
FAKULTÄT FÜR INFORMATIK
INSTITUT FÜR THEORETISCHE INFORMATIK

LEHRSTUHL FÜR AUTOMATENTHEORIE

Simi-Framework for
Concept-Similarity-Measures:

property analysis and expansion to
more powerful Description Logics

Diplomarbeit
zur Erlangung des akademischen Grades

Diplom-Informatiker

Autor:
Paul Lätsch
MNr. 3514105

Betreuerin:
PD. Dr.-Ing. habil.

Anni-Yasmin Turhan

07.12.2015

Erklärung

Hiermit erkläre ich, dass ich die am heutigen Tag eingereichte Diplomarbeit mit
dem Titel

Simi-Framework for Concept-Similarity-Measures: property analysis and
expansion to more powerful Description Logics

unter Betreuung von Dr.-Ing. Anni-Yasmin Turhan selbständig erarbeitet, ver-
fasst und alle Zitate kenntlich gemacht habe. Andere als die von mir angegebe-
nen Hilfsmittel wurden von mir nicht benutzt.

Dresden, den 07.12.2015

Contents

1 Introduction 5

2 Preliminaries 7
2.1 Description Logics . 7

2.1.1 Concept Descriptions . 7
2.1.2 TBoxes and RBoxes . 8
2.1.3 ABoxes . 10
2.1.4 Normal Form . 10

2.2 Triangular Norms and Conorms . 12
2.3 The Simi-Framework . 13

2.3.1 Simi . 13
2.3.2 Formal Properties for CSMs 16

2.4 Jaccard Index . 17
2.5 Precondition Summary . 18

3 Simple Expansions and their Influence on the Formal Properties 19
3.1 Simple Expansions to more expressive DLs 19

3.1.1 Expansions using a asymmetric Sub-Measure simidir 20
3.1.2 A Fully symmetric Expansion 23
3.1.3 Generalisation of a CSM Structure 24

3.2 The Formal Properties and their Preservation by the Constructors . 26
3.2.1 Equivalence Invariant and Equivalence Closed 27
3.2.2 Subsumption Preserving and Reverse Subsumption Preserv-

ing . 31
3.2.3 Dissimilar Closed and Bounded 46
3.2.4 Structural Dependent . 52
3.2.5 Triangle Inequality . 53

4 Modifications to fulfil more Formal Properties 61
4.1 Alternative Literal Measures . 61

4.1.1 Special Literal Measure . 61
4.1.2 Combining simiasym and simidual 64

4.2 Modifying Quantifier Rules . 64
4.2.1 Equivalence exclusive Quantifier Rules 64

4.3 Modifying Conjunction and Disjunction Rules 65
4.3.1 Equivalence exclusive Conjunction or Disjunction Rule . . . 65
4.3.2 Trivial Structural Dependent with max 66

4.4 Trivial Triangular Inequality . 66

3

5 Formal Concept Analysis of the Formal Properties 68
5.1 Set up ConExp for the FCA . 68
5.2 Attribute Exploration with ConExp 69
5.3 FCA Results . 73

5.3.1 The Statements (iv) and (v) 73
5.3.2 The Statements (x), (xii), (xix), (xx), (xxii) and (xxiii) 75
5.3.3 The Statements (xxix), (xxx) and (xxxi) 77

6 Conclusion 78
6.1 Open Problems . 78

4

1 Introduction

In our modern times, the growing amount of data requires efficient procedures to
handle it. Amongst other areas, the semantic web and science have a demand for
such tools. This includes queries to explicit data and the deriving of new knowl-
edge. Therefore high-level representation and reasoning formalisms have to be
invented and investigated. One well-investigated family of such formalisms are
Description Logics (DLs). They allow conceptual knowledge representation and
there already exist several reasoning procedures and relations to other logics, like
first-order logic and modal logics. One example of the usage of DLs is the Web
ontology language: OWL DL.
Typically these DL just work with crisp knowledge, meaning that an individual is
an instance of an certain concept, or not. Because these restrictions are some times
too strong for practical use, as an alternative relaxed queries are getting more at-
tention. Such not just evaluate whether an individual belongs to a concept or not,
but whether it is considered ‘good enough’ to be responded to match the query.
One way to achieve this, are Concept Similarity Measures (CSMs). Given two con-
cept descriptions, a CSM calculates an value between 0 and 1. The idea is, that
the higher this similarity value, the more similar are the both concept descrip-
tions. Further more should the scaling of this value match human intuition. So
0 should stand for total dissimilarity and 1 stand for total similarity. Also the se-
mantics should be essential for the calculation of the similarity, which means that
just syntactical differences should be irrelevant. Besides this, there is an inter-
est to find CSMs that have metric properties, in particular the triangle inequality
from metric spaces. Of course for CSM it has to be adapted to the interval [0, 1],
but it would ensure that the similarity values from two concept descriptions to a
third one could just differ within a certain range, that is related to the similarity
value of the first two ones. Unfortunately this property is for now not well ac-
complished.
In [4] Karsten Lehmann provides with the simi framework similarity measures
for EL, a commonly used DL. He introduced formal properties (also covering
the ones previously mentioned) and proved whether or not simi fulfils those. In
this paper, we want to expand simi by new constructors and analyse possible re-
lations between the formal properties from [4]. Because the plain definitions of
these formal properties do not provide usable relations between then, we want
to try the method of Formal Concept Analysis (FCA). This is a method, that derives
implications between these properties from a data set of objects. This implica-
tions just hold within the context of the data set, but their generality could be
proved or they could give a hint of possible relations between the properties.
In this paper we restrict our works to deterministic and symmetric CSMs. Chap-
ter 2 introduces the basic needs for DLs, simi, the formal properties and other

5

basic notations. In Chapter 3 we expand simi and analyse under which circum-
stances this CSM provide the formal properties for DLs with certain constructors.
In Chapter 4 we introduce some modifications for the rules of the CSM to change
their behaviour respectively to the fulfilling of the formal properties. With the
knowledge of Chapter 3 and Chapter 4 we are able to produce a big data set of
CSM and their properties. This allows us in Chapter 5 to use the FCA tool Con-
Exp to infer implications between the formal properties. Here we will also prove
the generality of some of them and outline the limits of our research for the other
implications.

6

2 Preliminaries

In this chapter we introduce the basics for DLs and triangular norms and conorms.
This definitions are taken from [1]. For RBoxes we stay with the definition from
[4]. Also we recap the concept similarity measure simi and the Jaccard Index
from [4]. At last we will shortly sum up our preconditions for this paper.

2.1 Description Logics

Description logics essentially are composed of a set of concept names NC, a set of
role names NR, the constants > and ⊥ and constructors to combine those to com-
plex concept descriptions. To refer to a DL in general, we want to use DL.
We can use a DL DL to represent knowledge in the form of a knowledge base,
composed of a TBox, a RBox and an ABox. The TBox contains terminological
knowledge in the form of axioms about the relations between concept descrip-
tions of DL. The same way the RBox contains relations between the role names
in NR. At last the ABox contains assertional knowledge in the form of axioms
that link between concept descriptions and individuals.
In the following we introduce concept descriptions, TBoxes, RBoxes, ABoxes and
rules to receive an unique normal form.

2.1.1 Concept Descriptions

Since we will take a look at different DLs, with variations of constructor sets, we
formulate the definition for concept descriptions in a way, that suites them all.

Definition 1 (concept descriptions). For a specific description logic DL, with a set of
concept names NC, a set of role names NR, the constants >,⊥ and a variety of construc-
tors from {¬,u,t, ∃, ∀}, we define that:

• the constants >,⊥ and all A ∈ NC are DL concept descriptions

• C is a DL concept description and ¬ is a constructor of DL, then ¬C is a DL
concept description

• C, D are DL concept descriptions and u is a constructor of DL, then C u D is a
DL concept description

• C, D are DL concept descriptions and t is a constructor of DL, then C t D is a
DL concept description

• C is a DL concept description, r ∈ NR and ∃ is a constructor of DL, then ∃r.C is
a DL concept description

7

• C is a DL concept description, r ∈ NR and ∀ is a constructor of DL, then ∀r.C is
a DL concept description

We define C(DL) as the set of all DL concept description. Further we define const(DL)
as the Set of constructors of DL.

The semantics of DLs are defined by using interpretations I . Such interpreta-
tions are composed of a non-empty domain ∆I and a mapping ·I , which maps
the concept descriptions to subsets of ∆I .

Definition 2 (interpretation). An interpretation is a pair I= (∆I , ·I) where the
domain ∆I is a non-empty set and ·I is a function mapping every A ∈ NC to a set
AI ⊆ ∆I and every r ∈ NR to a binary relation rI ⊆ ∆I × ∆I . This function is
extended to the typical DL constructors as follows:

• >I = ∆I and ⊥I = ∅

• (¬C)I = ∆I/CI

• (C u D)I = (CI) ∩ (DI)

• (C t D)I = (CI) ∪ (DI)

• (∃r.C)I = {x ∈ ∆I |∃y ∈ ∆I : (x, y) ∈ rI ∧ y ∈ CI}

• (∀r.C)I = {x ∈ ∆I |∀y ∈ ∆I : (x, y) ∈ rI −→ y ∈ CI}.

where C, D ∈ C(DL) and r ∈ NR.

This definition covers rules for all constructors we use later on. Since a rule can
just not be used, if the corresponding constructor is not in const(DL), it suites for
all DLs we will cover in this paper.

2.1.2 TBoxes and RBoxes

The TBox presents terminological knowledge in the form of concept axioms. The
most general form of concept axioms are general concept inclusion. They are
formulas that indicate the subsumption of one concept description by an other.
The most common axioms are concept definitions, which indicate the definition
of one concept name by a concept description.

Definition 3 (GCI and concept definition). A general concept inclusion axiom
(GCI) is of the form C v D, where C, D are concept descriptions. If the axiom is of the
form A ≡ C where A ∈ NC and C is a concept description, then it is called a concept
definition. All B ∈ NC that occur in C are called directly used by A and A is called
defined.

Definition 4 (TBox). A TBox T is a finite set of concept axioms. A general TBox T is
a finite set of GCI’s.

Since we later want to use TBoxes, that do not contain GCI’s, we introduce
normalized TBoxes. All other TBoxes we will refer to as general TBoxes.

8

Definition 5 (normalized TBox). A TBox T containing just concept definitions is
called normalized. Concept names that just never occur on the left hand sides of a
concept definitions are called primitive concepts. T is called acyclic, if none of the
defined concepts uses itself (directly or under the closure of transitivity), otherwise it is
called cyclic.
Axioms of the form A v D, where A ∈ NC and D is a concept description, can be
transformed to concepts definitions by introducing a new concept name A

′
:

A v D −→ A ≡ A
′ u D

Note that for the normalisation the new introduced concept names not occur
in NC before. Also note, that the normalisation of those subsumption axioms
requires the conjunction u to be valid constructor in the used DL.
The semantics for these axioms are also handled by interpretations. These are
models of a TBox T , if they interpret the axioms of T in a consistent way.

Definition 6 (TBox model). An interpretation I is a model of a TBox T (I � T) if
it satisfies all of T ’s axioms, meaning:

• for all C v D holds: CI ⊆ DI

• for all C ≡ D holds: CI = DI .

Two TBoxes T and T ∗ are equivalent (T ≡ T ∗), if they have the same models.

As a standard form of TBoxes for this paper, we want them to be normalized
and extended. If we have a DL DL with u 6∈ const(DL), then on order to
be normalized, the TBox should contain of just concept definitions in the first
way, because a normalisation of subsumption axioms would lead to terms not
in C(DL). By extending a TBox T , we want to accomplish that the left hand
side of all concept definition in T is only composed of primitive concept names.
Therefore T has to be unfoldable.

Definition 7 (unfoldable TBox). A TBox T is called unfoldable, if it is acyclic, con-
sists just of concept definitions and ever defined concept occurs at most ones to the left
hand side of an axiom.
Every unfoldable TBox T can be extended to a TBox T ∗, where on the right hand side of
the axioms occur only primitive concepts, so that T ≡ T ∗.

For the rest of this paper, we want all TBoxes T to be unfoldable, normalized
and extended. Further more we assume for all concept description, that they are
extended with the concept definitions from T , so that they are only composed
of primitive concept names, role names and constructors. So we do not have to
regard TBoxes for the rest of the paper.

Similar to TBoxes, RBoxes contain axioms about relations between role names.
We call them role inclusions. Since we do not assume more complex ways to
build such role inclusions, the structure of RBoxes is more simple.

9

Definition 8 (RBox). A role inclusion is an axiom of the form r v s, where r, s ∈ NR.
A RBoxR is a finite set of role inclusion axioms

Again the semantics are handled by interpretations, which act as models.

Definition 9 (RBox model). An interpretation I is a model of a RBoxR if it satisfies
all ofR’s axioms, meaning that for all r v s holds rI ⊆ sI .

For the rest of the paper we want to say, that

r vR s⇐⇒ ∀I � R : rI ⊆ sI

2.1.3 ABoxes

For completeness, we also introduce ABoxes. They contain assertional knowl-
edge in the from of concept and role assertion axiom. Therefore we need a finite
set NI of individuals. Those individuals can be asserted to concept descriptions,
or directed pairs of them to role names.

Definition 10 (ABox). Let NI be finite set of individual, x, y ∈ NI C be a concept
description and r ∈ NR. We call C(x) a concept assertion axiom and r(x, y) a roll
assertion axiom. An ABox Ais a finite set of concept and role assertions.

Also here the semantics are handled by interpretations, which act as models.

Definition 11 (ABox model). An interpretation I in a model of an ABox Aif it sat-
isfies all its axioms, meaning that for all C(x) holds xI ∈ CI and for all r(x, y) holds
(xI , yI) ∈ rI .

For this paper, ABoxes will be of no relevance, since we will not work with
knowledge bases directly. More detail to ABoxes can be read in [1].

2.1.4 Normal Form

At some point, the existence of an unique normal form for our DLs will be rele-
vant. The concrete normal form is nonrelevant, so we just present some transfor-
mation rules, that will achieve a unique normal form. If a rule is not applicable
because the corresponding constructors does not exist in the DL, we can just ig-
nore it.
Before we formulate these transformation rules, we want to introduce a property
for normal forms, that will prevent trivial violations of one the later following
formal properties.

Definition 12 (name unique). Let DL be a specific description logic,R be a RBox and
T be a TBox. We define the operator [·] that maps every r ∈ NR to a set of role names

[r] = {s ∈ NR|s ≡R r}

and every A ∈ NC to a set of concept names

[A] = {B ∈ NC|B ≡T A}

10

We want to call a (normal) form for DL name unique, if for all primitive concept A ∈
NCpr names hold that there is uniquely one A

′ ∈ [A] and every B ∈ [A] is represented
by A

′
. And also for all role names r ∈ NR hold that there is uniquely one r

′ ∈ [r] and
every s ∈ [r] is represented by r

′
.

This property assures that all elements of a set of equivalent role names or
equivalent concept names are represented by the same one uniquely chosen ele-
ment of the set. By this property we want to prevent, that there exist pairs of role
names or primitive concept names, that are equivalent to each other, but have
different similarities to other role names or primitive concept names. Technically
those still exist, but by using a name unique (normal) form, we choose one of the
participants of each of these sets and substitute the others, so they do not occur
in concept descriptions.
Since we will cover many DLs, we do not introduce an extra normal form for each
of them, but a set of transformation rules, that will achieve an unique normal
form. Let T be a unfoldable, normalized and extended TBox, R be a RBox and
A, C, D be concept descriptions already extended with the concept definitions
from T , then an unique normal form will be achieved by applying the following
rules (if possible):

1. A u> −→ A

2. A t> −→ >

3. A t⊥ −→ A

4. A u⊥ −→ ⊥

5. A u A −→ A

6. A t A −→ A

7. ¬(C t D) −→ ¬C u ¬D

8. ¬(C u D) −→ ¬C t ¬D

9. A t (C t D) −→ A t C t D

10. A u (C u D) −→ A u C u D

11. ¬∀r.C −→ ∃r.¬C

12. ¬∃r.C −→ ∀r.¬C

13. ∃r.C t ∃r.D −→ ∃r.(C t D)

14. ∀r.C u ∀r.D −→ ∀r.(C u D)

15. ∃r.C u ∃s.D −→ ∃r.C, if r vR s and C v D

16. ∀r.C t ∀s.D −→ ∀r.C, if s vR r and D v C

11

17. ∀r.C u ∃r.C −→ ∀r.C u ∃r.(C u D)

18. A u (C t D) −→ (A u C) t (A u D)

until no more rule can be applied.
This rules are partly taken from [4] and just completed by rules for the additional
constructors and the new constant ⊥. We also can exchange the last rule by:

A t (C u D) −→ (A t C) u (A t D)

The normal form would still be unique, just the conjunction would be the more
outer constructor, instead of the disjunction. Note that this set of rules will just be
sufficient for the DLs we cover in this paper. For example they all will need the
negation to be just in front of primitive concept names.

2.2 Triangular Norms and Conorms

Triangular norms (t-norms) are a generalisation of conjunctions in propositional
logics. As in [4] we will use then to make an asymmetric CSM symmetric. Their
the absorbing element 0, neutral element 1 and monotonicity property will be
essential to obtain some of the later defined formal properties. We take the defi-
nitions form [4].

Definition 13 (t-norm). ⊗ : [0, 1]2 −→ [0, 1] is a triangular norm if for all x, y, z, w ∈
[0, 1] holds:

• x⊗ y = y⊗ x (Commutativity)

• x ≤ z ∧ y ≤ w =⇒ x⊗ y ≤ z⊗ w (Monotonicity)

• (x⊗ y)⊗ z = x⊗ (y⊗ z) (Associativity)

• x⊗ 1 = x (Identity)

Dual to t-norm are triangular conorms (t-conorm), which are generalisations of
disjunctions. Here 0 is the neutral and 1 the absorbing element.

Definition 14 (t-conorm). ⊕ : [0, 1]2 −→ [0, 1] is a triangular conorm if for all
x, y, z, w ∈ [0, 1] holds:

• x⊕ y = y⊕ x (Commutativity)

• x ≤ z ∧ y ≤ w =⇒ x⊕ y ≤ z⊕ w (Monotonicity)

• (x⊕ y)⊕ z = x⊕ (y⊕ z) (Associativity)

• x⊕ 0 = x (Identity)

Definition 15 (duality of t-norm and t-conorm). For every t-norm ⊗ and its dual
t-conorm ⊕ it holds that:

12

• x⊕ y = 1− ((1− x)⊗ (1− y))

• x⊗ y = 1− ((1− x)⊕ (1− y))

The duality will not be important for this paper, but can be used to make a
proof of the absorbing elements.

Claim 1 (absorbing elements). Let ⊗ be a t-norm and ⊕ be a t-conorm. Then holds:

• 0⊗ x = 0

• 1⊕ x = 1

The proof of this claim is rather simple and can be found in [4]. In particular,
we will just speak about three t-norms, which are the Product t-norm ⊗prod, the
Gödel t-norm ⊗min (or minimum t-norm) and the Hamanach product ⊗H0 .

x⊗prod y = xy

x⊗min y = min(x, y)

x⊗H0 y =

0 x = y = 0
xy

x + y− xy
otherwise

x, y ∈ [0, 1]

In terms of analyses we favour the Gödel t-norm, because of its predictable re-
sult. Returning one of its argument, allows stronger conclusions about the prop-
erties of its results. Product t-norm an Hamanach product will allow us some
proofs later on in the paper.

2.3 The Simi-Framework

Since we are going to expand simi form [4], we will give a brief overview of its
components and simi it self. We also already do a little rephrasing by expanding
some definitions, so they can later also be used for new constructors like disjunc-
tion and value-quantification. At last we will take a look at the in [4] defined
formal properties and which are fulfilled by simi.

2.3.1 Simi

In [4] Karsten Lehmann uses an operator (̂·) to gather the participants of the con-
junction u. We define different operator, that will also work on disjunctions and
negations.

13

Definition 16 (first level ©-participant set). Let C be a not trivial ALC-concept
description. Then we define Ĉ© as the first level participant set, which contains all
participants of the most outer operator© ∈ {u,t,¬} of C, so that:

C =©C′∈Ĉ©
C′

In all other cases, we define Ĉ© to be empty.

Also we do not cover negations in general in this paper, we already included
them in this definition, so future work can benefit form it. Note that for (̂·)u
and (̂·)t the set will hold exactly one element, when the term is not actually a
conjunction or disjunction, name the term itself. In the rules of the CSMs this
must be handled by the condition, that the set must at least hold two elements,
before the suitable conjunction or disjunction rule is applied.
We also expand the weighting function from [4], so we not have to just redefine
it later.

Definition 17 (weighting function forDL). LetDL be a specific description logic and
f be an arbitrary mapping f : NC ∪ NR −→ [0, 1]. Then we can define the weighting
function gDL : DL −→ R>0 as:

gDL(C) :=


f (A′) if C is a Literal and A′ is its concept name
gDL(C′) if C is of the form ¬C′

f (r)gDL(C′) if C is of the form ∃r.C′ or ∀r.C′

∏C′∈Ĉ©
gDL(C′) if C is a conjunction or disjunction

Because some circumstances may not need any concepts to be weighted, a de-
fault weighting function is defined, which weights every concept with 1.

Definition 18 (default weighting function for DL). gDL,de f : DL −→ R>0 with
∀C ∈ DL : gDL,de f (C) := 1, is the default weighting function for DL.

For most of this paper we will assume the use of gDL,de f to eliminate a variance
factor and because gDL has no impact to most of the formal properties. If we not
use gDL,de f , we will refer to the weighting function explicitly.
To measure the similarity between primitive concepts or role names, Karsten
Lehmann introduces primitive measures (pm). The values a pm maps to, have to
be pre-designed. This can be done by assumptions or experiences or statistical
analyses of pre-measured data. For the case that no pre-design is made or as a
starting point for designing such a pm, Karsten Lehmann introduced in his work
a default primitive measure pmde f . Since we will replace pm by an other measure
and pmde f is not needed to understand simi, we do not define pmde f explicitly.

Definition 19 (primitive measure). A function pm : N2
Cpr
∪ N2

R −→ [0, 1] is a prim-
itive measure, if for all A, B ∈ NCpr and r, s, t ∈ NR holds:

• pm(A, B) = 1⇐⇒ A = B,

14

• pm(r, s) = 1⇐⇒ s v r,

• s vR r =⇒ pm(s, r) > 0 and

• t vR s =⇒ pm(r, s) ≤ pm(r, t)

Note that a pm do not have to be symmetric. The last component is a fuzzy
connector, which allows us to make simi commutative and so symmetric.

Definition 20 (fuzzy connector). We define that ⊗ : [0, 1]2 −→ [0, 1] is a fuzzy
connector if for all x, y ∈ [0, 1] holds:

• x⊗ y = y⊗ x (Commutativity)

• x⊗ y = 1⇐⇒ x = y = 1 (Equivalence closed)

• x ≤ y =⇒ 1⊗ x ≤ 1⊗ y (Weak monotonicity)

• x⊗ y = 0 =⇒ x = 0∨ y = 0 (Bounded)

• 0⊗ 0 = 0 (Grounded)

Karsten Lehmann also shows [4], that every bounded t-norm is a fuzzy con-
nector. In fact, we want to limit the fuzzy connector to bounded t-norms, to have
simi and its expansions fulfil more formal properties.
With all these components defined, we can present the definition of simi. Itself is
just a connection of an inner asymmetric CSM simid used in both directions. For
the connection, the fuzzy connector is used.

Definition 21 (simi). For C, D, E, F ∈ ELH, ⊗ being a fuzzy connector, pmasym a
primitive measure, and gELH a weighting function, the concept similarity measure simi :
C(ELH)2 −→ [0, 1] is defined as follows:

simi(C, D) = simid(C, D)⊗ simid(D, C)

with:

simid(C, D) =



∑C′∈Ĉu
[g(C′) ∗⊕D′∈D̂u

simid(C′, D′)]

∑C′∈Ĉu
gELH(C′)

if C 6= > and |Ĉu| > 1 or |D̂u| > 1

1 if C = >
pm(C, D) if C, D ∈ NC

pm(r, s)[w + (1− w)simid(E, F)] if C = ∃r.E and D = ∃s.F
0 otherwise

and a suitable w > 0.

Note that the only changes to the version of Karsten Lehmann are the weight-
ing function gELH and the operator (̂·), which are just expanded to handle more
constructors. So simi is still equal. Also note that it can be possible, that all par-
ticipants of a conjunction are weighted 0, the calculation will not be defined. For

15

this paper we want to stay with gDL,de f , so this case is temporarily covered.
Because simi is designed for multiple combinations of the previously introduced
components, formally this components are specified in the following order:

simi[fuzzy connector, t-conorm, primitive measure, weighting function, ω]

For shorter formulas we want to refer simi and its expansions by dropping the
brackets. If needed, we will refer the components in an other way. Also still
referred to as fuzzy connector, please remember our limitation on the fuzzy con-
nectors to bounded t-norms.

2.3.2 Formal Properties for CSMs

In the following we took the similarity-measure properties from [4] and defined
them for a general CSM sim.

Definition 22 (similarity-measure properties). Let sim be a similarity measure on
a specific DL, C, D, E, F, U, L ∈ DL, (Cn)n be sequences of concept description with
∀i, j ∈ N, i 6= j : Ci 6v Cj and lcs the least common subsumer. We define the following
properties:

• Triangle Inequality: 1 + sim(E, D) ≥ sim(E, C) + sim(C, D)

• Equivalence Invariant: C ≡ D =⇒ sim(C, E) = sim(D, E)

• Equivalence Closed: sim(C, D) = 1⇐⇒ C ≡ D

• Subsumption Preserving: C v D v E =⇒ sim(C, D) ≥ simi(C, E)

• Reverse Subsumption Preserving: C v D v E =⇒ sim(C, E) ≤ sim(D, E)

• Dissimilar Closed: C 6≡ > ∧ D 6≡ > ∧ lcs(C, D) ≡ > =⇒ sim(C, D) = 0

• Bounded: C 6≡ ⊥ ∧ D 6≡ ⊥ ∧ lcs(C, D) 6≡ > =⇒ sim(C, D) > 0

• Structural Dependent for u: for all sequences (Cn)n of atoms with ∀i, j ∈N, i 6=
j : Ci 6w Cj and for all E, D ∈ C(DL) the concept descriptions

Dn := ui<nCi u D
En := ui<nCi u E

fulfil:

limn→∞ sim(Dn, En) = 1

• Structural Dependent for t: for all sequences (Cn)n of atoms with ∀i, j ∈N, i 6=
j : Ci 6w Cj and for all E, D ∈ C(DL) the concept descriptions

Dn := ti<nCi t D
En := ti<nCi t E

fulfil:

16

limn→∞ sim(Dn, En) = 1

Since we will expand to the disjunction t as a constructor, we changed Struc-
tural Dependent from [4] to Structural Dependent for u and adapted it to a new
property: Structural Dependent for t. We want to assume, a CSM working
on a specific DL DL can just fulfil Structural Dependent for © ∈ {u,t}, if
© ∈ const(DL).
Karsten Lehmann shows that simi fulfils the properties Equivalence Invariant,
Equivalence Closed, Subsumption Preserving and Bounded. For the assumption
that the weighting function g maps every concept to a value bigger than 0, simi
is Structural Dependent for t. Furthermore for pmde f , simi is also Dissimilar
Closed. He also shows, that simi can generalize the Jaccard Index, a similarity
measure for sets.
Note that simi is specific designed to fulfil Subsumption Preserving. It benefits
from 1 being the neutral element for every bounded t-norm and the use of the
directed measure simid.
More detail to simi and its properties can be found in [4].

2.4 Jaccard Index

Karsten Lehmann introduced in [4] the Jaccard Index as a structural measure, that
can be used to calculate similarities between sets of concept names. It actually
is an adaptation of a set similarity measure from [3] and accomplished to fulfil
almost all formal properties from 2.3.2. The essential idea of the Jaccard Index is
to compare the shared information of both sets with the overall information in
both sets. With the operator (̂·), defined by Karsten Lehmann, the Jaccard Index
Jacc is defined as:

Jacc(C, D) :=
|Ĉ ∩ D̂|
|Ĉ ∪ D̂|

As already mentioned, we expand this operator to the first level©-participant
set operator. This allows us to use the Jaccard Index not only on sets of concept
names, but also for sets of participants of a certain constructor©. Such an usage
needs some restrictions. So we have to ensure, that participants contained in both
sets, effect the result with a 1 and all other participants influence the result with a
0. By this, the calculation of the Jaccard Index will remain. In general, we will not
define the rules in the way of the Jaccard Index. But if possible, we define them
in a way, that enables us to to break the calculation down to the Jaccard Index,
if some restrictions are fulfilled. Within this paper the Jaccard Index will stay a
major tool to achieve the formal properties, especially Subsumption Preserving,
Reverse Subsumption Preserving and the fulfilling of the Triangle Inequality. In
fact, breaking the calculation down to the Jaccard Index will stay nearly the only
sufficient way to achieve the Triangle Inequality.

17

2.5 Precondition Summary

For clarity we here summarize our preconditions for this paper. We will look
at CSMs that are symmetric and deterministic. For those, that use a fuzzy con-
nector like Karsten Lehmann does in simi, we assume this fuzzy connector to be
a bounded t-norm. Those working on a specific DLs DL and using a weight-
ing function, will in general use gDL,de f . The DLs the CSMs work on, will be
restricted to the constructors ¬,u,t, ∃, ∀ and allow the constants > and ⊥. Pos-
sible given TBoxes are assumed to be unfoldable, normalized and extended. Pos-
sible given RBoxes just contain simple role inclusion axioms. We assume every
concept description to be extended with the terminological knowledge from the
TBox, so they only contain primitive concept names. Also we assume them to be
at least in a name unique (normal) form, to prevent trivial violations of Equiva-
lence Invariance. If we need them to be in an unique normal form, we want to
achieve this by using the rules in 2.1.4.

18

3 Simple Expansions and their
Influence on the Formal Properties

In this chapter we introduce some simple expansions of simi. As new construc-
tors there will be the disjunction t, the ∀-quantification and a lighter version of
the negation, the primitive negation (¬). First we will distinguish between three
different expansion types for simi. Then we investigate for all of the formal prop-
erties, under which circumstances they are fulfilled by one of the defined CSM,
that works on a DL with certain constructors. This will give us a big database of
concept descriptions for a later analysis of the formal properties.

3.1 Simple Expansions to more expressive DLs

We want to show three ways to expand CSM to more expressive DLs. The first
one is an expansion directly from simi. As mentioned in the recap, simi is pur-
posely designed to fulfil Subsumption Preserving. So this first expansion will be
purposely designed to fulfil Subsumption Preserving for conjunctions. As dual
case for this, the second expansion will revert this design and so purposely ful-
fil Reverse Subsumption Preserving for the disjunction. As third expansion, we
show that it is also possible to drop the design with the inner asymmetric CSM,
to get an on its own fully symmetric CSM.

Before we come to the expansion, we want to present definition and handling
of the primitive negation (¬). As we already pointed out, (¬) is a lighter version of
the negation. In particular, (¬) is a negation, that only occurs in front of primitive
concept names. In all other aspects it is the same as the normal known negation.

Definition 23 (NCpr). For an acyclic TBox T , NCpr is the set of all primitive concept
names.

Definition 24 (primitive negation). The primitive negation (¬) is a negation, that
can only be applied to primitive concept names A ∈ NCpr .

Definition 25 (NLpr). We define the set of all primitive literals as follows:

NLpr = NCpr ∪ {¬A|A ∈ NCpr}

This definitions could also be done for concept names of NC. But since we as-
sumed all concept description to just contain primitive concept names, we want
to use the more elemental definitions.
Handling the primitive negation (¬) is rather easy, since we just can expand pm

19

to the set of all primitive literals. We will call such an expansion a literal measure.
Since we will later introduce different literal measures, when referring to a literal
measure in general, we want to use lm. So we to not have do introduce a rule for
(¬). All rules for the behaviour between primitive literals can be covered in the
literal measure.
For some DL with ¬ ∈ const(DL), we can also introduce a normal form, that
needs negations to be in front of concept names. This allows us to simulate ¬
by (¬). Unfortunately it also requires, that for every other constructor, the corre-
sponding dual constructor has to be in const(DL) too. So if ∃ ∈ const(DL) also
∀ has to, if t ∈ const(DL) also u has to and the other ways around. An even
bigger disadvantage is, that if u,t ∈ const(DL) the complexity of the trans-
formation form arbitrary concept description into such a normal is known to be
exponential in the length of the concept description. So an investigation of ¬will
still bring benefit.

3.1.1 Expansions using a asymmetric Sub-Measure simidir

We want to give two simple ways to build CSMs that use an inner asymmetric
sub-measure, like simi does. For the first one, we define a not necessarily sym-
metric literal measure.

Definition 26 (literal measure). A function lmasym : N2
Lpr
∪ N2

R −→ [0, 1] is a literal
measure, if for all A, B ∈ NLpr and r, s, t ∈ NR holds:

• lmasym(A, B) = 1⇐⇒ A = B

• A ≡ ¬B =⇒ lmasym(A, B) = 0

• lmasym(r, s) = 1⇐⇒ s vR r,

• s vR r =⇒ lmasym(s, r) > 0 and

• t vR s =⇒ lmasym(r, s) ≤ lmasym(r, t)

Note that lmasym can be symmetric for s vR r holds lmasym(r, s) = lmasym(s, r) =
1. This is the case if R is empty, since so subsumption can only be achieved by
equivalence. In other cases where s vR r without them being equivalent, a CSMs
that actually handling role names, will lose Equivalence Closed. So those cases
should be avoided.
This definition expands pm just by the second property. This property will later
be important to assure Dissimilar Closed for some of the CSM. As for pm, we also
define a default literal measure.

Definition 27 (default literal measure). We define the default literal measure lmasym
de f :

20

N2
Lpr
∪ N2

R −→ [0, 1], for ρ ∈ (0, 1] as follows

lmasym
de f (A, B) :=

{
0 if A 6= B
1 if A = B

lmasym
de f (r, s) :=


1 if r = s or s v r
0 if s 6v r and r 6v s
ρ if r v s and s 6v r

r, s ∈ NR and A, B ∈ NLpr

Note that if ρ is 1, lmasym
de f is symmetric and the observations of before hold.

Also ρ can not be 0, or the fourth property of Definition 26 would not hold. With
lmasym, we can define the CSM simiasym. Since for t and ∀ we just adapted the
calculations from u and ∃, this is just a simple expansion of simi.

Definition 28 (simiasym). For a specific description logic DL, C, D, E, F ∈ C(DL), ⊗
being a fuzzy connector,⊕ being a t-conorm, lmasym a literal measure, and g a weighting
function, the concept similarity measure simiasym : C(DL)2 −→ [0, 1] is defined as
follows:

simiasym(C, D) = simidir(C, D)⊗ simidir(D, C)

with:

simidir(C, D) =



∑C′∈Ĉu
[g(C′) ∗⊕D′∈D̂u

simidir(C′, D′)]

∑C′∈Ĉu
g(C′)

if C 6= > and |Ĉu| > 1 or |D̂u| > 1

∑C′∈Ĉt
[g(C′) ∗⊕D′∈D̂t

simidir(C′, D′)]

∑C′∈Ĉt
g(C′)

if C 6= > and |Ĉt| > 1 or |D̂t| > 1

1 if C = D = > or C = D = ⊥
lmasym(r, s)[w + (1− w)simidir(E, F)] if C = ∃r.E and D = ∃s.F or

C = ∀r.E and D = ∀s.F
lmasym(A, B) A, B ∈ NLpr

0 otherwise

and a suitable w > 0.

This CSM covers the constructors (¬),u,t, ∃ and ∀. So it can be used for every
DL with const(DL) ⊆ {(¬),u,t, ∃, ∀} and even can use role hierarchies form an
RboxR. As simi, simiasym is purposely designed to fulfil Subsumption Preserving
for u. Unfortunately for t Subsumption Preserving does not hold, because of the
semantics of t within DLs. We will go into more details, when we proof the
formal properties for the constructors in 3.2.
Also simiasym is defined for different combinations of its components. So also here
these components are formally specified in the order:

simiasym[fuzzy connector, t-conorm, literal measure, weighting function, ω]

21

and also here we want to drop this formality, to get shorter formulas.
As simiasym is purposely designed to fulfil Subsumption Preserving for u, we
can do the same with Reverse Subsumption Preserving and t. Therefore we
first define a dual literal measure, that is the same as lmasym, but the asymmetric
properties for the role names are turned around.

Definition 29 (dual literal measure). A function lmdual : N2
Lpr
∪ N2

R −→ [0, 1] is a
dual literal measure, if for all A, B ∈ NLpr and r, s, t ∈ NR holds:

• lmdual(A, B) = 1⇐⇒ A = B

• A ≡ ¬B =⇒ lmdual(A, B) = 0

• lmdual(r, s) = 1⇐⇒ s wR r,

• s wR r =⇒ lmdual(s, r) > 0 and

• r wR t =⇒ lmdual(s, r) ≥ lmasym(s, t)

We can also receive the default measure by swapping around the asymmetric
conditions for the role names.

Definition 30 (default dual literal measure). We define the default dual literal mea-
sure lmdual

de f : N2
Lpr
∪ N2

R −→ [0, 1], for ρ ∈ (0, 1] as follows

lmdual
de f (A, B) :=

{
0 if A 6= B
1 if A = B

lmdual
de f (r, s) :=


1 if r = s or s w r
0 if s 6w r and r 6w s
ρ if r w s and s 6w r

r, s ∈ NR and A, B ∈ NLpr

Definition 31 (simidual). For a specific description logic DL, C, D, E, F ∈ C()DL,
⊗ being a fuzzy connector, ⊕ being a t-conorm, lmdual a dual literal measure, and g a
weighting function simidual : C(DL)2 −→ [0, 1] is defined as follows:

simidual(C, D) = simidir∗(C, D)⊗ simidir∗(D, C)

with:

simidir∗(C, D) =



∑C′∈Ĉu
[g(C′) ∗⊕D′∈D̂u

simidir∗(C′, D′)]

∑C′∈Ĉu
g(C′)

if C 6= > and |Ĉu| > 1 or |D̂u| > 1

∑C′∈Ĉt
[g(C′) ∗⊕D′∈D̂t

simidir∗(C′, D′)]

∑C′∈Ĉt
g(C′)

if C 6= > and |Ĉt| > 1 or |D̂t| > 1

1 if C = D = > or C = D = ⊥
lmdual(r, s)[w + (1− w)simi (E, F)] if C = ∃r.E and D = ∃s.F or

C = ∀r.E and D = ∀s.F
lmdual(A, B) A, B ∈ NLpr

0 otherwise

22

and a suitable w > 0.

The CSM itself differs from simiasym just in the use of a different literal measure.
So the introduces simidir∗ is just a simidir, that uses lmdual instead of lmasym and
simidual a simiasym that uses simidir∗ instead of simidir.
Here again the order of the formal specification of the components is:

simidual [fuzzy connector, t-conorm, literal measure, weighting function, ω]

which we want to drop for shorter formulas.

3.1.2 A Fully symmetric Expansion

We also want to introduce a method for those CSMs that not uses an inner asym-
metric CSM.

Definition 32 (symmetric literal measure). A function lmsym : N2
Lpr

is a symmetric
literal measure, if for all A, B ∈ NLpr and r, s, t ∈ NR holds:

• lmsym(A, B) = 1⇐⇒ A = B,

• lmsym(A, B) = lmsym(B, A) and lmsym(r, s) = lmsym(s, r)

• A ≡ ¬B =⇒ lmsym(A, B) = 0

• lmsym(r, s) = 1⇐⇒ s = r,

• s vR r or r vR s =⇒ lmsym(s,r) > 0 (bounded)

We can also define a default measure for lmsym.

Definition 33 (symmetric default literal measure). We define the symmetric de-
fault literal measure lmsym

de f : N2
Lpr
∪ N2

R −→ [0, 1], for ρ ∈ (0, 1) as follows:

lmsym
de f (A, B) :=

{
0 if A 6= B
1 if A = B

lmsym
de f (r, s) :=


1 if r = s
ρ if s vR r or r vR s
0 otherwise

To handle conjunctions and disjunctions, we define a symmetric operator, that
adapts

⊕
D′∈D̂u

simid(C′, D′) in a symmetric way. First of all, the recursive call
of simid should be the fully symmetric CSM. Therefore the new operator has to
know some CSM simixx. Because we want to keep the property from [4], to be
a generalisation of the Jaccard Index, for every first level participant that occurs
in C and D, the operator should return 1. All other first level participants should
be recursively compared with the first level participant from the other concept
description.

23

Definition 34 (handle©,simixx
C,D). Let C, D ∈ C(DL), E′ ∈ Ĉ© ∪ D̂©,© be a operator

of DL and ⊕ be a t-conorm. We define handle©,simixx
C,D (E′) : C(DL) −→ [0, 1] for an

specific simixx as follows:

handle©,simixx
C,D (E′) =


1 E′ ∈ Ĉ© ∩ D̂©⊕

D′∈D̂©
simixx(E′, D′) E′ ∈ Ĉ©\D̂©⊕

C′∈Ĉ©
simixx(E′, C′) E′ ∈ D̂©\Ĉ©

0 otherwise

Since this operator and lmsym are symmetric, we can easily define a fully sym-
metric CSM simisym.

Definition 35 (simisym). For a specific description logic DL, C, D ∈ C(DL), lmasym

a symmetric literal measure and g a weighting function and handle©,simixx
C,D (E′) using a

t-conorm ⊕, simisym : C(DL)2 −→ [0, 1] is defined as follows:

simisym(C, D) =



∑E′∈Ĉu∪D̂u
[g(E′) ∗ handle

u,simisym
C,D (E′)]

∑E′∈Ĉu∪D̂u
g(E′)

if |Ĉu| > 1 or |D̂u| > 1

∑E′∈Ĉt∪D̂t
[g(E′) ∗ handle

t,simisym
C,D (E′)]

∑E′∈Ĉt∪D̂t
g(E′)

if |Ĉt| > 1 or |D̂t| > 1

lmsym(r, s)[w + (1− w)simisym(E, F)] if C = ∃r.E and D = ∃s.F or
C = ∀r.E and D = ∀s.F

1 if C = D = > or C = D = ⊥
lmsym(A, B) A, B ∈ NLpr

0 otherwise

and a suitable w > 0.

Since simisym is symmetric by its own, there is no fuzzy connector needed. The
formal specification of its components is as follows:

simisym[t-conorm, literal measure, weighting function, ω]

Like before, for the rest of this paper we want to drop this specification for shorter
formulas.

3.1.3 Generalisation of a CSM Structure

Since the rules for the constructor will be essential to the fulfilling of the for-
mal properties, we want to introduce a general quotation for those rules. This
will allow us to analyse these rule, without doing vague references. The general
structure of this kind of CSM is:

24

sim(C, D) =


connect

collect©(C,D)

© (choose©) for© ∈ {u,t}
connect©(chooseR

©, chooseC
©) for© ∈ {∀, ∃}

fintely many special values for finitely many special cases
default value otherwise

So for the conjunction u and the disjunction t, we have a collect©(C, D) func-
tion, that builds out of C and D a set of concept descriptions. The choose© func-
tion calculates for every concept description given to it a value between 0 and

1. The connect
collect©(C,D)

© function takes the concepts of collect©(C, D), forwards
them to choose© and calculates from the returns of choose© the final similarity

value. For shorter formulas, we also want to refer these connect
collect©(C,D)

© as
connectu or connectt.
For the ∃-quantification and ∀-quantification we have a chooseR

© function, which
calculates a similarity between the role names and a chooseC

© that calculates a
similarity between the concept descriptions the quantifications are put on. Note
that in chooseC

© the C is no reference to the input concept C. It just declares, that
this is the choose-function for the concept description. The function connect∀ or
respectively connect∃ connects the returns of the both functions to a final similar-
ity value.
The finitely many special cases will cover the handling of the constants> and⊥ and
other special cases, that may occur. As usual the otherwise cover all cases, where
none of the former rules can be applied to, with a default value. The specifications
of the functions are:

chooset/chooseu : DL −→ [0, 1]

chooseR
∀/chooseR

∃ : NR −→ [0, 1]

chooseC
∀/chooseC

∃ : DL −→ [0, 1]

collect© : DL2 −→ P(DL)

connect
collect©(C,D)

© : [0, 1]|collect©(C,D)| −→ [0, 1]

connect∀/connect∃ : [0, 1]2 −→ [0, 1]

Note that for future work, a rule for the negation ¬ can be generalized in the
same way. But since we do not cover the negation ¬ in this paper, we leave it out.

25

Example 1. For simisym we have:

connect
collect©(C,D)

© = meang
[0,1]({choose©(E′)|E′ ∈ collectt(C, D)})

collectt(C, D) = Ĉt ∪ D̂t

collectu(C, D) = Ĉu ∪ D̂u

chooset(E′) = handle
t,simisym
C,D (E′)

chooseu(E′) = handle
u,simisym
C,D (E′)

where meang
[0,1] is the mean of with g weighted values between 0 and 1

connect© = chooseR
©(r, s)[w + (1− w)chooseC

©(E, F)]

chooseR
∀ (r, s) = chooseR

∃ (r, s) = lmsym(r, s)

chooseC
∀ (E, F) = chooseC

∃ (E, F) = simisym(E, F)

special cases:

C = D = > or C = D = ⊥ −→ 1
A, B ∈ NLpr −→ lmsym(A, B)

default value : 0

Example 1 gives us an idea, how this generalisation work. We can do it the
same way for simid, simidir and simidir∗ . For simi, simiasym and simidual we would
additionally need a function, that connects the inner asymmetric CSMs. But since
this will always be the fuzzy connector, we do not introduce a generalized name
for it.

3.2 The Formal Properties and their Preservation by
the Constructors

We now take a look on the formal properties and check for the literal measures
and every constructor, under which conditions they preserve this property. The
idea is, that if we have a DL and const(DL), we can do an inductive proof over
the structure of DL. So we define

Definition 36. LetDL be a specific description logic and S ⊆ C(DL) be a set of concept
description, what fulfils the property ◦prob for a CSM sim on DL. A constructor© ∈
const(DL) preserves ◦prob for sim onDL, if for all possible chosen S and C1, · · · , Cn ∈
S holds:

S′ = {©(C1, · · · , Cn)} ∪ S fulfils ◦prob

26

this means, if we have a set S of concept description, that fulfil a property,
and a constructor, that preserves this same property, we can expand S with the
constructor and the resulting set S′ will not violate the property. As induction
base serves the literal measure. If the constructor preserves the property, we can
do the induction step. Note that it can be possible, that a constructor preserves a
property just under certain conditions. Then we have to check these conditions,
to do the induction step.
For shorter formulas, we want to assume all role name relations to be with respect
to R. So we write r v s and r ≡ s instead of r vR s and r ≡R s. Also, most of
the properties can be proofed easier for simisym, so we usually start with this
expansion first.

3.2.1 Equivalence Invariant and Equivalence Closed

Since Equivalence Invariant can easily be achieved by a unique normal form, we
will not investigate the relations between Equivalence Closed and the construc-
tors here.

Theorem 1. For every CSM sim is Equivalence Invariant if it uses a unique normal
form.

This theorem obviously is true, because with a unique normal form, two con-
cept description that are equivalent have the same syntactic appearance. So they
are semantically and syntactically equal. This means, calculating the similarity to
a third concept description with the same deterministic CSM, will take the same
steps and so return in both cases the same results.
Note that Equivalence Invariant can also be achieved in some other way. For NLpr
and NR this is done by our assumption, that our normal forms are at least name
unique. The rules of the constructors must be as interchangeable as they can be
equivalently transformed into each other. For example, for ¬C u¬D ≡ ¬(C tD)
must hold that calculation of the negation applied on the disjunction isomorph
to the conjunction applied on the negations is. Also for distributive transfor-
mations like ∃r.C t ∃r.D ≡ ∃r.(C t D) regarded. Especially the transformation
∃r.C u ∀r.(C u D) ≡ ∃r.(C u D) u ∀r.(C u D) could make problems with this ap-
proach. Also note, that our restrictions for TBoxes to be unfoldable and that for
equivalent role names, one is chosen for the syntax, we achieved that trivial vio-
lations of Equivalence Invariant are excluded. So it is not to possible violate this
property just because we have two equivalent role or concept names, with differ-
ent similarities to other role or concept names.

Equivalence Closed holds trivially for literal measure. Also the role names are
no concept descriptions, we will still want the literal measures lm to be Equivalent
Closed in NR. To our advantage, this also holds trivially.
For the rest of the paper we want explicitly differ between a literal measures lm to
fulfil a property within NLpr and a literal measures lm to fulfil a property within
NR.

27

Lemma 1. Every literal measure lmsym, lmasym or lmdual is Equivalence Closed in NLpr .
Every symmetric literal measure lmsym is also Equivalence Closed in NR.

Proof 1 (Lemma 1).

From the first property of Definitions 26, 29 and 32 follows immediately, that
every both are Equivalence Closed in NLpr .
Additionally the rules of Definition 32 ensures, that lmsym is also Equivalence
Closed in NR.

�

We can prove, that for simisym every constructor preserves Equivalence Closed.

Theorem 2. Let simisym be on a specific DL. We can say for the constructors of DL,
that for simisym:

1) The conjunction u and disjunction t preserve Equivalence Closed.

2) The ∃- and ∀-quantification preserve Equivalence Closed.

Proof 2 (Theorem 2).

1) Let C = ⊔iCi and D = ⊔jDj. We have to show, that for

simisym(Ci, Dj) = 1⇐⇒ Ci ≡ Dj

holds:

simisym(C, D) = 1⇐⇒ C ≡ D

Let simisym(C, D) = 1. Since :

collectu(C, D) = Ĉu ∪ D̂u

and for n = |collectu(C, D)| holds:

connect
collect©(C,D)
u (x1, ..., xn) = 1⇐⇒ x1 = ... = xn = 1

we have:

∀E′ ∈ collectu(C, D) : chooseu(E′) = 1

⇐⇒ ∀E′ ∈ collectu(C, D) : E′ ∈ Ĉu ∩ D̂u

⇐⇒ (Ĉu ∪ D̂u) ⊆ (Ĉu ∩ D̂u)

⇐⇒ (Ĉu ∪ D̂u) = (Ĉu ∩ D̂u)

⇐⇒ Ĉu = D̂u
⇐⇒ C ≡ D

For the disjunction the argumentation is the same.

28

2) Let C = ∀r.C′ and D = ∀s.D′. We have to show, that for

simisym(C′, D′) = 1⇐⇒ C′ ≡ D′

and
lmsym(r, s) = 1⇐⇒ r = s

hold:

simisym(C, D) = 1⇐⇒ C ≡ D

Let simisym(C, D) = 1. Since:

chooseR
∀ (r, s) = lmsym(r, s)

chooseC
∃ (E, F) = simisym(E, F)

and it holds that:

connect∀(x1, x2) = 1⇐⇒ x1 = x2 = 1

we have:

chooseR
∀ (r, s) = chooseC

∃ (C
′, D′) = 1

⇐⇒ lmsym(r, s) = simisym(C′, D′) = 1

⇐⇒ r = s, C′ ≡ D′

⇐⇒ C ≡ D

The argumentation for the ∃-quantification is the same.

�

Due to their asymmetric structure, the proof for simiasym is not so obvious. The
following lemma states two properties for simidir, that will help us with the proof.

Lemma 2. Let simidir be on a specificDL. For the constructors ofDL and the property:

simidir(C, D) = 1⇐⇒ C w D

we can say, that for simidir:

1) The literal measure lmasym fulfils this property

2) The conjunction u preserves this property

3) The ∃- and ∀-quantification preserve this property

Also it holds that:

29

4) the disjunction t preserves at least:

C ≡ D =⇒ simidir(C, D) = 1

The first property is taken from [4]. We just adapted it for our expansion. In
fact, it would have been enough to show, that all those constructors prevent the
second property, to proof Equivalence closed for simiasym. But since the first one
implies the second one and we will need the first one for later proofs, we will
prove it right now.

Proof 3 (Lemma 2).

1) Since on the level of literals, subsumption can just be achieved by equiva-
lence, this follows directly from the Definition 26.

2) Let C = ⊔iCi and D = ⊔jDj. We can argue:

simidir(C, D) = 1⇐⇒ ∀Ci : ∃Dj : simidir(Ci, Dj) = 1

⇐⇒ ∀Ci : ∃Dj : Ci w Dj

⇐⇒ C w D.

3) Let C = ∀r.C′ and D = ∀s.D′. Since this property by definition applies to
lmasym(r, s), we can argue:

simidir(C, D) = 1⇐⇒ pmasym(r, s) = 1∧ simidir(C′, D′) = 1

⇐⇒ r w s ∧ C′ w D′

⇐⇒ C w D.

The argumentation for the ∃-quantification is the same.

4) Let C =
⊔

i Ci and D =
⊔

j Dj. We can argue:

C ≡ D =⇒ ∀Ci ∈ Ĉt : ∃Dj ∈ D̂t : Ci = Dj

⇐⇒ ∀Ci ∈ Ĉt : ∃Dj ∈ D̂t : simidir(Ci, Dj) = 1

⇐⇒ simidir(C, D) = 1.

�

This property allows our next theorem about Equivalence Closed and the con-
structors handled by simiasym.

Theorem 3. Let simiasym be on a specific DL and use the fuzzy connector ⊗. We can
say for the constructors of DL, that for simiasym:

1) The conjunction u, the ∃- and ∀-quantification preserve Equivalence Closed.

2) The disjunction t preserves Equivalence Closed.

30

Proof 4 (Theorem 3).

1) Since for simidir all these constructors preserve the first property from Lemma 2,
we can argue:

simiasym(C, D) = 1⇐⇒ simidir(C, D)⊗ simidir(D, C) = 1

⇐⇒ simidir(C, D) = 1∧ simidir(D, C) = 1
⇐⇒ C w D ∧ D w C
⇐⇒ C ≡ D.

2) Because of a unique normal form we can argue:

simiasym(C, D) = 1⇐⇒ simidir(C, D)⊗ simidir(D, C) = 1

⇐⇒ simidir(C, D) = 1∧ simidir(D, C) = 1

⇐⇒ ∀Ci ∈ Ĉt : ∃Dj ∈ D̂t : simidir(Ci, Dj) = 1

∧ ∀Do ∈ D̂t : ∃Cp ∈ Ĉt : simidir(Do, Cp) = 1

⇐⇒ ∀Ci ∈ Ĉt : ∃Dj ∈ D̂t : Ci ≡ Dj

∧ ∀Do ∈ D̂t : ∃Cp ∈ Ĉt : Do ≡ Cp

⇐⇒ C ≡ D.

Since simidual is nearly the same as simiasym, we can adapt the proof, to show
Equivalence Closed for simidual . For this adaption we have to remember, the only
difference between simiasym and simidual is the used literal measure. These again
differ just in the direction of their role name related properties. This means this
time, that simidir∗(∃r.C, ∃s.D) = 1 if C v D and r v s (same for ∀). And instead
for u, the adapted property holds for t.

Corollary 1. We can adapt Proof 3 to show that lmdual fulfils and for simidir∗ the con-
structors t, ∃ and ∀ preserve the following property:

simidir∗(C, D) = 1⇐⇒ C v D

Furthermore we can adapt Proof 4 to show, that for simidual the constructors t,u, ∃ and
∀ preserve Equivalence Closed.

3.2.2 Subsumption Preserving and Reverse Subsumption
Preserving

The measures lmsym, lmasym and lmdual are trivially Subsumption Preserving in
NLpr . Same holds for Reverse Subsumption Preserving. To preserve the proper-
ties also for the quantifications, we have to set some requirements to the relations
of the role names. While for lmsym the definitions of Subsumption Preserving and
Reverse Subsumption Preserving can easily be taken on to NR, lmasym and lmdual

need some precise definitions.

31

Definition 37. We define lmdual to be Subsumption Preserving in NR if for all r, s, t ∈
NR holds:

s w r =⇒ lmdual(s, t) ≤ lmdual(r, t)

s w r =⇒ lmdual(t, s) ≤ lmdual(t, s)

Since in simiasym the quantifications preserve Subsumption Preserving due to
its special design, we do not need lmasym to fulfil additional requirements. For
Reverse Subsumption Preserving it will be the other way around. Here lmdual

will not need to fulfil additional requirements.

Definition 38. We define lmasym to be Reverse Subsumption Preserving in NR if for all
r, s, t ∈ NR holds:

s w r =⇒ lmasym(s, t) ≥ lmasym(r, t)
s w r =⇒ lmasym(t, s) ≥ lmasym(t, s)

The definitions for lmsym to be Subsumption Preserving or Reverse Subsump-
tion Preserving in NR stay as usual, since it is fully symmetric. With the first of
these definitions we formulate the following lemma for Subsumption Preserving.

Lemma 3. Every literal measure lmsym, lmasym or lmdual is Subsumption Preserving
in NLpr . Also lmsym and lmdual can be constructed to fulfil Subsumption Preserving in
NR. We denote those by adding the index SP: lmsym

SP , lmdual
SP .

Proof 5 (Lemma 3).

Since on the level of concept names subsumption can only be achieved by
equivalence, we have for every A1 v A2 v A3, Ai ∈ NLpr that lmasym(A1, A2) =

lmasym(A1, A3) = 1. So lmasym Subsumption Preserving is for literals.
The argumentations for lmsym and lmdual are the same.
Since non of the properties of lmsym and lmdual contradict Subsumption Preserv-
ing in NR, both can be constructed to fulfil this property.

�

This proof can also be used for Reverse Subsumption Preserving.

Corollary 2. Every literal measure lmsym,lmasym or lmdual is Reverse Subsumption
Preserving in NLpr . Also lmsym and lmasym can can be constructed to fulfil Reverse
Subsumption Preserving in NR. We denote those by adding ·RSP: lmsym

RSP, lmasym
RSP

For the in 3.1 defined lmsym
de f we have, that if s w r, every t v r is also subsumed

by s. So lmsym
de f gives r and t the same similarity as s and t, except r = t or s = r = t.

Same argumentation can be done for t′ w s. So lmsym
de f by definition fulfils both

properties.

Corollary 3. Every lmsym
de f Subsumption Preserving and Reverse Subsumption Preserv-

ing in NR.

32

The next theorem shows under which conditions the constructors preserve
Subsumption Preserving for simisym.

Theorem 4. Let simisym be on a specific DL.We can say for the constructors of DL,
that for simisym:

1) The conjunction u not generally preserves Subsumption Preserving.

2) The disjunction t not generally preserves Subsumption Preserving.

3) The ∃- and ∀-quantification not generally preserve Subsumption Preserving.

Furthermore holds:

4) The conjunction u preserves Subsumption Preserving, if for all possible partici-
pants Ci of the conjunctions additionally holds:

C1 w C2 ⇐⇒ C1 ≡ C2

5) The disjunction t preserves Subsumption Preserving, if for all possible partici-
pants Ci of the disjunctions additionally holds:

C1 w C2 ⇐⇒ C1 ≡ C2

and
simisym(C1, C2) = 0⇐⇒ C1 6≡ C2

6) The ∃- and ∀-quantification preserves Subsumption Preserving, for lmsym
SP .

Note that 4) and 5) take advantage of lmsym being Equivalence Closed. Because
in both cases, we want subsumptions automatically be equivalences and lmsym is
Equivalence Closed, this results in every pair of each other subsuming partici-
pants having an similarity value of 1. Note also, that a more general restriction
for 5) is, that just equivalences between the possible participants of the disjunc-
tions return 1 and every other pair 0. Essentially this is the same, except that this
also allows subsumption beside equivalences. Therefore it also has no possible
knowledge about concept description that subsume each other. Anyway, both
cases break the calculation down to the Jaccard Index [4].

Proof 6 (Theorem 4).

1) Let E = E1, D = D1 and C = C1 u C2 with E1 w D1 w C1. By condition
simisym(C1, D1) ≥ simisym(C1, E1). Since there are no further restrictions, it
can be possible that

simisym(C2, E1) > 2 ∗ simisym(C2, D1)

and
simisym(C2, D1) > simisym(C1, D1)

So we have:

simisym(C, E) >
2
3
∗ simisym(C2, E1) >

4
3
∗ simisym(C2, D1) > simisym(C, D)

Thus the conjunction u not generally preserves Subsumption Preserving.

33

2) Let E = E1 t E2, D = D1 and C = C1 with E1 w D1 w C1. By assumption
simisym(C1, D1) ≥ simisym(C1, E1). Since there are no further restrictions, it
can be possible that:

simisym(C1, E2) > 2 ∗ simisym(C1, D1)

and
simisym(C1, E1) = simisym(C1, D1)

So we have:

simisym(C, E) >
2
3
∗ simisym(C1, E2) >

4
3
∗ simisym(C1, D1) > simisym(C, D)

Thus the disjunction t not generally preserves Subsumption Preserving.

3) Let E = ∀rE.E1, D = ∀rD.D1 and C = ∀rD.C1 with E1 w D1 w C1 and
rE w rD w rC. By assumption simisym(C1, D1) ≥ simisym(C1, E1). Since
there are no further restrictions, it can be possible that:

lmsym(rC, rE) > lmsym(rC, rD)
ω + (1−ω)simisym(C1, D1)

ω + (1−ω)simisym(C1, E1)

=⇒ lmsym(rC, rE) ∗ [ω + (1−ω)simisym(C1, E1)]

> lmsym(rC, rD) ∗ [ω + (1−ω)simisym(C1, D1)

=⇒ simisym(C, E) > simisym(C, D)]

Thus the ∀-quantification not generally preserves Subsumption Preserving.
The argumentation for the ∃-quantification is the same.

4) Let E = ⊔iEi, D = ⊔jDj and C = ⊔kCk with E w D w C. Since this is a
conjunction this means:

D w C ⇐⇒ ∀Dj ∈ D̂u : ∃Ck ∈ Ĉu : Dj w Ck

⇐⇒ ∀Dj ∈ D̂u : ∃Ck ∈ Ĉu : Dj ≡ Ck

=⇒ D̂u ⊆ Ĉu

The same can be shown for E w C and E w D. Since so clearly Êu ⊆ D̂u ⊆
Ĉu and connectcollectu(C,D)

u is monotone, we can argue:

∀Ei ∈ Êu : ∃Dj ∈ D̂u : Ei ≡ Dj

⇐⇒∀Ck ∈ Ĉu, ∀Ei ∈ Êu : ∃Dj ∈ D̂u : simisym(Ck, Ei) = simisym(Ck, Dj)

=⇒∀Ck ∈ Ĉu, ∀Ei ∈ Êu : ∃Dj ∈ D̂u : simisym(Ck, Ei) ≤ simisym(Ck, Dj)

⇐⇒simisym(C, E) ≤ simisym(C, D)

So Subsumption Preserving is fulfilled.

34

5) Let E =
⊔

i Ei, D =
⊔

j Dj and C =
⊔

k Ck with E w D w C. Since this is a
disjunction this means:

D w C ⇐⇒ ∀Ck ∈ Ĉt : ∃Dj ∈ D̂t : Dj w Ck

⇐⇒ ∀Ck ∈ Ĉt : ∃Dj ∈ D̂t : Dj ≡ Ck

=⇒ Ĉt ⊆ D̂t

The same can be shown for E w C and E w D. By the additional assump-
tions and Ĉt < D̂t v Êt we have:

simisym(C, E) =
|Ĉt ∩ Êt|
|Ĉt ∪ Êt|

=
|Ĉt|
|Êt|

≤ |Ĉt|
|D̂t|

=
|Ĉt ∩ D̂t|
|Ĉt ∪ D̂t|

= simisym(C, D)

So Subsumption Preserving is fulfilled.

6) Let E = ∀rE.E1, D = ∀rD.D1 and C = ∀rD.C1 with E1 w D1 w C1 and rE w
rD w rC. According to the additional assumption along with simisym(C1, D1) ≥
simisym(C1, E1) also lmsym

SP (rC, rD) ≥ lmsym
SP (rC, rE) holds. Since connect∀ is

monotone, this directly implies that simisym(C, D) ≥ simisym(C, E). So Sub-
sumption Preserving is fulfilled.
The argumentation for the ∃-quantification is the same.

�

So for simisym the conjunction u and disjunction t just preserve Subsumption
Preserving for special conditions. We can synthesize these conditions with lmsym

de f
and limitations of const(DL).

Corollary 4. For DL, simisym and Subsumption Preserving we have:

1) The conjunctionu preserves Subsumption Preserving for lmsym and const(DL) ⊆
{(¬),u}

2) The disjunction t preserves Subsumption Preserving for lmsym
de f and const(DL) ⊆

{(¬),t}

Before we proof Subsumption Preserving for simiasym, we introduce another
lemma with a property for simidir. This lemma is again taken from [4] and ex-
panded to lmasym and our additional constructors.

Lemma 4. Let simidir be on a specific DL. For const(DL) and the property:

E w D =⇒ ∀C : simidir(C, E) ≤ simidir(C, D)

we can say that for simidir:

1) The literal measure lmasym fulfils this property.

35

2) The conjunction u, the ∃- and ∀-quantification preserve this property.

This property is the cause, simiasym preserves Subsumption Preserving for most
constructors. In particular, the asymmetric properties for role names in lmasym

make the quantifications fulfil this property for simidir. Because for the conjunc-
tion holds, that ⊔iDi w ⊔jCj if and only if for every Di there exists a Cj that is
subsumed by Di (see [4]), it also preserves this property. For the disjunction this
is not possible.

Proof 7 (Lemma 4).

1) Since on the level of literals, subsumption can only be achieved by equiva-
lence, lmasym fulfils this property.

2) Let E = ∀rE.E1, D = ∀rD.D1 and C = ∀rC.C1 with E1 w D1 w C1 and
rE w rD w rC. By assumption, this property follows directly the fourth
property of Definition 26.
Let E = ⊔iEi, D = ⊔jDj and C = ⊔kCk. Since this is a conjunction, we have:

E w D ⇐⇒ ∀Ei ∈ Êu : ∃DJ ∈ D̂u : Ei w Dj

⇐⇒ ∀CK ∈ Ĉu, ∀Ei ∈ Êu : ∃DJ ∈ D̂u : simidir(Ck, Ei) ≤ simidir(Ck, Dj)

⇐⇒ simidir(C, E) ≤ simidir(C, D)

The argumentation for the ∃-quantification is the same.

�

This property effects, that for the constructors (¬),u, ∃ and ∀ and C v D v E,
one direction of simidir is 1. For the quantifications the last rule of Definition 26
guarantees that for the other direction Subsumption Preserving holds. Since in
conjunctions, the subsuming term are always shorter or equal to the subsumed
ones, for conjunctions the other directions also are Subsumption Preserving. So
with 1 being the neutral element for the t-norm, the Subsumption Preserving
preserving values will be returned for simiasym. Here our limitation of the fuzzy
connectors to bounded t-norm takes effect. We need the neutral element 1 for the
fuzzy connector, to get Subsumption Preserving for simiasym. But note that also
other fuzzy connectors with the neutral element 1 will fulfil this purpose.

Theorem 5. Let simiasym be on a specific DL.We can say for const(DL), that for
simisym:

1) The conjunction u, the ∃- and ∀-quantification preserve Subsumption Preserving.

2) The disjunction t not generally preserves Subsumption Preserving.

Furthermore holds:

36

3) The disjunction t preserves Subsumption Preserving, if for all possible partici-
pants Ci of the disjunction additionally holds:

C1 w C2 ⇐⇒ C1 ≡ C2

and
simidir(C1, C2) = 0∧ simidir(C2, C1) = 0⇐⇒ C1 6≡ C2

Note that here 3) takes advantage of lmasym being Equivalence Closed. Also
here, only equivalence returning 1 and everything else 0, could be more general
condition.

Proof 8 (Theorem 5).

1) With Lemma 2 and the identity property of ⊗ holds:

simiasym(C, D) = simidir(C, D)⊗ simidir(D, C)

= simidir(C, D)⊗ 1
= simidir(C, D)

The same holds for simiasym(C, E). By Lemma 4 and E w D, it follows that:

simiasym(C, E) = simidir(C, E) ≤ simidir(C, D) = simiasym(C, D)

So Subsumption Preserving is fulfilled.

2) Let E = E1 t E2, D = D1 and C = C1 with E1 w D1 w C1. Since there are no
further restrictions, it can be possible that:

simidir(C1, D1) = simidir(C1, E1)

= simidir(C1, E2)

= 1
simidir(E2, C1) > 2 ∗ simidir(D1, C1)

and
simidir(E1, C1) = simidir(D1, C1)

So we have:

simidir(E, C) >
1
2

simidir(E2, C1) > simidir(D1, C1) = simidir(D, C)

simidir(C, E) = 1 = simidir(C, D)

what, along with 1 being the neutral element of ⊗, implies:

simiasym(C, E) = simidir(E, C) > simidir(D, C) = simiasym(C, D)

37

3) Let E =
⊔

i Ei, D =
⊔

j Dj and C =
⊔

k Ck with E w D w C. Since this is a
disjunction this means:

D w C ⇐⇒ ∀Ck ∈ Ĉt : ∃Dj ∈ D̂t : Dj w Ck

The same can be shown for E w C and E w D. So we have |Ĉt| ≤ |D̂t| ≤
|Êt| Because of the additional assumption and simidir being Equivalence
Closed, holds:

simidir(C, E) =
|Ĉt ∩ Êt|
|Ĉt|

=
|Ĉt|
|Ĉt|

=
|Ĉt ∩ D̂t|
|Ĉt|

= simidir(C, D)

simidir(E, C) =
|Ĉt ∩ Êt|
|Êt|

=
|Ĉt|
|Êt|

≤ |Ĉt|
|D̂t|

=
|Ĉt ∩ D̂t|
|D̂t|

= simidir(E, D)

From 1 being the neutral element for ⊗, follows

simiasym(C, E) ≤ simiasym(C, D)

So Subsumption Preserving is fulfilled.

�

With a limitation of const(DL) and lmsym
de f , the requirements for 3) can be im-

plemented.

Corollary 5. For DL, simiasym and Subsumption Preserving, the disjunction t pre-
serves Subsumption Preserving for lmsym

de f and const(DL) ⊆ {(¬),t}.

For simisym and Reverse Subsumption Preserving the theorem is pretty much
the same as for Subsumption Preserving. Just the requirements for u and t to
fulfil it are exchanged. So we can say, that for Reverse Subsumption Preserving
the disjunction is the one, that is more likely to preserve it.

Theorem 6. Let simisym be on a specific DL.We can say for const(DL), that for
simisym:

1) The conjunction u not generally preserves Reverse Subsumption Preserving.

2) The disjunction t not generally preserves Reverse Subsumption Preserving.

3) The ∃- and ∀-quantification not generally preserve Reverse Subsumption Preserv-
ing.

Furthermore holds:

4) The conjunction u preserves Reverse Subsumption Preserving, if for all possible
participants Ci of the conjunction additionally holds:

C1 w C2 ⇐⇒ C1 ≡ C2

and
simisym(C1, C2) = 0⇐⇒ C1 6≡ C2

38

5) The disjunction t preserves Reverse Subsumption Preserving, if for all possible
participants Ci of the disjunction additionally holds:

C1 w C2 ⇐⇒ C1 ≡ C2

6) The ∃- and ∀-quantification preserves Reverse Subsumption Preserving, for lmsym
RSP.

Again 4) and 5) take advantage of lmsym being Equivalence closed. This time,
for 4) a more general condition could be, that only equivalence returns 1 and
everything else 0.

Proof 9 (Theorem 6).

1) Let E = E1, D = D1 and C = C1 u C2 with E1 w D1 w C1. By condition
simisym(C1, E1) ≤ simisym(D1, E1). Since there are no further restrictions, it
can be possible that

simisym(C2, E1) > 2 ∗ simisym(D1, E1)

and
simisym(E1, D1) = simisym(E1, C1)

So we have:

simisym(C, E) >
2
3
∗ simisym(C2, E1) >

4
3
∗ simisym(D1, E1) > simisym(D, E)

Thus the conjunction u not generally preserves Reverse Subsumption Pre-
serving.

2) Let E = E1 t E2, D = D1 and C = C1 with E1 w D1 w C1. By assumption
simisym(C1, E1) ≤ simisym(D1, E1). Since there are no further restrictions, it
can be possible that:

simisym(C1, E2) > 2 ∗ simisym(D1, E1)

and
simisym(D1, E2) > simisym(D1, E1)

So we have:

simisym(C, E) >
2
3
∗ simisym(C1, E2) >

4
3
∗ simisym(D1, E1) > simisym(D, E)

Thus the disjunction t not generally preserves Reverse Subsumption Pre-
serving.

3) Let E = ∀rE.E1, D = ∀rD.D1 and C = ∀rD.C1 with E1 w D1 w C1 and
rE w rD w rC. By assumption simisym(D1, E1) ≥ simisym(C1, E1). Since

39

there are no further restrictions, it can be possible that:

lmsym(rC, rE) > lmsym(rD, rE)
ω + (1−ω)simisym(D1, E1)

ω + (1−ω)simisym(C1, E1)

=⇒ lmsym(rC, rE)[ω + (1−ω)simisym(C1, E1)]

> lmsym(rC, rD)[ω + (1−ω)simisym(D1, E1)]

=⇒ simisym(C, E) > simisym(D, E)

Thus the ∀-quantification not generally preserves Reverse Subsumption Pre-
serving.
The argumentation for the ∃-quantification is the same.

4) Let E = ⊔iEi, D = ⊔jDj and C = ⊔kCk with E w D w C. Since this is a
conjunction this means:

D w C ⇐⇒ ∀Dj ∈ D̂u : ∃Ck ∈ Ĉu : Dj w Ck

⇐⇒ ∀Dj ∈ D̂u : ∃Ck ∈ Ĉu : Dj ≡ Ck

=⇒ D̂u ⊆ Ĉu

The same can be shown for E w C and E w D. By the additional assumption
and Ĉt w D̂t w Êt we have:

simisym(C, E) =
|Ĉt ∩ Êt|
|Ĉt ∪ Êt|

=
|Êt|
|Ĉt|

≤ |Êt|
|D̂t|

=
|D̂t ∩ Êt|
|D̂t ∪ Êt|

= simisym(D, E)

So Reverse Subsumption Preserving is fulfilled.

5) Let E =
⊔

i Ei, D =
⊔

j Dj and C =
⊔

k Ck with E w D w C. Since this is a
disjunction this means:

D w C ⇐⇒ ∀Ck ∈ Ĉt : ∃Dj ∈ D̂t : Dj w Ck

⇐⇒ ∀Ck ∈ Ĉt : ∃Dj ∈ D̂t : Dj ≡ Ck

=⇒ Ĉt ⊆ D̂t

The same can be shown for E w C and E w D. Since so clearly Êt ⊇ D̂t ⊇
Ĉt and connectcollectt

t is monotone, we can argue:

∀Ck ∈ Ĉt : ∃Dj ∈ D̂t : Ck ≡ Dj

⇐⇒∀Ei ∈ Êt, ∀Ck ∈ Ĉt : ∃Dj ∈ D̂t : simisym(Ck, Ei) = simisym(Dj, Ei)

=⇒∀Ei ∈ Êt, ∀Ck ∈ Ĉt : ∃Dj ∈ D̂t : simisym(Ck, Ei) ≤ simisym(Dj, Ei)

⇐⇒simisym(C, E) ≤ simisym(D, E)

So Reverse Subsumption Preserving is fulfilled.

40

6) Let E = ∀rE.E1, D = ∀rD.D1 and C = ∀rD.C1 with E1 w D1 w C1 and rE w
rD w rC. According to the additional assumption, along with simisym(D1, E1) ≥
simisym(C1, E1) also lmsym

RSP(rD, rE) ≥ lmsym
RSP(rC, rE) holds. Since connect∀ is

monotone, this directly implies that simisym(D, E) ≥ simisym(C, E). So Re-
verse Subsumption Preserving is fulfilled.
The argumentation for the ∃-quantification is the same.

�

Like for Subsumption Preserving, we can synthesise the requirements for u
and t to fulfil Reverse Subsumption Preserving by limiting const(DL) and lmsym

de f .

Corollary 6. For DL, simisym and Reverse Subsumption Preserving we have:

1) The conjunctionu preserves Reverse Subsumption Preserving for lmsym
de f and const(DL) ⊆

{(¬),u}

2) The disjunctiont preserves Reverse Subsumption Preserving for lmsym and const(DL) ⊆
{(¬),t}

For Reverse Subsumption Preserving simiasym has no advantage towards simisym.

Theorem 7. Let simiasym be on a specific DL.We can say for const(DL), that for
simisym:

1) The conjunction u not generally preserves Reverse Subsumption Preserving.

2) The disjunction t not generally preserves Reverse Subsumption Preserving.

3) The ∃- and ∀-quantification not generally preserve Reverse Subsumption Preserv-
ing.

Furthermore holds:

4) The conjunction u preserves Reverse Subsumption Preserving, if for all possible
participants Ci of the conjunction additionally holds:

C1 w C2 ⇐⇒ C1 ≡ C2

and
simidir(C1, C2) = 0⇐⇒ C1 6≡ C2

5) The disjunction t preserves Reverse Subsumption Preserving, if for all possible
participants Ci of the disjunction additionally holds:

C1 w C2 ⇐⇒ C1 ≡ C2

6) The ∃- and ∀-quantification preserve Reverse Subsumption Preserving, for lmasym
RSP .

Also here 4) and 5) take advantage of lmasym being Equivalence Closed and
again for 4) a more general condition could be, that only equivalence returns 1
and everything else 0.

41

Proof 10 (Theorem 7).

1) Let E = E1, D = D1 and C = C1 u C2 with E1 w D1 w C1. Since there are
no further restrictions, it can be possible that

simidir(E1, D1) = simidir(E1, C1)

= simidir(E2, C1)

= 1
simidir(C2, E1) > 2 ∗ simidir(D1, E1)

and
simidir(C2, E1) = simidir(C1, E1)

So we have:

simidir(C, E) >
1
2
∗ simidir(C2, E1) = simidir(D1, E1) > simidir(D, E)

simidir(E, C) = 1 = simidir(E, D)

what, along with 1 being the neutral element of ⊗, implies:

simiasym(C, E) = simidir(C, E) > simidir(D, E) = simiasym(D, E)

2) Let E = E1 t E2, D = D1 and C = C1 with E1 w D1 w C1. Since there are no
further restrictions, it can be possible that:

simidir(D1, E1) = simidir(C1, E1)

= simidir(C1, E2)

= 1
simidir(E2, C1) > 2 ∗ simidir(E1, D1)

and
simidir(E1, D1) = simidir(E1, C1)

So we have:

simidir(E, C) >
1
2

simidir(E2, C1) > simidir(D1, C1) = simidir(D, C)

simidir(C, E) = 1 = simidir(D, E)

what, along with 1 being the neutral element of ⊗, implies:

simiasym(C, E) = simidir(E, C) > simidir(D, C) = simiasym(C, D)

3) Let E = ∀rE.E1, D = ∀rD.D1 and C = ∀rD.C1 with E1 w D1 w C1 and rE w
rD w rC. By assumption simidir(D1, E1) ≥ simidir(C1, E1). By the second
property of Definition 26 we have lmasymdir(rE, rC) = lmasym(rE, rD) = 1.

42

Since there are no further restrictions, it can be possible that simdir(E, C) =
simdir(E, D) = 1, which implies by identity of ⊗ with 1, that:

simiasym(E, D) = simidir(E, D)⊗ simidir(D, E)

= 1⊗ simidir(D, E)
= simidir(D, E)

The same can be shown for simiasym(E, C). Additionally it is possible that:

lmasym(rC, rE) > lmasym(rD, rE)
ω + (1−ω)simidir(D1, E1)

ω + (1−ω)simidir(C1, E1)

=⇒ lmasym(rC, rE)[ω + (1−ω)simidir(C1, E1)]

> lmasym(rD, rE)[ω + (1−ω)simidir(D1, E1)]

=⇒ simidir(C, E) > simidir(D, E)

Thus the ∀-quantification not generally preserves Reverse Subsumption Pre-
serving.
The argumentation for the ∃-quantification is the same.

4) Let E = ⊔iEi, D = ⊔jDj and C = ⊔kCk with E w D w C. Since this is a
conjunction this means:

D w C ⇐⇒ ∀Dj ∈ D̂u : ∃Ck ∈ Ĉu : Dj w Ck

⇐⇒ ∀Dj ∈ D̂u : ∃Ck ∈ Ĉu : Dj ≡ Ck

=⇒ D̂u ⊆ Ĉu

The same can be shown for E w C and E w D. By the additional assumption
and Ĉt w D̂t w Êt we have:

simidir(C, E) =
|Ĉt ∩ Êt|
|Ĉt|

=
|Êt|
|Ĉt|

≤ |Êt|
|D̂t|

=
|D̂t ∩ Êt|
|D̂t|

= simidir(D, E)

simidir(E, C) =
|Ĉt ∩ Êt|
|Êt|

=
|Êt|
|Êt|

=
|D̂t ∩ Êt|
|Êt|

= simidir(E, D)

Because ⊗ is monotone, also simiasym(C, E) ≤ simiasym(D, E). So Reverse
Subsumption Preserving is fulfilled.

5) Let E =
⊔

i Ei, D =
⊔

j Dj and C =
⊔

k Ck with E w D w C. Since this is a
disjunction this means:

D w C ⇐⇒ ∀Ck ∈ Ĉt : ∃Dj ∈ D̂t : Dj w Ck

⇐⇒ ∀Ck ∈ Ĉt : ∃Dj ∈ D̂t : Dj ≡ Ck

=⇒ Ĉt ⊆ D̂t

43

The same can be shown for E w C and E w D. Since so clearly Êt ⊇ D̂t ⊇
Ĉt and connectcollectt

t is monotone, we can argue:

∀Ck ∈ Ĉt : ∃Dj ∈ D̂t : Ck ≡ Dj

⇐⇒∀Ei ∈ Êt, ∀Ck ∈ Ĉt : ∃Dj ∈ D̂t : simidir(Ck, Ei) = simidir(Dj, Ei)

=⇒∀Ei ∈ Êt, ∀Ck ∈ Ĉt : ∃Dj ∈ D̂t : simidir(Ck, Ei) ≤ simidir(Dj, Ei)

⇐⇒simidir(C, E) ≤ simidir(D, E)

The same way we can show that simidir(E, C) ≤ simidir(E, D). Together
with the monotonicity of ⊗1 follows simiasym(C, E) ≤ simiasym(D, E). So
Reverse Subsumption Preserving is fulfilled.

6) Let E = ∀rE.E1, D = ∀rD.D1 and C = ∀rD.C1 with E1 w D1 w C1 and
rE w rD w rC. This implies by Lemma 2, that

simidir(E1, D1) = simidir(E1, C1) = 1

According to the additional assumption holds

simidir(D1, E1)⊗ simidir(E1, D1) ≥ simidir(C1, E1)⊗ simidir(E1, C1)

simidir(D1, E1)⊗ 1 ≥ simidir(C1, E1)⊗ 1
simidir(D1, E1) ≥ simidir(C1, E1)

and

lmasym
RSP (rD, rE) ≥ lmasym

RSP (rC, rE)

lmasym
RSP (rE, rD) = lmasym

RSP (rE, rC) = 1

Since ⊗ and connect∀ are monotone, this implies that

simiasym(D, E) ≥ simiasym(C, E)

So Reverse Subsumption Preserving is fulfilled.
The argumentation for the ∃-quantification is the same.

�

Corollary 7. For DL, simiasym and Reverse Subsumption Preserving we have:

1) The conjunction u preserves Reverse Subsumption Preserving for lmasym
de f and

const(DL) ⊆ {(¬),u}

2) The disjunctiont preserves Reverse Subsumption Preserving for lmasym and const(DL) ⊆
{(¬),t}

44

As mentioned, simidual is designed dual to simiasym. This means, that the asym-
metric properties of the role names in lmasym let the quantification term relate to
each other in an inverted way. Because of this, they preserve Reverse Subsump-
tion Preserving. Instead of the conjunction for simiasym the disjunction happens
to preserve Reverse Subsumption Preserving as well. As drawback, simidual has
for Subsumption Preserving no advantages towards simisym.
The reverse design of simidual starts with the additional property, that later can
be used to proof that almost all constructors preserve Reverse Subsumption Pre-
serving.

Corollary 8. With the property from Corollary 1, we can adapt Proof 7 to show that
simidir∗ fulfils and the constructor t, ∀ and ∃ preserve the property:

E v D =⇒ ∀C : simidir∗(C, E) ≤ simidir∗(C, D)

For Reverse Subsumption Preserving simidual got the advantages, that simiasym
got for Subsumption Preserving, except that the roles of the conjunction u and
the disjunction t are interchanged.

Corollary 9. With the property form Corollary 8, we can adapt Proof 8 to show that for
simidual :

1) The disjunction t, the ∃- and ∀-quantification preserve Reverse Subsumption Pre-
serving.

2) The conjunction u not generally preserves Reverse Subsumption Preserving.

and furthermore:

3) The conjunction u preserves Reverse Subsumption Preserving, if for all possible
participants Ci of the conjunction additionally holds:

C1 w C2 ⇐⇒ C1 ≡ C2

and
simidir∗(C1, C2) = 0∧ simidir∗(C2, C1) = 0⇐⇒ C1 6≡ C2

Corollary 10. For DL, simidual and Reverse Subsumption Preserving, the conjunction
u preserves Subsumption Preserving for lmdual

de f and const(DL) ⊆ {(¬),u}.

For Subsumption Preserving simidual got the disadvantages, that simiasym got
for Reverse Subsumption Preserving, except that again the roles of the conjunc-
tion u and the disjunction t are interchanged.

Corollary 11. We can adapt Proof 10 to show that for simidual :

1) The disjunction t not generally preserves Subsumption Preserving.

2) The conjunction u not generally preserves Subsumption Preserving.

45

3) The ∃- and ∀-quantification not generally preserve Subsumption Preserving.

Furthermore holds:

4) The disjunction t preserves Subsumption Preserving, if for all possible partici-
pants Ci of the disjunction additionally holds:

C1 w C2 ⇐⇒ C1 ≡ C2

and
simidir∗(C1, C2) = 0⇐⇒ C1 6≡ C2

5) The conjunction u preserves Subsumption Preserving, if for all possible partici-
pants Ci of the conjunction additionally holds:

C1 w C2 ⇐⇒ C1 ≡ C2

6) The ∃- and ∀-quantification preserve Subsumption Preserving, for lmdual
SP .

Corollary 12. For DL, simidual and Subsumption Preserving we have:

1) The disjunctiont preserves Subsumption Preserving for lmdual
de f and const(DL) ⊆

{(¬),t}

2) The conjunctionu preserves Subsumption Preserving for lmdual and const(DL) ⊆
{(¬),u}

So simiasym and simidual have an advantage towards simisym in the properties
Subsumption Preserving or Reverse Subsumption Preserving. Because of their
semantic, we also can say that the conjunction u is more likely to preserve Sub-
sumption Preserving and the disjunction t is more likely to preserve Reverse
Subsumption Preserving.

3.2.3 Dissimilar Closed and Bounded

For the formal properties Dissimilar Closed and Bounded we have to distinguish
two cases. The first case is if t ∈ const(DL). For this case we trivially have that
lcs(C, D) = C t D. From this follows that:

lcs(C, D) = > ⇐⇒ C w ¬D

This is not only harder to check, but also brings major trouble for fulfilling lcs(C, D) =
>with quantifications. In fact, with just the primitive negation (¬), it is impossi-
ble to produce > within a disjunction containing a quantification.
The second case is, that t /∈ const(DL). This was the case in the design of simi.
For this holds, that

lcs(C, D) = > ⇐⇒ C 6v D ∧ D 6v C

For literal and quantifications, this can easily be assured by a proper literal mea-
sure.
So we first define the conditions for the literal measure to be Dissimilar Closed.

46

Lemma 5. Every literal measure lmsym,lmasym or lmdual is Dissimilar Closed for a spe-
cific DL, if t ∈ const(DL).
If t /∈ const(DL), then lmsym is still Dissimilar Closed, if for all A, B ∈ NLpr and
r, s ∈ NR holds:

A 6≡ B =⇒ lmsym(A, B) = 0
r 6w s ∧ s 6w r =⇒ lmsym(r, s) = 0

and lmasym and lmdual are still Dissimilar Closed, if for all A, B ∈ NLpr and r, s ∈ NR
holds:

A 6≡ B =⇒ lm∗(A, B)⊗ lm∗(B, A) = 0
r 6w s ∧ s 6w r =⇒ lm∗(r, s) = lm∗(s, r) = 0

with lm∗ ∈ {lmasym, lmdual}. We want to denote those by adding ·DiCl : lmsym
DiCl , lmasym

DiCl ,
lmdual

DiCl .

The role name related rules are not needed to make the literal measures Dissim-
ilar Closed. But we will later need these, to proof that the quantifications preserve
Dissimilar Closed, so we include them right away.

Proof 11 (Lemma 5).

If t ∈ const(DL), then for A, B ∈ NLpr the lcs(A, B) = A t B. So:

lcs(A, B) ≡ > ⇐⇒ A w ¬B

Because on the level of literals supsumtion can only be achieved by equivalence,
this means:

lcs(A, B) ≡ > ⇐⇒ A ≡ ¬B

By definition, this is 0. So Dissimilar Closed is fulfilled for this case.
If t /∈ const(DL):

lcs(A, B) 6≡ > ⇐⇒ A w B
⇐⇒ A ≡ B

So lmsym and lmasym no longer fulfil Dissimilar Closed. But if they fulfil the addi-
tional assumption, they obviously fulfil Dissimilar Closed again.

�

Corollary 13. Every lmsym
de f , lmasym

de f or lmdual
de f is Dissimilar Closed, even ift /∈ const(DL).

The following theorem is about simisym and Dissimilar Closed. It will refer to
the cases of t /∈ const(DL) and t ∈ const(DL), if the are of relevance.

Theorem 8. Let simisym be on a specific DL. We can say for const(DL), that for
simisym:

47

1) The conjunction u preserves Dissimilar Closed.

2) The disjunction t preserves Dissimilar Closed, if {¬, (¬)} ∩ const(DL) = ∅.

3) If t ∈ const(DL), then the ∃- and ∀-quantification preserve Dissimilar Closed.
If t /∈ const(DL), then the ∃- and ∀-quantification preserve Dissimilar Closed
for lmsym

DiCl .

Proof 12 (Theorem 8).

1) Let D = ⊔iDi and C = ⊔jCj. If t /∈ const(DL), since

connectcollectu(C,D)
u (chooseu) = 0

⇐⇒ ∀E′ ∈ collectu(C, D) : chooseu(E′) = 0

and there are no other n-ary constructors, we can argue:

lcs(C, D) ≡ > ⇐⇒ ∀Cj ∈ Ĉu, ∀Di ∈ D̂u : Cj 6w Di ∧ Di 6w Cj

⇐⇒ ∀Cj ∈ Ĉu, ∀Di ∈ D̂u : lcs(Cj, Di) ≡ >
=⇒ ∀Cj ∈ Ĉu, ∀Di ∈ D̂u : simisym(Cj, Di) = 0

⇐⇒ simisym(C, D) = 0

If t ∈ const(DL):
lcs(C, D) ≡ > ⇐⇒ C w ¬D

⇐⇒ ⊔jCj w ¬ ⊔iDi

⇐⇒ ⊔jCj w
⊔

i
¬Di

⇐⇒ ∀Di ∈ D̂u : ⊔jCj w ¬Di

⇐⇒ ∀Di ∈ D̂u, ∀Cj ∈ Ĉu : Cj w ¬Di

⇐⇒ ∀Di ∈ D̂u, ∀Cj ∈ Ĉu : lcs(Cj, Di) ≡ >
=⇒ ∀Di ∈ D̂u, ∀Cj ∈ Ĉu : simisym(Cj, Di) = 0

⇐⇒ simisym(C, D) = 0

So Dissimilar Closed is preserved in both cases.

2) Let D =
⊔

i Di and C =
⊔

j Cj. We can argue:

lcs(C, D) ≡ > ⇐⇒ C w ¬D

⇐⇒
⊔

j
Cj w ¬

⊔
i

Di

⇐⇒
⊔

j
Cj w ⊔i¬Di

=⇒∃S ⊆ Ĉu, ∃M ⊆ D̂u, S, M 6= ∅ : ∀Dm ∈ M, ∀Cs ∈ S :
⊔
s

Cs w ⊔m¬Dm

48

So it is possible. that between Cj ∈ Ĉu\S and Di ∈ D̂u\M a similarity
bigger than 0 is. Since:

connectcollectt(C,D)
t (chooset) = 0

⇐⇒ ∀E′ ∈ collectt(C, D) : chooset(E′) = 0

this means, thatt not generally preserves Dissimilar Closed. But if {¬, (¬)}∩
const(DL) = ∅, the sets S and M are also empty. So the premiss is never
fulfilled and therefore Dissimilar Closed trivially preserved.

3) Let C = ∀rC.C1. If D is a conjunction or disjunction, the rules for those
should be applied first. If is not of the form ∀rD.D1, the result is 0 and so
Dissimilar Closed trivially preserved.
Let D = ∀rD.D1. If t /∈ const(DL), since:

connect∀(chooseR
∀ , chooseC

∀) = 0⇐⇒ chooseR
∀ = 0

we can argue:

lcs(C, D) ≡ > ⇐⇒ rC 6w rD ∧ rD 6w rC

⇐⇒ lmsym
DiCl(rC, rD) = 0

⇐⇒ simisym(C, D) = 0

If t ∈ const(DL), lcs(C, D) = (∀rC.C1) t (∀rD.D1) 6≡ >, so the premiss is
never fulfilled and therefore Dissimilar Closed trivially preserved.
The argumentation for the ∃-quantification is the same.

�

The only times the relation of the role names are relevant for this proof, we use
the requirements for lmsym being Dissimilar Closed. This allows us to adapt the
hole proof easily to verify the same statement for simiasym and simidual .

Corollary 14. Since the argumentations of Proof 12 can be adapted to either simidir(C, D)
or simidir(D, C) and 0 is absorbing for the fuzzy connector ⊗, we can use the proposi-
tions of Theorem 8 also for simiasym.
The same holds for simidir∗ and simidual .

Note that for this corollary it is necessary, that the fuzzy connector has 0 as the
absorbing element. Our limitation of the fuzzy connectors to bounded t-norm
covers this.
In the next lemma we define the conditions for a literal measure to be Bound.

Lemma 6. Every literal measure lmsym, lmasym or lmdual is Bounded, ift /∈ const(DL).
If t ∈ const(DL), lmsym is still Bounded if for A, B ∈ NLpr holds:

A 6≡ ¬B =⇒ lmsym(A, B) > 0

49

and lmasym and lmasym are still Bounded if for A, B ∈ NLpr holds:

A 6≡ ¬B =⇒ lm∗(A, B)⊗ lm∗(B, A) > 0

with lm∗ ∈ {lmasym, lmdual}. We want to denote those literal measure by adding ·Bou:
lmsym

Bou ,lmasym
Bou ,lmdual

Bou .

Proof 13 (Lemma 6).

If t /∈ const(DL) we can argue :

lcs(A, B) 6≡ > ⇐⇒ A ≡ B
⇐⇒ lmsym(A, B) = 1 > 0

So Bounded is fulfilled.
If t ∈ const(DL), then it is possible that lmsym(A, B) = 0 for A 6≡ B, but
lcs(A, B) = A t B is not necessarily equal to >. But with the additional assump-
tion that for all A, B ∈ NLpr : lmsym

Bou(A, B) > 0, we have that the conclusion of
Bounded always holds. So it is fulfilled for this literal measure.
The argumentations for lmasym and lmdual are the same.

�

For Bounded the trivial case is t /∈ const(DL). The other case brings a major
trouble. If t /∈ const(DL), then the lcs between a quantification and an other
concept is never equal to >. So the premise of Bounded is always fulfilled, if a
quantification participates. Unfortunately for those cases the similarity value is
not always 0.

Theorem 9. Let simisym be on a specific DL. We can say for the constructors of DL,
that for simisym:

1) The conjunction u preserves Bounded.

2) The disjunction t preserves Bounded.

3) The ∃- and ∀-quantification preserve Bounded, if t /∈ const(DL).
Proof 14 (Theorem 9).

1) Let D = ⊔iDi and C = ⊔jCj. If t /∈ const(DL), because:

connectcollectu(C,D)
u (chooseu) = 0

⇐⇒ ∀E′ ∈ collectu(C, D) : chooseu(E′) = 0

we can argue:

lcs(C, D) 6≡ > ⇐⇒ ∃Cj ∈ Ĉu, ∃Di ∈ D̂u : Cj w Di ∨ Di w Cj

⇐⇒ ∃Cj ∈ Ĉu, ∃Di ∈ D̂u : lcs(Cj, Di) 6≡ >
=⇒ ∃Cj ∈ Ĉu, ∃Di ∈ D̂u : simisym(Cj, Di) > 0

⇐⇒ simisym(C, D) > 0

50

If t ∈ const(DL):

lcs(C, D) 6≡ > ⇐⇒ C 6w ¬D

⇐⇒ ⊔jCj 6w ¬ ⊔iDi

⇐⇒ ⊔jCj 6w
⊔

i
¬Di

⇐⇒ ∃Di ∈ D̂u : ⊔jCj 6w ¬Di

⇐⇒ ∃Di ∈ D̂u, ∃Cj ∈ Ĉu : Cj 6w ¬Di

⇐⇒ ∃Di ∈ D̂u, ∃Cj ∈ Ĉu : lcs(Cj, Di) 6≡ >
=⇒ ∃Di ∈ D̂u, ∃Cj ∈ Ĉu : simisym(Cj, Di) > 0

⇐⇒ simisym(C, D) > 0

So Bounded is preserved in both cases.

2) Let D =
⊔

i Di and C =
⊔

j Cj. Since:

connectcollectt(C,D)
t (chooset) = 0

⇐⇒ ∀E′ ∈ collectt(C, D) : chooset(E′) = 0

we can argue:

lcs(C, D) 6≡ > ⇐⇒ D t C 6≡ >
⇐⇒ ∀Di ∈ D̂t, ∀Cj ∈ Ĉt : lcs(Di, Cj) 6≡ >
⇐⇒ ∀Di ∈ D̂t, ∀Cj ∈ Ĉt : simisym(Cj, Di) > 0

3) Let C = ∀rC.C1. We can rephrase that simisym is Peserving if:

simisym(C, D) = 0, C 6≡ >, D 6≡ > =⇒ lcs(C, D) ≡ >

If t /∈ const(DL) this can only happen, if C w D or D w C. For any D not
of the form D = ∀rD.D1, this can never happen, so Peserving is preserved
trivially. If D is of the form D = ∀rD.D1. We can use the the argumentation
from Proof 12 to show that the ∀-quantification preserves Peserving.
If t ∈ const(DL), unfortunately the conclusion of this rephrasing never
holds. So in this case the ∀-quantification never preserves Peserving.
The argumentation for the ∃-quantification is the same.

�

Note that the problem of 3) with t ∈ const(DL) also applies to cases of cal-
culating the similarity between a quantification and a primitive concept name.
So just modifying the quantification rule, to always return some value bigger 0
would not solve this problem. We also would have to modify the special cases.

Like for Dissimilar Closed, this proof can be used for simiasym and simidual as
well.

51

Corollary 15. Since the argumentations of Proof 14 can be adapted to either simidir(C, D)
or simidir(D, C) and 0 is absorbing for ⊗, we can use the propositions of Theorem 9 also
for simiasym.
The same holds for simidir∗ and simidual .

3.2.4 Structural Dependent

Both structural dependencies apply to a specific constructor. In each case, the
other constructors have nearly no impact. As long as they all provide that C =
D =⇒ sim(C, D) = 1, they will have no more impact at all. This is, because of
the formulation of Structural Dependent, which speaks of a sequence of concept
descriptions, implying that they are syntactical equal. Being Equivalence Closed
covers this for simisym, simiasym and simidual . Furthermore the weighting function
should not weight the equivalent participants with 0.

Theorem 10. Let simisym be on a specificDL. If the constructor© ∈ const(DL),© ∈
{u,t}, then simisym is Structural Dependent for© if the weight function g maps every
concept description C ∈ C(DL) to a value bigger than 0.

Proof 15 (Theorem 10).

For all sequences (Cn)n of atoms with ∀i, j ∈ N, i 6= j : Ci 6w Cj, let Dn :=
©i<nCi©D and En :=©i<nCi© E. If the weight function g maps every concept

description C ∈ C(DL) to a value bigger than 0, this assures that connect
collect©(C,D)

© (choose©)

is monotone in all arguments. Because for simisym furthermore holds:

• D̂© ∩ Ĉ© ⊆ collect©(C, D), and

• E′ ∈ D̂© ∩ Ĉ© =⇒ choose©(E′) = 1

we can define simisym recursively:

f (0) ∈ [0, 2], simisym(D0, E0) =
simisym(D, E) + g(C0)

f (0)

f (n + 1) = f (n) + g(Cn), simisym(Dn+1, En+1) =
simisym(Dn, En) + g(Cn)

f (n + 1)

where f (n) collects the weights of the iteration, starting with the weights for
simisym(D, E) and C0 in f (0). Since every g(Cn) > 0, there exists for every n > 0
a εn > 0 with:

εn = mean({g(Ci)|i = 1, ..., n})

what allows us to say:

simisym(Dn, En) =
simisym(D, E) + g(C0) + n ∗ εn

f (0) + n ∗ εn

52

with:

lim
n→∞

simisym(D, E) + g(C0) + n ∗ εn

f (0) + n ∗ εn
=

εn

εn
= 1

�

Because Dn and En are always the same length, we can easily adapt this proof
simidir(Dn, En), simidir(En, Dn), simidir∗(Dn, En) and simidir∗(En, Dn). So if the
fuzzy connector is monotone, we can also prove this lemma for simiasym and
simidual . Once again we provided this by limiting the fuzzy connector to bounded
t-norm.

Corollary 16. Let simiasym be on a specificDL. If the constructor© ∈ const(DL),© ∈
{u,t}, then simiasym is Structural Dependent for© if the weight function g maps every
concept description C ∈ C(DL) to a value bigger than 0.

Corollary 17. Let simidual be on a specificDL. If the constructor© ∈ const(DL),© ∈
{u,t}, then simidual is Structural Dependent for© if the weight function g maps every
concept description C ∈ C(DL) to a value bigger than 0.

3.2.5 Triangle Inequality

For our look at the Triangle Inequality, we assume the weighting function to be
gDL,de f the hole time. Any other weighting function could unpredictably distort
the calculation for the conjunction and disjunction. Also we want to adapt the
proof for the Jaccard Index to fulfil the Triangle Inequality like in [4]. Therefore
we will need gDL,de f .
At the end, achieving one of our CSM to fulfil the Triangle Inequality is quite
hard. This is, because it is a strong property. For literals a quantifications it can
be achieved by a suitable literal measure. For the conjunction and disjunction it
is not so easy.
To proof some lemmata for triple of values, we introduce an operator to calculate
the similarity values within such a triple.

Definition 39 (Triangle Inequality for triples). Let (x1, x2, x3) be a triple of values
xi ∈ [0, 1], i = 1, 2, 3. We want to say that this triple fulfils the Triangle Inequality, if:

1 + x1 ≥ x2 + x3

1 + x2 ≥ x1 + x3

1 + x3 ≥ x1 + x2.

Let sim be a CSM on a specific DL. We define for C, D, E ∈ C(DL) the function
Trisim : DL3 −→ [0, 1]3 with:

Trisim(C, D, E) = (sim(C, D), sim(C, E), sim(D, E))

Further more we want to say that a triple (C, D, E) ofDL concept descriptions fulfils the
Triangle Inequality within sim iff Trisim(C, D, E) fulfils the Triangle Inequality.

53

The following lemmatas will help us to prove that for special cases, the Triangle
Inequality is fulfilled.

Lemma 7. Let the triple (x1, x2, x3) be a triple, that fulfil the Triangle Inequality. Then,
for ω ∈ [0, 1], the triple (ω + (1− ω)x1, ω + (1− ω)x2, ω + (1− ω)x3) also fulfils
the Triangle Inequality as well.

Proof 16 (Lemma 7).

We can argue:

1 + x1 ≥ x2 + x3

1−ω

1−ω
+ x1 ≥ x2 + x3

1
1−ω

+ x1 ≥ x2 + x3 +
ω

1−ω

1 + (1−ω)x1 ≥ (1−ω)x2 + (1−ω)x3) + ω

1 + ω + (1−ω)x1 ≥ ω + (1−ω)x2 + ω + (1−ω)x3

what fulfils the Triangle Inequality for this case. Because this can be done for
every possible order:

1 + xi ≥ xj + xk

i 6= j 6= k
i, j, k ∈ {1, 2, 3}

the Triangle Inequality is preserved.

�

Lemma 8. Let the triple (x1, x2, x3) and (y1, y2, y3) be triples, that fulfil the Triangle
Inequality, then the triple (x1y1, x2y2, x3y3) also fulfils the Triangle Inequality as well.

Proof 17 (Lemma 8).

For x1, x2, x3, y1, y2, y3 ∈ [0, 1] hold:

1 + x1 ≥ x2 + x3

1 + y1 ≥ y2 + y3.

We consider the case:

1 + x1y1 = x2y2 + x3y3

where w.l.o.g. x1 = y1 = x2 = y2 and x3 = y3 = 1. As for the hypothesis,
the prerequisite are equalities. We now show, without violating the prerequisite,
there is no way to increase the right hand side or decrease the left hand side of
this case.
In in altering the x2, we have approaches to increase the right hand side:

54

• If we try to increase x2 by ε for decreasing x3 by ε, this result in an increase
of εy2 for a decrease of εy3. But since clearly y2 ≤ y3, this will have no
change or a decrease on the right hand side.

• If we try to increase x2 by ε for increase of x1 by ε, this results in an increase
of the right hand side by εy2 for an increase of the left hand side by εy1.
Since y1 = y2, both side rise in the same value, so the equality will still
remain.

Decreasing the left hand side by altering x1 by ε for a increase of xi, i ∈ {2, 3} by
ε, will result in an equal or higher decrease of the right hand side, than the left
hand side. The reasons are the same as for the atering of x2.
For altering y1 or y2, the argumentations are the same as for x1 and x2.
Because every possible configuration for the xi and yi, can be achieved by doing
the mentioned alternations to this case or the case that x1 = y1 = x3 = y3 and
x2 = y2 = 1, for all of this configurations at least the equality hold. So hold:

1 + x1y1 ≤ x2y2 + x3y3

Because the mentioned prerequisite hold for every possible order:

1 + xi ≥ xj + xk

1 + yl ≥ ym + yn

i 6= j 6= k
l 6= m 6= n
i, j, k, l, m, n ∈ {1, 2, 3}

this proof can be done for all

1 + xiyl = xmy2 + xny3

so the triple (x1y1, x2y2, x3y3) fulfils the Triangle Inequality.

�

Again we start with the proof for simisym. There for we first define the require-
ments for lmsym to fulfil the Triangle Inequality.

Definition 40. We want to denote every symmetric literal measure lmsym that, for
A, B, C ∈ NLpr and r, s, t ∈ NR, fulfils the Triangle Inequality:

1 + lmsym(A, B) ≥ lmsym(A, C) + lmsym(B, C)
1 + lmsym(r, s) ≥ lmsym(r, t) + lmsym(s, t)

by adding ·TrIn: lmsym
TrIn:

In this definition are already the requirements for the quantifications included.
They are not necessary for lmsym to fulfil the Triangle Inequality in NLpr . But we
included them anyway, so we do not have to bring a second definition for lmsym

to fulfil the Triangle Inequality in NR. We just have to keep in mind, that these
requirements can occur independently, when we later look for counter examples
in the analysis of the properties.

55

Theorem 11. Let simisym be on a specific DL. We can say for the constructors of DL,
that for simisym:

1) The conjunction u and the disjunction t preserve Triangle Inequality if addition-
ally for all possible participants Ci of the conjunction/disjunction holds:

simisym(C1, C2) = 0⇐⇒ C1 6≡ C2

2) The ∃- and ∀-quantification preserve the Triangle Inequality for lmsym
TrIn.

Proof 18 (Theorem 11).

1) By the additional assumption in simisym for two disjunctions C, D ∈ C(DL), C =⊔
i Ci, D =

⊔
j Dj holds:

simisym(C, D) =
|Ĉt ∩ D̂t|
|Ĉt ∪ D̂t|

Since this is similar to the Jaccard Index ([4]), we can adapt the prove of the
Triangle Inequality for the Jaccard Index (see [5] and [4]).
For the conjunction, the argumentation is the same.

2) Let C, D, E ∈ C(DL), C = ∀rC.C1 and Trisym(C, D, E) = (x1, x2, x3). Due
to the treatment of the ∀-quantification in simisym, if at least one of D and E
is no ∀-quantification, then the triple (x1, x2, x3) contains at least two zeros
and so the Triangle Inequality is fulfilled.
If D = ∀rD.D1 and E = ∀rE.E1, then because Tri(C1, D1, E1) fulfils the Tri-
angle Inequality, Lemma 7 assures that

(ω + (1−ω)x1, ω + (1−ω)x2, ω + (1−ω)x3) = (y1, y2, y3)

fulfils the Triangle Inequality as well. In conclusion to this, Lemma 8 assures
that furthermore

(lmsym
TrIn(rC, rD)y1, lmsym

TrIn(rC, rE)y1, lmsym
TrIn(rD, rE)y1)

fulfils the Triangle Inequality and so the property is preserved.
The argumentation for the ∃-quantification is the same.

�

Example 2. Let C = C1 t C2, D, E with C1, C1, D, E ∈ NLpr , lmsym
TrIn(C1, D) =

lmsym
TrIn(C2, E) > 3

4 and all other similarities between primitive concept names are 0.
This lmsym

TrIn clearly fulfils the Triangle Inequality, but:

1 + simisym(E, D) < simisym(C, D) + simisym(C, E)

because

1 + 0 =
3
4 + 3

4 + 0
3

+
3
4 + 3

4 + 0
3

< simisym(C, D) + simisym(C, E)

So Tri(C, D; E) fulfils not the Triangle Inequality.

56

Example 2 shows, why for simisym the conjunction and disjunction not preserve
the Triangle Inequality for general. Note that we proved an implication. It could
be possible, that there are more general restrictions to make the conjunction and
disjunction preserve the Triangle Inequality. For now we keep with the ones, we
can synthesise by simple limitations of const(DL) and lmsym

de f .

Corollary 18. For DL, simisym and the Triangle Inequality we have:

1) The conjunction u preserves the fulfilling of the Triangle Inequality for lmsym
de f and

const(DL) ⊆ {(¬),u}

2) The disjunction t preserves the fulfilling of the Triangle Inequality for lmsym
de f and

const(DL) ⊆ {(¬),t}

Because of the asymmetric structure of simiasym and simidual , lmasym and lmdual

are not necessarily symmetric. So their definition to fulfil the Triangle Inequality,
has to regard both ways they can be applied.

Definition 41. We define an asymmetric literal measure lmasym or lmdual to fulfil the
Triangle Inequality, if for A, B, C ∈ NLpr , r, s, t ∈ NR holds:

1 + lm∗(A, B) ≥ lm∗(A, C) + lm∗(B, C)
1 + lm∗(B, A) ≥ lm∗(C, A) + lm∗(C, B)

1 + lm∗(r, s) ≥ lm∗(r, t) + lm∗(s, t)
1 + lm∗(s, r) ≥ lm∗(t, r) + lm∗(t, s)

with lm∗ ∈ {lmasym, lmdual}. We want to denote those by adding TrIn: lmasym
TrIn , lmdual

TrIn.

Also the fuzzy connector will have a major impact. Therefore we also define a
version, that regards the used fuzzy connector.

Definition 42. We define an asymmetric literal measure lmasym or lmdual to fulfil the
Triangle Inequality for fuzzy connector ⊗, if for A, B, C ∈ NLpr , r, s, t ∈ NR holds:

1 + lm∗(A, B)⊗ lm∗(B, A)

≥ lm∗(A, C)⊗ lm∗(C, A) + lm∗(B, C)⊗ lm∗(C, B)
1 + lm∗(r, s)⊗ lm∗(s, r)
≥ lm∗(r, t)⊗ lm∗(t, r) + lm∗(s, t)⊗ lm∗(t, s)

with lm∗ ∈ {lmasym, lmdual}. We want to denote it by adding TrIn(⊗): lmasym
TrIn(⊗),

lmasym
TrIn(⊗).

For the Product t-norm it is easy to show, that the first definition implies the
second one.

Corollary 19. Lemma 8 implies, that for the Product t-norm ⊗prod every asymmetric
literal measure lmasym

TrIn is also a lmasym
TrIn(⊗prod)

.

The same holds for lmdual
TrIn.

57

The big disadvantage of simiasym and simidual is, that the fuzzy connector is an
additional unpredictable variable. Even with our restriction to bounded t-norm,
we can only conclude:

x⊗ y ≤ min(x, y)

This brings the problem, that in some cases every fuzz connector must be checked
separately.

Theorem 12. Let simiasym be on a specific DL, using the fuzzy connector ⊗. We can
say for the constructors of DL, that for simiasym:

1) The conjunction u and the disjunction t preserve Triangle Inequality if addition-
ally for all possible participants Ci of the conjunction/disjunction holds:

simidir(C1, C2) = 0⇐⇒ C1 6≡ C2

and the fuzzy connector used by simiasym is the Hamacher product ⊗H0 .

2) The ∃- and ∀-quantification preserve the Triangle Inequality for lmasym
TrIn and the

fuzzy connector used by simiasym is the Product t-norm ⊗prod.

Proof 19 (Theorem 11).

1) By the additional assumption in simisym for two disjunctions C, D ∈ C(DL), C =⊔
i Ci, D =

⊔
j Dj holds:

simisym(C, D) =
|Ĉt ∩ D̂t|
|Ĉt|

Since this is similar to simid from ([4]) and also ⊗H0 is assumed as fuzzy
connector, we can adapt the proof of simid[· , pmde f , gde f ,] with ⊗H0 being
the Jaccard Index ([4]) to prove the fulfilling of the Triangle Inequality.
For the conjunction, the argumentation is the same.

2) Let C = ∀r.C1, D = ∀s.D1 and E = ∀t.E1. For shorter formulas, we denote:

xa = lmasym
TrIn (r, s), xa′ = lmasym

TrIn (s, r)

xb = lmasym
TrIn (r, t), xb′ = lmasym

TrIn (t, r)

xc = lmasym
TrIn (s, t), xc′ = lmasym

TrIn (t, s)
x1 = simiasym(C1, D1), x1′ = simiasym(D1, C1)

x2 = simiasym(C1, E1), x2′ = simiasym(E1, C1)

x3 = simiasym(D1, E1), x3′ = simiasym(E1, D1)

xα = ω + (1−ω)x1, xα′ = ω + (1−ω)x1′

xβ = ω + (1−ω)x2, xβ′ = ω + (1−ω)x2′

xγ = ω + (1−ω)x3, xγ′ = ω + (1−ω)x3′

58

From Corollary 19 follows, that the literal measure is also a lmasym
TrIn(⊗prod)

. For

shorter formulas, we assume for the rest of the proof ⊗ = ⊗prod.
We can argue:

2 + x1 + x1′ ≥ x2 + x2′ + x3 + x4′

2
ω−ω2

ω−ω2 + x1 + x1′ ≥ x2 + x2′ + x3 + x3′

2ω

ω−ω2 + x1 + x1′ ≥ x2 + x2′ + x3 + x3′ +
ω2

ω−ω2

2ω + (ω−ω2)x1 + (ω−ω2)x1′ ≥ (ω−ω2)x2 + (ω−ω2)x2′

+ (ω−ω2)x3 + (ω−ω2)x3′ + 2ω2

Because of lmasym
TrIn(⊗) we can argue:

1 + x1 ⊗ x1′ ≥ x2 ⊗ x2′ + x3 ⊗ x3′

(1−ω)2 + (1−ω)2[x1 ⊗ x1′] ≥ (1−ω)2[x2 ⊗ x2′] + (1−ω)2[x3 ⊗ x3′]

what implies with the previous formula:

2ω + (ω−ω2)x1 + (ω−ω2)x1′ + (1−ω)2 + (1−ω)2x1 ⊗ (1−ω)2x1′

≥ (ω−ω2)x2 + (ω−ω2)x2′ + (ω−ω2)x3 + (ω−ω2)x3′ + 2ω2

+ (1−ω)2[x2 ⊗ x2′] + (1−ω)2[x3 ⊗ x3′]

Looking on each side of this inequality separately, we can argue for the left
hand side:

2ω + (ω−ω2)x1 + (ω−ω2)x1′

+ (1−ω)2 + (1−ω)2x1 ⊗ (1−ω)2x1′

= 2ω−ω2 + ω2 + ω(1−ω)x1 + ω(1−ω)x1′

+ (1−ω)2 + (1−ω)2x1 ⊗ (1−ω)2x1′

= 2ω−ω2 + (1−ω)2 + ([ω + (1−ω)x1]⊗ [ω + (1−ω)x1′])

= 1 + (xα ⊗ xα′)

and for the right hand side:

(ω−ω2)x2 + (ω−ω2)x2′ + (ω−ω2)x3 + (ω−ω2)x3′ + 2ω2

+ (1−ω)2[x2 ⊗ x2′] + (1−ω)2[x3 ⊗ x3′]

= ω2 + ω(1−ω)x2 + ω(1−ω)x2′ + (1−ω)2[x2 ⊗ x2′]

+ ω2 + ω(1−ω)x3 + ω(1−ω)x3′ + (1−ω)2[x3 ⊗ x3′]

= ([ω + (1−ω)x2]⊗ [ω + (1−ω)x2′])+

([ω + (1−ω)x3]⊗ [ω + (1−ω)x3′])

= (xβ ⊗ xβ′) + (xγ ⊗ xγ′)

59

So holds:
1 + (xα ⊗ xα′) ≥ (xβ ⊗ xβ′) + (xγ ⊗ xγ′)

This can be argued for every possible order of the values and implies that
the triple ((xα ⊗ xα′), (xβ ⊗ xβ′), (xγ ⊗ xγ′)) fulfils the Triangle Inequality.
Since ⊗ is the Product t-norm, we can say that by Lemma 8 holds:

1 + (xa ⊗ xαxa′ ⊗ xα′) ≥ (xb ⊗ xβxb′ ⊗ xβ′) + (xc ⊗ xγxc′ ⊗ xγ′)

that can be transposed to:

1 + (xaxα ⊗ xa′xα′) ≥ (xbxβ ⊗ xb′xβ′) + (xcxγ ⊗ xc′xγ′)

and so implies, that in this case the ∀-quantification preserves the fulfilling
of the Triangle Inequality.
The argumentation for the ∃-quantification is the same.

�

Note that 1) does not hold for ⊗min or ⊗prod. Also 2) does not hold for ⊗min
or ⊗H0 . A counterexample for 2) and ⊗min is

1 + min{xax1, xa′x1′} < min{xbx2, xb′x2′}+ min{xcx3, xc′x3′}
xa = xb = xc = x3 = xc′ = x3′ = x2′ = (1− η)

x1 = xa′ = x1′ = x2 = xb′ = (1− ε)

ε > η

ε + εη + η2 > ε2 + 3η

η −→ 0

Here η and ε are artificial differences to assure that the values can be different to
1. This is needed to allow Dissimilar Closed. If η = 0, this example would violate
Dissimilar Closed.

Corollary 20. We can adapt Proof 19 to show that for simidual :

1) The conjunction u and the disjunction t preserve Triangle Inequality if addition-
ally for all possible participants Ci of the conjunction/disjunction holds:

simidir∗(C1, C2) = 0⇐⇒ C1 6≡ C2

and the fuzzy connector used by simidual is the Hamacher product ⊗H0 .

2) The ∃- and ∀-quantification preserve the Triangle Inequality for lmdual
TrIn and the

fuzzy connector used by simidual is the Product t-norm ⊗prod.

60

4 Modifications to fulfil more Formal
Properties

Based on Chapter 3, in this chapter we want to show some approaches and mod-
ification for our current CSMs to purposely change their fulfilling of the formal
properties. We will also use these modified CSMs for the analysis in the next
chapter. First we want to take a look at the literal measures. We define some lm
to fulfil as much formal properties as possible. Then we will take a look at some
modifications for quantification rules and the rules of conjunction and disjunc-
tion.

4.1 Alternative Literal Measures

4.1.1 Special Literal Measure

In Chapter 3 we introduced requirements for the literal measure to fulfil certain
formal properties. We now want to implement as much of these requirement
as possible in one literal measure. Except for Dissimilar Closed and Peserving
this will work out fine. Depending on, whether t ∈ const(DL), one of both
properties is trivial fulfilled and for the other the requirement must be true. Un-
fortunately both requirements can not be applied to the same literal measure.
Therefore the following definitions will distinguish two literal measures.

Definition 43. The literal measure lmasym
6t : N2

Lpr
∪N2

R −→ [0, 1], with ρ ∈ (0, 1
2] and:

lmasym
6t (A, B) :=

{
1 if A = B
0 if A 6= B

lmasym
6t (r, s) :=


1 if r = s or s v r
ρ if s 6v r or r v s
0 otherwise

is by construction Equivalent Invariant, Equivalent Closed, Reverse Subsumption Pre-
serving, Dissimilar Closed, Peserving and fulfils the Triangle Inequality, fort /∈ const(DL).

61

The literal measure lmasym
t : N2

Lpr
∪ N2

R −→ [0, 1], with ρ ∈ (0, 1
2] and:

lmasym
t (A, B) :=


1 if A = B
0 if A = ¬B
ρ otherwise

lmasym
t (r, s) :=


1 if r = s or s v r
ρ if s 6v r or r v s
0 otherwise

is by construction Equivalent Invariant, Equivalent Closed, Reverse Subsumption Pre-
serving, Dissimilar Closed, Peserving and fulfils the Triangle Inequality, fort ∈ const(DL).

Note that for these literal measure Subsumption Preserving is not a required
property, since it is achieved by design.

Definition 44. The dual literal measure lmdual
6t : N2

Lpr
∪ N2

R −→ [0, 1], with ρ ∈ (0, 1
2]

and:

lmdual
6t (A, B) :=

{
1 if A = B
0 if A 6= B

lmdual
6t (r, s) :=


1 if r = s or s w r
ρ if s 6w r or r w s
0 otherwise

is by construction Equivalent Invariant, Equivalent Closed, Subsumption Preserving,
Dissimilar Closed, Peserving and fulfils the Triangle Inequality, for t /∈ const(DL).
The dual literal measure lmdual

t : N2
Lpr
∪ N2

R −→ [0, 1], with ρ ∈ (0, 1
2] and:

lmdual
t (A, B) :=


1 if A = B
0 if A = ¬B
ρ otherwise

lmdual
t (r, s) :=


1 if r = s or s w r
ρ if s 6w r or r w s
0 otherwise

is by construction Equivalent Invariant, Equivalent Closed, Subsumption Preserving,
Dissimilar Closed, Peserving and fulfils the Triangle Inequality, for t ∈ const(DL).

Note that for these literal measures Reverse Subsumption Preserving is not a
required property, since it is achieved by design.

62

Definition 45. The symmetric literal measure lmsym
6t : N2

Lpr
∪ N2

R −→ [0, 1], with

ρ ∈ (0, 1
2] and:

lmsym
6t (A, B) :=

{
1 if A = B
0 if A 6= B

lmsym
6t (r, s) :=


1 if r = s
ρ if s v r or r v s
0 otherwise

is by construction Equivalent Invariant, Equivalent Closed, Subsumption Preserving,
Reverse Subsumption Preserving, Dissimilar Closed, Peserving and fulfils the Triangle
Inequality, for t /∈ const(DL).
The symmetric literal measure lmsym

t : N2
Lpr
∪ N2

R −→ [0, 1], with ρ ∈ (0, 1
2] and:

lmsym
t (A, B) :=


1 if A = B
0 if A = ¬B
ρ otherwise

lmsym
t (r, s) :=


1 if r = s
ρ if s v r or r v s
0 otherwise

is by construction Equivalent Invariant, Equivalent Closed, Subsumption Preserving,
Reverse Subsumption Preserving, Dissimilar Closed, Peserving and fulfils the Triangle
Inequality, for t ∈ const(DL).

The claimed properties are hold, since these literal measures fulfil the require-
ments we defined in Chapter 3. By ρ ≤ 1

2 the Triangle Inequality in NR is assured
trivially, since so the sum of two similarity values is never bigger than 1, except
two primitive literals are equal. If the right hand side is never bigger than 1,
then the left hand side 1 of the Triangle Inequality will hold the statement. If at
least two of the participating primitive literal are equal, this means that on the
right hand side a 1 can appear. Equivalent Closed assures, that this can only hap-
pen for equality of this literal. Furthermore Equivalent Invariant assures that the
other similarity values are the same, so the Triangle Inequality holds again. The
following example illustrates this.

Example 3.

case 1: x1, x2, x3 ∈ (0, 1
2]

1 + x1 ≥ x2 + x3

case 2: x1, x3 ∈ (0, 1
2] ∪ {1}, x2 = 1

Equivalent Closed + Equivalent Invariant =⇒ x1 = x3

=⇒ 1 + x1 ≥ x2 + x3

63

Note that this trivial case to fulfil the Triangle Inequality does not cover all
possibilities to do that.

4.1.2 Combining simiasym and simidual

For an attempt to combine simiasym and simidual , there must hold for the new
combined literal measure lmcomb:

∀r ∈ NR : t v s =⇒ lmcomb(r, s) = lmcomb(r, t)

Since this also holds for r ∈ {s, t}, we can conclude that

lmcomb(s, s) = lmcomb(s, t) = lmcomb(t, t)

This would mean, that either R only contains equivalences between role names,
or Equivalence Closed no longer holds.

4.2 Modifying Quantifier Rules

4.2.1 Equivalence exclusive Quantifier Rules

One way to provide Subsumption Preserving for the disjunction and Reverse
Subsumption Preserving for the conjunction, even with quantifications for con-
structors, is to modify the rules for the quantifications. If the rule just return 1 for
the case of absolute equivalence, and 0 otherwise, the more general requirements
for our disjunction to preserve Subsumption Preserving or for our conjunction to
preserve Reverse Subsumption Preserving are fulfilled.

Definition 46 (equivalence exclusive quantifier rule). Let© ∈ {∀, ∃}. For a spe-
cific description logic DL, r, c ∈ NR and C, C′, D, D′ ∈ C(DL) we define an equiva-
lence exclusive rule for©-quantification:

If C =©r.C′, D =©s.D′

sim(C, D) =

{
1 C′ ≡ D′, r ≡ s
0 otherwise

This allows us to also use ∃- and ∀-quantifications in cases like Corollary 4 2)
or Corollary 5. Note that this does not allow us to use conjunction and disjunc-
tion in the same DL and let the corresponding CSM Subsumption Preserving or
Reverse Subsumption Preserving. Depending on whether we have a conjunction
of disjunctions or a disjunction of conjunctions as normal form, this would need
the inner of both constructors to have an equivalence exclusive rule in the CSM.
This again would eliminate every similarity knowledge we could gain from this
layer.
A disadvantage of this rule is, that for the quantifications and all deeper layers of
the concept descriptions, also every similarity knowledge is lost. That is why, for
future work we suggest a Structural Dependence like property for the quantifica-
tions. The following definition could give a hint:

64

Definition 47 (Quantifier Role-Name Dependency). Let© ∈ {∀, ∃}. A CSM sim
with an literal measure lm is Role-Name Dependent for © if for C = ©r.C′, D =
©s.D′, E =©t.E′ hold:

C′ ≡ D′ ≡ E′, lm(r, s) > lm(r, t) =⇒ sim(C, D) > sim(C, E)

This definition can also easily be adapted to asymmetric CSMs or a Quanti-
fier Concept Dependency property. Since we have already enough properties to
cover in this paper, we will leave these properties to future works.
Note that by design, these equivalence exclusive rules also automatically violate
Peserving and preserve Equivalence Invariant, Equivalence Closed and Dissimi-
lar Closed.

4.3 Modifying Conjunction and Disjunction Rules

4.3.1 Equivalence exclusive Conjunction or Disjunction Rule

As for the quantifications, we can introduce for conjunction and disjunction equiv-
alence exclusive rules:

Definition 48 (equivalence exclusive rule). Let© ∈ {u,t}. For a specific descrip-
tion logic DL, and C, Ci, D, Dj ∈ C(DL) we define an equivalence exclusive rule for
©:

If C =©iCi, D =©jDj

sim(C, D) =


1 ∀Ci ∈ Ĉ© : ∃Dj ∈ D̂© : Ci ≡ Dj and
∀Dj ∈ D̂© : ∃Ci ∈ Ĉ© : Ci ≡ Dj

0 otherwise

At this time, this function is the only rule that provides us the possibility to
have {u,t} ∈ const(DL) and still be Subsumption Preserving or Reverse Sub-
sumption Preserving. As mentioned, such a function eliminates every similarity
knowledge of the concept descriptions deeper layers (except for equivalence).
Since so subsumptions from the deeper layers will not be respected, this rule
automatically violates Peserving. It also is not Structural Dependent, because
as long as one ©-participant is not equivalent, it still returns 0. Furthermore
it is possible, that a normal form ,that do not choose uniquely one out of sev-
eral equivalent primitive concept names, then two equivalent concept names can
have different similarities to other primitive concept names. So Equivalence In-
variant could be threatened. For the most uses, this will not be the case, since
using this rule is motivated by passing 1 and 0 to the upper layers. So also the
deeper layers, especially NLpr , should also act equivalence exclusive.
On the other hand, the rule trivially provides Dissimilar Closed to the upper
layers of the concept description. So even if the deeper layers did not provide
Dissimilar Closed, this rule will obtain it for the higher layers. The same holds
for Equivalence Closed. The Triangle Inequality, Subsumtion Preserving and Re-
verse Subsumtion Preserving are provided trivially.

65

4.3.2 Trivial Structural Dependent with max

A trivial way to make the conjunction or disjunction rule Structural Dependent,
is the maximum function max. As long as holds C = D =⇒ sim(C, D) = 1, we
have can just use it as connect©,© ∈ {u,t}.

Definition 49. Let© ∈ {u,t}. We define a CSM simmax(©), that uses the maximum
function max for the©-rule by replacing the corresponding rule as follows:

If C =©iCi, D =©jDj

simmax(©)(C, D) = connect
collect©(C,D)

© (choose©)

= max{x|x = choose©(E′), E′ ∈ collect©(C, D)}

As long as we can guarantee that at least one pair of the equivalent partic-
ipants of C and D is in collect©(C, D) and choose© maps to 1, this rule pro-
vides Structural Dependence for©. Furthermore it preserves Subsumption Pre-
serving, Reverse Subsumption Preserving, Dissimilar Closed (broken again by
{t, (¬)} ⊆ const(DL)), Peserving and Equivalence Invariant. On the down side,
it does not preserve Equivalence Closed, automatically violates the Triangle In-
equality and may not fit to the uses of a CSM.
If we want to prevent such a trivial Structural Dependence in future works, we
suggest a stronger requirement. The connect© function should be strictly mono-
tone in all its elements. Still the limn→∞ sim(Dn, En) = 1 is important, to prevent
the function form converging to a different limiting value. At this point, also note
that our actual Structural Dependence property is independent from Equivalence
Invariant. Its premise just demands a sequence of concept descriptions, so they
are already syntactical equal. If we want to strengthen the definition of Structural
Dependence in future works, we should also think about changing this to seman-
tic equality. For this paper we stay with the actual definition from Chapter 2.

4.4 Trivial Triangular Inequality

As mentioned in 4.1.1, the Triangle Inequality is trivially achieved, if all possible
similarity measures are in [0, 1

2], if equivalence closed even for [0, 1
2] ∪ {1}. This

allows us to change every rule of a concept similarity measure to preserve Trian-
gle Inequality. So for a CSM sim on a specific DL, C, D ∈ C(DL) and a rule ∗rule
of sim achieved by the function frule : C(DL)2 −→ [0, 1]

If in sim the rule ∗rule applies on C and D

sim(C, D) = frule(C, D)

we can bring a new rule ∗rule′ to replace ∗rule. This ∗rule′ will be achieved by

66

frule′ : C(DL)2 −→ [0, 1], which we define as:

frule′(C, D) =

{
1 if frule(C, D) = 1
1
2 frule(C, D) otherwise

Note that if we do not need Equivalence Closed we can just drop the first case
of frule′ . This function preserves Equivalent Invariant, Subsumption Preserving,
Reverse Subsumption Preserving, Dissimilar Closed and Peserving if frule does.
Subsumption Preserving and Reverse Subsumption Preserving are taken on, be-
cause the factor 1

2 does just scale the values, so the relations between the similarity
values stay untouched. The only value not scaled, are the 1s from equivalences.
But since they already were the highest values before, also their relations within
subsumptions the the same. Since multiplication with 1

2 also has 0 as absorbing
element, Dissimilar Closed and Peserving are taken on from frule. Equivalence
Invariant is taken on form frule because frule and frule′ are isomorphic to each
other.
For u and t, this modification is not Structural dependent, since the limiting
value is at best 1

2 .

67

5 Formal Concept Analysis of the
Formal Properties

In this chapter we will use the method of the FCA to analyse the relation between
the formal properties. The FCA is a method to generate from a set of objects
with attributes a set of implication that hold between those attributes. Note that
the word concept in FCA is independent of the concepts of DLs. With the FCA
we try to generate implications between the different possible combinations of
the formal properties. For this we will use the dozens of CSMs we can generate
with the knowledge from Chapter 3 and Chapter 4. Since the FCA just generates
implications that hold within its context, we later have to proof those implication
for the general case.
To perform the analysis we use the Concept Explorer (ConExp v1.3 [6]) tool, which
provides all basic functionalities. It was downloaded from:

http://conexp.sourceforge.net/download.html

We first set up our analysis by generation the CSMs. Then we perform the at-
tribute exploration of ConExp. At last we test the results for their generality.

More detailed information concerning FCA can be found in [2].

5.1 Set up ConExp for the FCA

The ConExp tool implements the basic functionality for a FCA. All we need, is a
sufficient data base of objects with their attributes. In ConExp this is realised in
form of a table, where each row identifies an object and each column an attribute.
The entries of the table mark, whether the object has this attribute or not. As ob-
jects we have the different CSMs and as attributes the formal properties.
With five constructors for the DLs, three versions of CSMs, of which the lit-
eral measure can fulfil put to seven requirements (lmTrIn, lmSP, lmRSP · · ·) and
the modification from Chapter 4 we theoretically can generate thousands of ob-
jects for the FCA. But since we may not need all of them, we agree on a starting
database and use the other knowledge for the attribute exploration. In partic-
ular we want to use all possible combinations of the constructors and simiasym,
simidual and simisym with different literal measures. We want to apply the depen-
dency properties just to those CSMs, where the relevant constructors occur in the
constructor set.
As literal measures for the CSMs we want to use one, that fulfils none of the in
Chapter 3 introduces requirements. For every of these requirements we want

68

to use one literal measure that fulfils exactly this requirement and at last the six
special version of the literal measure that we defined in 4.1.1.

5.2 Attribute Exploration with ConExp

We now want to present the steps of the attribute exploration with ConExp. After
setting up our starting data base we can simply start it with the Start Attribute
Exploration button. The program systematically poses possible implications con-
cluded from the database. We have to confirm those implications or provide a
counterexample. Providing a counterexample updates the database and may lead
to new conclusions. As counterexample we always try to provide one, that pri-
mary has the least properties from the conclusion of the posed implication and
secondary the most of all other properties. This will spare us lots of implications,
that are just slight variations.
For our presentation of the attribute exploration we show the implications in the
order they are posed. To each implication they also show the counterexample we
provided. If we found no counterexample, we state a short comment. The proofs
for generality of confirmed implications will follow in the next section. The fol-
lowing table introduces acronyms for the formal properties.

Equivalence Invariant EqInv

Equivalence Closed EqClo

Subsumption Preserving SubPre

Reverse Subsumption Preserving ReSubPre

Dissimilar Closed DisClo

Peserving Bou

Structural Dependent for© StrucDep(©)

Triangle Inequality TriInEq

Attribute Exploration Steps

(i) statement: true =⇒ EqInv + EqClo

counterexample: the CSM presented in re fF FD06.

properties: EqInv,SubPre,ReSubPre
(ii) statement: true =⇒ EqInv

counterexample: the CSM presented in re fF Jan06.

properties: StrucDep(u)
(iii) statement: StrucDep(t) =⇒ EqInv + EqClo

counterexample: a version of simisym on a DLwith const(DL) = {t,u}
and no unique normal form given.

properties: StrucDep(u),StrucDep(t),Bou,DisClo

69

(iv) statement: ReSubPre =⇒ EqInv

confirmed: holds within this context. Our restriction to name unique nor-
mal forms cause, that CSMs preserving ReSubPre automatically pre-
serve EqInv.

(v) statement: SubPre =⇒ EqInv

confirmed: holds within this context. Our restriction to name unique nor-
mal forms cause, that CSMs preserving SubPre automatically preserve
EqInv.

(vi) statement: EqClo =⇒ EqInv

counterexample: just assume no unique normal form and distinguish whether
or not both arguments are equivalent or not. If equivalent return 1, if
not calculate some value, that could not get 1, except the arguments
are equivalent. Note that because the Structural Dependencies are in-
dependent from EqClo, this CSM can fulfil StrucDep for both construc-
tors.

properties: EqClo, StrucDep(u), StrucDep(t), Bou, DisClo
(vii) statement: EqInv + StrucDep(t) =⇒ EqClo

counterexample: the CSM simisym,max(u),max(t) onDL using the literal mea-
sure lmsym

Bou and const(DL) = {u,t}.
properties: EqInv, StrucDep(u), StrucDep(t), Bou, DisClo, SubPre, ReSubPre

(viii) statement: EqInv + ReSubPre + StrucDep(u)
=⇒ SubPre + DisClo + Peserving + StrucDep(t)

counterexample: the CSM simisym,max(u) onDL using a literal measure that
is not DisClo and const(DL) = {u}.

properties: EqInv, StrucDep(u), Bou, SubPre, ReSubPre
(ix) statement: EqInv + ReSubPre + StrucDep(u)

=⇒ SubPre + Peserving

counterexample: the CSM simisym,max(u),max(t) onDL using the literal mea-
sure is not Bou.

properties: EqInv, StrucDep(u), StrucDep(t), DisClo, SubPre, ReSubPre
(x) statement: EqInv + ReSubPre + StrucDep(u) =⇒ SubPre

confirmed: holds within this context. In our research we could not find a
function, that preserves ReSubPre for uwithout automatically preserv-
ing SubPre.

formulierung überdenken, ist Struc dep nicht auhc ein einflussfaktor?
(xi) statement: EqInv + SubPre + StrucDep(t)

=⇒ ReSubPre + DisClo + StrucDep(u)
counterexample: the CSM simisym,max(t) onDL using a literal measure lmsym

Bou
and const(DL) = {(¬),t}.

properties: EqInv, StrucDep(t), Bou, SubPre, ReSubPre
(xii) statement: EqInv + SubPre + StrucDep(t) =⇒ ReSubPre

70

confirmed holds within this context. In our research we could not find a
function, that preserves SubPre for twithout automatically preserving
ReSubPre.

(xiii) statement: EqInv + SubPre + StrucDep(t) + StrucDep(u) =⇒ DisClo
counterexample: the CSM simisym,max(t),max(u) on DL using a literal mea-

sure lmsym
Bou .

properties: EqInv, StrucDep(t), StrucDep(u), Bou, SubPre, ReSubPre
(xiv) statement: EqInv + SubPre + StrucDep(t) + DisClo =⇒ StrucDep(u)

counterexample: the CSM simisym,max(t) onDL using a literal measure lmsym
Bou

and const(DL) = {t}.
properties: EqInv, StrucDep(t), Bou, DisClo, SubPre, ReSubPre

(xv) statement: EqInv + SubPre + StrucDep(u) + DisClo =⇒ StrucDep(t)
counterexample: the CSM simisym,max(u) onDL using a literal measure lmsym

DiCl
and const(DL) = {u}.

properties: EqInv, StrucDep(u), Bou, DisClo, SubPre, ReSubPre
(xvi) statement: EqInv + EqClo + SubPre =⇒ Peserving

counterexample: the CSM simisym on DL using a literal measure lmsym
de f and

const(DL) = {t}.
properties: EqInv, EqClo, StrucDep(t), DisClo, SubPre, ReSubPre, TriInEq

(xvii) statement: EqInv + EqClo + SubPre + StrucDep(u) =⇒ Peserving
counterexample: the CSM simisym on DL using a literal measure lmsym

de f , an
equivalence exclusive t-rule and const(DL) = {t,u}.

properties: EqInv, EqClo, StrucDep(u), DisClo, SubPre, ReSubPre, TriInEq
(xviii) statement: EqInv + EqClo + SubPre + ReSubPre + StrucDep(t)

=⇒ DisClo + TriInEq
counterexample: the CSM simisym on DL using a literal measure lmsym

de f and
const(DL) = {(¬),u}.

properties: EqInv, EqClo, StrucDep(t), SubPre, ReSubPre, TriInEq
(xix) statement: EqInv+EqClo+SubPre+ReSubPre+StrucDep(t) =⇒ TriInEq

confirmed: holds within this context. In our research we could not find a
function, that preserves SubPre and EqClo for t, without automatically
preserve ReSubPre and TriInEq.

(xx) statement: EqInv + EqClo + SubPre + ReSubPre + StrucDep(u)
=⇒ DisClo + TriInEq

confirmed: holds within this context. In our research we could not find a
function, that preserves ReSubPre, EqClo and StrucDep for u, without
automatically preserve SubPre and TriInEq. Additionally form being
ReSubPre and StrucDep(u) follows DisClo.

(xxi) statement: TriInEq =⇒ EqInv + EqClo
counterexample: the CSM simisym on DL using a literal measure lmsym

DiCl ,
const(DL) = {u} the u-rule modified to trivially fulfil TriInEq with-
out EqClo and no assumed unique normal form

71

properties: DisClo, Bou, TriInEq
(xxii) statement: TriInEq + StrucDep(t)

=⇒ EqInv + EqClo + SubPre + ReSubPre

confirmed: holds within this context. In our research we could not find a
way to assure TriInEq and StrucDep other than breaking the functions
down to the Jaccard Index

(xxiii) statement: TriInEq + StrucDep(u)
=⇒ EqInv + EqClo + SubPre + ReSubPre + DisClo

confirmed: holds within this context. In our research we could not find a
way to assure TriInEq and StrucDep other than breaking the functions
down to the Jaccard Index

(xxiv) statement: TriInEq + EqClo =⇒ EqInv

counterexample: the CSM simisym on DL using a literal measure lmsym
de f ,

const(DL) = {u} the u-rule modified to trivially fulfil TriInEq and
no assumed unique normal form

properties: EqClo, DisClo, Bou, TriInEq
(xxv) statement: TriInEq + EqInv =⇒ EqClo

counterexample: the CSM simisym on DL using a literal measure lmsym
DiCl ,

const(DL) = {u,t}, a normal form that is a conjuction of disjunctions,
the u-rule modified to trivially fulfil TriInEq without EqClo and the t-
rule being equivalence exclusive

properties: EqInv, DisClo, Bou, TriInEq, SubPre, ReSubPre,
(xxvi) statement: TriInEq + EqInv + DisClo =⇒ SubPre + ReSubPre

counterexample: the CSM simisym on DL using a literal measure lmsym
DiCl ,

const(DL) = {u} the u-rule modified to trivially fulfil TriInEq

properties: EqInv, EqClo, DisClo, Bou, TriInEq
(xxvii) statement: TriInEq + EqInv + ReSubPre =⇒ SubPre

counterexample: the CSM simisym on DL using a literal measure lmsym
Bou ,

const(DL) = {t} the u-rule modified to trivially fulfil TriInEq

properties: EqInv, EqClo, DisClo, Bou, ReSubPre, TriInEq
(xxviii) statement: TriInEq + EqInv + SubPre =⇒ ReSubPre

counterexample: the CSM simisym on DL using a literal measure lmsym
DiCl ,

const(DL) = {u} the u-rule modified to trivially fulfil TriInEq

properties: EqInv, EqClo, DisClo, Bou, SubPre, TriInEq
(xxix) statement: TriInEq + EqInv + EqClo + SubPre + ReSubPre + Bou

+ StrucDep(t) =⇒ DisClo + StrucDep(u)
confirmed: holds within this context. In our research we could not find a

way to assure TriInEq, SubPre, ReSubPre, Bou and StrucDep for con-
junction or disjunction at the same time.

(xxx) statement: TriInEq + EqInv + EqClo + SubPre + ReSubPre + DisClo
+ StrucDep(t) + StrucDep(u) =⇒ Peserving

72

confirmed: holds within this context. In our research we could not find a
way to assure SubPre, ReSubPre, EqClo and StrucDep for conjunction
and disjunction at the same time.

(xxxi) statement: TriInEq + EqInv + EqClo + SubPre + ReSubPre + DisClo
+ Bou + StrucDep(u) =⇒ StrucDep(t)

confirmed: holds within this context. In our research we could not find a
way to assure TriInEq, SubPre, ReSubPre, Bou and StrucDep for con-
junction or disjunction at the same time.

5.3 FCA Results

5.3.1 The Statements (iv) and (v)

To prove the statements from (iv) and (v), we will take advantage from our re-
striction to name unique (normal) forms. So for equivalent primitive concept
names and equivalent role names, we have chosen one of them, to represent all
its equivalents in all concept descriptions. This makes the CSM Equivalence In-
variant in NLpr and NR. Expanding all concept description with the knowledge
of T andR additionally assures, that only primitive literal occur in them.
Before we state theorem and proof, we need the following preparations. First we
show, that > can not violate Equivalence Closed while preserving Subsumption
Preserving and ⊥ can not violate Equivalence Closed while preserving Reverse
Subsumpion Preserving.

Lemma 9. Let sim be a symmetric deterministic CSM on a specific DL, using a name
unique normal form. Then > can not violate Equivalence Invariant while preserving
Subsumption Preserving and ⊥ can not violate Equivalence Invariant while preserving
Reverse Subsumpion Preserving.

Proof 20 (Lemma 9).

The only way for > and ⊥ to violate Equivalence Invariant are alternative rep-
resentations like A ∈ C(DL) : > ≡ A t ¬A,⊥ ≡ A u ¬A. So for > there must be
{¬,t} ⊆ const(DL) and for ⊥ there must be {¬,u} ⊆ const(DL). Since equiva-
lence implies subumption, we can state for all A, B, C ∈ C(DL), A, B, C 6≡ >:

(A t ¬A) w (B t ¬B) w C
(B t ¬B) w (A t ¬A) w C

Thus the similarities from all representations of > to all concept descriptions
should be the same, or Subsumption Preserving is violated. The same holds for
C ≡ >, since then it also can be flipped in the subsumption chain.
For ⊥ we can state for all A, B, C ∈ C(DL), A, B, C 6≡ ⊥:

C w (A u ¬A) w (B u ¬B)
C w (B u ¬B) w (A u ¬A)

and do the same Argumentation for Reverse Subsumpion Preserving.

73

�

This allows us to show, that if a conjunction or disjunction C specifically vio-
lates Equivalence Invariant, for the needed cases, there exist a subsuming and a
subsumed one, that have different similarities to the equivalent representations.

Lemma 10. Let sim be a symmetric deterministic CSM on a specific DL, using a name
unique normal form,© ∈ {u,t},© ∈ const(DL) and C = ©iCi, i = 1, ..., n,n > 1
with none of the Ci violating Equivalence Invariant. If C violates Equivalence Invariant,
we want to say, that C violates this property initially. For C 6≡ >, C 6≡ ⊥ and C
violating Equivalence Invariant initially, there holds, that:

∃C′, D, E :E w C w D, C ≡ C′

sim(C, E) 6= sim(C′, E)

sim(C, D) 6= sim(C′, D)

Proof 21 (Lemma 10).

The existence of C′ is trivially given by C violating Equivalence Invariant. For
the conjunction, an E can be constructed by dropping one of the Ci from C. Since
n > 1, this is possible. A D can be received from disjunctive connecting an A 6v C
to C. Since C 6≡ ⊥, such an A exists in C(DL).
For the disjunction, an D can be constructed by dropping one of the Ci from C.
Since n > 1, this is possible. A E can be received from conjunctive connecting an
A 6v C to C. Since C 6≡ >, such an A exists in C(DL).
Since C initially violates Equivalence Invariant, the syntax of C must be relevant
for calculating the similarity with the corresponding©-rule of sim. Because sim
is symmetric, this implies that also the syntax of the other concept is relevant.
So for the constructed E and D holds: sim(C, E) 6= sim(C′, E) and sim(C, D) 6=
sim(C′, D).

�

We also want to introduce the value xC,D
sim . It will represent the highest achiev-

able similarity, by a CSM sim and equivalent versions of C to D.

Definition 50. For sim being a symmetric concept similarity measure on a specific de-
scription logic DL, C, C′, D ∈ C(DL) we define:

xC,D
sim = max{x|C′ ≡ C, x = sim(C′, D)}

With this preparations we can state the following theorem and prove it.

Theorem 13. Let sim be a deterministic symmetric concept similarity measure using a
name unique normal form. Them holds, that if sim is Subsumption Preserving, sim is
also Equivalence Invariant.

Proof 22 (Theorem 13).

74

Let sim be on a specific DL DL. Assume sim is Subsumption Preserving but
not Equivalence Invariant. This means there exists C, C′, D ∈ C(DL) with C ≡ C′

and sim(C, D) 6= sim(C′, D). We want C and C′ to be the concept description, vio-
lating Equivalence Invariant initially and not just by containing an other concept
description that already violates Equivalence Invariant. Since simi use a name
unique normal form, sim is Equivalence Invariant in NLpr and NR. This means C
and C′ can not be primitive literals or quantifications. So they must be conjunc-
tions or disjunctions with at least two participants.
So© ∈ {u,t}, C = ©iCi, i = 1, ..., n,n > 1 with none of the Ci violating Equiv-
alence Closed. By Lemma 10 for the conjunction exists a E with E v C and
sim(C, E) 6= sim(C′, E). Since equivalence implies subsumption, we can argue:

C′ w C w E

C w C′ w E

So in one or the other way, Subsumption Preserving is violated.
By Lemma 10 for the disjunction exists a E with E v C, E 6≡ > and sim(C, E) 6=
sim(C′, E). Lemma 9 states, that therefore C not have to be equivalent to >. Since
equivalence implies subsumption, we can argue:

C′ w C w E

C w C′ w E

So in one or the other way, Subsumption Preserving is violated.

Since in both cases, Subsumption Preserving is violated when violating Equiv-
alence Closed, we can conclude, that Subsumption Preservingd implies Equiva-
lence Close.

�

Lemma 9 and 10 state enough to adapt Theorem 13 to Reverse Subsumption
Preserving. So we can conclude the following corollary.

Corollary 21. Let sim be a deterministic symmetric concept similarity measure using a
name unique normal form. Them holds, that if sim is Reverse Subsumption Preserving,
sim is also Equivalence Invariant.

5.3.2 The Statements (x), (xii), (xix), (xx), (xxii) and (xxiii)

These statements follow from our rule-functions just insufficiently preserving Tri-
angle Inequality, Subsumption Preserving and Reverse Subsumption Preserving.
As said, the Structural dependence for the conjunction needs the conjunction to
be a constructor in the used DL DL. So statement (x) holds within our context,
because the only way to make the conjunction u Reverse Subsumtion Preserving,
are trivial rule function, like max and the equivalence exclusive rule, or breaking
the calculation down to the Jaccard Index. The latter is, what we do with our

75

restrictions to simiasym and simisym in 3.2.2. But this methods automatically pre-
serve Subsumption Preserving for u. This is be because of the semantic relation
between u and subsumption.
We want to take a look at a CSM simirstr on a DLDLwith the assumed restrictions
that const(DL) ∩ {¬,t, ∃, ∀} = ∅ and for all concept descriptions D ∈ C(DL)
holds simirstr(D, D) = 1. Further let:

A ≡ A1 u . . . u An

B ≡ B1 u . . . u Bm

C ≡ C1 u . . . u Cl

with A w B w C, so there holds that for every conjunction participant Ai, i ∈
{1, ..., n} there exists a Bj, j ∈ {1, ..., m} with Ai w Bj, for every Bi, i ∈ {1, ..., m}
there exists a Cj, j ∈ {1, ..., l} with Bi w Cj and consequently the same for Ai, i ∈
{1, ..., n} subsuming some Cj, j ∈ {1, ..., l}. Equivalence Invariant and the re-
striction to DL in this case assure, that subsumption between the conjunction
participants of the three concept descriptions can only be by equivalence. Since
Equivalence Invariant allows us to rearrange nested conjunctions to one conjunc-
tion without changing the similarity values and besides the conjunction u only
the primitive negation (¬) is as possible constructor, but not able to express a
subsumption, all these conjunction participants have to be in NLpr . Together with
the just established subsumption condition for conjunctions we can conclude that
Ĉu ⊇ B̂u ⊇ Âu. Because we can state A w A w B, we can conclude that the con-
junction participants form B̂u/Âu influence simirstr(A, B) by no change or reduc-
ing it in comparison to simirstr(A, A). In fact, if there would exist a Bi ∈ B̂u/Âu
that would have an in any way increasing influence to simirstr(A, B), then we
could say that by leaving out this Bi in a DL:

A w ⊔j∈Sj
Bj = B, Sj = {1, ..., m}/i

there must hold simirstr(A, B) > simirstr(A, ⊔j∈Sj
Bj), what would contradict

Reverse Subsumption Preserving. So the addition of a semantically relevant con-
junction participant to a concept description D results in a new concept descrip-
tion D

′
that has a equal or lower similarity to all concept description subsuming

both of them. From this follows simirstr(A, C) ≤ simirstr(A, A) and simirstr(B, C) ≤
simirstr(B, B), because C is just A or B with additional conjunction participants.
Also by assumption holds that simirstr(A, A) = simirstr(B, B) = simirstr(C, C) =
1. Now we can say that removing a semantically relevant conjunction participant
from a concept description D results in a new concept description D

′
that has a

equal or lower similarity to all concept description that are subsumed by both of
them.
But unfortunately we can not argue this way, when we allow other constructors
in the DL. This allows subsumption to be realised in other way than equivalence.
While the simple subsumption between one Ai and one Bj may be easily han-
dled by assuming the conjunction participants already fulfil statement (x) and

76

making a proof over the structure of DL, a more serious problem are multi-
subsumptions. As multi-subsumptions we want to see cases, where either one
conjunction participant subsumes or is subsumed by multiple conjunction partic-
ipants of the other concept description. Such multi-subsumptions enable much
bigger varieties of possible structures of the descriptions A, B and C. Unfortu-
nately within the research of this paper these varieties were not invested enough
to bring adequate results in either proving or disproving statement (x) for gen-
eral.
Note that our restriction in 3.2.2 to make the conjunction u Subsumption Pre-
serving in simisym or simidual is actually that subsumption is only possible by
equivalence. The same problem with multi-subsumptions occurs for statement
(xii). In fact there it is a kind of dual case with t Reverse Subsumption Pre-
serving. Also statements (xix) and (xx) hold within this context because of this
problem. Without further investigations of the cases with multi-subsumption, the
only reliable method to ensure Subsumption Preserving, Reverse Subsumption
Preserving and Equivalence Closed while containing u or t in the constructor
set is breaking the calculation down to the Jaccard Index. But this also automati-
cally ensures the Triangle Inequality. The statements (xxii) and (xxiii) hold within
this context, because we could use other ways to ensure the the Triangle Inequal-
ity, than is breaking the calculation down to the Jaccard Index or the method to
trivially achieve Triangle Inequality (see 4.4). Because the second method do not
preserve Structural Dependence, this implies that by the state of the researches
the premise of (xxii) and (xxiii) can only be achieved by breaking the calcula-
tion down to the Jaccard Index. And this automatically ensures the conclusion of
these statements.

5.3.3 The Statements (xxix), (xxx) and (xxxi)

The premisses of these statements are not achievable within the research of this
paper, so at this state these statements hold trivially. The premisses of (xxix) and
(xxxi) are not achievable because we have no other way to fulfil the Triangle In-
equality and Structural Dependence is breaking the calculation down to the Jac-
card Index. Unfortunately for (xxix), Structural Dependence for the disjunction
requires it to be in the constructor set of the DL, what makes it impossible to be
Peserving at the same time as fulfilling the Triangle Inequality. For the premiss
of (xxxi), we need additionally Peserving and Dissimilar Closed to be fulfilled
at the same time. Therefore the conjunction has to be in the constructor set of
the DL. But now we have both conjunction and disjunction in the constructor set.
So to obtain Subsumption Preserving and Reverse Subsumption Preserving at the
same time, one of this two constructors have to use an equivalence exclusive rule,
what results in Peserving being violated. This same problem makes it impossible
to fulfil the premiss of (xxx).
So for now this statements may serve no purpose nor information, but the should
still be mentioned, because further research in the properties Subsumption Pre-
serving, Reverse Subsumption Preserving and the fulfilling of the Triangle In-
equality may allow in the future explorations starting from these statements.

77

6 Conclusion

We extended simi from [4] in three different ways. One (simiasym) is a direct ex-
tension of simi by just adding rules for (¬), t and ∀, which for the most cases pre-
serves simi’s design to fulfil Subsumption Preserving. The second one (simidual) is
a dual construction to simiasym, which changes the design around to fulfil Reverse
Subsumption Preserving for the most cases. The third extension (simisym) has a
fully symmetric design, which gives disadvantages in fulfilling Subsumption Pre-
serving and Reverse Subsumption Preserving, but enables an easier fulfilling of
the Triangle Inequality.

For every of this extensions we investigated under which circumstances the
rules of the constructor provide the different formal properties. With this knowl-
edge an additional modification for the rule, we achieved a huge number of CSMs
and additionally the formal properties they fulfil. Used as a database for a FCA,
we were able to conclude several implications, that hold within the context of our
expansions and their modifications.

Also we could only prove two of them for generality, the context still is a part
of the universality. So implications that are disproved in this context are also
disproved for the generality.

6.1 Open Problems

A major task for future work is to do further researches of the in 5.3.2 mentioned
multi-subsumptions. An deeper investigation of the behaviour of CSM if these
multi-subsumptions are enabled could bring more detailed answers to the ques-
tion, how to achieve Subsumption Preserving or Reverse Subsumption Preserv-
ing. Also results for the Triangle Inequality may be achieved by this, because
multi-subsumptions also cause problems in these field.

The Triangle Inequality remains an open problem. Since our trivial rule to
achieve it is not a suitable way, the Jaccard Index remains the best attempt. In-
stead of its calculation by concept names or participants of an constructor, an
other approach is to adapt it to concept description could be equivalence classes.
We could associate concept descriptions with sets of equivalence classes. In the
calculation we compare the number of equivalence classes they have in common
with the number of equivalence classes they have together.

Also the negation remains an open problem. As mentioned in 3.1 we could

78

use the primitive negation and a normal form that only allows negations in front
of primitive concepts, but the exponential complexity to achieve such a normal
form for ALCis a big disadvantage. Besides achieving Equivalence Invariant for
equivalent phrasings of t and u terms with negation would be of interest.

Of course, with the progress of the already mentioned open problem, the FCA
of this paper could be completed. Further more the investigation may be ex-
panded to asymmetric CSM or the usage of weighting functions other than gDL,de f .

The investigation of non-deterministic CSM or DLs that do not use a name
unique (normal) form may also be of interest. But because of the unpredictable
nature of those, a practical application seems unlikely.

79

Bibliography

[1] Franz Baader. Description Logics. 2009.

[2] Rudolf Wille Bernhard Ganter. ”Formal Concept Analysis - Mathematical
Foundations”,. 1999.

[3] Paul Jaccard. Etude comparative de la distribution orale dans une portion des
alpes et des jura. 1901.

[4] Karsten Lehmann. A Framework for Semantic Invariant Similarity Measures
for ELH Concept Descriptions. 07.

[5] A. H. Lipkus. A proof of the triangle inequality for the tanimoto distance.
1999.

[6] Serhiy A. Yevtushenko. System of data analysis ”Concept Explorer”. (In Rus-
sian). Proceedings of the 7th national conference on Artificial Intelligence KII-
2000,.

80

