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1 Introduction

Finite-state automata working over any kind of structure are formalisms as old as computer
science itself. In particular, we are here concerned with automata over in�nite trees. They
are given a labeled in�nite tree and accept or reject this tree based on its labels. A
generalization of these automata with binary decisions are weighted automata. They do
not just decide �yes� or �no�, but rather compute an arbitrary value from a given algebraic
structure, e. g., a semiring or a lattice.

Because of their intimate connection with logical formalisms, automata working over
in�nite structures are valuable tools in many areas of theoretical computer science, such
as model checking (using temporal logics, see [3, 8]) and description logics ([1, 2]). The
foundation of most of these applications is the reduction of the satis�ability problem of
some logic to the emptiness problem for appropriate automata. Weighted automata can
be used to compute priorities of di�erent models or the most �desirable� model according
to some speci�cation.

When passing from unweighted to weighted formalisms, many problems can be translated
accordingly. There are two basic approaches to lift an algorithm for an unweighted problem
to a solution to the corresponding weighted problem. The black-box approach reduces
the weighted problem to several applications of the unweighted problems and uses the
existing algorithm to solve these. The glass-box approach takes the original algorithm and
develops a completely new algorithm based on a generalization of the underlying ideas to
the weighted formalism.

The purpose of this work is to determine the feasibility of solving the inclusion problem
for automata on in�nite trees and its generalization to weighted automata, the in�mum
aggregation problem. This is basically a sequel to [4], where the same problem has already
been considered, albeit not very successful. The most di�cult step of both the inclusion
problem and the in�mum aggregation problem is the complementation of automata. The
inclusion problem can be reduced to complementation using polynomial-time constructions
and a similar reduction can be done for the in�mum aggregation problem. Hence there
is a whole chapter in this work dedicated to complementation constructions for di�erent
automata models.

This work is structured as follows. After introducing the basic de�nitions in Chapter 2,
we take a look at several problems and constructions for weighted and unweighted au-
tomata in Chapter 3. This chapter also contains a complexity analysis of the inclusion
problem for Büchi tree automata. Following this, we take a look at the complementation
problem for other kinds of tree automata in Chapter 4. This includes constructions for
the complementation of unweighted and weighted tree automata with di�erent acceptance
conditions and comparisons of glass-box and black-box approaches. We summarize our
�ndings in Chapter 5 and make suggestions for future work in this area.
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2 Preliminaries

In this section we �rst de�ne some general conventions and afterwards introduce the basic
notions about trees, lattices and automata.

For an in�nite sequence x := (xn)n∈N over an alphabet Σ,

Inf(α) := {α ∈ Σ | ∃∞n ∈ N : xn = α}

denotes the set of symbols occurring in�nitely often in x. For convenience, any sequence
x = (xn)n∈N may at any time be used as the set {xn}n∈N.
We write aX,Y : X → Y : x 7→ a for the constant function on some domain X that

always yields the value a from some set Y . If X and Y are understood from the context,
the superscripts may be dropped from this notation.

In order to shorten many expressions, we de�ne the scope of quanti�ers and big operators
to always be as large as possible. For instance, in the expression

∀
y∈Y
∃
x∈X

(f(x) = y ∧ g(x) = 1)

one may drop the outer parentheses.

2.1 Trees

Throughout all chapters, k > 0 shall be some natural number and K := {1, . . . , k}. Our
main object of study is the full k-ary tree K∗. The elements of K∗ are �nite sequences
over the alphabet K and are called nodes or positions of the tree K∗. ε denotes the
empty sequence and is called the root node of K∗. For i ∈ K and u ∈ K∗, ui is called
the i-th successor of u (see Figure 2.1). The full subtree of K∗ rooted at u is the set
u[K∗] := {uv | v ∈ K∗}, whose root is u. It is easy to see that ε[K∗] = K∗. The depth |v|
of a node v ∈ u[K∗] is the length of the sequence v minus the length of u.

We can de�ne a partial order on K∗ as follows: u ≤ w i� w ∈ u[K∗], i. e., i� u is a pre�x
of w. As usual, u < w abbreviates u ≤ w with u 6= w. The fact u ≤ w is read as �u is
above w�.

A subtree of u[K∗] is a set T ⊆ u[K∗] that is pre�x-closed , i. e., if vi ∈ T for v ∈ u[K∗]
and i ∈ K, then v ∈ T must also hold. The maximal depth of T is

d(T ) :=


−1 if T = ∅
max{|v| | v ∈ T} if T is �nite
∞ otherwise

.
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Figure 2.1: The full k-ary tree.

A node u ∈ T is called inner node of T if all its successors ui are also elements of T . A
node u ∈ T is called leaf of T if it has no successors inside T . The set of all inner nodes
of T is called interior of T and is denoted by int(T ). The set of all leaves of T is called
frontier of T and is denoted by fr(T ).

A path p in u[K∗] is a subtree that contains the root u and for every v ∈ p has at most one
i ∈ K with vi ∈ p. The length of a path is its maximal depth. A path p can be identi�ed
with the (�nite or in�nite) sequence of nodes that starts with u and goes from each node
v ∈ p to its unique successor vi ∈ p, if it exists. For a natural number 0 ≤ n ≤ d(p),
the notation pn will be used to refer to the (n + 1)-st node in this sequence, which is the
unique node of depth n in p. A path p is maximal in a subtree T if p ⊆ T and p is either
in�nite or its last node has no successor inside T . The set of maximal paths in a subtree
T will be denoted by Path(T ). The set of paths of length m ∈ N inside T will be denoted
by Path(T,m).

For a labeling alphabet Σ, a (Σ−)labeled tree is a mapping K∗ → Σ. As usual, the set of
all such mappings is denoted by ΣK∗ . Similarly, (�nite) (Σ-)labeled subtrees are mappings
T → Σ where T is a (�nite) subtree of u[K∗] for some u ∈ K∗.

2.2 Lattices

A lattice (S,⊕,⊗) is an algebraic structure on the set S that is equipped with two binary
operations supremum ⊕ and in�mum ⊗. These operations must be commutative and
associative and the aborption laws a⊕ (a⊗ b) = a = a⊗ (a⊕ b) must hold for any a, b ∈ S.
From these axioms it follows that in�mum and supremum are idempotent operations. The
in�mum of a �nite subset T ⊆ S (a �nite family (ti)i∈I ∈ SI) will be denoted by

⊗
T

(
⊗

i∈I ti), the supremum by
⊕

T (
⊕

i∈I ti).

On each lattice a partial order ≤ can be de�ned as follows: a ≤ b :⇔ a⊕b = b⇔ a⊗b = a
for a, b ∈ S. In fact, lattices can equivalently be de�ned as posets in which in�mum and
supremum of any two elements exist. The operations in�mum and supremum are monotone
in each component with respect to this partial order.

A lattice1 S is called distributive if a ⊕ (b ⊗ c) = (a ⊕ b) ⊗ (a ⊕ c) and a ⊗ (b ⊕ c) =
(a⊗ b)⊕ (a⊗ c) hold for every a, b, c ∈ S. We will usually deal with �nite lattices, in which

1We will usually represent the lattice by the underlying set and assume that in�mum and supremum are
implicitly known.
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2.2 Lattices

case distributivity is equivalent to complete distributivity . This property asserts that for
all families (ai,j)i∈I,j∈J(i) of elements of S the equations⊗

i∈I

⊕
j∈J(i)

ai,j =
⊕
f∈F

⊗
i∈I

ai,f(i) and
⊕
i∈I

⊗
j∈J(i)

ai,j =
⊗
f∈F

⊕
i∈I

ai,f(i)

hold, where F is de�ned as the set of all mappings f : I →
⋃
i∈I J(i) with f(i) ∈ J(i) for

all i ∈ I.
In a �nite lattice S we can also write

⊕
i∈I ti and

⊗
i∈I ti for supremum and in�mum of

an in�nite family (ti)i∈I ∈ SI . Furthermore, every �nite lattice S is bounded , i. e., it has a
smallest element 0S :=

⊗
S and a largest element 1S :=

⊕
S.

A bounded lattice S is called complemented if for every a ∈ S, there exists a complement
b ∈ S with a⊗ b = 0S and a⊕ b = 1S. If S is distributive, then this complement is unique
and we denote the complement of a ∈ S by a. A complemented distributive lattice is also
called a Boolean lattice.

Example 2.1 The lattice B := ({0, 1},⊕,⊗) with 0 ≤ 1 is a �nite Boolean lattice. It is
the smallest nontrivial lattice and is usually used for Boolean logics. In this case, 0 and
1 are interpreted as the truth values false and true, respectively. The in�mum ⊗ is the
binary conjunction of truth values, ⊕ is the disjunction. The expression �a implies b� can
be represented as a ≤ b or equivalently as a⊕ b = 1 (see Lemma 2.2 a)). �

In a Boolean lattice, a = a, a⊕ b = a ⊗ b and a⊗ b = a ⊕ b hold for all a, b ∈ S. We
always have a ≤ b i� b ≤ a, 1S = 0S and 0S = 1S. In a �nite Boolean lattice the following
equations hold for any family (ti)i∈I of lattice elements:⊗

i∈I

ti =
⊕
i∈I

ti and
⊕
i∈I

ti =
⊗
i∈I

ti.

An element p of a lattice S is called meet prime if a⊗b ≤ p always implies a ≤ p or b ≤ p.
The dual notion is that of a join prime element which is de�ned dually. In a distributive
lattice, meet prime elements are exactly the meet irreducible elements. These are de�ned
as elements p ∈ S for which a ⊗ b = p always implies a = p or b = p. Every element of a
distributive lattice S can uniquely be identi�ed by the set of meet prime elements above
it, since

a =
⊗
{p ∈ S | p meet prime and a ≤ p}

holds for all a ∈ S. In a Boolean lattice S, the complement a of a meet prime element
a ∈ S is join prime and the other way around.

In the following chapters, we will mainly deal with �nite Boolean lattices. We now prove
a few useful facts about these structures.

Lemma 2.2 Let S be a �nite Boolean lattice.

a) For all a, b ∈ S, a⊕ b = 1S i� a ≤ b.

b) For every index set I and families (fi), (gi) ∈ SI , the following holds:(⊕
i∈I

fi

)
⊗

(⊗
j∈I

gj

)
≤
⊕
i∈I

(fi ⊗ gi)
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Proof:

a) If a ≤ b, then a ⊕ b ≥ a ⊕ a = 1S. Let now a ⊕ b = 1S and a � b. Then b � a and
thus b 6= b ⊗ a. But (b ⊗ a) ⊗ b = 0S and (b ⊗ a) ⊕ b = a ⊕ b = 1S, which means
that b ⊗ a is another complement of b. This contradicts the fact that S is uniquely
complemented.

b) By distributivity of S, we have(⊕
i∈I

fi

)
⊗

(⊗
j∈I

gj

)
=
⊕
i∈I

(
fi ⊗

⊗
j∈I

gj

)
≤
⊕
i∈I

(fi ⊗ gi) .
2

For an alphabet Σ and a lattice S, a formal tree series over Σ and S is a mapping
ΣK∗ → S. Each labeled tree is thus assigned a value from S. For a formal tree series
f : ΣK∗ → S, one usually writes (f, t) for the image of a tree t ∈ ΣK∗ under f and calls
this the coe�cient of f at t. The class of all formal tree series over Σ and S is denoted by
S〈〈ΣK∗〉〉.
For convenience, we de�ne complex operations f ⊕ g, f ⊗ g and f on tree series f, g ∈

S〈〈ΣK∗〉〉 as follows:

(f ⊕ g, t) := (f, t)⊕ (g, t)

(f ⊗ g, t) := (f, t)⊗ (g, t)

(f, t) := (f, t)

2.3 Automata

We want to look at (non-deterministic) weighted tree automata that work on labeled trees
t ∈ ΣK∗ as input and output a value from some lattice S, i. e., they e�ectively compute
a formal tree series over Σ and S. These automata take the form of a 6-tuple A =
(Q,Σ, S, in,wt,F) where Q is a �nite set of states , Σ is the input alphabet, S is a lattice,
in : Q→ S is the initial distribution, wt : Q×Σ×Qk → S is the transition weight function
and F ⊆ QN is the acceptance condition, described as a predicate on in�nite Q-sequences.

A run of this automaton is a Q-labeled tree r ∈ QK∗ . Similarly, a subrun of A is a
Q-labeled subtree r ∈ QT for a node u ∈ K∗ and a subtree T ⊆ u[K∗]. Given a subrun
r ∈ QT , an input tree t ∈ ΣK∗ and an inner node u of T , we de�ne the transition of r on t

at u as the tuple
−−−→
r(t, u) := (r(u), t(u), r(ui), . . . , r(uk)). The weight of r (on t) is the value

wt(t, r) := in(r(ε))⊗
⊗

u∈int(T )

wt(
−−−→
r(t, u)).

A run r ∈ QK∗ is called successful if for every path p ∈ Path(K∗) the sequence (r(pn))n∈N is
an element of F. The set of all successful runs of A is denoted by succ(A). The automaton
A de�nes ‖A‖ ∈ S〈〈ΣK∗〉〉, the behavior of A (or tree series recognized by A) by assigning
each input tree t ∈ ΣK∗ the value

(‖A‖, t) :=
⊕

r∈succ(A)

wt(t, r).

10



2.3 Automata

This value is also called the behavior of A on t.

Automata are classi�ed by a sequence of several letters. Usually, this sequence has the
form WαA, where α is determined according to the acceptance condition F as follows:

• If F = QN, which is equivalent to no restriction on the runs, then the automaton is
called a looping automaton and α := L. In this case, A is represented by the 5-tuple
(Q,Σ, S, in,wt).

• If there is a set F ⊆ Q of �nal states such that F = {q ∈ QN | Inf(q) ∩ F 6= ∅},
then the automaton is called a Büchi automaton and α is set to B. In the tuple
representing the automaton, F is then usually replaced by F .

A generalized Büchi condition is expressed by a family (Fi)i∈I of �nal state sets with
a �nite index set I. An in�nite path q ∈ QN is then accepted if it is accepted by all
of the Büchi conditions Fi. α is then replaced by GB.

• The co-Büchi condition is similarly de�ned based on a set F ⊆ Q for which F = {q ∈
QN | Inf(q) \ F = ∅}. α is then set to C.

A generalized co-Büchi condition is determined by a family (Fi)i∈I of �nal state sets
on a �nite index set I. q ∈ QN is accepted if it is accepted by any of the co-Büchi
conditions Fi. α is set to GC.

• Another acceptance condition that is based on a set F ⊆ Q is the weak Büchi
condition, where F = {q ∈ QN | q ∩ F 6= ∅}. This is expressed by α := b.

• The weak co-Büchi condition is de�ned by a set F ⊆ Q as F = {q ∈ QN | q \ F = ∅}.
α is set to c.

• A Rabin condition is based on a set of pairs F = {(Ei, Fi) | i ∈ I} for some �nite
index set I. A sequence q ∈ QN is then in F i� Inf(q) ∩ Fi 6= ∅ and Inf(q) ∩ Ei = ∅
for some i ∈ I. This is indicated by α = R.

• A Rabin chain condition is a Rabin condition {(E1, F1), . . . , (En, Fn)} (n ∈ N) for
which the strict inclusions E1 ( F1 ( E2 ( F2 ( . . . ( En ( Fn hold. In this case α
is set to RC.

• The Streett condition is also de�ned by a set of pairs F = {(Ei, Fi) | i ∈ I} for a
�nite set I. q ∈ QN is accepted i� Inf(q) ∩ Fi = ∅ or Inf(q) ∩ Ei 6= ∅ for all i ∈ I.
α = S indicates this type of acceptance condition.

• A Muller condition is given by a set F ⊆ P(Q) of state sets. Then q ∈ F i�
Inf(q) ∈ F . This is indicated by α = M .

• A parity condition is de�ned through a function π : Q → N assigning a priority to
each state. Based on this, F is described as the set {q ∈ QN | min Inf(π(q)) is even}.
This acceptance condition is indicated by α = P .

The relationships between these acceptance conditions are depicted in Figure 2.2. In this
diagram the di�erent conditions are ordered by expressiveness, i. e., the inclusion of the
respective classes of recognized tree series. Most of these inclusions are easy consequences
of the above de�nitions. See [12] for the equivalence of Rabin, Streett, Muller and parity
conditions.

Example 2.3 We want to illustrate these relationships by a few examples.

11
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B C

cb

L

R,RC, S,M, P

Figure 2.2: The hierarchy of acceptance conditions for weighted tree automata

Let Q be a state set and F ⊆ Q the �nal state set of a Büchi acceptance condition. Then
an equivalent parity condition is de�ned by the mapping

π(q) :=

{
1 if q /∈ F
0 if q ∈ F .

For a parity condition given by π : Q→ N, an equivalent Strett condition consists of the
pairs

(π−1({0, . . . , 2k}), π−1(2k + 1))

for all k ∈ N with 0 ≤ 2k ≤ maxπ(Q). Thus the number of Streett pairs is roughly half
the number of priorities. �

Example 2.4 Now we want to show that Rabin chain conditions and parity conditions
determine equivalent classes of automata (see [12, De�nition 6.4]).

Similarly to the previous example, any parity condition π : Q→ N on a state set Q can
be expressed as a Rabin chain condition using the pairs

(π−1({0, . . . , 2k − 1}), π−1({0, . . . , 2k}))

for all k ∈ N with 0 ≤ 2k ≤ maxπ(Q).

The converse is also true, since for a Rabin chain condition E1 ( F1 ( . . . ( En ( Fn
we �nd an equivalent parity condition with the priority function

π(q) :=

{
2k if q ∈ Fk \ Ek for some k
2k + 1 if q ∈ Ek+1 \ Fk for some k

,

if we de�ne F0 := ∅ and Ek+1 := Q.

Again, the di�erence between the number of priorities and the number of pairs is only a
constant factor of 2. �

There are a few other important classes of automata that arise from the following re-
strictions.

12



2.3 Automata

If S = B, the automaton is called unweighted and the letter W is dropped out of the
classi�cation. In this case, S = B is usually left out of the tuple describing the automaton.
The tree series recognized by A can then be interpreted as the set

L(A) := {t ∈ ΣK∗ | (‖A‖, t) = 1},

called the tree language recognized by A. If t ∈ L(A), then we say that the tree t is
accepted by A. The functions in and wt are usually replaced by the equivalent sets I ⊆ Q
and ∆ ⊆ Q× Σ×Qk, respectively.

In addition, any classi�cation may be pre�xed by the letter D, indicating that the
automaton is deterministic, i. e., there is exactly one q ∈ Q for which in(q) > 0S and
for every q ∈ Q and α ∈ Σ there is exactly one tuple (q1, . . . , qk) ∈ Qk such that
wt(q, α, q1, . . . , qk) > 0S. This implies that for each input tree t ∈ ΣK∗ there is exactly
one run r ∈ QK∗ with wt(t, r) > 0S.

The classes of tree series recognized by a speci�c type of automata are de�ned as

Sτ 〈〈ΣK∗〉〉 := {‖A‖ | A is a weighted tree automaton of type τ}.

In the next chapter we will take a closer look at some of these automata models. We
will consider several tasks for weighted tree automata and try to solve them.

13





3 Weighted Tree Automata

In this chapter, we want to introduce the main problem that we try to solve subsequently.
The main focus of this work lies on weighted Büchi automata (WBA), because for this
relatively simple acceptance condition there are e�cient algorithms that solve a number of
fundamental problems.

The next section gives an overview over the basic tasks for Büchi automata. Afterwards
we will introduce the main problem and prove a complexity result.

3.1 Basic Results

In this section we will take a look at various closure properties of the class SWBA〈〈ΣK∗〉〉.
We will later use these to give algorithms for more complex problems by reducing them
to a very simple problem - the emptiness problem for Büchi automata. The name of this
problem suggests the domain of unweighted automata.

Task (Emptiness Problem)

Given a BA A, decide whether L(A) = ∅. �

This can be decided in quadratic time in the size of the input automaton ([10]). The
generalization of this problem to weighted automata is as follows.

Task (Behavior Computation)

Given a WBA A over a singleton alphabet, compute ‖A‖. �

This can be solved by lifting the unweighted algorithm to the weighted case. In [2] this
algorithm was developed and it was shown that its complexity is polynomial in the size
of the input automaton and the underlying lattice, if the lattice is �nite and distributive.
In the remainder of this work S is assumed to be �nite and distributive unless speci�ed
otherwise.

By reduction to the emptiness problem, several other problems can be shown to be of
polynomial complexity.

Task (In�mum Comutation)

Given two WBA A1, A2, compute ‖A1‖ ⊗ ‖A2‖. �

Task (Supremum Computation)

Given two WBA A1, A2, compute ‖A1‖ ⊕ ‖A2‖. �

These problems were solved in [4] by constructing a third WBA A with ‖A‖ = ‖A1‖ ⊗
‖A2‖ (or ‖A1‖⊕‖A2‖), whose behavior could then be computed using the algorithm from
[2]. The construction of A is of polynomial complexity in both cases.

15



3 Weighted Tree Automata

Another result concerning generalized Büchi automata is of interest here. It turns out
that SWGBA〈〈ΣK∗〉〉 = SWBA〈〈ΣK∗〉〉.
Lemma 3.1 Let A be a WGBA. Then there is a WBA A′ with ‖A′‖ = ‖A‖ which is of
size polynomial in the size of A.
Proof: For automata over a singleton alphabet Σ = {?}, this was proven in [2] by giving
an explicit construction for A′. The construction and the proof were lifted to arbitrary
weighted automata in [4]. 2

A result that will be useful later is that to compute the behavior of a weighted automaton
over a �nite lattice S on a given input tree t it su�ces to consider a �nite subtree of K∗.
We prove a more general result.

Lemma 3.2 Let S be a �nite lattice, Σ an input alphabet, t ∈ ΣK∗ an input tree, Q a state
set and P : K∗ × (Q× Σ×Qk)→ S a function that assigns a lattice element to each pair
(u, y) consisting of a node and a transition. Then there is a �nite subtree T ⊆ K∗ such
that for every run r ∈ QK∗ we have⊗

u∈K∗
P (u,

−−−→
r(t, u)) =

⊗
u∈int(T )

P (u,
−−−→
r(t, u)).

Proof: We �rst construct the in�nite tree R of all �nite subruns. The root of R is labeled
by the empty subrun r : ∅ → Q and its direct successors are labeled with all subruns
r : {ε} → Q of depth 0. For each node of R of depth n that is labeled with a subrun r
of depth n− 1, its successors are labeled with all extensions of r to subruns r′ of depth n.
Since r has kn−1 leaves, there are kn−1|Q|k such extensions. Thus, R is �nitely branching.

The tree R′ is now constructed from R by pruning it as follows. We traverse R depth-�rst
and check the label r ∈ QT of each node. If there is an extension of r to a �nite subrun
r′ ∈ QT ′ with ⊗

u∈int(T )

P (u,
−−−→
r(t, u)) >S

⊗
u∈int(T ′)

P (u,
−−−−→
r′(t, u)),

then we continue. Otherwise, we remove all nodes below the current node.

Since S is �nite, for every run r ∈ QK∗ the expression P (u,
−−−→
r(t, u)) can only yield �nitely

many di�erent values. Thus there must be a depth below which the value of the in�mum of

all P (u,
−−−→
r(t, u)) is not changed anymore. Since every in�nite path in R uniquely corresponds

to a run r ∈ QK∗ , this path must have been pruned in the construction of R′, and thus R′

can have no in�nite paths.

But since R′ is of course still �nitely branching, R′ must be �nite and thus have a maximal
depth m. Now it is easily seen that the tree T :=

⋃m
n=0K

n has the desired property. 2

Note that this does not only hold for the in�mum of the values P (u,
−−−→
r(t, u)). Using the

same arguments, an analogous result can be proven where
⊗

is substituted by
⊕

.

Corollary 3.3 For every weighted tree automaton A = (Q,Σ, S, in,wt,F) with �nite S
and every input tree t ∈ ΣK∗ there is a �nite subtree T ⊆ K∗ with the property that

(‖A‖, t) = (‖A‖T , t) :=
⊗

r∈succ(A)

in(r(ε))⊗
⊗

u∈int(T )

wt(
−−−→
r(t, u)).
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3.2 Inclusion

Proof: Apply Lemma 3.2 with P (u, y) := wt(y) for every u ∈ K∗ and y ∈ Q× Σ×Qk. 2

This means that the computation of (‖A‖, t) for a given t can be carried out in a �nite
amount of time, which is of course due to the �niteness of S. We now reformulate the
above results for unweighted automata.

Corollary 3.4 Let Σ be an input alphabet, t ∈ ΣK∗ an input tree, Q a state set and
P ⊆ K∗× (Q×Σ×Qk) a predicate on pairs (u, y) of nodes and transitions. Then there is
a �nite subtree T ⊆ K∗ such that for every run r ∈ QK∗ we have

∀
u∈K∗

P (u,
−−−→
r(t, u)) ⇐⇒ ∀

u∈int(T )

P (u,
−−−→
r(t, u)).

2

Corollary 3.5 For every unweighted tree automaton A = (Q,Σ, I,∆,F) and every input
tree t ∈ ΣK∗ there is a �nite subtree T ⊆ K∗ with the property that

t ∈ L(A) ⇐⇒ ∃
r∈succ(A)

r(ε) ∈ I ∧ ∀
u∈int(T )

−−−→
r(t, u) ∈ ∆.

2

3.2 Inclusion

In the remainder of this work, we are concerned with solving the following task.

Task (In�mum Aggregation)

Given two WBA A and A′, compute
⊗

t∈ΣK∗ (‖A‖, t)⊕ (‖A′‖, t). �

This can be seen as a generalization of another task, where both automata are un-
weighted.

Task (Inclusion Problem)

Given two BA A and A′, decide whether L(A′) ⊆ L(A). �

To decide this inclusion is problematic, because one usually checks emptiness of the in-
tersection L(A′) ∩ L(A). However, the class BBA〈〈ΣK∗〉〉 is not closed under complement
([12]), so this approach does not work when one works only with Büchi tree automata.
Luckily, the class BPA〈〈ΣK∗〉〉 of all tree languages recognized by unweighted parity au-
tomata is closed under complement and intersection ([12]), so we can decide the inclusion
problem by viewing A and A′ as parity automata (see Example 2.3). We will now look at
the complexity of this approach.

3.2.1 Complexity of Inclusion

To prepare the ground for the complexity analysis of the inclusion test for unweighted
Büchi automata, we need to introduce several new automata models. Since these are only
needed in this section, we de�ne them only for the unweighted case.
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3 Weighted Tree Automata

De�nition 3.6 An automaton on �nite trees is a tuple A = (Q,Σ, I,∆), where Q, Σ, I
and ∆ are de�ned as for automata on in�nite trees. Input trees for these automata are
all �nite Σ-labeled subtrees. Such a subtree t ∈ ΣT is accepted if there is a �nite subrun

r ∈ QT with r(ε) ∈ I and
−−−→
r(t, u) ∈ ∆ for every u ∈ int(T ). The language recognized by A

is L(A) := {t ∈ ΣT �nite labeled subtree | A accepts t}. ♦

De�nition 3.7 An alternating tree automaton is a tuple A = (Q,Σ, I, δ,F), where Q, Σ,
I and F are de�ned as for non-deterministic unweighted tree automata. The transition
function δ : Q×Σ→ F(Q×K) maps each state and input symbol to a monotone Boolean
formula over Q×K.

Intuitively, an atomic formula (q, i) means that the automaton goes to state q at the
i-th successor of the current node. Conjunction ∧ means that the automaton splits up
into several copies which each pursue the directions given by the conjuncts. Disjunction
∨ means that the automaton can make a non-deterministic choice as to which disjunct to
follow.

Starting from the root and an initial state, from one starting automaton many copies can
be generated, depending on the non-deterministic choices. Basically, each of these copies
consists of a path taken through K∗ and an associated sequence of states. An input tree is
accepted if it is possible to make each of the non-deterministic choices in such a way that
the state sequences generated by the resulting copies are all accepted by F.

Alternating tree automata are designated by the pre�x A to the classi�cation, e. g., ABA
stands for the class of all alternating automata with a Büchi acceptance condition. ♦

Example 3.8 A non-deterministic unweighted tree automaton (Q,Σ, I,∆,F) can easily
be transformed into an alternating one by replacing ∆ with the function

δ(q, α) :=
∨

(q,α,q1,...,qk)∈∆

∧
i∈K

(qi, i),

i. e., the automaton non-deterministically chooses a transition to take and then sends one
copy in every direction. The converse of this reduction does not hold. �

We are now ready to show the EXPTIME-completeness of the inclusion problem.

Theorem 3.9 The inclusion problem is EXPTIME-complete.1

Proof: We show EXPTIME-hardness by reduction of the inclusion problem for �nite trees,
i. e., given two automata A and A′ on �nite trees, decide whether L(A′) ⊆ L(A). It was
shown in [11, Theorem 2.1] that this problem is EXPTIME-complete.

The reduction employs a straightforward translation of automata on �nite trees to Büchi
automata. Given an automaton A = (Q,Σ, I,∆) on �nite trees the equivalent Büchi
automaton B = (Q′,Σ′, I,∆′, F ) is constructed as follows:

• Σ′ := Σ ∪ {?}, where ? is a new symbol

• Q′ := Q ∪ {q?}, where q? is a new state

• ∆′ := ∆ ∪ {(q, ?, q?, . . . , q?) | q ∈ Q′}
• F := {q?}

1Thanks to Christof Löding for the proof idea.
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3.2 Inclusion

In this construction every �nite tree t ∈ ΣT is uniquely represented by an in�nite tree
t′ ∈ Σ′K

∗
with t′(u) = ? for every u ∈ K∗ \ T and B accepts only those in�nite trees

that represent a �nite tree in this way. It is easy to see that L(A′) ⊆ L(A) holds for two
automata on �nite trees i� L(B′) ⊆ L(B) holds for their corresponding Büchi automata.

We will now give an algorithm that decides L(A′) ⊆ L(A) in time exponential in the
size of the Büchi automata A and A′. Let n and n′ be the number of states of A and A′,
respectively.

1) We translate A into an equivalent APA B. The transition function δ of this au-
tomaton can be determined as in Example 3.8, the equivalent parity condition as in
Example 2.3. This construction yields an automaton with n states and 2 priorities.

2) We use [15, Lemma 6.8] to construct an equivalent PA B′.2 This non-deterministic
automaton has a number of states exponential in n and a number of priorities poly-
nomial in n. Let 2p(n) be a bound on the number of states and p′(n) be a bound on
the number of priorities of B′ for suitable polynomials p and p′.

3) Now we have to construct an automaton C recognizing the intersection of L(B′) and
L(A′). To do this, we use a standard product construction on the automata, where
the acceptance conditions have �rst been rewritten as Streett conditions. For B′, the
equivalent Streett condition has at most p′(n) pairs and for A′ we only need one pair
(see Example 2.3). The product automaton then has as acceptance condition the
conjunction of these two Streett conditions, which is again a Streett condition with
at most p′(n) + 1 pairs. The number of states of C is bounded by n′2p(n).

4) We rewrite the SA C again as a PA C ′. For this, we use a construction from [5,
Theorem 7]. This construction takes a �nite-state Streett game and constructs an
equivalent Rabin chain game. Unweighted automata can be interpreted as special
�nite-state games, so this result also holds for Strett automata and Rabin chain
automata (see, e. g., [12]). Rabin chain conditions can equivalently be expressed as
parity conditions of the same size (see Example 2.4).

We arrive at a PA with O(n′2p(n)(p′(n)+1)!) states and O(p′(n)+1) priorities. Thus,
the number of states is bounded by n′2r(n) and the number of priorities by r′(n) for
polynomials r and r′.

5) By testing emptiness of L(C ′), we e�ectively decide the inclusion problem for A and
A′. It was shown in [7, Theorem 5.1 (1)] that emptiness of the parity automaton C ′
is decidable in time O

(
(n′2r(n))r

′(n)
)
, i. e., exponential in the number of states of A

and thus also exponential in the size of both A and A′. 2

3.2.2 From Inclusion to In�mum Aggregation

There are two approaches to get an algorithm for the in�mum aggregation problem based
on an inlcusion test algorithm. These are general methods that can be used when one is
given an unweighted algorithm and wants to transform it into a weighted one.

2In [15] alternating automata are de�ned di�erently, but the two descriptions can be transformed into
each other using only polynomial space.
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3 Weighted Tree Automata

Glass-box Approach

The so-called glass-box approach uses the speci�cs of the unweighted algorithm and trans-
forms them piece by piece into a weighted version of the algorithm. This is a rather laborious
approach which usually only works if the unweighted algorithm is constructive in the �rst
place, i. e., does not prove a complexity result without giving an explicit construction.

Since the inclusion test from the previous section is rather complicated, this cannot easily
be applied to our current case. However, we will later use this approach to show that the
complement of a WLA-recognizable tree series is recognizable by a WbA (see Section 4.2).
For this, we use a rewritten version of the in�mum aggregation value:⊗

t∈ΣK∗

(‖A‖, t)⊕ (‖A′‖, t) =
⊕
t∈ΣK∗

(‖A‖, t)⊗ (‖A′‖, t)

One can see that in�mum aggregation can also be done directly by complementing the
automaton A and computing the supremum aggregation of the resulting two automata.
The supremum aggregation problem for WBA was shown to be solvable by a polynomial
construction in [4]. We have thus reduced the in�mum aggregation to complementation of
WBA, similar to the reduction of the inclusion test to the complementation problem for
BA.

However, there is still the problem that BA are not closed under complementation, and
thus neither are WBA. We will later circumvent this problem by considering other classes
of automata for which the complement is a Büchi automaton.

Black-box Approach

The black-box approach on the other hand, does not need to know anything about how
the unweighted algorithm works. It reduces the weighted problem to one or more prob-
lems of the unweighted type and solves these using the �black-box� that is the unweighted
algorithm.

In [4] a black-box algorithm for the in�mum aggregation was described, which is based
on an approach from [6]. For every meet prime element p of the �nite Boolean lattice S,
one can decide whether

⊗
t∈ΣK∗ (‖A‖, t)⊕ (‖A′‖, t) ≤ p holds by using the inclusion test on

two unweighted automata that are generated from A and A′. The solution to the in�mum
aggregation problem is then easily computed as the in�mum of all those p for which that
test succeeded. We will now describe this procedure in more detail.

For given WBA A = (Q,Σ, S, in,wt, F ) and A′ = (Q′,Σ, S, in′,wt′, F ′) and a meet prime
element p ∈ S, the cropped automata Ap and A′p are de�ned as the BA (Q,Σ, I,∆, F ) and
(Q′,Σ, I ′,∆′, F ′), respectively, where the new initial state sets and transition relations are
de�ned as follows:

• I := {q ∈ Q | in(q) � p}
• ∆ := {y ∈ Q× Σ×Qk | wt(y) � p}
• I ′ := {q′ ∈ Q′ | in′(q′) ≥ p}
• ∆′ := {y′ ∈ Q′ × Σ×Q′k | wt′(y′) ≥ p}
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3.2 Inclusion

The transitions allowed in Ap (A′p) are exactly those transitions having weight � p (≥ p)
in A (A′). This property is transferred to the behavior of the weighted automata as follows.
For any input tree t ∈ ΣK∗ , we have

(‖A‖, t) ≤ p⇔ ∀
r∈succ(A)

wt(t, r) ≤ p

⇔ ∀
r∈succ(A)

in(r(ε)) ≤ p ∨ ∃
u∈K∗

wt(
−−−→
r(t, u)) ≤ p

⇔ t /∈ L(Ap)

and similarly, (‖A′‖, t) ≥ p⇔ t ∈ L(A′p). Thus,⊗
t∈ΣK∗

(‖A‖, t)⊕ (‖A′‖, t) ≤ p⇔ ∃
t∈ΣK∗

(‖A‖, t) ≤ p ∧ (‖A′‖, t) ≥ p

⇔ ∃
t∈ΣK∗

t /∈ L(Ap) ∧ t ∈ L(A′p)

⇔ L(A′p) * L(Ap).

Since this involves all meet-prime elements of the Boolean lattice S and their number is
the same as the size of a generating set of S, this black-box approach will hardly add to the
complexity of the unweighted inclusion test. Also note that the construction did not use
the acceptance condition of the automata A and A′, i. e., the same method works for any
kind of weighted automata for which the corresponding inclusion problem can be decided.
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4 Complementation

We now want to consider a modi�ed in�mum aggregation problem.

Task (In�mum Aggregation with WXA)

Given a WXA A and a WBA A′, compute
⊗

t∈ΣK∗ (‖A‖, t)⊕ (‖A′‖, t). �

This task can be approached in two ways, which are both based on a complementation
procedure that takes an unweighted XA A and yields a BA A with L(A) = L(A). The
�rst approach is to use this for a decision procedure for the inclusion problem with XA and
then use the black-box algorithm from the previous section to lift this to a solution of the
in�mum aggregation problem with WXA.

The second possibility is a glass-box approach that yields a complementation procedure
for WXA to WBA. This can then be used to solve the in�mum aggregation problem, as
detailed in the previous section.

In this chapter we will present several solutions to the following task and compare the
complexity of black-box and glass-box approaches based on them.

Task (Complementation for XA)

Given an XA A, construct a BA A with L(A) = L(A). �

For the remainder of this chapter, we �x a �nite Boolean lattice S. Since S is isomorphic
to some powerset lattice, it is of size |S| = 2n for some n ∈ N. There are n meet prime
elements in S and thus the black-box approach will need n inclusion tests to solve the
in�mum aggregation problem.

For the complexity analyses we only compare the size of the state sets of the involved
automata. If A is an unweighted automaton with state set Q, then the size |A| is p(|Q|)
for some polynomial p. Similarly, the size of a weighted automaton with state set Q would
be np(|Q|), since we need n bits to store any element of S.1

4.1 Complement of deterministic Büchi automata

The �rst class of automata we want to consider is that of deterministic Büchi automata. In
[13, Lemma 8], a construction was presented that yields a BAA recognizing the complement
of a language of a given DBA A. The idea behind this is to guess a path in the only valid
run of A that does not ful�ll the Büchi condition. This can be done by adding some �ags
to the states of A. These �ags are used to guess a path and a position on this path after

1These �gures are only valid for the automata models used in this chapter, i. e., automata with simple
acceptance conditions.
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4 Complementation

which no �nal state is allowed to occur. The transition relation must of course be adjusted
accordingly. The resulting automaton is of size O(|A|).
We will �rst follow a glass-box approach and give a complementation construction from

DWBA to WBA. Aftwerwards we will compare this with the black-box approach.

De�nition 4.1 Let A = (Q,Σ, S, in,wt, F ) be a DWBA over a �nite Boolean lattice S.
Then the complement automaton A is de�ned as the WBA (Q,Σ, S, in,wt, F ), where the
components are de�ned as follows:

• Q := Q× {0, 1, 2, 3}.
• If in(q) = 0S, we set in((q, i)) := 0S. Otherwise, we de�ne

in((q, i)) :=


1S if i = 1

in(q) if i = 3
0S otherwise

.

• If wt(q0, α, q1, . . . , qk) = 0S, we set wt((q0, i0), α, (q1, i1), . . . , (qk, ik)) := 0S. Other-
wise, we de�ne wt((q0, i0), α, (q1, i1), . . . , (qk, ik)) :=

wt(q0, α, q1, . . . , qk) if i0 = 1 and i1 = . . . = ik = 3
1S if i0 = 1 and one ij (j ≥ 1) is 1 or 2 (others 0)
1S if i0 = 2, q0 /∈ F and one ij (j ≥ 1) is 2 (others 0)
1S if i0 = . . . = ik ∈ {0, 3}
0S otherwise

.

• F := Q× {0, 2, 3}. ♦

For a given input tree t ∈ ΣK∗ we know that there is exactly one run rt ∈ QK∗ with
wt(t, rt) > 0S. That means that the behavior of A on t should be exactly wt(t, rt) if
rt ∈ succ(A). If rt is not successful the behavior should be 1S.

Theorem 4.2 (Complementation Theorem (DWBA)) Let A = (Q,Σ, S, in,wt, F )
be a DWBA over a �nite Boolean lattice S. Then ‖A‖ = ‖A‖.

Proof: The idea behind the construction is that the automaton A guesses a path in rt that
violates the acceptance condition of A. If this is possible, the corresponding run of A has

weight 1S, implying (‖A‖, t) = 1S. Otherwise, A generates a run with weight wt(
−−−−→
rt(t, u))

for every node u ∈ K∗ and one run with weight in(rt(ε)). By taking the supremum of these
run weights, we compute exactly (‖A‖, t) = wt(t, rt).

To show this, we consider all runs r ∈ succ(A) with wt(t, r) > 0S. This property implies
that the �rst components of these runs must have a non-zero weight w. r. t. A and must
thus be equal to rt. We now classify all these runs r according to their second components:

a) The second component of every label r(u) is 3. There is exactly one such run r and
its weight is in(rt(ε)).

b) There is a �nite path p ∈ Path(K∗, n) such that r(u)2 = 1 for each u ∈ p, r(u)2 = 3
for each u > pn and r(u)2 = 0 otherwise. For every �nite path p ∈ Path(K∗, n) there

is one such run r and its weight is wt(
−−−−−→
rt(t, pn)).

c) There is an in�nite path p ∈ Path(K∗) and a node v ∈ p such that r(u)2 = 1 for each
u ∈ p with u ≤ v, r(u)2 = 2 for each u ∈ p with u > v and r(u)2 = 0 otherwise. The
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4.2 Complement of looping automata

�rst component of all those nodes of p labeled with 2 cannot be a �nal state, which
means that rt is not successful. Such runs r exist i� rt is not successful and their
weight is 1S.

We conclude

(‖A‖, t) =
⊕

r∈succ(A)

wt(t, r)

=
⊕

r∈succ(A)
of type a)

wt(t, r)⊕
⊕

r∈succ(A)
of type b)

wt(t, r)⊕
⊕

r∈succ(A)
of type c)

wt(t, r)

=

{
in(rt(ε))⊕

⊕
u∈K∗ wt(

−−−−→
rt(t, u)) if rt ∈ succ(A)

1S otherwise

=

{
wt(t, rt) if rt ∈ succ(A)
1S otherwise

= (‖A‖, t). 2

The size of the state set of the automaton A from De�nition 4.1 is still only O(|Q|). The
cost of the in�mum aggregation for a DWBA A and a WBA A′ would thus be polynomial
in |Q||Q′|.
Since the size of the state set of the complement automaton in the unweighted case is also

O(|Q|), the black-box approach for the in�mum aggregation would involve n inclusion tests
which are polynomial in |Q||Q′|. One can see that there is no signi�cant di�erence between
the two approaches, since the complexity of the weighted complementation procedure is
the same as in the unweighted case.

4.2 Complement of looping automata

In this section we look at a di�erent, but still rather restricted class of automata. First,
we will complement any LA into a bA (and thus a BA) and show the correctness of this
approach. Afterwards, we will present the corresponding construction for WLA and again
compare this with the black-box approach.

4.2.1 Complement of LA

De�nition 4.3 For an LA A = (Q,Σ, I,∆), de�ne the complement automaton A as the
bA (Q,Σ, I,∆, F ) with

• Q := P(Q)

• I := {I}
• (Q0, α,Q1, . . . , Qk) ∈ ∆ :⇐⇒

∀
q0∈Q0

∀
y=(q0,α,q1,...,qk)∈∆

∃
i∈K

qi ∈ Qi
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4 Complementation

• F := {∅} ♦

The idea is that, for every possible run of A, the automaton A guesses a path violating
the transition relation ∆. It aggregates all states that belong to a run for which we have
not yet found such a counterexample into sets and will be successful i� all of these sets
become empty at some point.

Theorem 4.4 (Complementation Theorem (LA)) Let A = (Q,Σ, I,∆) be an LA.
Then L(A) = L(A).

Proof: Let t ∈ L(A). Then there is a successful run r ∈ QK∗

of A on t. Assume that there
also is a valid run r ∈ QK∗ of A on t. We now inductively construct a path p ∈ Path(K∗)
for which r(u) ∈ r(u) holds for all nodes u ∈ p.

• For u = ε we have r(ε) ∈ I = r(ε).

• Let u ∈ p be a node for which r(u) ∈ r(u) holds. Since r and r are valid, we have
(r(u), t(u), r(u1), . . . , r(uk)) ∈ ∆ and (r(u), t(u), r(u1), . . . , r(uk)) ∈ ∆. By de�nition
of ∆, there must be an i ∈ K with r(ui) ∈ r(ui). We now append ui to the path p
and continue.

Now r cannot ful�ll the �nal state condition {∅} of A on the path p, since every label along
the path must contain at least one element. This contradicts the fact that r is successful,
and thus t cannot be accepted by A.

For the other inclusion, let t /∈ L(A). By Corollary 3.5, there must be a �nite subtree
T ⊆ K∗ on which no valid subrun exists. W. l. o. g. we can assume that every node in T
has exactly k successors in T or none at all. We now inductively construct a successful run

r ∈ QK∗

of A on t for which every node u ∈ T has the following property:

P (u) ≡ ∀
r∈Qu[K∗]

[
r(u) ∈ r(u)⇒

(
∃

w∈u[K∗]∩T

−−−−→
r(t, w) /∈ ∆

)]

This means that every mapping r ∈ Qu[K∗] that starts in a state q0 ∈ r(u) at u must violate
∆ at some node in T that lies below u.

• If we set r(ε) := {I}, then P (ε) holds because of Corollary 3.5.

• If u is a leaf of T or u /∈ T , we set r(ui) := ∅ for each i ∈ K.

• Let now u be an inner node of T where r(u) has already been de�ned and P (u)
holds. We initially set r(ui) := ∅ for every i ∈ K. Thus, P (ui) trivially holds for

every i ∈ K, but the transition
−−−→
r(t, u) need not be valid. We now have to expand the

label sets r(ui) in such a way that:

1) the transition
−−−→
r(t, u) becomes valid.

2) the properties P (ui) are not violated.

We do this by expanding r(ui) without violating P (ui) while checking the conditions
of ∆ step by step.

� Let q0 ∈ r(u) and y = (q0, t(u), q1, . . . , qk) ∈ ∆.
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4.2 Complement of looping automata

� Assume that for each index i ∈ K there is a mapping ri ∈ Qui[K∗] with ri(ui) = qi
that does not violate ∆ below ui in T . Then we could join these mappings into
a mapping r ∈ Qu[K∗] with r(u) := q0 and r(uiw) := ri(uiw) for all i ∈ K and
w ∈ K∗. This mapping does not violate ∆ below u in T , which contradicts
P (u).

� Thus we can �nd an index i ∈ K such that P (ui) still holds after we add qi to
r(ui).

After we have done this for every q0 ∈ r(u) and every matching transition y ∈ ∆, we
have fully determined the successor labels r(ui) and P (ui) still holds for every i ∈ K.

Additionally,
−−−→
r(t, u) now is a valid transition in ∆.

To show that r is a valid run of A on t, we need to show that every transition is compatible
with ∆. If the transition fully lies in T or T , this is clear from the construction. Let now
u be a leaf of T . Since P (u) holds, all mappings r ∈ Qu[K∗] must violate ∆ below u in T
and thus at u itself. That means that there cannot be a valid transition of A at u starting

from any q0 ∈ r(u) and thus the transition
−−−→
r(t, u) = (r(u), t(u), ∅, . . . , ∅) is valid in ∆.

It is clear that r is successful, since every in�nite path must leave T at some node u and
thus has the label ∅ at every node below u. This implies t ∈ L(A). 2

4.2.2 Complement of WLA

We now augment the construction from the previous section to work with an arbitrary
Boolean lattice S. For this the powerset 2Q is replaced by the set SQ of all functions
mapping the states of A to lattice values. The other parts of the complement automaton
similarly arise from adapting the old de�nitions to the more general setting.

De�nition 4.5 For a WLA A = (Q,Σ, S, in,wt), de�ne the complement automaton as the
WbA A = (Q,Σ, S, in,wt, F ) with

• Q := SQ

• in(ϕ) :=

{
1S if ϕ(q) ≥ in(q) for all q ∈ Q
0S otherwise

• wt(ϕ0, α, ϕ1, . . . , ϕk) :=
⊗

y=(q0,α,q1,...,qk)∈Q×{α}×Qk ϕ0(q0)⊕ wt(y)⊕
(⊕

i∈K ϕi(qi)
)

• F := {0S} where 0S : Q→ S : q 7→ 0S ♦

We now �x a WLA A = (Q,Σ, S, in,wt) and an input tree t ∈ ΣK∗ . To show the
correctness of the above construction, we need to show that (‖A‖, t) = (‖A‖, t) holds. The
next two sections are dedicated to the two halves of this proof.

Proof of (‖A‖, t) ≥ (‖A‖, t)

In order to prove this, we de�ne a successful run r ∈ QK∗

of A with the t-weight (‖A‖, t).
From Corollary 3.3 we know that there must be a �nite subtree T ⊆ K∗ such that for

the computation of the weight (‖A‖, t) we only need to consider the nodes in T . W. l. o. g.
we can assume that every node in T has exactly k successors or none at all, implying that
T = int(T ) ∪ fr(T ), i. e., every node of T is either a leaf or an inner node of T .
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4 Complementation

De�nition 4.6 Let the run r ∈ QK∗

be inductively de�ned as follows:

• r(ε) := in

• If u ∈ fr(T ) or u /∈ T , set r(ui) := 0S for each i ∈ K.

• If u ∈ int(T ) is a node where r(u) has already been de�ned, set

r(ui)(q) :=
⊗

r∈Qui[K∗]

r(ui)=q

⊕
w∈ui[K∗]∩int(T )

wt(
−−−−→
r(t, w))

for each i ∈ K and q ∈ Q. ♦

From this de�nition, it is already clear that r is a successful run of A, since every path
will be labeled by 0S from some point on.

We additionally de�ne a value P (u) for each node u ∈ T :

P (u) :=
⊗

r∈Qu[K∗]

(
r(u)(r(u))⊕

⊕
w∈u[K∗]∩int(T )

wt(
−−−−→
r(t, w))

)

Lemma 4.7 The following hold:

• P (ε) = (‖A‖, t)

• P (ui) = 1S for all ui ∈ T

Proof: The �rst claim is easily proven by considering the de�nitions and Corollary 3.3.

Additionally, for any ui ∈ T we have

P (ui) =
⊗

r∈Qui[K∗]

r(ui)(r(ui))⊕
⊕

w∈ui[K∗]∩int(T )

wt(
−−−−→
r(t, w))

≥
⊗

r∈Qui[K∗]

 ⊕
w∈ui[K∗]∩int(T )

wt(
−−−−→
r(t, w))

⊕
 ⊕
w∈ui[K∗]∩int(T )

wt(
−−−−→
r(t, w))


= 1S 2

We now show that the run r has the claimed t-weight.

Lemma 4.8 The following hold:

a) in(r(ε)) = 1S.

b) wt(
−−−→
r(t, u)) = 1S for all u /∈ T .

c) wt(
−−−→
r(t, u)) = P (u) for all u ∈ T .

Proof: a) holds by de�nition of in and r(ε) and b) follows from the fact that r(u) = 0S
holds for all u /∈ T . For c), we consider two cases:
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4.2 Complement of looping automata

• wt(
−−−→
r(t, u)) = P (u) for every u ∈ fr(T ):

wt(
−−−→
r(t, u)) =

⊗
y=(q0,t(u),q1,...,qk)

r(u)(q0)⊕ wt(y)

=
⊗

r∈Qu[K∗]

r(u)(r(u))⊕ wt(
−−−→
r(t, u))

= P (u)

The second equation holds because of idempotency of ⊗. We consider any transition

y at u as the beginning of every run r ∈ Qu[K∗] with
−−−→
r(t, u) = y.

• wt(
−−−→
r(t, u)) = P (u) for every u ∈ int(T ):

wt(
−−−→
r(t, u)) =

⊗
y=(q0,t(u),q1,...,qk)

r(u)(q0)⊕ wt(y)⊕
⊕
i∈K

r(ui)(qi)

=
⊗

y=(q0,t(u),q1,...,qk)

r(u)(q0)⊕ wt(y)⊕
⊕
i∈K

⊗
ri∈Qui[K∗]

ri(ui)=qi

⊕
w∈ui[K∗]∩int(T )

wt(
−−−−→
ri(t, w))

=
⊗

y=(q0,t(u),q1,...,qk)

r(u)(q0)⊕ wt(y)⊕

⊗
r1∈Qu1[K∗]

r1(u1)=q1

. . .
⊗

rk∈Quk[K∗]

rk(uk)=qk

⊕
i∈K

⊕
w∈ui[K∗]∩int(T )

wt(
−−−−→
ri(t, w))

(by distributivity of S)

=
⊗

y=(q0,t(u),q1,...,qk)

⊗
r1∈Qu1[K∗]

r1(u1)=q1

. . .
⊗

rk∈Quk[K∗]

rk(uk)=qk

(by distributivity of S)

r(u)(q0)⊕ wt(y)⊕
⊕
i∈K

⊕
w∈ui[K∗]∩int(T )

wt(
−−−−→
ri(t, w))

(concatenate y and r1, . . . , rk to r)

=
⊗

r∈Qu[K∗]

r(u)(r(u))⊕
⊕

w∈u[K∗]∩int(T )

wt(
−−−−→
r(t, w))

= P (u) 2

This completes the �rst half of the proof of correctness.

Lemma 4.9 (‖A‖, t) ≥ (‖A‖, t).

Proof: Combining Lemmata 4.7 and 4.8, we get

(‖A‖, t) ≥ wt(t, r) = in(r(ε))⊗
⊗
u∈K∗

wt(
−−−→
r(t, u)) = (‖A‖, t).

2

29



4 Complementation

Proof of (‖A‖, t) ≤ (‖A‖, t)

We show this direction by proving the inequality wt(t, r) ≤ wt(t, r) for all r ∈ succ(A) and
r ∈ QK∗ . For wt(t, r) = 0S or wt(t, r) = 0S this is trivially satis�ed, so we now assume
that wt(t, r) > 0S and wt(t, r) > 0S hold.

We proceed by showing that wt(t, r)×wt(t, r) is smaller than a⊗a = 0S for some suitably
chosen a ∈ S. Looking at Theorem 4.4 one can already guess that this argument has to do
with paths p ∈ Path(K∗) for which r(u) ∈ r(u) holds for all u ∈ p. In the weighted case,
this property is replaced by the value

⊗
u∈p r(u)(r(u)). To be exact, a has the form⊕

p∈Path(K∗,n)

⊗
u∈p

r(u)(r(u))

for some n ∈ N.
Lemma 4.10 There is a depth m ∈ N such that

wt(t, r) ≤
⊗

p∈Path(K∗,m)

⊕
u∈p

r(u)(r(u)).

Proof: Since r is successful, there is a minimal depth m ∈ N such that any path p visits at
least one node labeled by 0S before reaching depth m.

Let now p be a path of length m in K∗ and assume that wt(t, r) �
⊕

u∈p r(u)(r(u)).

Then
⊕

u∈p r(u)(r(u)) < 1S and thus r(u)(r(u)) > 0S holds for every u ∈ p. Hence there
cannot be a node labeled with 0S along p in r, which contradicts the above choice of m.2

Lemma 4.11

wt(t, r)⊗ wt(t, r) ≤
⊕

p∈Path(K∗,n)

⊗
u∈p

r(u)(r(u))

holds for all n ∈ N.

Proof: For n = 0 we have

wt(t, r)⊗ wt(t, r) ≤ wt(t, r) ≤ in(r(ε)) ≤ r(ε)(r(ε)) =
⊕

p∈Path(K∗,0)

⊗
u∈p

r(u)(r(u)).

This holds, since wt(t, r) > 0S and thus in(r(ε)) > 0S and r(ε)(r(ε)) ≥ in(r(ε)).

Let now the inequation hold for some n ∈ N. For p ∈ Path(K∗, n), we know that

wt(t, r)⊗ wt(t, r) ≤ wt(
−−−−→
r(t, pn))⊗ wt(

−−−−→
r(t, pn)),

and thus

wt(t, r)⊗ wt(t, r) ≤
⊗

p∈Path(K∗,n)

wt(
−−−−→
r(t, pn))⊗ wt(

−−−−→
r(t, pn)).
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4.2 Complement of looping automata

Furthermore,

r(pn)(r(pn))⊗ wt(
−−−−→
r(t, pn))⊗ wt(

−−−−→
r(t, pn))

=

(
r(pn)(r(pn))⊕ wt(

−−−−→
r(t, pn))

)
⊗⊗

y=(q0,t(pn),q1,...,qk)

(
r(pn)(q0)⊕ wt(y)

)
⊕
⊕
i∈K

r(pni)(qi)

(by de Morgan's law)

≤
(
r(pn)(r(pn))⊕ wt(

−−−−→
r(t, pn))

)
⊗((

r(pn)(r(pn))⊕ wt(
−−−−→
r(t, pn))

)
⊕
⊕
i∈K

r(pni)(r(pni))

)
(choose y =

−−−−→
r(t, pn))

= r(pn)(r(pn))⊗ wt(
−−−−→
r(t, pn))⊗

⊕
i∈K

r(pni)(r(pni))

(by distributivity of S)

=
⊕
i∈K

r(pn)(r(pn))⊗ wt(
−−−−→
r(t, pn))⊗ r(pni)(r(pni)).

Using the above inequations we get

wt(t, r)⊗ wt(t, r)

≤

 ⊕
p∈Path(K∗,n)

n⊗
j=0

r(pj)(r(pj))

⊗
 ⊗
p∈Path(K∗,n)

wt(
−−−−→
r(t, pn))⊗ wt(

−−−−→
r(t, pn))


(by induction hypothesis and the �rst inequation)

≤
⊕

p∈Path(K∗,n)

(
n−1⊗
j=0

r(pj)(r(pj))⊗ r(pn)(r(pn))⊗ wt(
−−−−→
r(t, pn))⊗ wt(

−−−−→
r(t, pn))

)
(by Lemma 2.2 b))

≤
⊕

p∈Path(K∗,n)

⊕
i∈K

(
n−1⊗
j=0

r(pj)(r(pj))⊗ r(pn)(r(pn))⊗ wt(
−−−−→
r(t, pn))⊗ r(pni)(r(pni))

)
(by the second inequation)

≤
⊕

p∈Path(K∗,n+1)

⊗
u∈p

r(u)(r(u)).

(combining p with pni) 2

This allows us to conclude the second half of the proof of correctness.

Lemma 4.12 (‖A‖, t) ≤ (‖A‖, t).
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Proof: Combining Lemmata 4.10 and 4.11, we get wt(t, r)⊗wt(t, r) ≤ 0S. Lemma 2.2 now
implies wt(t, r) ≤ wt(t, r).

Since this holds for all r ∈ succ(A) and all runs r of A, we have (‖A‖, t) ≤ (‖A‖, t). 2

Theorem 4.13 (Complementation Theorem (WLA)) Let A be a WLA over a �nite
Boolen lattice. Then ‖A‖ = ‖A‖.

Proof: SinceA does not depend on the input tree, this follows from Lemmata 4.9 and 4.12.2

Conclusions

We will now see whether a black-box approach or the presented glass-box algorithm is
better suited for solving the in�mum aggregation problem with WLA.

• The construction from De�nition 4.3 yields a BA A with a state set of size 2|Q|. Since
intersection of Büchi automata and the emptiness test for Büchi automata are of
polynomial time complexity, the time complexity for the inclusion test is polynomial
in |Q′|2|Q|. If we then apply the black-box algorithm from Section 3.2.2, we get an
additional factor of n.

• The glass-box algorithm from De�nition 4.5 yields a WBA A with a state set of size
|S||Q| = 2n|Q|. If we use this algorithm to solve the in�mum aggregation problem, we
would have a time complexity polynomial in |Q′|2n|Q|.

In the case of LA the proposed glass-box algorithm is clearly inferior to the naive black-
box approach. This in part due to the fact that the complementation construction for
unweighted looping automata is already of exponential time complexity. Another reason
is that the weighted construction is simply too wasteful since it uses all functions Q → S
as states. It remains an open problem to �nd a better construction for the complement of
WLA that uses a smaller state set.

4.3 Complement of co-Büchi automata

In this section we present an exponential construction yielding a GBA that recognizes the
complement of the tree series recognized by a given CA. This construction originates in the
Simulation Theorem from [9]. Among other things, this theorem states that any alternating
Büchi automaton can be simulated by a non-deterministic Büchi automaton.

To get from a CA to a GBA recognizing the complement, we �rst express the CA as
an ACA (see Example 3.8), then complement it, which is easy for alternating automata.
In the process, the acceptance condition is transformed into a Büchi condition. Using [9,
Theorem 1.2], we arrive at a GBA recognizing the complement of the original language.
This can be simulated by a BA of polynomial size (see Lemma 3.1).

In the following, we present the whole procedure as a self-contained construction and
include a new proof which is similar to the proof of Theorem 4.4.

De�nition 4.14 For a CA A = (Q,Σ, I,∆, F ), the complement automaton A is the GBA
(Q,Σ, I,∆, F 1, . . . , F |F |+1) with
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4.3 Complement of co-Büchi automata

• Q ⊆ P(Q \ F )× P(F )|F |+1 where
(Q0, Q1, . . . , Q|F |+1) ∈ Q :⇐⇒ the sets Q1, . . . , Q|F |+1 are pairwise disjoint,

• I := {(I \ F, I ∩ F, ∅, . . . , ∅)},

• ((Q
(0)
0 , Q

(0)
1 , . . . , Q

(0)
|F |+1), α, (Q

(1)
0 , Q

(1)
1 , . . . , Q

(1)
|F |+1), . . . , (Q

(k)
0 , Q

(k)
1 , . . . , Q

(k)
|F |+1)) ∈ ∆

:⇐⇒
|F |+1

∀
j=0
∀

q∈Q(0)
j

∀
(q,α,q1,...,qk)∈∆

(
∃
i∈K
qi∈F

|F |+1

∃
l=max{j,1}

qi ∈ Q(i)
l

)
∨
(
∃
i∈K
qi /∈F

qi ∈ Q(i)
0

)
,

• F j := {(Q0, Q1, . . . , Q|F |+1) ∈ Q | Qj = ∅} for j ∈ {1, . . . , |F |+ 1}. ♦

The states of the complement automaton are tuples of state sets. The �rst set contains
only non-�nal states, while the remainder are disjoint sets of �nal states. The idea is that
for every run of the original automaton the complement automaton guesses a path which
violates the acceptance condition. It accepts i� it is able to �nd such a path for each run.

If the automaton is in state (Q0, . . . , Q|F |+1) at node u, it guesses for each state q ∈ Qj and
possible transition y = (q, t(u), q1, . . . , qk) which direction i ∈ K to take. The corresponding
state qi is then put in the appropriate set, depending on whether it is a �nal state or not.

If q and qi are �nal states, qi is added to the j-th component or some component with a
greater index. This possibility exists to allow the disjointness condition to be satis�ed. If
the state qi is required by several di�erent transitions originating from several components
j, it su�ces to put qi in the largest of these components to satisfy all the conditions.

In the end it is checked whether in each component and each path we encounter in�nitely
many empty sets, which is equivalent to checking whether there are in�nitely many non-
�nal states in every guessed path.

We will now show the correctness of the construction in two steps.

Lemma 4.15 Let A = (Q,Σ, I,∆, F ) be a CA. Then L(A) ⊆ L(A).

Proof: Let t ∈ L(A), i. e., there is a successful run r ∈ QK∗

of A on t, and assume that there

also is a successful run r ∈ QK∗ of A on t. For a node u ∈ K∗, de�ne R(u) :=
⋃|F |+1
j=0 r(u)j.

Then we can inductively construct an in�nite path p ∈ Path(K∗) for which r(u) ∈ R(u)
holds for all u ∈ p:
• Since r(ε) ∈ I, either r(ε) ∈ I \ F = r(u)0 or r(ε) ∈ I ∩ F = r(u)1 must hold, and
thus r(ε) ∈ R(ε).

• Let u ∈ p be a node with the property r(u) ∈ R(u). Since
−−−→
r(t, u) ∈ ∆ and

−−−→
r(t, u) ∈ ∆,

there must be an i ∈ K such that r(ui) ∈ r(ui)j holds for some j ∈ {0, . . . , |F |+ 1}.
Thus r(ui) ∈ R(ui) holds and we can append ui to the path p.

Since r is successful, there must be a node u0 ∈ p such that r(u) ∈ F holds for all nodes
u ∈ p ∩ u0[K∗] that occur below u0 along the path p. That means that r(u) always occurs
in a component r(u)j with j ≥ 1. The index j of this component can only grow bigger
or stay the same with each transition, and thus there must be a node u1 ∈ p after which
r(u) ∈ r(u)j always holds for some �xed j ∈ {1, . . . , |F | + 1}. Thus r(u)j can never be
empty after the node u1 along the path p, which contradicts the success of r. 2
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For this direction, it is easy to see the similarity to the proof of Theorem 4.4. The other
direction is also similar. The property P (u) is replaced by a more complex property Fail(u)
and the proof is generally more complex to account for the di�erent components of each
state. Instead of Corollary 3.5, we have to use the more general version in Corollary 3.4
for this proof.

Lemma 4.16 Let A = (Q,Σ, I,∆, F ) be a CA. Then L(A) ⊇ L(A).

Proof: Let t /∈ L(A). We inductively construct a successful run r ∈ QK∗

of A on t. For
every node u ∈ K∗ the following property Fail(u) will be satis�ed.

Fail(u) ≡
|F |+1

∀
j=0
∀

r∈Qu[K∗]

r(u) ∈ r(u)j ⇒ ∃
w∈u[K∗]

Fail(w,
−−−−→
r(t, w))

Fail(u, y = (q0, . . .)) ≡ y ∈ ∆⇒

q0 /∈ F ∧ ∀
r′∈Qu[K∗]

r′(u)=q0

¬Valid(r′, u) ∨ ¬Success(r′, u)


Valid(r, u) ≡ ∀

w∈u[K∗]

−−−−→
r(t, w) ∈ ∆

Success(r, u) ≡ ∀
p∈Path(u[K∗])

Inf(r, p) \ F = ∅

Success(r, u) expresses that a run r is �successful below u�, i. e., all in�nite paths starting
from u must contain only �nitely many states from Q\F . The property Valid(r, u) ensures
that all transitions of a run r below a node u are valid transitions of A. Using these two
properties, we formulate Fail(u, y) by saying that if y is a valid transition at u, then the
current state must be non-�nal and no valid run starting from this state can be successful.
Finally, Fail(u) says that every run starting in a state occurring in r(u) must fail somewhere
below u.

The property Fail(u, y) is clearly of the form required by Corollary 3.4, and thus Fail(u)
is equivalent to a property Fail(u, (Tj,u)) for �nite trees Tj,u ⊆ u[K∗] (j ∈ {1, . . . , |F |+1}).
This property is the same as Fail(u), except that �w ∈ u[K∗]� is replaced by �w ∈ Tj,u�.2

To start the construction of r, we set r(ε) := (I \ F, I ∩ F, ∅, . . . , ∅) and deduce Fail(ε)
as follows. If Fail(ε) was not ful�lled, there would be a run r ∈ QK∗ with r(ε) ∈ I for
which all transitions are valid and for every w ∈ K∗ with r(w) /∈ F there would be a run
r′w ∈ Qw[K∗] with r′w(w) = r(w) that is both valid and successful below w. Then we could
construct a run r′ ∈ QK∗ by replacing the labels of r on the subtree w[K∗] with those of
r′w at every such node w ∈ K∗.3 This run r′ would be a valid and successful run of A on t,
which contradicts the assumption t /∈ L(A).

2The tree T0,u can always be chosen to be the singleton tree {u}: If every valid run starting in a state

from Q \ F at u must contain a node w with Fail(w,
−−−−→
r(t, w)), then for every such run Fail(u,

−−−→
r(t, u))

will already be satis�ed. This is because any path containing w must also contain u.
3We only do this replacement for the �rst occurrence of a state from Q \ F , not in a subtree that has
already been replaced.
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4.3 Complement of co-Büchi automata

Suppose now that u ∈ K∗ is a node where r(u) has already been de�ned and for which
Fail(u, (Tj,u)) holds for some �nite trees Tj,u ⊆ u[K∗] (j ∈ {1, . . . , |F | + 1}). For every
i ∈ K we construct r(ui) from r(u) in several steps.

• First we determine an index j̃ ∈ {1, . . . , |F | + 1} with r(u)j̃ = ∅. Since we will keep
the sets r(u)j (j ∈ {1, . . . , |F |+ 1}) disjoint, there can be at most |F | nonempty sets

and thus such an index j̃ can always be chosen.

• We initially set r(ui) := (∅, . . . , ∅) for each i ∈ K, and thus Fail(ui) holds for our

initial de�niton of r(ui). But clearly, the resulting transition
−−−→
r(t, u) need not satisfy

the transition relation ∆. We now enlarge the sets r(ui) in such a way that Fail(ui)

remains satis�ed and
−−−→
r(t, u) becomes a valid transition.

• For every j ∈ {0, . . . , |F | + 1}, q ∈ r(u)j and y = (q, t(u), q1, . . . , qk) ∈ ∆, we do the
following.

� We choose one index i ∈ K for which qi is added to a component of r(ui). The
index of this new component is determined as follows:

∗ If qi /∈ F , we set r(ui)0 := r(ui)0 ∪ {qi}.
∗ If j > 0 and qi ∈ F , we set r(ui)j := r(ui)j ∪ {qi}.
∗ If j = 0 and qi ∈ F , we set r(ui)j̃ := r(ui)j̃ ∪ {qi}.

We choose i such that Fail(ui) remains satis�ed after we add qi to r(ui) as spec-
i�ed above. Such an index must always exist, as we will show in the following.
For this, we make a case distinction depending on whether q ∈ F or not.

∗ Let q /∈ F , i. e., j = 0 and assume that Fail(ui) is violated by adding qi to
r(ui). Then there are subruns ri ∈ Qui[K∗] with the properties

· ri(ui) = qi and

· Fail(w,
−−−−→
ri(t, w)) is not satis�ed for any w ∈ ui[K∗], i. e., if w /∈ F , then

there is a valid and successful subrun r′w ∈ Qw[K∗] with r′w(w) = ri(w).

As in the argument for Fail(ε), we can now construct a subrun r′ ∈ Qu[K∗]

with
−−−−→
r′(t, u) = y which is valid and successful. This means that Fail(u, y) is

not satis�ed. If we now construct the subrun r ∈ Qu[K∗] by concatenating y

and the subruns ri, Fail(w,
−−−−→
r(t, w)) is not satis�ed for any w ∈ u[K∗], which

is a contradiction to Fail(u).

∗ If q ∈ F , i. e., j ≥ 1, we could use the same argument as above. However,
in this case we take a closer look at the �nite tree Tj,ui, because this will
later enable us to show that r is successful. Since all qi are added to either
r(ui)0 or r(ui)j, we need only be concerned with the trees T0,ui and Tj,ui. We
will show that we can choose i ∈ K such that the property Fail(ui, (Tj′,ui))
remains satis�ed if we set T0,ui := Tj,ui := Tj,u ∩ ui[K∗].
If we assume the converse, we could deduce that there exist subruns ri ∈
Qui[K∗] with the following properties:

· ri(ui) = qi

· Fail(w,
−−−−→
ri(t, w)) is not satis�ed for any w ∈ Tj,u ∩ ui[K∗].

35



4 Complementation

If we now construct the subrun r ∈ Qu[K∗] by concatenating the transition
y and the subruns ri, then it is easily seen that r starts in r(u) = q and

no Fail(w,
−−−−→
r(t, w)) is satis�ed for any w ∈ Tj,u ∩ ui[K∗] and for any i ∈ K.

Furthermore, Fail(u,
−−−→
r(t, u)) is also not satis�ed, since

−−−→
r(t, u) = y ∈ ∆, but

q ∈ F . This means that r is a counterexample to Fail(u, (Tj′,u)).

� After we have done this for every j, q and y, the transition
−−−→
r(t, u) is valid and

the properties Fail(ui) still hold.

• As a last step, we need to make sure that the sets r(ui)1, . . . , r(ui)|F |+1 are disjoint
for every i ∈ K. To do this, we remove all but the rightmost occurrence of each state

q ∈ F in these sets. The transition
−−−→
r(t, u) remains valid, because ∆ only requires a

state qi to be present in some position l that is greater than or equal to max{j, 1}.
The properties Fail(ui) also still hold, because we only removed states from some of
the components of r(ui).

• Since Fail(ui) holds, there are �nite trees Tj,ui (j ∈ {1, . . . , |F | + 1}) such that
Fail(ui, (Tj,ui)) holds. These trees can be determined as follows.

� T0,ui can be set to {ui}, since Fail(ui) implies that for any run r ∈ Qui[K∗] with

r(ui) ∈ r(ui)0 the property Fail(ui,
−−−−→
r(t, ui)) must hold.

� Tj̃,ui must be determined from Fail(ui) using Corollary 3.4.

� For any j that is not 0 or j̃, we can set Tj,ui := Tj,u ∩ ui[K∗]. This is possible
because of the way we constructed r(ui)j.

It remains to show that r is a successful run of A. For this we assume that there is a path
p ∈ Path(K∗) such that for some j ∈ {1, . . . , |F | + 1} the set r(u)j is empty only �nitely
often for nodes u ∈ p. Then there is a node u ∈ p after which no empty set occurs in the
j-th component of r along p. By construction of r, the property Fail(u, (Tj′,u)) must be
satis�ed for �nite trees Tj′,u ⊆ u[K∗].

Let v be the �rst node of p that lies outside of Tj,u. By construction of r, Fail(v, (Tj′,v))
must hold for �nite trees Tj′,v ⊆ v[K∗]. The tree Tj,v can be chosen to be Tj,u ∩ v[K∗] = ∅,
since no empty set occurred in the j-th component along the path from u to v. Since
Fail(v, (Tj′,v)) is satis�ed, this means that r(v) must be empty, which contradicts the
assumption. Thus, r is a successful run of A on t and t ∈ L(A). 2

The above two lemmata now allow us to conclude that the complementation construction
is correct.

Theorem 4.17 (Complementation Theorem (CA)) Let A be a CA. Then L(A) =
L(A). 2

This time, we will not follow a glass-box approach to develop a complementation con-
struction for WCA. As was already seen in the previous section, the black-box approach is
superior if the unweighted construction is already of exponential complexity. Since the con-
struction from De�nition 4.14 is a more general version of De�nition 4.3, a similar glass-box
approach as in the previous section would again lead to an algorithm that is too expensive.
It remains an open problem to �nd a more e�cient complementation construction.
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4.4 Another In�mum Aggregation Problem

We now want to look at a modi�ed in�mum aggregation problem where A is a Büchi
automaton and A′ is a co-Büchi automaton. Luckily, co-Büchi automata exhibit many of
the properties we have used for Büchi automata so far: GCA are polynomially equivalent to
CA (see Lemma 4.18 below), there are polynomial constructions for union and intersection
([14, Theorem 4]) and emptiness can be checked in polynomial time ([14, Theorem 9]).4

Although no explicit generalizations to weighted co-Büchi automata exist, these should be
as easy to obtain as the corresponding algorithms for weighted Büchi automata (see [2, 4]).

Lemma 4.18 Let A = (Q,Σ, I,∆, F1, . . . , Fm) be a GCA and let the CA A′ be de�ned as
(Q′,Σ, I ′,∆′, F ′) with

• Q′ := Q× {1, . . . ,m},
• I ′ := I × {1, . . . ,m},
• ∆′ := {((q0, i0), α, (q1, i1), . . . , (qk, ik)) | (q0, α, q1, . . . , qk) ∈ ∆ and i0 = . . . = ik},
• F ′ :=

⋃m
i=1 Fi × {i}.

Then we have L(A′) = L(A).

Proof: Let t ∈ ΣK∗ be an input tree and r ∈ QK∗ be a valid run of A that is accepted by
some Fi (i = 1, . . . ,m). Then the run r′ ∈ Q′K∗ de�ned by r′(u) := (r(u), i) for all u ∈ K∗
is a successful and valid run of A′, because Inf(r′, p) \F ′ = (Inf(r, p)×{i}) \ (Fi×{i}) = ∅
holds for all p ∈ Path(K∗).

Also, all valid runs r′ of A′ have this form, i. e., have a constant second component
i ∈ {1, . . . ,m} in all labels. The �rst component of a successful and valid run r′ of A′ is
thus a successful and valid run r ofA, because (Inf(r, p)×{i})\(Fi×{i}) = Inf(r′, p)\F ′ = ∅
and thus Inf(r, p) \ Fi = ∅ hold for all p ∈ Path(K∗). 2

As always, the problem with the inclusion test (or in�mum aggregation) lies in the
complementation step. CA are not closed under complement ([14, Theorem 5]) and, even
worse, there are tree languages recognized by Büchi automata whose complement cannot
be recognized by a co-Büchi automaton ([13, Lemma 3]). This means that a construction
similar to that in De�nition 4.14 is not possible when the roles of Büchi and co-Büchi
automata are reversed.

This means that co-Büchi automata are in some sense �weaker� than Büchi automata
and their class of recognized languages is �smaller�. Due to this fact, the utility of this
modi�ed in�mum aggregation problem is limited.

4In [14], GCA are called Landweber tree automata.
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5 Conclusions

In this work we introduced the in�mum aggregation problem for weighted tree automata
and demonstrated several algorithms to solve it for various acceptance conditions. For de-
terministic Büchi automata, this problem can be solved in P, for non-deterministic looping,
Büchi and co-Büchi automata it was shown to be in EXPTIME.

All of these algorithms were based on solutions for the corresponding unweighted in-
clusion problems. A black-box approach was used to lift these to the unweighted case,
adding only a small factor to the overall complexity. A glass-box approach was found to
be preferable only in the case of deterministic Büchi automata.

Although the presented glass-box algorithm for the complement of weighted looping
automata was too expensive, it nevertheless provided valuable insights into the structure
of the unweighted construction. To develop a construction for weighted automata using
a glass-box approach one is forced to review the arguments of the unweighted version
in more detail. The proof of correctness of the weighted construction also demonstrated
several techniques that can be used to lift an unweighted to a weighted argument.

It remains to see whether there are more e�cient constructions for the complement of
the classes of weighted tree automata presented here. It seems unlikely, since the black-box
approach already adds so little to the complexity of the unweighted algorithm.

In order for the presented construction not to stay purely theoretical, we would also
need to �nd interesting applications for the inclusion problem and the in�mum aggregation
problem for weighted tree automata. Obvious candidates are the various logics that have
been found to be equivalent to certain tree automata. The inclusion problem may be used,
e. g., to check for subsumption in description logics where this cannot easily be checked by
other methods.
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