
Faculty of Computer Science

MCL Master's Thesis

Finite Herbrand Models for Monadic Clauses with
Unary Function Symbols

Author:

Muhammad Zahid Zia

Supervisor:

Prof. Dr.-Ing. Franz Baader

Advisor:

Dr.-Ing. Stefan Borgwardt

March, 2016

Technische Universität Dresden

Author:

Matrikel-Nr:

Title:

Degree:

Date of Submission:

Muhammad Zahid Zia

4026829

Finite Herbrand Models for Monadic Clauses with

Unary Function Symbols

International MSc Program in Computational Logic

Declaration

Hereby I certify that the thesis has been written by me. Any help that I have received in my research work

has been acknowledged. Additionally, I certify that I have not used any auxiliary sources and literature

except those cited in the thesis.

Muhammad Zahid Zia

Abstract

Decidability of First Order Logic (FOL) is a key and active research area in logic and computer science.

As FOL is undecidable in its general form, a lot of research is focused on �nding classes of FOL which are

decidable and studying their properties. In this thesis, we work on one such decidable fragment that only

allows monadic predicate and function symbols (with the exception of one constant). We also allow just

one variable in the formulas.

Research in Logic generally does not concentrate on the �niteness of interpretations. Yet, for any realistic

and practical knowledge representation purpose we only have �nitely many resources to represent the real

world. Therefore we focus on �nding the �nite Herbrand models for the above mentioned class. We also

provide a terminating decision procedure for the existence of a �nite Herbrand model for this restricted

fragment of FOL. In the end we provide some optimizations and variants of the original algorithm for better

performance on certain problems.

Acknowledgements

I like to express my gratitude to all people who have helped me in making this thesis possible.

First I would like to thank my adviser Dr.-Ing. Stefan Borgwardt for his kind support and in�nite patience.

This thesis is a product of his thoughtful guidance. I would also like to thank my supervisor Prof. Dr.-

Ing. Franz Baader for his support and Prof. Sebastian Rudolph for accepting to read and co-supervise

this thesis. I want to show my gratitude to all the faculty members and sta� of International Center for

Computational Logic at TU Dresden for giving me a wonderful and enriching experience.

Last but not least I want to thank all my family for their unwavering support especially my mother, my

father and my wife. I want to thank all my friends too for making my stay in Dresden very memorable and

precious.

Contents

1 Introduction 3

2 Monadic Clauses 2

2.1 Preliminaries . 2

2.2 Monadic Clauses . 3

2.2.1 Normalized Clause Sets . 4

2.2.2 Reduced Clause Sets . 6

2.3 Possibilities . 8

3 Finding Finite Herbrand Models 9

3.1 Exploring Possibilities . 9

3.2 Finding Loops . 11

3.3 Bad Possibilities . 12

3.4 Proofs . 15

3.4.1 Termination . 15

3.4.2 Correctness . 16

1

4 Optimizations and Variants 20

4.1 Shortcuts . 20

4.2 Monadic Horn Clauses . 24

4.3 Multiple Constants . 26

5 Conclusion 28

5.1 Future Work . 28

Chapter 1

Introduction

There is a lot of research done for �nding a decidable fragment of First Order logic (FOL) retaining enough

expressive power to solve a particular class of problems. Some of the well studied decidable fragments of

FOL are the monadic predicate calculus [3, 4] which only allows unary predicate symbols without functions

and equality, e�ectively propositional logic also known as the Bernays-Schön�nkel class which contains FOL

formulas that, when written in prenex normal form, have an ∃∗∀∗ quanti�er pre�x and do not contain any

function symbols, and Ackermann's class [5] where prenex formulas have a pre�x of the form ∃∗∀∃∗. All of

these classes have been found to be decidable. The class of FOL formulas that we want to study in this

thesis is an extension of formulas used by monadic predicate calculus, but we also allow unary function

symbols as well and a constant.On the other hand we do not allow the equality predicate and we restrict

the formulas to clausal form in which only one variable can appear.

Another emerging area of interest in the past two decades is the use of logic for data and knowledge

management. Datalog [6], a counterpart of Prolog, was devised for data processing and tries to extend

normal factual data with the help of logic rules to discover and deduce inherent knowledge within the

data. Under model-theoretic semantics, a Datalog program can be considered as an FOL theory where

Datalog rules can be seen as function-free FOL Horn clauses. This ensures the decidability of Datalog and

also ensures minimality of the models of Datalog programs which is very important for developing e�cient

algorithms for query systems. This is why in this thesis we are not only interested in the decidability of the

fragment, we are also interested in developing an e�cient algorithm for reasoning task over the logic. So we

are not interested in just any model for the logic but in a more particular question, which is the existence

of a �nite Herbrand model for a set of clauses. This question has importance in �nite model theory as well

3

as in database theory.

Datalog in its general form is not very expressive, but there are multiple extensions for Datalog

created to increase the expressiveness, like Datalog± [8], which extends Datalog with existential quanti�-

cation, the equality predicate, and the truth constant false, while preserving not only decidability, but

also tractability of query answering in data complexity by using syntactic restrictions. Adding just the

existential quanti�er without any restrictions like guardedness proposed in [9] can make the models in�nite

and query answering undecidable [10], and similarly for adding equality and false.

As the topic of this thesis is also related to one such decidable fragment of FOL, it would be

bene�cial to compare the expressiveness of this fragment with already well-known decidable fragments like

Datalog. We give the clausal formalism for our fragment of interest later, but most importantly we do not

restrict our clauses to Horn clauses, which means that we can have disjunctions in the head, which improves

expressiveness greatly. For example, one cannot express the sentence "If the tire is �at, either the valve is

leaky or the tube is punctured" in Datalog or Datalog±, but one can express this as the following monadic

clause.

flatT ire(x)→ leakyV alve(x) ∨ puncturedTube(x)

But this does not mean that monadic clauses are more expressive than Datalog, as Datalog rules do

not restrict the use of n-ary predicates, which can express relationships between di�erent elements of the

interpretation. For example, one can express graph reachability as the following Datalog rule:

reachable(x) ∧ edge(x, y)→ reachable(y),

but this is not possible in monadic clauses, as binary predicates are not allowed.

A similar problem has already been addressed in [1] for a subset of the fragment that we will focus

on. They show that deciding the existence of �nite Herbrand models is ExpTime-complete for a set of

propagation rules (anti-Horn monadic clauses). We will show for a larger fragment of FOL where we allow

conjunctions on the left-hand side of the clause.

1

Chapter 2

Monadic Clauses

2.1 Preliminaries

In this section we list some notions which we will use later in this thesis. We assume the reader to be

familiar with basic concepts of logic.

De�nition 2.1.1 (Interpretation).

An interpretation I for a FOL language L(P,F ,V) consists of a non-empty set D and a mapping .I , which

satis�es the following conditions:

• Every n-ary function symbol f/n ∈ F is mapped to an n-ary function gI : Dn → D.

• Every n-ary relation symbol P/n ∈ P is mapped to an n-ary relation P I ⊆ Dn.

D is called the domain of the interpretation.

De�nition 2.1.2 (Herbrand Interpretation).

A Herbrand interpretation is an interpretation I where

• The domain of I consists of all the ground terms over the set of functions. This domain is also called

Herbrand universe.

• All the ground terms are mapped onto themselves, i.e tI = t.

2

A Herbrand interpretation is �nite if each predicate is interpreted by a �nite subset of the potentially

in�nite Herbrand universe.

2.2 Monadic Clauses

In this section, we introduce the fragment of �rst order logic that we will focus on for our work and also some

of the new notions required. We work with a fragment of �rst order logic constructed over the signature of

�nitely many unary predicates P, �nitely many unary function symbols F , one constant a, and one variable

x.

We use the symbols P,Q, P1, Q1, P2, . . . for predicates and f, g, . . . for functions. The atomic

formulas are of the form P (t), where P ∈ P and t is a term over the function symbols in F , the constant

a and the variable x. All the ground terms over this signature are of the form f1(· · · fn(a) · · ·) where

{f1, . . . , fn} ⊆ F . The length of the term is the number of function symbols used to construct the term.

We consider only the clausal form of the fragment which consists of monadic clauses as de�ned

below.

De�nition 2.2.1 (Monadic Clause).

A monadic clause is a clause of the following form.

P1(t1) ∧ · · · ∧ Pn(tn)→ Q1(tn+1) ∨ · · · ∨Qm(tn+m)

for P1, . . . , Pn, Q1, . . . , Qm ∈ P and terms t1, . . . , tn+m over F and x. The variable x is universally quanti-

�ed.

A �nite Herbrand interpretation H is a model for a set C of clauses if it satis�es every clause in C.

Note that n or m can be zero. In the case that n is zero, the empty conjunction on the left-hand side of

the clause becomes a > (representing the truth value true), which means that clause becomes a positive

clause. In the case that m is zero, the empty disjunction on the right-hand side becomes ⊥ (representing

the truth value false) making the clause negative. It also should be noted that in case of a positive clause

all the atoms on the right-hand side must be ground; otherwise there would be no �nite Herbrand model

for the clause set.

3

2.2.1 Normalized Clause Sets

To reduce the complexity of clauses, we �atten them by replacing the terms of length higher than 1. We

extend the notion of normalized set of clauses from [1] for our generalized monadic clauses.

De�nition 2.2.2 (Normalized clause set).

A �nite set C of monadic clauses is normalized if there exists a set D(C) ⊆ P × F such that

• for every (P, f) ∈ D(C), we have P f ∈ P and the two clauses P f (x) → P (f(x)) (increasing clause)

and P (f(x))→ P f (x) (decreasing clause) are contained in C, and

• all clauses in C expect the ones mentioned above must be �at, i.e., of the form

P1(t1) ∧ · · · ∧ Pn(tn)→ Q1(tn+1) ∨ · · · ∨Qm(tn+m)

where ti can be either the variable x or the constant a, with i ∈ {1, . . . , n+m}.

The reason we want to create this normalized set is that it allows us to separate terms of di�erent

length, because after normalization if we want to check if a term satis�es a �at clause, we only need to care

about that one term. And the only link between terms of di�erent lengths are the increasing and decreasing

clauses.

A terminating procedure is given in [1] to transform an arbitrary �nite set of propagation rules

into to an equivalent normalized set. We extend this procedure for a �nite set of monadic clauses. Let C

be a �nite set of monadic clauses. We transform it into a normalized set C′.

• We initialize C′ := C and the set D(C′) as follows.

If for (P, f) ∈ P × F there is a unique Q such that Q(x) → P (f(x)) and P (f(x)) → Q(x) are in C′

and the same does not hold for any other pair in P × F and Q, then we rename Q to P f and add

(P, f) to D(C′).

• While C′ is not yet normalized, we choose a clause

c = P1(t1) ∧ · · · ∧ Pn(tn)→ Pn+1(tn+1) ∨ · · · ∨ Pn+m(tn+m)

such that there is still a term ti = f(t′i) for some f ∈ F and term t′i.

If (Pi, f) is already in D(C′), we simply replace Pi(ti) with P f
i (t
′
i). Otherwise, we add the new

predicate P f
i to P, add (Pi, f) to D(C′), extend the clause set C′ with two clauses Pi(f(x))→ P f

i (x)

and P f
i (x)→ Pi(f(x)), and replace the atom Pi(f(ti)) in the clause c with P f

i (t
′
i).

4

The above mentioned process terminates, as the clause set C is �nite so each term occurring in C

is also of some �nite length. As we reduce the length of the term in each step, the process terminates after

�nitely many steps.

Lemma 1. A set C of monadic clauses has a �nite Herbrand model i� the normalized set C′ has a �nite

Herbrand model.

Proof. We prove the claim by induction on the process of transformation. In the initialization step, we only

do renaming of predicates which does not a�ect the existence of a �nite Herbrand model. For the second

part of the process, it is enough to show the claim for one replacement step.

If H is a �nite Herbrand model of C′ before the replacement, we can extend H for the new predicate

P f
i as P f

i

H
:= {w(a) | f(w(a)) ∈ PHi } where w is some word over F . It is clear under this extended

interpretation H′ that the atom Pi(f(w(a))) is true in H′ i� P f
i (w(a)) is. And thus it satis�es all the

clauses where Pi(f(ti)) was replaced by P f
i (t
′
i) and also the increasing (P f

i (x)→ Pi(f(x))) and decreasing

(Pi(f(x))→ P f
i (x)) clauses added during this step.

Now let there be a �nite Herbrand model H of C′ after the replacement. As it satis�es the increasing and

decreasing clauses for every (Pi, f) ∈ D(C), we have that P f
i

H
= {w(a) | f(w(a)) ∈ PHi }, so Pi(f(w(a))) is

true in H i� P f
i (w(a)) is, which means that if we change back P f

i (t
′
i) to Pi(f(ti)), then H still satis�es the

clause.

Let us take a look at an example to have a bit more clarity on the transformation process.

Example 2.2.1.

Consider the following simple set of monadic clauses.

C1 := {> → P1(f(a)) ∨ P2(f(g(a))),

P1(f(x))→ P3(x), P3(x)→ P1(f(x)),

P4(x) ∧ P2(f(x))→ P4(f(x))}

To normalize this set using the above mentioned algorithm, we start by initializing the set C′1 with C1.

Now as we can note that there is (P1, f) ∈ P × F and the predicate P3 which satis�es the condition in

initialization step, so we rename P3 to P f
1 , add (P1, f) in D(C′1).

We then go on with the second step of the process as there is no other candidate satisfying this condition.

We choose the �rst clause and term t = f(a) as there is the function symbol f and term t′ = a as (P1, f) is

already in D(C′1) so we just replace P1(f(a)) with P f
1 (a).Then we choose the �rst clause again but for term

t = f(g(a)) as there is the function symbol f and term t′ = g(a) such that t = f(t′). We add P f
2 to P,

5

add (P2, f) to D(C′1), add the increasing and decreasing clauses P f
2 (x) → P2(f(x)) and P2(f(x) → P f

2 (x)

respectively, and replace P2(f(g(a))) with P f
2 (g(a)) in the clause. And we repeat the step for (P f

2 , g) and

(P4, f) until C′1 is normalized.

After completion the set C′1 and D(C′1) would be as follows.

C′1 := {> → P f
1 (a) ∨ P fg

2 (a),

P1(f(x))→ P f
1 (x), P

f
1 (x)→ P1(f(x)),

P4(x) ∧ P f
2 (x)→ P f

4 (x),

P2(f(x))→ P f
2 (x), P

f
2 (x)→ P2(f(x)),

P f
2 (g(x))→ P fg

2 (x), P fg
2 (x)→ P f

2 (g(x)),

P4(f(x))→ P f
4 (x), P

f
4 (x)→ P4(f(x))}

D(C′1) = {(P1, f), (P2, f), (P
f
2 , g), (P4, f)}

2.2.2 Reduced Clause Sets

Even after normalization we can still have mixed clauses, i.e. having both ground and non-ground atoms.

To make the algorithm a bit more simple, we get rid of all the ground atoms from the clause set by non-

deterministically guessing a set of predicates for a �nite Herbrand model such that for every predicate P

in that set the grounded atom P (a) is in the model, and for every predicate not in the set the grounded

atom is not in the model.

De�nition 2.2.3 (Reduced clause set).

For a set C of normalized monadic clauses and a set Xa ⊆ P of predicates, the reduced set CXa of clauses is

de�ned as the set of all the clauses of C after replacing all occurrences of P (a) in all the clauses of C with

true if P ∈ Xa and (replacing all occurrences of P (a) in every clause of C) with false if P 6∈ Xa.

We also remove the trivial clauses after the reduction process. Note that the reduced set can

contain an empty clause if there is a clause in C of the form

P1(a) ∧ · · · ∧ Pn(a)→ Q1(a) ∨ · · · ∨Qm(a)

with Pi ∈ Xa and Qj 6∈ Xa for all i ∈ {1, . . . , n} and j ∈ {1, . . . ,m}. But this means that the choice of the

set Xa is wrong(or C has no �nite Herbrand Model).

6

Lemma 2. A set C of normalized monadic clauses has a �nite Herbrand model i� for a set Xa of predicates

the reduced clause set CXa has a �nite Herbrand model H with a ∈ PH i� P ∈ Xa for all P ∈ P.

Proof. If H is a �nite Herbrand model for CXa , then H is a model for all clauses in C without any ground

atom as these clauses are not changed in CXa . Now for the mixed and ground clauses let us consider the

following clause of C:

c = P1(t1) ∧ · · · ∧ Pn(tn)→ Pn+1(tn+1) ∨ · · · ∨ Pn+m(tn+m)

We have two cases, that is a ground atom can occur either on the right-hand side of the clause or left-hand

side. Let c′ be the clause reduced from c.

For the �rst case, let for some 1 ≤ i ≤ n the atom Pi(ti) be ground, i.e. ti = a. Now there can be again

two cases either P ∈ Xa which means it is replaced by > in c′ but as H satis�es the c′ it also satis�es c

because as a ∈ PHi so the atom Pi(ti) is true and does not a�ect the truth value of the premise of clause.

And if P 6∈ Xa then Pi(ti) is false under H and c is satis�ed by H trivially, as this makes the premise of

the clause false.

For the second case, let for some n < i ≤ n+m the atom Pi(ti) be ground, i.e. ti = a. Here we also have

the same two cases, i.e. either P ∈ Xa and the atom Pi(ti) is replaced by true in c′, which makes the whole

clause true, so it is satis�ed by H trivially. As a ∈ PHi , the atom Pi(ti) is true under H, thus c is also

satis�ed by H. For the other case if P 6∈ Xa, then it is replaced by false in c′, but as H satis�es the updated

clause, this means that either the premise of the clause is not satis�ed, in which case H also satis�es c as

the premise is not changed during reduction. But if the premise is true, then there must existsj 6= i where

n < j ≤ n + m such that atom Pj(tj) is true under H hence c is also satis�ed by H as this makes the

consequence of c true.

For the other direction let H be a �nite Herbrand model for C. We choose Xa = {P | a ∈ PH}. We show

that H is a model for the reduced clause set CXa . We again consider the clause c, the reduced clause c′ and

all the cases for a ground atom.

For the �rst case, let for some 1 ≤ i ≤ n the atom Pi(ti) be ground, i.e. ti = a. Now there can be two cases.

Either the ground atom Pi(a) is true under H i.e. a ∈ PHi . Then by choice of Xa we know that P ∈ Xa and

Pi(a) will be replaced by > in c′ which does not a�ect the truth value of the premise of the clause so as c

is satis�ed under H so is c′. And if Pi(a) is false under H we know P 6∈ Xa then Pi(a) is replaced by false

making the whole premise false, thus making c′ a tautology under any interpretation, in particular H .

For the second case, let for some n < i ≤ n+m the atom Pi(ti) be ground, i.e. ti = a. Here we have again

the same two cases, i.e. either Pi(a) is true under H i.e. a ∈ PHi thus, we know that P ∈ Xa and Pi(a) will

7

be replaced by > in c′ which makes the whole clause true, so it is satis�ed by H trivially. If Pi(a) is false

under H we know P 6∈ Xa, and it is replaced by false in c′, which does not change the truth value of so if

H satis�es the c, it also satis�es c′.

Example 2.2.2.

Consider the following normalized set of monadic clauses.

C := {> → P1(a) ∨ P2(a), P2(a) ∧ P3(x)→ P4(a)

P1(a) ∧ P3(x)→ P4(x) ∨ P5(x), P2(a)→ P6(a) ∨ P7(a),

P4(x) ∧ P2(x)→ P7(x)}

Let X = {P1, P6} be the set of predicates for which we want to reduce X . After reduction the reduced set

would be as follows.

CX := {P3(x)→ P4(x) ∨ P5(x), P4(x) ∧ P2(x)→ P7(x)}

Note that the �rst two clauses and the fourth were removed as they became trivially true after replacement.

2.3 Possibilities

We will use the notion of possibility for a term t and a set X of predicates as a set Y of predicates for which

we need to add t in all the predicates of Y under the interpretation I if t is already in all the predicates of

X under I, to make I a model.

Example 2.3.1.

Consider the following �at monadic clauses.

C2 := {> → P1(a) ∨ P2(a), P2(x)→ P f
4 (x)

P1(x)→ P4(x) ∨ P5(x), P1(x)→ P g
6 (x) ∨ P g

7 (x),

P5(x) ∧ P1(x)→ P6(x)}

For X = {P1, P5} one possibility could be {P1, P5, P
g
7 , P6}, and {P1, P5, P4, P6} another one.

8

Chapter 3

Finding Finite Herbrand Models

In this chapter we present an algorithm to decide the existence of a �nite Herbrand model for a set of

monadic clauses.

3.1 Exploring Possibilities

The idea of the following algorithm is that we want to explore all minimal �nite models. Normalization

of clauses helps us isolate di�erent terms because we can devise a strategy to treat the clauses which deal

with a particular term (the �at clauses) and the clauses dealing with terms of di�erent length (increasing

and decreasing clauses) di�erently. As we are interested in �nite Herbrand models, we explore the potential

models for all the ground terms recursively, starting from the shortest ground term a as that is the only

constant in our logic. Then we increase the length of the term for some function symbol with each recursive

step in the algorithm. We calculate a set of possibilities L at each level representing parts of all the potential

models. We expand the possibilities in L �rst using the �at clauses and then check if we need to add terms

of higher length in the potential model using the increasing clauses. Let us take a look at an example on

how we want to explore the potential model.

Example 3.1.1.

Consider the following (simple) set of reduced monadic clauses

C3 := {A(x)→ P (x) ∨Q(x), P (x)→ Rf (x),

A(x) ∧ P (x)→ S(x), R(x)→ T (x),

Q(x)→ Ug(x), U(x)→ V (x),

9

A(f(x))→ Af (x), Af (x)→ A(f(x)),

R(f(x))→ Rf (x), Rf (x)→ R(f(x)),

T (f(x))→ T f (x), T f (x)→ T (f(x)),

U(g(x))→ Ug(x), Ug(x)→ U(g(x))}

with the set

D(C3) = {(A, f), (R, f), (T, f)}

and

Xa = {Af}

And we want to explore all the potential models for C3. We know from the selection of Xa that a ∈ AfI ,

where I is a potential model. We initialize the set La of possibilities with Xa, i.e. La = {{Af}}. As this

possibility needs to satisfy the increasing clause Af (x) → A(f(x)), this enforces that f(a) ∈ AI and we

start looking for possibilities for Xf(a) = {A}. We initialize the set of possibilities as:

Lf(a) = {{A}}

We expand Lf(a) for the �rst clause A(x)→ P (x) ∨Q(x), because for an interpretation I to be the model

of this clause then for any term t ∈ AI either t ∈ P I or t ∈ QI . We update the set of possibilities as

follows:

Lf(a) = {{A,P}, {A,Q}}

Then we go on expanding the �rst possibility in Lf(a) for the second, third and �fth clause of C3 and update

Lf(a) as

Lf(a) = {{A,P,Rf , S}, {A,Q,Ug}}

Now we do not need to expand Lf(a) any more for the �at clauses. But considering the potential model I

for the �rst possibility, as we have f(a) ∈ RfI and to satisfy the increasing clause Rf (x) → R(f(x)) we

need to start looking for possibilities for Xf(f(a)) = {R}. We repeat the procedure by initializing Lf(f(a))
as {{R}} and expanding the possibilities using �at clauses. After expansion for the clause R(x) → T (x),

the set looks as follows:

Lf(f(a)) = {{R, T}}

There is no possibility in Lf(f(a)) with a complex predicates, hence we do not need to increase the length of

the term so our recursion stops and returns. On the return we do need to be careful about the decreasing

clauses because if for any interpretation I to be the model it also needs to satisfy the decreasing clauses

i.e. for any (P, f) ∈ D(C3) and for all ground terms t, if f(t) ∈ P I , then t ∈ P fI because of the decreasing

clause T (f(x))→ T f (x). And in our example, as we have the predicate T in the only possibility in Lf(f(a)),

10

and (T, f) ∈ D(C3), so we need to expand the possibility {A,P,Rf , S} with T f , and update Lf(a) as:

Lf(a) = {{A,P,Rf , S, T f}, {A,Q,Ug}}

We now start expanding the second possibility in Lf(a) but, and we expand the possibilities for term g(f(a))

and the set Xg(f(a)) = {U} similarly resulting in the following set of possibilities.

Lg(f(a)) = {{U, V }}

After that we do not need to expand anymore for the term f(a) and return to expanding the possibilities

for a. But as there is no (P, f) ∈ D(C3) for which we need to expand La our search for potential models

ends with two possible models of C3 as follows:

H1 := {Af (a), A(f(a)), P (f(a)), Rf (f(a)), S(f(a)), T f (f(a)), R(f(f(a))), T (f(f(a)))}

H2 := {Af (a), A(f(a)), Q(f(a)), Ug(f(a)), U(g(f(a))), V (g(f(a)))}

Consider the following diagram to illustrate the recursive exploration of possibilities. Each node

is of the form t : Xt : Lt where t is the ground term for which is being explored.

a : {Af} : {{Af}}

f(a) : {A} : {{A,P,Rf , S, T f , Ug}, {A,Q}}

f(f(a)) : {R, T} : {{R, T}} g(f(a)) : {U} : {{U, V }}

3.2 Finding Loops

As we are interested in �niteness of the models, we need to detect in�nite loops and stop the recursive

search. A model is in�nite if there is a loop within the set of clauses with an ever increasing term length.

Example 3.2.1.

One of the simplest example to enforce an in�nite model would be a set of monadic clauses representing

the set of natural numbers as follows:

C4 := {> → Natural(a), Natural(x)→ Natural(succ(x))}

where a is representing the number 0. It is clear that C4 only has one in�nite model H where NaturalH =

{a, succ(a), succ(succ(a)), . . . } represents the in�nite set of natural numbers. This happens because there

11

is a loop in the second clause and for every natural number i.e. t ∈ NaturalH, we have to add the successor

succ(t) of the number in NaturalH.

In our algorithm we try to detect these kind of loops. To do this we keep track of the working set

W, which stores all the sets Xt for all the terms t that we are exploring in the current recursive branch.

Consider the example above, Following is the normalized set for C4:

C′4 := {> → Natural(a),

Natural(x)→ Naturalsucc(x),

Natural(succ(x))→ Naturalsucc(x),

Naturalsucc(x)→ Natural(succ(x))}

with the set

D(C4) = {(Natural, succ)}

We want to explore the potential �nite Herbrand models for C4, so we start with the term a and the set

Xa = {Natural} and, because of the second clause in C4, we need to expand the possibility for the pred-

icate Naturalsucc and update Xa = {Netural,Naturalsucc}. As we want to satisfy the increasing clause

we need to start the search for possibilities for term succ(a) and the set Xsucc(a) = {Natural} and we need

to expand the possibility with Naturalsucc again which makes Xsucc(a) = {Natural,Naturalsucc} and we

need to again make an other recursive call for term succ(succ(a)) and the cycle continues in�nitely. But to

detect and stop, we keep track of all the Xts in the current working branch and stop whenever the same set

is produced again in the same working branch. So in our algorithm we will not continue in�nitely because

we will add Xa in the working set W before looking for possibilities for term succ(a) and, as Xa = Xsucc(a),

we stop the process and mark {Natural,Naturalsucc} as a bad possibility(which is described in the next

section) and as this was the only possibility in Xa we decide that there is no �nite model for C4.

3.3 Bad Possibilities

One other problem that we need to deal with while expanding the possibilities is that we do not want to

get stuck in a cycle where a possibility is identi�ed as a bad possibility and then the same one is added in

the next cycle of saturation again by some clause.

Example 3.3.1.

Consider the following set of monadic clauses:

12

C5 := {> → P (a),

P (x)→ Q(x) ∨R(x),

R(x)→ ⊥}

In this example when we want to look at the possibilities for term a we start with Xa = {{P}} and then

we expand Xa for the second clause and update Xa as

Xa = {{P,Q}, {P,R}}

but because of the third clause in C4 we know that possibility {P,R} is bad as R leads to ⊥, and is removed

from Xa. But as we still have P in the �rst possibility, we can expand this possibility again for the second

clause to add a new possibility {P,Q,R} updating Xa as.

Xa = {{P,Q}, {P,Q,R}}

We know that this possibility will also be identi�ed as bad because of R but we will get stuck in an in�nite

cycle of removing this possibility and adding it again. That is why we keep track of all the possibilities

identi�ed as bad so that they might never be produced again.

13

Following is the recursive algorithm to get possibilities.

Algorithm 1: getPossibilities(t ,X ,W , C).
Input : A ground term t, a set X of predicates, current working set W of sets of predicates and a

normalized set C of MFOL+ clauses

Output: A set of possibilities for t

L0 ← {X}, k ← 0,B ← ∅

repeat

k ← k + 1

Lk ← Lk−1
for all P1(x) ∧ · · · ∧ Pn(x)→ Q1(x) ∨ · · · ∨Qm(x) ∈ C do

for all Y ∈ Lk such that {P1, . . . , Pn} ⊆ Y and there is no 1 ≤ i ≤ m such that Qi ∈ Y do

Lk ← ((Lk \ {Y}) ∪ {Y ∪ {Ql} | l ∈ {1, . . . ,m}}) \ B

B ← B ∪ {Y}

for all Y ∈ Lk and f ∈ F with Yf = {P | (P, f) ∈ D(C), P f ∈ Y} such that Yf 6= ∅ do

Lk ← Lk \ {Y}

if Yf 6∈ W then

Lf(t) ← getPossibilities(f(t),W ∪ {Yf}, C)

Lk ← (Lk ∪ {Y ∪ {P f | (P, f) ∈ D(C), P ∈ Z} | Z ∈ Lf}) \ B

if {Y} 6∈ Lk then

B ← B ∪ {Y}

until Lk = Lk−1
return Lk

The main algorithm that decides the existence of a �nite Herbrand model is very straight forward.

It non-deterministically choses a set Xa of predicates and makes the �rst call to getPossibilities for the term

a, the chosen set Xa, the initial working set W = {Xa} and the set CXa of monadic clauses reduced for

Xa. The algorithm returns true if the possibilities set La returned by getPossibilities contains the set Xa

(meaning the choice for Xa was correct and there is a �nite Herbrand model for C) and false otherwise.

14

Following is the main algorithm.

Algorithm 2:

Input : A normalized set C of Monadic clauses

Output: True if the set C has a �nite model and false otherwise

(non-deterministically) guess a set Xa of predicates.

La ← getPossibilites(a,Xa, {Xa}, CXa)

if Xa ∈ La then

return true

else

return false

3.4 Proofs

3.4.1 Termination

Lemma 3. Algorithm 2 always terminates.

Proof. Algorithm 2 consists of a non deterministic choice of the set Xa and then calling getPossibilities with

Xa and the reduced set CXa to get the set of possibilities La and checking if Xa ∈ La. From the De�nition

1.1 it is trivial to see that the procedure for calculating the reduced clause set CXa is terminating for any

set of clauses and a set of predicates in particular C and Xa. For the termination proof of Algorithm 1 the

only thing that we need to prove is the termination of getPossibilities.

The procedure getPossibilities is recursive in nature, so for termination of the procedure we need

to prove that there are only �nitely many recursive calls and all the loops in a call are terminating. Every

call to the procedure has the set W of sets of predicates which capture the working predicate sets in the

current recursive call. The procedure does not make a new recursive call if the set Yf is already part of the

working set W. As there can only be | 2P | such sets in W before a set is repeated, this means there can

only be maximum of | 2P | recursive calls of getPossibilities.

We also need to prove that there are no in�nite loops in any of the recursive calls to getPossibilities.

The only loop that is of concern is the outermost loop to check the saturation of the set Lk of possibilities.

All the inner loops are bounded by the set of predicates P, the set Lk or the set of functions F , and all of

15

these sets are �nite, hence all these loops are bound to terminate after �nite time.

It is not that obvious to see that the outermost loop will always terminate after �nite time as the

procedure adds new possibilities as well as remove the bad possibilities from the set Lk. But we keep track

of all the bad possibilities that are removed and they are never added to Lk even if they are discovered

again. Which means that the set Lk ∪ B is always increasing. As the sets Lk and B are disjoint and there

are only | 2P | possibilities it is clear that after at most 2 | 2P | loops Lk ∪B will saturate (and in particular

Lk).

3.4.2 Correctness

Lemma 4. (Soundness) If Algorithm 2 returns true, then C has a �nite Herbrand model.

Proof. We create the �nite Herbrand model H by using a variant of getPossibilities which does not add all

the possibilities for a term but, instead returns one of the possibilities. As Algorithm 1 returns true, there

exists a set Xa of predicates such that the �rst call to getPossibilities returns the set La where Xa ∈ La so we

choose the possibility Xa in the �rst call. We create the model by collecting all the predicates P in the chosen

possibility such that t ∈ PH for all the recursive calls of getPossibilities. From the termination condition

of every call to getPossibilites we know that the chosen possibility Y is fully saturated i.e. there is no �at

clause P1(x) ∧ · · · ∧ Pn(x) → Q1(x) ∨ · · · ∨Qm(x) ∈ C such that {P1, . . . , Pn} ⊆ Y and {Q1, . . . , Qn} 6⊆ Y

and also for all f ∈ F with Yf = {P | (P, f) ∈ D(C), P f ∈ Y} there exists a possibility Z ∈ Lf such that

{P f | (P, f) ∈ D(C), P ∈ Z} ⊆ Y. We know that the model is �nite, as by Lemma 1 the Algorithm returns

after a �nite time.

Lemma 5. (Completeness) If C has a �nite Herbrand model, then Algorithm 2 returns true.

Proof. Let H be a �nite Herbrand model for C. We choose the set {P | a ∈ PH} as Xa. Now to prove that

the initial call to getPossibilities will return the set La with Xa ∈ La, we consider an alternate procedure

for getPossibilities as de�ned below where we remove the working set and we also add a non-deterministic

choice of the possibility Y instead of the loop in the original algorithm. The working set W in the original

algorithm only ensures the termination of the algorithm which is not of concern for this proof, we assume

that the H is minimal which means we can drop W without a�ecting the structure of the algorithm. Also

by adding the non-deterministic choice for the possibility Y ∈ Lk we ensure that the algorithm always picks

16

the right possibility for the model H. Thus our claim holds for the original algorithm if the set returned

by the getPossibilities(a,Xa, CXa) contains the possibility Xa.

Following is the alternate procedure for getPossibilities.

Algorithm 3: getPossibilities(t ,X , C).
Input : A term t of sets of predicates, a set X of predicates and a normalized set C of Monadic

clauses

Output: A set of possibilities L

1: L0 ← {X}, k ← 0

2: repeat

3: k ← k + 1

4: Lk ← Lk−1
5: /* Saturation step */

6: for all P1(x) ∧ · · · ∧ Pn(x)→ Q1(x) ∨ · · · ∨Qm(x) ∈ C do

7: for all Y ∈ Lk such that {P1, . . . , Pn} ⊆ Y and there is no 1 ≤ i ≤ m such that Qi ∈ Y do

8: Lk ← (Lk \ {Y}) ∪ {Y ∪ {Ql} | l ∈ {1, . . . ,m}}

9: choose Y ∈ Lk
10: for all f ∈ F with Yf = {P | (P, f) ∈ D(C), P f ∈ Y} such that Yf 6= ∅ do

11: /* Incrementation Step */

12: Lf ← getPossibilities(Yf , f(t), C)

13: /* Decrementation Step */

14: Lk ← (Lk \ {Y}) ∪ {Y ∪ {P f | (P, f) ∈ D(C), P ∈ Z} | Z ∈ Lf}

15: until Lk = Lk−1
16: return Lk

We de�ne the call stack S as a stack of frames, where each frame is a tuple of the form (X , t,L, l), which

represents a function call to getPossibilites, where X and t are the parameters of the call, L is a local

variable representing the current Lk, and l is the current execution step within the call. The frame at the

top of S represents the last recursive call of the procedure. For example a call stack after n recursive calls

to the procedure is as follows.

(X0, t0,L0, l0), (X1, t1,L1, l1), . . . , (Xn, tn,Ln, ln)

where (Xn, tn,Ln, ln) is the top frame in this case. Every step in the procedure can update the local

17

variables of the top frame, push a new frame onto S for a new call of the procedure, or pop a frame from

S in case the procedure returns. From now onward we will refer to call stack as stack.

We de�ne the execution of a procedureP as a sequence of above mentioned stacks S1,S2,S3, . . . ,Sm,

where each stack Si+1 is the result of execution of the lth step of P on stack Si where l is the from the top

frame of Si and 1 ≤ i ≤ m− 1.

We already know that the original algorithm terminates from Lemma 1. To prove that there exists

a possibility for Xa when the �rst call returns we prove for the alternate algorithm that for every frame

(X , t,L, l) of a stack in the execution of getPossibilites(Xa, a, CXa) there always exists a possibility Y ∈ L

such that t ∈ PH for all P ∈ Y, in particular for the �rst frame (Xa, a,L, l).

We prove this by induction over the execution S1,S2,S3, . . . ,Sm of the procedure call getPossi-

bilites(Xa, a, CXa). For the base case, the call stack S1 contains the only frame (Xa, a, {Xa}, 1). The claim

is trivially true as we know by construction of Xa that a ∈ PH for all P ∈ Xa.

For the purpose of simplicity we assume the initialization of local variables L0 and k are done

when the frame for a procedure call is added to the stack. The rest of the procedure can be divided

into three steps. The �rst step is saturation, where only the local variable Lk is updated by saturating

the set of possibilities with �at clauses. The second step is incrementation, where a new non empty set

Yf = {P | (P, f) ∈ D(C), P f ∈ Y} is found for a possibility Y ∈ Lk and a function symbol f such that there

is no shortcut calculated for Yf , and we make a recursive call to getPossibilities with the set Yf and term

f(t). i.e adding new frame corresponding to it. The third step decrementation is to saturate the possibility

Y ∈ Lk if such Yf is found by creating new possibilities after adding the new predicates of the form P f for

every possibility calculated in Rl for Yf . The incrementation and decrementation steps are performed for

all the function symbols f ∈ F for the chosen possibility Y.

For the induction step we make the case distinction for all three steps of the procedure. For the

�rst case let l be the saturation step. This step only updates the local variables, speci�cally L for the

possibility Y if there is a clause of the form P1(x) ∧ · · · ∧ Pn(x) → Q1(x) ∨ · · · ∨ Qm(x) in the reduced

clause set C such that {P1, . . . , Pn} ⊆ Y and Qj 6∈ Y for j ∈ {n + 1, . . . , n +m}. The algorithm removes

Y and adds all the new possibilities Z = {Y ∪ {Ql} | l ∈ {1, . . . ,m}} into L. As we know from induction

hypothesis that there is a Y ∈ L such that t ∈ PH for all P ∈ Y, and for H to satisfy the clause

P1(x)∧ · · · ∧Pn(x)→ Q1(x)∨ · · · ∨Qm(x) there must exist a j ∈ {1, . . . ,m} such that t ∈ QHj , and we also

know that for j the possibility Y ′ = Y ∪ {Qj} is part of Z added into L, after the saturation step there

18

exists a possibility Y ′ ∈ L such that t ∈ PH for all P ∈ Y ′.

For the second case, let l be the incrementation step. This step creates a new call to the procedure if

there is no shortcut available in R and, otherwise does not change anything. A new frame (Yf , f(t), {Yf}, 0)

is added into the stack Si+1 for the possibility Y with Yf = {P | (P, f) ∈ D(C), P f ∈ Y}. Now as

for the model H, we know that t ∈ P fH for all P ∈ Yf and there is an increasing clause of the form

P f (x) → P (f(x)) for every P f , therefore f(t) ∈ PH for every P ∈ Yf . Which proves our claim, as the

stack Si+1 contains the possibility Yf such that f(t) ∈ P for all predicates P ∈ Yf .

For the third case, let l be the decrementation step. In this step the procedure call returns

with the set of possibilities Lf calculated for the Yf . And the procedure removes Y and adds all the

possibilities in {Y ∪ {P f | (P, f) ∈ D(C), P ∈ Z} | Z ∈ Lf}. We know from the induction hypothesis that

before the recursive call returns there must exist a possibility Z in the returned set Lf of the recursive

call frame such that f(t) ∈ PH for all P ∈ Z. Now the algorithm updates the possibility Y by adding

{P f | (P, f) ∈ D(C), P ∈ Z}, but as we know f(t) ∈ PH for all P ∈ Z and there exists a decreasing clause

of the form P (f(x)) → P f (x) for all P ∈ Z, then for the model H to satisfy these clauses we must have

t ∈ P fH for all P ∈ Z if (P, f) ∈ D(C), which proves the claim that after the execution of this step there

exists the possibility Y ′ = Y ∪{P f | (P, f) ∈ D(C), P ∈ Z} in L such that t ∈ PH for all predicates P ∈ Y ′.

And this concludes our induction step.

19

Chapter 4

Optimizations and Variants

4.1 Shortcuts

We provide some optimizations to improve the best case of the algorithm by reusing some of the computa-

tion. We use the notion of shortcuts to save the possibilities calculated for some set X of predicates and

for some term t in getPossibilites. As we are dealing with non ground clauses after the reduction, in most

cases we can reuse the possibilities calculated for X with other terms as well.

Example 4.1.1.

Consider the following set of reduced clauses:

C6 := {P (x)→ Qf (x), P (x)→ Rg(x),

Q(x)→ S(x) ∨ T (x), S(x)→ P (x),

R(x)→ Qg(x)}

with D(C6) = {(Q, f), (R, g), (Q, g)}

The algorithm starts with Xa = {P} and expands the possibilities set La for the �at clauses as

La = {{P,Qf , Rg}}

Then we make another call to the procedure looking for Xf(a) = {Q} and expanding the set Lf(a) of

possibilities using the �at clauses as

Lf(a) = {{Q,S, P}, {Q,T}}

The algorithm returns as these are fully saturated. Then the algorithm starts looking for possibilities for

20

Xg(a) = {R} and expands the possibilities to

Lg(a) = {{R,Qg, P}}

And then algorithm has to �nd the possibilities for Xg(g(a)) = {Q} but as it is the same as Xf(a) the

possibilities calculated by the algorithm would be the same as Lf(a)

Lg(g(a)) = {{Q,S, P}, {Q,T}} = Lf(a)

we could have saved this computation if we had saved already calculated possibilities for Xf(a).

We propose to save the computed set of possibilities for a set of predicates as long as they are

valid, because we can not always reuse previously calculated possibilities as there might be the case that

some possibility is removed because of a loop found due to the working set W but that possibility might

be not bad for some other working set W ′.

Example 4.1.2.

Consider the following set of reduced clauses:

C7 := {P (x)→ Qf (x), P (x)→ Rg(x),

Q(x)→ Sg(x) ∨ T (x), S(x)→ Qh(x),

R(x)→ Sg(x)}

with D(C7) = {(Q, f), (R, g), (S, g), (Q, h)}

The algorithm selects Xa = {P} and expands the possibilities La for �at clauses as

La = {{P,Qf , Rg}}

Then the algorithm makes a recursive call to getPossbilities looking for possibilities for Xf(a) = {Q} and

expanding its possibilities using the �at clauses as

Lf(a) = {{Q,Sg}, {Q,T}}

Then the algorithm call again getPossbilities for Xg(f(a)) = {S} because of Sg in the �rst possibility and

expands its possibilities as:

Lg(f(a)) = {{S,Qh}}

As the only possibility Lg(f(a)) has Qh in it, algorithm needs to look for the possibilities for Xh(g(f(a))) = {Q}

again but then it has found the loop as Xh(g(f(a))) is part of the working set W so algorithm removes the

possibility {S,Qh} from Lg(f(a)). As this is the only possibility in Lg(f(a)) we remove the possibility {Q,Sg}

21

from Lf(a) as well so the only good possibility left in Lf(a) is {Q,T} which is fully saturated and hence we

return. Now algorithm searches possibilities for Xg(a) = {R} and adds Sg to update the set of possibilities

as

Lg(a) = {{R,Sg}}

The algorithm then looks for possibilities for Xg(g(a)) = {S} which is the same as Xg(f(a)) for which the

algorithm did not �nd any good possibilities because of a loop. But now if we allow the algorithm to

use already calculated possibilities for Xg(f(a)) algorithm will return false deciding that there is no �nite

Herbrand model for C7 which is wrong because there is a �nite Herbrand model i.e.

H = {P (a), Qf (a), Rg(a), Q(f(a)), T (f(a)), R(g(a)), Sg(g(a)),

S(g(g(a))), Qh(g(g(a))), Q(h(g(g(a)))), T (h(g(g(a))))}

Consider the following diagram to illustrate the recursive execution of getPossibilities without

using shortcuts. Each node represents the �nal values of the local variables t : Xt : Lt, the symbol × on top

of a possibility means it was calculated and removed and the symbol 	 means the possibility was removed

because the loop was found in the call.

a : {P} : {{P,Qf , Rg}}

f(a) : {Q} : {
×

{Q,Sg}, {Q,T}}

g(f(a)) : {S} : {
	

{S,Qh}}

g(a) : {R} : {{R,Sg}}

g(g(a)) : {S} : {{S,Qh}}

h(g(g(a))) : {Q} : {
×

{Q,Sg}, {Q,T}}

g(h(g(g(a)))) : {S} : {
	

{S,Qh}}

We describe below an optimized algorithm for getPossibilities with the set R of shortcuts. We

propose to save the set L of possibilities for a set X of predicates as a tuple (X ,LHeads,L) in the set R,

where LHeads is the set of all the sets of predicates for which the loop has been found during the calculation

of this shortcut. To illustrate consider Example 5.1.2 again, we were not able to use the shortcut calculated

for {S} because of the loop due to {Q} so we save the shortcut for {S} as ({S}, {{Q}}, ∅) and we remove

this shortcut from R before returning from the call of getPossibilities with X = {Q}. We remove the

22

shortcut (X ′,L′Heads,L′) before returning from a call with X if X ∈ L′Heads because we know that we have

removed some possibilities for X ′ due to the loop originating from X and which might be a valid in some

other part of the model.

Following is the new algorithm for getPossibilities.

Algorithm 4: getPossibilities(X ,R ,W , C).
Input : A set X of predicates, a set R of shortcuts, current working set W of sets of predicates and

a normalized set C of MFOL+ clauses

Output: A set of updated shortcuts R

L0 ← {X}, k ← 0,B ← ∅,LHeads ← ∅

repeat

k ← k + 1

Lk ← Lk−1
for all P1(x) ∧ · · · ∧ Pn(x)→ Q1(x) ∨ · · · ∨Qm(x) ∈ C do

for all Y ∈ Lk such that {P1, . . . , Pn} ⊆ Y and there is no 1 ≤ i ≤ m such that Qi ∈ Y do

Lk ← ((Lk \ {Y}) ∪ {Y ∪ {Ql} | l ∈ {1, . . . ,m}}) \ B

if Y 6∈ Lk then

B ← B ∪ {Y}

for all Y ∈ Lk and f ∈ F with Yf = {P | (P, f) ∈ D(C), P f ∈ Y} such that Yf 6= ∅ do

Lk ← Lk \ {Y}

if Yf 6∈ W then

if (Yf ,LfHeads,Rl) 6∈ R then

R ← getPossibilities(Yf ,R,W ∪ {Yf}, C)

LHeads ← LHeads ∪ LfHeads with (Yf ,LfHeads,Rl) ∈ R

Lk ← (Lk ∪ {Y ∪ {P f | (P, f) ∈ D(C), P ∈ Z} | Z ∈ Rl, (Yf ,L′Heads,Rl) ∈ R}) \ B

B ← B ∪ {Y}

else

LHeads ← LHeads ∪ {Yf}

until Lk = Lk−1
R ← R \ {(X ′,L′Heads,L′k) | (X ′,L′Heads,L′k) ∈ R,X ∈ L′Heads}

return R∪ {(X ,LHeads,Lk)}

23

As this new algorithm getPossibilities returns the setR of shortcuts instead of set L of possibilities.

We need to update the condition in the main algorithm as well. Instead of checking if Xa is part of the

return set La, we check if there is a shortcut (Xa,La) calculated for Xa in the returned set R of shortcuts.

Following is the updated main algorithm.

Algorithm 5:

Input : A normalized set C of Monadic clauses

Output: True if the set C has a �nite model and false otherwise

(non-deterministically) guess a set Xa of predicates.

R ← getPossibilites(a,Xa, {Xa}, CXa)

if Xa ∈ La with (Xa,La) ∈ R then

return true

else

return false

4.2 Monadic Horn Clauses

In this section we consider the Horn case of our monadic clauses because there might be certain scenarios

where we want to have the least model property in our logic like in database theory, or we do not need the

expressiveness of disjunctions on right-hand of the clauses.

As we only allow one predicate on the right-hand side of the clauses, we do not have multiple

possibilities for a set of predicates, we only have one possibility which we will call a set of consequences for

this section. We can have a much simpler algorithm to decide the existence of a �nite Herbrand model for

a set of monadic Horn clauses. As there is just one set of consequences for any set of predicates, we can

always reuse it whenever we need to �nd the consequences of the same set of predicates. The shortcuts are

simple too, now they are just pairs of two sets X of predicates (reasons) and L of predicates (consequences).

We do not need to keep track of loop heads for shortcuts, because as soon as we �nd a loop we know that

there is no �nite Herbrand model for the clause set, and we return by adding an empty shortcut. We keep

on returning empty shortcuts until we get to the main procedure with an empty shortcut for Xa which

means the main procedure returns false. For this Horn case we do not need to change the main algorithm

apart from changing the condition Xa ∈ La to Xa = La as La is a set of consequences.

We provide the following simpler and e�cient algorithm getPossibilities for monadic Horn clauses.

24

We do not formally prove that this new algorithm is only exponential in the size of clauses but it is easy

to see that you can have only exponentially many recursive calls because of the working set W and the

termination condition. And within a recursive call, the algorithm can make recursive calls only polynomially

many times for each function symbol. The total number of recursive calls are still exponential because we

save the calculated consequences in R and we need to calculate them only once.

Algorithm 6: getPossibilities(X ,R ,W , C).
Input : A set X of predicates, a set R of shortcuts, current working set W of sets of predicates and

a reduced set C of monadic Horn clauses

Output: A set of updated shortcuts R

L0 ← {X}, k ← 0

repeat

k ← k + 1

Lk ← Lk−1
for all P1(x) ∧ · · · ∧ Pn(x)→ P (x) ∈ C such that {P1, . . . , Pn} ⊆ Lk do

Lk ← Lk ∪ {P}

for all f ∈ F with Yf = {P | (P, f) ∈ D(C), P f ∈ Lk} such that Yf 6= ∅ do

if Yf ∈ W then

return R∪ {(X , ∅)}

if (Yf ,Rl) 6∈ R then

R ← getPossibilities(Yf ,R,W ∪ {Yf}, C)

if Rl 6= ∅ with (Yf ,Rl) ∈ R then

Lk ← Lk ∪ {P f | (P, f) ∈ D(C), P ∈ Rl}

else

return R∪ {(X , ∅)}

until Lk = Lk−1
return R∪ {(X ,Lk)}

Optionally we can also make the algorithm deterministic if we do not allow to have mixed clauses

with both x and a in the normalized clauses. We can then assume that the normalized set C has only one

positive clause of the form > → A(a), where A is a special predicate we add in P which only occurs apart

for this positive clause, alone on the left hand side of ground clauses. If there is no such predicate we add

a new one A, add the clause > → A(a) to C and replace > by A(a) in every other positive clause. It is

clear that this change does not a�ect the existence of a �nite Herbrand model for C. This remove the need

25

of non deterministic choice of Xa as well as the reduction of clauses.

We can modify the main algorithm as follows.

Algorithm 7:

Input : A normalized set C of Monadic Horn clauses

Output: True if the set C has a �nite model and false otherwise

La ← getPossibilites(a, {A}, {{A}}, CXa)

if La 6= ∅ then

return true

else

return false

4.3 Multiple Constants

Restricting to only one constant curtails the expressiveness of monadic clauses. We can remove this restric-

tion and extend the algorithms given in Chapter 4 to use multiple constants instead of the constant a. We

de�ne the set F0 as the set of �nitely many constant symbols (nullary function symbols) and the terms are

created over a �nite set F of unary functions, F0 and the variable x.

For a set C of clauses with multiple constants from F0, in order to decide the existence of a �nite

Herbrand model. We guess the sets Xc of predicates for every constant c ∈ F0. And reduce the clause set

C for all the guessed sets Xc for every c ∈ F0 iteratively to get the reduced set C′ of clauses. As after the

reduction we have eliminated the ground parts of the clauses, the clauses contain only x, so they cannot talk

about terms having di�erent constants. So the parts of the model involving a constant a are independent

of those for another constant b where a, b ∈ F0 and a 6= b. We can decide the existence of a �nite Herbrand

model for C i� we �nd for every constant c ∈ F0 that there exists a �nite Herbrand model for C′ and the

guessed set Xc using the algorithm proposed in Chapter 3. If we do not �nd a �nite Herbrand model for

any of the guessed sets Xc, then we return false because we know that either the guess was wrong or there

is not �nite Herbrand model for C.

26

As we look for loops for every constant separately, we do not need to update the procedure get-

Possibilities de�ned in Chapter 3. Updating the main procedure as follows would be enough to incorporate

multiple constants.

Algorithm 8:

Input : A normalized set C of Monadic clauses

Output: True if the set C has a �nite model and false otherwise

(non-deterministically) guess a set Xc of predicates for every constant c ∈ F0.

calculate C′ a reduced set of C for all the guessed sets Xc

for all c ∈ F0 do

Lc ← getPossibilites(c,Xc, {Xc}, C′)

if Xc 6∈ Lc then

return false

return true

27

Chapter 5

Conclusion

We proposed monadic clauses a novel decidable fragment of �rst order logic in Chapter 2 and gave a

comparison with some of the other decidable fragments. We also provided a terminating algorithm in

Chapter 3 for deciding the existence of �nite Herbrand Model for monadic clauses. In Chapter 4 we

provided some optimizations and special cases of the algorithm to better suit some problems. In contrast

to the algorithm in [1], the presented algorithm does not blindly compute all possibilities, but works in a

goal-oriented way by calling getPossibilities only for sets X that are needed to construct a �nite Herbrand

model.

5.1 Future Work

As future work, we propose exploring real world problems which can be solved using this fragment of

logic e�ciently. We can also study the use of monadic clauses for knowledge representation and also for

knowledge extension of relational databases as a counterpart to Datalog. On the theoretical side, it would

be interesting to know the precise complexity of our problem, i.e., whether it is ExpTime-complete as for

anti-Horn clauses [1], or harder.

28

Bibliography

[1] Borgwardt, S., Morawska B. Finding Finite Herbrand Models, LTCS-Report 11-04, TU Dresden(2011),

see http://lat.inf.tu-dresden.de/research/reports.html.

[2] Baader, F., Narendran, P.: Uni�cation of concept terms in description logics. J. Symb. Comput.

31(3), 277-305 (2001)

[3] Heinrich Behmann, Beiträge zur Algebra der Logik, insbesondere zum Entscheidungsproblem, in

Mathematische Annalen (1922)

[4] Löwenheim, L. (1915) "Über Möglichkeiten im Relativkalkül," Mathematische Annalen 76: 447-470.

Translated as "On possibilities in the calculus of relatives" in Jean van Heijenoort, 1967. A Source

Book in Mathematical Logic, 1879-1931. Harvard Univ. Press: 228-51.

[5] Ackermann, W., Hilbert, D. Grundzüge der Theoretischen Logik. Springer Berlin Heidelberg, Volume

27, 1949. Print-ISBN:978-3-642-52790-6; English translation Principles of Mathematical Logic, R. E.

Luce, ed., (Chelsea Publishing Company, New York).

[6] Ceri, S., Gottlob, G., Tanca, L.: Logic Programming and Databases. Springer (1990)

[7] Gottlob, G., Orsi, G., Pieris, A., Simkus, M.: Datalog and its extensions for semantic web databases.

In: Eiter, T., Krennwallner, T. (eds.) Reasoning Web 2012. LNCS, vol. 7487, pp. 54-77. Springer,

Heidelberg (2012)

[8] Calì, A., Gottlob, G., Lukasiewicz, T., Marnette, B., Pieris, A.: Datalog+/-: A family of logical

knowledge representation and query languages for new applications. In: Proc. of LICS, pp. 228-242

(2010)

[9] Andréka, H., van Benthem, J., Németi, I.: Modal languages and bounded fragments of predicate

logic. J. of Philosophical Logic 27(3), 217-274 (1998)

29

[10] Beeri, C., Vardi, M.Y.: The implication problem for data dependencies. In: Proc. of ICALP, pp.

73-85 (1981)

30

	Introduction
	Monadic Clauses
	Preliminaries
	Monadic Clauses
	Normalized Clause Sets
	Reduced Clause Sets

	Possibilities

	Finding Finite Herbrand Models
	Exploring Possibilities
	Finding Loops
	Bad Possibilities
	Proofs
	Termination
	Correctness

	Optimizations and Variants
	Shortcuts
	Monadic Horn Clauses
	Multiple Constants

	Conclusion
	Future Work

