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Abstract

In recent years, the description logic EL has received a significant interest. The
description logic EL is a knowledge representation formalism used e.g in natural
language processing, configuration of technical systems, databases and biomedical
ontologies. Unification is used there as a tool to recognize equivalent concepts.
It has been proven that unification in EL is NP-complete. This result was based
on a locality property of certain EL unifiers. Here we show that a similar local-
ity holds for EL without top (EL-top), but decidability of EL-top unification does
not follow immediately from locality as it does in the case of unification in EL.
However, by restricting further the locality property, we prove that EL-top unifica-
tion is decidable and construct an NExptime decision procedure for the problem.
Furthermore, we show that unification in EL-top is PSPACE-hard by reducing the
Finite State Automata Intersection problem to EL-top unification problem.
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Chapter 1

Introduction

1.1 Description Logics

Description Logics (DLs) [2] are a family of logic-based knowledge representation
formalisms which can be used to represent concept definitions in a structured and
formally well-understood way. The basic notion used to express knowledge in
DLs is concept terms. Concept terms are built upon concept names, role names
and concept constructors. The semantics of concept terms is given by means of an
interpretation which consists of a non-empty set of individuals and an interpretation
function. In this interpretation, concept names represent sets of individuals and
role names represent binary relations between individuals. For example, in order
to represent the concept of women having daughters, we use Human, Female as
concept names, hasChild as a role name and an existential restriction (∃r.C) as a
concept constructor. The concept term is expressed as follows:

Human u Female u ∃hasChild.Female

By using value restriction ∀r.C, we can describe the concept of women having only
daughters :

Human u Female u ∀hasChild.Female

One of the main reasoning problems in DLs is deciding subsumption. We say that
C is subsumed by D (C v D) if the first concept is always interpreted as a subset
of the second one. For example, the following subsumption holds:

Human u Female u ∃hasChild.Female v Human u Female

since all women having daughters are women. By checking subsumption, we can
build a hierarchy graph for concept terms. Moreover, one important application of
deciding subsumption is determining equivalence between two concept terms. Two
concept terms C and D are equivalent if they subsume each other. The equivalence
test can be used to detect redundancies in knowledge bases.
Let us consider two following concept terms:
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Human u ∀hasChild.S mart u ∀hasChild.S trong
Human u ∀hasChild.(S mart u S trong)

These two concept terms are equivalent, since they both describe the concept of
people having smart and strong children. However, equivalence testing cannot al-
ways determine equivalence of two concept terms, since concepts expressing the
same notion could have either different names or different representation. For ex-
ample, the concept of men loving adventure sports could be represented by either
the concept term:

Human u Male u ∃loves.AdventureS ports

or another one:

Man u ∃loves.(S port u Dangerous)

These two concept terms are not equivalent. Nevertheless, in order to make them
equivalent, we can substitute AdventureSports by Sport u Dangerous and Man by
Human u Male. In other words, we solve unification of concept terms by finding
an appropriate substitution (or unifier) to make two concept terms equivalent.

1.2 Unification in Description Logics

Unification problems in EL and their types were originally not introduced for De-
scription Logics, but for equational theories [6]. Unification in DLs was first stud-
ied for the description logic FL0 [5]. FL0 is a light-weight DL which allows
conjunction (u), value restrictions (∀r.C) and top concept (>) as constructors. Uni-
fication in FL0 corresponds to unification modulo the equational theory of idem-
potent Abelian monoids with several homomorphisms. In [1], it was shown that
even for a single homomorphism, unification modulo this theory has type zero, i.e.,
there are unification problems for this theory that do not have a minimal complete
set of unifiers. Unification in FL0 was shown in [5] to be decidable and ExpTime-
complete.
Unification in the description logic EL, which uses existential restrictions
(∃r.C) instead of value restrictions (∀r.C), was shown in [5] to be decidable and
NP-complete. However, it was also shown there that EL has unification type zero.
Furthermmore, it was shown that the equivalence problem for EL-concept terms
corresponds to the word problem for the equational theory of semilattices with
monotone operators [14]. From this result, unification in semilattices with mono-
tone operators was shown to be NP-complete and of unification type zero [4].
Even though EL is inexpressive, it has been used in a variety of applications, e.g.,
to define biomedical ontologies. In particular, EL was used to build the large med-
ical ontology SNOMED CT [13] and the Gene Ontology [7] as well as large parts
of the medical ontology GALEN [12]. Furthermore, an extension of EL was used
in OWL2 EL which is a sub-profile contained in OWL2 standard [11].
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Before unification in EL was investigated, EL-matching (solving equations whose
one side does not contain variables) problem had been considered in [3, 9]. It was
shown that deciding whether a given EL-matching problem is solvable or not is
NP-complete. Surprisingly, as mentioned above, unification in EL was shown to
be in the same complexity class even though EL-unification is more general than
EL-matching.

1.3 Motivation and structure of the thesis

As mentioned above, it was shown that unification in EL is decidable and NP-
complete. The new DL EL-top obtained from EL by removing top concept from
the set of contructors is less expressive than EL. Interestingly, unification in EL-
top could be more difficult to solve than that in EL. Let us look at the following
unification problem:

Γ = {∃r.X u X ≡ ∃r.X}.

It is not difficult to see that Γ has a unifier γ in EL, where γ(X) = >. But it does
not have unifiers in EL-top. We can also say that EL-top unifiers are stronger
than EL-unifiers in the sense that if an EL-top unification problem has a solution,
then it also has a solution in EL. Nevertheless, the other way around does not
always hold. Because of this reason, it is worthy to investigate unification in EL-
top. In this report, our aim is to solve decidability of EL-top unification problem.
To restrict the set of all possible unifiers, we introduce a notion of local unifiers.
Locality is a property of unifiers which guarantees that an assignment of a local
unifier to each variable can be constructed from elements present in the problem
and a free concept constant. The similar notion of locality in different contexts
was already used for inference rules sets [10] and sets of Horn clauses [14]. It was
shown in [14] that polynomial complexity of deciding subsumption in EL follows
from locality of algebraic models of EL.
The most important goal of this thesis is to show that unification in EL is decidable
and PSPACE-hard. For this purpose, the thesis is organised as follows:

• In Chapter 2, we define formally the description logic EL-top and introduce
unification in EL-top,

• In Chapter 3, we present locality of EL-top unification and at the end show
the reason why decidability does not follow immediately from the locality.

• In Chapter 4, we show that EL-top unification is decidable and describe a
NExpTime decision procedure of EL-top unification problem.

• In Chapter 5, we prove that unification in EL-top is PSPACE-hard by re-
ducing the Finite State Automata Intersection problem to EL-top unification
problem.
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• In Chapter 6, we summarize the results of this thesis and propose some future
work.
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Chapter 2

Unification in the description
logic EL-top

In this chapter, we define formally the description logic EL-top, compare it to the
logic EL and show that some properties of unifiers in EL hold also for unifiers in
EL-top. Our aim is to define unification problem in EL-top. In the subsequent
chapters, we want to prove the decidability of this problem. Hence in this chapter,
we present a short description of decidability procedure in EL, explain why it does
not work in EL-top and what has to be done to modify it so that such a procedure
does solve unification in EL-top.

2.1 Description logic EL-top

We obtain EL-top from EL by removing> from the set of constructors and concept
terms. In the description logic EL-top, we define concept terms in the following
way.

2.1.1 Concept terms

Syntax

Let Ncon be a set of concept names and Nrole a set of role names. EL-top concept
terms are defined as follows:

• C is an EL-top concept term, for all C ∈ Ncon.

• If C,D are EL-top concept terms, then so is C u D.

• If C is an EL-top concept term and r ∈ Nrole, then ∃r.C is an EL-top concept
term.

We write ∃r1...rk.C as an abbreviation of ∃r1.∃r2...∃rk.C, for k ≥ 2.
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Semantics

The semantics of EL is given by the notion of an interpretation I = {DI, ·
I} con-

sisting of a nonempty domain DI and an interpretation function ·I which assigns
each concept term a subset ofDI and each role name a subset ofDI ×DI.

• AI ⊆ DI, for all A ∈ Ncon,

• rI ⊆ DI ×DI, for all r ∈ Nrole,

• (C u D)I = CI ∩ DI,

• (∃r.C)I = {x | ∃y : (x, y) ∈ rI ∧ y ∈ CI},

Since conjunction u is obviously associative and commutative, we omit parenthe-
sises and treat u as a constructor with flexible arity. In particular, this means that
we treat arguments of a conjunction as a multiset. Notice that then we can have
a conjunction with one argument only, but in EL-top we cannot have an empty
conjunction.
In EL-top, all concepts are satisfiable. The interesting problems are those concern-
ing subsumption and equivalence between concepts.

2.1.2 Subsumption and equivalence

Syntactically, we use the following formulas to express subsumption and equiva-
lence of concepts:

• C v D (C is subsumed by D), where C,D are EL-concept terms.

• C ≡ D (C is equivalent to D), where C,D are EL-concept terms.

• C @ D (C is strictly subsumed by D), where C,D are EL-concept terms, iff
C v D and C . D.

The semantics is given as follows:

• C v D iff CI ⊆ DI for all interpretations I,

• C ≡ D iff CI = DI for all interpretations I.

Syntax and semantics of EL-top are summed up in Table 1.1.

The differences between EL and EL-top w.r.t. syntax are illustrated in Table 1.2.
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Table 2.1: Syntax and semantics of EL-top
Name Syntax Semantics

concept name A AI ⊆ DI
role name r rI ⊆ DI ×DI

conjunction C u D (C u D)I = CI ∩ DI

existential restriction ∃r.C (∃r.C)I = {x | ∃y : (x, y) ∈ rI ∧ y ∈ CI}

subsumption C v D CI ⊆ DI

equivalence C ≡ D CI = DI

Table 2.2: Comparison of EL and EL-top
Name EL EL-top
> X ×

u X X
∃ X X

2.1.3 Atoms

An EL-top concept term is called an atom iff it is either a concept name or an exis-
tential restriction. It is easy to see that every EL-top concept term is a conjunction
of atoms.
Let At(C) be the set of atoms of an EL-top concept term C, then:

• If C is a concept name, then At(C) := {C},

• If C = ∃r.D, then At(C) := {C} ∪ At(D),

• If C = C1 uC2, then At(C) := At(C1) ∪ At(C2).

An atom is called flat atom if it is either a concept name or an existential restriction
∃r.D, where D is a concept name.

2.1.4 Reduction rules

The following reduction rules preserve equivalence of concepts in EL-top modulo
associativity and commutativity of u:

• A u A→ A, for concept names A ∈ Ncon,

• ∃r.C u ∃r.D→ ∃r.C, for all EL-top concept terms C,D with C v D.

An EL-top concept term D is called reduced if it is obtained by an exhaustive
application of the above rules. D is a reduced form of an EL-top concept term C
if D is obtained from C by applying the above rules and D is reduced.
Note that in EL we have an additional reduction rule: Au> → A. Since we do not
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have > in EL-top, the additional rule is never applicable and hence the following
theorem known for EL can be easily obtained as a consequence of Theorem 6.3.1
in [9].

Theorem 1. Let C,D be EL-top concept terms, and Ĉ, D̂ reduced forms of C,D,
respectively. Then C ≡ D iff Ĉ is identical to D̂ up to associativity and commuta-
tivity of u.

The following result is very useful in proving properties associated to subsump-
tion in EL-top.

Corollary 1. Let C = A1 u ...u Ak u∃r1.C1 u ....u∃rm.Cm and D = B1 u ...u Bl u

∃s1.D1 u .... u ∃sn.Dn, where A1, ..., Ak, B1, .., Bl are concept names. Then C v D
iff {B1, ..., Bl} ⊆ {A1, ..., Ak} and for every j, 1 ≤ j ≤ n, there exists an i, 1 ≤ i ≤ m,
such that ri = s j and Ci v D j.

2.2 Unification in EL-top

The notions of variables and substitutions for EL-top are similar to those for EL
[4].
We assume that the set of concept names is partitioned into two disjoint subsets Nv

and Nc, where:

• Nv: A set of concept variables.

• Nc: A set of concept constants.

Definition 1. (Substitutions)
A substitution σ is a mapping from Nv into the set of all EL-top concept terms.
This mapping is extended to concept terms as follows:

• σ(A) := A, for all A ∈ Nc,

• σ(C u D) := σ(C) u σ(D),

• σ(∃r.C) := ∃r.σ(C).

Definition 2. (EL-top unification problems)
An EL-top unification problem is of the form Γ = {C1 ≡ D1, ...,Cn ≡ Dn}, where
Ci,Di are EL-top concept terms, for all i, 1 ≤ i ≤ n. The substitution σ is a
unifier (solution) of Γ iff σ(Ci) ≡ σ(Di), for all i, 1 ≤ i ≤ n. Γ is called solvable or
unifiable iff there exists such a σ.

The following notions are similar to those used in the analysis of EL-unification in
[4].
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• Flat EL-top unification problems
An EL-top unification problem Γ is flat iff it consists of equations between
flat EL-top concept terms. Every EL-top unification problem Γ can be trans-
formed in polynomial time into an equivalent flat EL-top unification prob-
lem Γ′ in the sense that Γ is solvable iff Γ′ is solvable. So we can assume
that an EL-top unification problem is flat.

• Reduced (ground) unifiers
Let Γ = {C1 ≡

? D1, ...,Cn ≡
? Dn} be a flat EL-top unification problem. We

call the atoms of C1,D1, ...,Cn,Dn the atoms of Γ.
An atom C of Γ is called a non-variable of Γ iff C is either a concept constant
or an existential restriction. We use the name non-variable as an abbrevia-
tion for non-variable atom.
The unifier σ of Γ is called reduced (ground) iff, for all concept variables X
occurring in Γ, the EL-top concept term σ(X) is reduced (ground).

• The atoms of a ground unifier
Let σ be a ground unifier of Γ. Then At(σ) =

⋃
At(σ(X)), where X ranges

over all variables occurring in Γ, denotes the set of atoms of σ.

• Minimal ground unifiers
We now define the order >is on EL-top concept terms. Let C,D be EL-top
concept terms, then C >is D iff C @ D. The strict order >is is well-founded
and its multiset extension >m is also well-founded.
The following results known for EL still hold in EL-top.

Lemma 1. [4]
Let C,D,D′ be EL-top concept terms such that D is a reduced atom, D >is

D′, C is reduced and contains at least one occurrence of D modulo AC. If C′

is obtained from C by replacing all occurrences of D by D′, then C >is C′.

Let σ be a ground unifier of Γ and S (σ) the multiset of all EL-top concept
terms σ(X), where X ranges over all variables occurring in Γ. We say that
σ � θ iff S (σ) >m S (θ), where σ, θ are ground unifiers of Γ.
A ground unifier σ of Γ is called minimal iff there is no ground unifier θ of
Γ such that σ � θ. The following proposition shows that the decidability of
an EL-top unification problem can be reduced to one w.r.t. minimal reduced
ground unifiers.

Proposition 1. Let Γ be an EL-top unification problem. Then Γ is solvable
iff it has a minimal reduced ground unifier.

2.3 Unification in EL: previous results

Unification in EL is local in the sense that each minimal reduced ground unifier
of an EL-unification problem is constructed from elements present in the problem.
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This follows from the following lemma.

Lemma 2. Let Γ be a flat EL-unification problem and γ a minimal reduced ground
unifier of Γ. If X is a variable occurring in Γ, then γ(X) = > or there are non-
variables D1, ...,Dn of Γ such that γ(X) = γ(D1) u ... u γ(Dn).

Because of this lemma, we can define an NP-algorithm that decides the unifi-
cation problem in EL and computes all minimal reduced ground unifiers.
Given a flat EL-unification problem Γ, a substitution σ can be computed by the
algorithm as follows:

1. For each variable X occurring in Γ, guess a finite set S X of non-variables of
Γ,

2. We define depends on relation over the variables occurring in Γ: A variable
X directly depends on a variable Y if Y occurs in an element of S X . Let
depends on be the transitive closure of directly depends on. If there is a vari-
able that depends on itself, then the algorithm returns ”fail”. Otherwise, we
define a strict linear order > on the variables occurring in Γ such that X > Y
if X depends on Y .

3. By the assumption that > is strict, σ is computed as follows:

• If X is a minimal variabe w.r.t. >. Then σ(X) =
�

D∈S X
D if S X , ∅.

Otherwise, σ(X) = >.

• For all Y < X, we assume that σ(Y) is already defined. Then σ(X) =�
D∈S X

σ(D) if S X , ∅. Otherwise, σ(X) = >.

4. Test whether σ is a unifier of Γ or not. If σ is a unifier, then return σ.
Otherwise, return ”fail”.

The algorithm is sound and complete [4]. Moreover, it always terminates. Thus
it is a decision procedure for EL-unification. For the case of EL-top unification,
this algorithm does not work in general, because the substitution σ may assign >
to variables.
To obtain a similar algorithm for EL-top unification, we have to introduce some
minimal concept terms as a replacement for >. Such concept terms are defined
formally in the next chapter.
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Chapter 3

Locality of unification in EL-top

In this chapter, the main theorem is Theorem 2. It says that if a given flat EL-
top unification problem is solvable, then it has a minimal local unifier which is
defined formally later. Intuitively, we understand local unifier as one which can
be constructed from elements in the goal. In order to prove it, we have to show the
following:

• Each minimal reduced ground unifier is almost local, i.e., it may contains
some ”non-local” atoms.

• By a replacement of those atoms, we always obtain a minimal local unifier.

At the end of this chapter, we show that locality is not strong enough to obtain a
decision procedure for EL-top unification.

3.1 Notation

In the analysis of EL-top unification, we use the following notions.

Definition 3. (Set of constants Cons)
Let Γ be an EL-top unification problem. A set of constants Cons(Γ) is defined as
follows:

• If there exists a concept constant in Γ, then Cons(Γ) = {A | A is in Γ}.

• Otherwise, Cons(Γ) = {A}, where A is a new concept constant.

Now we introduce the notion of comparable atoms.

Definition 4. (Comparable atoms)
Let Γ be an EL-top unification problem, γ a reduced ground unifier of Γ and C an
atom of γ. We say that C is comparable to Γ iff there is a non-variable D of Γ such
that either C v γ(D) or γ(D) v C. Otherwise, C is called incomparable to Γ.

13



3.2 Subatoms and their properties

In EL, > is the maximal concept term w.r.t. v. We now define a set of subatoms
which are minimal elements w.r.t. inverse of subsumption order in EL-top.

Definition 5. (Subatoms)
Let C be an EL-top concept term. We say that C is a subatom iff:

• C is a concept name, or

• C = ∃r.C′, where C′ is a subatom.

Definition 6. (Set of subatoms of a concept term)
Let T be the set of all EL-top concept terms. For C,C1,C2 ∈ T, we define a function
S ubAt : T → 2T as follows :

• S ubAt(C) = {C}, where C is a concept name.

• S ubAt(∃r.C) = {∃r.M | M ∈ S ubAt(C)}.

• S ubAt(C1 uC2) = S ubAt(C1) ∪ S ubAt(C2).

We say that D ∈ S ubAt(C) is a subatom of C.

A subatom cannot be strictly subsumed by any concept terms. It is shown by
the following lemma.

Lemma 3. Let C is a subatom and B a concept term. Then C v B implies that
C ≡ B.

Proof. We prove the lemma by induction on the structure of C. We assume that
C v B.

• If C is a concept constant, then it is obvious that C v B implies that C ≡ B.

• If C = ∃r.C′ for some subatom C′, then by Corollary 1, C v B implies
that there is a concept term B′ such that B = ∃r.B′ and C′ v B′. Since C′

is a subatom, by induction we have C′ v B′ implies that C′ ≡ B′. Thus
C = ∃r.C′ ≡ ∃r.B′ = B.

�

The following lemma shows that subsumption of atoms implies an inclusion of
the sets of their subatoms.

Lemma 4. Let A, B be atoms. Then A v B implies that S ubAt(B) ⊆ S ubAt(A).

Proof. We prove the lemma by induction on the structure of A.

• A is a concept constant. Then A v B implies that A = B and thus we have
S ubAt(B) = S ubAt(A) which implies that S ubAt(B) ⊆ S ubAt(A).
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• A = ∃r.A′ for some concept term A′. Since B is an atom, A v B implies that
there exists a concept term B′ such that B = ∃r.B′ and A′ v B′. Let:

– A′ = A1 u ... u An,

– B′ = B1 u ... u Bm,

where A1, ..., An, B1, ..., Bm are atoms.

(i) Since A′ v B′, for each j, 1 ≤ j ≤ m, there is an i, 1 ≤ i ≤ n such that
Ai v B j. By induction, we have S ubAt(B j) ⊆ S ubAt(Ai).

(ii) On the other hand, by definition of SubAt (Definition 6), we have:

– S ubAt(B) = {∃r.D | D ∈
⋃

1≤ j≤m S ubAt(B j)} and
– S ubAt(A) = {∃r.D | D ∈

⋃
1≤i≤n S ubAt(Ai)}.

By (i) and (ii), we have S ubAt(B) ⊆ S ubAt(A).

�

The next lemma explains the relation between a concept term and its subatoms.
Moreover, the second claim is indeed a generalization of Lemma 4.

Lemma 5. Let T be an EL-top concept term. Then the following holds:

1. T v C, for all C ∈ S ubAt(T ).

2. If T v D for some EL-top concept term D, then S ubAt(D) ⊆ S ubAt(T ).

Proof. We first prove (1). From the definition, it is easy to see that for any EL-top
concept term T we have S ubAt(T ) , ∅.
Let C ∈ S ubAt(T ). We prove (1) by induction on the structure of T .

• If T = A, for a concept name A, then S ubAt(T ) = {A} and T = A = C
implies that T v C.

• If T = ∃r.A, for some EL-top concept term A, then by induction, we have
A v B for all B ∈ S ubAt(A). On the other hand, we have S ubAt(T ) = {∃r.B |
B ∈ S ubAt(A)}. Thus, ∃r.A v C.

• Assume that T = T1 u T2, with EL-top concept terms T1,T2. Since
S ubAt(T ) = S ubAt(T1)∪S ubAt(T2), C ∈ S ubAt(T ) implies that there exists
a k, 1 ≤ k ≤ 2 such that C ∈ S ubAt(Tk). By induction, we have Tk v C.
Thus, T = T1 u T2 v Tk v C.

We now prove (2). Assume that:

• T = T1 u ... u Tn,

• D = D1 u ... u Dm,

15



where T1, ...,Tn,D1, ...,Dm are atoms.

(i) Since T v D, for each j, 1 ≤ j ≤ m, there is an i, 1 ≤ i ≤ n such that Ti v D j.
By Lemma 4, we have S ubAt(D j) ⊆ S ubAt(Ti).

(ii) On the other hand, by definition of SubAt (Definition 6), we have:

• S ubAt(D) = {∃r.C | C ∈
⋃

1≤ j≤m S ubAt(D j)} and

• S ubAt(T ) = {∃r.C | C ∈
⋃

1≤i≤n S ubAt(Ti)}.

By (i) and (ii), we have S ubAt(D) ⊆ S ubAt(T ) which completes the proof of the
lemma. �

3.3 Operations on concept terms

An operation o on concept terms is a function which assigns a concept term to a
concept term. In order to obtain unifiers with desired properties, we introduce two
operations on concept terms:

• Replacement : Replace every occurrence of an atom in a concept term by
some concept term. In particular, by E[C/D], we denote the concept term
obtained from a concept term E by replacing all occurrences of C by D.

• Deletion : Remove every atom, which satisfies certain condition, from a
concept term.

3.3.1 Replacement

The following lemma says that with certain condition, replacing one subatom by
another in a concept term preserves subsumption.

Lemma 6. Let A be a concept term, C,C′, B subatoms such that C′ and B does not
contain C. Then A v B implies that A[C/C′] v B.

Proof. If A = C then since C is a subatom, A v B implies that A = B and thus
B = C which contradicts our assumption on B. Therefore, A , C. We now prove
the lemma by induction on the structure of A.

• A is a concept constant. Then A v B implies that A = B and thus A[C/C′] =

B[C/C′] = B implies that A[C/C′] v B.

• A = ∃r.A′ for some concept term A′. Since A , C, A[C/C′] = ∃r.A′[C/C
′].

Since A v B and B is a subatom, there is a subatom B′ such that A′ v B′ and
B = ∃r.B′. Since B does not contain C, neither does B′. By induction, we
have A′[C/C

′] v B′. Thus A[C/C′] = ∃r.A′[C/C
′] v ∃r.B′ = B.
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• A = A1 u A2 for some concept terms A1, A2. Since B is an atom, A v B
implies that either A1 v B or A2 v B. Since A , C, A[C/C′] = A[C/C′]

1 u

A[C/C′]
2 . Without loss of generality, we assume that A1 v B. By induction,

A[C/C′]
1 v B and thus A[C/C′] = A[C/C′]

1 u A[C/C′]
2 v B.

�

3.3.2 Deletion

Definition 7. (C-deletion)
Let C be a subatom and D a concept term. We define a C-deletion D−C of a concept
term D as follows:

• D−C is undefined if D = C,

• if D , C, then

– if D is a constant, then D−C = D.

– (∃r.D)−C = ∃r.D−C if D−C is defined. Otherwise, (∃r.D)−C is unde-
fined.

– (D1 u D2)−C = D−C
1 u D−C

2 if D−C
1 and D−C

2 are defined,

– (D1 u D2)−C = D−C
1 if D−C

1 is defined and D−C
2 is undefined,

– (D1 u D2)−C = D−C
2 if D−C

1 is undefined and D−C
2 is defined.

We say that D is C-defined w.r.t. C iff D−C is defined.
The following result shows that C-deletion preserves subsumption.

Lemma 7. Let C be a subatom and A, B atoms. If A v B and B−C is defined then
A−C is defined and A−C v B−C .

Proof. We prove the lemma by induction on the structure of B.

• If B is a constant, then since A is an atom, A v B implies that A = B. Thus
B−C is defined implies that A−C is defined. Moreover, we have A−C = B−C

which yields that A−C v B−C .

• If B = ∃r.B1 u ... u Bn, where B1, ..., Bn are atoms, then since A is an atom,
A v B implies that A = ∃r.A1 u ... u Am, where A1, ..., Am are atoms. On
the other hand, for each Bi, there is A j such that A j v Bi. Thus if B−C

i is
defined, then by induction we have A−C

j is defined and A−C
j v B−C

i . Since
B−C is defined, there exists an i, 1 ≤ i ≤ m such that B−C

i is defined and thus
A−C

j is defined. It yields that A−C is defined and A−C v B−C .

�

Intuitively, by applying C-deletion, we can obtain a bigger concept term w.r.t.
v. More precisely, we prove the following lemma.
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Lemma 8. Let A be a concept term and C a subatom occurring in A. Then A−C is
defined implies that A @ A−C .

Proof. We asssume that A−C is defined. Thus A , C. It is easy to see that A can
not be a concept constant. We prove the lemma by induction on the structure of A.

• A = ∃r.A′ for some concept term A′. Since A , C, we have A−C = ∃r.A′−C .
Since A−C is defined, A′−C is defined. Moreover, since A , C, C occurs in
A′. By induction we have A′ @ A′−C and thus A @ ∃r.A′−C = A−C .

• A = A1uA2 for some concept terms A1, A2. Since A , C and A−C is defined,
either A−C

1 or A−C
2 is defined. Since C is an atom, C occurs in either A1 or

A2. Without loss of generality, we assume that C occurs in A1.

– If A−C
1 is defined, then by induction we have A1 @ A−C

1 . On the other
hand, if C occurs in A2 and A−C

2 is defined, then by induction we have
A2 @ A−C

2 and thus A = A1 u A2 @ A−C
1 u A−C

2 = A−C . Otherwise, if
A−C

2 is not defined, then A−C = A−C
1 and thus A = A1 u A2 @ A−C

1 =

A−C . Moreover, if C does not occur in A2, then A−C
2 = A2 and thus

A = A1 u A2 @ A−C
1 u A2 = A−C .

– If A−C
1 is not defined, then A−C

2 is defined and A−C = A−C
2 . If C occurs in

A2, then by induction, we have A2 @ A−C
2 and thus A = A1uA2 @ A2 @

A−C
2 = A−C . Otherwise, A−C

2 = A2 and thus A = A1 u A2 @ A2 = A−C .

�

The following lemma can be shown in a similar way as for Lemma 8, but we
do not require C to occur in A.

Lemma 9. Let C be a subatom. Then for every concept term A, A−C is defined
implies that A v A−C .

3.4 Operations on substitutions

We extend an operation on concept terms to substitutions as follows.

Definition 8. (Operation on substitutions)
Let Γ be an EL-top unification prolem, γ a reduced ground unifier of Γ and o an
operation on concept terms. We denote γo the substitution obtained from γ by
applying o in such a way that γo(X) = (γ(X))o, where Co denotes the concept term
obtained from a concept term C by applying o to C.

3.4.1 Replacement

The following lemma shows that under the necessary conditions, the substitution
obtained from some reduced ground unifier by applying replacement to the unifier
is also a unifier.
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Lemma 10. Let Γ be a flat EL-top unification prolem, γ a reduced ground unifier
of Γ. Let C be an atom of γ such that there is no non-variable D of Γ with γ(D) ≡ C
and o any replacement of C on concept terms. If A v B implies that Ao v Bo, where
each A, B is either an atom of γ or equal to γ(D) for some non-variable D of Γ,
then γo is a unifier of Γ.

Proof. We consider an equation in Γ of the form L1u ...uLm ≡ R1u ...uRn, where
L1, ..., Lm and R1, ...,Rn are flat atoms. We have L = γ(L1 u ...u Lm) = A1 u ...u Aµ
and R = γ(R1 u ... u Rn) = B1 u ... u Bν, where each A1, ..., Aµ and B1, ..., Bν is a
reduced atom that is either an atom of γ or equal to γ(E) for a non-variable E of Γ.
Since γ is a unifier of Γ, we have L = R.
Since C is an atom, we have Lo := Ao

1 u ... u Ao
µ and Ro := Bo

1 u ... u Bo
ν.

By the first condition, for all i, j, 1 ≤ i ≤ µ, 1 ≤ j ≤ ν, we have Ai v B j implies
that

Ao
i v Bo

j . (3.1)

We now show that

γ(K)o = γo(K), for each atom K of Γ. (3.2)

Since Γ is flat, we have three cases:

1. If K = A for some concept constant A, then γ(K)o = A = γo(K).

2. If K = X for some variable X, then it is obvious that γ(K)o = γo(K).

3. Assume that K = ∃s.M, M is either a concept constant or a variable. By the
assumption on C, we have γ(K) ,AC C. That means C can only occur in
γ(M). By 1 and 2, we have (γ(M))o = γo(M). Thus, γ(K)o = ∃s.(γ(M))o =

∃s.(γo(M)) = γo(K).

By (3.2), we have γ(Li)o = γo(Li), for all i, 1 ≤ i ≤ m and γ(Ri)o = γo(Ri), for all
i, 1 ≤ i ≤ n. Thus we have Lo = (γ(L1 u ... u Lm))o = (γ(L1) u ... u γ(Lm))o =

γ(L1)o u ... u γ(Lm)o = γo(L1) u ... u γo(Lm) = γo(L1 u ... u Lm).
Similarly, we also have γo(R1 u ... u Rn) = Ro. To show that γo is a unifier of Γ, it
is enough to prove that Lo ≡ Ro.
Without loss of generality, we show only that Lo v Ro. By Corollary 1, it is enough
to show that for every j, 1 ≤ j ≤ ν, there exists an i, 1 ≤ i ≤ µ such that Ao

i v Bo
j .

Since L v R, we know that for every j, 1 ≤ j ≤ ν, there exists an i, 1 ≤ i ≤ µ such
that Ai v B j. On the other hand, by (3.1), Ai v B j implies that Ao

i v Bo
j . It shows

that Lo v Ro.
Thus, γo is a unifier of Γ. �

In the next lemma, we show that w.r.t. more specific conditions, assumptions
of Lemma 10 are satisfied and a replacement gives us a unifier.

Lemma 11. Let Γ be a flat EL-top unification problem and γ a reduced ground
unifier of Γ. Let C be an atom of γ, D̂ an EL-top concept term with C v D̂. We
assume that for every non-variable D of Γ and for every atom C′ of γ:
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(i) C v γ(D) implies that D̂ v γ(D),

(ii) C @ C′ implies that D̂ v C′,

Then γ[C/D̂] is a unifier of Γ.

Proof. First, by induction on the size of A, we show that A v B implies that

A[C/D̂] v B[C/D̂]. (3.3)

where each A, B is either an atom of γ or equal to γ(D) for some non-variable D of
Γ.

1. Assume that A =AC C, then A[C/D̂] = D̂.

(a) If B = γ(D) for some non-variable D of Γ, then by (i) C v γ(D) implies
that D̂ v B. Thus, A[C/D̂] v B[C/D̂].

(b) Assume B is an atom of γ. If B =AC C, then A[C/D̂] = B[C/D̂] implies that
A[C/D̂] v B[C/D̂]. Otherwise, by (ii) C @ B implies that D̂ v B. It yields
that A[C/D̂] v B[C/D̂].

On the other hand, since C v D̂, by Lemma 1, we have B v B[C/D̂]. Thus,
A v B implies that A[C/D̂] v B[C/D̂].

2. Now we consider A ,AC C. Since A is an atom, A is either a concept constant
or an existential restriction. If A is a concept constant, then by Lemma 3, A v
B implies that A = B and thus A[C/D̂] = B[C/D̂]. In particular, A[C/D̂] v B[C/D̂].
Otherwise, A = ∃s.E and C occurs (modulo AC) in E. Then A v B yields
that B = ∃s.F with E v F. Since E and F are conjunctions of atoms of γ,
we have E = E1 u ... u Ep and F = F1 u ... u Fq. Then E v F implies
that for each u, 1 ≤ u ≤ q, there exists v, 1 ≤ v ≤ p such that Ev v Fu. By
induction, we assume that Ev v Fu implies that E[C/D̂]

v v F[C/D̂]
u . Thus, for

each u, 1 ≤ u ≤ q, there exists v, 1 ≤ v ≤ p such that

E[C/D̂]
v v F[C/D̂]

u (3.4)

(a) If B ,AC C, then A[C/D̂] = ∃s.(E[C/D̂]
1 u ... u E[C/D̂]

p ) and B[C/D̂] =

∃s.(F[C/D̂]
1 u ... u F[C/D̂]

q ) along with (3.4) yield that A[C/D̂] v B[C/D̂].
(b) If B =AC C, then C cannot occur (modulo AC) in any of F1, ..., Fq

(otherwise, role depth of B is strictly larger than role depth of C). Thus,
we have B = ∃s.(F[C/D̂]

1 u ... u F[C/D̂]
q ). Moreover, by (3.4), we obtain

A[C/D̂] v B (3.5)

Since C v D̂, we have
B v B[C/D̂] (3.6)

By (3.5) and (3.6), we have A[C/D̂] v B[C/D̂].

By Lemma 10, γ[C/D̂] is a unifier of Γ. �
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3.4.2 Deletion

By applying deletion to unifiers, we can obtain C-defined substitutions. Note that
unifers obtained by applying deletion are always defined in EL, where an empty
conjunction is understood as >. However, in EL-top, we do not allow empty con-
junctions assigned to any variables. More formally, C-defined substitutions in EL-
top are defined as follows:

Definition 9. (C-defined substitutions)
Let Γ be a flat EL-top unification problem, C a subatom and γ a reduced ground
unifier of Γ. Let γ′ be a substitution obtained from γ such that for every variable X
occurring in Γ, γ′(X) = γ(X)−C . We say that γ′ is C-defined w.r.t. (γ,C) iff γ′(X)
is defined for all X occurring in Γ.

We now define dependency relation and the dependency order > among vari-
ables occurring in a flat EL-top unification problem Γ.

Definition 10. (Dependency relation and the dependency order >)
Let Γ be a flat EL-top unification problem and γ a reduced ground unifier of Γ. For
every variable X occurring in Γ, we define the set NV(X), where D ∈ NV(X) iff
γ(X) = γ(D) u B with a ground concept term B, or γ(X) = γ(D).
For two variables X,Y occurring in Γ, we say X directly depends on Y iff ∃r.Y ∈
NV(X) for some role name r. Moreover, X depends on Y iff either X directly de-
pends on Y or X directly depends on Z and Z depends on Y for some variable Z.
If there is no variable that depends on itself then we define the dependency order >
among variables occurring in Γ such that X > Y iff X depends on Y.

In fact, for a unifier γ and a subatom C, to check whether a C-defined substi-
tution γ′ w.r.t. (γ,C) is defined or not, it is enough to check if γ′ is defined for all
minimal variables w.r.t. the dependency order >.

Lemma 12. Let Γ be a flat EL-top unification problem, C a subatom and γ a
unifier of Γ. Then γ′ is C-defined w.r.t. (γ,C) iff γ′(X) is defined for every minimal
variable X w.r.t. the dependency order >.

Proof. We prove the lemma by showing two directions.

• ⇒: Since γ′ is C-defined, γ′(X) is defined for each variable X occurring in
Γ, in particular, for all minimal variables w.r.t. the dependency order >.

• ⇐: We assume that X is not minimal and γ′(Y) is defined for each variable
Y such that X > Y . Since X is not minimal, there exists at least one variable
Z such that X > Z and since γ′(Z) is defined, γ′(X) is also defined.

�

The following lemma shows a similar result to that for replacement on substi-
tutions (Lemma 10) namely that under certain conditions, the substitution obtained
from some unifier by applying replacement to the unifier is also a unifier.
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Lemma 13. Let Γ be a flat EL-top unification prolem, γ a reduced ground unifier
of Γ and o a C-deletion on concept terms w.r.t. a subatom C. If the following holds:

1. γ(L) is C-defined w.r.t. C, for each atom L of Γ,

2. γ(L)o = γo(L), for each atom L of Γ,

then γo is a unifier of Γ.

Proof. We consider an equation in Γ of the form L1u ...uLm ≡ R1u ...uRn, where
L1, ..., Lm and R1, ...,Rn are flat atoms. We have L = γ(L1 u ...u Lm) = A1 u ...u Aµ
and R = γ(R1 u ... u Rn) = B1 u ... u Bν, where each A1, ..., Aµ and B1, ..., Bν is
a reduced atom that is either an atom of γ or equal to γ(E) for a non-variable E
of Γ. Since γ is a unifier of Γ, we have L = R. By condition 1 and 2, for each i,
1 ≤ i ≤ m, we have

γ(Li)o is defined,

γ(Li)o = γo(Li) (3.7)

Similarly, for each i, 1 ≤ i ≤ n, we have

γ(Ri)o is defined,

γ(Ri)o = γo(Ri) (3.8)

We define Lo = (γ(L1 u ... u Lm))o and Ro = (γ(R1 u ... u Rn))o.
By definition of C-deletion (Definition 7), we have

(γ(L1 u ... u Lm))o = γ(L1)o u ... u γ(Lm)o (3.9)

By condition 2 and (3.7), we have

γ(L1)o u ... u γ(Lm)o = γo(L1) u ... u γo(Lm)

= γo(L1 u ... u Lm) (3.10)

By (3.9) and (3.10), we have

Lo = (γ(L1 u ... u Lm))o = γo(L1 u ... u Lm) (3.11)

Similarly, we have

Ro = (γ(R1 u ... u Rn))o = γo(R1 u ... u Rn) (3.12)

By (3.11) and (3.12), to show that γo is a unifier of Γ, it is enough to prove that
Lo ≡ Ro.
Without loss of generality, we show that Lo v Ro. By Corollary 1, it is enough to
show that for every j, 1 ≤ j ≤ ν such that Bo

j is defined, there exists an i, 1 ≤ i ≤ µ
such that Ao

i is defined and Ao
i v Bo

j . Since L v R, we know that for every j,
1 ≤ j ≤ ν, there exists an i, 1 ≤ i ≤ µ such that Ai v B j. On the other hand, by
Lemma 7, if Bo

j is defined, then Ai v B j implies that Ao
i is defined and Ao

i v Bo
j . It

shows that Lo v Ro.
Thus, γo is a unifier of Γ. �
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In the next lemma, we show that C-defined substitutions are unifers. Moreover,
under specific conditions, they are smaller than original ones.

Lemma 14. Let Γ be a flat EL-top unification problem, γ a reduced ground unifier
of Γ and C a subatom which is not a concept constant. If the following holds:

1. γ′ is C-defined w.r.t. (γ,C),

2. there is no non-variable D of Γ such that C = γ(D),

then γ′ is a unifier of Γ. Moreover, if C is an atom of γ then γ � γ′.

Proof. First, we prove the following:

γ(L) is C-defined w.r.t. C and (γ(L))−C = γ′(L) for each atom L of Γ. (3.13)

We have three cases:

1. L = A for some concept constant A. Then by condition 2, we have A , C.
Hence γ(L) is C-defined w.r.t. C and γ(L)−C = A = γ′(L).

2. L = X for some variable X. Then by condition 1, γ(X) is C-defined w.r.t. C.
Hence γ(L)−C = γ′(L).

3. L = ∃r.X, where X is either a concept constant or a variable.

• If X is a concept constant, then γ(L) = ∃r.X. Moreover, by condi-
tion 2, C does not occur in ∃r.X. Hence γ(L) is C-defined w.r.t. C and
γ(L)−C = ∃r.X = γ′(L).

• If X is a variable, then by condition 2, γ(L) , C. Moreover, by condi-
tion 1, γ(X) is C-defined w.r.t. C. Hence γ(X)−C = γ′(X). Thus γ(L)
is C-defined w.r.t. C and γ(L)−C = ∃r.γ(X)−C = ∃r.γ′(X) = γ′(∃r.X) =

γ′(L).

This completes the proof of (3.13).
By (3.13) and Lemma 13, γ′ is a unifier of Γ. On the other hand, for every variable
X occurring in Γ, by Lemma 9, we have γ(X) v γ′(X). Moreover, since C is an
atom of γ, there exists a variable Y occurring in Γ such that C occurs in γ(Y). By
Lemma 8, we have γ(Y) @ γ′(Y) and thus γ � γ′. �

3.5 Properties of minimal unifiers in EL-top

In the following lemma, we show that each minimal reduced ground unifier is
almost local.

Lemma 15. Let Γ be a flat EL-top unification problem and γ a minimal reduced
ground unifier of Γ. If C is an atom of γ, then one of the following holds:
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(i) There is a non-variable D of Γ such that C ≡ γ(D).

(ii) There is a non-variable D of Γ such that C ∈ S ubAt(γ(D)).

(iii) C is incomparable to Γ.

Proof. Let C be an atom of γ. Since γ is ground, C is either a concept constant or
an existential restriction. We assume that (i) does not hold for C, i.e., there is no
non-variable D of γ such that C ≡ γ(D). We need to show that either (ii) or (iii)
holds. Since C is an atom, we consider two cases:

1. C = A, where A is a concept constant. Since there is no non-variable D of Γ

such that C ≡ γ(D), then A does not appear in Γ. Hence C is incomparable
to Γ. Thus, (iii) holds.

2. C = ∃r.C1. We assume that (ii) does not hold for C, i.e., there is no non-
variable D of γ such that C ∈ S ubAt(γ(D)). We now show that (iii) holds by
contradiction.
Assume that C is comparable to Γ. Let Bγ the set of all atoms of γ such that
C @ B for all B ∈ Bγ and D̂ =

�
E∈S ubAt(C) E u

�
B∈Bγ B. We show that D̂

satisfies condition of Lemma 11 and hence γ[C/D̂] is a unifier of Γ smaller
than γ. There are two cases to consider depending on Bγ:

• Bγ , ∅. Then we have
C @

�
B∈Bγ

B. (3.14)

On the other hand, for each E ∈ S ubAt(C), by Lemma 5, we have
C v E. Moreover, if C = E, then C is a subatom and thus there is
no B such that C @ B. It yields that Bγ = ∅ which contradicts our
assumption on non-emptiness of Bγ. Thus we must have C @ E for all
E ∈ S ubAt(C). It yields that

C @
�

E∈S ubAt(C)

E. (3.15)

By (3.14) and (3.15), we have C @ D̂.

• Bγ = ∅. If C is a subatom, then since C is comparable, Bγ = ∅ and (i)
does not hold for C, there is a non-variable D of Γ such that γ(D) @ C
which implies that C ∈ S ubAt(γ(D)). It contradicts our assumption
that (ii) does not hold for C. Thus C is not a subatom which implies
that C @ D̂.

In all cases, we have C @ D̂ and then γ � γ[C/D̂]. Moreover, we have the following:

• If C v γ(D) for some non-variable D of Γ, then since (i) does not hold for
C, we have C @ γ(D) and thus there is an atom B ∈ Bγ such that B = γ(D),
which implies that D̂ v γ(D).
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• If C @ B for some atom B of γ, then B ∈ Bγ. Thus, D̂ v B.

By Lemma 11, γ[C/D̂] is a unifier of Γ. But then it contradicts our assumption on
minimality of γ. Thus, C is incomparable to Γ, i.e., (iii) holds. �

In order to get rid of incomparable atoms in a minimal unifier, we show that
under specific conditions, each incomparable atom can be replaced by a concept
constant such that the new substitution obtained by the replacement is also a unifier.

Lemma 16. Let Γ be a flat EL-top unification problem and γ a minimal reduced
ground unifier of Γ. Let C be an atom of γ and D̂ an EL-top concept term. If the
following holds:

(i) D̂ = A for some concept constant A,

(ii) C a B for all atom B of γ,

(iii) C is incomparable to Γ.

Then γ[C/D̂] is a unifier of Γ.

Proof. First, we show that A v B implies that A[C/D̂] v B[C/D̂], where each A, B is
either an atom of γ or equal to γ(D) for some non-variable D of Γ. We consider the
following cases:

1. Assume that A =AC C, then A[C/D̂] = D̂.
If B is an atom of γ, then we have C a B which together with C v B implies
that C = B. Thus A[C/D̂] = D̂ = B[C/D̂] which implies that A[C/D̂] v B[C/D̂].
Otherwise, B = γ(D) for some non-variable D of Γ which contradicts our
assumption on C.

2. We consider A ,AC C. Since A is an atom, A is either a concept constant or
an existential restriction. If A is a concept constant, then A v B implies that
A = B and thus A[C/D̂] = B[C/D̂]. In particular, A[C/D̂] v B[C/D̂]. Otherwise,
A = ∃s.E and C occurs (modulo AC) in E. Then A v B yields that B = ∃s.F
with E v F. Since E and F are conjunctions of atoms of γ, we have E = E1u

...uEp and F = F1u ...uFq. Then E v F implies that for each u, 1 ≤ u ≤ q,
there exists v, 1 ≤ v ≤ p such that Ev v Fu. By induction, we assume that
Ev v Fu implies that E[C/D̂]

v v F[C/D̂]
u . Thus, for each u, 1 ≤ u ≤ q, there

exists v, 1 ≤ v ≤ p such that

E[C/D̂]
v v F[C/D̂]

u . (3.16)

(a) If B ,AC C, then A[C/D̂] = ∃s.(E[C/D̂]
1 u ... u E[C/D̂]

p ) and B[C/D̂] =

∃s.(F[C/D̂]
1 u ... u F[C/D̂]

q ) along with (3.16) yield A[C/D̂] v B[C/D̂].
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(b) If B =AC C, then C can not occur (modulo AC) in any of F1, ..., Fq

(otherwise, role depth of B is strictly larger than role depth of C). Thus,
we have B = ∃s.(F[C/D̂]

1 u ... u F[C/D̂]
q ). By (3.16), we have A[C/D̂] v B.

Since γ is a minimal reduced ground unifier, by Lemma 15, there are
three cases:

i. If A = γ(D) for some non-variable D of Γ, then γ(D) v C which
implies that C is comparable to Γ. It contradicts (iii).

ii. If A is a subatom, then A v C implies that A = C and thus A[C/D̂] =

D̂ which implies that A v B[C/D̂].
iii. If A is incomparable to Γ, then by (ii), A v C implies that A = C.

Again, we have A[C/D̂] v B[C/D̂].

By Lemma 10, γ[C/D̂] is a unifier of Γ. �

3.6 Local unifiers

Local unifers have a structure that can be completely described by the atoms of the
unification problem.

Definition 11. (Local unifiers)
Let Γ be a solvable flat EL-top unification problem. A reduced ground unifier γ of
Γ is a local unifier iff for every variable X occurring in Γ, there are n ≥ 0,m ≥
0, l ≥ 0, n + m + l ≥ 1 such that γ(X) = A1 u ...uAn uγ(∃r1.X1)u ...uγ(∃rm.Xm)u
Bm+1 u ... u Bm+l, where:

• {A1, ..., An} ⊆ Cons(Γ),

• ∃r1.X1, ...,∃rm.Xm,∃rm+1.Xm+1, ...,∃rm+l.Xm+l are non-variables of Γ,

• For all i, 1 ≤ i ≤ l, Bm+i ∈ S ubAt(γ(∃rm+i.Xm+i)) and Bm+i @ γ(D) for each
non-variable D of Γ.

We denote:

• S 1(X) = {A1, ..., An},

• S 2(X) = {∃r1.X1, ...,∃rm.Xm},

• S 3(X) = {∃rm+1.Xm+1, ...,∃rm+l.Xm+l}, where S 3(X) is a multiset.

• S ubγ(X) = {Bm+1, ..., Bm+l}.

The sets S 1(X), S 2(X) and the multiset S 3(X) are called local sets of X w.r.t. γ. We
denote S 3(X) the underlying set of elements of S 3(X).

In the following lemma, we show that, w.r.t. a local unifier γ of Γ, if a subatom
B which is not a concept constant, has the property that there exists a non-variable
D of Γ such that γ(D) v B, then all subterms of B have the same property.
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Lemma 17. Let Γ be a solvable flat EL-top unification problem and γ a local
unifier of Γ. Then γ(D) v B implies that there exists a non-variable D′ of Γ such
that γ(D′) v B′, where B is a subatom such that B = ∃r.B′ and D is a non-variable
of Γ.

Proof. Since γ(D) v B = ∃r.B′, we have D = ∃r.X. If X is a concept constant,
then B′ = X and thus D′ = X. Hence the lemma is satisfied. Otherwise, X is a
variable.
Let:

• S 2(X) = {∃r1.X1, ...,∃rm.Xm} be a local set for X w.r.t. γ and

• S ubγ(X) = {B1, ..., Bl}.

where B1, ..., Bl are subatoms and ∃r1.X1, ...,∃rm.Xm are non-variables of Γ. Thus
γ(D) v B implies that γ(X) v B′. Since B is a subatom, so is B′. Thus γ(X) v B′

yields that either there is a non-variable D′ ∈ S 2(X) such that γ(D′) v B′, or there
is an i, 1 ≤ i ≤ l such that Bi v B′. If γ(D′) v B′ then it is obvious that the
claim is true. Otherwise, since Bi is a subatom, Bi v B′ implies that Bi = B′. By
definition of S 2(X) (Definition 11), there is a non-variable ∃ri.Xi of Γ such that
Bi ∈ S ubAt(γ(∃ri.Xi)). Since Bi = B′, we have B′ ∈ S ubAt(γ(∃ri.Xi)) and thus we
take D′ = ∃ri.Xi. �

In the next lemma, we show that each atom of a local unifier has local property,
i.e., it can be constructed from elements in the goal.

Lemma 18. Let Γ be a solvable flat EL-top unification problem and γ a local
unifier of Γ. Then for every atom C of γ, the following holds:

• C is a concept constant, or

• C ≡ γ(D) for some non-variable D of Γ, or

• C ∈ S ubAt(γ(D)) for some non-variable D of Γ.

Proof. It is enough to prove that for every variable X occurring in Γ, C ∈ At(γ(X))
implies that either C is a concept constant, or C ≡ γ(D), or C ∈ S ubAt(γ(D)),
where D is a non-variable of Γ.
Let X be an arbitrary variable occurring in Γ and C ∈ At(γ(X)).
Let:

• S 1(X) and S 2(X) be local sets for X w.r.t. γ, where S 2(X) = {∃r1.X1, ...,∃rm.Xm}.

• S ubγ(X) = {B1, ..., Bl}.

where B1, ..., Bl are subatoms and ∃r1.X1, ...,∃rm.Xm are non-variables of Γ.
We prove the lemma by induction on the order of X w.r.t. the dependency order >
(Definition 10).
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• If X is a minimal variable, then for all i, 1 ≤ i ≤ m, Xi is a concept constant.
We consider three cases:

1. If C ∈ S 1(X), then C is a concept constant.

2. If C ∈ S 2(X), then since S 2(X) does not contain variables, C is either a
concept constant or C = γ(D) for some D ∈ S 2(X).

3. If C ∈ At(Bi) for some i, 1 ≤ i ≤ l, then by Lemma 17, there exists a
non-variable D of γ such that γ(D) v C and thus C ∈ S ubAt(γ(D)).

• If X is not a minimal variable, then we assume that for every variable Y with
X > Y , C ∈ At(γ(Y)) implies that C satisfies the lemma. Since C ∈ At(γ(X)),
either C is a concept constant, C ∈ At(γ(D)) for some non-variable D ∈
S 2(X) or C ∈ At(Bi) for some i, 1 ≤ i ≤ l.
By 1 and 3, it is enough to consider the case that C ∈ At(γ(D)). Let D = ∃r.Z.
If Z is a concept constant, then either C = γ(D) or C is a concept constant.
Otherwise, Z is a variable and X > Z. If C = γ(D) then C satisfies the
lemma. Otherwise, C ∈ At(γ(Z)). Since X > Z, by induction, C satisfies the
lemma.

�

Similarly to the previous result known for EL, the following holds for EL-top
unification.

Theorem 2. Let Γ be a solvable flat EL-top unification problem. Then there is a
minimal local unifier of Γ.

Proof. Since Γ is solvable, there exists a minimal reduced ground unifier γ of Γ.
By Lemma 15, we know that for every atom C of γ, either:

(i) there is a non-variable D of Γ such that C ≡ γ(D), or

(ii) there is a non-variable D of Γ such that C ∈ S ubAt(D), or

(iii) C is incomparable to Γ.

We now consider an atom C of γ which is incomparable to Γ and prove that we can
obtain a new unifier of Γ by replacing C by some concept constant in Cons(Γ). We
assume that C is maximal w.r.t. v.
First, we show that C is a subatom.

1. C = A with A is a concept constant. Then it is obviously that C is a subatom.

2. If C = ∃r.C1, then let S ubAt(C) = {B1, ..., Bn} and D̂ =
�n

k=1 Bk. We assume
that n > 1. Thus for all 1 ≤ k ≤ n, we have:

• C @ Bk

• C @ D̂
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• D̂ v Bk

It is obvious that γ � γ[C/D̂]. On the other hand, we have:

• There is no non-variable D of Γ such that C v γ(D), since C is incom-
parable to Γ.

• If C @ B for some atom B of γ, then since C is maximal w.r.t. v,
B is comparable to Γ. On the other hand, since C is incomparable
to Γ, B must be a subatom. Moreover, since C @ B, by Lemma 5,
we have S ubAt(B) ⊆ S ubAt(C) = {B1, ..., Bn}. Since B is a subatom,
S ubAt(B) = {B}. Thus, B ∈ {B1, ..., Bn} implies that D̂ v B.

By Lemma 11, γ[C/D̂] is a unifier of Γ. Moreover, we have γ � γ[C/D̂]. It
contradicts our assumption on minimality of γ. Thus we must have n = 1,
i.e., C is a subatom.

Second, let D̂ = A for some A ∈ Cons(Γ). Then by Lemma 16, γ[C/D̂] is a unifier
of Γ.
Now we show that replacing incomparable atoms terminates. We denote:

• Cγ: the number of concept constants occurring in γ,

• V: the set of all variables occurring in Γ,

• Vγ: the set of each variable X ∈ V such that γ(X) = B1 u ... u Bl, where
B1, ..., Bl are subatoms.

It is obvious that
Cγ ≥ Cγ[C/D̂] (3.17)

We assume that there exists a C-defined substitution γ′ w.r.t. (γ,C). Then since
C is an atom of γ, by Lemma 14, γ′ is a unifier of Γ and γ � γ′. It contradicts
the minimality property of γ. By Lemma 12, there must exist at least one minimal
variable Y ∈ V such that γ′(Y) is not defined. It is easy to see that Y ∈ Vγ.
On the other hand, since γ′(Y) is not defined and Y ∈ Vγ, C occurs in every B,

C occurs in every B ∈ S ubAt(γ(Y)). (3.18)

We denote:

• S γ(X) =
∑

B∈S ubAt(γ(X)) |B|, where |B| is the role depth of B,

• S γ = Cγ +
∑

X∈Vγ S γ(X),

• Tγ = |V | − |Vγ|.
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It is easy to see that Tγ ≥ 0, Tγ[C/D̂] ≥ 0. On the other hand, X ∈ Vγ implies that
X ∈ Vγ[C/D̂] and thus we have:

Vγ ⊆ Vγ[C/D̂] (3.19)

We consider two cases:

1. If Vγ = Vγ[C/D̂] , then Tγ = Tγ[C/D̂] . Moreover, we have the following observa-
tion:

(a) S γ(X) ≥ S γ[C/D̂](X), for each variable X ∈ Vγ.

(b) If C is not a concept constant, then by (3.18), we have S γ(Y) >

S γ[C/D̂](Y).

(c) If C is a concept constant, then C does not occur in Γ. Thus Cγ >

Cγ[C/D̂] .

By (1a), (1b), (1c) and (3.17), we have:

S γ > S γ[C/D̂] (3.20)

2. If Vγ ⊂ Vγ[C/D̂] , then Tγ > Tγ[C/D̂] .

Now we denote Pγ = (Tγ, S γ) and thus Pγ > Pγ[C/D̂] . Assume that γ[C/D̂] is not

minimal. Let γ1 be a minimal reduced ground unifier of Γ such that γ[C/D̂] � γ1.
Since γ[C/D̂] � γ1, for every variable X ∈ Vγ[C/D̂] , γ[C/D̂](X) v γ1(X) implies that
X ∈ Vγ1 and thus we have:

Vγ[C/D̂] ⊆ Vγ1 (3.21)

• If Vγ = Vγ1 , then by (3.19) and (3.21) we have Vγ = Vγ[C/D̂] = Vγ1 . Thus
we have Tγ = Tγ1 . Moreover, it is obvious that Cγ[C/D̂] ≥ Cγ1 . On the
other hand, for each variable X ∈ Vγ, we have X ∈ Vγ1 and together with
γ[C/D̂](X) v γ1(X) it yields that S γ[C/D̂](X) ≥ S γ1(X). Thus we have:

S γ[C/D̂] ≥ S γ1 (3.22)

By (3.20) and (3.22), we have S γ > S γ1 .

• If Vγ ⊂ Vγ1 , then Tγ > Tγ1 .

Thus Pγ > Pγ1 . By using the same construction, we obtain a chain of minimal
unifiers γ0 = γ, γ1, ... such that Pγi > Pγi+1 , for all i ≥ 0.
Since the order > over Pγi , i ≥ 0 is a well-founded order, there exists an n large
enough such that γn does not contain any incomparable atoms. By definition of
local unifiers (Definition 11), γn is local. Hence together with minimality of γn,
this completes the proof of the lemma. �
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3.7 An EL-top unification problem with infinitely many
minimal local unifiers

In the following example, we show that a flat EL-top unification problem Γ can
have infinitely many local unifiers. Hence locality is not strong enough to obtain a
decision procedure for EL-top unification.

Example 1. We consider the flat EL-top unification problem Γ := {X ≡ Y u A,Y u
∃r.X ≡ ∃r.X,Z u ∃r.X ≡ ∃r.X}.
For every n ≥ 1, we construct a substitution γn without top such that:

• γn(X) = A u ∃r.A u ... u ∃rn.A,

• γn(Y) = ∃r.A u ... u ∃rn.A,

• γn(Z) = ∃rn+1.A

Proposition 2. γn is a local unifier of Γ, for all n ≥ 1.

Proof. Since Z u ∃r.X ≡ ∃r.X, we have

∃r.X v Z (3.23)

Since Y u ∃r.X ≡ ∃r.X, we have

∃r.X v Y (3.24)

Let D1 = ∃r.X, D2 = A, then D1,D2 are non-variables in Γ. It is easy to see that
γn is a unifier of Γ. Notice that S ubAt(γ(D1)) = {∃r.A, ...,∃rn+1.A}. Thus, for all i,
1 ≤ i ≤ n + 1, we write Bi := ∃ri.A. Thus for all n ≥ 1, we have

γn(Y) =
�

1≤i≤n

Bi

γn(Z) = Bn+1 (3.25)

We prove, by contradiction, that γn is minimal for all n ≥ 1. Assume that there is
a k, 1 ≤ k ≤ n such that γk is not minimal. Then there exists a unifier γ′k such that
γk � γ

′
k. Thus we have γk(Z) v γ′k(Z). Since γk(Z) ∈ S ubAt(γk(D1)), γk(Z) v γ′k(Z)

implies that γk(Z) = γ′k(Z). By (3.25) we have

γ′k(Z) = Bk+1 (3.26)

On the other hand, by (3.23) and (3.26), we have

γ′k(∃r.X) v γ′k(Z) = Bk+1 (3.27)

By (3.27) and Lemma 5, we have

S ubAt(Bk+1) ⊆ S ubAt(γ′k(∃r.X)) (3.28)
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By (3.28), since S ubAt(Bk+1) = {∃r.Bk}, we have

Bk ∈ S ubAt(γ′k(X)) (3.29)

Since γk(Y) = γ′k(Y) implies that γk(X) = γ′k(X), then if γk(Y) = γ′k(Y), we have
γk = γ′k which contradicts γk � γ

′
k. Thus we must have

γk(Y) @ γ′k(Y) (3.30)

We now show that in fact Bk < S ubAt(γ′k(X)) which contradicts (3.29).
Let:

γ′k(Y) = Bk1 u ... u Bkp , (3.31)

where Bk1 , ..., Bkp are reduced and pairwise incomparable w.r.t. subsumption and
p ≥ 1. By (3.25), we have

γk(Y) =
�

1≤i≤k

Bi (3.32)

By (3.31), (3.32) and Corollary 1, (3.30) implies that for every u, 1 ≤ u ≤ p, there
exists an v, 1 ≤ v ≤ k such that Bv v Bku .
Since Bv is a subatom, by Lemma 3, Bv v Bku implies that Bv = Bku .
Thus we have

{Bk1 , ..., Bkp} ⊂ {B1, ..., Bk},

S ubAt(γ′k(Y)) = {Bk1 , ..., Bkp}. (3.33)

Since ∃r.XuY ≡ ∃r.X, we have ∃r.X v Y . Hence γ′k(∃r.X) v γ′k(Y) which together
with Lemma 5 yields that

S ubAt(γ′k(Y)) ⊆ S ubAt(γ′k(∃r.X)) (3.34)

By (3.33), there exists an i, 1 ≤ i ≤ k such that

Bi < S ubAt(γ′k(Y)) (3.35)

Since γ′k(X) = γ′k(Y u A), we have

S ubAt(γ′k(X)) = S ubAt(γ′k(Y)) ∪ {A} (3.36)

Thus by (3.36), for each j, 1 ≤ j ≤ k:

B j < S ubAt(γ′k(Y)) iff B j < S ubAt(γ′k(X)). (3.37)

By (3.34), for each j, 1 ≤ j ≤ k:

B j < S ubAt(γ′k(X)) implies that B j+1 < S ubAt(γ′k(Y)) (3.38)

By (3.37) and (3.38), for each j, 1 ≤ j ≤ k:

B j < S ubAt(γ′k(X)) implies that Bt < S ubAt(γ′k(X)), for each t, j ≤ t ≤ k. (3.39)

32



By (3.35) and (3.37), we have

Bi < S ubAt(γ′k(X)) (3.40)

By (3.40), (3.39) and 1 ≤ i ≤ k, we have

Bk < S ubAt(γ′k(X)) (3.41)

Hence (3.41) contradicts (3.29). Thus γn is minimal for all n ≥ 1. By (3.25), γn is
local and thus γn is a minimal local unifier, for all n ≥ 1. �
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Chapter 4

Decision procedure for EL-top
unification

4.1 Decision problem

For a given flat EL-top unification problem Γ, we want to decide whether Γ is
solvable or not. As we mentioned in the previous section, the notion of local uni-
fiers is not strong enough to justify immediately a ”guess and then check” decision
procedure, since we have seen an example with infinitely many local unifiers. To
deal with this difficulty, we need to show how to reduce the unification problem
even further to the problem of existence of ”small local unifiers”. We first intro-
duce some notations, then we define small local unifiers formally and present the
decision procedure for EL-top unification.

4.1.1 R-trees

For each variable, we create an R-tree. The nodes are labeled with variables or
concept names. Relation between two variables connected by an edge in such a
tree is a generalization of the dependency relation introduced in Section 3.4.2.

Definition 12. (R-trees)
Let Γ be a flat EL-top unification problem, γ a local unifier of Γ and Var(Γ) the
set of all variables occurring in Γ. We denote ΣΓ = Cons(Γ) ∪ Var(Γ) and ω =

{0, 1, ..., |ΣΓ| − 1}.
Let NΓ be the set of all role names occurring in Γ, X ∈ Var(Γ) a variable with local
sets S 1(X), S 2(X) and the underlying set S 3(X) defined as follows:

• S 1(X) = {A1, ..., An},

• S 2(X) = {∃rn+1.Xn+1, ...,∃rn+m.Xn+m},

• S 3(X) = {∃rn+m+1.Xn+m+1, ...,∃rn+m+l.Xn+m+l}.

The arity function νγ : ΣΓ → N is defined as follows:
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• For every concept constant A, νγ(A) = 0.

• For every variable X, νγ(X) = n iff |S 1(X) ∪ S 2(X) ∪ S 3(X)| = n.

An R-tree RX for a variable X and γ is a tuple {EX ,VX}, where VX , EX are partial
functions and are defined as follows:

• VX : ω∗ → ΣΓ.

– ε ∈ dom(VX),

– For all u ∈ ω∗ and i ∈ ω, ui ∈ dom(VX) iff u ∈ dom(VX) and i <
νγ(VX(u)). A leaf of RX is a node u ∈ dom(VX) with νγ(VX(u)) = 0.

– VX(ε) = X,

– VX(ui) = Ai ∈ S 1(VX(u)) if i < |S 1(VX(u))|,

– VX(ui) = Xi ∈ S 2(VX(u))∪ S 3(VX(u)) if |S 1(VX(u))| ≤ i < |S 1(VX(u))∪
S 2(VX(u)) ∪ S 3(VX(u))|.

• EX : ω+ → NΓ ∪ {#}.

– For all u ∈ ω+, u ∈ dom(EX) iff u ∈ dom(VX),

– EX(ui) = ri if |S 1(VX(u))| ≤ i < |S 1(VX(u)) ∪ S 2(VX(u)) ∪ S 3(VX(u))|,

– EX(ui) = # if i < |S 1(VX(u))|.

A path on an R-tree is defined as follows.

Definition 13. (R-paths)
A path d on an R-tree R is called an R-path iff it ends up with a leaf.

By d(r1, ..., rk, A), we denote an R-path d on an R-tree which follows r1, ..., rk

edges in this order and ends with a leaf A, where r1, ..., rk are the edge labels on
d. We say that d represents a subatom B = ∃r1...rld .A, where ld = k if rk , # and
ld = k − 1 if rk = #.

Example 2. We continue with Example 1 and consider the local unifier γ, where:

• γ(X) = A u ∃r.A u ∃rr.A

• γ(Y) = ∃r.A u ∃rr.A

• γ(Z) = ∃rrr.A.

Regarding γ, we have {∃r.A,∃rr.A,∃rrr.A} ⊆ S ubAt(γ(X)). Thus S 1, S 2 and
S 3 for each variable are defined as follows:

• S 1(X) = {A}, S 2(X) = ∅, S 3(X) = {∃r.X},

• S 1(Y) = ∅, S 2(Y) = ∅, S 3(Y) = {∃r.X},

• S 1(Z) = ∅, S 2(Z) = ∅, S 3(Z) = {∃r.X}.
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R-trees RX , RY and RZ w.r.t. γ are illustrated in the graph 4.1:

Figure 4.1: Example of R-trees

RX: X
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r

r

Each subatom of γ(X) is represented by an R-path on RX . This is shown by the
following lemma.

Lemma 19. Let Γ be a flat unification problem and γ a local unifier of Γ. Then for
every variable X occurring in Γ, B ∈ S ubAt(γ(X)) if there exists a k, k ≥ 1 and an
R-path d(r1, ..., rk, A) on RX such that ∃r1...rld .A = B.

Proof. We prove this lemma by induction on the depth of B.

• B is a concept constant. Then B ∈ S ubAt(γ(X)) implies that B ∈ S 1(X).
Thus the R-path d(#, B) satisfies the lemma.

• B = ∃r.B′, where B′ is a subatom. Then B ∈ S ubAt(γ(X)) implies that B ∈
S ubAt(γ(∃r.Y)), where ∃r.Y ∈ S 2(X)∪S 3(X). If Y is a concept constant, then
the R-path d(r, B′) satisfies the lemma. Otherwise, Y is a variable. Moreover,
since B ∈ S ubAt(γ(∃r.Y)), we have B′ ∈ S ubAt(γ(Y)). Thus by induction,
there is an R-path d′(r1, ..., rk, A) on RY such that B′ = ∃r1...rld′ .A. Thus the
R-path d(r, r1, ..., rk, A) on RX satisfies the lemma.

�

4.1.2 Small local unifiers

Given a flat EL-top unification problem Γ, we show that the solvability of Γ can
be reduced to the problem of the existence of a small local unifier γ which has
|S ubγ(X)| bounded for all variables X occurring in Γ.
The following lemma shows that under a specific condition, a subsitution obtained
by replacing one subatom by another in a local unifier is also a unifier. In this way,
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we can reduce number of subatoms and obtain a small local unifier which will be
shown in Lemma 22.

Lemma 20. Let Γ be a flat EL-top unification problem and γ a local unifier of Γ.
Let C be an atom of γ and D̂ an EL-top concept term. If the following holds:

1. C, D̂ are subatoms and D̂ does not contain C,

2. For every non-variable D of Γ, γ(D) v C implies that γ(D) v D̂.

Then γ[C/D̂] is a unifier of Γ.

Proof. First, we show that A v B implies that A[C/D̂] v B[C/D̂], where each A, B is
either an atom of γ or equal to γ(D) for some non-variable D of Γ. We consider the
following cases:

1. Assume that A =AC C, then A[C/D̂] = D̂. Since C is a subatom, C v B
implies that C = B. Thus we have A[C/D̂] v B[C/D̂].

2. We consider A ,AC C. Since A is an atom, A is either a concept constant or
an existential restriction. If A is a concept constant, then A v B implies that
A = B and thus A[C/D̂] = B[C/D̂]. In particular, A[C/D̂] v B[C/D̂]. Otherwise,
A = ∃s.E and C occurs (modulo AC) in E. Then A v B yields that B = ∃s.F
with E v F. Since E and F are conjunctions of atoms of γ, we have E = E1u

...uEp and F = F1u ...uFq. Then E v F implies that for each u, 1 ≤ u ≤ q,
there exists v, 1 ≤ v ≤ p such that Ev v Fu. By induction, we assume that
Ev v Fu implies that E[C/D̂]

v v F[C/D̂]
u . Thus, for each u, 1 ≤ u ≤ q, there

exists v, 1 ≤ v ≤ p such that

E[C/D̂]
v v F[C/D̂]

u . (4.1)

• If B ,AC C, then A[C/D̂] = ∃s.(E[C/D̂]
1 u ... u E[C/D̂]

p ) and B[C/D̂] =

∃s.(F[C/D̂]
1 u ... u F[C/D̂]

q ) along with (4.1) yield A[C/D̂] v B[C/D̂].

• If B =AC C, then C can not occur (modulo AC) in any of F1, ..., Fq

(otherwise, role depth of B is strictly larger than role depth of C). Thus,
we have B = ∃s.(F[C/D̂]

1 u ...uF[C/D̂]
q ). By (4.1), we obtain A[C/D̂] v B.

By Lemma 18, A is either a subatom, or equal to γ(D) for some non-
variable D of Γ. If A = γ(D), then by condition (2), A v C implies that
A v D̂. By condition 1 and Lemma 6, we have A[C/D̂] v D̂ = B[C/D̂].
Otherwise, A is a subatom and thus A v B implies that A = B. It yields
that A[C/D̂] v B[C/D̂].

By Lemma 10, γ[C/D̂] is a unifier of Γ. �

In the following lemma, we show that under certain conditions, specific sub-
sumptions are preserved w.r.t. the substitution γ′ which is obtained from γ by ap-
plying replacement. We use this lemma to show that reducing number of subatoms
preserves locality in Lemma 22.
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Lemma 21. Let Γ be a solvable flat EL-top unification problem, γ a local unifier
of Γ, C and C′ subatoms such that:

1. C is not a concept constant,

2. C′ does not contain C,

3. for every non-variable D of Γ, γ(D) v C implies that γ(D) v C′.

Then for every subatom B which is an atom of γ and non-variable D of Γ, γ(D) v B
implies that γ[C/C′](D) v B[C/C′].

Proof. Let D be a non-variable of Γ such that γ(D) v B. We have to show that

γ[C/C′](D) v B[C/C′] (4.2)

First, we consider the following cases:

(a) If B does not contain C, then by Lemma 6, we have

γ[C/C′](D) v B = B[C/C′] (4.3)

Hence by (4.3), (4.2) is satisfied.

(b) If B = C, then B[C/C′] = C′. By condition 3, we have γ(D) v C′. Since C′

does not contain C, by Lemma 6, it yields that

γ[C/C′](D) v C′ (4.4)

and thus we have
γ[C/C′](D) v B[C/C′] (4.5)

Hence by (4.5), (4.2) is satisfied.

Second, we consider the case that B contains C. Thus the role depth of B is larger
or equal to that of C. We prove the lemma by induction on the role depth of B.

• If the role depth of B is equal to that of C, then since B contains C, we have
B = C and thus by case (b), (4.2) is satisfied.

• If the role depth of B greater than that of C, then we assume that B = ∃r.B′

for some subatom B′. It is obvious that B , C. Since B contains C and
B , C, then B′ contains C. Thus we have

B[C/C′] = ∃r.B′[C/C
′] (4.6)

If D = A for some concept constant A, then γ(D) v B implies that A = B
which is impossible. Hence D is not a concept constant. Let D = ∃r.X for
some non-variable ∃r.X of Γ, then γ(D) v B implies that γ(X) v B′. If B′ is
a concept constant, then since B′ contains C, we must have B′ = C. Thus C
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is a concept constant which contradicts our assumption on C (1). Hence B′

is not a concept constant.
Let S 1(X), S 2(X) be local sets of X w.r.t. γ and S ubγ(X) = {B1, ..., Bl}.
By Corollary 1, γ(X) v B′ implies that either there exists a non-variable
D′ ∈ S 1(X) ∪ S 2(X) such that γ(D′) v B′, or Bi v B′ for some i, 1 ≤ i ≤ l.
However, if D′ ∈ S 1(X), i.e., D′ is a concept constant, then since B′ is a
subatom, by Lemma 3, γ(D′) = D′ v B′ implies that D′ = B′. It means that
B′ is a concept constant which is a contradiction. Hence D′ ∈ S 2(X). We
consider two cases:

(i) If γ(D′) v B′, then by induction, we have

γ[C/C′](D′) v B′[C/C
′] (4.7)

Since D′ ∈ S 2(X), we have

γ[C/C′](X) v γ[C/C′](D′) (4.8)

By (4.7) and (4.8), we have

γ[C/C′](X) v B′[C/C
′] (4.9)

By (4.9), it yields that

γ[C/C′](D) = γ[C/C′](∃r.X) = ∃r.γ[C/C′](X) v ∃r.B′[C/C
′] (4.10)

By (4.6) and (4.10), we have

γ[C/C′](D) v B[C/C′] (4.11)

Hence by (4.11), (4.2) is satisfied.

(ii) If Bi v B′ for some i, 1 ≤ i ≤ l, then since Bi is a subatom, by Lemma 3,
we have

Bi = B′ (4.12)

On the other hand, since Bi ∈ S ubγ(X), we have

γ[C/C′](X) v B[C/C′]
i (4.13)

By (4.12) and (4.13), we have

γ[C/C′](X) v B′[C/C
′] (4.14)

which yields that

γ[C/C′](D) = ∃r.γ[C/C′](X) v ∃r.B′[C/C
′] (4.15)

By (4.6) and (4.15), we have

γ[C/C′](D) v B[C/C′] (4.16)

Hence by (4.16), (4.2) is satisfied.
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In all cases, (4.2) is satisfied.

�

The following result shows that if a local unifier has too many subatoms which
are also atoms of the unifier, then we can construct a new one which has fewer
subatoms.

Lemma 22. Let Γ be a solvable flat EL-top unification problem and S the set of
all non-variables occurring in Γ. Then there exists a local unifier γ′ such that for
every variable X in Γ, |S ubγ′(X)| ≤ 2|S |.

Proof. Since Γ is solvable, by Theorem 2, there exists a local unifier γ of Γ. Let X
be a variable occurring in Γ and S ubγ(X) = {C1, ...,Cl}.
For every i, 1 ≤ i ≤ l, let D(Ci) = {D ∈ S | Ci ∈ S ubAt(γ(D))}. If l ≤ 2|S | then we
take γ′ = γ which satisfies the lemma. Otherwise, we assume that l > 2|S |. Thus
there exists i, j, 1 ≤ i < j ≤ l such that

D(Ci) = D(C j) (4.17)

Without loss of generality, we assume that the role depth of Ci is larger or equal to
that of C j. Then it is obvious that

1. C j does not contain Ci,

2. Ci is not a concept constant.

By Lemma 20, γ[Ci/C j] is a unifier of Γ.
Moreover, by (4.17), for every non variable D of Γ, γ(D) v Ci implies that γ(D) v
C j. Hence γ satisfies Lemma 21. Now we show that γ[Ci/C j] is a local unifier.
Let B be an atom of γ[Ci/C j]. We need to show that one of the following holds.

(i) B is a concept constant,

(ii) B = γ[Ci/C j](D) for some non-variale D of Γ,

(iii) B ∈ S ubAt(γ[Ci/C j](D)) for some non-variale D of Γ.

Since B is an atom of γ[Ci/C j], there is an atom C of γ such that C[Ci/C j] = B. Since
γ is a local unifier of Γ, there are only three cases:

(a) C is a concept constant. Then since C[Ci/C j] = B, B is a concept constant.
Hence (i) holds.

(b) C = γ(D) for some non-variable D of Γ. Then C[Ci/C j] = γ[Ci/C j](D). Hence
B = γ[Ci/C j](D). It means that (ii) holds.

(c) C ∈ S ubAt(γ(D)). Then we have γ(D) v C. Since γ satisfies Lemma 21,
γ(D) v C implies that γ[Ci/C j](D) v C[Ci/C j]. On the other hand, since C is a
subatom, so is C[Ci/C j]. It yields that B ∈ S ubAt(γ[Ci/C j](D)). Hence (iii) holds.
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Thus γ[Ci/C j] is a local unifier.
Moreover, since γ is a local unifier of Γ, for every variable Y occurring in Γ, we
know that γ(Y) = A1 u ... u An u γ(D1) u ... u γ(Dm) u B1 u ... u Bl, where:

• {A1, ..., An} ⊆ Cons(Γ),

• {D1, ...,Dm} ⊆ S and {D1, ...,Dm} ∩Cons(Γ) = ∅,

• S ubγ(X) = {B1, ..., Bl}.

Since C j is not a concept constant, we have

γ[Ci/C j](Y) = A1 u ... u An u
�

1≤k≤m

γ[Ci/C j](Dk) u B[Ci/C j]
1 u ... u B[Ci/C j]

l (4.18)

By (4.18), we have

S ub
γ

[Ci/C j](Y) ⊆ {B[Ci/C j]
1 , ..., B[Ci/C j]

l } (4.19)

which implies that
|S ub

γ
[Ci/C j](Y)| ≤ l = |S ubγ(Y)| (4.20)

On the other hand, since {Ci,C j} ⊆ S ubγ(X), by (4.20), we have

|S ub
γ

[Ci/C j](X)| < |S ubγ(X)| (4.21)

Let:

1. γ0 = γ,

2. γ1 = γ[Ci/C j],

3. S γ =
∑

X∈V |S ubγ(X)|, where V is the set of all variables occurring in Γ.

By (4.20) and (4.21), we have
S γ0 > S γ1 (4.22)

By using the same construction, we obtain a chain of local unifiers γ0, γ1, ... such
that S γi > S γi+1 , for all i ≥ 0.
Since the order > over S γi , i ≥ 0 is a well-founded order, there exists an n ≥ 1 large
enough such that γ′ = γn satisfies the lemma. �

The unifier γ′ of Γ which satisfies Lemma 22 is called small local unifier. We
now define it formally as follows.

Definition 14. (Small local unifiers)
Let Γ be a flat EL-top unification problem, γ a local unifier of Γ and S the set of
all non-variables occurring in Γ. Then γ is called small iff for every variable X
occurring in Γ, we have |S ubγ(X)| ≤ 2|S |.
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By Theorem 2 and Lemma 22, we have the following theorem.

Theorem 3. Let Γ be a flat EL-top unification problem. Then Γ is solvable iff it
has a small local unifier.

Next, we define a dependency path such that along the path, each variable
depends on previous variables w.r.t. dependency relation (Definition 10).

Definition 15. (Dependency path)
Let Γ be a flat EL-top unification problem, γ a local unifier of Γ. For each variable
X occurring in Γ, a dependency path starting from X is a chain X > Y1 > ... > Yn−1,
where Y1, ...,Yn−1 are variables occurring in Γ and > is the dependency order. We
also say that the length of this path is n.

For each variable X occurring in Γ, we define Nγ(X) as the length of the longest
dependency path starting from X.
For a small local unifier, we can restrict size of each solution and height of sub-
atoms used in the solution. We do it in the next two lemmas.

Lemma 23. Let Γ be a flat unification problem, γ a small local unifier of Γ, S the
set of all non-variables and V the set of all variables in Γ. Let v = |V | and m = |S |.
Then for every variable X in Γ we have |S ubAt(γ(X))| < mv(1 + 2m+1).

Proof. Let X be a variable occurring in Γ, n = |Cons(Γ)| and l = 2m. First, we
show that

|S ubAt(γ(X))| ≤ mu + (n + l)(mu−1 + mu−2 + ... + 1), (4.23)

where u = Nγ(X). It is obvious that S 2(X) ⊆ S and thus we have

|S 2(X)| ≤ |S | = m (4.24)

Moreover, since S 1(X) ⊆ Cons(Γ), we have

|S 1(X)| ≤ |Cons(Γ)| = n (4.25)

We prove (4.23) by induction on the order of X w.r.t. the dependency order >.

• If X is minimal, then we have u = 1 and

|S ubAt(γ(X))| = |S 1(X)| + |S 2(X)| + |S ubγ(X)| (4.26)

By Lemma 22, we have
|S ubγ(X)| ≤ l (4.27)

Thus by (4.26), (4.24), (4.25) and (4.27), we have

|S ubAt(γ(X))| ≤ n + m + l (4.28)

Since u = 1, by (4.28), (4.23) is satisfied.
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• If X is not minimal, then for each variable Y occurring in S 2(X), we have

Nγ(Y) = nY ≤ u − 1 (4.29)

On the other hand, by induction we have

|S ubAt(γ(Y))| ≤ mnY + (n + l)(mnY−1 + mnY−2 + ... + 1) (4.30)

By (4.29) and (4.30), we have

|S ubAt(γ(Y))| ≤ mu−1 + (n + l)(mu−2 + mu−3 + ... + 1) (4.31)

By (4.25), (4.31) and (4.27), we have

|S ubAt(γ(X))| ≤ |S 1(X)| +
∑

Y∈S 2(X) |S ubAt(γ(Y))| + |S ubγ(X)| ≤

n + m × (mu−1 + (n + l)(mu−2 + mu−3 + ... + 1)) + l =

mu + (n + l)(mu−1 + mu−2 + ... + 1).

This completes the proof of (3.14).
Since u ≤ v, we have

|S ubAt(γ(X))| ≤ mv + (n + l) × mv = mv(1 + n + l) (4.32)

On the other hand, we have
n ≤ m < 2m (4.33)

By (4.32) and (4.33), we have

|S ubAt(γ(X))| < mv(1 + 2m + 2m) = mv(1 + 2m+1)

�

In the next lemma, we show that w.r.t. a small local unifier γ, an R-path that
represents a subatom of γ(X) is of at most exponential size.

Lemma 24. Let Γ be a flat EL-top unification problem, S the set of all non-
variables, V the set of all variables in Γ and γ a small local unifier of Γ. We denote
v = |V |, m = |S |. Then for every variable X occurring in Γ, if B ∈ S ubAt(γ(X))
and there exists an R-path d(r1, ..., rk, A) on RX such that ∃r1...rld .A = B, then
k ≤ v × mv(1 + 2m+1).

Proof. Let X be an arbitrary variable occurring in Γ. We assume that B ∈

S ubAt(γ(X)). By Lemma 19, there exists a k, k ≥ 1, and an R-path d(r1, ..., rk, A)
on RX such that ∃r1...rld .A = B. We assume that k > v × mv(1 + 2m+1). Then
there exists a variable Y such that Y occurs at least mv(1 + 2m+1) times on the
R-path. Let p1 be the position of the root and py1 , ..., pyn the positions where Y
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occurs with 1 ≤ y1 < y2 < ... < yn and n = mv(1 + 2m+1). Thus for each i,
1 ≤ i ≤ n, di = d(ryi , ryi+1, ..., rk, A) is an R-path on RY ending with a concept
constant A. Since B ∈ S ubAt(γ(X)), each di represents a subatom Bi such that
Bi ∈ S ubAt(γ(Y)). Thus |S ubAt(γ(Y))| ≥ n = mv(1 + 2m+1) which contradicts
Lemma 23. It means that k ≤ v × mv(1 + 2m+1). �

4.2 Algorithm

For the sake of better readability, we divide our decision algorithm into two parts:
the proccedure guess subatom and the main algorithm that uses it.
Let Γ be a flat EL-top unification problem, S the set of all non-variables and V the
set of all variables occurring in Γ. Let m = |S | and v = |V |.
First, in order to compute a subatom B such that B ∈ S ubAt(∃r.Z), we have a non-
deterministic procedure guess subatom that takes a non-variable ∃r.Z and outputs
a subatom B ∈ S ubAt(γ(∃r.Z)):
Procedure: guess subatom(∃r.Z, length)

• Input: A non-variable ∃r.Z and the length of the path.

• Output: A subatom B ∈ γ(∃r.Z) or NULL.

1. If length ≥ v × mv(1 + 2m+1), then return NULL.

2. If Z is a concept constant, then return B = ∃r.Z.

3. If Z is a variable, then guess an element E ∈ S 1(Z) ∪ S 2(Z) ∪ S 3(Z).

• If E = ∃r′.Y then let B′ = guess subatom(∃r′.Y, length + 1).

– if B′ = NULL then return NULL,
– if B′ , NULL, then return B = ∃r.B′.

• If E , ∃r′.Y, then return B = ∃r.E.

Now we describe our main non-deterministic algorithm to compute a unifier.
Algorithm (EL-top unification procedure)

1. For each variable X, guess three local sets S 1(X), S 2(X) and S 3(X) such that
S 1(X) ∪ S 2(X) ∪ S 3(X) , ∅.

2. Check whether there is a variable X occurring in Γ that depends on itself
(Definition 10). If it is the case, then return ”FAIL”. Otherwise, > is a strict
dependency order on the variables occurring in Γ.

3. Guessing subatoms: For each variable X occurring in Γ, we compute the
set of subatoms S ubσ(X) as follows.

• Let S 3(X) = {∃r1.Z1, ...,∃rl.Zl} and initialize S ubσ(X) := ∅.
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• For each i, 1 ≤ i ≤ l, we compute Bi = guess subatom(∃ri.Zi, 0).

– if Bi = NULL then return ”FAIL”,
– if Bi , NULL, then let S ubσ(X) := S ubσ(X) ∪ {Bi}.

4. Computing a substitution : For each variable X occurring in Γ, we define
σ(X) as follows.

(a) If X is the least variable w.r.t. the dependency order >, then S 2(X) does
not contain any variables. We define

σ(X) =
�

D∈S 1(X)∪S 2(X)

D u
�

Bi∈S ubσ(X)

Bi

(b) We assume that σ(Y) is defined for all variables Y < X. Then S 2(X)
only contains variables Y for which σ(Y) is defined. Thus we define

σ(X) =
�

A∈S 1(X)

A u
�

∃r.Y∈S 2(X)

∃r.σ(Y) u
�

Bi∈S ubσ(X)

Bi

5. Test whether the substitution σ is a unifier of Γ. If it is the case, then return
σ. Otherwise, return ”FAIL”.

The algorithm is sound since it returns only unifiers of Γ. Moreover, it always
terminates. Thus, to show the correctness of the algorithm, it is enough to show
that it is complete.

Lemma 25. Let Γ be a flat EL-top unification problem. If Γ is solvable, then there
is a way of guessing in Step 1 subsets S 1(X), S 2(X), S 3(X) and in Step 4 subatoms
such that the depends on relation is acyclic and the substitution σ computed in
Step 4 is a unifier of Γ.

Proof. If Γ is solvable, then by Theorem 3, there is a small local unifier γ of Γ.
Thus for every variable X occurring in Γ, we have

γ(X) = A1 u ... u An u γ(∃r1.X1) u ... u γ(∃rm.Xm) u Bm+1 u ... u Bm+l,

where:

• A1, ..., An are concept constants in Cons(Γ),

• ∃r1.X1, ...,∃rm.Xm,∃rm+1.Xm+1, ...,∃rm+l.Xm+l are non-variables of Γ,

• Bm+i @ γ(D), and Bm+i ∈ S ubAt(γ(∃rm+i.Xm+i)), for all i, 1 ≤ i ≤ l and for
each non-variable D of Γ.

Let S ubγ(X) = {Bm+1, ..., Bm+l}. We define:

• S 1(X) = {A1, ..., An},
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• S 2(X) = {∃r1.X1, ...,∃rm.Xm},

• S 3(X) = {∃rm+1.Xm+1, ...,∃rm+l.Xm+l} ,

First, since γ is a local unifier of Γ, for each variable X occurring in Γ, we have
S 1(X) ∪ S 2(X) ∪ S 3(X) , ∅. Hence Step 1 is successful.
Second, we show that the depends on relation defined on the variables occurring
in Γ is acyclic. We assume that there is a variable X occurring in Γ that depends on
itself. Thus there is a chain X = Y0 > Y1... > Ys = X, where s ≥ 1 and Y0, ...,Ys

are variables occurring in Γ. For each i, 0 ≤ i ≤ s − 1, if Yi depends on Yi+1
then there is a role name ri+1 such that ∃ri+1.Yi+1 ∈ S 2(Yi). Because of the way
S 2(Yi) is defined, we have γ(Yi) v γ(∃ri+1.Yi+1) = ∃ri+1.γ(Yi+1). Thus we have
γ(X) v ∃r1...rs.γ(X) which is impossible since s ≥ 1. Thus Step 2 is successful.
Third, since γ is a small local unifier of Γ, for each variable X occurring in Γ, B ∈
S ubγ(X) implies that the role depth B is smaller or equal to v×mv(1 + 2m+1). Thus
B can be computed by guess subatom. Hence S ubσ(X) = S ubγ(X) is computed
successfully.
Now we show that the substitution σ computed by the algorithm w.r.t. S 1(X),
S 2(X), S ubσ(X) is a unifier of Γ.

• If X is the least variable w.r.t. the dependency order >, then S 1(X) ∪ S 2(X)
does not contain any variables which implies that γ(D) = D, for all D ∈
S 1(X) ∪ S 2(X). By definition of S 1(X), S 2(X), S 3(X), S ubσ(X) (Defini-
tion 11) and of σ, we have

σ(X) =
�

1≤i≤n

Ai u
�

1≤i≤m

∃ri.Xi u
�

1≤i≤l

Bm+i

=
�

1≤i≤n

Ai u
�

1≤i≤m

γ(∃ri.Xi) u
�

1≤i≤l

Bm+i = γ(X)

• We assume that σ(Y) = γ(Y) holds for all variables Y < X. Then S 2(X)
contains only variables which are smaller than X. By induction, we have
σ(D) = γ(D), for all D ∈ S 2(X). By definition of S 1(X), S 2(X), S 3(X),
S ubσ(X) (Definition 11) and of σ, we have

σ(X) =
�

1≤i≤n

Ai u
�

1≤i≤m

σ(∃ri.Xi) u
�

1≤i≤l

Bm+i

=
�

1≤i≤n

Ai u
�

1≤i≤m

γ(∃ri.Xi) u
�

1≤i≤l

Bm+i = γ(X)

�

The following theorem is an immediate consequence of Lemma 3 and Lemma
25.

Theorem 4. Let Γ be a solvable flat EL-top unification problem. Then the algo-
rithm computes all small local unifiers of Γ.
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4.3 Complexity

In order to justify the complexity of the algorithm, we need to evaluate the size of
the substitution computed in Step 4.
First, we define the size of a concept term.

Definition 16. (Size of a concept term)
Let C be a concept term. We define the size S (C) of C is defined as follows:

• if C is a concept constant, then S (C) = 1,

• if C = ∃r.C′, then S (C) = 1 + S (C′),

• if C = C1 uC2, then S (C) = S (C1) + S (C2).

In the following lemma, we show that the size of a small local unifier has an
exponential upper bound.

Lemma 26. Let Γ be a flat EL-unification problem and γ a small local unifier
of Γ. We assume that S is the set of all non-variables of Γ and V is the set of
all variables occurring in Γ. Then for every variable X occurring in Γ, we have
S (γ(X)) < mv[3m + 2mvmv(1 + 2m+1)], where m = |S | and v = |V |.

Proof. We prove the lemma in two steps.
Let:

• S 1(X), S 2(X) be local sets of X w.r.t. γ,

• S ubγ(X) = {B1, ..., Bl},

• Nγ(X) = u, where u is the length of the longest dependency path starting
from X,

• n = |Cons(Γ)|.

First, we show the following:

S (γ(X)) < m(1 + mu−1 +

u−1∑
i=1

mi) + [n + 2mvmv(1 + 2m+1)]
u−1∑
i=0

mi (4.34)

We prove (4.34) by induction on the order of X w.r.t. the dependency order >.

1. If X is the least variable, then S 2(X) does not contain any variables and u = 1.
On the other hand, since S 2(X) does not contain any variables, we have

S (γ(X)) = |S 1(X)| + 2|S 2(X)| +
l∑

i=1

S (Bi) (4.35)
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Moreover, since S 1(X) ⊆ Cons(Γ) and S 2(X) ⊆ S , we have

|S 1(X)| ≤ n and |S 2(X)| ≤ |S | = m. (4.36)

By Lemma 24, for all i, 1 ≤ i ≤ l, we have

S (Bi) < vmv(1 + 2m+1) (4.37)

Since γ is a small local unifier of Γ, we also have

l ≤ 2m (4.38)

Thus by (4.35), (4.36), (4.37) and (4.38), we have

S (γ(X)) < n + 2m + 2mvmv(1 + 2m+1).

Since u = 1, we have

n + 2m + 2mvmv(1 + 2m+1) =

m(1 + mu−1 +
∑u−1

i=1 mi) + [n + 2mvmv(1 + 2m+1)]
∑u−1

i=0 mi.

Hence (4.34) is satisfied.

2. Assume that for every variable Y < X, we have

S (γ(Y)) < m(1 + mnY−1 +

nY−1∑
i=1

mi) + [n + 2mvmv(1 + 2m+1)]
nY−1∑
i=0

mi (4.39)

where nY = Nγ(Y).
On the other hand, since Y < X, we have:

nY ≤ u − 1 (4.40)

We assume that S 2(X) = {∃r1.Y1, ...,∃rp.Yp}. By (4.36), (4.38), (4.39) and
(4.40), we have

S (γ(X)) = |S 1(X)| +
∑p

i=1(1 + S (γ(Yi)) +
∑l

i=1 S (Bi) <

n + m[1 + (m.(1 + mu−2 +
∑u−2

i=1 mi) + (n + 2mvmv(1 + 2m+1))
∑u−2

i=1 mi] +

2mvmv(1 + 2m+1) =

m(1 + mu−1 +
∑u−1

i=1 mi) + [n + 2mvmv(1 + 2m+1)]
∑u−1

i=0 mi.

Thus (4.34) is satisfied. This completes the proof of (4.34).
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Second, since u ≤ v, we have
u−1∑
i=0

mi ≤ mv (4.41)

Moreover, we also have

mu−1 ≤ mv−1 ≤ mv and n ≤ m. (4.42)

By (4.34), (4.41) and (4.42), we have

S (γ(X)) < m × (mv + mv) + (m + 2mvmv(1 + 2m+1)) × mv =

mv[3m + 2mvmv(1 + 2m+1)]. �

Theorem 5. EL-top unification is in NExpTime.

Proof. Termination in NExpTime is a consequence of the following facts:

• Guessing three sets S 1(X), S 2(X) and S 3(X) for each variable X occurring in
Γ can be done within NExpTime, since:

– guessing S 1(X), S 2(X) can be done within NP,

– guessing S 3(X) can be done within NExpTime, because |S 3(X)| is ex-
ponential in the size of Γ.

• Computing the depends on relation and checking it for acyclicity (Step 2) is
polynomial in the size of Γ.

• Computing subatoms for a variable X can de done in NExpTime.

• We now show that checking in Step 4 can be done within ExpTime.
Let S be the set of all non-variables of Γ and V the set of all variables occur-
ring in Γ. Let m = |S | and v = |V |.
We consider an arbitrary equivalence C ≡ D ∈ Γ. Assume that C = C1u ...u

Ck, where C1, ...,Ck are flat atoms of Γ. By Lemma 26, for each i, 1 ≤ i ≤ k,
we have

S (γ(Ci)) < 1 + mv[3m + 2mvmv(1 + 2m+1)] (4.43)

By (4.43), we have

S (γ(C)) < k(1 + mv[3m + 2mvmv(1 + 2m+1)]) (4.44)

It is obvious that
k ≤ m + v (4.45)

By (4.44) and (4.45), we have

S (γ(C)) < (m + v)(1 + mv[3m + 2mvmv(1 + 2m+1)]) (4.46)
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This inequality also holds for S (γ(D)). Thus size of each equivalence in Γ

under γ is of at most exponential in the size of Γ and subsumption checking
in the algorithm can be done within exponential time in the size of Γ. Overall,
checking in Step 4 can be done within ExpTime.

�
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Chapter 5

EL-top unification is
PSPACE-hard

In this chapter, we show that EL-top unification is PSPACE-hard. We do this by
reducing the Finite State Automata Intersection problem which has been shown
to be PSPACE-complete by Kozen [8]. This result is interesting because though
EL-top is less expressive than EL, EL-top unification is more difficult than it is
for EL which has been shown to be NP-complete [4].

5.1 Finite State Automata Intersection problem

We first introduce the general notion of a non-deterministic finite state automaton,
and then we define a deterministic finite state automaton as a special case of the
non-deterministic one.

Definition 17. (A non-deterministic finite state automaton)
A non-deterministic finite state automaton A = {Q,Σ, I,∆, F} consists of

• a finite set of states Q,

• a finite alphabet Σ,

• a set of initial states I ⊆ Q,

• a set of final states F ⊆ Q.

A path in the automaton is a sequence q0a1q1a2...anqn, where (qi−1, ai, qi) ∈ ∆

for 1 ≤ i ≤ n. We will often abbreviate such a path as q0
a1...an
−→A qn. The path is

successful if q0 ∈ I and qn ∈ F.
We say that ω is accepted by A iff there is a successful path q0

ω
−→A qn on A. We

will use the notion of a word accepted by an automaton A starting from a state q,
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i.e., ω is accepted by A(q) iff there is a path q
ω
−→A q′ on A such that q′ ∈ F.

The automaton A accepts the following language:

L(A) = {ω ∈ Σ∗ | q0
ω
−→A qn is a successful path in A}. (5.1)

A deterministic finite state (DFS) automaton is a non-deterministic finite state au-
tomaton with additional properties. It is defined formally as follows.

Definition 18. (A deterministic finite state automaton)
An automaton A = {Q,Σ, I,∆, F} is called deterministic iff:

• |I| = 1, i.e., I = {q0},

• ∆ is functional, i.e., for every q ∈ Q and every a ∈ Σ there is exactly one
q′ ∈ Q such that (q, a, q′) ∈ ∆.

We can assume that for every q ∈ Q, there is a successful path on A starting
from q. Otherwise, q can be safely removed from Q. Moreover, we can also assume
that A has exactly one final state. Since we are going to deal with DFS automata,
from now on we define A as a tuple {Q,Σ,∆, q0, q f }, where q0 is the initial state
and q f is the final state.
The Finite State Automata Intersection problem is defined as follows.

Definition 19. (The Finite State Automata Intersection problem)
Let A1, ..., An be DFS automata, where Ai = {Qi,Σ,∆i, qi

o, q
i
f }. Decide whether the

set L(A1) ∩ · · · ∩ L(An) is empty or not.

5.2 Reduction of the Finite State Automata Intersection
problem to EL-top unification problem

In order to reduce a given Finite State Automata Intersection problem to EL-top
unification problem Γ, we first define the signature of Γ. Let A1, ..., An be DFS
automata.
The sets Nc, Nv and Nr are defined as follows:

• Nc = {A},

• Nv = {Xi
j | q

i
j ∈ Qi, 1 ≤ i ≤ n} ∪ {Y},

• Nr = {a | a ∈ Σ}

Second, the set of subsumptions Γi for each i, 1 ≤ i ≤ n is defined as follows:

1. Initialize Γi := ∅,

2. For each qi
j ∈ Qi:

• If qi
j = qi

f , then Γi := Γi ∪ {A u
�

(qi
j,at ,qi

k)∈∆i ∃at.Xi
k v Xi

j}.
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• If qi
j , qi

f , then Γi := Γi ∪ {
�

(qi
j,at ,qi

k)∈∆i ∃at.Xi
k v Xi

j}.

3. Let Γi := Γi ∪ {Xi
0 v Y}.

Third, let Γ =
⋃

1≤i≤n Γi.
Since C v D is equivalent to C u D ≡ C, we can consider Γ as a flat EL-top
unification problem.
In the remaining part of this section, we prove that Γ defined in this way is unifiable
in EL-top iff the intersection of languages L(A1), . . . , L(An) is not empty. First, we
prove the following lemma.

Lemma 27. If γ is a small local unifier of Γ, then for all qi
j ∈ Qi, 1 ≤ i ≤ n,

∃ω.A ∈ S ubAt(γ(Xi
j)) implies that ω is accepted by Ai(qi

j), where ω ∈ Σ∗.

Proof. We prove this lemma by induction on the length of ω.

1. If |ω| = 0, then A ∈ S ubAt(γ(Xi
j)). If qi

j = qi
f , then obviously ω = ε is

accepted by Ai(qi
j). Otherwise, we have

�
(qi

j,at ,qi
k)∈∆i ∃at.Xi

k v Xi
j ∈ Γ, and

thus by Lemma 4, A ∈ S ubAt(γ(
�

(qi
j,at ,qi

k)∈∆i ∃at.Xi
k)) which is impossible.

2. We assume that ω = vω′, where |ω′| ≥ 0 and v ∈ Σ. Consider the following
cases:

• If qi
j = qi

f , then we have A u
�

(qi
j,at ,qi

k)∈∆i ∃at.Xi
k v Xi

j. By

Lemma 4, ∃ω.A ∈ S ubAt(γ(Xi
j)) implies that ∃ω.A ∈ S ubAt(A u

γ(
�

(qi
j,at ,qi

k)∈∆i ∃at.Xi
k)). Since |ω| > 0, ∃ω.A , A. Thus there is a tran-

sition (qi
j, at, qi

k) ∈ ∆i such that v = at and ∃ω.A ∈ S ubAt(γ(∃at.Xi
k)).

Hence ω′ ∈ S ubAt(γ(Xi
k)). By induction, ω′ is accepted by Ai(qi

k) and
thus ω is accepted by Ai(qi

j).

• If qi
j , qi

f , then we have
�

(qi
j,at ,qi

k)∈∆i ∃at.Xi
k v Xi

j. By Lemma 4,

∃ω.A ∈ S ubAt(γ(Xi
j)) implies that ∃ω.A ∈ S ubAt(γ(

�
(qi

j,at ,qi
k)∈∆i ∃at.Xi

k).

Thus there is a transition (qi
j, at, qi

k) ∈ ∆i such that v = at and
∃ω.A ∈ S ubAt(γ(∃at.Xi

k)). Hence, we have ∃ω′.A ∈ S ubAt(γ(Xi
k)). By

induction, ω′ is accepted by Ai(qi
k) and thus ω is accepted by Ai(qi

j).

�

In the next lemma, we show that if the corresponding EL-top unification prob-
lem is solvable, then the intersection of DFS automata is not empty.

Lemma 28. If Γ is solvable, then L(A1) ∩ ... ∩ L(An) , ∅.

Proof. If Γ is solvable, then by Theorem 3, it has a small local unifier γ. Let
B ∈ S ubAt(γ(Y)). Since γ is a small local unifier of Γ and Cons(Γ) = {A}, there is
a word ω ∈ Σ∗ such that B = ∃ω.A.
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For each i, 1 ≤ i ≤ n, since γ(Xi
0) v γ(Y), by Lemma 4, B ∈ S ubAt(γ(Y)) implies

that
B ∈ S ubAt(γ(Xi

0)) (5.2)

On the other hand, by Lemma 27, (5.2) yields that ω is accepted by Ai(qi
0), i.e.,

ω ∈ L(Ai).
Thus ω ∈

⋂
1≤i≤n L(Ai) which implies that L(A1) ∩ ... ∩ L(An) , ∅. �

The following lemma shows that the non-empty intersection of DFS automata
implies the solvability of the corresponding EL-top unification problem.

Lemma 29. If L(A1) ∩ ... ∩ L(An) , ∅, then Γ is solvable.

Proof. Let ω ∈ L(A1) ∩ ... ∩ L(An) and ω = b1 . . . bm, where {b1, ..., bm} ⊆ Σ.

Since ω ∈ L(Ai) for each i, 1 ≤ i ≤ n, there is a successful path q0
b1...bm
−→Ai qm. Thus

we have q0 = qi
0 and qm = qi

f . For each qi
j ∈ Qi, let ωi

j be a minimal word w.r.t. the
length, accepted by Ai(qi

j). We define the substitution set S (Xi
j) for each Xi

j ∈ Nv

as follows:

• We initialize S (Xi
j) := {∃ωi

j.A},

• For each qi
j ∈ Qi and for each (qi

j, at, qi
k) ∈ ∆i:

– If qi
j = qp and at = bp+1 for some 0 ≤ p ≤ m − 1, then let Ati

j,t =

∃bp+1...bm.A and S (Xi
j) := S (Xi

j) ∪ {Ati
j,t}.

– If qi
j , qp or at , bp+1 for all p, 0 ≤ p ≤ m−1, then let Ati

j,t = ∃atω
i
k.A

and S (Xi
j) := S (Xi

j) ∪ {Ati
j,t}.

Now we define the substitution γ:

1. γ(Xi
j) =
�

B∈S (Xi
j)

B,

2. γ(Y) = ∃ω.A.

We show that γ is a unifier of Γ. Without loss of generality, it is enough to prove
that γ satisfies all the subsumptions in Γi for an arbitrary i, 1 ≤ i ≤ n.
Notice that the following is obviously true:�

(qi
j,as,qi

k)∈∆i

γ(∃as.Xi
k) v γ(∃at.Xi

k), for all (qi
j, at, qi

k) ∈ ∆i. (5.3)

By the definitions of Γ and γ, we need to show that for all Xi
j ∈ Nv, γ satisfies:

A u
�

(qi
j,as,qi

k)∈∆i

∃as.Xi
k v Xi

j, if qi
j = qi

f . (5.4)
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and �
(qi

j,as,qi
k)∈∆i

∃as.Xi
k v Xi

j, if qi
j , qi

f . (5.5)

Since γ(Xi
j) =

�
B∈S (Xi

j)
B, by Corollary 1, it is enough to show that for all B ∈

S (Xi
j), γ satisfies

A u
�

(qi
j,as,qi

k)∈∆i

∃as.Xi
k v B, if qi

j = qi
f . (5.6)

and �
(qi

j,as,qi
k)∈∆i

∃as.Xi
k v B, if qi

j , qi
f . (5.7)

By the definition of S (Xi
j), we have:

B = ωi
j or B = Ati

j,t. (5.8)

First, we show that �
(qi

j,as,qi
k)∈∆i

γ(∃as.Xi
k) v Ati

j,t (5.9)

We consider the following cases:

• If qi
j = qp and at = bp+1 for some 0 ≤ p ≤ m − 1, then we have

Ati
j,t = ∃bp+1...bm.A. On the other hand, we have qi

k = qp+1 which implies
that ∃bp+2...bm.A ∈ S (Xi

k), where ∃bp+2...bm.A = A if p + 2 > m. Thus
γ(∃at.Xi

k) v Ati
j,t. By (5.3), we have

�
(qi

j,as,qi
k)∈∆i γ(∃as.Xi

k) v Ati
j,t.

• If qi
j , qp or at , bp+1 for all p, 0 ≤ p ≤ m−1, then we have Ati

j,t = ∃atω
i
k.A.

On the other hand, ∃ωi
k.A ∈ S (Xi

k) which implies that

γ(Xi
k) v ∃ωi

k.A (5.10)

By (5.3) and (5.10), we have
�

(qi
j,as,qi

k)∈∆i γ(∃as.Xi
k) v ∃atω

i
k.A = Ati

j,t

This completes the proof of (5.9). By (5.9), we have:

A u
�

(qi
j,as,qi

k)∈∆i

γ(∃as.Xi
k) v Ati

j,t (5.11)

Second, we prove that (5.6) and (5.7) are satisfied by γ. For each qi
j ∈ Qi, we

consider the following cases:
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1. qi
j = qi

f . In this case, we have to show that (5.6) is satisfied by γ.
Since qi

j = qm = qi
f , we have ∃ωi

j.A = A ∈ S (Xi
j). It is obvious that

A u
�

(qi
j,as,qi

k)∈∆i

γ(∃as.Xi
k) v A = ∃ωi

j.A (5.12)

By (5.8), (5.12) and (5.11), γ satisfies (5.6).

2. qi
j , qi

f . In this case, we have to show that (5.7) is satisfied by γ.
It is obvious that there is a transition (qi

j, at, qi
k) ∈ ∆i such that ωi

j = atω
i
k.

On the other hand, since ∃ωi
k.A ∈ S (Xi

k), we have

γ(Xi
k) v ∃ωi

k.A (5.13)

Thus by (5.3) and (5.13), we have�
(qi

j,as,qi
k)∈∆i

γ(∃as.Xi
k) v γ(∃at.Xi

k) v ∃atω
i
k.A = ∃ωi

j.A (5.14)

By (5.8), (5.14) and (5.9), γ satisfies (5.7).

We have shown that the subsumptions (5.6) and (5.7) are satisfied by γ. Third, we
show that γ satisfies the subsumption Xi

0 v Y . Since qi
0 = q0, we have:

1. If ω = ε, then qi
0 = qm. Thus we have ωi

0 = ε. By the definition of S (Xi
0),

∃ωi
0.A = A ∈ S (Xi

0). Hence ∃ω.A = A ∈ S (Xi
0).

2. If ω , ε, then qi
0 , qm and thus m ≥ 1. Moreover, since ω ∈ L(Ai), there is a

transition (qi
0, at, q1) ∈ ∆i. Hence we have Ati

0,t = ∃ω.A. By the definition of
S (Xi

0), we have Ati
0,t ∈ S (Xi

0) and thus ∃ω.A ∈ S (Xi
0).

In all cases, we have ∃ω.A ∈ S (Xi
0). Thus γ(Xi

0) v ∃ω.A = γ(Y).
We have shown that Γi is satisfied by γ, for all i, 1 ≤ i ≤ n. �

The following theorem is a consequence of Lemma 28 and Lemma 29.

Theorem 6. L(A1) ∩ ... ∩ L(An) , ∅ iff Γ is solvable.

PSPACE-hardness property of EL-top unification follows immediately from
Theorem 6 and the fact that the Finite State Automata Intersection problem is
PSPACE-complete.
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Chapter 6

Conclusion

In this thesis, we have shown that EL-top unification problem is decidable.
In Chapter 3, we have introduced the notion of local unifiers and proved that EL-
top unification has local property, i.e, a local unifier can be constructed from el-
ements in the goal. However, in the end of this chapter, we have shown, by an
example, that the locality is not strong enough to help us to obtain a decision pro-
cedure for EL-top unification. In Chapter 4, we restricted further the set of local
unifiers and introduced the notion of small local unifiers so that we were able to
construct an NExpTime decision procedure for EL-top unification. Interestingly,
in Chapter 5, we have shown that EL-top unification is PSPACE-hard by reducing
Finite State Automata Intersection problem to EL-top unification. By this result,
even though EL-top is less expressive than EL, EL-top unification is in fact more
difficult than it is for EL, since EL-unification has been shown to be NP-complete.
Unless PSPACE=NP, there is no algorithm for EL-top unification in NP complex-
ity class.
However, the exact complexity of the problem has not been discovered yet. The
NExpTime decision procedure described in Chapter 4 can certainly be improved.
In future, we will consider how to obtain another procedure with smaller complex-
ity, e.g, an ExpTime procedure. Furthermore, we also want to obtain a better lower
bound of the complexity by showing ExpTime-hardness.
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