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1. Introduction

1.1. Overview of the field
Since their introduction in [IPY06], Spiking Neural P systems (SN P sys-
tems) have been extensively studied in the field of Membrane Computing
that is concerned with the study of biologically inspired models of compu-
tation. As such, it clearly is a sub-field of Automata theory, but is also
part of the interdisciplinary field of Computational biology, which uses
methods from computer science to model and study biological processes.
Automata theory, in turn, is deeply intertwined with the study of For-
mal languages, and indeed the families of languages generated by certain
types of SN P systems have been one of the focal points of research on
SN P systems.
Spiking Neural systems with cooperating rules aim to introduce the con-

cept of cooperating distributed grammar systems (CD grammar systems)
to the theory of SN P systems. CD grammar systems themselves arose
as a grammar-theoretic formulation of the blackboard model of problem
solving (cf. [Nii89]) from Artificial Intelligence, where distributed knowl-
edge sources cooperate in a structured fashion to solve a common problem.
Since actual neurons also cooperate towards a common goal, this seems to
be a fitting extension of the basic model of SN P systems.

1.2. Structure of this thesis
In chapter 2, we introduce the necessary concepts and tools from the
theories of formal languages, Turing machines, register machines, and
CD grammar systems, along with some mathematical background and a
(very brief) overview of P systems. While this may seem a bit excessive,
we have written this thesis with a mixed audience of Computer Scientists
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1. Introduction

and Mathematicians in mind and thus could not assume familiarity with
those concepts that may appear to be well-known to one or the other.
We begin chapter 3 by defining Spiking Neural P systems and proceed

to introduce SN P systems with cooperating rules, which work according
to some fixed cooperation protocol. We restate the universality proof for
the case of the terminating protocol from [MRK14b], and proceed to prove
universality for the other cooperation protocols. These universality proofs
are the main results of this thesis and positively answer an open question
posed by [MRK14b].
In chapter 4, we design an SN P system with cooperating rules that

generates a non-semi-linear set and contrast it with a CD grammar system
generating the same set. We show that this system can be assembled in a
bottom-up fashion from smaller “modules,” and that the composability of
such systems is one of the model’s strengths.
We end with a discussion of possible future research in chapter 5, giving

several suggestions for future works, both towards further development
of the theory and towards an application in the modeling of biological
processes.

1.3. Acknowledgments
I wish to thank my parents, for their continued support throughout all
these years, and my supervisor, Dr. Sturm, for all those fruitful discussions,
for keeping me on track, and for all the helpful advice.
Furthermore, I extend my gratitude to Daniel, Felix, Juliane, and Tom,

for their most helpful feedback on drafts of this thesis, to the C3 Subtitles
team, for providing a welcome distraction when I most needed one, and to
my friends and family, for everything.
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2. Preliminaries

2.1. Basic notation
Definition 2.1
By N := t0, 1, 2, . . .u we denote the set of natural numbers. We refer to the
set of positive natural numbers by Ną 0 := Nzt0u, and denote the prefix
of length n of the positive natural numbers by n := t1, 2, . . . ,nu Ĺ Ną 0

(note that 0 = ∅). 2

Definition 2.2
For a given set S, we write P(S) := tT | T Ď Su to denote the power set
of S. We take |S| to mean the cardinality of S. Given two sets S and T ,
we say that S and T are isomorphic and write S – T if there is a bijective
mapping f : S Ñ T (note that if S – T , then also T – S). We say that S is
finite if there is an n P N such that |S| = n, and infinite otherwise. By an
abuse of notation, we write |S| ă ∞ to denote that S is finite. We say that
S is countably infinite if S – N. If S is finite or countably infinite, we may
say that S is countable , and we say that S is uncountable or uncountably
infinite if S is infinite and not countable. 2

Definition 2.3
For a map f : X Ñ Y, we take dom f := X and cod f := Y to mean the
domain and codomain of f, respectively. Given a set S Ď X, we write
f[S] :=

 

f(x)
ˇ

ˇ x P S
(

Ď cod f to denote the image of S under f (note that,
in general, f[X] Ĺ Y), and f|S : S Ñ Y for the restriction of f to S. For a
set I Ď f[X], we denote by f´1[I] the preimage of I under f. Given a map
f : X Ñ N, we denote by supp f :=

 

x P X
ˇ

ˇ f(x) ą 0
(

the support of f.
Given two maps f : X Ñ Y and g : Y Ñ Z, we denote by f˝g := x ÞÑ f(g(x))

the composition of f and g. Given a map h : X Ñ X and i P Ną 1, we let
h1 := h, and denote by hi := h ˝ hi´1 the i-fold iteration of h. 2
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2. Preliminaries

Definition 2.4 (Product, Coproduct)
Given a finite family of sets S = (Si)iPI, where I = ti1, i2, . . . , inu, we write

ź

iPI

Si :=
 

(si1, si2, . . . , sin)
ˇ

ˇ @i P I. si P Si
(

to denote the (cartesian) product of S, and say that πi :
ś

iPI Si Ñ Si
are the projections associated with

ś

iPI Si. For any set T and maps
pi : T Ñ Si (for each i P I), there is a unique map xpiyiPI : T Ñ

ś

iPI Si
satisfying pi = πi ˝ xpiyiPI, which we call the tupling of the maps pi.
Similarly, we denote by

ž

iPI

Si :=
ď

iPI

 

(s, i)
ˇ

ˇ s P Si
(

the coproduct of S, and refer to the maps ιi : Si Ñ
š

iPI Si as the injec-
tions associated with

š

iPI Si. For any set T and maps ii : Si Ñ T (i P I),
we say that the unique map [ii]iPI :

š

iPI Si Ñ T that satisfies ii = [ii]iPI˝ιi
is the cotupling of the maps ii.
In particular, for a given set S and a finite index set I, we may also

write SI :=
ś

iPI S to refer to the power of S. Finally, if n P Ną 0, we
may even write Sn instead of Sn. Given two sets S, T , we may also write
Sˆ T :=

ś

XPtS,Tu X and S
š

T :=
š

XPtS,Tu X. 2

Note that products and coproducts are unique only up to isomorphism.
Hence, when we refer to the product or the coproduct, we always mean
the (canonical) representation as defined above. For further details, we
refer the reader to [Awo06].
The notation ST is also commonly used to denote the set of all maps

T Ñ S. Indeed, for finite T , every such map f : T Ñ S corresponds to
exactly one element of

ś

tPT S, namely f´1[S], and for each element (τt)tPT

of
ś

tPT S there is a corresponding map t ÞÑ τt.

Definition 2.5 (Graph, Tree)
A (directed) graph G = (V,E) is a structure consisting of

• V, a finite set of vertices , and

• E Ď V2 a set of edges .

4



2.1. Basic notation

For two vertices u, v P V, we write u Ñ v if (u, v) P E and say that there
is an edge from u to v. We refer to u as the parent of v, and say that
v is the child of u. Given vertices v0, v1, . . . , vk P V, we say that there
is a path v0v1 ¨ ¨ ¨ vk from v0 to vk if vi´1 Ñ vi for i P k, and denote by
|v0v1 ¨ ¨ ¨ vk| := k the length of v0v1 ¨ ¨ ¨ vk. We say that two vertices u, v P V

have distance k if there is a path from u to v of length k and no such path
of length j exists for any j ă k. We say that u and v are adjacent if u Ñ v

or v Ñ u. If E is symmetric, we say that G is undirected .
An (ordered, directed, rooted) tree T = (V,E) is a graph such that every

vertex has at most one parent, there is exactly one vertex r that is not the
child of any parent, and for any vertex v P V, there is a path from r to
v. Furthermore, we require that the children of each vertex are ordered in
some fixed (but arbitrary) way. We call r the root of T , and say that a
vertex v P V is a leaf if v has no children. If v is not a leaf, we say that v
is an interior vertex. The height of T is the length of of the longest path
in T , i.e.,

height T := max
 

k P N
ˇ

ˇ Dv0, v1, . . . , vk P V. v0v1 ¨ ¨ ¨ vk is a path in T
(

.

The ordering on children extends to an ordering on the leaves by ob-
serving that for two leaves u, v P V, the paths from r to u and from r to
v diverge at a vertex x P V. Then the ordering of the children y, z P V of
x on the paths to u and v, respectively, yields the ordering of u, v (since
both u and v are leaves, we have y = z iff u = v).
A labeled tree is a structure T = (V,E, ρ) such that (V,E) is a tree, and

ρ : V Ñ S for some set of labels S. The yield of a labeled tree is the
sequence yield T := ρ(l1), ρ(l2), . . . , ρ(lk), where l1, l2, . . . , lk are the leaves
of T , ordered from least to greatest.
We represent trees by drawing the root at the top and arranging the

children of each vertex, in order, underneath their parent. Since the di-
rection of the edges is always from top to bottom, we draw the edges as
simple lines. 2

Definition 2.6 (Algebra)
A signature is a set Ω together with a map ar : Ω Ñ N. We say that ar
is the type of Ω. For any ω P Ω, we say that arω is the arity of ω.

5



2. Preliminaries

Given a signature Ω and its associated type ar, an Ω-algebra is a tuple
A =

(
A, (fω)ωPΩ

)
, where

• A ‰ ∅ is a set, called the carrier set of A, and

• (fω)ωPΩ is a family of finitary operations on A such that for any
ω P Ω, we have

fω : Aar(ω)
Ñ A.

When Ω is finite, we may give the operations directly as members of the
tuple, i.e., if Ω = tf1, f2, . . . , fnu, we may write A = (A, f1, f2, . . . , fn). If
ar(ω) = 1 for some ω P Ω, we say that fω is a constant .
Let A =

(
A, (fω)ωPΩ

)
be an Ω-algebra, and let ∅ Ĺ S Ď A. We say

that S =
(
S, (gω)ωPΩ

)
is a subalgebra of A and write S ď A if for any

ω P Ω, we have

@s1, s2, . . . , sar(ω) P S. fω
(
s1, s2, . . . , sar(ω)

)
= gω

(
s1, s2, . . . , sar(ω)

)
P S.

For a set ∅ Ĺ B Ď A, we denote by

xByA :=

(
č

BĎSĎA,
(S,(fω)ωPΩ)ďA

S, (fω)ωPΩ

)

the subalgebra generated by B in A. We set

x∅yA :=

$

&

%

A

ar´1
[
t0u
]E

A
, ar´1

[
t0u
]

‰ ∅, and

∅, otherwise
2

Example 2.7 (Power set algebra)
Given any set S, we set Ω :=

 

∅,S,X,Y, (–)´1
(

and ar(∅) := 0 =: ar(S),
ar
(
(–)´1

)
= 1, and ar(Y) := 2 =: ar(X). Then

P(S) :=
(
P(S) , (fω)ωPΩ

)
is an algebra, where

• f∅ := ∅ is the empty set,

• fS := S is S,

6



2.1. Basic notation

• for every X P P(S), f(–)´1(X) := SzX is the complement of X,

• for every X, Y P P(S), fY(X, Y) := XY Y is the union of X and Y, and

• for every X, Y P P(S), fX(X, Y) := X X Y is the intersection of X and
Y.

We say that P(S) is the power set algebra of S. 2

Definition 2.8 (Homomorphism)
Let Ω be a signature and ar the associated type, and let A = (A, (fω)ωPΩ)

and B = (B, (gω)ωPΩ) be Ω-algebras. We say that a map φ : A Ñ B is a
homomorphism if for all ω P Ω and all a1,a2, . . . ,aar(ω) P A, we have

φ
(
fω
(
a1,a2, . . . ,aar(ω)

))
= gω

(
φ (a1) ,φ (a2) , . . . ,φ

(
aar(ω)

))
.

If φ is injective, we say that φ is a monomorphism . We say that φ is
an epimorphism if φ is surjective, and if φ is bijective, we say that φ is
an isomorphism . 2

Definition 2.9 (Quotient algebra)
Let A =

(
A, (fω)ωPΩ

)
be an Ω-algebra with type ar. Then we say that

„ Ď A ˆA is a congruence relation on A if „ is an equivalence relation
(i.e., a reflexive, symmetric, transitive relation), and for every ω P Ω and
all (a1,b1) , (a2,b2) , . . . ,

(
aar(ω),bar(ω)

)
P „ we have that

fω
(
a1,a2, . . . ,aar(ω)

)
„ fω

(
b1,b2, . . . ,bar(ω)

)
.

For an element a P A, we denote by [a]„ the congruence class of a, and
we say that a is a representative of [a]„.
Note that if „1,„2 are congruence relations on A, then so is „1 X „2.

Hence, for a set R Ď A ˆ A, we may define the congruence relation
generated by R as

xRyA :=
č

 

„
ˇ

ˇ R Ď „ Ď AˆA,„ congruence
(

.

Given an Ω-algebra A with type ar and a congruence relation „ on A,
the quotient algebra of A with respect to „ is

A/„ := ( A/„ , (f„
ω)ωPΩ), where

A/„ :=
 

[a]
„

ˇ

ˇ a P A
(

, and
f„
ω

(
[a1]„, [a2]„, . . . , [aar(ω)]„

)
:=
[
fω(a1,a2, . . . ,aar(ω))

]
„
.

7



2. Preliminaries

Note that this is indeed well-defined as the results of the operations do
not depend on the chosen representatives of the equivalence classes. For
details, see, e.g., [Grä08].
Finally, we denote by φ„ : A Ñ A/„ : a ÞÑ [a]

„
the canonical homo-

morphism associated with „. 2

Definition 2.10 (Term algebra, [BN98])
Let Ω be a signature and ar its type, and let X be a set (we say that the
elements of X are variables). We define the set of terms over Ω with
variables X, denoted by TΩ (X), as follows:

• X Ď TΩ (X), i.e., any variable is a term, and

• for any n P N, any ω P ar´1[n], and any t1, t2, . . . , tn P TΩ (X),
we have ω(t1, t2, . . . , tn) P TΩ (X), i.e., we obtain terms by applying
operations to terms.

The term algebra over Ω with variables X is the algebra

TΩ (X) :=
(
TΩ (X) , (fω)ωPΩ

)
,

where

fω : TΩ (X)
ar(ω)

Ñ TΩ (X) :
(
t1, t2, . . . , tar(ω)

)
ÞÑ ω

(
t1, t2, . . . , tar(ω)

)
. 2

Definition 2.11 (Monoid)
A monoid on a set M is an algebra M = (M, ˚, λ) such that

• ˚ :MˆM Ñ M is an associative operation on M, i.e.,

@a,b, c P M. (a ˚ b) ˚ c = a ˚ (b ˚ c), and

• λ P M is an identity element with respect to ˚, i.e.,

@m P M. λ ˚m = m = m ˚ λ. 2

Example 2.12 (Monoid homomorphism)
Given two monoids M = (M, ˚, λ) and N = (N,+, ε), a map φ : M Ñ N

is a monoid homomorphism if for all m,n P M we have

φ(λ) = ε, and
φ(m ˚ n) = φ(m) + φ(n). 2

8



2.1. Basic notation

Definition 2.13 (Free monoid)
For a set S, we denote by

S˚ :=

(
ď

iě0

Si, ˚, λ

)

the free monoid generated by S, where ˚ is concatenation, i.e., for

s := (si)iPm, t := (ti)iPn P S˚,

we have

(s1, . . . , sn) ˚ (t1, . . . , tm) := (s1, . . . , sn, t1, . . . , tm),

λ ˚ t := t, and
s ˚ λ := s.

We interpret the elements of S˚ as words over the alphabet S and write
s1 ¨ ¨ ¨ sm to denote (s1, . . . , sm) P Sm, and denote by λ the empty word .
Slightly abusing the notation, we may also write S˚ when referring to its
carrier set, i.e., the set of words over S. Used in that way, we refer to the
operation (¨)˚ as the Kleene star . 2

Indeed, the free monoid is an instance of the concept of a free object
(see [Awo06] for a definition). As such, it is unique only up to isomor-
phisms. Hence, when we say that some structure is the free object (of a
certain kind), we actually mean that it is a free object, and we may even
say that two different (but isomorphic) structures are the free object.

Example 2.14
The monoid (N,+, 0) of natural numbers is a free monoid generated by
t1u: We interpret the strings in t1u

˚ as unary numerals. Clearly,

t1u
˚

Q 11 ¨ ¨ ¨ 1
loomoon

n times

ÞÑ n P N

is a monoid isomorphism. 2

9



2. Preliminaries

Example 2.15
Let S be a finite, nonempty set and S˚ be the free monoid over S. We
define Ω := t˚, λu, and set ar(˚) = 2 and ar(λ) = 0. Finally, we let „ be
the congruence generated as follows:

„ := xIYAyTΩ(S), where

I :=
!(

˚(s, λ), s
)
,
(
˚(λ, s), s

) ˇ
ˇ

ˇ
s P S

)

, and

A :=
!(

˚
(
s, ˚(t,u)

)
, ˚
(
˚(s, t),u

)) ˇ
ˇ

ˇ
s, t,u P S

)

Then the free monoid is isomorphic to a quotient of the term algebra:

S˚
– TΩ (S)/„ . 2

Definition 2.16 (Free commutative monoid)
Let S be a set. Then by

Sd := S˚/„

we denote the free commutative monoid , where „ is the congruence re-
lation generated by

 (
ab,ba

) ˇ
ˇ a,b P S

(

. 2

2.2. Formal languages
We provide a short introduction to formal languages and an overview of
the classification of formal languages known as the Chomsky hierarchy as
presented in [MS97b].
Definition 2.17 (Language, [MS97b])
An alphabet is a finite, nonempty set V. We refer to the elements of V
as symbols . The elements of V˚ are called words , λ in particular is called
the empty word . Given two words x,y P V˚, we denote by xy := x ˚ y

the concatenation of x and y with respect to the free monoid over V. We
denote by V+ := V˚ztλu the set of all non-empty words over V, and for
n P Ną 0, we write xn as a shorthand for x ˚ xn´1, and set x0 := λ. For a
word w := w1w2 ¨ ¨ ¨wn, we let |w| := n be the length of w, and we denote
by

|w|a :=
ˇ

ˇti P n |wi = au
ˇ

ˇ

10



2.2. Formal languages

the number of occurrences of a in w.
A language over V is a subset L Ď V˚. If L Ď V+, we say that L is

λ-free . Given two languages L Ď V,M Ď V 1, we denote by LM := tlm |

l P L,m P Mu the concatenation of L and M (note that LM is a language
over V Y V 1). For a given language L, the length set of L is

lengthL :=
 

|w|
ˇ

ˇw P L
(

. 2

Definition 2.18 (Grammar, [MS97b])
A phrase-structure grammar is a tuple G = (N, T ,S,P), where

• N, T are disjoint alphabets (we call their elements non-terminal and
terminal symbols, respectively),

• S P N is the start symbol , and

• P Ď V˚NV˚ ˆ V˚ is the set of production rules , where V := N Y T .
For an element (u, v) P P, we write u Ñ v.

For x,y P V˚, we write x =ñ y iff x = aub and y = avb for some a,b P V˚

and a production rule u Ñ v P P. By =ñ˚ we denote the reflexive and
transitive closure of =ñ. The language generated by G is

L(G) := tx P T˚
| S =ñ

˚ xu.

We classify grammars by the types of production rules, and call a gram-
mar

context-sensitive if every rule u Ñ v P P is of the form u = aAb, v = axb
for some a,b P V˚,A P N, x P V+ (if S does not appear in the right-
hand side of any rule, we also allow a rule S Ñ λ to be present),

context-free if for every rule u Ñ v P P, we have u P N,

linear if each rule u Ñ v P P is such that u P N and v P T˚ Y T˚NT˚, and

regular if for every u Ñ v P P we have u P N and v P T Y TNY tλu.

11



2. Preliminaries

Note that, while, e.g., [HU79] allow production rules in regular gram-
mars to contain more than one terminal symbol, any such rule can be
transformed into the form above by introducing additional non-terminal
symbols. As the definition above is also found in [Pău02; PRS10], this
seems to be the more appropriate approach.
By RE,CS,CF, LIN, and REG, we denote the families of languages gener-

ated by arbitrary, context-sensitive, context-free, linear, and regular gram-
mars, respectively, i.e.,

RE := tL(G) |G is an arbitrary grammaru,
CS := tL(G) |G is a context-sensitive grammaru,
...

REG := tL(G) |G is a regular grammaru.

We may also refer to the members of RE,CS,CF, LIN, and REG as
recursively enumerable, context-sensitive, context-free, linear, and regular
languages, respectively. For such a family

F P tRE,CS,CF, LIN,REGu,

we denote by NF the subset of languages L P F over N, and by ΨF the
subset of languages L P F over alphabets

Ť

iPNą 0
Ni, i.e., writing NRE we

refer to the sets of natural numbers generated by arbitrary grammars, and
we refer to the sets of tuples of natural numbers generated by context-free
grammars as 	CF. 2

Remark 2.19 ([Pău02])
For a family F P tRE,CS,CF, LIN,REGu of languages, the family NF

consists exactly of the length sets of languages in F, i.e.,

NF = tlength F | F P Fu.

Furthermore, ΨF consists exactly of the images of languages under the
Parikh mapping (see Definition 2.30), i.e.,

ΨF =
 

Ψ[F]
ˇ

ˇ F P F
(

.

The words of such a language F P ΨF are commonly referred to as “Parikh
vectors.” However, while Nn embeds into the vector space Qn, it does

12



2.2. Formal languages

not form a vector space itself, but rather a module over the semiring
(N, 0,+, 1, ¨). Hence, we prefer to speak of Parikh tuples or Parikh images
instead. 2

Remark 2.20 (The λ-convention, [KRS97])
We follow an established convention in the study of formal languages and
treat languages as equal if they differ by λ, i.e., for any two languages L,L 1

we say that
L equals L 1

ðñ LY tλu = L 1
Y tλu.

We shall see that the equality of certain families of languages generated
by Spiking Neural P systems is only due to this convention. 2

2.2.1. The Chomsky hierarchy
From the definition above, we immediately obtain

REG Ď LIN Ď CF, and
CS Ď RE .

In fact, even the following can be shown:

Proposition 2.21 (Chomsky hierarchy, [MS97b])
The following well-known strict inclusions hold:

REG Ĺ LIN Ĺ CF Ĺ CS Ĺ RE . 2

Proposition 2.22 ([Pău02])
Considering only families of languages of natural numbers, parts of the
hierarchy collapse:

NREG = NLIN = NCF Ĺ NCS Ĺ NRE . 2

2.2.2. Regular languages
Regular languages play an important role in the definition of Spiking neural
P systems. Hence, we need a concise way of describing regular languages
and regular expressions are that. The following definition formalizes reg-
ular expressions as defined by [Sip97] and used by [IPY06].

13
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Definition 2.23 (Regular expression)
Let V be an alphabet, Ω :=

 

∅, λ, ˝,Y, (–)˚
, (–)+

(

and set ar(λ) := 0 =:

ar(∅), ar
(
(–)˚

)
:= 1 =: ar

(
(–)+

)
, and ar(˝) := 2 =: ar(Y). Furthermore, let

„ be the congruence generated as follows:

„ := xIY SYAyTΩ(V)

I :=
!(

˚(v, λ), v
)
,
(
˚(λ, v), v

) ˇ
ˇ

ˇ
v P V

)

,

S :=
!(

Y(v,w),Y(w, v)
) ˇ
ˇ

ˇ
v,w P V

)

, and

A :=
!(
ω
(
v,ω(w, x)

)
,ω
(
ω(v,w), x

)) ˇ
ˇ

ˇ
v,w, x P V,ω P t˝,Yu

)

.

For clarity, we may write the operations ˝ and Y as infix operators, or even
omit ˝ entirely.
We define the algebra of regular expressions over V by setting

RegEx(V) := TΩ (V)/„

and denote by RegEx(V) its carrier set.
With each regular expression we associate a language over S by defining

the following mapping which extends to a homomorphism into the power
set algebra over V˚:

L : RegEx(V) Ñ V˚ such that for all v,w P V :

L(∅) := ∅,
L(λ) := tλu,

L(v) := tvu,

L(v˚) := L(v)˚
,

L(v+) :=
 

w
ˇ

ˇw P L(v˚)ztλu
(

,

L(vYw) := L(v) Y L(w), and
L(v ˝w) :=

 

xy
ˇ

ˇ x P L(v),y P L(w)
(

.

For a regular expression r P RegEx(V), we say that L(r) is the language
matched by r. 2

Proposition 2.24 ([MS97b, Section 3.2])
The languages matched by regular expressions are exactly the regular lan-
guages:

REG =
 

L(r)
ˇ

ˇ DV. r P RegEx(V)
(

. 2

14



2.2. Formal languages

2.2.3. Context-free languages
We introduce some concepts pertaining to context-free languages. In par-
ticular, we are interested in proving Parikh’s theorem, a useful tool in
showing that a given language is not context-free.
To aid in the proof, we introduce the Chomsky normal form and deriva-

tion trees. Whereas [HU79] restrict the Chomsky normal form to λ-free
languages, the definition (and the proof of Proposition 2.26) are easily
adapted to languages containing λ.

Definition 2.25 (Chomsky normal form, [HU79])
Let G = (N, T ,S,P) be a context-free grammar. We say that G is in
Chomsky normal form if every production rule is of one of the following
forms:

• A Ñ BC for some A,B,C P N,

• A Ñ a for some A P N, a P T , or

• S Ñ λ if λ P L(G). 2

Proposition 2.26 ([HU79, Theorem 4.5])
Let G be a context-free grammar. Then there exists an equivalent context-
free grammar G 1 in Chomsky normal form, i.e.,

L(G) = L(G 1). 2

Definition 2.27 (Derivation tree, [HU79])
Let G = (N, T ,S,P) be a context-free grammar. A labeled tree D =

(V,E, ρ) with root r is a derivation tree (or parse tree) for G if

1. ρ : V Ñ NY T Y tλu,

2. ρ(r) = S,

3. for any interior vertex v (i.e., a vertex that is not a leaf), ρ(v) P N,

4. for a vertex n with children n1,n2, . . . ,nk with labels ρ(n) = A,
ρ(ni) = Xi (for i P k), there is a production A Ñ X1X2 ¨ ¨ ¨Xk P P,
and

15
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5. if ρ(v) = λ for a vertex v, then v is a leaf and the only child of its
parent.

A subtree of D is a tree D 1 = (V 1,E 1, ρ|V 1) such that

• V 1 Ď V,

• E 1 := EX (V 1)2, and

• if u P V 1 and u Ñ v in D, then v P V 1 (i.e., for any vertex u in D 1,
the children of u in D are also in D 1). 2

Derivation trees correspond to the repeated application of production
rules in the derivation of a word. For the proof of the following proposition,
see [HU79].

Proposition 2.28 ([HU79, Theorem 4.1])
Let G = (N, T ,S,P) be a context-free grammar. Then S =ñ˚ w iff there
is a derivation tree for G with yield w. 2

Remark 2.29
If G is a grammar in Chomsky normal form, any derivation tree for G
is such that any interior vertex has either exactly two children, none of
which are leaves, or exactly one child that is a leaf, and any leaf is labeled
with exactly one terminal symbol. Consider a derivation tree D for G of
height h. Then any maximal path in this tree consists of exactly h interior
vertices and one leaf, and |yieldD| = 2h´1. 2

We now introduce the definitions we need to state Parikh’s theorem.
Definition 2.30 (Parikh mapping)
Given an alphabet V = tv1, . . . , vnu, let φ : V˚ Ñ Vd be the canonical
homomorphism. Then

ψ : Vd
Ñ (N,+, 1)n : w ÞÑ

(
|w|v1, . . . , |w|vn

)
is a monoid isomorphism. We define the Parikh mapping associated with
V as follows:

Ψ := ψ ˝ φ. 2
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2.2. Formal languages

Strictly speaking, ψ depends on the ordering of v1, . . . , vn of elements
of V. However, any permutation on n (and hence any permutation of
v1, . . . , vn) lifts to an automorphism on (N,+, 1)n, so we can assume a
consistent ordering throughout this thesis.
Definition 2.31 (Semi-linear set, [Par66])
Let S Ď Nn for some n P Ną 0. We say that S is linear if there are
a0,a1, . . . ,am P Nn such that

S =

#

a0 +
ÿ

iPn

niai

ˇ

ˇ

ˇ

ˇ

ˇ

n1, . . . ,nm P N

+

,

and semi-linear if S is a finite union of linear sets. 2

Theorem 2.32 (Parikh, [Par66])
Let L P CF. Then Ψ[L] is semi-linear. 2

The original proof in [Par66] is quite technical, and the proof in [ABB97]
makes use of the theory of equation systems over commutative semigroups
that we do not wish to introduce here. Instead, we reproduce the proof
in [Gol77], which makes use only of the basic theory of formal languages.
We note that [Kui97] proves a generalized version of Theorem 2.32 for
arbitrary semirings.
For the proof, we need a (slightly strengthened) version of the Pumping

lemma for context-free languages.
Lemma 2.33 (Pumping lemma, [Gol77])
Let G = (N, T ,S,P) be a context-free grammar. Then there is an integer
p such that, for any k ě 1, if w P L(G) and |w| ě pk, any derivation
S =ñ˚ w is equivalent to

S =ñ
˚ uAv

=ñ
˚ ux1Ay1v

=ñ
˚ ux1x2Ay2y1v

=ñ
˚

¨ ¨ ¨

=ñ
˚ ux1x2 ¨ ¨ ¨ xkAyk ¨ ¨ ¨y2y1v

=ñ
˚ ux1x2 ¨ ¨ ¨ xkzyk ¨ ¨ ¨y2y1v = w,

where A P N, λ R txiyi | i P ku, and |x1x2 ¨ ¨ ¨ xkzyk ¨ ¨ ¨y2y1| ď pk. 2
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Note For k = 1, we obtain the pumping lemma as stated in [BPS61;
HU79]. 2

PROOF (LEMMA 2.33) We adapt the proof from [HU79] to the strength-
ened statement of Lemma 2.33. Without loss of generality, we assume
that G is in Chomsky normal form, and that L(G) is λ-free (since we are
concerned only with words of a certain minimum length, shorter words are
irrelevant).
First, observe that if w P L(G) has a derivation tree of height at most

i, then |w| ď 2i´1. For i = 1, the derivation tree must consist of ex-
actly two vertices, and we obtain w P D. Thus, we have |w| = 1 = 20.
Consider now a derivation tree D of height i ą 1. Then D is as de-
scribed in Remark 2.29, and the children of the root vertex are them-
selves roots of subtrees D1,D2 of height (at most) i ´ 1. By the in-
duction hypothesis, we obtain |yieldDj| ď 2i´2 for j = 1, 2. Hence,
|yieldD| = |yieldD1 yieldD2| ď 2i´1.
Set p := 2|N| and let k P Ną 0. Consider w P L(G) with |w| ě pk. Then

we have
|w| ě

(
2|N|

)k
= 2k|N|

ą 2k|N|´1,

and thus any derivation tree for w must have height at least k|N| + 1.
Hence, a maximal path in a derivation tree for w must have length at least
k|N| + 1 (for simplicity, we assume without loss of generality that it has
length exactly k|N| + 1), and therefore consists of k|N| + 2 vertices, only
one of which is a leaf. Since the remaining k|N|+1 vertices are labeled with
non-terminal symbols, of which there are exactly |N|, by the pigeonhole
principle, there must be a symbol A P N such that at least k vertices
are labeled with A. Consider such a maximal path, and let v1, v2, . . . , vk
be those vertices, ordered by decreasing distance to the leaf. Note that
the distance of v1 to the leaf is at most k|N| + 1. Consider the subtrees
D1,D2, . . . ,Dk with roots v1, v2, . . . , vk, respectively, and denote by wi :=

yieldDi their yields. Since D1 has height at most k|N| + 1 (because the
path is maximal), we have |w1| ď 2k|N| = pk. But w1 must be of the form
x1w2y1, since v2 is closer to the leaf than v1, and D2 must be completely
contained in one of the two subtrees starting at children of v1 (because both
D1 and D2 are of the form as described in Remark 2.29). Hence, x1y1 ‰ λ.
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2.2. Formal languages

Analogously, we obtain w2 = x2D3y2 up to wk´1 = xk´1Dkyk´1, and
finally wk = xkzyk. Now, we have

|x1x2 ¨ ¨ ¨ xkzyk ¨ ¨ ¨y2y1| = |w1| ď pk,

and clearly we have

w = uw1v = ux1x2 ¨ ¨ ¨ xkzyk ¨ ¨ ¨y2y1

for some u, v P (NY T)˚. �

PROOF (THEOREM 2.32, [GOL77]) Let G = (N, T ,S,P) be a grammar sat-
isfying L(G) = L. Let p be the constant obtained from Lemma 2.33. For
any set U Ď N with S P U, set

LU :=
 

w P L
ˇ

ˇ DD = (V,E, ρ) derivation tree for w. ρ[V] XN = U
(

.

Since N is finite, there are only finitely many LU, and clearly
ď

tSuĎUĎN

LU = L.

We show that each Ψ[LU] is semi-linear, which proves the claim.
Let U Ď N be such that S P U. From now on, we only consider deriva-

tions using productions A Ñ v in P such that A P U and v P (UY T)˚. Let
k := |U|, and set

F :=
 

w P LU
ˇ

ˇ |w| ă pk
(

, and
G :=

 

xy
ˇ

ˇ 1 ď |xy| ď pk and A =ñ
˚ xAy for some A P U

(

.

We claim that Ψ[LU] = Ψ[FG˚]. Consider w P LU. If |w| ă pk, then
w P F Ď FG˚. Otherwise, we have |w| ě pk. Since w P LU, there is a
derivation S =ñ˚ w using exactly the non-terminal symbols in U. By
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Lemma 2.33, this derivation is equivalent to a derivation

S =ñ
˚

loomoon

d0

uAv

=ñ
˚

loomoon

d1

ux1Ay1v

=ñ
˚

loomoon

d2

¨ ¨ ¨

=ñ
˚

loomoon

dk

ux1x2 ¨ ¨ ¨ xkAyk ¨ ¨ ¨y2y1v

=ñ
˚

loomoon

dk+1

ux1x2 ¨ ¨ ¨ xkzyk ¨ ¨ ¨y2y1v = w,

where A P U, xiyi P G for any i P k, and d0,d1, . . . ,dk+1 are certain
distinguished sub-derivations. Let f : UztAu Ñ tdi | i P ku be injective.
Then, since

ˇ

ˇUztAu
ˇ

ˇ = k ´ 1, there is a j P k such that dj R f
[
UztAu

]
.

Thus,

S =ñ
˚ ux1x2 ¨ ¨ ¨ xj´1xj+1 ¨ ¨ ¨ xkzyk ¨ ¨ ¨yj+1yj´1 ¨ ¨ ¨y2y1v =: w

1,

and w 1 P LU. Since |w 1| ă |w|, we can assume Ψ(w 1) P Ψ[FG˚] by induc-
tion. We obtain Ψ(w) = Ψ(w 1xjyj) P Ψ[FG˚], since xjyj P G, and hence,
we have Ψ[LU] Ď Ψ[FG˚].
Conversely, let w P FG˚. If w P F, then w P LU. Otherwise, w = w0s

for some w0 P FG˚ and s P G. Then s = xy, where A =ñ˚ xAy for some
A P U. Since |w0| ă |w|, we obtain Ψ(w0) = Ψ(w 1) for some w 1 P LU
by induction. Hence, S =ñ˚ w 1, and every non-terminal symbol in U
(including A) occurs in this derivation. Thus, we have

S =ñ
˚ uAv =ñ

˚ uzv = w 1, and
S =ñ

˚ uAv =ñ
˚ uxAyv =ñ

˚ uxzyv = w 2, where
Ψ(w 2) = Ψ(w 1xy) = Ψ(w0s) = Ψ(w).

Since w 2 P LU, Ψ(w) = Ψ(w 2) P Ψ[LU], and we have Ψ[FG˚] Ď Ψ[LU].
Now we have Ψ[LU] = Ψ[FG˚]. Let G = ts1, s2, . . . , smu. Then

Ψ[FG˚] = Ψ[Fs˚
1s

˚
2 ¨ ¨ ¨ s˚

m] =

#

v+
ÿ

iPm

wi

ˇ

ˇ

ˇ

ˇ

ˇ

v P Ψ[F],wi P Ψ[s˚
i ]

+

.
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Since F is finite, Ψ[F] is semi-linear, and clearly, Ψ[s˚
i ] is linear for each

i P m. Hence, Ψ[LU] = Ψ[FG˚] is semi-linear. �

2.2.4. L systems
L systems were introduced in [Lin68a; Lin68b] by Aristid Lindenmayer to
model the growth of filamentous organisms. Certain classes of L systems,
however, form a hierarchy like the Chomsky hierarchy, the L hierarchy. It
is primarily this hierarchy, not the L systems themselves, that we are in-
terested in. Hence, we give a brief overview of the relevant classes of L sys-
tems and the families of languages generated by them based on [KRS97].
L systems also serve to introduce the parallel mode of rule application (in
contrast to grammars, where a single rule is applied at a time), which, as
we shall see later, is a defining aspect of P systems.

Remark 2.34 ([KRS97, p. 254])
While “L system” (or, similarly, “0L language”) may not be typographically
correct, omitting the hyphen is an established practice in the field of L sys-
tems. We choose to follow this practice, favoring notational consistency
over typographic correctness, and we shall later see that this practice has
also been adopted in other fields, such as CD grammar systems, or even
P systems. 2

Definition 2.35 (Finite substitution, [KRS97])
Let V,W be alphabets, and σ : V˚ Ñ t∅ Ĺ L Ď W˚ |L finiteu be a mapping.
We say that σ is a finite substitution if

• σ(λ) = λ, and

• for any u, v P V˚, σ(uv) = σ(u)σ(v).

If λ R σ(v) for all v P V, we say that σ is λ-free (or non-erasing).
Furthermore, if for any v P V, we have that |σ(v)| = 1, we say that σ is a
morphism .
We extend σ onto a language L Ď V˚ by defining

σ(L) :=
ď

wPL

σ(w). 2
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Note that a finite substitution σ : V˚ Ñ t∅ Ĺ L Ď W˚ | L finiteu is a
monoid homomorphism from V˚ to t∅ Ĺ L Ď W˚ | L finiteu˚. As such, σ
is uniquely determined by the image of V Y tλu, and given that we require
σ(λ) = λ, it suffices to specify the images of the letters of V. Hence, we may
also define a finite substitution in the form of production rules V Ñ W˚,
where we have a rule v Ñ w for each w P σ(v).
Definition 2.36 (0L system, [KRS97])
A zero-interaction L system (0L system) is a tuple S = (V,σ,a), where

• V is an alphabet,

• σ : V˚ Ñ t∅ Ĺ L Ď V˚ | L finiteu is a finite substitution on V, and

• a P V˚ is the axiom.

The language generated by S is

L(S) :=
ď

iě0

σi(a).

An extended L system (E0L system) is a tuple E = (V,σ,a, T), where

• (V,σ,a) is a 0L system, and

• T Ď V is the alphabet of terminal symbols (we refer to the elements
of VzT as non-terminal symbols).

The language generated by E is

L(E) :=
(
L
(
(V,σ,a)

))
X T .

A tabled L system (T0L system) is a tuple T = (V,S,a), where

• S := tσ1,σ2, . . . ,σnu is a finite set of finite substitutions over V, and

• for any i P n, (V,σi,a) is a 0L system.

We refer to the elements of S as tables. The language generated by T is

L(T) := tau Y
ď

kě1

 

(σi1 ˝ σi2 ˝ ¨ ¨ ¨ ˝ σik) (a)
ˇ

ˇ i1, i2, . . . , ik P n
(

.

We say that T is extended if every table of T is extended. We denote by
0L, E0L, and ET0L, respectively, the families of languages generated by
0L, E0L, and ET0L systems, respectively. 2
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2.3. Turing machines

Proposition 2.37 ([KRS97; Pău02])
The families of languages generated by certain classes 0L systems relate to
each other and to the Chomsky hierarchy in the following way:

CF Ĺ E0L Ĺ ET0L Ĺ CS and
NCF Ĺ NE0L Ĺ NET0L Ĺ NCS . 2

2.3. Turing machines
Intuitively, a Turing machine is a computational device consisting of a finite
set of states, an infinite tape (divided into cells each storing a symbol over
a (finite) alphabet) and a movable head. In each step, the symbol on the
tape at the current position of the head can be read and written, the head
can move one position to the left or to the right, and then a new state is
chosen.
The following definition adapts the definition in [HU79] to the treatment

of non-determinism in [Sip97], while defining configurations in a manner
that is compatible with [Min67].

Definition 2.38 (Turing machine)
A (non-deterministic) Turing machine is a tuple

M = (Q,Σ, Γ , δ,q0,B, F),

where

• Q is a finite set of states,

• Σ is an alphabet, called the input alphabet , such that B R Σ,

• Γ is an alphabet, referred to as the tape alphabet , such that B P Γ

and Σ Ď Γ ,

• δ : Qˆ Γ Ñ P
(
Qˆ Γ ˆ tL,Ru

)
is the transition function ,

• q0 P Q is the initial state ,

• B is the blank symbol , and
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• F Ď Q is the set of final states .

A configuration of M is a tuple CM = (q, s, l, r), where

• q P Q is the current state of M,

• s P Γ is the current symbol, i.e., the symbol on the tape at the
position of the head,

• l : N Ñ Γ is a map associating with each cell to the left of the head
the contents of the tape, and

• r : N Ñ Γ is a map giving the contents of the tape to the right of the
head.

Given a word w0w1 ¨ ¨ ¨w|w| =: w P Σ˚, we denote by

C0
M(w) := (q0,w0, x ÞÑ B,ω)

the starting configuration ofM on input w, where ω : N Ñ Γ is such that

ω(i) :=

#

wi+1, i+ 1 P |w|

B, otherwise.

We say that a configuration CM = (q, s, l, r) is an accepting configuration
if q P F.
Given two configurations CM := (q, s, l, r) and C 1

M := (q 1, s 1, l 1, r 1), we
say that M makes a transition from CM to C 1

M and write CM =ñ C 1
M if

there is (q 1, ŝ,d) P δ(q, s) and

• if d = L, we have s 1 = l(0), l 1(i) := l(i + 1) for any i P N, r 1(0) := ŝ,
and r 1(i) := r(i´ 1) for any i P Ną 0, and

• otherwise, we have d = r, s 1 = r(0), r 1(i) := r(i + 1) for any i P N,
l 1(0) := ŝ, and l 1(i) := l(i´ 1) for any i P Ną 0.

We write CM =ñ˚ C 1
M if there are configurations C1

M,C2
M, . . . ,Cn

M such
that

CM =ñ C1
M =ñ C2

M =ñ ¨ ¨ ¨ =ñ Cn
M =ñ C 1

M,

and we may omit the indices on configurations if M is understood from
the context.
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The language accepted by M is

L(M) :=
 

w P Σ˚
ˇ

ˇ C0
M(w) =ñ

˚ CM accepting
(

.

Without loss of generality, we may assume that M halts (i.e., there are
no further transitions that M can make from the current configuration)
whenever M reaches an accepting configuration. By LTM we denote the
class of languages accepted by Turing machines.
Finally, we say that M is deterministic if

max
(q,s)PQˆΓ

|δ(q, s)| ď 1. 2

Proposition 2.39 ([Sip97, Theorem 3.10])
For every non-deterministic Turing machine M, there is an equivalent de-
terministic Turing machine D, i.e.,

L(M) = L(D). 2

Remark 2.40 (The Universal Turing machine)
There exists a Turing machine U that is universal in the sense that for
any description of a Turing machine T and a starting configuration C0

T(w)

of T, U computes the output of T on C0
T(w). For a construction of a

Universal Turing machine, see [Min67, sec. 7.2], or even Turing’s original
paper [Tur36, sec. 6]. 2

Theorem 2.41 (Universality of arbitrary grammars)
The languages generated by arbitrary grammars are exactly the lan-
guages accepted by Turing machines, i.e.,

RE = LTM. 2

PROOF (THEOREM 2.41, [MS97A]) Let L P RE and G = (N, T ,S,P) be a
grammar such that L(G) = L. We construct a non-deterministic Turing
machine M such that L(M) = L as follows: For any input w P T˚,M non-
deterministically chooses a position i inw and a production rule u Ñ v P P.
If v occurs in w at position i, replace v by u, adjusting the position of β
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on the tape if |u| ‰ |v|. M accepts w iff after a finite number of steps, the
tape contains S. Clearly, L(M) = L.
Conversely, let L P LTM and M = (Q,Σ, Γ , δ,q0,B, F) be a Turing ma-

chine such that L(M) = L. We construct a grammar G = (N,Σ,S0,P) such
that L(G) = L, where

N :=
(
(ΣY tλu) ˆ Γ

)
YQY tS0,S1,S2u, and

P contains all rules of the following forms:

1. S0 Ñ q0S1,

2. S1 Ñ (a,a)S1 (for some a P Σ),

3. S1 Ñ S2,

4. S2 Ñ (λ,B)S2,

5. S2 Ñ λ,

6. q(a,X) Ñ (a, Y)p iff (p, Y,R) P δ(q,X) (where a P ΣY tλu, p,q P Q,
and X, Y P Γ),

7. (b,Z)q(a,X) Ñ p(b,Z)(a, Y) iff (p, Y,L) P δ(q,X) (where a,b P Σ Y

tλu, p,q P Q, and X, Y,Z P Γ), and

8. (a,X)q Ñ qaq, q(a,X) Ñ qaq, q Ñ λ (for some q P F and some
a P ΣY tλu).

Using rules of the first five forms, we obtain a derivation

S0 =ñ
˚ q0(a1,a1) ¨ ¨ ¨ (an,an)(λ,B)

m
,

where ai P Σ (i P n) and m ě 0. We then use rules of forms 6 and 7 to
simulate the transitions ofM. WhenM reaches a final state, rules of form 8
become applicable, and the resulting word is w = a1a2 ¨ ¨ ¨an. Clearly, M
accepts w iff w is derivable in G, and hence we have

L(M) = L(G). �
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Remark 2.42 (Church’s Thesis, [MS97b])
Introduced by Alonzo Church in [Chu36], Church’s Thesis equates Turing
machines with intuitively effective procedures, i.e., it states that for any
intuitively effective procedure, there exists an equivalent Turing machine.
Since the notion of an intuitively effective procedure cannot be formalized,
Church’s Thesis cannot be proven. However, to date no counterexample
has been found, whereas lots of formal models of computability have been
shown to be equivalent to Turing machines. 2

2.4. Register machines
Register machines are particularly well-suited to prove the computational
completeness of classes of P systems, as simulating them is possible by
implementing only three instructions.
As we are interested in simulating a given register machine by a P sys-

tem, we strive for a definition of register machines with as few instructions
as possible. Hence, the approach taken by [Weg05] (where a register ma-
chine is equipped with instructions for e.g., multiplication and division)
is unsuitable for our purposes. [EP02] give, among others, a definition for
a register machine executing “GOTO programs,” which are closely related
to the ones we describe here.
The deterministic variant of the register machine we describe is as is

used in [MRK14b], and resembles the definition of a “program machine”
given by [Min67].
Definition 2.43 (Register machine)
A (deterministic) register machine is a tuple M = (m,H, l0, lh, I) such
that

• m P Ną 0 is the number of registers,

• H is a set of instruction labels,

• l0 P H is the starting label,

• lh P H is the halting label, and

• I – H is the instruction set, and each instruction i P I is of one of
the following forms:
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–
(
ADD(r), lj

)
(increment register r and jump to instruction lj)

–
(
SUB(r), lj, lk

)
(if register r is 0, jump to lk, otherwise decre-

ment register r and jump to lj)

– HALT (halt the computation).

We denote by φM : H Ñ I the isomorphism mapping instruction la-
bels to the corresponding instructions, and we require that φM(lh) =

HALT. If the register machine can be inferred from the context, we
may omit the index.

A configuration of a register machine M = (m,H, l0, lh, I) is a pair
CM = (i, ρ), where

• i P I is the current instruction, and

• ρ : R Ď m Ñ N is a map assigning values to registers. We say that a
register r P m is non-empty iff r P supp ρ, and empty otherwise.

We may also write CM = (i; r1, r2, . . . , rm) if m is small, and omit the
index if M is obvious. By C0

M(n) := (φ(l0), 1 ÞÑ n) we denote the starting
configuration of M for input n P N, and by Ch

M := (φ(lh), 1 ÞÑ 1) the
halting configuration of M. We denote by C(M) the set of configurations
of M.
Given two configurations CM = (i, ρ) and C 1

M = (i 1, ρ 1), we say that M
makes a transition from CM to C 1

M and write CM =ñM C 1
M iff either

• i =
(
ADD(r), l

)
, i 1 = φ(l), ρ 1(r) = ρ(r) + 1, and ρ|mztru = ρ 1|mztru,

i.e., C 1 arises from C by incrementing the register r and jumping to
the instruction i 1,

• i =
(
SUB(r), lj, lk

)
, i 1 = φ(lj), ρ(r) ą 0, ρ 1(r) = ρ(r) ´ 1, and

ρ|mztru = ρ 1|mztru, i.e., C 1 arises from C by decrementing the non-
empty register r and jumping to i 1, or

• i =
(
SUB(r), lj, lk

)
, i 1 = φ(lk), ρ(r) = 0, and ρ 1 = ρ, i.e., C 1 arises

from C by jumping to i 1.

We write C =ñk C 1 if there are configurations C = C0,C1, . . . ,Ck = C 1 P

C(M) such that Ci´1 =ñ Ci for i P k and some k P Ną 0, and C =ñ˚ C 1 if
there exits some k P Ną 0 such that C =ñk C 1.

28
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We say that M accepts input n iff

C0
M(n) =ñ

˚ Ch
M,

and denote by
L(M) := tn P N | M accepts nu

the set of numbers accepted by M. 2

Remark 2.44 (Composition of Register machines)
Given two register machines, we may construct a register machine that
executes both in sequence by taking the coproducts of the correspond-
ing label and instruction sets, and replacing the halting label of the first
machine by the starting label of the second machine. This justifies com-
posing register machines from smaller components, akin to “subroutines”
as commonly used in imperative programming languages. 2

2.4.1. Universality
The following theorem is shown in [Min67]. It needs to be adapted because
the definitions of both Turing and register machines are different from our
definitions. As this result is vital to the universality results for Spiking
Neural P systems with cooperating rules, we choose to reproduce it in
full. [Kor96, (a2)] gives an example of a Universal register machine with
22 instructions, but depends on the theory of recursive functions that we
do not wish to elaborate on here.
Theorem 2.45 (Universality of register machines, [Min67])
The family of languages accepted by deterministic register machines
is exactly the family NRE of recursively enumerable sets of natural
numbers. 2

Lemma 2.46
Let M = (Q,Σ, Γ , δ,q0,B, F) be a Turing machine, and let C = (q, s, l, r)

be a configuration of M such that C0(w) =ñ˚ C for some input w P Σ˚.
Let f P tl, ru. Then there are only finitely many indices n P N such that
f(n) ‰ B. 2

PROOF (LEMMA 2.46) Consider C0(w) = (q0, s0, l0, r0). Then l0(n) = B =

r0(n) for n ě |w|. Each transition increases the number of indices by at
most one. Since C0(w) =ñ˚ C in finitely many steps, the claim follows. �
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PROOF (THEOREM 2.45) We adapt the proof in [Min67] to our definition
of register machines. Let M = (Q,Σ, Γ , δ,q0,B, F) be a Turing machine.
We construct a register machine simulating M.
Without loss of generality, we assume that M is deterministic, and we

further assume that M halts whenever it reaches an accepting configura-
tion. Consider (q, s, l, r) =: CM =ñ C 1

M := (q 1, s 1, l 1, r 1). Since the regis-
ters of register machines store natural numbers, we need to encode these
configurations as tuples of numbers. Since Q is finite, we fix an (arbitrary)
enumeration χ : Q Ñ |Q|. Γ is also finite, but we choose γ : Γ Ñ |Γ | such
that γ is an isomorphism yielding

(Γ ,‘,B) –

(
|Γ |,+, 0

)
=: Z/|Γ |

for a suitably defined ‘, where Z/|Γ | is the finite cyclic group of order
|Γ |. Let if := maxti P N | f(i) ‰ Bu. Using this, we obtain the following
representation of l and r:

η : ΓN Ñ N

f ÞÑ

if
ÿ

i=0

(
γ
(
f (i)

)
¨ |Γ |

i
)
.

Note that due to Lemma 2.46, the maximum if exists. Thus, we have

(q, s, l, r) ÞÑ
(
χ(q),γ(s),η(l),η(r)

)
P N4,

a representation of C as a tuple of natural numbers. Set

H(n) := max
 

i P N
ˇ

ˇ i ¨ |Γ | ď n
(

and
P(n) := n´H(n).

Let (q 1, ŝ,d) be the unique element in δ(q, s). Observe that we can express
C 1 in terms of C in the following way:

s 1 = P
(
η(l)

)
¨ δdL + P

(
η(r)

)
¨ δdR,

l 1 =
(
|Γ | ¨ η(l) + ŝ

)
¨ δdR +H

(
η(l)

)
¨ δdL, and

r 1 =
(
|Γ | ¨ η(r) + ŝ

)
¨ δdL +H

(
η(r)

)
¨ δdR,
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where δxy is the Kronecker delta , i.e.,

δxy =

#

1, x = y, and
0, otherwise.

Thus, if we can compute these values on a register machine, we can sim-
ulate M. Computing both addition and multiplication is straightforward,
and [Min67, p. 203] gives an example of a register machine computing H(n)
and P(n) for the case |Γ | = 2 that easily generalizes. By setting aside a
register that always contains 0, we can jump to arbitrary instructions using
the SUB instruction (we reserve register 5 for that purpose). Similarly, we
may set a register to 0 by repeatedly decrementing it, and assign arbitrary
numbers by then incrementing it as necessary. From these components, we
assemble register machines corresponding to each (q, s) P Q ˆ Γ , and for
each q P Q, a register machine dispatching to the components for

(
q, ρ(3)

)
according to the register encoding the current tape symbol s. Consider the
input word w = w0w1 ¨ ¨ ¨w|w| P Σ˚. Then, we start the compound register
machine R in the starting configuration

C0
R =

(
|w|
ÿ

i+0

γ(wi) ¨ |Γ |
i

)
.

R then proceeds to assign P
(
ρ(1)

)
to register 3 and H

(
ρ(1)

)
to register 1,

and jumps to the dispatching instruction corresponding to the state q0.
For a state q and current symbol s, let (q 1, ŝ,d) be the unique element

of δ(q, s). Then R first assigns |Γ | ¨ρ
(
1+δdR

)
+ ŝ to register 4, then assigns

contents of register 4 to register 1+ δdR. Next, R assigns H
(
ρ(1+ δdL)

)
to

register 4, P
(
ρ(1 + δdL)

)
to register 3, and ρ(4) to register 1. If q P F, R

halts, and otherwise it jumps to the dispatching instruction for state q 1.
Clearly R accepts w P Σ˚ iff M accepts w, i.e., R simulates M. By

Theorem 2.41 we know that for any language L P NRE, there is a Turing
machine M such that L(M) = L. Using the above construction, we obtain
a register machine R with L(R) = L. �

[Min67] shows that it is possible to reduce the number of registers to
two and still retain universality. The key observation is to make use of the
isomorphism (N,+, 0)5 – (N, ¨, 1) given by

(m,n,a, z,w) ÞÑ 2m3n5a7z11w,
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which arises from the uniqueness of prime factorization. The increment
and decrement operations now need to be implemented by multiplying
and dividing by the respective prime, and the second register is needed to
implement these operations.

2.4.2. Non-deterministic register machines
A straightforward extension used by [MRK14b] is the introduction of non-
determinism into the model of register machines. To that end, we modify
the ADD instruction to introduce a second instruction label.
Definition 2.47 (Non-deterministic register machine)
A non-deterministic register machine M = (m,H, l0, lh, I) is defined in
the same way as a deterministic register machine, except that instead of
(ADD(r), lj), we have instructions of the form (ADD(r), lj, lk) (i.e., we add
a second instruction label), and we allow transitions from CM = (i, ρ) to
C 1

M = (i 1, ρ 1) if i = ADD(r), ρ 1(r) = ρ(r) + 1, ρ|mztru = ρ 1|mztru, and
i 1 P φ

[
tlj, lku

]
, i.e., if C 1 arises from C by incrementing the register r and

jumping to the instruction labeled by either lj or lk. 2

Lemma 2.48
For any deterministic register machine M, there is an equivalent non-
deterministic register machine M 1 accepting the same language, i.e.,

L(M) = L(M 1). 2

PROOF (LEMMA 2.48) Let M = (m,H, l0, lh, I) be a deterministic register
machine. We Construct M 1 := (m,H, l0, lh, I

1) by replacing each instruc-
tion (ADD(r), l) in I with (ADD(r), l, l) in I 1, and copying the remaining
instructions, i.e.,

I 1 := IX

(
tHALTu Y

 (
SUB(r), lj, lk

) ˇ
ˇ (SUB(r), lj, lk) P I

(

)
Y
 (
ADD(r), l, l

) ˇ
ˇ

(
ADD(r), l

)
P I

(

.

Clearly, M 1 accepts n P N iff M accepts n. �
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2.4.3. Generating register machines
Instead of considering register machines accepting sets of natural numbers,
we can also look at register machines working in the generating mode, as
is done by [MRK14b].

Definition 2.49 (Generating register machine)
A generating register machine is a (possibly non-deterministic) register
machine M = (m,H, l0, lh, I) with a starting configuration C0

M := (l0,∅)

and a halting configuration Ch
M(n) := (lh, 1 ÞÑ n).

We say that M generates n P N iff

C0
M =ñ

˚ Ch
M(n),

and denote by
N(M) := tn P N | M generates nu

the set of numbers generated by M. 2

Unfortunately, deterministic generating register machines are strictly
less powerful than their accepting counterparts: Clearly, due to branching
only on decrementing an empty register, they can only ever generate sets
of size at most 1. Luckily, introducing non-determinism is sufficient to
remediate that.
Theorem 2.50 (Universality of generating register machines)
The sets of numbers generated by non-deterministic register machines
are exactly the sets of numbers accepted by (deterministic) register
machines. 2

PROOF (THEOREM 2.50) Let S P NRE. By Theorem 2.45 we know that
there exists a deterministic register machine M satisfying L(M) = S, and
using Lemma 2.48 we know that it has a non-deterministic equivalent
M 1 = (m,H, l0, lh, I). We construct a non-deterministic register machine
G generating S in the following way: We start by repeatedly incrementing
register 1 (thus creating the starting configuration C0

M 1(n) for some n P N),
non-deterministically jumping to l0, running M 1, and, upon reaching lh,
checking whether M 1 accepts n. If it does, we create Ch

G(n) and halt,
otherwise we jump into an infinite loop.
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Let Φ : H Ñ I be such that Φ[H] = I, and set G = (m+2,H 1, l0 1 , lh 1, I 1),
where

• H 1 := H
š

tl0 1, la, lb, lh 1 , lα, lβ, lγ, lωu,

• I 1 = Φ 1[H 1], where

Φ 1(h) :=

$

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

%

(
ADD(m+ 2), l0, la

)
, h = ι2(l0 1)(

ADD(1), lb, lb
)
, h = ι2(la)(

ADD(m+ 1), l0 1 , l0
)
, h = ι2(lb)(

SUB(1), lα, lω
)
, h = ι1(lh)(

SUB(1), lω, lβ
)
, h = ι2(lα)(

SUB(m+ 1), lγ, lh 1

)
, h = ι2(lβ)(

ADD(1), lβ, lβ
)
, h = ι2(lγ)

HALT, h = ι2(lh 1)(
ADD(1), lω, lω

)
, h = ι2(lω) and

Φ(h), otherwise.

Clearly, for every n P S we have that M 1 accepts n, hence there ex-
ist configurations C0

M 1(n) = (l0, 1 ÞÑ n),Ch
M 1 = (lh, 1 ÞÑ 1) such that

C0
M 1(n) =ñ˚ Ch

M 1.
By construction, we obtain configurations

C0
M 1(n) 1 :=

(
l0, t1 ÞÑ n,m+ 1 ÞÑ n,m+ 2 ÞÑ ξu

)
,

Ch
M 1

1
:=
(
lh, t1 ÞÑ 1,m+ 1 ÞÑ n,m+ 2 ÞÑ ξu

)
of G (for some ξ P t0, 1u) that differ only in the contents of registers m+ 1

and m+ 2. Clearly, we now have

C0
G =ñ

˚ C0
M 1(n) 1 =ñ

˚ Ch
M 1

1
=ñ

˚ Ch
G, i.e.,

G generates n. Thus we have S Ď N(G). Conversely, consider n R S. Then,
starting from C0

M 1(n), we never reach Ch
M 1, so if M 1 halts, register 1 is

either empty or contains a value different from 1 (otherwise we would have
a halting configuration). In either case, G never halts, so we obtain

S = N(G). �
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2.4.4. Register machines with multiple output registers
Another extension described in [MRK14b] is to use the first n P N registers
as output registers. This allows the register machine to generate sets of
tuples (o1, . . . ,on) P Nn. Clearly, the set of all languages over Nn generated
by non-deterministic register machines in this way is 	RE.

2.5. CD grammar systems
Introduced in [CD90], CD grammar are a realization of the blackboard
model of problem solving, in which multiple agents, in turn, contribute
to the solution of a common problem on the blackboard, according to
some sort of cooperation protocol. [MRK14b] introduces the concepts of
cooperation and distribution to the theory of SN P systems. We base
the following short overview of the definition and known results on the
expressive power of CD grammar systems on [DPR97].

Definition 2.51 (CD grammar system, [DPR97])
A cooperating distributed (CD) grammar system of degree n ě 1 is a
tuple

Γ = (N, T ,S,P1,P2, . . . ,Pn),

whereN, T are disjoint alphabets (of non-terminal and terminal symbols,
respectively), S P N, and for any i P n, (N, T ,S,Pi) is a phrase-structure
grammar. We refer to P1,P2, . . . ,Pn as the components of Γ . 2

Here, the components represent the agents cooperating on the derivation
of a word, where the current sub-derivation is written on the blackboard.
We can interpret the non-terminal symbols as questions being asked (in-
troduced) and answered (eliminated). In this fashion, the components can
communicate in a limited manner.
In the following, unless explicitly stated otherwise, we will always as-

sume the components of CD grammar systems to be context-free: [CD90]
also considers CD grammar systems with E0L components. We, however,
follow [Pău02] and [DPR97] in restricting ourselves to context-free compo-
nents. Since the SN P systems we are interested in only deal with a single-
ton alphabet, this is not an actual restriction. [Csu+94, Lemma 5.1] notes
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that CD grammar systems with context-sensitive or recursively enumer-
able components themselves generate the families CS or RE, respectively.
For passing control between different components, we have the choice of

one of several cooperation protocols.

Definition 2.52 (Derivation, [DPR97])
Let Γ = (N, T ,S,P1,P2, . . . ,Pn) be a CD grammar system, let i P n, and
let V := NY T . We define the

• terminating derivation by the i-th component, which we denote by
=ñt

Pi
, where x =ñt

Pi
y iff x =ñ˚

Pi
y and there is no z P V˚ with

y =ñPi
z,

• the k-steps derivation by the i-th component, written =ñ=k
Pi
, where

x =ñ=k
Pi
y iff there are v1, v2, . . . , vk P V˚ such that

x = v1 =ñPi
v2 =ñPi

¨ ¨ ¨ =ñPi
vk = y,

• the at most k-steps derivation by the i-th component, denoted
=ñ

ďk
Pi
, where x =ñ

ďk
Pi
iff x =ñ=k 1

Pi
y for some k 1 P k, and

• the at least k-steps derivation by the i-th component, written
=ñ

ěk
Pi
, where x =ñ

ěk
Pi
y iff x =ñ=k 1

Pi
y for some k 1 ě k.

Furthermore, we have =ñ˚
Pi
, the arbitrary derivation by the i-th compo-

nent. 2

Definition 2.53 (Cooperation protocol, [DPR97])
Let Γ = (N, T ,S,P1,P2, . . . ,Pn) be a CD grammar system, and let D :=

tt, ˚u Y
Ť

kě1t= k,ě k,ď ku. We refer to the elements of D as cooperation
protocols . The language generated by Γ working according to the protocol
f P D (working in the f mode) is

Lf(Γ) :=
ď

mě1

 

w P T˚
ˇ

ˇ Di1, i2, . . . , im P n. S =ñ
f
Pi1
v1 =ñ

f
Pi2

¨ ¨ ¨ =ñ
f
Pim

w
(

Given n P Ną 0, we denote by CDn(f) the family of languages gener-
ated by (context-free) λ-free (i.e., systems where each component is λ-
free) CD grammar systems of degree at most n working in the deriva-
tion mode f P D, and by CD(f) the family of languages generated by
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λ-free CD grammar systems with an unrestricted number of components.
If λ-rules are allowed, we denote the corresponding family by CDλ

n(f) or
CDλ(f), respectively. Finally, we define CD∞(=) :=

Ť

kPNCD∞(= k) and
CD∞(ě) :=

Ť

kPNCD∞(ě k). 2

Proposition 2.54 ([DPR97, Theorem 3.1])
The following inclusions of families of languages hold:

1. For f P t= 1,ě 1, ˚u Y tď k | k P Ną 0u, we have CD∞(f) = CF,
2. CF = CD1(f) Ĺ CD2(f) Ď CDr(f) Ď CD∞(f) Ĺ CS for f P t= k,ě k |

k ě 2u and r ě 3,

3. CDr(= k) Ď CDr(= sk) for k, r, s P Ną 0,

4. CDr(ě k) Ď CDr(ě k+ 1) for r,k ě 1,

5. CD∞(ě) Ď CD∞(=),

6. CF = CD1(t) = CD2(t) Ĺ CD3(t) = CD∞(t) = ET0L, and

7. except for CD∞(f) Ĺ CS, all these inclusions hold for CD grammar
systems with λ-rules. Instead, we have CDλ∞(f) Ĺ RE. 2

2.6. P systems
Introduced by Păun in [Pău00], P systems (or membrane systems) are a
computational model inspired by the structure and features of biological
membranes. As noted in [PR02], the original purpose of P systems was
not to model the functioning of biological membranes, but to “explore
the computational nature of various features of membranes.” Similarly,
[Pău02] declares that “we have no intention here of making any claim of
direct interest to the (traditional) biologist,” but also states “returning
meaningful information to biology” as a possible important target for future
research. Indeed, attempts to model real-world biological processes have
been made. As a particular example, [RP08] models the quorum sensing
behavior of a certain type of bacteria using (modified) P systems.
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We purposefully limit ourselves to a very brief overview on P systems
here, as they differ significantly from the Spiking Neural P systems in-
troduced in chapter 3, which we describe in more detail. For a detailed
description, we refer to [Pău02] and [PR02].

Definition 2.55 (P system, [Pău02])
A (symbol-object) P system of degree m P Ną 0 is a tuple

Π = (O,µ,w1,w2, . . . ,wm,R1,R2, . . . ,Rm, i0), where

• O is an alphabet (we refer to the elements of O as objects),

• µ = (m,E) is a tree with root 0, called the membrane structure ,

• for every i P m, wi : O Ñ N is a map associating objects with their
multiplicity in the membrane i,

• for every i P m, also associated with the membrane i, Ri is a finite set
of evolution rules over O. An evolution rule is of the form u Ñ v,
where u P O˚, v P (Oˆ TAR)

˚, and TAR := there, outu Y tinj |

j P mu, and

• i0 P m is a leaf in µ, called the output membrane .

The application of a rule consumes an object in a membrane i and adds
objects to i and its neighboring membranes (i.e., the membranes that are
adjacent in µ). In each step, the rules in every membrane i and the objects
in ci they consume are chosen non-deterministically, and in a maximally
parallel manner, i.e., such that no further rule in Ri is applicable. Fur-
thermore, all membranes evolve simultaneously, thus leading to a double
parallelism, both in the application of rules in each membrane, and in the
evolution of membranes itself. As result of the computation we take the
symbols in the output membrane when the system has reached a state
where no rule is applicable, i.e., when it has halted. 2
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3.1. The basic model
Spiking Neural P systems are inspired by the workings of a special kind of
cell, the neuron that makes up the nervous system. We base our overview
of the particular structure of these cells on [Fri09] and [IPY06]. The task
of neurons is twofold: To respond to stimuli with electrical discharges,
the nerve spikes , and to conduct these spikes over long distances. A
neuron consists of the cell itself (called the soma), the axon , which ends
in several nerve terminals connecting to other cells, and the dendrites , a
filamentous structure the nerve terminals of other neurons connect to. The
points of these connections are called synapses , and it is through these
synapses that neurons exchange information.
The axon is the part of the neuron responsible for conducting the nerve

spikes to other cells. These spikes are short electrical pulses, typically
between one or two milliseconds in length, and with an amplitude of about
100mV. These pulses, while indistinguishable in form, are well-separated,
and it is impossible for a neuron to spike again during (or even shortly
after) a spike. Hence, information is not encoded in the form of the spike
itself, but in the number of spikes emitted and the interval between these
spikes (called the spike train).
The most common type of synapse is the chemical synapse, where the

receiving of a spike triggers the release of a neurotransmitter that passes
through the membrane into the target neuron, and is then again converted
into electrical energy.

Definition 3.1 (Spiking Neural P system, [IPY06])
A Spiking Neural P system (or SN P system) of degree m P Ną 0 is a
tuple

Π = (O,σ1,σ2, . . . ,σm, syn, i0),
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3. Spiking Neural P systems

where

• O = tau is a singleton alphabet (we say that a is the spike),

• for each i P m, we have σi := (ni,Ri) such that

– ni P N is the initial amount of spikes,

– Ri := Si Y Fi is a finite set of rules, where

* Si Ď (RegEx(O) ˆO+)ˆ (Oˆ N) (we will write these rules
in the form (E,ar) Ñ (a,d)),

* Fi Ď O+ ˆ tλu (we will write those as ar Ñ λ) such that
π1[Fi]X (L ˝π1 ˝π1)[Si] = ∅, i.e., no as that appears in the
left-hand side of a rule in Fi is in the language matched by
a regular expression from the left-hand side of a rule in Si,

• syn Ď m2 is an irreflexive relation (i.e., @i P m. (i, i) R syn), and

• i0 P m denotes the output neuron of Π.

We say that σ1,σ2, . . . ,σm are the neurons of Π (for brevity, we may
also refer to a neuron by its index alone), whereas synmodels the synapses
connecting the neurons. We refer to the rules in Si as spiking rules and to
the rules in Fi as forgetting rules . We call a spiking rule (E,ar) Ñ (a,d)

a delayed rule if d ą 0.
We may even further abbreviate a spiking rule (E,ar) Ñ (a,d), writing

ar Ñ (a,d) if L(E) = taru, (E,ar) Ñ a if d = 0, and ar Ñ a if both apply.
A configuration of Π is a tuple

CΠ :=
(
(s1, t1), (s2, t2), . . . , (sm, tm)

)
,

where for any i P m,

• si P N is the number of spikes present in the neuron i, and

• ti P N Y t∞u is the number of steps that must elapse before the
neuron i spikes (we take ∞ to mean that the neuron will not fire
unless a firing rule is applied), where we set n ă ∞ for all n P N.
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3.1. The basic model

In any given neuron i, a spiking rule (E,ar) Ñ (a,d) is applicable if
si ě r, asi P L(E), and ti P t0,∞u. A forgetting rule ar Ñ λ is applicable
if si = r. If ti R t0,∞u, we say that the neuron i is closed , otherwise we
say that it is open . We say that the neuron σi spikes in configuration CΠ

if either ti = 0 or ti = ∞ and a rule (E,ar) Ñ (a, 0) P Ri is applied in σi.
An initial configuration of Π is a configuration

C0
Π :=

(
(n1,∞), (n2,∞), . . . , (nm,∞)

)
.

Given two configurations CΠ :=
(
(s1, t1), (s2, t2), . . . , (sm, tm)

)
, C 1

Π :=(
(s 1

1, t
1
1), (s

1
2, t

1
2), . . . , (s

1
m, t 1

m)
)
, we say that Π makes a transition from CΠ

to C 1
Π and write CΠ =ñ C 1

Π if for any i P m we have that either

• 0 ă ti ă ∞, s 1
i = si, t 1

i = ti ´ 1, and no rule in Ri is applicable,

• ti P t0,∞u, t 1
i = ∞, s 1

i = si + inbound(i), and no rule in Ri is
applicable,

• 0 ă ti ă ∞, t 1
i = ti ´ 1, s 1

i = 0, and asi Ñ λ P Ri is applied,

• ti P t0,∞u, ti 1 = ∞, s 1
i = inbound(i), and asi Ñ λ P Ri is applied,

• ti P t0,∞u, t 1
i = d P Ną 0, s 1

i = si ´ r, and (E,ar) Ñ (a,d) P Ri is
applied, or

• ti P t0,∞u, t 1
i = ∞, s 1

i = si´r+inbound(i), and (E,ar) Ñ (a, 0) P Ri

is applied,

where
inbound(i) :=

ˇ

ˇ

 

j P m
ˇ

ˇ (j, i) P syn and σj spikes
(
ˇ

ˇ

denotes the number of spikes received by the neuron i.
Given a family of configurations

(
Ci

Π

)
iPI
, where either I = t0u Y k for

some k P N, or I = N, C0
Π is the initial configuration, and

Ci´1
Π =ñ Ci

Π

for any i P Izt0u, we say that a strictly increasing sequence i1 ă i2 ă ¨ ¨ ¨ P I

is a spike train of Π if Ci1
Π ,C

i2
Π , . . . are exactly the configurations in

(
Ci

Π

)
iPI

in which the output neuron σi0 spikes.

41



3. Spiking Neural P systems

We denote by

N2(Π) :=
 

n P Ną 0

ˇ

ˇ DC0
Π =ñ C1

Π =ñ ¨ ¨ ¨ =ñ Ck+n
Π such that

k,k+ n is the associated spike train
(

the language generated by Π. By SN2Pm
(
rulek, consp, forgq

)
we denote

the family of languages generated by Spiking Neural P systems in the above
fashion, where

• at most m ě 1 neurons are used,

• each neuron contains at most k ě 1 rules,

• for any rule (E,ar) Ñ (a,d), we have r ď p, and

• for any rule ar Ñ λ, we have r ď q.

For any of these parameters, we write ˚ to denote that it is unbounded.
As is common, we may omit the index Π in the configurations. 2

The subscript 2 in the context of generated languages refers to taking
the number of steps between the two spikes of the output neuron as the
generated number. As [PPR06] notes, there are other possible results as-
sociated with a given spike train, e.g., we could take the distances between
the first and the second spike, and between the second and third spike as
the pair of numbers generated by the system. In the notation of [PPR06],
this would be denoted by the subscript 3. Another important result mode
(especially for asynchronous systems) is to simply take the total number
of spikes emitted by a certain neuron.

Definition 3.2 (Total result mode)
Let Π = (O,σ1,σ2, . . . ,σm, syn, i0) be an SN P system, and let CΠ be a
configuration of Π. We say that CΠ is a halting configuration if there is
no neuron in Π that contains an applicable rule.
We say that the language generated by Π in the total result mode is

Ntot(Π) :=
 

|I|
ˇ

ˇ C0
Π =ñ C1

Π =ñ ¨ ¨ ¨ =ñ Cn
Π such that Cn

Π is a
halting configuration with spike train I

(

. 2
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3.1. The basic model

Remark 3.3
While [IPY06] explicitly states that for rules of the form (E,ar) Ñ (a, 0)

“no restriction is imposed, the neuron can receive spikes in the same step
when using the rule” (and this is again corroborated by [PP09]) the formal-
ization in [Fri09, p. 161] does not allow that. However, [Fri09, Example 7.1]
features exactly such a situation. In fact, the formalization is contradict-
ing itself even for the situation only two neurons, where one neuron spikes
and the receiving neuron applies a forgetting rule: On one hand, in the
resulting configuration, the receiving neutron should contain strictly more
spikes than before, while on the other hand, it should contain less spikes.2
Proposition 3.4 ([IPY06, Theorem 7.1])
For any k ě 2, p ě 3, and q ě 3, we have

SN2P˚

(
rulek, consp, forgq

)
= NRE . 2

Note that this equality holds only if we take the λ-convention (Re-
mark 2.20) into account, as clearly the smallest number generated by any
SN P system in this fashion is 1.
A common extension is to allow for spiking rules to produce more than

one spike.
Definition 3.5 (SN P system with extended rules, [PP09])
A Spiking Neural P system with extended rules is a Spiking Neural P sys-
tem where we also allow spiking rules to be of the form (E,ar) Ñ (ap,d)

for r ě p ě 1. When one of these rules spikes in neuron i, the neurons
 

σj
ˇ

ˇ (i, j) P syn
(

each receive not one, but p spikes. 2

When working with extended rules in the total result mode, we must
take care to ensure that if the output neuron emits multiple spikes in a
single step, we take all of these into account.
Definition 3.6 (Types of neurons, [Cav+09])
Consider a neuron σ = (n,R). We say that a rule r P R is bounded if it is
of the form (ai,aj) Ñ (ap,d) (for some 1 ď i ď j, p P Ną 0, d P N) or of
the form ak Ñ λ for some k ě 1. We say that r is unbounded if it is of
the form

(
ac
(
ai
)˚
,aj
)

Ñ (ap,d) for some c,d P N and i, j,p P Ną 0.
We say that σ is unbounded if all rules in R are unbounded, and bounded

if all rules in R are bounded. If R contains both bounded and unbounded
neurons, we say that σ is a general neuron.
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3. Spiking Neural P systems

Considering an SN P system Π, we refer to Π as bounded if every neuron
is bounded, while we say that Π is unbounded if it contains an unbounded
neuron. If Π has a general neuron, we say that Π is general . 2

3.2. Spiking Neural P systems with cooperating
rules

[MRK14b] introduces the concept of cooperating rules in the fashion of
CD grammar systems to the model of Spiking Neural P systems.

Definition 3.7 (SN P system with cooperating rules, [MRK14b])
A Spiking Neural P system with cooperating rules of degree m P Ną 0

and with p P Ną 0 components is a tuple

Π = (O,σ1,σ2, . . . ,σm, syn, i0),

where

• for each i P m, the neuron σi is of the form (ni,Ri,1,Ri,2, . . . ,Ri,p),
and

• for every c P p, we have that

πc(Π) :=
(
O, (n1,R1,c), (n2,R2,c), . . . , (nm,Rm,c), syn, i0

)
is a Spiking Neural P system with extended rules. We say that πc(Π)

is the projection onto the c-th component of Π.

A configuration of Π is a tuple

CΠ :=
(
c,
(
s1, t

1
1, t

2
1, . . . , t

p
1

)
,
(
s2, t

1
2, t

2
2, . . . , t

p
2

)
, . . . ,

(
sm, t1m, t2m, . . . , tpm

))
,

where

• c P p is the active component, and

• for each c P p, πc (CΠ) :=
(
(s1, t

c
1), (s2, t

c
2), . . . , (sm, tcm)

)
is a config-

uration of πc (Π).
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3.2. Spiking Neural P systems with cooperating rules

Recall the set
D = tt, ˚u Y

ď

kě1

t= k,ě k,ď ku

of cooperation protocols we have defined for CD grammar systems (Def-
inition 2.53). In a similar fashion, we allow transitions between two con-
figurations CΠ and C 1

Π if that transition is a transition in πc(Π) for a
component c P p (either Π stays in component c or control transfers from
component c 1 to c, and this happens in accordance with the cooperation
protocol).
Let d P D be a cooperation protocol, and let β P tgene, unb, bounu. We

denote by C2N
maxpar

d (Π) the language generated by Π working according
to the d protocol, and by NCpSN2P

maxpar

d (β) the family of languages gen-
erated by a p-component general, unbounded, or bounded, respectively,
Spiking Neural P systems with cooperating rules and working according
to the d protocol. 2

Note that, unlike [MRK14b], we reserve the third subscript for the coop-
eration protocol (in [MRK14b], it denotes an upper bound on the number
of neurons). This is due to the fact that we study various cooperation pro-
tocols, while [MRK14b] is concerned only with the terminating protocol,
and that we do not impose any bounds on the number of neurons (in fact,
neither does [MRK14b]).
Furthermore, the definition in [MRK14b] only allows for the basic rules

without any delayed rules, i.e., all spiking rules are of the form (E,ar) Ñ

(a, 0). While that is sufficient to prove universality for the terminating
protocol, we need the extended rules to retain universality when working
in the other protocols.
Definition 3.8 (Multiple output neurons, [MRK14b])
An obvious generalization is to consider systems with more than one out-
put neuron. The resulting systems generate tuples of numbers, and we
designate the generated language Cp	P

maxpar

d (Π). Similarly, we denote
by 	CpSN2P

maxpar

d (β) the family of languages generated by systems of
appropriate type. 2

Instead of the usual maximally parallel mode of operation, [MRK14b]
also consider Spiking Neural P systems with cooperating rules working in
an asynchronous or a strongly sequential mode.
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3. Spiking Neural P systems

a Ñ a

a2 Ñ a2
l

a Ñ a

a2 Ñ λ
r

Figure 3.1.: An SN P system exhibiting different behavior in the maxi-
mally parallel and strongly sequential modes

Definition 3.9 (Strongly sequential mode, [MRK14b])
In the strongly sequential mode of operation, exactly one rule is applied
in each transition. This rule is chosen non-deterministically among the
applicable rules throughout the system. We denote the strongly sequential
mode by sseq. 2

A Spiking Neural P system may behave different in the strongly se-
quential mode than in the maximally parallel mode. Consider the system
in fig. 3.1, where initially both neurons contain a single spike. In the
strongly sequential mode, the computation will stop after either one or
two spikes have been emitted from the neuron l. In the maximally parallel
mode, however, the system never reaches a halting configuration, and a
spike is sent to the environment in every step.
Also note that even if a system always were to eventually reach the same

configurations in the strongly sequential mode as in the maximally parallel
mode, the generated languages might still differ as the spike train might
be sensitive to timing.

3.2.1. The terminating protocol
For the terminating protocol, [MRK14b] show universality by simulating
register machines. Since we build further results on this construction, we
present the complete proof here. There are also examples of small (in the
number of neurons) universal systems: [SP14] gives an example of a uni-
versal Spiking Neural P system with cooperating rules using 8 neurons,
whereas [MRK14a] has a system with 59 neurons that computes numer-
ical functions. Both of these universal systems work in the terminating
protocol.
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3.2. Spiking Neural P systems with cooperating rules

Theorem 3.10 ([MRK14b])

NC2SN2P
sseq
t (unb) = NRE, and

	C2SN2P
sseq
t (unb) = 	RE . 2

PROOF (THEOREM 3.10, [MRK14B]) Let L P NRE. Then we know by
Theorem 2.50 that there is a (non-deterministic) register machine M =

(m,H, l0, lh, I) with m registers generating L, i.e.,

N(M) = L.

Without loss of generality, we assume that the output register 1 is never
decremented, but only incremented throughout the computation (we can
always achieve this by adding an extra register). We let φ : H Ñ I be the
isomorphism mapping instruction labels to instructions.
We construct a strongly sequential SN P system Π with cooperating rules

and unbounded neurons simulating M, comprising of two components,
working in the strongly sequential mode and according to the terminating
protocol. For each of the three instruction types ADD, SUB,HALT of
register machines, we describe an SN P system with cooperating rules
simulating exactly this instruction. We may then compose these modules
into the system simulating M by having one instance of the respective
module for each of the instructions of M. Some neurons may appear in
more than one module, these are then shared among all modules containing
them, thus connecting the modules into a larger system.
Specifically, for each register r P m, we have a neuron σr that stores the

contents of register r throughout the computation: If register r contains the
number n P N, neuron σr will contain exactly 2n spikes. Furthermore, for
each instruction label i P H, we have a neuron σli with a single rule a Ñ a

in the first component. We use these neurons to encode the instruction
that is currently being simulated: In each step, at most one of the neurons
tσli | i P Hu will contain a spike, indicating that the instruction φ(i) is to
be simulated. When the simulation of this instruction is complete, a spike
is sent to the neuron σli 1 corresponding to the next instruction label i 1 P H

(unless, of course, i = lh is the halting label). Finally, for each instruction,
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3. Spiking Neural P systems

we have some auxiliary neurons σi,j (j P Ną 0). Initially, only the neuron
σll0 (associated to the starting instruction l0 of M) contains a single spike
and all other neurons remain empty.
To simulate an instruction i P H with φ(i) =

(
ADD(r), lj, lk

)
, we use

the module depicted in fig. 3.2. Assume that σli contains a single spike,
and that the only other non-empty neurons are of the form σr for some
r P m. Then the only applicable rule in the system is the one in σli,
and control transfers to the first component (if the first component is not
already active). Thus the rule in σli will fire, and σr,σi,1, and σi,2 each
receive a spike. Neither σr nor σi,2 can fire, however, because they only
contain rules in the second component. Hence σi,1 will fire, and σr and
σi,2 receive a second spike. Since now no rules in the first component are
applicable, control transfers to the second component. Note that σr now
contains two more spikes, which corresponds to incrementing the register
r by one.
Now σi,2 has two applicable rules, (a2,a) Ñ a and a2 Ñ a, one of which

is non-deterministically selected and fired. In either case, σi,3 and σi,4
each receive a spike. If the first rule is fired, control remains in the first
component as the a Ñ a rule in σi,2 is still applicable and will fire, sending
another spike to σi,3 and σi,4, and control transfers to the second compo-
nent. Otherwise, control transfers to the second component immediately.
Now σi,3 will forget its two spikes and σi,4 will emit a spike, or σi,3 will
send out a spike and σi,4 will forget its spike, respectively. Control then
transfers back to the second component, and either σi,5 or σi,6 will send a
spike to σllj or σllk , respectively.
We use the module depicted in fig. 3.3 to simulate an instruction l with

φ(l) = (SUB(r), lj, lk). Again, the only non-empty neurons are σli and
possible σr 1 for some register r 1 P m, and the only applicable rule is the one
in the first component of σli , so control transfers to the first component.
σli spikes, and the neurons σi,1, σi,2, and σr receive one spike each. Control
then transfers to the second component, and σi,1, σi,2, and, possibly, σr
spike, in no particular order. Note that the rule in σr is only applicable if
it contains at least three spikes, i.e., only if it contained at least two spikes
prior to receiving the spike from σli. Thus, σr will spike iff register r is
non-empty.
For now, assume that σr does indeed spike. Then σi,3 and σi,4 each
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3.2. Spiking Neural P systems with cooperating rules

receive three spikes, so σi,3 will spike and σi,4 will forget these, and control
transfers to the first component. Note that σr will send its spike not only
to σi,3 and σi,4, but also to each σi 1,3 and σi 1,4 where i 1 P H is such that
π1
(
φ(i 1)

)
= SUB(r), and we must ensure that these spikes are forgotten

before the simulation proceeds. The a Ñ λ rules in the first components
of σi 1,3 and σi 1,4 accomplish just that. Also, σi,5 will send its spike to
σi,6. Then, control transfers to the second component, σi,6 spikes, and σllj
receives a spike.
If, on the other hand, σr does not spike, i.e., if the register r is empty,

σi,3 and σi,4 each receive only two spikes. Control then transfers to the
first component, σi,3 forgets its spikes, and σi,4 spikes, so σi,7 and σr each
receive a spike (σr now contains two spikes). Then σi,7 spikes, both σi,8
and σr receive a spike, and control transfers to the second component. Now
σr and σi,8 will both spike, so σr is empty again. As above, all neurons
σi 1,3 and σi 1,4 for i 1 P H with π1

(
φ(i 1)

)
= SUB(r) will now forget their

spikes, and σi,9 receives a spike, which is subsequently passed through σi,10
to σllk .
We simulate the HALT instruction by the module shown in fig. 3.4.

When σllh spikes (again, control must transfer to the first component be-
cause no other rules are applicable), both σ1 and σout receive a spike, and
σout will spike for the first time. Control then transfers to the first compo-
nent. Assume that σ1 now contains 2n+1 spikes (for some n P N(M)zt0u).
Then, for the next n steps, two spikes are removed from σ1, and σout re-
ceives a spike. Then control transfers to the first component, and σout
spikes for the second time, producing a spike train of the form k,k+n for
some k P Ną 0, hence we have n P C2N

sseq
t (Π).

Otherwise, if σ1 contains only a single spike, no rule is applicable and
the computation stops without producing a two-element spike train.
Clearly, we can apply the same approach to a register machine with

multiple output registers generating some L 1 P 	RE. �

Observe that the only part of the construction that is sensitive to tim-
ing is the output module. As only one rule is applicable at any time, the
module behaves the same when run in the maximally parallel mode. Also
notice that there are no interactions between neurons that depend on the
strongly sequential mode (there is no interaction between σi,4 and σr be-
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a Ñ a
li

a Ñ a
i, 1

(
a3(aa)˚,a3

)
Ñ a

r (
a2,a

)
Ñ a

a2 Ñ a

a Ñ a

i, 2

a2 Ñ a

a Ñ λ

i, 3

a Ñ a

i, 5

a Ñ a

lj

a2 Ñ λ

a Ñ a

i, 4

a Ñ a

i, 6

a Ñ a

lk

Figure 3.2.: The ADD module for the strongly sequential case

a Ñ a
li

a Ñ a
i, 1

a Ñ a
i, 2 (

a3(aa)˚,a3
)

Ñ a
r

a2 Ñ λ

a Ñ λ

a3 Ñ a

i, 3

a Ñ a

i, 5

a Ñ a
i, 6

a Ñ a
lj

a2 Ñ a

a Ñ λ

a3 Ñ λ

i, 4

a Ñ a
i, 7

a Ñ a

i, 8

a Ñ a
i, 9

a Ñ a
i, 10

a Ñ a
lk

Figure 3.3.: The SUB module for the strongly-sequential case
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a Ñ a
lh

(
a(aa)+,a2

)
Ñ a

1

(
a+,a

)
Ñ a

out

Figure 3.4.: The output module for the strongly sequential case

cause the rules are in different components). Hence, the system generates
the same output, and we obtain the following corollary.

Corollary 3.11

NC2SN2P
maxpar
t (unb) = NRE, and

	C2SN2P
maxpar
t (unb) = 	RE . 2

3.2.2. The arbitrary protocol
The terminating protocol allows us to delay the spiking of a neuron until
no more rules are applicable in one component, and this is the basic idea
behind the output module as used in the proof of Theorem 3.10. Switching
to the arbitrary protocol, we lose that feature, and clearly we have to make
up for this loss by using more powerful features for the remaining system
(note how this parallels the fact that the terminating mode is more pow-
erful for CD grammar systems as well, cf. Proposition 2.54). It turns out
that using the maximally parallel mode instead of the strongly sequential
mode, allowing for general neurons, and using extended rules is enough to
recover universality.

Theorem 3.12

NC2SN2P
maxpar
˚ (gene) = NRE, and

	C2SN2P
maxpar
˚ (gene) = 	RE . 2
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PROOF (THEOREM 3.12) The ADD module almost works when using the
arbitary protocol in the maximally parallel mode. Consider, however, con-
trol transferring to the second component after σli has spiked. Then the
neuron σr contains 2n+ 1 spikes (for some n P N) and hence its only rule
is applicable, leaving the neuron with 2(n ´ 1) spikes. We can, however,
easily fix this by introducing a delay neuron between σli and σr that con-
tains a single a Ñ a rule in its first component. Since we are working
in the maximally parallel mode, this ensures that σr receives both spikes
simultaneously, and the rule in its second component never becomes appli-
cable. Similarly, we need another delay neuron between σli and σi,2 that
ensures both spikes are received simultaneously in σi,3. Finally, we replace
the rules a Ñ a and (a2,a) Ñ a in the former σi,2 neuron by the extended
rule a2 Ñ a2.
The SUB module works as before when using the arbitrary protocol and

the maximally parallel mode, because between every transfer of control we
have at least one rule firing in the newly active component, and due to the
maximal parallelism, every applicable rule must fire. However, there is no
neuron where a rule would be applicable if a rule in the same component
were fired in the previous step.
The output module, however, needs to be adapted. Otherwise, control

might transfer to component one while the neuron corresponding to the
output register still contains three or more spikes (i.e., while the rule in
the second component is still applicable), and the output neuron would
spike prematurely.
Indeed, we modify the output neuron to contain a rule a Ñ a in both

components, and the neuron corresponding to the output register to have
the two rules

(
a3(aa)

+
,a2
)

Ñ λ and a3 Ñ a in both components (note
that this is now a general neuron). Assume that, after receiving the spike
from σllh , σ1 contains 2n + 1 spikes. When σout now spikes for the first
time, σ1 will forget two spikes in the same step (since we are now working
in the maximally parallel mode), and thus contain 2n´1 neurons. During
each of the next n ´ 2 steps, σ1 forgets two spikes. Then, the last three
spikes are removed and a spike is sent to σout, which spikes in the next
step for the second time, exactly n steps after the first spike.
If σ1 contains only a single spike, no rule is applicable, and the compu-

tation stops without producing a result. �
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a Ñ a
li

a Ñ a
i, 1

a Ñ a
i, 2

(
a3(aa)˚,a3

)
Ñ a

r

a Ñ a
i, 3

a2 Ñ a2

a2 Ñ a

i, 4

a2 Ñ a

a Ñ λ

i, 5

a Ñ a

i, 6

a Ñ a

lj

a2 Ñ λ

a Ñ a

i, 8

a Ñ a

i, 9

a Ñ a

lk

Figure 3.5.: The ADD module for the maximally parallel case

a Ñ a
lha3 Ñ a(

a3(aa)+,a2
)

Ñ λ

a3 Ñ a(
a3(aa)+,a2

)
Ñ λ

1

a Ñ a
a Ñ a

out

Figure 3.6.: Output module for the maximally parallel case
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a Ñ a
a Ñ a

s1
a Ñ a
a Ñ a

s2

Figure 3.7.: Stepper module for the maximally parallel case

3.2.3. The exactly-k-steps protocol
Theorem 3.13
Let k P Ną 0. Then we have

NC2SN2P
maxpar

=k (gene) = NRE, and
	C2SN2P

maxpar

=k (gene) = 	RE . 2

PROOF (THEOREM 3.13) Consider again the construction from the proof
of Theorem 3.12. While this works in the presence of arbitrary transfers of
control between components, the problem is that when transferring control
exactly every k steps, there might not be an applicable rule in the newly
activated component and the computation will halt. We can, however,
easily extend the construction by adding two neurons that continually
exchange a single spike among them. This ensures that there is always an
applicable rule. Hence, computation will not stop prematurely (in fact,
it never will, but that is not a problem since we are only interested in
the spike trains of the output neurons). Figure 3.7 shows such a “stepper”
module. �

3.2.4. The other protocols
As an immediate corollary to Theorem 3.13, we obtain universality for the
remaining two cooperation protocols, as both “at least k steps” and “at
most k steps” are subsumed by “exactly k steps.”
Corollary 3.14
Let k P Ną 0. Then we have

NC2SN2P
maxpar

ďk (gene) = NRE,

NC2SN2P
maxpar

ěk (gene) = NRE,

	C2SN2P
maxpar

ďk (gene) = 	RE, and
	C2SN2P

maxpar

ěk (gene) = 	RE . 2
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3.2.5. The asynchronous case
Instead of using the maximally parallel or the strongly sequential mode,
we may also consider asynchronous systems. Introduced by [Cav+09],
these systems feature an additional source of non-determinism in that an
applicable rule must not necessarily fire.
Definition 3.15 (Asynchronous mode, [Cav+09])
In the asynchronous mode of operation, at most one rule is applied in
each neuron. While only applicable rules are allowed to be fired, a rule
need not be fired even if it is the only applicable rule in the neuron. Since
the timing between a neuron spiking is now sensitive to when rules are
applied, we use the total result mode for asynchronous SN P systems. We
denote the asynchronous mode by async. 2

Theorem 3.16 ([MRK14b])

NC2SNtotP
async
t (gene) = NRE, and

	C2SNtotP
async
t (gene) = 	RE . 2

PROOF (THEOREM 3.16) This proof is similar in structure to that of The-
orem 3.10. Again, we construct an asynchronous SN P system with co-
operating rules working according to the terminating protocol. We do,
however, allow for general neurons.
The module for simulating ADD instructions (cf. fig. 3.8) differs from

the strongly sequential mode only by the added a Ñ λ rule in the second
component of σr. Since this rule is never fired through the simulation of
an ADD instruction, this does not change the behavior.
To simulate an instruction i P H with φ(i) = (SUB(r), lj, lk), we use the

module depicted in fig. 3.9. If register r is empty, the single spike received
by σr will be forgotten using the a Ñ λ rule, and σi,3 and σi,4 each receive
two spikes. Conversely, if r is not empty, then σr will spike, and σi,3 and
σi,4 each receive three spikes. From there, the computation proceeds in a
straightforward fashion.
The output module becomes simpler, since we are now working in the

total result mode. We depict the new module in fig. 3.10. Clearly, σout
emits one spike for each two spikes it contains.
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a Ñ a
li

a Ñ a
i, 1

(
a3(aa)˚,a3

)
Ñ a

a Ñ λ

r
(
a2,a

)
Ñ a

a2 Ñ a

a Ñ a

i, 2

a2 Ñ a

a Ñ λ

i, 3

a Ñ a

i, 5

a Ñ a

lj

a2 Ñ λ

a Ñ a

i, 4

a Ñ a

i, 6

a Ñ a

lk

Figure 3.8.: The ADD module for the asynchronous case

Again, we may extend the approach to systems with multiple output
neurons. �

[SPP13] notes that in biological neural systems, small groups of 4–5 or
12–15 neurons will often work in a synchronous fashion while the system
as a whole works in the asynchronous mode. Based on this observation,
they introduce the concept of local synchronization, and this concept easily
generalizes to the setting of SN P systems with cooperating rules.

Definition 3.17 (Local synchronization, [SPP13])
An asynchronous SN P system with cooperating rules and local synchro-
nization is a structure

Π :=
(
O,σ1,σ2, . . . ,σm, loc, syn, i0

)
,

where

•
(
O,σ1,σ2, . . . ,σm, syn, i0

)
is an SN P system with cooperating rules,

and

• loc Ď P(tσi | i P mu) is the set of locally synchronous neurons.
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a Ñ a
li

a Ñ a
i, 1

a Ñ a
i, 2 (

a3(aa)˚,a3
)

Ñ a

a Ñ λ

r

a3 Ñ a

a2 Ñ λ

a Ñ λ

i, 3

a Ñ a

i, 5

a Ñ a

lj

a3 Ñ λ

a2 Ñ a

a Ñ λ

i, 4

a Ñ a

i, 6

a Ñ a

lk

Figure 3.9.: The SUB module for the asynchronous case

a Ñ a

lh

(
a3(aa)˚,a2

)
Ñ a

a Ñ λ

1

Figure 3.10.: The output module for the asynchronous case
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We refer to the elements of loc as LS-sets , and denote the use of local
synchronization by adding the lsync superscript. 2

It turns out that local synchronization suffices to recover the loss of syn-
chronization incurred by switching to the arbitrary cooperation protocol.
Hence, we obtain the following theorem.

Theorem 3.18

NC2SNtotP
lsync
˚ (gene) = NRE

	C2SNtotP
lsync
˚ (gene) = 	RE 2

PROOF (THEOREM 3.18) Consider the ADDmodule from the proof of The-
orem 3.12 enriched with the a Ñ λ rule in the neuron σr. We depict such
a module in fig. 3.11. Using the LS-sets tσi,1,σi,2,σi,3u and tσi,5,σi,8u, this
module works as before.
The SUB module from the proof of Theorem 3.16 (fig. 3.9) works as

before when we add the two LS-sets tσi,1,σi,2,σru and
 

σi 1,3,σi 1,4

ˇ

ˇ i 1
P H is such that φ(i 1) =

(
SUB(r), l 1, l 2

)(
.

Similarly, the output module (fig. 3.10) continues to work. �

The size of the LS-set for the SUB module depends on the number of
SUB instructions decrementing the same register. While the definition of
the locally synchronous mode does not impose any bounds on the size of
the LS-sets, we feel that it goes against the spirit of local synchronization
if LS-sets grow too big.
The universal register machine simulated in [MRK14a] has 14 SUB in-

structions with at most four instructions sharing a register. Thus, we may
conclude that there are universal locally synchronous SN P systems with
cooperating rules where, keeping in line with the biological inspiration, no
LS-set contains more than 15 neurons.
In a similar fashion, we can adapt the stepper approach to recover uni-

versality in the other modes.
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Theorem 3.19
Let k P Ną 0. Then we have

NC2SNtotP
lsync

=k (gene) = NRE

	C2SNtotP
lsync

=k (gene) = 	RE

NC2SNtotP
lsync

ăk (gene) = NRE

	C2SNtotP
lsync

ăk (gene) = 	RE

NC2SNtotP
lsync

ąk (gene) = NRE

	C2SNtotP
lsync

ąk (gene) = 	RE 2

PROOF (THEOREM 3.19) We extend the construction from the proof of
Theorem 3.18 with a stepper module. Since we are now concerned with
terminating computations, we need to make sure that the stepper module
will not keep the computation running indefinitely. Furthermore, we re-
quire both σs1 and σs2 to contain a spike in the initial configuration, and
that tσs1,σs2u is an LS-set. Otherwise, only one of s1 and s2 could spike,
which would lead to the spike being deleted and the computation stopping
prematurely. Figure 3.12 depicts the combined output/stepper module.
Clearly, this asserts that a rule in every component is applicable until σlh
spikes. Since σ1 contains the same rules in both components, the stepper
functionality is no longer needed. �
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a Ñ a
li

a Ñ a
i, 1

a Ñ a
i, 2

(
a3(aa)˚,a3

)
Ñ a

a Ñ λ

r

a Ñ a
i, 3

a2 Ñ a2

a2 Ñ a

i, 4

a2 Ñ a

a Ñ λ

i, 5

a Ñ a

i, 6

a Ñ a

lj

a2 Ñ λ

a Ñ a

i, 8

a Ñ a

i, 9

a Ñ a

lk

Figure 3.11.: The ADD module for the locally synchronous case

a Ñ a

lh

(
a3(aa)˚,a2

)
Ñ a

a Ñ λ(
a3(aa)˚,a2

)
Ñ a

a Ñ λ

1

a Ñ a

a2 Ñ λ
a Ñ a

a2 Ñ λ

s1

a Ñ a

a2 Ñ λ
a Ñ a

a2 Ñ λ

s2

Figure 3.12.: The combined output/stepper module for the locally syn-
chronous case
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4. Generating a non-semi-linear
set: An example

To demonstrate the usefulness as a modeling tool, we now take a CD gram-
mar system generating a non-context-free language and show how to con-
struct an equivalent SN P system with cooperating rules.

4.1. The set t2n | n P Nu

Lemma 4.1
The set

P := t2n | n P Nu

is not semi-linear. 2

PROOF (LEMMA 4.1) Let S Ď P be a linear subset of P, i.e.,

S = ta+ ib | i P Nu

for some a,b P N. Clearly, either |S| = 1 or S is infinite. Assume now that
S is infinite.
Hence, we have that for any i P N, there is an m P N satisfying

a+ ib = 2m.

Thus, considering i = 0, we obtain a = 2ma for some ma P N. Since
a+ ab P S, we have a+ ab = 2mb for some mb P Ną 0, and hence

a+ ab = 2a+ b

= 2ma+1 + b

= 2mb, i.e.,
b = 2mb ´ 2ma+1.
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Since also a+ b P S, we have

2mc = a+ b

= 2ma +
(
2mb ´ 2ma+1

)
= 2ma + (2mb ´ 2 ¨ 2ma)

= 2mb ´ 2ma, i.e.,
2mb = 2mc + 2ma

for some mc P Ną 0. Hence we must have ma ě 1, and furthermore
mc = ma. But then mb = ma + 1, and we obtain

S Q a+ 2b = 2ma + 2 ¨ 2ma+1

= 2ma + 2ma+2
R P.

This contradicts S Ď P, hence S cannot be infinite. Since P, however,
is infinite, and there are no infinite linear subsets of P, we immediately
obtain that P cannot be a finite union of linear sets. Hence, we conclude
that P is not semi-linear. �

Lemma 4.2
We have

P R 	CF . 2

PROOF (LEMMA 4.2) We assume to the contrary that P P 	CF. Then
there is a language L P CF such that Ψ[L] = P. By Theorem 2.32 P
must be semi-linear, but this contradicts Lemma 4.1. Hence, we conclude
P R 	CF. �

Corollary 4.3
Since P Ď N1, we immediately obtain

P R NCF . 2
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4.2. A CD grammar system

4.2. A CD grammar system
Example 4.4 ([Csu+94, Example 3.2])
Consider the CD grammar system

Γ =
(
tA,Su, tau,S,G1,G2,G3

)
, where

G1 = tS Ñ AAu,

G2 = tA Ñ Su, and
G2 = tA Ñ au.

Clearly, any derivation in the terminating cooperation protocol for Γ
proceeds as follows:

S =ñ
t
G1
AA

=ñ
t
G2
SS

=ñ
t
G1
A4

=ñ
t

¨ ¨ ¨

=ñ
t
G2
S2

n´1

=ñ
t
G1
A2n

=ñ
t
G3
a2

n

for some n P Ną 0.
Thus, the language generated by Γ is

Lt(Γ) =
 

a2
n ˇ
ˇ n P Ną 0

(

, and
Ψ
[
Lt(Γ)

]
= t2n | n P Ną 0u Ĺ P. 2

In order to generate P, i.e., adapting Γ such that it may also generate 1,
we need to introduce another non-terminal symbol: A rule S Ñ a would
have to be added to the first component G1 (otherwise, it would never be
applicable, as the system starts in the first component and only transfers
if no rule in G1 is applicable, i.e., only after every S has been replaced by
AA), but then we could also derive a3, but Ψ(a3) = 3 R P.
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Example 4.5
Consider the following CD grammar system Γ 1:

Γ 1 =
(
tA,S, Tu, tau, T ,G1,G2,G3

)
, where

G1 = tT Ñ a, T Ñ S,S Ñ AAu,

G2 = tA Ñ Su, and
G2 = tA Ñ au.

Clearly, we have

Lt(Γ
1) =

 

a2
n ˇ
ˇ n P N

(

, and
Ψ
[
Lt(Γ

1)
]
= t2n | n P Nu = P. 2

4.3. An SN P system with cooperating rules
We now aim to construct an SN P system with cooperating rules gener-
ating P. Our approach is to start off with a single spike and to continue
doubling the number of spikes until, at some point, the system decides to
stop. This suggests to first look at two smaller systems that handle the
doubling and the stopping, respectively, and indeed we shall see that the
structure of SN P systems makes it easy to combine these two modules
into a single system afterwards. We will use the terminating protocol and
the maximally-parallel mode for this example, taking the number of spikes
sent to the environment as the generated number.

4.3.1. Doubling the spikes
We can easily achieve duplication of spikes by having a neuron send its
spikes to two other neurons, and both of them sending the spikes back to
the first neuron. Figure 4.1 depicts such a module that will repeatedly
double the number of spikes in the acc neuron.
While it would suffice to have a single rule

(
a+,a

)
Ñ a in each of

the neurons for the purpose of doubling the number of spikes, this would
deprive us of the ability to stop the process through the introduction of
additional spikes into the module. Hence, we have rules handling either a
single spike, two spikes, or a multiple of four spikes. This allows us to stop
the process by introducing five additional spikes into the system.
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a Ñ a

a2 Ñ a2(
(aaaa)

+
,a4
)

Ñ a4

acc

a Ñ a

a2 Ñ a2(
(aaaa)

+
,a4
)

Ñ a4

d1
a Ñ a

a2 Ñ a2(
(aaaa)

+
,a4
)

Ñ a4

d2

Figure 4.1.: Doubling of spikes

a2 Ñ a2

a2 Ñ a

k1

a2 Ñ a2

k2 (
a6,a2

)
Ñ λ

a5 Ñ a5

kill

Figure 4.2.: The non-deterministic kill-switch

4.3.2. The kill-switch
As the only source of non-determinism in the system is the selection of
the rule to be fired from among the applicable rules, it is exactly this
mechanism we need to exploit to allow the system to decide which num-
ber to generate, the idea being that, depending on the rule chosen, the
computation is either stopped or continues.
We depict such a module in fig. 4.2. Initially, the k1 neuron contains

two spikes and the kill neuron starts with four spikes, whereas k2 remains
empty. If k1 emits two spikes, these two are then forgotten in kill. Con-
trol transfers to the second component, k2 emits the two spikes, control
transfers back to the first component, and the module has returned to its
initial configuration. If k1 emits only a single spike, however, kill emits
five spikes, and computation then stops as none of the neurons contains
an applicable rule anymore.

4.3.3. Putting it all together
Clearly, we need some kind of marker that signals the rest of the system
that no further doubling of spikes should occur. It turns out that neither
a nor a3 are sufficient, since then a2 and a4 may arise either through the
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doubling of a and a2, respectively, or through receiving the a or a3 marker
while there is already a single spike present in the neuron, and we have no
way of distinguishing these two possibilities. This is not the case for a5,
however, as a6 will never arise through the doubling. We also need to add
one more rule to the acc neuron to output the last spike after receiving
the a5 marker.
Example 4.6
Figure 4.3 depicts the full system. We start with one spike in the acc

neuron, two spikes in the k1 neuron, and four spikes in the kill neuron.
Initially, the first component is active, and k1 is the only neuron where

a rule can be applied. One of the two rules is chosen non-deterministically,
and either one or two spikes are emitted. Then, only kill has an applicable
rule. For now, assume k1 indeed sends out two spikes. These two spikes are
then deleted in kill, and no more rules in the first component are applicable.
Thus, control transfers to the second component. The neuron acc sends
its contents (only a single spike for now) to d1,d2, and the environment,
and then k2 sends two spikes back into k1. Then control transfers back
to the first component. This process repeats until k1 emits only a single
spike. Assume that this happens after n P N cycles of the above process.
If n ą 0, then acc has already sent

n
ÿ

i=0

2i = 2n ´ 1

spikes to the environment. acc will now send out a final spike, bringing
the total to 2n (note that 20 = 1, so this also works for n = 0). None of
the rules in d1 and d2 are applicable (in fact, no rule in the system at all
is applicable), so the computation stops.
Clearly, the language generated by Π working according to the terminat-

ing protocol in the maximally-parallel mode and taking the total number
of spikes sent to the environment is

CtotN
maxpar
t (Π) = t2n | n P Nu = P. 2

66



4.4. Comparing the two approaches

a5
(
aY (aa)

+)
Ñ a

a Ñ a

a2 Ñ a2(
(aaaa)

+
,a4
)

Ñ a4

acc

a Ñ a

a2 Ñ a2(
(aaaa)

+
,a4
)

Ñ a4

d1
a Ñ a

a2 Ñ a2(
(aaaa)

+
,a4
)

Ñ a4

d2

a2 Ñ a2

a2 Ñ a

k1

a2 Ñ a2

k2(
a6,a2

)
Ñ λ

a5 Ñ a5kill

Figure 4.3.: The complete system Π

4.4. Comparing the two approaches
While the CD grammar system Γ 1 is ostensibly simpler in terms of the
number of rules, it needs three components, whereas for the SN P system
with cooperating rules Π, two components suffice. Furthermore, Π uses
only a single symbol (and no non-terminal symbols at all), whereas Γ 1 needs
four. If we were to add a second symbol to Π serving as the termination
marker, we could easily eliminate the kill neuron and greatly simplify the
rules in the d1,d2, and acc neurons. This approach somewhat resembles
the “toxic objects” introduced in [AF14] for regular P systems, and lifting
this concept to SN P systems may be a valuable approach in constructing
smaller systems in general.
Another aspect worth considering is that the generative capacity of

CD grammar systems is limited to the ET0L family of languages, whereas
SN P systems with cooperating rules can generate any language in RE:

NCD∞(t) = NET0L Ĺ NCS Ĺ NRE = NC2SNtotP
maxpar
t (gene) .

Finally, SN P systems with cooperating rules can be composed in a nat-
ural fashion: We have already seen how bigger systems can be assembled
from smaller modules like building blocks, and Example 4.7 shows how we
can compute the intersection of the languages generated by two systems.
For CD grammar systems, there is no comparable construction. Indeed,
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a Ñ a

d1
a Ñ a

d2

a Ñ λ

a2 Ñ a

int

Figure 4.4.: Intersection module

the family ET0L is not even closed under intersection (this follows by
the same argument given for indexed languages in [Aho68, Theorem 4.4],
since ET0L is also closed under morphisms (cf. [KRS97, Theorem 2.8])
and contains CF).

Example 4.7
Let Π1,Π2 be two-component SN P systems with cooperating rules.
Then we can construct a system Π such that

CtotN
maxpar
t (Π) = CtotN

maxpar
t (Π1) X CtotN

maxpar
t (Π2)

by adding three neurons and connecting the output neuron of Πi to the
respective neuron di of Π. Figure 4.4 depicts the additional neurons, where
int becomes the new output neuron. 2

A similar module allows for the computation of the concatenation of the
languages computed by two systems. While this is a construction that
is also possible with CD grammar systems, it involves modifying existing
rules (at the very least the production rule for the starting symbol has
to be changed) and possibly the renaming of non-terminal symbols. In
contrast, we only need to add neurons and synapses to the SN P system,
leaving the rest of the system unchanged.
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5.1. What we have done
We have provided a comprehensive introduction into the theory of SN P
systems with cooperating rules and their predecessors, CD grammar sys-
tems and SN P systems, and we have shown that the universality result
from [MRK14b] for the terminating protocol can be retained for the other
protocols, answering one of the open questions of that paper, and which
of the restrictions on the types of rules or the working mode of the sys-
tem need to be relaxed in order to do so. Furthermore, we have designed
an SN P system with cooperating rules that generates a non-context-free
language, and have shown that such system are superior to CD grammar
systems in terms of composability.

5.2. Future work
From the open questions in [MRK14b], we have answered the question of
universality in the face of other cooperation protocols. Still, we feel that
a critical examination of whether all of the extensions used in our proofs
are indeed necessary to obtain universality. We suspect that while we
cannot avoid using extended rules, or the maximally parallel or the locally
synchronous mode, respectively, there might be a construction avoiding
the use of general neurons for at least the maximally parallel case.
Small examples of universal systems are given by [MRK14a] and [SP14].

Since two components suffice for universality using any of the cooperation
protocols, we do not expect studying systems with more components to
provide further insights, and single-component systems are just ordinary
SN P systems.
Several extensions of CD grammar systems have been extensively stud-
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ied, among them hybrid CD grammar systems, where different compo-
nents are allowed to work according to different cooperation protocols.
While this concept clearly would have no impact on the computational
power of SN P systems with cooperating rules, we feel that considera-
tion of such hybrid systems may aid in finding smaller universal systems.
Another concept that has been studied for CD grammar systems is that
of a controlled system, where the active component is not chosen non-
deterministically, but according to some external or internal control mech-
anism (cf. [Csu+94]). However, an external control mechanism (i.e., a
mechanism where the allowable control transfers are fixed in advance) does
not seem to be of much use in the case of SN P systems with cooperating
rules (since two components suffice for universality, for, e.g., the terminat-
ing protocol, the non-deterministic choice degrades to simply switching to
the other component), and we suspect that most non-trivial examples may
be more suitable expressed as a hybrid system. On the other hand, an in-
ternal control mechanism (where the active component is determined by
some predicate on the current state of the system) promises to lead to a
further reduction in system size. As a starting point, we suggest looking
into systems where control transfer happens whenever a certain neuron (or
a set of neurons) contains no spikes.
Clearly, SN P system with cooperating rules is too unwieldy a term

to repeat throughout, and we propose that a suitable abbreviation be in-
troduced. [Wu+16b] introduces cooperating rules to (catalytic) P systems
and proposes the term colored P system. We thus propose adopting the
name colored SN P system.
[Wu+16a] introduces cell-like SNP systems , which bring the nested,

tree-like membrane structure of conventional P systems to the world of
SN P systems. We assume that combining this approach with cooperating
rules may lead to a powerful tool for the modeling of biological processes,
and suggest further investigation.
We strongly feel that modeling a real-world biological process using the

framework of SN P systems with cooperating rules (and quite possibly
other extensions) would provide insights into both the theory of SN P
systems with cooperating rules and the process itself.
As a starting point, it may be a good idea to focus on a process al-

ready modeled using other variants of P systems, e.g., the quorum sensing
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behavior in the vibrio fischeri bacteria (cf. [RP08]) or the photosynthesis
modeled in [Nis06] (or any of the other applications described in [CPP06]),
although in all probability neither process can be modeled sufficiently with-
out further extending the framework.
In any case, certain qualities of a process lend themselves to modeling

using SN P systems with cooperating rules, among them

• being discrete in nature,

• involving relatively few different kinds of objects, and

• behaving in a locally synchronized and globally asynchronous way.

Extending this list is a further opportunity for future work. Ideally, we
would want a checklist allowing us to decide whether a certain process is
amenable to modeling using SN P systems with cooperating rules (or any
other extension, for that matter).
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