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sir humphrey: If local authorities don’t send us the statistics

that we ask for, then government figures will be a nonsense.

jim hacker: Why?

sir humphrey: They will be incomplete.

jim hacker: But government figures are a nonsense anyway.

bernard woolley: I think Sir Humphrey wants to ensure they

are a complete nonsense.

Yes, Minister, Series Three Episode Three, BBC 1982.
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Chapter 1

Overview

In this thesis we investigate the problem of query completeness over partially
incomplete databases.

Incomplete data is an ubiquitous problem in practical data management. Rea-
soning over incomplete data has been studied extensively for many years. In the
commonly used formalisms, arbitrarily large database instances are considered
possible, and research focuses on possible and certain answers for queries over
incomplete data.

In many practical scenarios, however, information is present that certain parts
of the generally incomplete data are complete. Then, the question arises whether
for a given query its answer over the incomplete data can be deemed to be complete.

In this thesis, we present a novel approach to the problem of deciding query
completeness over incomplete databases, which is the first by which the problem
can generally be decided.

This thesis is divided as follows: In chapter 2 we present application scenarios
and discuss earlier work on the problem. In chapter 3 we formalize the problem
and give important definitions like incomplete databases, completeness assertions
and query completeness. In Chapter 4 we discuss the necessary and sufficient con-
ditions for query completeness over incomplete databases. Chapter 5 shows the
completeness reasoning problems along with decision procedures for them. Chap-
ter 6 shows how database schema information and extensional information can
be utilized in these reasoning processes to deduce more completeness. Chapter 7
discusses concepts and strategies for stating completeness of parts of incomplete
databases. Chapter 8 discusses implementational issues and a prototypical imple-
mentation developed in the MAGIK project. Chapter 9 draws a conclusion and
discusses possible future research questions.

9
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Chapter 2

Introduction

2.1 Motivation

Databases as information storing systems are everywhere nowadays. In formal
logic, reasoning under incomplete information has been studied since its very be-
ginning. With the emergence of computer science and database theory, many
approaches to management of and reasoning over incomplete information have
been developed. With relational databases as the most widespread technology
for information storing systems, incomplete information management in relational
databases is of particular interest.

The first contribution to management of incomplete information in relational
databases was the introduction of the unknown data [C75] and the understanding
of incomplete databases by the Open World Assumption (OWA). Next milestones
were the introduction of v- and c-tables and the theory of representation systems
capturing both incomplete databases and answers to queries [IL84]. More recent
approaches are Probabilistic Databases [DRS09] or Description Logic knowledge
bases [B03].

Traditionally, databases are understood as being complete with respect to their
application domain. If a fact is not mentioned in a database, then it does not hold
in the application that is modelled. This understanding is called the Closed World
Assumption. The OWA differs from it in the point that any fact not explicitly
mentioned in the database that is consistent with the database, may hold or not.
Thus, the semantics of an incomplete database under the OWA is the set of all
possible complete databases that extend the incomplete data.

Databases with Codd tables or with v- and c-tables differ in the way of how
unknown data fields may be substituted. While every occurrence of a null value in
a Codd table may be replaced by an arbitrary value independent of other replace-
ments, v-tables introduce the concept of named null values, which allow to express

11



12 CHAPTER 2. INTRODUCTION

the presence of the same unknown value in different tuples. The c-tables allow a
further refinement of the unknown information by enhancing it with conditions,
e.g., comparisons or range restrictions. The basic idea of the semantics of all three
formalisms is the same: It is the set of all databases that can be derived from
the incomplete database by substituting the unknown values with constants that
respect possible constraints and adding further tuples.

For a fixed formalism for representing incomplete databases, the most investi-
gated questions are how the general query answers over incomplete databases can
be represented, and how the set of possible answers and of certain answers can be
computed. For a fixed incomplete database and query, the set of possible answers
contains all tuples that are in the query answer over some valid extension of the
incomplete database, while the set of certain answers contains all tuples that are
in the answer over all valid extensions.

However, little attention has been paid so far to combinations of the open- and
the closed-world assumption in databases. In many practical scenarios, databases
are generally incomplete, but some parts of the data may be known to be complete.
Answering queries in such scenarios requires both open- and closed-world reason-
ing. Especially interesting is there the question of query completeness : Over a
database that is partially incomplete, is the query answer over the database com-
plete, or may tuples in the answer be missing? In other words, are the sets of
possible answers and of certain answers the same?

This question was first investigated by Amihai Motro in [Mo89] and later by
Alon Levy in [Le96]. Both investigations address the same question but use dif-
ferent formalisms for expressing partial completeness of a generally incomplete
database. A more recent work with focus on practice is that of Dmitrij Mili-
aev [Mi10]. We discuss all three investigations in more detail in the next section.

We see a general interest in this question in the field of data quality. Generally,
data quality studies how good data serves its purpose. Aspects of data quality
concern consistency, validity, timeliness and accuracy, and also completeness. Tra-
ditionally, work on data quality deals more with statistical characterizations of
these aspects. Whether some generally incomplete data is complete enough to
serve its purpose of allowing to answer a query completely, is a relevant question
in this field.

A special interest for the question is also in the field of data integration. Data
integration investigates methodologies to combine heterogeneous data sources and
allow unified access to them. When some data sources are stated to be complete, it
becomes an interesting question, in how far the combined data is complete [D97].

Next, we present two application scenarios for the question of query complete-
ness over partially incomplete databases. The first is the scenario of school data
management of a provincial school administration. It is a real-world problem from
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the school IT department of the province of South Tyrol, which also was the start-
ing point of our work. For illustrative reasons, we will use a drastically scaled
down version of the original problem, reduced to a single school only as the run-
ning example in this thesis. The second example is an invented business world
scenario that shows the relation to the problem of data integration.

Example 1: Provincial School Data Management

The province of South Tyrol uses a distributed database system for managing
school data. School data includes in particular information about students regard-
ing school, class and language enrolment, mother tongue, nationalities, disabilities
and other.

The data is maintained in a decentralized manner, which means that every
school is responsible for maintaining its own data. Commonly, the maintenance is
done by the school administrators.

Periodically, the statistical department of the province queries the database
and derives statistics, which are the basis of administrative decisions of the school
department. These decisions include in particular the assignment of teachers to
schools. In order to make the right decisions, it is important to have complete
knowledge of the student enrolments per school.

This however is a serious problem, since schools are notoriously late with sub-
mitting their data, and often submit incomplete data, e.g., forgetting complete
classes sometimes.

For that reason, the province IT department is interested in setting up a system
that allows to track database completeness and enrich query answers with com-
pleteness information. For query answers guaranteed to be complete, one would
like to understand on which basis and how the completeness guarantee was derived.
For incomplete answers, one would like to understand which parts of the database
need to be completed in order to give a guarantee for query completeness.

To illustrate this, consider a query Give the enrolments of all students in South
Tyrol is derived to be incomplete. Then, one would like to get the additional
information The query is incomplete because the Volksschule Mals did not submit
any data, and the Handelsoberschule Bozen forgot to submit data for levels 10 to
12. If the query above is incomplete, the school department might formulate a
second query Give all enrolments for ladin schools and find out that this query is
complete, then being able to start planning for the ladin schools already.

Example 2: Business Data Integration

As a second example, consider two companies that are merging. Merging the
organizational structures includes in particular the merge of their IT structures.
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Assume both companies have maintained databases which were only partially
complete. When joining the databases in a common schema it becomes important
to know in which parts the joint database is complete, and in which not.

As a more specific example, consider that company one mainly produced prod-
ucts of class A, while company two mainly produced products of class B. Neither
one produced B nor two produced A. Company one listed all kinds of A’s it was
producing in a table which was complete, company two did the same for the B’s.
Then, joining the two tables into one table for all products will not yield a gener-
ally complete table, because both companies did not list all the minor items they
produced. However, if someone is interested in a product group that is contained
in A and B, he could still find a complete listing due to the completeness of the
original tables A and B (illustrated in figure 2.1).

Figure 2.1: A table C containing the data from tables A and B can not be guar-
anteed to be complete. However, the query Q would still be complete.

2.2 Related Work

Amihai Motro [Mo89] was the first to introduce the concept of partial incorrect
and incomplete databases and to analyse how query integrity can be derived from
integrity assertions. By the term integrity, he subsumes both completeness and
validity. A partially incorrect and incomplete database is a database that may
contain both facts that do not hold in the real world, and miss facts that hold in
the real world. A relation or a part of a relation then is considered to be complete,
if it contains all facts that hold in the real world. It is considered to be valid, if it
contains no facts that do not hold in the real world.

His idea is to introduce a meta relation for each database relation, that contains
information about the integrity of views of the relation. That is, database integrity
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is expressed in terms of view integrity. A query answer can be derived to be valid
or complete, if a rewriting exists that uses only parts of relations that are also
asserted to be valid or complete by the meta relations.

This approach is correct, that is, whenever a query is derived to be complete, it
really is. However, the method is not complete 1, because the method searches only
for conjunctive-query rewritings. Segoufin and Vianu have shown in [SV05], that
conjunctive queries are not a complete rewriting language between conjunctive
queries, that is, there may exist a rewriting of one conjunctive query in terms of
conjunctive-query views, that is not a conjunctive query itself. Then, completeness
of the views would imply completeness of the query, but Motro’s method would
not detect it because no conjunctive query rewriting would exist.

Another approach was presented by Alon Levy in [Le96]. He introduced a differ-
ent formalism for stating completeness of parts of a generally incomplete database,
namely that of local completeness statements. Local completeness statements only
allow specification of completeness for relations or parts of relations without fur-
ther projections. The satisfaction of local completeness statements is necessarily
independent of the completeness of other relations, a property we consider to be
highly important in practice. Local completeness statements and view complete-
ness statements are different concepts that cannot be reduced to each other. For
the problem of deciding query completeness with respect to local completeness,
Levy proposed a reduction to the problem of query independence from updates.
However, the reduced problems are generally undecidable. Also, he presented the
idea of utilizing schema and extensional information in order to deduce complete-
ness that holds in specific cases only.

The main idea about deciding query completeness with respect to local com-
pleteness in Levy’s paper is that a query can be concluded to be complete with
respect to given local completeness statements, if the query result is independent
from updates on those parts of relations that lie outside the parts stated to be
complete. These outside parts are exactly the complements of those parts that
are asserted to be complete. They can be characterized by the negations of the
statements that describe the complete parts. Testing query independence of up-
dates then can either be reduced to unsatisfiability of a query [El90] or query
containment [LS93]. The reduction of query completeness to query independence
of updates is correct and complete, meaning that a query is complete with re-
spect to local completeness statements exactly if it is independent of updates on
the parts outside the complete parts. However, the generated problems of query
independence of updates are generally undecidable. This is because the reduc-
tion introduces negation symbols, and query containment for queries containing

1Complete refers here to the completeness of a decision procedure, not to query completeness
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negation is only decidable if no projection is applied to negated parts of a query
[SY81].

The second main contribution of Levy’s paper is the idea of deciding query
completeness with respect to a concrete database instance. He observed that in
some cases, completeness of a query does not follow from a set of assertions alone,
but follows if one both considers the data actually stored in the database and takes
into account additional conditions that the complete database has to satisfy.

More detailed, the observation is that whenever an incomplete relation is joined
with another complete relation over the key attribute of the latter, and the incom-
plete relation contains one tuple for each tuple in the complete one, the result of
the join is always complete. That holds because when the join attribute is the key
attribute for the second relation, then the second relation can contain at most one
tuple per join attribute value.

The last issue discussed in Levy’s paper is the connection between query cor-
rectness and query completeness. He shows that the two problems are closely
related and introduces the concept of local correctness statements as analogon
to local completeness statements. Because query completeness can be reduced
to queries independent of insertion updates, query correctness to independence
of queries independent of deletion updates, and for a fixed query and update, the
latter implies the former, he argues that query correctness implies query complete-
ness.

As stated in the beginning, the most serious shortcoming in Levy’s approach
is the fact that query completeness is reduced to a generally undecidable problem.
Only for projection-free queries or trivial local completeness statements, that are
local completeness statements only containing self-joins, query completeness is
decidable.

Besides, the formalization contains several minor flaws. It is nowhere stated
that any completeness assertions are required for the main theorem to hold, which
can easily be seen to be wrong. On the contrary, in the proof of the theorem
it seems as if there existed one statement for every relation, which would make
the theorem become correct, but would be too strong a requirement, since only
statements for relations used in a query are needed. Furthermore, the formalization
allows only at most one completeness statement per relation, which is not wrong
but again an unnecessary restriction.

The discussion of the problem of deciding query completeness with respect to
concrete database instances presents an interesting idea, however it does not give
any motivation for why the presented technique could work in practice. In fact,
without considering foreign keys, we believe there is no motivation for why the
method could work in practice. Also, the method does not consider the effect of
schema information and extensional information separately, but only discusses the
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case of both appearing together, omitting the discussion of the effects that schema
and extensional information already have separately.

Finally, Levy’s argumentation about query correctness implying query com-
pleteness is not correct. In partially incomplete and partially incorrect databases,
it is not sufficient to detect query correctness to conclude query completeness, be-
cause the statements about which parts are correct and which are complete can
well be very different.

A third relevant work is the Bachelor thesis of Dmitrij Miliaev [Mi10]. It focuses
more on practical aspects of ensuring query completeness, in particular, it presents
a prototypical implementation of a system for managing database completeness.

The first contribution of this work is the discussion of a real-world problem
about query completeness over a partially incomplete database. The problem is
that of the school data management by the school IT department of the province of
South Tyrol, which we also refer to in this thesis. The discussion of that problem
gives an interesting insight, namely that it is not only important to be able to
decide whether a query is complete with respect to given completeness statements,
but rather that it is interesting to know for a given query, which statements have
to be made in order to ensure that the query will be complete.

The discussion also directly leads to a second contribution, namely the intro-
duction of the idea of partitioning completeness statements using finite domains
or other tables.

Also the idea of cardinality assertions as expressions for stating conditional
completeness of a partially incomplete databases is a result of this discussion.

On the conceptual side a contribution is the comprehensible discussion of the
impact of foreign key assertions on completeness checking in presence of exten-
sional information. While the theory is already contained in Levy’s work about
completeness checking in presence of functional dependencies, the discussion of
foreign keys is a valuable contribution to the understanding of practical database
completeness management.

The biggest contribution of Miliaev’s work is the presentation of a prototypical
implementation of a system for managing database completeness. It implements
some of the results presented in the work such as the completeness statement
partitioning and the idea of completeness checking using foreign key assertions,
showing that these results can well be turned into practice.

2.3 Our Contribution

The contribution of this thesis is twofold. First, it presents a comprehensive discus-
sion of the topic of query completeness. Second, it contains a number of technical



18 CHAPTER 2. INTRODUCTION

results, with the most important ones being the following:

• Reduction of query completeness reasoning to query containment, yielding
a generally decidable decision problem. Motro’s implicit reduction to the
problem of whether a query can be rewritten using views (implicit because
this problem was not formalized at the time when Motro published his work)
is a correct reduction to a problem decidable for conjunctive queries, however
the reduction is not complete. Levy’s reduction to the problem of queries
independent of updates is correct and complete, however the reduction yields
problems that are decidable only in very special cases.

• Characterization of which parts of a database have to be complete for query
completeness. Using Levy’s solution to the query completeness problem, no
information could be gained in which parts a database really has to be com-
plete when a query shall be complete. When returning that a query was
not complete with respect to given local completeness statements, the algo-
rithm for deciding query completeness could tell on which relation the local
completeness statement was not sufficient. It could not tell which statement
would have been required instead, and the topic of characterizing conditions
for query completeness was not discussed at all. We given an extensive char-
acterization in chapter 4.

• Identification of core assumptions. Although Levy’s reduction is correct,
it contains several unnecessary assumptions (at least and at most one lo-
cal completeness statement per relation, no self join in local completeness
statements). We drop unnecessary assumptions and present a more general
framework for deciding query completeness.

• Detailed examination of how schema and instance information affects com-
pleteness reasoning. Levy already showed for a special case, how schema
information together with instance information can lead to further com-
pleteness conclusions. We provide a systematic analysis, how several kinds
of schema information (keys, foreign keys, finite domain constraints) and in-
stance information separately and combined affect completeness reasoning.

• Investigation of how completeness management and assertions can work in
practice. Earlier work focused mostly on the theory. We investigate how
completeness management and asserting can work in practice, and illustrate
our investigations with an example of a school data management system.

• Discussion of implementational issues. As we participated in the imple-
mentation of a completeness management prototype, we are able to discuss
practical implementational issues.
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• Presentation of an algorithm for containment checking under finite domains.
As a side result of our investigation of finite domain constraints, we are the
first to present an algorithm for effective containment checking under finite
domain constraints. Finite domains are a constraint concept that limits the
set of possible values of certain attributes of relation instances to finite sets,
which seems to have practical relevance.



20 CHAPTER 2. INTRODUCTION



Chapter 3

Problem Formalization

3.1 Standard Definitions

In this section, we give standard definitions about databases and queries.

Assume a countably infinite set Dom of constants and a countably infinite
set Var of variables. The union of the sets of variables and constants we denote
as terms. By convention, we will start variable names with capital letters and
constant names with small letters, with the exception of the lower-case letter s,
which will be used for denoting terms.

A database schema is a set Σ of relation symbols together with an arity for
each.

An atom over a relation R with arity n is an expression R(s1, . . . , sn), where
s1, . . . , sn ∈ are terms. A ground atom is an atom where s1, . . . , sn are constants.

A relation instance of relation a R is a finite set of ground atoms over R. A
database instance I of Σ is a finite set of ground atoms over the symbols in Σ.

In the following, we assume Σ to be fixed.

A literal, denoted as L, is a positive or negated atom. A comparison predicate
is one of the symbols in {=,≤, <}. A comparison, denoted as V , is an atom where
the predicate is a comparison predicate.

A conjunctive condition, denoted as G, is an expression of the form
L1(s̄1), . . . , Lm(s̄m), Vm+1(s̄m+1), . . . , Vn(s̄n), where the s̄i are vectors of terms each
time with the same arity as the relation symbol of literal Li, and Vm+1 to Vn are
positive or negated comparisons.

A conjunctive query is an expression of the form Q(X̄) :−B, where B is a con-
junctive condition. A simple conjunctive query is a conjunctive query containing
no comparisons and no negation. We call the variables in x̄ the distinguished vari-
ables of Q. We call B the body of Q, and the variables appearing in B but not in
x̄ the nondistinguished variables. The frozen body of a query is the set of ground

21



22 CHAPTER 3. PROBLEM FORMALIZATION

atoms that corresponds to the body of the query, when each variable is interpreted
as a new constant. The term view will be used synonymously to the term query.

A conjunctive query is safe, if each variable in x̄ also appears in B, and every
variable appearing in a negated literal or a comparison predicate also appears in
a positive literal in B.

A valuation υ for a query Q is a mapping from the variables in Q, and dom
to dom, that is the identity on dom. A valuation υ satisfies a query Q over a
database instance D, if the tuples derived from applying υ to each set of terms si
in Q are contained in the relation extension of relation Ri over D each.

The result of a query Q with distinguished variables X̄ over a database instance
D is a set defined as follows: {υX̄ | υ is a valuation for Q, and υ is satisfying for
Q over D}.

A conjunctive query Q1 is contained in another query Q2, denoted by Q1 ⊆ Q2,
if the result of Q1 is a subset of the result of Q2 over all database instance. Two
conjunctive queries Q1 and Q2 are equivalent, if Q1 is contained in Q2 and Q2 is
contained in Q1. For simple conjunctive queries, existence of a query homomor-
phism is a characterizing condition for query containment. For conjunctive queries
in general this also holds when applying linearisation [M92].

A query Q1 is a subquery of a query Q2, if Q1 and Q2 have the same head and
the body of Q1 is a subset of the body of Q2.

A conjunctive query is minimal, if no equivalent subquery exists with its body
being a strict subset of the original query’s body.

Relational algebra [AHN95] is another notation for conjunctive queries that we
employ occasionally. We use relational algebra mostly in the unnamed perspective,
that is in particular, projections can be specified in terms of sets of positions of
the argument expression. That is, if A is a set of positions in an expression E,
then πA(E) is the projection on these positions.

3.2 Running Example

In this section we formalize the example of the administrative school database
presented in chapter 2. As mentioned there, for simplicity we use only a small
portion of the original schema.

In our example database schema, there exist the following five relations:

class(level, code, primary language)

student(name, level, code)
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person(name, gender)

language(language)

language attendance(name, course)

The underlined attributes form the key of each relation. Furthermore, the stu-
dent.name is a foreign key referring to person.name, (student.level, student.code)
together to (class.level, class.code), language attendance.course to language.language
and language attendance.name to person.name. Figure 3.1 shows how the tables
are linked by foreign keys.

Figure 3.1: Example database structure

3.3 Problem-specific Definitions

In this section, we provide additional definitions that are needed for our treatment
of incomplete databases and completeness reasoning. Some of these definitions are
adapted from [Le96], some are our own work.

The first and very basic concept is that of a partially complete database (from
now on just partial database). A database can only be incomplete with respect to
another database that is considered to be complete. So we model partial databases
as pairs of database instances: One database instance that describes the complete
state, and one instance that describes the actual, possibly incomplete state.

To make this formal, we first introduce for each relation symbol R distinct
symbols R̂, Ř, which we call as the ideal and the available version of R. Then we
introduce the schemas Σ̂ = {R̂ | R ∈ Σ} and Σ̌ = {Ř | R ∈ Σ} which we call the
ideal database and the available database. We denote the union Σ̂ ∪ Σ̌ as Σ̃.
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A partial database instance over Σ is a database instance D of Σ̃ such that
Ř(D) ⊆ R̂(D) for all R ∈ Σ. That means, a partial database instance is a tuple
(Ď, D̂) of database instances of the extended schema Σ̃ such that the available
database instance Ď contains at most as much as the ideal database instance D̂.

Next, we define the statements that are used to express completeness over
partial databases. We start with the general concept of completeness statements,
and as specialisations we define statements to express query completeness and local
completeness.

A completeness statement is a statement of the form Q1 ⊆̇Q2 where Q1 and
Q2 are conjunctive queries over the schema Σ̃, both with the same arity.

A partial database instance D satisfies the completeness statement Q1 ⊆̇Q2,
denoted as D |= Q1 ⊆̇Q2, if Q1(D) ⊆ Q2(D).

For a conjunctive condition G over Σ, we denote as Ĝ the condition obtained
by replacing each relation symbol R with the symbol R̂. For instance, if G =
class(X, Y ), then Ĝ = ˆclass(X, Y ). The condition Ǧ is defined analogously.

If Q(x̄) :−G is a query, then the queries Q̂, Q̌ are defined as Q̂(x̄) :− Ĝ and
Q̌(x̄) :− Ǧ.

For a conjunctive query Q, the query completeness statement for Q consists of
the two completeness statements Q̂ ⊆̇ Q̌ and Q̌ ⊆̇ Q̂. We denote the query com-
pleteness statement for Q as Compl(Q).

A query completeness statement allows to express that a certain query (or
view) is complete over a partial database.

Next we define the local completeness statement for relation R and condition G.
A local completeness statement allows one to express that a certain part of relation
R is complete, without requiring completeness of other parts of the database.

Note that G can contain relational and built-in literals and that we do not make
any safety assumptions for G alone. Let X̄ be the set of attributes of R. Let QR̂,Ĝ

denote the query QR̂,Ĝ(X̄) :− R̂(X̄), Ĝ(X̄). Note that the entire query has to be
safe. The local completeness statement for relation R with condition G then is the
completeness statement QR̂,Ĝ ⊆̇ Ř, which we denote as Compl(R,G). Later on, we

will refer to the query QR̂,Ĝ for a given local completeness statement C simply as Ĉ.

To make clear where the difference between stating completeness of a relation
by a query completeness statement and by a local completeness statement lies,
consider the following example:

Example 3.1. Suppose we want to express that in a partial database instance D,
the table student is complete for all female students. With the help of the foreign
key from student.name to person.name, one would formulate the following query:
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Q(N,L,C) :− student(N,L,C), person(N, female)

Using this query, one would express the completeness as view completeness
statement CV as

CV = (Q̂ ⊆̇ Q̌).

As local completeness statement CLC , one would formulate

CLC = Compl(student(N,L,C), person(N, female)).

The difference between CV and CLC now is that for CV to hold in the partial
database instance D, also the table person must satisfy a certain level of complete-
ness. For every tuple of a female student in the ideal student relation, not only the
student tuple must be in the available student relation, but also the corresponding
person tuple in the available person table.

In a partial database instance D0 where

ˆstudent = { (antonia, 3, a, false) }
ˆperson = { (antonia, female) }
ˇstudent = { (antonia, 3, a, false) }
ˇperson = { },

CLC would hold but CV not.

Given a query Q and a set of local completeness assertions C, we say that C is
characterizing for Q provided D |= C if and only if D |= Compl(Q), for all partial
database instances D. Thus, a characterizing set of local completeness assertions
is a set, whose satisfaction is both a necessary and sufficient condition for query
completeness.

A set of local completeness assertions C entails another set C ′, denoted C |= C ′,
if and only if for all partial database instances D we have that D |= C implies
D |= C ′.

Our last definition is that of canonical completeness statements. Let Q(Z̄) :−G
be a query, L(Ȳ ) be a literal in G, R be the relation symbol of L, and G′ = G\{L}.
The canonical completeness condition for L inQ is the local completeness condition
Compl(R(X̄), G′, X̄ = Ȳ ), where the variables in X̄ are new distinct variables. The
set of canonical completeness conditions for all literals in Q we denote by CQ.
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Example 3.2. Consider a partial database instance D where

ˆstudent = { (matteo, 3, a), (sonja, 2, b) }
ˇstudent = { (matteo, 3, a) }

ˆclass = ˇclass = { (3, a, it), (2, b, ger) }.

Furthermore, let Q be the query

Q(N) :− student(N,L,C), class(L,C, P ), P = it

that asks for the names of all the students that are enrolled in a class with
Italian as primary language. Then, consider local completeness statements

C1 = Compl(student(N,L,C), C = a)

C2 = Compl(class(L,C, P ),True).

The completeness statement C1 holds in D, because we find all students that
are in the ideal instance of the student relation with class code a also in the
available instance. However, C2 does not hold in D, because (sonja, 2, b) is in the
ideal class relation, but not in the available one.

The canonical completeness conditions for Q are

C3 = Compl(student(N,L,C), class(L,C, P ), P = it)

C4 = Compl(class(L,C, P ), student(N,L,C), P = it)

The query completeness statement Compl(Q) holds in D, because Q(D̂) =
Q(Ď) = {matteo }.

Finally, observe that C2 entails C4, because whenever in any partial database
instance the class table is complete for all classes, it is also complete for all classes
with Italian as primary language.



Chapter 4

Characterizing Query
Completeness

Given a query over a fixed database schema, an important question is what the
necessary and the sufficient conditions for query completeness are, and how they
can be expressed. Necessary conditions are conditions that must hold in a partial
database instance where the query is complete, while sufficient conditions are
conditions that whenever satisfied in a partial database instance, imply query
completeness over that partial database instance.

The conditions depend on the semantics of queries, therefore we distinguish
between set- and multiset semantics. Also, expressibility of conditions depends on
the language chosen for expressing them, therefore we try to express the conditions
both by local completeness statements and in first-order logic.

While local completeness statements seem to be more of practical interest be-
cause of their better understandability, we will show that there exist cases where
necessary and sufficient conditions cannot be expressed by local completeness state-
ments, but only in first-order logic.

We remind the reader that we call conditions that are necessary and sufficient
for query completeness characterizing conditions.

Example 4.1. To get a basic idea of the problem, consider the following query
asking for all classes in which there is some student taking Latin courses:

Q(L,C, P ) :− lang att(N,Lng), student(N,L,C), class(L,C, P ),Lng = latin.

It is clear that completeness of the person table has no influence on the com-
pleteness of the query. Whether or not person tuples present in the ideal relation
are missing in the available one, cannot have any influence on query completeness
as that relation is not even used in the query.

27
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But completeness of the class table has an influence on the completeness of the
query. If a class tuple is missing in the available database it might be one where
someone takes Latin, so the query becomes incomplete. What does this mean?
Not the whole classtable has to be complete, only tuples for those classes must be
present where actually someone takes Latin.

We will come back to this example later.

4.1 Multiset Semantics

A multiset (or bag) is distinguished from a set in that an element can occur multiple
times in a multiset while it can occur at most once in a set. Accordingly, under
multiset semantics, a query returns a multiset of tuples while under set semantics
it returns a set of tuples. However, we consider relation extensions to be sets only.
This semantics, sometimes also referred to as bagset semantics, are the most often
used in practice. In SQL for example, queries are always evaluated under multiset
semantics, except when the DISTINCT keyword is used. Multiset semantics are
also essential for aggregate queries with the operators sum, count or avg.

As sketched in the introduction to this chapter, all parts of the database that
may contribute to the query result have to be complete for query completeness.

With the following theorem we show that these parts are precisely described by
the canonical completeness conditions, and therefore the canonical completeness
conditions conditions CQ of a query Q are characterizing conditions for query
completeness under multiset semantics.

Theorem 4.2. Let Q be a conjunctive query and D be a partial database instance.
Then, the following two are equivalent:

1. Q is complete over D under multiset semantics

2. D |= CQ.

Proof “⇒” Indirect proof: Suppose, one of the completeness assertions in CQ
does not hold over D, for instance, assertion C1 for literal L1. Suppose, R1 is
the relation symbol of literal L1. Let C1 stand for the completeness statement
Ĉ1 ⊆̇ Ř1. Then Ĉ1(D) 6⊆ Ř1(D). Let t be a tuple that is in Ĉ1(D) and therefore
in R̂1(D) but not in Ř1(D). By the fact that Ĉ1 has the same body as Q, the
valuation υ of Ĉ1 over D that yields t is also a valuation for Q̂ over D. So we find
one multiplicity of some tuple t′ ∈ Q̂(D), where t′ is υ applied to the distinguished
variables of Q.

However, υ does not satisfy Q̌ over D because t is not in Ř1(D). By the
monotonicity of conjunctive queries, we cannot have another valuation yielding t′
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over Ď but not over D̂. Therefore, Q̌(D) contains at least one multiplicity of t′

less than Q̂(D), and hence Q is not complete over D.

“⇐” Direct proof: We have to show that if t is n times in Q̂(D) then t is
also n times in Q̌(D). For every multiplicity of t in Q̂(D) we have a valuation
of the variables of Q which is satisfying over D̂. We show that if a valuation is
satisfying for Q over D̂, then it is also satisfying for Q over Ď. A valuation for a
conjunctive condition G is satisfying over a database instance if we find all implied
ground atoms of G in that instance. If a valuation satisfies Q over D̂, then we
will find all implied ground atoms also in Ď, because the canonical completeness
conditions hold in D by assumption. Satisfaction of the canonical completeness
conditions requires that for every satisfying valuation of Q, for every literal, the
implied ground atom is in Ď. Therefore, each valuation for a tuple t on Q over D̂
is also a valuation over Ď and hence Q is complete over D.

4.2 Set Semantics

Under set semantics, relation extensions and results of queries are always sets.
That is, if a tuple were in a query’s result several times under multiset semantics,
it is in the query result one time under set semantics. As we show in this section,
under set semantics satisfaction of the canonical completeness statements is not a
necessary conditions for query completeness in general. But it is still a sufficient
conditions, and necessary in the special case of projection-free queries.

A query is projection free, if all variables that appear in its body are distin-
guished variables. We remind that queries are evaluated under set semantics now.

Theorem 4.3. Let Q be a conjunctive query and D be a partial database instance.
Then:

1. D |= CQ implies D |= Compl(Q).

2. D |= Compl(Q) implies D |= CQ, provided Q is projection free.

Proof 1. Follows from Theorem 4.2. When a query is complete under multiset
semantics, it is also complete under set semantics.

2. Follows from Theorem 4.2. Under multiset semantics, violation of a neces-
sary completeness assertion leads to a difference of at least one multiplicity of some
tuple in the results over D̂ and Ď. Under set semantics multiplicities collapse so
the query could be still complete, if there existed another way to compute that tu-
ple in the result. However, observe, that without disjunction and projection, under
set semantics, there exists only exactly one valuation per tuple in the result.
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The next example illustrates that satisfaction of the canonical completeness
conditions is not a necessary condition for query completeness.

Example 4.4. Consider again our query asking for all classes where some student
takes Latin. Consider an ideal database instance where there is only one class with
20 students, all of them taking Latin.

The canonical completeness conditions would require that all these 20 students
are in the available version of the student table, and for all of them their Latin
course attendance is present in the available language attendance table.

However, it is only necessary to have one of the 20 students together with
his/her Latin attendance in the available database, in order to get the complete
answer that in this class someone takes Latin.

The next theorem expresses the observation from above in a formal way.

Theorem 4.5. Let Q be a conjunctive query where at least one variable in the body
is not a distinguished variable. Then, no set of local completeness statements exists
such that satisfaction of it is a characterizing condition for query completeness of
Q.

Proof We show the nonexistence of a characterizing set of local completeness
statements for a simple query first, and describe afterwards, how this proof extends
to arbitrary queries.

Assume a relation schema Σ = {R/1 } and a boolean query Q() :−R(X).
Furthermore, assume a characterizing set of local completeness conditions C for Q
existed. Now consider the partial database instances D1, D2 and D3 such that:

D̂1 = { R̂(a), R̂(b) } Ď1 = { Ř(a) }
D̂2 = { R̂(a), R̂(b) } Ď2 = { Ř(b) }
D̂3 = { R̂(a), R̂(b) } Ď3 = { }

Then, Compl(Q) holds in D1 and D2 but not in D3, and therefore all local
completeness conditions in C have to hold in D1 and D2, but at least one of them
must not hold in D3. Let us call that condition C.

The statement C must be of the form Compl(R(X), G). Then G = > does not
hold in D1 and D2 (because in both cases there is a tuple in R̂ that is not in Ř).
Other relation symbols to introduce do not exist and repeating R with a variable
generates only equivalent conditions. Adding an equality atom for x with some
constant generates a local completeness statement that does not hold either in D1

or D2. So the only form G can have such that Compl(R(X), G) holds in D1 and
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D2 is G = ⊥. However, Compl(R(x),⊥) holds in D3 as well.

The proof for this specific query can be extended to any query with projection.
The idea is to construct three partial database instances, where the ideal database
instances contain the frozen body of the query plus an isomorphic structure dif-
fering only in a nondistinguished variable’s name. The three available database
instances are once the frozen body, once the isomorphic structure differing in a
nondistinguished variable’s name, and once the empty set. If the completeness
statements cannot detect that in the first two instances once the frozen body and
once the isomorphic structure is missing, they will not detect that in the third
instance both are missing. But over the third instance, the query is clearly incom-
plete.

Let Q be a conjunctive query with projection, so suppose X is a variable that
appears in the body of Q and is nondistinguished. Let Y be a new symbol not
appearing in Q and let B(Q) denote the frozen body of Q. Furthermore let [X/Y ]
describe the operation of replacing every occurance of symbol X by symbol Y .
Then, the three instances are as follows:

D̂1 = B(Q) ∪B(Q)[X/Y ] Ď1 = B(Q)

D̂2 = B(Q) ∪B(Q)[X/Y ] Ď2 = B(Q)[X/Y ]

D̂3 = B(Q) ∪B(Q)[X/Y ] Ď3 = { }

Suppose there exists a set of completeness statements C, satisfaction of which
is a characterizing condition for query completeness of Q. Observe that in order to
be a necessary condition, C must not require more completeness than needed for
the completeness of Q, that is, there must exist a homomorphism from the body
of each statement in C to the body of Q. Furthermore, in order to be a sufficient
condition, there must exist at least one statement for each relation appearing in
B(Q).

Let R(s̄) be an atom appearing in B(Q) that contains the variable X, and t
be the tuple that is the argument of R(s̄) where all variables are interpreted as
constants. Let t[X/Y ] be the modification of t where X is replaced by Y .

Observe that there has to exist a local completeness statement C over relation
R such that t ∈ Ĉ(D1). Because if no such statement C existed, then for a Q that
is minimal the partial database instance D′ = (B̂(Q), B̌(Q) \ R(t)) would satisfy
C but Q would be incomplete over it. For a non-minimal Q also such a partial
database instance can be constructed, however one has to distinguish whether R(s̄)
is a redundant atom or not.

So there exists a C such that t ∈ Ĉ(D1). As B(Q) and B(Q)[X/Y ] are iso-
morphic, either t[X/Y ] also has to be in Ĉ(D1), which would imply that C does not
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hold in D1 and hence C is not a necessary set for query completeness of Q. Or,
C has to contain the constant X at some position such that B(Q)[X/Y ] does not
satisfy C, but then C does not hold in D2, and again, C would not be a necessary
set for query completeness of Q.

The preceding theorem states that it is impossible to express characterizing
conditions for query completeness under set semantics with local completeness
statements.

One may ask whether it is possible at all to characterize these conditions.
The next proposition shows that with a first order formula we can characterize

those partial database instances such that a fixed query is complete over them.

Proposition 4.6. Let Q(X̄) :−B(X̄, Ȳ ) be a conjunctive query with projection.
Let φX̄,B denote the formula ∀X̄ (∃ Ȳ B̂(X̄, Ȳ )→ ∃Z̄ B̌(X̄, Z̄)). Then for all partial
database instances D:

D |= Compl(Q) if and only if D |= φX̄,B

The proposition above is not very surprising, as it is just a rewriting of the
definition of query completeness.
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Completeness Reasoning

In this section we discuss different reasoning tasks regarding completeness. The
main result of this chapter is that deciding query completeness under given local
completeness statements can be reduced to query containment, and is therefore
decidable if containment for the class of queries is.

The reasoning tasks we present are 1) inferring local completeness from local
completeness, 2) inferring query completeness from local completeness, 3) inferring
query completeness from query completeness and 4) inferring local completeness
from query completeness. For the first two problems we will provide precise so-
lutions by reductions to decidable problems, while for the last two problems, we
only provide correct but possibly incomplete solutions.

For the problem of local completeness entailed by local completeness, no discus-
sion exists in the literature. We will reduce the problem to the problem of query
containment in such a way that the complexity results from query containmet
carry over to our problem.

The main reasoning task of inferring query completeness from local complete-
ness was first discussed by Levy [Le96]. His reduction of the problem led to a
generally undecidable problem. We present a better solution by reducing the
problem to the problem of inferring local completeness from local completeness,
allowing to carry over the complexity results from that problem.

The problem of inferring query completeness from query completeness was first
discussed by Motro [Mo89]. He presented a solution by reducing it to the problem
of conjunctive-query rewritability. We will show two open issues regarding that
approach, first, that the decidability of the existence of a more general class of
rewritings is not yet solved [SV05], second, that it is not clear whether existence
of a rewriting is a necessary condition for query completeness implying query
completeness.

For inference of local completeness from query completeness, we give a correct

33
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but possibly incomplete solution by a reduction to the previous problem.

5.1 Inferring Local Completeness from Local Com-

pleteness

As stated in the introduction of this chapter, deduction of local completeness state-
ments from local completeness statements can be reduced to query containment.

As an intuitive idea, note that local completeness statements describe views
of relations that should be complete. So when a local completeness statement
entails another statement, the view described by the second statement should be a
subset of the view described by the first statement. Inclusion of views corresponds
to the problem of containment, so the problem can easily be reduced to query
containment.

We remind the reader that for a local completeness statement C over a relation
R, the query Ĉ is the query that selects all the tuples from an ideal relation
extension R̂(D) that also have to be in the available relation extension Ř(D) in a
partial database instance D, to make C satisfied over D.

Lemma 5.1. Let C1 to Cn and C be local completeness statements over a relation
R. Then

C1 ∧ . . . ∧ Cn |= C if and only if Ĉ ⊆ Ĉ1 ∪ . . . ∪ Ĉn.

Proof “⇐” Let Ĉ ⊆ Ĉ1 ∪ ..∪ Ĉn and let D be a partial database instance where
C1 to Cn hold. We have to show that C holds in D as well. Let t be a tuple in
Ĉ(D). We have to show that t is also in Ř(D).

As Ĉ is contained in Ĉ1 ∪ . . . ∪ Ĉn, the tuple t is also in Ĉ1(D) ∪ . . . ∪ Ĉn(D).
As C1 to Cn hold in D, we have that t is also in Ř(D).

“⇒” When Ĉ is not contained in Ĉ1∪ ..∪ Ĉn, there exists a database instance
D such that there is a tuple t in Ĉ(D) that is not in Ĉ1 ∪ .. ∪ Ĉn. We construct a
partial database instance D0 = (Ď\{ Ř(t) }, D̂) from it where ideal and available
database are exactly the same except that Ř(t) is not in the available database.
As t is not in Ĉ1(D0)∪ ..∪Ĉn(D0), C1 to Cn hold on this partial database instance,
whereas C does not.

With this reduction, we get the complexity of containment reasoning as an
upper bound for the complexity of local completeness entailment. To find out
a lower bound for the complexity of containment reasoning, we have to show
that query containment problems for unions of queries can be reduced to local
completeness entailment problems.
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Lemma 5.2. Let Q(X̄) :−B and Q1(X̄1) :−B1, . . . , Qn(X̄n) :−Bn be conjunctive
queries with the same arity. Let R be a new relation symbol with same the same
arity as the queries. Let C and C1 to Cn be local completeness statements such
that Ci = Compl(R(X̄i), Bi). Then

Q ⊆ Q1 ∪ . . . ∪Qn if and only if C1 ∧ . . . ∧ Cn |= C.

Proof “⇒” Let Q ⊆ Q1 ∪ . . . ∪ Qn. We have to show that in every partial
database instance D where C1 to Cn hold, also C holds. That is, we have to show
that whenever a tuple t is in Ĉ(D), it is also in Ř.

Suppose in some partial database instance D there is a tuple t in Ĉ(D). Then,
it is also in R̂. Furthermore, as Ĉ has the same body as Q except of the additional
literal with relation symbol R, the tuple t must also be in Q̂(D). By the contain-
ment, t then is also in Q̂1(D) ∪ . . . ∪ Q̂n(D). By that and the fact that t is in R̂,
we find that t is also in Ĉ1(D) ∪ . . . ∪ Ĉn(D). As C1 to Cn hold in D, the tuple t
then is also in Ř.

“⇐” Assume Q 6⊆ Q1 ∪ . . . ∪Qn. We have to show that C1 ∧ . . . ∧ Cn 6|= C.
If Q 6⊆ Q1 ∪ . . . ∪Qn, then there exists a database instance D such that there

is a tuple t which is in Q(D) but not in Q1(D) ∪ . . . ∪Qn(D).
Let RD denote the sets of all atoms with relation symbol R where the argument

is in Q(D) ∪Q1(D) ∪ . . . ∪Qn(D).
We construct a partial database instance D0 = (Ď0, D̂0) out of D, where D̂0 =

D ∪RD and Ď0 = D ∪RD\{R(t) }. That is, ideal and available database contain
both D, and both all R atoms for tuples which were in the answer of one of the
queries over D, except that Ř(t) is not in Ď0.

Over D0, the completeness statements C1 to Cn hold because all tuples that
were in Q1(D) to Qn(D) are also in Ř. However, the completeness statement C
does not hold in D0 because t is not in Ř(D0).

Example 5.3. Consider the local completeness statements

C1 = Compl(R(X), S(X,X))

C2 = Compl(R(X), S(X, Y )).

The corresponding queries Ĉ1 and Ĉ2 are

Ĉ1(X) :− R̂(X), Ŝ(X,X)

Ĉ2(X) :− R̂(X), Ŝ(X, Y ).

Observe, that Ĉ1 ⊆ Ĉ2, because in every database, a valuation that satisfies the
symmetric atom R(x, x) in Ĉ1, also satisfies the unrestricted one R(x, y) in Ĉ2.
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Therefore, satisfaction of C2 implies holding of C1. That is reasonable, because
whenever in a partial database instance, R is complete for all tuples which have
an arbitrary successor tuple in S, then R is also complete for all tuples which have
a symmetric successor.

Having that the problems of local completeness entailment and query contain-
ment can be reduced to each other, we can conclude that the problems have the
same complexity.

Formally, for a classQ of conjunctive queries, the problem of union containment
(UCQ) is the problem of whether a query Q ∈ Q is contained in a union of queries
from Q. The problem of entailment of local completeness statements (ELCSQ) is
the problem of whether a set of local completeness statements using only conditions
from Q, entails another local completeness statement with a condition from Q.

Theorem 5.4. Let Q be a class of conjunctive queries that contains for every
relation the identity and that is closed under intersection. Then the two problems
UCQ and ELCSQ can be reduced to each other in polynomial time.

Proof Follows from lemmas 5.1 and 5.2.

Corollary 5.5. The entailment problem of local completeness statements is

• NP-complete for simple conjunctive queries,

• polynomial for simple conjunctive queries without repeated relation symbols,

• piptwo-complete for each of the classes of conjunctive queries with compar-
isons and equations/disequations, respectively.

5.2 Inferring Query Completeness from

Local Completeness

In this section we give our solution to the question of query completeness entailed
by local completeness statements. Instead of reducing it to the problem of query
independence of updates, as done by Levy, we reduce it to the problem of local
completeness statement entailment by local completeness statements, which was
presented in the previous section.

By the following theorem, given a conjunctive query Q′ and a set of local
completeness statements C, it suffices to test whether C entails CQ, where Q is a
minimal version of Q′.
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Theorem 5.6. Let Q be a minimal conjunctive query and C be a set of local
completeness statements. Then

C |= Compl(Q) if and only if C |= CQ

Proof “⇒” Proof by contradiction. Assume a minimal Q and a set C such that
C |= Compl(Q), but C 6|= CQ. Then, because C 6|= CQ there exists some partial
database instance D such that D |= C but D 6|= CQ. When D 6|= CQ, we find that
D violates some canonical completeness assertion in CQ. We assume that this is
C1, which means that D 6|= C1. This implies that there exists some tuple t1 such
that t1 ∈ Ĉ1 but t1 6∈ Ř1.

Now we construct a second partial database D0 = (B̌(Q)\{L1 }, B̂(Q)), where
B(Q) is the frozen body of Q and L1 is the literal at the first position in the
body of Q (for which the local completeness statement is C1). We show that D0

satisfies C as well. The only difference between D̂0 and Ď0 is L1, therefore all
local completeness statements in C which describe local completeness for relations
different from R1 are satisfied immediately. To show that D0 satisfies also all local
completeness statements in C which describe local completeness for relation R1,
we assume the opposite and show that this leads to a contradiction.

Assume, D0 does not satisfy some local completeness statement C in C. Then,
we must have that X̄1 ∈ Ĉ(D0), where X̄1 are the variables in the literal L1. Let
B(C) be the body of C. Then, X̄1 ∈ Ĉ(D0) means that there must exist a valuation
δ such that δB(C) ⊆ B(Q) and δX̄C = X̄1, where X̄C are the distinguished
variables of C. As t1 ∈ Ĉ1(D) there exists another valuation θ such that θB(Q) ⊆
D̂ and θX̄1 = t1, where X̄1 are the variables in literal L1. Putting θ and σ together,
we would find that θσB(C) ⊆ D̂ and θσX̄C = t1. In other words, t1 would be
constrained by C over D. As t1 is not in Ř1, C would not hold in D, which was our
assumption. Hence we can conclude that X̄1 can not be in Ĉ(D0) and therefore
D0 satisfies C whenever D satisfies it.

Now assumed that D0 satisfies C, Q is complete over D0 because we assumed
that C |= Compl(Q). As D̂0 = B(Q), we find that X̄ ∈ Q̂(D0), with X̄ being the
distinguished variables of Q. As Q is supposed to be complete over D0, X̄ should
also be in Q̌(D0). As D̂0 = B(Q)\{L1 }, this would require a mapping from B(Q)
to B(Q) \ {L1 } which is the identity on the distinguished variables of Q. Then,
this mapping would be a non surjective homomorphism from B(Q) to B(Q) and
hence Q would not be minimal.

“⇐” Follows from theorem 4.3(2). For a query Q, when its projection free
variant Q′ is complete for all partial databases that satisfy CQ′ , that means that
its result over the available and the ideal database of that partial databases is the
same. When two sets are the same, also the sets derived by projections on them
are the same.
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With the next example, we show that query minimality is really a necessary
condition for the theorem given above to hold.

Example 5.7. Consider the query Q(X) :−R(X,X), R(X, Y ). It is not minimal,
because there exists a homomorphism, mapping y to x that allows to drop the
second literal. Its characterizing completeness statements are

• C1 = Compl(R(X,X), R(X, Y ))

• C2 = Compl(R(X, Y ), R(X,X)).

The statement C2 entails the statement C1. However, Q is complete already
whenever C1 holds. This follows from the fact that whenever we have a symmetric
tuple which satisfies the first literal in Q, the same tuple satisfies also the second
literal without influence on the query result. Hence, having any other tuples
specified by C2 is not needed, and hence holding of C1 and C2 is not a necessary
precondition for query completeness of Q.

Using this reduction to the problem of local completeness entailment, which
is equivalent to the problem of query containment, we can carry over complex-
ity results from query containment to determining query completeness from local
completeness with our approach as follows:

• Polynomial: Simple conjunctive queries without repeated relation symbols,
simple conjunctive local completeness statements (that is, both, queries and
completeness statements are without comparison).

• NP-complete:

– Simple conjunctive queries without repeated relation symbols, conjunc-
tive completeness statements (that is, comparison in the completeness
statements only).

– Conjunctive queries, simple conjunctive local completeness statements
(that is, comparison only in the query).

• ΠP
2 -complete: Conjunctive queries, conjunctive local completeness state-

ments (that is, comparison in both the query and the completeness state-
ments).

5.3 Inference from Query Completeness

In addition to inferring completeness from local completeness, there is the question
of how to infer completeness statements from the completeness of queries. Again,
one can consider deducing query completeness or local completeness.
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While the second question has not been approached so far, the first has been
discussed by Amihai Motro in [Mo89]. There, Motro gave a correct but incomplete
algorithm for deducing query completeness from query completeness, based on
query rewriting by views. Since then, no more work on that question has been
published. However, in 2005 a paper has been published by Segoufin and Vianu,
that lays the theoretical foundations for why this question is difficult [SV05]. The
work shows the difficulty of deciding query determinacy, a problem very close to
the problem of inferring query completeness from query completeness, and leaves
its decidability open. In section 5.3.1, we show how our inference problem is related
to the problem of query determinacy.

In section 5.3.2, we discuss the second problem of deducing local completeness
from query completeness. We will give a correct but incomplete reduction to the
problem of query completeness entailed by query completeness.

Although from our investigations it seems that both problems are hard, we
have not been able to come up with a conclusive answer and future work on the
topic is needed.

5.3.1 Inferring Query Completeness from Query Complete-
ness

Inferring query completeness from query completeness is the problem of whether
over all partial databases completeness of a set of queries implies completeness of
a certain query. We remind the reader that partial databases are pairs of database
instances where the second instance is a subset of the first.

The question is of practical interest because query completeness statements
are an interesting alternative for stating database completeness instead of local
completeness statements, as first considered by Motro in [Mo89].

A related problem is the problem of query determinacy. Formally, a set of
queries Q determines a query Q, if Q(D1) = Q(D2) implies Q(D1) = Q(D2) on
all database instances D1 and D2. We note that Q determines Q by Q →→ Q. The
following proposition expresses the obvious relation between query determinacy
and query completeness deduction.

Proposition 5.8. Let Q be a set of views, Q be a query.

Compl(Q)→ Compl(Q) if Q →→ Q .

Proof Obvious. Whenever the answer to Q being the same implies the answer
to Q being the same over arbitrary pairs of database instances, that also holds
over the restricted set of pairs of database instances where one is contained in the
other.
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Whether the entailment holds also for the other direction, which would yield
that the problems of query determinacy and query completeness deduction are
equivalent, we could not identify.

Whether query determinacy is decidable, is an open problem so far.
If the problems could be shown to be equivalent, this would not give an im-

mediate insight, but would tell at least that the problem of query completeness
deduction is equally hard. If some solution were found about decidability of query
determinacy in the future, it would then apply to query completeness deduction
as well. Finally, showing equivalence might be helpful for deciding decidability of
query determinacy itself, as it would tell that it is sufficient to only consider pairs
of database instances where one is a subset of the other.

If the problems were shown to be not equivalent, there would exist the possi-
bility that the problem of query completeness inference has an easier solution than
that of query determinacy.

We tried to get an insight in the question of whether the two problems are
equivalent by considering the following three classes of simple conjunctive queries
(simple conjunctive omitted from here on): boolean queries, monadic queries and
unrestricted queries.

Boolean Queries

For boolean queries, we can give an exact characterization of when a query is
determined by a set of queries that is the same for when completeness of a set
of queries implies completeness of a query. Thus, the two problems are equiva-
lent for boolean queries. Let ≡̇ denote the semantic equivalence operator ex-
tended to sets of boolean queries, such that Q ≡̇ Q if and only if Q′ ≡ Q, where
Q′() :−

⋃
q∈QB(q), w.l.o.g. under the assumption that no variable name appears

in more than one body of the queries in Q.

Theorem 5.9. Let Q be a simple conjunctive boolean query and let Q be a finite
set of such queries. Then

Q →→ Q⇐⇒ Compl(Q)→ Compl(Q)⇐⇒ ∃S : S ⊆ Q ∧ S ≡̇ Q.

Proof For readability, let us abbreviate the theorem above by “1”⇔ “2”⇔ “3”.
As “1” implies “2” is known already from proposition 5.8, we only need to show
“3”⇒ “1” and “2”⇒ “3”.

“3”⇒ “1”. That is, ∃S : S ⊆ Q ∧ S ≡̇ Q implies Q →→ Q. Obvious.
As Q is equivalent to some S which is subset of Q, whenever Q(D1) = Q(D2),

also S(D1) = S(D2) and hence Q(D1) = Q(D2).
“2” ⇒ “3”. That is, Compl(Q) → Compl(Q) implies ∃S : S ⊆ Q ∧ S ≡̇ Q.

We show it by contradiction.



5.3. INFERENCE FROM QUERY COMPLETENESS 41

Assume, ¬∃S : S ⊆ Q ∧ S ≡̇ Q. We have to show, that Compl(Q) 6→
Compl(Q). Let Qin denote the set of all q ∈ Q, such that q is more general than
Q (i.e., there exists a homomorphism from q to Q). As ¬∃S : S ⊆ Q ∧ S ≡̇ Q,
Qin can not be equivalent to Q. W.l.o.g. we assume that the variable names used
in Q and the queries in Q are pairwise distinct.

Now, consider a partial database instance D, where D̂ contains exactly the
frozen body of Q and the frozen bodies of the queries in Qin, and Ď the frozen
bodies of the queries in Qin.

Over D̂, exactly the queries in Qin return true, because for them homomor-
phisms to Q existed. No other queries return true, because the additional struc-
tures in D̂ are homomorphic to the frozen body of Q. The queries in Qin also
return true over Ď, hence we find that Q(D̂) = Q(Ď) = { () }. But Q(D̂) = { () }
and Q(Ď) = ∅, and hence, completeness of Q does not imply completeness of
Q.

Monadic Queries

Monadic queries are queries with exactly one distinguished variable. For monadic
queries, the determinacy problem is decidable.

This holds because for monadic views and queries, conjunctive queries are a
complete rewriting language. That is, whenever a monadic conjunctive query can
be rewritten in terms of monadic views, the rewriting can be expressed as a con-
junctive query. Existence of some rewriting is characterizing for query determinacy,
and existence of conjunctive rewritings is decidable.

Thus, if we were able to show that the existence of a conjunctive rewriting is a
necessary precondition for query completeness following from query completeness,
it would follow that the two problems are equivalent on the class of monadic
queries.

The proof of existence of a conjunctive rewriting as necessary precondition
for query determinacy shown in [SV05] makes use of a construction of a pair of
database instances, where the one is not included in the other, and hence does not
trivially apply to our case of pairs of partial database instances, where the one is
included in the other. We did not investigate further.

Unrestricted Queries

In the unrestricted case, decidability of query determinacy for conjunctive queries
is an open question. It is known that existence of a conjunctive rewriting, which
is decidable, is not a necessary precondition. Conversely, existence of a rewriting
in second-order logic is a necessary precondition, however, this is in general not
decidable. It might be the case, still, that the necessary rewritings belong to
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a decidable fragment of second-order logic (what Segoufin and Vianu found out
already is that ∃SO ∩∀SO is an upper bound for the expressivity of the language
in which the rewritings have to be).

It is an open question whether entailment of query completeness and query
determinacy are equivalent for arbitrary conjunctive queries.

An attempt for proofing equivalence of the problems that did not succeed is
enclosed in the appendix of this thesis.

5.3.2 Inferring Local Completeness from Query Complete-
ness

For the problem of whether a local completeness statement follows from a query
completeness statement we can give a sufficient condition. The condition is that
the query is projecting on the attributes of the relation over which the local com-
pleteness statement is, and is equal or more general. Whether this condition is
also a necessary condition for the entailment to hold, remains an open question.

Proposition 5.10. Let S and G be conjunctive conditions. Let Q(X̄) :−R(X̄), S
be a query and let C = Compl(R(X̄), G) be a local completeness statement. Then

Compl(Q) |= C if S ⊆ G.

Proof Obvious. Whenever relation R is complete for all tuples which satisfy a
condition S that is more general than G, it is also complete for all tuples that
satisfy the specific condition G.



Chapter 6

Reasoning with Additional
Information

In this chapter we present completeness reasoning in the presence of additional
information about the database. In practice this can be important because often
one is interested in the completeness of a specific state of the database.

The additional information we consider are schema constraints and extensional
information. We show that both kinds of informations can allow the derivation of
additional completeness statements, that is, statements that did hold before. In
particular, we show the effect that foreign key constraints have in the presence of
extensional information, which can lead to a significant reduction of the size of the
completeness statements required for query completeness.

In section 6.1, we show how schema constraints such as keys and foreign keys
can allow to conclude completeness statements would not hold without this addi-
tional information. In section 6.2 we introduce the new concept of finite domain
constraints, and show how it also affects completeness reasoning. Section 6.3 shows
the effect of extensional information, that is, knowledge of the available database
part. In section 6.4, we show how schema and extensional information interfere
and how they allow to replace necessity for completeness assertions by automated
checks at runtime.

6.1 Schema Constraints

In this section, we describe the effect of schema constraints on completeness rea-
soning. The constraints we consider are keys of relations, foreign key dependencies
between relations, and finite domain constraints.

We show how all three kinds of constraints can allow to derive additional com-
pleteness statements. These additional derivations are all based on the fact that

43
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query completeness deduction can be reduced to query containment, and all three
kinds of constraints can allow to derive additional containment.

Example 6.1. In this example we show how a finite domain constraints can allow
to derive completeness for a query that does not hold without that constraint.

Consider the following query Q, its canonical completeness statement CQ and
two more local completeness statements C1 and C2.

Q(X) :− person(X, Y )

CQ = Compl(person(X, Y ),>)

C1 = Compl(person(X ,Y ), Y = male)

C2 = Compl(person(X, Y ), Y = female)

By theorem 5.6, satisfaction of CQ is the characterizing condition for com-
pleteness of Q under multiset semantics. Suppose we want to decide whether CQ
is entailed by C1 and C2. According to theorem 5.1, this holds exactly if the
query ĈQ(X, Y ) :− person(X, Y ) is contained in Ĉ1 ∪ Ĉ2, where with Ĉ1 and Ĉ2

we denote, as usual, the queries corresponding to C1 and C2 as usual.
In the general case, CQ is not contained in Ĉ1∪ Ĉ2. However, observe that with

respect to the information that persons can only have gender male or female, the
containment would hold.

We will give more examples in the next subsections.
In our setting, schema constraints restrict the ideal database. That is, a schema

constraint holds on a partial database instance, if it holds on the ideal version of
it, whereas in general it may be violated in the available database. As the ideal
database is normally considered to be unknown, schema constraints merely have
the effect of restricting the set of possible ideal database instances for a given
available database instances.

To illustrate this idea, consider the foreign key from student.level and code to
class.level and code. It restricts the possible ideal database instances for available
database instances in such a way, that whenever there is a student tuple in the
available database, the ideal database must contain the student’s level and code
together as tuple in the class relation.

Observe that key constraints and finite domain constraints trivially also hold
in an available database instance, if they hold in the ideal database instance.

Note also that deciding query completeness under all the schema constraints
presented here using our solution also leads to a generally undecidable problem,
because we reduce query completeness entailment to local completeness entail-
ment, and this to query containment, which, with both keys and foreign keys, is
undecidable [JK82].

We will discuss possible incomplete but practical approaches in the chapter on
implementation.
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6.1.1 Keys

Keys are one of the most basic concepts of relational databases. Formally, keys are
subsets of the attributes of a relation, whose values must be unique in any relation
instance. An equivalent definition is that these subsets functionally determine all
other attribute values in that relation.

Key constraints are special cases of functional dependencies. We restrict our
considerations to key-based functional dependencies (keys) because they are, in
contrast to non key-based functional dependencies, much more often used in prac-
tice. Also, the treatment of non key-based functional dependencies does not give
any new insights.

Knowledge of keys that hold in database instances can allow to derive more
containment relationships. For any two literals in some expression which have the
same symbols at the position of the key attributes, database valuations have to
map the literals to the same ground atoms. Thus, the two expressions can be
combined, which may lead to further containment.

Example 6.2. Suppose we are interested in deciding whether a given local com-
pleteness statement C1 entails another statement C2, where C1 is the completeness
statement for all students which are enrolled in class 3a, and C2 the completeness
statement for all students which are enrolled in some class in level 3, and in some
class with code a. Formally, the completeness statements and their corresponding
queries are

C1 = Compl(student(N,L,C), L = 3, C = a)

C2 = Compl(student(N,L,C), student(N, 3, C1), student(N,L2, a))

Ĉ1(N,L,C) :− ˆstudent(N,L,C), L = 3, C = a

Ĉ2(N,L,C) :− ˆstudent(N,L,C), ˆstudent(N, 3, C1), ˆstudent(N,L2, a)

According to theorem 5.1, C2 is entailed by C1 exactly if Ĉ2 is contained in Ĉ1.

In general, this containment does not hold, because we do not find a homo-
morphism from C1 to C2. However, with the knowledge that the name attribute
of the student relation is its key, we can minimize C2 in such a way that the three

ˆstudent atoms with the same variable as key are summarized in one atom so that
C2 becomes

Ĉ2(N, 3, a) :− ˆstudent(N, 3, a).

Then, a homomorphism from Ĉ1 to Ĉ2 exists, hence Ĉ2 is contained in Ĉ1, and
hence C1 implies C2.



46 CHAPTER 6. REASONING WITH ADDITIONAL INFORMATION

6.1.2 Foreign Keys

Foreign keys are another commonly used constraint concept of relational databases.
Existence of a foreign keys expresses that the values of a certain set of attribute of
one relation always have to be a subset of the values of a certain set of attributes
of another relation, for which they also are the key. That is, foreign keys allow
to model strict n : 1 relationships. They are a foundational concept for modelling
data. Moreover, they are essential for normalizing database schemas.

Foreign key constraints are a special case of inclusion dependencies. We restrict
our considerations to foreign keys, because non key-based inclusion dependencies
are rarely used in practice, and their treatment would not lead to new insights.

Like keys, foreign keys affect containment reasoning, as knowledge of foreign
keys allows to derive more containment. That is, with foreign keys one can add
not explicitly mentioned atoms to queries, which must be there due to foreign key
relationships. Then, more containment may be derivable.

Example 6.3. Consider a completeness statement C1 for all students that are
enrolled in some class, and a completeness statement C2 for all students:

C1 = Compl(student(N,L,C), class(L,C, P ))

C2 = Compl(student(N,L,C),>).

In general, statement C1 does not implies statement C2, because students who
are not in any class might be missing in when only C1 is satisfied. However,
observe, that by the fact that there is a foreign key asserted from students level
and code attributes to the class table that holds in the ideal database, every
student necessarily is enrolled in some class. So if the student table is complete for
all students which are ideally enrolled in some class, it is complete for all students.
That is, C1 entails C2 when considering the foreign key assertion.

Like in the previous example about keys, this is exactly reflected on the level
of containment. In general, Ĉ2 is not contained in Ĉ1, however with respect to the
foreign key, it is.

While the impact of foreign keys on containment checking is well known, we
will show a more interesting effect of foreign keys in connection with extensional
information in subsection 6.4.

6.2 Finite Domain Constraints

Finite domain constraints are a constraint concept expressing that only a certain
finite set of values may appear for some attribute in some part of a relation.
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Although not included in the SQL standard, finite domain constraints are im-
plemented in important relational database systems as PostgreSQL or MySQL.

For complete relations, finite domain constraints are used explicitly in practice.
We present an even stronger concept by allowing finite domain constraints that
apply only to parts of relations. We are not aware of any explicit use of this,
however these concepts are important in explaining some effects in completeness
reasoning with extensional data that is shown in the next section.

Example 6.4. As example for a finite domain constraint for a complete relation
consider the finite domain constraint for the relation person that requires the
gender attribute to take its values only in the set {male, female }.

With one local completeness statement for all male persons and one for all
female persons, one then can derive completeness of the person table.

Example 6.5. As example for a finite domain constraint over a part of a relation
only, consider a finite domain constraint stating that values of the code attribute
of tuples in the class table, where class.level is greater 8, should always be in the
set { a, b, c }. This constraint would express that classes in a level higher than 8
may only have code a, b or c, whereas in lower levels still codes like e or g might
occur.

With completeness statements for all classes with code a, b and c, one then can
derive that a query asking for all classes in level 10 are complete, whereas classes
in level 7 might not be.

Formally, a finite domain statement is a four-tuple consisting of a relation R,
a set A of attribute names of that relation, a conjunctive condition G and a set
of tuples T over the domain, with the tuples having the same arity as the set of
attribute names. We will denote such a finite domain constraint by the following
expression:

Dom(R,A,G, T ).

For a finite domain constraint F , we define the corresponding query QF as follows:

QF (A) :−R,G.

A finite domain statement holds in a partial database instance D, if QF (D̂) is a
subset of S.

As shown in the example above, finite domain statements can affect contain-
ment reasoning. We are not aware of any discussion of containment with respect
to finite domain constraints so far.

Given a set of finite domain statements, a query Q and a set of queries Q, for
checking whether Q ⊆ Q with respect to finite domain constraints, we investigate
two possible approaches:
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1. We add local completeness statements for all parts of relations that are out-
side the finite domains and then run standard containment algorithms.

2. We modify the containment algorithm in such a way that it takes into account
the finite domains constraints.

The first technique has the advantage of not changing the containment algo-
rithm and hence allowing to use standard algorithms. However, it requires to add
polynomial many completeness statements with respect to the length of the query
and the number of finite domain constraints. Also, the disequality operator is
needed in the added local completeness statements, therefore this method is not
applicable when the query language shall be that of simple conjunctive queries.

The second technique does not need to generate further completeness state-
ments, however it may require exponentially many containment checks in the
number of finite domain constraints.

Next, we show the two approaches more in detail.

Method 1. Adding Completeness Statements

The basic idea of this method is to transform finite domain statements into local
completeness statements.

A finite domain constraint restricts the possible tuples for some specific parts of
relations to finite sets, that is, no other tuples may be present in database instances
satisfying the finite domain constraints. Over partial databases, that means that
those other parts have to be empty both over the ideal and the available database.
When such parts are empty over both database instances, then these parts are
also complete, because no tuple can be missing from the empty set. Thus, there
exist corresponding descriptions of finite domain constraints by local completeness
constraints.

The method only works with respect to a concrete query, i.e., one cannot just
add the local completeness constraints apriori, as their structure depends on the
structure of the query.

Given a query and a finite domain constraint, one asserts that all the restricted
canonical completeness conditions of the query hold, where the values of the at-
tributes of the finite-domain constrained relation are restricted to be outside the
finite domain. If statements about the values inside the finite domain are added,
then these statements together yield satisfaction of the canonical completeness
conditions.

Example 6.6. Consider our school database is that of an elementary school, that
is, there is a finite domain constraint F on class.level which allows classes only to
have levels from 1 to 4. Consider a local completeness statement C for all classes



6.2. FINITE DOMAIN CONSTRAINTS 49

in levels 1 to 4 and consider a query Q asking for all classes. Obviously, we should
find out that Q is complete with respect to F and C. With CQ being the canonical

completeness condition of Q, ĈQ ⊆ Ĉ does not hold immediately. Now observe,
that we can transform the finite domain constraint F into a local completeness
statement

FQ = Compl(student(N,L,C), L 6= 1, L 6= 2, L 6= 3, L 6= 4).

Now, ĈQ ⊆ Ĉ ∪ F̂Q holds, hence C and F imply CQ and hence completeness
of the query Q.

Method 2. Modifying the Containment Algorithm

The idea of this method is to modify the containment algorithm such that it checks
containment for all possible instantiations with respect to given finite domains.

The idea is loosely related to that of linearization for containment checking
with comparisons. However, generating all possible linear orderings of a query,
we generate all possible instantiations of it with respect to finite domains. If
containment holds for all possible instantiations with respect to finite domains,
then, containment holds with respect to the finite domains.

For a queryQ(X̄) :−L1, . . . , Ln and a finite domain constraint F = Dom(R, attributes, G, S),
we define the instantiations of Q with respect to F to be all the queries where at-
tributes of relations R that satisfy G have been substituted by elements of S. A
query Q is then contained in a set of queries Q with respect to a finite domain
constraint F , if all instantitations of Q with respect to F are contained in Q.

An efficient algorithm for finite domain containment checking using this method
we show in section 8.2. The key of this algorithm is to not instantiate every variable
with a finite domain, but only those for which containment of the instantiations
is possible.

Example 6.7. Following our previous example, the query for all classes Q would
be replaced by the four instantiations of it where the variable in the class literal is
replaced by the constants 1 to 4. As for each of those instantiations, the contain-
ment with respect to the query corresponding to the given completeness statement
holds, we could then conclude that the given completeness statement and finite
domain statement entail query completeness.

Next we discuss the complexity of finite domain containment. Notably, the prob-
lem is strictly harder than containment without finite domains.

First, let us discuss an upper bound for the complexity. The most naive way of
checking whether a query Q is contained in queries Q1 to Qn under a set of finite
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domain constraints F is to check for each possible instantiation of the variables in
Q to which finite domain constraints in F apply, whether the instantiated version
of Q is contained in Q1 to Qn.

Unluckily, it is not trivial to find all possible instantiations of Q with respect to
F , because guarded finite domain constraints can interact. E.g., when one or sev-
eral finite domain constraints together restrict a variable to only be allowed to take
one value, then this may trigger the condition of another finite domain constraint
to become satisfied allowing another finite domain constraint to be applied. Still
the possible interactions always terminate, because every finite domain constraint
can be applied to every position in a query at most once. But an algorithm taking
into account these interactions seems not trivial.

A Naive Algorithm

We present an easier way of how to get all valid instantiations of Q with respect
to F : We generate the maximum set of instantiations possible with respect to F ,
then for each instantiation we check if it is valid, i.e., whether it does not violate
any finite domain constraint in F .

To get all possible instantiations, we first generate a set T of constants as the
union of all constants appearing in finite domain constraints in F together with
as many new constants not appearing in F nor in the queries Q and Q1 to Qn as
there are variables in Q. Then we generate all possible instantiations of Q with
respect to T . For variables to which finite domain constraints are applicable, we
for sure have all possible values captured since their finite domain then is a subset
of T . For variables to which no finite domain constraint is applicable, we cover
sufficiently many cases by introducing as many new constant symbols as there are
variables in the query.

For each instantiation we then check whether it is valid with respect to F , i.e.,
whether it does not violate any finite domain constraint in F . This is done by
checking for every finite domain constraint at every position of the instantiated
query, whether it is applicable, and if so, if the instantiated value is member of the
finite domain that is applicable. Testing applicability of finite domain constraints
just requires homomorphism testing.

The number of possible instantiations is exponential in the number of finite
domain constraints and in the size of the query. Assumed having an NP-oracle,
testing whether for all valid instantiations the containment holds, is a problem in
Co-NP. To find out that finite domain containment does not hold, one just needs to
guess one instantiation for which the containment does not hold. However, to show
that containment holds, one needs to consider all possibly exponentially many
instantiations. For a fixed instantiation, the remaining procedure is a standard
containment check (e.g., by homomorphism testing), which is an NP problem.
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Combining the two steps, we find out that the naive algorithm can decide the
problem in ΠP

2 .
The process of testing whether an instantiation is valid with respect to a set of

finite domain constraints F has no significance for the complexity of the algorithm,
since it just requires homomorphism testing which is an NP problem.

Note that this algorithm can also be extended to conjunctive queries containing
comparison, however then

Lemma 6.8. Containment of simple conjunctive queries in the presence of finite
domain constraints can be decided by naive instantiation in ΠP

2 .

To find the lower bound for the problem of finite domain containment of simple
conjunctive queries, we provide a reduction from a ΠP

2 -complete problem to the
problem of finite domain containment of simple conjunctive queries.

It is the problem of deciding validity of universally quantified 3-satisfiability
(∀3-SAT). The ∀3-SAT formulas are of the following form

∀X1, . . . , Xm∃Y1, . . . , Yn : C1 ∧ . . . ∧ Ck,

where clause Ci is of the form Li1 ∨ Li2 ∨ Li3 with Li1 to Li3 being literals using
propositions from X1, . . . , Xm and Y1, . . . , Yn.

Let φ be a formula of the above form. We create an instance of a finite domain
containment problem such that containment holds exactly if φ is valid.

The database schema we use is Σ = {R1/2, . . . , Rm/2, S/2, C
′
1/3, . . . C

′
k/3 }.

For a clause Ci with literals Li1, Li2 and Li3 in φ, we define conjunctive condi-
tions

Gi = Ri(a,Wi), Ri(Wi, b), S(Wi, 0), S(b, 1)

G′
i = Ri(a, b), S(b,Xi).

Furthermore, the set C
′(7)
i denotes the set of the 7 ground instances of predicate

C ′
i over the domain { 0, 1 }, such that constant 1 at position j in C ′

i corresponds
to the variable Zij being mapped to true, and the 7 ground instances are the ones
where Ci evaluates to true under the variable mapping.

Let F be the finite domain constraint with

F = Dom(S, 1,>, {a, b})
Let Q1 and Q2 be the following queries:

Q1() :−G1, . . . , Gm, C
′(7)
1 , . . . , C

′(7)
k

Q2() :−G′
1, . . . , G

′
m, C

′
1, . . . , C

′
k
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Lemma 6.9. Let φ be a ∀3-SAT formula as shown above and let Q1, Q2 and F
be constructed as above. Then

φ is valid exactly if Q1 ⊆F Q2.

Proof For containment to hold, both each conjunctive condition C ′
i has to be

contained in the conjunctive condition C
(7)
i , and the conjunctive condition G′

j in
the conjunctive conditions Gj.

The key of that containment is that the variables Wi in Gi are not restricted
further than to have the constant values a or b. The value of Wi determines which
value Xi has, thus, Xi can be both 0 or 1. Thus, the indeterminacy of Wi leads to
containment having to hold both in the case of Xi being 0 or 1, representing the
universal quantification of the X variables in φ.

The remaining part of the containment problem is standard, for every possible
assignment of the X variables, there must exist a valuation of the Y variables such
that each C ′ clause becomes a ground instance for which the clause evaluates to
true.

The reduction is correct, because whenever containment holds, an assignment
for the Y variables for each combination of X variables has to exist that enables
the containment of the C ′ in the C(7), it is complete because whenever φ is valid,
for every combination of the X variables, some combination of the Y variables has
to exist that makes all the clauses true.

Figure 6.1: Structure of Gi and G′
i. Depending on the value assigned to W , Xi

becomes either 0 or 1.

Having the reduction stated in Lemma 6.9 from universally quantified 3-satisfiability
and knowing that the problem of universally quantified 3-satisfiability is ΠP

2 -
complete [St76], we now can formulate the following lemma:
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Lemma 6.10. Containment of simple conjunctive queries in the presence of finite
domain constraints is ΠP

2 -hard.

Putting the lemmas above together, we can state:

Theorem 6.11. Containment of simple conjunctive queries in the presence of
finite domain constraints is ΠP

2 -complete.

Proof Follows from lemmas 6.8 and 6.10.

6.3 Extensional Information

Completeness reasoning with extensional information means completeness reason-
ing with knowledge of the available database. We consider this to be an important
practical case.

In this case of knowledge of the content of the available database, given local
completeness statements do not only express equivalence between parts of the
available and the ideal database. They also allow to explicitly know the content
of parts of the ideal database.

Whenever the content of a part of the ideal database is known, this directly
yields finite domain constraints for attributes in that part. I.e., there may not be
other tuples than the ones present in the available database.

While that fact by itself is trivial, it becomes interesting when join operations
are performed. As shown in the previous section, finite domain constraints are
propagated between relations when joins are performed. A finite domain on an
attribute of one relation also applies to an attribute of another relation, when the
two attributes are the join attributes. Then, local completeness assertions may
yield completeness which did not hold before.

Example 6.12. Consider a database schema Σ = {R/1, P/1 } and a query
Q(X) :−R(X), P (X). Consider an available database instance where the exten-
sion of Ř is empty and consider R is known to be complete by a completeness
statement C. Although no completeness is known for P , one can conclude that Q
is complete with respect to Ď and C because the result of Q will always be empty
over any D̂ where R(D̂) is empty.

Example 6.13. As a more complex example, consider our standard schema with-
out knowledge of the foreign keys. Consider a database instance of it, where in
the class table we only find classes with levels from 1 to 8. Suppose, completeness
for the class table was stated.

Now, consider a query Q(N) :− student(N,L,C1), class(L,C2, P ) asking for
all student names for which exists a class in their level (i.e., a join is performed
between student.level and class.level).
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Since there is a finite domain constraint on class.level, it also applies to stu-
dent.level by the join. Thus, given a local completeness statement for students in
levels 1 to 8, one could conclude query completeness.

Without the extensional knowledge of the class table this would not be possible,
since there could be students in the result, which are in a level higher than 8.

Let us characterize the impact of extensional information in a formal way. Let
Q be a query, Ď be an available database instance, and C be a set of local com-
pleteness assertions. We say that Ď and C entail Compl(Q) if no valid extension
D̂ for Ď exists such that the answer of Q is different over Ď and D̂. Formally:

Ď, C |= Compl(Q) if and only if for all D̂ with (D̂, Ď) |= C we have

Q(D̂) = Q(Ď).

This definition characterizes what query completeness with respect to an avail-
able database instance and a set of local completeness assertions means. That is,
for any ideal database valid with respect to the set of local completeness assertions,
the query should be complete.

A Naive Decision Procedure

The proposition also gives rise to a decision procedure immediately. There can be
infinitely many valid ideal databases for a given available and local completeness
statements. However, it suffices to inspect finitely many in order to find out,
whether there exists one valid ideal database instance where Q(D̂) 6= Q(Ď).

An ideal database instance D̂ can only violate the query completeness if the
result of Q over D̂ contains a tuple which is not in the output of Q over Ď. With
respect to a fixed Ď, there are only finitely many new different tuples to consider.
And for every new tuple, there has to exist a valuation of Q over D̂ yielding that
tuple. Again, it suffices to consider finitely many valuations.

Only finitely many new tuples need to be considered, because we only need to
consider result tuples over the active domain joined with a set of new constants
of the arity of the distinguished variables of the queries. A new tuple cannot be
more different than different in every constant from the active domain.

And for each new tuple, only finitely many valuations need to be considered,
because we only need to evaluate Q over the active domain joined with a set of
new constants with the size of the number of variables in the body of Q. More
new constants than the queries has variables do not result in anything new.

Example 6.14. Consider a database schema Σ = {R/2, P/1 }, a query Q, a
partial database instance Ď and a local completeness statement C where
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Q(X) :−R(X, Y ), P (Y )

R(Ď) = { (a, b), (a, c) }
P (Ď) = { b }
C = Compl(R(X, Y ),>).

Here, C |= Compl(Q) does not hold because no completeness for relation P is
asserted. However, C, Ď |= Compl(Q) does hold, because whatever tuples might
be missing in P̌ (D), they can not lead to any additional tuple in the output of Q,
because the extension of R in Ď allows only constant a to be in the output, and
relation R is asserted to be complete.

With the decision procedure sketched above, one has to test for all tuples over
the active domain joined with a finite set of new constants, whether they can be in
the output of a D̂ that does not violate C. So here, one would consider constants
b, c and w.

We only consider constant b here, the other cases are analogous. For constant
b to be in the result of Q over a D̂, there has to exist a valuation over D̂ where
X is mapped to b. For mapping Y , again finitely many possibilities of mapping it
would have to be considered. But no matter what Y is mapped to, following the
first literal in Q, R̂(D) would have to contain a tuple where the first component is
b. This would violate the completeness statement C, and hence it is not possible.
Considering the other cases analogously, we find that C and Ď imply completeness
of Q.

Note that the decision procedure as sketched above directly only applies to com-
pleteness reasoning under set semantics. To use it also for completeness reasoning
under multiset semantics, a slight change has to be made: Instead of considering
all possible new tuples in the result of Q over D̂, one also has to consider old ones,
that are tuples which are already in Q(Ď), because they may be yielded again by
other valuations.

In the example above, C and Ď do not imply completeness of Q under multiset
semantics, because if P (D̂) contained c, then Q would yield tuple a two times over
D̂. If P (Ď) also contained c, then Q would be complete with respect to Ď and C
under multiset semantics.

The Complexity of the Naive Decision Procedure

Regarding the complexity of the algorithm, observe that in order to return the
answer Yes (that means, a query Q is complete with respect to given Ď and C),
for every valuation that leads to a new tuple being in the result of Q with respect to
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Ď, one needs to find a violation of a completeness assertion. In the size of Q, there
are exponentially many valuations leading to new tuples, and for every of them, the
queries corresponding to the local completeness statements have to be evaluated
to see whether none of the statements is violated. For conjunctive queries, query
evaluation is an NP-complete problem. So the overall decision procedure is in
ΠP

2 , because if an NP oracle existed for solving the query evaluation problem, the
overall problem with interchanged answers would be in NP: For finding that Ď
and C do not entail completeness of Q, one just needs to guess one valuation of
Q that yields a new tuple not in Q(Ď), and then evaluate the queries from the
local completeness statements to show that the valuation does not violate any local
completeness statement.

Lemma 6.15. The problem of query completeness under local completeness and
extensional information can be decided in ΠP

2 by the algorithm sketched above.

This lemma gives us an upper bound for the complexity of the decision problem.
To find a lower bound, we again provide a reduction of the problem of validity

of universally quantified 3-SAT formulas.
Consider φ to be a again an universally quantified 3-SAT formula of the form

∀X1, . . . , Xm∃Y1, . . . , Yn : C1 ∧ . . . ∧ Ck,

as used in the proof of lemma 6.10.
We define a query completeness problem Γφ = (C, Ď |= Compl(Q)) as follows:
Let the relation schema Σ be {B/1, R1/1, . . . , Rm/1, C

′
1/3, . . . , C

′
k/3 }. Let Q

be a query such that

Q() :−B(X1), R1(X1), . . . , B(Xm), Rm(Xm).

Let Ď be such that B(Ď) = { 0, 1 }, and for all i from 1 to m let Ri(Ď) = {}
and C ′

i(Ď) contains all the 7 triples over { 0, 1 } such that Ci becomes true when
the variables in Ci become the truth values assigned that correspond to 0 and 1.

Let C be a local completeness statement such that

C = Compl(R1(X1), . . . , Rm(Xm), C1(Z̄1), . . . , Ck(Z̄k)),

and the Z̄i are variables from X1 to Xm union Y1 to Yn as in φ.

Lemma 6.16. Let φ be a ∀3-SAT formula as shown above and let Q, C and Ď be
constructed as above. Then

φ is valid if and only if C, Ď |= Compl(Q).
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Proof Observe first, that validity of φ implies that for every possible combination
of the X variables, there exist Y variables such that C1 to Ck in C evaluate to
true.

Completeness of Q follows from C and Ď, if Q returns the same result over Ď
and any ideal database instance D̂ that subsumes Ď and C holds over (D̂, Ď).

Q returns nothing over Ď. To make Q return the empty tuple over D̂, one value
from { 0, 1 } has to be inserted into each ideal relation instance R̂i, because every
predicate Ri appears in Q, and every extension is empty in Ď. This step of adding
any value from { 0, 1 } to the extensions of the R-predicates in D̂ corresponds to
the universal quantification of the variables X.

Now observe, that for the query to be complete, none of these combinations
of addings may be allowed. That is, every such adding has to violate the local
completeness constraint C. As the extension of R1 is empty in Ď as well, C becomes
violated whenever adding the values for the R-predicates leads to the existence of a
satisfying valuation of the body of C. For the existence of a satisfying valuation, the
mapping of the variables Y is not restricted, which corresponds to the existential
quantification of the Y -variables.

The reduction is correct, because whenever C, Ď |= Compl(Q) holds, for all
possible addings of { 0, 1 } values to the extensions of the R-predicates in D̂ (all
combinations of X), there existed a valuation of the Y -variables which yielded a
mapping from the C-atoms in C to the ground atoms of C in Ď, that satisfied the
existential quantified formula in φ.

It is complete, because whenever φ is valid, then for all valuations of the X-
variables, there exists an valuation for the Y -variables that satisfies the formula
φ, and hence for all such extensions of the R-predicates in D̂, the same valuation
satisfied the body of C0, thus disallowing the extension.

Theorem 6.17. Deciding query completeness in the presence of extensional in-
formation is ΠP

2 -complete.

Proof The hardness follows from lemma 6.16 and the fact that deciding validity of
universally quantified 3-SAT formulas is ΠP

2 -complete. The completeness follows
from lemma 6.15, which shows that there exists an algorithm that decides query
completeness with extensional information in ΠP

2 .

Interesting about this complexity result is that it shows that completeness
reasoning with extensional for simple conjunctive queries is strictly harder than
without. For simple conjunctive queries, we showed in 5.2 that the problem of
deciding query completeness under given local completeness is in NP.

Note that alternatively one can also reduce the problem of containment with
unrestricted finite domain constraints to completeness reasoning with extensional
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information. Given two queries Q1 and Q2 for which Q1 ⊆F Q2 shall be decided,
this can be reduced to deciding whether a Ď and an C models Compl(Q1), where
Ď contains the frozen body of Q2 and C = CQ2 , and additionally the finite domains

are encoded by relation instances in D̂ for which completeness is asserted.
That reduction also works vice versa, that is, every completeness reasoning

problem with respect to extensional information can naturally be translated in
a reasoning problem with finite domain constraints, by translating every data in
the extensional information that is asserted to be complete, in a finite domain
constraint.

6.4 Schema and Extensional Information

In this section we show how in presence of both schema and extensional informa-
tion, sufficient conditions for query completeness arise which can strongly reduce
the completeness assertions needed to be pregiven for query completeness. In par-
ticular, we show how satisfaction of certain canonical completeness conditions can
be checked automatically.

Alon Levy was first to observe this effect [Le96]. He showed how in presence
of extensional data and functional dependencies, two queries can posed to the
extensional data such that containment of their results allowed concluding query
completeness.

The method we present is based on Levy’s observation, however it allows con-
clusions also about satisfaction of the canonical completeness conditions instead
of the whole query only, and furthermore, in the case of foreign key assertions, it
can allow to detect database incompleteness.

The idea is that in presence of extensional information, whenever a query con-
tains a join between two literals L1 and L2, where on for L2 the key attributes
are involved in the join, then, whenever L1 is known to be complete, and in the
extension of the relation of L2 we find for each tuple in the extension of the literal
L1 one tuple joining with it, then the join result is known to be complete. That
holds, because there can be only at most one tuple per key value in the extension
for L2. So if we find one tuple per tuple in L1, then we have found the maximum
of what can be there.

The effect is, that some canonical completeness information required to be
asserted in order to be able to conclude query completeness, does not need to be
asserted any more, but can be checked automatically.

Example 6.18. Consider a query Q asking for all names of students together with
their gender. Note that there is a foreign key from student.name to person.name.

Q(N,G) :− student(N,L,C), person(N,G).
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To conclude completeness of this query, we originally need completeness state-
ments asserted for all students that are persons, and all persons that are students.

Now suppose, we only know that all students which are persons are com-
plete, and suppose the available student table contains only (andrea, 2, b) and
(beatrix , 5, d).

Since we have the foreign key from student.name to person.name, it suffices
to check whether there are tuples in the available person table with name equals
andrea and beatrix. Because the foreign key holds in the ideal database, there are
such tuples in the ideal relation, and since name is the key of the relation, exactly
one per name. Thus, if we find this two tuples in the available person relation,
we can conclude the canonical completeness for the person relation and from this,
query completeness follows.

Query Graph

Before presenting our main results formally, we have to introduce some terminol-
ogy.

Consider a conjunctive query

Q(X̄) :−L1(Ȳ1), . . . , Ln(Ȳn), Cn+1(Ȳn+1), . . . , Cm(Ȳm)

where L1 to Ln are literals and Cn+1 to Cn are comparisons. Suppose Q contains
no equalities, that is, all equalities have been eliminated.

We say that there exists a join between literals Li and Lj on variables K̄
whenever K̄ is both a subset of Ȳi and Ȳj. A join is a key join from Li to Lj if the
variables K̄ are the key variables of the relation symbol of literal Lj. A key join
is a foreign key join, if a foreign key was asserted for it.

Given a conjunctive query Q, it’s query graph GQ is a graph with both unla-
belled undirected and labelled directed edges such that:

• for every literal in Q, there is a node in GQ,

• there is an undirected edge between nodes Li and Lj, if there is a join between
Li and Lj in Q that is not a key join and

• there is a directed edge with label key from node Li to Lj if there is a key
join from Li to Lj in Q that is not a foreign key join.

• there is a directed edge with label foreign key from node Li to Lj if there is
a foreign key join from Li to Lj in Q.

A node in a query graph is called a sink, if it has no undirected edges and no
outgoing directed edges.
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A node is called a transitive sink, if it is a sink or if it has no undirected edges
and all outgoing directed edges are directed to nodes which are transitive sinks.

Every node that is not a transitive sink is called a core node.
The core query graph Gcore of a query graph GQ is the subgraph of GQ, where

all transitive sinks have been eliminated. The core query Qcore is the query corre-
sponding to Gcore.

The CheckF Algorithm

The checkF is a boolean function, with the algorithm shown in table 6.1. It takes
a query Q, a literal L inside Q and an available database instance Ď as input,
and returns true exactly if all partial databases instances having Ď as available
instance and having the canonical completeness for the literals in the core query
asserted, satisfy canonical completeness for the input literal with respect to some
schema assertions F .

CheckF (Li, Q, Ď)

if not exists a directed path in GQ from Gcore to Li
return FALSE

for every t ∈ Qcore(Ď)
for every maximal directed path L1, . . . , Li in GQ

if not exists l1, . . . , li in Ď such that

t and l1 agree on the join attributes between Qcore

and L1

AND

every lj and lj+1 agree on the join attributes

between Lj and Lj+1

return FALSE

return TRUE

Table 6.1: Function Check

The following theorem expresses that in presence of schema and extensional
information, holding of canonical completeness assertions for literals that are tran-
sitive sinks can be checked on the extensional data, and the check is a sufficient
condition.

Lemma 6.19. Let Q be a query, L be a literal in Q that is a transitive sink in
the query graph of Q, F be a set of schema assertions, Ď be an available database
instance and Ccore be the set of canonical completeness conditions for the literals
in the core of Q. Then

CheckF (L,Q, Ď) ∧ Compl(Ccore) |= Compl(L)
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Proof When the check algorithm succeeds, then for every tuple in the core query
over Ď, a tuple in the extension of Ři in Ď of literal Li exists, that is related via
a chain of foreign key joins.

The fundamental reason for that being sufficient is that the joins considered
are joins with key attributes, so there can be at most one such tuple per tuple
in Qcore(Ď). Therefore, finding just one tuple for every tuple in Qcore(Ď) is a
sufficient condition for satisfaction of the canonical completeness of literal L.

If a literal is connected to the core query by foreign key joins only, the sufficient
conditions stated above become necessary conditions. That is, because a foreign
key assertion not only states that there can be at most one tuple per join attributes,
but it also states that there has to be at least one.

Let L, Q, F and Ď be as above.

Proposition 6.20. If L is connected to the core of Q only by edges that are labelled
as foreign key joins, then

Compl(L) |= Check(Q,L, Ď, F ).

Different from any theory presented so far, this proposition allows to explicitely
detect database and query incompleteness. All methods presented so far could de-
tect whether a query is necessarily complete under given completeness, schema and
extensional information. A query not found to be complete in general, could still
be complete on a concrete instance. With this proposition now, one can explicitely
find out that some local completeness does not hold. Under multiset semantics,
this directly implies query incompleteness, while under set semantics it still de-
pends on the projections.

Lemma 6.19 has an interesting generalization. For queries containing key joins,
only for the literals in the core query, canonical completeness needs to be asserted.
For all other canonical completeness required for query completeness, satisfaction
can be tested by the check algorithm.

Theorem 6.21. Let Q be a query, C be a set of local completeness assertions, Ď
be an available database instance and F be a set of schema assertions.
Then Q is complete over any partial database instance satisfying C and F and
having Ď as available database instance if the following holds:

1. C implies canonical completeness for all literals in the core of Q,

2. the check succeeds for all literals that are not in the core of Q.

Proof Follows from lemma 6.19.
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Example 6.22. Consider the query Q asking for all persons joined with the lan-
guage courses they attend.

Q(N,L) :− person(N,G), student(N,L,C), language attendance(N,G),

language(G).

Since language attendance is the only core literal, when deciding completeness
over a concrete database instance, only canonical completeness for language attendance
needs to be asserted, while canonical completeness for relations student, lan-
guage attendance and language, the satisfaction of the canonical completeness con-
ditions can be checked.

Figure 6.2: Query graph for Q. The only core node is language attendance

Checks for literals that are not transitive sinks in the query graph can be done
as well. However, succeeding of these checks is a too strong condition for canonical
completeness even in the case of foreign key joins. If a literal is not a transitive
sink, there exists a directed path from it to a literal with an undirected edge. In
other words, it joins directly or indirectly with another literal via a normal join,
and this join is a further constraint on the tuples that have to be in an relations
extension in order to satisfy canonical completeness.

Example 6.23. Consider a query

Q(x) :−R(X, Y ), S(Y, Z), T (W,Z).

Consider a set of schema constraints F such that the join between R and S is
a foreign key join, the one between S and T not. Consider a partial database
instance Ď where

Ř = { (a, b), (a, c) },
Š = { (c, d) },
Ť = { (e, d), (f, g) }.
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Then, the check algorithm for literal L2 = S(Y, Z) would return false, because no
tuple starting with b is in Š. Since the foreign key holds on the ideal database,
there has to be some tuple starting with b in Ŝ. However, as it is not known
whether it ends with g or not, checking for presence of it is not a characterizing
condition for local completeness. If the missing tuple in Š was (b, g), it would be
necessary for canonical completeness of S, if it was (b, h) not. Thus, the check can
not provide a characterization of local completeness for this non transitive sink
literals.

6.4.1 Exact-cardinality constraints

Exact cardinality assertions are an extension of the concept of foreign key as-
sertions with a similar impact. They can allow to check canonical completeness
automatically.

An exact cardinality assertion is a schema constraint expressing that for every
tuple in some relation, an exact number of tuples has to be in another relation,
such that all tuples agree on a certain set of attributes.

Given exact cardinality assertions, similar checks as for relations joined by
foreign keys can be performed. The only difference is that instead of checking
existence of tuples, one checks the exact cardinality of the existing tuples satisfying
the common attribute condition.

Example 6.24. Consider an exact cardinality assertion that every student has to
take exactly two language courses.

Then, for a query asking for all students joined with the language courses they
take, it suffices to have completeness of the student table asserted, while canonical
completeness of the language attendance table can be tested automatically, by
checking whether for every student there are two entries in the language attendance
table.

The insight about exact cardinality assertions with extensional information is
the same as for foreign keys in that case, namely that local completeness does not
always need to be asserted but can be tested.
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Chapter 7

Strategies for Stating
Completeness

In this chapter we discuss strategies for data management aiming at ensuring query
completeness. We show what completeness information really is, where it has to
come from and how completeness statements can be split into smaller statements.
Finally, we present a specific method for stating conditional completeness informa-
tion that has the nice property of requiring less knowledge. Parts of the material
presented in this chapter have already been discussed by Motro and Miliaev, we
will stated that wherever it holds.

In chapter 4 we presented characterizations of query completeness in terms
of local completeness statements. Chapter 5 presented general completeness rea-
soning, and chapter 6 completeness reasoning with respect to schema or instance
information. The essence of these chapters was that completeness statements are
required for concluding query completeness.

Except of the first of these chapters, the presentation of the results so far was
mostly top down in the sense that a query and completeness information were
assumed to be given, and then it conclusions were made whether the query could
be derived to be complete or not.

In practice however, it is not always of relevance to have the completeness
statements given. Instead, for a given query one may be interested in what com-
pleteness has to be asserted in order to make the conclusion of query completeness
possible. After having found an appropriate set of assertions that would ensure a
query to be complete, one then could inspect the data in a second step and try to
ensure satisfaction of these statements, or where it does not hold, work on complet-
ing the data. So in practice it is not only relevant to decide query completeness,
but also to find out what options exist to ensure a query to become complete.

In the first section of this chapter, we revise the facts about required complete-
ness statements for query completeness, and discuss where completeness informa-

65
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tion has to come from. In the second section, we present how local completeness
statements can be partitioned in more smaller, equivalent statements. In the third
section we present the concept of cardinality assertions for stating conditional
completeness.

After reading this chapter, the reader should have an understanding of the
implications of the theory presented so far on practical data management.

7.1 Where Completeness Information Comes from

As stated before, the holding of the canonical completeness statements is generally
the characterizing condition for deducing completeness of a query. In presence of
extensional information, some satisfaction of some canonical conditions can be
checked automatically. However also in this case, there always exist at least one
statement, for which completeness can not be checked automatically.

So some completeness has to be stated by someone. We call subjects that
give completeness statements competent agents. Competent, because they need
to have some knowledge about the ideal database, agents because the process of
giving completeness statements is an active process. Whether the agent is a human
or a program does not matter generally.

Usually, we believe the ideal database to be a representation of some ”real
world”, that is not formalized [Mo89]. Thus, given completeness statements can
in general not be formally verified. Some justification may be possible, but in
general, the competence of the agent in giving completeness information has to be
believed.

Without a formalization of the ideal database, for stating completeness the
competent agent needs either to have knowledge about how the data was col-
lected (i.e., in a complete way), or it needs to have some representation of what
data should be there, and then can compare it with what is there in an available
database instance. Both methods require background information, either about
completeness of some method of data collection, or about the data in the ideal
database (”real world”). Which method is more applicable heavily depends on
the scenario, we only have the rough idea that the former methods might be more
useful for asserting completeness in larger and/or stricter environments (w. r. t.
the amount of data and the data management policy), while the latter might be
more applicable in not so strict and smaller environments.

Example 7.1. To illustrate the two methods by examples, for the first method
consider a public institution giving a call for a project with some deadline for
application. If the method of storing the received applications to the database can
be asserted to be complete, then by the deadline one can consider the set of all
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valid applications as complete in the database. There may be applications missing,
but since the deadline is strict, none of those is valid, and therefore does not miss
in the set of valid ones. Manual inspection of the database table would not make
much sense if there are sufficiently many applications: No one could judge by
manual data inspection, whether all data that should be there is there.

Example 7.2. In contrast, consider our school database example. Completeness
of data collection can hardly be assumed here, and strictness is not a common
policy. It is not applicable to conclude that by the deadline of enrolment all
enrolment forms that the parents have to sign are really there. Students whose
forms are missing by the deadline will hardly be rejected from school just because
of that.

To judge data completeness, the second method of manual inspection seems
much more applicable. E.g., the secretariat could hand out a print of the list of
enrolled students for his/her class to each class teacher. The class teachers then
inspect the lists and can compare if some students present in their class are missing
on the lists. If this is not the case, the class teachers can assert completeness for
the students of his class in the database.

How the single completeness statements for each class can imply completeness
of all students is shown in the next section.

To conclude this section, we note that nonexistence of a formalization of the
ideal database seems the more common case, but does not always have to be.

Instead, e.g., in the field of security sensitive databases, data replication or
(partially) mirrored databases for performance reasons, it can be that the ideal
database exists as formal database. In such cases, completeness information could
be determined fully automated.

7.2 Partitioning Local Completeness Statements

Giving completeness statements can be a difficult task. Especially for completeness
assertions that shall be given by manual data inspection, a relatively small number
of tuples in an available database can make manual assertion infeasible.

Applying the theory presented in chapter 6, we show two methods that can al-
leviate the process of asserting completeness by dividing local completeness state-
ments in smaller, equivalent statements. Both methods were first presented by
Miliaev in [Mi10].

Partitioning by Table

The first method which we (following Miliaev’s nomenclatura) call partitioning
by attribute, represents the idea to split local completeness statements by finite
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domain assertions.
Whenever a local completeness statement over a relation with an attribute

to which a finite domain constraint applies shall be made, the statement can be
replaced by statements for all the values of the finite domain. Applicability of
this method heavily depends on the context and on the size of the finite domain,
however, well used finite domain constraints can strongly alleviate the process
of asserting completeness. Statements about relations for which a foreign key is
asserted to a second relation, can also be split along finite domains of the second
relation.

Example 7.3. Consider the completeness statement for all persons, which can
be split into one statement for all male persons and one for all female ones. As
for the student relation there is a foreign key asserted to the person relation,
also a completeness statement for the student table can be split along the gender
attribute.

Partitioning by Attribute

The second method, also introduced by Miliaev, is the partitioning by table. The
difference here is that instead of asserted finite domains, finite domains that result
from completeness assertions are used for the partitioning. If for a relation, a
foreign key to another relation exists which is asserted to be complete, a complete-
ness statement for the first relation can be split along any attribute of the second.
If completeness for a part of a relation that joins with another relation shall be
asserted, and the second relation is known to be complete, then the completeness
statement can again be split along any attributes of the second relation.

Example 7.4. Consider a completeness statement for all students. There exists
a foreign key from the student table to the class table. So if the class table is
known to be complete, individual completeness statements each for students that
are enrolled in some class in the class table, and covering all the classes in the
class table, are equivalent to a single completeness statement for all students.

7.3 Stating Completeness with Cardinality As-

sertions

Cardinality assertions are a weaker way (requiring less knowledge of the ideal
database) to give local completeness statements. Instead of saying that a certain
part of the available database is the same in the ideal database (each tuple in that
part which is in ideal database is also in available database), one just states how
many tuples of that kind are present in the ideal database. Then a (count) check
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is performed on the available database, whether this number of tuples is there.
This works because our assumption of partial databases is that they contain no
tuples not in the ideal database (Ď ⊆ D̂). The idea of cardinality assertions was
first given by Miliaev.

Originally, when an agent gives a local completeness statement he needs infor-
mation about all tuples in that part in the ideal database, to check whether each
of them is present in the available.

With cardinality constraints, it is sufficient to know that no wrong tuples enter
the database together with the number of tuples present in that part of the ideal
database. Moreover, this two preconditions can be separated among two agents.

Example 7.5. Consider in a school a voluntary school trip is organized. There
is a notice on the notice board where every student taking part in puts his name.
To complete registration, students have to print and fill in a form with personal
information and e.g. special wishes and hand it in in the school secretary. The
secretary puts all information in a new database table. When do we know that
that table is complete?

The student secretary is the agent who can easily give the assertion that no
wrong records entered the database, because it doesn’t put in data for which no
form was handed in, and students do not hand in forms before they did not regis-
ter. The organizing teacher gives the cardinality assertion how many people have
registered by counting the number of names on the board (plus maybe additional
students who were ill and registered via phone and handed in the form to the
secretariat via email). If this number matches the number of records in the table,
then the table is complete.

That follows although the teacher does not know whether the records in the
table are correct, nor the secretariat knows how many should be there. 1

1Deducing completeness using cardinality assertions seems to be an interesting basic human
reasoning principle. After a written exam, from what does a teacher conclude that he has
collected all exams? He makes the reasonable assumption that he has collected no invalid exams
(e.g. because a student submitted two or a student not being present in the class submitted
one), counts the number of students in his class and the number of exams he has collected, and if
matching, concludes completeness. Observe, he does not need to check whether for every student
present in the class he has collected an exam with the students name (which would correspond
to the ”classical way” of stating completeness, checking for every entity that should be there
whether it really is there).
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Chapter 8

Implementation Issues

In this chapter we discuss implementational issues of systems for managing and
tracking database completeness. Parts of the theory presented in this thesis were
implemented in a prototypical system for managing database completeness during
the Magik project, a project that is under development at the Free University of
Bozen-Bolzano.

In section 8.1, we discuss general issues of interest regarding the construction
of such a system. In section 8.2, we present an efficient algorithm for finite domain
containment, as this is a problem not having been investigated so far. Section 8.3
present the implementation itself.

8.1 General Issues

In this section we discuss general issues that require thought in an implementation
of a system for tracking and managing database completeness. The observations
discussed in this section are mostly based on our experiences during the develop-
ment of the MAGIK system.

The first issue concerns the interplay between keys and foreign keys. Key con-
straints are a necessary precondition for foreign key constraints. Foreign key con-
straints are the foundation of several important results in this thesis (automated
incompleteness checking, partitioning by table). Thus, any system that shall be
sufficiently useful should support them. Both constraints also allow to conclude
more containment (see chapter 6). However, containment in presence of keys and
foreign keys is generally undecidable [JK82]. Thus, one either has to accept a
system which is not complete (that is, it does not always find query completeness
when it holds), or, one has to put certain restrictions on the key and foreign key
constraints allowed, which goes so far as to disallow weak entity sets.
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Related to this issue is also the question of where the schema information comes
from, whether it is extracted from database constraints or inserted by a user, which
then may also lead to wrong or contradictory schema information.

A second issue is the design of such a system. For functionality itself it does
not matter much how the interface is designed. However, a system that shall sup-
port humans in managing and tracking database completeness but which itself is
not well structured and understandable, would not make much sense. We found
it not trivial to design a user interface and to decide which is both comprehensive
and does not lack any information. Also, requiring scalability makes finding an
appropriate interface difficult.

A conceptually interesting problem is that of completeness management of a
changing database, possibly a temporal database. In this thesis we did not in-
vestigate in this question, however completeness management over changing data
raises several conceptual questions. What happens if data is inserted in a part
of a relation that was asserted to be complete? Should certain database changes
trigger related completeness statements to become invalid? In temporal databases,
how long can completeness statements be valid? What happens when changes to
data about the past are made?

The last issue is, that, in order to enable several important features presented
in this thesis, specification and reasoning with finite domains is necessary. While
specification is not a problem, we are not aware of any discussion of query con-
tainment under finite domains in the literature. Conceptually, finite domain con-
tainment (presented in 6.2) is not complicated. However, as shown there, it is gen-
erally ΠP

2 -hard, whereas completeness reasoning without comparison predicates is
still NP-complete for simple conjunctive queries. Thus, finding an implementation
that is still efficient for normal finite domain containment problems, becomes im-
portant. We present an algorithm in the next section.

To conclude this section, let us rephrase that there are important issues regard-
ing the reasoning power, the design, and the evolution over time. As we are not
aware of any similar system, there exists no prior experience from other sources
about implementing such a system.

8.2 Practical Finite Domain Containment

In this section we present an efficient algorithm for finite domain containment.
Finite domain containment is generally ΠP

2 -hard, as in general, containment for all
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possible instantiations with respect to the finite domains has to be tested. There-
fore, it becomes important to make only as few instantiations as really necessary.

Our algorithm only works in the case of single-attribute finite domain con-
straints. And it is not obvious how to extend it to non-single-attribute finite
domain constraints. Nevertheless we present the algorithm here, because both we
believe single-attribute finite domain constraints to be useful in practice, and the
algorithm is a good basis for future work.

Let Q and Q1 to Qn be queries, and F1 to Fn be finite domain constraints.
W.l.o.g. let us assume that all equalities in the queries have been eliminated (that
is, whenever there was an equality atom stating x = y, the atom has been removed
and every occurance of one of the symbol has been replaced by the other).

For testing whether Q ⊆F Q1 ∪ . . . ∪ Qn, naively one would have to check for
every possible instantiation of Q, whether it is contained in Q1 ∪ . . . ∪Qn.

However, not all instantiations make sense. Consider Q1 to Qn to be queries
containing no constants at all. In that case, for no instantiation of Q containment
could hold, if it did not hold already for Q. So, instantiating could be completely
saved in this simple case.

In the following, we present an algorithm, which only instantiates variables
if containment for all instantiations of that variable is possible. The basic idea
is to check for every finite domain constraint variable in Q, whether all finite
domain values are present in Q1 to Qn at positions, such that containment for
the instantiated versions of Q may hold. Only if this is the case, the variable is
instantiated.

The algorithm proceeds in three steps: First, it determines the actual finite
domains of the variables in Q. Second, it identifies which of the finite domain
constrained variables are worth instantiation. Third, it checks containment for all
such instantiations of Q. We describe the first two steps more in detail next.

1. Finite Domain Identification

In the first step, the actual finite domains of variables are determined. Due to pos-
sible multiple occurrences, variables can have multiple finite domain restrictions.
The overall finite domain restriction is then the intersection of the different finite
domains.

Example 8.1. Consider a query

Q(N) :− person(N,G), student(N,L,C)

asking for all names of persons which are also students. Suppose, there are finite
domain constraints F1 and F2 as follows:

F1 = Dom(person, name,>, { andrea, beatrix , chiara, daniel })



74 CHAPTER 8. IMPLEMENTATION ISSUES

F2 = Dom(student , name,>, { chiara, daniel , erik , francesco }).

Both F1 and F2 apply to the variable N , and hence the actual finite domain of
the variable N is the intersection of the two finite domains from F1 and F2, which
is { chiara, daniel }.

Finite domain constraints may come with restrictions, therefore it is addi-
tionally necessary to determine which finite domain constraints really apply, by
checking whether there is a homomorphism from the finite domain constraint’s
restriction to the query.

Example 8.2. Consider the query from above, and consider a finite domain con-
straint

F3 = Dom(person(N ′, G), 1, student(N ′, L, C), L = 1, { erich, francesca, gustav , hanna }).

It is a finite domain constraint for the names of persons which are students in first
class.

It is not applicable to the variable N in Q, because it restricts only a special
subclass of the person names, which we do not query in Q.

Formally, that can be found because there exists no homomorphism from
QF3(N ′, G) :− person(N ′, G), student(N ′, L, C), C = 1 to Q, where N ′ is mapped
to N .

To compute the actual finite domains of variables in a query Q, we propose to
iterate once over every position in the query. For every position, the finite domain
constraints applicable have to be computed, and the applicable finite domains then
have to be intersected with the actual finite domain constraints computed so far.

2. Determination of Instantiation Worthiness

In this step, it is determined which variables with finite domains are worth instan-
tiating. Roughly speaking, a variable is worth instantiation, if all the values in
the finite domain appear in some query Q1 to Qn at a position in a relation where
also the variable appears in Q.

This step can again be divided in four substeps:

1. First, for every variable in Q with finite domain, all its position in relation
symbols in Q are determined.

2. Second, for every relation symbol in Q, all symbols appearing at all its
positions in Q1 to Qn are determined separately
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3. Third, for every variable all symbols which appear at its positions in Q1 to
Qn are calculated (that is, since a variable may appear at several positions,
a set union operation).

4. Finally, for each variable the finite domains and the set of symbols occurring
at its positions in Q1 to Qn are compared. If all elements of the finite domain
appear in Q1 to Qn, then the variable is worth instantiation.

Example 8.3. Consider a query

Q(N) :− person(N,G), student(N,L,C)

that asks for the names of all persons which go in some class. Furthermore, consider
finite domain constraints for person genders to be only male or female, and for
student levels to be only 1 to 3. Consider queries Q1 to Q4 as follows:

Q1(N) :− person(N,male),

Q2(N) :− person(N, female),

Q3(N) :− student(N,L,C),

Q4(N) :− student(N, 3, C), person(N,G).

Table 8.1 shows the positions of the variables in Q, table 8.2 the symbols
appearing at these positions in Q1 to Q4.

G L N
person/2 student/2 person/1, student/1

Table 8.1: Positions of variables in Q

person/2 student/2
male, female 1, 3

Table 8.2: Symbols appearing at positions where finite domain constraints are
applicable

Thus, variable G is worth instantiation, because both male and female occur at
its positions in Q1 to Q4, whereas L is not worth instantiation because the symbol
2 occurs nowhere.
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3. Instantiation Containment Checking

After having determined the finite domain constrained variables in Q that are
worth instantiation, the remaining step of our algorithm is a standard contain-
ment check between all instantiations of Q with respect to the variables worth
instantiation, and the queries Q1 to Qn.

We omit a formal investigation but only give an informal argument why our
algorithm is correct. If the algorithm would test containment for every instanti-
ation of Q, it would be trivially correct. It omits the instantiation of a variable
V with an applicable finite domain, if one constant symbol c of the finite domain
cannot be found at a position in a relation symbol in the queries Q1 to Qn where
also V appears in Q. For containment of all the instantiations of V to hold, in
particular it would also have to hold for V being instantiated with c.

For conjunctive query containment to hold, existence of a homomorphism from
a query Qi to each linearisation of Q is necessary. As c does not appear in any
Qi, either the homomorphisms do not map anything to c, or they map a variable
to c. In both cases then the instantiation did not lead to a homomorphism and
therefore containment which did not hold also without the instantiation.

8.3 The MAGIK Implementation

An implementation of a tool for managing completeness of databases is currently
under development at the KRDB group of the faculty of Computer Science at the
Free University of Bozen-Bolzano. It is developed as part of a research project
with the title ‘Managing Incomplete Knowledge’ (MAGIK), thus we refer to it as
the Magik implementation.

The MAGIK project is done in cooperation with the IT department of the
school administration of the province of Bozen-Bolzano. Aim of the implementa-
tion is to give a proof of concept for the theoretical ideas about managing database
completeness, and in particular allow tracking and managing database and query
completeness.

The implementation started as part of Miliaevs Bachelor thesis and is contin-
ued by him. The implementation itself was not part of this Diplom thesis, however
we collaborated on theoretical foundations of the system, the conceptual design
and algorithmic decisions.

The first basic functionality Magik provides is the connection to existing databases.
From existing databases, schema and instance information is extracted automati-
cally. Then queries and completeness assertions can be formulated, and the com-
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pleteness status of the queries with respect to the completeness statements can be
analyzed. Furthermore a main functionality is that for given queries, the required
completeness statements can be seen, and options for partitioning them as pre-
sented in chapter 7 are given.

Technically, the implementation consists of two parts: The core (‘Magik’), and
a web interface (‘Charm’). The core uses its own database to store complete-
ness, schema and query information and provides functionalities for managing and
reasoning about it. The web interface provides convenient access to the core.

Magik is able to automatically extract schema information as keys, foreign keys
and finite domains from SQL-databases. Also it allows the manual specification of
those. Schema information, queries and completeness statements over databases
are stored by Magik, and Magik automatically reasons about query completeness
whenever completeness or schema information is changed.

The reasoning system implements the theory presented in this thesis. For ev-
ery query, it computes its canonical completeness conditions and checks whether
they are entailed by the present completeness statements. Also, it implements
the check algorithm presented in 6.4, which allows to decide completeness of cer-
tain required completeness statements automatically. It provides functionality to
partition completeness statements according to the methods shown in chapter 7,
and allows specification of completeness statements with cardinalities. The finite
domain containment does not work correctly at the moment, but is in ongoing
development.

The web interface, Charm, provides a graphical user interface to Magik.
It provides different pages which can be seen in picture 8.1.

Figure 8.1: Overview of the Charm pages
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• Databases : Allows to specify connection strings to databases, for which com-
pleteness shall be managed.

• Queries : Provides all informations about queries. Queries are listed together
with their completeness status, additionally for each query a details page can
be opened, which allows to see the canonical completeness conditions and
allows stating and partitioning them

• Completeness Assertions : Lists all asserted completeness statements and
cardinality assertions sorted by tables. For cardinality assertions, it is shown
whether they hold.

• Domain Values : Shows finite domains of attributes extracted from the database
schema and allows user specification of finite domain attributes.

• Foreign Keys : Shows foreign keys extracted from the database schema and
allows user specification of foreign keys.

• Goals : Shows the canonical completeness conditions of all stored queries,
possibly partitioned, and which of them hold following from the given com-
pleteness assertions.

As a main aim of the Magik implementation is to not only provide the reasoning
facilities for query completeness from given local completeness statements, but the
active support in ensuring query completeness, special effort has been put into
facilitating this task. On the page that shows query details, first the query graph
as described in section 6.4 is shown. The completeness status of the canonical
statements for each literals in this graph is shown by colors (asserted complete, not
asserted complete, complete by check). Below then, for each canonical statements
options for partitioning are given.

Although the implementation is far not finished with respect to the theory
analysed in this thesis, it already shows that important features can well be turned
into practice.
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Figure 8.2: Detail page for a query. At the top the query in SQL syntax. Below the
query graph. In red the literals for which canonical completeness has to be asserted,
in yellow the literals for which it can be checked. The canonical completeness goal
for the student relation has been split along the person.gender attribute. For
students with gender female, satisfaction of the completeness statement has been
asserted, for students with gender male not. This is visualized at the bottom of
the page in the goal partitioning forest.
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Chapter 9

Conclusion

In this thesis, we have discussed the problem of query completeness over incom-
plete databases. Most notably, we have provided a solution to the problem of
deciding query completeness with respect to local completeness that is generally
decidable, which was not the case in earlier work.

In chapter 2, we gave a general motivation for the relevance of the problem
and showed its placement in the field of general incomplete information. We
presented a real-world example of a school database system. We discussed earlier
work by Motro, Levy and Miliaev. For Motro’s work, we discussed that the idea
of stating database completeness in terms of view completeness has limitations
in its practical usability. We recapitulated Motro’s method for deciding query
completeness is incomplete. For Levy’s work, we showed that the reduction to
the problem of query independence from updates is a reduction to a generally
undecidable problem. Also, we discovered several technical limitations of his work.
For Miliaev’s work, we discussed the useful practical results and observations made
in it.

In chapter 3 we gave an extensive formalization of the expressions used later
in our work. We recapitulated the concept of partial databases, and, most im-
portant, we introduced the concept of completeness statements, of which query
completeness statements and local completeness statements are special cases.

In chapter 4, we characterized necessary and sufficient conditions for query com-
pleteness under set and multiset semantics. Most importantly, we discovered that
the canonical completeness conditions are sufficient but not necessary conditions
for query completeness under set semantics, and that no set of local completeness
statements can express the characterizing conditions for query completeness.

In chapter 5, we showed that local completeness statement entailment can be
reduced to query containment, and that a query can be concluded to be complete
exactly if its canonical completeness conditions hold. Furthermore, we discussed
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the problem of completeness reasoning in presence of query completeness state-
ments, and showed its relation to the undecided problem of decidability of query
determinacy.

In chapter 6 we discussed the effect of schema and extensional information on
the completeness reasoning. For schema information, we introduced the concept
of finite domain constraints, and explained how query containment in presence of
such constraints works. For extensional information, we showed that it can allow
to derive more finite domain constraints, which then can lead to more complete-
ness deductions. For the combination of schema and extensional information, we
extended and formalized the main result of the work of Miliaev, which says that
for some literals in a query, that are related to other literals by a foreign key join,
holding of the canonical conditions does not need to be asserted but can be checked
on the extensional information.

In chapter 7 we discussed the conceptual problem of stating completeness for
parts of a database, and how the theory of the previous chapter can help in this
task by allowing to split completeness conditions in smaller, equivalent ones.

In chapter 8 we discussed general issues an implementation of a completeness
management system has to take care of, and put a special focus on containment
under finite domain constraints. Also we presented the prototypical implementa-
tion in the MAGIK project.

The most important items left open by this thesis are whether the problem
of completeness reasoning with respect to query completeness statements can be
reduced to the problem of query determinacy, and, how completeness management
can work in practice with respect to databases changing over time. For the first
item, we were not able to come up with a proof or a reduction so far. For the second
item, we need more insight into application scenarios of completeness management.

Beside that, future work might include a generalization of the query and com-
pleteness statement language to a language allowing safe negation. Also, local
completeness statements for views of relations seem to be an interesting object to
consider. As the work of Levy, our work can easily be extended to databases being
partially incorrect, although we do not consider this to be of much practical rele-
vance. Finally, this work focused on incompleteness of data only in the meaning
of presence or absence of tuples. However, incompleteness can also appear within
tuples, that is by tuples that may have an undefined value at some positions. This
option is ignored in this thesis completely.
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