
Master’s Thesis

An Automata-Based Approach
for Subsumption w.r.t. General

Concept Inclusions in the
Description Logic FL0

Maximilian Pensel

November 30, 2015

Technische Universität Dresden
Faculty of Computer Science

Institute of Theoretical Computer Science
Chair for Automata Theory

Supervised by
Prof. Dr.–Ing. Franz Baader

Selbstständigkeitserklärung

Hiermit erkläre ich, dass ich diese Arbeit selbstständig erstellt und keine an-
deren als die angegebenen Hilfsmittel benutzt habe.

Dresden, den 30. November 2015

Maximilian Pensel

Contents

1 Introduction and Motivation 1

2 Preliminaries 5

3 Functional models and LT (C) 9

4 Normalization in FL0 17

5 Looping Tree Automata 27

6 FL0 with general TBoxes vs. FLreg 39

7 Practical Subsumption Algorithm 43

8 Conclusion and Future Work 51

1 Introduction and Motivation

In modern computer science, the study of knowledge representation has gained
a lot of attention over the past decades. Employing logic based systems such
as first order logic (FOL) was widely investigated early on. However, due to
its expressive power, reasoning in FOL quickly exceeds even the decidability
boundary, which resulted in the consideration of less expressive logic systems
such as fragments of FOL. Such formalisms have been introduced within the
framework of description logics (DL). One of the most important features of
DLs is that they can represent knowledge in a formally well founded and well
understood way. In general, DLs are comprised of unary predicates called con-
cept names and binary predicates called role names. Concept names are used
to describe a specific (simple) class of objects from the world, e.g. Cat, Dog,
whereas role names describe certain relations between such objects. An assort-
ment of different constructors provide the means for more complex expressions
(called concept descriptions). The most common constructors are for instance
conjunction, where

Dog uBrown

describes the class of objects that are brown and a dog. Disjunction provides
the counterpart, where

Dog t Cat

describes that something is a dog or a cat. In order to relate complex con-
cept descriptions with role names, there exist two possible constructors, namely
existential restriction (∃) and value restriction (∀).

Human u ¬Child u ∃pet.(Dog uBrown) u ∀sibling.Male

describes the class of all humans that are not children (¬), having a brown dog
for a pet (∃) and only brothers (∀), where pet and sibling are role names. The
collection of basic constructors also includes > and ⊥. The concept > describes
everything and the concept ⊥ describes nothing. Of course there exist many
more DL constructors and each distinct set of such constructors describes a
new description logic. The way of describing an axiomatic context for concept
descriptions is provided by terminologies, also called TBoxes. In a general TBox
we can collect general concept inclusion axioms (GCIs) such as

Dog v Animal u ∀hates.Cat

which describes the fact that every dog is an animal that only hates cats.
Of course, one can hardly speak about knowledge representation without also
speaking about the intention of reasoning over the represented knowledge. A
common reasoning task is deciding concept subsumption. That is, given two
concept descriptions C,D, is one included in the other with respect to a given
terminology. ALC is a very basic DL that is comprised of exactly the construc-
tors we have just introduced. It can be shown that ALC (as well as most other
DLs) is a fragment of FOL, and yet deciding concept subsumption w.r.t. termi-
nologies is already Exptime complete [7]. Hence, the question for expressivity
and computability of different reasoning tasks for different DLs has remained
as important as ever. The introduction of logic based knowledge representation

1

1 INTRODUCTION AND MOTIVATION

to the world wide web via the web ontology language (OWL) is one of the best
indicators that ontology engineers strive for very expressive DLs [8].

First investigations towards tractability of reasoning tasks began during the
1990ies with [6]. From a theoretical point of view, the computational worst–case
complexity for standard inference problems such as subsumption quickly reaches
the class Exptime or worse, even for very restricted DLs [7, 2] upon allowing for
general and even acyclic TBoxes. In particular, deciding subsumption for the
basic DL ALC was proven to be Exptime complete, which surprisingly holds
for the even smaller fragment FL0 (∀,u,>) as well [2]. Based on this discovery,
researchers discarded further investigations towards reasoning in FL0, because
the introduction of tableaux based algorithms for ALC [7] implicitly provided
reasoning mechanisms for all fragments of ALC. The next reaction to such re-
sults was reducing the expressivity to a point of computational tractability, as
for the light–weight DL EL (∃,u,>), which has polynomial time complexities
for classification and subsumption [1], even in the presence of terminological cy-
cles. Due to results from the late 1990ies, where the computational performance
of practical algorithms for worst–case exponential reasoning tasks [9] has been
investigated, further research towards more expressive DLs was encouraged,
starting with [2]. The results of [2] provide most of our motivation, as they in-
vestigated the tractable DL EL by extending it with several, non–standard DL
constructors which quickly results in theoretical Exptime complexity. How-
ever, in practice, augmenting existing tractable algorithms to handle the EL
extensions directly, yielded a much better performance than expected. This en-
courages us to re–evaluate the practical computational properties of FL0, when
considering a direct approach to deciding subsumption, rather than employing
a non–deterministic tableaux algorithm.

For this thesis we take a look at the restricted, yet still Exptime complete
(w.r.t. subsumption) DL FL0, since direct approaches to implement practical
reasoners for this language have been overlooked until now. Even though FL0

remains a fragment of ALC they both share the same complexity class when
allowing for unrestricted terminologies. This persuaded people to simply em-
ploy said tableaux based ALC algorithms to handle FL0 as well. However, as
explained in detail in [3], subsumption in FL0 can be approached with automata
theory and therefore allows for structural algorithmic solutions. We propose an
algorithm, providing a direct approach to decide subsumption in FL0 w.r.t. gen-
eral TBoxes, and we are confident that this algorithm, similar to the results in
[2, 9], can behave well in practice despite its theoretical worst–case complexity.
As we allow for general terminologies, we need to be aware of the possibility of
so–called terminological cycles. The GCI

Dog v Animal u ∀child.Dog

is an example for such a cyclic dependency. A naive traversal through such a
terminology may thus result in an infinite propagation.

As an additional result, our automata based approach allows us to show a
coherence between FL0 and FLreg, which extends FL0 with several complex
role constructors. This minor excursion paves the way for some advanced ques-
tions regarding non–standard inferences like the computation of unifiers or least
common subsumers w.r.t. FL0 in the presence of general TBoxes.

After thoroughly introducing basic notations around FL0 and FLreg in Sec-
tion 2, we will proceed with the investigation of our theoretical cornerstone,

2

1 INTRODUCTION AND MOTIVATION

called a functional interpretation, in Section 3. As usual for structure based
reasoning, in Section 4 we supply a procedure to transform concept descriptions
and terminologies into an appropriate normal form as well as a detailed proof
of its computational correctness and complexity. On the theoretical side, Sec-
tion 5 contains the tree automaton that our algorithmic solution is based on.
Starting from the given automaton, we are able to show the correlation between
FL0 with general TBoxes and FLreg regarding subsumption, as well as raise
some very interesting questions. Finally, Section 7 contains the algorithm that
the thesis builds up to, including formal proofs of its correctness. This is only
followed by a conclusion of the entire thesis and a brief outlook on the research
to come.

3

2 Preliminaries

For this thesis the prerequisite knowledge is mostly comprised of syntactical and
semantic notations of the description logic FL0 and — as we are about to show
a correlation to it — FLreg. The definitions in this section coincide with the
literature, especially [3]. For most description logics L the basic elements are
concept names contained in the set NC and role names contained in NR (s.t.
NC ∩ NR = ∅). C(L, NC , NR) denotes the set of all concept descriptions that
can be built with the given constructors of L using only concept names and role
names from NC and NR respectively. For concept names we usually use the
letters A,B, for role names r, s and for complex concept descriptions C,D. The
following rules inductively describe the set C(FL0, NC , NR), for all A ∈ NC ,
C,D ∈ C(FL0, NC , NR) and r ∈ NR:

• > ∈ C(FL0, NC , NR) (top)

• A ∈ C(FL0, NC , NR) (concept name)

• C uD ∈ C(FL0, NC , NR) (conjunction)

• ∀r.C ∈ C(FL0, NC , NR) (value restriction)

For a value restriction ∀r.C, we call the concept description C its subject. To
be able to handle chains of value restrictions ∀r1.∀r2. · · · ∀rn.C more easily, we
often denote them as ∀w.C where w is the word r1 · · · rn. Note that in some
cases it is also easier not having to distinguish between value restrictions and
other concept descriptions. For that purpose we simply say that for any concept
description C, we may also write ∀ε.C, where ε is the empty word.

The DL FL0 considers only elementary role names, whereas its extension
FLreg allows for complex roles with the role constructors identity role, empty
role, union, composition and reflexive–transitive closure. We use upper case
letters R,S to denote complex roles. Let R(NR) denote the set of complex roles
that can be inductively built with the rules below, i.e. for R,S ∈ R(NR) and
all r ∈ NR

• ε ∈ R(NR) (identity role)

• ∅ ∈ R(NR) (empty role)

• r ∈ R(NR) (role name)

• R ∪ S ∈ R(NR) (union)

• R ◦ S ∈ R(NR) (composition)

• R∗ ∈ R(NR) (reflexive–transitive closure)

It can be readily seen that these role constructors resemble regular expressions
over letters from the alphabet NR in the obvious way, and we often write RS
instead of R ◦ S. Consider the complex role

ε ∪ (r ◦ s)∗ ∪ ((r ◦ r) ◦ s∗)

essentially describing the set of role compositions

{ε, rs, rsrs, rsrsrs, . . . , rr, rrs, rrss, rrsss, . . .}

5

2 PRELIMINARIES

which is clearly a regular language over NR, hence the name FLreg. The set
C(FLreg, NC , NR) extends the set C(FL0, NC , NR), with the construction of
concept descriptions containing complex roles. For R ∈ R(NR) and C,D ∈
C(FLreg, NC , NR)

• C(FL0, NC , NR) ⊆ C(FLreg, NC , NR),

• C uD ∈ C(FLreg, NC , NR) and

• ∀R.C ∈ C(FLreg, NC , NR).

For a value restriction ∀R.C in FLreg we can also write ∀L.C in order to use
the words over NR from the language L, created with the regular expression
described by R. Note that, in the following, all definitions regarding concept
descriptions in FLreg implicitly cover concept descriptions in FL0 unless stated
otherwise. Therefore, they can be applied to FL0 concept descriptions in equal
measure.

In terms of knowledge representation, a concept description or a collection
of concept descriptions poses as a formal representation describing a class (or
classes) of objects from a chosen context. Providing semantic rules, or axioms,
for this context can by achieved by defining so–called TBoxes. A general L
TBox T is a finite set of axioms of the form C v D, where C,D ∈ C(L, NC , NR).
These axioms are also called general concept inclusions (GCIs). They are used
to express that the class of objects described by C must always be included in
the class of objects described by D, essentially making the description C more
specific than D.

All of the syntactical constructs above deliver a concrete meaning when
semantically evaluated with an interpretation. An interpretation I = (∆I , ·I)
consists of a non–empty domain ∆I and a mapping function that assigns

• subsets of ∆I to concept names (i.e. AI ⊆ ∆I), and

• binary relations over ∆I to role names (i.e. rI ⊆ ∆I ×∆I).

The mapping function is extended to complex roles R,S ∈ R(NR) for domain
elements d, e, f ∈ ∆I , in the following way:

εI = {(d, e) | d = e}

∅I = ∅

(R ∪ S)I = {(d, e) | (d, e) ∈ RI ∨ (d, e) ∈ SI}

(R ◦ S)I = {(d, f) | ∃e ∈ ∆I .(d, e) ∈ RI ∧ (e, f) ∈ SI}

(R∗)I = {(d0, dn) | ∃n ≥ 0.∃d1, . . . , dn−1 ∈ ∆I .

∀i ∈ {0, . . . , n− 1}.(di, di+1) ∈ RI}

The interpretation mapping function can be extended to complex concept de-
scriptions in a similar way (C,D ∈ C(FLreg, NC , NR), R ∈ R(NR)):

6

2 PRELIMINARIES

>I = ∆I

(C uD)I = CI ∩DI

(∀R.C)I = {d ∈ ∆I | ∀(d, e) ∈ RI .e ∈ CI}
Given a set of axioms in a TBox T , interpretations are distinguished by the
fact that they respect all axioms in T or that there is an axiom in T that the
interpretation violates. An interpretation I is called a model of a TBox T iff it
satisfies all axioms of T , i.e.

∀C v D ∈ T . CI ⊆ DI .

Additionally, I is a model of a concept description C iff CI 6= ∅. An interpreta-
tion can be a model to several TBoxes and concept descriptions simultaneously.
For the current matter, models of a TBox T and a given concept description C
are of particular interest.

The reasoning task called subsumption checking is asking whether C,D ∈
C(L, NC , NR) are in the binary relation vT regarding a TBox T . We write
C vT D. An interpretation I models C v D iff CI ⊆ DI and the TBox T
models the subsumption iff all models of T do, i.e.

C vT D ⇐⇒ ∀ models I of T .CI ⊆ DI

As a final remark, for FL0 concept descriptions there exist equivalence preserv-
ing transformations. Therefore, for every FL0 concept description there ex-
ists an equivalent normal form that we call concept–conjunction–normal–form
(CCNF), and it has the following structure:

∀w1.A1 u · · · u ∀wn.An

for A1, . . . , An ∈ NC and w1, . . . , wn ∈ N∗R. A formal investigation of the
existence and equivalence of this normal form is provided in Section 4.

This concludes the syntactic and semantic basics of FL0 and FLreg. In the
following we present several additional notations that are useful in terms of
brevity and accuracy.

Since concept descriptions are inductively defined, they grow inductively
larger in their size. Many computation procedures, propagating into the struc-
ture of concept descriptions, rely on the fact that this size is well–defined, sup-
porting termination proofs of such procedures.

Definition 2.1. The sizes of various elements in FLreg are defined as follows,
where A ∈ NC , r ∈ NR, R,S ∈ R(NR), C,D ∈ C(FLreg, NC , NR) and T is an
FL0

1 TBox:

Complex Concepts Complex Roles
|>| = 1 |ε| = 1
|A| = 1 |∅| = 1

|∀R.C| = |C|+ |R| |r| = 1
|C uD| = |C|+ |D|+ 1 |R ∪ S| = |R|+ |S|+ 1
|C v D| = |C|+ |D| |R ◦ S| = |R|+ |S|+ 1
|T | =

∑
CvD∈T

|C v D| |R∗| = |R|+ 1

1The definition of |T | is the same for FLreg TBoxes, however we will not consider those.

7

2 PRELIMINARIES

In addition to using the size of elements such as concept descriptions or
TBoxes, it is often necessary to restrict or at least identify the basic elements
that are present in the respective DL constructs. This set of elements is called
the signature.

Definition 2.2. For FLreg concept descriptions C,D, the set of all occurring
concept names and role names is called the signature sig(C), sig(D) respec-
tively. The definition of a signature can be extended to more complex FLreg
elements:

• sig(C v D) := sig(C) ∪ sig(D), and

• sig(T) :=
⋃

CvD∈T
sig(C v D).

For convenience, sig can also be extended to accept multiple arguments, i.e.

sig(X1, . . . , Xn) :=
n⋃
i=1

sig(Xi), where any Xi is either an FL0 TBox, an FLreg
concept description or a GCI over two FLreg concept descriptions.

8

3 Functional models and LT (C)

It has already been shown in [3] that subsumption between two FL0 concept
descriptions with the empty TBox can be decided with a purely structural ap-
proach. That means it suffices to investigate only certain sub-concepts and
decide whether they are shared between the concept descriptions or not. Con-
sider the FL0 concept descriptions

C = ∀w1.A1 u . . . u ∀wn.An,

D = ∀v1.B1 u . . . u ∀vm.Bm,

where wi, vj ∈ N∗R and all Ai, Bj ∈ NC (1 ≤ i ≤ n, 1 ≤ j ≤ m). In order to
confirm C v D, it must hold that C v ∀vj .Bj for all j ∈ {1, . . . ,m}, which is
only the case if for every j there exists an i ∈ {1, . . . , n} such that vj = wi and
Bj = Ai.

Example 3.1. Let

C = ∀rs.A u ∀ss.A u ∀r.B u ∀rrr.B, and

D = ∀rs.A u ∀rrr.B.

C v D holds iff C v ∀rs.A and C v ∀rrr.B. In this example that holds
true, because there is a value restriction with the subject A and role–word rs
as a conjunct in C, likewise for B and rrr. This illustrates, that subsumption
between C and D can be characterized by set inclusion. Let LA = {rs, ss}, LB =
{r, rrr}, MA = {rs} and MB = {rrr} describe the sets of words, occurring in
a value restriction with the subscripted concept name as a conjunct in C (L) or
D (M). It turns out, that C v D iff MA ⊆ LA ∧MB ⊆ LB.

Therefore deciding the subsumption of two concept descriptions C and D
can be delegated to deciding several set inclusions (in the opposite direction) for
the sets of value restrictions occurring in C and D, provided they are in CCNF.
This structural approach for subsumption of FL0 concepts without TBoxes is
explained in detail in [3]. It gives rise to the idea that such a structural approach
may also be taken for deciding the subsumption of FL0 concepts w.r.t. general
TBoxes. However, within the context of a TBox it does not suffice to only
consider the structure of C and D but rather all value restrictions they entail
regarding the given TBox. We define a collection of this knowledge in the form
of pairs, representing all value restrictions that follow from a given concept and
a TBox.

Definition 3.2.

1. LT (C) := {(w,A) | C vT ∀w.A}

2. LT (C,A) := {w | (w,A) ∈ LT (C)}

The set LT (C) describes the essential knowledge of value restrictions en-
tailed by an FL0 concept C through the general FL0 TBox T , whereas the set
LT (C,A) merely extracts certain words from LT (C) in order to be directly seen
as a language over the alphabet NR. When inspecting these sets for a concept

9

3 FUNCTIONAL MODELS AND LT (C)

description C with the empty TBox T , it is obvious that LT (C) is finite, be-
cause C is finite and (w,A) only occurs in LT (C), if ∀w.A is a conjunct in the
equivalent CCNF of C. Reasoning over concept descriptions w.r.t. acyclic FL0

TBoxes can always be reduced to reasoning with only concept descriptions [3].
However when including general TBoxes, the axiom A v ∀r.A already illustrates
the main problem. As soon as C vT ∀w.A, it also holds that C vT ∀wr.A,
C vT ∀wrr.A and so forth, hence {(w,A), (wr,A), (wrr,A), . . .} ⊆ LT (C),
making LT (C) potentially infinite for general TBoxes T . Nevertheless, Lemma
3.3 shows how reasoning with concept descriptions C,D under a general FL0

TBox can be redirected to the collections of value restrictions they entail (even
if they are infinite), at least w.r.t. subsumption.

Lemma 3.3. C vT D ⇐⇒ LT (D) ⊆ LT (C)

Proof. We prove the each direction separately.
“=⇒” For all (w,A) ∈ LT (D) it holds that D vT ∀w.A, by Definition 3.2.

From C vT D then follows that C vT D vT ∀w.A, which implies
(w,A) ∈ LT (C) and thus LT (D) ⊆ LT (C).

“⇐=” We show the if direction by contraposition:

C 6vT D =⇒ LT (D) 6⊆ LT (C)

As introduced in Section 2 and formally approved in Section 4, we are
able to assume w.l.o.g. that C and D are of the following structure:

C ≡ ∀w1.A1 u . . . u ∀wn.An

D ≡ ∀u1.B1 u . . . u ∀um.Bm
Then C 6vT D =⇒ ∃i ∈ {1, . . . ,m}.C 6vT ∀ui.Bi, which implies
(ui, Bi) ∈ LT (D)\LT (C). With the existence of an element belonging
to LT (D) but not to LT (C), it is clear that LT (D) 6⊆ LT (C). �

Lemma 3.3 is actually very powerful, as it allows us to decide subsumption
in FL0 with the structural method of deciding several set inclusions. Even
though LT (C) and LT (D) describe sets of pairs, they can be seen to represent
languages of words over NR thus creating a resemblance to the problem of decid-
ing language inclusion, which is often solved by utilizing appropriate automata.
For acyclic TBoxes, hence finite languages, deterministic finite automata are
fully sufficient, whereas applying tree automata to decide subsumption w.r.t.
general TBoxes is a key interest in the current investigation. In order to cre-
ate an automaton working on infinite structures, we first need to introduce an
appropriate structure to these infinite sets of words. For example, the set

LT (C) = {(ε,A), (rs,A), (rsrs,A), . . . , (ε,B), (s,B), (ss,B), . . .}

can be expressed with the labeled tree structure in Figure 1. In general, the
language LT (C) can be described by a tree, where every node w ∈ N∗R has
exactly one successor for every role name in NR and if (w,A) ∈ LT (C), then
A appears in the label of w. This representation of LT (C) is formalized with
so–called functional models.

10

3 FUNCTIONAL MODELS AND LT (C)

Figure 1: Example tree representation of LT (C).

Definition 3.4. I = (∆I , ·I) is a functional model of C w.r.t. T iff

1. ∆I = N∗R and ∀r ∈ NR.(u, v) ∈ rI iff v = ur (structure),

2. ∀D v E ∈ T .DI ⊆ EI (model of T),

3. ε ∈ CI (satisfying C at the root).

We refer to interpretations with the functional model property in graded
ways. We call an interpretation I

• a functional interpretation if Property 1 of Definition 3.4 holds,

• a functional model of a TBox T if Properties 1 and 2 of Definition 3.4
hold, and

• a functional model of a concept description C w.r.t. a TBox T if all prop-
erties of Definition 3.4 hold.

Interpretations are often viewed as labeled graph structures, where domain
elements are vertices, labeled with sets of concept names (A ∈ NC is in the label
set of d ∈ ∆I iff d ∈ AI), and connected via role–successor relations (directed
labeled edges). The graph structure expressed by a functional model is clearly
an infinite, labeled and full n–ary tree (n = |NR|). When directly using this tree
structure, in order to stay formally correct, we would have to define a function
tI : N∗R → 2NC to represent the tree behind a functional model I. However both
structures are essentially equivalent, which is why in later sections, we will use
a functional model I also as the tree I merely for simplicity. Formalisms like
tree–accepting automata will be considered to directly accept functional models
I.

It is easy to see that two functional models I,J over the same set of roles
NR have the same domain and are structurally identical w.r.t. the interpretation

11

3 FUNCTIONAL MODELS AND LT (C)

of roles. Due to this uniform structure, it is easy to define an intersection and a
subset relation between functional models over the same domain, based on the
set interpretation of concept names.

Definition 3.5. For functional interpretations I, J and all Ii (i ∈ θ) over the
same domain N∗R with an infinite set of indices θ, we define

1. a functional interpretation
⋂
i∈θ
Ii over the domain N∗R, such that

∀A ∈ NC .A
⋂
i∈θ
Ii

=
⋂
i∈θ

AIi

2. I ⊆ J iff ∀A ∈ NC .AI ⊆ AJ .

The relation ⊆ induces an order over functional models and for I ⊆ J we say
I is smaller or equal to J .

Proposition 3.6. ⊆ is a partial order over functional models.

Proof. We show that for all functional models I,J ,K of C w.r.t. T , ⊆ is reflex-
ive, transitive and antisymmetric, making it a partial order.

reflexive
I ⊆ I ⇐⇒ ∀A ∈ NC .AI ⊆ AI ,
which holds by reflexivity of ⊆ over sets.

transitive
I ⊆ J ∧ J ⊆ K =⇒ I ⊆ K
∀A ∈ NC .AI ⊆ AJ ∧ ∀A ∈ NC .AJ ⊆ AK =⇒ ∀A ∈ NC .AI ⊆ AK
∀A ∈ NC .(AI ⊆ AJ ∧AJ ⊆ AK =⇒ AI ⊆ AK),
which holds by transitivity of ⊆ over sets.

antisymmetric
I ⊆ J ∧ J ⊆ I =⇒ I = J
∀A ∈ NC .AI ⊆ AJ ∧ ∀A ∈ NC .AJ ⊆ AI =⇒ ∀A ∈ NC .AI = AJ

∀A ∈ NC .(AI ⊆ AJ ∧AJ ⊆ AI =⇒ AI = AJ),
which holds by antisymmetry of ⊆ over sets. ∀A ∈ NC .AI = AJ implies
that I = J iff I and J are functional interpretations over the same
domain. �

With the intersection between functional models and a partial ordering, it
is already possible to see that an interpretation could be created that shares
the essential information of other functional models for the same concept and
TBox and is always smaller than all other functional models. The following
proposition and Lemma 3.8 help to show the existence and functional model
property of the least functional model introduced in Lemma 3.9. Recall that by
Definition 3.4, we have for all i, j ∈ θ:

∆Ii = ∆Ij = ∆

⋂
a∈θ
Ia

= N∗R, and rIi = rIj = r

⋂
a∈θ
Ia

.

Proposition 3.7. For any FL0 concept C and functional interpretations Ii
(i ∈ θ) for an infinite set of indices θ, it holds that

C

⋂
i∈θ
Ii

=
⋂
i∈θ

CIi .

12

3 FUNCTIONAL MODELS AND LT (C)

Proof. For convenience, let I∩ :=
⋂
i∈θ
Ii, for the infinite index set θ.

We show CI∩ =
⋂
i∈θ

CIi by induction on the structure of C.

Basis: AI∩ =
⋂
i∈θ

AIi holds for all concept names A by Definition 3.5.

Hypothesis: CI∩ =
⋂
i∈θ

CIi and DI∩ =
⋂
i∈θ

DIi .

Step:
C uD (C uD)I∩ = CI∩ ∩DI∩ =

⋂
i∈θ

CIi ∩
⋂
i∈θ

DIi by induction hypothesis.

Now, d ∈
⋂
i∈θ

CIi∩
⋂
i∈θ

DIi if and only if ∀i ∈ θ.d ∈ CIi∧∀i ∈ θ.d ∈ DIi ,

which is equivalent to ∀i ∈ θ.(d ∈ CIi ∧ d ∈ DIi), because universal
quantification distributes over binary conjunction. Therefore,⋂
i∈θ

CIi ∩
⋂
i∈θ

DIi =
⋂
i∈θ

(CIi ∩DIi) =
⋂
i∈θ

(C uD)Ii .

∀r.C (∀r.C)I∩ = {v ∈ N∗R | vr ∈ CI∩} (I∩ is a functional interpretation)
= {v ∈ N∗R | vr ∈

⋂
i∈θ

CIi} (by induction hypothesis)

=
⋂
i∈θ
{v ∈ N∗R | vr ∈ CIi}

=
⋂
i∈θ

(∀r.C)Ii �

Lemma 3.8. Let {Ii | i ∈ θ} be a set of functional models of a TBox T over the
same domain N∗R, for an infinite index set θ. The intersection of all Ii (i ∈ θ)
is again a functional model of T .

Proof. We show ∧
i∈θ

CIi ⊆ DIi =⇒ C

⋂
i∈θ
Ii
⊆ D

⋂
i∈θ
Ii

(3.1)

∧
i∈θ

(CIi ⊆ DIi)

=⇒
∧
i∈θ

(
⋂
j∈θ

CIj ⊆ CIi ⊆ DIi)

=⇒
⋂
i∈θ

CIi ⊆
⋂
i∈θ

DIi

=⇒ C

⋂
i∈θ
Ii
⊆ D

⋂
i∈θ
Ii

(by Proposition 3.7). If all Ii (i ∈ θ) are models of T , i.e.
∀i ∈ θ.∀C v D ∈ T .CIi ⊆ DIi , then (3.1) immediately implies that

⋂
i∈θ
Ii is

also a model of T .

Lemma 3.9. Let IC,T be the set of all functional models of C w.r.t. T . The
functional model

IC,T :=
⋂

J∈IC,T
J

is the least functional model w.r.t. ⊆, i.e. IC,T ∈ IC,T and ∀J ∈ IC,T .IC,T ⊆ J .

Proof. All J ∈ IC,T are functional models of T , thus from Lemma 3.8 it follows
that IC,T is also a functional model of T . Additionally ε ∈ CJ for all J ∈ IC,T ,

13

3 FUNCTIONAL MODELS AND LT (C)

which implies that ε ∈ C
⋂

J∈IC,T
J

= CIC,T . Hence, IC,T ∈ IC,T . It remains to
show that ∀J ∈ IC,T .IC,T ⊆ J . It is easy to see that⋂

I∈IC,T

I = (
⋂
I∈IC,T

I) ∩ J

for J ∈ IC,T . Therefore, IC,T = IC,T ∩J holds for all J ∈ IC,T , which implies
IC,T ⊆ J , making IC,T the least functional model of C w.r.t. T .

IC,T is the least functional model, containing exactly the minimal informa-
tion a functional interpretation I must contain for all concept names in order
to be a model for the TBox T and have ε ∈ CI . In other words, any functional
interpretation J containing less information than IC,T (i.e. J ⊂ IC,T) cannot
be a functional model of T while having ε ∈ CJ . We would ultimately like to
restrict our argumentation to this least model with the claim that results for it
also hold in every larger functional model and even any general model for that
matter. Now we can finally show the correlation between the set LT (C) and
the least functional model IC,T , which initially urged us to investigate the tree
structure behind LT (C).

Lemma 3.10. For an FL0 concept description C ∈ C(FL0, NC , NR) and a
concept name A ∈ NC , it holds that

LT (C,A) = AIC,T .

Proof.

“⊆” If w ∈ LT (C,A), then all functional models I of C w.r.t. T satisfy
that C vT ∀w.A, in particular IC,T does. Hence, ε ∈ CIC,T =⇒ ε ∈
(∀w.A)IC,T =⇒ w ∈ AIC,T by the structure of functional interpretations.

“⊇” Show w ∈ AIC,T =⇒ w ∈ LT (C,A). We can transform LT (C) into
an interpretation I = (N∗R, ·I) with (u, v) ∈ rI iff v = ur, and set
AI = LT (C,A). The structural constraint of a functional interpreta-
tion is already satisfied by I, and we show now that ε ∈ CI and that

I is a model of T . W.l.o.g. assume that C =
nd

i=1

∀ui.Ai, hence ∀i ∈

{1, . . . , n}.(ui, Ai) ∈ LT (C), which implies ui ∈ LT (C,Ai) = AIi . Given
the structure of I this means ∀i ∈ {1, . . . , n}.ε ∈ (∀ui.Ai)I which implies

ε ∈
n⋂
i=1

(∀ui.Ai)I = CI .

We show that ∀E v F ∈ T .EI ⊆ F I by showing that w ∈ EI =⇒ w ∈
F I . W.l.o.g. let E = ∀u1.A1u . . .u∀ul.Al and F = ∀v1.B1u . . .u∀vm.Bm.
w ∈ EI =⇒ ∀i ∈ {1, . . . , l}.(wui, Ai) ∈ LT (C)

=⇒ ∀i ∈ {1, . . . , l}.C vT ∀wui.Ai
=⇒ C vT ∀w.E,

with the GCI E v F ∈ T we now also know C vT ∀w.F , which im-
plies ∀j ∈ {1, . . . ,m}.C vT ∀wvj .Bj =⇒ ∀j ∈ {1, . . . ,m}.(wvj , Bj) ∈
LT (C) =⇒ w ∈ F I .

We have shown that I satisfies the structural condition of a functional
model, it is a model of the TBox and it satisfies C with ε ∈ CI , i.e.

14

3 FUNCTIONAL MODELS AND LT (C)

I is a functional model of C w.r.t. T . Therefore IC,T ⊆ I and thus
AIC,T ⊆ AI = LT (C,A). �

A simple yet very useful consequence from Lemma 3.10 is presented by the
following proposition.

Proposition 3.11. ID,T ⊆ IC,T ⇐⇒ LT (D) ⊆ LT (C)

Proof. We can see that ID,T ⊆ IC,T ⇐⇒ LT (D) ⊆ LT (C) is equivalent to
∀A ∈ NC .(AID,T ⊆ AIC,T ⇐⇒ LT (D,A) ⊆ LT (C,A)), which holds by Lemma
3.10.

Lemma 3.10 shows that the smallest functional model IC,T and the “lan-
guage” LT (C) essentially describe the same thing.

Proposition 3.12. For all functional models J of C w.r.t. T , CJ ⊆ DJ

implies that J is also a functional model of D w.r.t. T .

Proof. If J is a functional model of C w.r.t. T , then ε ∈ CJ and then CJ ⊆
DJ =⇒ ε ∈ DJ . Since conditions 1 and 2 of Definition 3.4 are independent of
the concept description of a functional model, J is also a functional model of
D w.r.t. T .

Theorem 3.13. For an FL0 TBox T and two concept descriptions C,D ∈
C(FL0, NC , NR), C vT D if and only if CJ ⊆ DJ holds for all functional
models J of T .

Proof.
“=⇒” This direction is trivial, if for all models I of T CI ⊆ DI holds, then

it holds for all functional models in particular.

“⇐=” If for all functional models J of T CJ ⊆ DJ holds, then this also
holds for IC,T . CIC,T ⊆ DIC,T implies that IC,T is also a functional
model of D w.r.t. T (Proposition 3.12), hence ID,T ⊆ IC,T (Lemma
3.9).
ID,T ⊆ IC,T
=⇒ LT (D) ⊆ LT (C) (Proposition 3.11)
=⇒ C vT D (Lemma 3.3). �

With Theorem 3.13 we have shown that it is in fact possible to restrict
subsumption reasoning not only to functional models, but even to the least
functional models of T . As an immediate consequence we are now able to
decide subsumption by deciding inclusion of the least models for C and D.

Corollary 3.14. ID,T ⊆ IC,T ⇐⇒ C vT D. �

Because functional models describe infinite, labeled and full n–ary tree struc-
tures (n = |NR|), it seems plausible to utilize tree automata to decide sub-
sumption of FL0 concepts. In order to build an automaton that accepts trees
respecting all GCIs of a given TBox, it is first necessary to transform this TBox
into a specific normal form.

15

1.

NF1.1 C u > C
NF1.2 > u C C
NF1.3 ∀w.> >
NF1.4 ∀w.(C1 u · · · u Cn) ∀w.C1 u · · · u ∀w.Cn

2.
NF2.1 C1 u ∀rw.A u C2 v D C1 u ∀r.B u C2 v D, ∀w.A v B
NF2.2 D v C1 u ∀rw.A u C2 D v C1 u ∀r.B u C2, B v ∀w.A

For FL0 concept descriptions C,D, concept names A, fresh concept
names B, r ∈ NR and words w ∈ N∗R with |w| > 0.

Table 1: Normalization phases for FL0 TBoxes.

4 Normalization in FL0

Most reasoning systems employing a structural approach rely on two steps.
First, transforming the considered concept descriptions or terminologies into an
appropriate normal form, and then comparing the resulting structures. The ben-
efit of normalizing concept descriptions and TBoxes is that a specific structure
can be assumed, greatly simplifying the structural investigation. We consider
two different normal forms of concept descriptions and terminologies in FL0,
one of which can also be considered a normal form for FLreg. An FL0 concept
description is in concept–conjunction–normal–form (CCNF) iff it is of the form

∀w1.A1 u · · · u ∀wn.An (4.1)

or >, where Ai ∈ NC (1 ≤ i ≤ n) and wi ∈ N∗R. Recall that the concept ∀w.C
actually represents the chain of value restrictions ∀r1. · · · ∀rn.C, if w = r1 . . . rn
and r1, . . . , rn ∈ NR. Even for wi = ε for some i ∈ {1, . . . , n}, we already
explained that C = ∀ε.C. In words, an FL0 concept description is in CCNF iff
it is a conjunction of only concept names or chains of value restrictions with a
concept name as final subject. An FL0 TBox T is in CCNF iff the left– and
right–hand side of all its GCIs are in CCNF. An FLreg concept description is
also considered to be in CCNF, if it resembles the form of (4.1), i.e. it is of the
form ∀R1.A1 u · · · u ∀Rn.An, with Ai ∈ NC and Ri ∈ R(NR) (1 ≤ i ≤ n).
The CCNF for FL0 is commonly acknowledged and used by the DL community,
whereas the second normal form, which is more focused on the structure of
TBoxes, mostly benefits the algorithmic part of the current investigation.

An FL0 TBox T is considered to be in plane–axiom–normal–form (PANF)
iff all left– and right–hand sides of all GCIs in T are in CCNF and every value
restriction ∀w.A, occurring in T , has |w| ≤ 1. Since the transformation to PANF
requires a TBox to be in CCNF, we will describe the normalization procedure
in two separate phases.

The rules for both normalization procedures are described in Table 1 and
referred to as normalization phase 1 (CCNF) and phase 2 (PANF) re-
spectively. The rules of normalization phase 1 can be applied to any concept
description. Upon normalizing an entire TBox, phase 1 will be used to normalize
every left– and right–hand side of all present GCIs. Phase 2 is applied directly
to GCIs exhibiting specific features. First of all note several explanations:

• In both normalization phases, we strictly consider words over role names
instead of nested value restrictions, because many transformations on a

17

4 NORMALIZATION IN FL0

chain of value restrictions can also be applied in one step. Also note, that
we always consider those words to be of maximal length. We can do that,
because for example transforming ∀u.∀w.> ∀u.> > can also be fully
transformed in one step when considering the word uw.

• The rules NF2.1 and NF2.2 from normalization phase 2 are only applied
for words w with |w| > 0 (i.e. |rw| > 1), since value restrictions of depth
at most 1 can already be considered as normalized, which is the case for
w = ε.

• The expression C1 u ∀rw.A uC2 in phase 2 simply describes an arbitrary
concept conjunction (in CCNF), containing the particular value restriction
∀rw.A as a conjunct. This includes the special cases where C1 and/or C2

are the top concept, even though after phase 1 they may not be> anymore.
Hence, the cases where ∀w.AuC2, C1 u∀w.A or just ∀w.A appear on the
left– or right–hand side of a GCI are implicitly covered.

Within both normalization phases there is no specific order of rules needed. All
rules are applied exhaustively, until no further premise of any rule is satisfied,
at which point the concept description or TBox will be in the respective normal
form. That being said, it is not excluded that certain heuristics for executing
transformation rules may improve the normalization performance. For the proof
of Lemma 4.6 we will use exactly such a heuristic for phase 1 in order to simplify
interactions between rule applications (e.g. applying NF1.4 may enable an ap-
plication of NF1.3). Normalization phase 2 can only be applied to TBoxes that
are already in CCNF. We denote the TBox obtained from T through normal-
ization phase 1 as NF1(T) and resulting from phase 2 as NF2(T). As phase 1
is able to transform single concept descriptions (outside of a TBox) into CCNF,
we also describe the the concept obtained through normalization phase 1 from
C as NF1(C).

Lemma 4.1. For a concept description D ∈ C(FL0, NC , NR) it holds for any
interpretation I that

DI = NF1(D)I .

Proof. Due to transitivity of = we only need to show that one application of a
rewrite rule does not change the interpretation of D.

NF1.1 (C u >)I = CI holds, since CI ∩∆I = CI .

NF1.2 Analogue to NF1.1.

NF1.3 (∀w.>)I = >I holds, since (∀r.>)I = {d ∈ ∆I | ∀(d, e) ∈ rI .e ∈
>I = ∆I} = ∆I = >I . If (∀r.>)I = >I , then obviously (∀r1. · · · ∀rn.>)I =
(∀r1. · · · ∀rn−1.>)I = · · · = >I .

NF1.4 We first show for single value restrictions, that
(∀r.(C1 u · · · u Cn))I = (∀r.C1 u · · · u ∀r.Cn)I holds, since

{d ∈ ∆I | ∀(d, e) ∈ rI .e ∈ CI1 ∩ · · · ∩ CIn}

is equivalent to
n⋂
i=1

{d ∈ ∆I | ∀(d, e) ∈ rI .e ∈ CIi }

18

4 NORMALIZATION IN FL0

which is the same as

(∀r.C1)I ∩ · · · ∩ (∀r.Cn)I .

For a chain of value restrictions, we now know that the following lines are
equal:

(∀r1. · · · ∀rn.(C1 u · · · u Cm))I

(∀r1. · · · ∀rn−1.(∀rn.C1 u · · · u ∀rn.Cm))I

(∀r1. · · · ∀rn−2.(∀rn−1.∀rn.C1 u · · · u ∀rn−1.∀rn.Cm))I

· · ·

(∀r1 · · · rn.C1 u · · · u ∀r1 · · · rn.Cm)I �

Lemma 4.2. The TBoxes T and NF1(T) are equivalent, that is, an interpre-
tation I is a model of T iff it is a model of NF1(T).

Proof. Since none of the rules NF1.1, NF1.2, NF1.3, NF1.4 introduce new con-
cept or role names, we can see that sig(T) = sig(NF1(T)) and thus every
interpretation I of T is also an interpretation for NF1(T) and vice versa. For
any GCI E v F ∈ T an application of a rewrite rule merely changes the con-
cept descriptions E,F , it does not introduce or remove (new) GCIs. Hence,
after finishing normalization phase 1, it holds that for every GCI E v F ∈ T
there is a GCI NF1(E) v NF1(F) ∈ NF1(T) (and vice versa) such that
NF1(E), NF1(F) is obtained from E,F (respectively) by exhaustively apply-
ing the rewrite rules NF1.1 – NF1.4. From Lemma 4.1, we immediately obtain
the consequence that every model of T is also a model of NF1(T).

For the second normalization phase it is not as simple, since fresh concept
names and new GCIs are introduced to the TBox. Equivalence w.r.t. all inter-
pretations does not make sense here because there will potentially exist concept
names B ∈ sig(NF2(T)) \ sig(T) that are not mapped to a subset of the do-
main by the interpretations for T . It rather needs to be shown that models of
the original TBox can be extended to provide a model for the normalized one,
and since sig(T) ⊆ sig(NF2(T)), a model of NF2(T) should also be a model
of T . This relation from the normalized NF2(T) to the original T is called a
conservative extension.

Definition 4.3. Given general FL0 TBoxes T1 and T2, we say that T2 is a
conservative extension of T1 if

• sig(T1) ⊆ sig(T2),

• every model of T2 is a model of T1, and

• for every model I1 of T1 there exists a model I2 of T2 such that the exten-
sions of the concept and role names from sig(T1) coincide in I1 and I2,
i.e.,

– AI1 = AI2 for all concept names A ∈ sig(T1), and

– rI1 = rI2 for all role names r ∈ sig(T1).

19

4 NORMALIZATION IN FL0

Lemma 4.4. The TBox NF2(T) is a conservative extension of the TBox T in
CCNF.

Proof. For NF2(T) to be a conservative extension of T , it suffices to show
that T ′ is a conservative extension of T when obtained by applying one rewrite
rule NF2.1 or NF2.2 to T . By transitivity of rule applications it follows that
NF2(T) is also a conservative extension of T . We need to show, that the three
properties of Definition 4.3 hold when applying one rewrite rule.

Claim.
(∀v.A)I ⊆ BI =⇒ (∀r.∀v.A)I ⊆ (∀r.B)I .
{d ∈ ∆I | ∀(d, e) ∈ rI .e ∈ (∀v.A)I} ⊆ {d ∈ ∆I | ∀(d, e) ∈ rI .e ∈ BI}
obviously holds since e ∈ (∀v.A)I =⇒ e ∈ BI .

NF2.1. Let w ∈ N∗R with |w| > 0, r ∈ NR and T ′ be obtained from T by
rewriting the GCI C1 u ∀rw.A u C2 v D to C1 u ∀r.B u C2 v D and adding
∀w.A v B to T ′. B is a freshly introduced concept name, i.e. B 6∈ sig(T).

• sig(T) ⊆ sig(T ′) is obvious, since only the fresh concept name B is intro-
duced. Neither roles nor concept names are being removed.

• Let I be a model of T ′, then CI1 ∩ (∀r.B)I ∩ CI2 ⊆ DI and (∀w.A)I ⊆
BI hold. By our claim we know that (∀r.∀w.A)I ⊆ (∀r.B)I and thus
CI1 ∩ (∀rw.A)I ∩CI2 ⊆ CI1 ∩ (∀r.B)I ∩CI2 ⊆ DI , which makes I a model
of T , because no other GCIs were changed.

• Let I be a model of T and let I ′ be the interpretation obtained from I
by setting ∀A ∈ sig(T).AI

′
= AI and ∀r ∈ sig(T).rI

′
= rI . Assume we

freshly introduced B in T ′, if we set BI
′

= (∀w.A)I
′

then (∀w.A)I
′ ⊆ BI′

is satisfied, and (∀r.∀w.A)I
′

= (∀r.B)I
′

together with

CI1 = CI
′

1 , C
I
2 = CI

′

2 , D
I = DI

′

yields
CI
′

1 ∩ (∀r.B)I
′
∩ CI

′

2 = CI
′

1 ∩ (∀rw.A)I
′
∩ CI

′

2

= CI1 ∩ (∀rw.A)I ∩ CI2 ⊆ DI = DI
′
,

thus making I ′ a model for T ′.

For the normalization rule NF2.2 using the inverted claim (with ⊇), the proof
works analogue to NF2.1.

Lemma 4.4 together with the following more general theorem, shows how
reasoning w.r.t. the original TBox T is not affected by our particular normal-
ization procedure.

Theorem 4.5. For a TBox T and a conservative extension T ′ of T ,
C vT D ⇐⇒ C vT ′ D holds for any concept descriptions with sig(C), sig(D) ⊆
sig(T).

Proof. Assume that C 6vT D, then there exists a model I of T such that
CI 6⊆ DI and since T ′ is a conservative extension of T , there exists a model
I ′ of T ′ such that ∀x ∈ sig(T).xI = xI

′
. Since sig(C), sig(D) ⊆ sig(T),

CI
′

= CI 6⊆ DI = DI
′
, hence C 6vT ′ D.

20

4 NORMALIZATION IN FL0

For the other direction, assume that C 6vT ′ D. Then there exists a model I
of T ′ such that CI 6⊆ DI . Since T ′ is a conservative extension of T , I is also a
model of T and thus C 6vT D.

In the following we will need to argue over the syntactical structure of con-
cept descriptions. For that purpose we make use of the syntax tree formalism
from the term rewriting toolbox. Every FL0 concept description can be ex-
pressed with a syntax tree containing ∀–nodes, u–nodes, concept–name–nodes
and >–nodes. For example, C = ∀r.(Au∀s.(B1 uB2)u∀s1s2.(AuB1)) has the
following tree–structure:

∀r

u

A ∀s

u

B1 B2

∀s1s2

u

A B1

>– and concept–name–nodes are always leaves, whereas ∀–nodes are of arity 1
and u–nodes have a higher arity, depending on the present conjuncts. The depth
of a node is defined as the amount of ancestors the node has. In order to handle
fewer cases later, we make some demands, so that the syntax trees are tailored
to the normalization procedure described in Table 1. The words contained in
∀–nodes as well as the arity of u–nodes are maximal. Thus, it is not possible
that a u–node has another u–node as a successor, likewise for ∀–nodes. As a
consequence, for example a concept–name–node (or >–node) with depth 3 has 3
ancestors, either 2 value restrictions, 1 conjunction or 2 conjunctions and 1 value
restriction. We will use the expression “X appears under a conjunction” or “X
appears under a value restriction”, which means that in the current syntax tree,
X (as any node in the syntax tree) has an ancestor that is a u–node or a ∀–node
respectively.

We now show that the entire normalization procedure is linear w.r.t. com-
putation steps in the size of T as stated by the following lemma.

Lemma 4.6. A general FL0 TBox T can be transformed into PANF, using the
rules of Table 1,

1. with a linear number of rule applications in the size of T , and

2. its normal form T ′ is polynomial in the size of T .

Proof. We can investigate the complexity of phase 1 and 2 separately. For
normalization phase 1 we can assume the following heuristic for applying trans-
formation rules without changing the outcome of the normalization procedure.

21

4 NORMALIZATION IN FL0

1. Exhaustively apply NF1.1, NF1.2 and NF1.3 to left– and right–hand sides
of all GCIs in T .

2. Exhaustively apply NF1.4 for all concept descriptions on the left– or right–
hand side of a GCI in T .

We define a measure ‖T ‖> of bad > occurrences within a TBox T :

• ‖T ‖> =
∑

EvF∈T
‖E‖0> + ‖F‖0>

• ‖C uD‖d> = ‖C‖1> + ‖D‖1>

• ‖∀w.C‖d> = ‖C‖d+1
> (for maximal w, i.e. C = > | A | E u F)

• ‖A‖d> = 0 (A ∈ NC)

• ‖>‖d> = d

for d ∈ N, describing the distance of> to the next u–node ancestor in the current
syntax tree (or its depth if no u ancestor exists). Note, that an occurrence of
> can be bad once or twice, but no more. Thus, ‖T ‖> ≤ 2 · |T |. We show that
for T ′, obtained by applying one of the rules NF1.1, NF1.2 or NF1.3 to T with
‖T ‖> > 0, that ‖T ′‖> < ‖T ‖>. For NF1.1,

‖C u >‖d> = ‖C‖1> + ‖>‖1> = ‖C‖1> + 1

and after the application ‖C‖1> remains. Thus, ‖T ′‖> = ‖T ‖> − 1, which is
analogue for NF1.2. For NF1.3, ‖∀w.>‖d> = ‖>‖d+1

> , which after the application
remains as ‖>‖d>, provided that w is maximal, which we requested for the
normalization procedure anyway. Therefore, the result is the same as for NF1.1
and NF1.2, i.e. ‖T ′‖> = ‖T ‖> − 1. It is easy to see, that the only occurrence
of a > in T that is not bad appears at the root of a syntax tree and as long as
‖T ‖> > 0, there is a rule application of NF1.1, NF1.2 or NF1.3 possible. Thus,
for ‖T ‖> = 0 it is clear that all concept descriptions on left– or right–hand sides
of GCIs in T are either >, or do not contain > anymore and none of the first
three rules is applicable.

For the exhaustive application of the rule NF1.4, we introduce another mea-
sure, describing the badness of T w.r.t. conjunctions:

• ‖T ‖u =
∑

EvF∈T
‖E‖0u + ‖F‖0u

• ‖C1 u · · · u Cn‖du = ‖C1‖du + · · ·+ ‖Cn‖du + d (max. conjunctions2)

• ‖∀w.C‖du = ‖C‖1u (for maximal w, i.e. C = > | A | E u F)

• ‖A‖du = 0 (A ∈ NC)

• ‖>‖du = 0

2For all i = 1, . . . , n, Ci = > | A | ∀w.D.

22

4 NORMALIZATION IN FL0

Intuitively, every conjunction appearing in T is bad, if it has a ∀–ancestor in
the syntax tree. Because the rules NF1.1, NF1.2 and NF1.3 do not introduce
new conjunctions, we know that for the initial input terminology T , ‖T ‖u ≤
|T |. We show that if T ′ is obtained from T by an application of NF1.4, that
‖T ′‖u < ‖T ‖u. Before the rule application we have

‖∀w.(C1 u · · · u Cn)‖du = ‖C1 u · · · u Cn‖1u = ‖C1‖1u + · · ·+ ‖Cn‖1u + 1,

whereas after the transformation,

‖∀w.C1 u · · · u ∀w.Cn‖du = ‖∀w.C1‖du + · · ·+ ‖∀w.Cn‖du + d

and for all i = 1, . . . , n, ‖∀w.Ci‖du evaluates to ‖Ci‖1u. We need to distinguish
two cases for the position of the concept description ∀w.(C1 u · · · u Cn). As-
sume d = 0, then the rule application obviously reduces the amount of bad
conjunctions by one, since

‖C1‖1u + · · ·+ ‖Cn‖1u + 1 < ‖∀w.C1‖du + · · ·+ ‖∀w.Cn‖du + d.

For d = 1, another argument is required. Let D = ∀w.(C1 u · · · u Cn), if d = 1,
then the value restriction D has another ∀–ancestor in the syntax tree, however
there must exist a conjunction in between, otherwise it would contradict the
maximality of w. Thus, after the rule application s.t. D′ is obtained from D
by applying the rule NF1.4, D′ appears in a conjunction, w.l.o.g. let that be
E uD′. In this case,

‖∀v.(E u ∀w.(C1 u · · · u Cn))‖du = ‖E‖1u + (‖C1‖1u + · · ·+ ‖Cn‖1u + 1) + 1,

whereas after the transformation,

‖∀v.(E u ∀w.C1 u · · · u ∀w.Cn)‖du = ‖E‖1u + ‖∀w.C1‖1u + · · ·+ ‖∀w.Cn‖1u + 1.

Since ‖∀w.Ci‖1u = ‖Ci‖1u for all i = 1, . . . , n, it was successfully shown that a rule
application of NF1.4 reduces the amount of bad conjunctions in T . To illustrate,
consider the following syntax graphs, that depict the merging of subsequent
conjunctions during an application of NF1.4:

∀v

u

. . . ∀w

u

C1
. . . Cn

. . .

∀v

u

. . . ∀w

C1

. . . ∀w

Cn

. . .

Hence, every application of NF1.4 reduces the amount of bad conjunctions in T
by one and ‖T ‖u is bounded by the size of T . Together with the bound of 2 · |T |
applications of rules NF1.1, NF1.2 and NF1.3, this shows that normalization
phase 1 will always terminate after a linear amount of rule applications in the

23

4 NORMALIZATION IN FL0

size of T . However, we can see that |∀w.(C1u· · ·uCn)| = |w|+2n−1 increases
polynomially in size with an application of NF1.4, since |∀w.C1u· · ·u∀w.Cn| =
n · (|w|+ 2)− 1.

Regarding the second normalization phase, we define a special size of FL0

elements (in CCNF) in the following way:

• ‖>‖∀ = ‖A‖∀ = 0 (A ∈ NC)

• ‖C uD‖∀ = ‖C v D‖∀ = ‖C‖∀ + ‖D‖∀

• ‖∀w.A‖∀ = |w| − 1 (A ∈ NC)

• ‖T ‖∀ =
∑

CvD∈T
‖C v D‖∀

Intuitively, ‖T ‖∀ is the sum of word lengths of all occurring value restrictions
in T with |w| ≥ 2 (since we use |w| − 1). Naturally, if ‖T ‖∀ = 0, then all value
restrictions ∀w.A in T have |w| = 1 and thus, T is in normal form. Furthermore
‖T ‖∀ is bound by the size of T . Showing that each application of NF2.1 or NF2.2
reduces the total word size (of words larger than one letter) is analogue, which
is why we focus on NF2.1.

Let T ′ be obtained from T by applying NF2.1 once with the value restriction
∀rw.A (|w| > 0). Then we must show that

‖C1 u ∀rw.A u C2 v D‖∀ > ‖C1 u ∀r.B u C2 v D‖∀ + ‖∀w.A v B‖∀,

which is converted to:

‖C1‖∀ + |rw| − 1 + ‖C2‖∀ + ‖D‖∀ >

‖C1‖∀ + |r| − 1 + ‖C2‖∀ + ‖D‖∀ + |w| − 1 + ‖B‖∀.
Since r ∈ NR, |r| − 1 = 0 and ‖B‖∀ = 0 we are left with |rw| − 1 > |w| − 1,
which obviously holds true for |w| > 0. Therefore each application of NF2.1
(or NF2.2) reduces ‖T ‖∀ by at least one. Altogether this implies that after a
linear amount of rule applications in phase 2 all value restrictions are of depth
at most 1. This shows that if neither rule NF2.1 nor NF2.2 are applicable for
T , it must be in PANF. Additionally for both rules NF2.1 and NF2.2, the size
of T increases only by 2, i.e. the size of NF2(T) is also linear in the size of T .

As an immediate consequence of the above, NF2(NF1(T)) can be computed
with a total number of rule applications that is linear in the size of T and
furthermore, its size is polynomial in the size of T .

For every FL0 TBox T , the TBox T ′ = NF2(NF1(T)) is in PANF and a
conservative extension of T by Lemmas 4.2 and 4.4. Together with Theorem
4.5 and Lemma 4.6, this yields the following consequence.

Corollary 4.7. For every FL0 TBox T there exists an FL0 TBox T ′ in PANF
such that C vT D ⇐⇒ C vT ′ D holds for any FL0 concept descriptions with
sig(C), sig(D) ⊆ sig(T). �

As a final addition to the normalization, we will show that deciding sub-
sumption w.r.t. concept descriptions coincides with deciding subsumption w.r.t.
concept names.

24

4 NORMALIZATION IN FL0

Lemma 4.8. For two FL0 concept descriptions C,D ∈ C(FL0, NC , NR) and an
FL0 TBox T , let T ′ = T ∪ {AC v C,D v AD} with two fresh concept names
AC , AD not occurring in NC .

C vT D iff AC vT ′ AD

Proof. It is not hard to see that T ′ is a conservative extension of T . We use
this to prove both directions separately.

“=⇒” Since T ′ is a conservative extension of T , it follows from Theorem 4.5
that C vT ′ D holds. The equation AC v C vT ′ D v AD trivially
implies AC vT ′ AD.

“⇐=” For every model I of T , there exists a model κ(I) of T ′ s.t. ∀A ∈
NC .A

I = Aκ(I), A
κ(I)
C = CI and A

κ(I)
D = DI , that is clearly a model

of T ′. Given that AJC ⊆ AJD holds for every model J of T ′, it holds
for all κ(I) in particular. Therefore,

CI = A
κ(I)
C ⊆ Aκ(I)D = DI

implies CI ⊆ DI for all models I of T . �

25

5 Looping Tree Automata

The subsumption of two FL0 concept descriptions w.r.t. a given TBox depends
on those interpretations that are models of the given TBox. With Theorem 3.13,
we have shown that it suffices to restrict the reasoning to functional models,
which bring the advantage of having a specific infinite tree structure. Looping
tree automata are capable of accepting such infinite trees. For convenience, we
will make no distinction between an infinite labeled tree and a functional inter-
pretation, hence we also say that a looping tree automaton accepts functional
interpretations. For the current structural approach, the idea is to build a loop-
ing tree automaton that accepts exactly those functional interpretations that
are functional models I of C w.r.t. a given TBox T , that do not satisfy ε ∈ DI .
This condition represents the counterposition of Proposition 3.12. Therefore, if
the automaton does not accept any tree (emptiness test), C vT D must hold.

Definition 5.1. A looping tree automaton on n–ary labeled trees is a 4–tuple
A = (Q,Σ, I,∆), where

• Q is a finite set of states,

• Σ is a finite alphabet,

• I ⊆ Q is the set of initial states, and

• ∆ = Q× Σ×Qn is the set of state transitions.

A looping tree automaton gets infinite tree structures of a specific arity
as input, which are either accepted or rejected. For this purpose, such an
automaton can also be seen as a labeling mechanism. Given an input tree,
the automaton assigns a label to each node of this input. If such a labeling
satisfies all criteria formulated in the definition of the respective automaton,
the input tree is accepted. Formally these labels are extracted to another tree,
representing a so–called run of the automaton on the input t. Note that for a
tree t, dom(t) is its domain and contains all nodes occurring in t. Domain nodes
are usually identified by the path from the root of the tree to the node. For
the tree of a functional interpretation, the tree nodes are domain elements from
N∗R, i.e. dom(t) = ∆I = N∗R.

Definition 5.2. A run of a looping tree automaton A = (Q,Σ, I,∆) on an
n–ary tree t : dom(t)→ Σ is a mapping ρ : dom(t)→ Q such that the following
condition is fulfilled:

• (ρ(w), t(w), ρ(wa1), . . . , ρ(wan)) ∈ ∆ (inner node condition)
for every node w ∈ dom(t) s.t. for all i = 1, . . . , n, wai ∈ dom(t) is the
i–th successor of w in t.

For a run to be accepting, another condition must be fulfilled:

• ρ(ε) ∈ I (initial state condition)

The set L(A) describes all accepted trees of the automaton A. Formally, t ∈
L(A), if and only if there exists an accepting run ρ of A on t.

27

5 LOOPING TREE AUTOMATA

A tree (even if labeled with elements from Q) that does not fulfill either
of the conditions in Definition 5.2 for the automaton A is not a run of A on
the given tree. Consider the following example, illustrating the capabilities of
looping tree automata.

Example 5.3. Let t be an infinite 2–ary labeled tree with labels from Σ =
{a, b, c} that is “beginning” with the following structure:

n

a

n1

a

n11

a

.

n12

c

.

n2

b

n21

b

.

n22

b

.

A looping tree automaton A = (Q,Σ, I,∆) picks an initial state q0 from I and
picks an applicable state transition reading the symbol a from Σ, i.e. a state
transition of the form (q0, a, q1, q2). It continues then to read a in state q1 and
b in state q2 and so forth. A run of this automaton is a labeling that assigns
a label from Q to every tree–node, while structurally staying compatible with
the transition relations given in ∆. This non-deterministic automaton will only
accept a tree t, if there exists a labeling that does not violate the initial state or
inner node condition (Definition 5.2). To emphasize, the automaton supplies a
schema of rules that must hold for the labels within a tree in order for it to be
accepted. These rules are enforced for instance with state transitions, e.g. let
every state qx only have state transitions of the form (qx, x, ,) ∈ ∆ (x ∈ Σ). If
there exist only the two transitions (qa, a, qa, qb) and (qa, a, qa, qc) for qa, every
accepted tree must have the label a at the first successor of a node labeled with
a and either b or c at the second successor.

The looping tree automaton deciding the subsumption of two concept de-
scriptions C and D will run on functional interpretations. However, due to the
nature of state transitions, it is only possible to enforce structural constraints
on a local basis (current node and immediate successors). Even though this
would suffice for TBoxes in PANF (every value restriction has a nesting depth
of at most 1), for a later purpose it is not possible to use the TBox and concept
descriptions in PANF here. Therefore, more information has to be encoded
into the tree node labels in order to allow enforcement of deeper structural
constraints induced by the TBox. For the following definitions we assume the
TBox T and concept descriptions C and D to be in CCNF. We will encode
these structural constraints in the states of the automaton. Every state will es-
sentially contain the information that has to hold after following certain paths
from the node that this state is assigned to by the automaton. The task for the
set of state transitions is in part to ensure that this information is propagated
down the tree.

28

5 LOOPING TREE AUTOMATA

Definition 5.4. Let C be a concept description of the form

C = ∀w1.A1 u · · · u ∀wn.An

(1) The set of all value restrictions is defined as

val(C) := {∀v.Ai | ∃i ∈ {1, . . . , n}.∃u, v ∈ N∗R.uv = wi}.

The definition of val can be extended to TBoxes such that

val(T) :=
⋃

CvD∈T

(val(C) ∪ val(D)).

Similar to the signature, val accepts multiple arguments:

val(X1, . . . , Xk) =

k⋃
i=1

val(Xi)

where the Xi are either FL0 TBoxes or concept descriptions.

(2) The set of all conjuncts in C is Ĉ, i.e.

Ĉ = {∀wi.Ai | 1 ≤ i ≤ n}.

With val we have a finite set of all value restrictions that may ever occur in
the given context (concepts/TBox), this will help to define an automaton using
only finite sets of states and state transitions. The motivation for the looping
tree automaton is given by the functional model in Example 5.5.

Example 5.5. Consider the concept description C = Au∀rss.Au∀sB, whose
least functional model I (w.r.t. T = ∅) has the following structure:

ε

A

r

rr

.

r

rs

. . . rss

A

.

s

s

r

s

B

sr

.

r

ss

.

s

s

If ε ∈ CI then ε ∈ (∀rss.A)I , thus at node ε lies the information that, after
following the path rss, the concept name A must occur in the label of the reached
domain element. In order to ensure that A is in the label of rss, an automaton
needs to keep track of the information with a local operation. As we have ex-
plained before, it is not trivially possible to ensure conditions for nodes that are
further away than immediate children. Hence we assign a label (state) to a tree
node, that contains the necessary information for all subsequent nodes, as well
as respects all GCIs of the given TBox.

29

5 LOOPING TREE AUTOMATA

ε

r

rr

.

r

rs

. . . rss

.

s

s

r

s

sr

.

r

ss

.

s

s

∀rss.A,∀ε.A, ∀s.B

∀ss.A

∀s.A

∀ε.A

∀ε.B

Therefore, a run–tree, describing the labeling of the automaton on the given
interpretation, is labeled with sets of value restrictions that have to be satisfied
for the current domain element. The state transitions can then ensure that
longer chains of value restrictions are passed down to the appropriate node.
Since labels in a run (states) can contain value restrictions like ∀ε.A, the run
is also able to contain the information of the input interpretation (w.r.t. the
interpretation of concept names), which is why it is often enough to argue over
runs.

In order to be able to process functional interpretations with state transitions
in a uniform way, we need to fix the order of children within a functional interpre-
tation. In the following when a TBox and possibly several concept descriptions
are given, they are always built over concept descriptions from C(FL0, NC , NR),
hence the set of role names NR is fixed. W.l.o.g. we can assume that for a size
|NR| = n, the roles in NR are called r1, . . . , rn. Then, for a functional interpre-
tation, the direct children of a domain element u are ur1, . . . , urn, in that order.
This fixes the correlation between a role successor in a functional interpretation
and a successor state in a state transition of a looping tree automaton. Explic-
itly, for a state transition (q, σ, q1, . . . , qn), we require qi to be always associated
with the ri successor of the current domain element (1 ≤ i ≤ n). Hence, for a
run ρ, (ρ(u), t(u), ρ(ur1), . . . , . . . , ρ(urn)) can correspond to the state transition
(q, σ, q1, . . . , qn).

30

5 LOOPING TREE AUTOMATA

Definition 5.6. Let T be a general FL0 TBox in CCNF and C,D two FL0 con-
cept descriptions in CCNF, built over C(FL0, NC , NR). Then AC,T = (Q,Σ, I,∆)
is a looping tree automaton with

Q = 2val(T ,C,D)

Σ = 2NC

I = {X ∈ 2val(T ,C,D) | Ĉ ⊆ X ∧ D̂ 6⊆ X}

∆ = {(q, σ, q1, . . . , qn) | (1) ∧ (2) ∧ (3) ∧ (4)} with

(1) ∀E v F ∈ T .Ê ⊆ q =⇒ F̂ ⊆ q

(2)
n∧
i=1

(∀riw.A ∈ q =⇒ ∀w.A ∈ qi)

(3)
n∧
i=1

(∀w.A ∈ qi ∧ ∀riw.A ∈ val(T , C,D) =⇒ ∀riw.A ∈ q)

(4) A ∈ σ ⇐⇒ ∀ε.A ∈ q

We say every state transition δ ∈ ∆ is (1) compatible with T , (2) fulfills value
restrictions, (3) complements value restrictions and (4) respects the input inter-
pretation.

Note that condition (3) only allows value restrictions to be added to the
state q if they already existed as a subterm within the TBox T or the given
concepts C,D. No new value restrictions will be inferred from condition (3),
hence keeping the space of all value restrictions confined to val(T , C,D).

Sometimes the alternative notation

∆(q, σ) = {(q1, . . . , qn) | (q, σ, q1, . . . , qn) ∈ ∆}

is used to identify state transitions. A run of AC,T on a functional interpretation
I is a mapping ρ : N∗R → Q. In order to simplify the access to the label of a
domain element in the tree of a functional interpretation, we define for w ∈ N∗R

I(w) = {A ∈ NC | w ∈ AI}.

Lemma 5.7. Let I be a functional interpretation. For all accepting runs ρ of
AC,T on I, it holds for any u, v ∈ N∗R and A ∈ NC with ∀v.A ∈ val(T , C,D)
that ∀v.A ∈ ρ(u) if and only if ∀ε.A ∈ ρ(uv).

Proof. We prove both directions separately for v = r1 · · · rm (m ≥ 1). The 4
conditions for state transitions are local structural conditions that have to hold
at any node and its immediate successors in a run ρ.

“=⇒” If ∀v.A ∈ ρ(u) then ∀r2 · · · rm.A ∈ ρ(ur1) must hold, otherwise Condi-
tion (2) for state transitions in AC,T cannot be satisfied. Continuing
to argue in that fashion yields that ∀rm.A ∈ ρ(ur1 · · · rm−1), which in
turn yields ∀ε.A ∈ ρ(uv).

“⇐=” If ∀ε.A ∈ ρ(uv) then ∀rm.A ∈ ρ(ur1 · · · rm−1) because otherwise Con-
dition (3) for the state transitions in AC,T would be violated, since
∀v.A ∈ val(T , C,D), ∀rm.A ∈ val(T , C,D) is satisfied by assumption.
Iterating this argument, we obtain ∀v.A ∈ ρ(u). �

31

5 LOOPING TREE AUTOMATA

From Lemma 5.7 we obtain the consequence that there cannot exist two
runs ρ1, ρ2 of AC,T accepting I, that are strictly different from each other.
Assume that ρ1 and ρ2 are accepting runs of AC,T on I and for a node u ∈ N∗R
and some value restriction ∀v.A ∈ val(T , C,D) it holds that ∀v.A ∈ ρ1(u)
and ∀v.A 6∈ ρ2(u). Then Lemma 5.7 implies that ∀ε.A ∈ ρ1(uv) but ∀ε.A 6∈
ρ2(uv). By Condition (4) of the set of state transitions, this yields that ∀ε.A ∈
ρ1(uv) ⇐⇒ A ∈ I(uv), contradicting that ρ2 is an accepting run. Thus, we
have a stronger acceptance condition for functional interpretations. That is, a
functional interpretation I ∈ L(AC,T) iff there exists exactly one accepting run
ρ of AC,T on I. We say I is accepted by AC,T due to ρ. Most importantly,
note that for every w ∈ N∗R, A ∈ NC it holds that ∀ε.A ∈ ρ(w)⇐⇒ w ∈ AI , by
Condition (4) of Definition 5.6.

Let J be a functional interpretation such that uv ∈ AJ , then by the
structure of J it is clear that u ∈ (∀v.A)J . In the tree of a functional in-
terpretation there are only labels from 2NC . However, for the accepting run
ρ : N∗R → 2val(T ,C,D) of AC,T on J , satisfying the property of Lemma 5.7 that
has ∀ε.A ∈ ρ(uv), the label of ρ(u) explicitly contains the value restriction ∀v.A
(if ∀v.A ∈ val(T , C,D)). Therefore we can see that the accepting run ρ of AC,T
on J explicitly contains the value restriction ∀v.A in the labels of all domain
nodes contained in the implicitly known set (∀v.A)J .

Proposition 5.8. For any concept description X ∈ C(FL0, NC , NR) in CCNF,
with val(X) ⊆ val(T , C,D) and a run ρ of AC,T on a functional interpreta-
tion J satisfying Conditions (2), (3) and (4) of Definition 5.6, the following
statements are equivalent:

1. X̂ ⊆ ρ(u)

2. for all ∀v.A ∈ X̂ it holds that ∀ε.A ∈ ρ(uv)

3. for all ∀v.A ∈ X̂ it holds that uv ∈ AJ

4. u ∈ XJ

Proof. Statements 1 and 2 are equivalent due to Lemma 5.7, which only relies
on Conditions (2) and (3) of Definition 5.6. Since Condition (4) of the definition
of AC,T is satisfied, Statements 2 and 3 are equivalent. Finally, Statement 3 is
equivalent to Statement 4 simply by the structure of J as defined with Property
1 of Definition 3.4.

Finally, we acquired all the necessary tools to show what kind of functional
interpretations are accepted by AC,T .

Lemma 5.9. The automaton AC,T = (Q,Σ, I,∆) accepts exactly all functional
models J of C w.r.t. T , such that ε 6∈ DJ .

Proof. We need to prove both directions, that is (i) if J is accepted by AC,T
due to the run ρ, then J is a functional model of C w.r.t. T such that ε 6∈ DJ
and (ii) if J is a functional model of C w.r.t. T such that ε 6∈ DJ then there
exists an accepting run ρ of AC,T on J .

(i) Using Proposition 5.8, it is easy to show the following arguments. Because
Condition (1) for the state transitions in ∆ is satisfied for ρ, every GCI

32

5 LOOPING TREE AUTOMATA

in T is satisfied at every node of ρ, i.e. Ê ⊆ ρ(w) =⇒ F̂ ⊆ ρ(w) for

all E v F ∈ T and w ∈ N∗R. Because Ê ⊆ ρ(w) ⇐⇒ w ∈ EJ and

F̂ ⊆ ρ(w) ⇐⇒ w ∈ FJ , we know that EJ ⊆ FJ holds for every GCI
E v F ∈ T . Hence, J is a functional model of T . Similarly, we know that
ρ(ε) ∈ I, which is why Ĉ ⊆ ρ(ε), which is equivalent to ε ∈ CJ , making

J a functional model of C w.r.t. T . Furthermore, D̂ 6⊆ ρ(ε) is directly
equivalent to ε 6∈ DJ .

(ii) Let J be a functional model of C w.r.t. T such that ε 6∈ DJ . We can
construct a run ρ from J such that ρ is an accepting run of AC,T on J .
For all w ∈ N∗R, let

ρ(w) = {∀u.A ∈ val(T , C,D) | w ∈ (∀u.A)J }.

Recall that for u = rv, by the structure of J it holds that w ∈ (∀rv.A)J ⇐⇒
wr ∈ (∀v.A)J . Thus, for every w ∈ N∗R, (ρ(w),J (w), ρ(wr1), . . . , ρ(wrn))
satisfies the Conditions (2) and (3) of Definition 5.6. Because

∀ε.A ∈ ρ(w)⇐⇒ w ∈ (∀ε.A)J ⇐⇒ w ∈ AJ ⇐⇒ A ∈ J (w),

Condition (4) of Definition 5.6 is satisfied. Since Conditions (2), (3) and
(4) are already satisfied for every (ρ(w),J (w), ρ(wr1), . . . , ρ(wrn)), we can
apply Proposition 5.8. For every E v F ∈ T , w ∈ N∗R it holds that w ∈
EJ =⇒ w ∈ FJ because J is a model of T . Since w ∈ EJ ⇐⇒ Ê ⊆ ρ(w)
(analogue for F) holds by Proposition 5.8, it is easy to see that condition
(1) is also satisfied for every tuple (ρ(w),J (w), ρ(wr1), . . . , ρ(wrn)). With

a similar argument, we know that ε ∈ CJ ⇐⇒ Ĉ ⊆ ρ(ε) and ε 6∈ DJ ⇐⇒
D̂ 6⊆ ρ(ε) implies that ρ(ε) ∈ I, making ρ into an accepted run of AC,T
on J . �

Theorem 5.10. L(AC,T) = ∅ ⇐⇒ C vT D.

Proof. From Lemma 5.9 and Proposition 5.8 it follows that the existence of the
accepting run ρ of AC,T on J implies ε 6∈ DJ and thus ε 6∈ DIC,T . However,
since ε ∈ DID,T holds we have ID,T 6⊆ IC,T , which implies C 6vT D by Corollary
3.14, concluding the contraposition proof of the only–if direction. If L(AC,T) =
∅, then no run ρ exists that contains a functional model J of C w.r.t. T such
that ε 6∈ DJ . Therefore, from Lemma 5.9 follows, that for all functional models
J of C w.r.t. T , ε ∈ DJ must hold. Hence, ε ∈ DIC,T holds, which implies
that IC,T is also a functional model of D w.r.t. T and by Lemma 3.9 it holds
that ID,T ⊆ IC,T . Corollary 3.14 then implies that C vT D.

This result shows that deciding subsumption w.r.t. general FL0 TBoxes
can be reduced to the emptiness check for looping tree automata. While this
emptiness check can be done in linear time [5], the automaton AC,T has ex-
ponentially many states in the sizes of T , C,D (2val(T ,C,D) is exponential with
|val(T , C,D)| ≤ |T | + |C| + |D|), confirming previous results [2] that deciding
subsumption in FL0 with general TBoxes is of exponential time complexity.

33

5.1 Minimizing AC,T 5 LOOPING TREE AUTOMATA

The following investigations are concerned with more questions about the
“language” LT (C). Motivated by the fact that for acyclic TBoxes, FL0 concept
descriptions can be finitely unfolded to a normal form

C = ∀L1.A1 u . . . u ∀Ln.An,

where all Li := {w ∈ N∗R | C vT ∀w.Ai} (note the resemblance to the definition
of LT (C)) are finite languages, we ask whether there exists a similar normal-
ization for acyclic TBoxes, being aware of the fact that acyclicity of the TBox
allows for the Li to be infinite. The question arises what properties hold for the
Li, in particular, are all Li = LT (C,Ai) regular?

5.1 Minimizing AC,T

Any language L ⊆ Σ∗ over some alphabet Σ can be described by a tree of arity
n = |Σ|. The tree t : Σ∗ → {0, 1} describing L is constructed as follows

t(w) =

{
1 if w ∈ L
0 otherwise.

It is well known that the languages described by finite automata are regular
[10]. As a finite automaton accepts the words of only one language (describable
by one tree), it is not hard to see that looping tree automata, accepting sets of
trees, are a generalization of finite automata. We propose that if a looping tree
automaton A accepts exactly one tree describing a language L, then A induces
a finite automaton describing L (accepting exactly all words in L), showing that
L is a regular language. For our purpose, we try to find an automaton accepting
exactly the language LT (C,A) (for A ∈ NC) by minimizing the automatonAC,T
to accept not all functional models of C but exactly the least model IC,T . It
seems natural that if the intersection of all functional models yields the minimal
functional model, a similar notion of intersection for state transitions may result
in a minimized automaton.

First of all since we do not try to decide subsumption for now, we remove
all traces of the second concept description D from the definition of AC,T .
Explicitly the set of initial states will now be defined as

I = {X ⊆ 2val(T ,C) | Ĉ ⊆ X}

and we will only consider value restrictions from val(T , C). It is clear that the
modifiedAC,T accepts all functional models J of C w.r.t. T without restrictions.
Since for all such J it holds that IC,T ⊆ J , it is obvious that |IC,T (w)| ≤ |J (w)|
(for all w ∈ N∗R) which could support the idea to only keep the “least” state
transitions for each q ∈ Q in order to keep acceptable trees minimal. More
explicitly, we reduce ∆ to

∆̃ := {(q, σ, q1, . . . , qn) ∈ ∆ | ∀(q, σ, q′1, . . . , q′n) ∈ ∆, i ∈ {1, . . . , n}.qi ⊆ q′i}.

However, the following example illustrates the error in this reduction.

Example 5.11. Let T = {A v ∀r.B,B v A}. T is already in CCNF and can
be viewed uniformly with value restrictions in the following way:

{∀ε.A v ∀r.B, ∀ε.B v ∀ε.A}

34

5 LOOPING TREE AUTOMATA 5.1 Minimizing AC,T

It is easy to see that the least functional model IA,T looks like this:

A
ε

r−→ A,B
r

r−→ A,B
rr

r−→ A,B
rrr

r−→ A,B
rrrr

r−→ · · ·

For the automaton AA,T = (Q,Σ, I,∆) we have

• val(T , A) = {∀ε.A,∀ε.B, ∀r.B}

• Q = {∅, {∀ε.A}, {∀ε.B}, {∀r.B}, {∀ε.A,∀ε.B},
{∀ε.A,∀r.B}, {∀ε.B, ∀r.B}, {∀ε.A,∀ε.B, ∀r.B}}

• Σ = 2NC = {∅, {A}, {B}, {A,B}}

• I = {{∀ε.A}, {∀ε.A,∀ε.B}, {∀ε.A,∀r.B}, {∀ε.A,∀ε.B, ∀r.B}}

• ∆ = {(∅, ∅, q) | q ∈ Q,∀ε.B 6∈ q}

∪ {({∀r.B}, ∅, q) | q ∈ Q,∀ε.B ∈ q}
∪ {({∀ε.A,∀r.B}, {A}, q) | q ∈ Q,∀ε.B ∈ q}
∪ {({∀ε.A,∀ε.B, ∀r.B}, {A,B}, q) | q ∈ Q,∀ε.B ∈ q}

Most importantly, note that there are no state transitions for {∀ε.B}, because
for transitions of the form ({∀ε.B}, {B}, X), the second GCI would always be
violated. Since the automaton cannot continue once state {∀ε.B} is reached,
there does not exist a run containing {∀ε.B}. If we execute the idea to re-
duce all transitions to the least one right away, we would only keep transi-
tions (Y, σ(Y), {∀ε.B}) (with Y ∈ {{∀r.B}, {∀ε.A,∀r.B}, {∀ε.A,∀ε.B, ∀r.B}},
σ(Y) = {A ∈ NC | ∀ε.A ∈ Y }) and (∅, ∅, ∅), in which case the resulting automa-
ton has no accepting runs and does not accept IA,T anymore. We call {∀ε.B}
a bad state because it may never be used by a run.

The example has shown that the “least” state transition per state q can
contain so–called bad states, which is why we must remove bad states and
bad state transitions beforehand, so that the minimization cannot run into this
problem.

Definition 5.12. For a looping tree automaton A = (Q,Σ, I,∆) a state q ∈ Q
is called bad if it does not occur in any run of A. Otherwise it is called good.

In order to identify bad states, we construct a set of bad states inductively.

Definition 5.13.
The set of bad states Badn(A) is defined inductively as follows:
Bad0(A) := {q ∈ Q | ¬∃(q, x, . . .) ∈ ∆}
Badi+1(A) := {q ∈ Q | ∀(q, x, q1, . . . , qn) ∈ ∆.∃i ∈ {1, . . . , n}.qi ∈ Badi(A)}

∪ Badi(A)

It is not hard to see that Bad0(A) ⊆ Bad1(A) ⊆ . . ., and since Badl(A) ⊆ Q
(for any l ≥ 0) and Q is finite, there exists some k ∈ N such that Badk(A) =
Badk+1(A), making the set Badk(A) well defined.

Lemma 5.14. For n ≥ 0 s.t. Badn(A) = Badn+1(A), q ∈ Badn(A) iff q is a
bad state.

35

5.1 Minimizing AC,T 5 LOOPING TREE AUTOMATA

Proof.
“=⇒” We prove that all q ∈ Badn(A) are bad states by induction on n.

Start: q ∈ Bad0(A) implies that for any run ρ and node
w such that ρ(w) = q there cannot exist a transition
(ρ(w), t(w), ρ(wσ1), . . . , ρ(wσm)) ∈ ∆, which is why ρ is not a run
of A, implying that q may not occur in any run and is therefore bad.
Hypothesis: All q ∈ Badi(A) are bad states.
Step: For Badi+1(A) we only need to show that all
q ∈ {q ∈ Q | ∀(q, x, q1, . . . , qm) ∈ ∆.∃j ∈ {1, . . . ,m}.qj ∈ Badi(A)}
are bad, since all states in Badi(A) are already known to be bad states.
Suppose there exists a run ρ and a node w s.t. ρ(w) = q, then all transi-
tions (ρ(w), t(w), ρ(wσ1), . . . , ρ(wσm)) ∈ ∆ lead to a known bad state,
contradicting the existence of ρ.
Therefore if q ∈ Badn(A), then q is a bad state.

“⇐=” If q 6∈ Badn(A), then q is good, i.e. there exists a run ρ and a node
w s.t. ρ(w) = q. We define a tree t : {0, . . . , k}∗ → Σ by induc-
tion over w ∈ {0, . . . , k}∗ such that the run ρ : {0, . . . , k}∗ → Q
of A on t has ρ(ε) = q. Setting the domain of t to words over
natural numbers {0, . . . , k}∗ is no restriction. There exists a tran-
sition (q, σ, q0, . . . , qk) ∈ ∆, s.t. for all qi (0 ≤ i ≤ k) it holds
that qi 6∈ Badn(A), because otherwise q would be in Badn(A) =
Badn+1(A). Therefore we can set t(ε) = σ (σ ∈ Σ) and ρ(ε) = q.
Assume ρ(w) is already a good state, then there exists a transition
(ρ(w), σ, q0, . . . , qk) ∈ ∆ s.t. qi 6∈ Badn(A) (0 ≤ i ≤ k) because oth-
erwise ρ(w) would be in Badn(A), and thus we can build t(w) = σ.
This inductively describes an infinite tree t such that a run ρ on A
with ρ(ε) = q exists, which implies that q must be a good state. �

For the first step, before minimizing the automaton AC,T , we define an
intermediary automaton by removing all bad states from AC,T .

Definition 5.15. For Badn(AC,T) = Badn+1(AC,T), we obtain the automaton
A+
C,T = (Q+,Σ, I+,∆+) from AC,T = (Q,Σ, I,∆) by setting

• Q+ = Q \Badn(AC,T),

• I+ = I \Badn(AC,T),

• ∆+ = {(q, σ, q1, . . . , qm) ∈ ∆ | q 6∈ Badn(AC,T)}

Proposition 5.16. L(A+
C,T) = L(AC,T).

Proof. It is not hard to see that the set of accepting runs of AC,T is not reduced
by removing only bad states, which is why AC,T and A+

C,T admit the same runs
and thus accept the same set of trees.

Interestingly, I+ = ∅ iff L(AC,T) = ∅ because no run can satisfy the ini-
tial state condition, which is why the reduction to A+

C,T corresponds to the
emptiness check for AC,T .

36

5 LOOPING TREE AUTOMATA 5.1 Minimizing AC,T

Definition 5.17. The automaton ÃC,T = (Q,Σ, Ĩ, ∆̃) is obtained from A+
C,T =

(Q,Σ, I,∆), by setting

• Ĩ = {q ∈ I | ∀q′ ∈ I.q ⊆ q′}

• ∆̃ = {(q, σ, q1, . . . , qn) ∈ ∆ | ∀(q, σ, q′1, . . . , q′n) ∈ ∆.
∀i ∈ {1, . . . , n}.qi ⊆ q′i}

Before showing that the minimized automaton ÃC,T accepts only one func-
tional model, we need two more important properties of run–trees that are
accepting runs of AC,T .

Proposition 5.18. Let I and J be two functional interpretations accepted by
AC,T due to the runs ρI and ρJ respectively.

(1) I ⊆ J ⇐⇒ ρI ⊆ ρJ

(2) I = J ⇐⇒ ρI = ρJ

Proof. For (1) we can prove both directions separately. Let ρI ⊆ ρJ , due to
condition (4) of Definition 5.6, it is obvious that ∀ε.A ∈ ρI(w) =⇒ ∀ε.A ∈
ρJ (w) implies that w ∈ AI =⇒ w ∈ AJ , i.e. AI ⊆ AJ , which holds for any
A ∈ NC and w ∈ N∗R and therefore I ⊆ J . For the other direction, assume that
ρI 6⊆ ρJ , then there exist some u, v ∈ N∗R and A ∈ NC such that ∀v.A ∈ ρI(u)
but ∀v.A 6∈ ρJ (u). By Lemma 5.7 we know that ∀ε.A ∈ ρI(uv) and also
∀ε.A 6∈ ρJ (uv), hence by Condition (4) of Definition 5.6 we have uv ∈ AI and
uv 6∈ AJ , which is why I 6⊆ J .

Equation (2) is merely a direct consequence of (1), in that

ρI = ρJ ⇐⇒ ρI ⊆ ρJ ∧ ρJ ⊆ ρI ⇐⇒ I ⊆ J ∧ J ⊆ I ⇐⇒ I = J . �

It remains to investigate which functional models are accepted by ÃC,T .

Lemma 5.19. ÃC,T = (Q,Σ, Ĩ, ∆̃) as obtained from A+
C,T = (Q,Σ, I,∆) ac-

cepts exactly the functional model IC,T .

Proof. For a functional model J accepted by A+
C,T , let ρJ always describe the

one accepting run of A+
C,T on J . From Lemmas 5.9, 3.9 and Proposition 5.18

it follows that ρIC,T ⊆ ρJ for all functional models J accepted by A+
C,T . In

particular, ρIC,T (ε) ⊆ ρJ (ε) also holds. For all J , accepted by A+
C,T , it holds

that ρJ (ε) ∈ I and by Lemma 5.9 and the removal of bad initial states for
A+
C,T , q ∈ I also implies that there exists some J with ρJ (ε) = q. Therefore,

with Definition 5.17 it is clear that Ĩ = {ρIC,T (ε)}.
For every w ∈ N∗R, Proposition 5.18 yields that IC,T (wri) ⊆ J (wri) —

for all i = 1, . . . , n and J accepted by A+
C,T — implies that ρIC,T (wri) ⊆

ρJ (wri). Therefore, (ρIC,T (w), IC,T (w), ρIC,T (wr1), . . . , ρIC,T (wrn)) is the only

transition in ∆̃(q, σ), for every q = ρIC,T (w) and σ = IC,T (w), which together

with Ĩ = {ρIC,T (ε)} implies that ÃC,T accepts IC,T and IC,T is the only model

accepted by ÃC,T .

37

5.1 Minimizing AC,T 5 LOOPING TREE AUTOMATA

Now that we created a looping tree automaton, accepting exactly the least
functional model IC,T , we can create finite automata accepting words from the
language LT (C,A). A finite automaton accepts a word w, if there exists a
path from the initial state to a final state, using state transitions labeled with
the letters from w (in their given order). The key idea for our construction is
induced by the fact that w ∈ LT (C,A) iff A ∈ IC,T (w) (Lemma 3.10). Thus,
by following the path w in the finite automaton, it will reach a final state iff
following the path w (starting at ε) in the tree IC,T yields a node with A in its
label.

Definition 5.20. The deterministic finite automaton MA = (Q,Π, δ, q0, F)
(A ∈ NC) is constructed from the looping tree automaton ÃC,T = (Q,Σ, I,∆)
by setting

• Π = NR

• q0 = qε, if I = {qε}

• F = {q ∈ Q | ∀ε.A ∈ q}

• δ = {(q, ri, qi) | (q, σ, q1, . . . , qn) ∈ ∆, 1 ≤ i ≤ n}

Theorem 5.21. LT (C,A) is regular.

Proof. Let MA = (Q,Π, δ, q0, F) and ÃC,T = (Q,Σ, I,∆). First of all, the
language accepted by a finite automaton is always regular [10]. Hence, L(MA)
is regular. For IC,T being the least functional model, accepted by ÃC,T due to

ρIC,T (the only accepting run of ÃC,T), it is easy to see from Lemma 3.10 and
Proposition 5.18 that

∀ε.A ∈ ρIC,T (w)⇐⇒ w ∈ AIC,T ⇐⇒ w ∈ LT (C,A).

It remains to show that for any word w over NR, it holds that w ∈ L(MA)⇐⇒
∀ε.A ∈ ρIC,T (w). Let w = ri1 . . . rin for |NR| = m, 1 ≤ ij ≤ m (1 ≤ j ≤ n,
hence |w| = n).

“=⇒” If w ∈ L(MA), there exists a chain d1, . . . , dn of state transitions (dk ∈
δ), such that dk = (qk−1, rik , qk) (1 ≤ k ≤ n) with q0 being the initial
state of MA and qn ∈ F . By construction of MA there must exist a
transition dk = (qk−1, σk−1, q1, . . . , qik , . . . , qn) ∈ ∆ with qik = qk for
every dk. By construction q0 is the same as qε ∈ I of ÃC,T and since

(for dn) qn ∈ F , ∀ε.A ∈ qn holds in ÃC,T . Since ÃC,T has only the
run ρIC,T and dk−1 is connected to dk for 2 ≤ k ≤ n, the chain of state
transitions from ∆ establishes the chain of states q0, . . . , qn where qk−1
reaches qk via the role rik in ρIC,T . Finally, since q0 ∈ I, it follows
that ρIC,T (w) = qn and thus ∀ε.A ∈ ρIC,T (w).

“⇐=” Similar to the other direction, ∀ε.A ∈ ρIC,T (w) implies that there

exists a chain of state transitions d1, . . . , dn from ∆ such that d1 starts
at the only initial state of ÃC,T , dn points (among others) to qn with
∀ε.A ∈ qn and each dk is connected to its successor via the respective
role from the chain given in w. By construction of ÃC,T this implies
the existence of a chain of state transitions d1 . . . dn from δ in MA

starting at the initial state of MA, and ending with a final state qn
(since ∀ε.A ∈ qn), thus accepting the word w. �

38

6 FL0 with general TBoxes vs. FLreg
Until now we were mainly concerned with the problem of deciding subsumption
in FL0 with general TBoxes. The goal was to find a more elegant approach than
simply employing the tableaux algorithm that decides subsumption for the DL
ALC [7], as FL0 is contained in ALC. The fact that chains of value restrictions
entailed by a concept description can be expressed as sets of words, i.e. lan-
guages, proved to be advantageous in this effort. It allows the employment of
an automata based approach, to tackle the problem of deciding subsumption
in FL0 with general TBoxes. Before we want to bridge the gap between the
theoretical mechanism that is a looping tree automaton and deciding subsump-
tion in a practical way, we would like to make a small excursion, building on
the most recent result from Section 5.1. Chains of value restrictions implied by
a concept description C ∈ C(FL0, NC , NR) w.r.t. a general FL0 TBox can be
seen as words over the alphabet NR and it turns out that certain languages com-
posed of such words are in fact regular. This leads to the correlation between
FL0 concept descriptions w.r.t. an unrestricted FL0 TBox and FLreg concept
descriptions, which we investigate in the following.

Firstly, it is possible to adjust the normalization procedure, mainly normal-
ization phase 1 discussed in Section 4, to work with complex roles from R(NR)
instead of just role names. It is not hard to see that this adjustment allows to
transform FLreg concept descriptions into a normal form that can also be called
CCNF. Since the description of CCNF needs no adjustment regarding complex
roles, we can adapt the results from Section 4 to FLreg. In particular, for every
FLreg concept description, there exists an equivalent FLreg concept description
in CCNF that is of the form ∀R1.A1 u . . . u ∀Rn.An, where Ai ∈ NC and Ri
describe regular languages L over NR (1 ≤ i ≤ n), as proposed in Section 2.
Therefore, we can use R and L within FLreg concept descriptions interchange-
ably, e.g. ∀R.X = ∀L.X. Using this knowledge, together with the result from
Theorem 5.21, it is clear that the concept description

∀LT (C,A1).A1 u . . . u ∀LT (C,An).An

is an FLreg concept in CCNF that is constructed from the FL0 concept C
and the terminological knowledge given in the TBox T . This supports the as-
sumption that some results for certain inference problems and ontology services
regarding FLreg can be adopted to FL0 with general TBoxes. In particular, the
inference problems subsumption, concept unification and the computation of
generalizations such as least–common subsumers (lcs) or most specific concepts
(msc) are of a special interest in todays DL community.

Lemma 6.1. For FLreg concepts C = ∀L1.A1u. . .u∀Ln.An, D = ∀M1.A1u. . .u
∀Mn.An,3 subsumption can be decided with language inclusion in the following
way:

C v D ⇐⇒ ∀i ∈ {1, . . . , n}.Mi ⊆ Li
Continuing from Lemma 6.1 (proof in [4]) it is not hard to show the corre-

lation between FLreg concept descriptions and FL0 concept descriptions given
an FL0 TBox, regarding the task of deciding subsumption.

3It is no restriction to assume the same set of concept names Ai because ∀∅.X ≡ > always
allows us to match the set of concept names occurring in both concept descriptions, in order
for them to be equal.

39

6 FL0 WITH GENERAL TBOXES VS. FLREG

Lemma 6.2. For FL0 concepts C,D and a general FL0 TBox T the concepts

Creg :=
l

A∈NC

∀LT (C,A).A

Dreg :=
l

A∈NC

∀LT (D,A).A

are FLreg concept descriptions such that

C vT D ⇐⇒ Creg v Dreg.

Proof. Due to Lemma 6.1 it is clear that

Creg v Dreg ⇐⇒
∧

A∈NC

LT (D,A) ⊆ LT (C,A).

It is also not hard to see that∧
A∈NC

LT (D,A) ⊆ LT (C,A)⇐⇒ LT (D) ⊆ LT (C).

Finally, by Lemma 3.3 we know LT (D) ⊆ LT (C)⇐⇒ C vT D.

Concerning the construction of the concept descriptions Creg and Dreg we
can finally elaborate why Section 5 only relies on the CCNF even though the
PANF was also introduced earlier. The benefit of using PANF for the automaton
in Section 5, would have been that AC,T would not require to keep track of value
restrictions at every node (using the states in Q). Because every GCI only
provides local restrictions, run–trees labeled with sets of concept names would
have sufficed to locally enforced conditions for state transitions. However, in
the effort to decide the subsumption C vT D, by Lemma 4.8 we would have
required to add the concept names AC and AD with the appropriate GCIs to T .
Since ∀LT (C,AD).AD would then be a conjunct of Creg, deciding LT (C,AD)
would already require to decide C vT AD.

Investigating the correlation of problems between FL0 and FLreg other than
subsumption requires more care. For instance the computation of the least
common subsumer of two FL0 concept descriptions C, D is everything but
trivial. Formally, the lcs of C and D is a concept description E such that
C vT E and D vT E and for all concept descriptions F such that C vT F and
D vT F , it holds that E vT F . Since the lcs is strongly related to subsumption,
one might think to use the result from Lemma 6.2 to construct an lcs w.r.t. the
concept descriptions Creg, Dreg within FLreg, because it might circumvent the
effort to regard the given terminology upon the computation of the lcs within
FL0. Intuitively, the lcs of two FLreg concept descriptions C =

dn
i=1 ∀Li.Ai

and D =
dn
i=1 ∀Mi.Ai is a concept description that contains all conjuncts that

C and D have in common. From Lemma 6.1 it follows quickly that this concept
is E =

dn
i=1 ∀Li ∩ Mi.Ai and it is easy to see that E ∈ C(FLreg, NC , NR).

The following example illustrates the main problem when creating new FLreg
concept descriptions in the lcs case.

40

6 FL0 WITH GENERAL TBOXES VS. FLREG

Example 6.3. Let T = {B1 u A v ∀r.(A u B1), B2 u A v ∀r.(A u B2)} be
an obviously cyclic FL0 TBox T . The concept descriptions C = A u B1 and
D = A u B2 can be transformed into their FLreg correspondents (w.r.t. T) as
suggested in Lemma 6.2:

Creg = ∀r∗.A u ∀r∗.B1

Dreg = ∀r∗.A u ∀r∗.B2

Then the lcs of Creg and Dreg is Ereg = ∀r∗.A. However no FL0 concept
description E can exist such that Ereg = ∀LT (E,A).A w.r.t. the given TBox T ,
because no axiom in T allows to entail infinite value restrictions with concept
name A without either B1 or B2.

Even though the constructed lcs is another FLreg concept description, the
languages (complex roles) used in this concept description may not be induced
by the given FL0 TBox T . It appears that the correlation between FL0 and
FLreg for the lcs problem is much more difficult. Example 6.3 immediately gives
rise to the following non–trivial questions, including the result that for every
FLreg concept description there exists an equivalent FLreg concept in CCNF:

1. For any given FLreg concept description F , does there exist a general FL0

TBox T and an FL0 concept description E such that

Ereg =
l

A∈NC

∀LT (E,A).A ≡ F?

2. If not, under what circumstances do T and E exist?

Since answering these questions very likely requires a lot of effort and re-
search, we have decided to leave this topic as a brief excursion in order to initiate
a basis for upcoming research regarding FL0 with general TBoxes. To tackle
these problems as well as the still very interesting problem of concept unification
would simply overstep the scope of this thesis. We will now return to discuss
the practical task of deciding subsumption in this unrestricted DL environment.

41

7 Practical Subsumption Algorithm

In the current section we will propose a simple algorithm deciding subsumption
between concept names w.r.t. a general FL0 TBox. Due to Corollary 4.7 and
Lemma 4.8, it is enough to consider subsumption between concept names and
we can assume w.l.o.g. that the given TBox T is in PANF. Therefore, for this
entire section, we fix T to be in PANF, consisting of GCIs E v F s.t. E,F ∈
C(FL0, NC , NR), thus implicitly fixing the arity of functional interpretations in
this section to n = |NR|. In short, our algorithm will start creating the least
functional model of one of the given concept names, stop at a certain time
and check the root of the created model for containment of the second concept
name, thereby deciding subsumption (Corollary 3.14). After presentation of the
algorithm, it remains to show its termination, soundness and completeness. We
start by introducing a collection of new notations, which overall render the rest
of this section easier and more intuitive.

As in Section 5.1, regarding the access of labels of domain elements, let

I(w) = {A ∈ NC | w ∈ AJ }

for any interpretation I. Note, that for w 6∈ ∆I , I(w) = ∅.

Definition 7.1. A head is an n+1 tuple of sets (L,L1, . . . , Ln) with |NR| = n,
where L ⊆ NC is the root of the head and Li ⊆ NC are the children (1 ≤ i ≤ n).
The function hd maps nodes w ∈ N∗R = ∆J from a given functional interpreta-
tion J to the head (J (w),J (wr1), . . . ,J (wrn)) within its tree. When consid-
ering heads of domain elements within two different functional interpretations
I,J (sharing the same domain), we use hdJ (w1) and hdI(w2) to clarify the
distinction.

The subset relation ⊆ is extended to head structures in the natural way. For
two heads h1 = (L,L1, . . . , Ln) and h2 = (M,M1, . . . ,Mn),

h1 ⊆ h2 ⇐⇒ L ⊆M ∧
n∧
i=1

Li ⊆Mi.

In a similar fashion, the union is extended to head structures by constructing
the set union element wise:

h1 ∪ h2 = (L ∪M,L1 ∪M1, . . . , Ln ∪Mn)

Additionally, for GCIs E v F in a TBox T that is in PANF, we also say that
the concept descriptions E,F are in PANF. Recall that for a concept description
C in CCNF (implied by PANF), Ĉ describes the set of its conjuncts. Since
concept descriptions in PANF are a conjunction of either concept names or
value restrictions of depth 1, we can see how those concept descriptions can be
displayed as head structures. For a concept X in PANF, hd(X) is defined as
follows:

hd(X) = (X̂ ∩NC , {A ∈ NC | ∀r1.A ∈ X̂}, . . . , {A ∈ NC | ∀rn.A ∈ X̂})

For an algorithm that needs to procedurally alter the heads of domain ele-
ments, it is very cumbersome to only be able to alter the sets of domain elements

43

7 PRACTICAL SUBSUMPTION ALGORITHM

that concept names are mapped to. Therefore, we will use much simpler nota-
tions like

J (w) := {A1, A2, . . . , Ak}

or
hd(w) := (L,L1, . . . , Ln)

for A1, . . . , Ak ∈ NC and L,L1, . . . , Ln ⊆ NC . Implicitly, the assignment
J (w) := {A1, A2, . . . , Ak} adds w to (exactly4) all AJi (1 ≤ i ≤ k) and us-
ing this, hd(w) := (L,L1, . . . , Ln) assigns J (w) := L and for all j = 1, . . . , n
J (wrj) := Lj . In case for some j, wrj 6∈ ∆J , the assignment shall add wrj
to the current domain. The algorithm will iteratively create an interpretation
that structurally resembles a functional interpretation (w.r.t. the interpretation
of role relations, Definition 3.4, Property 1), starting at the root. Therefore, at
every time during the computation, the domain of the created interpretation is
finite. Consequently, the interpretations created by our algorithm will be called
functional interpretation stubs and we distinctly use variables like I4, J4 to
refer to them. Note that for a functional interpretation stub J4 with the finite

domain ∆J
4

, not all domain elements w need to have n children. The function
hd can yet be applied to such w (i.e. hdJ4(w)), because for a missing child wr,

the function J4(wr) will evaluate to the empty set.
Because a general FL0 TBox may contain terminological cycles, there may

exist infinitely many domain elements in a functional interpretation that have
a non–empty label. We propose that these labels recur in a cyclic fashion. In
order to allow the algorithm to terminate, we need to recognize those recurring
labels and block the respective nodes appropriately, to circumvent multiple com-
putations of the same sub–tree. First, consider the order of domain elements in
functional interpretations and functional interpretation stubs.

Definition 7.2. Let u = ri1 · · · rik and v = rj1 · · · rjl be two domain elements
with i1, . . . , ik, j1, . . . , jl ∈ {1, . . . , n} for NR = {r1, . . . , rn} in a domain ∆I ⊆
N∗R. The relation ≺ ⊆ ∆I × ∆I is a strict total order over domain elements,
s.t. (u, v) ∈ ≺ iff |u| < |v| or for k = l, (i1, . . . , ik) ≺N (j1, . . . , jl), for ≺N, the
lexicographic order over tuples of natural numbers.

It is easy to see that ≺ is a strict total order, because < and ≺N over (tuples
of) natural numbers are both strict and total. Furthermore, ≺ describes a
breadth–first–type order over elements of a tree.

Definition 7.3 (Anywhere Blocking).

A domain element w ∈ ∆J
4

is blocked iff

∃u, u′ ∈ ∆J
4
, v ∈ N∗R.u ≺ u′ ∧ w = u′v ∧ J4(u) = J4(u′)

At this point we introduced every notation that is necessary to present the
practical subsumption algorithm in a simple and intuitive way.

4Essentially, the interpretation J will be altered so that by definition of J (w), the element
w will be mapped to {A1, . . . , Ak}. That also implies that w will not be contained in any
B ∈ NC \ {A1, . . . , Ak}.

44

7 PRACTICAL SUBSUMPTION ALGORITHM

Definition 7.4 (Subs).
The algorithm Subs(A,B, T), given two concept names A,B ∈ NC and an
FL0 TBox T in PANF executes the following steps in their given order, unless
stated otherwise within a step.

1. ∆J
4
0 := {ε} =: AJ

4
0 , i := 0

2. i := i+ 1, J4i := J4i−1

3. Select the least w ∈ ∆J
4
i w.r.t. ≺, that is not blocked, s.t. ∃E v F ∈

T .hd(E) ⊆ hdJ4i−1
(w) ∧ hd(F) 6⊆ hdJ4i−1

(w)

4. If such a w exists, assign hdJ4i
(w) := hdJ4i−1

(w) ∪ hd(F) and continue

with Step 2.

5. Else, terminate and answer A vT B iff B ∈ J4i (ε).

Subs starts by initializing (Step 1) the domain and the concept name A

under the interpretation J40 , only to contain the root element ε. During the
incrementation step (Step 2), the functional interpretation stub is copied to
the next iteration and the iteration counter i is incremented by 1. The selection
step (Step 3) attempts to find the first (according to ≺), not blocked domain
element that violates some GCI in T . If such an element exists, the head of
the selected node will be altered in order to satisfy the respective GCI in what
we call the update step (Step 4). The increment, select and update steps are
looped until the select step cannot find a suitable domain element to update
anymore. This happens exactly when all elements that are not blocked satisfy
every GCI in T . At this point, the termination step (Step 5) will produce the
answer of Subs according to the existence of concept name B in the label of the
root of the current interpretation and the computation comes to an end.

First of all, whenever referencing the functional interpretation stub J4i at a

specific iteration i, we refer to J4i in its state after the iteration i is completed,
i.e. at the end of Step 4 or 5. When a node w is selected by Step 3 and its head
is updated in iteration i, we say that w changes at time/iteration i.

Theorem 7.5 (Termination). Subs terminates on every finite input.

Proof. Every update step is strictly monotone. That is, in every iteration where
Subs is not terminating, some label will increase in size. More precisely, any
single node w cannot change more than |T | times, because every time some w is
selected with some GCI E v F ∈ T at iteration i, we have hd(F) ⊆ hdJ4i+1

(w)

at the next iteration. Thus w cannot be updated with the same GCI more than
once and therefore w cannot change infinitely many times for a finite T .

For any iteration i ≥ 0, the amount of nodes that are not blocked in ∆J
4
i

is upper bounded by 2|NC | nodes. From Definition 7.3, it follows that every

node w, s.t. |{v ∈ ∆J
4
i | v ≺ w}| ≥ 2|NC | must be blocked, because there

are only 2|NC | distinct labels and if w has 2|NC | predecessors w.r.t. ≺, its label
must already occur at one of these predecessors. Because of the finite amount of
nodes that are not blocked and the argument that every node can only change
finitely many times, there must always exist an iteration for which no node can
be selected by Step 3 of Definition 7.4, leading to the termination of Subs.

45

7 PRACTICAL SUBSUMPTION ALGORITHM

For the soundness of Subs, we will show that the algorithm never adds a
concept name to the label of a node w, that would not also be in IA,T (w). To
keep the soundness proof as simple as possible, some intermediate results are
required first. We extend the subset relation between functional interpretations,
to allow for a functional interpretation stub on the left hand side:

J4 ⊆ I ⇐⇒ ∀A ∈ NC .AJ
4
⊆ AI .

Proposition 7.6. The following statements are equivalent

1. J4 ⊆ I

2. ∀w ∈ ∆J
4
.J4(w) ⊆ I(w)

3. ∀w ∈ ∆J
4
.hdJ4(w) ⊆ hdI(w)

Proof. The equivalence of Statements 2 and 3 is rather trivial, by the definition
of ⊆ for head structures (Definition 7.1).

Regarding the Statements 1 and 2, by the definition of J4(w) (and I(w)),

it holds for any w ∈ ∆J
4

, that w ∈ AJ
4

iff A ∈ J4(w) and analogous for

I(w). Therefore, ∀A ∈ NC , w ∈ ∆J
4
.w ∈ AJ4 =⇒ w ∈ AI is equivalent to

∀A ∈ NC , w ∈ ∆J
4
.A ∈ J4(w) =⇒ A ∈ I(w).

Proposition 7.7. For an FL0 concept description X in PANF, a functional
interpretation J and a domain element w ∈ ∆J , it holds that

hd(X) ⊆ hdJ (w)⇐⇒ w ∈ XJ .

Proof. Let Xε = X̂ ∩NC and Xrj = {A ∈ NC | ∀rj .A ∈ X̂} (1 ≤ j ≤ n), then
by definition, we have

hd(X) = (Xε, Xr1 , . . . , Xrn), and

hdJ (w) = (J (w),J (wr1), . . . ,J (wrn)),

which is why we need to show that

Xε ⊆ J (w) ∧
n∧
j=1

Xrj ⊆ J (wrj)⇐⇒
∧
Y ∈X̂

w ∈ Y J ⇐⇒ w ∈ XJ

holds. Because A ∈ J (w) iff w ∈ AJ and due to the structure of functional
interpretations, it holds for all j = 1, . . . , n that A ∈ J (wrj) iff w ∈ (∀rj .A)J .
Therefore A ∈ Xε implies w ∈ AJ and A ∈ Xrj implies w ∈ (∀rj .A)J (1 ≤ j ≤

n). Since X̂ = Xε ∪
n⋃
j=1

Xrj , w is contained in all conjuncts Y of X under J ,

making it also contained in XJ .
For the other direction, assume w ∈ Y J for all conjuncts Y ∈ X̂. For

Y ∈ Xε ⊆ NC , w ∈ Y J ⇐⇒ Y ∈ J (w) holds by definition of J (w). If
Y = ∀r.A, then A ∈ Xr and w ∈ Y J ⇐⇒ A ∈ J (wr) also holds, thus satisfying
every subset relation on the left–hand side of the equation.

46

7 PRACTICAL SUBSUMPTION ALGORITHM

Note, that the result of Proposition 7.7 only applies to functional interpre-
tations, because it relies on the fact that every domain element has exactly one
successor per role. The argument that A ∈ J (wr) iff w ∈ (∀r.A)J would not
hold if w has no r–successor. In this case, w ∈ (∀r.A)J would be trivially satis-
fied but does not necessarily imply A ∈ J (wr). Actually, this singular argument
holds for all domain elements that have exactly one successor per role in NR,
which we shall use at a later time.

The previous statement — that the algorithm will never add a concept name
to the label of a node, that would not also be contained in the label of that node
within the least functional model of A w.r.t. T— will be expressed by stating
that the functional model stub J4i will be a subset of IA,T at every iteration
i ≥ 0.

Lemma 7.8. For J4i , created with Subs at any iteration i ≥ 0, it holds that

J4i ⊆ IA,T .

Proof. We can prove this by induction on the iteration counter i. The induction
start with i = 0 is trivial by Definition 3.4, Property 3. For the hypothesis,
assume that J4i ⊆ IA,T already holds. We need to show that J4i+1 ⊆ IA,T also
holds. If Subs terminates at iteration i+ 1, then no node was selected in Step
3 and thus J4i = J4i+1. In this case, the claimed subset relation is trivial by
the induction hypothesis.

Otherwise, there exists a w that is the least domain element w.r.t. ≺, that
is not blocked and there exists a GCI E v F ∈ T s.t. hd(E) ⊆ hdJ4i

(w)

and hd(F) 6⊆ hdJ4i
(w). By Proposition 7.6 and the induction hypothesis,

hd(E) ⊆ hdJ4i
(w) implies hd(E) ⊆ hdIA,T (w) and by Definition 3.4, Prop-

erty 2 and Proposition 7.7, this implies hd(F) ⊆ hdIA,T (w). Then, hdJ4i
(w) ⊆

hdIA,T (w)∧hd(F) ⊆ hdIA,T (w) =⇒ hdJ4i
(w)∪hd(F) ⊆ hdIA,T (w). Since only

labels of domain elements associated with the head of the selected w change
during one iteration, the last result, the hypothesis and Proposition 7.6 imply
J4i+1 ⊆ IA,T .

Theorem 7.9 (Soundness). The algorithm Subs is sound.

Proof. At any iteration i (especially the iteration m where Subs terminates) it

holds by Lemma 7.8 that J4i (ε) ⊆ IA,T (ε). Thus, if Subs answers that A vT B
holds, then B is at the root in J4m and thereby at the root of IA,T . This implies
that IA,T is also a functional model of B w.r.t. T . By Lemma 3.9 and Corollary
3.14 this implies that A vT B must hold, making Subs sound.

The main idea behind the completeness proof for Subs is to create a func-
tional model of A w.r.t. T , that “starts” with the functional interpretation
stub created by Subs. To accomplish this, we introduce the following helpful
notation.

Definition 7.10. For a functional interpretation (stub) J and a node w ∈ ∆J ,
the least node v ∈ ∆J w.r.t. ≺ with J (v) = J (w) is called the first occurrence
of the label of w.

When considering a functional interpretation stub J4i created by Subs at
iteration i, we can make several observations regarding Definition 7.10. Note

47

7 PRACTICAL SUBSUMPTION ALGORITHM

that a node is either blocked because its parent is blocked, or because its label
already exists for a smaller node w.r.t. ≺. If w is a blocked node whose parent
is not blocked, then there exists a node v 6= w, that is the least node with
J (v) = J (w) (w.r.t. ≺), therefore, v cannot be blocked. If w is not blocked,
then w itself must be the first occurrence of the head of w.

Theorem 7.11 (Completeness). The algorithm Subs is complete.

Proof. We show that it is possible to construct a functional model of A w.r.t.
T , that “starts” with the functional interpretation stub J4m that was created
by Subs terminating at iteration m. Let I = J4m and apply a few initial
adjustments to I. First, remove every element from ∆I that has a blocked
parent (in J4m). It is easy to see, that this will remove only blocked domain
elements and all remaining blocked nodes will be leaves in the tree described
by I. Also, for every node w ∈ ∆I that is not blocked, for all j ∈ {1, . . . , n}
s.t. wrj 6∈ ∆I , add wrj to ∆I . Note that when these wrj are not added to the
interpretation of any concept name under I, I(wrj) = ∅ holds. Now it is easy
to see that all leaves in the tree of I are either nodes that where blocked in J4m
or nodes with an empty label. After these adjustments, we say that I is in its
initial state.

For the iterative construction of I, repeat the following step infinitely many
times:

Pick the least leaf w ∈ ∆I w.r.t. ≺ and add wrj to ∆I s.t. I(wrj) = ∅ for all
j = 1, . . . , n. If I(w) 6= ∅, let u be the first occurrence of the label of w and

adjust the labels of wrj in I s.t. I(wrj) = I(urj), for all j = 1, . . . , n.

u

ur1

. . .
urn

w

wr1

. . .
wrn

Figure 2: Illustration of one iteration for the construction of I.

Figure 2 shows how one iteration as described above can be seen as a copying
procedure of successor elements. If I(w) 6= ∅ for a leaf w, then w must be a
blocked node and therefore the first occurrence of its label must exist and cannot
be blocked. Additionally, for I in its initial state, all u that are not blocked
have exactly one successor per role in NR.

48

7 PRACTICAL SUBSUMPTION ALGORITHM

We show that at every time, all inner nodes (not leaf nodes) in I satisfy all
GCIs in T . Since the construction of I is defined iteratively, we can prove this
by induction. For the induction start we observe the initial state of I. It is easy
to see that every inner node is a node that is not blocked in J4m . Because of the
initial adjustment to add empty nodes, all inner nodes of I assume the structure
required by a functional interpretation. Therefore, the argument of Proposition
7.7 applies to all inner nodes of I. By termination of Subs we know that no
GCI E v F ∈ T exists such that hd(E) ⊆ hd(w) and hd(F) 6⊆ hd(w) for every
inner node w, thus w ∈ EI =⇒ w ∈ F I holds for every GCI E v F ∈ T .

When applying one iteration of constructing I, the least leaf w is picked
and all (structurally required) successors are added and given specific labels.
No other labels within I are affected by such a step and the set of inner nodes
increases only by w. Therefore, we only need to show that the head of w satisfies
all GCIs after the iteration. If I(w) = ∅ then all successors will remain with
an empty label as well. Thus, w trivially satisfies every GCI in T . In case
I(w) 6= ∅, then let u be the first occurrence of the label of w. Because the
labels of the successors of u are copied into the labels of the successors of w, we
have hd(w) = hd(u). By our induction hypothesis, we know that the head of u
satisfies all GCIs in T and therefore so does the head of w.

We have shown that in the infinity, every inner node in the interpretation I
will satisfy every GCI in T . It remains to show that every possible node w ∈ N∗R
is an inner node in I in the infinity, i.e. the construction of I is fair because
every possible node in N∗R is created at some time. For any leaf w in ∆I at
any time, there only exist finitely many nodes in N∗R, that are smaller than w
w.r.t. ≺. Since every iteration turns a leaf into an inner node, there can only be
finitely many nodes that are processed before w. Hence every element w ∈ N∗R
exists in I in the infinity.

Since ∆I = N∗R, all nodes in ∆I are inner nodes that satisfy all GCIs.
Furthermore, because A ∈ I(ε) by initialization of Subs and I, I is a functional
model of A w.r.t. T . From Lemma 3.9 we know that IA,T ⊆ I and since
I(ε) = J4m (ε), B ∈ IA,T (ε) implies B ∈ J4m (ε), concluding the completion
proof of Subs.

Altogether, the three theorems of this section ensure that Subs can be used
in a practical scenario and that it will always give the right answer. We want to
highlight at this point that the algorithm employs anywhere blocking instead of
subtree blocking, resulting in a lower complexity class.5 With anywhere block-
ing, we can use an argument from Theorem 7.5 to show that, because every node
with more than 2|NC | predecessors (according to ≺) has to be blocked, the algo-
rithm is of exponential complexity. Due to already known results towards the
complexity of FL0 [2], we cut this discussion short. Most importantly, it remains
to investigate the realistic computational performance of an implementation of
Subs, in order to reasonably discuss the difficulty of deciding subsumption w.r.t.
general FL0 TBoxes.

5With subtree blocking, it would only be ensured that every node with 2|NC | ancestors
must be blocked. Therefore, in the worst case, Subs would create an n–ary tree of exponential

depth, leading to a domain with n(2|NC |) elements

49

8 Conclusion and Future Work

To conclude the present thesis, we begin with a thorough recap. Starting from
the motivation to gain tractable reasoning mechanisms for large–scale yet realis-
tic scenarios, we set out to introduce a practical procedure, specifically tailored
to handle the problem of concept subsumption w.r.t. general TBoxes in the de-
scription language FL0. We started by describing the potentially infinite set of
value restrictions LT (C), that are entailed by a given FL0 concept description
C. LT (C) can be described by a so–called least functional model, providing se-
mantics in a specific tree structure. The result that reasoning w.r.t. functional
models suffices to make general conclusions regarding subsumption allowed for
the employment of looping tree automata, to solve exactly the task of decid-
ing subsumption. Recall that the automaton AC,T as described in Section 5
accepts exactly those functional models of C, that do not support the subsump-
tion between the given concepts C and D. Since functional models of the same
concept description are closed under intersection, we were able to find an elegant
minimization of AC,T , so that it may only accept the least functional model of
C. This minimization was used to show regularity of the languages LT (C,A)
(comprised in LT (C)), which allowed for an interesting excursion towards the
correlation between FL0 with general TBoxes and FLreg, with regard to con-
cept subsumption. It turned out that at least subsumption coincides for these
two paradigms, yet some questions remained that are worth a thorough investi-
gation. Finally, we turned towards the task proposed by our initial motivation,
namely creating the algorithm Subs, that is able to decide subsumption in FL0

with general TBoxes for practical applications. The scope of this thesis was
concluded with the formal investigation of Subs and its properties regarding
correctness.

We have seen that general FL0 TBoxes describe a set of regular languages
of words over the alphabet NR, starting from a given concept description C. In
this direction, such a C w.r.t. a background terminology can be expressed as
an FLreg concept description such that at least subsumption coincides in FL0

with GCIs and FLreg. However, as we have pointed out, the other direction
seems not as obvious. Given an FLreg concept description, does there exist an
FL0 terminology such that we can create an FL0 concept, essentially mimicking
the initial FLreg concept. This can be especially helpful for problems that are
already solved in FLreg, including the computation of generalizations such as
least common subsumers or even concept unification [4] and matching.

As motivated by [2, 9], we aimed for a direct approach to decide concept
subsumption with general TBoxes. Of course at this point, we can only make
assumptions about the improved performance of such an approach. Since Subs
will compete with tableaux based algorithms for ALC, the basis for our as-
sumption lies in the fact that those tableaux algorithms are non–deterministic
and therefore include expensive backtracking mechanisms in order to find ap-
propriate solutions. Subs is deterministic (aside from the don’t–care non–
deterministic choice of GCI in Step 3), and even though it is of exponential
worst–case complexity, we propose that the realistic performance will largely
depend on the length of terminological cycles instead of the general size of the
given TBox. Therefore, we conclude that an experimental verification of this
assumption is of a high priority within affiliated future research.

51

References

[1] Franz Baader. Terminological cycles in a description logic with existential
restrictions. IJCAI’03, pages 325–330. Morgan Kaufmann, 2003.

[2] Franz Baader, Sebastian Brandt, and Carsten Lutz. Pushing the EL en-
velope. IJCAI’05, pages 364–369, San Francisco, CA, USA, 2005. Morgan
Kaufmann Publishers Inc.

[3] Franz Baader, Diego Calvanese, Deborah L. McGuinness, Daniele Nardi,
and Peter F. Patel-Schneider, editors. The Description Logic Handbook:
Theory, Implementation, and Applications. 2003.

[4] Franz Baader and Ralf Küsters. Unification in a description logic with
transitive closure of roles. In Robert Nieuwenhuis and Andrei Voronkov,
editors, Logic for Programming, Artificial Intelligence, and Reasoning, vol-
ume 2250 of Lecture Notes in Computer Science, pages 217–232. Springer
Berlin Heidelberg, 2001.

[5] Franz Baader and Stephan Tobies. The inverse method implements the
automata approach for modal satisfiability. CoRR, abs/cs/0412101, 2004.

[6] Francesco M. Donini, Maurizio Lenzerini, Daniele Nardi, and Andrea
Schaerf. Reasoning in description logics, 1997.

[7] Francesco M. Donini and Fabio Massacci. Exptime tableaux for ALC.
ARTIFICIAL INTELLIGENCE, 124(1):87–138, 2000.

[8] Pascal Hitzler, Markus Krötzsch, Bijan Parsia, Peter F. Patel-Schneider,
and Sebastian Rudolph, editors. OWL 2 Web Ontology Language: Primer.
W3C Recommendation, 27 October 2009. Available at http://www.w3.

org/TR/owl2-primer/.

[9] Ian Horrocks, Ulrike Sattler, and Stephan Tobies. Practical reasoning for
expressive description logics. In Proceedings of the 6th International Con-
ference on Logic Programming and Automated Reasoning, LPAR ’99, pages
161–180, London, UK, UK, 1999. Springer-Verlag.

[10] Grzegorz Rozenberg and Arto Salomaa. Handbook of Formal Languages:
Volume 1. Word, Language, Grammar. Handbook of Formal Languages.
Springer, 1997.

53

http://www.w3.org/TR/owl2-primer/
http://www.w3.org/TR/owl2-primer/

	Introduction and Motivation
	Preliminaries
	Functional models and LT (C)
	Normalization in FL0
	Looping Tree Automata
	FL0 with general TBoxes vs. FLreg
	Practical Subsumption Algorithm
	Conclusion and Future Work

