
Learning Description Logic
Knowledge Bases from Data

Using Methods from
Formal Concept Analysis

Dissertation
zur Erlangung des akademischen Grades
Doktor rerum naturalium (Dr. rer. nat.)

vorgelegt an der
Technischen Universität Dresden

Fakultät Informatik

eingereicht von
Dipl.-Math. Felix Distel

geboren am 25. März 1981 in Geislingen an der Steige

verteidigt am 27. April 2011

Gutachter:
Prof. Dr.-Ing. Franz Baader,
Technische Universität Dresden
Prof. Dr. rer. nat. Gerd Stumme,
Universität Kassel

Dresden, im Juni 2011

Contents

List of Algorithms vii

List of Figures x

1 Introduction 1
1.1 Description Logics . 2

1.1.1 Describing Knowledge and Standard Reasoning . . 3
1.1.2 Reasoning Services to Support Ontology Design

and Maintenance 5
1.2 Formal Concept Analysis 7

1.2.1 Foundations . 7
1.2.2 Implications and Attribute Exploration 8

1.3 Existing Exploration Formalisms 10
1.4 Contributions . 12

2 Description Logics 19
2.1 Concept Descriptions in EL 19
2.2 Ontologies . 23
2.3 Reasoning in DL . 26
2.4 EL and its Offspring . 29

2.4.1 Extending EL by Terminological Cycles 30
2.4.2 Reasoning in ELgfp 34

3 Formal Concept Analysis 41
3.1 Formal Contexts and Formal Concepts 41
3.2 Closure Operators and the Next-Closure Algorithm 44
3.3 Implications and the Duquenne-Guigues Base 47
3.4 Attribute Exploration . 52

iii

Contents

4 General Frameworks for Combining FCA and DL 59
4.1 Model-Based Most Specific Concepts 60

4.1.1 General Definition 60
4.1.2 Existence in the EL-family 63
4.1.3 Classical FCA from a DL Perspective 69

4.2 Induced Contexts . 70

5 Axiomatization of Finite Models 77
5.1 Existence of Finite Bases in EL⊥gfp 77

5.1.1 A Base in EL⊥gfp with Only Acyclic Left-Hand Sides 79
5.1.2 Finite Bases . 89

5.2 Reducing the Size of the Base 97
5.2.1 Removal of Redundancy Using Induced Contexts . 97
5.2.2 Minimal Cardinality 102

5.3 Obtaining an EL⊥-Base from an EL⊥gfp-Base 109

6 Exploration of EL⊥gfp-Models 113
6.1 A Practical Algorithm for Computing Bases 114

6.1.1 A Next-Closure-Algorithm for Growing Sets of At-
tributes . 114

6.1.2 Computing Mi on the Fly 121
6.1.3 Acyclic Left-Hand Sides 125

6.2 Model Exploration . 130

7 ABox Exploration 139
7.1 Counterexamples in an EL⊥-Ontology 140

7.1.1 Explicit Counterexamples and Extended Signatures140
7.1.2 Completely Describing the Background Model . . 142
7.1.3 Counterexamples Need not be Explicit 145

7.2 Minimal Possible Consequences and Their Approximations147
7.2.1 Definitions . 147
7.2.2 Existence . 151
7.2.3 Approximation of Minimal Possible Consequences 164

7.3 ABox Exploration . 170
7.3.1 Exploration Using Minimal Possible Consequences 170
7.3.2 Exploration Using Approximations 177

iv

Contents

8 Related Work 181
8.1 Bridging the Gap between FCA and Logics 181

8.1.1 Logical Scaling and Terminological Attribute Logic 182
8.1.2 Logic Information Systems 186

8.2 Exploration Formalisms in DL 188
8.2.1 FCA-based Ontology Completion and OntoComp . 188
8.2.2 Relational Exploration 191

8.3 EL and Fixpoint Semantics 194
8.3.1 EL with Hybrid TBoxes 194
8.3.2 ELν and ELν+ . 195

9 Conclusions 197

Bibliography 214

v

List of Algorithms

1 Next-Closure in its General Form 46
2 Next-Closure for Enumerating all Formal Concepts 47
3 Computing the Duquenne-Guigues-Base of a Context . . . 51
4 Attribute Exploration . 53
5 Computing all Intents and S-Pseudo-Intents of a Formal

Context . 57

6 Computing Mi Using Next-Closure 97

7 Computing a Base for the Case of a Growing Set of At-
tributes . 116

8 Computing a Base for the Case of a Growing Set of At-
tributes with Background Knowledge 117

9 Computing a Base for the GCIs Holding in an A Priori
Given Model . 123

10 Computing a Base for the GCIs Holding in an A Priori
Given Model Using Only Acyclic Left-Hand-Sides 126

11 Exploration Algorithm for Models 132

12 ABox Exploration . 172
13 ABox Exploration Using Approximated Possible Conse-

quences . 179

14 Ontology Completion According to Baader et al. 190
15 Axiomatizing a Finite Model According to Rudolph . . . 192

vii

List of Figures

1.1 The Concept Lattice for Table 1.1 9

2.1 An Interpretation Describing a Married Couple 22
2.2 A Primitive Interpretation for T ′F from Example 2.4 . . . 31
2.3 An Illustration of Property (S2) 37

4.1 Gi ⊗Gi . 67

5.1 EL-Description Graph of MarriedFather 83
5.2 Unravelling up to role depth 1 83
5.3 Unravelling of MarriedFather at the vertex A 83
5.4 Diagram of Simulations and Mappings from the Proof of

Lemma 5.5 . 86
5.5 Diagram for the Proof of Property (S2) in Lemma 5.5 . . 87
5.6 The Model from Example 5.2 88
5.7 A Model Consisting of Two Families 94
5.8 Background Knowledge 102
5.9 Description Graph of C ∈ Λi 105

6.1 Connected Submodel . 137
6.2 Not a Connected Submodel 137

7.1 A Strongly Connected Background Model 139
7.2 Peggy Serves as Counterexample 147
7.3 Infant Serves as Counterexample 147
7.4 x Serves as Counterexample 147
7.5 Witness Model for Cτ . 150
7.6 Witness Model for D . 150
7.7 The Background Model i from Example 7.5 176
7.8 Witness Model . 176
7.9 Witness Model . 176

ix

1 Introduction

An important field within Artificial Intelligence research is Knowledge
Representation. Description Logics (DL) are a succesful family of for-
malisms for Knowledge Representation [BCM+03]. They have gained
recognition in various fields outside logics during the last decades. A
DL knowledge base is essentially a collection of axioms. Each axiom
can either describe knowledge about categories or classes of entities,
so-called terminological knowledge, or knowledge about concrete enti-
ties, so-called assertional knowledge. These axioms are expressed using
a formally defined syntax and semantics. For example, to express the
terminological knowledge that “A father is male and has a child.” one
could write in DL Syntax

Father v ∃Male u hasChild.>.

While the syntax and semantics of these axioms may be intuitive to
logicians, they can be daunting to experts from other fields. In order to
make DL accessible to experts from other fields it is necessary to develop
procedures that assist knowledge engineers during the design process.
We develop formalisms that automatically generate axioms. These

axioms are then presented to the knowledge engineer who can decide
whether they should be added to the knowledge base, the rationale be-
ing that it is easier to understand and accept a GCI than to generate
it by hand. Of course, these axioms should not be generated randomly.
First, they should not contradict existing knowledge (for example be-
cause a known individual serves as a counterexample). Second, they
should add as much information as possible, ideally culminating in a
complete knowledge base. In this thesis we provide answers to the fol-
lowing questions.

• When can a knowledge base be considered complete, and can com-
plete knowledge bases even exist?

1

1 Introduction

• How can a complete knowledge base be reached in interaction with
a (potentially human) expert?

Our formalisms to reach completeness follow the pattern of Attribute
Exploration, a technique from Formal Concept Analysis. Formal Con-
cept Analysis (FCA) is a field from discrete mathematics that is not
directly related to DL, although similarities exist. Before we can use it
for our purposes we need to answer the third question:

• What is a good framework to bridge the gap between Formal Con-
cept Analysis and Description Logics?

We discuss each of these problems in more detail after a brief introduc-
tion to DL and FCA.

1.1 Description Logics

Early knowledge representation formalisms such as semantic networks
[Sow91] and frames [Min81] were motivated from applications, mostly
within the field of linguistics. The roots of Description Logics lie within
these fields. Semantic Networks are a graphical representation of con-
ceptual knowledge. They represent knowledge in the form of a labelled,
directed graph, where nodes represent either individuals or classes of
individuals and edges represent relationships between nodes. There
are numerous classes of semantic networks, e. g. definitional networks
with an emphasis on is-a-relations that define a hierarchy over indi-
viduals or classes, or learning networks with a non-monotonic flavour
[Sow92]. Frames, on the other hand, ressemble the class structures
known from object oriented programming. Concepts are represented
as frames, which possess a set of super-concepts and a set of slots. Re-
lationships between concepts are realized using slots, which can link to
other frames. Both semantic networks and frames lack a formally de-
fined semantics. The meaning that is associated to a network or a frame
largely depends either on the intuition of its author or the specific imple-
mentation of the reasoning system. Knowledge representation systems
with a logical underpinning arose from the need for a more predictable
and realiable form of knowledge representation [BS85]. These systems
eventually evolved into Description Logics.

2

1.1 Description Logics

Even though the early Description Logics were relatively small frag-
ments of First Order Logics, first intractability results were obtained
already in the 1980s [BL84, Neb88]. From then on, most research was
devoted to the development and optimization of reasoning algorithms
that, despite the exponential (or worse) worst-time complexity, behave
well in practice [HST00, HS04]. Meanwhile, a range of new constructors
has been added to increase expressivity – eventually leading to the rec-
ommendation by the W3C of the Web Ontology Language OWL which
is based on the expressive DL language SHOIN [HPSvH03]. Efficient
algorithms were implemented in reasoning systems for expressive DLs
such as FaCT [Hor98, TH06] and RACER [HM01].
It was not until the early 2000s that light-weight DLs returned to the

focus of researchers. For the Description Logic EL which allows for con-
junction and existential restrictions it was shown that standard reason-
ing services are tractable for cyclic and acyclic TBoxes [Baa03b] as well
as for general TBoxes [Bra04]. Later, more expressive extensions of EL
have been designed, which maintain tractability [BBL05a, BBL08]. The
expressivity of EL or variants thereof is sufficient in many applications,
in particular in medicine or biology. Examples are the large biomedical
ontology SNOMED [SCC97], the Gene Ontology [ABB+00] and large
parts of the GALEN medical knowledge base [RH97]. An efficient rea-
soning system for the EL family of Description Logics is available under
the name CEL [BLS06, MS09].
New reasoning services that assist the design process of Description

Logic ontologies have been a second major research direction in the
2000s. We provide an overview of these in Section 1.1.2 and present
some of them in more detail in Section 2.3.

1.1.1 Describing Knowledge and Standard Reasoning

Classically, DL knowledge bases, also called ontologies, consist of two
components: the TBox containing terminological knowledge, and the
ABox containing assertional knowledge. The terminological knowledge
contained in the TBox is expressed by means of concept descriptions.
Each DL provides a number of concept constructors which, together
with concept names and role names, can be used to generate concept
descriptions. ∃hasChild.>, which has been used in the above example,
is a concept description that uses ∃ and > as concept constructors and

3

1 Introduction

hasChild as a role name. It roughly translates to “Someone who has
a child” in natural language. New concept names can be assigned to
concept descriptions using concept definitions. One might state

Parent ≡ ∃hasChild.>

to express that a parent is someone who has a child. Depending on
the type of TBox it may also be possible to express that a concept
description is more specific than another using general concept inclusions
(GCIs):

Father v ∃hasChild.>.

Concept definitions and GCIs are stored in the TBox.
Knowledge bases typically contain knowledge about individuals in ad-

dition to terminological knowledge. DLs allow to express that an indi-
vidual belongs to a concept, or that it is linked to another individual
by a role name. For example, we can state that Homer is a Father, and
that Bart is Lisa’s brother using the following assertions:

Father(Homer)

hasBrother(Lisa,Bart).

Assertions about individuals are stored in the ABox.
In contrast to earlier KR-formalisms, DL systems have a formally

defined semantics. This semantics is based on the notion of models
and interpretations. An interpretation consists of a finite set, called
domain, and a mapping that associates individuals with elements of the
domain, concept names with subsets of the domain and role names with
binary relations over the domain. A model of a knowledge base is an
interpretation that does not violate the statements from the TBox or
the ABox.
DL knowledge bases use an open-world semantics, i. e. absence of in-

formation is interpreted as lack of knowledge, not as negation of in-
formation. Some of our results require closed-world knowledge about
individuals. In this case we use models as a closed-world representation
of individuals in a DL setting.
The formal model-theoretic semantics enables us to reason about

knowledge. Using reasoning services it is possible to obtain implicit
knowledge from explicit knowledge. The explicit knowledge that every

4

1.1 Description Logics

Father has a child, and that Homer is a Father yields the implicit knowl-
edge that Homer has a child. The combination of a knowledge base and
a reasoning component is called a DL system. Most DL systems support
at least a number of standard reasoning services.

Among these is subsumption-reasoning, i. e. deciding whether one con-
cept is more specific than another. If the system computes all subsump-
tion relationships for concepts from the TBox then we also speak of
the classification of an ontology. Instance checking denotes the task of
verifying whether an individual belongs to a concept. The above infer-
ence that Homer belongs to the concept ∃hasChild.> is an example for
instance checking. Sometimes it may occur, that due to design errors
a knowledge base contains contradictory information. This can be de-
tected using consistency checking. A less severe consequence of design
errors occurs when a concept becomes unsatisfiable, i. e. no individuals
can belong to this concept. Satisfiability checking can be used to detect
such concepts.

1.1.2 Reasoning Services to Support Ontology Design
and Maintenance

Standard reasoning services have been designed to infer implicit knowl-
edge from knowledge that is explicitly present in an existing ontology.
Non-standard reasoning services, by contrast, have been designed with
the design and maintenance of ontologies in mind.

Axiom Pinpointing Since the design of knowledge bases is an error-
prone process, a common maintenance task is the removal of faulty in-
formation from a knowledge base. This is straightforward if the faulty
knowledge is explicit knowledge: one can simply remove or modify the
faulty axiom. If it is implicit knowledge it is less clear which axioms
need to be removed or modified. Whenever an unwanted consequence
is discovered axiom pinpointing can be used to identify the axioms that
are responsible for the error [BH95, SC03, PSK05, Peñ09].

Ontology Import Reusing knowledge from existing ontologies can tre-
mendously speed up the ontology engineering process. Typically, an
ontology engineer wants to be sure to import all axioms from the exist-

5

1 Introduction

ing ontology that are relevant in the domain of the new ontology. On
the other hand, it is important to keep ontologies small, not least in
consideration of the complexity of reasoning. Module Extraction can
be used to identify a subset of the existing ontology that is small, yet
still captures the meaning of the imported concepts. A second problem
can occur when parts of an ontology are imported: The language of the
existing ontology is not necessarily the same as the language of the new
ontology. In this setting concept approximation can be used to deter-
mine for a concept description from the existing DL the closest concept
description in the new DL [BKT02].

Bottom-Up Construction Usually, ontologies are constructed in a top-
down fashion, where more general concepts are defined first, and then
gradually specified. The bottom-up approach for ontology design pro-
vides an alternative [BT01]. Instead of starting with concept descrip-
tions the modeler starts with the individuals. An engineer who wants
to describe a concept selects a set of individuals that belong to this
concept. The DL system then automatically generates a concept de-
scription which describes these individuals. This concept description is
then presented to the modeler who can use or modify it. Two reason-
ing services are used to obtain the suggested concept description: most
specific concepts and least common subsumers. For each of the selected
individuals the DL system computes the most specific concept of which
it is an instance. The obtained concept descriptions are then generalized
into one concept description by computing the least common subsumer.
The least common subsumer is the least general concept description that
generalizes the concepts it is applied to [BKM99, Baa03a, Tur07].

Knowledge Base Completion Knowledge Base Completion is a tool to
help knowledge engineers to ensure that their knowledge base contains
all the relevant information about the domain. Its objective is to assist
the engineer in adding information until

• all relationships between concepts that are relevant in the domain
are captured by the TBox, and

• all kinds of instances are represented by an individual in the ABox.

6

1.2 Formal Concept Analysis

In this thesis we present a knowledge base completion formalism. It can
be viewed as an enhancement of the interactive method for knowledge
base completion which has been proposed in [BGSS07, Ser07]. It follows
the pattern of Attribute Exploration from FCA. We go into more detail
on this approach after an introduction to FCA.

1.2 Formal Concept Analysis

Formal Concept Analysis (FCA) is a branch of mathematical order the-
ory, or more precisely a branch of lattice theory [Bir93] that has emerged
during the 1980s. It is considered to be an applied branch of lattice the-
ory, because of applications in data-mining, among others. It focusses on
a special type of lattices that are obtained from binary relations, called
formal contexts. It shares with DL the notions of concepts as describing
a collection of objects with common properties. However, the two fields
differ fundamentally in the way concepts are obtained. While the logic
based concept descriptions in DL are usually generated and edited man-
ually by a modeler, concepts in FCA are generated automatically from
the formal context using derivation operators. FCA also possesses a tool
to semi-automatically analyze dependencies between concepts called At-
tribute Exploration.

1.2.1 Foundations

Data in Formal Concept Analysis is represented as a formal context
which consists of a set of objects, a set of attributes and a binary rela-
tion, the incidence relation that determines whether an object has an
attribute. They are usually visualized as cross-tables like in Table 1.1.
For example, the cross in the first row and second column of Table 1.1
implies that the object Homer has the attribute Male. The absence of a
cross in the next column implies that Homer does not have the attribute
Mother. In classical formal contexts it is not possible to express that it
is unknown whether Homer is a Parent. From a DL viewpoint formal
contexts have a closed-world semantics.
Derivation Operators map sets of attributes to sets of objects and vice

versa. The derivation of a set of attributes A is defined as the set B of
all objects that have all attributes from A. For example, in Table 1.1

7

1 Introduction

Table 1.1: A Formal Context KS about Two Families

Female Male Mother Father Parent

Homer × × ×
Marge × × ×
Bart ×
Lisa ×
Kirk × × ×
Luann × × ×
Milhouse ×

the derivation of the set {Male,Father} is {Homer,Kirk}. Conversely,
the derivation of a set of objects B is defined as the set A of all at-
tributes that are shared by all objects from B. Derivation operators
give rise to formal concepts: pairs consisting of a set of objects and a
set of attributes, where the former is the derivation of the latter and
vice versa. An example for a formal concept in Table 1.1 is the pair
({Marge, Luann}, {Female,Mother,Parent}). The first part of a formal
concept is called the extent, and the second is called the intent of the
concept. This notion of a concept appears to be fundamentally different
from the notion of concepts from DL, but similarities exist nevertheless.
In both cases, there is a description that describes, based on certain
properties, which objects or individuals belong to the concept. In the
case of FCA this is the concept intent {Female,Mother,Parent}. In DL
it could be a concept description such as FemaleuMotheruParent. The
formal concepts of a formal context can be ordered, where set inclusion
of the concept extends is used as the order relation. The resulting struc-
ture is a lattice like the one shown in Figure 1.1. Concept lattices are
an important tool for visualizing the contents of a formal context.

1.2.2 Implications and Attribute Exploration

The concept lattice is one way to analyze a formal context, implications
are another. In Table 1.1 all objects that have the attributes Female and

8

1.2 Formal Concept Analysis

({Homer,Marge,Bart, Lisa,
Kirk, Luann,Milhouse}, ∅)

({Homer,Marge,
Kirk, Luann},
{Parent})

({Homer,Bart,
Kirk,Milhouse},
{Male})

({Marge, Lisa,
Luann},
{Female})

({Homer,Kirk},
{Male,Father,Parent})

({Marge, Luann},
{Female,Mother,Parent})

(∅, {Female,Male,
Mother,Father,Parent})

Figure 1.1: The Concept Lattice for Table 1.1

9

1 Introduction

Parent also have the attribute Mother. A shorter way to write this is

{Female,Parent} → {Mother}.

This kind of dependency is called an implication. We have already men-
tioned parallels between sets of attributes in FCA and concept descrip-
tions in DL. From this perspective an implication can be viewed as a
dependency between concept descriptions, quite similar to a GCI in De-
scription Logics. Unlike GCIs in DL, which need to be created manually,
FCA provides several approaches to obtain sets of implications from a
formal context. The most well-known is the Duquenne-Guigues Base. It
is a minimal set of implications that hold in a given context, and from
which all implications that hold in the context follow semantically. The
Duquenne-Guigues Base can be computed if the context is fully known.
For the case where not all the objects from the context are known FCA

provides the tool Attribute Exploration. In many applications the con-
text is not explicitly given, but is known to a domain expert. Attribute
Exploration is an efficient method to retrieve the expert’s knowledge. It
starts with an empty set of implications L = ∅ and successively gener-
ates questions of the form “Do all objects with attributes m1, . . . , mk

also have the attributes m′1, . . . , m′`?”. Upon seeing the question the
expert has two choices. She can either answer “Yes”, in which case the
implication {m1, . . . ,mk} → {m′1, . . . ,m′`} is added to the set L. If
the expert answers “No”, then she is asked to provide a counterexam-
ple, i. e. an object that does not satisfy the implication. This object
is then added to the context which gradually becomes more similar to
the full context. The questions are chosen in a smart way that guar-
antees that upon termination the set L is the Duquenne-Guigues-Base
of the initially unknown full context. This ensures that the number of
accepted implications is minimal, keeping the number of costly expert
interactions low.

1.3 Existing Exploration Formalisms

We briefly introduce the two existing approaches that apply Attribute
Exploration in a DL setting. A more detailed comparison between these
approaches and the work from this thesis requires a deeper insight into

10

1.3 Existing Exploration Formalisms

the technical parts. Therefore it will be provided in Chapter 8 about
related work.

Completion Using OntoComp In [BGSS07] a first ontology comple-
tion formalism based on Attribute Exploration has been introduced. In
aims at a well-defined, yet relatively weak notion of completeness. It
starts with an existing ontology. As a first step the ontology engineer is
asked to select a set M of interesting concepts that occur in the TBox.
The algorithm then considers only GCIs of the type

l
U v

l
V,

where U, V ⊆M are subsets ofM . It is assumed that the ontology engi-
neer has complete knowledge about the domain of interest, and that this
knowledge can be represented as a model of the ontology. An ontology
is called complete if

• all GCIs of the above type that hold in the domain follow from
the ontology, and

• for every GCI of the above type that does not hold in the domain
there is a counterexample in the ontology.

The method used to achieve this is a version Attribute Exploration that
is tailored to a DL setting. It follows the typical pattern, where hypothe-
ses are successively presented to the expert, who may either accept them
or refute them. If the hypothesis is accepted, then it is added to the
TBox of the ontology. If the hypothesis is refuted, the expert is re-
quired to provide a counterexample, which is added to the ABox. The
main contribution of [BGSS07] is a framework for dealing with the ontol-
ogy’s open-world knowledge in an Attribute Exploration setting. This
is achieved by adapting the notion of a context to partial contexts. In
contrast to older results about FCA with incomplete knowledge such as
[Bur91, BH00] it is assumed that the expert has complete knowledge
about the domain. This system has been improved further with respect
to certain usability issues [Ser08, BS09]. An implementation is available
as a plugin for the ontology editor Protégé under the name OntoComp
[Ser09a].

11

1 Introduction

Relational Exploration Relational Exploration [Rud06]. is perhaps the
closest existing formalism to the formalisms presented in this thesis. Un-
like the approach used for OntoComp, it uses a stronger notion of com-
pleteness where no restrictions on the types of GCIs are made. However,
this notion of completeness is not entirely compatible with the usual
semantics of DL (cf. 8.2.2 for more details). The DL that is used is
called FLE . Relational Exploration starts, not with an ontology, but
with a closed-world representation of parts of the domain called binary
power context family. Rudolph considers an infinite family of formal
contexts where the attributes are DL concept descriptions of increasing
role depth. The objects of these contexts and the incidence relation are
obtained from the binary power context family. Subsequently, classical
Attribute Exploration is performed on the resulting contexts, until a
certain termination condition is reached. Rudolph shows that, for a fi-
nite binary power context family, this termination condition will always
be satisfied eventually, and that the implication bases of the contexts
considered up to that step contain enough information to decide, for any
GCI between FLE-concepts, whether this GCI holds in the domain.
In summary, we can say that there is an existing formalism that allows

for open-world knowledge but can only deal with a weak notion of com-
pleteness, and there is an existing formalism that can deal with a strong
notion of completeness but requires closed-world knowledge. One goal
of this thesis is to obtain a formalism that combines the best of both
worlds: open-world knowledge and a stronger notion of completeness.
We do not use Rudolph’s algorithms directly for our approach, since
– apart from lacking the capacity to deal with open-world semantics –
there are other issues such as the great increase in the number of at-
tributes as role depth increases. We discuss these issues in Section 8.2.2.

1.4 Contributions
The main contributions of this thesis are

• an approach to bridge the gap between FCA and DL, called model-
based most specific concepts,

• the proof that it is always possible to find a finite set of GCIs that
is complete for a given EL⊥-model,

12

1.4 Contributions

• Model Exploration, a formalism inspired by Attribute Exploration,
where counterexamples are stored in a model, and

• ABox Exploration, an exploration formalism where counterexam-
ples are stored in an ABox.

Throughout this work we use the lightweight DL EL⊥ and its extension
EL⊥gfp. Both logics have the advantage that efficient reasoning is pos-
sible. They are subsets of EL++, a widely recognized extension of EL
[BBL05a].

Model-Based Most Specific Concepts In order to apply techniques
from FCA to DL knowledge bases we first need a framework that bridges
the gap between the two fields. We have already pointed out the similar-
ities between concept descriptions in DL and sets of attributes in FCA:
Both can describe sets of individuals or objects by specifying their prop-
erties. A similar connection can be made between DL models, ABoxes,
and formal contexts. Each of them contains the information which indi-
viduals or objects have which properties. In this first part, we consider
a strictly closed-world setting and therefore use only models and not
ABoxes.
The connections between concept descriptions and sets of attributes

on the one hand and formal contexts and models on the other have been
exploited already in the first works on FCA and DL. Most authors have
used an approach where models are transformed into contexts whose
attributes are concept descriptions. In this work, we call such contexts
induced contexts. Induced contexts are relatively easy to obtain, how-
ever, it is not immediately clear how one should choose the concept
descriptions that will serve as attributes.
We pursue a different idea where we try to transport techniques from

FCA to DL and not the other way around. Perhaps, the most basic
operations in FCA are the derivation operators. One of them maps sets
of attributes to sets of objects and the other maps sets of objects to sets
of attributes. In DL, a suitable operation that maps concept descrip-
tions to sets of individuals is quickly identified: the usual interpretation
function of the model. Finding an operator that goes in the other di-
rection is not as obvious. We show that the model-based most specific
concept can be used for this purpose. For a given set of individuals A

13

1 Introduction

the model-based most specific concept is defined to be the most spe-
cific concept description that has all elements of A in its interpretation.
We show that in EL⊥ sets of individuals need not have a most specific
concept. However, if we extend EL⊥ to EL⊥gfp by allowing for cyclic
concept descriptions interpreted with greatest-fixpoint semantics, then
model-based most specific concepts always exist in the resulting logic.

Finding a Finite Base The ontology completion algorithms by Baader
et al. use a relatively weak notion of completeness. They consider
completeness with respect to a special type of GCIs C v D where both
C and D are conjunctions over previously selected concepts. We adopt
a stronger notion of completeness, where we say that a set of GCIs B is
complete for the GCIs holding in a model i if all GCIs C v D that hold
in i follow from B. We make no restriction on C and D other than that
they be EL⊥gfp-concept descriptions. If the GCIs from B also hold in the
domain then we call B a base for the GCIs holding in i. In general, for
each model there are infinitely many GCIs that hold in it. Therefore, it
is not obvious whether a base can be finite.
We show that one can always find a finite base B and we present

a construction for it. Model-based most specific concepts are used to
compute the right-hand sides of the GCIs in this base. This parallels
the Duquenne-Guigues Base in FCA, where the right-hand sides of the
implications are obtained by applying the derivation operators to the
left-hand sides. Moreover, the left-hand sides occuring in the finite base
B are of a special form: Each of them is a conjunction over a subset of
Mi, where Mi is a finite set of concept descriptions that depends on the
model i. The fact that B is finite and complete answers the question
for existence of a finite base. Because of the subset construction from
which B is obtained it can, however, be large. To mend this we create
the induced context whose attribute set is Mi, and reduce the size of
B by computing the Duquenne-Guigues Base in this induced context.
We show that the resulting base is still complete, and even has minimal
cardinality among all bases for the GCIs holding in the domain. It
is therefore comparable to the Duquenne-Guigues Base. FCA is used
twice for this result: The first time it is used indirectly in the form of
the model-based most specific concept which is an emulation of the FCA
derivation operator in a DL world. The second time it is used directly,

14

1.4 Contributions

when we reduce the size of the base. In a last step, we show that cyclic
descriptions can be removed from B by unravelling and pruning cyclic
descriptions. This yields a finite base for the logic EL⊥ which does not
allow for cyclic concept descriptions.

Model Exploration We present Model Exploration which is an explo-
ration formalism where counterexamples are stored in a model. The
finite base B can only be computed if the model i is known entirely. It
would be overly optimistic to assume that a model which represents the
entire domain of the knowledge base is always available. In practice, it
is more likely that only fragments of such a model can be obtained. If
these fragments are too restricted the GCIs that are computed can only
serve as a starting point. The knowledge engineer might have to weaken
or even remove some of them. As an example, assume that the domain
consists of two families: Kirk, his wife Luann, and their son Milhouse, as
well as Jackie, her husband Clancy, and their daughter Selma. The GCI

Father v Male u ∃hasChild.>,

which says that every father is male and has a child, holds in the domain.
If we had used a model consisting only of the first family then the GCI

Father v Male u ∃hasChild.Male

stating that every father is male and has a male child would also hold.
Of course, the second GCI is too specific and the expert will need to
modify it. Using Model Exploration she can do this in a fashion that is
known from Attribute Exploration: The algorithm successively selects
GCIs for which none of the known individuals serve as counterexamples.
These axioms are presented to the expert, who can either accept them
or refute them by providing a counterexample. In our example, the
expert would choose to provide Clancy as the counterexample. As in
classical Attribute Exploration, the expert is assumed to have complete
knowledge about the domain.
On the technical side, we need to deal with the fact that the GCIs in
B depend on the set Mi which in turn depends on the model i. Since
initially only a fragment of i is known the set Mi cannot be computed
in advance. Instead, more of its elements become known gradually as
the exploration progresses. Therefore, on the FCA level, an algorithm is

15

1 Introduction

needed that allows attributes to be added to a context during runtime.
We present such an algorithm and use it as the foundation of Model
Exploration.

ABox Exploration When one thinks of an ontology completion formal-
ism, one typically thinks of a formalism that starts with an ontology, and
adds axioms until a certain type of completeness is reached. Unfortu-
nately, Model Exploration uses a model, not an ontology as the starting
point. A second issue with Model Exploration arises when counterex-
amples are provided by the expert. Assume that in the above model of
two families the expert wants to add Clancy as a counterexample to a
GCI that does not hold in the domain, e. g.

Father v Female.

If she adds only Clancy, but not Selma, then she achieves that while
Clancy is a counterexample to the GCI Father v Female he also becomes
a counterexample to the GCI

Father v ∃hasChild.>.

The problem is that the latter GCI does hold in the domain and one
would not want to have a counterexample. Hence, if the expert wants
to add Clancy then she also has to add all of Clancy’s role successors,
which can be a large number. This problem is caused by the closed-
world semantics of the model and can be resolved by allowing open-world
descriptions of counterexamples. We develop an exploration formalism
called ABox Exploration where counterexamples are stored in ABoxes,
because ABoxes are already part of existing ontologies, and their open-
world semantics facilitate the addition of counterexamples. The ontology
that serves as a starting point for the exploration should be written
in EL⊥. We show that the expressivity of EL⊥ suffices to describe
counterexamples.
Since no models are used in ABox Exploration model-based most spe-

cific concepts cannot be used to compute the right-hand sides of GCIs,
as was the case in Model Exploration. Hence, we need to find a re-
placement. We show that a suitable replacement are minimal possible
consequences. For a given concept description C a minimal possible con-
sequence D is a most specific concept description such that adding the

16

1.4 Contributions

GCI C v D does not make the ontology inconsistent. Using minimal
possible consequences we develop a first version of ABox Exploration.

Unfortunately, unlike model-based most specific concepts, minimal
possible consequences are not unique, and they are difficult to compute.
To mend this we propose an alternative variant of ABox Exploration
that uses an approximation of minimal possible consequences. This
approximation has better computational properties, but may result in
slightly increased expert interaction.

17

2 Description Logics

This chapter introduces fundamental notions from Description Logics
[BCM+03]. We explain how knowledge is represented in a Description
Logic knowledge base. The main focus lies on the lightweight logic EL
and some of its extensions.
In Section 2.1 we introduce the basic syntax and semantics of con-

cept descriptions in the language EL. We also give a short outlook on
some of the constructors that are used by more expressive languages.
Concept descriptions that are written in a DL language are the build-
ing blocks for ontological axioms. An ontology contains axioms which
can be grouped into statements about concepts and statements about
individuals. According to this distinction ontologies are divided into a
terminological part called TBox and an assertional part called ABox.
These are introduced in Section 2.2. Classical reasoning services mainly
serve to extract implicit knowledge from an ontology (standard reason-
ing), while newer reasoning services have been designed specifically to
assist in the process of ontology engineering (non-standard reasoning).
The inference problems that give rise to the most common standard rea-
soning services are defined in Section 2.3. In addition we present two
non-standard reasoning problems that are closely related to this work,
namely the most specific concept and the least common subsumer.
In some of the later parts of this thesis the expressivity of EL will

be insufficient. Therefore we introduce extensions of this language in
Section 2.4. Among these are EL⊥ and the language EL⊥gfp which allows
for cyclic concept descriptions.

2.1 Concept Descriptions in EL
As mentioned previously, Description Logics are a family of numer-
ous formal languages for knowledge representation. A prototypical DL
knowledge base is a set of axioms that are expressed in a formally defined

19

2 Description Logics

DL language. These axioms represent the knowledge that has been spec-
ified explicitly by a knowledge engineer. All DL languages use a formal
syntax and semantics. Three disjoint, finite sets, namely the set of con-
cept names NC , the set of role names NR, and the set of individuals NI
are used as a starting point for defining DL syntax. Each DL language
provides a set of concept constructors that can be used to inductively
build concept descriptions from NC and NR.1 EL is among the simplest
Description Logics, as it provides only three constructors which are the
top concept (>), conjunction (u) and existential restrictions (∃).

Definition 2.1 (Syntax of EL concept descriptions). Let NC and NR
be disjoint sets. Then EL concept descriptions are defined inductively
as follows.

• All concept names A ∈ NC and the top concept > are EL concept
descriptions, and

• if C and D are EL concept descriptions then C u D is an EL
concept description, and

• if C is an EL concept description and r ∈ NR is a role name then
∃r.C is an EL concept description.

The pair (NC ,NR) is called the signature of the concept descriptions.
In the following we assume that NC and NR are always finite.

In general, we stick to the convention that the letters A and B denote
concept names, while the letters C, D, E and F denote complex con-
cept descriptions. Roles are always denoted by the lower case letters r,
s, and t, while individual names range over the letters a, b, c, etc. In
later chapters when we combine Formal Concept Analysis and Descrip-
tion Logics this may interfere with notational conventions from FCA, in
which case we may make some exceptions.
The role depth d(C) of an EL-concept description C is the maximal

number of nestings of existential quantifiers. More formally, it can be

1In some of the more expressive logics, individual names from NI are also used to
build concept descriptions. In the less expressive logics they only occur in ABoxes
(cf. Section 2.2).

20

2.1 Concept Descriptions in EL

defined inductively as follows.

d(C) =

 0 if C = > or C ∈ NP ,
1 + d(D) if C = ∃r.D,
max{d(D), d(E)} if C = D u E.

Example 2.1. As an example let the signature be defined as (NC ,NR),
where NC = {Husband,Wife,Male,Female} and NR = {marriedTo}.
Then

Male u ∃marriedTo.> (2.1)

would be a syntactically correct EL-concept description. It has role
depth d(Male u ∃marriedTo.>) = 1 since there is only one existential
quantifier.

The semantics of DL languages is defined using interpretations.

Definition 2.2 (Interpretations in EL). Let (NC ,NR,NI) be a signa-
ture. Let i be a pair i = (∆i, ·i) where ∆i is a non-empty set and ·i is a
mapping that maps every concept name A ∈ NC to a subset Ai ⊆ ∆i,
every role name r to a binary relation ri ⊆ ∆i×∆i, and every individual
name a ∈ NI to an individual ai ∈ ∆i.
The interpretation function ·i of i can be extended inductively. We

denote the extended interpretation function by ·i as well. Let C be a
concept description. We define

• If C = > then Ci = ∆i, and

• if C = D u E for some EL-concept descriptions D and E then
Ci = Di ∩ Ei, and

• if C = ∃r.D for some EL-concept description D and some role
name r ∈ NR then Ci = {x ∈ ∆i | ∃y ∈ Di : xriy}.

The pair i = (∆i, ·i) is called an (EL-)interpretation over the signature
(NC ,NR,NI). The set ∆i is called the domain of i. We call the elements
of ∆i individuals.2 For a concept description C the set Ci is called the
extension of C.
2This differs slightly from the usual terminology, where the term individual is only
used for individuals in an ABox, and x ∈ ∆i is simply referred to as an element
of the domain of i.

21

2 Description Logics

Homer Marge

Female
Wife

Male
Husband

marriedTo

marriedTo

Figure 2.1: An Interpretation Describing a Married Couple

Example 2.2. Consider the pair iS = (∆iS , ·iS) where

∆iS ={Homer,Marge},
MaleiS = HusbandiS ={Homer},
FemaleiS = WifeiS ={Marge},

marriedToiS ={(Homer,Marge), (Marge,Homer)},
HomeriS =Homer,

MargeiS =Marge.

Then iS is an interpretation over the signature (NC ,NR,NI) where NC
and NR are as in Example 2.1 and NI = {Homer,Marge}. It is de-
picted in Figure 2.1. The interpretation function ·iS maps the concept
description (2.1) to

(Male u ∃marriedTo.>)iS = MaleiS ∩ (∃marriedTo.>)iS =

= {Homer} ∩ {Homer,Wife} = {Homer}. (2.2)

Other languages provide more than the three constructors from EL. A
logic of particular relevance is the Description Logic ALC which provides
for >, ⊥, conjunction, disjunction, existential restrictions, value restric-
tions and negation. Table 2.1 lists the constructors from ALC along with
their syntax and semantics. ALC is the smallest Boolean closed DL. It is
important from a theoretical point of view as it has helped to establish
the connection between DL and modal logics [BdRV01]. In [Sch91] it is
shown that ALC can be viewed as a notational variant of the multimodal

22

2.2 Ontologies

Table 2.1: Syntax and Semantics of Various Concept Constructors

Name Syntax Semantics
top concept > ∆i

bottom concept ⊥ ∅
conjunction C uD Ci ∩Di

disjunction C tD Ci ∪Di

negation ¬C ∆i \ Ci

existential restrictions ∃r.C {x ∈ ∆i | ∃y ∈ Ci : (x, y) ∈ ri}
value restrictions ∀r.C {x ∈ ∆i | ∀y ∈ ∆i : (x, y) ∈ ri ⇒

y ∈ Ci}
nominals {a} {ai}

logic K(m). When we speak of lightweight Description Logics we usually
mean Description Logics that do not provide all the constructors from
ALC. Conversely, we say expressive Description Logics when we talk
about logics that provide more constructors than ALC.

2.2 Ontologies
In the previous section we have shown how concept descriptions are
generated. In this section we show how concept descriptions can be
used to express facts about the domain of interest. For example in an
ontology about human genealogy we might want to express that the
concept description from (2.1) describes the concept Husband. In DL
syntax this can be formulated as

Husband ≡ Male u ∃marriedTo.>. (2.3)

This expression states something about the terminology of the domain,
it explains the concept Husband using other concept names and a role
name. In a typical DL ontology this kind of statement is stored in a
TBox, which is short for terminological box. We distinguish three types
of TBoxes: acyclic TBoxes, cyclic TBoxes and general TBoxes.

23

2 Description Logics

Definition 2.3 (Acyclic TBox). Let A be a concept name and C a
concept description. Then A ≡ C is called a concept definition. A finite
set T of concept definitions is called an acyclic TBox if

• for every concept name A ∈ NC there is at most one concept
description C such that A ≡ C ∈ T , and

• there is no sequence of concept descriptions A1 ≡ C1, . . . , An ≡ Cn
in T where Ai occurs in Ci−1 for all i ∈ {2, . . . , n} and A1 occurs
in Cn.

In other words in an acyclic TBox every concept name A ∈ NC can be
defined at most once, and its definition is not allowed to use the name
A explicitly or implicitly. Another name for acyclic TBox is unfoldable
TBox.

Definition 2.4 (Cyclic TBox). A cyclic TBox is a finite set of concept
definitions T where for every concept name A ∈ NC there is at most
one concept description C such that A ≡ C ∈ T .

Definition 2.5 (General TBox). Let C and D be concept descriptions.
The statement C v D is called a general concept inclusion (GCI). A
general TBox is a finite set of GCIs.

Using TBoxes we can express knowledge about concepts, such as the
definition of the concept Husband (2.3). DL knowledge bases usually
also contain knowledge about individuals which is stored in an ABox.
Using ABoxes, one can express that an individual belongs to a concept:

Husband(Homer)

expresses that the individual Homer belongs to the concept Husband.
One can also express that two individuals are in a relation:

marriedTo(Homer,Marge)

expresses that Homer is in relation marriedTo with Marge.

Definition 2.6 (ABox). Let A ∈ NC be a concept name, r ∈ NR a
role name and a, b ∈ NI individual names. A concept assertion is a
statement of the form A(a). Statements of the form r(a, b) are called
role assertions. A set A of concept assertions and role assertions is called
an ABox.

24

2.2 Ontologies

Table 2.2: Semantics of Ontological Statements

Name Syntax Semantics
concept definition A ≡ C Ai = Ci

GCI C v D Ci ⊆ Di

role assertion r(a, b) (ai, bi) ∈ ri

concept assertion A(a) ai ∈ Ai

role inclusion r1 ◦ · · · ◦ rk v r ri1 ◦ · · · ◦ rik ⊆ ri

DL knowledge bases typically comprise an ABox and a TBox of one
of the above types. We call a pair O = (T ,A) of a TBox T and an
ABox A an ontology. Some DLs allow for more advanced statements,
such as restrictions on roles, in addition to concept definitions, concept
assertions and role assertions. Prominent examples of DLs with role
restrictions are EL++ and expressive DLs like SHIQ [BBL05a, HST99].
In the following we present the semantics for the basic types of ABoxes
and TBoxes as presented above. A summary of these and a selection of
some of the more advanced ontology statements can be seen in Table 2.2.

Definition 2.7 (Semantics of TBoxes). Let A ≡ C be a concept de-
scription and i = (∆i, ·i) an interpretation. We say that A ≡ C holds in
i if i satisfies Ai = Ci. Likewise, if C v D is a GCI, we say that C v D
holds in i if i satisfies Ci ⊆ Di.
Let T1 be an acyclic or cyclic TBox, and let i = (∆i, ·i) be an inter-

pretation. We call i a model of T1 if every concept definition A ≡ C ∈ T1

holds in i. Let T2 be a general TBox. We call i a model of T2 if every
GCI C v D ∈ T holds in i.

While there is only one widely accepted semantics for acyclic and gen-
eral TBoxes there are several possibilities for cyclic TBoxes. In [Neb91]
Nebel describes three possible types of semantics for cyclic TBoxes:
descriptive semantics, greatest-fixpoint semantics and least-fixpoint se-
mantics. The semantics presented in Definition 2.7 are called descriptive
semantics. In the Section 2.4.1 we introduce greatest-fixpoint semantics.
The third type of semantics, least-fixpoint semantics, is not relevant for
this work and therefore omitted.

25

2 Description Logics

Let i = (∆i, ·i) be an interpretation. To define the semantics of
ABoxes we extend ·i to map every individual name a ∈ NI to an el-
ement ai ∈ ∆i.

Definition 2.8 (Semantics of ABoxes). Let (NC ,NR) be a signature,
A an ABox and i be an interpretation. We call i a model of A if

• for every concept assertion A(a) ∈ A it holds that ai ∈ Ai, and

• for every role assertion r(a, b) ∈ A it holds that (ai, bi) ∈ ri.

The models of an ontology O = (T ,A) are those interpretations that
are models of both T and A.

Example 2.3. Let OF = (TF ,AF) be an ontology that consists of the
TBox

TF = {Husband ≡ Male u ∃marriedTo.>,
Wife ≡ Female u ∃marriedTo.>}

and the ABox AF = {Husband(Homer)}. Then the interpretation iS
from Figure 2.1 is a model for OF because both concept definitions
from TF as well as the concept assertion from AF hold in iS .
Notice that iS would still be a model if we removed the concept as-

sertion from AF . If A does not contain the statement Husband(a) then
it is not automatically assumed that the contrary holds. Due to this
behaviour the semantics of DL ontologies are often called open-world
semantics.

2.3 Reasoning in DL
The strength of logic based formalisms for knowledge representation
such as DL is the possibility to make implicit knowledge explicit through
reasoning services. Implicit knowledge is knowledge that is not present
in the form of an axiom (a TBox or ABox statement in our setting),
but can be inferred logically from the axioms in the knowledge base.
Originally, DL research focussed on a class of reasoning services that are
now called standard reasoning services. The most important standard
reasoning services are

26

2.3 Reasoning in DL

• concept subsumption,

• instance checking,

• concept satisfiability, and

• consistency checking.

In this section we give formal definitions of these reasoning services for
a generic DL.

Definition 2.9 (Subsumption). Let C and D be concept descriptions.
We say that D subsumes C and write C v D if for all interpretations i
the GCI C v D holds in i, i. e. if all interpretations i satisfy Ci ⊆ Di.
Let O be an ontology, consisting of an ABox A or a TBox T or both.

We say that D subsumes C with respect to O and write C vO D if
C v D holds in all models i of O. If D subsumes C with respect to O
then we also say that C v D follows from O.

The identification of all subsumptions between the concept names that
occur in an ontology O is called the classification of O. The relation v
forms a preorder on the set of all concept descriptions. We say that two
concept descriptions C and D are equivalent if both C v D and D v C
hold. Equivalence of C and D is denoted by C ≡ D.

Definition 2.10 (Instance Checking). Let O = (T ,A) be an ontology,
let C be a concept description and a ∈ NI an individual. Then a is an
instance of C if ai ∈ Ci holds for all models i of O. This is denoted by
O |= C(a).

Definition 2.11 (Concept Satisfiability). Let O be an ontology and C
a concept description. C is satisfiable if there is a model i of O such
that Ci is not empty. Otherwise C is unsatisfiable.

Definition 2.12 (Consistency Checking). Let O be an ontology. O is
consistent if O has a model.

Consistency Checking and Satisfiability Checking can be used to de-
tect the most serious errors in the knowledge base, namely those errors
that render a concept description or a whole ontology unusable. These

27

2 Description Logics

errors are only the tip of the iceberg, since it is still possible for a sat-
isfiable concept description to misrepresent the knowledge engineer’s
intention.
The two reasoning services consistency checking and concept satis-

fiability are not applicable to a Description Logic without a form of
negation, i. e. in particular to EL. For example in EL all ontologies have
a model i = (∆i, ·i) with ∆i = NI , ai = a for all a ∈ NI , Ai = ∆i for
all A ∈ NC and ri = ∆i ×∆i for all r ∈ NR. The same model satisfies
all EL-concept descriptions over the given signature.
The typical usage scenario for standard reasoning services is when a

user wants to derive implicit knowledge from an already existing on-
tology. There are other reasoning services, the non-standard reasoning
services that have been designed with the intention to assist in the pro-
cess of ontology design and maintenance. This distinction is not strict,
since certain standard reasoning services can be used to detect errors in
an existing ontology and thereby assist in the maintenance process.
We present two non-standard reasoning services that are relevant to

this work. These are

• least common subsumers, and

• most specific concepts.

Other non-standard reasoning services include matching, pinpointing or
modularization [BK06, SC03, Peñ09, GHKS07].
The idea behind the most specific concept is to capture the complete

knowledge about an individual in an ontology in a single concept de-
scription. Least common subsumers are used to extract commonalities
from two concept descriptions.

Definition 2.13 (Most Specific Concept). Let O be an ontology and
a ∈ NI an individual name. Let E be a concept description satisfying
O |= E(a) such that for all concept descriptions F it holds that O |=
F (a) implies E v F . Then E is called the most specific concept of a
with respect to O.

Definition 2.14 (Least Common Subsumer). Let {C1, C2, . . . , Cn} be
a finite set of concept descriptions. Let E be a concept description such
that

28

2.4 EL and its Offspring

• Ck v E holds for all k ∈ {1, . . . , n}, and

• for all concept descriptions F it holds that Ck v F for all k ∈
{1, . . . , n} implies E v F .

Then E is called the least common subsumer of {C1, C2, . . . , Cn}.

Least common subsumers and most specific concepts need not exist
for all logics. If they exist both are unique up to equivalence. A typical
scenario for the application of most specific concepts and least common
subsumers is the bottom-up approach to knowledge engineering [BT01].
Imagine that an ontology engineer is working on an incomplete ontol-
ogy. She is trying to come up with a description for a difficult concept.
From the ABox she can select an existing individual, that belongs to
the concept that she wants to describe, and compute its most specific
concept. Most likely this description is more specific than what she had
in mind. She can then choose another individual, compute its most spe-
cific concept and extract the commonalities from the two most specific
concepts using least common subsumers.

2.4 EL and its Offspring

We concentrate on the Description Logic EL and some of its extensions.
The most important one among the reasons for this choice is that the
standard reasoning problems are tractable. This is not the case for ex-
pressive Description Logics and even some lightweight Description Log-
ics. A first algorithm for the classification of EL-ontologies with general
TBoxes and role inclusion axioms has been proposed in [Bra04]. This al-
gorithm has been extended to the more powerful DL EL++ in [BBL05a],
and it has been generalized even further in [BBL08]. A refined version
of it was the subject of [Sun09]. EL++ allows for the bottom concept,
nominals, concrete domains3 and role inclusions in addition to the con-
cept constructors from EL. Because EL++ is tractable every fragment
of EL++ is also tractable. In particular, if we extend EL by adding the
bottom concept ⊥ we obtain the simple tractable DL EL⊥.

3Concrete Domains are not formally introduced because they are not relevant for
this work. We refer the interested reader to [Lut03] for more information.

29

2 Description Logics

Definition 2.15 (EL⊥). EL⊥-concept description are all concept de-
scriptions that can be generated inductively using the constructors >,
⊥, existential restrictions, and conjunction, where syntax and semantics
are as described in Table 2.1.

A disadvantage of EL⊥ is that it cannot express cyclic dependencies.
Some of the methods that we present later are therefore not applicable
to EL⊥ directly. Instead we need to use the more expressive logic EL⊥gfp.

2.4.1 Extending EL by Terminological Cycles
In Section 2.2 we have introduced the usual semantics of DL knowledge
bases, that is also called descriptive semantics. As mentioned previously,
there are other ways to define the semantics of cyclic TBoxes, the so-
called greatest-fixpoint semantics. To define fixpoint semantics we need
to distinguish between the defined and the primitive concept names of
a TBox.

Definition 2.16 (Primitive Concept Names and Primitive Interpreta-
tions). Let T be a cyclic EL TBox and (NC ,NR) its signature. A
concept name A ∈ NC is called a primitive concept name if there is
no concept definition A ≡ C in T for any concept description C. A is
called a defined concept name otherwise. We denote the set of all prim-
itive concept names of T by NP (T) and the set of all defined concept
names of T by ND(T).
A primitive interpretation of T is a pair i = (∆i, ·i) consisting of

a non-empty set ∆i and and interpretation function ·i. The function
·i maps every primitive concept name A ∈ NP (T) to a set Ai ⊆ ∆i,
and every role name r ∈ NR to a binary relation r ⊆ ∆i × ∆i (and
every individual name a ∈ NI to an individual ai ∈ ∆i if individual
names are present). The only difference between an interpretation and
a primitive interpretation is that the latter does not interpret the defined
concepts. We say that an interpretation j = (∆j , ·j) extends a primitive
interpretation i = (∆i, ·i) if ∆i = ∆j and Ai = Aj for all primitive
concept names A ∈ NP (T) and ri = rj for all role names r ∈ NR (and
ai = aj for all a ∈ NI if individual names are present).

Example 2.4. Let us assume that the knowledge engineer who is work-
ing on the TBox TF from Example 2.3 has decided that she wants to

30

2.4 EL and its Offspring

Homer Marge

FemaleMale

marriedTo

marriedTo

Figure 2.2: A Primitive Interpretation for T ′F from Example 2.4

ensure that a husband is always married to a wife and a wife is always
married to a husband. She might change the TBox to read

T ′F = {Husband ≡ Male u ∃marriedTo.Wife,

Wife ≡ Female u ∃marriedTo.Husband}.

These changes cause the TBox to become cyclic. In this TBox T ′F
Husband and Wife are defined concept names, while Male and Female
are primitive concept names. Therefore i = ({Homer,Marge}, ·i) with

Malei = {Homer}
Femalei = {Marge}

marriedToi = {(Homer,Marge), (Marge,Homer)}

is a primitive interpretation of T . A graphical representation of i is
shown in Figure 2.2. Using the descriptive semantics from Definition 2.7
we can find two models j1 and j2 of TF that are both extensions of
i. These two models are defined by Husbandj1 = ∅, Wifej1 = ∅, and
Husbandj2 = {Homer}, Wifej2 = {Marge}. Most likely only j2, which
is identical to iS from Figure 2.1 captures the knowledge engineer’s
intuition.

For a given primitive interpretation greatest fixpoint semantics allow
only models that map each defined concept name to the largest possible
set. To define this formally and to prove existence of these so-called
greatest-fixpoint models (gfp-models) one uses Tarski’s theorem [DP02,
Bir93].

31

2 Description Logics

Definition 2.17 (Complete Lattices and Order Preserving Mappings).
A ordered set (L,≤) is called a complete lattice if every set S ⊆ L has
a least upper bound and a greatest lower bound. A mapping f : L→ L
is called order-preserving if x ≤ y implies f(x) ≤ f(y).

Theorem 2.1 (Tarski). Let L be a complete lattice and f : L → L an
order-preserving mapping. Then f has a least fixpoint and a greatest
fixpoint.

Let T be a cyclic TBox and i a primitive interpretation. By Exti we
denote the set of all interpretations of T that extend i. T gives rise
to a function Ti : Exti → Exti that is defined as follows. Let j ∈ Exti
be an interpretation. Then we define Ti(j) to be the interpretation
Ti(j) = (∆i, ·Ti(j)) where

ATi(j) = Cj for all defined concept names A ∈ ND(T), (2.4)
where A ≡ C ∈ T

ATi(j) = Ai for all primitive concept names A ∈ NP (T) (2.5)

rTi(j) = ri for all role names r ∈ NR. (2.6)

Notice that j ∈ Exti is a model of T in the sense of Definition 2.7 if and
only if Aj ≡ Cj holds for all defined concept names A ∈ ND(T). Using
(2.4) we can rewrite this to read Aj ≡ ATi(j) for all defined concept
names. It follows that j is a model of T in the sense of Definition 2.7 if
and only if j = Ti(j) holds, i. e. the models of T are the fixpoints of Ti.
In order to be able to speak of a greatest fixpoint we define an order on

Exti. Let j1 and j2 be two interpretations from Exti. We write j1 ≤ j2
if all concept names A ∈ ND(T) satisfy Aj1 ⊆ Aj2 . It can be shown
that Ti is order-preserving with respect to ≤. Hence, Tarki’s Theorem
shows that Ti has a greatest fixpoint for every primitive interpretation i.
We call the greatest fixpoint of Ti a greatest fixpoint model (gfp-model)
of T .
In Example 2.4 the TBox T ′F has exactly two fixpoints, namely the

models j1 and j2. The second interpretation j2 that interprets Husband
as {Homer} and and Wife as {Marge} is a gfp-model.
We now have the necessary tools to define the syntax and semantics

of ELgfp.

32

2.4 EL and its Offspring

Definition 2.18 (Syntax of ELgfp). We say that a cyclic EL-TBox T
is normalized if every concept definition in T is of the form

B ≡ P1 u · · · u Pk u ∃r1.B1 u · · · u ∃rl.Bl,

where B, B1, . . . , Bl are defined concept names, r1, . . . , rl are role
names and P1, . . . , Pk are primitive concept names.
An ELgfp-concept description is a pair C = (AC , TC) where TC is a

normalized EL-TBox and AC is a defined concept name from TC . AC is
called the root concept of C. The signature of C is the pair (NP ,NR),
where NP is the set of primitive concept names that are used in TC and
NR is the set of role names.

Notice that we do not include the defined concept names in the signa-
ture of an ELgfp-concept description. This is because we will view the
pair (AC , TC) as a black box, where we are not interested in the inter-
pretation of each defined concept, but only of the concept description
as a whole.

Definition 2.19 (Semantics of ELgfp). Let i = (∆i, ·i) be a primitive
interpretation for a set of primitive concept names NP and a set of role
names NR. We extend i to interpret every ELgfp-concept description
C = (AC , TC) over the signature (NP ,NR) as

Ci = AjC ,

where j is the gfp-model of TC that extends i.

Since the TBoxes within a pair C = (A, T) can be cyclic we can
use ELgfp-concept descriptions to express cyclic dependencies. Unfortu-
nately, the price that we pay is that concept descriptions may become
hard to read. In a strict sense even the symbol > and concept names are
not ELgfp-concept descriptions. For matters of convenience we will ab-
breviate by > the ELgfp-concept description (A>, {A> ≡ >}). Similarly,
if B ∈ NC is a concept name we denote by B the concept description
(AB , {AB ≡ B}). When C = (AC , TC) and D = (AD, TD) are ELgfp-
concept descriptions it will sometimes be convenient to refer to the con-
cepts ∃r.C or CuD. This is a slight abuse of notation, since C and D are
not EL-concept descriptions, but pairs of an ABox and a TBox. How-
ever, we can introduce this notation by defining ∃r.C = (A∃r.C , T∃r.C),

33

2 Description Logics

where A∃r.C is a new defined concept name and

T∃r.C = TC ∪ {A∃r.C ≡ ∃r.AC}.

Similarly we define C uD to be the pair C uD = (ACuD, TCuD), where
ACuD is a new defined concept name and

TCuD = TC ∪ TD ∪ {ACuD ≡ E u F},

where AC ≡ E and AD ≡ F are the concept definitions of AC and AD
in TC and TD, respectively, and where we assume ND(TC) and ND(TD)
to be disjoint. The above allows us to inductively translate every EL-
concept description into an ELgfp-concept description. This translation
preserves the semantics. Therefore EL can be viewed as a fragment of
ELgfp.
A simple extension of ELgfp is EL⊥gfp, where we allow for the bottom

concept ⊥ in addition to ELgfp-concept descriptions.

Definition 2.20 (Syntax and Semantics of EL⊥gfp). We call C an EL⊥gfp-
concept description if either

• C = ⊥, or

• C is an ELgfp-concept description.

Let i = (∆i, ·i) be an interpretation. The semantics are defined in the
natural way: If C = ⊥ then Ci = ∅. Otherwise C is interpreted like a
normal ELgfp-concept description according to Definition 2.19.

2.4.2 Reasoning in ELgfp

Tarski’s Theorem does not provide a practical way to reason in logics
that use greatest fixpoint semantics. There is an alternative character-
ization of ELgfp semantics developed by Baader [Baa03b]. It is based
on simulations between directed graphs with labelled vertices and edges.
Baader calls these graphs EL-description graphs.

Definition 2.21 (EL-description graph). An EL-description graph is a
triple (V,E,L), where

• V is set of vertices, and

34

2.4 EL and its Offspring

• E ⊆ V ×NR × V is a set of edges labelled with role names, and

• L : V → 2NC is a function that labels every vertex with a set of
concept names.

We have already seen a representation of an EL-interpretation as an
EL-description graph, namely the graph from Figure 2.1 that represents
the interpretation iS from Example 2.3. In fact, every EL-interpretation
has a corresponding EL-description graph.

Definition 2.22 (EL-Description Graph of an EL-Interpretation). Let
i = (∆i, ·i) be an interpretation for the signature (NC ,NR). Let x ∈ ∆i

be an individual. By namesi(x) we denote the set

namesi(x) = {A ∈ NC | x ∈ Ai},

the set of all concept names that have x in their extension. Let r ∈ NR
be a role name. By succri (x) denote the set

succri (x) = {y ∈ ∆i | (x, y) ∈ ri}.

The EL-description graph of i is the graph Gi = (∆i, Ei, namesi),
where Ei is defined as

Ei = {(x, r, y) | r ∈ NR, y ∈ succri (x)}

Conversely, every EL-description graph G = (V,E, L) gives rise to an
interpretation iG = (V, ·iG), where AiG = {x ∈ V | A ∈ L(x)} and
riG = {(x, y) ∈ V × V | (x, r, y) ∈ E}.

Cyclic EL-TBoxes also have a structure that can be transformed into
an EL-description graph.

Definition 2.23 (EL-Description Graph of a TBox). Let T be a cyclic
TBox that uses the set of role names NR, the set of primitive concept
names NP (T) and the set of defined concept names ND(T). By defini-
tion for every defined concept name B ∈ ND(T) the TBox T contains
a concept definition

B ≡ P1 u · · · u Pk u ∃r1.B1 u · · · u ∃rl.Bl,

35

2 Description Logics

where B, B1, . . . , Bl are defined concept names, r1, . . . , rl are role
names and P1, . . . , Pk are primitive concept names. By namesT (B)
we denote the set namesT (B) = {P1, . . . , Pk} of all primitive concept
names that occur in the definition of B. By succrT (B) we denote the set

succrT (B) = {A ∈ ND(T) | ∃m ∈ {1, . . . , l} : rm = r and Bm = A}.

We call the graph GT = (ND(T), ET , namesT) where ET is defined as

ET = {(A, r,B) | r ∈ NR, B ∈ succrT (A)}

the EL-description graph of T . Conversely, every finite EL-description
graph G = (V,E, L) gives rise to a TBox TG, whose defined concept
names are ND(TG) = V . For every A ∈ V the TBox TG contains the
concept definition A ≡

d
L(A) u

d
{∃r.B | (A, r,B) ∈ E}, where we

define
d
U to be the conjunction over all elements of U for a set U of

EL-concept descriptions, and where we define the empty conjunction to
be >.

We have mentioned that EL corresponds to a fragment of ELgfp. This
fragment contains exactly those ELgfp-concept descriptions whose EL-
description graph is a tree. We call those ELgfp-concept description
whose EL-description graph is a tree acyclic ELgfp-concept descriptions.
Likewise, we say that an EL⊥gfp-concept description C is acyclic if either
C = ⊥ or C is an acyclic ELgfp-concept description.
Baader characterizes instance relations in ELgfp using simulations be-

tween the description graphs of TBoxes and interpretations.

Definition 2.24 (Simulation). Let G = (V,E, L) and H = (W,F,M)
be two EL-description graphs over the same signature (NC ,NR). A
binary relation Z ⊆ V ×W is called a simulation from G to H if

(S1) every pair (v, w) ∈ Z satisfies L(v) ⊆M(w), and

(S2) if (v, w) ∈ Z and (v, r, v′) ∈ E then there exists some w′ ∈W such
that (v′, w′) ∈ Z and (w, r, w′) ∈ F .

Lemma 2.2 (Characterizing Instance in ELgfp and EL⊥gfp). Let C =

(A, T) be an ELgfp-concept description, let i = (∆i, ·i) be an interpreta-
tion and x ∈ ∆i an individual. Then the following two statements are
equivalent

36

2.4 EL and its Offspring

v

v′

w

w′

r r

Z

Z

Figure 2.3: An Illustration of Property (S2)

• x ∈ Ci

• there is a simulation Z from the description graph of T to the
description graph of i such that (A, x) ∈ Z.

Obviously, the same holds if C is an EL⊥gfp-concept description with
C 6= ⊥. If C = ⊥ then x ∈ Ci never holds.

For any two EL-description graphs G and H there is a maximal simu-
lation Zmax from G to H. By maximal we mean that if Z is a simulation
from G to H then Z ⊆ Zmax. It can be shown that this simulation can
be computed in time polynomial in the size of the two graphs G and H
[HHK95]. In particular, this means that using Lemma 2.2 we can verify
in polynomial time whether x ∈ Ci holds. A similar characterization
can be found for subsumption reasoning.

Lemma 2.3 (Characterizing subsumption in ELgfp and EL⊥gfp). Let
C = (AC , TC) and D = (AD, TD) be ELgfp-concept descriptions over the
same signature. Then the following two statements are equivalent

• C v D

• there is a simulation Z from the description graph of TD to the
description graph of TC such that (AD, AC) ∈ Z.

Obviously, the same holds if both C and D are EL⊥gfp-concept descrip-
tions with C 6= ⊥ and D 6= ⊥. If C = ⊥ or D = ⊥ then deciding
subsumption is trivial.

37

2 Description Logics

For matters of convenience we will often say that Z is a simulation
from the description C = (AC , TC) to the individual x in an interpreta-
tion i meaning that Z is a simulation from the description graph of TC
to the description graph of i that contains (AC , x). In other words Z is
a simulation from C to x in i if

(S1′) namesTC (B) ⊆ namesi(y) for all pairs (B, y) ∈ Z, and

(S2′) if (B, y) ∈ Z and B′ ∈ succrTC (B) then there is some y′ ∈ succri (y)
such that (B′, y′) ∈ Z, and

(S3′) (AC , x) ∈ Z.

Analogously, we say that Z is a simulation from C = (AC , TC) to D =
(AD, TD) if

(S1′′) namesTC (B) ⊆ namesTD (y) for all pairs (B, y) ∈ Z, and

(S2′′) if (X,Y) ∈ Z and X ′ ∈ succrTC (X) then there is some Y ′ ∈
succrTD (Y) such that (X ′, Y ′) ∈ Z, and

(S3′′) (AC , AD) ∈ Z.

In [Baa03a] Baader shows that the least common subsumers of ELgfp-
concept descriptions always exist and provides a construction for them.
The least common subsumer of a finite number of ELgfp-concept descrip-
tions is obtained as their product. To formally define the product of
ELgfp-concept descriptions we first define the product of EL-description
graphs.

Definition 2.25 (Product of EL-description graphs).
Let G1 = (V1, E1, L1), . . . , Gn = (Vn, En, Ln) be n EL-description
graphs. The product G1 ⊗ · · · ⊗ Gn is the description graph H =
(W,F,M), where

• W = V1 × · · · × V2,

• F = {((v1, . . . , vn), r, (w1, . . . , wn)) | r ∈ NR, and for all 1 ≤ k ≤
n : (vk, r, wk) ∈ Ek}, and

• M((v1, . . . , vn)) =
⋂

1≤k≤n Lk(vk).

38

2.4 EL and its Offspring

The product of a finite set of ELgfp-concept descriptions is the concept
description corresponding to the product of their EL-description graphs.

Definition 2.26. Let C1 = (A1, T1), . . . , Cn = (An, Tn) be ELgfp-
concept descriptions over the same signature. Let G1, . . . , Gn be the
description graphs of T1, . . . , Tn be the description graphs of T1, . . . ,
Tn, respectively. The product C1 ⊗ · · · ⊗ Cn is defined as the concept
description D = (AD, TD) where

• TD is the TBox that is obtained from the EL-description graph
G1 ⊗ · · · ⊗Gn using Definition 2.23, and

• AD = (A1, . . . , An).

Lemma 2.4. Let {C1, C2, . . . , Cn} be a finite set of ELgfp-concept de-
scriptions. Then C1 ⊗ C2 ⊗ · · · ⊗ Cn is the least common subsumer of
{C1, C2, . . . , Cn}.

This result enables us to compute least common subsumers for two
EL⊥gfp-concept descriptions: Let C and D be two EL⊥gfp-concept descrip-
tions. Clearly, if C = ⊥ then lcs{C,D} = D and vice versa. The
remaining case is that both C and D are ELgfp-concept descriptions.
No ELgfp-concept description is subsumed by ⊥ and therefore the least
common subsumer of C and D in EL⊥gfp must be an ELgfp-concept de-
scription. Lemma 2.4 implies that the least ELgfp-concept description
(with respect to v) that subsumes both C and D is C ⊗ D. Thus
lcs{C,D} = C ⊗D.

Lemma 2.5. Let C and D be EL⊥gfp-concept descriptions. Then the least
common subsumer of C and D exists and can be computed effectively.

39

3 Formal Concept Analysis

Formal Concept Analysis [Wil82, GW97] is a field of discrete mathemat-
ics whose aim is to organize, analyze and process data and to discover
structures within data. In this chapter we introduce the central notions
of FCA such as formal contexts and formal concepts. Formal contexts
are the underlying data structure of FCA. They can either be repre-
sented in the form of a cross table or in the form of a concept lattice.
Concept lattices, which consist of formal concepts, present the informa-
tion from the context in a structured way. We list existing algorithms
for computing all formal concepts of a formal context. Among these
algorithms the Next-Closure algorithm will be of particular interest in
later chapters [Gan84]. We therefore explain it in detail in this section.

Implications between attributes are another way for structuring data
in FCA. We introduce them in Section 3.3. The Duquenne-Guigues Base
is a minimal set of implications from which all implications of a given
formal context follow [GD86]. We show how it can be computed using
Next-Closure. Implications also play an important role in the interac-
tive (expert-assisted) knowledge acquisition formalism of FCA which is
called Attribute Exploration. Attribute Exploration is the foundation
of the knowledge base completion formalisms in Chapters 6 and 7. It is
introduced in Section 3.4.

3.1 Formal Contexts and Formal Concepts

In Formal Concept Analysis data is usually represented in the form of a
formal context. A formal concept contains information about so-called
objects and their attributes. It specifies which attributes are associated
to an object.

Definition 3.1 (Formal Context). A formal context is a triple K =
(G,M, I) where G and M are sets and I ⊆ G×M is a binary relation.

41

3 Formal Concept Analysis

The elements of G are called objects, while the elements of M are called
attributes. We say that an object g has attribute m if g and m are in
relation I (denoted by gIm).

In the present work we assume that G and M are finite unless explic-
itly stated otherwise. Formal Contexts can be visualized in the form of
cross tables like the one in Table 1.1. The columns of a cross table usu-
ally represent the attributes while the rows represent the objects. The
relation I is represented using crosses, where a cross is placed in the row
representing an object g and the column representing an attribute m iff
the object g has the attribute m.

FCA provides two derivation operators in order to structure data in
formal contexts. They can be used to derive the set of attributes that
are common to a given set of objects, or, respectively, the set of objects
that is common to a set of attributes.

Definition 3.2 (Derivation Operators). Let K = (G,M, I) be a formal
context and A ⊆ G be a set of objects. We define

A′ = {m ∈M | ∀g ∈ A : gIm},

i. e. A′ is the set of all attributes that all objects in G share. Analogously,
let B ⊆M be a set of attributes. We define

B′ = {g ∈ G | ∀m ∈ B : gIm},

i. e. B′ is the set of those objects that have all attributes from B.

The following properties of the derivation operators are quickly ob-
tained from the definitions.

Lemma 3.1 (Properties of Derivation Operators). Let K = (G,M, I) be
a formal context. Let A1, A2 ⊆ G be sets of objects and let B1, B2 ⊆M
be sets of attributes. Then the following statements hold.

• A1 ⊆ A2 implies A′2 ⊆ A′1

• B1 ⊆ B2 implies B′2 ⊆ B′1

• A1 ⊆ A′′1

• B1 ⊆ B′′1

42

3.1 Formal Contexts and Formal Concepts

• A′1 = A′′′1

• B′1 = B′′′1

• A1 ⊆ B′1 if and only if B1 ⊆ A′1
Definition 3.3 (Formal Concept). Let K = (G,M, I) be a formal con-
text. A formal concept is a pair (A,B) where A ⊆ G is a set of objects,
B ⊆M is a set of attributes and it holds that A = B′ and B = A′.
A is called the concept extent and B is called the concept intent of

(A,B). B is called an object intent if B = {a}′ for some object a ∈M .

We often say context, extent or intent instead of formal context, con-
cept extent and concept intent. We will not abbreviate the expression
“formal concept” since this might cause confusion with Description Logic
concepts.
It is possible to define a partial order≤ on the set of all formal concepts

of a given context K by defining

(A1, B1) ≤ (A2, B2) iff A1 ⊆ A2.

It can be shown that the set of all formal concepts of K ordered by
≤ forms a complete lattice. This lattice is called the concept lattice of
K. FCA uses concept lattices as a tool for analyzing and visualizing a
context.
An important application of formal concepts comes from data mining,

or more precisely the computation of association rules. Efficient algo-
rithms for mining association rules have been developed which make
use of frequent closed itemsets, which are essentially intents of formal
concepts with large extents [Stu02].
Both the visualization using concept lattices and the computation

of closed itemsets require the enumeration of the formal concepts of a
given context. It has therefore been a central topic in FCA research
to find efficient enumeration algorithms. It has been shown in [Kuz04]
that the number of formal concepts of a context can be exponential
in the size of the context (i. e. |G| · |M |). Therefore it is not possible
to enumerate all formal concepts in polynomial time in the size of the
context. The research has gone in the direction of finding algorithms
whose runtime is bounded by a polynomial in the size of the input
(the context) and output (the set of all formal concepts). Nowadays,

43

3 Formal Concept Analysis

the most well-known algorithm for enumerating all intents is Ganter’s
Next-Closure [Gan84], which is presented in the following section. It is
not only output-polynomial but even has polynomial delay, i. e. the time
between the output of one formal concept and the next one is polynomial
in the size of the context. Other polynomial delay algorithms can be
found in [Kuz93, GMA95, NR99, STB+00]. For a detailed analysis of
these algorithms we refer to [KO02].

3.2 Closure Operators and the Next-Closure
Algorithm

Closure systems and closure operators are two closely related notions
from order theory. The following definitions and results are common
knowledge in order theory, cf. [DP02] for more details.

Definition 3.4 (Closure System). Let X be a finite set, and H ⊆ 2X .
H is called a closure system on X if

• X ∈ H, and

• U, V ∈ H implies U ∩ V ∈ H.

The elements of a closure system are called closed sets.

Definition 3.5 (Closure Operator). Let X be a finite set and cl : 2X →
2X a function mapping subsets of X to subsets of X. The function cl is
called a closure operator on X if

• cl is idempotent, i. e. cl(U) = cl(cl(U)) for all U ⊆ X, and

• cl is extensive, i. e. U ⊆ cl(U) for all U ⊆ X, and

• cl is order-preserving, i. e. U ⊆ V implies cl(U) ⊆ cl(V) for all
U, V ⊆ X.

Every closure system gives rise to a closure operator and vice versa.
Let X be a set and H a closure system on X. Then H gives rise to a
closure operator

clH : U 7→
⋂
{Y ∈ H | U ⊆ Y }.

44

3.2 Closure Operators and the Next-Closure Algorithm

Since the intersection of closed sets is also closed, clH maps a set U to
the smallest closed set with respect to set inclusion that contains U .
Conversely, a closure operator cl gives rise to a closure system. Let cl
be a closure operator on a set X. Then

Hcl = {cl(U) | U ⊆ X}

is a closure system on X.
Given cl and X, Hcl can be computed by enumerating all subsets of X

and applying cl. Obviously, this is not efficient as there are 2|X| subsets
of X, but the number of closed sets can be less than exponential in
the size of X. Therefore the naive approach would have a worst-case
runtime that is exponential not only in the size of the input |X| but also
in the size of the output |Hcl|. Next-Closure in its general form is an
algorithm for enumerating all closed sets for a given closure operator cl
with polynomial delay. It makes use of a total order on the subsets of
X called the lectic order. Let < be a total order on the elements of X.
Then we say that A ⊆ X is lectically smaller than B ⊆ X if the smallest
element with respect to < that distinguishes A and B is contained in B.
Formally, we write

A < B :⇔ ∃x ∈ B \A : ∀y < x : (y ∈ A⇔ y ∈ B).

Notice that the lectic order extends the subset order, i. e. A (B implies
A < B. The relation < is the union of the relations <x for all x ∈ X
where

A <x B :⇔ x ∈ B \A ∧ ∀y < x : (y ∈ A⇔ y ∈ B).

Lemma 3.2 (Next-Closure). Let X be a finite set. Let cl be a closure
operator on X and A ⊆ X a set. If it exists the lectically smallest closed
set that is lectically greater than A is

cl({x} ∪ {y ∈ A | y < x})

where x is the greatest element of X for which A <x cl({x} ∪ {y ∈ A |
y < x}) holds. We call cl({x} ∪ {y ∈ A | y < x}) the next closure of A
(with respect to cl).

Assuming that the closure operator cl can be computed in polynomial
time in the size ofX and A Lemma 3.2 allows us to compute the lectically

45

3 Formal Concept Analysis

next closed set in polynomial time (in the worst case we have to compute
cl({x} ∪ {y ∈ A | y < x}) for all |X| possible values of x). Next-Closure
starts by computing the closure of the empty set ∅ and then successively
computes the lectically next closed set. It terminates when it reaches
the full set X (cf. Algorithm 1).

Algorithm 1 Next-Closure in its General Form
1: X, cl {Input: set X and closure operator cl}
2: A0 := cl(∅) {lectically smallest closed set}
3: H0 := {A0} {initializing the set of closed sets}
4: i := 0
5: while Ai 6= X do
6: xmax := max{x ∈ X | Ai <x cl({x} ∪ {y ∈ Ai | y < x})}
7: Ai+1 := cl({xmax} ∪ {y ∈ Ai | y < xmax})
8: Hi+1 := Hi ∪ {Ai+1}
9: i := i+ 1

10: end while
11: return Hi

Next-Closure can compute all formal concepts of a context. It is an
easy consequence of Lemma 3.1 that we obtain a closure operator by
consecutively applying the two derivation operators from FCA. Another
consequence of Lemma 3.1 is the following result. It shows that the
concept intents of a context K are exactly the sets of the form B′′,
where B ⊆M , i. e. the concept intents are the closed sets of the closure
operator ·′′. Therefore, they can be enumerated using Next-Closure.

Lemma 3.3. Let K = (G,M, I) be a context. Then every formal concept
C of K is of the form

C = (B′, B′′)

for some B ⊆M .

The dual of this lemma is also true, i. e. every formal concept is of the
form (A′′, A′) for some A ⊆ G. Algorithm 2 shows how Next-Closure
can be used to find all formal concepts of a formal context. In Line 6
the lectically next closed set Ai+1 is computed using Lemma 3.2, i. e. we
first compute

xmax := max{x ∈M | Ai <x ({x} ∪ {y ∈ Ai | y < x})′′}

46

3.3 Implications and the Duquenne-Guigues Base

and obtain

Ai+1 := ({xmax} ∪ {y ∈ Ai | y < xmax})′′.

Algorithm 2 Next-Closure for Enumerating all Formal Concepts
1: K := (G,M, I) {Input: formal context K}
2: A0 := ∅′′ {lectically smallest concept intent}
3: C0 := {(A′0, A0)} {initializing the set of formal concepts}
4: i := 0
5: while Ai 6= M do
6: Ai+1 := lectically smallest subset of M that is

– lectically greater than Ai, and
– closed with respect to ·′′

7: Ci+1 := Ci ∪ {(A′i+1, Ai+1)}
8: i := i+ 1
9: end while

10: return Ci

3.3 Implications and the Duquenne-Guigues
Base

Concept lattices are a method to structure the information of a context.
Another way to analyze contexts are implications. Implications between
attributes are statements of the form “All objects that have all attributes
from the set A also have all attributes from the set B”.

Definition 3.6 (Implications between Sets of Attributes). Let K =
(G,M, I) be a formal context. An implication is a pair (A,B) where
A,B ⊆M . Usually, we denote the implication by A→ B.

We say that an implication A→ B holds in the context K if all objects
that have all attributes from A also have all attributes from B, i. e. if
A′ ⊆ B′.

As an example, let us have a look at the context KS from Table 1.1.
There are two objects that have the attribute Father, namely Homer

47

3 Formal Concept Analysis

and Kirk, and both of them also have the attribute Parent. Therefore
{Father} → {Parent} is an implication that holds in KS .
Implications are an intuitive way to reveal dependencies that exist

within the data. However, computing all implications that hold in a
given context K is not practical. Instead we are interested in a small set
of implications from which all other implications of the context follow.

Definition 3.7 (Implicational Base). Let M be a set of attributes and
let A,B ⊆ M be two subsets. A set C ⊆ M is said to respect the
implication A→ B if A ⊆ C implies B ⊆ C.

An implication A → B follows from a set of implications L if every
subset C ⊆M that respects all implications from L also respects A→ B.
Let K = (G,M, I) be a context. We say that the set of implications
L is a (implicational) base of K if

• L is sound for K, i. e. every implication from L holds in K, and

• L is complete for K, i. e. every implication that holds in K follows
from L. 1

It is a well-known fact from Formal Concept Analysis that A → B
follows from a set of implications L iff it is derivable from L via the
Armstrong rules [Arm74]. In general there exists more than one base
for a given context K. The simplest implicational base of a context is the
set of all implications that hold in the context, which is usually too large
to be practical. Usually we are interested in small bases or, if possible,
bases with minimal cardinality.

Lemma 3.4. Let K = (G,M, I) be a formal context and A → B an
implication that holds in K. Then A → B follows from {A → A′′}. In
particular this shows that the set {A→ A′′ | A ⊆M} is an implicational
base of K.

Lemma 3.4 shows that to compute a base of minimal cardinality it
suffices to use implications whose right-hand side is a concept intent. It
is the reason why the following section focusses only on finding “good”
left-hand sides.
1Most authors additionally require that the base be irredundant. Thus Defini-
tion 3.7 is more general than the usual definition of an implicational base in
FCA.

48

3.3 Implications and the Duquenne-Guigues Base

Pseudo-Intents and the Duquenne-Guigues Base
In [GD86] Duquenne and Guigues present a construction for a natural
base for every context. This base is not only irredundant, but also has
minimal cardinality among all bases of this context. It is called the
Duquenne-Guigues Base or the stem base of this context. It is based on
the notion of pseudo-intents which is defined inductively.

Definition 3.8 (Pseudo-Intent). Let K = (G,M, I) be a context. A set
P ⊆M is called a pseudo-intent of K if

• P is not an intent, and

• for all pseudo-intents Q (P it holds that Q′′ ⊆ P .

There exists an equivalent non-recursive definition for pseudo-intents
that can be found in [Kuz06] amongst others.

Theorem 3.5 (Duquenne-Guigues Base). Let K = (G,M, I) be a con-
text. The set of implications

DGK = {P → P ′′ | P is a pseudo-intent of K}

is a base of minimal cardinality for K. L is called the Duquenne-Guigues
Base of K.

Example 3.1. In the context KS from Table 1.1 the pseudo-intents
are the sets {Father}, {Mother}, {Female,Parent}, {Male,Parent}, and
{Female,Male}. This yields the following Duquenne-Guigues Base

{Father} → {Male,Father,Parent}
{Mother} → {Female,Mother,Parent}

{Male,Parent} → {Male,Father,Parent}
{Female,Parent} → {Female,Mother,Parent}
{Female,Male} → {Female,Male,Mother,Father,Parent}.

Using an FCA implication it is not possible to express that an object that
has both attributes Female and Male does not exist. The last implication
which states that such an object has all possible attributes is the closest
approximation to such a statement.

49

3 Formal Concept Analysis

An algorithm for computing the Duquenne-Guigues Base (or the set
of all pseudo-intents) of a context is based on the following observation.

Lemma 3.6 (Closure System of Intents and Pseudo-Intents). Let K =
(G,M, I) be a context. The set of all intents and pseudo-intents of K is
a closure system on M .

Because the set of all intents and pseudo-intents forms a closure sys-
tem it can be computed using Next-Closure. To this purpose we need
to identify the corresponding closure operator and an effective way to
compute it. In order to identify the closure operator we define the im-
plicational closure of a set of attributes.

Definition 3.9 (Implicational Closure). Let A ⊆ M be a set of at-
tributes and L a set of implications. Then the implicational closure of
A with respect to L is the smallest set B, A ⊆ B ⊆ M , that respects
all implications from L. We denote the implicational closure of A with
respect to L by L(A).

One can show that the implicational closure L(·) is a closure operator.
The closed sets with respect to L(·) are exactly those sets that respect
all implications from L. L(A) can computed in linear time in the size
of A and L. This can be proven in different ways, for example by
interpreting FCA implications as propositional Horn clauses and using
results for deciding satisfiability of propositional Horn clauses [DG84].

Definition 3.10 (Pseudo-Closure). Let K = (G,M, I) be a context.
Let A ⊆ M be a set of attributes. The pseudo-closure of A is the
smallest set B, A ⊆ B ⊆M , such that

L (B implies R ⊆ B

for all implications L→ R from DGK. We denote the pseudo-closure by
DG∗K(A).

It can be shown that DG∗K is the closure operator that generates the
closure system of all intents and pseudo-intents. Notice that if P =
DG∗K(A) for some A ⊆ M then P = L(A) where L = {L → R ∈ DGK |
L (P} is the set of all implications from DGK whose left-hand side
is strictly contained in P . Therefore, when we want to compute the
lectically next intent or pseudo-intent for a given set A it is sufficient

50

3.3 Implications and the Duquenne-Guigues Base

to know those implications from DGK whose left-hand side is strictly
contained in A. Remember that the lectic order extends the subset
order. Since Next-Closure computes the intents and the pseudo-intents
in the lectic order these implications are within the already computed
part of the Duquenne-Guigues Base, which gives us an effective way
to compute the pseudo-closure of a set of attributes. The resulting
algorithm is presented in Algorithm 3. It computes not only the intents
and pseudo-intents but also the Duquenne-Guigues Base.
Kuznetsov has shown that the total number of pseudo-intents of a

context K = (G,M, I) can be exponential in |G| · |M |. Of course, this
means that the size of the Duquenne-Guigues base can also become
exponentially large in |G| · |M |. In Line 7 computing the pseudo-closure
by computing the implicational closure with respect to the previously
found implications is not necessarily polynomial in the size of the input
(|G| · |M |) but polynomial in the size of the input and the previously
computed output (|G| · |M | and |Li+1|). Hence Algorithm 3 computes
the set of all intents and pseudo-intents with incremental polynomial
delay, and thus in output polynomial time.

Algorithm 3 Computing the Duquenne-Guigues-Base of a Context
1: K {Input: formal context K}
2: P0 := ∅ {∅ is always the lectically smallest intent or pseudo-intent}
3: L0 := ∅ {initializing the set of implications}
4: i := 0
5: while Pi 6= M do
6: if Pi 6= P ′′i then
7: Li+1 := Li ∪ {Pi → P ′′i } {Pi is a pseudo-intent}
8: end if
9: Pi+1 := lectically smallest subset of M that is

– lectically greater than Pi, and
– respects all implications from Li+1

10: i := i+ 1
11: end while
12: return Li

Later we shall discuss applications of FCA in DL. These do not make
use of concept intents but only of pseudo-intents. For computing only

51

3 Formal Concept Analysis

pseudo-intents Next-Closure is not efficient, since it will also compute
the intents. The number of intents may be exponential in the number
of pseudo-intents. To this day, it is an open problem whether the set
of pseudo-intents can be enumerated in output polynomial time. In
[Ser09b] a connection between this enumeration problem and a problem
from hypergraph theory, namely the transversal hypergraph problem, is
shown. The author of this thesis has proven that pseudo-intents cannot
be enumerated in the lectic order with polynomial delay unless P = NP
[Dis10b, DS11]. A closely related complexity problem is the problem
of verifying whether a given set of attributes is a pseudo-intent. This
problem has been known to be in coNP [Kuz04, KO08] and has recently
been shown to be coNP-complete in [BK10].

3.4 Attribute Exploration

In practice it often happens that a context is only partially available.
Computing the Duquenne-Guigues Base of such a partially available
context is problematic. An implication that is valid in a smaller subcon-
text is not necessarily valid in the full context, because that full context
may contain a counterexample that is not present in the subcontext. As
an example consider the context KS from Table 1.1 as the full context
and the context Kp from Table 3.1 as the subcontext. The implication
{Female} → {Mother} holds in Kp but not in KS because the counterex-
ample Lisa is missing in Kp.
Attribute Exploration is an interactive procedure for completing for-

mal contexts while at the same time computing the Duquenne-Guigues
Base for the complete context [Gan84]. It takes as input an incomplete
formal context and obtains more information by querying a human ex-
pert. The expert is assumed to have knowledge about the complete
context. The Attribute Exploration algorithm consecutively computes
implications and presents them to the expert. For each implication the
expert has the choice to either accept or to reject it. If she accepts
it, it will be added to the implication base that is being computed. If
she rejects it she is asked to provide a counterexample in the form of
an object and its object intent. The complete algorithm is described
in Algorithm 4. It is a modification of Next-Closure for computing
the Duquenne-Guigues Base. Remarkably, Lemma 3.7 shows that the

52

3.4 Attribute Exploration

previously computed implications remain valid and remain part of the
Duquenne-Guigues Base even when the expert adds a counterexample.

Algorithm 4 Attribute Exploration
1: K0 := (G,M0, I0) {Input: initial formal context K0}
2: P0 := ∅ {∅ is always the lectically smallest intent or pseudo-intent}
3: L0 := ∅ {initializing the set of implications}
4: i := 0; j := 0
5: while Pi 6= M do
6: while Pi 6= P ′′i and the expert rejects Pi → P ′′i do
7: Ask expert for a new object g and its object intent g′
8: Mj+1 := Mj ∪ {g}
9: Ij+1 := Ij ∪ {(g,m) | m ∈ g′}

10: Kj+1 := (G,Mi+1, Ii+1)
11: j := j + 1
12: end while
13: if Pi 6= P ′′i then
14: Li+1 := Li ∪ {Pi → P ′′i }
15: end if
16: Pi+1 := lectically smallest subset of M that is

– lectically greater than Pi, and
– respects all implications from Li+1

17: i := i+ 1
18: end while
19: return Li

Lemma 3.7. Let K = (G,M, I) and K′ = (G′,M, I ′) be formal contexts.
We say that K′ extends K if G ⊆ G′ and I ′ \ I ⊆ (G′ \G)×M , i. e. for
all objects from G the object intents remain unchanged.
Let K be a context and let P1, P2, . . . , Pk be its k lectically first

pseudo-intents. Let K′ be a context that extends K and where all impli-
cations P` → P ′′` , ` ∈ {1, . . . , k} hold in K′. Then P1, P2, . . . , Pk are
the lectically first k pseudo-intents of K′.

Example 3.2. Assume that instead of the complete context KS from
Table 1.1 only an incomplete version available (Table 3.1). The task
is to find all the relevant implications, i. e. the implications from the

53

3 Formal Concept Analysis

Table 3.1: A Formal Context Kp

Female Male Mother Father Parent

Kirk × × ×
Luann × × ×
Milhouse ×

Duquenne-Guigues Base of the complete context KS , by interacting with
a human expert.
The first implication that Algorithm 4 finds is

{Father} → {Male,Father,Parent}.

Since this is true in the full context KS , the expert accepts this impli-
cation. Likewise, the implications

{Mother} → {Female,Mother,Parent}, and
{Male,Parent} → {Male,Father,Parent}

are accepted and added to the implication base. The fourth implication
is

{Female} → {Female,Mother,Parent}.

This does not hold in KS since Lisa is Female, but she is not a Parent.
Hence, the expert rejects the implication and provides the counterexam-
ple Lisa. The last two implication are accepted and no counterexample
is provided. After these last questions the Attribute Exploration termi-
nates:

{Female,Parent} → {Female,Mother,Parent}
{Female,Male} → {Female,Male,Mother,Father,Parent}.

Background Knowledge
In the following chapters we sometimes deal with a situation where cer-
tain dependencies between attributes are known in advance, e. g. be-
cause the attributes are DL concept descriptions and some dependencies

54

3.4 Attribute Exploration

are obtained using DL reasoning. This setting has first been examined
in [Stu96a] and [Gan99]. We follow the notation from [Stu96a]. We
assume that we are given a formal context K = (G,M, I) and a set of
previously known implications S. The goal is to find a minimal set of
implications L such that

• all implications from L hold in K, and

• all implications that hold in K follow from L ∪ S.

We call such a set an S-base of K. An S-base with minimal cardinality
can be constructed in analogy to the Duquenne-Guigues Base.

Definition 3.11 (S-Pseudo-Intent). Let K = (G,M, I) be a context
and S be a set of implications holding in K. A set P ⊆ M is called an
S-pseudo-intent of K if

• P is not an intent, and

• P respects all implications from S, and

• for all S-pseudo-intents Q (P it holds that Q′′ ⊆ P .

We call

DGSK = {P → P ′′ | P is an S pseudo-intent of K}.

the S-Duquenne-Guigues Base of K

Theorem 3.8. Let K be a context and S a set of implications that hold
in K. Then the S-Duquenne-Guigues Base DGSK is an S-base of K. It
has minimal cardinality among all S-bases of K.

Proof. The first statement that DGSK is S-base of K is proved in [Stu96a].
However, in [Stu96a] Stumme does not prove minimal cardinality, but
only the weaker result that DGSK is irredundant. We therefore provide
the proof for minimal cardinality here.
Let L be an S-base for K. Lemma 3.4 allows us to transform L into

an S-base L′ of the same size or smaller size by defining

L′ = {U → U ′′ | U occurs as a left-hand side in L}.

55

3 Formal Concept Analysis

Let P and Q be two S-pseudo-intents. It holds that P 6= P ′′ and
Q 6= Q′′. P and Q respect all implications from S and L′∪S is complete
for K. Therefore there must be implications UP → U ′′P and UQ → U ′′Q
in L′ such that UP ⊆ P , UQ ⊆ Q and U ′′P 6⊆ P and U ′′Q 6⊆ Q. We show
that UP = UQ implies P = Q.
Assume that UP = UQ = U . Then U satisfies U ⊆ P ∩ Q. From

Lemma 3.1 it follows that U ′′ ⊆ (P ∩ Q)′′. U ′′P = U ′′ 6⊆ P and U ′′ ⊆
(P ∩Q)′′ implies

(P ∩Q)′′ 6⊆ P (3.1)

and analogously (P ∩Q)′′ 6⊆ Q. Therefore in particular (P ∩Q)′′ 6⊆ P ∩Q
and hence

P ∩Q 6= (P ∩Q)′′ (3.2)

holds. Since P and Q respect all implications from S the set P ∩ Q
must also respect all implications from S. Because of (3.2) and because
DGSK ∪ S is complete for K there must be some S-pseudo-intent R such
that R ⊆ P ∩ Q and R′′ 6⊆ P ∩ Q. Thus either R′′ 6⊆ P or R′′ 6⊆ Q.
Without loss of generality let R′′ 6⊆ Q. Since both Q and R are S-
pseudo-intents we obtain that R = Q and thus Q ⊆ P ∩Q. This implies
Q = P ∩ Q and therefore Q ⊆ P . From (3.1) we obtain that Q′′ 6⊆ P .
Since both P and Q are S-pseudo-intents it follows that P = Q.
We have seen that for every S-pseudo-intent P there is at least one

implication UP → U ′′P in L′ such that UP ⊆ P and U ′′P 6⊆ P . Further-
more, we have seen that if P and Q are distinct S-pseudo-intents then
UP 6= UQ holds. This shows that L′ and therefore also L contains at
least as many implications as there are S-pseudo-intents in K.

We call DGSK the S-Duquenne-Guigues Base of K. In order to com-
pute DGSK we use the same ideas as for computing the Duquenne-Guigues
Base for a context without background knowledge. It can be shown that
the set of all S-pseudo-intents and all intents of K forms a closure sys-
tem. Therefore Next-Closure can be used to compute them. In analogy
to Algorithm 3 the corresponding closure operator can be computed as
the implicational closure with respect to S and the already obtained
implications from DGSK. Algorithm 5 shows a modified version of Al-
gorithm 3 that computes all intents and S-pseudo-intents for a given
context. Using similar modifications Algorithm 4 can be modified to

56

3.4 Attribute Exploration

Algorithm 5 Computing all Intents and S-Pseudo-Intents of a Formal
Context
1: K, S {Input: formal context K and background implications S}
2: P0 := S(∅) {lectically smallest intent or S-pseudo-intent}
3: H0 := {P0} {initializing the set of intents and S-pseudo-intents}
4: L0 := ∅ {initializing the set of implications}
5: i := 0
6: while Pi 6= M do
7: if Pi 6= P ′′i then
8: Li+1 := Li ∪ {Pi → P ′′i } {Pi is an S-pseudo-intent}
9: end if

10: Pi+1 := lectically smallest subset of M that is
– lectically greater than Pi, and
– respects all implications from Li+1 ∪ Si+1

11: Hi+1 := Hi ∪ {Pi+1}
12: i := i+ 1
13: end while
14: return Li

obtain an Attribute Exploration algorithm that can handle background
knowledge.

57

4 General Frameworks for
Combining FCA and DL

When we compare FCA and DL we realize that both theories have cer-
tain shortcomings with respect to the other one. The two most obvious
shortcomings of FCA compared to DL are the lack of roles and the
fact that it is impossible to construct new attributes from existing ones.
FCA’s advantage over DL is that it provides methods to extract de-
pendencies between attributes in the form of implications. This section
focusses on general approaches for combining FCA and DL. The idea is
that by combining FCA and DL one can overcome each theory’s short-
comings and obtain the best of both worlds.

In the past there have been several approaches to combine FCA and
DL. A simple way of transporting DLs expressivity to a formal context
is to use contexts whose attributes are DL concept descriptions. In this
work we call a context that is obtained in this way an induced context. It
has been used under different names and in slightly different versions in
almost all previous works that combine FCA and DL [BGSS07, Rud04,
Rud06, Pre00, FR04]. Apart from this there are many approaches to
deal with roles (or relations) in FCA, most of which are not tailored
towards DL. One way to allow relations in FCA are so-called power
context families where objects are n-tuples over a basic set G0 and n-
ary relations correspond to attribute extents [PW99, Rud06]. Other
approaches include Relational Concept Analysis by Priss [Pri98] and
transition contexts by Wollbold et al. [WGG08]. All of these approaches
use FCA as the starting point and add a DL flavor to it. In the first
part of this chapter we use the opposite approach where we start with
normal DL and introduce a new non-standard reasoning service that
has similar properties as an FCA derivation operator. We call this new
non-standard reasoning service the model-based most specific concept.

This section is divided into two parts: the first is devoted to model-
based most specific concepts while the second is devoted to induced

59

4 General Frameworks for Combining FCA and DL

contexts. In the first part we formally introduce model-based most spe-
cific concepts and show that they have several properties that make
them similar to an FCA derivation operator. Unfortunately, model-
based most specific concepts do not exist in all Description Logics. We
prove that they always exist in the logics ELgfp and EL⊥gfp. In the sec-
ond part induced contexts are introduced formally, and some technical
results are shown.

4.1 Model-Based Most Specific Concepts

When we compare the data structures of a formal context K = (G,M, I)
and a DL-interpretation i = (∆i, ·i) we can notice several parallels. An
obvious parallel exists between the set of objects G of a context and the
set individuals ∆i of an interpretation. In both structures we can gen-
erate descriptions for subsets of G or ∆i and both structures provide a
mapping that returns the set of objects or individuals that satisfy a de-
scription. In the formal context such a description is a set of attributes
A ⊆ M and the mapping that interprets a description is the deriva-
tion operator ·′. In the DL world we have complex, inductively defined
concept descriptions and the interpretation provides the mapping ·i to
interpret them. Last but not least, there are parallels between impli-
cations in formal contexts, i. e. ordered pairs of sets of attributes, and
GCIs in Description Logics, i. e. ordered pairs of concept descriptions.
These parallels between FCA implications on the one hand and GCIs

on the other hand suggest that it might be possible to transfer the ideas
that are used in the construction of the Duquenne-Guigues Base to the
world of description logics. One quickly realizes that while there is an
equivalent to the derivation operator ·′ : 2M → 2G, namely the inter-
pretation function ·i, there is no such equivalent for the dual operator
·′ : 2G → 2M . Our search for a reasoning service with similar properties
as the second derivation operator leads us to model-based most specific
concepts.

4.1.1 General Definition

We introduce model-based most specific concepts for a generic DL and
show that they have similar properties as the derivation operator ·′ :

60

4.1 Model-Based Most Specific Concepts

2G → 2M . In particular, Lemma 3.1 and Lemma 3.4 have equivalents
in the DL setting (Lemma 4.1 and Lemma 4.3).

Definition 4.1 (Model-Based Most Specific Concept). Let L be the
set of all possible concept descriptions from some DL language over a
fixed signature. Let i = (∆i, ·i) be an interpretation and X ⊆ ∆i. Then
C ∈ L is the model-based most specific concept (mmsc) of X if

(M1) X ⊆ Ci, and

(M2) every other concept description D ∈ L satisfying X ⊆ Di also
satisfies C v D.

(M2) implies in particular that model-based most specific concepts
are unique up to equivalence. This justifies calling a concept description
C the model-based most specific concept. We denote the model-based
most specific concept of X by Xi. Model-based most specific concepts
should not be confused with most specific concepts for ABox-individuals
(cf. Definition 2.13). While the idea behind the two notions is similar the
first refers to individuals from an interpretation, which have closed world
semantics, while the latter refers to ABox-individuals, which have an
open-world semantics. In the following section we shall see that model-
based most specific concepts need not exist for all DL languages. For
the rest of this section, we assume that we are dealing with a language
where model-based most specific concepts always exist. We show that
they have properties that ressemble those of the derivation operator from
FCA.

Lemma 4.1. Let i = (∆i, ·i) be an interpretation, X,Y ⊆ ∆i sets of in-
dividuals, and C,D concept descriptions. Then the following statements
hold.

1. X ⊆ Y implies Xi v Y i

2. C v D implies Ci ⊆ Di

3. X ⊆ (Xi)i

4. (Ci)i v C

5. Xi ≡ ((Xi)i)i

61

4 General Frameworks for Combining FCA and DL

6. Ci = ((Ci)i)i

7. X ⊆ Ci ⇔ Xi v C

In particular this shows that the interpretation function and the model-
based most specific concept form a monotone Galois-connection.

Proof. (1) Assume that X ⊆ Y holds. (M1) states in particular that
Y ⊆ (Y i)i and thereforeX ⊆ (Y i)i. By definitionXi is the least concept
description with X ⊆ (Xi)i. (M2) and X ⊆ (Y i)i imply that Xi v Y i

holds. (2) If C v D then Definition 2.9 says that Cj ⊆ Dj holds for all
interpretations j and thus in particular i satisfies Ci ⊆ Di.
(3) The claim follows trivially from (M1). (4) Define Y = Ci. Then

in particular Y ⊆ Ci holds. By Definition 4.1 Y i is the least concept
description whose extension contains Y and therefore (M2) and Y ⊆ Ci
imply that Y i v C holds. Because Y = Ci it follows that (Ci)i v C.
Together, (1), (2), (3), and (4) show that the interpretation func-

tion and the model-based most specific concept form a monoton Galois-
connection (e. g. [EKMS93]). (5) and (6) hold for every Galois-connec-
tion and (7) is simply the definition of a monotone Galois-connection.

Notice that Lemma 4.1 corresponds almost exactly to Lemma 3.1.
The main difference is that in Lemma 4.1 the direction of the order
relation v is reversed compared to the subset order on sets of attributes
n Lemma 3.1.
In the following we abbreviate the term (Ci)i, where C is a concept

description, by Cii. Lemma 4.1 (6) proves a kind of idempotency for
the combined operator ·ii. According to the following result, this kind
of idempotency holds, even when the operator ·ii occurs behind a quan-
tifier.

Lemma 4.2. Let L be a Description Logic that allows for conjunction
and existential restrictions. Let C and D be concept descriptions from L
and let i = (∆i, ·i) be an interpretation. Then the following statements
hold.

1. (Cii uD)i = (C uD)i

2. (∃r.Cii)i = (∃r.C)i

62

4.1 Model-Based Most Specific Concepts

Proof. (1) From Lemma 4.1 (6) and the definition of conjunction in DL
we obtain

(Cii uD)i = (Cii)i ∩Di = Ci ∩Di = (C uD)i.

(2) Let x ∈ ∆i be an individual. The following equivalences follow from
the definition of existential restrictions and from Lemma 4.1 (6).

x ∈ (∃r.Cii)i

⇔∃y ∈ (Cii)i : (x, y) ∈ ri

⇔∃y ∈ Ci : (x, y) ∈ ri

⇔x ∈ (∃r.C)i.

Hence, (∃r.Cii)i = (∃r.C)i holds.

We have already mentioned the similarities between Lemma 4.1 and
Lemma 3.1. A similar correspondence can be obtained for Lemma 3.4.

Lemma 4.3. Let i = (∆i, ·i) be an interpretation and let C v D be a
GCI that holds in i. Then C v Cii holds in i and C v D follows from
{C v Cii}.

Proof. By Lemma 4.1 (6) it holds that Ci = (Cii)i, i. e. C v Cii holds
in i. We have assumed that C v D holds in i and therefore Ci ⊆ Di

holds. Lemma 4.1 (7) implies (Ci)i v D. Let j = (∆j , ·j) be any
interpretation in which C v Cii holds, i. e. j satisfies Cj ⊆ (Cii)j . Using
Lemma 4.1 (7) we obtain (Cj)j v Cii. We have already shown Cii v D
and thus (Cj)j v D follows. Lemma 4.1 (7) yields Cj ⊆ Dj , and hence
C v D holds in j. Since j was an arbitrary interpretation in which
C v Cii holds, we have shown that C v D follows from {C v Cii}.

4.1.2 Existence in the EL-family
In the previous section we have shown that model-based most specific
concepts – provided that they exist – have several desirable properties
that ressemble the derivation operators from FCA. In this section we
show that unfortunately they need not exist in EL or EL⊥. The reason
for this is that EL and EL⊥ cannot describe cyclic dependencies – a
problem that can be overcome by using ELgfp and EL⊥gfp. In the later

63

4 General Frameworks for Combining FCA and DL

parts of this section we show that model-based most specific concepts
do exist in ELgfp and EL⊥gfp.

To see that in general model-based most specific concepts do not exist
in EL or EL⊥ let us look at the signature (NC ,NR) = ({Male,Female},
{marriedTo}) and the interpretation i = ({Homer,Marge}, ·i) with

Malei = {Homer}
Femalei = {Marge}

marriedToi = {(Homer,Marge), (Marge,Homer)}
(4.1)

from Figure 2.2 again. Define

Ck = ∃marriedTo . . . ∃marriedTo.︸ ︷︷ ︸
k times

>.

For all k ∈ N the concept Ck satisfies Cik = {Homer,Marge}. Suppose
that a model-based most specific concept D of {Homer,Marge} exists.
Then D must satisfy D v Ck for all k ∈ N. It is easy to see that
this can only be the case if the role depth of D is greater than the role
depth of Ck for all k ∈ N, or if D = ⊥. The latter can be ruled out
since {Homer,Marge} 6⊆ ⊥i = ∅ and therefore ⊥ cannot be a model-
based most specific concept for {Homer,Marge}. Since any EL and EL⊥
concept description has finite role depth it is also impossible that D has
a role depth that is greater than k for all k ∈ N. Therefore, such a
concept description D cannot exist and {Homer,Marge} has no model-
based most specific concept in i.

The reason that there is no model-based most specific concept in this
interpretation is because the interpretation is cyclic. Informally speak-
ing, as soon as there is a cycle in the interpretation we can always find
a more specific concept description by increasing role depth, and this
process can continue infinitely. One way to deal with cycles in interpre-
tations is to allow cycles in the concept descriptions, too. This brings
us to the logics ELgfp and EL⊥gfp.
We show that model-based most specific concepts exist in both ELgfp

and EL⊥gfp for all interpretations i = (∆i, ·i) and all sets X ⊆ ∆i. We
distinguish three cases, namely where X is the empty set, where X is a
singleton set and where X has at least two elements. For the first case
whereX = ∅ the model-based most specific concept in EL⊥gfp is obviously

64

4.1 Model-Based Most Specific Concepts

the bottom concept ⊥. In pure ELgfp there is no bottom concept, but
there is something similar: There is a concept that encompasses all
properties that can be described using ELgfp. Let (NC ,NR) be a fixed
signature. Let Tall be the TBox

Tall = {Aall ≡
l

B∈NC

B u
l

r∈NR

∃r.Aall}. (4.2)

We define Call to be the ELgfp-concept (Aall, Tall).

Lemma 4.4. Let i = (∆i, ·i) be an interpretation for a given signature
(NC ,NR). Then Call is the model-based most specific concept of ∅ in
ELgfp and ⊥ is the model-based most specific concept of ∅ in EL⊥gfp.

Proof. To show that Call is the most specific concept for ∅ we need to
prove (M1) and (M2). It trivially holds that ∅ ⊆ Ciall and therefore
(M1) is true. Assume that D = (AD, TD) is an arbitrary ELgfp-concept
description over the signature (NC ,NR). Let Z be the relation Z =
{(A,Aall) | A ∈ ND(TD)}. Because of namesTall(Aall) = NC the relation
Z satisfies (S1′′). Furthermore, because Aall ∈ succrTall(Aall) holds for
all r ∈ NR the relation Z also satisfies (S2′′). Lastly, Z also satisfies
(AD, Aall) ∈ Z and therefore (S3′′). Thus Z is a simulation from D to
Call. Lemma 2.3 implies Call v D. Therefore, Call is subsumed by every
ELgfp-concept description, in particular this proves (M2) for Call.
The case for EL⊥gfp is simpler. First of all, ∅ ⊆ ⊥i holds. If C is

an EL⊥gfp-concept description with ∅ ⊆ Ci then ⊥ v C holds trivially.
Therefore, ⊥ is the most specific concept of ∅.

In Section 2.4.2 we have seen that ELgfp-interpretations and cyclic
EL-TBoxes share a common structure. In principle, this means that
interpretations can be viewed as TBoxes and vice versa. Let i = (∆i, ·i)
be an interpretation and Gi its EL-description graph. Gi gives rise to
a TBox TGi as defined in Definition 2.23. Notice that by definition
the defined concept names of TGi are the vertices of Gi which are the
individuals from ∆i.1 Let x ∈ ∆i be an individual. We call the ELgfp-
concept description Cx = (x, TGi

) the concept description of x in i, i. e.
every individual x ∈ ∆i gives rise to an ELgfp-concept description. We
1This means that we have to violate the convention that concept names are denoted
by upper case letters.

65

4 General Frameworks for Combining FCA and DL

show that the concept description of x in i is the model-based most
specific concept of {x}.

Lemma 4.5. Let i = (∆i, ·i) be an interpretation for a given signature
(NC ,NR). Let x ∈ ∆i be an individual, and let Cx = (x, TGi) be the
concept description of x in i. Then Cx is the model-based most specific
concept of {x} in both ELgfp and EL⊥gfp.

Proof. Since i and TGi
have the same EL-description graph Gi the iden-

tity relation id∆i
on ∆i is a simulation from Cx to x in i. We can apply

Lemma 2.2 to id∆i and obtain {x} ⊆ Cix. Therefore Cx satisfies (M1).
Let D = (AD, TD) be another ELgfp-concept description that satisfies
{x} ⊆ Di and let GD be its EL-description graph. Lemma 2.2 shows
that there is a simulation Z from GD to the description graph Gi such
that (AD, x) ∈ Z. Since Gi is also the description graph of Cx it follows
that Z is also a simulation from D to Cx. We can apply Lemma 2.3 to
Z and obtain Cx v D. This proves (M2) for ELgfp.
To prove (M2) for EL⊥gfp we distinguish two cases: the case where

D = ⊥ and the case where D is an ELgfp-concept description. The case
D = ⊥ can be ruled out immediately since D = ⊥ implies {x} 6⊆ Di.
The second case can be treated as for ELgfp. This shows that Cx is the
model-based most specific concept of {x} in both ELgfp and EL⊥gfp.

Example 4.1. Suppose that we want to compute the model-based most
specific concept of {Homer} in the interpretation i = (∆i, ·i) from (4.1).
The first step is to translate the EL-description graph of i, which is
depicted in Figure 2.2, into a TBox Ti. We obtain

Ti = {Homer ≡Male u ∃marriedTo.Marge,

Marge ≡Female u ∃marriedTo.Homer}.
(4.3)

Notice that what used to be individual names in ∆i are now defined
concept names in Ti. The EL⊥gfp-model-based most specific concept for
{Homer} is the concept {Homer}i = (Homer, Ti). This concept describes
all males that are married to a female that is married to a male, and so
on. Analogously, we obtain {Marge}i = (Marge, Ti).

Lemma 4.6. Let i = (∆i, ·i) be an interpretation for a given signature
(NC ,NR) and let X ⊆ ∆i be a subset of ∆i.

66

4.1 Model-Based Most Specific Concepts

(Homer,Homer)

(Marge,Marge)

Female

Male

marriedTo marriedTo

(Homer,Marge)

(Marge,Homer)

marriedTo marriedTo

Figure 4.1: Gi ⊗Gi

Then the least common subsumer lcs{{x}i | x ∈ X} exists in both
ELgfp and EL⊥gfp. It is the model-based most specific concept of X in
both ELgfp and EL⊥gfp.

Proof. The existence of least common subsumers has been shown in
Lemma 2.4 and Lemma 2.5. The following arguments work for both
logics ELgfp and EL⊥gfp, since they only make use of general properties of
the model-based most specific concept and the least common subsumer.
By definition lcs{{x}i | x ∈ X} subsumes all concepts {x}i for all

x ∈ X. Lemma 4.1 yields {x} ⊆ ({x}i)i. Hence all x ∈ X satisfy
{x} ⊆

(
lcs{{x}i | x ∈ X}

)i and therefore X ⊆
(
lcs{{x}i | x ∈ X}

)i
holds. This proves (M1).
To show (M2) let D be a concept description with X ⊆ Di. Then

in particular all x ∈ X satisfy {x} ⊆ Di. Lemma 4.1 yields {x}i v D.
Therefore, D is a common subsumer of the concept descriptions {x}i
for all x ∈ X. The minimality of the least common subsumer implies
lcs{{x}i | x ∈ X} v D which proves (M2) for lcs{{x}i | x ∈ X}. Hence,
lcs{{x}i | x ∈ X} is the model-based most specific concept for X.

Example 4.2. We compute the model-based most specific concept of
{Homer,Marge} in the model i = (∆i, ·i) from (4.1). We already know
that {Homer}i = (Homer, Ti) and {Marge}i = (Marge, Ti) with Ti from
(4.3). The model-based most specific concept of {Homer,Marge} is the

67

4 General Frameworks for Combining FCA and DL

least common subsumer of {Homer}i and {Marge}i. By Lemma 2.4
the least common subsumer is the product {Homer}i ⊗ {Marge}i. It
is obtained from the product of the corresponding description graphs
Gi ⊗ Gi where Gi is the description graph of Ti which is depicted in
Figure 2.2. Figure 4.1 shows Gi ⊗Gi. The corresponding TBox TD is

TD = {(Homer,Homer) = Male u ∃marriedTo.(Marge,Marge),

(Marge,Marge) = Female u ∃marriedTo.(Homer,Homer),

(Marge,Homer) = ∃marriedTo.(Homer,Marge),

(Homer,Marge) = ∃marriedTo.(Marge,Homer)}.

The defined concept names of TD are pairs of individual names from
∆i. We obtain the concept ((Homer,Marge), TD) as the least common
subsumer of {Homer}i and {Marge}i. This concept is the model-based
most specific concept of {Homer,Marge}:

{Homer,Marge}i = ((Homer,Marge), TD).

It is possible to show that ((Homer,Marge), TD) is equivalent to the
concept description (A, {A ≡ ∃marriedTo.A). This concept describes all
individuals that are followed by an infinite chain of marriedTo successors.

Together Lemma 4.4, Lemma 4.5 and Lemma 4.6 show that model-
based most specific concepts exist in both ELgfp and EL⊥gfp for all inter-
pretations and for all sets of individuals. They also provide an effective
method to compute the model-based most specific concept.

Theorem 4.7. Model-based most specific concepts exist both in ELgfp

and in EL⊥gfp for all interpretations i = (∆i, i) and all sets X ⊆ ∆i.
They can be computed effectively.

To sum up we have shown that model-based most specific concept do
not necessarily exist in the logics EL and EL⊥, mainly because there may
be cycles in the model that cannot be expressed by a concept description.
This problem can be overcome by allowing greatest-fixpoint semantics.
We have shown that for ELgfp and EL⊥gfp the model-based most specific
concept always exists. Results about model-based most specific concept
in logics that allow for value restrictions such as FL0, FLE and ALC
can be found in [Dis09]. The problems with cyclic models exist in these
logics as well, but can be overcome using extensions of the standard
logics.

68

4.1 Model-Based Most Specific Concepts

4.1.3 Classical FCA from a DL Perspective
We have already shown that there are parallels between the derivation
operators from FCA and interpretation functions and model-based most
specific concepts in DL. In this section we shall see that FCA can even
be viewed as a syntactic variant of the simple DL that only allows for
conjunction and the top concept.2
Let Lu be the Description Logic that allows only for the concept

constructors u and > with the usual semantics (cf. Table 2.1). This DL
does not use roles at all. Therefore an Lu-interpretation i = (∆i, ·i) is
simply a pair of a domain ∆i and an interpretation function ·i : NC →
2∆i for a set of concept names NC .
Let K = (G,M, I) be a formal context. The set of attributes M can

be viewed as a set of concept names, i. e. M = NC ,3 while the set of
objects can be viewed as the domain of an interpretation. Thus K gives
rise to an interpretation iK = (G, ·iK) where

miK = {m}′

for every m ∈ NC . K and iK are two notationally different representa-
tions of the same data. Intuitively, when we take the derivation operator
of a set of attributes B then we are looking for objects that have all
the attributes from B. Therefore, when we view attributes as concept
names, it is only natural to associate B with the conjunction

d
B over

all elements of B. Let B ⊆M be a set of attributes. We define
l
B =

{ d
m∈Bm if B 6= ∅
> if B = ∅ .

The following lemma shows that there is a one to one correspondence
between the derivation operators in the context K and the interpretation
function or the model-based most specific concept in the interpretation
iK. No information is lost in the translation.

Lemma 4.8. Let K be a context, A ⊆ G a set of objects and B ⊆M a
set of attributes. Then

B′ = (
l
B)iK , (4.4)

2Most authors would not call this logic a DL, since they require DLs to allow for
at least one kind of quantifier. We do not adopt this strict notion of DL.

3Since attributes are usually denoted by lower case letters, we ignore the convention
that concept names should be upper case letters here.

69

4 General Frameworks for Combining FCA and DL

and l
A′ ≡ AiK . (4.5)

Proof. By definition of the FCA derivation operators it holds that

B′ = {g ∈ G | ∀m ∈ B : gIm}

=
⋂
m∈B
{g ∈ G | gIm} =

⋂
m∈B
{m}′

and by definition of iK

B′ =
⋂
m∈B

miK = (
l
B)iK .

To prove the second statement we need to show that
d
A′ is the model-

based most specific concept for A in iK. Lemma 3.1 states that A ⊆ A′′
and (4.4) shows that A′′ = (

d
A′)iK . Thus A ⊆ (

d
A′)iK holds. This

proves (M1) for
d
A′.

To show (M2) let D be an Lu-concept description satisfying A ⊆ DiK .
Because Lu only allows for disjunction D must be of the form D =

d
S

for some set of concept names S ⊆ M . From (4.4) we obtain DiK = S′

and therefore A ⊆ S′ holds. Lemma 3.1 yields S ⊆ A′. It follows that

D =
l
S w

l
A′

holds. This proves (M2) for
d
A′. Thus

d
A′ is the model-based most

specific concept for A in iK, i. e.
d
A′ ≡ AiK .

We have seen that there is a simple translation from a context to
an interpretation. We have shown that the derivation operators can be
regarded as a special case of the interpretation function and the model-
based most specific concept for the very inexpressive logic Lu. This is
of course only a part of the story, since there is much more to FCA than
just the derivation operators.

4.2 Induced Contexts
In Section 4.1.3 we have looked at FCA from a DL perspective. In this
section we do the opposite and try to incorporate DL concept descrip-
tions in an FCA framework. This approach is not new. In fact, what we

70

4.2 Induced Contexts

call induced contexts in this work has been used under different names
in various older works [BGSS07, Rud04, Rud06, Pre00]. This section
consists of two parts. In the first part we introduce the main definitions
related to induced contexts. In the second part we present a number
of technical results that establish a relationship between derivation op-
erators in induced contexts and interpretations and model-based most
specific concept in the DL world. The technical part can be skipped
by those readers who are only interested in the results and not in the
technical details of this thesis.

Main definitions
An induced context is a context whose set of objects is the domain of a
finite DL interpretation and whose attributes are concept descriptions.
In such a context an object x has the attribute C if x is in the extension
of the concept C in the interpretation i. We use EL⊥gfp for the formal
definitions but they can be defined analogously for other Description
Logics.

Definition 4.2 (Induced Context). Let i be a finite EL⊥gfp-interpretation
and M a finite set of EL⊥gfp-concept descriptions. The context induced
by M and i is the formal context K = (G,M, I), where G = ∆i and

I = {(x,C) | C ∈M and x ∈ Ci}.

We have already motivated in Section 4.1.3 that a set of attributes
U ⊆M corresponds to the EL⊥gfp-concept description which is obtained
as the conjunction over all elements of U . In the other direction we can
approximate an EL⊥gfp-concept description C by the set of all attributes
D ∈M that subsume C.

Definition 4.3. Let K be the context induced by M and i, let C be an
EL⊥gfp-concept description and U ⊆M a set of attributes. We define

l
U =

{ d
D∈U D if U 6= ∅
> if U = ∅

and call this the concept defined by U . Conversely, we define

prM (C) = {D ∈M | C v D},

and call this the projection of C to M .

71

4 General Frameworks for Combining FCA and DL

Table 4.1: The Induced Context K from Example 4.3

⊥ F
em

al
e

M
al
e

∃m
ar
ri
ed
T
o.
>

Homer × ×
Marge × ×

Example 4.3. We consider the model i = (∆i, ·i) from (4.1) again
(cf. Figure 2.2). Suppose that we use the set M = {⊥,Female,Male,
∃marriedTo.>} as the set of attributes. The context K induced by M
and i is shown in Table 4.1. The concept description

C = Female u ∃marriedTo.Male

can be projected to M . We obtain

prM (C) = {Female,∃marriedTo.>}.

The concept defined by prM (C) is
l

prM (C) = Female u ∃marriedTo.>.

Notice that Femaleu∃marriedTo.> is strictly less specific than Femaleu
∃marriedTo.Male.

While there are infinitely many EL⊥gfp-concept descriptions the set M
contains only a finite number of them. The restriction to a finite set of
attributes means that information is lost in the translation. Therefore
the projection prK(C) is really just an approximation of C. This means
that in the general case it holds that

d
prM (C) 6≡ C (cf. Example 4.3).

However, since all elements of prM (C) subsume C their conjunction
must also subsume C.

72

4.2 Induced Contexts

Lemma 4.9. Let K be the context induced by M and i and let C be an
EL⊥gfp-concept description. It holds that

C v
l

prM (C).

Another easy consequence of Definition 4.3 is that the mappings C 7→
prM (C) and U 7→

d
U are antitone, i. e.

• C v D implies prM (D) ⊆ prM (C), and

• U ⊆ V implies
d
V v

d
U .

Technical Results
In general, not all EL⊥gfp-concept descriptions C can be expressed as the
conjunction over a set of attributes fromM . Information is lost when we
project C to M . In the other direction, where we take the conjunction
over a set of attributes U ⊆M no information is lost. This is illustrated
by the following lemma, which looks at the extensions of C and

d
U .

Lemma 4.10. Let K = (∆i,M, I) be the context induced by M and i.
Every EL⊥gfp-concept description C satisfies

Ci ⊆
(
prM (C)

)′
.

Let U ⊆M be a set of attributes. Then

(
l
U)i = U ′.

Proof. Let x ∈ Ci be an individual. Since all concept descriptions D ∈
prM (C) subsume C it holds that x ∈ Di for all D ∈ prM (C). By
Definition 4.2 this implies that x has all attributes from prM (C) in the
induced context K. Thus x ∈

(
prM (C)

)′ holds. This proves Ci ⊆(
prM (C)

)′.
To prove (

d
U)i = U ′ let y ∈ ∆i be an individual. We obtain

y ∈ U ′ ⇔ ∀D ∈ U : yID ⇔ ∀D ∈ U : y ∈ Di

⇔ y ∈
⋂
D∈U

Di = (
l
U)i.

This proves (
d
U)i = U ′.

73

4 General Frameworks for Combining FCA and DL

The subsumption
(
prM (C)

)′ ⊆ Ci is not true in the general case (cf.
Example 4.3). It is true, however, in the case where C can be expressed
in terms of M . We first define formally, what we mean when we say
that C can be expressed in terms of M .

Definition 4.4. Let C be a concept description and M a set of EL⊥gfp-
concept descriptions. We say that C can be expressed in terms of M if
there is a subset U ⊆M such that C ≡

d
U .

It is an easy consequence of Definition 4.4 that C ≡
d

prM (C) holds
if C can be expressed in terms of M . Furthermore we obtain a special
case of Lemma 4.10 for a concept description C that can be expressed
in terms of M .

Lemma 4.11. Let i = (∆i, ·i) be a interpretation and M a set of EL⊥gfp-
concept descriptions. Let K be the context induced by M and i. Every
EL⊥gfp-concept description C that can be expressed in terms ofM satisfies

Ci =
(
prM (C)

)′
.

Proof. We have already proven Ci ⊆
(
prM (C)

)′ in Lemma 4.10. Let
x ∈ ∆i be an individual. Since C is expressible in terms of M it holds
that C ≡

d
prM (C). We obtain

x ∈ Ci ⇔x ∈
(l

prM (C)
)i

⇔∀D ∈ prM (C) : x ∈ Di

⇔∀D ∈ prM (C) : xID

⇔x ∈
(
prM (C)

)′
.

We have thus shown Ci =
(
prM (C)

)′.
The previous results only used interpretations on the DL side. We

will now start to compare the derivation operator for sets of objects to
model-based most specific concepts. We have stated earlier that the
results and definitions can also be obtained for other DLs than EL⊥gfp.
The two following results are an exception, as they require a logic where
model-based most specific concept are guaranteed to exist.

74

4.2 Induced Contexts

Lemma 4.12. Let i = (∆i, ·i) be a interpretation and M a set of EL⊥gfp-
concept descriptions. Let K be the context induced by M and i. Every
set of individuals O ⊆ ∆i satisfies

prM (Oi) = O′.

Proof. Let D ∈ M be an EL⊥gfp-concept description from M . It holds
that

D ∈ O′ ⇔∀x ∈ O : xID

⇔∀x ∈ O : x ∈ Di

⇔O ⊆ Di.

Lemma 4.1 (7) yields

D ∈ O′ ⇔Oi v D
⇔D ∈ prM (Oi).

This proves prM (Oi) = O′.

Corollary 4.13. Let i = (∆i, ·i) be a interpretation and M a set of
EL⊥gfp-concept descriptions. Let K be the context induced by M and i.
Every subset U ⊆M satisfies

prM ((
l
U)ii) = U ′′.

Proof. From Lemma 4.10 we obtain

(
l
U)i = U ′

and hence
prM (((

l
U)i)i) = prM ((U ′)i). (4.6)

Lemma 4.12 implies
prM ((U ′)i) = (U ′)′. (4.7)

Thus, prM ((
d
U)ii) = U ′′ follows from (4.6) and (4.7).

75

4 General Frameworks for Combining FCA and DL

Induced contexts are an easy way to use DL concept descriptions in an
FCA setting. They occur in various previous works in different forms.
However, as Example 4.3 shows, information is lost in the transformation
since the attributes are only a small subset of the infinitely large set of all
concept descriptions. This shows that it is important to select a “good”
set of concept descriptions as the attribute set. There are different ap-
proaches to this selection. Rudolph’s approach [Rud04, Rud06, RVH07]
selects all concept descriptions up to a certain role depth. Baader et
al. [BGSS07, Ser07] leave the choice to the user who is asked to find
concept descriptions that she deems interesting. Our approach to find-
ing interesting concept descriptions is presented in Section 5.2.1.

76

5 Axiomatization of Finite
Models

The Duquenne-Guigues base of a formal context condenses the implica-
tional theory of a formal context into a set of implications of minimal
cardinality. In this section we transfer this idea of an implicational base
to the DL world and define the notion of a base for an EL⊥gfp-model.
Since there are infinitely many EL⊥gfp-concept descriptions it is not triv-
ial to prove that a finite base exists for all models, let alone to compute
it. This section is divided into three parts. In the first part we prove that
a finite base for the EL⊥gfp-GCIs in a given finite model always exists. In
the second part we show that the size of this base can be reduced further
by applying results from FCA. As a last step we demonstrate how every
finite EL⊥gfp-base can be transformed into a finite EL⊥-base. The main
results from this section have been published in [BD08, BD09].

5.1 Existence of Finite Bases in EL⊥gfp

Our aim is to extract conceptual knowledge from data – data that is
represented in a closed-world manner, e. g. given in the form of an EL⊥gfp-
model. Let (NC ,NR) be a signature and i = (∆i, ·i) a model for this
signature.1 In the setting used in this section we assume that the model
i is known entirely. We try to find a TBox that describes the complete
conceptual knowledge about i. To this purpose we define the notion of
a base for the GCIs holding in i.

Definition 5.1 (Base). Let L be a DL-language. Let i = (∆i, ·i) be a
finite interpretation. Let B be a set of GCIs over the signature (NC ,NR).
1Strictly speaking, i is initially only an interpretation and not a model. The goal of
this chapter is to obtain a TBox T that completely describes i and in particular
has i as its model. This justifies the small abuse of terminology.

77

5 Axiomatization of Finite Models

We say that B is a base for the L-GCIs holding in i if it satisfies the
following properties.

• B is sound for i, i. e. every GCI from B holds in i, and

• B is complete for i, i. e. every GCI C v D that holds in i follows
from B.

This notion of completeness is stronger than the one used in [BGSS07],
since it takes arbitrary GCIs and not only GCIs of a special type into
consideration. By definition, a general TBox is a finite set of GCIs.
Therefore, if B is a finite base for the GCIs holding in i then B is also
a general TBox and i is a model of B. We say that we are axiomatizing
the model i when we are computing a finite base for it. For now, we
allow infinite bases.
One infinite base can be obtained from Lemma 4.3 which is the DL

counterpart of Lemma 3.4 from FCA. Here, model-based most specific
concepts prove to be fruitful for axiomatizing models for the first time.
Let C v D be an EL⊥gfp-GCI that holds in i. Lemma 4.3 shows that
C v D follows from {C v Cii}. It is an immediate consequence of
Lemma 4.3 and Theorem 4.7.

Corollary 5.1. Let i = (∆i, ·i) be a model for the signature (NC ,NR).
The set of GCIs

B0 = {C v Cii | C is an EL⊥gfp-concept description

over the signature (NC ,NR), C 6= ⊥}

is a base for the EL⊥gfp-GCIs holding in i.

We do not need to include ⊥ as a left-hand side in B0 since every
GCI of the form ⊥ v C, where C is an EL⊥gfp-concept description, holds
trivially in any interpretation.
If NR 6= ∅ then there are infinitely many EL⊥gfp-concept descriptions

over the signature (NC ,NR). Therefore B0 is not finite in the general
case. The fact that there may be infinitely many EL⊥gfp-concept descrip-
tions makes the search for a finite base for an EL⊥gfp-model more difficult
than the search for a finite implicational base for a formal context. Our
first challenge in this section is to show that a finite base for a given

78

5.1 Existence of Finite Bases in EL⊥gfp

model i does indeed exist and to provide an effective method to com-
pute it. This is done in Section 5.1.2. The proofs in Section 5.1.2 rely
on a result from Section 5.1.1 which shows that B0 is still a base if we
remove all GCIs with cyclic left-hand sides.

5.1.1 A Base in EL⊥gfp with Only Acyclic Left-Hand
Sides

We have seen that using EL⊥gfp instead of EL⊥ guarantees the existence
of model-based most specific concepts. This allows us to transfer cer-
tain ideas such as the derivation operators from FCA to DL. Allowing
cyclic concept descriptions on the other hand has drawbacks both of
theoretical and of practical nature. From a technical perspective, one of
EL⊥’s advantages over EL⊥gfp is that its concept descriptions are defined
inductively. This allows us to use induction over the structure of a con-
cept description in our proves. The cyclic nature of EL⊥gfp on the other
hand prevents this. From a practical point of view, the cyclic concept
descriptions’ semantics is difficult to grasp even for logicians, let alone
a domain expert without a degree in logics. An ontology completion
formalism that relies on cyclic concept descriptions alone is thus likely
to deter potential users.
In this section we examine connections between cyclic and acyclic
EL⊥gfp-concept descriptions. We introduce the notion of an unravelling
of a cyclic concept description. Using unravellings we shall be able to
prove that for a given model i there is always a base of GCIs whose
left-hand sides are acyclic. This result is relevant for the technical parts
of Section 5.1.2 (it allows us to use structural induction, etc.). From
a practical point of view it is unsatisfying because the final base may
still contain cyclic descriptions on the right-hand sides, which is not user
friendly. This is addressed in Section 5.3 where we prove the stronger re-
sult that a base containing GCIs with cyclic concept descriptions can be
converted into a base that uses acyclic concept descriptions exclusively.
This conversion also relies on the results about unravellings which are
presented in this chapter.
We have already seen that EL⊥gfp is more expressive than plain EL⊥.

This means that in general when C is an EL⊥gfp-concept description we
cannot find an equivalent EL⊥-concept description nor can we find an

79

5 Axiomatization of Finite Models

equivalent acyclic EL⊥gfp-concept description. We can only try to find a
“good” acyclic approximation for C. What we consider a “good” approx-
imation depends on the model i that we want to axiomatize. An acyclic
concept description D is a “good” approximation of C if it has the same
interpretation as C in i. The following lemma shows why this level of
approximation suffices for our purposes.

Lemma 5.2. Let C be an EL⊥gfp-concept description, let i = (∆i, ·i) be
a model and let D be an EL⊥gfp-concept description such that

• C v D, and

• Ci = Di.

Then C v Cii follows from {D v Dii}.

Proof. Let j = (∆j , ·j) be a model in which D v Dii holds. C v D
implies

Cj ⊆ Dj . (5.1)

Since D v Dii holds in j it follows

Dj ⊆ (Dii)j . (5.2)

Cii ≡ Dii follows from Ci = Di and therefore

(Dii)j = (Cii)j (5.3)

holds. From (5.1), (5.2) and (5.3) we obtain that Cj ⊆ (Cii)j . Since j
is an arbitrary model for which D v Dii holds, this proves that C v Cii
follows from {D v Dii}.

Lemma 5.2 shows that in order to obtain a base that only uses acyclic
left-hand sides, it suffices to show that every EL⊥gfp-concept description
has a good acyclic approximation. We use unravellings to find these
approximations. An unravelling is essentially the transformation of a
cyclic, finite, directed graph into an acyclic but potentially infinite tree.
Unravellings are defined for EL-description graphs. Let G = (V,E, L) be
an EL-description graph. Every directed path in G between two nodes
A ∈ V and B ∈ V can be described by a word w = A0r0A1r1 . . . rn−1An
where A0 = A, An = B, Ak ∈ V , rk ∈ NR, and the tuple (Ak, rk, Ak+1)

80

5.1 Existence of Finite Bases in EL⊥gfp

is an edge (Ak, rk, Ak+1) ∈ E for all k ∈ {0, . . . , n−1}. A path is allowed
to loop, i. e. it can use a vertex or even an edge several times. We call
n the length of the path w. We also allow paths of length 0, which are
words of the form w = A where A ∈ NC is a concept name. We call the
last vertex on the path w the destination of w and denote it by δ(w),
i. e.

δ(w) =

{
B, if w = w′rB for some path w′ in G, r ∈ NR, B ∈ NC
A, if w = A.

Definition 5.2 (Unravelling). Let G be a finite EL-description graph.
The unravelling of G = (V,E, L) at a vertex A ∈ V is the EL-description
graph G∞ = (V∞, E∞, L∞) where

• V∞ is the set of all directed paths in G that start in A, and

• E∞ = {(w, r,wrB) | w,wrB ∈ V∞}, i. e. two paths are connected
by an r-edge in G∞ if one is obtained from the other by adding
an r-edge in G, and

• L∞ = L(δ(w)).

The unravelling of G up to depth d at A is the EL-description graph
Gd that is obtained from G∞ by removing all vertices whose path length
is greater than d and the corresponding edges. That means we prune
all branches of G∞ whose length exceeds d. Formally, we define Gd =
(V d, Ed, Ld), where

• V d = {w ∈ V∞ | length(w) ≤ d}, and

• Ed = E∞ ∩ (V d ×NR × V d), and

• Ld = L∞|V d is the restriction of L∞ to the vertices in V d.

TBoxes and finite EL-description graphs share a common structure
and one can be converted to the other using Definition 2.23. Because of
this common structure unravellings can also be defined for TBoxes and
ELgfp-concept descriptions.
Let T be an EL-TBox, GT its description graph, A ∈ ND(T) a defined

concept and d ∈ N a natural number. Let GdT be the unravelling of GT
up to depth d at A. The unravelling of a finite EL-description graph

81

5 Axiomatization of Finite Models

up to a finite role depth d is always finite. Therefore the unravelled
graph GdT can be translated to an general EL-TBox T d.2 We speak
of the unravelling of T up to role depth d at the defined concept A.
Let C = (A, T) be an ELgfp-concept description. By Cd we denote the
concept description Cd = (A, T d), where T d is the unravelling of T up
to role depth d at A. We call Cd the unravelling of C up to role depth
d. The resulting description is always acyclic and therefore equivalent
to an EL-concept description.
Unravellings can be defined for ELgfp-concept descriptions and hence

also for all EL⊥gfp-concept descriptions except the bottom concept ⊥.
For matters of convenience we define the unravelling of ⊥ up to any role
depth d to be ⊥.

Example 5.1. Let the ELgfp-concept descriptionMarriedFather = (A, T)
be defined by

T = {A ≡ Male u ∃hasChild.C u ∃marriedTo.B,

B ≡ ∃hasChild.C u ∃marriedTo.A,

C ≡ >}.

The description graph of MarriedFather is depicted in Figure 5.1. There
are infinitely many paths leading from A to any other node. This is
because a path can traverse the loop between A and B an arbitrary
number of times before reaching its destination. Therefore we obtain an
infinitely large unravelling (Figure 5.3).
Figure 5.2 depicts the description graph of MarriedFather1 which is the

unravelling of MarriedFather up to role depth 1. Two things can be seen
from the figure. First, MarriedFather1 is acyclic and finite. Therefore, it
is equivalent to an EL-concept description, namely

MarriedFather1 ≡ Male u ∃hasChild.> u ∃marriedTo.>.

Second, MarriedFather1 is less specific than MarriedFather. For example
MarriedFather specifies that the married father’s spouse is also married
with a child while the concept description MarriedFather1 does not spec-
ify this.
2Infinite graphs would give rise to infinite TBoxes which we do not allow in this
thesis.

82

5.1 Existence of Finite Bases in EL⊥gfp

A B

C

Male
marriedTo

marriedTo

hasChild hasChild

Figure 5.1: EL-Description
Graph
of MarriedFather

A

A hasChild C

A marriedTo B

Male
marriedTo

hasChild

Figure 5.2: Unravelling up to role
depth 1

A

A hasChild C

A marriedTo B

A marriedTo B hasChild C

A marriedTo B marriedTo A

Male Male
marriedTo

hasChild

marriedTo

hasChild

Figure 5.3: Unravelling of MarriedFather at the vertex A

83

5 Axiomatization of Finite Models

C v Cd always holds. This follows from Lemma 2.2 and the following
lemma.

Lemma 5.3. Let G = (V,E, L) be an EL-description graph, A ∈ V a
vertex from G, d ∈ N, and Gd = (V d, Ed, Ld) the unravelling of G up to
role depth d at A. Then

Zd = {(w, δ(w)) | w ∈ V d}

is a simulation from Gd to G.

Proof. To prove that Zd is a simulation we need to prove (S1) and
(S2) from Definition 2.24. (S1) Let (w, δ(w)) ∈ Zd be a pair in the
relation Zd. By Definition 5.2 it holds that Ld(w) = L(δ(w)). Hence in
particular Ld(w) ⊆ L(δ(w)) holds. (S2) Let (w, δ(w)) ∈ Zd be a pair
in the relation Zd and (w, r,wrB) ∈ Ed an edge in Gd. Since wrB is a
vertex in V d it also must be a path in G. Therefore there must be an r-
edge in G that connects the destination of w to B, i. e. (δ(w), r, B) ∈ E.
Hence, B satisfies both (wrB,B) ∈ Zd and (δ(w), r, B) ∈ E. This
proves (S2) for Zd. Since both (S1) and (S2) hold, Zd is a simulation
from Gd to G.

Example 5.1 shows that in general Cd 6v C for cyclic ELgfp-concept
descriptions C. Intuitively, this holds because information from C is lost
during the pruning step, thereby making Cd less specific. Obviously, the
larger the role depth at which we prune the less information is lost. We
are now interested in the question whether we can make d large enough
such that Cd and C have the same interpretation in a fixed model i.
We first prove a specialized version of Lemma 2.2 that characterizes the
instance relation using simulations.

Lemma 5.4. Let C = (AC , TC) be an acyclic ELgfp-concept description
and i = (∆i, ·i) a finite interpretation. Let x ∈ Ci be an individual in
the interpretation of C. Then there exists a simulation Z from C to x in
i with the additional property that for every defined concept B ∈ ND(TC)
there is exactly one individual y satisfying (B, y) ∈ Z.

Proof. Remember that acyclic ELgfp-concept descriptions correspond to
EL-concept descriptions and that their EL-description graphs are trees.
This means we can use structural induction over the structure of C.

84

5.1 Existence of Finite Bases in EL⊥gfp

Base Case Assume C = B for some concept name B ∈ NC . Remem-
ber that in Section 2.4.1 we have introduced B as a shorthand for the
ELgfp-concept description B = (AB , TB), where TB = {AB ≡ B}. Then
ZB = {(AB , x)} is a simulation from C = B to x in i with the property
that for every concept name A ∈ ND(TC) there is exactly one individual
y which satisfies (A, y) ∈ ZB . Likewise, the simulation Z> = {(A>, x)}
can be used if C = > = (A>, {A> ≡ >}).
Step Case 1 Assume that C = ∃r.D holds for some role name r ∈ NR

and some ELgfp-concept description D = (AD, TD) whose description
graph is a tree. Since x ∈ Ci holds there must be some y ∈ ∆i such
that (x, y) ∈ ri and y ∈ Di. By the induction hypothesis there is a
simulation ZD from D to y in i. We leave it to the reader to check
that {(AC , x)} ∪ ZD is a simulation from C to x in i with the desired
property.
Step Case 2 Assume that C = DuE for some ELgfp-concept descrip-

tions D = (AD, TD) and E = (AE , TE), where ND(TD) and ND(TE) are
disjoint. Since x ∈ Ci holds, x satisfies x ∈ Di and x ∈ Ei. Therefore
there are simulations ZD from D to x in i and ZE from E to x in i.
Again, one can check that ZD ∪ ZE ∪ {(AC , x)} is a simulation from C
to x in i with the desired property.

Lemma 5.5. Let C = (A, T) be an ELgfp-concept description and i =
(∆i, ·i) a finite interpretation. Let d = |ND(T)| · |∆i| + 1. Let Cd =
(A, T d) be the unravelling of C up to role depth d. Then x ∈ Cid implies
x ∈ Ci.

Proof. Let GT = (ND(T), ET , namesT), Gd = (V d, Ed, Ld) and Gi =
(∆i, Ei, namesi) be the EL-description graphs of T , T d and i, respec-
tively. The unravelled TBox T d has a tree shaped EL-description graph
Gd and Cd is acyclic. Lemma 5.4 and x ∈ Cid imply that there is a sim-
ulation Z from Gd to Gi which satisfies (A, x) ∈ Z and for every vertex
w ∈ V d there is exactly one individual y ∈ ∆i such that (w, y) ∈ Z. Z
gives rise to a function z that maps every vertex w ∈ V d to z(w) = y
where (w, y) ∈ Z.
Since Gd is tree shaped with the root A there is exactly one directed

path from A to any given vertex w ∈ V d. If this path has length d
then the pigeonhole principle implies that it will always contain two
vertices w1 and w2 such that both z(w1) = z(w2) and δ(w1) = δ(w2),

85

5 Axiomatization of Finite Models

Gd =
(V d, Ed, Ld)

GT =
(ND(T), ET , namesT)

Gi =
(∆i, Ei,namesi)

Z

ZCi

Zd

V d

ND(T) ∆i

zδ

Figure 5.4: Diagram of Simulations and Mappings from the Proof of
Lemma 5.5

because there are only |ND(T)| · |∆i| = d−1 possible values for the pair
(δ(w), z(w)). We exploit this fact to construct a simulation from GT to
Gi.
Let V̄ ⊆ V d be the set of all vertices w ∈ V d such that there are

no two distinct vertices w1 and w2 on the path from A to w that have
the same values δ(w1) = δ(w2) and z(w1) = z(w2). Because of the
above argument V̄ contains only vertices whose path distance from A is
strictly less than d. If w ∈ V̄ is a vertex in V̄ then every vertex w′ on
the path from A to w in Gd is also an element of V̄ . Hence V̄ spans a
subtree of Gd. Define ZCi to be the relation

ZCi = {(δ(w), z(w)) | w ∈ V̄ }.

Figure 5.4 shows a diagram of the simulations and mappings that occur
in this proof. We show that ZCi is a simulation from GT to Gi.
(S1) By definition Ld satisfies Ld(w) = namesT (δ(w)) for all w ∈

V d. Since Z is a simulation it holds that Ld(w) ⊆ namesi(z(w)) for
all w ∈ V d. Thus namesT (δ(w)) ⊆ namesi(z(w)) holds for all pairs
(δ(w), z(w)) ∈ ZCi. This proves (S1) for ZCi.
(S2) The proof of this property is illustrated in Figure 5.5. Let

(δ(w), z(w)) ∈ ZCi be a pair in ZCi and let B ∈ ND(T) be a defined
concept name that satisfies (δ(w), r, B) ∈ ET . Since w is contained in
V̄ its path distance from A is strictly less than d. Thus the path length
of wrB is at most d. Hence, wrB is contained in V d. By definition Ed

86

5.1 Existence of Finite Bases in EL⊥gfp

wδ(w) z(w)

wrBB y

r r r

zδ

zδ

Figure 5.5: Diagram for the Proof of Property (S2) in Lemma 5.5

contains (w,wrB). Let y = z(wrB) be the one individual in ∆i that
satisfies (wrB, y) ∈ Z. Since (S2) holds for Z the individual y must
satisfy (z(w), r, y) ∈ Ei.

We distinguish the two cases where wrB ∈ V̄ and where wrB /∈ V̄ .
If wrB ∈ V̄ holds then y satisfies (B, y) = (δ(wrB), z(wrB)) ∈ ZCi.
Together with (z(w), r, y) ∈ Ei this proves (S2) for ZCi.
If wrB /∈ V̄ holds then there must be some vertex w′ 6= wrB on the

path from A to wrB in Gd such that z(w′) = z(wrB) and δ(w′) =
δ(wrB). Since w ∈ V̄ holds all vertices on the path from A to w in Gd
are in V̄ . Hence w′ ∈ V̄ holds. This implies (δ(w′), z(w′)) ∈ ZCi. We
obtain (B, y) = (δ(wrB), z(wrB)) = (δ(w′), z(w′)) ∈ ZCi. Together
with (z(w), r, y) ∈ Ei this proves (S2) for ZCi.
Since ZCi satisfies both (S1) and (S2) it is a simulation from GT to

Gi. ZCi contains the pair (A, x) = (δ(A), z(A)). Therefore Lemma 2.2
proves that x ∈ Ci holds.

Example 5.2. The reader may wonder why in the proof of Lemma 5.5
we construct the simulation ZCi only from the vertices in V̄ and not
from the full set V , i. e. why the relation

Z ′Ci = {(δ(w), z(w)) | w ∈ V }.

is not necessarily a simulation. We provide a simple example to illustrate
this. Let C = (A, {A ≡ ∃r.A} be an ELgfp-concept description and
let i = ({x, y}, ·i) be the model defined by ri = {(x, x), (x, y)} (cf.
Figure 5.6). Clearly, x satisfies x ∈ Ci. The unravelling of C up to

87

5 Axiomatization of Finite Models

x y

r

r

Figure 5.6: The Model from Example 5.2

depth |ND(TC)| · |∆i|+ 1 = 3 is

C3 = (A, {A ≡ ∃r.(ArA),

(ArA) ≡ ∃r.(ArArA),

(ArArA) ≡ >}).

One possible simulation from C3 to x in i is

Z = {(A, x), (ArA, x), (ArArA, y)}.

Since in the unravelling C3 the defined concept name (ArArA) has no
successors the simulation Z can map (ArArA) to y, which also has no
successors. However, the relation

Z ′Ci = {(A, x), (A, x), (A, y)}

violates (S2), since A has an r-successor in TC but y has no r-successors
in i. If we use only the vertices form V̄ we obtain ZCi

ZCi = {(A, x)}

which is a simulation from C to x in i, which is what we expected from
Lemma 5.5.

Lemma 5.5 shows that if i is a fixed model and C is an ELgfp-concept
description then there is an acyclic concept description D that approxi-
mates C closely enough, such that C andD have the same interpretation
in i. It is a corollary that the same holds true for EL⊥gfp.

Corollary 5.6. Let C be an EL⊥gfp-concept description and let i be a
finite model. Then there is an acyclic EL⊥gfp-concept description D such
that Ci = Di and C v D.

88

5.1 Existence of Finite Bases in EL⊥gfp

Proof. The case where C = ⊥ is trivial, since we consider ⊥ itself to be
an acyclic concept description. If C 6= ⊥ then C is an ELgfp-concept
description C = (A, T). Lemma 5.5 proves that Cid = Ci and C v Cd
hold for d = |ND(T)| · |∆i|+ 1.

The main result of this section follows immediately from Corollary 5.6
and Lemma 5.2. It states that for a given model i we can always find
a base whose left-hand sides are acyclic. Since there are infinitely many
acyclic EL⊥gfp-concept descriptions this is still not a finite base.

Theorem 5.7. Let i = (∆i, ·i) be a interpretation. The set of GCIs

B1 = {D v Dii | D is an acyclic EL⊥gfp-concept description, D 6= ⊥}

is a base for the EL⊥gfp-GCIs holding in i.

Proof. Soundness of B1 follows from the fact that B1 is a subset of B0.
Corollary 5.6 and Lemma 5.2 imply that every GCI in B0 follows from
B1. Completeness of B1 follows from the completeness of B0.

5.1.2 Finite Bases
In the general case the base B1 is infinite, because there are infinitely
many acyclic EL⊥gfp-concept descriptions and thus infinitely many left-
hand sides. In this section we present a base B2 that is finite, but
uses both cyclic left-hand sides and right-hand sides. The proofs in this
section and the following rely on the proofs from Section 4.2. Readers
who have skipped Section 4.2 are advised to read it now if they are
interested in the technical details of this section.
The left-hand sides of the base B2 come from a set of EL⊥gfp-concept

descriptions Λi. The elements of Λi are conjunctions over the elements
of a basic set Mi.

Definition 5.3. Let i be a finite EL⊥gfp-model. The sets Mi and Λi are
defined as follows

Mi = {⊥} ∪ NC ∪ {∃r.Xi | r ∈ NR and X ⊆ ∆i, X 6= ∅}

and
Λi = {

l
U | U ⊆Mi}.

89

5 Axiomatization of Finite Models

Since ∆i is finite it has only finitely many subsets X ⊆ ∆i. Hence,
both Mi and Λi are finite, too. We prove that B0 remains complete
when we remove all GCI whose left-hand sides are not in Λi. Since Λi
is finite the resulting set of implications would also be finite.
The model-based most specific concepts and hence also the elements

of Mi are not unique, but only unique up to equivalence. In none of
the following proofs in this chapter is it relevant which equivalent rep-
resentation of Mi we use. Formally, let M̄ be a set of EL⊥gfp-concept
descriptions. We say that Mi subsumes M̄ up to equivalence (denoted
by M̄⊆̇Mi) if for each concept description C ∈ M̄ there is an equivalent
concept description D ∈ Mi. We say that M̄ and Mi are equal up to
equivalence of elements if M̄⊆̇Mi andMi⊆̇M̄ hold. All following results
also hold if we replace Mi by a set M̄ that is equal up to equivalence of
elements.
A first technical result is that all model-based most specific concepts

are contained in Λi. To show this we introduce lower approximations
for EL⊥gfp-concept descriptions. In Section 4.2 we have introduced pro-
jections onto an attribute set M . One way to approximate an EL⊥gfp-
concept description description C by a description from Λi is to take the
conjunction over prMi

(C). This kind of approximation can be viewed
as least upper bounds for C among the concepts from Λi. We introduce
a second type of approximation, that we call lower approximation.3

Definition 5.4 (Lower Approximation). Let C be an EL⊥gfp-concept
description and i = (∆i, ·i) an interpretation. If C is an ELgfp-concept
description C = (AC , TC) then there is a set of concept names U ⊆ NC
and a set Π containing pairs of role names and ELgfp-concept descrip-
tions such that

C =
l
U u

l

(r,E)∈Π

∃r.E.

In this case the lower approximation of C is defined as

approxi(C) =
l
U u

l

(r,E)∈Π

∃r.Eii.

For C = ⊥ the lower approximation of C is defined as approxi(C) = ⊥.
3One can show that the lower approximation of C is the least specific concept
description from Λi that is subsumed by C, i. e. it is the greatest lower bound for
C in Λi with respect to v. This is a property that we will not use in this thesis.

90

5.1 Existence of Finite Bases in EL⊥gfp

Clearly for every concept description C it holds that approxi(C) is in
Λi. This is equivalent to saying that approxi(C) can be expressed in
terms of Mi.

Lemma 5.8. Let C be an EL⊥gfp-concept description and i = (∆i, ·i) an
interpretation. It holds that

Cii v approxi(C) v C

Proof. If C = ⊥ then Cii = ⊥ and approxi(C) = ⊥. Therefore Cii v
approxi(C) v C holds trivially. We now assume that

C =
l
U u

l

(r,E)∈Π

∃r.E

holds for a set of concept names U ⊆ NC and a set Π containing pairs
of role names and ELgfp-concept descriptions.
Lemma 4.1 yields Eii v E for all pairs (r, E) ∈ Π and hence the

monotony of existential quantifiers implies ∃r.Eii v ∃r.E for all pairs
(r, E) ∈ Π. The monotony of conjunctions implies

approxi(C) =
l
U u

l

(r,E)∈Π

∃r.Eii

v
l
U u

l

(r,E)∈Π

∃r.E = C.
(5.4)

Let us look at the set Ci ⊆ ∆i. It holds that

Ci =

l
U u

l

(r,E)∈Π

∃r.E

i

.

From Lemma 4.2 we obtain

Ci =

l
U u

l

(r,E)∈Π

∃r.Eii
i

=(approxi(C))i

91

5 Axiomatization of Finite Models

and thus in particular Ci ⊆ (approxi(C))i. Lemma 4.1 (7) shows that

Cii v approxi(C). (5.5)

The claim follows from (5.4) and (5.5).

The fact that all concept descriptions of the form Xi, where X ⊆ ∆i,
are in Λi is a corollary of the previous lemma.

Lemma 5.9. For every set X ⊆ ∆i, the model-based most specific con-
cept Xi in EL⊥gfp can be expressed in terms of Mi.

Proof. From Lemma 5.8 we obtain that

(Xi)ii v approxi(X
i) v Xi.

Lemma 4.1 states that Xiii ≡ Xi and hence the above inequality col-
lapses to

(Xi)ii ≡ approxi(X
i) ≡ Xi.

Since approxi(Xi) can be expressed in terms of Mi the concept descrip-
tion Xi can also be expressed in terms of Mi.

Theorem 5.10. Let i be a finite EL⊥gfp-model. The set

B2 = {C v Cii | C ∈ Λi}

is a finite base for the EL⊥gfp-GCIs holding in i.

Proof. B2 is sound for i since it is a subset of B0 which is sound for
i. Furthermore, B2 is finite since Λi is finite. In Section 5.1.1 we have
presented the base B1 which uses only acyclic left-hand sides. Since B1

is complete it suffices to show that all GCIs from B1 follow from B2.
The GCIs from B1 are of the form D v Dii, where D is acyclic and
D 6= ⊥ holds. The acyclic nature of D allows us to use induction over
the structure of D.
Base Case 1: If D = > then D =

d
∅ and thus D ∈ Λi. Hence, B2

contains D v Dii. In particular D v Dii follows from B2.
Base Case 2: If D = A for some concept name A ∈ NC then D =d
{A} ∈ Λi. Therefore, D v Dii ∈ B2 holds and thus D v Dii follows

from B2.

92

5.1 Existence of Finite Bases in EL⊥gfp

Step Case 1: Let D = E u F for some ELgfp-concept descriptions E
and F where by induction hypothesis E v Eii and F v F ii follow from
B2. Let j = (∆j , ·j) be a model in which all GCIs from B2 hold. We
obtain

Dj = (E u F)j = Ej ∩ F j (5.6)

Since all GCIs from B2 hold in j and E v Eii follows from B2 it follows
that j satisfies Ej ⊆ (Eii)j . Likewise j satisfies F j ⊆ (F ii)j . Thus, it
holds that

Ej ∩ F j ⊆ (Eii)j ∩ (F ii)j = (Eii u F ii)j . (5.7)

Lemma 5.9 shows that EiiuF ii is equivalent to some concept description
in Λi. Thus B2 contains Eii u F ii v (Eii u F ii)ii or an equivalent GCI.
Since all GCIs from B2 hold in j we obtain

(Eii u F ii)j ⊆ ((Eii u F ii)ii)j . (5.8)

Lemma 4.2 proves (Eii u F ii)i = (E u F)i and thus

((Eii u F ii)ii)j = ((E u F)ii)j = (Dii)j . (5.9)

(5.6), (5.7), (5.8), and (5.9) show that Dj ⊆ (Dii)j holds, i. e. D v Dii

holds in j. The only assumption we have made about j was that all
GCIs from B2 hold in j. Therefore, D v Dii follows from B2.
Step Case 2: Let D = ∃r.E for some ELgfp-concept description E

where by induction hypothesis E v Eii follows from B2. Let j = (∆j , ·j)
be a model in which all GCIs from B2 hold. Let x be an individual from
∆j . Then

x ∈ Dj ⇔ x ∈ (∃r.E)j

⇔ ∃y ∈ Ej : (x, y) ∈ rj
(5.10)

Since E v Eii follows from B2, j must satisfy Ej ⊆ (Eii)j . We obtain

∃y ∈ Ej : (x, y) ∈ rj ⇒ ∃y ∈ (Eii)j : (x, y) ∈ rj

⇔ x ∈ (∃r.Eii)j .
(5.11)

By definition Mi and thus also Λi contains ∃r.Eii (up to equivalence).
Hence, B2 contains the GCI ∃r.Eii v (∃r.Eii)ii. Since all GCIs from B2

hold in j the GCI ∃r.Eii v (∃r.Eii)ii must also hold in j:

(∃r.Eii)j ⊆ ((∃r.Eii)ii)j (5.12)

93

5 Axiomatization of Finite Models

Kirk Luann

Milhouse

Clancy Jackie

Selma

Female,
Mother

Male,
Father

Female,
Mother

Male,
Father

Male Female

c c c c

Figure 5.7: A Model Consisting of Two Families

We can apply Lemma 4.2 and obtain

((∃r.Eii)ii)j = ((∃r.E)ii)j = (Dii)j . (5.13)

(5.10), (5.11), (5.12), and (5.13) show that x ∈ Dj implies x ∈ (Dii)j ,
i. e. D v Dii holds in j. We have shown that D v Dii follows from B2.
It follows that every GCI from B1 follows from B2. Since B1 is com-

plete for i it follows that B2 is also complete for i. Since B2 is also sound
for i this implies that B2 is a finite base for the GCIs holding in i.

Example 5.3. We introduce an example that we will come back to
several times in this chapter and the following. Let the model i describe
two families. The domain of i consists of six persons: Kirk, Luann and
their son Milhouse, as well as Clancy, Jackie and their daughter Selma (cf.
Figure 5.7). As primitive concept names we use Female, Male, Mother,
Father and as role name we use c. In order to compute Mi we first
compute all concept descriptions of the form Xi where X ⊆ ∆i, X 6= ∅.
For matters of convenience, we introduce abbreviations for them, such
as FoD for a concept describing a father of a daughter, PoS for “parent
of son” or MoC for “mother of child”. We obtain 12 model-based most
specific concepts.

94

5.1 Existence of Finite Bases in EL⊥gfp

>, MoC = Mother u Female u ∃c.>,
Female, FoC = Father uMale u ∃c.>,
Male, MoD = Mother u Female u ∃c.Female,
PoC = ∃c.>, FoD = Father uMale u ∃c.Female,
PoD = ∃c.Female, MoS = Mother u Female u ∃c.Male,
PoS = ∃c.Male, FoS = Father uMale u ∃c.Male.

(5.14)

We obtain Mi from

Mi = {⊥} ∪ {Mother,Father,Female,Male} ∪ {∃c.Xi | X ⊆ ∆i, X 6= ∅}.

The total number of attributes in Mi is |Mi| = 1 + 4 + 12 = 17. There
are 217 subsets of Mi and thus |Λi| = |B2| = 217. It can be seen that
even the small model i we obtain an impractically large number of GCIs
in B2.

In this section we have shown that B2 is a finite base for the GCIs
holding in i. In particular, this shows that it is possible to axiomatize
every model i in EL⊥gfp. Our aim is to obtain a base that is as small as
possible. In theory it is possible to use a brute force approach in order
to obtain a minimal base from B2. We can look at each GCI in B2 and
check whether it follows from B2. If it does follow we remove it, and if
it does not follow we mark it. This process is repeated until all GCIs
are marked resulting in a minimal base for the GCIs holding in i. This
brute force approach is, however, not very efficient. In the worst case
the size of Mi is already exponential in the size of ∆i since there can be
exponentially many subsets X ⊆ ∆i. Since Λi is exponential in the size
of Mi the size of B2 is double-exponential in the size of ∆i. We wish
to have a smarter approach that does not require computing B2 in its
entirety. This is done in Section 5.2.

95

5 Axiomatization of Finite Models

On Computing Mi

So far, we have not addressed the problem of computing the set Mi

itself. Mi is defined as

Mi = {⊥} ∪ NC ∪ {∃r.C | r ∈ NR, C ∈ Xi} (5.15)

where
Xi = {Xi | X ⊆ ∆i, X 6= ∅}.

The most costly task when computing Mi is clearly the computation
of Xi. The naive approach is to compute Xi for every possible subset
X ⊆ ∆i, X 6= ∅. This computation of all subsets requires, of course,
exponential time in the size of ∆i. In this section we show how Next-
Closure can be used to compute Xi more efficiently.
Another way to obtain all concept descriptions of the form Xi where

X ⊆ ∆i, X 6= ∅, makes use of Lemma 4.1. Lemma 4.1 states that
Xi ≡ (Xii)i holds for all X ⊆ ∆i. Thus we obtain

Xi ={(Xii)i | X ⊆ ∆i, X 6= ∅}
={Y i | Y ∈ Yi}

where we define Yi to be the set

Yi = {Xii | X ⊆ ∆i, X 6= ∅}.

The idea is to show that Yi is a closure system and can therefore be
computed using Next-Closure. We show that ·ii : 2∆i → 2∆i is a closure
operator.

Lemma 5.11. The mapping ·ii : 2∆i → 2∆i is a closure operator on ∆i.

Proof. All three properties of closure operators are easy consequences
of Lemma 4.1. ·ii is idempotent: It follows from Lemma 4.1 (5) that
(Xii)ii = Xii for all X ⊆ ∆i. ·ii is extensive: This follows trivially from
Lemma 4.1 (3). ·ii is order-preserving: Let X,Y ⊆ ∆i be two sets of
individuals that satisfy X ⊆ Y . From Lemma 4.1 (1) we obtain Xi v Y i
and from Lemma 4.1 (2) we obtain (Xi)i ⊆ (Y i)i. This proves that ·ii
is a closure operator on ∆i.

96

5.2 Reducing the Size of the Base

Since ·ii is a closure operator on ∆i we can instantiate Next-Closure in
its general form (Algorithm 1) with ·ii as the closure operator in order to
obtain Yi. Once we have computed Yi we can obtain Xi by applying ·i to
every set Y ∈ Yi. We then obtain Mi from Xi and (5.15). Algorithm 6
shows how Next-Closure can be used to compute Mi.

Algorithm 6 Computing Mi Using Next-Closure
1: input i = (∆i, ·i) {model i}
2: Y0 := ∅ {lectically first set that is closed with respect to ·ii}
3: X0 := ∅, k := 0
4: while Yk 6= ∆i do
5: Yk+1 = lectically smallest subset of ∆i that is

– lectically greater than Yk, and
– closed with respect to ·ii

6: Xk+1 := Xk ∪ {Y ik+1}
7: k := k + 1
8: end while
9: return {⊥} ∪ NC ∪ {∃r.C | C ∈ Xk}

5.2 Reducing the Size of the Base

Let i = (∆i, ·i) be an EL⊥gfp-model and B2 the finite base for the GCIs
holding in i as defined in Theorem 5.10. It has been argued in the
previous section that the base B2 can be very large. The aim of this
section is to identify small subsets of B2 that are still complete. This is
done in the first part of this section using induced contexts and FCA. In
the second part we prove that the reduced base has minimal cardinality
among all the EL⊥gfp-bases for the GCIs of a given model.

5.2.1 Removal of Redundancy Using Induced Contexts
Our approach for axiomatizing finite models uses a combination of both
ideas from Section 4. In Section 5.1.2 we have computed a finite base
for a given model i using model-based most specific concepts. In this
section we use this finite base as a starting point and reduce its size by
applying FCA methods to an induced context.

97

5 Axiomatization of Finite Models

In Section 4.2 we have seen that a set of attributes A ⊆ M in an
induced context K can be converted into a concept description by taking
the conjunction

d
A over the attributes in A. The elements of Λi are

obtained as conjunctions of EL⊥gfp-concept descriptions from the set Mi.
Therefore it is natural to view the set Mi as the set of attributes of an
induced context.
Something that we have not talked about in the section about induced

contexts are logical dependencies among attributes. For example, the
attribute set of the context K from Example 4.3 contains the attributes
⊥ and Female. Since Female subsumes ⊥ it would be redundant to add
the GCI ⊥ v Female to the knowledge base. In order to take care of
these logical dependencies among the attributes of an induced context
we introduce background knowledge. Let SMi

be the set of implications

SMi = {{C} → {D} | C,D ∈Mi, C v D} (5.16)

We call SMi
the DL-background knowledge about Mi.

Let Ki be the context induced by Mi and i. D subsumes C if C v D
holds in every interpretation j. Hence, every implication from SMi

holds
in Ki. We prove that there is a correspondence between the SMi

-bases
of Ki and the complete subsets of B2.

Theorem 5.12. Let i = (∆i, ·i) be a model and let Ki be the context
induced by Mi and i. Let L be an SMi-base of Ki that contains only
implications of the form U → U ′′.4 Then

B3 = {
l
U v (

l
U)ii | U → U ′′ ∈ L}

is a finite base for the GCIs holding in i.

Proof. Since B3 is a subset of B2 we know that B3 is finite and that it
is sound for i. It remains to show that B3 is complete for i. We show
that every GCI from B2 follows from B3.
Let j = (∆j , ·j) be a model in which all GCIs from B3 hold. Let

Kj be the context induced by Mi and j. We are now dealing with two
different contexts Kj and Ki. To avoid confusion we will denote the
4If L contains implications of a different type it can be transformed into a SMi

-base
with the same number of implications that contains only implications of the form
U → U ′′ using Lemma 3.4.

98

5.2 Reducing the Size of the Base

derivation operators from Ki and Kj by ·′i and ·′j , respectively. The
idea of the proof is to first show that all implications from L and SMi

hold in Kj also. From this we conclude that all implications of the form
V → V ′′i , where V is a subset of Mi, hold in Kj . Last, we derive thatd
V v (

d
V)ii holds in j.

We first establish a connection between the derivation operators in
Kj and the interpretation j. Let U ⊆ Mi be a set of attributes in Kj .
Then Lemma 4.10 shows that U satisfies

(
l
U)j = U ′j . (5.17)

We know from Lemma 5.9 that (
d
U)ii can be expressed in terms ofMi.

From Lemma 4.11 we obtain(
(
l
U)ii

)j
=
(
prMi

((
l
U)ii)

)′j
.

Corollary 4.13 proves prMi
((

d
U)ii) = U ′′i . Hence, all subsets U ⊆ Mi

satisfy (
(
l
U)ii

)j
=
(
U ′′i

)′j
. (5.18)

We show that all implications from L hold in Kj . Let U → U ′′i be an
implication from L. Since

d
U v (

d
U)ii holds in j we obtain

(
l
U)j ⊆

(
(
l
U)ii

)j
.

(5.17) and (5.18) yield
U ′j ⊆

(
U ′′i

)′j
.

Hence, all implications from L hold in Kj . The implications from SMi

hold in every induced context with the attribute set Mi.
Let

d
V v (

d
V)ii, where V ⊆ Mi, be a GCI from B2. Clearly,

V → V ′′i holds in the context Ki. Since L is an SMi
-base for Ki the

implication V → V ′′i follows from L and SMi . We have shown that all
implications from L and SMi hold in Kj , thus V → V ′′i also holds in
Kj . This yields

V ′j ⊆
(
V ′′i

)′j
.

Using (5.17) and (5.18) again, we obtain that

(
l
V)j ⊆

(
(
l
V)ii

)j
,

99

5 Axiomatization of Finite Models

i. e.
d
V v (

d
V)ii holds in j. Therefore we have shown that every GCI

from B2 follows from B3. Since B2 is complete B3 is also complete for i
and since B3 is also sound it is a base for the GCIs holding in i.

Corollary 5.13. Let i = (∆i, ·i) be a model and let Ki be the context
induced by Mi and i. Let DG

SMi

Ki
be the SMi

-Duquenne-Guigues Base of
Ki. Then

BDG = {
l
U v (

l
U)ii | U → U ′′ ∈ DGSMi

Ki
}

is a finite base for the GCIs holding in i.

We have mentioned earlier that all results from this section also hold,
if we replace Mi by a set of concept descriptions M̄ that is equal up to
equivalence. Let M̄ be a set of EL⊥gfp-concept descriptions that satisfies
M̄=̇Mi. We define S̄ to be the set

S̄ = {{C} → {D} | C,D ∈ M̄, C v D}.

Corollary 5.14. Let i = (∆i, ·i) be a model Define K̄ as the context
induced by M̄ and i. If L is a S̄-base of K̄ that contains only implications
of the form U → U ′′ then

B3 = {
l
U v (

l
U)ii | U → U ′′ ∈ L}

is a finite base for the GCIs holding in i.

Example 5.4. Let us get back to the model from Example 5.3 (cf.
Figure 5.7). The set of attributes Mi is

Mi = {⊥} ∪ {Mother,Father,Female,Male} ∪ {∃c.Xi | X ⊆ ∆i, X 6= ∅}.

The possible values for Xi, where X ⊆ ∆i, X 6= ∅, are listed in
(5.14). Table 5.1 shows the context Ki induced by Mi and i. In or-
der to obtain the DL-background knowledge about Mi the whole set
Mi has to be classified. The result of the classification is shown in Fig-
ure 5.8. SMi contains an implication {C} → {D} if it is possible to
move upwards along edges from C to D in Figure 5.8. The SMi-pseudo-
intents of Ki can be obtained using Algorithm 5. They are the seven
sets {Female,Male}, {Mother}, {Father}, {Female,∃c.>}, {Male,∃c.>},
{∃c.>,∃c.Female,∃c.Male} and {∃c.>,∃c.PoC}. The SMi

-pseudo-intents
yield the following GCIs

100

5.2 Reducing the Size of the Base

Table 5.1: The Induced Context Ki Corresponding to the Model from
Figure 5.7

⊥ F
em

al
e

M
al
e

M
ot
h
er

F
at
h
er

∃c
.>

∃c
.F
em

al
e

∃c
.M

al
e

∃c
.P
oC

∃c
.P
oD

∃c
.P
oS

∃c
.M

oC

∃c
.F
oC

∃c
.M

oD

∃c
.F
oD

∃c
.M

oS

∃c
.F
oS

Kirk × × × ×
Luann × × × ×
Milhouse ×
Clancy × × × ×
Jackie × × × ×
Selma ×

• Female uMale v ⊥,

• Mother v Female u ∃c.>,

• Father v Male u ∃c.>,

• Female u ∃c.> v Mother,

• Male u ∃c.> v Father,

• ∃c.Male u ∃c.Female v ⊥, and

• ∃c.∃c.> v ⊥.

This demonstrates that using induced contexts and background knowl-
edge we can reduce the size of the base B2, which is 217 for this model,
to only 6 GCIs in BDG . The total number of attributes is only 17. 17 at-
tributes may appear to be a large number, but one has to consider that
there are 256 possible EL-concept description of role depth less than
or equal to 2 over the signature of i counting only those that cannot
be written as a conjunction (We need to compute GCIs at least up to
role depth 2 since 2 is the greatest role depth that occurs as a left-hand
side BDG). If we naively increase the role depth of attributes in the
induced context we have to add all of these 256 attributes. Thus, we
see a tremendous improvement with respect to the size of the context
compared to this naive approach.

101

5 Axiomatization of Finite Models

∃c.>

∃c.Female ∃c.PoC ∃c.Male

∃c.MoC ∃c.PoD ∃c.PoS ∃c.FoC

∃c.MoD ∃c.MoS ∃c.FoD ∃c.FoSFemale Male Mother Father

⊥

Figure 5.8: Background Knowledge

5.2.2 Minimal Cardinality
Example 5.4 demonstrates that BDG is small compared to the bases
that we have seen before. In this section we demonstrate that it even
has minimal cardinality among all bases for the EL⊥gfp-bases holding in i.
Our proof makes use of Theorem 3.8, which states that the S-Duquenne-
Guigues Base DGSK is a minimal cardinality S-base of K. One of the
arguments in the proof of Theorem 3.8 uses the following property of
implications in FCA. Let K = (G,M, I) be a formal context, U, V ⊆M
sets of attributes, where V 6⊆ U , and L a set of implications. Then it
holds that

U → V follows from L =⇒ ∃(A→ B) ∈ L : A ⊆ U and B 6⊆ U (5.19)

In other words if there is a non-trivial implication U → V that follows
from L, then U does not respect all implications from L. This property
cannot be translated to the EL⊥gfp-setting by naively replacing implica-
tions by GCIs and replacing the subset relation ⊆ by the subsumption
relation w. For example the GCI

∃marriedTo.Parent v ∃marriedTo.∃hasChild.>

102

5.2 Reducing the Size of the Base

follows from the set of GCIs B = {Parent v ∃hasChild.>}, even though B
does not contain an implication C v D satisfying C v ∃marriedTo.Parent
and D 6v ∃marriedTo.Parent. Inferences in EL⊥gfp can take place “behind”
existential quantifiers.5

The set Λi as defined in Definition 5.3 contains only concept descrip-
tions where every quantifier is followed by a model based most specific
concept. Every description C ∈ Λi, C 6= ⊥, can be written as

C ≡
l
U u

l

(r,Y)∈Π

∃r.Y i,

for a set of concept names U ⊆ NC and a set of pairs Π ⊆ NR × 2∆i .
For the special case of descriptions of this form we can find a result
that is similar to (5.19). Remember that model based most specific
concepts Y i can be obtained as the least common subsumer of all concept
descriptions {y}i, y ∈ Y (Lemma 4.6). The least common subsumer is
obtained by forming the product of the EL-description graphs of the
descriptions {y}i (Lemma 2.4). By Lemma 4.5 the description graphs
of {y}i are identical to the description graphs of i, and hence GY i is the
product of n = |Y | instances of the description graph Gi of i. We prove
a technical result about the product of EL-description graphs.

Lemma 5.15. Let i = (∆i, ·i) be an EL⊥gfp-interpretation and Gi its EL-
description graph. Let n be a natural number and Gn = Gi ⊗ · · · ⊗ Gi
be the product of n instances of Gi. Define in = (∆n, ·in) to be the
model that can be obtained from Gn using Definition 2.22. Then every
EL⊥gfp-GCI that holds in i also holds in in.

Proof. We only give an outline of the proof for the case where C 6= ⊥
and D 6= ⊥. The case where D = ⊥ uses a similar argument and the
case where C = ⊥ is trivial. Let C v D, where C = (AC , TC) and
D = (AD, TD), be a GCI that holds in i. Since in is obtained from Gn
it holds that ∆in = ∆i×·×∆i. Let (x1, . . . , xn) ∈ Cin be an individual
in the extension of C in in. The outline of the proof is as follows: One
first shows that (x1, . . . , xn) ∈ Cin implies that the individuals xk, for
all 1 ≤ k ≤ n, are in Ci. Since C v D holds in i this implies xk ∈ Di

for all 1 ≤ k ≤ n. Last we derive (x1, . . . , xk) ∈ Din . To prove xk ∈ Ci

5In a rule based calculus this must be taken care of by introducing an ∃-lifting rule
as in Definition 3.3 of [Rud06]

103

5 Axiomatization of Finite Models

and to prove (x1, . . . , xk) ∈ Din we construct simulations and apply
Lemma 2.2. We only give the formal definitions of the corresponding
simulations and omit the technical verification of properties (S1) and
(S2).
Lemma 2.2 and (x1, . . . , xk) ∈ Cin yield that there is a simulation Z1

from GTC to Gn that contains (AC , (x1, . . . , xn)). For each k, 1 ≤ k ≤ n,
we define a relation

Zk1 =
{

(B, y) | ∃y1, . . . , yk−1, yk+1, . . . , yn :

(B, (y1, . . . , yk−1, xk, yk+1, . . . , yn)) ∈ Z1

}
.

It can be shown that for all k the relation Zk1 is a simulation from GTC to
Gi containing (AC , xk). Then Lemma 2.2 proves that (x1, . . . , xn) ∈ Cin
implies xk ∈ Ci for all k ∈ {1, . . . , n}.
Now assume that xk ∈ Di holds for all 1 ≤ k ≤ n. Lemma 2.2 implies

that for each k, 1 ≤ k ≤ n, there is a simulation Zk2 from GTD to Gi
that contains (AD, xk). Define

Z2 = {(B, (y1, . . . , yn)) | ∀1 ≤ k ≤ n : (B, yn) ∈ Zk2 }.

One can show that Z2 is a simulation from GTD to Gn that contains
(AD, (x1, . . . , xk). Lemma 2.2 proves that xk ∈ Di for all k ∈ {1, . . . , n}
implies (x1, . . . , xn) ∈ Din .

Lemma 5.16. Let i = (∆i, ·i) be an interpretation and B a set of EL⊥gfp-
GCIs that hold in i. Let C = (AC , TC) ∈ Λi be an EL⊥gfp-concept de-
scription from Λi and let D = (AD, TD) be an EL⊥gfp-concept description
such that C 6v D. Then it holds that

C v D follows from B =⇒ ∃(E v F) ∈ B : C v E and C 6v F. (5.20)

Proof. We know that C 6= ⊥ because this would contradict C 6v D.
Since C ∈ Λi holds C can be written as

C ≡
l
U u

l

(r,Y)∈Π

∃r.Y i.

for some set of concept names U ⊆ NC and some set of pairs Π ⊆
NR × 2∆i .

104

5.2 Reducing the Size of the Base

AC

GY i
1

GY i
2

. . .

U

r1
r2

Figure 5.9: Description Graph of C ∈ Λi

Let GC be the description graph of C. The graph GC consists of a
vertex AC which is connected by an r-edge to the description graph GY i

of Y i for each pair (r, Y) ∈ Π (Figure 5.9).
Let iC = (∆iC , ·iC), where ∆iC = ND(TC) be the model that is ob-

tained from GC according to Definition 2.22. In our proof we proceed
as follows. First we show that iC cannot be a model of B, and thus
there must be a GCI E v F from B that does not hold in iC . Using
the technical Lemma 5.15 we can show that the parts of iC that cor-
respond to some GY i cannot contain a counterexample to E v F , and
therefore the counterexample has to be the individual that corresponds
to the root concept AC . Translating the model iC back into the concept
description then yields the claim.
We know that C 6v D holds. Therefore Lemma 2.3 implies that there

is no simulation from GD to GC containing (AD, AC). Lemma 2.2 shows
that AC viewed as an individual in ∆iC is not an element of DiC . Hence,
C v D does not hold in iC . Because C v D follows from B there must
be some GCI E v F from B that does not hold in iC . Thus, there is an
individual x ∈ ∆iC with x ∈ EiC but x /∈ F iC .
Each description graph GY i is the product of n = |Y | instances of the

description graph Gi of i. We know that all implications from B hold in
i. Lemma 5.15 implies that all implications from B hold in all models
that correspond to GY i for (r, Y) ∈ Π. Thus y 6= AC and y ∈ EiC

implies y ∈ F iC . This shows that x = AC .
Because x = AC ∈ EiC holds Lemma 2.2 shows that there is a simu-

lation from E to AC in iC . Since iC and TC have the same description

105

5 Axiomatization of Finite Models

graph Z must also be a simulation from E to C. By Lemma 2.3 this
proves C v E. Analogously we can derive from x = AC /∈ F iC that
C 6v F .

Lemma 5.17. Let C be an ELgfp-concept description, U ⊆Mi a subset
of Mi. Then

d
U v C implies

d
U v approxi(C).

Proof. C can be written as

C ≡
l
S u

l

(r,D)∈Π

∃r.D.

for some set of concept names S ⊆ NC and some set of pairs Π of role
names and ELgfp-concept descriptions. The approximation approxi(C)
is defined as

C ≡
l
S u

l

(r,D)∈Π

∃r.Dii.

d
U v C yields that A ∈ S implies A ∈ U . Likewise,

d
U v C implies

that for every concept description ∃r.D, where (r,D) ∈ Π, there must be
some description ∃r.Xi ∈ U that satisfies ∃r.Xi v ∃r.D. Then X also
satisfiesXi v D. Lemma 4.1 yieldsXi ≡ Xiii v Dii and ∃r.Xi v ∃r.Dii

follows. We therefore obtain
l
U v

l
S u

l

(r,D)∈Π

∃r.Dii.

Thus,
d
U v approxi(C) holds.

Theorem 5.18. Let i = (∆i, ·i) be a finite model and let BDG be defined
as in Corollary 5.13. Then the base BDG has minimal cardinality among
all bases for the GCIs holding in i.

Proof. Assume that B is some finite base for the GCIs that hold in i.
We show that B contains at least as many GCIs as BDG . Without loss of
generality we can assume that B contains only GCIs of the form E v Eii.
The number of GCIs in BDG equals the number of implications inDGSMi

Ki
,

where Ki is the context induced byMi and i, SMi
is the DL-background

knowledge about Mi and DG
SMi

Ki
is the SMi-Duquenne Guigues Base for

Ki.
|BDG | = |DG

SMi

Ki
| (5.21)

106

5.2 Reducing the Size of the Base

We define LB to be the set of implications

LB = {prMi
(approxi(E))→ prMi

(Eii) | (E v Eii) ∈ B}.

Clearly, LB contains at most as many implications as there are GCIs in
B.

|LB| ≤ |B| (5.22)

Therefore in order to prove that B contains at least as many GCIs as
BDG , it suffices to show that LB contains at least as many implications
as DGSMi

Ki
. To prove

|DGSMi

Ki
| ≤ |LB| (5.23)

it suffices to show that LB is an SMi
-base for Ki. Then (5.23) follows

from Theorem 3.8.
Soundness: Let prMi

(approxi(E)) → prMi
(Eii) be an implication

from LB. Then B contains E v Eii. Since approxi(E) can be expressed
in terms of Mi it follows from Lemma 4.11 that(

prMi
(approxi(E))

)′
= (approxi(E))i

holds. Lemma 5.8 yields approxi(E) v E and thus Lemma 4.1 implies

(approxi(E))i ⊆ Ei ≡ (Eii)i.

Since Eii can be expressed in terms of Mi we obtain

(Eii)i =
(
prMi

(Eii)
)′
.

from Lemma 4.11. We have thus shown that
(
prMi

(approxi(E))
)′ ⊆(

prMi
(Eii)

)′ holds. Therefore prMi
(approxi(E)) → prMi

(Eii) holds in
Ki.
Completeness: To prove completeness of LB ∪ SMi

it suffices to show
that no set U ⊆Mi with U 6= U ′′ respects all implications from LB∪SMi .
Let U ⊆Mi be a subset of Mi with U 6= U ′′. Assume that U respects

all implications from SMi
. U 6= U ′′ implies that there is some attribute

D ∈ Mi \ U such that all x ∈ U ′ satisfy xID, i. e. all x ∈ U ′ satisfy
x ∈ Di. This implies U ′ ⊆ Di. Lemma 4.10 implies that U ′ = (

d
U)i

holds. We obtain (
d
U)i ⊆ Di. Therefore, Lemma 4.1 yields

(
l
U)ii v D. (5.24)

107

5 Axiomatization of Finite Models

Because U respects all implications from SMi
and because of D 6∈ U we

obtain that F 6v D for all F ∈ U . Since D is from Mi and thus either a
concept name or of the form ∃r.Xi for some r ∈ NR and some X ⊆ ∆i

it follows that l
U 6v D (5.25)

holds. (5.24) and (5.25) imply

l
U 6v (

l
U)ii. (5.26)

Lemma 5.16 and (5.26) show that there is some GCI E v Eii ∈ B
such that

d
U v E while

d
U 6v Eii. We show that U does not respect

prMi
(approxi(E)) → prMi

(Eii). From Lemma 5.17 and
d
U v E we

obtain
d
U v approxi(E). Projections are antitone, which implies

prMi
(approxi(E)) ⊆ U.

Assume that prMi
(Eii) ⊆ U and therefore

d
U v

d
prMi

(Eii) holds.
Because Eii can be expressed in terms ofMi it holds that

d
prMi

(Eii) ≡
Eii. This contradicts

d
U 6v Eii. Therefore the assumption prMi

(Eii) ⊆
U must be false. Thus U does not respect the implication

prMi
(approxi(E))→ prMi

(Eii).

We have thus shown that for every U ⊆ Mi with U 6= U ′′ there is
either an implication from SMi

that is not respected by U or there is
an implication from LB that is not respected by U . Therefore LB ∪SMi

is complete for Ki. Since it is also sound it is an SMi
-base for Ki.

Therefore, (5.23) follows from Theorem 3.8, which states that DGSMi

Ki

has minimal cardinality among all the Si-bases for Ki. From (5.21),
(5.22) and (5.23) we obtain that B contains at least as many GCIs as
BDG .

In this section we have shown that BDG has minimal cardinality among
all the EL⊥gfp-bases of a given model. This demonstrates that our choice
of the attribute set Mi combined with the FCA theory for formal con-
texts with background knowledge is efficient.

108

5.3 Obtaining an EL⊥-Base from an EL⊥gfp-Base

5.3 Obtaining an EL⊥-Base from an
EL⊥gfp-Base

From the previous sections we know how to compute a finite base B3

for the EL⊥gfp-GCIs holding in a finite model i using induced contexts
and formal concept analysis. This finite base B3 is at the same time
a general TBox that has i as its model. The EL⊥gfp-concept descrip-
tions that occur in the GCIs from B3 contain TBoxes themselves. While
the general TBox B3 uses descriptive semantics, the TBoxes within the
EL⊥gfp-concept descriptions are cyclic TBoxes with greatest-fixpoint se-
mantics. The result is a TBox which does not stay within the limits of
EL++.6 Since EL++ is more widely used we would like to modify the
base B3 such that its GCIs can be added to an existing EL++-knowledge
base. To this purpose, we need to find a base that uses only acyclic
EL⊥gfp-concept descriptions, since acyclic EL⊥gfp-concept descriptions are
equivalent to EL⊥-concept descriptions.
Our approach uses the unravellings that have been introduced in Sec-

tion 5.1.1. Let i be a model and let B be a finite EL⊥gfp-base for i. We
construct a finite base that uses only acyclic EL⊥gfp-concept descriptions
as follows. Let B4 be the set of GCIs

B4 ={Cd v (Cii)d | C v D ∈ B}∪
{(Xi)d v (Xi)d+1 | X ⊆ ∆i, X 6= ∅},

(5.27)

where d is defined as in Lemma 5.5, and where Cd denotes the unravelling
of C up to role depth d. The proof that this is a base for i requires the
following simple property for unravellings.

Lemma 5.19. Let C = (AC , TC) and D = (AD, TD) be ELgfp-concept
descriptions. Then it holds that

• (∃r.C)d ≡ ∃r.Cd−1, and

• (C uD)d ≡ Cd uDd,

where (∃r.C)d, Cd, (C uD)d and Dd denote the unravelling of ∃r.C, C,
C uD and D up to role depth d, respectively.
6cf. Section 8.3 for variants of EL that allow for both cyclic and descriptive seman-
tics

109

5 Axiomatization of Finite Models

Proof. This result is relatively easy to see, but becomes tedious if we
want to prove it formally using simulations. We only give a rough outline
for the proof of the first result. We need to construct a simulation from
the description graph (∃r.C)d to ∃r.Cd−1 and vice versa. We first analyze
what the sets of defined concept names in (∃r.C)d and ∃r.Cd−1 are. By
definition ∃r.C = (A∃r.C , T∃r.C), where

T∃r.C = {A∃r.C ≡ ∃r.AC} ∪ TC .

The defined concept names of T d∃r.C are the paths in the description
graph of T∃r.C that start in A∃r.C whose length is bounded by d. These
paths are of the form A∃r.Crw where w is a path in the description
graph of TC whose length is bounded by d− 1.

ND(T d∃r.C) = {A∃r.C}∪{A∃r.Crw | w path in GTC with length(w) ≤ d}

The concept description ∃r.Cd−1 is defined to be the pair ∃r.Cd−1 =
(A∃r.Cd−1

, T∃r.Cd−1
) where

T∃r.Cd−1
= {A∃r.Cd−1

≡ ∃r.AC} ∪ T d−1
C

The defined concept names in T∃r.Cd−1
are A∃r.Cd−1

and the defined
concept names from T d−1

C . Hence,

ND(T∃r.Cd−1
) = {A∃r.Cd−1

}
∪ {w | w path in GTCwith length(w) ≤ d− 1}

The relation

Z = {(A∃r.C , A∃r.Cd−1
)} ∪

{
(A∃r.Crw

′,w′) | w′ path in GTC
starting in AC of length less than d

}
is a simulation from (∃r.C)d to ∃r.Cd−1. We omit the proof since it
is very similar to many earlier proofs. Lemma 2.3 yields ∃r.Cd−1 v
(∃r.C)d. Analogously, one can show that (∃r.C)d v ∃r.Cd−1 using the
inverse of Z as the simulation. This proves (∃r.C)d ≡ ∃r.Cd−1. (C u
D)d ≡ Cd uDd can be shown analogously.

It has been mentioned in Section 5.2.2 that inference in EL⊥gfp can
take place “behind an existential quantifier”. A special case of such an
inference is the following easy and well-know fact from description logics.

110

5.3 Obtaining an EL⊥-Base from an EL⊥gfp-Base

Lemma 5.20. Let C and D be EL⊥gfp-concept descriptions and r ∈ NR
a role name. Then ∃r.C v ∃r.D follows from {C v D}.

Proof. Let i = (∆i, ·i) be a model of {C v D}. Let x ∈ (∃r.C)i be an
individual. By definition of the semantics of the existential quantifier
this implies that there is some individual y ∈ Ci such that (x, y) ∈ ri.
Since i is a model of {C v D} it follows that Ci ⊆ Di and hence y ∈ Di.
This means that x ∈ (∃r.D)i. We have shown that (∃r.C)i ⊆ (∃r.D)i

holds in i. Thus ∃r.C v ∃r.D follows from {C v D}.

Theorem 5.21. If B is a finite base for the model i then B4 as de-
fined in (5.27) is a finite base for i that contains only acyclic concept
descriptions.

Proof. The idea is to show that every GCI of the form (Xi)d v Xi

follows from the second part of B4, i. e. from B′4 = {(Xi)d v (Xi)d+1 |
X ⊆ ∆i, X 6= ∅}.

We first show a weaker result, namely that every GCI of the form
(Xi)k v (Xi)k+1 where k ≥ d and where X ⊆ ∆i, X 6= ∅ follows from
B′4. We prove this by induction over k.
Base Case: The claim holds trivially for k = d. Step Case: Assume

that (Xi)l v (Xi)l+1 follows from B4
′ for all l ∈ {d, . . . , k−1}. We know

from Lemma 5.9 that for every X ⊆ ∆i the description Xi is expressible
in terms of Mi. Since X 6= ∅, and thus Xi 6= ⊥, there must be a set of
concept names U ⊆ NC and a set of pairs Π ⊆ NR × 2∆i such that

Xi ≡
l
U u

l

(r,Y)∈Π

∃r.Y i.

Lemma 5.19 proves

(Xi)k ≡
l
U u

l

(r,Y)∈Π

∃r.(Y i)k−1. (5.28)

By induction hypothesis (Y i)k−1 v (Y i)k follows from B′4. Lemma 5.20
implies that

l
U u

l

(r,Y)∈Π

∃r.(Y i)k−1 v
l
U u

l

(r,Y)∈Π

∃r.(Y i)k. (5.29)

111

5 Axiomatization of Finite Models

follows from B′4. Using Lemma 5.19 again, we obtain

l
U u

l

(r,Y)∈Π

∃r.(Y i)k ≡

l
U u

l

(r,Y)∈Π

∃r.Y i

k+1

≡ (Xi)k+1.

(5.30)

(5.28), (5.29) and (5.30) show that (Xi)k v (Xi)k+1 follows from B′4.
The next step is to show that all GCIs of the form (Xi)d v Xi follow

from B′4. The case where Xi = ⊥ is trivial. Therefore, we can assume
X 6= ∅. Let j = (∆j , ·j) be an interpretation in which all GCIs from
B′4 hold. Let X ⊆ ∆i be a subset of ∆i and let y be an individual
y ∈ ((Xi)d)

j . Since all GCIs of the form (Xi)d v (Xi)d+1 follow from
B′4 it holds that

((Xi)d)
j ⊆ ((Xi)d+1)j ⊆ ((Xi)d+2)j ⊆ . . .

Hence y ∈ ((Xi)k)j holds for all k ≥ d. From Lemma 5.5 we know that
if k is large enough then ((Xi)k)j = (Xi)j . Since y ∈ ((Xi)k)j holds for
arbitrarily large k it follows that y ∈ (Xi)j holds. We have shown that
((Xi)d)

j ⊆ (Xi)j holds in j. Hence (Xi)d v Xi follows from B′4.
To prove completeness of B4 we show that every GCI from B follows

from B4. Let C v D be a GCI from B. We already know that (Cii)d v
Cii follows from B′4 and thus from B4. By definition B4 contains the
GCI Cd v (Cii)d. Therefore Cd v Cii follows from B4. Since Cd v C
holds for all unravellings the GCI C v Cii also follow from B4. Finally,
Lemma 4.3 shows that C v D follows from B4. We have shown that
all GCIs from B follow from B4. Since B is complete for i the set of
implications B4 must be complete as well.

112

6 Exploration of EL⊥gfp-Models

In the previous chapter we have presented a method for computing a
finite base for an a priori given model. This base can be used as a
starting point for an ontology. There is one problem with this approach.
If the chosen model was to restricted it possibly satisfies GCIs that do
not hold in all intended models of the knowledge base. In this case
the knowledge engineer has to weaken or remove some of the GCIs. In
this chapter we present a procedure to assist the knowledge engineer.
Our procedure has been inspired by Attribute Exploration from FCA
and is therefore called Model Exploration. Like Attribute Exploration,
which begins with a smaller context that is extended until it contains
all relevant counterexamples, Model Exploration starts with a smaller
model that is extended by adding counterexamples. Upon termination,
Model-Exploration produces as output the final model and a finite base
for the implications holding in it.

The first section of this chapter addresses a problem that arises from
the nature of the base B3 from the previous chapter. To compute the
base B3 for a given model i we need to generate an induced context whose
attribute set Mi is obtained from the model i itself. In the beginning
of an exploration procedure the model i is not known completely and
neither is Mi. We therefore need an algorithm for computing a finite
base for i, where attributes are added on the fly as they become known.
Such an algorithm is presented in the first section. In the second part
we present an exploration formalism based on the algorithm from the
first section.

113

6 Exploration of EL⊥gfp-Models

6.1 A Practical Algorithm for Computing
Bases

In the previous section we have shown how a finite base B3 for a given
model i can be obtained. In this section we present an alternative al-
gorithm that can also compute a finite base for a model i. Instead of
computing the complete set of attributes Mi in advance, it starts with a
smaller set of attributesM0 which is gradually enlarged. In the first part
of this section we describe the underlying FCA theory. We show that
Next-Closure can be modified to deal with growing sets of attributes.
The second part describes our algorithm for computing a finite base,
which is based on this modification of Next-Closure.

6.1.1 A Next-Closure-Algorithm for Growing Sets of
Attributes

The Procedure without Background Knowledge

Let K = (G,M, I) be a context. We present an algorithm (Algorithm 7)
that computes an implicational base of K. Algorithm 7 is a modification
of the Next-Closure-algorithm for computing the Duquenne-Guigues
Base of a given context (Algorithm 3). It is tailored to the following
scenario. We want to compute an implicational base for a context K,
whose set of attributes initially is only partially known. We assume that
the input of the algorithm is a context K0 = (G,M0, I0), whereM0 ⊆M
and I0 = I ∩ (G ×M0). As we find new implications more attributes
become known. For now, we assume that the attributes are obtained
from an unspecified outside source. Neither do we make restrictions
to the nature of this outside source nor to the attributes themselves.
We show that Next-Closure is robust enough to obtain an implicational
base (or an S-base if background knowledge is present) even if the set of
attributes is growing during the process of computing new attributes.
Some readers may be familiar with Object Exploration [Stu96c]. Ob-

ject Exploration is the dual setting to Attribute Exploration where all
objects of a context are known and attributes are added by a human
expert. Even though both formalisms start with an incomplete set of
attributes they should not be confused. Object Exploration computes a
base for implications between sets of objects, while our algorithm com-

114

6.1 A Practical Algorithm for Computing Bases

putes implications between sets of attributes. In object exploration new
attributes are required to be counterexamples to previously rejected ob-
ject implications. We do not make such a requirement.
In each iteration of Algorithm 7 we compute a new left-hand side Pk

for an implication. Afterwards, the outside source is allowed to add new
attributes, which yields a new context Kk+1 = (G,Mk+1, Ik+1). The
new set of attributes Mk+1 must contain the previous set of attributes
Mk and the incidence relation Ik+1 must coincide with Ik on Mk, i. e.
Mk ⊆Mk+1 ⊆M and Ik = Ik+1∩(G×Mk). We furthermore require the
new attributes to be smaller than the previously known attributes with
respect to the total order < on M . This ensures that all sets containing
a new attribute are lectically larger than all previously computed left-
hand sides.
Once the new context Kk+1 has been obtained we need to take care of

the fact that when the attribute set is extended the closure operator ·′′
also changes. Therefore after adding new attributes, the right-hand sides
of all previously computed implications need to be updated yielding a
new set of implications Lk+1. In order to make it clear which context
we are referring to when using the derivation operators we add an index,
e. g. P ′′kk denotes the set that is obtained by applying the two derivation
operators from Kk to Pk.
At the end of each iteration a new left-hand side Pk+1 is obtained as

the next closure of Pk with respect to Lk+1(·), i. e. the lectically smallest
set of attributes that is lectically greater than Pk and respects all impli-
cations from Lk+1. It can be computed effectively using Lemma 3.2.
Provided that from a certain point on no new attributes are added

it is obvious that Algorithm 7 terminates. The final set of attributes
M has only finitely many subsets and the lectic order ensures that no
subset ofM is obtained twice as a left-hand side. Therefore, the number
of iterations is bounded by 2|M |.

Lemma 6.1 (Termination of Algorithm 7). If there is a natural number
r ∈ N such that Mk = Mr for all k ≥ r then Algorithm 7 terminates.

Assume that Algorithm 7 terminates after the n-th iteration for some
n ∈ N. Its output is the set of implications Ln which is obtained as

Ln = {Pr → P ′′nr | Pr 6= P ′′nr , r ∈ {0, . . . , n− 1}}.

115

6 Exploration of EL⊥gfp-Models

Algorithm 7 Computing a Base for the Case of a Growing Set of At-
tributes
1: input K0

2: P0 := ∅, k := 0 {initialization}
3: while Pk 6= null do
4: input Kk+1 = (G,Mk+1, Ik+1) {obtaining new attributes}
5: Lk+1 := {Pr → P

′′k+1
r | Pr 6= P

′′k+1
r , r ∈ {0, . . . , k}} {updating

implications}
6: if Pk = Mk = Mk+1 then
7: Pk+1 := null
8: else
9: Pk+1 := lectically smallest subset of Mk+1 that is

– lectically greater than Pk, and
– respects all implications from Lk+1.

10: end if
11: k := k + 1
12: end while
13: return Lk

We will now present an algorithm that extends Algorithm 7 by introduc-
ing background knowledge. Algorithm 7 is a special case of Algorithm 8
where we define the background knowledge to be empty. Therefore we
can postpone the proof than Ln is a base for Kn.

The Procedure with Background Knowledge

Algorithm 8 is an extension of Algorithm 7 that allows for background
knowledge. If we decide to allow growing sets of attributes in Algo-
rithm 5 it is natural to also allow the background knowledge to grow.
When a new attribute is added there is likely some background knowl-
edge about this new attribute that needs to be added as well. Thus, we
start with an original set of background knowledge S0 and allow that in
the k-th iteration a new set of background knowledge Sk can be provided
(again from an unspecified source). This new set Sk has to contain the
previous background knowledge Sk−1.
Like for Algorithm 7, it is not hard to see that Algorithm 8 terminates

if from a certain point on no new attributes are added.

116

6.1 A Practical Algorithm for Computing Bases

Algorithm 8 Computing a Base for the Case of a Growing Set of At-
tributes with Background Knowledge
1: input K0, S0 {context K0 and background knowledge S0}
2: P0 := ∅, k := 0 {Initialization}
3: while Pk 6= null do
4: input Kk+1 = (G,Mk+1, Ik+1) {obtaining new attributes}
5: input Sk+1 {obtaining new background knowledge}
6: Lk+1 := {Pr → P

′′k+1
r | Pr 6= P

′′k+1
r , r ∈ {0, . . . , k}} {updating

implications}
7: if Pk = Mk = Mk+1 then
8: Pk+1 := null
9: else

10: Pk+1 := lectically smallest subset of Mk+1 that is
– lectically greater than Pk, and
– respects all implications from Lk+1 ∪ Sk+1.

11: end if
12: k := k + 1
13: end while
14: return Lk

117

6 Exploration of EL⊥gfp-Models

Lemma 6.2 (Termination of Algorithm 8). If there is a natural number
n ∈ N such that Mk = Mn for all k ≥ n then Algorithm 8 terminates.

We now assume that Algorithm 8 has terminated after the n-th itera-
tion for some n ∈ N. We want to prove that the final set of implications
Ln is an Sn-base of the final context Kn.

Lemma 6.3. Let Q ⊆Mn be a subset of the final set of attributes Mn.
Then

• if Q = Q′′n then there is some k ∈ {0, . . . , n} such that Q = Pk,
and

• if Q 6= Q′′n then Q does not respect all implications from Ln ∪Sn.

Proof. The case Q = ∅ is trivial because of P0 = ∅. The following
arguments apply to the case Q 6= ∅ independently whether Q = Q′′n

or Q 6= Q′′n holds. Since Algorithm 8 has terminated after the n-
th iteration it holds that Pn = null and Pn−1 = Mn−1 = Mn since
otherwise the algorithm cannot leave the while-loop. Pn−1 = Mn ≥ Q
holds with respect to the lectic order, because the lectic order extends
the subset order and Q ⊆ Mn holds. Thus there is a set Pk that is
lectically greater or equal to Q. Since there are only finitely many Pk
there must be some natural number r ∈ {1, . . . , n−1} such that Pr ≥ Q
and Pr−1 < Q holds with respect to the lectic order. We show that all
attributes from Q are already known in the r-th iteration, i. e. Q ⊆Mr

holds. Assume that Q contains an attribute m ∈ Mn \Mr. Attributes
that are added later are smaller than attributes that have been added
earlier. Therefore Q would be lectically greater than any subset of Mr

and in particular greater than Pr. Hence such an attribute m cannot
exist and therefore Q ⊆Mr must hold.
We consider the case Q = Q′′n . As a concept intent Q′′n respects all

implications that hold in Kn. In particular it respects all implications
from Lr ∪ Sr. Furthermore, Q satisfies Pr−1 < Q ≤ Pr. Therefore, in
the r-th iteration of Algorithm 8 Q is the lectically next subset of Mr

such that Pr−1 < Q and Q respects all implications from Lr∪Sr. Hence
it holds that Q = Pr.
We now look at the second case Q 6= Q′′n . If there is an implication

from Sn that is not respected by Q then the original claim holds trivially.
Furthermore, if Q = Pr then Ln contains the implication Q → Q′′n

118

6.1 A Practical Algorithm for Computing Bases

which is not respected by Q, because we know that Q 6= Q′′n . Therefore
the claim also holds.
We examine the remaining case where Q respects all implications from

Sn and Q 6= Pr holds. Assume that Q respects all implications from Lr.
Q respects all implications from Sn and thus also all implications from
Sr ⊆ Sn. Then Q is the lectically smallest subset of Mr that satisfies
Q > Pr−1 and respects all implications from Lr ∪ Sr. This contradicts
the fact that Q 6= Pr. Therefore, the assumption that Q respects all
implications from Lr must be false.
We have thus shown that there must be an implication P → P ′′r from
Lr that is not respected by Q, i. e.

P ⊆ Q, and P ′′r 6⊆ Q.

We show that Q does not respect P → P ′′n either. Since the incidence
relation In from Kn extends Ir from Kr it holds that

P ′r = {g ∈ G | ∀m ∈ P : gIrm} = {g ∈ G | ∀m ∈ P : gInm} = P ′n .

And furthermore since Mr ⊆Mn it holds that

P ′′r = {m ∈Mr | ∀g ∈ P ′r : gIrm}
⊆ {m ∈Mn | ∀g ∈ P ′n : gInm} = P ′′n .

P ′′r ⊆ P ′′n implies P ′′n 6⊆ Q and therefore Q does not respect P →
P ′′n .

Using Lemma 6.3 it requires only a standard argument from FCA to
show that Ln ∪ Sn is complete.

Theorem 6.4. Upon termination the set Ln is an Sn-base of Kn.

Proof. Ln is sound for Kn since it contains only implications of the
form Q → Q′′n . To prove that Ln ∪ Sn is complete we show that all
implications of the form Q→ Q′′n follow from Ln ∪Sn. Let Q ⊆Mn be
a set of attributes, and let R ⊆ Mn be a set of attributes that respects
all implications from Ln. We show that Q→ Q′′n follows from Ln ∪ Sn
by proving that R also respects Q → Q′′n . From Lemma 6.3 it follows
that R = R′′n . If Q 6⊆ R then R trivially respects Q → Q′′n . If Q ⊆ R
then R = R′′n yields

Q ⊆ R′′n .

119

6 Exploration of EL⊥gfp-Models

Lemma 3.1 yields
Q′′n ⊆ (R′′n)′′n

and therefore
Q′′n ⊆ R′′n = R

follows from Lemma 3.1. Hence R respects Q → Q′′n . We have thus
shown that Q→ Q′′n follows from Ln∪Sn. Since {Q→ Q′′n | Q ⊆Mn}
is complete for K (cf. Lemma 3.4) the set Ln ∪ Sn is also complete for
K. Correctness of Ln follows immediately from Lemma 3.1. Thus Ln is
an Sn-base for Kn.

As mentioned previously Algorithm 7 is a special case of Algorithm 8
where we define Sk = ∅ for all k ∈ {0, . . . , n}. This gives us the following
corollary.

Corollary 6.5. Assume that Algorithm 7 terminates after the n-th it-
eration. Then the set Ln which is returned by Algorithm 7 is a base for
Kn.

Algorithms 7 and 8 show that Next-Closure is robust enough to deliver
a base of a context K, even if not all attributes of that context are
known from the beginning. Unfortunately, in contrast to the classical
Algorithms 3 and 5 the resulting base is not guaranteed to have minimal
cardinality. We illustrate this using an example.

Example 6.1. We start with the context K0 shown in Table 6.1 with
the attribute set M0 = {A}. No new attributes are added in the first
two iterations. The first two left-hand sides that Algorithm 7 finds
are ∅ and {A}. If no new attributes were added now, the algorithm
would terminate. However, we assume that an attribute B is added
yielding the context K2 from Table 6.2. The next two left-hand sides
that Algorithm 7 finds are {B} and {A,B}. A new attribute C is added
in the fourth iteration yielding K4 from Table 6.3. After this, no more
attributes are added and we obtain the last two left-hand sides which
are {C} and {A,B,C}. The final output is the base L6 consisting of
the implications

• {A} → {A,C},

• {A,B} → {A,B,C}, and

120

6.1 A Practical Algorithm for Computing Bases

Table 6.1: K0 = K1

A
a ×
b

Table 6.2: K2 = K3

A B
a ×
b ×

Table 6.3: K4 = K5 = K6

A B C
a × ×
b ×

• {C} → {A,C}.

The other left-hand sides ∅, {B}, and {A,B,C} are closed with re-
spect to ·′′6 and therefore they are not used in L6. The interesting
implication is {A,B} → {A,B,C}. Even though this is a non-trivial
implication, it is still redundant, since it follows from {A} → {B,C}.

Algorithms 7 and 8, like Algorithm 3, do not only compute the left-
hand sides for the implications in Ln. They also find the concept intents
of Kn. Unlike in Algorithm 3 it is not possible to decide during runtime
whether a set Pk is a concept intent of Kn. Even if Pk = P ′′kk holds it
might be the case that Pk 6= P ′′nk because the attributes in P ′′nk \ P ′′kk
are added at a later point in time. In this case it is not possible to find
out during the k-th iteration if the left-hand-side Pk is redundant, like
the set {A,B} in the example, or if it is not redundant, like the set {A}.

6.1.2 Computing Mi on the Fly
In Section 5.2.1 we have presented the base BDG for a given model i. It is
obtained from the Si-Duquenne-Guigues Base of the context Ki, where
Ki is the context induced by Mi and i, and where Mi is the following
set of concept descriptions

Mi = {⊥} ∪ NC ∪ {∃r.Xi | r ∈ NR and X ⊆ ∆i, X 6= ∅}.

Computationally, the two most time-consuming tasks when computing
BDG are computing the set Mi (cf. Algorithm 6), and computing the
Duquenne-Guigues Base of Ki (since no output polynomial algorithm
for enumerating pseudo-intents is known). The first task of computing
Mi is particularly problematic for two reasons. Firstly, it has to be
performed before the actual computation of GCIs starts. Therefore it

121

6 Exploration of EL⊥gfp-Models

causes a considerable delay between the start and when the first GCI is
obtained. Secondly, as mentioned before, in an exploration setting where
i is initially unknown it is not possible to compute Mi beforehand.

Instead of computing the complete set of attributes in the beginning
we propose to start with the set of attributes

M0 = NC ∪ {⊥}

and add new attributes on the fly. We basically apply Algorithm 8 to the
context that is induced by M0 and i. Whenever Algorithm 8 generates
a new left-hand side P we compute (

d
P)ii and add the EL⊥gfp-concept

descriptions of the form ∃r.(
d
P)ii for all role names r ∈ NR to the set of

attributes. More precisely, we add new attributes only if no equivalent
attribute is already present. We denote this by ∪̇ instead of ∪. Whenever
new attributes have been added the background knowledge is updated
according to (5.16). Algorithm 9 shows an instance of Algorithm 8
obtained this way.
We know that Algorithm 8 terminates if from a certain point on no

new attributes are added. Algorithm 9 is basically Algorithm 8 applied
to the induced context Ki. The attributes that are added in Line 6
all come from the set Mi which is finite. Therefore, Algorithm 9 must
terminate.

Lemma 6.6. Algorithm 9 terminates for every finite input model i =
(∆i, ·i).

Assume that Algorithm 9 terminates after the n-th iteration. We
know from Theorem 6.4 that Ln is an Sn-base of Kn. In this section we
show that

B5 = {
l
P → (

l
P)ii | P → P ′′n ∈ Ln}

is a base for the GCIs holding in i. Kn is the context that is induced
by Mn and i. By Corollary 5.14 it it suffices to show that Mn =̇Mi in
order to proof that B5 is a base for the GCIs holding in i.

Lemma 6.7. Let U ⊆Mn be a subset of the final set of attributes Mn.
Then for every role name r ∈ NR there is an attribute C ∈ Mn such
that

C ≡ ∃r.(
l
U)ii.

122

6.1 A Practical Algorithm for Computing Bases

Algorithm 9 Computing a Base for the GCIs Holding in an A Priori
Given Model
1: input i = (∆i, ·i) {model i}
2: P0 := ∅, M0 := NC ∪ {⊥}, k := 0 {initialization}
3: K0 := the context induced by M0 and i
4: S0 := {{⊥} → {A} | A ∈ NC}, L0 := ∅
5: while Pk 6= null do
6: Mk+1 := Mk ∪̇ {∃r.(

d
Pk)ii | r ∈ NR} {obtaining new attributes}

7: Kk+1 := the context induced by Mk+1 and i {updating Kk+1,
Sk+1 and Lk+1}

8: Lk+1 := {Pr → P
′′k+1
r | r ∈ {0, . . . , k}}

9: Sk+1 := {{A} → {B} | A,B ∈Mk+1, A v B}
10: if Pk = Mk = Mk+1 then
11: Pk+1 := null
12: else
13: Pk+1 := lectically smallest subset of Mk+1 that is

– lectically greater than Pk, and
– respects all implications from Lk+1 ∪ Sk+1.

14: end if
15: k := k + 1
16: end while
17: return {

d
P → (

d
P)ii | P → P ′′k ∈ Lk}

123

6 Exploration of EL⊥gfp-Models

Proof. From Lemma 4.10 and Lemma 4.1 we obtain

(
l
U ′′n)i = U ′′′n = U ′n = (

l
U)i.

Hence it holds that

∃r.(
l
U ′′n)ii ≡ ∃r.(

l
U)ii. (6.1)

Algorithm 9 is a special case of Algorithm 8. Therefore Lemma 6.3 holds
for Algorithm 9, too. It yields that there is some k ∈ {0, . . . , n−1} such
that U ′′n = Pk. Thus in Line 6 of the k+1-th iteration the EL⊥gfp-concept
description

∃r.(
l
Pk)ii = ∃r.(

l
U ′′n)ii

is added to the set of attributes. Thus Mn contains ∃r.(
d
U ′′n)ii which

is equivalent to ∃r.(
d
U)ii because of (6.1).

Lemma 6.8. It holds that Mn =̇Mi.

Proof. Mn ⊆̇Mi holds since every EL⊥gfp-concept description of Mn is
either from {⊥} ∪ NC or it is of the form ∃r.(

d
P)ii for some P ⊆Mn.

It remains to show that for every X ⊆ ∆i and every r ∈ NR there is
a concept description C ∈ Mn such that ∃r.Xi ≡ C. Lemma 5.6 shows
that for every X ⊆ ∆i there is an acyclic EL⊥gfp-concept description D
satisfying Di = (Xi)i. Applying the interpretation function on both
sides yields Dii = Xiii = Xi. Thus it suffices to show that for every
acyclic EL⊥gfp-concept description D there is a concept description C ∈
Mn satisfying C ≡ ∃r.Dii. We prove this by induction over the role
depth of D. Base Case: The case where D = ⊥ is trivial. Let D =

d
S

for some set S ⊆ NC . Then in particular S ⊆ M0 ⊆ Mn holds. Let
r ∈ NR be a role name. By Lemma 6.7 there is some concept description
C ∈Mn such that C ≡ ∃r.(

d
S)ii.

Step Case: Assume that ∃r.Eii ∈̇Mn holds for all acyclic EL⊥gfp-
concept descriptions E of role depth less than d and for all role names
r ∈ NR. Let D be an acyclic EL⊥gfp-concept description of role depth d
and s ∈ NR a role name. There is a set of concept names U ⊆ NC , and
a set Π containing pairs of role names and ELgfp-concept descriptions
such that

D =
l
U u

l

(r,E)∈Π

∃r.E.

124

6.1 A Practical Algorithm for Computing Bases

Then Lemma 4.2 proves

Dii =
(l

U u
l

(r,E)∈Π

∃r.E
)ii

=
(l

U u
l

(r,E)∈Π

∃r.Eii
)ii
.

By induction hypothesis it holds that ∃r.Eii ∈̇Mn for all pairs (r, E) ∈
Π. Furthermore it holds that U ⊆ NC ⊆ Mn. Lemma 6.7 proves that
there is some concept description C ∈Mn satisfying

C ≡ ∃s.
(l

U u
l

(r,E)∈Π

∃r.Eii
)ii ≡ ∃s.Dii.

This proves that for every acyclic ELgfp-concept description D and every
role name s ∈ NR there is a concept description C ∈ Mn satisfying
C ≡ ∃s.Dii. Because we can find some acyclic ELgfp-concept description
D with Dii ≡ Xi for every X ⊆ ∆i, it follows that

{∃s.Xi | X ⊆ ∆i, X 6= ∅} ⊆̇Mn.

Mi ⊆̇Mn follows from this and {⊥}∪NC ⊆Mn. Together withMn ⊆̇Mi

we obtain Mi =̇Mn.

Completeness of B5 is an immediate consequence of the fact that Ln
is a base of Kn, the fact that Mn =̇Mi and Corollary 5.14.

Theorem 6.9. B5 is a base for the GCIs holding in i.

Because of the effects that have been demonstrated in Example 6.1
it is possible that B5 is not irredundant. This shortcoming of B5 is
counterbalanced by the fact that it is not necessary to compute the full
attribute set in advance when using Algorithm 9.

6.1.3 Acyclic Left-Hand Sides
The base that we obtain from Algorithm 7 uses cyclic left-hand sides.
Of course, we can apply the procedure from Section 5.3 to remove cyclic
concept descriptions after the algorithm has terminated. However, since
the semantics of cyclic concept descriptions are not always intuitive,
it is desireable to avoid them already during runtime. This becomes
particularly relevant in an exploration setting where GCIs need to be

125

6 Exploration of EL⊥gfp-Models

confirmed by a human expert. We do not have a method to avoid
cyclic concept descriptions during runtime completely, but it is fairly
straightforward to avoid cyclic left-hand sides.
The reason why there can be cyclic left-hand-sides in B5 is that there

can be cyclic EL⊥gfp-concept descriptions in the attribute set. These
cyclic concept descriptions are obtained in Line 6 because the most-
specific concept (

d
Pk)ii can be cyclic. We know from Lemma 4.2 that

(∃r.(
d
Pk)ii)i = (∃r.(

d
Pk))i holds. Therefore if we replace the attribute

∃r.(
d
Pk)ii by the attribute ∃r.(

d
Pk) the induced context Kk will not

change except for renaming of an attribute. Algorithm 10 is based on
this observation. It differs from Algorithm 9 only in Line 6.

Algorithm 10 Computing a Base for the GCIs Holding in an A Priori
Given Model Using Only Acyclic Left-Hand-Sides
1: input i = (∆i, ·i) {model i}
2: P̄0 := ∅, M̄0 := NP ∪ {⊥}, k := 0 {initialization}
3: K̄0 := the context induced by M̄0 and i
4: S̄0 := {{⊥} → {A} | A ∈ NP }, L̄0 := ∅
5: while Pk 6= null do

6: M̄k+1 := M̄k ∪


{∃r.

d
P̄k | r ∈ NR} if (

d
P̄k)ii 6≡ (

d
P̄`)

ii

for all ` < k

∅ otherwise
7: K̄k+1 := the context induced by M̄k+1 and i {updating K̄k+1,

S̄k+1 and L̄k+1}
8: L̄k+1 := {P̄r → P̄

′′k+1
r | r ∈ {0, . . . , k}}

9: S̄k+1 := {{A} → {B} | A,B ∈ M̄k+1, A v B}
10: if P̄k = M̄k = M̄k+1 then
11: P̄k+1 := null
12: else
13: P̄k+1 := lectically smallest subset of M̄k+1 that is

– lectically greater than P̄k, and
– respects all implications from L̄k+1 ∪ S̄k+1.

14: end if
15: k := k + 1
16: end while
17: return {

d
P̄ → (

d
P̄)ii | P̄ → P̄ ′′k ∈ L̄k}

126

6.1 A Practical Algorithm for Computing Bases

We prove that Algorithm 10 terminates and that upon termination
the set

B̄5 = {
l
P̄ → (

l
P̄)ii | P̄ → P̄ ′′n ∈ L̄n}

is a base for the GCIs holding in i. To this purpose we compare Algo-
rithm 9 and Algorithm 10. Assume that Algorithm 9 and Algorithm 10
are initialized with the same model i as input. For convenience we in-
troduce the notation mkr to denote

mkr = ∃r.(
l
Pk)ii

the attribute added in Line 6 in the k-th iteration of Algorithm 9 for
each role name r ∈ NR. Analogously,

m̄kr = ∃r.
l
P̄k

denotes the attribute added in Line 6 in the k-th iteration of Algo-
rithm 10 for each role name r ∈ NR. The set of concept names Mk

consists of the bottom concept ⊥, the concept names from NC and at-
tributes of the form mkr. Therefore every set Pk can be written as

Pk = Nk ∪ {mk′r′ | (k′, r′) ∈ Πk}

for some set Nk ⊆ {⊥} ∪ NC and some set Πk ⊆ {1, . . . , k} × NR.
Lemma 6.10. Assume that Algorithm 9 and Algorithm 10 have com-
pleted k iterations of the respective while-loops. Then Pk = Nk∪{mk′r′ |
(k′, r′) ∈ Πk}, for some set Nk ⊆ {⊥} ∪ NC and some set Πk ⊆
{1, . . . , k} × NR implies

P̄k = Nk ∪ {m̄k′r′ | (k′, r′) ∈ Πk}. (6.2)

This means that P̄k is obtained from Pk simply by replacing every at-
tribute mk′r′ by the corresponding attribute mkr. Furthermore, M̄k is
obtained from Mk by the same kind of renaming, and

(
l
Pk)ii ≡ (

l
P̄k)ii (6.3)

holds. For all r ∈ NR it holds that

mkr v m̄kr (6.4)

and
(mkr)

i = (m̄kr)
i. (6.5)

127

6 Exploration of EL⊥gfp-Models

Proof. We prove this statement by induction over k. The base case
k = 0 is obvious since P0 = P̄0 = ∅.
Step Case: We assume that statements (6.2), (6.3), (6.4), and (6.5)

hold for all k′ ∈ {1, . . . , k} and show that they also hold for k + 1. In
Algorithm 9 the new set of attributes Mk+1 is obtained as Mk+1 =
Mk ∪̇ {mkr | r ∈ NR}. New attributes mkr are added iff there are
no equivalent attributes in Mk. A previously added attribute mk′r =
∃r.(

d
Pk′)

ii, where k′ < k, satisfies mk′r = ∃r.(
d
Pk′)

ii ≡ ∃r.(
d
Pk)ii =

mkr iff (
d
Pk′)

ii ≡ (
d
Pk)ii holds. By induction hypothesis (6.3) holds

for k and k′. Therefore, (
d
Pk′)

ii ≡ (
d
Pk)ii holds iff (

d
P̄k′)

ii ≡
(
d
P̄k)ii. Hence, a new attribute mkr is added in Algorithm 9 iff a

new attribute m̄kr is added in Algorithm 10. This proves that M̄k+1

can be obtained from Mk+1 by renaming attributes.
We know from the induction hypothesis that (mk′r′)

i = (m̄k′r′)
i holds

for all k′ ∈ {1, . . . , k}. Therefore, the induced contexts Kk+1 and K̄k+1

are equal except for renaming attributes (Informally, we can say that
all crosses are in the same places in the two contexts, only the columns
have different labels). L̄k+1, S̄k+1 and P̄k+1 only depend on M̄k+1, Kk+1

and the sets P̄k′ , where k′ ≤ k. It follows that L̄k+1, S̄k+1 and P̄k+1

can be obtained from Lk+1, Sk+1 and Pk+1, respectively, by renaming
attributes. In particular this proves (6.2) for k + 1.
Pk+1 can be written as Pk+1 = Nk+1 ∪ {mk′r′ | (k′, r′) ∈ Πk+1}, for

some set Nk+1 ⊆ {⊥} ∪ NC and some set Πk+1 ⊆ {1, . . . , k + 1} × NR.
Then (6.2) implies P̄k+1 = Nk+1 ∪ {m̄k′r′ | (k′, r′) ∈ Πk+1}. We obtain
from (6.5) and (6.2) that

(
l
Pk+1)i ≡

⋂
A∈Nk+1

Ai ∩
⋂

(k′,r′)∈Πk+1

mi
k′r′

≡
⋂

A∈Nk+1

Ai ∩
⋂

(k′,r′)∈Πk+1

m̄i
k′r′

≡ (
l
P̄k+1)i

and thus (
d
Pk+1)ii ≡ (

d
P̄k+1)ii holds, which proves (6.3) for k + 1.

This also yields (
d
Pk+1)ii ≡ (

d
P̄k+1)ii v

d
P̄k+1 which implies

mk+1,r = ∃r.(
l
Pk+1)ii v ∃r.

l
P̄k+1 = m̄k+1,r,

128

6.1 A Practical Algorithm for Computing Bases

i. e. (6.4) holds for k + 1. Finally, from (6.3) and Lemma 4.2 we obtain

mi
k+1,r =

(
∃r.(

l
Pk+1)ii

)i
=
(
∃r.(

l
P̄k+1)ii

)i
=
(
∃r.(

l
P̄k+1)

)i
= m̄i

k+1,r,

which proves (6.4) for k + 1.

Theorem 6.11. Algorithm 10 terminates for every input model i after
a finite number of iterations n. Upon termination the set

B̄5 = {
l
P → (

l
P)ii | P → P ′′n ∈ L̄n}

is a base for the GCIs holding in i.

Proof. From Lemma 6.10 we obtain that Pk = Mk = Mk+1 after the
k-th iteration of Algorithm 9 iff P̄k = M̄k = M̄k+1 holds after the k-th
iteration of Algorithm 10 with the same input i. Thus Algorithm 10
terminates after the k + 1-th iteration iff Algorithm 9 terminates after
the k + 1-th iteration. Since Algorithm 9 terminates this proves that
Algorithm 10 also terminates on every input.
B̄5 is a subset of B0, hence it must be sound. To prove completeness

we show that every GCI from B5 follows from the corresponding GCI
in B̄5, i. e. that

d
Pk → (

d
Pk)ii follows from

d
P̄k → (

d
P̄k)ii for all

k ∈ {1, . . . , n}. Assume that Pk can be written as

Pk = Nk ∪ {mk′r′ | (k′, r′) ∈ Πk}

for some set Nk ⊆ {⊥} ∪ NC and some set Πk ⊆ {1, . . . , k} × NR.
Lemma 6.10 yields

P̄k = N ∪ {m̄k′r′ | (k′, r′) ∈ Π}.

From (6.4) we obtain
l
Pk =

l
N u

l
{mk′r′ | (k′, r′) ∈ Π}

v
l
N u

l
{m̄k+1′r′ | (k′, r′) ∈ Π}

=
l
P̄k

129

6 Exploration of EL⊥gfp-Models

Also, we obtain (
d
Pk)i = (

d
P̄k)i from (6.3). Thus we have shownd

Pk v
d
P̄k and (

d
Pk)i = (

d
P̄k)i and therefore

d
Pk v (

d
Pk)ii

follows from
d
P̄k v (

d
P̄k)ii. Since B5 is complete, this proves that B̄5

is also complete.

6.2 Model Exploration
In this section we extend Algorithm 9 in order to obtain a knowledge
exploration algorithm which we call Model Exploration. Like Attribute
Exploration from FCA our algorithm can capture knowledge by query-
ing an expert. This expert need not necessarily be human. The expert
is assumed to have complete knowledge about the domain. We require
that this knowledge can be represented in the form of a finite model
i = (∆i, ·i). This model i is called the background model of the explo-
ration. Initially, i is unknown, or only partially known to the algorithm.
The partial model i0 that is known to the algorithm is called work-
ing model. The exploration formalism’s goal is to compute a base for
the GCIs holding in the background model i. In each iteration a new
GCI is presented to the expert who can either refute or accept it. If it
is refuted the expert is asked to present a counterexample. There are
different ways to represent counterexamples. In this chapter we look
at the situation where counterexamples are represented in the working
models, i. e. using a closed-world semantics, while the following chapter
deals with counterexamples that are represented in an ABox, i. e. using
open-world semantics.
While we want the working models to contain counterexamples to

the GCIs that have been refuted, they should obviously not contain
counterexamples to GCIs that do hold in the background model i. To
ensure that this is the case we require all working models to be connected
submodels of i, where we define submodels and connected submodels as
follows.

Definition 6.1. The model j = (∆j , ·j) is called a submodel of i if

• ∆j ⊆ ∆i,

• namesj(x) = namesi(x) for all x ∈ ∆j

• succrj(x) ⊆ succri (x) for all x ∈ ∆j and all r ∈ NR.

130

6.2 Model Exploration

The model j is called a connected submodel of i if it is a submodel of
i and additionally succri (x) ⊆ ∆j and succrj(x) = succri (x) holds for all
x ∈ ∆j and all r ∈ NR. If j is a submodel of i we say that i extends j.

In order to add a counterexample for a GCI C v D the expert must
provide a new working model il that extends the previous working model
il−1. The new model il must contain a counterexample, i. e. Cil 6⊆
Dil must hold. We further require that il is a connected submodel of
the working model i. In Example 6.2 we shall see that it is necessary
to require connectedness in order to ensure that il does not contain a
counterexample to a GCI that does hold in i. The corollary to the
following lemma shows that it is also sufficient.

Lemma 6.12. Let j = (∆j , ·j) be a connected submodel of i = (∆i, ·i).
Then for every EL⊥gfp-concept description C = (AC , TC) it holds that
Cj = Ci ∩∆j.

Proof. We need to prove Cj ⊆ Ci ∩∆j and Ci ∩∆j ⊆ Cj . We give a
detailed proof for the second inclusion since it is more interesting.
Let x ∈ ∆j be an individual satisfying x ∈ Ci. By Lemma 2.2 there is

a simulation Z from C to x in i. We show that Z̄ = Z ∩ (ND(TC)×∆j)
is a simulation from C to x in j. (S1′) Let (B, y) ∈ Z̄ be a pair in the
relation Z̄. Since Z̄ ⊆ Z and Z is a simulation from C to x in i the pair
(B, y) satisfies namesTC (B) ⊆ namesi(y). Since j is a submodel of i we
obtain that namesi(y) = namesj(y) holds for all y ∈ ∆j . Thus (B, y)
also satisfies namesTC (B) ⊆ namesj(y).
(S2′) Let (B, y) ∈ Z̄ be a pair in the relation Z̄, let r ∈ NR be a

role name and B′ ∈ succrTC (B) an r-successor of B. Since (B, y) ∈ Z̄ ⊆
Z and Z is a simulation there must be some y′ ∈ succri (y) satisfying
(B′, y′) ∈ Z. Because j is a connected submodel of i we obtain y′ ∈ ∆j

and succri (y) = succrj(y). Therefore y′ ∈ ∆j satisfies y′ ∈ succrj(y) and
(B′, y′) ∈ Z ′. (S3′) It holds that x ∈ ∆j and (AC , x) ∈ Z. Hence it also
holds that (AC , x) ∈ Z̄.
We have thus shown that Z̄ is a simulation from C to x in j. It follows

from Lemma 2.2 that x ∈ Cj holds.
To prove the second inclusion Cj ⊆ Ci ∩∆j let x ∈ Cj be an individ-

ual. From Lemma 2.2 we obtain that there is a simulation Z ′ from C to
x in j. One can readily verify that Z ′ is also a simulation from C to x
in i which yields x ∈ Ci.

131

6 Exploration of EL⊥gfp-Models

Algorithm 11 Exploration Algorithm for Models
1: input i0 = (∆i0 , ·i0)
2: P̄0 := ∅, M̄0 := NC ∪ {⊥}, k := 0, l := 0 {Initialization}
3: K̄0 := the context induced by M̄0 and i0, S̄0 := {{⊥} → {A} | A ∈
NC}, L̄0 := ∅

4: while P̄k 6= null do
5: while Expert refutes

d
P̄k v (

d
P̄k)ilil do

6: Ask the expert for a new working model il+1 that
– extends il,
– is a connected submodel of the background model i, and
– contains a counterexample for

d
P̄k v (

d
P̄k)ilil

7: l := l + 1
8: end while
9: M̄k+1 := M̄k ∪ {∃r.(

d
P̄k)ilil | r ∈ NR} {obtaining

new attributes}
10: K̄k+1 := the context induced by M̄k+1 and il
11: L̄k+1 := {P̄r → P̄

′′k+1
r | r ∈ {0, . . . , k}, P̄r 6= P̄

′′k+1
r }

12: S̄k+1 := {{A} → {B} | A,B ∈ M̄k+1, A v B}
13: if P̄k = M̄k = M̄k+1 then
14: P̄k+1 := null
15: else
16: P̄k+1 := lectically smallest subset of M̄k+1 that is

– lectically greater than P̄k, and
– respects all implications from L̄k+1 ∪ S̄k+1.

17: end if
18: k := k + 1
19: end while
20: return L̄k

132

6.2 Model Exploration

Corollary 6.13. Let j = (∆j , ·j) be a connected submodel of i = (∆i, ·i).
Let C and D be EL⊥gfp-concept descriptions. If C v D holds in i then
C v D also holds in j.

Proof. If C v D holds in i then by definition Ci ⊆ Di holds. Using
Lemma 6.12 we obtain

Cj = Ci ∩∆j ⊆ Di ∩∆j = Dj .

Hence, C v D holds in j.

In Algorithm 9 new attributes of the form ∃r.(
d
Pk)ii are added in

each iteration. In Model Exploration only a submodel il of i is known
in the k-th iteration, which means that we cannot compute (

d
Pk)ii but

only (
d
Pk)ilil . Luckily, there is an elegant way to obtain the informa-

tion whether (
d
Pk)ilil ≡ (

d
Pk)ii holds. We ask the expert whether the

GCI
d
Pk v (

d
Pk)ilil holds in the background model i. The following

result shows that (
d
Pk)ilil ≡ (

d
Pk)ii holds if and only if the expert

accepts.

Lemma 6.14. Let j = (∆j , ·j) be a connected submodel of i = (∆i, ·i).
If C v Cjj holds in i then j satisfies Cjj ≡ Cii.

Proof. C v Cjj holds in i and thus Ci ⊆ (Cjj)i holds. Lemma 4.1 (7)
implies

Cii v Cjj .

On the other hand C v Cii holds in i. Corollary 6.13 implies that
C v Cii also holds in j. Thus Cj ⊆ (Cii)j holds and Lemma 4.1 (7)
implies

Cjj v Cii.

Thus Cjj and Cii are equivalent.

Lemma 6.14 shows that we can obtain the correct right-hand side for
a GCI by querying the expert. This leads us to our Model Exploration
formalism, Algorithm 11. The only difference between Algorithm 11
and Algorithm 9 is the inner while-loop, Lines 5 to 8, where all expert
interaction takes place.
Since the setMi is finite, only finitely many attributes can be added in

Algorithm 11. This means that the outer while-loop can only be entered

133

6 Exploration of EL⊥gfp-Models

a finite number of times. With every pass of the inner while-loop, the
working model is extended. Since the working models are submodels of
the finite background model, this can only happen a finite number of
times. This shows that Algorithm 11 terminates after a finite number
of steps.

Lemma 6.15. Algorithm 11 terminates for every finite background
model i.

Theorem 6.16. Assume that Algorithm 11 terminates after the n-th
iteration of the outer while-loop and that i` is the final working model.
Then

B6 = {
l
P̄ → (

l
P̄)i`i` | P̄ → P̄ ′′n ∈ L̄n}

is a finite base for the EL⊥gfp-GCIs holding in i.

Proof. We prove that Algorithm 11 with the working model i0 as input
has the same output as Algorithm 9 with the full background model i as
input. To do this we show that P̄k =̇Pk, M̄k =̇Mk, L̄k =̇Lk and S̄k =̇Sk
holds for all k ∈ {0, . . . , n}, where for sets of implications we define =̇
as follows. We call two implications equal up to equivalence if both their
left-hand sides and their right-hand sides are equal up to equivalence,
respectively. Two sets of implications S1 and S2 are called equal up to
equivalence if for each implication in S1 there is an implication in S2

that is equal up to equivalence, and vice versa.
We use induction over k to prove that P̄k =̇Pk, M̄k =̇Mk, L̄k =̇Lk

and S̄k =̇Sk hold for all k ∈ {0, . . . , n}. Base Case: For k = 0 in both
algorithms the sets P̄0 and P0 obtain the initial value P̄0 = P0 = ∅.
Likewise, M̄0 = M0 = NC ∪ {⊥}, S̄0 = S0 = {{⊥} → {A} | A ∈ NC},
and L̄0 = L0 = ∅ hold.
Step Case: Assume that P̄m =̇Pm, M̄m =̇Mm, S̄m =̇Sm, as well as
L̄m =̇Lm holds for all m ≤ k. Algorithm 11 can only reach Line 9
if the expert has confirmed that

d
P̄k v (

d
P̄k)ilil holds in the back-

ground model i. Lemma 6.14 shows that (
d
P̄k)ilil ≡ (

d
P̄k)ii holds

and thus by induction hypothesis (
d
P̄k)ilil ≡ (

d
Pk)ii holds. Likewise,

(
d
P̄m)ilil ≡ (

d
Pm)ii holds for all m < k since

d
P̄m v (

d
P̄m)isis has

been confirmed in earlier iterations for some working model is that is a

134

6.2 Model Exploration

submodel of il. This proves

M̄k+1 = M̄k ∩ {∃r.(
l
P̄k)ilil | r ∈ NR}

=̇Mk ∩ {∃r.(
l
Pk)ii | r ∈ NR}

=Mk+1.

We readily obtain S̄k+1 =̇Sk+1 since both S̄k+1 and Sk+1 only depend
on M̄k+1 and Mk+1, respectively. We obtain from Corollary 4.13 that

P̄ ′′km = prM̄k
((

l
P̄m)ilil) = prM̄k

((
l
Pm)ii) =̇prMk

((
l
Pm)ii) = P ′′km

holds for all m ≤ k. This proves L̄k =̇Lk. The value of P̄k depends only
on M̄k, L̄k and S̄k. It therefore holds that P̄k =̇Pk.
We have thus shown that Algorithm 11 and Algorithm 9 produce

the same output. Since Algorithm 11 is correct, Algorithm 9 must be
correct, too.

In this section we have presented our Model Exploration formalism
Algorithm 11 which is based on Algorithm 9. The only motivation for
using Algorithm 9 and not Algorithm 10 was to avoid making the al-
gorithm listings even more cluttered than they already are. One might
as well apply the same modifications to Algorithm 10 and obtain an
equally functional exploration formalism.
Model Exploration can be used for ontology completion in a setting

where both an ontology O = (T ,A) and a partial model i0 are available.
In such a setting one would not use a human expert, but a combination
of a human expert and a DL reasoner. When a question is asked, one
would first use the reasoner to check whether the GCI follows from the
existing ontology. Only if this is not the case, will it be presented to
the human expert. Upon termination, those GCIs from B6 that do not
already follow from O are added to T .

Example 6.2. We illustrate Algorithm 11 using the model i from Ex-
ample 5.3 as the background model. Assume that the initial working
model i0 contains only the first family consisting of Kirk, Luann and
Milhouse. Thus we have

∆i0 = {Kirk, Luann,Milhouse}

135

6 Exploration of EL⊥gfp-Models

Table 6.4: K0

⊥ M
ot
h
er

F
at
h
er

F
em

al
e

M
al
e

Kirk × ×
Luann × ×
Milhouse ×

Table 6.5: K1
⊥ M
ot
h
er

F
at
h
er

F
em

al
e

M
al
e

∃c
.>

Kirk × × ×
Luann × × ×
Milhouse ×

and

Motheri0 = Femalei0 = {Luann}
Fatheri0 = {Kirk}
Malei0 = {Kirk,Milhouse}

ci0 = {(Kirk,Milhouse), (Luann,Milhouse)}

1st iteration: The algorithm starts with P0 = ∅ and the context K0

from Table 6.4. We have
d
P0 = > and >i0i0 = >. Therefore the

expert is asked if the GCI > v > holds. Obviously, the answer is “yes”.1

1To avoid asking the expert trivial questions one could use a DL-reasoner to check
whether Pk is equivalent to P ilil

k . We have not added this to Algorithm 11 to
keep the pseudo-code more concise. However, checking for equivalence would be
necessary in a practical implementation.

136

6.2 Model Exploration

Kirk Luann

Milhouse

Jackie

Selma

Female,
Mother

Male,
Father

Female,
Mother

Male Female

c c c

Figure 6.1: Connected Submodel

Kirk Luann

Milhouse

Jackie

Female,
Mother

Male,
Father

Female,
Mother

Male

c c

Figure 6.2: Not a Connected Sub-
model

We compute M1 by adding the attribute ∃c.(
d
P0)i0i0 = ∃c.> to M0.

Table 6.5 shows the resulting context K1.
2nd iteration: We obtain L1 = ∅ and S1 = {{⊥} → {A} | A ∈ NC}.

The lectically next set that respects all implications from L1 ∪ S1 is
P1 = {Mother}. Luann is the only mother in the current working model
and Luann’s child is a son. We obtain P i0i01 = FemaleuMotheru∃c.Male.
The next GCI that is presented to the expert is therefore

Mother v Female uMother u ∃c.Male.

Thus the expert is asked whether all mother are female and have a child
that is male. This GCI does not hold in the background model i since
Jackie is a mother that has only a daughter. Therefore, the expert rejects
the GCI and adds Jackie as a counterexample. She must also add Jackie’s
daughter Selma because the new model i1 must be a connected submodel
of the background model i (Figure 6.1). Algorithm 11 computes a new
GCI based on the new working model i1. The new GCI

Mother v Female uMother u ∃c.> (6.6)

is presented to the expert who accepts it. Consequently, the new at-
tribute ∃c.(Female uMother u ∃c.>) = ∃c.MoC is added.
Without the requirement that working models have to be connected

submodels of the background model the expert could have added only

137

6 Exploration of EL⊥gfp-Models

Jackie without adding Selma (Figure 6.2). In the model from Figure 6.2
Jackie is a counterexample to the GCI Mother v ∃c.>, i. e. it is not true
that all mothers in Figure 6.2 have children. Hence, Algorithm 11 could
not have found the GCI (6.6).
We do not look at the next iterations in as much details. The following

non-trivial GCIs are found:

• Father v Father uMale u ∃c.Male (rejected, Clancy added as coun-
terexample),

• Father v Father uMale u ∃c.> (accepted),

• Male u Female v ⊥ (accepted),

• Female u ∃c.> v Mother u Female u ∃c.> (accepted),

• Male u ∃r.> v Father uMale u ∃c.> (accepted),

• ∃c.Female u ∃c.Male v ⊥ (accepted), and

• ∃c.∃c.> v ⊥ (accepted).

The accepted GCIs are the same GCIs as in Example 5.4. Hence, in this
particular example the property of minimal cardinality still holds.

138

7 ABox Exploration

In order to add a counterexample in Model Exploration the expert needs
to provide a connected submodel of the background model. This is not
problematic if the background model is fragmented like in Example 5.3.
It stands to reason that in practice the more role names occur in a do-
main the less fragmented will a model representing the domain become.
Let us look at the model from Figure 7.1. This model does not have
any connected submodels except the model itself. In order to provide
a counterexample to even a simple GCI such as Male v ⊥ the expert
has to add the entire background model, defeating the purpose of Model
Exploration. In this section we introduce ABox Exploration, which al-
lows counterexamples to be provided in an ABox instead of a model. In
contrast to the closed-world semantics of a model the open-world seman-
tics of the ABox allow the expert to add just enough information as is
needed to describe a counterexample, without unwanted consequences.
Except for the way counterexamples are described the setting remains
the same as for Model Exploration.
As the logic for the ABox that contains the counterexamples we choose
EL⊥ since we would like to remain within the range of EL++. In the first
section of this chapter we show that EL⊥ is expressive enough to describe

Don Betty

Sally

Henry

FemaleMale

Female

Male

hasChild hasChild

hasParent hasParent

marriedTo

marriedTo

Figure 7.1: A Strongly Connected Background Model

139

7 ABox Exploration

that an individual is a counterexample to a given GCI. In a next step
we introduce minimal possible consequences, which can replace model-
based most specific concepts in our open-world setting. A large technical
part of this chapter answers the question of existence of minimal possible
consequences. We later introduce an approximation of minimal possible
consequences that has better computational properties. The final section
presents the actual exploration algorithms. Some of these results can
also be found in [Dis10a].

7.1 Counterexamples in an EL⊥-Ontology
We point out several problems that arise when counterexamples are pro-
vided in an ABox instead of a model. First, it is not immediately clear
when it makes sense to say that an ABox contains a counterexample.
In the first part of this section we present an intuitive type of coun-
terexamples that we call explicit counterexamples. We address the issue
whether in an open-world setting the expressivity of EL⊥ is sufficient to
express that an individual is an explicit counterexample for a given GCI
C v D. The second part asks whether it is possible to find an ABox
that contains counterexamples for all GCIs that do not hold in a given
background model i. The last part illustrates the fact that sometimes a
GCI C v D cannot hold in any model of an ontology O = (T ,A), even
if no explicit counterexamples are present.

7.1.1 Explicit Counterexamples and Extended
Signatures

Intuitively, one would call an ABox individual a a counterexample to
the GCI C v D if a is an instance of C but cannot be an instance of
D. We formally introduce the term explicit counterexample for such an
individual.

Definition 7.1 (Explicit Counterexample). Let O = (T ,A) be an on-
tology, let a ∈ NI be an individual and C v D an EL⊥gfp-GCI. We say
that a is an explicit counterexample to the GCI C v D with respect to
O if O |= C(a) (i. e. all models i of O satisfy ai ∈ Ci) and O |= ¬D(a)
(i. e. all models i of O satisfy ai /∈ Di).

140

7.1 Counterexamples in an EL⊥-Ontology

We use an example to illustrate how explicit counterexamples can be
provided using only the expressivity of EL⊥.

Example 7.1. In the background model from Figure 7.1 the individual
Don is a counterexample to the GCI Male v ∃marriedTo.>. We want to
add Don as an individual to an ABox A and want to make sure that
the individual Don is a counterexample to Male v ∃marriedTo.>. It is
easy to express that Don is an instance of Male: We can simply add the
statement Male(Don) to A.

Since EL⊥ does not allow for negation it is not trivial to express that
Don is not an instance of ∃marriedTo.>. While this cannot be done
using the ABox alone, it can be done using a disjointness statement in
the TBox. To this purpose, we extend the signature by adding a new
concept name TDon. We add to the ABox the statement

TDon(Don)

and make sure that TDon and ∃marriedTo.> are disjoint by adding

TDon u ∃marriedTo.> v ⊥

to T . Because Don is an instance of TDon and because we have ensured
that TDon and ∃marriedTo.> are disjoint, we have expressed that Don
cannot be an instance of ∃marriedTo.>.

Clearly, this method to describe counterexamples can be used, not
only for the specific GCI, Male v ∃marriedTo.> but for any GCI C v D.
We simply add a new individual a, a new concept name Ta as well as
statements C(a), Ta(a) and D u Ta v ⊥. This requires that we are
allowed to extend the signature of the current knowledge base O =
(T ,A): We extend the set of individual names NI by adding the name
a and the set of concept names NC by adding the name Ta.
In an exploration setting a background model i is present from the

beginning of the exploration, and i is a model of the initial knowledge
base O0 = (T0,A0). O0 uses the set of concept names NC and a set
of individual names NI . In such a setting it is problematic to extend
the signature of the O0 by using an extended set of individual names
NI ∪ N new

I and a set of concept names NC ∪ N new
C . Since i is a model

of O0 it maps every individual name a ∈ NI to an element ai ∈ ∆i and
every concept name A ∈ NC to a set Ai ⊆ ∆i. However, it does not

141

7 ABox Exploration

map individual names from N new
I to elements of ∆i, nor does it map

concept names from N new
C to subsets of ∆i. Therefore the background

model i cannot be a model of the knowledge base with the extended
signature. We need to introduce the notion of a representation of an
interpretation.

Definition 7.2 (Representation). Let NI and N new
I be disjoint sets of

individual names, letNC andN new
C be disjoint sets of concept names and

let NR be a set of role names. Let i = (∆i, ·i) be an EL⊥-interpretation
for the signature (NC ,NR). An ontology O = (T ,A) over the signature
(NC ∪ N new

C ,NR,NI ∪ N new
I) is called a representation of i if for every

new individual name a ∈ N new
I we can find an element xa ∈ ∆i and

for every new concept name A ∈ N new
C we can find a set SA ⊆ ∆i such

that when i is extended to map every new individual name a ∈ N new
I to

ai = xa and every new concept name A ∈ N new
C to Ai = SA then i is a

model of O.

7.1.2 Completely Describing the Background Model

We have seen that it is possible to describe a counterexample for a given
GCI in an EL⊥-ontology, provided that we allow new concept names to
be used. In this section we prove a stronger result, namely that for any
given background model i we can find a representation of i that contains
an explicit counterexample to every GCI that does not hold in i.
Let i = (∆i, ·i) be the background model that uses the signature

(NC ,NR). We define an ontology Oi = (Ti,Ai) as follows. For every
individual x ∈ ∆i new concept names Tx and Fx are added to the set of
concept names, i. e. N new

C = {Tx, Fx | x ∈ ∆i}. Furthermore, for every
x ∈ ∆i an individual name ax is added to the set of individual names,
i. e. N new

I = {ax | x ∈ ∆i}. Intuitively, we want Tx to represent all
properties that x does have and we want Fx to represent all properties
that x does not have. The TBox Ti is defined as

Ti ={Tx u Fx v ⊥ | x ∈ ∆i}
∪ {A v Fx | x ∈ ∆i, A ∈ NC , x /∈ Ai}

∪
{
∃r.

l
S v Fx | r ∈ NR, x ∈ ∆i, S = {Fy | y ∈ succri (x)}

}
.

(7.1)

142

7.1 Counterexamples in an EL⊥-Ontology

Ai is defined as

Ai ={A(ax) | x ∈ ∆i, A ∈ namesi(x)}
∪ {r(ax, ay) | (x, y) ∈ ri}
∪ {Tx(ax) | x ∈ ∆i}.

(7.2)

Lemma 7.1. Oi = (Ti,Ai) is a representation of i.

Proof. We define for all x ∈ ∆i

• aix = x,

• T ix = {x}, and

• F ix = ∆i \ {x}.

We show that this extension of i is a model of Oi = (Ti,Ai). To this
purpose, we need to verify that all statements from Ti and Ai hold in
i. Here, we only prove this for the most complex type of statement,
namely statements of the form ∃r.

d
S v Fx, where r ∈ NR, x ∈ ∆i

and S = {Fy | y ∈ succri (x)}. Let z ∈ ∆i be an individual that satisfies
z ∈ (∃r.

d
S)i. This implies that there is some r-successor z′ of z such

that z′ ∈ F iy holds for all y ∈ succri (x). By definition it holds that
F iy = ∆i \ {y} and therefore we obtain z′ 6= y for all y ∈ ∆i that
are r-successors of x. Hence z′ cannot be an r-successor of x and thus
z 6= x holds. From F ix = ∆i \ {x} it follows that z ∈ F ix. Therefore
∃r.

d
S v Fx holds in i.

One can prove in a similar fashion that all other statements from Oi
hold in i. We obtain that the extended version of i is a model of Oi and
thus Oi is a representation of i.

We have shown that Oi is a representation of i. We now prove that it
completely describes i, i. e. that it contains an explicit counterexample
to every GCI that does not hold in i. The following technical lemma
helps us with that.

Lemma 7.2. Let C be an EL⊥gfp-concept description and let x ∈ ∆i be
an individual. Let j be a model of Oi. Then x ∈ Ci holds iff ajx ∈ Cj
holds.

143

7 ABox Exploration

Proof. The case C = ⊥ is trivial. We assume that C = (AC , TC) is an
ELgfp-concept description. We first prove that x ∈ Ci implies ajx ∈ Cj
by constructing a simulation. From x ∈ Ci and Lemma 2.2 it follows
that there is a simulation Z from C to x in i. We prove that the relation
Z1 defined as

Z1 = {(B, ajy) | (B, y) ∈ Z}

is a simulation from C to ajx in j. (S1′) Let (B, ajy) ∈ Z1 be a pair
in Z1. Then (B, y) ∈ Z holds. Since Z is a simulation from C to x
in i it holds that namesTC (B) ⊆ namesi(y). Let A ∈ namesi(y) be
a concept name. Then Ai contains the statement A(ay). Since j is a
model of Oi it holds that ajy ∈ Aj and thus A ∈ namesj(ajy). This proves
namesi(y) ⊆ namesj(ay). Together with namesTC (B) ⊆ namesi(y) we
obtain namesTC (B) ⊆ namesj(ajy). This proves (S1′) for Z1. (S2′) Let
(B, ajy) ∈ Z1 be a pair in the relation Z1 and let B′ ∈ succrTC (B) be an r-
successor of B. According to the definition of Z1 it holds that (B, y) ∈ Z.
Since Z is a simulation satisfying (S2′) there must be some y′ ∈ succri (y)

that satisfies (B′, y′) ∈ Z. (B′, ajy′) ∈ Z1 follows immediately from the
definition of Z1. It remains to show that ajy′ ∈ succrj(ajy) holds. Because
of y′ ∈ succri (y) the ABox Ai contains a statement r(ay, ay′). Since j
is a model of Oj this implies ajy′ ∈ succri (ajy). This proves (S2′) for Z1.
(S3′) Since Z contains the pair (AC , x) we readily obtain (AC , a

j
x) ∈ Z1.

We have thus shown that Z1 is a simulation from C to ajx in j.
Lemma 2.2 yields ajx ∈ Cj . We now prove the reverse direction where
we assume that ajx ∈ Cj holds and show that this implies xi ∈ Ci. We
first prove that

Z2 = {(y, z) | y /∈ F jz }

is a simulation from j to i. (S1) Let (y, z) ∈ Z2 be a pair from Z2 and let
A be a concept name that satisfies y ∈ Aj . Assume that zi /∈ Ai holds.
Then Ti contains the statement A v Fz. Since j is a model of Oi and
since y ∈ Aj holds we obtain y ∈ F jz . This contradicts (y, z) ∈ Z2 and
therefore the assumption zi /∈ Ai can be refuted. We have thus shown
that y ∈ Aj implies z ∈ Ai and therefore namesj(y) ⊆ namesi(z).
(S2) Let (y, z) ∈ Z2 be a pair from the Z2, let r ∈ NR be a role name

and let y′ ∈ succrj(y) be an r-successor of y. Assume that (y′, z′) /∈ Z2

holds for all z′ ∈ succri (z). Then the definition of Z2 yields y′ ∈ F jz′ for all
z′ ∈ succri (z). We obtain y′ ∈ (

d
S)j , where S = {Fz′ | z′ ∈ succri (z)}.

144

7.1 Counterexamples in an EL⊥-Ontology

Therefore y ∈ (∃r.
d
S)j holds. On the other hand, Ti contains the

statement ∃r.
d
S v Fz. Since j is a model of Oi this yields y ∈ F jz .

This contradicts (y, z) ∈ Z2. Therefore the assumption that (y′, z′) /∈ Z2

holds for all z′ ∈ succri (z) must be false. This proves (S2) for Z2 We
have thus shown that Z2 is a simulation from j to i. It is readily verified
that Z2 contains the pair (ajx, x).
Lemma 2.2 and ajx ∈ Cj yield that there is a simulation Z3 from C to

ajx in j. Since the concatenation of two simulations is also a simulation
the relation Z2 ◦ Z3 must be a simulation from C to x in i. We obtain
xi ∈ Ci from Lemma 2.2.

Theorem 7.3. If C v D is a GCI that does not hold in i then Oi
contains an explicit counterexample for C v D.

Proof. Since C v D does not hold in i there exists some x ∈ Ci such
that x /∈ Di. We show that the corresponding ABox-individual ax is
an explicit counterexample to C v D. Let j1 be a model of Oi. From
x ∈ Ci and Lemma 7.2 it follows that aj1x ∈ Cj1 holds. Oi |= C(ax)
follows because j1 is an arbitrary model of Oi.
Conversely, assume that there is a model j2 of Oi which satisfies

aj2x ∈ Dj2 . Then Lemma 7.2 implies x ∈ Di. This contradicts x /∈ Di

and therefore such a model j2 cannot exist. Hence, Oi |= ¬D(ax) holds.
Together with Oi |= C(ax) we obtain that ax is an explicit counterex-
ample to C v D.

7.1.3 Counterexamples Need not be Explicit

A perhaps surprising fact is that in an EL⊥-ontology counterexamples
need not be explicit. If an ontology O does not contain an explicit
counterexample to a GCI C v D then it is still possible that C v D
does not hold in any model of O. The following example illustrates this.

Example 7.2 (Counterexamples Need not be Explicit). Let us look at
the following ontology O = (T ,A) containing two individuals, a mother
Peggy and an Infant. The ontology contains the following knowledge.

T = {TPeggy u ∃hasChild.∃hasChild.> v ⊥,
TInfant u ∃hasChild.> v ⊥}

145

7 ABox Exploration

and

A = {TPeggy(Peggy),Female(Peggy),

TInfant(Infant), hasChild(Peggy, Infant)}

The TBox axioms ensure that Peggy does not have any grandchildren,
while the Infant does not have any children. The ABox yields that Peggy
is Female and the Infant’s mother. The ontology does not contain the
information whether the Infant is Female or not.
We consider the GCI Female v ∃hasChild.Female. Infant is not an

explicit counterexample since it is not an instance of Female (cf. Fig-
ures 7.2 and 7.4). Peggy is not an explicit counterexample, either. Even
though Peggy is an instance of Female, there are models i in which
Peggy ∈ (∃hasChild.Female)i does hold (cf. Figures 7.3 and 7.4). Thus
there are no explicit counterexamples to Female v ∃hasChild.Female in
O.
Suprisingly, every model of O must still contain a counterexample.

Assume that i1 is a model of O in which Peggyi1 does not have any
hasChild-successors that are in Femalei1 . Then Peggyi1 ∈ Femalei1 holds,
but also Peggyi1 /∈ ∃hasChild.Female holds. Thus Peggyi1 serves as a
counterexample in the model i1.
Conversely, assume that i2 is a model of O in which Peggyi2 does

have a hasChild-successor x ∈ Femalei2 . Peggyi2 does not have any
grandchildren because of the first statement in T . Thus x cannot have
any hasChild-successors in i2 and in particular x /∈ (∃hasChild.Female)i2

holds. Thus x serves as a counterexample in i2.
We have thus shown that while there is no explicit counterexample

present in O the GCI Female v ∃hasChild.Female still cannot hold in any
model ofO. Every model i ofO must contain a counterexample, but that
counterexample can be Peggyi (cf. Figure 7.2) or Infanti (cf. Figure 7.3)
or even an unnamed individual x ∈ ∆i as in Figure 7.4. Hence, there is
no model of O in which the GCI Female v ∃hasChild.Female holds.

Definition 7.3. Let O = (T ,A) be an ontology, and C v D an EL⊥gfp-
GCI. We say that C v D is refuted by O if there is no model i of O in
which C v D holds.

Clearly, if O contains an explicit counterexample to the GCI C v D
then C v D is refuted by O. Example 7.2 shows that the converse is

146

7.2 Minimal Possible Consequences and Their Approximations

Peggy

Infant

Female

hasChild

Figure 7.2: Peggy
Serves as
Counter-
example

Peggy

Infant

Female

Female

hasChild

Figure 7.3: Infant
Serves as
Counter-
example

Peggy

Infant x

Female

Female

hasChild hasChild

Figure 7.4: x Serves as
Counterex-
ample

not true. We can use a reasoner to check whether C v D is refuted
by O = (T ,A) using consistency checking. We could simply have the
reasoner perform a consistency check on the ontologyO′ = (T ′,A) where
T ′ = T ∪{C v D}. If O′ is consistent, then C v D is not refuted by O.

7.2 Minimal Possible Consequences and
Their Approximations

7.2.1 Definitions

When developing knowledge base completion formalisms we strive for
completeness with respect to the GCIs that hold in a background model
i. In this section we consider a setting where we are given a represen-
tation O = (T ,A) of i. We can distinguish three types of GCIs. First,
there are the GCIs that follow from O. These GCIs hold in all models of
O and – provided they do not use any of the new concept names – also
in the background model i. It is not interesting to present such GCIs
to an expert since the knowledge about them is already present in O
and can be obtained using subsumption reasoning. At the other end of
the spectrum are the GCIs that do not hold in any model of O. These
are the GCIs that are refuted by O in the sense of Definition 7.3. They
are also not interesting, since the information that they cannot hold is

147

7 ABox Exploration

already implicitly present in O.
The GCIs that are relevant for knowledge base completion are those

that fall into neither of the two categories, namely those that neither
follow from O nor are refuted by O.
Definition 7.4 (Possible Consequence). Let C and D be EL⊥gfp-concept
descriptions and O an EL⊥-ontology. If C v D is not refuted by O then
D is called a possible consequence of C with respect to O. Conversely,
we say that D is a certain consequence of C if C v D follows from O.

We denote the set of all possible consequences of C with respect to O
by pcO(C). If D is a possible consequence of C and i is a model of O
such that C v D holds in i then we call i a witness model for C v D.
We have seen in Section 7.1.1 that it is sometimes necessary to ex-

tend the set of concept names in order to define counterexamples. This
motivates why we introduce possible consequences also for a restricted
signature: LetO be an ontology over the signature (NC∪N new

C ,NR,NI∪
N new
I). We denote the set of all EL⊥gfp-concept descriptions C over the

signature (NC ,NR) that are possible consequences with respect to O by
pcNC

O (C).

When we present a GCI C v D as a question to the expert the right-
hand side D should be a possible consequence of the left-hand side C,
but not a certain consequence. However, it is not a good strategy to use
any possible consequence of C. Like in the previous chapters, we want
to make sure that, once the expert has accepted C v D, no other GCIs
with C as their left-hand side need to be asked. Therefore, we want to
ensure that the right-hand side is as specific as possible.

Definition 7.5 (Minimal Possible Consequence). Let O be an EL⊥-
ontology over the signature (NC ∪ N new

C ,NR,NI ∪ N new
I). Let C be a

EL⊥gfp-concept description over the restricted signature (NC ,NR).
The minimal elements of pcNC

O (C) with respect tov are calledminimal
possible consequences of C with respect to O for the set of concept names
NC . We denote the set of minimal possible consequences of C with
respect to O for the set of concept names NC by mpcNC

O (C). If no set of
concept names is specified then we allow the full set of concept names
NC ∪N new

C used in O.
Notice that we use EL⊥ for the ontology and EL⊥gfp for the mini-

mal possible consequences. Like in Model Exploration, the idea is that

148

7.2 Minimal Possible Consequences and Their Approximations

cyclic concept descriptions are used temporarily during the exploration,
but should be removed upon termination using the construction from
Section 5.3. Cyclic concept descriptions should neither be nor become
part of the actual ontology, since they are currently not supported by
reasoners.

In an open world setting minimal possible consequences are the equiv-
alent notion to model-based most specific concepts in a closed world set-
ting.1 Unfortunately, unlike model-based most specific concepts, mini-
mal possible consequences are not unique up to equivalence. We demon-
strate this in the following example.

Example 7.3 (Minimal Possible Consequences are not Unique). Mini-
mal possible consequences are not unique, even in a very simple setting
where the set of role names NR is empty. Let NC = {A,B,C} be the
set of concept names. We consider the TBox

T = {A uB u C v ⊥}

and the ABox

A = {A(a)}.

We look for a minimal possible consequence of A with respect to (T ,A)
allowing the full set of concept names. Clearly, since every model i has
to contain an individual ai ∈ Ai the bottom concept ⊥ is not a possible
consequence of A. Also A v A u B u C cannot hold in any model i
of O because of the TBox statement A u B u C v ⊥. However, both
A v A u B and A v A u C are not refuted by O and thus both A u B
and A u C are minimal possible consequences of A with respect to O.

Example 7.4 (Minimal Possible Consequences can be Large). Let n be
a natural number. Let the set of concept names be NC = {A,B10, B11,
B20, B21, . . . , Bn0, Bn1} and let the set of role names be NR = {r}. We

1Note that, despite the similarity in names, most specific concepts for ABoxes have
a different flavour. They express the properties that an ABox-individual must
have, and are thus more closely related to certain consequences than to possible
consequences.

149

7 ABox Exploration

x

y

A,B10, B11, . . . ,
Bn0, Bn1

A,B1τ1 , B2τ2 , . . . ,
Bnτn

r

Figure 7.5: Witness Model
for Cτ

x

y1

y2

. . .

A,B10, B11, . . . ,
Bn0, Bn1

A,B1τ1,1 , B2τ1,2 , . . . ,
Bnτ1,n

A,B1τ2,1 , B2τ2,2 , . . . ,
Bnτ2,n

r

r

Figure 7.6: Witness Model for D

consider the TBox

T = {A t ∃r.A v ⊥,
A u ∃r.∃r.> v ⊥,
A u ∃r.(B10 uB11) v ⊥,
A u ∃r.(B20 uB21) v ⊥,
...
A u ∃r.(Bn0 uBn1) v ⊥}

and the ABox
A = {A(a)}.

For every binary vector τ = (τ1, . . . , τn) ∈ {0, 1}n the concept descrip-
tion Cτ = ∃r.

d
Sτ , where Sτ = {Bkτk | k ∈ {1, . . . , n}}, is a possible

consequence of A with respect to O = (T ,A) (cf. Figure 7.5 for a witness
model). Also the conjunction

D =
l
NC u

l

τ∈{0,1}n
Cτ (7.3)

150

7.2 Minimal Possible Consequences and Their Approximations

is a possible consequence of A with respect to O (cf. Figure 7.6 for a
witness model). In every model i of O there is at least one individual
in Ai, namely ai. An r-successor of ai cannot have an r-successor itself,
nor can it be an element of Ai nor an element of (Bk0 uBk1)i for some
k ∈ {1, . . . , n}. All of this would contradict one of the TBox-statements.
Hence D as defined in (7.3) is a minimal possible consequence of A with
respect to O = (T ,A). One can even verify that it is the only minimal
possible consequence of A. D is exponentially large in n and there
is no equivalent EL⊥gfp-concept description that is more succinct. This
demonstrates that an exponential blowup in size cannot be avoided when
minimal possible consequences are computed.

7.2.2 Existence
In this section we prove that in EL⊥-ontologies minimal possible con-
sequences always exist. The proof also yields a construction, which is,
however, not very efficient. Matters are complicated by the facts that
minimal possible consequences are not unique and that they can be ex-
ponentially large. We divide the proof into three parts, starting with
simpler settings and then gradually moving towards the general setting,
eventually leading to the main result of this section, Theorem 7.18.
Readers who are only interested in the ABox Exploration algorithms
may want to skip these proofs.

Restricted Canonical Models

Eventually, we want to prove existence of minimal possible consequences
for the general setting where a TBox and an ABox are present and
where new concept names have been added to the TBox. For now, we
make several simplifications. We are not looking for minimal possible
consequences of a complex EL⊥gfp-concept description, but of a concept
name A ∈ NC . Second, we assume that T is a general EL⊥-TBox over
the signature (NC ,NR) and that T is in the following normal form:
Every axiom in T is of one of the forms

E u F v G
E v ∃r.F

∃r.E v G
(7.4)

151

7 ABox Exploration

where r ∈ NR is a role-name, and E,F ∈ NC ∪ {>} and G ∈ NC ∪ {⊥}
are concept descriptions. Finally, we require that no ABox is present.
Our goal is to prove that mpcNC

O (A) is not empty, where O = (T , ∅) and
NC is the full set of concept names used in T in its normal form.
By asking a reasoner whether T ∪ {A v ⊥} is consistent we can

check whether ⊥ is a possible consequence of A with respect to O =
(T , ∅). If it is, then a minimal possible consequence obviously exists. In
the following we assume that ⊥ is not a minimal possible consequence.
In this case minimal possible consequences, provided that they exist,
must be ELgfp-concept descriptions. The idea of our proof is to provide
a construction, not for the concept description itself, but for one of
its witness models. Intuitively, a minimal possible consequence E of
A is a maximally “complex” ELgfp-concept description such that T ∪
{A v E} remains consistent. A first intuition is that the witness model
should then also be as “complex” as possible. This reasoning motivates
that a canonical model of T , i. e. a model κ of T such that there is a
simulation from every model i of T to κ, is a witness model of a minimal
possible consequence. Unfortunately, this is not the case in situations
where minimal possible consequences are not unique.2 This is why we
introduce restricted models.

Definition 7.6 (Restricted Model). Let O be an ontology and i a model
of O. Let R ⊆ NC be a set of concept names. We say that i is restricted
with respect to A→ R if A v

d
R holds in i. We say that i is maximally

restricted with respect to A→ R if i is restricted with respect to A→ R,
and there is no strict superset R̄) R such that i is restricted with respect
to A→ R̄.
R is called a restriction set of A with respect to T if there is a model

i of T such that i is maximally restricted with respect to A→ R.

Let R be a restriction set of A with respect to T . Instead of con-
structing the canonical model of T we construct a model that is canon-
ical among all models that are restricted with respect to A→ R, i. e. a

2An example where the canonical model is not the witness model of minimal possible
consequence is Example 7.3. In this example one canonical model would be
i = ({x, y, z}, ·i), where Ai = {x, y}, Bi = {x, z}, Ci = {y, z} and ai = x. It
is not a witness for either of the minimal possible consequences of A. In this
example an ABox is present, but examples without ABoxes are also not difficult
to construct.

152

7.2 Minimal Possible Consequences and Their Approximations

model κR such that κR is restricted with respect to A→ R and for every
model i that is restricted with respect to A → R there is a simulation
from i to κR.

Definition 7.7 (Candidate Namesets). A set of concept names U ⊆ NC
is called a candidate nameset with respect to T and A→ R if

• A /∈ U or R ⊆ U ,

• for all TBox statements EuF v G ∈ T it holds that E ∈ U ∪{>}
and F ∈ U ∪ {>} implies G ∈ U .

Let i = (∆i, ·i) be a model of T that is restricted with respect to
A→ R. Then for all individuals x ∈ ∆i the set namesi(x) is a candidate
nameset with respect to T and A → R. The converse is not true, i. e.
not all candidate namesets occur in an actual model. To find those
candidate namesets that do occur in a model we need to look at the
other two types of TBox statements from (7.4). Furthermore, x can
have an r-successor if and only if canrT (U) contains >.
The TBox axioms of the form E v ∃r.F ∈ T tell us something

about the names that must occur in some r-successor of x. Clearly,
if E ∈ namesi(x) then there must be some r-successor y of x with
F ∈ namesi(y). We define for every set U ⊆ NC

mustrT (U) =
{
F | E v ∃r.F ∈ T , E ∈ U ∪ {>}

}
. (7.5)

Here > ∈ mustrT (U) implies that every individual x with namesi(x) = U
must have at least one r-successor. The third type of TBox axioms is
of the form ∃r.E v G ∈ T . These statements tell us which names an r-
successor of x cannot have. If G /∈ namesi(x) holds then E /∈ namesi(y)
must hold for all r-successors y ∈ succri (x) or otherwise the statement
∃r.E v G ∈ T would be violated. Hence, the concept names that cannot
occur in an r-successor of x are{

E ∈ NC | ∃r.E v G ∈ T , G /∈ namesi(x)
}

For a set U ⊆ NC we define

canrT (U) = (NC ∪ {>}) \
{
E | ∃r.E v G ∈ T , G /∈ U

}
. (7.6)

Then canrT (U) contains those concept names that can occur as the name
of an r-successor of an individual x ∈ ∆i, if x satisfies namesi(x) = U .

153

7 ABox Exploration

To determine whether a given set U ⊆ 2NC gives rise to a model
of T we introduce the model-conditions. We say that U satisfies the
model-conditions with respect to T and A→ R if

• all sets U ∈ U are candidate namesets with respect to T and
A→ R, and

• for all U ∈ U and all role names r ∈ NR it holds that

mustrT (U) ⊆
⋃{

V ∈ U | V ∪ {>} ⊆ canrT (U)
}
.

If U ⊆ 2NC and V ⊆ 2NC both satisfy the model-conditions then
their union U ∪ V also satisfies the model-conditions. Therefore for
any TBox T and any restriction A → R there exists a greatest set
Umax ∈ 2NC (with respect to set inclusion) that satisfies the model-
conditions, namely the union of all subsets of 2NC that satisfy the model-
conditions.
It is possible to show that the intersection of two candidate name-

sets U and V is also a candidate nameset. Furthermore, it holds that
mustrT (U ∩ V) = mustrT (U)∩mustrT (V) and canrT (U ∩ V) = canrT (U)∩
canrT (V). This can be used to show that Umax is closed under intersec-
tion.

Definition 7.8 (Canonical Restricted Model). Let Umax be the greatest
subset of 2NC that satisfies the model conditions with respect to T and
A→ R. Then the canonical restricted model κR = (∆κR

, ·κR) is defined
as

• ∆κR
= Umax,

• for all B ∈ NC we define BκR =
{
U ∈ Umax | B ∈ U

}
, and

• for all r ∈ NR we define rκR =
{

(U, V) ∈ Umax×Umax | V ∪{>} ⊆
canrT (U)

}
.

Since the individuals in ∆κR
are subsets of NC we violate the conven-

tion that individuals be denoted by lower case letters. Also notice that
namesκR

(U) = U holds for all U ∈ Umax.

Lemma 7.4. If R is a restriction set for A with respect to T then

154

7.2 Minimal Possible Consequences and Their Approximations

1. Umax is not empty and in particular R ∈ Umax holds, and

2. κR is a model of T that is restricted with respect to A→ R.

Proof. 1. Since R is a restriction set for A with respect to T there
must be a model i = (∆i, ·i) of T that is maximally restricted with
respect to A → R. The set of all namesets that occur in i, i. e. the set
{namesi(x) | x ∈ ∆i}, satisfies the model-conditions. Hence it holds
that {namesi(x) | x ∈ ∆i} ⊆ Umax. Since ∆i is not empty this implies
that Umax is not empty either. Furthermore, i is maximally restricted
with respect to A → R and thus

⋂
a∈Ai namesi(a) = R follows. Since

Umax is closed under intersection we obtain R ∈ Umax.
2. To show that κR is a model of T we need to verify that all state-

ments from T hold in κR. We look at the three types of statements
separately. Type E u F v G ∈ T : Let U ∈ Umax be an individual
such that U ∈ (E u F)κR = EκR ∩ FκR . If both E and F are concept
names then by Definition 7.8 this is equivalent to E ∈ namesκR

(U) = U
and F ∈ namesκR

(U) = U . Since Umax contains only candidate name-
sets U must be a candidate nameset. Then E ∈ U and F ∈ U implies
G ∈ U = namesκR

(U) and therefore U ∈ GκR . The case where E = >
or F = > can be treated analogously.
Type ∃r.E v G ∈ T : Let U ∈ Umax be an individual that satisfies

U ∈ (∃r.E)κR . Then there must be some r-successor V ∈ succrκR
(U)

that satisfies V ∈ EκR . Definition 7.8 and V ∈ succrκR
(U) imply that

V ∪ {>} ⊆ canrT (U) holds. Definition 7.8 and V ∈ EκR imply that
E ∈ V ∪{>} holds. Therefore we obtain E ∈ canrT (U). Finally, (7.6) and
∃r.E v G ∈ T yield G ∈ U . Thus U ∈ GκR follows from Definition 7.8.
Type E v ∃r.F ∈ T : Let U ∈ Umax be an individual satisfying

U ∈ EκR . Then by Definition 7.8 it holds that E ∈ U ∪{>}. From (7.5)
we obtain F ∈ mustrT (U). Since Umax satisfies the model-conditions
there must be some V ∈ Umax satisfying F ∈ V and V ⊆ canrT (U). We
obtain from Definition 7.8 that V ∈ FκR and V ∈ succrκR

(U) hold. This
proves U ∈ (∃r.F)κR .
We have shown that all three types (7.4) of statements from T hold in

κR. Therefore κR is a model of T . All elements of Umax are candidate
namesets. Thus if some set U ∈ Umax satisfies A ∈ U = namesκR

(U)
then R ⊆ namesκR

(U) holds. This proves that κR is restricted with
respect to A→ R.

155

7 ABox Exploration

We have shown that for any restriction set R the canonical restricted
model κR is a model of T . The name canonical restricted model suggests
that there should be a simulation from each restricted model of T to κR.
The following lemma proves this.

Lemma 7.5. If R is a restriction set for A with respect to T and i is a
model of T that is restricted with respect to A→ R then

Zi = {(x, namesi(x) | x ∈ ∆i}

is a simulation from i to κR.

Proof. (S1) Let (x, U) ∈ Zi be a pair in Zi. Then by definition of Zi it
holds that U = namesi(x). It holds that namesκR

(U) = U = namesi(x)
which proves (S1) for Zi.
(S2) Let (x, U) ∈ Zi be a pair in Zi, let r ∈ NR be a role name and

y ∈ succri (x) be an r-successor of x in i. We define V = namesi(y).
Then (y, V) ∈ Zi holds by definition. We still need to show that V ∈
succrκR

(U) holds, i. e. we need to prove V ∪{>} ⊆ canrT (U). We assume
the contrary. Let E ∈ V ∪ {>} be a concept description that satisfies
E /∈ canrT (U). We obtain from (7.6) that there is some GCI ∃r.E v G ∈
T such that G /∈ U . U = namesi(x) implies x /∈ Gi. On the other hand
E ∈ V ∪ {>} and V = namesi(y) yields y ∈ Ei. Therefore x ∈ (∃r.E)i

holds. This shows that ∃r.E v G does not hold in i, which contradicts
the fact that i is a model of T . Hence our assumption that V is not an
r-successor of U in κR must be false. This proves (S2) for Zi. We have
thus shown that Zi is a simulation from i to κR.

Minimal Possible Consequences for TBoxes

We still consider the simplified setting where no ABox is present, where
the TBox is in normal form and where we are looking for minimal pos-
sible consequences with respect to the full set of concept names used in
the TBox. Let T be an EL⊥-TBox, R a restriction set of A with re-
spect to T and κR the canonical restricted model with respect to T and
A → R. Remember that in Section 4.1.2 we have defined the concept
description of R in κR to be the concept description that has the same
EL-description graph as κR and uses R as its root concept. We denote
by CR = (R, TR) the concept description of R in κR. In this section we

156

7.2 Minimal Possible Consequences and Their Approximations

first prove that CR is a possible consequence of A with respect to T . In
a second step we show that if R is maximal among the restriction sets
of A with respect to T then CR is a minimal possible consequence of A.
This proves that minimal possible consequences must exist and gives us
an effective method to compute them.

Lemma 7.6. The canonical restricted model κR is a witness model for
A v CR with respect to T .

Proof. To prove that κR is a witness model for A v CR we need to show
that AκR ⊆ CκR

R holds. Let U ∈ Umax be an individual that satisfies
U ∈ AκR , which is equivalent to A ∈ U . To prove that U ∈ CκR

R

holds, we use Lemma 2.2 and prove that the subset relation ⊆ is a
simulation from CR to U in κR. It holds that ∆κR

= ND(TR) = Umax

and therefore ⊆ is a relation between the defined concept names of TR
and the individuals in ∆κR

. (S1′) Let V,W ∈ Umax be two sets satisfying
V ⊆ W . It holds that namesTR(V) = V and namesκR

(W) = W . Hence
V and W satisfy namesTR(V) ⊆ namesκR

(W). This proves (S1′) for ⊆.
(S2′) Let V,W ∈ Umax be two sets satisfying V ⊆ W , let r be a role

name and let V ′ ∈ succrTR(V) be an r-successor of V . Since TR and
κR share the same EL-description graph V ′ ∈ succrTR(V) is equivalent
to V ′ ∈ succrκR

(V). From Definition 7.8 it follows that V ′ ⊆ canrT (V).
From V ⊆ W and (7.6) we obtain canrT (V) ⊆ canrT (W) and therefore
V ′ ⊆ canrT (W). Hence Definition 7.8 yields V ′ ∈ succrκR

(W). Since
obviously V ′ ⊆ V ′ holds this proves (S2′) for ⊆.
(S3′) Since κR is restricted with respect to A→ R and we know that

A ∈ U it follows that R ⊆ U . This proves (S3′) for ⊆.
Hence, ⊆ is a simulation from CR to U in κR. Lemma 2.3 proves that

U ∈ CκR

R holds. We have thus shown that A v CR holds in κR, which
proves that κR is a witness model.

Corollary 7.7. CR is a possible consequence of A with respect to T .

Knowing that CR is a possible consequence of A we would like to
show that it is also minimal among the possible consequences of A. The
following lemma helps us to show this.

Lemma 7.8. Assume that ⊥ is not a possible consequence of A with
respect to T . If i is a model that is maximally restricted with respect to
A→ R then CR v Aii holds.

157

7 ABox Exploration

Proof. Let Gi be the description graph of i. Ai is not empty since ⊥ is
not a possible consequence of A. Let the elements of Ai be enumerated as
Ai = {a1, . . . , an}. We know from Lemma 4.6 that Aii can be obtained
by computing the least common subsumer of the descriptions {ak}i for
all ak ∈ Ai. According to Lemma 4.5 the model-based most specific
concepts {x}i have Gi as their description graph. Lemma 2.4 states that
the description graph of their least common subsumer can be obtained
as the product Gi⊗ · · ·⊗Gi where the number of factors is n. The root
concept of Aii corresponds to the tuple (a1, . . . , an) in Gi ⊗ · · · ⊗Gi.
If we convert Gi ⊗ · · · ⊗ Gi to an interpretation j according to Def-

inition 2.22 then Lemma 5.15 shows that j is a model of T . From
Lemma 7.5 we obtain that

Zj = {(x, namesj(x)) | x ∈ ∆j}

is a simulation from j to κR. The models j and κR share the same
description graph as Aii and CR, respectively. Therefore, to prove that
Zj is a simulation from Aii to CR it suffices to show that Zj contains
the pair

(
(a1, . . . , an), R

)
, the pair of the respective root concepts. Def-

inition 2.25 yields

namesj
(
(a1, . . . , an)

)
=

⋂
k∈{1,...,n}

namesi(ak) =
⋂
a∈Ai

namesi(a).

Since i is maximally restricted with respect to A→ R it holds that⋂
a∈Ai

namesi(a) = R.

This proves
(
(a1, . . . , an), R

)
∈ Zj . We have thus shown that Zj is a

simulation from Aii to CR and thus CR v Aii follows from Lemma 2.3.

Theorem 7.9. Assume that ⊥ is not a possible consequence of A with
respect to T . Let R be maximal with respect to ⊆ among the restriction
sets for A with respect to T . Then CR is a minimal possible consequence
of A with respect to T .

Proof. Assume that D = (AD, TD) is a possible consequence of A with
respect to T that satisfies D v CR. Let i be a witness model for A v D.

158

7.2 Minimal Possible Consequences and Their Approximations

D v CR v
d
R yields that the GCI A v

d
R must also hold in i.

Thus i is restricted with respect to A→ R. Since R is maximal among
the restriction sets for A with respect to T it follows that i is also
maximally restricted with respect to A→ R. We obtain from Lemma 7.8
that CR v Aii holds. From Ai ⊆ Di and Lemma 4.1 we obtain that
Aii v Dii v D holds. This proves CR v D and therefore CR is a
minimal possible consequence for A with respect to T .

Corollary 7.10. If T is an EL⊥-TBox in normal form over the signa-
ture (NC ,NR) and A ∈ NC is a concept name then mpcNC

T (A) is not
empty, i. e. minimal possible consequences exist.

Minimal Possible Consequences for Ontologies

In the previous sections we have shown that minimal possible conse-
quences exist in a setting where only a TBox is present. In this section
we allow an ontology O = (T ,A) that consists of a TBox T and an
ABox A. That is we show that mpcNCO (A) is not empty, where

• A ∈ NC is a concept name,

• O is an ontology over the signature (NC ,NR,NI), and

• T is a general EL⊥-TBox in its normal form (7.4).

The prove closely ressembles the proof for TBoxes.

Definition 7.9 (Restriction Set). R is called a restriction set of A with
respect to O = (T ,A) if there is a model i of O such that i is maximally
restricted with respect to A→ R.

If R is a restriction set of A with respect to O and i is a model of
O that is restricted with respect to A → R then we can extend the
canonical model κR from Definition 7.8 by defining

aκR = namesi(ai) (7.7)

for all individual names a ∈ NI .

Lemma 7.11. Let R be a restriction set of A with respect to O and let
i be a model of O that is restricted with respect to A → R. Then κR
extended according to (7.7) is a witness model for A v CR with respect
to O.

159

7 ABox Exploration

Proof. We already know that A v CR holds in κR and that κR is a
model of T from Lemma 7.6. Thus to prove that κR is a witness model
it only remains to show that κR is also a model of A. We look at concept
assertions and role assertions separately. Concept Assertions: Let B(a),
where B ∈ NC and a ∈ NI , be a concept assertion in A. Since i is a
model of A it follows that ai ∈ Bi and therefore B ∈ namesi(ai) = aκR

holds. Definition 7.8 yields aκR ∈ BκR . Therefore B(a) holds in κR.
Role Assertions: Let r(a, b), where r ∈ NR and a, b ∈ NI , be a role as-
sertion in A. Since i is a model of A it holds that bi ∈ succri (ai). Because
i is a model of T this implies namesi(bi) ⊆ canrT (namesi(ai)), which is
equivalent to bκR ⊆ canrT (aκR). Definition 7.8 yields (aκR , bκR) ∈ rκR ,
i. e. r(a, b) holds in κR. This proves that all statements from A hold
in κR. Thus κR is a witness model of A v CR with respect to O =
(T ,A).

Corollary 7.12. If R is a restriction set of A with respect to O =
(T ,A), then CR is a possible consequence of A with respect to O.

Our argument to prove minimality of CR is the same as for the case
where only a TBox is present.

Theorem 7.13. Assume that ⊥ is not a possible consequence of A with
respect to O. If R is maximal with respect to ⊆ among the restriction
sets for A with respect to O then CR is a minimal possible consequence
for A with respect to T .

Proof. Assume that D is a possible consequence of A with respect to O
and that D satisfies D v CR. Let j be a witness model for A v D with
respect to O. Using the same argument as in the proof of Theorem 7.9
we can show that j is maximally restricted with respect to A → R.
Lemma 7.8 then yields CR v Ajj . From Aj ⊆ Dj and Lemma 4.1 we
obtain Ajj v Djj v D and thus CR v D. This proves that CR is a
minimal possible consequence of A with respect to O.

We have thus proven minimality of CR as a possible consequence of
A, provided that R is maximal among the restriction sets. We can prove
an even stronger result, namely that for every possible consequence D
there is some maximal restriction set R such that CR is more specific
than D.

160

7.2 Minimal Possible Consequences and Their Approximations

Lemma 7.14. Assume that ⊥ is not a possible consequence of A with
respect to O. If D is a possible consequence of A with respect to O then
there is some R such that CR v D.

Proof. Let i be a witness model for A v D with respect to O. Let
R ⊆ NC be the set of concept names for which i is maximally restricted
with respect to A→ R. Then we obtain CR v Aii from Lemma 7.8 and
using Lemma 4.1 we obtain CR v Aii v Dii v D.

Corollary 7.15. Assume that ⊥ is not a possible consequence of A with
respect to O. If D is a possible consequence of A with respect to O then
there is some R such that

• CR is a minimal possible consequence of A with respect to O, and

• CR v D holds.

Proof. This is readily obtained from Lemma 7.14 and the fact that the
set {CR | R is a restriction set for A with respect to O} is finite.

The last result is even stronger than a simple existence result for min-
imal possible consequences. It shows that not only do minimal possible
consequences exist, but that every possible consequence D subsumes a
minimal possible consequence.

Minimal Possible Consequences for Restricted Signatures

In this section we successively remove the remaining restrictions. We
start with the restriction on the signature. We assume that O = (T ,A)
is an ontology that may use an extended signature (NC∪N new

C ,NR,NI∪
N new
I). We show that mpcNC

O (A), where A ∈ NC is a concept name, is
not empty. We still assume that T is in its normal form. As in the pre-
vious sections the case where ⊥ is a possible consequence is trivial. We
assume for the rest of this section that ⊥ is not a possible consequence
of the concept in question.
When C = (AC , TC) is an ELgfp-concept description that uses the de-

fined concept names from NC ∪N new
C , we define the concept description

C|NC
to be the restriction of C to the concept names from NC , i. e. the

concept description C|NC
= (AC , TC |NC

) where for every statement

D ≡
l
P u

l

(r,E)∈Π

∃r.E

161

7 ABox Exploration

from TC , where D ∈ ND(TC), P ⊆ NC ∪N new
C , and Π ⊆ NR×ND(TC),

the TBox TC |NC
contains the statement

D ≡
l

(P ∩NC) u
l

(r,E)∈Π

∃r.E.

The EL-description graph of C|NC
is obtained from the EL-description

graph of C by removing all concept names from N new
C . Let C̄ be an

ELgfp-concept description over the smaller signature (NC ,NR). If Z is
a simulation from C̄ to C then Z is also a simulation from C̄ to C|NC

,
because Z still satisfies (S1′′) since no concept names from N new

C occur
in C̄. (S2′′) and (S3′′) remain unaffected if concept names are removed
from the description graph. Therefore, if C̄ uses only concept names
from NC then

C v C̄ implies C|NC
v C̄. (7.8)

Lemma 7.16. If D is an EL⊥gfp-concept description over the signature
(NC ,NR) and D is a possible consequence of A with respect to O then
there is a restriction set R ⊆ NC ∪N new

C such that CR|NC
v D.

Proof. The claim follows immediately from Lemma 7.14 and the fact
that CR v D implies CR|NC

v D.

Corollary 7.17. Let C be minimal with respect to v within the set

X = {CR|NC
| R ⊆ NC ∪N new

C is a restriction set of A w.r.t. O}.

Then C is a minimal possible consequence of A with respect to O.

Proof. Let D be a possible consequence of A with respect to O that
satisfies D v C. Then Lemma 7.16 implies that there is some E ∈ X
satisfying E v D and thus also E v C. Minimality of C proves E ≡
D ≡ C.

The second restriction that we need to remove is the restriction that
the TBox T needs to be in normal form. In [BBL05b] it has been shown
that any general EL⊥-TBox can be converted into this normal form in
linear time. After the conversion one obtains a new TBox T ′ that is a
conservative extension of T , i. e. every model of T ′ is a model of T and
T ′ is a representation of every model of T . The conversion introduces

162

7.2 Minimal Possible Consequences and Their Approximations

new concept names.3 Let D be a concept description that uses only
concept names that occur in T . With T ′ being a conservative extension
of T we obtain that if D is a possible consequence of A with respect
to O′ = (T ′,A), then it is also a possible consequence with respect to
O = (T ,A) and vice versa. Since T ′ is in normal form Corollary 7.17
proves existence of minimal possible consequences for both cases.
The last restriction that we can only compute minimal possible con-

sequences for concept names, and not for complex concept descriptions,
is relatively easy to remove. Let C be an acyclic EL⊥gfp-concept descrip-
tion. We can simply add a new concept name AC and a TBox statement
AC ≡ C before doing the conversion to normal form. Clearly, since min-
imal possible consequences for AC exist, they must also exist for C. We
do not consider the case where C is cyclic.

Theorem 7.18. Let O = (T ,A) be an EL⊥-ontology over the signature
(NC∪N new

C ,NR, NI∪N new
I), and let C be an acyclic concept description

over the signature NC . Then there is a minimal possible consequence of
C with respect to O for the set of concept names NC .
The above existence proofs also yield a construction for minimal pos-

sible consequences, consisting of the following steps

1. Add a statement AC ≡ C to T .

2. Convert T to its normal form T ′.

3. Using a reasoner and consistency checking determine all restriction
sets of AC with respect to (T ′,A).

4. Compute the set of all concept descriptions CR for all restriction
sets R and find its minimal elements.

Clearly, while this is an effective procedure it is not efficient since the
latter two steps require exponential time and space. It remains open
whether efficient algorithms can be obtained. Instead of focussing on effi-
cient algorithm for computing minimal possible consequences we propose
to use approximated possible consequences, which will be introduced in
the following section.
3The conversion presented in [BBL05b] uses a more expressive variant of EL that
allows for role inclusions. Therefore, the conversion presented there can also add
new role names. Since we do not allow role inclusions in EL⊥ no new role names
are added in our setting.

163

7 ABox Exploration

7.2.3 Approximation of Minimal Possible Consequences
Minimal possible consequences have several unpleasant properties, e. g.
they are not always unique. In the previous section we have introduced
a naive algorithm for computing them. This algorithm involves comput-
ing the power set of NC , thus it requires exponential time and space.
In practice, it can only be used for very small sets NC . To avoid the
difficulties associated with minimal possible consequences we propose
two simplifications. First, we define approximations of minimal possible
consequences that are easier to compute. Second, we restrict the ex-
pressivity of the ontology by only allowing statements of certain types,
namely the types used in (7.1) and (7.2).
The fact that counterexamples need not be explicit is a contributing

factor to the difficulties when computing possible consequences. It is
essentially the reason why we have to use restricted canonical models
instead of canonical models in Section 7.2.2. The idea in the following
is to approximate possible consequences by simply ignoring non-explicit
counterexamples.

Definition 7.10 (Approximated Possible Consequences). Let C be an
EL⊥gfp-concept description and O = (T ,A) an ontology over the signa-
ture (NC ∪N new

C ,NR,NI ∪N new
I). D is called an approximated possible

consequence of C with respect to O if there is no individual a ∈ NI that
is an explicit counterexample to C v D with respect to O. We denote
by apcNC

O (C) the set of all EL⊥gfp-concept descriptions over the signa-
ture (NC ,NR) that are approximated possible consequences of C with
respect to O. D is called minimal approximated possible consequence of
C with respect to O for the set of concept names NC if D is minimal
within the set apcNC

O (C) with respect to v.

Lemma 7.19. If D is a possible consequence of C with respect to O
then D is an approximated possible consequence of C with respect to O.

Proof. Let a ∈ NI be an individual that satisfies O |= C(a). Since D is
a possible consequence of C there exists a witness model i for C v D. It
holds that ai ∈ Ci ⊆ Di. We have thus disproved O |= ¬D(a). Hence a
is not an explicit counterexample for the GCI C v D. Because a was an
arbitrary individual name this shows that there cannot be an explicit
counterexample to C v D and D must be an approximated possible
consequence.

164

7.2 Minimal Possible Consequences and Their Approximations

Lemma 7.19 shows in particular that a possible consequence cannot
be strictly more specific than a minimal approximated possible conse-
quence. Approximated possible consequences are closely related to the
following notion.

Definition 7.11 (Possible Description). Let O = (T ,A) be an ontology
over the signature (NC∪N new

C ,NR,NI∪N new
I) and a ∈ NI an individual.

D is called a possible description of a with respect to O if O 6|= ¬D(a),
i. e. if there is a model i of O such that ai ∈ Di holds. We denote
by pdNC

O (a) the set of all EL⊥gfp-concept descriptions over the signature
(NC ,NR) that are possible descriptions of a with respect to O.
D is called minimal possible description of a with respect to O for the

set of concept names NC if D is minimal within the set pdNC

O (C) with
respect to v.

In Section 7.1.2 we have seen that a background model i can be com-
pletely described using only the TBox statements from (7.1) and the
ABox statement from (7.2). In the rest of this section we look at TBoxes
and ABoxes that are subsets of the TBoxes and ABoxes from (7.1) and
(7.2). That is, we assume that O = (T ,A) is an ontology over the sig-
nature (NC ∪N new

C ,NR,N ′I), where N new
C = {Ta, Fa | a ∈ N ′I}, NC and

N new
C are disjoint and N ′I = NI ∪N new

I . We require that A contains the
concept assertion

Ta(a) (7.9)

for all individuals a ∈ N ′I . Optionally, A may contain concept assertions
of the form

A(a), (7.10)

where A ∈ NC and a ∈ N ′I , and A may contain role assertions

r(a, b), (7.11)

where a, b ∈ N ′I and r ∈ NR. Similarly, we require that T contains the
GCI

Ta u Fa v ⊥ (7.12)

for every individual a ∈ N ′I . Optionally, T may contain statements of
the form

A v Fa, (7.13)

165

7 ABox Exploration

where A ∈ NC and a ∈ N ′I . For every pair (a, r) ∈ N ′I ×NR the TBox
T may contain at most one statement of the form

∃r.(
l
P) v Fa, (7.14)

where P ⊆ {Fb | b ∈ N ′I}, and where r(a, b) ∈ A implies Fb ∈ P . Other-
wise, we allow P to be empty and define

d
∅ = > as usual. Furthermore,

we assume that O = (T ,A) is consistent. The intuition behind state-
ments of type (7.13) is that they can specify to which concept names
an individual does not belong. Statements of type (7.14) specify which
r-successors an individual can have.
In the previous sections we have constructed canonical models for
EL⊥-ontologies with general TBoxes. We construct an interpretation
κO = (∆κO , ·κO) of O that serves a similar purpose. We define

∆κO = N ′I ∪ {α},

where α /∈ N ′I is a new individual name. We define the interpretation
function ·κO as follows. For every individual name a ∈ N ′I we define

aκO = a.

We define

AκO ={α} ∪ {a | A v Fa /∈ T }, TκOa ={a}, FκOa =∆κO \ {a}

(7.15)

for all concept names A ∈ NC and all individual names a ∈ N ′I . Lastly,
for every role name r ∈ NR we define

rκO = {(α, α)}

∪ {(a, b) | ∃r.
l
P v Fa ∈ T implies Fb ∈ P}

∪ {(a, α) | there is no GCI ∃r.
l
P v Fa ∈ T }.

(7.16)

Lemma 7.20. If O is consistent then the interpretation κO is a model
of O.

166

7.2 Minimal Possible Consequences and Their Approximations

Proof. We verify for each statement from O that it holds in κO. ABox-
assertions: We have defined TκOa = {a} and thus all assertions of the
form Ta(a) ∈ A hold in κO. Let A(a) ∈ A be an assertion of type
(7.10). We know that T contains the GCI Ta u Fa v ⊥ and A contains
Ta(a). Since A also contains A(a) there cannot be a GCI A v Fa
in T , otherwise O would be inconsistent. Thus a ∈ AκO follows from
(7.15). Therefore A(a) holds in κO. Assume that A contains r(a, b). We
distinguish two cases. If there is a statement ∃r.(

d
P) v Fa in T then

r(a, b) ∈ A implies that Fb ∈ P holds. Then (7.16) yields (a, b) ∈ rκO .
If there is no statement ∃r.(

d
P) v Fb then (a, b) ∈ rκO holds according

to (7.16). We have thus shown that all ABox-assertions from A hold in
κO.
TBox: Let Ta u Fa v ⊥ be a GCI of type (7.12) in T . By definition

it holds that TκOa ∩ FκOa = {a} ∩ (∆κO \ {a}) = ∅. Thus Ta u Fa v ⊥
holds in κO. Let A v Fa be a GCI of type (7.13). The definition of
AκO yields a /∈ AκO . Thus we obtain AκO ⊆ ∆κO \ {a} = FκOa . Thus
A v Fa holds in κO.
Lastly, let ∃r.(

d
P) v Fa be a GCI of type (7.14) in T . Then (7.16)

yields (a, α) /∈ rκO , i. e. α is not an r-successor of a. Let b ∈ N ′I be an in-
dividual name satisfying (a, b) ∈ rκO . (7.16) yields Fb ∈ P . On the other
hand b /∈ FκOb = ∆κO \ {b} holds, which implies b /∈ (

d
P)κO . Hence,

no r-successor of a is in (
d
P)κO , which implies that a /∈ (∃r.

d
P)κO

holds. We obtain (∃r.
d
P)κO ⊆ ∆κO \ {a} = FκOa . Thus ∃r.

d
P v Fa

holds in κO.

We denote by Ca = (a, Ta) the concept description of a in κO. Clearly,
aκO ∈ CκOa holds (κO and Ca share the same description graph and thus
the identity relation serves as a simulation). Lemma 7.20 then shows
that Ca is a possible description of a with respect to O. Furthermore,
the restriction Ca|NC

to the set of concept names NC is also a possible
description of a with respect to O.

Lemma 7.21. Let D ∈ pdNC

O (a) be a possible description of a ∈ N ′I for
the set of concept names NC . Then it holds that Ca|NC

v D.
This proves in particular that Ca|NC

is the least element of pdNC

O (a)

and thus also a minimal possible description of a. Since pdNC

O (a) con-
tains a least element minimal possible descriptions of a must be unique
up to equivalence.

167

7 ABox Exploration

Proof. We want to prove Ca|NC
v D. The description ⊥ cannot be

a possible description of a and therefore D must be an ELgfp-concept
description D = (AD, TD). Since D uses only the concept names from
NC it suffices according to (7.8) to prove Ca v D. By Lemma 2.3 we
need to show that there is a simulation from D to Ca. Ca and κO share
the same EL-description graph. Thus it suffices to show that there is a
simulation from D to a in κO.
Let i = (∆i, ·i) be a model of O that satisfies a ∈ Di. We define the

relation

Z2 = {(x, b) ∈ ∆i ×N ′I | x /∈ F ib} ∪ {(x, α) | x ∈ ∆i}.

While Z2 is not necessesarily a simulation we show that namesi(x) ∩
NC ⊆ namesκO (y) for all pairs (x, y) ∈ Z2, i. e. Z2 satisfies (S1) for
the original concept names from NC , but not necessarily for the names
from N new

C . Furthermore, we show that Z2 satisfies (S2). All pairs
(x, y) ∈ Z2 satisfy namesi(x) ∩ NC ⊆ namesκO (y): Let (x, b) ∈ Z2

be a pair in the relation Z2, where b 6= α. This yields x /∈ F ib . Let
A ∈ namesi(x)∩NC be a concept name. Then x ∈ Ai must hold. Then
x ∈ Ai and x /∈ F ib yield that A v Fb does not occur in T , for otherwise
i would not be a model of T . The definition of κO implies that b ∈ AκO
and therefore A ∈ namesκO (b). For pairs (x, α) ∈ Z2 the claim is trivial
since NC ⊆ namesκO (α).
(S2) Let (x, b) ∈ Z2 be a pair in the relation Z2, where b 6= α. Let y ∈

succri (x) be an r-successor of x in i. If T does not contain a statement
of the form ∃r.

d
P v Fb then it holds that (b, α) ∈ rκO . Furthermore,

(y, α) ∈ Z2 holds, which proves (S2). In the case where T does contain
a statement of the form ∃r.

d
P v Fb we know that y /∈ (

d
P)i holds.

Hence, there must be some concept name Fc ∈ P satisfying y /∈ F ic and
thus (y, c) ∈ Z2 holds. The definition of κO yields (b, c) ∈ rκO . This
proves (S2).
Since i = (∆i, ·i) satisfies a ∈ Di, Lemma 2.2 yields that there is a

simulation Z1 from D to ai in i. Since D uses only the concept names
from NC the first result suffices to prove that Z2◦Z1 satisfies (S1), while
the second result implies that Z2 ◦ Z1 satisfies (S2). It is easy to verify
that Z2 ◦ Z1 contains the pair (AD, a). Thus Z2 ◦ Z1 is a simulation
from D to a in κO and thus also a simulation from D to Ca. Lemma 2.3
yields Ca v D, and therefore Ca|NC

v D must also be true.

168

7.2 Minimal Possible Consequences and Their Approximations

Theorem 7.22. Let O be an ontology that only contains statements of
the types (7.9), (7.10), (7.11), (7.12), (7.13), and (7.14). Let C and
D be EL⊥gfp-concept descriptions. D is an approximated possible conse-
quence of C with respect to O iff Ca|NC

v D holds for all individuals
a ∈ N ′I that satisfy O |= C(a).

Proof. D is not an approximated possible consequence of C iff there is
an explicit counterexample a ∈ N ′I to C v D. An individual a ∈ N ′I
is an explicit counterexample to C v D iff a satisfies O |= C(a) and
O |= ¬D(a). Furthermore, a satisfies O |= ¬D(a) iff there is no model
i in which ai ∈ Di holds, i. e. iff D is not a possible description of a.
Lemma 7.21 states that D is not a possible description of a if Ca|NC

6v D
holds. On the other hand, if Ca|NC

v D holds then a ∈ DκO must also
hold, since Ca and κO share the same EL-description graph. This shows
that D is not a possible description of a if and only if Ca|NC

6v D holds.
In summary, we obtain that D is not an approximated possible con-

sequence of C iff there is an individual a ∈ N ′I that satisfies O |= C(a)
and Ca|NC

6v D.

Corollary 7.23. Let E be the least common subsumer of all descrip-
tions Ca where a ∈ N ′I satisfies O |= C(a). Then E is a minimal
approximated possible consequence of C and minimal approximated pos-
sible consequences are unique up to equivalence.

Proof. E subsumes all descriptions Ca for all a ∈ N ′I that satisfy O |=
C(a). Theorem 7.22 yields that E is an approximated possible conse-
quence of C. Let D be an approximated possible consequence of C.
Then Theorem 7.22 yields that D is a common subsumer of all concept
descriptions Ca where a ∈ N ′I satisfies O |= C(a). Hence it follows that
E v D. This shows that E is the only minimal approximated possible
consequence of C up to equivalence.

The fact that approximated possible consequence are unique up to
equivalence justifies that we can speak of the approximated possible
consequence of a concept description C with respect to O for the set
of concept names NC , which we denote by mapcNC

O (C). The following
result is readily obtained from Lemma 7.19, which states that possi-
ble consequences are always approximated possible consequences, and
Corollary 7.23.

169

7 ABox Exploration

Corollary 7.24. Let E = mapcNC

O (C) be the approximated minimal
possible consequence of C with respect to O for the set of concept names
NC . If D is a possible consequence of C with respect to O for the set of
concept names NC then it holds that E v D.

In this section we have shown that in the simple case where the on-
tology contains only statements of certain types, minimal approximated
possible consequences are unique up to equivalence. In comparison to
minimal possible consequences they can be computed fairly easily, since
constructing κO can be done in linear time in the size of O. Conversely,
canonical restricted models have exponential size in the size of the on-
tology.

7.3 ABox Exploration

The goals of ABox Exploration are essentially the same as the goals
of Model-Exploration. The difference is that ABox Exploration uses
an ontology to keep track of counterexamples. We present two ontology
completion formalisms where counterexamples are stored in an ontology.
We call these formalisms ABox Exploration. The two algorithms mainly
differ in the way right hand sides of the GCIs are obtained. Algorithm 12
uses minimal possible consequences, while Algorithm 13 uses minimal
approximated possible consequences.
For the first algorithm we look at two settings, one where no additional

restrictions are placed on the ontology, and one where only statements
of types (7.9), (7.10), (7.11), (7.12), (7.13), and (7.14) are allowed.

7.3.1 Exploration Using Minimal Possible
Consequences

ABox Exploration, like Model Exploration, assumes that we have access
to an expert’s complete knowledge about the domain of the knowledge
base, and that this knowledge can be represented in the form of a back-
ground model i over some signature (NC ,NR). However, i is initially
not known to the algorithm. The algorithm only has access to a knowl-
edge base O0, which is a representation of i. The exploration follows
the usual pattern: Questions in the form of GCIs are presented to the

170

7.3 ABox Exploration

expert who either accepts or refutes them. When a GCI is refuted the
expert must extend the current knowledge base Ol to a new knowledge
base Ol+1 that refutes the GCI. Naturally, the new knowledge base is
required to be a representation of i.

Algorithm 12 is a modification of Algorithm 10, the algorithm for
computing a finite base with acyclic left-hand sides for the GCIs holding
in a given model. Like in Model Exploration (Algorithm 11) a while-
loop is added and the expert interaction takes place within that inner
while-loop. For a given left-hand side

d
P̃k the algorithm chooses as the

corresponding right-hand side one of the minimal possible consequence
of

d
P̃k with respect to Ol. This is possible since

d
P̃k is an acyclic

EL⊥gfp-concept description and we have seen in Section 7.2.2 that minimal
possible consequences for acyclic EL⊥gfp-concept description exist and can
be computed effectively.

Lemma 7.25. Let O be a representation of i = (∆i, ·i) over the signa-
ture (NC∪N new

C ,NR,NI∪N new
I). Let C be an EL⊥gfp-concept description

over the signature (NC ,NR) and D ∈ mpcNC

O (C) a minimal possible con-
sequence of C with respect to O. If C v D holds in i then D satisfies
D ≡ Cii.

Proof. Since C v D holds in i we obtain Ci ⊆ Di. Lemma 4.1 yields
Cii v D. On the other hand, i is a witness model for C v Cii, because
Lemma 4.1 yields Ci ⊆ Ciii. Therefore Cii is a possible consequence of
C. Cii v D and minimality of D yield D ≡ Cii.

This shows that, like in Model Exploration, once the expert accepts a
GCI C v D we have found the model-based most specific concept Cii,
even though we do not know the background model i explicitly.

In Line 8 of Algorithm 10 a new set of implications L̄k+1 is computed.
The right-hand sides of these implications are obtained as the closures
of the respective left-hand sides in the induced context Kk+1. In the set-
ting of Algorithm 12 the model i is not known and therefore we cannot
compute an induced context, let alone the corresponding closure opera-
tor. Instead we use projections of the minimal possible consequence D
to the current set of attributes Mk+1.

Lemma 7.26. Let M be a set of EL⊥gfp-concept descriptions and let
K be the context induced by i and M . Let O be a representation of

171

7 ABox Exploration

Algorithm 12 ABox Exploration
1: input O0 := (T0,A0)
2: P̃0 := ∅, M̃0 := NP ∪ {⊥}, k := 0, l := 0,
3: S̃0 := {{⊥} → {A} | A ∈ NP }, L̃0 := ∅
4: while Pk 6= null do
5: Select Dk ∈ mpcNC

Ol
(
d
P̃k)

6: while Expert refutes
d
P̃k v Dk do

7: Ask the expert for a new ontology Ol+1 that
– extends Ol,
– is a representation of the background model, and
– refutes

d
P̃k v Dk

8: l := l + 1
9: Select new Dk ∈ mpcNC

Ol
(
d
P̃k)

10: end while

11: M̃k+1 := M̃k ∪

{
{∃r.

d
P̃k | r ∈ NR} if D` 6≡ Dk for all ` < k

∅ otherwise
12: S̃k+1 := {{A} → {B} | A,B ∈ M̃k+1, A v B}
13: L̃k+1 := {P̃r → prM̃k+1

(Dr) | r ∈ {0, . . . , k}}
14: if P̃k = M̃k = M̃k+1 then
15: P̃k+1 := null
16: else
17: P̃k+1 := lectically smallest subset of M̃k+1 that is

– lectically greater than P̃k, and
– respects all implications from L̃k+1 ∪ S̃k+1.

18: end if
19: k := k + 1
20: end while
21: return {

d
Pr v Dr | r ∈ {0, . . . , k − 1}}

172

7.3 ABox Exploration

i = (∆i, ·i). Let U ⊆ M be a set of EL⊥gfp-concept descriptions and D
a minimal possible consequence of

d
U with respect to O for NC . Ifd

U v D holds in i then D satisfies prM (D) = U ′′.

Proof. Corollary 4.13 yields prM ((
d
U)ii) = U ′′. Lemma 7.25 implies

(
d
U)ii = D. We obtain prM (D) = U ′′.

We do not yet know if Algorithm 12 terminates. For now, we only
assume that it terminates after n iterations of the outer while-loop. If
it terminates the output of Algorithm 12 is the set of GCIs

B7 = {
l
Pk v Dk | k ∈ {0, . . . , n− 1}}.

Theorem 7.27. If Algorithm 12 terminates after the n-th iteration of
the outer while-loop, then its output B7 is a finite base for the EL⊥gfp-
GCIs holding in the background model i.

Proof. The idea of the proof is the same as in the completeness proof for
Model Exploration (Theorem 6.16). We prove that Algorithm 12 with
a representation O0 of i as input has the same output as Algorithm 10
with the full background model i as input. We use induction over k
to show that P̃k =̇ P̄k, Dk ≡ (

d
P̄k)ii, M̃k =̇ M̄k, L̃k =̇ L̄k and S̃k =̇ S̄k

holds for all k ∈ {0, . . . , n}, where =̇ denotes equality up to equivalence.
The base case can be treated as in the proof of Theorem 6.16.
Step Case: We assume that P̃m =̇ P̄m, Dm ≡ (

d
P̄m)ii, M̃m =̇ M̄m,

L̃m =̇ L̄m and S̃m =̇ S̄m holds for all m ≤ k. From Dk ≡ (
d
P̄m)ii

we readily obtain M̃k+1 =̇ M̄k+1 and S̃k+1 =̇ S̄k+1. Lemma 7.26 and
M̃k =̇ M̄k yield that

prM̃k
(Dr) =̇prM̄k

(Dr) = P̄ ′′kr

holds for all r ≤ k. This proves L̃k =̇ L̄k. The value of P̃k depends only
on M̃k, L̃k and S̃k. It therefore holds that P̃k =̇ P̄k. Algorithm 12 can
only reach Line 11 if the expert has confirmed that

d
P̃k v Dk holds

in the background model i. Lemma 7.25 shows that Dk+1 ≡ (
d
P̃k+1)ii

holds and thus by induction hypothesis Dk+1 ≡ (
d
P̄k+1)ii holds.

We have thus shown that Algorithm 12 and Algorithm 10 produce the
same output. Since the output of Algorithm 10 is correct, B7 must be
correct as well.

173

7 ABox Exploration

The proof of Theorem 7.27 in particular demonstrates that, outside
the inner while-loop, Algorithm 12 exhibits the same behaviour as Algo-
rithm 10. Hence, unless it remains in the inner while-loop, Algorithm 12
terminates.

Theorem 7.28. The expert can ensure that Algorithm 12 terminates.

Proof. Algorithm 12 terminates if it does not remain in the inner while-
loop. Assume that the expert provides Oi = (Ti,Ai) from Section 7.1.2
as the new ontology in Line 7. This is possible since Oi a representa-
tion of i by Lemma 7.1 and contains an explicit counterexample to all
GCIs that do not hold in i by Theorem 7.3. Then Dk ∈ mpcNC

Oi
(
d
P̃k) is

obtained as a possible consequence of
d
P̃k with respect to Oi for NC .

In particular this means that there cannot be an explicit counterexam-
ple to the GCI

d
P̃k v Dk. Thus according to Theorem 7.3 the GCId

P̃k v Dk holds in i, i. e. Dk satisfies (
d
P̃k)i ⊆ Di

k. Lemma 4.1 yields
(
d
P̃k)ii v Dk. Since (

d
P̃k)ii is also a possible consequence of

d
P̃k the

minimality of Dk implies that (
d
P̃k)ii ≡ Dk holds. Algorithm 12 will

not remain in the inner while-loop and therefore terminates.

Unfortunately, it is also possible for the expert to provide “bad” coun-
terexamples, that allow the algorithm to remain in the inner while-loop.
Example 7.5 illustrates this. This motivates us to restrict the ontol-
ogy statements that can be added to those of type (7.9), (7.10), (7.11),
(7.12), (7.13), and (7.14).

Corollary 7.29. If the background model i = (∆i, ·i) is finite and the
expert is only allowed to add the elements of ∆i as individual names and
statements of type (7.9), (7.10), (7.11), (7.12), (7.13), and (7.14) to
the ontology in Line 7 of Algorithm 12 then Algorithm 12 will terminate
after finitely many iterations.

Proof. Since there are only finitely many elements of ∆i there are only
finitely many statements of types (7.9) to (7.14). Therefore, after finitely
many iterations the ontology Ol must contain all statements from Oi
from Section 7.1.2. Then the arguments of Theorem 7.28 apply and
prove that Algorithm 12 terminates.

Allowing only the statements of types (7.9) to (7.14) may seem restric-
tive. However, it is not against the philosophy of exploration formalisms

174

7.3 ABox Exploration

to be restrictive with respect to the GCIs that can be added manually.
The purpose of ABox Exploration is that the expert does not have to
develop GCIs herself, but that GCIs are proposed by the system. The ex-
pert should not have to provide anything apart from “Yes/No”-answers
and counterexamples. Therefore, not allowing the expert to provide
more than this kind of information is not a severe restriction. All types
of statements (7.9) to (7.14) have an intuitive meaning that can be re-
formulated in natural language. For example a GCI ∃r.Fb v Fa of type
(7.14) can be reformulated to read that “a cannot have an r-successor
that differs from b”. Using natural language might make it even easier
for the expert to provide counterexamples.

Example 7.5. This simple example illustrates that Algorithm 12 need
not terminate if we allow the arbitrary ontological axioms to be added
in Line 7. We consider the background model i over the signature
(NC ,NR) = ({A}, {r}) which is depicted in Figure 7.7. We assume
that the ontology O0 consists of an empty TBox T0 = ∅ and an ABox
A0 = {>(x)}. The first left-hand side that Algorithm 12 comes up with
is, as always, >. The bottom concept ⊥ is not a possible consequence of
> since O0 cannot have an empty model. Instead, the minimal possible
consequence of > is Call = (Aall, Tall) where Tall is the TBox

Tall = {Aall ≡ A u ∃r.Aall}

(see Figure 7.8 for a witness model). In this special case the minimal
possible consequence is even unique up to equivalence.
Thus the expert sees the question “Does the GCI

> v Call

hold in i?”. Since x ∈ ∆i satisfies x /∈ Ai and thus also x /∈ Call
i

the expert rejects this GCI. She then tries to turn the individual x
into a counterexample using the method that has been described in
Section 7.1.1. Thus she adds a new concept name T1 to the set of
concept names, the GCI T1 u A v ⊥ to the ABox, and the assertion
T1(x) to the ABox. She has thereby stated that x is not an instance of
A. Algorithm 12 then computes a new minimal possible consequence of
>, namely the description ∃r.Call (see Figure 7.9 for a witness model).
The next GCI that is presented to the expert would thus be

> v ∃r.Call.

175

7 ABox Exploration

x

r

Figure 7.7: The Back-
ground Model
i from Exam-
ple 7.5

x

A

r

Figure 7.8: Witness
Model

x y

A

r

r

Figure 7.9: Witness
Model

Once again, the expert refutes the GCI and turns x into a counterex-
ample, by making sure that x is not an instance of ∃r.A. The next GCI
is

> v ∃r.∃r.Call.

If the expert maintains her strategy, then this will continue indefinitely.
This illustrates, that if we allow greater freedom to the expert, the ABox
Exploration does not necessarily terminate.

Example 7.6. In the beginning of this chapter we have argued that in
the background model from Figure 7.1 counterexamples in Model Explo-
ration cannot be provided without feeding the entire background model
into the algorithm. By contrast, we demonstrate how counterexamples
can be described in ABox Exploration using only statements of the types
(7.9) to (7.14). We present only the first iteration of the outer while-loop
of Algorithm 12, not the entire exploration. The signature of the back-
ground model i is ({Male,Female}, {hasChild, hasParent,marriedTo}). We
assume that Algorithm 12 receives an empty ontology O0 = (∅, ∅) as in-
put. The first GCI that the algorithm produces is

> v ⊥.

This is refuted, and any individual can serve as a counterexample. For
example, the expert might add Sally. To speed things up she could also
describe some properties that Sally does not have, for example Sally is
not male and does not have children. Using our restricted syntax this

176

7.3 ABox Exploration

can be achieved using the ontology O1 = (T1,A1), where

T1 = {TSally u FSally v ⊥,
Male v FSally,

∃hasChild.> v FSally}

and
A1 = {TSally(Sally)}.

Thus, ⊥ is not a possible consequence of > any more, nor is any concept
description that is subsumed by Male or ∃hasChild.>. The new minimal
possible consequence of > is

Female u ∃marriedTo.Call u ∃hasParent.Call,

where Call is defined in analogy to (4.2). Obviously, the GCI

> v Female u ∃marriedTo.Call u ∃hasParent.Call,

still does not hold in the background model, and therefore the expert
decides to add Don as a counterexample. She expresses that Don is not
female, has no parents and is not married by adding the corresponding
axioms to the ontology. This results in the minimal possible consequence
of > being > which means that Algorithm 12 leaves the inner-while loop.
Notice that only two individuals had to be added so far. Moreover,

it was not even necessary to describe all properties of these individuals.
For example the ontology still does not contain the knowledge that Don
is male, or that Sally has a female parent. By contrast, in Model Ex-
ploration the expert would have had to add the entire model already to
refute the very first GCI.

7.3.2 Exploration Using Approximations
In the previous section we have seen that in order to guarantee ter-
mination of Algorithm 12 we can only allow statements of types (7.9),
(7.10), (7.11), (7.12), (7.13), and (7.14) to be added to the ontology. We
now look at the even simpler setting, where we also assume the orig-
inal ontology O0 to be of this type. Apart from this assumption the
input remains the same as for Algorithm 12, i. e. there is a background

177

7 ABox Exploration

model i over the signature (NC ,NR), the knowledge base O0 is a repre-
sentation of i and the expert has complete knowledge about i. In such
a setting minimal approximated possible consequences are unique and
exhibit better computational behaviour than the actual minimal pos-
sible consequences (Corollary 7.23). We modify the ABox Exploration
Algorithm 12 with replacing minimal possible consequences by minimal
approximated consequences. The result is listed as Algorithm 13.
Notice, that it may happen that a given GCI C v D is refuted by the

current ontology Oj , but Oj does not contain an explicit counterexample
to C v D. In Algorithm 12 such a GCI would not be presented to
the expert. In Algorithm 13 the GCI needs to be presented to the
expert, who needs to provide an explicit counterexample. Thus using
approximations may increase expert interaction.

Lemma 7.30. Algorithm 13 terminates for all inputs O0 and for all
background
models i.

Proof. We use a similar argument as is Lemma 6.15. Since we only allow
statements of types (7.9) to (7.14) in the ontologies Ol, and since there
are only finitely many statements of these types after a certain number
of iterations, Ol must contain the entire ontology Oi from Section 7.1.2.
Theorem 7.3 yields that every GCI C v D that does not have an explicit
counterexample in Oi must hold in i. Therefore if D is an approximated
possible consequence of C the GCI C v D holds in i, i. e. Ci ⊆ Di holds.
This yields Cii v D by Lemma 4.1. Since Cii is a possible consequence (i
serves as a witness model), and therefore also an approximated possible
consequence this proves that Cii is the (unique) minimal approximated
possible consequence of C with respect to Oi. Consequentially, once
Ol contains the entire ontology Oi, Algorithm 13 must leave the inner
while-loop. Outside the inner while-loop Algorithm 13 behaves exactly
like Algorithm 12 and therefore terminates.

The proof that when Algorithm 13 terminates after the n-th iteration
its output

{
l
Pr v Dr | r ∈ {0, . . . , n}}

is a base for the GCIs holding in i can be done in analogy to the proof
of Theorem 7.27. Again, one first proves in analogy to Lemma 7.25 that

178

7.3 ABox Exploration

Algorithm 13 ABox Exploration Using Approximated Possible Con-
sequences
1: input O0 := (T0,A0) {ontology O}
2: P̃0 := ∅, M̃0 := NP ∪ {⊥}, k := 0, l := 0,
3: S̃0 := {{⊥} → {A} | A ∈ NP }, L̃0 := ∅
4: while Pk 6= null do
5: Dk := mapcNC

Ol
(
d
P̃k)

6: while Ol∪{
d
P̃k v D} is inconsistent or expert refutes

d
P̃k v D

do
7: Ask the expert for a new ontology Ol+1 that

– extends Ol,
– is a representation of the background model, and
– contains an explicit counterexample for

d
P̃k v D

8: Dk := mapcNC

Ol+1
(
d
P̃k)

9: l := l + 1
10: end while

11: M̃k+1 := M̃k ∪

{
{∃r.

d
P̃k | r ∈ NR} if D` 6≡ Dk for all ` < k

∅ otherwise
12: S̃k+1 := {{A} → {B} | A,B ∈ M̃k+1, A v B} {updating S̃k+1

and L̃k+1}
13: L̃k+1 := {P̃r → prM̃k+1

(Dr) | r ∈ {0, . . . , k}}
14: if P̃k = M̃k = M̃k+1 then
15: P̃k+1 := null
16: else
17: P̃k+1 := lectically smallest set subset of M̃k+1 that is

– lectically greater than P̃k, and
– respects all implications from L̃k+1 ∪ S̃k+1.

18: end if
19: k := k + 1
20: end while
21: return {

d
Pr v Dr | r ∈ {0, . . . , k − 1}}

179

7 ABox Exploration

when the expert accepts a GCI we have found the correct right-hand
side:

Lemma 7.31. Let O be a representation of i = (∆i, ·i). Let C be
an EL⊥gfp-concept description and D a minimal approximated possible
consequence of C with respect to O for NC . If C v D holds in i then D
satisfies D ≡ Cii.

Proof. Using i as a witness model it follows that Cii is a possible con-
sequence of C. Thus it is also an approximated possible consequence of
C and we obtain D v Cii. On the other hand, since C v D holds in i
we obtain Ci ⊆ Di. Lemma 4.1 yields Cii v D.

Corollary 7.32. If Algorithm 13 terminates after the n-th iteration of
the outer while-loop, then its output

{
l
Pr v Dr | r ∈ {0, . . . , n}}

is a finite base for the EL⊥gfp-GCIs holding in the background model i.

Proof. This can be shown in analogy to Theorem 7.27 by comparing the
behaviour of Algorithm 13 to Algorithm 10.

The advantages of Algorithm 13 over Algorithm 12 are that approxi-
mated minimal possible consequences can be computed more effectively
than minimal possible consequences, and are moreover unique up to
equivalence. A drawback is, that expert interaction may be necessary,
even in some cases where it is already known that a certain GCI is
refuted.

180

8 Related Work

This chapter presents several works that relate to this thesis. In the
first section we introduce early attempts that bridge the gap between
FCA and DL, or similar logics: Terminologic Attribute Logic and Logic
Information Systems. Their ideas are related to what we call induced
contexts and model-based most specific concepts in this work. The sec-
ond section deals with the formalisms by Baader and Sertkaya, and by
Rudolph. These have already been introduced in Section 1.3. Here, we
look at them again from a low-level perspective and compare them to
Model-Exploration and ABox-Exploration. Finally, two formalisms are
presented that allow to combine general fixpoint semantics and general
TBoxes. These are hybrid TBoxes, as introduced in [Bra06], and the
logic ELν , as introduced in [LPW10a].

8.1 Bridging the Gap between FCA and
Logics

We present two approaches, Terminological Attribute Logic and Logical
Information Systems, that can be considered as first attempts to provide
a common framework combining FCA and (Description) Logics. There
has been other work at the intersection of FCA and DL, where FCA was
mainly used as a tool for a specific problem in DL, for example to assist
in the computation of the subsumption hierarchy of all conjunctions of
a set of concepts [Baa95, BS04], the subsumption hierarchy of conjunc-
tions and disjunctions [Stu96b] or the subsumption hierarchy of all least
common subsumers [BM00]. Since these approaches are not as closely
related to this work, we do not give a detailed presentation of them.

181

8 Related Work

Table 8.1: Syntax and Semantics of Relation Terms

Name Syntax Semantics
relation names R ∈ R R̄

identity id {(g, g) | g ∈ GK}
inverse Sd {(h, g) | (g, h) ∈ JSKi}
complement Sc GK ×GK \ JSKi

Table 8.2: Syntax and Semantics of Attribute Terms

Name Syntax Semantics
attribute names m ∈M {g ∈ GK | (g, m̄) ∈ IK}
top concept > GK

bottom concept ⊥ ∅
negation ¬t GK \ JtKi
conjunction s ∧ t JsKi ∩ JtKi
disjunction s ∨ t JsKi ∪ JtKi
existential restriction ∃R.t {g ∈ GK | ∃h ∈ JtKi : (g, h) ∈ JRKi}
value restriction ∀R.t {g ∈ GK | ∀h ∈ GK : (g, h) ∈

JRKi ⇒ h ∈ JtKi}

8.1.1 Logical Scaling and Terminological Attribute
Logic

Serious attempts at combining FCA and logic started in the late 1990s
with the works of Susanne Prediger [Pre97, PS99, Pre00]. Prediger’s pri-
mary interest was logical scaling, a method to transform many-valued
formal contexts (concepts where an object/attribute pair can be assigned
more than two values) into normal (also called two-valued) formal con-
texts. Since many-valued contexts are not relevant to this work, we
only give an intuitive description of the results that have been obtained
in this area. In [Pre00] Prediger presents a logic that is tailored to be

182

8.1 Bridging the Gap between FCA and Logics

used with formal contexts. She presents two variants of this logic, one
for two-valued contexts and one for many-valued logics. The logic for
two-valued contexts can be viewed as a syntactic variant of ALCI with
negation of roles and identity. It is introduced as a tool to extend a con-
text by defining new attributes, which yields an induced context. The
intended purpose of the variant for many-valued contexts is logical scal-
ing. Earlier works have used standard ALC and SQL as the language
that is used to describe logical scales [Pre97, PS99]. A similar approach
with a logic that does not use quantifiers exists under the name Contex-
tual Attribute Logic [GW99] and an approach using full first order logic
has been presented in [Zic91].

Two-Valued Contexts

Terminological attribute logic for two-valued contexts, as Prediger calls
her logic, can be viewed as a syntactic variant of the description logic
ALCI¬,id. The most obvious difference is that it uses relational contexts
to encode the information that is normally provided by an interpretation.

Definition 8.1 (Relational Context). A tuple ((GK,RK),MK, IK) where
GK and MK are finite sets, RK is a finite set of relations RK ⊆ GK×GK,
and IK is a relation IK ⊆ GK ×MK is called relational context.

Terminological Attribute Logic starts with an alphabet of attribute
namesM and an alphabet of relation namesR.1 From the two alphabets
one can create new attribute terms and relation terms inductively, using
constructors from Table 8.1 and Table 8.2. The semantics is defined
using a relational context ((GK,RK),MK, IK) and a mapping ·̄ : M∪R→
MK∪RK. The relational context together with ·̄ gives rise to a mapping
J·Ki that maps role terms to binary relations on G and attribute terms
to subsets of G. J·Ki is defined according to Table 8.1 and Table 8.2.
The correspondence to ALCI¬,id is evident.
One of the applications of Terminological Attribute Logic for two-

valued contexts are induced contexts. It allows new attributes to be
1There is a natural correspondence between attribute names and relation names
in Terminological Attribute Logic, and concept names and role names in DL,
respectively. It should be noticed, however, that attribute names and attribute
terms are by convention denoted by lower case letters while relation names and
relation terms are denoted by upper case letters.

183

8 Related Work

Table 8.3: A Formal Context about Cheeses

softCheese pricePerKG

Roquefort × 19
Morbier 12
Gruyère 10
Emmental 8
Brie × 7
Camembert × 8

Table 8.4: The Logically Scaled Context about Cheeses

softCheese cheap

Roquefort ×
Morbier
Gruyère
Emmental ×
Brie × ×
Camembert × ×

defined using a formal semantics. Apart from the obvious differences
in syntax and expressivity they are the same as the induced contexts
presented in Section 4.2 for EL⊥gfp.

Logical Scaling

A many-valued context is a 4-tuple K = (G,M,W, I) where G is a set of
objects,M is a set of attributes, W is a set of values, and I is a mapping
I : G ×M → W that assigns a value to each pair (g,m) ∈ G ×M (eg.
Table 8.3). A substantial amount of FCA research has been dedicated to
two-valued contexts. In order to benefit from this research transforma-
tions from many-valued contexts into two-valued contexts have emerged.
For example, we might transform the context about cheeses from Ta-

184

8.1 Bridging the Gap between FCA and Logics

ble 8.3 to a two-valued context by associating a certain price range with
an attribute cheap. The usual approach is to provide a conceptual scale.
A conceptual scale is a formal context KS = (GS ,MS , IS) that uses a
fresh set of attributes MS ∩ M = ∅ and whose objects are values of
the original context GS ⊆ W . To transform the many-valued context
K = (G,M,W, I) into a two-valued context a scale is associated with
each attribute m ∈ M . In the resulting scaled context an object g ∈ G
has the attribute mS ∈ MS if and only if (g,m)Iw holds and w has
the attribute mS in the scale KS that corresponds to m. Of course, the
transformation to a scaled context is hardly ever lossless.
Providing a formal context as a scale for each attribute can be imprac-

tical or even impossible, when the set of values is large or infinite, as is
often the case with numerical values. Therefore, alternative methods for
providing scales have been examined. Prediger’s contributions include
the method of logical scaling.
The method of logical scaling uses Terminological Attribute Logic

for many-valued contexts. This logic can be used to build attribute
descriptions which are statements such as “A cheap cheese is a cheese that
is either a softCheese and has a pricePerKG of less than 10 or that is not a
softCheese and has a pricePerKG of less than 15.” Attribute descriptions
can then be used to define attributes of a two-valued context, very much
in the sense of induced contexts (c. f. Table 8.4). We are not going
to introduce Terminological Attribute Logic for many-valued contexts
formally. We would only like to point out two interesting facts. First, its
semantics do not use relations on the set of objects, instead relations on
the set of values are used. Second, it is entirely quantifier free. The latter
results mainly from the fact that each object-attribute pair is assigned
exactly one value, which is why there is no need for quantification.

Power Context Families

In [PW99] power context families, which are a generalization of relational
contexts, are presented. A power context family is a family of formal
contexts

{Kk = (Gk,Mk, Ik)}k∈{0,...,n}

where Gk ⊆ Gk0 holds for all k ∈ {0, . . . , n}. Thus, power contexts allow
not only for binary, but for n-ary relations where n can be arbitrarily

185

8 Related Work

large. A relational context can be viewed as a special case of a power
context family where n = 2. In the field of power context families
Prediger delivers two important contributions. First, she lifts basic FCA
notions such as concept lattices to the level of power context families.
Second, she devises a method for obtaining a power context family from
a many-valued context which is called relational scaling.

8.1.2 Logic Information Systems

The objective of Logic Information Systems is to provide a method for
users to query and navigate through data by using a combination of
DL and FCA [Fer02, FR04]. They are based on a theory called Logical
Concept Analysis [FR00]. Logical Concept Analysis is related to this
thesis as it introduces an operator that behaves similar to model-based
most specific concepts.

Logical Concept Analysis

The idea of logical concept analysis is to avoid FCA attributes entirely,
and to replace them by a single logical description for each object. Log-
ical Concept Analysis requires a DL L that must at least allow for con-
junction u, disjunction t, the top concept > and the bottom concept ⊥.
We denote the set of all L-concept descriptions by L, as well. The set of
concept descriptions L together with subsumption v forms a bounded
lattice (L,v) where u is the meet operator, t is the join operator, and >
and ⊥ are the greatest and least element, respectively. It is remarkable
that the semantics of L are used only to obtain the lattice structure and
not in any of the following technical definitions. The only reason why
a logic and not an arbitrary bounded lattice is used is that logics allow
for more intuitive descriptions in Logical Information Systems. Ferré
describes the logic as being the equivalent to a schema in databases.
As mentioned before, attributes are replaced by a single logical de-

scription for each object. Thus a logical context is a triple K = (G,L, d)
where G is a finite set of objects and d is a function d : G→ L that maps
each object to a concept description that describes it. Furthermore, the

186

8.1 Bridging the Gap between FCA and Logics

operators σK and τK are defined as

σK : 2G → L

A 7→
⊔
g∈A

d(g)

τK :L → 2G

C 7→ {g ∈ G | d(g) v C}.

The intuition behind τK is that it maps every concept description C to
the set of objects that belong to the concept C. Clearly, every object
g is an element of τK(d(g)) and there cannot be a concept description
C to which g belongs that is more specific than d(g). Thus the concept
description d(g) has the flavor of a most specific concept. In logics that
provide for disjunction the least common subsumer of two concept de-
scriptions is their disjunction. We can think of σK as a function that
maps a set A ⊆ G to the most specific concept description C to which
all elements of A belong, i. e. which satisfies A ⊆ τK(C). This exposes
the common ideas behind logical contexts and model-based most spe-
cific concepts. The most obvious difference between the two is that
model-based most specific concepts are obtained from a model while the
mapping d of a logical context must be given explicitly.
The basic notions of FCA can be replicated in the setting of logical

contexts. Ferré defines

• logical concepts, which are pairs (A,C) ∈ 2G×L where A = τK(C)
and C = σK(A), and

• contextualized subsumption, where C is said to contextually sub-
sume D if τK(C) ⊆ τK(D) holds.

Furthermore, Ferré defines feature contexts which closely ressemble in-
duced contexts: If K = (G,L, d) is a logical context and F ⊆ L is a
set of concept descriptions, then the formal context KF = (G,F , IF),
where gIFC if and only if g ∈ τK(C), is called the feature context of F
and K.

Logical Information Systems

Logical Contexts have been designed with Logical Information Systems
as their application in mind. Logical Information Systems are intended

187

8 Related Work

to facilitate querying and navigation in data. In principle a Logical
Information System is a logical context, together with some reasoning
services of which the two most important ones are querying and naviga-
tion.
Querying is defined in a relatively straightforward way: Given a con-

cept description C ∈ L one looks for all objects that belong to C. It
consists simply of computing τK(C). Navigation on the other hand is
less obvious. The idea is that instead of writing a complex query manu-
ally the user may want to navigate through the data, gradually refining
the search query. To narrow the search space, a set of features F is
given, from which the queries are obtained. In principle, refinement of
a query C means moving down one node in the concept lattice of the
feature context KF . What the navigation reasoning service does is to
suggest so-called links. A link is a feature D, such that the conjunction
of the current query C and D yields a concept description C uD that
satisfies τK(C u D) (τK(C). Using links the user can gradually move
down the edges of the lattice until she arrives at the desired query.

8.2 Exploration Formalisms in DL

8.2.1 FCA-based Ontology Completion and OntoComp

In [BGSS07, Ser07] an ontology completion formalism is introduced.
Like in this thesis, it is assumed that the expert has complete knowledge
about the domain. Like Abox-Exploration the input of the algorithm is
an ontology O0 = (T0,A0). The difference between the two approaches
is that [BGSS07] uses a weaker notion of completeness. In this formalism
the expert is initially asked to select a set M of concept names that she
deems interesting. The formalism’s objective is to find a set of GCIs B
such that

• all GCIs from B hold in the domain, and

• all GCIs of the form l
L v

l
R,

where L,R ⊆M , that hold in the domain follow from B.

188

8.2 Exploration Formalisms in DL

Hence, the main difference between this formalism and ours is that while
we strive for completeness with respect to all EL⊥-GCIs Baader et al.
only strive for completeness with respect to GCIs of a restricted form.
The main achievement of [BGSS07] is that they find a practical way

of dealing with the open-world knowledge from the ontology in an FCA
context. To this purpose they introduce the notion of a partial context.

Definition 8.2 (Partial Context). A partial object description is a pair
(A,S), where A,S ⊆ M are disjoint subsets of M . A partial context is
a set of partial object descriptions.

As the name says, a partial object description partially describes an
object. Intuitively, if (A,S) is a partial object description then A con-
tains the attributes that the object is known to have, while S contains
the attributes that the object is known not to have. For all other at-
tributes in M \ (A ∪ S) it is not known whether the object has them or
not. Partial contexts can be visualized as cross tables, where each row
represents one partial object description and the columns represent the
attributes. In each cell of the table, there is a cross, an empty space,
or a question mark depending on whether the object has the attribute,
does not have the attribute, or whether it is unknown.
The ontology O together with the set M of concept names gives rise

to the following partial context.

• Every individual a ∈ NI yields the partial object description
(Aa, Sa) where Aa = {C ∈ M | O |= C(a)} and Sa = {C ∈
M | O |= ¬C(a)}.

• The whole ABox induces the partial context

Kp = {(Aa, Sa) | a ∈ NI}. (8.1)

This construction is very similar to the induced contexts from Sec-
tion 4.2. The only difference is that partial contexts instead of con-
ventional formal contexts are required to take care of the open-world
semantics of the ontology O.

In these partial contexts it is not immediately clear how to compute
the right-hand sides of implications, since the FCA derivation operators
do not exist in partial contexts. The following construction is proposed

189

8 Related Work

Algorithm 14 Ontology Completion According to Baader et al.
input O, M
K0 := partial context obtained from M and O according to (8.1)
L0 := ∅, P0 := ∅, k := 0, l := 0 {Initialization}
while Pk 6= M do
while expert refutes Pk → Kl(Pk) do

ask the expert for a new partial context Kl+1 that
– extends Kl,
– contains a counterexample for Pk → Kl(Pk)
l := l + 1

end while
Lk+1 := Lk ∪ {Pj → Kl(Pj)}
P̄k+1 := lectically smallest subset of M that is
– lectically greater than Pk, and
– respects all implications from Lk.
k := k + 1

end while
return Lk

as a replacement. Let Kp be a partial context and P ⊆ M a set of
attributes. Then Kp(P) is defined to be the set

Kp(P) = M \
⋃
{S | (A,S) ∈ Kp, P ⊆ A}.

It can be shown that Kp(P) is the largest subset of M such that KP
does not contain a counterexample to P → Kp(P). We would like to
point out that in the special case where

• Kp is obtained from an ontology O = (T ,A) and M according to
(8.1),

• there are no dependencies among the attributes inM , e. g. because
T is empty,

d
Kp(P) is a minimal possible consequence of

d
P with respect to O

computed in the simple DL that allows only for conjunction and no
other constructors. If there are dependencies among the attributes in

190

8.2 Exploration Formalisms in DL

M then
d
Kp(P) corresponds to the approximated minimal possible con-

sequence. Algorithm 14 shows the entire ontology completion algorithm,
slightly rearranged to emphasize parallels to our algorithms.

8.2.2 Relational Exploration
Certainly, the theory that is most closely related to this work is the
exploration formalism by Rudolph [Rud04, Rud06, RVH07]. Like in
this work, Rudolph develops a method to obtain a set of GCIs from
a possibly incomplete model. Eventually, the set of GCIs obtained is
shown to be correct and complete (in a certain sense) for the GCIs
holding in what Rudolph calls the “universe”.
As the datastructure in which the counterexamples are provided, Ru-

dolph uses the power context families of order 2, which we have in-
troduced in Section 8.1.1, the section about Prediger’s work. We have
also mentioned that power context families of order 2 contain the same
information as DL models. In order to not confuse the reader with an-
other notation, we present Relational Exploration with DL models as
the underlying datastructure and use the standard notation for concept
descriptions.
In most of his works Rudolph uses the logic FLE which is EL⊥ ex-

tended with value restrictions ∀. Here, we present the method for FLE
based on [Rud04]. In contrast to Model-Exploration Relational Explo-
ration employs a method where role depth is increased step by step.
In order to axiomatize a given model i Relational Exploration starts

with the context K0 that is induced by {⊥}∪NC and i. The Duquenne-
Guigues-Base B0 as well as the set of all concept intents H0 of K0 is
computed in the usual way. No attributes are added during the compu-
tation. Once this has been completed a new context is created.
Assume that Bk and Hk have been computed for the context Kk. The

new set of attributes Mk+1 is defined as

Mk+1 =NC
∪ {∃r.

l
U | U ∈ Hk, r ∈ NR}

∪ {∀r.C | C ∈Mk, r ∈ NR}.

(8.2)

The new context Kk+1 is the context induced by Mk+1 and i. Now,
Next-Closure can be applied again, in order to obtain Bk+1 and Hk+1.

191

8 Related Work

The algorithm terminates when |Hk| = |Hk+1| holds. Rudolph has
shown that this must be the case after finitely many iterations for every
input model i.

Algorithm 15 Axiomatizing a Finite Model According to Rudolph
k := 0; M0 := {⊥} ∪ NC ;
while |Hk−1| > |Hk−2| do
Kk := context induced by Mk and i
Compute Duquenne-Guigues Base Bk and set of concept intents Hk
of Kk
Obtain new set of attributes Mk+1 from (8.2)
k := k + 1

end while
return {Bk}k∈{0,...,n}

Upon termination the algorithm returns the family {Bk}k∈{0,...,n}.
Rudolph shows that this is complete in the sense that it is possible to
decide for any FLE-GCI C v D whether C v D holds in i using only
{Bk}k∈{0,...,n} and no additional information. The decision procedure
is not straightforward and cannot be performed by a DL reasoner. It
uses a family of mappings {ϕk}k∈{0,...,n} that is defined inductively as
follows. Each mapping ϕk maps arbitrary FLE-concept descriptions of
role depth less than or equal to k to subsets of Mk.

ϕ0(A) = {A}, for all A ∈ {⊥} ∪ NC

and

ϕk+1(A) = {A}, for all A ∈ {⊥} ∪ NC
ϕk+1(∃r.C) = {∃r.

l
(ϕk(C))′′k}

ϕk+1(∀r.C) = {∀r.D | D ∈ ϕk(C)}

ϕk+1(
l
C) =

⋃
{ϕk(C) | C ∈ C}.

Since the closure operator ·′′k can be obtained as the implicational clo-
sure with respect to Bk the function ϕk can be computed without using
any information except {Bk}k∈{0,...,n}. Rudolph shows that if C and D

192

8.2 Exploration Formalisms in DL

are FLE-concept descriptions of role depth at most n then C v D holds
in i if and only if (ϕn(D))′′n ⊆ (ϕn(C))′′n . If C and D have a role depth
that is larger than n then the decision procedure becomes more difficult.
Rudolph presents another function π that is also defined inductively and
whose exact definition we omit here. Like ϕk the function π can be com-
puted using only {Bk}k∈{0,...,n} and no additional information from i.
It maps every FLE-concept description C to a concept description π(C)
such that

• π(C) has at most role depth n, and

• π(C)i = Ci holds.

To verify whether some GCI C v D holds in i it suffices to check whether
π(C) v π(D) holds in i. This can be decided like for concept descriptions
of role depth less than n.

In the fifth chapter of his dissertation Rudolph gives a high-level de-
scription of an exploration formalism that is based on the above pro-
cedure [Rud06]. The algorithm is in principle Algorithm 8.2.2 where
instead of computing the Duquenne-Guigues Base of Kk in Line 4 a
normal FCA Attribute-Exploration is performed on Kk.
There are several issues that can be criticized in Rudolph’s approach.

It does not produce a base of the GCIs holding in i in the sense of Defini-
tion 5.1. The output is a family of implications and a rather complicated
decision procedure. It is not clear whether a base can be obtained easily
from the family {Bk}k∈{1,...,n}, and therefore it cannot be added imme-
diately to a knowledge base. Secondly, the number of attributes in Kk
is of order O(|NR|k) and therefore grows exponentially. However, this
is in part due to attributes that are of the form ∀r.X and comparing
the number of new attributes in Relational Exploration to our approach
would not be fair. There is, however, a computational disadvantage
not only with respect to the number of new attributes, but also with
respect to the amount of expert interaction. By increasing role depth
successively, one loses the property that only one GCI per left-hand side
needs to be added. If the right-hand side is a cyclic model-based most
specific concept in Model-Exploration the same left-hand side occurs
in a question in each iteration of Relational Exploration until termina-
tion. This is likely to result in an increase in expert interaction. A
last criticism is that Rudolph does not go into details of the exploration

193

8 Related Work

formalism. Especially, the question in what form counterexamples have
to be provided is not addressed. Since it is implicitly assumed that the
induced contexts do not contain counterexamples to GCIs that hold in
the “universe” and the induced contexts have a closed-world semantics,
it stands to reason that the same problems regarding connectedness of
the submodels can occur as in Model-Exploration. However, no details
are found in Rudolph’s work.
Advantages of Relational Exploration over Model-Exploration are that

the questions that are asked do not contain cyclic concept descriptions
and that it additionally allows for value restrictions.

8.3 EL and Fixpoint Semantics

8.3.1 EL with Hybrid TBoxes
EL with hybrid TBoxes is a logic that combines descriptive semantics
and greatest-fixpoint semantics [BM05, Bra06]. It is motivated by the
need for greatest-fixpoint semantics for non-standard reasoning services
such as the least common subsumer or the most specific concept. At
the same time one does not want to lose the usability of GCIs with
descriptive semantics. We introduce EL with hybrid TBoxes. Unfor-
tunately, while the combination of descriptive semantics and greatest-
fixpoint semantics also occurs in EL⊥gfp-GCIs the results from EL with
hybrid TBoxes cannot be used.

Definition 8.3 (Hybrid TBox). Let NP and ND be sets of concept
names and let NR be a set of role names. The pair (F , T) is called a
hybrid EL-TBox if

• F is a general TBox using NP as the set of concept names and
NR as the set of role names, and

• T is a cyclic TBox using NP as the set of primitive concept names,
ND as the set of defined concept names, and NR as the set of role
names.

Definition 8.4 (Semantics of Hybrid TBoxes). An interpretation i =
(∆i, ·i) is called a model of (F , T) if there is an interpretation j =
(∆j , ·j) such that

194

8.3 EL and Fixpoint Semantics

• j is a model of F , and

• i is the gfp-model of T that corresponds to j, when j is viewed as
a primitive interpretation of T .

Therefore, the idea behind hybrid TBoxes is that the general TBox F
is used to define simple concepts and then more complex concepts are
built on top of these using gfp-semantics. That is why F is called the
foundation of (F , T). Brandt’s main result is that like in the non-hybrid
versions of EL subsumption reasoning is tractable [BM05]. A polynomial
time reasoning procedure has been implemented in an experimental rea-
soner called Hyp [BNS08]. Furthermore, Brandt provides algorithms for
non-standard reasoning tasks such as least common subsumers [Bra06].
In hybrid TBoxes the defined concepts cannot be used in the descrip-

tive part, i. e. in the foundation F . This contrasts to an EL⊥gfp-GCI
C v D where C = (AC , TC) and D = (AD, TD). The GCI C v D is
essentially a statement about the defined concept names AC and AD
(because the interpretation of C and D is defined to be the interpre-
tation of AC and AD in the corresponding gfp-models). Therefore, in
order to be useful for reasoning in general EL⊥gfp-TBoxes hybrid TBox
would have to allow defined concept names in the foundation F . Such
a logic has not been examined yet.

8.3.2 ELν and ELν+

The description logics ELν and ELν+ make use of the close ties between
modal logics and DL [Sch91]. They have been introduced in [LPW10b,
LPW10a]. The idea behind ELν is to use the greatest fixpoint operator
ν from modal µ-calculus [BS07] explicitly in the concept descriptions.
Thus the syntax of ELν is the same as the syntax of classical EL but
additionally allows the greatest fixpoint construction νX.C, where C is
an ELν concept description and X is a free concept variable. Concept
variables are names from a set NV that can be used within concept
descriptions just like concept names. A variable is free if it occurs outside
the scope of a ν-operator. An ELν concept is closed if it does not contain
any free variables. The semantics of the fixpoint operator is as follows.
Let i be a interpretation and let v be an assignment that maps variables
to subsets of ∆i. By v[X →W] denote v modified by setting v(X) = W .

195

8 Related Work

Then
(νX.C)i,v =

⋃
{W ⊆ ∆i |W ⊆ Ci,v[X→W]}.

While ELν does provide a fixpoint constructor it still differs from
ELgfp in one aspect. The ν-operators in ELν are evaluated successively,
while the fixpoints of an ELgfp-TBox are evaluated simultaneously for
all defined concept names. Lutz et al. consider a second logic ELν+

which allows for simultaneous fixpoint operators. Syntactically, ELν+ is
EL extended by a constructor of the form

νkX1 · · ·Xn.C1, . . . , Cn

where 1 ≤ k ≤ n. Its semantics is defined by

(νkX1 · · ·Xn.C1, . . . , Cn)i,v =

=
⋃{

Wk | ∃W1, . . . ,Wk−1,Wk+1, . . . ,Wn : ∀1 ≤ j ≤ n :

Wj ⊆ Ci,v[X1→W1,...,Xn→Wn]
j

}
.

Lutz et al. compare the expressivity of ELν+ and ELgfp.

Lemma 8.1. ELν+ is strictly more expressive than ELgfp. More pre-
cisely, for every ELgfp-concept description there is an equivalent ELν+-
concept description of polynomial size, but not every ELν+-concept de-
scription is equivalent to an ELgfp-concept description.

Furthermore, a result is obtained stating that ELν and ELν+ have the
same expressivity, but ELν+ is exponentially more succinct. Further
results include the proof of the existence of least common subsumers
and most specific concepts in ELν+. The ideas for these proofs are
adaptations of the techniques used for ELgfp. Most importantly they
prove that standard reasoning problems such as consistency checking,
subsumption with respect to TBoxes and the instance problem remain
tractable within ELν+. Together with Lemma 8.1 this yields, that stan-
dard reasoning is also tractable in ELgfp.
These results and others obtained by Lutz et al. make a strong case

for using ELν+ as the standard when an extension of EL with fixpoints
is required. It is a possible direction of future work to examine whether
the results from this thesis can be adapted to ELν+. We conjecture that
this is not very difficult.

196

9 Conclusions

Model-Based Most Specific Concepts Almost all previous attempts
at combining FCA and DL have used a construction that is similar to
induced contexts. Therefore they have essentially used some variant of
classical FCA in a context whose attributes are DL concept descriptions.
We have provided an alternative approach, where we have introduced
DL reasoning services that have similar properties as the derivation op-
erators from FCA. These reasoning services are on the one hand the
interpretation function of a model as a replacement for the derivation
operator that maps sets of attributes to sets of objects, and on the other
hand the model-based most specific concept as a replacement for the
derivation operator that maps sets of objects to sets of attributes. They
provide a framework that allows us to transfer several basic results from
FCA to the DL world. One such result is that when searching for a base
for the GCIs holding in a given model it suffices to consider right-hand
sides that can be written as model-based most specific concepts.
We have dealt with the question whether model-based most specific

concepts always exist. Unfortunately, this is not true for EL⊥. However,
by extending EL⊥ by cyclic concept description and greatest-fixpoint se-
mantics one can guarantee existence of model-based most specific con-
cepts. They can be computed effectively: For a singleton set the model-
based most specific concept is obtained via a simple linear time transla-
tion from the model to an EL⊥gfp-concept description. For larger sets it
is the least common subsumer of the model-based most specific concepts
of its singleton subsets.

Finding a Finite Base Compared to earlier formalisms we adopt a
stronger notion of completeness. We say that a set B of GCIs is complete
for a model i if all GCIs that hold in i follow from the GCIs in B. In the
previous work [BGSS07] restrictions on the structure of the GCIs were
made, we make no such restrictions.

197

9 Conclusions

We have addressed the question whether a finite base for the GCIs
holding in a finite model can exist. Both for the logics EL⊥gfp and EL⊥
a construction for a finite base has been presented. The first step in
this construction is the computation of a set of interesting concept de-
scriptions Mi. This can be achieved using a version of Next-Closure. In
a next step the context induced by Mi and i is constructed. We have
shown that every implicational base of this induced context gives rise to
a base for the EL⊥gfp-GCIs holding in i, and the Duquenne-Guigues base
of this induced context gives rise to a base with minimal cardinality.
This base can then be transformed into an EL⊥ base by unravelling and
pruning the concept descriptions that occur in the GCIs.

Model Exploration Model Exploration can be used to obtain a base
for the GCIs holding in a finite model, the background model, when
only a working model, a connected submodel of the background model,
is available. It is an interactive process, following the pattern of At-
tribute Exploration, where an expert can inspect each GCI after it has
been computed. If a GCI is rejected then the expert is asked to pro-
vide a counterexample which is added to the working model. This has
to happen in such a way that the working model remains a connected
submodel of the background model. Model Exploration uses results
from the previous chapter. During the exploration process an implica-
tional base for the context induced by the background model i and the
set Mi is computed. In order to compute Mi the background model i
needs to be known completely. Since this is not the case, the theory of
FCA has been adapted. We have shown that an implicational base can
be obtained, even if attributes are added during runtime. This implica-
tional base is not necessarily identical with the Duquenne-Guigues Base,
and therefore unfortunately the property of minimal cardinality is lost.
Model Exploration always terminates and returns a finite base for the
EL⊥gfp-GCIs that hold in the background model. It can be modified such
that cyclic concept descriptions only occur on the right-hand sides of the
GCIs. It is not possible to completely avoid cyclic GCIs during runtime.
Upon termination it is possible to transform the obtained base into an
EL⊥-base using the same construction as in the previous chapter.

198

ABox Exploration In a classic knowledge base completion setting work-
ing models are not present. Furthermore, the connectedness condition
on the working models can force the expert to add an unnecessarily
large amount of data when providing counterexamples. We have pre-
sented ABox Exploration as an alternative to Model Exploration, where
counterexamples are stored directly in the ontology, or more specifically
in the ABox. In order to describe that an individual a is an (explicit)
counterexample to a GCI one needs to specify that a belongs to the
concept C but does not belong to the concept D. We have shown that,
although EL⊥ does not allow for negation, counterexamples can be de-
scribed in an EL⊥-ontology using disjointness statements.
ABox Exploration differs from Model Exploration mainly in two as-

pects. First, the counterexamples are stored in the ABox. Second, we
have introduced minimal possible consequences, which replace model-
based most specific concepts in ABox Exploration. We have also proved
that minimal possible consequences always exist for acyclic concept de-
scriptions and EL⊥-ontologies. However, we have not been able to
present an efficient method to compute them. We have therefore sug-
gested the use of approximated minimal possible consequences. Their
computational behaviour is superior to minimal possible consequences,
but they can lead to slightly greater expert interaction during the ex-
ploration. It remains to be tested, which method behaves better on
real-world data.

199

Bibliography

[ABB+00] M. Ashburner, C. A. Ball, J. A. Blake, D. Botstein, H. But-
ler, J. M. Cherry, A. P. Davis, K. Dolinski, S. S. Dwight,
J. T. Eppig, M. A. Harris, D. P. Hill, L. Issel-Tarver,
A. Kasarskis, S. Lewis, J. C. Matese, J. E. Richardson,
M. Ringwald, G. M. Rubin, and G. Sherlock. Gene On-
tology: Tool for the unification of biology. Nature Genetics,
25(1):25–29, 2000.

[Arm74] W.W. Armstrong. Dependency structures of data base re-
lationships. In Jack L. Rosenfeld, editor, Proc. of the 6th
IFIP Congress, Stockholm, Sweden, 1974. North-Holland.

[Baa95] Franz Baader. Computing a minimal representation of the
subsumption lattice of all conjunctions of concepts defined
in a terminology. In G. Ellis, R. A. Levinson, A. Fall, and
V. Dahl, editors, Knowledge Retrieval, Use and Storage for
Efficiency: Proc. of the 1st Int. KRUSE Symposium, pages
168–178, 1995.

[Baa03a] Franz Baader. Least common subsumers and most spe-
cific concepts in a Description Logic with existential restric-
tions and terminological cycles. In Georg Gottlob and Toby
Walsh, editors, Proc. of the 18th Int. Joint Conf. on Ar-
tificial Intelligence (IJCAI 2003), pages 319–324. Morgan
Kaufmann, 2003.

[Baa03b] Franz Baader. Terminological cycles in a Description Logic
with existential restrictions. In Georg Gottlob and Toby
Walsh, editors, Proc. of the 18th Int. Joint Conf. on Arti-
ficial Intelligence (IJCAI 2003), pages 325–330, Acapulco,
Mexico, 2003. Morgan Kaufmann, Los Altos.

201

Bibliography

[BBL05a] Franz Baader, Sebastian Brandt, and Carsten Lutz. Push-
ing the EL envelope. In Leslie Pack Kaelbling and Alessan-
dro Saffiotti, editors, Proc. of the 19th Int. Joint Conf. on
Artificial Intelligence (IJCAI 2005), pages 364–369, Edin-
burgh (UK), 2005. Morgan Kaufmann, Los Altos.

[BBL05b] Franz Baader, Sebastian Brandt, and Carsten Lutz. Push-
ing the EL envelope. LTCS-Report LTCS-05-01, Chair for
Automata Theory, Institute for Theoretical Computer Sci-
ence, Dresden University of Technology, Germany, 2005. See
http://lat.inf.tu-dresden.de/research/reports.html.

[BBL08] Franz Baader, Sebastian Brandt, and Carsten Lutz. Push-
ing the EL envelope further. In Kendall Clark and Peter F.
Patel-Schneider, editors, Proc. of the OWLED 2008 DC
Workshop on OWL: Experiences and Directions, 2008.

[BCM+03] Franz Baader, Diego Calvanese, Deborah McGuinness,
Daniele Nardi, and Peter F. Patel-Schneider, editors. The
Description Logic Handbook: Theory, Implementation, and
Applications. Cambridge University Press, 2003.

[BD08] Franz Baader and Felix Distel. A finite basis for the set
of EL-implications holding in a finite model. In Raoul
Medina and Sergei Obiedkov, editors, Proc. of the 6th Int.
Conf. on Formal Concept Analysis (ICFCA 2008), volume
4933 of Lecture Notes in Artificial Intelligence, pages 46–61.
Springer, 2008.

[BD09] Franz Baader and Felix Distel. Exploring finite models in
the Description Logic ELgfp. In Sébastien Ferré and Sebas-
tian Rudolph, editors, Proc. of the 7th Int. Conf. on Formal
Concept Analysis (ICFCA 2009). Springer, 2009.

[BdRV01] Patrick Blackburn, Maarten de Rijke, and Yde Venema.
Modal Logic, volume 53 of Cambridge Tracts in Theoreti-
cal Computer Science. Cambridge University Press, 2001.

[BGSS07] Franz Baader, Bernhard Ganter, Ulrike Sattler, and Barış
Sertkaya. Completing Description Logic knowledge bases

202

Bibliography

using Formal Concept Analysis. In Proc. of the 20th Int.
Joint Conf. on Artificial Intelligence (IJCAI 2007). AAAI
Press/The MIT Press, 2007.

[BH95] Franz Baader and Bernhard Hollunder. Embedding defaults
into terminological knowledge representation formalisms. J.
of Automated Reasoning, 14:149–180, 1995.

[BH00] Peter Burmeister and Richard Holzer. On the treatment of
incomplete knowledge in formal concept analysis. In B. Gan-
ter and G.W. Mineau, editors, Proc. of the 8th Int. Conf.
on Conceptual Structures (ICCS 2000). Springer, 2000.

[Bir93] Garrett Birkhoff. Lattice theory, volume 25 of Colloquium
publications. American Mathematical Society, Providence,
Rhode Island, 3rd edition, 1993.

[BK06] Franz Baader and Ralf Küsters. Nonstandard inferences in
Description Logics: The story so far. In D.M. Gabbay, S.S.
Goncharov, and M. Zakharyaschev, editors, Mathematical
Problems from Applied Logic I, volume 4 of International
Mathematical Series, pages 1–75. Springer-Verlag, 2006.

[BK10] Mikhail Babin and Sergei Kuznetsov. Recognizing pseudo-
intents is coNP-complete. In Marzena Kryszkiewicz and
Sergei Obiedkov, editors, Proc. of the 7th Int. Conf. on Con-
cept Lattices and Their Applications (CLA 2010), volume
672. CEUR Workshop Proceedings, 2010.

[BKM99] Franz Baader, Ralf Küsters, and Ralf Molitor. Computing
least common subsumers in Description Logics with exis-
tential restrictions. In Thomas Dean, editor, Proc. of the
16th Int. Joint Conf. on Artificial Intelligence (IJCAI’99),
pages 96–101, 1999.

[BKT02] Sebastian Brandt, Ralf Küsters, and Anni-Yasmin Turhan.
Approximation and difference in Description Logics. In
D. Fensel, F. Giunchiglia, D. McGuiness, and M.-A.
Williams, editors, Proc. of the 8th Int. Conf. on Principles
of Knowledge Representation and Reasoning (KR 2002),
pages 203–214, San Francisco, CA, 2002. Morgan Kaufman.

203

Bibliography

[BL84] Ronald J. Brachman and Hector J. Levesque. The tractabil-
ity of subsumption in frame-based description languages. In
Proc. of the 4th Nat. Conf. on Artificial Intelligence (AAAI
1984), pages 34–37, 1984.

[BL85] Ronald J. Brachman and Hector J. Levesque, editors. Read-
ings in Knowledge Representation. Morgan Kaufmann, Los
Altos, 1985.

[BLS06] Franz Baader, Carsten Lutz, and Boontawee Suntisrivara-
porn. CEL—a polynomial-time reasoner for life science on-
tologies. In Ulrich Furbach and Natarajan Shankar, edi-
tors, Proc. of the Int. Joint Conf. on Automated Reasoning
(IJCAR 2006), volume 4130 of Lecture Notes in Artificial
Intelligence, pages 287–291. Springer-Verlag, 2006.

[BM00] Franz Baader and Ralf Molitor. Building and structur-
ing Description Logic knowledge bases using least com-
mon subsumers and concept analysis. In B. Ganter and
G. Mineau, editors, Conceptual Structures: Logical, Lin-
guistic, and Computational Issues – Proc. of the 8th Int.
Conf. on Conceptual Structures (ICCS 2000), volume 1867
of Lecture Notes in Artificial Intelligence, pages 290–303.
Springer-Verlag, 2000.

[BM05] Sebastian Brandt and Jörg Model. Subsumption in EL
w.r.t. hybrid TBoxes. In Ulrich Furbach, editor, Proc. of
the 28th Annual German Conf. on Artificial Intelligence
(KI 2005), Lecture Notes in Artificial Intelligence. Springer-
Verlag, 2005.

[BNS08] Franz Baader, Novak Novakovic, and Boontawee Suntisri-
varaporn. A proof-theoretic subsumption reasoner for hy-
brid EL-TBoxes. In Franz Baader, Carsten Lutz, and Boris
Motik, editors, Proc. of the 2008 Int. Workshop on Descrip-
tion Logics (DL 2008), volume 353 of CEUR-WS, 2008.

[Bra04] Sebastian Brandt. Polynomial time reasoning in a Descrip-
tion Logic with existential restrictions, GCI axioms, and—
what else? In Ramon López de Mántaras and Lorenza

204

Bibliography

Saitta, editors, Proc. of the 16th Eur. Conf. on Artificial
Intelligence (ECAI 2004), pages 298–302, 2004.

[Bra06] Sebastian Brandt. Standard and Non-standard reasoning in
Description Logics. Ph.D. dissertation, Institute for Theo-
retical Computer Science, TU Dresden, Germany, 2006.

[BS85] Ronald J. Brachman and James G. Schmolze. An overview
of the KL-ONE knowledge representation system. Cognitive
Science, 9(2):171–216, 1985.

[BS04] Franz Baader and Barış Sertkaya. Applying Formal Concept
Analysis to Description Logics. In P. Eklund, editor, Proc.
of the 2nd Int. Conf. on Formal Concept Analysis (ICFCA
2004), volume 2961 of Lecture Notes in Computer Science,
pages 261–286, Sydney, Australia, 2004. Springer-Verlag.

[BS07] Julian Bradfield and Colin Stirling. Modal µ-calculi. In
Patrick Blackburn, Johan Van Benthem, and Frank Wolter,
editors, Handbook of Modal Logic, volume 3 of Studies in
Logic and Practical Reasoning, chapter 12, pages 721–756.
Elsevier, 2007.

[BS09] Franz Baader and Barış Sertkaya. Usability issues in De-
scription Logic knowledge base completion. In Sébastien
Ferré and Sebastian Rudolph, editors, Proc. of the 7th Int.
Conf. on Formal Concept Analysis, (ICFCA 2009), volume
5548 of Lecture Notes in Artificial Ingelligence, pages 1–21.
Springer Verlag, 2009.

[BT01] Sebastian Brandt and Anni-Yasmin Turhan. Using non-
standard inferences in Description Logics — what does it
buy me? In Proc. of the KI 2001 Workshop on Appli-
cations of Description Logics (KIDLWS 2001), number 44
in CEUR-WS, Vienna, Austria, September 2001. RWTH
Aachen.

[Bur91] Peter Burmeister. Merkmalimplikationen bei unvollständi-
gem Wissen. In W. Lex, editor, Arbeitstagung Begriffs-
analyse und künstliche Intelligenz, pages 15–46, Clausthal-
Zellerfeld, 1991.

205

Bibliography

[DG84] William F. Dowling and Jean H. Gallier. Linear-time al-
gorithms for testing the satisfiability of propositional horn
formulae. The Journal of Logic Programming, 1(3):267–284,
1984.

[Dis09] Felix Distel. Model-based most specific concepts in some De-
scription Logics with value restrictions. In Bernardo Cuenca
Grau, Ian Horrocks, Boris Motik, and Ulrike Sattler, editors,
Proc. of the 2009 Int. Workshop on Description Logics (DL
2009), volume 477 of CEUR-WS, 2009.

[Dis10a] Felix Distel. An approach to exploring Description Logic
knowledge bases. In Barış Sertkaya and Léonard Kwuida,
editors, Proc. of the 8th Int. Conf. on Formal Concept Anal-
ysis (ICFCA 2010), volume 5986 of Lecture Notes in Arti-
ficial Intelligence, pages 209–224. Springer, 2010.

[Dis10b] Felix Distel. Hardness of enumerating pseudo-intents in the
lectic order. In Barış Sertkaya and Léonard Kwuida, edi-
tors, Proc. of the 8th Int. Conf. on Formal Concept Analysis
(ICFCA 2010), volume 5986 of Lecture Notes in Artificial
Intelligence, pages 124–137. Springer, 2010.

[DP02] Brian A. Davey and Hillary A. Priestley. Introduction to
lattices and order. Cambridge University Press, 2nd edition,
2002.

[DS11] Felix Distel and Barış Sertkaya. On the complexity of enu-
merating pseudo-intents. Discrete Applied Mathematics, to
appear, 2011.

[EKMS93] M. Erné, J. Koslowski, A. Melton, and G. E. Strecker.
A primer on galois connections. Annals of the New York
Academy of Sciences, 704(1):103–125, 1993.

[Fer02] Sébastien Ferré. Systèmes d’information logiques: un
paradigme logico-contextuel pour interroger, naviguer et ap-
prendre. PhD thesis, IRISA, France, 2002.

[FR00] Sébastien Ferré and Olivier Ridoux. A logical generaliza-
tion of Formal Concept Analysis. In Bernhard Ganter and

206

Bibliography

Guy W. Mineau, editors, Proc. of the 8th Int. Conf. on
Conceptual Structures (ICCS 2000), volume 1867 of LNCS,
pages 371–384. Springer, 2000.

[FR04] Sébastien Ferré and Olivier Ridoux. Introduction to logical
information systems. Information Processing & Manage-
ment, 40(3):383 – 419, 2004.

[Gan84] Bernhard Ganter. Two basic algorithms in concept analy-
sis. Preprint 831, Fachbereich Mathematik, TU Darmstadt,
Darmstadt, Germany, 1984.

[Gan99] Bernhard Ganter. Attribute exploration with background
knowledge. Theoretical Computer Science, 217(2):215–233,
1999.

[GD86] J.-L. Guigues and V. Duquenne. Familles minimales
d’implications informatives résultant d’un tableau de don-
nées binaires. Math. Sci. Humaines, 95:5–18, 1986.

[GHKS07] Bernardo Cuenca Grau, Ian Horrocks, Yevgeny Kazakov,
and Ulrike Sattler. Just the right amount: Extracting mod-
ules from ontologies. In Carey L. Williamson, Mary Ellen
Zurko, Peter F. Patel-Schneider, and Prashant J. Shenoy,
editors, Proc. of the 16th Int. Conf. on World Wide Web
(WWW 2007), pages 717–726, Banff, Canada, 2007. ACM.

[GMA95] R. Godin, R. Missaoui, and H. Alaoui. Incremental concept
formation algorithms based on galois lattices. Computa-
tional Intelligence, 11(2):246–267, 1995.

[GW97] Bernhard Ganter and Rudolf Wille. Formal Concept Analy-
sis: Mathematical Foundations. Springer, New York, 1997.

[GW99] Bernhard Ganter and Rudolf Wille. Contextual attribute
logic. In William M. Tepfenhart and Walling R. Cyre, ed-
itors, Proc. of the 7th Int. Conf. on Conceptual Structures
(ICCS 1999), pages 377–388, London, UK, 1999. Springer.

[HHK95] M. R. Henzinger, T. A. Henzinger, and P. W. Kopke. Com-
puting simulations on finite and infinite graphs. In Proc. of

207

Bibliography

the 36th Annual Symposium on Foundations of Computer
Science (FOCS 1995), page 453, Washington, DC, USA,
1995. IEEE Computer Society.

[HM01] Volker Haarslev and Ralf Möller. RACER system descrip-
tion. In Rajeev Goré, Alexander Leitsch, and Tobias Nip-
kow, editors, Proc. of the Int. Joint Conf. on Automated
Reasoning (IJCAR 2001), 2001.

[Hor98] Ian Horrocks. Using an expressive Description Logic: FaCT
or fiction? In Proc. of the 6th Int. Conf. on Principles of
Knowledge Representation and Reasoning (KR 1998), pages
636–647, 1998.

[HPSvH03] Ian Horrocks, Peter F. Patel-Schneider, and Frank van
Harmelen. From SHIQ and RDF to OWL: The making
of a web ontology language. Journal of Web Semantics,
1(1):7–26, 2003.

[HS04] Ian Horrocks and Ulrike Sattler. Decidability of SHIQ with
complex role inclusion axioms. Artificial Intelligence, 160(1–
2):79–104, December 2004.

[HST99] Ian Horrocks, Ulrike Sattler, and Stephan Tobies. Prac-
tical reasoning for expressive Description Logics. In Har-
ald Ganzinger, David McAllester, and Andrei Voronkov,
editors, Proc. of the 6th Int. Conf. on Logic for Program-
ming and Automated Reasoning (LPAR 1999), number 1705
in Lecture Notes in Artificial Intelligence, pages 161–180.
Springer-Verlag, 1999.

[HST00] Ian Horrocks, Ulrike Sattler, and Stephan Tobies. Practi-
cal reasoning for very expressive Description Logics. Logic
Journal of the IGPL, 8(3):239–264, 2000.

[KO02] Sergei O. Kuznetsov and Sergei A. Obiedkov. Comparing
performance of algorithms for generating concept lattices.
Journal of Experimental and Theoretical Artificial Intelli-
gence, 14:189–216, 2002.

208

Bibliography

[KO08] Sergei O. Kuznetsov and Sergei Obiedkov. Some decision
and counting problems of the Duquenne-Guigues basis of
implications. Discrete Applied Mathematics, 156(11):1994 –
2003, 2008. In Memory of Leonid Khachiyan (1952 - 2005).

[Kuz93] Sergei O. Kuznetsov. A fast algorithm for computing all
intersections of objects in a finite semi-lattice. Automated
Documentation and Mathematical Linguistics, 27(5):11–21,
1993.

[Kuz04] Sergei O. Kuznetsov. On the intractability of computing the
Duquenne-Guigues base. Journal of Universal Computer
Science, 10(8):927–933, 2004.

[Kuz06] Sergei O. Kuznetsov. Counting pseudo-intents and]P-
completeness. In Rokia Missaoui and Jürg Schmid, edi-
tors, Proc. of the 4th Int. Conf. on Formal Concept Anal-
ysis (ICFCA 2006), volume 3874 of LNCS, pages 306–308,
2006.

[LPW10a] Carsten Lutz, Robert Piro, and Frank Wolter. Enriching
EL-concepts with greatest fixpoints. In R. Studer H. Coelho
and M. Wooldridge, editors, Proc. of the 19th Eur. Conf. on
Artificial Intelligence (ECAI 2010). IOS Press, 2010.

[LPW10b] Carsten Lutz, Robert Piro, and Frank Wolter. EL-concepts
go second order: Greatest fixpoints and simulation quan-
tifiers. In Proc. of the 23rd Int. Workshop on Description
Logics (DL 2010), volume 573 of CEUR-WS, 2010.

[Lut03] Carsten Lutz. Description Logics with concrete domains—
a survey. In Philippe Balbiani, Nobu-Yuki Suzuki, Frank
Wolter, and Michael Zakharyaschev, editors, Advances in
Modal Logics Volume 4, pages 265–296. King’s College Pub-
lications, 2003.

[Min81] Marvin Minsky. A framework for representing knowledge.
In J. Haugeland, editor, Mind Design: Philosophy, Psychol-
ogy, Artificial Intelligence. The MIT Press, 1981. A longer
version appeared in The Psychology of Computer Vision
(1975). Republished in [BL85].

209

Bibliography

[MS09] Julian Mendez and Boontawee Suntisrivaraporn. Reintro-
ducing CEL as an OWL 2 EL reasoner. In Bernardo Cuenca
Grau, Ian Horrocks, Boris Motik, and Ulrike Sattler, editors,
Proc. of the 2009 Int. Workshop on Description Logics (DL
2009), volume 477 of CEUR-WS, 2009.

[Neb88] Bernhard Nebel. Computational complexity of terminolog-
ical reasoning in BACK. Artificial Intelligence, 34(3):371–
383, 1988.

[Neb91] Bernhard Nebel. Terminological cycles: Semantics and com-
putational properties. In John F. Sowa, editor, Principles
of Semantic Networks, pages 331–361. Morgan Kaufmann,
Los Altos, 1991.

[NR99] Lhouari Nourine and Olivier Raynaud. A fast algorithm
for building lattices. Information Processing Letters, 71(5-
6):199 – 204, 1999.

[Peñ09] Rafael Peñaloza. Axiom-Pinpointing in Description Logics
and Beyond. PhD thesis, TU Dresden, Dresden, Germany,
2009.

[Pre97] Susanne Prediger. Logical scaling in Formal Concept Anal-
ysis. In Dickson Lukose, Harry S. Delugach, Mary Keeler,
Leroy Searle, and John F. Sowa, editors, Proc. of the 5th
Int. Conf. on Conceptual Structures (ICCS 1997), volume
1257 of LNCS, pages 332–341. Springer, 1997.

[Pre00] Susanne Prediger. Terminologische Merkmalslogik in der
Formalen Begriffsanalyse. In Gerd Stumme and Rudolf
Wille, editors, Begriffliche Wissensverarbeitung: Methoden
und Anwendungen, pages 99–124, Berlin, Heidelberg, New
York, 2000. Springer.

[Pri98] Uta Priss. The formalization of WordNet by methods of re-
lational concept analysis. In C. Fellbaum, editor, WordNet:
An Electronic Lexical Database and some of its applications,
Cambridge, Massachusetts, 1998. MIT Press.

210

Bibliography

[PS99] Susanne Prediger and Gerd Stumme. Theory-driven logi-
cal scaling: Conceptual information systems meet Descrip-
tion Logics. In Knowledge Representation Meets Databases,
pages 46–49, 1999.

[PSK05] Bijan Parsia, Evren Sirin, and Aditya Kalyanpur. Debug-
ging OWL ontologies. In Allan Ellis and Tatsuya Hagino,
editors, Proc. of the 14th International Conference on World
Wide Web (WWW’05), pages 633–640. ACM, 2005.

[PW99] Susanne Prediger and Rudolf Wille. The lattice of con-
cept graphs of a relationally scaled context. In William M.
Tepfenhart and Walling R. Cyre, editors, Proc. of the 7th
Int. Conf. on Conceptual Structures (ICCS 1999), volume
1640 of Lecture Notes in Computer Science, pages 401–414.
Springer, 1999.

[RH97] Alan Rector and Ian Horrocks. Experience building a large,
re-usable medical ontology using a Description Logic with
transitivity and concept inclusions. In Proc. of the Work-
shop on Ontological Engineering, AAAI Spring Symposium
(AAAI 1997), Stanford, CA, 1997. AAAI Press.

[Rud04] Sebastian Rudolph. Exploring relational structures via
FLE . In K. E. Wolff, H. D. Pfeiffer, and H. S. Delugach,
editors, Proc. of the 12th Int. Conf. on Conceptual Struc-
tures (ICCS 2004), volume 3127 of LNCS, pages 196–212,
2004.

[Rud06] Sebastian Rudolph. Relational Exploration – Combining
Description Logics and Formal Concept Analysis for Knowl-
edge Specification. PhD thesis, Technische Universität Dres-
den, 2006.

[RVH07] Sebastian Rudolph, Johanna Völker, and Pascal Hitzler.
Supporting lexical ontology learning by relational explo-
ration. In Uta Priss, Simon Polovina, and Richard Hill, ed-
itors, Proc. of the 15th Int. Conf. on Conceptual Structures
(ICCS 2007): Knowledge Architectures for Smart Applica-
tions, pages 488–491, Berlin, Heidelberg, 2007. Springer-
Verlag.

211

Bibliography

[SC03] Stefan Schlobach and Ronald Cornet. Non-standard rea-
soning services for the debugging of description logic termi-
nologies. In Georg Gottlob and Toby Walsh, editors, Proc.
of the 18th Int. Joint Conf. on Artificial Intelligence (IJ-
CAI 2003), pages 355–362, Acapulco, Mexico, 2003. Morgan
Kaufmann, Los Altos.

[SCC97] K.A. Spackman, K.E. Campbell, and R.A. Cote. SNOMED
RT: A reference terminology for health care. J. of the Amer-
ican Medical Informatics Association, pages 640–644, 1997.
Fall Symposium Supplement.

[Sch91] Klaus Schild. A correspondence theory for terminological
logics: Preliminary report. In Proc. of the 12th Int. Joint
Conf. on Artificial Intelligence (IJCAI 1991), pages 466–
471, 1991.

[Ser07] Barış Sertkaya. Formal Concept Analysis Methods for De-
scription Logics. Ph.D. thesis, TU Dresden, Dresden, Ger-
many, 2007.

[Ser08] Barış Sertkaya. Explaining user errors in Description Logic
knowledge base completion. In Inf. Proc. of the 2008 Int.
Workshop on Complexity, Expressibility, and Decidability in
Automated Reasoning (CEDAR 2008), 2008.

[Ser09a] Barış Sertkaya. OntoComP: A protegé plugin for completing
OWL ontologies. In L. Aroyo, P. Traverso, F. Ciravegna,
P. Cimiano, T. Heath, E. Hyvönen, R. Mizoguchi, E. Oren,
M. Sabou, and E. Paslaru Bontas Simperl, editors, Proc.
of the 6th Eur. Semantic Web Conference, (ESWC 2009),
volume 5554 of Lecture Notes in Computer Science, pages
898–902. Springer Verlag, 2009.

[Ser09b] Barış Sertkaya. Some computational problems related to
pseudo-intents. In Sébastien Ferré and Sebastian Rudolph,
editors, Proc. of the 7th Int. Conf. on Formal Concept Anal-
ysis, (ICFCA 2009), volume 5548 of Lecture Notes in Arti-
ficial Intelligence, pages 130–145. Springer Verlag, 2009.

212

Bibliography

[Sow91] John F. Sowa, editor. Principles of Semantic Networks.
Morgan Kaufmann, Los Altos, 1991.

[Sow92] John F. Sowa. Semantic networks. In Stuart C. Shapiro,
editor, Encyclopedia of Artificial Intelligence (2nd Edition).
John Wiley & Sons, 1992.

[STB+00] G. Stumme, R. Taouil, Y. Bastide, N. Pasquier, and
L. Lakhal. Fast computation of concept lattices using data
mining techniques. In Proc. 7th Int. Workshop on Knowl-
edge Representation Meets Databases (KRDB 2000), pages
129–139, 2000.

[Stu96a] Gerd Stumme. Attribute exploration with background im-
plications and exceptions. In H.-H. Bock and W. Polasek,
editors, Data Analysis and Information Systems, page 457ff,
Berlin, 1996. Springer.

[Stu96b] Gerd Stumme. The concept classification of a terminol-
ogy extended by conjunction and disjunction. In N. Foo
and R. Goebel, editors, PRICAI’96: Topics in Artificial In-
telligence. Proc. PRICAI’96, volume 1114 of LNAI, pages
121–131, Heidelberg, 1996. Springer.

[Stu96c] Gerd Stumme. Exploration tools in Formal Concept Analy-
sis. In E. Diday, Y. Lechevallier, and O. Opitz, editors, Proc.
of the Int. Conf. on Ordinal and Symbolic Data Analysis
(OSDA 1995), Studies in classification, data analysis, and
knowledge organization, pages 31–44, Berlin–Heidelberg,
1996. Springer–Verlag.

[Stu02] Gerd Stumme. Efficient data mining based on Formal Con-
cept Analysis. In Abdelkader Hameurlain, Rosine Cicchetti,
and Roland Traunmüller, editors, Database and Expert Sys-
tems Applications, volume 2453 of Lecture Notes in Com-
puter Science, pages 3–22. Springer, 2002.

[Sun09] Boontawee Suntisrivaraporn. Polynomial-Time Reasoning
Support for Design and Maintenance of Large-Scale Biomed-
ical Ontologies. PhD thesis, TU Dresden, 2009.

213

Bibliography

[TH06] Dmitry Tsarkov and Ian Horrocks. Fact++ Description
Logic reasoner: System description. In Natarajan Shankar
Ulrich Furbach, editor, In Proc. of the Int. Joint Conf.
on Automated Reasoning (IJCAR 2006), pages 292–297.
Springer, 2006.

[Tur07] Anni-Yasmin Turhan. On the Computation of Common
Subsumers in Description Logics. PhD thesis, TU Dresden,
Dresden, Germany, 2007.

[WGG08] Johannes Wollbold, Reinhard Guthke, and Bernhard Gan-
ter. Constructing a knowledge base for gene regulatory dy-
namics by Formal Concept Analysis methods. In Katsuhisa
Horimoto, Georg Regensburger, Markus Rosenkranz, and
Hiroshi Yoshida, editors, Algebraic Biology, volume 5147 of
LNCS. Springer, 2008.

[Wil82] Rudolf Wille. Restructuring lattice theory: an approach
based on hierarchies of concepts. In Ivan Rival, editor, Or-
dered Sets: Proc. of the NATO Advanced Study Institute,
pages 445–470. Reidel, 1982.

[Zic91] Monika Zickwolff. Rule Exploration: First Order Logic in
Formal Concept Analysis. PhD thesis, TH Darmstadt, Ger-
many, 1991.

214

