t. A v B, unless P=NP.Re
all now that it is possible to simulate a monotone Boolean formula using adisjun
tive TBox. Thus, the dual result for Theorem 6.7 holds too.
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tive TBox and A;B two 
on
ept names appearingin T . There is no output polynomial algorithm for 
omputing all MaNAs for T w.r.t.A v B, unless P = NP .Considering now the problem of 
ounting the number of solutions, we get thetwo results that 
ounting the number of MaNAs and the number of all MaNAs not
ontaining a given axiom t are #P-
omplete problems.Theorem 6.17. Given a HL TBox T , two 
on
ept names A;B appearing in T andan axiom t 2 T , the following two problems are #P-
omplete:1. 
ounting the number of MaNAs for T w.r.t. A v B;2. 
ounting the number of MaNAs for T w.r.t. A v B not 
ontaining t.Proof. For the �rst point, 
onsider M = fS1; : : : ; Skg and let s =2 Ski=1 Si. Then,M has as many maximal independent sets asM0 = fS1 [ fsg; : : : ; Sk [ fsg; fsgg; infa
t, M is a maximal independent set of M i� it is also a maximal independent setof M0. We 
onstru
t a TBox T from M0 as in the proof of Theorem 6.10. Noti
ethat su
h a redu
tion is not parsimonious; for every maximal independent set of Mthere 
an be several MaNAs for T w.r.t. A v B. Let T 0 be a MaNA, and de�neMT 0 = fp j A v P 2 T 0g. If S, de�ned by Equation (6.1), is a subset of T 0, thenMT 0 is a maximal independent set for M0; otherwise, there is a set S 2 M0 su
hthat S � MT 0 . In parti
ular, the latter implies that A v Ps 2 T 0, where Ps is the
on
ept name representing the new element s used for de�ningM0. Thus, the numberof MaNAs for T w.r.t. A v B equals the number of maximal independent sets forMplus the number of MaNAs that 
ontain the axiom A v Ps. Consider now the TBoxTs = fA v Ps u P j p 2 Ski=1 Sig [ f `iuj=1Pij v B j 1 � i � kg. All the MaNAsfor this TBox are MaNAs for T , and 
ontain A v Ps. Thus, if m1 is the number ofMaNAs for T w.r.t. A v B and m2 the number of MaNAs for Ts w.r.t. A v B, thenthe number of maximal independent sets forM equals m1 �m2. Sin
e both TBoxes
an be 
omputed in polynomial time on the size of M, the problem of 
ounting thenumber of MaNAs for an HL-TBox w.r.t. a subsumption is #P-hard.For the se
ond part, given a TBox T , there are as many MaNAs for T w.r.t. A v Bas there are for T [ ftg w.r.t. A v B not 
ontaining the axiom t if t := A v B.With this we �nish our analysis of the 
omplexity of �nding MaNAs.6.1.3 Pinpointing ComplexityAll the 
omplexity results presented so far 
orrespond to �nding the set of all MinAs,or some of its properties, regardless of the method used. In this dissertation wehave fo
used on an indire
t method towards this goal, by �nding �rst a pinpointingformula. As des
ribed in Se
tion 3.1, there is a dire
t 
orresponden
e between theMinAs and the minimal valuations satisfying the pinpointing formula, by a bije
tionbetween the axioms in the input and the variables appearing in the formula. As
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omplexity results hold already for the problem of �ndingminimal valuations satisfying a monotone Boolean formula or, as it is also 
alled inthe literature, �nding the prime impli
ants of a monotone Boolean formula.It is worth noti
ing that every valuation V 
an be seen as a monotone Booleanformula 
onsisting of the 
onjun
tion of the variables appearing in V. Likewise, a setof valuations represents the disjun
tion of all the valuations appearing in it; that is, aformula in disjun
tive normal form. It is easy to see that, given a monotone Booleanformula �, the set of all minimal valuations satisfying � is equivalent to the originalformula �. Sin
e the disjun
tive normal form of a formula may be exponential inthe number of variables appearing in the formula, it follows that there 
an be expo-nentially many minimal valuations that satisfy a given monotone Boolean formula.Additionally, there is no output polynomial algorithm that 
omputes all these mini-mal valuations (unless P=NP), as shown in [BPS07a, EG91℄ (see also Theorem 6.4),and 
ounting how many of them exist is #P-
omplete [Val79b℄. Analogous 
omplexityresults hold for the problem of �nding maximal valuations not satisfying the formula.These hardness results for monotone Boolean formulae open the question of howhard it is to 
ompute the pinpointing formula per se. It 
ould still be the 
ase that�nding a pinpointing formula is a simple task, and the whole hardness of 
omputingMinAs is pushed to the 
omputation of minimal valuations from it. Unfortunately,known results in the area of monotone 
omplexity show us that this is not the 
ase.25In essen
e, Kar
hmer and Wigderson [KW88, KW90℄ showed that there exist 
-properties de
idable in polynomial time whose pinpointing formula is superpolynomialin length (see also Se
tion 5 of [BS90℄). The problem they use for showing this resultis graph rea
hability. Consider a set of verti
es V = fv1; : : : ; vng, and let the setsI = T = f(v; w) j v; w 2 V g; that is, the inputs and axioms are pairs of verti
es.We see ea
h axiom (v; w) as an edge between v and w. Thus, a set of axioms is agraph. The 
-property we are interested in de
iding is whether, given an axiomatisedinput ((v; w);T ), w is rea
hable from v in the graph T . Noti
e that this is indeed a
-property that 
an be de
ided in polynomial time. The pinpointing formula for thisproperty and the axiomatised input ((v1; vn);T) is not representable in polynomiallength [KW88, KW90℄.This 
-property is in fa
t a spe
ial 
ase of subsumption ofHL 
on
ept names, whereall the axioms are of the form C v D, with C;D 
on
ept names. From this it followsthat there exist axiomatised inputs whose pinpointing formula w.r.t. subsumption hassuperpolynomial length.Theorem 6.18. Let NC be a set of 
on
ept names, T = fC v D j C;D 2 NCg,and A;B 2 NC. The pinpointing formula for ((A;B);T ) w.r.t. subsumption 
annot berepresented in polynomial length in the size of T .With this we 
on
lude our study of the general 
omplexity of pinpointing, and turnnow our attention to proving our 
laim from Chapter 3 with respe
t to unde
idabilityof termination of the pinpointing extension of general tableaux.25Monotone 
omplexity measures the length of a monotone Boolean formula 
omputing a givenfun
tion.
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idability of Tableaux TerminationWe have now shown several results of the hardness of pinpointing-related problems,independent of the method used for solving them. For the rest of this 
hapter, wefo
us our attention on
e more on the tableau-based method. First of all, noti
e thatwe have always assumed that the original tableau terminates on every input (seeDe�nition 3.18) and have not dealt with any means to ensure this fa
t. Even more,we have shown in Example 3.32 that even if we 
an prove termination of a generaltableau, this will not ensure that its pinpointing extension will also run in �nite time.To deal with this problem, we introdu
ed the 
on
ept of ordered tableaux in Chapter 4and showed that they, and their pinpointing extensions, are always terminating. Itis nonetheless very easy to see that this 
lass does not fully 
hara
terize the 
lass ofall tableaux having a terminating pinpointing extension. Unfortunately, as we willsee now, it is unable to �nd a method that de
ides whether a given tableau has aterminating pinpointing extension.This se
tion has the following stru
ture. First, we will show that there is a tableauS for whi
h, given an axiomatised input �, it is unde
idable whether S terminates on� by a redu
tion from the halting problem for Turing ma
hines. We then show howto modify the same ideas to show that there is a tableau S for whi
h it is unde
idablewhether its pinpointing extension terminates on a given axiomatised input �. In theend we show how this result relates to our problem of termination in general.De�nition 6.19 (Turing ma
hine). A Turing ma
hine (TM) is a quadruple ofthe form M = (Q;�; Æ; q0) where Q is a �nite set of states , � is a �nite set oftape symbols 
ontaining the blank symbol t, q0 2 Q is the initial state and Æ is thetransition fun
tion Æ : Q� �! (Q [ fyes; nog)��� f�;�g.Given a TM M and an input !, the halting problem 
onsists on de
iding whetherM halts on !; that is, whether a sequen
e of 
omputations following the transitionrelation over the input ! will rea
h a state where no further step is possible. Thisproblem is well known to be unde
idable [Tur36, Dav04℄; in other words, there is noalgorithm that 
an de
ide whether M halts on ! for all possible TMs M and inputs!. In fa
t, the following stronger result 
an be shown: there is a TM M for whi
hthe problem of de
iding, given an input !, whether M halts on ! is unde
idable.The di�eren
e between these two problems is that in the �rst one the TM is alsoa part of the input for the de
ision problem, while in the se
ond one su
h TM is�xed. Obviously, if there is no algorithm for de
iding halting of inputs for a �xedTM, then there is also none that 
an de
ide the problem for all possible TMs. Werequire the stronger result sin
e it is possible to think of general tableaux that arenot des
ribable in a �nite way, and hen
e 
annot be 
onsidered part of the input of ade
ision pro
edure.6.2.1 Termination of TableauxWe will 
onstru
t, given a TM M , a tableau SM whose inputs will be analogous tothose of M and su
h that SM terminates on an input ! if and only if M halts on



6.2. UNDECIDABILITY OF TABLEAUX TERMINATION 119!. Intuitively, the SM -states will represent 
on�gurations on the tape of M duringthe exe
ution of the TM and thus a rule appli
ation on SM will simulate the 
hangesperformed on the tape by an exe
ution step on M .We will �rst use a predi
ate symbol to represent ea
h symbol in �; that is, forevery g 2 �, in
lude in the signature the unary predi
ate symbol Tg. To show thatthe symbol g appears on the tape in the 
urrent 
on�guration, we simply use theassertion Tg(a) for some 
onstant a. Sin
e the order in whi
h the symbols appear inthe tape is relevant for the exe
ution of the ma
hine, we have to represent su
h anorder a

ordingly in our tableau states. As SM -states are merely sets of assertions, wewill use predi
ate symbols Fz for z 2 Z in our signature. Intuitively, an assertion ofthe form Fz(a) states that 
onstant a is alloted in the tape position z. Su
h a 
onstanta works as the fusion point between the symbols in the tape and the position theyo

upy. Thus, we will use distin
t 
onstants at di�erent positions.On
e we know the symbols appearing on the tape and their position, we still needto represent the position of the head and the internal state of the ma
hine. We do thisin the same way as when des
ribing the tape. For ea
h state q 2 Q, we add the unarypredi
ate symbol Hq to the signature of our tableau. The assertion Hq(a) representsthen that the ma
hine has the internal state q. To know the position to whi
h thehead is pointing, we need to look into an assertion of the form Fz(a); this way weknow that the head is 
urrently reading the symbol on the z-th 
ell of the tape.Example 6.20. In the initial 
on�guration of the exe
ution of a TM, the head islo
ated in position 1 and the internal state is set to q0. Suppose that the input is givenby the 
hain s � t. This 
on�guration 
an be represented by the set of assertionsfF1(a); F2(b); Ts(a); Tt(b);Hq0(a)g:Sin
e we want the evolution of the states of our tableau to simulate the transi-tions performed by the original TM, we need to de�ne the tableau rules a

ordingly.Suppose, for example, that we have Æ(q0; s) = (q1; s0;!). Given the 
on�guration ofExample 6.20, this ma
hine would 
hange the tape to 
ontain the 
hain s0 � t, with thehead pointing to the se
ond 
ell and the internal state being q1. Thus, we would likeour rule to 
hange the set of assertions a

ordingly, leading to the setfF1(
); F2(b); Ts0(
); Tt(b);Hq1(b)g:It is very easy to add the required assertions with a rule appli
ation. Unfortunately,tableau rule appli
ations only extend the sets of assertions, and never remove elementsfrom it. Sin
e we have used distin
t 
onstants for representing distin
t positions (i.e.,
ells) of the tape, we 
an add an assertion spe
ifying that a given 
onstant should notbe 
onsidered anymore as part of the des
ription of a 
on�guration of the TM. Wea
hieve this with the aid of the additional unary predi
ate ? in the signature of SM .We 
an now des
ribe the 
on�guration after one exe
ution step in M with the set ofassertions fF1(a); Ts(a);Hq0(a);?(a)g [ fF1(
); F2(b); Ts0(
); Tt(b);Hq1(b)g:
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ond set in this expression 
ontains all the elements representing the a
tual
on�guration of the ma
hine, the �rst set showing all the elements that are related tothe 
onstant a, whi
h is dis
arded by the assertion ?(a). This �rst set 
an be thoughtof as a trash tail representing the states and symbols that have been overridden duringthe exe
ution of M .Suppose now that Æ(q1; t) = (q1; t;!). When the ma
hine exe
utes this transition,the head ends up pointing at a 
ell that is empty and not represented in the SM -state. Sin
e we 
annot know beforehand how many tape 
ells will be used during theexe
ution of M , we 
annot represent all of them in the tableau state either. What weneed is a way of expanding the spa
e on demand. In this example, we need to spe
ifythat the third tape 
ell will also be used. Thus, we need to add an assertion of theform F3(d). Furthermore, we know that the tape is written with the blank symbol tat that 
ell, so we also in
lude the assertion Tt(d).This approa
h, nonetheless, requires us to know that there is no assertion of theform F3(x) before the rule 
an be applied; otherwise, this rule 
ould also be applied to\add spa
e" that is already in use. For example, one su
h rule appli
ation 
ould addthe new assertions F2(e); Tt(e), whi
h is an undesired behaviour. Our de�nition of ruleappli
ation does not allow to look for the (non-)existen
e of an assertion of some shape;nonetheless, we will be able to do su
h a 
he
k indire
tly by using non-deterministi
rules. One of the non-deterministi
 options will try only to add an assertion Fn(y),while the other will add both ne
essary elements, namely Fn(y); Tt(y). The way ruleappli
ation was de�ned ensures that this rule is only appli
able if there is no assertionspe
ifying the use of spa
e in 
ell n already. We are now ready to 
onstru
t our tableauSM that simulates the TM M .De�nition 6.21 (Simulating tableau). Let M = (Q;�; Æ; q0) be a TM and let theset of inputs I � �� and set of axioms T = ;. The tableau simulatingM is the tableaufor I and T given by SM = (�; �S ;R; C) where� � = fFz j z 2 Zg [ fTg j g 2 �g [ fHq j q 2 Qg [ f?g, all of arity 1;� for every w = g1 � � � gk 2 I, we havewS = fTgi(ai); Fi(ai) j 1 � i � kg [ fHq0(a1)g;� for every pair (q; g) 2 Q� �, if Æ(q; g) = (q0; g0;!), then the rules(fFk(x); Tg(x);Hq(x); Fk+1(y); Sg00(y)g; ;) ! ffFk(z); Tg0(z);Hq0(y);?(x)gg(fFk(x); Tg(x);Hq(x)g; ;) ! ffFk+1(z)g; fFk+1(z); Tt(z)ggare in R, and if Æ(q; g) = (q0; g0; ), then the rules(fFk(x); Tg(x);Hq(x); Fk�1(y); Sg00(y)g; ;) ! ffFk(z); Tg0(z);Hq0(y);?(x)gg(fFk(x); Tg(x);Hq(x)g; ;) ! ffFk�1(z)g; fFk�1(z); Tt(z)ggare in R, for all k 2 Z; and



6.2. UNDECIDABILITY OF TABLEAUX TERMINATION 121� C = ;.Theorem 6.22. Let M be a TM, SM its simulating tableau and w an input for M .Then, M halts on w if and only if SM terminates on the axiomatised input (w; ;).Proof. At every SM -state, at most one rule is appli
able, des
ribed by the only asser-tion of the form Hq(a) su
h that there is no assertion ?(a) in the same state. Thereare two kinds of appli
able rules: those that 
orrespond to a transition of the originalTM, whi
h are deterministi
, and the non-deterministi
 ones used to expand the de-s
ription of the tape. If one of the former kind is applied, then the assertion ?(a) isadded, as well as a new assertion Hq0(b), pointing to the new tape 
ell where the ruleapplies. The new SM -state obtained this way represents the 
on�guration on the tapeafter the TM transition is applied. If the non-deterministi
 rule is applied, then weobtain two new SM -states. The �rst one, in whi
h only an assertion Fk(
) is added,is already saturated, and hen
e is irrelevant in the sear
h of termination. The se
ondone 
hanges in no way the des
ription of the tape, but allows the rule of the �rst kindto be triggered. Thus, every SM state represents a rea
hable 
on�guration of the TMM over input w. Likewise, for every rea
hable 
on�guration, there is a SM -state thatrepresents it.Corollary 6.23. There is a tableau S for whi
h it is unde
idable whether it terminatesover a given axiomatised input.Noti
e that the simulating tableau does not have any axioms in its inputs. Thismeans that the pinpointing extension of a simulating tableau 
orresponds to the sameoriginal tableau. Hen
e, we have also shown that there is a tableau for whi
h it isunde
idable whether its pinpointing extension terminates on a given input w. But itis still possible to ask about the pinpointing extension of terminating tableaux as wedo in the following subse
tion.6.2.2 Pinpointing Extensions of Terminating TableauxWe will show now that there exists also a terminating tableau for whi
h it is unde-
idable whether its pinpointing extension terminates on a given axiomatised input.For this, we want now to 
onstru
t a terminating tableau whose pinpointing extensionsimulates the TM. One thing to noti
e �rst is that none of the rules of the tableausimulating a TM des
ribed before 
an be applied if there is no assertion of the formHq(x) representing the internal state of the ma
hine. Thus, if we 
ould leave out allthese assertions, the TM behaviour will not be simulated by the tableau. The ideais then to 
reate a tableau that starts with a state des
ribing the whole input, butnot the initial internal state of the ma
hine, whi
h we know that must be q0. Thistableau should then never add the assertion Hq0(a1) to the states, ensuring that thesimulating rules are not triggered. Additional rules in this tableau should ensure that,when exe
uted in the normal way, it always terminates, but when exe
uting its pin-pointing extension, using some axioms, the assertion Hq0(a1) is added and then the



122 CHAPTER 6. COMPLEXITY RESULTSTM is simulated. This way, we will have a terminating tableau SM whose pinpointingextension terminates on an input (w;T ) if and only if the TM M halts on input w.To do this, we �rst allow the set of axioms to be T = fax1; ax2g, with all its subsetsbeing admissible. Then, we modify the tableau SM of De�nition 6.21 to 
onstru
t S0Min the following way. Add to the signature � the unary predi
ate names P; P 0; P1; P2;and add to R the rules(fP (x)g; fax1g) ! ffP 0(x); P1(x)gg (6.2)(fP (x)g; fax2g) ! ffP 0(x); P2(x)gg (6.3)(fP 0(x)g; ;) ! ffHq0(x)g; fP1(x)g; fP2(x)gg: (6.4)Furthermore, we modify the de�nition of �S to repla
e Hq0(a1) by P (a1) in wS .The new tableau formed this way is 
learly terminating. At the initial state, noneof the rules for simulating the TM 
an be triggered, sin
e Hq0(a1) is not present. Theonly way to add this assertion is to apply Rule (6.4), whi
h in turn 
an only be appliedon
e an assertion of the form P 0(x) is present; that is, after applying either Rule (6.2)or Rule (6.3). But on
e any of these rules is applied, the appli
ability 
onditions ofnon-deterministi
 rules disallow the possibility of Rule (6.4) to be applied. Hen
e,after at most two rule appli
ations (depending on the set of axioms given in theaxiomatised input), this tableau rea
hes a saturated state. We thus 
on
lude that S0Mterminates on every axiomatised input.On the other hand, if the pinpointing extension of S0M is applied with an input
ontaining both axioms ax1 and ax2, then after the appli
ation of both Rules (6.2)and (6.3), Rule (6.4) be
omes pinpointing appli
able. This is the 
ase be
ause thelabel of the assertion P 0(a1) at this point is ax1 _ ax2, whi
h does not imply the labelof any of the assertions P1(a1) or P2(a1), given by ax1 and ax2, respe
tively. Afterapplying this rule, we obtain three S0M states. Two of them, those 
orrespondingto the last two sets in the rule, are already saturated, but not the third one. Thethird S0M -state now 
ontains the assertion Hq0(a1), the only missing pie
e to start thesimulation of the TM over the same input given. Thus the pinpointing extension ofS0M terminates on an input (w;T) if and only if M halts on w, whi
h gives us ourdesired unde
idability result.Corollary 6.24. There is a terminating tableau S for whi
h it is unde
idable, givenan axiomatised input �, whether the pinpointing extension of S terminates on �.Noti
e that this is not exa
tly the result we are looking for. We would like tobe able to 
lassify all the tableaux whose pinpointing extension terminates on allinputs. It 
ould be the 
ase, for example, that every terminating tableau for whi
hthe unde
idability result of Corollary 6.24 holds has also an axiomatised input forwhi
h non-termination 
an be de
ided. We 
ould then still be able to �nd all thetableaux we are interested in. This, unfortunately, is not the 
ase, given the fa
t thatwe 
an 
hoose the set of inputs over whi
h the tableau 
an be applied. De�ne then,for a given tableau S over I and Padmis (T) and an axiomatised input � = (I;T ),the restri
ted tableau S� over I0 = fIg and Padmis (T0) = fS 2 Padmis(T) j S � T g.Then, S� terminates on all axiomatised inputs if and only if S terminates on input �.



6.2. UNDECIDABILITY OF TABLEAUX TERMINATION 123We have thus shown that it is impossible to fully 
hara
terize the set of all tableauxthat have a terminating pinpointing extension. This obviously does not mean thatwe 
annot �nd other sub
lasses, or even further extend the 
lass of ordered tableauxintrodu
ed in Chapter 4, but that there is no way of des
ribing all the elements of the
lass.This �nishes our study of the 
omplexity of pinpointing, and with it, the wholebody of this dissertation. This 
hapter has shown us that the problem of pinpointing,with all the tasks that surround it, is in general a hard one. For the 
onstru
tivede
ision pro
edures, 
hara
terised in this work by general tableaux, the pinpointingextension follows a very intuitive 
onstru
tion, as witnessed by the di�erent times whenthese ideas have appeared, presumably in an independent way. But our unde
idabilityresults show that, although the pinpointing extension is simple, spe
ial attention has tobe paid, lest we end up with an algorithm that runs inde�nitely. But the problems arenot inherent to the tableau-based approa
h. As our general 
omplexity results show, itis simply not possible to design any algorithm that will behave ni
ely 
omplexity-wisefor solving the problems of pinpointing (unless P=NP).We based our 
omplexity results on the justi�
ation and diagnoses problems w.r.t.HL knowledge bases. This was motivated by the polynomial 
omplexity of its de
isionproblem. Unfortunately, this leaves some problems open. For one, the redu
tionspresented rely on having a general HL-TBox. In des
ription logi
s, it is sometimesthe 
ase that the use of an a
y
li
 TBox allows for a lower 
omplexity bound. Fromour present study, it is still un
lear whether this is the 
ase for pinpointing in the logi
HL or not. Another interesting problem left open during this 
hapter is the exa
t
omplexity of enumerating all MinAs (or MaNAs) if we do not allow for the moregeneral languages used in our proofs.In the next and 
losing 
hapter we give our 
on
lusions as well as some of the openquestions that were left by the present dissertation, in
luding those des
ribed above.These open problems 
ould be used as starting points for further resear
h in the areaof pinpointing.
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Chapter 7Con
lusions and Future WorkIn this 
losing 
hapter we present �rst a 
hroni
al summary of the dissertation, in-
luding some 
on
luding remarks and brief insights about the pro
ess that led to someof the results readily presented. This summary is followed by some ideas of possiblefuture work that 
an be built over the results in
luded in this and other related works.Some problems left open by this dissertation are also in
luded.7.1 A Chroni
al SummaryIn di�erent areas, the need to understand the in
uen
e of portions of a theory over the
onsequen
es it produ
es has arisen as a natural problem with distin
t appli
ations.This understanding is usually a
hieved through the 
omputation of one or severalMinAs. There are essentially two methods to �nd these sets, on
e that a de
isionpro
edure exists: one 
an either 
all the de
ision pro
edure as-is using di�erent por-tions of the theory (the bla
k-box approa
h), or one 
an try to modify the originalalgorithm in su
h a way that a single exe
ution shines some light on the in
uen
eparti
ular axioms have over the result (the glass-box approa
h).In this work we had a look at how a glass-box approa
h works if our de
isionpro
edure is either tableau- or automata-based. Although it is possible to think ofde
ision algorithms that do not fall into any of these two 
ategories, these are in realityvery rarely found in logi
, spe
ially when dealing with monotone properties, whi
h isone of our most basi
 assumptions.Very re
ently, the problem of �nding MinAs started to gain relevan
e in the areaof Des
ription Logi
s, where it got the name of axiom pinpointing. The �rst studiesof this problem in DLs produ
ed a 
ustom modi�
ation of a tableau-based de
isionalgorithm, whi
h allowed to �nd one or (a des
ription of) all MinAs for the studied
onsequen
e. All these 
ustom modi�
ations had several elements in 
ommon, mainlyby the tra
ing me
hanism they implemented. Nonetheless, it was not 
ompletely ob-vious how the same ideas would apply to di�erent 
onstru
tors and their asso
iatedtableau rules. Hen
e, ea
h parti
ular pinpointing extension had to be tested for 
or-re
tness individually. This motivated our quest for a general notion of tableau-basedaxiom pinpointing, from whi
h di�erent instan
es 
an be taken and known to be125
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orre
t without the hassle of solving similar problems on
e and again.In order to des
ribe a general approa
h to tableau-based pinpointing we fa
ed �rstthe task of formalising the notion of a tableau algorithm. Although the main ideas ofthis 
lass of algorithms seem in general intuitive, there have been very few attemptsto formalise them. This 
orresponds perhaps to the fa
t that the intuitive notion isso vague as to allow for a perfe
t formal �tting: any de�nition would either ex
luderelevant examples, or be too broad, allowing for te
hniques that are not generally 
on-sidered to be tableau-based. Our formalisation is no ex
eption of this. In parti
ular,instan
es of what we 
all ground tableau (e.g. the subsumption method for EL, orthe 
ongruen
e 
losure algorithm) do not seem to be 
onsidered as tableau-based bythe 
ommunity. In the other dire
tion, even trying to be as general as possible, our
urrent approa
h 
annot deal with 
omplex blo
king te
hniques, like the ones used forDLs with number restri
tions to ensure termination of the pro
ess.With a general notion of tableau, we 
ould then pro
eed to de�ne their pinpointingextensions in a way that would allow us to 
ompute all the MinAs for a property,represented in a monotone Boolean formula. Our method follows the ideas previouslypresented in the DL 
ommunity, but generalises them in a way that allows for distin
tkinds of rules and stru
tures that have not previously been 
onsidered. For instan
e,our pinpointing extension 
an be used alongside with ternary predi
ates, while DLsdeal usually only with unary (
on
epts) and binary (roles) predi
ates. There werenonetheless unexpe
ted problems during the development of our framework.For one, we must speak of the problem of termination of the pinpointing extensionsof general tableau. In the original sour
es motivating our generalisation, terminationof the pinpointing extension was disregarded as a trivial 
onsequen
e of termination ofthe original tableau algorithm. Intuitively, it indeed looks so, and in a �rst approa
hwe thought that termination of pinpointing extensions should as trivially follow inthe general 
ase. As we saw at the end of Chapter 3, this intuition was in
orre
t,as multiple appli
ations of rules, 
aused by the need to understand all 
auses forthe insertion of a given assertion, may result in a 
ombination that leads to non-termination. Su
h a behaviour does not seem to o

ur in the tableaux for DL.To re
over termination we looked again at su

essful 
ases and distinguished, asothers have done before, the tree-shape of the 
reated stru
tures as a 
ommon 
ausefor termination. That lead to the de�nition of forest tableaux whi
h, under someadditional assumptions, were shown to terminate. Even if they do not satisfy theassumptions required for termination, we showed that equality blo
king 
an be usedin this setting to obtain e�e
tive algorithms. Tree tableaux obviously 
onstitute avery small sub
lass of general tableaux, and its de�nition may seem too 
omplex. Inreality, although several 
onditions are imposed to these tableaux, all of them aresynta
ti
al, on the shape of the rules. This might very well ex
lude several otherterminating pinpointing extensions, but synta
ti
al restri
tions have the advantage ofbeing easily veri�ed for any given tableau. Other notions of terminating tableaux maypossibly be de�ned, but we showed that it is impossible to fully 
hara
terise this 
lass.While resear
hing in this topi
, we slowly be
ame aware of the fa
t that the sameideas had appeared often in other areas. Parti
ulary surprising is the fa
t that allglass-box methods found followed the same pattern: the implementation of a tra
ing



7.1. A CHRONICAL SUMMARY 127te
hnique over a 
onstru
tive algorithm. Here the term 
onstru
tive refers to the fa
tthat these algorithms use rules and axioms to 
onstru
t some kind of model fromwhi
h the property 
an be readily de
ided. The tra
ing te
hnique 
onsists on addinga label to ea
h pie
e of this model, whi
h expresses the 
auses for its addition. Thislabel is modi�ed if more 
auses be
ome known.Automata-based de
ision pro
edures are not 
onstru
tive. In their most basi
formulation, we 
onstru
t an automaton based on the input of the problem. Theinput is reje
ted if and only if this automaton has a su

essful run with the root labelbelonging to the set of initial states. Nonetheless, trying to build a su

essful run leads,in the best 
ase, to a non-deterministi
 pro
edure. This 
an be improved for automata,by means of an iterative emptiness test, that runs in (deterministi
) polynomial timein the size of the automaton. Su
h a test tells us only whether the language a

eptedby the automaton is empty or not, but tells us nothing about how this language (or,more 
orre
tly, the a

epting runs) looks like. Hen
e, although we 
an 
orre
tly de
idea property, it is not simple to tra
e the reasons of this de
ision ba
k to the originalaxioms. This diÆ
ulty is further augmented by the fa
t that the fun
tion mappinginputs to automata may a
tually be arbitrary, holding no regularities with respe
t tothe axioms employed.Given the prominen
e of automata-based de
ision pro
edures in DLs for showing
omplexity, and their pra
ti
al use in some temporal logi
s, where they have beensu

essfully implemented, it seemed only natural to try to �nd a way to 
omputethe pinpointing formula from an automata-based de
ider. The �rst step was to for
ea regularity that 
ould allow us to reason about parti
ular axioms. This was donethrough the de�nition of axiomati
 automata, whi
h states that the addition of newaxioms 
an only restri
t the set of su

essful runs and initial states. The only stepleft 
onsisted in �nding a way to modify the original automaton, or its emptinesstest, to 
ompute a monotone Boolean formula, rather than just a yes/no answer.Weighted automata 
ame out as a dire
t solution: they extend automata theory tothe 
omputation of values of a semiring. We showed how to transform an axiomati
automaton into a weighted automaton whose behaviour 
orresponds to the pinpointingformula. At this time we were surprised not to �nd any algorithm for 
omputing thebehaviour of weighted automata of the kind we were dealing with, and so, developedone of our own by generalising the well-known iterative emptiness test. One thingto noti
e is that the emptiness test relies heavily on the distributivity of the logi
aloperators over ea
h other. For the general 
ase, su
h distributivity 
ould not lose itsimportan
e, and hen
e our algorithm 
ould only work on distributive semirings. Asevery distributive semiring is in fa
t a latti
e, our formulation requiring weights tobelong to a distributive latti
e is in fa
t the weakest we 
ould allow in our setting.With this restri
tion, we were able to prove the 
orre
tness of an algorithm that �ndsthe behaviour using time polynomial in the size of the original automaton.By the time we were �nishing our resear
h on the 
omputation of behaviour ofautomata, we be
ame aware of a di�erent method, developed independently, for solv-ing the same task. However, when we analysed how this method redu
es to the 
aseof pinpointing, whi
h was the main 
on
ern of our study, we found out that the al-ternative method is equivalent to the most na��ve bla
k-box approa
h, in whi
h every



128 CHAPTER 7. CONCLUSIONS AND FUTURE WORKpossible set of axioms is tested for the property, and then the minimal ones are takenas MinAs. With that in mind, we 
onstru
ted some examples where our methodperforms exponentially faster than the other one.Up to this point, ex
ept for the upper-bound obtained by pinpointing automata,there was no 
lear understanding of the 
omplexity of �nding MinAs, or their asso
i-ated problems. We went on to show that, in general, pinpointing is a hard problem.Although in the logi
 HL �nding one arbitrary MinA is feasible, as well as �nding thelast lexi
ographi
al one, this positive tra
k disappears on
e we want to �nd additionalproperties that shine some light over the set of all MinAs. Their dual properties arealso hard for the set of MaNAs. Furthermore, even the most 
ompa
t representa-tion of these sets as a monotone Boolean formula may be superpolynomial in length.Noti
e that this result does not violate the one saying that automata 
ompute thepinpointing formula in polynomial time in the size of the automaton, as we employeda di�erent representation formalism, namely stru
ture sharing, to obtain the feasibletime-bound.7.2 Future WorkOne of the main motivations for this work, as has been previously repeated, was thesear
h for a general des
ription of the glass-box strategies used for pinpointing inDes
ription Logi
s. Our framework is, not surprisingly, general enough to be appliedto other settings. One obvious example is the use of the temporal logi
 LTL as anexample for the need of generalised B�u
hi automata, in Chapter 5. This suggests thatthere is still a wide range of related problems that 
an be studied. We present heresome of these problems, in most 
ases a

ompanied by some thoughts on how 
anthey be approa
hed.The �rst and most obvious problem 
on
erns a better understanding of the pin-pointing extension of general tableaux, spe
ially regarding their exe
ution time. Weknow that in general it is impossible even to ensure a �nite exe
ution time; but evenwhen the pinpointing extension is known to terminate, there is no appropriate boundon the number of rule appli
ations that are ne
essary before a saturated state isrea
hed. In the 
ase of ground tableaux, it is easy to see that an exponential blowupin the number of rule appli
ations 
annot be avoided in the general 
ase. This followsfrom the fa
t that rule appli
ations may modify the label of a single assertion fromthe least- to the most-general monotone Boolean formula in exponentially many steps.Conversely, it is a very simple exer
ise to show that su
h an exponential blowup yieldsan upper bound on the exe
ution time of the pinpointing extension. We will return tothis later on, when we speak about latti
es. On
e we introdu
e variables, though, this
ount be
omes mu
h more 
ompli
ated. Rule appli
ations 
an still modify the label ofa single assertion at most exponentially many times, but additional rule appli
ationsmay 
ause the in
lusion of new assertions that would never appear during the regulartableau exe
ution. It is not 
lear how many of these new assertions will be introdu
ed,even for ordered forest tableaux.Continuing in the 
omplexity line of thought, we have left some unsolved prob-



7.2. FUTURE WORK 129lems in this work. With respe
t to the 
omplexity of enumerating all MinAs and/orMaNAs, our hardness results are weaker than desired, as we assumed that a portionof the ontology is 
omposed of axioms that 
annot be refuted for the 
omputationof justi�
ations or diagnoses. It is not very 
lear how to remove this generalisation.In fa
t, it seems that allowing an irrefutable set of axioms suÆ
es to show hardness:in [Bie08℄ it was shown that there is no output polynomial algorithm for enumeratingall MinAs even if the refutable axioms and the subsumption being justi�ed are all ofthe form > v A, where A is a 
on
ept name.26 Most of our MinA-related 
omplex-ity results rely on a redu
tion from the minimal hitting set problem. Unfortunatelythe exa
t enumeration 
omplexity of the hitting set problem is a long-standing openproblem. In Se
tion 6.1.1 we have shown that enumerating all MinAs is at least ashard as enumerating all minimal hitting sets. Our 
laim is that a redu
tion in theother dire
tion is not possible, ruling out the equivalen
e of both problems.Another problem that was left unsolved is the 
omplexity of pinpointing on a
y
li
TBoxes. All our hardness results for HL depend on the use of a set of GCIs that doesnot satisfy the a
y
li
ity assumption. In DL, reasoning under a
y
li
 TBoxes 
ansometimes lead to a lower 
omplexity 
lass, as attested by the logi
s ALC and SI. It
ould still be the 
ase that feasibility 
an be regained in HL in this restri
ted setting.Likewise, our automata-based approa
h 
an be used to prove an exponential upperbound for pinpointing in SI with a
y
li
 TBoxes, but it is not 
lear that the boundis tight. For de
iding a property, we have shown that a (non-deterministi
) top-downemptiness test 
an sometimes be used to �nd a tighter upper bound [BHP08℄. It is,however, un
lear how the same ideas 
ould be applied to pinpointing as the top-downapproa
h yields the information of only one su

essful run, while pinpointing needs tobe able to reason about all of them.One 
an also 
onsider �nding approximate solutions to some of the problems.Consider for instan
e the problem of �nding the MinA with the least axioms; this is animportant problem as small MinAs are usually easier to understand. We have shownthat �nding the smallest MinA is an NP-hard problem, but it is perhaps possibleto 
onstru
t a pro
edure that approximates its solution. Su
h a pro
edure should
ompute in polynomial time a MinA whose size is guaranteed to diverge only slightlyfrom the optimal. Alternatively, sto
hasti
 methods 
an be used to �nd MinAs havinga high probability of being optimal. Other problems whose approximation 
ould beof interest in
lude 
omputing the lexi
ographi
al �rst MinA or the total number ofMinAs.For our automata-based approa
h to pinpointing, we had �rst to identify 
ontri-butions of individual axioms to the property under 
onsideration. To this end, wede�ned mappings that yield, for every axiom t, those initial states and transitionsthat are allowed by the use of t in the ontology. A more general framework 
ouldalso allow axioms to in
uen
e the a

eptan
e 
ondition of the axiomati
 automaton.Su
h a generalisation was in part left out of this work due to our la
k to 
on
eiveany s
enario that 
ould motivate its appli
ation. Another possible generalisation of26In reality, the redu
tion presented in [Bie08℄ shows hardness for the DL EL, that is, with the helpof existential restri
tions. It is nonetheless not hard to adapt the same redu
tion to the logi
 HL,thus obtaining a result more akin to those in this dissertation.



130 CHAPTER 7. CONCLUSIONS AND FUTURE WORKthe automata-based framework 
onsists in in
luding more general 
lasses of automata.For instan
e, it seems likely that an algorithm similar to ours 
an be used to 
omputethe behaviour of weighted parity automata. Apparently, if the automaton is su
h thatthe a

eptan
e 
ondition 
an be tested lo
ally, by the 
onstru
tion and 
on
atenationof �nite runs, its behaviour 
an be 
omputed by an iterative algorithm akin to theone presented in Chapter 5.Pinpointing, as des
ribed in this dissertation, 
reates a bije
tion between axiomsand a set of propositional variables that will be used to des
ribe the pinpointingformula. As the automata-based approa
h tea
hes us, the propositional variables andall the monotone Boolean formulas 
onstru
ted over them are in fa
t elements from afree distributive latti
e. One 
an thus think of applying the same ideas using di�erentlatti
es: we map ea
h axiom to an element of the latti
e; this mapping is then used to
onstru
t a weighted automaton whose behaviour yields a desired value. Preliminarywork on this topi
 has shown that it may be ne
essary to restri
t the mapping to obtainmeaningful results. Of 
ourse, su
h a s
enario is not limited to the automata approa
h,as it is also possible to 
on
eive the development of weighted tableaux from the sameline of thought. So far as weighted tableaux follow the same ideas of pinpointingextensions, all our results 
an be reused; for example, one 
an show that for groundtableaux, the weighted extension will have an overhead exe
ution time proportionalto the longest 
hain of the form 0 < s1 < : : : < sn < 1. Unfortunately, the negativeresults and in parti
ular all the problems related to termination, would be still presentin this setting.One possible appli
ation of the weighted s
enarios just des
ribed 
orresponds toreasoning under vagueness. Indeed, some of the norms used in the de�nition of fuzzy
onstru
tors generate distributive latti
es. If instead one was interested in reasoningwith probabilities, then more work needs to be done. For some appli
ations, one isinterested in knowing whether one 
an 
onstru
t a model for a property with probabil-ity 1. In this parti
ular 
ase, it would suÆ
e to use the so-
alled probability semiring,that in fa
t 
omputes the maximum probability of sequen
es of independent events.But the probability semiring is not distributive, and hen
e it is not 
lear whether theweighted approa
h 
an 
orre
tly be applied to it. Evenmore, if one wanted to a
tually
ompute the probability of a property to follow, one would instead need to reasonwith measures, whi
h are more 
omplex algebrai
 stru
tures.Modern reasoners for DLs, whi
h are tableau-based, rely on heavy optimizations toprodu
e an answer in a timely manner. Our des
ription of the pinpointing extensionrequires several of these optimizations to be shut o�; otherwise, 
orre
tness 
annot beguaranteed. This is perhaps one of the reasons why in re
ent time mu
h attention hasbeen paid to bla
k-box pinpointing. A study of new optimization strategies that 
analso be applied for pinpointing would very likely improve the pra
ti
ality of the task.As it 
an be seen, there is still mu
h work that 
an be built over the results andideas of this dissertation. This is hardly surprising, sin
e the problems of �ndingjusti�
ations and diagnoses are relevant in several �elds, as attested by the se
tion onrelated work. This makes the sear
h of general methods, that 
an be shared betweendi�erent �elds, and possibly using distin
t de
ision pro
edures, more relevant.
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