TECHNISCHE
@ UNIVERSITAT
DRESDEN

FAKULTAT INFORMATIK

EMCL Master Thesis

Correcting Access Restrictions:
a Range-based Approach

by

Eldora

born on February 20", 1985, Jakarta, Indonesia

Supervisor : Prof. Dr.-Ing. Franz Baader
Advisors : Dr.-Ing. Martin Knechtel,

Dr. rer. nat. Rafael Penaloza Nyssen






To my parents and my sister.






Declaration

Author: Eldora
Student ID Nr.: 3552563
Title: Correcting Access Restrictions:

a Range-based Approach
Degree: Master of Science
Date of Submission:  28/02/2011

Hereby I certify that the thesis has been written by me. Any help that I have
received in my research work has been acknowledged. Additionally, I certify that
I have not used any auxiliary sources and literature except those I cited in the
thesis.

Signature of Author






Abstract

Ontologies, as understood in Knowledge Representation area, are conceived as
a means to represent conceptual knowledge. An ontology is typically shared
between a number of users. When sharing an ontology, it is common that each
user has different views, i.e. the sub-ontology that is accessible to him. However,
specially for large-scale ontologies, it is a difficult task to predict which users
will be able to deduce a consequence from sub-ontology they can access. A
lattice-based approach has been developed for solving this problem, by computing
an access label for every ontological consequence. If the knowledge engineer
wants then to modify the access label of one of these consequences (e.g. make a
consequence unavailable to some users), then he must find the axioms that need to
be relabeled. In this work we present algorithms for finding a set of these axioms
with minimal cardinality such that, when relabeled to a specified element of the
lattice grant or remove access of a set of users to a consequence. These algorithms
deal with some range-based access label modifications. The implementation of the
algorithms is using programming language Java with Pellet as the OWL reasoner.
An empirical evaluation is performed on two large-scale ontologies with different
expressiveness, i.e. SNOMED CT [sno] and Funct [GKL09].
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Chapter 1

Introduction

In many aspects in the world, such as economics, politics, and/or education,
information is essential. Information should be received and shared correctly.
It must be only accessed by the right individuals. To ensure that the flow of
information from one user to another is correct, a system is built for information
with predefined access restriction schemes. Such a scheme defines a particular
part of the information that can be accessed publicly available or restricted to
particular individuals.

The information can be represented in a logic-based way, particularly in de-
scription logics (DLs). The well known usage of DL is to provide formalism on
representing knowledge of ontologies. An ontology [BLMT05] is a description
of a domain. Ontologies use description logic as a powerful language to describe
them. DL has been employed in various domains of knowledge, such as system
engineering, bio-medical informatics, and language processing ontologies.

The size of the ontologies varies from small to big ones. A small ontology
can be built and checked easily if it is presenting the right knowledge. But,
an ontology, especially a big one, can have unsatisfiable concepts which are not
explicit. In [SCO03], Schlobach and Cornet mentioned that in order to build a
coherent ontology, one needs to identify the unsatisfiable concepts. This means
that one needs to know what the reason for a particular consequence holds. This
is often an expensive task, especially in a large scale ontology. To deal this task,
they investigated how to compute the relevant axioms to the incoherence and
named the task to compute it aziom pinpointing.

Imagine the following scenario. There is a knowledge engineer who manages
the ontology and defines the privacy of knowledge in the ontology, i.e. some
part of the ontology might or not be accessed, e.g. for reading, writing, etc.
He is assigned to manage a large ontology. In this ontology, there are some
particular consequences that should not be accessible by some users. In order
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to ensure the security of the consequences, the knowledge engineer specifies the
access restrictions. It is intended to give a level of privilege to users. In the other
words, he gives a user an access to a particular sub-ontology.

From the sub-ontology which is available to the user, the user can deduce
the consequences that can be derived from it. To ensure that a user can only
deduce the particular consequence of the ontology which is accessible to her, one
can provide many sub-ontologies to different users, but this is very expensive
to build a lot of ontologies. Another way is that one can build a framework
to restrict reading access to an ontology as proposed in [BKP09]. The idea of
the framework is to compute a specific label that determines whether users can
deduce the consequence or not. Each user is given a label that defines an access
right or view for the user, i.e. the view of the ontology which is available for this
user. The view is a subset of the ontology (sub-ontology) which is selected by a
particular criterion.

To make this idea worked, the axioms of the ontology are given specific labels,
which are structured in a lattice and are representing access restrictions. By the
labeling of the axioms, every consequence in the ontology implicitly inherits a
label, which is named as a boundary. These labels determine if a user labeled
with a label ¢ can deduce the consequences or not. In other words, if this user
can see some sub-ontologies, then the implicit knowledge, i.e. the consequences,
from the sub-ontologies are deducible to this user.

The authors proposed that labels are defined in a lattice L whose elements
stand for a specific access view. The decision to use a lattice is that a lattice gives
more flexibility to present the real world implementations. It represents not only
hierarchical levels, but also incomparable levels.

The question is how to know if a consequence still follows from the ontology
w.r.t. the lattice or how to know if the user with label £ can deduce a particular
consequence. The answer is on how the semantic of the lattice is defined and
what the minimal axioms sets that can deduce if the consequence follows from
the ontology are. If the minimal axioms sets are known, we can easily compute
the label which corresponds to the consequence w.r.t. the lattice. But, often they
are not known or too many to be computed manually.

The solution introduced in [BKP09] by Knechtel and Penaloza is delivered by
using some black box approaches. One of them is axiom pinpointing. The axiom
pinpointing computes the smallest label of each axiom in every minimal axioms
set and later it computes the biggest one out from the smallest labels. The result
is the label of the consequence. Once the consequence label is obtained, we can
see which the users can deduce it.

In some cases, axioms can entail a consequence which is considered private
accessible by a user who is supposedly not able to see it. Some public axioms
might possibly be labeled by private labels or the other way around. For a large



scale ontology, correcting this flaw is a difficult task. One way to solve this task
is to reset the computed the label which determines the accessibility of a given
consequence which can be done by relabeling some axioms. To do this repairing,
the knowledge engineer might want a suggestion informing which axioms need
their labels to be changed.

Knechtel and Penaloza in [KP10a, KP10b] have introduced a way of getting
the set of axioms that needs to be relabeled. In those papers, they present some
methods in order to obtain the new label which determines the accessibility of a
given consequence equal to a given goal label. By assuming that the knowledge
engineer knows the exact label £ for determining the consequence ¢, they propose
a set S of axioms of minimal cardinality such that if all members of S are labeled
to the goal label ¢ 4, then the boundary equals to the goal label. The basic idea
of their solution is by selecting axioms which are labeled smaller or greater than
the goal label. If we want to change the boundary to a greater label than what
we have computed, then the selected axioms which we will relabel are the ones
with labels smaller than the label. And if we want the consequence label to be a
value that is smaller than the computed label, then we select axioms which have
greater labels than the value we want.

What has motivated us is to allow the label of the given consequence change
in many conditions which is beyond equality to a given value by the knowledge
engineer. That means we want to allow the change not to a specific value. In
more concrete ways, the label which shows the restriction is allowed to be changed
as follows: given a limit of which the target label may occur. This means not
to specify the label on an exact label. Instead, we specify on an accepted range.
We introduce four limitations or conditions: the label which determines the ac-
cessibility of the consequence should be less than or equal to /4, greater than or
equal to /4, not less than or equal to ¢4, and not greater than or equal to ;. The
intuition is to give flexibility to the knowledge engineer such that he can grant
or remove rights to some users.

In this work, we present a solution to obtain a set of axioms whose labels
need to be changed in order to satisfies the given condition. The solution is
implemented using a hitting set tree algorithm which has been used for computing
the label which determines the accessibility of the given consequence and for
repairing it to a specific label. The algorithm is then implemented under Java
programming language. It includes some algorithms to help the repairing done.
Some of them are one to compute the boundary, one to compute the minimal
axiom sets that explain why a consequence follows from an ontology, and one
to compute the smallest set of axioms which need to be relabeled depending the
given conditions. The solution for some conditions is using three nested hitting
set tree algorithms. Each of the hitting set tree algorithms has an auxiliary
procedure which is used to computed a single particular set. Using Pellet as
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the reasoner, the implementation is able to provide the minimal solution, which
we evaluate by checking if we obtain the satisfying boundary after changing the
labels of the solution. We build an interface also in Java programming language
to provide easy usage to this boundary changes. We evaluate the implementation
using two ontologies and five labeling lattices. We also provide results from the
evaluation.

The work is distributed as follows. Chapter 2 contains basic concepts and
definitions that are used for the rest of the work. Previous related work is recalled
for the sake of completeness. This chapter includes the general notations, the
computation of the consequence label, and the repairing solution from the one
we have mentioned. Chapter 3 describes theories and methods that build the
solution to answer the purpose of this work, i.e. to allow general range based
condition to the repair of the boundary. Examples are included in Chapters 2
and 3. Chapter 4 describes how the preparation of the test case and the evaluation
of the implementation are conducted. The results are discussed and presented in
tables and charts. The last chapter concludes the work and suggests some ideas
for future work.



Chapter 2

Theoretical Background

This chapter introduces basic concepts and results that will be used for the rest
of this work, recalled from [BKP09, KP10a, KP10b].

2.1 Ontologies

Description logics (DLs) [BCM™03] are a family of knowledge representation lan-
guages. Properties of DLs are the well structured syntax and well understandable
semantics for representing the knowledge of an application domain. Description
logics are good candidates for an ontology language which requires a well-designed
and well-defined language, and also the availability of powerful reasoning tools.
Nevertheless, we do not specify any ontology language in this work. The reason
is to get the most general results that can be instantiated to any case.

“An ontology is a formal, explicit specification of a shared conceptualisation.”
is a definition that given in [SBF98]. It contains concepts of one or some specific
domains that has to be machine readable. In order to represent an ontology in
a computer, it needs an ontology language to describe it. An ontology language
is a formal language to construct the ontology. Description logic is one of formal
languages that is often used to describe and to represent ontologies.

In the following we describe general terminology of DL used in this thesis to
describe and define ontologies.

A consequence is a derivable knowledge from a set of given knowledges. A
monotone consequence relation = for a given ontology language is a binary rela-
tion between ontologies O and a consequence ¢ such that if O |= ¢, then for any
O’ 20, O = c. We say that the ontology O entails the consequence ¢ (¢ follows
0) if O |= ¢ and we also say that the ontology O does not entail the consequence
cif O = e
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For a given consequence ¢ of the ontology O where O = ¢, there is a minimal
set of axioms that makes the relation true. This set is called a minimal axioms
set (MinA). We can also see this in the opposite direction. For O |= ¢, there
is a minimal set of axioms that by removing it from the ontology makes the
consequence relation false. A set of axioms which are contained in O, if removed
from the ontology, falsifies O |= ¢ is called a diagnosis [Rei87, KP10b, KP10a,
Rym92]. How to obtain this set is called the diagnostic problem.

Definition 2.1 (MinA and Diagnosis [BKP09, KP10b, KP10a]). Let O be an
ontology and ¢ a consequence following from O. A MinA is a sub-ontology S C O
such that S |= ¢ and that every 8" C S, S’ |~ c.

A diagnosis for O and c is a sub-ontology S C O such that O\ S W~ ¢ and for
alS' S, 0\ S e

The following example presents an ontology describing a country.

Example 2.2. Georgia is situated in both Fastern Europe and Western Asia.
The following axioms are in the ontology Ogeorgia-

01 : Georgia T FasternFEurope M WesternAsia,
0o : BasternEurope T FEuropen Asia,

o3 : WesternAsia T FEuropell Asia,

04 : Europe T World,

o5 : Asia T World.

There are five facts which are axioms o1,...,05. Some of the implicit con-
sequences that can be extracted from the ontology are Georgia £  FEurope,
Georgia LT Asia, Georgia = World, FasternFEurope T World, and
WesternAsia T World.

If we want to know why the ontology Ogeorgia in Example 2.2 entails Georgia
C World, we can compute a MinA. It has four MinAs and three diagnoses for this
consequence. The MinAs are {01, 092,04}, {01, 02,05}, {01, 03,04}, and {01, 03, 05}.
The diagnoses for the ontology Ogeorgia and the consequence Georgia E World
are {01}, {02,03}, and {o4,05}.

In a large scale ontology often that the implicit consequences are supposed
to be hidden or not accessible for some users. One way to do so is to create
several sub-ontology for different users. This is an expensive solution which can
end up with exponantially many different ontologies. Another solution presented
in [BKP09] is by giving labels to the axioms of ontology, such that the label
of the axiom determines if the axiom is contained in the sub-ontology which
are accessible from a particular user criterion. The following section shows the

labeling lattice and its terminology.
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Figure 2.1: A lattice (L4, <4) [BKPO09].

2.2 Labeling Lattice

The idea proposed in [BKP09] to give access restriction on an ontology is by
attaching a label to each axiom of the ontology. The set of these labels is struc-
tured in a lattice. It is called a labeling lattice (L, <) as proposed in [BKP09].*
The lattice (L, <) is a set L of labels together with a partial order < such that
every finite set of labels has a least upper bound (join) and a greatest lower
bound (meet) w.r.t. <. The partial order < has been chosen for a better repre-
sentation of hierarchical access restrictions which is more relevant to real world
usage. Given a K C L, we denote the join of K as @, £ and the meet of K
as Qe ¢- We use only the bounded lattices as the labeling lattice, such that it
has a greatest and a least elements, denoted by ¢; and ¢y. And for the subset of
the lattice, i.e. an empty set, the join of it is £y and the meet of it is /5.

Figure 2.1 shows a lattice with 6 elements where ¢; is the greatest element.
The edges show the relation of two nodes. Given two connected nodes of labels
(01, 02), the label ¢; is greater than the label £5. The order of the lattice is defined
by the position of the nodes. A greater label means that label /1 is accessible more
publicly than label £5 w.r.t. the ontology. In the prespective of a user, a user with
label £1 has less access to the ontology than a user with label /5. This is clear by
the definition of the sub-ontology for every label mentioned below. For any two
nodes which are not connected, the relation between them is incomparable.

For an ontology O and a lattice (L, <), a labeled ontology is an ontology O
whose axioms are labeled using a labeling function lab : O — L. The set of all
labels that occur in an ontology O is denoted by

LIab(O) = {Iab(o) ‘ (B O}
Every label ¢ € L defines the sub-ontology

024 = {CL €O ’ Iab(a) > E}

*A detailed introduction to lattices can be found in [DP02]
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The sub-ontologies O—, O<, O, (9;_;, O%_ are defined analogously. Given a set
of labels L', the sub-ontology is defined as follows.

O = {a € 0y | l e L/}.

Given a sub-ontology & C O, the join and the meet of labels that occur in &
are denoted by

ps=EPlabla)  and  As:=(X)lab(a).

a€eS a€S

An element ¢ € L is called join prime relative to Ly, if for every Ky, Ko, ...,
K, C Liab ¢ < @), M, implies that there is 7, 1 <4 < n such that £ < A\g,. A
user is labeled to a label that is a join prime relative to Ly, (is called user label).
The set of all the user labels is denoted by U.

2.3 Boundary

In order to decide whether a user with a label £ can deduce a consequence ¢
of an ontology O, [BKP09] introduced a solution by computing a label for the
consequence w.r.t. the labeling lattice and the ontology. They use a labeling
lattice to structure labels that determine if the user is able to see the consequence
of the given ontology or not. This label is defined as follows.

Definition 2.3 (Boundary [BKP09]). Let O be an ontology and ¢ a consequence.
An element v € L is called a boundary for O and c if for every element { € L
that is join prime relative to Ly, £ it holds that £ < v iff O = c.

A boundary, intuitively, divides the user labels £ € U according the entailment
of ¢ from Osy. If £ < v for some boundary v of a consequence ¢, then we know
that the consequence c is available to the user with label ¢. In other words, it
divides the ontology into parts where the consequence is deducible and where it
is not.

Given a labeled ontology, one can compute the label of a consequence. The
following lemma in [KP10a, KP10b] is related to how a boundary can be com-
puted.

Lemma 2.4. If Si,...,S, are all MinA for O, ¢, then @;_, As, is a boundary
for O, c. If S1,...,S, are all diagnoses for O, ¢, then Q- fis, is a boundary
for O, c.

The following example illustrates how the Lemma 2.4 is applied to get a
boundary for a given consequence.
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Example 2.5. Given Ogeorgia as the ontology and lattice (Lg, <4), we want to
compute the boundary for the consequence Georgia T World. The ontology is
labeled by elements of the lattice (Lg, <q) under the lab(o;) = ¢; function.

According to Lemma 2.4, we compute all MinAs in order to obtain a boundary.
The boundary is computed as follows. From each MinA, we compute the meet of
the labels of the azioms. The (o, 0,04} 15 €3 which is computed by taking the label
of each azxiom and getting the infimum of them, i.e. {1 ® o ® Ly. For all MinAs
{S1,...,5n}, we compute the join of Vi=1,. npAs,. The complete computation is
as follows.

)‘{01,02,04} @ A{01,02,05} @ A{01,03704} S A{01,03705} = 63 S 60 @ €3 @ 60 = £3-

We can also compute the boundary using the dual notion of MinA, i.e. diag-
nosis. According to Lemma 2.4, a boundary is obtained by computing the meet of
all i of diagnoses and p of a diagnosis is obtained by computing the join of all
labels of axioms in the diagnosis. The complete computation is as follows.

Pfor} @ Hiog,05} @ Hiog05y = b1 @ la @ Ly = L3.

The set of user labels U according to the lattice is {lo, 3, 05,0y}, because
these labels are join prime relative to the set of labels that appear in the on-
tology. Therefore, only users with label {3 or £y are able to see the consequence
Georgia T World, because they are less than or equal to (3.

2.4 Label Optimized Axiom Pinpointing

Lemma 2.4 shows that in order to compute a boundary, it is sufficient to have all
MinAs or all diagnoses. A way to obtain all MinAs is through axiom pinpointing.
This term was introduced by Schlobach and Cornet in [SC03]. There are many
constructions of axiom pinpointing shown in [SC03, BPS07, BP10a, BP10b].

Two black-box approaches to obtain a boundary for an ontology O and a
consequence ¢ were presented in [BKP09]. The approaches are the full axiom
pinpointing and the label-optimized axiom pinpointing. The full axiom pinpoint-
ing approach based on Lemma 2.4 computes all MinAs without using the labeled
ontology. It is optimized by considering and using the labeled ontology. Since,
usually, the number of the labels is much smaller than the number of the axioms
in the ontology, the label-optimized axiom pinpointing reduced a lot of the search
space of the full axiom pinpointing approach. This optimized approach computes
minimal label sets, which we describe later on this section.

The label-optimized axiom pinpointing approach [BKP09] is a variant of
Hitting-Set-Tree method (HST approach). The HST approach was first intro-
duced by Reiter in [Rei87] to solve the diagnostic problem. The problem of
computing all MinAs can be seen as the diagnostic problem which was addressed
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Algorithm 1: Compute a minimal label set.

Procedure min-lab(O,¢)
Input: O: ontology; ¢: consequence
Output: M; C L: a minimal label set for O and ¢

if O F~ ¢ then
return no minimal label set
: S =0
ML = @
: foreach k € L;,;, do
if @y, | £ k then
if Sz |= ¢ then
S =S84
else
My = (ML \ {l|k‘ < l}) Uk
11: return My,

© ® N> g W

—
<

by Reiter. It is a problem to reason which components in a system that are not
functioning well. The system is described in a universal set and a set of conflict
sets, where a conflict set is a subset of the universal set which is responsible for
the problem. For given D is a collection of sets, a hitting set for D is a set
H C Ugep S such that H NS # ) for each S € D. A MinA here can be assumed
as a conflict set as in [Rei87] and a diagnosis can be seen as a hitting set according
to the conflict set.

Originally, the hitting set tree algorithm was used to solve a problem where
the solutions are in the number of the power set. It computes all the hitting
sets. The problem to compute a boundary in [BKP09] can be handled using the
hitting set tree algorithm with an arbitrary algorithm to compute a MinA. In the
full axiom pinpointing, the algorithm computes all the MinAs. Each time a new
MinA is computed, a variable is updated for the computation of the boundary.
It basically computes a new MinA for each node which ensures that there are no
two same MinAs. On each node, the algorithm continues to compute a MinA
from a sub-ontology where it is a reduced one axiom from the ontology used in
the previous computation of the MinA.

The problem discussed in [BKP09] was how to obtain the boundary for a
given ontology and consequence. The diagnostic problem of Reiter was focused
on obtaining the hitting sets of the given conflict sets. In [BKP09], they want
to obtain a boundary which can be computed w.r.t. the ontology and the conse-
quence if the MinAs have been known. Instead of precomputed and given, we use
the hitting set tree to compute these MinAs and at the same time we compute
the boundary as provided by Baader et al. [BKP09].

For the label-optimized version, a labeled ontology is used and they modified
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Algorithm 2: Hitting set tree (HST) algorithm for computing the
boundary

Procedure hst-boundary(O, ¢)
Input: O: ontology; c¢: consequence
Output: boundary v for ¢

foreach label £ € M do
expand-hst(Oy, c, {{})

7: return v

1: Global: C, H :=0;v
2: M = min-lab(O, c)

3 C:={M}

4 vi= Qe

5:

6:

Procedure expand-hst(O, ¢, H)

Input: O: ontology; c: consequence; H: list of lattice elements
Output: boundary v for ¢

Side effects: modifications to C, H and v

1: if there exists some H' € H such that {h € H'|h £ v} C H or
H' contains a prefix-path P with {h € P|h £ v} = H then

2: return (early path termination <)
3: if there exists some M € C such that for all £ € M, h € H, £ £ h and ¢ £ v then

4: M =M (MinLab reuse)
5: else

6: M = min-lab(Oy,, c)

7. if Oy, |= c then

8: C:=Cu{M’}

9: v:=v@P e’
10: foreach label £ € M’ do
11: expand-hst(Oy,, ¢, H U {(})
12: else
13: H:=HU{H} (normal termination ®)

HST of Reiter to compute a boundary by generating sets of labels of MinAs. The
set is defined as follows.

Definition 2.6 (Minimal label set (MinLab) [BKP09]). Given a labeled ontology
O and a consequence ¢, a set K C {lab(o) | o € S} is called a minimal label set
of S if the elements of K are incomparable and s = @)y ¢ where S is a MinA
for O and c.

Algorithm 1 generates a minimal label set by removing all labels which do
not change the relation of the ontology and the consequence. The relation is
that the ontology without axioms of these labels still entails the consequence.
The algorithm returns variable My. The set My is a set of labels where axioms
correspond to these labels cannot be removed from the ontology. At the end of
the computation, M7, is the minimal label set. The procedure is as follows. First,
by taking all labels used to label axioms in the ontology Lj,p, it only considers
label k that is smaller or incomparable to the meet of My @, ay L Any label
k which is greater than the meet of M does not affect the result of the meet of



12 CHAPTER 2. THEORETICAL BACKGROUND

the set M, because the compution of a meet is to get the least element of all
elements in M. Then, it checks whether the ontology without axioms labeled
with k entails ¢ or not. If the result is true, we remove all axioms which labeled
with this label. If the result is false, it means that there are some axioms which
explain why the consequence follows from the ontology. Therefore, the label k is
added in the set M. The last, if there are labels in M, which is smaller than &,
then these labels are removed from Mj,.

The HST Algorithm 2 computes the boundary for O and c¢. It builds the
hitting set tree whose nodes are minimal label sets. Every node is labeled by a
computed minimal label set from a call to the Algorithm 1. The first computed
minimal label set (line 3) is the root of the hitting set tree. From the root node,
the expansion of it depends on the number of elements of the set. If the set
has three elements, then the node has three branches whose edges are labeled
with each of the elements. Each branch represents a computation to get a new
minimal label set. On each expansion branch, the computation uses different
sub-ontology which is a reduced version of the previous used ontology, i.e. O%_K
where £ is the label of the edge. If there is no more minimal label set that can
be computed, the branch is closed. In other word, it terminates the computation
on this branch, returns to any unvisited branch, and tries to obtain a minimal
label set from the correspond sub-ontology of the unvisited branch. Each time
it obtains a new minimal label set, it updates the variable v which by the end
of the computation it contains the boundary, the variable C where all minimal
label sets computed are stored, and the variable H that contains all the lists of
labels from the root to the terminated branch.

The HST Algorithm 2 has some optimizations. First, there are two pruning
rules that have been modified to handle this case better. These pruning rules are
called the early path termination optimizations. Second, it generates nodes by
depth-first search manner, which optimizes the MinLab reuse.

The first pruning rule has two conditions. The first is to close or to terminate
the node n with path H such that there is a hitting set H' where {h € H' | h £
v} C H. At this point, only labels that are not less or equal to v are needed
to be checked whether they have been removed in other branch or not. If these
labels exist in previous normal terminated branch, then node n which path H
contains them is closed. The second condition is to close the node n with path
H = P where P is a prefix-path of some hitting set H’. The idea is that, when
at some point we have removed the same labels as in a previous search, then we
know that this point will result the same as the previous one and this point can
be closed. The termination of this branch happens basically because we have
searched for a MinLab on the previous branch, which has the same path on the
current node. This also means that this branch will not give us a new MinLab if
the computation is executed on this branch.
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Figure 2.2: Expansion of HST modified version

Since this modified version is using depth-first search, the prefix-path P of a
hitting set H' is then filtered by {h € P | h £ v}. The explanation is that once
a minimal label set is found, then any next found minimal label set will be from

Oy,
’ The second pruning rule is to reuse a computed minimal label set which has
been computed in previous node. If there exist a minimal label set which follows
the given conditions, then it is used as the current node. The conditions are for
the current branch H, if there is a minimal label set M € C whose elements are
not smaller than any element of H and the so far computed value of v, then we
use this set M as the new node for the current branch H. If there is no minimal

label set which satisfies, then the Algorithm 2 calls the procedure min—Iab(Ofy, c).

Example 2.7. Continuing the previous example, we now show how the HST
modified algorithm works. We recall that there are four MinAs for the ontol-
09y OGeorgia and consequence ¢ = Georgia T World, namely {o1,02,04},
{01,02,05}, {01,03,04}, and {o01,03,05}. First, the hst-boundary calls min-lab
which, we assume, returns My = {l3,l5} which is the minimal label set of the
MinA {o1,0s,05}. This My, set is the root of the hitting set tree. At this point,
v =1V03 Ll = Ly. Then, it creates the first branch on the left by calling the
expand-hst procedure which considers only OGeorgmﬂS. The reason why only
Ogeorgia ﬁ l3 1is because on the edge €3 it will find a minimal label set from
sub-ontology whose axioms is not labeled ls and all labels smaller than f3. The
sub-ontology OGEO,«gmﬁ% entails ¢, so a new MinLab {l2,04} is obtained. We
update v = f3 from computing the join of the previous value of v and the meet
of new MinLab, i.e. lo@{ls @ l4}. Then the HST expands again with edge (s,
this means the expansion consider axioms that are % la, i.e. only oa. However,
this ontology does not entail Georgia T World when we remove this axiom os.
Therefore, this branch is terminated normally, which we denote by ©. The same
happens to the other branch with path {ls,04}.

Now we go back to the root and expand the root to the right side. The axioms
i the original ontology are considered for the expansion except axioms which are
& 5, i.e. 05 because it is the only axiom with a label & 5. At this point, the early
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Algorithm 3: Compute (partial) TAS

Procedure extract-partial-IAS(O iy, Oest, ¢, )

Input: Oy, fixed axioms; Oyese: axioms; c: consequence; n: limit
Output: first n elements of a minimal & C Oyeq such that Of, US = ¢
1: Globall:=0,n

2: return extract-partial-IAS-r(O;z, Oest, €)

Subprocedure extract-partial=-IAS-r(Oyiz, Otest, €)
1: if n =1 then

2: return ()

3: if |Otest| = 1 then

4: l:i=14+1

5: return Oy s

6: S1,82 := halve(Otest) (partition Ogest so that [|Si| —[Saf| < D)
7. if Ofm usS ': c then

8: return extract-partial-IAS-r(Oy;z, S1, ¢)
9: if Oz USs = ¢ then
10: return extract-partial-IAS-r(Of;z, So, ¢)
11: 87 := extract-partial-1AS-r(O i, U Sz, S1, ¢)
12: 85 := extract-partial-IAS-r(Oy;; U ST, Sa, ¢)
13: return S§ U S)

path termination conditions are not satisfied, but the MinLab reuse optimization
is carried on. The variable C contains {{{3, 5}, {l2,04}}. The set {l3,05} does
not satisfy the condition. The elements in the minimal label set {l2,04} are not
less than or equal to v, which is {3, and any h € H. Therefore {l2,04} is reused
to label this node. The MinLab reuse optimization is denoted by underlined node.
From this node, the algorithm continues expanding it. On the left branch ly, the
current path H satisfies the first condition, i.e. the current path H = {{5,{2}
is a superset of a set {la} which is a previous hitting set {{3,02} and for every
h & v where h € H, h is removed. The satisfying condition is {l2} C {5, {2}.
Thus, the left branch is terminated. The algorithm expands the right branch of
the {la,¢4} node. The expansion with edge {4 is also terminated with an early
termination condition. The condition {¢4+} C H where H = {{5,04} is satisfied.
Therefore, all branches are terminated and the result of this algorithm is v = 3.

2.5 Repairing Ontology

For a given ontology O and a consequence ¢, once a boundary has been computed,
[KP10b, KP10a] show that it is possible for the knowledge engineer to consider
of changing the boundary to the condition that he wants. For example, a user u
might be able to see the consequence ¢ which is intended to be hidden from him.
In both [KP10b, KP10a], Knechtel and Penaloza show that a boundary can be



2.5. REPAIRING ONTOLOGY 15

changed to a specific value (goal label) by computing a solution which is a set of
axioms that have to be relabeled.

2.5.1 Modifying Boundary

To repair the boundary such that it follows the given condition, [KP10b, KP10a]
fix a goal label £, and suggest the smallest set of axioms to be modified such that
the boundary equals to £, . The following is the modified assignment for a given
set.

Definition 2.8 ([KP10b, KP10a]). Let O be an ontology, lab a labeling function,
§ C O and by € L the goal label. The modified assignment labs g, is given by

I ifoeS,
lab(o) if otherwise.

labs ¢, (0) = {

A sub-ontology S C O s called a change set (CS) for £, if the boundary for O,
¢ under the labeling function labs ¢, equals £4.

The aim of their works is to provide a CS with minimum cardinality in order
to perform as small as possible changes.

There are three cases in order to obtain the change set. They are {, < v,
ly > v, and {4, v are incomparable. For example, in our previous example, the
computed boundary v is f3. We want to change the boundary v = ¢y. In this
problem, we know that ¢, is smaller than v. From Lemma 2.4, we can show that
any diagnosis S is a CS. When all axioms in a diagnosis is relabeled to /4, the join
of the diagnosis becomes equal to £,. Since all suprema of diagnoses are greater
than or equal to v, with the new join of that diagnosis we obtain a new boundary
¢y. Another example, we want to change the boundary v to be equal to £4. We
know that the goal value is greater than the boundary. From Lemma 2.4, we
can derive that any MinA is a CS for this case. When all axioms in a MinA is
relabeled to ¢4, the meet of the MinA becomes equal to ¢,. Since all infimua of
the MinA are less than or equal to v, with the new meet of that MinA we obtain
a new boundary £,. Another example when we want to change the boundary to
be /5. The goal value for this case is incomparable to the boundary. Therefore,
the union of a MinA and a diagnosis is a CS for this case.

Example 2.9. Recall the ontology Ogeorgia, consequence Georgia = World,
and the lattice L from previous examples. We already know that the boundary
for O, c is l3. Assume that we want the boundary to be 4. We are facing the
case by > v. Thus, we take a MinA {o01,02,04}. We relabel this MinA to £y. The
meet of the MinA is now £4. Thus, together with the other infimum of the rest of
MinAs, we obtain £4 as the supremum of them, i.e. the new boundary. However,
{02} is also a change set with smaller cardinality.
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Algorithm 4: Compute (partial) RAS

Procedure extract-partial-RAS(Oron fiz; Otest, ¢, 1)
Input: Ononfiz: axioms; Opest © Oponfiz: axioms; c: consequence; n: limit
Output: first n elements of a minimal & C Oyeq such that Opon iz \ S = ¢

1: Global I := 0, Oponfiz, 7

2: return extract-partial-RAS-r((), O, €)
Subprocedure extract-partial-RAS-r(O014, Otest, €)
1: if n =1 then
2 return ()
3: if |Otest| = 1 then
4 l:=1+1
5: return O
6
7
8
9

: 81,82 := halve(Otest) (partition Ogest so that [|Si| —[Saf| < D)
if On(mfim \ (Ohold U 81) l# ¢ then
: return extract-partial-IAS-r(Opo14, S1, €)
. if Ononfiz \ (Ohota U 82) ¥~ ¢ then
10: return extract-partial-IAS-r(Opo14, S2, €)
11: 8§ := extract-partial-RAS-r(Opo1q U S2, S1, ¢)
12: 8} := extract-partial-RAS-r(Opo1qa U S, S2, ¢)
13: return S; U S}

Nevertheless, either the smallest MinA, or the smallest diagnosis can be not
the smallest change set, w.r.t. the cardinality of the set as shown in Example 2.9.
The following definition generalizes a change set from a MinA or a diagnosis
wchich contains only the required axioms.

Definition 2.10 (IAS and RAS [KP10b, KP10a]). Let O be an ontology, ¢ be a
consequence, and gy be a goal label. A minimal inserted axiom set (TAS) for £,
is a subset I C Oy such that Oy, U1 = c and for every I' C I: O, UI' |~ c.
A minimal removed axiom set (RAS) for {4 is a subset R C Oﬂg such that
O, \ R £ ¢ and for every R' C R: O, \ R Ec.

The following theorem justifies the use of an IAS, a RAS, or the union of an
TAS and a RAS when searching for change set with minimum cardinality.

Theorem 2.11 ([KP10al). Let v be a boundary for O, ¢, £y the goal label, mp,
my, and my the cardinalities of the smallest RAS, the smallest IAS, and the
smallest union of an IAS and a RAS for £y, respectively. Then, for every IAS I
and RAS R for ¢, it holds:

o if ly <v and |R| = mpg, then R is a CS of minimum cardinality,
o if v </ly and |I| = myp, then I is a CS of minimum cardinality,

e if v and {4 are incomparable and |I U R| = my, then I UR is a CS of
minimum cardinality.
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Algorithm 5: Compute (partial) change set
Procedure extract-partial-CS(O, lab, ¢, ¢y, H, n)

1: £, := hst-boundary(O, ¢)

2: return extract-partial-CS-aux(O, lab, ¢, €4, £y £ L. N Oxy, [ c,

Ly # L N O%_fg Eec H,n)
Procedure extract-partial-CS-aux(O, lab, ¢, 4y, isy,isg, H,n)
Input: O, lab: labeled ontology; c: consequence; £4: goal label; is;: decision to
compute TAS; isg: decision to compute RAS; H: HST edge labels; n: limit

Output: first n elements of a minimal CS S C O

Jif1>n orisj/\OzggU((’)ﬂg\H)béc orisg A H |= ¢ then

1
2 return () ; (HST normal termination)
3: if is; then

4 I:= extract—partiaI—IAS(OZgg,Oﬂg \ H,c,n)

5: if isp and Oy, \ I = c then

6: R:= extract-partial-RAS(Oﬂg \ 1, Oy, \(TUH),e,n—|I|)

7: return T U R

2.5.2 Computing the Smallest Change Set

In [KP10b], the authors describe an approach to compute the smallest TAS and
RAS using axiom pinpointing, which is also optimized w.r.t. the labels of the
axioms. The basic approach is based on the computation of MinAs and diagnoses,
as shown by the following lemma.

Lemma 2.12. Let I (R) be an IAS (RAS) for Ly, then there is a MinA (diagnosis)
S such that I = S\ O, (R =8\ O<y,).

The approach is improved by considering unchanged axioms of the ontology.
Later, this is improved by only computing the partial IAS and RAS which reduces
the search space and execution time. Finally, it is optimized by looking to the
labels of TAS and RAS instead of looking to each axiom.

Change sets can be deduced from the set of all MinAs and diagnoses where
an IAS or a RAS is a MinA or a diagnosis without the fixed elements, i.e. O>,
or O<y,. To avoid unnecessary repetitions, we focus on computation of smallest
IAS from here. The computation of smallest RAS can be treated in an analogous
manner.

The basic approach to obtain all set of IAS is by computing all MinAs. The
set of all MinAs is then filtered by removing all fixed elements of the ontology
O>y,. Finally, we search for an IAS with the smallest cardinality.

The goal is to find the smallest change set for changing the boundary. The
previous approach can be improved by directly computing the set of TAS. Instead
of using the auxiliary procedure of getting a MinA, a procedure to compute an
IAS is introduced in Algorithm 3. A limit n is given to optimize the computation.
It is used to ensure that each computation only computes an IAS with smaller
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size of the smallest computed IAS so far. During the computation, it is updated
to the size of smallest change set so far computed. When it finds an TAS of size
at most n, it stops looking for more IAS because that shows that it will not find
any smaller change set than the one with size n.

Algorithm 5 computes a minimal change set. It outputs a change set from
the union of an TAS and RAS. This algorithm calls Algorithm 3 and Algorithm 4
where each of these algorithms computes partial IAS or RAS. Using the modified
HST algorithm in [KP10b], it is claimed that the smallest change set can be
found.

In the following chapter, we will discuss how to find a smallest change set
for general cases, i.e. allowing boundary to be in a given criteria such as greater
than or equal to a goal label.



Chapter 3

General Corrections of The
Boundary

Previous work deals with the problem of allowing the boundary change to a
specific goal label. In this chapter we show mainly our approach to deal with
more general conditions for changing the boundary. As we have mentioned in
Chapter 1, we want to allow general changes to the boundary. In specific way, we
can change the boundary to a value less than or equal to, greater than or equal
to, not less than or equal to, or not greater than or equal to some ¢,. We divide
this problem into two sections. First, we will show an approach to obtain </,
and > /4, called as positive conditions. Then, we will show approaches to solve
& £y and # {4, called as negative conditions.

Before going into the discussion, we revise the modified assigment and a
change set S for these general cases. A target label (¢;) is a label which is used
to relabel the axioms.

Definition 3.1. Let O be an ontology, ¢ consequence lab a labeling function,
S € O. The modified assignment labs, where £ € L and { is a target label is

labs ¢(0) 1 ifoeS,
a 0) =
St lab(o) if otherwise.

given by

Let C be a condition which is boundary <, >, £, or # {4. A sub-ontology S C O
is called a change set (CS) for C if the boundary for O, c¢ under the labeling
function labg ¢ satisfies C.

As we have seen in Chapter 2, [KP10b, KP10a] provide a suggestion of a
change set to a knowledge engineer that wants to change the boundary for a given
ontology O and a consequence c to a given goal label ¢,, with assumption that

19
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he knows the computed boundary. It is often the case that a knowledge engineer
gives a range of the “allowed” boundary. One of the reasons is simply because
in a range he could have more flexibility in assigning the access restriction. For
example, using the lattice (L4, <4) from Figure 2.1, if the knowledge engineer
wants to ensure that any user with labels 3 and ¢y can deduce the consequence
¢, then the condition that suits this criterion is that the boundary should be
greater than or equal to f3. With this condition, we ensure these users can
deduce the consequence, but in the same hand we do not restrict the users with
the other labels that could deduce the consequence if the boundary is £4, 2, or
61.

3.1 Positive Conditions

We now consider the case where the knowledge engineer gives a limitation such
as a boundary should be greater than or equal to ¢, (v > {,4) or smaller than of
equal to £, (v < {).

First, we focus on the condition greater than or equal to £,. It is obvious
that for any computed boundary which is already satisfying the condition, we do
not need to make any change on the ontology. On the contrary, if the previous
boundary is not greater than or equal to /4, then we need to find a set of axioms
such that changing the label of these axioms results in a boundary greater than
or equal to £,. By Lemma 2.4, we know that a boundary is the supremum of the
infima of the labels of all MinAs, i.e. it is greater than or equal to the infima
of the labels of all MinAs. When we take a MinA and relabel its axioms to
¢4, automatically we change the infimum of this MinA to /,. The fact that we
only execute the computation when the boundary does not satisfy the condition
together gives information that the infimum ¢, is either greater to all the infima
or incomparable to an infimum where the result of the join of all infima is a value
greater than or equal to /4. In this way, after relabeling this MinA, we will obtain
a new boundary which is equal to ¢, or greater than ¢,. The following lemma
justifies it.

Lemma 3.2. Let ¢, be a goal label, lab a labeling function, and S a MinA. S

is a change set to repair a boundary to a value greater than or equal to £y, by
|ab57gg(0).

Proof. Lemma 2.4 shows that for all MinAs S1,8o,...,S, for O, ¢ the boundary
is @;; As;- We relabel all axioms in S to ¢;. The meet of the MinA S is now
Ly, ie. A\s = {4. Thus, the new boundary is greater than or equal to /4, because

of the fact that a boundary v is always greater than or equal to the meet of all
MinAs. O



3.1. POSITIVE CONDITIONS 21

In the same fashion and argument, a diagnosis is a change set for changing
a boundary to a label that is less than or equal to a goal value in the following
lemma.

Lemma 3.3. Let £, be a goal label, lab a labeling function, and S a diagnosis. S
is a change set for changing a boundary to be less than or equal to £y by labs ¢, (0).

Proof. Lemma 2.4 shows that if diagnoses S1,Sa, ..., S, for O, ¢ then Q)" ps,
is a boundary for O, c¢. We relabel all axioms in S to ¢,. The join of the diagnosis
S is now £y, i.e. us = £4. Thus, the new boundary is less than or equal to ¢,. [

The MinA or the diagnosis which we choose as the change set might be not
the minimal change set. This means that there are some axioms which can be
removed from the change set. Refer to Lemma 2.4, a boundary is the least upper
bound of all As where § is a MinA. Changing the label of all the axioms in § is
not necessary, because only some axioms with specific labels must be relabeled
in order to change the meet of the MinA. Therefore, changing the label of some
axioms in S is enough to repair the boundary. Only the axioms with label not
greater or equal to /4 need to be relabel.

Example 3.4. Continuing Fxample 2.9, assume that we want the boundary to be
greater than or equal to {4. The axiom in ontology OgGeorgia With label not greater
than or equal to U4 is only os. If this axiom is relabeled to £4, then we obtain the
meet of the MinA is £4. By the relabeling of axiom oo, we obtain the infima of
all MinAs as follows: L4,¥5,03, and £y. Therefore, the new boundary is £4.

The azioms 01 and o4 in the MinA {o01,02,04} are considered not necessary
to be relabeled. Their labels do not need to be changed in order to repair the
boundary, because they are already greater than or equal to ly4.

In other words, relabeling some essential axioms is enough to change the
infimum of this MinA. To change the infimum of a MinA, we just need to change
the label of axioms which are less than £, or incomparable to ¢,. The reason is
that these axioms are the axioms which “responsible” to the infimum of the MinA.
Therefore, relabeling them guarantees that the infimum of the MinA is greater
than or equal to /4. The set of these axioms has been introduced previously in
Definition 2.10. From Lemma 3.2 together with Lemma 2.12, it is easily proved
that every IAS is a minimal change set for this condition. And for the case less
than or equal to /4, we just need to relabel axioms which are not less than or
equal to £4, which has been defined in Definition 2.10. And from the Lemma 3.3
and Lemma 2.12; RAS is the minimal change set for changing a boundary to less
than or equal to £,.
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Figure 3.1: Labels satisfy condition not less than or equal to /3

3.2 Negative Conditions

In the previous section, we have shown how to deal with the positive conditions.
The greater than or equal to case can be solved using the computation of an TAS
as it is used in ¢4 > v case in equality condition. And the less than or equal to
case can be solved using the computation of an RAS as it is used in £, < v case in
equality condition. Now we show how we can get a boundary which satisfies the
conditions, i.e. the negation of less than or equal to and greater than or equal to.
To obtain a change set for these conditions is not trivial at all. First, we show
the naive approach which is related to MinAs and diagnoses. Later, we explain
how to get better solutions for these conditions.

For negative conditions we allow relabeling the change set to any other label
which is in the given condition or criteria, instead of relabeling to the goal label
4. In the positive conditions, elements of the change set are relabeled to £,. This
is not possible for the negative conditions, because labeling them to ¢, might give
us a boundary that is equal to £, which we do not want. If the given condition
is greater than or equal to ¢, then the flexibility on relabeling the change set is
to any label which is greater than or equal to 4.

3.2.1 Naive Approach

When a knowledge engineer wants a boundary to be not less than or equal to
£y, where /, is a goal label, he wants the boundary to be a label that is strictly
greater than or incomparable to £,. For example, the grey nodes in Figure 3.1
shows which labels satisfy the condition not less than or equal to /3.

To obtain a boundary which is not less than or equal to ¢4, from Lemma 2.4
can be derived that a MinA of a given ontology O and a consequence c is a
change set for this condition v/ £ ¢,. If all axioms in a MinA are relabeled to
a label € ¢4, the infimum of the MinA is changed to that label. With the fact
that all infima of the MinAs are less than or equal to the boundary and that the
boundary is less than or equal to the goal value, the new boundary is not less

than or equal to ¢,. The following lemma justifies this.
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Lemma 3.5. Let £, be a goal label, lab a labeling function, and S a MinA. S is
a change set for changing a boundary v £ ¢4 by labs ¢(O) where £ € L, £ £ {,.

Proof. We want to show that after relabeling a MinA S to a label ¢ £ ¢, we
obtain a new boundary v/ £ ¢,. Lemma 2.4 shows that if S1,Ss,...,S, are all
the MinAs for O, ¢ then ;" As, is a boundary for O, ¢. We assume w.l.o.g.
that the previous computed boundary v < ¢4, because if it is not less than or
equal to /4, then we do not need to change anything. We have the following order

Vi=1,...,n, s, <v < /.

When we relabel any MinA S to a label ¢ £ ¢, there are two cases that we need
to analyze.

¢ is greater than ¢, If { is greater than /4, then relabeling labs ¢ gives a As > £,
which implies that the new boundary v/ (which is greater than or equal to
As) is strictly greater than /.

¢,{, are incomparable If / is incomparable to /4, then relabeling labs , gives
a As which is incomparable to ¢,. We know that a boundary is greater
than or equal to As. If the previous boundary is equal to Ag, then v/ is
incomparable to /,. If the previous boundary is greater than A\g, then v/ is
either greater than or incomparable to ¢,.

Therefore, in both cases we obtain the new boundary v/ that is not less than or
equal to /. ]

For obtaining a boundary that is not greater than or equal to /4, we can use
the dual notion of MinA, i.e. diagnosis as shown on the following lemma.

Lemma 3.6. Let {, be a goal label, lab a labeling function, and S a diagnosis. S
is a change set for changing a boundary v # {4 by labgs ¢(O) where £ € L, L # (.

Proof. We want to show that after relabeling a diagnosis S to a label £ # ¢, we
obtain a new boundary v/ # ¢,. Lemma 2.4 shows that if S1,Ss,...,S, are all
the diagnoses for O, ¢ then @, us, is a boundary for O, c. We assume w.l.o.g.
that the previous computed boundary v > ¢,, because if it is not greater than
or equal to /4, then we do not need to change anything. We have the following
order

Vi=1,...,n,us, > v >4

When we relabel any diagnosis S to a label £ # ¢, there are two cases that we
need to prove.

¢ is less than ¢, If / is less than ¢,, then relabeling labs ¢ gives a pus < £, which
implies that the boundary v is smaller than or equal to pus. Therefore v is
strictly smaller than £,.
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Figure 3.2: Labeled ontology w.r.t. the lattice.

¢,{, are incomparable If ¢ is incomparable to ¢4, then relabeling labs , gives
a p1s which is incomparable to £,. We know that the boundary v < ps. If
v = us, then v is incomparable to £,. If v < ug, then v is either smaller
than or incomparable to /.

Therefore, in both cases we obtain the boundary v is a value # /. O

3.2.2 Label-Based Optimized Approach

We now discuss how to get the minimal change set for our current cases. The
following example shows that in some cases a MinA is not the minimal change
set for repairing the boundary to a value not less than or equal to £,.

Example 3.7. Consider ontology Ogeorgia and the boundary for Georgia T
World is {3. We take a MinA {o1, 03,04} from ontology Ogeorgia as a change
set for repairing the boundary to be % lo. All axioms of this MinA which were
previously labeled with {£1, (3,04} is relabeled to ¢1. The new boundary is £1. This
MinA is not minimal and also not the smallest change set. A minimal change
set that we can get from this MinA is the subset {o3}. When o3 is relabeled to
l1, the boundary becomes €4 which is not greater than or equal to fo. This result
is obtained because for the MinA {o01,03,04}, the meet of the labels of the axioms
becomes £y after relabeling os to £1. Therefore, with the infimum of a MinA equal
to {4, we obtain the boundary £y.

As we know that a MinA or a diagnosis might not be the smallest change set,
we need to find a minimal change set to avoid unnecessary changes to particular
axioms. We can try to apply the same approach as mentioned in [KP10b] for
these conditions. The idea is to ignore axioms of a MinA (diagnosis) that do not
need to be relabeled, because their labels have followed the repairing condition.
Therefore any axiom that has a label which follows the given condition, in this
case £ or # to {4 are not contained in the change set.
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In the changes, we will apply the target label to the change set. For the first
case we choose ¢ or the top element of the lattice as the target label when the
condition is the new boundary not less than or equal to ¢4 and ¢y or the bottom
element of the lattice when the condition is the new boundary not greater than
or equal to /.

Example 3.8. Recall the boundary for the ontology Ogeorgia and the consequence
Georgia T World is {3 with respect to the labeling lattice (Lq, <4). Assume that
the knowledge engineer wants to change the boundary to % {3, then the question
1s what the smallest change set is for this condition. As it has been proven that a
MinA is a change set in this case, let us take a MinA S from O, ¢, say {01, 03,04}.
Changing all azioms in S to a label £ & {3, i.e. {1, 04,05 changes the boundary
ly,05, L4, or £5 respectively.

We want to obtain the smallest change set from the same S. When we consider
the fized axioms, i.e. axioms which do not need to be changed, the smallest change
set is S\ Oﬂg, namely {oz}. Then we apply labeling function laby,,y , where
0 € {ly,05,04,05}, the boundary computed after the labeling S to all £ & {3, except
to U, fulfills the condition v £ (3. Relabeling the change set to label £y does not
change the meet of the MinA, because the infimum of labels of 04 and o3 is 3.

From Example 3.8, we know that labeling {03} to ¢2 is not enough to repair the
boundary to a value £ ¢5. We observe the effect of labeling o3 to ¢5. The affected
MinAs are {01,03,04}, {01, 03,05} which give A(o, o, 0,3 = £3; Ao;,05,053 = {0 Let
us analyze MinA S = {01, 03,04}. The labels of these axioms before applying the
labeling function are {1, ¢3,¢4}. When we label o3 to {9, the meet of {¢1,l2, 4}
is £3. For S = {01,03,05}, we obtain A\s = {q after laby,,} s,. Our idea of moving
the As to some greater or incomparable label is not applied here, because there
is an axiom in the fixed portion which makes the infimum of the changed axiom
< Yy, for example o4 or o5 together with the changed axiom o3.

The following example shows a deeper problem in changing the boundary, in
special case to repair the boundary to be not greater than or equal to a goal label.

Example 3.9. Using the same lattice (Lg,<g4), consider the ontology T .

t1:c1 ©E colles,
to:c1 ©E c5Mcg,
tz:ca C ey,
ty:cg C o7,
ts:c5 & o,
te : Cg C C7.

Each axiom is assigned to the label in the lattice as shown in Figure 3.2. Following

the Lemma 2.4, we obtain the boundary for the consequence c1 T ¢y is {1.
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Suppose the knowledge engineer wants to change the boundary to a value # (1.
From Lemma 3.6, we know that any diagnosis is a change set. We take the
diagnosis {ta,t3,t4}. The sub-ontology T,Z% is considered to be a set of unchanged
azioms. From the diagnosis, we need only to change {t2}. Unfortunately, it is
not enough to get a boundary } {1 by changing {t2} to any label, because when
we relabel the set {ta} to either lo, U3, 0y, ls, U5, the join of the diagnis is still .

The minimal change sets from this diagnosis are {ta,t3} and {to,t4}. If the
labels of one of these sets are changed to £y, then the boundary with respect to the
change is not greater than or equal to £1. And if we choose U5 as the target. If the
knowledge engineer chooses to change a change set to {5, then only the change
set {ta,ts} will satisfy the criteria given by the engineer.

There are two main matters which are shown in the example. The first one
is to obtain a set of axioms which need to be changed. This change set cannot
be obtained trivially by considering the fixed part of an ontology and taking the
non-fixed part of a MinA or a diagnosis. The second problem is to select the
right change set w.r.t. the target label. Both problems are related to one to each
other. Therefore, to have better understanding, we first take the top or bottom
element as the target label, because they are the identity elements in a lattice.

In order to change the boundary to a value # ¢,, we need to have the supre-
mum of a diagnosis which is not greater than or equal to £,. This means there
should not be an subset of the diagnosis where the supremum of the elements
is greater than or equal to ;. This can be ensured by checking if there exists
an axiom with this label or if there is a minimal subset of the diagnosis which
supremum is greater than or equal to /4. If an axiom with label greater than
or equal to ¢, exists, then this axiom is included in the change set. If a subset
with the supremum greater than or equal to ¢, exists, then one of axioms in this
subset is included in the change set. In this way, we ensure that the supremum
of the rest axioms is not greater than or equal to /.

Recall the previous Example 3.9, the set {t2} is not a change set for obtaining
the boundary to be not greater than or equal to ;. The diagnosis that we took is
{ta,t3,t4}. The label of ¢y is ¢;. Thus, t9 is added in to the change set. Although
the labels of t3 and ¢4 are £5 and ¢4, the supremum of them is /1. We have to
avoid the possibility of a supremum of any subset of the diagnosis that is greater
than or equal to #1. Therefore, we add either ¢3 or ¢4 in to the change set which
makes the change set is either {to,t3} or {t2,4}.

Based on this explanation, our approach to solve this problem is that first we
compute the set of labels of axioms in the change set, then we take only axioms
which are labeled with an element in that set. The set of labels is called solution
label set.

Definition 3.10 (NGEQ Solution label set). Let D be a diagnosis for a given
ontology O and consequence ¢, D be the set of labels of axioms in D, and
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Ly a goal label. A NGEQ solution label set is a subset Siqy € Diqy where
EDKG(Dzab\Szab) 0 # Ly Itis called a minimal NGEQ solution label set if V.S" C Sjap,

®Z€(Dlab\sl) t= 69'

Given a solution label set, we can obtain a subset of the set of axioms which
are labeled with elements from the solution label set. This subset contains only

axioms which are contained in a respective diagnosis.

Definition 3.11 (NGEQ Solution set). Let O be an ontology, ¢ a consequence,
Ly a goal label, D be a diagnosis for O and c, Dyup be a set of labels of axioms
in D, Siap € Digp a solution label set for mnew boundary v/ 7,)_4 Ly, and Ofized
= O(D1\Sias)- A NGEQ solution set is a subset S C Og,,, such that O\ (SU
Ofiged) & c. It is a minimal NGEQ solution set if V.S C S, O\ (S"UO¢ized) = c.

The following lemma justifies that a NGEQ solution set is a change set for
condition not greater than or equal to /.

Lemma 3.12. Let C be a minimal change set for changing the boundary to v # {4
for ontology O and a consequence ¢, Ciqp be a set of labels of axioms in C, ¥; a
target label, then there exists a NGEQ solution set S such that S = C.

Proof. By Lemma 2.4, we know that the boundary is less than or equal to us of
any diagnosis of O and c¢. And by definition of the change set, under the labeling
function labe ¢, the boundary is changed to a value # ¢,. Therefore, under labc 4,
there exist a diagnosis D where (@,cp ¢) # {g. That means the new supremum
(after we relabel it to £y) is not greater than or equal to £,. If we take any subset
C' C C, then pup > {4 under laber g, As the consequence, every axiom in C is also
in D. Therefore, it is true that C C D.

It is trivial that Cj,p, C Djup where Dy is the set of labels of axioms in D.
@ee( Dias\Cra) £ # {4 is true because of the fact that C is a minimal change set
and the new boundary ¢/ is not greater than or equal to ¢, under the labeling
function labe ¢,. Therefore, Cjqp is a solution label set.

We know that from C there exists a solution label set, i.e. Cjqp. As a conse-
quence, C is a solution set w.r.t Cjp. Since Cjyp is a solution label set, there exists
a solution set, i.e. C. O

For the case where the boundary is required to be not less than or equal to
a goal label, a change set can be obtained in an analogous way. In this case, a
minimal axiom set is a change set as it has been shown in Lemma 3.5. We have
to change a MinA in such way its A is not less than or equal to a goal label. That
means some axioms in a MinA are responsible for its infimum to be less than or
equal to the goal label. Similar to the previous case, we can find these axioms by
looking at theirs labels first, and then filter the axioms from these labels.
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Definition 3.13 (NLEQ Solution label set and NLEQ Solution set). Let Mg,
be a set of labels of axioms in a minimal aziom set for a given ontology O,
consequence c, £y a goal label. A NLEQ solution label set is a subset Siay C Mg
where ®€€(Mzab\5zab) ¢ £ 0y It is called a minimal NLEQ solution label set if
V8" C Stabs Que(aiup\s) ¢ < Lo

A NLEQ solution set is a subset S C Og,,, such that (S U Otized) E c,
where Ofized = O(Dyup\S1ap)- 1t s @ minimal NLEQ solution set if Vs’ c S,

(Sl U Ofixed) 17& c.

The following lemma is the dual of Lemma 3.12 for showing that a minimal
change set is a minimal NLEQ solution set for changing the boundary to be not
less than or equal to a goal label. The proof can be obtained in analogous way
as in the proof of Lemma 3.12.

Lemma 3.14. Let C be a minimal change set in order to change the boundary
v £ Ly for ontology O and a consequence ¢, Ciqp, be a set of labels of axioms in C,
then there exists a NLEQ solution set S such that S = C.

The second case of the problems is how to select the right change set w.r.t.
the target label. That means we want to change the axioms in a change set as
close as possible to their original labels. Previously, we fixed the target label to be
the top or bottom element of the lattice which is the identity element for each of
join and meet operations. This was done to simplify the problem. Unfortunately,
relabeling to the top or bottom element often changes more the level of restriction
of the axioms in the change set which we can reduce by relabeling to a label which
is greater than the bottom element or less than the top element. When an axiom
is changed to the bottom element, the axiom is set to be as private as possible
or if an axiom is relabeled to the top element, it is set to be accessible by every
user.

The computation of a change set has always been respecting the target label.
When a label which is not the top or bottom element is chosen as the target
label, the computation is a special case because the top or bottom element is
an identity element in the lattice. Thus, if we computed a change set with top
(bottom) element as the target label, the set could not satisfy the property of a
change set. As we have seen in the previous example that the set {to, 4} is not
a change set if the target label is /5 for a given change condition boundary not
greater than or equal to /1, i.e. after labeling {t2, 4} to {5, the supremum of the
diagnosis {to,ts,ts} is b5 @ by O Ly = (1.

Taking the target label into the computation, we modify the definitions of
solution label set. The supremum or infimum of the solution label set together
with the target label should not be greater or less than the goal label.

Definition 3.15 (NGEQ and NLEQ solution label set revised). Let O be an
ontology, ¢ a consequence, D be a set of labels of axioms in a diagnosis for
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Algorithm 6: HST algorithm for computing diagnosis label

Procedure hst-Diagnosis-Label(O, ¢, 44, £+)

Input: O: ontology; c: consequence; {4: goal label; ¢;: target label

Output: a solution set

1: Global: C, H, Sol := 0

2: hst-diag-lab(O, ¢, £4, 1, )

3: return min(Sol) (the min function returns the smallest set in Sol)
Procedure hst-diag-lab(O, ¢, g, £, H)

Input: O: ontology; c: consequence; £4: goal label; ¢;: target label; H: set of axioms C O
Side effects: modifications to C, H and Sol

4: if there exists some H' € H such that H' C H or
H'’ contains a prefix-path P with P = H then

5: return (early path termination)
6: D := compute-diagnosis-label(O, ¢, H)

7. if H [~ c then

8: C:=CU{D}

9: Sol := hst-Solution-Label-of-Diagnosis(D, ¢g, £+, H)
10: Sol := Sol U Sol
11: A :={a € sol | sol € Sol}
12: foreach aziom a € A do
13: hst-diag-lab(O, ¢, £y, £y, H U {a})
14: else
15: H:=HU{H}

Procedure compute-diagnosis-label(O, ¢, H)
Input: O: ontology; c: consequence; H: set of axioms C O
Output: a set of labels of a diagnosis

16: if H |= c then

17: return no diagnosis label
18: §:=0\H
19: D:=10

20: L := L|ab(8)
21: foreach label k € L do

22: if O \ {S;,gk} [75 c then
23: S =84

24: else

25: D :=DuU{k}

26: return D

O and ¢, Miqp, be a set of labels of axioms in a MinA for O and c, ¢y a goal
label, Uy a target label. A NGEQ solution label set is a subset Siup, C Djqp where
GBZG(Dlab\Slab)U{Zt}g * ly. It is called a minimal NGEQ solution label set if
V8" C Stab, Dre(pia\suia) £ 2 bo-

A NLEQ solution label set is a subset Sj, € M, where ®é€(Mzab\Szab)U{€z} £
ly. It is called o minimal NLEQ solution label set ifV.S" C Sjqp, ®Z€(Mlab\5’)u{€t} (<
ly.

Using the revised definitions of NGEQ and NLEQ solution label set, we can
compute a change set with considering the target label. The following section
describes how to obtain the smallest change set based on the lemmas that we



30 CHAPTER 3. GENERAL CORRECTIONS OF THE BOUNDARY

Algorithm 7: HST algorithm for computing solution label set

Procedure hst-Solution-Label-of-Diagnosis(D, £q, £¢, Oremoved)

Input: D: set of labels of diagnosis; £4: goal label; ¢;: target label; Oremovea: set of
removed axioms

Output: set of solution sets

1: Global: C, H, Sol := 0

2: hst-sol-lab(D, ﬁg, ﬁt, ®7 O'removed)

3: return Sol

Procedure hst-sol-lab(D, £y, ¢, H, Oremoved)

Input: D: set of labels of diagnosis; ¢4: goal label; ¢;: target label; H: set of removed

labels C D; Oremoved: set of removed axioms
Side effects: modifications to C, H and Sol

4: if there exists some H' € H such that H' C H or
H’ contains a prefix-path P with P = H then

5: return (early path termination)
6: if there exists some C’ € C such that C' N H = ) then

7 S:=C (solution label set reuse)
8: else

9: S := compute-solution-label(D, £, £;, H)

10: i Dyeqprsyuge)y ¢ £ L then

11: C := C U{S}

12: Sol := hst-Solution-of-Diagnosis(O, Os \ Oremoved, O(p\ ) €)

13: Sol := Sol U{Sol}

14: foreach label ¢ € S do

15: hst-sol-lab(D, ¢4, £+, H U {€}, Oremoved)

16: else

17: H:=HU{H}

Procedure compute-solution-label(D, ¢4, £+, Dyemoved)

Input: D: set of labels of diagnosis; ¢4: goal label; ¢;: target label; Dremovea: set of
removed labels C D

QOutput: a solution label set

18: if Die(p,,,ppeavien £ = lo then

19: return no solution label set

20: T:=D \ Dremoved

21: S:=10

22: foreach label / € T do

23 i @ue\r-guiey b Z Lo then
24: T:=T\{¢}

25: else

26: S:=Su{t}

27: return S

have mentioned.

3.3 Computing the Smallest Change Set

If our target is to obtain a change set for a given condition, the simplest way is

to take the whole ontology. One step further is to take a minimal axiom set or

a diagnosis as the change set. We have four conditions depending on the label
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Algorithm 8: HST algorithm for computing solution set

Procedure hst-Solution-of-Diagnosis(O, Osiab, Ofized; €)

Input: O: ontology; Ogqp: ontology w.r.t a solution label set; Oyfizeq: ontology w.r.t.
diagnosis label set minus solution label set; ¢: a consequence of O

Output: set of solution sets

1: Global: C, H :=0
2: hSt'SOI(O, Oslab; Ofized7 c, Q)
3: return C

Procedure hst-sol(O, Osiap, Ofized, ¢, H)

Input: O: ontology; Ogqp: ontology w.r.t a solution label set; Ofizeq: ontology w.r.t.
diagnosis label set minus solution label set; ¢: a consequence of O; H: set of
removed axioms

Side effects: modifications to C and H

4: if there exists some H' € H such that H' C H or
H'’ contains a prefix-path P with P = H then

5: return (early path termination)
6: if there exists some C’ € C such that C' N H = () then

7 S:=C' (solution set reuse)
8: else

9: S := compute-solution(O, Osiat, Ofized, €)

10: if O \ {Oslab U Ofixed} 175 ¢ then

11: C :=C U{S}

12: foreach axiom o € S do

13: hS'E—SO|((97 Osiap \ {f}, Ofia:ed’ c, HU {f})
14: else

15: H:=HU{H}

Procedure compute-solution(O, Osiap, Ofized, €)

Input: O: ontology; Osiqb: ontology w.r.t a solution label set; Ofizeq: ontology w.r.t.
diagnosis label set minus solution label set; ¢: a consequence of O

Output: a solution set

16: if O \ {Oslab U Ofixed} ': ¢ then

17: return no solution set

18: 7T := Ogap

19: S:=10

20: foreach axiom o € T' do

21: if O\ {7 UOyizea \ {0}} }~ ¢ then
22: T:=T\{o}

23: else

24: S:=SU{o}

25: return S

where the boundary is conditioned to be. On previous work [KP10b, KP10a],
hitting set tree (HST) algorithm was used to compute inserted axioms sets (IAS)
and removed axioms sets (RAS) in order to change the boundary depending the
given goal label. As we have shown previously, to change the boundary to be
greater or equal to a goal label or to be smaller or equal to a goal label, an IAS or
RAS is a minimal change set. Using the HST algorithm introduced in [KP10b],
(partial) IAS and RAS can be computed. Once the termination condition, i.e.
when the algorithm can not find any smaller IAS or RAS, is fulfilled, the smallest
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change set is obtained.

Our approach for the condition not greater than or equal to a goal label or
not less than or equal to a goal label is directly computing the set of labels in
the HST algorithms, namely Algorithm 6 and 7. This minimizes the consumed
time to get the smallest change set. The procedure hst-Diagnosis-Label computes
the set of labels of diagnosis. Then, to get a minimal change set, the procedure
compute-solution-label-of-diagnosis finds in which label the axioms are.

For the condition not greater than or equal to a goal label or not less than or
equal to a goal label, it has been shown in Lemma 3.5 and 3.6 that a diagnosis
(a MinA) is a change set and that we can obtain a minimal change set from it.
The computation of the minimal change set for these particular conditions can
be done by first computing a diagnosis for the ontology and the consequence. A
solution label set of the diagnosis can be computed by ensuring that, without any
axiom which label is in the solution label set, the supremum of labels of the rest
of the axioms in the diagnosis is not greater than or equal to the goal label. It
is also necessary to take the target label into account. We have to check if the
supremum of labels of the rest of the axioms in the diagnosis together with the
target label is not greater than or equal to the goal label.

In Algorithm 6, hst-Diagnosis-Label computes all sets labels in diagnosis, that
is, the set of labels of all axioms in the diagnosis. Given an ontology O and a
consequence ¢, the procedure compute-diagnosis-label extracts a set of labels of
diagnosis. Then, the result is sent to procedure hst-Solution-Label-of-Diagnosis
shown in Algorithm 7. The parameters required for this procedure are the set
of labels of a diagnosis, a goal label, a target label, and a set of axioms which
is removed from the original ontology. There are some minimal solution sets in
a solution label set, so we ensure that every computed solution set on the same
branch is different one to another. The compute-solution-label-of-diagnosis is used
to obtain one solution label set in the diagnosis. The Algorithm 8 computes
all solution sets in this diagnosis with a reduced search space, namely a set of
axioms whose labels are in the previously computed solution label set Og,,,.
Taking O, Ogs,,,, Ofized = Op,,;\5,.,» and the consequence c, the procedure
compute-solution-of-diagnosis computes a single solution set, which is a minimal
change set. Then, the procedure hst-Diagnosis-Label will recursively call itself to
expand the hitting set tree where each branch will have a node which computed
by removing one axiom from the computed solution set. This means that we will
get new solution sets from a new branch where one axiom is not in these solution
sets.

For each of negative conditions, there are three nested hitting set tree algo-
rithms. In the case to change a boundary to be not greater than or equal to a
goal label, the first HST algorithm is used to compute sets of labels in diagnosis.
Each set computed is then used as a parameter to the second HST algorithm,
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which computes sets of solution label set of the diagnosis. Later from each set
of the solution label set, the third HST algorithm computes sets of solution set.
The following example shows how the algorithm works.

{¢:} {t. t2}
{61} 4 t ts
®© ®© ©
(a)Dygp tree (b)Sip tree (c)S tree

Figure 3.3: Hitting Set Trees from Algorithms 6, 7, and 8.

Example 3.16. We reuse the ontology T' which was used in Example 3.9 to show
the algorithms work to get the smallest change set for changing the boundary to
a value # Uy with target label ¢, = (5. The process starts with procedure hst-
Diagnosis-Label(7,c1 T ¢y, {9, 03). It has three global variables C, which contains
all sets of diagnosis labels, H, which contains sets of list of axioms from root to a
single branch which has been terminated, and Sol, which contains all the solution

sets computed in the process. They are initialized empty.

{61}
{1, 62} {ta, 5
t1 ¢ A t; i3
®© © @ ®©
{EI) e2: 64}
(a)Dyqp tree (b)Siap tree (c)S tree

Figure 3.4: The computation solution sets from node {¢1, ¢2,¢4}.

The procedure hst-diag-lab calls compute-diagnosis-label(7,c¢; T c¢7,0) which
returns a set of labels of a diagnosis, say D = {{1}. The root node is then labeled
with {¢1}. The procedure compute-diagnosis-label computes the set D by trying to
remove each label and then checking if the ontology without any axioms of this label
still entails the consequence or not. The variable C is updated to {{¢1}}. The set
{61} is passed to procedure hst-Solution-Label-of -Diagnosis({¢1 }, (2, 3,0, () shown
on line 9. In Line 9 of hst-sol-lab, wvariable S contains {{1} as the result of
the procedure compute-solution-label({¢1}, £, ¢3,0). This procedure computes the
solution label set by removing each label from previous diagnosis label set and
checking if the supremum of the rest labels is greater than or equal to {4, then
the removed label is added to the variable S. After obtaining a solution label set,
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hst-sol-lab calls Algorithm 8, with parameters (T ,{t1,t2,t6},0,c1 T c¢7). The
procedure hst-sol computes all the solution sets which are subset of {ti,ta,ts}.
There is only one solution set, namely {t1,t2}. The variable Sol is updated to
{{t1,t2}}. Figure 3.3 shows the data structures at this point.

{1}
t
1 {66}
{E1?€2!E4} ¢ 4] iy ts
O] © © O]

iy
{fla EQ} f'4, ﬂ5}
(a)Dyqp tree (b)Siap tree (c)S tree

Figure 3.5: The computation solution sets from node {¢1, ¢2, {4, l5}.

After obtaining the solution set {t1,ta}, the process returns to procedure hst-
Diagnosis-Label. The procedure expands the hst tree for each elements in the so-
lution set. It calls itself with parameters (T,c1 T c7,0a,03,{t1}) for edge t; and
(T,c1 © c7,09,03, {ta}) for edgety. First, we trace the edge t1. The procedure ob-
tains a diagnosis label set, say {{1, {2, {4} which labels the current node. This set is
sent as the parameter of procedure hst-Solution-Label-of -Diagnosis({¢1, {2, {4}, ¢4,
li,{t1}). This time the procedure compute-solution-label returns {¢1,02}. At this
point, it calls hst-Solution-of -Diagnosis(7, {te, t3,te}, {ta},c1 T c¢7) which returns
{ta,t3}. Figure 3.4 shows the current stage.

Figure 3.6: HST tree of diagnoses label.

Like before, Algorithm 6 expands the node {{1,02,04}. Fach edge is labeled
with one of the elements in {ta,t3}. On the edge ta which in the path {t1,t2}, the
process obtains a new diagnosis label set, e.q. {l1,02,04,05}, and at the end we
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obtain a new solution set, say {ts,ts}. The expansions of the node {{1,02, 04,05}
are terminated normally. The paths {t1,t2,t3}, {t1,t3}, {t1,t2,te} are stored in
H. Figure 3.5 shows the current stage.

t ts
© © ©
(a)Dygp tree (b)Siap tree (c)S tree

Figure 3.7: The computation solution sets from node {¢1,¢5}.

At this point, Sol contains three minimal change sets. They are {{t1,t2},
{ta,ts},{ts,t¢}} as depicted in Figure 5.6.

Figure 3.8: The complete HST tree of diagnoses label.

Back to the root node {{1}, now we trace the expansion with edge ta. Procedure
compute-diagnosis-label(7,c; T c7,{ta} returns {{1,¢5}. We obtain one solution
set from this diagnosis label set, e.g. {ti,t¢}. The expansions of this node are
also terminated. The path {ta,t1} is the early path terminated, since we have a
path which has a prefix path equals to it, namely {t1,ta,t3}. And the path {ts,ts}
terminates normally, because {to,ts} entails the consequence. Figure 3.7 shows
the current stage.
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After tracing all the paths, we have four minimal change sets {{t1,t2}, {t2,t3},
{ts,t¢},{t1,t6}}. They have the same number of axioms, so any of them is the
smallest change set we can have. Figure 3.8 shows the final stage.

The HST algorithm to compute sets of labels in diagnoses (MinAs) is imple-
mented without the reuse node optimization. This optimization is not applicable
here since the element used to label the node and the element used to label the
edge are not the same, i.e. set of labels and set of axioms. Therefore, the con-
dition for the optimization, H(n') NS = @ for node n', is simply not applicable.
The other two HST algorithms for computing sets of solution label set and sets of
solution set are optimized with early path termination similar to what has been
used in [BKP09, KPHSO07].

The HST algorithm that computes the diagnosis (MinA) label sets is imple-
mented without the optimization of getting a particular set up to the m size,
where m is a variable that contains the cardinality of the smallest change set
computed on one stage. For example, we have two diagnosis label sets A and B.
The diagnosis label set A has 2 labels. The relevant minimal change set is a set
with 5 axioms. On the other hand, the diagnosis label B has 3 labels with a size-
3-axioms minimal change set. Assume that on Algorithm 6 has this optimization.
On the first computation of the diagnosis labels set, we obtain diagnosis A. The
variable m is then updated to 2. That means on the next search, we want only
a diagnosis labels set with cardinality up to 2. Therefore, we could never obtain
the the minimal change set with size 3 axioms.

The same case applies to the HST algorithm that computes the solution label
sets. Thus, this optimization is not applicable on both of the algorithms. In
order to have a generality on the structure of the HST algorithms, we decided
not to apply this optimization to the HST algortihm that computes the solution
sets.

Another way to get the smallest change set without using the three-nested-
HST algorithms is using one HST algorithm with the auxiliary black-box ap-
proach procedure. The idea is as follows. The auxiliary procedure checks on each
sub-ontology if it is a change set. That means it takes one sub-ontology, then
relabels it, and sees if the boundary is changed to the right condition. Although
it seems that it will work, this way is very expensive one. If an ontology has a
million of axioms, then to find the smallest change set for one consequence can
take a long time and it requires a powerful tool to do the computation.



Chapter 4

Empirical Evaluation

In this chapter, we present the empirical evaluation of the implementation of
the algorithms to repair a boundary of a consequence under different conditions.
The implementation is built using Java 1.6 with Pellet 2.0 as the reasoner and
OWL API trunk reversion 1150 as the JAVA API for manupulating the OWL
Ontologies.

We have built one implementation for the test purpose and one implementa-
tion for user interface purpose. Each of the implementations requires an ontology
or a set of modularized ontologies whose axioms are labeled by elements of the
given lattice, an ontology that represents a lattice, a collection of consequences,
and a collection of precomputed boundary of each consequence as the inputs. For
the test purpose implementation, the output is a file .txt which contains the data
obtained from the computation. For each computation of a given consequence
and a condition, ee collect the time, number of minimal change set computed,
the cardinality of the smallest change set, the interrupted fact, and, nevertheless,
the smallest change set or the minimal change set which might not be the small-
est one because of the interruption. For the user interface purpose, we extend
the previous work, i.e. LBLR: A Lattice Based Labelled Reasoner.* Once the
boundaries of the given consequences are computed, the user can get a change
set for changing it to the conditions available.

The following sections describe the setup and the test case and plan.

4.1 Setup

The evaluation is done in a desktop computer. It has the following specification:

*LBLR is used to compute the boundary with an option to use one of three reasoners. See
http://lat.inf.tu-dresden.de/systems/LBLR/
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e CPU: Intel(R) Core(TM)2 Duo CPU E8500 3.16GHz

RAM: 2.00GB

Storage: 135.3 GB

Operating system: Ubuntu release 8.10

Java: Java 1.6

e Reasoner: Pellet 2.0.0 rc7

OWL API trunk revision 1150

4.2 Evaluation Test Case and Plan

We used the same ontologies used in [BKP09, KP10a, KP10b]. The ontologies
are called OSNOMED and QFUNCT  OSNOMED i the Systematized nomenclature of
Medicine, Clinical Terms (OSN°MP)[sno] which is a comprehensive medical and
clinical ontology built using the Description Logic (DL) E£7. It contains 379,691
concept names, 62 object property names, and 379,704 axioms. It entails more
than five million subsumptions. In this evaluation, we used a sampled set of

OFUNCT 5 an OWL DL ontology for functional description of

807 subsumptions.
mechanical engineering solutions presented in [GKL09]. It contains 115 concept
names, 47 object property names, 16 data property names, 545 individual names,
3,176 axioms. It is built using SHOZN (D), and entails 12 subsumption and 704
instance relationships (class assertions). We used a sample set which contains 4
subsumption and 43 instance relationship.

Both ontologies were labeled randomly using six elements {{g,...,¢5}. We
limit the number of computed change sets to 10. For conditions greater than or
equal to and less than or equal to, we use the algorithms introduced in [KP10a].
And once we find a change set with size 1, the computation is stopped.

We use five lattices. The first three lattices have six elements {{o, ..., ¢5}. The
lattice (Lg, <4) is shown in Figure 2.1. The lattice (L;, <;) is a linear order lattice
where <;:= {(ln, ln+1) | bn,lny1 € Ly A0 < n < 5} as introduced in [KP10a,
KP10b]. The lattice (Lp,<p) is a lattice with dominance being wide as shown
in Figure 4.1. The last two lattices are built taking the structure of lattice
(Lp, <p). They have ten elements instead of six elements. lattice (Lq, <) and
lattice (L, <;) are shown in Figure 4.2, respectively.

Using the algorithm presented in [BKP09], all boundaries for each conse-
quence of the ontologies with respect to the lattices are computed and saved as

input needed for the evaluation. For OSNOMEP

, we use at most 100 consequences
per label. Precisely, 100 consequences each with label £y, £1, lo, {3, £4, 5 which

appear the same in every lattice, £g, f9 which appear in the lattice (Lg, <,) and
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Figure 4.2: Lattice (Lg, <4) (left) and Lattice (L, <;) (right).

Condition | Goal label (¢,) | Target label (¢;)

< Vel F v =/,

> Vel Ly =,

£ Ve, 0> v Ve, € & €4, limited to 3 labels
* Vel <v Ve, £ # L4, limited to 3 labels

Table 4.1: Label selected for each condition.

with label /7 only seven consequences which appear in the lattices (L4, <,) and
(L, <¢). For OFUNCTwe use at most 5 consequences per label. The test includes
five consequences with boundary equal to £y, ¢1, f2, {3, {4, two consequences {5
which computed in all the lattices and five consequences g, £7, £g, and fg which
computed using lattice (Lg, <g).

Using an ontology, a labeling lattice, a list of computed boundaries w.r.t.
each consequence, a set of selected consequences, one test runs to compute the
change sets for each consequence with each of conditions showing on the Table
4.1. For example, we have a consequence with boundary ¢3 for lattice (Lg, <g).
For condition not greater than or equal to, the tests are changing the boundary
to a value # f3 and # {p. In addition to each test, we combine them with
at most 3 labels which are not greater than or equal to ¢,. For ¢, = (3, the
target labels are labels /5, fy. In the case of changing the boundary to a value
# g, if the £, is equal to the bottom element of the lattice, this computation is
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eliminated, because there is no value which is smaller than the bottom element.
The analogous way applies to the case of changing the boundary to a value £ ¢,
where £, is the top element of the lattice.

4.3 Evaluation Results

Our evaluation shows that our algorithm behaves well to find a minimal change
set of a given consequence and a goal value with respect to the condition. That
means for every consequence we obtain the correct boundary w.r.t the change sets
computed. We show the results in comparison tables and graphs. In the figures,
Ld stands for lattice (Lq, <q4), Ll for lattice (L;, <;), Lh for lattice (L, <p), Lg
for lattice (Lg, <g4), and Lt for lattice (L, <;). The scale of Figures 4.3 and 4.5
is the logarithmic scale.

From all the consequences and all the changes we have in our test plan for
OSNOMED - the comparison of maximum time consumed to compute the minimal
change set is shown in Figure 4.3 (a). For case of greater than or equal to, lattice
(L, <;) has a consequence where it took 37,092 ms to change the consequence’s
label from ¢y to £4. It was interrupted after it computed 10 minimal change sets.
The cardinality of its minimal change set is found 9 axioms. What interesting
is using not less than or equal to condition for this consequence w.r.t. the dual
condition, we obtain 9 minimal change sets. Each of them has the smallest
cardinality, i.e. 9 axioms. The computation took 10,310 ms. The results for case
less-than-or-equal and case not greater than or equal to are obtained very fast
i.e. from 42 ms to 337 ms. In all cases, the minimal time consumed is 0 ms.

Figure 4.3 (c) shows the average time consumed for all the consequences and
conditions. The results for conditions less than or equal to and not greater than
or equal to are extremely low, ranging from 3,02 ms to 7,58 ms with standard
deviation 3,73 ms to 11,34 ms. On the other hand, the result for condition not
less than or equal to is quite high, ranging from 39,36 ms to 78,19 ms with the
highest standard deviation 919,74 ms for lattice (L;, <;). This shows that the
time consumed for repairing the boundary using lattice (L, <;) is spread in very
big range. The average results for the condition greater than or equal to are very
high and with high number of standard deviation.

The total amount of time used in repairing the consequences varies in different
cases. In case of changing the consequences to less than or equal to and not greater
than or equal to, the computation took less than a minute for every lattice. The
largest amount of time used to repair the boundary is on lattice (L, <;) with
condition not greater than or equal to which is shown in Figure 4.3.

In Figure 4.4 (a), it is interesting that the largest cardinality of the minimal
change set for case less than or equal to and not greater than or equal to is always
one axiom. Figure 4.4 (b) shows that the average of cardinality of minimal change
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Figure 4.3: Maximum, total, average time consumed for boundary repairing for
OSNOMED‘

set for these cases is one. The standard deviation is zero in this case, since for
all consequences, the cardinality of all minimal change set is one. For the rest of
the cases, we obtained 13 axioms, 14 axioms, 16 axioms, and 17 axioms as the
largest cardinalities of the minimal change set.

Figure 4.5 shows the comparison of maximum time, minimum time and aver-
age time consumed to compute the smallest minimal change set for each conse-
quence in the test case in ontology OFUNCT. Both less than or equal to and greater
than or equal to cases are showing similar performance. They are in average 1
second per consequence’s change. On the other hand, not less than or equal to
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Figure 4.4: The largest cardinality and average size of the smallest change set of
OSNOMED'

and not greater than or equal to cases are taking more time which in average it
computed the minimal change set in 100 seconds. Contrary from the change set
computation of OSNOMEP the minimal time is around 300 ms.

The number of the largest cardinality of the smallest minimal change set
which is shown in Figure 4.6 (a) is 5 axioms in all cases, except for lattice (Lg, <,)
in NGEQ and NLEQ conditions and lattice (Lg, <4) in NLEQ condition are 4
axioms. This number is relatively smaller than the number that we obtained for
ontology OSNOMED,

As we mentioned before, there are two conditions that will trigger the inter-
ruption. The first condition is when we computed a change set with cardinality
one. The computation is interrupted since we have found the smallest and mini-
mal change set. Any further computation will obtain only at most a change set
with same size. The second condition is when we have computed 10 minimal
change sets and still the hitting set tree algorithms has more branches to be ex-
tended. We say the interruption of cardinality a possitive interruption. In the
sense, the more interruptions of cardinality one is better because the algorithm
is terminated once the minimal change set computed. On the other hand the
interruption of 10 minimal change sets is a negative interruption, where the more
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Figure 4.5: Maximum, minimal, average time consumed for boundary repairing
for OFUNCT

computed is not because the result of the smallest minimal change set might not
be the smallest minimal change set.

For the possitive conditions, we record only the interruption of more than
10 change sets computed, because the interruption of cardinality one CS was
not implemented as the interruption of the part of the test, instead it is an
optimization which is part of the HST algorithm in [KP10b]. The HST algorithm
keeps updating the variable n which is an optimization to compute an TAS or
RAS which is up to size n. So, when it has obtained a change set of size one, the
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Figure 4.6: A average size of the smallest change set in repairing boundary of
OFUNCT.

Lattice Case #Consequence  %lInterrupted  #Interruption  #Interruption
Consequence >=10 CS ICS| =1

(Lq,<q) GEQ 2614 1.38% 36 -
LEQ 2328 0.00% 0 -

NGEQ 3756 100.00% 0 3,756

NLEQ 4514 48.25% 138 2,040
(Ln,<n) GEQ 3,100 1.48% 46 -
LEQ 2,135 0.00% 0 -

NGEQ 2,805 100.00% 0 2,805

NLEQ 5,700 51.35% 437 2,490

(Li, <)  GEQ 2,133 1.50% 32 -
LEQ 1,902 0.00% 0 -

NGEQ 3,798 100.00% 0 3,798

NLEQ 4,426 52.94% 68 2,231

(Lg,<qg) GEQ 5,320 1.65% 88 -
LEQ 4,759 0.00% 0 -

NGEQ 5,829 100.00% 0 5,829

NLEQ 7,512 43.56% 407 2,865

(L:,<:) GEQ 5,335 1,87% 100 -
LEQ 3,756 0.00% 0 -

NGEQ 4,370 100.00% 0 4,370

NLEQ 10,521 54.98% 755 5,029

Table 4.2: OSNOMED interrupted comparison.

computation is stopped because it computed nothing with size smaller than one.

Table 4.2 shows interesting comparison of the numbers how many computa-
tions in OSNOMED were interrupted, i.e. the computations were terminated before
they finished searching all the change sets. Condition not greater than or equal
to in all the lattices is consistently showing 100% interruption and condition not
less than or equal to is more or less 50% interruption appeared in the compu-
tation of change set. For ontology OFYYN°T| Table 4.3 shows less interruption in
greater than or equal to and less than or equal to conditions than in the rest
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Lattice Case #Consequence  %Interrupted  #Interruption  #lInterruption
Consequence >=10 CS |CS| =1

(La;<a) GEQ 131 0.76% 1 -
LEQ 154 1.30% 2 -

NGEQ 273 90.11% 49 197

NLEQ 212 63.21% 2 132

(Ln,<n) GEQ 118 0.85% 1 -
LEQ 168 1.19% 2 -

NGEQ 351 87.18% 72 234

NLEQ 201 40.80% 3 79

(L1, <y) GEQ 130 1.54% 2 -
LEQ 105 0.95% 1 -

NGEQ 201 83.58% 22 146

NLEQ 263 52.85% 9 130

(Lg,<g) GEQ 256 1.17% 3 -
LEQ 304 1.31% 4 -

NGEQ 501 90.22% 71 381

NLEQ 357 57.42% 0 205

(Li,<:)  GEQ 279 1.43% 4 -
LEQ 279 1.08% 3 -

NGEQ 348 91.67% 62 257

NLEQ 432 56.71% 6 239

Table 4.3: OFUNCT interrupted comparison.

Time (ms)
Ontology Case Max Min Avg Stdev Total
O™ GEQ 1,761 0 50.28 181.53 20,111
NLEQ 23,194 0 292.35 1,504.04 116,949
oroet GEQ 6,190 373 964.61 1237.38 22,186
NLEQ | 437,487 1,741 38,105.78 98,304.39 876,433

Table 4.4: Time results comparison between > and f in OSNOMED anq QFUNCT jp
Lattice (Lg, <g).

conditions. The percentage of interruption for not greater than or equal to is
very high around 83% to 92% and for not less than or equal to is around 40% to
63%.

Based on the behaviour on the not greater than or equal to condition of
having high percentage of interruption, the fact that most of the interruptions
were triggered by obtaining a cardinality one change set, and the average size
of the smallest minimal change set, namely one, we can derive that ontology
OSNOMED has for each consequences it has at least one diagnosis with cardinality
one axiom and ontology OFUNCT has for most consequences it has at least one
diagnosis with cardinality one axiom. Therefore, when we have found a diagnosis
with cardinality one axiom in a computation, it is for sure that the computation
interrupted by condition a change set with cardinality one is found.

As the performances of all the algorithms are quite different, it is interesting
to compare between two algorithms that can fulfill a certain request. Tables 4.4
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Size (axiom) #Diff

Ontology Case Max Min Avg  Stdev v

OSYOMED T GEQ 12 1 2.5 2.15 0
NLEQ 12 1 251 216

O™ GEQ 4 1 170 088 2
NLEQ 4 1 170 0.88

Table 4.5: Size results comparison between > and £ in OSNOMEP and OFUNCT jp
Lattice (Lg, <g).

and 4.5 compare the performance of the greater than or equal to condition with
the not less than or equal to condition for OSNOMEP and OFUNCT | We collect the
data of changing the boundary of consequences with goal label which is greater
than or equal to ¢5 for lattice (L4, <4). Either using not less than or equal to ¢ or
greater than or equal to f5, the range of boundary is the same, namely 1, #4, 5.
There are 400 consequences in OSNMEP and 23 consequences in OFYNT, In the
computation using condition >, the target label has a fixed label, i.e. equal to
the goal label, but for condition ¥, it does not. Thus, we collected only ones with
the precomputed boundary ¢y, ¢2, and ¢35 and the target label /5.

Table 4.4 shows the amount of time used in the computation of boundary
repairing. Using greater than or equal to condition is much faster than using not
less than or equal to condition. For OSNOMFP the positive condition (greater than
or equal to) is six times faster than the negative condition (not less than or equal
to) for the total time used. For OFYN°T  the positive condition is 39 times faster
than the negative condition. Table 4.5 shows that the results are similar in both
cases w.r.t. the ontology. From the computed label of the consequences w.r.t.
the relabeling of the change set, there are only two consequences with different

OFUNCT and zero in ontology OSNMEP | The two consequences with

v/ in ontology
different v/ both obtained ¢4 in the not less than or equal to case and ¢; in the
greater than or equal to case. This could happen when we have different smallest
change sets. We believe the value of boundary which is closer to the goal label is
better than the one which is far from it, because that means the change on the
labels of the axioms is not so much far from the original labels of the axioms.
Although we get 2 consequences with better new boundary using the change set
from £ ¢, the overall computation using condition > ¢ is better than the one

using condition £ 5.



Chapter 5

Conclusions

In this thesis, we have shown that it is possible to give general conditions for
the repairing of the label of consequence or boundary. Possible conditions that
have been introduced here are greater than or equal to, less than or equal to,
not greater than or equal to, and not less than or equal to. The possibility of
changing the boundary with a given condition depends on the given goal label.
We can not repair the value of a boundary to be greater than the top element
of the lattice, or not to be less than the bottom element of the lattice. The first
two cases can be addressed using the methods introduced in [KP10b, KP10a].
Solutions for the last two cases are introduced in Chapter 3. The solutions are
mainly finding which axioms that need to be relabeled in order to change the
label of the consequence.

The minimal change set w.r.t. the possitive conditions is an IAS or an RAS.
The basic ideas are taken from a minimal axiom set and a diagnosis of the ontology
and the given consequence. From these basic ideas, a minimal change set is a
sub-ontology O;fﬁg for IAS or Oﬁg for RAS which contains axioms of a MinA or
a diagnosis, respectively.

The same idea was taken in order to solve the negative conditions. A MinA
is a change set for changing a boundary to a value £ ¢, and a diagnosis is a
change set for changing a boundary to a value # ¢,. Then, from these basic
ideas, we tried to apply the same like in the positive conditions. In those cases,
the minimal change set is a subset of a MinA (or a diagnosis) whose axioms is
labeled not greater than or equal to (or not less than or equal to) the given goal
label. Unfortunately, for the negative ones, we cannot just select all axioms which
have labels greater than or equal to (or less than or equal to) the given goal label,
because any subset of a diagnosis or a MinA that has the supremum or infimum
greater than or equal to or less than or equal to the goal label is needed to be
split until the supremum or infimum not greater than or equal to or not less than
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or equal to the goal label. All the labels of part of the subset is contained in
a solution label set. From this set we can extract the axioms that needs to be
relabeled, i.e. the axioms which are.

The result of the empirical evaluation shows that the implementations of case
the possitive conditions perform well in the computation of the smallest minimal
change set which is obtained from computing the partial IAS and RAS and the
implementation of negative conditions take more time in the computation of the
smallest minimal change set which is obtained from computing the solution label
set and the solution set.

With the comparison of the case of not less than or equal to 5 and greater-
than-or-equal to ¢5 using lattice (L4, <g4), we see big difference between two dif-
ferent types of algorithms. The algorithms for not less than or equal to and not
greater than or equal to cases underperform. They need more time in obtain-
ing the smallest change sets, but occasionaly they could give some different new
boundaries which have better values because it means the axioms of the change
sets are labeled to some values closer to the original labels.

For future work, one could consider how to optimize the algorithms for nega-
tive conditions such that their performances can compete with the performance
of algorithms which are used to compute change set for less than or equal to
and greater than or equal to cases. One could analyze if the optimization n — 1
branching size for n is the size of node. Another idea is how to use the algorithms
of the possitive conditions to give a solution for a negative condition. It could
be done by analyzing the range that negative conditions apply. By seeing what
is the range given by the negative conditions, we can build an approach using
the positive conditions to cover the same range. Similar idea was used in the
comparison between boundary changes to a value > ¢5 and to a value £ 5. It
was shown that we can use the algorithm to compute the smallest IAS to obtain
a solution for changing the boundary to a value £ £s.
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