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“We can’t solve the problems by using the same kind of thinking we used when we

created them”

Albert Einstein



Abstract

Ontologies, which form the core of Semantic Web systems, need to evolve to meet the

changing needs of the system and its users. The dynamic nature of ontology development has

motivated the formal study of ontology evolution problems, which is one of the important

problems in the current Semantic Web research. Ontology evolution approaches suffer

from intrinsic information loss. The current study deals with the problem of minimizing

information loss during iterative ontology update. It provides a framework combining the

ontology evolution tasks with context-based reasoning method. Using this framework, all

the solutions obtained in an ontology evolution task, which are partly redundant, can be

described as contexts and compactly represented in a single labelled ontology. Further

updates and reasoning can be done on this ontology efficiently.

We propose new approaches to do ontology contraction, ontology expansion and ontol-

ogy revision using context-based reasoning method. These approaches show how ontology

evolution can be done with minimum information loss by using all the solutions obtained

at every stage of the evolution task, efficiently using our framework. We also propose the-

oretical methods to extract the optimal solutions from the ontology obtained as the result

of iterative ontology update. We show that, optimal solutions in the intermediate stages

of iterative ontology update may not be the optimal solutions in the result obtained at the

end of all the stages. We handle various notions of an optimal solution: the solution which

changes the semantics of the ontology as minimum as possible, the solution which contains

some of the intended consequences, the solution which has the most original axioms of

the ontology. We also propose theoretical methods to do context-based reasoning over the

optimal solutions extracted.

We present the first prototypical implementation of the theoretical methods developed

in this thesis and show the preliminary results of our implementation on the real-world

ontologies.
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Chapter 1

Introduction

Description Logics (DL) [1] are a family of knowledge representation formalisms with well-

understood computational properties. Description Logics can be used to represent the con-

ceptual knowledge of an application domain in a structured and formally well-understood

way. From the DL point of view, an ontology is a finite set of axioms, which formalize

our knowledge about the concepts of an application domain. The Web Ontology Language

(OWL) [2] which is the standard ontology language for the semantic web is a DL-based

language. Ontologies are the main driving force behind the semantic web vision. They are

complex in nature, often large structured and are not static entities. They are frequently

modified when new information needs to be incorporated, or existing information is no

longer considered to be valid. This dynamic nature of ontologies motivates the study of

ontology evolution problems [3, 4].

1.1 Motivation

Ontology Evolution deals with the growth of an ontology. More specifically, ontology

evolution means modifying or upgrading an ontology when there is certain need for change

or there comes a change in the domain knowledge. The main tasks in ontology evolution

are: ontology contraction, ontology expansion and ontology revision. Ontology contraction

is the process of “retracting” a consequence from an ontology that is no longer allowed to

hold. The process of “adding” a new axiom to an ontology is called ontology expansion and

the process of “adding” a new axiom to an ontology while ensuring the consistency of the

ontology is called ontology revision. Ontology expansion does not ensure the consistency

of the ontology after adding the axiom.

The evolution of an ontology O results in another ontology O′ in which the required

information (consequence) is incorporated, retracted or updated. All the ontology evolution

tasks should satisfy the principle of minimal change [5], according to which the semantics of

the ontology should change “as little as possible”, thus ensuring that evolution has the least

possible impact on the ontology. An ontology evolution task should satisfy all the AGM [6]

1
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postulates specified for that evolution task. Consider the task of ontology contraction,

in practice the approaches adopted to ontology contraction are syntactic approaches [7],

which are based on the notion of a justification: a minimal subset of the ontology that

entails a given consequence [8, 9]. To retract a consequence α from an ontology O, it

suffices to compute all the justifications for α w.r.t the ontology O and then compute a

maximal subset R of O (a repair) with at least one axiom from each justification and the

ontology O′ = O \ R is the result of the contraction task. This solution complies with a

syntactical notion of minimal change as retracting α results in the deletion of a minimal

set of axioms from O and hence the structure of O is maximally preserved [7]. There exists

many solutions for ontology contraction task. But, usually the solution which satisfies the

principle of minimal change is chosen as the optimal solution. However, these practical

approaches suffer from inherent information loss. More precisely, by removing R from O,

we may retract axioms of O other than α, which are “intended”. Identifying and recovering

such intended consequences is an important issue [7]. The current study addresses this issue

of minimising the information loss during iterative ontology update. Consider the following

example.

Example 1.1. Consider an ontology with the following axioms.

O={A v B, B v C, B v E, C v E, E v F }.
The task is to do iterative ontology contraction on O with respect to the consequences A v F

and B v E.

Step 1: To retract the consequence A v F from O, it suffices to compute all the justifica-

tions for O |=A v F. The justifications for this entailment are:

J1 = {A v B, B v E, E v F},
J2 = {A v B, B v C, C v E, E v F}.
By removing atleast one axiom from each justification we get many solutions (repairs) for

the contraction, but the following three solutions are interesting for us.

The possible solutions for this contraction are:

S1 = {B v C, B v E, C v E, E v F} (by removing the axiom A v B from J1, J2),

S2 = {A v B, B v C, B v E, C v E} (by removing the axiom E v F from J1, J2),

S3 = {A v B, B v C, E v F} (by removing the axioms B v E, C v E from J1,

J2).

Among these solutions only two of them satisfy the principle of minimal change. They

are: S1 and S2, as they retract minimal set of axioms from O, they are the optimal solutions.

As it requires more memory to store all the solutions and more time to do computations

on all the optimal solutions, generally only one optimal solution is chosen as the result of

ontology update. Let the optimal solution chosen from this contraction be S1.

Step 2: To do iterative ontology update, the next consequence B v E should be retracted

from the solution obtained from the first contraction, that is B v E should be retracted from

S1. There exists two justifications for S1|=B v E. They are:

J1 = {B v E},
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J2 = {B v C, C v E}.
By removing atleast one axiom from every justification we obtain two possible solutions.

The two possible solutions are:

S4 = {C v E, E v F} and

S5 = {B v C, E v F}.

Both the solutions are optimal as they satisfy the principle of minimal change. Both

the solutions, S4 and S5 remove three axioms from O. Thus either S4 or S5 can be chosen

as the optimal solution for this contraction.

From the above example, consider the solution S3 obtained in first step, S3 6|= A v F

and S3 6|= B v E , that is, S3 retracts both the consequences A v F and B v E from O

and it removes only two axioms from O where as, the solutions S4 and S5 remove three

axioms from O. That is, S3 is the optimal solution for the iterative ontology contraction

process on O. But, as S3 is not the optimal solution in the intermediate step of the ontology

contraction, it is not chosen in further steps. By selecting the solution S1 after the first step

and doing further contraction on this solution, we are losing some valuable axioms which

are intended. From this example we show that, in iterative ontology update optimal

solution in the intermediate steps of ontology evolution may not give optimal

solution at the end of all steps of ontology evolution process.

1.2 Aim

Our goal is to do iterative ontology update with minimum information loss. As shown in

the previous example, optimal solution in intermediate steps of ontology evolution may not

be the optimal solution after all the steps of ontology evolution. Thus, to achieve minimum

information loss it is very important to store all the solutions obtained in every step and do

further updates on all the solutions. To achieve this goal, we should be able to compactly

store all the solutions (which are partly redundant sub-ontologies) obtained in the interme-

diate steps of ontology evolution and do further computations on them in reasonable space

and time. To do this, we introduce a new framework by combining ontology evolution

approaches with context-based reasoning [10, 11] methods.

Context-based Reasoning [10, 11] A Context is a set of axioms. In context-based

reasoning, an ontology is regarded as a set of contexts. There are two steps in context-based

reasoning. The first step is to create a labelled ontology by annotating axioms of the given

ontology with labels which are assigned to the contexts of the ontology. Each sub-ontology

of an ontology can be defined as a context and every context is assigned with a label. Every

axiom of the ontology that belongs to a context is annotated with the label assigned to

that context, thus all the axioms of the ontology are labelled according to the contexts the

axioms belong to. Thus all the sub-ontologies of an ontology are compactly represented as
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single ontology with labelled axioms, which has less memory usage than storing each partly

redundant sub-ontology separately.

The second step is to do context-based reasoning over the labelled ontology, this is the

main aim of context-based reasoning method. Given a labelled ontology and a consequence,

context-based reasoning checks the entailment of the consequence with respect to every

context of the ontology. The result of context-based reasoning is called Boundary which is

the list of labels of the contexts which entail the consequence.

1.3 Scope

The scope of the present work is to develop theoretical methods to handle ontology evolution

tasks: ontology contraction, ontology expansion and ontology revision using context-based

reasoning approach, theoretical methods to extract the optimal solutions from the ontology

obtained as the result of doing ontology evolution tasks using context-based reasoning

approaches and methods to do context-based reasoning over the extracted optimal solutions.

We develop the first prototypical implementation for all the theoretical methods described

and present the results of experiments performed on the benchmark ontologies SNOMED

CT and FULL-GALEN, to evaluate our hypothesis that, our framework achieves the goal

of iterative ontology update with minimum change.

The remaining chapters in this thesis are organized as follows 1.1. Chapter 2 presents

the background details of context-based reasoning method and ontology evolution opera-

tions. It introduces all the basic definitions and notions that will be used in the rest of the

thesis. All the definitions of Context-based reasoning and the method to label the axioms

of an ontology to do ontology evolution tasks are presented. We also describe in detail, how

context-based reasoning can done on the labelled ontologies. We present the definitions

of ontology evolution tasks and present the existing practical approaches to do ontology

evolution tasks.

Chapter 3 describes the theoretical methods to handle ontology evolution operations

using context-based reasoning and presents the algorithms to do context-based ontology

contraction, context-based ontology expansion and context-based ontology revision opera-

tions. It presents the relationship between ontology evolution operations and context-based

ontology evolution operations. It gives examples to show how to do context-based ontology

evolution operations and presents the theorems which prove the correctness and complexity

of the algorithms developed to do context-based ontology evolution operations.

Chapter 4 focuses on the tasks extraction of the optimal solutions from a labelled

ontology and methods to do context-based reasoning over the extracted optimal solutions.

It also discusses about the notion for the best. There are many notions for the best to

extract a optimal solution, for example, a solution with highest number of axioms, or

a solution which entails a certain consequence. It also describes theoretical methods to
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Figure 1.1 The flowchart represents the organization of theoretical and implementation work flow
in this thesis.

extract optimal solutions and to do context-based reasoning over the optimal solutions

extracted.

Chapter 5 presents the first prototypical implementation of the theoretical methods de-

veloped in Chapters 3 and 4. It presents the protége plug-in developed to do context-based

ontology evolution operations. This chapter also presents the results of the experiments

conducted and gives the interpretation of the results.

Chapter 6 discusses our contributions and limitations of our work, points to the di-

rection for future work and summarizes this thesis.



Chapter 2

Preliminaries

This chapter introduces all the definitions and notions that are used in the rest of this thesis.

Section 2.1 introduces all the definitions and basic details about context-based reasoning

method. It describes the procedure to create a labelled ontology and the procedure to

do context-based reasoning over a labelled ontology. Section 2.2 presents the definitions

of ontology evolution operations: ontology contraction, ontology expansion and ontology

revision.

2.1 Context-based Reasoning

Context-based reasoning [10] is a two step process. The first step is to label the axioms of

the ontology with contexts, using a labelling function. The second step is to do reasoning

over the labelled ontology. To do ontology evolution tasks using context-based reasoning,

in this work we consider a special case of context-based reasoning where every repair for a

consequence is described as a context in the ontology.

2.1.1 Label Ontology

In this thesis, we use a ontology model that regards an ontology as a finite set of general

concept inclusion axioms (GCIs) of the form L v M, where L, M are concept names. We

further assume the existence of a binary relation |= between an ontology and a consequence

such that, for an arbitrary ontology K and an arbitrary consequence ψ, it holds that, if

K1 ⊆ K and K1 |= ψ then K |= ψ.

The first step in context-based reasoning method is to describe contexts in the ontology.

A context is a set of axioms or a sub-ontology of a given ontology. In general, the set

of contexts in an ontology can describe the level of expertise of the user or the access

restrictions for the user of the ontology. All the set of contexts are partly redundant sub-

ontologies of an ontology. Storing all the contexts separately and doing reasoning over

all the contexts is very expensive. This problem is handled in context-based reasoning by

6



Chapter 2. Preliminaries 7

assigning a label to every context of the ontology and creating a labelled ontology [10] by

annotating every axiom of the ontology according to the context it belongs to. Thus, all

the axioms of the ontology are labelled axioms where a label represents a context of the

ontology.

Given an arbitrary ontology O and set of labels L, we assume that, every axiom a ∈ O

is assigned with a label lab(a) ⊆ L. Every label l ∈ L is used to define a context in the

ontology O. The sub-ontology accessible for the context with label l is defined to be

Ol = {a ∈ O | l ∈ lab(a)}.

Definition 2.1 (labelled ontology). Given an ontology O and set of labels L, every axiom

a ∈ O is assigned a label lab(a) ⊆ L, which expresses the contexts from which the axiom a

can be accessed. An ontology extended with such a labelling function lab is called a labelled

ontology.

In this thesis, we consider a special case of labelled ontologies where every context

is a repair for a given consequence w.r.t the given ontology. Thus all the repairs for a

consequence will be described as contexts in the ontology. Given an arbitrary ontology O

and a consequence α, a repair is defined as follows.

Definition 2.2 (repair). A sub-ontology R ⊆ O is a repair for O |= α, if R 6|= α and for

every R′ ⊆ O such that R ⊂ R′, it holds that R′ |= α.

Thus, a repair has two properties: it is maximal (w.r.t set inclusion) and it does not

entail the given consequence α. The following gives an example of a repair.

Example 2.3. Consider the ontology O shown in Figure 2.1. The ontology contains the

following axioms:

a1 : A v B

a2 : B v C

a3 : C v D

a4 : D v E

a5 : B v E

a6 : E v F

Let α= A v F be the consequence for which the repairs should be computed w.r.t to the

ontology O. A repair for A v F w.r.t the ontology O is the maximal sub-ontology of O

which do not entail the consequence A v F.

There are five repairs for A v F w.r.t O.

R1 = {a2, a3, a4, a5, a6},
R2 = {a1, a3, a4, a6},
R3 = {a1, a2, a4, a6},
R4 = {a1, a2, a3, a6},
R5 = {a1, a2, a3, a4, a5}.
All the repairs are represented in the Figure 2.2.
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Figure 2.1: An unlabelled ontology
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R4
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E

F
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Figure 2.2: All repairs for the consequence w.r.t the ontology

R1, R2, R3, R4 and R5 are repairs as they satisfy the following properties. Consider

the repair R1, R1 6|= A v F and R1 is maximal w.r.t the ontology O. That is, for any axiom

a ∈ {O \ R1}, R1 ∪ {a} |= A v F. Similarly the repairs R2, R3, R4, R5 also satisfy the

above two properties and there exists no other repairs for A v F w.r.t O.

To compute repairs for a consequence, it is important to find the axioms responsible

for the entailment. To find this, the technique of axiom-pinpointing [12, 13] is used, which is

the task of finding the minimal sub-ontologies that entail a given consequence [10] (MinAs),

or dually, the minimal sets of axioms that need to be removed or repaired to avoid deriving

the consequence (diagnoses).

Definition 2.4 (MinA, diagnosis). The set of axioms S is a MinA for O |= α, if S ⊆ O and

S |= α, for every S′ ⊂ S, it holds that S′ 6|= α. A diagnosis for O |= α is a sub-ontology

S ⊆ O such that O\S 6|= α and O\S′ |= α for every S′ ⊂ S.

The sets of MinAs and diagnoses are dual in the sense that, from the set of all the

MinAs, it is possible to compute the set of all diagnoses and vice versa through a hitting
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F

S1
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E
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S2

Figure 2.3: MinAs for the consequence w.r.t the ontology

set tree computation [14]. The following example shows the MinAs for a consequence w.r.t

an arbitrary ontology.

Example 2.5. Consider the ontology O shown in Figure 2.1 and the consequence α=A v F.

There exists two MinAs for O |= A v F. They are,

S0 = {a1, a5, a6},
S1 = {a1, a2, a3, a4, a6}.
The MinAs S0, S1 are represented in the Figure 2.3.

S0 and S1 are the MinAs for O |= A v F, as they satisfy the following properties,

S0 and S1 entail the consequence A v F, S0 and S1 are minimal w.r.t O. That is, for any

arbitrary set of axioms, S′
0 ⊂ S0, S′

0 6|= A v F.

In the above example, note that minimality is considered w.r.t set inclusion and not

w.r.t the cardinality of a MinA. Diagnoses can be computed from the MinAs of a conse-

quence. Given a diagnosis D for O |= α, a repair R for O |= α is computed as complement

of D i.e., R = O \ D . The following section describes the procedure to compute diag-

noses from the MinAs and procedure to compute the repairs for a consequence w.r.t to an

ontology using hitting set tree based approach for axiom-pinpointing.

Computing Repairs Based On Reiter’s Hitting Set Tree Algorithm

Here we present a black-box algorithm to compute repairs for a consequence w.r.t to a given

ontology, which is a variant of the Hitting-Set-Tree-based method [14] (HST-approach) for

axiom pinpointing [12, 13]. We use black-box approach as it behaves well in practice with

modern reasoners. It uses an un-modified reasoner and is independent of the specific logic

or consequence as long as the reasoner exists. This HST-based method gets one MinA at

a time from the black-box reasoner for O |= α, while building a tree that expresses the

distinct possibilities to be explored in the search of further MinAs. It first gets a arbitrary

MinA S0 for O, which is used to label the root of the tree. Then, for every axiom a ∈ S0,
a successor node is created and the axiom a is used to label the edge between root node

and the successor node. If O\{a} 6|= α then, this node is a dead node. In this case, we do

backtracking by adding back the axiom a to O and removing the next axiom in S0 from O.
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If O\{a} still entails the consequence α, then we get another MinA S1 from O\{a}
using the black-box reasoner. This MinA is guaranteed to be distinct from S0 since a 6∈ S1.
Then, for each axiom a′ ∈ S1, a new successor node is created and treated in the same way

as the successors of the root node. That is, the algorithm checks whether O \ {a, a′} still

entails the consequence. This process terminates as an ontology is a finite set of axioms

and the end result is a tree where every leaf node of the tree is a dead node. The path

from root node to every dead node is a set of axioms, the minimal sets (w.r.t set inclusion)

among these sets of axioms gives all the diagnoses D for O |= α.

After all the diagnoses are obtained, for an arbitrary diagnosis D0 ∈ D, repair is

computed as R0 = O \ D0. Thus, this algorithm computes all the diagnoses from the

MinAs of a consequence and from the diagnoses, it computes the set of all the repairs for

a consequence w.r.t an ontology. This HST-based approach to compute all the repairs for

a consequence w.r.t a given ontology is explained using an example given below.

Example 2.6. Consider the ontology shown in Figure 2.1 and the consequence A v F. This

example shows how to compute the repairs for O |= A v F using the HST-based method that

is described above.

Example 2.5 shows that, there exist two MinAs for the entailment, O |= A v F. To

construct the tree to compute diagnoses, we get an arbitrary MinA S0 for O |= A v F. Let

S0 be {a1, a5, a6}. The axiom a1 ∈ S0 is removed from O. As O \ {a1} 6|= A v F we get

a dead node and the edge between root node and dead node is labelled with axiom “a1”. The

HST based tree constructed is shown in Figure 2.4.

Then we backtrack by adding a1 to O and removing next axiom from S0, i.e., a5. As

O \ {a5} |= A v F, we add a successor node to the root node, labelled with an arbitrary

MinA S1= {a1, a2, a3, a4, a6} (the MinA, S1 is different from S0, as a5 6∈ S1). Then do

the same process on S1 as for the root node. We remove an axiom a1 ∈ S1 from O, at this

point we removed two axioms from O: a5 and a1. As O \ {a5, a1} 6|= A v F we get a dead

node.

In the similar manner, we build the complete tree as shown in Figure 2.4. In this tree,

there are seven leaf nodes, which are dead nodes. Out of which five branches are minimal.

Thus we obtain five diagnoses.
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Figure 2.4: An expansion of the HST tree to compute diagnoses

The five diagnoses obtained from the tree contain the following axioms,

D1 = {a1},
D2 = {a5, a2},
D3 = {a5, a3},
D4 = {a5, a4},
D5 = {a6}
From these diagnoses, repairs are computed as complement of the diagnosis as fol-

lows. R1 is computed as O \ D1. In this manner we obtain 5 repairs,

R1 = {a2, a3, a4, a5, a6},
R2 = {a1, a3, a4, a6},
R3 = {a1, a2, a4, a6},
R4 = {a1, a2, a3, a6},
R5 = {a1, a2, a3, a4, a5}.
All these repairs are represented in Figure 2.2.

The HST-based procedure to compute all the repairs for a consequence w.r.t a given

ontology is described in Algorithm 1. This algorithm takes an ontology O, a consequence

α as input. It computes repairs using HST-based approach as described above and returns

the set of repairs R for O |= α as output. The algorithm first computes an arbitrary MinA

S using a the black-box reasoner in step 5. For every axiom a in S, a is removed from O

and if O \{a} |= α then, the algorithm is called recursively in step 10 to build the entire

tree. Otherwise if O \{a} 6|= α then, a dead node is reached in the tree and the path from

every dead node to the root node is a set of axioms. All these sets of axioms are stored in

the set D in the step 12. As we obtain a dead node, backtracking is done by adding back

the axiom a to the ontology and the process continues until all the branches of the tree are

explored. Then, all the non-maximal and duplicate elements are removed from D in the

steps 15-19. After removing the non-maximal and duplicate elements from R, it contains

the set of all diagnoses for α w.r.t the ontology O. Then, all the repairs are computed from

the diagnoses in steps 20-22. In this manner all the repairs are computed for a consequence

using HST-based algorithm.

There exists many approaches to compute the repairs for a consequence w.r.t an
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Algorithm 1 Computing repairs using Reiter’s Hitting set tree algorithm

1: procedure ComputeRepairs(O, α)
2: Input: O : Ontology, α : consequence
3: Output: R: R is a set of repairs for O, α
4: Global : D := ∅; Diagnosis, D := ∅; set of Diagnoses, S := ∅; S ; MinA, R := ∅; a

repair
5: S ← MinA(O, α) I Gets a MinA for O, α from black-box reasoner
6: for every axiom, a ∈ S do
7: O ←O \ {a}
8: D ←D ∪ {a}
9: if O |= α then

10: call ComputeRepairs(O, α)
11: else
12: D ← D ∪ D
13: D ←D \ {a}
14: O ←O ∪ {a}
15: for every Di, Dj∈ D where (1≤i, j ≤| D |) do
16: if Di ⊆ Dj then
17: D ← D \ {Di}
18: else if Dj ⊆ Di then
19: D ← D \ {Dj}
20: for every D ∈ D do
21: R ←O \ {D} I computes a repair from diagnosis
22: R ← R ∪ R
23: return(R)
24: end procedure

ontology. The following lemma shows the complexity to compute repairs for a consequence

w.r.t an ontology.

Lemma 2.7. It takes exponential time to compute repairs for a consequence w.r.t a given

ontology.

Proof: A repair is a sub-ontology of a given ontology O. As there exists exponentially many

sub-ontologies in an ontology, it takes exponential time to compute all the sub-ontologies

of O. After computing all the sub-ontologies, every sub-ontology can be assumed as a

repair, check if it entails the consequence or not and if it is maximal. This can be done in

polynomial time. Thus, we can conclude that, it takes exponential time to compute all the

repairs for a consequence α w.r.t. an ontology O.

Here we present a procedure to describe the repairs as contexts in the ontology. Every

repair for a consequence w.r.t an ontology is considered as a context in the ontology. As all

the repairs are incomparable and maximal, it ensures that all the contexts in the ontology

are incomparable and maximal.

A new labelling function labc: R ← N is used to assign label to every repair, where N

represents natural numbers. The function labc maps a repair to a natural number, it assigns

a unique label (a natural number) to every repair. Initially, if there are no contexts in the
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ontology (that is, the ontology is not labelled), then the labelling of the contexts starts

from the natural number “1”. Whenever new repair is obtained, we check the highest value

assigned to the existing contexts, let highest value (natural number) of the label assigned

for the existing context be n. Then, for a new repair Ri to be described as context, the

label, labc(Ri) = n+1 is assigned.

Every axiom that belongs to a context is annotated with the label of the context. Thus,

every axiom is assigned with a label according to the contexts it belongs to. The ontology,

thus obtained by annotating axioms with labels is called a labelled ontology (Definition 2.1).

The step-by-step procedure to annotate the axioms of an arbitrary ontology O with labels,

in which every context correspond to a repair in the set R w.r.t to an arbitrary axiom α is

described below.

1. Let L be the set of labels in the ontology O. (If O is unlabelled, then L=∅ and for

every axiom a ∈ O , lab(a) = ∅)
2. Every repair in the set R is assigned with a unique label l (l ∈ N ) such that l 6∈ L.

3. After assigning a label l to each repair, the set of labels L is updated as L = L ∪ l .

4. For a repair Ri ∈ R, let li be the label assigned to the repair Ri (i.e., labc(Ri) = li).

5. Every axiom a ∈ Ri, lab(a) = lab(a) ∪ li.

In this manner, by annotating all the axioms of the ontology with labels, a labelled

ontology is created. The procedure to label the axioms with context labels is explained in

the example given below.

Example 2.8. Consider the ontology O shown in Figure 2.1. Example 2.6 gives all the

repairs for the consequence A v F w.r.t the ontology O. This example shows, how these

repairs can be described as contexts in the ontology O.

There are five repairs for O |= A v F, these five repairs correspond to five contexts and

every context is assigned with a label using the labelling function labc. As there are no

contexts in the ontology O initially, the labels for the contexts start from the natural number

“1”.

All the repairs are enumerated with labels as follows.

labc(R1) = 1,

labc(R2) = 2,

labc(R3) = 3,

labc(R4) = 4,

labc(R5) = 5.

After assigning labels to all the repairs, these labels are stored in the set, L= {1,2,3,4,5}.
Using these labels, all the axioms a ∈ O are annotated with labels. The labelling function

lab: O → L assigns labels to every axiom of the ontology as follows.
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Figure 2.5: A labelled ontology

lab(a1): {2, 3, 4, 5}, as axiom a1 belongs to the repairs, R2, R3, R4, R5 this axiom

is annotated with the labels corresponding to these repairs. In the same manner all

the other axioms of O are assigned labels as follows.

lab(a2): {1, 3, 4, 5},
lab(a3): {1, 2, 4, 5},
lab(a4): {1, 2, 3, 5},
lab(a5): {1, 5},
lab(a6): {1, 2, 3, 4}.

Thus we obtain the labelled ontology O by annotating all the axioms with labels. This

labelled ontology is represented in Figure 2.5.

As shown in Example 2.6, there exists many repairs for a consequence w.r.t to an

ontology. In the same manner, there exists many solutions for an ontology evolution task

and it requires very high memory and computational effort to store all the solutions while

doing ontology evolution iteratively. Due to this problem, in general, only one optimal

solution which satisfies the principle of minimal change is chosen. To overcome this problem

of storing every solution (which are partly redundant) separately, which forces to choose

only one solution after each step, our approach offers to store all the solution compactly

as a single ontology by annotating axioms of the ontology with labels. Example 2.8 shows

how to compactly represent all the solutions by labelling axioms of the ontology which has

the benefit of keeping only one ontology, instead of many solution and reasoning can be

done easily over these labelled ontologies efficiently. The task of reasoning over a labelled

ontology is called Context-based reasoning. The next section presents the procedure to do

context-based reasoning.

2.1.2 Reasoning Over The Labelled Ontologies

As mentioned in the beginning of this chapter, the second step in context-based reasoning

is to do reasoning over the labelled ontology. For a labelled ontology as introduced above,

pre-computing that a certain consequence follows from the whole ontology is not sufficient.

Pre-computing consequences for all the contexts is not a good idea since, then one might

have to compute and store consequences for exponentially many different subsets of the
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ontology. To overcome this problem, a boundary [10] is computed for a consequence which

is defined below.

Definition 2.9 (boundary). Given a labelled ontology O and a consequence α, let L be

the set of labels in O. Then, the boundary of the consequence α is an element ϑ ⊆ L such

that, a context, Ol |= α iff l ∈ ϑ.

There exists many algorithms to compute the boundary for a consequence [10, 11].

One naive approach is to check every context of O, if the context entails the consequence

α. If it entails, then, the label of the context is added to the boundary ϑ. If the context

does not entail α then, the label of the context is not added to the boundary ϑ. Thus ϑ

is computed by checking every context of O. Given below is an example to show how to

compute the boundary.

Example 2.10. Consider the labelled ontology O shown in Figure 2.5. The task is, to

compute boundary for the consequence B v E w.r.t the ontology O.

All the repairs represented in Figure 2.2 are described as contexts in the labelled on-

tology represented in Figure 2.5. The figure shows that B v E holds only the repairs R1,

R5. The labels assigned to these repairs are, 1, 5.

Thus, boundary of B v E w.r.t labelled ontology O is ϑ = {1, 5}.

The following lemma shows the complexity to compute the boundary for a consequence

from a labelled ontology.

Lemma 2.11. It takes exponential time to compute the boundary for a consequence α w.r.t

a given ontology O.

Proof: There exists exponential number of contexts in an ontology O. To check if a conse-

quence α follows from a context of the ontology takes polynomial time. To check entailment

from exponential number of contexts take exponential time. Thus, the complexity to com-

pute boundary is exponential time.

This section presented all the definitions of context-based reasoning method and also

described the procedure to compute repairs for a consequence from the MinAs of the con-

sequence w.r.t to an ontology using Hitting-set algorithm. It also described in detail, how

to label the axioms of the ontology using the repairs as contexts in the ontology and the

ways to do context-based reasoning over the labelled ontologies. The next section presents

the definitions and basic details about the existing practical approaches to do ontology

evolution operations.

2.2 Ontology Evolution Operations

In Belief Revision, the process of “incorporating” new information into a Knowledge Base

(KB) maintaining the consistency of the KB is called revision. The process of “incor-

porating” new information into the KB without checking consistency of the KB is called
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“update”and the process of “retracting” information that is no longer allowed to hold is

called contraction [5]. All the ontology evolution operations should satisfy the principle of

minimal change [5], according to which the semantics of a knowledge base should change

“as little as possible”, thus ensuring that modifications have least possible impact on the

ontology. All the ontology evolution operations should satisfy the AGM [6] postulates. The

evolution of an ontology O results in another ontology O′ in which the required information

is incorporated, retracted or updated.

2.2.1 Ontology Contraction

Ontology contraction operation is defined as follows.

Definition 2.12 (ontology contraction). Given an arbitrary ontology O and an arbitrary

consequence α, ontology contraction is an operation (denoted by O-α) to retract the con-

sequence α from the ontology O. The result of the operation is the ontology O′ which is a

maximal subset of O such that O′ has the following properties:

− O |= O′

− O′ 6|= α

− there exists no O′′⊂O such that O′⊂O′′ and O′′ 6|= α

− O′ is as similar as possible to O ensuring minimal change.

The approaches adopted for ontology contraction in practice are syntactic approaches [7].

To retract an axiom entailed by an ontology, it suffices to compute all the MinAs for the

given consequence w.r.t the given ontology. From the MinAs obtained, compute maximal

subset of the ontology that does not entail the consequence (a repair) to be retracted. The

solution obtained in this manner complies with the principle of minimal change. But, there

exists many solutions (repairs). To ensure minimal change of the ontology, usually only the

solution which removes minimum set of axioms from the ontology is chosen. This solution

is called optimal solution. Given below is an example of ontology contraction.

Example 2.13. Consider the ontology O shown in Figure 2.1 and consequence α = A v F,

the example shows how to retract A v F from O.

As O |= A v F, to retract this consequence from O, it suffices to compute all MinAs

for A v F w.r.t the ontology O. The MinAs for A v F w.r.t O are shown in Figure 2.3.

The maximal subsets of O that does not entail the consequence (repairs) should be computed

from the MinAs.

Example 2.6 shows how to compute the repairs from MinAs for a consequence. The

repairs for A v F w.r.t the ontology O are shown in Figure 2.2.
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All the repairs are possible solutions to retract A v F from O.

Among all the solutions (i.e., repairs) only two solutions satisfy the principle of

minimal change. They are R1 and R5.

R1 satisfies all the conditions of ontology contraction, R1⊂O, R1 6|= A v F.

R5 also satisfies the following conditions, R5⊂O, R5 6|= A v F.

Both the repairs retract only one axiom from O and are optimal solutions for this

contraction operation.

Ontology contraction operation should satisfy all the AGM [6] postulates for contrac-

tion.

2.2.2 Ontology Expansion

The next ontology evolution operation is ontology expansion. In ontology evolution the

operations are performed on an ontology which is consistent. In ontology expansion opera-

tion, an axiom is added to the ontology. After adding the axiom, it is not required to check

the consistency of the ontology. This operation is defined as follows.

Definition 2.14 (ontology expansion). Given an arbitrary ontology O which is consistent

and an axiom α, ontology expansion (denoted as O+α) is the operation of adding the axiom

α to the ontology O. The expanded ontology is O′ should satisfy the following conditions:

− O′ = O ∪ α
− O′|= α

To add an axiom α to an ontology O, it suffices to check whether the ontology O

entails α. If the ontology O does not entail α then, the axiom α is added to the ontology.

Otherwise if O |= α then, the axiom α is not added to the ontology as the consequence

α entails from the ontology. The following example demonstrates the ontology expansion

operation.

Example 2.15. Consider the ontology shown in Figure 2.1 and the axiom α = A v G,

the task is to add A v G to the ontology O.

As O 6|= A v G, the axiom A v G should be added to the ontology O.

The updated ontology is O′=O ∪ {A v G}.
The ontology O′ is shown in Figure 2.6.

The ontology is consistent after adding the axiom A v G. Thus, the ontology O′ is

the result of the ontology expansion operation on O w.r.t the axiom A v G.

Ontology expansion operation should satisfy all the AGM [6] postulates for expansion.
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Figure 2.6: An ontology obtained as the result of ontology expansion operation

2.2.3 Ontology Revision

The next operation in ontology evolution is called ontology revision. This operation deals

with the problem of inconsistency after adding an axiom to the ontology. That is, if

the ontology becomes inconsistent after adding a new axiom then, the ontology revision

operation retracts inconsistency from the ontology. The operation is defined as follows.

Definition 2.16 (ontology revision). Given an arbitrary ontology O which is consistent

and an axiom α, ontology revision (denoted by O◦α) is the operation of revising the axioms

of ontology O to add the axiom α to O. The revised ontology O′ should satisfy the following

conditions:

− O′|= α

− O′ is consistent

− the symmetric difference between the set of axioms in O and the set of axioms in O′

is minimal.

This operation consists of two sub-operations. The First step is ontology expansion on

a given ontology and the given axiom. If the ontology becomes inconsistent after addition

of the axiom then, the second step is to retract inconsistency from the updated ontology.

Ontology revision operation should satisfy all the AGM [6] postulates for revision operation.

The following example demonstrates the ontology revision operation.

Example 2.17. Consider the ontology O shown in Figure 2.1 and the axiom α = A v ¬E

to be added to the ontology O. After adding the axiom, consistency of the ontology should

be ensured.

The first step is to add the consequence A v ¬E to the ontology O. As O 6|= A v ¬E,

it should be added to O. The ontology O′ after adding A v ¬E is such that,

O′ = O ∪ {A v ¬E}.
The ontology O′ is shown in Figure 2.7. The ontology O′ is inconsistent after adding the

axiom. To retract inconsistency from the ontology O′ by removing minimal set of axioms,

ontology contraction operation should be done on the ontology O′ w.r.t inconsistency.
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Figure 2.7: An ontology which becomes inconsistent after ontology expansion operation
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Figure 2.8: possible solutions for retracting inconsistency from the ontology

The possible solutions after retracting inconsistency are shown in Figure 2.8. There

exists three solutions R1, R2, R3.

R1 cannot be chosen because, R1 6|=A v ¬E, the axiom which should be added to the

ontology.

Among the solutions R2 and R3, R2 removes minimal set of axioms from O′.

Thus, R2 is the optimal solution for ontology revision operation on the ontology O

w.r.t the axiom A v ¬E.

This concludes Chapter 2. This chapter presented details about context-based reason-

ing, ontology evolution operations and how context-based reasoning method can be used

to do ontology evolution operations, which is very beneficial as it gives an advantage to

store all the solutions during ontology evolution compactly, instead of choosing one optimal

solution. We can now build on this background and see how ontology evolution operations

can be done using context-based reasoning. This is elaborated in the next chapter in detail.



Chapter 3

Context-Based Ontology Evolution

This Chapter presents the theoretical methods to do ontology evolution operations: ontol-

ogy contraction, ontology expansion and ontology revision using context-based reasoning

method. As the ontology evolution operations are done using context-based reasoning, they

are named as: context-based ontology contraction, context-based ontology expansion and

context-based ontology revision respectively. This chapter presents the relationship between

ontology evolution operations and context-based ontology evolution operations. It also de-

scribes theoretical methods to do context-based ontology evolution operations (contraction,

expansion and revision). Section 3.1 describes a new approach to do context-based ontology

contraction and presents an example to show how to do context-based ontology contraction

operation. Section 3.2 presents a new approach to do context-based ontology expansion

and explains the operation with an example. Section 3.3 describes about context-based

ontology revision operation, which is a variant of context-based ontology expansion.

3.1 Context-Based Ontology Contraction

Contraction is the process of “retracting” information from a Knowledge Base, that is no

longer allowed to hold [5]. Given an arbitrary ontology O and a consequence α, ontology

contraction is the operation to remove the consequence α from the ontology O [5]. This

operation is denoted as, (O−α). Ontology contraction operation is explained in detail in

Chapter 2. Context-based ontology contraction is a new approach to do ontology contrac-

tion using context-based reasoning. It ensures that none of the contexts in the ontology

entail the consequence.

Ontology contraction removes an axiom from the ontology. But, in context-based

ontology contraction, the consequence is not retracted from the ontology, but axioms of

the ontology are relabelled in such a way that, the consequence does not follow from any

context of the relabelled ontology. To do context-based ontology contraction, we assume

that the given ontology is labelled and for any arbitrary contexts Oi, Oj in an arbitrary

labelled ontology O, Oi * Oj and Oj * Oi. If the ontology is not labelled, then, the whole

20
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ontology is considered as one context and all the axioms of the ontology are annotated

with label “1”. The operator “−c” is called context-based ontology contraction operator,

which signifies the context-based ontology contraction operation. This operation is defined

as follows.

Definition 3.1 (context-based ontology contraction). Given an arbitrary labelled ontology

O and an arbitrary consequence α, let L be the set of labels in O. Then, context-based

ontology contraction is a relabelling operation (denoted by O′=O−cα), which creates the

labelled ontology O′ with the relabelled axioms of O. Let L′ be the set of labels in O′ and

for every label l′ ∈ L′, the corresponding context is O′
l′ , then every context O′

l′ in O′ has

the following properties.

− Every context O′
l′ in the ontology O′ is a maximal sub-context of an arbitrary context

Ol in O, (for a label, l ∈ L) such that O′
l′ 6|= α.

− For every context, O′
l′ in the ontology O′ and an arbitrary context Ol in O, if O′

l′ ⊂ Ol

then, every axiom a ∈ { Ol \ O′
l′ }, O′

l′ ∪ {a} |= α

− For every context Ol in O (for every l ∈ L), if there exists S ⊆ Ol, such that S 6|= α,

then S ⊆ O′
l′ (for an arbitrary label l′ ∈ L′).

− O′ = O

The theorem given below shows the relationship between ontology contraction and

context-based ontology contraction.

Theorem 3.2. Let O be an arbitrary labelled ontology and α be an arbitrary consequence,

let O′ be the labelled ontology such that O′ = O−cα. And let OB be an ontology which is

the result of ontology contraction on O (OB = O−α). Then every context in the labelled

ontology O′ is a possible solution for ontology contraction on O w.r.t the consequence α.

Proof. OB is the result of ontology contraction on O w.r.t the consequence α. Then OB

has the following properties, OB⊆O, OB 6|= α and there exists no O′
B such that OB⊂O′

B

and O′
B 6|= α [5].

The ontology O′ is the result of context-based ontology contraction on the ontology O w.r.t

the consequence α. Let L′ be the set of labels in O′ then, O′ has the following properties,

for every label l′ ∈ L′, the corresponding context O′
l′⊆O′, O′

l′ 6|= α and there exists no

context, O′
l′′ such that O′

l′⊂O′
l′′ and O′

l′′ 6|= α. As every context of the ontology O′ satisfies

the conditions of ontology contraction, every context is a possible solution for ontology

contraction on the ontology O and OB is one of the context in the labelled ontology O′ as

OB is the optimal solution for ontology contraction on O w.r.t α.

Consider a labelled ontology O which has the set of labels L and α be the consequence

on which context-based ontology contraction operation should be done. A naive approach

to do context-based ontology contraction is, to compute all the repairs for α from every

context in the given ontology O (as a repair is a maximal sub-set of the context which does

not entail the consequence α) and describe every repair as a context in the ontology O′.

Thus, it ensures that every context in the labelled ontology O′ do not entail α. This naive
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approach is not efficient because it computes repairs for a given consequence from every

context of the input ontology and relabels all axioms of the ontology.

To overcome this problem, we develop an algorithm to do context-based ontology

contraction efficiently. In this algorithm, instead of computing repairs from every context in

the ontology, boundary ϑ is computed for the consequence w.r.t the given labelled ontology.

As ϑ ⊆ L, which contains the labels of the contexts from which the consequence holds. All

the contexts corresponding to the labels in the set L \ ϑ do not entail the consequence

α. Thus, it is sufficient to compute repairs only from the contexts that correspond to the

labels in ϑ and relabel only the axioms that belong to those contexts. All the axioms that

belong to the contexts whose labels are present in the set {L \ ϑ} are not relabelled. The

ontology thus relabelled ensures that the consequence is not entailed from any context of

the relabelled ontology. This procedure is described step-by-step in Algorithm 2.

Algorithm 2 takes an arbitrary labelled ontology O, an arbitrary consequence α to

be retracted from the ontology as input and returns a relabelled ontology O′ such that

none of the contexts in O′ entail the consequence α. The algorithm declares the following

global variables: R the set which is used to store all the repairs for α w.r.t every context

corresponding to the labels present in the boundary for O |= α, the variable S is used

to represent the sub-ontology which contains all the axioms that belong to the contexts

whose labels are present in the boundary. In step 6, the algorithm calls computeBoundary

procedure to compute boundary ϑ for O |= α.

After computing the boundary, it is sufficient to compute repairs for the consequence

α w.r.t every context whose labels are present in ϑ. To do this task, Algorithm 2 creates

a sub-ontology S with all the axioms in the contexts, whose labels are present in ϑ in step

10. The contexts whose labels are present in ϑ should be removed from O as they entail

the consequence α. To remove those contexts from the ontology, it is sufficient to update

the labels of the axioms in O such that, for every axiom a ∈ O, for every label l ∈ ϑ, if

l ∈ lab(a) then, lab(a) is updated to lab(a) \ l , this is done in step 11. In step 13, the

algorithm adds all the axioms whose labels are present in L \ ϑ to the ontology O′ as the

labels in L \ ϑ correspond to the contexts that does not entail the consequence α. Thus all

those contexts are the repairs for α w.r.t O and they can be described as contexts in the

labelled ontology O′.

In step 15, the algorithm calls the procedure ComputeBoundaryRepairs with parame-

ters S and α. It returns all the repairsR to α w.r.t every context corresponding to the labels

in ϑ. The repairs present in R may be contained in any of the contexts of O corresponding

to the labels in L \ ϑ (as these contexts do not entail α), it is not required to describe such

repairs as contexts in O′ (as these contexts are already descried in O′). Thus, such repairs

should be removed from R. In step 19, Algorithm 2 removes such non-maximal elements

from R w.r.t to the other contexts (which does not belong to the boundary) in O. Then

all repairs Rj in R (where 1≤j≤| R |) are enumerated with the labels and these labels are

updated in the set of labels L. In step 25, all the axioms that belong to the repairs in R are

added to the ontology O′ with the updated labels. These labels are assigned to the axioms
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Algorithm 2 Ontology Contraction using Context-based Reasoning

1: procedure Context-based-OntologyContraction(O, α)
2: Input: O : labelled Ontology, α : consequence
3: Output: O′: the labelled ontology which is the result of O−cα
4: Global: R:=∅, S :=∅, O′:=∅
5: L ← set of labels in O
6: ϑ← compute–boundary(O, α)
7: for every a ∈ O do
8: for every l ∈ ϑ do
9: if l ∈ lab(a) then

10: S ← S ∪ {a}
11: else
12: O′ ← O′ ∪ {a}
13: L ← L \ {l}
14: R ← ComputeBoundaryRepairs(S, α, ϑ)
15: for every l ∈ ϑ do
16: if l ∈ lab(a) then
17: lab(a) ← lab(a) \ {l}
18: for every Rj ∈ R(where 1≤j≤| R |) do
19: for every l ∈ L do
20: if Rj ⊆ Ol then
21: R ← R \ Rj I removes the elements which are not maximal from R
22: else
23: lnew ← n I n ∈ N and n 6∈ L
24: L ← L ∪ {lnew}
25: for every a ∈ Rj do
26: lab(a) ← lab(a) ∪ {lnew}
27: O′ ← O′ ∪ {a}
28: return(O′)
29: end procedure

such that if an axiom a is in any of the repair Rj then, lab(a) is updated with lab(a) ∪ lnew
where lnew is the label assigned to the repair Rj . Thus, the ontology O′ is created with the

all the updated axioms of O. Thus Algorithm 2 returns the labelled ontology O′ which has

the property that, none of the contexts in O′ entail the consequence α. The example given

below shows how to do context-based ontology contraction.

Example 3.3. Consider the labelled ontology O shown in Figure 3.1 and the axiom A v F

to do context-based ontology contraction.

Context-based ontology contraction operation on the labelled ontology O w.r.t A v F

is a three step process.

Step 1: Compute the boundary for A v F w.r.t the labelled ontology O.

All the axioms in the ontology O are assigned with the label “1”. Since there is only context

in the ontology O, that is “O1” entails the consequence, the boundary for O |= A v F is,

ϑ = {1}.
Step 2: Compute repairs for A v F w.r.t O1.
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A B C D

E

F

1 1 1

1 1

1

Figure 3.1: A labelled ontology

As all the axioms in O belong to the context O1, repairs should be computed for A v F

w.r.t all axioms of the ontology. Example 2.6 shows that, there exists five repairs for this

entailment. As the label of the context O1 is 1 ∈ ϑ in the resulting ontology O′, the label

“1” is removed from the labels of all the axioms a ∈ O1.

Step 3: Describe all the five repairs computed as contexts in the ontology O′.

Example 2.8 shows, how to describe the repairs as contexts in the ontology. There are two

sub-processes involved in this step. They are,

(a)Enumerate the repairs with labels:

As the ontology O has one context, that is “1”, the five repairs computed, that should be

described as contexts in the labelled ontology O′ get the labels from the natural number “2”.

Thus, the five repairs gets the following labels.

labc(R1) = 2;

labc(R2) = 3;

labc(R3) = 4;

labc(R4) = 5;

labc(R5) = 6;

(b) label the axioms of O with context labels:

For all the axioms of the context O1, the old label (i.e., “1” ) is removed from the labels

and new labels are assigned according to the contexts they belong to, as follows.

lab(a1) = (lab(a1) \ {1}) ∪ {2,3,4,5} (as the axiom, a1 belongs to the contexts 2, 3, 4 and

5). In this manner, all the axioms of the context, O1 are relabelled.
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A B C D

E

F

2,3,4,5 1,3,4,5 1,2,4,5

1,5 1,2,3,5

1,2,3,4

Figure 3.2: The labelled Ontology after removing the consequence

The new labels of the axioms are,

lab(a1): {2,3,4,5}
lab(a2): {1,3,4,5}
lab(a3): {1,2,4,5}
lab(a4): {1,2,3,5}
lab(a5): {1,5}
lab(a6): {1,2,3,4}
The labelled ontology, O′ which contains the relabelled axioms is shown in the Fig-

ure 3.2.

There exists no context of the labelled ontology O′ which entails the axiom A v F.

Context-based ontology contraction is done by relabelling axioms of the ontology as

shown in the example above. Thus, after context-based ontology contraction in the above

example, there are five repairs but all the repairs are compactly represented as a single

labelled ontology O′ shown in Figure 3.2.

We presented the procedure to do context-based ontology contraction on an ontology

w.r.t a consequence in Algorithm 2. There are three main steps in context-based ontology

contraction, as shown in the example above. The second step in context-based ontology

contraction is to compute repairs for the consequence w.r.t every context corresponding to

the labels in the boundary. Here we present the step by step procedure to compute repairs

for a consequence w.r.t every context corresponding to the labels in the boundary of an

arbitrary consequence α w.r.t a labelled ontology O. Let ϑ be the boundary of α w.r.t O.

The algorithm takes the boundary ϑ; the labelled ontology Oϑ which contains all axioms

corresponding to every context in ϑ; the consequence α as input. It returns set of repairs

R which are set of all the repairs for α w.r.t every context Oϑl (for every label l ∈ ϑ). The

algorithm starts with computing repairs for α w.r.t the ontology Oϑ.

In step 5, the algorithm calls the procedure ComputeRepairs which returns all the

repairs Runprocessed for α w.r.t input ontology Oϑ. But, the repairs should be computed for

α w.r.t every context Oϑl (for l ∈ ϑ). Algorithm 3 does further processing of these repairs.

For every repair, R0 in Runprocessed, R0 ∩ Oϑl gives an set of axioms R0l , such that R0l 6|= α

from the context Oϑl, but it is not ensured that ROϑl
is maximal w.r.t Oϑl. In this manner,

all the repairs in Runprocessed are processed w.r.t every context in ϑ and these elements are
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Algorithm 3 compute repairs for given consequence w.r.t to every context of the boundary

1: procedure ComputeBoundaryRepairs(Oϑ, α, ϑ)
2: Input: Oϑ: labelled ontology, α: consequence, ϑ: boundary of α
3: Output: R: set of repairs for α w.r.t every context whose label is present in ϑ
4: Global: R:= ∅; Runprocessed:= ∅; Rl:= ∅; ROϑl

:= ∅;
5: Runprocessed ← ComputeRepairs(Oϑ, α) I set of repairs for O, α
6: for every R0 ∈ Runprocessed do
7: for every l ∈ ϑ do
8: ROϑl

← R0 ∩ Oϑl I a repair for the context corresponding to the label l
9: Rl ← Rl ∪ {ROϑl

} I set of repairs for the context corresponding Oϑl

10: for every Ri, Rj ∈ Rl (where 1≤i<j≤| Rl |) do
11: if Ri ⊆ Rj then
12: Rl ← Rl \ {Ri}
13: else if Rj ⊆ Ri then
14: Rl ← Rl \ {Rj}
15: R ← R ∪ {Rl}
16: for every Ri, Rj ∈ R (where 1≤i<j≤| R |) do
17: if Ri ⊆ Rj then
18: R ← R \ {Ri}
19: else if Rj ⊆ Ri then
20: R ← R \ {Rj}
21: return(R)
22: end procedure

present in Rl, then, the algorithm removes duplicate and non maximal elements from Rl in

step 10. After removing such elements from Rl all the remaining elements in Rl are added

to the set R.

But, there might exist some duplicates or non maximal elements in R. Such elements

are removed from R in the steps 16-20. After removing such elements, the set R contains

all the repairs for the consequence α w.r.t every context corresponding to the labels in ϑ.

Thus, the algorithm returns the set R which contains set of all the repairs for α w.r.t every

context Oϑl (for l ∈ ϑ) and none of the repairs are contained in each other.

Theorem 3.4 given below proves the correctness of Algorithm 3.

Theorem 3.4. Given a labelled ontology O, a consequence α and the boundary of α w.r.t

O is ϑ, Algorithm 3 returns the set of all the repairs for α w.r.t every context whose labels

are present in ϑ and none of the repairs are contained in each other.

Proof : Algorithm 3 returns the set of elements R, we should prove the following.

1. For some arbitrary element R ∈ R, R is a repair for α w.r.t to an arbitrary context Ol,

where l ∈ ϑ. For R to be a repair for α w.r.t to an arbitrary context Ol, where l ∈ ϑ, it

should satisfy two conditions,

(a) R 6|= α: We know that, for an arbitrary set of axioms, Ri and for some set S ⊆ Ri, if

Ri 6|= α then, S 6|= α. In Algorithm 3, the set of repairs, Runprocessed are given by Algorithm
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1. We know that, every element R0 ∈ Runprocessed is a repair for α w.r.t the ontology O.

Every element, R in R is computed as, R = R0 ∩ Ol, where Ol is a context in O (for

l ∈ ϑ) which means R ⊆ R0. It implies that, R 6|= α w.r.t the context Ol from which it is

computed.

(b) R is maximal w.r.t the context from which it is computed: For R to be maximal w.r.t

a context, Ol, there exists no R′ ∈ R (w.r.t Ol) such that, R′ ⊂ R and R′ 6|= α. If there

exist such R′ in Ol then, Algorithm 3 removes such elements, R′, which are duplicate and

not maximal from R. Thus, if an element, R is in R then, it is maximal w.r.t the context

from which R is computed.

Since R 6|= α and R is maximal w.r.t the context from which it is computed, we can

conclude that R is a repair for α w.r.t the context Ol from which it is computed.

After computing all repairs w.r.t each context in ϑ, as the algorithm ensures to remove

all duplicate and not maximal elements from R, we can also conclude that, for any repairs

R1, R2 ∈ R, it holds that R1 * R2 and R2 * R1.

2. If Ri is an arbitrary repair for α w.r.t a context Ol, where l ∈ ϑ, then, Ri ∈ R. If

Ri is an arbitrary repair, then Ri 6|= α and Ri should be maximal w.r.t the context from

which Ri is computed. As proved for the previous case that, the algorithm computes all

the repairs in R such that, all the repairs do not entail α and are maximal. As Ri is a

repair (it is maximal and does not entail α), it should be in R. If Ri is not in R then, Ri

is not a repair. It contradicts our assumption that, Ri is a repair. Thus, we can conclude

that Ri ∈ R.

Theorem 3.5 proves the correctness of Algorithm 2 which is used to do context-based

ontology contraction on a consequence w.r.t a given labelled ontology.

Theorem 3.5. Given a labelled ontology O and a consequence α as input to Algorithm 2,

then it returns the labelled ontology O′ such that every context in O′ is a repair for the

consequence α w.r.t an arbitrary context in the input labelled ontology O and all the repairs

for α w.r.t every context in the labelled ontology O are contained in the contexts of the

labelled ontology, O′.

Proof : Let L be the set of labels in the input labelled ontology O and L′ be the set of

labels in the labelled ontology O′. we should prove the following.

1. For every label l′ ∈ L′, the corresponding context O′
l′ in the labelled ontology O′, is a

repair for the consequence α w.r.t an arbitrary context in the ontology O. There exists two

cases for the context O′
l′ .

(a) If the label l′ ∈ L, it implies that l′ 6∈ ϑ as, Ol′ 6|= α. Thus, this context is unchanged

by the algorithm and it remains as a context in the labelled ontology O′. That is, the

context O′
l′ is equivalent to Ol′ . As Ol′ 6|= α and there exists no context, Ol′′ in O such

that Ol′ ⊂ Ol′′ . Thus, the context O′
l′ is repair for the consequence α w.r.t the context Ol′

in O, as, O′
l′ 6|= α and O′

l′ is maximal.

(b) If the label, l′ 6∈ L then, the context, O′
l′ does not exist in O. It is a context in O′,

created by computing repairs to α w.r.t an arbitrary context Ol in O. As Ol |= α, the



Chapter 3. Context-Based Ontology Evolution 28

label, l ∈ ϑ and there exists a set of repairs Rl for α w.r.t the context Ol. We should

prove that, there exists a repair, Rli ∈ Rl such that, Rli ⊆ O′
l′ . We proved in Theorem 3.4

that, Algorithm 3 computes set of all repairs for a consequence w.r.t to a given context, as

Algorithm 2 to do context-based ontology contraction, calls Algorithm 3 to compute repairs

for the consequence α w.r.t the context Ol. It returns the set of repairs, Rl to α w.r.t the

context Ol. And Algorithm 2 uses these repairs to describe contexts in the ontology O′.

If the repair, Rli is contained in an arbitrary context O′
l′ in O′, then, a new context

is not created for Rli , as Rli⊂ O′
l′ . If Rli is not contained in any context of the labelled

ontology O′, then, a new context O′
l′ is created in the labelled ontology O′. If Rli is not

contained in a context in O′, then it contradicts our assumption that Rli is a repair for α

w.r.t to the context Ol in O. But it is proved that, Rli is a repair, thus we conclude that

Rli is contained in a context in the ontology O′.

2. Let Ri be an arbitrary repair for α w.r.t an arbitrary context Ol in the ontology O, then,

it should be proved that, the repair Ri is contained in an arbitrary context O′
l′ in O′. For

the repair Ri there exists two cases.

(a) If Ol 6|= α, it means that, the repair, Ri = Ol. That is, the label corresponding to Ol,

l 6∈ ϑ. Thus, the context Ol remains unchanged in the output ontology O′ of Algorithm 2.

The context in O′ corresponding to the context Ol is O′
l. Thus, we conclude that, the repair

Ri for α w.r.t a context Ol is represented as a context in the labelled ontology O′.

(b) If Ol |= α, it means that, the repair Ri ⊂ Ol. In cases where, a context in O are such

that, Ol |= α, it means, the label, l ∈ ϑ. Then, Algorithm 2 calls the procedure described

in Algorithm 3 to compute all the repairs for α w.r.t the context Ol. As we proved in

Theorem 3.4 that, Algorithm 3 computes set of all repairs R, for α w.r.t Ol, Ri should be

in R. In case 1 (b) of this theorem, we proved that, all the repairs in R are contained in

the contexts in the labelled ontology O′, thus, Ri should be contained in a context in O′. If

Ri is not contained in a context in O′, it contradicts our assumption that Ri is repair w.r.t

the context Ol. Thus, we conclude that, the repair Ri is contained in a context in O′.

The lemma given below shows the complexity of Algorithm 2 to do context-based

ontology contraction operation.

Lemma 3.6. Given an arbitrary labelled ontology O and a consequence α to do context-

based ontology contraction then, Algorithm 2 returns the labelled ontology O′ as the result

of context-based ontology contraction on O w.r.t the consequence α in exponential time.

Proof : The complexity of Algorithm 2 depends on the complexity to compute boundary

for the entailment O |= α and the complexity to compute repairs over the axioms of the

contexts that belong to the boundary. From lemma 2.11, we know that, the complexity to

compute boundary is exponential time. After the boundary is obtained, it takes exponential

time to compute repairs for the consequence, α w.r.t every context, whose labels are present

in the boundary (from lemma 2.7). And it takes polynomial time to describe the repairs

computed, as contexts in the resulting labelled ontology O′. Thus, the overall running time

of Algorithm 2 is exponential time.
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This section discussed about context-based ontology contraction, it presented the the-

oretical methods developed to do context-based ontology contraction operation. The next

section elaborates context-based ontology expansion operation and describes a new ap-

proach to do context-based ontology expansion.

3.2 Context-Based Ontology Expansion

Given an ontology O, which is consistent and an axiom α, ontology expansion is the

operation of adding α to the ontology O. This operation is denoted using the notation

(O+α). Context-based ontology expansion is the operation of doing ontology expansion

using context-based reasoning. The operator “+c” is used to denote the operation context-

based ontology expansion.

As in context-based ontology contraction, in context-based ontology expansion also

the given ontology should be labelled. If the ontology is not labelled, all the axioms of

the ontology are labelled with the label “1”. In ontology expansion operation, an arbitrary

axiom α is added to a consistent ontology. But, in context-based ontology expansion, the

consequence α is added to every context of the labelled ontology in which every context is

consistent. This operation is defined as follows.

Definition 3.7 (context-based ontology expansion). Given an arbitrary labelled ontology

O and an arbitrary axiom α, context-based ontology expansion is a relabelling operation

which creates the labelled ontologyO′ from the given ontology O (O′=O+cα), by relabelling

(or updating the label of) the axiom α. Let L′ be the set of labels in the labelled ontology

O′ then, O′ has the following properties.

− For every label l ∈ L′ the corresponding context O′
l in O′ is such that O′

l |= α.

− L′ = L. That is, the set of labels, L′ in O′ is same as set of labels L in O.

− For every label, l ∈ L the corresponding context Ol ⊆ O′
l, where O′

l is the context

corresponding to the label l in the ontology O′.

The resulting labelled ontology O′ has the following property.

− O′ = O ∪ α

In order to relabel the axiom α, we should consider the following cases. Let L be the

set of labels in the ontology O and let ϑ be the boundary of α w.r.t to the ontology O. If

O 6|= α, then we add the axiom α to every context of O i.e., the axiom α should be added

to the ontology with the label, lab(α)=L. If, only few contexts of O entail α then, the

boundary of α w.r.t O gives the labels of the contexts that entail α. It means that, we

need to add α to the contexts corresponding to the labels in L\ϑ. The next case is, if the

boundary of α w.r.t O is empty, then, it means that, O |= α but not from any context of

O. Thus, the label of α should be updated to L. The scenarios described above are shown

in Figure 3.3.



Chapter 3. Context-Based Ontology Evolution 30

Figure 3.3 The table shows the label to be assigned to a newly added axiom in context-based
ontology expansion operation

Rank

In our work, for context-based ontology expansion and revision, we consider cases, where not

all axioms in an ontology have the same status, but some are preferred over the others. We

model this preference by a simple rank function, rank(a): O ← N where N denotes Natural

numbers greater than 0 and a is an axiom in the given ontology. The rank function maps

every axiom of the ontology O, which is given as input to context-based ontology expansion

or revision operations to the natural number “1”.

The axioms with rank “1” are the highest ranked axioms. If the axiom is newly

added during context-based ontology expansion or revision then, rank of that axiom will

be mapped to a natural number greater than “1”. The rank assigned to the newly added

axiom depends on the highest natural number assigned to the rank of the existing axioms

in the ontology. Suppose, if the highest natural number assigned to the rank of existing

axioms in the ontology is n, then, rank for the newly added axiom during context-based

ontology expansion or revision will be n+1 .

The axioms of the ontology with rank “1” are the highest ranked axioms of the on-

tology. The rank of the axioms decreases as the value of the natural number assigned to

the rank of the axiom increases. The rank function is required when a context needs to be

extracted from the ontology which is very similar to the original ontology then, the con-

text with highest rank can be extracted. The theorem given below, shows the relationship

between ontology expansion and context-based ontology expansion operations.

Theorem 3.8. Let O be an arbitrary labelled ontology in which every context is consistent

and α be an arbitrary axiom, let O′ be the labelled ontology such that O′ = O+cα. Let OE

be the ontology such that OE = O+α. Then, every context in the labelled ontology O′ is a

possible solution for ontology expansion on O w.r.t the axiom α.

Proof. OE is the result of the ontology expansion operation on O w.r.t the axiom α. Then

OE has the following properties. OE = O ∪ α, OE |= α.

The ontology O′ is the result of context-based ontology expansion operation. Let L′ be the

set of labels in O′. Then O′ has the following properties, for every context O′
l in O′, O′

l⊆O′,
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2,3,4,5 1,3,4,5 1,2,4,5

1,5 1,2,3,5

1,2,3,4

1,2,3,4,5

r : 1 r : 1 r : 1
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Figure 3.4: A labelled ontology after adding a consequence

O′
l|= α. Thus, every context in the labelled ontology O′ is a possible solution for ontology

expansion operation on O w.r.t the axiom α.

Given below is an example to demonstrate how context-based ontology expansion is

done.

Example 3.9. Consider the labelled ontology O shown in Figure 3.2 and the axiom Av ¬E

to do context-based ontology expansion on the ontology O.

This labelled ontology has five contexts i.e., the set of labels in O are,

L={1, 2, 3, 4, 5}.
As this ontology does not contain ranks, ranks are added to all the axioms of the ontology.

Initially, every axiom of the ontology is assigned with rank “1”. As described above, to add

the axiom Av ¬E to the ontology O, first we should compute boundary for Av ¬E w.r.t O.

As O6|=Av ¬E, the boundary is,

ϑ = ∅.
It means that, Av ¬E should be added to every context of the ontology O. That is,

lab(Av ¬E) = {1, 2, 3, 4, 5} is assigned to this axiom and then, the axiom is added

to O.

As the highest natural number assigned to the ranks of existing axioms of the ontology

is “1”, we assign rank as “2” to the new axiom. The ontology O after adding Av ¬E is

shown in Figure 3.4.

Here we describe a new approach to do context-based ontology expansion operation.

The step by step procedure to do context-based ontology expansion for a given input

labelled ontology O and an axiom α is described in Algorithm 4. The algorithm takes a

labelled ontology O and an axiom α as input. It returns the labelled ontology O′ such that

α holds from every context of O′. The algorithm uses the following global variables: O′

is the labelled ontology which is given as output by the algorithm, ϑ stores the boundary

of α w.r.t O, lab(α) stores the set of labels that should be assigned to α, L stores the

set of labels in O and L′ stores the set of labels in O′. The first step in the algorithm is

checking the entailment of α w.r.t O. If O |= α then, the algorithm computes boundary of

the entailment. Otherwise, if O 6|= α or, if the boundary of O |= α is ∅ then, it implies the
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Algorithm 4 Add axiom to all contexts of the ontology

1: procedure AddAxiomToAllContextsOfOntology(O, α)
2: Input: O : labelled ontology, α: the consequence to be added to every context of

the output labelled ontology O′

3: Output: O′: labelled ontology such that α holds from every context of O′

4: Global: O′:=∅, ϑ := ∅, lab(α):= ∅, L: set of labels in the ontology O
5: if O |= α then
6: ϑ← compute–boundary(O, α)
7: else
8: for every l ∈ L do
9: lab(α) ← lab(α) ∪ {l}

10: if ϑ 6= ∅ and ϑ 6= L then
11: for every l ∈ (L \ ϑ) do
12: lab(α) ← lab(α) ∪ {l}
13: else
14: for every l ∈ L do
15: lab(α) ← lab(α) ∪ {l}
16: for every axiom, a ∈ O do
17: O′ ← O′ ∪ {a}
18: O′ ← O′ ∪ {α}
19: return(O′)
20: end procedure

ontology O does not entail the consequence or α does not follow from any context of the

ontology O. In any of these two cases, α should be added to all the contexts of O i.e., label

assigned to α is the set of all labels of O this is done in the steps 9 and 15 and the axiom α

is added to the ontology O. If the boundary ϑ is not empty then, it implies that α follows

from the contexts of O whose labels are present in ϑ and α should be added to contexts of

O corresponding to the labels L\ϑ. This process is done in step 12 of the algorithm. After

assigning the label to α, the algorithm adds α to O in step 16. In step 18, the algorithm

adds all axioms of O to the ontology O′ and returns the labelled ontology O′ in which every

context entails α.

Theorem 3.10. Given a labelled ontology O in which every context of the ontology is

consistent and a consequence α, Algorithm 4 returns the labelled ontology O′ such that

every context in O′ entails the consequence α.

Proof : This is a special case of theorem 3.15.

Lemma 3.11. Algorithm 4 returns a labelled ontology O′ in exponential time, such that

every context of O′ entails a given consequence α.

Proof : This is a special case of lemma 3.16.

This section discussed in detail about context-based ontology expansion and showed a

new approach to do context-based ontology expansion. The next section shows a variant of

context-based ontology expansion, that is context-based ontology revision operation. The

difference between the two operations is that, in context-based ontology expansion, after
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adding an axiom to the ontology, it is not required to ensure the consistency of the contexts

of the ontology. In context-based ontology revision operation, after adding the axiom to

the ontology, it is required to ensure that, every context of the ontology is consistent and

every context entails the axiom that is added to the ontology in context-based ontology

revision operation.

3.3 Context-Based Ontology Revision

Given an arbitrary ontology O which is consistent and an axiom α, ontology revision is

the operation which revises the axioms of O to add the axiom α to O ensuring consistency

of O [15], it is denoted as O◦α. Ontology revision is discussed in detail in chapter 1.

Context-based ontology revision is a new approach to do ontology revision using context-

based reasoning. The symbol “◦c” is used to denote the operation of context-based ontology

revision.

As in context-based ontology contraction and expansion, in context-based ontology

revision also the input ontology should be labelled. If the ontology is not labelled, all the

axioms of the ontology are labelled with “1”. In ontology revision operation, an arbitrary

axiom α is added to the ontology and then consistency of the ontology is ensured. But,

in context-based ontology revision, the axiom α is added to every context of the labelled

ontology and consistency of every context of the ontology should be ensured after adding

α. This operation is defined as follows.

Definition 3.12 (context-based ontology revision). Given an arbitrary labelled ontology O

and an arbitrary axiom α, context-based ontology revision (O◦cα) is a relabelling operation,

which creates the labelled ontology O′ from the given ontology O, by relabelling the axioms

of O. Let L′ be the set of labels in O′. The labelled ontology O′ has the following properties,

− for every label, l′ ∈ L′, the corresponding context O′
l′ |= α.

− for every label, l′ ∈ L′, the corresponding context O′
l′ is consistent.

− for every label, l′ ∈ L′, the corresponding context O′
l′ ⊆ Ol ∪ α, where Ol is an arbi-

trary context in the ontology O and l is a label for the context Ol.

After adding the axiom to every context of the labelled ontology, the consistency of

every context of O should be ensured. To do that, we check consistency of every context,

if any of the contexts are inconsistent then, inconsistency should be retracted from those

contexts. In context-based ontology revision process, to get rid of inconsistency from the

contexts, we compute the boundary of inconsistency, the boundary for inconsistency gives

the labels of the contexts which are inconsistent. Then, repairs for these contexts are com-

puted, to retract inconsistency. After all the repairs are computed, we are interested only

in those repairs in the ontology O′ which entail the consequence α. The following theo-

rem shows the relationship between ontology revision and context-based ontology revision

operations.
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Theorem 3.13. Let O be an arbitrary labelled ontology and α be an arbitrary axiom,

let O′ be the labelled ontology such that O′ = O◦cα. And let OR be an ontology such that

OR = O◦α. Then every context in the labelled ontology O′ is a possible solution for ontology

revision operation on O w.r.t the axiom α.

Proof. OR is the result of ontology revision on O w.r.t the axiom α. Then OR has the

following properties. OR is consistent, OR|= α [15].

The ontology O′ is the result of context-based ontology revision on O w.r.t the axiom α.

Let L′ be the set of labels in O′. Then O′ has the following properties, every context O′
l in

O′, O′
l is consistent, O′

l|= α. Thus, every context in the labelled ontology O′ is a possible

solution for ontology revision on O w.r.t the axiom α.

The following example shows the difference between context-based ontology expan-

sion and context-based ontology revision operations. It shows every step of context-based

ontology revision in detail and how inconsistency is retracted from the contexts of the

ontology.

Example 3.14. Consider the labelled ontology O shown in Figure 3.2 and the axiom Av ¬E

to do context-based ontology revision.

There are two steps in context-based ontology revision operation on O. They are,

context-based ontology expansion and second step is to remove inconsistency from every

context of the ontology. The first step, context-based ontology expansion is shown in Exam-

ple 3.9. The labelled ontology O′′ after the first step is shown in Figure 3.4.

This labelled ontology shown in the figure has five contexts i.e., the set of labels in O′′

are,

L′′={1, 2, 3, 4, 5}. Out of the five contexts, the context, O5 is inconsistent after adding

the consequence Av ¬E.

Thus, in the second step, inconsistency should be retracted from this context. To retract

inconsistency from the context O5, we compute repairs for inconsistency w.r.t O5.

There are three repairs for inconsistency in the context O5. They are,

R1={A v ¬ E , B v E},
R2={A v B , B v E},
R3={A v ¬ E, A v B}.
The repairs R1,R2 and R3 are shown in Figure 2.7.

But, all the three repairs cannot be added to the ontology O′′ as the repair, R1 6|=Av ¬E.

We should add only those repairs to O′, which entail the consequence Av ¬E. Thus, only

the repairs R2 and R3 can be added to the ontology O′′ as contexts. The ontology after

adding the repairs R2 and R3 is the labelled ontology O′. The ontology O′ is shown in

Figure 3.5.

Here we describe a step by step procedure to do context-based ontology revision for a

given input labelled ontology O and an axiom α to be added to the ontology. This procedure



Chapter 3. Context-Based Ontology Evolution 35

A B C D

E

F

2,3,4,6 1,3,4 1,2,4

1,7 1,2,3

1,2,3,4

1,2,3,4,6,7

r : 1 r : 1 r : 1

r : 1r : 1

r : 1

r : 2

¬E

Figure 3.5 A labelled ontology obtained as the result of context-based ontology revision

Algorithm 5 context-based ontology revision

1: procedure Context-basedOntologyRevision(O, α)
2: Input: O : labelled ontology, α: the consequence to be added to every context of

the output labelled ontology O′

3: Output: O′: the labelled ontology which is the result of O◦cα operation
4: Global: O′=∅; labelled ontology
5: O′′ ← AddAxiomToAllContextsOfOntology(O,α)
6: O′ ← RemoveInconsistencyFromContexts(O′′, > v⊥)
7: return(O′)
8: end procedure

is described in Algorithm 5. The algorithm takes a labelled ontology O and an axiom α as

input. It returns the labelled ontology O′ such that α holds from every context of O′ and

every context of O′ is consistent. The algorithm declares the following global variables: O′′

is the labelled ontology in which every context entails the consequence α, O′ is the labelled

ontology that is given as output by the algorithm in which every context entails α and every

context is consistent. The algorithm first calls the procedure in Algorithm 4 which returns

the labelled ontology O′′ which entails the consequence α from every context. In the next

step, Algorithm 5 calls the procedure in Algorithm 6 with O′′ and α as input parameters.

It returns the ontology O′ in which every context is consistent and entails the consequence

α. Thus Algorithm 5 gives the labelled ontology O′ as the output of context-based ontology

revision operation.

The two steps in context-based ontology revision: adding the axiom to every context

of the ontology and ensuring consistency of every context of the ontology are described as

two algorithms, Algorithm 4 and Algorithm 6. Algorithm 4 is described in detail in the

previous section. Now we describe step by step procedure of Algorithm 6.

The second step of context-based ontology revision is retracting inconsistency from

the contexts of the ontology O′′ which is the output of Algorithm 4 and ensure that, af-

ter removing inconsistency every context of the ontology entails the consequence α. This

procedure is described in Algorithm 6. The algorithm takes the ontology O and the conse-

quence α as input. It returns the labelled ontology O′ as output. The algorithm uses the

following global variables: O′ is the labelled ontology given as output, L is set of labels in

the input ontology, L′ is set of labels in the output ontology, ϑ⊥ stores the boundary of ⊥
w.r.t the input ontology, Oϑ⊥ stores all the axioms of the contexts whose labels are present
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in ϑ⊥, Rϑ⊥ stores all the repairs for ⊥ .w.r.t every context whose labels are present in ϑ⊥.

The algorithm first computes boundary for inconsistency to find out which contexts of O

are inconsistent after adding α in the step 5. The algorithm adds all the contexts of O that

are consistent, to the labelled ontology O′ in step 16. In step 18, it computes repairs for

inconsistency by calling the procedure in Algorithm 3 which returns set of all repairs for

inconsistency w.r.t every context in the ontology Oϑ⊥ .

After computing the repairs, Algorithm 6 removes those repairs from Rϑ⊥ , which are

contained in the existing contexts in the ontology O′ in step 22. Then, in step 26, the

algorithm checks, if every repair entails the consequence α. A repair is added as a context

to the ontology O′ iff it entails α, this is done in step 31. In this manner, we update labels

of the axioms in O and create the new labelled ontology O′ such that α follows from every

context of O′ and every context of O′ is consistent.

Theorem 3.15. Given a labelled ontology O in which every context of the ontology is

consistent and a consequence α, Algorithm 5 returns the labelled ontology O′ such that,

every context in O′ is consistent and every context entails the consequence α.

Proof : Let L be the set of labels in the labelled ontology O and L′ be the set of labels in

O′. For every label l′ ∈ L′, we should prove the following.

1. The context, O′
l′ in the labelled ontology O′ is consistent. Let ϑ be the boundary of α

w.r.t the input ontology O. Depending on the labels present in ϑ, there exists two cases,

(a) If (ϑ = L) then, it implies that α holds from all the contexts of O and it is not required

to add α to any context of O. In this case, the set of labels L′ = L. Thus, the contexts in

O′ are equivalent to the contexts in O. As every context in the input labelled ontology O

is consistent, every context in the labelled ontology O′ is also consistent.

(b) If (ϑ ⊂ L) then, it implies that α holds from only few contexts of O corresponding to

the labels, that belong to ϑ. If the label l′ ∈ ϑ, as all the contexts corresponding to labels

in ϑ are unchanged in the labelled ontology O′, the context O′
l′ is consistent.

Otherwise, if l′ 6∈ L then, α is added to all the contexts corresponding to labels in L\ ϑ
and the context O′

l′ is a newly created context in the labelled ontology O′. After adding

α to the context O′
l′ , if O′

l′ is consistent, then this context is added to O′. If O′
l′ becomes

inconsistent after adding α then, Algorithm 6 calls the procedure Algorithm 3 to compute

the repairs for inconsistency. Algorithm 3 returns all the repairs for inconsistency w.r.t

O′
l′ . Among all the repairs, only the repairs that entail the consequence α are added to O′.

Thus Algorithm 6 ensures that all the contexts in O′ are consistent.

2. Prove that, the context O′
l′ in the labelled ontology O′ is such that O′

l′ |= α, Depending

on ϑ, there exists two cases.

(a) If (ϑ = L) then, it implies that the consequence α is entailed from all contexts of O.

Thus, it is not added to any context of O and in this case, the set of labels L′ = L. Thus,

the contexts in O′ are equivalent to the contexts in O. Thus, any context O′
l′ in O′ entails

the consequence α.

(b) If (ϑ ⊂ L) then, it implies that, α holds from only few contexts of O corresponding to

the labels that belong to the boundary ϑ. If the label l′ ∈ ϑ then, α is not added to the
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Algorithm 6 Remove inconsistency from contexts of the ontology

1: procedure RemoveIncosistencyFromContexts(O, α)
2: Input: O : labelled ontology, α: the consequence to be added to every context of

the output labelled ontology O′

3: Output: O′: labelled ontology in which every context is consistent and entails α
4: Global: O′:=∅, L: set of labels in the ontology O, L′:= ∅; set of labels in the

ontology O′, ϑ⊥:=∅, Oϑ⊥ :=∅, Rϑ⊥ :=∅
5: ϑ⊥ ← compute–boundary(O, α)
6: if ϑ⊥=∅ then
7: for every axiom, a ∈ O do
8: O′ ← O′ ∪ {a}
9: return(O′)

10: else
11: for every l ∈ ϑ⊥ do
12: for every a ∈ Ol do
13: Oϑ⊥ ← Oϑ⊥ ∪ {a}
14: for every l ∈ (L \ ϑ⊥) do
15: for every axiom, a ∈ Ol do
16: O′ ← O′ ∪ {a}
17: L′ ← L′ ∪ l
18: Rϑ⊥ ← ComputeBoundaryRepairs(Oϑ⊥ , α, ϑ⊥)
19: for every Rj ∈ Rϑ⊥ do(where 1≤j≤|Rϑ⊥ |)
20: for every l ∈ L′ do
21: if Rj ⊆ O′

l then
22: Rϑ⊥ ← Rϑ⊥ \ Rj

23: else
24: lnew ← n (where n ∈ N and n 6∈ L′)
25: L′ ← L′ ∪ {lnew}
26: if Rj |= α then
27: for every axiom, a ∈ Rj do
28: if a ∈ O′ then
29: O′ ← O′ \ {a}
30: lab(a) ← lab(a) ∪ {lnew}
31: O′ ← O′ ∪ {a}
32: return(O′)
33: end procedure

contexts Ol′ . As Ol′ entails the consequence α, it is unchanged in the ontology O′. As every

context in the ontology O is consistent, every context in the ontology O′ whose labels are

present in ϑ are consistent and entail the consequence α.

Otherwise, if l′ 6∈ ϑ then, α is added to all the contexts corresponding to labels in

L\ ϑ. After adding α to a context, Ol′ , if Ol′ is consistent, then this context is added to

O′. If Ol′ becomes inconsistent after adding α then, Algorithm 6 calls the procedure in

Algorithm 3 to compute repairs for inconsistency as Algorithm 3 returns all repairs for

inconsistency w.r.t Ol′ . Among the repairs obtained from Algorithm 3, only those repairs

that entail the consequence α will be added to O′. Thus Algorithm 5 ensures that all the
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contexts in O′ entails the consequence α.

Lemma 3.16. Given a labelled ontology O in which every context is consistent and a

consequence α, Algorithm 5 returns the labelled ontology O′ in exponential time, such that

every context O′ is consistent and every context of O′ entails a given consequence α.

Proof : From lemma 2.11, we know that, it takes exponential time to compute boundary

for a given consequence w.r.t to a given ontology. After computing boundary and adding

the consequence to contexts from which it does not hold. If any context of the ontology

becomes inconsistent, then, it takes exponential time to compute repairs for inconsistency

as shown in lemma 1.7. Thus, the overall complexity of Algorithm 5 is exponential time.

This section presented the theoretical methods developed for context-based ontology

revision operation. Overall, in this chapter we presented the theoretical methods developed

to do the context-based ontology evolution operations. The next chapter, presents the

details about extraction of the best contexts from the labelled ontology and context-based

reasoning methods over the best contexts extracted.



Chapter 4

Extraction Of The Best Contexts

And Reasoning Over The Best

Contexts

Chapter 3 presented the theoretical methods to do context-based ontology evolution oper-

ations on semantic web ontologies. While doing iterative ontology evolution on an ontology

using context-based ontology evolution operations, instead of choosing the optimal solution

after each update on the ontology, generally all the solutions obtained in every evolution

step are stored as a single ontology and further evolution is done on that ontology (which is

compact representation of all the solutions obtained). But, at the end of all the evolution

steps, it is important to choose the optimal solution among all the solutions obtained.

As every solution is represented as a context in the labelled ontology obtained after

context-based ontology evolution operations, choosing the optimal solution means, extract-

ing a context which has some special properties. This chapter focuses on various aspects

involved in extraction of a context from a labelled ontology and also on context-based

reasoning over the extracted contexts. It presents the theoretical methods to extract the

best contexts from a labelled ontology and methods to do context-based reasoning over the

extracted contexts.

4.1 Extraction Of The Best Context

There are mainly two aspects to be considered in the process of extracting a context from

a labelled ontology. They are:

1. Which context should to extracted from a labelled ontology?

2. When to extract a context from a labelled ontology?

This section discusses these two aspects of extraction in detail.

39
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Figure 4.1: Ontology labelled with contexts and ranks

4.1.1 Notion Of The Best Context

There exists many contexts in a labelled ontology, among them, the optimal solution for

the context-based ontology evolution process is, the best context (context with some special

properties) in the ontology. There is no fixed notion for the best, the best context can be

a context with highest number of axioms or, a context with most original axioms of the

ontology or, a context with maximum weight or, a context with a intended consequence

or, the context with highest number of axioms and entails a intended consequence. In our

work, we consider three notions for the best: size, rank, the best context with a intended

consequence.

Size

Here size refers to the number of axioms in a context. The best context w.r.t size is the

context of the labelled ontology which contains highest number of axioms. This notion for

the best can be considered when the optimal solution of the ontology evolution process is

considered as the solution with minimal change [5]. As the best context obtained using

this notion for the best is, the context which maximally preserves the semantics of the orig-

inal ontology. We consider this notion for the best in context-based ontology contraction,

revision and expansion operations. The following example shows how to extract the best

context from a labelled ontology when the notion for the best is size.

Example 4.1. Consider the labelled ontology O, shown in Figure 4.1. There are five con-

texts in the ontology O and the task is to extract the context with highest number of axioms

from this labelled ontology.

To extract the best context w.r.t size, sizes of all the contexts should be computed.
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sizes of the five contexts (O1, O2, O3, O4, O5) present in the labelled ontology O

are:

| O1 | = 5 (as the number of axioms in the context, O1 are five);

| O2 | = 4;

| O3 | = 4;

| O4 | = 4;

| O5 | = 5;

The biggest size among all the contexts of the ontology O is, maxsize = 5. Among the

five contexts in the ontology O, there are two contexts with size 5, they are, O1 and O5.

Thus, both the contexts O1 and O5 are the best contexts of O w.r.t size.

In the above example, there are two best contexts in the labelled ontology (i.e., two

optimal solutions) and it is the choice of the user which context to extract from the best

contexts. It is also possible to extract all the best contexts and represent them as a single

labelled ontology.

Rank

The best context w.r.t rank is the context of the labelled ontology with highest rank. That

is, the context which contains highest ranked axioms of the ontology. In Chapter 3, it is

shown, how the ranks are assigned to the axioms of the ontology. The original axioms of

the ontology are assigned with the highest rank “1”. The new axioms added to the contexts

of the ontology are assigned with a lower rank than the original axioms (i.e., value of rank

for a newly added axiom will be greater than 1). That is, the best context w.r.t rank is the

context of the ontology which has the most original axioms of the ontology. We consider

this notion for the best in context-based revision and expansion operations, as the ranks

are assigned to the axioms of the ontology, only when the new axioms are added to the

ontology. This notion for the best is used when the optimal solution of ontology evolution

process is chosen as the solution with most original axioms of the ontology. The following

example shows, how to extract the best context w.r.t “rank” from a labelled ontology.

Example 4.2. Consider the labelled ontology O shown in Figure 4.1. The task is to extract

the best context w.r.t rank from this labelled ontology.

In the labelled ontology O, there are five contexts and ranks are assigned to all the axioms

of the ontology. To extract the best context w.r.t rank, first ranks of all the contexts should

be computed.
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The ranks of the contexts are:

rank(O1) = 2 (as the highest rank among all the axioms of O1 is 2);

rank(O2) = 2;

rank(O3) = 2;

rank(O4) = 2;

rank(O5) = 2;

After computing ranks of all the contexts, the highest rank among all the contexts is

computed, The highest rank among all the contexts is “2”. As all the context have highest

rank, all contexts of the ontology are the best w.r.t rank. Thus, any context can be chosen

as the best context of this ontology.

As described in the case of size, in the case of rank also, the user can extract either

one of the best context or all the best contexts from the ontology.

Best Context With A Intended Consequence

Extraction of the best context using this notion for the best is done in two steps.

1. Extract all the best contexts from the labelled ontology w.r.t “size” or “rank”.

2. Extract a context among the best contexts extracted in step 1, which entails the

intended consequence specified by the user.

We consider this notion in context-based contraction, revision and expansion opera-

tions. This notion for the best is very useful if the user wants a best context from the

ontology with a intended consequence. The following example shows, how to extract the

best context w.r.t the notion “Best context with a intended consequence” from a labelled

ontology.

Example 4.3. Consider the labelled ontology O shown in Figure 4.1. The task is to ex-

tract the best context w.r.t the notion, “Best context with a intended consequence” from this

labelled ontology.

Step 1: Extract all the best contexts from the labelled ontology, let the notion for the best be

size. The best contexts in the ontology O w.r.t size are O1 and O5 (shown in Example 4.1).

Let the consequence α: A v B be the intended consequence from O.

Step 2: From the two best contexts computed in step 1, the context which entails the con-

sequence A v B should be extracted.

The best contexts contain the following axioms:

O1= {B v C, C v D, D v E, B v E, E v F} and

O5= {A v B, B v C, C v D, D v E, B v E}.
Among the contexts O1 and O5, O1 6|=A v B and O5|=A v B. Thus, the best context

is O5.
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If there exists more than one best context in the ontology according to this notion

then, any one of them can be chosen as best or all the best contexts can be extracted and

represented as a single labelled ontology. If there exists no contexts in the ontology, which

satisfy this notion for the best then, the best context computed at the end of first step is

extracted as the best context of the ontology. Thus, we consider these three notions for

the best and present the theoretical methods to extract the best contexts from a labelled

ontology w.r.t these three notions for the best.

Here we present two algorithms to extract the best context from a labelled ontology.

The procedure described in Algorithm 7 is used to extract the best context(s) from the

ontology, when the notion of the best is “size” or “rank”. The algorithm takes a labelled

ontology O, the notion of the best ( “size” or “rank”), Number of solutions (whether the

user wants to extract all the optimal solutions or only one optimal solution) as input. If

the notion of the best is “size” then, this algorithm computes sizes of all the contexts of

the ontology in steps 6-10 and stores the sizes in the set sizes. After computing sizes of all

the contexts, the algorithm computes the maximum size among the sizes of all the contexts

in step 11 and stores it in the variable maxsize. Then it extracts all the contexts of the

ontology with maxsize from the ontology and stores them in the set OAllBest in step 14.

If the notion for best is “rank” then, the algorithm first computes the ranks of all

the axioms that belong to a context and stores these ranks in the set rank(Ol) in step 19.

Among the ranks of all the axioms in a context, the rank of the context is computed as

the minimum value of all the ranks. The rank of a context is stored in the variable rankl

(where l is the label of the context Ol), this computation is done in step 20 and ranks of

every context are stored in the set ranks in step 21. After the ranks of all the contexts are

computed, the algorithm then computes the highest rank among all the contexts, this is

done in the step 22, this value is stored in the variable maxrank. Then, in the step 25 the

algorithm extracts all the contexts OAllBest from the ontology O whose rank is maxrank.

After extracting all the best contexts from the labelled ontology w.r.t “size” or “rank”,

if the user wants to extract all the best contexts from the ontology, then a single labelled

ontology OBest is created using all the axioms that belongs every best context present in

the set OAllBest, this computation is done in step 29. If the user wants only one optimal

solution then a random context from the set of contexts in OAllBest is taken as the best

context OBest in step 32. The algorithm returns the best context OBest as output in step

33. Thus the algorithm extracts all the best contexts or a single best context from the given

labelled ontology.

Extraction of the best context with a intended consequence α from the labelled on-

tology requires two steps. The first step is to extract all the best contexts of the ontology

w.r.t “size” or “rank”. The second step is to extract a context from the set of best contexts,

which entails a intended consequence α. Algorithm 8 describes the step by step procedure

to extract the best context that entails a consequence α from a labelled ontology.
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Algorithm 7 Extract best contexts from the labelled Ontology

1: procedure ExtractBestContext(O, Best, numberOfOptimalSolutions)
2: Input: O : labelled ontology, Best : notion for the best, numberOfSolutions: number

of optimal solutions to be extracted from O
3: Output: OBest: labelled ontology containing extracted best contexts
4: Global: L: set of labels in O, ranks:= ∅, sizes:= ∅, OAllBest = ∅; set which contains

all the best contexts, OBest = ∅; labelled ontology containing extracted optimal solutions
5: if Best = “size” then
6: for every l ∈ L do
7: sizel ← 0;
8: for every a ∈ Ol do
9: sizel ← sizel + 1;

10: sizes ← sizes ∪ sizel
11: maxsize ← maximum(sizes) I maxsize the maximum value in the set, sizes.
12: for every l ∈ L do
13: if sizel = maxsize then
14: OAllBest ← OAllBest ∪ Ol

15: else if Best = “rank” then
16: for every l ∈ L do
17: rankl ← 0;
18: for every a ∈ Ol do
19: rank(Ol) ← rank(Ol) ∪ rank(a) I rank(a) is the rank of the axiom, a

20: rankl ← minimum(rank(Ol)) I minimum value in rank(Ol) is the highest
rank of Ol

21: ranks ← ranks ∪ rankl
22: maxrank ← minimum(ranks) I minimum value in ranks is the highest rank in

the ontology
23: for every l ∈ L do
24: if rankl = maxrank then
25: OAllBest ← OAllBest∪ Ol

26: if numberOfSolutions = “all” then
27: for every Oi ∈ OAllBest do (where 1≤i≤|OAllBest|)
28: for every axiom, a∈Oi do
29: OBest ← OBest ∪ a

30: else if numberOfSolutions = “one” then
31: let i = 1;
32: OBest ← OBest ∪ Oi (where Oi ∈ OAllBest)

33: return(OBest)
34: end procedure

The algorithm takes a labelled ontology O, notion for the best (“size” or “rank”)

and the intended consequence α as input. It returns the best context OBest as output.

In step 6, the algorithm calls the procedure in Algorithm 7 with the ontology O, Best,

numberOfSolutions as input. As we want to check the entailment of α w.r.t all the best

contexts of the ontology, the value of the variable numberOfSolutions is set to “all”. The

algorithm checks the entailment of α from every best context in the set OAllBest in step 8.

If any of the contexts in OAllBest entails α then, that context is stored in OBest and the
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Algorithm 8 Extract the best context entailing α from the labelled Ontology

1: procedure ExtractBestEntailedContext(O, Best, α)
2: Input: O : labelled ontology, Best : notion for the best, α: consequence to be

entailed from the best contexts of O
3: Output: OBest: labelled ontology containing extracted best context
4: Global: L: set of labels in O,OAllBest = ∅; set which contains all the best contexts,
OBest = ∅; labelled ontology containing extracted best context, numberOfSolutions=0.

5: numberOfSolutions ← all ;
6: OAllBest ← ExtractBestContext(O,Best, numberOfSolutions)
7: for every context Oi ∈ OAllBest do (where 1≤i≤|OAllBest|)
8: if Oi|= α then
9: OBest ← OBest ∪ Oi

10: return(OBest)

11: if OBest = ∅ then
12: let i = 1;
13: OBest ← OBest ∪ Oi (where Oi ∈ OAllBest)

14: return(OBest)
15: end procedure

algorithm returns OBest as the best context of the ontology.

Otherwise, if none of the contexts in OAllBest entail the consequence α, then the

algorithm takes a random context in OAllBest as the best context, this computation is done

in step 12. The algorithm returns the best context extracted from the ontology in step 13.

Thus, this algorithm can be used to extract the best context from a labelled ontology which

has a intended consequence α.

The previous paragraphs presented the procedures to extract the best context(s) from

a labelled ontology using the three notions of the best that are described in this work. The

Theorem 4.4 proves the correctness of the procedure to extract best context from a labelled

ontology with “size” or “rank” as the notion of the best using Algorithm 7.

Theorem 4.4. Given a labelled ontology O, Algorithm 7 returns a context OBest which is

the best context of O w.r.t “size” or “rank”.

Proof : Depending on the notion for the best, we should prove the following two cases.

1. If Best = size

In the labelled ontology O, let L be the set of labels. For some arbitrary label l ∈ L, let Ol

be a context with the highest number of axioms. It means that, size of the context Ol is

the maxsize in the ontology. As the context OBest which Algorithm 7 returns is the context

with the size maxsize, it should be one of the best contexts of O w.r.t “size”. If OBest is

not one of the best contexts of O, then it contradicts our assumption that, the context Ol

has the highest number of axioms and the size of Ol, maxsize is not the biggest size of a

context in O. Thus, we conclude that OBest is a best context in O w.r.t “size”.

2. If Best = rank

The proof of case 2 is analogous to proof of case 1. Let L be the set of labels in the labelled

ontology O. For some arbitrary label l ∈ L, let Ol be a context with the highest rank in
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the ontology. Then maxrank is the rank of the context Ol. As the context OBest which

Algorithm 7 returns is the context with has the rank maxrank, it should be one of the

best contexts of O w.r.t “rank”. If OBest is not one of the best contexts of O then, it

contradicts our assumption that, the context Ol is the highest ranked context in O and the

rank maxrank of Ol is not the highest rank of a context in O. Thus, we conclude that OBest

is a best context in O w.r.t “rank”.

The following Lemma 4.5 proves the complexity of the procedure described in Algo-

rithm 7 to extract a best context from a labelled ontology.

Lemma 4.5. Given a labelled ontology O, Algorithm 7 returns the best context from O in

linear time.

Proof : Algorithm 7 takes linear time to extract best context from a labelled ontology

because of the following: preprocessing steps are done on an ontology while doing context-

based ontology evolution operations on it using Algorithm 2 or 6. The preprocessing steps

are, the algorithm maintains a hash table of every context of the ontology and the axioms

belonging to that context. Thus it takes constant time to compute the size of each context

in Algorithm 7. And it takes constant time to compute the maxsize or maxrank among

all the contexts of the ontology. Once the maxsize or maxrank is computed, it takes linear

time to enumerate all the axioms of the labelled ontology and extract a context having

maxsize or maxrank from the ontology. Thus, due to the prepossessing steps performed on

the given ontology, it takes linear time to extract a best context from a labelled ontology

using Algorithm 7.

This section discussed about the notion for the best, presented in detail about the

various notions for best considered in this work and presented theoretical methods to ex-

tract a best context from an ontology using the three notions for the best. It also presented

the theorem to prove correctness of the algorithm and also showed the complexity of Algo-

rithm 7. The next section handles another aspect to be considered in extraction of a best

context, that is, When to extract a context from a labelled ontology?

4.1.2 When To Extract A Context From A Labelled Ontology?

With respect to this aspect, we considered two ways to extract the best context from a

labelled ontology. They are:

1. Extraction of the best context during iterative context-based ontology evolution.

2. Extraction of the best context after iterative context-based ontology evolution.

Extraction Of The Best Context During Iterative Context-based Ontology Evo-

lution

While doing iterative ontology update on an ontology, using regular ontology evolution

approaches, generally the optimal solution is chosen at the end of every update and the

next update are done on this solution. In the same manner, when iterative ontology update
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is done on an ontology using context-based ontology evolution approaches also, it is possible

to choose the optimal solution after every update and do the next update on this solution.

For example, consider an ontology O and set of consequences α1 and α2, in the first

step, context-based ontology evolution operation is done on O w.r.t α1. Then, a context

which is the optimal solution from the first ontology evolution step, is extracted at the end

of first step. Let OBest be the context obtained after first step. The next step of context-

based ontology evolution is done on OBest w.r.t the consequence α2. In this manner, best

context is extracted at the end of every step of ontology evolution and the best context

extracted is used to do the next step of context-based ontology evolution operation.

This method may lead to more information loss, as it considers only one optimal

solution obtained at the end of every step of evolution. But doing context-based ontology

updates using this method is fast as computations are done only on one context, instead of

the whole ontology.

Extraction Of The Best Context After Iterative Context-based Ontology Evo-

lution

The main aim of doing iterative ontology update using context-based ontology evolution

methods is to store all the solutions obtained in each step of ontology evolution process

compactly and do further updates on all the solutions to minimize information loss. Ex-

tracting a context from the ontology using this approach, Extraction of best context after

iterative context-based ontology evolution enables to do iterative ontology update on all the

solutions obtained at every stage of ontology evolution and a context can be extracted from

the ontology at the end of all steps of ontology evolution process.

For example, consider an ontology O and a set of consequences α1 and α2, context-

based ontology evolution operations are done on the two consequences w.r.t the whole

ontology O. That is, let O′ be the result of context-based ontology operation on O w.r.t

α1. In the next step, context-based ontology evolution operation is done on O′ w.r.t α2.

In this manner, all the solutions obtained in every step are stored and represented as a

single labelled ontology and further updates are done on it. At the end of all steps of

evolution, a context can be extracted from the labelled ontology obtained after all the steps

of context-based ontology evolution.

This method minimizes the information loss from the ontology. But, as it keeps the

whole ontology in every step, it needs more memory to store all the solutions and more time

to do computations on the whole ontology. To understand the trade-offs between these two

methods, we performed experiments on real-world ontologies comparing the two methods.

The results and analysis of the experiments is presented in the next chapter.

In this work, we considered these two methods discussed above. But, there is no fixed

rule about when a context should be extracted from an ontology. Best contexts can be

extracted from a labelled ontology at any stage during iterative ontology update.
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This section elaborated on the task of extraction of the best context from a labelled

ontology. It presented the notions of the best and described an algorithm how to extract

the best context. It also presented various aspects to be considered during extraction. The

point to be noted here is that, we can extract one best context among all the best contexts

present in an ontology or we can extract all the best contexts present in the ontology as

optimal solutions. The next section presents the theoretical methods to do context-based

reasoning over the extracted best contexts.

4.2 Reasoning Over The Best Contexts

Context-based reasoning offers the reasoning tasks such as, checking entailment of a sub-

sumption, checking consistency of the context in the ontology and computing boundary

of a consequence w.r.t extracted contexts. To do context-based reasoning effectively over

the extracted contexts, some preprocessing steps should be done on the extracted contexts.

In extraction of best contexts from an ontology, a context or a set of best contexts are

extracted from a labelled ontology. But the ontology contains many contexts other than

the extracted contexts. Due to this, the labels of the axioms present in the extracted con-

texts might contain labels of contexts in the ontology other than the labels of extracted

contexts. But it is not efficient to do context-based reasoning over such axioms which have

un-intended labels. To overcome this problem, after extracting best contexts from an on-

tology, preprocessing steps are done to get rid of un-intended labels from the axioms of

extracted contexts and to do efficient context-based reasoning over extracted contexts.

The steps are, to modify the labels of all the axioms of the extracted contexts such

that, the axioms contains only the labels of the contexts that are extracted. All other labels

are removed from the labels of the axioms. To retain only the labels of the best contexts

extracted, it is important to know the labels of the best contexts. The following algorithm is

used to do the preprocessing steps and context-based reasoning over the extracted contexts.

The procedure to do the preprocessing steps and context-based reasoning over the

extracted contexts is described step-by step in Algorithm 9. The algorithm takes three

input parameters O : labelled ontology which contains all the extracted contexts, labels:

labels of the best contexts extracted, α: consequence to do context-based reasoning. The

algorithm uses the global variables O′: ontology created using the relabelled axioms of the

ontology O, ϑ: stores the boundary computed for α w.r.t O′. The algorithm first processes

the labels of the axioms of the input ontology. It creates new labels to the axioms labnew(a)

by retaining only the labels of best contexts of the axioms, i.e., labels present the variable

labels, this is done in steps 7,8. It removes all other labels from the axioms and creates the

ontology O′ with the relabelled axioms in step 9.

After the ontology is relabelled then, context-based reasoning can be done over it. It

is done in the step 10, that is, we can compute boundary of the input consequence α w.r.t

the relabelled ontology O′. Finally in step 11, the algorithm returns the boundary ϑ as the

result of context-based reasoning over the extracted ontology.
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Algorithm 9 Context-based reasoning over the best contexts

1: procedure ReasoningOverTheBestContexts(O, labels, α)
2: Input: O : labelled ontology, labels: context labels w.r.t which the ontology O is

extracted, α: consequence to do context-based reasoning
3: Output: ϑ: boundary of the consequence α
4: Global: O′:= ∅; stores relabelled axioms of the input ontology, ϑ:= boundary of α

w.r.t O′.
5: for every axiom, a ∈ O do
6: labnew(a) ← ∅
7: labnew(a) ← lab(a) ∩ labels
8: lab(a) ← labnew(a) I remove old label of the axiom a and assign new label
9: O′ ← O′ ∪ {a}

10: ϑ ← compute–boundary(O′, α)
11: return(ϑ)
12: end procedure

The complexity of Algorithm 9 is same as the complexity of computing boundary. The

complexity of computing boundary in context-based reasoning is exponential time, which

is proved in the lemma 2.11.

This chapter presented the theoretical methods to extract best contexts from a labelled

ontology and to do context-based reasoning over the extracted contexts. It also discussed

various aspects to be considered while extracting the best contexts from an ontology like

the notion of the best and when to extract a context from an ontology. The next chapter

presents the implementation details of the theoretical methods developed in Chapters 3

and 4. It also presents the details about the empirical evaluation done to evaluate our

implementation on the real-world ontologies.



Chapter 5

Implementation and Empirical

Evaluation

All the theoretical methods to do context-based ontology evolution operations, to extract

the optimal solutions and to do context-based reasoning over the extracted optimal solutions

are described in Chapters 3 and 4. This Chapter describes the first prototypical implemen-

tation of all the theoretical methods developed in Chapters 3 and 4. It also presents the

protége plug-in developed to do context-based ontology evolution operations. Section 5.2

presents the details of the experiments on the real-world ontologies FULL-GALEN1 and

SNOMED CT2 to evaluate the implementation of our approaches. The last section of

this chapter presents the results of our experiments, interpretation of the results and our

conclusions based on the results.

5.1 Implementation

All the approaches are implemented in Java 7. The logic reasoners Hermit3 and ELK4

are used in this work. Hermit is an OWL 2 DL reasoner based on hyper-tableau calculus.

Given an ontology, it can perform consistency checking, classification, entailment checking

and also gives justifications for an entailment. ELK is a reasoner for the lightweight ontology

language OWL 2 EL. It is very fast and supports incremental reasoning. The OWL API5 is

used, as it is convenient for parsing OWL ontologies and to interact with the reasoners. The

experiments are conducted on a PC with 2GB RAM and Intel Core Duo CPU 3.16GHz. A

Java swing application is developed as a plug-in to the ontology editor tool Protége 4.3.6

1http://www.opengalen.org
2http://www.ihtsdo.org/snomed-ct/
3http://www.hermit-reasoner.com
4https://code.google.com/p/elk-reasoner/
5http://owlapi.sourceforge.net/
6http://protege.stanford.edu
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5.1.1 Protége Plug-in

The plug-in to Protége 4.3 is named as Context-based Ontology Evolution Plug-in. The

main aim of this plug-in is to provide the user, a graphical interface to do context-based

ontology evolution operations on the ontologies loaded into the tool. Figure 5.1 shows the

main view of the plug-in. As soon as the plug-in is loaded, it displays the information

about the contexts present in the ontology. The plug-in can handle context-based ontology

contraction and context-based ontology revision operations.

To do context-based evolution operations, the user should enter the concepts names

of super class and sub class of the subsumption relation on which the user wants to do

the operations. With this information the user can do the following operations: check, if

the ontology entails the consequence, check boundary of the consequence w.r.t the ontol-

ogy loaded, context-based ontology contraction operation, context-based ontology revision

operation, extracting the best context that entails the given consequence from the given

labelled ontology and the user can also extract some random context from the ontology.

The button “Check Entailment” checks, if the given consequence is entailed from the

ontology. The button, “Boundary” computes the boundary of the given consequence w.r.t

the labelled ontology that is loaded into Protége. The button, “Context-based Ontology

Contraction” is used to do context-based ontology contraction operation on the given con-

sequence. The button “Context-based Ontology Revision” is used to do context-based

ontology revision operation on the given consequence. The button “Extract Best Context”

is used to extract one of the best context w.r.t “size” or “rank” from the labelled ontol-

ogy. And the button, “Extract A Context” extracts a context from the labelled ontology,

given the label of a random context in the ontology. Thus, the user can do context-based

reasoning and context-based ontology evolution operations using this plug-in.

5.2 Empirical Evaluation

This section describes in detail about the experiments we conducted, the ontologies and

test setting used for the experiments. Among the theoretical methods developed, our exper-

iments evaluated the algorithms context-based ontology contraction which is the implemen-

tation of Algorithm 2 and extract the best context which is the implementation of Algorithm

7.

5.2.1 Ontologies

The real-world ontologies FULL-GALEN and SNOMED CT with different expressivities are

chosen for our experiments. The Systematized Nomenclature of Medicine, Clinical Terms

(SNOMED CT) is a comprehensive medical and clinical ontology whose expressivity is

EL++ and FULL-GALEN ontology with expressivity is ALCHIF . The metrics of both

the ontologies are shown in Figure 5.2. For our experiments we chose the consequences with
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Figure 5.1: Context-based Ontology Evolution plug-in in Protége 4.3

Ontology
Name

Numberof
axioms

Numberof
concept
names

Numberof
object

properties

FULL-GALEN 63329 23141 950

SNOMEDCT 883,542 294,469 62

Figure 5.2: Metrics of FULL-GALEN and SNOMED CT ontologies

the following properties: the consequences with more MinAs and consequences with few

MinAs. As the number of MinAs increase for a consequence, the number of repairs for that

consequence also increases. In our tool, as the number of contexts and the boundary size

for the consequence increase, the number of repairs computed for the consequence w.r.t

every context in the boundary also increases. Thus, the consequences with these properties

pose different challenges to our tool. All the consequences for SNOMED CT testing are

chosen from the test data used in Debugging Large EL+ Ontologies via SAT and SMT

Techniques [16]. All the consequences for FULL-GALEN testing are chosen from the test

data used in testing Just Reasoner [17].
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5.2.2 Test Setting

Every test case designed for our experiments consists of an ontology in which all the axioms

are labelled with a single context label “1” and five consequences to be tested on the

ontology. The representation of a test case is shown in Figure 5.3.

The main focus of our experiments is to compare the performance of two scenarios

which are described in Chapter 4. These two scenarios are chosen as they show how

information loss can be minimised in iterative ontology update by storing all the solutions

obtained in every step of ontology update. Scenario 1 is called “extraction of the best

context after iterative ontology update”. This scenario is represented in Figure 5.4. There

are five steps in this scenario. In every step, the operation (either context-based ontology

contraction or context-based ontology revision) is performed on the whole ontology that is

given as input. After doing context-based ontology evolution operation on the first four

consequences of the test case, a labelled ontology is obtained. Using this labelled ontology

and the fifth consequence of the test case, the best context (w.r.t size or rank) which entails

the fifth consequence of the test case is extracted from the labelled ontology. The context

extracted is the result of scenario 1.

The second scenario (scenario 2) is called “extraction of the best context during iter-

ative ontology update”. This scenario is represented in Figure 5.5. The figure shows that,

two operations are performed on every consequence of the test case. They are, context-

based ontology evolution operation (either contraction or revision) and then extraction of

the best context (w.r.t size or rank) from the resulting labelled ontology. The best context

extracted at the end of every step is used to do the two operations mentioned above on the

next consequence of the test case. Thus, the operations context-based ontology evolution

operation and extraction of the best context are done on the first four consequences of the

test case. At the end of four steps, we test if the best context extracted at the end of four

steps entails the fifth consequence of the test case and then extract the best context.

Our hypothesis is that, the running time of scenario 1 is more than the running time of

scenario 2. As scenario 1 uses the whole ontology in every step and it requires more memory

to store the whole ontology and more time to do computations on all axioms of the ontology.

But it is still possible to keep whole ontology and do operations over the whole ontology in

reasonable time using context-based ontology evolution approaches. Scenario 2 is relatively

less expensive than scenario 1 as it keeps only the best context of the ontology in memory at

every step and performs the computations on it. But according to our hypothesis, the scope

for information loss is very low in scenario 1 than in scenario 2 as the updates are performed

on the whole ontology (keeping all the solutions obtained) in every step in scenario 1. Thus,

the best context extracted at the end of all the steps in scenario 1 will have equal or more

information (axioms) than the best context extracted at the end of all steps of scenario 2.

That is, context-based ontology evolution approach provides us an opportunity where the

whole ontology can be represented and stored compactly and computations can be done on

the whole ontology efficiently.
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Ontology

consequence 1

consequence 2

consequence 3

consequence 4

consequence 5

Figure 5.3: Representation of a test case

Ontology

consequence 1

Ontology

consequence 2

Ontology

consequence 3

context-based
ontology evolution

operation

Ontology

Extract best
entailed context

Ontology

consequence 5

Best context

consequence 4

context-based
ontology evolution

operation

context-based
ontology evolution

operation

Figure 5.4 Representation of scenario 1: extraction of the best context after iterative ontology
update scenario

Ontology

consequence 1

1, 2

Best context 1

consequence 2

1, 2

Best context 2

consequence 3

1, 2

Best context 3

consequence 4

Extract best
entailed context

Best context 4

consequence 5

Best context

1. Context-based ontology evolution operation
2. Extract best context

Figure 5.5 Representation of scenario 2: extraction of the best context during iterative ontology
update

5.2.3 Experimental Results And Interpretation

This section presents the results of our experiments on the ontologies FULL-GALEN and

SNOMED CT. On FULL-GALEN ontology we tested 20 test cases, each test case consisting

of 5 consequences. Every test case is run three times and average of the three runs is taken as

the result. For SNOMED CT testing, 10 test cases are considered, each test case consisting

of 5 consequences. In case of SNOMED CT testing also, every test case is run three times

and the average of the three runs is taken as the result. Every test case is tested in both

the scenarios 1 and 2.

5.2.4 Analysis of Size of The Best Context Extracted

Figure 5.6 shows the results of comparison between the size of the best context extracted

in the scenarios 1 and 2. Figure 5.6 (A) shows the results of FULL-GALEN and Figure 5.6

(B) shows the results of SNOMED CT. From the results obtained, it is observed that,

in case of FULL-GALEN, in scenario 1, the maximum size of a best context extracted
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Figure 5.6 The grouped bar graphs show the comparison between size of the best context extracted
in each test case in scenarios 1 and 2 for the ontologies (A) FULL-GALEN and (B) SNOMED CT

is 62853 axioms and the minimum size of a best context is 62851 axioms. In scenario 2,

the maximum size of a best context extracted is 62853 and minimum size is 62850. From

Figure 5.6 (A) it is clearly depicted that, the size of the best context extracted is same or

more in case of scenario 1 than in scenario 2. That is, the information loss in scenario 1 is

less than the information loss in scenario 2. It means that, our goal to achieve “Iterative

Ontology Update with Minimum Change” using context-based ontology evolution approach

is successful. In case of SNOMED CT results, the results are the following. In scenario 1

and scenario 2, the maximum size of a best context extracted is 883540 and minimum size

is 883539. In both the scenarios the size of the best context extracted is the same.

5.2.5 Analysis of Time Taken To Run The Test Cases

The graphs in Figure 5.7 shows the comparison between total time taken to run each test

case in scenario 1 and scenario 2. Figure 5.7 (A) shows the results of FULL-GALEN and

Figure 5.7 (B) shows the results of SNOMED CT. For FULL-GALEN, the average time

taken to run the whole test case in scenario 1 is 17.49 minutes and average time taken to

run the whole test case in scenario 2 is 6.66 minutes. In case of SNOMED CT, the average

time taken to the whole test case in scenario 1 is 14.44 minutes, in case of scenario 2, it is

6.75 minutes. In case of both the ontologies, average time to run the test case in scenario

1 is more, when compared to the average time to run the test case in scenario 2. This

is because, in scenario 1 we keep the whole ontology at every step and do computations

on the whole ontology which requires more space and time for computation. The highest

number of contexts in a labelled ontology in scenario 1 for the ontology FULL-GALEN

is 400 contexts. For SNOMED CT highest number of contexts is 39. In case of scenario

2, we extract the best context at the end of every step and do further ontology updates

only on the extracted context, whose size is less than the whole ontology and also the

number of contexts in the extracted context is always 1, which is less than the number of
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Figure 5.7 The grouped bar graphs show the comparison between the total time taken to run each
test case in scenarios 1 and 2 for the ontologies (A) FULL-GALEN and (B) SNOMED CT

contexts in the whole ontology and this makes the computation of repairs simple in case

of scenario 2. That is, as the number of contexts increase in the ontology, it is very likely

that the boundary size for a consequence w.r.t that labelled ontology also increases. As

the boundary size increases, repairs needs to be computed for the consequence w.r.t every

context present in the boundary.

In case of FULL-GALEN ontology, the highest number of repairs computed for a

consequence w.r.t every context present in the boundary, in case of scenario 1 is 396, for

the same consequence, in case of scenario 2, the number of repairs computed is 33. As, in

case of scenario 2 there is always one context in the ontology (as only one best context is

extracted from the ontology after every step of evolution). Thus, increase in the number

of contexts in case of scenario 1 in turn increases the number of repairs computed for a

consequence w.r.t every context in the boundary. This increases the overall time taken to

run a test case in case of scenario 1.

The analysis of the graphs in Figures 5.6 (B) and 5.7 (B) show that, in case of scenario

1 and scenario 2, the size of the best context extracted is the same in each test case, but

the time taken to run a test case is more in case of scenario 1 than the time taken to run

a test case in scenario 2. It shows that, our algorithms should be improved to improve the

performance of the tool. To understand precisely the reason for more computation time in

case of scenario 1, we further analysed the results of our experiments.

5.2.6 Analysis on the Performance of Context-based Ontology Contrac-

tion Algorithm

Figure 5.8 shows the dependency of the total time taken to compute repairs for a conse-

quence on the boundary size of the consequence (i.e., number of contexts present in the

boundary of the consequence) and the number of repairs computed for the consequence
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Figure 5.8 The bubble graphs show the dependency of the time taken to compute repairs for
a consequence, on the boundary size and the number of repairs computed, in scenario 1 for the
ontologies (A) FULL-GALEN and (B) SNOMED CT

w.r.t every context present in the boundary, in the context-based ontology contraction ap-

proach. The graph in Figure 5.8 (A) represents results of FULL-GALEN and Figure 5.8

(B) represents the results of SNOMED CT. Both the graphs clearly depict that total time

taken to compute the repairs for a consequence w.r.t to every context present in the bound-

ary increases with the size of the boundary and also increases with the number of repairs

computed for the consequence.

This is the main reason for more computation time in case of scenario 1 than the

computation time in case of scenario 2. Unlike in scenario 1, in scenario 2 there exists

only one context at every stage of ontology update from which repairs should be computed.

Thus, time taken to compute repairs in scenario 2 is less than in scenario 1. In order

to improve the performance of the tool, we further analysed the results. The following

paragraphs present our results and analysis.

In context-based ontology contraction approach, there are two main processes. They

are, computing the boundary for the consequence and computing repairs for the consequence

w.r.t every context in the boundary. To improve the performance, it is essential to pinpoint

which of the two processes consumes more time. Figure 5.8 shows the distribution of the

time taken to compute the boundary and the time taken to compute the repairs in the total

time taken to compute the test case in case of scenario 1. Figure 5.9 (A) represents the

results for the ontology FULL-GALEN and Figure 5.9 (B) represents the results for the

ontology SNOMED CT. In case of results for FULL-GALEN, the time taken to compute

boundary is considerably less than the time taken to compute the repairs. In case of results

for the ontology SNOMED CT, the time taken to compute boundary is very less than the

time taken to compute the repairs. This results interpret that, the process of computing

repairs for the consequence w.r.t every context in the boundary is more time consuming

and this should be analysed further.

To analyse the time taken by the process, computing repairs for the consequence w.r.t
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Figure 5.9 The stacked bar graphs show the division of total time taken to run the case between
time taken to compute the boundary and the time taken to compute the repairs for a consequence,
in scenario 1 for the ontologies (A) FULL-GALEN and (B) SNOMED CT

every context in the boundary, it is required to understand the sub-processes involved in

this process. There are two sub-process involved, first sub-process is to call the reasoner

to get justifications for the consequence w.r.t all the axioms present in every context that

belongs to the boundary and to compute repairs from the explanations obtained. The

second sub-process is to process the repairs obtained to compute the repairs w.r.t every

context present in the boundary and to re-label the axioms that belong to each repair

accordingly (as shown in Algorithm 3).

Figure 5.10 shows the results of the distribution of time taken by the reasoner in the

total time taken to compute the repairs. Figure 5.10 (A) represents the results of FULL-

GALEN, this graph shows that, the reasoner takes significant amount of time in the total

time taken to compute the repairs. This performance can be improved by pluging-in more

efficient reasoner which can compute the justifications for a consequence in less time (as our

approach is a black-box approach we can plug-in any reasoner which provides incremental

reasoning and explanation services). Figure 5.10 (B) represents the results of SNOMED

CT, this results clearly show that in case of SNOMED CT, the time taken by the reasoner

is negligible in total time to compute the repairs. This is because, the module sizes in case

of SNOMED CT are very less than the module sizes in case of FULL-GALEN. In the test

cases we used, the module sizes in SNOMED CT ontology are between 20 - 480 axioms, the

module sizes in FULL-GALEN are between 22306 - 34622 axioms. In our approach, after

computing each repair, the axioms of the ontology are relabelled. As the number of axioms

in SNOMED CT is more than the number of axioms in FULL-GALEN, it takes more time

to relabel the axioms.

From this results, we conclude that, our approach to compute repairs and relabel

the axioms should be improved, to improve the overall performance of our tool. One the

main reasons for more time taken to compute repairs and re-label axioms is that, all the

algorithms are implemented in Java, which is very memory expensive and has bad garbage
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Figure 5.10 The stacked bar graphs show the proportion of time taken by the reasoner in the time
taken to compute repairs for a consequence, in scenario 1 for the ontologies (A) FULL-GALEN and
(B) SNOMED CT

collection. It requires high memory resources to store all the axioms and their labels.

To improve the performance of the algorithm, we should find a new method to re-label

the axioms of the ontology, which uses less memory resources. Thus, we evaluated the

algorithms developed in this thesis and showed that our implementation works well on

real-world ontologies.

This chapter presented the details of the first prototypical implementation of the

theoretical methods developed in this thesis: context-based ontology contraction algorithm,

context-based ontology revision algorithm, algorithm to extract the best contexts from a

labelled ontology. It also describes in detail about the protége plug-in developed for handling

context-based ontology evolution tasks and about the experiments conducted to evaluate

the tool. This chapter also gives the details of the results obtained from the experiments

conducted on the real-world ontologies FULL-GALEN and SNOMED CT. Our experiments

prove that our implementation works well on real-world ontologies. It also gives in-depth

interpretation of the results and analyses the ways to improve the performance of the tool.



Chapter 6

Summary and Future Research

In this work we provided a combination of ontology evolution operations with context-based

reasoning methods to achieve updates on the ontology iteratively with minimum informa-

tion loss. The main contributions can be listed as follows. We provided a context-based

reasoning extension to the ontology evolution operations, that is different from existing

approaches. With this approach, we can store all the possible solutions obtained in an

ontology evolution task compactly, as a single labelled ontology. Updates and reasoning

can be effectively done over the labelled ontology. We showed, how to create a labelled

ontology using the solutions obtained in an ontology evolution task.

We developed theoretical methods to do ontology contraction, ontology expansion

and ontology revision using context-based reasoning and methods for extracting the op-

timal solutions from the labelled ontology obtained as result of context-based ontology

evolution operations. We handled different notions for an optimal solution: the solution

with minimum change or the solution in which the axioms are the most original axioms of

the ontology. One of the major problems in ontology evolution process is loss of intended

consequences, that is, as a result of ontology evolution we might lose some important con-

sequences from the ontology. But, in context-based ontology evolution approaches as all

the possible solutions are stored in iterative ontology update, if the user wants a specific

consequence then, it is possible to choose the solution which entails the consequence as

the optimal solution of the ontology update. Thus, loss of intended consequences can be

minimized using this approach. We also developed methods to do context-based reasoning

over the extracted optimal solutions.

We developed first prototypical implementation of all the theoretical methods de-

veloped for context-based ontology evolution operations. We developed a protége plug-

in to provide a interface for the user to do context-based ontology evolution operations

and context-based reasoning. We performed experiments on real-world ontologies FULL-

GALEN, SNOMED CT and showed that our implementation works well on real-world

ontologies. Our results show that, iterative ontology update with minimum change can

be achieved using context-based ontology evolution approaches in a reasonable amount of
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time. The in-depth analysis of the results obtained from the experiments show that limi-

tations of our tool are: it is memory expensive, as all the approaches are implemented in

Java which has bad garbage collection and which is memory expensive.

Future Research

There are several open avenues for future work to consider. Some of them can be listed

as follows. To extract the optimal solutions from the labelled ontology that is obtained

as result of context-based ontology evolution operations, we considered three notions for

the Best. But, many notions for the best can be considered like: weights can be added to

every axiom of the ontology, depending on the importance of the axioms and the optimal

solution can be defined as the context with highest weight. This gives the solution which

has the most important axioms of the ontology.

Downside of the algorithm to compute repairs to a consequence w.r.t every context

in the boundary is that, it requires high memory to store the axioms and labels of all the

axioms that belong to every repair computed. This algorithm can be improved by finding

a better way to update the labels of the axioms in the ontology.

In empirical evaluation, we considered two types of cases for experiments: cases in

which, only one optimal solution is considered after each context-based ontology evolution

step and the cases in which, all the context-based ontology evolution steps are done on the

whole ontology and only one optimal solution is selected at the end of all the steps. Instead,

we can choose all the optimal solutions at the end of every step and do further updates on

them. This method consumes relatively less time and memory than doing operations on

the whole ontology in every step. This method can be checked if it controls the information

loss during iterative ontology update.

In this thesis, we used a simple labelling function which assigns a natural number as

a label to every axiom in the ontology. The labelling function can be improved to handle

labels of the axioms efficiently.

We considered subsumption relation between atomic concepts as consequence in this

thesis. It can be further developed to handle complex concept descriptions in addition to

the atomic concepts.
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