
Fakultät für Informatik
Institut für Theoretische Informatik

Lehrstuhl für Automatentheorie

A Framework for Semantic Invariant
Similarity Measures for ELH

Concept Descriptions

Diplomarbeit
zur Erlangung des akademischen Grades

Diplom-Informatiker

eingereicht von: Karsten Lehmann

eingereicht am: 07.02.2012

Betreuerin: Dr.-Ing. Anni-Yasmin Turhan

2

Contents

1 Introduction 5

2 Preliminaries 7
2.1 Syntax and Semantics of Description Logics 7

2.1.1 Concept Descriptions . 7
2.1.2 TBox and RBox . 9
2.1.3 ABox . 12
2.1.4 A Normal Form for ELH Concept Descriptions 13

2.2 Triangular Norms and Conorms . 14

3 Similarity-Measure Properties 16
3.1 Triangle Inequality . 18
3.2 Equivalence Closed and Equivalence Invariant 20
3.3 Subsumption Preserving and Reverse Subsumption Preserving 20
3.4 Bounded and Dissimilar Closed . 21
3.5 Structural Dependent . 21
3.6 Towards Monotonicity . 23

4 Known Similarity Measures and their Properties 24
4.1 A Normal Form for ALCN Concept Descriptions 25
4.2 Structural Measure . 26

4.2.1 The Jaccard Index . 26
4.2.2 Dice’s Coefficient . 28
4.2.3 Computing Semantic Similarity Among Geographic Feature Types

Represented in Expressive Description Logics [Jan08] 30
4.2.4 SIM−DLA: A Novel Semantic Similarity Measure for Description

Logics Reducing Inter-Concept to Inter-Instance Similarity [JW09] 34
4.2.5 A Dissimilarity Measure for ALC Concept Descriptions [dFE06] . 36
4.2.6 A Similarity Measure for the ALN Description Logic [FD06] . . . 40

4.3 Interpretation Based Measure . 46
4.3.1 A Semantic Similarity Measure for expressive Description Logics

[dFE05] . 46
4.3.2 On the influence of description logics ontologies on conceptual sim-

ilarity [dSF08] . 49
4.4 Tabular Overview . 51

3

5 The Similarity Measure Simi 53
5.1 The Function simid . 54

5.1.1 Weighting Atoms . 59
5.1.2 Using more Knowledge . 61
5.1.3 Definition of simid . 62

5.2 The Fuzzy Connector . 63
5.3 Definition of Simi . 67
5.4 Properties . 67

5.4.1 Towards Triangle Inequality and Reverse Subsumption Preserving 74
5.4.2 Simi Generalizes the Jaccard Index 77

6 Conclusion 79
6.1 Open Problems . 79

List of Tables 81

Index 82

Bibliography 83

4

1 Introduction

The increasing usage of modern technology provides an increasing amount of data.
Therefore, knowledge representation and reasoning are gaining increasing attention.
Areas like the Semantic Web and scientific research are interested in possibilities for
high-level descriptions and the ability to find implicit knowledge and consequences out
of their data. With the number of information resources increasing, it becomes necessary
to develop tools which support the automated connection and/or the interaction with
this resources. In order to do that, similarities between the resources need to be identi-
fied. This creates the need for similarity measures. In this work we focus on similarity
for description logics, a family of knowledge representation languages.

Basically, a similarity measure is a function mapping two objects to a value between
0 and 1. The higher the value the higher the similarity. Zero is interpreted as ‘totally
dissimilar‘ and one as ‘totally similar‘. However, simply mapping pairs of concepts
to a value between 0 and 1 is not enough to ensure that the measure is useful. For
example the function mapping everything to zero would have no application. The overall
goal for similarity measures is to reproduce the intuition of a human expert. Hence
the standard approach to find and evaluate a measure is to have a small set of test
data and develop a measure where the results are matching the results of an (several)
human expert(s). The disadvantage of this approach is that the overall behaviour of
the measures is unknown. To deal with this problem, formal and measure-independent
statements, called properties, are used. The independence ensures that the statement
says something about the general behaviour, whereas the formal description allows to
prove it. One source of properties for similarity measures are metric spaces. In this
thesis, we also present several new properties which express our expectation of how a
similarity measure should behave in general.

In relevant literature, one can find two authors who introduce similarity measure for
description logics. D’Amato et.al presented four [dFE06, dFE05, FD06, dSF08] and
Janowicz et.al presented two measures [JW09, Jan06]. For both authors, it is important
that a measure does not depend solely on the syntax of the concepts. Only the semantics
should be of importance. This is called semantic and/or equivalence invariance. For
d’Amato it is also of importance that two concepts are totally similar if and only if they
are equivalent. We call this property equivalence closed. We found out that Janowicz’s
two measures are not equivalence invariant, but he claims they are. Additionally, we
detected that one measure from d’Amato [dFE06] is not equivalence invariant either,
but is claimed to be and all four measures are not equivalence closed, despite claim. We
also investigated if the measures fulfil the other properties. In some cases we are able
to point out general unintuitive behaviour of a measure using the counterexample we
found to disprove a property.

5

The similarity measure simi, presented in this thesis, is a measure which is equivalence
invariant, equivalence closed and it also fulfils other properties we defined. Some parts
of simi are flexible and introduced as parameter to allow simi to be “tuned“. Hence we
call simi a framework. The parameters are designed such that the specific choice of a
parameter does not influence the properties of simi.

This work is structured as follows. Chapter 2 presents the basic notations and defi-
nitions of description logics and triangular norms. In Chapter 3 we introduce a formal
definition of similarity measures and we present and motivate all properties relevant in
this thesis. Chapter 4 contains the analysis of the properties and behaviour of eight
description-logic-similarity measures. In Chapter 5 we present our measure simi and
Chapter 6 contains the conclusion and a sketch of open problems.

6

2 Preliminaries

This chapter introduces Description Logics and triangular norms and conorms which are
used by simi.

2.1 Syntax and Semantics of Description Logics

Here we present several description logics. Also, our measure simi (Chapter 5) is de-
fined for the description logic ELH, in Chapter 4 we present other similarity measures.
Therefore, we introduce more constructors than simi can handle.

Description logics represent knowledge through the knowledge base which consists of
the TBox, the RBox and the ABox. The TBox presents the conceptual knowledge
through concept axioms. Concept axioms are describing relationships between concept
descriptions which are built from constructors, concept names, role names and constants.
The RBox describes the relationships between role names and the ABox contains the
assertional knowledge. The underlying description logic determines the available con-
structors and in case of roles the allowed role relationships. In the following section, we
first introduce concept descriptions, then the TBox, the RBox and the ABox. Finally,
we present a normal form for the description logic ELH which is used by our measure
simi.

2.1.1 Concept Descriptions

The main way to express knowledge in a description logic are concept descriptions.
Concept descriptions consist of constructors related to logic, concept names, role names
and constants. Concept names and role names are finite sets which are denoted as NC

and Nr. In the remainder of this work, we typically use capital letters A and B to refer
to concept names, C and D to refer to concept descriptions and r and s to refer to role
names. Table 2.1 presents a selection of constructors and the two constants > and ⊥,
where A is a concept name, r is a role name and C, D are concept descriptions.

7

Name Syntax Semantics

Top > ∆I

Bottom ⊥ ∅
Negation ¬C ∆I \ CI
Atomic negation ¬A ∆I \ AI
Disjunction C tD CI ∪DI
Conjunction C uD CI ∩DI
Existential quantification ∃r.C {x ∈ ∆I | ∃y ∈ CI : (x, y) ∈ rI}
Value restriction ∀r.C {x ∈ ∆I | ∀y ∈ ∆I : (x, y) ∈ rI ⇒ y ∈ CI}
At-least restriction (≥ n.r) {x ∈ ∆I | |{y ∈ ∆I | (x, y) ∈ rI}| ≥ n}
At-most restriction (≤ n.r) {x ∈ ∆I | |{y ∈ ∆I | (x, y) ∈ rI}| ≤ n}
Qualified at-least restriction (≥ n r.C) {x ∈ ∆I | |{y ∈ CI | (x, y) ∈ rI}| ≥ n}
Qualified at-most restriction (≤ n r.C) {x ∈ ∆I | |{y ∈ CI | (x, y) ∈ rI}| ≤ n}

Table 2.1: Concept descriptions constructors

Table 2.2 presents the description logics relevant for this thesis. The set of concept
descriptions for a specific description logicDL (for example the set of EL concept descrip-
tions) is defined as the smallest set such that all concept names are concept descriptions
and all the constructors are satisfied. We denote this set with C(DL). For example,
C(EL) is the set of all EL concept descriptions.
Our measure simi also allows role inclusion axioms which are defined in Section 2.1.2.
To denote this extension, the letter H is added to the description logic. For example,
the description logic for simi is denoted as ELH.

Constructors and Constants L0 EL ALN ALE ALC ALCNQ
Top x x x x x x
Bottom x x x x
Negation x x
Atomic negation x x x x
Disjunction x x
Conjunction x x x x x x
Existential quantification x x x x
Value restriction x x x x
At-least restriction x x
At-most restriction x x
Qualified at-least restriction x
Qualified at-most restriction x

Table 2.2: Description Logics

The semantics of a description logic is given through interpretations.

Definition 1 (interpretation). An interpretation is a pair I = (∆I , (·)I) where the

8

domain ∆I is a non-empty set and (·)I is a mapping, assigning every concept name
A ∈ NC a set AI ⊆ ∆I and every role name r ∈ Nr a set rI ⊆ ∆I ×∆I. This mapping
is extended to concept descriptions in the way described in Table 2.1.

Two predicates for concept descriptions depending on interpretations are subsumption
and equivalence.

Definition 2 (subsumed, equivalent). Let C, D be two concept descriptions. C is
subsumed by D, denoted as C v D iff for all interpretations I, CI ⊆ DI. C and D are
called equivalent, denoted as C ≡ D iff C v D and D v C.

We introduce a notation where we regard ELH concept descriptions as sets of atoms,
where atoms are either concept names or concept descriptions of the form ∃r.C ′. To
distinguish between a concept description an its set representation we use the operator
(̂·).

Definition 3 (atom). The set of existential restrictions of ELH, denoted as Nq is
defined as Nq := {∃r.C ′ | r ∈ Nr, C

′ ∈ C(ELH)}. The set of atoms of ELH is NA :=
NC ∪ {>} ∪ Nq. The operator (̂·) is a function mapping a concept description to a set
of atoms, so (̂·) : C(ELH) −→ P(NA). Let n ∈ N>0 and C ∈ C(ELH) with C =

d
i≤nCi

where ∀i ≤ n : Ci ∈ NA, then Ĉ := {C1, C2, . . . , Cn}.

As an example, let

C := A uB u A u ∃r.(A uB) u ∃r.A u >

then
Ĉ = {A,B,∃r.(A uB),∃r.A,>}.

To formulate some properties of similarity measures we use the least common sub-
sumer.

Definition 4 (least common subsumer). Let C1, . . . , Cn ∈ NC. The least common
subsumer, denoted as lcs(C1, . . . , Cn) is the concept description C such that

• ∀i ≤ n : Ci v C and

• ∀D ∈ C(ELH) : [∀i ≤ n : Ci v D] =⇒ C v D.

2.1.2 TBox and RBox

So far, we described how to build complex concepts (concept descriptions) out of concept
names, role names and constants. In this section we introduce concept axioms which
are used in description logics to describe the relationships between concept descriptions.
Additionally, we introduce role inclusion axioms which describe relationships between
roles.

9

Definition 5 (axiom). Let C,D be concept descriptions, A ∈ NC and r, s ∈ Nr. A
concept axiom is either a concept equivalence axiom, C ≡ D or a concept inclusion
axiom, C v D. A concept equivalence axiom of the form A ≡ D is called a concept
definition defining A and a concept inclusion axiom of the form A v D is called a
primitive concept definition.
A role inclusion axiom is of the form r v s.
An interpretation I satisfies a concept axiom α, denoted as I |= α if the corresponding
semantic condition in Table 2.3 holds.

Name Syntax Semantics

concept equivalence axiom C ≡ D CI = DI

concept definition A ≡ D AI = DI

concept inclusion axiom C v D CI ⊆ DI

primitive concept definition A v D AI ⊆ DI

role inclusion axiom r v s rI ⊆ sI

Table 2.3: Concept axioms and role inclusion axiom

It is obvious that a concept equivalence axiom C ≡ D is equivalent to the two concept
inclusion axioms C v D and D v C.
Axioms are grouped together in the TBox and the RBox.

Definition 6 (TBox). A finite set of concept axioms is called a TBox T . An interpre-
tation I is called a model of T , denoted as I |= T iff I is a model of each element of
T . Two TBoxes are called equivalent iff they have the same models.
Let A,B ∈ NC. We say that A directly uses with B with respect to T , iff B appears
on the right-hand side of a concept axiom of T defining A. We call uses the transitive
closure of the relation directly uses. T is called cyclic iff there exists a concept name in
T that uses itself. Otherwise, T is called acyclic.

Definition 7 (RBox). A finite set of role inclusion axioms is called an RBox R.
An interpretation I is called a model of R, denoted as I |= R, iff I is a model for each
element of R.
A role inclusion axiom r v s follows from an RBox R, denoted as r vR s, iff for all
interpretations I we have I |= R =⇒ I |= r v s.
We say that two roles r and s are equivalent with respect to an RBox R, denoted as
r ≡R s iff r vR s and s vR r.

Note that for all RBoxes R and all r ∈ Nr we have r vR r.

Definition 8 (primitive name). Let T be a TBox. A concept name A is called a prim-
itive name of T , iff it does not occur on the left-hand side of any concept axiom in T .
The set of all primitive names is denoted as NB.

In this thesis, we focus on the usage of a special kind of TBoxes called unfoldable
TBoxes. The reason is that unfoldable TBoxes allow us to expand the concept descrip-
tions to measure in a way that the knowledge represented by the TBox is not necessary

10

any more in order to measure similarity. The procedure of expansion is described in the
end of this section.

Definition 9 (unfoldable TBox). A TBox T is called a unfoldable TBox iff it is acyclic,
consists of concept definitions and primitive concept definitions only and every concept
name occurs at most once on a left-hand side of a concept axiom.

We show how a concept description can be transformed into an equivalent one, such
that the knowledge of the concept axioms of the TBox is not necessary any more. Let
T be an arbitrary unfoldable TBox and C be a concept description. We start by trans-
forming the TBox. First, we transform all primitive concept definitions A v D into
concept definitions by introducing a new concept name A′ and using the rule

A v D −→ A ≡ A′ uD.

The resulting TBox is called the normalization of T . The following corollary from
[BCM+03] show that the normalization does not change the semantics on the old concept
names.

Corollary 1 ([BCM+03] Proposition 2.10). Let T be a unfoldable TBox and T its
normalization. Then

• every model of T is a model of T and

• every model I of T can be extended to a model of T such that both interpretations
have the same domain.

Every acyclic TBox T can be transformed into a TBox T ∗ such that on the right-
hand side of each concept axiom, only primitive names occur. This can be achieved
by replacing each occurrence of a defined name on the right-hand side by its definition.
Since there are no cycles, this process terminates and we obtain the TBox T ∗ called
expansion.

Corollary 2 ([BCM+03], Proposition 2.1). Let T be an acyclic TBox and T ∗ its expan-
sion. Then T and T ∗ are equivalent.

When we are measuring two concept descriptions C and D with respect to an unfold-
able TBox T , we first normalize and expand T and then replace every occurrence of a
non primitive name in C and D with its definition.
For example, let NC := {A,B,E, F,G}, Nr := {r, s}. The TBox is

T := {E v A u ∃rF, F v B uG},

C = E uB u ∃r.(F uB) and D = F u ∃s.(A u E).
The normalization of T is

T ′ = {E ≡ E ′ u A u ∃r.F, F ≡ F ′ uB uG}

11

and the expansion of T ’ is

T ∗ = {E ≡ E ′ u A u ∃r.(F ′ uB uG), F ≡ F ′ uB uG}.

Finally, C and D are expanded to

C ′ = E ′ u A u ∃r.(F ′ uB uG) uB u ∃r.(F ′ uB uG uB)

and
D′ = F ′ uB uG u ∃s.(A u E ′ u A u ∃r.(F ′ uB uG)).

Note that normalization is polynomial whereas the expansion is in general exponential
in the number of concept axioms of T [Neb90].

Finally, we present a characterisation of subsumption in ELH with respect to an
empty TBox and an RBox.

Lemma 1. Let C,D ∈ C(ELH) and R be an RBox. Then C v D with respect to R iff

• Ĉ ∩NC ⊆ D̂ ∩NC and

• for all existential restrictions ∃r.D′ ∈ D̂ there exist an existential restriction
∃s.C ′ ∈ Ĉ such that s vR r and C ′ v D′.

2.1.3 ABox

An ABox allows to express knowledge about individuals through assertions. There
are two kinds of assertions. One to express that an individual belongs to a concept
description and the other to express that two individuals are related in the context of a
role.

Definition 10 (ABox). Let NI be a finite set which we call the set of individuals,
x, y ∈ NI , C be a concept description and r ∈ Nr. We call C(x) a concept assertion
and r(x, y) a role assertion. An ABox, denoted with A, is a finite set containing concept
and role assertions.

To describe the semantics of ABoxes, the definition of interpretations is extended to
individuals. An interpretation I has to map every individual x to an element of the
domain ∆I . This is denoted as xI ∈ ∆I .

Definition 11. We say the interpretation I satisfies the concept assertion C(x) iff
xI ∈ CI and it satisfies the role assertion r(x, y) iff (x, y) ∈ rI. The interpretation I
satisfies A iff it satisfies all assertions of A.

An ABox A has a special interpretation called canonical interpretation.

Definition 12 (canonical interpretation). Let A be an ABox and NI its set of individ-
uals. The interpretation IA with

12

• ∆IA = NI ,

• ∀x ∈ NI : xIA = x,

• C(x) ∈ A ⇐⇒ x ∈ CIA and

• r(x, y) ∈ A ⇐⇒ (x, y) ∈ rIA

is called the canonical interpretation.

2.1.4 A Normal Form for ELH Concept Descriptions

To ensure that our measure simi is equivalence invariant, we use the unique normal form
(with respect to associativity and commutativity) for EL concept descriptions introduced
in [Kü00]. According to [Kü00] (Proposition 6.3.1), this normal form can be obtained
by recursively applying the following rules

1. A u > −→ A,

2. A u A −→ A,

3. ∃r.C ′ u ∃r.D′ −→ ∃r.C ′ if C ′ v D′

to the concept description until no further rule can be applied.
The normal form is built without using the knowledge of a TBox. Our later defined
measure simi does not use a TBox either. But it uses the knowledge of an RBox R. To
incorporate R and still obtain a unique normal form, we have to make two adjustments
to the normal form. First, we build role equivalence classes. For r ∈ Nr we define

[r] := {s ∈ Nr | r ≡R s}

and
A(Nr) := {[r] | r ∈ Nr}.

Then we randomly pick one role from every equivalence class and replace every occur-
rence of roles in the same class with this one. More formally, this means we build a
function

f : A(Nr) −→ Nr

with f([r]) ∈ [r] and then recursively apply the rule

∃r.C ′ −→ ∃f([r]).C ′.

The second adjustment is that we have to change the third rule from [Kü00] to

∃r.C ′ u ∃s.D′ −→ ∃r.C ′ if r vR s and C ′ v D′.

For example, let

C := A uB u A u ∃r.(A uB) u ∃s2.A u ∃t.A u >

and R := {r v s1, s1 v s2} then the normal form of C is C ′ = AuBu∃r.(AuB)u∃t.A.

13

2.2 Triangular Norms and Conorms

Triangular norms and conorms are a way to generalise the 2-valued propositional logic.
They are operators accepting all values between 0 and 1. Our measure simi depends on a
triangular norm and on a triangular conorm. Therefore, we present a short introduction.
A triangular norm is the generalization of the and (∧) operator from propositional logic.

Definition 13 (t-norm). A function ⊗ : [0, 1]2 −→ [0, 1] is called a triangular norm
(t-norm) iff it fulfills the following properties for all x, y, z, w ∈ [0, 1]:

• commutativity: x⊗ y = y ⊗ x,

• monotonicity: x ≤ z and y ≤ w =⇒ x⊗ y ≤ z ⊗ w,

• associativity: (x⊗ y)⊗ z = x⊗ (y ⊗ z) and

• identity: x⊗ 1 = x.

A t-norm is called bounded iff x⊗ y = 0 =⇒ x = 0 or y = 0.

Triangular conorms are the generalization of the logical or (∨) operator.

Definition 14 (t-conorm). A function ⊕ : [0, 1]2 −→ [0, 1] is called a triangular conorm
(t-conorm) iff it fulfills the following properties for all x, y, z, w ∈ [0, 1]:

• commutativity: x⊕ y = y ⊕ x,

• monotonicity: x ≤ z and y ≤ w =⇒ x⊕ y ≤ z ⊕ w,

• associativity: (x⊕ y)⊕ z = x⊗ (y ⊕ z) and

• identity: x⊕ 0 = x.

A t-conorm is called bounded iff x⊕ y = 1 =⇒ x = 1 or y = 1.

It is easy to prove that, for any t-norm ⊗, the operator ⊕′ defined through

x⊕′ y := 1− [(1− x)⊗ (1− y)]

is a t-conorm and in duality using a t-conorm ⊕, one can construct a t-norm ⊗′ by

x⊗′ y := 1− [(1− x)⊕ (1− y)].

Here, 1 − x acts as a generalisation of the negation operator. The way of obtaining a
t-conorm from a t-norm is similar to how the or operator in propositional logic can be
defined through negation and the and operator.
Examples of t-norms and their corresponding t-conorm are presented in Tables 2.4 and
2.5.

14

Name Symbol x⊗ y = bounded?

Minimum t-norm ⊗min min{x, y} yes
Product t-norm ⊗prod xy yes

Lukasiewicz t-norm ⊗luk max{0, x+ y − 1} no
Drastic t-norm ⊗dr b if a = 1, a if b = 1, 0 othwerwise no

Hamacher product ⊗H0 0 if x = y = 0, xy
x+y−xy otherwise yes

Table 2.4: Examples of t-norms

Name Symbol x⊕ y = bounded?

Maximum t-conorm ⊕max max{x, y} yes
Probabilistic sum ⊕sum x+ y − xy yes

Bounded sum ⊕luk min{x+ y, 1} no
Drastic t-conorm ⊕dr b if a = 0, a if b = 0, 1 othwerwise no

Einstein sum ⊕H2
x+y
1+xy

yes

Table 2.5: Examples of t-conorms

Finally, we present basic properties of t-norms and t-conorms.

Lemma 2. Let ⊗ be a t-norm, ⊕ be a t-conorm and x, y ∈ [0, 1]. Then

1. 0⊗ x = 0 and

2. 1⊕ x = 1.

Proof.

1. Monotonicity implies 0⊗ x ≤ 0⊗ 1 and identity implies that 0⊗ 1 = 0. Therefore
0⊗ x = 0.

2. Monotonicity implies 1⊕ x ≥ 1⊕ 0 and identity implies that 1⊕ 0 = 1. Therefore
1⊕ x = 1.

Note that, because t-norms and t-conorms are associative and commutative, the no-
tions

⊗
i≤n xn and

⊕
i≤n xn for some x0, . . . , xn ∈ [0, 1] are well defined.

15

3 Similarity-Measure Properties

In this chapter we present several properties of similarity measures. None of them
depends on the knowledge of a TBox. The reason is that all measures are defined for
unfoldable TBoxes and therefore we assume that the concept descriptions are expanded
(see Section 2.1.2).

As starting point to identify description-logic-similarity-measure properties, d’Amato
et.al. suggested to look at metric spaces [dSF08]. Metrics and their properties are of in-
terest in similarity research of several areas like information theory [LCL+03], chemistry
[NJ03], music similarity [LS04] and psychology [Tve77, BG97, GS04].

Definition 15 (metric space). A metric space (D, d) consists of a set D and a function
d : D ×D −→ R≥0 called metric such that for all a, b, c ∈ D

1. d(a, b) = 0 ⇐⇒ a = b (identity of indiscernible)

2. d(a, b) = d(b, a) (symmetry)

3. d(a, b) ≤ d(a, c) + d(c, b) (triangle inequality).

For a, b ∈ D the value d(a, b) represents the distance of a and b. A metric can be
interpreted as a dissimilarity measure. The distance represents the dissimilarity between
a and b. The lower the distance, the higher the similarity. To obtain a similarity measure
from a metric we have to normalize it. With normalizing we mean that we bound the
maximal distance with 1, so that the metric is a function producing distances between
0 and 1.

Definition 16 (normalized metric space). A metric space (D, d) is called normalized
iff for all a, b ∈ D : d(a, b) ≤ 1.

From a normalized metric space (D, d), we can define a similarity function s : D ×
D −→ [0, 1] through for all a, b ∈ D

s(a, b) := 1− d(a, b).

If we translate the properties of a metric we obtain similar properties for similarity
functions.

Definition 17 (similarity function). Let D be a set. A function s : D ×D −→ [0, 1] is
called a similarity function for D iff for all a, b, c ∈ D

1. s(a, b) = 1 ⇐⇒ a = b, (identity of indiscernible)

16

2. s(a, b) = s(b, a), (symmetry)

3. 1 + s(a, b) ≥ s(a, c) + s(c, b) (triangle inequality).

The derivation for the triangle inequality from the triangle inequality of a metric d is
as follows

d(C,D) ≤ d(C,E) + d(E,D) ⇐⇒
1− d(C,D) ≥ 1− d(C,E)− d(E,D) ⇐⇒
s(C,D) ≥ s(C,E)− d(E,D) ⇐⇒
s(C,D) ≥ s(C,E)− 1 + 1− d(E,D) ⇐⇒
1 + s(C,D) ≥ s(C,E) + s(E,D).

The property symmetry is rather easy to achieve and to prove, whereas triangle in-
equality and identity of indiscernible are more difficult. Therefore, we include symmetry
in our definition of similarity measures and present the others as additional properties.
Symmetry is also a very controversial property. While some consider it to be essen-
tial [Lin98], cognitive sciences favours asymmetric similarity measures because of their
founding that human intuition behaves asymmetric [Tve77, BG97]. As for measures
for description logics Janowicz et.al [JW09, Jan06] prefers asymmetry (but presented
symmetric versions of his measures) where d’Amato et.al [dFE06, dFE05, FD06, dSF08]
consider it to be a fundamental property. We believe that the reason why human intu-
ition may not be symmetric is that the knowledge base of a human is not constant. If
he reads the first word, it already influences his thoughts and therefore his “TBox“. In
contrast to the human brain, in computer science and applications of description logics
the knowledge base is always constant. For a computer program, reading a concept de-
scription to measure does not change the TBox. Therefore, we assume that the research
of Tversky et.al cannot be applied and we vote in favour of symmetry.

Definition 18 (similarity measure). A similarity measure sim is a function

sim : C(ELH)× C(ELH) −→ [0, 1]

such that for all C,D ∈ C(ELH) sim(C,D) = sim(D,C) (symmetry).

In the following sections we present the definition of other properties and the underly-
ing expectation this properties represent. The properties triangle inequality, equivalence
invariant and equivalence closed are derived from relevant literature whereas the proper-
ties subsumption preserving, reverse subsumption preserving, dissimilar closed, bounded
and structural dependent are new. To find a new property we used the perspective that a
property is a formalism of expected behaviour. By implication, this also means that if a
property does not hold, then the corresponding counterexample represents a case of un-
intuitive behaviour. Therefore, properties can be found by generating an example with
unintuitive behaviour and then formulating a property such that this behaviour is not

17

possible any more. Then one should try to contradict the new property by identifying
an example that contains unintuitive behaviour, yet is consistent with the underlying
idea of the property itself.

In the last section, we present the property monotonicity which is defined in [dSF08]
and we explain why we do not use it.

3.1 Triangle Inequality

Adopting the definition of the similarity-function triangle inequality for description logics
leads to the following definition.

Definition 19 (triangle inequality). A similarity measure sim has the triangle inequal-
ity property iff for all C,D,E ∈ C(ELH)

1 + sim(D,E) ≥ sim(D,C) + sim(C,E).

The following lemma presents a different formulation of the triangle inequality. The
version of the definition is easier to prove, where the other version is easier to interpret.

Lemma 3. Let sim be a similarity measure then the following two statements are equiv-
alent.

1. ∀C,D,E ∈ C(ELH) : 1 + sim(D,E) ≥ sim(D,C) + sim(C,E)

2. ∀C,D,E ∈ C(ELH) : 1− sim(C,D) ≥ |sim(C,E)− sim(E,D)|.

Proof. Let C, D and E be arbitrary concept descriptions. We distinguish two cases.
First, if sim(C,E) ≥ sim(E,D) then |sim(C,E)−sim(E,D)| = sim(C,E)−sim(E,D)
and we have

1 + sim(D,E) ≥ sim(D,C) + sim(C,E) ⇐⇒

1 ≥ sim(D,C) + sim(C,E)− sim(D,E) ⇐⇒

1− sim(C,D) ≥ sim(C,E)− sim(E,D) ⇐⇒

1− sim(C,D) ≥ |sim(C,E)− sim(E,D)|.

Second, if sim(C,E) < sim(E,D) then

1 + sim(D,E) > 1 + sim(C,E) ≥ sim(D,C) + sim(C,E).

To show 1− sim(C,D) ≥ |sim(C,E)− sim(E,D)| we use the fact that

|sim(C,E)− sim(E,D)| = sim(E,D)− sim(C,E).

Since we can assume that statement 1. is true for all C, D and E, we know that 1 +
sim(C,E) ≥ sim(D,C) + sim(D,E) is true. Therefore we derive

1 + sim(C,E) ≥ sim(D,C) + sim(D,E) ⇐⇒

18

1 ≥ sim(D,C) + sim(D,E)− sim(C,E) ⇐⇒

1− sim(C,D) ≥ sim(D,E)− sim(C,E) ⇐⇒

1− sim(C,D) ≥ |sim(C,E)− sim(E,D)|.

We present a short example. Let sim(C,D) = 0.9 and sim(C,E) = 0.5. Looking at
the second version, the triangle inequality implies that sim(E,D) ∈ [0.4, 0.6]. It can
only variate ±0.1 from sim(C,E) because sim(C,D) is only 0.1 less than 1.
In [Tve77], Tversky argued that human similarity reasoning does not fulfill triangle
inequality. His argument is based on the following example (note that the paper is from
1977). “Jamaica is similar to Cuba (because of geographical proximity), Cuba is similar
to Russia (because of their political affinity), but Jamaica and Russia are not similar
at all.“ We found that this argument is not applicable to description logic similarity. A
human who has to measure Jamaica and Cuba tends to give a high value because of the
geographical proximity. When measuring Cuba and Russia on the other hand, the focus
resides on the political affinity. As for the geographical proximity, it is either weighted
down in its influence on the measure or it is not part of the description any more.
Therefore, either the weights of the features (political system, geographical proximity)
or the concept descriptions are depending on the actual objects to measure. This is
never the case in description logics. Both the concept descriptions and the weighting are
constant. If we represent the example with description logics and include all features
then we have

Cuba ≡ Communism uMiddleAmerica,

Jamaica ≡ Democracy uMiddleAmerica,

Russian ≡ Communism u Asia.

Now, reasonable similarities could be

sim(Cuba, Jamaica) =
1

2
,

sim(Cuba,Russia) =
1

2
,

sim(Russia, Jamaica) = 0

which is consistent with the triangle inequality.
Neither any of the measures for description logics we found ([JW09, Jan06, dFE06,

dFE05, FD06, dSF08]), nor our own measure simi fulfills triangle inequality. Two
papers mentioned triangle inequality. [dSF08], where triangle inequality is described
as a desirable property and [Jan06] where it is argued against the pursue of triangle
inequality because of Tverskys [Tve77] work.

19

3.2 Equivalence Closed and Equivalence Invariant

Description logics make it possible to describe the same thing in different ways. Two
concept descriptions can be syntactically different yet semantically equivalent. A sim-
ilarity measure should depend on the semantics rather than the syntax of the concept
descriptions to measure. Equivalence invariant expresses this requirement in form of a
property. It states that two equivalent concept descriptions must have the same simi-
larity towards a third concept description.

Definition 20 (equivalence invariant). A similarity measure sim is equivalence invari-
ant iff for all C,D,E ∈ C(ELH)

C ≡ D =⇒ sim(C,E) = sim(D,E).

Equivalence invariant is widely accepted as a necessary property for description logic
measures ([JW09, Jan06, dFE06, dFE05, FD06, dSF08]). Yet we found that the methods
used to ensure equivalence invariant where not always sound (see Chapter 4).

In addition, we adopt the property “identity of indiscernible“ from similarity functions
to description logics by replacing the equality with equivalence and call it equivalence
closed. A similarity measure is equivalence closed iff two concept descriptions are totally
similar if and only if they are equivalent.

Definition 21 (equivalence closed). A similarity measure sim is equivalence closed iff
for all C,D ∈ C(ELH)

sim(C,D) = 1 ⇐⇒ C ≡ D.

Equivalence closed is considered to be a basic property for description logic similarity
measures [dSF08, Jan06] especially because it is adapted from metrics.

3.3 Subsumption Preserving and Reverse Subsumption
Preserving

The properties subsumption preserving and reverse subsumption preserving aim to con-
nect subsumption and similarity. Let C,D,E ∈ C(ELH) with C v D v E. Subsump-
tion preserving expresses the expectation that the similarity of C and D should be higher
than the similarity of C and E because D is ‘closer‘ to C than E. Reverse subsumption
preserving is the addition stating the expectation that the similarity of D and E should
be higher than the similarity of C and E because D is ‘closer‘ to E than C.

Definition 22 (subsumption preserving, reverse subsumption preserving). A similarity
measure sim is subsumption preserving iff for all C,D,E ∈ C(ELH) with C v D v E
we have sim(C,D) ≥ sim(C,E).
It is reverse subsumption preserving iff for all C,D,E ∈ C(ELH) with C v D v E we
have sim(C,E) ≤ sim(D,E).

20

3.4 Bounded and Dissimilar Closed

Bounded and dissimilar closed are properties regarding total dissimilarity. Both are
using the least common subsumer. Dissimilar closed states that if the least common
subsumer of two concept descriptions is equivalent to top then we expect that they
are totally dissimilar (their similarity value is 0). If the least common subsumer is not
equivalent to top, then the concept descriptions have something in common and the
similarity should be higher than 0. This expectation is summed up in the property
bounded.

Definition 23 (dissimilar closed, bounded). A similarity measure sim is called dissim-
ilar closed iff for all C,D ∈ C(ELH)

C 6≡ >, D 6≡ > and lcs(C,D) ≡ > =⇒ sim(C,D) = 0

and it is called bounded iff for all C,D ∈ C(ELH)

lcs(C,D) 6≡ > =⇒ sim(C,D) > 0.

3.5 Structural Dependent

The property structural dependent is motivated through the feature model which is
presented by Tversky in [Tve77]. There, an object is described through a set of features.
The similarity of two objects is measured by a relation between the number of common
features of both objects and the number of unique features of each of the objects. The
basic rule is that if

1. the number of common features increase and

2. the number of uncommon features is constant

then the similarity must increase. The property structural dependent is derived from this
basic rule. We take the perspective that an atom can be regarded as a feature. The atoms
of a conjunction (of atoms) represent the features of an object (concept description). Our
expectation is that the more features (atoms) two concept descriptions share, the higher
their similarity should be. This expectation is expressed as follows.

Definition 24 (structural dependent). A similarity measure sim is called structural
dependent iff for all D,E ∈ C(ELH) and all sequences (Cn)n of atoms with ∀i, j ∈
N, i 6= j : Ci 6v Cj the concept descriptions

Dn :=
l

i≤n

Ci uD

and
En :=

l

i≤n

Ci u E

21

fulfill the condition
lim
n→∞

sim(Dn, En) = 1.

In the definition, D and E act as the “sets“ of (possible) uncommon features and as the
second condition of the basic rule requires, they are constant. That the first condition of
the basic rule is true is not so easy to see. We have to prove that the number of common
features really increases infinitely. First, let us observe that D1 w D2 w . . . w Dn w
The condition Ci 6v Cj in the definition of structural dependent is there to ensure that
every “new“ Cn is different from the others and provides new common information.
However, we still have to prove that the sequence (Dn)n of concept descriptions is really
a descending chain of subsumed concept descriptions. More formally, there exists no
m ∈ N such that for all n ≥ m : Dm ≡ Dn. To prove this we need the following lemma.

Lemma 4. Let C ∈ C(ELH) and R be the corresponding RBox then the number of
subsumers of C is finite, or more formally

|{D ∈ C(ELH) | C v D}| ∈ N.
Proof. For the rest of the proof we define S(C) := {D ∈ C(ELH) | C v D}. The proof
is conducted by structural induction. If C ∈ NC then S(C) = {>, C} which is finite.
Let C = ∃r.C∗ for some r ∈ Nr and we assume that S(C∗) is finite. Let D be a concept

description with C v D. Lemma 1 implies that all atoms D′ in D̂ must subsume
C. Therefore, we only need to prove that there are only finitely many atoms D′ with
C v D′. For all A ∈ NC we have C 6v A. Let ∃s.D∗ be a existential restriction with
∃r.C∗ v ∃s.D∗. This implies that r vR s and D∗ ∈ S(C∗). Therefore we can derive
that |S(C)| ≤ |Nr| · |S(C∗)|. Since Nr and S(C∗) are assumed to be finite, S(C) has to
be finite as well.
For the final case, let C be a conjunction of atoms where we know that for all C ′ ∈ Ĉ
the set S(C ′) is finite. Additionally let D be a concept description with C v D. Lemma

1 implies that for all D′ ∈ D̂ there exists a C ′ ∈ Ĉ such that D′ ∈ S(C ′). Therefore,
|S(C)| ≤

∏
C′∈Ĉ |S(C ′)| which implies that S(C) is finite.

Now we can prove that the definition of structural dependent also fulfills the first
condition of the basic rule.

Lemma 5. Let D ∈ C(ELH), (Cn)n be a sequence of atoms with ∀i, j ∈ N, i 6= j : Ci 6v
Cj and

Dn :=
l

i≤n

Ci uD.

There exists no m ∈ N such that for all n ≥ m : Dm ≡ Dn.

Proof. Let us assume that there exists such an m and let n be an arbitrary number with
n > m. Since Dm ≡ Dn we know that Dm v Dn. For any Ci with m < i ≤ n Lemma 1
implies that there exits a F ′ ∈ D̂m such that F ′ v Ci. Since for all j ≤ m : Cj 6v Ci, F

′

has to be an atom of D which implies that D v Ci. Therefore, all concept descriptions
Ci with m < i are subsumers of D. The fact that Cj 6v Ci implies that all of them are
not equivalent to each other. This leads us to the conclusion that D has infinitely many
subsumers which is a contradiction to Lemma 4.

22

3.6 Towards Monotonicity

In [dSF08] a property called monotonicity is presented. It is defined for dissimilarity
measures over arbitrary description logics. We present an adjustment of the definition
to similarity measures and ELH.

Definition 25 ([dSF08]). Let sim be similarity measure. Sim obeys the monotonicity
criterion iff given the concept descriptions C,D,E, U, L ∈ C(ELH)

1. C,D v U and C,D v L,

2. E v U , E 6v L and

3. 6 ∃H ∈ C(ELH) such that C,E v H and D 6v H.

imply that sim(C,D) > sim(C,E).

The underling idea is that “if given the concepts C, D and E, the concept general-
izing C and D is more specific (w.r.t. the subsumption relationship) than the concept
generalizing C and E, then C and D are more similar to each other w.r.t. C and E.“

The first part states that C and D have two (different) common subsumers. The
second part states that E is subsumed only by one of this subsumers and the third
property ensures that C and E do not have another common subsumer which is not a
subsumer of D. The implication is that because C and D have (at least) two common
subsumers where C and E have one, the similarity of C and D should be higher. In a
more abstract point of view, monotonicity states that the similarity of C and D is higher
than the similarity of C and E because C and D have more in common. However, in
our point of view, the problem of this property is that it does not forces any condition
on the differences of C and D. This allows to construct an example which fulfills all
three conditions, but in our intuition, the similarity between C and D should be lower
than the similarity of C and E. Let NC := {A1, . . . , An, B,X,W, Y1, . . . , Ym} where all
concept names are different from each other and

• C :=
d

i≤nAi uB uX,

• D :=
d

i≤nAi uB u
d

j≤m Yj,

• E :=
d

i≤nAi uW ,

• U :=
d

i≤nAi and

• L := B.

Then we have C,D,E v U , C,D v L and E 6v L. Since lcs(C,E) = U and D v U ,
every H with C,E v H would imply that D v H. Therefore condition three is true. If
n is a high number then the similarity between C and E should be very high because
they only differ in the concept names B, X and W . On the other hand, the greater m
is, the lower the similarity between C and D should be. If we set m to a value which is
much higher than n then the similarity of C and D should be lower than the similarity
of C and E. This is in contradiction to monotonicity which requires the opposite.

23

4 Known Similarity Measures and their
Properties

In this chapter we investigate several measures towards which of the properties from
Chapter 3 they fulfill and in some case what kind of general unintuitive behaviour we can
derive from this investigation. We distinguish between two kinds of measures, structural
measures and interpretation based measures. Structural measures are defined using the
syntax of the concept descriptions to measure. Since conjunction and disjunction are
commutative and associative, these measures are invariant to the order of the atoms in
a conjunction and disjunction meaning that the order of atoms does not influence the
result. One difference between the measures arises on the computation of the similarity of
primitive concepts. [Jan08] uses the TBox whereas the measures [dFE06] and [FD06] use
the canonical interpretation for this purpose. The Jaccard Index and Dice’s Coefficient
assume that two concept names are totally dissimilar iff they are different. To achieve
equivalence invariance, the concept descriptions need to be transformed into a unique
normal form before measuring similarity. The uniqueness ensures that for two different
yet equivalent concept descriptions the resulting normal forms are syntactically the same
(with respect to commutativity and associativity). [JW09] uses the negation normal
form where [Jan08] and [dFE06] are using the ALCN normal form presented in Section
4.1. Both normal forms are not unique and therefore the measures are not equivalence
invariant (yet they claim to be). In [FD06], a restriction of the ALCN normal form to
ALN is used. The two L0 measures Jaccard Index and Dice’s Coefficient do not need a
normal form because the description logic is to simple.

Interpretation based measures are defined using interpretations and cardinality. They
do not use the syntax of the concept descriptions to measure. Therefore, they are trivially
equivalence invariant. The two interpretation based measures we present [dFE05, dSF08]
are using the canonical interpretation IA. That is why these measures need a populated
and representative domain (an ABox).

In the first section we define the ALCN normal form used by several structural mea-
sures. Then, in the Sections 4.2 and 4.3, we present an analysis of the properties of six
structural measures and two interpretation based measures. Since not every measure has
a name, we use the names of the papers as titles of our sections and denote the measures
with sim (if it does not have a name). All measures are working with unfoldable TBoxes.
Therefore, we assume that the concepts to measure are expanded. Note that we are not
assuming that the TBox is empty because the measure [Jan08] uses the knowledge of
the TBox to expand the concepts “on the fly“. The analysis is done as follows. First,
we shortly explain if and what kind of preconditions (for example a normal form) are
needed. Then we present a definition of the measure (except for [JW09]). Afterwards,

24

we point to unintuitive behaviour we observed while investigating the properties of the
measure. Finally, we present proofs of all fulfilled properties and counterexamples for
the non-fulfilled ones.

In the last section we present an tabular overview that contains all measures (including
our measure simi from Chapter 5) and properties.

4.1 A Normal Form for ALCN Concept Descriptions

We present a normal form for the description logic ALCN from [dFE06] (originally
[BKT02]). To describe the normal form we introduce the following notations.

Definition 26. Let r ∈ Nr. We define

• N∀(r) := {∀r.D | D ∈ C(ALCN)},

• N∃(r) := {∃r.D | D ∈ C(ALCN)},

• N≤(r) := {(≤ n.r) | n ∈ N},

• N≥(r) := {(≥ n.r) | n ∈ N} and

• Np := NC ∪ {¬A | A ∈ NC}.

Let n ∈ N>0, C1, . . . Cn be concept descriptions with

{C1, . . . , Cn} ⊆ N∀ ∪N∃ ∪N≤ ∪N≥ ∪Np,

C :=
d

i≤nCi and r ∈ Nr. We define

• prim(C) := {C1, . . . , Cn} ∩Np,

• exr(C) := {D ∈ C(ALCN) | ∃r.D ∈ {C1, . . . , Cn}},

• valr(C) :=

{
> if {C1, . . . , Cn} ∩N∀(r) = ∅
d
∀r.D∈{C1,...,Cn}D otherwise

• minr(C) := max{n ∈ N | C v (≥ n.r)}

• maxr(C) :=

{
min{n ∈ N | C v (≤ n.r)} if {n ∈ N | C v (≤ n.r)} 6= ∅
∞ othwerwise

The ALCN normal form is as follows.

Definition 27 (ALCN Normal Form). Let C ∈ C(ALCN). C is in normal form iff
C = ⊥, C = > or C is of the form C =

⊔
i≤nCi with

Ci :=
l

D∈prim(Ci)

D u
l

r∈Nr

(
l

D∈exr(Ci)

∃r.D u ∀r.valr(Ci) u (≤ maxr.Ci) u (≥ minr.Ci))

where valr(Ci) and all D ∈ exr(Ci) are in ALCN -Normal Form. We also call Ci to be
in conjunctive normal form(CNF).

25

Note that this normal form is not unique. For example A ≡ (A uB) t (A u ¬B) and
∃r.Au∀r.B ≡ ∃r(AuB)u∀r.B where all concept descriptions are in normal form. The
restriction to the description logic ALN leads to the following normal form which is
used by the measure defined in [FD06], Subsection 4.2.6.

Definition 28 (ALN Normal Form). Let C ∈ C(ALN). C is in normal form iff
C = ⊥, C = > or C is of the form

C :=
l

D∈prim(C)

D u
l

r∈Nr

(
l

D∈exr(C)

∃r.D u ∀r.valr(C))

where valr(C) and all D ∈ exr(C) are in ALN -Normal Form.

4.2 Structural Measure

Here we present six structural measures. The Jaccard Index, Dice and the measures
presented in [Jan08, FD06, JW09, dFE06].

4.2.1 The Jaccard Index

The Jaccard Index is an adaption of the set similarity measure with the same name
([Jac01]) where it regards L0 concept descriptions as sets of concept names . The first
suggestion to use it as similarity measure for the GeneOntology was in [Gen07].

Definition 29 (Jaccard Index). Let C,D ∈ C(L0). The Jaccard Index is defined as

Jacc(C,D) :=
|Ĉ ∩ D̂|
|Ĉ ∪ D̂|

.

As the following lemma shows, the Jaccard Index fulfills all properties we defined in
Chapter 3.

Lemma 6. The Jaccard Index is

1. symmetric,

2. equivalence closed,

3. equivalence invariant,

4. subsumption preserving,

5. reverse subsumption preserving,

6. structural dependent,

7. dissimilar closed,

26

8. bounded and

9. has the triangle inequality property.

Proof. Let C,D,E ∈ C(L0) which implies that Ĉ, D̂, Ê ⊆ NC .

1. The symmetry of the Jacc is obvious.

2. Equivalence Closed: We have

Jacc(C,D) = 1 ⇐⇒ |Ĉ ∩ D̂| = |Ĉ ∪ D̂| ⇐⇒ Ĉ = D̂ ⇐⇒ C ≡ D.

3. Equivalence Invariant: If C ≡ D, then Ĉ = D̂ because there are no roles (Nr = ∅).
This implies Jacc(C,E) = Jacc(D,E).

4. Subsumption Preserving: Let C v D v E. This implies that Ê ⊆ D̂ ⊆ Ĉ.
Therefore, |Ê| ≤ |D̂|. Also, |Ê ∩ Ĉ| = |Ê| and |D̂ ∩ Ĉ| = |D̂|. We start with

|Ê| ≤ |D̂| which is equivalent to |Ê ∩ Ĉ| ≤ |D̂ ∩ Ĉ| and leads us to

|Ê ∩ Ĉ|
|Ĉ|

≤ |D̂ ∩ Ĉ|
|Ĉ|

⇐⇒ |Ê ∩ Ĉ|
|Ê ∪ Ĉ|

≤ |D̂ ∩ Ĉ|
|D̂ ∪ Ĉ|

⇐⇒ Jacc(Ĉ, Ê) ≤ Jacc(Ĉ, D̂).

5. Reverse Subsumption Preserving: Let C v D v E. This implies that Ê ⊆ D̂ ⊆ Ĉ.
Since |D̂| ≤ |Ĉ| and |Ê ∩ Ĉ| = |Ê ∩ D̂| = |Ê| we derive

Jacc(C,E) =
|Ê|
|Ĉ|
≤ |Ê|
|D̂|

= Jacc(D,E).

6. Structural Dependent: Let (Cn)n be a sequence of pairwise different concept names,

Dn :=
l

i≤n

Ci uD

and
En :=

l

i≤n

Ci u E.

We have
1 ≥ lim

n→∞
Jacc(Dn, En) ≥ lim

n−→∞

n

n+ |D̂|+ |Ê|
= 1

which implies
lim
n→∞

Jacc(Dn, En) = 1.

7. Dissimilar Closed: If lcs(C,D) = >, then |Ĉ ∩ D̂| = 0 which implies Jacc(C,D) =
0.

8. Bounded: If lcs(C,D) 6= >, then |Ĉ ∩ D̂| > 0 which implies Jacc(C,D) > 0.

9. Triangle Inequality: That the set version of Jaccard Index fulfills triangle inequality
is proven in [Lip99]. Since our version is not significantly different, the proof can
easily be adapted.

27

4.2.2 Dice’s Coefficient

Dice’s Coefficient is an adaption of the set similarity measure with the same name
([Dic45]). It is defined for the description logic L0. A L0 concept description is a
conjunction of concept names. Viewing the concept description as a set of concept
names one can apply Dice’s Coefficient.

Definition 30 (Dice’s Coefficient). Let C,D ∈ C(L0). The Dice’s Coefficient is defined
as

Dice(C,D) := 2
|Ĉ ∩ D̂|
|Ĉ|+ |D̂|

.

As the following lemma shows, the Dice’s Coefficient fulfills all properties we defined
in Chapter 3 except the triangle inequality.

Lemma 7. The Dice’s Coefficient is

1. symmetric,

2. equivalence closed,

3. equivalence invariant,

4. subsumption preserving,

5. reverse subsumption preserving,

6. structural dependent,

7. dissimilar closed and

8. bounded.

Proof. Let C,D,E ∈ C(L0) which implies that Ĉ, D̂, Ê ⊆ NC .

1. The symmetry of Dice is obvious.

2. Equivalence Closed: We have

Dice(C,D) = 1 ⇐⇒ 2 · |Ĉ ∩ D̂|
|Ĉ|+ |D̂|

⇐⇒ 2 · |Ĉ ∩ D̂| = |Ĉ|+ |D̂|.

Since |Ĉ ∩ D̂| ≤ |Ĉ|, |D̂|, the last statement is equivalent to

|Ĉ ∩ D̂| = |Ĉ| and |Ĉ ∩ D̂| = |D̂| ⇐⇒ Ĉ = D̂ ⇐⇒ C ≡ D.

3. Equivalence Invariant: If C ≡ D, then Ĉ = D̂ because there are no roles (Nr = ∅).
This implies Dice(C,E) = Dice(D,E).

28

4. Subsumption Preserving: Let C v D v E. This implies that Ê ⊆ D̂ ⊆ Ĉ.
Therefore, |Ê| ≤ |D̂|. Also, |Ê ∩ Ĉ| = |Ê| and |D̂ ∩ Ĉ| = |D̂|. Starting with

|Ê| ≤ |D̂|, we derive

|Ê| ≤ |D̂| ⇐⇒ |Ê||Ĉ| ≤ |D̂||Ĉ| ⇐⇒ |Ê||D̂|+ |Ê||Ĉ| ≤ |Ê||D̂|+ |D̂||Ĉ|

which is equivalent to

|Ê|(|D̂|+ |Ĉ|) ≤ |D̂|(|Ê|+ |Ĉ|) ⇐⇒ |Ê|
|Ê|+ |Ĉ|

≤ |D̂|
|D̂|+ |Ĉ|

⇐⇒ 2|Ê ∩ Ĉ|
|Ê|+ |Ĉ|

≤ 2|D̂ ∩ Ĉ|
|D̂|+ |Ĉ|

⇐⇒ Dice(Ĉ, Ê) ≤ Dice(Ĉ, D̂).

5. Reverse Subsumption Preserving: Let C v D v E. This implies that Ê ⊆ D̂ ⊆ Ĉ.
Since |D̂| ≤ |Ĉ| and |Ê ∩ Ĉ| = |Ê ∩ D̂| = |Ê| we derive

Dice(C,E) =
2|Ê|

|Ĉ|+ |Ê|
≥ 2|Ê|
|D̂|+ |Ê|

= Dice(D,E).

6. Structural Dependent: Let (Cn)n be a sequence of pairwise different concept names,

Dn :=
l

i≤n

Ci uD

and
En :=

l

i≤n

Ci u E.

We have

1 ≥ lim
n→∞

Dice(Dn, En) ≥ lim
n−→∞

2n

2n+ |D̂|+ |Ê|
= 1

which implies
lim
n→∞

Dice(Dn, En) = 1.

7. Dissimilar Closed: If lcs(C,D) = >, then |Ĉ ∩ D̂| = 0 which implies Dice(C,D) =
0.

8. Bounded: If lcs(C,D) 6= >, then |Ĉ ∩ D̂| > 0 which implies Dice(C,D) > 0.

29

To show that Dice’s Coefficient does not fulfill the triangle inequality, we use the
following counterexample. Let NC := {A,B}, C := A u B, D := A and E := B. Then
we have

1 = 1 + 2
|∅|

|{A}|+ |{B}|
= 1 +Dice(D,E) < Dice(D,C) +Dice(C,E)

= 2
|{A}|

|{A}|+ |{A,B}|
+ 2

|{B}|
|{A,B}|+ |{B}|

=
4

3
.

4.2.3 Computing Semantic Similarity Among Geographic Feature
Types Represented in Expressive Description Logics [Jan08]

In the PhD thesis [Jan08], a measure called simdl is defined. The journal article can
be found in [Jan06]. Simdl is defined for the description logic ALCHQ and it uses an
adopted version of the ALCN normal form presented in Section 4.1.

Overall, we found it hard to understand how the measure is defined in detail. The
reason is that simdl is mostly presented through text rather than precise mathematical
formulation. To fill our gaps of knowledge, we analysed the source code of an implemen-
tation of simdl called SimCat. From this analysis and our understanding of [Jan08],
we formulated a mathematical model of simdl which is presented below. The model is
necessary to be able to analyse which properties hold. For simplicity, our model does not
cover the full description logic for which the original simdl is defined. Our version works
for ALC-concept descriptions only. We found that this is already enough to disprove
most of the properties.
We also noticed that the implementation does not respect the commutativity of conjunc-
tion, meaning that it is possible to construct an example such that simdl(A u B,C) 6=
simdl(B u A,C). We assume that this is simply a bug because such behaviour is not
stated in [Jan08] (yet it is also not denied). Therefore, our version respects commutativ-
ity. Also, note that in the paper and the implementation, the measure has an asymmetric
version. We analyse the symmetric version because we believe that symmetry is a vital
property (see Chapter 3).
In order to define simdl, we present the notation of valid relations. Additionally, we
expand the definition of the set of atoms of a concept description C in CNF (denoted

as Ĉ) to include value restrictions.

Definition 31. Let C =
d

C′∈Ĉ C
′ and D =

d
D′∈D̂D

′ be two concept descriptions where

the Ĉ and D̂ are atoms. A relation A ⊆ Ĉ × D̂ is called valid iff it fulfills the properties

1. ∀C ′ ∈ Ĉ ∀D1, D2 ∈ D̂ : (C ′, D1), (C
′, D2) ∈ A =⇒ D1 = D2,

2. ∀D′ ∈ D̂ ∀C1, C2 ∈ Ĉ : (C1, D
′), (C2, D

′) ∈ A =⇒ C1 = C2 and

3. |A| = min{|Ĉ|, |D̂|}.

30

The set of all valid relations of C and D is denoted as A(C,D).

Note that simdl does not expand the concept descriptions to measure in advance. The
expansion is done “on the fly“ while measuring similarity. In the following definition,
we use expT (C) to express the concept description we obtain by expanding the concept
name C with respect to the TBox T .

Definition 32 ([Jan08]). Let T be a TBox and C and D be two concept descriptions
in normal form, so C :=

⊔
i≤nCi, D :=

⊔
j≤mDj where the Ci and Dj are conjunction

of atoms. Additionally, let S : NB −→ 2C(ALC) be the function defined through for all
A ∈ NB :

S(A) := {E ∈ NC \ {A} | E vT A}.

The function simdl : C(ALC)2 −→ [0, 1] is defined as follows:

simdl(C,D) := simt(C,D)

simt(C,D) := max
i≤n,j≤m

simu(Ci, Dj)

simu(Ci, Dj) := max
A∈A(Ci,Dj)

∑
(Ĉ,D̂)∈A sima(C

′, D′)

|A|

sima(C
′, D′) :=

1 if C ′ ≡ D′

0 if C ′ ≡ ¬D′

simR(r, s) · simt(E,F) if C ′ = ∃r.E and D′ = ∃s.F
simR(r, s) · simt(E,F) if C ′ = ∀r.E and D′ = ∀s.F
simP (C ′, D′) if C ′, D ∈ NB

simu(expT (C ′), expT (D′)) if C ′ ∈ NC \NB or D ∈ NC \NB

0 otherwise

simR(r, s) :=

{
1 if r = s

0 otherwise

simP (A,B) :=

{
|S(A)∩S(B)|
|S(A)∪S(B)| if |S(A) ∪ S(B)| 6= 0

0 otherwise.

In the asymmetric case of simdl, the condition of the first case of the function sima

is changed to D′ v C ′ and the function simt gets a second case where simt(C,D) = 1
if D v C. Everything else remains the same.

The normal form is used together with a set of rewriting rules which are supposed to
ensure that simdl is equivalence invariant. We noticed that to achieve this goal, at least
two rules are missing,

C tD −→ D if C v D

and
∀r.C u ∃r.D −→ ∀r.C u ∃r.(D u C).

31

Even with this rules, the resulting normal form is not unique and therefore simdl is not
equivalence invariant.

Another problem are the valid relations. Every atom has at most one partner in a
valid relation. If we have two concept description, ∃r.(A u B) and ∃r.A u ∃r.B, then
all valid relations have one element only. The measure cannot take into account that
∃r.(A u B) is related to both ∃r.A and ∃r.B. The “on the fly“ expansion can also lead
to unintuitive behaviour and a way to disprove equivalence invariant (see below).

In the remainder of the section, we prove that simdl is symmetric and structural
dependent. Additionally we show that simdl is not equivalence closed, equivalence
invariant, dissimilar closed, bounded, subsumption preserving, reverse subsumption pre-
serving and it does not fulfill the triangle inequality.

Lemma 8. The measure simdl is

1. symmetric and

2. structural dependent.

Proof. 1. Symmetry of simdl is obvious because all involved functions, simt, simu,
simP and simR are symmetric.

2. Let (Cn)n be a sequence of pairwise different atoms, E, D be concept descriptions
in CNF,

Dn :=
l

i≤n

Ci uD

and
En :=

l

i≤n

Ci u E.

Since sima(Ci, Ci) = 1 for all i ≤ n we know that

simdl(Dn, Cn) = simu(Dn, Cn) ≥ n

n+min{|Ĉ|, |D̂|}

which implies

1 ≥ lim
n→∞

simdl(Dn, Cn) ≥ lim
n→∞

n

n+min{|Ĉ|, |D̂|}
= 1

and therefore limn→∞ simdl(Dn, Cn) = 1.

• The measure is not equivalence closed. The reason is that at on the disjunction
level, the maximum of all pairs of conjunction is chosen. Let C and D be concept
descriptions in normal form and A ∈ NC . Then

simdl(A t C,A tD) = max{simu(A,A), simu(A,D), simu(C,A), simu(C,D)}
= 1.

32

Another way to disprove equivalence closed is as follows. Let NC := {A,B,C}
and T := {C ≡ A uB} then

simdl(A,B) = simP (A,B) =
|{C}|
|{C}|

= 1

but A 6≡ B. Note that this behaviour is intended by the author. He states that
“The comparison of two primitives yields 1, if they cannot be differentiated“ and
the definition of simP expresses his expectation.
The definition of valid relations yields another way of disproving equivalence closed.
Let NC be as above and C be an arbitrary NC in CNF with A 6v C. Then we have

simdl(C u A,A) = simu(C u A,A) =
sima(A,A)

1
= 1

where C u A 6≡ A.

• The measure is not equivalence invariant because the used normal form is not
unique. Let NC := {A,B,G}, Nr := {r} and T := ∅. Then

simdl(∃r.(B uG),∃r.(B u A) u ∀r.A) = simu(B uG,B u A) =
1

2

and
simdl(∃r.(B uG),∃r.B u ∀r.A) = simu(B uG,B) = 1

but ∃r.(B u A) u ∀r.A ≡ ∃r.B u ∀r.A.
The “on the fly“ expansion yield another way to disprove equivalence invariant.
Let NC := {A,B1, B2, B3, C} and T := {C ≡ B1 uB2 uB3}. Then

simdl(A,B1) = simdl(A,B2) = simdl(A,B3) = 0.

That implies

simdl(A u C,B1 uB2 uB3) =
maxi≤3 simu(A,Bi) + maxi≤3 simu(B1 uB2 uB3, Bi)

2

=
0 + 1

2
=

1

2
6= simdl(A uB1 uB2 uB3, B1 uB2 uB3) = 1

which contradicts equivalence invariant.

• The measure is not dissimilar closed. Let NC := {A,B,C} and T := {C ≡
B u ¬A}. We have lcs(A uB,¬A t ¬B) = > yet

simdl(A uB,¬A t ¬B) = max{simu(A uB,¬A), simu(A uB,¬B)}
= max{1, 0} = 1.

33

• The measure is not bounded. Let NC := {A,B,G} and T := ∅ then lcs(A u
B,A uG) ≡ A yet simdl(A uB,A uG) = 0.

• The measure is not subsumption preserving. Let NC := {A,B,G}, Nr := {r}
and T := ∅. Using the aberrations

C := ∃r.(B uG) u ∀r.A u A,
D := ∃r.(B u A) u ∀r.A u A

we have C v D v A but

simdl(C,D) =
1
2

+ 1 + 1

3
=

5

6
< simdl(C,A) = 1.

• The measure is not reverse subsumption preserving. Let NC := {A,B,G},
Nr := {r} and T := ∅. Using the aberrations

C := ∃r.(B uG) u ∀r.A u ∃r.(B u A),

D := ∃r.(B uG) u ∀r.A,
E := ∃r.(B u A) u ∀r.A

we have C v D v E where C, D and E are in CNF but

simdl(C,E) = 1 > simdl(D,E) =
1
2

+ 1 + 1

3
=

5

6
.

• Simdl does not fulfill the triangle inequality. Let NC := {A,B,G} and T := ∅.
We have

1 + simdl(A uB,A uG) =
3

2
< simdl(A uB,A) + simdl(A,A uG) = 2

which contradicts triangle inequality.

4.2.4 SIM −DLA: A Novel Semantic Similarity Measure for
Description Logics Reducing Inter-Concept to Inter-Instance
Similarity [JW09]

The measure simdlA is defined for the description logic SHI which is like ALCH plus it
also allows for inverse and transitive roles. As normal form it uses the negation normal
form (NNF). A concept description is in NNF if all occurring negations are atomic
negations.

The measure is not presented with a full mathematical model. Instead, a mixture of
mathematical syntax and text is used to informally describe the behaviour of simdlA.
The textual description is not always precise. For example, it is unclear what the result
of the concepts A and ∃r.A is. To fill our gaps of understanding, we analysed the

34

implementation from the SimCat project. There we found that the result of A and
∃r.A is 0. However, we omit presenting a full mathematical model for simdlA. The
reason is that such a model would force us to present a lot of new syntax which does not
provide much gain of knowledge since the measure does not fulfill most of our properties.
Here we only present a short description of how simdlA works. For further details we
refer to [JW09].

The measure has three stages. First, both concept descriptions are transformed in
NNF and a changed version of the tableau algorithm is used to generate a completion
tree for each concept description. In contrast to the original tableau algorithm, the
t-rule is modified and another ∀-rule is added. In the next stage, the completion tree
is used to generate a set of so called proxy models. A proxy model is a tree where the
edges are labelled with role names and the nodes are labelled with sets of concept names.
Finally, both sets of proxy models are used to measure the similarity. This is done by
measuring the similarity of all pairs of proxy models (using tree similarity) and then
either choosing the maximum, minimum or computing the average of all results.

We noticed that the measure is not well defined. The problem is that while building the
completion tree, there are cases where it is possible to apply two different tableau rules at
the same time which leads to different proxy models. For example, for C := ∀r.Au∃r.B,
after using the u-rule, two rules can be applied, the ∃-rule and the new ∀-rule (which can
be applied if there is no r-neighbour). Therefore, the result of the measuring depends
on the order of how the rules are applied. In the paper, no order is specified and in the
implementations an order is chosen without comment.

In the following we present examples to show that simdlA is not equivalence closed,
equivalence invariant, subsumption preserving, reverse subsumption preserving, dissim-
ilar closed, bounded and it does not fulfill the triangle inequality. However, the measure
is symmetric (but has also an asymmetric version) and we assume that it is structural
dependent. Yet, because of the absence of a mathematical model, we do not prove this
here.

• The measure is not equivalence closed in all versions, symmetric or asymmetric
and minimum or maximum approach. Let NC := {A,B} and Nr := {r}. We have

simdlA(A u ∃r.B, (A u ∃r.B) t (A u ∀r.¬B)) = 1

independently from the version, but A u ∃r.B 6≡ (A u ∃r.B) t (A u ∀r.¬B) ≡ A.

• The measure is not equivalence invariant. Let NC := {A,B}, Nr := {r},
C := A, D := (Au∃r.B)t (Au∀r.¬B), E := Au∃r.B. The concept descriptions
C, D and E are in normal form and C ≡ D. If we use the maximum approach for
the Model Level Matrix then

simdlA(C,E) = 0.75 < simdlA(D,E) = 1.

• The measure is not subsumption preserving. Let NC := {A,B} and Nr := {r}.
Additionally, let C := Au∃r.B, D := A and E := (Au∃r.B)t (Au∀r.¬B). Then

35

C v D v E and

simdlA(C,D) = 0.75 < simdlA(C,E) = 1.

• The measure is not triangle inequality. Let NC := {A,B,G} then

1 + simdlA(A uG,B uG) =
3

2
< simdlA(A uG,G) + simdlA(G,B uG) = 2.

• The measure is not reverse subsumption preserving. Let NC := {A,B}, Nr :=
{r} and we use the abbreviations C := Au ∃r.(AuB), D := Au ∃r.Au ∃r.B and
E := A. Then we have C v D v E but simdlA(C,E) = 1

2
> simdlA(D,E) = 1

3
.

• The measures is not dissimilar closed. Let NC := {A}. Then simdlA(A, 6 A) =
0.5 but lcs(A, 6 A) ≡ >.

4.2.5 A Dissimilarity Measure for ALC Concept Descriptions
[dFE06]

This measure is defined for the description logicALC. Before two concepts are measured,
they are converted into the ALC normal form presented in Section 4.1 Definition 27. To
evaluate primitive concepts it uses the Information Content that is depending on the
canonical interpretation IA.

Definition 33 (Information Content, IC, [dFE06]). Let A be an ABox and IA be the
canonical interpretation. For C ∈ C(ALC) we define

pr(C) :=
|CIA |
|∆IA|

.

The Information Content is defined as

IC(C) := −log pr(C).

We noticed that the function “information content“ is not well defined. It is unclear
what the result of pr(C) is if |∆IA | = 0. Additionally, if |CIA| = 0 then pr(C) = 0 (if
|∆IA | 6= 0) but the logarithm is defined only for values greater than 0. In such a case,
we assume that IC(C) =∞ since infinity is used also in the definition of the measure.

Definition 34 ([dFE06]). Let A be an ABox and IA be the canonical interpretation.
The similarity measure sim is a function sim : C(ALC)2 −→ [0, 1] defined as follows.
Let C and D be ALC concept descriptions in normal form, so C =

⊔n
i=1Ci, D =

⊔m
j=1Dj

36

then

sim(C,D) :=

1 if dt(C,D) = 0

0 if dt(C,D) =∞
1

dt(C,D)
otherwise

dt(C,D) :=

0 if C ≡ D

∞ if C uD ≡ ⊥
max
i≤n
j≤m

du(Ci, Dj) otherwise

du(Ci, Dj) := dP (Ci, Dj) + d∀(Ci, Dj) + d∃(Ci, Dj)

dP (Ci, Dj) :=

{
∞ if prim(Ci) u prim(Dj) ≡ ⊥
IC(prim(Ci)uprim(Dj))+1

IC(lcs(prim(Ci),prim(Dj)))+1
otherwise

d∀(Ci, Dj) :=
∑
r∈Nr

dt(valr(Ci), valr(Dj))

d∃(Ci, Dj) :=
∑
r∈Nr

dR(r, Ci, Dj)

dR(r, Ci, Dj) :=

∑

C′∈exr(Ci)

max
D′∈exr(Dj)

dt(C
′, D′) if |exr(Ci)| ≥ |exr(Di)|∑

D′∈exr(Dj)

max
C′∈exr(Ci)

dt(D
′, C ′) otherwise

We noticed that the measure is not well defined. First, the function prim is defined
as the set of primitive concepts on the current role level. However, in the definition it
is treated as the conjunction of this concepts. This raises the question of what happens
if there are no primitive concepts. Usually, the empty conjunction is interpreted as >
and we assume that the same is true here. Also, if one argument has no existential
restriction and the other has, then we have to build the maximum over an empty set in
function dR. Since in general this is assumed to be 0, we do the same. Another point is
that the similarity of ⊥ and ⊥ is double-defined. We have dt(⊥,⊥) = 0 because ⊥ ≡ ⊥
and dt(⊥,⊥) = ∞ because ⊥ u ⊥ ≡ ⊥. Additionally, since the information content is
not defined for concept descriptions with an empty canonical interpretation, it is unclear
what the value of sim(A,B) with (AuB)IA = ∅ is. As we wrote above, we assume that
the result is ∞.

We found that an overall problem with these measures is that the value of the function

37

dt is the sum of all comparisons from all levels. If at one level, the value is infinite then
the result at the top level is infinite as well. Another problem arises when one argument
has no existential restriction and the other has. Since the empty maximum is 0, the
similarity is 1. For example sim(>, ∃r, A) = 1. Note that the example also uses the
fact that if prim is empty, then it is interpreted as >. Using these problems, we create
counterexamples for all of the properties defined in Chapter 3. This includes symmetry
which was part of the definition of similarity measures.

• In [dFE06], Proposition 4.1, it is claimed that the measure is symmetric. However
we found that this claim is incorrect. The problem lies in the definition of d∃ as
the following counterexample illustrates. Let NC := {A,B,G}, Nr := {r}, A :=
{A(x), A(y), B(x), B(z), G(x), G(y), G(z)}, C := ∃r.A u ∃r.B and D := ∃r.A u
∃r.G. First we observe that IC(lcs(A,B)) = IC(lcs(A,G)) = IC(lcs(B,G)) = 0.
We have

dt(C,D) = d∃(C,D) =

= max{0, IC(A uG) + 1}+max{IC(B u A) + 1, IC(B uG) + 1}
= (−log(2/3) + 1) + (−log(2/3) + 1)

where as

dt(D,C) = d∃(D,C) =

= max{0, IC(A uB) + 1}+max{IC(G u A) + 1, IC(G uB) + 1}
= (−log(1/3) + 1) + (−log(2/3) + 1)

< sim(C,D).

• The measure is not equivalence invariant. The problem lies in the fact that the
normal form is not unique. It does not compensate for de’Morgan operations. We
present a counterexample. Let NC := {A,B,G} and

A := {A(x), A(y), B(x), B(z), G(x)}.

We have A ≡ (A uB) t (A u ¬B). However,

dt(G, (A uB) t (A u ¬B)) = max{dp(G,A uB), dp(G,A u ¬B)}

= max{−log(1/3) + 1

−log(1/3) + 1
,∞}

=∞

6= dt(G,A) =
−log(1/3) + 1

−log(2/3) + 1
.

• The measure does not fulfill triangle inequality. Using the example presented
above and the definitions C := A,D := G and E := (A uB) t (A u ¬B) we have

1 + sim(D,E) = 1 + 0 = 1 < sim(D,C) + sim(C,E) =
−log(2/3) + 1

−log(1/3) + 1
+ 1

38

• The measure is not equivalence closed. If C ≡ D then by definition sim(C,D) =
1. However, the other direction is not true. Let NC := {A,B} and A :=
{A(x), B(x)}. Then

sim(A,B) =
1

dt(A,B)
=

1

dP (A,B)
=
IC(lcs(A,B))

IC(A uB)
= 1

but A 6≡ B.

• The measure is not subsumption preserving. Let NC := {A,B} and A :=
{A(x), B(x)}. Additionally, we use the aberrations C := A u B, D := (A u B) t
(A u ¬B) and E := A. We have C v D v E. However

dt(C,D) = max{dP (A uB,A uB), dP (A uB,A u ¬B)}
= max{1,∞}
=∞

and therefore sim(C,D) = 0 where as

dt(C,E) = dP (A uB,A) =
IC(A uB) + 1

IC(A) + 1
= 1

which implies sim(C,E) = 1.

• The measure is not reverse subsumption preserving. Let NC := {A,B},
Nr := {r, s} and A := {A(x), A(y), B(x)}. Additionally, we define the concept
descriptions

C := ∀r.B u ∃r.A u ∃s.(A uB),

D := ∀r.B u ∃r.(A uB) u ∃s.A,
E := ∀r.B u ∃r.A.

Since ∃r.(A uB) u ∀r.B ≡ ∃r.A u ∀r.B ,we have C v D v E,

dt(E,D) = du(E,D)

= dP (E,D) + d∀(E,D) + d∃(E,D)

= dP (E,D) + d∀(E,D) + dR(r, E,D) + dR(s, E,D)

= 0 + 0 + (−log(
1

2
) + 1) + 0 = −log(

1

2
) + 1

and

dt(E,C) = du(E,C)

= dP (E,C) + d∀(E,C) + d∃(E,C)

= dP (E,C) + d∀(E,C) + dR(r, E, C) + dR(s, E, C)

= 0 + 0 + 0 + 0 = 0.

39

Therefore, we have

sim(E,C) = 1 > sim(E,D) =
1

−log(1
2
) + 1

which contradicts reverse subsumption preserving.

• The measure is not bounded. Let NC := {A,B} and A := {A(x), B(x)}. Then
lcs(A uB,A u ¬B) = A 6≡ > but

dt(A uB,A u ¬B) = dP (A uB,A u ¬B) =∞

which implies sim(A uB,A u ¬B) = 0.

• The measure is not structural dependent. Let A1, . . . An, B be arbitrary concept
names, and r be a role name. The similarity of the concept descriptions

C :=
l

i≤n

Ai u ∃r.B

D :=
l

i≤n

Ai u ∃r.¬B.

is always 0 because dP (B,¬B) =∞.

• The measure is not dissimilar closed. Let NC := {A,B}, Nr := {r} and A :=
{A(y), B(x)}. Using the definitions C := ∃rA and D := ∀r.(¬A t B) we have
C 6≡ > and D 6≡ >. Additionally, we show that lcs(C,D) = C t D ≡ >. First,
we observe that D ≡ ¬(∃r.(A u ¬B)). Let I ′ be an arbitrary interpretation and
a ∈ ∆I

′
. If a /∈ (∃r.A)I

′
then 6 ∃b ∈ AI

′
: (a, b) ∈ rI

′
which implies 6 ∃b ∈

(Au¬B)I
′
: (a, b) ∈ rI′ and finally a /∈ (∃r.(Au¬B))I

′
. Therefore lcs(C,D) ≡ >.

Since C uD 6≡ ⊥ we have

dt(C,D) = dP (C,D) + d∀(C,D) + d∃(C,D)

= 0 + dt(valr(C), valr(D)) + 0

= max{dP (>,¬A), dP (>, B)} = −log(1/2) + 1

and therefore sim(C,D) = 1
−log(1/2)+1

6= 0.

4.2.6 A Similarity Measure for the ALN Description Logic [FD06]

This measure is defined for ALN and it uses the ALC normal form presented in Section
4.1. To measure primitive concepts it uses the canonical interpretation. Therefore, it
depends on the existence of an ABox.

40

Definition 35. Let A be an ABox, IA its canonical interpretation and λ ∈]0, 1
3
] The

similarity measure measure sim : C(ALN)2 −→ [0, 1] is defined as follows,

sim(C,D) := λ[simP (C,D) +
1

|Nr|
∑
r∈Nr

sim(valr(C), valr(D))

+
1

|Nr|
∑
r∈Nr

simN((minr(C),maxr(C)), (minr(D),maxr(D)))]

simP (C,D) :=

|
⋂

B∈prim(C)

BIA ∩
⋂

B∈prim(D)

BIA |

|
⋂

B∈prim(C)

BIA ∪
⋂

B∈prim(D)

BIA |

simN((iC , aC), (iD, aD)) :=

{
min{aC ,aD}−max{iC ,iD}+1
max{aC ,aD}−min{iC ,iD}+1

if min{aC , aD} > max{iC , iD}
0 otherwise.

The measure is not well defined. First, the case Nr = ∅ is not covered. Additionally,
the value of simP is unclear if |

⋂
B∈prim(C)B

IA ∪
⋂

B∈prim(D)B
IA | = 0. Since in this case

|
⋂

B∈prim(C)B
IA ∩

⋂
B∈prim(D)B

IA| = 0 as well, we assume that simP (C,D) = 1. Also,

since maxr(C) can be∞ we need to expand the arithmetic of real numbers to include∞
in order to compute simN . Finally, the similarity value of any two concept descriptions
is unknown because the computation of this value never terminates. It ends up in an
infinite recursive loop. The reason is that for a concept description C with no value
restrictions which uses the role r, valr(C) is defined to be >. For example, let NC := ∅
and Nr := {r} then

sim(>,>) = λ[simP (>,>) +
1

1
sim(valr(>), valr(>)) + simN((0,∞), (0,∞))]

= λ[1 + sim(>,>) + 1]

= λ[2 + simP (>,>) +
1

1
sim(valr(>), valr(>)) + simN((0,∞), (0,∞))]

=

In the following, we assume that the definition is extended with the missing base-case
sim(>,>) := 1.

In our investigation of the properties, we assume that the free parameter λ is 1
3
. The

first problem we noticed is that the result depends on the number of role names, even
the one that do not appear anywhere. For example for Nr := {r} we have sim(A,B) =
1
3
[simP (A,B)+1+1] whereas for Nr := {r, s} we have sim(A,B) = 1

3
[simP (A,B)+1+

1 + 1 + 1]. This is unintuitive because the measure should depend only on information
provided by the concept descriptions.

41

Another point is that the measure uses the canonical interpretation to measure concept
names. Therefore, it cannot distinguish between concept names that have the same
interpretation which implies that the measure is not equivalence closed.

We also found it problematic that all concept names are measures together in one func-
tion. If we measure

d
i≤nAiu∀r.A and

d
i≤nAiu∀s.B then the similarity is independent

form n. This is contradictory to the perspective that every atom is regarded as a feature
and that the similarity should increase the more features two concept descriptions share.

In the following lemma we prove that the measure is symmetric, equivalence invariant
and subsumption preserving. Additionally, we provide counterexamples to show that
the properties equivalence closed, structural dependent, bounded, dissimilar closed and
triangle inequality are not fulfilled.

Lemma 9. The similarity measure sim is

1. symmetric,

2. equivalence invariant,

3. subsumption preserving,

4. reverse subsumption preserving.

Proof. 1. It is easy to see that the functions simP and simN are symmetric and
therefore, sim is symmetric as well.

2. The measure is equivalence invariant because the normal form used is unique with
respect to commutativity and associativity.

3. Let C,D,E ∈ C(ALN) be in ALC normal form with C v D v E. First we prove
that C v D implies ⋂

B∈prim(C)

BIA ⊆
⋂

B∈prim(D)

BIA . (4.1)

In order to fulfill C v D, there are only three cases possible.

a) prim(D) = ∅. This implies that
⋂

B∈prim(D)B
IA = ∆IA which satisfies Equa-

tion 4.1.

b) There exists a concept name A such that A,¬A ∈ prim(C). In this case we
have

⋂
B∈prim(C)B

IA = ∅ which satisfies Equation 4.1.

c) The final case is prim(C) ⊆ prim(D) which satisfies Equation 4.1 trivially.

Using the same arguments for E and D, we obtain⋂
B∈prim(C)

BIA ⊆
⋂

B∈prim(D)

BIA ⊆
⋂

B∈prim(E)

BIA .

Since the function simP is related to the Jaccard Index and we have proven that
the Jaccard Index is subsumption preserving, we can derive that simP (C,D) ≤

42

simP (D,E).
For the next part of the proof, let r be an arbitrary role name. Also, we use
the following abbreviations: iC := minr(C), aC := maxr(C), iD = minr(D),
aD = maxr(D), iE = minr(E) and aE = maxr(E). We are going to prove that
the function simN respects subsumption preserving for an arbitrary role name r,
meaning we show that

simN((iC , aC), (iD, aD)) ≥ simN((iC , aC), (iE, aE)). (4.2)

First we observe that C v D v E implies iE ≤ iD ≤ iC and aC ≤ aD ≤ aE. To
prove Equation 4.2, we have to consider three cases.

The first case is min{aC , aE} ≤ max{iC , iE}. This implies

simN((iC , aC), (iE, aE)) = 0

and Equation 4.2 is true.

The second case is min{aC , aD} ≤ max{iC , iD}. Since min{aC , aD} = aC =
min{aC , aE} and max{iC , iD} = iC = max{iC , iE} we know that

simN((iC , aC), (iE, aD)) = simN((iC , aC), (iE, aE)) = 0.

The final case is min{aC , aD} > max{iC , iD} and min{aC , aE} > max{iC , iE}.
This implies aE − iE + 1 > 0 and aD − iD + 1 > 0. The facts iE ≤ iD ≤ iC and
aC ≤ aD ≤ aE allow us to derive

aE ≥ aD ⇐⇒ aE − iE + 1 ≥ aD − iD + 1

⇐⇒ 1

aD − iD + 1
≥ 1

aE − iE + 1

⇐⇒ aC − iC + 1

aD − iD + 1
≥ aC − iC + 1

aE − iE + 1

⇐⇒ min{aC , aD} −max{iC , iD}+ 1

max{aC , aD} −min{iC , iD}+ 1
≥ min{aC , aE} −max{iC , iE}+ 1

max{aC , aE} −min{iC , iE}+ 1

⇐⇒ simN((iC , aC), (iD, aD)) ≥ simN((iC , aC), (iE, aE)).

So far, we have prove that the functions simP and simN respect subsumption
preserving. These are the base case of a structural induction. The last step is the
induction step, showing that the part of simi which deals with value restrictions
respect subsumption preserving, too. This can simply be derived from the two
facts that C v D v E implies that for all r ∈ Nr : ∀r.valr(C) v ∀r.valr(D) v
∀r.valr(E) which implies valr(C) v valr(D) v valr(E). Using the induction
hypothesis we derive

sim(valr(C), valr(D)) ≥ sim(valr(C), valr(E)).

Every part of the sum which defines sim respects subsumption preserving. There-
fore, sim(C,D) ≥ sim(C,E).

43

4. We use the same assumptions and abbreviations as in the proof of subsumption
preserving. From ⋂

B∈prim(C)

BIA ⊆
⋂

B∈prim(D)

BIA ⊆
⋂

B∈prim(E)

BIA .

and the fact that the Jaccard Index is reverse subsumption preserving, we derive
that the function simP is reverse subsumption preserving for every role name r.

To prove that simN is reverse subsumption preserving we use a similar approach
as in the proof above. We have to show that

simN((iC , aC), (iE, aE)) ≤ simN((iD, aD), (iE, aE)). (4.3)

First we observe that C v D v E implies iE ≤ iD ≤ iC and aC ≤ aD ≤ aE. To
prove Equation 4.3, we have to consider three cases.

The first case is min{aC , aE} ≤ max{iC , iE}. This implies

simN((iC , aC), (iE, aE)) = 0

and Equation 4.3 is true.

The second case is min{aD, aE} ≤ max{iD, iE}. The two facts min{aC , aE} ≤
min{aD, aE} and max{iD, iE} ≤ max{iC , iE} allow us to derive

min{aC , aE} ≤ min{aD, aE} ≤ max{iD, iE} ≤ max{iC , iE}

and therefore

simN((iC , aC), (iE, aD)) = simN((iC , aC), (iE, aE)) = 0.

The final case is min{aC , aE} > max{iC , iE} and min{aD, aE} > max{iD, iE}.
This implies aE − iE + 1 > 0. The facts iE ≤ iD ≤ iC and aC ≤ aD ≤ aE allow us
to derive

aC ≤ aD ⇐⇒ aC − iC + 1 ≤ aD − iD + 1

⇐⇒ aC − iC + 1

aE − iE + 1
≤ aD − iD + 1

aE − iE + 1

⇐⇒ min{aC , aE} −max{iC , iE}+ 1

max{aC , aE} −min{iC , iE}+ 1
≤ min{aD, aE} −max{iD, iE}+ 1

max{aD, aE} −min{iD, iE}+ 1

⇐⇒ simN((iC , aC), (iE, aE)) ≤ simN((iD, aD), (iE, aE)).

For the rest of the proof, we can use the same arguments as in the proof above
deriving that for every role name r

sim(valr(C), valr(E)) ≤ sim(valr(D), valr(E))

which finally implies sim(C,E) ≤ sim(D,E).

44

• The measure is not equivalence closed. sim evaluates the concept names using
the canonical interpretation, therefore we can construct a counterexample. Let
NC := {A,B} and A := {A(x), B(x)}. Then sim(A,B) = 1 but A 6≡ B.
Additionally, the other direction of equivalence closed is not true either. Let C :=≤
3.ru ≥ 3.r then s(C,C) = 1

3
[1 + 1 + 0] = 2

3
.

• The measure is not structural dependent. Let NC := {A1, . . . An, B}, Nr := {r}
and A be and arbitrary ABox. The similarity of the concept descriptions

Cn :=
l

i≤n

Ai u ∀r.B

Dn :=
l

i≤n

Ai u ∀r.¬B

is

sim(Cn, Dn) =
1

3
[1 + sim(B,¬B) + 1] =

1

3
[1 + 0 + 1] =

2

3
for all n ≥ 1. Therefore, sim is not structural dependent.

• The measure is not bounded. Let NC := {A,B}, Nr := {r}, A := {A(x), B(y)},

C := A uB u ∀r.A u (≥ 0.r) u (≤ 0.r)

and
D := B u ∀r.¬A u (≥ 1.r) u (≤ 1.r).

We have

sim(C,D) =
1

3
[simP (C,D) + sim(A,¬A) + simN((0, 0), (1, 1))] =

1

3
[0 + 0 + 0] = 0

but lcs(C,D) 6≡ >.

• The measure is not dissimilar closed. Let NC := {A} and A := {A(x)}. Then
lcs(A,¬A) ≡ > but sim(A,¬A) = 1

3
[0 + 1 + 1] = 2

3
.

• The measure does not fulfill triangle inequality. Let NC := {A,B,G, F}, Nr :=
{r}, A := {A(x), B(y), G(x), G(y), F (z), r(y, x)},

C := G u (≥ 1.r) u (≤ 4.r),

D := A u ∀r.A u (≥ 1.r) u (≤ 2.r)

and
E := B u ∀r.¬A u (≥ 3.r) u (≤ 4.r).

Then

1 + sim(D,E) = 1 +
1

3
[simP (D,E) + s(A,¬A) + simN((1, 2), (3, 4))]

= 1 +
1

3
[0 + 0 + 0] = 1

45

and

sim(D,C) + sim(C,E) =
1

3
[simP (D,C) + sim(A,>) + simN((1, 2), (1, 4))]

+
1

3
[simP (C,D) + sim(>,¬A) + simN((3, 4), (1, 4))]

=
1

3
[
1

2
+

1

2
+

2− 1 + 1

4− 1 + 1
] +

1

3
[
1

2
+

2

3
+

4− 3 + 1

4− 1 + 1
]

=
1

2
+

5

9
= 1 +

1

18
> 1 + sim(D,E)

which contradicts triangle inequality.

4.3 Interpretation Based Measure

Here we present two interpretation based measures from [dFE05] and [dSF08].

4.3.1 A Semantic Similarity Measure for expressive Description
Logics [dFE05]

The measure is defined for the description logic ALC and it uses the canonical interpreta-
tion. Therefore, it is easy to compute and it depends on a populated and representative
domain.

Definition 36 ([dFE05]). Let A be an ABox with canonical interpretation IA. The
semantic similarity measure sim is a function

sim : C(ALC)2 −→ [0, 1]

defined as follows

sim(C,D) :=
|(C uD)IA |

|CIA|+ |DIA | − |(C uD)IA |
·max{|(C uD)IA |

|CIA|
,
|(C uD)IA |
|DIA|

}.

The measure suffers from the problem that two concept names A and B are not
distinguishable when their canonical interpretation is the same (AIA = BIA). Therefore,
this measure is not equivalence closed. We find this unintuitive because the designer of
the knowledge base intentionally used two different concept names. If he wants them
to be totally similar, then he would have used only on concept name. Therefore, the
measure should be able to distinguish the concept names.

Another problem arises when we measure A u
d

i≤nBi and ¬A u
d

i≤nBi. The sim-
ilarity is always zero, despite the fact that both concept descriptions share allot of
features/atoms and only two atoms are totally different.

In the following lemma we prove that the measure is symmetric, equivalence invariant,
subsumption preserving and reverse subsumption preserving. Additionally, we provide

46

examples to show that the measure is not equivalence closed, bounded, dissimilar closed,
structural dependent and does not fulfill triangle inequality.

Lemma 10. The measure sim is

1. symmetric,

2. equivalence invariant,

3. subsumption preserving and

4. reverse subsumption preserving.

Proof. Let C,D,E ∈ C(ALC).

1. The symmetry of sim is obvious.

2. Since the measure uses the canonical interpretation, it is equivalence invariant.

3. From C v D v E we can derive that

• |(C uD)IA | = |CIA |,
• |(C u E)IA| = |CIA|,
• |DIA | ≤ |EIA| and

• max{ |(CuD)IA |
|CIA | , |(CuD)IA |

|DIA | } = max{ |(CuE)IA |
|CIA | , |(CuE)IA |

|EIA | } = 1.

Therefore,

sim(C,D) =
|CIA |
|DIA|

≥ |C
IA|

|EIA |
= sim(C,E).

4. From C v D v E we can derive that

• |(C u E)IA| = |CIA|,
• |(D u E)IA| = |DIA |,
• |CIA | ≤ |DIA | and

• max{ |(CuE)IA |
|CIA | , |(CuE)IA |

|EIA | } = max{ |(DuE)IA |
|DIA | , |(DuE)IA |

|EIA | } = 1.

Therefore,

sim(E,D) =
|DIA |
|EIA |

≥ |C
IA |

|EIA |
= sim(C,E).

• The measure is not equivalence closed. If two different atoms have the same
evaluation under the canonical interpretation, then the measures cannot distin-
guish them anymore. The following counterexamples illustrates this. Let NC :=
{A,B,G}, Nr := {r} and A := {A(x), B(y), r(x, y), G(y)}. Then sim(A, ∃r.B) =
1 but A 6≡ ∃r.B.

47

• The measure is not structural dependent because if the intersection of the
evaluation of two concept descriptions is empty, then the measure has a value of
0. Let A1, . . . An, B be arbitrary concept names. The similarity of the concept
descriptions

Cn :=
l

i≤n

Ai uB

Dn :=
l

i≤n

Ai u ¬B

is 0 for all n ≥ 0 because B u ¬B ≡ ⊥ implies |(Cn uDn)IA | = 0.

• The measure does not fulfill the triangle inequality. Also it looks related to the
Jaccard Index, the additional term

max{|(C uD)IA |
|CIA |

,
|(C uD)IA |
|DIA|

}

makes it possible to construct a counterexample to the triangle inequality. Let
NC := {C,D,E} and

A := {C(x), C(y), C(z), D(x), D(y), E(x), E(z)}.

Then

1 + sim(D,E) = 1 +
1

2 + 2− 1
· 1

2

= 1 +
1

6

and

sim(D,C) + sim(C,E) =
2

3 + 2− 2
· 2

2
+

2

3 + 2− 2
· 2

2

=
2

3
+

2

3

= 1 +
2

6

which implies 1 + sim(D,E) < sim(D,C) + sim(C,E).

• The measure is not bounded. Let NC := {A} and A := ∅ then sim(A,A) = 0
but lcs(A,A) 6≡ >.

• The measure is not dissimilar closed. Let NC := {A,B} and A := {A(x), B(x)}
then sim(A,B) = 1

1+1−1 ·max{1, 1} = 1.

48

4.3.2 On the influence of description logics ontologies on
conceptual similarity [dSF08]

This measure is defined for ALE using the canonical interpretation. Additionally, it uses
the good common subsumer(GCS) [BST07]. Note that since we restrict our investigation
to unfoldable TBoxes and expanded concept descriptions, the GCS is the same as the
least common subsumer.

Definition 37. Let A be an ABox and IA its canonical interpretation. The similarity
measure s : C(ALE)2 −→ [0, 1] is defined as follows:

s(C,D) :=
min{|CIA|, |DIA |}
|GCS(C,D)IA |

(1− |GCS(C,D)IA |
|∆IA|

(1− min{|CIA |, |DIA |}
|GCS(C,D)IA |

)).

A problem with this measure is that the cardinality of the canonical interpretation
of the GCS does not depend on the number of common features/atoms the concept
descriptions share. For example, if C :=

d
i≤nAi u A and D :=

d
j≤mBj u A where

AIA ⊆ AIAi , BIAj for all i ≤ n, j ≤ m then

|GCS(C,D)IA| = |CIA| = |DIA | = |AIA|

and therefore s(C,D) = 1. If the atoms Ai and Bj are totally different to each other
then this behaviour is unintuitive. We would expect that the similarity decrease with a
growing n and m.

In the following lemma we prove that the measure is symmetric, equivalence invariant,
subsumption preserving and reverse subsumption preserving. Additionally, we provide
counterexamples for the properties equivalence closed, structural dependent, dissimilar
closed, bounded and triangle inequality.

Lemma 11. The similarity measure s is

1. symmetric,

2. equivalence invariant,

3. subsumption preserving and

4. reverse subsumption preserving.

Proof. 1. The symmetry of s is obvious.

2. As a interpretation based measure, it is easy to see that s is equivalence invariant.

3. Let C,D,E ∈ C(ALE) with C v D v E. In the following, we use the abbreviations
t := |∆IA |, c := |CIA |, d := |DIA| and e := |EIA |. We know that GCS(C,D) =
lcs(C,D) = D, GCS(C,E) = lcs(C,E) = E, c ≤ d ≤ e, min{c, d} = c and
min{c, e} = c. Therefore, we have

s(C,D) =
c

d
(1− d

t
(1− c

d
)) = c · t+ c− d

td

49

and

s(C,E) =
c

e
(1− e

t
(1− c

e
)) = c · t+ c− e

te
.

and can derive s(C,E) ≤ s(C,D) using the following chain:

d ≤ e ⇐⇒ d(t+ c) ≤ e(t+ c) ⇐⇒ dt+ dc− ed ≤ et+ ec− ed

⇐⇒ t+ c− e
e

≤ t+ c− d
d

⇐⇒ c · t+ c− e
te

≤ c · t+ c− d
td

⇐⇒ s(C,E) ≤ s(C,D).

4. Let C, D, E, c, d, e and t be as above. We know that c ≤ d ≤ e ≤ t. Therefore
(t− e)(d− c) ≥ 0. Using this fact we derive

(t− e)(d− c) ≥ 0 ⇐⇒ td− ed ≥ tc− ec ⇐⇒ td+ d2 − ed ≥ tc+ c2 − ec
⇐⇒ d(t+ d− e) ≥ c(t+ c− e)

⇐⇒ d · t+ d− e
te

≥ c · t+ c− e
te

⇐⇒ s(D,E) ≥ s(C,E).

• The measure is not equivalence closed. Let NC := {A,B}, Nr := {r} and A :=
{A(x), B(y), r(a, x), r(a, y)}. Then GCS(∃r.A,∃r.B) = ∃r.> and |(∃r.>)IA | = 1
which implies

s(∃r.A,∃r.B) =
min{1, 1}
|(∃r.>)IA |

(1− |(∃r.>)IA |
3

(1− min{1, 1}
|(∃r.>)IA |

)) = 1

but ∃r.A 6≡ ∃r.B.

• The measure is not structural dependent as the following example proves. Let
NC := {A1, . . . An, B,G} and A := {A1(x), A1(y), . . . An(x), An(y), B(x)}. The
similarity of the concept descriptions

Cn :=
l

i≤n

Ai uB

Dn :=
l

i≤n

Ai u ¬B

is

s(Cn, Dn) =
min{1, 1}
|(
d

i≤nAi)IA |
(1−

|(
d

i≤nAi)
IA|

2
(1− min{1, 1}

|(
d

i≤nAi)IA |
))

=
1

2
(1− 2

2
(1− 1

2
))

=
1

4

for all n ≥ 1 and therefore s is not structural dependent.

50

• The measure is not dissimilar closed. Let NC := {A,B} and A := {A(x), B(y)}
then lcs(A,B) = > but

s(A,B) =
1

2
(1− 2

2
(1− 1

2
) =

1

4
.

• The measure is not bounded because the similarity of a concept descriptions C
with |CIA | = 0 and any other arbitrary concept description is always 0.

• The measure does not fulfill the triangle inequality. Let

NC := {AC , AD, AE, ACD, ACE, ADE},
A := {AC(x), AD(x), AE(x), ACD(x), ACE(x), ADE(x), ACD(y)}

and we define C := AC uACDuACE, D := ADuACDuADE and E := AE uACE u
ADE. The similarity values are

s(C,D) =
1

2
(1− 1

2
(1− 1

2
)) =

1

4

and

s(C,E) = s(E,D) =
1

1
(1− 1

2
(1− 1

1
)) = 1.

Therefore we have

1 + s(C,D) =
5

4
< s(C,E) + s(E,D) = 2

which contradicts triangle inequality.

4.4 Tabular Overview

Table 4.1 presents an overview that contains all measures (including our measure simi
from Chapter 5) and properties. The first five measures are pure structural measures.
The next two are structural measures which use the canonical interpretations to measure
primitives and the last two are pure interpretation based measures. The shortcuts used
at the head of the table are

• sym = symmetric,

• tring = triangle inequality,

• eqcl = equivalence closed,

• eqinv = equivalence invariant,

• sub = subsumption preserving,

• resub = reverse subsumption preserving,

51

• diss = dissimilar closed,

• bound = bounded,

• struc = structural dependent.

Measure sym tring eqcl eqinv sub resub diss bound struc DL

simi x o x x x o x x x ELH
Jacc x x x x x x x x x L0

Dice x o x x x x x x x L0

[JW09] x o o o o o o o x SHI
[Jan06] x o o o o o o o x ALCHQ
[dFE06] o o o o o o o o o ALC
[FD06] x o o x x x o o o ALN
[dFE05] x o o x x x o o o ALC
[dSF08] x o o x x x o o o ALE

Table 4.1: Overview of similarity measures and their properties

52

5 The Similarity Measure Simi

In this chapter we present simi, a structural measure for ELH concept descriptions
and unfoldable TBoxes. It has parameter which allow tuning, is computable in time
polynomial in the size of the concept descriptions and it fulfills all properties (equiv-
alence closed, equivalence invariant, dissimilar closed, bounded, structural dependent,
subsumption preserving) except reverse subsumption preserving and triangle inequality.

Simi does not use the concept axioms stored in the TBox. As presented in Chapter
2, unfoldable TBoxes can be normalized and extended. After both steps, we can extend
the concepts to measures, so that all occurring concept names are primitive names. By
doing so, the knowledge of the concept definitions stored in the TBox is not necessary
to measure similarity. This is because a TBox does not provide any knowledge about
primitive names. If one wants to use simi to measure concept descriptions with respect
to an unfoldable TBox, simi has to be used after the normalization and extension steps.
Therefore, for the rest of the chapter, we assume that the TBox is empty. Note that
this assumption influences our notations. The expanded concept descriptions consist of
primitive names only. In our definitions and proofs, we use the term concept names
because in the absence of concept axioms, they are the same. However, simi uses the
knowledge stored in an RBox that is denoted with R.

Another preprocessing step is the transformation of the concept descriptions to mea-
sure into the ELH normal form presented in 2.1.4. The uniqueness of this normal form
(with respect to associativity and commutativity) ensures that simi (and any other
measure using this normal form) is equivalence invariant. For the rest of this chapter
we assume that the concepts involved are all in normal form.

Simi depends on several parameters. Therefore, we consider simi to be a framework
rather than just one measure. The choice of values for the parameters does not influence
the properties (except dissimilar closed and structural dependent), but can be used to
tune simi towards ones needs.

The appearance of simi is partially inspired by the equivalence operator. Equivalence
can be regarded as a very trivial similarity measure. The similarity of two concept
descriptions is one if they are equal and zero otherwise. To determine if C ≡ D is true,
one can use the subsumption operator to find out whether or not C v D and D v C
are true. We generalize this approach in simi by introducing a generalization of the
subsumption operator. Since such an operator is in general an asymmetric function, we
call it directed simi and denote it with simid. As a similarity measure should be 1 if
and only if both concept descriptions to measure are equivalent, a generalization of the
subsumption operator should be 1 if and only if the first argument is subsumed by the
second one. Note that in simid, we reverse the order of the arguments compared to

53

the subsumption operator. Therefore, formally, for all concept descriptions C and D we
need that

simid(C,D) = 1 ⇐⇒ D v C

in order to generalize the subsumption operator.
Once we have computed the values simid(C,D) and simid(D,C) we have to combine
them with an operator to obtain a value for simi. Instead of using an specific operator,
we identified the properties such a operator should have so that simi fulfills as much
properties as possible. We call such an operator (with sufficient properties) a fuzzy
connector and denote it with ⊗. Using fuzzy connectors, simi is simply defined as

simi(C,D) := simid(C,D)⊗ simid(D,C).

Another inspiration for simi (and simid) is the Jaccard Index (see 4.2.1). The Jaccard
Index can be regarded as a L0 similarity measure which, as we proved in 4.2.1, fulfills all
properties defined in Chapter 3. Also, it is used to measure GeneOntology-based protein
semantic similarity and did well compared to other measures in this area [PFB+07].
Therefore, we aimed to generalize it in a way that it can deal with existential restrictions
and a role hierarchy.

In the following Section we present the definition of simid and its derivation from the
Jaccard Index. Section 5.2 introduces fuzzy connectors which enable us to define simi
in Section 5.3. Section 5.4 contains the proofs that independently from the choice of
values for the parameters, simi is symmetric, equivalence invariant, equivalence closed,
subsumption preserving, bounded, structural dependent and under some circumstances
dissimilar closed. Additionally, it contains the proofs that simi can be computed in time
polynomial in the size of the extended concept descriptions to measure, simi generalizes
the Jaccard Index and in general, it is not reverse subsumption preserving and it does
not fulfill the triangle inequality.

5.1 The Function simid

In this section we present a derivation and the definition of simid. We use the average
as fuzzy connector to present examples. It is denoted with ⊗avg and the proof that the
average is a fuzzy connector can be found in Section 5.2.

The starting point for the derivation of simid is the function

d(C,D) :=
|Ĉ ∩ D̂|
|Ĉ|

which represents

How much information of C is shared with D.

In the following, we use the abbreviation

s(C,D) := d(C,D)⊗avg d(D,C).

54

This function can be used to measure sets of concept names. In order to be able to
incorporate existential restrictions, we rewrite the numerator of d. For every A ∈ C, we
search for the atom in D which has the highest similarity to A. If we then take the sum
of all this similarity values, we have the same result as in the numerator of d. Using the
function f : NC −→ [0, 1] defined as

f(C ′, D′) :=

{
0 if C ′ 6= D′

1 if C ′ = D′

we can express the numerator through

|Ĉ ∩ D̂| =
∑
C′∈Ĉ

max
D′∈D̂

f(C ′, D′)

and redefine d (by regarding f as a parameter) with

d[f](C,D) :=

∑
C′∈Ĉ maxD′∈D̂ f(C ′, D′)

|Ĉ|
.

Here, the function f is the similarity-measure version of the equivalence operator re-
stricted to concept names. The underlying assumption for f is that two different concept
names are always totally dissimilar. However, this assumption may not be correct in
all cases. Therefore, we generalize f by introducing a measure for concept names called
primitive measure. To be able to work with existential restrictions, a primitive measure
has to be able to deal with role names too. Also we have to force some properties to
ensure properties of simi.

Definition 38 (primitive measure). A function pm : N2
C ∪N2

r −→ [0, 1] with the prop-
erties that for all A,B ∈ NC and r, s, t ∈ Nr

• pm(A,B) = 1 ⇐⇒ A = B,

• pm(r, s) = 1 ⇐⇒ s v r,

• s vR r =⇒ pm(s, r) > 0 and

• subsumption preserving: t vR s =⇒ pm(r, s) ≤ pm(r, t)

is called a primitive measure.

The first two properties are necessary to ensure that simi is equivalence closed, the
third one ensures that simi is bounded and the last one is needed to prove that simi is
subsumption preserving. Note that pm does not have to be symmetric.

We present a short examples of a use-case of a primitive measure. Let

NC := {Brown,Green, Y ellow,Black,Mammal,Reptile,

BrownSnake,GreenFrog, F ireSalamander,BrownBear}
and

55

• BrownSnake ≡ Brown uReptile,

• GreenFrog ≡ Green uReptile,

• FireSalamander ≡ Y ellow uReptile,

For the concept descriptions BrownSnake, GreenFrog and FireSalamander we have

s(BrownSnake,GreenFrog) =

s(BrownSnake, F ireSalamander) =
1

2
⊗avg

1

2
=

1

2
.

One could argue that Brown and Y ellow are more similar than Brown and Green and
therefore the BrownSnake should be more similar to the FireSalamander as to the
GreenFrog. To express the higher similarity of Brown and Y ellow compared to Green
we could define a primitive measure pm′ for all A,B ∈ NC through

• pm′(Brown, Y ellow) = pm′(Y ellow,Brown) := 0.5,

• pm′(A,A) := 1 and

• {A,B} 6= {Brown, Y ellow} and A 6= B =⇒ pm′(A,B) := 0.

Looking at our example above and using pm′ we obtain

s[pm′](BrownSnake,GreenFrog) =

pm′(Reptile, Reptile) + pm′(Brown,Green)

2
⊗avg

1 + 0

2
=

1 + 0

2
⊗avg

1 + 0

2
=

1

2

and
s[pm′](BrownSnake, F ireSalamander) =

pm′(Reptile, Reptile) + pm′(Brown, Y ellow)

2
⊗avg

1 + 0.5

2
=

1 + 0.5

2
⊗avg

1 + 0.5

2
=

3

4
.

Now BrownSnake and FireSalamander have a higher similarity value than GreenFrog
and BrownSnake.

The extension of f to a primitive measure is called default primitive measure. When-
ever no concrete primitive measure is provided, we assume that the default primitive
measure is used.

56

Definition 39 (default primitive measure). The function pmdef : N2
C ∪ N2

r −→ [0, 1]
defined for all A,B ∈ NB and r, s ∈ Nr by

pmdef (A,B) :=

{
0 if A 6= B

1 if A = B

and

pmdef (r, s) :=

1 if r = s or s v r

0 if s 6v r and r 6v r

0.01 if r v s and s 6v r

is called the default primitive measure.

To identify a suitable primitive measure, we propose to start with the default primitive
measure and assign values to pairs of concept names where refinement is required. If an
ABox is present and has a representative domain, then one could also use the canonical
interpretation to measures concept names. For example we could define a primitive
measure pmIA through

pmIA(A,B) :=

{
1 if AIA = BIA = ∅
|AIA∩BIA |
|AIA∪BIA | otherwise.

However, note that this is not a valid primitive measure because the first property
(pm(A,B) = 1 ⇐⇒ A = B) is not true in general since the measure cannot distinguish
concept names that have the same individuals. The consequence would be that simi
would not be equivalence closed. Any other property would not be effected.

A way to measure the similarity of two roles in a role hierarchy can be found in
[Jan08] (Section 5.5.2 page 46). In short, it is a network-based approach [RMBB89]
where “Similarity is expressed as the ratio between the shortest path from [the role]
r to [the role] s and the maximum path within the graph representation of the role
hierarchy.“

To incorporate existential restrictions we have three different cases to consider. Namely,
we need to be able to compute the similarity of

1. two concept names,

2. a concept name and an existential restriction and

3. two existential restrictions.

The first case is handled directly by the primitive measure. In the second case, we
assign that a concept name and a existential restriction are always totally dissimilar
and therefore the similarity is 0. For the third case, let ∃r.C∗ and ∃s.D∗ be the two
existential restrictions. To compute the similarity of both atoms, we work with two
components. The similarity of the role names is computed using the primitive measure

57

and the similarity of the concept descriptions C∗ andD∗ which is computed by a recursive
call. Then, to combine both values we could build the product. Using the notation d′,
we can express this formally through

d′(∃r.C∗,∃s.D∗) = pm(r, s) · d′(C∗, D∗).

However, this approach has a disadvantage. Let A,B ∈ NC with pm(A,B) = 0 and
r, s ∈ Nr with pm(r, s) = 0. Then

d′(∃r.A,∃r.B) = d′(∃r.A,∃s.B) = 0.

In the first case, we measure two existential restrictions where the roles are equal and in
the second case both roles are totally dissimilar. The measure does not take into account
that both cases are different and it is also not bounded because lcs(∃r.A,∃r.B) = ∃r.> 6=
>. By searching a solution for this problem, we discussed several possibilities and found
that almost all of them can be described generally using a number w ∈ (0, 1) and the
formula

d′(∃r.C∗,∃s.D∗) := pm(r, s) · [w + (1− w)d′(C∗, D∗)].

In this case, we have

d′(∃r.A,∃r.B) = pm(r, r) · [w + (1− w)pm(A,B)] = w

and
d′(∃r.A,∃s.B) = pm(r, s) · [w + (1− w)pm(A,B)] = 0.

Since we require w > 0, both cases are now distinguished and it can be proven (see 5.4)
that this is enough to ensure that simi is bounded.

To find a suitable w, we suggest that one should try to identify the value n where one
would say that the concept descriptions

C := ∃r. . . .∃r.︸ ︷︷ ︸
n

A

and
D := ∃r. . . .∃r.︸ ︷︷ ︸

n

B

are (nearly) totally similar. In Table 5.1 we present examples of w and the corresponding
n where simi(C,D) > 0.99 using different fuzzy connectors.

58

w = n for ⊗Dice n for ⊗H0 n for ⊗avg

0.8 4 5 4
0.7 5 6 5
0.6 7 7 7
0.5 8 9 8
0.4 11 12 11
0.3 14 16 14
0.25 18 20 18
0.2 22 25 22
0.1 45 52 45
0.05 91 105 91
0.01 460 528 450

Table 5.1: Examples of w and n where simi(C,D) > 0.99

As default value we suggest 0.1.

Putting all pieces together we obtain the following function d′ which now has the primi-
tive measure as a third argument. We denote this special argument using curved paren-
theses. Whenever it is clear what primitive measure to use, we omit writing the curved
parentheses.

d′[pm](C,D) :=

∑
C′∈Ĉ

max
D′∈D̂

d′[pm](C ′, D′)

|Ĉ|
if |Ĉ| > 1 or |D̂| > 1,

pm(A,B) if C,D ∈ NC ,

pm(r, s) · [w + (1− w)d′[pm](E,F)] if C = ∃r.E and D = ∃s.F,
0 otherwise.

5.1.1 Weighting Atoms

Currently all atoms are weighted equally in the function d′. However, there are cases
where one wants to prioritise some concept names over others. For this purpose, we
introduce the possibility to add weights to atoms by using a weighting function.

Definition 40 (weighting function). A function g : NA −→ R>0 is called a weighting
function.

To incorporate the weighting function into d′ we generalize the cardinality of a set by
the sum of the weights of its elements. For example, if g(Reptile) = 2 and g(Brown) = 1
then the new cardinality of BrownSnake is g(Reptile) + g(Brown) = 3. To obtain a
well-defined measure, we have to add the weights to the numerator of d′ as well. We use
the notion d∗ to refer to the generalization of d′ which includes the weighting function.

59

As like in d′, we write the input arguments of d∗ for the weighting function and the
primitive measure with curved parentheses. Formally d∗ is defined by

d∗[pm, g](C,D) :=

∑
C′∈Ĉ

g(C ′) max
D′∈D̂

d∗[pm, g](C ′, D′)∑
C′∈Ĉ

g(C ′)
if |Ĉ| > 1 or |D̂| > 1

pm(A,B) if C,D ∈ NC

pm(r, s)[w + (1− w)d∗[pm, g](E,F)] if C = ∃r.E and D = ∃s.F
0 otherwise.

Correspondingly, we define

s∗[pm, g](C,D) := d∗[pm, g](C,D)⊗avg d
∗[pm, g](D,C).

Since NA is an infinite set we simply cannot write down an entire weighting function. It
has to be defined in a more abstract way. The simplest approach is to define a function
f which weights primitive names and role names and then use f to define g. For an
arbitrary f : NB ∪Nr −→ R>0, we could define g through

g(C) :=

{
f(C) if C ∈ NB

f(r) if C is of the form ∃r.D
.

If f(NB ∪Nr) ⊆ [0, 1], one could also define g recursively through

g(C) :=

f(C) if C ∈ NB

f(r) ·
∏
D′∈D̂

g(D′) if C is of the form ∃r.D .

To find a suitable weighting function, it is best to start with the default weighting
function which weighs everything equal.

Definition 41 (default weighting function). The function gdef : NA −→ R>0 with for
all C ′ ∈ NA gdef (C ′) := 1, is called the default weighting function.

The next step would be to identify concept names and role names which should have
a higher (lower) impact on the similarity value and increase (decrease) their weights.
We now present a short example of a use-case for a weighting function. We use the
terminology defined in the example above and add the concept description

BrownBear ≡ Brown uMammal.

If we measure BrownSnake and BrownBear using the default primitive measure, we
have

s(BrownSnake,BrownBear) =

60

s(BrownSnake,GreenFrog) =
1

2
⊗avg

1

2
=

1

2
.

One could argue that for similarity, the animal class is more important than the color
of an animal and therefore the similarity between BrownSnake and GreenFrog should
be higher than between BrownSnake and BrownBear. We can address this argument
with the weighting function ĝ defined by

• ĝ(Reptile) = ĝ(Mammal) := 2 and

• ĝ(Brown) = ĝ(Green) = ĝ(Y ellow) := 1.

Then, using s∗ we obtain

s∗[pmdef , ĝ](BrownSnake,BrownBear) =

ĝ(Brown) · 1 + ĝ(Reptile) · 0
ĝ(Brown) + ĝ(Reptile)

⊗avg
1 · 1 + 2 · 0

3
=

1

3
⊗avg

1

3
=

1

3

and
s∗[pmdef , ĝ](BrownSnake,GreenFrog) =

ĝ(Brown) · 0 + ĝ(Reptile) · 1
ĝ(Brown) + ĝ(Reptile)

⊗avg
1 · 0 + 2 · 1

3
=

2

3
⊗avg

2

3
=

2

3
.

Now the concepts BrownSnake and GreenFrog are more similar than BrownSnake
and BrownBear.

5.1.2 Using more Knowledge

So far, for every atom of C we search for the atom of D with the highest similarity
value to compute s∗. This approach is not always sufficient as the following example
illustrates. If we measure Brown and Y ellowuBlack with the default weighting function
and a primitive measure pm∗ with

pm∗(Brown, Y ellow) = pm∗(Y ellow,Brown)

= pm∗(Brown,Black) = pm∗(Black,Brown) = 0.5

then
s∗[pm∗](Brown, Y ellow uBlack) =

max{0.5, 0.5}
1

⊗avg
0.5 + 0.5

2
=

1

2
.

The way the similarity is computed does not take into account that Brown is related to
Y ellow and Black. It chooses the “best matching partner“. To deal with this problem

61

we propose to exchange the maximum operator with a t-conorm. The choice for a t-
conorm comes from several facts. First, the operator max is a t-conorm. Secondly, all
t-conorms (⊕) are greater or equal than max (max{x, y} ≤ x ⊕ y) which is consistent
with our expectation that the value should be higher or equal than the maximum. Also,
0 acts as neutral element for t-conorms. Therefore, all atoms from D that are totally
dissimilar do not influence the value.

If we use the probabilistic sum (x⊕sum y = x + y − xy) instead of the maximum for
our example above then

s∗[pm∗](Brown, Y ellow uBlack) =

0.5⊕sum 0.5

1
⊗avg

0.5 + 0.5

2
=

0.75

1
⊗avg

1

2
=

5

8
.

The probabilistic sum takes credit to the fact that Brown is related to Y ellow and
Black by having a higher value (0.75) then the maximum (0.5).

To ensure that simi is equivalence closed, the t-conorm has to be bounded (x⊕ y =
1 =⇒ x = 1 or y = 1). The t-conorm has to ensure that if the result is one, then
there was an atom in the other set such that the similarity is already one. If this is not
the case, then we can construct a counterexample where the similarity is one but the
concept descriptions are not equivalent. We present a short example with a t-conorm
which is not bounded to illustrate this. Let NC := {A,B,C,D} and

∀x, y ∈ NC : pm(x, y) :=

{
1 if x = y

0.5 if x 6= y
.

Using the bounded sum (x⊕luk y = min{x+ y, 1}) as t-conorm, we obtain

s∗[pm](A uB,C uD) =

min{pm(A,C) + pm(A,D), 1}+min{pm(B,C) + pm(B,D), 1}
2

⊗avg
1 + 1

2
= 1

but A uB and C uD are not equivalent.

5.1.3 Definition of simid

We know present a formal definition of simid which is basically a summary of the
derivation presented above. The only additions are the cases involving the concept >.
To fulfill the initially stated property that

simid(C,D) = 1 ⇐⇒ D v C

we have to ensure that simid(>, D) = 1 for an arbitrary concept description D. Addi-
tionally, to ensure that simi is dissimilar closed, we define that for all concept descrip-
tions C 6= >, simid(C,>) = 0. This expectation is covered in the ‘otherwise‘ case of the
definition.

62

If we want to be mathematically correct, then the type of the function simid depends
on the used parameters (the primitive measure, the weighting function, w and the t-
conorm) as well as on the concept descriptions to be measured. However, for simplicity,
we omit writing the parameters in the type because most of the lemmas later will refer
to the case of arbitrary parameters. If we want to make the parameters explicit, we use
curved parentheses. The order of parameters is

simid[t-conorm, primitive measure,weighting function, w].

For example, if the t-conorm is ⊕max, w = 0.5 and the other parameters are free, we
write simid[max, ·, ·, 0.5].

Definition 42 (simid). Let C,D,E, F ∈ C(ELH), A,B ∈ NC and r, s ∈ Nr. Directed
simi is the function simid : C(ELH)2 −→ [0, 1] defined (with respect to a bounded t-
conorm ⊕, a primitive measure pm, a weighting function g and w ∈ (0, 1)) as follows

simid(C,D) :=

∑
C′∈Ĉ

[g(C ′) ·
⊕
D′∈D̂

simid(C
′, D′)]

∑
C′∈Ĉ

g(C ′)
if C 6= >and (|Ĉ| > 1 or |D̂| > 1)

1 if C = >
pm(A,B) if C,D ∈ NC

pm(r, s)[w + (1− w)simid(E,F)] if C = ∃r.E and D = ∃s.F
0 otherwise.

5.2 The Fuzzy Connector

A fuzzy connector is a function which combines the values simid(C,D) and simid(D,C)
to obtain a similarity value for C and D. Since simid is a function producing values
between 0 and 1, a fuzzy connector has to be an operator mapping [0, 1]2 to [0, 1]. The
properties of a fuzzy connector are necessary to ensure some of the properties of simi.

Definition 43 (fuzzy connector). A fuzzy connector is an operator on the interval [0, 1],
⊗ : [0, 1]2 −→ [0, 1] such that for all x, y ∈ [0, 1] the following properties are true.

• Commutativity: x⊗ y = y ⊗ x,

• Equivalence closed: x⊗ y = 1 ⇐⇒ x = y = 1,

• Weak monotonicity: x ≤ y =⇒ 1⊗ x ≤ 1⊗ y,

• Bounded: x⊗ y = 0 =⇒ x = 0 or y = 0 and

• Grounded: 0⊗ 0 = 0.

63

The commutativity of a fuzzy connector ensures that simi is symmetric, the properties
equivalence closed and bounded are connected to the properties of similarity measures
with the same name, weak monotonicity is necessary to prove that simi is subsumption
preserving and grounded ensure that simi is dissimilar closed.
As mentioned above, the average is an example of a fuzzy connector. To find other
interesting fuzzy connectors, we identified the fuzzy connectors which are necessary to
resemble the set similarity measures Jaccard Index and Dice’s Coefficient. Both set
measures are well established and applied to a wide range of applications. Therefore,
they are considered to be a good starting point for generalization. By using a t-norm
called Hamacher product we obtain the Jaccard Index. The Hamacher product is a
bounded t-norm and, as we prove later, all bounded t-norms are fuzzy connectors. To
obtain the Dice’s Coefficient, one has to use the Dice’s Connector which is defined as
follows.

Definition 44 (Dice’s Connector). The Dice’s Connector is a function ⊗Dice : [0, 1]2 −→
[0, 1] defined through

x⊗Dice y :=

{
0 if x = y = 0
2xy
x+y

otherwise
.

The following lemma proves our claims that the average, bounded t-norms and the
Dice’s Connector are fuzzy connectors.

Lemma 12.

1. Bounded t-norms (⊗),

2. the Dice’s Connector and

3. the average

are fuzzy connectors.

Proof.

1. Bounded t-norms are defined to be commutative and bounded. Their monotonicity
implies weak monotonicity. Therefore, we just have to prove that ⊗ is equivalence
closed and grounded.

• Equivalence Closed:
⇒: Let x ⊗ y = 1. Because y ≤ 1 and ⊗ is monotonic, we can derive
x ⊗ y ≤ x ⊗ 1 = x ≤ 1. Therefore 1 ≤ x ≤ 1 =⇒ x = 1. With similar
arguments, we can derive that y = 1.
⇐: Let x = y = 1. Because 1 is an identity element, we know that x⊗ 1 = x
and so for x = 1 we derive 1⊗ 1 = 1.

• Grounded: Monotonicity implies that 0 = 0 ⊗ 1 ≥ 0 ⊗ 0 ≥ 0 and therefore
0⊗ 0 = 0.

64

2. Dice’s Connector:

• The commutativity of Dice’s Connector is obvious.

• Equivalence Closed:
⇒: If x = y = 1 then x⊗Dice y = 2∗1∗1

1+1
= 1.

⇐: Let x⊗Dice y = 1. Since we know that x and y are both not zero, we can
transform the equation 2xy

x+y
= 1 into 2xy = x+y. We prove that this equation

has only two solutions (x, y) ∈ [0, 1]2, namely (0, 0) and (1, 1). Since the tuple
(0, 0) is not a valid solution for the original equation, because 0⊗Dice 0 = 0,
we can derive that x = y = 1.
We transform 2xy = x + y into f(x) = y = x

2x−1 and prove that f((0, 1)) ∩
[0, 1] = ∅. At the point x = 1/2, f is not defined. For 0 < x < 1/2, 2x < 1
and therefore 2x − 1 < 0 which implies that f(x) < 0. For the last case,
1/2 < x < 1, we observe x + 1 > x + x which can be transformed into
x > 2x− 1 > 0. This implies that f(x) > 1.

• Weak Monotonicity: Let x ≤ y. Then

x ≤ y ⇐⇒ 2x ≤ 2y ⇐⇒ 2xy + 2x ≤ 2xy + 2y ⇐⇒ 2x(y + 1) ≤ 2y(x+ 1)

⇐⇒ 2x

x+ 1
≤ 2y

y + 1
⇐⇒ 1⊗Dice x ≤ 1⊗Dice y.

• Bounded: Let x⊗Dice y = 0. This implies 2xy = 0 which implies that x = 0
or y = 0.

• Grounded: 0⊗Dice 0 = 0 by definition.

3. Average:

• Commutativity of the average is obvious.

• Equivalence Closed:
⇒: Let x = y = 1 then avg(x, y) = 1+1

2
= 1.

⇐: If avg(x, y) = 1 then x+ y = 2. Since 0 ≤ x, y ≤ 1, we derive x = y = 1.

• Weak Monotonicity: Let x ≤ y. Then

x ≤ y ⇐⇒ x+ 1 ≤ y + 1 ⇐⇒ x+ 1

2
≤ y + 1

2
⇐⇒ avg(1, x) ≤ avg(1, y).

• Bounded: (x+ y)/2 = 0 implies that x = y = 0 because x, y ≥ 0.

• Grounded: (0 + 0)/2 = 0.

The following lemma is an aid to help deciding which fuzzy connector to choose. It
proves that the fuzzy connectors we presented can be ordered. To find a suitable fuzzy
connector we suggest to start with the minimum. If one has the feeling that the results

65

for some test data are to high then the Hamacher product should be used, whereas if
the values are to low then the Dice’s Connector might fit better. The inspection of the
distributions of the presented fuzzy connector also provides knowledge that can aid to
choose.

Lemma 13. Let x, y ∈ [0, 1], then

x⊗prod y ≤ x⊗H0 y ≤ x⊗min y ≤ x⊗Dice y ≤ x⊗avg y.

Proof. First we observe that if x = y = 0 then all fuzzy connectors are 0 by definition
and therefore the inequality is true. Assuming that x and y are not both 0 and using
the definitions we can reformulate the inequality to

xy ≤ xy

x+ y − xy
≤ min{x, y} ≤ 2xy

x+ y
≤ x+ y

2
.

• xy ≤ xy
x+y−xy : We have

y ≤ 1 ⇐⇒ (1− x)y ≤ (1− x) ⇐⇒ y − xy ≤ 1− x ⇐⇒

x+ y − xy ≤ 1 ⇐⇒ 1 ≤ 1

x+ y − xy
⇐⇒ xy ≤ xy

x+ y − xy
.

• xy
x+y−xy ≤ min{x, y}: W.l.o.g. we assume that x ≤ y. We have

xy ≤ y ⇐⇒ 0 ≤ x− xy ⇐⇒ y ≤ x+ y − xy ⇐⇒
y

x+ y − xy
≤ 1 ⇐⇒ xy

x+ y − xy
≤ x = min{x, y}.

• min{x, y} ≤ 2xy
x+y

: W.l.o.g. we assume that x ≤ y so we have

x ≤ y ⇐⇒ x+ y ≤ 2y ⇐⇒

1 ≤ 2y

x+ y
⇐⇒ min{x, y} = x ≤ 2xy

x+ y
.

• 2xy
x+y
≤ x+y

2
: We have

0 ≤ (x− y)2 ⇐⇒ 0 ≤ x2 + y2 − 2xy ⇐⇒ 2xy ≤ x2 + y2

⇐⇒ 4xy ≤ x2 + y2 + 2xy ⇐⇒ 4xy ≤ (x+ y)2

⇐⇒ 4xy

x+ y
≤ x+ y ⇐⇒ 2xy

x+ y
≤ x+ y

2
.

66

5.3 Definition of Simi

The similarity measure simi is defined using simid and a fuzzy connector. As simid,
we will denote the specific fuzzy connector, as well as the other parameters passed on
to simid using curved parentheses. The order of parameters is

simi[fuzzy connector, t-conorm, primitive measure,weighting function, w].

For example, if the fuzzy connector is ⊗prop, the t-conorm is ⊕max, w = 0.5 and the
other parameters are free, we write simi[prop,max, ·, ·, 0.5].

Definition 45 (simi). Let ⊗ be a fuzzy connector. The function simi : C(ELH)2 −→
[0, 1] is defined through

simi(C,D) := simid(C,D)⊗ simid(D,C).

5.4 Properties

Here we present the proofs that simi is symmetric (and therefore indeed a similarity
measure according to our definition of similarity measures), equivalence invariant, equiv-
alence closed, subsumption preserving, bounded, structural dependent and if one uses the
default primitive measure then it is also dissimilar closed. Then we show that simi
can be computed in time polynomial in the size of the concept descriptions to measure.
Additionally, we prove that in general, simi is not reverse subsumption preserving and
it does not fulfill the triangle inequality. Finally, we show that simi can be used to
generalize the Jaccard Index and Dice’s Coefficient.
In the following we omit writing the parameters explicitly and assume that the primitive
measure is pm, the weighting functions is g, the t-conorm is ⊕ and the fuzzy connector
is ⊗.
The following lemma is used later to prove that simi is equivalence invariant and equiv-
alence closed.

Lemma 14. Let C,D ∈ C(ELH), then

simid(C,D) = 1 ⇐⇒ D v C.

Proof.

• ⇒: Let simid(C,D) = 1. If C = > thenD v C = > is true. Let C 6= >. According

to Lemma 1, to prove D v C we have to show that ∀C ′ ∈ Ĉ ∃D′ ∈ D̂ : D′ v C ′.
Let C ′ be an arbitrary atom of C. simid(C,D) = 1 implies that∑

C′∈Ĉ

g(C ′) =
∑
C′∈Ĉ

[g(C ′) ·
⊕
D′∈D̂

simid(C
′, D′)].

Because
g(C ′) ·

⊕
D′∈D̂

simid(C
′, D′) ≤ g(C ′)

67

we derive that for all C ′ ∈ Ĉ :
⊕

D′∈D simid(C
′, D′) = 1. Since the t-conorm is

bounded, there ∃D′ ∈ D such that simid(C
′, D′) = 1. The rest of the proof will

be done using structural induction and case.
If C ′ = A then simid(C

′, D′) = 1 leads to D′ = A which implies D′ v C ′.
Let C ′ = ∃r.C∗. According to the definition of simid, the only case possible such
that simid(C

′, D′) = 1 is D′ is of the form D′ = ∃r.D∗. Here

simid(C
′, D′) = 1 = [w + (1− w)simid(C

∗, D∗)].

Since w < 1, simid(C
∗, D∗) has to be 1. The induction hypothesis implies that

D∗ v C∗ which implies D′ v C ′.

• ⇐: Let D v C. If C = > then by definition of simid, simid(C,D) = 1. Let
C 6= >. We have to show that∑

C′∈Ĉ

g(C ′) =
∑
C′∈Ĉ

[g(C ′) ·
⊕
D′∈D̂

simid(C
′, D′)]

which is equivalent to

∀C ′ ∈ Ĉ : g(C ′) ·
⊕
D′∈D̂

simid(C
′, D′) = g(C ′)

and
∀C ′ ∈ Ĉ :

⊕
D′∈D

simid(C
′, D′) = 1.

D v C and Lemma 1 imply that ∀C ′ ∈ Ĉ ∃D′ ∈ D̂ : D′ v C ′. Let C ′ be
an arbitrary atom of C and D′ ∈ D̂ such that D′ v C ′. Lemma 2 implies
that it is enough to prove that ∃D′ ∈ D such that simid(C

′, D′) = 1 to derive⊕
D′∈D simid(C

′, D′) = 1. The rest of the proof will be done using structural in-
duction and case.
If C ′ = A then D′ v C ′ implies that D′ = A which leads to

simid(C
′, D′) = pm(A,A) = 1.

Let C ′ = ∃r.C∗. D′ v C ′ implies that D′ is of the form D′ = ∃s.D∗ with s vR r
and D∗ v C∗. The definition of primitive measures leads us to pm(r, s) = 1 and
the induction hypothesis implies that simid(C

∗, D∗) = 1. Therefore,

simid(C
′, D′) = pm(r, s)[w + (1− w)simid(C

∗, D∗)] = 1 · [w + (1− w) · 1] = 1.

The following lemma will later be used to show that simi is subsumption preserving.

Lemma 15. Let C, D and E be concept descriptions such that D v E. Then

simid(C,E) ≤ simid(C,D).

68

Proof. If C = > then simid(C,E) = 1 ≤ simid(C,D) = 1 is true. Let C 6= >. We are

going to show that for all C ′ ∈ Ĉ⊕
E′∈Ê

simid(C
′, E ′) ≤

⊕
D′∈D̂

simid(C
′, D′).

Since t-conorms are monotonic and 0 is the neutral element, it is enough to prove that
for all E ′ ∈ Ê there exists a D′ ∈ D̂ such that simid(C

′, E ′) ≤ simid(C
′, D′). D v E

implies that there exists a D′ ∈ D with D′ v E ′ For the rest of the proof, let E ′ be an
arbitrary atom from E and D′ ∈ D̂ with D′ v E ′. We are going to prove that

simid(C
′, E ′) ≤ simid(C

′, D′). (5.1)

Let C ′ = A ∈ NC . If E ′ /∈ NC then simid(C
′, E ′) = 0 and Equation 5.1 is fulfilled. If

E ′ ∈ NC then D′ v E ′ implies D′ = E ′ and Equation 5.1 is true.
Let C ′ = ∃r.C∗. If E ′ ∈ NC∪{>} then simid(C

′, E ′) = 0 and Equation 5.1 is fulfilled.
Let E ′ be of the form E ′ = ∃s.E∗. Since D′ v E ′, D′ has to be of the form D′ =
∃t.D∗ with t vR s and D∗ v E∗. The induction hypothesis implies simid(C

∗, E∗) ≤
simid(C

∗, D∗). This is equivalent to

[w + (1− w)simid(C
∗, E∗)] ≤ [w + (1− w)simid(C

∗, D∗)].

Because pm is subsumption preserving we have pm(r, s) ≤ pm(r, t) which implies

pm(r, s)[w + (1− w)simid(C
∗, E∗)] ≤ pm(r, t)[w + (1− w)simid(C

∗, D∗)].

and therefore
simid(C

′, E ′) ≤ simid(C
′, D′).

The following lemma will be used to prove that simi is bounded and dissimilar closed
if the default primitive measure is used.

Lemma 16. Let C,D ∈ C(ELH). Then

1. simid(C,D) = 0 =⇒ lcs(C,D) = > and

2. C 6≡ > and lcs(C,D) ≡ > =⇒ simid[·, pmdef](C,D) = 0.

Proof. 1. If C = > then simid(C,D) = 1 which is a contradiction to our assumption
and if D = > then lcs(C,D) = > is clear. Let C 6= > and D 6= >. In general
simid(C,D) = 0 implies∑

C′∈Ĉ

[g(C ′) ·
⊕
D′∈D̂

simid(C
′, D′)] = 0

which implies that for all C ′ ∈ Ĉ,
⊕

D′∈D̂ simid(C
′, D′) = 0. Since 0 is the neutral

element for t-conorms, the latter one is equivalent to simid(C
′, D′) = 0 for all

69

D′ ∈ D̂. We are going to use this fact to prove that lcs(C ′, D′) = > which implies
lcs(C,D) = >.

Let C ′ ∈ Ĉ and D′ ∈ D̂ be arbitrary atoms. If C ′ ∈ NC and D′ ∈ NA \ NC or
C ′ ∈ NA \NC and D′ ∈ NC then lcs(C ′, D′) = >.
If C ′, D′ ∈ NC then

simid(C
′, D′) = 0 =⇒ pm(C ′, D′) = 0 =⇒ C ′ 6= D′ =⇒ lcs(C ′, D′) = >.

Otherwise, let C ′ = ∃r.C∗ and D′ = ∃s.D∗. Then

0 = simid(C
′, D′) = pm(r, s)[w + (1− w)simid(C

∗, D∗)].

If w + (1− w)simid(C
∗, D∗) would be 0, then

simid(C
∗, D∗) = − w

1− w

which is not possible because 1 > w > 0 and simid(C
∗, D∗) > 0. Therefore,

pm(r, s) = 0. This implies that s 6vR r and r 6vR s. Therefore, lcs(C ′, D′) = >.

2. Since we assume that C is in ELH normal form, C 6≡ > implies C = >. If
D = > then simid[·, pmdef](C,D) = 0 by definition. Let D 6= >. To prove

simid[·, pmdef](C,D) = 0, we show that for all C ′ ∈ Ĉ andD′ ∈ D̂, simid(C
′, D′) =

0.
If C ′ ∈ NC and D′ ∈ NA\NC or C ′ ∈ NA\NC and D′ ∈ NC then simid(C

′, D′) = 0
by definition.
Let C ′, D′ ∈ NC , then lcs(C,D) = > implies that C ′ 6= D′ which brings us to
simid(C

′, D′) = pmdef (C ′, D′) = 0.
Otherwise, if C ′ = ∃r.C∗ and D′ = ∃s.D∗ then

lcs(C ′, D′) = > =⇒ s 6vR r =⇒ pmdef (s, r) 6= 1

=⇒ pmdef (s, r) = 0 =⇒ simid(C
′, D′) = 0.

Next, we are proving a lemma which is used to show that simi is structural dependent.
This property is not true for arbitrary weighting functions. However, we are proving it
for a set of weighting functions which includes the default weighting function.

Lemma 17. Let D,E ∈ C(ELH) and (Cn)n be a sequence of atoms with ∀i, j ∈ N, i 6=
j : Ci 6v Cj. Furthermore, let g′ be a weighting function where the infimum of the set of
all weights (which is the image of the weighting function) is greater than zero, so

inf{g(C ′) | C ′ ∈ C(ELH)} > 0,

then
lim
n→∞

simid[·, ·, g′](
l

i≤n

Ci uD,
l

i≤n

Ci u E) = 1.

70

Proof. Before we can use simi, the concept descriptions
d

i≤nCi u D and
d

i≤nCi u E
need to be transformed into ELH normal form. Since Ci 6v Cj, the part

d
i≤nCi remains

the same. Only D and E would be syntactically changed (or even eliminated). However,
we continue to use the notations D and E in the proof because we assumed that D and
E are arbitrary concept descriptions and the fact whether or not they are in normal
form does not matter in this proof.
For an arbitrary i ≤ n, Lemma 14 implies that simid(Ci, Ci) = 1. Together with Lemma
2 we derive that ⊕

E′∈Ê

simid(Ci, E
′)⊕

⊕
j≤n

simid(Ci, Cj) = 1.

Let f : D̂ −→ [0, 1] be a function defined by

f(D′) :=
⊕
E′∈Ê

simid[·, ·, g′](D′, E ′)⊕
⊕
i≤n

simid[·, ·, g′](D′, Ci).

Additionally, let d := |D̂| and

g′inf := inf{g(C ′) | C ′ ∈ C(ELH)}.

Note that according to our premise, g′inf > 0. Using the fact that for all D′ ∈ D̂ :
f(D′) ∈ [0, 1] we obtain

simid[·, ·, g′](
l

i≤n

Ci uD,
l

i≤n

Ci u E) =

∑
i≤n

g′(Ci) +
∑
D′∈D̂

g′(D′) · f(D′)

∑
i≤n

g′(Ci) +
∑
D′∈D̂

g′(D′)

≥

∑
i≤n

g′(Ci)∑
i≤n

g′(Ci) +
∑
D′∈D̂

g′(D′)

≥
n · g′inf

(n+ d) · g′inf
=

n

n+ d
.

Since simid[·, ·, g′](
d

i≤nCi uD,
d

i≤nCi u E) ≤ 1, we have

1 ≥ lim
n→∞

simid[·, ·, g′](
l

i≤n

Ci uD,
l

i≤n

Ci u E) ≥ lim
n→∞

n

n+ d
= 1.

which implies

lim
n→∞

simid[·, ·, g′](
l

i≤n

Ci uD,
l

i≤n

Ci u E) = 1.

71

It follows the main theorem, describing the properties of simi.

Theorem 1. Simi is

1. symmetric,

2. equivalence invariant,

3. equivalence closed,

4. subsumption preserving,

5. bounded and

6. simi[·, ·, pmdef] is dissimilar closed.

7. Let g′ be a weighting function with inf{g′(C ′) | C ′ ∈ C(ELH)} > 0. Furthermore,
let ⊗′ be a fuzzy connector such that for all sequences (xn)n and (yn)n (xi, yi ∈
[0, 1]) with limn→∞ xn = limn→∞ yn = 1, limn→∞ xn⊗′yn = 1. Then simi[⊗′, ·, ·, g′]
is structural dependent.

Proof. Let C,D,E be concept descriptions in ELH normal form.

1. Fuzzy connectors are defined to be commutative which implies that simi is sym-
metric.

2. Equivalence invariant: Let C ≡ D. The goal is to prove that simi(C,E) =
simi(D,E). Since we are working with a unique ELH normal form, C ≡ D implies
that C and D (or their corresponding normal forms) are syntactically equal. This
trivially implies simi(C,E) = simi(D,E).

3. Equivalence closed: With the usage of Lemma 14 and the fact that fuzzy connectors
are equivalence closed we derive the chain

C ≡ D ⇐⇒ C v D and D v C ⇐⇒ simid(C,D) = simid(D,C) = 1

⇐⇒ simid(C,D)⊗ simid(D,C) = 1 ⇐⇒ simi(C,D) = 1.

4. Subsumption preserving: Let C v D v E. Using Lemma 14 and the weak mono-
tonicity of fuzzy connectors, we derive

simi(C,D) = simid(C,D)⊗ simid(D,C) = simid(C,D)⊗ 1 = simid(C,D)

and analogues simi(C,E) = simid(C,E). Lemma 15 implies that

simi(C,E) = simid(C,E) ≤ simid(C,D) = simi(C,D).

5. Bounded: Let simi(C,D) = 0. Since fuzzy connectors are bounded, this im-
plies that either simid(C,D) = 0 or simid(D,C) = 0. W.l.o.g. we assume that
simid(C,D) = 0. The first part of Lemma 16 implies that lcs(C,D) = >.

72

6. Dissimilar closed: Let C 6≡ >, D 6≡ > and lcs(C,D) ≡ >. The second part of
Lemma 16 implies that simid[·, pmdef](C,D) = simid[·, pmdef](D,C) = 0. Since
fuzzy connectors are grounded, we derive simi(C,D) = 0⊗ 0 = 0.

7. Structural dependent: Let D′, E ′ ∈ NA and (Cn)n be a sequence of atoms with
∀i, j ∈ N, i 6= j : Ci 6v Cj. Furthermore, let

simiDd (n) := simid[·, ·, g′](
l

i≤n

Ci uD′,
l

i≤n

Ci u E ′)

and
simiEd (n) := simid[·, ·, g′](

l

i≤n

Ci u E ′,
l

i≤n

Ci uD′).

Lemma 17 implies that

lim
n→∞

simiDd (n) = 1 and lim
n→∞

simiEd (n) = 1.

Therefore,

lim
n→∞

simi[⊗′, ·, ·, g′](
l

i≤n

Ci uD′,
l

i≤n

Ci u E ′) = simiDd (n)⊗′ simiEd (n) = 1.

An important property of simi is that it can be computed in time polynomial in
the size of the concept descriptions to measure if all involved parameter functions are
polynomial.

Lemma 18. Simi can be computed in time polynomial in the size of the concept de-
scriptions to measure if the specific fuzzy connector, the bounded t-conorm, the primitive
measure and the weighting function can be computed in polynomial time.

Proof. Let C,D ∈ C(ELH). First, let us observe that if simid is polynomial, then simi
is polynomial as well because we assume that the fuzzy connector is polynomial. We now
take a look at the complexity of computing simid(C,D). All atomic cases are polynomial
because we assume that the primitive measure is polynomial. As for the case

simid(C,D) =

∑
C′∈Ĉ

[g(C ′) ·
⊕
D′∈D̂

simid(C
′, D′)]

∑
C′∈Ĉ

g(C ′)
,

it is easy to see that we have to compute |Ĉ| · |D̂| many similarity values. Since the
depth of the recursion calls in the case of C ′ = ∃r.E and D′ = ∃s.F is bounded by the
size of C and D, the overall complexity of simi is bounded by O(poly(|C||D|)) where
|C| is the number of occurrences of role names and concept names in C.

73

5.4.1 Towards Triangle Inequality and Reverse Subsumption
Preserving

In general simi is not reverse subsumption preserving and it does not fulfill the triangle
inequality. The main reason for not fulfilling triangle inequality is that simid(C,D)
does not use the similarity values between the atoms of C and between the atoms of
D. Before we present a formal proof which covers most parameter settings, we illustrate
the problem by example. Let n ≥ 1, G,F0, . . . Fn be some atoms with ∀i, j ≤ n, i 6= j :
simid(Fi, Fj) = n−1

n
and simid(G,Fi) = simid(Fi, G) = 0. Furthermore, let

C := G u
l

i≤n

Fi,

D := G u F0,

E := G.

In the following we use the default primitive measure, the default weighting function
and the Hamacher product as fuzzy connector.
Since C v D v E, Lemma 15 implies that

simid(E,C) = simid(E,D) = simid(D,C) = 1.

Since the Hamacher product is a t-norm and 1 acts as neutral element for t-norms we have
simi(C,E) = simid(C,E), simi(C,D) = simid(C,D) and simi(D,E) = simid(D,E).
Independent from the choice of t-conorm we have simid(D,E) = 1

2
, simid(C,E) = 1

n+2

and

simid(C,D) =
1 + 1 + nn−1

n

n+ 2
=
n+ 1

n+ 2
.

The triangle inequality requires that

1 + simi(C,E) ≥ simi(C,D) + simi(D,E).

In our case we have,

1 +
1

n+ 2
≥ n+ 1

n+ 2
+

1

2

which is false for n ≥ 4 (for n = 4 we have 7
6
6≥ 8

6
). Since all Fi are getting more similar

the greater n is, the convergence of the similarity of C and D towards 1 is consistent with
our intuition. The problem is the similarity value of C and E. It decrease with growing
n because the cardinality of Ĉ increases. This is in contradiction to our intuition because
the Fi are very similar (close to total similar) and therefore the difference between E
and C is not as great as the value of simid indicates. The reason for the behaviour of
simid is that the way simid is computed does not take usage of the similarity values
among the Fi. It does not use the information that they are very similar to each other.
An idea to overcome this problem is that a similarity measure could automatically weight
the atoms using the similarity values between them so that for examples the weighted
cardinality of Ĉ is just a little higher than to 2 instead of n+ 2. Also, we would need to

74

adjust the numerator in the definition of simid as well. Further research is required to
find a solution for this problem.
We now prove formally that simi does not have the triangle inequality property. The
counter example defined in the proof is derived from the example presented above. Addi-
tionally, the counter example can be used to prove that simi is not reverse subsumption
preserving.

Lemma 19. Let ⊗z be a fuzzy connector.

1. If there exists an n ∈ N such that

1− [1⊗z
2n− 1

2n
] < [1⊗z

1

2
]− [1⊗z

1

n+ 1
] (5.2)

then simi[z, ·, ·, gdef] has not the triangle inequality property.

2. If there exists an n ∈ N such that

1⊗z
1

n+ 1
< 1⊗z

1

2
(5.3)

then simi[z, ·, ·, gdef] is not reverse subsumption preserving.

Proof.

1. We have to prove that there are concept descriptions C,D and E such that

1 + simi[z, ·, ·, gdef](D,E) < simi[z, ·, ·, gdef](D,C) + simi[z, ·, ·, gdef](C,E).

For easier reading, we use the notions simi∗ to refer to simi[z, ·, ·, gdef] and simi∗d
instead of simid[·, ·, gdef]. Let NC := {A1, . . . , An, B}, Nr := {r} and we define

C := B u ∃r.
l

i≤n

Ai,

D := B u
l

i≤n

(∃r.
l

j≤n,j 6=i

Aj)

and E := B. The fact C v D v E and Lemma 14 implies

simi∗d(D,C) = simi∗d(E,C) = simi∗d(E,D) = 1.

In the following we omit writing weights because we are using the gdef . For
simi∗d(C,E) and simi∗d(D,E) we have

simi∗d(C,E) =

simi∗d(B,B) + simi∗d(∃r.
l

i≤n

Ai, B)

2
=

1 + 0

2
=

1

2

75

and

simi∗d(D,E) =

simi∗d(B,B) +
∑
i≤n

simi∗d(∃r.
l

j≤n,j 6=i

Aj, B)

n+ 1
=

1 + 0

n+ 1
=

1

n+ 1
.

As for simi∗d(C,D), we first take a look at simi∗d(∃r.
d

i≤nAi, ∃r.
d

j≤n,j 6=iAj) for
some i ≤ n. With x :=

⊕
j≤n,j 6=i pm(Ai, Aj), we have

simi∗d(∃r.
l

i≤n

Ai,∃r.
l

j≤n,j 6=i

Aj) = pm(r, r)[w + (1− w)
n− 1 + x

n
]

= [w + (1− w)
n− 1 + x

n
] ≥ [w + (1− w)

n− 1

n
] ≥ n− 1

n
.

The last inequality is a consequence from the fact that ∀a, b ∈ [0, 1] : a+(1−a)b ≥ b
which is proven through

a ≥ ab ⇐⇒ a− ab ≥ 0 ⇐⇒ a+ b− ab ≥ b ⇐⇒ a+ (1− a)b ≥ b.

Using the monotonicity of t-conorms, we obtain

simi∗d(C,D) =

simi∗d(B,B) +
⊕
i≤n

simi∗d(∃r.
l

i≤n

Ai,∃r.
l

j≤n,j 6=i

Aj)

2

≥

1 +
⊕
i≤n

n− 1

n

2
≥

1 + n−1
n

2
=

2n− 1

2n
.

This finally leads us to

simi∗(D,E) = 1⊗z
1

n+ 1
,

simi∗(C,E) = 1⊗z
1

2
and

simi∗(D,C) ≥ 1⊗z
2n− 1

2n
.

We have

1− simi∗(D,C) ≤ 1− [1⊗z
2n− 1

2n
]

where the initial assumption, Equation 5.2 implies that

1− [1⊗z
2n− 1

2n
] < [1⊗z

1

2
]− [1⊗z

1

n+ 1
] = simi∗(C,E)− simi∗(D,E)

and therefore

1− simi∗(D,C) < simi∗(C,E)− simi∗(D,E)

which can be reformulated to

1 + simi∗(D,E) < simi∗(D,C) + simi∗(C,E).

76

2. We use the same C, D and E as defined above We know that C v D v E,
simi∗(D,E) = 1 ⊗z

1
n+1

and simi∗(C,E) = 1 ⊗z
1
2
. Equation 5.3 directly implies

simi∗(D,E) < simi∗(C,E) which contradicts reverse subsumption preserving.

Because 1 is the neutral element for t-norms, with n = 3 all of them are fulfilling
Equation 5.2 and 5.3 as well as the average and the Dice’s Connector. Note that the
proof could be done using an arbitrary weighting function instead of the default weight-
ing function, however we decided not to prove this version, because it is much more
complicated and it does not add to the understanding of the problem. A fuzzy connec-
tor not fulfilling Equation 5.2 is ⊗ce which is defined as follows, where ⊗ is an arbitrary
t-norm and x, y ∈ [0, 1]:

x⊗ce y :=

{
1 if x = y = 1
1
2
· [x⊗ y] otherwise

.

Here, for x 6= 1 we have 1
2
≥ [1⊗ce x] which implies

[1⊗ce
1

2
]− [1⊗z

1

n+ 1
] ≤ 1

2
≤ 1− [1⊗ce

2n− 1

2n
].

5.4.2 Simi Generalizes the Jaccard Index

One of our aims for simi is to be able to generalize the L0 measure Jaccard Index (see
4.2.1). In this Section we show that this can be accomplished by using the default
primitive measure, the default weighting function and the Hamacher product as fuzzy
connector. Additionally, we prove that simi can generalize Dice’s Coefficient (see 4.2.2)
by using Dice’s Connector as fuzzy connector.

We start by proving that simid generalizes the function

d(C,D) =
|Ĉ ∩ D̂|
|Ĉ|

and then prove that we obtain Dice’s Coefficient and the Jacc by using Dice’s Connector
and the Hamacher product as fuzzy connector.

Lemma 20. Let C,D be concept descriptions with Ĉ ⊆ NC and D̂ ⊆ NC, then

simid[·, pmdef , gdef , ·](C,D) =
|Ĉ ∩ D̂|
|Ĉ|

.

Proof. First, we observe that because we are using the default weighting function,∑
C′∈Ĉ gdef (C ′) = |Ĉ|. Let A ∈ Ĉ. If A ∈ D̂ then Lemma 2 implies that⊕

D′∈D̂

simid[·, pmdef , gdef , ·](A,D′) =

77

⊕
D′∈D̂\{A}

simid[·, pmdef , gdef , ·](A,D′)⊕ pmdef (A,A) =

⊕
D′∈D̂\{A}

simid[·, pmdef , gdef , ·](A,D′)⊕ 1 = 1.

Otherwise, if A /∈ D̂ then ∀D′ ∈ D̂ : simid(A,D
′) = pmdef (A,D′) = 0 which implies⊕

D′∈D̂

simid[·, pmdef , gdef , ·](A,D′) = 0.

Therefore

simid[·, pmdef , gdef , ·](C,D) =

∑
C′∈Ĉ 1 · |{C ′} ∩ D̂|

|Ĉ|
=
|Ĉ ∩ D̂|
|Ĉ|

.

The next lemma proves our claim that the Hamacher product and Dice’s Connector
(together with the function d) are the same as the Jaccard Index and Dice’s Coefficient.
Note that for this prove, concept descriptions are build from concept names only.

Lemma 21. Let C,D be concept descriptions with Ĉ ⊆ NC and D̂ ⊆ NC, then

Jacc(Ĉ, D̂) = d(C,D)⊗H0 d(D,C)

and
Dice(Ĉ, D̂) = d(C,D)⊗Dice d(D,C).

Proof.

• Using the definition of the Hamacher product, we obtain

d(C,D)⊗H0 d(D,C) =

|Ĉ∩D̂|
|Ĉ|

|Ĉ∩D̂|
|D̂|

|Ĉ∩D̂|
|Ĉ|

+ |Ĉ∩D̂|
|D̂|
− |Ĉ∩D̂|

|Ĉ|
|Ĉ∩D̂|
|D̂|

=

|Ĉ∩D̂|
|Ĉ||D̂|

1

|Ĉ|
+ 1

|D̂|
− |Ĉ∩D̂|
|Ĉ||D̂|

=
|Ĉ ∩ D̂|

|D̂|+ |Ĉ| − |Ĉ ∩ D̂|
=
|Ĉ ∩ D̂|
|Ĉ ∪ D̂|

= Jacc(Ĉ, D̂).

• Using the definition of the Dice’s Connector, we obtain

d(C,D)⊗Dice d(D,C) =
2 |Ĉ∩D̂|
|Ĉ|

|Ĉ∩D̂|
|D̂|

|Ĉ∩D̂|
|Ĉ|

+ |Ĉ∩D̂|
|D̂|

=
2 |Ĉ∩D̂|
|Ĉ||D̂|

1

|Ĉ|
+ 1

|D̂|

=
2|Ĉ ∩ D̂|
|D̂|+ |Ĉ|

= Dice(Ĉ, D̂).

78

6 Conclusion

In this thesis we presented several properties for description logic similarity measures,
some that were already present in the relevant literature and some new ones. The
new properties model a connection between subsumption and similarity, resulting in the
properties subsumption preserving and reverse subsumption preserving, a connection
between total dissimilarity and the least common subsumer, resulting in the properties
dissimilar closed and bounded and an adoption of the basic rule of Tversky’s feature
model resulting in the property structural dependent.

An investigation of nine description-logic-similarity measures, towards what properties
they fulfil, was conducted. A proof for every fulfilled property and a counterexample
for every non-fulfilled property was presented. We used the counterexamples to point
to, in our opinion, defects of the corresponding measure underlying our statement that
properties can be used to analyse the general behaviour of a measure. As a result we
conclude that, except for the L0 measures Jaccard Index and Dice, all analysed measure
show cases of unintuitive behaviour.

We presented the ELH similarity measure simi. This measure is a generalization of
the Jaccard Index. It can be tuned by parameters and is therefore regarded as a sim-
ilarity framework. We proved that, almost independently from the choice of values
for the parameters, simi is equivalence closed, equivalence invariant, dissimilar closed,
bounded, structural dependent and subsumption preserving. Additionally, we proved
that in general, simi is not reverse subsumption preserving and it does not fulfil the
triangle inequality. Finally, we showed that simi can be computed in time polynomial
in the size of the concept descriptions to measure.

6.1 Open Problems

The following list presents some open problems.

• One problem is to find a measure which fulfils the triangle inequality. None of the
measures we investigated fulfils triangle inequality, except of the Jaccard Index
which is a measure for the inexpressive description logic L0. As we argued in
Chapter 3, triangle inequality is considered to be a natural property and therefore
it is worth investigating how such a measure fulfilling triangle inequality would
look like. In Section 5.4.1 we described our finding that modifying simi such that
it fulfils triangle inequality involves using the similarity values between the atoms
of every concept description to measure separately.

79

• Another problem is to deal with more expressive description logics but still try to
fulfil as many properties as possible. Especially description logics with disjunction
are challenging.

• Cyclic TBoxes are also an open problem. Since in general expansion of concept
descriptions is not possible, the knowledge of the TBox needs to be considered
when measuring similarity. Except for [dSF08] (which uses the good common
subsumer which is computed with respect to a TBox), no measure we investigated
is capable of including the knowledge of a cyclic TBox.

• Another question is to identify other general expectations of similarity measures
which can be expressed as a property and used to analyse the overall behaviour of
a measure.

• Let W be an arbitrary and fixed set of concept descriptions. A use case of similarity
measures could be, given a concept description C which we call query concept, to
search for the concept description D ∈ W with the highest similarity regarding C,
so ∀E ∈ W : sim(C,E) ≤ sim(C,D). The simplest solution to solve the query
problem is to compute the similarity between C and all elements of W . Although
this approach is linear in W it could be impracticable if W is very large. Therefore,
more efficient algorithms are of interest. To find these, one could take advantage
of the properties of the measure, either by using the properties defined in Chapter
3 or by identifying new ones. For example, since we know that W is fixed, we
could compute the subsumption hierarchy of W in advance. If the measure is
subsumption preserving and we have a concept description D ∈ W with C v D
then we do not need to compute the similarity of C and all subsumers of D.

80

List of Tables

2.1 Concept descriptions constructors . 8
2.2 Description Logics . 8
2.3 Concept axioms and role inclusion axiom 10
2.4 Examples of t-norms . 15
2.5 Examples of t-conorms . 15

4.1 Overview of similarity measures and their properties 52

5.1 Examples of w and n where simi(C,D) > 0.99 59

81

82

Bibliography

[BCM+03] Franz Baader, Diego Calvanese, Deborah L McGuinness, Daniele Nardi, and
Peter F Patel-Schneider. The Description Logic Handbook: Theory, Imple-
mentation, and Applications. Cambridge University Press, 2003.

[BG97] Brian Bowdle and Dedre Gentner. Informativity and asymmetry in compar-
isons. Cognitive Psychology, 34(3):244–286, 1997. PMID: 9466832.

[BKT02] Sebastian Brandt, Ralf Küsters, and Anni-Yasmin Turhan. Approximat-
ing ALCN-Concept descriptions. In Proceedings of the 2002 International
Workshop on Description Logics (DL 2002), 2002.

[BST07] Franz Baader, Baris Sertkaya, and Anni-Yasmin Turhan. Computing the
least common subsumer w.r.t. a background terminology. Journal of Applied
Logic, 5(3):392–420, 2007.

[dFE05] Claudia d’Amato, Nicola Fanizzi, and Floriana Esposito. A semantic similar-
ity measure for expressive description logics. In Convegno Italiano di Logica
Computazionale (CILC 2005), 2005.

[dFE06] Claudia d’Amato, Nicola Fanizzi, and Floriana Esposito. A dissimilarity
measure for ALC concept descriptions. In Proceedings of the ACM symposium
on Applied computing, SAC ’06, page 1695–1699, 2006.

[Dic45] L.R Dice. Measures of the amount of ecologic association between species.
Ecology, 26(3):297–302, 1945.

[dSF08] Claudia d’Amato, Steffen Staab, and Nicola Fanizzi. On the influence of
description logics ontologies on conceptual similarity. In Proceedings of the
16th Knowledge Engineering Conference (EKAW2008), volume 5268, pages
48–63, 2008.

[FD06] N Fanizzi and C D’amato. A similarity measure for the ALN description
logic. In Convegno Italiano di Logica Computazionale (CILC 2006), 2006.

[Gen07] R. Gentleman. Visualizing and distances using GO, 2007.

[GS04] Robert L. Goldstone and Ji Yun Son. Similarity. Cambridge Handbook of
Thinking and Reasoning, pages 13–36, 2004.

83

[Jac01] Paul Jaccard. Étude comparative de la distribution florale dans une portion
des alpes et des jura. Bulletin de la Société Vaudoise des Sciences Naturelles,
37:547–579, 1901.

[Jan06] Krzysztof Janowicz. Sim-dl: Towards a semantic similarity measurement
theory for the description logic ALCNR in geographic information retrieval.
SeBGIS 2006, OTM Workshops 2006, pages 1681–1692, 2006.

[Jan08] Krzysztof Janowicz. Computing Semantic Similarity Among Geographic Fea-
ture Types Represented in Expressive Description Logics. PhD thesis, Insti-
tute for Geoinformatics, University of Münster, Germany, 2008.

[JW09] Krzysztof Janowicz and Marc Wilkes. SIM-DLA: a novel semantic similarity
measure for description logics reducing Inter-Concept to Inter-Instance simi-
larity. In Proceedings of the 6th European Semantic Web Conference on The
Semantic Web Research and Applications, pages 353–367, 2009.

[Kü00] Ralf Küsters. Non-Standard Inferences in Description Logics. PhD thesis,
RWTH Aachen, 2000.

[LCL+03] Ming Li, Xin Chen, Xin Li, Bin Ma, and Paul M. B Vitányi. The similarity
metric. In Proceedings of the fourteenth annual ACM-SIAM symposium on
Discrete algorithms, pages 863—872, 2003.

[Lin98] Dekang Lin. An Information-Theoretic definition of similarity. In Proceedings
of the Fifteenth International Conference on Machine Learning, pages 296–
304, 1998.

[Lip99] A. H. Lipkus. A proof of the triangle inequality for the tanimoto distance.
Journal of Mathematical Chemistry, 26(1):263–265, 1999.

[LS04] Ming Li and M. Ronan Sleep. Melody classification using a similarity metric
based on kolmogorov complexity. In Proceedings of the Sound and Music
Computing Conference (SMC’04), 2004.

[Neb90] Bernhard Nebel. Terminological reasoning is inherently intractable. Artificial
Intelligence, 43:235—249, 1990.

[NJ03] N. Nikolova and J. Jaworska. Approaches to measure chemical similarity - a
review. QSAR & Combinatorial Science, 22:1006–1026, 2003.

[PFB+07] Catia Pesquita, Daniel Faria, Hugo Bastos, André O Falcão, and Francisco M
Couto. Evaluating GO-based semantic similarity measures. In Proceedings
of the 10th Annual Bio-Ontologies Meeting, volume 2007, pages 1–4, 2007.

[RMBB89] Rada, H. Mili, E. Bicknell, and M. Blettner. Development and application
of a metric on semantic nets. IEEE Transactions On Systems Man And
Cybernetics, 19(1):17–30, 1989.

84

[Tve77] Amos Tversky. Features of similarity. In Psychological Review, volume 84,
pages 327–352, 1977.

85

Erklärung

Hiermit erkläre ich, dass ich die am heutigen Tag eingereichte Diplomarbeit mit dem
Titel

A Framework for Semantic Invariant Similarity Measures for ELH Concept
Descriptions

unter Betreuung von Dr.-Ing. Anni-Yasmin Turhan selbständig erarbeitet, verfasst und
alle Zitate kenntlich gemacht habe. Andere als die von mir angegebenen Hilfsmittel
wurden von mir nicht benutzt.

Dresden, den 07.02.2012 Unterschrift

	Introduction
	Preliminaries
	Syntax and Semantics of Description Logics
	Concept Descriptions
	TBox and RBox
	ABox
	A Normal Form for ELH Concept Descriptions

	Triangular Norms and Conorms

	Similarity-Measure Properties
	Triangle Inequality
	Equivalence Closed and Equivalence Invariant
	Subsumption Preserving and Reverse Subsumption Preserving
	Bounded and Dissimilar Closed
	Structural Dependent
	Towards Monotonicity

	Known Similarity Measures and their Properties
	A Normal Form for ALCN Concept Descriptions
	Structural Measure
	The Jaccard Index
	Dice's Coefficient
	Computing Semantic Similarity Among Geographic Feature Types Represented in Expressive Description Logics janowiczcomputing2008
	SIM-DLA: A Novel Semantic Similarity Measure for Description Logics Reducing Inter-Concept to Inter-Instance Similarity janowiczsim-dla:2009
	A Dissimilarity Measure for ALC Concept Descriptions damatodissimilarity2006
	A Similarity Measure for the ALN Description Logic fanizzisimilarity2006

	Interpretation Based Measure
	A Semantic Similarity Measure for expressive Description Logics damatosemantic2005
	On the influence of description logics ontologies on conceptual similarity damatoinfluence2008

	Tabular Overview

	The Similarity Measure Simi
	The Function simid
	Weighting Atoms
	Using more Knowledge
	Definition of simid

	The Fuzzy Connector
	Definition of Simi
	Properties
	Towards Triangle Inequality and Reverse Subsumption Preserving
	Simi Generalizes the Jaccard Index

	Conclusion
	Open Problems

	List of Tables
	Index
	Bibliography

