
Diplomarbeit

On Polymorphic Types
with Enforceable Linearity

for a Quantum Lambda Calculus

Marco Voigt

Technische Universität Dresden
Fakultät Informatik

Institut für Theoretische Informatik
Lehrstuhl für Automatentheorie

Betreuerin:

Dr.-Ing. Monika Sturm

Verantwortlicher Hochschullehrer:

Prof. Dr.-Ing. Franz Baader

Eingereicht am 05. April 2012
Verteidigt am 15. Mai 2012

(Korrigierte Version vom 31. Mai 2012)

Technische Universität Dresden 01.11.2011
Institut für Theoretische Informatik
Lehrstuhl für Automatentheorie

Aufgabenstellung Diplomarbeit

On Polymorphic Types with Enforceable
Linearity for a Quantum Lambda Calculus

Bearbeiter: Marco Voigt
(Studiengang Informatik (PO 2004, StO 2004))

Quantum Computing stellt neben dem DNA Computing eine der wichtig-
sten Ausprägungen im Natural Computing dar. Die Forschungsarbeiten auf
dem Gebiet zum Quantum Computing sind interdisziplinär und unmittelbar
verbunden mit Aspekten der Quantenphysik bzw. Quantenmechanik. Auf-
bauend auf der Belegarbeit

”
The Quantum Lambda Calculus theory and ap-

plication“ (Marco Voigt, TU Dresden, 2011) ist ein polymorphes Typsystem
für einen Lambda-Kalkül zum Quantum Computing zu entwickeln, d.h. nach
dem Vorbild des Systems F in der Familie der getypten Lambda-Kalküle ist
ein System F für den getypten Quantum Lambda Calculus zu definieren.
In der Diplomarbeit sind dabei folgende Aspekte, Konzepte und Eigenschaf-
ten einzuführen bzw. zu beachten:

• Vorstellung des Modells Quantum Computing

• Vorstellung des Quantum Lambda Calculus

• Einführung eines Typsystems mit linearen und nichtlinearen Typen

• Berücksichtigung des Subtyping-Konzeptes im Typsystem

• Definition polymorpher Typkonstrukte

• Definition und Beweis von Eigenschaften und Aussagen des polymor-
phen Typsystems

• Bewertung der Ergebnisse

Die Bearbeitung des Themas umfasst das Studium folgender Literaturstellen:

• Pierce, B.C. Types and Programming Languages. The MIT Press, Cam-
bridge, London. 2002

• Selinger, P.; Valiron, B. Quantum lambda calculus. In: Gay, S.; Mackie,
I. (eds.) Semantic Techniques in Quantum Computation. Cambridge
University Press, Cambridge, New York. (2009), pp. 135–172

• Gruska, J. Quantum Computing. McGraw Hill, London. 1999

Organisation und Termine

Betreuerin: Dr. M. Sturm
Verantw. Hochschullehrer: Prof. F. Baader
Bearbeitungszeitraum : 01.11.2011 - 30.04.2012
Vorstellung der Arbeitsergebnisse: 03/2012

Ich versichere, dass ich die vorliegende Diplomarbeit selbstständig erarbeitet und
dabei ausschließlich die angegebenen Quellen und Hilfsmittel genutzt habe. In-
haltlich und wörtlich übernommene Ergebnisse und Gedanken Dritter wurden
ausdrücklich als solche gekennzeichnet. Die Arbeit wurde bisher weder in Gänze
noch in substantiellen Teilen veröffentlicht oder zur Erlangung eines akademi-
schen Grades an einer Hochschule im In- oder Ausland vorgelegt.

Dresden, den 05. April 2012

Marco Voigt

CONTENTS 7

Contents

1 Introduction and motivation 9

2 A minimal quantum computation primer 12
2.1 Basics from linear algebra . 12
2.2 The no-cloning theorem . 14
2.3 The role of measurement . 16

3 Untyped Quantum Lambda Calculus 18
3.1 Syntax . 18
3.2 Operational semantics . 21

4 Polymorphically typed Quantum Lambda Calculus 30
4.1 Type terms . 33

4.1.1 Basic definitions . 33
4.1.2 The subtype relation <: . 37
4.1.3 Connection with simply typed QLC’s subtype relation 40

4.2 Proved types and proved subtypes . 42
4.2.1 Basic definitions and properties . 42
4.2.2 Derived rules for proving types . 49
4.2.3 Enforceable linearity and strictly linear type terms 60
4.2.4 Transitivity of subtype derivations . 70
4.2.5 Towards type preservation . 87

4.3 Function terms . 96
4.3.1 Basic definitions . 96
4.3.2 The restricted subtype relation ≺: . 99

4.4 Proved terms . 101
4.4.1 Basic definitions and properties . 101
4.4.2 Derived rules for proving terms . 111

4.5 Operational semantics . 116
4.6 Type safety . 120

4.6.1 Progress property . 121
4.6.2 Further towards type preservation . 125
4.6.3 Linearity . 129

5 Conclusions and prospects 133

A Qubit-by-qubit measurement of quantum registers 137

B Application of arbitrary unitary operators in QLC 138

C Supplementary material for section 4.5 141
C.1 Details concerning Example 4.75 . 141

C.1.1 Type derivations . 141
C.1.2 Function term evaluations . 145

C.2 Type derivation for a non-terminating polymorphic function term 146

D Collection of all relevant derivation rules 147

8 Notational conventions

Notational conventions

Unless stated otherwise in the respective places, we use the following notations.

General notation
m,n natural numbers ≥ 0
i, j, k, l integers, mainly used as indices
P(S) power set of a set S

Quantum computation

α, β complex scalars
|ϕ〉 , |ψ〉 arbitrary quantum states
|b〉 quantum basis states
H Hilbert space (over the field C of complex numbers)
B standard basis of a Hilbert space
Hn 2n dimensional Hilbert space (over C)
Bn standard basis of a Hilbert space Hn
U, V arbitrary unitary operators
Idn identity operator over Hn
H Hadamard operator (over H1)
0 unique zero vector of a Hilbert space H
1 positive unit vector of a Hilbert space H0

Quantum Lambda Calculus (QLC) and typing

Θ,Ξ type contexts
Γ,∆ term contexts
Φ,Ψ,Υ,Σ type terms
s, t function terms
v, w value terms
C type constants
c term constants
X,Y, Z type variables
x, y, z term variables
f term variables used as placeholders for functions
q term variables associated to quantum data
Q quantum states embedded in quantum closures
L linking sequences, linking free term variables in QLC function terms

to qubits in associated quantum data
pnq natural number n encoded as Church numeral

Words over arbitrary alphabets A

A∗ Kleene closure of alphabet A
ε the empty word
|w| length of word w ∈ A∗
|w|a number of occurrences of letter a ∈ A in word w ∈ A∗

Permutations and transpositions

π, σ permutations
τ transpositions

9

Anything that can go wrong, will. Well-typed programs cannot “go wrong.”
– attributed to Edward A. Murphy, Jr. – Robin Milner (1978)

1 Introduction and motivation

Ever since the dawn of quantum computation in the 1980’s its underlying principles have posed new
challenges but also offered new prospects to a broad variety of areas in computer science, which are
otherwise already well understood. This has not at all changed until today. While general-purpose
programming languages designed for classical computation devices and equipped with sophisticated type
systems gain more and more maturity, the field of quantum programming languages (typed and untyped)
is still in its infancy. There is thus a need for further development especially focusing on the peculiarities
quantum physics introduces into the realm of information processing.

In this work we therefore approach polymorphic typing in the presence of restrictions on the dupli-
cability of certain data. We in particular motivate these restrictions with the physical laws on which
quantum computation is grounded. However, in general, they could also arise in less “exotic” situations.1

Our considerations are mainly focused on a functional calculus developed by Benôıt Valiron and Peter
Selinger in the years 2004 to 2009 as one approach to quantum programming languages. This Quantum
Lambda Calculus2 models classical computations in the tradition of Church’s λ-calculus as well as quan-
tum computations following the “classical control, quantum data” paradigm. As already indicated, this
approach does by far not stand alone since there have been proposed several alternative calculi aiming in
the same direction. We elaborate a bit on related work below and give relevant bibliographic references
there.

In our work we start from an untyped variant of the Quantum Lambda Calculus and seek to develop
an appropriate type system facilitating second-order polymorphism. As a basis we use the simple type
system based on linear logic that Selinger and Valiron have introduced into their calculus and equip it
with the necessary extensions. On the one hand, none of the below mentioned λ-like calculi for quantum
computation supports parametric second-order polymorphism up to now, with the exception of variants
of Lineal ([AD08], [ADC11], [ADV11]). On the other hand, this language feature is widely used and
accepted in classical programming languages and typed λ-calculi (classical in the sense of “classical
computation” in contrast to “quantum computation” and not in the sense of “well-established”) and
there is no reason why we should not employ it in the context of quantum computation as well. However,
there are indeed physical reasons (induced by the so-called no-cloning theorem) that force us to be more
careful when modeling quantum computations than we need to be in classical settings. As a consequence
we need to take appropriate measures on two different levels. Firstly, on the level of function terms we
need to prohibit unrestricted copying of quantum data, since this in general contradicts physical law,
and thus we would otherwise model “quantum” computations which are not physically realizable. The
crucial part of this measure is the ability to expel any implicit copying such as term applications of the
form ((λx.f x x) q) entail during evaluation. This is the principal motivation for the wide employment
of linear typing in quantum λ-calculi (or the use of similar techniques mimicking mechanisms originating
in Jean-Yves Girard’s Linear Logic, see [Gir87]). Secondly, on the level of type terms one usually marks
certain types as being linear, meaning that term variables of that type are not allowed to occur more than
once.3 Mostly, only quantum data is subject to restrictions on its duplicability, and one defines a special
type Qbit for terms representing quantum data. In order to keep function terms and the computations
they embody in accordance with quantum physical law, we need to make sure this data is under all
circumstances prevented from being duplicated in an unrestricted way. In the presence of parametric
second-order polymorphism this means to guarantee that type term Qbit and type terms containing Qbit
as a subexpression in critical positions are always marked as linear types. This is essentially what is meant
by the phrase “enforceable linearity” in the title of the present work. And this concept constitutes one

1The book chapter [Wal05] by David Walker provides a very good introduction to the subject of so-called substructural
type systems which are well motivated by classical programming and computing issues. The bibliographic references therein
provide a valuable resource of literature for readers interested in linear typing without any reference to quantum computation.

2To avoid confusion, we notationally distinguish Selinger’s and Valiron’s Quantum Lambda Calculus from other quantum
λ-calculi that we only mention in this introduction.

3Please note that we do not insist on term variables of linear type occurring exactly once, but adopt the less strict
requirement of at most one occurrence. In the literature on type theory this less strict notion is sometimes referred to
as affinity and thus the investigated types are sometimes called affine types rather than linear types. See [Wal05] for a
classification of substructural approaches to typing.

10 1 INTRODUCTION AND MOTIVATION

key contribution of our work to the field of quantum programming languages. To realize this concept,
we make use of already known techniques such as subtyping and universal bounded quantification. In
fact, one could reuse the mechanisms that we apply to establish enforceable linearity for types in the
Quantum Lambda Calculus, and doing so, one could also implement this concept (perhaps in a modified
manner) in very different settings that show similar requirements. Thus, changing our point of view, we
may reinterpret the present work as a case study in which we implement second-order polymorphism in
a linear typing environment where enforceable linearity is demanded. And for this case study we have
chosen Selinger’s and Valiron’s Quantum Lambda Calculus.

The history of quantum programming languages is a comparatively short one. However, a whole
bunch of quantum programming languages and related calculi have been proposed within only a couple
of years, starting from a first attempt by Emanuel Knill in [Kni96] to introduce conventions for quantum
pseudocode, and gaining further speed in the beginning of the new millennium. Very recommendable
surveys have already been given by Peter Selinger in [Sel04a] and Simon J. Gay in [Gay06]. Additional,
slightly more recent resources of overview information and bibliographic references can be found in the
Ph.D. theses of Benôıt Valiron ([Val08]) and Margherita Zorzi ([Zor09]), for instance. In the years 2003
to 2006 there has been the annual International Workshop on Quantum Programming Languages (QPL)
dedicated to these topics, which constitutes a pool of related works. (From 2008 on, this workshop
was renamed to International Workshop on Quantum Physics and Logic and its scope was extended
accordingly.)

The approach we base our work upon has been grounded on Selinger’s influential article [Sel04b], and
the first definition of Selinger’s and Valiron’s Quantum Lambda Calculus has been published in Valiron’s
master’s thesis [Val04a]. In continuation of this line of work, there has been a series of articles: [Val04b],
[SV05], [SV06], [SV08a], [SV08b], [SV09], [Val11] in which the calculus has been successively extended.
The focus of these articles and Valiron’s Ph.D. thesis ([Val08]) primarily lies on semantic aspects of their
calculus. In the research literature we can identify at least three more lines of work that concentrate on
“quantum” variants of the well-known classical λ-calculus. Two of those approaches follow similar ideas
as Selinger and Valiron do, namely André van Tonder’s quantum λ-calculus ([vTo04]) and the quantum λ-
calculus introduced by Ugo Dal Lago, Andrea Masini and Margherita Zorzi ([DMZ09], [Zor09], [DMZ11]).
A conceptually quite different approach towards a λ-like calculus modeling quantum computations has
been started by Pablo Arrighi and Gilles Dowek ([AD04], [AD05], [AD08]). An outstanding peculiarity of
their Linear-algebraic Lambda Calculus (short: Lineal) is that its syntax allows superpositions α.t+ β.u
of terms, where α and β denote complex scalars. The declared goal of their ongoing line of research (in
cooperation with other authors) is to establish an appropriate type system for Lineal to eventually obtain
(via a Curry-Howard correspondence) a logic capturing the essence of quantum computation ([ADC11],
[ADV11], [DAG11]).

The present work is structured as follows. To get acquainted with the formalisms underlying quantum
computation, we start off in section 2 with an introduction to the field. For the sake of brevity we confine
the presentation to the required minimum that is necessary for an understanding of the subsequent
sections. The no-cloning theorem is presented in this foundational part, and it plays a significant role
throughout subsequent sections since it motivates the use of linear typing and the need for enforceable
linearity. In section 3 we present an untyped fragment of Selinger’s and Valiron’s Quantum Lambda
Calculus. In particular, we introduce a syntactically modified variation equipped with accordingly adapted
operational semantics. However, all performed alternations are of a superficial nature and leave the
underlying principles and mechanisms completely intact. The main part of our work is concentrated in
section 4, and we therein develop our polymorphic type system for the Quantum Lambda Calculus. This
section quite neatly divides into two parts: at first we define type terms, introduce derivation rules for
well-formed types and study key consequences of our definitions. In particular, we widely treat types in
isolation, and thus the obtained results related to types and type derivations are largely independent of
the Quantum Lambda Calculus. In fact, this is the part where our major technical results are developed.
Afterwards we come to the typed calculus and establish polymorphic typing in the realm of function
terms. In this way we arrive at the point where we can derive well-formed function terms equipped with
appropriate types. In the last part of our investigations of the polymorphically typed calculus we take a
look at type safety – a key feature of typed functional programming languages and calculi.

For different reasons we have moved some contents to appendices A to D. While appendices A and B

11

contain supplementary technical material that has been moved there to keep the main text concise, we
find complicated derivations of typed function terms in appendix C since we need horizontal format for
presentation. For quick reference the last appendix section D is devoted to a complete collection of all
relevant derivation rules that we encounter throughout our discourse.

The main contributions of the present work are the enrichment of simply typed QLC with explicit
parametric second-order polymorphism and a detailed study of the resulting characteristics. Among the
developed results are a proof of enforceable linearity with respect to type constant Qbit , a weak transitivity
result concerning derivations of subtyping statements and concluding investigations regarding type safety
and linearity.

12 2 A MINIMAL QUANTUM COMPUTATION PRIMER

2 A minimal quantum computation primer

Before we jump into the details of a concrete calculus modeling computations that exploit quantum
phenomenons, we take a brief look at the basic formalisms that are usually used in the field of quantum
computation. Since the focus of the present work lies on issues connected with type systems for such a
calculus, we restrict the presentation of the foundations of quantum computation to the parts that are
necessary to understand the Quantum Lambda Calculus (QLC for short), its operational semantics and
the form of its type system. In particular, we present a central theorem which motivates most of the
peculiarities of QLC ’s type system in its simple version and in its polymorphic variant.

To circumvent all the cumbersome details of the standard framework for quantum computation
(namely linear algebra on finite-dimensional Hilbert spaces, quantum physics’ postulates, observables
for measurement of quantum physical states, quantum gates, etc.), we take a somewhat spartan (but still
sufficient) algebraic point of view, leaving out a lot of details and quite a few of the subtleties inherent
to the standard framework. The interested reader will find the full details in introductory literature on
quantum computation, for instance in [Gru99], [NC00] and [NO08].

To prepare ourselves for the formal considerations in the following subsections, we shall get acquainted
with a notion that is of central importance in the rest of this work (and in quantum computation in
general), namely the notion of a qubit. Computer scientists are very familiar with classical bits as
elementary carriers of information.4 For considerations in the theory of computation we usually regard a
bit as an abstract object that can take on values 0 or 1. A qubit, on the other hand, is also treated as an
abstract object which can take on a state that may, in a certain sense, correspond to the classical values
0 or 1, and that would then be denoted by |0〉 or |1〉, respectively. But it may also take on (uncountably
many) states that are combinations of |0〉 and |1〉. The most intriguing characteristic distinguishing
qubit states from classical bits’ values, however, is the limitation of observation. While we can (at least
in principle) always gain full knowledge of the current value of a classical bit, it is impossible to find out
the exact state a qubit is currently in, if we do not have any a-priori knowledge about this state. Even
worse, the process of observation in general inevitably modifies the state of a qubit, and it is random in
nature with respect to a probability distribution determined by the particular sort of the observation and
the qubit state immediately before the observation. We will look at the mathematical details of qubit
states and their observation in the next subsection.

In analogy to classical computation theory, where bits are put into sequences to form registers that
store bit strings, we compose quantum registers from single qubits. These quantum registers exhibit
states that correspond to combinations of bit strings.5 Changing our point of view, we can also regard
single bits and qubits as (quantum) registers of length 1.

As the classical theory of computation does not care much about the physical realization of bits and
registers in real computers, we do not bother with physical realizations of qubits and quantum registers
in the present work. Nielsen and Chuang comment on this approach as follows:

“The beauty of treating qubits as abstract entities is that it gives us the freedom to
construct a general theory of quantum computation and quantum information which does not
depend upon a specific system for its realization.” ([NC00], page 13)

2.1 Basics from linear algebra

In the following we conceive states of quantum registers of length n ≥ 1 as unit vectors of a 2n dimensional
Hilbert space Hn over the field C of complex numbers. Traditionally (following Paul Dirac), the state of
a quantum system is denoted as a ket vector, e.g. as |ϕ〉.6

4Here, we do not refer to the meaning of bit as measure of information content in the sense of Shannon’s information
theory or as measure of the amount of data a device can store, for instance.

5This is doubtless a strongly simplified view. A very recommendable more accurate guide to these fundamental concepts
is the first chapter in [NC00].

6In the present work this is nothing more than a notational convention without any deeper meaning. In the standard
framework of quantum computation (and quantum physics in general), however, ket vectors |ϕ〉 are complemented with bra
vectors 〈ϕ|, which together yield the quite comfortable braket notation, which is also reflected in the notation we use for
scalar products. The interested reader will inevitably encounter these notations in the literature on quantum computation
(from introductory to research level).

2.1 Basics from linear algebra 13

Definition 2.1 (Hilbert space).
A Hilbert space H is a complete vector space equipped with a scalar product, denoted 〈·|·〉, and a
norm ‖ · ‖, defined as ‖ |ϕ〉 ‖ :=

√
〈ϕ|ϕ〉 for all |ϕ〉 ∈ H. (See, for example, the appendix of [Gru99]

for full mathematical details.)

Thus, a state of a quantum register (of finite length) corresponds to a vector |ϕ〉 ∈ H in an associated
(finite dimensional) Hilbert space H with ‖ |ϕ〉 ‖ = 1.

For the rest of this work, we implicitly mean finite dimensional Hilbert space over the field C of
complex numbers whenever we talk about a Hilbert space. Moreover, for convenience, we use the same
symbol H for the Hilbert space H and also the carrier set of H.

Definition 2.2 (scalar product).
A scalar product on a vector spaceH (over the field C) is a mapping 〈·|·〉 : H×H → C which satisfies

• 〈ϕ|ψ〉 = 〈ψ|ϕ〉∗ ,

• 〈ϕ|ϕ〉 ≥ 0 and
〈ϕ|ϕ〉 = 0 if and only if |ϕ〉 = 0 is the unique zero vector in H, and

•
〈
ϕ
∣∣ α |ψ〉+ β |χ〉

〉
= α〈ϕ|ψ〉+ β〈ϕ|χ〉

for arbitrary |ϕ〉 , |ψ〉 , |χ〉 ∈ H and α, β ∈ C. Here, ·∗ denotes complex conjugation, i.e. (a+ ib)∗ :=
a− ib.

Please note that we most of the time wrote 〈ϕ|ψ〉 instead of
〈
|ϕ〉
∣∣ |ψ〉〉 which would formally be more

accurate but is not very comfortable. We stick to the more comfortable variant in our considerations.

Definition 2.3 (orthogonal and orthonormal states).
We call two states |ϕ〉 , |ψ〉 ∈ H
• orthogonal, if 〈ϕ|ψ〉 = 0, and

• orthonormal, if |ϕ〉 and |ψ〉 are orthogonal and it additionally holds ‖ |ϕ〉 ‖ = ‖ |ψ〉 ‖ = 1.

A set of vectors is called orthogonal (orthonormal), if all of its elements are pairwise orthogonal
(orthonormal).

We often describe the state of quantum registers of length n as superpositions, i.e. linear combinations
(with complex coefficients αbj ∈ C)

2n−1∑
j=0

αbj |bj〉 with

2n−1∑
j=0

|αbj |2 = 1 ,

of the vectors of the standard basis Bn := {|b0〉 , . . . , |b2n−1〉}. The standard basis is defined to be
an orthonormal basis of Hn, where the “names” b0, . . . , b2n−1 ∈ {0, 1}(n) of the basis vectors are bit
strings encoding their indices in binary notation.7 Here is an example to illustrate this for the case of 22

dimensions:

B2 = {|b0〉 := |00〉 , |b1〉 := |01〉 , |b2〉 := |10〉 , |b3〉 := |11〉} .

It turns out that the notation of basis vectors as bit strings is quite comfortable. We interpret a
vector |x〉 = |x0 . . . xn−1〉 ∈ Hn with x0, . . . , xn−1 ∈ {0, 1} as an abbreviation for the tensor product
|x0〉 ⊗ · · · ⊗ |xn−1〉, where |x0〉 , . . . , |xn−1〉 ∈ H1. In the same way |x, y〉 abbreviates |x〉 ⊗ |y〉, where x
and y may denote bit strings (possibly of different length).8

Here, we leave out how the tensor product actually works on vectors in Hilbert spaces. For our
purposes it is enough to know that we use it to construct states of quantum registers of length ≥ 2. We
can define the scalar product on states |ϕ1〉 ⊗ |ψ1〉 = |ϕ1, ψ1〉 and |ϕ2〉 ⊗ |ψ2〉 = |ϕ2, ψ2〉 by

〈ϕ1, ψ1|ϕ2, ψ2〉 := 〈ϕ1|ϕ2〉〈ψ1|ψ2〉 . (1)

7At this point we can (informally) think of |·〉 as a family of bijective mappings of bit strings of a certain length n into
a respective standard basis of dimension 2n, i.e. |·〉 = (|·〉n)n∈N\{0}, where the functions |·〉n : {0, 1}(n) → Bn do respect
the tensor product of vectors, i.e. |x1 . . . xn〉n = |x1〉1 ⊗ · · · ⊗ |xn〉1. We use this to get a handy notation for basis vectors.

8In general, for m,n ≥ 1, the dimension of a tensor product behaves as follows:
|ϕ〉 ∈ Hn ∧ |ψ〉 ∈ Hm =⇒ |ϕ〉 ⊗ |ψ〉 ∈ Hn+m.

14 2 A MINIMAL QUANTUM COMPUTATION PRIMER

In the following, we will also see that the tensor product can be used to construct mappings on Hilbert
spaces of dimension ≥ 4.

Definition 2.4 (linear and unitary operators).
We define linear mappings (or linear operators) M : H → H′ as mappings between Hilbert spaces H
and H′ that are compatible with vector addition and scalar multiplication, i.e. M(α |ϕ〉+ β |ψ〉) =
α(M |ϕ〉)+β(M |ψ〉) for arbitrary |ϕ〉 , |ψ〉 ∈ H. In other words, linear mappings are homomorphisms
between Hilbert spaces.

A special subset of these linear mappings, namely the length preserving automorphisms, are called
unitary operators. Thus, the inverse mapping U−1 : H → H of a unitary operator U : H → H always
exists, and in particular, unitary operators U preserve length of vectors, i.e. ‖ |ϕ〉 ‖ = ‖U |ϕ〉 ‖ for
all |ϕ〉 ∈ H.

The property of length preservation is a crucial one which makes unitary operators the proper tool for
the transformation of the state of a quantum register into another state, since both are represented by
unit vectors in the same Hilbert space. A consequence of length preservation, however, is the invertibility
of unitary operators.

Unitary operators on a Hilbert space Hn form a group with respect to composition, i.e. the composition
of two unitary operators U,U ′ : Hn → Hn is the unitary operator UU ′ : Hn → Hn ; |ϕ〉 7→ U(U ′|ϕ〉).
Furthermore, the tensor product of two unitary operators U : Hn → Hn and V : Hm → Hm, with
n,m ≥ 1, is again a unitary operator U ⊗ V : Hn+m → Hn+m on a Hilbert space of dimension 2n+m.
When we apply U ⊗V to a quantum state |ϕ〉⊗ |ψ〉 ∈ Hn+m (where |ϕ〉 ∈ Hn and |ψ〉 ∈ Hm), we obtain

(U ⊗ V)(|ϕ〉 ⊗ |ψ〉) = U |ϕ〉 ⊗ V |ψ〉 .

Later we will use operator composition and tensor products of unitary operators to construct more
complex unitary operators. For (iterated) tensor products of identical operators we may use a comfortable
exponential notation, where for instance U⊗n means U ⊗ · · · ⊗ U with n occurrences of U .

It is a fundamental postulate of quantum mechanics that the evolution of a closed quantum system9

between two points in time t1 and t2 can be described by a unitary operator U . That means, the state
|ϕ〉 at time t1 evolves to U |ϕ〉 at time t2. In particular, this gives us the tool to describe the evolution
of single qubits as well as complete quantum registers.

Here, we just accept this as a fact without going into further detail. The interested reader will find
more detailed information in introductory texts such as [NC00].

2.2 The no-cloning theorem

We now present a central result which constitutes one key difference of quantum information processing
in contrast to its classical counterpart. In the classical setting we are usually free to copy (or clone, to
use another word) all the information a certain information carrier embodies and transfer it to another
information carrier so that we eventually obtain two distinct entities carrying precisely the same infor-
mation. In the world of quantum computation, however, this dramatically changes: we cannot find a
realizable physical process which transfers the complete information content of a quantum information
carrier, the source, to another one without possibly destroying the information in the source (as long as
we do not have any a-priori knowledge on the initial information in the source).

Theorem 2.5 (no-cloning theorem, due to Wootters and Zurek ([WZ82]); and Dieks ([Die82])).
Let H be a Hilbert space and |c〉 ∈ H be an arbitrary fixed quantum state (used as an auxiliary state).
There is no unitary operator U : H⊗H → H⊗H such that

U |ϕ, c〉 = |ϕ,ϕ〉

holds for arbitrary quantum states |ϕ〉 ∈ H. In other words: a completely unknown quantum state cannot
be cloned (using unitary operators).

9In this context “closed” means that the system does not interact with the rest of the world.

2.2 The no-cloning theorem 15

Proof. (adapted from Gruska’s textbook [Gru99], proof 2 of Theorem 2.1.28, page 68)
We prove this by contradiction. Let |ϕ〉 and |ψ〉 be arbitrary quantum states (which we intend to clone) in
a Hilbert space H. Suppose we have a unitary operator Uc : H⊗H → H⊗H such that Uc |ϕ, c〉 = |ϕ,ϕ〉
and Uc |ψ, c〉 = |ψ,ψ〉 for some fixed quantum state |c〉. (Please recall, we said in the beginning we
conceive quantum states as unit vectors in a Hilbert space H, i.e. ‖ |c〉 ‖ =

√
〈c|c〉 = 1.) Thus, we have

〈ϕ|ψ〉 = 〈ϕ|ψ〉 〈c|c〉︸︷︷︸
=1

(1)
= 〈ϕ, c|ψ, c〉 =

〈
Uc |ϕ, c〉

∣∣ Uc |ψ, c〉〉
= 〈ϕ,ϕ|ψ,ψ〉 (1)

= 〈ϕ|ψ〉〈ϕ|ψ〉 ,

which means 〈ϕ|ψ〉 = 〈ϕ|ψ〉〈ϕ|ψ〉 for short.10 Hence, we may conclude either 〈ϕ|ψ〉 = 0 or 〈ϕ|ψ〉 = 1
holds.

It thus follows that if two quantum states |ϕ〉 and |ψ〉 are cloneable by a single unitary operator Uc,
they are either orthogonal (case 〈ϕ|ψ〉 = 0) or identical (case 〈ϕ|ψ〉 = 1).11 Obviously, this leads to a
contradiction since we assumed Uc were capable of cloning arbitrary quantum states, in particular ones
that are not necessarily orthogonal (or identical) to some distinguished quantum state.

The no-cloning theorem entails there is no general copying mechanism (based on unitary operators)
that is able to copy all the information encoded in an unknown state of one quantum bit to another
quantum bit (keeping the first one intact).

However, given a specific quantum state |ϕ〉 ∈ Hn, we may construct a unitary operator which is
capable of cloning |ϕ〉 and each quantum state

∣∣ϕ⊥〉 ∈ Hn which is orthogonal to |ϕ〉, i.e. with 〈ϕ|ϕ⊥〉 = 0.
For such a construction, we first choose a basis vector |b〉 ∈ Bn and then compose the following four
unitary operators

• Rϕ7→b : Hn → Hn, mapping |ϕ〉 to basis vector |b〉 ∈ Bn of Hn, and each of the orthogonal vectors
in
{∣∣ϕ⊥〉 ∣∣ 〈ϕ⊥ ∣∣ ϕ〉 = 0

}
to the remaining basis vectors in Bn \ {|b〉}, such that all Rϕ7→b

∣∣ϕ⊥〉 are
pairwise distinct and distinct from Rϕ7→b |ϕ〉;12

• its inverse operator Rb7→ϕ := R−1
ϕ7→b;

• U b|0〉 : Hn ⊗Hn → Hn ⊗Hn, mapping |b′〉 ⊗ |0〉 to |b′〉 ⊗ |b′〉 for all |b′〉 ∈ Bn (it is not so important

how U b|0〉 works on the remaining basis vectors in (Bn ⊗Bn) \ (Bn ⊗ {|0〉}), as long as U b|0〉 is

unitary);13 and

• Idn : Hn → Hn is the identity mapping on Hn; so that

(Rb 7→ϕ ⊗Rb7→ϕ) U b|0〉 (Rϕ7→b ⊗ Idn) |ϕ, 0〉 = (Rb 7→ϕ ⊗Rb 7→ϕ) U b|0〉 |b, 0〉
= (Rb 7→ϕ ⊗Rb 7→ϕ) |b, b〉
= |ϕ,ϕ〉 .

10That unitary operators U preserve the scalar product of two unit vectors |ϕ′〉 and |ψ′〉, i.e. 〈ϕ′|ψ′〉 = 〈U |ϕ′〉 |U |ψ′〉〉
with ‖ |ϕ′〉 ‖ = ‖ |ψ′〉 ‖ = 1, is a consequence of the axioms of scalar products, the definition of the norm ‖ · ‖, and the fact
that unitary operators are defined to be length preserving. From examining the equality ‖ |ϕ′〉+|ψ′〉 ‖ = ‖U(|ϕ′〉+|ψ′〉)‖, we
get that the real part of 〈ϕ′|ψ′〉 is equal to that of 〈U |ϕ′〉 |U |ψ′〉〉, and from an examination of the equality ‖ |ϕ′〉− |ψ′〉 ‖ =
‖U(|ϕ′〉 − |ψ′〉)‖, we conclude that the imaginary part of 〈ϕ′|ψ′〉 equals that of 〈U |ϕ′〉 |U |ψ′〉〉.

11The conclusion that |ϕ〉 and |ψ〉 are identical in case of 〈ϕ|ψ〉 = 1 is valid due to the Cauchy-Schwarz inequality
|〈ϕ|ψ〉| ≤ ‖|ϕ〉‖ ‖|ψ〉‖ (which itself is a consequence of the axioms of vector spaces and scalar products). This inequality
turns into an equality if and only if we have the special case of linearly dependent vectors |ϕ〉 and |ψ〉. And since we consider
|ϕ〉 and |ψ〉 to be quantum states, they have length ‖ |ϕ〉 ‖ = ‖ |ψ〉 ‖ = 1. Furthermore, we know that |ϕ〉 and |ψ〉 point in
the same direction, since otherwise we would have 〈ϕ|ψ〉 < 0 because of

〈
ϕ
∣∣ − |ϕ〉〉 = −〈ϕ|ϕ〉 ≤ 0 (due to the axioms of

scalar products).
12Since Rϕ7→b is defined to be a linear mapping, it is already fully specified as soon as we define its effect on a basis of
Hn. This is due to the fact that every vector |ψ〉 ∈ Hn can be written as linear combination of basis vectors, and that
linear mappings are compatible with vector addition and scalar multiplication.

13Please note that the construction of Ub
|0〉 does not contradict Theorem 2.5, since for all

∣∣b1, b′1〉 , |b2, b′2〉 ∈ Bn ⊗ Bn

it holds 〈b1, b′1|b2, b′2〉 = 〈b1|b2〉〈b′1|b′2〉. This is because 〈b1|b2〉 and 〈b′1|b′2〉 are either 0 or 1, since all vectors in Bn are
orthonormal.

16 2 A MINIMAL QUANTUM COMPUTATION PRIMER

2.3 The role of measurement

One of the most remarkable (and puzzling) properties of quantum registers is that we in general cannot
observe what state a register is exactly in at a certain point in time.

To get an idea of what the state of a quantum register might be, we need to perform a measurement
on that register. With one measurement of a register in a state |ϕ〉 ∈ H (H being an appropriate
Hilbert space), we can distinguish an orthogonal set of states from H.14 Regarding the outcome of the
measurement, the process of measuring is inherently random, and perhaps even more striking, the state
of the measured system may change as a side effect of the measurement, and we do in general not have
any chance to prevent such changes. In the end, the measured result and the state the measured system
takes on immediately after the measurement are both determined randomly, depending on the former
state and the exact nature of the performed measurement.

For our purposes we restrict ourselves to measurements with respect to the standard basis, as illus-
trated in the following subsections and in appendix A.

The simplest example

The state of a quantum register of length 1 (containing a single qubit) can be fully described by |ϕ〉 =
α |0〉 + β |1〉 for proper α, β ∈ C with |α|2 + |β|2 = 1. In this case the standard basis is B1 = {|0〉 , |1〉}.
Measurement of |ϕ〉 with respect to B1 then yields

• either 0 with probability |α|2, leaving the register in state |ϕ′〉 = |0〉,

• or 1 with probability |β|2, leaving the register in state |ϕ′〉 = |1〉.

Quantum registers of arbitrary length

As before, we can fully describe the state |ϕ〉 of a quantum register of length n as a superposition of basis
vectors from Bn of the form

|ϕ〉 =

2n−1∑
j=0

αbj |bj〉 with

2n−1∑
j=0

|αbj |2 = 1 ,

where αbj ∈ C for all j ∈ {0, . . . , 2n − 1}. Again, measurement of |ϕ〉 with respect to Bn (which
corresponds to an all-at-once measurement of the complete register) yields one of the bit strings bj ∈
{b0, . . . , b2n−1} = {0, 1}(n) as result with probability |αbj |2, respectively, and leaves the register in state
|ϕ′〉 = |bj〉, also respectively.

Perhaps more interesting, we can also measure a single qubit of the quantum register with respect
to B1. Measuring the qubit in the k-th position (1 ≤ k ≤ n) of a register in state |ϕ〉 =

∑
|b〉∈Bn

αb |b〉
yields

• either 0 with probability

pk(0) =
∑

b∈Bn
k (0)

|αb|2 ,

leaving the register in state

|ϕ′〉 =
1√
pk(0)

∑
b∈Bn

k (0)

αb |b〉 ,

• or 1 with probability

pk(1) =
∑

b∈Bn
k (1)

|αb|2 ,

14This is a simplified view. In fact, we can more generally distinguish outcomes associated to orthogonal subspaces of H
(i.e. Hilbert spaces G ⊂ H and G′ ⊂ H with 〈ϕ|ϕ′〉 = 0 for all |ϕ〉 ∈ G and |ϕ′〉 ∈ G′). We use such orthogonal subspaces,
for instance, when we measure a single qubit in a quantum register of length > 1.

2.3 The role of measurement 17

leaving the register in state

|ϕ′〉 =
1√
pk(1)

∑
b∈Bn

k (1)

αb |b〉 ,

where Bnk (x) := {uxv | u ∈ {0, 1}(k−1) and v ∈ {0, 1}(n−k)} is the set of words of length n over alphabet
{0, 1}, where the k-th position is x ∈ {0, 1}.

When we introduce the Quantum Lambda Calculus in the next section, we will see that in this frame-
work only measurements of single qubits are possible. However, we can simulate an all-at-once mea-
surement of a quantum register of length n with respect to Bn by n consecutive measurements of all
single qubits in the register with respect to B1. This step-by-step measurement process eventually yields
the same result with exactly the same probability leaving the register in an equivalent state after the
measurement as a corresponding all-at-once measurement would do. Moreover, it turns out that it does
not matter in which order the single qubits are measured. To make this clear, we develop the details of
this equivalence in appendix A.

18 3 UNTYPED QUANTUM LAMBDA CALCULUS

3 Untyped Quantum Lambda Calculus

The Quantum Lambda Calculus (short: QLC) was developed by Benôıt Valiron and Peter Selinger in
a series of works ([Val04a], [Val04b], [SV05], [SV06], [SV08a], [SV08b], [Val08], [SV09]) between 2004
and 2009. They have chosen the paradigm of classical control, quantum data, based on Knill’s QRAM
model of quantum computation which was informally introduced in [Kni96].15 Peter Selinger describes
this paradigm in the introduction of [Sel04b] as follows

“[. . .] the data that is manipulated by programs may involve quantum superpositions,
but the control state of a program is always classical; there is no ‘quantum branching’ and
no notion of executing a quantum superposition of two different statements.” ([Sel04b], page
527)

This is in contrast to the quantum Turing machine as it was originally defined by David Deutsch in
[Deu85], where both is possible: superpositions of tape states and superpositions of control states of the
quantum Turing machine (including the head’s position on the tape).

Regarding syntax and operational semantics, untyped QLC is an extension of the well-known classical
untyped λ-calculus (introduced by Alonzo Church around the 1930s), as we will see soon.

The next sections on syntax and operational semantics of untyped QLC are strongly based on [SV09].
Nevertheless, we introduce a syntax from which some syntactic sugar has been removed in order to get a
clearer view of what is going on underneath, and the presentation of the operational semantics is adjusted
accordingly. The performed changes, however, only involve the shape of syntactic expressions, reduction
rules and congruence rules. The underlying principles and core ideas remain untouched. (We will point
out the exact changes and discuss their details in due course.)

For a simplification of matters, we leave out list data structures (which are a part of QLC since
[SV09]).

3.1 Syntax

Definition 3.1 (term variables, term constants, QLC function terms).
We define Vterm to be the countably infinite set Vterm := {x, y, z, f, g, x1, q1, x2, q2, . . . } of term
variables, and Cterm to be the set Cterm := {new,meas} ∪ U of term constants with U :=

⋃
n≥1 Un

and where every Un collects term constants, each of which represents a unitary operator on a Hilbert
space Hn.

We inductively define the set TuQLC of untyped QLC function terms (or just function terms) as
follows

• term variables:
x ∈ TuQLC for all x ∈ Vterm ,

• term constants:
c ∈ TuQLC for all c ∈ Cterm ,

• term abstraction:
(λx.t) ∈ TuQLC for all x ∈ Vterm and t ∈ TuQLC ,

• term application:
(s t) ∈ TuQLC for all s, t ∈ TuQLC ,

• pair term:
〈t1, t2〉 ∈ TuQLC for all t1, t2 ∈ TuQLC ,

• the empty tuple:
〈〉 ∈ TuQLC ,

• pair abstraction:(
λ〈x, y〉.t

)
∈ TuQLC for all x, y ∈ Vterm with x 6= y and t ∈ TuQLC ,

15Knill describes the QRAM as “[. . .] a random access machine in the traditional sense with the ability to perform a
restricted set of operations on quantum registers. These operations consist of state preparation, some unitary operations
and measurement.” ([Kni96], pages 1–2)

3.1 Syntax 19

• disjoint union:
injl(t) ∈ TuQLC and injr(t) ∈ TuQLC for all t ∈ TuQLC ,

• case distinction:(
match s with (λx.tl) | (λy.tr)

)
∈ TuQLC

for all x, y ∈ Vterm and s, tl, tr ∈ TuQLC ,

• recursion term:(
letrec f = (λx.s) in t

)
∈ TuQLC

for all f, x ∈ Vterm and s, t ∈ TuQLC .

In term abstractions (λx.t) we call t the scope of the term abstraction, and say that all free occur-
rences of x in t are bound. (We will soon give a precise definition of free term variables.) These
notions are defined analogously for pair abstractions (λ〈x, y〉.t). In a recursion term

(
letrec f =

(λx.s) in t
)

the scope of the recursion consists of function terms (λx.s) and t, and all free occurrences
of term variable f in the scope are considered to be bound.

We call term constants U ∈ U built-in unitary operators in some places (referring to their intended
meaning).

Obviously, the classical untyped λ-calculus is a (syntactic) subset of untyped QLC. The additional syn-
tactic constructs have the following intuitive meaning:

• injl(t) and injr(t) denote the left and right inclusion (or injection) of t into a disjoint union;

•
(
match s with (λx.tl) | (λy.tr)

)
represents a case distinction depending on the form of s, where we

either continue with branch (λx.tl) or with the alternative branch (λy.tr);

•
(
letrec f = (λx.s) in t

)
defines a recursive function f(x) = s used in t;

• new is a function for state preparation: it takes a classical bit b ∈ {0, 1} (where 0 :≡ injr(〈〉) and
1 :≡ injl(〈〉), see also the conventions below) as input, prepares a qubit in state |b〉, and returns a
reference to this qubit;

• meas is a function for measurement: it takes a qubit, measures it with respect to the standard basis
B1, and returns a classical bit as result.

According to the above definition, set U =
⋃
n≥1 Un is a collection of term constants representing

unitary operators, and these term constants are distributed among subsets Un with respect to their
respective arity n, i.e. with respect to the Hilbert spaces Hn they work on. In fact, we have different
possible choices of how to define these sets Un.

As long as we are comfortable with an uncountable number of unitary operators, we can simply define
each of the Un to contain one term constant for each possible unitary operator U on a 2n-dimensional
Hilbert space Hn. (Please note there exist uncountably many unitary operators on Hn for each n ≥ 1.)

Envisaging physical implementations of quantum computation, it is not much of a surprise that there
has been quite some effort to find sets of unitary operators that are universal for quantum computation
(in the sense as the set {¬,∧} of logical connectives is universal for classical propositional logic, i.e.
sufficient to construct all possible connectives in this logic). It is intuitively clear that this venture leads
again to uncountable sets of operators as long as we pursue exact constructions. The set of all unitary
one-qubit operators on H1 together with the so-called controlled-not operator CNOT : H2 → H2 with

CNOT |00〉 = |00〉 CNOT |01〉 = |01〉
CNOT |10〉 = |11〉 CNOT |11〉 = |10〉 ,

for instance, yields a universal set of unitary operators with which we can exactly construct all possible
unitary operators on Hilbert spaces Hn of arbitrary finite dimension 2n. But, as we have already said,
the set U1 in this case becomes uncountable.

Hence, to get a universal set of unitary operators of smaller cardinality, we need to abandon the
idea of exact constructions and turn our interest to approximations instead. It turns out that we can
approximate each unitary operator (on a finite dimensional Hilbert space) up to arbitrary accuracy using
a countable, even finite, set of unitary operators. One such possibility is the set of four unitary operators
called Hadamard, phase, CNOT and π/8 gates in [NC00]. Here, we do not bother how they are defined.

20 3 UNTYPED QUANTUM LAMBDA CALCULUS

The interested reader will find detailed information on universal sets of unitary quantum operators and
approximation of arbitrary unitary operators for example in chapter 4 of [NC00] or in section 2.3.3 of
[Gru99].

According to [SV09] the set U should in general consist of a fixed universal set of unitary operators.
In the present work, we leave the exact choice of set U open, because it is not of real importance for our
considerations. What is important, however, is that we partition U into disjoint subsets Un with n ≥ 1,
as we have done in Definition 3.1.

Remark: In the above syntax definition we diverge a bit from the original in [SV09] in the way we define
case distinction and recursion. As announced in the beginning of the section, we have stripped off
a bit of syntactic sugar. The original (“sugared”) versions look as follows:

“sugared” case distinction: “sugared” recursion:(
match s with (x 7→ tl | y 7→ tr)

) (
letrec f x = s in t

)
for term variables f, x, y ∈ Vterm and function terms s, t, tl, tr ∈ TuQLC .

Of course, we have to adapt all other notions accordingly in order to handle the “less sugared”
syntax. What we gain from this are clearer (i.e. less ambiguous) notions of free term variables and
substitution and simpler definitions. In addition, the formal definition of operational semantics will
be more familiar to readers acquainted with the classical λ-calculus.

To improve readability of function terms in QLC, we agree on the following conventions:

(λx1 . . . xn.t) :≡ (λx1.(λx2.(. . . (λxn.t) . . .)))

(t1 t2 . . . tn) :≡ (. . . ((t1 t2) t3) . . . tn)

〈t1, . . . , tn〉 :≡ 〈t1, . . . 〈tn−2, 〈tn−1, tn〉〉 . . . 〉
0 :≡ injr(〈〉)
1 :≡ injl(〈〉)(

if s then tl else tr
)

:≡
(
match s with (λx.tl) | (λy.tr)

)
(where x and y are fresh)

Furthermore, we may drop outer parentheses when it is convenient to do so.

Definition 3.2 (free term variables, α-equivalence).
We recursively define function ftmv : TuQLC → P(Vterm) which yields the set ftmv(t) of all term
variables that occur as free term variables in function term t (for c ∈ Cterm and x ∈ Vterm):16

ftmv
(
c
)

:= ∅ ,

ftmv
(
x
)

:= {x} ,

ftmv
(
(λx.t)

)
:= ftmv(t) \ {x} ,

ftmv
(
(s t)

)
:= ftmv(s) ∪ ftmv(t) ,

ftmv
(
〈t1, t2〉

)
:= ftmv(t1) ∪ ftmv(t2) ,

ftmv
(
〈〉
)

:= ∅ ,

ftmv
(
(λ〈x, y〉.t)

)
:= ftmv(t) \ {x, y} ,

ftmv
(
injl(t)

)
= ftmv

(
injr(t)

)
:= ftmv(t) ,

ftmv
(
(match s with (λx.tl) | (λy.tr))

)
:= ftmv(s) ∪ ftmv((λx.tl)) ∪ ftmv((λy.tr)) ,

ftmv
(
(letrec f = (λx.s) in t)

)
:=
(
ftmv((λx.s)) ∪ ftmv(t)

)
\ {f} .

We call function terms α-equivalent if they differ only in the names of their bound term variables,
i.e. if they have the same structure.

From now on we follow the usual convention to identify function terms that are α-equivalent.

16We use the notation P(S) to denote the power set of a set S.

3.2 Operational semantics 21

Definition 3.3 (substitution of term variables).
We denote substitution of free term variables in QLC function terms as t[t′/z], meaning that all free
occurrences of term variable z in function term t are substituted by function term t′. The recursive
definition is as follows (for c ∈ Cterm and x ∈ Vterm):

c[t′/z] := c ,

z[t′/z] := t′ ,

x[t′/z] := x , where z 6= x ;

(λz.t)[t′/z] := (λz.t) ,

(λx.t)[t′/z] := (λx′.t[x′/x][t′/z]) , where z 6= x and

x′ 6∈ ftmv(t) ∪ ftmv(t′) ∪ {z, x} ;

(s t)[t′/z] := (s[t′/z] t[t′/z]) ,

〈t1, t2〉[t′/z] := 〈t1[t′/z], t2[t′/z]〉 ,

〈〉[t′/z] := 〈〉 ,

(λ〈x, y〉.t)[t′/z] := (λ〈x, y〉.t) , where z = x or z = y ;

(λ〈x, y〉.t)[t′/z] := (λ〈x′, y′〉.t[x′/x][y′/y][t′/z]) , where x 6= z 6= y and

we choose fresh x′ 6= y′ with

x′, y′ 6∈ ftmv(t) ∪ ftmv(t′)

∪ {z, x, y} ;

injl(t)[t
′/z] := injl(t[t

′/z]) ,

injr(t)[t
′/z] := injr(t[t

′/z]) ,

(
match s with (λx.tl) | (λy.tr)

)
[t′/z] :=(

match s[t′/z] with (λx.tl)[t
′/z] | (λy.tr)[t

′/z]
)

,

(
letrec z = (λx.s) in t

)
[t′/z] :=

(
letrec z = (λx.s) in t

)
,(

letrec f = (λx.s) in t
)
[t′/z] :=

(
letrec f ′ = (λx.s)[f ′/f][t′/z] in t[f ′/f][t′/z]

)
,

where f 6= z and we choose f ′ to be fresh, i.e.

f ′ 6∈ ftmv((λx.s)) ∪ ftmv(t) ∪ ftmv(t′) ∪ {z, f}.

The way substitution deals with term abstractions, pair abstractions and similar constructs is taken over
from [Cro93]. In case (λx.t)[t′/z], for instance, we rename bound term variable x to a fresh term variable
x′ in t before the actual substitution in performed, in order to keep free occurrences of x in t′ from being
bound unintendedly by the former term abstraction (λx. . . .) after substitution of z in t.

3.2 Operational semantics

To clarify and formalize the intended computational behavior of the syntactic constructs we introduced
in the previous section, we present formal reduction rules according to which QLC function terms are
evaluated.

But first, we need to provide an adequate formalism to talk about terms with associated quantum
data.

Definition 3.4 (quantum closures).
A quantum closure is a triple [Q,L, t], where

• Q is a unit vector |ϕ〉 ∈ Hn for some n ≥ 0;

• L is a sequence of n distinct term variables, denoted as |q1, . . . , qn〉, and called linking sequence;

• t is a function term from TuQLC whose free term variables all appear in L, i.e.
ftmv(t) ⊆ {q1, . . . , qn}.

22 3 UNTYPED QUANTUM LAMBDA CALCULUS

We call the set of all quantum closures SQLC and will occasionally refer to quantum closures as
states.17

A term variable qi, 1 ≤ i ≤ n, that occurs freely in function term t is considered bound in a
quantum closure [Q, |q1, . . . , qn〉 , t], where it is captured by linking sequence L = |. . . , qi, . . . 〉.
Every free occurrence of qi in function term t is then associated to the i-th qubit in Q, counted
from left to right, and we use those occurrences of qi in t as references to address the associated
quantum data.18

The name “quantum closure” indicates that the embedded function terms become closed in the sense
that all remaining free term variables are bound by linking sequence L in the second component.

Now that we have introduced an additional way of binding term variables in function terms embedded
in quantum closures, we extend the notion of α-equivalence to quantum closures that differ only in their
bound variables. Henceforth, we thus also identify α-equivalent quantum closures.

With quantum closures we have a tool at hand that enables us to maintain and manipulate a quantum
state during the process of term evaluation. However, by introducing this concept of state, we give up
some of the purity and elegance of functional approaches to programming, namely the absence of side
effects of function applications, because reduction rules that manipulate the embedded quantum data
in a quantum closure do mostly not reflect the performed changes in the reduced terms (as we will see
soon).

From some informal examples (which are supposed to reflect our intuition of the evaluation of QLC
function terms) it becomes clear that it is particularly important to fix a reduction strategy for evaluation
of function terms in QLC.

Example 3.5 (taken from [SV09]).
Consider function term coin :≡

(
λz.meas (H (new 0))

)
, where

H : H1 → H1; |x〉 7→ 1
√

2

(
|0〉+ (−1)x |1〉

)
with |x〉 ∈ B1 = {|0〉 , |1〉}

is a unitary operator, the so-called Hadamard operator. The intuitive idea behind function term
coin is that of a function implementing the toss of a fair “quantum coin”, i.e. coin gives result 0
or 1 with equal probability, as soon as we apply an arbitrary argument to it. Next, we define the
boolean xor function

xor :≡
(
λxy.if x then (if y then 0 else 1) else (if y then 1 else 0)

)
.

Let us take a look at two exemplary reductions of function term (λx.xor x x) (coin 〈〉) where we
apply different reduction orders, namely call-by-name and call-by-value, which we define in the
standard way (see, for instance, [Pie02], pages 56 and 57).

For our examples we use the initial quantum closures [1, |〉 , t] for closed function terms t (i.e.
ftmv(t) = ∅), where 1 denotes the positive unit vector in the one-dimensional Hilbert space H0,
and for which we have 1 ⊗ |ϕ〉 = |ϕ〉 ⊗ 1 = |ϕ〉 for any quantum state |ϕ〉. |〉 denotes an empty
sequence of term variables.

Using a call-by-name reduction strategy, we get[
1, |〉 , (λx.xor x x) (coin 〈〉)

]
→
[
1, |〉 , xor (coin 〈〉) (coin 〈〉)

]

→∗


[
|00〉 , |q1, q2〉 , 0

]
with probability 1

4 ,[
|01〉 , |q1, q2〉 , 1

]
with probability 1

4 ,[
|10〉 , |q1, q2〉 , 1

]
with probability 1

4 ,[
|11〉 , |q1, q2〉 , 0

]
with probability 1

4 .

17Here, we distinguish between the formally defined syntactic construct called “quantum closure” and the informally used
semantic object called “state” or, to be more precise, “evaluation state of a QLC function term with associated quantum
data” which is actually described by a quantum closure.

18Please note the association between term variable qi and the i-th qubit in Q is not due to qi’s index i but rather due to
the i-th position of qi in the linking sequence L. Consider, for instance, quantum closure [Q, |x, y, z〉 , t]. There, every free
occurrence of x in t is associated to the first qubit in Q, free y’s are associated to the second and free occurrences of z to
the third qubit in Q.

3.2 Operational semantics 23

In contrast, using a call-by-value reduction strategy, we get[
1, |〉 , (λx.xor x x) (coin 〈〉)

]
→∗

{ [
|0〉 , |q1〉 , (λx.xor x x) 0

]
with probability 1

2 ,[
|1〉 , |q1〉 , (λx.xor x x) 1

]
with probability 1

2 ,

→
{ [
|0〉 , |q1〉 , xor 0 0

]
→∗

[
|0〉 , |q1〉 , 0

][
|1〉 , |q1〉 , xor 1 1

]
→∗

[
|1〉 , |q1〉 , 0

]
This obviously disagreeing behavior is caused by the random nature of quantum mechanical mea-
surement in coin (embodied by the operator meas) and by the fact that the operator new is not
idempotent with respect to its impact on the associated quantum data, and thus produces disagree-
ing quantum states when it is reduced differently often due to differing reduction strategies.

Example 3.6.
Suppose we intend to evaluate tuple 〈new 0, new 1, new 0, new 1〉. When we evaluate it from left
to right, we get [

1, |〉 , 〈new 0, new 1, new 0, new 1〉
]

→∗
[
|0101〉 , |q1, q2, q3, q4〉 , 〈q1, q2, q3, q4〉

]
.

In contrast, we obtain the following result if we evaluate the tuple from right to left:[
1, |〉 , 〈new 0, new 1, new 0, new 1〉

]
→∗

[
|1010〉 , |q1, q2, q3, q4〉 , 〈q4, q3, q2, q1〉

]
.

Obviously, in this example the order of qubits appearing in the quantum state of the resulting
quantum closure depends on the applied reduction strategy. This is due to the fact that reductions
of subterms new x1 and new x2, where x1, x2 ∈ {0, 1} and x1 6= x2 do not commute with respect
to the modified quantum state.

Selinger and Valiron emphasize in [SV09] that the decision which strategy to choose is largely a matter
of taste. They have chosen a call-by-value reduction strategy and encode this strategy in the definition
of reduction rules and congruence rules (which allow us to evaluate only certain subexpressions).

Although we also establish the call-by-value reduction strategy by the form of reduction and congruence
rules below, it is still useful to put it in words first:

“[. . .] only outermost redexes are reduced and [. . .] a redex is reduced only when its
right-hand side has already been reduced to a value – a term that is finished computing and
cannot be reduced any further.” ([Pie02], page 57)

As usual, the term redex stands for “reducible (sub)expression” and means a function term or subterm
that may be reduced by applying a reduction rule (possibly with the help of appropriate congruence
rules). This will become clear later (in Definitions 3.8, 3.10 and 3.11), although we will not define this
notion formally.

Actually, due to the remaining syntactic sugar, it is not always the right-hand side of a redex
that needs to be fully reduced first, especially concerning the function term s in a case distinction
(match s with (λx.tl) | (λy.tr)). However, when we look at the result of a reduction of such a case
distinction (cf. Definition 3.8), we find s needs to be fully evaluated to a disjoint union injl(s

′) or injr(s
′)

first, before we can apply its inner part s′ to one of the abstractions (λx.tl) or (λy.tr), where it then
becomes a right-hand side of a redex. Hence, we moved the full reduction of the right-hand side of redexes
((λx.tl) s

′) and ((λy.tr) s
′) already to an earlier stage of the evaluation. (This is indeed necessary to

really define a reduction strategy, i.e. a way of unambiguously saying which redex is to be reduced next,
since otherwise there might be more than one redex in a function term at a certain point in time, and we
would thus introduce ambiguity into our “reduction strategy”.)

24 3 UNTYPED QUANTUM LAMBDA CALCULUS

Let us now continue in our formal presentation of the operational semantics and clarify how the above
quoted “values” are defined in untyped QLC.

Definition 3.7 (value terms, value states).
The set Tvalue of value terms is inductively defined by

c, x, 〈〉 ∈ Tvalue , where c ∈ Cterm and x ∈ Vterm ,

(λx.t), (λ〈x, y〉.t) ∈ Tvalue , where x, y ∈ Vterm and t ∈ TuQLC ,

injl(v), injr(v) ∈ Tvalue , where v ∈ Tvalue ,

〈v, w〉 ∈ Tvalue , where v, w ∈ Tvalue .

A quantum closure [Q,L, v] is called value state if v is a value term; and we call the set of all value
states Svalue .

Obviously, the set of value terms is a (proper) subset of function terms, i.e. Tvalue ⊂ TuQLC , and we get
the same relation Svalue ⊂ SQLC for the respective sets of states.

Value states can be regarded as “fully evaluated states”. Thus, a value term (embedded in a quantum
closure) is not evaluated any further. Looking at the above definition, we see term abstractions (λx.t) and
(λ〈x, y〉.t) (where t stands for an arbitrary QLC function term) are regarded as fully evaluated, although
t might still contain reducible subexpressions. We can interpret this as a function that we could simplify,
if we wished to. However, QLC ’s reduction strategy does not consider the internal structure of the scope
of an abstraction (be it term abstraction or pair abstraction), as long as no argument is applied to it.19

Remark: In contrast to value terms in [SV09], we here have a new sort of value terms due to stripping
off syntactic sugar: (λ〈x, y〉.t). But this is nothing totally new, since in the original version, we can
have a value term of the form (λz.(let 〈x, y〉 = z in t)) with z 6∈ ftmv(t), which is defined to be
equal to (λ〈x, y〉.t) in Convention 1.3.2 in [SV09].

Next, we formally define reduction rules (and implicitly also fix the reduction strategy) for QLC
function terms embedded in quantum closures. Although the rewrite procedure will be a probabilistic
one that works on whole quantum closures, not all of the reduction rules take the complete quantum
closure into account and only a few execute with probability smaller than 1. This justifies to take a
simplified point of view for some basic reduction rules by concentrating on their effect on function terms,
if and only if they leave the first two components of a quantum closure alone and exhibit a reduction
probability equal to 1. Following this suggestion, we take a look at simplified reduction rules concerned
with QLC function terms that implement the “classical control” part.

Definition 3.8 (basic reduction rules).
We define the following set of basic reduction rules for arbitrary s, t, tl, tr ∈ TuQLC ; v, w ∈ Tvalue ;
x, y, f ∈ Vterm :

(λx.t) v → t[v/x] ,

(λ〈x, y〉.t) 〈v, w〉 → t[v/x,w/y] ,

match injl(v) with (λx.tl) | (λy.tr)→ (λx.tl) v ,

match injr(w) with (λx.tl) | (λy.tr)→ (λy.tr) w ,

letrec f = (λx.s) in t→ t
[
(λx.(letrec f = (λx.s) in s))

/
f
]

.

In the second reduction rule, we used simultaneous substitution, denoted as t[v/x,w/y], i.e. all free
occurrences of term variables x and y are substituted simultaneously in function term t, and we must
have x 6= y. Simultaneously means that expressions v introduced by substitution [v/x] are not considered
by substitution [w/y] and vice versa. If y does not occur as free term variable in v, this is equal to

19In fact, this is necessary to keep the semantics sound, since if we considered a quantum closure [Q, |q1〉 , (λy.U〈y, q1)〉],
and intended to reduce the subterm U〈y, q1〉, we would need to consider the “quantum closure” [Q, |q1〉 , U〈y, q1〉], similarly
to the congruence rules we define later. But this is not a well-defined quantum closure, because the free term variable y
does not appear in linking sequence |q1〉. Besides this formal restriction, however, it is at this point unclear how the unitary
operator U shall (semantically) act on y, since y does not refer to a qubit in Q (see Definition 3.10 for the definition of
reduction of unitary operators).

3.2 Operational semantics 25

t[v/x][w/y], and if x does not appear freely in w it equals t[w/y][v/x]. Let us illustrate this by an
example: 〈

(λx.t x y), (λz.s x y z)
〉
[v/x,w/y]

=
〈
(λx.t x y)[v/x,w/y], (λz.s x y z)[v/x,w/y]

〉
=
〈
(λx′.t[x′/x][w/y] x′ w), (λz′.s[z′/z][v/x,w/y] v w z′)

〉
,

where x′ and z′ are fresh term variables that have not occurred before, i.e. in particular x′, z′ 6∈ ftmv(t)∪
ftmv(s) ∪ ftmv(v) ∪ ftmv(w) ∪ {x, y}.

The above reduction rules reflect the chosen evaluation strategy in that they allow only value terms to
be substituted for free variables in function terms. This means that arguments have to be evaluated to
a value term before they can be applied to a term abstraction, pair abstraction or in a case distinction.

Remark: In the case of the given basic reduction rules a comparison to [SV09] shows that the syntactic
shape of all of these reduction rules diverges (more or less) from their original counterpart. Of
course, this is again due to stripping off syntactic sugar. We need to convince ourselves at least
informally that the changed reduction rules still lead to an equivalent operational semantics. Our
first two reduction rules correspond to

let x = v in t → t[v/x] and let 〈x, y〉 = 〈v, w〉 in t → t[v/x,w/y]

in [SV09]. But since Convention 1.3.2 in that same work contains the identities (let x = s in t) ≡
((λx.t) s) and (λ〈x, y〉.t) ≡ (λz.(let 〈x, y〉 = z in t)) with a fresh z 6∈ ftmv(t), we immediately see
that our first and second reduction rules are equivalent to their counterparts in [SV09].

Reduction rules three and four are somewhat more interesting, since the corresponding reduction
rules in the original work perform in one (atomic) reduction step, what we have to put into two
consecutive reduction steps: reduction rule

match injl(v) with (x 7→ tl | y 7→ tr) → tl[v/x]

from [SV09] corresponds to the two-step reduction

match injl(v) with (λx.tl) | (λy.tr)
(1)−→ (λx.tl) v

(2)−→ tl[v/x]

according to our basic reduction rules in Definition 3.8 (and analogously for the other case distinction
rule). There are two facts which ensure that this does not lead to changed computational behavior.
The first one is that v is a value term and is thus already fully evaluated. This means there
cannot occur any reduction steps reducing v (or one of its subexpressions) between reduction steps
(1) and (2). The other fact is that due to the fixed call-by-value reduction strategy, expression
(match injl(v) with . . .) needs to be fully evaluated (before anything else can be evaluated), once
evaluation of it has begun, and term application ((λx.tl) v) is clearly not yet fully evaluated. Hence,
reduction step (2) is the one and only possible reduction step that can be performed immediately
after (1). This is formally ensured by Definitions 3.8, 3.10 and 3.11.

Finally, is it not hard to see that the fifth reduction rule, which corresponds to

(letrec f x = s in t) → t
[
(λx.(letrec f x = s in s))

/
f
]

from [SV09], just moves the somewhat hidden binding of x in s closer to its scope. But this has
already been done in the definition of the syntax of function terms. Here, it is just taken over into
the corresponding reduction rule and the rest of the rule is left unchanged.

Since we now have formally fixed how the “classical control” part of QLC behaves computationally,
it remains to treat the part modeling quantum computations. Of course, this involves the quantum data
embedded in a quantum closure and also introduces probabilistic aspects due to quantum mechanical
measurement.

26 3 UNTYPED QUANTUM LAMBDA CALCULUS

Definition 3.9 (probabilistic reductions of quantum closures).
To address a single probabilistic reduction step from quantum closure [Q,L, t] to [Q′, L′, t′] that is
executed with probability p ∈ [0, 1] ([0, 1] being the real unit interval), we write

[Q,L, t]→p [Q′, L′, t′] .

We use the usual reflexive, transitive closure operator →∗p to abbreviate a finite sequence of single-
step reductions [Q0, L0, t0] →p1

. . . →pn [Qn, Ln, tn] for an arbitrary n ≥ 0, and thus write

[Q0, L0, t0]→∗p [Qn, Ln, tn], where p :=

{
1 , if n = 0,∏n
i=1 pi , otherwise.

It is now time to give up the simplified point of view and turn the above basic reduction rules into prob-
abilistic reduction rules on quantum closures that we need to evaluate QLC function terms. Furthermore,
we still need to give reduction rules dealing with quantum data.

Definition 3.10 (reduction of quantum closures).
For each of the basic reduction rules s → t in Definition 3.8 we have a probabilistic reduction rule
on quantum closures

[Q,L, s]→1 [Q,L, t]

for all [Q,L, s] ∈ SQLC .

We moreover define the following probabilistic reduction rules for initialization, manipulation and
measurement of quantum data:

[Q, |q1, . . . , qn〉 ,new 0]→1 [Q⊗ |0〉 , |q1, . . . , qn, qn+1〉 , qn+1] ,

[Q, |q1, . . . , qn〉 ,new 1]→1 [Q⊗ |1〉 , |q1, . . . , qn, qn+1〉 , qn+1] ,

[Q, |q1, . . . , qn〉 , U1 qj]→1 [Q′, |q1, . . . , qn〉 , qj] ,

[Q, |q1, . . . , qn〉 , U≥2 〈qj1 , . . . , qjm〉]→1 [Q′′, |q1, . . . , qn〉 , 〈qj1 , . . . , qjm〉] ,

[αQ0 + β Q1, |q1, . . . , qn〉 ,meas qi]→|α|2 [Q0, |q1, . . . , qn〉 , 0] ,

[αQ0 + β Q1, |q1, . . . , qn〉 ,meas qi]→|β|2 [Q1, |q1, . . . , qn〉 , 1] .

In the rules for the new operator, Q is an n-qubit state such that Q⊗ |b〉, b ∈ {0, 1}, is an (n+1)-
qubit state. The embedded quantum state Q ∈ Hn is thus lifted to a state Q⊗ |b〉 ∈ Hn+1 with a
doubled number of dimensions.

In the third rule we reduce a function term (U1 qj), 1 ≤ j ≤ n, for a unary built-in unitary operator
U1 ∈ U1. The quantum state Q from an appropriate 2n-dimensional Hilbert spaceHn is transformed
into quantum state Q′ ∈ Hn, such that Q′ is derived from Q by applying U1 to the j-th qubit in
Q, i.e.

Q′ :=
(
Id⊗j−1

1 ⊗ U1 ⊗ Id⊗n−j1

)
Q ,

where Id1 : H1 → H1; |ϕ〉 7→ |ϕ〉 denotes the identity operator on a two-dimensional Hilbert space
(which is obviously unitary).20

In the fourth rule (which reduces a term (U≥2 〈qj1 , . . . , qjm〉)), U≥2 ∈ Um is an m-ary built-in
unitary operator with m ≥ 2, qj1 , . . . , qjm all appear in linking sequence |q1, . . . , qn〉, and indices
j1, . . . , jm are pairwise distinct. The quantum state Q′′ is obtained from Q by applying U≥2 to
qubits j1, . . . , jm. (What this last sentence precisely means is elaborated in more detail in appendix
B.)

In the last two rules for measurement, Q0 and Q1 represent normalized quantum states (i.e. ‖Q0‖ =
‖Q1‖ = 1) of the form

Q0 :=
∑
j

αj
∣∣ϕ0
j

〉
⊗ |0〉 ⊗

∣∣ψ0
j

〉
and Q1 :=

∑
j

βj
∣∣ϕ1
j

〉
⊗ |1〉 ⊗

∣∣ψ1
j

〉
,

20Intuitively, this rule is a special case of the fourth rule for the application of unary unitary operators. However, since
we do not write angle brackets around a single free term variable qj , we provide a syntactically adjusted reduction rule for
this special case.

3.2 Operational semantics 27

where
∣∣ϕ0
j

〉
,
∣∣ϕ1
j

〉
∈ Hi−1 are (i − 1)-qubit states, and

∣∣ψ0
j

〉
,
∣∣ψ1
j

〉
∈ Hn−i are (n − i)-qubit states,

such that the i-th qubit in Q, represented by qi, is the one measured during these reductions.

Please note that, by definition of quantum closures, αQ0 + βQ1 in the last two reduction rules needs
to be a unit vector, that is ‖αQ0 + βQ1‖ = 1 must hold. As a consequence of ‖αQ0 + βQ1‖ = 1, the
required ‖Q0‖ = ‖Q1‖ = 1 and the fact that Q0 and Q1 are orthogonal (which follows from their above
definition), we get |α|2 + |β|2 = 1, since

12 = ‖αQ0 + βQ1‖2 =
〈
αQ0 + βQ1

∣∣ αQ0 + βQ1

〉
= αα∗ 〈Q0|Q0〉︸ ︷︷ ︸

= ‖Q0‖2=1

+αβ∗ 〈Q1|Q0〉︸ ︷︷ ︸
= 0

+βα∗ 〈Q0|Q1〉︸ ︷︷ ︸
= 0

+ββ∗ 〈Q1|Q1〉︸ ︷︷ ︸
= ‖Q1‖2=1

= |α|2 + |β|2 .

Hence, these two reduction rules properly model measurement of orthogonal subspaces of Hn.
Moreover, when we take a closer look at the left-hand quantum closures in the reduction rules from

Definition 3.10, we see that the function terms embedded in these quantum closures are term applications
where value terms are applied to term constants. This is in full accordance with a call-by-value reduction
strategy.

By now, we are not able to reduce reducible subexpressions of function terms. To achieve this, we
give a couple of congruence rules in the next definition. These also embody the yet missing part of the
call-by-value reduction strategy, since we still need a way to fully evaluate the “right-hand side” of a
reducible expression before the expression itself may be reduced.

Definition 3.11 (congruence rules).
A congruence rule for the evaluation of quantum closures has the form

C →p D
, where C, C′,D,D′ ∈ SQLC ,C′ →p D′

and is read as “whenever there is a probabilistic reduction rule of the form C →p D, then there is
also a probabilistic reduction rule of the form C′ →p D′.”
For function terms in untyped QLC we define the following set of congruence rules (for all s, s′, t, t′,
t1, t2 ∈ TuQLC and v, v2 ∈ Tvalue):

[Q, L, t] →p [Q′, L′, t′]

[Q, L, s t] →p [Q′, L′, s t′]

[Q, L, t] →p [Q′, L′, t′]

[Q, L, t v] →p [Q′, L′, t′ v]

[Q, L, t2] →p [Q′, L′, t′2]

[Q, L, 〈t1, t2〉] →p [Q′, L′, 〈t1, t′2〉]
[Q, L, t1] →p [Q′, L′, t′1]

[Q, L, 〈t1, v2〉] →p [Q′, L′, 〈t′1, v2〉]

[Q, L, t] →p [Q′, L′, t′]

[Q, L, injl(t)] →p [Q′, L′, injl(t
′)]

[Q, L, t] →p [Q′, L′, t′]

[Q, L, injr(t)] →p [Q′, L′, injr(t
′)]

[Q, L, s] →p [Q′, L′, s′]

[Q, L, match s with (λx.tl) | (λy.tr)] →p [Q′, L′, match s′ with (λx.tl) | (λy.tr)]

As promised before, the first congruence rule enables the reduction of the right-hand side of a term
application (s t). Moreover, the second congruence rule allows the reduction of the left-hand side of
a term application (for instance to a term abstraction, pair abstraction or term constant). From the
third and fourth congruence rules, we immediately see that tuples in QLC are evaluated component-wise
from right to left. Finally, the last three congruence rules allow the reduction of function terms t and
s in disjoint unions injl(t) and injr(t) and in case distinctions (match s with . . .), and furthermore, by
recursive application of congruence rules, we may even reduce subexpressions inside of t and s.

28 3 UNTYPED QUANTUM LAMBDA CALCULUS

Remark: Using our “less sugared” syntactic variant it is now crystal clear why there is only one con-
gruence rule for case distinction terms (match s with (λx.tl) | (λy.tr)) (namely the one enabling
reduction of function term s) and none for recursion terms (letrec f = (λx.s) in t). In both cases
the included function terms (λx.tl), (λy.tr) and (λx.s) are already value terms by default, and
thus no further reducible, anyway. Hence, congruence rules enabling their reduction would bring
nothing new. The same also holds for the sugared variant in [SV09], however, there it is perhaps
less obvious to come up with the explanation.

Moreover, we “lost” one congruence rule here, namely

[Q, L, t] →p [Q′, L′, t′]
.

[Q, L, let 〈x, y〉 = t in s] →p [Q′, L′, let 〈x, y〉 = t′ in s]

On the one hand, this is not much of a surprise, since we have no syntactic construct as in the
conclusion of this rule. On the other hand, when we consider Convention 1.3.2 in [SV09] and
keep the intended computational behavior of the involved constructs in mind, we may come to the
equality

let 〈x, y〉 = t in s ≡ (λ〈x, y〉.s) t .

And since the first congruence rule in Definition 3.11 applied to the right-hand side of
((λ〈x, y〉.s) t) directly translates to

[Q, L, t] →p [Q′, L′, t′] ,
[Q, L, (λ〈x, y〉.s) t] →p [Q′, L′, (λ〈x, y〉.s) t′]

where we see we have the same possibilities with our “less sugared” variant and actually did not
lose anything.

Definition 3.12 (evaluation of quantum closures).
An evaluation step [Q,L, t] →p [Q′, L′, t′] for a quantum closure [Q,L, t] is the application of a
probabilistic reduction rule [Q,L, t]→p [Q′, L′, t′] with the evaluation result [Q′, L′, t′].

An evaluation of a quantum closure [Q,L, t] is a finite sequence of evaluation steps [Q,L, t]→∗p
[Q′, L′, t′] with the evaluation result [Q′, L′, t′].

A full evaluation of a quantum closure [Q,L, t] is an evaluation [Q,L, t]→∗p [Q′, L′, t′], where there
is no evaluation step [Q′, L′, t′]→p [Q′′, L′′, t′′], i.e. no further reduction is possible. The evaluation
result of a full evaluation is also called final result.

According to this definition, we evaluate an untyped QLC function term embedded into a quantum
closure by applying the probabilistic reduction rules on quantum closures we defined in this section,
respecting the given congruence rules. The goal of such successive reductions is to reach a state that is
not reducible anymore, which means we either reached a value state or we got stuck with an so-called
error state (see Definition 4.56 in section 4.4).

As we have already discussed along the road, we end up with a call-by-value evaluation strategy, due
to the way we have defined reduction rules, congruence rules and evaluations. Operational semantics
of untyped QLC hence does not reduce subexpressions inside the scope of term abstractions or pair
abstractions as long as no argument is applied to these.

At the end of this section, we highlight one more characteristic of QLC function terms: there exist
function terms t in untyped QLC for which a quantum closure [Q,L, t] does not have a full evaluation, i.e.
all possible evaluations do result in quantum closures that are not value states and are further reducible.
One instance of such t is function term letrec f = (λx.(f 〈〉)) in (f 〈〉), as we can see by[

Q,L, letrec f = (λx.(f 〈〉)) in (f 〈〉)
]

→1

[
Q,L, (f 〈〉)[(λx.(letrec f = (λx.(f 〈〉)) in (f 〈〉))) / f]

]
≡
[
Q,L, (λx.(letrec f = (λx.(f 〈〉)) in (f 〈〉))) 〈〉

]
→1

[
Q,L, letrec f = (λx.(f 〈〉)) in (f 〈〉)

]
.

3.2 Operational semantics 29

Also note, full evaluations for a particular quantum closure are not necessarily unique, and even worse,
different full evaluations for one quantum closure may lead to disagreeing final results. (Disagreeing final
results for disagreeing full evaluations will even become inevitable in the typed setting later, at least
at the level of quantum closures. The function terms inside disagreeing final results, however, may be
equal.) Consider again function term coin ≡

(
λz.meas (H (new 0))

)
from Example 3.5. When we put

it into an appropriate quantum closure and apply an argument to it, we obtain the following differing
full evaluations for quantum closure [1, |〉 , coin 〈〉], although we use the same reduction strategy for both
evaluations: [

1, |〉 , coin 〈〉
]
≡
[
1, |〉 ,

(
λz.meas (H (new 0))

)
〈〉
]

→1

[
1, |〉 ,meas (H (new 0))

]
→1

[
|0〉 , |q1〉 ,meas (H q1)

]
→1

[
1
√

2

(
|0〉+ |1〉

)
, |q1〉 ,meas q1

]
→ 1

2

[
|0〉 , |q1〉 , 0

]
and [

1, |〉 , coin 〈〉
]
≡
[
1, |〉 ,

(
λz.meas (H (new 0))

)
〈〉
]

→1

[
1, |〉 ,meas (H (new 0))

]
→1

[
|0〉 , |q1〉 ,meas (H q1)

]
→1

[
1
√

2

(
|0〉+ |1〉

)
, |q1〉 ,meas q1

]
→ 1

2

[
|1〉 , |q1〉 , 1

]
.

In this example the two different possibilities for a reduction of term application (meas q1) are obviously
responsible for the disagreement of evaluations.

And since we have fixed the reduction strategy to call-by-value (and thus disagreeing evaluations as
the informal ones in Example 3.5 cannot occur in the operational semantics of QLC), we may generalize
the above observation: only probabilistic reduction steps which reduce (sub)expressions of the form
(meas qj) can lead to disagreeing evaluations of quantum closures [Q, |. . . , qj , . . . 〉 , . . . (meas qj) . . .].
Such reductions correspond to measurement of the qubit associated to qj , and we have already said
measurement processes in quantum physics are inherently random. Thus, disagreeing evaluations did not
accidentally become part of QLC, but are rather a necessity for properly modeling computations in the
quantum world.

30 4 POLYMORPHICALLY TYPED QUANTUM LAMBDA CALCULUS

4 Polymorphically typed Quantum Lambda Calculus

In the two previous sections we have outlined the most basic concepts and formalisms used in the field of
quantum computation, on the one hand, and we have introduced a concrete calculus modeling classical
computations as well as quantum computations, on the other hand. (By quantum computations, we
actually mean quantum physical phenomenons and processes that can be interpreted as computations, to
be more precise.) In section 2.2 we have presented a central theorem, namely Theorem 2.5 – widely known
as the no-cloning theorem – which draws a strict line showing that cloning (i.e. exact copying without
loss of information) of arbitrary and a-priori unknown quantum data is clearly beyond the possibilities
approved by the laws of quantum physics.

An important question that we by now have neither posed nor answered is: what consequences does
the no-cloning theorem entail for calculi such as QLC ? Or, put into different words: what restrictions on
the formulation of QLC function terms does this result impose if we want to be sure that the formulated
function term describes computations that are actually physically realizable, at least in principle? This
is a very interesting and quite important question indeed.

Untyped QLC, as we have presented it in section 3, is not subject to any restriction induced by
Theorem 2.5. So we can without any difficulties formulate a function term (λfx.f x x), for instance.
From the operational semantics’ point of view this function term simply takes two arguments and produces
a result where the second argument is applied twice, first to the first argument and afterwards to the
result of this first application. The following example illustrates what is meant by this.

Example 4.1. Recall function term

xor ≡
(
λxy.if x then (if y then 0 else 1) else (if y then 1 else 0)

)
which we already encountered in Example 3.5. Let us now take a look at the computational behavior
of function term ((λfx.f x x) xor 0) which we put into an appropriate quantum closure:[

1, |〉 , (λfx.f x x) xor 0
]
→1

[
1, |〉 , (λx.xor x x) 0

]
→1

[
1, |〉 , xor 0 0

]
→∗1

[
1, |〉 , 0

]
fully evaluates to a value state. Clearly, input term 0 is copied in the second evaluation step and
thus contributes twice to the final result.

Copying of the second argument in the example evaluation is caused by the shape of function term
(λfx.f x x). The reason is quite simple: term variable x occurs more than once in the scope of term
abstraction (λx.f x x). Such multiple occurrences of term variables require copying during evaluation.
This is not at all problematic as long as only classical information is concerned.

However, this is the point where Theorem 2.5 has a crucial impact on our considerations, since it
entails copying is impossible for arbitrary and a-priori unknown quantum data. This means, although
untyped QLC clearly allows the formulation of function terms such as

(λx.f x x) (new 0),

we may very well be in doubt whether the formulated function term does represent a computation which
is actually physically realizable. Hence, the no-cloning theorem sheds new light on the way we have to
deal with quantum data referenced in QLC function terms when we want to ensure we only formulate
function terms whose evaluations will be in accordance with physical law.

Selinger and Valiron have drawn the following conclusion from this peculiarity of quantum computa-
tion: they define a linear type system for QLC in [SV09] that rules out multiple occurrences of function
variables which link to quantum data. This in the end guarantees that well-typed function terms in sim-
ply typed QLC comply with the no-cloning theorem. In fact, the type system of simply typed QLC even
gives stronger guarantees. Corollary 1.3.33 in [SV09] states that if a function term which is embedded in
an appropriate quantum closure and which is equipped with an appropriate typing environment can be
assigned a type in the simple type system, then an evaluation of this function term does not result in an
error state.

For our discussion of the impact of the no-cloning theorem, we shall concentrate on linearity of simply
typed QLC ’s type system. In usual algebra, we recognize a term as linear in an indeterminate x if x

31

occurs exactly once in the term. In analogy to this, we use the words “linear in x” also for function terms,
however in a less strict sense. More precisely, we conceive a function term t as linear in term variable
x, if x occurs at most once in t. Having this concept of linearity, we can now quite clearly state what it
means to perform computations in QLC that do not break the no-cloning theorem. Given a (possibly
infinite) sequence of evaluation steps[

Q0, L0, t0
]
→p1

. . .→pn

[
Qn, Ln, tn

]
or[

Q0, L0, t0
]
→p1

. . .→pn

[
Qn, Ln, tn

]
→pn+1

. . . ,

we conclude

t0 models a computation in accordance with Theorem 2.5, if each of the ti is linear in all
q1, . . . , qki that appear in linking sequence Li = |q1, . . . , qki〉.

However, such a check of all possible evaluations starting from an appropriate quantum closure [Q0, L0, t0]
for function term t0 is clearly impossible to do, especially if there is no full evaluation (which would be
finite) for t0. Thus, the type system needs to handle the situation differently. The solution is to assign
types to function terms that allow us to individually keep track for each appearing term variable whether
it is allowed to occur more than once or not. When we additionally recall the definition of quantum
closures, where we require all free term variables in t0 to appear in L0, we can extend our check for
accordance with physical law as follows:

t0 models a computation in accordance with Theorem 2.5,

• if t0 is linear in each free term variable q, and

• if for each term abstraction (λx:Φx.s) in t0 with linear type term Φx the scope s of the
term abstraction is linear in x,21

and an analogous condition holds for each pair abstraction and recursion term in t0.

Hence, one purpose of simply typed QLC ’s type system is to guarantee the just stated conditions (in a
slightly weakened variant22), and moreover, to make sure that all term variables referring to quantum data
are assigned a linear type (namely a special type constant Qbit). Selinger and Valiron have successfully
equipped QLC with such a simple type system, and thus a well-typed function term in simply typed
QLC will not violate the no-cloning theorem during evaluation.

Of course, we want to keep this property when we extend simply typed QLC ’s type system with
parametric polymorphism in the current section. And in aiming at this, we face different challenges that
we will discuss soon. However, let us first motivate the benefits of such a polymorphic extension a bit.

To illustrate the use of QLC and the limitations of its simple type system, we take a look at the
following example function term:

t :=
〈
pnq g (λx.x) , (λ〈x, y〉.x)

(
pnq (λ〈x, y〉.〈y, x〉) 〈p0q, p1q〉

) 〉
,

where
pnq :≡

(
λfx. f (. . . (f︸ ︷︷ ︸

n times

x) . . .)
)

represents a Church numeral (for n ∈ N) and g shall stand for an arbitrary function (working on the
identity function). We leave open what g does exactly, but clearly the second component of the pair
computes the parity of n by switching places of numerals p0q and p1q in pair 〈p0q, p1q〉 n times followed
by a projection to the first component.

When we look at function term t from the perspective of simple typing, i.e. without employing
polymorphism of any kind, there is no reason why we should not be able to infer a proper type for each

21We formally define the mentioned syntactic constructs in section 4.3.
22The weakened variant allows one exception to the stated linearity conditions. The exception concerns case distinctions,

where term variables of linear type may possibly occur once in each of the different branches (λx:Φx.tl) and (λy:Φy .tr), and
thus, by nested occurrences of case distinctions, may in fact occur multiple times in function terms. We will investigate the
details of this later, namely in subsection 4.6.3.

32 4 POLYMORPHICALLY TYPED QUANTUM LAMBDA CALCULUS

of the two occurrences of term pnq, respectively. For instance, the following could do for the left-hand
occurrence of pnq

Φleft :=
(
(Φ′(Φ′)((Φ′(Φ′)

)
((Φ′(Φ′)((Φ′(Φ′) ,

for some type Φ′, and for the right-hand occurrence we can find

Φright :=
(
(Φ̂⊗ Φ̂)((Φ̂⊗ Φ̂)

)
((Φ̂⊗ Φ̂)((Φ̂⊗ Φ̂) ,

where Φ̂ stands as abbreviation of ((Φ′′ (Φ′′) (Φ′′ (Φ′′) for some type Φ′′. In the syntax we use
in this section, “(” denotes the function type operator and “⊗” the operator for pair types (formal
definitions will follow soon in section 4.1). Not at all surprising, we get the well known type pattern for
Church numerals (Φ (Φ) (Φ (Φ. So far, so good. But what happens, if we abstract from pnq
and want it to be a parameter of the modeled function, say z? That means, we intend to use modified
function term (

λz.
〈
z g (λx.x) , (λ〈x, y〉.x)

(
z (λ〈x, y〉.〈y, x〉) 〈p0q, p1q〉

) 〉)
to gain more flexibility. At this point we already crossed the border of what the type system of simply
typed QLC can handle properly. To infer a type for this term, we would need to unify types Φleft and
Φright, which is not possible for obvious reasons.

One possible (but certainly undesirable) solution is to give each occurrence of pnq its own abstraction
and hand the same argument twice to the function, e.g. (λz1z2.〈. . . 〉) pnq pnq. Now, this is a constrain
that could not be enforced by the syntax or type system of QLC, but rather has the status of a convention
among programmers. Moreover, it is clear that the intended semantics of this function term (almost
certainly) changes and might be subject to abuse. (These last two objections need to be interpreted in
the light of QLC having originally been developed with the intention in mind to create a practically
usable programming language for quantum computation.)

Another possibility to fix the problem (and we will follow this suggestion in the current section) is
to extend the type system in a convenient way and thus enable type inference for such constructions.
Therefor we follow the well-known paths of parametric second-order polymorphism as it occurs in system
F, for instance (see [Pie02], chapter 23, for an introduction focused on practical aspects of system F).

Our intended extension, however, comes at the price of some technical complications. These originate
in the implicit linearity tracking Selinger and Valiron have chosen for their language. To keep the
management of duplicable and linear terms away from the programmer, they have decided to omit
syntactic constructs that make copying and discarding operations on linear elements and the removal of
duplicability from types explicit. One consequence (the most obvious one for our work) are isomorphisms
between types such as !Φ ∼= !!Φ and !(Φ ⊗ Ψ) ∼= (!Φ ⊗ !Ψ). Furthermore, in order to handle these
isomorphisms, Selinger and Valiron introduce subtyping, which entails for example that a function of
type (!Φ(Ψ) accepts arguments of type !Φ, of course, but also of type !!Φ, which is not that surprising
in the light of an isomorphism !Φ ∼= !!Φ. However, the system goes even farther, since a function of type
(Φ(Ψ) also accepts arguments of type !Φ. This is a desired and important property of subtyping (as
for instance described in [Pie02], chapter 15), since a term of type !Φ is considered as a member of type
Φ with the additional property of being duplicable.

As we have already said before, we want our polymorphic type system to still guarantee that term
variables with a linear type may not occur twice in a well-typed term. Especially for term variables that
are linked to quantum data we introduce a type constant Qbit for which we want to enforce linearity
at all times. And since duplicability (nonlinearity, in other words) of a type is marked by exponentials,
denoted “!”, the introduction of polymorphism and the accompanying concept of type application (in
analogy to term application in section 3) gives rise to the following problem: how can we prevent type
substitutions (as result of a type application) of the form (∀X.!X) Qbit (!X)[Qbit/X] yielding type
!Qbit? Once again: !Qbit shall be impossible to derive, since it could lead to computational behavior
contradicting physical law, as we have already discussed above.

This leads to bounded quantification – a concept which results from combining universally quantified
types with subtyping (see chapter 26 of [Pie02] for reference). In our example the right occurrence of X in
(∀X.!X) may be seen as a “potentially dangerous spot”, i.e. we need to prevent types that are supposed
to be linear from being substituted for type variables such as X in this example. Therefore, we consider
such occurrences of X nonlinear and allow only certain type terms to be substituted for type variables

4.1 Type terms 33

that possess nonlinear occurrences. This is done by introducing an upper bound on the applicable types
and that sort of bounded quantification is written as (∀X<:!Top.!X). We could interpret this as “X in
!X may be any type that is a subtype of !Top.” Later on, we will see (Corollary 4.10) that any subtype
of !Top is of the form !Φ for some type term Φ. And because Qbit is not a subtype of !Top and !Qbit shall
not be a derivable type in our system, we shall also not be able to end up with types !Qbit , !!Qbit and
the like by type applications. In this way, we reuse the subtyping concept that has been introduced into
QLC by Selinger and Valiron to enable implicit linearity tracking and is thus available anyway, to now
also enforce linearity of a certain class of type terms during evaluation of polymorphically typed QLC
function terms. We postpone detailed formal considerations on this issue to subsection 4.2.3, because we
first need to introduce the basic notions of our type system and to develop some formal tools to finally
come back to this problem and investigate whether we have reached our goal.

In the subsequent sections we introduce type terms, the subtype relation, rules for deriving proved
types and proved subtypes, and we study some properties that are inherent to our system. During the
presentation we follow the pattern of definitions in the chapter on polymorphic functional type theory of
Roy Crole’s book [Cro93].23

4.1 Type terms

To get started, we introduce the raw material from which we build up our type system. This means we
define the syntax of type terms and basic notions such as (nonlinear) free type variables, substitution of
type variables and finally the subtype relation.

4.1.1 Basic definitions

Definition 4.2 (type terms).
Given a countably infinite set Vtype := {X,Y, Z,X1, X2 . . . } of type variables (with Vtype∩Vterm = ∅)
and type constants Top, Unit , Qbit , we inductively define the set Ttype of type terms:

• type constants:
Top ∈ Ttype , Unit ∈ Ttype , Qbit ∈ Ttype ,

• type variables:
X ∈ Ttype for all X ∈ Vtype ,

• duplicable types:
!Φ ∈ Ttype , for all Φ ∈ Ttype ,

• composite types:
(Φ⊗Ψ) ∈ Ttype , (Φ⊕Ψ) ∈ Ttype and (Φ(Ψ) ∈ Ttype , for all Φ,Ψ ∈ Ttype ,

• bounded quantification:
(∀X<:ΦX .Ψ) ∈ Ttype , for all X ∈ Vtype and for all ΦX ,Ψ ∈ Ttype .

We call (Φ ⊗ Ψ) a product type, (Φ ⊕ Ψ) a sum type, (Φ (Ψ) a function type, and (∀X<:ΦX .Ψ)
type abstraction. Furthermore, the operator “!” is called exponential.24,25 A type term !Φ with a
leading exponential is called duplicable (or occasionally nonlinear) and a type term Φ without any
leading exponential in called linear.

For type abstractions (∀X<:ΦX .Ψ), we call Ψ the scope of the type abstraction, and say that all
free occurrences of X in Ψ are bound, and captured by ∀X<:ΦX . (The notion of “free occurrence”
corresponds to the usual one, but we will soon define it formally.)

23From there we also lend some of the notation, such as function names ftyv (free type variables) and ftmv (free term
variables), the style of using parenthesis (e.g. (∀X. . . .) instead of ∀X(. . .)), and again the way substitution deals with
type abstractions to avoid unintended binding of free occurrences of X in substituted type term Υ by a type abstraction.

24The notation ⊗, ⊕, (and ! is borrowed from Jean-Yves Girard’s linear logic in [Gir87], of which a fragment has been
used by Selinger and Valiron as blueprint to develop their simple type system for QLC.

25The choice of the name “exponential” becomes clear when one thinks about “!” marking nonlinear elements (as in
comparison to linear and nonlinear equations from algebra), i.e. elements that may contribute more then once to the overall
result.

34 4 POLYMORPHICALLY TYPED QUANTUM LAMBDA CALCULUS

The three type constants Top, Unit and Qbit serve different purposes. Top stems from subtyping as it
is presented in [Pie02], where it serves as supertype of all other types Φ, i.e. all types Φ are a subtype of
Top. We will see this in the definition of the subtype relation in the next subsection. What also follows
from the subtype relation is that we get a supertype of all duplicable types, as well, namely !Top (see
Corollary 4.10). This together with bounded quantification will later serve as the right tool to ensure
that types such as !Qbit cannot result from type application. Later we will discuss this in more detail.

The Unit type was already introduced in [SV09] as the singleton type (there denoted as “>”); only
function term 〈〉 – the empty tuple – (denoted “∗” in [SV09]) is of type Unit , as we will see later.

Finally, Qbit is the type for the sort of data derived from quantum mechanical systems in quantum
computation. It has also been introduced in [SV09]. In contrast to the other type constants, we shall
enforce linearity for certain types (constant, composite and quantified) that involve Qbit . That is, we
need to prohibit types such as !Qbit , !(Qbit ⊗ Φ), (Φ (!Qbit) and so on. We will repeatedly return to
this discussion in the appropriate places. In a way, it is the major aim of this work to develop a type
system that exhibits this property. Subsection 4.2.3 contains formal considerations on this issue.

The name “duplicable type” might be a bit misleading. The intended meaning is not that the type
terms themselves are duplicable, but rather the elements which possess a duplicable type are duplicable
(or reusable, in other words). Thus, a type term (Qbit ⊗Qbit) (where Qbit is obviously not a duplicable
type) does not pose any problem, although Qbit is used twice in this type term. Whereas a function
term 〈x, x〉 of type (Qbit ⊗Qbit) shall not be possible, because then x in each occurrence is of linear type
Qbit but indeed occurs twice. Hence, we clearly face different challenges at the level of type terms than
at the level of function terms. At the level of type terms, on the one hand, we need to take care that
type constant Qbit never appears inside a duplicable type, i.e. type terms such as !Qbit , !(Qbit ⊗ Unit),
!(Qbit ⊕ !Top), (Unit (!Qbit) shall be prohibited (please note that !(Qbit (Qbit) shall be allowed as
we will discuss in more detail later). On the other hand, we need to prevent term variables that do not
have a duplicable type from occurring more than once in a function term. The respective considerations
on function terms will be treated in section 4.3.

Next, we recursively define the notion of free type variables in a type term:

Definition 4.3 (free type variables, α-equivalence).
Function ftyv : Ttype → P(Vtype) applied to a type term Φ yields the set ftyv(Φ) of all type
variables that occur as free type variables in Φ, and is recursively defined as follows (for all C ∈
{Top,Unit ,Qbit}):

ftyv(C) := ∅ ,

ftyv(X) := {X} ,

ftyv(!Φ′) := ftyv(Φ′) ,

ftyv((Φ′ ⊗Ψ′)) := ftyv(Φ′) ∪ ftyv(Ψ′) ,

ftyv((Φ′ ⊕Ψ′)) := ftyv(Φ′) ∪ ftyv(Ψ′) ,

ftyv((Φ′(Ψ′)) := ftyv(Φ′) ∪ ftyv(Ψ′) ,

ftyv((∀X<:ΦX .Ψ
′)) := ftyv(ΦX) ∪

(
ftyv(Ψ′) \ {X}

)
.

With the notion of free and bound type variables in type terms, we can define α-equivalence on
type terms: two type terms Φ and Ψ are considered α-equivalent, if they differ only in their bound
type variables, i.e. if they have the same structure.

As usual, we identify type terms that are α-equivalent. From the definition of ftyv((∀X<:ΦX .Ψ
′)) we

can see that the binding of X does not stretch over ΦX (that is why we call solely Ψ′ the scope of this
type abstraction and not ΦX and Ψ′). This means bounded quantification, as we use it here, does not
produce recursive structures of any sort when we write type terms such as (∀X<:(X ⊗ Φ′).Ψ′), since X
still occurs freely in (X ⊗ Φ′).

Definition 4.4 (substitution of type variables).
Substitution of free type variables in type terms is denoted as Φ[Υ/Z], if all free occurrences of type
variable Z in type term Φ are substituted by type term Υ, and is recursively defined as follows (for
all C ∈ {Top,Unit ,Qbit}):

4.1 Type terms 35

C[Υ/Z] := C ,

Z[Υ/Z] := Υ ,

X[Υ/Z] := X , where Z 6= X,

(!Φ′)[Υ/Z] := !Φ′[Υ/Z] ,

(Φ′ ⊗Ψ′)[Υ/Z] := (Φ′[Υ/Z]⊗Ψ′[Υ/Z]) ,

(Φ′ ⊕Ψ′)[Υ/Z] := (Φ′[Υ/Z]⊕Ψ′[Υ/Z]) ,

(Φ′(Ψ′)[Υ/Z] := (Φ′[Υ/Z](Ψ′[Υ/Z]) ,

(∀Z<:ΦZ .Ψ
′)[Υ/Z] := (∀Z<:ΦZ [Υ/Z].Ψ′) ,

(∀X<:ΦX .Ψ
′)[Υ/Z] := (∀X ′<:ΦX [Υ/Z].Ψ′[X ′/X][Υ/Z]) , where Z 6= X and

X ′ 6∈ ftyv(Ψ′) ∪ ftyv(Υ) ∪ {Z,X}

Let us take a closer look at the last two defining equations. Again, the scope Ψ′ is ignored in the first
one, since Z is bound in Ψ′ by type abstraction. In the second line, we use renaming of bound type
variables (inspired by [Cro93]) to avoid unintended binding of free variables. This is possible since we
identify α-equivalent type terms.

Later on, we need to distinguish a special kind of free type variables which we call nonlinear. The idea
is that substitutions of the form (!X)[Υ/X], (!(X ⊗ Y))[Υ/X], (!(Y ⊕X))[Υ/X], (!(∀Y<:ΦY .X))[Υ/X]
and similar ones bring type term Υ in a position, where it becomes part of a duplicable type term, even
though it might itself be linear. However, the purpose of basing QLC ’s type system on linear logic is to
guarantee that data of the type Qbit is never marked as duplicable. Thus, in order to still provide this
guarantee in the presence of second-order polymorphism, we need to recognize such occurrences of free
type variables that turn substituted type terms into duplicable ones.

The following definition captures the idea of collecting free type variables which (when substituted)
might produce duplicable type terms (in the way we just discussed) in at least one occurrence.

Definition 4.5 (nonlinear free type variables).
Function nftyv : Ttype → P(Vtype) collects all free type variables that occur as nonlinear free type
variables in a type term, and is recursively defined as follows. For all C ∈ {Top,Unit ,Qbit} and
n ≥ 0, we set

nftyv(!nC) := ∅ ,

nftyv(X) := ∅ ,

nftyv(!n+1X) := {X} ,

nftyv(!n(Φ⊗Ψ)) := nftyv(!nΦ) ∪ nftyv(!nΨ) ,

nftyv(!n(Φ⊕Ψ)) := nftyv(!nΦ) ∪ nftyv(!nΨ) ,

nftyv(!n(Φ(Ψ)) := nftyv(Φ) ∪ nftyv(Ψ) ,

nftyv(!n(∀X<:ΦX .Ψ)) := nftyv(!kΦX) ∪
(
nftyv(!nΨ) \ {X}

)
,

where k :=

{
1, if X ∈ nftyv(!nΨ),

0, otherwise.

An interesting aspect of this definition is how leading exponentials are propagated to recursive function
calls on components of a type term and in which cases they are dropped and completely ignored.

Consider, for instance, the lines dealing with product and sum types. The type isomorphisms we
mentioned earlier state that a product type is duplicable if and only if its components are, i.e. !(Φ⊗Ψ) ∼=
(!Φ⊗ !Ψ). Hence, leading exponentials are propagated to both components of the product and function
nftyv is applied to the components with propagated exponentials. The same holds for sum types. (This
will also be reflected in the rules for the derivation of proved types, since types !(Φ⊗Ψ) and !(Φ⊕Ψ) can
only be derived if types !Φ and !Ψ have been derived before.) On the other hand, the application of nftyv
to function types with leading “!” signs drops all these leading exponentials completely in the recursive
calls of nftyv . The fundamental difference between a product type !(Φ ⊗ Ψ) or sum type !(Φ ⊕ Ψ) and
a function type !(Φ (Ψ) leading to these distinctions becomes clear when we informally think about
the abstract objects (i.e. function terms) having these types. An object 〈t1, t2〉 of (duplicable) product
type !(Φ ⊗ Ψ) in a way accommodates abstract objects t1 and t2 (which then consequently need to be

36 4 POLYMORPHICALLY TYPED QUANTUM LAMBDA CALCULUS

duplicable as well), whereas an abstract object (λx.t) of (duplicable) function type !(Φ (Ψ) works on
an abstract object of type Φ and results in an object of type Ψ. Thus, abstract object (λx.t) which
represents a function working on and resulting in objects of a certain type, may be duplicable no matter
whether its type is composed of duplicable types or not.26

Finally, nftyv applied to a type abstraction propagates leading exponentials to the scope of the type
abstraction. This is not surprising, for if we later eliminate the type abstraction by application of a type
term, the type abstraction disappears but leading exponentials stay, e.g. function term ((ΛX<:ΦX .t) Υ)
is of type !Ψ[Υ/X] if function term (ΛX<:ΦX .t) has type !(∀X<:ΦX .Ψ).

But, considering line nftyv(!n(∀X<:ΦX .Ψ)) := nftyv(!kΦX) ∪
(
nftyv(!nΨ) \ {X}

)
again, where does

the

k :=

{
1, if X ∈ nftyv(!nΨ),

0, otherwise

originate from? In the right part of the union X is ignored (because it is bound by type abstraction).
However, captured occurrences of X can still show nonlinear behavior when type application leads to
substitution of bound variables. Hence, it is necessary to take captured nonlinear occurrences of X in !nΨ
into account when treating the type bound ΦX for X.27 Consider, for example, type term !(∀X<:Y.X).
If we apply function nftyv to it, we get {Y } as a result, due to the propagated exponential in nftyv(!Y).
This reflects (for instance) the case of a type variable Y being applied to a term of type !(∀X<:Y.X)
resulting in a type !Y , where Y is clearly a nonlinear free type variable.

Now that we have established the basic notions of free type variables and their nonlinear versions, we
formulate the following simple property which is already informally indicated by our choice of names and
which will be of use later on.

Proposition 4.6. Let Φ be an arbitrary type term. It holds nftyv(Φ) ⊆ ftyv(Φ) .

Proof. By induction on the structure of Φ:

Base cases: Let Φ = C ∈ {Top,Unit ,Qbit}. Then we have nftyv(C) = ∅ = ftyv(C). Let Φ = X ∈ Vtype .
Then nftyv(X) = ∅ ⊂ {X} = ftyv(X).

Induction cases: Let Φ = (Φ′ ⊗Ψ′). Then, by induction, we have nftyv(Φ′) ⊆ ftyv(Φ′) and nftyv(Ψ′) ⊆
ftyv(Ψ′). And since nftyv((Φ′⊗Ψ′)) = nftyv(Φ′)∪nftyv(Ψ′) and ftyv((Φ′⊗Ψ′)) = ftyv(Φ′)∪ftyv(Ψ′),
it immediately follows nftyv((Φ′ ⊗ Ψ′)) ⊆ ftyv((Φ′ ⊗ Ψ′)), since ∪ is monotone with respect to ⊆.
The same holds for the cases of Φ = (Φ′ ⊕Ψ′) and Φ = (Φ′(Ψ′).

Let Φ = (∀X<:ΦX .Ψ
′). Then, nftyv((∀X<:ΦX .Ψ

′)) = nftyv(!kΦX) ∪ (nftyv(Ψ′) \ {X}) for

k =

{
1, if X ∈ nftyv(Ψ′),

0, otherwise.

Induction then tells us nftyv(!kΦX) ⊆ ftyv(!kΦX) = ftyv(ΦX) and nftyv(Ψ′) ⊆ ftyv(Ψ′). Together
with monotonicity of ∪ with respect to ⊆ and the fact that nftyv(Ψ′)\{X} ⊆ ftyv(Ψ′)\{X} follows
from nftyv(Ψ′) ⊆ ftyv(Ψ′), this again leads to nftyv((∀X<:ΦX .Ψ

′)) ⊆ ftyv((∀X<:ΦX .Ψ
′)).

Let Φ = !n+1Φ′ for maximal n with n ≥ 0, i.e. Φ′ has no leading exponentials but Φ has at least
one. We perform an induction on the structure of Φ′:

Base cases: Let Φ′ = C ∈ {Top,Unit ,Qbit}. We get nftyv(!n+1C) = ∅ = ftyv(!n+1C).

Let Φ′ = X ∈ Vtype . Then we have nftyv(!n+1X) = {X} = ftyv(!n+1X).

26What indeed matters for the typing of (λx.t), however, are free term variables possibly occurring in t. If these have
a linear type then the whole function needs to get a linear type, as well. We will meet this fact again in section 4.3 on
function terms.

27Please note that the isomorphism !Υ ∼= !!Υ for all Υ ∈ Ttype simplifies matters a lot at this point, because then it is
sufficient to propagate at most one exponential to the recursive function call nftyv(!kΦX). Without this isomorphism, we
would have to isolate and propagate the exact number of exponentials that have an effect on the bound occurrences of X in
!n(∀X<:ΦX .Ψ), more precisely, the ones immediately captured by this type abstraction. It is not immediately clear how to
do this, since there might be multiple (linear and nonlinear) occurrences of one type variable which are affected by different
numbers of exponentials.

4.1 Type terms 37

Induction cases: Let Φ′ be a composite type or a type abstraction (without leading exponentials
in both cases). We already covered similar situations in the other induction cases and hence
we may conclude by slightly modified arguments that nftyv(!n+1Φ′) ⊆ ftyv(!n+1Φ′).

4.1.2 The subtype relation <:

We have already said one or two words on our motivation for the employment of subtyping. It has been
introduced into QLC by Selinger and Valiron to establish duplicability of types as an additional property,
i.e. a term of duplicable type !Φ is, despite its duplicability, also of (possibly not duplicable) type Φ. And
thus, in analogy to (naive) set theory, !Φ is called a subtype of Φ. How this notion extends to more
complex types is captured in the definition of the subtype relation <: (pronounced “sub”).28 In contrast
to subtyping as it is presented, for instance, in [Pie02], simply typed QLC does originally not contain a
type Top being supertype of all types. But since we intend to use subtyping to enforce duplicability of
certain types (especially when it comes to substitution of nonlinear free type variables), we re-introduce
Top into our polymorphic extension of simply typed QLC. To do so, we define the subtype relation in a
way that Top is supertype of all types and that !Top is supertype of all duplicable types but of none of
the linear ones (see Corollary 4.10). Another interesting aspect of the supertype Top is that it enables
simulation of unbounded quantification by type abstractions of the form (∀X<:Top.Ψ).

We now define the subtype relation <:⊆ Ttype × Ttype as a preorder over Ttype , more precisely:

Definition 4.7 (subtype relation).
The subtype relation <: is the smallest binary relation over Ttype fulfilling the following axioms (for
all Φ,Ψ ∈ Ttype):

(1) Φ <: Φ ,

(2) Φ <: Top ,

(3) Φ <: Ψ =⇒ !Φ <: Ψ ,

(4) !Φ <: Ψ =⇒ !Φ <: !Ψ ,

(5) Φ1 <: Ψ1 ∧ Φ2 <: Ψ2 =⇒ (Φ1 ⊗ Φ2) <: (Ψ1 ⊗Ψ2) ,

(6) Φ1 <: Ψ1 ∧ Φ2 <: Ψ2 =⇒ (Φ1 ⊕ Φ2) <: (Ψ1 ⊕Ψ2) ,

(7) Φ <: Φ′ ∧Ψ <: Ψ′ =⇒ (Φ′(Ψ) <: (Φ(Ψ′) ,

(8) ΦX <: Φ′X ∧Ψ <: Ψ′ =⇒ (∀X<:Φ′X .Ψ) <: (∀X<:ΦX .Ψ
′) .

A statement Φ <: Ψ is read as “Φ is subtype of Ψ” or “Ψ is supertype of Φ”, and can be interpreted
as “whenever it is safe to use an abstract object (i.e. a function term) of type Ψ, it is also safe to use
an object of type Φ.” Using axioms (1) and (3), we get !Φ <: Φ for all type terms Φ. This corresponds
to our intuition (which we already came across several times) that function terms of type !Φ are also of
type Φ with the additional property of being duplicable. Moreover, using axioms (1), (3) and (4), we get
!Φ <: !!Φ and !!Φ <: !Φ which reflects the isomorphism !Φ ∼= !!Φ.

Axiom (7) may seem a bit strange at first sight, since the direction of subtyping is reversed left of
“(” in contrast to the right-hand side. Pierce motivates this as follows:

“The intuition is that if we have a function f of type S1 → S2, then we know that f
accepts elements of type S1; clearly, f will also accept elements of any subtype T1 of S1.
The type of f also tells us that it returns elements of type S2; we can also view these results
belonging to any supertype T2 of S2. That is, any function f of type S1 → S2 can also be
viewed as having type T1 → T2.

An alternative view is that it is safe to allow a function of one type S1 → S2 to be used in
a context where another type T1 → T2 is expected as long as none of the arguments that may
be passed to the function in this context will surprise it (T1 <: S1) and none of the results
that it returns will surprise the context (S2 <: T2).” ([Pie02], page 185)

A similar intuition motivates the shape of axiom (8).

28The notation <: is borrowed from type system F<:, as it has been defined in [CMM91].

38 4 POLYMORPHICALLY TYPED QUANTUM LAMBDA CALCULUS

We have informally said above that we define <: to be a preorder, but there is no axiom in its
definition which explicitly introduces transitivity into our relation, although transitivity is a key property
for preorders. This is true, of course. However, we can show that transitivity is a consequence of the
axioms in Definition 4.7, as the following proposition states:

Proposition 4.8. From Φ <: Υ and Υ <: Ψ we may conclude Φ <: Ψ.

Proof. This is shown by induction on the structure of Υ.

Base case: Let Υ ∈ {Top,Unit ,Qbit} ∪ Vtype .
Then either Ψ = Υ (by axiom (1)) or Ψ = Top (by axiom (2)). While we already have Φ <: Ψ = Υ
in the former case, we get Φ <: Ψ = Top by (2) in the latter one.

Induction cases: Let Υ be of the form Υ = (Υ1 ⊗Υ2).
Then Ψ = Υ (by (1)) or Ψ = Top (by (2)) or Ψ is of the form Ψ = (Ψ1⊗Ψ2) (by (5)). For the first
two cases we get Φ <: Ψ as in the base case. In the third case, we know Υ1 <: Ψ1 and Υ2 <: Ψ2.

Regarding Φ, we have the following possibilities of its form: Φ = Υ (by (1)) or Φ = !Φ′ (by (3)) or
Φ = (Φ1 ⊗ Φ2) (by (5)). The first case is again trivial. Let Φ = !Φ′. Then we need to distinguish
three forms Φ′ = Υ or Φ′ = !Φ′′ or Φ′ = (Φ′1 ⊗ Φ′2), again. By now, it has become clear that we
can iterate this case distinction arbitrarily often (which corresponds to an iterated application of
axiom (3)). In this way, we end up with a structure for Φ of the form Φ = !n

(
Φ1⊗Φ2

)
for a certain

n ≥ 0. Then we know Φ1 <: Υ1 and Φ2 <: Υ2 (which already covers the cases of Φ1 = Υ1 and
Φ2 = Υ2 due to reflexivity of <:).

Now induction yields Φ1 <: Ψ1 and Φ2 <: Ψ2. Thus, we obtain (using axiom (5)) (Φ1 ⊗ Φ2) <:
(Ψ1 ⊗ Ψ2). To this we may then iteratively apply axiom (3) n times to eventually obtain !n(Φ1 ⊗
Φ2) <: (Ψ1 ⊗Ψ2).

The case of Υ being of the form (Υ1 ⊕Υ2) can be handled in an analogous way.

Let Υ be of the form Υ = (Υ1 (Υ2). By an analogous inspection of the axioms of <: as in the
previous induction case, we get the following possible forms of Ψ and Φ:

• Ψ = Top or Ψ = (Ψ1 (Ψ2) with Ψ1 <: Υ1 and Υ2 <: Ψ2, and

• Φ = !n(Φ1 (Φ2) with Υ1 <: Φ1 and Φ2 <: Υ2 and n ≥ 0.

Hence, induction yields Ψ1 <: Φ1 and Φ2 <: Ψ2. Then, using axiom (7), we obtain (Φ1 (Φ2) <:
(Ψ1 (Ψ2). To this we may again iteratively apply axiom (3) n times to arrive at !n(Φ1 (Φ2) <:
(Ψ1 (Ψ2).

The case of Υ being of the form (∀X<:Υ1.Υ2) is handled with a similar argument.

Let Υ be of the form Υ = !n+1Υ′, n ≥ 0, where Υ′ shall be linear (of course, there exists exactly
one such linear Υ′ for each nonlinear Υ). Then we might again have trivial cases Ψ = Υ or Ψ = Top,
which we treat as before. Furthermore, Ψ can be of the form Ψ = !kΨ′ for linear Ψ′ with Υ′ <: Ψ′

and k ≥ 0. This can be achieved starting from Υ′ <: Ψ′, then iteratively applying (3) n+ 1 times,
followed by k applications of (4), and this way we end up with !n+1Υ′ <: !kΨ′.29

Regarding the form of Φ, we end up with Φ = !l+1Φ′ for linear Φ′ with Φ′ <: Υ′ and l ≥ 0, which we
obtain by similar reasoning as above, but where we have at least one leading exponential. This is
because we cannot introduce leading exponentials in front of Υ′ without having leading exponentials
in front on Φ′, when we start from linear Υ′ and Φ′.

To eventually obtain Φ <: Ψ, we start with Φ′ <: Ψ′ (which we get by induction), then apply (3)
l + 1 times, which yields at least one leading exponential in front of Φ′ and afterwards apply (4) k
times to in the end have !l+1Φ′ <: !kΨ′ with k, l ≥ 0.

29Of course, we could also have got !n+1Υ′ <: !kΨ′ starting from nonlinear type terms !mΥ and !mΨ′ with Υ′ = Ψ′

(getting !mΥ <: !mΨ′ by (1)), or from type terms !mΥ′ and Ψ′ = Top (getting !mΥ′ <: Top by (2)), where m ≤ min(n+1, k)
holds in both cases. But also here, we have Υ′ <: Ψ′, and thus the rest of our argument is still valid, in principle.

4.1 Type terms 39

One may wonder why it is so interesting or even important for the subtype relation to be a preorder.
We have emphasized the following intuition for a subtype statement Φ <: Ψ earlier: “whenever it is
safe to use an abstract object of type Ψ, it is also safe to use an abstract object of type Φ.” But then
reflexivity and transitivity are clearly desirable characteristics for a subtype relation, since of course it
shall be safe to replace an object of type Φ by another object of type Φ, on the one hand. And on the
other hand, when we may replace an object of type Ψ by an object of type Υ and an object of type Υ by
an object of type Φ without compromising safety in both cases, then we should also be able to replace
an object of type Ψ directly by an object of type Φ and still be on the safe side. Hence, reflexivity and
transitivity are quite natural properties which a subtype relation definitely should exhibit.

Figure 1 helps to get a better intuition of how the induced structure of the subtype relation looks like.
In the figure we additionally find some counterexamples, which show that <: is neither symmetric (!Top <:
Top and Top 6<: !Top) nor anti-symmetric (!!Φ <: !Φ and !Φ <: !!Φ) nor total ((!Φ⊗Ψ) 6<: (Φ⊗ !Ψ) and
(Φ⊗ !Ψ) 6<: (!Φ⊗Ψ)).

Top

!Top

<: <:

<:

<:

linear types

(Φ⊗Ψ)

(!Φ⊗Ψ) (Φ⊗ !Ψ)

(!Φ⊗ !Ψ)

(∀X<:!ΦX .Ψ)

(∀X<:ΦX .!Ψ)

. . .

<: <:

<: <:

<:

duplicable types

!Φ !!Φ !!!Φ . . .

<:

:>

<:

:>

<:

:>

Figure 1: Structure of the subtype relation according to the axioms in Definition 4.7 and the results in
Lemma 4.9 and Corollary 4.10. In the boxes labeled “linear types” and “duplicable types” the shown
type terms are only interesting examples with selected relationships shown and are not to be understood
as an exhaustive collection.

We next show two basic properties of the subtype relation which ensure that we followed the right
route, so far. They reveal important facts on the structure of the subtype relation (in particular how
linear and duplicable types are related), which we will use extensively later.

The following technically flavored lemma gives some insight into the structure of the subtype relation
and lays the foundation for Corollary 4.10 in that it shows two things:

40 4 POLYMORPHICALLY TYPED QUANTUM LAMBDA CALCULUS

(i) duplicable types can only have duplicable subtypes, and

(ii) linear types never have a duplicable supertype.

Lemma 4.9 (adapted from [SV09]). For all type terms Φ,Ψ ∈ Ttype, it holds

(i) If Φ <: !Ψ, then Φ = !Φ′ for some type term Φ′ ∈ Ttype, and dually,

(ii) if Φ <: Ψ and Φ is not of the form !Φ′, then Ψ is not of the form !Ψ′ for any type term Ψ′ ∈ Ttype.

Proof.

(i): Assume Φ <: !Ψ. Since <: is defined as the smallest binary relation fulfilling axioms (1) to (8), and
because there is no other axiom which may result in a leading exponential on the right-hand side
of <:, Φ <: !Ψ can only be a result of axioms (1), (3) or (4). In all three of these cases, however,
we must have a leading exponential on the left-hand side of <:, as well.

(ii): Let Φ <: Ψ and Φ 6= !Φ′ for each type term Φ′ ∈ Ttype . Then Φ <: Ψ can only be the result of one
of the axioms (1), (2) and (5) to (8), since the other two axioms result in Φ = !Φ′. But then we
immediately know that Ψ cannot have a leading exponential in case of axioms (5) to (8). In case
of axiom (1), on the other hand, we get Ψ = Φ, and we assumed Φ to be linear, i.e. Ψ = Φ 6= !Φ′

for any Φ′ ∈ Ttype .

The results in Corollary 4.10 ensure on the one hand that !Top is supertype of all duplicable types,
and that no linear type is subtype of !Top on the other hand. It thus confirms that we can later use
!Top as upper type bound in an abstraction (∀X<:!Top.Ψ) to enforce that only duplicable types may be
applied to a function term of this type.

Corollary 4.10. For all type terms Φ ∈ Ttype it holds

(i) !Φ <: !Top, and

(ii) Φ 6<: !Top, if Φ 6= !Φ′ for each Φ′ ∈ Ttype.

Proof. From axioms (2), (3) and (4) in the definition of the subtype relation it immediately follows that
!Φ <: !Top for all type terms Φ ∈ Ttype . On the other hand, it is impossible to have Φ <: !Top where
Φ 6= !Φ′ for any type term Φ′ ∈ Ttype due to the preceding Lemma 4.9.

4.1.3 Connection with simply typed QLC’s subtype relation

Before we continue to work with the subtype relation, let us first check whether we really formulated
an extension of the subtype relation Selinger and Valiron use in [SV09]. Since our original intention
was to keep the properties of simply typed QLC as far as possible while extending it with second order
polymorphism, we shall make sure that we did not change central characteristics of the subtype relation
more than we actually needed to. We do this by showing equivalence of axioms (1) and (3) to (7) to the
axioms that are used in [SV09] (shown below, for reference). Please note we only omit axioms (2) and
(8), which are exactly the ones that introduce the Top supertype and deal with bounded quantification.
That means, they represent our intended extension (and nothing more).

Selinger and Valiron define their subtype relation as the smallest binary relation satisfying the following
axioms (where m,n ∈ N and (m = 0) ∨ (n ≥ 1) shall hold):

(i) !nQbit <: !mQbit ,

(ii) !nUnit <: !mUnit ,

(iii) Φ1 <: Ψ1 ∧ Φ2 <: Ψ2 =⇒ !n(Φ1 ⊗ Φ2) <: !m(Ψ1 ⊗Ψ2) ,

(iv) Φ1 <: Ψ1 ∧ Φ2 <: Ψ2 =⇒ !n(Φ1 ⊕ Φ2) <: !m(Ψ1 ⊕Ψ2) ,

(v) Φ <: Φ′ ∧Ψ <: Ψ′ =⇒ !n(Φ′(Ψ) <: !m(Φ(Ψ′) .

4.1 Type terms 41

As said before, we consider the following reduced set of axioms defining our subtype relation for
comparison:

(1) Φ <: Φ ,

(3) Φ <: Ψ =⇒ !Φ <: Ψ ,

(4) !Φ <: Ψ =⇒ !Φ <: !Ψ ,

(5) Φ1 <: Ψ1 ∧ Φ2 <: Ψ2 =⇒ (Φ1 ⊗ Φ2) <: (Ψ1 ⊗Ψ2) ,

(6) Φ1 <: Ψ1 ∧ Φ2 <: Ψ2 =⇒ (Φ1 ⊕ Φ2) <: (Ψ1 ⊕Ψ2) ,

(7) Φ <: Φ′ ∧Ψ <: Ψ′ =⇒ (Φ′(Ψ) <: (Φ(Ψ′) .

According to Lemma 1.3.7 in [SV09] their subtype relation exhibits reflexivity and transitivity. Con-
sequently, we may conclude that (i) to (v) imply (1). Furthermore, axioms (5), (6) and (7) are obviously
special cases of axioms (iii), (iv) and (v) with m = n = 0, respectively.

Regarding axiom (3), we consider the derivation of an arbitrary subtype statement Φ <: Ψ from axioms
(i) to (v). In the last derivation step the number of leading exponentials in Φ and Ψ are determined
by n and m, respectively. But then, we can modify this last step through increasing the number n of
exponentials for the type term left of <: by one, thus yielding !Φ <: Ψ instead and respecting the required
(m = 0) ∨ (n ≥ 1). Hence, from (i) to (v), we may derive property (3).

Finally, property (4) results from axioms (i) to (v) by a very similar argument. However, in this case
the leading exponential in front of Φ is necessary to not violate the requirement (m = 0) ∨ (n ≥ 1).

Conversely, we now show that properties (i) to (v) result from axioms (1) and (3) to (7). As a first
step, we derive the more restrictive properties:

(i’) Qbit <: Qbit

(ii’) Unit <: Unit

(iii’) Φ1 <: Ψ1 ∧ Φ2 <: Ψ2 =⇒ (Φ1 ⊗ Φ2) <: (Ψ1 ⊗Ψ2)

(iv’) Φ1 <: Ψ1 ∧ Φ2 <: Ψ2 =⇒ (Φ1 ⊕ Φ2) <: (Ψ1 ⊕Ψ2)

(v’) Φ <: Φ′ ∧Ψ <: Ψ′ =⇒ (Φ′(Ψ) <: (Φ(Ψ′)

While the first two properties (i’) and (ii’) are direct consequences of reflexivity axiom (1), properties
(iii’), (iv’) and (v’) are exactly the same as axioms (5), (6) and (7). In a second step we derive an auxiliary
property, namely

(?) Φ <: Ψ =⇒ !nΦ <: !mΨ for all Φ,Ψ ∈ Ttype , where (m = 0) ∨ (n ≥ 1),

which together with transitivity of the implication “⇒” helps us to confirm validity of axioms (i) to (v).
For the derivation of (?) we consider the following cases:

• m = n = 0:
Trivially, we have Φ <: Ψ =⇒ !0Φ <: !0Ψ.

• m = 0 ∧ n ≥ 1:
By iterated application of axiom (3), we get Φ <: Ψ ⇒ !Φ <: Ψ ⇒ · · · ⇒ !nΦ <: Ψ. Transitivity
of implication then leads to Φ <: Ψ =⇒ !nΦ <: Ψ.

• m ≥ 1 ∧ n ≥ 1:
Using the previous case and iterated application of axiom (4), we get
Φ <: Ψ ⇒ !nΦ <: Ψ ⇒ !nΦ <: !Ψ ⇒ · · · ⇒ !nΦ <: !mΨ. Transitivity of implication finally leads
to Φ <: Ψ =⇒ !nΦ <: !mΨ.

• m ≥ 1 ∧ n = 0:
This is not an allowed case. (At this point it becomes clear why axiom (4) requires a leading
exponential in its premise and thus prevents relating type terms !nΦ and !mΨ as subtypes if they
violate condition (m = 0) ∨ (n ≥ 1).)

Hence, (?) is a consequence of (3), (4) and transitivity of implication.
Now, having established properties (i’) to (v’) and (?), we may use transitivity of implication to finally

arrive at axioms (i) to (v).

42 4 POLYMORPHICALLY TYPED QUANTUM LAMBDA CALCULUS

Consequently, we may consider the subtype relation examined in the present work a true extension of
Selinger’s and Valiron’s subtype relation for simply typed QLC. This concludes our detailed examination
of the subtype relation we are using here and we can continue to define our polymorphic type system.

4.2 Proved types and proved subtypes

By now it has become clear that we do not allow all possible type terms to be used as types in our extended
type system. To distinguish the special subset of type terms that we consider to be well-formed, we follow
the usual tradition and define a couple of rules that enable us to derive proved types.

4.2.1 Basic definitions and properties

Before we can define proved types themselves, we need some more definitions.

Definition 4.11 (type contexts and related notions).
A type context Θ is a finite, possibly empty sequence of pairs (X,ΦX) from set Vtype×Ttype , written
as Θ = X1<:Φ1, . . . , Xn<:Φn, where each type variable occurs at most once left of a <: symbol.

|Θ| denotes the set of all type variables that occur left of a <: symbol in type context Θ, e.g.
|X1<:Φ1, . . . , Xn<:Φn| = {X1, . . . , Xn}. We will sometimes refer to this as the domain of Θ.

The concatenation of type contexts Θ and Θ′ shall be denoted as juxtaposition Θ,Θ′. For such
a concatenation to be consistent with the definition of a type context, we require |Θ| ∩ |Θ′| = ∅
whenever we write Θ,Θ′.

Two type contexts Θ and Θ′ are considered α-equivalent if Θ = X1<:Φ1, . . . , Xn<:Φn and Θ′ =
X1<:Φ′1, . . . , Xn<:Φ′n, and all corresponding type bounds in Θ and Θ′ are α-equivalent, i.e. Φ1 ≡α
Φ′1, . . . ,Φn ≡α Φ′n, where ≡α denotes the α-equivalence relation (closed under reflexivity, symmetry
and transitivity).

Consider an example where two type contexts Θ and Θ′ are to be concatenated with a type context
which contains only one pair (X,ΦX). In this case we write Θ,Θ′, X<:ΦX for the concatenation and
require three properties: |Θ| ∩ |Θ′| = ∅ and additionally X 6∈ |Θ| and X 6∈ |Θ′|. Please also note that
Θ,Θ′, X<:ΦX and Θ, X<:ΦX ,Θ

′ represent different type contexts with Θ,Θ′, X<:ΦX 6= Θ, X<:ΦX ,Θ
′,

since we are dealing with (finite) sequences.

As we can see, a type context contains one type bound for each type variable that occurs left of a <:
in the context. This is necessary to keep track of bounds on the type of free type variables. If a type
variable gets bound by a type abstraction, the type bound from the context will be taken over into the
abstraction. But the bounds in type contexts also raise new questions and issues. The most obvious
question is: when we have a type context Θ, X<:ΦX ,Θ

′ what is the scope of the definition of X? May
we use free type variable X as part of the type bounds in Θ or Θ′ or both? And may we use X also in
its own type bound ΦX? For a discussion of different approaches to scoping in the context of bounded
quantification, see chapter 26 of Pierce’s book [Pie02], pages 393–394. In our work we choose the easiest
way of scoping, where X may only occur as free type variable in Θ′, and make this precise in the next
definition.

Definition 4.12 (well-scopedness of a type context).
A type context Θ = X1<:Φ1, . . . , Xn<:Φn is considered well-scoped, if for all i with 1 ≤ i ≤ n and
for all Y ∈ ftyv(Φi) we have Y ∈ {X1, . . . , Xi−1}.

This will avoid circular and recursive constructions such as Θ = Y<:Z,Z<:Y or Θ = X<:(X ⊕X).

Although the decision for a particular scoping strategy constitutes an important design choice, our
notion of well-scoped type contexts is too weak to be sufficient for our purposes. Hence, we define
the stronger notion of consistency for type contexts that will play a central role in the definition of
derivation rules for proved types and proved subtypes as well as in some lemmas and propositions that
we will provide. (Actually, the check for consistency of certain type contexts is what makes most of the
upcoming proofs a bit tedious.) We will see soon (in Corollary 4.21) that well-scopedness of type contexts
is indeed a weak version of the notion of consistency which we define now.

4.2 Proved types and proved subtypes 43

Definition 4.13 (consistency of a type context).
We call a type context Θ = X1<:Φ1, . . . , Xn<:Φn consistent, denoted ` Θ, if for all i with 1 ≤ i ≤ n
we can derive X1<:Φ1, . . . , Xi−1<:Φi−1 ` Φi as a proved type according to the rules given below;
in particular, ` Φ1 needs to be a proved type, where the type context left of the turnstile symbol
is empty. The empty type context is considered to be consistent, which we denote by ` ∅.

As a next step, we need to define the sort of syntactical expressions that we use to denote proved
types and proved subtypes. The syntax of these expressions is also taken over from chapter 5 of Roy
Crole’s book [Cro93].

Definition 4.14 (judgement, type-in-context, subtype-in-context).
We call syntactical expressions of the form Θ ` Φ and similar ones judgements. A judgement Θ ` Φ
with a type context Θ and a type term Φ shall be called type-in-context, and a judgement of the
form Θ ` Φ <: Ψ, where Ψ is a type term as well, is called subtype-in-context.

Now we arrived at the heart of our polymorphic extension. That means we now present the way of
how we derive well-formed type terms. In the following definition we give a couple of rules that enable us
to derive proved types and also proved subtypes. For presentation we follow the usual convention that
necessary premises are (sub)types-in-context (or more general conditions) written above a horizontal line
(sometimes stacked one over another to save space) and the derived (sub)type-in-context is written as
conclusion beneath the line. We label each rule with a name to the right of the horizontal line.

Definition 4.15 (proved types and proved subtypes).
A proved type (proved subtype) is a type-in-context (subtype-in-context) that can be derived using
the following rules, where n ≥ 0.

Proved types:

` Θ
(Top type)

Θ ` !nTop
` Θ

(Unit type)
Θ ` !nUnit

` Θ
(Qbit type)

Θ ` Qbit

` Θ, X<:ΦX ,Θ
′

(linear type variable)
Θ, X<:ΦX ,Θ

′ ` X
Θ ` Φ Θ ` Ψ

(function type)
Θ ` !n(Φ(Ψ)

` Θ, X<:!ΦX ,Θ
′

(nonlinear type variable)
Θ, X<:!ΦX ,Θ

′ ` !nX

Θ ` !nΦ Θ ` !nΨ
(product type)

Θ ` !n(Φ⊗Ψ)

Θ ` !nΦ Θ ` !nΨ
(sum type)

Θ ` !n(Φ⊕Ψ)

` Θ,Θ′ Θ, X<:ΦX ,Θ
′ ` Ψ X 6∈ nftyv(Ψ)

(linear-polymorphic type)
Θ,Θ′ ` (∀X<:ΦX .Ψ)

Θ,Θ′ ` ΦX <: !Top Θ, X<:ΦX ,Θ
′ ` !nΨ

(nonlinear-polymorphic type)
Θ,Θ′ ` !n(∀X<:ΦX .Ψ)

Proved subtypes:

Θ ` Φ
(Top supertype)

Θ ` Φ <: Top
Θ ` Φ

(<: reflexivity)
Θ ` Φ <: Φ

Θ ` Φ <: Ψ
(! left)

Θ ` !Φ <: Ψ
Θ ` !Φ <: Ψ

(! right)
Θ ` !Φ <: !Ψ

44 4 POLYMORPHICALLY TYPED QUANTUM LAMBDA CALCULUS

Θ ` Φ <: Φ′ Θ ` Ψ <: Ψ′
(function subtype)

Θ ` (Φ′(Ψ) <: (Φ(Ψ′)

Θ ` Φ1 <: Ψ1 Θ ` Φ2 <: Ψ2
(product subtype)

Θ ` (Φ1 ⊗ Φ2) <: (Ψ1 ⊗Ψ2)

Θ ` Φ1 <: Ψ1 Θ ` Φ2 <: Ψ2
(sum subtype)

Θ ` (Φ1 ⊕ Φ2) <: (Ψ1 ⊕Ψ2)

Θ,Θ′ ` ΦX <: Φ′X Θ, X<:ΦX ,Θ
′ ` Ψ <: Ψ′

(polymorphic subtype)
Θ,Θ′ ` (∀X<:Φ′X .Ψ) <: (∀X<:ΦX .Ψ

′)

Before we discuss the above derivation rules in detail, we first extend the notion of α-equivalence to
proved types and subtypes:

• two proved types Θ ` Φ and Θ′ ` Φ′ are called α-equivalent if type contexts Θ, Θ′ are α-equivalent
and type terms Φ, Φ′ are α-equivalent, and

• two proved subtypes Θ ` Φ <: Ψ and Θ′ ` Φ′ <: Ψ′ are considered α-equivalent, if all the Θ, Θ′

and Φ, Φ′ and Ψ, Ψ′ are α-equivalent, respectively.

Henceforth, we identify α-equivalent proved types and proved subtypes.

Let us now take a closer look at some of the derivation rules. The first three rules (Top type), (Unit
type) and (Qbit type) show the characteristics of axioms, which becomes immediately obvious when type
contexts Θ are empty. Here we also see the special status of type constant Qbit among the other type
constants, since it is not allowed to have any leading exponentials.

Rules (linear type variable) and (nonlinear type variable) can only almost be counted as axioms, since
each of them requires a nonempty type context, and is thus based on at least one proved type ` ΦX .
The two rules complement each other, although there is a certain overlap in their possible application.
Proved type Θ, X<:!Φ′X ,Θ

′ ` X can be derived either by

` Θ, X<:ΦX ,Θ
′

(linear type variable)
Θ, X<:ΦX ,Θ

′ ` X

where we set ΦX = !Φ′X or by

` Θ, X<:!Φ′X ,Θ
′

(nonlinear type variable)
Θ, X<:!Φ′X ,Θ

′ ` !0X

since the number of leading exponentials in front of X is allowed to be zero. Thus, both rules also allow
less leading exponentials in the type term right of ` than the type bound of X in the type context
has. This reflects “one direction” of the isomorphism !Φ ∼= !!Φ (read from right to left). The other
direction is embodied by !n in the conclusion of rule (nonlinear type variable), thus allowing more leading
exponentials to appear in front of X (right of `) than there are in the type bound for X in the respective
type context. However, by requiring at least one leading exponential in the corresponding type bound,
we prevent proved types such as X<:Qbit ` !nX, which do not fit our intentions and would be possible
using a hypothetical derivation rule

` Θ, X<:ΦX ,Θ
′

.
Θ, X<:ΦX ,Θ

′ ` !nX

4.2 Proved types and proved subtypes 45

Among the rules for derivation of composite types, rules (product type) and (sum type) can propagate
leading exponentials from their premises to the respective conclusion. Put differently, it is only possible
to derive a product or sum type with n leading exponentials if both of its components can be derived
having (at least) n leading exponentials. Consequently, it is not possible to derive a duplicable product
or sum type from types that are not duplicable. This is in contrast to the rule for derivation of function
types, which matches the interpretation of duplicable functions we already mentioned in the discussion
of function nftyv .

Regarding rules (linear-polymorphic type) and (nonlinear-polymorphic type) we notice a strong sim-
ilarity between them. We could make them even more similar if we replaced the first premise of the
former rule with Θ,Θ′ ` Φ <: Top. We will soon show that we would not lose any information through
this replacement, since Θ,Θ′ ` Φ <: Top entails consistency of Θ,Θ′ (see Lemma 4.19). However, this
“stronger” premise is not necessary, because the additional information that Φ is a subtype of Top is
nothing new, since every (well-formed) type is a subtype of Top as rule (Top supertype) explicitly states.
Hence, the difference between the linear and nonlinear version, on the one hand, is that the linear one
requires the type variable which is to be bound not to appear as nonlinear free type variable in the scope
of the derived abstraction. On the other hand, only the nonlinear version of the rule for polymorphic
types allows leading exponentials in front of Ψ to be propagated to the derived type abstraction and the
price we have to pay for this is that the maximally possible (w.r.t. <:) bound for X gets lowered to the
supertype of all duplicable types. This shall ensure that in future type applications only duplicable types
are substituted for free type variable X that may have nonlinear occurrences in Ψ. As in the case of
the linear and nonlinear rules introducing type variables, the two rules for type abstractions complement
each other, and they exhibit a certain overlap in their possible application, as well.

Moreover, the consistency check in the first premise of rule (linear-polymorphic type) makes sure that
free type variable X and the associated type bound ΦX cannot be used outside the scope of type abstrac-
tion (∀X<:ΦX .Ψ). In rule (nonlinear-polymorphic type), however, this explicit check is not necessary,
since it is already checked implicitly in the derivation of the first premise of that rule (again, see Lemma
4.19).

In rule (nonlinear-polymorphic type) the first premise might seem too large (i.e. we might be tempted
to remove Θ′ left of `), since the second premise (more precisely, the consistency of its context) already
ensures that Θ ` Φ is a proved type, and thus we could derive Θ ` Φ <: !Top without the need for any
information from Θ′. However, the first premise, as it is, ensures consistency of type context Θ,Θ′, and
thus guarantees X does not appear freely in Θ′, as mentioned above.

The derivation rules for proved subtypes resemble the axioms of the subtype relation, but now need type
contexts to work, and thus subtype derivations can only start from proved types. As a consequence, we
cannot derive a proved subtype Θ ` Φ <: Ψ for arbitrary type terms Φ, Ψ, even if Φ <: Ψ holds. A quite
simple example is type term (!Qbit ⊗ !Qbit), for which we cannot derive proved type Θ ` (!Qbit ⊗ !Qbit)
for any type context Θ, as we will see later in subsection 4.2.3. With respect to the subtype relation, we
clearly have (!Qbit ⊗ !Qbit) <: Top by axiom (1). However, since we cannot derive Θ ` (!Qbit ⊗ !Qbit), we
can also not apply rule (Top supertype) to it, and thus we do not have a way to obtain proved subtype
Θ ` (!Qbit ⊗ !Qbit) <: Top (the other derivation rules are not helpful in this case).

On the other hand, the derivation rules for proved subtypes are not strict enough to make sure that
type terms appearing in a proved subtype do in general have a proved type as counterpart. Let us look
at an example for this:

` ∅
(Qbit type)` Qbit

(<: reflexivity)` Qbit <: Qbit
(! left)` !Qbit <: Qbit
(! right)` !Qbit <: !Qbit

is a proper derivation of proved subtype ` !Qbit <: !Qbit . However, ` !Qbit cannot be derived (and shall
not be derivable), as we will see in subsection 4.2.3.

Let us now turn our attention to basic aspects of proved subtypes which indeed allow us to draw
conclusions about the type terms that occur in the derived subtyping statement. At first, we notice that
whenever we can derive a proved subtype Θ ` Φ <: Ψ, then we know Φ is related to Ψ with respect to
the subtype relation.

46 4 POLYMORPHICALLY TYPED QUANTUM LAMBDA CALCULUS

Proposition 4.16. If Θ ` Φ <: Ψ is a proved subtype, then Φ <: Ψ.

Proof. By straightforward induction on the derivation of Θ ` Φ <: Ψ.

Hence, we may immediately lift Lemma 4.9 and Corollary 4.10 to the case of proved subtypes:

Corollary 4.17. For all type terms Φ,Ψ ∈ Ttype it holds

• if Θ ` Φ <: !Ψ is a proved subtype, then Φ = !Φ′, for some type term Φ′ ∈ Ttype, and dually,

• if Θ ` Φ <: Ψ is a proved subtype and Φ is not of the form !Φ′, then Ψ is not of the form !Ψ′ for
any type term Ψ′ ∈ Ttype.

In particular, we have for all proved types Θ ` Φ

• Θ ` !Φ <: !Top is a proved subtype, whereas

• Θ ` Φ <: !Top cannot be derived, if Φ 6= !Φ′ for all Φ′ ∈ Ttype.

Proof. There are only three rules by which Θ ` Φ <: !Ψ could have been derived:

(<: reflexivity). Then Φ must have the form Φ = !Ψ.

(! left). Then we immediately know Φ is of the form Φ = !Φ′.

(! right). The only premise of this rule states Θ ` !Φ′ <: Ψ, i.e. Φ must be of the form Φ = !Φ′.

All other derivation rules for proved subtypes do not allow leading exponentials right of <: in their
conclusions. This proves the first two propositions in Corollary 4.17 and the last of its items, as well,
since it is a special case of the second proposition. The third item of this corollary, however, is valid since
we can perform the following derivation for each proved type Θ ` Φ:

Θ ` Φ
(Top supertype)

Θ ` Φ <: Top
(! left)

Θ ` !Φ <: Top
(! right)

Θ ` !Φ <: !Top

For the subtype relation we have shown in Proposition 4.8 that <: is transitive. In general, the case
is somewhat different for proved subtypes. Consider again type term (!Qbit ⊗ !Qbit). We can perform
subtype derivations

` ∅
(Qbit type)` Qbit

(<: reflexivity)` Qbit <: Qbit
(! left)` !Qbit <: Qbit

` ∅
(Qbit type)` Qbit

(<: reflexivity)` Qbit <: Qbit
(! left)` !Qbit <: Qbit
(product subtype)

` (!Qbit ⊗ !Qbit) <: (Qbit ⊗Qbit)

and

` ∅
(Qbit type)` Qbit

` ∅
(Qbit type)` Qbit
(product type)

` (Qbit ⊗Qbit)
(Top supertype) .

` (Qbit ⊗Qbit) <: Top

However, we have already mentioned above that Θ ` (!Qbit ⊗ !Qbit) <: Top is not derivable for any type
context Θ. Hence, we do not have transitivity for proved subtypes in general. Nevertheless, we will
take a much deeper look into this issue in subsection 4.2.4. But we first need a better insight into our
system and to develop the necessary tools before we can eventually show in Theorem 4.47 that we have
at least a weak form of transitivity for proved subtypes. More precisely, we can derive a proved subtype
Θ ` Φ <: Ψ if Θ ` Φ and Θ ` Ψ are proved types which are transitively connected by a chain of proved
subtypes Θ1 ` Φ <: Υ1, Θ2 ` Υ1 <: Υ2, . . . , Θn ` Υn−1 <: Ψ.

4.2 Proved types and proved subtypes 47

Now that we have identified the types we are interested in for our further investigations and know how
to derive them, we can examine some of the basic properties that our derivation rules entail for proved
types and proved subtypes.

We start by showing that our derivation rules preserve consistency of type contexts. This is a fact we
use extensively in the upcoming proofs. It again shows that consistency for type contexts is a key notion
in our system.

Lemma 4.18. If Θ ` Φ is a proved type, then Θ is consistent.

Proof. We prove this by induction on the derivation of Θ ` Φ.

Base cases: Suppose Θ ` !nTop has been derived using rule (Top type). The respective premise states
Θ is consistent. And since Θ occurs unchanged in the derived conclusion, it is trivially consistent
in the derived proved type Θ ` !nTop. The same argument holds for rules (Unit type), (Qbit type),
(linear type variable) and (nonlinear type variable).

At first glance, the case of rule (linear-polymorphic type) looks more complicated, but it can be
handled in the same manner, because the first premise states consistency of Θ, which is of the form
Ξ,Ξ′ in this case. But since the conclusion is proved type Ξ,Ξ′ ` (∀X<:ΦX .Ψ), its type context
Θ = Ξ,Ξ′ thus is consistent.

Induction cases: In rules (function type), (product type) and (sum type) type context Θ occurs un-
changed in the proved types of the premises, and thus Θ in the respectively derived types Θ ` Φ is
consistent by induction.

Rule (nonlinear-polymorphic type) is somewhat more complicated, since the first premise contains
a proved subtype Ξ,Ξ′ ` ΦX <: !Top. We first notice that Corollary 4.17 implies ΦX must be of the
form !Φ′X for some Φ′X ∈ Ttype . Taking a look at the rules for deriving proved subtypes, we then
see there are essentially two ways of how to derive Ξ,Ξ′ ` !Φ′X <: !Top. One possible derivation is

Ξ,Ξ′ ` !kΦ′′X
(Top supertype)

Ξ,Ξ′ ` !kΦ′′X <: Top
(! left)

...
(! left)

Ξ,Ξ′ ` !n+1Φ′′X <: Top
(! right)

Ξ,Ξ′ ` !n+1Φ′′X <: !Top

where we start from a type term Φ′′X (with ΦX = !n+1Φ′′X for some n ≥ k ≥ 0) and perform an
appropriate number of (! left) steps, possibly none at all. The (! right) step might have been taken
earlier, but we have to take at least one. The other possible derivation has the form

Ξ,Ξ′ ` Top
(<: reflexivity)

Ξ,Ξ′ ` Top <: Top
(! left)

...
(! left)

Ξ,Ξ′ ` !n+1Top <: Top
(! right) ,

Ξ,Ξ′ ` !n+1Top <: !Top

where again rule (! right) might have been applied earlier. A slightly different variant of the latter
derivation is

Ξ,Ξ′ ` !Top
(<: reflexivity)

Ξ,Ξ′ ` !Top <: !Top
(! left)

...
(! left) .

Ξ,Ξ′ ` !n+1Top <: !Top

In the last two variants we clearly have ΦX = !n+1Top for some n ≥ 0. By induction, we know
Ξ,Ξ′ is consistent in all these cases, and from the above derivations we can see Θ = Ξ,Ξ′ remains
untouched in each step.

48 4 POLYMORPHICALLY TYPED QUANTUM LAMBDA CALCULUS

The same property holds for proved subtypes:

Lemma 4.19. If Θ ` Φ <: Ψ is a proved subtype, then Θ is consistent.

Proof. We prove this by induction on the derivation of Θ ` Φ <: Ψ.

Base cases: In rules (Top supertype) and (<: reflexivity) the premises state Θ ` Φ, which implies
consistency of Θ due to Lemma 4.18.

Induction cases: Suppose Θ ` Φ <: Ψ has been derived using one of the rules (! left), (! right), (function
subtype), (product subtype) or (sum subtype). In all these rules Θ appears as type context in all
premises. Thus, by induction, we know Θ is consistent.

Finally, assume Θ ` Φ <: Ψ has been derived using rule (polymorphic subtype). Then Θ is of the
form Ξ,Ξ′. But since Ξ,Ξ′ occurs as type context in the first premise, we may assume by induction
that Θ is consistent.

Next, we show no occurrence of a type variable (be it free or bound) in the type term of a proved
type stays without a bound on its type. Together with the definition of consistency and Lemma 4.18 this
also means all type bounds on free variables in a proved type are also derived as part of a proved type.
Despite of the meaning that it has on its own, it also opens the way to show how well-scopedness of type
contexts relates to consistency.

Lemma 4.20. If Θ ` Φ is a proved type, then all free type variables in Φ appear in the domain of Θ,
i.e. ftyv(Φ) ⊆ |Θ|.
Proof. By induction on the derivation of Θ ` Φ:

Base cases: Suppose Θ ` Φ has been derived using one of the rules (Top type), (Unit type) or (Qbit
type). Then Φ has the form !nTop, !nUnit or Qbit , i.e. Φ does not contain any free type variables
at all.

Assume Θ ` Φ has been derived using rule (linear type variable) or (nonlinear type variable), i.e.
it is of the form Ξ, X<:ΦX ,Ξ

′ ` X or Ξ, X<:!ΦX ,Ξ
′ ` !nX. Then we obviously have ftyv(Φ) =

{X} ⊆ |Ξ, X<:ΦX ,Ξ
′| = |Ξ, X<:!ΦX ,Ξ

′|.
Induction cases: Suppose Θ ` Φ is of the form Θ ` !n(Φ′ (Ψ′) and has been derived using rule

(function type). By induction we then know ftyv(Φ′) ⊆ |Θ| and also ftyv(Ψ′) ⊆ |Θ|. The definition
of function ftyv tells us ftyv(!n(Φ′ (Ψ′)) = ftyv(Φ′) ∪ ftyv(Ψ′) which is hence a subset of |Θ|.
Similar arguments cover the cases of derivation rules (sum type) and (product type).

Assume Θ ` Φ is of the form Ξ,Ξ′ ` (∀X<:ΦX .Ψ
′) and has been derived using rule (linear-

polymorphic type). By induction we know ftyv(Ψ′) ⊆ |Ξ, X <: ΦX ,Ξ
′|. From the definition of

a type context and concatenation of type contexts we conclude |Ξ,Ξ′| = |Ξ, X<:ΦX ,Ξ
′| \ {X}.

Moreover, we know (also by induction) that ftyv(ΦX) ⊆ |Ξ|, since we obtain proved type Ξ ` ΦX
by consistency of Ξ, X<:ΦX ,Ξ

′ which in turn is a consequence of Lemma 4.18 applied to the sec-
ond premise of rule (linear-polymorphic type). The definition of function ftyv furthermore tells us
ftyv((∀X<:ΦX .Ψ

′)) = ftyv(ΦX) ∪ (ftyv(Ψ′) \ {X}). Hence, it holds ftyv((∀X<:ΦX .Ψ
′)) ⊆ |Ξ,Ξ′|.

The same line of argument can be applied in case of rule (nonlinear-polymorphic type).

Having established Lemma 4.20 it immediately follows that well-scopedness of type contexts is a weak
form of consistency, or in other words:

Corollary 4.21. A consistent type context is well-scoped.

Proof. This is an immediate consequence of Lemma 4.20 and the definition of consistency for type con-
texts.

Later on, we will learn a bit more about the connection between consistency and well-scopedness of
subsequences of consistent type contexts, namely in subsection 4.2.2 and in particular in Lemma 4.27
and Corollary 4.28.

We can easily extend Lemma 4.20 to the setting of proved subtypes, i.e. from a proved subtype
Θ ` Φ <: Ψ we may conclude that all free type variables in Φ and Ψ are assigned a type bound in Θ, as
the following lemma shows.

4.2 Proved types and proved subtypes 49

Lemma 4.22. If Θ ` Φ <: Ψ is a proved subtype, then ftyv(Φ) ∪ ftyv(Ψ) ⊆ |Θ|.

Proof. We perform an induction on the derivation of Θ ` Φ <: Ψ. For the base cases we use Lemma
4.20. We here only take a look at the “most complicated” induction case:
Let Θ ` Φ <: Ψ be derived by

Ξ,Ξ′ ` ΦX <: Φ′X Ξ, X<:ΦX ,Ξ
′ ` Ψ <: Ψ′

(polymorphic subtype) .
Ξ,Ξ′ ` (∀X<:Φ′X .Ψ) <: (∀X<:ΦX .Ψ

′)

Induction yields ftyv(ΦX) ∪ ftyv(Φ′X) ⊆ |Ξ,Ξ′| and ftyv(Ψ) ∪ ftyv(Ψ′) ⊆ |Ξ, X<:ΦX ,Ξ
′|. Since

ftyv((∀X<:Φ′X .Ψ)) ∪ ftyv((∀X<:ΦX .Ψ
′)) = ftyv(Φ′X) ∪ ftyv(ΦX)︸ ︷︷ ︸

⊆ |Ξ,Ξ′|

∪
((

ftyv(Ψ) ∪ ftyv(Ψ′)︸ ︷︷ ︸
⊆ |Ξ,Ξ′|∪{X}

)
\ {X}

)
,

we clearly have

ftyv((∀X<:Φ′X .Ψ)) ∪ ftyv((∀X<:ΦX .Ψ
′)) ⊆ |Ξ,Ξ′| .

At this point we have finished a first exposition of the very basic characteristics that follow from the
type and subtype derivation rules our system is based on. The results we have obtained so far will turn
out to be very useful when we investigate more involved aspects. But before we jump into such ventures,
we first need to develop some more sophisticated tools which open the way to a better understanding of
the more advanced characteristics of our system.

4.2.2 Derived rules for proving types

In this subsection we derive some more rules for derivation of proved types and proved subtypes. These
help us to perform derivations more concisely and thus also make some of the upcoming arguments much
easier. Perhaps more important, however, they reveal some key characteristics of the type system.

In the beginning we will see that the order of variable-type pairs in type contexts does only matter
to a certain extend, and that type contexts may be extended by certain additional pairs and still can
be used to derive proved (sub)types that have already been derived without the additional information.
These two properties are quite natural (although they do not appear automatically in all type systems),
but since we have to keep a sharp eye on consistency of type contexts, we only get restricted versions of
permutation and weakening of type contexts. On the other hand, type contexts may assign type bounds
to type variables that are actually not needed for the derivation of a certain proved type. For such cases,
we will see that we can remove some unnecessary variable-type pairs and still have enough information
to derive proved (sub)types we have already proven with the “heavier” context. This can be regraded as
strengthening of a type context (in contrast to weakening), since it narrows the assumptions we make on
type variables. Moreover, we will learn which information about a type bound assigned to a type variable
is really essential, and which is rather unimportant. This means we will see under which circumstances
we can replace type bounds in a type context by other ones. The last aspect we will look at is the
derivability of leading exponentials in proved types. To be more precise, we will see that we can add
more leading exponentials if there is at least one in the beginning and that we can always remove them.

We start with type weakening, which as usual means adding more variable-type pairs to the type
context of a proved type or subtype. But first, we need another basic notion:

Definition 4.23 (subsequence of a type context, v relation).

Let Θ and Θ̂ be type contexts. We write Θ v Θ̂, if Θ = X1<:Φ1, . . . , Xn<:Φn is a subsequence of
Θ̂, i.e. Θ̂ = Ξ0, X1<:Φ1,Ξ1, . . . , Xn<:Φn,Ξn, where Ξ0, . . . ,Ξn are arbitrary (possibly empty) type
contexts.

Now we can quite comfortably formulate the weakening of type contexts in proved types and subtypes.

Proposition 4.24. Let Θ and Θ̂ be consistent type contexts with Θ v Θ̂. The following rules can be
derived from the ones in Definition 4.15:

50 4 POLYMORPHICALLY TYPED QUANTUM LAMBDA CALCULUS

` Θ̂ Θ ` Φ Θ v Θ̂
(type weakening) ,

Θ̂ ` Φ

` Θ̂ Θ ` Φ <: Ψ Θ v Θ̂
(subtype weakening) .

Θ̂ ` Φ <: Ψ

Proof. We show the proposition by induction on the derivation of proved types and proved subtypes. Let
Θ and Θ̂ be two consistent type contexts such that Θ v Θ̂. Additionally, let Θ′ and Θ̂′ be type contexts
(not necessarily consistent) such that Θ,Θ′ and Θ̂, Θ̂′ are consistent, and it holds Θ,Θ′ v Θ̂, Θ̂′. At first,
we deal with the (type weakening) rule:

Base cases: Consider a proved type Θ ` Qbit derived using rule (Qbit type). Clearly, we can also derive

proved type Θ̂ ` Qbit using the same rule. This argument also holds for rules (Top type), (Unit
type), (linear type variable) and (nonlinear type variable).

Induction cases: Suppose Θ ` !n(Φ′ (Ψ′) has been derived using rule (function type). By induction,

Θ̂ ` Φ′ and Θ̂ ` Ψ′ are proved types. But then, we can also use (function type) to derive Θ̂ `
!n(Φ′(Ψ′). A similar argument holds for rules (product type) and (sum type).

Assume proved type Θ,Θ′ ` (∀X<:ΦX .Ψ
′) has been derived with rule (linear-polymorphic type).

(In what follows, we additionally require X 6∈ |Θ̂, Θ̂′|, which is no real restriction since we identify

α-equivalent type terms.) From the assumption we made in the beginning, we know Θ̂, Θ̂′ is
consistent and from the third premise of the applied rule we know X 6∈ nftyv(Ψ′). Furthermore,

we may conclude by induction that Θ̂, X<:ΦX , Θ̂
′ ` Ψ′ is derivable, since clearly Θ, X<:ΦX ,Θ

′ v
Θ̂, X<:ΦX , Θ̂

′, where both Θ, X<:ΦX ,Θ
′ and Θ̂, X<:ΦX , Θ̂

′ are consistent (the former one due
to Lemma 4.18 and the latter one by iterated application of the induction hypothesis30). Now we
have all necessary pieces together to apply rule (linear-polymorphic type) to obtain proved type

Θ̂, Θ̂′ ` (∀X<:ΦX .Ψ
′) as result.

We can follow a similar, slightly more elaborate argument to handle rule (nonlinear-polymorphic
type).

♦

Next, we come to rule (subtype weakening):

Base cases: Suppose Θ ` Φ <: Φ has been derived using rule (<: reflexivity). Thus, premise Θ ` Φ holds

and using rule (type weakening), we may derive Θ̂ ` Φ, which then enables us to derive Θ̂ ` Φ <: Φ
using (<: reflexivity). We may argue similarly for rule (Top supertype).

Induction cases: Assume Θ ` Φ <: Ψ has been derived using one of the rules (! left), (! right), (function
subtype), (product subtype), (sum subtype). All necessary premises are of the form Θ ` Φ′ <: Ψ′,

from which we conclude by induction that Θ̂ ` Φ′ <: Ψ′ can be derived as proved subtype. But
then, we can apply the respective rule to these new premises to obtain Θ̂ ` Φ <: Ψ.

Finally, we argue along the same lines as for rules (linear-polymorphic type) and (nonlinear-
polymorphic type) in the induction step for proving (type weakening). (And thus we assume

X 6∈ |Θ̂, Θ̂′| here, as well.) Suppose, Θ,Θ′ ` (∀X <: Φ′X .Ψ
′) <: (∀X <: ΦX .Ψ

′′) has been de-
rived using rule (polymorphic subtype). From the second premise of this rule and the fact that

Θ, X<:ΦX ,Θ
′ v Θ̂, X<:ΦX , Θ̂

′, where Θ, X<:ΦX ,Θ
′ and Θ̂, X<:ΦX , Θ̂

′ are consistent (the former
one due to Lemma 4.19 and the latter one due to iterated application of rule (type weakening) as in

the case of rule (linear-polymorphic type)), we conclude by induction that Θ̂, X<:ΦX , Θ̂
′ ` Ψ′ <: Ψ′′

is a derivable proved subtype. Also by induction, we know Θ̂, Θ̂′ ` ΦX <: Φ′X is a proved subtype.

This brings us to the point where we can derive Θ̂, Θ̂′ ` (∀X<:Φ′X .Ψ
′) <: (∀X<:ΦX .Ψ

′′) using rule
(polymorphic subtype).

30This iteration goes step-by-step over each element of type context Θ̂, X<:ΦX , Θ̂
′, starting with ` Θ̂ ∧ Θ `

ΦX
induction

=⇒ Θ̂ ` ΦX . To continue, we use consistency of Θ̂, Θ̂′ and inductively apply (type weakening) for each

type bound in Θ̂′ = Y1<:Φ̂1, . . . , Yl<:Φ̂l one after another, i.e. ` Θ̂, X<:ΦX , Y1<:Φ̂1, . . . , Yi<:Φ̂i ∧ Θ̂, Y1<:Φ̂1, . . . , Yi<:
Φ̂i ` Φ̂i+1 ⇒ Θ̂, X<:ΦX , Y1<: Φ̂1, . . . , Yi<: Φ̂i ` Φ̂i+1. Proceeding in this way, we eventually ensure consistency of

Θ̂, X<:ΦX , Θ̂
′.

4.2 Proved types and proved subtypes 51

Next, we take a look at the order in which variable-type pairs appear in a type context. We can
indeed change this order in the type context of a proved type or proved subtype as long as consistency is
preserved for the new order.

Proposition 4.25. Let Θ = X1<:Φ1, . . . , Xn<:Φn be a consistent type context and let π : {1, . . . , n} →
{1, . . . , n} be a bijective mapping (i.e. π is a permutation of the first n positive natural numbers), such
that Θπ := Xπ(1)<:Φπ(1), . . . , Xπ(n)<:Φπ(n) is a consistent type context containing the same variable-type
pairs as Θ does, permuted according to π. Then the following rules can be derived:

` Θπ Θ ` Φ
(type permutation) ,

Θπ ` Φ
` Θπ Θ ` Φ <: Ψ

(subtype permutation) .
Θπ ` Φ <: Ψ

Proof. We prove the first rule by induction on the derivation of proved type Θ ` Φ. Using this result, we
prove the other rule by induction on the derivation of proved subtype Θ ` Φ <: Ψ.

Let Θ be a consistent type context and Θπ be a consistent permuted version of Θ as described above.
(The same shall hold for consistent type contexts Θ, X<:ΦX ,Θ

′ and (Θ, X<:ΦX ,Θ
′)π, and Θ,Θ′ and

(Θ,Θ′)π in the respective cases.)

We start with rule (type permutation):

Base cases: Suppose Θ ` Qbit has been derived using rule (Qbit type). But then Θπ ` Qbit can
be derived using the same rule, since Θπ is also consistent. The same obviously holds for rules
(Top type) and (Unit type). Rules (linear type variable) and (nonlinear type variable) can be
treated in the same way, although the type contexts in question are of the form Θ, X<:ΦX ,Θ

′ and
(Θ, X<:ΦX ,Θ

′)π.

Induction cases: At first, suppose Θ ` !n(Φ′ (Ψ′) has been derived using rule (function type) in the
last step. By induction we may assume Θπ ` Φ′ and Θπ ` Ψ′ are proved types. Then rule (function
type) is also applicable to these premises leading to proved type Θπ ` !n(Φ′(Ψ′). Again, similar
arguments also hold for rules (product type) and (sum type).

As a second step, assume Θ,Θ′ ` (∀X <: ΦX .Ψ
′) is a proved type derived using rule (linear-

polymorphic type). On the one hand, we know from the premises of this rule that X 6∈ nftyv(Ψ′).
On the other hand, we may conclude by induction that (Θ,Θ′)π, X<:ΦX ` Ψ′ is a proved type,
since (Θ,Θ′)π, X<:ΦX is a permuted and consistent version of Θ, X<:ΦX ,Θ

′. This follows from
consistency of Θ, X<:ΦX ,Θ

′ (due the second premise of rule (linear-polymorphic type) and Lemma
4.18) which entails Θ, X<:ΦX is consistent, i.e. Θ ` ΦX can be derived. This leads to a derivation of
Θ,Θ′ ` ΦX by (type weakening), and hence to (Θ,Θ′)π ` ΦX by induction, which yields consistency
of (Θ,Θ′)π, X<:ΦX . Having all this, together with the assumption of (Θ,Θ′)π being consistent, we
apply rule (linear-polymorphic type) to obtain proved type (Θ,Θ′)π ` (∀X<:ΦX .Ψ

′).

Finally, suppose proved type Θ,Θ′ ` !n(∀X<:ΦX .Ψ
′) has been derived using rule (nonlinear-poly-

morphic type). We employ a similar argument as before, and thus use the respective premises of
this rule to derive proved type (Θ,Θ′)π, X<:ΦX ` Ψ′ by induction, Lemma 4.18, Lemma 4.19 and
rule (type weakening). In addition, (Θ,Θ′)π ` ΦX <: !Top can be derived by

(Θ,Θ′)π ` !Φ′X
(Top supertype)

(Θ,Θ′)π ` !Φ′X <: Top
(! right)

(Θ,Θ′)π ` !Φ′X <: !Top

where ΦX is of the form !Φ′X for some Φ′X ∈ Ttype (according to Corollary 4.17 applied to premise
Θ,Θ′ ` ΦX <: !Top), and where (Θ,Θ′)π ` ΦX holds by induction. Using (Θ,Θ′)π, X<:ΦX ` Ψ′

and (Θ,Θ′)π ` ΦX <: !Top as premises, we may eventually derive (Θ,Θ′)π ` !n(∀X<:ΦX .Ψ
′) by

rule (nonlinear-polymorphic type).
♦

Next, we treat rule (subtype permutation):

52 4 POLYMORPHICALLY TYPED QUANTUM LAMBDA CALCULUS

Base cases: We assume Θ ` Φ <: Top has been derived using rule (Top supertype). From its premise
Θ ` Φ we can derive proved type Θπ ` Φ using the just proven rule (type permutation). By
applying rule (Top supertype) to this, we then get proved subtype Θπ ` Φ <: Top . The same
argument holds for rule (<: reflexivity).

Induction cases: Suppose proved subtype Θ ` (Φ′′ (Ψ′) <: (Φ′ (Ψ′′) has been derived by rule
(function subtype). Induction applied to the two premises leads to proved subtypes Θπ ` Φ′ <: Φ′′

and Θπ ` Ψ′ <: Ψ′′. Now we can immediately apply rule (function subtype) again to get proved
subtype Θπ ` (Φ′′(Ψ′) <: (Φ′(Ψ′′). Similar arguments hold for rules (! left), (! right), (product
subtype) and (sum subtype).

A slightly more interesting case is the one concerned with rule (polymorphic subtype). Assume
proved subtype Θ,Θ′ ` (∀X<:Φ′X .Ψ

′) <: (∀X<:ΦX .Ψ
′′) has been derived using this rule. By

induction we conclude (Θ,Θ′)π ` ΦX <: Φ′X is a proved subtype. Lemma 4.19 applied to the first
and second premises yields consistency of Θ,Θ′ and Θ, X <:ΦX ,Θ

′, respectively. From this we
conclude that Θ ` ΦX is a proved type, which we may weaken to Θ,Θ′ ` ΦX . Using rule (type
permutation) we obtain (Θ,Θ′)π ` ΦX from this, which immediately translates to consistency of
(Θ,Θ′)π, X<:ΦX , i.e. a permuted version of Θ, X<:ΦX ,Θ

′. Having established this, induction now
leads us from the second premise of (polymorphic subtype) to proved subtype (Θ,Θ′)π, X<:ΦX `
Ψ′ <: Ψ′′. This finally enables the derivation of (Θ,Θ′)π ` (∀X<:Φ′X .Ψ

′) <: (∀X<:ΦX .Ψ
′′) as a

proved subtype using rule (polymorphic subtype).

By now, we have seen the possibilities of how to weaken and permute type contexts of a proved type.
Henceforth, we will very often make use of rules (type permutation) and (type weakening), especially of
the latter one.

As a counterpoint to this we now take a look at the strengthening or narrowing of a type context in a
proved type. Therefore, we first introduce a notion and appropriate notations expressing the restriction
of the domain of a type context to a certain set of type variables, i.e. to a subset of Vtype .

Definition 4.26 (restriction of type contexts).
Let Θ = X1<:Φ1, . . . , Xn<:Φn be an arbitrary type context of length n ≥ 0. We write Θ(Xi) to
address type bound Φi for 1 ≤ i ≤ n. In case of X 6∈ |Θ|, we write Θ(X) = ⊥.

Let V ⊆ Vtype be a (possibly empty) set of type variables. We write Θ|V for the restriction of Θ
to the type variables in V , which we define as subsequence Θ|V v Θ such that

Θ|V (X) :=

{
Θ(X) , if X ∈ V ,

⊥ , if X 6∈ V .

Now we have the right tools at hand to obtain the result which justifies strengthening of type contexts
in proved types. From Lemma 4.20 we know that we have to keep all type variables in the domain of
the type context which occur freely in the type term right of the turnstile symbol “`”. Furthermore,
Lemma 4.18 tells us that the restricted type context needs to be consistent, which immediately implies
well-scopedness due to Corollary 4.21. We use this knowledge to formulate the appropriate requirements
in the following lemma, i.e. keep free type variables and stay well-scoped. We will see this is already
enough.

Lemma 4.27. Let Θ ` Φ be a proved type and let V ⊆ Vtype be a set of type variables which fulfills

(1) ftyv(Φ) ⊆ V ,

(2) for all X ∈ V it holds ftyv
(
Θ(X)

)
⊆ V .31

Then Θ|V ` Φ is also derivable as a proved type. (For convenience, we here define ftyv(⊥) := ∅.)

Proof. We show this by nested induction on the length of type context Θ (outer induction) and on the
derivation of Θ ` Φ (inner induction).

31This second criterion aims at nothing else than well-scopedness of Θ|V .

4.2 Proved types and proved subtypes 53

Outer base case: Let Θ be the empty type context, i.e. Θ = ∅. Since ∅|V = ∅ for any V ⊆ Vtype , the
lemma trivially holds in this case.

Outer induction case: Let Θ = Θ′, Z<:ΦZ be a nonempty type context with subsequence Θ′ := Y1<:
ΦY1

, . . . , Yl<:ΦYl
of length l ≥ 0.

Inner base cases: Assume Θ ` !nTop has been derived using rule (Top type). By Lemma 4.18 it
then follows that Θ is consistent. That means we have proved types

` ΦY1 ,

Y1<:ΦY1 ` ΦY2 ,

Y1<:ΦY1 , Y2<:ΦY2 ` ΦY3 ,

...

Y1<:ΦY1
, . . . , Yl−1<:ΦYl−1

` ΦYl
,

Y1<:ΦY1
, . . . , Yl−1<:ΦYl−1

, Yl<:ΦYl
` ΦZ .

For each of the Yi ∈ V ∩ {Y1, . . . , Yl} we have

(1’) ftyv(ΦYi
) ⊆ V due to (2), and

(2’) ftyv
(
Θ|{Y1,...,Yi−1} (X)

)
⊆ V for all X ∈ V , since we have

Θ|{Y1,...,Yi−1}v Θ and due to (2).

Hence, we may apply outer induction to obtain proved type

(Y1<:ΦY1 , . . . , Yi−1<:ΦYi−1)|V ` ΦYi

for each Yi ∈ V ∩ {Y1, . . . , Yl}.
In case of Z ∈ V , we analogously have

(1”) ftyv(ΦZ) ⊆ V and

(2”) ftyv
(
Θ|{Y1,...,Yl} (X)

)
⊆ V .

Thus, outer induction yields (Y1<:ΦY1 , . . . , Yl<:ΦYl
)|V ` ΦZ in this case.

Hence, we know Θ|V is consistent. But then we can immediately apply rule (Top type) to
derive Θ|V ` !nTop. We may argue analogously to treat the cases of derivation rules (Unit
type) and (Qbit type).

Suppose Θ ` !nX has been derived using rule (linear type variable) or (nonlinear type variable).
Analogously to the case of rule (Top type), we can show consistency of Θ|V . Since we assume
ftyv(Φ) = ftyv(!nX) ⊆ V in (1), we thus have Θ|V = Ξ, X<:ΦX ,Ξ

′ for some type contexts Ξ
and Ξ′. But then, we may apply the respective rule (linear type variable) or (nonlinear type
variable) to derive proved type Θ|V ` !nX.

Inner induction cases: Suppose Θ ` Φ has been derived by

Θ ` !nΦ′ Θ ` !nΨ′
(product type) .

Θ ` !n(Φ′ ⊗Ψ′)

Inner induction (where the necessary requirements are fulfilled, since ftyv(Φ′), ftyv(Ψ′) ⊆
ftyv((Φ′ ⊗ Ψ′)) ⊆ V holds by (1), and due to (2)) then tells us that both Θ |V ` !nΦ′ and
Θ |V ` !nΨ′ are proved types. Hence, we may apply (product type) to derive proved type
Θ|V ` !n(Φ′⊗Ψ′). The same line of argument applies to the cases of rules (function type) and
(sum type).

Assume Θ ` Φ has been derived by

` Ξ,Ξ′ Ξ, X<:ΦX ,Ξ
′ ` Ψ′ X 6∈ nftyv(Ψ′)

(linear-polymorphic type) ,
Ξ,Ξ′ ` (∀X<:ΦX .Ψ

′)

where we have Ξ,Ξ′ = Θ′, Z <:ΦZ . As before, we conclude consistency of (Ξ,Ξ′) |V from
premise ` Ξ,Ξ′ by outer induction (analogous to the case of rule (Top type)). Since type con-
text Ξ, X<:ΦX ,Ξ

′ in the second premise is considered to be properly defined, we conclude X 6∈
|Ξ,Ξ′|. By definition of restrictions of type contexts, we thus know (Ξ,Ξ′)|V = (Ξ,Ξ′)|V ∪{X} .

54 4 POLYMORPHICALLY TYPED QUANTUM LAMBDA CALCULUS

Moreover, we have ftyv(Ψ′) ⊆ ftyv((∀X<:ΦX .Ψ
′))∪{X} ⊆ V ∪{X}, which holds by (1), on the

one hand. On the other hand, ftyv
(
(Ξ, X<:ΦX ,Ξ

′)(Y)
)
⊆ V ∪ {X} holds for all Y ∈ V ∪ {X}

due to (2) and the fact that ftyv(ΦX) ⊆ ftyv((∀X<:ΦX .Ψ
′)) ⊆ V holds by (1). Hence, we may

use inner induction to conclude from the second premise that (Ξ, X<:ΦX ,Ξ
′)|V ∪{X} ` Ψ′ is a

proved type. Having all this, we can perform derivation

` (Ξ,Ξ′)|V ∪{X} (Ξ, X<:ΦX ,Ξ
′)|V ∪{X} ` Ψ′ X 6∈ nftyv(Ψ′)

(linear-polymorphic type) ,
(Ξ,Ξ′)|V ∪{X} ` (∀X<:ΦX .Ψ

′)

by which we obtain the proved type (Ξ,Ξ′)|V ` (∀X<:ΦX .Ψ
′) (since (Ξ,Ξ′)|V = (Ξ,Ξ′)|V ∪{X} ,

as we have shown above).

Finally, suppose Θ ` Φ has been derived by

Ξ,Ξ′ ` ΦX <: !Top Ξ, X<:ΦX ,Ξ
′ ` !nΨ′

(nonlinear-polymorphic type)
Ξ,Ξ′ ` !n(∀X<:ΦX .Ψ

′)

with Ξ,Ξ′ = Θ′, Z<:ΦZ . Applying Lemma 4.18 to the second premise, we get consistency of
Ξ, X<:ΦX ,Ξ

′, and thus know Ξ ` ΦX is a proved type. This may be weakened to Ξ,Ξ′ ` ΦX ,
since we get consistency of Ξ,Ξ′ by Lemma 4.19 applied to the first premise. By inner induction
(where we know ftyv(ΦX) ⊆ ftyv((∀X<:ΦX .Ψ

′)) ⊆ V by (1), and (2) ensures that the second
requirement in fulfilled), we may then conclude (Ξ,Ξ′)|V ∪{X} ` ΦX is a proved type, as well.
(We have already argued above, that (Ξ,Ξ′)|V ∪{X}= (Ξ,Ξ′)|V holds in this case.) Moreover,
we know ΦX = !Φ′X holds for some Φ′X ∈ Ttype due to Corollary 4.17 applied to the first
premise. Hence, we derive (Ξ,Ξ′)|V ∪{X} ` ΦX <: !Top by

(Ξ,Ξ′)|V ∪{X} ` !Φ′X
(Top supertype)

(Ξ,Ξ′)|V ∪{X} ` !Φ′X <: Top
(! right) .

(Ξ,Ξ′)|V ∪{X} ` !Φ′X <: !Top

Analogously to the previous induction case of rule (linear-polymorphic type), we get the last
missing piece from inner induction applied to the second premise, which yields proved type
(Ξ, X<:ΦX ,Ξ

′)|V ∪{X} ` !nΨ′. All this together enables derivation

(Ξ,Ξ′)|V ∪{X} ` ΦX <: !Top (Ξ, X<:ΦX ,Ξ
′)|V ∪{X} ` !nΨ′

(nonlinear-polymorphic type)
(Ξ,Ξ′)|V ∪{X} ` !n(∀X<:ΦX .Ψ

′)

by which we in the end obtain proved type (Ξ,Ξ′)|V ` !n(∀X<:ΦX .Ψ
′).

When we combine the just proven lemma with the statement of Lemma 4.18, we get an immediate
consequence: a well-scoped subsequence of a consistent type context is consistent. We will use this
later on, especially in subsection 4.2.4 for showing some results concerning minimal type contexts for
proved types and proved subtypes. Hence, it becomes part of the following corollary which besides this
consequence contains a formulation of the preceding lemma that is nearer to actual application in future
arguments than the original lemma is.

Corollary 4.28.

(i) Let Θ̂ ` Φ be a proved type. If Θ is a well-scoped type context with Θ v Θ̂ and ftyv(Φ) ⊆ |Θ|, then
Θ ` Φ is derivable as proved type.

(ii) Let Θ̂ be a consistent type context. If Θ is a well-scoped type context with Θ v Θ̂, then Θ is
consistent.

Proof.

(i): We apply Lemma 4.27 to show this:

Clearly, type context Θ with Θ v Θ̂ can be seen as Θ̂ ||Θ| , where ftyv(Φ) ⊆ |Θ| is assumed to
hold. Recalling the definition of well-scopedness of type contexts (Definition 4.12), we immediately
see that from well-scopedness of Θ it follows for all X ∈ |Θ| that ftyv

(
Θ(X)

)
⊆ |Θ|, and thus

also ftyv
(
Θ̂(X)

)
⊆ |Θ| by definition of the v relation (Definition 4.23). Hence, all requirements of

Lemma 4.27 are fulfilled and thus, Θ ` Φ is derivable.

4.2 Proved types and proved subtypes 55

(ii): The case of Θ̂ being the empty type context is trivial, since then we have Θ̂ = Θ.

Let Θ̂ = X1<:Φ̂1, . . . , Xn<:Φ̂k be of length k ≥ 1 and let Y <:ΦY be the rightmost variable-type
pair in Θ, i.e. Θ = Θ′, Y<:ΦY for some type context Θ′. By definition of well-scopedness, Θ′ is also
well-scoped and hence we have ftyv(ΦY) ⊆ |Θ′|. Since Θ is a subsequence of Θ̂, there must be an

index i with 1 ≤ i ≤ k, such that Y = Xi and ΦY = Φ̂i. We define Θ̂′ to contain the first i − 1
variable-type pairs of Θ̂, i.e. Θ̂′ := X1<:Φ̂1, . . . , Xi−1<:Φ̂i−1. By definition of consistency, we know

Θ̂′ ` Φ̂i = Θ̂′ ` ΦY is a proved type. Then, by (i), we can derive Θ′ ` ΦY . Hence, Θ = Θ′, Y<:ΦY
is consistent.

We can easily extend Corollary 4.28(i) to the setting of proved subtypes:

Corollary 4.29. Let Θ̂ ` Φ <: Ψ be a proved subtype. If Θ is a well-scoped type context with Θ v Θ̂ and
ftyv(Φ) ∪ ftyv(Ψ) ⊆ |Θ|, then Θ ` Φ <: Ψ is a derivable proved subtype.

Proof. By induction on the derivation of Θ̂ ` Φ <: Ψ.

Base cases: Suppose Θ̂ ` Φ <: Ψ has been derived by (Top supertype) or (<: reflexivity). Thus, we have

Θ̂ ` Φ as premise. Then, by Corollary 4.28(i), we may derive Θ ` Φ, which leads to Θ ` Φ <: Top
and Θ ` Φ <: Φ when we use rules (Top supertype) and (<: reflexivity), respectively.

Induction cases: Suppose Θ̂ ` Φ <: Ψ has been derived by one of the rules (! left), (! right), (function

type), (product type) or (sum type). Then all of the premises have the form Θ̂ ` Φ′ <: Ψ′. By
induction we can derive Θ ` Φ′ <: Ψ′ for all of these proved subtypes. (Induction is possible in these
cases, since we have ftyv(Φ′)∪ ftyv(Ψ′) ⊆ ftyv(Φ)∪ ftyv(Ψ) in all cases, which we see by inspection
of the definition of function ftyv .) Then we can apply the respective derivation rule again to obtain
proved subtype Θ ` Φ <: Ψ.

Now assume the somewhat more interesting case in which Θ̂ ` Φ <: Ψ has been derived by

Θ̂ ` Ψ1 <: Φ1 Ξ̂, X<:Ψ1, Ξ̂
′ ` Φ2 <: Ψ2

(polymorphic subtype)

Θ̂ ` (∀X<:Φ1.Φ2) <: (∀X<:Ψ1.Ψ2)

with Θ̂ = Ξ̂, Ξ̂′. Lemma 4.19 yields consistency of Θ̂ = Ξ̂, Ξ̂′ (from the first premise) and Ξ̂, X<:

Ψ1, Ξ̂
′ (from the second premise). The latter consistency result gives us proved type Ξ̂ ` Ψ1. By

derivation rule (type weakening) and the fact Ξ̂ v Θ̂ we then get proved type Θ̂ ` Ψ1 and thus

consistency of Θ̂, X<:Ψ1 . With the help of rule (type permutation) we further obtain proved

subtype Θ̂, X<:Ψ1 ` Φ2 <: Ψ2 from Ξ̂, X<:Ψ1, Ξ̂
′ ` Φ2 <: Ψ2 where we use Θ̂ = Ξ̂, Ξ̂′ again.

By consistency of type context Θ̂, X<:Ψ1 (which is also well-scoped due to Corollary 4.21) we get

proved type Θ̂ ` Ψ1, from which we get Θ ` Ψ1 by Corollary 4.28(i), and which then again entails
consistency of Θ, X<:Ψ1. And since

ftyv(Ψ1) ∪ ftyv(Φ1)∪
((

ftyv(Φ2) ∪ ftyv(Ψ2)
)
\ {X}

)
= ftyv((∀X<:Φ1.Φ2)) ∪ ftyv((∀X<:Ψ1.Ψ2))

⊆ |Θ|

holds by assumption, we also know ftyv(Φ2) ∪ ftyv(Ψ2) ⊆ |Θ, X <: Ψ1|. Hence, we may apply

induction to Θ̂, X<:Ψ1 ` Φ2 <: Ψ2, which leads to proved subtype Θ, X<:Ψ1 ` Φ2 <: Ψ2. Induction
applied to the first premise moreover yields the proved subtype Θ ` Ψ1 <: Φ1. Consequently, we
may perform derivation

Θ ` Ψ1 <: Φ1 Θ, X<:Ψ1 ` Φ2 <: Ψ2
(polymorphic subtype) .

Θ ` (∀X<:Φ1.Φ2) <: (∀X<:Ψ1.Ψ2)

56 4 POLYMORPHICALLY TYPED QUANTUM LAMBDA CALCULUS

The next issue we focus on is the following question: what information inside the type context of a
proved type is essential and what information is dispensable? With the next derived rule we come to
a remarkable and quite useful answer to this question. Let Θ ` Φ be a proved type with type context
Θ = Y1<:Φ1, . . . , Yl<:Φl. It turns out that the essential information in Θ is whether type bounds Φi
with 1 ≤ i ≤ n are linear or duplicable type terms. This means we can replace any Φi with Φ′ as long as
Φ′ has at least one leading exponential if Φi has at least one and as long as Φ′ is derivable as part of a
proved type Y1<:Φ1, . . . , Yi−1<:Φi−1 ` Φ′ as the following lemma shows.32

Lemma 4.30. We can derive rule

Θ ` !mΥ Θ, Y<:!nΦY ,Θ
′ ` Ψ

ΦY ,Υ linear

n > 0⇒ m > 0
(type bound replacement) , (?)

Θ, Y<:!mΥ,Θ′ ` Ψ

where premise “ ΦY , Υ linear” requires type terms ΦY and Υ to be linear, in other words, not to contain
any leading exponentials; and premise “n > 0⇒ m > 0” means n > 0 implies m > 0.

Proof. By nested induction on the length of type context Θ′ (outer induction) and the derivation of
Θ, Y<:!nΦY ,Θ

′ ` Ψ (inner induction):

Outer base case: Assume Θ′ is the empty type context.

Inner base cases: Suppose Θ, Y <:!nΦY ` !kTop, k ≥ 0, has been derived using rule (Top type).
Due to premise Θ ` !mΥ in (?), we know Θ, Y <:!mΥ is consistent and thus we can use rule
(Top type) as before to derive Θ, Y<:!mΥ ` !kTop. Similar arguments cover cases (Unit type)
and (Qbit type).

Now suppose Θ, Y<:!nΦY ` Ψ has been derived by

` Θ, Y<:!nΦY
(linear type variable) .

Θ, Y<:!nΦY ` X
We distinguish two cases:

X 6= Y : Then, Θ has the form Θ = Ξ, X<:ΦX ,Ξ
′. Of course, we may then use consistent

type context Ξ, X<:ΦX ,Ξ
′, Y <:!mΥ = Θ, Y <:!mΥ (which is consistent due to the first

premise in (?)) to derive Θ, Y<:!mΥ ` X using rule (linear type variable).

X = Y : Due to the first premise in (?), we have consistency of Θ, Y<:!mΥ. But then we can
perform derivation

` Θ, Y<:!mΥ
(linear type variable) .

Θ, Y<:!mΥ ` Y

Next, assume Θ, Y<:!nΦY ` Ψ has been derived by

` Θ, Y<:!nΦY
(nonlinear type variable) .

Θ, Y<:!nΦY ` !kX

By definition of this derivation rule, we know n ≥ 1. Again, we need to distinguish two cases:

X 6= Y : Then Θ has the form Θ = Ξ, X<:!ΦX ,Ξ
′. Consequently, we may use consistent

type context Ξ, X<:!ΦX ,Ξ
′, Y<:!mΥ (consistent due to the first premise in (?)) to derive

Θ, Y<:!mΥ ` !kX using rule (nonlinear type variable).

X = Y : Since we have n ≥ 1, premise n > 0 ⇒ m > 0 in (?) entails m ≥ 1. Hence, we can
perform derivation

` Θ, Y<:!mΥ
(nonlinear type variable) .

Θ, Y<:!mΥ ` !kY

32This last condition is in fact formulated a bit too strong. If we employ more of the results we have worked out so far in
this section and if we iteratively apply the replacement we are currently talking about, then we can also use the replacement
inside type context Y1<:Φ1, . . . , Yi−1<:Φi−1 that has been used to derive Φi, and then use this modified type context to
derive a proved type with Φ′ right of `.

4.2 Proved types and proved subtypes 57

Inner induction cases: Assume Θ, Y <:!nΦY ` !k(Φ′ ⊗ Ψ′) has been derived using rule (product
type). In this case we may conclude by inner induction that Θ, Y <:!mΥ ` !kΦ′ and Θ, Y <:
!mΥ ` !kΨ′ are derivable. But then we may also derive Θ, Y<:!mΥ ` !k(Φ′⊗Ψ′) using (product
type). Similar arguments cover the cases of rules (sum type) and (function type).

Assume Θ, Y<:!nΦY ` Ψ has been derived by

` Ξ,Ξ′, Y<:!nΦY

Ξ, X<:ΦX ,Ξ
′, Y<:!nΦY ` Ψ′ X 6∈ nftyv(Ψ′)

(linear-polymorphic type) ,
Ξ,Ξ′, Y<:!nΦY ` (∀X<:ΦX .Ψ

′)

where we write Θ as Ξ,Ξ′. It is clear that X 6= Y , since otherwise the type context of the
second premise would not be a properly defined type context. Using induction (applied to the
second premise) and the first premise of (?), we can perform derivation

` Ξ,Ξ′, Y<:!mΥ

Ξ, X<:ΦX ,Ξ
′, Y<:!mΥ ` Ψ′ X 6∈ nftyv(Ψ′)

(linear-polymorphic type)
Ξ,Ξ′, Y<:!mΥ ` (∀X<:ΦX .Ψ

′)

instead of the former one to show Θ, Y<:!mΥ ` (∀X<:ΦX .Ψ
′) is a proved type.

The situation for rule (nonlinear-polymorphic type) is quite similar:

Ξ,Ξ′, Y<:!nΦY ` ΦX <: !Top

Ξ, X<:ΦX ,Ξ
′, Y<:!nΦY ` !kΨ′

(nonlinear-polymorphic type) .
Ξ,Ξ′, Y<:!nΦY ` !k(∀X<:ΦX .Ψ

′)

However, we there have to show that Ξ,Ξ′, Y <:!mΥ ` ΦX <: !Top is derivable. But this is
not hard to do starting from premise Ξ, X <:ΦX ,Ξ

′, Y <: !nΦY ` !kΨ′ to gain Ξ ` ΦX by
Lemma 4.18. Then we derive Ξ ` ΦX <: !Top using rules (Top supertype) and (! right), where
ΦX = !Φ′X (for a certain type term Φ′X) follows from Corollary 4.17 applied to the first premise
of (nonlinear-polymorphic type). And since consistency of Ξ,Ξ′, Y<:!mΥ is ensured by the first
premise of (?), we may use (subtype weakening) to finally obtain Ξ,Ξ′, Y<:!mΥ ` !Φ′X <: !Top.
Then we continue analogous to the previous case to finally come up with derivation

Ξ,Ξ′, Y<:!mΥ ` ΦX <: !Top

Ξ, X<:ΦX ,Ξ
′, Y<:!mΥ ` !kΨ′

(nonlinear-polymorphic type) .
Ξ,Ξ′, Y<:!mΥ ` !k(∀X<:ΦX .Ψ

′)

Outer induction case: Let Θ′ = Θ′′, Z<:ΦZ be a nonempty type context with Z 6= Y .

Inner base cases: Suppose Θ, Y<:!nΦY ,Θ
′′, Z<:ΦZ ` !kTop has been derived using rule (Top type).

By Lemma 4.18 and the definition of consistency we get proved type Θ, Y <:!nΦY ,Θ
′′ ` ΦZ .

Outer induction then allows to conclude Θ, Y<:!mΥ,Θ′′ ` ΦZ , leading to consistency of Θ, Y<:
!mΥ,Θ′′, Z<:ΦZ . Now we may apply (Top type) to obtain Θ, Y <:!mΥ,Θ′′, Z<:ΦZ ` !kTop.
Rules (Unit type) and (Qbit type) may be handled similarly.

Assume Θ, Y<:!nΦY ,Θ
′′, Z<:ΦZ ` X with X 6= Y has been derived by

` Θ, Y<:!nΦY ,Θ
′′, Z<:ΦZ

(linear type variable) ,
Θ, Y<:!nΦY ,Θ

′′, Z<:ΦZ ` X
where either Θ = Ξ, X<:ΦX ,Ξ

′ or Θ′′, Z<:ΦZ = Ξ, X<:ΦX ,Ξ
′ for appropriate type contexts

Ξ and Ξ′. As in the previous case, we may conclude Θ, Y<:!mΥ,Θ′′, Z<:ΦZ is consistent, and
thus we may use rule (linear type variable) to obtain Θ, Y<:!mΥ,Θ′′, Z<:ΦZ ` X.

Assume Θ, Y <:ΦY ,Θ
′′, Z<:ΦZ ` Y has been derived using rule (linear type variable). As in

the previous cases, we get consistency of Θ, Y<:!mΥ,Θ′′, Z<:ΦZ using outer induction. Thus,
we can derive Θ, Y<:!mΥ,Θ′′, Z<:ΦZ ` Y using rule (linear type variable).

Suppose Θ, Y<:!nΦY ,Θ
′′, Z<:ΦZ ` !kX with X 6= Y has been derived by

` Θ, Y<:!nΦY ,Θ
′′, Z<:ΦZ

(nonlinear type variable) ,
Θ, Y<:!nΦY ,Θ

′′, Z<:ΦZ ` !kX

58 4 POLYMORPHICALLY TYPED QUANTUM LAMBDA CALCULUS

where either Θ = Ξ, X <: !ΦX ,Ξ
′ or Θ′′, Z <: ΦZ = Ξ, X <: !ΦX ,Ξ

′ for appropriate type
contexts Ξ and Ξ′. As in the previous cases, we get consistency of Θ, Y <:!mΥ,Θ′′, Z<:ΦZ
by outer induction, and thus we may use rule (nonlinear type variable) to obtain proved type
Θ, Y<:!mΥ,Θ′′, Z<:ΦZ ` !kX.

Assume Θ, Y <:!nΦY ,Θ
′′, Z<:ΦZ ` !kY has been derived using rule (nonlinear type variable).

Due to the single premise of (nonlinear type variable), we immediately know n ≥ 1 and thus
also m ≥ 1, by premise n > 0 ⇒ m > 0 in (?). As in the previous cases, we get consistency
of Θ, Y<:!mΥ,Θ′′, Z<:ΦZ using outer induction. And in analogy to the respective case in the
outer induction base, we then get to a derivation of Θ, Y<:!mΥ,Θ′′, Z<:ΦZ ` !kY .

Inner induction cases: Suppose Θ, Y<:!nΦY ,Θ
′ ` Ψ has been derived by

Θ, Y<:!nΦY ,Θ
′′, Z<:ΦZ ` !kΦ′ Θ, Y<:!nΦY ,Θ

′′, Z<:ΦZ ` !kΨ′
(product type) .

Θ, Y<:!nΦY ,Θ
′′, Z<:ΦZ ` !k(Φ′ ⊗Ψ′)

Then, by inner induction, we derive the necessary premises (from the above ones, where
consistency of Θ, Y <:!mΥ,Θ′′, Z<:ΦZ is obtained by outer induction as already described in
the inner base cases above) to enable derivation

Θ, Y<:!mΥ,Θ′′, Z<:ΦZ ` !kΦ′ Θ, Y<:!mΥ,Θ′′, Z<:ΦZ ` !kΨ′
(product type) .

Θ, Y<:!mΥ,Θ′′, Z<:ΦZ ` !k(Φ′ ⊗Ψ′)

Similar arguments cover the cases of rules (sum type) and (function type).
Assume Θ, Y<:!nΦY ,Θ

′ ` Ψ has been derived by

` Ξ,Ξ′, Y<:!nΦY ,Θ
′

Ξ, X<:ΦX ,Ξ
′, Y<:!nΦY ,Θ

′ ` Ψ′ X 6∈ nftyv(Ψ′)
(linear-polymorphic type) .

Ξ,Ξ′, Y<:!nΦY ,Θ
′ ` (∀X<:ΦX .Ψ

′)

From the type context in the second premise it is clear that X 6= Y . We use inner induction
(applied to the second premise) to obtain Ξ, X<:ΦX ,Ξ

′, Y<:!mΥ,Θ′ ` Ψ′ and outer induction
to ensure consistency of Ξ,Ξ′, Y<:!mΥ,Θ′. Having this, we can perform derivation

` Ξ,Ξ′, Y<:!mΥ,Θ′

Ξ, X<:ΦX ,Ξ
′, Y<:!mΥ,Θ′ ` Ψ′ X 6∈ nftyv(Ψ′)

(linear-polymorphic type)
Ξ,Ξ′, Y<:!mΥ,Θ′ ` (∀X<:ΦX .Ψ

′)

to show that Θ, Y<:!mΥ,Θ′ ` (∀X<:ΦX .Ψ
′) is a proved type.

The case where Θ, Y<:!nΦY ,Θ
′ ` Ψ has been derived by

` Θ, Y<:!nΦY ,Ξ,Ξ
′, Z<:ΦZ

Θ, Y<:!nΦY ,Ξ, X<:ΦX ,Ξ
′, Z<:ΦZ ` Ψ′ X 6∈ nftyv(Ψ′)

(linear-polymorphic type)
Θ, Y<:!nΦY ,Ξ,Ξ

′, Z<:ΦZ ` (∀X<:ΦX .Ψ
′)

is analogous.

Suppose Θ, Y<:!nΦY ,Θ
′ ` Ψ has been derived by

Ξ,Ξ′, Y<:!nΦY ,Θ
′ ` ΦX <: !Top

Ξ, X<:ΦX ,Ξ
′, Y<:!nΦY ,Θ

′ ` !kΨ′
(nonlinear-polymorphic type) .

Ξ,Ξ′, Y<:!nΦY ,Θ
′ ` !k(∀X<:ΦX .Ψ

′)

Again, it is clear that X 6= Y . By inner induction (applied to the second premise) we get
Ξ, X<:ΦX ,Ξ

′, Y <: !mΥ,Θ′ ` !kΨ′. Applying Lemma 4.19 and outer induction to the first
premise, we obtain consistency of Ξ,Ξ′, Y <:!mΥ,Θ′. By application of Lemma 4.18 to the
second premise and by the definition of consistency for type contexts, we get proved type
Ξ ` ΦX , which we weaken to Ξ,Ξ′, Y<:!mΥ,Θ′ ` ΦX . Then we use rules (Top supertype) and
(! right) to derive proved subtype Ξ,Ξ′, Y <:!mΥ,Θ′ ` ΦX <: !Top, where we get ΦX = !Φ′X
for some Φ′X ∈ Ttype due to Corollary 4.17 applied to the first premise. Hence, we successfully
collected all necessary premises to perform derivation

4.2 Proved types and proved subtypes 59

Ξ,Ξ′, Y<:!mΥ,Θ′ ` ΦX <: !Top

Ξ, X<:ΦX ,Ξ
′, Y<:!mΥ,Θ′ ` !kΨ′

(nonlinear-polymorphic type)

Ξ,Ξ′, Y<:!mΥ,Θ′ ` !k(∀X<:ΦX .Ψ
′)

to obtain Θ, Y<:!mΥ,Θ′ ` !k(∀X<:ΦX .Ψ
′) as a proved type.

Finally, suppose Θ, Y<:!nΦY ,Θ
′ ` Ψ has been derived by

Θ, Y<:!nΦY ,Ξ,Ξ
′, Z<:ΦZ ` ΦX <: !Top

Θ, Y<:!nΦY ,Ξ, X<:ΦX ,Ξ
′, Z<:ΦZ ` !kΨ′

(nonlinear-polymorphic type) .
Θ, Y<:!nΦY ,Ξ,Ξ

′, Z<:ΦZ ` !k(∀X<:ΦX .Ψ
′)

Again, we know X 6= Y . By inner induction (applied on the second premise) we get proved type
Θ, Y <:!mΥ,Ξ, X<:ΦX ,Ξ

′, Z<:ΦZ ` !kΨ′. Applying Lemma 4.19 and outer induction to the
first premise, we obtain consistency of Θ, Y<:!mΥ,Ξ,Ξ′, Z<:ΦZ . By application of Lemma 4.18
to the second premise and by the definition of consistency for type contexts, we get proved type
Θ, Y<:!nΦY ,Ξ ` ΦX to which we apply outer induction to derive Θ, Y<:!mΥ,Ξ ` ΦX , and then
weaken this to obtain proved type Θ, Y <:!mΥ,Ξ,Ξ′, Z<:ΦZ ` ΦX . Afterwards we use rules
(Top supertype) and (! right) to derive proved subtype Θ, Y<:!mΥ,Ξ,Ξ′, Z<:ΦZ ` ΦX <: !Top,
where we get ΦX = !Φ′X as before. Finally, we may perform derivation

Θ, Y<:!mΥ,Ξ,Ξ′, Z<:ΦZ ` ΦX <: !Top

Θ, Y<:!mΥ,Ξ, X<:ΦX ,Ξ
′, Z<:ΦZ ` !kΨ′

(nonlinear-polymorphic type)

Θ, Y<:!mΥ,Ξ,Ξ′, Z<:ΦZ ` !k(∀X<:ΦX .Ψ
′)

to obtain proved type Θ, Y<:!mΥ,Θ′ ` !k(∀X<:ΦX .Ψ
′).

Now that we have got an insight into the importance of leading exponentials for type bounds in type
contexts, we next investigate the importance of their number. What we discover is in fact neither new nor
very surprising. In the beginning of the treatment of our polymorphic type system, we have emphasized
the conceptual existence of type isomorphism !Φ ∼= !!Φ for any type term Φ.33

But there is another aspect to discover (which is also nothing completely new). Consider a linear
type term Φ′. When we introduced subtyping in the beginning of the current section, we said an object
of type !Φ′ is of type Φ′ and shows the additional property of being duplicable. What we find in the
next lemma as well, is that for any type term !nΦ which is derivable with leading exponentials (equipped
with an appropriate type context, of course), we can also derive Φ without leading exponentials (using
the same type context).

Lemma 4.31. Let m,n ≥ 0. If Θ ` !n+1Φ can be derived as a proved type, then we can also derive
Θ ` !mΦ.

Proof. We show this by induction on the derivation of Θ ` !n+1Φ:

Base cases: Let Θ ` !n+1Top be derived by rule (Top type). Of course, we can also derive Θ ` !mTop
for any m ≥ 0. The same holds for rule (Unit type). The case of Θ ` !n+1Qbit is different, however,
since it is not derivable using rule (Qbit type) or any other rule.

We do not need to consider rule (linear type variable), since it is not possible to derive any proved
type Θ ` !n+1X using this rule.

Suppose Ξ, X<:!ΦX ,Ξ
′ ` !n+1X has been derived using rule (nonlinear type variable). But then,

we can also perform derivation

` Ξ, X<:!ΦX ,Ξ
′

(nonlinear type variable) .
Ξ, X<:!ΦX ,Ξ

′ ` !mX

Let Θ ` !n+1(Φ′ (Ψ′) be derived by rule (function type). Using the same premises Θ ` Φ′ and
Θ ` Ψ′, we may also derive Θ ` !m(Φ′(Ψ′) using the same rule.

33We say the mentioned isomorphism exists conceptually, since we never formally introduced it and do not intend to do
so within the present work.

60 4 POLYMORPHICALLY TYPED QUANTUM LAMBDA CALCULUS

Induction cases: Suppose Θ ` !n+1Φ has been derived by

Θ ` !n+1Φ′ Θ ` !n+1Ψ′
(product type) .

Θ ` !n+1(Φ′ ⊗Ψ′)

Then induction tells us Θ ` !mΦ′ and Θ ` !mΨ′ are derivable proved types, and thus we can use
rule (product type) to derive Θ ` !m(Φ′ ⊗Ψ′). The same straightforward argument applies to rule
(sum type).

We do not have to consider rule (linear-polymorphic type), since it is impossible to derive any
proved type Θ ` !n+1Φ using this rule.

Finally suppose Θ ` !n+1Φ has been derived by

Ξ,Ξ′ ` ΦX <: !Top Ξ, X<:ΦX ,Ξ
′ ` !n+1Ψ′

(nonlinear-polymorphic type)
Ξ,Ξ′ ` !n+1(∀X<:ΦX .Ψ

′)

with Ξ,Ξ′ = Θ. By induction, we immediately get proved type Ξ, X<:ΦX ,Ξ
′ ` !mΨ′. And thus,

we can easily perform the following derivation to obtain Ξ,Ξ′ ` !m(∀X<:ΦX .Ψ
′):

Ξ,Ξ′ ` ΦX <: !Top Ξ, X<:ΦX ,Ξ
′ ` !mΨ′

(nonlinear-polymorphic type) .
Ξ,Ξ′ ` !m(∀X<:ΦX .Ψ

′)

We put the results from the above Lemma 4.31 into two new derivation rules, so that we can later
clearly distinguish between cases where we introduce more leading exponentials into a proved type (in
which at least one leading exponential already exists), or where we eliminate leading exponentials from
a proved type.

Corollary 4.32. We can derive the following rules for m,n ≥ 0:

Θ ` !Φ
(! amplification) ,

Θ ` !m+1Φ
Θ ` !n+1Φ

(! elimination) .
Θ ` Φ

Proof. These rules are immediate consequences of Lemma 4.31:

• To obtain rule (! amplification), we apply Lemma 4.31, where we set n = 0 and m ≥ 1 in the lemma.

• To come up with rule (! elimination), we apply Lemma 4.31, where we set n ≥ 1 and m = 0 in the
lemma.

This last two derivation rules together with all preceding results yield a quite powerful collection of
useful tools. We will make extensive use of that handy toolbox in the subsequent sections to tackle more
advanced topics and aspects of the type system we develop.

4.2.3 Enforceable linearity and strictly linear type terms

In this subsection we make sure our system exhibits a key feature that we want it to have, namely that
type constant Qbit cannot be maneuvered into a “dangerous spot” during derivation of proved types.
What we try to achieve by this is that when a function term contains quantum data and is assigned a type,
the type system shall guarantee that this function term is not regarded as duplicable, since any attempt to
duplicate such a function term (by means of a general cloning operation) would need operations that are
physically impossible, as Theorem 2.5 (no-cloning theorem) states. We already elaborated extensively on
this matter when we have been discussing the implications of the no-cloning theorem for QLC function
terms and when we have been motivating our polymorphic type system in the very beginning of the
current section.

4.2 Proved types and proved subtypes 61

As we have already mentioned several times, we want to prohibit certain type terms such as !Qbit and
!(Qbit ⊗ . . .) and the like to become part of a proved type. And since just claiming our system cannot
derive proved types which include such type terms does not mean any certainty, we formalize the idea of
type terms that shall only occur in linear form as subexpressions of proved types.

For this venture, we first need to pin down exactly, which type terms shall be restricted to only occur
linearly.

Definition 4.33 (strictly linear type terms).
We inductively define the set Tsl of strictly linear type terms as follows:

Qbit ∈ Tsl
(Φ⊗Ψ) ∈ Ttype ∧

(
Φ ∈ Tsl ∨Ψ ∈ Tsl

)
=⇒ (Φ⊗Ψ) ∈ Tsl

(Φ⊕Ψ) ∈ Ttype ∧
(
Φ ∈ Tsl ∨Ψ ∈ Tsl

)
=⇒ (Φ⊕Ψ) ∈ Tsl

(∀X<:ΦX .Ψ) ∈ Ttype ∧
((

ΦX ∈ Tsl ∧X ∈ nftyv(!Ψ)
)
∨Ψ ∈ Tsl

)
=⇒ (∀X<:ΦX .Ψ) ∈ Tsl

Let us take a short look at a few examples:

• Υ1 = (Qbit ⊗ !(Qbit (Qbit)) and Υ2 = (∀X<:(Qbit ⊗ !Top).X)
are a strictly linear type terms for which we can derive proved types ` Υ1 and ` Υ2;

• Υ3 = (!Qbit ⊗Qbit)
is strictly linear, but there is no type context Θ so that we could derive Θ ` Υ3;

• Υ4 = (∀X<:Top.(!X (Qbit))
is not strictly linear, but there is also no proved type Θ ` Υ4.34

The first notable and quite obvious fact about strictly linear type terms is Tsl ⊂ Ttype . But this is indeed
not very surprising, since it only makes sense to exclude type terms that have actually been there from
the beginning.

The second notable (and much more interesting) fact is the strong connection with nonlinear occur-
rences of free type variables in type terms (cf. Definition 4.5). This is by no means a coincidence. When
we have been discussing the notion of nonlinear free type variables earlier, we claimed these were marking
“dangerous spots” in type terms, where no type term such as Qbit shall be put by substitution. In the
above definition of strictly linear type terms these “dangerous spots” are exactly filled with type terms
that shall stay linear. Dangerous in this respect means to be affected by an exponential. And since a lead-
ing exponential in front of (Φ⊗Ψ) affects both Φ and Ψ, (Φ⊗Ψ) shall stay linear if Φ or Ψ has to. (Recall
that we have said earlier – when discussing the type derivation rules – (Φ⊗Ψ) shall be duplicable if both
Φ and Ψ are.) This has been the reason why in function call nftyv(!n(Φ⊗Ψ)) = nftyv(!nΦ)∪ nftyv(!nΨ)
the n leading exponentials are propagated. And this is also the reason why (Φ ⊗ Ψ) is strictly linear,
if Φ or Ψ is strictly linear. Hence, the notions of nonlinear free type variables and strictly linear type
terms go back to the same idea. To illustrate this connection even further and explain the shape of the
last defining line of set Tsl in Definition 4.33, consider a strictly linear type term (∀X<:ΦX .Ψ) ∈ Tsl. It
became strictly linear because of Ψ being strictly linear or because of X occurring as nonlinear free type
variable in !Ψ and ΦX being strictly linear. This exactly corresponds to the application of function nftyv
to !(∀X<:ΦX .Ψ), i.e.

nftyv(!(∀X<:ΦX .Ψ)) = nftyv(!kΦX) ∪
(
nftyv(!Ψ) \ {X}

)
, where k :=

{
1, if X ∈ nftyv(!Ψ),

0, otherwise.

There a leading exponential is propagated to function application nftyv(!kΦX) only if X ∈ nftyv(!Ψ) is
fulfilled. This keeps Y from being classified as nonlinear in the example type term !(∀X<:Y.(X (X)),
for instance. On the other hand, (∀X<:Qbit .(X (X)) is not strictly linear. This is in accordance with
our understanding that a function of type !(Qbit (Qbit) (which results for example from applying type
term Qbit to a function term of type !(∀X<:Qbit .(X (X)), as we will see later) may be very well used
multiple times in a function term even if the argument it works on and the result it produces are of linear
type. And in full correspondence to this we can derive ` !(Qbit (Qbit) by

34Type term Υ4 belongs to a class of type terms for which we cannot derive proved types, but it still does not contain
a subexpression that is a nonlinear strictly linear type term such as !Qbit . The danger of Υ4 lies in “type applications” of
the form ((∀X<:Top(!X (Qbit)) Qbit) (!X (Qbit)[Qbit/X]. We shortly discuss this class of type terms at the end of
the current subsection 4.2.3.

62 4 POLYMORPHICALLY TYPED QUANTUM LAMBDA CALCULUS

` ∅
(Qbit type)` Qbit

` ∅
(Qbit type)` Qbit
(function type) .

` !(Qbit (Qbit)

The third notable fact about strictly linear type terms hints in the same direction as the previous
one does in that it also emphasizes the connection between strictly linear type terms and occurrences of
nonlinear free type variables. It has, however, a slightly different flavor. Obviously, each strictly linear
type term has at least one occurrence of type constant Qbit . This is so, since the definition of strictly
linear type terms is of an inductive nature and the only base case is Qbit ∈ Tsl. Now consider a strictly
linear type term Φ and a type variable Z ∈ Vtype , where we assume Z does not occur in Φ (neither free
nor bound) and Z is not bound by a type abstraction in Φ. Let us write ΦQbit 7→Z for the type term which
results from Φ by replacing all occurrences of Qbit with Z. Recall examples Υ1 and Υ3 from above. For
these, we get Υ1,Qbit 7→Z = (Z ⊗ !(Z (Z)) and Υ3,Qbit 7→Z = (!Z ⊗ Z). As type terms Υ1,Qbit 7→Z and
Υ3,Qbit 7→Z show, Z might or might not occur nonlinearly in ΦQbit 7→Z for arbitrary strictly linear Φ, but
Z surely is a nonlinear free type variable in !Υ1,Qbit 7→Z and !Υ3,Qbit 7→Z , as we can easily check.

The following lemma confirms the just made observation for the general case !n+1ΦQbit 7→Z for arbitrary
strictly linear type terms Φ and n ≥ 0.

Lemma 4.34. If Φ is a strictly linear type term, then Z appears as nonlinear free type variable in
!n+1ΦQbit7→Z with n ≥ 0. In other words, Φ ∈ Tsl implies Z ∈ nftyv

(
!n+1ΦQbit 7→Z

)
.

Proof. We show this by induction on the structure of Φ ∈ Tsl.

Base case: Let Φ be of the form Φ = Qbit . Then

nftyv(!n+1ΦQbit 7→Z) = nftyv(!n+1Z) = {Z} .

Induction case: Let Φ be of the form Φ = (Φ′ ⊗ Ψ′). Since Φ is strictly linear, we know Φ′ ∈ Tsl or
Ψ′ ∈ Tsl. But then, we have Z ∈ nftyv(!n+1Φ′Qbit 7→Z) ∪ nftyv(!n+1Ψ′Qbit 7→Z) = nftyv(!n+1ΦQbit 7→Z)
by induction.

Analogously, we have Z ∈ nftyv(!n+1ΦQbit 7→Z) for the case Φ = (Φ′ ⊕Ψ′).

Assume Φ has the form Φ = (∀X<:Φ′.Ψ′), where we assume X 6= Z without loss of generality (since
we identify α-equivalent type terms). Then we know Ψ′ ∈ Tsl holds, or Φ′ ∈ Tsl and X ∈ nftyv(!Ψ′)
is fulfilled. If the first part Ψ′ ∈ Tsl is true, then we know Z ∈ nftyv(!n+1Ψ′Qbit 7→Z) by induction. If

the second part is true, induction yields Z ∈ nftyv(!n+1Φ′Qbit 7→Z). By inspection of the definition

of function nftyv , we see nftyv(!n+1Φ′Qbit 7→Z) = nftyv(!Φ′Qbit 7→Z), i.e. regarding the outcome it does
not make a difference whether we have one leading exponential in front of Φ′Qbit 7→Z or more than
one. Moreover, we get nftyv(!Ψ′) ⊆
nftyv(!Ψ′Qbit 7→Z), since Ψ′ and Ψ′Qbit 7→Z differ only in the occurrences of Qbit and Z.

Hence, in total we have Z ∈ nftyv(!n+1Ψ′Qbit 7→Z) or Z ∈ nftyv(!Φ′Qbit 7→Z) with

X ∈ nftyv(!n+1Ψ′Qbit 7→Z), which corresponds to

Z ∈ nftyv(!n+1ΦQbit 7→Z) = nftyv
(
!n+1(∀X<:Φ′Qbit 7→Z .Ψ

′
Qbit 7→Z)

)
= nftyv(!kΦ′Qbit 7→Z) ∪

(
nftyv(!n+1Ψ′Qbit 7→Z) \ {X}

)
,

where k :=

{
1, if X ∈ nftyv(!n+1Ψ′Qbit 7→Z),

0, otherwise.

This result reveals once more the strong connection between the definitions of function nftyv and the
set Tsl. With its help we can switch our focus to occurrences of nonlinear free type variables instead of
strictly linear type terms, when we obtain our first result stating that particular type terms cannot be
part of a proved type in the next lemma.

But before we formulate Lemma 4.35, let us take a look at the core idea underlying its proof. We use
the following observations, parts of which we have already explained above. On the one hand, nonlinear
occurrences of type variables are directly or indirectly affected by exponentials. This is reflected in the
definition of function nftyv and its mechanisms of propagation of exponentials. We have already discussed

4.2 Proved types and proved subtypes 63

this in several places. On the other hand, we claim that we cannot derive proved types Θ ` Φ, where
type constant Qbit occurs in a place in Φ where it is affected by an exponential. These two observations
clearly lead to the conclusion that if Qbit is substituted for a nonlinear X in a type term Ψ, then Qbit
will get affected by exponentials, and thus we may not derive Θ′ ` Ψ[Qbit/X] anymore, even if Θ′ ` Ψ
has been derivable before.

To facilitate a proof of those claims, we need the formalize the just explained ideas. Our focus shall
be on type variables, type constants and exponentials that affect them. The way of how an exponential
can affect a type variable is made clear in the definition of function nftyv .

At first, we need to introduce a way to address occurrences of type constants and type variables
in type terms. We do this by assigning a position to each individual occurrence of type constants and
type variables. As positions we use words over the alphabet {1, 2}, where ε denotes the empty word.
Function π : Ttype → P

(
{1, 2}∗ ×

(
{Top,Unit ,Qbit} ∪ Vtype

))
generates pairs of occurrences of type

constants and type variables in a type term together with their respective positions as follows. For all
C ∈ {Top,Unit ,Qbit}, X ∈ Vtype and Φ,Ψ ∈ Ttype , we define

π(C) :=
{

(ε, C)
}

,

π(X) :=
{

(ε,X)
}

,

π
(
(Φ⊗Ψ)

)
= π

(
(Φ⊕Ψ)

)
= π

(
(Φ(Ψ)

)
=

π
(
(∀X<:Φ.Ψ)

)
:=
{

(1p, S)
∣∣ (p, S) ∈ π(Φ)

}
∪
{

(2p, S)
∣∣ (p, S) ∈ π(Ψ)

}
,

π(!Φ) := π(Φ) .

Let us take a look at an example:

π
(

!!((Y ⊗ !Unit)⊕ (∀X<:!Top.!((X ⊗Qbit)(!Unit)))
)

=
{

(11, Y), (12,Unit), (21,Top), (2211, X), (2212,Qbit), (222,Unit)
}

.

In fact, the positions are not of importance to us but are necessary to distinguish different occurrences
of one type constant or type variable.

Function π ignores occurring exponentials completely. But what happens if we connect the idea of
collecting all occurring type constants and type variables and of counting the number of exponentials
that affect them, and do both during a recursive traversal of the whole type term? Clearly, function nftyv
does something similar, but does not count exponentials, but rather propagates them. Thus, we can also
use propagation and then count as soon as we (almost) arrived at a type constant or type variable. What
would be the outcome in the above example? When we do this counting by hand, we come to the result

!!((2Y ⊗ ! 3Unit)⊕ (∀X<:! 1Top.!((0X ⊗ 0Qbit)(! 1Unit))) ,

where the small number in front of each type constant and type variable is the sought number of expo-
nentials affecting it.

In the proof of Lemma 4.35 we define function π̂, which is a combination of functions π and nftyv and
does the counting for us. The result for our example is the following set of triples, where the counted
numbers are written in the third component:

π̂
(

!!((Y ⊗ !Unit)⊕ (∀X<:!Top.!((X ⊗Qbit)(!Unit)))
)

=
{

(11, Y, 2), (12,Unit , 3), (21,Top, 1), (2211, X, 0), (2212,Qbit , 0), (222,Unit , 1)
}

.

Function π̂ holds the key for a proof by contradiction. We use it to make three important but indeed
not very surprising observations on occurrences of type constants and type variables in proved types:

• firstly, nonlinear occurrences of free type variables are affected by at least one exponential,

• secondly, occurrences of type constant Qbit are never affected by exponentials,

• thirdly, when free type variable X has one occurrence at position p in type term Ψ at which it is
affected by m exponentials, then type constant Qbit at position p in Ψ[Qbit/X] is also affected by
m exponentials.

64 4 POLYMORPHICALLY TYPED QUANTUM LAMBDA CALCULUS

Clearly, this would lead to a contradiction if Θ ` Ψ[Qbit/X] were derivable for a nonlinear free type
variable X in Ψ. Since then, on the one hand, Qbit must not be affected by exponentials in any of its
occurrences in Ψ[Qbit/X]. On the other hand, there must be at least one occurrence of Qbit in Ψ[Qbit/X]
that is affected by at least one exponential.

All these considerations culminate in the following result.

Lemma 4.35. Let Θ ` Ψ be an arbitrary proved type and let X ∈ Vtype be a type variable. If X ∈
nftyv(Ψ), then Θ′ ` Ψ[Qbit/X] cannot be derived as a proved type for any type context Θ′.

Proof. We define a modified version of the above described function π, namely

π̂ : Ttype → P
(
{1, 2}∗ ×

(
{Top,Unit ,Qbit} ∪ Vtype

)
× N

)
.

We can think about π̂ as a function computing for each position in a type term Φ an “amount of
nonlinearity” affecting it, expressed by a non-negative integer m ≥ 0:

π̂(!nC) :=
{

(ε, C, n)
}

for C ∈ {Top,Unit ,Qbit} ,

π̂(!nX) :=
{

(ε,X, n)
}

for X ∈ Vtype ,

π̂
(
!n(Φ⊗Ψ)

)
=

π̂
(
!n(Φ⊕Ψ)

)
:=
{

(1p, S,m)
∣∣ (p, S,m) ∈ π̂(!nΦ)

}
∪
{

(2p, S,m)
∣∣ (p, S,m) ∈ π̂(!nΨ)

}
,

π̂
(
!n(Φ(Ψ)

)
:=
{

(1p, S,m)
∣∣ (p, S,m) ∈ π̂(Φ)

}
∪
{

(2p, S,m)
∣∣ (p, S,m) ∈ π̂(Ψ)

}
,

π̂
(
!n(∀X<:ΦX .Ψ)

)
:=
{

(1p, S,m)
∣∣ (p, S,m) ∈ π̂(!kΦX)

}
∪
{

(2p, S,m)
∣∣ (p, S,m) ∈ π̂(!nΨ)

}
,

where k :=

{
1, if X ∈ nftyv(!nΨ),

0, otherwise.

Obviously and indeed not much of a surprise, function π̂ shows a strong similarity to function nftyv . The
most important fact is that it has the same behavior regarding the propagation of leading exponentials.

We now show by induction that for each proved type Θ ` Φ the following properties hold:

(i) for all type variables X ∈ nftyv(Φ) there exists (p,X,m) ∈ π̂(Φ) such that m ≥ 1, and

(ii) for all (p,Qbit ,m) ∈ π̂(Φ) it holds m = 0.

Base cases: Assume Θ ` !nTop has been derived using rule (Top type). Then (i) and (ii) trivially hold,
since !nTop neither contains a nonlinear free type variable, nor does it have a position occupied by
Qbit . The same holds for a type term Θ ` !nUnit derived using (Unit type).

Assume Θ ` Qbit has been derived using rule (Qbit type). Property (i) holds, since there is no
nonlinear free type variable in type term Qbit . On the other hand, π̂(Qbit) = {(ε,Qbit , 0)} shows
that (ii) also holds in this case.

Suppose Θ, X<:ΦX ,Θ
′ ` X has been derived with rule (linear type variable). Then (ii) certainly

holds, since there is no (p,Qbit ,m) in π̂(X). Regarding property (i), we know it trivially holds in
this case, because nftyv(X) = ∅.
Next, suppose Θ, X<:ΦX ,Θ

′ ` !nX has been derived using rule (nonlinear type variable). As in
the previous case, (ii) clearly holds. Regarding property (i), we know it trivially holds in case of
n = 0 since nftyv(!0X) = ∅. If n ≥ 1, we have π̂(!nX) = {(ε,X, n)}. But now, it is obvious that (i)
holds.

Induction cases: Assume Θ ` !n(Φ′(Ψ′) has been derived using rule (function type). Then

π̂
(
!n(Φ′(Ψ′)

)
=
{

(1p, S,m)
∣∣ (p, S,m) ∈ π̂(Φ′)

}︸ ︷︷ ︸
=: π1

∪
{

(2p, S,m)
∣∣ (p, S,m) ∈ π̂(Ψ′)

}︸ ︷︷ ︸
=: π2

.

By induction we know (i) and (ii) hold for Θ ` Φ′ and Θ ` Ψ′, respectively, since these are the
premises of rule (function type).

(i): Since nftyv(!n(Φ′(Ψ′)) = nftyv(Φ′)∪nftyv(Ψ′), we have X ∈ nftyv(Φ′) or X ∈ nftyv(Ψ′) for
each X ∈ nftyv(!n(Φ′(Ψ′)). Then there exists a (p,X,m) ∈ π̂(Φ′) and thus a (1p,X,m) ∈ π1

withm ≥ 1, ifX ∈ nftyv(Φ′), and there exists a (p′, X,m′) ∈ π̂(Ψ′) and thus a (2p′, X,m′) ∈ π2

with m′ ≥ 1, if X ∈ nftyv(Ψ′). But this means that (i) also holds for Θ ` !n(Φ′(Ψ′).

4.2 Proved types and proved subtypes 65

(ii): Because of m1 = 0 for all (p,Qbit ,m1) ∈ π̂(Φ′) (by induction), and due to the way π1

is constructed from π̂(Φ′), we also have m1 = 0 for all (1p,Qbit ,m1) ∈ π1. Obviously,
an analogous fact holds for π2, π̂(Ψ′) and their elements. Hence, we have m = 0 for all
(p,Qbit ,m) ∈ π̂(!n(Φ′(Ψ′)) = π1 ∪ π2.

We may argue along similar lines for the cases of rules (product type) and (sum type).

Now suppose Θ ` Φ has been derived by

` Ξ,Ξ′ Ξ, X<:ΦX ,Ξ
′ ` Ψ′ X 6∈ nftyv(Ψ′)

(linear-polymorphic type)
Ξ,Ξ′ ` (∀X<:ΦX .Ψ

′)

with Ξ,Ξ′ = Θ. Then

π̂
(
(∀X<:ΦX .Ψ

′)
)

=
{

(1p, S,m)
∣∣ (p, S,m) ∈ π̂(!kΦX)

}
∪
{

(2p, S,m)
∣∣ (p, S,m) ∈ π̂(Ψ′)

}
,

where k is defined as above, here for n = 0. But since the third premise states X 6∈ nftyv(Ψ′), we
immediately know k = 0. The second premise assumes Ξ, X<:ΦX ,Ξ

′ ` Ψ′ to be a proved type.
From Lemma 4.18 and the definition of consistency for type contexts we conclude Ξ ` ΦX is a
proved type. By induction we then know (i) and (ii) hold for Ξ ` ΦX and Ξ, X<:ΦX ,Ξ

′ ` Ψ′,
respectively.

(i): By definition of function nftyv we have nftyv((∀X<:ΦX .Ψ
′)) = nftyv(!0ΦX) ∪ nftyv(Ψ′), since

we already concluded k = 0 above. But now we can use similar arguments as in the case of
rule (function type) to establish property (i) for the current case.

(ii): Again, we may reuse the respective arguments of case (function type) in an analogous way for
property (ii) in the current case.

Finally, assume Θ ` Φ has been derived by

Ξ,Ξ′ ` ΦX <: !Top Ξ, X<:ΦX ,Ξ
′ ` !nΨ′

(nonlinear-polymorphic type) ,
Ξ,Ξ′ ` !n(∀X<:ΦX .Ψ

′)

again with Ξ,Ξ′ = Θ. Then

π̂
(
!n(∀X<:ΦX .Ψ

′)
)

=
{

(1p, S,m)
∣∣ (p, S,m) ∈ π̂(!kΦX)

}
∪
{

(2p, S,m)
∣∣ (p, S,m) ∈ π̂(!nΨ′)

}
,

where k is defined as above. Premise Ξ,Ξ′ ` ΦX<: !Top and Corollary 4.17 tell us that ΦX is
of the form !Φ′X for some type term Φ′X . And analogous to the previous case, we may conclude
Ξ ` ΦX . Induction then tells us that properties (i) and (ii) also hold for proved types Ξ ` !Φ′X and
Ξ, X<:!Φ′X ,Ξ

′ ` !nΨ′.

(i): We have already argued the case of k = 0 in a very similar situation in the case of (linear-
polymorphic type).

Let k = 1. For now, we use a result which we show a bit later, namely π̂(!!Φ′′) � π̂(!Φ′′),
which we define as

π̂(Υ) � π̂(Υ′) if and only if ∀(p, S,m) ∈ π̂(Υ). ∃(p, S,m′) ∈ π̂(Υ′). m ≥ m′ .

This allows us to immediately deduce from (i) holds for Ξ ` !Φ′X (due to induction) that (i)
also holds for proved type Ξ ` !!Φ′X . This leaves us in a position where we may apply similar
reasoning as in the case of property (i) for rule (function type).

(ii): We again use a result here that we prove soon: π̂(!!Φ′X) ⊆Qbit π̂(!Φ′X), where π̂(Υ) ⊆Qbit π̂(Υ′)
holds if and only if all (p,Qbit ,m) ∈ π̂(Υ) are also in π̂(Υ′). Having this, we can extend the
fact that (ii) holds for Ξ ` !Φ′X to proved type Ξ ` !!Φ′X . Thus, we may argue along the same
lines as in case (function type) to establish (ii) for Ξ,Ξ′ ` !n(∀X<:!Φ′X .Ψ

′).

♦

Now we have finished the induction. However, we left two properties open to show (for all proved types
Θ ` !Φ):

66 4 POLYMORPHICALLY TYPED QUANTUM LAMBDA CALCULUS

(i’) π̂(!!Φ) � π̂(!Φ), and

(ii’) π̂(!!Φ) ⊆Qbit π̂(!Φ).

Since both properties are directly defined on function π̂, we prove them by induction on the structure of
type term Φ as it appears in the definition of π̂(Φ):

Base cases: Let Φ be of the form !nS, where S ∈ {Top,Unit ,Qbit} ∪ Vtype .

(i’): By definition we have π̂(!!!nS) = {(ε, S, n+ 2)} and π̂(!!nS) = {(ε, S, n+ 1)}. Clearly, it holds
π̂(!!!nS) � π̂(!!nS).35

(ii’): Inspecting the rules for derivation of proved types, we see Θ ` !n
′
Qbit can only be derived for

n′ = 0. Hence, there neither is a triple (p,Qbit ,m) in π̂(!!!nS) nor in π̂(!!nS) for any m ∈ N.
Thus π̂(!!!nS) ⊆Qbit π̂(!!nS) trivially holds.

Induction cases: Let Φ be of the form !n(Φ′ ⊗Ψ′). By definition we have

π̂
(
!l!n(Φ′ ⊗Ψ′)

)
=
{

(1p, S,m)
∣∣ (p, S,m) ∈ π̂(!l!nΦ′)

}︸ ︷︷ ︸
=: π3

∪
{

(2p, S,m)
∣∣ (p, S,m) ∈ π̂(!l!nΨ′)

}︸ ︷︷ ︸
=: π4

for l ∈ {1, 2}.

(i’): Induction yields π̂(!!!nΦ′) � π̂(!!nΦ′) and π̂(!!!nΨ′) � π̂(!!nΨ′). But then we may conclude from
the above definition of π̂(!l!n(Φ′⊗Ψ′)) and the construction of π3 and π4 that π̂(!!!n(Φ′⊗Ψ′)) �
π̂(!!n(Φ′ ⊗Ψ′)) also holds.

(ii’): Here, we use induction to conclude π̂(!!!nΦ′) ⊆Qbit π̂(!!nΦ′) and π̂(!!!nΨ′) ⊆Qbit π̂(!!nΨ′).
Again, the way of how π3 and π4 are constructed and the definition of π̂(!l!n(Φ′ ⊗Ψ′)) enable
us to reason that π̂(!!!n(Φ′ ⊗Ψ′)) ⊆Qbit π̂(!!n(Φ′ ⊗Ψ′)) holds.

It is fairly easy to see from the definition of function π̂ that these arguments also apply (slightly
modified) to the other induction cases of Φ being of the form !n(Φ′ ⊕ Ψ′), !n(Φ′ (Ψ′) and
!n(∀X<:ΦX .Ψ

′).

♦

At this point, we have successfully established properties (i’) and (ii’) and thus also properties (i) and
(ii) for all proved types Θ ` Φ.

Finally, to conclude the proof of Lemma 4.35, it remains to show

(?) for each type term Φ ∈ Ttype it holds π̂
(
Φ[Qbit/X]

)
=Qbit π̂(Φ)[Qbit/X] , where

• Υ =Qbit Υ′ holds if and only if Υ ⊆Qbit Υ′ and Υ′ ⊆Qbit Υ,

• π̂(Φ)[Qbit/X] denotes set
{

(p, S[Qbit/X],m)
∣∣ (p, S,m) ∈ π̂(Φ)

}
, and

• we assume (without loss of generality, since we identify α-equivalent type terms) that there is
no type abstraction (∀X<:. . .) in Φ, i.e. X does not appear as bound type variable in Φ.

This immediately entails for any proved type Θ ` Ψ that if X ∈ nftyv(Ψ), then there exists (p,X,m) ∈
π̂(Ψ) withm ≥ 1 (due to property (i)) and thus (p,Qbit ,m) ∈ π̂(Ψ)[Qbit/X], by definition of π̂(Ψ)[Qbit/X].
Consequently, there exists (p,Qbit ,m) ∈ π̂(Ψ[Qbit/X]), with m ≥ 1 (due to (?)). But this means (by
contradiction to property (ii)) that type-in-context Θ′ ` Ψ[Qbit/X] is not derivable for any type context
Θ′.

35The fact that neither !!!nQbit nor !!nQbit can be derived as proved types does not pose an obstacle to our argument.

4.2 Proved types and proved subtypes 67

This (almost) finishes the proof of Lemma 4.35. The final step of proving (?) requires one last induction
on the definition of function π̂:

Base cases: Let Φ be of the form !nC for some C ∈ {Top,Unit ,Qbit}. Then (!nC)[Qbit/X] = !nC and
(?) trivially holds, since no type variable X appears in C.

Let Φ = !nX for some type variable X. Then π̂
(
(!nX)[Qbit/X]

)
=
{

(ε,Qbit , n)
}

=
{

(ε,X[Qbit/X],

n)
}

= π̂(!nX)[Qbit/X]. This means, (?) holds in this case.

Induction cases: Let Φ be of the form !n(Φ′⊗Ψ′). By definition of substitution and function π̂ we have

π̂
(
(!n(Φ′ ⊗Ψ′))[Qbit/X]

)
= π̂

(
!n(Φ′[Qbit/X]⊗Ψ′[Qbit/X])

)
=
{

(1p, S,m)
∣∣ (p, S,m) ∈ π̂(!nΦ′[Qbit/X])

}︸ ︷︷ ︸
=: π5

∪
{

(2p, S,m)
∣∣ (p, S,m) ∈ π̂(!nΨ′[Qbit/X])

}︸ ︷︷ ︸
=: π6

.

and

π̂
(
!n(Φ′ ⊗Ψ′)

)
[Qbit/X] =

{
(1p, S[Qbit/X],m)

∣∣ (p, S,m) ∈ π̂(!nΦ′)
}

∪
{

(2p, S[Qbit/X],m)
∣∣ (p, S,m) ∈ π̂(!nΨ′)

}
=
{

(1p, S,m)
∣∣ (p, S,m) ∈ π̂(!nΦ′)[Qbit/X]

}︸ ︷︷ ︸
=: π7

∪
{

(2p, S,m)
∣∣ (p, S,m) ∈ π̂(!nΨ′)[Qbit/X]

}︸ ︷︷ ︸
=: π8

.

Taking !nΦ′[Qbit/X] = (!nΦ′)[Qbit/X] and !nΨ′[Qbit/X] = (!nΨ′)[Qbit/X] into account, induction
then yields

π̂
(
!nΦ′[Qbit/X]

)
= π̂

(
(!nΦ′)[Qbit/X]

)
=Qbit π̂

(
!nΦ′

)
[Qbit/X]

and

π̂
(
!nΨ′[Qbit/X]

)
= π̂

(
(!nΨ′)[Qbit/X]

)
=Qbit π̂

(
!nΨ′

)
[Qbit/X] .

And since π5, π7 and π6, π8 are constructed in analogous ways, respectively, we find (?) holds in
this case. We may argue along similar lines for the cases of Φ = !n(Φ′ ⊕Ψ′) and Φ = !n(Φ′(Ψ′).

Consider the case Φ = !n(∀Y<:ΦX .Ψ
′). We then have

π̂
(
!n(∀Y<:ΦX .Ψ

′)
)
[Qbit/X] =

{
(1p, S,m)

∣∣ (p, S,m) ∈ π̂(!kΦX)[Qbit/X]
}

∪
{

(2p, S,m)
∣∣ (p, S,m) ∈ π̂(!nΨ′)[Qbit/X]

}
.

To continue, we (formally) need to distinguish two cases:

Let Y 6= X. Then

π̂
(
(!n(∀Y<:ΦY .Ψ

′))[Qbit/X]
)

=
{

(1p, S,m)
∣∣ (p, S,m) ∈ π̂(!kΦY [Qbit/X])

}
∪
{

(2p, S,m)
∣∣ (p, S,m) ∈ π̂(!nΨ′[Y ′/Y][Qbit/X])

}
,

where Y ′ is a fresh free type variable neither appearing freely in ΦY nor in Ψ′ and with
X 6= Y ′ 6= Y .
Again, !kΦY [Qbit/X] = (!kΦY)[Qbit/X] and induction help to obtain π̂(!kΦY [Qbit/X]) =Qbit

π̂(!kΦY)[Qbit/X]. Although the second half of the union looks more complicated, it is still
accessible through the same arguments. Thus, we have !nΨ′[Y ′/Y][Qbit/X] =
(!nΨ′[Y ′/Y])[Qbit/X], which (with the help of induction) allows us to deduce

π̂
(
!nΨ′[Y ′/Y][Qbit/X]

)
= π̂

(
(!nΨ′[Y ′/Y])[Qbit/X]

)
=Qbit π̂

(
!nΨ′[Y ′/Y]

)
[Qbit/X] .

Looking at the definitions of π̂
(
(!n(∀Y<:ΦY .Ψ))[Qbit/X]

)
and π̂

(
!n(∀Y<:ΦY .Ψ)

)
[Qbit/X] in

the light of what we just found out, this gives us all we need to conclude that (?) holds in this
case, as well.

68 4 POLYMORPHICALLY TYPED QUANTUM LAMBDA CALCULUS

We do not have to consider the case of Y = X due to our assumption that X is not bound by any
type abstraction in Φ. But it is worthwhile to note that without this assumption we could
(in general) only prove an inclusion π̂(Φ[Qbit/X]) ⊆Qbit π̂(Φ)[Qbit/X] here, which would be
strict for certain type terms Φ.

This lemma is the key for our subsequent considerations in this subsection. What we almost imme-
diately get from it is that there is no type context Θ such that Θ ` !Φ is derivable, if Φ is a strictly
linear type term. To make this clear, consider again Φ ∈ Tsl and type term ΦQbit 7→Z where type variable
Z does not appear in Φ and is not bound by a type abstraction in Φ. Due to these assumptions and
the definition of substitution of free type variables (Definition 4.4), we get Φ ≡α ΦQbit 7→Z [Qbit/Z], (≡α
meaning the two type terms are α-equivalent). By Lemma 4.34 we know that Z ∈ nftyv(!ΦQbit 7→Z). If
Θ ` !Φ were derivable, then so were Z<:Top,Θ ` !ΦQbit 7→Z by Lemma 4.36 (which is stated and proven
below). However, Lemma 4.35 yields that there is no type context Θ′ such that Θ′ ` !ΦQbit 7→Z [Qbit/Z]
is a proved type, since Z ∈ nftyv(!ΦQbit 7→Z). Hence, there cannot be a Θ such that Θ ` !Φ is derivable,
which leads to a contradiction.

Lemma 4.36. If Θ ` Φ is a proved type and Z ∈ Vtype \ |Θ| is a type variable which does not appear in
Φ and is not bound by a type abstraction in Φ, then Z<:Top,Θ ` ΦQbit 7→Z is a proved type, as well.

Proof. We first show Z<:Top,Θ′ is consistent for any consistent type context Θ′ = Y1<:Φ1, . . . , Yk<:Φk.
Since Θ′ is consistent, we have the following proved types:

` Φ1 ,

Y1<:Φ1 ` Φ2 ,

Y1<:Φ1, Y2<:Φ2 ` Φ3 ,

...

Y1<:Φ1, . . . , Yk−1<:Φk−1 ` Φk .

Since ` Top is derivable by rule (Top type) starting from the empty type context, we have consistency
of Z<:Top. Hence, we may apply rule (type weakening) in a step-by-step fashion to obtain proved types

` Top ,

Z<:Top ` Φ1 ,

Z<:Top, Y1<:Φ1 ` Φ2 ,

Z<:Top, Y1<:Φ1, Y2<:Φ2 ` Φ3 ,

...

Z<:Top, Y1<:Φ1, . . . , Yk−1<:Φk−1 ` Φk .

Having settled this matter, we now proceed with an induction on the derivation of Θ ` Φ.

Base cases: Suppose Θ ` !nTop has been derived by (Top type). Then (!nTop)Qbit 7→Z = !nTop and we
can derive Z<:Top,Θ ` !nTop by (type weakening), since we know Z<:Top,Θ is consistent.
The same argument holds for the case of rule (Unit type).

Assume Θ ` Qbit has been derived by (Qbit type). Then we can perform the derivation

` Z<:Top,Θ
(linear type variable) .

Z<:Top,Θ ` Z

Induction cases: Assume Θ ` Φ is of the form Θ ` !n(Φ′ ⊗ Ψ′) and has been derived by rule (product
type). Then we get proved types Z<:Top,Θ ` !nΦ′Qbit 7→Z and Z<:Top,Θ ` !nΨ′Qbit 7→Z by induction.
Using these, we can perform derivation

Z<:Top,Θ ` !nΦ′Qbit 7→Z Z<:Top,Θ ` !nΨ′Qbit 7→Z
(product type) .

Z<:Top,Θ ` !n(Φ′Qbit 7→Z ⊗Ψ′Qbit 7→Z)︸ ︷︷ ︸
= ΦQbit 7→Z

4.2 Proved types and proved subtypes 69

Similar arguments apply to the cases of rules (function types) and (sum type).

Suppose Θ ` Φ has been derived by

Ξ,Ξ′ ` Φ′ <: !Top Ξ, X<:Φ′,Ξ′ ` !nΨ′
(nonlinear-polymorphic type) ,

Ξ,Ξ′ ` !n(∀X<:Φ′.Ψ′)

where we have Ξ,Ξ′ = Θ. From consistency of the type context in the second premise (due to
Lemma 4.18), we get proved type Ξ ` Φ′, which we may weaken to Ξ,Ξ′ ` Φ′, since Ξ,Ξ′ is
consistent (due to Lemma 4.19 applied to the first premise). Induction then yields proved types
Z<:Top,Ξ,Ξ′ ` Φ′Qbit 7→Z and Z<:Top,Ξ, X<:Φ′,Ξ′ ` !nΨ′Qbit 7→Z . By Corollary 4.17 we know Φ′ is
of the form Φ′ = !Φ′′, and obviously we then also have Φ′Qbit 7→Z = !Φ′′Qbit 7→Z , i.e. replacing Qbit by
Z preserves leading exponentials. Hence, we may apply rule (type bound replacement) to obtain
proved type Z<:Top,Ξ, X<:Φ′Qbit 7→Z ,Ξ

′ ` !nΨ′Qbit 7→Z from Z<:Top,Ξ, X<:Φ′,Ξ′ ` !nΨ′Qbit 7→Z .
But this also means we can apply rules (Top supertype) and (! right) to Z<:Top,Ξ,Ξ′ ` Φ′Qbit 7→Z
in order to derive proved subtype Z<:Top,Ξ,Ξ′ ` Φ′Qbit 7→Z <: !Top. Putting these facts together,
we can perform derivation

Z<:Top,Ξ,Ξ′ ` Φ′Qbit 7→Z <: !Top

Z<:Top,Ξ, X<:Φ′Qbit 7→Z ,Ξ
′ ` !nΨ′Qbit 7→Z

(nonlinear-polymorphic type) .
Z<:Top,Ξ,Ξ′ ` !n(∀X<:Φ′Qbit 7→Z .Ψ

′
Qbit 7→Z)︸ ︷︷ ︸

= ΦQbit 7→Z

A similar, but somewhat easier argument yields the analogous result in case Θ ` Φ being derived
by (linear-polymorphic type).

By now we have made a good step forward in showing that our type system prohibits certain type
terms to become parts of proved types. At this point, we have shown proved types Θ ` !n+1Φ cannot
exist for type terms Φ ∈ Tsl and n ≥ 0. But we are not done yet, since so far we have not considered
what happens if !Φ occurs as a subexpression in a type term Ψ, for instance. We actually do not have a
formal notion of such subexpressions at the moment. Let us therefore formalize the intuitive concept of
subterms of a type term.

Definition 4.37 (subterms of type terms).
We capture the notion of subterms of a type term by function subt : Ttype → P(Ttype) which we
recursively define as follows
(for all C ∈ {Top,Unit ,Qbit}, X ∈ Vtype , � ∈ {⊗,⊕,(} and Φ,ΦX ,Ψ ∈ Ttype):

subt(C) = {C}
subt(X) = {X}
subt(!Φ) = subt(Φ) ∪ {!Φ}

subt((Φ�Ψ)) = subt(Φ) ∪ subt(Ψ) ∪ {(Φ�Ψ)}
subt((∀X<:ΦX .Ψ)) = subt(ΦX) ∪ subt(Ψ) ∪ {(∀X<:ΦX .Ψ)}

There is not much to say about this definition besides that it captures the natural intuition.
More interesting is, however, an inspection of the derivation rules for proved types when we turn our

attention to subterms of a proved type Θ ` Φ (and by this we mean the subterms of type term Φ). Doing
so, we notice that each of Φ’s subterms has been itself part of a proved type that occurred during the
derivation of Θ ` Φ. Consider for instance proved type Θ ` (∀X<:ΦX .(Ψ1⊗Ψ2)). During its derivation,
we have derived proved types Ξ, X<:ΦX ,Ξ

′ ` Ψ1 , Ξ, X<:ΦX ,Ξ
′ ` Ψ2 and Ξ ` ΦX and so on, with

Ξ,Ξ′ = Θ. Another example is proved type Θ ` !n(Φ′ ⊗ Ψ′). When we derive it, we inevitably come
across proved types Θ ` !nΦ′ and Θ ` !nΨ′, but we do in fact not derive Θ ` Φ′ and Θ ` Ψ′ which are
proved variants of subterms of !n(Φ′⊗Ψ′). However, at this point rule (! elimination) supports our claim
that we have almost derived subterms of the whole proved type.

Of course, these examples do not prove anything, but they give a good intuition for the following fact.

70 4 POLYMORPHICALLY TYPED QUANTUM LAMBDA CALCULUS

Fact 4.38. If Θ ` Φ is a proved type, then for each subterm Σ ∈ subt(Φ) there exists a type context ΘΣ

such that ΘΣ ` Σ is a proved type.

We will show the validity of this fact later on in Lemma 4.46(i). At this later point, we will even show
a stronger result, but for now this fact is quite enough to show the final result of this section.

We conclude this section with the following result. It confirms that our type system indeed possesses
a key feature that we aimed at from the beginning. This theorem thus constitutes one of the highlights
of the present work.

Theorem 4.39 (enforceable linearity with respect to set Tsl).
Let Ψ ∈ Ttype be a type term and let Φ ∈ Tsl be a strictly linear type term. If we have !n+1Φ ∈ subt(Ψ)
with n ≥ 0, then there is no type context Θ for which we can derive type-in-context Θ ` Ψ as a proved
type.

Proof. Suppose Θ ` Ψ were derivable for an appropriate type context Θ. Then there exists a type context
ΘΦ according to Fact 4.38 such that ΘΦ ` !n+1Φ is a proved type.

Let Z be a type variable which does not appear in Φ and is not bound by a type abstraction in
Φ. Consider type term ΦQbit 7→Z which we obtain from Φ by replacing all occurrences of type constant
Qbit by Z. As we have already argued before (right after the proof of Lemma 4.35), type terms Φ and
ΦQbit 7→Z [Qbit/Z] are α-equivalent. Due to Lemma 4.34 we conclude Z ∈ nftyv(!n+1ΦQbit 7→Z). Since
ΘΦ ` !n+1Φ is a proved type, we also have proved type Z<:Top,ΘΦ ` !n+1ΦQbit 7→Z due to Lemma 4.36.
However, Lemma 4.35 yields that there is no type context Θ′ such that Θ′ ` !n+1ΦQbit 7→Z [Qbit/Z] is
a proved type, since Z ∈ nftyv(!n+1ΦQbit 7→Z). Hence, there cannot be a ΘΦ such that ΘΦ ` !n+1Φ is
derivable. Obviously, we have a contradiction and thus Θ ` Ψ cannot be derived for any type context
Θ.

With this theorem we finish our investigation of strictly linear type terms in that we have shown our
type system cannot derive duplicable versions of them.

It is a noteworthy consequence that the sort of types we dealt with in Theorem 4.39 is not the only
sort of non-derivable types in our type system. What we also exclude is a preliminary stage of such
types, namely the ones of the form Φ ∈

{
(∀X<:ΦX .Ψ

′) ∈ Ttype

∣∣ ΦX 6<: !Top and X ∈ nftyv(Ψ′)
}

.
Consider, for instance, type term (∀X<:Top.!(X⊗ !X)) which fits into this class of type terms and which
does not have a strictly linear subterm. Now imagine a type application which results in a type term
!(X ⊗ !X)[Qbit/X] = !(Qbit ⊗ !Qbit). After such a type application, we end up with a type term that
has strictly linear subterms with leading exponentials in front of it. For that reason, we also need to
prohibit the above mentioned sorts of types to become proved types. We can convince ourselves of the
underivability of these types by inspection of rules (linear-polymorphic type) and (nonlinear-polymorphic
type). While the latter derivation rule only allows duplicable type bounds in type abstractions, the former
derivation rule allows such type bounds but does not allow the bound type variable to occur nonlinearly
in the scope. Hence, the above mentioned sort of types is clearly not derivable.

4.2.4 Transitivity of subtype derivations

When we have been discussing the derivation rules for proved subtypes, we already gave a hint that
we can only achieve a weak form of transitivity for proved subtypes. More precisely, this means there
does not exist a proved subtype Θ ` Φ <: Ψ for all pairs of proved subtypes Θ ` Φ <: Υ and Θ `
Υ <: Ψ. One example has already been mentioned: we can derive ` (!Qbit ⊗ !Qbit) <: (Qbit ⊗ Qbit)
and ` (Qbit ⊗ Qbit) <: Top but not ` (!Qbit ⊗ !Qbit) <: Top. The reason for this is rather simple:
` (!Qbit ⊗ !Qbit) is not a proved type, and thus we cannot apply rule (Top supertype) to it and the other
derivation rules do not lead to the desired result. On the other hand, we may ask why (and how) can
we derive a proved subtype Θ ` Φ <: Ψ if we are given proved subtypes Θ ` Φ <: Υ and Θ ` Υ <: Ψ,
and if Θ ` Φ and Θ ` Ψ are proved types? The answer to this question is not so simple and easy to
give. It turns out that we by now just know too little about the derivation of proved subtypes and what
particular requirements the type contexts must fulfill from which we start this derivation. We will gain
the necessary knowledge in the course of this subsection, however.

4.2 Proved types and proved subtypes 71

But before we dive deeper into derivations of proved types and proved subtypes, we take a look at
minimal type contexts in the first part of this subsection. This will turn out to be a quite useful notion
since it brings us into a position where we can concentrate on the actually necessary part of a type
context.

Definition 4.40 (minimal type contexts).
Let Θ ` Φ be a proved type. We call Θ minimal (with respect to Θ ` Φ), if Θ||Θ|\V ` Φ cannot be
derived for any nonempty set V ⊆ |Θ|.
We analogously use this notion for type contexts Θ in proved subtypes Θ ` Φ <: Ψ.

Although we will not point it out explicitly in each case in the future, minimality of a type context is
always meant with respect to a certain proved type or proved subtype (otherwise, a minimal type context
would always be equal to the least (consistent) type context, i.e. the empty type context). If not stated
explicitly, it will be clear from the respective context of discussion to which proved type or proved subtype
a minimal type context is associated in this sense.

As the name suggests, we cannot reduce a minimal type context Θmin any further and still derive
the associated proved type Θmin ` Φ. This immediately leads to the following chain of arguments: from
Lemma 4.20 we know ftyv(Φ) ⊆ |Θ| is a necessary condition for any type context Θ, in order to get
proved type Θ ` Φ. Hence, for minimal type context Θmin there is no Θ′ v Θmin that is well-scoped,
shorter than Θmin and whose domain |Θ′| does contain all free type variables occurring in Φ (otherwise
Θmin would not be minimal, due to item (i) in Corollary 4.28). Nevertheless, Θmin may still contain
well-scoped (nontrivial) subsequences shorter than Θmin itself. Of course, the same holds for cases where
Θmin is minimal with respect to a proved subtype.

This observation lays the ground for the following three quite technically flavored results.

Proposition 4.41. Let ΘΦ and ΘΨ be minimal type contexts with respect to proved types ΘΦ ` Φ and
ΘΨ ` Ψ, respectively, and let Φ and Ψ have the same free type variables, i.e. ftyv(Φ) = ftyv(Ψ). If there
is a type context Θ such that ΘΦ v Θ and ΘΨ v Θ, then ΘΦ = ΘΨ.

Proof. The assumption ΘΦ v Θ w ΘΨ already gives us ΘΦ(YΦ) = Θ(YΦ) for all YΦ ∈ |ΘΦ| and ΘΨ(YΨ) =
Θ(YΨ) for all YΨ ∈ |ΘΨ|. Hence, we already have ΘΦ(Y) = ΘΨ(Y) for all Y ∈ |ΘΦ| ∩ |ΘΨ|, i.e.
ΘΦ||ΘΦ|∩|ΘΨ|= ΘΨ||ΘΦ|∩|ΘΨ| .

It thus remains to show |ΘΦ| = |ΘΨ|. By Lemma 4.18 we know ΘΦ and ΘΨ are consistent and thus
also well-scoped, due to Corollary 4.21. By Lemma 4.20 we get ftyv(Φ) ⊆ |ΘΦ| and ftyv(Ψ) ⊆ |ΘΨ|, but
then our assumption ftyv(Φ) = ftyv(Ψ) immediately yields ftyv(Φ) ⊆ |ΘΦ| ∩ |ΘΨ|. Since ΘΦ and ΘΨ are
well-scoped, we conclude that ΘΦ||ΘΦ|∩|ΘΨ| and ΘΨ||ΘΦ|∩|ΘΨ| are well-scoped, as well. But then, we can
derive proved type ΘΦ ||ΘΦ|∩|ΘΨ| ` Φ by Lemma 4.27, where ΘΦ ||ΘΦ|∩|ΘΨ|= ΘΦ ||ΘΦ|\(|ΘΦ|\(|ΘΦ|∩|ΘΨ|)) .
Hence, (|ΘΦ| \ (|ΘΦ| ∩ |ΘΨ|)) must be empty, since otherwise this would contradict minimality of ΘΦ.
Analogous reasoning applies to ΘΨ.

Consequently, we have |ΘΦ| = |ΘΦ| ∩ |ΘΨ| = |ΘΨ|.

Suppose we are given a proved type Θ ` Φ and we intend to find a type context Θmin with Θmin v Θ,
so that we can derive Θmin ` Φ and Θmin is minimal. Then the just proven proposition shows that Θmin

is unique (modulo α-equivalence).

Obviously, we can easily extend Proposition 4.41 to the setting of proved subtypes.

Corollary 4.42. Let Θ1 and Θ2 be minimal type contexts with respect to proved subtypes Θ1 ` Φ1 <: Ψ1

and Θ2 ` Φ2 <: Ψ2, respectively, and let ftyv(Φ1) ∪ ftyv(Ψ1) = ftyv(Φ2) ∪ ftyv(Ψ2). If there is a type
context Θ such that Θ1 v Θ and Θ2 v Θ, then Θ1 = Θ2.

Proof. The proof is analogous to the proof of Proposition 4.41, using Lemma 4.19 instead of Lemma 4.18,
and Lemma 4.22 instead of Lemma 4.20.

In the following proposition we meet a mixed situation compared to the two preceding results. What
we learn from it is if we have minimal type contexts ΘΦ, ΘΨ and Θ with respect to proved types ΘΦ ` Φ
and ΘΨ ` Ψ and proved subtype Θ ` Φ <: Ψ, respectively, then we can conclude by their minimality
that their domains are identical.

72 4 POLYMORPHICALLY TYPED QUANTUM LAMBDA CALCULUS

Proposition 4.43. Let ΘΦ ` Φ and ΘΨ ` Ψ be proved types and Θ ` Φ <: Ψ be a proved subtype, where
ΘΦ, ΘΨ and Θ are minimal. Then |Θ| = |ΘΦ| ∪ |ΘΨ|.

Proof. From Lemmas 4.18 and 4.19 we get consistency of ΘΦ, ΘΨ and Θ. Corollary 4.21 then further
entails ΘΦ, ΘΨ and Θ are well-scoped.

Moreover, Lemmas 4.20 and 4.22 yield the three results

• ftyv(Φ) ⊆ |ΘΦ|,

• ftyv(Ψ) ⊆ |ΘΨ| and

• ftyv(Φ) ∪ ftyv(Ψ) ⊆ |Θ|.

According to item (i) in Corollary 4.28, minimality of ΘΦ means there is no well-scoped (and consistent)
subsequence Θ′Φ v ΘΦ shorter than ΘΦ with ftyv(Φ) ⊆ |ΘΦ|. Of course, we have an analogous meaning
for the minimality of ΘΨ and Θ.

In this sense, minimality and well-scopedness of ΘΦ and ftyv(Φ) ⊆ |ΘΦ| lead to subsets S0, . . . , Sk ⊆
|ΘΦ| and a sequence

S0 ⊆ S1 ⊆ . . . ⊆ Sk ,

where S0 = ftyv(Φ) and Si = Si−1 ∪ {ftyv(ΘΦ(Y)) | Y ∈ Si−1} for all i, 1 ≤ i ≤ k, and k ≥ 1 is such
that Sk−1 = Sk is a fixed point. Minimality of ΘΦ then yields Sk = |ΘΦ|, since otherwise we would have
a well-scoped (and thus consistent) subsequence of ΘΦ which contains ftyv(Φ). Obviously, an analogous
chain can be build for ΘΨ.

But due to ftyv(Φ) ∪ ftyv(Ψ) ⊆ |Θ| and due to Θ’s well-scopedness, we can find exactly the same
chains as for ΘΦ and ΘΨ also in the domain of Θ. And since Θ is also assumed to be minimal, we thus
have |ΘΦ| ∪ |ΘΨ| = |Θ|.

Having gained these three basic results, we know enough about minimal type contexts for the moment.

Let us next introduce the key tool for the remainder of this section. The underlying idea goes back
to the representation of syntactic expressions such as type terms by trees. Usually, each subexpression
of the full syntactic expression is then represented by a node in the tree, while the root represents the
full expression. We will, however, modify this idea according to our needs. Firstly, we do not need an
explicit representation of those trees (the idea of a tree is rather useful for our intuition but nothing
more). What we really need instead are addresses that we (in principle) assign to the nodes in such a
tree. Secondly, we use a coarser grained division of type terms into subexpressions than function subt
offers. To illustrate this, consider a type term !nΦ, where Φ shall be linear. According to set subt(Φ) of
subterms of Φ, we would have one tree node for each !iΦ with 0 ≤ i ≤ n. What we need instead is one
node corresponding to the full !nΦ and then continue to build nodes corresponding to the subterms of Φ
(unequal to Φ itself).

Here is an example of what we aim at:
Consider type term !((!!Unit⊕Qbit)((∀X<:Qbit .(!Top⊗X))). In the corresponding coarse syntax
tree the addresses of subexpressions are written as subscripts to the left of each node:

ε !((!!Unit ⊕Qbit)((∀X<:Qbit .(!Top ⊗X)))

1 (!!Unit ⊕Qbit)

15 !!Unit 16 Qbit

2 (∀X<:Qbit .(!Top ⊗X))

27 Qbit 28 (!Top ⊗X)

283 !Top 284 X

As we have already emphasized, the tree representation itself is not really of importance, but rather
supports our intuition. What indeed is important, however, is the addressing of all the involved subex-
pressions. For addresses we use finite words over alphabet {1, . . . , 8}, and each sort of composite type
term is assigned a pair of digits:

4.2 Proved types and proved subtypes 73

• function type (Φ(Ψ): 1 for Φ, 2 for Ψ;

• product type (Φ⊗Ψ): 3 for Φ, 4 for Ψ;

• sum type (Φ⊕Ψ): 5 for Φ, 6 for Ψ;

• type abstraction (∀X<:ΦX .Ψ): 7 for ΦX , 8 for Ψ.

The following definition of function sta (subterm addressing) puts the just explained intuitions into
a formal frame.

Definition 4.44 (subterm addressing – function sta).
We recursively define function sta : Ttype → P

(
{1, . . . , 8}∗ × Ttype

)
as follows

(for all C ∈ {Top,Unit ,Qbit}, X ∈ Vtype and Φ,ΦX ,Ψ ∈ Ttype)

sta
(
C
)

:=
{

(ε, C)
}
,

sta
(
X
)

:=
{

(ε,X)
}
,

sta
(
!Φ
)

:=
{

(p,Φ′) ∈ sta(Φ0) \ {(ε,Φ0)}
∣∣ where Φ = !nΦ0 for linear Φ0

}
∪
{

(ε, !Φ)
}
,

sta
(
(Φ(Ψ)

)
:=
{

(1p,Φ′)
∣∣ (p,Φ′) ∈ sta(Φ)

}
∪
{

(2p,Ψ′)
∣∣ (p,Ψ′) ∈ sta(Ψ)

}
∪
{(
ε, (Φ(Ψ)

)}
,

sta
(
(Φ⊗Ψ)

)
:=
{

(3p,Φ′)
∣∣ (p,Φ′) ∈ sta(Φ)

}
∪
{

(4p,Ψ′)
∣∣ (p,Ψ′) ∈ sta(Ψ)

}
∪
{(
ε, (Φ⊗Ψ)

)}
,

sta
(
(Φ⊕Ψ)

)
:=
{

(5p,Φ′)
∣∣ (p,Φ′) ∈ sta(Φ)

}
∪
{

(6p,Ψ′)
∣∣ (p,Ψ′) ∈ sta(Ψ)

}
∪
{(
ε, (Φ⊕Ψ)

)}
,

sta
(
(∀X<:ΦX .Ψ)

)
:=
{

(7p,Φ′)
∣∣ (p,Φ′) ∈ sta(Φ)

}
∪
{

(8p,Ψ′)
∣∣ (p,Ψ′) ∈ sta(Ψ)

}
∪
{(
ε, (∀X<:ΦX .Ψ)

)}
.

At first, we claim (and prove) the division into subexpression done by function sta produces subterms.

Proposition 4.45. Given a type term Φ, it holds
{

Σ | (p,Σ) ∈ sta(Φ)
}
⊆ subt(Φ).

Proof. Let us abbreviate
{

Σ | (p,Σ) ∈ sta(Φ)
}

by πr(sta(Φ)) (referring to the idea of projections in the
right component of pairs).
Induction on the structure of Φ:

Base cases: Let Φ ∈ {Top,Unit ,Qbit} ∪ Vtype . Then sta(Φ) =
{

(ε,Φ)
}

and subt(Φ) = {Φ}. Hence, our
claim holds in this case.

Induction cases: Let Φ = !nΦ0 for linear Φ0. Then

sta(!nΦ0) =
{

(p,Φ′) ∈ sta(Φ0) \ {(ε,Φ0)}
}︸ ︷︷ ︸

⊂ sta(Φ0)

∪
{

(ε, !nΦ0)
}

and subt(!nΦ0) = subt(Φ0) ∪
{

!iΦ0

∣∣ 0 ≤ i ≤ n
}

. On the one hand, we get πr(sta(Φ0)) ⊆ subt(Φ0)
by induction. And since !nΦ0 ∈ subt(Φ) holds on the other hand, we then know πr(sta(!nΦ0)) ⊆
subt(!nΦ0).

Let Φ = (Φ′�Ψ′) for any � ∈ {(,⊗,⊕}. Then

sta((Φ′�Ψ′)) =
{

(kp,Φ′′)
∣∣ (p,Φ′′) ∈ sta(Φ′)

}︸ ︷︷ ︸
= s1

∪
{

(k′p,Ψ′′)
∣∣ (p,Ψ′′) ∈ sta(Ψ′)

}︸ ︷︷ ︸
= s2

∪
{

(ε, (Φ′�Ψ′))
}

and subt((Φ′�Ψ′)) = subt(Φ′) ∪ subt(Ψ′) ∪ {(Φ′�Ψ′)}.
By induction, we then get πr(s1) = πr(sta(Φ′)) ⊆ subt(Φ′) and πr(s2) = πr(sta(Ψ′)) ⊆ subt(Ψ′),
since s1 and s2 take over all pairs from sta(Φ′) and sta(Ψ′), respectively, and just modify the first
components of these pairs. Hence, we have πr(sta((Φ′�Ψ′))) ⊆ subt((Φ′�Ψ′)).

Case Φ = (∀X<:ΦX .Ψ
′) is handled analogously.

74 4 POLYMORPHICALLY TYPED QUANTUM LAMBDA CALCULUS

Let us next investigate an example to see what subterm addressing as it is done by function sta tells
about subtype derivations. Consider the following subtype derivation of ` Φ <: Ψ

...
` (∀X<:Top.X)

` (∀X<:Top.X) <: Top

` ∅
` !Unit

` !Unit <: Top

` !Unit <: !Top

` ∅
` Qbit

` Qbit <: Top

` (!Top (Qbit) <: (!Unit (Top)

` ((∀X<:Top.X)⊗ (!Top (Qbit)) <: (Top ⊗ (!Unit (Top))

...
` (Qbit ⊕ (∀Y<:!Top.Y))

` (Qbit ⊕ (∀Y<:!Top.Y)) <: Top

` ((Top ⊗ (!Unit (Top))((Qbit ⊕ (∀Y<:!Top.Y))) <: (((∀X<:Top.X)⊗ (!Top (Qbit))(Top)

where we omitted labels for derivation rules to save space. We can easily find derivations for proved
types ` (∀X<:Top.X) and ` (Qbit ⊕ (∀Y<:!Top.Y)) but do not give them explicitly here. Although such
derivation trees are the proper way to derive proved subtypes in a faithful way (checking validity of
premises and drawing valid conclusions according to the derivation rules given in Definition 4.15), they
do not give a clear view of all interesting aspects of subtype derivations. To clear our view up a bit,
we take a look at the subterm addressing of the two type terms involved, where we put frames around
subterm addresses that are common to both type terms Φ and Ψ.

ε ((Top ⊗ (!Unit (Top))((Qbit ⊕ (∀Y<:!Top.Y))) = Φ

1
(Top ⊗ (!Unit (Top))

13
Top

14
(!Unit (Top)

141
!Unit

142
Top

2
(Qbit ⊕ (∀Y<:!Top.Y))

25 Qbit 26 (∀Y<:!Top.Y)

267 !Top 268 Y

ε (((∀X<:Top.X)⊗ (!Top (Qbit))(Top) = Ψ

1
((∀X<:Top.X)⊗ (!Top (Qbit))

13
(∀X<:Top.X)

137 Top 138 X

14
(!Top (Qbit)

141
!Top

142
Qbit

2
Top

From this we notice that each of the two type terms in a subtyping statement Φ <: Ψ can show sub-
structures which do not appear in the other. In the example addresses 13 and 2 are such points. On the
one hand, we find type term Top at address 13 in Φ, and in Ψ we find (∀X<:Top.X) at this address. On
the other hand, Ψ has subterm Top at address 2, where Φ shows the more complex (Qbit⊕(∀Y<:!Top.Y)).
Finding Top at such common addresses showing different term structures is by no means a coincidence.
In fact, this is a consequence of the derivation rules for proved subtypes. As we can see by inspection of
these rules, only rule (Top supertype) allows the introduction of more complex structures in the left-hand
side type term than in the right-hand side one (left and right of <:).36 This immediately explains the

36We will use this knowledge in section 4.3 to restrict certain subtype derivations in order to guarantee the same structure
on both sides.

4.2 Proved types and proved subtypes 75

“hidden” (or “lost”, depending on the point of view) structure at address 2 in the example. The situation
at address 13 already gives a hint towards another aspect which is of great importance for our subsequent
considerations. Since there the direction of hiding structure is reversed in the sense that Ψ shows a more
complex structure at address 13 than Φ does, although Φ is subtype and not supertype of Ψ. The reason
for this is the principal (symbol in Φ and Ψ, because the first premise of rule (function type) shows
this reversed direction of subtyping, in contrast to the second premise of the same rule, for instance. (We
have motivated this reversed direction in the discussion of the axioms of our subtype relation right after
Definition 4.7.) To illustrate this, we lay the two subterm addressing trees one over another and explicitly
mark the direction of subtyping. In each node the upper subterm stems from Φ and the lower subterm
is taken from Ψ, respectively.

ε ((Top ⊗ (!Unit (Top))((Qbit ⊕ (∀Y<:!Top.Y)))

<: (((∀X<:Top.X)⊗ (!Top (Qbit))(Top)

1
(Top ⊗ (!Unit (Top)) :>

((∀X<:Top.X)⊗ (!Top (Qbit))

13
Top :>

(∀X<:Top.X)
14

(!Unit (Top) :>

(!Top (Qbit)

141
!Unit

<: !Top
142

Top :>

Qbit

2
(Qbit ⊕ (∀Y<:!Top.Y))

<: Top

What we discover here is of great importance for the key result in the current subsection, namely
Lemma 4.46. The subtyping statement at position ε is the overall statement which we have, namely the
one in proved subtype ` Φ <: Ψ. At addresses 2 and 141, we have the same direction of subtyping,
namely a subterm of Φ is a subtype of a subterm of Ψ. Addresses 1, 13, 14 and 142, however, show the
reversed direction of subtyping. We have already pointed out that this is because of the application of
derivation rule (function type) where the first premise causes this reversal of direction. This reversal is
reflected by the single digit 1 in all these addresses. But what happened at position 141? Well, there the
direction of subtyping has been reversed twice, as we can easily check by looking at the number of digits
1 in the address. Hence – and this is the essence of the current discussion – we can directly read from the
respective addresses, how often the direction of subtyping has been reversed during the derivation of the
proved subtype. That means when we count the digits 1 and 7 (recall that rule (polymorphic subtype)
also exhibits a reversal of direction of subtyping in its first premise) in an address p common to Φ and
Ψ and end up with an odd number, then the subterm of Φ at address p is a supertype of the subterm of
Ψ at address p, and a subtype in case of an even number of digits 1 and 7. This is the key observation
explaining the form of items (ii.2), (ii.3), (iv.2.2) and (iv.2.3) in Lemma 4.46. (What we just claimed will
be proven formally in proposition (ii) in the mentioned lemma.)

In items (iv.1.1) and (iv.1.2) of the very same lemma we even go one step farther. But to explain
this step, we first need another example – namely one where type contexts play a more important
role. Consider the following type derivations of proved types Φ := (∀X<:(∀Y<:!Unit .Top).!Unit) and
Ψ := (∀X<:(∀Y<:!Top.Qbit).!Top) where we omit rule labels to the right of the horizontal lines, but write
addresses to the left instead to indicate where the currently derived subterm finds its place in the full
type term at the end. Some of these addresses are framed again, but we explain the special meaning of
this below. Furthermore, we have (as an exception to common practice in the rest of our work) included
full derivations of the consistency of type contexts and marked the implication of consistency by “⇓”.

76 4 POLYMORPHICALLY TYPED QUANTUM LAMBDA CALCULUS

` ∅

` ∅

` ∅
77 ` !Unit

⇓
` Y<:!Unit

78
Y<:!Unit ` Top Y 6∈ nftyv(Top)

7 ` (∀Y<:!Unit .Top)

⇓
` X<:(∀Y<:!Unit .Top)

8
X<:(∀Y<:!Unit .Top) ` !Unit X 6∈ nftyv(!Unit)

ε
` (∀X<:(∀Y<:!Unit .Top).!Unit)︸ ︷︷ ︸

= Φ

` ∅

` ∅

` ∅
77 ` !Top

⇓
` Y<:!Top

78
Y<:!Top ` Qbit Y 6∈ nftyv(Qbit)

7 ` (∀Y<:!Top.Qbit)

⇓
` X<:(∀Y<:!Top.Qbit)

8
X<:(∀Y<:!Top.Qbit) ` !Top X 6∈ nftyv(!Top)

ε
` (∀X<:(∀Y<:!Top.Qbit).!Top)︸ ︷︷ ︸

= Ψ

Before we next look at a subtype derivation that brings the two just derived type terms together in
proved subtype ` Φ <: Ψ, we shall point out the reason for which two particular addresses have been
framed. What we first realize is both framed addresses 7 and ε are associated to derivations of type
abstractions (by rule (linear-polymorphic type) in both cases, but it could have been its nonlinear coun-
terpart as well). The second obvious but still remarkable circumstance is which type context appears
in the second premise of each of these rule instances. The crucial point is that in the derivation steps
marked with address 7 we use type bound !Unit for Y in the Φ case and type bound !Top for Y in the Ψ
case. Similarly, at root address ε we have type bound (∀Y<:!Unit .Top) assigned to X in the derivation of
Φ and (∀Y<:!Top.Qbit) in the derivation of Ψ. Thinking about a derivation for proved subtype ` Φ <: Ψ,
we already know both type terms show subterms (∀Y<: . . .) and (∀X<: . . .) in corresponding addresses,
respectively. Hence, the structure of these subterms cannot be “hidden behind Top”. In other words, we
have to use rule (polymorphic subtype) for the derivation of proved subtype ` (∀Y<: . . .) <: (∀Y<: . . .)
for address 7 and proved subtype ` (∀X<: . . .) <: (∀X<: . . .) for address ε (see also the subtype deriva-
tion shown below). The problem that arises is the one we have just seen: during derivation of Φ and Ψ
we assign different type bounds to type variable X in the respectively used type contexts, and the same
is true for Y . However, the type context used for subtype derivation can only assign one of the two type
bounds to X (and also to Y). Hence, we have to make a proper choice on how to build up the type
context we want to use for subtype derivation. The key to the solution of this “type context puzzle” is
again counting digits 1 and 7 in addresses (and checking whether their number is even or odd) and an
inspection of rule (polymorphic subtype). To make this task a bit easier, we use our example and the
following derivation of ` Φ <: Ψ.

...
77 ` !Unit <: !Top

...
78

Y<:!Unit ` Qbit <: Top
7 ` (∀Y<:!Top.Qbit) <: (∀Y<:!Unit .Top)

...
8
X<:(∀Y<:!Top.Qbit) ` !Unit <: !Top

ε
` (∀X<:(∀Y<:!Unit .Top).!Unit) <: (∀X<:(∀Y<:!Top.Qbit).!Top)

Looking at this example, we notice the involved type contexts needed to assign type bound !Unit to Y ,
which has also been used in the above derivation of Φ, and type bound (∀Y <:!Top.Qbit) to X, which
has been used in the above derivation of Ψ. As already mentioned, both choices are connected with the
respective addresses and the number of occurrences of digits 1 and 7 therein. Thus, if the address of a

4.2 Proved types and proved subtypes 77

type abstraction contains an even number of 1s and 7s, we use the type bound associated to Ψ, and in the
odd case we take over the type bound associated to Φ. And this is exactly what is formulated formally
in (iv.1.1) and (iv.1.2) in Lemma 4.46.

All the above described ideas culminate in the following lemma. It consists of four separate propositions
which mark different stages which we have to pass consecutively, since they are partly based on one
another. In this sense (iv) constitutes the climax of the lemma. So, for instance, (i) provides the pieces of
the above mentioned “type context puzzle”, while (ii) and (iii) together allow for drawing conclusions on
the form of subterms of Ψ (or Φ), if we are given a subterm of Φ (or Ψ), its address and proved subtypes
Θ ` Φ <: Υ and Θ ` Υ <: Ψ. In (iv) we eventually come to the point, where we solve the “type context
puzzle”, and show how the thus obtained type context can be used to construct subtype derivations for
subterms of Φ and Ψ that share common addresses. And since Φ and Ψ are subterms of themselves, we
eventually end up with a transitivity result. Along this road, we use minimal type contexts as often as
necessary, since we can usually draw more conclusions from minimal type contexts than from arbitrary
ones.

Lemma 4.46. In each of the following propositions we assume none of the Y ∈ |Θ| appears bound in
Φ or Ψ. Furthermore, we assume different type abstractions in Φ bind different type variables, and the
same shall hold for Ψ.37

(i) If Θ ` Φ is a proved type with Θ being minimal, then for each subterm Σ ∈ subt(Φ) there exists a
type context ΘΣ such that

(i.1) Θ v ΘΣ holds,

(i.2) ΘΣ ` Σ is a proved type, and

(i.3) all Y ∈ |ΘΣ|\ |Θ| appear bound in Φ with assigned type bound ΘΣ(Y), i.e. (∀Y<:ΘΣ(Y). . . .) ∈
subt(Φ).

(ii) If Θ ` Φ <: Ψ is a proved subtype, where Θ is minimal, then for each pair
(
(p,ΣΦ), (p,ΣΨ)

)
∈

sta(Φ)× sta(Ψ) there exists a type context Θ̂ such that

(ii.1) Θ v Θ̂,

(ii.2) Θ̂ ` ΣΦ <: ΣΨ is a proved subtype, if |p|1 + |p|7 mod 2 = 0, and

(ii.3) Θ̂ ` ΣΨ <: ΣΦ is a proved subtype, if |p|1 + |p|7 mod 2 = 1.

(iii) Consider proved subtypes ΘΦΥ ` Φ <: Υ and ΘΥΨ ` Υ <: Ψ and the sets addrΦ :=
{
p
∣∣ (p,ΣΦ) ∈

sta(Φ)
}

and addrΨ, addrΥ (which shall be defined analogously to addrΦ). It then holds addrΦ ∩
addrΨ ⊆ addrΥ, i.e. if there is a pair

(
(p,ΣΦ), (p,ΣΨ)

)
∈ sta(Φ)× sta(Ψ), then we have (p,ΣΥ) ∈

sta(Υ) for some subterm ΣΥ of Υ.

(iv) Let ΘΦ ` Φ and ΘΨ ` Ψ be proved types with minimal type contexts ΘΦ and ΘΨ, and ΘΦ and ΘΨ

be such that ΘΦ v Θ and ΘΨ v Θ hold for a common consistent type context Θ, which we assume
to be as small as possible, i.e. |Θ| = |ΘΦ| ∪ |ΘΨ|. Moreover, let ΘΦΥ ` Φ <: Υ and ΘΥΨ ` Υ <: Ψ

be proved subtypes. Then there exists a consistent type context Θ̂∗ with Θ v Θ̂∗, such that all type
variables Y ∈ |Θ̂∗| \ |Θ| appear bound in Φ or Ψ with assigned type bound Θ̂∗(Y) and such that for
each pair(
(p, (∀X<:ΣΦ1 .ΣΦ2)), (p, (∀X<:ΣΨ1 .ΣΨ2))

)
∈ sta(Φ)× sta(Ψ) we have

(iv.1.1) Θ̂∗(X) = ΣΨ1 if |p|1 + |p|7 mod 2 = 0 and

(iv.1.2) Θ̂∗(X) = ΣΦ1
if |p|1 + |p|7 mod 2 = 1;

and for each
(
(p′,ΣΦ), (p′,ΣΨ)

)
∈ sta(Φ)× sta(Ψ), there exists a smallest type context Θ̂ such that

(iv.2.1) Θ v Θ̂ v Θ̂∗,

(iv.2.2) Θ̂ ` ΣΦ <: ΣΨ is a proved subtype, if |p′|1 + |p′|7 mod 2 = 0, and

37These are not very restrictive assumptions, since we identify α-equivalent type terms.

78 4 POLYMORPHICALLY TYPED QUANTUM LAMBDA CALCULUS

(iv.2.3) Θ̂ ` ΣΨ <: ΣΦ is a proved subtype, if |p′|1 + |p′|7 mod 2 = 1.

Proof. We first show (i) by induction on the derivation of Θ ` Φ.

Base cases: Suppose Θ ` Φ has been derived by

` Θ
(Top type) ,

Θ ` !nTop

where Φ = !nTop for some n ≥ 0. Then we have subt(!nTop) = {!iTop | 0 ≤ i ≤ n}. Since ` Θ
is already given, we can use the same rule to derive all proved types Θ ` Σ with Σ ∈ subt(!nTop).
(Please note (i.1) and (i.3) trivially hold due to Θ v Θ and since |Θ| \ |Θ| = ∅.)
The same holds for rules (Unit type), (Qbit type), (linear type variable) and (nonlinear type vari-
able).

Induction cases: Suppose Θ ` Φ has been derived by

Θ ` Φ′ Θ ` Ψ′
(function type) .

Θ ` !n(Φ′(Ψ′)

This entails subt(!n(Φ′ (Ψ′)) = {!i(Φ′ (Ψ′) | 0 ≤ i ≤ n} ∪ subt(Φ′) ∪ subt(Ψ′). Then we can
derive all proved types Θ ` Σ with Σ ∈ {!i(Φ′ (Ψ′) | 0 ≤ i ≤ n} by (! elimination) applied to
Θ ` !n(Φ′ (Ψ′), or doing nothing at all in case of n = 0. That means, we use ΘΣ = Θ, and thus
(i.1) and (i.3) again trivially hold.
By induction, we moreover get for all Σ1 ∈ subt(Φ′) there exist type contexts ΘΣ1

with Θ v ΘΣ1
,

such that ΘΣ1 ` Σ1 can be derived, and analogously for all Σ2 ∈ subt(Ψ′). Hence, we are done in
this case.
Similar reasoning applies to the cases of rule (product type) and (sum type).

Suppose Θ ` Φ has been derived by

` Ξ,Ξ′ Ξ, X<:ΦX ,Ξ
′ ` Ψ′ X 6∈ nftyv(Ψ′)

(linear-polymorphic type)
Ξ,Ξ′ ` (∀X<:ΦX .Ψ

′)

with Ξ,Ξ′ = Θ. Then subt((∀X<:ΦX .Ψ
′)) = subt(ΦX)∪ subt(Ψ′)∪{(∀X<:ΦX .Ψ

′)}. By induction,
we immediately get for each Σ2 ∈ subt(Ψ′) there exists a type context ΘΣ2

with Ξ,Ξ′ v Ξ, X<:
ΦX ,Ξ

′ v ΘΣ2
, such that ΘΣ2

` Σ2 is a proved type, and such that all type variables Y ∈ |ΘΣ2
| \

|Ξ, X<:ΦX ,Ξ
′| appear bound in Ψ′. But since type variable X is bound in Φ = (∀X<:ΦX .Ψ

′) and
type bound ΘΣ2(X) = ΦX is assigned to it in ΘΣ2 , we thus know all Y ∈ |ΘΣ2 | \ |Ξ,Ξ′| appear
bound in Φ with assigned type bound ΘΣ2

(Y).
From the second premise we get consistency of Ξ, X<:ΦX ,Ξ

′ by Lemma 4.18, leading us to proved
type Ξ ` ΦX . Since we already have ` Ξ,Ξ′ from the first premise, we may apply (type weakening)
to obtain proved type Ξ,Ξ′ ` ΦX . Now induction gives us the desired type contexts ΘΣ1

for
each Σ1 ∈ subt(ΦX) with Ξ,Ξ′ v ΘΣ1 and proved type ΘΣ1 ` Σ1. Moreover, (i.3) holds due
to this induction. Hence, we have covered the whole set subt((∀X<:ΦX .Ψ

′)), since proved type
Ξ,Ξ′ ` (∀X<:ΦX .Ψ

′) is already given by assumption.

In case of (nonlinear-polymorphic type) we can cover the subt(ΦX) ∪ subt(Ψ′) part of

subt(!n(∀X<:ΦX .Ψ
′)) =

{
!i(∀X<:ΦX .Ψ

′) | 0 ≤ i ≤ n
}
∪ subt(ΦX) ∪ subt(Ψ′)

analogously. However, here we get consistency of Ξ,Ξ′ indirectly from the first premise by applica-
tion of Lemma 4.19.
For the remaining part, we get proved types Ξ,Ξ′ ` !i(∀X<:ΦX .Ψ

′) for all i with 0 ≤ i ≤ n by rule (!
elimination). And again, (i.1) and (i.3) trivially hold because of Ξ,Ξ′ v Ξ,Ξ′ and |Ξ,Ξ|\|Ξ,Ξ′| = ∅.

♦
Next, we prove (ii) by induction on the derivation of Θ ` Φ <: Ψ.

4.2 Proved types and proved subtypes 79

Base cases: Assume Θ ` Φ <: Ψ has been derived by (<: reflexivity). Then we have Φ = Ψ, and a
proved type Θ ` Φ, where Θ is minimal. Firstly, we know by Proposition 4.45 that for each (p,Σ) ∈
sta(Φ) = sta(Ψ) type term Σ is a subterm of Φ. Hence, by (i), there exists a type context ΘΣ such
that ΘΣ ` Σ is a proved type. Since we can derive proved subtype ΘΣ ` Σ <: Σ by (<: reflexivity),
and due to the fact that addresses are unique in sta(Φ), i.e.

∣∣{p ∣∣ (p,Σ′) ∈ sta(Φ)
}∣∣ =

∣∣sta(Φ)
∣∣

(which we get by inspection of the definition of function sta), we may conclude that (ii) holds in
this case.

Suppose Θ ` Φ <: Ψ has been derived by (Top supertype), i.e. Ψ = Top. Then sta(Top) =
{(ε,Top)}, and there thus is only one pair

(
(p,ΣΦ), (p,ΣΨ)

)
∈ sta(Φ) × sta(Top), namely

(
(ε,Φ),

(ε,Top)
)
, since addresses in sta(Φ) are unique. And for this pair, we get Θ ` Φ <: Top by (Top

supertype), where moreover Θ v Θ holds. Hence, (ii.2) applies, since |ε|1 = |ε|7 = 0.

Induction cases: Assume Θ ` Φ <: Ψ has been derived by

Θ ` Φ′ <: Ψ
(! left) .

Θ ` !Φ′ <: Ψ

By definition of function sta, we then get

sta(!Φ′) =
(
sta(Φ′) \ {(ε,Φ′)}

)
∪ {(ε, !Φ′)} ,

and thus induction yields there is a type context Θ̂ for each pair
(
(p,ΣΦ), (p,ΣΨ)

)
∈ sta(!Φ′)× sta(Ψ)

with p 6= ε such that Θ v Θ̂ and (ii.2) and (ii.3) hold. The way how Θ ` !Φ′ <: Ψ has been derived
shows that for pair

(
(ε, !Φ′), (ε,Ψ)

)
we get type context Θ with Θ v Θ such that Θ ` !Φ′ <: Ψ is a

proved subtype, and thus (ii.2) applies.
The case where Θ ` Φ <: Ψ has been derived by (! right) is analogous.

Suppose Θ ` Φ <: Ψ has been derived by

Θ ` Ψ1 <: Φ1 Θ ` Φ2 <: Ψ2
(function subtype) .

Θ ` (Φ1 (Φ2) <: (Ψ1 (Ψ2)

Then we have

sta
(
(Φ1 (Φ2)

)
=
{

(1p′′,ΣΦ1
)
∣∣ (p′′,ΣΦ1

) ∈ sta(Φ1)
} }

=: sΦ1

∪
{

(2p′,ΣΦ2
)
∣∣ (p′,ΣΦ2

) ∈ sta(Φ2)
} }

=: sΦ2

∪
{(
ε, (Φ1 (Φ2)

)} }
=: sΦ

sta
(
(Ψ1 (Ψ2)

)
=
{

(1p′,ΣΨ1
)
∣∣ (p′,ΣΨ1

) ∈ sta(Ψ1)
} }

=: sΨ1

∪
{

(2p′′,ΣΨ2
)
∣∣ (p′′,ΣΨ2

) ∈ sta(Ψ2)
} }

=: sΨ2

∪
{(
ε, (Ψ1 (Ψ2)

)} }
=: sΨ

by definition of function sta. By induction, there exists a type context Θ̂ for each pair
(
(p,Σ1),

(p,Σ2)
)
∈
(
sta(Ψ1)× sta(Φ1)

)
∪
(
sta(Φ2)× sta(Ψ2)

)
such that Θ v Θ̂ and (ii.2) and (ii.3) hold.

To make sure that (ii.2) and (ii.3) extend to all pairs in sta
(
(Φ1 (Φ2)

)
× sta

(
(Ψ1 (Ψ2)

)
, we

need to consider the three subsets sΦ1 × sΨ1 and sΦ2 × sΨ2 and sΦ × sΨ (all other pairs that are
contained in different combinations of binary Cartesian products of sΦ, sΦ1

, sΦ2
, sΨ, sΨ1

, sΨ2
differ

in their addresses and thus need not be considered):

(sΦ1
× sΨ1

): As stated above, by induction, there exists a type context Θ̂ for each pair
(
(p,ΣΨ1

), (p,ΣΦ1
)
)
∈(

sta(Ψ1)× sta(Φ1)
)

such that Θ v Θ̂ and (ii.2) and (ii.3) hold, i.e.

(ii.2): Θ̂ ` ΣΨ1
<: ΣΦ1

is a proved subtype, if |p|1 + |p|7 mod 2 = 0,

(ii.3): Θ̂ ` ΣΦ1 <: ΣΨ1 is a proved subtype, if |p|1 + |p|7 mod 2 = 1.

This, however, leads us to

• Θ̂ ` ΣΦ1
<: ΣΨ1

is a proved subtype, if |1p|1 + |1p|7 mod 2 = 0,

80 4 POLYMORPHICALLY TYPED QUANTUM LAMBDA CALCULUS

• Θ̂ ` ΣΨ1
<: ΣΦ1

is a proved subtype, if |1p|1 + |1p|7 mod 2 = 1,

where the addresses get an additional 1 in front, and thus |1p|1 + |1p|7 mod 2 = 1− (|p|1+

|p|7 mod 2). But then, (ii.2) and (ii.3) hold with the above Θ̂s for each pair
(
(p,ΣΦ1), (p,ΣΨ1)

)
∈

sΦ1 × sΨ1 , since

sΦ1
× sΨ1

=
{(

(1p′′,ΣΦ1
), (1p′,ΣΨ1

)
) ∣∣ ((p′′,ΣΦ1

), (p′,ΣΨ1
)
)
∈ sta(Φ1)× sta(Ψ1)

}
.

(sΦ2 × sΨ2): Since, by induction, (ii.2) and (ii.3) hold for all
(
(p,ΣΦ2), (p,ΣΨ2)

)
∈
(
sta(Φ2)× sta(Ψ2)

)
and

a type context Θ̂ with Θ v Θ̂ for each such pair, (ii.2) and (ii.3) then also hold for all pairs(
(2p,ΣΦ2), (2p,ΣΨ2)

)
∈ sΦ2 × sΨ2 using the same type contexts, because of |2p|1 + |2p|7 =

|p|1 + |p|7.

(sΦ × sΨ): Since the only pair in this subset is
(
(ε, (Φ1 (Φ2)), (ε, (Ψ1 (Ψ2))

)
, and since we already

have derived proved subtype Θ ` (Φ1 (Φ2) <: (Ψ1 (Ψ2) (where Θ v Θ obviously holds),
and because of |ε|1 = |ε|7 = 0, we know that (ii.2) applies here.

The cases where Θ ` Φ <: Ψ has been derived by one of the rules (polymorphic subtype), (product
subtype) and (sum subtype) can be covered analogously. However, the latter two cases are even
easier to establish, since there the lines of argument for subsets sΦ1 × sΨ1 and sΦ2 × sΨ2 are both
analogous to the above case of sΦ2

× sΨ2
.

♦
We show (iii) by induction on the length of address p ∈ addrΦ ∩ addrΨ.

Base case: Let |p| = 0, i.e. p = ε. By definition of function sta, we know (ε,Σ) ∈ sta(Σ) holds for all
Σ ∈ Ttype . Hence, ε ∈ addrΥ trivially holds.

Induction case: Let p = p′k for some k ∈ {1, . . . , 8} and p′ ∈ {1, . . . , 8}∗ with |p′|1 + |p′|7 mod 2 = 0.
We continue by case distinction over k.

k = 1 or k = 2. At address p′ there must have been a subterm ΣΨ = !n(ΣΨ1
(ΣΨ2

) in Ψ, i.e.
(p′, !n(ΣΨ1

(ΣΨ2
)) ∈ sta(Ψ). By induction we then know p′ ∈ addrΥ, which implies that

there exists a type term ΣΥ with (p′,ΣΥ) ∈ sta(Υ). Thus, (ii) entails that there exists some

type context Θ̂ΥΨ with ΘΥΨ v Θ̂ΥΨ such that Θ̂ΥΨ ` ΣΥ <: !n(ΣΨ1
(ΣΨ2

) is a proved
subtype.
There are two possibilities how this could have been derived: either by iterated application
of rules (! left) and (! right) starting from some proved subtype Θ̂ΥΨ ` !l(ΣΨ1 (ΣΨ2) <:
!l(ΣΨ1 (ΣΨ2) which then again has been derived by (<: reflexivity). This entails ΣΥ =
!l+m(ΣΨ1

(ΣΨ2
), where l,m ≥ 0. Then we clearly have {p′1, p′2} ⊆ addrΥ, by definition of

function sta.
The other possibility is that Θ̂ΥΨ ` ΣΥ <: !n(ΣΨ1

(ΣΨ2
) has been derived by iterated

application of rules (! left) and (! right) starting from some proved subtype Θ̂ΥΨ ` (ΣΥ1
(

ΣΥ2
) <: (ΣΨ1

(ΣΨ2
). This implies that ΣΥ has the form ΣΥ = !m(ΣΥ1

(ΣΥ2
) with m ≥ 0.

But then we also have {p′1, p′2} ⊆ addrΥ by definition of function sta.

The cases (k = 3 or k = 4), (k = 5 or k = 6), (k = 7 or k = 8) can be solved in the same spirit, while
they are connected with ΣΨ = !n(ΣΨ1

⊗ΣΨ2
), ΣΨ = !n(ΣΨ1

⊕ΣΨ2
), ΣΨ = !n(∀X<:ΣΨ1

.ΣΨ2
),

respectively.

Now consider the case of p = p′k for some k ∈ {1, . . . , 8} and p′ ∈ {1, . . . , 8}∗ with |p′|1 + |p′|7 mod2
= 1. Here we can argue along similar lines as in the above case. However, we need to work with ΣΦ

from (p′,ΣΦ) ∈ sta(Φ) instead of ΣΨ, since (ii.3) applies in case of |p′|1 + |p′|7 mod 2 = 1. (It does
not help much to consider a subtype ΣΨ of ΣΥ, because it does not deliver sufficient information
about the structure of ΣΥ. Since ΣΦ is supertype of ΣΥ in this case, its form reveals the required
information about the shape of ΣΥ.)

♦
Let us now treat (iv).

At first, we take a look at the existence (and construction) of type context Θ̂∗, which shall be consistent.
By assumption, we have proved type ΘΦ ` Φ with consistent minimal type context ΘΦ. Hence, by

4.2 Proved types and proved subtypes 81

(i), there exists a type context ΘΣΦ
with ΘΦ v ΘΣΦ

such that ΘΣΦ
` ΣΦ is a proved type for each

ΣΦ ∈ subt(Φ) (and thus for each ΣΦ with (p,ΣΦ) ∈ sta(Φ), by Proposition 4.45).

We define type context Θ̂Φ := ΘΦ, X1<:ΦX1
, . . . , Xk<:ΦXk

, where we collect all (and only) the Xi

which are bound by type abstractions (∀Xi<:ΦXi
.ΣXi

) in Φ. (Please recall we assumed each Y ∈ Vtype

is bound at most once in Φ.) We furthermore require for all i with 1 ≤ i ≤ k none of the Xj with j ≤ i
is bound by type abstraction in ΣXi . This means, the X1, . . . , Xk appear (left of <:) in an outermost to
innermost order (viewed from left to right) in ΘΦ when their respective type abstractions are nested in

Φ. For type abstractions which are not nested38 in Φ, we make no assumption about their order in Θ̂Φ.
This construction implies two properties of Θ̂Φ:

• Θ̂Φ is consistent and

• ΘΣΦ
(Y) = Θ̂Φ(Y) for all of the above mentioned ΘΣΦ

and for all Y ∈ |ΘΣΦ
|.

The second property is an immediate consequence of (i.1) and (i.3). Consistency of Θ̂Φ is a consequence
of ΘΦ’s consistency (by Lemma 4.18) and the way type abstractions in ΘΦ ` Φ are derived by rules
(linear-polymorphic type) and (nonlinear-polymorphic type). Either derivation rule starts from a premise
Ξ, Xi<:ΦXi

,Ξ′ ` ΣXi
, removes pair Xi<:ΦXi

from the type context and thus ends up with proved type
Ξ,Ξ′ ` !n(∀Xi <: ΦXi

.ΣXi
), where consistency of Ξ,Ξ′ is provided by the first premise of the used

derivation rule (either directly by ` Ξ,Ξ′ or indirectly by proved subtype Ξ,Ξ′ ` ΦXi <: !Top, which
leads to consistency of Ξ,Ξ′ due to Lemma 4.19). All other derivation rules leave the involved type
contexts unchanged, which implies that pairs Y<:ΦY where Y is bound in ΣXi

cannot appear in Ξ,Ξ′.
This entails we can derive proved type ΘΦ, X1<:ΦX1

, . . . , Xi−1<:ΦXi−1
` ΦXi

as long as all type variables
Z that appear freely in (∀Xi<:ΦXi

.ΣXi
) have a pair Z<:ΦZ in ΘΦ, X1<:ΦX1

, . . . , Xi−1<:ΦXi−1
. But

this is exactly what we guarantee by construction of Θ̂Φ. Analogously to this, we define type context Θ̂Ψ

based on proved type ΘΨ ` Ψ.
We base the definition of Θ̂∗ on type contexts Θ̂Φ and Θ̂Φ as follows:

for all Y ∈ Vtype we set

Θ̂∗(Y) :=



Θ̂Φ(Y) if Θ̂Ψ(Y) = ⊥ and Θ̂Φ(Y) 6= ⊥,

Θ̂Ψ(Y) if Θ̂Φ(Y) = ⊥ and Θ̂Ψ(Y) 6= ⊥,

Θ̂Ψ(Y) if
(
(p, (∀Y<:ΣΦ1

.ΣΦ2
)), (p, (∀Y<:ΣΨ1

.ΣΨ2
))
)
∈ sta(Φ)× sta(Ψ)

and |p|1 + |p|7 mod 2 = 0,

Θ̂Φ(Y) if
(
(p, (∀Y<:ΣΦ1 .ΣΦ2)), (p, (∀Y<:ΣΨ1 .ΣΨ2))

)
∈ sta(Φ)× sta(Ψ)

and |p|1 + |p|7 mod 2 = 1,

Θ(Y) otherwise.

(This definition assumes that there are no type abstractions in Φ that bind the same type variable as a
type abstraction in Ψ which has a different address than the one in Φ. This assumption in not a problem,
if we use α-equivalence to circumvent such complications.
The last line “Θ(Y) otherwise” in the above definition takes care of all free type variables that appear
in Φ and in Ψ. For all variables Z that do not appear in Φ or Ψ (neither freely nor bound), we have
Θ(Z) = ⊥ due to our assumption |Θ| = |ΘΦ| ∪ |ΘΨ|.)

Concerning the order of variable-type pairs in Θ̂∗, the following shall hold:

Θ̂Φ|{Y | Θ̂Φ(Y) = Θ̂∗(Y)}v Θ̂∗ and Θ̂Ψ|{Y | Θ̂Ψ(Y) = Θ̂∗(Y)}v Θ̂∗ .

To obtain a consistent Θ̂∗ which matches the above specification and this constraint on its inner order,
we start from proved type ΘΦ ` Φ. Due to the definition of Θ̂Φ, we know ΘΦ v Θ̂Φ holds and we already
concluded Θ̂Φ is consistent. Using rule (type weakening) we can thus derive proved type Θ̂Φ ` Φ. In an

analogous way, we obtain proved type Θ̂Ψ ` Ψ.
Consider type variables X ∈ |Θ̂Φ| ∩ |Θ̂Ψ|. If they appear as free type variables in Φ and in Ψ, then

we have X ∈ ftyv(Φ) ∩ ftyv(Ψ) ⊆ |ΘΦ| ∩ |ΘΨ| ⊆ |Θ|, which entails Θ̂Φ(X) = Θ̂Ψ(X), since we assume

38An example for nested type abstractions is Θ ` (∀X1<: (∀X2<:ΦX2
.Ψ2).Ψ1) and an example for non-nested type

abstractions is Θ ` ((∀X1<:ΦX1 .Ψ1)((∀X2<:ΦX2 .Ψ2)).

82 4 POLYMORPHICALLY TYPED QUANTUM LAMBDA CALCULUS

ΘΦ v Θ and ΘΨ v Θ. For type variables X that appear bound in both type terms Φ and Ψ, i.e. the ones
with (

(p, (∀X<:ΣΦ1 .ΣΦ2)), (p, (∀X<:ΣΨ1 .ΣΨ2))
)
∈ sta(Φ)× sta(Ψ) ,

we defined Θ̂∗ such that

Θ̂∗(X) =

{
Θ̂Ψ(X) if |p|1 + |p|7 mod 2 = 0,

Θ̂Φ(X) if |p|1 + |p|7 mod 2 = 1.

What we additionally get from proved subtypes ΘΦΥ ` Φ <: Υ and ΘΥΨ ` Υ <: Ψ, however, is the
following chain of conclusions:

• by (iii), we have
(
(p7,ΣΦ1), (p7,ΣΥ1)

)
∈ sta(Φ) × sta(Υ) and

(
(p7,ΣΥ1), (p7,ΣΨ1)

)
∈ sta(Υ) ×

sta(Ψ);

• by (ii.2) and (ii.3), there exist type contexts Θ̂ΦΥ and Θ̂ΥΨ such that

– Θ̂ΦΥ ` ΣΥ1
<: ΣΦ1

and Θ̂ΥΨ ` ΣΨ1
<: ΣΥ1

are proved types, if |p|1 + |p|7 mod 2 = 0, and

– Θ̂ΦΥ ` ΣΦ1
<: ΣΥ1

and Θ̂ΥΨ ` ΣΥ1
<: ΣΨ1

are proved types, if |p|1 + |p|7 mod 2 = 1;

• by Proposition 4.16 and transitivity of the subtype relation (Proposition 4.8), we get

– ΣΨ1 <: ΣΦ1 , if |p|1 + |p|7 mod 2 = 0, and

– ΣΦ1
<: ΣΨ1

, if |p|1 + |p|7 mod 2 = 1;

• by definition of Θ̂∗ and by Θ̂Φ(Y) = ΣΦ1 and Θ̂Ψ(Y) = ΣΨ1 (which hold by construction of Θ̂Φ

and Θ̂Ψ), we know

– Θ̂∗(Y) = ΣΨ1 <: ΣΦ1 = Θ̂Φ(Y), if |p|1 + |p|7 mod 2 = 0, and

– Θ̂∗(Y) = ΣΦ1
<: ΣΨ1

= Θ̂Ψ(Y), if |p|1 + |p|7 mod 2 = 1;

• by reflexivity of the subtype relation (axiom (1) for <:), we thus have Θ̂∗(Y) <: Θ̂Φ(Y) and

Θ̂∗(Y) <: Θ̂Ψ(Y), independent of how many 1s and 7s occur in p.

The bottom line of all this is due to Lemma 4.9(i), which then entails that if the type bound of variable

Y has a leading exponential in Θ̂Φ or in Θ̂Ψ, then so has the type bound assigned to Y in Θ̂∗. Formally,
this amounts to

• Θ̂Φ(Y) = !ΦY implies Θ̂∗(Y) = !Φ′Y and

• Θ̂Ψ(Y) = !ΦY implies Θ̂∗(Y) = !Φ′Y for some type term Φ′Y .

Having gained this knowledge, we can now employ rule (type bound replacement) to establish a

consistent Θ̂∗. Recall we already have obtained proved types Θ̂Φ ` Φ and Θ̂Ψ ` Ψ above, and also recall
Θ̂Φ and Θ̂Ψ are of the form Θ̂Φ = ΘΦ,ΞΦ and Θ̂Ψ = ΘΨ,ΞΨ. Since we know

• ΘΦ v Θ̂Φ and ΘΦ v Θ,

• ΘΨ v Θ̂Ψ and ΘΨ v Θ, and

• Θ is consistent,

we may weaken proved types ΘΦ,ΞΦ ` Φ and ΘΨ,ΞΨ ` Ψ to obtain proved types Θ,ΞΦ ` Φ and
Θ,ΞΨ ` Ψ, where we may, if necessary, rearrange variable-type pairs Y <:ΦY with Y ∈ |ΞΦ| ∩ |ΞΨ| in
ΞΦ and ΞΨ in a consistency preserving way (outermost-bound to innermost-bound from left to right) so
that they appear in the same order in both type contexts, i.e. if Y <:ΦY appears left of Z<:ΦZ in ΞΦ

(possibly with type-variable pairs between them), so does Y<:ΦY appear left of Z<:ΦZ in ΞΨ.39

Assume (without loss of generality, since the other case is symmetric) we have Θ̂∗(X) = Θ̂Ψ(X)
for the leftmost variable-type pair X<:ΞΦ(X) in ΞΦ with ΞΦ(X) 6= ΞΨ(X). If there are pairs Y1<:
ΞΨ(Y1), . . . , Yk<:ΞΨ(Yk) in front of X<:ΞΨ(X) in ΞΨ with {Y1, . . . , Yk} ∩ |ΞΦ| = ∅, then we may weaken

39Please note this is possible, since we can rename bound variables in case of any conflicts.

4.2 Proved types and proved subtypes 83

Θ,ΞΦ to include them, and get the result Θ,Ξ, X<:ΞΦ(X),Ξ′Φ. Dually, we weaken Θ,ΞΨ to contain all
pairs between Θ and X<:ΞΦ(X) that do not yet occur in Θ,ΞΨ, and thus obtain Θ,Ξ, X<:ΞΨ(X),Ξ′Ψ.
By consistency of Θ,Ξ, X<:ΞΨ(X),Ξ′Ψ, we then know Θ,Ξ ` ΞΨ(X) is a proved type, and we furthermore

deduced above that ΞΨ(X) = Θ̂∗(X) has a leading exponential if ΞΦ(X) has. Hence, we may apply (type

bound replacement) to derive proved type Θ,Ξ, X<:Θ̂∗(X),Ξ′Φ ` Φ. Since we already have proved type

Θ,Ξ, X<:Θ̂∗(X),Ξ′Ψ ` Ψ, we came one step closer to our goal.
To clarify the just described procedure, we give a short visualization:

ΘΦ,ΞΦ ` Φ

ΘΨ,ΞΨ ` Ψ

(type weakening)

Θ,ΞΦ ` Φ

Θ,ΞΨ ` Ψ
=

v Θ̂∗︷ ︸︸ ︷
Θ,Ξ′′Φ, X<:

6= ΞΨ(X)︷ ︸︸ ︷
ΞΦ(X) ,Ξ′Φ ` Φ

Θ,Ξ′′Ψ︸ ︷︷ ︸
v Θ̂∗

, X<:ΞΨ(X)︸ ︷︷ ︸
= Θ̂∗(X)

,Ξ′Ψ ` Ψ

(type weakening)

Θ,Ξ, X<:

6= ΞΨ(X)︷ ︸︸ ︷
ΞΦ(X) ,Ξ′Φ ` Φ

Θ,Ξ, X<:ΞΨ(X)︸ ︷︷ ︸
= Θ̂∗(X)

,Ξ′Ψ ` Ψ

(type bound replacement)

v Θ̂∗︷ ︸︸ ︷
Θ,Ξ, X<:Θ̂∗(X),Ξ′Φ ` Φ

Θ,Ξ, X<:Θ̂∗(X)︸ ︷︷ ︸
v Θ̂∗

,Ξ′Ψ ` Ψ

 . . .

Continuing in this way (i.e. for the leftmost variable-type pair X<:ΦX in Ξ′Φ or Ξ′Ψ with Ξ′Φ(X) 6=
Ξ′Ψ(X)), we can eventually derive proved types Θ̂∗ ` Φ and Θ̂∗ ` Ψ, which finally confirms consistency

of type context Θ̂∗ (using Lemma 4.18).

Next, consider set addrΦ ∩ addrΨ (where sets addrΦ and similar ones are defined as in (iii)). Since
type terms are finite, all addresses in this set are finite, and each address p ∈ {1, . . . , 8}∗ can be assigned
a length, which we define as the usual word length, denoted |p| with |p| ∈ N. Then we can partition the
set addrΦ ∩ addrΨ into disjoint subsets A0, . . . , Almax

⊆ addrΦ ∩ addrΨ, where each Ai contains exactly
the addresses of length i with 0 ≤ i ≤ lmax, and where lmax shall be the maximal length of an address in
addrΦ ∩ addrΨ.
We start with an arbitrary address p ∈ Almax

. Since there are no longer addresses than p in addrΦ∩addrΨ,
at least one of the ΣΦ, ΣΨ with

(
(p,ΣΦ), (p,ΣΨ)

)
∈ sta(Φ) × sta(Ψ) is either a type constant !nTop,

!nUnit or !nQbit (possibly equipped with n ≥ 0 leading exponentials), or it is a type variable !nY (also
possibly equipped with leading exponentials).40

We distinguish two cases:

|p|1 + |p|7 = 0 mod 2. By (iii) we have p ∈ addrΥ, and thus (p,ΣΥ) ∈ sta(Υ). Hence, by (ii), there

exist type contexts Θ̂ΦΥ and Θ̂ΥΨ such that Θ̂ΦΥ ` ΣΦ <: ΣΥ and Θ̂ΥΨ ` ΣΥ <: ΣΨ are proved
subtypes.
Assume

ΣΦ = !nΣ′Φ ∈
{

!n
′
Top, !n

′
Unit , !n

′
Qbit

∣∣ n′ ≥ 0
}
∪
{

!n
′
Y
∣∣ Y ∈ Vtype , n

′ ≥ 0
}

for linear Σ′Φ. By inspection of the derivation rules for proved subtypes, we get from Θ̂ΦΥ ` !nΣ′Φ <:

ΣΥ and Θ̂ΥΨ ` ΣΥ <: ΣΨ that either ΣΨ = !mΣ′Φ or ΣΨ = !mTop holds, where m = 0 if n = 0

and m ≥ 0 otherwise. By (i), we know that Θ̂ΣΦ
` !nΣ′Φ is a proved type for some type context

40This holds by definition of function sta, since otherwise we would either have longer addresses in addrΦ ∩ addrΨ, or
(ii) or (iii) would be violated for ΘΦΥ ` Φ <: Υ or ΘΥΨ ` Υ <: Ψ.

84 4 POLYMORPHICALLY TYPED QUANTUM LAMBDA CALCULUS

Θ̂ΣΦ
with ΘΦ v Θ̂ΣΦ

, and where all Y ∈ |Θ̂ΣΦ
| \ |ΘΦ| appear bound in Φ with assigned type bound

Θ̂ΣΦ(Y). By construction of Θ̂Φ, we can, if necessary, permute Θ̂ΣΦ in a consistency preserving

way so that Θ̂ΣΦ
v Θ̂Φ holds. Consistency of Θ̂Φ has already been shown above. Thus, by (type

weakening), we obtain proved type Θ̂Φ ` !nΣ′Φ. When we have been showing consistency of Θ̂∗
above, we derived proved type Θ̂∗ ` Φ from Θ̂Φ ` Φ. Applying the same strategy (and perhaps an

additional weakening step at the end), we can now derive Θ̂∗ ` !nΣ′Φ from Θ̂Φ ` !nΣ′Φ.41

In case ΣΨ = !mΣ′Φ we can derive proved type Θ̂∗ ` !min(n,m)Σ′Φ by (! elimination) from Θ̂∗ ` !nΣ′Φ
or by doing nothing at all (where we keep in mind that n = 0 entails m = 0). Furthermore, we

may then derive proved subtype Θ̂∗ ` !min(n,m)Σ′Φ <: !min(n,m)Σ′Φ by (<: reflexivity), and after this,
we use rules (! left) and (! right) an appropriate number of times to finally obtain proved subtype

Θ̂∗ ` !nΣ′Φ <: !mΣ′Φ = Θ̂∗ ` ΣΦ <: ΣΨ.

In case ΣΨ = !mTop we can derive proved subtype Θ̂∗ ` !nΣ′Φ <: Top by (Top supertype), and
after this, we use rule (! right) the appropriate number of times to finally obtain proved subtype

Θ̂∗ ` !nΣ′Φ <: !mTop = Θ̂∗ ` ΣΦ <: ΣΨ.

In any of the two above cases, it might be possible to reduce Θ̂∗ in size using Corollary 4.28(i), and

still fulfill (iv.2.1), (iv.2.2) and (iv.2.3). Hence, we define Θ̂ to be the smallest type context such

that Θ v Θ̂ v Θ̂∗ holds and Θ̂ ` ΣΦ <: ΣΨ is derivable.

Assume

ΣΨ = !nΣ′Ψ ∈
{

!n
′
Unit , !n

′
Qbit | n′ ≥ 0

}
∪
{

!n
′
Y | Y ∈ Vtype , n

′ ≥ 0
}

for linear Σ′Ψ. By inspection of the derivation rules, we then get from Θ̂ΦΥ ` ΣΦ <: ΣΥ and

Θ̂ΥΨ ` ΣΥ <: ΣΨ that ΣΦ = !mΣ′Ψ holds, where we have again m = 0 if n = 0 and m ≥ 0 otherwise.

We have already shown above, how to continue to finally obtain proved subtype Θ̂ ` ΣΦ <: ΣΨ

with Θ v Θ̂ v Θ̂∗.

Assume ΣΨ = !nTop. Then we know nothing about the form of ΣΦ. However, as already written
above, we can derive proved subtype Θ̂ΣΦ

` ΣΦ <: Top by (Top supertype), and eventually obtain

Θ̂ΣΦ ` ΣΦ <: !nTop by applying (! right) an appropriate number of times. How to get Θ̂ ` ΣΦ <: ΣΨ

with Θ v Θ̂ v Θ̂∗ from here is described above.

|p|1 + |p|7 = 1 mod 2. This case is dual to the previous one in the sense that the direction of subtypes is

reversed. For instance, (ii) in this case yields the existence of type contexts Θ̂ΦΥ and Θ̂ΥΨ so that

we can derive proved subtypes Θ̂ΦΥ ` ΣΥ <: ΣΦ and Θ̂ΥΨ ` ΣΨ <: ΣΥ. Hence, we have to replace
Φ by Ψ, and vice versa, in a sensible way in the previous arguments to get a valid argument for the
present case. In the end, we thus obtain proved subtype Θ̂ ` ΣΨ <: ΣΦ.

We have now shown that there exists a smallest type context Θ̂ with Θ v Θ̂ v Θ̂∗ for each
(
(p,ΣΦ),

(p,ΣΨ)
)
∈ sta(Φ)× sta(Ψ) with p ∈ Almax

such that (iv.2.1), (iv.2.2) and (iv.2.3) are fulfilled.

Next, we take a look at set Ai with 0 ≤ i < lmax and assume inductively, that we have already covered
all pairs

(
(p,ΣΦ), (p,ΣΨ)

)
∈ sta(Φ) × sta(Ψ) with p ∈ Ai+1 ∪ . . . ∪ Almax

and found type contexts Θ̂
for them, respectively, such that (iv.2.1), (iv.2.2), (iv.2.3) hold. Thus, consider an arbitrary p ∈ Ai. If
there is no pk ∈ Ai+1 for any k ∈ {1, . . . , 8}, then we are in the same position as for set Almax

, and we
have already argued above what to do then. Hence, assume there is some such k with pk ∈ Ai+1. The
definition of function sta tells us there must also be a corresponding p(k + 1) or p(k − 1) in Ai+1.
Again, we distinguish two cases:

|p|1 + |p|7 = 0 mod 2. Now we consider
(
(p,ΣΦ), (p,ΣΨ)

)
∈ sta(Φ)× sta(Ψ). Suppose we have found p1

and p2 in Ai+1. Then ΣΦ and ΣΨ are of the form ΣΦ = !n(ΣΦ1
(ΣΦ2

) and ΣΨ = !m(ΣΨ1
(ΣΨ2

)
with n = 0 ⇒ m = 0.42 We ignore the leading exponentials in the following argument, because

41When we have been deriving proved type Θ̂∗ ` Φ from Θ̂Φ ` Φ, we used consistency of Θ̂Ψ to support the construction.
Here, we may use consistency of Θ̂∗ instead.

42Condition n = 0 ⇒ m = 0 can be concluded from the fact that we have assumed proved subtypes ΘΦΥ ` Φ <: Υ
and ΘΥΨ ` Υ <: Ψ, which entails proved subtypes Θ̂ΦΥ ` ΣΦ <: ΣΥ and Θ̂ΥΨ ` ΣΥ <: ΣΨ are derivable for some type
contexts Θ̂ΦΥ and Θ̂ΥΨ due to (ii). By Corollary 4.17, we then know the numbers n, l and m of leading exponentials in
ΣΦ, ΣΥ and ΣΨ, respectively, must obey condition n = 0⇒ l = 0⇒ m = 0.

4.2 Proved types and proved subtypes 85

once we can derive Θ̂ ` (ΣΦ1
(ΣΦ2

) <: (ΣΨ1
(ΣΨ2

), it is then easy to derive Θ̂ ` !n(ΣΦ1
(

ΣΦ2
) <: !m(ΣΨ1

(ΣΨ2
) by n applications of (! left) followed by m applications of rule (! right).

Hence, assume ΣΦ and ΣΨ are of the form ΣΦ = (ΣΦ1 (ΣΦ2) and ΣΨ = (ΣΨ1 (ΣΨ2) with{(
(p1,ΣΦ1

), (p1,ΣΨ1
)
)
,
(
(p2,ΣΦ2

), (p2,ΣΨ2
)
)}
⊆ sta(Φ)× sta(Ψ) .

By induction, we then get proved subtypes Θ̂1 ` ΣΨ1
<: ΣΦ1

(with a reversed direction regarding

the subtype relation, since |p|1 + |p|7 mod 2 = 1− |p1|1 + |p1|7 mod 2) and Θ̂2 ` ΣΦ2
<: ΣΨ2

with

Θ v Θ̂1 v Θ̂∗ and Θ v Θ̂2 v Θ̂∗. Now, let Θ̂ be the smallest type context with Θ̂1 v Θ̂ and
Θ̂2 v Θ̂. Then we immediately know that Θ̂ v Θ̂∗ and that Θ̂ is consistent, since Θ̂1 and Θ̂2 are.
Having this, we may then apply (subtype weakening) to obtain proved subtypes Θ̂ ` ΣΨ1

<: ΣΦ1

and Θ̂ ` ΣΦ2
<: ΣΨ2

. But then, we may of course perform derivation

Θ̂ ` ΣΨ1
<: ΣΦ1

Θ̂ ` ΣΦ2
<: ΣΨ2

(function subtype) .
Θ̂ ` (ΣΦ1 (ΣΦ2) <: (ΣΨ1 (ΣΨ2)

Clearly, the cases where we find p3 and p4 in Ai+1 or p5 and p6 can be handled in the same spirit,
since they correspond to

ΣΦ = (ΣΦ1
⊗ ΣΦ2

) and ΣΨ = (ΣΨ1
⊗ ΣΨ2

)

or

ΣΦ = (ΣΦ1
⊕ ΣΦ2

) and ΣΨ = (ΣΨ1
⊕ ΣΨ2

) ,

respectively. These cases are even a bit easier, since they do not induce a switch in the direction of
the subtype relation between ΣΦ1

and ΣΨ1
.

Suppose we found p7 and p8 in Ai+1. Then ΣΦ and ΣΨ are of the form ΣΦ = (∀X<:ΣΦ1 .ΣΦ2) and
ΣΨ = (∀X<:ΣΨ1 .ΣΨ2) with{(

(p7,ΣΦ1
), (p7,ΣΨ1

)
)
,
(
(p8,ΣΦ2

), (p8,ΣΨ2
)
)}
⊆ sta(Φ)× sta(Ψ) .

(Again, we ignore leading exponentials, as we have done in the previous induction step, since we

can add them easily as soon as we have derived Θ̂ ` ΣΦ <: ΣΨ.)

By induction, we get proved subtypes Θ̂1 ` ΣΨ1
<: ΣΦ1

(also with a reversed direction regarding

the subtype relation due to |p7|1 + |p7|7 mod 2 = 1− |p|1 + |p|7 mod 2) and Θ̂2 ` ΣΦ2 <: ΣΨ2 with

Θ v Θ̂1 v Θ̂∗ and Θ v Θ̂2 v Θ̂∗. Since we assumed from the beginning none of the Y ∈ |Θ|
appears bound in Φ or Ψ and different type abstractions in Φ bind different type variables (and

analogously for Ψ), we conclude that in particular X 6∈ ftyv(ΣΦ1
) ∪ ftyv(ΣΨ1

). And since Θ̂1 is a

smallest type context fulfilling (iv.2.1), (iv.2.2) and (iv.2.3), we know X 6∈ |Θ̂1|.
Now let Ξ̂, Ξ̂′ be the smallest consistent type context fulfilling

• Θ̂1 v Ξ̂, Ξ̂′ v Θ̂∗ and

• Θ̂2 v Ξ̂, X<:Θ̂∗(X), Ξ̂′ v Θ̂∗.

(This can be constructed starting from Θ̂∗ by removing all variable-type pairs Y <:ΦY that are

already bound by type abstractions in ΣΦ1
, ΣΦ1

, ΣΨ1
and ΣΨ2

. By construction of Θ̂∗ – espe-
cially due to the outermost-bound-to-innermost-bound order of variable-type pairs – this leads to a
consistent type context. The thus gained type context may be minimized even further, if possible.)

Since Θ̂∗ is constructed so that (iv.1.1) is fulfilled, we then immediately know Θ̂∗(X) = ΣΨ1 .

Having this, we apply (type weakening) to obtain proved subtypes Ξ̂, Ξ̂′ ` ΣΨ1
<: ΣΦ1

from

Θ̂1 ` ΣΨ1 <: ΣΦ1 and Ξ̂, X<:Θ̂∗(X), Ξ̂′ ` ΣΦ2 <: ΣΨ2 from Θ̂2 ` ΣΦ2 <: ΣΨ2 . Hence, we may
finally perform derivation

Ξ̂, Ξ̂′ ` ΣΨ1
<: ΣΦ1

Ξ̂, X<:

= ΣΨ1︷ ︸︸ ︷
Θ̂∗(X), Ξ̂′ ` ΣΦ2

<: ΣΨ2
(polymorphic subtype) .

Ξ̂, Ξ̂′ ` (∀X<:ΣΦ1
.ΣΦ2

) <: (∀X<:ΣΨ1
.ΣΨ2

)

86 4 POLYMORPHICALLY TYPED QUANTUM LAMBDA CALCULUS

|p|1 + |p|7 = 1 mod 2. Again, this case is dual to the previous case with respect to the direction of the
involved subtyping statements.

The just proven lemma widely opens the door to another highlight of the present work. In fact, it is
almost itself the highlight. But we have not yet arrived at the peak of our current argument. We have
emphasized before that we can only establish a weak transitivity result for proved subtypes, namely given
proved subtypes Θ ` Φ <: Υ and Θ ` Υ <: Ψ, we can only guarantee the derivability of Θ ` Φ <: Ψ
if Θ ` Φ and Θ ` Ψ are proved types. But exactly because of this peculiarity, the just explained weak
transitivity then does not give any guarantees in case of a longer chain of proved subtypes, such as
Θ ` Φ <: Υ1, Θ ` Υ1 <: Υ2, Θ ` Υ2 <: Ψ or even longer ones. The problem is we do not have
any result which entails the derivability of proved types Θ ` Υ1 or Θ ` Υ2 in the described setting.
Such a result would immediately entail transitivity also stretches over such chains. We can, however,
modify the above lemma to also treat such chains of proved subtypes. We detail on this in the proof
of Theorem 4.47. But despite this technical improvement, the main contribution of the theorem is a
cosmetic one. We therein reformulate the heavily technically flavored item (iv) in the previous lemma
into a form which concentrates on transitivity, is relieved of the numerous technical conditions and is
thus much more intuitive to use and grasp in its essence.

Theorem 4.47. Let Θ ` Φ and Θ ` Ψ be proved types. If there exists a sequence

Θ1 ` Υ0 <: Υ1, . . . ,Θi+1 ` Υi <: Υi+1, . . . ,Θk ` Υk−1 <: Υk with 1 ≤ i < k and k ≥ 1

of proved subtypes, where we set Υ0 = Φ and Υk = Ψ, then we can derive proved subtype Θ ` Φ <: Ψ.

Proof.

The case of k = 1 looks trivial at first glance, since then we already have proved subtype Θ1 ` Φ <: Ψ.
But we know almost nothing about type context Θ1. However, we can lift this case to the one of
k = 2 in that we derive Θ ` Φ <: Φ (or Θ ` Ψ <: Ψ) using rule (<: reflexivity).

Consider the case k = 2. Here we have proved subtypes Θ ` Φ <: Υ1 and Θ ` Υ1 <: Ψ. Clearly, we can
find type contexts ΘΦ and ΘΨ such that

• ΘΦ v Θ and ΘΨ v Θ hold,

• ΘΦ ` Φ and ΘΨ ` Ψ are proved types, and

• ΘΦ and ΘΨ are minimal with respect to ΘΦ ` Φ and ΘΨ ` Ψ.

Moreover, ΘΦΨ shall be defined to fulfill ΘΦΨ v Θ and |ΘΦΨ| = |ΘΦ|∪|ΘΨ|. From consistency of ΘΦ

and ΘΨ (which we get due to Lemma 4.18 applied to ΘΦ ` Φ and ΘΨ ` Ψ) we immediately conclude
consistency of ΘΦΨ. By definition of function sta, it is clear that

(
(ε,Φ), (ε,Ψ)

)
∈ sta(Φ)× sta(Ψ).

Hence, Lemma 4.46(iv) yields a type context Θ̂ΦΨ with ΘΦΨ v Θ̂ΦΨ such that Θ̂ΦΨ ` Φ <: Ψ

is a proved subtype. Thus, there exists also a minimal type context Θmin v Θ̂ΦΨ such that
Θmin ` Φ <: Ψ can be derived. But by Proposition 4.43, we then get |Θmin| = |ΘΦ| ∪ |ΘΨ|, which
entails Θmin = ΘΦΨ. Hence, we have proved subtype ΘΦΨ ` Φ <: Ψ.

And since we already know ΘΦΨ v Θ and get consistency of Θ by Lemma 4.18 from proved
type Θ ` Φ, for instance, we may apply (subtype weakening) to eventually obtain proved subtype
Θ ` Φ <: Ψ.

In case of k > 2, we need to reconsider the proofs of propositions (iii) and (iv) of Lemma 4.46. Whenever
we have been using proved subtypes ΘΦΥ ` Φ <: Υ and ΘΥΨ ` Υ <: Ψ in the corresponding proofs,
we only deduced the possible forms of one of the type terms Φ, Υ or Ψ from the shape of one of
the other type terms or we have done the same for their subterms (either by inspection of the
derivation rules for proved subtypes or by reference to the axioms for the subtype relation <:, using
Proposition 4.16). However, this sort of deduction of forms can also be based on chains of proved
subtypes

Θ1 ` Υ0 <: Υ1 , Θ2 ` Υ1 <: Υ2 , . . . , Θk ` Υk−1 <: Υk .

Hence, we may very well extend Lemma 4.46 (iii) and (iv) to this case of finite chains of proved
subtypes. Then, however, our argument for case k = 2 will also be applicable for the case of any
k > 2.

4.2 Proved types and proved subtypes 87

One may ask whether this weak form of transitivity is sufficient. Recall we have introduced the notion
of proved types because we wanted to distinguish type terms that we regard as well-formed. Hence, we
do actually not need transitivity for proved subtypes which relate non-derivable types (at the lower and
upper end of chains of proved subtypes).

This finally concludes our detailed investigation of transitivity of proved subtypes.

4.2.5 Towards type preservation

In this subsection we lay the necessary foundations (on the level of types) for a later proof of preservation
of well-typedness. In [Pie02] Pierce describes the notion of preservation as follows:

“If a well-typed term takes a step of evaluation, then the resulting term is also well typed.”
([Pie02], page 95)

As Pierce points out in a footnote related to this sentence, in some type systems “evaluation preserves
not only well-typedness but the exact types of terms.” ([Pie02], footnote 3 on page 95). With the design
of our type system, we also aim at such a strong notion of preservation.

How evaluation proceeds exactly for polymorphically typed QLC will be pinned down in section 4.5.
Since we develop a polymorphic type system based on parametric polymorphism, there will be evaluation
steps reducing type applications with the help of substitution of type variables. As a consequence, we need
to establish a result (in a linear and a nonlinear version) showing that derivability of a type is preserved
if we substitute all occurrences of a free type variable, say X, by a (well-formed) type term that respects
the type bound of X. We may then remove the variable-type pair X<:ΦX from the associated type
context as long as we also perform the mentioned substitution in the remaining type context (right of
X<:ΦX) itself.

But before we present the mentioned result, we first agree on the following notation: let Θ = X1<:
Φ1, . . . , Xn<:Φn be a type context. We write nftyv(Θ) to denote

⋃n
i=1 nftyv(Φi). If Θ is empty, we write

nftyv(∅), defined to be the empty set.
Similarly, by Θ[Υ/X] we mean X1<:Φ1[Υ/X], . . . , Xn<:Φn[Υ/X].

We start with the linear case:

Lemma 4.48. We can derive rule

Θ, X<:ΦX ,Θ
′ ` Ψ

Θ ` Υ
Θ ` Υ <: ΦX

X 6∈ nftyv(Θ′)

X 6∈ nftyv(Ψ)
(linear type substitution) . (?)

Θ,Θ′[Υ/X] ` Ψ[Υ/X]

Proof. We show this by nested induction on the length of type context Θ′ (outer induction) and on the
derivation of Θ, X<:ΦX ,Θ

′ ` Ψ (inner induction).

Outer base case: Let Θ′ be the empty context, denoted Θ′ = ∅.

Inner base cases: Suppose Θ, X<:ΦX ` Ψ has been derived using one of the rules (Top type),
(Unit type) or (Qbit type), i.e. Ψ ∈ {!nTop, !nUnit ,Qbit | n ≥ 0}. Then Ψ[Υ/X] = Ψ. Hence,
Θ ` Ψ[Υ/X] is obviously a proved type.

Suppose Θ, X<:ΦX ` Y has been derived using rule (linear type variable). We distinguish two
cases:

Case Y 6= X: We then know Θ is of the form Ξ, Y<:ΦY ,Ξ
′. But then Ξ, Y<:ΦY ,Ξ

′ ` Y [Υ/X]︸ ︷︷ ︸
= Y

is derivable by rule (linear type variable).

Case Y = X: From premise Θ ` Υ in (?) we know Θ ` X[Υ/X] = Θ ` Υ is a proved type.

Suppose Θ, X<:ΦX ` !nY has been derived using rule (nonlinear type variable). We distinguish
two cases:

88 4 POLYMORPHICALLY TYPED QUANTUM LAMBDA CALCULUS

Case Y 6= X: We then know Θ is of the form Ξ, Y <: !ΦY ,Ξ
′. But then Ξ, Y <: !ΦY ,Ξ

′ `
(!nY)[Υ/X]︸ ︷︷ ︸

= !nY

is derivable by (nonlinear type variable).

Case Y = X: In this case we know n = 0, because of premise X 6∈ nftyv(!nX) in (?). From
premise Θ ` Υ in (?) we conclude Θ ` (!0X)[Υ/X] = Θ ` Υ is a proved type.

Inner induction cases: Assume Θ, X <: ΦX ` !n(Φ′ (Ψ′) has been derived using rule (func-
tion type). By inner induction (where X 6∈ nftyv(Φ′) and X 6∈ nftyv(Ψ′) are ensured by
premise X 6∈ nftyv(!n(Φ′ (Ψ′)) in (?)), it follows both Θ ` Φ′[Υ/X] and Θ ` Ψ′[Υ/X]
are derivable proved types. Using these as premises, we apply rule (function type) to ob-
tain Θ ` !n(Φ′[Υ/X] (Ψ′[Υ/X]), which equals Θ ` (!n(Φ′ (Ψ′))[Υ/X] by definition of
substitution. Similar arguments cover rules (product type) and (sum type).

Consider the case where Θ, X<:ΦX ` Ψ has been derived by

` Ξ,Ξ′, X<:ΦX

Ξ, Y<:ΦY ,Ξ
′, X<:ΦX ` Ψ′ Y 6∈ nftyv(Ψ′)

(linear-polymorphic type) , (?2)
Ξ,Ξ′, X<:ΦX ` (∀Y<:ΦY .Ψ

′)

where we have Ξ,Ξ′ = Θ and may assume X 6= Y using α-equivalence (we will not explic-
itly mention this assumption again in the subsequent cases, but rather just implicitly use
it). From premise ` Ξ,Ξ′, X<:ΦX we know Ξ,Ξ′ is consistent. By inner induction (where
X 6∈ nftyv(Ψ′) follows from premise X 6∈ nftyv((∀Y <:ΦY .Ψ

′)) in (?)), we may additionally
conclude Ξ, Y<:ΦY ,Ξ

′ ` Ψ′[Υ/X] is a proved type. Furthermore, it is clear that Y 6∈ ftyv(Υ),
because of premise Ξ,Ξ′ ` Υ in (?), Lemma 4.20 and the fact that Ξ, Y<:ΦY ,Ξ

′, X<:Φ in the
second premise of (?2) is assumed to be a proper context, i.e. Y 6∈ |Ξ,Ξ′|. Hence, Y 6∈ nftyv(Υ)
holds, as we get nftyv(Υ) ⊆ ftyv(Υ) from Proposition 4.6. At the end of this chain of argu-
ments, we see Y 6∈ nftyv(Ψ′[Υ/X]), due to premise Y 6∈ nftyv(Ψ′) in (?2) and the fact that
substitution does not introduce fresh free type variables. Having these facts together, we may
perform derivation

` Ξ,Ξ′ Ξ, Y<:ΦY ,Ξ
′ ` Ψ′[Υ/X] Y 6∈ nftyv(Ψ′[Υ/X])

(linear-polymorphic type) .
Ξ,Ξ′ ` (∀Y<:ΦY .Ψ

′[Υ/X])

Moreover, consistency of Ξ, Y <:ΦY ,Ξ
′ (due to Lemma 4.18 and the second premise of (?2))

implies Ξ ` ΦY and by Lemma 4.20 this leads to ftyv(ΦY) ⊆ |Ξ|. On the other hand, we know
X 6∈ |Ξ|, since Ξ, Y<:ΦY ,Ξ

′, X<:ΦX is assumed to be a properly defined type context. Thus,
it clearly holds X 6∈ ftyv(ΦY), and hence, it is evident that ΦY [Υ/X] = ΦY . Finally, this
entails

(∀Y<:ΦY .Ψ
′[Υ/X]) = (∀Y<:ΦY [Υ/X].Ψ′[Υ/X]) = (∀Y<:ΦY .Ψ

′)[Υ/X] ,

and thus we know Ξ,Ξ′ ` (∀Y<:ΦY .Ψ
′)[Υ/X] = Θ ` Ψ[Υ/X] is a proved type.

Now consider the case where Θ, X<:ΦX ` Ψ has been derived in the following way:

` Θ, X<:ΦX Θ, X<:ΦX , Y<:ΦY ` Ψ′ Y 6∈ nftyv(Ψ′)
(linear-polymorphic type) . (?3)

Θ, X<:ΦX ` (∀Y<:ΦY .Ψ
′)

From the second premise, Lemma 4.18 and the definition of consistency we get proved type
Θ, X<:ΦX ` ΦY , which additionally entails (also by Lemma 4.18) consistency of Θ, X<:ΦX .
By inner induction (where X 6∈ nftyv(∅) clearly holds and X 6∈ nftyv(ΦY) is ensured by
premise X 6∈ nftyv((∀Y<:ΦY .Ψ

′)) = nftyv(!kΦY) ∪ (nftyv(Ψ′) \ {Y }) in (?) with k = 0, due
to premise Y 6∈ nftyv(Ψ′) in (?3)) we then come to Θ ` ΦY [Υ/X] which we weaken to
Θ, X<:ΦX ` ΦY [Υ/X]. This is the right point to apply rule (type bound replacement) in
derivation

Θ, X<:ΦX ` !mΦ′Y [Υ/X]

Θ, X<:ΦX , Y<:!mΦ′Y ` Ψ′
Φ′Y linear

m > 0⇒ m′ > 0
(type bound replacement) ,

Θ, X<:ΦX , Y<:!mΦ′Y [Υ/X] ` Ψ′

4.2 Proved types and proved subtypes 89

where we find ΦY = !mΦ′Y for some linear type term Φ′Y and where m′ ≥ m ≥ 0 is the
number of leading exponentials in !mΦ′Y [Υ/X]. But Θ ` ΦY [Υ/X] also entails consistency of
Θ, Y<:ΦY [Υ/X]. Thus, we can perform a weakening step

` Θ, Y<:ΦY [Υ/X] Θ ` ΦX Θ v Θ, Y<:ΦY [Υ/X]
(type weakening)

Θ, Y<:ΦY [Υ/X] ` ΦX

and thus get consistency of Θ, Y <: ΦY [Υ/X], X <: ΦX . Those two results together enable
context permutation

` Θ, Y<:ΦY [Υ/X], X<:ΦX Θ, X<:ΦX , Y<:ΦY [Υ/X] ` Ψ′
(type permutation) .

Θ, Y<:ΦY [Υ/X], X<:ΦX ` Ψ′

Now we use inner induction again (where X 6∈ nftyv(Y<:ΦY) and X 6∈ nftyv(Ψ′) hold due to
premise X 6∈ nftyv((∀Y<:ΦY .Ψ

′)) in (?)) leading to Θ, Y <:ΦY [Υ/X] ` Ψ′[Υ/X]. Finally, we
apply (linear-polymorphic type) in derivation

` Θ Θ, Y<:ΦY [Υ/X] ` Ψ′[Υ/X] Y 6∈ nftyv(Ψ′[Υ/X])
(linear-polymorphic type) ,

Θ ` (∀Y<:ΦY [Υ/X].Ψ′[Υ/X])︸ ︷︷ ︸
= (∀Y<:ΦY .Ψ′)[Υ/X]

where we conclude Y 6∈ nftyv(Ψ′[Υ/X]) from Y 6∈ nftyv(Ψ′) (the third premise in (?3)) and
Y 6∈ nftyv(Υ) (which we will show immediately) and the obvious fact that substitution does
not introduce any fresh free type variables. Y 6∈ nftyv(Υ) follows from the assumption that
Θ, X<:ΦX , Y <:ΦY in the second premise of (?3) is a properly defined type context which
entails Y 6∈ |Θ|. Furthermore, premise Θ ` Υ in (?) plus Lemma 4.20 and Proposition 4.6
imply nftyv(Υ) ⊆ ftyv(Υ) ⊆ |Θ|.

Suppose Θ, X<:ΦX ` Ψ has been derived by

Ξ,Ξ′, X<:ΦX ` ΦY <: !Top Ξ, Y<:ΦY ,Ξ
′, X<:ΦX ` !nΨ′

(nonlinear-polymorphic type)
Ξ,Ξ′, X<:ΦX ` !n(∀Y<:ΦY .Ψ

′)

with Ξ,Ξ′ = Θ. From premise Ξ,Ξ′, X<:ΦX ` ΦY <: !Top and Lemma 4.19, we know Ξ,Ξ′

is consistent. It then follows, by inner induction (where X 6∈ nftyv(!nΨ) holds due to premise
X 6∈ nftyv(!n(∀Y<:ΦY .Ψ

′)) in (?)), that Ξ, Y<:ΦY ,Ξ
′ ` (!nΨ′)[Υ/X] is a proved type. When

we apply Lemma 4.18 to this, we get proved type Ξ ` ΦY , to which we apply rules (type
weakening), (Top supertype) and (! right) (with the help of Corollary 4.17) to finally obtain
proved subtype Ξ,Ξ′ ` ΦY <: !Top. Having this, we perform derivation

Ξ,Ξ′ ` ΦY <: !Top Ξ, Y<:ΦY ,Ξ
′ ` !nΨ′[Υ/X]

(nonlinear-polymorphic type) .
Ξ,Ξ′ ` !n(∀Y<:ΦY .Ψ

′[Υ/X])

As in the analogous case of rule (linear-polymorphic type), we eventually come up with X 6∈
ftyv(ΦY), and hence, ΦY [Υ/X] = ΦY . Arguing further along the same lines, we conclude
Ξ,Ξ′ ` (!n(∀Y<:ΦY .Ψ

′))[Υ/X] = Θ ` Ψ[Υ/X] is a proved type.

Next, assume Θ, X<:ΦX ` Ψ has been derived by

Θ, X<:ΦX ` ΦY <: !Top Θ, X<:ΦX , Y<:ΦY ` !nΨ′
(nonlinear-polymorphic type) ,

Θ, X<:ΦX ` !n(∀Y<:ΦY .Ψ
′)

Then we proceed in the same way as in the analogous case of rule (linear-polymorphic type) to
obtain consistency of Θ, X<:ΦX , Y<:ΦY [Υ/X] and also of Θ, Y<:ΦY [Υ/X], X<:ΦX from the
second premise. Application of rule (type bound replacement) using the former type context
yields derivation

Θ, X<:ΦX ` !mΦ′Y [Υ/X]

Θ, X<:ΦX , Y<:!mΦ′Y ` !nΨ′
Φ′Y linear

m > 0⇒ m′ > 0
(type bound replacement) ,

Θ, X<:ΦX , Y<:!mΦ′Y [Υ/X] ` !nΨ′

90 4 POLYMORPHICALLY TYPED QUANTUM LAMBDA CALCULUS

where we analogously have ΦY = !mΦ′Y and with m′ ≥ m ≥ 0 being the number of leading
exponentials in !mΦ′Y [Υ/X]. In this way we obtain the needed premises to perform context
permutation

` Θ, Y<:ΦY [Υ/X], X<:ΦX Θ, X<:ΦX , Y<:ΦY [Υ/X] ` !nΨ′
(type permutation) .

Θ, Y<:ΦY [Υ/X], X<:ΦX ` !nΨ′

Now we use inner induction again (for which X 6∈ nftyv(!nΨ′) is ensured by premise X 6∈
nftyv(!n(∀Y<:ΦY .Ψ

′)) in (?), and X 6∈ nftyv(∅) obviously holds) to obtain proved type Θ, Y<:
ΦY [Υ/X] ` (!nΨ′)[Υ/X]. Finally, we apply (nonlinear-polymorphic type) in derivation

Θ ` ΦY [Υ/X] <: !Top Θ, Y<:ΦY [Υ/X] ` !nΨ′[Υ/X]
(nonlinear-polymorphic type) ,

Θ ` !n(∀Y<:ΦY [Υ/X].Ψ′[Υ/X])︸ ︷︷ ︸
= (!n(∀Y<:ΦY .Ψ′))[Υ/X]

where Θ ` ΦY [Υ/X] <: !Top can easily be derived using Θ ` ΦY [Υ/X] as a starting point to
apply rules (Top supertype) and (! right), supported by Corollary 4.17.

This finishes the base case of our outer induction.

Outer induction case: Let Θ′ = Θ′′, Y<:ΦY be a non-empty type context with X 6= Y .

Inner base cases: Suppose Θ, X<:ΦX ,Θ
′ ` Ψ has been derived using one of the rules (Top type),

(Unit type) or (Qbit type). Then Ψ[Υ/X] = Ψ, and we can easily derive Θ,Θ′[Υ/X] ` Ψ[Υ/X]
using the same rule, where consistency of Θ,Θ′[Υ/X] = Θ,Θ′′[Υ/X], Y<:ΦY [Υ/X] is ensured
by outer induction (using premise X 6∈ nftyv(Θ′′, Y <:ΦY) in (?) to conclude X 6∈ nftyv(Θ′′)
and X 6∈ nftyv(ΦY)) applied to Θ, X<:ΦX ,Θ

′′ ` ΦY (which stems from consistency of Θ, X<:
ΦX ,Θ

′).

Suppose Θ, X<:ΦX ,Θ
′ ` Z has been derived using rule (linear type variable). We distinguish

two cases:

Case Z 6= X where either Θ or Θ′ is of the form Ξ, Z<:ΦZ ,Ξ
′ for two type contexts Ξ and

Ξ′. Because of Z[Υ/X] = Z, we easily derive Θ,Θ′[Υ/X] ` Z[Υ/X] using (linear type
variable), where we conclude consistency of Θ,Θ′[Υ/X] using outer induction, as in the
above case.

Case Z = X. From premise Θ ` Υ in (?) we immediately get Θ ` X[Υ/X] = Θ ` Υ as
a proved type. Analogously to the two preceding cases, we may conclude consistency of
Θ,Θ′[Υ/X] using outer induction. Application of (type weakening) then yields proved
type Θ,Θ′[Υ/X] ` Υ.

Suppose Θ, X <: ΦX ,Θ
′ ` !nZ has been derived using rule (nonlinear type variable). We

distinguish two cases:

Case Z 6= X where either Θ or Θ′ is of the form Ξ, Z<:!ΦZ ,Ξ
′ for two type contexts Ξ and Ξ′.

Because of (!nZ)[Υ/X] = !nZ, we easily derive Θ,Θ′[Υ/X] ` (!nZ)[Υ/X] using (nonlinear
type variable), where we conclude consistency of Θ,Θ′[Υ/X] using outer induction, as in
the above case.

Case Z = X. In this case we know n = 0, because of premise X 6∈ nftyv(!nX) in (?). Now
we are in a similar situation as in the respective case of rule (linear type variable), and
may thus reuse the same arguments to come to proved type Θ,Θ′[Υ/X] ` Υ.

Inner induction cases: Assume Θ, X<:ΦX ,Θ
′ ` !n(Φ′(Ψ′) has been derived using rule (function

type). By inner induction (for which X 6∈ nftyv(Φ′) and X 6∈ nftyv(Ψ′) hold due to premise
X 6∈ nftyv(!n(Φ′(Ψ′)) in (?)), it follows that both Θ,Θ′[Υ/X] ` Φ′[Υ/X] and Θ,Θ′[Υ/X] `
Ψ′[Υ/X] are derivable proved types. Using these as premises to apply rule (function type), we
get Θ,Θ′[Υ/X] ` !n(Φ′[Υ/X](Ψ′[Υ/X]), which equals Θ,Θ′[Υ/X] ` (!n(Φ′ (Ψ′))[Υ/X].
Similar arguments cover rules (product type) and (sum type).

In the subsequent cases we implicitly assume X 6= Z using α-equivalence.

4.2 Proved types and proved subtypes 91

Consider the case where Θ, X<:ΦX ,Θ
′ ` Ψ has been derived by

` Ξ,Ξ′, X<:ΦX ,Θ
′

Ξ, Z<:ΦZ ,Ξ
′, X<:ΦX ,Θ

′ ` Ψ′ Z 6∈ nftyv(Ψ′)
(linear-polymorphic type) . (?4)

Ξ,Ξ′, X<:ΦX ,Θ
′ ` (∀Z<:ΦZ .Ψ

′)

(Remember Θ′ is of the form Θ′′, Y<:ΦY in this case.) From the first premise of this derivation,
Lemma 4.18 and the definition of consistency we know Ξ,Ξ′, X<:ΦX ,Θ

′′ ` ΦY is a proved
type. Outer induction tells us we may apply rule (linear type substitution) as follows:

Ξ,Ξ′, X<:ΦX ,Θ
′′ ` ΦY

Ξ,Ξ′ ` Υ

Ξ,Ξ′ ` Υ<:ΦX

X 6∈ nftyv(Θ′′)

X 6∈ nftyv(ΦY)
(linear type substitution) ,

Ξ,Ξ′,Θ′′[Υ/X] ` ΦY [Υ/X]

where we know X 6∈ nftyv(Θ′′) and X 6∈ nftyv(ΦY) from premise X 6∈ nftyv(Θ′′, Y <:ΦY) in
(?). Clearly, this leads to consistency of Ξ,Ξ′,Θ′′[Υ/X], Y <:ΦY [Υ/X] = Ξ,Ξ′,Θ′[Υ/X]. By
inner induction we may additionally conclude Ξ, Z<:ΦZ ,Ξ

′,Θ′[Υ/X] ` Ψ′[Υ/X] is a proved
type.

Furthermore, it is clear that Z 6∈ ftyv(Υ), because of premise Ξ,Ξ′ ` Υ in (?), Lemma 4.20 and
the fact that Ξ, Z<:ΦZ ,Ξ

′, X<:ΦX ,Θ
′ in the second premise of (?4) is assumed to be a proper

type context, i.e. Z 6∈ |Ξ,Ξ′|. Hence, Z 6∈ nftyv(Υ) holds since we have nftyv(Υ) ⊆ ftyv(Υ)
due to Proposition 4.6. Thus, we obtain Z 6∈ nftyv(Ψ′[Υ/X]), since Z 6∈ nftyv(Ψ′) is the third
premise of (?4) and due to the fact that substitution does not introduce any fresh free type
variables. Having these facts together, we may perform

` Ξ,Ξ′,Θ′[Υ/X]

Ξ, Z<:ΦZ ,Ξ
′,Θ′[Υ/X] ` Ψ′[Υ/X] Z 6∈ nftyv(Ψ′[Υ/X])

(linear-polymorphic type) .
Ξ,Ξ′,Θ′[Υ/X] ` (∀Z<:ΦZ .Ψ

′[Υ/X])

From consistency of Ξ, Z<:ΦZ ,Ξ
′, X<:ΦX we know two things. Firstly, Ξ ` ΦZ holds and

entails (according to Lemma 4.20) ftyv(ΦZ) ⊆ |Ξ|. Secondly, we know X 6∈ |Ξ|, according to
the definition of type contexts. Hence, we know X 6∈ ftyv(ΦZ) ⊆ |Ξ|. This obviously entails
ΦZ [Υ/X] = ΦZ and thus also (∀Z<:ΦZ .Ψ

′[Υ/X]) = (∀Z<:ΦZ [Υ/X].Ψ′[Υ/X]) = (∀Z<:
ΦZ .Ψ

′)[Υ/X], eventually leading to the result that Ξ,Ξ′,Θ′[Υ/X] ` (∀Z<:ΦZ .Ψ
′)[Υ/X] is a

proved type.

Now that we have studied the previous case in full detail, we proceed in a less detailed way
in the remaining steps since the way of reasoning is very similar.

Consider the case where Θ, X<:ΦX ,Θ
′ ` Ψ has been derived by

` Θ, X<:ΦX ,Ξ,Ξ
′, Y<:ΦY

Θ, X<:ΦX ,Ξ, Z<:ΦZ ,Ξ
′, Y<:ΦY ` Ψ′ Z 6∈ nftyv(Ψ′)

(linear-polymorphic type) . (?5)
Θ, X<:ΦX ,Ξ,Ξ

′, Y<:ΦY ` (∀Z<:ΦZ .Ψ
′)

Inner induction yields

Θ, X<:ΦX ,Ξ, Z<:ΦZ ,Ξ
′, Y<:ΦY ` Ψ′

Θ ` Υ Θ ` Υ <: ΦX

X 6∈ nftyv(Ξ, Z<:ΦZ ,Ξ
′, Y<:ΦY)

X 6∈ nftyv(Ψ′)
(linear type substitution) .

Θ,Ξ[Υ/X], Z<:ΦZ [Υ/X],Ξ′[Υ/X], Y<:ΦY [Υ/X] ` Ψ′[Υ/X]

Outer induction yields

Θ, X<:ΦX ,Ξ,Ξ
′ ` ΦY

Θ ` Υ
Θ ` Υ<:Φ

X 6∈ nftyv(Ξ,Ξ′)

X 6∈ nftyv(ΦY)
(linear type substitution) ,

Θ,Ξ[Υ/X],Ξ′[Υ/X] ` ΦY [Υ/X]

92 4 POLYMORPHICALLY TYPED QUANTUM LAMBDA CALCULUS

which entails consistency of Θ,Ξ[Υ/X],Ξ′[Υ/X], Y <:ΦY [Υ/X]. Z 6∈ nftyv(Ψ′[Υ/X]) follows
from premise Z 6∈ nftyv(Ψ′) in rule (linear-polymorphic type), from premise Θ ` Υ in (?)
which entails nftyv(Υ) ⊆ ftyv(Υ) ⊆ |Θ| and the fact that Θ, X<:ΦX ,Ξ, Z<:ΦZ ,Ξ

′, Y <:ΦY is
a proper type context (and thus Z 6∈ |Θ|). Furthermore, substitution does not introduce any
fresh free type variables. Now we have all necessary pieces together to perform derivation

` Θ,Ξ[Υ/X],Ξ′[Υ/X], Y<:ΦY [Υ/X] Z 6∈ nftyv(Ψ′[Υ/X])

Θ,Ξ[Υ/X], Z<:ΦZ [Υ/X],Ξ′[Υ/X], Y<:ΦY [Υ/X] ` Ψ′[Υ/X]
(linear-polymorphic type)

Θ,Ξ[Υ/X],Ξ′[Υ/X], Y<:ΦY [Υ/X] ` (∀Z<:ΦZ [Υ/X].Ψ′[Υ/X])

to obtain proved type

Θ,Ξ[Υ/X],Ξ′[Υ/X], Y<:ΦY [Υ/X] ` (∀Z<:ΦZ .Ψ
′)[Υ/X] .

Consider the case where Θ, X<:ΦX ,Θ
′ ` Ψ has been derived by

Ξ,Ξ′, X<:ΦX ,Θ
′′, Y<:ΦY ` ΦZ <: !Top

Ξ, Z<:ΦZ ,Ξ
′, X<:ΦX ,Θ

′′, Y<:ΦY ` !nΨ′
(nonlinear-polymorphic type) .

Ξ,Ξ′, X<:ΦX ,Θ
′′, Y<:ΦY ` !n(∀Z<:ΦZ .Ψ

′)

Inner induction then yields

Ξ, Z<:ΦZ ,Ξ
′,Θ′′[Υ/X], Y<:ΦY [Υ/X]︸ ︷︷ ︸

= Θ′[Υ/X]

` (!nΨ′)[Υ/X] .

Outer induction yields

Ξ,Ξ′,Θ′′[Υ/X] ` ΦY [Υ/X] .

which implies consistency of Ξ,Ξ′,Θ′′[Υ/X], Y<:ΦY [Υ/X]︸ ︷︷ ︸
= Θ′[Υ/X]

.

From the second premise and Lemma 4.18 we get Ξ ` ΦZ . Furthermore, the first premise and
Corollary 4.17 tell us ΦZ is of the form !Φ′Z , which enables derivation

Ξ ` ΦZ
(Top supertype)

Ξ ` ΦZ <: Top
(! right) .

Ξ ` ΦZ <: !Top

Hence, we can apply (subtype weakening) as follows

` Ξ,Ξ′,Θ′[Υ/X] Ξ ` ΦZ <: !Top Ξ v Ξ,Ξ′,Θ′[Υ/X]
(subtype weakening) .

Ξ,Ξ′,Θ′[Υ/X] ` ΦZ <: !Top

The last result together with the proved type we obtained by inner induction now yield the
necessary premises to perform derivation

Ξ,Ξ′,Θ′[Υ/X] ` ΦZ <: !Top

Ξ, Z<:ΦZ ,Ξ
′,Θ′[Υ/X] ` !nΨ′[Υ/X]

(nonlinear-polymorphic type) .
Ξ,Ξ′,Θ′[Υ/X] ` !n(∀Z<:ΦZ .Ψ

′[Υ/X])

As in the respective case of rule (linear-polymorphic) type in the outer base case, we use
Lemmas 4.18 and 4.20 to deduce X 6∈ |Ξ| and ftyv(ΦZ) ⊆ |Ξ|, which entails ΦZ [Υ/X] = ΦZ .
Consequently, we already reached our goal, since

!n(∀Z<:ΦZ .Ψ
′[Υ/X]) = !n(∀Z<:ΦZ [Υ/X].Ψ′[Υ/X]) = (!n(∀Z<:ΦZ .Ψ

′))[Υ/X]

and hence, we have already derived proved type

Ξ,Ξ′,Θ′[Υ/X] ` (!n(∀Z<:ΦZ .Ψ
′))[Υ/X] = Θ,Θ′[Υ/X] ` Ψ[Υ/X] .

4.2 Proved types and proved subtypes 93

Consider the case where Θ, X<:ΦX ,Θ
′ ` Ψ has been derived by

Θ, X<:ΦX ,Ξ,Ξ
′, Y<:ΦY ` ΦZ <: !Top

Θ, X<:ΦX ,Ξ, Z<:ΦZ ,Ξ
′, Y<:ΦY ` !nΨ′

(nonlinear-polymorphic type) .
Θ, X<:ΦX ,Ξ,Ξ

′, Y<:ΦY ` !n(∀Z<:ΦZ .Ψ
′)

Inner induction yields

Θ,Ξ[Υ/X], Z<:ΦZ [Υ/X],Ξ′[Υ/X], Y<:ΦY [Υ/X] ` (!nΨ′)[Υ/X].

Outer induction yields
Θ,Ξ[Υ/X],Ξ′[Υ/X] ` ΦY [Υ/X] ,

which entails consistency of Θ,Ξ[Υ/X],Ξ′[Υ/X], Y<:ΦY [Υ/X]. From the result of inner in-
duction and Lemma 4.18 we know Θ,Ξ[Υ/X] ` ΦZ [Υ/X]. Using the consistency result we just
obtained, we can weaken this proved type to Θ,Ξ[Υ/X],Ξ′[Υ/X], Y <:ΦY [Υ/X] ` ΦZ [Υ/X].
Then we apply rules (Top supertype) and (! right), supported by Corollary 4.17, to obtain
proved subtype

Θ,Ξ[Υ/X],Ξ′[Υ/X], Y<:ΦY [Υ/X] ` ΦZ [Υ/X] <: !Top .

Now we have all necessary pieces together to perform derivation

Θ,Ξ[Υ/X],Ξ′[Υ/X], Y<:ΦY [Υ/X] ` ΦZ [Υ/X] <: !Top

Θ,Ξ[Υ/X], Z<:ΦZ [Υ/X],Ξ′[Υ/X], Y<:ΦY [Υ/X] ` !nΨ′[Υ/X]
(nonlinear-polymorphic type)

Θ,Ξ[Υ/X],Ξ′[Υ/X], Y<:ΦY [Υ/X] ` !n(∀Z<:ΦZ [Υ/X].Ψ′[Υ/X])

to finally arrive at proved type

Θ,Ξ[Υ/X],Ξ′[Υ/X], Y<:ΦY [Υ/X] ` (!n(∀Z<:ΦZ .Ψ
′))[Υ/X] = Θ,Θ′[Υ/X] ` Ψ[Υ/X] ,

which is exactly what we intended to derive.

Next we derive the rule that is complementary to (linear type substitution). Luckily, we can reuse
the majority of the previous proof.

Lemma 4.49. We can derive rule

Θ, X<:ΦX ,Θ
′ ` Ψ

Θ ` !Υ
Θ ` Υ <: ΦX

(nonlinear type substitution) . (?)
Θ,Θ′[Υ/X] ` Ψ[Υ/X]

Proof. When we compare rules (linear type substitution) and (nonlinear type substitution), we notice
the differences lie solely in the premises. And since these differences are not too big, we can reuse the
majority of the arguments applied in the proof for Lemma 4.48 for the proof of Lemma 4.49 (possibly
in a slightly modified way). Hence, we here only treat the cases where the line of argument needs to be
adjusted in a nontrivial way.

At first, by Lemma 4.31, we can see whenever we can derive a proved type Θ ` !Υ, then we can also
derive Θ ` Υ (by application of rule (! elimination), in other words). That means, we can assume Θ ` Υ
to be an implicit premise of rule (nonlinear type substitution). And obviously, we then do not have to
modify any arguments from the proof of Lemma 4.48 that use this premise.

Furthermore, while the linear rule requires the substituted type variable not to appear as nonlinear
free type variable in type context Θ′ and in type term Ψ, the nonlinear substitution rule does not pose
any such requirements. These requirements are of crucial importance in two cases which we treat in
detail below. However, they are also needed for all steps where we applied (inner or outer) induction in
the proof of Lemma 4.48. But since rule (nonlinear type substitution) does not pose such requirements,
we do of course not have to ensure them when we want to use induction based on this rule. Thus, we are
relieved of another duty in the proof of Lemma 4.49.

Let us treat the remaining (closely connected) cases then:

94 4 POLYMORPHICALLY TYPED QUANTUM LAMBDA CALCULUS

Outer base case, inner base case:
Suppose Θ, X<:ΦX ` Y has been derived using rule (linear type variable). We distinguish two
cases:

Case Y 6= X: Analogous to the proof of Lemma 4.48.

Case Y = X: Rule (! elimination) applied to the second premise in (?) yields proved type Θ `
Υ = Θ ` X[Υ/X].

Suppose Θ, X<:ΦX ` !nY has been derived using rule (nonlinear type variable). We distinguish
two cases:

Case Y 6= X: Analogous to the proof of Lemma 4.48.

Case Y = X: By Lemma 4.31 we know that we can derive Θ ` !n
′
Υ for any n′ ≥ 0, whenever

we can derive Θ ` !Υ. Hence, the second premise in (?) together with Lemma 4.31 entails
Θ ` (!nX)[Υ/X] = Θ ` !nΥ is a proved type.

Outer induction case, inner base case:
Suppose Θ, X<:ΦX ,Θ

′ ` Z has been derived using rule (linear type variable). We distinguish two
cases:

Case Z 6= X: Analogous to the proof of Lemma 4.48.

Case Z = X: By rule (! elimination) applied to premise Θ ` !Υ in (?), we immediately get Θ `
Υ = Θ ` X[Υ/X] as a proved type. Consistency of Θ,Θ′[Υ/X] = Θ,Θ′′[Υ/X], Y <:ΦY [Υ/X]
is ensured by outer induction applied to Θ, X<:ΦX ,Θ

′′ ` ΦY (which stems from consistency
of Θ, X<:ΦX ,Θ

′′, Y <:ΦY , and we got this due to Lemma 4.18 applied to the first premise of
(?)). Application of (type weakening) then yields proved type Θ,Θ′[Υ/X] ` Υ.

Suppose Θ, X<:ΦX ,Θ
′ ` !nZ has been derived using rule (nonlinear type variable). We distinguish

two cases:

Case Z 6= X: Analogous to the proof of Lemma 4.48.

Case Z = X: From premise Θ ` !Υ in (?) and Lemma 4.31, we immediately get Θ ` !nΥ = Θ `
!nX[Υ/X] as a proved type. Analogous to the previous case we can derive Θ,Θ′[Υ/X] ` !nΥ by
weakening of proved type Θ ` !nX[Υ/X] (taking the intermediate step of ensuring consistency
of Θ,Θ′[Υ/X] = Θ,Θ′′[Υ/X], Y<:ΦY [Υ/X] by outer induction).

Let us again take a short informal look at rules (linear type substitution) and (nonlinear type substi-
tution). Both of them pose some restrictions either on the type variable X that is to be substituted in
type term Ψ or on the type term Υ that is to be put in place of X in Ψ (besides the enforcement of X’s
type bound). While in the linear case X is not allowed to appear as nonlinear free type variable in type
term Ψ (and its type context) and Υ is not subject to any restriction (other than Υ <: ΦX), the picture
changes to the opposite in the nonlinear case, where we do not care about how X occurs in Ψ, but rather
restrict Υ to be a type term that can possibly be derived as a duplicable type. Put this way, we get a
feeling that the two substitution rules with their respective restrictions complement each other perfectly.
We have also seen and used this fact in the proof of Lemma 4.49, which needed to be adjusted in a few
places only compared to the proof of Lemma 4.48. And in all of these places we were able to replace
the restrictions used in one proof by the complementary restriction of the other rule, thus yielding the
necessary conclusions.

To conclude this section, we establish a result which shows (at least at the level of type terms) that type
application, as we will incorporate it to the operational semantics in section 4.5, preserves derivability of
proved types. And in the respective proof we will again see the complementary nature of rules (linear type
substitution) and its nonlinear counterpart. However, this time we will additionally notice how this fits
together with the (perhaps less obvious) complementary nature of derivation rules (linear-polymorphic
type) and (nonlinear-polymorphic type).

4.2 Proved types and proved subtypes 95

Theorem 4.50. Given proved types Θ ` !n(∀X<:ΦX .Ψ) and Θ ` Υ and proved subtype Θ ` Υ <: ΦX ,
we can derive proved type Θ ` !nΨ[Υ/X].

In other words, we can derive rule

Θ ` !n(∀X<:ΦX .Ψ)
Θ ` Υ

Θ ` Υ <: ΦX
(bounded type substitution) .

Θ ` !nΨ[Υ/X]

Proof. We need to distinguish a linear and a nonlinear case:

Suppose Θ ` !n(∀X<:ΦX .Ψ) has been derived by

` Ξ,Ξ′ Ξ, X<:ΦX ,Ξ
′ ` Ψ X 6∈ nftyv(Ψ)

(linear-polymorphic type) ,
Ξ,Ξ′ ` (∀X<:ΦX .Ψ)

where we immediately know n = 0. We thus write type context Θ as Ξ,Ξ′, and know by Lemma 4.18
that Ξ, X<:ΦX ,Ξ

′ and hence also Ξ, X<:ΦX are consistent. Type weakening and type permutation
then yield

` Ξ,Ξ′ Ξ ` ΦX Ξ v Ξ,Ξ′
(type weakening)

Ξ,Ξ′ ` ΦX

(i.e. Ξ,Ξ′, X<:ΦX is consistent) and

` Ξ,Ξ′, X<:ΦX Ξ, X<:ΦX ,Ξ
′ ` Ψ

(type permutation).
Ξ,Ξ′, X<:ΦX ` Ψ︸ ︷︷ ︸

= Θ,X<:ΦX `Ψ

Now we are in the right position to use (linear type substitution) to perform

Θ, X<:ΦX ` Ψ
Θ ` Υ

Θ ` Υ <: ΦX

X 6∈ nftyv(∅)
X 6∈ nftyv(Ψ)

(linear type substitution) .
Θ ` Ψ[Υ/X]

Suppose Θ ` !n(∀X<:ΦX .Ψ) has been derived by

Ξ,Ξ′ ` ΦX <: !Top Ξ, X<:ΦX ,Ξ
′ ` !nΨ

(nonlinear-polymorphic type) .
Ξ,Ξ′ ` !n(∀X<:ΦX .Ψ)

As before, we know Ξ, X<:ΦX is consistent. Using Lemma 4.19, we find Θ = Ξ,Ξ′ to be consistent,
as well. Type weakening and type permutation then yield proved type Θ, X<:ΦX ` !nΨ analogously
to the previous case. From proved subtypes Ξ,Ξ′ ` ΦX <: !Top and Θ ` Υ <: ΦX and Corollary
4.17 deduce we know ΦX = !Φ′X and Υ = !Υ′ hold for certain type terms Φ′X and Υ′. Using rule (!
amplification), we get proved type Θ ` !!Υ′ = Θ ` !Υ from Θ ` !Υ′. Now we can use rule (nonlinear
type substitution) to derive Θ ` !nΨ[!Υ′/X] by

Θ, X<:ΦX ` !nΨ
Θ ` !Υ

Θ ` Υ <: ΦX
(nonlinear type substitution) .

Θ ` !nΨ[Υ/X]

Hence, we have shown proved type Θ ` !nΨ[Υ/X] can be derived in both cases, which concludes the
proof.

96 4 POLYMORPHICALLY TYPED QUANTUM LAMBDA CALCULUS

So far, we have considered type terms and proved types in isolation. However, a type system does
usually not exist in isolation, but rather is constructed to be used as a tool to allow for drawing conclusions
about programs or, to be more precise, function terms in case of QLC. At this point we do not only finish
our investigation of type preservation at an isolated type level, but in general give up our narrowed focus
in order to widen it in the next section to also cover function terms. In what follows we extend the function
terms introduced in section 3 so that they involve additional syntactic constructs for type abstraction
and type application, and we adapt operational semantics accordingly to also realize the concept of type
application as a form of term reduction. In addition, and even more interesting and important, we
interweave our type system with QLC function terms. To achieve this, we also give derivation rules
for proved terms, which facilitate the assignment of types to function terms. Afterwards, we investigate
the implications that follow from these rules and finally return to the type preservation property as one
corner stone of type safety for polymorphically typed QLC.

4.3 Function terms

In the course of this section we lift untyped QLC from section 3 to a polymorphically typed calculus. We
have already developed and investigated the foundations of polymorphically typed QLC on the level of
types in the previous subsections. It thus remains to join the concepts and notions comprising untyped
QLC and the polymorphic type system from section 4.2 to form polymorphically typed QLC. Although
we do not present simply typed QLC in the present work, we still base our polymorphic extension as far
as possible on simply typed QLC as it is defined in [SV09]. This intended proximity also motivates some
design choices we make, for instance the restriction of the used subtype relation in subsection 4.3.2. On
the other hand, we take the freedom of modifying the syntactic presentation a bit, as we have already done
when presenting untyped QLC. Moreover, we intend to keep most of simply typed QLC ’s characteristics
in tact, especially concerning type safety. To which extend we reach this goal will be further investigated
in section 4.6.

4.3.1 Basic definitions

As usual, we start with the very basic notions and properties. Most of the following definitions directly
extend definitions from section 3.

Definition 4.51 (polymorphically typed QLC function terms, bound term variables).
As in Definition 3.1, sets Vterm and Cterm stand for term variables and QLC term constants,
respectively. We inductively define the set TpQLC of polymorphically typed QLC function terms (or
just function terms, when there is no danger of confusion with untyped QLC function terms):
term variables x, term constants c, term application (s t), pair terms 〈t1, t2〉, the empty tuple 〈〉
and disjoint unions injl(t) and injr(t) are defined analogously to Definition 3.1. The remaining
syntactic constructs are modified in the following way:

• term abstraction:
(λx:Φx.t) ∈ TpQLC

for all x ∈ Vterm ; Φx ∈ Ttype and t ∈ TpQLC ,

• pair abstraction:(
λ〈x:Φx, y:Φy〉.t

)
∈ TpQLC

for all x, y ∈ Vterm with x 6= y; Φx,Φy ∈ Ttype and t ∈ TpQLC ,

• case distinction:(
match s with (λx:Φx.tl) | (λy:Φy.tr)

)
∈ TpQLC

for all x, y ∈ Vterm ; Φx,Φy ∈ Ttype and s, tl, tr ∈ TpQLC ,

• recursion term:(
letrec f:Φf = (λx:Φx.s) in t

)
∈ TpQLC

for all f, x ∈ Vterm ; Φf ,Φx ∈ Ttype and s, t ∈ TpQLC .

Moreover, we introduce two new syntactic constructs:

• type abstraction:(
ΛX<:ΦX .t

)
∈ TpQLC

for all X ∈ Vtype ; ΦX ∈ Ttype and t ∈ TpQLC ,

4.3 Function terms 97

• type application:(
s Φ
)
∈ TpQLC

for all s ∈ TpQLC and Φ ∈ Ttype ,

The notions of scopes, bound and free occurrences of term variables are adapted accordingly. Fur-
thermore, we call t the scope of a type abstraction (ΛX<:ΦX .t), and every free occurrence of X in
t is considered to be bound by this type abstraction.

Most of the syntactic constructs defined in this definition are familiar to us from untyped QLC. Some
have been modified to carry annotations indicating the type of bound term or type variables. One fact
immediately catching our eye is this use of explicit typing. This is in contrast to simply typed QLC
in [SV09] where function terms are implicitly typed, which means they are written without annotations
regarding the type of term variable x in a term abstraction (λx:Φx.t), for instance. In the present work we
choose explicit typing, although we actually follow the Curry style of language definition, i.e. “Semantics
is prior to typing” ([Pie02], page 111).43

Remark: That we pursue the Curry style of language definition is evidently so because when we lift op-
erational semantics from the untyped setting to polymorphically typed QLC we obtain a semantics
in terms of reduction of function terms that also works on function terms t for which we cannot
derive a proved term Θ|Γ ` t : Φ (cf. Definition 4.61). From the perspective of term reduction such
function terms do not pose an obstacle. If t is irreducible and not a value term, we consider it as
an error term (cf. Definition 4.56). On the other hand, a reducible t might model a computation
in the quantum world that does actually violate physical law. Our approach is to rule out such
function terms by means of typing. But the operational semantics we define in section 4.5 is in
fact oblivious to physical law, and thus also allows reduction of function terms to which we cannot
necessarily assign a proper type.

In contrast to untyped QLC, the only newly introduced syntactic constructs for formation of poly-
morphically typed function terms are type abstraction and type application. The underlying concepts
go back to Girard’s system F.44 However, we here combine the standard concepts of second-order typing
with the concept of subtyping and end up with bounded quantification, as it is presented for instance in
chapter 26 in [Pie02] and also in [CMM91]. In such type abstractions we annotate the type bound ΦX
of bound type variable X as well, but here we informally mean we can apply any type term Υ to this
type abstraction in a type application ((ΛX<:ΦX .t) Υ) as long as Υ is a subtype of ΦX . This restriction,
however, is not checked or enforced on the syntactic level, but we deal with it at the level of typed terms
during derivations of proved terms in section 4.4.

We have already encountered type abstractions in the previous section and have also already been
referring to the concept of type application, but on an informal level. The underlying computational
mechanisms (which we introduce in section 4.5) are analogous to the ones concerned with term application,
i.e. they are based on substitution of free variables, and are thus quite familiar to us. More interesting,
however, are the issues that are connected with the derivation of proved terms with type application.
This will come into the focus of our attention soon.

But before we arrive at the more interesting core part of our polymorphic type system, we first extend
the notions of free occurrences of term variables and substitution of free term variables and free type
variables to the polymorphic setting.

Definition 4.52 (free term variables, free type variables, α-equivalence).
The notion of free term variables for typed function terms follows the same intention as in Definition
3.2, and hence the function ftmv is adapted according to the modified syntax of polymorphic
function terms to obtain ftmv : TpQLC → P(Vterm). However, we here explicitly give the definition

43For a clarifying discussion on the terminology of implicit and explicit typing and their relationship to “Curry-style”
and “Church-style” language definitions, see section 9.6 in [Pie02].

44For theoretical investigations on system F see chapter 11 in [GTL90] for a treatment in the context of proof theory and
typing, or [Bar92] for an overview of system F (therein mostly called λ2) in its Curry-style and Church-style variant in the
context of typed λ-calculi and Barendregt’s famous λ-cube. For a more practically minded introduction to system F in the
context of typing for programming languages, see chapter 23 in [Pie02].

98 4 POLYMORPHICALLY TYPED QUANTUM LAMBDA CALCULUS

of function ftmv on the new syntactic constructs:

ftmv
(
(ΛX<:ΦX .t)

)
:= ftmv(t) ,

ftmv
(
(s Φ)

)
:= ftmv(s) .

We furthermore extend function ftyv : Ttype → P(Vtype) from Definition 4.3 to function ftyv :
TpQLC ∪ Ttype → P(Vtype), which yields the set ftyv(t) of all type variables that occur as free type
variables in function term t. We directly take over the definition of ftyv on type terms and extend
it as follows to also handle function terms (for c ∈ Cterm and x ∈ Vterm):

ftyv
(
c
)

:= ∅ ,

ftyv
(
x
)

:= ∅ ,

ftyv
(
(λx:Φx.t)

)
:= ftyv(Φx) ∪ ftyv(t) ,

ftyv
(
(s t)

)
:= ftyv(s) ∪ ftyv(t) ,

ftyv
(
〈t1, t2〉

)
:= ftyv(t1) ∪ ftyv(t2) ,

ftyv
(
〈〉
)

:= ∅ ,

ftyv
(
(λ〈x:Φx, y:Φy〉.t)

)
:= ftyv(Φx) ∪ ftyv(Φy) ∪ ftyv(t) ,

ftyv
(
injl(t)

)
= ftyv

(
injr(t)

)
:= ftyv(t) ,

ftyv
(
(match s with (λx:Φx.tl) | (λy:Φy.tr))

)
:= ftyv(s) ∪ ftyv((λx:Φx.tl)) ∪ ftyv((λy:Φy.tr)) ,

ftyv
(
(letrec f:Φf = (λx:Φx.s) in t)

)
:= ftyv(Φf) ∪ ftyv((λx:Φx.s)) ∪ ftyv(t) ,

ftyv
(
(ΛX<:ΦX .t)

)
:= ftyv(ΦX) ∪

(
ftyv(t) \ {X}

)
,

ftyv
(
(s Φ)

)
:= ftyv(s) ∪ ftyv(Φ) .

We call function terms α-equivalent if they differ only in the names of their bound type and term
variables, i.e. if they have the same structure.

As in the previous chapters, we follow the usual convention to identify α-equivalent function terms.

Definition 4.53 (substitution of type variables and term variables).
We adapt the definition of substitution of free term variables from Definition 3.3 to the setting of
polymorphically typed function terms in accordance to the above definition of set TpQLC . For the
newly introduced syntactic constructs, we define

(ΛX<:ΦX .t)[t
′/z] := (ΛX<:ΦX .t[t

′/z]) ,

(s Φ)[t′/z] := (s[t′/z] Φ) .

Moreover, we extend the formal mechanism of substitution of free type variables to be applicable to
typed function terms as well:

c[Υ/Z] := c ,

x[Υ/Z] := x ,(
λx:Φx.t

)
[Υ/Z] :=

(
λx:Φx[Υ/Z].t[Υ/Z]

)
,(

s t
)
[Υ/Z] :=

(
s[Υ/Z] t[Υ/Z]

)
,〈

t1, t2
〉
[Υ/Z] :=

〈
t1[Υ/Z], t2[Υ/Z]

〉
,

〈〉[Υ/Z] := 〈〉 ,(
λ
〈
x:Φx, y:Φy

〉
.t
)
[Υ/Z] :=

(
λ
〈
x:Φx[Υ/Z], y:Φy[Υ/Z]

〉
.t[Υ/Z]

)
,

injl
(
t
)
[Υ/Z] := injl

(
t[Υ/Z]

)
,

injr
(
t
)
[Υ/Z] := injr

(
t[Υ/Z]

)
,(

match s with
(
λx:Φx.tl

)
|
(
λy:Φy.tr

))
[Υ/Z] :=(

match s[Υ/Z] with
(
λx:Φx[Υ/Z].tl[Υ/Z]

)
|
(
λy:Φy[Υ/Z].tr[Υ/Z]

))
,(

letrec f:Φf =
(
λx:Φx.s

)
in t

)
[Υ/Z] :=(

letrec f:Φf [Υ/Z] =
(
λx:Φx[Υ/Z].s[Υ/Z]

)
in t[Υ/Z]

)
,

4.3 Function terms 99

(
ΛZ<:ΦZ .t)[Υ/Z] := (ΛZ<:ΦZ [Υ/Z].t) ,(

ΛX<:ΦX .t
)
[Υ/Z] :=

(
ΛX ′<:ΦX [Υ/Z].t[X ′/X][Υ/Z]

)
,

where Z 6= X and X ′ 6∈ ftyv(t) ∪ ftyv(Υ) ∪ {X,Z},(
s Φ
)
[Υ/Z] :=

(
s[Υ/Z] Φ[Υ/Z]

)
.

Interestingly, we do not need to extend function nftyv to work on set TpQLC because it is sufficient
for our investigations to consider nonlinear free type variables in type terms only. Hence, at this point
we are finished with extending the basic concepts we have already seen in the section on untyped QLC
to the setting of polymorphically typed QLC. Now we can start working out the parts of our extension
that are essentially new compared to the untyped variant.

4.3.2 The restricted subtype relation ≺:

When we introduced type terms and proved types, we have defined the subtype relation <: as the smallest
relation fulfilling axioms (1) to (8) from Definition 4.7. We have confirmed later (cf. subsection 4.1.3)
that our subtype relation is an extension of the one used in [SV09]. One particularity of our subtype
relation is type constant Top which we use to obtain a type that is supertype of all other types. Top is a
convenient tool to enforce duplicability of type terms that may be applied to certain type abstractions.
We will see later how this works, namely when we formulate derivation rules for proved terms.

On the other hand, we said we want to stay as close to simply typed QLC as possible. However,
against this aim stands type constant Top as a supertype of all other types, since it brings along a
degree of freedom in the derivation of proved subtypes that indeed goes too far beyond the capabilities
of simply typed QLC ’s type system. Thus, we need to decide whether we really want to substantially
extend the possibilities of type assignment that we have for function terms in the polymorphically typed
setting in comparison to simply typed QLC. The decision we make is to restrict specific derivations of
proved subtypes reasonably, in order to not allow Top to appear in proved subtypes in certain places.
However, we will discuss the circumstances that lead to this choice later (after Definition 4.63 and also
after Definition 4.62), since we are not yet in the right position to formulate our arguments in a clear
way.

For now we just formulate the restriction of subtype derivations and take a look at an interesting
consequence of this definition.

Definition 4.54 (restricted subtype relation and restricted proved subtypes).
We define the restricted subtype relation ≺: to be the smallest binary relation on Ttype satisfying
axioms (1) and (3) to (8) given in Definition 4.7.

We call a proved subtype Θ ` Φ <: Ψ a restricted proved subtype if it can be derived without the use
of derivation rule (Top supertype). To indicate that a proved subtype Θ ` Φ <: Ψ is a restricted
proved subtype, we write Θ ` Φ ≺: Ψ.

The more important part of this definition clearly is the second one. It is so important, since we get the
following property of restricted proved subtypes from it:

Proposition 4.55. Let Θ ` Φ ≺: Ψ be a restricted proved subtype. Then Φ and Ψ differ only in the
occurrences of exponentials, i.e. they have the same term structure as soon as we remove all exponentials
from both Φ and Ψ.

Proof. Consider a restricted proved subtype Θ ` Φ ≺: Ψ and recall the subterm addressing function sta
from Definition 4.44. We show by induction on the derivation of Θ ` Φ ≺: Ψ that the addresses associated
to subterms in sta(Φ) and sta(Ψ) have the same structure, i.e. for each (p,ΣΦ) ∈ sta(Φ), there exists a
unique (p,ΣΨ) ∈ sta(Ψ) and vice versa, where type terms ΣΦ and ΣΨ differ only in the occurrences of
exponentials.

Base case: If Θ ` Φ ≺: Ψ has been derived by (<: reflexivity), then we know Φ = Ψ and thus also
sta(Φ) = sta(Ψ).

Induction cases: Suppose Θ ` Φ ≺: Ψ has been derived by

100 4 POLYMORPHICALLY TYPED QUANTUM LAMBDA CALCULUS

Θ ` Φ′ ≺: Ψ
(! left) .

Θ ` !Φ′ ≺: Ψ

By definition of function sta we then have

• (ε,ΣΦ) ∈ sta(!Φ′) implies ΣΦ = !n+1Φ′′,

• (ε,Σ′Φ) ∈ sta(Φ′) implies Σ′Φ = !nΦ′′ and

• sta(!Φ′) \ {(ε, !n+1Φ′′)} = sta(Φ′) \ {(ε, !nΦ′′)},

for some type term Φ′′ and n ≥ 0. Then induction yields there is a unique (p,ΣΨ) ∈ sta(Ψ) for each
(p,Σ′Φ) ∈ sta(Φ′) and thus also for each (p,ΣΦ) ∈ sta(!Φ′) and vice versa, and for each such unique
triple (p,ΣΨ), (p,Σ′Φ), (p,ΣΦ) type terms ΣΦ and ΣΨ differ only in the occurrences of exponentials.
The case of derivation rule (! right) is symmetrical.

Suppose Θ ` Φ ≺: Ψ has been derived by

Θ ` Ψ1 ≺: Φ1 Θ ` Φ2 ≺: Ψ2
(function subtype) .

Θ ` (Φ1 (Φ2) ≺: (Ψ1 (Ψ2)

By induction we then get

• for each (p,ΣΨ1
) ∈ sta(Ψ1) there exists a unique (p,ΣΦ1

) ∈ sta(Φ1), and vice versa, and for
each such unique pair (p,ΣΨ1), (p,ΣΦ1) type terms ΣΨ1 and ΣΦ1 differ only in the occurrences
of exponentials;

• for each (p,ΣΦ2) ∈ sta(Φ2) there exists a unique (p,ΣΨ2) ∈ sta(Ψ2), and vice versa, and for
each such unique pair (p,ΣΦ2

), (p,ΣΨ2
) type terms ΣΦ2

and ΣΨ2
differ only in the occurrences

of exponentials.

Let us define the following four sets

sΦ1
:=
{

(1p,ΣΦ1
)
∣∣ (p,ΣΦ1

) ∈ sta(Φ1)
}

,

sΦ2
:=
{

(2p,ΣΦ2
)
∣∣ (p,ΣΦ2

) ∈ sta(Φ2)
}

,

sΨ1
:=
{

(1p,ΣΨ1
)
∣∣ (p,ΣΨ1

) ∈ sta(Ψ1)
}

,

sΨ2
:=
{

(2p,ΣΨ2
)
∣∣ (p,ΣΨ2

) ∈ sta(Ψ2)
}

.

Consequently, for each

(p,ΣΦ) ∈ sta
(
(Φ1 (Φ2)

)
=
{(
ε, (Φ1 (Φ2)

)}
∪ sΦ1

∪ sΦ2

there exists a unique

(p,ΣΨ) ∈ sta
(
(Ψ1 (Ψ2)

)
=
{(
ε, (Ψ1 (Ψ2)

)}
∪ sΨ1

∪ sΨ2
,

and vice versa, and for each such unique pair (p,ΣΦ), (p,ΣΨ) type terms ΣΦ and ΣΨ differ only in
the occurrences of exponentials.
The remaining induction cases can be argued along similar lines.

By this proposition we now have confirmed that if Θ ` Φ ≺: Ψ is a restricted proved subtype, then
Φ and Ψ have the same structure except for occurring exponentials in both type terms. We discuss the
benefits of restricted subtype derivations in the course of the next section. Furthermore, we will see later,
especially in the parts concerned with type preservation, that some of our results indeed depend on such
a restriction. If we did not restrict subtype derivations in certain places, we would have to take other
measures with farther-reaching consequences to still ensure type preservation for polymorphically typed
QLC. But the mentioned consequences include possibilities of type assignments that reach too far beyond
the capabilities of simply typed QLC so that we do not accept them for our present work. On the other
hand, they may very well be of interest for future investigations.

4.4 Proved terms 101

4.4 Proved terms

On the level of types we use derivation rules to distinguish a special subset of type terms that we consider
well-formed, namely the ones, say Φ, for which we find a proper type context Θ, so that we can derive
proved type Θ ` Φ. In this subsection we use the same approach to rule out function terms that do
not make sense from two points of view. The first one is that of linearity as we have discussed it in the
beginning of section 4, where we argued the impact of the no-cloning theorem (Theorem 2.5) on formation
of QLC function terms. The second point of view is that of error terms.

Definition 4.56 (error states, error terms).
An error state is represented by an irreducible quantum closure [Q,L, e] where e is not a value
term. The embedded function term e (which is thus also irreducible) is then called error term.

Let us take a short look at some examples of error terms:

•
(
U2 〈q1, q1〉

)
with U2 ∈ U2 is irreducible due to the two indistinct components in the pair,45

•
(
U2 〈q1, q2, q3〉

)
with U2 ∈ U2 is irreducible, since we try to apply a binary built-in unitary operator

to a triple of qubits,

•
(
(λ〈x, y〉.x y) (λz.z)

)
is irreducible, since (λz.z) is not a pair term,

•
(
match (λz.z) with (λx.tl) | (λy.tr)

)
is irreducible, since term abstraction (λz.z) is in a place where

operational semantics expects a disjoint union,

•

What Selinger and Valiron achieve in simply typed QLC is that they rule out error terms with their
type system. And of course, we intend to keep this very nice feature also in our polymorphic extension.
We investigate in section 4.6 whether this property named type safety actually is preserved in our type
system.

4.4.1 Basic definitions and properties

In analogy to proved types we first need to define some basic notions before we come to the derivation
rules for proved terms. Again, the notion of consistency plays an important role, however, in a slightly
different way.

At first, we need a concept of a typing environment for free term variables.

Definition 4.57 (term contexts and related notions).
A term context is a finite, possibly empty set of variable-type pairs, denoted Γ = x1:Φ1, . . . , xn:Φn,
where all x1, . . . , xn are required to be distinct.

We write |Γ| to denote the set of all term variables that appear left of a colon in term context Γ,
and sometimes refer to |Γ| as the domain of Γ. Moreover, we write Γ(xi) to denote the type term
Φi assigned to xi in Γ, for all i with 1 ≤ i ≤ n.

The union of two term contexts Γ and Γ′ is denoted as juxtaposition Γ,Γ′ if and only if their
domains |Γ| and |Γ′| are disjoint, i.e. |Γ| ∩ |Γ′| = ∅.
The restriction of type terms right of a colon in a term context ∆ to duplicable type terms only is
denoted as !∆. That means, !∆ = x1:Φ1, . . . , xn:Φn implies for each i with 1 ≤ i ≤ n that Φi = !Φ′i
holds for some Φ′i ∈ Ttype .

An important difference of this definition compared to the definition of type contexts is that term contexts
are sets and not sequences. That means there is no specific order of variable-type pairs in a term context Γ,
although we occasionally write it down as sequence Γ = x1:Φ1, . . . , xn:Φn for convenience. The treatment
of term contexts as sets is possible since a term variable x ∈ |Γ| that is being assigned type term Γ(x) in
Γ does not play any role in type terms Γ(y) for all y ∈ |Γ| \ {x}.

45Such function terms cannot be evaluated because the application of a unitary operator of arity 2 to a single qubit in
the sense function term (U2 〈q1, q1〉) implies cannot be formulated in the formal framework of quantum computation (cf.
section 2).

102 4 POLYMORPHICALLY TYPED QUANTUM LAMBDA CALCULUS

But there is another consequence of this observation: notions of well-scopedness and consistency as
we have them for type contexts do not make much sense for term contexts. However, we still have a
concept of consistency, but as already announced earlier, this one comes in a slightly different flavor.

Definition 4.58 (consistency of a term context).
Let Θ be a consistent type context. A term context Γ = x1:Φ1, . . . , xn:Φn is called consistent with
respect to Θ, denoted as Θ ` Γ, if Θ ` Φ1, . . . ,Θ ` Φn are proved types. In case of an empty type
context Θ, we simply write ` Γ.

In particular, the empty term context is considered to be consistent with respect to any consistent
type context Θ. In this case Θ ` ∅ translates to ` Θ.

It is quite clear what we aim at with this notion of consistency. With its help we can achieve that only
type terms Φ for which there exists a proved type Θ ` Φ may be assigned to free term variables in term
contexts. The bitter pill we have to swallow for this is, however, a more complicated and technical looking
syntax for typing judgements denoting proved terms, and the same for the respective derivation rules.

Definition 4.59 (term-in-context).
A judgement Θ|Γ ` t : Φ (where Θ is a type context, Γ is a term context, t ∈ TpQLC is a function
term and Φ ∈ Ttype is a type term) is called term-in-context.

For convenience, we simply write Γ ` t : Φ if the type context is empty. If the term context is
empty, we write Θ|∅ ` t : Φ. And finally, we write ` t : Φ if both contexts are empty.

At this point we have almost readily set up the stage for the centerpiece of section 4.3. But before we
come to it, we agree on three additional conventions that we will be using henceforth.

Convention 4.60.

(i) We use the following abbreviation: Bit := (Unit ⊕Unit).

(ii) Let Γ = x1:Φ1, . . . , xn:Φn be a term context. We write ftyv(Γ) to mean
⋃n
i=1 ftyv(Φi).

(iii) In analogy to an abbreviation we have already been introducing in section 2, we use the
notation Φ⊗n to mean (Φ⊗ (Φ⊗ . . . (Φ⊗ Φ) . . .)) where type term Φ shall occur n times.

In Definitions 4.62 to 4.65 we give all derivation rules for proved terms, separated in four groups. In
between we discuss the form of the rules and some noteworthy peculiarities.

Definition 4.61 (proved terms in general, α-equivalence).
A proved term is a term-in-context that can be derived using the derivation rules given in Definitions
4.62 to 4.65, where we assume m,n ≥ 0.

We moreover consider proved terms Θ|Γ ` t : Φ and Θ′|Γ′ ` t′ : Φ′ to be α-equivalent if the following
conditions are fulfilled:

• type contexts Θ and Θ′ are α-equivalent,

• |Γ| = |Γ′| and Γ(x) ≡α Γ′(x) for all x ∈ |Γ|,
• function terms t and t′ are α-equivalent, and

• type terms Φ and Φ′ are α-equivalent.

As usual, we henceforth identify α-equivalent proved terms.
Now we come to the definition of derivation rules for proved terms, starting with the rules for term

constants from Cterm .

Definition 4.62 (proved terms – term constants).

Θ ` Γ

Θ ` Ψ

Θ ` !(Bit (Qbit) ≺: Ψ
(new operator)

Θ|Γ ` new : Ψ

4.4 Proved terms 103

Θ ` Γ

Θ ` Ψ

Θ ` !(Qbit (!Bit) ≺: Ψ
(meas operator)

Θ|Γ ` meas : Ψ

Θ ` Γ

Θ ` Ψ

Θ ` !(Qbit⊗m+1 (Qbit⊗m+1) ≺: Ψ U ∈ Um+1
(unitary operator)

Θ|Γ ` U : Ψ

These derivation rules could be counted as axioms (together with rule (term variable) that will follow in
Definition 4.63 and together with (Unit term) in Definition 4.64) since they do themselves not depend
on a proved term. The above rules are special in a number of different ways.

Firstly, they contain a fixed minimal (with respect to <:) type for operators new and meas and also
for built-in unitary operators. So, for instance, we have fixed that the type of new can be any supertype
of !(Bit (Qbit) which we can derive without using rule (Top supertype). We moreover fix that a built-in
unitary operator U ∈ Um+1 maps (m + 1)-tuples of function terms of type Qbit to such (m + 1)-tuples
again. This fully corresponds to the respective probabilistic reduction rule in Definition 3.10 (which we
lift to the polymorphic case in section 4.5). Please further note we may assign a duplicable type to all
these operators. Hence, in accordance to our intuition, they may appear in different places in function
terms at the same time.

Secondly, the above derivation rules ensure consistency of term context Γ with respect to type context
Θ in their first premise. This lays the foundation of our later consistency results in Lemma 4.66.

Thirdly, the check for Θ ` Ψ being a proved type is necessary to prevent types such as (!Qbit (Bit)
in rule (meas operator), for instance. We have already discussed earlier that a proved subtype Θ ` Φ <: Ψ
does not facilitate any conclusions about whether Θ ` Φ or Θ ` Ψ are proved types or whether they are
not. If we did not include this check among the premises of the above rules, we might corrupt results
such as “If Θ|Γ ` t : Φ is a proved function term, then Θ ` Φ is a proved type” (cf. Lemma 4.66). Similar
reasons motivate similar checks in rules (term variable) and (type application).

Fourthly, we restrict subtype derivations to not use rule (Top supertype) in the third premises. Simply
typed QLC does not allow the assignment of a type Top to a function term, or even a type that contains
Top as a subterm. On the one hand, it would thus be a quite substantial change of the capabilities of
QLC if we introduced the Top type. On the other hand, this might be a quite desirable opportunity
to introduce new language features into QLC. However, this lies clearly beyond the scope of the present
work. The problems is, such a change of capabilities would require the additional introduction of at least
one new derivation rule to resolve some technical issues connected with type preservation. The mentioned
additional rule has (in principle) the form46

Θ|Γ ` t : Φ
Θ ` Ψ

Θ ` Φ <: Ψ
.

Θ|Γ ` t : Ψ

Introducing such a derivation rule might entail further consequences that we would need to explore, but,
as already said, this is beyond the scope of the present work and might be subject to future investigations.

The just discussed restriction of subtype derivations has the same motivation also in rule (term
variable) in the following definition.

Definition 4.63 (proved terms – core rules).

Θ ` Γ, x:Φx

Θ ` Ψx

Θ ` Φx ≺: Ψx
(term variable)

Θ|Γ, x:Φx ` x : Ψx

Θ|Γ, x:Φx ` t : Ψ
(linear term abstraction)

Θ|Γ ` (λx:Φx.t) : (Φx(Ψ)

Θ|!∆,Γ, x:Φx ` t : Ψ ftmv(t) ∩ |Γ| = ∅
(nonlinear term abstraction)

Θ|!∆,Γ ` (λx:Φx.t) : !n+1(Φx(Ψ)

46This rule has been inspired by rule (T-SUB) from Figure 26-1 on page 392 in [Pie02].

104 4 POLYMORPHICALLY TYPED QUANTUM LAMBDA CALCULUS

Θ|!∆,Γ1 ` s : !n(Φ(Ψ) Θ|!∆,Γ2 ` t : Φ
(term application)

Θ|!∆,Γ1,Γ2 ` (s t) : Ψ

` Θ,Θ′ Θ, X<:ΦX ,Θ
′|Γ ` t : Ψ

X 6∈ nftyv(Ψ)

X 6∈ ftyv(Γ)
(linear type abstraction)

Θ,Θ′|Γ ` (ΛX<:ΦX .t) : (∀X<:ΦX .Ψ)

Θ,Θ′ ` ΦX <: !Top Θ, X<:ΦX ,Θ
′|Γ ` t : !nΨ X 6∈ ftyv(Γ)

(nonlinear type abstraction)
Θ,Θ′|Γ ` (ΛX<:ΦX .t) : !n(∀X<:ΦX .Ψ)

Θ|Γ ` t : !n(∀X<:ΦX .Ψ)
Θ ` Υ

Θ ` Υ <: ΦX
(type application)

Θ|Γ ` (t Υ) : !nΨ[Υ/X]

The just defined set of rules is essentially the heart of our polymorphic type system. The treated
syntactic constructs are already rich enough to form a calculus on their own that would be resembling
system F with incorporated linearity, subtyping and bounded quantification.

Let us take a closer look at rule (term variable). It is quite similar to the derivation rules concerned
with type constants. However, the third premise has farther-reaching consequences. The permission
to assign supertype Ψx to function term x (on the right-hand side of `) and still keep subtype Φx
as type of term variable x in the associated term context (on the left-hand side of `) yields a certain
amount of (unparameterized) polymorphism due to subtyping. However, this sort of polymorphism is
not very strong in its capabilities since we only allow restricted proved subtypes there, and we have seen
in Proposition 4.55 that this amounts only to a change of occurrences of exponentials. But this is exactly,
what subtyping was introduced for by Selinger and Valiron in simply typed QLC.

What happens when we remove the restriction on subtypes in the third premise and also allow the
use of (Top supertype) for the derivation of this proved subtype? Here is an example:

` x:!(Top (Bit)

` (Top (Bit)

` !(Top (Bit) <: (Top (Bit)
(term variable)

x:!(Top (Bit) ` x : (Top (Bit)

` x:!(Top (Bit)

` Top

` !(Top (Bit) <: Top
(term variable)

x:!(Top (Bit) ` x : Top
(term application)

x:!(Top (Bit) ` (x x) : Bit

Obviously this leads to a stronger form of unparameterized polymorphism that even allows self application
in certain places. But this is not what we aimed at with our polymorphic extension. Thus, we will not
further investigate this in the present work and keep our rules in their restricted form.

However, we can still get near to the polymorphism in the above example, but in a more disciplined
way by means of parameterized polymorphism, as the next example derivation shows:

` x:!(∀Y<:Top.Y)

` (∀Y<:Top.Y)

` !(∀Y<:Top.Y) ≺: (∀Y<:Top.Y)
(term variable) .

x:!(∀Y<:Top.Y) ` x : (∀Y<:Top.Y)

We reuse this result twice as a starting point in derivation

x:!(∀Y<:Top.Y) ` x : (∀Y<:Top.Y)

` (Top (Bit)

` (Top (Bit) <: Top
(tyApp)

x:!(∀Y<:Top.Y) ` (x (Top (Bit)) : (Top (Bit)

x:!(∀Y<:Top.Y) ` x : (∀Y<:Top.Y)

` Top

` Top <: Top
(tyApp)

x:!(∀Y<:Top.Y) ` (x Top) : Top
(tmApp) .

x:!(∀Y<:Top.Y) ` (x (Top (Bit) (x Top)) : Bit

4.4 Proved terms 105

The result clearly is a parameterized variant of the former example.
There is one more interesting fact about rule (term variable), which concerns term context Γ. So far,

we have met type bounds in the role of upper bounds (with respect to <:) in type contexts. In contrast
to these, type terms in term contexts can be interpreted as lower bounds on the type of a term variable
x. This is so because the actual essence of subtyping (and the sort of polymorphism it induces) is that
each function term of type Φ is also of type Ψ as long as Ψ is a supertype of Φ.

Next, consider rules (linear term abstraction) and (nonlinear term abstraction). As the names already
promise, the former rule yields a term abstraction of linear type and the latter results in a term abstraction
of duplicable type. Besides this very obvious difference there are technical differences as well. We have
already discussed in the sections on type terms that when we decide whether the type of (λx:Φx.t) may
be nonlinear, it does not matter whether the function represented by (λx:Φx.t) takes an input of linear
or nonlinear type Φx. And the same holds for the type Ψ of the output. What indeed does matter
for this decision, is whether t contains free term variables of linear type. In this case, we would violate
our linearity constraint as soon as (λx:Φx.t) occurs more than once in a function term. However, we
could allow free term variables of nonlinear type to appear in t, even if (λx:Φx.t) is assigned a duplicable
type !n+1(Φx (Ψ) and appears more than once in a function term. Hence, in rule (nonlinear term
abstraction) we make sure there are no free term variables of linear type in t, before term abstraction
(λx :Φx.t) is assigned a duplicable type !n+1(Φx (Ψ). This check is facilitated by two mechanisms:
firstly, we separate the involved term context into a nonlinear part !∆ and a part Γ that may contain
both sorts of term variables – ones that are assigned a linear type, and ones that are assigned a nonlinear
type (such a separation can be found in other derivation rules as well). Secondly, we ensure none of the
term variables in the domain of Γ appear freely in function term t. This entails only term variables in
the domain of !∆ may occur as free term variables in (λx:Φx.t), and for these we definitely know they
are assigned a duplicable type in !∆. (Please note Φx may be linear, though.) As we will see later (in
Lemma 4.67), all free term variables must be in the domain of term context !∆,Γ, and thus we can be
sure linearity is preserved if (λx:Φx.t) appears more than once in a function term.

Now we come to derivation rule (term application). Here we employ the same pattern of separating
term contexts into a nonlinear part !∆ and unrestricted parts Γ1 and Γ2. The crucial point is that the
two premises share only the nonlinear part !∆. In the conclusion we have term context !∆,Γ1,Γ2, and
according to the definition of terms contexts we know that domains |!∆|, |Γ1| and |Γ2| must be disjoint
whenever we write !∆,Γ1,Γ2. Consequently, there can be no free term variable of linear type that appears
in s and t at the same time. Hence, using this separation of term contexts guarantees linearity for term
applications (s t), and it is therefore of central importance. We will encounter this mechanism again in
rules (pair term), (case distinction) and (recursion).

Derivation rules (linear type abstraction) and (nonlinear type abstraction) show a strong similarity to
rules (linear-polymorphic type) and (nonlinear-polymorphic type), and as those complement each other,
their respective counterparts on the function term level do as well. What is new, however, is the premise
X 6∈ ftyv(Γ) appearing in both rules. This is a necessary restriction that ensures type variable X is not
used outside the scope Ψ of type abstraction (ΛX<:ΦX .Ψ). Girard comments on this as follows:

“[. . .] if we could form ΛX.xX , what would then be the type of the free variable x in this
expression? On the other hand, we can form ΛX.λxX .xX of type ΠX.X → X, which is the
identity of any type.”47 ([GTL90], page 82)

When we pick up the first quoted sentence, we can make Girard’s objection crystal clear when we ask a
slightly modified question: what would the type of term variable x be in term-in-context ` (λx:X.(ΛX<:
Top.x))?

The last rule in Definition 4.63 formally introduces a concept on the level of type terms that we have
been referring to on several occasions, namely the concept of type application. Although we already know
that this mechanism is connected with substitution of free type variables, we now have it formalized. At
last, we see in the derivation rule how upper bounds on type variables in type abstractions are guaranteed,
namely by premise Θ ` Υ <: ΦX (where premise Θ ` Υ ensures that Υ is actually well-formed, as we
have discussed earlier). Note, however, we did not use a restricted proved subtype in this premise. This
is important indeed, since we intend to allow very general type bounds on type variables, such as Top (in

47In the quotation from Girard’s well-known textbook a notation quite different from ours is used, and thus we transcribe
it here: Girard’s ΛX.xX corresponds to x:X ` (ΛX<:Top.x) : . . . in our notation, and “ΛX.λxX .xX of type ΠX.X → X”
corresponds to term-in-context ` (ΛX<:Top.(λx:X.x)) : (∀X<:Top.(X (X)) in our system.

106 4 POLYMORPHICALLY TYPED QUANTUM LAMBDA CALCULUS

order to allow any well-formed type term to be applied) or !Top (to accept duplicable type terms only).
We have already seen this mechanism at work in the above example derivations where we illustrated the
necessity of restricting subtype derivations in rule (term variable).

In the next definition we introduce derivation rules for function terms related to pairs and tuples.

Definition 4.64 (proved terms – tuple rules).

Θ ` Γ
(Unit term)

Θ|Γ ` 〈〉 : !nUnit

Θ|!∆,Γ1 ` t1 : !nΦ Θ|!∆,Γ2 ` t2 : !nΨ
(pair term)

Θ|!∆,Γ1,Γ2 ` 〈t1, t2〉 : !n(Φ⊗Ψ)

Θ|Γ, x:!nΦx, y:!
nΦy ` t : Ψ

(linear pair abstraction)
Θ|Γ ` (λ〈x:Φx, y:Φy〉.t) : (!n(Φx ⊗ Φy)(Ψ)

Θ|!∆,Γ, x:!nΦx, y:!
nΦy ` t : Ψ ftmv(t) ∩ |Γ| = ∅

(nonlinear pair abstraction)
Θ|!∆,Γ ` (λ〈x:Φx, y:Φy〉.t) : !m(!n(Φx ⊗ Φy)(Ψ)

The just defined derivation rules combine different mechanisms that we already encountered. On
the one hand, we again see separation of term contexts into nonlinear and unrestricted parts, and also
the reassurance that no term variables of linear type occur freely in the scope of a pair abstraction of
duplicable type. Both mechanisms have already appeared in one of the earlier derivation rules for proved
terms. On the other hand, we find that leading exponentials are propagated as it is done in rule (product
type) on the isolated type level.

Interestingly, however, we do not need a dedicated derivation rule “(pair application)” for term appli-
cations of the form ((λ〈x:Φx, y:Φy〉.t) 〈t1, t2〉), since it can be perfectly covered by rule (term application)
as follows:

Θ|!∆,Γ1 ` (λ〈x:Φx, y:Φy〉.t) : !m(!n(Φx ⊗ Φy)(Ψ) Θ|!∆,Γ2 ` 〈t1, t2〉 : !n(Φx ⊗ Φy)
(term application) .

Θ|!∆,Γ1,Γ2 `
(
(λ〈x:Φx, y:Φy〉.t) 〈t1, t2〉

)
: Ψ

We have said earlier rule (Unit term) can be counted as axiom. But unlike the other axiom rules (new
operator), (meas operator), (unitary operator) and (term variable), we do not have a restricted proved
subtype as premise in (Unit type). This would indeed be an inconsistency if we did not use restricted
proved types as premises in the other axiom rules. But we have defined rule (Unit term) so that it is
equivalent to the following hypothetical derivation rule

Θ ` Γ
Θ ` Ψ

Θ ` !Unit ≺: Ψ
Θ|Γ ` 〈〉 : Ψ

which is undoubtedly analogous to the other axiom rules. And in this hypothetical rule we could very
well remove the restriction on the proved subtype in the third premise if we desired to.

Let us finally define the last couple of derivation rules dealing with disjoint unions, case distinction
and recursion terms.

Definition 4.65 (proved terms – case distinction and recursion).

Θ|Γ ` t : !nΦl Θ ` !nΦr
(left injection)

Θ|Γ ` injl(t) : !n(Φl ⊕ Φr)

Θ ` !nΦl Θ|Γ ` t : !nΦr
(right injection)

Θ|Γ ` injr(t) : !n(Φl ⊕ Φr)

4.4 Proved terms 107

Θ|!∆,Γ1 ` s : !n(Φx ⊕ Φy)

Θ|!∆,Γ2 ` (λx:Φx.tl) : !m(!nΦx(Ψ)

Θ|!∆,Γ2 ` (λy:Φy.tr) : !m(!nΦy (Ψ)
(case distinction)

Θ|!∆,Γ1,Γ2 `
(
match s with (λx:Φx.tl) | (λy:Φy.tr)

)
: Ψ

Θ|!∆, f:!(Φx(Ψ) ` (λx:Φx.s) : !(Φx(Ψ) Θ|!∆, f:!(Φx(Ψ),Γ ` t : Υ
(recursion)

Θ|!∆,Γ `
(
letrec f:!(Φx(Ψ) = (λx:Φx.s) in t

)
: Υ

These derivation rules do not come along with entirely new concepts or mechanisms.
However, rule (case distinction) constitutes an exception compared to what we have seen up to this

point, because it softens our linearity constraint. The crucial point is that a term variable z of linear type
may occur more than once in

(
match s with (λx:Φx.tl) | (λy:Φy.tr)

)
, namely in function term tl and at

the same time in tr. The reason for this is the shared term context Γ2 in premises two and three. Please
note that this is the only derivation rule which may introduce multiple occurrences of term variables
having a linear type. Intuitively speaking, this is in accordance to our understanding of linearity, since
the idea is that function terms of linear type shall contribute at most once to the overall computation.
And the evaluation of case distinctions (match s with (λx:Φx.tl) | (λx:Φy.tr)) ensures that only one of the
two alternatives ((λx:Φx.tl) v) (in case s ≡ injl(v)) or ((λy:Φy.tr) w) (in case s ≡ injr(w)) is evaluated
and never both. We will come back to this topic in subsection 4.6.3.

But there is one more noteworthy fact. In rule (recursion) term variable f (that stands as a placeholder
for a term or pair abstraction) must be of duplicable type. The reason for this requirement is quite simple
and intuitive: although f might occur at most once in t and also in s, it may nevertheless be reused
multiple times (or even arbitrarily often) namely as soon as we perform the first truly recursive evaluation
step in the course of evaluation.48 For the same reason, no free term variables of linear type are allowed
in (λx:Φx.s), and therefore all types in the term context of the first premise are required to be duplicable.

After this in-depth discussion of our derivation rules for proved terms that distinguish the well-formed
function terms from the rest, let us come to the consequences following from these rules. As in the section
on type terms, we establish a result concerning the consistency of type and term contexts which are part
of a proved term.

Lemma 4.66. If Θ|Γ ` t : Φ is a proved term, then

(i) Θ is consistent,

(ii) Γ is consistent with respect to Θ, i.e. Θ ` Γ holds, and

(iii) Θ ` Φ is a proved type.

Proof. We show each of these by induction on the derivation of proved term Θ|Γ ` t : Φ.

(i): Base cases: Let Θ|Γ ` t : Φ be derived by rules (new operator), (meas operator), (unitary operator),
(term variable), (type application), (left injection) or (right injection). Each of these rule has
a premise of the form Θ ` Φ′ for some Φ′ ∈ Ttype . Hence, we may conclude consistency of Θ
from these premises by Lemma 4.18.

Suppose Ξ,Ξ′|Γ ` (ΛX<:ΦX .t) : (∀X<:ΦX .Ψ
′) has been derived using rule (linear type ab-

straction). The first premise of this rule already requires ` Ξ,Ξ′ and thus we immediately
have consistency Ξ,Ξ′.

Next assume Ξ,Ξ′|Γ ` (ΛX<:ΦX .t) : !n(∀X<:ΦX .Ψ
′) has been derived using rule (nonlinear

type abstraction). The first premise of this rule requires proved subtype Ξ,Ξ′ ` ΦX<:!Top.
Thus, by Lemma 4.19, we immediately get consistency of Ξ,Ξ′.

Now suppose Θ|Γ ` 〈〉 : !nUnit has been derived using rule (Unit term). The premise of this
rule requires consistency of Γ with respect to Θ. If Γ is the empty term context, then, by
Definition 4.58, we know Θ is consistent. If Γ = x:Φx,Γ

′ for some term variable x, type term
Φx and term context Γ′, then consistency of x:Φx,Γ

′ with respect to Θ implies that Θ ` Φx is
a proved type, and thus we get consistency of Θ by Lemma 4.18.

48The only case where this requirement gets superfluous is when either t or s does not contain f and the other function
term contains f at most once. But then the whole usage of a recursion term in this place were superfluous, because the
same effect could be reached by a regular term abstraction.

108 4 POLYMORPHICALLY TYPED QUANTUM LAMBDA CALCULUS

Induction cases: Assume Θ|Γ ` t : Φ has been derived by one of the rules (linear term abstrac-
tion), (nonlinear term abstraction), (term application), (pair term), (linear pair abstraction),
(nonlinear pair abstraction), (case distinction) or (recursion). In each of these rules, we have
at least one premise of the form Θ|Γ′ ` t′ : Φ′. We then get consistency of Θ by induction.

♦

(ii): Base cases: Suppose Θ|Γ ` t : Φ has been derived by one of the rules (new operator), (meas
operator), (unitary operator), (term variable), (Unit term). Since we can find a premise Θ ` Γ
in all of these rules, we immediately know term context Γ is consistent with respect to Θ.

Induction cases:

Case 1: rules (linear term abstraction), (nonlinear term abstraction), (linear pair abstraction),
(nonlinear pair abstraction) and (recursion). In all these cases Θ|Γ ` t : Φ has been derived
from at least one premise of the form Θ|Γ,Γ′ ` s : Ψ. By induction we thus know Θ ` Γ,Γ′

holds. Then, by definition of consistency of Γ,Γ′ with respect to Θ (cf. Definition 4.58),
we immediately know that both Θ ` Γ and Θ ` Γ′ must hold.

Case 2: rules (term application), (pair term), (case distinction). Here Γ is of the form
!∆,Γ1,Γ2. All of these rules have at least two premises of the form Θ|!∆,Γ1 ` s1 : Ψ1

and Θ|!∆,Γ2 ` s2 : Ψ2. By induction we thus get Θ ` !∆,Γ1 and Θ ` !∆,Γ2. But then,
Θ ` !∆,Γ1,Γ2 = Θ ` Γ also holds, due to definition of consistency of !∆,Γ1,Γ2 with
respect to Θ.

Case 3: rules (linear type abstraction), (nonlinear type abstraction). Here Θ is of the form
Ξ,Ξ′. Both of these rules contain a premise of the form Ξ, X<:ΦX ,Ξ

′|Γ ` s : Ψ. Let
Γ be of the form Γ = x1 :Φ1, . . . , xn :Φn for some n ≥ 0. Another premise in both rules
assumes X 6∈ ftyv(Γ), and thus we have ftyv(Φ1), . . . , ftyv(Φn) ⊆ |Ξ,Ξ′|. Moreover, on the
one hand, consistency of Ξ,Ξ′ is directly assumed by the first premise of rule (linear type
abstraction), and, on the other hand, it is a consequence of Lemma 4.19 applied to the
first premise of rule (nonlinear type abstraction). Hence, Ξ,Ξ′ is also well-scoped due to
Corollary 4.21. By induction, we get Ξ, X<:ΦX ,Ξ

′ ` Γ, i.e. each of the Ξ, X<:ΦX ,Ξ
′ ` Φi

with 1 ≤ i ≤ n is a proved type. Hence, we may apply Corollary 4.28(i) to each of these,
to obtain proved type Ξ,Ξ′ ` Φi, i.e. Θ ` Γ.

Case 4: rules (type application), (left injection), (right injection). In all three rules, there is
one premise of the form Θ|Γ ` s : Ψ. From this, we immediately get Θ ` Γ by induction.

♦

(iii): Base cases: Suppose Θ|Γ ` t : Φ has been derived by one of the rules (new operator), (meas
operator), (unitary operator), (term variable). For all of these cases we trivially get that
Θ ` Φ is a proved type, since there is a premise of the form Θ ` Φ in each rule.

Assume Θ|Γ ` 〈〉 : !nUnit has been derived using rule (Unit term). From premise Θ ` Γ of
this rule and Lemma 4.18 we know Θ is consistent. Hence, we can derive Θ ` !nUnit by

` Θ
(Unit type) .

Θ ` !nUnit

Induction cases: Suppose Θ|Γ ` t : Φ has been derived by

Θ|Γ, x:Φx ` t′ : Ψ′
(linear term abstraction) .

Θ|Γ ` (λx:Φx.t
′) : (Φx(Ψ′)

From the single premise and (ii) we get proved type Θ ` Φx on the one hand. On the other
hand, we obtain proved type Θ ` Ψ′ by induction. Then we can derive Θ ` (Φx (Ψ′)
using rule (function type). In a similar way we can derive Θ ` !n+1(Φx (Ψ′) in case of rule
(nonlinear term abstraction).

Suppose Θ|Γ ` t : Φ has been derived by

Θ|!∆,Γ1 ` s′ : !n(Φ′(Ψ′) Θ|!∆,Γ2 ` t′ : Φ′
(term application) .

Θ|!∆,Γ1,Γ2 ` (s′ t′) : Ψ′

4.4 Proved terms 109

By induction we obtain proved type Θ ` !n(Φ′ (Ψ′) from the first premise of this rule.
Inspecting all derivation rules for proved types, we find that this must have been derived by
rule (function type). Hence, there must have been proved type Θ ` Ψ′ due to the second
premise in (function type). A similar argument covers rule (case distinction).

Assume Θ|Γ ` t : Φ has been derived by

` Ξ,Ξ′ Ξ, X<:ΦX ,Ξ
′|Γ ` t′ : Ψ′

X 6∈ nftyv(Ψ′)

X 6∈ ftyv(Γ)
(linear type abstraction) .

Ξ,Ξ′|Γ ` (ΛX<:ΦX .t
′) : (∀X<:ΦX .Ψ

′)

From the second premise we get proved type Ξ, X<:ΦX ,Ξ
′ ` Ψ′ by induction. Using this and

the other premises together, we can perform derivation

` Ξ,Ξ′ Ξ, X<:ΦX ,Ξ
′ ` Ψ′ X 6∈ nftyv(Ψ′)

(linear-polymorphic type) ,
Ξ,Ξ′ ` (∀X<:ΦX .Ψ

′)

yielding proved type Θ ` (∀X<:ΦX .Ψ
′). We can handle the case of derivation rule (nonlinear

type abstraction) in a similar way.

Consider the case where Θ|Γ ` t : Φ has been derived by

Θ|Γ ` t′ : !n(∀X<:ΦX .Ψ
′)

Θ ` Υ
Θ ` Υ <: ΦX

(type application) .
Θ|Γ ` (t′ Υ) : !nΨ′[Υ/X]

By induction we get proved type Θ ` !n(∀X<: ΦX .Ψ
′) from the first premise. Using this

and the other premises, we can apply rule (bounded type substitution) from Theorem 4.50 to
obtain Θ ` !nΨ[Υ/X] by derivation

Θ ` !n(∀X<:ΦX .Ψ
′)

Θ ` Υ
Θ ` Υ <: ΦX

(bounded type substitution) .
Θ ` !nΨ′[Υ/X]

Suppose Θ|Γ ` t : Φ has been derived by

Θ|!∆,Γ1 ` t1 : !nΦ′ Θ|!∆,Γ2 ` t2 : !nΨ′
(pair term) .

Θ|!∆,Γ1,Γ2 ` 〈t1, t2〉 : !n(Φ′ ⊗Ψ′)

Thus, we get proved types Θ ` !nΦ′ and Θ ` !nΨ′ from the two premises by induction. But
then we can perform the following derivation to obtain proved type Θ ` !n(Φ′ ⊗Ψ′):

Θ ` !nΦ′ Θ ` !nΨ′
(product type) .

Θ ` !n(Φ′ ⊗Ψ′)

We may argue along the same lines for rules (left injection) and (right injection), where we
need to apply derivation rule (sum type) instead of the above used (product type) rule.

Assume Θ|Γ ` t : Φ has been derived by

Θ|Γ, x:!nΦx, y:!
nΦy ` t′ : Ψ′

(linear pair abstraction) .
Θ|Γ ` (λ〈x:Φx, y:Φy〉.t′) : (!n(Φx ⊗ Φy)(Ψ′)

From the single premise and (ii) we may conclude Θ ` !nΦx and Θ ` !nΦy are both proved
types. Furthermore, we get proved type Θ ` Ψ′ by induction. Having these, we may perform
derivation

Θ ` !nΦx Θ ` !nΦy
(product type)

Θ ` !n(Φx ⊗ Φy) Θ ` Ψ′
(function type)

Θ ` !m(!n(Φx ⊗ Φy)(Ψ′)

to finally obtain proved type Θ ` !0(!n(Φx ⊗ Φy)(Ψ′) with m = 0. An analogous argument
covers the case of rule (nonlinear pair abstraction).

Finally suppose Θ|Γ ` t : Φ has been derived by

110 4 POLYMORPHICALLY TYPED QUANTUM LAMBDA CALCULUS

Θ|!∆, f:!(Φx(Ψ′) ` (λx:Φx.s) : !(Φx(Ψ′) Θ|!∆, f:!(Φx(Ψ′),Γ′ ` t′ : Υ
(recursion) .

Θ|!∆,Γ′ `
(
letrec f:!(Φx(Ψ′) = (λx:Φx.s) in t

′) : Υ

We immediately get proved type Θ ` Υ from the second premise by induction.

Remark: There is one result missing in the above lemma. Namely that every type term Ψ occurring in
function term t of a proved term Θ|Γ ` t : Φ is also derivable as part of a proved type Θ̂ ` Ψ with

Θ v Θ̂. But this is a direct consequence of (i) and (ii) in Lemma 4.66, since each occurrence of a
type term Ψ in t is introduced in one of four different ways:

• as part of a term or pair abstraction by one of the derivation rules (linear term abstraction),
(nonlinear term abstraction), (linear pair abstraction) or (nonlinear pair abstraction);

• as part of a recursion term by rule (recursion);

• as part of a type abstraction by derivation rule (linear type abstraction) or (nonlinear type
abstraction),

• or it is introduced as part of a type application by derivation rule (type application),

and in each of these cases we find a premise in the respective derivation rule to which we can
apply Lemma 4.66 (i) or (ii) (or neither of these, as in the fourth case) and possibly take a (type

weakening) step to derive an appropriate proved type Θ̂ ` Ψ. We do not go into formal details here,
since we will not refer to this result later. But it is nevertheless an interesting and encouraging
consequence – encouraging in the sense that we have found an appropriate set of derivation rules
for our purposes, facilitating enforceable linearity, for instance.

What we get from Lemma 4.66 is not only that our derivation rules for proved terms preserve consistency
of the involved type and term contexts, but we now know for sure that all type terms that occur in a
proved term Θ|Γ ` t : Φ are well-formed. In particular, we made sure no type (sub)term in Θ, Γ, t and
Φ does violate Theorem 4.39 from subsection 4.2.3, and thus we have a good basis to show later on that
a well-formed function term s, i.e. one for which we can derive a proved term Θ|Γ ` s : Φ, evaluates in
accordance with the no-cloning theorem.

The property we confirm next ensures every free term variable occurring in proved term Θ|Γ ` t : Φ
also appears in Γ’s domain.

Lemma 4.67. If Θ|Γ ` t : Φ is a proved term, then ftmv(t) ⊆ |Γ|.

Proof. By induction of the derivation of Θ|Γ ` t : Φ:

Base cases: Suppose Θ|Γ ` t : Φ has been derived by one of the rules (new operator), (meas operator),
(unitary operator) or (Unit term). In these cases ftmv(t) = ∅ and we thus trivially have ftmv(t) ⊆
|Γ|.
Suppose Θ|Γ′, x:Φx ` x : Ψx has been derived by rule (term variable). Then it clearly holds ftmv(x) =
{x} ⊆ |Γ′, x:Φx| = |Γ′| ∪ {x}.

Induction cases: Assume Θ|Γ ` t : Φ has been derived by

Θ|Γ, x:Φx ` t′ : Ψ′
(linear term abstraction) .

Θ|Γ ` (λx:Φx.t
′) : (Φx(Ψ′)

By induction we then get ftmv(t′) ⊆ |Γ| ∪ {x}. Hence, we have

ftmv(λx:Φx.t
′) = ftmv(t′) \ {x} ⊆

(
|Γ| ∪ {x}

)
\ {x} = |Γ| .

An analogous argument covers the cases of rules (nonlinear term abstraction), (linear pair abstrac-
tion) and (nonlinear pair abstraction).

Suppose Θ|Γ ` t : Φ has been derived by

4.4 Proved terms 111

Θ|!∆,Γ1 ` s′ : !n(Φ′(Ψ′) Θ|!∆,Γ2 ` t′ : Φ′
(term application) .

Θ|!∆,Γ1,Γ2 ` (s′ t′) : Ψ′

Induction then yields ftmv(s′) ⊆ |!∆,Γ1| and ftmv(t′) ⊆ |!∆,Γ2|. From this we get

ftmv((s′ t′)) = ftmv(s′) ∪ ftmv(t′) ⊆ |!∆,Γ1| ∪ |!∆,Γ2| = |!∆,Γ1,Γ2| .

The same line of argument applies to the cases of rules (pair term) and (case distinction).

Now suppose Θ|Γ ` t : Φ has been derived by

Θ|Γ ` t′ : !n(∀X<:ΦX .Ψ
′)

Θ ` Υ
Θ ` Υ <: ΦX

(type application) .
Θ|Γ ` (t′ Υ) : !nΨ′[Υ/X]

Obviously, we have one premise from which we get ftmv(t′) ⊆ |Γ| by induction. Hence, we get

ftmv((t′ Υ)) = ftmv(t′) ⊆ Γ .

We can cover the cases of derivation rules (linear type abstraction), (nonlinear type abstraction),
(left injection) and (right injection) in an analogous fashion.

Finally, consider the case where Θ|Γ ` t : Φ has been derived by

Θ|!∆, f:!(Φx(Ψ′) ` (λx:Φx.s) : !(Φx(Ψ′) Θ|!∆, f:!(Φx(Ψ′),Γ′ ` t′ : Υ
(recursion) .

Θ|!∆,Γ′ ` (letrec f:!(Φx(Ψ′) = (λx:Φx.s) in t
′) : Υ

Then we get by induction ftmv((λx:Φx.s)) ⊆ |!∆| ∪ {f} and ftmv(t′) ⊆ |!∆,Γ′| ∪ {f}. This yields

ftmv
(
(letrec f:!(Φx(Ψ′) = (λx:Φx.s) in t

′)
)

=
(
ftmv((λx:Φx.s)) ∪ ftmv(t′)

)
\ {f}

⊆
(
|!∆| ∪ {f} ∪ |!∆,Γ′| ∪ {f}

)
\ {f}

= |!∆,Γ′| .

From this lemma we immediately know each of the term variables x that occur freely in a function term
t in a proved term Θ|Γ ` t : Φ has an assigned type term Φx (which can actually be derived as part of a
proved type Θ ` Φx due to Lemma 4.66).

At this point we are familiar with the most basic characteristics of proved terms. These fundamental
technical insights will help us in getting along with the more advanced topics we deal with later.

4.4.2 Derived rules for proving terms

During our considerations on proved types we have developed a handy toolbox of derived derivation rules
that supported us in dealing with more complex arguments. Two of the most valuable rules can be
faithfully extended to the case of proved terms, namely weakening and permutation of type contexts.

The first derived rule we establish goes back to (type weakening). In addition to the weakening of
the involved type context we also weaken the appearing term context in the same rule. The motivation
for this joint weakening is that newly introduced variable-type pairs in the term context may require a
weakening of the associated type context. We illustrate this with an example:

Suppose we are given proved terms

X<:Top|f:(X (Bit) ` (λx:X.f x) : (X (Bit)

and

` (λy:Unit .injr(y)) : (Unit (Bit)

112 4 POLYMORPHICALLY TYPED QUANTUM LAMBDA CALCULUS

and our goal is to derive proved term

X<:Top|f:(X (Bit) ` (match s with (λx:X.f x) | (λy:Unit .injr(y))) : Bit .

Thus, before we can apply rule (case distinction), we have to weaken the second proved term so that
its term context also contains variable-type pair f :(X (Bit). But since this comes along with a
free type variable, we also have to weaken the type context of the second proved term appropriately,
so that the overall weakening eventually results in proved term

X<:Top|f:(X (Bit) ` (λy:Unit .injr(y)) : (Unit (Bit) .

Having this, we may then perform the following derivation to reach our goal:

X<:Top|∅ ` s : (X ⊕Unit)

X<:Top|f:(X (Bit) ` (λx:X.f x) : (X (Bit)

X<:Top|f:(X (Bit) ` (λy:Unit .injr(y)) : (Unit (Bit)
(caseDist) .

X<:Top|f:(X (Bit) ` (match s with (λx:X.f x) | (λy:Unit .injr(y))) : Bit

The just motivated joint weakening rule for type and term contexts has the following form.

Proposition 4.68. We can derive derivation rule

Θ̂ ` Γ̂ Θ|Γ ` t : Φ

Θ v Θ̂

Γ ⊆ Γ̂
(term weakening) . (?)

Θ̂|Γ̂ ` t : Φ

Proof. We show this by induction on the derivation of proved term Θ|Γ ` t : Φ. But before we start,

we first take a look at premise Θ̂ ` Γ̂. This stands for a proved type Θ̂ ` Γ̂(x) for each x ∈ |Γ̂|.
Hence, we know that Θ is consistent by Lemma 4.18. Thus, we can assume another premise stating ` Θ.
This together with premise Θ v Θ̂ will enable the application of rules (type weakening) and (subtype
weakening) from subsection 4.2.2 in several of the following cases.

Base cases: Suppose Θ|Γ ` t : Φ has been derived by

Θ ` Γ

Θ ` Ψ

Θ ` !(Bit (Qbit) ≺: Ψ
(new operator) .

Θ|Γ ` new : Ψ

Using (type weakening) and (subtype weakening), we then obtain proved type Θ̂ ` Ψ and restricted

proved subtype Θ̂ ` !(Bit (Qbit) ≺: Ψ from the second and third premise. And since we already

have Θ̂ ` Γ̂ as a premise in (?), we may perform derivation

Θ̂ ` Γ̂

Θ̂ ` Ψ

Θ̂ ` !(Bit (Qbit) ≺: Ψ
(new operator) .

Θ̂|Γ̂ ` new : Ψ

Similar reasoning applies in the cases of rules (meas operator), (unitary operator), (term variable)
and (Unit term).

Induction cases: Assume Θ|Γ ` t : Φ has been derived by

Θ|Γ, x:Φx ` t′ : Ψ′
(linear term abstraction) ,

Θ|Γ ` (λx:Φx.t
′) : (Φx(Ψ′)

where we assume x 6∈ |Γ̂| (without loss of generality, since we identify α-equivalent function terms).

Then we get proved term Θ̂|Γ̂, x:Φx ` t′ : Ψ′ by induction. From this we can immediately derive

Θ̂|Γ̂ ` (λx:Φx.t
′) : (Φx (Ψ′) by the same derivation rule (linear term abstraction). Analogous

reasoning applies to the case of rule (linear pair abstraction).

Now assume Θ|Γ ` t : Φ has been derived by

4.4 Proved terms 113

Θ|!∆,Γ′, x:Φx ` t′ : Ψ′ ftmv(t′) ∩ |Γ′| = ∅
(nonlinear term abstraction) ,

Θ|!∆,Γ′ ` !n+1(λx:Φx.t
′) : (Φx(Ψ′)

where !∆,Γ′ = Γ and where we again assume x 6∈ |Γ̂|. From premise ftmv(t′) ∩ |Γ′| = ∅ and the
fact ftmv(t′) ⊆ |!∆,Γ′, x:Φx|, which is due to Lemma 4.67, we then know all free term variables in
t′ already appear in term context (!∆, x:Φx), i.e. ftmv(t′) ⊆ |!∆, x:Φx| and even ftmv(t′) \ {x} ⊆
|!∆|. Since !∆ ⊆ (!∆,Γ′) ⊆ Γ̂ and since x does not appear in |Γ̂| by assumption, we clearly have

ftmv(t′) ∩
∣∣Γ̂ \ !∆

∣∣ = ∅. Moreover, we get proved term Θ̂|Γ̂, x:Φx ` t′ : Ψ′ by induction, which we

may rewrite into Θ̂|!∆,
(
Γ̂ \ !∆

)
, x:Φx ` t′ : Ψ′. Having this, we may perform derivation

Θ̂|!∆,
(
Γ̂ \ !∆

)
, x:Φx ` t′ : Ψ′ ftmv(t′) ∩

(
Γ̂ \ !∆

)
= ∅

(nonlinear term abstraction) .
Θ̂| !∆,

(
Γ̂ \ !∆

)︸ ︷︷ ︸
= Γ̂

` !n+1(λx:Φx.t
′) : (Φx(Ψ′)

We can cover the case of rule (nonlinear pair abstraction) by similar arguments.

Next suppose Θ|Γ ` t : Φ has been derived by

Θ|!∆,Γ1 ` s′ : !n(Φ′(Ψ′) Θ|!∆,Γ2 ` t′ : Φ′
(term application) ,

Θ|!∆,Γ1,Γ2 ` (s′ t′) : Ψ′

where !∆,Γ1,Γ2 = Γ. We here apply induction to both premises, but using slightly differing
extended term contexts.
Firstly, we inductively apply rule (term weakening) to the first premise using extended type context

Θ̂ with Θ v Θ̂ and extended term context Γ̂ \ Γ2 with
(
!∆Γ1

)
⊆
(
Γ̂ \ Γ2

)
. This yields proved term

Θ̂|Γ̂ \ Γ2 ` s′ : !n(Φ′(Ψ′), where we can rewrite term context Γ̂ \ Γ2 to
(
!∆,
((

Γ̂ \ Γ2

)
\ !∆

))
.

Secondly, we inductively apply (term weakening) to the second premise, still with extended type

context Θ̂, but this time with “extended” term context !∆,Γ2 (which surely is a subset of itself).

In this way we obtain proved term Θ̂|!∆,Γ2 ` t′ : Φ′. We can now perform derivation

Θ̂|!∆,
((

Γ̂ \ Γ2

)
\ !∆

)
` s′ : !n(Φ′(Ψ′) Θ̂|!∆,Γ2 ` t′ : Φ′

(term application)

Θ̂| !∆,
((

Γ̂ \ Γ2

)
\ !∆

)
,Γ2︸ ︷︷ ︸

= Γ̂

` (s′ t′) : Ψ′

to derive the proved term we desire. Clearly, the cases where Θ|Γ ` t : Φ has been derived by one
of the rules (pair term), (case distinction) and (recursion) can be handled in a similar way.

Assume Θ|Γ ` t : Φ has been derived by

` Ξ,Ξ′ Ξ, X<:ΦX ,Ξ
′|Γ ` t′ : Ψ′

X 6∈ nftyv(Ψ′)

X 6∈ ftyv(Γ)
(linear type abstraction) ,

Ξ,Ξ′|Γ ` (ΛX<:ΦX .t
′) : (∀X<:ΦX .Ψ

′)

where Ξ,Ξ′ = Θ, and where we assume X 6∈ |Θ̂| and X 6∈ ftyv(Γ̂) (without loss of generality, since
we identify α-equivalent proved terms).

Let Ξ̂ and Ξ̂′ be two term contexts such that Ξ v Ξ̂ and Ξ′ v Ξ̂′ and Ξ̂, Ξ̂′ = Θ̂. By consistency
of Θ̂ = Ξ̂, Ξ̂′ we also know Ξ̂ is consistent. By consistency of Ξ, X<:ΦX ,Ξ

′ (which we get from the
second premise by Lemma 4.66 (i)) we know Ξ ` ΦX is a proved type. Using rule (type weakening)

we obtain proved type Ξ̂ ` ΦX from this, which yields consistency of Ξ̂, X<:ΦX . Let Ξ̂′ be of the
form Ξ̂′ = Y1<:Φ′1, . . . , Yk<:Φ′k for some k ≥ 0. Then we have for each i with 1 ≤ i ≤ k a proved
type

Ξ̂, Y1<:Φ′1, . . . , Yi−1<:Φ′i−1 ` Φ′i

114 4 POLYMORPHICALLY TYPED QUANTUM LAMBDA CALCULUS

by consistency of Ξ̂, Ξ̂′. Now we iteratively apply (type weakening) again for each i = 1, . . . , k to
obtain the following proved types (and the implied consistency results) in a step-by-step fashion

Ξ̂, X<:ΦX ` Φ′1 ,

Ξ̂, X<:ΦX , Y1<:Φ′1 ` Φ′2 ,

...

Ξ̂, X<:ΦX , Y1<:Φ′1, . . . , Yk−1<:Φ′k−1 ` Φ′k ,

which eventually leads to consistency of Ξ̂, X<:ΦX , Ξ̂
′.

Having this together with the fact
(
Ξ, X<:ΦX ,Ξ

′) v (Ξ̂, X<:ΦX , Ξ̂
′), we can now apply induction

to premise Ξ, X<:ΦX ,Ξ
′|Γ ` t′ : Ψ′ and thus obtain proved term Ξ̂, X<:ΦX , Ξ̂

′|Γ̂ ` t′ : Ψ′. And

since we assume X 6∈ ftyv(Γ̂), we can now perform derivation

` Ξ̂, Ξ̂′ Ξ̂, X<:ΦX , Ξ̂
′|Γ̂ ` t′ : Ψ′

X 6∈ nftyv(Ψ′)

X 6∈ ftyv(Γ̂)
(linear type abstraction) .

Ξ̂, Ξ̂′︸︷︷︸
= Θ̂

|Γ̂ ` (ΛX<:ΦX .t
′) : (∀X<:ΦX .Ψ

′)

We may argue similarly for the case of rule (nonlinear type abstraction). However, there we addi-

tionally have to derive Θ̂ ` ΦX <: !Top by (subtype weakening) from premise Θ ` ΦX <: !Top.

Next assume Θ|Γ ` t : Φ has been derived by

Θ|Γ ` t′ : !n(∀X<:ΦX .Ψ
′)

Θ ` Υ
Θ ` Υ <: ΦX

(type application) .
Θ|Γ ` (t′ Υ) : !nΨ′[Υ/X]

Then we use induction to get Θ̂|Γ̂ ` t′ : !n(∀X<:ΦX .Ψ
′), and we apply (type weakening) and

(subtype weakening) to obtain Θ̂ ` Υ and Θ̂ ` Υ <: ΦX , respectively. Using these as premises, we
can perform the derivation

Θ̂|Γ̂ ` t′ : !n(∀X<:ΦX .Ψ
′)

Θ̂ ` Υ

Θ̂ ` Υ <: ΦX
(type application) .

Θ̂|Γ̂ ` (t′ Υ) : !nΨ′[Υ/X]

This form of reasoning can be easily transferred to the cases of rules (left injection) and (right
injection).

In contrast to rule (type weakening), we do not need to explicitly formulate a premise in (term weakening)

requiring consistency of Θ̂, since this is implicit in Θ̂ ` Γ̂, due to Lemma 4.18.

For an extension of (type permutation) to the level of proved terms, we do not have to bother with
permutations of terms contexts, since these are defined as sets and thus do not show a specific order
among the variable-type pairs they contain. Hence, the form of rule (term permutation) is almost the
same as that of (type permutation).

Proposition 4.69. We can extend rule (type permutation) from Proposition 4.25 to the setting of proved
terms:

` Θπ Θ|Γ ` t : Φ
(term permutation) .

Θπ|Γ ` t : Φ

Proof. We prove this proposition by induction on the derivation of Θ|Γ ` t : Φ.

4.4 Proved terms 115

Base cases: Suppose Θ|Γ ` t : Φ has been derived by

Θ ` Γ

Θ ` Ψ

Θ ` !(Bit (Qbit) ≺: Ψ
(new operator) .

Θ|Γ ` new : Ψ

Since premise Θ ` Γ stands for a set of proved types Θ ` Γ(x) for all x ∈ |Γ|, we may apply
(type permutation) to each of these and eventually obtain Θπ ` Γ. Moreover, we can apply (type
permutation) and (subtype permutation) to the second and third premise to get proved type Θπ ` Ψ
and restricted proved subtype Θπ ` !(Bit (Qbit) ≺: Ψ. Using these as premises, we may derive
Θπ|Γ ` new : Ψ by rule (new operator).
The same is true for rules (meas operator), (unitary operator), (term variable) and (Unit term).

Induction cases: Assume Θ|Γ ` t : Φ has been derived by

Θ|Γ, x:Φx ` t′ : Ψ′
(linear term abstraction) .

Θ|Γ ` (λx:Φx.t
′) : (Φx(Ψ′)

By induction we get proved term Θπ|Γ, x:Φx ` t′ : Ψ′ from the single premise. We may then apply
rule (linear term abstraction) to this again to obtain proved term Θπ|Γ ` (λx:Φx.t

′) : (Φx (Ψ′),
and we are done in this case.

The cases where Θ|Γ ` t : Φ has been derived by one of the rules (nonlinear term abstraction),
(term application), (type application), (pair term), (linear pair abstraction), (nonlinear pair ab-
straction), (left injection), (right injection), (case distinction) and (recursion) can all be handled by
a combination of the reasoning for the two cases we have seen so far.

Now assume Θ|Γ ` t : Φ has been derived by

` Ξ,Ξ′ Ξ, X<:ΦX ,Ξ
′|Γ ` t′ : Ψ′

X 6∈ nftyv(Ψ′)

X 6∈ ftyv(Γ)
(linear type abstraction) .

Ξ,Ξ′|Γ ` (ΛX<:ΦX .t
′) : (∀X<:ΦX .Ψ

′)

where Ξ,Ξ′ = Θ. Before we can apply induction to the second premise, we need to make sure
Θπ, X<:ΦX is consistent. When we apply Lemma 4.66(i) to the second premise, we get consistency
of Ξ, X<:ΦX ,Ξ

′, which entails Ξ ` ΦX is a proved type. Since we already know Ξ,Ξ′ is consistent
due to the first premise, we may apply (type weakening) to obtain Ξ,Ξ′ ` ΦX . And since we
have Ξ,Ξ′ = Θ and ` Θπ, we may now apply (type permutation) to get proved type Θπ ` ΦX ,
which entails consistency of Θπ, X<:ΦX . Hence, since this is a permuted and consistent version of
type context Ξ, X<:ΦX ,Ξ

′, we can apply induction to the second premise to derive proved term
Θπ, X<:ΦX |Γ ` t′ : Ψ′. Thus, we have all necessary pieces together to perform derivation

` Θπ Θπ, X<:ΦX |Γ ` t′ : Ψ′
X 6∈ nftyv(Ψ′)

X 6∈ ftyv(Γ)
(linear type abstraction) .

Θπ|Γ ` (ΛX<:ΦX .t
′) : (∀X<:ΦX .Ψ

′)

The case of rule (nonlinear type abstraction) can be handled similarly. However, there we get
consistency of Ξ,Ξ′ by application of Lemma 4.19 to premise Ξ,Ξ′ ` ΦX <: !Top and we need to
use rule (subtype permutation) to obtain proved subtype Θπ ` ΦX <: !Top from the same premise.

The next derived rule amounts to a strengthening of term contexts in proved terms. We had a similar
result for type contexts in Lemma 4.27. However, the conditions in the following lemma are less complex
due to the simpler nature of term contexts in comparison to type contexts.

Lemma 4.70 (adapted and generalized from Lemma 1.3.24(1) in [SV09]).
Let Θ|Γ,Γ′ ` t : Φ be a proved term. If x 6∈ ftmv(t) for each term variable x ∈ |Γ′|, then we can also
derive proved term Θ|Γ ` t : Φ.

116 4 POLYMORPHICALLY TYPED QUANTUM LAMBDA CALCULUS

Proof. We show this by induction on the derivation of Θ|Γ,Γ′ ` t : Φ.

Base cases: Assume Θ|Γ,Γ′ ` new : Ψ has been derived using rule (new operator). The first premise then
states Θ ` Γ,Γ′. From this consistency result, we conclude also Γ alone is consistent with respect
to Θ. And since the other premises do not mention Γ or Γ′, we thus can derive Θ|Γ ` new : Ψ using
the same rule. Of course, the same argument holds for rules (meas operator), (unitary operator)
and (Unit term).

Suppose Θ|Γ,Γ′ ` x : Ψx has been derived by rule (term variable). Then by the first and third
premises of this rule, variable-type pair x:Φx must appear in Γ for some type term Φx (such that
Θ ` Φx ≺: Ψx is a restricted proved subtype), since x ∈ ftmv(x) and we assume |Γ′| does not
contain any term variables that occur freely in t. As above, we get from this consistency result also
the consistency statement Θ ` Γ, and thus we may derive Θ|Γ ` x : Ψx.

Induction cases: Suppose Θ|Γ,Γ′ ` t : Φ has been derived by

Θ|Γ,Γ′, x:Φx ` t′ : Ψ′
(linear term abstraction) .

Θ|Γ,Γ′ ` (λx:Φx.t
′) : (Φx(Ψ′)

Because of assumption y 6∈ |Γ′| for all y ∈ ftmv((λx:Φx.t
′)) = ftmv(t′) \ {x}, and due to the fact

x 6∈ |Γ′| (since otherwise Γ,Γ′, x:Φx would not be a proper term context), we know none of the free
term variables in t′ does occur in |Γ′|. Hence, we then get proved term Θ|Γ ` t′ : Ψ′ by induction.
Consequently, we may derive proved term Θ|Γ ` (λx:Φx.t

′) : (Φx(Ψ′) using the same rule. A
similar line of argument can be applied in the cases of rules (nonlinear term abstraction), (linear
pair abstraction) and (nonlinear pair abstraction).

Now suppose Θ|Γ,Γ′ ` t : Φ has been derived by

Θ|!∆, !∆′,Γ1,Γ
′
1 ` s′ : !n(Φ′(Ψ′) Θ|!∆, !∆′,Γ2,Γ

′
2 ` t′ : Φ′

(term application) ,
Θ|!∆, !∆′,Γ1,Γ

′
1,Γ2,Γ

′
2 ` (s′ t′) : Ψ′

where !∆,Γ1,Γ2 = Γ and !∆′,Γ′1,Γ
′
2 = Γ′. Since none of the term variables in ftmv((s′ t′)) =

ftmv(s′) ∪ ftmv(t′) appears in |!∆′,Γ′1,Γ′2|, it is clear that none of the term variables in |!∆′,Γ′1|
appears in ftmv(s′) and none of the term variables in |!∆′,Γ′2| appears in ftmv(t′). Hence, we obtain
proved terms Θ|!∆,Γ1 ` s′ : !n(Φ′ (Ψ′) and Θ|!∆,Γ2 ` t′ : Φ′ by induction. Having these, we
may then use the same rule to derive proved term Θ|!∆,Γ1,Γ2 ` (s′ t′) : Ψ′.
We can handle the cases of derivation rules (pair term) and (case distinction) analogously.

Assume Θ|Γ,Γ′ ` t : Φ has been derived by one of the rules (linear type abstraction), (nonlinear
type abstraction), (type application), (left inclusion), (right inclusion). In each of these rules there
in one premise of the form Θ′|Γ,Γ′ ` t′ : Ψ′, where function term t′ is a subexpression of t in so
that ftmv(t) = ftmv(t′). Hence, we can apply induction to this premise and thus obtain proved
term Θ′|Γ ` t′ : Ψ′. Since none of the mentioned rules takes the included term context Γ further
into account, we may thus apply the respective rule again to all premises using the modified one,
however, and in this way derive proved term Θ|Γ ` t : Φ.

Finally, the case where Θ|Γ,Γ′ ` t : Φ has been derived by (recursion) can be covered by combing
the arguments from cases (linear term abstraction) and (term application).

For the moment this already concludes our efforts to derive further rules for the derivation of proved
terms. We will suggest the derivation of a few more rules in the section on type safety, more precisely in
subsection 4.6.2.

Next we turn our attention to operational semantics for polymorphically typed QLC function terms.

4.5 Operational semantics

We have already presented operational semantics for untyped QLC in section 3.2. Furthermore, we have
said we follow the Curry-style of language definition or, in other words, we consider semantics prior
to typing. Consequently, our operational semantics for polymorphically typed QLC does not essentially
differ from that of untyped QLC, although it is extended appropriately in order to deal with explicit typing
annotations and to implement a mechanism concerned with the syntactic constructs of type abstraction
and type application.

4.5 Operational semantics 117

At first we modify our notion of fully evaluated function terms – called value terms – to the setting
of polymorphically typed function terms. As we have term and pair abstractions among value terms in
untyped QLC, we keep these as value terms, however, supplemented with explicit type annotations, but
additionally we also consider type abstractions as fully evaluated. Hence, we end up with the following
modified and extended definition.

Definition 4.71 (polymorphically typed value terms).
In analogy to Definition 3.7 we inductively define the set TpValue of polymorphically typed value
terms (or value terms for short when there is no danger of confusion) by

c, x, 〈〉 ∈ TpValue , where c ∈ Cterm and x ∈ Vterm ,

(λx:Φx.t), (λ〈x:Φx, y:Φy〉.t) ∈ TpValue , where x, y ∈ Vterm , Φx,Φy ∈ Ttype and t ∈ TpQLC ,

injl(v), injr(v) ∈ TpValue , where v ∈ TpValue ,

〈v, w〉 ∈ TpValue , where v, w ∈ TpValue ,

(ΛX<:ΦX .t) ∈ TpValue , where X ∈ Vtype , ΦX ∈ Ttype and t ∈ TpQLC .

We moreover need to modify our definition of quantum closures. The main novelty is that we require
polymorphically typed function terms embedded in quantum closures to not contain any free type vari-
ables. Thus, the name “closure” still keeps its intention since the linking sequence binds the remaining
free term variables in the embedded function term t.

Definition 4.72 (quantum closures over polymorphically typed function terms).
A quantum closure over polymorphically typed function terms is a triple [Q,L, t], where Q ∈ Hn
and L = |q1, . . . , qn〉 are defined as in the untyped setting, and t ∈ TpQLC is a polymorphically
typed function term which does not contain free type variables and whose free term variables all
appear in L, i.e. ftyv(t) = ∅ and ftmv(t) ⊆ {q1, . . . , qn}.

Next we transfer the notion of well-typedness to quantum closures. In the definition we have just
given all remaining free term variables in t are bound by linking sequence L = |q1, . . . , qn〉, and we have
seen (when presenting operational semantics for untyped QLC in section 3.2) that each of these free term
variables q1, . . . , qn is associated to exactly one qubit in state Q. Hence, we intuitively know each of the
q1, . . . , qn shall be assigned type Qbit . We could explicitly annotate this in the linking sequence itself,
for instance as |q1:Qbit , . . . , qn:Qbit〉. But since this is quite uncomfortable and in fact does not carry
any interesting information (since none of the q1, . . . , qn could possibly be assigned a different type than
Qbit), we rather renounce explicit annotations of the type of term variables q1, . . . , qn. Nevertheless, we
implicitly use the discussed type assignments when we introduce the following concept of well-typedness
for quantum closures.

Definition 4.73 (well-typed state).
A quantum closure [Q,L, t] = [Q, |q1, . . . , qn〉 , t] is considered well-typed, if there exists a type term
Φ such that

q1:Qbit , . . . , qn:Qbit ` t : Φ

is a proved term. We write [Q,L, t] : Φ to denote a well-typed quantum closure together with its
associated type term. We then call [Q,L, t] : Φ a well-typed state.

In the following definition we present the basic reduction rules that implement the “classical control”
part of polymorphically typed QLC. As we have done during our presentation of operational semantics
for untyped QLC, we take a simplified point of view for these basic reduction rules and ignore (at least for
the time being) the parts of quantum closures that remain unchanged by these rules. That means each of
the below defined basic reduction rules s→ t induces a probabilistic reduction rule [Q,L, s]→1 [Q,L, t]
on quantum closures.

Definition 4.74 (basic reduction rules for polymorphically typed function terms).
We syntactically extend the basic reduction rules we have introduced in Definition 3.8:

(λx:Φx.t) v → t[v/x] ,

(λ〈x:Φx, y:Φy〉.t) 〈v, w〉 → t[v/x,w/y] ,

118 4 POLYMORPHICALLY TYPED QUANTUM LAMBDA CALCULUS

match injl(v) with (λx:Φx.tl) | (λy:Φy.tr)→ (λx:Φx.tl) v ,

match injr(w) with (λx:Φx.tl) | (λy:Φy.tr)→ (λy:Φy.tr) w ,

letrec f:Φf = (λx:Φx.s) in t→ t
[
(λx:Φx.(letrec f:Φf = (λx:Φx.s) in s))

/
f
]

.

In addition, we get one completely new basic reduction rule:

(ΛX<:ΦX .t) Ψ→ t[Ψ/X] .

At this point we have seen all non-trivial changes that are necessary to adapt operational semantics
defined for untyped QLC to obtain operational semantics for polymorphically typed QLC. Hence, it is
enough to say that we adapt the remaining Definitions 3.9, 3.10, 3.11 and 3.12 accordingly, so that the
definition of operational semantics for our polymorphic extension of QLC is complete in the spirit of the
definitions in the current section.

Let us now illustrate operational semantics, typing of function terms and the relationships of untyped
QLC, simply typed QLC and polymorphically typed QLC in an example, for which the missing details
are elaborated in appendix C.1. For brevity we concentrate on the involved function terms rather than
full quantum closures, since their form is only of marginal interest for the subsequent considerations.

Example 4.75. Let us come back to the fair quantum coin we already encountered in Example 3.5
modeled by untyped QLC function term

coin ≡
(
λz.meas (H (new 0))

)
.

Recall that we can computationally model a toss of our quantum coin by term application (coin 〈〉)
which then evaluates to a value term representing a random bit. Since the shape of the resulting
value term is determined by chance (but lies in the range {0, 1}, for which we have defined 0 ≡
injr(〈〉) and 1 ≡ injl(〈〉) in section 3), we denote the final result of a full evaluation of (coin 〈〉) by
(coin 〈〉)↓.
In the untyped setting, we may use Church numerals

pnq ≡
(
λf.
(
λx.(f (. . . (f︸ ︷︷ ︸

n times

x) . . .))
))

to formulate a function term whose full evaluation results in a tuple of n random bits in an iter-
ative manner when it is evaluated according to QLC ’s operational semantics. Thus, the following
evaluation of function term

ttoss :≡
((
pn− 1q (λy.〈coin 〈〉, y〉)

)
(coin 〈〉)

)
may be interpreted as n tosses of our fair quantum coin:(

pn− 1q (λy.〈coin 〈〉, y〉)
)

(coin 〈〉)→∗
〈
(coin 〈〉)↓, . . . , (coin 〈〉)↓︸ ︷︷ ︸

n times

〉
.

(See appendix C.1.2 for a more detailed presentation of this evaluation.)

In the simply typed setting we cannot derive a type for ttoss. The problem lies in the type of term
variable f in function term pn− 1q, since, on the one hand, each occurrence of f in subexpression
(f (. . . (f x) . . .)) would need to be assigned the same type. On the other hand, function term
(λy.〈coin 〈〉, y〉) needs to be assigned a type of the form (Φ ((Ψ ⊗ Φ)), where Φ is the type
assigned to term variable y and Ψ is the type assigned to (coin 〈〉). Hence, in order to derive a
simple (i.e. non-polymorphic) type for term variable f in pn − 1q in ttoss, we would need to unify
type terms such as (Φ((Ψ⊗Φ)) and ((Ψ⊗Φ)((Ψ⊗ (Ψ⊗Φ))). This clearly leads to a recursive
structure and finally to an infinite type term, which is in this general form beyond the capabilities
of simply typed QLC.49

49In recursive type systems one can deal with such recursive types by defining appropriate isomorphisms, see chapters 20
and 21 in [Pie02] or system λµ in section 4 in [Bar92] for more details.

4.5 Operational semantics 119

In the polymorphically typed setting, we can extend Church numerals by type abstractions and type
applications to enable a polymorphic typing with respect to tuples, i.e. right-nested pairs:

pnq!⊗ :≡
(
ΛX<:!Top.

(
λf:!Φf .

(
λx:!X.(f X !⊗n (f X !⊗n−1(. . . (f !X x) . . .)))

)))
,

where Φf stands as abbreviation for type term

Φf := (∀Y<:!Top.(!Y (!!(!X ⊗ Y)))

and where we define the ·!⊗n operator by

Φ!⊗1 := !Φ ,

Φ!⊗m+1 := !(!Φ⊗ Φ!⊗m)

for arbitrary Φ ∈ Ttype and for all m ≥ 0. Furthermore, we annotate the type assigned to z in
function term coin in the obvious way coinpoly :≡

(
λz:Unit .meas (H (new 0))

)
, and having done

this, we also lift function term ttoss to the polymorphic setting:

tpoly :≡
(
pn− 1q!⊗ !Bit

(
ΛY<:!Top.(λy:!Y.〈coinpoly 〈〉, y〉)

)) (
coinpoly 〈〉

)
.

In appendix C.1.1 we show how to derive proved terms ` (coinpoly 〈〉) : !!Bit and also ` tpoly :
!(!Bit)!⊗n. According to operational semantics for polymorphically typed QLC as we have defined
it in the current subsection, we get the following full evaluation of function term tpoly:50(

pn− 1q!⊗ !Bit
(
ΛY<:!Top.(λy:!Y.〈coinpoly 〈〉, y〉)

)) (
coinpoly 〈〉

)
→∗

〈
(coinpoly 〈〉)↓, . . . , (coinpoly 〈〉)↓︸ ︷︷ ︸

n times

〉
.

Let us take a look at how we can derive a type for the final result of this evaluation. We have said
that each occurrence of (coinpoly 〈〉)↓ either equals 1 ≡ injl(〈〉) or 0 ≡ injr(〈〉), respectively. We
can perform the following derivations to obtain proved terms ` 1 : !nBit and ` 0 : !nBit for any
n ≥ 0. (Please recall, we have defined Bit = (Unit ⊕Unit) in Convention 4.60.)

` ∅
(Unit term)

` 〈〉 : !nUnit
` ∅

(Unit type)` !nUnit
(left injection)

` injl(〈〉) : !n(Unit ⊕Unit)︸ ︷︷ ︸
≡ ` 1 : !nBit

` ∅
(Unit type)` !nUnit

` ∅
(Unit term)

` 〈〉 : !nUnit
(right injection)

` injr(〈〉) : !n(Unit ⊕Unit)︸ ︷︷ ︸
≡ ` 0 : !nBit

Since we can assign the same type in both cases, this directly translates to proved term ` (coinpoly 〈〉)↓ :
!nBit for any n ≥ 0. We use this knowledge to perform the following derivation

` (coinpoly 〈〉)↓ : !!!!Bit

` (coinpoly 〈〉)↓ : !n+2Bit ` (coinpoly 〈〉)↓ : !n+2Bit
(pair term)

`
〈
(coinpoly 〈〉)↓, (coinpoly 〈〉)↓

〉
: !n(!!Bit ⊗ !!Bit)

. .
.

(pair term)

`
〈
(coinpoly 〈〉)↓, . . . , (coinpoly 〈〉)↓︸ ︷︷ ︸

n times

〉
: !!(!!Bit ⊗ (!Bit)!⊗n−1)︸ ︷︷ ︸

= !(!Bit)!⊗n

from which we eventually obtain proved term

`
〈
(coinpoly 〈〉)↓, . . . , (coinpoly 〈〉)↓

〉
: !(!Bit)!⊗n .

This result is another indication towards the type preservation property that we will investigate
further in subsection 4.6.2.

50Again, for a more detailed presentation see appendix C.1.2.

120 4 POLYMORPHICALLY TYPED QUANTUM LAMBDA CALCULUS

The above example gives some insight into the expressiveness of polymorphically typed QLC in contrast
to simply typed QLC. Although a detailed investigation of this expressiveness might be of interest, we
do not follow this path in depth since it is clearly beyond the scope of the present work.

Nevertheless, we take one more quick glance at expressiveness. At the end of our considerations
concerned with untyped QLC in section 3 we have shown there are function terms t in QLC for which a
quantum closure [Q,L, t] does not have a full evaluation or, in other words, we never reach an irreducible
state when evaluating [Q,L, t]. We have also given an example for such a function term, namely

letrec f = (λx.(f 〈〉)) in (f 〈〉) .

A natural and interesting question is: can we assign a type to this function term (equipped with appro-
priate type annotations)? The simple answer to this question is given by proved term

`
(
letrec f:!(Unit (Ψ) = (λx:Unit .(f 〈〉)) in (f 〈〉)

)
: Ψ ,

where we may even choose an arbitrary type term Ψ as long as ` Ψ can be derived as a proved type. A
derivation of the above proved term can be found in appendix C.2.

4.6 Type safety

In the beginning of section 4.4 we have stated that the purpose of deriving proved terms is to distinguish
the subset of well-formed terms or, in other words, to rule out error terms (cf. Definition 4.56). But that
is only one aspect of the important concept of type safety. On its own this property named progress
property is not worth much. Imagine we have a well-typed state [Q, |q1, . . . , ql〉 , t] : Φ. What we then
know due to the progress property is that t is not an error term. That means, t either is a value term
or t is reducible. But what can we say about [Q′, |q1, . . . , ql′〉 , t′] that results from an evaluation step
[Q, |q1, . . . , ql〉 , t] →p [Q′, |q1, . . . , ql′〉 , t′]? To make any statement about the well-formedness of t′, we
then have to try to find a type term Φ′ and a derivation of proved term q1:Qbit , . . . , ql′:Qbit ` t′ : Φ′ (at
runtime!). However, in order to find out whether [Q′, L′, t′] is an error state or not, we could also just
syntactically check whether t′ is a value term and otherwise check all reduction rules for their applicability,
instead of performing a presumably more expensive typability check. Hence, it becomes clear that we need
another property that complements the progress property. The sought property is called type preservation
and we already started to investigate our type system with respect to type preservation in subsection
4.2.5. However, for the sake of completeness, we here again give a compact description of what type
preservation and the progress property are about: (adapted from [Pie02], page 95)

Progress: A well-typed quantum closure either is a value state or it can take an evaluation step according
to operational semantics, i.e. it is not an error state.

Type preservation: If a well-typed quantum closure takes an evaluation step, then the resulting quantum
closure is also well-typed.

The description of the type preservation property is somewhat weaker than the name actually indicates,
since when a well-typed quantum closure [Q,L, t] of type Φ is evaluated by [Q,L, t] →p [Q′, L′, t′], then
type preservation, as it is described above, says there is a type term Ψ such that [Q′, L′, t′] : Ψ is a well-
typed state. However, type preservation does not necessarily imply Φ = Ψ although the name indicates
it. Indeed, many type systems guarantee this strong version of type preservation, but there are some that
do not. In subsection 4.6.2 we take a look at which form of type preservation our system (presumably)
supplies.

Obviously, it is desirable to have both the progress property and the type preservation property
together, since then it is enough to show for a quantum closure [Q,L, t] that it is well-typed to ensure
that all evaluation results [Q′′, L′′, t′′] with [Q,L, t] →∗p [Q′′, L′′, t′′] are well-typed as well. In other
words, we then know that an evaluation of [Q,L, t] cannot arrive at an evaluation result [Q′′, L′′, t′′] that
is neither reducible nor a value state.

Due to the limited scope of the present work, we will not develop the full formal details that are
necessary to prove the type preservation property of polymorphically typed QLC. Nevertheless, we sketch
a possible path that may lead to this result in subsection 4.6.2 and we have already pointed out some
positive indications towards type preservation throughout the preceding sections. Regarding the progress
property, we conduct further investigations in subsection 4.6.1 which eventually lead to a confirmation of
the validity of this property. These investigations put together yield the following conjectured result:

4.6 Type safety 121

Conjecture 4.76 (type safety, adapted from Corollary 1.3.33 in [SV09]).
A well-typed quantum closure in polymorphically typed QLC does not reach an error state during eval-
uation. In other words, if there exists a full evaluation for a quantum closure [Q,L, t] with final result
[Q↓, L↓, t↓], then t↓ is a value term.

As already said, this would be a direct consequence of the progress property in combination with type
preservation (in its strong form or in the weak variant that we stated above).

Remark: Type preservation in its strong form does indeed hold for simply typed QLC. This is confirmed
by Theorem 1.3.30 in [SV09]. However, Selinger and Valiron call this property by its alternative
(also widely used) name “subject reduction.” On the other hand, also the progress property does
hold for simply typed QLC (as it is shown by Theorem 1.3.32 in [SV09]).

In addition to the considerations on “classical” type safety, we show in subsection 4.6.3 that for each
well-typed state [Q, |q1, . . . , ql〉 , t] : Φ function term t fulfills a certain linearity constraint which entails,
roughly speaking, that none of the q1, . . . , ql appears more than once freely in t. This is true except for
the case where a qj with 1 ≤ j ≤ l appears at the same time in alternatives (λx:Φx.tl) and (λy:Φy.tr) in
a case distinction term (match s with (λx:Φx.tl) | (λy:Φy.tr)). Of course, this property is also preserved
during evaluation if the type preservation property holds for our polymorphic extension of QLC.

4.6.1 Progress property

We start by showing that polymorphically typed QLC exhibits the progress property. In a preliminary
step we establish a helpful lemma telling us what the possible forms of a value term v and the associated
type term Φ in a proved term Θ|Γ ` v : Φ can be.

Lemma 4.77 (canonical forms51, adapted and extended from Lemma 1.3.31 in [SV09]).
Let Θ|Γ ` v : Φ be a proved term where v is a polymorphically typed value term. Then exactly one of the
following cases applies (m and n may be equal to zero or greater in each case):

(i) v ∈ Cterm is a term constant,

(ii) v ∈ Vterm is a term variable,

(iii) v = 〈〉 and Φ is of the form Φ = !nUnit,

(iv) v is of the form v = (λx:Φx.t) and Φ is of the form Φ = !n(Φx(Ψ′),

(v) v is of the form v = (λ〈x:Φx, y:Φy〉.t) and Φ is of the form Φ = !m(!n(Φx ⊗ Φy)(Ψ′),

(vi) v is of the form v = injl(w) or v = injr(w) and Φ is of the form Φ = !n(Φ′ ⊕Ψ′) in both cases,

(vii) v is of the form v = 〈w1, w2〉 and Φ is of the form Φ = !n(Φ′ ⊗Ψ′), or

(viii) v is of the form v = (ΛX<:ΦX .t) and Φ is of the form Φ = !n(∀X<:ΦX .Ψ
′).

Proof. We confirm this by inspection of the derivation rules for proved terms. What we find is that each
of the cases (i) to (viii) is associated to one or more derivation rules according to the following pattern.

(i): (new operator), (meas operator) and (unitary operator)
(ii): (term variable)
(iii): (Unit term)
(iv): (linear term abstraction) and (nonlinear term abstraction)
(v): (linear pair abstraction) and (nonlinear pair abstraction)
(vi): (left injection) and (right injection)

(vii): (pair term)
(viii): (linear type abstraction) and (nonlinear type abstraction)

51The name “canonical forms” has been taken over from [Pie02].

122 4 POLYMORPHICALLY TYPED QUANTUM LAMBDA CALCULUS

That means, for instance, if Θ|Γ ` v : Φ has been derived by one of the rules (new operator), (meas
operator) or (unitary operator), then case (i) applies and no other case. This is due to the fact that none
of the above mentioned rules is associated to two distinct cases.

On the other hand, whenever a proved term Θ|Γ ` t : Φ has been derived by one of the derivation
rules (term application), (type application), (case distinction) or (recursion), then we know t cannot be
a value term. This becomes evident when we inspect these derivation rules and the definition of value
terms.

By now we have not explicitly formulated the result of Lemma 4.77, but we have already been using
it implicitly in several places. In these places, we referred to an “inspection of the derivation rules” or
we have been using similar formulations. Now that we have explicitly stated the connection between the
forms of function terms and type terms in proved terms and the derivation rule the respective proved
term has been derived with, we can use it in the proof of the progress property that is established in the
following theorem.

Theorem 4.78 (progress). Let [Q0, L0, t0] : Ψ be a well-typed state with L0 = |q1, . . . , qk〉 for some
k ≥ 0, i.e. q1:Qbit, . . . , qk:Qbit ` t0 : Ψ is a proved term. Then either t0 is a value term or there exists a
quantum closure [Q1, L1, t1] such that we have a reduction step [Q0, L0, t0] →p [Q1, L1, t1] for some real
number p ∈ [0, 1] from the unit interval.

Proof. We prove this by induction on the derivation of proved term q1:Qbit , . . . , qk:Qbit ` t0 : Ψ:

Base cases: Suppose q1:Qbit , . . . , qk:Qbit ` t0 : Ψ has been derived by one of the rules (new operator),
(meas operator), (unitary operator), (term variable), (linear term abstraction), (nonlinear term
abstraction), (linear type abstraction), (nonlinear type abstraction), (Unit term), (linear pair ab-
straction) or (nonlinear pair abstraction). By inspection of all these rules, we find that t0 must
then be a value term, i.e. t0 ∈ TpValue .

Induction case: Assume q1:Qbit , . . . , qk:Qbit ` t0 : Ψ has been derived by

Γ1 ` s′ : !m(Φ(Ψ) Γ2 ` t′ : Φ
(term application)

q1:Qbit , . . . , qk:Qbit ` (s′ t′) : Ψ

for some m ≥ 0 and where we set Γ1,Γ2 := q1:Qbit , . . . , qk:Qbit . We may use (term weakening) to
obtain proved terms Γ1,Γ2 ` s′ : !m(Φ(Ψ) and Γ1,Γ2 ` t′ : Φ, and thus [Q0, L0, s

′] : !m(Φ(Ψ)
and [Q0, L0, t

′] : Φ are well-typed states. Then, by induction, we need to distinguish several cases:

[Q0, L0, t
′] is reducible and there thus is an evaluation step [Q0, L0, t

′]→p [Q1, L1, t
′′]. In this case

we may employ the following instance of a congruence rule from Definition 3.11 (lifted to the
polymorphic setting)

[Q0, L0, t
′]→p [Q1, L1, t

′′]

[Q0, L0, s
′ t′]→p [Q1, L1, s

′ t′′]

and thus come up with evaluation step [Q0, L0, s
′ t′]→p [Q1, L1, s

′ t′′].

t′ is a value term and [Q0, L0, s
′] is reducible with [Q0, L0, s

′] →p [Q1, L1, s
′′] being an adequate

evaluation step. Then the following instance of a congruence rule helps to get an evaluation
step [Q0, L0, s

′ t′]→p [Q1, L1, s
′′ t′]:

[Q0, L0, s
′]→p [Q1, L1, s

′′]
.

[Q0, L0, s
′ t′]→p [Q1, L1, s

′′ t′]

s′ and t′ are value terms. By Lemma 4.77 and since every free term variable in t0 is assigned type
Qbit (due to Lemma 4.67 and term context q1:Qbit , . . . , qk:Qbit) we conclude s′ can only take
on one of the following forms:

s′ = new. In this case we conclude (by derivation rule (new operator) and Proposition 4.55)
that !m(Φ(Ψ) is of the form !m(!nBit (Qbit). We can thus collect the following facts:

• t′ is of type !nBit = !n(Unit ⊕Unit), cf. Convention 4.60,

4.6 Type safety 123

• t′ is a value term,

• term constants are always assigned function types,

• all free term variables in t′ have type Qbit (due to Lemma 4.67).

Hence, by Lemma 4.77, t′ must be of the form t′ = injl(〈〉) ≡ 1 or t′ = injr(〈〉) ≡ 0. But
then we can perform one of the two reduction steps[

Q0, |q1, . . . , qk〉 ,new 1
]
→1

[
Q0 ⊗ |1〉 , |q1, . . . , qk, qk+1〉 , qk+1

]
or[
Q0, |q1, . . . , qk〉 ,new 0

]
→1

[
Q0 ⊗ |0〉 , |q1, . . . , qk, qk+1〉 , qk+1

]
,

respectively, according to Definition 3.10 (lifted to the polymorphic setting).

s′ = meas. Then we conclude (by derivation rule (meas operator), Proposition 4.55 and
Theorem 4.39) that !m(Φ (Ψ) is of the form !m(Qbit (!nBit).52 In analogy to the
above induction case we can collect the following facts:

• t′ is of type Qbit ,

• t′ is a value term,

• term constants are always assigned function types,

• all free term variables in t′ have type Qbit (due to Lemma 4.67).

It thus follows t′ must be a (free) term variable in range {q1, . . . , qk}, i.e. t′ = qi with
1 ≤ i ≤ k. But then we can perform one of the two reduction steps[

αQ0,0 + βQ0,1, |q1, . . . , qk〉 ,meas qi
]
→|α|2

[
Q0,0, |q1, . . . , qk〉 , 0

]
or[
αQ0,0 + βQ0,1, |q1, . . . , qk〉 ,meas qi

]
→|β|2

[
Q0,1, |q1, . . . , qk〉 , 1

]
,

respectively, also according to the lifted variant of Definition 3.10.

s′ = (λx:Φx.s
′′). This case is fairly easy since we can immediately apply evaluation step[

Q0, L0, (λx:Φx.s
′′) t′

]
→1

[
Q0, L0, s

′′[t′/x]
]

according to Definition 4.74 and the lifted
variant of Definition 3.10.

s′ = (λ〈x:Φx, y:Φy〉.s′′). Due to Lemma 4.77 we conclude Φ in !m(Φ (Ψ) has the form
Φ = !n(Φx ⊗ Φy). Since all term constants are assigned a function type and since all free
term variables in t′ are of type Qbit , Lemma 4.77 also tells us t′ of type !n(Φx⊗Φy) must
be of the form t′ = 〈t′1, t′2〉. And since we assume t′ is a value term, t′1 and t′2 are both
value terms. Hence, the following evaluation step is possible[

Q0, L0, (λ〈x:Φx, y:Φy〉.s′′) 〈t′1, t′2〉
]
→1

[
Q0, L0, s

′′[t′1/x, t
′
2/y]

]
.

Suppose q1:Qbit , . . . , qk:Qbit ` t0 : Ψ has been derived by

q1:Qbit , . . . , qk:Qbit ` t0 : (∀X<:ΦX .Ψ
′)

` Υ
` Υ <: ΦX

(type application) .
q1:Qbit , . . . , qk:Qbit ` (t0 Υ) : Ψ′[Υ/X]

Since all term constants are assigned function types, and since all free terms variables are of type
Qbit , we conclude by Lemma 4.77 that t0 is of the form t0 = (ΛX<:ΦX .t

′). Due to Definition 4.74
we then immediately have evaluation step[

Q0, L0, (ΛX<:ΦX .t
′) Υ

]
→1

[
Q0, L0, t

′[Υ/X]
]

.

52In this argument Theorem 4.39 tells us there is no leading exponential in front of Qbit because of premise ` Ψ in rule
(meas operator).

124 4 POLYMORPHICALLY TYPED QUANTUM LAMBDA CALCULUS

Assume q1:Qbit , . . . , qk:Qbit ` t0 : Ψ has been derived by

Γ1 ` t′1 : !nΨ′1 Γ2 ` t′2 : !nΨ′2
(pair term) ,

q1:Qbit , . . . , qk:Qbit ` 〈t′1, t′2〉 : !n(Ψ′1 ⊗Ψ′2)

where we set Γ1,Γ2 := q1:Qbit , . . . , qk:Qbit . In analogy to the induction step of rule (term applica-
tion), we find well-typed states [Q0, L0, t

′
1] : !nΨ′1 and [Q0, L0, t

′
2] : !nΨ′2 using (term weakening).

Hence, by induction, we need to distinguish three cases:

[Q0, L0, t
′
2] is reducible by an evaluation step [Q0, L0, t

′
2] →p [Q1, L1, t

′′
2]. Then, using the appro-

priate congruence rule from the lifted variant of Definition 3.11, we come to evaluation step[
Q0, L0, 〈t′1, t′2〉

]
→p

[
Q1, L1, 〈t′1, t′′2〉

]
.

t′2 is a value term and [Q0, L0, t
′
1] is reducible by an evaluation step [Q0, L0, t

′
1] →p [Q1, L1, t

′′
1].

Symmetrically to the previous case, we then get evaluation step
[
Q0, L0, 〈t′1, t′2〉

]
→p[

Q1, L1, 〈t′′1 , t′2〉
]
, using the appropriate congruence rule.

t′1 and t′2 are both value terms. Consequently, 〈t′1, t′2〉 is also a value term.

We may argue along similar (even simpler) lines for the cases where q1:Qbit , . . . , qk:Qbit ` t0 : Ψ
has been derived using rules (left injection) or (right injection).

Suppose q1:Qbit , . . . , qk:Qbit ` t0 : Ψ has been derived by

Γ1 ` s : !n(Φx ⊕ Φy)

Γ2 ` (λx:Φx.tl) : !m(!nΦx(Ψ)

Γ2 ` (λy:Φy.tr) : !m(!nΦy (Ψ)
(case distinction) ,

q1:Qbit , . . . , qk:Qbit `
(
match s with (λx:Φx.tl) | (λy:Φy.tr)

)
: Ψ

where we set Γ1,Γ2 := q1:Qbit , . . . , qk:Qbit . Using rule (term weakening), we get proved term
Γ1,Γ2 ` s : !n(Φx ⊕ Φy) from the first premise, and thus we have well-typed state [Q0, L0, s] :
!n(Φx ⊕ Φy). By induction, we then need to distinguish two cases:

[Q0, L0, s] is reducible and we have evaluation step [Q0, L0, s]→p [Q1, L1, s
′′]. Then we can use the

following instance of a congruence rule from Definition 3.11 to obtain the desired evaluation
step [Q0, L0, t0]→p [Q1, L1, t1]: [

Q0, L0, s
]
→p

[
Q1, L1, s

′′]
.[

Q0, L0,match s with (λx:Φx.tl) | (λy:Φy.tr)
]

→p

[
Q1, L1,match s

′′ with (λx:Φx.tl) | (λy:Φy.tr)
]

s is a value term. By Lemma 4.77 and due to the facts that all term constants are assigned a
function type and all free term variables in s have type Qbit , we conclude s is of the form
injl(s

′) or injr(s
′), where s′ ∈ TpValue is a value term in both cases. Depending on the exact

form of s, Definition 4.74 tells us which of the following two reduction steps can be performed:[
Q0, L0,match injl(s

′) with (λx:Φx.tl) | (λy:Φy.tr)
]
→1

[
Q0, L0, (λx:Φx.tl) s

′]
or[
Q0, L0,match injr(s

′) with (λx:Φx.tl) | (λy:Φy.tr)
]
→1

[
Q0, L0, (λy:Φy.tr) s

′] .

Finally suppose q1:Qbit , . . . , qk:Qbit ` t0 : Ψ has been derived by

f:!(Φx(Υ) ` (λx:Φx.s) : !(Φx(Υ) f:!(Φx(Υ), q1:Qbit , . . . , qk:Qbit ` t′ : Ψ
(recursion) .

q1:Qbit , . . . , qk:Qbit ` (letrec f:!(Φx(Υ) = (λx:Φx.s) in t
′) : Ψ

4.6 Type safety 125

According to Definition 4.74 and the lifted variant of Definition 3.10, we can perform evaluation
step [

Q0, L0, letrec f:!(Φx(Υ) = (λx:Φx.s) in t
′
]

→1

[
Q0, L0, t

′[(λx:Φx.(letrec f:!(Φx(Υ) = (λx:Φx.s) in s))
/
f
]]

.

This result clearly shows that we cannot derive a proved term Θ|Γ ` e : Φ for any error term e.

Remark: It is worthwhile to compare the just proven result to its counterpart Theorem 1.3.32 in [SV09]
which is concerned with the progress property for simply typed QLC. There are two interesting
respects in which Selinger’s and Valiron’s result is stronger than ours.

Firstly, in Theorem 1.3.32 in [SV09] it is not only stated that if a well-typed quantum closure
[Q0, L0, t0] is not a value state, then there exists a quantum closure [Q1, L1, t1] such that we have
an evaluation step [Q0, L0, t0] →p [Q1, L1, t1], but it is even said [Q1, L1, t1] is well-typed. This is
legitimate since Selinger and Valiron show (strong) type preservation in simply typed QLC before-
hand (Theorem 1.3.30 in [SV09]). In our above theorem, however, we can only claim [Q1, L1, t1] is
a quantum closure since we do not establish a full type preservation result.

Secondly, Theorem 1.3.32 in [SV09] additionally establishes the following property. Let

resp
(
[Q,L, t]

)
:=
{

[Q′, L′, t′]
∣∣ ∃Q′, L′, t′.[Q,L, t]→p [Q′, L′, t′]

}
be the set of all evaluation results that can be obtained from [Q,L, t] in a single evaluation step
with probability p ∈ [0, 1]. Then for each (well-typed) reducible quantum closure it holds∑

p∈[0,1]

p ·
∣∣resp([Q,L, t])

∣∣ = 1 .

This is indeed an important property if one is interested in confluence and weak normalization of
quantum closure reduction and properties connected with probabilistic reduction systems in general
and in the particular context of quantum computation (where probability amplitudes occur rather
than classical probabilities).

But since our focus is clearly on typing, and since our polymorphic approach is (in principle) not
limited to the peculiarities of QLC and quantum computation in general, we do not go into the
full formal details in the present work. Nevertheless, we claim that the described property holds
for untyped QLC and for polymorphically typed QLC as well. The informal evidence is as follows.
On the one hand, the call-by-value evaluation strategy we have established in QLC ’s operational
semantics guarantees that for each reducible quantum closure there is exactly one redex that can
be reduced next. On the other hand, almost all probabilistic reduction rules are applied with
probability 1. And for the only exception we have discussed after Definition 3.10 that there are two
alternative evaluation steps whose respective probabilities sum up to 1.

4.6.2 Further towards type preservation

We have already met the type preservation property in several discussions throughout the present work.
Type preservation is a very important property of type systems indeed. Again, we point out different
grades at which type preservation could appear with respect to an evaluation [Q,L, t]→∗p [Q′, L′, t′]:

weak form: [Q,L, t] : Φ and [Q′, L′, t′] : Ψ are well-typed states but we know nothing about the
relationship between type terms Φ and Ψ.

strong form: [Q,L, t] : Φ and [Q′, L′, t′] : Φ are well-typed states and can be assigned the same type.

intermediate form: [Q,L, t] : Φ and [Q′, L′, t′] : Φ′ are well-typed states and we have Φ′ ≺: Φ or, a bit
weaker, Φ′ <: Φ.

126 4 POLYMORPHICALLY TYPED QUANTUM LAMBDA CALCULUS

For simply typed QLC Selinger and Valiron have confirmed the strong form of type preservation. And as
already said before, we have pointed out some positive indications throughout our previous considerations
on polymorphically typed QLC so that we may very well conjecture type preservation for our polymorphic
extension. It is the purpose of this subsection to give a sketch of how we may approach the confirmation
of this conjecture in future work. We do not work out the full details due to the limited scope of the
present work and since the proof of the type preservation property still needs considerable work and a
number of technical intermediate steps.

Let us start by answering the question why we insist on the distinction between strong and weak forms of
type preservation in the context of typed QLC. Consider the evaluation step [Q,L, (λx:Φx.x) v]→1 [Q,L, v]
and derivation

` x:Φx

` Ψx

` Φx ≺: Ψx
(term variable)

x:Φx ` x : Ψx
(linear term abstraction)

` (λx:Φx.x) : (Φx(Ψx) ` v : Φx
(term application) .

` ((λx:Φx.x) v) : Ψx

On the one hand, derivation rule (linear term abstraction) requires that x’ type Φx in the term context
of its premise is taken over into term abstraction (λx:Φx.x) and is also taken over as the left-hand side of
function type (Φx(Ψx) in the conclusion. Additionally, derivation rule (term application) requires that
the type of v matches exactly the left-hand side of (Φx (Ψx). On the other hand, rule (term variable)
facilitates a certain amount of unparameterized polymorphism in its conclusion x:Φx ` x : Ψx, and thus
allows Φx and Ψx to differ. Hence, the intermediate form of type preservation applies in this particular
case, since term application ((λx:Φx.x) v) of type Ψx reduces to value term v of type Φx with Φx ≺: Ψx.
However, when we aim at the strong form of type preservation, we need to get along with proved term
` v : Φx and well-typed state [Q,L, v] : Ψx as strong type preservation implies. Obviously, we then need
to derive a derivation rule

Θ|Γ ` t : Φ Θ ` Ψ Θ ` Φ ≺: Ψ
(generalize type) .

Θ|Γ ` t : Ψ

(Selinger and Valiron in fact implicitly derive such a rule in Lemma 1.3.24(3) in [SV09].)
Such a derivation rule leads to interesting implications. Let t = (λy:Φy.t

′) be a term abstraction.
When we want to obtain proved term Θ|Γ ` t : (Φ′y (Ψ′) from proved term Θ|Γ ` t : (Φy (Ψ) and
restricted proved subtype Θ ` (Φy (Ψ) ≺: (Φ′y (Ψ′) by application of (generalize type), then we are
immediately confronted with the problem that we in general cannot derive Θ|Γ ` (λy:Φy.t

′) : (Φ′y (Ψ′),
since type terms Φy and Φ′y are not necessarily identical, but they have to be when we want to apply
(linear term abstraction) or (nonlinear term abstraction). This means, the explicit type annotations in t
are not appropriate any more. Hence, rule (generalize type) in the above form cannot work with explicit
typing, and this consequently prevents us from establishing strong type preservation for explicitly typed
QLC. One solution would be to modify (generalize type) in an inelegant way, where we replace function
term t by a modified t′′ and require that t′′ is derived from t by appropriately replacing the respective
type annotations (we take a look at this again a bit later). Clearly, the case is different if we switch over
to implicit typing by completely omitting type annotations in function terms, since then rule (generalize
type) should work without any problem.

Whichever approach we pursue, as soon as we try to derive rule (generalize type) we need to handle
the following situation properly (presented in the implicitly typed approach):

Θ|Γ, y:Φy ` y : Ψy
(linTmAbs)

Θ|Γ ` (λy.y) : (Φy (Ψy) Θ ` (Φ′y (Ψ′y)

Θ ` Φ′y ≺: Φy Θ ` Ψy ≺: Ψ′y
(funST)

Θ ` (Φy (Ψy) ≺: (Φ′y (Ψ′y)
(generalize type) .

Θ|Γ ` (λy.y) : (Φ′y (Ψ′y)

Before we apply an inductive argument to premise Θ|Γ, y :Φy ` y : Ψy, we need to apply a yet to be
derived rule

4.6 Type safety 127

Θ|Γ ` t : Ψ

Θ ` Γsub
Θ ` Γsub ≺: Γ

(specialize term context) ,
Θ|Γsub ` t : Ψ

where Θ ` Γsub ≺: Γ means |Γsub| = |Γ| and for each x ∈ |Γ| the subtype-in-context Θ ` Γsub(x) ≺: Γ(x)
is a restricted proved subtype. (Selinger and Valiron implicitly establish such a rule in Lemma 1.3.24(3)
in [SV09] as well.)

Two last remarks are due regarding the proof of validity of the two derivation rules (generalize term)
and (specialize term context). Firstly, both might be proved by induction on the derivation of proved
terms Θ|Γ ` t : Φ and Θ|Γ ` t : Ψ, respectively. In the necessary base cases where these premises
are derived by rules (new operator), (meas operator), (unitary operator) and (term variable) we need
to apply Theorem 4.47. Secondly, the use of restricted proved subtypes is a crucial requirement, as we
have already pointed out in the discussion of derivation rules (new operator), (meas operator), (unitary
operator) following Definition 4.62. The issue becomes clear when we give up the restriction in the
following example. Consider again the evaluation step [Q,L, (λx:Φx.x) v] →1 [Q,L, v], but this time in
connection with the following typing derivation (where we use implicit typing again):

` x:(Φ1 ⊗ Φ2)

` Top

` (Φ1 ⊗ Φ2) <: Top
(term variable)

x:(Φ1 ⊗ Φ2) ` x : Top
(linear term abstraction)

` (λx.x) : ((Φ1 ⊗ Φ2)(Top) ` v : (Φ1 ⊗ Φ2)
(term application) .

` ((λx.x) v) : Top

It is clear that v must be a pair term of the form v = 〈v1, v2〉. However, for this pair term v we fail to
derive type Top, since none of the derivation rules from Definitions 4.62 to 4.65 facilitates the derivation
of type Top for a pair term. One way to solve this problem has already been proposed after Definition
4.62 and amounts to the introduction of an unrestricted variant of (generalize type) by definition (which
uses general proved subtypes and not restricted ones) and not by derivation. This solution, however,
might entail far reaching consequences that lie far beyond the scope of the present work. Another way
to solve the described problem is the use of restricted subtypes, and we have taken this approach.

Let us now switch back to our explicitly typed approach towards polymorphically typed QLC. As we
have just discussed, it could possibly help to turn our attention to the weak form of type preservation or
to an intermediate form. However, there are also reasons speaking against this possibility. Consider the
following typing derivation where we assume v and w to be value terms:

Θ ` x:(Φ1 (Φ2)

Θ ` (Ψ1 (Ψ2)

Θ ` Ψ1 ≺: Φ1 Θ ` Φ2 ≺: Ψ2
(funST)

Θ ` (Φ1 (Φ2) ≺: (Ψ1 (Ψ2)
(tmVar)

Θ|x:(Φ1 (Φ2) ` x : (Ψ1 (Ψ2) Θ|Γ ` w : Ψ1
(tmApp)

Θ|Γ, x:(Φ1 (Φ2) ` (x w) : Ψ2
(linTmAbs)

Θ|Γ `
(
λx:(Φ1 (Φ2).(x w)

)
: ((Φ1 (Φ2)(Ψ2) Θ|Γ′ ` v : (Φ1 (Φ2)

Θ|Γ,Γ′ `
((
λx:(Φ1 (Φ2).(x w)

)
v
)

: Ψ2

Operational semantics then leads to an evaluation step[
Q,L,

(
λx:(Φ1 (Φ2).(x w)

)
v
]
→1

[
Q,L, v w

]
.

For type preservation we now need to find a derivation for term-in-context Θ|Γ,Γ′ ` (v w) : Υ for
some appropriate type term Υ. As a starting point we have proved terms Θ|Γ′ ` v : (Φ1 (Φ2) and
Θ|Γ ` w : Ψ1 and restricted proved subtype Θ ` Ψ1 ≺: Φ1. But obviously, rule (term application) does
not immediately facilitate a hypothetic derivation

Θ|Γ′ ` v : (Φ1 (Φ2) Θ|Γ ` w : Ψ1

Θ|Γ,Γ′ ` (v w) : Υ

128 4 POLYMORPHICALLY TYPED QUANTUM LAMBDA CALCULUS

since Φ1 and Ψ1 are not necessarily identical. Again, what would help is a derived rule (generalize type),
but we have seen above that we then have to give up explicit typing. On the other hand, the introduction
of an unrestricted rule (generalize type) of the form

Θ|Γ ` t : Φ
Θ ` Ψ

Θ ` Φ <: Ψ

Θ|Γ ` t : Ψ

as an additional derivation rule in our type system would solve this problem but with far reaching
consequences, as we have already emphasized several times. Hence, also weakening of the formulation of
type preservation does not help much (at least with the approaches discussed here).

A third way to a solution is offered by appropriate adaptation of typing annotations. To handle this,
we would have to introduce a notion of computational equivalence that relates function terms s and t
which differ only in their type annotations. For instance function terms (λx:Φx.s

′) and (λx:Ψx.t
′) are

computationally equivalent, if s′ and t′ are, even though Φx and Ψx may not be equal or not be subtypes
of one another. Some authors (cf. [Pie02], pp. 109–110 and pp. 354–358, but also [SU06] and [Bar92])
define an erasure function in the spirit of the following exemplary cases:

erase
(
x
)

:= x ,

erase
(
(λx:Φx.t)

)
:= (λx. erase(t)) ,

erase
(
(s t)

)
:= (erase(s) erase(t)) ,

erase
(
(ΛX<:ΦX .t)

)
:= erase(t) ,

erase
(
(s Φ)

)
:= erase(s) .

Then computational equivalence of two function terms s and t amounts to the syntactical equality
erase(s) ≡ erase(t) modulo α-equivalence. Using this notion, we might be able to derive a modified
(somewhat inelegant) variant of rule (generalize type) that is also valid for function terms with type
annotations. However, this rule cannot be put in the form premises

conclusion since it contains a nonconstructive
existence statement:

Given proved term Θ|Γ ` t : Φ, proved type Θ ` Φ′ and proved subtype Θ ` Φ ≺: Φ′, there
exists a function term t′ such that erase(t) ≡α erase(t′) holds and proved term Θ|Γ ` t′ : Φ′

is derivable.

With this last point we leave the considerations on interaction of type preservation (in different grades)
and the polymorphism induced by subtyping.

The thread of argument we tried to pick up until now would finally lead to a result that corresponds
to a derived derivation rule

Θ|!∆,Γ1, z:Φz ` t : Ψ Θ|!∆,Γ2 ` v : Φz
(value substitution) ,

Θ|!∆,Γ1,Γ2 ` t[v/z] : Ψ′

where v is a value term, and where we may or may not have some connection between types Ψ and Ψ′,
e.g. equality or a subtyping statement Ψ′ <: Ψ.53 The importance of such a result is evident since most
of the basic reduction rules in Definition 4.74 are directly or indirectly based on substitution of free term
variables. In order to handle the case of application of pair terms to pair abstractions we even need to
extend rule (value substitution) to the setting of simultaneous substitutions of the sort(

(λ〈x:Φx, y:Φy〉.t) 〈v, w〉
)
→ t[v/x,w/y] .

Another mechanism that we use in the basic reduction rules is substitution of free type variables. It
appears in reduction rule (

(ΛX<:ΦX .t) Ψ
)
→ t[Ψ/X]

dealing with type applications (cf. Definition 4.74). To handle the respective case in a proof of type
preservation properly (using an inductive argument), we need to derive the following rule

53In Lemma 1.3.26 in [SV09] we can find a corresponding result for simply typed QLC fulfilling the case Ψ = Ψ′.

4.6 Type safety 129

Θ|Γ ` (ΛX<:ΦX .t) : !n(∀X<:ΦX .Ψ)
Θ ` Υ

Θ ` Υ <: ΦX
(type substitution) .

Θ|Γ ` t[Υ/X] : !nΨ[Υ/X]

This rule is very similar to derivation rule (type application) that we have introduced into our type system
in Definition 4.63. The main difference is we actually perform substitution t[Υ/Z] in the conclusion, which
corresponds to an adequate evaluation step (cf. Definition 4.74). To support the derivation of rule (type
substitution), we have already done important preparatory steps in subsection 4.2.5 since we have derived
rules (linear type substitution) and (nonlinear type substitution) there. In addition, we need a few more
technical results, in order to establish (type substitution), but we do not explain these any further in the
present work.

4.6.3 Linearity

We have already met the topic of linearity as a consequence of the no-cloning theorem (Theorem 2.5)
in numerous places throughout section 4, and most of the important aspects have thus already been
discussed exhaustively. Nevertheless, linearity has been a major point in motivating the use of typing
to distinguish well-formed from ill-formed QLC function terms (also, but not exclusively, in a quantum
physical sense). Thus, we undertake some conclusive considerations regarding linearity of well-typed
function terms with respect to occurring term variables.

If we excluded case distinctions from our considerations, in other words, we would not use derivation
rule (case distinction) to derive proved terms, then we could show for each in this way derived proved
term Θ|Γ ` t : Φ that the contained function term t is a linear function term in accordance to the
following definition.

Definition 4.79 (linear function terms – strict version; adapted from Definition 10 in [FD01]).
A linear function term t is a typed QLC function term in which

• for each occurring term abstraction (λx:Φx.t
′) in t, with linear type term Φx, term variable x

does appear at most once as free term variable in the scope t′ of the term abstraction;

• for each occurring pair abstraction (λ〈x:Φx, y:Φy〉.t′) in t, with linear type terms Φx (or Φy),
term variables x (or y) does occur at most once in t′;

• each free term variable in t has exactly one free occurrence.

Unfortunately, the case of (simply or polymorphically) typed QLC is more complicated, since we in
general allow the use of case distinctions as a syntactical construct and thus also need the associated
derivation rule (case distinction).

However, the claim we stated directly above Definition 4.79 is supported by the observation we make
in the next proposition. This proposition also sheds some clarifying light on the notion of linear function
terms in a weaker variant – weaker in the sense that it allows a certain amount of nonlinearity as it will
become clear in the case concerning rule (case distinction) in the proof of Proposition 4.80 and in the
discussion afterwards. (We do not give a formal definition of this weaker concept of linearity, since this
definition would be too technical and we will not refer to it later.)

Proposition 4.80. Let Θ|Γ ` t : Φ be a proved term and z ∈ Vterm a term variable with z:Φz ∈ Γ for
a linear type term Φz ∈ Ttype. Multiple free occurrences of z in t could only have been introduced by
derivation rule (case distinction).

Proof. In order to see this, we inspect all derivation rules for proved terms:

Rules (new operator), (meas operator), (unitary operator) and (Unit term): The conclusions of all these
rules do not contain any term variables (neither free nor bound).

Rule (term variable): Assume Θ|Γ′, x:Φx ` x : Ψx has been derived using rule (term variable), where
x = z may hold or it may not. Obviously, term variable x appears exactly once in function term x
(it does not matter whether Φx is linear or duplicable).

Rules (linear term abstraction), (nonlinear term abstraction), (linear pair abstraction) and (nonlinear
pair abstraction): Suppose Θ|Γ ` t : Φ has been derived by

130 4 POLYMORPHICALLY TYPED QUANTUM LAMBDA CALCULUS

Θ|Γ, x:Φx ` t′ : Ψ′
(linear term abstraction) ,

Θ|Γ ` (λx:Φx.t
′) : (Φx(Ψ′)

where we assume x 6= z without loss of generality (since we identify α-equivalent proved terms).
This rule does not introduce any occurrences of free term variables. On the contrary, it turns all
free occurrences of term variable x in function term t′ into bound ones. The same is true for the
other rules introducing abstractions binding term variables.

Rules (term application) and (pair term): Assume Θ|Γ ` t : Φ has been derived by

Θ|!∆,Γ1 ` s′ : !n(Φ′(Ψ′) Θ|!∆,Γ2 ` t′ : Φ′
(term application) .

Θ|!∆,Γ1,Γ2 ` (s′ t′) : Ψ′

According to Definition 4.57 all type terms Φx with x:Φx ∈ !∆ are nonlinear. Moreover, also by
Definition 4.57, we assume |Γ1| and |Γ2| are disjoint whenever we write Γ1,Γ2 as in the conclusion
of rule (term application). And since |Γ1| and |Γ2| are disjoint, we get ftmv(s′) ∩ ftmv(t′) = ∅ by
Lemma 4.67. Hence, each free term variable z ∈ Vterm either occurs as often in function term (s′ t′)
as it does in function term s′ and it does not occur in t′ at all, or, symmetrically, z occurs as often
in (s′ t′) as it does in t′ and then it does not appear in s′ at all. An analogous argument holds for
rule (pair term).

Rules (linear type abstraction), (nonlinear type abstraction) and (type application): Suppose Θ|Γ ` t : Φ
has been derived by

Θ|Γ ` t′ : !n(∀X<:ΦX .Ψ
′)

Θ ` Υ
Θ ` Υ <: ΦX

(type application) .
Θ|Γ ` (t′ Υ) : !nΨ′[Υ/X]

Obviously, this rule does not change function term t′ and only adds a type term to obtain function
term (t′ Υ) embedded in a term-in-context. Hence, the occurrences of free term variables in t′ are
the same as in (t′ Υ). Similar reasoning applies to rules (linear type abstraction) and (nonlinear
type abstraction).

Rules (left injection) and (right injection): Suppose Θ|Γ ` t : Φ has been derived by

Θ|Γ ` t′ : !nΦl Θ ` !nΦr
(left injection) .

Θ|Γ ` injl(t′) : !n(Φl ⊕ Φr)

Function term injl(t
′) clearly has no new occurrences of free term variables in comparison to t′

alone. A symmetrical argument applies to rule (right injection).

Rule (case distinction): Consider proved term Θ|!∆,Γ1,Γ2 ` (match s with (λx:Φx.tl) | (λy:Φy.tr)) de-
rived by

Θ|!∆,Γ1 ` s : !n(Φx ⊕ Φy)

Θ|!∆,Γ2 ` (λx:Φx.tl) : !m(!nΦx(Ψ)

Θ|!∆,Γ2 ` (λy:Φy.tr) : !m(!nΦy (Ψ)
(case distinction) ,

Θ|!∆,Γ1,Γ2 `
(
match s with (λx:Φx.tl) | (λy:Φy.tr)

)
: Ψ

where we assume x 6= z 6= y without loss of generality. In analogy to rules (term application) and
(pair term) we find

ftmv(s) ∩
(
ftmv(λx:Φx.tl) ∪ ftmv(λy:Φy.tr)

)
= ∅ .

Hence, a term variable z cannot occur freely in s and (λx :Φx.tl) at the same time, or in s and
(λy :Φy.tr) at the same time. However, z may occur as free term variable in (λx :Φx.tl) and in
(λy:Φy.tr), since both share term context Γ2 in premises two and three of rule (case distinction).

Rule (recursion): Assume Θ|Γ ` t : Φ has been derived by

4.6 Type safety 131

Θ|!∆, f:!(Φx(Ψ) ` (λx:Φx.s) : !(Φx(Ψ) Θ|!∆, f:!(Φx(Ψ),Γ′ ` t′ : Υ
(recursion) ,

Θ|!∆,Γ′ ` (letrec f:!(Φx(Ψ) = (λx:Φx.s) in t
′) : Υ

where we assume f 6= z without loss of generality. Then we see in the first premise that there
are no free term variables of linear type allowed in (λx:Φx.s), and thus the only occurrences of
free term variables of linear type in (letrec f:!(Φx(Ψ) = (λx:Φx.s) in t

′) may appear inside t′.
Hence, in comparison to t′ we get no new occurrences of free term variables in function term
(letrec f:!(Φx(Ψ) = (λx:Φx.s) in t

′).

Let us reconsider the case of rule (case distinction) in the above proof. Given a proved term Θ|Γ ` t : Φ,
we know (by inspection of the derivation rules for proved terms) that for each subexpression t′ of the
form

t′ =
(
match s with (λx:Φx.tl) | (λy:Φy.tr)

)
occurring in t, there must have been a proved term Θ′|Γ′ ` t′ : Φ′ that appeared during the derivation
of Θ|Γ ` t : Φ. The above proof then states that a term variable z of linear type Φz cannot occur freely
in s and (λx:Φx.tl) at the same time, or in s and (λy:Φy.tr) at the same time. However, z may occur as
free term variable in (λx:Φx.tl) and in (λy:Φy.tr) at the same time.

Viewed from the perspective of operational semantics, this observation is of interest when we want to
evaluate a quantum closure

[
Q, |q1, . . . , qk〉 , match s with (λx:Φx.tl) | (λy:Φy.tr)

]
, where s shall either

be of the form s = injl(v) or of the form s = injr(w) for value terms v and w. Then we have one of the
two evaluation steps[

Q, |q1, . . . , qk〉 , match injl(v) with (λx:Φx.tl) | (λy:Φy.tr)
]
→1

[
Q, |q1, . . . , qk〉 , (λx:Φx.tl) v

]
or[
Q, |q1, . . . , qk〉 , match injr(w) with (λx:Φx.tl) | (λy:Φy.tr)

]
→1

[
Q, |q1, . . . , qk〉 , (λy:Φy.tr) w

]
.

It does not matter whether one of the term variables q1, . . . , qk (of linear type Qbit), say qj , does occur
freely in (λx:Φx.tl) and (λy:Φy.tr) at the same time, since only one of the two function terms plays a role
in the further course of evaluation. And thus only the occurrences of qj in one of the two alternatives
((λx:Φx.tl) v) and ((λy:Φy.tr) w) contributes to the final result of the evaluation. On the other hand, it is
now clear why qj must not additionally appear in v or w as well. Note, however, that qj might very well
appear freely more than once in (λx:Φx.tl) or (λy:Φy.tr), but only as a result of nested case distinctions,
as for example in proved term

Γ, qj:Qbit `
(
match injl(〈〉) with

(
λx:Unit .(match s with (λx′:Φx′ .U qj) | (λy′:Φy′ .V qj))

) ∣∣ (. . .)) : Qbit ,

which is evaluated so that qj contributes only once to the final result:
(U, V ∈ U1 represent unary unitary operators)[
Q, |. . . , qj , . . .〉 , match injl(〈〉) with

(
λx:Unit .(match s with (λx′:Φx′ .U qj) | (λy′:Φy′ .V qj))

) ∣∣(. . .)]
→∗1

[
Q, |. . . , qj , . . .〉 , match s with (λx′:Φx′ .U qj) | (λy′:Φy′ .V qj)

]
→∗p

{[
Q, |. . . , qj , . . .〉 , (λx′:Φx′ .U qj) v

]
if s→∗p injl(v) with v ∈ TpValue and p ∈ [0, 1][

Q, |. . . , qj , . . .〉 , (λy′:Φy′ .V qj) w
]

if s→∗p injr(w) with w ∈ TpValue and p ∈ [0, 1]

→∗1

{[
QUqj , |. . . , qj , . . .〉 , qj

][
QV qj , |. . . , qj , . . .〉 , qj

]
To contrast this allowed degree of nonlinearity, we give two simple example terms-in-context that are

not derivable as proved terms due to a forbidden degree of nonlinearity:

• f:(Qbit ((Qbit (Bit)), q:Qbit `
(
(f (U q)) (V q)

)
: Bit ,

• ` λq:Qbit .
〈
(U q), (V q)

〉
: (Qbit ((Qbit ⊗Qbit)) .

In both cases, the underlined subexpressions cannot be combined into one proved term, since the re-
sponsible derivation rules (term application) and (pair term) prevent multiple occurrences of free term
variables of linear type.

132 4 POLYMORPHICALLY TYPED QUANTUM LAMBDA CALCULUS

As a consequence of linearity our type system prevents implicit copying of data with linear type (with
the “exception” of the alternative branches inside case distinctions). Consider for instance the untyped
function term (λx.f x x) where f stands as a placeholder for a function term modeling a function. We
have said in the very beginning of section 4 that the shape of this function term entails implicit copying
in an evaluation step [Q,L, (λx.f x x) v]→1 [Q,L, f v v]. Our type system can only assign a type to a
function term (λx:Φx.f x x) if type term Φx is duplicable, i.e. it needs to be of the form Φx = !Φ′x. Then
we end up with a proved term Θ|Γ ` (λx:!Φ′x.f x x) : (!Φ′x (Ψ). Hence, in order to assign a type to
function term ((λx.f x x) v), value term v must be of nonlinear type !Φ′x as well. In this way our type
system guarantees that only function terms of duplicable type can be subject to implicit copying.

Thus, well-typed QLC function terms are evaluated in accordance to the no-cloning theorem. More-
over, we have shown in subsection 4.2.3, and in particular in Theorem 4.39, that this property is not
undermined by the mechanisms that we have established to introduce parametric polymorphism into
QLC.

133

5 Conclusions and prospects

Let us briefly recapitulate what we have seen in the last few sections. After the introductory part we got
acquainted with the basic formal notions of the scientific field of quantum computation in section 2. In
the subsequent section we took a closer look at the Quantum Lambda Calculus – one particular formalism
that models classical computations as well as quantum computations in an appropriately extended λ-
calculus. The authors of QLC have equipped their approach to a quantum programming language with a
type system that guarantees certain linearity constraints for well-typed QLC function terms. Moreover,
well-typedness of a function term t implies that t is either a value term or t is reducible. And since
typability is preserved by term reduction, this means simply typed QLC enjoys type safety. Building
upon this background knowledge from research literature, we have then undertaken efforts to extend QLC
with parametric (second-order) polymorphism in section 4. This extension and the detailed investigation
of a few immediate consequences constitute the main focus of our work, and at the present point we just
finished these investigation with considerations on type safety and linearity.

Throughout the text there have been a few direct and indirect hints towards further aspects (mostly
of a technical nature) that might be worth further research. We point out some of these and even add
a few more in the last part of this section. But before we come to the prospects part, we shall first
contemplate what we have achieved up to now.

We have seen in the introductory section 1 that QLC is only one functional approach to quantum
programming and that there is a variety of others. Most of the typed calculi among these languages
are rooted in the λ-calculus and their type systems often incorporate the concepts of Girard’s linear
logic that embody a certain resource-awareness. Simply typed QLC in general and our polymorphic
type system in particular are by no means an exception to this observation. However, there are of
course characteristics that distinguish QLC from other calculi modeling classical computations as well
as quantum computations – for instance the use of implicit linearity tracking at the level of function
terms.54 This stands in contrast to explicit linearity tracking that is often found in calculi with typing
based on linear logic (cf. [Abr93] or [Bie94]). What we mean by tracking linearity in an explicit fashion
is illustrated by syntactic constructs of the form

copy x as y, z in (f derelict(y) derelict(z)) ,

which corresponds to the QLC function term (f x x).55 In the explicit variant copying must be explicitly
formulated by a copy construct, and the removal of nonlinearity from y’s and z’s types must be done
explicitly by derelict constructs – one for each leading exponential – at the level of function terms.
One consequence of this explicit approach is that nonlinear types !Φ and !!Φ are not conceived as being
equivalent, which is in contrast to typed QLC. There are even calculi modeling quantum computations
that are essentially untyped, but still explicitly track linearity in a way that reminds us of linear logic, e.g.
the respective calculi investigated in [vTo04] and [DMZ11]. One could wonder whether polymorphic QLC
in section 4 actually tracks linearity in an implicit manner, since we use explicit type annotations in which
duplicability is marked by exponentials. However, there are no syntactical constructs outside these type
annotations which facilitate linearity tracking. That means when we erased type annotations and thus
switched to implicit typing, we would doubtless end up with implicit linearity tracking as well. Hence, the
case is not entirely clear. More interesting to us than this conceptual controversy is the technique that
needs to be employed to realize implicit linearity tracking. Technically speaking, we need to treat multiple
leading exponentials in the same way as we treat a single one, i.e. type terms !!Φ and !Φ are equivalent
when it comes down to duplicability of function terms that are assigned such types. In order to cope with
this peculiarity, Selinger and Valiron have introduced subtyping. For our polymorphic extension we have
successfully picked up this existing concept, combined it with universally quantified types to establish
the already known concept of bounded quantification (see chapter 26 in [Pie02] for reference) and thus
obtained the right tool to achieve one of our principal goals. By this we mean enforceable linearity (with
respect to Qbit in particular, and strictly linear type terms in general) and the related result developed
in subsection 4.2.3 which, together with the linearity result form subsection 4.6.3, confirms that even
in the presence of parametric polymorphism quantum data is not cloned due to implicit copying when
evaluating well-typed QLC states. However, as long as the type preservation property is only conjectured

54For further distinguishing characteristics with respect to related work, see section 1.3.8, pp. 156–159, in [SV09].
55The example is taken from [SV09], page 157, and uses the syntax of [Bie94]. For the related type derivation rules, see

[Bie94], figure 3.1 on page 68, for complete reference, or [SV09], page 157, for a confined selection.

134 5 CONCLUSIONS AND PROSPECTS

for our polymorphic extension of QLC and not formally proven, the previous sentence is only valid for
single-step evaluations and not for evaluations in general. We have already started to bring a proof
of type preservation on track in subsections 4.2.5 and 4.6.2, and have pointed out informal indications
underpinning our conjecture in several places throughout the main text. But these efforts are of course
by no means a substitute for a full formal proof. In addition to considerations on linearity of well-typed
function terms, we have seen in subsection 4.6.1 that our type system does not assign types to error terms,
these are terms that can neither be evaluated any further, nor do they represent reasonable evaluation
results. In other words, we have confirmed polymorphically typed QLC enjoys the progress property.

But we have also made numerous technical achievements which emphasize some of the formal char-
acteristics of polymorphic QLC. The most outstanding among these technical results is doubtless the
theorem concerning transitivity of proved subtyping statements to which we have devoted subsection
4.2.4. On the one hand, the most demanding step towards final Theorem 4.47 has been taken in Lemma
4.46. On the other hand, the lemma itself and its proof give a deep insight into the structure of derivations
of typing and subtyping judgements. And thus, for one part, we learn in the proof how we can distill
the necessary typing environments from the term structure of type terms Φ and Ψ for which we want to
derive a subtyping judgement Θ ` Φ <: Ψ. Of course, this only works when such a subtyping statement
is derivable at all.

Let us now leave what we have done in the present work and take a look at what there is still to be
done and what might promise interesting insights in future investigations.

At first and above all, the issue of type preservation should be settled. This is presumably not very
hard to achieve but still requires some effort.

As a next step we might exploit the full benefits of subtyping by removing the posed restrictions on
subtype expressions in some of the derivation rules.56 We have already discussed right after Definition 4.62
that this entails the necessity of additional derivation rules to fully benefit from polymorphism induced
by subtyping. This becomes even more interesting when we enrich QLC with more primitive datatypes.
In fact Selinger and Valiron already have equipped simply typed QLC with lists in [SV09] and we have
just omitted list constructs in the present work for simplification. Moreover, there are other worthwhile
extensions, see chapter 11 in [Pie02] for inspirations. Among the possible candidates are certainly records.
Let us stay with this suggestion for a moment and glance at possible consequences. Pierce distinguishes
three “different sort[s] of flexibility in the use of records” ([Pie02], page 184) – permutation subtyping,
depth subtyping and width subtyping. Each of these may be embodied by a specific derivation rule and two
of these do not pose a major obstacle to our approach of typing. However, one of them, namely the width
subtyping rule, indeed introduces a challenging aspect. It states that a record type {l1 :Φ1, . . . , ln :Φn}
is a subtype of record type {l1 :Φ1, . . . , ln :Φn, ln+1 :Φn+1, . . . , ln+m :Φn+m}, with n,m ≥ 1 and where
l1, . . . , ln+m denote the labels of the respective fields in the record data structure. This is so interesting,
because in our work we rely on the fact that each subtype of !Top is nonlinear and that !Top is supertype of
all nonlinear types. Now consider record type Ψ := {l1:!Bit}, which we would certainly regard as nonlinear,
and its relation to record type Υ := {l1:!Bit , l2:Qbit}. Intuitively, we would have subtyping relationships
Ψ <: !Top and Υ 6<: !Top. On the other hand, the above considerations on width subtyping tell us that
Υ <: Ψ shall hold. But now transitivity of the subtype relation <: says Υ <: Ψ∧Ψ <: !Top =⇒ Υ <: !Top.
But if {l1:!Bit , l2:Qbit} <: !Top were a valid subtyping statement, then our mechanisms that make sure
Qbit is never affected by exponentials would not work properly anymore. Hence, conflicts of this kind
need to be resolved for a successful integration of record types into our framework.

In future investigations we should also consider other technical refinements. On the one hand, we
have emphasized earlier that derivations of subtyping statements also admit types that we would actually
rather prevent, such as Θ ` !Qbit <: !Qbit . On the other hand, derivations of proved types are a bit too
strict. Consider for instance the nonlinear function type !(Qbit (Qbit). Our type derivation rules facil-
itate the derivation of a proved type ` !(Qbit (Qbit). But we cannot derive ` !(∀X<:Top.(X (X)),
since rule (linear-polymorphic type) does not allow the inside-out propagation of leading exponentials.
This is not a problem for the mentioned example, since informally (in the spirit of operational semantics)
we have the following evaluations of type applications

!(∀X<:Top.(X (X)) Qbit !(Qbit (Qbit) for which ` !(∀X<:Top.(X (X)) is not derivable, and
(∀X<:Top.!(X (X)) Qbit !(Qbit (Qbit) for which ` (∀X<:Top.!(X (X)) is derivable.

56Technically speaking, this means to allow proved subtypes instead of restricted ones in the derivation rules in Definition
4.62 and in rule (term variable).

135

However, problems arise in more complex situations, such as ` !
(
Bit ⊗ (∀X<:Top.(X (X))

)
which is

not derivable in our system, but there is actually no serious reason why it should not be.

Of course, if we had done formal considerations on the completeness of our derivation rules, we would
have discovered this inadequacy earlier and could have adjusted our typing rules accordingly. Hence, it
is recommendable to make up for this in future work and scrutinize whether we actually can derive all
types that are desirable and have excluded exactly those that necessarily need to be forbidden.

But there are more questions to be answered, and quite interesting ones, indeed:

• How expressive are untyped QLC, simply typed QLC and polymorphically typed QLC in compar-
ison to one another and in comparison to other formalisms such as the classical λ-calculus (typed
and untyped) and Deutsch’s quantum Turing machine (cf. [Deu85] or [BV97])?

• What about decidability of type checking, typability and inhabitation?

• If typability is decidable, is it then possible to extend the type inference algorithm for simply typed
QLC given by Selinger and Valiron (see section 1.4 in [SV09] for references) to the polymorphic
setting?

Regarding decidability of type checking and typability, we need to consider the explicitly typed case and
the implicitly typed one separately, of course. To get started with these questions, the exposition of
algorithmic type inference of simply typed QLC in [Val04a] and [SV06] may be of help. For a general
introduction to algorithmic type inference for the implicitly typed λ-calculus, see chapter 22 in [Pie02].
The first part of chapter 28 in the same textbook offers information on type inference in the presence
of subtyping. As a third reference, the book chapter [Wal05] offers an introduction to algorithmic type
checking for linear type systems. On the side of undecidability results, we find works by Wells, Schubert
and Pierce who establish undecidability results for type checking and typability in system F in its implic-
itly typed ([Wel94]) and explicitly typed variants ([Sch98]) and in system F with bounded quantification
([Pie94]).57 Let us also take a brief look at the inhabitation problem. To get started with a treatment
of inhabitation, we find a proof of decidability (and PSPACE completeness) of inhabitation in the case
of the simply typed λ-calculus and an undecidability result for inhabitation in system F (both explicitly
typed) for instance in sections 4.2 and 11.6 in [SU06]. Regarding polymorphically typed QLC, there is a
question closely connected to inhabitation: is each of the well-formed types inhabited? We can derive a
proved term Θ|x:Φ ` x : Φ for each type term Φ for which we can derive proved type Θ ` Φ. The more
interesting question is thus whether we can derive a closed proved term ` t : Φ for any proved type ` Φ.
A quite simple but presumably critical case is Φ = Top and, more generally, type terms containing Top as
subexpression. These cases might get critical as long as we use restricted proved subtypes in rules (new
operator), (meas operator), (unitary operator) and (term variable). If we abolished these restrictions,
the case Φ = Top immediately turns into an uncritical one.

Finally we make the most vague suggestion for future considerations that aims at decoupling polymor-
phic typing with enforceable linearity from QLC, in order to make it generically applicable also to other
calculi. Although we have widely isolated all investigations solely concerning type terms, proved types and
proved subtypes from the investigations connected with function terms, we still needed function terms to
introduce the concept of type application, for instance. On the other hand, not only QLC could benefit
from a polymorphic extension, and our approach to parameterized linear polymorphism might be of help
if appropriately adjusted. To support this sort of adaptation without the need for major modifications, we
should adopt a different point of view towards syntactic constructs such as term constants new and meas,
and also towards more complex syntactic constructs such as injl(t) and match s with (λx.tl) | (λy.tr).
Instead of defining a “hard-wired” typing rule for each of them, one could use a general typing rule for
function symbols, and reinterpret each of the mentioned syntactic constructs as application of a constant
or function symbol and equip these symbols with type contexts and signatures similar to

new : [!(Bit (Qbit)<:X<:Top] ; → X ,

meas : [!(Qbit (!Bit)<:X<:Top] ; → X ,

injl : [X<:Top, Y<:Top] ; !nX → !n(X ⊕ Y) for all n ≥ 0,

match : [X<:Top, Y<:Top, Z<:Top] ; !n(X ⊕ Y), !m(!nX (Z), !m(!nY (Z)→ Z for all m,n ≥ 0.

57To gain a broader view on these results and related ones, sections 23.6 and 28.5 in [Pie02] are helpful.

136 5 CONCLUSIONS AND PROSPECTS

General typing rules and signatures of constant and function symbols in this spirit are treated in chapters
4 to 6 in [Cro93] in the context of typed λ-calculi with simple types, second-order polymorphic types
and higher-order polymorphic types. The mentioned textbook by Roy Crole might thus serve as a first
inspiration in this direction.

Of course, a lot more enhancements, modifications, extensions and investigations on a meta level are
conceivable. We leave this to the reader’s sense of adventure.

137

A Qubit-by-qubit measurement of quantum registers

In this section we elaborate on the equivalence of qubit-by-qubit and all-at-once measurements of quantum
registers. We therefor consider a quantum register of length n in state

|ϕ〉 =
∑
|b〉∈Bn

αb |b〉 with
∑
|b〉∈Bn

|αb|2 = 1 ,

where αb ∈ C for all |b〉 ∈ Bn. Measuring the register qubit-by-qubit from leftmost to rightmost can be
illustrated as a sequence

|ϕ〉M1−→ |ϕ1〉M2−→ |ϕ2〉M3−→ · · ·Mn−1−→ |ϕn−1〉Mn−→ |ϕn〉 ,

where Mj denotes a measurement of the j-th qubit with respect to the standard basis B1.
The measurement results are obtained as follows:

(here pj(xj) denotes the probability by which measuring the j-th qubit yields result xj ∈ {0, 1}, and we
define sets Bnk (x) as we have already done at the end of section 2, namely as sets of words of length n
over {0, 1}, where the k-th position is x ∈ {0, 1})

|ϕ1〉 =
1√
p1(x1)

∑
b∈Bn

1 (x1)

αb |b〉 p1(x1) =
∑

b∈Bn
1 (x1)

|αb|2

|ϕ2〉 =
1√

p2(x2) · p1(x1)

∑
b∈Bn1 (x1)

∩Bn2 (x2)

αb |b〉 p2(x2) =
1

p1(x1)

∑
b∈Bn1 (x1)

∩Bn2 (x2)

|αb|2

...

|ϕn〉 =
1√∏n

j=1 pj(xj)

∑
b∈

⋂n
j=1 Bn

j (xj)

αb |b〉

︸ ︷︷ ︸
= αx1...xn |x1...xn〉

pn(xn) =
1∏n−1

j=1 pj(xj)

∑
b∈

⋂n
j=1 Bn

j (xj)

|αb|2

︸ ︷︷ ︸
= |αx1...xn |2

. (2)

Following from this, a particular sequence of measurement results x1 . . . xn ∈ {0, 1}(n) occurs with prob-
ability

n∏
j=1

pj(xj) =

n−1∏
j=1

pj(xj) ·
1∏n−1

j=1 pj(xj)
|αx1...xn |2︸ ︷︷ ︸

(2)
= pn(xn)

= |αx1...xn
|2 , (3)

and leaves the register in state

|ϕn〉 =
1√∏n

j=1 pj(xj)
αx1...xn

|x1 . . . xn〉
(3)
=

1√
|αx1...xn

|2
αx1...xn

|x1 . . . xn〉

which is (almost) what we would expect of an all-at-once measurement of the whole register with respect
to the standard basis Bn. The complex scalar factor in front of |x1 . . . xn〉 is an “artifact” produced by
our mathematical framework. In this case we may ignore it, since it holds∣∣∣∣∣ αx1...xn√

|αx1...xn
|2

∣∣∣∣∣
2

= 1 ,

which means |ϕn〉 is indistinguishable from |x1 . . . xn〉 by quantum mechanical measurement. And since
this is the only way in which we can gain any knowledge about state |ϕn〉, we can very well accept the
equivalence of |ϕn〉 and |x1 . . . xn〉.58

It is now clear that we can simulate all-at-once measurements of a whole quantum register (with
respect to Bn) by step-by-step measurements of single qubits (with respect to B1).

58Such an identification of states “up to a global phase factor” β ∈ C with |β| = 1 is a consequence of the standard
framework of quantum computation and particularly of quantum mechanical measurement. For further details see for
instance section 2.2.7 in [NC00], page 93.

138 B APPLICATION OF ARBITRARY UNITARY OPERATORS IN QLC

B Application of arbitrary unitary operators in QLC

This section covers the details regarding application of unitary operators of arity m ≥ 2 to an arbitrary
set of m qubits in the operational semantics of QLC. In section 2 we have already seen unitary operators
can be constructed by tensor product. Let U : Hn′ → Hn′ and V : Hm′ → Hm′ with n′,m′ ≥ 1 be
unitary operators. The tensor product then yields a unitary operator

U ⊗ V : Hn′+m′ → Hn′+m′ ; |ϕ〉 ⊗ |ψ〉 7→ U |ϕ〉 ⊗ V |ψ〉 .

Using this, we can handle the following simple cases of application of unitary operators in the operational
semantics of QLC.

Consider for instance the following reduction of a quantum closure[
Q, |q1, . . . , qn〉 , Um 〈qj1 , . . . , qjm〉

]
→1

[
Q′′, |q1, . . . , qn〉 , 〈qj1 , . . . , qjm〉

]
with 2 ≤ m ≤ n and with pairwise distinct indices j1, . . . , jm. According to the description of the
corresponding reduction rule in Definition 3.10, Q′′ is obtained from Q by application of Um to qubits
j1, . . . , jm inside quantum state Q, counted from left to right.

Suppose qj1 , . . . , qjm link to neighboring qubits that appear in the appropriate order in Q, i.e. j1 =
k, j2 = k + 1, . . . , jm = k +m− 1 for some k with 1 ≤ k ≤ n− (m− 1). Then the application of Um to
qubits j1, . . . , jm can be performed by

Q′′ = (Id⊗k−1
1 ⊗ Um ⊗ Id

⊗n−(k−1)−m
1)Q ,

analogously to the reduction rule for unary unitary operators.
But how can we handle cases where qj1 , . . . , qjm do not link to neighboring qubits or to qubits that

are not in the “right” order? This case clearly cannot be handled by tensor products alone. The solution
to this problem is offered by unitary operators that implement adequate permutations of the components
of basis vectors in standard bases Bn. That means, we need to construct two permutations σ, σ−1 of the
first n positive natural numbers (see below for a formal definition) so that we get for each basis vector
|x1 . . . xn〉 ∈ Bn

|x1 . . . xn〉 σ7−→ |xj1 . . . xjm . . . 〉 σ
−1

7−→ |x1 . . . xn〉 ,

i.e. σj1 = 1, . . . , σjm = m and σl ∈ {m+ 1, . . . , n} for all l ∈ {1, . . . , n} \ {j1, . . . , jm}.
These permutations are used to construct unitary operators Pσ and Pσ−1 = P−1

σ for which

Pσ |x1 . . . xn〉 := |xσ1 . . . xσn〉 and Pσ−1 |x1 . . . xn〉 := |xσ−11 . . . xσ−1n〉

hold for all |x1 . . . xn〉 ∈ Bn with x1, . . . , xn ∈ {0, 1}.
Having these, we may realize the application of Um to qubits j1, . . . , jm in Q by

Q′′ := Pσ−1(Um ⊗ Id⊗n−m1)PσQ .

What remains to show is that operators Pσ and Pσ−1 are unitary. We do this in two steps: at first we
show arbitrary permutations π can be replaced by an appropriate sequence of composed transpositions
τk . . . τ1 = π for a certain k ≥ 1, and in a second step we confirm a unitary operator Pτ realizing a
transposition of basis vector components is unitary. Consequently, we may conclude Pπ := Pτk . . . Pτ1 is
unitary for any permutation π, since we know from section 2 that composition of unitary operators yields
again a unitary operator.

Definition B.1 (permutations, transpositions).
A permutation on the first n positive natural numbers is a bijective mapping π : {1, . . . , n} →
{1, . . . , n}; l 7→ πl.

We call a permutation τ on the first n positive natural numbers transposition if it exhibits one of
the following two properties:

• either τ is the identity mapping,

• or τk 6= k holds for exactly two distinct k ∈ {1, . . . , n}.

139

Proposition B.2. Let (x1, . . . , xn) ∈ {0, 1}n be an n-tuple of zeros and ones (n ≥ 2), and let π be a
permutation of the first n positive natural numbers. We can find a sequence τ1, . . . , τn−1 of transpositions
on the first n positive natural numbers, such that

(xτn−1...τ11, . . . , xτn−1...τ1n) = (xπ1, . . . , xπn) .

Proof. We construct transpositions τ1, . . . , τn−1 as follows (for all l with 1 ≤ l ≤ n):

τj l :=


πj if l = τj−1 . . . τ1j,

τj−1 . . . τ1j if l = πj,

l otherwise.

We show by induction on m ≥ 0 that τm . . . τ1l = πl holds for each l with 1 ≤ l ≤ m and for all
m ≤ n− 1.

Base case: Let m = 1. Then we have τ11 = π1 by definition of τ1.

Induction case: Consider m with 1 < m ≤ n− 1. In this case we get

τml =


πm if l = τm−1 . . . τ1m,

τm−1 . . . τ1m if l = πm,

l otherwise.

(Please note, the two upper cases in the above equation coincide in case of πm = τm−1 . . . τ1m.
Then the constructed transposition is the identity mapping.)

By induction, we get

τm−1 . . . τ11 = π1

τm−1 . . . τ12 = π2

...

τm−1 . . . τ1(m− 1) = π(m− 1)

where all π1, . . . , π(m−1) are pairwise distinct, different from πm (due to surjectivity of π) and also
unequal to τm−1 . . . τ1m (due to surjectivity of τm−1, . . . , τ1). Thus, these values remain unchanged
by τm, and it hence holds τm . . . τ1l = πl for all l with 1 ≤ l ≤ m−1. Moreover, the definition of τm
immediately yields τmτm−1 . . . τ1m = πm. Putting these facts together, we obtain τm . . . τ1l = πl
for all l,m with 1 ≤ l ≤ m ≤ n− 1.

♦
Finally, injectivity of π and of all the τm, . . . , τ1 entails πn = τn−1 . . . τ1n.
Hence, we get the equality (xτn−1...τ11, . . . , xτn−1...τ1n) = (xπ1, . . . , xπn).

Proposition B.3. If τ : {1, . . . , n} → {1, . . . , n} is a transposition, then the linear operator Pτ : Hn →
Hn; |x1 . . . xn〉 7→ |xτ1 . . . xτn〉 is unitary.

Proof. Let τ : {1, . . . , n} → {1, . . . , n} be a transposition and let Pτ : Hn → Hn be a linear operator with
Pτ |x1 . . . xn〉 := |xτ1 . . . xτn〉. If τ is the identity mapping, then Pτ = Idn is the identity operator on
Hilbert space Hn. And this is clearly unitary since it preserves length. If τ is not the identity mapping,
then (by definition of transpositions) there exist exactly two distinct k, k′ ∈ {1, . . . , n} such that k 6= τk
and k′ 6= τk′. We assume k < k′ (without loss of generality). Consequently, we know τk = k′ and
τk′ = k, and it moreover immediately follows that τ is self-inverse. Hence, when we apply Pτ to a basis
vector |x1 . . . xn〉 ∈ Bn from the 2n-dimensional standard basis, we end up with

Pτ |x1 . . . xk . . . xk′ . . . xn〉 = |x1 . . . xk′ . . . xk . . . xn〉

and

Pτ |x1 . . . xk′ . . . xk . . . xn〉 = |x1 . . . xk . . . xk′ . . . xn〉 .

140 B APPLICATION OF ARBITRARY UNITARY OPERATORS IN QLC

This entails that the set {Pτ |b〉 | |b〉 ∈ Bn} is equal to Bn. In other words, Pτ is bijective and it at least
preserves the length of basis vectors from Bn. Keeping this in mind, we now take a look at the quadratic
length of state vector Pτ |ϕ〉 for an arbitrary state |ϕ〉 ∈ Hn:

‖Pτ |ϕ〉 ‖2 =

∥∥∥∥Pτ ∑
|b〉∈Bn

αb |b〉
∥∥∥∥2

=

〈
Pτ

∑
|b〉∈Bn

αb |b〉
∣∣∣∣ Pτ ∑

|b′〉∈Bn

αb′ |b′〉
〉

=
∑
|b′〉∈Bn

αb′

〈 ∑
|b〉∈Bn

αbPτ |b〉
∣∣∣∣ Pτ |b′〉〉

=
∑
|b′〉∈Bn

αb′

(∑
|b〉∈Bn

αb

〈
Pτ |b′〉

∣∣∣ Pτ |b〉〉)∗
=

∑
|b′〉∈Bn

∑
|b〉∈Bn

αb′α
∗
b

〈
Pτ |b〉

∣∣∣ Pτ |b′〉〉 .

Due to surjectivity of Pτ and orthonormality of Bn, we have

〈
Pτ |b〉

∣∣Pτ |b′〉〉 =

{
0 if |b〉 6= |b′〉
1 otherwise

}
=
〈
b
∣∣b′〉 ,

and hence, we furthermore get

‖Pτ |ϕ〉 ‖2 =
∑
|b′〉∈Bn

∑
|b〉∈Bn

αb′α
∗
b

〈
Pτ |b〉

∣∣∣ Pτ |b′〉〉
=

∑
|b′〉∈Bn

∑
|b〉∈Bn

αb′α
∗
b

〈
b
∣∣ b′〉

= ‖ |ϕ〉 ‖2 .

That means Pτ preserves length and is thus a unitary operator.

C
S
u
p
p
le
m
e
n
ta
ry

m
a
te
ri
a
l
fo
r
se
ct
io
n

4
.5

H
er

e
w

e
co

ll
ec

t
a

n
u

m
b

er
of

ty
p

e
an

d
te

rm
d

er
iv

at
io

n
s

an
d

ev
a
lu

a
ti

o
n

s
o
f

fu
n

ct
io

n
te

rm
s

th
a
t

h
av

e
b

ee
n

o
m

it
te

d
in

se
ct

io
n

4
.5

in
th

e
m

a
in

te
x
t

to
sa

v
e

sp
a
ce

.

C
.1

D
e
ta
il
s
co

n
ce

rn
in
g
E
x
a
m
p
le

4
.7
5

In
th

e
fo

ll
ow

in
g

ty
p

e
d

er
iv

at
io

n
s,

w
e

u
se

th
e

fo
ll

ow
in

g
ab

b
re

v
ia

ti
o
n

s:

co
in
p
o
ly

:≡
(λz:U

n
it
.m

ea
s

(H
(n

ew
0
))
)

Φ
f

:=
(∀
Y
<

:!T
o
p
.(

!Y
(

!!
(!
X
⊗
Y

))
)

X
!⊗
n

:=
!(

!X
⊗

!(
..
.!

(!
X
⊗

!X
)
..
.)

)

(!B
it

)!⊗
n

:=
!(

!!B
it
⊗

!(
..
.!

(!
!B

it
⊗

!!B
it

)
..
.)

)

pn
−

1
q!
⊗

:≡
(Λ
X
<

:!T
o
p
.λ
f
:!Φ

f
.λ
x
:!X

.f
X

!⊗
n
−

1
(f

X
!⊗
n
−

2
(.
..

(f
!X

x
)
..
.)

))
C

.1
.1

T
y
p

e
d

e
ri

v
a
ti

o
n

s

`
X
<

:!T
o
p

(T
o
p

ty
p

e
)

X
<

:!T
o
p
`

!T
o
p

(<
:

re
fl
)

X
<

:!T
o
p
`

!T
o
p
<

:
!T

o
p

`
X
<

:!T
o
p
,Y
<

:!T
o
p

(n
lT

y
V

a
r)

X
<

:!T
o
p
,Y
<

:!T
o
p
`

!Y

`
X
<

:!T
o
p
,Y
<

:!T
o
p

(n
lT

y
V

a
r)

X
<

:!T
o
p
,Y
<

:!T
o
p
`

!!
!X

`
X
<

:!T
o
p
,Y
<

:!T
o
p

(n
lT

y
V

a
r)

X
<

:!T
o
p
,Y
<

:!T
o
p
`

!!
Y

(p
ro

d
T

y
)

X
<

:!T
o
p
,Y
<

:!T
o
p
`

!!
(!
X
⊗
Y

)
(f

u
n
T

y
)

X
<

:!T
o
p
,Y
<

:!T
o
p
`

!(
!Y
(

!!
(!
X
⊗
Y

))
(n

lP
o
ly

T
y
)

X
<

:!T
o
p
`

!(
∀Y

<
:!T

o
p
.(

!Y
(

!!
(!
X
⊗
Y

))
)

︸
︷︷

︸
=

Φ
f

1

`
X
<

:!T
o
p

(n
lT

y
V

a
r)

X
<

:!T
o
p
`

!!
X

`
X
<

:!T
o
p

(n
lT

y
V

a
r)

X
<

:!T
o
p
`

!!
!X

`
X
<

:!T
o
p

(n
lT

y
V

a
r)

X
<

:!T
o
p
`

!n
−

1
X

`
X
<

:!T
o
p

(n
lT

y
V

a
r)

X
<

:!T
o
p
`

!n
X

`
X
<

:!T
o
p

(n
lT

y
V

a
r)

X
<

:!T
o
p
`

!n
X

(p
ro

d
T

y
)

X
<

:!T
o
p
`

!n
−

1
(!
X
⊗

!X
)

(p
ro

d
T

y
)

X
<

:!T
o
p
`

!n
−

2
(!
X
⊗

!(
!X
⊗

!X
))

..
.

(p
ro

d
T

y
)

X
<

:!T
o
p
`

!!
(!
X
⊗
X

!⊗
n
−

3
)

(p
ro

d
T

y
)

X
<

:!T
o
p
`

!(
!X
⊗
X

!⊗
n
−

2
)

︸
︷︷

︸
=
X

!⊗
n
−

1

2

141

1
X
<

:!T
o
p
`
f
:!Φ

f
1
X
<

:!T
o
p
`

!Φ
f

1
X
<

:!T
o
p
`

!Φ
f

(<
:

re
fl
)

X
<

:!T
o
p
`

!Φ
f
≺

:
!Φ
f

(t
m

V
a
r)

X
<

:!T
o
p
|f

:!Φ
f
`
f

:
!(
∀Y

<
:!T

o
p
.(

!Y
(

!!
(!
X
⊗
Y

))
)

2
X
<

:!T
o
p
`
X

!⊗
n
−

1

2
X
<

:!T
o
p
`
X

!⊗
n
−

1

(T
o
p

su
p
T

y
)

X
<

:!T
o
p
`
X

!⊗
n
−

1
<

:
T

o
p

(!
ri

g
h
t)

X
<

:!T
o
p
`
X

!⊗
n
−

1
<

:
!T

o
p

(t
y
A

p
p
)

X
<

:!T
o
p
|f

:!Φ
f
`

(f
X

!⊗
n
−

1
)

:
!(

!X
!⊗
n
−

1
(

!!
(!
X
⊗
X

!⊗
n
−

1
)

︸
︷︷

︸
=
X

!⊗
n

)
3

1
X
<

:!T
o
p
`
f
:!Φ

f

1
X
<

:!T
o
p
`

!Φ
f

X
<

:!T
o
p
`

!Φ
f
≺

:
!Φ
f

X
<

:!T
o
p
|f

:!Φ
f
`
f

:
!(
∀Y

<
:!T

o
p
.(

!Y
(

!!
(!
X
⊗
Y

))
)

`
X
<

:!T
o
p

X
<

:!T
o
p
`

!X

`
X
<

:!T
o
p

(n
lT

y
V

a
r)

X
<

:!T
o
p
`

!X

X
<

:!T
o
p
`

!X
<

:
T

o
p

(!
ri

g
h
t)

X
<

:!T
o
p
`

!X
<

:
!T

o
p

(t
y
A

p
p
)

X
<

:!T
o
p
|f

:!Φ
f
`

(f
!X

)
:

!(
!!
X
(

!!
(!
X
⊗

!X
))

X
<

:!T
o
p
`
x
:!
X

`
X
<

:!T
o
p

X
<

:!T
o
p
`

!!
X

`
X
<

:!T
o
p

(n
lT

y
V

a
r)

X
<

:!T
o
p
`

!X
(<

:
re

fl
)

X
<

:!T
o
p
`

!X
≺

:
!X

(!
ri

g
h
t)

X
<

:!T
o
p
`

!X
≺

:
!!
X

(t
m

V
a
r)

X
<

:!T
o
p
|x

:!
X
`
x

:
!!
X

(t
m

A
p
p
)

X
<

:!T
o
p
|f

:!Φ
f
,x

:!
X
`

(f
!X

x
)

:
!!
(!
X
⊗

!X
)

4

3
X
<

:!T
o
p
|f

:!Φ
f
`

(f
X

!⊗
n
−

1
)

:
!(

!X
!⊗
n
−

1
(

!X
!⊗
n
)

X
<

:!T
o
p
|f

:!Φ
f
`

(f
X

!⊗
n
−

2
)

:
!(

!X
!⊗
n
−

2
(

!X
!⊗
n
−

1
)

X
<

:!T
o
p
|f

:!Φ
f
`

(f
X

!⊗
2
)

:
!(

!X
!⊗

2
(

!X
!⊗

3
)

4
X
<

:!T
o
p
|f

:!Φ
f
,x

:!
X
`

(f
!X

x
)

:
!X

!⊗
2

(t
m

A
p
p
)

X
<

:!T
o
p
|f

:!Φ
f
,x

:!
X
`

(f
X

!⊗
2

(f
!X

x
))

:
!X

!⊗
3

..
.

(t
m

A
p
p
)

X
<

:!T
o
p
|f

:!Φ
f
,x

:!X
`

(f
X

!⊗
n
−

2
(.
..

(f
!X

x
)
..
.)

)
:

!X
!⊗
n
−

1

(t
m

A
p
p
)

X
<

:!T
o
p
|f

:!Φ
f
,x

:!
X
`

(f
X

!⊗
n
−

1
(f

X
!⊗
n
−

2
(.
..

(f
!X

x
)
..
.)

))
:

!X
!⊗
n

5

`
∅

`
!T

o
p

`
!T

o
p
<

:
!T

o
p

5
X
<

:!T
o
p
|f

:!Φ
f
,x

:!X
`

(f
X

!⊗
n
−

1
(f

X
!⊗
n
−

2
(.
..

(f
!X

x
)
..
.)

))
:
!X

!⊗
n

(l
in

T
m

A
b
s)

X
<

:!T
o
p
|f

:!Φ
f
`
(λx:!

X
.f
X

!⊗
n
−

1
(f

X
!⊗
n
−

2
(.
..

(f
!X

x
)
..
.)

)) :
(!
X
(

!X
!⊗
n
)

ft
m

v
(.
..

)
∩
|∅
|=
∅

(n
lT

m
A

b
s)

X
<

:!T
o
p
|∅
`
(λf:!

Φ
f
.λ
x
:!X

.f
X

!⊗
n
−

1
(f

X
!⊗
n
−

2
(.
..

(f
!X

x
)
..
.)

)) :
!(

!Φ
f
(

(!
X
(

!X
!⊗
n
))

X
6∈

ft
yv

(∅
)

(n
lT

y
A

b
s)

`
(Λ
X
<

:!T
o
p
.λ
f
:!Φ

f
.λ
x
:!X

.f
X

!⊗
n
−

1
(f

X
!⊗
n
−

2
(.
..

(f
!X

x
)
..
.)

))
︸

︷︷
︸

≡
p
n
−

1
q

!⊗

:
(∀
X
<

:!T
o
p
.!
(!

(∀
Y
<

:!T
o
p
.(

!Y
(

!!
(!
X
⊗
Y

))
)

︸
︷︷

︸
=

Φ
f

(
(!
X
(

!X
!⊗
n
))

)
6

142

`
z:

U
n

it

`
(Q

bi
t
(

!!B
it

)

`
!(

Q
bi

t
(

!B
it

)

≺
:

(Q
bi

t
(

!!B
it

)
(m

e
a
sO

p
)

z:
U

n
it
`

m
ea

s
:

(Q
bi

t
(

!!B
it

)

`
∅

`
!(

Q
bi

t
(

Q
bi

t)

`
!(

Q
bi

t
(

Q
bi

t)

≺
:

(Q
bi

t
(

Q
bi

t)
H
∈
U 1

(u
n
it

a
ry

O
p
)

`
H

:
(Q

bi
t
(

Q
bi

t)

`
∅

`
(B

it
(

Q
bi

t)

`
!(

B
it
(

Q
bi

t)

≺
:

(B
it
(

Q
bi

t)
(n

e
w

O
p
)

`
n

ew
:

(B
it
(

Q
bi

t)
`

0
:

B
it

(t
m

A
p
p
)

`
(n

ew
0
)

:
Q

bi
t

(t
m

A
p
p
)

`
(H

(n
ew

0
))

:
Q

bi
t

(t
m

A
p
p
)

z:
U

n
it
`

(m
ea

s
(H

(n
ew

0
))

)
:

!!B
it

7

7
z:

U
n

it
`

(m
ea

s
(H

(n
ew

0
))

)
:

!!B
it

ft
m

v
((m

ea
s

(H
(n

ew
0
))

)) ∩
|z:

U
n

it
|=
∅

(n
lT

m
A

b
s)

`
(λz:U

n
it
.(

m
ea

s
(H

(n
ew

0
))

))
︸

︷︷
︸

≡
c
o
in

p
o
ly

:
!(

U
n

it
(

!!B
it

)
8

8
`

co
in

p
o
ly

:
!(

U
n

it
(

!!B
it

)
`
∅

(U
n

it
te

rm
)

`
〈〉

:
U

n
it

(t
m

A
p
p
)

`
(c

o
in

p
o
ly
〈〉

)
:
!!B

it
9

Y
<

:!T
o
p
|∅
`

co
in

p
o
ly

:
!(

U
n

it
(

!!
!!B

it
)

Y
<

:!T
o
p
`
∅

(U
n

it
te

rm
)

Y
<

:!T
o
p
|∅
`
〈〉

:
U

n
it

(t
m

A
p
p
)

Y
<

:!T
o
p
|∅
`

(c
o
in

p
o
ly
〈〉

)
:

!!
!!B

it
1
0

143

`
∅

`
!T

o
p

`
!T

o
p
<

:
!T

o
p

1
0
Y
<

:!T
o
p
|∅
`

(c
oi

n
p

o
ly
〈〉

)
:
!!

!!B
it

Y
<

:!T
o
p
`
y:

!Y

`
Y
<

:!T
o
p

Y
<

:!T
o
p
`

!!
Y

`
Y
<

:!T
o
p

Y
<

:!T
o
p
`

!Y

Y
<

:!T
o
p
`

!Y
≺

:
!Y

Y
<

:!T
o
p
`

!Y
≺

:
!!
Y

Y
<

:!T
o
p
|y:

!Y
`
y

:
!!
Y

(p
a
ir

T
m

)
Y
<

:!T
o
p
|y:

!Y
`
〈c

oi
n

p
o
ly
〈〉
,
y
〉:

!!
(!

!B
it
⊗
Y

)
ft

m
v

(.
..

)
∩
|∅
|=
∅

(n
lT

m
A

b
s)

Y
<

:!T
o
p
|∅
`

(λ
y:

!Y
.〈c

o
in

p
o
ly
〈〉
,
y
〉)

:
!(

!Y
(

!!
(!

!B
it
⊗
Y

))
Y
6∈

ft
yv

(∅
)

(n
lT

y
A

b
s)

`
(Λ
Y
<

:!T
o
p
.λ
y:

!Y
.〈c

o
in

p
o
ly
〈〉
,
y
〉)

:
!(
∀Y

<
:!T

o
p
.(

!Y
(

!!
(!

!B
it
⊗
Y

))
)

1
1

6
`
(Λ
X
<

:!T
o
p
.λ
f
:!Φ

f
.λ
x
:!
X
.f
X

!⊗
n
−

1
(f

X
!⊗
n
−

2
(.
..

(f
!X

x
)
..
.)

)) :
(∀
X
<

:!T
o
p
.!
(!

=
Φ

f

︷
︸︸

︷
(∀
Y
<

:!T
o
p
.(

!Y
(

!!
(!
X
⊗
Y

))
)
(

(!
X
(

!X
!⊗
n
))

)
`

!B
it

`
!B

it
<

:
!T

o
p

(t
y
A

p
p
)

`
((Λ

X
<

:!T
o
p
.λ
f
:!Φ

f
.λ
x
:!X

.f
X

!⊗
n
−

1
(f

X
!⊗
n
−

2
(.
..

(f
!X

x
)
..
.)

))
︸

︷︷
︸

≡
p
n
−

1
q

!⊗

!B
it
) :

!(
!(
∀Y

<
:!T

o
p
.(

!Y
(

!!
(!

!B
it
⊗
Y

))
)
(

(!
!B

it
(

!(
!B

it
)!⊗

n
))

1
2

1
2
`
((Λ

X
<

:!T
o
p
.λ
f
:!Φ

f
.λ
x
:!X

.f
X

!⊗
n
−

1
(f

X
!⊗
n
−

2
(.
..

(f
!X

x
)
..
.)

)) !B
it
) :

!(
!(
∀Y

<
:!T

o
p
.(

!Y
(

!!
(!

!B
it
⊗
Y

))
)
(

(!
!B

it
(

!(
!B

it
)!⊗

n
))

1
1
`

(Λ
Y
<

:!T
o
p
.λ
y:

!Y
.〈c

o
in

p
o
ly
〈〉
,
y
〉)

:
!(
∀Y

<
:!T

o
p
.(

!Y
(

!!
(!

!B
it
⊗
Y

))
)

(t
m

A
p
p
)

`
((Λ

X
<

:!T
o
p
.λ
f
:!Φ

f
.λ
x
:!X

.f
X

!⊗
n
−

1
(f

X
!⊗
n
−

2
(.
..

(f
!X

x
)
..
.)

))
︸

︷︷
︸

≡
p
n
−

1
q

!⊗

!B
it
(Λ
Y
<

:!T
o
p
.λ
y:

!Y
.〈c

o
in

p
o
ly
〈〉
,
y
〉)) :

(!
!B

it
(

!(
!B

it
)!⊗

n
)

1
3

1
3
`
((Λ

X
<

:!T
o
p
.λ
f
:!Φ

f
.λ
x
:!X

.f
X

!⊗
n
−

1
(f

X
!⊗
n
−

2
(.
..

(f
!X

x
)
..
.)

)) !B
it
(Λ
Y
<

:!T
o
p
.λ
y:

!Y
.〈c

o
in

p
o
ly
〈〉
,
y
〉)) :

(!
!B

it
(

!(
!B

it
)!⊗

n
)

9
`

(c
o
in

p
o
ly
〈〉

)
:
!!B

it
(t

m
A

p
p
)

`
((Λ

X
<

:!T
o
p
.λ
f
:!Φ

f
.λ
x
:!X

.f
X

!⊗
n
−

1
(f

X
!⊗
n
−

2
(.
..

(f
!X

x
)
..
.)

))
︸

︷︷
︸

≡
p
n
−

1
q

!⊗

!B
it
(Λ
Y
<

:!T
o
p
.λ
y:

!Y
.〈c

o
in

p
o
ly
〈〉
,
y
〉)(co

in
p

o
ly
〈〉
))

︸
︷︷

︸
≡
t p

o
ly

:
!(

!B
it

)!⊗
n

144

C
.1

.2
F
u

n
c
ti

o
n

te
rm

e
v
a
lu

a
ti

o
n

s

U
n
ty

p
ed

ca
se

:
T

h
e

fo
ll

ow
in

g
in

fo
rm

al
fu

ll
ev

al
u

at
io

n
of

u
n
ty

p
ed

Q
L

C
fu

n
ct

io
n

te
rm

t t
o
ss

(c
f.

E
x
a
m

p
le

4
.7

5
)

m
ay

b
e

in
te

rp
re

te
d

a
s
n

to
ss

es
o
f

a
fa

ir
(q

u
a
n
tu

m
)

co
in

.5
9

t t
o
ss
≡

≡
p
n
−

1
q

︷
︸︸

︷
(λf.λ

x
.f

(.
..

(f
x

)
..
.)
)(λ

y
.〈c

o
in
〈〉
,
y
〉)(co

in
〈〉
)

−→
∗
(λf.λ

x
.f

(.
..

(f
x

)
..
.)
)(λy

.〈c
o
in
〈〉
,
y
〉)(co

in
〈〉
) ↓

−→
∗
(λx.

(λ
y
.〈c

o
in
〈〉
,
y
〉)
(...

((λ
y
.〈c

o
in
〈〉
,
y
〉)
x
) ...

))(co
in
〈〉
) ↓

−→
(λ
y
.〈c

o
in
〈〉
,
y
〉)
(...

((λ
y
.〈c

o
in
〈〉
,
y
〉)

(c
o
in
〈〉

)↓
) ...

)
−→

∗
〈 (c

o
in
〈〉

)↓
,.
..
,(

co
in
〈〉

)↓
︸

︷︷
︸

n
ti

m
e
s

〉

S
im

p
ly

ty
p

ed
ca

se
:

W
e

ca
n

n
ot

d
er

iv
e

a
ty

p
e

fo
r
t t

o
ss

(o
r

a
si

m
il

ar
fu

n
ct

io
n

te
rm

)
in

si
m

p
ly

ty
p

ed
Q

L
C

.

P
ol

y
m

or
p

h
ic

al
ly

ty
p

ed
ca

se
:

A
ft

er
ap

p
ro

p
ri

at
e

m
o
d

ifi
ca

ti
on

s
of

fu
n

ct
io

n
te

rm
t t

o
ss

,
w

e
g
et

fu
n

ct
io

n
te

rm
t p

o
ly

w
h

ic
h

in
cl

u
d

es
p

ro
p

er
ty

p
e

a
n

n
o
ta

ti
o
n

s
(s

ee
E

x
a
m

p
le

4
.7

5
fo

r
d

et
a
il

s)
.

T
h

is
le

ad
s

to
th

e
fo

ll
ow

in
g

fu
ll

ev
al

u
at

io
n

.

t p
o
ly
≡

≡
p
n
−

1
q

!⊗

︷
︸︸

︷
(Λ
X
<

:!T
o
p
.λ
f
:!Φ

f
.λ
x
:!X

.f
X

!⊗
n
−

1
(f

X
!⊗
n
−

2
(.
..

(f
!X

x
)
..
.)

)) !B
it
(Λ
Y
<

:!T
o
p
.λ
y:

!Y
.〈c

o
in

p
o
ly
〈〉
,
y
〉)(co

in
p

o
ly
〈〉
)

−→
∗
(λf:!

Φ
f
[!B

it
/X

].
λ
x
:!!

B
it
.f

(!B
it

)!⊗
n
−

1
(f

(!
B

it
)!⊗

n
−

2
(.
..

(f
!!B

it
x

)
..
.)

))(Λ
Y
<

:!T
o
p
.λ
y:

!Y
.〈c

o
in

p
o
ly
〈〉
,
y
〉)(co

in
p

o
ly
〈〉
) ↓

−→
∗
(λx:!

!B
it
.((λ

y:
(!
B

it
)!⊗

n
−

1
.〈c

oi
n

p
o
ly
〈〉
,
y
〉)
((λ

y:
(!
B

it
)!⊗

n
−

2
.〈c

o
in

p
o
ly
〈〉
,
y
〉)
(...(

(λ
y:

!!
!B

it
.〈c

o
in

p
o
ly
〈〉
,
y
〉)
x
) ...

))))
(co

in
p

o
ly
〈〉
) ↓

−→
(λ
y:

(!
B

it
)!⊗

n
−

1
.〈c

oi
n

p
o
ly
〈〉
,
y
〉)
((λ

y:
(!
B

it
)!⊗

n
−

2
.〈c

o
in

p
o
ly
〈〉
,
y
〉)
(...

((λ
y:

!!
!B

it
.〈c

o
in

p
o
ly
〈〉
,
y
〉)

(c
o
in

p
o
ly
〈〉

)↓
) ...

))
−→

∗
〈 (c

oi
n

p
o
ly
〈〉

)↓
,.
..
,(

co
in

p
o
ly
〈〉

)↓
︸

︷︷
︸

n
ti

m
e
s

〉

5
9
F

o
r

th
e

sa
k
e

o
f

a
si

m
p

le
r

p
re

se
n
ta

ti
o
n

,
w

e
n

eg
le

ct
to

w
ri

te
d

o
w

n
th

e
fu

ll
q
u

a
n
tu

m
cl

o
su

re
s

a
n

d
th

e
a
ss

o
ci

a
te

d
re

d
u

ct
io

n
p

ro
b

a
b

il
it

ie
s

h
er

e
a
n

d
a
ls

o
in

th
e

su
b

se
q
u

en
t

ev
a
lu

a
ti

o
n

,
a
lt

h
o
u

g
h

th
ey

a
re

a
ct

u
a
ll
y

a
fo

rm
a
l

re
q
u

ir
em

en
t.

145

C
.2

T
y
p
e
d
e
ri
v
a
ti
o
n

fo
r
a
n
o
n
-t
e
rm

in
a
ti
n
g
p
o
ly
m
o
rp

h
ic

fu
n
ct
io
n

te
rm

`
f
:!(

U
n

it
(

Ψ
),
x
:U

n
it

`
(U

n
it
(

Ψ
)

`
!(

U
n

it
(

Ψ
)
≺

:
(U

n
it
(

Ψ
)

(t
m

V
a
r)

f
:!(

U
n

it
(

Ψ
),
x
:U

n
it
`
f

:
(U

n
it
(

Ψ
)

`
∅

`
〈〉

:
U

n
it

f
:!(

U
n

it
(

Ψ
),
x
:U

n
it
`

(f
〈〉

)
:
Ψ

ft
m

v
((f
〈〉

)) ∩
|x

:U
n

it
|=
∅

(n
lT

m
A

b
s)

f
:!(

U
n

it
(

Ψ
)
`

(λ
x
:U

n
it
.f
〈〉

)
:

!(
U

n
it
(

Ψ
)

`
f
:!(

U
n

it
(

Ψ
)

`
(U

n
it
(

Ψ
)

`
!(

U
n

it
(

Ψ
)
≺

:
(U

n
it
(

Ψ
)

(t
m

V
a
r)

f
:!(

U
n

it
(

Ψ
)
`
f

:
(U

n
it
(

Ψ
)

`
∅

`
〈〉

:
U

n
it

(t
m

A
p
p
)

f
:!(

U
n

it
(

Ψ
)
`

(f
〈〉

)
:
Ψ

(r
e
c
)

`
(l
et
re
c
f
:!(

U
n

it
(

Ψ
)

=
(λ
x
:U

n
it
.f
〈〉

)
in

(f
〈〉

))
:

Ψ

146

147

D Collection of all relevant derivation rules

Defined derivation rules

Proved types:

` Θ
(Top type)

Θ ` !nTop
` Θ

(Unit type)
Θ ` !nUnit

` Θ
(Qbit type)

Θ ` Qbit

` Θ, X<:ΦX ,Θ
′

(linear type variable)
Θ, X<:ΦX ,Θ

′ ` X
Θ ` Φ Θ ` Ψ

(function type)
Θ ` !n(Φ(Ψ)

` Θ, X<:!ΦX ,Θ
′

(nonlinear type variable)
Θ, X<:!ΦX ,Θ

′ ` !nX

Θ ` !nΦ Θ ` !nΨ
(product type)

Θ ` !n(Φ⊗Ψ)

Θ ` !nΦ Θ ` !nΨ
(sum type)

Θ ` !n(Φ⊕Ψ)

` Θ,Θ′ Θ, X<:ΦX ,Θ
′ ` Ψ X 6∈ nftyv(Ψ)

(linear-polymorphic type)
Θ,Θ′ ` (∀X<:ΦX .Ψ)

Θ,Θ′ ` ΦX <: !Top Θ, X<:ΦX ,Θ
′ ` !nΨ

(nonlinear-polymorphic type)
Θ,Θ′ ` !n(∀X<:ΦX .Ψ)

Proved subtypes:

Θ ` Φ
(Top supertype)

Θ ` Φ <: Top
Θ ` Φ

(<: reflexivity)
Θ ` Φ <: Φ

Θ ` Φ <: Ψ
(! left)

Θ ` !Φ <: Ψ
Θ ` !Φ <: Ψ

(! right)
Θ ` !Φ <: !Ψ

Θ ` Φ <: Φ′ Θ ` Ψ <: Ψ′
(function subtype)

Θ ` (Φ′(Ψ) <: (Φ(Ψ′)

Θ ` Φ1 <: Ψ1 Θ ` Φ2 <: Ψ2
(product subtype)

Θ ` (Φ1 ⊗ Φ2) <: (Ψ1 ⊗Ψ2)

Θ ` Φ1 <: Ψ1 Θ ` Φ2 <: Ψ2
(sum subtype)

Θ ` (Φ1 ⊕ Φ2) <: (Ψ1 ⊕Ψ2)

Θ,Θ′ ` ΦX <: Φ′X Θ, X<:ΦX ,Θ
′ ` Ψ <: Ψ′

(polymorphic subtype)
Θ,Θ′ ` (∀X<:Φ′X .Ψ) <: (∀X<:ΦX .Ψ

′)

148 D COLLECTION OF ALL RELEVANT DERIVATION RULES

Proved terms:

Θ ` Γ

Θ ` Ψ

Θ ` !(Bit (Qbit) ≺: Ψ
(new operator)

Θ|Γ ` new : Ψ

Θ ` Γ

Θ ` Ψ

Θ ` !(Qbit (!Bit) ≺: Ψ
(meas operator)

Θ|Γ ` meas : Ψ

Θ ` Γ

Θ ` Ψ

Θ ` !(Qbit⊗m+1 (Qbit⊗m+1) ≺: Ψ U ∈ Um+1
(unitary operator)

Θ|Γ ` U : Ψ

Θ ` Γ, x:Φx

Θ ` Ψx

Θ ` Φx ≺: Ψx
(term variable)

Θ|Γ, x:Φx ` x : Ψx

Θ|Γ, x:Φx ` t : Ψ
(linear term abstraction)

Θ|Γ ` (λx:Φx.t) : (Φx(Ψ)

Θ|!∆,Γ, x:Φx ` t : Ψ ftmv(t) ∩ |Γ| = ∅
(nonlinear term abstraction)

Θ|!∆,Γ ` (λx:Φx.t) : !n+1(Φx(Ψ)

Θ|!∆,Γ1 ` s : !n(Φ(Ψ) Θ|!∆,Γ2 ` t : Φ
(term application)

Θ|!∆,Γ1,Γ2 ` (s t) : Ψ

` Θ,Θ′ Θ, X<:ΦX ,Θ
′|Γ ` t : Ψ

X 6∈ nftyv(Ψ)

X 6∈ ftyv(Γ)
(linear type abstraction)

Θ,Θ′|Γ ` (ΛX<:ΦX .t) : (∀X<:ΦX .Ψ)

Θ,Θ′ ` ΦX <: !Top Θ, X<:ΦX ,Θ
′|Γ ` t : !nΨ X 6∈ ftyv(Γ)

(nonlinear type abstraction)
Θ,Θ′|Γ ` (ΛX<:ΦX .t) : !n(∀X<:ΦX .Ψ)

Θ|Γ ` t : !n(∀X<:ΦX .Ψ)
Θ ` Υ

Θ ` Υ <: ΦX
(type application)

Θ|Γ ` (t Υ) : !nΨ[Υ/X]

Θ ` Γ
(Unit term)

Θ|Γ ` 〈〉 : !nUnit
Θ|!∆,Γ1 ` t1 : !nΦ Θ|!∆,Γ2 ` t2 : !nΨ

(pair term)
Θ|!∆,Γ1,Γ2 ` 〈t1, t2〉 : !n(Φ⊗Ψ)

Θ|Γ, x:!nΦx, y:!
nΦy ` t : Ψ

(linear pair abstraction)
Θ|Γ ` (λ〈x:Φx, y:Φy〉.t) : (!n(Φx ⊗ Φy)(Ψ)

Θ|!∆,Γ, x:!nΦx, y:!
nΦy ` t : Ψ ftmv(t) ∩ |Γ| = ∅

(nonlinear pair abstraction)
Θ|!∆,Γ ` (λ〈x:Φx, y:Φy〉.t) : !m(!n(Φx ⊗ Φy)(Ψ)

Θ|Γ ` t : !nΦl Θ ` !nΦr
(left injection)

Θ|Γ ` injl(t) : !n(Φl ⊕ Φr)

Θ ` !nΦl Θ|Γ ` t : !nΦr
(right injection)

Θ|Γ ` injr(t) : !n(Φl ⊕ Φr)

Θ|!∆,Γ1 ` s : !n(Φx ⊕ Φy)

Θ|!∆,Γ2 ` (λx:Φx.tl) : !m(!nΦx(Ψ)

Θ|!∆,Γ2 ` (λy:Φy.tr) : !m(!nΦy (Ψ)
(case distinction)

Θ|!∆,Γ1,Γ2 `
(
match s with (λx:Φx.tl) | (λy:Φy.tr)

)
: Ψ

Θ|!∆, f:!(Φx(Ψ) ` (λx:Φx.s) : !(Φx(Ψ) Θ|!∆, f:!(Φx(Ψ),Γ ` t : Υ
(recursion)

Θ|!∆,Γ `
(
letrec f:!(Φx(Ψ) = (λx:Φx.s) in t

)
: Υ

149

Derived derivation rules

Proved types:

` Θ̂ Θ ` Φ Θ v Θ̂
(type weakening)

Θ̂ ` Φ

` Θπ Θ ` Φ
(type permutation)

Θπ ` Φ

Θ ` !mΥ Θ, Y<:!nΦY ,Θ
′ ` Ψ

ΦY ,Υ linear

n > 0⇒ m > 0
(type bound replacement)

Θ, Y<:!mΥ,Θ′ ` Ψ

Θ ` !Φ
(! amplification)

Θ ` !m+1Φ
Θ ` !n+1Φ

(! elimination)
Θ ` Φ

Θ, X<:ΦX ,Θ
′ ` Ψ

Θ ` Υ
Θ ` Υ <: ΦX

X 6∈ nftyv(Θ′)

X 6∈ nftyv(Ψ)
(linear type substitution)

Θ,Θ′[Υ/X] ` Ψ[Υ/X]

Θ, X<:ΦX ,Θ
′ ` Ψ

Θ ` !Υ
Θ ` Υ <: ΦX

(nonlinear type substitution)
Θ,Θ′[Υ/X] ` Ψ[Υ/X]

Θ ` !n(∀X<:ΦX .Ψ)
Θ ` Υ

Θ ` Υ <: ΦX
(bounded type substitution)

Θ ` !nΨ[Υ/X]

Proved subtypes:

` Θ̂ Θ ` Φ <: Ψ Θ v Θ̂
(subtype weakening)

Θ̂ ` Φ <: Ψ

` Θπ Θ ` Φ <: Ψ
(subtype permutation)

Θπ ` Φ <: Ψ

Proved terms:

Θ̂ ` Γ̂ Θ|Γ ` t : Φ

Θ v Θ̂

Γ ⊆ Γ̂
(term weakening)

Θ̂|Γ̂ ` t : Φ

` Θπ Θ|Γ ` t : Φ
(term permutation)

Θπ|Γ ` t : Φ

150 REFERENCES

References

[Abr93] Abramsky, S. Computational Interpretations of Linear Logic. In: Theoretical Computer Science
111 (1993), pp. 3–57

[AD04] Arrighi, P.; Dowek, G. Linear-algebraic lambda-calculus. In: Proceedings of the Second Interna-
tional Workshop on Quantum Programming Languages, QPL 2004. TUCS General Publication
33, Turku Centre for Computer Science, Turku, Finland. (2004), pp. 21–38

[AD05] Arrighi, P.; Dowek, G. A computational definition of the notion of vectorial space. In: Electronic
Notes in Theoretical Computer Science 117 (2005), pp. 249–261

[AD08] Arrighi, P.; Dowek, G. Linear-algebraic lambda-calculus: higher-order, encodings, and con-
fluence. In: Rewriting Techniques and Applications, RTA 2008. LNCS 5117, Springer-Verlag,
Hagenberg. (2008), pp. 17–31

[ADC11] Arrighi, P.; Dı́az-Caro, A. Scalar System F for Linear-Algebraic λ-Calculus: Towards a Quan-
tum Physical Logic. In: Electronic Notes in Theoretical Computer Science 270(2) (2011), pp.
219–229

[ADV11] Arrighi, P.; Dı́az-Caro, A.; Valiron, B. A Type System for the Vectorial Aspects of the Linear-
Algebraic Lambda-Calculus. To appear in Proceedings of the Seventh International Workshop on
Developments of Computational Models, DCM 2011. Also available as ArXiv preprint (2011),
arXiv:1012.4032v2 [cs.LO]

[Bar92] Barendregt, H.P. Lambda Calculi with Types. In: Abramsky, S.; Gabbay, D.M.; Maibaum,
T.S.E. (eds.) Handbook of Logic in Computer Science, Volume II. Oxford University Press,
Oxford, New York. (1992), pp. 117–309

[Bie94] Bierman, G.M. On Intuitionistic Linear Logic. Ph.D. thesis, Computer Laboratory, University
of Cambridge. 1994

[BV97] Bernstein, E.; Vazirani, U. Quantum complexity theory. In: SIAM Journal of Computing 26(5)
(1997), pp. 1411–1473

[Cro93] Crole, R.L. Categories for types. Cambridge University Press, Cambridge. 1993

[CMM91] Cardelli, L.; Martini, S.; Mitchell, J.C.; Scedrov, A. An extension of system F with subtyp-
ing. In: International Conference on Theoretical Aspects of Computer Software. LNCS 526,
Springer-Verlag, Berlin. (1991), pp. 750–770

[DAG11] Dı́az-Caro, A.; Arrighi, P.; Gadella, M.; Grattage, J. Measurements and Confluence in Quan-
tum Lambda Calculi With Explicit Qubits. In: Electronic Notes in Theoretical Computer Sci-
ence 270(1) (2011), pp. 59–74

[Deu85] Deutsch, D. Quantum theory, the Church-Turing principle and the universal quantum com-
puter. In: Proceedings of the Royal Society of London, Series A 400 (1985), pp. 97–117

[Die82] Dieks, D. Communication by EPR devices. In: Physical Letters A 92(6) (1982), pp. 271–272

[DMZ09] Dal Lago, U.; Masini, A.; Zorzi, M. On a measurement-free quantum lambda calculus with
classical control. In: Mathematical Structures in Computer Science 19(2) (2009), pp. 297–335

[DMZ11] Dal Lago, U.; Masini, A.; Zorzi, M. Confluence Results for a Quantum Lambda Calculus with
Measurements. In: Electronic Notes in Theoretical Computer Science 270(2) (2011), pp. 251–
261

[FD01] Florido, M.; Damas, L. Intersection Types and the Linear Lambda-Calculus. Technical Report
DCC-2001-9, DCC – FC & LIACC, Universidade do Porto. (2001)

[Gay06] Gay, S. Quantum Programming Languages – Survey and Bibliography. In: Mathematical Struc-
tures in Computer Science 16(4) (2006), pp. 581–600

REFERENCES 151

[Gir87] Girard, J.Y. Linear Logic. In: Theoretical Computer Science 50(1) (1987), pp. 1–102

[GTL90] Girard, J.Y.; Taylor, P.; Lafont, Y. Proofs and Types. Cambridge University Press, Cambridge,
New York. 1990

[Gru99] Gruska, J. Quantum Computing. McGraw Hill, London. 1999

[Kni96] Knill, E.H. Conventions for quantum pseudocode. Technical Report LAUR-96-272, Los Alamos
National Laboratory. (1996)

[Mil78] Milner, R. A Theory of Type Polymorphism in Programming. In: Journal of Computer and
System Sciences 17 (1978), pp. 348–375

[NC00] Nielsen, M.A.; Chuang, I.L. Quantum Computation and Quantum Information. Cambridge
University Press, Cambridge, New York. 2000

[NO08] Nakahara, M.; Ohmi, T. Quantum Computing – From Linear Algebra to Physical Realizations.
CRC Press, Boca Raton, London. 2008

[Pie94] Pierce, B.C. Bounded Quantification is Undecidable. In: Information and Computation 112(1)
(1994), pp. 131–165

[Pie02] Pierce, B.C. Types and Programming Languages. The MIT Press, Cambridge, London. 2002

[Sch98] Schubert, A. Second-order unification and type inference for Church-style polymorphism. In:
The twenty-fifth ACM SIGPLAN-SIGACT Symposium on Principles of Programming Lan-
guages, POPL 1998. ACM Press. (1998), pp. 279–288

[Sel04a] Selinger, P. A Brief Survey on Quantum Programming Languages. In: Proceedings of the
seventh International Symposium on Functional and Logic Programming, Nara, Japan. LNCS
2998, Springer-Verlag, Berlin. (2004), pp. 1–6

[Sel04b] Selinger, P. Towards a quantum programming language. In: Mathematical Structures in Com-
puter Science 14(4) (2004), pp. 527–586

[SU06] Sørensen, M.H.; Urzyczyn, P. Lectures on the Curry-Howard Isomorphism. Studies in logic
and the foundations of mathematics, volume 149. Elsevier, Amsterdam, Boston. 2006

[SV05] Selinger, P.; Valiron, B. A lambda calculus for quantum computation with classical control. In:
Proceedings of the Seventh International Conference on Typed Lambda Calculi and Applica-
tions, TLCA 2005. LNCS 3461, Springer-Verlag, Berlin. (2005), pp. 354–368

[SV06] Selinger, P.; Valiron, B. A lambda calculus for quantum computation with classical control. In:
Mathematical Structures in Computer Science 16(3) (2006), pp. 527–552

[SV08a] Selinger, P.; Valiron, B. A linear-non-linear model for a computational call-by-value lambda
calculus. In: Proceedings of the Eleventh International Conference on Foundations of Software
Science and Computation Structures, FOSSACS 2008. LNCS 4962, Springer-Verlag, Berlin.
(2008), pp. 81–96

[SV08b] Selinger, P.; Valiron, B. On a fully abstract model for a quantum linear functional language.
In: Proceedings of the Fourth International Workshop on Quantum Programming Languages,
QPL 2006. Electronic Notes in Theoretical Computer Science 210 (2008), pp. 123–137

[SV09] Selinger, P.; Valiron, B. Quantum lambda calculus. In: Gay, S.; Mackie, I. (eds.) Semantic
Techniques in Quantum Computation. Cambridge University Press. (2009), pp. 135–172

[Val04a] Valiron, B. A functional programming language for quantum computation with classical control.
Master’s thesis, Department of Mathematics and Statistics, University of Ottawa. 2004

[Val04b] Valiron, B. Quantum typing. In: Proceedings of the Second International Workshop on Quan-
tum Programming Languages, QPL 2004. TUCS General Publication 33, Turku Centre for
Computer Science, Turku, Finland. (2004), pp. 163–178

152 REFERENCES

[Val08] Valiron, B. Semantics for a Higher-Order Functional Programming Language for Quantum
Computation. Ph.D. thesis, Department of Mathematics and Statistics, University of Ottawa.
2008

[Val11] Valiron, B. On Quantum and Probabilistic Linear Lambda-calculi (Extended Abstract). In:
Electronic Notes in Theoretical Computer Science 270(1) (2011), pp. 121–128

[vTo04] van Tonder, A. A lambda calculus for quantum computation. In: SIAM Journal of Computing
33(5) (2004), pp. 1109–1135

[Wal05] Walker, D. Substructural Type Systems. In: Pierce, B.J. (ed.) Advanced Topics in Types and
Programming Languages. The MIT Press, Cambridge, London. (2005), pp. 3–43

[Wel94] Wells, J.B. Typability and Type Checking in the Second-Order λ-Calculus Are Equivalent and
Undecidable. In: Proceedings of the Ninth Annual IEEE Symposium on Logic in Computer
Science, LICS. (1994), pp. 176–185

[WZ82] Wootters, W.K.; Zurek, W.H. A single quantum cannot be cloned. In: Nature 299 (1982), pp.
802–803

[Zor09] Zorzi, M. Lambda Calculi and Logics for Quantum Computing. Ph.D. thesis, Dipartimento di
Informatica, Università degli Studi di Verona. 2009

