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Abstract

In recent years, the Description Logic £L has received a significant interest.
It has been shown to be useful as a knowledge representation formalism, to
define large biomedical ontologies. Moreover, important inference problems
like subsumption have been shown to be decidable in polynomial time in
EL. In particular, unification in ££ can be used to detect redundancies
in big ontologies. The unification problem in ££ has been shown to be
an NP-complete problem even in the presence of background knowledge
in the form of an acyclic TBox. Recently, the result was also extended
to the case of cycle-restricted TBoxes. Unification in ££ w.r.t. general
TBoxes is still an open problem. Here we define a more general notion
of unification problem called hybrid unification. In contrast to the usual
unification problem, hybrid unification allows solutions that contain cyclic
definitions of concept names. We show that hybrid unification in ££ is NP-
complete. Furthermore, we provide a goal-oriented NP-decision procedure
for the hybrid unification problem.
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Chapter 1

Introduction

In this thesis we define a new problem called hybrid unification and solve it
for the Description Logic £L.

Description Logics (DLs)[23] have been studied as a logic-based knowledge
representation formalism that can be used to represent concept definitions
in a structured and formal way. Knowledge in DLs is meant to be repre-
sented by concept descriptions. Concept descriptions are built from concept
names and role names using concept constructors. In order to give a mean-
ing to concept descriptions, interpretations like in first-order logic are used.
A nonempty domain of individuals is assumed and concept names are inter-
preted as subsets of the domain while role names as binary relations over
the domain.

In particular, the small DL £L provides the concept constructors conjunc-
tion (M), existential restriction (Ir.C') and the top concept (T). Although
EL is quite inexpressive it turns out to be of great interest since, on the
one hand, several large biomedical ontologies are defined within the expres-
sive power of E[H On the other hand, important inference problems like
subsumption have been shown to be decidable in polynomial time in ££
[2, 3, 4]. Informally, a concept description C' is subsumed by another con-
cept description D if for all interpretations C' is interpreted as a subset of
D.

Unification in DLs has been proposed as a new and important inference
problem, that for instance, can be used to detect redundancies in ontologies
[10]. As an intuitive example, assume that one developer of an ontology
defines the concept of grandmother as

Human M Female M 3child.Parent (1)

'see http://www.ihtsdo.org/snomed-ct/
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while another one represents it as
Woman M 3child.(Human M 3child. Human)  (2)

These two concept descriptions are meant to represent the same concept,
but they are not formally equivalent, because there are interpretations that
interpret them as different sets of individuals. However, they can be made
equivalent if the concept names Woman and Parent are treated as vari-
ables that can be replaced by concept descriptions. For instance, if Woman
is substituted by HumanlFemale and Parent by HumanM3child. Human,
then these descriptions are equivalent. In this case, we say that the descrip-
tions are unifiable and we can represent the solution as a substitution or
equivalently as a set of definitions.

Woman = Human M Female

Parent = Human M 3child. Human

In practical applications, often unification of two concept descriptions is
considered w.r.t. background knowledge formulated as a big set of definitions
or subsumption facts [13]. This knowledge can enable discovery of possible
solutions for the unification problem. For example, suppose that the second
developer uses the description

dfamily.Big M Woman M 3child.(Human M 3child. Human) (3)

instead of (2). Now, the descriptions (1) and (3) are not unifiable, but they
would be with the same unifier as above, if the following subsumption

Woman M 3child.(3child. Human) T 3 family. Big

is considered as a fact in the background ontology.

The unification problem in ££ has been recently investigated [111, 12| [14].
First, it was shown to be NP-Complete in the absence of a background
knowledge base [I1]. The main idea underlying this ”in NP” result, relies
in the existence of a local unifier. In [13], it was shown that when the
unification problem is considered w.r.t. a non-empty general TBox, the
same notion of locality does not work. A first solution was proposed to
fix this problem: restrict the general TBox, representing the background
ontology, to a certain type of general TBoxes. A TBox of such type is
characterized by a restriction on the structure of the consequences that are
implied from the TBox. However, this solution obviously does not apply to
arbitrary general TBoxes.

This thesis, presents an alternative solution to the problem. Instead of
considering only ground substitutions as the possible solutions of the uni-
fication problem, we propose to allow concept definitions that may contain



cyclic dependencies to be solutions of the unification problem. The new
problem is called hybrid unification, motivated by the notion of a hybrid
TBox introduced in [4].

In order to do that, we need to use an appropriate semantics since now cycles
may occur in a solution of the problem. The properties of different semantics
applied to the problem of interest were investigated in [18], where three types
of semantics were defined: descriptive semantics, greatest fixpoint semantics
and least fixpoint semantics. In particular, greatest fixpoint semantics was
shown to be suitable to interpret cyclic TBoxes.

The combination of a general TBox and a possibly cyclic set of concept
definitions, was introduced in [6] under the name of hybrid TBoxes. A
combination of descriptive semantics with greatest fixpoint semantics was
chosen to interpret those TBoxes and the subsumption problem was shown
to be decidable in polynomial time. Later in [7], the same polynomial time
result was obtained, but using a Gentzen-style calculus as a characterization
of the subsumption problem.

The main goal of this thesis is to show that the hybrid unification problem
is NP-complete. We use the Gentzen-style calculus proposed in [7] and show
the ”in NP” part of the result based on a similar notion of locality as the one
used to show the NP-membership of unification in ££. The NP-hardness is
shown by a reduction from the £L-matching problem modulo equivalence
which is known to be NP-complete [17].

We start, in Chapter [2, by introducing formal basic definitions concerning
the £L-description Logic and the greatest fixpoint semantics. Then, Chapter
[3] presents more details about the results that have already been obtained for
the £ L-unification problem and explains the need to find a new alternative
approach. Once we have this necessary introduction, hybrid TBoxes will be
presented in Chapter 4] as well as, the subsumption problem w.r.t. hybrid
TBoxes, the proof calculus from [7] and finally the formal definition of the
hybrid unification problem.

The main results of this thesis are shown in Chapters[5] and [} In Chapter
we show that hybrid unification is NP-complete obtaining an immediate
NP-decision procedure. Then, in Chapter [f] we provide a more goal-oriented
algorithm that is a correct NP-decision procedure for the hybrid unification
problem.

Finally, in the conclusions we sum up the results and discuss significance
and possible future research development on hybrid unification in £L.



Chapter 2

The Description Logic ££

In this chapter, we introduce formal definitions and concepts that are im-
portant for the next chapters. We start by presenting the Description Logic
EL, its syntax and semantics. In addition, we introduce the notion of ter-
minological axioms and discuss some related aspects, e.g., cyclic definitions
and a normalization procedure used to simplify a TBox. Finally, two types
of semantics are presented and some of their properties are shown.

2.1 Syntax and Semantics

Starting from a finite set N of concept names and a finite set N of role
names, E£L-concept descriptions are built using the concept constructors
top-concept (T), conjunction (M) and existential restriction (Ir.C). For
instance, using the set of concept names {Baseball, Human} and the role
name plays, the concept of all baseball players can be represented by the
concept description:

Human M dplays. Baseball
The set of all £L-concept descriptions can be formally defined in the follow-
ing way:

Definition 2.1.1. Let Ng and Ng be disjoint sets of concept names and
role names respectively. The set of £L£-concept descriptions is the smallest
set satisfying the following conditions:

e Every concept name A € N¢ is in the set.

o If C, D are in the set and r € Ng is a role name, then the top-concept
T, the conjunction C' T D and the existential restriction 3r.C are in
the set.



To interpret these concept descriptions the usual semantics as in first-order-
logic is used. An interpretation Z = (Dz,.%) consists of a non-empty domain
D7 and an interpretation function . that assigns a subset of Dz to each con-
cept name and a binary relation over Dz to each role name. The extension
of . to arbitrary concept descriptions can be done as shown in the semantics
column of Table 2,11

Name Syntax Semantics
concept name A AT C Ds
role name T L CD; x Dr
top concept T T =Dz
conjunction cnb (cnD)Y =ctnp?
existential restriction | Ir.C | (Ir.C)t ={z|Jy: (x,y) €t Ay € CT}

Table 2.1: Syntax and semantics of ££

Definition 2.1.2. A concept description is called an atom iff it is a concept
name or an existential restriction. The set At(C) of all atoms of a concept
description C' is inductively defined as follows:

0, ifC=T
At(C)— {C}, if C € N¢
) {C}u AL(D), if C =3r.D

AL(C1) U AH(Cy), if C = C1 M Cy

If C' is a concept name or an existential restriction 3r.D where D is a concept
name or |, then we say that C' is a flat atom.

One can see that every concept description C' is defined as a conjunction of
atoms C1, ..., C, which are called the top-level atoms of C. If each of these
atoms are flat, then C is a flat concept description.

Definition 2.1.3. Let C' be a concept description and let Cy,...,C), be
atoms. Then, the set of all sub-descriptions of the concept description C is
defined in the following way:

{C}, if C'=TorC e N¢g
Sub(C)— {CZHHC]‘1§Z<j§n}
) U{Sub(Cy) | 1 < k < n}, ifC=Cyn...NCp
{C} U Sub(D) if C=3r.D
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Definition 2.1.4. The role depth rd(C') of a concept description C'is defined
in the following way:

0, ifC=TorCe N¢g
rd(C) = ¢ rd(D) + 1, if C =3r.D
max{rd(Cy),rd(Cs)}, ifC=C1MCy

2.2 Terminological Axioms

As in any other DL, intensional knowledge about the domain of interest
can be represented in £L using terminological axioms, i.e., definitions and
general concept inclusions.

Definition 2.2.1. A concept definition is of the form A = C for a concept
name A and a concept description C. A general concept inclusion (GCI) is
of the form C' C D for concept descriptions C, D.

An interpretation 7 satisfies a concept definition A = C iff AT = CZ. Anal-
ogously, T satisfies a GCI C C D iff C* C D?”.

Both, concept definitions and GClIs, are called terminological axioms.

A TBox S is a finite set of concept definitions such that no concept name
occurs more than once on the left-hand side of a definition in S. A finite set
of GCls is called a general TBox.

Concept names occurring on the left hand side of a definition are called
defined concepts while all other concept names occurring in the TBox are
called primitive concepts. The set of defined concepts is denoted as Ny
and the set of primitive concepts is denoted as Npi,. In addition, for a
general TBox 7 we denote by sig(7) C N¢ U Ng the set of concept names
and role names occurring in 7.

An interpretation Z is a model of a general TBox 7 iff 7 satisfies all the
axioms in 7 (denoted as Z |= 7). Note that a TBox is a particular case of a
general TBox since a concept definition A = C can be expressed using two
GCIs: ACC and C C A.

Often, it is convenient to transform a general TBox 7 into a normal form
in order to simplify its structure. We accept the same definition as in [I3]:

Definition 2.2.2. Let 7 be a general TBox defined over Np.;, and Ng.
7T is in normal form iff 7 contains only GCIs and every GCI is of the form
AMB C C where A, B are flat atoms or T and C'is a flat atom. A normalized
general TBox is also called a flat general TBox.

11



CNDpE—{A=C,ANDpE} (R1)
CpDNE— {CpDNAA=E} (R2)
I.CpD — {A= C, Ir.Ap D} (R3)
CpIr.D — {Cp3Ir.A, A= D} (R4)
B=BiNBy — {BC By, BC By, Bi 1By C B} (R5)
B=3r.B — {BC 3.B',3r.B'C B} (R6)

Figure 2.1: Rules used to normalize a general TBox.

To transform a given general TBox 7 into a flat general TBox, we use the
normalization procedure proposed in [4] that consists of the application of
rules (R1) — (R6) shown in Figl/l\re/\ In these rules C, D, E stand for
arbitrary concept descriptions, C, D, F are concept descriptions that are
not concept names, A is always a new concept name not ocurring in 7,
r € Ng, p € {C,=} and B, B’, By, By represent concept names.

First, rules (R1) — (R4) are exhaustively applied to obtain a new TBox
that consists of flat GCIs and additional flat concept definitions. Second,
the application of rules (R5) — (R6) transforms those remaining concept
definitions into GCIs. The result is a general TBox 7’ whose axioms are of
one of the following forms:

ACB
Ai1MAC B

AC 3Ir.B
dr.AC B

where Aj, Ao, A, B are concept names. Omne can see that all the atoms
occurring in the result of such a normalization procedure are flat atoms.

A TBox S is called acyclic if there are no cyclic dependencies between its
concept definitions. The following example, taken from [18], illustrates the
notion of a cyclic dependency:

Example 2.2.3.

Car = Vehicle N Jhas_engine.Car_engine

Car_engine = Engine N Jis_engine_of.Car
One can see that the definition of C'ar depends on Car_engine, but at the

12




same time the definition of Car_engine depends on Car. Thus, Car is
defined in terms of itself. Formally,

Definition 2.2.4. Let S be a TBox. We define — as a relation over the
set Ngey that represents direct dependency between defined concepts in the
following way.

A defined concept A directly depends on a defined concept B (denoted as
A — B)iff A= C € S and B occurs in C, i.e., there is a top-level atom in
C that contains an occurrence of B.

Let —T be the transitive closure of —. The TBox S contains a termino-
logical cycle iff there is a defined concept A in S that depends on itself,
ie., A —T A. We say that A is cyclic-defined in S. § is called cyclic if it
contains a terminological cycle, otherwise it is called acyclic.

Cyclic defined concepts can be classified according to the structure of their
cyclic definitions. We distinguish two types of cyclic-defined concepts ac-
cording to [18] in the following way:

Definition 2.2.5. Let S be a TBox and Ag, A,, defined concepts in S.

Ap uses A, as a component in its definition iff there is a sequence of defined
concepts Ag, ..., Ap(n > 0) in S such that:

A; — Ajpq forall 4,0 <i<n

and, A; is a top-level atom in the definition of A;_; for all ¢ > 0, i.e., A;
appears outside the scope of any existential restriction in the definition of
A;_1. If, in addition, Ay = A,, then Ag,..., A, is called a component-cycle
in S.

Then, we say that a cyclic-defined concept A in S is component-cyclic-defined

if it uses itself as a component, i.e., there is a component-cycle in S that
contains A. Otherwise, we call it restricted-cyclic-defined.

On the side of acyclic definitions, it can be seen that acyclicity in a TBox
7 has the advantage that for every model of 7, the meaning of the defined
concepts follows directly from the meaning of the primitive concepts occur-
ring in their definitions. The following proposition, shown in [18], expresses
formally this property:

Proposition 2.2.6. Given a TBox S without terminological cycles, any
interpretation J of the primitive concepts occurring in S can be uniquely
extended to a model of S.

13



2.3 Greatest Fixpoint Semantics

The semantics that we have defined for TBoxes was introduced by Nebel
[18] as descriptive semantics. Under this semantics, the interpretation of
defined concepts can be completely derived from the interpretation of prim-
itive concepts and role names in the presence of acyclic TBoxes, since there
is only one way to extend an interpretation of the primitive concepts to a
model of a TBox.

In descriptive semantics, all the possible models of a TBox are considered as
admissible models. However, for a cyclic defined TBox an interpretation of
the primitive concepts could be extended in more than one way to a model
of the TBox. The following example from [3], shows a case where not every
extension represents correctly the intended meaning of a defined concept.

Example 2.3.1. Graphs can be represented by interpretations where nodes
are elements of the primitive concept name Node and edges are represented
by the role name edge. Suppose that the concept of a node that is in an
infinite path is defined in the following way:

INode = Node M dedge.INode

where I Node is a cyclic defined concept. Then, consider the following in-
terpretation J that assigns values to the primitive concepts and roles:

Dy ={mi,ma,...} U{ni}
Node? = Dy
edge” = {(mi,miy1) | i > 1} U{(n1,m1)}

Now let S be the TBox consisting of the concept definition for I Node. The
cyclic dependency in the definition of I Node implies that there is more than
one way to extend the interpretation J to an interpretation that is a model
of §. More precisley, INode can be interpreted as {mi, ma,...} U {ni},
{ml,mg, .. .}, {77,1} or Q)

All these models are valid w.r.t. descriptive semantics, but only the first of
them expresses the intensional meaning of I Node correctly. Therefore, there
are situations in which it is suitable to consider only one particular model
extending a given initial interpretation of the primitive concepts. One of
the alternatives is to consider the greatest fizpoint model of S.

Definition 2.3.2. Let S be a TBox containing the role names, primitive
concept names and defined concept names in Ng, Nppip, and Nyep respec-
tively, where Npim = {P1,..., Py} and Ngep = {A1,..., An}.

14



A primitive interpretation J for S consists of a domain D 7, an interpreta-
tion of the role names in N and an interpretation of the primitive concept
names in Ny, by subsets of Ds. An interpretation Z is based on the
primitive interpretation J iff the following conditions hold:

e The domain of 7 is D7, i.e., Dz = D .

° PiI = Pij for all the primitive concepts in Npyip,.

e T =17 for all the role names in Np.

Given a primitive interpretation J there could be many interpretations ex-
tending J to the defined concepts in . The set of all interpretations based
on J is denoted as Int(J) and it can be seen that they are uniquely iden-
tified by their assignments to the defined concepts in S. Based on this, the
following order can be used to compare interpretations in Int(J):

Let Il,IQ S Int(j) then,

Ty <7 Iy iff AT C AP for all i,1 < i <m

It is not difficult to see that the pair (Int(J), <7) is a partially ordered set.
Moreover, for any subset P of Int(J) there are interpretations Zs,, and Z;, s
in Int(J) such that Z,, is the least upper bound and Zj,s is the greatest
lower bound of P w.r.t. <.

Hence, one can see that (Int(J),=<7) is a complete lattice on Int(J) and
thus, Tarski’s fixpoint theorem [I9] applies to all monotonic functions from

Int(J) to Int(TJ).

The application of Tarki’s theorem w.r.t. (Int(J),=7) can be understood in
the following way: if f : Int(J) — Int(J) is a function such that 7 <7 Z»
implies f(Z;) <7 f(Z2) (f is increasing), then there is an interpretation
T € Int(J) such that f(Z) =Z, also called a fixpoint of f. In addition, the
theorem also says that f has a least fizpoint and a greatest fixpoint.

It was shown in [3] that every TBox S and primitive interpretation J of S
induce an increasing function Og 7 : Int(J) — Int(J) such that Os 7(Z) =
7 iff 7 is amodel of S. Thus, any primitive interpretation J can be extended
to a model of & and there is always a greatest and a least model of S
extending J.

Definition 2.3.3. Let S be a TBox. A model Z of S is called a greatest
fixpoint model (gfp-model) of S iff there is a primitive interpretation J of
S such that Z € Int(J) and 7 is the greatest fixpoint of Os 7.

In other words, for every model Z’ of S such that Z' € Int(J) holds that
T’ <7 I. Greatest fizpoint semantics considers only gfp-models as admissi-
ble models.

15



Note that there is always only one gfp-model of S extending a primitive
interpretation J. Furthermore, greatest fixpoint semantics is equivalent to
descriptive semantics w.r.t. acyclic TBoxes.

Lemma 2.3.4. Let S be an acyclic TBox. Then, an interpretation T is a
model of S iff it is a gfp-model of S.

Proof. (<) The right to left direction is immediate since every gfp-model of
S is a model of S.

(=) Let Z be a model of S based on the primitive interpretation 7. Since
S is acyclic, by Proposition 7 is the unique model of S extending 7.
Therefore, 7 is a fixpoint of Os 7 and it is the only one which implies that
it must be the greatest fixpoint of Og 7.

Thus, 7 is a gfp-model of S. O

In addition, it has been shown in [I8] that in the presence of greatest fixpoint
semantics a TBox S containing component cycles can be transformed into
a TBox &’ that is free of component cycles:

Lemma 2.3.5. Let S be a TBox that contains component cycles. Then,
there exists a TBox S’ that does not contain component cycles such that:

T is a gfp-model of S iff T is a gfp-model of S’

Proof. The idea of the proof described in [I8] is the following. Let S be a
TBox and A be component-cyclic-defined in S. The set C. is defined as the
largest set of concepts that use A as a component (see Definition and
are used by A as components.

Now, let Ap be a concept description identical to A except that all occur-
rences of concepts from C, that do not appear in existential restrictions are
replaced by T. It can be seen that all concepts B in C, have the same inter-
pretation under any gfp-model of S and they can be equivalently expressed
as:
B =gpps |_| Bp (1)
B'eC.

Note that this new definition for B implies that B is not component-cyclic-
defined anymore. Using these equivalences the TBox S can be transformed
in an equivalent TBox S’ free of component cycles.

Finally, one can see that the size of the definition of any concept in S is
polynomial on the size of § and C, contains polynomially many elements.
Then, definitions like (1) are of size polynomial on the size of S. Thus, the
size of the obtained TBox &’ is also polynomial on the size of S. 0

16



Chapter 3

Unification in the
Description Logic £L£

The purpose of this chapter is to present the £L-unification problem w.r.t. a
general TBox formally, and to review the NP-results that has been obtained
so far concerning this problem. As important elements required to define
the unification problem, we introduce the subsumption problem in ££ and
the notion of substitution. The concept of local unifier is defined and its
role as the main idea underlying the NP-results is stressed. The restriction
of these results to a proper subclass of arbitrary general TBoxes, leads to
our proposal of a new approach that solves the unification problem w.r.t.
arbitrary general TBoxes.

3.1 Subsumption in ££

Definition 3.1.1. Let 7 be a general TBox and C, D two concept descrip-
tions. C is subsumed by D w.r.t. 7 iff C2 C D? for all models Z of
T.

In addition, it makes sense to define the subsumption problem under greatest
fixpoint semantics when a (possibly cyclic) TBox is considered:

Let S be a TBox and A, B two defined concepts, then A is subsumed by
B w.r.t. S under greatest fixpoint semantics iff AZ C B? for all the gfp-
models 7 of S.

The subsumption relation w.r.t. 7 is denoted as C' C7 D or alternatively
as T = C C D (read as C T D follows from T). Conversely, we denote
by A Cypps B (S Egfp A T B) the subsumption relation w.r.t. S under
greatest fixpoint semantics.

17



Note that the subsumption problem for a TBox S is restricted to defined
concepts occurring in §. This is without loss of generality since deciding
C E;fp,s D can be reduced to decide A E;fp’s B, where A=C and B=D
are added to S.

The subsumption problem in £L£ has been extensively studied, see [1,[3,5]. It
was shown in [3] that the subsumption problem is decidable in polynomial
time for cyclic TBoxes under greatest fixpoint and descriptive semantics.
This result was later generalized in [5] for the case of general TBoxes under
descriptive semantics.

To conclude this section we present an important relation that exists between
a general TBox 7 and the general TBox 7", that results from the application
of the normalization procedure described in Section [2.2] w.r.t. subsumption
reasoning.

In [I6] the notion of inseparability was introduced as a relation between
TBoxes that, for example, can be used to determine whether two TBoxes
imply the same subsumption relations. We present such a notion as it was
defined in [13]:

Definition 3.1.2. Let X C N¢o U N be a signature. Two general TBoxes
Ty, T2 are Y-inseparable if for any concept descriptions C' and D built over
the signature ¥ we have C' Cp, D ift C T, D.

In particular, from [I3], we have that 7’ is sig(7 )-inseparable from 7 if 7’
is the result of applying the normalization procedure presented in Section
to a general TBox 7. Hence, the following proposition is immediate:

Proposition 3.1.3. Let T be a general TBox and T’ be the result of applying
the normalization procedure described in Section|2.2, Then, for any concept
descriptions C' and D built over sig(T) it is true that:

CCrDiff CEx D

3.2 Unification in £L£

Before defining the unification problem in ££, we need to introduce the
notion of substitution on concept descriptions. In order to do this, the set
N¢ of concept names is partitioned into a set IV, of concept variables and a
set N, of concept constants.

Definition 3.2.1. A substitution ¢ is a mapping from the set of concept
variables to the set of £L-concept descriptions over N¢. It can be extended
to arbitrary concept descriptions in the usual way:

e g(A):=Aforall Ae N.U{T}
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e o(CND):=0(C)No(D)
e 0(Ir.C):=3r.oc(C)

A concept description C'is called ground if it does not contain any occurrence
of a variable from NV, and a substitution o is called a ground substitution if
for any variable X in N, the concept description o(X) is ground. Finally, a
general TBox 7 is ground if no variable from N, occurs in a GCI of 7.

Definition 3.2.2. Let 7 be a ground general TBox. An £L-unification
problem w.r.t. 7 is a finite set of subsumptions I' = {C; 7 Dy,...,C, C7
D,}. T has a solution w.r.t. 7 if there exists a substitution o such that
all the subsumptions in I' are solved w.r.t. 7 by applying o to its concept
descriptions, i.e.:

o(C1) Cr o(Dy),...,0(Cp) E7 o(Dy)

If such a substitution o exists then o is called an £L-unifier of I" w.r.t. 7
and I is called £L-unifiable w.r.t. 7.

Regarding this definition, one can see that the general TBox representing
the background knowledge is assumed to be ground. This is not without loss
of generality, but it is nevertheless appropriate for the domain of interest.
More details concerning this observation can be found in [13].

In [13], it was also emphasized that in order to decide unifiability of I it is
sufficient to consider ground substitutions defined over the concept and role
names occurring in I" or 7. In addition, the relation that exists between
ground substitutions and acyclic TBoxes was considered as a different view
of what the unification problem is trying to compute.

Any ground substitution ¢ induces a TBox S, that can be built in the
following way:

Sy ={X=0(X)| X €N,}
Since o is ground then it is clear that S, is acyclic. In addition, one can see
that the defined concepts in S, are the variables in ¢ and then, the set N,

of concept constants can be seen as the set of primitive concepts Ny, and
the set N, of concept variables as the set of defined concepts Ngey.

Now, for any concept description C' if we consider CS* as the expansion
of C' w.rt. S, where any defined concept occurring in C' is substituted
by its definition in S,, then we have that o(C) = C° and the following
proposition is immediate:

Proposition 3.2.3. Let T be a ground general TBox, o be a ground sub-
stitution and C, D be two concept descriptions. Then,

o(C) Cr o(D) iff C5 Ty D% iff C Crus, D
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At the same time, any acyclic TBox S induces a ground substitution og,
whose variables are the defined concepts in S. The acyclicity of S implies
that the expansion X of each defined concept X in S is ground and g can
be expressed as:

os(X) = XS

Similar as above, for any concept description C' its expansion w.r.t. § is
equivalent to the application of the substitution os to C, i.e., C¢ = 55(C).
Thus, the converse of Proposition [3.2.3| also holds,

Proposition 3.2.4. Let 7 be a general TBox, S be an acyclic TBox and
C, D be two concept descriptions. Then,

C Crus D iff C° C1 DS iff 05(C) C1 0s(D)

The combination of these two propositions implies that finding an € L-unifier
for I' w.r.t. 7 is equivalent to find an acyclic TBox & such that the sub-
sumptions in I' follow from (7 U S).

Lemma 3.2.5. Let T be a ground general TBoz andT" = {C} C’Dy,....C,C7
D,.} be an EL-unification problem w.r.t. T. Then, T has a unifier w.r.t. T
iff there exists an acyclic TBox S whose defined concepts are the variables
in Ny and C; Crys D; for all C; C’D;inT.

Proof. (=) Assume that there exists a unifier o for I' w.r.t. 7. Then, by
Definition o(C;) C7 o(Dy) for all C; C7 D; € T. Applying Proposi-
tion we have that there exists an acyclic TBox, namely S,, such that
Ci Crus, D; for all C; E? D; eTl.

(«=) The converse direction can be shown in a similar way applying Propo-

sition [3.2.4] O

This lemma gives a different way to understand the meaning of the unifi-
cation problem. Given a finite set of GCIs (represented by I'), where some
concept names have been marked as variables, and a knowledge base (rep-
resented by 7): intuitively, the unification problem is trying to compute
concept definitions for those variables (the computed acyclic TBox §), such
that every GCI in I' is a consequence of the new knowledge base (7 U S).

3.3 NP-results for Unification in £L£

The unification problem in ££ was first studied in [11], [12] w.r.t. the empty
TBox and shown to be NP-Complete. It was shown to be in NP based on
the idea that any £L-unification problem that is unifiable w.r.t. the empty
TBox has a local unifier.
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Let I' be a unification problem where the set of atoms of I' is denoted as At
and the set of non-variable atoms as Aty,, := At \ N,. The notion of local
unifier is defined in the following way:

Definition 3.3.1. Let I' be a unification problem and ¢ be an assignment
of subsets of At,, to each variable X € N,. The assignment ¢ induces the
following TBox:
S:={X=[]| D|XeN,}
DeCx

where [ ] pecy D denotes the conjunction of all elements in (x.

The assignment ( is called acyclic if § is an acyclic TBox. Then, if S is
acyclic, the TBox S induces a unique substitution os (called local substitu-
tion) in the following way:

os(X) =[] os(D)

DeCx
Finally, if os is a unifier of I" then it is called a local unifier.

It can be seen that the number of non-variable atoms is polynomial in the
size of I" as well as the number of variables and thus, one can guess an acyclic
assignment ¢ in polynomial time. Moreover, since subsumption is decidable
in polynomial time, one can check whether the induced local substitution
os is a unifier of I' in polynomial time. This yields an NP-procedure to
decide the £L-unification problem w.r.t. the empty TBox that searches for
the existence of a local unifier.

In [12], it was also shown that the same ideas and results apply for the case
when the unification problem is considered w.r.t. a non-empty acyclic TBox.
Nevertheless, when extending these results for arbitrary general TBoxes, it
turns out that the notion of locality does not work. To fix this problem
a first approach has been recently proposed in [14] where the unification
problem is considered w.r.t. cycle-restricted TBoxes.

Definition 3.3.2. A general TBox 7 is called cycle-restricted iff there is
no nonempty word w € Ng and €L-concept description C' such that C C1
Jw.C.

The sig(7 )-inseparability that exists between a general TBox 7 and its cor-
responding flat general TBox 7’ (see Definition and Proposition (3.1.3)
allows us to assume without loss of generality that unification is considered
w.r.t. flat general TBoxes. Likewise, we can assume that the unification
problem I' is flat in the sense that it contains only subsumptions of the form
CyM...NC, C7 D where Cy,...,C, and D are flat atoms, see [I3].

Combining this normal form together with an appropriate characterization
of the subsumption problem, the following theorem was shown in [13].
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Theorem 3.3.3. Let T be a flat cycle-restricted TBox and I’ be a flat uni-
fication problem. If T’ has a unifier w.r.t. T then it has a local unifier w.r.t.

7.

This theorem shows that unification in ££ w.r.t. cycle-restricted TBoxes
remains in NP, however there is still no solution to the problem if the cycle-
restricted constraint is lifted. On the one hand, it was also shown in [I3]
that cycle-restricted TBoxes do not reach the full expressivity of arbitrary
general TBoxes. On the other hand, an example is provided that shows a
unification problem that is unifiable w.r.t. a not cycle-restricted TBox, but
does not have any local unifier.

As a consequence, the solution that has been proposed in [13] is not complete
for arbitrary general TBoxes. In order to repair this, we propose to extend
what has been considered as a unifier until now, to a TBox that may contain
cyclic definitions.

We will show that a similar locality result holds in this case for arbitrary
general TBoxes, but first we need to introduce a suitable semantics to deal
with possibly cyclic defined solutions of the unification problem, in an ap-
propriate way.
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Chapter 4

Hybrid Semantics

In [6], an appropriate semantics was introduced to interpret the so-called hy-
brid TBoxes. In this chapter, we present such a semantics, and describe the
proof-system proposed in [7] to characterize and obtain a tractable decision
procedure for the subsumption problem w.r.t. hybrid TBoxes.

Based on this semantics and the corresponding subsumption problem, we
define the hybrid £L-unification problem w.r.t. general TBoxes as the ex-
tension of the &£L-unification problem proposed at the end of Chapter
Providing a solution to this problem is the main result of this thesis, it will
be addressed in the next two chapters.

4.1 Hybrid £L£-TBoxes

Definition 4.1.1. Let Ny be a set of role names, Ny, a set of primitive
concept names and Ng.r a set of defined concept names.

A hybrid EL-TBox is a pair (7, S) where 7 is a general EL-TBox over Npyim
and Ng, and S is an EL-TBox over Nppim, Ngey and Ng such that for each
concept definition A = C' in S, the concept name A is in Nge;.

A suitable semantics that combines descriptive semantics and gfp-semantics
has been proposed in [6] to interpret hybrid TBoxes. It is called hybrid-
semantics and it is defined in the following way:

Definition 4.1.2. Let (7, S) be a hybrid ££-TBox defined over Ngr, Npyim, Nef
and 7 be an interpretation based on a primitive interpretation J:

T is a hybrid-model of (T,S)
iff
J =T and T is a gfp-model of S.

23



In order to define the unification problem w.r.t. hybrid ££-TBoxes first we
need to define the corresponding subsumption problem. We introduce such
a problem based on the semantics for hybrid ££-TBoxes defined above.

Definition 4.1.3. Let (7,S) be a hybrid ££-TBox and A, B defined con-
cepts in S. A is subsumed by B w.r.t. (7,S) iff AZ C B holds for all
hybrid-models Z of (7,S) .

We denote such a relation as A Cypp70s B.

Like in Definition [3.1.2] we define the notion of inseparability for hybrid
TBoxes:

Definition 4.1.4. Let ¥ C N¢g U Ng be a signature. Two hybrid TBoxes
(71, 81) and (72, S2) are X-hybrid-inseparable if for all concept descriptions C
and D built over the signature 3 we have C' Cy ¢, rus, D ift C Eypp us, D-

Having this definition, the following proposition shows that hybrid-inseparability
holds after applying the normalization procedure described in Section [2.2]

Proposition 4.1.5. Let (7,8) be a hybrid TBox and T' the result of ap-
plying the normalization procedure described in Section[2.3 to T. Then, the
hybrid TBox (T',S) is sig(T U S)-hybrid-inseparable from (T,S).

Proof. We show that for any concept descriptions C' and D defined over
Slg<7- U 8)7 C ngp,TUS Diff C ngp,T’US D.

(=) Assume that C' Cg,p,7us D holds. We have to show that for each
hybrid-model Z of (77, S), C* C D? holds.

Since 7" is sig(T )-inseparable from 7 then, for each GCI E C F in 7 one
can see that:

e F and F are concept descriptions defined over sig(7).
e Obviously, £ C7 F holds.
e The application of Proposition yields that £ T4+ F holds as well.

Now, consider any hybrid-model Z of (7’,S) and let J be the primitive
interpretation that 7 is based on. By Definition J must be a model
of 7' and hence EY C FYJ holds for all GCI E C F in 7. Thus, J is a
model of 7 and consequently Z is a hybrid-model of (7,S).

Finally, by Definition we obtain that CZ C DZ. Thus, C Cofp1'Us D
holds.

(<) Assume that C' Cgpp, 7705 D holds, and consider an arbitrary hybrid-
model 7 of (7,S). It is not difficult to see that 7 can be extended to a
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hybrid-model Z’ of (7", S), by assigning values to the new primitive concepts
introduced in 77 during the normalization. Therefore, CT° C DT holds.

Now, let Z'|s4¢7us) be the restriction of I to sig(7 US). Since C' and D

are defined over sig(7 US), it follows that T lsigrus) C DT lsia(Tus) holds.
Obviously, Z = T'|54(7us) and consequently ct c D%,

Thus, C' C,pp1us D holds. m

The subsumption problem in ££ w.r.t. hybrid ££-TBoxes was considered
first in [6] and later in [7, [§]. Two different approaches were proposed to
solve the problem and in both cases a polynomial time decision procedure
was provided.

In particular, a Gentzen-style proof calculus was introduced in [I] to decide
subsumption in £L w.r.t. cyclic TBoxes interpreted under greatest fixpoint
semantics and w.r.t. general TBoxes under descriptive semantics as well.
It was later extended, in [8], to characterize subsumption in ££ for hybrid
TBoxes.

In the following, we introduce the proof calculus HC (Hybrid ££ TBox
Calculus) from [8] and the corresponding notion of proof-tree.

Definition 4.1.6. Let (7,S) be a hybrid ££-TBox.

A sequent for (7,S) is of the form C T, D where C' and D are sub-
descriptions of concept descriptions occurring in (7,S8) and n > 0. The
sub-descriptions C' and D are sometimes called the left and right-hand side
of the sequent, respectively.

The proof calculus HC is based on the set of rules shown in Figure [4.1
Using these rules, a proof tree in HC w.r.t. (7,S) is constructed as follows
(where every node is represented by a sequent):

1. Every sequent that is a conclusion of an instance of the rules (Ax),
(Top) and (Start) is a root of a one-element proof tree.

2. Let % be an instance of one of the rules (AndLl), (AndL2), (Ex),
(DefLl) or (DefR). If there is a proof tree P with the root R, then

is a proof tree with the root S with R as its only child.

3. Let 1 S 22 he an instance of one of the rules (AndR) or (GCI). If there
are two proof trees P; and Po with roots R; and Ro, respectively, then
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Figure 4.1: Rule system HC

P1 Po

R Ry
S

is a proof tree with the root S where R; and Ry are the children of S.

For any instance g, % or % of a rule in HC, we say that R (R1, R2)

is the premise (are the premises) and S is the consequence of the instance.
One can see that for any proof tree in HC, its nodes are sequents and its

leaves are consequences of an instance of some of the rules (Ax), (Top) or
(Start).

The calculus HC induces a set of binary relations C,, for all n > 0 over the
set of sub-descriptions of concept descriptions occurring in (7, S), where the
membership relation in C,, is characterized by the existence of a proof tree
in HC for two sub-descriptions C' and D.

Definition 4.1.7. Let (7,S) be a hybrid TBox and C, D be sub-descriptions
of concept descriptions occurring in (7,S) .

C C,, D holds iff there exists a proof tree P in HC with the root C' &,, D.
We say that P is a proof tree for C' C,, D w.r.t. (7,S).

In addition, the relation C is defined such that C' Co, D iff C' C,, D holds
for all n > 0.

The calculus HC has been shown to be a sound and complete calculus

that characterizes subsumption w.r.t. hybrid ££-TBoxes in the sense of
membership into the relation C,,. This means that given a hybrid TBox
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(7,S),if ACu B is provable in HC w.r.t. (7,S) then A C,¢, 7us B holds.
Conversely, if A C4¢p70us B holds there has to be a proof for A Eo, B in
HC w.rt. (7,S) .

Theorem 4.1.8. Let (7,S) be a hybrid EL-TBox and A, B be two defined
concepts occurring in S.

A Cyrprus B iff ACx B is provable in HC.

Notice, that this theorem implies transitivity of C.,. If we have A C, B
and B Eo C then, we have A Cyrp7us B and B Eypp7us C as well.
That implies, that for any hybrid-model Z of (7,S) we have A? C B?
and BT C CT. Thus, AT C C? and the application of the theorem yields
ALC, C.

As an important property of HC and the set of relations C,,, one can observe
that C,,+1CC,, holds for all n > 0. This observation combined with the fact
that the number of all possible sub-descriptions is polynomial on the size of a
given hybrid TBox, yields a polynomial time fixed-point iteration procedure
that decides subsumption for hybrid ££-TBoxes under hybrid-semantics.

The idea of the procedure is that one can start with Cg and compute T4
,Co ... until C,,=C,, 1 for some m.

Corollary 4.1.9. Let (7,S) be a hybrid EL-TBox and A, B be two defined
concepts in S. There is a procedure that decides whether A Cgr, 7us B holds
for (T,S), in time polynomial on the size of (T,S) .

Complete details for the proofs of Theorem and Corollary as well
as the description of the polynomial time decision procedure, can be found
in [7, §].

4.2 The Hybrid Unification Problem in ££

Now, we are ready to extend the unification problem in £L£ to accept possibly
cyclic solutions as we have proposed at the end of Chapter We define
such an extension based on the semantics presented above, and we call it
the hybrid £ L-unification problem.

Definition 4.2.1. Let 7 be a ground general ££-TBox. A hybrid EL-
unification problem w.r.t. 7 is a finite set of subsumptions T' = {C; C’
Dy,...,C, C7 D,,} between &L-concept descriptions.

An £L-TBox S is a hybrid-unifier of I" w.r.t. 7 iff all the subsumptions in
I follow from the hybrid TBox (7,S) under the hybrid-semantics defined
above, i.e.:
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C; Cgpp,7us D; for all C; E? D; eTl.
We say that T" is hybrid-unifiable w.r.t. T if it has a hybrid-unifier.

The normalization procedure described in Section provides significant
simplifications that help to prove the existence of a local unifier, whenever
an &L-unification problem is unifiable w.r.t. a cycle-restricted TBox. In
the next chapter we take advantage of the same normalization criterion to
obtain a similar locality result for the hybrid case.

The following lemma shows that despite the differences between both prob-
lems, e.g., hybrid semantics versus descriptive semantics and a hybrid-unifier
versus a usual unifier, unifiability of a hybrid £€L-unification problem is also
not influenced by flattening the corresponding general TBox.

Lemma 4.2.2. Let T be a ground general EL-TBox, I' = {C C’ Dy,...,Cp
Dy} be a unification problem, and T’ be the result of applying the normal-
ization procedure described in Section[2.9 to T. Then, T is hybrid-unifiable
w.r.t. T iff it is hybrid-unifiable w.r.t. T'.

Proof. (=) Assume that I' is hybrid-unifiable w.r.t. 7. Then, there exists
a TBox S such that it is a hybrid-unifier of I' w.r.t. 7, i.e.:

Ci Cypprus Diforall C; C' D; €T

Applying Proposition we have that:

Ci Cypprus Difor all C; 7 D; €T

Thus, S is a hybrid-unifier of I" w.r.t. 7".

(<) Assume that I' is hybrid-unifiable w.r.t. 7’ and let S be a hybrid-unifier
of I'. In principle we cannot use S as a hybrid-unifier for I" w.r.t. 7. It may
contain concept names that were introduced during the normalization of 7
and that do not appear in 7.

However, looking at the rules of the normalization procedure one can see
that, for each introduced concept name A there is a concept description C'4
occurring in 7 such that A =7 Cy4 holds. We obtain a new TBox &’ from
S as a result of the replacement of such concepts A ocurring in S by its
corresponding concept descriptions C4.

Obviously, &' is still a hybrid-unifier of I' w.r.t. 7’ and it is defined over
sig(7). Then, similar as above, we apply Proposition to obtain that
S’ is a hybrid-unifier of T w.r.t. 7. O
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For the rest of this thesis we assume, without loss of generality, that every
unification problem is flat and for every hybrid TBox (7,S), 7 is ground
and flat.

4.3 Some Properties of Proof Trees

This section is dedicated to show some properties of proof trees in HC. They

will be used as auxiliary propositions, later on, when proving the results in
Chapter

Proposition 4.3.1. Let C, D be two concept descriptions such that C' is
ground and let (7,S) be a hybrid TBox such that T is ground. Then, for
alln > 0 and any proof tree P for C T, D, it is true that every sequent at
a node in P is left-hand side ground.

Proof. This is a straight-forward proof. It goes by induction on the structure
of proof trees. First, because C is ground, one can see that the only rule
from HC that cannot be used to obtain C' C,, D in P is the rule (DefL).

Second, if C'C,, D is an instance of one of the rules (Ax), (Top) or (Start),
we have that P is a one-element proof tree and the left-hand side gound
condition is implicit.

Finally, it can be seen that the left-hand side of the premise (premises) of
any other instance of a rule that could have been applied to obtain C' C, D,
is either C', a sub-description of C, or an atom from a GCI in 7 which is
also ground. Then, applying induction to the sub-proof tree (trees) of P
that has this premise (premises) as its root, we obtain that every sequent in
P is left-hand side ground. O

Now, we define the notion of maximal sub-proof tree w.r.t. a set of rules
from HC. We will use this particular sub-trees in the rest of this section.

Definition 4.3.2. Let R = {Ri,..., Ry} be a subset of rules from HC
and P a proof tree for the sequent C C,, D. A maximal sub-proof tree of P
w.r.t. R is the subtree Pr of P with the same root as P, that satisfies the
following conditions:

1. Each sequent at an internal node in Pg is the consequence of an in-
stance of a rule from R.

2. Each sequent at a leaf in Pg is either an instance of a rule in {(Ax),
(Top), (Start)} or it is obtain as the consequence of an instance of a
rule that is not in R.
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Based on this definition, we prove the next two propositions w.r.t. the sets
of rules Ry = {(AndL1), (AndL2), (AndR)} and Ry = {(AndL1), (AndL2),
(AndR), (Ez), (GCI)}.

Proposition 4.3.3. Let P be a proof tree for the sequent C =, D and B
a top-level atom of D. Consider the mazimal sub-proof tree Pr of P w.r.t.
R = {(AndL1),(AndL2),(AndR)}. The following two statements are true:

1. There exists a leaf E T, F' in Pr such that B is a top-level atom of
F.

2. For every leaf E C,, F in Pgr, the concept description E is a sub-
description of C'.

Proof. Again, we use induction on the structure of proof trees. First, we
consider the case when C' C,, D is obtained in P by using an instance of a
rule that is not in R. This means, that P has only one leaf whose sequent
is C' C,, D and thus, (1) and (2) are trivially satisfied.

Second, we analyze the case where one of the rules from R is used to obtain
C C,, D in P. An instance of such a rule has the form:

C'C, D
cc,D

c,D, CC,D
(AndLi) or = ClE CD_ 2 (AndR)

where C’ and Dy, Dy are sub-descriptions of C' and D respectively.

Let P’,P; and Ps be the corresponding sub-proof trees for the premises of
the instances mentioned above. Applying induction to these sub-trees we
have that (1) and (2) hold for the leaves in their corresponding maximal
sub-proof trees w.r.t. R.

Finally, it can be seen that each leaf in Py is a leaf in P’ in the first case, or
a leaf in either P; or Py for the second case. Then, it follows immediately
that (1) and (2) are also satisfied for Pg. O

Proposition 4.3.4. Let (7,S) be a hybrid TBoz, 8" be a TBox and C C,, D
be a sequent. If we have that:

1. R = {(AndL1),(AndL2),(AndR), (Ez),(GCI)}
2. There is a proof tree P for C T, D w.r.t. (T,S).

3. For each sequent Eq4 C,, Es at a leaf in the mazximal sub-proof tree of
P w.r.t. R, it is the case that Ey Ty Eo is provable w.r.t. (T,S') for
some k > 0.
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then, there exists a proof tree P’ for C Ty D w.r.t. (T,8’).

Proof. The proof is by induction on the structure of proof trees. Assume
that (1), (2) and (3) hold, we make a two cases distinction w.r.t. the rule
used to obtain C' C,, D in P:

1. ¢ C, D is the consequence of an instance of a rule not in R. By
Definition [4.3.2] Px is a one-element tree with the root C' C,, D which
means that C' C,, D is also a leaf in Pg. Then, C C; D is provable
wr.t. (7,8') for some k and thus, there exists a proof tree P’ for
C Cy D.

2. C'C,, D is the consequence of an instance of a rule in R. We show the
case where C' C,, D is obtained by an application of the (GCI) rule,
the other four cases can be shown in a similar way.

There is a GCI E C F in 7 such that C C,, E and F C,, D are
the premises of the (GCI)-instance used to obtain C' C,, D in P. By
Definition [£.1.6] it can be seen that the subtrees P; and Ps of P with
roots C C,, F and F' C,, D, are proof trees for C C,, £ and F' C,, D
wrt. (7,S).

Moreover, it is not difficult to see that the leaves in the maximal
sub-proof trees of P; and Py w.r.t. R are also leaves in Pr. Then,
by induction we obtain that there exist proof trees for C' C; E and
F Cy D wrt. (7,8). Thus, a further application of the GCI rule
yields a proof tree for C Ty D w.r.t. (7,8').

4.4 Extendible Trees and Unambiguous Forests
In the last section of this chapter, we show some properties that will be used
to obtain the results of Chapter [6]

Proposition 4.4.1. Let (7,S) be a hybrid TBox and C, D be two concept
descriptions such that C Co D w.r.t. (T,S).

Then, for all n > 0 there exists a proof tree P for C T, D w.r.t. (7,S)
such that it satisfies the following property:

for every sequent E Ty F in P we have E Coo F w.r.t. (T,S) (Z)

Proof. From Section [£.I]we know that there exists a value m that depends on
(7,S8), C and D such that CoDC1D ... DL, 120, =Lt =Cppgpo= .. ..
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Let us consider an arbitrary number n > 0 and a proof tree P of C T, 4, D
w.r.t. (7,S) (it exists because C' T D holds). As a consequence of the
selection of m, one can observe that for every sequent £ T, I’ occurring
in P with ¢ > m holds that E C; F is provable in HC for all [ > 0 w.r.t.
(7,S). Therefore, E C F is valid w.r.t. (7,S).

Now, let P’ be the largest subtree of P such that all its sequents are of
the form F T, F' with ¢ > m. It is not difficult to see that replacing every
sequent E T, F occurring in P’ by E C,_,, F, a proof tree for C' C,, D w.r.t.
(7,S) is obtained. This shows how to obtain a proof tree for C' C,, D that
satisfies property Z. Thus, since n was arbitrarily selected the proposition
holds for all n > 0. O

Now, we introduce a disambiguation criterion on proof trees.

Definition 4.4.2. A proof tree Q in HC is unambiguous iff whenever there
exist two or more occurrences of a sequent F2 &, F' in @, the subtrees rooted
at those occurrences are identical.

In addition, we say that a set of proof trees Q is unambiguous iff for each
pair of proof trees Q1,Q2 € Q, every occurrence of a sequent &/ T, F'in Q1
or (s is the root of the same subtree.

Next, we show that Property Z can be preserved under disambiguation of
set of proof trees.

Proposition 4.4.3. Let (7,S) be a hybrid TBoz, Q = {Q1,...,Qn} be any
unambiguous set of proof trees and Q be a proof tree for a sequent C C,, D,
such that Qu,...,Qn and Q satisfy the Property Z from Proposition[{.4.1].

Then, there exists a proof tree Q' for C C,, D, such that Z is preserved in
Q' and the set Q' = QU {Q'} is unambiguous.

Proof. The proof is by induction on the structure of ). By assumption
C C, D is the root of Q). If C C,, D is the root of some subtree () of some
Q; € Q then @ = QU {Q;} fulfills our claim, otherwise there are three
possible cases for the rule application that is used to obtain C' C,, D in Q:

e C' C,, D isobtained by applying one of the rules (Ax), (Top) or (Start).
Then, Q is unambiguous because it is a one-element proof tree and it
satisfies Z by assumption. Hence, it can be safely added to Q.

e C C, D is obtained using a rule of the form %, then S = C C,, D and
let Q1 be the proof tree for R. Obviously, since @)1 is a subtree of @,
it satisfies Z and the application of induction yields an unambiguous
set QU {Q]} satisfying Z, where Q] is a proof tree for R.

32



Now, applying the same rule one can obtain from @] a proof tree Q’
for C C,, D satisfying Z . If @' = QU {Q'} is still ambiguous, this
is because there is another sequent of the form C C,, D in Q'. But
such a sequent is the root of a proof tree Qs for C C,, D in QU {Q'}
satisfying Z . Therefore, ()5 represents the proof tree that we are
looking for and thus, @' = QU {Qs}.

e C' C, D is obtained using a rule of the form Ll S R2, then S=CC, D
and let Q1 and Q2 be the proof trees for Ry and Ry respectively. As
before, @1 and ()2 satisfy property Z and applying induction twice we
obtain the set of unambiguous proof trees QU{Q}, @5}, where Q] and
Q) are proof trees for Ry and Ry respectively.

Now, applying the same rule one can obtain from @} and Q) a proof
tree Q' for C' C,, D satisfying Z. Using the same reasoning as before,
but with respect to @} and @, a set of unambiguous proof trees
QU{Q}, Qh, Qs} satisfying property Z exists, where Qs is a proof tree
for C C,, D. Thus, since removing elements from such a set does not
introduce any ambiguity, then @' = Q U {Qs} is an unambiguous set
of proof trees satisfying property Z.

O

Notice that since the empty set trivially satisfies the premises of Proposi-
tion then the following proposition is a particular case and follows
immediately.

Proposition 4.4.4. Let (7,S) be a hybrid TBox and Q be a proof tree for
the sequent C' T, D, such that Q satisfies the Property Z.

Then, there exists an unambiguous proof tree Q' for C C,, D, whereas Z is
preserved in Q.
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Chapter 5

A Brute-Force NP-Algorithm

As said before, deciding unifiability of £L£-unification problems w.r.t. cycle-
restricted TBoxes is NP-Complete [13]. In this chapter, we extend this result
to the case when unification is considered w.r.t. arbitrary general TBoxes
under the hybrid-semantics defined in the previous chapter. More precisley,
we show that hybrid £€L-unification is NP-Complete.

First, we generalize the notion of a local unifier to the case of hybrid unifi-
cation, and we show that a similar locality result holds in this case. Based
on this, we obtain that hybrid-unifiability is still in NP.

Second, we show the NP-hardness of the problem by a reduction from the
& L-matching problem modulo equivalence.

5.1 Local hybrid-unifiers

By Lemma 4.2.2], we can assume without loss of generality that the unifica-
tion problem I' and the general TBox 7 are flat. The sets At and At,, are
defined as in Section with the addition that At also contains the atoms
from 7.

From now on, a cyclic TBox may be a solution of a hybrid unification prob-
lem, the acyclic restriction for the assignment ¢ required in Definition [3.3.]]
is not longer needed. This, for example, allows the possibility to have non-
variable atoms of the form Jr.X assigned to a variable X.

Definition 5.1.1. Let 7 be a flat general TBox and I' a flat unification
problem. A TBox § is a local hybrid-unifier of I' w.r.t. 7 if:

1. § is a hybrid-unifier of I' w.r.t. 7, and

2. There exists an assignment ( of subsets of At,, to each variable X in
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N, such that: § is the induced TBox from ( in the sense of Definition
B3I

Hence, if hybrid-unifiability is bounded to the existence of a local hybrid-
unifier, as it is for unification w.r.t. cycle-restricted TBoxes and local uni-
fiers, we would have decidability of hybrid unification within NP.

The following theorem represents one of the main results of this chapter,
it directly implies that hybrid unification in ££ w.r.t. general TBoxes is
decidable within NP.

Theorem 5.1.2. Let T be a ground flat general TBox and T" be a flat uni-
fication problem. Then, I' is hybrid-unifiable w.r.t. T iff I' has a local
hybrid-unifier w.r.t. T.

The proof of this theorem is presented in the next section.

5.2 Existence of a local hybrid-unifier

We prove Theorem [5.1.2|following the same idea used in [I3| [14] for the cycle-
restricted case, but using a different characterization for the corresponding
subsumption problem. Since hybrid-unifiers may be cyclic TBoxes, we use
the relation C, defined in Chapter [4] as a characterization for subsumption
w.r.t hybrid TBoxes.

Assume that S is a hybrid-unifier of I' w.r.t. 7. We define the assignment
¢® as:

Q}S‘( = {D S Atnv ‘ X ngp,TUS D}

Let S’ be the induced TBox from ¢°. Showing that S’ is a hybrid-unifier of T
w.r.t. 7 would imply the existence of a local hybrid-unifier and complete the
proof for Theorem The following lemma implies that S’ is certainly a
hybrid-unifier of I' w.r.t. 7.

Lemma 5.2.1. Let 7 be a flat general TBozx, I" be a flat unification problem
and Cy,...,Cp, D € At. Let S and 8’ as defined above. Then:

Cin...nC, ngp,TUS D implies C1 ... Cyy, ngp"]‘ug/ D.
Proof. Assume that C; M...MCy, Cgpp7us D holds. The application of

Theorem yields that C1M...MCy, o D is provable in HC w.r.t. the
hybrid TBox (7,S). We prove by induction on n the following claim:

35



IfCin...NCy, Coo D is provable in HC w.r.t. (T,8) then C1MN...NC,, C,, D
is provable w.r.t. (T,8") for alln > 0.

Base Case: For n =0 it is clear since we have the rule (Start) in HC.

Induction Step: We assume that the claim holds for n — 1 and we show that
it also holds for n.

By Definition [f.1.7 we know that there exists a proof tree for C1M...MC,, C,
D in HC for all n > 0 w.r.t. (7,S8). In particular, consider a proof tree
Pof Cim...MCy E; D where [ is selected large enoughﬂ Furthermore,
consider the set of rules R = {(AndL1),(AndL2),(AndR),(Ex),(GCI)}
and the maximal sub-proof tree Pr of P w.r.t. R.

We show that for every sequent F1 C; E5 at a leaf in Pg, there is a proof
tree for Fy C,, Ey w.rt. (7,S8"). Two observations are in order w.r.t. the
leaves in Pgr:

e Since [ is selected large enough, then Fi; T, FEo is provable w.r.t.
(7,S8) and consequently Ey Cgpp7us Fo.

e By Definition each sequent Fy C; Es at a leaf in Pr must
be either an instance of one of the axiom rules (Ax, Top or Start),
the consequence of an instance of the rule (DefR) or one that is the
consequence of an instance of the rule (DefL).

Therefore, every such sequent has one of the following three forms:

1. CC, C,CE TorCLCyD. By Definition these three cases
represent a one-element proof tree in HC w.r.t. any hybrid TBox and
any value of { > 0.

2. D C; X, where D is a concept description and X a variable in N,,.
Assume that (§ = {Dy,...,D,}. By definition of ({, we have that
X Cypprus D; for all i € {1,...,q}. Then, since D Cyp,7us X as
observed above, we also have that D T, 70us D; foralli € {1,...,q}.

Applying Theorem [4.1.8] once more, we obtain that D T, D; is prov-
able w.r.t. (7,8). Since D, Dy, ..., D, are in At, then the application
of induction hypothesis and Definition yield that: D C,_ 1 D;
has a proof tree in HC w.r.t. (7,8’) for all i € {1,...,q}.

Performing (¢ — 1) applications of rule (AndR), it is possible to obtain
a proof tree for D T,y D1 M...M Dy wr.t. (7,S’). Thus, since
Dy M ...M Dy is the definition of X in &', the application of rule
(DefR) yields a proof tree for D C,, X w.r.t. (7,8).

'] can be selected, for example, as a value such that C;=C;,;. In Chapter [4] it is
mentioned that such a value always exists.
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3. X, D11 Dy or X C; Dy, where Dy, Dy € Aty

Since the choice of [ guarantees that X T, D1 Dy, then by Theorem
we have that X C,r, 7us D1M D2 and consequently: X Ty 7us
D1 and X ngp,TUS DQ.

The definition of C}s( implies that D; and Dy are in C}S(, and hence
X Cypprust D1M Dy, X Eg D11 Do and X &, Dy M Do are implied
in that order w.r.t. (7,8’). Thus, there is a proof tree for X C,
DM Dy (X Ch Dl) w.r.t. (T, S/)

We have shown that for every sequent Fq C; E», at a leave in Pg, there is
a proof tree for By T, Fy w.r.t. (7,S8). Then, we can apply Proposition
to obtain that there exists a proof tree P’ for C111...MC,, C, D w.r.t.
(7,8') and therefore, the inductive claim is proved.

Thus, we have that C1M...MC,, C D is provable in HC w.r.t (7,S’) and
then we can conclude:

cin...nCy Egfp,TUS! D
O

Theorem follows immediately from the previous lemma. Since the
number of elements in At,, is polynomial on the size of I' and 7, one can
guess an assignment ¢ in polynomial time. To check whether the induced
TBox S is a hybrid-unifier of I" w.r.t. 7, the polynomial time algorithm
provided in [7, [§] can be used to check whether C' T, 7us D holds for all
subsumptions C' T’ D in I'. Thus, we obtain that hybrid unification in ££
is decidable within NP.

Corollary 5.2.2. Hybrid unification in EL w.r.t. general TBozes is in NP.

5.3 NP-hardness of hybrid £/L-unification

In this section, we reduce the £L-matching problem modulo equivalence to
the hybrid unification problem in £L.

Definition 5.3.1. An £L£-matching problem modulo equivalence is of the
form C' =" D where C and D are £L-concept descriptions, C' is ground and
D is not ground. A solution or matcher of this problem is an £ L-substitution
o such that C' = o(D). A matching problem is solvable if it has a solution.

We define a translation from a given matching problem to a unification prob-

lem in the following way. Let C' =’ D be a matching problem the corre-
sponding hybrid £L-unification problem consists of the set of subsumptions
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I' = {C C’ D,DC’ C} and it is considered w.r.t. the empty TBox, i.e.,
T =0.

In the following, we prove that a matching problem has a solution if and
only if the corresponding hybrid unification problem has a solution. First,
we prove two auxiliary propositions.

Proposition 5.3.2. Let C' and D be two concept descriptions such that C
s ground and at least one variable occurs in D.

For allm > 0 and any proof tree P for C C,, D w.r.t. a hybrid TBozx (0,S):
if B is a non-ground top-level atom of D then there exists a node in P with
a sequent of the form G C,, B, where G is a concept description.

Proof. Let P be a proof tree for C' C,, D for an arbitrary n > 0. There
are two observations that can be done about P. First, since C is ground,
Proposition says that every sequent at a node in P is left-hand side
ground and therefore, the rule (DefL) is never used to build P. Second, since
P is built w.r.t. the hybrid TBox (0, S) then, it is clear that no instance of
the rule (GCI) is used to build P.

Now, consider the set of rules R = {(AndL1),(AndL2),(AndR)} and the
mazximal sub-proof tree Pr of P w.r.t. R. Applying Proposition m (1)
to Pr we have that if B is a top-level atom of D then, there exists a leaf in
Pr with the sequent G C,, F where F is of the form ...MBM....

Since G is ground and F is not ground, G C,, E is neither a consequence of
an instance of (Ax) nor of an instance of (Top). In addition, n > 0 implies
that it is not an instance of (Start) as well. Hence, since (DefL) and (GCI)
are not used to build P, by Definition[4.3.2|G C,, F must be the consequence
of an instance either of rule (Ex) or rule (DefR). Looking at the structure
of these two rules, there are two possible cases for the form of E:

1. £ = X for some variable X or,

2. E = Js.E’ for some role name s and a concept description E'.

We can conclude that E contains only one top-level atom and thus, since B
is a top-level atom of E it follows directly that £ = B and G C,, B is the
sequent of a node in P. O

Before going into the next proposition, one assumption can be made w.r.t.
cyclic TBoxes. Let S by a cyclic TBox, then applying Proposition 2.3.5] it
can be assumed without loss of generality that S does not contain component
cycles. Thus, we can assume that the definition of any cyclic-defined variable
(Definition X in S contains a top-level atom of the form Js.E, such
that E contains an occurrence of a cyclic-defined variable in S.
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Proposition 5.3.3. Let C and D be two concept descriptions, S be a cyclic
TBox such that C is ground and at least one cyclic-defined variable occurs
in D and r be the role depth of C.

If there exists a proof tree P for C C,.19 D w.r.t. (0,S) then there exists a
sequent at a node in P of the form A C; ds.E where A is a primitive concept
name and | > 0.

Proof. The proof is by induction on the role depth r of C' and we consider
an arbitrary proof tree P.

Base Case: r = 0. By assumption C' Co D holds and C is of the form
Ay M...M A where A; is a primitive concept name for all 7,1 < i < k. Let
X be a cyclic-defined variable in S and B a top level atom of D where X
occurs. By Proposition there is a sequent of the form G Ty B at a
node in P.

Since G Ty B is a leaf in Pr as described in Proposition then by
Proposition [£.3.3] (2) we have that G is a sub-description of C' and conse-
quently it is also a conjunction of primitive concept names. We can assume
that G is of the form A; M...MA; for 1 <i,57 < k. Next, we make a two
cases distinction with respect to the structure of B:

1. B =ds.E. Since G is ground and a conjunction of primitive concept
names, the sequent G Co B can only be derived using successive appli-
cations of rules (AndL1) and (AndL2), which are rules that preserve
the right-hand side of a sequent. Hence, there must exist a node in P
with a sequent of the form A, Eo 3s.F where 1 < ¢ < j.

2. B = X. In this case, we can use the rules (AndL1), (AndL2) and
(DefR) in order to obtain a sequent of the form G Ty X. Actually, it
is not only that rule (DefR) can be used but, it has to be used:

Suppose that G C,, X is obtained by only applying rules (AndL1) and
(AndL2). As shown in the previous case, there is a node in P with a
sequent of the form A, Co X where A, is a primitive concept name.
Obviously, this sequent is not proved yet in HC, and the only rule
that could have been used to obtain it, is the rule (DefR).

Hence, we can assume that P has a node with a sequent of the form
G’ Co X that is obtained as a consequence of an instance of rule
(DefR), where G’ is a sub-description of G. The premise of such an
instance is also a sequent at a node in P, i.e., G’ &1 D1 M...M Dy,
where X = D1 1M...M D, is a concept definition in S.

Since X is cyclic-defined in S then for some 4, D; is of the form 3s.F’
where E’ is not ground and it contains an occurrence of a cyclic-
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defined variable in S. A second application of Proposition w.r.t.
G'Cy DyM...MD,, and D; = 3s.E’, yields case 1 w.r.t. Cj.

This completes the proof of the claim for r = 0, since one case is proved
w.r.t. C9 and the other one w.r.t. ;.

Induction Step: Assume that the claim holds whenever the role depth of C
is less than r and let us see that it holds for r. Using the same reasoning as
before one can see that there is a sequent in P of the form G C, 5 B where
B is a non-ground top level atom in D. There are two cases w.r.t. the role
depth of G:

1. The role depth of G is less than r. Then, induction hypothesis can be
applied to show the claim.

2. The role depth of G is r. If B = ds.FE, G C, 12 B can be obtained
using rules (AndL1), (AndL2) or (Ex). A similar reasoning as in the
base case for the existence of a (DefR) application, yields that the rule
(Ex) must be applied. Then, there is a sequent G’ C,19 F in P to
which the rule (Ex) is applied and it is clear that the role depth of G’
is less than 7.

The other possibility is the case when B = X, but using the same
reasoning as for the base case the existential case is obtained w.r.t.
C,+1, and induction can also be applied.

Thus, the claim is proved. Notice that the proof implicitely says that the
result not only holds for C C, 5 D but for C C+,42 D as well. ]

An easy consequence of the previous proposition is that a ground concept
description C' cannot be subsumed by a non-ground concept description D
w.r.t. a hybrid TBox (0,S) if, S is cyclic and D contains an occurrence of
a cyclic-defined variable in S.

Lemma 5.3.4. Let C and D be two concept descriptions such that C' is
ground. Then, there is no cyclic TBox S such that C Cp, gus D holds and
D contains an occurrence of a cyclic-defined variable in S.

Proof. The proof is by contradiction. Assume that there exists a cyclic
TBox § such that C' ), gus D holds and D contains an occurrence of a
cyclic-defined variable in §. Then for all n > 0 there exists a proof tree for
CLC, D wurt. (0,S).

Let r be the role depth of C' and P be a proof tree for C C, 5 D w.r.t.
(0,S). Applying Proposition there is a sequent at a node in P of the
form A C; ds.F where A is a primitive concept name and [ > 0.
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It is not difficult to see that since [ > 0, there is no immediate rule that
could be used to derive A C; ds.E. Hence, we have a contradiction with the
fact that P is a proof tree for C C,,o D since A C; Js.E is a sequent at a
node in P, but it cannot be proved.

This tell us that C' C, 12 D cannot be proved w.r.t. (0,S), contradicting the
initial assumption. O

This lemma says, in addition, that any unification problem which contains
a subsumption C' T’ D of the form previously discussed, does not have a
cyclic hybrid-unifier w.r.t. the empty general TBox. Based on this we show
the equivalence between a matching problem and its corresponding hybrid
unification problem.

Lemma 5.3.5. An L matching problem C = D has a solution iff the
hybrid £ L-unification problem T' = {C C7 D, D C’ C} has a hybrid unifier
w.r.t. the empty general TBox.

Proof. (=) Assume that C =" D has a solution. Then, there exists a ground
substitution ¢ such that C' = o(D). Since o is ground then, it induces an
acyclic TBox S such that C =g D and consequently C Cs D and D Cg C
hold, see Section

The acyclicity of S and the application of Lemma [2.3.4] yield that greatest
fixpoint semantics coincides with descriptive semantics. Hence, it can be
seen that C' E,¢,gus D and D E ¢, gus C hold. Thus, S is a hybrid-unifier
of I' w.r.t. the empty TBox.

(<) Assume that I' has a hybrid-unifier S w.r.t. the empty TBox, then
C Cyfpous D holds. First, we can see that S is an acyclic TBox:

1. If D does not contain any occurrence of a cyclic-defined variable in
S, then cyclic-definitions in S (if there exists any) can be removed to
obtain an acyclic TBox that is still a hybrid-unifier of I' w.r.t. the
empty TBox.

2. Otherwise, since C' is ground, the application of Lemma yields
that S has to be an acyclic TBox.

Second, the acyclicity of S implies the equivalence between greatest fixpoint
semantics and descriptive semantics. Therefore, C' Cs D and D Cg C' hold.
In addition as it was shown in Section S induces a ground substitution
os such that 05(C) C os(D) and os(D) C 05(C). Thus, C' = os(D) holds
and thus, og is a matcher for C' =’ D. O

Since the £L-matching problem is NP-hard [I7], this lemma yields the fol-
lowing theorem.
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Theorem 5.3.6. The problem of deciding hybrid-unifiability in EL w.r.t.
general TBoxes is NP-hard.
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Chapter 6

A Goal Oriented Unification
Algorithm

The result obtained in the previous chapter immediately yields an algo-
rithm. However, this algorithm is not practical since it blindly guesses a
local assignment and only afterwards checks whether the induced TBox is a
hybrid-unifier of the given unification problem.

In this chapter, we introduce a more goal-oriented unification algorithm in
which nondeterministic decisions are only made if they are induced by ”un-
solved parts” of the unification problem. In addition, failure due to wrong
guesses can be detected early. Whenever the algorithm runs successfully, it
is the case that the computed assignment induces a hybrid-unifier and there
is no need to verify it.

This algorithm is designed following similar ideas as the corresponding goal-
oriented algorithm proposed in [13] for unification with a cycle-restricted
TBox. However, the rules look quite different since now we use the proof
calculus HC as a characterization of subsumption under hybrid-semantics.
We introduce the notion of p-sequent as the elements that the algorithm
work with and need to introduce a blocking procedure to avoid infinite runs
of the algorithm.

We will first present an overview of the existent algorithm for the cycle-
restricted case. Then, we will show how to transform this algorithm in
order to obtain a new algorithm to solve the hybrid unification problem.
At the end, we will show that the new algorithm is a correct NP-decision
procedure for the hybrid unification problem.
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6.1 Unification with a Cycle-Restricted TBox

The goal oriented unification algorithm provided in [13] to solve £ L-unification
with a cycle-restricted TBox relies on an appropriate characterization of the
subsumption problem in ££ w.r.t. general TBoxes, and on the existence of
a local unifier.

It starts with a set I'g of subsumptions and mantains a current unification
problem I' and a current assignment S, which initially assigns the empty
set to all variables. Initially, all subsumptions in I'y are marked as unsolved
except those with a variable on the right-hand side. Rules are applied only
to unsolved subsumptions and a non-failing application of a rule of this
algorithm does the following:

e it solves exactly one unsolved subsumption,

e it may extend the current assignment S by adding elements of At,,
to Sx for some variable X and,

e it may introduce new flat subsumptions built from elements of At.

Whenever a rule application extends S, it expands I' w.r.t. X in the fol-
lowing sense: every subsumption s € I' of the form C;M...MC, C° X
is ezpanded by adding the subsumption C; M...MC, C’ A to T for every
A€ Sx.

In general, subsumptions are only added to I' by a rule application or by ex-
pansion if they have not been already added. Every time a new subsumption
is added to I', it is initially marked as unsolved, except if it has a variable
on the right-hand side. A subsumption will never be removed from I', or
become unsolved once it has been marked as solved.

The rules of the algorithm consists of three eager rules (see Figure and
several nondeterministic rules (see Figure [6.2). Eager rules are used with
the purpose of optimization, they are applied with higher priority than non-
deterministic rules and among them, Fager Ground Solving has the highest
priority, then comes FEager Solving, and then Fager Fxtension.

The nondeterministic rules are only used if no eager rule can be applied. In
particular there are four mutation rules, they allow the algorithm to solve
subsumptions by using the consequences implied from the GCIs in 7. We
only show the rule Mutation 1 here, but the other mutation rules (see [13])
follow the same idea.

As aremark, is worth to mention that this algorithm tries to compute ground
substitutions that are local unifiers of a given unification problem. In fact,
every time the assignment S becomes cyclic by an application of the (Eager)
Ezxtension rule, the rule application fails.
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Eager Ground Solving:

Condition: This rule applies tos = C1M...MC, C° D if it is ground.

Action: If C1M1...MCy, E7 D does not hold, the rule application fails. Otherwise, s
is marked as solved.

Eager Solving:

Condition: This rule appliestos =C1M...MC, E? D if either.

e there is an index ¢ € {1,...,n} such that C; = D or C; = X € N, and D € Sx, or
e D is ground and []G C7 D holds, where G is the set of all ground atoms in
{017"'70"}UUX€{C’1 ..... Cp}NN, Sx

Action: The application marks s as solved.

Eager Extension:

Condition: This rule applies tos = C1M...MCy, T D if there is an index i € {1,...,n}
with C; = X € N, and {Cl,. . ,Cn} \ {X} C Sx.

Action: Its application adds D to Sx. If it makes S cyclic, the rule application fails.
Otherwise, I' is expanded w.r.t. X and s is marked as solved.

Figure 6.1: The eager rules of Algorithm w.r.t. a cycle-restricted TBox
7.

Finally, the unification algorithm w.r.t. cycle-restricted TBoxes (Algorithm
27 in [13]) works as follows:

Algorithm 6.1.1. Let I'y be a flat ££-unification problem. We initialize
I' :=T'g and Sx := 0 for all variables X € N,. While I" contains an unsolved
subsumption do the following;:

1. Eager rule application: If some eager rules apply to an unsolved
subsumption s in I', apply one of highest priority. If the rule applica-
tion fails, then return ”not unifiable”.

2. Nondeterministic rule application: If no eager rule is applicable,
let s be an unsolved subsumption in I'. If one of the nondeterministic
rules applies to s , nondeterministically choose one of these rules and
apply it. If none of these rules apply to s or the rule application fails,
then return ”not unifiable”.

Once all subsumptions in I' are solved, return the substitution o that is
induced by the current assignment.

The choice of which unsolved subsumption to consider next by nondeter-
ministic rules, is don’t care nondeterministic. In contrast, choosing which
rule to apply to a chosen subsumption is don’t know nondeterministic.

It was shown in [I3| [I5] that Algorithm is sound and complete for
unification w.r.t. cycle-restricted TBoxes and it is an NP-decision procedure.
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Decomposition:

Condition: This rule applies to s = C1 M...MCy E? Js.D’ if there is at least one
i€ {l,...,n} with C; = 3s.C".

Action: Its application chooses such an index i, adds the subsumption ¢’ T/ D’ to
I, expands it w.r.t. D’ if D’ is a variable, and marks s as solved.

Extension:

Condition: This rule applies to s = C1 M ... M C, C° D if there is at least one
1€ {1,...,n} with C; € N,.

Action: Its application chooses such an index ¢ and adds D to S¢,. If this makes S
cyclic, the rule application fails. Otherwise, I' is expanded w.r.t. C; and s is marked
as solved.

Mutation 1:

Condition: This rule applies to s =C1M...MC, T D if n > 1 and there are atoms
A1,..., Ak, B of T such that A1 M...M Ax C7 B holds.

Action: Its application chooses such atoms, marks s as solved, and generates the
following subsumptions:

e it chooses for each n € {1,...,k} an i € {1,...,n} and adds the new subsumption
C:C" A, toT,

e it adds the new subsumption B C° D to .

Figure 6.2: The nondeterministic rules of Algorithm w.r.t. a cycle-
restricted TBox 7.

We will now use the same idea of this algorithm to obtain a goal oriented
decision procedure for hybrid unification.

6.2 Hybrid Unification.

The Algorithm is sound for hybrid-unifiability. Whenever it returns a
substitution o, the induced acyclic TBox S, is a hybrid-unifier of I' w.r.t.
T, since descriptive semantics coincides with gfp-semantics in the presence
of acyclic TBoxes. However, it is not complete since there are not cycle-
restricted TBoxes for which I is hybrid-unifiable, but they yield a failure of
the algorithm because the rules do not allow to build cyclic assignments.

To fix this problem, we transform the previous algorithm into a new algo-
rithm that solves the hybrid unification problem. Given 7 and a unification
problem I' = {C; C* Dy,...,C,, C D,,}, our new algorithm will try to
compute a local TBox S such that C; T, D; holds in HC w.r.t. the hybrid
TBox (7,S), for all the subsumptions in T.

The intuitive idea underlying our new algorithm is first to select a value [
large enough and then, to try to build proof trees for each sequent C; C; D;
corresponding to a subsumption in I while adding the necessary non-variable
atoms to the variable definitions in S, such that those proof trees can indeed
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be computed w.r.t. (7,S). The existence of such proof tree and the selection
of the value [ guarantee that C; C., D; holds.

To this purpose, we do a bottom-up search that starts with all those sequents
as the goals that have to be proved. In a certain way, the algorithm non-
deterministically applies one of the HC rules backwards to extend a proof
tree, whereas the premises of the selected rule are considered as new goals
to be proved. In addition, non-variable atoms are added to the variable
definitions in § whenever they are needed for a (DefLl) rule application. If
at some point, all the sequents that remain to be proved are instances of the
rules (Ax), (Top) or (Start) then, every initial goal have a proof tree w.r.t.
T and the resulting TBox S.

It was pointed out in [8] that the termination of such a procedure, even know-
ing the TBox § in advance, is not in principle guaranteed mainly because of
the GCI rule. Though it was conjectured that a blocking mechanism could
solve the problem, such approach was nevertheless not chosen and instead
a top-down approach was proposed. However, we cannot use a top-down
search since we are not trying to find all the possible sequents that have a
proof tree w.r.t. a hybrid TBox (7,S), but to compute a TBox S to obtain
proof trees for a given set of sequents.

Therefore, we need to use a blocking mechanism. This mechanism will work
on p-sequents which are defined in the following way:

Definition 6.2.1. A p-sequent is a pair (C' C,, D, P) where P is a set of
sequents.

As a remark, it is important to notice that a sequent C' C,, D is not only
identified by the concept descriptions C' and D, but also by the value n in
C,. Next, we define the procedure blocking:

Definition 6.2.2. Given a set of p-sequents I') and a p-sequent (C LT,
D, P). The procedure blocking consists of the following three rules applied
in the given order:

B1: If there is a sequent C' C,, D in P, then blocking fails.

B2: If there is a p-sequent of the form (C' C,, D,P’) in T, then do the
following:

e For each p-sequent (_,P"”) in T', such that C' C, D is in P”, make
P =P'UP

e Make P’ := P'UP.

B3: If none of the previous rules are applicable, then add (C C? D, P) to
r,.
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Using these definitions, the Algorithm is modified to work on p-sequents

instead of subsumptions. The unification problem I' = {C; C* Dy,...,Cp, C*
D,,,} is transformed into an initial set of p-sequents I'y, that are of the form

(C; E; D;,0). Like before, starting with I'p,, the algorithm maintains a

current set of goals I', and a current assignment (.

Marking a p-sequent (s, P) as solved does not always mean that there is a
proof tree for s w.r.t. 7 and the TBox § induced by the current assignment.
It may be the case that the task of finding a proof tree for s , was deferred
to solving other p-sequents such that, a proof tree for s can be built from
the proof trees of the subsumptions in those p-sequents.

In a very general sense, this algorithm behaves similar to Algorithm [6.1.1
but several changes are introduced. These modifications are motivated by
the fact, that now we work with p-sequents and the calculus HC is used as
the characterization to obtain a TBox S that solves our problem.

First, the notion of expansion is modified in the following way: every p-
sequent (s, P) € T'p with s of the form C1 ... MGy, EZL X is expanded by
adding the p-sequent (C1M...MCp, CF | D,0) to I', for every D € (x. This
is motivated by Lemma 3.1.2 from [7], which says that C1 1...MC,, C,, X
has a proof tree iff C;1 M1...MCy, 5,1 D11M...11 Dy has a proof tree, where
Dy m1...M Dy is the definition of X.

Second, our algorithm consists of four eager rules (see Figure |6.3)), two
of them modified rules from Algorithm and the rest are new rules.
For example, the meaning of the Fager Ground Solving rule is kept as in
Algorithm [6.1.1] because finding a proof tree for a ground sequent only
depends on the given general TBox 7. The FEager Aziom Solving rule is
introduced to solve the trivial cases (Top) and (Start) from HC, while Eager
Solving covers a possible application of rule (Ax). Last, the new FEager
AndR rule represents an application of the rule (AndR) from HC. The
introduction of this rule as deterministic is based on Lemma 3.1.2 from [7],
which also shows that Cq ... MCy, C,, D1 1...M Dy has a proof tree iff
Ci1M...NCy, Ey D; has a proof tree for all 4,1 <4 < g. The priority among
the eager rules is given by their order in Figure Note that, although
the initial set of p-sequents contains only sequents with a single flat atom on
their right-hand side, an application of the new Mutation rule may introduce
a new p-sequent representing a sequent that has a conjunction of flat atoms
as its right-hand side. That is why the Eager AndR rule is considered for
g > 1 and at the same time has the highest priority among all eager rules.

Third, the nondeterministic rules (see Figure are defined to simulate
applications of rules from HC. Rules Extension and Decomposition can be
seen as applications of rules (DefL) and (Ex) in HC provided that rule
(AndLi) has been previously applied, as needed. The new Mutation rule
is the equivalent to the four Mutation rules from Algorithm but it
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corresponds to an application of the (GCI) rule from HC.

Finally, one of the most significant differences is the introduction of the
blocking mechanism to avoid nonterminating runs of the algorithm. It is
based on the following observation: Assume that a sequent C' T, D has
a proof tree P w.r.t. some hybrid TBox (7,S). In addition, suppose that
there is a node in P that is also labeled with the sequent C' C,, D. Obviously,
such a node also have a proof tree P’ which is smaller than P, but proves the
same sequent. Therefore, we can replace P by P’. The rule B2 in blocking
is also based on this idea and represents an optimization for the algorithm.
It is important to see that the update steps described in rule B2 are needed,
otherwise the procedure may be incorrect as shown in the following example.

Example 6.2.3. Consider the general TBox 7 = {D C B,BC D,BMND C
E} and the unification problem

F={XC'E,XC'"4,AC" X}

It can be seen that I' is not hybrid-unifiable w.r.t. 7. If that were the case,
then X = A has to be the definition of X in &, but then S does not solve
X C E for the given 7.

Now, suppose that the update steps described in blocking for rule B2 are
not performed. The following is a non-failing sequence of rules applications
on the set I', obtained from I':

e Apply Mutation rule to the p-sequent p1 = (51 = X EZ E, D) using
the GCI BMD C E. Then, two new p-sequents are added to I', of the
form po = (50 = X EZ BN D, {51}) and p3 = (s3 = FE EZ B, {51}).

e p3 is trivially solved and Fager AndR rule is applied to po to obtain
the p-sequents po1 = (X El? B, {s1,52}) and poo = (X E; D, {s1,52}).

e Next, a new application of Mutation rule to ps; using the GCI D C B
will yield the sequent X C; D, however since there is already a p-
sequent in I', representing X T; D, no new p-sequent is added to I'p,
and po; is marked as solved.

e Similar as before, apply Mutation rule to psg using the GCI B C D
to obtain the sequent X C; B. Same reasoning implies that no new
p-sequent is added to I'y, and pos is marked as solved. One can see that
without removing the update steps from rule B2, blocking would have
failed in this case.

After this series of rules applications the only remaining unsolved p-sequent
inI',is (X EZ A, () and applying the rule Eztension, a non-failing run of the
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Eager AndR:

Condition: This rule applies to (s, P) with s = C1M...MCp C!. DiM...ND,, if
qg>1.

Action: For each D;, executes blocking w.r.t. (CiM...MCp C, D;y PU{s}). If
blocking fails for some D;, then the rule application fails. Otherwise, (s, P) is marked
as solved.

Eager Axiom Solving:

Condition: This rule applies to (s, P), if s is of the form C1 M ... M Cp, Céo D or
Cin...NCnC2T.

Action: Its application marks (s, P) as solved.

Eager Ground Solving:

Condition: This rule applies to (s, P) with s = C;M...MC,, CS, D, if 5 is ground.

Action: If C; M...MCy C7 D does not hold, the rule application fails. Otherwise,
(s, P) is marked as solved.

Eager Solving:

Condition: This rule applies to (s, P) with s = C1 M ...MCp, C? D, if there is an
index ¢ € {1,...,m} such that C; = D or C; = X € N,, and D € (x.
Action: The application marks (s, P) as solved.

Figure 6.3: The eager rules of hybrid unification.

algorithm can be easily completed. However, the TBox {X = A} induced
by the final assignment is not a unifier of I" w.r.t. 7.

Now, consider the TBox Sy consisting of a single concept definition of the
form Ay =[]pe at,,, P- The reason of defining Sy, is that the number of sub-
descriptions of the definition of Ay in Sy is an upper bound for the number
of sub-descriptions of any concept definition A = C' in a TBox § computed
by the algorithm.

We define the hybrid unification algorithm in the following way,

Algorithm 6.2.4. Given a flat general TBox 7 and a flat unification prob-

lem I' = {C4 C’Dy,...,Cp C’ D,,}. First, do the following initializations:
1. Compute the ValueE] of [ as:

1 := (|Sub(T)| + |Sub(T)| + |Vars(I')| * | Sub(Sy)|)*

2. Initialize the set of p-sequents I'), := I',,), where I, is obtained from
I' as:

1This value represents the number of all possible subsumptions built from the maximal
possible number of sub-descriptions from the known general TBox 7, the unification
problem I' and a (cyclic) TBox S which is to be constructed. Note that the maximal size
of S may be |[Vars(I')| x [Sub(So)|-
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Decomposition:

Condition: This rule applies to (s, P) withs =C1M...MNCp, C’ 3s.D’, if there is a
C; = 35.C" such that blocking does not fail w.r.t. (C' C,, D', PU{s}).

Action: Its application chooses such an index i and applies blocking w.r.t. (C' C,
D', PU{s}). Once blocking is applied, it expands I" w.r.t. D’ if D’ is a variable, and
marks (s, P) as solved.

Extension:

Condition: This rule applies to (s, P) with s = C1M...MC,, T D if there is at least
one i € {1,...,m} with C; € N,.

Action: Its application chooses such an index i and adds D to (¢,. I' is expanded
w.r.t. C; and (s, P) is marked as solved.

Mutation:

Condition: This rule applies to (s, P) with s = C1 M...MC,, C., D, if there is a GCI
FE C Fin 7 and indexes 7, j with 1 <+¢ < j < m, such that blocking does not fail w.r.t.
(C;n...NC; Cy E,PU{s}) and (F C, D,P U {s}).

Action: Its application chooses such a GCI E C F' and indexes 4, j. It applies blocking
wrt. (C;N...NC; C, E,PU{s}) and (F C,, D,P U{s}). Once blocking is applied,
(s, P) is marked as solved.

Figure 6.4: The nondeterministic rules of hybrid unification.

Fpo = {(Cl EZ D17®),...,(Cm El? Dma®)}

3. Initialize the assignment ¢ with (x := () for all variables X € N,,.

Next, while I', contains an unsolved p-sequent do the following:

1. Eager rule application: If some eager rules apply to an unsolved
p-sequent in I',, apply one of highest priority. If the rule application
fails, then return ”failure”.

2. Nondeterministic rule application: If no eager rule is applicable,
let (s, P) be an unsolved p-sequent in T'y. If one of the nondetermin-
istic rules applies to (s, P), nondeterministically choose one of these
rules and apply it. If none of these rules apply to (s, P), then return
" failure”.

Once all p-sequents in I',, are solved, return the TBox S that is induced by

the current assignment (.

6.3 Soundness

In this section, we show that if the Algorithm returns a TBox S given
as its input the unification problem I', then C; Co, D; holds w.r.t. (7,S)
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for each C; C° D; € T and thus, the computed TBox S is a hybrid-unifier of
I" w.r.t. 7. Assume that Algorithm has a non-failing run on input I,
and let ¢ be the final assignment computed by this run and S the induced
(cyclic) TBox from (. In addition, we denote the final set of p-sequents
computed by this run as L.

We prove that for each p-sequent (C EZL D,P) in [ there is a proof tree for
C L, D wart. (7,5). To show that, we use well founded-induction [22] on
the following well-founded > order on T'.

Definition 6.3.1. Let p = (C C. D, P) be a p-sequent in L.

e We define m(p) := (m1(p), ma(p)), where

— my(p) := n, where n is from C,,.

— ma(p) :=| P, i.e., the number of predecessors of p.

e The strict partial order > is the lexicographic order, where the first
component is compared w.r.t. the normal order > on natural numbers
and the second component is compared with the opposite order < on
the finite set of natural numbers {0, ..., k}, where k is at most |T.

o We extend - to ' as: p1 = py iff m(p1) = m(p2).

Notice that the set T is finite and since every sequent in P corresponds to a
p-sequent in I', then P has a finite number of elements. Consequently, the
value of k can be properly selected for I'.

Since the lexicographic product of well-founded strict partial orders is again
well-founded [22], then > is a well-founded strict partial order on I'.

Lemma 6.3.2. If Algorithm[6.2.4) outputs a TBox S, then for each p-sequent
(C T} D,P) inT there is a proof tree for C C, D w.r.t. (T,S).

Proof. Let p = (s,P) € T and assume that for all p/ = (s, P € T with
p = p', there is a proof tree for s’ w.rt. (7,S). We make a two cases
distinction w.r.t. s.

e If s has a non-variable atom on the right-hand side, then it was ini-
tially marked as unsolved and must be solved by a non-failing rule
application. Let us see the rules that could have been applied:

— Eager Axiom Solving: This case is trivially satisfied since s is the
consequence of an instance of one of the rules (Ax) or (Top) in
HC.
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— Eager Ground Solving: s is of the form C1M...MC,, &, D and
ground. Since there are no defined concepts (variables) occcurring
in Cq,...,Cp, D, then C111...11Cy, Egpp7us D holds for any
TBox S. Application of Theorem [£.1.8]yields that there is a proof
tree for C1M...MNCp C,, D wort. (7,8) for all n > 0.

— Eager Solving: s is of the form CyM...MCy, EEL D with C; = D
for some ¢ € {1,...,m}. Starting with the sequent D C,, D,
several applications of (AndLi) rules yield a proof tree for s w.r.t.
(7,S). Otherwise, if it is the case that C; = X and D € (x, a
proof for s can be obtained in the following way:

(Ax)

DC, D
——— (AndLi)

—  (AndLi)
Cn

Foop O
="~ (AndLi)

Crn o ncn Gy p Andld

— Eager AndR: s is of the form Cy 1...MCp, EZL Dyn...MnD,
with ¢ > 1. Since blocking did not fail for any D; then, there is
a p-sequent p; = (C1N...MNCp CF Dy, P;) in T for each D; such
that P U {s} C P;. Hence, we have that mi(p) = mi(p;) and
ma(p) < ma(p;), therefore p = p; for all 4,1 <i < gq.
The application of induction yields that there is a proof tree @Q;
for C1M...NCy, C, D; for each D;. Thus, several instances of
the (AndR) rule in HC provides a proof tree for C1M...MCy, T,
Dyn...M Dy wrt. (7,8) as it is illustrated in the following
diagram

Q1 Q2
CEnDl CEnDQ
= = And
CC,DiND, (AndR)
. Qq—l
CLC,DiM...MDgy_ CLC, Dy—
Cn D1 q—2 Cn Dg—1 (AndR) Qq
CEnle—l...l_\Dq_l CEan

AndR
CCnDiM..ND, (AndR)

where C'=C1M...MCy,.

— Extension: s is of the form XNC;M...MC,, E;'; D for a variable
X and the definition of X in S is of the form DM Dy M...11D,.
Then, starting with D C,, D and ¢ applications of (AndLi) rules,
we can obtain a proof tree for DM Dy M...MND, &, D. Finally,
an application of the rule (DefL) yields a proof tree for X C,, D
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and again, subsequent applications of (AndLi) rules give a proof
tree for s w.r.t. (7,S) (see the following diagram).

DEnD

(AndL1)

DADN..ND.C. D
! T="" (DefL)

XC,D

(AndL1)

Xncn..nc,c, D

— Decomposition: s is of the form C11M...MC,, QZL Js.D’ with C; =
Js.C" for some i € {1,...,m}. Since blocking did not fail when
the rule was applied, then there is p-sequent p' = (C' C}, D', P')
in T such that P U {s} C P'. We have that m1(p) = my(p') and
that ma(p) < ma(p'), therefore, p = p'.
Applying induction we obtain that there is a proof tree for C' &,
D" wax.t. (7,8). Thus, an application of the (Ex) rule in HC
yields that there is a proof tree for 3s.C’ C,, 3s.D’ and further-

more, m — 1 applications of (AndLi) rules give a proof tree for s
wrt. (7,S).

— Mutation: s is of the form C; M ... M Cy, EZL D. Again, since

blocking did not fail there exists a GCI £ C F in 7 and indexes
i,7 such that, the p-sequents py = (C; M...MC; C! E, P;) and
po = (F T D, Py) are in T where PU{s} C P, and PU{s} C P,.
Then, we have that mq(p) = m1(p1) = m1(p2), ma(p) < ma(p1)
and ma(p) < ma(p2), therefore p > p; and p > po.
We can apply induction hypothesis to obtain that there are proof
trees Qp and Qp for C;M...MC; &, E and F T, D. Thus,
an application of the (GCI) rule following several applications of
(AndLi) rules, yields a proof tree for C1 M ...MC,, C,, D w.r.t.
(7,S) (see diagram below).

QE Qr
Ciﬂ...ﬂCjEnE FC,D

Ci|_|...|_|Cj c.D

(GCI)

(AndLi)

: AndLi
cin...nC,C, D A
e If 5 has a variable as its right-hand side, then it is of the form Cj M
...MCyp T X. If {x is empty, then X = T is the definition of X in
S. Obviously, there is a proof tree for C1 M ...MCy,, C,-1 T and the
rest follows applying rule (DefR) in HC.
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Otherwise, the definition of X in S is of the form Dy 11...MD, and for
every D; there is a p-sequent of the form p; = (C1M...MNCy, Q;_l D;,0)
inT. Clearly, because of C,, and C,,_1, m1(p) > mi(p;) and therefore,
m(p) = m(p;) for all i,1 <7 <gq.

Now, we apply induction to obtain that there is a proof tree for each
sequent C1 M ...MCy, E,-1 D;. Similar as for the Eager AndR rule,
a series of applications of rule (AndR) from HC yield a proof tree
Q for C1...NC, Ep1 Dy T1...T1Dy. Then, a proof tree for
Cin...Nnc, C, X is obtained as follows

Q
Cll‘l...I‘ICan_lDll‘l...l‘qu

cin...nC, X

(DefR)

O]

Since the initialization of Algorithm adds a p-sequent of the form
(C; E; D;,0) to T'p, for each subsumption Cj C? D; in I', and we have
that '), C T then, the following lemma can be obtained as a consequence
of Lemma within the proper selection of the value for [.

Lemma 6.3.3. Let 7 be a flat general TBox and T = {C C’Dy,...,Cp C?
Dy} be a flat unification problem. If Algorithm outputs a TBox S on
input I', then S is a hybrid-unifier of T w.r.t. T.

Proof. Since I'j, is contained in f, then the application of Lemma m
yields that C; C; D; has a proof tree w.r.t. (7,S8) for each subsumption
C;C’"D;inT.

We extend the TBox S in the following way: For each C; T’ D; in T' two
new concept definitions A; = C; and B; = D; are added into S. The new
TBox is denoted as Sr.

One can see, that C; Ty D; has a proof tree w.r.t. (7,S) iff A; Cyy1 B; has
a proof tree w.r.t. (7,S8r), for all £ > 0. In particular, there is proof tree
for each sequent of the form A; 54 B; w.r.t. (7,Sr).

Now, consider the sequence of relations Co, Cq,...,C;, g wort. (7,8p).
Based on Section the following two observations can be made:

L Co2E12 ... 26205 4;.

2. Those relations are defined over sub-descriptions of the concept de-
scriptions occurring in (7, Sr).
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Therefore, the number of elements in C is [Sub((T, Sr))|?. Moreover, it can
be seen that the selection of the value of [ guarantees that | C¢ | <[ and this
clearly implies that ;=C; 1 1=C49 ... w.r.t. (7,S8r). As a consequence we
obtain that C; C,, D; holds in (7, S) for all n > 0.

Thus, C; Co D; holds wrt. (7,S) for all C; T D; € T and, S is a
hybrid-unifier of I' w.r.t. 7. O

6.4 Completeness

Assume that I" is hybrid-unifiable w.r.t. 7 and let S be a hybrid-unifier of
I’ wrt. 7. Like in [I3], we can use this unifier to guide the application
of the nondeterministic rules such that Algorithm does not fail. More
precisley, we use a certain set of proof trees for the subsumptions in I' w.r.t.
(7,8) to guide a non-failing run of the algorithm.

To that purpose, we use the definitions and the properties shown in Section
4.4 Since S is a hybrid-unifier of I' w.r.t. 7 we know that C; T, D;
holds for each subsumption C; T’ D; € T'. Then, by Proposition m
we can assume without loss of generality that there is a set of proof trees
Q ={Q1,...,Qn} such that Q; is a proof tree for C; T; DZE| that satisfies
the Property Z.

One important issue that has to be guaranteed, while guiding a non-failing
run of the algorithm, is that whenever it is needed blocking will not fail. To
help us in that matter, we use the disambiguation criterion introduced in

Definition {.4.2

By Propositions [£.4.4] and [£.4.3] we can assume that there is an unambiguos
set of proof trees Qyp = {Q1,...,Qm} such that: Q; is a proof tree for
C; T; D;, for each subsumption Cj C’ D; € T, that satisfies Property Z.
Now, we are ready to show how to guide a non-failing run of Algorithm
0.2.4!

The following invariants for the current set of p-sequents I', and the current
assignment ¢ will be maintained:

(i) There is an unambiguos set of proof trees Q = {Q1,...,Qn} W.I.t.
(7,S) such that:

e cach @); € Q satisfies the Property Z.

o for each p-sequent (s, P) in I',, s occurs in some Q; from Q.

(ii) For all D € (x we have X Ty D w.r.t. (7,S).

2] is the value computed during the initialization of Algorithm
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(iii) for each p-sequent (s, P) in I'p, if E C,, F' € P then, s occurs in any
proof tree for ¥ C,, F' that is a sub-tree in O.

Since (x is initialized to () for all variables X € N,, Qg exists as described
above and I, is initialized to I',,, these invariants are satisfied after the
initialization of the algorithm.

We first show that after applying expansion to I',, the invariants are man-
tained.

Lemma 6.4.1. The invariants are mantained by the operation of expanding
r,.
Proof. First, since expansion does not change the current assignment (,
invariant (ii) is trivially maintained. In addition, since the new p-sequent
added to Ty is of the form (_,?) then, invariant (iii) is also mantained. We
show that invariant (i) is also satisfied.

Consider a p-sequent (s, ) where s is of the form C;M...MC,, T} X for
which a new p-sequent p’ = (C1M...MCy, E;_l D, ) is created with D € (x.
By the invariants, we have X Co D w.r.t. (7,S) and s occurs in some Q;
from a set Q of proof trees satisfying Z. Hence, C1M...MCp, Eoo X w.r.t.
(7,8) and transitivity of C., (see Section yields C1M...MCy, Coo D.

The application of Lemma yields that there exists a proof tree P for
CiM...MCyp T | D w.art. (7,8) that satisfies Property Z. Thus, appli-
cation of Proposition implies that invariant (i) is mantained. O

There are two eager rules that could produce failures, the following lemma
shows that this will never be the case.

Lemma 6.4.2. The application of an eager rule never fails and mantains
the invariants.

Proof. We do not need to consider applications of Fager Axiom Solving and
FEager Aziom, since they cannot fail nor do they add new p-sequents to I'.

Consider an application of Fager Ground Solving to an unsolved p-sequent
p = (s,_) with s ground. By invariant (i), s§ occurs on a proof tree @; that
satisfies the Property Z and thus, it is valid w.r.t. C,.. Applying Theorem
we obtain that s also holds w.r.t. Cg¢p 7us , and this implies that the
rule application does not fail. The invariants are mantained since neither
I') nor ¢ are modified.

Finally, consider the case that the Fager AndR rule is applied to an unsolved
p-sequent of the form (s = CyM...MC, T Dy M... 1 D,, P) with ¢ > 1.
By the invariants we have that s occurs in a proof tree @; € Q. In addition,
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we can assume that C1M...MCp, &, Dj occurs in Q; for all j,1 < j <gq.
Then, adding a p-sequent of the form (C1M...MC,, T, D;, PU{s}) for all
Jj to I'p, will maintain invariant (i).

Now let us see why blocking does not fail. Assume that some sequent s; =
Cin...NCy 5, D; € P. By invariant (iii), we have that there is a proof
tree Q; € Q such that s; occurs in @); and s occurs in the subtree rooted at
s;. In addition, s; occurs in the subtree rooted at s in @);. Since @; and @;
are mutually unambiguos then, the subtrees rooted at s in @; and Q; must
be identical. This implies that the subtree rooted at s; in @; contains an
additional occurrence of s; and this, obviously contradicts the assumption
that Q; is unambiguos. Thus, C; M ... M Cy,, &, D; cannot be in P and
blocking does not fail.

Finally, we have to show that invariant (iii) is maintained afterwards. Con-
sider the p-sequent (s;, P U {s}) for any j,1 < j < g. Since blocking does
not fail, two cases are possible:

e Rule B3 was applied while doing blocking. Then, (s;, PU{s}) is added
to I'y. Since (s, P) is in I, then, invariant (iii) implies that s occurs in
any proof tree for £ C,, F' € P that is a subtree in Q. Now, s; occurs
in the subtree rooted at s in ); and thus, the unambiguos condition
of Q yields that s; occurs in any proof tree for E C,, F' € PU {s}.

e Rule B2 was applied. Then, there is a p-sequent of the form (s;, P’) in
I',. From the previous case we know that s; occurs in any proof tree
for £ C, F € PU{s}. Therefore, updating P’ as P U P U {s} does
not violate invariant (iii). In addition, for each p-sequent (s”, P") in
I', such that s; € P” we have that s” occurs in any proof tree for s;.
Hence, updating P” as P U P U {s} maintains invariant (iii).

Thus, we conclude that the application of blocking maintains invariant (iii).
Since ¢ is not changed then, invariant (ii) is mantained and Fager AndR
can be sucessfully applied while satisfying the invariants. O

Now, we need to show that if no eager rule is applicable to p-sequents in I,
and there is still an unsolved p-sequent in I'), then, there is a nondeterministic
rule that can be applied while keeping the invariants.

Lemma 6.4.3. Let p = (s, P) be an unsolved p-sequent in I'y to which no
eager rule applies. Then, there is a nondeterministic rule that can be applied
to p while maintaining the invariants.

Proof. First, s must be of the form CyM...MCy, EZZ D where C4,...,Cy,
are flat atoms in At, D € At,, and n > 0. Note that, D must consist of a
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single top-level atom, otherwise the application of rule Eager AndR would
have either failed or succeed.

By invariant (i), there exists a set of unambiguos proof trees Q such that s
occurs in some Q; € Q and @); satisfies Property Z. Let P; be the subtree
rooted at s and let C; 11...MC; C,, D be the leaf of its maximal sub-proof
tree w.r.t. {AndL1, AndL2}. We distinguish between the possible rules
from HC that could have been used to obtain C;M...1C; &, D in Ps.

e One of the rules (Ax), (Top) or (Start) is used. In this case, either
Fager Aziom Solving or Fager Solving would have been used success-
fully.

e The rule (DefL) is used. Then, i = j and C; = X for some variable
X. Since Q; satisfies Property Z and X T, D occurs in @; then,
X Cw D holds w.rt. (7,S) and hence, adding D to (x does not
violate invariant (ii). Thus, we can apply the rule Extension while
maintaining the invariants.

e The rule (Ex) is used. Then, i = j, C; is of the form 3s.C" and D
is of the form Js.D’. The sequent C' C,, D’ occurs in @Q; and this
means that, if the p-sequent p = (C' C! D', P U {s}) is added to T,
the invariant (i) is maintained. Thus, the rule Decomposition can be
successfully applied provided that blocking does not fail for p.

e The rule (GCI) is used. Then, there exists a GCI E C F' € T such that
C;n...Nnc; &, Eand F' T, D are sequents occurring in ;. Similar as
above, the addition of the p-sequents py = (C;M...MC; C! E, PU{s})
and pg = (F C/, D, PU{s}) to T', will maintain invariant (i) and rule
Mutation can be successfully applied provided that blocking does not
fail for p; and po.

A similar reasoning as for the Eager AndR rule can be used to show that
blocking does not fail and invariant (iii) is maintained when (Ex) or (GCI)
are used. O

These lemmas imply that for any hybrid-unifiable input problem I' there is
a non-failing run of Algorithm during which invariants (i), (i) and (iii)
are satisfied. Assuming that any run of the algorithm terminates (see next
section), this shows completeness, i.e., whenever I" has a hybrid-unifier S
w.r.t. 7, the algorithm computes one.
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6.5 Termination and Complexity

Consider a run of Algorithm We will show that any p-sequent (C C,,
D, P) encountered during this run satisfies the following two conditions:

1. C and D are sub-descriptions of concept descriptions in I' U 7T

2. n < I, where [ is the value computed during the initialization of the
algorithm.

Lemma 6.5.1. If the p-sequents in I',, satisfy conditions 1 and 2, then these
conditions are satisfied after one rule application.

Proof. First, since I}, is initialized as I',o then, the conditions are obviously
satisfied after the initialization of the algorithm. Now, let us consider the
cases when a new p-sequent is added into I'.

e A p-sequent is created by expansion of I'y. This is of the form (C; M
...NCy T, D, D) for a p-sequent (C11...MCy, Cf) X, P) € T, with
D € At,,. Since n < [, condition 2 is satisfied. In addition, the set
Atp,, only contains non-variable atoms from I' U7, therefore condition
1 is satisfied as well.

o A p-sequent is created by a rule application. These are the rules Fager
AndR, Decomposition and Mutation. One can see that these rules are
applied to a p-sequent (C E;'; D, P) € ', by creating new p-sequents of
the form (C' C! D', P'"), where C’ and D’ are either sub-descriptions
of C and D or sub-descriptions of concept descriptions occurring in 7°
(see Mutation rule). Then, conditions are clearly satisfied after a rule
application.

All the other rules from Algorithm [6.2.4] maintain conditions 1 and 2 since
I, is not modified. O
Based on this lemma, we conclude with the following.

Lemma 6.5.2. Every run of the Algorithm[6.2.4) on input T' terminates in
time polynomial in the size of T U T .

Proof. There are only polynomially many p-sequents satisfying conditions 1
and 2. Let us see why:

e for each p-sequent (C T} D, P), condition 1 is satisfied and Sub(I'UT)
is of size polynomial on the size of I' U 7. Hence, there are at most
polynomially many pairs (C, D).
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e for each p-sequent (C T} D, P), condition 2 is satisfied. Since, n <1
and the value of [ is polynomial on the size of I' U7, then there are
polynomially many sequents of the form C C,, D.

e By the application of blocking, it can be seen that there are no two
p-sequents in T, of the form (C C! D, P;) and (C C! D, P) with
P # Ps.

Every rule application solves one p-sequent, then by Lemma the algo-
rithm can apply at most polynomially many rules. In addition, verifying
whether a rule is applicable is done polynomially often and executing some
of the following operations:

e Checking a subsumption between ground sub-descriptions of I' U 7.

e Checking whether s in (s, P) is of a specific form, e.g., ground, the
right-hand side of s does not consist of a single top-level atom or s is
the consequence of an axiom rule from HC.

e Guessing a GCI from 7.

e Execute rule B1 from blocking on candidates p-sequents to be added
into I',.

The last operation has to check whether a sequent C' C,, D is contained in
the set P. Since P contains only sequents s such that (s,_) € I', and the
size of I', is polynomial on the size of I' U7, then rule B1 executes in time
polynomial in the size of ' U 7.

If a rule is applicable, its application can execute the following polynomial
operations:

e Guessing polynomially many atoms from the left-hand side of s for a
p-sequent (s, P) € T'p.

e Adding polynomially many p-sequents to I',,.

e Adding polynomially many atoms to the current assignment.

e Execute one of the rules B2 or B3 from blocking.
Again, we clarify the case concerning the application of rules from blocking.
The case for B3 is clear since its application only adds one p-sequent to I'.
The application of rule B2 searches for each (s, P) € I'), the elements in P.

As explained before, I'), and P are of size polynomial on the size of I' U T
which implies that B2 can be applied in time polynomial. O
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This lemma within the soundness and completeness shown before (6.3.3]
[6.4.1} 16.4.2] and [6.4.3), yield the main result of this chapter.

Theorem 6.5.3. The Algorithm[6.2.]]is an NP-decision procedure for hybrid-
unifiability in EL.
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Chapter 7

Conclusions

In this thesis, we have considered the hybrid unification problem in the
Description Logic ££. The main objective was to investigate whether it is
possible to extend the unification problem in £L by allowing (cyclic) TBoxes
as candidate solutions, while the problem remains in NP.

To that purpose, first, we studied the available results for the £ L-unification
problem [T, 13]. Second, the notion of hybrid TBoxes [0] was selected as
a formalism to represent the combination of a general TBox and a (cyclic)
TBox. Hybrid TBoxes are interpreted under the hybrid-semantics and, in
particular we used a Gentzen-style calculus proposed in [7] as a characteri-
zation of the subsumption problem in ££ w.r.t. hybrid TBoxes.

We proved that the hybrid unification problem in ££ is NP-Complete. On
the one hand, to show that the problem is in NP, we have used a similar
notion of locality as in [I3], but without restricting the occurrence of cyclic
definitions. Based on this we proposed a pure brute-force NP-procedure
that guesses a local TBox and verifies whether it is a hybrid-unifier of a
given unification problem. On the other hand, we have shown that hybrid
unification in EL is NP-hard by reducing the £L£-matching problem modulo
equivalence to hybrid unification in EL.

The initial brute force NP-procedure is not practical since it blindly guesses
a local assignment and only afterwards checks whether the induced TBox
is a hybrid-unifier. To improve this algorithm, we have proposed a more
goal-oriented unification algorithm in Chapter [6| The Algorithm is
designed following the ideas of the goal-oriented algorithm for unification
with a cycle-restricted TBox proposed in [13], but using the proof calculus
HC proposed in [7] as a characterization of subsumption w.r.t. hybrid
TBoxes. In addition, we have shown that our algorithm is a correct NP-
decision procedure for the hybrid unification problem.

As future work, a practical implementation of the goal-oriented algorithm
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should be considered. Such implementation would require several optimiza-
tions, specially w.r.t. the blocking procedure. An interesting question is to
see if the algorithm really needs to keep track of two p-sequents of the form
(CC; D,.)and (C C; D,_) with ¢ # j. If that were not the case, it may
represent a significant improvement, though probably the blocking proce-
dure has to be modified in a suitable way. If on the other hand, this was
not the case, then it would be interesting to see an example which proves
that the conjecture is false.

Furthermore, the NP-complete result shown for hybrid unification can be
seen as a motivation to find a polytime reduction of the hybrid unification
problem to a propositional satisfiability problem (SAT). Finding such a re-
duction could represent a direction for future work that will allow the use
of the strength of the modern SAT solvers.

Finally we hope that the algorithm will find practical applications e.g. in
analyzing big knowledge databases and in dealing with redundancies in the
biomedical ontologies.
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