Axiom-Pinpointing in Description Logics
and Beyond

Dissertation

zur Erlangung des akademischen Grades
Doktor rerum naturalium (Dr. rer. nat.)

vorgelegt an der
Technischen Universitat Dresden
Fakultat Informatik

eingereicht von
M. Sc. Rafael Penaloza Nyssen
geboren am 5. Juli 1981 in Mexiko-Stadt

verteidigt am 14. August 2009

Gutachter:

Prof. Dr.-Ing. Franz Baader,
Technische Universitat Dresden

Prof. Ulrike Sattler,
University of Manchester

Dresden, im Oktober 2009

Contents

2.1
2.2
2.3

24

3.1
3.2
3.3

4.1
4.2
4.3

5.1
5.2

9.3

Introduction

Logics and Decision Procedures

Description Logics
Linear Temporal Logic,
Tableau-Based Decision Algorithms.
2.3.1 Subsumption in HL with General TBoxes
2.3.2 Consistency of ALC ABoxes
2.3.3 Satisfiability of ALC Concepts with Acyclic TBoxes
2.3.4 Satisfiability of ALC Concepts with General TBoxes
2.3.5 Satisfiability of ALC Concepts with SZ-TBoxes
Automata-Based Decision Algorithms
2.4.1 Satisfiability of ALC Concepts with SZ-TBoxes
2.4.2 Axiomatic Satisfiability of LTL Formulae

Tableaux and Pinpointing

Basic Notions for Pinpointing
Pinpointing in Ground Tableaux
Pinpointing in General Tableaux

A Class of Terminating Tableaux

Forest Tableaux o
Ordered Tableaux,
Blocking in Forest Tableaux

Automata-based Pinpointing

Pinpointing Automata Lo Lo
Computing the Behaviour of Weighted Automata
5.2.1 Computing the Behaviour of a WBA
5.2.2 The Behaviour of WLA
5.2.3 The Behaviour of WGBA
An Alternative Computation of the Behaviour.

11
11
16
18
18
19
20
21
23
25
27
29

33
34
37
42

55
95
60
65

6 Complexity Results
6.1 Complexity of Pinpointing
6.1.1 MinA Complexity,
6.1.2 MaNA Complexity
6.1.3 Pinpointing Complexity
6.2 Undecidability of Tableaux Termination
6.2.1 Termination of Tableaux
6.2.2 Pinpointing Extensions of Terminating Tableaux

7 Conclusions and Future Work
7.1 A Chronical Summary e

7.2 Future Work

Bibliography

103
104
104
111
116
118
118
121

125
125
128

131

To those who taught me
the value of contradictions.

Acknowledgements

This work was financially supported by the Deutsche Forschungsgemeinschaft (DFQG)
under grant GRK 446. In this respect, the author wishes to thank Prof. Dr. Gerhard
Brewka for the oportunity of working at the Graduiertenkolleg Wissensreprdasentation.

Chapter 1

Introduction

Explanations are an essential component for the development of science. Very roughly,
scientific progress can be divided into two steps, each having a close connection to a
different interpretation of the word explanation: finding a theory that explains a set of
observations, and explaining why a given fact can be deduced from a specific theory.

When confronted with a set of observations, one can try to produce a general
theory that ezplains them; in other words, one from which all such observations are
a consequence. The adjective general anteposed to the word theory is intended to
express that this theory can be used to deduce not only the given observations, but
also additional, possibly previously unknown, facts. These additional facts allow for
our theory to be tested, by designing experiments that confirm or contradict them.
The theory becomes stronger with each new observation that confirms it, but the
moment one contradicting observation is found, the theory needs to be refuted and
replaced by a new one that accounts also for this observation.

A refuted theory needs not be totally wrong; indeed, it is possible that only a minor
portion of the whole theory is responsible for the contradiction between the deduced
facts and the new observations. Instead of creating a new theory from scratch, one
can try to remove the wrong portions; that is, those from which the contradicted
facts can be deduced, and then extend this theory to account for all the observations
that do not follow anymore from the reduced theory. Finding the wrong portions of
the theory can be seen as explaining the contradicted facts, within the context of the
theory.

One famous example of this process is the discovery by Johannes Kepler of the
elliptical shape of planetary orbits, as described in his Astronomia Nova. Using the
very precise and methodic measurements of the position of the planet Mars made by
Tycho Brahe during his lifetime, Kepler found a displacement of up to eight minutes of
a degree with respect to the position predicted by the astronomic theory of the time.
Convinced of the precision of the measurements, this admittedly small displacement
prompted him to correct the theory. His first step consisted on showing that a circular
orbit was incompatible with Brahe’s observations, thus distinguishing the hypothesis
of circular planetary motion as the source of the disparity between the theory and
said observations. Keeping the rest of the astronomical theory intact (for instance,
still assuming that the sun was a stationary body in space around which all planets

2 CHAPTER 1. INTRODUCTION

traveled) Kepler needed only to find a shape for planetary orbits that agreed with the
set of observations he had. After trying with different ovoid shapes, he finally settled
that an ellipse with very low eccentricity and the sun standing at one of its foci, best
described the path followed by the planets. This discovery is nowadays known as his
First Law of planetary motion.

It is perhaps worth noticing at this point that the term observation is being used
in a very loose manner that can express factual observations, such as the position
of Mars at a given moment in time, as well as more general theories. For instance,
Isaac Newton’s law of universal gravitation can be seen as a general theory explaining,
among other observations, Galileo’s law for free fall of bodies and Kepler’s first two
laws of planetary motion.

The importance of explanations in science has been long known: it can be tracked
back at least as far as Aristotle’s Posterior Analytics, with more recent examples
including Karl Popper [Pop35] and John Stuart Mill [Mil43]. But it was only after
Hempel and Oppenheim’s logic-based theory of explanation [HO48] that the topic
received a wider interest and was treated in a formal and methodical manner. The
work by Hempel and Oppenheim focuses on the first kind of explanations described
above, which is called scientific explanation in modern Philosophy of Science: given
an observation F, a theory T ezplains E if E can be derived from T and there are no
superfluous elements in T'; in other words, if there is no subtheory 7" of T' from which E
can also be derived. In this case, E is called the ezplanandum and T the ezplanans.
What distinguishes [HO48] from previous studies on scientific explanations is the
agnisation of the need for a formal definition of the terms theory, observation, and
derivation. To this end, the authors propose a language based on first-order logic, in
which the explanandum and ezplanans need to be represented, yielding logic-based
formal semantics to the ideas of scientific explanations: theories and observations are
sets of formulae and formulae in this language, respectively, while derivation is given
by the standard notion of logical entailment.

Soon, this theory of scientific explanations began to be strongly criticised due to its
excessive generality. It is interesting that most of these criticisms were not aimed to the
intuitive notion of scientific explanation, but rather to the representational language
used in their formalisation. Paradigmatic examples of this view are the trivialisation
theorems [EKM61]. Roughly, these theorems show that given almost any arbitrary
sentence F and theory T, it is possible to construct a theory 7", derivable from T
that works as an explanans for E. In words, what these results say is that when
confronted with an observation, one can first construct any arbitrary theory, totally
unrelated with the given observation, and from it build an explanation satisfying
Hempel and Oppenheim’s notion. Several efforts have been done to solve this problem
by either restricting the representation language, or imposing additional conditions in
the set of formulae that form an ezplanans. Hempel himself spent twenty years fine-
tuning both, his representation language, and the notion of what is an acceptable
explanation [Hem65].

In reality, the trivialisation theorems are less surprising than it might look at first

'For a survey on the origins and first developments of scientific explanation, see [Sal89, Sch96].

sight. The language introduced in [HO48] is intended to solve two problems simulta-
neously: knowledge discovery, and knowledge representation. As a consequence, the
representation language needs to be able to describe any conceivable ezplanans for any
conceivable explanandum. We aim at a fairly less ambitious goal, where the knowl-
edge discovery problem has been solved already; we will nonetheless rely on the same
notions of explanation, in dependency with the knowledge representation formalism
chosen.

Knowledge representation deals with the problem of storing the knowledge of a
domain in an efficient and usable manner. The search for a solution to this problem
obtained special attention from the second half of the past century as an important
milestone for the area of Artificial Intelligence. In a nutshell, before a machine is
able to show any intelligent behaviour, it needs to have a mechanism for storing and
manipulating pieces of knowledge. The stored knowledge is usually called a knowledge
base or ontology. Rather than having a knowledge base explicitly stating every piece
of knowledge, one would prefer to be able to infer additional information that appears
implicitly in this knowledge base. For instance, knowing that Albert is a Human,
and that all Humans are Mammals, it should not be necessary to additionally express
that Albert is a Mammal, as this is a direct consequence of the other two pieces of
knowledge. Our representation language should thus be accompanied by an inference
engine that allows the user to make such facts explicit.

Two early knowledge representation formalisms are Semantic Networks [Qui67],
developed by Quillian, and Frames [Min81] introduced by Minsky. The main draw-
back of these formalisms is their lack of a formal semantics by which the knowledge
represented in them can be unambiguously interpreted. Hence, it was impossible to
construct a system that could infer knowledge from arbitrary knowledge bases. A
system developed for working on such ontologies required to make choices regarding
the semantics of some of the constructors, which made it usable only in the specific
application it was developed for. Description Logics arised as a way to alleviate this
problem, using some of the main ideas of Semantic Networks and Frames, but giving
them formal and easy to understand semantics.

Description Logics [BCM™03] are a family of logic-based knowledge representation
formalisms with clear and well-defined semantics, built in most cases as sublanguages
of first-order logic. The family covers a wide range of expressivity levels, with their
corresponding trade-off in complexity. On the lower part of the expressivity scale
is the description logic ££ whose relevant inference problems are decidable in poly-
nomial time [Baa03c, Bra04b]. This logic has been successfully applied to represent
knowledge from the biological and medical fields [Sun09]. A fairly more expressive
description logic is SHOZN (D), the one behind the Web Ontology Language OWL,
which was selected by the World Wide Web Consortium as the representation language
for the Semantic Web [HPSvHO03]. Although the inference problems for this logic turn
out to be intractable, highly optimized reasoners have been shown to behave well in
practice [HST00, HS04].

The existence of a formal (and recommended) language motivated people to start
constructing realistic ontologies and reasoning with them. Successful stories rapidly

4 CHAPTER 1. INTRODUCTION

triggered the proliferation of more and larger knowledge representation efforts. As the
size of these knowledge bases rapidly increases, the need of automatic explanation and
correction tools becomes much more obvious. Indeed, ontology development is, just
as software development, an error-prone activity. Since large ontologies are typically
developed by groups of experts, clashes in their individual views may account for the
existence of errors. On the one hand, it is not uncommon to find experts disagreeing
in particular aspects of the area being represented. Such disagreements can easily
provoke the insertion of contradictory information to the knowledge base. On the
other hand, even if all experts concur on the knowledge being modeled, they can
still dissent on the way it should be translated to the representation language. This is
deeply related to the problem of expertise: usually, experts in the domain field are not
experts in knowledge representation, and wvice-versa. An ideal ontology development
group should be proficient in both areas. Furthermore, with large ontologies it is
usually hard to predict the whole effect of a minor variation, which can easily lead to
unexpected, if not necessarily erroneous, consequences. Finally, representation choices
are sometimes made but not used uniformly or adequatedly along the whole ontology.

In any of these cases, it is desirable to track back to the specific portion of the
knowledge base that is responsible for a given consequence. In other words, we are
interested in finding justifications: given a consequence F of an ontology 7', a portion
T’ of T justifies E if E is a consequence of T and F is not a consequence of any
strict portion of T”. Obviously, for this definition to make any sense, one needs to be
able to divide the full ontology in smaller parts. We will give the name aziom to the
indivisible segments of the knowledge base. Notice that the definition of justification
corresponds exactly to the second notion of explanation presented at the beginning of
this chapter.

Although finding justifications by hand may be feasible for very small ontologies,
performing this task without the help of an automated tool seems unrealistic once
the border of the hundreds of axioms has been crossed; much more for ontologies
of the kind of SNOMED CT [Spa05, SPSWO01] which has over 340 000 axioms. The
current version of SNOMED CT classifies the amputation of a finger as a subconcept
of amputation of hand. In other words, according to this ontology, someone who has
an amputated finger has also suffered the amputation of a hand.This erroneous infer-
ence follows from only six axioms of the ontology, and is caused by an erroneous use
of a representation schema developed for describing the transitivity of some proper-
ties [BS08].2

A justification distinguishes precisely those elements of an ontology that are re-
sponsible for the derivation of a given consequence E. If E is known to be erroneous,
then justifying it means to detect the sources of this error; with this knowledge we can
then correct the ontology and get rid of E. But one should not forget that a single
consequence may have more than one justification in the given ontology. In order
to ensure that F is not a consequence of the corrected ontology, one would have to
account for each of these justifications. Alternatively, we can try to find a diagnose for

2In fact, the same problem with transitivity presents itself in more than one example in SNOMED
CT; for instance, amputation of hand is also classified as a subconcept of amputation of arm.

E: a minimal portion of the ontology T such that, if removed from 7', FE is no more
a consequence. Returning to our original example, Kepler diagnosed that the source
of the disparity between the theoretically-predicted and the experimentally-found po-
sitions of Mars was the assumption that planets follow a circular orbit. Removing
this assumption from the astronomical theory led to a theory without the unwanted
disparity. This theory, nonetheless, also was unable to predict the position of any
planet at any time, nor even eclipses or other important astronomical events. In the
process of removing an unwanted consequence, we can easily get rid also of wanted
consequences; hence the need for a diagnose to be minimal, ensuring this way that
the pruning of the ontology produces as small a change as possible.

Recalling the notion of scientific explanation, one can easily confirm that a jus-
tification for a consequence F is in fact a scientific explanation for E (seen as an
explanandum) where the sentences of the explanans are restricted to belong to the
original ontology. Conversely, it is possible to see the construction of an ontology as
the result of knowledge discovery, in which case a scientific explanation for F is in fact
a justification for E over the newly generated ontology.> Notice that neither notion
of explanation really depends on the representation language used. This in particular
shows that, although much effort has been set in discrediting and fixing Hempel and
Oppenheim’s notion of scientific explanation, along with the logic-based representa-
tion language they use, it is not the language, nor the theory per se that cause the
main problems of this approach, but rather the intermediate task of knowledge discov-
ery, where any arbitrary set of sentences can be used as an ezplanans. Any language
with sufficient expressivity would be trivialisable under such a general attempt for
explanations.

With the advent of newer representation languages, the original language described
at [HO48], as well as its improved versions, remains relevant not so much as a knowl-
edge representation formalism, but as a paradigm for the properties that a language
must satisfy before a notion of explanation can be well defined over it. First, this lan-
guage must be able to express two kinds of sentences: axioms and consequences, having
formal semantics. Additionally, a notion of derivability of a consequence from a set of
axioms is necessary. Since the definition of explanation requires a minimal portion of
the ontology from which the consequence follows, derivability must be monotonic in
the sense that growing the knowledge base will only add more consequences without
removing any of the previously existent; otherwise, minimality makes no sense at all.
Since first order logic is monotonic, so is Hempel and Oppenheim’s language, and
thus is this condition implicitly satisfied; nonetheless, once we decide to work with a
distinct language, this condition must be ensured. Finally, Hempel did realise that
not every set of axioms can be considered a theory: it might be necessary to ensure an
internal coherence between the axioms used. The notion of coherence may obviously

A small, but important, distinction is in order. In scientific explanation one will usually consider
a fixed background theory over which the new theory is being built. Justifications, on the other hand,
usually consider each axiom as refutable, in order to obtain the real source for the deduction. This
description of scientific explanation is closely related to the idea of abduction in Artificial Intelligence.
In this case, knowledge discovery would try to find a set of plausible axioms, called abducibles; a
theory is then extended with a minimal set of abducibles to entail the observations.

6 CHAPTER 1. INTRODUCTION

change between languages. Thus it is not only necessary to define axioms in a specific
language but also which sets of them are admissible as ontologies.

A desirable property of any knowledge representation formalism is the ability of
implicitly encoding some pieces of knowledge that can then be summoned by an au-
tomatic procedure. In general, we want to have a way to know whether a specific
sentence is a consequence of an ontology; in other words, we require a procedure that
decides derivability. The answer that such a procedure yields obviously depends on
both, the possible consequence, and the ontology under consideration.

To accommodate a theory of explanations, we need to make some assumptions on
the theories and the notion of derivability used. First, we assume that any theory can
be divided in parts, each of which is itself a theory that can be used as an input for
the decision; in other words, a theory is composed of subtheories. As said before, we
give to indivisible theories the name of azioms. Second, we require derivability to be
monotonous; that is, if £ is derivable from a theory T, then it is also derivable from
any supertheory of T'. Minimal subtheories from which an ezplanandum E is derivable
are its explanans.

In this work we aim to develop methods for automatically finding justifications and
diagnoses for consequences of a theory. Instead of working directly on the representa-
tion language, we consider derivability via a given decision procedure that is correct
for a monotone notion of derivability. Obviously, explanations depend on derivation,
and thus indirectly also on the procedure used for deciding it. We will hence try to
transform a given decision procedure into an explanation procedure whose outputs are
not yes or no, but an encoding of all its justifications or diagnoses.

Decision procedures can take a wide variety of forms, and trying to encompass
all of them in our theory of explanation would be a titanic task. Hence, we focus on
two prominent approaches: tableau-based and automata-based decision procedures.
These two approaches have been widely used in description logics, and other areas,
where their distinct complexity and efficiency properties have been exploited. But, al-
though we will also use description logics for motivating our ideas and definitions, the
applicability of our framework is not limited to these particular knowledge represen-
tation formalisms. We will, for instance, also show its applicability to linear temporal
logic (LTL).

In a nutshell, tableau-based decision procedures start with some explicit knowledge
translated from the input, and extend it with the application of rules depending on
the theory, deriving the facts that are implicitly encoded in the input. The decision
depends on the explicit knowledge present once the execution of the algorithm halts,
by testing for so-called clashes in the knowledge produced. Automata-based decision
procedures, on the other side, translate the input into an automaton A from which
a decision is made depending on whether the language accepted by A is empty or
not. The emptiness test of automata tries to disprove that this language is empty,
but without actually building any element that would belong to it.

It should be noted that in general tableau-based procedures can decide a wider
range of problems than their automata-based counterparts. This follows from the
latter being limited to accepting languages of objects having a specific shape, while

the rule-based expansion of the former allows for a wider range of options. On the
other hand, the arbitrary shape of structures constructed makes it harder to ensure
even that the procedure will ever terminate, and in some cases appropriate techniques
are necessary to avoid infinite expansions. This generality will force us to look deeper
into tableau-based decisions and explanations, and ultimately restrict them to make
sure that an answer will be found in finite time.

Structure of the Work

This work is divided as follows. We first dedicate Chapter 2 to the introduction of
description logics and the temporal logic LTL as well as their main decision problems,
along with tableau-based and automata-based algorithms for solving them. These
algorithms will be used in the next three chapters to motivate our approach to au-
tomated explanations. The chapter is meant as a practical introduction to tableau-
and automata-based decision procedures and their associated techniques; as such, the
chapter summarises relevant portions of [BS01, BHP08, WVS83].

Chapters 3 and 4 deal with the tableau-based approach. The former chapter for-
malises first the notion of a tableau-based decision algorithm, what we call a general
tableau, that receive as input an ontology and a sentence, and decide whether the
sentence is derivable from the ontology. Our notion of general tableaux covers also
some algorithms that are historically not considered to be tableau-like such as res-
olution [Rob65, Lei97], congruence closure [NO07], and the subsumption algorithm
for the Description Logic ££ [BBL05]. We then show how to change these general
tableaux to obtain an algorithm that computes an encoding of all explanations of the
input sentence within the input ontology. Our encoding will be through a so-called
pinpointing formula: a monotone Boolean formula whose minimal satisfying valua-
tions have a one to one correspondence with justifications. Finally, we show that our
approach has problems with termination, in the sense that the algorithm proposed
may not be able to yield a pinpointing formula in finite time.

In the latter chapter we try to solve the problem of termination by taking from the
ideas of terminating tableaux used in description logics, which mainly exploit the tree-
shape of the generated models. Termination is achieved in two different ways. First,
we introduce a sub-class of tableaux whose so-called pinpointing extension always
terminates without the need of any special stopping mechanism. Afterwards, we
focus in formalising a notion of blocking: a method that allows us to detect cyclic
computations and accordingly stop the execution of the algorithm without harming
its correctness. The introduction of blocking to the tableau framework forces us to
adapt the pinpointing extention in an appropriate fashion. Thus, correctness needs to
be proved again for this variant setting. The ideas and results of these two chapters
were first published in [BP07, BP09].

We then change our attention in Chapter 5 to the automata-based approach. Given
an automaton deciding a property, we show how to construct a weighted automa-
ton whose so-called behaviour is a pinpointing formula. We then show a bottom-up
method for computing this behaviour in time polynomial on the size of the automaton.

8 CHAPTER 1. INTRODUCTION

The results presented here were originally published in [Pen08, BP08] for the special
case of looping automata. Here we present an extended version that can deal with
generalised Biichi automata and a wider range of restrictions.

Before giving our conclusions and brief ideas for future work, we finish in Chapter 6
with an analysis of the complexity of explanation divided in three parts: first we show
the complexity of finding justifications; then, we show analogous results for finding
diagnoses, and finish the section by showing that the pinpointing formula cannot, in
general, be represented in space polynomial on the size of the input ontology. These
complexity results extend those shown for justifications and claimed to hold also for
diagnoses in [BPS07a, BPS07b]. We then return to the tableau-based approach to
show that it is impossible to fully characterise the class of all tableaux having a
terminating pinpointing extension.

Related Work

The study of justifications in Description Logics has only recently begun. To the
best of our knowledge, the first attempt to compute the justifications for unwanted
consequences of a DL ontology was done by Schlobach and Cornet. In [SCO03], the
authors show that the standard tableau algorithm for the DL ALC [SS91] that decides
satisfiability w.r.t. so-called unfoldable terminologies, can be extended with labels
that keep track of the axioms responsible for an assertion to be generated during
the execution of the algorithm.* They also coin the term aziom pinpointing, which
we continue to use, to describe this task. Later on, Schlobach [Sch05] showed that
diagnoses can be computed from the set of all justifications by means of a Hitting Set
computation, following Reiter’s Theory of Diagnoses [Rei87].

The problem of finding justifications and diagnoses in a DL knowledge base was
actually considered one decade earlier in a different context. In [BH95], Baader and
Hollunder consider the problem of extending DLs with default rules, which they solve
by introducing a labeled extension of the tableau-based consistency algorithm for
ALC w.r.t. ABoxes [Hol96]. The two labeling approaches, namely [BH95] and [SC03],
follow very similar ideas. Factoring for the different kinds of axioms considered, the
main difference between the algorithms is the shape of the output: while the algorithm
in [SCO03] yields all the justifications directly, the one by Baader and Hollunder outputs
a monotone Boolean formula, from which all the justifications can then be deduced.

The two approaches have since then been extended to allow for more expressive
languages. On one hand, Schlobach and Cornet’s method [SC03] was extended by
Parsia et al. [PSK05] to DLs using a wider variety of constructors. On the other, the
ideas of [BH95] were extended by Meyer et al. [LMPO06] to the case of ALC termi-
nologies that use general concept inclusion axioms, which are no longer unfoldable.
In [HPSO08] the idea is further extended to deal with portions of axioms, to allow for
a more precise understanding of the causes of derivability. In reality, the use of the
DL ALC in both of the original approaches [BH95, SC03] was intended to work as a
prototype that could be easily extended to other DLs with a tableau-based decision

4In this case, the unwanted consequence was the unsatisfiability of a concept name.

procedure. However, the extension in [LMP06] showed that some techniques used in
tableau algorithms, such as blocking, require special attention when building their
labeling extension to keep correctness. Our tableau-based approach to pinpointing
tries to show how the same ideas can be applied in a more general setting.

In our general approach we faced the problem of how to ensure that the pinpointing
algorithm will terminate in finite time. This problem arises already for tableau-based
decision procedures, and it is directly inherited by their pinpointing extensions. A
general solution for decision algorithms was proposed in [ST08, ST07] in which a rule
is added to the tableau and always eagerly applied. This solution is not satisfactory
for us, as we want to allow any possible ordering for rule application in both, the
original tableau and its pinpointing extension.

All the previously cited approaches belong to the category of glass-boz methods, in
which the decision algorithm needs to be tempered with to create the algorithm that
outputs all justifications. Since modern DL reasoners [HMO01, Hor98, SP04] use several
optimizations that cannot be applied to the labeling extension, recent research has also
looked at ways of computing justifications using (unmodified) reasoners as a subpro-
cedure. Most of these so-called black-boz methods [BS08, KPHS07, SHCH07, Sun(9]
use a variant of Reiter’s Hitting Set algorithm [Rei87], while trying to minimize the
search space by either syntactical or semantical conditions. The black-box approach
has the clear advantage of being able to use the most efficient reasoner available with-
out bigger implementation problems; however, this reasoner may need to be called an
exponential number of times before all justifications are found. Trying to couple the
advantages of both glass-box and black-box algorithms, a mixed approach has been
considered for the £L£ family of DLs. This mixed approach uses a glass-box method
to compute a small (possibly non-minimal) set of axioms from where the consequence
still follows, which is later minimized using black-box techniques [Sun09].

Although automata-based decision procedures have been widely used in the DL
community [BHP08, BT01, CDGL99, CDGL02, 1.S00],> there has been no prior at-
tempt to construct a glass-box pinpointing algorithm based on the automata approach.
For our automata-based pinpointing framework, we had to construct, and compute the
so-called behaviour of, weighted automata on infinite trees. Surprisingly, study on the
area of weighted automata on infinite trees has only very recently begun, with its ori-
gin at [DKRO8, KL07]. As a result of this, we needed to develop our own algorithm for
computing the behaviour of these automata. Since the beginning of our work with au-
tomata, a different algorithm was developed independently by Droste et al. [DKROS].
We will show that, when applied to pinpointing, the algorithm in [DKRO08] is actually
equivalent to a naive black-box method.

The problem of axiom pinpointing has arisen, usually with different names, in
several distinct research areas. The SAT community has considered the problem of
computing maximally satisfiable and minimally unsatisfiable subsets of a set of propo-
sitional formulae. Solutions to this problem include black-box approaches that call
a SAT solver [BS05, LS05], as well as glass-box methods that extend a resolution-

SUp to now, automata-based procedures are used mainly for proving theoretical results in DLs.
However, reasoners based on an automata-based algorithm for the temporal logic LTL have been
successfully used in practice for Model Checking [GO01, GPVW95, Hol97].

10 CHAPTER 1. INTRODUCTION

based SAT solver [DDB98, ZMO03]. In Linear Programming, several people have
been interested in finding irreducible infeasible sets (IIS): minimal subsets of lin-
ear restrictions that have no solution. Several methods exist that compute one
IIS [Chi97, CD91, TMJ96] using a black-box method. To the best of our knowl-
edge, there is no glass-box approach to solving this problem. A different idea was
presented by Gleeson and Ryan [GR90], showing that there is a bijection between the
set of IIS and the optimal solutions of a dual linear programming problem. This idea
was later employed by Bruni [Bru05] to find all minimally unsatisfiable subsets from
a set of propositional formulae.

Another area where computing justifications has a special interest is Satisfiability
Modulo Theories (SMT) (see, for instance [ACGM04, BBCT05, GHN'04]). SMT
tries to find satisfying valuations of propositional formulae where each propositional
variable represents a restriction from a background theory. Modern SMT solvers use a
glass-box approach to find a single (possibly non-minimal) conflicting set of restrictions
that voids the current valuation in as short a time as possible [NOT06].

Additionally from DLs, we use the temporal logic LTL to exemplify our automata-
based approach. We view the conjuncts of an LTL formula as axioms and the justifi-
cations are minimal unsatisfiable subformulae that allow us to understand the overall
unsatisfiability of the original formula. Although this setting seems not to have been
considered for LTL before, it is closely related to the problem of computing unsatisfi-
able cores that has appeared in the SAT community [LS04].

As it was readily mentioned, the task of finding justifications closely resembles that
of abduction. Abduction uses a background theory and an additional set of axioms
called abducibles. The reasoning task consists in finding minimal sets of abducibles
that, when added to the background theory, entail a given query. Abduction has
been studied in several fields, but of special importance for this work is its applica-
tion to propositional logic (for instance, de Kleer’'s ATMS [dK86a, dK86b, dK86c¢]),
and in particular the complexity results that have been obtained for Horn formu-
lae [EG95a, EM02]. We will use a similar approach for several of our complexity
results in Chapter 6. Recently, the problem of abduction has also been considered in
the DL £L [Bie08].

It is important to notice that for really understanding a consequence, computing
justifications and diagnoses is usually insufficient. Individual axioms may be already
hard to interpret, and the relationship between them far from obvious. In the former
case, one would like to highlight the specific portions of the axiom that play a role
in the derivation of the consequence [HPS08]; in the latter, one can try to combine
several axioms in a single, easier to understand, new axiom also called lemma [HPS09].

Chapter 2

Logics and Decision Procedures

The main goal of this chapter is to describe, by means of examples, two of the most
prominent approaches to deciding properties in logic in general, and in particular in
description logics; namely, tableau-based and automata-based decision procedures.
Several logics will be used as a showcase to shine light of the peculiarities of each of
these methods. First we introduce the main reasoning problems for members of the
family of Description Logics having different expressivity, for which we will present
tableau-based decision procedures. These will work as a basis from which our gen-
eral notions of tableaux (Chapter 3) and blocking (Chapter 4) will be constructed.
For the most expressive Description Logic presented in this work, that is, ALC with
ST TBoxes, we introduce also an automata-based decision procedure that relies on
the fact that this logic has the tree-model property by constructing representations
of all the tree-shaped models. As an example of an automata-based decision proce-
dure requiring additional acceptance conditions, we include the problem of deciding
satisfiability of Linear Temporal Logic formulae. The use of this logic to exemplify
our automata-based approach is further motivated by the fact that automata-based
decision procedures have been successfully applied in practice for program verifica-
tion [Var96] or model checking.

In the first two sections of this chapter we describe the logics under consideration:
we first give a brief introduction to Description Logics and their main reasoning prob-
lems in Section 2.1, followed by an introduction to Linear Temporal Logic. Then, in
Section 2.3, we present tableau-based decision algorithms for the problems relevant to
Description Logics. Finally, the automata-based decision procedures are described in
Section 2.4.

2.1 Description Logics

Description Logics (DLs) [BCM™03] are a family of logic-based knowledge represen-
tation formalisms commonly used to represent the knowledge of a given application
domain in a structured manner which is also easy to understand. The main feature
relating all the logics in this family is the use of concepts that intuitively describe
properties held by individuals in a domain, and roles, or relations between two such

11

12 CHAPTER 2. LOGICS AND DECISION PROCEDURES

individuals. What differentiates one DL from another is the constructors it uses for
generating complex concepts and roles from a set of primitive ones, also called concept-
and role-names. The choice of these constructors obviously has an impact not only
on the expressivity of the logic, but also on the complexity of its reasoning problems.

The most basic constructors are the Boolean ones; that is, disjunction, conjunc-
tion and negation — denoted as LI,, and —, respectively — with the same intended
meaning as their propositional logic counterparts. The quantifiers ¥V and 3 allow us to
jump beyond the realm of propositional logic and reason about the relations between
individuals, each satisfying a given property. The value restriction Vr.C' is satisfied
by each individual z such that, if x is related to another individual y via the role
r, then y satisfies the concept C'. Likewise, the existential restriction Jr.C describes
the individuals that are related via r to some individual belonging to C. One can
additionally use the top T and the bottom 1 concepts, that are satisfied by all and
none individuals, respectively. The most basic DL using all of these constructors is
ALC, an acronym that stands for attributive language with complements originally
introduced in [SS91].

Definition 2.1 (Syntax of ALC). Let CN and RN be two disjoint sets of concept- and
role-names, respectively. The set of ALC concept terms is the smallest set containing
CN and such that if C,D are two concept terms and r € RN is a role name, then
CnD,CuD,-C,3r.C and Vr.C are all concept terms. [|

If it is clear from the context we will usually say ALC concept or even just concept
instead of using the longer name “ALC concept term”.

Let us instantiate Definition 2.1 with an example. When modeling the domain of
human evolution, one can describe a descendant of an Homo ergaster with the concept
Jhas-ancestor.HErgaster, or a species whose evolutionary descendants belong all to the
genus Homo using the concept Vhas-descendant.Homo.

In addition to the constructors used by this logic, several others have been con-
sidered in the DL literature such as (qualified or unqualified) number restrictions,
nominals, and role compositions, among others (see [BCM™03]). For the scope of this
work we will focus on the DI ALC as well as on the logic # L, which is the sub-logic
of ALC that allows only for conjunction and the top concept as a constructors. The
main decision problems for these two logics and different sets of axioms will require
the introduction of several distinct techniques for solving them. These techniques will
then be formalised when defining general decision procedures and restrictions in the
following chapters.

Representing the knowledge of a domain may require the use of specific individuals
that can act as instances of concept terms. These individuals may receive any name
in the formal description, but must be interpreted as elements of the domain. For this
reason, we will use an additional set IN of individual names disjoint from both CN and
RN.

Returning to our evolutionary example, we may introduce the individual name
Lucy whose intuitive task is to represent the famous Australopithecus afarensis fossil.

The importance of DLs as a knowledge representation formalism relies on their

2.1. DESCRIPTION LOGICS 13

formal semantics based on interpretations that map all concept- and role-names to
sets of individuals and sets of pairs of individuals of a specific domain, respectively.

Definition 2.2 (Semantics of ALC). Let CN, RN and IN be pairwise disjoint sets

of concept-, role- and individual names, respectively. An interpretation is a tuple of

the form T = (A1), where A is a set, called the domain of T, and -T is a function

mapping every individual name a € IN to an element a* € A, every concept name

A € CN to a subset AT C A and every role name r € RN to a set of pairs r¥ C A x A.
The function T is inductively extended to all concept terms as follows:

cnD)t =ctnD?;

Cu D)t =ctuDbD?;

(
(
(-C)F = A\ CF;
(3r.C)t = {d € A | there is an e such that (d,e) € rT and e € CT};
(

vr.C)t = {d € A | for all e, if (d,e) € rT, then e € CT}.

The domain knowledge is stored using a set of axioms that restrict the set of admis-
sible interpretations by imposing conditions on the concepts (terminological axioms),
individuals (assertional axioms), or roles (role axioms). We distinguish two kinds of
terminological axioms: concept definitions that, with some appropriate syntactic re-
strictions, help to define macros or abbreviations of concept terms, and general concept
inclusion axioms that express an inclusion relation between two concepts.

Definition 2.3 (Terminological axiom, (Acyclic, General) TBox). A concept
definition is of the form A = C, where A € CN is a concept name and C is a concept
term. A general concept inclusion axiom (or GCI for short) is an expression of the
form C C D with C and D concept terms.

An acyclic TBox is a set T of concept definitions that satisfies the following con-
ditions:

e for every concept name A, there is at most one concept definition in T of the
form A=C; and

e there is no sequence of concept definitions Ay = C1, Ay = Cs, ... A, = C), such
that for every 1 < j <mn, A; appears in Cj_1 and Ay appears in Cj,.

A general TBox is simply a set of GClIs. [|

Intuitively, the conditions imposed on acyclic TBoxes ensure that every concept
name is defined only once, and the right-hand-side of each definition has no direct
or indirect reference to its left-hand-side. General TBoxes are indeed more general
than acyclic ones, in the first place because each concept definition A = C can be
represented with the GCIs A C C,C C A, and second because there is no restriction

14 CHAPTER 2. LOGICS AND DECISION PROCEDURES

on the left-hand-side elements appearing on the right-hand-side concept term of a
GCIL.

For example, we can define our species, Homo sapiens, in terms of its evolutionary
ancestors and siblings using the concept definition

HSapiens = Jhas-ancestor.HHeidelburgensis 1 —~HNeanderthalensis.®

We can also express that Homo and Australopithecus are two disjoint genera, i.e., that
no individual can belong to both of them, with the GCI Homo M Australopithecus C 1.

Notice that the restrictions imposed in an acyclic TBox ensure that each concept
definition actually acts as a definition of the concept name appearing in its left-hand
side as an abbreviation of the (complex) concept term in its right-hand side. In
particular, this means that acyclic TBoxes do not add any expressive power to the
language. Nonetheless, they allow us to express complex concept terms and reason
about them in a more succinct fashion [Neb90, Lut99].

In some cases, restricting the concepts does not suffice to fully represent the knowl-
edge domain, and we want to specify some individuals as members of specific concept
terms. For instance, in the evolutionary ontology we need to express that Lucy is an
Australopithecus afarensis. This fact can be represented by the so-called assertional
aziom AAfarensis(LUcy).

Definition 2.4 (Assertional axiom, ABox). An assertional axiom is an expression
of the form C(a), or r(a,b) where a,b € IN are individual names, C is a concept term,
and r is a role name. A set of assertional azioms is called an ABox.]

In the same way that we restricted the relations between concept terms by means
of terminological axioms, we can limit the possible interpretations of the roles used in
their construction by imposing a set of role axioms. As in the case of the constructors
for concept terms, several distinct role axioms have been considered in the literature
[HS04, HKS05, HKS06]. In the present work we will focus solely on axioms that force
roles to be transitive or inverses of each other.

Definition 2.5 (Role axiom, SZ-TBox). Let r,s € RN be two distinct role names.
The expressions trans(r) and inv(r, s) denote a transitivity- and inverse axiom, respec-
tively. A role axiom is either a transitivity- or an inverse aziom.

An (acyclic, general) SZ-TBox is a set S = T'UR where T is an (acyclic, general)
TBozx and R is a set of role axioms such that every r € RN appears in at most one
inverse aziom.” |

SUnfortunately, there is at the present no full consensus on the evolutionary history of human-kind.
The examples presented here show only one of the most accepted views, and are are intended only as
illustrations for our definitions.

"The DL ALC extended with transitive and inverse roles, called ST in the DL literature, is usually
defined in a different manner, using an inverse constructor instead of axioms restricting the interpre-
tation of the role. We decided to use the equivalent axiomatic restriction since an incorrect use of
inverses may lead to unsatisfiability, and we want to be able to detect this cause when performing
pinpointing.

2.1. DESCRIPTION LOGICS 15

Syntax | Semantics

A=C [AT=C"

cCDh |ctcD?

C(a) aof € Ct

trans(r) | rZ is transitive
inv(r,s) | T is the inverse of s*

Figure 2.1: Semantics of axioms

Once again using the evolutionary ontology as an example, the role has-descendant
should be interpreted as being transitive, which can be enforced by including the
axiom trans(has-descendant), and as being the inverse role of has-ancestor, which is
easily done with the introduction of the role axiom inv(has-ancestor, has-descendant).

When axioms are used, the semantics of ALC and HL concepts are restricted
to consider only those interpretations that satisfy the restrictions imposed by the
specified axioms. Such interpretations are called models. In the presence of axioms,
not all interpretations are taken into account, but only those that model them. In
other words, only those interpretations that satisfy the semantic restrictions imposed
by the axioms, as summarized in Figure 2.1, are rendered relevant.

Definition 2.6 (Semantics of axioms). Given a set of axioms T, T is a model of
T iff for every aziom t € T, I satisfies the semantics of t as shown in Figure 2.1.

The first question that can be asked of a set of axioms is whether it is consistent;
that is, whether it is possible to construct a model for it or not. This question
is typically interesting in the presence of assertional axioms since we want to know
whether some specific individuals may satisfy the restrictions we are imposing on them.
Additionally to consistency, two of the main decision problems that arise in DLs are
the satisfiability and subsumption problems. The satisfiability problem consists in
checking whether there exist a model for a given set of axioms that maps a given
concept term to a non-empty set. On the other hand, the subsumption problem
checks whether every model interprets a concept as a subset of another concept. A
more formal definition follows.

Definition 2.7 (Consistency, satisfiability, subsumption). Let T' be a set of
azioms and C, D two concept terms. We say that T is consistent iff there is a model
of T. C is satisfiable w.r.t. T iff there exists a model T of T such that CT # 0. C is
subsumed by D w.r.t. T (denoted C Tr D) iff for every model Z of T it holds that
cT c pT. =

It is worth noticing that, in the presence of the negation constructor, these last
two problems are polynomially reducible to each other. On one hand, a concept C
is satisfiable w.r.t. T iff C' Zp 1; conversely, C Cr D iff C'T1 =D is unsatisfiable
w.r.t. T. For this reason, it suffices to design an algorithm that decides any of those
problems in order to solve the other. In this work, we will focus on the satisfiability
problem when dealing with the DI, ALC. In the case of the very inexpressive logic

16 CHAPTER 2. LOGICS AND DECISION PROCEDURES

HL, there are no means for expressing negation, and hence all concepts described in
it are always satisfiable. For that reason, we will focus on the subsumption problem
when reasoning in this logic. It is also relevant to realise that deciding satisfiability
of a concept C w.r.t. a set of axioms T is equivalent to deciding consistency of the set
T U {C(a)} where a is an individual name not appearing in T'. Basically, since C is
satisfiable w.r.t. T iff there is a model that maps C' to a non-empty set, we can force
the interpretation of C to contain a random element in the domain.

Later on in this chapter we will describe well known algorithms for solving sub-
sumption of HL-concepts w.r.t. TBoxes, and satisfiability of ALC concepts w.r.t. to
the distinct kinds of standard sets of axioms, with an emphasis on the characteristics
that are shared between them, and the specific elements that differentiate each par-
ticular case. Before that, we will introduce Linear Temporal Logic with its relevant
decision problem.

2.2 Linear Temporal Logic

Linear Temporal Logic (LTL) is an extension of Propositional Logic that allows rea-
soning about temporal properties, where time is seen as discrete and linear [GPSS80,
Pnu77]. The syntax of this logic extends the usual propositional constructors with
the constructors nezt, denoted as (), and until, denoted as U. Intuitively, the formula
()¢ expresses that the formula ¢ must be true in the next point in time, while ¢if1) is
true if there is a moment in the future where v is true, and ¢ is true at every moment
between the present and the one satisfying ¢. We will now formalise these notions.

Definition 2.8 (Syntax of LTL). Let P be a set of propositional variables. The set
of LTL formulae is the smallest set where

e all propositional variables are LTL formulae;

e if $ and ¢ are LTL formulae, then so are =¢,d N, Od and pUp.

The semantics of this logic use the notion of computations, which intuitively cor-
respond to interpretations, as defined for DLs, but where the domain is fixed to be
the set of natural numbers.

Definition 2.9 (Semantics of LTL). A computation is a function 7 : N — Z(P),
where N represents the set of natural numbers. This function w is extended to LTL
formulae as follows, for every i € N:

o ~pem(i)iff ¢ ¢ w(i); p Ay € mw(i) iff {¢, 9} € m(i);
e Opem(i)iff p €m(i+1); and

o pUY € m(i) iff there is a § > i such that v € ©(j) and for all ki < k < j it
holds that ¢ € (k).

2.2. LINEAR TEMPORAL LOGIC 17

An LTL formula ¢ is satisfiable if there is a computation 7 such that ¢ € w(0). m

One is usually interested in deciding whether a given LTL formula is satisfiable
or not. Since the main goal of this work is related with reasoning with respect to
sets of axioms, we will be interested in a variation of the satisfiability problem, where
LTL formulae are used as axioms. Given a set of LTL formulae R, we consider the
problem of deciding whether the conjunction of all formulae in R is satisfiable or not.
If this conjunction is unsatisfiable, pinpointing will allow us to detect the subsets of
formulae, i.e., the conjuncts, responsible for this. We will further assume that there
is a fixed conjunct that is always present. In summary, our problem receives as input
a static LTL formula ¢ and a set of refutable LTL formulae R, and decides whether
the conjunction of all these formulae is satisfiable or not. We now formally define this
problem, which we will call aziomatic satisfiability.

Definition 2.10 (Axiomatic satisfiability). Let ¢ be an LTL formula and R a
set of LTL formulae. We say that ¢ is axiomatic satisfiable w.r.t. R if there is a
computation T such that R U {¢} C (0).8 In this case, 7 is called a computation for

(¢7 R) |

At the end of this chapter we will present a procedure based on Biichi automata,
that will allow us to correctly decide axiomatic satisfiability of LTL formulae.

Depending on the characteristics of the logic in use and the kind of axioms con-
sidered, distinct methods can be applied to solve its decision problems. In description
logics, the two prominent approaches for deciding consistency, subsumption, or satis-
fiability of concept terms are the tableau-based and the automata-based methods. In
the case of consistency or satisfiability of concept terms, the tableaux-based approach
tries to construct a model in a top-down (usually non-deterministic) fashion, until the
model is finished or it is clear that no adequate interpretation can exist. The models
created this way usually have an underlying tree-shape. For that reason, whenever
the logic in consideration does not have the finite tree model property (as is the case
of ALC with general TBoxes) additional restrictions need to be specified to stop the
execution in finite time while retaining the correctness of the method. As we will see
later in Section 2.3, in these infinite models it is possible to find a pattern that repeats
after a finite number of nodes. Thus, only finite information is necessary to repro-
duce the infinite model. The idea of stopping the execution of the tableau once an
appropriate pattern has been found receives the name of blocking in the DL literature.

The automata-based approach is usually more straightforward. The idea consists
in constructing an automaton that accepts exactly all those tree-shaped models. The
deterministic and polynomial-time emptiness test on this automaton yields the desired
decision. In DLs, the runs accepted by such an automaton are in fact infinite tree
models, where every node represents an individual. The nodes are then labeled with
the concepts that they satisfy within the interpretation with the help of the transition
relation of the automaton. The decision procedure for axiomatic satisfiability of LTL
formulae follows a similar idea, constructing an automaton whose accepted runs consist

8Notice that this is equivalent to saying that ¢ A /\weR 1 is satisfiable.

18 CHAPTER 2. LOGICS AND DECISION PROCEDURES

on the computations for the input. Given the nature of the until operator, whose
satisfiability can be delayed as much as desired within the computation, it is necessary
to use an acceptance condition that ensures that this delay is not performed forever,
but every until formulae is eventually satisfied.

2.3 Tableau-Based Decision Algorithms

We proceed now to present several decision procedures that exemplify the main ideas
of tableaux briefly mentioned above. We first present a deterministic algorithm that
decides subsumption in HL with general TBoxes. This algorithm has the benefits of
being deterministic and running in polynomial time, and hence allowing us to detect
the increase of complexity caused by trying to explain the subsumptions that hold,
compared with merely detecting if they follow from the general TBox or not (see Chap-
ter 6). We continue with a description of the tableau-based algorithms for deciding
consistency of ABoxes and then satisfiability of ALC concepts w.r.t. acyclic, general,
and SZ-TBoxes incrementally: we re-use the consistency algorithm for ABoxes to
decide satisfiability, by simply adding a series of expansion rules that deal with the
axioms being considered.

The algorithm for HL is a special case of the subsumption algorithm for the DL
EL that also runs in polynomial time [Baa03a, Baa03b].” The other tableau meth-
ods are well known algorithms. For a deeper description, including more expressive
constructors not treated here, such as number restrictions and role hierarchies, and
complexity and run-time analysis of these methods, refer to [BSO1].

2.3.1 Subsumption in HL with General TBoxes

Recall that in HL, all concept terms consist of conjunctions of concept names, and
thus all GCIs in this logic are of the form

A MA,M...MA,CB,NByM...MB,,

where n,m > 0 and each A; and B; is a concept name in CN. Intuitively, an axiom of
this form states that if a concept is subsumed by all the concepts Aq... A, then it is
also subsumed by each and every one of the concepts B; ...B,,. Our algorithm will
iteratively make such knowledge explicit based on the explicit subsumption relations
known so far. This information will be stored in a set A of pairs of the form (A, B),
where A and B are concept names, with the intended meaning that (A, B) is present
if and only if B subsumes A.

The algorithm starts with the trivial knowledge stating that every concept name
appearing in the general TBox 7 is subsumed by itself; i.e., it initialises the set A
with A = {(A,A) | A € CN appears in 7}, and then repeatedly applies the expansion
rule hl that is shown in Figure 2.2.

Obviously, in order to ensure termination of this expansion method, the rule hl
should only be applied if its application will result in a real expansion of the set A,

9€L is the superlogic of 7L that allows also for existential restrictions.

2.3. TABLEAU-BASED DECISION ALGORITHMS 19

hl iqui C qBj € T and {(A,A;) |1 <i<n}CA, then
i= j=
add (A,Bj) to Aforall 1 <j <m.

Figure 2.2: Expansion rule for deciding subsumption in HL

that is, if there is at least one j such that (A,B;) ¢ A. Otherwise, we could loop
indefinitely applying the same rule once and again without achieving any progress.
Given this restriction, it is clear that the expansion rule is applied at most once for
each GCI and concept name in 7. Thus, the algorithm finishes in polynomial time
measured on the size of the TBox. When no more pairs can be added to A by an
application of this rule, it is the case that (A,B) € A iff A T+ B, for all concept
names A,B appearing in 7. As it was said before, this algorithm is in essence a
special case of the subsumption algorithm for ££. For a proof of correctness and its
polynomial execution time, refer to [BBLO05, Bra04a].

2.3.2 Consistency of ALC ABoxes

We move now beyond HL to the more expressive logic ALC, and consider first the
problem of consistency of an ABox. This problem corresponds to deciding whether
there is a model for a given set of assertional axioms. In order to solve it, we begin by
stating all the restrictions imposed by the axioms in the input and then expand this
knowledge according to the semantics of the constructors used (see Definition 2.2).
When this expansion process terminates, we either have a model (and hence the ABox
is consistent) or there is an obvious contradiction. Actually, due to the presence of
disjunction, this process has a (do not know) non-deterministic factor, and possibly
several model candidates would have to be tried. Each model candidate will be rep-
resented as a set A; of assertions of the form C(a) or r(a,b), where C' is a concept
term, 7 is a role name, and a and b are individuals. In other words, we use ABoxes
also to represent (partial) models. To deal with the non-determinism, we consider all
these ABoxes simultaneously, as elements of a set M, rather than only one at a time.
This can be thought of as testing all the possible model candidates concurrently.

The algorithm starts with the only model candidate consisting of the input ABox
Ap; that is, it initialises M = {Ap}. This set is then modified by successive applica-
tions of the expansion rules shown in Figure 2.3, where a rule is applied to one set A
in M at a time. These rules are applied until none of them can be applied anymore,
extending the set M of model candidates. An ABox A € M is said to have a clash
if there is an individual name z occurring in A and a concept name A such that
{A(r), ~A(2)} C A

This expansion process is guaranteed to finish after a finite number of rule appli-
cations, and when it does so, the resulting set M is such that the original ABox A
is consistent if and only if there is a model candidate A € M that does not have any
clash [BH91, Hol96].

Recall, from the definition of satisfiability, that a concept is satisfiable with respect

20 CHAPTER 2. LOGICS AND DECISION PROCEDURES

alen if (CND)(z) € Abut {C(z),D(z)} € A, then
replace A by A'= AU{C(z),D(z)}.

ale, if (CUD)(z) € Abut {C(x),D(z)} N A= 10, then
replace A by the two sets A' = AU{C(z)} and A" = AU{D(z)}.

aley if {(vVr.C)(z),r(z,y)} C . Abut C(y) ¢ A, then
replace A by A'= AU{C(y)}.

alcg if (3r.C)(z) € A but there is no individual name z
such that {r(z,z),C(2)} C A, then
replace A by A' = AU{C(y),r(z,y)} where y is an
individual name not occurring in A.

Figure 2.3: Expansion rules for the tableau algorithm for consistency of ALC ABoxes

alec. if A(z) e Aand A=C € T but C(z) ¢ A, then
replace A by A'= AU {C(z)}.

Figure 2.4: Rule alc_ for deciding satisfiability of ALC concepts w.r.t. acyclic TBoxes

to a given TBox if and only if there is a model that maps it to a non-empty set. In
other words, the concept C is satisfiable w.r.t. 7 iff the ABox {C(a)} is consistent
(w.r.t. T), where a is an arbitrary individual name. If we consider an empty TBox,
then the consistency algorithm described in this subsection would yield the desired
decision procedure. In general, nonetheless, we require to extend it to deal with the
terminological axioms. The following subsections deal with this.

2.3.3 Satisfiability of ALC Concepts with Acyclic TBoxes

As noticed before, acyclic TBoxes work basically as abbreviations of more complex
concept terms and do not add to the expressivity of ALC. In fact, reasoning with
respect to an acyclic TBox can be reduced to reasoning with an empty TBox by a
process known as unfolding: replacing, for every concept definition A = C, every
occurrence of the concept name A by its defined concept C. Unfortunately, this
reduction may produce a concept that is exponential in the size of the original TBox
(see [Neb90] for an example supporting this claim).

In the DL ALC, one can avoid this exponential blow-up by only unfolding at the
moments where it is necessary to explore deeper in a concept definition [Lut99]. This
method, commonly referred to as lazy unfolding can be easily implemented in our
tableau system for deciding satisfiability of ALC concept terms, by simply adding the
rule alc. (shown in Figure 2.4) to the tableau for ABox consistency (Figure 2.3).

The procedure works exactly in the same fashion as the one described in the pre-

2.3. TABLEAU-BASED DECISION ALGORITHMS 21

alcc if z is an individual name appearing in A but (~C U D)(z) ¢ A, then
replace A by A" = AU {(=C U D)(x)}.

Figure 2.5: Rule alct for reasoning with GClIs

vious subsection: it starts with the unique model candidate having only the assertion
C(a) where C' is the concept being tested for satisfiability and a an arbitrary indi-
vidual name. It then repeatedly applies the expansion rules until none is applicable
anymore. It can be easily shown that this process finishes after a finite number of
rule applications, at which point it holds that C' is satisfiable if and only if there is a
model candidate that does not contain any clash [Lut99].

2.3.4 Satisfiability of ALC Concepts with General TBoxes

When dealing with general concept inclusion axioms, we can no longer assume that
the TBox defines abbreviations of more complex concepts, which means that the idea
of lazy unfolding is no longer applicable. It is thus necessary to implement a different
method that can deal with this kind of terminologies. An analysis of the semantics
of the axioms that constitute general TBoxes reveals that they express a restriction
on the concepts to which every individual name must belong. More clearly, a GCI of
the form C' C D expresses that every individual that belongs to the concept C' must
also belong to D. We can also express this by forcing every individual to either not
belong to C', or otherwise belong to D. In other words, for every individual name
a, (-C U D)(a) must hold. The rule alcc shown in Figure 2.5 implements this idea,
forcing every individual name used in the ABox working as a model candidate to
satisfy each of the restrictions imposed by the GCIs. These rules are applied in the
same fashion as in the previous subsections, starting with only a model candidate
stating the non-emptiness of the interpretation of the concept being tested. More
formally, we begin with the set M = {{C(a)}} where C is the concept being tested
for satisfiability, and a an arbitrary individual name. We then apply the expansion
rules in any order. Unfortunately, and contrary to the previous methods presented so
far, application of this set of rules is not guaranteed to finish after a finite number of
steps, as shown in the following example.

Example 2.11. Consider the TBox T containing only one aziom T = {A C Ir.A}. If
we want to test for satisfiability of the concept A, then the tableau algorithm described
here will start with M = {Ao}, where Ay = {A(ao)}. At this point, only the rule alcc
is applicable to the only model candidate present in M. Its application replaces Ay
with Ay = Ag U{(mA U 3Ir.A)(ag)}. Again, only one rule is applicable, which is the
aleyy rule. Its application replaces Ay with the two sets Ay = Ay U {(3r.A)(ap)} and

L = Ay U{=A(ap)}. Notice that no rule is applicable to Al,, and that it contains
a clash, namely A(ap),—A(ag). On the other hand, the rule alcs is applicable to Ao
whose application substitutes that model candidate with Az = A2 U {r(ag,a1),A(a1)}.
It is easy to see that the same sequence of rule applications is possible, leading to a
model candidate having the assertion A(as) where ay is a new individual name, and

22 CHAPTER 2. LOGICS AND DECISION PROCEDURES

a) e A, ALlIdr.A,dr.A
r

ao e A, ALlIdr. A, dr.A
a @ A, AUTr A, 3r.A

r
r
az @ A,AU3r.A,3r.A a1 @ A, AU 3r.A,3r.A
CRR &
T
Figure 2.6: An infinite model Figure 2.7: A finite equivalent model

hence the same sequence of rule applications is once again possible. This leads to a
non-terminating sequence of rule applications. [|

From this example we know that the algorithm is not ensured to terminate af-
ter a finite number of rule applications. Nonetheless, if we allowed the process to
run indefinitely, we would notice that all the individuals used in the infinite model
constructed this way satisfy the same concepts (see Figure 2.6). In that sense, one
can say that the algorithm has been trapped in a cycle. Furthermore, we notice that
an infinite expansion is only possible by the addition of new individual names; that
is, by the use of so-called generating rules. In the present case, the only generating
rule is alcg. To regain termination, we need then to device a mechanism that detects
when the expansion has found a cycle and then avoids generating new individuals by
reusing the information of the cycle. This mechanism is called blocking in the DL
literature [BSO1].

The blocking mechanism for ALC w.r.t. general TBoxes is based on the individual
names used in the model candidate. We say that an individual name z is blocked
by the individual name y if y appears in all the assertions in which x appears; more
formally, if {D | D(z) € A} C {D | D(y) € A}. If an individual z is blocked
by y, then the rule alcg is not applied when triggered by an assertion of the form
dr.C(x). As the concepts satisfied by a blocked node form a subset of those satisfied
by the blocking node, this particular instance receives the name of subset blocking.
Intuitively, a blocked individual z should be able to reuse the role successors of y
instead for generating new ones that will have the same shape. In our example, we
could have avoided generating the new individual ae by simply reusing the successor
ay of ag as the new successor of ay (see Figure 2.7).

In order for this idea to work correctly, we need to restrict the set of individual
names that are able to block a given individual. Basically, it is necessary to avoid
a situation in which a pair of nodes are blocking each other, which would produce
an early termination of the algorithm that might destroy its soundness. For the
algorithm in hand, it is enough to force the blocking node to be a predecessor of
the blocked node. The infinite tree-shaped model can be recovered from the model
obtained from blocking by an unraveling process that creates new successors for those
nodes pointing backwards in the tree-like model. This tableau algorithm, with the use
of subset blocking, is always terminating and decides satisfiability of a concept w.r.t.
a general TBox in the same way as the one described in the previous sections: C' is

2.3. TABLEAU-BASED DECISION ALGORITHMS 23

aley if {(Vr.C)(z),r(z,y)} C A and trans(r) € T
but (Vr.C)(y) ¢ A, then
replace A by A" = AU {(Vr.C)(y)}.
ale if {(Vr.C)(y),s(z,y)} € A and {inv(r,s),inv(s,7)} NT # 0
but C(z) ¢ A, then
replace A by A" = AU {C(z)}.
alex if {(Vr.C)(y),s(z,y)} € A and {inv(r,s),inv(s,7)} N'T # 0 and
{trans(r), trans(s)} N'T # 0 but (Vr.C')(z) ¢ A, then
replace A by A" = AU {(Vr.C)(x)}.

Figure 2.8: Rules for dealing with transitivity and inverse axioms

satisfiable if and only if the algorithm starting with {{C'(a)}} yields a model candidate
that has no clash [BDS93].

2.3.5 Satisfiability of ALC Concepts with SZ-TBoxes

Once we introduce inverse and transitivity axioms, the decision procedure becomes
more complex. To deal with transitivity, it is helpful to notice that the only seman-
tical influence of these axioms on the construction of a model is with respect to the
universal restrictions. If r is a transitive role, then a universal restriction imposed in
an individual z needs to be satisfied not only by its direct r successors, but also by
their own r successors and so on. Clearly, we can perform this task with the help of a
tableau rule. The rule alc, in Figure 2.8, analogous to the one introduced in [Hor98]
for dealing with transitive roles, shows exactly this behaviour.

Inverse axioms need a similar approach. When an inverse axiom is present, the
restrictions may need to be propagated backwards along the inverse roles. In other
words, if we have r(z,y) and (Vs.C)(y), where inv(r,s), then we should be able to
deduce C(z). Rule alc_, shown in Figure 2.8, deals with this fact.

One has to notice still that if a role is transitive, then its inverse must also be tran-
sitive. For that reason, whenever a role appears both in a transitivity and an inverse
axiom, we should be able to combine the propagation of universal restrictions due to
transitivity with the backwards propagation due to inverses. Hence, we introduce the
rule alcy to the tableaux algorithm dealing with this logic.

Depending on whether we have an acyclic or a general SZ TBox, we need to use
the rule alc.. or alc, accordingly, in addition to the rules presented here to deal with
the rest of the axioms appearing in it. Obviously, the rules depicted in Figure 2.3 are
also necessary.

The presence of transitive axioms leads to a non-terminating tableau algorithm,
even in the case of acyclic SZ-TBoxes. Hence, we require an appropriate blocking
condition that ensures termination after a finite number of rule applications. Unfor-
tunately, due to inverse axioms, we cannot use subset blocking as presented in the
previous subsection. This is shown in the following example.

24 CHAPTER 2. LOGICS AND DECISION PROCEDURES

r e

z @ A(z), (Vr.—B)(z) S
| v e B(y)

y @ (Vr.¥r.-B)(y), B(y) ry |8
|s 2 e A()

z @ A(z) 7‘: S

w @ (Yr.Vr.-B)(w)
Figure 2.9: Failure of subset blocking with SZ-TBoxes

Example 2.12 (Failure of subset blocking). Consider the situation shown in the
left part of Figure 2.9, where we are testing for satisfiability of the concept A w.r.t.
the general ST-TBox T = {A C 3s.(Vr.Vr.-B N BM3s.A),inv(r, s)}. For brevity, the
figure does not show all the concepts obtained by application of the alcc rule and the
subsequent expansion by alcy and alcq rules. If we consider subset blocking, then the
node z is blocked by the root node x. This means that the existential rule alcg is not
applied, and hence the expansion stops on this model candidate without generating new
individuals. This ABox contains no clash, which means that the tableau procedure will
accept A as satisfiable. But this answer is not correct.

Since the individual z satisfies A, it must also satisfy, due to the GCI in T, the
concept Is.NrNr.—B; that is, it must have an s successor such that every two-step
r successor satisfies —B. Since r and s are inverses of each other, a two-step s
predecessor must satisfy that restriction; hence, every s predecessor of z must do that.
See the right side of Figure 2.9, where the dashed arrows represent the r successors
obtained by the inverse axiom. This means that y must satisfy =B, but the ABoz
contains already B(y), which leads us to a clash in the model candidate. [|

The reason why the procedure was unable to detect the clash was that the node z
was not allowed to receive the information that it should satisfy the concept Vr.—B,
which would be populated upwards by its successor node w through applications of
the rule alc_. This early blocking problem can be properly solved for this tableau
procedure by simply enforcing a stronger condition for blocking, in which the blocked
individual must satisfy ezactly the same concepts as the individual blocking it. More
formally, z is blocked by y iff {D | D(z) € A} = {D | D(y) € A}. This is known as
equality blocking [HS99].

One should notice that equality blocking can also be applied to the tableau algo-
rithm for satisfiability w.r.t. general TBoxes. Since the condition required for blocking
is a stronger one, using it would mean that blocking will come later, and hence one
might actually lose in efficiency within an implementation of the method; nonetheless,
it would still be sound and complete. It is for this reason that later on, when we
formalise the notion of blocking for general tableaux in Chapter 4, we will focus only
on equality blocking.

2.4. AUTOMATA-BASED DECISION ALGORITHMS 25

2.4 Automata-Based Decision Algorithms

A different approach for constructing a decision procedure is to use automata to test
whether there is a model of the TBox that maps the concept to a non-empty set. Given
a logic that has the tree model property, that is, there is a model for an ontology if
and only if there is a tree shaped model for the same, the idea is to construct a tree
automaton whose accepted language corresponds exactly to those tree-shaped models
where the root satisfies the concept being tested. Thus, the language accepted by this
automaton is empty if and only if the concept is unsatisfiable.

Before describing how this idea is applied to ALC w.r.t. SZ-TBoxes and LTL,
we need to present some basic concepts of automata theory. We are interested in
tree automata that work on infinite trees. Intuitively, these automata try to label an
input (infinite) tree in such a way that the labeling satisfies the automata acceptance
condition (see Definition 2.13). If such a labeling is possible, then the tree is accepted;
otherwise it is rejected. Furthermore, when automata are used to decide a property,
it is usually sufficient to use unlabeled trees as inputs. This means that, given a fixed
arity (i.e., branching factor) k, there is only one such input tree; thus, the language
accepted by one of these automata will be either empty or contain the only unlabeled
k-ary tree.

Given a positive integer k& we use K to denote the set {1,...,k}. We identify the
nodes of the input trees by means of words in K* in the usual way: the root node is
identified by the empty word ¢, and the i-th successor of a node w is identified by ui
for 1 < ¢ < k. The unique unlabeled infinite tree of arity k is represented by the set
of all its nodes, namely K*. As said before, an automaton tries to label the input tree
in an appropriate manner. Whenever we are speaking of labeled trees, we will refer to
the label of the node u € K* in the tree r by r(u), and in the same fashion we represent
an infinite tree r labeled with elements from a set () as a mapping r : K*¥ = Q. We
will also use the abbreviation r(‘ug to denote the tuple r(‘u; = (r(u),r(ul),...,r(uk)).
Additionally, we need the concept of a path in this tree. A path is a subset p C K*
such that € € p and for every u € p there is exactly one 7,1 < i < k with uz € p.

Definition 2.13 ((Generalised) Biichi tree automaton). A generalised Biichi
tree automaton for arity k is a tuple (Q,A, I, Fy,...,Fy,), where Q is a finite set of
states, A C QFt! is the transition relation, I C Q is the set of initial states, and
Fy,...,F, C Q are the sets of final states. A generalised Bichi tree automaton is
called Buchi automaton if it has only one set of final states; i.e., if n = 1. It is called
looping tree automaton if n = 0.

A run of a generalised Biichi automaton on the unlabeled tree K* is a labeled k-ary

tree v : K* — @Q such that r(ui € A for all w € K*. This run is successful if for
every path p and every i,1 < i < n, there are infinitely many nodes u € p such that
r(u) € Fj. |

When using automata as decision procedures, one is usually interested in solving
the emptiness problem, which consists in deciding whether the language accepted by
the automaton is empty or not.

26 CHAPTER 2. LOGICS AND DECISION PROCEDURES

Definition 2.14 (Emptiness problem). The emptiness problem for generalised
Biichi tree automata for arity k is the problem of deciding whether a given such au-
tomaton has a successful run r such that r(e) € I or not.]

Although a direct algorithm for deciding the emptiness of a generalised Biichi
automaton is sketched in [VW84], no proof of correctness is presented there and in the
journal version of that paper [VW86], the idea is simplified by presenting a reduction
to the emptiness problem for Biichi automata. In Chapter 5, we will follow a similar
approach for computing the so-called behaviour of weighted Biichi automata. First,
we will show how to compute the behaviour of weighted Biichi automata. Later, we
will introduce a polynomial reduction from weighted generalised Biichi automata to
weighted Biichi automata that preserves the behaviour. Our algorithm for computing
the behaviour of weighted Biichi automata generalises the well-known ideas employed
to decide the emptiness problem in the unweighted case.

The emptiness problem for Biichi automata can be decided in time polynomial
in the size of the automaton [Rab70, VW86]. The decision procedure constructs
the set of all states that cannot occur as labels in any successful run; we will call
these states bad states. We can try to disprove that a state is bad by attempting to
construct a finite partial run where every path ends in a final state. Every state for
which this construction fails is clearly bad, but there may be bad states for which this
construction succeeds. The reason is that some of the final states reached by the finite
run may themselves bad. Thus, in order to compute all bad states we must iterate
this process, where in the next iteration the partial run is required to reach final states
that are not already known to be bad. Notice, however, that the construction of a
finite partial run ending in non-bad final states can itself be realized by an iterative
procedure. Hence, the decision procedure for the emptiness problem uses two nested
iterations. In the inner loop, we try to construct a finite partial run finishing in (non-
bad) final states for every state. In the outer loop, we use the result of the inner
iteration to update the set of (known) bad states, and then re-start the inner iteration
with this new information.

Let us call the states for which there is a finite partial run finishing in non-bad
final states adequate. First, any state ¢ € () for which there is a transition leading to
only non-bad final states is clearly adequate. Then, every state for which there is a
transition leading only to states that are either (i) final and not bad or (ii) already
known to be adequate is also adequate. Obviously, during this iteration, the set of
adequate states becomes stable after at most |Q] iterations. The outer loop then adds
all the states that were found not to be adequate to the set of bad states. The set of
bad states maintained in this outer iteration becomes stable after at most |Q| steps.
This yields an emptiness test that runs in time polynomial in the number of states (see
[VW86] for details). In the case of looping automata, this method can be simplified
to a single bottom-up iteration [BT01].

In the following subsections, we will show how we can use automata, and in par-
ticular the emptiness test just sketched, to decide satisfiability of ALC concept terms
w.r.t. SZ-TBoxes, as well as axiomatic satisfiability of LTL formulae.

2.4. AUTOMATA-BASED DECISION ALGORITHMS 27

2.4.1 Satisfiability of ALC Concepts with SZ-TBoxes

The automata-based approach for deciding satisfiability of an ALC concept term w.r.t.
a general SZ-TBox is based on the fact that a concept is satisfiable iff it has a so-
called Hintikka tree, which is basically a tree model where every node is labeled with
the concept terms to which it belongs. Given a concept C and an SZ-TBox, we will
construct a looping tree automaton whose successful runs correspond exactly to the
Hintikka trees.

In order to simplify the notation, we assume that every concept term is presented
in negation normal form (NNF); that is, negation appears only in front of concept
names. This assumption has no impact in the generality of the method as every ALC
concept term can be transformed into NNF in linear time using the de Morgan laws,
duality of quantifiers and elimination of double negations. We will denote the NNF
of a concept term C as nnf(C) and nnf(=C) as «~C. Given an ALC concept term C
and a general SZ-TBox 7, we will use the abbreviation sub(C,7T) to denote the set
containing all the subconcepts of C' as well as of the concept ~DUFE for DEE € T.

The automaton we construct for deciding satisfiability of concepts w.r.t. general
SZ-TBoxes will have so-called Hintikka sets as states. Hintikka sets contain as ele-
ments subconcepts of the input concept and TBox, as well as information about the
transitivity of certain roles. For this, we will additionally use rol(C,T) to denote the
set of all role names appearing in C or in 7.

Definition 2.15 (SZ-Hintikka set). A set H C sub(C,T) Urol(C,T) is called an
SZ-Hintikka set for (C,T) if the following three conditions are satisfied:

(i) if DNE € H, then {D,E} C H;
(i) if DUE € H, then {D,EYNH #0; and
(iii) there is no concept name A € CN such that {A,-~A} C H.

An ST-Hintikka set H is compatible with the GCI D C E € T iff either H = ()
or ~DUFE € H. It is compatible with the transitivity axiom trans(r) € 7 iff H = ()
orr € H. Finally, H is compatible with the inverse axiom inv(r,s) € T iff it holds
that v € H if and only if s € H. [|

The arity k£ of the input accepted by our automaton is given by the number of
existential restrictions, i.e., concept terms of the form 3r.D, present in sub(C,7T).
For the transition relation, it will be important to know which successor in the tree
corresponds to which existential restriction being satisfied; for that reason, we fix an
arbitrary bijection ¢ : {3r.D | Ir.D € sub(C,T)} — K. A Hintikka tree is a k-ary tree
labeled with Hintikka sets that satisfies additional compatibility conditions dealing
with the existential- and value restrictions appearing in its node labels. To obtain full
k-ary trees, we will add dummy nodes labeled with the empty set (which is itself an
SZ-Hintikka set, and compatible with every axiom) where appropriate.

Definition 2.16 (Hintikka condition). The tuple (Hy, Hy,..., Hy) of Hintikka sets
for (C,T) satisfies the Hintikka condition iff the following two conditions hold for every
existential restriction Ir.D € sub(C,T):

28 CHAPTER 2. LOGICS AND DECISION PROCEDURES

e if Ir.D € Hy, then H 3, p) contains D as well as every E for which there is a
value restriction ¥r.E € Hy; if, additionally, r € Hy, then also ¥Yr.E belongs to
H,=r.py for all value restriction Vr.E € Hy; and

L4 Zf dr.D ¢ HU, then Hcp(EIT.D) = @

A tuple satisfying the SZ-Hintikka condition is called compatible with the GCI
D C E € T (respectively compatible with the transitivity axiom trans(r) € T) if all
its components are compatible with D T E (compatible with trans(r), respectively). It
is compatible with the inverse axiom inv(r, ') € T if all its components are compatible
with inv(r,r") and the following holds for all s € {r,r'} and s= € {r,r'}\{s}: for every
Vs.F' € H,3,-.p), the set Hy contains F' and additionally Vs.F if s € Hyp.

A tuple of ST-Hintikka sets that satisfies the ST-Hintikka condition is compatible
with a general ST-TBox T if it is compatible with every aziom t € T . [|

We can now formally define Hintikka trees.

Definition 2.17 (Hintikka tree). A Hintikka tree for (C,T) is a k-ary tree H
labeled with Hintikka sets for (C,T) such that C € H(e) and for every node u € K*

the tuple H(u) is compatible with T . [|

The following result shows that testing for satisfiability of a concept C w.r.t.
an SZ-TBox T is equivalent to deciding the existence of an SZ-Hintikka tree for
(C,T). This lemma can be shown by a simple adaptation of the arguments presented
previously in [BHP07, BHP0S|.

Lemma 2.18. A concept C is satisfiable w.r.t. a general ST-TBox T iff there is a
Hintikka tree for (C,T).

Given this lemma, we now know that it is enough to construct an automaton whose
successful runs correspond to such Hintikka trees. We can then test for satisfiability
of the concept w.r.t. a SZ-TBox by performing an emptiness test on this automaton.
In this case, a looping automaton suffices for deciding the property.

Definition 2.19 (Automaton Asca’tT). Let C be an ALC concept term, T a gen-
eral ST-TBozx and k the number of existential restrictions in sub(C,T). The looping

automaton Asca’tT is given by .ASC?’tT = (Q,A,I) where

e (Q is the set of all Hintikka sets for (C,T);

o A is the set of all tuples (Hy, Hy,...,Hy) € Q' that satisfy the Hintikka
condition and are compatible with T ; and

e I={HeQ|CecH}.
[

As expected, the successful runs of this automaton where the root is labeled with
an element of I correspond exactly to SZ-Hintikka trees for (C,7). This yields the
following result [BHPO0S].

2.4. AUTOMATA-BASED DECISION ALGORITHMS 29

Theorem 2.20. Let C be an ALC concept term and T an SZ-TBoz. The automaton

Sg} has a successful run r with r(e) € I iff C is satisfiable w.r.t. T.

This theorem shows that the emptiness test sketched before can be used as a
decision procedure for satisfiability of ALC concept terms w.r.t. SZ-TBoxes. The au-
tomation A, 7 is a looping automaton, that is, it makes no use of the Biichi acceptance
condition on runs. The automata construction we will show in the next subsection for
deciding axiomatic satisfiability of LTL formulae requires these acceptance conditions
for correctness.

2.4.2 Axiomatic Satisfiability of LTL Formulae

In order to decide axiomatic satisfiability of LTL formulae, we will construct an au-
tomaton whose successful runs correspond to computations for the input. Notice that
a computation 7w : N — Z?(P) can be seen also as a unary tree, that is, a tree where
every node has exactly one successor. More precisely, each node represents one point
in time and the successor relation in this tree is given by the standard ordering of
natural numbers. Thus, the automaton we construct will have the unique unlabeled
unary tree as input. The states of this automaton will be sets of LTL formulae, which
intuitively represent the set of all formulae that are satisfied at a given point in time.
In that sense, these states correspond to the Hintikka sets defined in the previous
subsection. Notice nonetheless that this correspondence will not be precise since for
LTL we will follow the ideas of previous automata constructions (e.g. [WVS83]), and
hence will not assume that the formulae are in negation normal form. Given an LTL
formula ¢ and a set of LTL formulae R, we define the closure of (¢, R) as the set of all
subformulae of ¢ and R, and their negations, where double negations are cancelled.
This set is denoted by cl(¢, R).

The states of our automaton are so-called elementary sets of formulae, which play
the role of the Hintikka sets of the previous subsection; that is, they are maximal and
consistent sets of subformulae in cl(¢, R).

Definition 2.21 (Elementary set). A set H C cl(¢,R) is called an elementary set
for (¢, R) if it satisfies the following conditions:

e ~¢pcHiffo¢ H;

» pNp € H iff {$,9} CH;

e ¢ € H implies U € H;

o if Uy € H and o ¢ H, then ¢ € H

As we have said before, the automaton for satisfiability of LTL formulae will take
unary trees as inputs; i.e., its runs will be infinite words over the set of states. The
transition relation is thus binary. This transition relation makes sure that the temporal
operators are adequately propagated to the successor nodes; for instance, if we have a

30 CHAPTER 2. LOGICS AND DECISION PROCEDURES

nezt formula ()1 in the label of a node, then its successor node must contain . This
is formalised by the following definition.

Definition 2.22 (Compatible). A tuple (H, H') of elementary sets is called com-
patible iff it satisfies the following conditions:

e for all Oy € cl(¢,R), O € H iff » € H'; and

o for all YUy € cl(p, R), YyhlUtpe € H iff either (i) 1o € H or (ii) 1 € H and
vildypy € H'.

The runs of our automaton will be sequences of elementary sets where each two
consecutive ones form a compatible tuple. In contrast to the case for SZ, the presence
of a run of this automaton does not imply the existence of a computation. The reason
is that one can delay the satisfaction of an until formula indefinitely; that is, every
node in the run may have the formula U9 while none has 19, violating this way
the last condition in the definition of a computation for the input (see Definition 2.9).
In order to rule out these kinds of runs and make sure that each until formula is
eventually satisfied, we will impose a generalised Biichi condition which introduces a
set of final states for each until formula in cl(¢, R). Intuitively, each such set of final
states is in charge of enforcing the eventual satisfaction of one specific until formula.

Definition 2.23 (Automaton AZ;‘%). Let ¢ and R be an LTL formula and a set
of LTL formulae, respectively, and let 01U, ... ,0,UYy, be all the until formulae in
cl(p,R). The generalised Biichi automaton .425352 =(Q,A,I,Fy,...,F,) is given by

e () is the set of all elementary sets for (¢, R);

e A consists of all compatible pairs (H,H') € Q x Q;
e = {HeQ|RU{#}CH)

o for1<i<n,F;:={He€Q|v; € Hor0Uyp; ¢ H}.

The successful runs of this automaton whose root is labelled with an initial state
correspond to the computations for the input (¢, R). From this, we obtain the follow-
ing result [WVS83].

Theorem 2.24. Let ¢ be an LTL formula and R a set of LTL formulae. The au-
tomaton f;‘}z has a successful run r with r(e) € I iff ¢ is axiomatic satisfiable w.r.t.

R.

From this theorem it follows that axiomatic satisfiability of LTL formulae can be

decided by an emptiness test on the automaton (5;’53

In this chapter we have described several previously known algorithms for reason-
ing in different logics, starting from the fairly inexpressive HL all the way up to the

2.4. AUTOMATA-BASED DECISION ALGORITHMS 31

inclusion of more complex constructors and axioms restricting the interpretations for
concepts and roles in DLs. We then left the DL family to include also the temporal
operators for LTL.

Broadly, we showed the main characteristics of two different approaches for con-
structing decision procedures. On one hand, the tableau-based method, that tries to
construct a model while keeping the restrictions imposed by the axioms (included as
expansion rules). On the other hand is the automata-based approach that tries to
construct an automaton for which an emptiness test leads to a correct decision.

The particular instances of decision procedures presented in this chapter will help
us formalise the notions of general tableau algorithms (in Chapter 3) and so-called
axiomatic automata (in Chapter 5), respectively. We will then show how each of
these decision procedures can be modified to obtain what is called a pinpointing
procedure; intuitively, one that will allow us to deduce how the presence of certain
axioms influences the property being tested. The output of a pinpointing procedure
will be the so-called pinpointing formula, from which all explanations and diagnoses
can be inferred.

32

CHAPTER 2. LOGICS AND DECISION PROCEDURES

Chapter 3

Tableaux and Pinpointing

The previous chapter introduced procedures that allow us to decide if a property,
such as subsumption or satisfiability of concept names, follows from a set of axioms.
The sets of axioms used could take very different shapes; namely, concept definitions,
assertional axioms, or GCIs, in the case of DLs, or LTL formulae. The decision
procedures we presented came in two flavours: the tableau-like and the automata-
based procedures. It is the goal of this work to show how to extend them in such a
way that, once a decision is made, we are able to justify it by retrieving those axioms
that are relevant for the obtained answer. The approach followed in this work consists
on finding a monotone Boolean formula, which we call pinpointing formula, from which
the desired sets of axioms can be deduced. The present and following chapters will
deal with the tableau-like methods, while we delay the treatment of automata-based
procedures until Chapter 5.

Before we can begin with the task of extending any kind of algorithm, we need
to formally describe the problem that we are trying to solve; namely, the properties
that should be satisfied by the pinpointing formula. This in turn will require a formal
definition of the kinds of properties that the original procedures decide. All these
notions are introduced in Section 3.1.

Afterwards, we proceed to describe extensions of tableau-like decision procedures
that compute the desired pinpointing formula. In order to improve understanding,
this is done in two steps. We first focus in the special case of ground tableauz of which
the subsumption algorithm of Section 2.3.1 is an instance. We then generalise all the
notions and results to what we call general tableauz in Section 3.3. This notion en-
compasses the procedures described in Sections 2.3.2 and 2.3.3, but is not able to deal
with blocking conditions as described in the last two sections of the previous chap-
ter. The pinpointing extensions of general tableaux are shown to correctly compute a
pinpointing formula whenever they terminate.

The extension presented in this chapter follows the ideas introduced by Baader and
Hollunder in [BH95]. There, the consistency algorithm for ALC ABoxes is extended
by a labelling technique that ultimately computes a pinpointing formula. A similar
approach was followed by Schlobach and Cornet [SC03] for concept unsatisfiability
with respect to so-called unfoldable ALC terminologies. The main difference between

33

34 CHAPTER 3. TABLEAUX AND PINPOINTING

Baader and Hollunder’s approach and that by Schlobach and Cornet is that the latter
tries to find the sets of axioms that are relevant to unsatisfiability directly, rather
than by using the intermediary pinpointing formula as done in the former approach.
In reality, the result obtained using the method in [SC03] can be seen as a pinpointing
formula written in disjunctive normal form. Although these ideas have been extended
to include additional constructors or use different kinds of axioms (see, for instance,
[PSK05, MLBPO06]), each of these extensions has been made to work specifically for
the language being studied. Nonetheless, except for the case dealing with blocking
[LMPO06] that needs special attention, they all follow the same basic ideas.

Unfortunately, as shown at the end of this chapter, there is no warranty that
the extended algorithm will stop after a finite number of steps, even if the original
tableau does. This fact is specially relevant since none of the papers cited so far deals
with termination of the extensions they present. Actually, termination is usually
disregarded as trivially following from the same causes of termination of the original
tableau, giving no further insight into which these causes are in reality. It will be the
task of Chapter 4 to introduce a framework where both, tableaux and their pinpointing
extensions, are guaranteed to terminate. It is in that chapter too that we will introduce
the notion of blocking for general tableaux and their pinpointing extensions.

3.1 Basic Notions for Pinpointing

We begin this section by defining the general form of the inputs for the decision algo-
rithms used along this work. These inputs, called aziomatised inputs, consist of two
parts. Intuitively, one part corresponds to a knowledge base, that is, a set of axioms
possibly restricted to satisfy additional internal restrictions, and the other expresses
the instance of the inference problem that needs to be tested against this knowledge
base. The internal restrictions in the set of axioms are necessary for modelling e.g.
acyclic- or SZ-TBoxes, where not every set of axioms is allowed. Indeed, acyclic
TBoxes require every concept name to appear at most one in the left-hand-side of a
concept definition, and SZ-TBoxes are restricted to allow the use of each role name
in at most one inverse axioms. But notice that in both cases, if a set of axioms is
allowed to be used as a knowledge base, then any of its subsets is also allowed. In our
general approach we keep this property.

The consequences in which we are interested need to satisfy a monotonicity re-
striction in the sense that adding axioms to the knowledge base can only make more
consequences true, but not falsify any that already follows from the original set of
axioms. A property is merely a set of axiomatised inputs, and the decision prob-
lem associated with such property consist on deciding, for a given axiomatised input,
whether it belongs to the set or not. A property that models consequences satisfying
the monotonicity restriction stated above will be called consequence property.

Definition 3.1 (Axiomatised input, c-property). Let J be a set, called the set
of inputs, T be a set, called the set of axioms, and let P uimis(T) C Pfin(%) be a
set of finite subsets of T. Pgamis(%) is called admissible if T € Pygmis(T) implies
T' € Poamis(%) for all T C T. An axiomatised input for 3 and P ,qmis(T) is of the

3.1. BASIC NOTIONS FOR PINPOINTING 35

form (Z,T) where T €T and T € P yimis(%).
A consequence property (or c-property for short) is a set P C T X P ogmis(T) such
that (Z,T) € P implies (Z,T') € P for every T' € Pyamis(T) with T' D T. |

The idea behind c-properties on axiomatised inputs is to model consequence re-
lations in logic, i.e., the c-property P holds if the input Z “follows” from the axioms
in 7. The monotonicity requirement on c-properties corresponds to the fact that we
want to restrict the attention to consequence relations induced by monotonic logics.
In fact, for non-monotonic logics, looking at minimal sets of axioms that have a given
consequence does not make much sense.

To illustrate Definition 3.1, consider the set N¢ of concept names. Assume that
J is the set of ordered pairs N¢c X N¢ and that ¥ consists of all HL-GClIs over these
concept names. Then the following is a c-property according to the above definition:
P :={((C,D),T) | C Cy D}. This property represents subsumption w.r.t. general
HL-TBoxes. As a concrete example, consider T' := ((A, B),T) where T consists of
the following GCls:

ax;: ACC, axo: AC D, axs: DLCC, axg: CNDCB (3.1)

It is easy to see that ' € P. Note that Definition 3.1 is general enough to capture
other variants of the example above, for instance, where J' consist of tuples of the
form (C,D,Ti) € T x P4i,(%) and the c-property is defined as

P = {((CaDaﬂ)’B) | C Crium D}

For example, if we take the axiomatised input I := ((A4, B, {axs,ax4}), {ax1,axa}),
then IV € P'.

Due to the monotonicity of c-properties, it may well be that some axioms are
irrelevant for deducing a consequence. If we are interested in justifying such a conse-
quence, we would need to get rid of all those irrelevant axioms and present a minimal
knowledge base from which the consequence still follows. If, on the contrary, the con-
sequence is detected as an error, we might want to remove only enough axioms to get
rid of it but not more, since that might also remove some desired consequences.

Definition 3.2 (MinA,MaNA). Given an aziomatised input T' = (Z,T) and a c-
property P, a set of azioms S C T is called a minimal axiom set (MinA) for I w.r.t.
P if (Z,S) € P and (Z,S') ¢ P for every 8" C S. Dually, a set of axioms S C T is
called a maximal non-axiom set (MaNA) for T w.r.t. P if (Z,S) ¢ P and (Z,8') € P
for every T O 8" D S. The set of all MinAs (MaNAs) for T' w.r.t. P will be denoted
as MINP(F) (MAXp(F)) |

Note that the notions of MinA and MaNA are only interesting in the case where
I' € P. In fact, otherwise the monotonicity property satisfied by P implies that
MINpy = 0 and MAXpry = {T}. In the above example, where we have T' € P, it
is easy to see that MINp(py = {{axy,axs,ax4}, {axz,ax3,ax4}}. In the variant of the
example where only subsets of {axi,axs} can be taken, we have MINp: 1y = {{ax2}}.

36 CHAPTER 3. TABLEAUX AND PINPOINTING

The set MAXp(r) can be obtained from MINp) by computing the minimal hitting
sets of MINp(r), and then complementing these sets [SC03, 1.S05]. A set S C T is a
hitting set of MINp(r if it has a nonempty intersection with every element of MINp(r,
and is a minimal hitting set if no strict subset of S is itself a hitting set. In our
example, the minimal hitting sets of MINp) are {axi,ax3}, {axa}, {ax4}, and thus
MAXpry = {{ax2,ax4}, {axi,ax3,axq}, {axi,axs,axz}}. The intuition behind this
reductions is that, to get a set of axioms that does not have the consequence, we must
remove from 7T at least one axiom for every MinA, and thus the minimal hitting sets
give us the minimal sets to be removed.

The reduction we have just sketched shows that it is enough to design an algorithm
for computing all MinAs, since the MaNAs can then be obtained by a hitting set
computation. It should be noted, however, that this reduction is not polynomial:
there may be exponentially many hitting sets of a given collection of sets, and even
deciding whether such a collection has a hitting set of cardinality < n is already an
NP-complete problem [GJ79]. Also note that there is a similar reduction involving
hitting sets for computing the MinAs from all MaNAs.

Instead of computing MinAs or MaNAs, one can also compute the pinpointing
formula.'® To define the pinpointing formula, we assume that every axiom ¢ € T is
labeled with a unique propositional variable, which we denote as lab(t). Let lab(7)
be the set of all propositional variables labeling an axiom in 7. A monotone Boolean
formula over lab(T) is a Boolean formula using (some of) the variables in lab(7") and
only the connectives conjunction and disjunction. We further assume that the formula
T, which is always evaluated as true, is a monotone Boolean formula. As usual, we
identify a propositional valuation with the set of propositional variables it makes true.
For a valuation V C lab(T), let Ty := {t € T | lab(¢) € V}.

Definition 3.3 (Pinpointing formula). Given a c-property P and an axiomatised
input T' = (Z,T), a monotone Boolean formula ¢ over lab(T) is called a pinpointing
formula for P and T if the following holds for every valuation V C lab(T): (Z,Ty) € P
iff V satisfies ¢. []

In our example, we can take lab(7) = {axy,...,ax4} as the set of propositional
variables. Tt is easy to see that (ax; V ax3) A axa A ax4 is a pinpointing formula for P
and I'.

Valuations have a natural partial order by means of set inclusion, which allows
us to speak about minimal and mazimal valuations. The following is an immediate
consequence of the definition of a pinpointing formula [BH95].

Lemma 3.4. Let P be a c-property, I' = (Z,T) an aziomatised input, and ¢ a pin-
pointing formula for P and T'. Then

MINpry = {Ty |V is a minimal valuation satisfying ¢}
MAXpry = {Ty |V is a mazimal valuation falsifying ¢}

'9This corresponds to what was called the clash formula in [BH95]. Here, we distinguish between
the pinpointing formula, which can be defined independently of a tableau algorithm, and the clash
formula, which is induced by a run of a specific tableau algorithm.

3.2. PINPOINTING IN GROUND TABLEAUX 37

This lemma shows that it is enough to design an algorithm for computing a pin-
pointing formula to obtain all MinAs and MaNAs. However, like the previous reduc-
tion for computing MAXp) from MINp(r), the reduction suggested by the lemma is
not polynomial. For example, to obtain MINpr) from ¢, one can bring ¢ into disjunc-
tive normal form and then remove disjuncts implying other disjuncts. It is well-known
that this can cause an exponential blowup. Conversely, however, the set MINp) can
directly be translated into the pinpointing formula

Vo lab(s). (3.2)

SEM|Np(F) s€ES

Returning to our example, the pinpointing formula obtained in this fashion from
MINp) = {{ax1,ax9,ax4}, {axg,ax3,axs}} is (ax; A axg A axg) V (axg A axs A axy),
which is equivalent to the pinpointing formula we had directly computed.

3.2 Pinpointing in Ground Tableaux

Before describing how general tableau-based algorithms can be extended to proce-
dures that compute a pinpointing formula, we show how this is done in a restricted
case that we will call ground tableauz. This case is still interesting by itself, since it
encompasses several decision procedures, such as the subsumption algorithm for HL
or the congruence closure algorithm [NOO7]. The proofs of all the results presented
in this section will be delayed to the more general statements of Section 3.3.

Definition 3.5 (Ground tableau). Let J be a set of inputs and Pqmis(T) an
admissible set of sets of elements in T. A ground tableau for 3 and P,4mis (%) is a
tuple S = (%,-5,R,C) where

e > is a set called a signature;

-5 is a function, called the initial function, that maps every T € J and every

t € T to a finite subset of ¥;

e R is a set of rules of the form (By,S) — B where By and B are finite subsets
of X and S is a finite set of axioms;

e C is a set of finite subsets of 31, called clashes.

A ground tableau decides a property with the help of so-called S-states that in-
tuitively contain all the knowledge that has been deduced during the execution of
the method. An S-state is a pair & = (A, T) where A is a finite subset of ¥ and
T € Puimis(T) is an admissible set of axioms. In this case, we call A and T the
assertion- and aziom-component of &, respectively. The elements of A are also called
assertions. The decision procedure begins with the initial state (Z,7)° that depends

38 CHAPTER 3. TABLEAUX AND PINPOINTING

on the axiomatised input (Z,7") given to the algorithm. This state is found extending
the initial function -* as follows:

z.7)°=z*u |, 7).
teT

Consider for example the procedure for deciding subsumption of HL concepts
described in Section 2.3.1. This algorithm stores all the information needed to make
the decision in a set of pairs of the form (A, B), where A, B are concept names. We
can thus consider its signature to be formed by all such pairs. That algorithm begins
with all the trivial knowledge stating that every concept appearing in the input set
of axioms is subsumed by itself. We can do this by fixing the initial function to map

n m
every axiom t of the form |_|1 A, C |_! B, to the set
1= 1=

t" = {(Ai,Ay) | 1 <i<n}U{(B;,B)) |1 <j<m}.

Now, since we want this procedure to work for every subsumption relation we desire
to test, and the decision made by such ground tableaux relies only on the information
stored in its states, we need a way to specify which specific subsumption relation is
the one we are currently trying to decide. For this reason, we extend the signature to
also include assertions of the form A C’° B with A,B concept names. The presence
of an assertion of this kind specifies the request for deciding the subsumption of A
by B. If we consider the encoding of these inputs as presented in Page 35, then the
initial function must map every input of the form (A,B) asking for a subsumption
test to the set containing the corresponding assertion A C° B. More precisely, if we
take the axiomatised input I' = ((A,B),7T), where T contains the axioms in (3.1),
then the initial function produces the S-state

I =({AC'B,(A,A),(B,B),(C,C),(D,D)}, 7).

The rules in R are used then to iteratively extend the first component of an S-state
G depending exclusively on the assertions and axioms appearing in &. Returning to
the subsumption procedure, the rule hl specifies, intuitively, that whenever we know
that a concept name A is subsumed by all the A;s, and the conjunction of those A;s
is subsumed by the conjunction of some Bjs by means of an axiom in 7, then we
can deduce that A is also subsumed by each of the B;, and we can thus extend our
explicit knowledge accordingly. More concretely, since the S-state I'® described above
contains the assertion (A, A) and the axiom A C D, a rule application would add the
assertion (A, D) to it. That rule can be rewritten in a tableau-like shape as follows:

(A A 1< < nb Al A TB) - (A B)) 1<) < mh

The following definition formalises this behaviour.

3.2. PINPOINTING IN GROUND TABLEAUX 39

Definition 3.6 (Rule application). Given an S-state & = (A,T), and a rule
R: (Bo,S) — B we say that R is applicable to & if the following three conditions are
satisfied: (i) S C T, (i) Bo C A, and (iii)) B € A.

If the rule R is applicable to the S-state & = (A, T), then the application of R to
S yields the new S-state (AU B, T). If & is obtained from & by the application of
the rule R, then we write & —gr &' or simply & —g &' if it is not relevant which of
the rules of the tableau S was applied. [|

As usual, we denote the reflezive-transitive closure of —g by —»g. The rules are
applied to the S-state until it becomes saturated; that is, until no rule can be applied
anymore. At that point, we can use the set of clashes to decide the property: the
axiomatised input is accepted (in other words, belongs to the property decided by the
algorithm) if and only if it contains an element of C. Returning to subsumption of H.L
concept names, A is subsumed by B w.r.t. 7 iff the saturated S-state found in this
way contains the pair (A, B). Thus, in our tableau setting, the set of clashes consists
of all sets of the form {(A,B), A C’ B}, where A, B are concept names.

Definition 3.7 (Saturated state, clash). An S-state & = (A, T) is called saturated
iff there is no &' such that & —g &'. It contains a clash iff there is a set C' € C such
that C C A. n

For a ground tableau to correctly decide a c-property it needs first to be a ter-
minating procedure and second to adequately find a clash in the state found after
termination, as expressed in the following definition.

Definition 3.8 (Correctness). Let P be a c-property on axiomatised inputs for J
and Poimis(T), and S a ground tableau for T and P,gmis(T). We say that S is
correct for P if the following holds for every aziomatised input T' = (Z,T) for J and
D admis (‘z)

1. S terminates on I'; that is, there exists no infinite chain of rule applications
Sy =5 61 —g ... starting with Gy = rs.

2. For every chain of rule applications Gy —g &, such that Sy = I'S and &, is
saturated, we have I' € P iff &, contains a clash.

The second condition for correctness given in this definition might seem like a
strong restriction, since it forces the algorithm to yield the same result regardless
of the order in which rules are applied, making it sufficient to test only one such
order to decide the property. Actually, the fact that the order in which rules are
applied is irrelevant for the presence or absence of a clash is hardcoded in our notion
of ground tableau, as shown in the next proposition. This means that although the
order in which rules are applied can be seen as a source of non-determinism, it is of
the do-not-care kind, and hence we need not worry about it.

40 CHAPTER 3. TABLEAUX AND PINPOINTING

Proposition 3.9. Let I' be an aziomatised input and Sy = I'S. If & and &' are
saturated S-states such that &g i>5 G and Sy i)g &', then & contains a clash iff &'
contains a clash.

A correct tableau can be used to decide whether a given axiomatised input belongs
to a property or not. We proceed now to show how it can be extended to an algorithm
that computes a pinpointing formula. Recall the assumption made for the definition of
the pinpointing formula that every axiom ¢ € T is labeled with a unique propositional
variable lab(t), and the set of all propositional variables labeling an axiom in 7 is
denoted by lab(T).

Given an axiomatised input I' = (Z, T'), the modified algorithm also works on sets
of S-states, but now every assertion ¢ occurring in the first component of an S-state
is equipped with a label lab(a), which is a monotone Boolean formula over lab(7"). We
call such S-states labeled S-states. Intuitively, the label of an assertion expresses the
axioms that are necessary to produce it. Thus, in the initial S-state (4,7) = (Z,7)°,
an assertion a € A is labeled with T if @ € 7% and with V{1e7aectsy 1ab(t) otherwise.
The intuition of these labels is that, if a € Z°, then the assertion a will be produced
by the tableaux algorithm, regardless of the axioms included in the input. Otherwise,
the label expresses which axioms are the responsible for its appearance in the initial
state.

For instance, consider again our tableau for subsumption w.r.t. HL TBoxes and
the axiomatised input ' = ((A,B),7T), where T has only the axioms in (3.1). The
initial function maps I' to the S-state having the following set of labeled assertions:'!

{A E? BT, (A, A)&Xl\/aXZ’ (B, B)ax4, (C, C)&X1V3X3\/8,X4, (D, D)&XQ\/&Xg}_ (33)

The definition of rule application must also take the labels of assertions and axioms
into account. Let A be a set of labeled assertions and 1 a monotone Boolean formula.
We say that the (unlabeled) assertion a is ¢-insertable into A if either (i) a ¢ A,
or (ii) a € A, with lab(a) = ¢, but ¢ = ¢. Given a set B of assertions and a set
A of labeled assertions, the set of v-insertable elements of B into A is defined as
insy, (B, A) := {b € B | b is t-insertable into A}.1? By t-inserting these insertable
elements into A, we obtain the new set of labeled assertions given by:

A@Jw B:=AU ins¢(B,A),

where each assertion a € A\ insy (B, A) keeps its old label lab(a), each assertion in
insy, (B, A) \ A gets label ¢, and each assertion b € A Ninsy (B, A) gets the new label

¥ V lab(b).

Definition 3.10 (Pinpointing rule application). Let & = (A, T) be a labeled S-
state and R : (By,S) — B a rule. R is pinpointing applicable to & if (i) S C T,
(ii) Bo C A, and (iii) insy (B, A) # 0, where 1 := A\, p lab(b) A A\ cslab(s).

UFor simplicity, we sometimes represent the labels of assertions by means of superscripts; i.e., if a
is an assertion, then a® denotes the labeled assertion where lab(a) = ¢.

12Notice here that the set B contains unlabeled assertions. This is consistent with the fact that
rules of a tableau use only unlabeled assertions; the labels are treated by a modified rule application.

3.2. PINPOINTING IN GROUND TABLEAUX 41

Given a labeled S-state S = (A, T) to which the rule R is pinpointing applicable,
the pinpointing application of R to & yields the new S-state (A Uy, B, T), where the
formula 1 is defined as above.

If &' is obtained from & by the pinpointing application of the rule R, then we write
S —roin &', or simply & — gpin &' if it is not relevant which of the rules of the tableau
S was applied. A labeled S-state & is pinpointing saturated if there is no &' such
that & — gpin &'. [

Returning to our example, we show how pinpointing rule applications modify the
labeled state I'" in (3.3). The assertion (A, A) along with axiom ax, can trigger the
rule hl in order to add the assertion (A, D) to this state, with the label (ax; Vaxs)Aaxs.
For the sake of readability, we will simplify this formula. Hence, lab((A,D)) = axy.
This newly generated assertion can now be used in combination with axiom axs to
add the assertion (A, C), which will have as label the conjunction of lab((A,D))
and axs; i.e., lab((A,C)) = axs A axs. Notice now that the assertion (A, A) can
also trigger a rule application by means of axiom ax;. Since this rule application
would only add the assertion (A, C) that is already present in the current S-state,
it would be disallowed in the original tableau sense. However, since this shows an
alternate way to obtain the same assertion, it needs to be allowed by pinpointing rule
application, as is the case because (axj V axa) A axy j= lab((A, C)). When the rule is
pinpointing applied, no assertion is added to the set, but the label of (A, C) is changed
to ((ax; V axs) A axy) V (axgo A axg), or, equivalently, ax; V (axs A ax3). Finally, the
assertions (A, C) and (A, D) can be used along axiom ax,4 to introduce the assertion
(A, B), whose label is given by lab((A, C)) Alab((A, D)) A ax4; that is,

(ax1 V (axg A ax3)) A axa A axy4.

Recall now that the original tableau decides the property by verifying the presence
of a clash. In the subsumption example, the clash consists of the set of assertions
{A C’ B,(A,B)}. The conjunction of the labels of both assertions tells us which
axioms are necessary for the clash to exist. In this case, the so-called clash formula is
T A (axq V (axe Aaxz)) Aaxg Aaxy. Clearly, it is equivalent to the pinpointing formula
(ax; V ax3) A axg A axy that was presented in Section 3.1. In general, consider a chain
of pinpointing rule applications &y —gpin ... —>gpin S, such that Gg = I'¥ for an
axiomatised input I' and &, is pinpointing saturated. The label of an assertion in &,
expresses which axioms are needed to obtain this assertion. A clash in &,, depends
on the joint presence of certain assertions. Thus, we define the label of the clash as
the conjunction of the labels of these assertions. Since it is enough to have just one
clash in G,,, the labels of different clashes in this state are combined disjunctively.

Definition 3.11 (Clash set, clash formula). Let G = (A, T) be a labeled S-state
and A" C A. Then A" is a clash set in & if A’ € C. The label of this clash set is

Yar = Ao labla).
Let & be a labeled S-state. The clash formula induced by & is defined as

Yo = \/ Par.

A’ clashset in &

42 CHAPTER 3. TABLEAUX AND PINPOINTING

Recall that, given a set 7 of labeled axioms, a propositional valuation V induces
the subset 7y := {t € T | lab(t) € V} of T. Similarly, for a set A of labeled assertions,
the valuation V induces the subset Ay, := {a € A | V satisfies lab(a)}. Given a labeled
S-state & = (A4, T) we define its V-projection as V(6) := (Ay,Ty). The following
lemma is an easy consequence of the definition of the clash formula:

Lemma 3.12. Let G be a labeled S-state and V a propositional valuation. Then we
have that V satisfies 1Pe iff V(6) contains a clash.

There is also a close connection between pinpointing saturatedness of a labeled
S-state and saturatedness of its projection:

Lemma 3.13. Let G be a labeled S-state and V a propositional valuation. If © is
pinpointing saturated, then V(G) is saturated.

Given a tableau that is correct for a property P, its pinpointing extension is correct
in the sense that the clash formula induced by the pinpointing saturated set computed
by a terminating chain of pinpointing rule applications is indeed a pinpointing formula
for P and the axiomatised input.

Theorem 3.14 (Correctness of pinpointing). Let P be a c-property on azioma-
tised inputs for 3 and Pagmis(%), and S a correct tableau for P. Then the following
holds for every aziomatised input T' = (Z,T) for 3 and Paqmis(%):

For every chain of rule applications Sy —gpin ... —>gpin Sy such that
So =T% and &, is pinpointing saturated, the clash formula Vs, induced
by &, is a pinpointing formula for P and T.

In this section we have defined ground tableaux and shown how each of them can be
extended into an algorithm that computes a pinpointing formula for a given property
and axiomatised input. While this framework suffices to deal with the very inexpres-
sive logic HL, it lacks the expressivity for dealing with two phenomena that appear
already in the algorithm for deciding consistency of ALC ABoxes (Section 2.3.2);
namely, non-determinism, and assertions with an internal structure. The next sec-
tion extends the ideas of ground tableaux, defining a more general notion that can
successfully deal with these phenomena.

3.3 Pinpointing in General Tableaux

In this section we follow the same path of Section 3.2: we first formalise the notion
of a tableau-like decision procedure, and then show how it can be modified to obtain
an algorithm that computes a pinpointing formula. The structure of these two steps
follows the same main ideas used in the previous section, but in a more general setting
that can deal both with non-deterministic rules, and with assertions having an inter-
nal structure. For this part, we will use the algorithm described in Section 2.3.2, in

3.3. PINPOINTING IN GENERAL TABLEAUX 43

which both phenomena appear, as an intuitive basis for the notions that will be intro-
duced. Notice, nonetheless, that the c-property decided by that algorithm is actually
inconsistency; analogously, in the algorithms presented in Sections 2.3.3 to 2.3.5 we
will be interested in unsatisfiability of concepts.

With respect to non-determinism, consider the rule alc, shown in Figure 2.3.
When our model candidate contains a concept of the form C' U D, then we need to
choose (do-not-know) non-deterministically which of the disjuncts to use to extend
it. In order to represent this, the rules in a general tableau will have on the right-
hand side a finite set of sets of assertions, rather than simply a set of assertions as in
the previous section. More formally, a rule is of the form (By,S) — {Bi1,...,Bn},
where By, By, ..., By, are finite sets of assertions and § is a finite set of axioms. Thus,
ignoring for the moment the variables, the alc,, rule could be represented in this setting
as

ale, : ({C'U D}, 0) — {{C},{D}}.

Instead of dealing only with S-states, the decision algorithm will operate over sets
of S-states, where the application of a rule R substitutes one of these S-states with
as many S-states as there are elements in the right-hand side of R. Basically, each
S-state in the set represents one of the non-deterministic options that needs to be
verified. For instance, if we have the singleton set {({C' U D},)}, an application of
the rule alc; will lead to the set {({C U D,C},0), ({C UD,D},0)}, where the first
element expresses the path where the concept C is selected to be satisfied, and the
second, that in which D is the satisfied concept.

Regarding the structure of assertions, notice the tableaux-based algorithms for
ALC use as assertions not merely concept terms, but have individuals associated with
them; i.e., the assertions have the form C(a) or r(a, b), with C' a concept name, r a role
name and a,b two individuals. In general, we have structured assertions of the form
P(aq,...,ar), where P is a k-ary predicate and ay,...,a; are constants. Naturally it
is not necessary to define a rule for each specific constant; we instead allow variables
to act as placeholders for them.

Furthermore, rules should be able to create new constants. For example, consider
the rule alcg appearing also in Figure 2.3. The application of this rule requires us
to create a new individual name. Such a rule will be written in the general tableaux
setting as

ales : ({(3.C)(2)},0) = {{r(z,y),C(y)}}.

In order to apply this rule to an S-state, we need to appropriately replace the variables
in the left-hand side by constants. The variable y is what will be called a fresh
variable; that is, one that appears only on the right-hand side of a rule. Fresh variables
are replaced by constants that do not appear in the S-state to which the rule is
being applied. In order to avoid that such a rule is applied indefinitely, creating new
individuals with each application, the applicability condition needs to be modified to
check whether it is possible to replace the fresh variables by old constants to obtain
assertions in the current S-state.

We begin by formalising all these notions. In the following we will use V and D
to denote countably infinite sets whose elements are called variables; and constants,

44 CHAPTER 3. TABLEAUX AND PINPOINTING

respectively. A signature X is a set of predicate symbols, where each predicate P € X
is associated to a (fixed) arity. A Y-assertion is of the form P(aq,...,a,), where P €
is a predicate of arity n» and aq,...,a, are constants from D. Likewise, a Y-pattern
is of the form P(z1,...,z,) where P € ¥ is an n-ary predicate and z1,...,2, € V.
Whenever the signature is clear from the context, we will often use it implicitly and
simply say pattern or assertion. Given a set A of assertions, we will use the expression
cons(A) to denote the set of constants appearing in A. In the same fashion, var(B)
denotes the set of variables that appear in a set B of patterns.

A substitution is a mapping o : V — D, where V C 'V is a finite set of variables.
In this case we say that o is a substitution on V. If B is a set of patterns such that
var(B) C V, then Bo denotes the set of assertions obtained from B by replacing each
variable by its image under o. If o is a substitution on V' and 6 a substitution on V’
such that V' C V' and 0(z) = o(z) for all x € V, then we say that 6 extends o.

We are ready now to describe the notion of general tableauz, which generalises
the ideas of ground tableaux presented in the previous section by allowing non-
deterministic rules and structured assertions.

Definition 3.15 (General tableau). Let J be a set of inputs and Puimis(%) an
admissible set of sets of elements in T. A general tableau for 3 and ,4mis(%) is a
tuple S = (%,-°,R,C) where

e X is a signature;

o -5 is a function that maps every T € J to a finite set of finite sets of L-assertions

and every t € X to a finite set of Y-assertions;

e R is a set of rules of the form (By,S) — {Bi,...,Bny} where By,..., By, are
finite sets of X-patterns and S is a finite set of axioms;

e C is a set of finite sets of X-patterns, called clashes.

As for ground tableaux, we extend the function -¥ to axiomatised inputs by setting

(Z.7)° ={(Au|Jt*,T) | A € T%}.
teT

Notice that in this case, given an axiomatised input I' = (Z,T), I' does not define a
single S-state, but rather a whole set of them. Intuitively, each set represents a non-
deterministic choice for the algorithm to begin to iterate with. In order to decide a
property affirmatively, each of these sets needs to produce a clash. We need to extend
the notion of a rule application too. In this case, we cannot just extend the only
S-state; instead, rules modify the current set of S-states M. Each rule application
selects an S-state G from M and replaces it by finitely many new S-states &¢,...,G,,
that extend the first component of &.

3.3. PINPOINTING IN GENERAL TABLEAUX 45

Definition 3.16 (Rule application). Suppose we have an S-state & = (A,T), a
rule R: (By,S) — {Bi1,...,Bn} € R and a substitution p on var(By). We say that R
is applicable to & with p if the following three conditions are satisfied: (i) S C T, (ii)
Bop C A, and (i) for every i,1 < i < m and every substitution p' on var(By U B;)
extending p it holds that B;p' € A.

Given a set of S-states M, an S-state & = (A, T) € M and a rule R, if R is
applicable to & with substitution p, then the application of R to & with p in M yields
the new set of S-states M' = (M \ {&}) U{(AU B;o,T) | 1 < i < m}, where o
is a substitution on the variables appearing in R that extends p and maps the fresh
variables of R to distinct new constants; i.e., constants that do not appear in A.

If M’ is obtained from M by the application of the rule R, then we write M —g M’
or simply M —g M’ if it is not relevant which rule of the tableau S is applied. ®m

The conditions of applicability ensure that the same rule R cannot be applied in-
definitely using the same substitution p, but it may well be the case that the new
added constants trigger repeated rule applications, yielding a non-terminating proce-
dure. Let us for a moment assume that this is not the case, and we can reach a set of
S-states where no rule can be applied. When no rules are applicable to M, we check
for clashes in each of the states belonging to M. The decision made by the algorithm
will depend on the presence or absence of these clashes.

Definition 3.17 (Saturated, clash). The set of S-states M is called saturated if
there is no M’ such that M —g M'.

The S-state & = (A, T) contains a clash if there is a set of patterns C € C and a
substitution p on var(C) such that Cp C A; the set of S-states M is full of clashes if
each of its elements contains a clash. [|

To decide whether a property holds, we need to check at the saturated set of S-
states reached by the application of the tableaux rules. In Section 2.3.2, we see that
the input ABox is inconsistent if and only if all the states in this set contain a clash.
The same condition appears in the subsequent section, for deciding unsatisfiability of
a concept with respect to an acyclic TBox. Thus, in a general tableau, we will say
that the axiomatic input belongs to a property if after finitely many rule applications
we reach a saturated set of states that is full of clashes.

Definition 3.18 (Correctness). Let P be a c-property on aziomatised inputs for
J and Paamis(T), and S a general tableau for I and P,qmis(T). We say that S is
correct for P if the following holds for every aziomatised input T' = (Z,T) for J and
D admis (‘z)

1. S terminates on I'; that is, there exists no infinite chain of rule applications
My =g My =g ... starting with My =T,

2. For every chain of rule applications My g My, such that My =T and M,,
is saturated, we have I' € P iff My, is full of clashes.

46 CHAPTER 3. TABLEAUX AND PINPOINTING

It is easy to see that ground tableaux are indeed a special case of general tableaux,
in which the signature contains only nullary predicates and all the rules are determin-
istic; that is, they have a singleton set on their right-hand side. Even in the more
general setting of this section, we can show a result analogous to Proposition 3.9 stat-
ing that the rule application order is irrelevant to the decision made by the tableau.

Proposition 3.19. Let I' be an aziomatised input and Moy =T, If M and M’ are
saturated sets of S-states such that My =g M and Mo g M', then M is full of
clashes iff M' is full of clashes.

This proposition actually follows directly from Lemma 3.31, and hence we delay
its proof until there. A direct proof of the proposition would be almost identical to
that presented for Lemma 3.31.

Given a general tableau S = (X,-°,R,C) that is correct of a property P, we show
how the algorithm for deciding P induced by S can be modified into an algorithm that
computes a pinpointing formula for P. As in the ground case, the modified algorithm
works in a fashion similar to the original tableau, based on S-states, but now every
assertion a occurring in the assertion component of an S-state is equipped with a label
lab(a) which is a monotone Boolean formula over lab(T).

The assertions appearing in an initial state are labeled in the same way as in the
previous section; that is, given an initial S-state (A4,7) € (Z,7)°, an assertion a € A
is labeled with T if a € 79 and with V {teTaetsy 1ab(t) otherwise.

Definition 3.20 (Pinpointing rule application). Assume there is a labeled S-state
6 =(A,T), aruleR: (By,S) = {Bi,...,Bn}, and a substitution p on var(By). This
rule is pinpointing applicable to & with p if the following conditions hold: (i) S C T,
(1) Bop C A, and (iii) for every i, 1 < i < m, and every substitution p' on var(ByU B;)
extending p we have insy(B;p', A) # 0, where

=\ lab(bp) A /\ lab(s). (3.4)
bE By seS
Given a set of labeled S-states M and a labeled S-state & = (A, T) € M to which
the rule R is pinpointing applicable with substitution p, the pinpointing application of
R to & with p in M yields the new set of labeled states

M = (M\{G}) U{(AUy Bio,T) |1 <i<m},

where the formula 1) is defined as in Equation (3.4) and o is a substitution on the
variables occurring in R that extends p and maps the fresh variables of R to distinct
new constants.

If M’ is obtained from M by the pinpointing application of R, then we write
M —gpin M, or simply M — gpin M’ if the rule applied is not relevant. A set
of labeled S-states M is called pinpointing saturated if there is no M’ such that
M = gpin M. |

Consider a chain of pinpointing rule applications My —>gpin ... —>gpin My such
that Mo = I'Y for an axiomatised input I' and M,, is pinpointing saturated. The

3.3. PINPOINTING IN GENERAL TABLEAUX 47

label of an assertion in M,, expresses which axioms are needed to obtain said assertion.
Thus, we define the label of a clash as the conjunction of the labels of all the assertions
appearing in it. Since it is enough to have just one clash per S-state G, the labels
of different clashes in & are combined disjunctively. Finally, since we need a clash
in every S-state of M,,, the formulae obtained from the single S-states are again
conjoined.

Definition 3.21 (Clash set, clash formula). Let G = (A, T) be a labeled S-state
and A" C A. Then A’ is a clash set in & if there is a clash C € C and a substitution p
onvar(C) such that A" = Cp. Thelabel of this clash set is given by Y4 = /4 lab(a).

Let M ={64,...,6,} be a set of labeled S-states. The clash formula induced by
M is defined as

b=\ \V Yar

1=1 A’ clash set in &;

In the previous section we defined the V-projection of a labeled S-state & = (A, T)
as V(6) = (Ay, Ty). We now extend this notion to sets of S-states M in the obvious
way: V(M) ={V(6) | 6 € M}.

Lemma 3.22. Let M be a finite set of labeled S-states and V a propositional valuation.
Then V satisfies P iff V(M) is full of clashes.

Proof. We will prove the if direction first. For that, assume that V(M) is full of
clashes. We know then that for every S-state &; € M the projection V(&;) contains
a clash. Thus, for every i there is a clash set A; in G; such that lab(a) is satisfied by V
for every assertion a € A;. This means that V satisfies 1/ 4,, and hence V also satisfies
the formula

V Yar.

A’ clash set in &;

Since this is true for every &; € M, the valuation V satisfies also the clash formula
(Ve

Conversely, assume for the only if direction that V(M) is not full of clashes; i.e.,
there exists a &; € M such that V(S;) does not contain a clash. For this to happen
it must be the case that for every clash set A’ € &; there is an assertion a € A’ such
that V does not satisfy lab(a). Consequently, V does not satisfy the label 14/ of any
of the clash sets A’ in &;, and thus this valuation cannot satisfy the disjunction of
such labels. This shows that V does not satisfy the clash formula. O

There is also a close connection between the pinpointing saturatedness of a set of
labeled S-states and the saturatedness of its projection.

Lemma 3.23. Let M be a finite set of labeled S-states and V a propositional valuation.
If M is pinpointing saturated, then V(M) is saturated.

48 CHAPTER 3. TABLEAUX AND PINPOINTING

Proof. Suppose that V(M) is not saturated; in other words, that there is an S-state
S =(A,T) € M and arule R: (By,S) — {Bi,...,Bny} such that R is applicable to
V(6) with substitution p. We will show that R is pinpointing applicable to & with
the same substitution p, and hence M is not pinpointing saturated.

By Definition 3.6, since R is applicable to V(&) with substitution p, we know that
(i) S C Ty, (ii) Bop C Ay, and (iii) for every 4,1 < i < m and every substitution
p' on var(By U B;) extending p, it holds that B;p’ € Ay. Since S C Ty C T and
Byp C Ay C A, the first two conditions of the definition of pinpointing applicability
of rules (Definition 3.20) are satisfied. We need now only to show that the third
condition is also satisfied. Consider an arbitrary but fixed i and a substitution p’ on
var(By U B;) extending p. We must show that insy(B;p’, A) # 0, where

=\ lab(bp) A \\ lab(s).

bE By seS

Notice that S C Ty, and Byp C Ay imply that V satisfies 4. Since B;p’ € Ay, there
must exist a b € B; such that bp’ ¢ Ay. This means that either bp’ ¢ A or V does
not satisfy lab(bp'). In the first case, bp' is clearly v-insertable into A; in the second,
it holds that 1 [~ lab(bp’) since V satisfies 1, and thus bp’ is again 1-insertable into
A. Hence, insy(B;p', A) # 0, which implies that R is pinpointing applicable to & with
substitution p. O

Given a tableau that is correct for a property P, its pinpointing extension is correct
in the sense that the clash formula induced by the pinpointing saturated set computed
by a terminating chain of pinpointing rule applications is indeed a pinpointing formula
for P and the input.

Theorem 3.24. Let P be a c-property on aziomatised inputs over Z and P qqmis(%),
and S a correct tableau for P. Then, for every aziomatised input T' = (Z,T) over T
and P oamis (%) it holds that

For every chain of rule applications Mo —gpin ... —>gpin My, such that
Mo =T% and M,, is pinpointing saturated, the clash formula Y m,, induced
by M., is a pinpointing formula for P and T'.

We will prove this theorem by projecting chains of pinpointing rule applications
to chains of tableau rule applications as in Definition 3.16. Unfortunately such a
projection cannot be done in a straightforward manner since in general a pinpointing
rule application M — gpin M’ does not imply that V(M) =g V(M'). There are two
possible reasons for this. First, it could be the case that the assertions and axioms to
which the pinpointing rule was applied in M are not present in the projection V(M)
because V does not satisfy their labels. In that case, it holds that V(M) = V(M'),
although M # M’. The second reason is that a pinpointing rule application of a
rule may change the projection (that is, V(M) # V(M')), but this change does not
correspond to the application of the rule to V(M). For example, consider the rule alcs
and assume that we have an S-state containing the assertions (Ir.C)(a) with label ax;
and r(a,b),C(b) with label ax,. Clearly, the rule alcg is pinpointing applicable, and

3.3. PINPOINTING IN GENERAL TABLEAUX 49

its application adds the new assertions r(a, ¢), C(c) both labeled with ax;, where ¢ is a
new constant. Suppose now that V is a valuation that makes ax; and axy true. Then
the V-projection of the S-state contains the three assertions (3r.C)(a),r(a,b), C(b).
Thus, the existential rule is not applicable, which means that no new individual ¢
can be introduced. To overcome the second reason, we define a modified version of
rule application in which the third condition for applicability from Definition 3.16 is
removed.

Definition 3.25 (Modified rule application). Given a S-state & = (A, T), a
rule R : (By,S) = {Bi1,...,Bn}, and a substitution p on var(By), we say that R is
m-applicable to & with p if (i) S C T, and (i) Bop C A. In this case, we write
M —=gn M if G e M and M' = (M\ {6}) U{(AU B;o,T) | 1 <i < m}, where
o is a substitution on the variables occurring in R that extends p and maps the fresh
variables of R to distinct new constants. [|

Modified rule applications are closely related to the “regular” rule applications as
presented in Section 3.3 on one side, and to pinpointing rule applications on the other.
In the following lemma, the term saturated refers to saturatedness with respect to —g,
as introduced in Definition 3.16.

Lemma 3.26. Let I' = (Z,T) be an aziomatised input and My = I'°.

1. Assume that My S5¢ M and My S3gm M’ where M and M' are saturated
finite sets of S-states. Then M is full of clashes iff M’ is full of clashes.

2. Assume that M and M’ are finite sets of labeled S-states, and V a proposi-
tional valuation. Then M —gpin M’ implies that either V(M) —gm V(M)
or V(M) = V(M'). In particular, this shows that My “>gpin M implies
V(Mp) Sgm V(M).

Proof. The first statement of this lemma is a direct consequence of Lemma 3.31 that
will be proved later in this section, and so we focus this proof only on the second
statement.

Assume that M —gpin M’; that is, there is an S-state & = (A,7) € M and a
rule R : (By,S) — {Bi,..., By} such that R is pinpointing applicable to & with some
substitution p and M' = (M \ {&}) U {(A Uy Bjo,T) | 1 <i < m} where o and ¢
are as in the definition of pinpointing application (Definition 3.20). Take an S-state
S; = (AUy Bio, T) € M’ that was added by the application of R. By the definition
of ¢-insertion, we know that (i) every assertion a € A\ insy(B;o, A) keeps its old label
lab(a), (ii) each newly added assertion in insy(B;o, A) \ A gets ¢ as label, and (iii)
every assertion b € A Ninsy(B;o, A) modifies its label to 1) V lab(b). We will make a
case analysis, depending on whether V satisfies the formula % or not.

If V satisfies 9, then it holds that (AU, B;o)y = Ay U B;o since the label of each of
the newly added assertions and each of the old assertions that got their label modified
is implied by ¢ and hence also satisfied by V. This shows that V(M) —gm V(M)
since the conditions of m-applicability follow directly from the fact that V satisfies 1.

50 CHAPTER 3. TABLEAUX AND PINPOINTING

Consider now the case where V does not satisfy . In this case we have that
(AU, Bio)y = Ay since the label of every newly added assertion is ¢ and hence not
satisfied by V, while the disjunction with ¢ modifying the labels of the assertions in
AN B;o does not change the evaluation of the new labels under V. It thus holds that
V(M) =VYM). O

If we have an axiomatised input I' = (Z,7T) and a sequence of rule applications
My i>s‘pin M, where My = I'S and M,, is pinpointing saturated, we want to show
that the clash formula 1 = 1 x4, is in fact a pinpointing formula. This follows easily
from the following two lemmas.

Lemma 3.27. If (Z,Ty) € P then V satisfies 1.

Proof. Let Ny = (T, Ty)®. Since S is a correct tableau, S must terminate on every
input, and hence there exists a saturated set of S-states A" such that Ny =g N. By
the same definition of correctness of S and the fact that (Z,7y) € P, we know that
N is full of clashes. By Part 2 of Lemma 3.26, we know that Mg = gpin M,, implies
V(Mg) Sgm V(M,,). Additionally, we know V(Mg) = Ny, and by Lemma 3.23 that
V(M,,) is saturated. Thus, using 1 of Lemma 3.26 and the fact that N is full of
clashes, we can deduce that V(M,,) is also full of clashes. But then, by Lemma 3.22
we know that V satisfies ¢ = 9y,, . O

Lemma 3.28. If V satisfies 1 then (Z,Ty) € P.

Proof. Consider as in the previous lemma a chain of rule applications of the form
No 55 N where Ny = (Z,Ty)® and N is saturated. As S is a correct tableau for P,
in order to show that (Z,7y) € P, it suffices to prove that N is full of clashes. As
in the proof of the previous lemma, we have that V(Mg) = gm V(M,), V(Mg) = N,
and V(M,,) is saturated. Since V satisfies ¢, by Lemma 3.22 we know that V(M,,) is
full of clashes. By 1 of Lemma 3.26 this implies that A is also full of clashes. O

We have now completed the proof of Theorem 3.24, except for the first statement
in Lemma 3.26. Before proving this result, we will introduce the notion of a substate.
Intuitively, an S-state & is a substate of an S-state &' if every assertion and axiom
in G appears also in &'. However, we want to have a more general notion by allowing
different constants to be used in the S-states as long as one can find a renaming of
the constants in & into the ones in & such that the desired inclusion between their
sets of assertions holds.

Definition 3.29 (Substate). The S-state & = (A, T) is a substate of & = (A", T"),
denoted as & < &' iff T C T' and there is a renaming function f : cons(A) — cons(A’)
such that if P(ay,...,ax) € A, then P(f(a1),...,f(ax)) € A’.]

One important thing to notice is that if we have a pair of S-states & = (A, T) and
&' = (A, T') such that & < &', then the following property holds: if there is a set B
of patterns and a substitution p on var(B) such that Bp C A, then the substitution
p = po f, where f is the renaming function that yields & < &', satisfies Bp' C A’.
In particular, this fact implies that &’ contains a clash whenever & does.

3.3. PINPOINTING IN GENERAL TABLEAUX 51

Lemma 3.30. Let N and Ny be sets of S-states, where Ny is saturated, and let
S eN and Sy € Ny. If & = By, then for every N —rm N’ there is &' € N such
that &' < Gy.

Proof. Tf N is obtained by the application of R to an S-state different from & in
N, then & € N’ and thus nothing needs to be shown. Suppose then that the rule
R: (Bo,S) — {Bi1,...,By} is applied to & with some substitution p to obtain N’,
and let & = (A,7T) and &y = (Ap,Tp). Since & < Gy, it holds that S C T C Ty
and that there is a substitution p’ on var(By) such that Byp' C Ap. This all means
that conditions (i) and (ii) from the definition of rule applicability are satisfied for
Sg, R and p'. Since Nj is saturated, R cannot be applicable to Gy with p’, and hence
condition (iii) cannot hold. This means that there must exist an 4,1 <7 < m and a
substitution p on var(By U B;) extending p' such that B;o C Ay.

On the other hand, a substitution o extending p was used to construct the new
set N of S-states through the application of the rule R to &. Let & = (AU B;o, T).
Since o maps the fresh variables of R to distinct new constants, we can extend the
renaming function f to f': cons(A U B;o) — cons(Ay) by setting f'(o(z)) = o(z) for
every fresh variable z of R appearing in B;. This defines a complete renaming function
f! for the constants in A U B;o and by definition this function satisfies o o f’ = p.

We show now that &’ < &y by means of the new renaming function f'. Let
P(ay,...,ar) € AU B;o. If this assertion belongs to A, then, since & < &, with the
renaming function f, it holds that P(f'(a1),..., f'(ar)) = P(f(a1),-.., f(ax)) € Ap.
If P(ai,...,a;) € Bjo, then P(ay,...,a;) = P(o(z1),...,0(xk)) for some variables

Z1,..., T € var(By U B;). But since o o f' = p, we have
P(fl(a'l)a N 7fl(a’k)) = P(Q(xl)a cey Q(xk)) € BlQ C A07
which completes the proof that &' < &,,. O

The following lemma generalises the first part of Lemma 3.26.

Lemma 3.31. Let T’ be an aziomatised input and Mo = TS, If M and M’ are
saturated sets of S-states such that Mg ~>gm M and My ~>gm M', then M is full of
clashes iff M' is full of clashes.

Proof. Recall that the application of a rule to a set of S-states removes one of these
S-states and adds a finite number of S-states that extend the removed one. Thus, for
every S-state & € M’ there is an S-state Sy € M such that Gy < &.

Consider the chain of (modified) rule applications

Mo —gm My —gm ... 5>gm My =M

that leads from Mg to M. Since M’ is saturated, we can use Lemma 3.30 to deduce
that for every & € M’ there is an S-state &; € M such that &; < &. By iterating
this argument, we obtain that, for every & € M’ there is an element &,, € M such
that &, < 6.

Assume now that M is full of clashes; that is, every S-state in M contains a clash
and take an arbitrary & € M'. We must show that & contains a clash. As shown in

52 CHAPTER 3. TABLEAUX AND PINPOINTING

the previous paragraph, there is an element &,, € M such that &,, < &. The fact
that &,, contains a clash implies that & contains also a clash. This finishes the proof
of the only if direction. A symmetric argument can be used to prove the converse
direction. O

When proving the correctness of the pinpointing extension of a tableau, we consider
only terminating chains of pinpointing rule applications. Unfortunately, although a
correct tableau needs to be terminating, this property not necessarily transfer to its
pinpointing extension. The reason for this is that a rule may be pinpointing applicable
in cases where it is not applicable in the normal sense, as discussed before. Even if
we restrict ourselves to deterministic rules, the problem still appears, as shown in the
following example.

Example 3.32. Consider the tableau S with the following three rules'3

Ri + ({P@)},{am}) = {r(y,v,v), Q1(y), Q2(v)},
R2 : ({P(x)}7 {axQ}) — {T(y, Y, y)a Ql (y)a QQ(y)}a
Ry + ({Qi(2),Q2(1)}.0) = {r(z,y,2), Q1(y), Q2(2)},

where the function -° maps every input T € J to the set {P(a)} and every aziom from
T = {ax1, a2} to the empty set, with P yqmis(T) = P(T). For any aziomatised input
I = (Z,7), we have T'° = ({P(a)},T). Depending on the azioms appearing in T,
the rules Ry and/or Re may be applicable to this S-state, but Ry is not. Notice that
Ri and Ro have the same right-hand side, and thus the application of any of them to
'Y leads to the same S-state modulo the chosen new constant name introduced for the
fresh variable y. Suppose we apply one of these rules and introduce the new constant
b. The resulting S-state is & = (A, T) where

A= {P(a)a Ql(b)v QZ(b)vr(bv b, b)}

No rule is then applicable to &. In fact, in order to apply any of the rules Ry, Ra,
the only way to satisfy Condition (ii) from the definition of rule application (Defi-
nition 3.6) is to use a substitution that maps the variable x to the constant a. By
extending this substitution to map y to the constant b, Condition (iii) from the same
definition is violated since the assertions Q1(b),Q2(b) and r(b,b,b) already appear in
S, after being introduced by the first rule application. To satisfy Condition (ii) for rule
Rs, we must choose the substitution p that maps both variables x and y to the constant
b. If we extend p to map z to the same constant b we then violate Condition (iii).
This all shows that S indeed terminates on every aziomatised input; in fact, at most
one rule is applicable before reaching a saturated S-state.

Howewver, it is possible to construct an infinite chain of pinpointing rule applications
starting with T = ({P(a)}, {az1, ax2}), where lab(P(a)) = T. We can first apply rule
R1 to obtain the S-state G described above, where all the assertion, with the exception
of P(a), are labeled with azy. At this point, rule Ry is pinpointing applicable since,

13Since all the rules are deterministic and hence there will always be only one S-state, we express
only this state, instead of the set containing it.

3.3. PINPOINTING IN GENERAL TABLEAUX 53

although there is an extension of the substitution under which all the assertions exist
already in &, these assertions are labeled with the formula azy, which is not implied
by axz. The pinpointing application of Ry to & adds the assertions Q1(c), Q2(c) and
r(e,c,c) all with label axs. It is mow possible to apply the rule Rg to the resulting
S-state &' with the substitution p mapping the variables x and y to the constants b
and c, respectively. Since the S-state &' does not contain any assertion of the form
r(b,c,), Condition (iii) cannot be violated. This rule application adds the assertions
r(b,c,d), Q2(d) with label axy A azy. 1t is easy to see that the rule Ry can be now
repeatedly applied, producing this way a non-terminating chain of pinpointing rule
applications. [|

This example shows that the termination of a tableau S does not necessarily imply
the termination of its pinpointing extension, even for the restricted case of tableaux
having only deterministic rules. In Chapter 6 we will show that it is in general unde-
cidable whether the pinpointing extension of a tableau is terminating. Nonetheless,
we can still search for classes of tableaux that have terminating extensions. Moreover,
as shown in Sections 2.3.4 and 2.3.5, some tableau algorithms actually require addi-
tional techniques to ensure termination, and those techniques need to be adapted to
pinpointing extensions as well in order to preserve correctness. The next chapter deals
with termination of pinpointing extensions in both fronts. First it introduces a class
of terminating tableaux whose pinpointing extensions are always terminating. After-
wards, it defines a general notion of blocking, taking as model the notion of equality
blocking from Section 2.3.5, and shows how it can be extended to produce a correct
and terminating pinpointing procedure.

54

CHAPTER 3. TABLEAUX AND PINPOINTING

Chapter 4

A Class of Terminating Tableaux

The pinpointing extension of general tableaux presented in the previous chapter re-
quires a relaxation of the rule-applicability conditions to ensure that all possible ways
in which a property can be deduced are detected in a single execution. Example 3.32
shows that these relaxed applicability conditions may lead to a non-terminating pro-
cedure. This undesired behaviour may arise even in restricted scenarios, as when only
deterministic rules are allowed. Since we are interested in describing a terminating
procedure, we turn our attention to the causes of termination of known tableau al-
gorithms, aiming towards a framework that not only ensures the termination of the
original tableau algorithms, but also transfers this result to their pinpointing exten-
sions.

We identify tableaux that generate tree-like S-states as good candidates for termi-
nation. On one side, if we are able to bound the breadth and depth of these S-states,
there will be no way an infinite chain of rule applications can be generated. On the
other, even if we are unable to bound the depth of these trees, we can reuse the ideas
of blocking to avoid generating an infinite tree. The tree-like structure is important
for blocking for two reasons: first, we need a notion of nodes to have one blocking
another, and second, the tree shape yields a natural ordering that allows us to forbid
mutual blocking by two nodes, which would lead to an incorrect procedure. Actually,
we allow for a slightly more general scenario, in what we will call forest tableauz.
These tableaux, which are formally defined in Section 4.1, may produce several trees
that “grow” from an arbitrary graph-like structure. Using this notion, we first present
additional conditions that bound the growth of the trees generated by these tableaux,
and show that they suffice for ensuring termination in Section 4.2. Finally, in Sec-
tion 4.3, we introduce a general notion of blocking analogous to equivalence blocking
introduced in Chapter 2, and show how it can be used to ensure an answer in finite
time.

4.1 Forest Tableaux

One of the reasons why tableau algorithms for certain DLs terminate is that they create
a tree-like structure for which the out-degree and the depth of the tree are bounded

95

56 CHAPTER 4. A CLASS OF TERMINATING TABLEAUX

by a function of the size of the input formula. The nodes of these trees are labeled,
but the input determines a finite number of possible labels. A typical example is the
tableau-based decision procedure for satisfiability of ALC-concepts (see Chapter 2).
This algorithm generates sets of assertions of the form r(a,b) and C(a), where r is
a role and C is an ALC-concept description. The tree structure is induced by role
assertions, and the nodes are labeled by sets of concepts, i.e., node a is labeled with
{C1,...,Ch} if Ci(a),...,Cy(a) are all the concept assertions involving a. The main
reasons why the algorithm terminates are:

e the depth of the tree structure is bounded by the size n of the input, i.e., the
maximal length m of chains ry(ag,a1),r2(a1,a2),...,"m(@m—1,an) in a set of
assertions generated by the algorithm is bounded by n;

e the out-degree of the tree structure is bounded by n , i.e., the maximal number m
of assertions r(ag, a1),r2(ag,a2), ..., rm(ag, am) in a set of assertions generated
by the algorithm is bounded by n;

e for every assertion C'(a) occurring in a set of assertions generated by the algo-
rithm, C' is a sub-description of the input concept description.

If we look at the algorithm that decides consistency of ALC-ABoxes (Section 2.3.2)
then things are a bit more complicated: rather than a single tree one obtains a forest,
more precisely, several trees growing out of the input ABox. But these trees satisfy
the restrictions mentioned above, which is enough to show termination.

Basically, we want to formalise this reason for termination within the general
framework of tableaux introduced in the previous chapter. However, to be as general
as possible, we do not want to restrict assertions to be built from unary predicates
(concepts) and binary predicates (roles) only. For this reason, we allow for predicates
of arbitrary arity, but restrict our assertions such that states (i.e., sets of assertions)
induce graph-like structures. This general approach allows us to model, among others,
the tableaux decision algorithm for the n-ary DL GF1~ introduced in [LST99].

In order to have a graph-like structure, we must be able to distinguish between
nodes and edges. For this reason, we now assume that the signature X is partitioned
into the sets A and A, where each predicate name P € A is equipped with an arity
n, while every predicate name r € A is equipped with a double arity 0 < m < n.
Strictly speaking, the arity of r € A is n; however, the first m argument positions are
grouped together, as are the last » — m. Intuitively, the elements of A correspond to
DL concepts and form the nodes of the graph-like structure, whereas the elements of
A correspond to DL roles and induce the edges.

If a pattern/assertion p starts with a predicate from A (A), we say that p is a
A-pattern/assertion (A-pattern/assertion), and write p € A (p € K) In our ALC
example, the set A consists of all ALC-concepts, which have arity 1, and A consists
of all role names, which have double arity 1,2. For the rest of this chapter, assertions
and patterns in A will be denoted using capital letters (P, Q, R,...), and those in A
using lower-case letters (7, s,t,...). Given a predicate p € A with double arity m,n,
the sets of parents and descendants of the pattern r = p(z1,..., Tm, Tm41, ..., L) are
given by ¥ = {z1,...,2mn} and 7 = {Zm+1,--.,%n}, respectively.

4.1. FOREST TABLEAUX o7

In the different tableau algorithms presented in Chapter 2 for deciding properties
in ALC, the nodes of the trees are defined by the constants occurring in the set of
assertions, and the concept assertions give rise to the labels of these nodes. In the
general case, nodes are not single constants, but rather sets of assertions built over a
connected set of constants.

Definition 4.1 (Connected). Let B be a set of Y-patterns (X-assertions), and
z,y € var(B) (a,b € cons(B)). We say that = and y (a and b) are B-connected,
denoted as © ~p y (a ~gb), if there are variables xo,x1,...,%, € var(B) (constants
ag,G1,...,a, € cons(B)) and patterns Py,...,P, € BN A (respectively assertions
P,...,P, € Bﬂ[A\) such that x = xo,y = x, (@ = ag,b = ay,) and for every 1 <i <n
it holds that {z;—1,2;} Cvar(P;) ({ai-1,a;} C cons(P;)).

We say that B is connected if, for every x,y € var(B) (a,b € cons(B)), we have
x~pgy (a~pbh). []

Connected sets of assertions can be viewed as bundles that join the constants
contained in them. Nodes will be formed by maximal connected sets of assertions
from A. An assertion from A will be treated as a (directed) edge that connects a node
containing its parent constants with a node containing its descendant constants.

Definition 4.2 (Graph structure). Let B be a set of assertions. A mazimal con-
nected subset N C BN A is called a node in B. An assertion r € BN A is called
an edge in B if there are two nodes N1 and Ny in B such that T C cons(Ny) and
cons(No) C 7. In this case, we say that r connects Ny to No.

The set B is a graph structure if every r € BN A is an edge. If B is a graph
structure, the corresponding B-graph Gp contains one vertex vy for every node N,
and an edge (vn,var) if there is an edge connecting N to M.

The notion of a graph structure and of the corresponding graph can be extended to
states & = (B, T) in the obvious way: & is a graph structure if B is one, and in this
case Gs := Gp. [

If a set of assertions B is a graph structure, then the set of nodes forms a partition of
Bﬂ[A\, and each of its elements either belongs to a node or is a (directed) edge. Observe,
however, that an edge r € A may connect a node with more than one successor node.
For example, consider the set of assertions B = {P(a),Q(b), R(c),r(a,b,c)} where
P,Q,R € A are unary, and » € A has double arity 1,3. This set forms a graph
structure consisting of the nodes N := P(a), N2 := Q(b), N3 := R(c) and the edge
r(a,b,c). This single edge connects Ny to both Ny and N3. Gp is then the graph
({v1,v2,v3}, {(v1,v2), (v1,v3)}). This will create no problem in our proofs, but must
be kept in mind when dealing with graph-structures and their corresponding graphs.

Recall that the tableau-based decision procedure for consistency of ALC-ABoxes
(Section 2.3.2) starts with an ABox, which can be viewed as a graph, but then extends
this ABox by trees that grow out of the nodes of this graph. The following definition
introduces forest tableauz, which show a similar behavior, but are based on the more
general notion of a graph structure introduced above.

58 CHAPTER 4. A CLASS OF TERMINATING TABLEAUX

Definition 4.3 (Forest tableau). The tableau S = (3,-°,R,C) is called a forest
tableau if for every aziomatised input T' and every & € TS, the state & is a graph
structure, every clash C € C is a connected subset of K, and the following conditions
hold for every rule (By,S) — {Bi,...,Bn} and every 1 <i < m:

1. for every X-pattern r € By N 3, there exists a YX-pattern P € By N A such that
% Cvar(P) or 7 C var(P).

2. for every X-pattern r € B; N ﬁ, there exists a Y-pattern P € By N A such that
§ Cvar(P).

3. for every X-pattern r € B; N 3, we have 7 N var(By) = (.
4. ifr,s € B;N A are distinct patterns, then NS =0.

5. for every X-pattern P € B; N K, either
(i) there is a S-pattern r € (ByUB;)NA such that var(P) C 7 or var(P) C ¥,
or
(ii) there is a Q € By N A with var(P) C var(Q).

6. if ByNA #0, then B;N A = 0.
7. BpN A is connected.

A few intuitive explanations for these conditions are in order. Condition 1 ensures
that every edge triggering a rule application is connected to a node, which may be
either a parent or a descendant node of this edge. Condition 2 makes sure that for
every newly introduced edge, a parent node was present before the rule is applied.
This implies that a rule application cannot add new predecessors to a node, and that
newly introduced nodes are not disconnected from the rest of the graph structure.
Both of these properties are vital for obtaining forest-like structures. Condition 3
states that every newly generated edge has only new constants in its descendant set.
In other words, new edges cannot connect old nodes, but only generate new nodes
as descendant. Condition 4 ensures that, even if several edges are added by a single
rule application, these edges connect different nodes with the parent node, avoiding
this way that a node is connected by multiple edges to a parent node. Condition §
makes sure that we always have a connected graph. Tt states that, whenever a non-edge
assertion is added, it must either belong to an old node, or belong to a descendant node
added by the creation of a new edge within the same rule application. Condition 6
states that the addition of new edges must only depend on the assertions belonging to
the parent nodes, but never on the presence of other edges. In particular, this ensures
that each descendant is created independently from its siblings, as long this is done in
distinct rule applications. Finally, Condition 7 ensures that the non-edge assertions
triggering a rule application all belong to the same node.

The different (disjunctive) options stated in Conditions 1 and 5(i) require an ad-
ditional explanation. They allow the tableau rules to propagate information not just

4.1. FOREST TABLEAUX 99

to successor nodes, but also to predecessor nodes in the trees. The main reason for
including this possibility in our framework is that it makes it general enough to deal
with constructors such as inverse roles in DLs, and hence model SZ-TBoxes. The
price to pay for this decision is twofold: on the one side, more cases must be analysed
in the proofs. On the other, the weaker version of blocking, subset blocking, will not
suffice to yield a correct terminating algorithm (see Example 2.12) and we will have to
use an analogous to equivalence blocking. Notice nonetheless that if the use of subset
blocking leads to a correct decision procedure, using instead equivalence blocking will
still yield a correct answer, though its efficiency may be compromised as the cycles
will take longer to be detected.

Although this definition may seem to complex at first sight, all the conditions are
local for each rule and only impose restrictions on their syntactic form; thus, they can
be easily verified to determine whether a given tableau belongs to the class of forest
tableaux or not.

The following lemma shows that the S-states of a forest tableau form graph struc-
tures in which every node is connected to an initial node via a series of edges. We
show that it is actually the case even for modified rule applications, since we want to
use it also for the pinpointing extensions. Its proof is identical to that of Lemma, 4.7,
by simply deleting every reference to the ordering relation used there. To avoid a
futile repetition of the lengthy proof, we do not present this proof here, but delay it
to the following section.

Lemma 4.4. Let S be a forest tableau, T' an aziomatised input, Sg —gm &1 —gm ---
a sequence of modified rule applications, and Sy € T'°. Then, for every &; = (Ai,T)
and P € A; N A, either cons(P) C cons(Ag) or there are r € A;NA and Q € A; N A
such that % C cons(Q), and cons(P) C 7

In fact, due to Conditions 3 and 4 of Definition 4.3, we can deduce that the r
described by this lemma is unique for every given P. Thus, the S-states of a forest
tableau form indeed a forest structure as described before.

Clearly, just ensuring that all states generated by a tableau have a forest-like
structure is not sufficient to yield termination. We must also ensure that the trees in
the forest cannot grow indefinitely (i.e., that the overall number of nodes that can be
generated is bounded), and that the same is true for the nodes (i.e., that the number
of assertions making up a single node is bounded). To bound the number of possible
assertions, we restrict the set of predicate names that can be used; this restricted set
is called a cover.

Definition 4.5 (Cover). Let S = (%,-°,R,C) be a tableau and T a set of azioms.
A set Q C X is called a T-cover if, for every rule R : (By,S) — {Bi,...,Bn} such
that S C T and By contains only predicates from Q, the sets B; for i =1,....n also
contain only predicates from €.

The tableau S is covered if, for every aziomatised input T' = (Z,T), there is a
finite T -cover Qr such that every S-state in T'° contains only predicates from Qr. m

Given such a covered tableau, every state that can be reached from an initial state
in T'¥ by applying rules from S contains only predicates from Qp. We will see that

60 CHAPTER 4. A CLASS OF TERMINATING TABLEAUX

this ensures that nodes cannot grow indefinitely.

To prevent the trees from growing indefinitely (i.e., to bound the number of nodes),
it is enough to enforce finite branching and finite paths in the trees. Finite branching
actually already follows from the conditions we have stated so far. Hence, we need
only to make sure that paths cannot get indefinitely long. The next section shows
how a partial order can be used to ensure this.

4.2 Ordered Tableaux

To bound the length of paths, we additionally require the predicates occurring in rules
to be decreasing w.r.t. a given partial order, in such a way that nodes farther away
from the root will have smaller predicates than their predecessors. Given a strict
partial order < on predicates, we extend it to patterns (assertions) by defining P < Q
if the predicate of the pattern (assertion) P is smaller than the predicate of the pattern
(assertion) Q.

Definition 4.6 (Ordered tableaux). A covered tableau S is called an ordered
tableau if, for every aziomatised input I', there is a strict partial ordering <r on
the predicate names in Qr NA such that, for every rule (By,S) — {Bi,..., By}, every
1§i§n,andeveryPGBgﬂKandQEBiﬂK,weh(weQ<rP. [|

For example, the tableau-based decision procedure for consistency of ALC-ABoxes
is an ordered tableau. It is covered since rule application only adds concept assertions
C(a) (role assertions r(a,b)) where C is a sub-description of a concept description
occurring in the input ABox A (where r is a role occurring in the input ABox Ajp).
Thus one can take the set of sub-descriptions of concept descriptions occurring in
Ao together with the roles occurring in Ay as a cover. In addition, rule application
only adds concept assertions that either have a smaller role-depth (i.e., nesting of
existential and value-restrictions) than the one that triggered it, or are subconcepts
of it. Thus, ordering concept descriptions by their role-depth and by the subconcept
relation yields the desired partial order.

Ordered tableaux have the property that, if applied to an axiomatised input T,
none of the trees in the generated forest can have a depth greater than the cardinality
of the cover Qr. This easily follows from the next lemma.

Lemma 4.7. Let S be an ordered forest tableau, T' an aziomatised input, Sq € T'S,
and &y —gm &1 —gm --- a sequence of modified rule applications. Then, for every
S; = (A;,T) and P € A; N A, either cons(P) C cons(Ag) or there are r € A;NA and
Qe AN A such that & C cons(Q), cons(P) C 7, and P <r Q.

Proof. The proof is by induction on ¢. For &y the result is trivial. Suppose now that
it holds for &;, and that the rule R : (By,S) — {Bi,...,By} is applied to &; to
obtain &;41 = (A1, 7T), where A;11 = A; U Bjo for some substitution o and some
§,1<j<m. Let P€ A;;1 N AIfPe A;, then by the induction hypothesis and the
fact that A; C A;11, the result holds. Otherwise, P was added by the application of

4.2. ORDERED TABLEAUX 61

R. By Condition 5 of Definition 4.3, we have either (i) an r € (Bo U Bj)o N A with
cons(P) C 7 or cons(P) C 7, or (ii) there is a Q € Byo N A with cons(P) C cons(Q).

We will analyse Case (ii) first. Since the rule was applied with substitution o,
we have Bgo C A;, and thus Q € A4; N A. Since S is ordered, we also know that
P <p Q. By the induction hypothesis, either cons(Q) C cons(Ay), or ¥ C cons(Q’),
cons(Q) C 7, and Q <p Q' for assertions , Q' € A;. In both cases, transitivity of <p
and of C yield the desired result.

We focus now on Case (i). Suppose first that cons(P) C 7. If r € Bjo, then by
Condition 2 of Definition 4.3, there is a Q € Byo C A; such that & C cons(Q). Since
S is ordered, we also have P <r @, which completes the proof for the case where
cons(P) C 7 and r € Bjo.

Next, we consider the case where cons(P) C 7 and r € Byo. Then, by Condition 1
of Definition 4.3, there must exist a Q € Byo such that & C cons(Q) or 7 C cons(Q).
In the former case, the proof is analogous to the one for the first part of this case. In
the latter case, we have cons(P) C 7 C cons(Q), which is an instance of Case (ii).

Finally, suppose that cons(P) C % . We can assume without loss of generality
that there is no Q € Byo N A such that cons(P) C cons(Q). In fact, if it existed, we
would be in Case (ii) analysed above. Consequently, r cannot belong to B;o since this
would violate Condition 2 of Definition 4.3. Hence, r € Byo and there must exist a
Q € Byo N A such that ¥ C cons(Q) or 7 C cons(Q).

In the first case, we have cons(P) C % C cons(Q), which brings us back to Case (ii)
analysed above. In the other case, we know that P <p Q and Q € A;. Thus, by the
induction hypothesis, the statement of the lemma holds for Q.

If cons(Q) C cons(A4p), then—due to our assumption in this case stating that
7 C cons(Q)—we also have 7 C cons(Ap). This means that r was not added by any
previous rule application as otherwise this would violate Condition 3 of Definition 4.3.
Thus, r must have been already present in Ay, which implies & C cons(Ap). Since
cons(P) C %, it also holds that cons(P) C cons(Ay).

Now, assume that cons(Q)) Z cons(Ap). By the induction hypothesis, there exist
s € A;NAand R € A; N A such that 5 C cons(R),cons(Q) C &, and Q <r R.
Since cons(Q) & cons(Ap), we know that @ and s were added by a (previous) rule
application. We claim that r = s. In fact, we have § # 7 C cons(Q) C .OIf
we had r # s, then this would violate Condition 3 or 4 of Definition 4.3, where
Condition 3 covers the case where r and s are introduced by different rule applications,
and Condition 4 covers the case where these two assertions are added by the same
rule application.

Overall, we thus know that cons(P) C % C cons(R) and P <r R. Since R € A;,
by the induction hypothesis, we have once again that either cons(R) C cons(Ag) or
there exist 7 € 4; N A and Q' € 4; N A such that ' C cons(Q'),cons(R) C r', and
R <r @Q'. Tn both cases, the fact that cons(P) C cons(R) and P <r R, together with
the transitivity of C and <r, yields the desired result. U

Notice that in this proof, the existence of the stated assertions r and) does not
depend on the fact that the tableau is ordered, or even covered. Those restrictions

62 CHAPTER 4. A CLASS OF TERMINATING TABLEAUX

are only used for showing that indeed there is a decreasing sequence of predicates in
each &;. Hence, removing all references to this ordering yields a proof for Lemma, 4.4.

An easy consequence of Lemma 4.7 is that a path consisting of m new edges in a
state generated by rule applications from a state in T'® implies a decreasing sequence
w.r.t. <p of the same length. Consequently, the length of such paths is bounded by
the number of predicate symbols occurring in the finite cover Qr.

Proposition 4.8. Let Gy 2 gm & where Sy = (Ag, T) € T'¥ and & = (A, T). Suppose
that A contains edges ri,...,rm and nodes Ny, ..., Ny, such that for all i,1 <1i < m,
r; ¢ Ao and r; connects N;_1 with N;. Then, there exist assertions Q1,...,Qm € A
such that Q1 >r Qa2 >1 ... >p Q.-

Proof. Since r; connects N;_1 with N, for ¢ = 1,...,m, we know by Definition 4.2 that
¥ C cons(N;_1) and cons(N;) C 77, This implies that ¥, C 71 for all 1,1 <i<m.

For each of the edges r; we have assumed that it is new, i.e., r; ¢ Ag. Thus, r;
must have been added by some rule application. Condition 3 of Definition 4.3 entails
then that, for every 1 <4 < m, 7/ N cons(Ag) = 0, and thus, for every 1 < i < m it
also holds that 5 N cons(Ag) = 0, as 75 C 1.

Since ry, was added by a rule application, by Condition 2 of Definition 4.3, there
must be an assertion @, € ANA such that Fm C cons(Qm) Hence, it is the case that
cons(@Qm) Z cons(Ap). By Lemma 4. 7 there exist r € ANA and Q1 € A4 ﬂ A such
that & C cons(Qm—1),cons(@Qp,) C 7, and Qm <r Qm_1. We have ¥, C 7, and
P C cons(Qm) C 7, which implies that P iN T # (). However, Conditions 3 and 4
of Definition 4.3 ensure that distinct assertions in A \ Ao must have disjoint sets of
descendants. Thus, we know that r = r,,,_1.

We can now apply the same argument to r,,,—1 and @Q,,—1 and obtain an assertion
Q2 such that P C cons(Qm—2),cons(@m—1) C m, and Q-1 <1t Qm_2. By
iterating this argument, we thus obtain the desired descending chain of assertions
Q1 >r Q2 >r ... >r Qm. O

The following two remarks will be useful in the proof of the main theorem of this
section. First, recall that Condition 7 of Definition 4.3 ensures that the assertions
from A triggering a rule application all belong to the same node.

Second, given a new node N (i.e., one that was not present in the initial state)
and an assertion P € N, Lemma 4.7 yields an edge r such that cons(P) C 7. Since
distinct edges have disjoint sets of descendants (Condition 4 of Definition 4.3) any
other assertion in Q € N also satisfies cons(Q)) C 7. This shows that the constants
occurring in a node all belong to the descendant set of the edge whose introduction
created the node.

We are now ready to show termination of the pinpointing extension of any ordered
forest tableaux.

Theorem 4.9. If S is an ordered forest tableau, then its pinpointing extension ter-
minates on every input.

Proof. Suppose that there is an input I' = (Z, T') for which there is an infinite sequence
of pinpointing rule applications Gy — gpin &1 —>gpin ..., with Sy € T'°. Since S is a

4.2. ORDERED TABLEAUX 63

covered tableau, there is a finite T-cover Qr such that, for all ¢ > 0, the assertions
in G&; use only predicate symbols from Qr. As noted above, for every node there is
a fixed finite set of constants that can occur in the assertions of this node. This set
is either the set of constants occurring in &y (for an old node) or it consists of the
descendants in the unique edge whose introduction created the node (for a new node).
Together with the fact that the 7T-cover Qr is finite, this restricts the assertions that
can occur in the node to a fixed finite set. Each of these assertion may repeatedly have
its label modified by applications of the pinpointing rules. However, every application
of a rule makes the label more general in the sense that the new monotone Boolean
formula has more models than the previous one. Since these formulae are built over
a finite set of propositional variables, this can happen only finitely often. The same
argument shows that the label of a given edge can be changed only finitely often.

Hence, to get a non-terminating sequence of rule applications, infinitely many new
nodes must be added. By Conditions 5 and 2 of Definition 4.3, each newly added node
N is created as successor of an existing node w.r.t. a unique edge r € A such that the
constants in N are new constants contained in 7. If infinitely many new nodes are
created, then either there is a node that obtains infinitely many direct successors, or
an infinite chain of nodes is created, where each is a successor of the previous one.

Proposition 4.8 implies that the latter case cannot occur. In fact, given nodes
Ny, Ny,...,N,, and edges ri,...,7, such that, for all 1,1 < 7 < m, r; connects
N;_1 to N;, Proposition 4.8 yields a sequence of assertions Q1,...,Qn € A such that
Q1 >r Q2 >r ... >r Q- However, the length of such a descending sequence is
bounded by the cardinality of the finite 7-cover Qp. Thus, it is not possible that an
infinite path is created by a sequence of rule applications.

Now, consider the first case, i.e., assume that there is a node N for which infinitely
many successors are created. However, the constants in N are from a fixed finite set
of constants C, and the predicate symbols that can occur in the applied rules must
all belong to the finite T-cover Qp. Thus, up to variable renaming, there are only
finitely many rules that can be applied to NV, and there are only finitely many ways of
replacing the variables in the left-hand side of rules by constants from C. The fresh
variables in the right-hand side are always replaced by distinct new constants. Thus,
for a fixed rule and a fixed substitution o replacing the variables in the left-hand side of
this rules by constants from C', the assertions introduced by two different applications
of this rule using o only differ by a renaming of these new constants. By the way
pinpointing rule applicability is defined, such renamed variants can only be added as
long as their labels are not equivalent. But there are only finitely many labels up
to equivalence. Thus, NV can in fact obtain only a finite number of successors. This
finishes the proof that the pinpointing extension of an ordered forest tableau always
terminates. U

Note that termination of the pinpointing extension implies termination of the
original tableau. In fact, a non-terminating sequence of rule applications for the
original tableau can easily be transformed into a non-terminating sequence of rule
applications for its pinpointing extension.

Corollary 4.10. An ordered forest tableau terminates on every input.

64 CHAPTER 4. A CLASS OF TERMINATING TABLEAUX

The definition of forest tableaux imposes quite a number of restrictions to be
satisfied. Thus, it is natural to ask whether all these restrictions are indeed necessary.
The answer is yes: if any of these restrictions is removed, then Theorem 4.9 no longer
holds. In fact, it is possible to construct tableaux satisfying all other properties that
do not terminate. More interesting perhaps is that there are terminating tableaux
satisfying all other properties whose pinpointing extensions do not terminate. Here,
we illustrate this fact with one example, where we remove Condition 6 of Definition 4.3.
Examples for the other conditions can be built in a similar way.

Example 4.11. Consider the tableau S that has the following four rules:

Ri : ({P(2)}, {az1}) = {{R(x), Qi ()}},

Ry ({P(2)}, {arz}) — {{R(x), Q2(x)}},

Ry : ({R(2)},0) = {{r(z,»)}{Q:(2)},{Q(2)}},
Ry o ({P(a),r(z,9)},0) = {{T (), (2, 2)}},

and where the function - maps every input T € J to the singleton set {{P(a)}}, and
each aziom in T = {az, ax2} to the empty set.

It is easy to wverify that S with the ordering T < Q2 < Q1 < R < P satisfies all
the conditions of an ordered forest tableau, except for Condition 6 of Definition 4.3
violated by the rule Ry.

For any aziomatised input T = (Z,T), we have T° = {({P(a)},T)}, and thus
neither Ry nor Ry is applicable to T'°. Depending on which azioms are contained in
T, the rules Ry and/or Ry may be applicable. However, their application introduces
Q1(a) or Qo(a) into the set of assertions, and thus the non-deterministic rule R
is not applicable. Obuviously, Ry becomes applicable only after R3 has been applied.
Consequently, S terminates on every aziomatised input T'.

It is possible, however, to construct an infinite chain of pinpointing rule applica-
tions starting with T° = {({P(a)},{az1, azz})} where lab(P(a)) = T. In fact, we
can first apply the rule Ry. This adds the assertions R(a) and Qi(a), both with la-
bel axy. An application of the rule Ry adds the assertion Qo(a) with label azs, and
modifies the label of the assertion R(a) to lab(R(a)) = az1 V axe. At this point, we
have reached an S-state S containing the assertions P(a), R(a), Q1i(a), Q2(a) with
labels lab(P(a)) = T, lab(R(a)) = az; V azz, lab(Q1(a)) = az1, and lab(Q2(a)) = azs.
The rule Ry is pinpointing applicable to this S-state. Indeed, although both Q1(a)
and Qo(a) are contained in the assertion set of &, their labels are not implied by
lab(R(a)). The application of Rg to & replaces & by three new S-states. One of these
new S-states contains the assertion r(a,b) for a new constant b. At this point, rule
Ry becomes applicable. Its application adds the assertions T'(b) and r(a,c) for a new
constant c. Since there is no assertion of the form T(c), Ry becomes again applicable,
and its application adds a new constant d within an assertion r(a,d). It is easy to see
that we can now continue applying rule Ry indefinitely.]

Finding a non-terminating tableau is an easier task. If we consider the tableau that
has only the rule Ry and where every input Z € J is mapped to {{P(a),r(a,b)}}, then

4.3. BLOCKING IN FOREST TABLEAUX 65

this yields an example of a non-terminating tableau that satisfies all the conditions of
an ordered forest tableau, except for Condition 6.

4.3 Blocking in Forest Tableaux

The ordered forest tableaux introduced in the previous section can be used to model
tableau-based algorithms that try to generate a finite tree- or forest-shaped model. In
the presence of so-called general concept inclusion axioms (GCIs) or transitive roles,
DLs lose the finite tree/forest model property, and thus these algorithms need no
longer terminate. Termination can be regained, however, by blocking the application
of generating rules, i.e., rules that generate new nodes, in case that the node to which
the rule is supposed to be applied has a predecessor node that has the same assertions.
A saturated and clash-free tableau can then be unraveled into an infinite tree/forest
model (see, e.g., [HS99)]).

In order to illustrate our general model of tableaux with blocking, we consider
a non-terminating forest tableau that can be made terminating by blocking. Note
that the usual tableau-based algorithm for unsatisfiability of ALC concepts w.r.t. SZ-
TBoxes shows a similar behavior (see Section 2.3.5).

Example 4.12. Consider a forest tableau S with the following three (deterministic)
rules

Ri : ({C@)}0) = {{r(=y), D(y)}},
Ry : ({D()},0) = {{r(z,y), Cly)}},
Ry = ({C(z),r(y,2)},0) = {{=D(y)}},

and the clash {D(z),~D(x)}. In addition, we assume that the function -5 maps every
input T € J to the singleton set {{C(ao)}} and each aziom in T to the empty set.
It is easy to see that S does not terminate since it can produce an infinite chain of
assertions of the form C(ag),r(ag,a1), D(a1),r(a1,a2), C(asz),.... If we apply rule Ry
followed by Ry to T = {({C(ag)}, D)}, then we obtain the S-state (A, D) consisting of
the assertions A := {C(ap),r(ap,a1),D(a1),r(a1,a2),C(a2)}. At this point, blocking
should prevent the application of Ry to the node as:'* it is the repeated application of
R1 that causes the generation of the above infinite chain of assertions. The reason why
Ri can be blocked is that the node ay contains the same assertions as its predecessor ag:
both have an assertion for C (see Figure 4.1). Note, however, that the application of
R3 to as, which adds the assertion —D(ay), should still be possible. In fact, otherwise
the clash could not be detected. After rule Rg has been applied to this S-state, we reach
the S-state (AU {=D(a1)},0) depicted in Figure 4.2, where the only applicable rule
is Ry, which is however blocked. Thus, the blocking variant of the tableau terminates
with this blocking-saturated state. [|

The difference between the rules R; and Rg that makes the latter applicable while
the former is blocked is that an application of Ry adds new constants. Only this kind of

Since in this forest tableau the elements of A are all unary, nodes are uniquely identified by
constants.

66 CHAPTER 4. A CLASS OF TERMINATING TABLEAUX

ap @ C ao @ C'
r r
ar @D a1 @ D,—~D
r r
a2 o C az o C
Figure 4.1: Rule R; is blocked Figure 4.2: Blocking-saturated S-state

rules will be blocked, while non-generating rules will always be applicable, regardless
of the relationships between the nodes at the S-state.

Before we can formalise our notion of tableaux with blocking, we need to introduce
some notation. In the following we always assume that we have a forest tableau S.
Given an input T, any S-state that can be generated from I'S by the applications of
the rules of S is called an S-state for I'. We now assume that all the S-states that we
consider are S-state for some input.

The rule (By,S) — {Bi,...,Bn} is called generating if there is an i,1 < i < m,
such that B; N A # (. Note that the definition of forest tableaux implies that, if
such a generating rule is applicable with substitution p in state &, then & contains
a (unique) node N such that Bpp C N. We can thus talk about the node to which a
generating rule is applicable and/or applied. Given an S-state & for the input I', a
node N in G is new if it has been generated by the application of a generating rule.
Note that this is the case iff cons(N) N cons(I**) = @. Only new nodes will be allowed
to be blocked.

Given two nodes N, N', we say that they contain the same assertions (written
N = N') if there is a bijection f : cons(N) — cons(N’) such that P(ay,...,a,) € N
iff P(f(a1),...,f(ay)) € N".

Definition 4.13 (Blocking). Given a forest tableau S, and an aziomatised input T,
let & be an S-state for T'. The blocking relation <1 between nodes of & is defined as
follows:

Ny <A Ny iff N1 = N, Ny is a predecessor of N1, and Ny is a new node.

The node N is blocked if either there is a node N' such that N <t N', or the parent
node of N is blocked. A non-generating rule is <-applicable if it is applicable in the
sense of Definition 3.16; a generating rule is <-applicable if it is applicable and the
node N to which it is applicable is not blocked.

For sets of S-states M, M’ (S-states &,8') we write M = M' (6 =5 &) if
M =g M (6 =g &) using a rule that is <-applicable. The set of S-states M is
<-saturated if there is no M’ such that M —% M. [|

In Figures 4.1 and 4.2 the node a3 is blocked by the node ag, which we represent
with an unfilled circle. The notion of correctness of blocking tableaux is analogous to
the one for general tableaux from the previous chapter.

4.3. BLOCKING IN FOREST TABLEAUX 67

Definition 4.14 (Correctness). Let P be a c-property on axiomatised inputs for J
and P imis(%), and S a forest tableau for T and P,4mis(T). Then S is <-correct for
P if it terminates and is sound and complete with respect to <l-application, i.e., the
following two conditions hold for every aziomatised input T = (Z,T):

1. there is no infinite chain of rule applications I'S = M, =My =5

2. for every chain of rule applications T = M, =3 ... =3 M, such that M,, is
<-saturated we have that T' € P iff My, is full of clashes.

In the DL literature, different forms of blocking have been used. The variant
that we model here is usually called equality blocking [HS99] since it requires that
the blocked and the blocking nodes have the same set of assertions. In subset blocking
[BBH96], it is only required that the blocking node has all the assertions of the blocked
node, but not necessarily vice versa. Our reason for using equality blocking rather
than subset blocking is that it is more appropriate for DLs with inverse roles, and our
notion of forest tableaux can model tableau-based algorithms for DLs with inverse
roles. DLs that have both inverse roles and number restrictions require more complex
notions of blocking, such as pair-wise blocking [HST00], that look not just at one node
but at a node and its neighbors. Since our current notion of tableaux does not capture
rules that can identify distinct constants to represent the same individual, as used in
tableau-based algorithms for DLs with number restrictions [HB91], we have decided
not to model pair-wise blocking.

The notion of blocking introduced in Definition 4.13 ensures that every covered for-
est tableau terminates with respect to <i-application on all inputs. Instead of showing
this directly, we will prove that this is the case even for its pinpointing extension. But
first, we must adapt the notion of blocking to the pinpointing extension. Obviously,
this notion must take the labels of assertions into account as well.

Given an input T, any S-state that can be generated from I'’ by the applica-
tions of the rules of the pinpointing extension of S is called a labeled S-state for
. Nodes of such a labeled S-state will be called labeled nodes. Given two such
labeled nodes N, N, we say that they contain the same labeled assertions (written
N =i, N') if there is a bijection f : cons(N) — cons(N') such that P(ai,...,a,) € N
iff P(f(a1),...,f(an)) € N', and the labels of these assertions, lab(P(a1,...,ay)) and
lab(P(f(a1),...,f(ay))) are (propositionally) equivalent.

Definition 4.15 (Pinpointing blocking). Given a forest tableau S, and an az-
iomatised input I', let & be a labeled S-state for I'. The blocking relation <, between
labeled nodes of G is defined as follows:

N1 <pin N2 iff Ni =pin No, No is a predecessor of Ny, and Ny is a new node.

The node N is pinpointing blocked if either there is a node N' such that N <\, N,
or the parent node of N is pinpointing blocked.

We define the notions <pin-applicable and <yin-application as well as —3,,
<pin-saturated in the obvious way. []

and

68 CHAPTER 4. A CLASS OF TERMINATING TABLEAUX

Our approach for proving termination of the pinpointing extension of a covered
forest tableau with respect to <i,;,-application is similar to the one employed for
showing that ordered forest tableaux always terminate. Equipped with Lemma 4.4,
we can prove the desired termination result.

Theorem 4.16. Let S be a covered forest tableau. Then the pinpointing extension of
S terminates with respect to <pin-application on every input.

Proof. Suppose that there is an input I' = (Z, T') for which there is an infinite sequence
of pinpointing rule applications Gy — gpin &1 —>gpin - - -, where Gy € I'S. Since S is a
covered tableau, there is a finite T-cover Qp such that the assertions in &; use only
predicate symbols from Qr, for every 7 > 0. As already noted, every node has a fixed
finite set of constants that can appear in its assertions. By Lemma 4.4, this set is
either the set of constants occurring in & (for an old node) or the descendants in the
unique edge by which the node was created (for a new node). Since the T-cover is
finite, the assertions that can occur in a given node form a finite set. Each of these
assertions may repeatedly have its label modified by pinpointing rule applications;
however, every pinpointing rule application produces a more general label, in the
sense that the new monotone Boolean formula has more models than the previous
one. Since these formulas are built over a finite set of propositional variables, this can
happen only finitely often. Analogously, the label of a given edge can be changed only
finitely often.

Hence, to produce a non-terminating sequence of rule applications, infinitely many
new nodes must be added. Conditions 5 and 2 of Definition 4.3 ensure that every newly
added node N is created as a successor of an existing node with a unique edge r € A
connecting them, and all the constants in N are new constants appearing in 7.
infinitely many new nodes are created, then either there is a node with infinitely
many direct successors, or an infinite chain of nodes, each one being a successor of the
previous, is created. The first case can be treated as in the proof of Theorem 4.9.

Thus, we concentrate on the second case. The number of constants occurring in
a new node is bounded by the largest arity of a predicate name r € A. Taking into
account that there are also only finitely many possible labels, this implies that there
can only be finitely many different labeled nodes, up to constant renaming. Then, for
every chain of nodes Ny, Ny,..., N, that is sufficiently long (i.e., where m is larger
than the maximal number of labeled nodes that are different up to constant renaming),
there must exist 1 < k < £ < m such that N, =,;, Ny, and thus N, is pinpointing
blocked by Nj. Consequently, all the nodes N, for r > £ are pinpointing blocked,
which in particular means that N, cannot get a successor node. Thus, the second
case is not possible either, which completes the proof of the theorem. O

As in the case of ordered tableaux, termination of the pinpointing extension also
implies termination of the original tableau, as stated by the following corollary.

Corollary 4.17. Let S be a covered forest tableau. Then S terminates with respect
to <-application on every input.

4.3. BLOCKING IN FOREST TABLEAUX 69

1 r9 1 T2 13 =

o/
® ® \ T2
T3 T3 3 \
T4 ®_ T ® N
D D

Figure 4.3: Example of folding of an S-state

It is worth noticing here that the tableau from Example 4.11 is also an instance
of terminating tableaux whose pinpointing extension does not terminate, even when
using blocking. This is the case since, for this particular example, the violation of
Condition 6 of Definition 4.3 leads to a node that has infinitely many direct successors,
hence producing an infinite tree, even though its depth is finitely bounded.

We have seen that blocking can be used to regain termination of non-terminating
covered forest tableaux, and that this is also the case for the pinpointing extension.
However, since blocking prevents the application of rules that would be applicable
in the normal sense, the proof of correctness of the pinpointing extension given in
Section 3.3 does not apply directly to the pinpointing extension of tableaux with
blocking. A new proof is hence necessary.

Our proof of correctness will rely on the notion of the folded version of an S-state,
which is obtained by removing all blocked nodes and adding new edges. Let S be
a forest tableau and & = (A,7) an S-state for an input I'. Then & is a forest-
structure, i.e., it is a graph-structure consisting of a set of tree-like structures growing
out of the original graph-structure induced by the input. If we remove all the blocked
nodes that are descendants of other blocked nodes, we obtain a new forest-structure
&' = (A’,T) in which blocked nodes appear only as leafs in the trees. For every pair
of nodes N; and N, in &', if Ny is blocked by N, then we know that Ny = Ny, and
hence there is a bijection f : cons(Ny) — cons(N3) such that P(a,...,a,) € Ny iff
P(f(ay),..., f(ap)) € Na. We modify the edge with destination Ny (i.e., the unique
assertion (%, 7) € ANA' with cons(Ny) C 7) to (%, f(7)) and then remove N;.'
Since f(?) contains only constants from N, this new edge points to Ny, i.e., to the
node that blocks N;. By applying this modification for all the remaining blocked
nodes, we obtain the folded version of &, which we denote by &°. If M is a set
of S-states, then its folded version is M® = {G° | & € M}. Figure 4.3 shows the
process of folding an S-state. The tree in the left shows the tree shape of an S-state,
where the two nodes marked as ® are blocked by the root node, and the nodes marked
as @ are blocked since their parent node is blocked. When we remove the latter ones,
we obtain a tree where only leafs have blocked nodes (center). Finally, these blocked
nodes are removed, and the previous edges leading to them are modified to lead to
the root node that was blocking them, represented as dashed arcs on the right-most
graph.

Let us illustrate folding of S-states in a more concrete way, using the tableau of
Example 4.12. We have seen there that rule application can be used to obtain the

15We denote as f(7) the tuple obtained by applying the function f to each element of 7.

70 CHAPTER 4. A CLASS OF TERMINATING TABLEAUX

<-saturated S-state & = (A, 7T) where
A= {C(O’O)a 7’(@0, al)a D(al)a _'D(al)a 7’(@1, a2)7 C(GQ)}

The folded version of this S-state does not contain the constant ag (since the blocked
node {C(a2)} has been removed), but it makes up for this by an edge from a; to a;
in other words, G© = (A°, T) with A® = {C(ay),r(ag,a1),D(a1),~D(a1),r(a1,ao)}.

The next lemma will allow us to reuse some of the results shown in Section 3.3,
by relating <1-saturatedness of a state to “normal” saturatedness of the corresponding
folded state.

Lemma 4.18. If G is <-saturated, then G° is saturated.

Proof. Tet & = (A,T),8° = (A°,T) and R: (By,S) — {Bi,..., By} be applicable
to G© with substitution p. Assume first that R is a generating rule, and let N be
the node in A® to which this rule is applied, i.e., Bopp C N C A°. Since folding
never modifies any nodes in the graph structure, except from removing some, N is
also a node in G, i.e., Bop C N C A. As G is <-saturated, R is not <t-applicable to it.
This means that either IV is blocked, or there is a substitution ¢ extending p such that
B;o C A for some 7,1 < 4 < m. Since folding removes all blocked nodes and N belongs
to A©, the first case cannot occur; thus, the second option must be the case. We can
then construct a substitution o’ extending p such that B;o’ C A as follows: for every
x € UT:O var(Bj), if o(z) is a constant in a non-blocked node of A, then we define
o'(z) := o(x); if o(z) belongs to a node N; blocked by some non-blocked node No,
then in particular Ny = Nj, and thus there exists a bijection f : cons(Ny) — cons(N2)
such that P(aq,...,a,) € Ny iff P(f(a1),...,f(an)) € Ny ; in this case, we define
o'(z) = f(o(z)). Because these bijections are also used when defining the folded
state, it is easy to see that B;o’ C A® indeed holds. This contradicts our assumption
that R is applicable to G© with substitution p.

Suppose now that R is a non-generating rule. If Bgp C A, since <-applicability
coincides with regular applicability for non-generating rules, the proof is analogous to
the one for the previous case. Thus, we can assume w.l.o.g. that Bop ¢ A. Then,
Byp must contain edges r that were added by the folding process; these edges are of
the form = p(‘F, f-(7)) where f, is the bijection ensuring equivalence between the
blocked and the blocking nodes, and there are corresponding edges in A that have
blocked nodes as destinations. Using the bijections f, to rename constants, we can
define a substitution p’ such that Byp’ C A. Note that this inclusion depends on
our use of equality blocking. In fact, an assertion Pp € Byp may be an assertion in
a blocking node N, whose constants are renamed in p’ such that they belong to a
node N’ blocked by N. Thus, we need to know that all the assertions occurring in
the blocking node also occur (appropriately renamed) in the blocked node. This is
guaranteed by our definition of =.

Since & is <-saturated, R is not applicable to & with substitution p’, which implies
that there must exist an 4,1 < i < m such that B;p’ C A. We claim that B;p C A°.
This is an easy consequence of the facts that (i) the assertions of non-blocked nodes in
A are contained also in A®; and (ii) the assertions of blocked nodes in A are contained

4.3. BLOCKING IN FOREST TABLEAUX 71

in a renamed variant in the blocking node (i.e., the node to which the edge leading to
the blocked node has been redirected). O

As we did for the case without blocking in Section 3.3, we will use projections of
labeled S-states to show the correctness of the pinpointing extension. The next lemma,
states a close connection between pinpointing <l-saturatedness of a set of labeled S-
states and <-saturatedness of its projection.

Lemma 4.19. Let M be a finite set of labeled S-states and V a propositional valuation.
If M is pinpointing <-saturated, then V(M) is <-saturated.

Proof. Suppose that there is an S-state & = (A,7) € M and a rule of the form
R:(By,S) = {Bi,..., By} such that R is <-applicable to V(&) with substitution p.
For non-generating rules, applicability and <-applicability coincide. Consequently, if
R in non-generating, then we can re-use the proof of Lemma 3.13, which shows the
result for the case without blocking.

Thus, assume that R is a generating rule. We have that S C Ty, Bop C Ay, for
every 1,1 <4 < m and every substitution p’ on var(ByU B;) extending p, it holds that
Bip' € Ay, and the node N’ in V(&) to which the rule is applied is not blocked.

We will show now that R is pinpointing <l-applicable to & with the same sub-
stitution p. Since § C Ty C T and Byp C Ay C A, the first two conditions of
pinpointing applicability are satisfied. For the third condition, consider an 4 and a
substitution p’ on var(Bg U B;) extending p. We must show that ins(B;p’, A) # 0
where 1) = A\, g 1ab(bp) A Aycslab(s). Note that S C 7y and Bop C Ay imply that
V satisfies 1. Since B;p’ € Ay, there is a b € B; such that bp’ ¢ Ay. Thus bp' ¢ A or
V does not satisfy lab(bp’). In the first case, bp' is clearly i-insertable into A. In the
second case, 1 [~ lab(bp') since V satisfies 4, and thus bp’ is again 1-insertable into
A.

We have shown up to now that R is pinpointing applicable to & with the substi-
tution p. It remains to show that the node N C A to which this rule is applicable
(i.e., the node satisfying Bpp C N C A) is not pinpointing blocked. If N is not a
new node, then it cannot be blocked. Thus, we can restrict the attention to the case
where N is a new node. Since Byp C Ay, we have Byp C Ny. Thus, the node N’ in
V(G) to which the rule R is applied is a subset of Ny.' We know that this node is
not blocked. Also note that, since this node belongs to V(&), the sequence of edges in
S that leads to the node N is also contained in V(&) and leads to this node. In fact,
the label of an edge is always implied by the labels of assertions occurring in nodes or
as edges below this edge.

Assume that N is pinpointing blocked. We concentrate on the case where there is
a predecessor node M of N such that M =,;, N. (The case where the parent node of
N is blocked can be reduced to this case by considering, instead of N, the (unique)
predecessor node N’ of N that is blocked, but whose parent node is not blocked.) The
definition of the relation =,;, implies that there is a bijection f such that, for every
assertion P(aq,...,an) € N' C Ny the assertion P(f(a1),..., f(an)) € My. The fact
that the assertions in N’ are connected implies that their f-images in My are also

16Note that connectedness of N need not imply connectedness of Ny, C N.

72 CHAPTER 4. A CLASS OF TERMINATING TABLEAUX

connected, and thus they belong to a node M’ C My. This shows, however, that N’
is blocked by M’, which is a contradiction. O

Notice that if M —% M’, then it is also the case that M —g M’, and analogously
for pinpointing rule application: if M —¢,;, M, then M — gpin M. This, along with
(2) of Lemma 3.26, shows that M —¢,;,, M’ implies that either V(M) —gm V(M’)
or V(M) = V(M'). In particular, M i><51pm M implies V(Mp) S gm V(M).

One last observation before proceeding to the proof of correctness of the pinpoint-
ing extension is that the order in which rules are applied has no influence on the result
of a blocking tableau.

Lemma 4.20. Let T be an aziomatised input, and Mo = I'S. If there are M and M’
such that My =g M and My Sg M’ and M, M’ are both <-saturated, then M is
full of clashes iff M' is also full of clashes.

Proof. For every S-state & € M’ there is an S-state &y € My such that Gy < &,
where the corresponding constant renaming function is the identity. Recall that folding
only changes assertions involving blocked nodes, and that only new nodes can be
blocked. Consequently, we also have Gy < &©. Since G© is saturated by Lemma 4.18,
Lemma, 3.30 thus yields an S-state &' € M such that &' < G°.

Now, assume that M is full of clashes, i.e., every element of M contains a clash. To
show that M’ is full of clashes, consider & € M'. Then there is an element &' € M
such that &' < &°©. Since M is full of clashes, &' contains a clash, and thus &©
also contains a clash. Since &© is obtained from & by removing blocked nodes and
changing some edges, and since clashes consider only single nodes, this implies that
G also contains a clash.

The other direction can be shown analogously. U

Theorem 4.21 (Correctness of pinpointing with blocking). Let S be a forest
tableau for 3 and P.qmis(%) that is <-correct for the c-property P. Then the following
holds for every aziomatised input T' = (Z,T) over I and P 4qmis(%):

For every chain of rule applications Mo —gpin -+ —>gpin Mn such that
Mo = T9 and M, is pinpointing <-saturated, the clash formula P4,

induced by My, is a pinpointing formula for P and T.

Proof. Let T' = (Z,T) be an axiomatised input, and assume that 'Y = M, i><51pm M,
with M,, pinpointing <-saturated. To show that 1, is a pinpointing formula for P,
we have to show that, for every propositional valuation V, it holds that (Z,7Ty) € P
ift V satisfies 9o, .

Let Ny = (Z,7y)®. Since S terminates w.r.t. <-application, there is a <-saturated
set A such that ANy i)é N. Also, since M, Q;pm M,,, it must be the case that
V(Mg) Sgm V(M,). Additionally, V(M) = Ny and also V(M,,) is <-saturated.
Thus, Lemma 4.20 yields that N is full of clashes iff V(M,,) is full of clashes. By
the <-correctness of S for P, we have then that (Z,7y) € P iff N is full of clashes iff
V(M,,) is full of clashes iff V satisfies ¢, (Lemma 3.12). O

4.3. BLOCKING IN FOREST TABLEAUX 73

Our notion of <-correctness explicitly requires termination w.r.t. <l-application.
For covered forest tableaux we have seen that this condition is always satisfied.

Corollary 4.22. Let S be a covered forest tableau for 3 and P qmis(T) that is sound
and complete w.r.t. <-application, i.e., for every chain of rule applications of the form
Mo =5 ... =5 My, such that My = I'° and M,, is <-saturated we have that T € P iff
M., is full of clashes. Then the following holds for every aziomatised input T' = (Z,T)
over 3 and P qmis(%):
1. There is no infinite chain of rule applications TS = M, —Gpin M1 = Gpin -+
2. For every chain of rule applications T = M, —opin +++ Fapin Mn such that
M, is pinpointing <-saturated, the clash formula Yaq, induced by My is a
pinpointing formula for P and T.

In this chapter we presented some restrictions that force a tableau to produce
states that have a forest-like structure. If we additionally bound the set of predicate
names that can be used in the construction of states to be finite, we obtain forest
structures with finite branching. In order to ensure termination, we require also that
the structures have a finite depth. We showed two ways to achieve this. The first
one is by obtaining a partial ordering on the predicate names such that every rule
application produces only smaller assertions. The second method consists on changing
the applicability conditions of rules in order to implement a blocking mechanism. The
blocking mechanism used in this work follows the ideas of what is called equality
blocking in the DL literature, as it is triggered only if the blocking- and blocked-nodes
have both equivalent assertions. The approach followed clearly shows that blocking
imposes additional difficulties for defining the pinpointing extension, and for proving
its correctness.

In the following chapter we will leave behind the tableau-based approach towards
deciding a property and focus on another prominent method; namely, the automata-
based approach. We will show that it is possible to find a pinpointing formula for
a property that is decided by a so-called aziomatic automaton. Furthermore, since
decisions in this method are based on an emptiness test that can be performed in finite
time, we do not have to deal with the termination problems presented by the tableaux
approach. Perhaps more interesting is that the extension for finding a pinpointing
formula is also terminating, and actually requires only polynomial time on the size of
the original automaton.

74

CHAPTER 4. A CLASS OF TERMINATING TABLEAUX

Chapter 5

Automata-based Pinpointing

In this chapter we leave behind the tableau-based approach and focus on automata-
based decision procedures. In a nutshell, we will show that if we can decide a property
P with an automata-based method, then we can also compute a pinpointing formula
for P. As an additional advantage, we will show that the computation of this pin-
pointing formula can be done in time polynomial in the size of the automaton that
decides P.

The automata-based approach differs from the tableau-based in the way the deci-
sions are made. Intuitively, we can think of the rule application in general tableaux
as an attempt to build a model that verifies (or falsifies) the property being tested;
on the other hand, the iterative emptiness test used by the automata-based approach
can be seen as an attempt to prove the (non-)existence of such a model, without
actually building it. In other words, tableau-based decision procedures can be seen
as constructive proofs of the fact that the given axiomatised input belongs to the
property, as opposed to the non-constructive proofs obtained by means of automata.
Consider for instance unsatisfiability of ALC concept terms w.r.t. SZ-TBoxes. An
axiomatic input (C,7") belongs to this c-property if and only if there is no model Z of
the TBox 7 such that CT # (. The tableau-based decision procedure tries to falsify
this condition by forcing an interpretation to map the concept term C to a non-empty
set, and then expanding it to satisfy all the conditions required from a model. Only
if this construction terminates without finding a contradiction is the input rejected
(see Section 2.3.5). The automata-based decision procedure for the same c-property
reduces the problem to deciding the existence of a run of a looping automaton whose
root is labeled with an initial state. But the emptiness test does not try to construct
such a run; instead, it finds the set of all states that can serve as root for runs of the
automaton, and compares it with the set of initial states (see Section 2.4.1). At no
point of this process is the actual construction of a run attempted.

While a non-constructive approach is certainly enough for deciding a property,
where we want only to test whether a model exists, it is not completely obvious
how these ideas can generalise to the computation of a pinpointing formula, or in
general MinAs and MaNAs for the axiomatised input and decided property. Basically,
with a constructive approach we can also highlight the specific steps that need to
be executed for adding a specific piece to the model, as we did in the pinpointing

75

76 CHAPTER 5. AUTOMATA-BASED PINPOINTING

extension of general tableaux (Chapter 3). Having a non-constructive proof disallows
the application of this method. It is in that respect that this chapter introduces a
novel idea, showing that not only constructive decision procedures can be extended to
labeling methods that ultimately compute a pinpointing formula. Our approach makes
the assumptions that individual axioms have an influence in the construction of the
automaton that is independent of the presence or absence of other axioms, and that
we can represent this influence by restricting the transition relation and initial states
from a weaker automaton. Although these assumptions clearly affect the generality
of the method, we believe that they are reasonable, and still allow for deciding and
pinpointing several c-properties of interest.

The chapter is divided as follows. We first show how any automaton deciding a
c-property can be transformed into a weighted automaton whose so-called behaviour
corresponds to the pinpointing formula. We then present an iterative procedure for
computing the behaviour of weighted automata over any finite distributive lattice; the
automaton used for pinpointing being a special case covered by this algorithm. During
the development of our work, an alternative algorithm for computing the behaviour
of weighted tree automata working on infinite trees was independently developed in
[DKRO8]. We devote the last section of this chapter to a comparison of the two
algorithms, with a special emphasis on their application to pinpointing.

5.1 Pinpointing Automata

As mentioned already in repeated opportunities, automata can also be used to de-
cide properties in DLs and other logics. In the case of the algorithm presented in
Section 2.4.1, the c-property under consideration is unsatisfiability of a concept term
w.r.t. a general SZ-TBox. Likewise, in Section 2.4.2, we decide the c-property of
axiomatic wunsatisfiability of LTL formulae. The decision procedures consisted on
performing an emptiness test on the automaton AZE'- (see Definition 2.19) or A%
(Definition 2.23). The property under consideration holds if and only if the automaton
has no successful run whose root is labeled with an initial state.

Contrary to the tableau-based approach presented in Chapter 3, the axioms are
not used explicitly for deciding the property, but are only implicit in the construction
of the automaton. For instance, the TBox is used to define the transition relation of
the automaton 'Z?tT by restricting the set of usable transitions to only those that were
compatible with it. In the automaton AZ;‘}Q, the LTL formulae in the set R restrict
the set of initial states. If the axiomatised input belongs to the property being decided
by such an automaton, it is impossible to distinguish the axioms that are relevant for
this fact from those that are superfluous, and thus, the only possible way to compute
the set of MinAs and MaNAs is by trial and error, constructing one automaton for
each possible subset of axioms and performing the emptiness test on it.

In general, the automata-based approach for deciding a property P consists on
translating each axiomatised input I' = (Z, T') into an automaton Ar such that T" € P
if and only if Ar has no successful runs. Since we want to find out how the axioms
relate to each other with respect to the c-property under consideration, we need to

5.1. PINPOINTING AUTOMATA 77

know how the absence of some of the axioms in 7 would influence the construction
of the automaton. We thus assume that for every 7' C T, the automaton A(I,T/) can
be constructed from Ar by appropriately restricting its set of transitions and initial
states. To this end we will employ two so-called restricting functions.

Definition 5.1 (Restricting functions, restricted automaton). Let A be the
generalised Bichi automaton A= (Q,A, I, Fy,...,Fy,) for arity k and T = (Z,T) an
aziomatised input. The functions Ares : T — P2(Q*') and Ires : T — 2(Q) are
called a transition restricting function and an initial restricting function, respectively.
We extend these restricting functions to be applicable over sets of axioms as follows:

Ares(T") := mAres(t) and
teT’

Ires(T") = mIres(t).
teT’

If T" C T, then the T'-restricted subautomaton of A w.r.t. Ares and Ires is the
generalised Biichi automaton A defined as

A= (Q, AN Ares(T"), I N Ires(T'), F, ..., Fy).
n

We will give the name of aziomatic automata to generalised Biichi tree automata
equipped with a transition- and an initial-restricting function.

Definition 5.2 (Axiomatic automaton). Let A = (Q,A,I, F,..., F,) be a gener-
alised Biichi automaton for arity k, T' = (Z,T) an axiomatised input, and the functions
Ares : T — P(Q*1) and Ires : T — P2(Q) a transition and an initial restricting
function, respectively. The tuple (A, Ares, Ires) is called an axiomatic automaton for
I. [|

An axiomatic automaton is considered correct for a property P if the restricted
subautomata decide P for the axiomatised input corresponding to each subset of
axioms.

Definition 5.3 (Correctness). Given a c-property P, (A, Ares, Ires) is correct for
T w.r.t. P if for every T' C T it is the case that (Z,T') € P iff the restricted subau-
tomaton A1 has no successful run v such that r(e) € I N Ires(T"). []

Consider again the automaton AZ?}T defined in Section 2.4.1. This automaton
correctly decides unsatisfiability w.r.t. general SZ-TBoxes but still lack appropriate
restricting functions, a necessary condition in the definition of axiomatic automata.
It is easy to notice that the only place where the axioms influence the construction
of this automaton is in the transition relation A, which is defined as the set of all
tuples in Q**! that satisfy the Hintikka condition and are compatible with all the

78 CHAPTER 5. AUTOMATA-BASED PINPOINTING

axioms in 7. Thus, we can alternatively remove the second condition in the definition
of this transition relation, that is, the condition of compatibility with the TBox, and
obtain the same intended behaviour through the transition restricting function. Since
in this case the axioms do not influence the set of initial states, we can set the function
Iresc 1 as the constant function @); i.e., the function that maps every axiom in 7 to
the set of all states Q.

Definition 5.4 (Axiomatic automaton for S7Z). Let C' be a concept term, T
a general SZ-TBox and k the number of existential restrictions in sub(C,T). The
aziomatic automaton (Ac 1, Aresc 1, Iresc 1) has as its first component the looping
automaton Ac,m = (Q, A, I) where

e Q is the set of all Hintikka sets for (C,T);

o A is the set of all tuples (Hy, Hy, ..., Hy) € Q¥ satisfying the Hintikka condi-
tion; and

e I={HecQ|CeH}

The transition restricting function Aresc,T maps each axiom t € T to the set of all
tuples in A that are compatible with t. The initial restricting function Iresc7 maps
each axiom t € T to the set Q. []

One can see that for 7/ C T, the T -restricted subautomaton of Ac 7 is exactly
the automaton .AscatT,. Thus, this construction yields a correct axiomatic automaton

for unsatisfiability of ALC concept terms w.r.t. SZ-TBoxes.

Theorem 5.5. Let C' be an ALC concept term and T a general SZ-TBox. The ax-
iomatic automaton (Ac,1, Aresc 7, Iresc 1) is correct for (C,T) w.r.t. unsatisfiability.

To obtain an axiomatic automaton for axiomatic unsatisfiability of LTL formulae,
we can follow a similar idea. Notice that, in this case, the axioms have no impact on
the transition relation of the automaton A%%, but rather in the set of initial states.
Thus, we can weaken the definition of .Afj:gz such that its set of initial states is now
given by all elementary sets that contain the static formula ¢. Since we do not want
axioms to affect the transition relation of the restricted automaton, we set, for every
1 € R, the transition restricting function Aresy z(¢) = A. The initial restricting
function Iresy z then maps every LTL formula ¢ € R to the set of elementary sets

containing 1.

Definition 5.6 (Axiomatic automaton for LTL). Let ¢ and R be an LTL formula
and a set of LTL formulae, respectively, and let 01U, ..., 0,Up, be all the until
formulae in cl(¢,R). The aziomatic automaton (Ayr,Aresyr,Iresyr) has as its
first component the generalised Biichi automaton Ay = (Q,A, I, Fy,..., F,), where

e Q) is the set of all elementary sets for (¢, R);

o A consists of all compatible pairs (H,H') € Q x Q;

5.1. PINPOINTING AUTOMATA 79

e [={HeQ|peH};
0Fi:Z{H€Q|T/JZ'€HO’P9iu¢i¢H}.

For every i € R, the transition restricting and initial restricting functions are given
by Aresy () := A and Iresy z(¢) := {H € Q | ¢ € H}, respectively. []

Clearly, for every R’ C R, the R'-restricted subautomaton of A4 is equivalent
to the automaton .Az)at .. This means that the axiomatic automaton constructed this
way is correct for (¢, R) w.r.t. axiomatic unsatisfiability.

Theorem 5.7. Let ¢ and R be an LTL formula and a set of LTL formulae, respec-
tively. The aziomatic automaton (Agr,Aresyr,Iresy) is correct for (¢, R) w.r.t.
aziomatic unsatisfiability.

Given an axiomatic automaton that correctly decides a c-property, we will con-
struct a weighted automaton whose so-called behaviour corresponds to the pinpoint-
ing formula for this property. Weighted automata do not merely accept or reject
an input tree, but rather assign a value to it; these values come from a distributive
lattice [Gra9s].

Definition 5.8 (Distributive lattice). A distributive lattice is a partially ordered
set (S, <g) such that infima and suprema of arbitrary finite subsets of S always exist
and distribute over each other. The distributive lattice (S,<g) is called finite if its
carrier set S is finite. [|

As we will see next, any weighted automaton uses as weights only finitely many
elements of the underlying distributive lattice. Since finitely generated distributive
lattices are finite [Gra98], the closure of this set under the lattice operations infimum
and supremum yields a finite distributive lattice. For this reason, we will in the
following assume without loss of generality that the weights of our weighted Biichi
automaton come from a finite distributive lattice (S, <g).

For the rest of this chapter, we will often simply use the carrier set S to denote
the distributive lattice (S, <g). The infimum (supremum) of a subset 7' C S will be
denoted by @,crt (B,crt). We will often compute the infimum (supremum) &;.; %
(6B,c; ti) over an infinite set of indices I. However, the finiteness of the lattice and the
idempotency of the operators infimum and supremum ensure that the sets over which
the operators are actually applied are finite, and hence infimum and supremum are
well-defined in this case. For the infimum (supremum) of two elements, we will also
use the infix notation; i.e., write t; ® t2 (t1 @ t2) to denote the infimum (supremum)
of the set {t1,t2}. The least element of S (i.e., the infimum of the whole set S) will
be denoted by 0, and the greatest element (i.e., the supremum of the whole set S) by
the symbol 1.

It should be noted that our assumption that the weights come from a finite dis-
tributive lattice is stronger than the one usually encountered in the literature on
weighted automata. In fact, for automata working on finite trees, it is sufficient to
assume that the weights come from a so-called semiring [Sei94]. In order to have a

80 CHAPTER 5. AUTOMATA-BASED PINPOINTING

well-defined behaviour also for weighted automata working on infinite objects, the
existence of infinite products and sums is required [DR06, Rah07]. The additional
properties imposed by our requirement to have a finite distributive lattice (in partic-
ular, the idempotency of product and sum) will be used to show that we can actually
compute the behaviour of our weighted Biichi automata (see Section 5.2).!7 Since our
main goal in the use of weighted automata is to compute a pinpointing formula, these
stronger assumption will not be problematic. As we will see later, the weights used for
computing this formula actually belong to a finitely generated free distributive lattice.

Definition 5.9 (Weighted Biichi automaton). Let S be a finite distributive lattice.
A weighted generalised Biichi automaton (WGBA) over S for arity k is a tuple of the
form A= (Q,in,wt, Fy,..., F,) where:

e () is a finite set of states,

in: Q — S is the initial distribution,
o wt: Q! — S assigns weights to transitions, and
o [',...,F, CQ are the sets of final states.

A WGBA is called weighted Biichi automaton (WBA) if n = 1 and weighted looping
automaton (WLA) if n = 0.
A run of a WGBA A is a labeled tree r : K* — Q. The weight of this run

is Wt(r) = Qcr- Wt(r(u)). This run is successful if for every path p and every
i,1 < i < n, there are infinitely many nodes u € p such that r(u) € F;. Let succy
denote the set of all successful runs of A. The behaviour of the automaton A is

|A| == @ in(r(e)) ® wt(r).

resucc 4

For example, the Boolean semiring B = ({0,1},A,V,1,0) is a finite distributive
lattice, where the partial order is defined as 1 <p 0. Note that we have defined 1 to be
smaller than 0, and thus in this context conjunction yields the supremum (i.e., is the
“addition” @) and disjunction yields the infimum (i.e., is the “product” ®). Likewise,
1 is the least element 0, and 0 is the greatest element 1. Any generalised Biichi
tree automaton A = (Q,A,I,Fy,...,F,) can easily be transformed into a WGBA
Ay on B such that the behaviour of A, is 0 iff A has a successful run. In A, the
initial distribution maps initial states to 0 and all other states to 1; a tuple in Q¥*!
receives weight 0 if it belongs to A, and weight 1 otherwise. We will now see that this
automaton behaves just as it was previously claimed.

17 Alternatively to the idempotency assumption, one can try to ensure convergence of these infinitary
operators with the help of a so-called discounting function [DK06, Man08, DSV08]. Since we want
axioms to have the same influence over the result, regardless on where in the model they are used, we
will not follow these ideas.

5.1. PINPOINTING AUTOMATA 81

The emptiness test for Biichi automata sketched in Section 2.4 can be adapted
such that it computes the behaviour of A,, as follows. We will construct a function
bad : @ — {0,1} such that bad(q) = 1 iff ¢ is a bad state. The outer iteration of
the algorithm will update this function at every step. In the beginning, no state is
known to be bad, and thus we start the iteration with bady(q) = 0 for all ¢ € Q. Now
assume that the function bad; : @ — {0,1}, for i > 0, has already been computed.
For the next step of the iteration, we call the inner loop to update the set of adequate
states. In this loop, we are going to compute the function adq’ : Q — {0,1}. Here,
adqi(q) = 1 means that ¢ is not an adequate state, i.e., that it is not possible to
construct a run with g at the root where each path reaches at least one final state.
At the beginning we know nothing about the adequate states, so we set adqé(q) =1
for all ¢ € Q. Assume that we have already computed adq’, : @ — {0,1}. To know
whether a state should become adequate in the next step, we need to check for each
transition starting from this state whether the final states reached by the transition
are non-bad, and the non-final states are already known to be adequate. Thus, we
have

adq}, 41 (q) = A wt(g,q1,---.qx) vV \/ adql(g;) v \/ badi(gj). (5.1)
(4,q1,--,q1) EQFF! q;¢F g;€F

The function adq’ is the limit of this inner iteration, which is reached after at most
|Q| steps. With this function, we define

bad; 11 (q) = bad;(q) V adq’(q).

The function bad is the limit of this outer iteration, which is also reached after at
most |@Q| steps. This computation of the function bad by two nested iterations basi-
cally simulates the computation of all bad states in the emptiness test for Biichi tree
automata that we sketched in Section 2.4. It is thus easy to show that bad(q) = 1 iff
g is a bad state, i.e., cannot occur as a label in a successful run of A.

Given the definition of A, it is easy to see that a run r : K* — @Q of A, has
weight 0 iff it is a run of A that starts with an initial state of A. Consequently, A has
a successful run that starts with an initial state iff

lAull=/\ in(r(e)) Vwt(r) =0.

TESUCC A,

Putting these observations together, we thus have: the behaviour of A, is 0 iff A
has a successful run that starts with an initial state iff there is an initial state ¢ (i.e.,
in(g) = 0) that is not bad (i.e., bad(gq) = 0). This shows that the behaviour of A,
is given by A coin(q) V bad(q). Later, we will see that the behaviour of a WBA can
always be computed by such a procedure with two nested iterations.

Starting from a correct axiomatic automaton, we can construct a weighted au-
tomaton whose behaviour corresponds exactly to a pinpointing formula. Obviously,
the semiring used by this automaton needs to have monotonic Boolean formulae as
elements. We use the 7-Boolean semiring. Recall that every axiom in 7 is labeled

82 CHAPTER 5. AUTOMATA-BASED PINPOINTING

with a unique propositional variable, and lab(7") represents the set of all the labels of
elements in 7. The T-Boolean semiring is given by B/ = (I@(T), AV, T, 1), where
B(T) is the quotient set of all monotonic Boolean formulae over lab(7") by the propo-
sitional equivalence relation; in other words, two propositionally equivalent formulae
correspond to the same element in IEB(T) This semiring is indeed a distributive lattice,
where the partial order is defined as ¢ < 1) iff ¢ — ¢ is a valid propositional formula.
Furthermore, as 7 is a finite set of axioms, this lattice is also finite: it corresponds to
the free distributive lattice over the generators lab(7"). Note that, similar to the case
of the Boolean semiring B defined above, conjunction is the semiring addition (i.e.,
yields the supremum @) and disjunction is the semiring multiplication (i.e., yields the
infimum ®). Likewise, T is the least element 0 and L is the greatest element 1.

Definition 5.10 (Pinpointing automaton). Let (A, Ares, Ires) be an aziomatic
automaton for the aziomatised input T = (Z,T), with A= (Q,A,I,Fy,...,F,). The
violating functions Avio : Q¥*1 — B7 and Ivio : Q — B are given by

Avio(qo, q1,---,qr) = \/ lab(t); and
{tET‘(quqla-“an)gAres(t)}

Ivio(q) = \/ lab(t).

{teT |q¢Ires(t)}

The pinpointing automaton induced by (A, Ares, Ires) w.r.t. T is the WGBA
(A, Ares, Ires)P"™ over BT, given by (A, Ares, Ires)P"™ = (Q,in,wt, Fy, ..., F,), where

{Ivio(q) ifqgel

T otherwise;
_ JAvio(g,q1,---5aqr) if (q1,---,q8) €A
wt(q,q1,. .., qk) = T otherwise

Let r be a tree labeled with elements of Q. It is easy to see that if r corresponds to
a run of the automaton A, then its weight when seen as a run of (A, Ares, Ires)P™™ is
wt(r) = Ve Avio(r(‘ug); on the contrary case, its weight is wt(r) = T. Intuitively,
the violating function Avio expresses which axioms are not satisfied — or “violated” —
by a given transition. The weight of a run accumulates then all the axioms violated by
any of the transitions appearing as labels in this run. Additionally, the function Ivio
represents the axioms that are violated by the initial state of the run. Thus, removing
all the axioms appearing in these two formulae would yield a subset of axioms that
are not violated by this run. This means that, if the run is successful and the root is
labeled with an initial state, due to correctness, the property does not hold anymore
after the removal of those axioms. But different runs may lead to different sets of
axioms that need to be removed, and hence we need the conjunction of all of them to
obtain a pinpointing formula.

5.2. COMPUTING THE BEHAVIOUR OF WEIGHTED AUTOMATA 83

Theorem 5.11. Let P be a c-property, and T' = (Z,T) an aziomatised input. If
the aziomatic automaton (A, Ares, Ires) is correct for T' w.r.t. P, then the behaviour
|(A, Ares, Ires)P*"|| is a pinpointing formula for T' w.r.t. P.

Proof. We need to show that, for every valuation V C lab(7), it holds that V satisfies

(A, Ares, Ires)P'™|| iff (Z,Ty) € P. Let V C lab(T) be an arbitrary valuation.
Suppose first that (Z,7y) ¢ P. Since (A, Ares, Ires) is correct for I' w.r.t. P,

there must be a successful run r of A5, with r(¢) € I N Ires(7y). Consequently,

7’(73 € Ares(Ty) holds for every u € K*, and thus V cannot satisfy Avio(r(‘ui), for
any u € K*. Since r is a successful run of A7, it is also a successful run of A, which

implies wt(r) =/, c g« Avio(r(‘ug). Thus, V does not satisfy wt(r). Since r(e) € I, we
know that in(r(e)) = Ivio(r(e)); additionally, r(e) € Ires(Ty) implies that V does not
satisfy Ivio(r(g)). Thus, V does not satisfy in(r(¢)) V wt(r). But then V also cannot
satisfy the conjunctive formula A, g, in(r(€)) V wt(r) = ||(A, Ares, Tres)P™||.
Conversely, if V does not satisfy ||(A, Ares, Ires)P" || = A, couec IN(r(€)) Vwi(r), then
there must exist a successful run r such that V does not satisfy in(r(¢)) V wt(r). This

implies that () € INIres(7Ty) and that r(u) € Ares(Ty) for allu € K*. Consequently,
7 is a successful run of Ay, with r(¢) € I N Ires(7y), which shows (Z,Ty) ¢ P, by the
correctness of the axiomatic automaton. O

This theorem shows that it suffices to compute the behaviour of the pinpoint-
ing automaton (A, Ares, Ires)P’” induced by an axiomatic automaton (A, Ares, Ires)
in order to obtain a pinpointing formula for the property decided by (A, Ares, Ires).
When we began this work, we were unable to find any algorithm for computing the
behaviour of weighted automata in the literature and hence had to develop our own,
which generalises the ideas used in the iterative emptiness test of unweighted au-
tomata (Section 2.4). During the development of our work, an alternative algorithm
for computing the behaviour of weighted tree automata working on infinite trees has
independently been developed in [DKROS8]. It turns out, however, that using this al-
gorithm in our pinpointing application basically yields a so-called black-box approach
for pinpointing, in which the set of all MinAs is obtained by testing for emptiness
of the restricted subautomaton defined by each subset of axioms. The pinpointing
formula in disjunctive normal form is then obtained from this set as described by the
Expression 3.2 in page 37. Instead, our algorithm tries to compute the pinpointing
formula within a time bound proportional to the one required for a single emptiness
test. We describe this in more detail in the following sections.

5.2 Computing the Behaviour of Weighted Automata

In this section, we first show how the behaviour of a weighted Biichi automaton
over a finite distributive lattice can be computed by two nested iterations. We then
show how, if we restrict the discourse to WLAs, the procedure can be simplified to
a single bottom-up iteration. Afterwards, we prove that for every WGBA one can
construct in polynomial time a WBA having the same behaviour, thus obtaining a
method for computing the behaviour of WGBAs also in polynomial time. This latter

84 CHAPTER 5. AUTOMATA-BASED PINPOINTING

reduction follows the ideas that have previously been used for the case of unweighted
automata [VW86].

5.2.1 Computing the Behaviour of a WBA

By definition, the behaviour of a weighted Biichi automaton is the addition of the
weights of all successful runs, which themselves consist of the product of the weights
of all transitions that they contain, multiplied by the initial distribution of their root
labels. Trying to apply this definition directly to the computation of the behaviour
will unavoidably lead to failure given the potentially infinite number of successful runs
and the infinite size of each of them. To overcome this problem, we will generalise
the iterative algorithm for deciding emptiness of Biichi automata that was sketched in
Section 2.4 and produce a method that computes the behaviour in a similar fashion.
To introduce the ideas, we will consider a Biichi automaton as a WBA over the
Boolean semiring as described in page 80. The two iterations described there, namely
the one that computes the functions adq’ (Equation 5.1) and the one that computes
the function bad, will be generalised to monotone operators that can be applied to
arbitrary finite distributive lattices.

For the remaining of this section we will assume that we have an arbitrary but
fixed WBA A = (Q,in,wt, F') over the finite distributive lattice S. We will show that
A induces a monotone operator Q : S€ — S?, where S? is the set of all mappings
from @ to S, and that the behaviour of A can easily be obtained from the greatest
fixpoint of this operator. The partial order <g can be transferred to S€ in the usual
way, by applying it component-wise: if 7,0’ € S, then (o @ 0')(q) = o(q) ® o'(q) for
all ¢ € Q. Tt is easy to see that (S9, <gq) is again a finite distributive lattice. We will
use ® and @ also to denote the infimum and supremum in S. The least (respectively
greatest) element of S¥ is the function 0 (respectively I) that maps every ¢ € @ to 0
(respectively 1).

To define this operator Q, we will follow the same ideas sketched for the emptiness
test. Intuitively, an application of this operator corresponds to one iteration in the
computation of the function bad. In the unweighted case, at each of these steps, we
performed an inner iteration to compute the auxiliary function adq. Analogously,
in order to define the operator @ we need first to introduce an auxiliary operator
O : 89 - §9 We will focus first on this operator @, which will also be shown to
be monotone. The function adq used in the unweighted case actually depends on
knowledge of the bad states that have been computed so far; this dependency extends
to the weighted case, in order to allow a correct iteration of operator Q (see page 89).
Thus, we actually define one operator Oy for each f € SQ. Following the idea of
Equation (5.1), the operator Oy is defined as follows for every o € S Q@ and q € Q:

k
Oro)g)= P wiaa,....a) ®K)steps(o)(a), (5.2)

(Q7q17---7Qk)EQk+l Jj=1

5.2. COMPUTING THE BEHAVIOUR OF WEIGHTED AUTOMATA 85

where

ste =
Pf(U)(Q) o(q) otherwise.

{f(q) ifgeF

In the inner iteration of the emptiness test, the function adq’ is computed by
applying Equation 5.1 to a previously computed function adqfZ until this process sta-
bilizes; that is, until a fixpoint has been found. This iteration is initialized with the
function adqf] that maps every state to 1. Since 1 is the least element of the lattice
B, the function adqé is the least element of the lattice S¢. Thus, the limit of this
iteration, i.e., the function adq’, is in fact the least fixpoint of the operator defined
by Equation 5.1 on the lattice S€. With the help of the next lemma, we will show
that the same idea holds in the operators Oy; that is, that one can compute its least

fixpoint by finitely many applications of the operator over the infimum of the lattice
SQ.

Lemma 5.12. For every f € S the operator Oy is monotone, i.e., 0 <gq o' implies
Of(0) <50 Of(a’).

Proof. Let 0,0" € S9 be such that 0 <gq ¢’. This implies also step(c) <ga step(d’).
Thus, we have for every q € Q):

k
Of(o)(q) = P wtaa....) @R step;(0)(q))
j=1

(4,91,5-,q5) EQFF!

k
<s D wtg g a) @ Q) steps(0')(g) = Of (o).
i=1

(4,q1,5-,q5) EQFF!

O

Since we know that S is finite, this in particular means that the operator @ 7 is
continuous. By Tarski’s fixpoint theorem [Tar55], this implies that the least fixpoint
(ifp) of Oy is D,,5¢ OF(0). Finiteness of S @ yields that this Ifp is reached after finitely

many iterations; more precisely, there exists a smallest m,0 < m < |S ||Q| such that
0?(6) = (97“(6), and for this m we have B, 0;}(6) = OT(G) This gives us a
bound on the number of iterations that is exponential in the size of the automaton.
We will later show (see Theorem 5.18) that it is possible to improve this bound to a
polynomial number of iterations, measured in the number of states.

Recall our intuition for the auxiliary operator that is trying to find the adequate
states. These states are those from which it is possible to construct a finite partial
run that finishes in final states that are not known to be bad. In the general case,
the operators O will help in computing the weights of all such runs, which in the end
will allow us to help the weights of all successful runs, and hence the behaviour of the
automaton. Next, we give a formal definition of the notion of a finite partial run.

Definition 5.13 (Finite run). A finite tree is a finite set t C K* that is closed
under prefizes and such that, if ui € t for some u € K* and i € K, then for all

86 CHAPTER 5. AUTOMATA-BASED PINPOINTING

§,1 < j<k,uj €t. A nodeu €t is called a leaf if there is no j,1 < j < k such that
uj € t. The set of all leaf nodes of a tree t is denoted by Inode(t). The depth of a
finite tree t is the length of the largest word in t.

A finite run is @ mapping r : t = Q, where t is a finite tree. Given such a run,
leaf(r) denotes the set of all states appearing as labels of a leaf.

We denote as runsy the set of all runs r of depth at least 1 such that for every
node u # €, r(u) € F if and only if u is a leaf. Additionally, runslgn denotes the set
of all runs in runsy having depth at most n. For a state ¢ € @, we define the sets
runs; (q) = {r € runs; | 7(e) = q}; analogously runs="(q) = {r € runs=" | r(e) = ¢}.
The weight of a finite run r:t — Q is Wt(r) = @, cp\inode(r) WET (W)]

When we are looking for the states that are adequate, we are actually trying to
construct a run in runs; that starts with each state. Recall from our intuition that
we first call adequate any state ¢ having a transition starting with it and leading
only to final states. This condition is analogous to having a finite run (of depth 1)
in runs;(q). We then call adequate any other state p that has a transition leading to
adequate or final states; i.e., to non-final states having a run in runs; starting with
them, or to final states. Concatenating this transition with the runs in runs;, we
obtain a new run in runsy(p). This image is nonetheless incomplete, since we are not
really interested in any finite run finishing in final states, but only those whose leaf
nodes have labels that are not bad. We can see this as multiplying the weight of this
run by the function bad applied to each of the states labeling a leaf node. In the
general case, consider a given function f :) — S. We define the f-weight of a run r
as wty(r) = wt(r) ® @ eieaf(r) f (0)-

We will show that the lfp of the operator O; yields the addition of the f-weights
of all runs in runs;(q) for every state ¢ € @ with the help of the following lemma.

Lemma 5.14. For alln > 0 and all g € Q, (’)}l(a)(q) = ®r€runs<n(q) wtg(r).

Proof. The proof is by induction on n. For n = 0, the result follows from the fact that
runs;” = (), and hence D, cruns0 () W1 (1) = 0= 0(q) = O}(0)(q)-

Assume now that the identity holds for n. Given a tuple (qi,...,q;) € QF, let
i1,...,4 be all the indices such that ¢;; ¢ F for all j,1 < j <[and ijy,...,i those
indices such that ¢;; € F' for all j,l +1 < j < k. Application of the definitions of the
operators Oy and step, respectively, yields

k
01 (0)(q) = B wia .- a) @ K)step(0F(0))(q))
(q1.-q1)EQF j=1
l B k
= P waa..a) Q00 (w) e K flau)
(qlzaqk)er J:1]:l+1

If 1 < j <1, then we will abbreviate runslgn(qij) as rn?} and leaf(r;) as If ;. In addition,

5.2. COMPUTING THE BEHAVIOUR OF WEIGHTED AUTOMATA 87

we use the symbol F as an abbreviation for the product ®§:l 41 f(qi;). We then have

l
OO = D wg . a) @R @D wir)&F (53)

(q15--,q1)EQF j=lrj€rm?

[
= P wa...wel P Rwilry) eF (5.4)

(q1,--q1) EQ¥ ri€my . Emp j=1

l
= P waa--we(P Q@wtr)e) fp) @Fb5.5)

(q1,---,qr)EQ* riermy,..,riermp j=1 pElf;

- &b P w0 © Q) wt(r) e Q) flp) @F (5.6)
(q1,-,qr)EQF T1EMT .y EXny g ¢F peElf;

= P wne Q fb (5.7)
rEruns§n+1(q) pEleaf(T‘)

= @ wt(r).
rEruns§n+1(q)

Equation (5.3) applies the induction hypothesis. Identity (5.4) uses the fact that S?
is a distributive lattice, which allows us to move the addition out of the product,
while (5.5) uses the definition of f-weight. Identity (5.6) uses again the distributivity
to multiply wt(q, q1,...,qx) inside the addition. Finally, Identity (5.7) simplifies the
two sums by constructing a run of larger depth. Instead of considering first the
transition (g, qi,...,qx) and then runs of depth up to n starting with each ¢;,, we
simply take the corresponding run of depth n + 1 starting at ¢g. This run labels the
root with ¢ and the successor node ¢ with ¢;. If ¢; is a final state, then it remains as a
leaf, otherwise, below the node i we have the former run starting with ¢;. Thus, the
set of leafs of this larger run is the union of the sets of leafs of the runs r;s and the
set of those ¢;s that are final states. The last identity merely applies the definition of
f-weight again. O

The next theorem shows the relation between the f-weights of the runs in runs;
and the least fixpoint of the operator Oy.

Theorem 5.15. Let f € S9 and assume that oy is the lfp of the operator Of. Then,
for every q € Q, 50(q) = D, cruns; (g Wt (1)

Proof. By Lemma 5.14 we know that

Doro = § D w0

n>0 720 cruns=" (g)

= @ wts(r).

réerunsy(q)

88 CHAPTER 5. AUTOMATA-BASED PINPOINTING

Tarski’s fixpoint theorem states that the least fixpoint of Oy is @,,+, (’);}(6), which
completes the proof of the theorem. - O

Before describing how the operators Oy help in the computation of the behaviour
of a weighted automaton, it is worth showing that the number of times it needs to be
applied before reaching its Ifp is bounded by the number of states of the automaton.
The notion of m-finalising automata will be useful for this.

Definition 5.16 (m-finalising). A WBA is m-finalising if for every function f € S@
and every partial run r in runsy(q) there is a partial run s, in runslgm(q) such that
wtr(r) <g wtg(sy). |

We will first show that every WBA is m-finalising for any m grater to the number
of non-final states plus one, i.e. |Q\ F|+1. Afterwards we will show how this property
yields a bound on the number of iterations needed to reach the least fixpoint of Oy.

Theorem 5.17. Let A be a WBA with less than m — 1 non-final states. Then A is
m-finalising.

Proof. Let f € S? and consider a run r € runs;(¢). If 7 € runs="(q), then we can

consider s, = r, and hence there is nothing to prove.

Otherwise, if 7 ¢ runs="(q), then there must be a path in the tree of length greater
than m. As r € runsy, in this path there is only one non-root node, namely the leaf
node, that is labeled with a final state. Thus, there are at least m — 1 nodes labeled
with non-final states. Since there are less than m different non-final states, there must
be two non-root nodes u # v in this path such that r(u) = r(v). Since these nodes
are in the same path, we can assume w.l.o.g. that v = uv’ for some v € K*\ {e}. We
define a new run s as follows: for every node w if there is no w’ for which w = uw’, set
s(w) := r(w), otherwise (that is, if w = uw’ for some w') then set s(uw') := s(vw').
This construction defines an injective function g from the nodes of s to the nodes of r
such that, for every node w of s, we have s(w) = r(g(w)). Notice that this function is
not surjective, since there is no w such that g(w) = u. Thus, s has less nodes than r.
Additionally, s is in runs;(q). Furthermore, every transition in s is also a transition
in r and for every w € leaf(s), g(w) € leaf(r). This implies that wts(r) <g wtg(s). If
s is still not in runslgm, then we can repeat the same process to produce a smaller run
s' with a smaller f-weight, until we find one that is in runslgm. O

We proceed now to show that if we have an m-finalising WBA, then the Ifp is
found after at most m applications of the operator Oy to the least element 0. Due to
Theorem 5.17, this in particular shows that one needs polynomial time, measured on
the number of states of A to compute this 1fp.

Theorem 5.18. If A is m-finalising, then O?(ﬁ) is the Ifp of Oy.

Proof. Let oq be the Ifp of Oy. We know that o9 is the supremum of {O%(0) | n > 0};

thus, it is sufficient to show that O?(ﬁ) (q) > oo(q) for all ¢ € Q. By Theorem 5.15,
we know that 00(q) = D, cryns, () Wt (r)- Since A is m-finalising, we can replace every

5.2. COMPUTING THE BEHAVIOUR OF WEIGHTED AUTOMATA 89

r € runsi(q) by the corresponding s, € runslgm(q), obtaining a greater element in the
lattice. Thus,

oo(e) <s P wts(s)

rerunsy(q)

s @D wiyls) =07,
seruns="(q)

which proves our claim. O

The last two theorems tell us that, in order to compute the Ifp of an operator
Oy, it suffices to apply this operator |@ \ F'| + 2 times. Since each of the iteration
steps also requires only polynomial time, measured as a function of the number of
states (), we know that the computation of the lfp needs overall polynomial time in
the number of states. This bound is independent of the lattice used. As mentioned
before, this bound greatly improves the trivial one obtained from the finiteness of S%
that is exponential in the number of states of the automaton and also depends on the
size of the lattice S.

We focus now on the outer iteration of the algorithm. For this we will define an
operator Q that will allow us to compute the behaviour of A. This operator works
in a similar fashion as the iterative computation of all bad states. Recall that in said
construction, the set of bad states was updated to include all the states that were
detected not to be adequate. In our general case, we have used the operator O as an
analogous of the computation of adequate states. At each step of the outer iteration
for computing the function bad, we compute a function adq® that corresponds to the
least fixpoint of the operator from Equation 5.1. This function adq’ was then used to
update the knowledge of the bad states. Following the same approach, we define the
operator Q as follows: for all 0 € S Q

Q(o) := Ifp(0y),

where Ifp represents the least fixpoint.

We show first that the operator Q is also monotone and, due to the finiteness of
SQ| its greatest fixpoint can be computed by a repeated application of the operator
to the greatest element of the lattice S<.

Lemma 5.19. The operator Q is monotone.

Proof. Let 0,0 € S9 such that o <gq o'. Notice first that, for every run r € runsy,
this implies that wt,(r) <g wt, (r). From this we obtain, for every ¢ € Q,

Q(o)(q) = Kp(Os)(q)
= @ wt(7) (5.8)

rerunsy (q)

<s P wta(r)

rerunsy (q)
= 1fp(0,)(q) (5.9)
= Q(o'(q),

90 CHAPTER 5. AUTOMATA-BASED PINPOINTING

where Identities (5.8) and (5.9) follow from Theorem 5.15 and the inequality is a
consequence of the remark at the beginning of this proof. U

Again, finiteness of S implies that the operator Q is actually continuous, and
thus Tarski’s fixpoint theorem says that Q has ®, -, Q"(1) as its greatest fixpoint
(gfp). It remains to show how this gfp can be used to compute the behaviour of a given
WBA. Let succ4(gq) denote the set of all successful runs of A whose root is labelled
with g. Consider the function o/l € §? where oll(¢) := D csucc 4 (q) WE(r). Given this
function, we can obtain the behaviour of the WBA A as follows:

Lemma 5.20. Al = @, in(q) ® oll(q).

As it turns out, the function oll is in fact the greatest fixpoint of Q. In order
to prove this claim, we will introduce some additional notation. We will use the
expression runs,, for n > 1, to denote the set of all finite runs such that every path
from the root to a leaf has exactly n non-root nodes labeled with a final state, the last
of which is the leaf.

Given a run r € runs,, its preamble is the unique finite run s € runs; such that,
for every node u, if s(u) is defined, then s(u) = r(u). We will denote the preamble
of r by pre(r). Notice that if » € runs,, for n > 1, then its preamble always exists,
and can be constructed as follows: first set pre(r)(e) = r(e) and pre(r)(i) = r(i) for
all 1,1 < i < k. Then, for every node u for which pre(r)(u) is defined, if r(u) € F,
then u is a leaf of pre(r); otherwise, set pre(r)(ui) = r(ui) for all 4,1 < i < k. This
construction finishes since, in every path, we must find at least one final state, which
will become a leaf in pre(r); thus, it is also the case that pre(r) € runs;.

For a (finite) run r and a node u in r, we will denote the subrun of r starting at
u as r),,. More formally, 7|, is the run such that, for every v € K*, if r(uv) is defined,
then), (v) = r(uv).

The following lemma relates the number of times n that the operator Q has been
applied to the greatest element 1 of S9 to the weights of the runs in runs,.

Lemma 5.21. For alln > 0 and q € Q it holds that
"M = P wilr).
réerunsy (q)

Proof. We prove this fact also by induction on n. For n = 1 the result is a direct
consequence of Theorem 5.15. Assume now that it holds for n. From Theorem 5.15
we know that

Q" (1)(g) = th(OQn(i))(Q) = @ WEgn (1) (r).
réerunsy(q)
Using first the definition of f-weights and then the induction hypothesis, we obtain

(1)) = P wlne @ 1))

rerunsy (q) pEleaf(r)

= @ wt(r) ® ® @ wt(s).

rerunsy (q) pEleaf(r) s€runs, (p)

5.2. COMPUTING THE BEHAVIOUR OF WEIGHTED AUTOMATA 91

From this equation it then follows that

Q" (I)(g) = P wtr)e wt(s) (5.10)

rerunsy(q) u€lnode(r) s€runsy (r(u))

= P we P QR wi(t,) (5.11)
rerunsy(q) {t€runs, y1(q)|pre(t)=r} u€lnode(r)

= 6 P wi(r)® Q) wt(t,) (5.12)
rerunsi(q) {tE€runs,1(q)|pre(t)=r} u€lnode(r)

= 6 4 wt(t) (5.13)
rerunsi(q) {tE€runs,+1(q)|pre(t)=r}
= B wis). (5.14)

seruns,11(q)

Identity (5.10) changes the indices to run over the set of leaf nodes, rather than by the
states that label them; the idempotency of the operators & and ® implies that this
change does not alter the result. For Identity (5.11) we use the distributivity of the
lattice. The definition of distributivity says that, in order to exchange the operators
@ and ®, the now external addition needs to range over all functions mapping nodes
u € Inode(r) to runs s € runs,(r(u)). We notice that each function of this kind,
together with the run r € runs;(g), defines exactly one finite run ¢ € runs,4+1(q). We
thus use this ¢ to represent the function. Identity (5.12) is an easy consequence of
distributivity. For Identity (5.13), we then use the fact that a run in runs,;; can
be seen as its preamble (in runs;) concatenated at each of its leafs with a run in
runs,,. Finally, for Identity (5.14) we notice that the set of all runs in runs, ;1 can be
partitioned by means of their preambles, which means that both sides of the identity
range over the same runs. O

As it was the case for the auxiliary operator O in the internal iteration, we can
bound the number of times that Q needs to be applied before reaching the greatest
fixpoint by the number of states of the automaton. We introduce for this the notion
of m-completeness of automata.

Definition 5.22 (m-complete). A WBA A is m-complete if, for every partial run
r € runsy,(q), there is a successful run s, € succ(q) such that wt(r) <g wt(s,). []

Using the fact that ® is idempotent, it is easy to see that every WBA is m-complete
for any m greater than the number of final states |F'|. The proof is similar to the one
given in [BHPOS] for the fact that a looping automaton has a run iff it has a partial
run of depth greater than |@|. However we now need also to take into account which
states are final, and which are not.

Theorem 5.23. Let A be a WBA with less than m final states; then A is m-complete.

Proof. Suppose that we have a partial run r : ¢ — @ in runs,,(q). We will use this r
to construct a function S : K* — ¢ inductively. With this function, we then construct
a successful run s, by setting s,(u) := r(8(u)). The intuitive meaning of S(v) = w is

92 CHAPTER 5. AUTOMATA-BASED PINPOINTING

that in the run s,, the node v will have the same label as the node w in r. We define
it as follows:

e fle) =g,

e for anode v-i, if there is a predecessor w of 5(v)-i such that (i) r(8(v)-i) = r(w),
and (ii) r(w) € F, then set B(v - i) := w; otherwise, set B(v - i) := B(v) - 1.

Notice that for every v € K*, we have that S(v) is not a leaf node of ¢. In fact,
whenever we find a final state twice in the same path, the mapping 3 leads always to
the earliest one. Thus, reaching a leaf would mean that we have a path reaching m
final states, where none of them repeats, contradicting the fact that the automaton
has less than m final states in total. Hence, the function (8 is well defined.

We now show that it is possible to construct a successful run s, from r by defining
sr(v) = r(B(v)) for all v € K*, and that wt(r) <g wt(s,). Our definition of 5 ensures
that, for every v € K* and 7 € K it holds that s, (v -7) = r(8(v) - 4). Thus, for every
v € K*, we have that (s,(v), s, (v1),...,s.(vk)) = (r(B(v)),r(B(v)-1),...,r(B(v)-k)),
and hence,

wt(sr(v), sp(vl),.. ., 5 (0k)) = wt(r(B(v)),7(B(v) - 1), ..., 7(B(v) - k).

This implies that every factor in the product wt(s,) is also a factor in the product
wt(r). Since the product computes the infimum, it holds that wt(r) <g wt(s;).

It remains only to show that s, is successful. Suppose on the contrary that s, is
not successful. Then, there must exist a path p and a node v € p such that all its
successors in p are labeled with non-final states. In other words, for every w € K*, if
v-w € p, then s, (v-w) ¢ F. This implies, by our definition of 3, that S(v-w) = (v)-w,
for all v -w € p. Thus, r has an infinite path, which contradicts the assumption that
T € runsy,. O

The following theorem states that it is possible to compute the mapping aﬂ for an
m-complete automaton by applying the Q operator to the greatest element 1 of S?
at most m times.

Theorem 5.24. If A is an m-complete WBA, then Qm(I) =ol.

Proof. Notice first that by Lemma 5.21, we know that Q™(1)(q) = D cruns,y (q) WET)-
Since A is m-complete, we can replace each of these partial runs by a successtul run,
and thus,

Q"(M)(g) <s P wils)

s€succ(q)

To prove the inequality in the other direction, notice that given a successful run r, we
can truncate it at every path when m final states have been found. The result of this
is a finite run since otherwise, as the tree is finitely branching, Koénig’s Lemma would

5.2. COMPUTING THE BEHAVIOUR OF WEIGHTED AUTOMATA 93

imply the existence of an infinite path in this tree. Since branches are truncated once
we have found m final states, an infinite path would be one on which less than m
final states occur, contradicting the fact that r is a successful run. Thus, the partial
run r,, constructed this way belongs to runs,,. Notice that, for every node u of r,,, it
holds that r,,(u) = r(u). Hence, we have that wt(r) <g wt(r,,). This yields

= @ w) <s @ wira)

resucc(q) resucc(q)
s P wis) = o"(@)a).
SErunsy, (q)
Both inequalities together yield the desired result. U

In particular, this theorem shows that the mapping ol is indeed the gfp of Q.
Corollary 5.25. The mapping oll is the greatest fizpoint of Q.

Proof. Since S9 is finite, the gfp of Q is reached after finitely many iterations; more
precisely, if ng > |S|I9l, then this gfp is &, Q™(1) = Q" (1). Obviously, we can
choose mgy such that ng > |F|. Theorem 5.23 then says that the automaton is ng-
complete. Thus, by Theorem 5.24, it follows that Q™0 (I) =ol. O

Overall, we have thus shown how to compute the behaviour of a WBA. By
Lemma 5.20, ||A[| = @ ,oinle) ® oll(g). The above corollary says that oll is the
greatest fixpoint of Q, and this fixpoint can be computed in m, := |F| + 1 iteration
steps since m, is larger than the number of final states of the input WBA (Theo-
rems 5.23 and 5.24). Each step of this outer iteration consists of computing the least
fixpoint of the operator O, where o is the result of the previous step. This fixpoint
can be computed in m; = |@Q \ F| + 2 iteration steps since m; is larger than the num-
ber of non-final states of the input WBA (Theorems 5.17 and 5.18). Such an inner
iteration step requires a polynomial number of lattice operations (in the cardinality
Q1 of Q).

Thus, to analyze the complezity of our algorithm for computing the behaviour
of a WBA, we need to know the complexity of applying the lattice operations. If we
assume that this complexity is constant (i.e., the lattice S is assumed to be fixed), then
we end up with an overall polynomial time complexity. However, this is not always
a reasonable assumption. In fact, we were able to restrict our attention to finite
distributive lattices by taking, for a given WBA, the distributive lattice generated by
the weights occurring in it (where these weights may come from an underlying infinite
distributive lattice). Thus, the actual finite distributive lattice used may depend on
the automaton. Let us assume that the lattice operations can be performed using
time polynomial in the size of any generating set. Since the size of this generating
set is itself polynomial in the number of states of the input WBA A, this assumption
implies that the lattice operations can be performed in time polynomial in the size of
the automaton. Thus, under this assumption, we have an overall polynomial bound
(measured in the number of states) for the computation of the behaviour of a WBA.

94 CHAPTER 5. AUTOMATA-BASED PINPOINTING

In the case of pinpointing, we use the 7-Boolean semiring B7 , which is the free
distributive lattice generated by the set lab(7). The lattice operations are conjunc-
tion and disjunction of monotone Boolean formulae. Recall that, strictly speaking,
the lattice elements are monotone Boolean formulae modulo equivalence, i.e., equiva-
lence classes of monotone Boolean formulae. However, since equivalence of monotone
Boolean formulae is known to be an NP-complete problem [GJ79], we do not try to
compute unique representatives of the equivalence classes. We can instead leave the
formulae as they are. Nevertheless, if we are not careful, then the computed pinpoint-
ing formula may still be exponential in the size of the automaton, though we apply
only a polynomial number of conjunction and disjunction operations. The reason is
that we may have to create copies of subformulae. However, this problem can easily be
avoided by employing structure sharing, i.e., using directed acyclic graphs (DAGs) as
data structure for monotone Boolean formulae. This way, we can compute in polyno-
mial time (a DAG representation of) the pinpointing formula whose size is polynomial
in the size of the automaton.'®

We have now shown that it is possible to compute the behaviour of a WBA in
polynomial time measured on the number of states that it has. We have presented
two examples of axiomatic automata: a looping automaton for deciding unsatisfia-
bility w.r.t. SZ-TBoxes, and a generalised Biichi automaton for deciding axiomatic
satisfiability w.r.t. sets of LTL formulae. The pinpointing automata induced by them
are thus a WLA and a WGBA, respectively. We will show now that the iterative
algorithm for computing the behaviour of WBAs can be used also for computing be-
haviours of these other two kinds of automata. On one hand, we will see that a WLA
is in fact a special case of a WBA, and hence the algorithm works directly. For this
special case, though, the method can actually be collapsed to a simpler algorithm
where the inner iteration (that is, the computation of the least fixpoint of the opera-
tor O) is performed in a trivial step. On the other hand, we will show that for every
WGBA we can effectively construct, in polynomial time, a WBA that has the same
behaviour, which allows us to reuse the algorithm so far described also in this case.

5.2.2 The Behaviour of WLA

Recall that a WLA is a WGBA that has no set of final states. For a run to be
successful in a WGBA, we require that every path in this run has infinitely many
nodes labeled with elements of Fj, for each set of final states F;. In the special case
of WLA, this condition is trivially satisfied. Thus, every run of a weighted looping
automaton is successful. Alternatively, we can see each WLA (Q,in,wt) as the WBA
(Q,in,wt, Q). Forcing every state to be a final state ensures that every run of this
automaton is also successful, just as when there were no sets of final states. Thus, the
same process for computing the behaviour of WBAs can be applied to WLAs. From
Theorem 5.17 we then have that the operators Oy need to be applied at most twice
before reaching its least fixpoint. In fact, in the particular case of WLAs, this bound

'8Note that the size of the automata we have constructed for SZ and LTL is already exponential in
the size of the input. Thus, the pinpointing formula may still be exponential in the size of the input,
and computing it may take exponential time in the same measure.

5.2. COMPUTING THE BEHAVIOUR OF WEIGHTED AUTOMATA 95

can be further improved to the point where the procedure needs only one iteration,
due to a trivialisation of the operator Oy, as we will now show.

Notice first that the operator O; depends on the set of final states; more precisely,
the function step; used in the definition of Oy, is divided in two cases, depending on
whether the input state is final or not:

flg) ifqeF
o(q) otherwise.

steps(o)(q) = {

If all the states are final, then no case analysis is necessary in step;, and hence
steps(0)(q) = f(g) for all o € SQ and all ¢ € Q. This collapses the operator o

to
k

Oro)g)= P wiegq,--a) @) flg))-

(Q7q17---7Qk)er+l Jj=1

Notice that in this case Oy does not depend on the input o, and hence its only
fixpoint is reached after exactly one iteration. This allows us to accordingly simplify
the operator Q in the following way:

Q(o)(q) = Ifp(Os)(q)
= 0,(0)(q)

= @ wt(q, q1y- .-, qr) ® o(qj)-

(9,q1,--q5) EQFF! Jj=1

The behaviour of a WLA is then the gfp of this operator Q, which can be computed by
a single iteration without any specific call to Oy. The inner iteration of the procedure
for WBAs is replaced in this special case by a direct application of the simplified
definition of Q.

Let us apply this insight to the pinpointing automaton for SZ of Definition 5.4.
This automaton has exponentially many states in the size n of the input (C, 7). Thus,
we need exponentially many applications of the operator Q. It is also easy to see that
the time required by each application of Q is exponential in n.

Corollary 5.26. Let C be an ALC concept description and T an ST-TBox. The pin-
pointing formula for (C,T) w.r.t. unsatisfiability can be computed in time exponential
in the size of (C,T).

Since even deciding satisfiability of ALC concept descriptions w.r.t. general SZ-
TBoxes is known to be EXpTIME-hard [Sch94], this bound is optimal.

We look now to the more general case of computing the behaviour of WGBAs.

5.2.3 The Behaviour of WGBA

We have shown how to compute the behaviour of a WBA in time polynomial in
the number of states. We will now give a polynomial reduction in which, for every

96 CHAPTER 5. AUTOMATA-BASED PINPOINTING

WGBA, we construct a WBA that has the exact same behaviour, reducing in this
way the problem of computing the behaviour of WGBASs to the special case of WBAs
that we have already solved. For this reduction we once again generalise an idea that
has previously been presented for unweighted automata. Intuitively, the reduction
consists in creating several copies of the set of states, using one copy to test the Bichi
condition for a specific set of final states. When a final state of the current set has
been found, we move to the next copy. Between two times that we return to test the
first copy, we can be sure that final states from all sets Fi,..., F,, have been found.
Thus, it is possible to ensure that the generalised Biichi condition is satisfied. For the
unweighted case, this same idea was used to reduce the emptiness problem for GBAs
to the one for BAs [VW86]. We formalise now this intuition.

Let A = (Q,in,wt, Fy, ..., F,,_1), with n > 0, be a WGBA. We define the WBA
By as the tuple B4 = (Q',in’,wt’, F'), where

- Q' ={(g,1) | g€ Q,0<i<n—1},

i) = {in(q) ifi =0,

0 otherwise

wt(qo, q1,---,qr) ifqo € Fj,j =i+ 1 mod n,

- wt'((qo,%), (q1,9);-- - (K, 7)) = S wt(qo, q1,---,qx) ifqo ¢ Fi, i =]
0 otherwise

- F'={(¢,n—1)|q € F_1}.

Notice that the automaton B4 has n - |Q)| states, where n is the number of sets of
final states in A. Since there can potentially be 29! sets of final states, this reduction
is not polynomial when measured only in the number of states in A, but it is still
polynomial in the total size of the original automaton A.

Definition 5.27 (Support). Let A be a WGBA. The support of A, denoted as
supp(A), is the set of all runs r such that in(r(g)) @ wt(r) # 0. |

The behaviour of a weighted automaton is, by definition, the supremum (that is,
the addition) of the weights of all successful runs multiplied by the initial distribution
of their root labels. Obviously, if a run r is such that in(r(¢)) ® wt(r) = 0, i.e., if
r ¢ supp(A), then it will not have any influence in the computed behaviour, and can
hence be ignored. Our proof of behaviour-equivalence of A and B4 will show that
there is a bijection between their supports that is weight preserving.

Theorem 5.28. If A is a WGBA with at least one set of final states and By is
constructed as above, then | Al = ||B4||-

Proof. We will introduce a bijective function f : supp(A) — supp(B4) such that, for
every run 7 € supp(A), it holds that (i) wt(r) = wt'(f(r)) and (ii) 7 is successful (w.r.t.
A) iff f(r) is successful (w.r.t. B4).

Let r be a run in supp(A). We define the run f(r) of B4 recursively as follows:

5.2. COMPUTING THE BEHAVIOUR OF WEIGHTED AUTOMATA 97

e let u € K* and f(r)(u) = (¢,7). Then, for all 1 <j <k,

(r(ug), i) ifq ¢ F;,
(r(uj),i +1 mod n) if q € F;.

fr)(uj) = {

Let u € K*, and f(r)(u) = (¢,%). Then r(u) = ¢g. Furthermore, for all 1 < j <k, it
holds that f(r)(uj) = (r(uj),i+1 mod n) if ¢ € F; and f(r)(uj) = (r(uj),) otherwise.
Together with the definition of wt/, this implies

wt'(f(r)(w), f(r)(ul),..., f(r)(uk)) = wt(r(u),r(ul),. .., r(uk)).

And thus, we have that wt(r) = wt'(f(r)). Since we also have in’(f(r)(g)) = in(r(g)),
the fact that in(r(e)) ® wt(r) # 0 also implies that in’(f(r)(¢)) ® wt’(f(r)) # 0. This
means that f is indeed a function from supp(.A) to supp(B4).

It is easy to see that f is injective. We show now that it is also surjective. Consider
a run s € supp(By). We need to show that there exists a run r € supp(A) such
that s = f(r). We construct the run r € supp(A) as follows: for every u € K*, if
s(u) = (q,1), then r(u) = q. We show now that s = f(r). First, since s € supp(B_4),
it holds that in’(s(¢)) ® wt’(s) # 0. This in particular means that in’(s(¢)) # 0, and
thus, s(e) = (¢,0) for some ¢ € Q. Consider now a u € K* and let s(u) = (g,1).
Hence, also 7(u) = q. Since wt'(s(u), s(ul),...,s(uk)) # 0, it must be the case that
for all j,1 < j < k it holds that, if ¢ ¢ Fj, then s(uj) = (g;,1), and if ¢ € Fj, then
s(uj) = (g;,7+ 1 mod n), for some ¢; € Q. But then, s satisfies the definition of f(r),
which shows that f is surjective.

It remains only to show that r is successful (w.r.t. the WGBA A) iff f(r) is
successful (w.r.t. the WBA By). Suppose first that f(r) is successful. Then for every
path there are infinitely many nodes labeled with elements of the only set of final states
F'={(¢,n—1)| q € F,_1}. But notice that, according to the way f was defined, if
f(r)(u) € F', then f(r)(uj) is of the form (g;,0) for all 1 < j < k. All the following
nodes in the path will have labels of the form (_,0) until a state from Fy is found; at
which point, the labels will be changed to the form (_, 1), and so on. Thus, for each
u such that f(r)(u) € F' there exist vg,v1,...,v,—1 such that for every 7,0 < i < n,
there is a ¢; € F; with f(r)(u-vo---v;) = (gi,1), and hence r(u - vy ---v;) = q; € F;.
This implies that r is successful.

Conversely, assume that f(r) is not successful. Then, there is a path uy,us, ...
and a [> 0 such that for all I’ > [it holds that f(r)(uy) ¢ F’. Since the second
component can only increase (modulo n) from a node in a path to the other, there
must be a 1 < iy < n such that f(r)(uy) is of the form (gy,ip) for all I’ > [. But this
means that for all I’ > [, r(uy) ¢ F;,. Thus, r is also not a successful run.

From this bijection between the runs in the supports, the equivalence in the be-

98 CHAPTER 5. AUTOMATA-BASED PINPOINTING

haviours can be deduced as follows.

Il = D in(r()) ® wt(r)

r successful run of A

= © in(r(e)) @ wt(f(r))
r successful run of A

= D in(f(r)(e)) ® wt(f(r))
f(r) successful run of By

= D in'(r(e)) @ wt'(r) = ||Ball,
r successful run of B4

which concludes our proof. [l

Given a WGBA with m states and n sets of final states, this reduction yields a
WBA with n - m states. As described before, computing the behaviour of a WBA
requires time polynomial in the size of its state set; in this case, polynomial in n - m.
Thus, our method computes the behaviour of a WGBA in time polynomial in the
overall number of states and sets of final states that it contains.

Let us apply this approach for computing the behaviour of a WGBA to the pin-
pointing automaton for LTL from Definition 5.6. This automaton has exponentially
many states in the size n of the input (¢, R) and linearly many set of final states in n.
Thus, the WBA constructed from the WGBA is of size exponential in n. Overall, the
two nested iterations perform exponentially many steps, which leads to an algorithm
with a total running time that is exponential in the size of the input.

Corollary 5.29. Let ¢ be an LTL formula and R a set of LTL formulae. A pinpoint-
ing formula for (¢, R) w.r.t. a-unsatisfiability can be computed in time exponential in

the size of (¢, R).

5.3 An Alternative Computation of the Behaviour

Independently from the development of the present dissertation, a different algorithm
for computing the behaviour of WBAs over distributive lattices was developed by
Droste et al. [DKRO08]. We will first sketch this alternative approach and then compare
it to ours, with special attention to the application in the pinpointing scenario.'® In
the following, we will call our method the iterative method and the one from [DKROS]
the prime method.

The prime method is based on the following property of distributive lattices. Let
(S, <g) be a distributive lattice. An element p € S is called meet prime if, for every
81,80 € S, 51 ® 89 <g p implies that either s; <g p or s9 <g p. It is known that

'9We present only a special case of the algorithm in [DKRO08], where we allow only unlabeled trees
as inputs. Furthermore, we have exchanged the use of join prime elements in [DKRO08] with the use
of their meet prime counterparts. This is justified by duality of distributive lattices, allows for an
easier understanding of how this method works in the pinpointing application, and makes it easier to
compare it with our approach in this setting.

5.3. AN ALTERNATIVE COMPUTATION OF THE BEHAVIOUR 99

any element s of S equals the infimum of all the meet prime elements greater than or
equal to s [Gra98]. If one could decide, for a given meet prime element p, whether p is
greater than or equal to the behaviour of a weighted automaton, then this behaviour
could be readily found from the outputs of such decisions by computing the infimum
of all those meet prime elements for which this decision is answered positively.

In the prime method, this decision problem is solved in the following way. Let
A = (Q,in,wt, F') be the WBA over the distributive lattice (S, <g) for which we want
to compute the behaviour, and let prime(S) denote the set of all meet prime elements
of S. For every meet prime element p € prime(S), construct the (unweighted) Biichi
automaton A, = (Q, A, I, F') where:

[] A = {(q,ql,... ,Qk) € Qk+1 | Wt(Qana--- 7qk) is p}’
e I:={q€eQ]in(q) £s p}.

It is easy to see that A, accepts a non-empty language, i.e., there exists a successful
run of A, that starts with an initial state, iff there is a successful run r of A such
that in(r(e)) wt(r) £s p. Equivalently, the language accepted by A, is empty iff, for
every successful run r of A, it holds that in(r(¢)) @ wt(r) <g p. But this means that
|Al| <s p. Thus, if we denote by L£(A,) the language accepted by the automaton A,

we have
| All = & 2
{peprime(S)|L(Ap)=0}

In the pinpointing application, we use the lattice B7 , where the meet prime ele-
ments are exactly all conjunctions of propositional variables in lab(7").2° There is then
a one-to-one correspondence between the meet prime elements of B7 and all subsets
of axioms appearing in the axiomatic input for which the pinpointing formula is being
computed. Take an arbitrary meet prime element p and assume that it corresponds to
the set of axioms 7' C T, i.e., p = A\,c7 lab(t). The automaton A, has a transition

(qaqla"'aqk) iff

AVio(Qa qiy .- 7Qk) = Wt(Qa qi,--- 7qk) é]BT b= /\ Iab(t)
teT’

Since Avio(q,q1,...,qx) = v{tE’T|(q,q1,...,qk)¢Ares(t)} lab(¢), this means that for every
te T, (¢,q,...,qr) € Ares(t). But this holds iff (¢,q1,...,qx) is a transition of A
(see Definition 5.1). Analogously, it is easy to see that a state ¢ is an initial state of
A, iff it is an initial state of Aj7». Thus, the automaton A, is identical to the 7'-
restricted subautomaton A‘T/. Consequently, testing the automaton A, for emptiness
is the same as testing A7+ for emptiness. This shows that the prime method actually
corresponds to the naive black-box approach of testing the c-property for all possible
subsets of axioms. Unoptimized, this process will thus always need an exponential
number of tests for computing the pinpointing formula. However, this process allows

20Recall that the lattice B” uses disjunction as its infimum operator, and conjunction as the supre-
mum. Thus, conjunctions of variables are the only elements of the lattice that cannot be written as
the infimum (disjunction) of other elements.

100 CHAPTER 5. AUTOMATA-BASED PINPOINTING

)

]
SOSORENS

Figure 5.1: The looping automaton A, from Example 5.30.

the use of all the optimizations applicable to black-box pinpointing algorithms, which
are independent of the procedure used to decide the underlying property. Notice,
nonetheless, that finding all prime elements that are greater than or equal to the
behaviour is equivalent to finding all sets of axioms that contain at least one MinA.
As a consequence of this, there are cases where an exponential number of emptiness
tests is necessary, even when using black-box optimizations (see Chapter 6).

In the examples we have presented in this work (i.e., pinpointing unsatisfiability in
ST and LTL), both the iterative and the prime method have an exponential running
time. For the iterative method, we have a bound that is polynomial in the number of
states of the constructed automata, but this number is itself exponential in the size
of the input. The prime method performs exponentially many emptiness tests, each
of which requires exponential time (since it is performed on an exponentially large
automaton). Although both approaches result in an exponential-time algorithm in
these cases, the bound on the iterative method has the advantage of not depending on
the number of meet prime elements of the lattice, as opposed to the prime method.
In the case of pinpointing, the lattice has always 2" meet prime elements, where n is
the number of input axioms. If the axiomatic automaton deciding the property has a
number of states polynomial in the size of the input, then this exponential number of
tests will yield a suboptimal procedure, as demonstrated by the following examples.

Example 5.30. Consider an input Z and a set of azioms T = {to,...,tn—1}, and
assume that the c-property is defined as follows: Py := {(Z,T") | T' C T,|T'| > 0}.
Let each aziom t; be labelled with the propositional variable p;. Then a pinpointing
formula for Py is given by \/ ;. pi-

We can construct an aziomatic automaton (A, Ares,Ires) for the aziomatised
input (Z,T) as follows:

e A, is the looping automaton for arity 1 A, = ({qo0,---,qn-1},2A,{qo0}) depicted
in Figure 5.1, where

o A ={(giq(it+1) mod n) | 0 <i <n};
o for every 0 < j <mn—1,Ares(t;) = A\ {(qjaq(j+1) o n)}’.
o for everyt € T,Ires(t) = {qo}.

It is easy to see that this axiomatic automaton is correct for the property P1. Since A,
has n states and n transitions, the iterative method needs polynomial time to compute
the behaviour of the pinpointing automaton induced by (A, Ares, Ires), measured in
the number of axioms n. On the other hand, the unoptimized prime method requires
2" emptiness tests. [

5.3. AN ALTERNATIVE COMPUTATION OF THE BEHAVIOUR 101

We will take advantage of this example to illustrate how the iterative method
computes the behaviour of an automaton (which in this case corresponds to the pin-
pointing formula). The axiomatic automaton (A,,, Ares, Ires) induces the pinpointing
automaton (A, Ares, Ires)?™ = ({qo,...,qn_1},in,wt), where

e in(qo) = L and in(¢g;) = T for all 0 < i < n; and
e wt(gi,q;) equals p; if j = (¢ + 1) mod n, and T otherwise.

As this is a weighted looping automaton, the iterative method reduces to an iterated
application of the simplified operator Q described in Section 5.2.2. Notice that, for
every state g;, there is exactly one transition, namely (g;, q(i+1) mod), having a weight
distinct from T. Hence, for every function o : Q — B7 we have:

Q0)g) = N\ wt(gi,q)Volg)

0<5<n
= Wt(qiaq(i-i-l) mod n) v J(q(i-i-l) mod n) =piV U(Q(i—i—l) mod n)

The process starts with the function 1: Q — B7 that maps every state to L; that
is, I(qz) = 1 for all 0 < i < n. After the first application of the operator Q, we have
Q(I)(ql) = p; for all 0 < 4 < n since p; V L is equivalent to p;. Analogously, after m
iterations we have, for all 0 < i < n, that

Q"(1)(qi) = \/ P(i+j) mod n-

0<j<m

This process reaches a fixpoint when m = n, in which case every state ¢; is mapped
to the formula \/y;_, p;. Thus, the behaviour of (A, Ares, Ires)P"" is

(A, Ares, Tres)P™|| = Ag;pin(ar) v Q*(1)(q5)
= in(q) V Q"(1)(q0)
= Qn(I)(QO) ZVO§j<npj7

which is a pinpointing formula.

We present a second example in which the original decision procedure requires
a generalised Biuchi acceptance condition. This additional example shows that the
exponential blowup in the execution time of the prime method when compared to the
iterative method can appear also with properties for which the looping acceptance
condition is not sufficient.

Example 5.31. Let Q be an infinite set of states and let the set of inputs J be the
set of all generalised Biichi automata using states from Q, and the set of azioms be
T .= QFt'. That is, we use the transitions of the automata in J as axioms of our
property. We define the c-property Pa as the set of all tuples of the form (A, ©) where
A= (Q,A,IF,....F,) is a generalised Biichi automaton in J, and © C T, such
that (Q,A\ ©,I,Fy,...,F,) has no successful run r with r(¢) € I. Intuitively, the
azxioms tell which transitions are disallowed in the input automaton A. The c-property

102 CHAPTER 5. AUTOMATA-BASED PINPOINTING

is satisfied whenever we remove enough transitions (by adding them to the axiom set)
to avoid any successful run whose root is labelled with an initial state. It is easy to see
that the aziomatic automaton (A, Ares, Ires) where Ares(t) = A\ {t} and Ires(t) = Q
for all t € © is correct for the property P and the aziomatised input (A,). As we
have seen, the iterative method requires time polynomial in the number of states |Q)|
of this axiomatic automaton to compute the pinpointing formula for this property. On
the other hand, the prime method needs 21°! emptiness tests, each polynomial in |Q)].
We thus have a potentially exponential increase in execution time, when compared to
the iterative method.]

One advantage of the prime method is that it can easily be generalised to more
complex automata models. For instance, it is shown in [DKRO8] how the same idea
works in the presence of a more complex acceptance condition, known as the Muller
condition. Also note that the prime method can possibly be optimized using the ideas
underlying the known optimizations of black-box pinpointing procedures, not just in
the case of applying it to pinpointing, but also in a more general setting.

In this chapter we have introduced a general method for computing the pinpoint-
ing formula of any c-property that can be decided with an axiomatic automaton using
a Biichi acceptance condition. We do this through the construction of the pinpointing
automaton induced by the original axiomatic automaton. The pinpointing automaton
is a weighted automaton whose behaviour is a pinpointing formula. In order to effec-
tively compute the formula, we developed an algorithm that computes the behaviour
of weighted automata over finite distributive lattices. This method generalises the
ideas employed for the well-known iterative emptiness test on unweighted automata.
We also described how this iterative method can be used, along with an adequate
data structure, to construct the pinpointing formula in time polynomial in the size
of the automaton. Since just deciding the emptiness of automata in general requires
polynomial time in the same measure, the iterative algorithm turns out to be optimal
from a complexity point of view.

We instantiated our approach by showing how it can be used to compute a pin-
pointing formula for unsatisfiability of ALC concept terms w.r.t. general SZ-TBoxes,
as well as for axiomatic unsatisfiability of LTL formulae. In both cases, the automa-
ton constructed has size exponential in the number of axioms, and thus the algorithm
requires exponential time to compute the pinpointing formula. This bound is opti-
mal for unsatisfiability of ALC concept terms w.r.t. general SZ-TBoxes, where the
underlying decision problem is already EXPTIME hard [Sch94]. On the other hand,
deciding axiomatic unsatisfiability of LTL formulae is in PSPACE [SC85], and it is
unclear whether the automata-based decision procedure yields an optimal time bound
or not.

In the next chapter we will look in detail at some complexity results for pinpointing.
Although the focus on this work has been on computing a pinpointing formula, due
to the fact that all MinAs and MaNAs can then be deduced from it, our complexity
study will primarily look at the hardness of finding these sets of axioms, rather than
the mentioned formula.

Chapter 6

Complexity Results

So far in this work we have focused on how to compute a pinpointing formula for a
given property P by extending the procedure used for deciding P. For the pinpointing
extension of general tableaux, we found a problem even for ensuring a finite execution
time. We had to settle for a subclass of tableaux, claiming that it is impossible to
fully characterize the set of all tableaux having a terminating pinpointing extension.
Even in the cases of termination, it is not clear how the labeling mechanism used
in the pinpointing extension affects the overall execution time. If we restrict the
discourse to ground tableaux (see Definition 3.5), then we know that the pinpointing
extension will generate the same set of assertions as the original tableau algorithm,
but may change their labels exponentially often, in the number of axioms, as there are
exponentially many monotone Boolean formulae that can label each assertion. Thus,
the pinpointing extension of ground tableaux has an execution time exponential in
the number of axioms. This in particular means that the pinpointing extension of the
tableau for subsumption of HL concept names requires exponential time, although
the underlying decision procedure terminates in polynomial time in the number of
axioms.

For the case of automata-based decision procedures, we showed that the pin-
pointing formula can be computed in time polynomial in the size of the automa-
ton. Since merely deciding the property requires time polynomial in the same mea-
sure, this method is optimal with respect to its underlying decision procedure. In
other words, if the axiomatic automaton 4 is an optimal decision procedure for the
property P, then the pinpointing automaton induced by A computes the pinpointing
formula in optimal time. For instance, unsatisfiability of ALC concept terms w.r.t.
general SZ-TBoxes is an EXPTIME complete problem, and the axiomatic automaton
(Ac, 1, Aresc 7, Iresc) that decides this property has size exponential in the num-
ber of axioms. Thus, a pinpointing formula can be computed from its pinpointing
automaton in exponential time. But it might well be the case that the automaton
used yields a suboptimal decision procedure. For instance, the axiomatic automaton
(Ag R, Aresy r, Iresy) has also size exponential in the number of axioms, but the
property it decides, namely axiomatic unsatisfiability of LTL formulae, is known to
be in PSPACE [SC85]. Using the pinpointing automaton to compute the pinpointing
formula yields an exponential time algorithm. It is unclear whether this algorithm is

103

104 CHAPTER 6. COMPLEXITY RESULTS

optimal or not.

In this chapter we try to shine some light on the hardness of solving pinpointing-
related problems. We divide this study into two parts. First, we show complexity
results that are independent of the method use for solving the problems. Afterwards,
we prove our claim from Chapter 3 that it is undecidable whether the pinpointing
extension of a terminating general tableau is also terminating.

6.1 Complexity of Pinpointing

We start our study of the complexity of pinpointing by showing a trivial upper bound
obtained by the simplest black-box algorithm. Let P be a c-property and I' = (Z,T)
an axiomatised input such that I' € P. Given an arbitrary procedure that decides P,
we can find the set of all MinAs, all MaNAs and a pinpointing formula for P and T,
with a very naive black-box algorithm that consists on applying the decision procedure
217! times. One simply tests, for each 7/ C T, whether (Z,7’) € P or not. From
the answers to these tests, the sets MINp) and MAXp(r) can readily be computed,
and hence also the pinpointing formula (see Page 37). This in particular means that,
if the decision procedure runs in af most exponential time, then MINpry, MAXp(r)
and the pinpointing formula can be computed in exponential time.?! Obviously, for
any c-property whose decision problem is EXPTIME-complete, such as unsatisfiability
of ALC concept terms w.r.t. general TBoxes [Sch91, BCM*03], this bound is tight.
We will see that even for problems in lower complexity classes, the bound is also
tight. Along with this, we will analyse the complexity of other problems related to
pinpointing.

As we want to identify how much of the complexity is due to pinpointing, as
opposed to the original decision problem, our results will be based on subsumption of
HL concept names. Since this property is decidable in polynomial time, any increase
in complexity that we encounter can then be attributed to pinpointing.

This section is composed of three parts. In the first part we present complexity
results related to the computation of MinAs. Some of these results first appeared
in [BPS07a], where it was also claimed, without proof, that their dual results hold
also for the computation of MaNAs. In the second part we present proofs to this
claim. Finally, in Section 6.1.3, we show that there exist axiomatised inputs for which
the pinpointing formula has superpolynomial length, when measured in the number
of axioms. This in particular implies that such a formula cannot be written (nor
computed) in polynomial time.

6.1.1 MinA Complexity

If we are only interested in finding one, arbitrary, MinA, then we can compute it with a
black-box algorithm that calls the decision procedure only |7| times [BPS07a, Chi97,
KPSGO06]. The idea consists in systematically trying to remove axioms while still

2INotice that this also implies that if the decision procedure is at least exponential, then pinpointing-
related problems are solvable without an increment in the complexity.

6.1. COMPLEXITY OF PINPOINTING 105

belonging to the property. Suppose that we have some 7' C 7 such that (Z,7") € P.
We then select an axiom ¢t € T’ that is going to be tested for removal. If the property
still follows once t is removed, i.e., if (Z, 7"\ {t}) € P, then t is not necessary for
the property to hold and hence can be removed. This process is then repeated with
T'\ {t}. If, on the contrary, (Z, 7'\ {t}) ¢ P, then we know that ¢ must belong
to all MinAs for 7', and we hence continue the process with the set 77, but never
testing ¢ for removal again. In this way, every axiom is tested for removal exactly
once. It can be shown that the set of axioms resulting from this procedure is indeed a
MinA. Thus, the computation of one arbitrary MinA is in the same complexity class
as merely deciding the underlying property, as long as this latter problem is at least
polynomial. In the case of subsumption of HL concept names, this means that one
MinA can be computed in polynomial time in the size of the TBox.

If we further assume that the axioms in the TBox are ordered, then we can find
the lexicographical last MinA also in polynomial time. We say that a set of axioms
S is lexicographically before another set S’ iff the first element at which they disagree
is in S. If we test the axioms for removal in order, then the black-box algorithm
described above yields the last lexicographical last MinA.?? Also the additive algo-
rithm by Tamiz, Mardle and Jones [TMJ96] (see also [Chi97]) yields as an output the
lexicographical last MinA in polynomial time.

Unfortunately, computing one MinA, even the lexicographical last one, is usually
not enough. For instance, if we are trying to understand why an axiomatic input
belongs to a c-property, then it would be desirable to obtain MinAs that have as
few axioms as possible, as larger sets of axioms are more difficult to interpret. The
following theorem shows that deciding the existence of a MinA whose cardinality is
bounded by a given natural number n is an NP-complete problem (see [Sun09, BPS07a]
for a proof). Hence, it is hard to know whether a given MinA has minimal size or not.

Theorem 6.1. Given an HL TBox T, concept names A, B occurring in T, and a
natural number n, it is NP-complete to decide whether or not there is a MinA for T
w.r.t. AC B of cardinality < n.

Another property of interest when trying to understand a c-property P is whether
a given axiom % is relevant for P; that is, whether there is a MinA that contains .
This knowledge is helpful, for instance, when trying to compute the set of all MinAs.
In [KPHSO07], the authors propose the use of Reiter’s Hitting Set Tree algorithm [Rei87]
as an improved black-box algorithm for producing the set of all MinAs. This idea has
since then been used and further optimised for specific decision problems [SHCHO07,
BS08, SQJHO8]. Detecting axioms that are relevant would allow us to further improve
this approach using the set enumeration procedure proposed by Rymon [Rym92]. The
following theorem shows that deciding relevance of axioms is also an NP-hard problem.

Theorem 6.2. Let T be a HL TBox, t € T, and A, B two concept names appearing
in T. Deciding whether there exists a MinA S for T w.r.t. AT B such thatt € S is
NP-complete in the size of T.

22This strategy corresponds to the naive algorithm presented in [BPS07a, Sun09]

106 CHAPTER 6. COMPLEXITY RESULTS

Proof. The problem is clearly in NP as we need only polynomial time to test whether
a set of axioms S is a MinA, and whether ¢ € §. The complexity hardness can be
shown by a reduction of the following NP-complete problem [FGN90, EG95a]: given
two sets of propositional variables H, M, a set T of definite Horn clauses over H U M
(i.e., formulae of the form vy A ... Av, = w with w,v; € HU M for all 1 < i < n),
and a variable h € H, decide whether there is a minimal H' C H such that h € H'
and H' UT = M.

Given an instance of this problem, we define a concept name P; for every h; € H
and ; for every m; € M; additionally, we use two new concept names A, B. Our
TBox has an axiom of the form A C P; for every h; € H, an axiom R;M...MR, C R

for every v1 A ... Av, — w € T, and additionally the axiom I_lM Q; C B. Tt is easy
;€

m;
to see that, given a variable hy € H, there is a MinA for A C B containing A C P, iff
there is a minimal H' € H such that hg € H and H' UT |= M. O

As it was already said, finding the lexicographical last MinA for subsumption of
‘H L concept names requires only polynomial time. If, on the contrary, we are interested
in finding the lexicographical first MinA, then we encounter another hard problem.

Theorem 6.3. Given an HL TBox T, concept names A, B occurring in T and a
MinA S, it is coNP-complete to tell whether S is the lexicographical first MinA for T
w.r.t. AC B.

Proof. The problem is in coNP since if S is not the lexicographical first, then we
can prove this by presenting a MinA that appears before S within this ordering. To
prove hardness, we will make a reduction from the first lezicographical minimal vertez
cover problem. Given a graph G = (V,E), a set C C V is called a vertez cover if
for every edge (u,v) € E either u € C or v € C. For a graph G and a minimal
vertex cover D, it is coNP-complete to decide whether D is the first lexicographical
minimal vertex cover [JYP88]. Alternatively, we can see this problem as deciding the
first lexicographical hitting set from a collection of sets of cardinality at most two.
Suppose that V' = {vq,...,v,} and that E = {ey,..., e} where for every i,1 < i < k,
e; is of the form e; = {v,w}. We use a concept name P; for every element v; € V,
a concept name @; for every edge in e; € F and the additional concept names A, B,
and define the TBox

T = {ACP|1<i<n}U
tpc [leji<i<niui@n..no.cay
vi€e;

Hence, there are 2n + 1 axioms, which we order in the following way: for 1 < m < mn,

k
the m-th axiom is A C P,, and the 7+ m-th axiom is P,, C D Q;, with |__!Qk CRB
vicej J=

as the last axiom. If D is a minimal vertex cover, then the set

k
sp={Acpprc 1o uentuille cn
v;€ej 1=

6.1. COMPLEXITY OF PINPOINTING 107

is a MinA for 7 w.r.t. A C B. Additionally, if S is a MinA for 7 w.r.t. A C B, then
k

S satisfies the following two properties: (i) I__JQJ- CBeS,and (ii) AC P, e Siff
]:

P, C |_| Qj € S for all 1 <4 < n. Thus, for every MinA S we can construct the

AT
set D = {v; | AC P; € S}, which is such that S = Sp. Furthermore, the way the
ordering was defined ensures that a D is lexicographically before D’ if and only if Sp
is lexicographically before Sps. This means that D is the lexicographical first minimal
vertex cover iff Sp is the lexicographical first MinA. O

Since the decision problems we have presented in this section depend, in a greater
or smaller degree, on the set of all MinAs, it could be argued that their hardness is a
consequence of the fact that an axiomatic input can have exponentially many MinAs
(see [Sun09, BPS07a] for an example). We could instead try to analyse the complexity
of enumerating the set of all MinAs [JYP88]. An algorithm that enumerates all MinAs
using time polynomial in the size of both the input and the output, that is, in the size
of the TBox and the number of MinAs, will be called output polynomial. If we had an
output polynomial algorithm, then its execution time would be polynomial whenever
the axiomatic input had only polynomially many MinAs.

We are interested in the enumeration complexity of computing the set of all MinAs
for an HL-TBox w.r.t. a given subsumption relation. Unfortunately, to the best of
our efforts we were unable to find a tight bound on the complexity of this problem.
Hence, we settle here for weaker results, in which we allow additional expressivity in
the ontology. We will show that if we either allow a set of irrefutable axioms, or if we
extend the syntax of axioms to allow disjunction in the left-hand size, then an output
polynomial algorithm computing all MinAs is impossible.

Before proving this, we will present an auxiliary result showing that it is not pos-
sible to enumerate all the minimal valuations satisfying a monotone Boolean formula
with an output polynomial algorithm. A proof of this fact can be found in the techni-
cal report [EG91]; since this result is not included in the corresponding journal paper
[EG95b], we provide our own distinct proof for the sake of completeness.

Theorem 6.4. There is no output polynomial algorithm for computing all minimal
satisfying valuations of monotone Boolean formulae, unless P=NP.

To prove this theorem, it is enough to show (see [KSS00]) that the following deci-
sion problem is NP-hard:

Lemma 6.5. Given a monotone Boolean formula ¢ and a set M of minimal valua-
tions satisfying ¢, deciding whether there exists a minimal valuation V ¢ M satisfying
¢ is NP-hard in the size of ¢ and M.

Proof. The proof is by reduction of the NP-hard hypergraph 2-coloring problem [GJ79]:
given a collection H = {E},..., E,} of subsets of a set of vertices V', each of them of
size 3, is there a set C such that CNE; #@and (V\C)NE; #0 fori=1,...,m. %

23Tn other words, both C' and its complement must be hitting sets for Fi,. .., Epm.

108 CHAPTER 6. COMPLEXITY RESULTS

Let V = {v1,...,v,} and E; = {v;j1,vi9,v;3} for all i = 1,...,m. We represent
every v; € V by a propositional variable p;, and construct the monotone Boolean
formula ¢ := 4 vV /| 1;, where

m
¢ = N\piVpiVpis and ¢ =pi Api Apis
i=1

and the set
M = {V; := {pi1,pi2,pis} | 1 <i < m and no strict subset of V; satisfies v}.

It is easy to see that the formula ¢ as well as the set M can be constructed in
time polynomial in the size of V and H. Moreover, every valuation V; € M satisfies
the formula 1;, and hence also ¢. It is minimal since no strict subset of V; satisfies
(i) any of the 9; (which require valuations of size at least 3 to be satisfied) nor (ii) 9
since otherwise the condition in the definition of M would be violated. This shows
that ¢ and M indeed form an instance of the problem considered in the lemma.

To complete the proof of NP-hardness of this problem, it remains to be shown that
there is a minimal valuation V ¢ M satisfying ¢ iff there is a set C' C V such that
CNE;#0and (V\C)NE; #0 for all 1 <i < m.

We show first the if direction. Let C be such a set, which we assume without loss
of generality to be minimal with respect to set inclusion. We define the valuation
Ve = {pi | vi € C'} and claim that it is the minimal valuation we are looking for. For
every 1 <4 < m, CNFE; # () implies that there isa 1 < j < 3 such that v;j € C, which
means that p;; € V. This shows that V¢ satisfies ¢y and thus also ¢. In addition,
since (V\ C)N E; # 0, there is a 1 < k < 3 such that vy, ¢ C. Thus, V¢ is different
from all the valuations V; € M, and it does not satisfy any of the formulae ;.

To show that V¢ is minimal, assume that V' C V. Since C is minimal, the set
C' :={v; | pi € V'} C C is such that there is a 1 <4 < m with C'N E; = (). This
implies that V' does not satisfy p;; V ps2 V p;3, and hence it does not satisfy 1. As
a subset of V¢, it also does not satisfy any of the formulae 1;, and thus it does not
satisfy ¢. This shows that V¢ is a minimal valuation satisfying ¢ that does not belong
to M.

For the only-if direction, assume that there is a minimal valuation V ¢ M satisfying
¢. This valuation cannot satisfy any of the formulae ;. Indeed, (i) for V; € M this
would imply that V is a superset of one of the valuations in M, which contradicts
either the minimality of V or the fact that it does not belong to M; (ii) for V; ¢ M
there would be a smaller valuation satisfying ¢, which contradicts the minimality of
V.

Since V is a model of ¢, it must thus satisfy 1. Define the set Cy := {v; | p; € V}.
Since V satisfies 9, for every 1 <4 < m there is a 1 < j < 3 such that p;; € V, and
thus v;; € Cy N E;. On the other hand, since V does not satisfy any of the formulae
1, for every 1 < ¢ < m there must also be a 1 < k < 3 such that p;; ¢ V, which
means that E; ¢ Cy and hence (V' \ C) N E; # 0. O

Theorem 6.4 follows from this lemma since an output polynomial algorithm whose
runtime is bounded by the polynomial P(|¢|,|M|) (where ¢ is the input and M the

6.1. COMPLEXITY OF PINPOINTING 109

output) could be used to decide the problem introduced in the lemma in polynomial
time as follows: given ¢ and M, run the algorithm for time at most P(|4|,|M|) and
check whether the generated valuations are exactly those in M.

Theorem 6.4 shows that an algorithm for computing all MinAs based on computing
the pinpointing formula and then producing its minimal satisfying valuations cannot
be output polynomial. We would like to show that there is no algorithm of any
kind for computing all MinAs that is output polynomial. Unfortunately, our efforts
towards this goal have been unfruitful. In this respect, we had to settle with a weaker
result dealing with the enumeration of all MinAs in the presence of an irrefutable
TBox. Assume that the TBox is formed by the disjoint union of a static TBox T,
whose axioms are irrefutable, and a refutable TBox T,. We will denote this union as
T = (T; WT.). In this context, a MinA S for 7 w.r.t. A C B is a minimal subset of
T such that A C7.,s B. In Chapter 3 we showed that this defines a c-property, and
hence we can use the notions of MinA in it.

Theorem 6.6. There is no output polynomial algorithm that computes, for a given
HL TBox T = (T; W T,) and concept names A, B occurring in T, all MinAs for T
w.r.t. AC B, unless P=NP.

Proof. We show that the problem of computing the minimal valuations of monotone
Boolean formulae can be reduced in polynomial time to the problem of computing
the MinAs of an HL TBox. Given a monotone Boolean formula ¢, we introduce one
concept name B, for every subformula of ¢ of ¢, and one additional concept name
A. We define TBoxes Ty, for the subformulae v of ¢ by induction in a straightforward
manner: if ¢y = p is a propositional variable, then Ty, := {A T Bp}; if ¢ = 1 A 1o,
then 771, = {Bwl M By, C Bw}; if ¥ = 1 V 19, then 7:# = {Bwl C By, By, C Bd}}'
Obviously, the size of Ty is linear in the size of ¢. In 7y, we declare the GCIs A C B,
with p a propositional variable to be refutable, and the other GCIs to be irrefutable.
With this division of 7y into a static and a refutable part, it is easy to see that there
is a one-to-one correspondence between the minimal satisfying valuations of ¢ and
the MinAs for 75 w.r.t. A C By. In particular, given a MinA S, the corresponding
valuation Vs consists of all p such that A T B, € S. Thus, if we could compute all
MinAs with an output polynomial algorithm, we could do the same for all minimal
satisfying valuations. O

This theorem shows that, in general, exponential time is necessary for computing
all the MinAs of a given axiomatic input, even if there are only polynomially many
of them, when some of the axioms are allowed to be irrefutable. The reason why
irrefutable axioms are necessary is to be able to adequately model the disjunctions
from which we are reducing the problem. It seems reasonable, thus, that if we allow
the language to include the disjunction constructor (L), then there will be no need for
a static TBox. We will now show that it suffices to allow this constructor only on the
left-hand side of the axioms. More formally, we define the set of HLU concept terms
as those that can be obtained from the set N¢ of concept names using the constructors
M and L. A disjunctive TBoz is a set of axioms of the form C' C D where C is an

110 CHAPTER 6. COMPLEXITY RESULTS

HLU concept term and D is an HL concept term. The semantics of this logic are
defined in the obvious way.

Theorem 6.7. Let T be a disjunctive TBox and A, B two concept names appearing
in T. There is no output polynomial algorithm for computing all MinAs for T w.r.t.
A C B, unless P= NP.

Proof. The proof is very similar to that of Theorem 6.4 through Lemma 6.5. We will
reduce the hypergraph 2-coloring to the problem of deciding, given a set of MinAs M,
whether there is another MinA for our property that is not an element of M.

Let V.= {vy,...,v,} and E; = {vj1,vi2,v;3} for 4,1 < i < m. We will simulate
each v; € V' by a concept name P;. If we define the axiom tp as

m m
tp = Z._l_ll(pil U pio LI pi3) U i—l_ll(pil Mpi2 Npi3) C B,

then we construct the disjunctive TBox T ={AC P; |1 <7 <n}U{tp}, and the set
of MinAs

M:={V;:={ACP; |1<;j<3}U{tp}|1<i<mandV;isaMinA}.

Since the concept name B appears only in the right-hand side of the axiom g, any
MinA for 7 w.r.t. A € B must contain this axiom. Thus, using an argument analogous
to the one of Lemma 6.5, we have that there is a MinA § ¢ M for T wrt. AC B
if and only if there is a set C C V such that CN E; # 0 and (V' \ C) N E; # 0 for all
1,1 <4 < m. From this result, our claim follows, using the same argument as in the
proof of Theorem 6.4. O

Alternatively one may be interested in knowing how many MinAs there are, rather
than actually obtaining each of them. For these kind of problems, where the interest
is in counting the number of solutions, we have to analyse a different kind of com-
plexity. In the theory of counting complexity, given a decision problem, one is not
only interested in whether there is a solution or not, but rather in how many solutions
exist. Clearly, the resources necessary for counting the number of solutions exceed
those needed for merely deciding the existence of one since any number of solutions
greater to zero implies an affirmative answer to the decision problem. In the first pa-
pers introducing this complexity measure, Valiant showed that there exist problems
decidable in polynomial time for which counting the number of solutions is as hard as
for NP-complete problems [Val79a, Val79b]. Informally, the counting complexity class
#P contains all those problems for which a solution to its related decision problem can
be verified in polynomial time. Thus, the counting problem of every decision problem
in NP belongs to #P.

Theorem 6.8. Given a HL TBox T and two concept names A, B occurring in T,
the problem of counting the number of MinAs for T w.r.t. A C B is #P-complete.

Proof. The problem is in #P since its underlying decision problem, whether there
exist a MinA for 7 w.r.t. A C B is in NP.2* We show #P-hardness by a reduction

24 Actually, as it has already been said, it is in P.

6.1. COMPLEXITY OF PINPOINTING 111

of the #P-hard minimal vertex cover counting problem [Val79b]: given a set V and
E CV xV, count the number of minimal vertex covers. In other words, counting
the number of minimal hitting sets of a collection of sets of cardinality at most two.
We use the same reduction presented in the proof of Theorem 6.3, and show that
it is parsimonious; i.e. that is preserves the number of solutions. As shown in said
proof, a set C' C V is a minimal set having at least one element of each e € F iff

k
. Q; | vi € C}U {I_!QJ C B} is a MinA for 7 w.r.t.
i€ej J=

A C B. We have thus a one-to-one correspondence between the number of vertex
covers and the number of MinAs. Hence, counting the number of MinAs is a #P-hard
problem. O

Se ={Acp,pcC |l

Another interesting question regarding counting is, given an axiom ¢, compute the
number of MinAs that have ¢ as an element. Solving this problem is relevant, for
example, when correcting an unwanted consequence: those axioms that appear more
often as causes of the error are the most likely to be faulty, and their removal will also
eliminate the most MinAs possible. This idea has been proposed as an heuristic for
correcting an error while minimizing the changes in the set of axioms [Sch05, SHCHO7].
Unfortunately, this counting problem is also #P-hard.

Theorem 6.9. Given an HL TBoz T, an axiom t € T, and two concept names A, B
occurring in T, the problem of counting the number of MinAs for T w.r.t. AC B
containing t is #P-complete.

Proof. This problem is in #P as its underlying decision problem is in NP. We show
#P-hardness by giving a parsimonious reduction of the problem from Theorem 6.8.
Given an HL TBox 7 and two concept names A, B appearing in 7, we define the new
HL TBox T':=T USp, where Sy = {AC C,BNC C D} and C and D are concept
names not occurring in 7. Clearly, a set S C T is a MinA for 7 w.r.t. A C B iff
SUS, is a MinA for 7’ w.r.t. A C D. Furthermore, every MinA for 77 w.r.t. AC D
must contain the axioms in Sy. Thus, there are exactly as many MinAs for 7 w.r.t.
A C B as there are MinAs for 7’ w.r.t. A C D containing the axiom A C C, which
entails the hardness result. U

With this result we finish our study of complexity of problems related to finding
MinAs. In the following subsection we will show that the same complexity bounds
hold for the dual problems related to MaNAs.

6.1.2 MalNA Complexity

Finding minimal hitting sets has been useful, not only when trying to produce the set
of all MaNAs from known MinAs and wvice versa, but also to prove the hardness of
MinA related problems in the previous subsection. Given the dual nature of MinAs
and MaNAs, it is hardly surprising that the dual problem of hitting sets — that of
independent sets — will be equally helpful for showing the hardness of MaNA related
problems.

112 CHAPTER 6. COMPLEXITY RESULTS

Algorithm 1 Compute one MaNA for 7 = {¢,...,t,} wort. AC B.
1: if A Z7 B then
2: return no MaNA
3: S:=10

4: for 1 <i<ndo

5

6

7

if A ZSU{ti} B then
S =8U {tl}

: return S

Given a collection M of sets using elements from V, a set S C V is an independent
set iff for every M € M it holds that M ¢ S. Notice that S is a (maximal) independent
set if and only if V\ S is a (minimal) hitting set. Thus, all complexity results known for
(minimal) hitting sets apply also, in their dual presentation, to (maximal) independent
sets, and likewise for the opposite direction. This is, nonetheless, not sufficient for
claiming that all the results from Section 6.1.1 hold also for MaNAs, since the c-
properties considered change with this polynomial reduction.

Although not all of the algorithms known for computing a single MinA can be
dualised, we can still compute one MaNA — in fact, the lexicographical first MaNA —
with only a polynomial overhead, by dualising the naive algorithm presented in [Sun09,
BPS07a] in such a way that adds axioms to the knowledge base, as long as the property
does not follow from the enlarged set. This dual version, for the case of subsumption
w.r.t. HL-TBoxes, is shown in Algorithm 1. This algorithm requires polynomially
many subsumption tests. Furthermore, it is easy to see that its output corresponds
to the first lexicographical MaNA.

If the search for a MaNA aims to avoiding an unwanted consequence, then we
are interested in finding the largest possible MaNA, that is, one with the greatest
cardinality, such that the changes to the knowledge base remain minimal. Deciding
whether there is a MaNA of size greater than or equal to a given n is an NP-complete
problem, though.

Theorem 6.10. Given an HL TBoz T, concept names A, B appearing in T and a
natural number n, it is NP-complete to decide the existence of a MaNA for T w.r.t.
A C B of cardinality > n.

Proof. The problem is obviously in NP. For the hardness, we reduce the NP-hard
problem of mazimal independent sets: given a collection of sets M = {Si,..., S} and
a natural number n, decide whether there is an independent set for M of cardinality
> n. For the reduction, we use a concept name P for every element p € Ule Si
and additional concept names A, B. We consider that each set S; is of the form
Si = {si1, ..., Sir,} and construct the TBox:

T = {ACP|peUr, su
4;

(repiici<n
]:

6.1. COMPLEXITY OF PINPOINTING 113

We will show that there is an independent set for M of size > n iff there is a MaNA
for 7 war.t. AC B of size > n + k.
Assume first that there is such an independent set M. The sub-TBox

T'={ACP|peM}US

where

4;
s = {[lpyjcmiici<n (6.1)
J:

has |M| + k axioms and is such that A Z7 B.

Conversely, take a MaNA T7'. Suppose that there is a 4,1 < i < k such that
£;

I'_lpij C B¢ T'. Since T’ is a MaNA, it holds that {AC P;; |1 <j < {4} C T
J:
Take now any element from S;; say p;1. Then, the new sub-TBox

%
T/ = (T'\{AC Pu}) U{gpij C B

is such that (i) |7;| = |7"|, and (ii) A Z7# B. The same process can be applied again
to this set 7/, until we have constructed a set of axioms 7" such that A Z7» B and
S C T", where S is the one of Equation (6.1). Theset M = {p| AC P € T"} is an
independent set for M, and |T"| = |[M| + k. O

Just as we were interested in the relevance of an axiom when dealing with MinAs,
one might want to know whether a given axiom necessarily appears in every MaNA, or
there is at least one that does not contain it. We show that this problem is equivalent
to that of Theorem 6.2.

Theorem 6.11. Let T be a HL TBox, t € T and A, B concept names in T . Deciding
the existence of a MaNA S for T w.r.t. AC B such that t ¢ S is NP-complete on the
size of T.

Proof. Let S be a MaNA such that ¢ ¢ S. Then, for SU{t} it holds that A Csyg) B.
Thus, there is a MinA 8§’ for A C B w.r.t. 7 such that 8" C SU {¢}. But then, it
holds that ¢ € &’ since otherwise S’ C S, which would contradict the fact that S’ is a
MinA. Conversely, if S is a MinA such that ¢t € S, then the subsumption relation does
not hold for S\ {¢}. Hence, there is a MaNA S’ containing S\ {t}. If ¢ € §', then
S C &', contradicting the definition of MaNA. Hence, there is a MinA containing ¢ if
and only if there is a MaNA that does not contain ¢. O

To finish with the decision complexity results, we show coNP-hardness for the
problem of finding the lexicographical last MaNA. This follows easily from the hard-
ness of finding the lexicographical last maximal independent set.

Theorem 6.12. Given an HL TBoz T, concept names A, B appearing in T and a
MaNA S, it is coNP-complete to tell whether S is the lexicographical last MaNA for
T wrt. AC B.

114 CHAPTER 6. COMPLEXITY RESULTS

Proof. The problem is in coNP since we can verify a counterexample in polynomial
time. For the hardness, we use the result from [JYP88] by which finding the lexico-
graphical last maximal independent set is coNP-hard. We use the same reduction from
the proof of Theorem 6.10 and order the axioms as follows: first all the axioms of the
form A C P, and then all the other axioms. It is easy to see that M is the last lexico-
graphical maximal independent set for M if and only if 7/ = {AC P; | pj € M} US,
with S as in Equation (6.1), is the last lexicographical MaNA for 7 w.r.t. AC B. O

We focus now on the complexity of enumerating all MaNAs. For a fixed natural
number n, consider the H.L TBox

Tn={ACP,P,CB|1<i<n}
T, has 2n axioms, but for every set N C {1,...,n}, the sub-TBox
[ACP|ieN}U{PCB|j¢N)

is a MaNA for 7, w.r.t. A C B. Since each different N defines a different MaNA, this
axiomatic input has 2" MaNAs. This example shows that a given axiomatic input
may have exponentially many MaNAs, measured on the number of axioms. We will
show that they cannot be enumerated using an output polynomial algorithm, in the
presence of an irrefutable TBox. As it was the case for MinAs, we will show first
an auxiliary result regarding the computation of all maximal valuations falsifying a
monotone Boolean formula.

Lemma 6.13. Given a monotone Boolean formula ¢ and a set M of mazimal valua-
tions falsifying ¢, deciding whether there exists a mazimal valuation V ¢ M falsifying
¢ 18 NP-hard in the size of ¢ and M.

Proof. For the proof, we once again use the NP-hard hypergraph 2-coloring problem.
Our reduction in this case will be very similar to the one used in Lemma 6.5, taking
advantage of the duality of the problems. Let V' = {vy,...,v,} and E; = {v;1, v;2,vi3}
forall s =1,...,m. We represent every v; € V by a propositional variable p;, call P
the set of all propositional variables representing a v € V. and construct the monotone
Boolean formula ¢ := ¢ A A" i, where

m
¢ =\/pi Api2 Apis and ;i =pi Vi Vpis
i=1

and the set

M = {V; := P\ {pi1,pi2,; pis} | 1 <i < m and no strict superset of V; falsifies 1 }.

It is easy to see that the formula ¢ as well as the set M can be constructed in
time polynomial in the size of V' and H. Moreover, every valuation V; € M falsifies
the formula 1;, and hence also ¢. It is maximal since no strict superset of V; falsifies
(i) any of the 1; (which require valuations of size at most n — 3 to be falsified) nor

6.1. COMPLEXITY OF PINPOINTING 115

(ii) 4 since otherwise the condition in the definition of M would be violated. This
shows that ¢ and M indeed form an instance of the problem considered in the lemma.

To complete the proof of NP-hardness of this problem, it remains to be shown that
there is a maximal valuation V ¢ M falsifying ¢ iff there is a set C C V such that
CNE;#0and (V\C)NE; # forall1 <i<m.

We show first the if direction. Let C be such a set, which we assume without loss
of generality to be minimal with respect to set inclusion. We define the valuation
Vo := P\ {p; | v € C} and claim that it is the maximal valuation we are looking
for. For every 1 < i < m, C N E; #) implies that there is a 1 < j < 3 such that
v;j € C, which means that p;; ¢ V. This shows that V¢ falsifies ¢ and thus also ¢.
In addition, since (V' \ C) N E; # 0, there is a 1 < k < 3 such that v € C. Thus, V¢
is different from all the valuations V; € M, and it satisfies all of the formulae ;.

To show that V¢ is maximal, assume that V' O V. Since C is minimal, the set
C":={v; | pi ¢ V'} C C is such that there is a 1 < i < m with C' N E; = (). This
implies that V' satisfies p;1 A p;2 A p;3, and hence it also satisfies 1. As a superset of
Ve, it also satisfies all of the formulae v;, and thus it must satisfy ¢. This shows that
Ve is a maximal valuation falsifying ¢ that does not belong to M.

For the only-if direction, assume that there is a maximal valuation V ¢ M falsifying
¢. This valuation cannot falsify any of the formulae ;. Indeed, (i) for V; € M this
would imply that V is a subset of one of the valuations in M, which contradicts either
the maximality of V or the fact that it does not belong to M; (ii) for V; € M there
would be a larger valuation falsifying 1, which contradicts the maximality of V.

Since V is not a model of ¢, it must thus falsify . Define for this valuation the
set Cy := {v; | pi ¢ V}. Since V falsifies 1), for every 1 <i < m thereisa 1l <j <3
such that p;; ¢ V, and thus v;; € Cy N E;. On the other hand, since V does not falsify
any of the formulae 1);, for every 1 < ¢ < m there must also be a 1 <[< 3 such that
pik €V, which means that E; ¢ Cy and hence (V' \ C) N E; # 0. O

From this lemma, we get the following theorem, whose proof is identical to the
one for Theorem 6.4 presented in the previous subsection.

Theorem 6.14. There is no output polynomial algorithm for computing all mazimal
falsifying valuations of monotone Boolean formulae, unless P=NP.

In the proof of Theorem 6.6, we presented a one to one correspondence between
MinAs using an irrefutable TBox, and minimal valuations satisfying a Boolean for-
mula. It is easy to see that the same reduction yields also a bijection between the set
of MaNAs for the same property and the maximal valuations falsifying the formula.
We thus obtain the next result.

Theorem 6.15. There is no output polynomial algorithm that computes, for a given
HL TBox T = (T WT,) and concept names A, B occurring in T, all MaNAs for T
w.r.t. AC B, unless P=NP.

Recall now that it is possible to simulate a monotone Boolean formula using a
disjunctive TBox. Thus, the dual result for Theorem 6.7 holds too.

116 CHAPTER 6. COMPLEXITY RESULTS

Theorem 6.16. Let T be a disjunctive TBox and A, B two concept names appearing
in T . There is no output polynomial algorithm for computing all MaNAs for T w.r.t.
AC B, unless P= NP.

Considering now the problem of counting the number of solutions, we get the
two results that counting the number of MaNAs and the number of all MaNAs not
containing a given axiom ¢ are #P-complete problems.

Theorem 6.17. Given a HL TBox T, two concept names A, B appearing in T and
an axiom t € T, the following two problems are #P-complete:

1. counting the number of MaNAs for T w.r.t. AC B;
2. counting the number of MaNAs for T w.r.t. AC B not containing t.

Proof. For the first point, consider M = {Si,...,Sk} and let s ¢ Ule Si. Then,
M has as many maximal independent sets as M’ = {S; U {s},..., Sk U {s}, {s}}; in
fact, M is a maximal independent set of M iff it is also a maximal independent set
of M'. We construct a TBox 7 from M’ as in the proof of Theorem 6.10. Notice
that such a reduction is not parsimonious; for every maximal independent set of M
there can be several MaNAs for 7 w.r.t. A C B. Let 7' be a MaNA, and define
Mp ={p| AC P e T'}. If S, defined by Equation (6.1), is a subset of 7', then
M7+ is a maximal independent set for M’; otherwise, there is a set S € M’ such
that S C My+. In particular, the latter implies that A C P; € T', where P; is the
concept name representing the new element s used for defining M’. Thus, the number
of MaNAs for 7 w.r.t. A C B equals the number of maximal independent sets for M
plus the number of MaNAs that contain the axiom A T Ps. Consider now the TBox
¢4
T.={ACPNP|pe Ulesi}u{ﬂpij C B|1<i<k} Al the MaNAs

for this TBox are MaNAs for 7, and contain A C P,. Thus, if m; is the number of
MaNAs for 7 w.r.t. A C B and ms the number of MaNAs for 7; w.r.t. A C B, then
the number of maximal independent sets for M equals m; — ms. Since both TBoxes
can be computed in polynomial time on the size of M, the problem of counting the
number of MaNAs for an HL-TBox w.r.t. a subsumption is #P-hard.

For the second part, given a TBox 7, there are as many MaNAs for 7 w.r.t. AC B
as there are for 7 U {t} w.r.t. A C B not containing the axiom ¢t if t:= AC B. O

With this we finish our analysis of the complexity of finding MaNAs.

6.1.3 Pinpointing Complexity

All the complexity results presented so far correspond to finding the set of all MinAs,
or some of its properties, regardless of the method used. In this dissertation we
have focused on an indirect method towards this goal, by finding first a pinpointing
formula. As described in Section 3.1, there is a direct correspondence between the
MinAs and the minimal valuations satisfying the pinpointing formula, by a bijection
between the axioms in the input and the variables appearing in the formula. As

6.1. COMPLEXITY OF PINPOINTING 117

it turns out, analogous complexity results hold already for the problem of finding
minimal valuations satisfying a monotone Boolean formula or, as it is also called in
the literature, finding the prime implicants of a monotone Boolean formula.

It is worth noticing that every valuation V can be seen as a monotone Boolean
formula consisting of the conjunction of the variables appearing in V. Likewise, a set
of valuations represents the disjunction of all the valuations appearing in it; that is, a
formula in disjunctive normal form. It is easy to see that, given a monotone Boolean
formula ¢, the set of all minimal valuations satisfying ¢ is equivalent to the original
formula ¢. Since the disjunctive normal form of a formula may be exponential in
the number of variables appearing in the formula, it follows that there can be expo-
nentially many minimal valuations that satisfy a given monotone Boolean formula.
Additionally, there is no output polynomial algorithm that computes all these mini-
mal valuations (unless P=NP), as shown in [BPS07a, EG91] (see also Theorem 6.4),
and counting how many of them exist is #P-complete [Val79b]. Analogous complexity
results hold for the problem of finding maximal valuations not satisfying the formula.

These hardness results for monotone Boolean formulae open the question of how
hard it is to compute the pinpointing formula per se. It could still be the case that
finding a pinpointing formula is a simple task, and the whole hardness of computing
MinAs is pushed to the computation of minimal valuations from it. Unfortunately,
known results in the area of monotone complexity show us that this is not the case.?

In essence, Karchmer and Wigderson [KW88, KW90] showed that there exist c-
properties decidable in polynomial time whose pinpointing formula is superpolynomial
in length (see also Section 5 of [BS90]). The problem they use for showing this result
is graph reachability. Consider a set of vertices V' = {vy,...,v,}, and let the sets
J=%={(v,w) | v,w € V}; that is, the inputs and axioms are pairs of vertices.
We see each axiom (v,w) as an edge between v and w. Thus, a set of axioms is a
graph. The c-property we are interested in deciding is whether, given an axiomatised
input ((v,w),T), w is reachable from v in the graph 7. Notice that this is indeed a
c-property that can be decided in polynomial time. The pinpointing formula for this
property and the axiomatised input ((v1,v,),%) is not representable in polynomial
length [KW88, KW90).

This c-property is in fact a special case of subsumption of H L concept names, where
all the axioms are of the form C' C D, with C, D concept names. From this it follows
that there exist axiomatised inputs whose pinpointing formula w.r.t. subsumption has
superpolynomial length.

Theorem 6.18. Let N¢c be a set of concept names, T = {C T D | C,D € Nc},
and A, B € Nc. The pinpointing formula for ((A, B),T) w.r.t. subsumption cannot be
represented in polynomial length in the size of T.

With this we conclude our study of the general complexity of pinpointing, and turn
now our attention to proving our claim from Chapter 3 with respect to undecidability
of termination of the pinpointing extension of general tableaux.

Z5Monotone complexity measures the length of a monotone Boolean formula computing a given
function.

118 CHAPTER 6. COMPLEXITY RESULTS

6.2 Undecidability of Tableaux Termination

We have now shown several results of the hardness of pinpointing-related problems,
independent of the method used for solving them. For the rest of this chapter, we
focus our attention once more on the tableau-based method. First of all, notice that
we have always assumed that the original tableau terminates on every input (see
Definition 3.18) and have not dealt with any means to ensure this fact. Even more,
we have shown in Example 3.32 that even if we can prove termination of a general
tableau, this will not ensure that its pinpointing extension will also run in finite time.
To deal with this problem, we introduced the concept of ordered tableaux in Chapter 4
and showed that they, and their pinpointing extensions, are always terminating. It
is nonetheless very easy to see that this class does not fully characterize the class of
all tableaux having a terminating pinpointing extension. Unfortunately, as we will
see now, it is unable to find a method that decides whether a given tableau has a
terminating pinpointing extension.

This section has the following structure. First, we will show that there is a tableau
S for which, given an axiomatised input I', it is undecidable whether S terminates on
I' by a reduction from the halting problem for Turing machines. We then show how
to modify the same ideas to show that there is a tableau S for which it is undecidable
whether its pinpointing extension terminates on a given axiomatised input I'. In the
end we show how this result relates to our problem of termination in general.

Definition 6.19 (Turing machine). A Turing machine (TM) is a quadruple of
the form M = (Q,%,0,q0) where Q is a finite set of states , ¥ is a finite set of
tape symbols containing the blank symbol U, gy € Q is the initial state and J is the
transition function § : Q X ¥ — (Q U {yes,no}) x X x {«,—>}. |

Given a TM M and an input w, the halting problem consists on deciding whether
M halts on w; that is, whether a sequence of computations following the transition
relation over the input w will reach a state where no further step is possible. This
problem is well known to be undecidable [Tur36, Dav04]; in other words, there is no
algorithm that can decide whether M halts on w for all possible TMs M and inputs
w. In fact, the following stronger result can be shown: there is a TM M for which
the problem of deciding, given an input w, whether M halts on w is undecidable.
The difference between these two problems is that in the first one the TM is also
a part of the input for the decision problem, while in the second one such TM is
fixed. Obviously, if there is no algorithm for deciding halting of inputs for a fixed
TM, then there is also none that can decide the problem for all possible TMs. We
require the stronger result since it is possible to think of general tableaux that are
not describable in a finite way, and hence cannot be considered part of the input of a
decision procedure.

6.2.1 Termination of Tableaux

We will construct, given a TM M, a tableau Sj; whose inputs will be analogous to
those of M and such that Sys terminates on an input w if and only if M halts on

6.2. UNDECIDABILITY OF TABLEAUX TERMINATION 119

w. Intuitively, the Sjs-states will represent configurations on the tape of M during
the execution of the TM and thus a rule application on Sy; will simulate the changes
performed on the tape by an execution step on M.

We will first use a predicate symbol to represent each symbol in I'; that is, for
every g € I', include in the signature the unary predicate symbol T,,. To show that
the symbol g appears on the tape in the current configuration, we simply use the
assertion Ty(a) for some constant a. Since the order in which the symbols appear in
the tape is relevant for the execution of the machine, we have to represent such an
order accordingly in our tableau states. As Sj/-states are merely sets of assertions, we
will use predicate symbols F, for z € Z in our signature. Intuitively, an assertion of
the form F),(a) states that constant a is alloted in the tape position z. Such a constant
a works as the fusion point between the symbols in the tape and the position they
occupy. Thus, we will use distinct constants at different positions.

Once we know the symbols appearing on the tape and their position, we still need
to represent the position of the head and the internal state of the machine. We do this
in the same way as when describing the tape. For each state ¢ € @, we add the unary
predicate symbol H, to the signature of our tableau. The assertion H,(a) represents
then that the machine has the internal state q. To know the position to which the
head is pointing, we need to look into an assertion of the form F,(a); this way we
know that the head is currently reading the symbol on the z-th cell of the tape.

Example 6.20. In the initial configuration of the execution of a TM, the head is
located in position 1 and the internal state is set to qy. Suppose that the input is given
by the chain s-t. This configuration can be represented by the set of assertions

{F1(a), F2(b), Ts(a), T;(b), Hg, (@) }-

Since we want the evolution of the states of our tableau to simulate the transi-
tions performed by the original TM, we need to define the tableau rules accordingly.
Suppose, for example, that we have §(qo,s) = (q1,s’,—). Given the configuration of
Example 6.20, this machine would change the tape to contain the chain s’ -¢, with the
head pointing to the second cell and the internal state being ¢;. Thus, we would like
our rule to change the set of assertions accordingly, leading to the set

{F1(c), F2(b), To(¢), T (b), Hy, (b)}-

It is very easy to add the required assertions with a rule application. Unfortunately,
tableau rule applications only extend the sets of assertions, and never remove elements
from it. Since we have used distinct constants for representing distinct positions (i.e.,
cells) of the tape, we can add an assertion specifying that a given constant should not
be considered anymore as part of the description of a configuration of the TM. We
achieve this with the aid of the additional unary predicate L in the signature of Sy;.
We can now describe the configuration after one execution step in M with the set of
assertions

{F1(a), Ts(a), Hyo(a), L(a)} U {Fi(c), Fa(b), Ty (c), Ty (b), Hg, () }.

120 CHAPTER 6. COMPLEXITY RESULTS

The second set in this expression contains all the elements representing the actual
configuration of the machine, the first set showing all the elements that are related to
the constant a, which is discarded by the assertion L (a). This first set can be thought
of as a trash tail representing the states and symbols that have been overridden during
the execution of M.

Suppose now that d(q1,t) = (q1,t, —). When the machine executes this transition,
the head ends up pointing at a cell that is empty and not represented in the Sp,-
state. Since we cannot know beforehand how many tape cells will be used during the
execution of M, we cannot represent all of them in the tableau state either. What we
need is a way of expanding the space on demand. In this example, we need to specify
that the third tape cell will also be used. Thus, we need to add an assertion of the
form F3(d). Furthermore, we know that the tape is written with the blank symbol U
at that cell, so we also include the assertion 7},(d).

This approach, nonetheless, requires us to know that there is no assertion of the
form F3(z) before the rule can be applied; otherwise, this rule could also be applied to
“add space” that is already in use. For example, one such rule application could add
the new assertions Fy(e), T\,(e), which is an undesired behaviour. Our definition of rule
application does not allow to look for the (non-)existence of an assertion of some shape;
nonetheless, we will be able to do such a check indirectly by using non-deterministic
rules. One of the non-deterministic options will try only to add an assertion F,(y),
while the other will add both necessary elements, namely F,,(y),T,,(y). The way rule
application was defined ensures that this rule is only applicable if there is no assertion
specifying the use of space in cell n already. We are now ready to construct our tableau
Sus that simulates the TM M.

Definition 6.21 (Simulating tableau). Let M = (Q,T',0,q9) be a TM and let the
set of inputs I C T* and set of azioms T = (). The tableau simulating M is the tableau
for T and T given by Sy = (2,-%,R,C) where

o X ={F, |z€Z}U{T,|geT}U{H,|qe Q}U{L}, all of arity 1;
e for everyw =g1---gr € L, we have

w® = {Ty,(a;), Fia;) | 1 < i <k} U{Hgy(ar)};

e for every pair (q,g9) € Q@ X T, if 6(q,9) = (¢',g', =), then the rules

({Fk(x), Ty (), Hy(x), Firy1(y), Sgn (y) },

Sgr) = {F(2), Ty (2), Hy (y), L(x)}}
({F(2), Ty (), Hy(2)},

) = {Fe1(2)} {Fes1(2), Tu(2) }}

are in R, and if §(q,q9) = (¢',¢', <), then the rules

({Fk(z), Ty(x), Hy(x), Fr-1(y), Sgr ()}, 0) = {{Fk(2), Ty (2), Hy (y), L(z)}}
{Fr(x), Ty(x), Hy(2)},0) = {{Fr-1(2)}, {Fr-1(2), Tu(2)}}

are in R, for all k € Z; and

0
0

6.2. UNDECIDABILITY OF TABLEAUX TERMINATION 121

Theorem 6.22. Let M be a TM, Sy its simulating tableau and w an input for M.
Then, M halts on w if and only if Syr terminates on the aziomatised input (w, ().

Proof. At every Sjs-state, at most one rule is applicable, described by the only asser-
tion of the form H,(a) such that there is no assertion 1 (a) in the same state. There
are two kinds of applicable rules: those that correspond to a transition of the original
TM, which are deterministic, and the non-deterministic ones used to expand the de-
scription of the tape. If one of the former kind is applied, then the assertion 1 (a) is
added, as well as a new assertion Hy (b), pointing to the new tape cell where the rule
applies. The new Sjs-state obtained this way represents the configuration on the tape
after the TM transition is applied. If the non-deterministic rule is applied, then we
obtain two new Sj/-states. The first one, in which only an assertion Fj(c) is added,
is already saturated, and hence is irrelevant in the search of termination. The second
one changes in no way the description of the tape, but allows the rule of the first kind
to be triggered. Thus, every Sjs state represents a reachable configuration of the TM
M over input w. Likewise, for every reachable configuration, there is a Sys-state that
represents it.]

Corollary 6.23. There is a tableau S for which it is undecidable whether it terminates
over a given azriomatised input.

Notice that the simulating tableau does not have any axioms in its inputs. This
means that the pinpointing extension of a simulating tableau corresponds to the same
original tableau. Hence, we have also shown that there is a tableau for which it is
undecidable whether its pinpointing extension terminates on a given input w. But it
is still possible to ask about the pinpointing extension of terminating tableaux as we
do in the following subsection.

6.2.2 Pinpointing Extensions of Terminating Tableaux

We will show now that there exists also a terminating tableau for which it is unde-
cidable whether its pinpointing extension terminates on a given axiomatised input.
For this, we want now to construct a terminating tableau whose pinpointing extension
simulates the TM. One thing to notice first is that none of the rules of the tableau
simulating a TM described before can be applied if there is no assertion of the form
H,(z) representing the internal state of the machine. Thus, if we could leave out all
these assertions, the TM behaviour will not be simulated by the tableau. The idea
is then to create a tableau that starts with a state describing the whole input, but
not the initial internal state of the machine, which we know that must be gg. This
tableau should then never add the assertion Hgy,(a1) to the states, ensuring that the
simulating rules are not triggered. Additional rules in this tableau should ensure that,
when executed in the normal way, it always terminates, but when executing its pin-
pointing extension, using some axioms, the assertion Hg,(a1) is added and then the

122 CHAPTER 6. COMPLEXITY RESULTS

TM is simulated. This way, we will have a terminating tableau Sy; whose pinpointing
extension terminates on an input (w,7) if and only if the TM M halts on input w.

To do this, we first allow the set of axioms to be ¥ = {ax;, axs}, with all its subsets
being admissible. Then, we modify the tableau Sy of Definition 6.21 to construct S,
in the following way. Add to the signature ¥ the unary predicate names P, P', Py, Py;
and add to R the rules

(P} {axi}) — {{P'(z), P(2)}} (6.2)
({P(2)}{ax2}) = {{P'(2), P2(2)}} 6.3
{P'(2)},0) = {{Hg ()} {P1(2)} {Pa(2)}}-

Furthermore, we modify the definition of -* to replace Hy,(a1) by P(a;) in w?.

The new tableau formed this way is clearly terminating. At the initial state, none
of the rules for simulating the TM can be triggered, since Hy,(a1) is not present. The
only way to add this assertion is to apply Rule (6.4), which in turn can only be applied
once an assertion of the form P’(z) is present; that is, after applying either Rule (6.2)
or Rule (6.3). But once any of these rules is applied, the applicability conditions of
non-deterministic rules disallow the possibility of Rule (6.4) to be applied. Hence,
after at most two rule applications (depending on the set of axioms given in the
axiomatised input), this tableau reaches a saturated state. We thus conclude that S,
terminates on every axiomatised input.

On the other hand, if the pinpointing extension of S, is applied with an input
containing both axioms ax; and axy, then after the application of both Rules (6.2)
and (6.3), Rule (6.4) becomes pinpointing applicable. This is the case because the
label of the assertion P’(a1) at this point is ax; V axy, which does not imply the label
of any of the assertions Pj(aq) or Ps(a1), given by ax; and axsy, respectively. After
applying this rule, we obtain three S, states. Two of them, those corresponding
to the last two sets in the rule, are already saturated, but not the third one. The
third S},-state now contains the assertion Hy,(a1), the only missing piece to start the
simulation of the TM over the same input given. Thus the pinpointing extension of
S%, terminates on an input (w,¥) if and only if M halts on w, which gives us our
desired undecidability result.

Corollary 6.24. There is a terminating tableau S for which it is undecidable, given
an aziomatised input T', whether the pinpointing extension of S terminates on T.

Notice that this is not exactly the result we are looking for. We would like to
be able to classify all the tableaux whose pinpointing extension terminates on all
inputs. It could be the case, for example, that every terminating tableau for which
the undecidability result of Corollary 6.24 holds has also an axiomatised input for
which non-termination can be decided. We could then still be able to find all the
tableaux we are interested in. This, unfortunately, is not the case, given the fact that
we can choose the set of inputs over which the tableau can be applied. Define then,
for a given tableau S over J and £2,4,is(%) and an axiomatised input T' = (Z,7T),
the restricted tableau Sp over 3 = {Z} and P ugmis(T') = {S € Poamis(%) | S C T}
Then, St terminates on all axiomatised inputs if and only if S terminates on input T.

6.2. UNDECIDABILITY OF TABLEAUX TERMINATION 123

We have thus shown that it is impossible to fully characterize the set of all tableaux
that have a terminating pinpointing extension. This obviously does not mean that
we cannot find other subclasses, or even further extend the class of ordered tableaux
introduced in Chapter 4, but that there is no way of describing all the elements of the
class.

This finishes our study of the complexity of pinpointing, and with it, the whole
body of this dissertation. This chapter has shown us that the problem of pinpointing,
with all the tasks that surround it, is in general a hard one. For the constructive
decision procedures, characterised in this work by general tableaux, the pinpointing
extension follows a very intuitive construction, as witnessed by the different times when
these ideas have appeared, presumably in an independent way. But our undecidability
results show that, although the pinpointing extension is simple, special attention has to
be paid, lest we end up with an algorithm that runs indefinitely. But the problems are
not inherent to the tableau-based approach. As our general complexity results show, it
is simply not possible to design any algorithm that will behave nicely complexity-wise
for solving the problems of pinpointing (unless P=NP).

We based our complexity results on the justification and diagnoses problems w.r.t.
‘H L knowledge bases. This was motivated by the polynomial complexity of its decision
problem. Unfortunately, this leaves some problems open. For one, the reductions
presented rely on having a general HL-TBox. In description logics, it is sometimes
the case that the use of an acyclic TBox allows for a lower complexity bound. From
our present study, it is still unclear whether this is the case for pinpointing in the logic
HL or not. Another interesting problem left open during this chapter is the exact
complexity of enumerating all MinAs (or MaNAs) if we do not allow for the more
general languages used in our proofs.

In the next and closing chapter we give our conclusions as well as some of the open
questions that were left by the present dissertation, including those described above.
These open problems could be used as starting points for further research in the area
of pinpointing.

124 CHAPTER 6. COMPLEXITY RESULTS

Chapter 7

Conclusions and Future Work

In this closing chapter we present first a chronical summary of the dissertation, in-
cluding some concluding remarks and brief insights about the process that led to some
of the results readily presented. This summary is followed by some ideas of possible
future work that can be built over the results included in this and other related works.
Some problems left open by this dissertation are also included.

7.1 A Chronical Summary

In different areas, the need to understand the influence of portions of a theory over the
consequences it produces has arisen as a natural problem with distinct applications.
This understanding is usually achieved through the computation of one or several
MinAs. There are essentially two methods to find these sets, once that a decision
procedure exists: one can either call the decision procedure as-is using different por-
tions of the theory (the black-box approach), or one can try to modify the original
algorithm in such a way that a single execution shines some light on the influence
particular axioms have over the result (the glass-box approach).

In this work we had a look at how a glass-box approach works if our decision
procedure is either tableau- or automata-based. Although it is possible to think of
decision algorithms that do not fall into any of these two categories, these are in reality
very rarely found in logic, specially when dealing with monotone properties, which is
one of our most basic assumptions.

Very recently, the problem of finding MinAs started to gain relevance in the area
of Description Logics, where it got the name of aziom pinpointing. The first studies
of this problem in DLs produced a custom modification of a tableau-based decision
algorithm, which allowed to find one or (a description of) all MinAs for the studied
consequence. All these custom modifications had several elements in common, mainly
by the tracing mechanism they implemented. Nonetheless, it was not completely ob-
vious how the same ideas would apply to different constructors and their associated
tableau rules. Hence, each particular pinpointing extension had to be tested for cor-
rectness individually. This motivated our quest for a general notion of tableau-based
axiom pinpointing, from which different instances can be taken and known to be

125

126 CHAPTER 7. CONCLUSIONS AND FUTURE WORK

correct without the hassle of solving similar problems once and again.

In order to describe a general approach to tableau-based pinpointing we faced first
the task of formalising the notion of a tableau algorithm. Although the main ideas of
this class of algorithms seem in general intuitive, there have been very few attempts
to formalise them. This corresponds perhaps to the fact that the intuitive notion is
so vague as to allow for a perfect formal fitting: any definition would either exclude
relevant examples, or be too broad, allowing for techniques that are not generally con-
sidered to be tableau-based. Our formalisation is no exception of this. In particular,
instances of what we call ground tableau (e.g. the subsumption method for ££, or
the congruence closure algorithm) do not seem to be considered as tableau-based by
the community. In the other direction, even trying to be as general as possible, our
current approach cannot deal with complex blocking techniques, like the ones used for
DLs with number restrictions to ensure termination of the process.

With a general notion of tableau, we could then proceed to define their pinpointing
extensions in a way that would allow us to compute all the MinAs for a property,
represented in a monotone Boolean formula. Our method follows the ideas previously
presented in the DL community, but generalises them in a way that allows for distinct
kinds of rules and structures that have not previously been considered. For instance,
our pinpointing extension can be used alongside with ternary predicates, while DLs
deal usually only with unary (concepts) and binary (roles) predicates. There were
nonetheless unexpected problems during the development of our framework.

For one, we must speak of the problem of termination of the pinpointing extensions
of general tableau. In the original sources motivating our generalisation, termination
of the pinpointing extension was disregarded as a trivial consequence of termination of
the original tableau algorithm. Intuitively, it indeed looks so, and in a first approach
we thought that termination of pinpointing extensions should as trivially follow in
the general case. As we saw at the end of Chapter 3, this intuition was incorrect,
as multiple applications of rules, caused by the need to understand all causes for
the insertion of a given assertion, may result in a combination that leads to non-
termination. Such a behaviour does not seem to occur in the tableaux for DL.

To recover termination we looked again at successful cases and distinguished, as
others have done before, the tree-shape of the created structures as a common cause
for termination. That lead to the definition of forest tableaux which, under some
additional assumptions, were shown to terminate. Even if they do not satisfy the
assumptions required for termination, we showed that equality blocking can be used
in this setting to obtain effective algorithms. Tree tableaux obviously constitute a
very small subclass of general tableaux, and its definition may seem too complex. In
reality, although several conditions are imposed to these tableaux, all of them are
syntactical, on the shape of the rules. This might very well exclude several other
terminating pinpointing extensions, but syntactical restrictions have the advantage of
being easily verified for any given tableau. Other notions of terminating tableaux may
possibly be defined, but we showed that it is impossible to fully characterise this class.

While researching in this topic, we slowly became aware of the fact that the same
ideas had appeared often in other areas. Particulary surprising is the fact that all
glass-box methods found followed the same pattern: the implementation of a tracing

7.1. A CHRONICAL SUMMARY 127

technique over a constructive algorithm. Here the term constructive refers to the fact
that these algorithms use rules and axioms to construct some kind of model from
which the property can be readily decided. The tracing technique consists on adding
a label to each piece of this model, which expresses the causes for its addition. This
label is modified if more causes become known.

Automata-based decision procedures are not constructive. In their most basic
formulation, we construct an automaton based on the input of the problem. The
input is rejected if and only if this automaton has a successful run with the root label
belonging to the set of initial states. Nonetheless, trying to build a successful run leads,
in the best case, to a non-deterministic procedure. This can be improved for automata,
by means of an iterative emptiness test, that runs in (deterministic) polynomial time
in the size of the automaton. Such a test tells us only whether the language accepted
by the automaton is empty or not, but tells us nothing about how this language (or,
more correctly, the accepting runs) looks like. Hence, although we can correctly decide
a property, it is not simple to trace the reasons of this decision back to the original
axioms. This difficulty is further augmented by the fact that the function mapping
inputs to automata may actually be arbitrary, holding no regularities with respect to
the axioms employed.

Given the prominence of automata-based decision procedures in DLs for showing
complexity, and their practical use in some temporal logics, where they have been
successfully implemented, it seemed only natural to try to find a way to compute
the pinpointing formula from an automata-based decider. The first step was to force
a regularity that could allow us to reason about particular axioms. This was done
through the definition of axiomatic automata, which states that the addition of new
axioms can only restrict the set of successful runs and initial states. The only step
left consisted in finding a way to modify the original automaton, or its emptiness
test, to compute a monotone Boolean formula, rather than just a yes/no answer.
Weighted automata came out as a direct solution: they extend automata theory to
the computation of values of a semiring. We showed how to transform an axiomatic
automaton into a weighted automaton whose behaviour corresponds to the pinpointing
formula. At this time we were surprised not to find any algorithm for computing the
behaviour of weighted automata of the kind we were dealing with, and so, developed
one of our own by generalising the well-known iterative emptiness test. One thing
to notice is that the emptiness test relies heavily on the distributivity of the logical
operators over each other. For the general case, such distributivity could not lose its
importance, and hence our algorithm could only work on distributive semirings. As
every distributive semiring is in fact a lattice, our formulation requiring weights to
belong to a distributive lattice is in fact the weakest we could allow in our setting.
With this restriction, we were able to prove the correctness of an algorithm that finds
the behaviour using time polynomial in the size of the original automaton.

By the time we were finishing our research on the computation of behaviour of
automata, we became aware of a different method, developed independently, for solv-
ing the same task. However, when we analysed how this method reduces to the case
of pinpointing, which was the main concern of our study, we found out that the al-
ternative method is equivalent to the most naive black-box approach, in which every

128 CHAPTER 7. CONCLUSIONS AND FUTURE WORK

possible set of axioms is tested for the property, and then the minimal ones are taken
as MinAs. With that in mind, we constructed some examples where our method
performs exponentially faster than the other one.

Up to this point, except for the upper-bound obtained by pinpointing automata,
there was no clear understanding of the complexity of finding MinAs, or their associ-
ated problems. We went on to show that, in general, pinpointing is a hard problem.
Although in the logic HL finding one arbitrary MinA is feasible, as well as finding the
last lexicographical one, this positive track disappears once we want to find additional
properties that shine some light over the set of all MinAs. Their dual properties are
also hard for the set of MaNAs. Furthermore, even the most compact representa-
tion of these sets as a monotone Boolean formula may be superpolynomial in length.
Notice that this result does not violate the one saying that automata compute the
pinpointing formula in polynomial time in the size of the automaton, as we employed
a different representation formalism, namely structure sharing, to obtain the feasible
time-bound.

7.2 Future Work

One of the main motivations for this work, as has been previously repeated, was the
search for a general description of the glass-box strategies used for pinpointing in
Description Logics. Our framework is, not surprisingly, general enough to be applied
to other settings. One obvious example is the use of the temporal logic LTL as an
example for the need of generalised Biichi automata, in Chapter 5. This suggests that
there is still a wide range of related problems that can be studied. We present here
some of these problems, in most cases accompanied by some thoughts on how can
they be approached.

The first and most obvious problem concerns a better understanding of the pin-
pointing extension of general tableaux, specially regarding their execution time. We
know that in general it is impossible even to ensure a finite execution time; but even
when the pinpointing extension is known to terminate, there is no appropriate bound
on the number of rule applications that are necessary before a saturated state is
reached. In the case of ground tableaux, it is easy to see that an exponential blowup
in the number of rule applications cannot be avoided in the general case. This follows
from the fact that rule applications may modify the label of a single assertion from
the least- to the most-general monotone Boolean formula in exponentially many steps.
Conversely, it is a very simple exercise to show that such an exponential blowup yields
an upper bound on the execution time of the pinpointing extension. We will return to
this later on, when we speak about lattices. Once we introduce variables, though, this
count becomes much more complicated. Rule applications can still modify the label of
a single assertion at most exponentially many times, but additional rule applications
may cause the inclusion of new assertions that would never appear during the regular
tableau execution. It is not clear how many of these new assertions will be introduced,
even for ordered forest tableaux.

Continuing in the complexity line of thought, we have left some unsolved prob-

7.2. FUTURE WORK 129

lems in this work. With respect to the complexity of enumerating all MinAs and/or
MaNAs, our hardness results are weaker than desired, as we assumed that a portion
of the ontology is composed of axioms that cannot be refuted for the computation
of justifications or diagnoses. It is not very clear how to remove this generalisation.
In fact, it seems that allowing an irrefutable set of axioms suffices to show hardness:
in [Bie08] it was shown that there is no output polynomial algorithm for enumerating
all MinAs even if the refutable axioms and the subsumption being justified are all of
the form T C A, where A is a concept name.?6 Most of our MinA-related complex-
ity results rely on a reduction from the minimal hitting set problem. Unfortunately
the exact enumeration complexity of the hitting set problem is a long-standing open
problem. In Section 6.1.1 we have shown that enumerating all MinAs is at least as
hard as enumerating all minimal hitting sets. Our claim is that a reduction in the
other direction is not possible, ruling out the equivalence of both problems.

Another problem that was left unsolved is the complexity of pinpointing on acyclic
TBoxes. All our hardness results for H L depend on the use of a set of GCIs that does
not satisfy the acyclicity assumption. In DL, reasoning under acyclic TBoxes can
sometimes lead to a lower complexity class, as attested by the logics ALC and SZ. Tt
could still be the case that feasibility can be regained in H.L in this restricted setting.
Likewise, our automata-based approach can be used to prove an exponential upper
bound for pinpointing in SZ with acyclic TBoxes, but it is not clear that the bound
is tight. For deciding a property, we have shown that a (non-deterministic) top-down
emptiness test can sometimes be used to find a tighter upper bound [BHPO08]. It is,
however, unclear how the same ideas could be applied to pinpointing as the top-down
approach yields the information of only one successful run, while pinpointing needs to
be able to reason about all of them.

One can also consider finding approximate solutions to some of the problems.
Consider for instance the problem of finding the MinA with the least axioms; this is an
important problem as small MinAs are usually easier to understand. We have shown
that finding the smallest MinA is an NP-hard problem, but it is perhaps possible
to construct a procedure that approximates its solution. Such a procedure should
compute in polynomial time a MinA whose size is guaranteed to diverge only slightly
from the optimal. Alternatively, stochastic methods can be used to find MinAs having
a high probability of being optimal. Other problems whose approximation could be
of interest include computing the lexicographical first MinA or the total number of
MinAs.

For our automata-based approach to pinpointing, we had first to identify contri-
butions of individual axioms to the property under consideration. To this end, we
defined mappings that yield, for every axiom ¢, those initial states and transitions
that are allowed by the use of ¢ in the ontology. A more general framework could
also allow axioms to influence the acceptance condition of the axiomatic automaton.
Such a generalisation was in part left out of this work due to our lack to conceive
any scenario that could motivate its application. Another possible generalisation of

%6Tn reality, the reduction presented in [Bie08] shows hardness for the DL ££, that is, with the help
of existential restrictions. It is nonetheless not hard to adapt the same reduction to the logic ‘HL,
thus obtaining a result more akin to those in this dissertation.

130 CHAPTER 7. CONCLUSIONS AND FUTURE WORK

the automata-based framework consists in including more general classes of automata.
For instance, it seems likely that an algorithm similar to ours can be used to compute
the behaviour of weighted parity automata. Apparently, if the automaton is such that
the acceptance condition can be tested locally, by the construction and concatenation
of finite runs, its behaviour can be computed by an iterative algorithm akin to the
one presented in Chapter 5.

Pinpointing, as described in this dissertation, creates a bijection between axioms
and a set of propositional variables that will be used to describe the pinpointing
formula. As the automata-based approach teaches us, the propositional variables and
all the monotone Boolean formulas constructed over them are in fact elements from a
free distributive lattice. One can thus think of applying the same ideas using different
lattices: we map each axiom to an element of the lattice; this mapping is then used to
construct a weighted automaton whose behaviour yields a desired value. Preliminary
work on this topic has shown that it may be necessary to restrict the mapping to obtain
meaningful results. Of course, such a scenario is not limited to the automata approach,
as it is also possible to conceive the development of weighted tableauz from the same
line of thought. So far as weighted tableaux follow the same ideas of pinpointing
extensions, all our results can be reused; for example, one can show that for ground
tableaux, the weighted extension will have an overhead execution time proportional
to the longest chain of the form 0 < s1 < ... < s, < 1. Unfortunately, the negative
results and in particular all the problems related to termination, would be still present
in this setting.

One possible application of the weighted scenarios just described corresponds to
reasoning under vagueness. Indeed, some of the norms used in the definition of fuzzy
constructors generate distributive lattices. If instead one was interested in reasoning
with probabilities, then more work needs to be done. For some applications, one is
interested in knowing whether one can construct a model for a property with probabil-
ity 1. In this particular case, it would suffice to use the so-called probability semiring,
that in fact computes the maximum probability of sequences of independent events.
But the probability semiring is not distributive, and hence it is not clear whether the
weighted approach can correctly be applied to it. Evenmore, if one wanted to actually
compute the probability of a property to follow, one would instead need to reason
with measures, which are more complex algebraic structures.

Modern reasoners for DLs, which are tableau-based, rely on heavy optimizations to
produce an answer in a timely manner. Our description of the pinpointing extension
requires several of these optimizations to be shut off; otherwise, correctness cannot be
guaranteed. This is perhaps one of the reasons why in recent time much attention has
been paid to black-box pinpointing. A study of new optimization strategies that can
also be applied for pinpointing would very likely improve the practicality of the task.

As it can be seen, there is still much work that can be built over the results and
ideas of this dissertation. This is hardly surprising, since the problems of finding
justifications and diagnoses are relevant in several fields, as attested by the section on
related work. This makes the search of general methods, that can be shared between
different fields, and possibly using distinct decision procedures, more relevant.

Bibliography

[ACGMO04] Alessandro Armando, Claudio Castellini, Enrico Giunchiglia, and Marco

[Baa03a]

[Baa03b]

[Baa03c]

[BBC*05]

Maratea. A SAT-based decision procedure for the boolean combination of
difference constraints. In Proceedings of the 7th International Conference
on Theory and Applications of Satisfiability Testing (SAT’04), Vancouver,
BC, Canada, 2004. Cited in page(s) 10

Franz Baader. The instance problem and the most specific concept in
the description logic £L£ w.r.t. terminological cycles with descriptive se-
mantics. In Andreas Giinter, Rudolf Kruse, and Bernard Neumann, ed-
itors, Proceedings of the 26th Annual German Conference on Artificial
Intelligence, KI 2003, volume 2821 of Lecture Notes in Artificial Intelli-
gence, pages 64-78, Hamburg, Germany, 2003. Springer-Verlag. Cited in
page(s) 18

Franz Baader. Least common subsumers and most specific concepts in a
description logic with existential restrictions and terminological cycles. In
Georg Gottlob and Toby Walsh, editors, Proceedings of the 18th Interna-
tional Joint Conference on Artificial Intelligence, pages 319-324. Morgan
Kaufmann, 2003. Cited in page(s) 18

Franz Baader. Terminological cycles in a description logic with existen-
tial restrictions. In Georg Gottlob and Toby Walsh, editors, Proceedings
of the 18th International Joint Conference on Artificial Intelligence (IJ-
CAT 2003), pages 325-330, Acapulco, Mexico, 2003. Morgan Kaufmann,
Los Altos. Cited in page(s) 3

Marco Bozzano, Roberto Bruttomesso, Alessandro Cimatti, Tommi A.
Junttila, Peter van Rossum, Stephan Schulz, and Roberto Sebastiani. An
incremental and layered procedure for the satisfiability of linear arithmetic
logic. In Nicolas Halbwachs and Lenore D. Zuck, editors, Proceedings of
the 11th International Conference on Tools and Algorithms for the Con-
struction and Analysis of Systems (TACAS’05), volume 3440 of Lecture
Notes in Computer Science, pages 317-333. Springer-Verlag, 2005. Cited
in page(s) 10

131

132

BIBLIOGRAPHY

[BBH96]

[BBLOS]

[BCM+03]

[BDS93]

[BHO1]

[BHO5]

[BHPO7]

[BHPOS]

[Bie08]

Franz Baader, Martin Buchheit, and Bernhard Hollunder. Cardinality
restrictions on concepts. Artificial Intelligence, 88(1-2):195-213, 1996.
Cited in page(s) 67

Franz Baader, Sebastian Brandt, and Carsten Lutz. Pushing the £L enve-
lope. In Leslie Pack Kaelbling and Alessandro Saffiotti, editors, Proceed-
ings of the 19th International Joint Conference on Artificial Intelligence
(IJCAT 2005), pages 364-369, Edinburgh (UK), 2005. Morgan Kaufmann,
Los Altos. Cited in page(s) 7, 19

Franz Baader, Diego Calvanese, Deborah McGuinness, Daniele Nardi,
and Peter F. Patel-Schneider, editors. The Description Logic Handbook:
Theory, Implementation, and Applications. Cambridge University Press,
2003. Cited in page(s) 3, 11, 12, 104

Martin Buchheit, Francesco M. Donini, and Andrea Schaerf. Decidable
reasoning in terminological knowledge representation systems. Journal of
Artificial Intelligence Research, 1:109-138, 1993. Cited in page(s) 23

Franz Baader and Philipp Hanschke. A schema for integrating concrete
domains into concept languages. In John Mylopoulos and Raymond
Reiter, editors, Proceedings of the 12th International Joint Conference
on Artificial Intelligence (IJCAI'91), pages 452-457, Sydney, Australia,
1991. Morgan Kaufmann, Los Altos. Cited in page(s) 19

Franz Baader and Bernhard Hollunder. Embedding defaults into ter-
minological knowledge representation formalisms. Journal of Automated
Reasoning, 14:149-180, 1995. Cited in page(s) 8, 33, 36

Franz Baader, Jan Hladik, and Rafael Penaloza. SI! automata can show
PSPACE results for description logics. In Remco Loos, Szilard Zsolt
Fazekas, and Carlos Martin-Vide, editors, Proceedings of the First Inter-
national Conference on Language and Automata Theory and Applications
(LATA’07), Tarragona, Spain, 2007. Cited in page(s) 28

Franz Baader, Jan Hladik, and Rafael Penaloza. Automata can show
PSPACE results for description logics. Information and Computation,
206(9,10):1045-1056, 2008. Special Issue: First International Conference
on Language and Automata Theory and Applications (LATA’07). Cited
in page(s) 7,9, 28, 91, 129

Meghyn Bienvenu. Complexity of abduction in the £L£ family of
lightweight description logics. In Gerhard Brewka and Jérome Lang,
editors, Proceedings of the 11th International Conferemce on Principles
of Knowledge Representation and Reasoning (KR’2008), pages 220-230.
AAAT Press/The MIT Press, 2008. Cited in page(s) 10, 129

BIBLIOGRAPHY 133

[BLS5)

[BP07]

[BPOS]

[BP0Y]

[BPSO07a]

[BPSO7b]

[Bra0O4a]

[Bra04b]

Ronald J. Brachman and Hector J. Levesque, editors. Readings in Knowl-
edge Representation. Morgan Kaufmann, Los Altos, 1985. Cited in
page(s) 140, 141

Franz Baader and Rafael Penaloza. Axiom pinpointing in gener-
al tableaux. In Nicola Olivetti, editor, Proceedings of the 16th
International Conference on Analytic Tableauzr and Related Methods
(TABLEAUX 2007), volume 4548 of Lecture Notes in Artificial Intelli-
gence, pages 11-27, Aix-en-Provence, France, 2007. Springer-Verlag. Cited
in page(s) 7

Franz Baader and Rafael Penaloza. Automata-based axiom pinpointing.
In Alessandro Armando, Peter Baumgartner, and Gilles Dowek, editors,
Proceedings of the International Joint Conference on Automated Reason-
ing (IJCAR 2008), volume 4667 of Lecture Notes in Artificial Intelli-
gence, pages 226-241, Sydney, Australia, 2008. Springer-Verlag. Cited in
page(s) 8

Franz Baader and Rafael Penaloza. Axiom pinpointing in general
tableaux. Journal of Logic and Computation, 2009. Special Issue:
Tableaux’07. To appear. Cited in page(s) 7

Franz Baader, Rafael Penaloza, and Boontawee Suntisrivaraporn. Pin-
pointing in the description logic ££7. In Joachim Hertzberg, Michael
Beetz, and Roman Englert, editors, Proceedings of the 30th German An-
nual Conference on Artificial Intelligence (KI1°07), volume 4667 of Lecture
Notes in Artificial Intelligence, pages 52—67, Osnabriick, Germany, 2007.
Springer-Verlag. Cited in page(s) 8, 104, 105, 107, 112, 117

Franz Baader, Rafael Penaloza, and Boontawee Suntisrivaraporn. Pin-
pointing in the description logic £L£. In Diego Calvanese, Enrico Franconi,
Volker Haarslev, Domenico Lembo, Boris Motik, Anni-Yasmin Turhan,
and Sergio Tessaris, editors, Proceedings of the 2007 Description Logic
Workshop (DL 2007), volume 250 of CEUR-WS, Brixen-Bressanone,
Italy, 2007. Cited in page(s) 8

Sebastian Brandt. On subsumption and instance problem in ELH w.r.t.
general TBoxes. In Volker Haarslev and Ralf Moller, editors, Proceed-
ings of the 2004 Description Logic Workshop (DL 2004), volume 104.
CEUR Electronic Workshop Proceedings, http://ceur-ws.org/Vol-104/,
2004. Cited in page(s) 19

Sebastian Brandt. Polynomial time reasoning in a description logic with
existential restrictions, GCI axioms, and—what else? In Ramon Lépez
de Méantaras and Lorenza Saitta, editors, Proceedings of the 16th Furopean
Conference on Artificial Intelligence (ECAI 2004), pages 298-302, 2004.
Cited in page(s) 3

134

BIBLIOGRAPHY

[Bru05]

[BS90]

[BSO1]

[BSO5]

[BS08]

[BT01]

[CD91]

[CDGL99]

[CDGL02]

[Chi97]

Renato Bruni. On exact selection of minimally unsatisfiable subformu-
lae. Annals of Mathematics and Artificial Intelligence, 43(1):35-50, 2005.
Cited in page(s) 10

Ravi B. Boppana and Michael Sipser. The complexity of finite func-
tions. In Handbook of theoretical computer science (vol. A): algorithms
and complexity, pages 757-804, Cambridge, MA, USA, 1990. The MIT
Press. Cited in page(s) 117

Franz Baader and Ulrike Sattler. An overview of tableau algorithms for
description logics. Studia Logica, 69:5-40, 2001. Cited in page(s) 7, 18,
22

James Bailey and Peter J. Stuckey. Discovery of minimal unsatisfi-
able subsets of constraints using hitting set dualization. In Manuel V.
Hermenegildo and Daniel Cabeza, editors, Proceedings of the Tth In-
ternational Symposium on Practical Aspects of Declarative Languages
(PADL’05), volume 3350 of Lecture Notes in Computer Science, pages
174-186, Long Beach, CA, USA, 2005. Springer-Verlag. Cited in page(s) 9

Franz Baader and Boontawee Suntisrivaraporn. Debugging SNOMED
CT using axiom pinpointing in the description logic ££7. In Proceedings
of the 3rd Knowledge Representation in Medicine (KR-MED’08), volume
410 of CEUR-WS, 2008. Cited in page(s) 4, 9, 105

Franz Baader and Stephan Tobies. The inverse method implements the
automata approach for modal satisfiability. In Rajeev Goré, Alexan-
der Leitsch, and Tobias Nipkow, editors, Proceedings of the International
Joint Conference on Automated Reasoning (IJCAR 2001), volume 2083 of
Lecture Notes in Artificial Intelligence, pages 92-106, Siena, Italy, 2001.
Springer-Verlag. Cited in page(s) 9, 26

John W. Chinneck and Erik W. Dravnieks. Locating minimal infeasi-
ble constraint sets in linear programs. ORSA Journal on Computing,
3(2):157-168, 1991. Cited in page(s) 10

Diego Calvanese, Giuseppe De Giacomo, and Maurizio Lenzerini. Reason-
ing in expressive description logics with fixpoints based on automata on
infinite trees. In Proceedings of the 16th Interntional Joint Conference on
Artificial Intelligence (IJCAI’99), pages 84-89, 1999. Cited in page(s) 9

Diego Calvanese, Giuseppe De Giacomo, and Maurizio Lenzerini. 2ATAs
make DLs easy. In Proceedings of the 2002 Description Logic Workshop
(DL 2002), pages 107-118, 2002. Cited in page(s) 9

John W. Chinneck. Finding a useful subset of constraints for analysis in
an infeasible linear program. INFORMS Journal on Computing, 9(2):164—
174, 1997. Cited in page(s) 10, 104, 105

BIBLIOGRAPHY 135

[Dav04]

[DDBYS]

[dK86a]

[dKS86b]

[dK86¢]

[DK06]

[DKROS]

[DRO6]

[DSV08]

[EGI1]

[EG95a]

[EG95b]

Martin Davis. The Undecidable: Basic Papers on Undecidable Proposi-
tions, Unsolvable Problems and Computable Functions. Dover Publica-
tions, Incorporated, 2004. Cited in page(s) 118

Gennady Davydov, Inna Davydova, and Hans Kleine Biining. An efficient
algorithm for the minimal unsatisfiability problem for a subclass of CNF.
Annals of Mathematics and Artificial Intelligence, 23(3-4):229-245, 1998.
Cited in page(s) 10

Johan de Kleer. An assumption-based TMS. Artificial Intelligence,
28(2):127-162, 1986. Cited in page(s) 10

Johan de Kleer. Extending the ATMS. Artificial Intelligence, 28(2):163—
196, 1986. Cited in page(s) 10

Johan de Kleer. Problem solving with the ATMS. Artificial Intelligence,
28(2):197-224, 1986. Cited in page(s) 10

Manfred Droste and Dietrich Kuske. Skew and infinitary formal power
series. Theoretical Computer Science, 366(3):199-227, 2006. Cited in
page(s) 80

Manfred Droste, Werner Kuich, and George Rahonis. Multi-valued MSO
logics over words and trees. Fundamenta Informaticae, 84(3,4):305-327,
2008. Cited in page(s) 9, 76, 83, 98, 102

Manfred Droste and George Rahonis. Weighted automata and weighted
logics on infinite words. In Oscar H. Ibarra and Zhe Dang, editors, Pro-
ceedings of the 10th International Conference on Developments of Lan-
guage Theory (DLT 2006), volume 4036 of Lecture Notes in Computer
Science, pages 49-58, Santa Barbara, CA, USA, 2006. Springer-Verlag.
Cited in page(s) 80

Manfred Droste, Jacques Sakarovitch, and Heiko Vogler. Weighted au-
tomata with discounting. Information Processing Letters, 108:23-28,
2008. Cited in page(s) 80

Thomas Eiter and Georg Gottlob. Identifying the minimal transversals
of a hypergraph and related problems. Technical Report CD-TR 91/16,
Christian Doppler Labor fiir Expertensysteme, TU-Wien, 1991. Cited in
page(s) 107, 117

Thomas Eiter and Georg Gottlob. The complexity of logic-based abduc-
tion. Journal of the ACM, 42(1):3-42, 1995. Cited in page(s) 10, 106

Thomas Eiter and Georg Gottlob. Identifying the minimal transversals
of a hypergraph and related problems. SIAM Journal on Computing,
24(6):1278-1304, 1995. Cited in page(s) 107

136

BIBLIOGRAPHY

[EKMG61]

[EMO02]

[FGN90]

[GHN04]

[GI79]

[GOO1]

[GPSS80]

[GPVWO5]

[GRYO]

[Grii98]

Rolf Eberle, David Kaplan, and Richard Montague. Hempel and oppen-
heim on explanation. Philosophy of Science, 28(4):418-428, 1961. Cited
in page(s) 2

Thomas FEiter and Kazuhisa Makino. On computing all abductive ex-
planations. In Proceedings of the 18th National Conference on Artificial
Intelligence (AAAT 2005), pages 62-67, Alberta, Canada, 2002. AAAT
Press/The MIT Press. Cited in page(s) 10

Gerhard Friedrich, Georg Gottlob, and Wolfgang Nejdl. Hypothesis classi-
fication, abductive diagnosis and therapy. In Georg Gottlob and Wolfgang
Nejdl, editors, Proceedings of the International Workshop on Expert Sys-
tems in Engineering, Principles and Applications, volume 462 of Lecture
Notes in Computer Science, pages 69-78, Viena, Austria, 1990. Springer-
Verlag. Cited in page(s) 106

Harald Ganzinger, George Hagen, Robert Nieuwenhuis, Albert Oliveras,
and Cesare Tinelli. DPLL(T): Fast decision procedures. In R. Alur and
D. Peled, editors, Proceedings of the 16th International Conference on
Computer Aided Verification (CAV’04), volume 3114 of Lecture Notes in
Computer Science, pages 175-188, Boston, MA, USA, 2004. Springer-
Verlag. Cited in page(s) 10

Michael R. Garey and David S. Johnson. Computers and Intractability —
A guide to NP-completeness. W. H. Freeman and Company, San Francisco
(CA, USA), 1979. Cited in page(s) 36, 94, 107

Paul Gastin and Denis Oddoux. Fast LTL to Biichi automata transla-
tion. In Gérard Berry, Hubert Comon, and Alain Finkel, editors, Proceed-
ings of the 13th International Conference on Computer Aided Verification
(CAV’01), volume 2102 of Lecture Notes in Computer Science, pages 53—
65, Paris, France, 2001. Springer-Verlag. Cited in page(s) 9

Dov M. Gabbay, Amir Pnueli, Saharon Shelah, and Jonathan Stavi.
On the temporal analysis of fairness. In Proceedings of the 7th ACM
SIGACT-SIGPLAN Symposium on Principles of Programming Languages
(POPL’80), pages 163-173, 1980. Cited in page(s) 16

Rob Gerth, Doron Peled, Mosche Y. Vardi, and Pierre Wolper. Sim-
ple on-the-fly automatic verification of linear temporal logic. In Protocol
Specification Testing and Verification, pages 3—18, Warsaw, Poland, 1995.
Chapman & Hall. Cited in page(s) 9

John Gleeson and Jennifer Ryan. Identifying minimally infeasible subsys-
tems of inequalities. INFORMS Journal on Computing, 2(1):61-63, 1990.
Cited in page(s) 10

George Gratzer. General Lattice Theory. Birkhauser, Basel, second edition
edition, 1998. Cited in page(s) 79, 99

BIBLIOGRAPHY 137

[HB91]

[Hem65]

[HKS05]

[HKSO06]

[HMO1]

[HO48]

[Hol96]

[Hol97]

[Hor98]

[HPS08]

Bernhard Hollunder and Franz Baader. Qualifying number restrictions in
concept languages. In James F. Allen, Richard Fikes, and Erik Sandewall,
editors, Proceedings of the 2nd International Conference on the Princi-
ples of Knowledge Representation and Reasoning (KR’91), pages 335—
346, Cambridge, MA, USA, 1991. Morgan Kaufmann, Los Altos. Cited
in page(s) 67

Carl G. Hempel. Aspects of Scientific Explanation (and Other Essays).
Free Press, New York, 1965. Cited in page(s) 2

Tan Horrocks, Oliver Kutz, and Ulrike Sattler. The irresistible SRIQ. In
Proceedings of OWL: Experiences and Directions, Galway, Ireland, 2005.
Cited in page(s) 14

Tan Horrocks, Oliver Kutz, and Ulrike Sattler. The even more irresistible
SROIQ. In Patrick Doherty, John Mylopoulos, and Christopher A. Welty,
editors, Proceedings of the 10th International Conference on Principles of
Knowledge Representation and Reasoning (KR’2006), pages 5767, Lake
District, UK, 2006. AAAT Press/The MIT Press. Cited in page(s) 14

Volker Haarslev and Ralf Moller. RACER system description. In Pro-
ceedings of the International Joint Conference on Automated Reasoning
(IJCAR 2001), 2001. Cited in page(s) 9

Carl G. Hempel and Paul Oppenheim. Studies in the logic of explanation.
Philosophy of Science, 15(2):135-175, 1948. Cited in page(s) 2, 3, 5

Bernhard Hollunder. Consistency checking reduced to satisfiability of
concepts in terminological systems. Annals of Mathematics and Artificial
Intelligence, 18(2-4):133-157, 1996. Cited in page(s) 8, 19

Gerard J. Holzmann. The model checker SPIN. IEEE Transactions on
Software Engineering, 23(5):279-295, 1997. Cited in page(s) 9

Tan Horrocks. Using an expressive description logic: FaCT or fiction? In
Anthony G. Cohn, Lenhard K. Schubert, and Stuart C. Shapiro, editors,
Proceedings of the 6th International Conference on Principles of Knowl-
edge Representation and Reasoning (KR’98), pages 636—647, Trento, Italy,
1998. Cited in page(s) 9, 23

Matthew Horridge, Bijan Parsia, and Ulrike Sattler. Laconic and precise
justifications in owl. In Amit P. Sheth, Steffen Staab, Mike Dean, Mas-
simo Paolucci, Diana Maynard, Timothy W. Finin, and Krishnaprasad
Thirunarayan, editors, Proceedings of the 7th International Semantic Web
Conference (ISWC’08), volume 5318 of Lecture Notes in Computer Sci-
ence, pages 323-338, Karlsruhe, Germany, 2008. Springer-Verlag. Cited
in page(s) 8, 10

138

BIBLIOGRAPHY

[HPS09)

[HPSvH03]

[HS99]

[HS04]

[HSTO0]

[TYPSS]

[KLO7]

[KPHS07]

[KPSGO06]

Matthew Horridge, Bijan Parsia, and Ulrike Sattler. Lemmas for justifi-
cations in owl. In Bernardo Cuenca Grau, Tan Horrocks, Boris Motik, and
Ulrike Sattler, editors, Proceedings of the 2009 Description Logic Work-
shop (DL 2009), volume 477 of CEUR-WS, 2009. Cited in page(s) 10

Tan Horrocks, Peter F. Patel-Schneider, and Frank van Harmelen. From
SHIQ and RDF to OWL: The making of a web ontology language. Journal
of Web Semantics, 1(1):7-26, 2003. Cited in page(s) 3

Ian Horrocks and Ulrike Sattler. A description logic with transitive and
inverse roles and role hierarchies. Journal of Logic and Computation,
9(3):385-410, 1999. Cited in page(s) 24, 65, 67

Tan Horrocks and Ulrike Sattler. Decidability of SHIQ with complex role
inclusion axioms. Artificial Intelligence, 160(1):79-104, 2004. Cited in
page(s) 3, 14

Tan Horrocks, Ulrike Sattler, and Stefan Tobies. Practical reasoning for
very expressive description logics. Journal of the Interest Group in Pure
and Applied Logic, 8(3):239-264, 2000. Cited in page(s) 3, 67

David S. Johnson, Mihalis Yannakakis, and Christos H. Papadimitriou.
On generating all maximal independent sets. Information Processing Let-
ters, 27(3):119-123, 1988. Cited in page(s) 106, 107, 114

Orna Kupferman and Yoad Lustig. Lattice automata. In Byron Cook and
Andreas Podelski, editors, Proceedings of the 8th International Confer-
ence on Verification, Model Checking, and Abstract Interpretation (VM-
CAI’07), volume 4349 of Lecture Notes in Artificial Intelligence, pages
199-213, Nice, France, 2007. Springer-Verlag. Cited in page(s) 9

Aditya Kalyanpur, Bijan Parsia, Matthew Horridge, and Evren Sirin.
Finding all justifications of OWL DL entailments. In Karl Aberer, Key-
Sun Choi, Natasha Fridman Noy, Dean Allemang, Kyung-Il Lee, Lyndon
J. B. Nixon, Jennifer Golbeck, Peter Mika, Diana Maynard, Riichiro Mi-
zoguchi, Guus Schreiber, and Philippe Cudré-Mauroux, editors, Proceed-
ings of the 6th International Semantic Web Conference and 2nd Asian
Semantic Web Conference, ISWC 2007 + ASWC 2007, volume 4825 of
Lecture Notes in Computer Science, pages 267-280, Busan, Korea, 2007.
Springer-Verlag. Cited in page(s) 9, 105

Aditya Kalyanpur, Bijan Parsia, Evren Sirin, and Bernardo Cuenca Grau.
Repairing unsatisfiable concepts in OWL ontologies. In York Sure and
John Domingue, editors, Proceedings of the 3rd Furopean Semantic Web
Conference (ESWC’06), volume 4011 of Lecture Notes in Computer Sci-
ence, pages 170-184, Budva, Montenegro, 2006. Springer-Verlag. Cited in
page(s) 104

BIBLIOGRAPHY 139

[KSS00]

[KW8S]

[KW90]

[Lei97]

[LMPO6]

[LS00]

[LS04]

[LS05)

[LSTYY]

[Lut99]

Dimitris J. Kavvadias, Martha Sideri, and Elias C. Stavropoulos. Gener-

ating all maximal models of a Boolean expression. Information Processing
Letters, 74(3-4):157-162, 2000. Cited in page(s) 107

Mauricio Karchmer and Avi Wigderson. Monotone circuits for connec-
tivity require super-logarithmic depth. In Proceedings of the 20th ACM
SIGACT Symposium on Theory of Computing (STOC’88), pages 539
550, Chicago, Illinois, USA, 1988. ACM Press and Addison Wesley. Cited
in page(s) 117

Mauricio Karchmer and Avi Wigderson. Monotone circuits for connec-
tivity require super-logarithmic depth. STAM Journal on Discrete Math-
ematics, 3(2):255-265, 1990. Cited in page(s) 117

Alexander Leitsch. The Resolution Calculus. Springer-Verlag, 1997. Cited
in page(s) 7

Kevin Lee, Thomas Meyer, and Jeff Z. Pan. Computing maximally sat-
isfiable terminologies for the description logic ALC with GCIs. In Bijan
Parsia, Ulrike Sattler, and David Toman, editors, Proceedings of the 2006
Description Logic Workshop (DL 2006), Lake District, UK, 2006. Cited
in page(s) 8,9, 34

Carsten Lutz and Ulrike Sattler. The complexity of reasoning with
boolean modal logic. In Proceedings of Advances in Modal Logic 2000
(AiML 2000), 2000. Cited in page(s) 9

Inés Lynce and Joao P. Marques Silva. On computing minimum un-
satisfiable cores. In Proceedings of the 7th International Conference on
Theory and Applications of Satisfiability Testing (SAT’04), Vancouver,
BC, Canada, 2004. Cited in page(s) 10

Mark H. Liffiton and Karem A. Sakallah. On finding all minimally unsat-
isfiable subformulas. In Fahiem Bacchus and Toby Walsh, editors, Pro-
ceedings of the 8th International Conference on Theory and Applications
of Satisfiability Testing (SAT’05), volume 3569 of Lecture Notes in Com-
puter Science, pages 173-186. Springer-Verlag, 2005. Cited in page(s) 9,
36

Carsten Lutz, Ulrike Sattler, and Stephan Tobies. A suggestion for an
n-ary description logic. In Patrick Lambrix, Alex Borgida, Maurizio
Lenzerini, Ralf Moller, and Peter Patel-Schneider, editors, Proceedings of
the 1999 Description Logic Workshop (DL’99), pages 81-85, Linkoeping,
Sweden, 1999. CEUR Electronic Workshop Proceedings, http://ceur-
ws.org/Vol-22/. Cited in page(s) 56

Carsten Lutz. Complexity of terminological reasoning revisited. In Pro-
ceedings of the 6th International Conference on Logic for Programming

140

BIBLIOGRAPHY

[Man08]

[Mil43]

[Min81]

[MLBP06]

[Neb90]

[NOOT]

[NOTO6]

[Peii08]

[Pnu77]

[Pop35]

[PSKO5]

and Automated Reasoning (LPAR’99), volume 1705 of Lecture Notes in
Artificial Intelligence, pages 181-200. Springer-Verlag, 1999. Cited in
page(s) 14, 20, 21

Eleni G. Mandrali. Weighted tree automata with discounting. Master’s
thesis, Aristotle University of Thessaloniki, 2008. Cited in page(s) 80

John Stuart Mill. A System of Logic. John W. Parker, London, UK, 1843.
Cited in page(s) 2

Marvin Minsky. A framework for representing knowledge. In John Hauge-
land, editor, Mind Design. The MIT Press, 1981. A longer version ap-
peared in The Psychology of Computer Vision (1975). Republished in
[BL85]. Cited in page(s) 3

Thomas Meyer, Kevin Lee, Richard Booth, and Jeff Z. Pan. Find-
ing maximally satisfiable terminologies for the description logic ALC.

In Proceedings of the 21st National Conference on Artificial Intelligence
(AAAT 2006). AAAT Press/The MIT Press, 2006. Cited in page(s) 34

Bernhard Nebel. Terminological reasoning is inherently intractable. Ar-
tificial Intelligence, 43:235-249, 1990. Cited in page(s) 14, 20

Robert Nieuwenhuis and Albert Oliveras. Fast congruence closure and
extensions. Information and Computation, 205(4):557-580, 2007. Cited
in page(s) 7, 37

Robert Nieuwenhuis, Albert Oliveras, and Cesare Tinelli. Solving SAT
and SAT Modulo Theories: From an abstract Davis-Putnam-Logemann—
Loveland procedure to DPLL(T). Journal of the ACM, 53(6):937-977,
2006. Cited in page(s) 10

Rafael Penaloza. Automata-based pinpointing for DLs. In Franz Baader,
Carsten Lutz, and Boris Motik, editors, Proceedings of the 2008 Descrip-
tion Logic Workshop (DL 2008), volume 353 of CEUR-WS, Dresden, Ger-
many, 2008. Cited in page(s) 8

Amir Pnueli. The temporal logic of programs. In Proceedings of the 18th
Annual Symposium on the Foundations of Computer Science (FOCS’77),
pages 4657, 1977. Cited in page(s) 16

Karl Popper. Logik der Forschung. Springer, Vienna, Austria, 1935. Cited
in page(s) 2

Bijan Parsia, Evren Sirin, and Aditya Kalyanpur. Debugging OWL on-
tologies. In Allan Ellis and Tatsuya Hagino, editors, Proceedings of the
1th International Conference on World Wide Web (WWW’05), pages
633-640. ACM, 2005. Cited in page(s) 8, 34

BIBLIOGRAPHY 141

[Qui67]

[Rab70]

[Rah07]

[Rei87]

[Rob65]

[Rym92]

[Sal89]

[SC85]

[SC03]

[Sch91]

[Sch94]

M. Ross Quillian. Word concepts: A theory and simulation of some basic
capabilities. Behavioral Science, 12:410-430, 1967. Republished in [BL85].
Cited in page(s) 3

Michael O. Rabin. Weakly definable relations and special automata. In
Y. Bar-Hillel, editor, Proceedings of Symposium on Mathematical Logic
and Foundations of Set Theory, pages 1-23. North-Holland Publ. Co.,
Amsterdam, 1970. Cited in page(s) 26

George Rahonis. Weighted muller tree automata and weighted logics.
Journal of Automata, Languages and Combinatorics, 12(4):455-483, 2007.
Cited in page(s) 80

Raymond Reiter. A theory of diagnosis from first principles. Artificial
Intelligence, 32(1):57-95, 1987. Cited in page(s) 8,9, 105

John Alan Robinson. A machine-oriented logic based on the resolution
principle. Journal of the ACM, 12:23-41, 1965. Cited in page(s) 7

Ron Rymon. Search through systematic set enumeration. In Bernhard
Nebel, Charles Rich, and William R. Swartout, editors, Proceedings of
the 3rd International Conference on the Principles of Knowledge Repre-
sentation and Reasoning (KR’92), pages 539-550, Cambridge, MA, USA,
1992. Cited in page(s) 105

Wesley C. Salmon. Four Decades of Scientific Exzplanation. University of
Minnesota Press, 1989. Cited in page(s) 2

A. Prasad Sistla and E. C. Clarke. The complexity of propositional lin-
ear temporal logic. Journal of the ACM, 32(3):733-749, 1985. Cited in
page(s) 102, 103

Stefan Schlobach and Ronald Cornet. Non-standard reasoning services for
the debugging of description logic terminologies. In Georg Gottlob and
Toby Walsh, editors, Proceedings of the 18th International Joint Confer-
ence on Artificial Intelligence (IJCAI 2003), pages 355-362, Acapulco,
Mexico, 2003. Morgan Kaufmann, Los Altos. Cited in page(s) 8, 33, 34,
36

Klaus Schild. A correspondence theory for terminological logics: Pre-
liminary report. In Proceedings of the 12th International Joint Confer-
ence on Artificial Intelligence (IJCAI’91), pages 466-471, 1991. Cited in
page(s) 104

Klaus Schild. Terminological cycles and the propositional p-calculus. In
J. Doyle, E. Sandewall, and P. Torasso, editors, Proceedings of the jth
International Conference on the Principles of Knowledge Representation
and Reasoning (KR’94), pages 509-520, Bonn (Germany), 1994. Morgan
Kaufmann, Los Altos. Cited in page(s) 95, 102

142

BIBLIOGRAPHY

[Sch96]

[Sch05]

[Sei94]

[SHCHO7]

[SP04]

[Spa05]

[SPSWOL]

[SQJHO8]

[SS91]

[STO7]

Gerhard Schurz. Scientific explanation: A critical survey. Foundations of
Science, 3:429-465, 1996. Cited in page(s) 2

Stefan Schlobach. Diagnosing terminologies. In Manuela M. Veloso and
Subbarao Kambhampati, editors, Proceedings of the 20th National Con-
ference on Artificial Intelligence (AAAI 2005), pages 670-675. AAAI
Press/The MIT Press, 2005. Cited in page(s) 8, 111

Helmut Seidl. Finite tree automata with cost functions. Theoretical Com-
puter Science, 126(1):113-142, 1994. Cited in page(s) 79

Stefan Schlobach, Zhisheng Huang, Ronald Cornet, and Frank Harmelen.
Debugging incoherent terminologies. Journal of Automated Reasoning,
39(3):317-349, 2007. Cited in page(s) 9, 105, 111

Evren Sirin and Bijan Parsia. Pellet: An OWL DL reasoner. In Proceed-
ings of the 2004 Description Logic Workshop (DL 2004), pages 212-213,
2004. Cited in page(s) 9

Kent A. Spackman. Rates of change in a large clinical terminology:
Three years of experience with SNOMED clinical terms. In Proceedings of
the 2005 AMIA Annual Symposium (AMIA 2005), pages 714-718. Han-
ley&Belfus, 2005. Cited in page(s) 4

Michael Q. Stearns, Colin Price, Kent A. Spackman, and Amy Y. Wang.
SNOMED clinical terms: Overview of the development process and
project status. In Proceedings of the 2001 AMIA Annual Symposium
(AMIA 2001), pages 662—-666. Hanley&Belfus, 2001. Cited in page(s) 4

Boontawee Suntisrivaraporn, Guilin Qi, Qiu Ji, and Peter Haase. A
modularization-based approach to finding all justifications for owl dl en-
tailments. In John Domingue and Chutiporn Anutariya, editors, Proceed-
ings of the 3th Asian Semantic Web Conference (ASWC’08), volume 5367
of Lecture Notes in Computer Science, pages 1-15. Springer-Verlag, 2008.
Cited in page(s) 105

Manfred Schmidt-Schaufl and Gert Smolka. Attributive concept descrip-
tions with complements. Artificial Intelligence, 48(1):1-26, 1991. Cited
in page(s) 8, 12

Renate A. Schmidt and Dmitry Tishkovsky. Using tableau to decide
expressive description logics with role negation. In Karl Aberer, Key-
Sun Choi, Natasha Fridman Noy, Dean Allemang, Kyung-I1 Lee, Lyn-
don J. B. Nixon, Jennifer Golbeck, Peter Mika, Diana Maynard, Riichiro
Mizoguchi, Guus Schreiber, and Philippe Cudré-Mauroux, editors, The
Semantic Web, 6th International Semantic Web Conference, 2nd Asian
Semantic Web Conference, ISWC 2007 + ASWC 2007, Busan, Korea,
November 11-15, 2007, volume 4825 of Lecture Notes in Computer Sci-
ence, pages 438-451. Springer, 2007. Cited in page(s) 9

BIBLIOGRAPHY 143

[STO8]

[Sun09]

[Tarb5|

[TMJ96]

[Tur36]

[Val79a]

[Val79b)

[Var96]

[VW84]

[VWS86]

[WVS83]

Renate A. Schmidt and Dmitry Tishkovsky. A general tableau method for
deciding description logics, modal logics and related first-order fragments.
In Alessandro Armando, Peter Baumgartner, and Gilles Dowek, editors,
Proceedings of the International Joint Conference on Automated Reason-
ing (IJCAR 2008), volume 5195 of Lecture Notes in Computer Science,
pages 194-209, Sydney, Australia, 2008. Springer. Cited in page(s) 9

Boontawee Suntisrivaraporn. Polynomial-time Reasoning Support for De-
sign and Maintenance of Large-scale Biomedical Ontologies. PhD thesis,
Technische Universitdt Dresden, 2009. Cited in page(s) 3, 9, 105, 107,
112

Alfred Tarski. A lattice-theoretical fixpoint theorem and its applications.
Pacific Journal of Mathematics, 5:285-309, 1955. Cited in page(s) 85

Mehrdad Tamiz, S. J. Mardle, and Dylan F. Jones. Detecting IIS in infea-
sible linear programmes using techniques from goal programming. Com-
puters and Operations Research, 23(2):113-119, 1996. Cited in page(s) 10,
105

Alan Turing. On computable numbers, with an application to the Ent-
scheidungsproblem. Proceedings of the London Mathematical Society,
2(42):230-265, 1936. Cited in page(s) 118

Leslie G. Valiant. The complexity of computing the permanent. Theoret-
ical Computer Science, 8(2):189-201, 1979. Cited in page(s) 110

Leslie G. Valiant. The complexity of enumeration and reliability problems.
SIAM Journal on Computing, 8(3):410-421, 1979. Cited in page(s) 110,
111, 117

Moshe Y. Vardi. An automata-theoretic approach to linear temporal logic.
In Faron Moller and Graham Birtwistle, editors, Logics for Concurrency:
Structure versus Automata, volume 1043 of Lecture Notes in Computer
Science, pages 238-266. Springer-Verlag, 1996. Cited in page(s) 11

Moshe Y. Vardi and Pierre Wolper. Automata-theoretic techniques for
modal logics of programs. In Proceedings of the 16th ACM SIGACT Sym-
posium on Theory of Computing (STOC’84), pages 446-455, 1984. Cited
in page(s) 26

Moshe Y. Vardi and Pierre Wolper. Automata-theoretic techniques for
modal logics of programs. Journal of Computer and System Sciences,
32:183-221, 1986. A preliminary version appeared in Proc. of the 16th
ACM SIGACT Symp. on Theory of Computing (STOC’84). Cited in
page(s) 26, 84, 96

Pierre Wolper, Moshe Y. Vardi, and A. Prasad Sistla. Reasoning about
infinite computation paths. In Proceedings of the 2/th Annual Symposium

144

BIBLIOGRAPHY

[ZM03]

of Foundations of Computer Science (SFCS’83), pages 185-194, Washing-
ton, DC, USA, 1983. IEEE Computer Society. Cited in page(s) 7, 29,
30

Lintao Zhang and Sharad Malik. Validating SAT solvers using an indepen-
dent resolution-based checker: Practical implementations and other ap-
plications. In Proceedings of the 2003 Conference on Design, Automation
and Test in Europe (DATE’03), pages 10880-10885, Munich, Germany,
2003. TEEE Computer Society Press. Cited in page(s) 10

