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Abstract

In software enterprise with large organizations, reduction of the time to de-
termine the processor who should solve an issue reported by customers can
accelerate software support. Formal Concept Analysis (FCA) is currently a
focused topic for analyzing large data. Applying FCA to historical records
of completely processed issues can construct the rules that can be used to
determine the potentially best processor (as this processor has already solved
previous issues of this kind) for the newly reported issues. A Basis in FCA
consists of rules representing the causation between symptoms of issues and
the responsible components which the processors are in charge of.

One important fact that we cannot omit is that the historical records
which are used to build the basis contain a certain amount of errors or im-
precise information. Most of the existing bases like basis of proper premises
are not suitable to construct rules from the erroneous data, and there are a
few bases that can deal with imprecise information like Luxenburger Basis,
but it is still not easy to provide appropriate rules for component determi-
nation. In this report we define a basis that is error tolerant, which is called
ET Basis that contains the rules that can deal with imprecise data; we also
provide the degree of recommendation for every candidate component. Fur-
thermore, we provide four approaches that can generate a basis that is error
tolerant, and we also show the comparisons of the advantages and disadvan-
tages based on the experiments made over incidents for real software issues.
We achieved a rate of classification over 90%, i.e. the candidate component
with the highest degree of recommendation is the right component in more
than 90% of the test data.
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Chapter 1

Introduction

It is a challenging task to give support for business software. Business critical
issues have to be solved in short time with a high quality. This is especially
challenging in case of a software suite with broad functionality which is de-
veloped and supported by a large organization.

The time an issue needs to be resolved is a composite of the time to deter-
mine the processor who should resolve the issue and the time the processor
needs to provide a solution. The time frame to determine the processor is
wasted time as it does not directly contribute to providing a solution. A
study on bug assignment of Eclipse and Mozilla [JKZ09] shows that for ver-
ified bugs it takes 19.3 days for Eclipse and 38.1 days for Mozilla to do the
first assignment task. Support engineers have to check each issue, detect the
root cause and determine who should process this issue. Some issues even
need to be reassigned more than once, which increases the time needed to
find the right processor.

In the business software area we consider, the time a support engineer
spends on the first assignment is much less but the reassignment effect slows
the whole procedure down. The main reason for a slow assignment is man-
ual forwarding of the issue until the correct processor is found. This is all
manual (human) work, which is very expensive. In order to reduce such
cost, determining the correct processor for issues (or incidents) with a high
level of accuracy is desired. When an issue is found in a complex software
system, which is built from several interconnected modules, it is important
to identify which modules are responsible for the problem, and the group of
developers in charge of correcting it. Component is a term used to represent
the module, and a group of developers are responsible to process the issues
which belong to this certain component.

Our goal is to determine the right components for newly created software
issues. In other words, we want to find the rules which can predict the
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CHAPTER 1. INTRODUCTION 2

component from a given set of symptoms (or features). To successfully find
the responsible component of a software issue, there are two things we need
to do: constructing a group of rules of causation information from historical
data, and predicting the right component of the newly created issues using the
rules. We use the term component determination to describe the procedure
to find the right component for the newly created incident.

Formal Concept Analysis (FCA) is a research area of high interest in alge-
bra, mathematics, theoretical computer science, machine learning and data
mining, and it is also broadly applied in software technology to process and
analyze large data. In FCA theory, data is organized as a set of objects, a set
of attributes and a set of relations between objects and attributes. We use
context to describe the data with this organization. When the data comes
from software issues, attributes can be used to describe both features and
components. Software issues can result in symptoms which are represented
by different combinations of features. We are interested in which combina-
tions of features have strong relation to which components. A context can
be represented through a table, where rows represent different incidents and
the columns represent features identified by the issue occurrence and the
responsible component for each issue. For example, if we want to indicate
that the incident with ID “1” using program “UpdateSalesOrder” should
be processed in component “CustomerRelationshipManagement”, we mark
a cross in the cell where the row indicates “incident 1” and the columns in-
dicate “UpdateSalesOrder” and “CustomerRelationshipManagement” shown
in Table 1.1.

IncidentID UpdateSalesOrder CustomerRelationshipManagement
1 × ×

Table 1.1: example showing an incident

One approach for component determination is applying FCA techniques
to historical records about completely processed issues. Briefly, this historical
data can be used as training information to identify causation between dif-
ferent features and the component known to be responsible for it. Therefore,
the problem of finding these causal relations reduces to the construction of a
set of rules, which can tell the causation between features and components.
We call such set a basis in FCA. We will introduce bases in detail in Chapter
3. One basis in FCA that we can investigate is the direct basis, where we can
get the exact premises responsible for one attribute. This basis can be used
in our case because we can view the combination of features as a premise for
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component.
The direct base can be used to predict the components for newly created

software issues. As a very simple example, consider a rule x→ y where x is a
program called “UpdateSalesOrder” and y is the component “CustomerRela-
tionshipManagement”. Then when we observe one newly created issue with
a feature saying the program name is “UpdateSalesOrder”, we can easily say
that this issue can be put into the queue of component “CustomerRelation-
shipManagement”.

One direct basis that is commonly used, and which we will look into is
the basis of proper premises. A proper premise is a set of features. In the
basis of proper premises, for every component we can compute all the sets of
features that act as proper premises. The rules between these features and
the component can be seen as the causation. We will present this basis in
detail in Section 3.2.

A given context might not suffice for fully characterizing the relevant
component: the historical data we use to generate the rules might contain er-
rors, or the descriptive attributes might not suffice for distinguishing between
different cases. For example, if the component “ServiceApplication” also ap-
pears in one record together with the program “UpdateSalesOrder”, we need
to decide which component is most relevant, “CustomerRelationshipManage-
ment” or “ServiceApplication”. In this case, absolute direct bases may be
too restrictive for the desired application. Therefore, we then investigate on
another basis that allows erroneous data—Luxenburger Basis.

Luxenburger Basis was first introduced by Michael Luxenburger in 1991.
Luxenburger worked “implications with exception” also called “partial impli-
cations” in [Lux91], where he formalized partial implication and Luxenburger
basis. We will give introduction of Luxenburger Basis in detail in Section 3.3.

Since Luxenburger Basis can deal with data containing errors, we try to
directly apply this idea to component determination. However, Luxenburger
Bases do not produce rules with only one component on the conclusion side,
therefore for every new incident, we have to find all components that can
be candidate components by computing the closure of the features of the
new incident. This approach is computationally very expensive, as shown
by experiments in Section 5.1. One solution to this problem is to create one
subcontext for each component and use frequent itemsets (as defined for the
Luxenburger Basis) to get relevant sets of attributes for each subcontext. The
evaluation in Section 5.2 shows that in the approach of subcontext it is hard
to find the right component among those candidate components, therefore
we try to partition in a different way: randomly and equally partitioning
but not necessarily with same component in one subcontext. Then in each
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subcontext, we compute the proper promises of each component appearing
in the subcontext. This approach is shown to be good to find the right
components by evaluation in Section 5.3. An extreme case of this approach is
that there is exactly one object in one subcontext. Then for one new incident,
going through all subcontexts to find candidates is equal to exploring the
whole original context, and we use the probabilistic way to find the right
components. The corresponding evaluation is shown in Section 5.4.

This report is organized as following: we start in Chapter 2 by introduc-
ing background knowledge including basic notions of lattice theory, contexts
and concepts of FCA, and closure system used in this report. In Chapter 3
we first focus on “attribute logic” in FCA, where we explain the basic con-
cepts of constructing a basis in detail, and then we introduce some popular
bases like those of proper premises and Luxenburger Basis. In Chapter 4,
we introduce four approaches, which are the extension of existing bases pre-
sented in Chapter 3. The first approach is using closure system; the second
one is applying frequent itemsets to partitioned contexts; the third one is
partitioning context in a different way but applying proper premises; the last
one is using the machine learning. These approaches can deal with errors in
the data and can be applied to software issues to find the right components.
The implementation evaluations will be shown in Chapter 5. At the end, we
present conclusions and future work.



Chapter 2

Formal Concept Analysis

Based on order theory and lattice theory, Formal Concept Analysis is a math-
ematical theory for analyzing data from a group of objects, their attributes
and the relations. FCA was first introduced by Rudolf Wille, Bernhard Gan-
ter and Peter Burmeister in early 1980s.

In this chapter, we will first introduce lattice theory, including ordered
sets and structure of lattices, which are the foundations of the following
chapters. Then contexts and concepts will be introduced in Section 2.2,
where we show the most used definitions in this report: concept lattices and
many valued contexts. Additionally we show closure systems shortly, which
are used in constructing basis.

2.1 Lattice Theory

FCA is based on the mathematical order theory and lattice theory. As start
point, we introduce ordered sets.

Definition 1. Let M and N be two sets, a binary relation R is a set of
pairs (x, y) where x ∈ M and y ∈ N . We write xRy instead of (x, y) ∈ R
to indicate there is a binary relation between x and y. An order relation
(or shortly an order)R on a set M is a binary relation which satisfies the
following conditions for all x, y, z ∈M :

• reflexivity: xRx

• antisymmetry: xRy and x 6= y ⇒ not yRx

• transitivity: xRy and yRz ⇒ xRz

5
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Usually, we use the symbol ≤ to denote the order relation R. We write
x < y when x ≤ y and x 6= y. An ordered set is a pair (M,≤) where M is
a set and ≤ is an order on M . We call x the lower neighbour of y if x < y
and there is no element z such that x < z < y. In this case, y is called upper
neighbour of x, and denoted it by x ≺ y.

Definition 2. The Supremum ( least upper bound) of a subset S of an
ordered set T is the least element of T which is greater than or equal to all
elements in S. Dually, the infimum ( greatest lower bound) of a subset S of
an ordered set T is the greatest element of T which is less than or equal to
all elements in S.

We can use Hasse diagrams to represent ordered sets. Each element in
an ordered set S is represented as a small circle. If x, y ∈ M and x ≺ y, we
draw the circle of x above circle of y and add a line connecting x and y. In
Figure 2.1 we show all Hasse diagrams of three elements.

Figure 2.1: Hasse diagrams of three elements

Definition 3. A lattice is an ordered set S:= (S,≤) such that: for any two
elements x and y in the set S, there always exist a unique supremum x ∨ y
and a unique infimum x ∧ y.

For every two elements x, y ∈ S, it holds that x∨(x∧y) = x = x∧(x∨y).
Both lattice operators— supremum and infimum are idempotent, associative
and commutative. The order relation of any two elements x and y can be
constructed using supremum and infimum:

x ≤ y ⇐⇒ x = x ∧ y ⇐⇒ x ∨ y = y

In a Hasse diagram, the supremum of two nodes is the lowest element
that is represented above both of them, and dually the infimum is the largest
element below both.
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2.2 Contexts and Concepts

In this section, we introduce the basic notions of Formal Concept Analysis
(FCA), including the notions of formal context and formal concept. The
word “formal” is referring to the mathematical notions which are only used
in context and concept in standard language. From now on, we leave the
word “formal” out and write “context” and “concept” for “formal context”
and “formal concept” [GW99]. In FCA, data is organized by a set of objects,
a set of attributes, and a set of relations. The software issues we are dealing
with can also be organized in the same way. The objects are incidents created
by customers; the attributes are the symptoms and the component where the
incident belongs. The incident can be described by a list of causation and
the component responsible for the incident.

Definition 4. A (formal) context K := (G,M, I) consists of two sets G and
M and a relation I between G and M , where G is the set of objects of the
context, M is the set of attributes of the context. We use gIm to express
that the object g is in relation I with the attribute m.

A context can also be described using a cross-table. The rows and columns
of the table correspond to the objects and attributes respectively, and a
Boolean value is represented as a cross in the cell (g,m) if object g has
attribute m. Consider the following example, whose cross-table is shown in
Table 2.1, and we use this example to show all relations from cross table.

Example 1. Context K = (M1, G1, I1) contains the set of objects is G1 =
{1, 2, 3, 4, 5}, and the set of attributes is M1 = {a, b, c, d}. From the posi-
tions of crosses, we can tell the set of relations is I1: (1, a), (1, b), (1, c),
(1, d),(2, a), (2, b), (3, b), (3, c), (3, d), (4, b), (5, b), (5, c).

ID a b c d
1 × × × ×
2 × ×
3 × × ×
4 ×
5 × ×

Table 2.1: Cross-table
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2.2.1 Many-Valued Contexts

As defined in the previous section, the attributes from a context are unary,
which means the context is one-valued. The software issues we want to deal
with are not unary any more. In the example represented in Table 2.2, there
are two values in attribute “Program”: “Program c” and “Program d”, thus
to represent this context in the cross-table, it is not sufficient to only use
Boolean values for attribute “Program”. In this case, the attribute in the

ID Interface Program Component
1 a c X
2 a d Y
3 a d Y

Table 2.2: Many-valued context

context is not Boolean-valued, but many-valued. These attributes are called
many-valued attributes.

Definition 5. A many-valued context K = (G,M,W, I) consists of sets G,
M and W and a relation I : G×M → W . We call G the set of objects, M
the set of (many-valued) attributes, and W the set of attribute values.

We use m(g) = w to represent that the object g has attributes m with
value w. In the table that represents many valued context, the entry in row
g and column m represents the attribute m(g). It is sufficient to study the
one-valued ones, since many-valued can be transformed to equivalent one-
valued. This transformation can be done by scaling. The simplest scaling is
called plain scaling.

Definition 6. A scale for the attribute m of a many-valued context is a one-
valued context S := (Gm,Mm, Im) with m(G) ⊆ Gm. The objects of a scale
are called scale values, the attributes are called scale attributes.

Plain scaling transforms many-valued context to one-valued context with
many-valued context (G,M,W, I) and the scale contexts S: The set G of
objects stays the same, and every many-valued attribute m is replaced by
the scale attribute of the scale S. In other words, every value m(g) is replaced
by the row of the scale context Sm ⊆ m(g) [GW99]. The many valued context
in Table 2.2 after scaling is shown in Table 2.3.
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ID [Interface a] [Program c] [Program d] [Component X] [Component Y]
1 × × ×
2 × × ×
3 × × ×

Table 2.3: Many-valued context after scaling

2.2.2 Concept Lattices

Following the previous sections about context, we introduce concepts and
the concept lattice.

Definition 7. For a set A ⊆ G of objects we define

A′ := {m ∈M | gIm for all g ∈ A}

For a set B ⊆M of attributes we define

B′ := {g ∈ G | gIm for all m ∈ B}

Intuitively, A′ is a set of common attributes belonging to all objects in
A, and B′ is set of objects which have all attributes in B.

Definition 8. A (formal) concept for a context (G,M, I) is a pair (A,B)
with A ⊆ G, B ⊆ M such that A′ = B, B′ = A. We call A the extent and
B the intents of concept (A,B).

Intuitively, a concept is a maximal rectangle of the table that is full of
crosses. In the context K1 from Example 1, {1, 3}′ = {b, c, d} and {b, c, d}′ =
{1, 3}. Hence the pair ({1, 3}, {b, c, d}) is a concept in context K1. This
concept in shown in Table 2.4. Similarly, we can find all concepts in Exam-
ple 1: ({1, 2, 3, 4, 5}, {b}), ({1, 2}, {a, b}), ({1, 3, 5}, {b, c}), ({1, 3}, {b, c, d}),
(∅, {a, b, c, d})

ID b c d
1 × × ×
3 × × ×

Table 2.4: A concept in the context from Example 1
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Definition 9. If (A1, B1) and (A2, B2) are concepts of a context, (A1, B1)
is called subconcept if A1 ⊆ A2, and B2 ⊆ B1. In this case, (A2, B2) is a
superconcept of (A1, B1), and we write (A1, B1) ≤ (A2, B2). The relation
≤ is called the order of concepts. The concept lattice of a formal content
(G,M, I) is the set of all formal concepts of (G,M, I), associated with the
partial order

(A1, B1) ≤ (A2, B2) iff A1 ⊆ A2 and B2 ⊆ B1

In the concept lattice, for every two concepts (A1, B1) and (A2, B2), the
greatest common subconcept is (A1 ∩A2, (B1 ∪B2)′′) and the least common
superconcept is ((A1 ∪ A2)′′, B1 ∩ B2). The concept lattice of Example 1 is
shown in Figure 2.2.2.

b

ab
bc

bcd

abcd

Figure 2.2: Concept Lattice of Example 1

2.3 Closure System

Definition 10. A closure system F on a set S is a set of subsets which
contains S (S ∈ F) and is also closed under intersection:

If F1, F2 ⊆ F, then F1 ∩ F2 ∈ F

A closure operator ϕ is a map on the powers set of S. The closure operator
satisfies:

• monotonic: for all X, Y ⊆ S,X ⊆ Y ⇒ ϕ(X) ⊆ ϕ(Y )

• extensive: for all X ⊆ S,X ⊆ ϕ(X)

• idempotent: for all X ⊆ S, ϕ2(X) = ϕ(ϕ(X)) = ϕ(X)
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From the property of monotonicity and idempotency, we can get a the
following conclusion: ∀X, Y ⊆ S: X ⊆ ϕ(Y ) ⇔ ϕ(X) ⊆ ϕ(Y ). The set
ϕ(X) is called the closure of X by ϕ. The set X is said to be closed by ϕ
when ϕ(X) = X.

Proposition 1. [BM10] Every complete lattice is isomorphic to the lattice
of all closures of a closure system, and vice versa.

For each element in the power set of M , the concept intents are the
largest sets among those with the same closure [Stu02]. The set of all concept
intents of a formal context form a closure system, with the closure operator
is ϕ(X) = X ′′. In Example 1, for each element in the power set of M , the
corresponding closure is shown in Table 2.5.

closure set of attributes
∅ ∅
{b} {b}
{a, b} {a}, {a, b}
{b, c} {c}, {b, c}
{b, c, d} {d}, {b, d}, {c, d}, {b, c, d}
{a, b, c, d} {a, c}, {a, d}, {a, b, c}, {a, b, d}, {a, c, d}, {a, b, c, d}

Table 2.5: Sets with same closure in Example 1

In the next chapter, concept lattices and closure systems will be used to
construct bases and help us find the right components.





Chapter 3

Bases in FCA

From the previous chapter, we can view the records of software issues as
contexts. To find the right component for newly created issues, we need to
investigate the methods that can generate rules, and with these rules we can
predict the right components for the newly created issues.

When all incidents caused by feature a and feature b belong to component
c, we can say there is a dependency between feature a and feature b and
component c. In general, when all objects that have all attributes in a set
P also have all attributes in a set Q, then there is a dependency between P
and Q, which can be expressed as a rule P → Q. In FCA, we call P → Q
an implication, and we use basis to represent a set of implications between
attributes, from which other rules can be derived. There are many commonly
used bases, such as the Guigues-Duquenne Basis [GD86], the basis of proper
premises [GW99] and the Luxenburger basis [Lux91]. A basis of a context
is complete if every implication of the context is entailed from the basis. A
basis of a context is sound if the context satisfies all implications.

In this chapter, we focus on attribute logic first, then we introduce basis
of proper premises and Luxenburger bases in detail.

3.1 Attribute Logic

To solve the component determination problem, we must find the dependen-
cies between features and components first. Thus we are interested in the
logic between attributes. In FCA, attribute logic is a method to get the rules
between attributes. From a context, we can infer the rules. For example,
when A = {a, b, c} and B = {d, e}, the implication A → B expresses that
every object that has attributes {a, b, c} must also have the attributes {d, e}.

13



CHAPTER 3. BASES IN FCA 14

We omit the brackets if there is only one element in the set B, i.e. we write
A → m instead of A → {m}. We are interested in the rules with this form
because in the software issue scenario we are dealing with B is always a
component and A is a set of features.

Definition 11. [GW99] An implication between attributes (in M) is a pair
of subsets of the attribute set M . It is denoted by X → Y . X → Y holds in
a context if every object having all attributes in X also has all attributes in
Y . X is a premise of Y and Y is conclusion of X.

The closure can also be obtained using implications. Let Σ be a basis
with only one attribute on the head. Implication P →Σ q means there is an
implication P → q in basis Σ. The closure operator ϕΣ (closure operator
associated with Σ) can be obtained by the iteration of the following steps:

ϕΣ(X) = πΣ(X) ∪ π2
Σ(X) ∪ π3

Σ(X) ∪ . . .

where

πΣ(X) = X ∪
⋃
{q | P ⊆ X and P →Σ q}

and

π2
Σ(X) = πΣ(X) ∪

⋃
{q | P ⊆ πΣ(X) and P →Σ q}

This means we add everything that is implied by elements in X through
the implications from Σ. The computation of ϕΣ(X) terminates after finitely
many steps because S in finite. Thus, ϕΣ(X) = ϕn

Σ(X) where n is the min-
imal integer satisfies ϕn

Σ(X) = ϕn+1
Σ (X). The corresponding set of implica-

tions is

Σϕ(X) = {X → y | y ∈ ϕ(X) and X ⊆ S}

A basis is minimal (or non-redundant) if for all P → q ∈ Σ, Σ \ {P → q}
is not equivalent to Σ. A basis is direct or iteration-free if for every X ∈ S,
ϕΣ(X) = πΣ(X). Intuitively, a direct basis is a basis where we do not have
to iterate when computing closed sets. ϕ(X) is then the smallest set that
contains X and is closed under Σ in the sense that whenever (A → b) ∈ Σ
then A ⊆ Σ(X) implies b ⊆ Σ(X).
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3.2 Proper Premises

One commonly used set of implications is often called the stem base or canon-
ical Duquenne-Guigues base. The stem basis is sound, complete, and of min-
imal cardinality [GW99]. The stem base is defined using pseudo-intents.

Definition 12. A set of attributes P ⊆ M is a pseudo-intent if and only if
P is a set of attributes but not an intent, and P contains the closure of every
pseudo-intent that is properly contained in P . The stem base of a formal
context (G,M, I) is

{P → P ′′ | P pseudo-intent of K}

A sound and complete set of implications can also be obtained using
proper premises. The basis of proper premises is a canonical direct basis.

Definition 13. Given a set of attributes B ⊆M , we define B• as the set of
those attributes in M \ B, which can be implied by B but not from a strict
subset of B:

B• = B′′ \ (B ∪
⋃
S ′′)

where S is strict subset of B. B is called a proper premise if B• is not empty.

B is called proper premise for m ∈ M if m ∈ B•. It has been shown
that L = {B → B• | B proper premise} is sound and complete [Kuz04], and
it has minimal cardinality among all direct bases of K. We use the arrow

relation ↙ to determine the proper premise of an attribute m. We write
g ↙ m in the cross-table if g′ is maximal w.r.t. the subset order among all
object intents which do not contain m.

Proposition 2. P ⊆M is a proper premise for m if and only if

(M \ g′) ∩ P 6= ∅

holds for all g ∈ G with g ↙ m. P is minimal with respect to the property
that (M \ g′) ∩ P 6= ∅ holds for all b ∈ G with g ↙ m.

There is a connection between proper premises and minimal hypergraph
transversals [RDB11]. Intuitively, a hypergraph is a graph where an edge can
connect any number of vertices. Let V be a set of vertices. A hypergraph H
on V is a pair (V,E) where V is a set of vertices and E is a set of non-empty
subsets of V called hyperedges. Therefore E ∈ P(V )\{∅} where P(V ) is the
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power set of V . A set S ∈ V is called hypergraph transversal of E if S inter-
sects every hyperedge. S is called a minimal hypergraph transversal Tr(E)
of E if S is minimal with respect to the subset order among all hypergraph
transversals of H. The transversal hypergraph of H is the set of all minimal
hypergraph transversals of H, denoted by Tr(H) [Hag07].

Example 2. Given hypergraph H = (V,E) where V = {v1, v2, v3, v4} and
E = {{v1, v2}, {v2, v3, v4}}. H has hypergraph transversals:

{{v2}, {v1, v2}, {v1, v3}, {v1, v4}, {v2, v3}, {v2, v4},
{v1, v2, v3}, {v1, v2, v4}, {v2, v3, v4}, {v1, v2, v3, v4}}.

H has transversal hypergraph

Tr({{v1, v2}, {v2, v3, v4}}) = {{v1, v3}, {v1, v4}, {v2}}.

In the following corollary we show exactly the connection between proper
premises and hypergraph transversals.

Proposition 3. P is a proper premise of an attribute m ∈M if and only if
P is a hypergraph transversal of (M,H) where

H := {M \ g′ | g ∈ G, g ↙ m}.

The set of all proper premises of m is the transversal hypergraph

Tr({M \ g′ | g ∈ G, g ↙ m})

There are two steps to compute all proper premises for one context. First,
we determine arrow relations. Then, we compute the transversal hypergraph
of each attribute. In Example 1, we find all arrow relations: (2, c), (2, d), (3, a)
and (5, d). (2, c) and (2, d) are down-arrows for the following reasons: (2, c)
is down-arrow because 2′ and 4′ are in the same subset of order, and 2′ is
maximal since 2′ = {a, b} > 4′ = {b}. In other words, we write down-arrow
in cell (2, c) because in all other rows (in this case 1) which contain the same
features also feature c is included. (2, d) is down-arrow, because 2′ and 4′ are
in the same subset of order, and 2′ is maximal since 2′ = {a, b} > 4′ = {b}.
In other words, we write down-arrow in cell (2, d) because in all other rows
(in this case 1) which contain the same features also feature d is included.
The rest two down-arrow relations can be obtained by the same way. We
show the arrow relations in Table 3.1.

We recall proposition 3 above and compute minimal hypergraph transver-
sals of each attribute. For example, for attribute c, there is arrow relation



CHAPTER 3. BASES IN FCA 17

ID a b c d
1 × × × ×
2 × × ↙ ↙
3 ↙ × × ×
4 ×
5 × × ↙

Table 3.1: down-arrows in Example 1

2↙ c. Since {M \ 2′} \ {c} = {d} and Tr({d}) = {{d}}, proper premise of
c is d. For other attributes, we can get the proper premises using a similar
method.

When this theory is applied to the contexts of software issues, the compo-
nent of an issue and the other attributes should be investigated separately,
since we are interested in the implications whose premises are feature at-
tributes and conclusions are components attributes.

Imagine we have a contexts of software issues K = (G,Mf ,Mc, I) where G
is set of incidents, Mf is the set of feature attributes, like “BussinessObject”
and “RuntimeError”. Mc is the set of component attributes, which is our
“goal conclusion”. We also name implication in FCA “rule” in the contexts
of issues. In Algorithm 1 we show how to get the rules of proper premises for
all components appearing in the given context. P is set of proper premises
for a component m. R is a set of all rules of proper premises.

Algorithm 1 Algorithm to compute rules for component

1: P= ∅, R= ∅
2: for all m ∈Mc do
3: P= Tr({Mf \ g′ | g ∈ G, g ↙ m})
4: for all p ∈ P do
5: R = R∪ {p→ m}
6: end for
7: end for
8: return R

In the algorithm the statement “P = Tr({Mf \ g′ | g ∈ G, g ↙ m})”
represents proper premises for an component m. For each component, the
statement R = R ∪ {p→ m} generates all implications whose conclusion is
the component.
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Example 3. In the cross-table K from Table 3 where G = {1, 2, 3, 4, 5, 6},
Mf = {a, b, c, d, e, f, g, h, i, j, k, l,m} and Mc = {A,B,C,D}. We are going
to compute the proper premises for every component.

ID a b c d e f g h i j k l m A B C D
1 × × × × ×
2 × × × × ×
3 × × × × ×
4 × × × × ×
5 × × × × ×
6 × × × × ×

Table 3.2: Context

First, for every component m ∈ Mc, the algorithm computes the proper
premises. To get proper premise, we first compute all the down arrow rela-
tions shown in Table 3.3

ID a b c d e f g h i j k l m A B C D
1 × × × × × ↙ ↙ ↙
2 × × × × × ↙ ↙ ↙
3 × × × × ↙ × ↙ ↙
4 × × × × ↙ ↙ × ↙
5 × × × × ↙ ↙ × ↙
6 × × × × ↙ ↙ ↙ ×

Table 3.3: context in Example 2 with down-arrows

Then we compute the minimal hypergraph transversals of each component.
We just show how to compute the proper premises of component A.
{Mf \ 3′} = {abceghjlm};
{Mf \ 4′} = {abcefghim};
{Mf \ 5′} = {abcefghim};
{Mf \ 6′} = {abdfgijlm};
According to the definition of transversal hypergraphs, set of features like

{h, g} is a proper premise, but actually no record of these six incidents has the
feature combination of {h, g}. We are only interested in those combinations
which appear in at least on record. One of the transversal hypergraph we can
use as proper premise of component A is: {a, b, g,m}.
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The rules we generate for component A are {a→ A, b→ A, g → A,m→
A}. Similarly, for component B,C,D we can get rules of proper premises.
Finally we get the set of rules: R = {a → A, b → A, g → A,m → A, f →
B, l→ B, j → C, l→ C, c→ D, h→ D, e→ D}.

3.3 Luxenburger Basis

When the processor is responsible for a group of components including com-
ponents X and Y , he or she could just close the incident in either component
by chance. That is one reason why the data in historical records are not
precise, and that is where the erroneous data come from.

Example 4. In the context of historical records shown in Table 3.4, there
are five incidents. a and b are features and X Y are components.

We can see that the first three incidents in Table 3.4 show the component
X is responsible for incident with features {a, b}, but component Y is re-
sponsible for incident 4 with features ab. Incident 4 might be an error data,
or some feature rather than a or b is missing in the context to distinguish X
and Y . From the previous section, both the proper premises of X and Y are
∅, which means, {a, b} cannot be proper premise for either component. But
actually, from the probability point of view, component X is responsible for
incident with feature {a, b} and for the rare case, component Y is. Hence
the approach of proper premises is not suitable to deal with erroneous data.
In other words, the approach of proper premises is not error tolerant.

ID a b X Y
1 × × ×
2 × × ×
3 × × ×
4 × × ×
5 × ×

Table 3.4: Context with error data

In this applied field we want to deal with errors and missing information,
hence we are interested in rules that can handle imprecisions. The errors,
also called counterexamples, are taken into account in the following chapter.
The interest of imprecise data motivates us to investigate Luxenburger Basis.
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Definition 14. The support of an implication is the proportion of all objects
having all attributes of the implication in both premise and conclusion among
all objects.

supp(X) = |X|
|G| supp(X → Y ) = supp(X ∪ Y )

The confidence of an implication is the proportion of all objects satisfying
both premise and conclusion among all objects satisfying premise.

conf(X → Y ) = supp(X∪Y )
supp(X)

In Example 4, supp({a, b}) = 4/5, supp({a, b}∪{X}}) = 3/5, supp({a, b}∪
{Y }) = 1/5 and conf({a, b} → {X}) = 3/4, conf({a, b} → {Y }) = 1/4.
Therefore The strength of a rule can be defined in terms of its support and
confidence and the strengths of rules can be used to rank candidate compo-
nents.

Definition 15. Let I ⊆M , and let minsupp, minconf ∈ [0, 1]. The support

count of the itemset I in K is supp(I) := |g(I)|
G

where g(I) is set of objects
which has relation with all attributes in I. I is said to be frequent itemset(FI)
if supp(I) ≥ minsupp. The set of all frequent itemsets of a context is denoted
by FI.

In Example 4,minimal support is 0.5, {a, b,X} is a frequent itemset, but
{a, b, Y } is not. All subsets of a frequent itemset are also frequent itemsets.
In Figure 3.1 all frequent itemsets are marked dark.

An association rule is an implication expression of the form X → Y ,
where X and Y are disjoint itemsets, i.e., X ∩ Y = ∅. The main task
in association rules mining is rule generation, which aims at extracting all
implications whose confidence is above the minimal confidence threshold.
These rules are called strong rules [TSK05]. We will not investigate further
on association rules since there are too much useless rules, and it is very time-
consuming to obtain all association rules and then remove those useless ones.
Therefore, we introduce a commonly used set of imprecise implications—
Luxenbureger Basis.

In [Lux91], Luxenburger introduced basis for partial implications. A par-
tial implication is an implication where accuracy (i.e. confidence) is consid-
ered. It is sufficient to only consider the implications between concept in-
tents, which are the closed sets because conf(X → Y ) = conf (ϕ(X)→ ϕ(Y ))
[LS05].
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∅

b Xa Y

ab aX bX aY bY cY

abX abY aXY bXY

abXY

Figure 3.1: Frequent itemsets in context in Example 4
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Definition 16. An itemset X is closed itemset if X is a closed set and none
of its immediate supersets has exactly the same support count as X. An
itemset X is called frequent closed itemset(FC) if it is closed and its support
is above the minimal support threshold.

The closed itemsets from the context of Example 4 are shown in the lattice
in Figure 3.2. When minimal support is 0.5, ∅, ab and abX are frequent closed
itemsets, which are marked dark in Figure 3.2.

∅

ab

abX abY

abXY

Figure 3.2: Closed itemsets and frequent closed itemsets

Definition 17. The Luxenburger Basis is defined as LB := {(I1 → I2,
support(r), confidence(r)) where I1 and I2 are closed itemsets and I1 is the
direct upper neighbor of I2 in the concept lattice, and confidence(r)≥ minconf,
support(I2) ≥ minsupp}

Example 5. The context K = {G,M, I} is shown in Table 3.5 where G =
{1, 2, 3, 4, 5},M = {a, b, c,D,E}. a, b, c are features and D,E are compo-
nents. Given minsupp=minconf=0, the Luxenburger Basis of K is {∅ →
c, ∅ → bE, bE → c, c→ ab, c→ bE, acD → bE, bcE → a, abcD → E}.

The Luxenburger Basis consists of association rules such that there are
concepts (A1, B1) and (A2, B2) where (A1, B1) is a direct upper neighbour
of (A2, B2), X = B1 and X ∪ Y = B2. In Figure 3.5 we show Luxenburger
Basis of Example 5.

There has been extensive research on the relation between Luxenburger
basis and association rules. One popular conclusion is that all association
rules can be derived from two bases: Duquenne-Guigues Basis [GW99] for ex-
act association rules and the Luxenburger basis for approximate association



CHAPTER 3. BASES IN FCA 23

ID a b c D E
1 × × ×
2 × × ×
3 × × × ×
4 × ×
5 × × × ×

Table 3.5: Lattice of Luxenburger Basis

∅

c

bE

acD

bcE

abcD

abcDE

Figure 3.3: Lattice of Example 5
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rules [STB+01]. We have introduced basis of proper premises and Luxen-
burger Basis. These two bases can provide rules between attributes. We
are going to show how we can use the existing bases are applied to software
issues in the following chapter.



Chapter 4

Algorithms for Error-tolerant
Bases

From a mathematical logic point of view the newly created issue (or incident)
is an observation. An observation in this field of application is a set of features
without component information. To determine the right component for a
newly created issue, we need the rules generated from the historical incidents
which have been completely processed and closed in the right components.

Our goal is to generate a basis from the given contexts of historical
records. This basis consists of implications with the form of X → y where
X is the set of feature attributes and y the implied component. Since the
implications in the basis should work for data with errors or incomplete data,
we call such basis that is error tolerant (ET Basis). With this base, we can
predict the right component when we know the features of an incident. In
this chapter, we first present the approach of Luxenburger Basis since it can
deal with erroneous data and we try to use closure system to find all can-
didate components. Second, we partition the context and apply the idea
of frequent itemsets to each small context with same component. Third we
show another context partitioning approach while applying proper premises,
which shows promising results in the experiments. In the end, we show an
extreme way of applying the third approach which corresponds to machine
learning theory.

4.1 Closure Computation

In Section 3.3, we introduced Luxenburger Basis, which can deal with erro-
neous data. Since Luxenburger basis can generate imprecise implications, we

25
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try to apply idea of Luxenburger Basis to see if we can get proper premises
of each component with error tolerance.

Example 6. The context in Table 4.1 contains four historical issues where
a, b, c are features and X, Y are components. The corresponding Luxenburger
Basis of this context with minsupp=minconf=0 is shown in Table 4.2.

ID a b c X Y
1 × × ×
2 × × ×
3 × ×
4 × × × ×

Table 4.1: context of historical issue

implication support confidence
∅ → X 0.75 0.75
∅ → ab 0.75 0.75
X → c 0.5 0.67
ab→ X 0.5 0.67
X → ab 0.5 0.67
cX → ab 0.25 0.5
abX → c 0.25 0.5
ab→ Y 0.25 0.33
abcX → Y 0 0
abY → cX 0 0

Table 4.2: implications in Luxenburger Basis

We list all implications with minsupp = 0 and minconf = 0 in Table
4.2. The ideal implications we want to generate are of the following for-
mat features → component, but from Table 4.2 we can see that the premises
of implications are not always features and the conclusions are not always
components. Implications like abX → c or abY → cX cannot tell us explic-
itly the relation between the features and one component. It is not easy to
directly apply Luxenburger Basis to determine the right component for an
issue since we cannot produce rules with component on the conclusion side.
Therefore we need to make an extension of Luxenburger Basis.

Let us jump back to Example 6. Suppose the bc is an observation, and
there is no implication in Table 4.2 which can directly be used to determine
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the right component. But we notice in the concept lattice of Luxenburger
Basis shown in Figure 4.1 that the “candidate” components X and Y (the
components which might be the right components) can be found in closure
like abcX. Therefore to find the right component for an issue, the first step
is to find candidate components, and then we rank all candidates and see if
the top one is the right one.

∅

X ab

cX abX abY

abcX

abcXY

Figure 4.1: Concept Lattice

From Section 2.3, the closure of S contains all attributes that can be im-
plied by S under a set of implications. If some component is in the closure
of S, then this component can be implied by S. We aim to find the smallest
closed superset of the observation and the components in the set are the can-
didate components. Rules of Luxenburger Basis can be visualized as “edges”
of a concept lattice. To find the smallest closed superset of observation, we
have to include in the Luxenburger basis a base that can represent implica-
tions in each “node‘” in the concept lattice, like stem base. In Section 3.2, we
shortly introduced the stem basis, which is constructed using pseudo-intent.
One node in the concept lattice can represnet an intent. Thus stem base can
be used to construct the lattice so that we can find those components in the
intents. Therefore Luxenburger basis consists of all imprecise implications,
and stem base consists of all valid (or precise) implications. Thus we can find
candidate components of observation S from the smallest closed superset of
S under the union of Luxenburger Basis and stem base.

After obtaining all candidate components C1, C2, ..., Cn, we can construct
the an ET Base of S. For every combination of features Fx ⊆ S (i.e. every
non-empty element Fx in the power set of observation) where 1 ≤ x < 2|S|,
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we construct a set of implications ΣFx for every candidate component where
the premise is Fx:

ΣFx = {Fx → C1, Fx → C2, ..., Fx → Cn}.

The ET Base of an observation S is the union of all ΣFx :

ΣS = { F1 → C1, F1 → C2, ..., Fx → Cn,
F2 → C1, F2 → C2, ..., F2 → Cn,
...,
Fm → C1, Fm → C2, ..., Fm → Cn}

where m = 2|S| − 1

In Example 5, the smallest superset of {b, c} under the union bases is
{a, b, c,X} given minimal support 0.2 and minimal confidence 0.2. The ET
Base of bc is: {b → X, c → X, bc → X}. The candidate component in
this case is X. In Algorithm 2 we show how to get an ET Basis of an
observation S. Lines 1 and 2 denote computing stem base and Luxenburger
Basis respectively from the given context K. Lines 3 is to make union of
these two bases. Line 4 shows how to get all candidate components are those
appearing in the smallest closed superset of observation S. Line 5 initialize
a ET Basis and Lines 6 to 10 is to constructing rules for each component c,
and for every c, the premises are elements from the power set of observation
S. Each rule is associated with the corresponding degree of recommendation.

Algorithm 2 construct an ET Basis using closure

Input: K = {G,Mf ,Mc, I}, observation S

1: SB = {r | r ∈ stem base }
2: LB = {r | r ∈ Luxenburger basis}
3: RULE = SB ∪ LB
4: CC = {m | m ∈Mc

⋂
smallest closed superset ( RULE, S)}

5: DR = ∅
6: for all c ∈ CC do
7: for all s ⊆ S do
8: DR = DR

⋃
{s→ c, dr (s→ c,K)}

9: end for
10: end for
11: return DR

When the amount of historical records is growing, the candidate compo-
nents we get in the closure will be more than one, it is important to rank
these components to see which one has the highest rank. One way to compute
the degree of recommendation (dr) is using confidence.
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Algorithm 3 Algorithm to get top ranking components
Input: DR

1: maxconf = {dr | dr is maximal among all confidence ∈ DR}
2: TC = {c | c ∈Mc

⋂
s→ c ∈ DR

⋂
confidence(s→ c,K) = maxconf}

3: return TC

dr(Fx → C)= conf(Fx → C)

Component of the implication with highest confidence is the most recom-
mended component for the observation S. The component with the highest
degree of recommendation can be obtained by Algorithm 3. Line 1 is to get
the maximal degree of recommendation (maxconf) from all rules in ET ba-
sis constructed in Algorithm 2. Line 2 shows the top components are those
with the same degree of recommendation as the maximal degree, and the
component c in TC can be varified if it is the right component.

The advantage of this approach is that we can use imprecise implications
of Luxenburger basis to deal with erroneous data. However, there are also
disadvantages. Firstly, construction of lattice from Luxenburger and canon-
ical bases is quite time-consuming. Secondly, it is complex to compute the
smallest closed superset of the observation. Thirdly it is not easy to find the
suitable minsupp and minconf: if we set a low minimal value, the computa-
tion of implications are very expensive and there will be a lot of candidate
components, most of which are wrong components; if we set a high minimal
value, there will be very few candidate components in the closure, thereby
the closure containing the right component might be eliminated.

4.2 Frequent Premises in Partitioned Con-

text

Since applying the idea of Luxenburger Basis is computationally very expen-
sive, we present a new approach partitioning the original context into several
smaller ones with the same component. Then we apply the idea of frequent
itemsets from Luxenburger Basis to get relevant sets of features for each small
context. One difference between this approach and closure computation is
in frequent premises, the ET Basis we get first from the historical data is
not related with certain observation. Then we extract those rules related
with certain observation and call the basis of extracted rules the ET Basis
of observation.
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The subcontext KA is a context containing all incidents with the same
component “A” from the original context K. For example, there are three
subcontexts KA,KB,KC if there are three components A,B,C in the original
context. We use the term size of subcontext for the amount of objects in
each subcontext.

A Frequent premise of component A is a frequent itemset (i.e. set of
features whose support is greater than or equal to minimal support) in the
subcontext KA. Given a minimal support, for each subcontext KX we can
obtain an ET basis of implications, where the premises of implications are
frequent itemsets and the conclusion X. The features in frequent itemsets
are also strong related features for component X.

Example 7. Let KA be a subcontext of component A shown in Table 4.3
where MKA

= {a, b, A}. If minsupp = 0.5, {b} is the only frequent premise of
A. The ET Basis of KA is {b→ A}. If minsupp = 0.4, {a} {b} {a, b} are the
frequent premises for A. The ET Basis of KA is {a→ A, b→ A, ab→ A}.

In Example 7 we show how to get an ET Basis of a subcontext. In
Algorithm 4 we show how to get an ET Basis from a given context. The
input is the context of historical records K. Line 1 is initializing the ET
Basis. Line 2 to 7 shows for every component c in historical data we to
construct an ET Basis of component c, then the union of these bases from
every component is the final ET Basis. The ET Basis of an observation S
is a set of implications whose premises are contained by S. The candidate
components of S are those appearing in the ET Basis of S.

ID a b A
1 × × ×
2 × × ×
3 × ×
4 × ×
5 × ×

Table 4.3: subcontext
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Algorithm 4 construct an ET Basis using frequent premises

Input: K = {G,Mf ,Mc, I}, minsupp

1: R = ∅
2: for all c ∈Mc do
3: Kc = {Gc,Mf , Ic}
4: FP = {FI | supp(FI)≥ minsupp}
5: ETc = {fp→ c | fp ∈ FP}
6: R = R∪ ETc
7: end for
8: return R

One approach to define ranking of recommended components is using the
support of frequent premises in the subcontexts, together with the “voting
weight” of each subcontexts. The voting weight is the size of the subcontext
divided by the size of the original context.

dr(FP → C)=supp(FP )KC
∗weight(KC)=supp(FP )KC

∗ size(KC)

size(K)

Example 8. In context K there are 11 incidents separated in two subcontexts
KB and KC shown in Table 4.4. The minimal support is 0.5 and observation
is ac. In KB, the ET Basis of ac is {a → B} with support({a})KB

= 1 and
weight(KB) = 1/11. In KC, the ET Basis is {a→ C} with support({a})KC

=
1/2 and weight(KC) = 10/11. The degree of recommendation of B is

support({a})KB
∗ weight(KB) = 1/11, and the degree of recommendation

of C is support({a})KC
∗ weight(KC) = 10/22.

a B
1 × ×

a b C
1 × ×
2 × ×
3 × ×
4 × ×
5 × ×
6 × ×
7 × ×
8 × ×
9 × ×
10 × ×

Table 4.4: subcontexts KB and KC
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The main advantage of this approach is subcontexts do not lose any infor-
mation from the original context and each subcontext is independent hence
it is easy to update the corresponding subcontexts if new fully processed
incidents are put into historical records. In addition, there is no need to go
through the whole context to generate an ET Basis hence it is much faster
to generate an ET Basis compared with the previous closure approach.

There is also disadvantage. The way we define rate of recommendation
still needs to be improved. Because some frequent itemset has appeared
often in every subcontext. The rules containing such frequent itemsets may
recommend several components with same or similar degree, thus it is hard
to find the right one among them.

4.3 Proper Premises in Partitioned Context

The experiments in Section 5.2.2 show that the approach of applying frequent
premises in partitioned context is not precise enough to determine the right
component. Therefore we try to partition the context in a different way. As
shown in Section 2.2, the big advantage of basis of proper premises is that
the rules in the basis are very precise and can be used directly to determine
the right component. We want to keep this advantage hence we now take
these ideas from proper premises while trying to construct an ET basis.

The disadvantage of proper premises is that some suitable premises can-
not “survive” because of erroneous data. However, the new approach pre-
sented in this section can minimize the effect of erroneous data to the size
of the subcontext. We partition the original context and compute proper
premises in each subcontext. It is shown in the experiments that this ap-
proach is suitable to determine right component.

We divide the original training contexts into subcontexts randomly and
equally but not necessarily containing the same component. Then we gener-
ate the basis of proper premises for each of these subcontexts. The union of
all bases of subcontexs is an ET Basis of the whole context.

Equally partitioning of the context with size n is to divide a context with
n objects into same size subcontexts where there is no common object in any
two subcontexts and every object must appear in one of the subcontexts.
But there might be a case that the size m of the original context is not a
multiple of n, thus the size of one subcontext is remainder when m is divided
by n. In Algorithm 5 we show how to generate an ET Basis using proper
premises in the partitioned context.
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Example 9. Given context K = (G,M, I) shown in Table 4.5, K is equally
partitioned. K1 and K2 are subcontexts shown in Table 4.6. The basis of
proper premises for K1 is {ac→ X, b→ Y }, and the basis of proper premises
for K2 is {a → X}. The union of bases of proper premises for every sub-
context is the ET Basis: {ac → X, b → Y, a → X}. If we do not partition
context, the basis of proper premises of the original context K in Table 4.5 is
{ac→ X, a→ X}, where the rule for component Y cannot exist.

K a b c X Y
1 × × ×
2 × ×
3 × × ×
4 × ×

Table 4.5: Context

K1 a b c X Y
1 × × ×
2 × ×

K2 a b c X Y
3 × × ×
4 × ×

Table 4.6: Partitioned context

The ET Basis of an observation S is set of implications whose premise
is contained in observation. The candidate components of observation S are
those appearing in the ET Basis of an observation S. One way to define the
ranking of candidate components is using the confidence of rules in an ET
Basis of an observation S among the original context.

dr(pp→ C)=confidenceK(pp→ C)

Let us go back to Example 9. The ET Basis of abc is {ac→ X, b→ Y, a→
X}. The candidate components are X, Y . The degrees of recommendation
of X and Y are 1 and 0.67 respectively.
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Algorithm 5 construct an ET Basis using proper premises

Input: K = {G,Mf ,Mc, I}, size n

1: S = {s = {Gs,Ms, Is} | s ∈ partition(K, n)}
2: R = ∅
3: for all s = {(Gs,Ms, Is)} ∈ S do
4: C = {c | c ∈Ms

⋂
Mc}

5: for all c ∈ C do
6: Pc = {p | p ∈ proper premises of c}
7: if Pc 6= ∅ then
8: Rc = ∅
9: for all p ∈ Pc do
10: if support(p) 6= 0 then
11: Rc = Rc

⋃
{(p→ c, (rd (p→ c),Ktrain))}

12: end if
13: end for
14: end if
15: R = R

⋃
Rc

16: end for
17: end for
18: return R

In Algorithm 5, the input we give are the context K of historical data and
the size n of subcontext. The code in Line 1 shows the set S is the set of all
subcontexts. Each subcontext is from partitioned context with size n. Line
2 is to initializing an ET Basis. Lines 3 to 17 shows for every subcontext
how we get the ET Basis Rc. Line 4 is collecting all components c appearing
in the subcontexts. For each c, Line 6 shows the algorithm computes all
proper premises of c. Lines 7 to 14 shows for every proper premise whose
support is greater than 0, the algorithm construct a rule of proper premise
associated with the support of this rule. In Algorithm 6 we show how to
generate an ET Basis of an observation. The input id the ET Basis we get
from Algorithm 5 and an observation S. Line 1 is initializing a basis. Line 3 is
checking for every rule in the ET Basis if the premise in the rule is contained
in the observation S. If it is contained, we collect this rule to the ET Basis
of observation S.
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Algorithm 6 Algorithm to generate an ET Basis of one observation

Input: R = proper premises rules, observation S

1: DR = ∅
2: for all P → c ∈ DR do
3: if P ⊆ S then
4: DR = DR ∪ {(P → c, rd(P → c))}
5: end if
6: end for
7: return DR

We show the experiments to evaluate this approach in Section 5.2. Firstly,
it keeps the advantage of proper premise to get those precise rules from
subcontexts and it minimizes the effects of erroneous data. Secondly it also
keeps the advantage of partitioned context—very easy to update an ET Basis.

4.4 Subset Searching

The extreme case of partitioning context is setting the size of each subcontext
as one. This means that each record represents one rule in the ET Basis.
The ET Basis of an observation consists of all implications whose premises
are contained by the observation. Therefore, this approach is corresponding
to machine learning. A study on bug assignment using machine learning
approach is shown in [ORS06] where they reach precision level of 57% and
64% on the Eclipse and Firefox development projects respectively.

Definition 18. The applicable Object for an observation S, denoted as oS,
is the object whose feature-attributes are contained in observation S. The set
AS is the set of all applicable objects of observation S. The Matched Object
of component c for an observation S, is the object whose component-attribute
is component c and feature-attributes FoS are contained in observation S,
which means FoS ⊆ S. The set BS(c) is a set of all matched objects for
component c of observation S.

In this approach, we define the degree of recommendation using statistics
on the whole context. The degree of recommendation of component c is the
proportion of matched records in whole records.

drSK(c) = |BS(c)|
|AS |
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Given a context of historical records and an observation, In Algorithm 7
we show all candidate components with their recommended degrees.

Algorithm 7 finding candidate components with degree of recommendation
for observation
Input: K, S

AS= ∅, PC= ∅
for all o ∈ G do

if FoS ⊆ S then
AS=AS ∪ {o}
PC=PC ∪ {coS}
count(c) = count(c) + 1

end if
end for
for all c ∈ PC do
drSK(c) = count(c)

count(AS)

C = C ∪ {(c, rSK(c))}
end for
return C

Example 10. The context K = (G,M, I) shown in Table 4.7 where G =
{1, 2, 3, 4, 5} and M = {a, b, c, d}. The applicable objects of observation
{a, b, c}are {1, 2, 3, 4}. dr(X) = 0.25, dr(Y ) = 0.5 and dr(Z) = 0.25.

ID a b c d X Y Z
1 × × ×
2 × × ×
3 × ×
4 × × × ×
5 × × ×

Table 4.7: Context of subset searching

Compared with the previous approaches, there is no need to train the con-
text with historical records using subset searching. The way to recommend
component is using the idea of probability. Therefore it is easy to process
each new incident in the computation point of view. But, when there are
large data in the historical records, it also takes a longer time to go through
the whole training records. Another disadvantage is for some component,
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there is strong related attributes but occurring very rare. Hence from prob-
abilistic statistic, the right component will not be recommended with high
degree of recommendation.





Chapter 5

Evaluation

In this chapter, we present experiments in every approach we showed in
Chapter 4 to evaluate the different approaches on several sets of training
data and test cases. We will compare the advantages and disadvantages of
the approaches we evaluated.

We separate the experiments into two phases: training and predicting. In
the training phase, the original many valued context is transformed into one
value context, then an ET basis is generated from the training context. In
the approach of subset searching, there is no need to generate an ET Basis
first, since we process the whole training context and collect all candidate
components for the observation. In the predicting phase, we first generate an
ET Basis of the observation, which contains all predicting rules from an ET
Basis we got in the training phase. Then we get all candidate components
with ranking.

The given contexts from which we can generate an ET Basis are called
training data. The incidents which need to be predicted (i.e. the responsible
components should be found) are called testing data. We use part of the
whole historical records as experiment data. We separate experiment data
into training data and testing data. For the testing data actually we know the
correct components but these components are not involved in either training
or predicting phase. We use these correct components only for verifying
whether the recommended components are right.

To evaluate the different approaches, we use several criteria: training
time, predicting time, rate of positive classification and rate of correct clas-
sification. Training time is the time which was spent on generating the ET
Basis from training data. Predicting time is the time which was spent on
predicting the right component for one incident. An incident is positively
classified if the correct component of the test incident is among the candi-
date components. An incident is correctly classified if the correct component

39
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ranks on the top one among the recommended components. We use # to
indicate the amount of incidents, e.g. # Train means the amount of test in-
cidents. T(train) means the training time. The rate of positive classification
is the proportion of the amount of positively classified incidents among the
whole test data. Analogously, the rate of correct classification is the pro-
portion of the amount of correctly classified incidents among the whole test
data.

We use several test series to evaluate every approach, which will be listed
in tables and figures in the following sections. Each incident we use to train
or test has six features and one component. The values we write in the
examples are not real data from customer.

5.1 Closure Computation

In Section 4.1, we introduced the approach based on Luxenburger Basis. In
this section, we present the experiments of this approach. Table 5.1 and
Figure 5.1 show the training time to generate an ET Basis which is the
union of Luxenburger Basis and Guiques-Duquenne Basis. It costs 0.7, 99,
1882 and 28800 seconds to train 10, 50, 100 and 250 incidents respectively.
The curve in Figure 5.1 shows the time is increasing super linearly. We use
20 incidents as test data and the average predicting time is 1.3, 2.8, 3, 3.5
milliseconds respectively.

# Train 10 50 100 250
T(train) (s) 0.7 99 1882 28800
T(predict) (ms) 1.3 3 2.8 3.5

Table 5.1: Training time in the approach of closure computation

The rates of positively and correctly classifications are shown in Figure
5.2. According to Figure 5.2, the more training data we use, the higher rates
of classifications we get, although we only have small training data in the
experiments. We set the minimal support is greater than 0, which means we
just ignore those feature sets whose support values are 0. We set the minimal
confidence 0.5 because we want to get those rules with candidate components
which have more than 50

The main reason for negatively classification is that the training data is
not large enough and the right components never appear in it. Although
we want to add more training data to see the results, from Figure 5.1, it
costs more than 8 hours to train 250 incidents, and we can imagine with this
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Figure 5.1: training time
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Figure 5.2: Rates in the approach of closure computation
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minsupp and minconf it will cost much more time to train on larger data.
Hence we stop investigating this approach.

5.2 Frequent Premises in Partitioned Con-

text

In Section 4.2, we introduced the approach of frequent premises. In the
experiment part, we use training data with 100, 250, 500, 1000 and 2000
incidents since the training time is much less than the previous approach. It
only takes 2164 seconds to get an ET Basis from the training data with 2000
incidents. We use the same 20 test incidents as in the previous approach.
And the predicting time is also increasing along with the number of training
data. We show the training and predicting time in Table 5.2, Figure 5.3 and
Figure 5.4.

# Train 100 250 500 1000 2000
T(train) (s) 5.4 41 217 899 2164
T(predict) (ms) 0.5 1.3 1.6 2.9 5.5

Table 5.2: Training and predicting time in the frequent premises approach
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Figure 5.3: Training time in the approach of frequent premise
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Figure 5.4: Predicting time in the approach of frequent premises

We show the rates of correct and positive classification in Figure 5.5 in
the approach of frequent premises, where we can see we can see the rate of
positive classification is above 80% but the rate of correct classification is 0,
which indicates that the right component is among the candidates but the
recommended degree of the right component is not high enough. The reason
for the low rate of correct classification is that in the ET Basis, there is always
some rules ranked top because one feature in these top rules appearing quite
often in whole training data, thus rules containing such feature have very
high support even if weight is added. Such rules always rank top but cannot
predict the right components. To improve the rate of correct classification,
we have to evaluate another approach.

5.3 Proper Premises in Partitioned Context

This section is related with the approach described in Section 4.3. In Table
5.3, we show a test incident. We list the first part of the rules in the ET
Basis of training data on 2000 incidents and candidate components in Table
5.4. The rule with highest degree of recommendation is “paymentorder →
Component- MOP”, therefore component ”MOP” is on the first rank.

We did experiments on training data with 100, 250, 400, 500, 700, 1000,
1500, 2000, 3000, and 4000 incidents. The subsumption relations between
these data sets (ds) are:
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Figure 5.5: Rates in the approach of frequent premises

feature value
BusinessObject “BSA”
EventName “RELEASE-WITHOUT-CLEARING”
ProgramName “CL-A1FOP”
FeaturePack “4.0”
RuntimeError “ASSERTION-FAILED”
UserInterface “paymentorder”

Table 5.3: A test incident with six features

rule dr
UserInterface “paymentorder”→ Component “MOP” 100%
RuntimeError “ASSERTION-FAILED” → Component “XCR” 11.4%
RuntimeError “ASSERTION-FAILED”→ Component “MDA” 8.6%
. . . . . .
FeaturePack “4.0”→ Component “MDA” 0.6%

Table 5.4: Candidate components
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ds(100) ⊆ ds(250) ⊆ ds(400)⊆ ds(500) ⊆ ds(1000) ⊆ ds(2000);
ds(100) ⊆ ds(700) ⊆ ds(1500) ⊆ ds(2000);
ds(2000)⊆ ds(3000)⊆ ds(4000).

The corresponding training time and predicting time is shown in Table 5.5,
Figure 5.6 and Figure 5.7. We use the same 20 incidents as in the previous
two approaches to test and the rates of correct classification reaches 95% and
the rate of positive classification even reaches 100%. Hence we go on with
large testing data to see the results.

# Train 100 250 400 500 700 1000 1500 2000 3000 4000
T(train) (s) 12 13 412 657 1439 2938 6448 10006 21930 38108
T(predict) (ms) 1 1 2 3 4 6 9 11 16 25

Table 5.5: Training and predicting time in the approach of proper premises
of partitioned context on subcontext with size of 3
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Figure 5.6: Training time in the approach of proper premises of partitioned
context

Regarding the classification rates, we show two test cases on 2000 records
of training data shown in Table 5.6. We use 457 and 951 test incidents for the
first and second test series respectively. There are 438 out of 457 incidents
which can be correctly classified and 454 out of 457 incidents which can be
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Figure 5.7: Predicting time in the approach of proper premises of partitioned
context

positively classified, hence the rates of correct and positive classification is
96% and 99.8%. For the test series of 951 incidents, there are 766 out of
951 incidents which can be correctly classified and 886 out of 951 incidents
which can be positively classified, hence the rates of correct and positive
classification is 83% and 91%. In Figure 5.8 we show the curves of results
when applying proper premises in partitioned context in the two test series.
Compared with the approaches of closure computation and frequent premises,
this approach of proper premises in partitioned context has much better
result.

TestSeries 1
# Training 2000
# Testing 457
# Positively Classified 454
# Correctly Classified 438
Positive Rate 99.8%
Correct Rate 96%

TestSeries 2
# Training 2000
# Testing 951
# Positively Classified 886
# Correctly Classified 766
Positive Rate 93%
Correct Rate 81%

Table 5.6: Two test series
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Figure 5.8: Rates in the approach of proper premises in partitioned context

5.4 Subset Searching

This section is corresponding to the approach in Section 4.4. Since there is
no training phase in the approach of subset searching, for each new incident,
the algorithm goes through the whole training data and searches for the
candidate components. With our experiments we evaluated the predicting
time as shown in Table 5.7 and Figure 5.9.

# Train 500 995 1990 2990
T(predict) (ms) 0.3 1.1 4 7

Table 5.7: Predicting time in the approach of subset searching

In Table 5.8 we show the features and values of one test incident for
illustrating purposes. The right component for this incident is “AP-XCR”.
The result of searching in the 2990 incidents of training data is shown in the
Table 5.10: there are totally seven components are found as recommended
components; component AP-XCR which is the right one we are looking for
appears four times which is ranked top one.

In Table 5.9 we show one test series on 2990 training incidents and 20
testing incidents which are the same as we first tested in the previous ap-
proaches. Among the 20 test incidents, there are 11 incidents which can be
positively classified. Among these 11 incidents there are 10 incidents which
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feature value
Interface “UI5”
FeaturePack “4.0”
BussinessObject “Production”
EventName “ProviderAccess”
Error “TEXT”
ProgramName “SAPLBOA”
Component “AP-XCR”

Table 5.8: One test incident in subset searching

TestCase 1
# Training 2990
# Testing 20
# Positively Classified 11
# Correctly Classified 10
Positive Rate 55%
Correct Rate 50%

Table 5.9: One test series in subset searching

Component count dr
AP-XCR 4 40%
AP-FMD-MAT 1 10%
AP-DUE-TXR 1 10%
AP-SLO 1 10%
AP-TIM 1 10%
BC-CCM-MON-TUN 1 10%
AP-BP-EE 1 10%

Table 5.10: Candidate components subset searching
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Figure 5.9: Predicting time in the approach of subset searching
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Figure 5.10: Rates in the approach of subset searching

can be correctly classified. The rates of positive and correct classification are
shown in Figure 5.10. Compared with the previous approach, the result in
this approach is not as good as approach of proper premises in partitioned
context.





Chapter 6

Conclusions and Future Work

In this report, we introduced the bases of Formal Concept Analysis. We
focus on two existing bases: basis of proper premises and Luxenburger Basis.
But both bases are not suitable to deal with the erroneous data. To reach
the goal of determining the right components for the newly reported issues,
we make extensions of these bases. We defined the ET Basis and provided
four approaches to generate the ET Basis. For each approach, we show
the algorithm to generate an ET Basis and the way to define the degree of
recommendation. Additionally, we make a comparison among the different
approaches.

We implemented all algorithms and applied these bases to real software
issues. In addition, we defined the rates of correct classification and positive
classification, and implemented the algorithms that can calculate the rates.
Furthermore, we designed several test cases and did experiments on real data
to train and test.

The result of generating an ET Basis from each subcontext after parti-
tioning the context seems to be the best. The rates of correct classification
and positive classification have reached 80% and 90% respectively on large
data set.

Comparing with current time support engineers spend on determining
right component for one issue, it only costs milliseconds to determine the right
component using our approaches. Furthermore, in the approach of proper
premises in partitioned context, more than 90% of the testing incidents can
be correctly classified when we have large training data.

There are several potential works that might be interesting to look into
in future. Firstly, it would be also nice if we can evaluate the relation be-
tween correct classification and the size of subcontext in details. Secondly, it
would be worth proving that the rates of classifications are statistical signif-
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icant on even larger data. Thirdly, we are looking forward to applying these
approaches to the real incidents newly created by customers. In addition,
we can extend the number of attributes and it would be nice to have some
measurement which can indicate that some feature is missing to correctly
predict the component so that the right component can be found among
those with high and similar degree of recommendations. For example, time
frame is a potential attribute that may affect the rate of correct classification
since newly processed incidents may have been processed on new components
which replace the formerly used. Furthermore, we can also add several mea-
surements. For example, the rate of negative classification, the reliability
and so on.

To sum up, we provided several FCA approaches to solve a difficult issue
in business software. And based on the experiment results, applying FCA to
analyze large data is very promising in future.



Appendix A

The experiments are performed using a laptop. The specification is as follows:

• Processor: Intel(R) Core(TM) i5 CPU

• RAM: 8.00 GB

• Operating System type: Windows 7 (64-bit)

We set up the environment for programming as follows:

• Java Virtue Machine: jdk 1.6.0 45

• Eclipse: eclipse-java-juno-SR1

• Plug-in of Eclipse: Clojure—Counterclockwise

• External Library: conexp-clj-0.0.7-alpha-SNAPSHOT-standalone.jar [Bor13]
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