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Abstract

Generalizations of a collection of concepts can be computed by the least
common subsumer (lcs) which is a useful inference for building knowledge
bases. For general FL0-TBoxes the lcs need not exist. In this thesis, we
devise a condition to check whether a concept is the lcs of two concepts
w.r.t. a general FL0-TBox. We also define the characterizations for the
existence of the lcs. Last, we show that if the lcs exists, then we can
compute the lcs and the upper bound for the role-depth of the lcs.
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1 INTRODUCTION

1 Introduction

Nowadays, ontologies have become popular resources to store knowledge bases across domain ar-
eas and to describe controlled vocabularies. Moreover, ontologies are good to support automated
reasoning which is able to exploit implicit information. Since the standardization of web ontology
language (OWL) ([Gro04],[Gro12]) was designed, many knowledge engineers build and maintain
their applications by enriching their data vocabularies to describe more notions from their applica-
tion domain in a precise way.

The formalism underlying OWL are Description Logics (DLs) [BCM+03]. Description Logics
(DLs) are introduced as a decidable fragment of First Order Logic (FOL). The basic vocabularies of
DL are comprised of unary predicates called concept names and binary predicates called role names.
Using a point of view of programming languages, a concept name can be described as a class of
objects and a role name represents a relation between two objects. For instance, we have Composer
or Painter as a concept whose the objects may be people who work as a composer or a painter,
respectively. On the other side, compose or draw describe relations between a person, which is
a composer or a painter, with a type of art he composes. To give brief explanations about what
constructors used in DLs, we use a very basic DL, namely ALC, whose constructors are commonly
used in FOL. They are conjunction (u), disjunction (t), negation (¬), existential restrictions (∃),
and value restrictions (∀). We take one example using these constructors by considering some
concept and role names mentioned before, such as

Composer u ¬Painter u ∃.compose(Song t Poem) u ∀gender.Male,

where Song, Poem, and Male are concept names and gender is a role name. The logical statement
above describes a set of objects which are composers, but not painters, who compose a song or a
poem, and all of them are male. Next, the set of all objects in a specific domain is denoted by the
top concept >. Conversely, the empty set is represented by the bottom concept ⊥.

In Description Logic (DL) system [BCM+03], such a knowledge is captured by three compo-
nents. First, we have a description language that defines the formal syntax and semantics. Second,
we have a knowledge base that consists of TBox and ABox. TBoxes defines the terminologies occur
in an application domain. It contains a set of implication between DL-concepts. A general TBox
allows complex concepts to occur on the right- and the left-hand side of implication. An ABox
captures facts in the form of an individual of a DL-concept and a relationship between individuals
in a specific "world" of a knowledge base. Last, the system has a reasoning component that derives
implicit facts from the represented knowledge.

In DLs, the classical standard inferences, like subsumption and instance checking, are already
well-investigated. Subsumption is the reasoning task to check whether a sub-/superconcept rela-
tionship holds between the pair of concepts, whilst the instance checking determines for a given
individual whether it belongs to a given concept with respect to a given knowledge base. The
non-standard inferences that describe the generalization of a given pair of concepts or a single indi-
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1 INTRODUCTION

vidual are called least common subsumer (lcs) and most specific concept (msc). Intuitively, the lcs
yields a concept which captures all commonalities of pairs of input concepts such that this concept
is the least common among other concepts that subsume the input concepts. This is also defined
analogously for msc, but only to generalize an individual into a concept. Therefore, we are able
to see that the computation for the lcs and msc are based on subsumption and instance checking,
respectively.

In practice, the lcs and msc support building and maintaining the knowledge base. A knowledge
engineer can gain more benefits to define a relevant concept that generalizes a pair of concept or an
individual. For instance, the resulted lcs- or msc-concept can be processed and investigated by the
knowledge engineer, if necessary, to be added thereafter in a knowledge base as new information.
One of the applications where non-standard inferences services, such as lcs or msc, can greatly
enhance the usability of DL-systems was already well-investigated in the domain area of process
engineering [BT01].

Unfortunately, neither the lcs nor the msc need to exist, if compute w.r.t. general TBoxes in
some description logics, for instance EL [Baa03]. As we know that EL is also one of inexpressive de-
scripton logics that only has a few number of constructors. Here we are interested to investigate the
existence of lcs in the other lightweight DLs, which is FL0. This specific DL only allows the occur-
rence of top concept, conjunction over complex concepts, and value restrictions. For DL FL0, the
computational worst-case complexity for standard inferences, such as subsumption, reaches the class
ExpTime or worse [BBL05]. Even though FL0 is a fragment of ALC and both of them share the same
complexity class for deciding subsumption, the investigation to look for a well-behaved approach for
the characterizations of the subsumption in FL0 is still required. So far, the characterizations for
subsumption in FL0 itself have been approached by automata theory ([BCM+03],[Pen15]), deciding
inclusion between two models of input concepts [Pen15], and structural algorithmic solutions that
construct models by non-deterministic construction rules ([HST99],[Pen15].

Some related works on computing the least common subsumer, which consider the presence of
value restrictions, have been devised previously through various kinds of methods. For instance,
[K98] devised an automata-based algorithm for computing the lcs in ALN that allows value re-
strictions with other constructors. Moreover, a description-graph approach was also employed for
unfoldable TBoxes in [BTK03], where an lcs computation algorithm for the DL FL+

0 was devised.
This DL augments FL0 with transitive roles.

Another related works to compute the lcs, which consider value restrictions combined with
additional constructors, such as primitive negation, existential restrictions, or number restrictions,
are also probed in [BK98] and [KM00]. Here they use a graph-based approach, where concept
descriptions are represented in a description graph. However, all literatures that are mentioned
previously did not include general FL0-TBoxes during the computation.

Now, let us consider the following motivating example. Let Tex be a cyclic FL0-TBox and
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1 INTRODUCTION

consists of the following axioms:

A1 v B1 uB2

A2 v B1 uB3

B1 uB2 v ∀r.B1 u ∀r.B2

B1 uB3 v ∀r.B1 u ∀r.B3

Then, we want to compute the lcs of concepts A1 and A2. With respect to Tex, the lcs of A1 and A2

does not exist because the cyclic definitions of A1 and A2 allow us to always have infinite number
of common subsumers of A1 and A2 without having the least one. However, if we extend Tex with
an additional axiom B1 v ∀r.B1, then the lcs of A1 and A2 w.r.t. Tex exists, which is B1.

In this thesis, we are about to handle three following problems whose the solutions will be
described in different further sections. Now, let C,D be FL0-concepts and T be a general FL0-
TBox.
Problems:

I. Let E be an FL0-concept. Is concept E the lcs of C and D w.r.t. T ?

II. Does the lcs of C and D w.r.t. T exist?

III. If the lcs of C and D w.r.t. T exists, then what is the lcs? And how big is the size of the lcs?

In order to provide solutions for the problems above, we will present characterizations for the
existence of the lcs w.r.t. general FL0-TBoxes. We will also compute the lcs and the size of the lcs
if it exists.

This thesis is organized as follows: First, we introduce basic notions in Description Logic FL0

and least common subsumer (lcs) in Section 2. Two primary means to characterize the existence of
the lcs, which are functional models and simulation relation, will be described in Section 3 and 4,
respectively. Afterwards, we show characterizations to decide whether a concept is the lcs of two
input concepts w.r.t. a TBox to address Problem I above. The next contribution of this thesis,
presented in Section 6, is to characterize the existence of the lcs as questioned in Problem II above.
Then, we address Problem III that considers if the lcs of input concepts w.r.t. a TBox exists, then
we compute the lcs and measure how big the lcs is. This computation is described in Section 7. We
end this thesis with some conclusions and future works.
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2 DESCRIPTION LOGIC FL0 AND LEAST COMMON SUBSUMER

2 Description Logic FL0 and Least Common Subsumer

The main description logic in this thesis, namely FL0, will be discussed from its very basic notions
in terms of syntactical and semantical notations in the first subsection. Next, the non-standard
inference in terminological knowledge, which is least common subsumer will be explained in more
detail in the second subsection. Last, we show how to normalize our general FL0-TBox to a specific
normal form, called plane-axiom-normal-form (PANF). Eventually, we will have an assumptions how
our input concepts and TBox should look like for the problem of existence of the lcs and computing
the lcs, if it exists.

2.1 Description Logic FL0

In this thesis, we restrict all notions and definitions to the description logic FL0. Let NC and NR

be a set of concept names and a set of role names, respectively. In the following, we use A,B ∈ NC

for concept names and r, s ∈ NR for role names. FL0-concepts are built inductively by using the
following structures:

C,D ::= > | A | C u D | ∀r.C

In order to define the formal semantics of FL0, the notion of an interpretation is introduced.
An interpretation I = (∆I , ·I) consists of a non-empty domain (∆I) and ·I as a function which
interprets AI ⊆ ∆I and rI ⊆ ∆I × ∆I . The mapping ·I is extended to FL0-concepts which is
defined in Table 1.

Name Syntax Semantic

Top > ∆I

Conjunction C u D C I ∩ DI

Value Restriction ∀r.C {d ∈ ∆I | ∀e ∈ ∆I : (d,e) ∈ rI implies e ∈ C I}

Table 1: Syntax and Semantics of Description Logic FL0

A general TBox is a finite set of General Concept Inclusions (GCIs) of the form C v D. An
interpretation I satisfies C v D iff C I ⊆ DI . I is called a model of T iff it satisfies all GCIs in
the TBox.

Any FL0-concept is written in the form ∀r1.∀r2 · · · ∀rnA where A is a concept name and
ri ∈ NR, for all 1 ≤ i ≤ n. We shall abbreviate the prefix "∀r1.∀r2 · · · ∀rn" by "∀w" where the
word w = r1r2 . . . rn and w ∈ N∗R. For the case n = 0, we write "∀ε.A" to replace "A". Therefore,
we consider a normal form for a given concept and TBox to simplify the structural approach used
during computing generalizations. This normal form is called concept-conjunction-normal-form
(CCNF) [Pen15]. A concept is in CCNF iff it is of the form

8



2 DESCRIPTION LOGIC FL0 AND LEAST COMMON SUBSUMER

∀w1.A1 u . . . u ∀wn.An,

where Ai ∈ NC and wi ∈ N∗R, for all 1 ≤ i ≤ n.
The following rules written in Table 2 are applied exhaustively during the normalization to

CCNF, both for a concept and a given TBox.

Rules General Form CCNF
NF1 C u >  C

NF2 > u C  C

NF3 ∀w.>  >
NF4 ∀w.(C1 u . . . u Cn)  ∀w.C1 u . . . u ∀w.Cn

Table 2: CCNF Normalization Rules for TBoxes

It is easy to see that every CCNF concept resulted by one of the normalization rules is still
equivalent to the general one, i.e. they have the same extension in any interpretation. The termi-
nological reasoning task called subsumption is used to check whether a concept generalizes another
concept with respect to TBox T . Formally, it is defined as follows:

Definition 2.1. (Subsumption and Equivalence)
Let T be a TBox and C,D be FL0-concepts. C is subsumed by D w.r.t. T (denoted by C vT D)

iff CI ⊆ DI for all models I of T .
Two concepts C and D are equivalent w.r.t. T iff C vT D and D vT C.

2.2 Least Common Subsumer

As previously mentioned, subsumption is an important basic inference to compute the least common
subsumer (lcs) w.r.t. general FL0-TBoxes. Now we have the definition of lcs as follows:

Definition 2.2. (Least Common Subsumer)
Let T be a general FL0-TBox and C, D be FL0-concepts. An FL0-concept E is the least common
subsumer (lcs) of C and D w.r.t. T lcsT (C,D) iff:

• C vT E and D vT E

• For each concept F such that C vT F and D vT F, then E vT F.

Since we are dealing with general TBoxes, the occurrence of a cyclic definition should be
considered. This cyclic definition can affect the common subsumer of input concepts to not be
expressed as a finite concept. To avoid this problem, it is possible to limit the role-depth of the
computed concept which leads us to compute the role-depth bounded least common subsumer (k-
lcs). Suppose a concept C is of the form ∀w1.A1 u . . . u ∀wn.An. The notion of role-depth (rd(C))
of concept C is defined as follows:
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2 DESCRIPTION LOGIC FL0 AND LEAST COMMON SUBSUMER

rd(C) = max({|wi| | ∀wi.Ai is a conjunct in C and 1 ≤ i ≤ n})

Definition 2.3. (k-lcs)
Let T be an FL0 TBox, k ∈ N, and C,D be FL0-concepts. The FL0-concept K is the role-depth
bounded least common subsumer of C and D w.r.t. T (k-lcsT (C,D)) iff

• rd(K) ≤ k;

• C vT K and D vT K;

• For each FL0 concept K ′ with rd(K ′) ≤ k it holds that C vT K’ and D vT K’ implies K vT
K’.

If we take the example of Tex in Introduction, then the 0-lcsTex(C,D) is B1, the 1-lcsTex(C,D) is
B1 u ∀r.B1, and the 2-lcsTex(C,D) is B1 u ∀r.B1 u ∀rr.B1.

2.3 Normalizing FL0-TBoxes into PANF

In order to simplify the structural investigation for the model we use during computing the existence
of lcs, we normalize our TBox to a specific structure called plane-axiom-normal-form (PANF). We
will see that by considering our TBox in PANF, then we may reduce the decision problem for the
existence of the lcs of concepts descriptions w.r.t. a TBox to a decision problem for the existence
of the lcs of two concept names w.r.t. a TBox.

First of all, we consider to identify which basic elements that are presents in the given FL0-
concepts or TBoxes. This set of basic elements is called as a signature adopted from [Pen15].

Definition 2.4. (Signature)
For FL0-concepts C and D, the set of all occurring concept names and role names is called the
signature sig(C), sig(D), respectively. The definition of a signature can also be extended to a GCI
or even a TBox as follows:

• sig(C v D) := sig(C) ∪ sig(D)

• sig(T ) :=
⋃

CvD
sig(C v D)

For the sake of convenience, sig can also be extended to accept multiple arguments, i.e., sig(X1, . . . , Xn) :=
n⋃

i=1

sig(Xi), where any Xi is either an FL0-TBox, an FL0-concept, or a a GCI.

In the following for given input concepts C,D and a general FL0-TBox T , we always assume
that sig(C), sig(D) ⊆ sig(T ).

Now let us recall that an FL0-concept is in CCNF iff it is of the form

∀w1.A1 u . . . u ∀wn.An

10



2 DESCRIPTION LOGIC FL0 AND LEAST COMMON SUBSUMER

where wi ∈ N∗R and Ai ∈ NC , for all 1 ≤ i ≤ n. An FL0-TBox T is in PANF iff all left- and
right-hand sides of all GCIs in T are in CCNF and every value restriction ∀w.A, occurring in
T , has |w| ≤ 1 [Pen15]. This transformation firstly requires our TBox in CCNF and introduces
new concept names to abbreviate complex value restrictions. It results in PANF by applying the
following rules to the GCIs in T exhaustively. The rules below are the additional ones from Table
2.

Rules CCNF PANF
NF5 C1 u ∀rw.A u C2 v D  C1 u ∀r.B u C2 v D,∀w.A v B,B v ∀w.A

NF6 D v C1∀rw.A u C2  D v C1 u ∀r.B u C2, ∀w.A v B,B v ∀w.A

Table 3: PANF Normalization Rules for TBoxes

By introducing fresh concept names and new GCIs to the TBox, then equivalence between the
original TBox T and the new TBox T̂ w.r.t. all interpretations does not make sense here because
there will be concept names A ∈ sig(T̂ ) \ sig(T ) that are not mapped to a subset of the domain of
the interpretations of T . Therefore, it is more sensible to say that models of the original TBox can
be extended to be a model of the new TBox since sig(T ) ⊆ sig(T̂ ) such that a model of T̂ should
also be a model of T . In order to generalize this idea, please consider the following definition about
a conservative extension adopted from [Pen15].

Definition 2.5. (Conservative Extension)

Given general FL0 TBoxes T and T̂ , we say that T̂ is a conservative extension of T if

• sig(T ) ⊆ sig(T̂ ),

• every model of T̂ is a model of T , and

• For every model I1 of T there exists a model I2 of T̂ such that the extensions of the concept
names and role names from sig(T ) coincide in I1 and I2, i.e.,

– AI1 = AI2 for all concept names A ∈ sig(T ), and

– rI1 = rI2 for all role names r ∈ sig(T ).

Now let us consider the following lemma which states the list of properties for a PANF TBox
taken from [Pen15].

Lemma 2.6. Let T be a general FL0-TBox, T̂ be the PANF TBox of T , and C, D be FL0-concepts.

1. T̂ is a conservative extension of T

2. C vT D iff C vT̂ D holds for any concept descriptions with sig(C), sig(D) ⊆ sig(T ).

3. If T is in CCNF, then T is transformed into T̂ using the rules of Table 3,

11



2 DESCRIPTION LOGIC FL0 AND LEAST COMMON SUBSUMER

• with a linear number of rule applications in the size of T , and

• T̂ is polynomial in the size of T .

4. Let T ′ = T ∪ {AC v C,D v AD} with two fresh concept names AC , AD not occurring in
sig(C), sig(D), and sig(T ). It holds that

C vT D iff AC vT ′ AD

The lemma above shows that for every general FL0-TBox T , there exists a PANF TBox T̂
obtained from T through the normalization rules written in Table 3. Furthermore, Claim 2 of
the lemma above convinces us that the subsumption between two concepts still holds although the
corresponding original TBox is already extended to a PANF TBox. Then, by introducing Claim
4 of the lemma above, it shows us that deciding subsumption between concept description w.r.t.
a general TBox T coincides with deciding subsumption between two fresh concept names, not
occurring in T , w.r.t. the PANF TBox of T .

Based on Lemma 2.6, we can derive more characterizations for the existence of the lcs of input
concepts. First, we show that the lcsT (C,D) is equal to the lcsT̂ (C,D), where T̂ is the PANF of
T . Second, we show that deciding the existence of the lcs of concept descriptions w.r.t. a TBox T
are the same as deciding the existence of the lcs of two fresh concept names w.r.t. a conservative
extension of T .

Lemma 2.7. Let T1 be a general FL0-TBox, T2 is the PANF of T1, and C,D be FL0-concepts
which are built only from NC and NR. It holds that

1. If E is the lcsT1(C,D), then E is the lcsT2(C,D),

2. Let AC and AD be fresh concept names not occurring in NC and sig(T1) such that
T ′1 := {AC v C,AD v D} ∪ T1. It holds that

E is the lcsT1(C,D) iff E is the lcsT ′1 (AC , AD)

Proof:

1. Let E be the lcsT1(C,D) By Definition 2.2, we know that

C vT1 E, D vT1 E and for all F ∈ csT1(C,D), we have E vT1 F.

Since T2 is a conservative extension of T1, by Claim 2 of Lemma 2.6, we have

C vT2 E, D vT2 E and for all F ∈ csT2(C,D), we have E vT2 F.

which implies that E is the lcsT2(C,D).

12



2 DESCRIPTION LOGIC FL0 AND LEAST COMMON SUBSUMER

2. “⇒”: If E is the lcsT1(C,D) , then by Definition 2.2, we know that

C vT1 E, D vT1 E and for all F ∈ csT1(C,D), we have E vT1 F.

Since T ′1 is a conservative extension of T1, by Claim 2 of Lemma 2.6, we have

C vT ′1 E, D vT ′1 E and for all F ∈ csT ′1 (C,D), we have E vT ′1 F.

Since AC vT ′1 C and AD vT ′1 D, we also have

AC vT ′1 E, AD vT ′1 E and for all F ∈ csT ′1 (AC , AD), we have E vT ′1 F.

It implies that E is the lcsT ′1 (AC , AD).

“⇐”: Now, if E is not the lcsT1(C,D), then one of the three properties of Definition 2.2 may
not be satisfied.

• C 6vT1 E.
It means that there is a model I of T1 such that

CI 6⊆ EI . (1)

Since T ′1 is a conservative extension of T1, there is a model I ′ of T ′1 such that
∀A ∈ NC , we have AI

′
= AI , AI

′

C = CI
′

= CI , and EI
′

= EI . Together with (1)
we have AC 6vT ′1 E. Clearly, we have E is not the lcsT ′1 (AC , AD).

• D 6vT1 E.
Using the same argument as C 6vT1 E.

• Assume that C vT ′1 E and D vT ′1 E, but ∃F ∈ csT1(C,D) such that E 6vT1 F .
Since T ′1 is a conservative extension of T1, sig(E), sig(F ) ⊆ sig(T1), and by Claim 2
of Lemma 2.6, we have E 6vT ′1 F . Therefore, E is not the lcsT ′1 (AC , AD).

We have introduced another normal form for FL0-TBoxes, namely PANF, as well as defined
additional properties to decide the existence of the lcs of input concepts. However, the normalization
of TBoxes into PANF introduces new concept names. The question is whether the lcs w.r.t. PANF
TBoxes can be expressed without these additional concept names.

The answer is definitely yes. It can be solved by replacing these additional concept names,
occurring in the lcs-concept, with complex concepts that use these concept names on the right- and
the left-side of GCIs of the PANF TBox. This is the reason why we introduce two GCIs for a new
concept name B in both sides when defining PANF as presented in Table 3. Now we are ready to
find the upper bound for the role-depth of the lcs of input concept names w.r.t. a PANF TBox, if
the lcs exists. This also means that in the following our TBoxes are only written in PANF.

From now on, by Lemma 2.7, we can assume that the inputs for deciding the existence of
the lcs and computing the lcs, if it exists, are two concept names occurring in a TBox in PANF
without loss of generality. This also enables us to reduce all three research questions mentioned

13



2 DESCRIPTION LOGIC FL0 AND LEAST COMMON SUBSUMER

in Introduction to the problems with the same questions, but the TBox T is in PANF and the
concepts C and D are concept names occurring in T .

Before showing the characterization for the existence of least common subsumer, we need a
basic means to characterize it. Those will be discussed in the next section, namely functional model
of a concept w.r.t. a TBox and the graph of a functional model.

14



3 FUNCTIONAL MODELS AND GRAPH MODELS

3 Functional Models and Graph Models

Here we describe two models for FL0, namely functional model and graph model. According to its
structure, the first one has infinite number of domain elements, meanwhile the second one is the
finite type of functional model. It will be shown that even though they have different structures,
they are actually semantically equivalent.

3.1 Functional Model of a Concept w.r.t. a TBox

In the previous section, we have introduced the description logic FL0 and least common subsumer
as non-standard inferences we can apply for input concepts w.r.t. a given TBox. As mentioned
previously that computing subsumption is a basic inference for the existence of least common
subsumer. However, to check subsumption relationship, firstly we need to have an appropriate
tree-model structure that represents a given concept w.r.t. general FL0-TBox. Beforehand, we
consider a set of value restrictions which concept C entails through general FL0-TBox. This will
be represented in two different sets which are LT (C) and LT (C,A), where A ∈ NC .

Definition 3.1. (LT (C) and LT (C,A)) [Pen15]
Let T be a TBox, C be an FL0-concept, and A ∈ NC . The set of value restrictions entailed by an
FL0-concept C is represented into two different sets as follows:

1. LT (C) := {(w,A) | C vT ∀w.A}.

2. LT (C,A) := {w | (w,A) ∈ LT (C)}.

The definition above states that LT (C) is the set of pairs (w,A), where w ∈ N∗R and A ∈ NC ,
such that C vT ∀w.A. Meanwhile, LT (C,A) merely extracts the set of words w from LT (C).

In general, LT (C) can be directly seen as a complete n-ary tree, where n = |NR|, whose nodes
are words over N∗R and each node or element is labeled by a set of concept names. This leads us to
an idea to make a tree-like representation of LT (C), so called functional model, where every node
w ∈ N∗R, of the tree, has exactly one successor for every role name in NR.

Definition 3.2. (Functional Model of a Concept w.r.t. a TBox) [Pen15]
An interpretation I = (∆I , ·I) is a functional model of C w.r.t. T iff it satisfies the following
properties:

1. ∆I = N∗R and ∀r ∈ NR, then (u,v) ∈ rI iff v = ur.
This property represents the tree-structure of this model, such that each element has exactly n-
successors where n = | NR |. For each r ∈ NR, each element is only mapped to one r-successor
element. If I only satisfies this first property, then it is called a functional interpretation.

2. Let I be a functional interpretation. ∀C v D ∈ T , it holds that CI ⊆ DI .
It explicitly means that if I should satisfy all GCIs in T , then it is called a functional model
of TBox.
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3. Let I be a functional model of T and ε ∈ CI .
The tree-like model contains an initial element denoted by the empty word ε meaning that I
satisfies C at the root of the tree. It also implies that I is a functional model of C w.r.t. T .

It is easy to see that two functional interpretations I1, I2 over the same set of role names
always have the same domain and are structurally identical w.r.t. the interpretation of role names.
Due to that, we can easily apply intersection and subset operator to each interpretation I1, I2 that
are described in the following definition.

Definition 3.3. (Intersection, Union, and Subset over Functional Interpretations)
For functional interpretations I1 and I2 over the same domain N∗R, we have

1. An intersection I1∩I2 of functional interpretations I1 and I2 over the domain N∗R, such that

(a) For all A ∈ NC , we have AI1∩I2 = AI1 ∩AI2 [Pen15];

(b) For any FL0-concept C,we have CI1∩I2 = CI1 ∩ CI2 [Pen15];

2. A union I1 ∪ I2 of functional interpretations I1 and I2 over the domain N∗R, such that

(a) For all A ∈ NC , we have AI1∪I2 = AI1 ∪AI2 ;

(b) For any FL0-concept C,we have CI1∪I2 = CI1 ∪ CI2

3. I1 ⊆ I2 iff ∀A ∈ NC , it holds that AI1 ⊆ AI2 [Pen15].

Now, given a functional interpretation I, it is more convenient to only have an interpretation
IC,T , so called least functional model, that contains exactly the minimal information a functional
interpretation I must contain for all value restrictions in order to be a model of TBox and ε ∈ CI .
This type of interpretation is obtained in the following way.

Definition 3.4. (Least Functional Model of Concept w.r.t. TBox) [Pen15]
Let IC,T be the set of all functional models of C w.r.t. T . The functional model

IC,T =
⋂

J∈IC,T

J

is the least functional model (LFM) of C w.r.t. T s.t. IC,T ⊆ J for all J ∈ IC,T .

Since the lcs of two given concepts is the most specific subsumer, the LFMs of input concepts
are intuitively more suitable to be a basic representation during computing the existence of lcs. It
is due to the fact that the LFMs of input concepts also contain the most specific information from
the input concepts w.r.t. a given TBox.

The next lemma, taken from [Pen15], consists of claims which state important properties of
a functional model of TBox T as well as shows the correlation between the set LT (C) and the
least functional model IC,T . Last, this lemma also says that for deciding subsumption between two
concepts C and D, it is enough to decide the inclusion between the LFMs of C and D.
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Lemma 3.5.

1. Let I be a functional model of TBox T , it holds for any u ∈ N∗R, r ∈ NR, and A ∈ NC that

u ∈ (∀r.A)I iff ur ∈ (∀ε.A)I

2. Let I1 and I2 be functional models of TBox T over the same domain N∗R. The intersection
I1 ∩ I2 is again a functional model of T .

3. For any FL0-concept C and any concept name A ∈ NC , it holds that

LT (C,A) = AIC,T .

4. Let C and D be FL0-concepts. It holds that

C vT D iff ID,T ⊆ IC,T

Now we are interested to take a subtree, from a given functional interpretation I, which is
rooted in an element of I.

Definition 3.6. (subtree of a functional interpretation) Let I be a functional interpretation. The
subtree (I, u) of I rooted in u ∈ ∆I is defined as follows:

• ∆(I,u) := {w ∈ N∗R | uw ∈ ∆I};

• r(I,u) := rI , for all r ∈ NR.

• A(I,u) := {w ∈ N∗R | uw ∈ AI}, for all A ∈ NC ;

We show that a subtree of a functional model of a TBox is also a model of the TBox.

Lemma 3.7. Let I be a functional model of TBox T . The subtree (I, u) of I is a model of T .

Proof: Let E v F ∈ T be a GCI and v ∈ ∆(I,u). Assume that v ∈ E(I,u). We have to show that
v ∈ F (I,u). W.l.o.g. E and F are defined in the following PANF form:

E = A1 u . . . u ∀Ak u ∀r1.B1 u . . . u ∀r`.B`

F = A′1 u . . . uA′m u ∀r′1.B′1 u . . . u ∀r′n.B′n

where Ai, A
′
i′ , Bj , and B′j′ ∈ NC and rj , r′j′ ∈ NR, for all 1 ≤ i ≤ k, 1 ≤ i′ ≤ m, 1 ≤ j ≤ `, and

1 ≤ j′ ≤ n.
If v ∈ E(I,u), then v ∈ A(I,u)

i and uv ∈ (∀rj .Bj)
(I,u), for all 1 ≤ i ≤ k and all 1 ≤ j ≤ `. By

Definition 3.6, we know that uv ∈ AIi and regarding the tree-structure of a functional interpretation,

17
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we have vrj ∈ B(I,u)
j which implies that uvrj ∈ BIj and uv ∈ (∀rj .Bj)

I , for all 1 ≤ i ≤ k and all
1 ≤ j ≤ `. It means that uv ∈ EI .

Now, since I is a functional model of T , we have uv ∈ F I such that uv ∈ A
′I
i′ and uv ∈

(∀r′j′ .B
′I
j′ ) which implies that uvr′j′ ∈ B

′I
j′ , for all 1 ≤ i′ ≤ m and 1 ≤ j′ ≤ n. Because v and

vr′j′ are domain elements of ∆(I,u), we have v ∈ A(I,u)
i′ and vr′j′ ∈ B

(I,u)
j′ which also follows that

v ∈ (∀r′j′ .Bj′)
(I,u) by the structure of a functional interpretation, for all 1 ≤ i′ ≤ m and 1 ≤ j′ ≤ n.

Therefore, it holds that v ∈ F (I,u).

For any subtree, we are interested to only label elements up to a certain depth ` ∈ N. We call
this special subtree as the `-subtree (I`, u) of (I, u). In general, the `-subtree (I`, u) of (I, u) only
labels elements w of (I, u) where |w| ≤ `.

Definition 3.8. (`-subtree of (I, u))

Let (I, u) be a subtree of a functional interpretation I and ` ∈ N. (I`, u) is the `-subtree of (I, u)

which is defined as follows:

• ∆(I`,u) := ∆(I,u);

• r(I
`,u) := r(I,u), for all r ∈ NR;

• A(I`,u) := {w ∈ A(I,u) | (|w| ≤ `}, for all A ∈ NC .

Next, the `-subtree (I`, u) of (I, u) can be translated into a complex concept called `-characteristic
concept.

Definition 3.9. (FL0-characteristic concept)
Let (I, u) be a subtree of functional model of TBox T rooted in u ∈ ∆I . The k-characteristic
concept Xk(I, u), where k ∈ N, is defined as follows:

Xk(I, u) :=u{∀w.A | w ∈ ∆(I,u), w ∈ N∗R, |w| ≤ k,w ∈ A(I,u)}

The definition above also explicitly results in the k-characteristic concept in CCNF. In order
to make this definition well-defined, one should observe that by only using finite number of concept
and role names occurring in a TBox and for each k ≥ 0, there are only, up to equivalence, finitely
many k-characteristic concepts of an interpretation rooted in a domain element. Now, we have
to show another property that reveals a relationship between (Ik, u) and the LFM of a concept
K = Xk(I, u) w.r.t. the empty TBox.

Lemma 3.10. Let (Ik, u) be the k-subtree of (I, u) and K = Xk(I, u). It holds that

(Ik, u) = IK,∅.

18
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Proof:
We only need to prove that for all w ∈ N∗R and all A ∈ NC ,

w ∈ A(Ik,u) iff w ∈ AIK,∅

“⇒”: Let w ∈ A(Ik,u). It follows that |uw| ≤ k and w ∈ A(I,u). Let us compute K = Xk(I, u). By
definition of k-characteristic concept and since |w| ≤ k, we also have ∀w.A as a subconcept
that occurs in K, such that w ∈ AIK,∅ by definition of interpretation of an FL0-concept.

“⇐”: Let w ∈ AIK,∅ . By definition of interpretation of an FL0-concept, we know that there is
∀w.A as a subconcept in K. Since K = Xk(I, u) and rd(K) ≤ k, we know that |w| ≤ k which
implies that uw ∈ A(Ik,u).

Previously, we defined the LFM of a concept C w.r.t. a TBox T by looking for the least
model w.r.t. subset relationship (Definition 3.4). Next, we show an alternative way to compute the
LFM in stepwise with the inputs are only T and set of concept names NC,T occurring in T . This
computation results in a functional interpretation whose all elements are also assigned by a set of
concept names. We will show that the resulting functional interpretation is equal to the LFM.

Definition 3.11. Let T be a TBox in PANF and C ∈ NC,T . We define an infinite sequence of
functional interpretations

Y0
C,T ,Y1

C,T ,Y2
C,T , . . .

inductively as follows

AY
0
C,T := {ε | C vT A} for all A ∈ NC

and for all n > 0 we define

AY
n
C,T := {wr ∈ NR∗ | |w| = n− 1, r ∈ NR( u

w∈BY
n−1
C,T ,B∈NC

B) vT ∀r.A} for all A ∈ NC

Please note that the Y0
C,T ,Y1

C,T ,Y2
C,T , . . . are functional interpretation and thus the domain

elements and interpretation of role names are fixed. Furthermore, we define the infinite union as a
functional interpretation as follows:

YC,T :=
∞⋃

n=0
Yn
C,T

Please note that every functional interpretation Yi
C,T assigns elements w, where |w| = i, to

each concept name. This gives us the following property of YC,T that for each w ∈ NR, with
|w| = n, and A ∈ NC , we have
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w ∈ AYC,T iff w ∈ AY
n
C,T

Now, we show that YC,T is a model of T .

Lemma 3.12. YC,T is a model of T .

Proof:
It has to be shown that YC,T satisfies all the GCIs in T . Let L v R ∈ T be a GCI in T . Since T
is in PANF, we assume that L and R have the following form:

L = P1 u · · · u Pn u ∀r1.A1 u · · · u ∀rm.Am and (2)

R = P ′1 u · · · u P ′n′ u ∀r′1.A′1 u · · · u ∀r′m′ .A′m′ (3)

where

P1, . . . , Pn, P
′
1, . . . , P

′
n′ and A1, . . . , Am, A

′
1, . . . , A

′
m′

are concept names and r0, . . . , rm, r′0, . . . , r′m′ are role names for some n, n′,m,m′ ≥ 0.
Let w ∈ N∗R. We have to show that w ∈ LYC,T implies w ∈ RYC,T . Let n = |w| and

M := u
w∈BY

n
C,T ,B∈NC

B (4)

By induction on n we show that

M vT A for some A ∈ NC implies that A is a conjunct in M.

n = 0 : It follows that w = ε. By definition we have ε ∈ BY
0
C,T iff C vT B. Therefore, (4) yields

C vT M . Consequently, M vT A for a concept name A ∈ NC implies also C vT A. It
follows that ε ∈ AY

0
C,T and A is a conjunct in M .

n→ n+ 1 : Assume w = w′r and with |w′| = n. Let

Q′ := u
w′∈BY

n
C,T ,B∈NC

B and Q := u
w∈BY

n+1
C,T ,B∈NC

B

By definition of Yn+1
C,T and w = w′r with |w′| = n it holds that Q′ vT ∀r.Q. Obviously, Q′ vT

∀r.Q and Q vT A implies Q′ vT ∀r.A. By definition of Yn+1
C,T it follows that w = w′r ∈ AY

n+1
C,T

and therefore A is a conjunct in Q.

Suppose L v R ∈ T and w ∈ LYC,T . By assumption on the form of L (2) we have

w ∈ (P1 u · · · u Pn)YC,T and w ∈ (∀r1.A1 u · · · u ∀rm.Am)YC,T .
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Since |w| = n the definition of YC,T yields

w ∈ (P1 u · · · u Pn)Y
n
C,T and wr1 ∈ (A1)Y

n+1
C,T , . . . , wrm ∈ (Am)Y

n+1
C,T .

It follows that the concept names P1, . . . , Pn are conjuncts in M (see (4)). Obviously, it holds that

M vT P1 u · · · u Pn.

Since |w| = n and wr1 ∈ (A1)Y
n+1
C,T , . . . , wrm ∈ (Am)Y

n+1
C,T , the definition of Yn+1

C,T and (4) implies

M vT ∀r1.A1, . . .M vT ∀rm.Am.

Thus, we have M vT L. Since L v R ∈ T we have also

M vT ∀r′1.A′1, . . . ,M vT ∀r′m′ .A′m′

for all value restrictions in R (see (3)). Consequently, by definition of Yn+1
C,T it follows that

wr′1 ∈ (A′1)Y
n+1
C,T , . . . , wr′m′ ∈ (A′m′)

Yn+1
C,T . (5)

And likewise we have that M vT L and L v R ∈ T implies

M vT P ′1, . . . ,M vT P ′n′

for all concept names on top level of R. Consequently, the names P ′1, . . . , P ′n′ are conjuncts in M
as shown above. Thus, we have

w ∈ (P ′1 u . . . u P ′n′)Y
n
C,T .

By construction of YC,T and (5) we obtain that

w ∈ (P ′1 u . . . u P ′n′)YC,T and wr′1 ∈ (A′1)YC,T , . . . , wr′m′ ∈ (Am′)
YC,T .

It is implied that w ∈ RYC,T .

Finally, we can show that YC,T is actually the LFM IC,T .

Lemma 3.13. YC,T = IC,T

Proof:
Lemma 3.12 implies that YC,T is a functional model of C w.r.t. T . It is implied that IC,T ⊆ YC,T .
It remains to be shown that

w ∈ AYC,T implies w ∈ AIC,T
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for all w ∈ N∗R and all A ∈ NC . The proof is by induction on n = |w|.

n = 0 : In this case w = ε. By definition of YC,T we have that ε ∈ AYC,T implies ε ∈ AY
0
C,T which

implies C vT A. Since IC,T is a model of T and ε ∈ CIC,T it follows that ε ∈ AIC,T .

n→ n+ 1 Assume w = w′r with |w′| = n and w′r ∈ AYC,T . The definition of YC,T yields
w′r ∈ AY

n+1
C,T . Let Q := u

w′∈BY
n
C,T ,B∈NC

. Obviously, w′ ∈ QYC,T . The definition of Yn+1
C,T ,

|w′r| = n + 1 and w′r ∈ AY
n+1
C,T imply that Q vT ∀r.A. The induction hypothesis applied to

w′ and w′ ∈ QYC,T yields w′QIC,T . Since IC,T is a model of T we get w′r ∈ AIC,T , which
finishes the proof.

As a consequence of the lemma above, we can show the following property of IC,T .

Lemma 3.14. Let IC,T be the LFM of a concept C w.r.t. a TBox T , w ∈ N∗R, r ∈ NR, and
A ∈ NC . It holds that

wr ∈ AIC,T iff ( u
w∈BIC,T ,B∈NC

B) vT ∀r.A

The lemma above shows us that for each r-successor wr of w ∈ ∆IC,T , where w ∈ N∗R, the
conjunction of all concept names labeling w entails ∀r.A, where A ∈ NC and wr ∈ AIC,T . Next,
we see the finite type of LFMs described in the next subsection. Lemma 3.14 also states that by
assuming our input is a TBox T in PANF and a concept name C occurring in T , the stepwise
construction of YC,T implicitly only gives a local information for each element w of YC,T , to the
r-successor of it, for all r ∈ NR. In the other words, by using the entailment property described in
Lemma 3.14, all elements w of YC,T only know a concept name that labels the r-successor of w, for
all r ∈ NR. It also means that all elements w can not access the information about the label of all
elements which are the descendants of the r-successor of w, for all r ∈ NR.

3.2 Graph of Functional Model

Now, given the LFM IC,T of a concept C w.r.t. a TBox T , then we can view I as a function that
assigns a set of concept names NC,T occurring in T to each element w ∈ ∆I . Formally, for all
w ∈ ∆I = N∗R, where I is the LFM of a concept C w.r.t. a TBox T , we have a function

IC,T (w) = {A ∈ NC,T | w ∈ AIC,T }.

However, the LFMs still has infinite number of domain elements. Therefore, it brings us to an
idea to have the LFMs that only has a finite number of domain elements and we change the form
of this infinite model in a cyclic fashion, so-called graph model.

To start running this idea, we should consider that an LFM may have infinitely many domain
elements with the same non-empty label. Hence, we need to recognize those recurring labels and
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block the corresponding nodes to enable us to not create multiple same subtrees afterwards. Firstly
we need to define an equivalence relation ∼IC,T on N∗R based on IC,T .

Definition 3.15. Given the LFM IC,T . An equivalence relation ∼IC,T on ∆IC,T = N∗R is defined
as follows:

For all u, v ∈ ∆IC,T : u ∼IC,T v iff IC,T (u) = IC,T (v)

Note that for any w ∈ N∗R, it holds that IC,T (w) ⊆ NC,T . Using Lemma 3.14 it can be shown
that the equivalence relation ∼IC,T is preserved when we go one step further down in the tree.

Lemma 3.16. For all r ∈ NR, it holds that

If u ∼IC,T v, then ur ∼IC,T vr

Proof:
We have ur ∈ AIC,T

iff ( u
u∈BIC,T ,B∈NC

B) vT ∀r.A (by Lemma 3.14)

iff ( u
v∈BIC,T ,B∈NC

B) vT ∀r.A (with u ∼IC,T v)

iff vr ∈ AIC,T (by Lemma 3.14)

It follows that ur ∼IC,T vr.

Thus, we can construct an equivalence class of a word.

Definition 3.17. (Equivalence Class of Words) Let IC,T be the LFM of a concept w.r.t. a TBox
and u ∈ ∆IC,T . The equivalence class of words u is defined as follows:

[u]∼IC,T := {v ∈ ∆IC,T | u ∼IC,T v}

It is easy to see that for each LFM IC,T , the equivalence relation ∼IC,T leads to a partition of
the domain of IC,T into finitely many equivalence classes, i.e., ∼IC,T has finite index. It is also due
to that there are only finitely many sets of value restrictions which are assigned to each domain
element of IC,T .

Now we are ready to build the graph model of the LFM of a concept w.r.t. a TBox. Let
us take the LFM IC,T of concept C w.r.t. TBox T as an input, we construct the graph model
JC,T = (∆JC,T , ·J ) of T whose the domain elements are the equivalence classes of words.

Definition 3.18. (Graph Model of a Concept w.r.t. a TBox)
Let IC,T be the LFM of a concept C w.r.t. a TBox T and ∼IC,T be an equivalence relation on
∆IC,T . The corresponding graph model JC,T of C w.r.t. T is defined as follows:
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• ∆JC,T := {[u]∼IC,T u ∈ N∗R};

• rJC,T := {([u]∼IC,T , [v]∼IC,T ) | ∃u′ ∈ [u]∼IC,T , and ∃v′ ∈ [v]∼IC,T with (u′, v′) ∈ rIC,T },
for all r ∈ NR;

• AJC,T := {[u]∼IC,T | u ∈ AIC,T } for all A ∈ NC .

Please note that for the context of graph models, [u]∼IC,T is already viewed as an element of
model, no longer as a class of words. Obviously, JC,T is finite since there are only finitely many
equivalence class. We show some properties of JC,T that directly follow from the definition.

Lemma 3.19. Let IC,T and JC,T be defined as above.

1. For each w ∈ N∗R and r ∈ NR it holds that ([w]∼IC,T , [wr]∼IC,T ) ∈ rJC,T .

2. For each [u]∼IC,T ∈ ∆JC,T and each r ∈ NR there exists exactly one element [v]∼IC,T ∈ ∆JC,T

such that ([u]∼IC,T , [v]∼IC,T ) ∈ rJC,T .

3. Let w ∈ N∗R

(a) w′ ∈ AIC,T iff [w]∼IC,T ∈ AJC,T for all A ∈ NC and all w′ ∈ [w]∼IC,T

(b) w′ ∈ (∀r.A)IC,T iff [w]∼IC,T ∈ (∀r.A)JC,T for all A ∈ NC , r ∈ NR and all w′ ∈ [w]∼IC,T .

Proof:

1. Let w ∈ N∗R and r ∈ NR. Since IC,T is a functional interpretation we have (w,wr) ∈ rIC,T .
The definition of JC,T implies that ([w]∼IC,T , [wr]∼IC,T ) ∈ rJC,T .

2. Let [u]∼IC,T ∈ ∆JC,T . Assume to the contrary that there are two different elements [v]∼IC,T ,

[v′]∼IC,T ∈ ∆JC,T such that

[v]∼IC,T 6= [v′]∼IC,T (6)

and ([u]∼IC,T , [v]∼IC,T ) ∈ rJC,T and ([u]∼IC,T , [v′]∼IC,T ) ∈ rJC,T . By definition of JC,T there
are x, y ∈ [u]∼IC,T such that xr ∈ [v]∼IC,T and yr ∈ [v′]∼IC,T . Thus, we have x ∼IC,T y

which implies xr ∼IC,T yr using Lemma 3.16. Obviously, xr ∼IC,T yr is a contradiction to
(6).

3. It follows directly using the definition of JC,T .

The lemma above states that for all w ∈ N∗R, all r ∈ NR, and the r-successor wr of w, their
equivalence classes [w]∼IC,T and [wr]∼IC,T are also a pair of elements connected via role r in JC,T .
In addition, every element [u]∼IC,T of JC,T only has exactly one r-successor, which is [v]∼IC,T , for
all r ∈ NR. It indicates that the graph model is also functional. Now, let us consider the following
example of computing a graph model.
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Example 3.20.
T1:

{A v ∀r.B u ∀r.A1

A v ∀s.B u ∀s.A2

A1 v ∀s.A
A2 v ∀r.A}

Let C = A. The LFM IC,T1 is computed as follows:

ε

{A}

r

{B,A1}

s

{B,A2}

rr

∅

rs

{A}

sr

{A}

ss

∅

. . . . . . . . . . . . . . . . . . . . . . . .

IC,T1 :

From the structure of IC,T1 described above, we obtain equivalence classes of words as follows:

– [ε]
∼IC,T1 = {ε, rs, sr, . . .}

where for all w ∈ [ε], we have IC,T1(w) = {A}

– [r]
∼IC,T1 = {r, rsr, srr, . . .}

where for all w ∈ [r], we have IC,T1(w) = {B,A1}

– [s]
∼IC,T1 = {s, rss, srs, . . .}

where for all w ∈ [s], we have IC,T1(w) = {B,A2}

– [rr]
∼IC,T1 = {rr, ss, rrr, rrs, ssr, sss, . . .}

where for all w ∈ [rr], we have IC,T1(w) = ∅

The corresponding graph model JC,T1 of C w.r.t. T1 is computed as follows:
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[ε]
∼IC,T1

{A}

[r]
∼IC,T1

{B,A1}

[s]
∼IC,T1

{B,A2}

[rr]
∼IC,T1∅

JC,T1 :

r s

s

r

r s

r, s

Definition 3.18 still provides an input for computing the graph model in the form of the LFM of
a concept w.r.t. a TBox, which is in infinite type. In order to ensure that any algorithm computing
a graph model terminates and only deals with finite inputs, now we have to consider that the inputs
are only a TBox T in PANF and a concept name C ∈ NC,T . Recall that for building equivalence
classes, we have to enumerate all possible sets of concept names from NC,T for each element of
w ∈ ∆I , where IC,T and the number of possible sets of concept name to enumerate is finite and
bounded by 2NC,T . We call every X ∈ 2NC,T as a label set because it is a candidate of set of concept
names that will label an element in IC,T . Now, in order to have a computable algorithm for a graph
model, let us define another finite interpretation based on subsets of NC,T .

Definition 3.21. Given C and T as above we define an interpretation ĴC,T as follows:

• ∆ĴC,T := 2NC,T ;

• AĴC,T := {X | A ∈ X} for all A ∈ NC ;

• rĴC,T := {(X,Y ) | Y = {B ∈ NC,T |
(
uX

)
vT ∀r.B}} for all r ∈ NR.

Note that for a concept name B ∈ NC and X ∈ 2NC,T we have that
(
uX

)
vT ∀r.B implies

B ∈ NC,T . We may call for each (X,Y ) ∈ rĴC,T , Y is reachable from X iff Y = {B ∈ NC,T |(
uX

)
vT ∀r.B}. The interpretation ĴC,T is computable because for a given X ∈ 2NC,T the set

{B ∈ NC,T |
(
uX

)
vT ∀r.B} is computable using a decision procedure for subsumption in FL0.

Next, we define a total function µC,T : ∆JC,T → ∆ĴC,T as follows: For each [u]∼IC,T ∈ ∆JC,T ,
we define

µC,T ([u]∼IC,T ) := {B ∈ NC | [u]∼IC,T ∈ BJC,T }.
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It follows that
µC,T ([u]∼IC,T ) ∈ 2NC,T and µC,T ([u]∼IC,T ) = IC,T (u).

The image set of µC,T , denoted by µC,T (∆JC,T ), is given by

{X ∈ ∆ĴC,T | µC,T (σ) = X for some σ ∈ ∆JC,T }.

Note that in general µC,T (∆JC,T ) ( ∆ĴC,T = 2NC,T . It might be the case that the image set of
µC,T and 2NC,T are not equal.

Example 3.22. Consider the TBox T = {A v ∀r.B,B v A} and let C = A and NR = {r}. There
are only two equivalence classes of ∼IC,T , namely

[ε]∼IC,T = {ε} and [r]∼IC,T = {r, rr, rrr, rrrr, . . .}.

And we have
µC,T ([ε]∼IC,T ) = {A} and µC,T ([r]∼IC,T ) = {A,B}.

Furthermore,

µC,T (∆JC,T ) = {{A}, {A,B}} and 2NC,T = {∅, {A}, {B}, {A,B}}.

Using Lemma 3.19, we will see the following properties relating JC,T , ĴC,T , and µC,T .

Lemma 3.23. Let JC,T , ĴC,T and µC,T be as above.

1. If (σ1, σ2) ∈ rJC,T , then (µC,T (σ1), µC,T (σ2)) ∈ rĴC,T for all r ∈ NR.

2. If (X,Y ) ∈ rĴC,T and µC,T ([u]∼IC,T ) = X for some [u]∼IC,T ∈ ∆JC,T , then

µC,T ([ur]∼IC,T ) = Y for all r ∈ NR.

Proof:

1. Let (σ1, σ2) ∈ rJC,T for some r ∈ NR. According to Point 1 of Lemma 3.19 and Point 2 of
Lemma 3.19 there exists w ∈ N∗R such that

σ1 = [w]∼IC,T

σ2 = [wr]∼IC,T .

It follows that (w,wr) ∈ rIC,T for the LFM IC,T and

µC,T (σ1) = {B ∈ NC | w ∈ BIC,T }

µC,T (σ2) = {B ∈ NC | wr ∈ BIC,T }.
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It now follows from Lemma 3.14, that

µC,T (σ2) = {B ∈ NC,T |
(uµC,T (σ1)

)
vT ∀r.B},

which yields (µC,T (σ1), µC,T (σ2)) ∈ rĴC,T .

2. Let (X,Y ) ∈ rĴC,T and µC,T ([u]∼IC,T ) = X for some [u]∼IC,T ∈ ∆JC,T . It follows that

X = {B ∈ NC | u ∈ BIC,T }, (7)

because u ∈ BIC,T iff [u]∼IC,T ∈ BJC,T for all concept names B ∈ NC . Since (X,Y ) ∈ rĴC,T

we have

Y = {B ∈ NC,T |
(uX

)
vT ∀r.B}. (8)

Point 1 of Lemma 3.19 implies that ([u]∼IC,T , [ur]∼IC,T ) ∈ rJC,T . We haveB ∈ µC,T ([ur]∼IC,T )

for some B ∈ NC

iff [ur]∼IC,T ∈ BJC,T

iff ur ∈ BIC,T (by definition of JC,T )

iff
(
uX

)
vT ∀r.B (by Lemma 3.14 and (7))

iff B ∈ NC,T and B ∈ Y (by (8)).

Thus, µC,T ([ur]∼IC,T ) = Y as required.

The lemma above shows us that for all pairs of elements (σ1, σ2) connected via a role r ∈ NR in
JC,T , a total function µC,T preserves the resulting image sets X and Y of σ1 and σ2, respectively,
as a pair of element connected via r in ĴC,T . We can now give characterization of the image set
µC,T (∆JC,T ) that allows us to effectively compute it.

Lemma 3.24. Let IC,T , JC,T , ĴC,T and µC,T be as above and let

Xε = {B ∈ NC,T | C vT B}.

1. It holds that µC,T ([ε]∼IC,T ) = Xε.

2. Let Y ∈ 2NC,T . It holds that Y ∈ µC,T (∆JC,T ) iff there exist n ≥ 0, sets X0, . . . Xn ∈ 2NC,T

and role names r1, . . . , rn such that the following holds

• X0 = Xε and Xn = Y and
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• (Xi, Xi+1) ∈ rĴC,T
i+1 for all i = 0, . . . , n− 1.

Proof:

1. Let B ∈ NC . We have B ∈ µC,T ([ε]∼IC,T )

iff [ε]∼IC,T ∈ BJC,T

iff ε ∈ BIC,T

iff C vT ∀ε.B (property of the LFM)

iff B ∈ NC,T and B ∈ Xε (as defined above).

2. “⇒:” Let Y ∈ 2NC,T and assume Y ∈ µC,T (∆JC,T ). The definition of µC,T ensures that
there is an element w ∈ N∗R such that

Y = µC,T ([w]∼IC,T ).

Obviously, since w ∈ N∗R there exists an n ≥ 0 and role names r1, . . . , rn such that

w = r1 · · · rn

In case n = 0 we assume w = ε. The definition of IC,T implies that

(ε, r1) ∈ r1IC,T , . . . , (r1 · · · rn−1, w) ∈ rnIC,T .

Point 1 of Lemma 3.19 yields

([ε]∼IC,T , [r1]∼IC,T ) ∈ r1JC,T , . . . , ([r1 · · · rn−1]∼IC,T , [w]∼IC,T ) ∈ rnJC,T .

Let

X0 := µC,T ([ε]∼IC,T )

X1 := µC,T ([r1]∼IC,T )

...

Xn−1 := µC,T ([r1 · · · rn−1]∼IC,T )

Xn := µC,T ([w]∼IC,T ).

The first claim implies that X0 = Xε and we have Xn = Y . Using the first claim of
Lemma 3.23 it follows that (Xi, Xi+1) ∈ ri+1

ĴC,T for all i = 0, . . . , n − 1. Thus, the
sequence X0, . . . , Xn is as required.
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“⇐:” Let Y ∈ 2NC,T , n ≥ 0 such that there are sequencesX0, . . . , Xn ∈ 2NC,T and r1, . . . , rn ∈
NR such that

• X0 = Xε and Xn = Y and

• (Xi, Xi+1) ∈ rĴC,T
i+1 for all i = 0, . . . , n− 1.

We have to show that Y ∈ µC,T (∆JC,T ). According to the first claim we have

X0 = µC,T ([ε]∼IC,T ).

The second claim of Lemma 3.23 implies that

X0 = µC,T ([ε]∼IC,T )

X1 = µC,T ([r1]∼IC,T )

...

Xn−1 = µC,T ([r1 · · · rn−1]∼IC,T )

Xn = µC,T ([w]∼IC,T ).

Consequently, Xn = Y ∈ µC,T (∆JC,T ).

The Lemma above shows us a computable way to have a graph model. First, we determine
which setX ∈ 2NC,T that labels the element ε of JC,T . The label set of the element is denoted byXε.
Starting from this label set, we look for another label sets that label all elements [u]∼IC,T ∈ JC,T ,
such that all these label sets are reachable from Xε. The reachability property can be seen obviously
from the Point 2 of Lemma 3.24. Each label set is reachable from another label set via a role ri ∈ NR.
As a consequence from Lemma 3.24, we get the following lemma.

Lemma 3.25. Given C and T the image set µC,T (∆JC,T ) is effectively computable.

Proof. According to Lemma 3.24 the set Xε is computable. Furthermore, the finite interpretation
ĴC,T is also computable. Lemma 3.24 implies that the image set consists of all sets in 2NC,T that
are reachable from Xε in ĴC,T . Thus, the image set is computable using reachability checks from
Xε in ĴC,T .

Finally, the graph model JC,T can be obtained from ĴC,T . We define an interpretation ZC,T

as follows:
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∆ZC,T := ∆ĴC,T ∩ µC,T (∆JC,T );

AZC,T := AĴC,T ∩ µC,T (∆JC,T ) for all A ∈ NC ;

rZC,T := rĴC,T ∩ (µC,T (∆JC,T )× µC,T (∆JC,T )) for all r ∈ NR.

Since ĴC,T and µC,T (∆JC,T ) are computable it follows that ZC,T is also computable. From
Lemma 3.23 and Lemma 3.24 it follows that JC,T and ZC,T are isomorphic, where the function
µC,T : ∆JC,T → ĴC,T is an isomorphism. Thus, the interpretations JC,T and ZC,T are identical
up to renaming of domain elements.

In the following, if the equivalence class of words is clear from the context, then we shall omit
the superscript index IC,T to simplify the notation. Next, we want to unravel JC,T to re-obtain
the LFM IC,T . In order to show it, we need to define a functional interpretation in the form of the
tree-unraveling of JC,T . Therefore, firstly, we introduce the notion of a finite path occurring in a
graph model. Let JC,T be a graph model. A finite path π = [u0]r1[u1]r2[u2]r3 . . . rn[un] occurring
in JC,T consists of domain elements [ui−1] and [ui] that are connected via ri, where ri ∈ NR, for
all 1 ≤ i ≤ n. Next, let w = r1 . . . rn, then we can simply abbreviate the definition of a finite path
before as follows π = [ε]w[un]. To simplify the writing of elements in JC,T , except the root element
[ε], we alternatively use a notation σ.

Definition 3.26. (Tree-unraveling of JC,T ) Let JC,T be the graph model of the least functional
model I of a concept w.r.t. a TBox T . The tree-unraveling ĨC,T of JC,T is defined as follows:

• ∆ĨC,T := {w ∈ N∗R | ∃σ ∈ ∆JC,T such that ∃π = [ε]wσ in JC,T };

• rĨC,T := {(w,wr) | ∃(σ, σ′) ∈ rJC,T such that ∃π1 = [ε]wσ ∧ ∃π2 = [ε]wσ′ in JC,T };

• AĨC,T := {w | ∃σ ∈ ∆JC,T with σ ∈ AJC,T such that ∃π = [ε]wσ in JC,T };

Next, we show that actually ĨC,T is equal to the least functional model IC,T .

Lemma 3.27. Let ĨC,T is the tree-unraveling of JC,T and JC,T is the graph-model of the LFM
IC,T of a concept w.r.t a TBox T . It holds that ĨC,T = IC,T

Proof :
It remains to prove the following claim that for all w ∈ N∗R and A ∈ NC , we have

w ∈ AĨC,T iff w ∈ AIC,T

“⇒”: If w ∈ AĨC,T , then ∃σ ∈ ∆JC,T with σ ∈ AJC,T such that ∃π = [ε]wσ in JC,T . By Point 3
of Lemma 3.19, we know that σ = [w]∼IC,T and it implies that w ∈ AIC,T .
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“⇐”: If w ∈ AIC,T , then [w]∼IC,T ∈ AJC,T , by Point 3 of Lemma 3.19. It also means that there
exists a path π = [ε]w[w] in JC,T and by definition of tree-unraveling, we have w ∈ AĨC,T .

Now, given the intersection model IC,T ∩ ID,T of the LFMs of C and D w.r.t. TBox T , we
are also interested to make the corresponding graph model of IC,T ∩ ID,T . The idea to make this
type of model for IC,T ∩ ID,T is firstly by making the graph models JC,T and JD,T . Next, we
compute the product JC,T ×JD,T of JC,T and JD,T . Last, we take the subgraph of JC,T ×JD,T

that only contains elements reachable from the pair of the root elements ([εC ], [εD]) of two input
graph models.

Definition 3.28. (Product of Graph Model)
Let JC,T and JD,T be the graph models of C and D w.r.t. T , respectively. The product JC,T ×JD,T

of graph models JC,T and JD,T is computed as follows:

• ∆JC,T ×JD,T := {([u], [v]) | [u] ∈ ∆JC,T ∧ [v] ∈ ∆JD,T };

• rJC,T ×JD,T := {(([u1], [v1]), ([u2, v2])) | ([u1], [u2]) ∈ rJC,T ∧ ([v1], [v2]) ∈ rJD,T },
for all r ∈ NR;

• AJC,T×JD,T := {([u], [v]) | [u] ∈ AJC,T ∧ [v] ∈ AJD,T }, for all A ∈ NC .

Now we want to take the subgraph of JC,T ×JD,T whose all elements are only reachable from
([εC ], [εD]). It is defined as follows.

Definition 3.29. (Subgraph of Product of Graph Models)
Let JC,T ×JD,T be the product of JC,T and JD,T . The subgraph G of the product of graph models
is defined in the following:

• ∆G := {([u], [v]) ∈ ∆JC,T×JD,T | ∃w ∈ N∗R such that ∃π = ([εC ], [εD])w([u][v]) in
JC,T × JD,T };

• rG := ∆G ∩ rJC,T ×JD,T , for all r ∈ NR;

• AG := ∆G ∩AJC,T ×JD,T , for all A ∈ NC .

In the following we only consider the notation G for the subgraph of JC,T × JD,T that are
only reachable from ([εC ], [εD]). To unravel G, we also do the same construction for unraveling the
graph model JC,T of the LFM IC,T as written in Lemma 3.27. It also results in the tree-unraveling
of G that is equal to IC,T ∩ ID,T .

Next, we will show that for any graph models JC,T of the LFM IC,T of a concept w.r.t. a
TBox T , it holds that they are semantically equivalent by means of a special type of relation that
will be explained in the next section. This relation is also able to characterize more properties of
all the FL0-models described above.
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4 Simulation between Functional Interpretations

Now we want to devise a procedure to compute generalizations in FL0-TBox by using the same
setting as defined in description logic EL [ZT13]. One of the notions adopted from the charac-
terization of lcs in EL is a simulation relation that can be used later to characterize properties of
functional models or terminological reasonings in description logic FL0. The following definitions
about simulation is introduced as a binary relation between two interpretations in general.

Definition 4.1. (Simulation between interpretations)
Let I1 and I2 be interpretations, d ∈ ∆I1 , and e ∈ ∆I2 . S ⊆ ∆(I1,d)×∆(I2,e) is called a simulation
from (I1, d) to (I2, e) iff the following properties are satisfied:

1. (d, e) ∈ S;

2. For all (d1, e1) ∈ S and all A ∈ NC , it holds that d1 ∈ A(I1,d) implies e1 ∈ A(I2,e);

3. For all role names r ∈ NR and all (d1, e1) ∈ S and d2 ∈ ∆(I1,d) with (d1, d2) ∈ r(I1,d), there
exists e2 ∈ ∆(I2,e) such that (e1, e2) ∈ r(I2,e) and (d2, e2) ∈ S.

(I1, d) is simulated by (I2, e) (denoted by (I1, d) . (I2, e)) iff there exists a simulation S ⊆
∆(I1,d) × ∆(I2,e). Note that the symbol "." is reflexive and transitive. If (I1, d) . (I2, e) and
(I2, e) . (I1, d), then (I1, d) and (I2, e)) are simulation-equivalent (denoted by (I1, d) ' (I2, e)).
Since every functional interpretation and graph model are also interpretations, the definitions above
are also applied analogously to them.

Now we can characterize some properties of functional interpretations using a simulation.
Mostly, the following proof procedures, which are to employ a simulation for the characterization
of subsumption and other reasoning tasks, are adopted from [LW10] and [LPW10]. First, we show
that simulation is able to characterize whether an element belongs to a concept in a given model.

Lemma 4.2. Let I be a functional model of T . An element u ∈ CI iff (IC,T , εC) . (I, u).

Proof :

“⇐”: As defined in Definition 3.2 it holds that C ∈ IC,T (εC). Now, w.l.o.g., we have

C = A1 u . . . uAn u ∀w1.B1 u . . . u ∀wm.Bm

where Ai ∈ NC , wj ∈ N+
R , Bj ∈ NC , for all 1 ≤ i ≤ n and 1 ≤ j ≤ m.

Since (IC,T ), εC) . (I, u) and εC ∈ A
IC,T
i , we know that u ∈ AIi , for all 1 ≤ i ≤ n. Now, it

remains to show that u ∈ (∀wj .Bj)
I , for all 1 ≤ j ≤ m. Let εC ∈ (∀wj .Bj)

IC,T . By Lemma
3.5, we have wj ∈ B

IC,T
j . It follows that there exists v ∈ ∆I such that v ∈ BIj by Property

2 of Definition 4.1. Since (IC,T ) and (I, u) are over the same set of role names NR, we know
that |wj | = |v| − |u| or v = uwj and it implies that u ∈ (∀wj .Bj)

I . Finally it holds that
u ∈ CI .
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“⇒” Let u ∈ CI . We build a relation S ⊆ ∆IC,T ×∆(I,u) by setting for all v ∈ ∆IC,T , we have
(v, v) ∈ S. Assume v ∈ AIC,T . By Claim 3 of Lemma 3.5, we have v ∈ LT (C,A) and thus
C vT ∀v.A. Since I is a functional model of T , it follows u ∈ (∀v.A)I from u ∈ CI . By
Claim 1 of Lemma 3.5 and Definition 3.6, it implies v ∈ A(I,u). Obviously, the relation S just
satisfied Property 2 of Definition 4.1.

Let (v, vr) ∈ rIC,T . Assume vr ∈ BIC,T . Using the same proof derivation as the case
v ∈ AIC,T , we obtain vr ∈ B(I,u). Obviously, (v, vr) ∈ r(I,u) and (vr, vr) ∈ S. It follows that
S is a simulation and regarding the setting of S, we have (ε, ε) ∈ S.

Next, the subsumption relationship can also be characterized with the help of a simulation.

Lemma 4.3. C vT D iff (ID,T , εD) . (IC,T , εC).

Proof:

“⇒”: Let C vT D. It follows εC ∈ DIC,T from εC ∈ CIC,T . As an immediate consequence of
Lemma 4.2, we have (ID,T , εD) . (IC,T , εC).

“⇐”: Let u ∈ CI . It implies that (IC,T , εC) . (I, u). Together with (ID,T , εD) . (IC,T , εC) and
transitivity of ".", we get (ID,T , εD) . (I, u) and again by Lemma 4.2, we obtain u ∈ DI

Last, as mentioned in the previous chapter that we want to show that for any graph models J
of the LFM I of a concept w.r.t. a TBox, it holds that J and I are semantically-equivalent. This
is described in the following lemma.

Lemma 4.4. Let I be the LFM of a concept w.r.t. a TBox T and J be the graph model of I. It
holds that J ' I.

Proof:

“⇒”: Let us build a relation S1 ⊆ ∆J × ∆I by setting {(σ,w)} ∈ S1 iff there exists a path
π = [ε]wσ in J . Now assume that σ ∈ AJ . We have to show that w ∈ AI . Since there exists
a path π = [ε]wσ in J , we know that [ε] ∈ (∀w.A)J . As a direct consequence we know that
ε ∈ (∀w.A)I and w ∈ AI .

Now assume that (σ, σ′) ∈ rJ and σ′ ∈ BJ . By using the same argument as the case σ ∈ AJ ,
we obtain wr ∈ BI , wr is the r-successor of w, where r ∈ NR, and (σ′, wr) ∈ S1. Moreover,
it is also easy to see that ([ε], ε) ∈ S1 and thus S1 is a simulation.

“⇐”: Let us build a relation S2 ⊆ ∆I×∆J by setting {(w, σ)} ∈ S2 iff there exists a path π = [ε]wσ

in J . We have to show that σ ∈ AJ and assume that w ∈ AI . It implies that ε ∈ (∀w.A)I .
Since ε ∈ [ε], where [ε] is an element of J , it implies that [ε] ∈ (∀w.A)J . According to the
path π = [ε]wσ in J , we have σ ∈ AJ .
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The lemma above is also applied analogously with the same proof construction to check whether
G is simulation-equivalent to IC,T ∩ID,T . As a conclusion for this section, we can note that a simu-
lation is able to identify many properties of models for FL0 and even to compute the subsumption
relationship between FL0-concept descriptions. Next, we start providing a solution for Problem
I mentioned in Introduction that whether a concept is the least common subsumer of two input
concepts.
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5 Conditions Whether a Concept is the Least Common Subsumer

Let us recall that Problem I is as follows:

I. Let C,D, and E be FL0-concepts and T be a TBox. Is concept E the lcsT (C,D)?

As written in the end of Section 2, we may assume that C and D are concept names occurring
in T and T is a PANF TBox. To address this question, we need to investigate that the set of
lcs-candidates for C and D w.r.t. T consists of all k − lcsT (C,D), for all k > 0. First of all, we
show that the k-characteristic concept of IC,T ∩ ID,T is the k-lcsT (C,D).

Lemma 5.1. Let k ∈ N

1. Xk(IC,T ∩ ID,T , ε) ∈ csT (C,D).

2. Let E be a concept with the role-depth rd(E) ≤ k and C vT E and D vT E.
It holds that Xk(IC,T ∩ ID,T , ε) vT E.

Proof:

1. We prove it by induction on k.

• For k = 0:
By definition of k-characteristic concept, we know that

X0(IC,T ∩ ID,T , ε) :=u{∀ε.A | ε ∈ AIC,T ∩ID,T }

Assume Xk(IC,T ∩ ID,T , ε) = ∀ε.A1 u . . .u ∀ε.An. For all Ai, where 1 ≤ i ≤ n, we have
ε ∈ AJC,T ∩JD,T . By Claim 3 of Definition 3.3, we have ε ∈ AIC,T

i and ε ∈ AJD,T
i , for all

1 ≤ i ≤ n. By Lemma 4.3, we get C vT Ai and D vT Ai, for all 1 ≤ i ≤ n. Therefore,

C vT X0(IC,T ∩ ID,T , ε)

D vT X0(IC,T ∩ ID,T , ε)

• For k > 0:
By using the definition of k-characteristic concept,

Xk(IC,T ∩ ID,T , ε) := Xk−1(IC,T ∩ ID,T , ε) uu
{∀w.A | w ∈ N+

R , A ∈ NC , |w| = k,w ∈ AIC,T ∩ID,T }

By induction hypothesis, we know that

Xk−1(IC,T ∩ ID,T , ε) ∈ csT (C,D) (9)

It remains to show that {∀w.A | w ∈ N∗R, A ∈ NC , |w| = k,w ∈ AIC,T ∩ID,T } is also a
common subsumer of C and D w.r.t. T . We know that w ∈ AIC,T ∩ID,T which implies
that ε ∈ (∀w.A)IC,T ∩ID,T . As a direct consequence,
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ε ∈ (∀w.A)IC,T and ε ∈ (∀w.A)ID,T

By Lemma 4.2 and 4.3, it is implied that

C vT ∀w.A and D vT ∀w.A

Together with 9, we have Xk(IC,T ∩ ID,T , ε) ∈ csT (C,D)

2. Again, we prove it by induction on k as the role-depth of concept E

• rd(E) = 0.
Let E be a conjunction over concept names u

i>0
Ai. Since E ∈ csT (C,D), then by Lemma

4.3, we have εC ∈ EIC,T and εD ∈ EID,T . It implies εC ∈ A
IC,T
i , εD ∈ A

ID,T
i , and thus

ε ∈ AIC,T ∩ID,T
i , for all i. By Definitions 3.3 and 3.9, we get X0(IC,T ∩ ID,T , ε) vT E.

• rd(E) = k > 0.
Let E be in the following CCNF form:

E =u{∀v.A | v ∈ N∗R, |v| < k,A ∈ NC} uu{∀w.B | w ∈ N+
R , |w| = k,B ∈ NC}

By induction hypothesis, we know that

Xk−1(IC,T ∩ ID,T , ε) vT u{∀v.A | v ∈ N∗R, |v| < k,A ∈ NC}. (10)

Since E ∈ csT (C,D), we have

u{∀w.B | w ∈ N+
R , |w| = k,B ∈ NC} ∈ csT (C,D)

Let ∀w.B ∈ {∀w.B | w ∈ N+
R , |w| = k,B ∈ NC}. Then, it implies that

C vT ∀w.B and D vT ∀w.B

Since |w| = k and by definition of characteristic concepts, we know that ∀w.B is a
conjunct in Xk(IC,T ∩ ID,T , ε). If we add {∀w.B | w ∈ N+

R , |w| = k,B ∈ NC} in 10 as
a conjunct on the left- and right-hand sides of vT , then we obtain Xk(IC,T ∩ ID,T , ε)

vT E.

Lemma 5.1 implies that the set of k-characteristic concepts of the intersection of LFMs IC,T ∩
ID,T , ε is the possible candidate for the lcsT (C,D). It is stated formally in the following corollary.

Corollary 5.2. The lcs exists if and only if there is a k ∈ N such that for all l ∈ N,
k-lcsT (C,D) vT l-lcsT (C,D).

Next, we show that the LFM of the lcsT (C,D) and the intersection model IC,T ∩ ID,T are
simulation-equivalent.
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Lemma 5.3. Let E be a concept.
E is the lcsT (C,D) iff (IC,T ∩ ID,T , ε) ' (IE,T , ε).

Proof:
The structure of LFMs is a special type of the structure of canonical models in EL. It is indicated
by the fact that for all r ∈ NR, each element of LFMs only has 1 r-successor. The modest structure
for the functional model also leads us to easily prove this lemma by adopting the similar proof
procedure for Lemma 12 in [ZT13] which states that the canonical model of lcs in EL is simulation-
equivalent to the product model of two input concepts.

Since the LFM of the lcs of input concepts and the intersection model of input concepts are
over the same domain elements N∗R, we can say that these two models are exactly the same. It is
shown in the following lemma which also provides a condition whether a concept is the lcs of two
concept names w.r.t. a TBox or not.

Lemma 5.4. Let E be a concept. E is the lcsT (C,D) iff IC,T ∩ ID,T = IE,T .

Proof:
By Corollary 5.2, we know that the lcsT (C,D) exists iff there is a k, such that Xk(IC,T ∩ ID,T , ε)

is the lcsT (C,D). Let K = Xk(IC,T ∩ ID,T , ε). Therefore, it brings us to the following claim.

K ≡ lcsT (C,D) iff IC,T ∩ ID,T = IK,T

“⇐”: Let F be a common subsumer of C and D w.r.t. T . We want to show that F vT K.
By Claim 5 of Lemma 3.5, we know that IF,T ⊆ IC,T and IF,T ⊆ ID,T . It implies that
IF,T ⊆ IC,T ∩ ID,T . By our assumption we know that IF,T ⊆ IK,T which implies that
F vT K.

“⇒”: Let Xk(IC,T ∩ ID,T , ε) ≡ lcsT (C,D). By Definition 3.8, we can define that the intersection
model IC,T ∩ ID,T is the union of all `-subtree of the intersection model, where ` ∈ N. Now
let X`(IC,T ∩ ID,T , ε) and we know that ((IC,T ∩ ID,T )`, ε) = IX`(IC,T ∩ID,T ,ε),∅.

IC,T ∩ ID,T =

∞⋃
`=0

IX`(IC,T ∩ID,T ,ε),∅ (11)

For all ` = 0, 1, 2, . . ., by Corollary 5.2, we have Xk(IC,T ∩ID,T , ε) vT X`(IC,T ∩ID,T , ε). It
implies that ε ∈ (X`(IC,T ∩ ID,T , ε))

I
Xk(IC,T ∩ID,T ,ε),T . It is followed that IXk(IC,T ∩ID,T ,ε),T

is a functional model of X`(IC,T ∩ ID,T , ε) w.r.t. empty TBox. Formally, we can write it as
follows

IX`(IC,T ∩ID,T ,ε),∅ ⊆ IXk(IC,T ∩ID,T ,ε),T
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By (11), we have
∞⋃
`=0

IX`(IC,T ∩ID,T ,ε),∅ ⊆ IXk(IC,T ∩ID,T ,ε),T . By the transitivity of “=”, we

obtain
IC,T ∩ ID,T ⊆ IXk(IC,T ∩ID,T ,ε),T (12)

Moreover, it is known that Xk(IC,T ∩ ID,T , ε) is the k-lcsT (C,D). Therefore, we have
IXk(IC,T ∩ID,T ,ε),T ⊆ IC,T ∩ID,T . Together with 12, we obtain IC,T ∩ID,T = IXk(IC,T ∩ID,T ,ε),T .

The lemma above convinces us that if the lcs exists, then the intersection model IC,T ∩ID,T is
actually the LFM of the lcs-concept of input concepts C and D w.r.t. T . Next, let us consider the
following example to compute whether a concept is the lcs based on Lemma 5.4, where the TBox
taken from Introduction.

Example 5.5.

1. Let Tex be a TBox consisting the following GCIs.

{A1 v B1 uB2,

A2 v B1 uB3,

B1 uB2 v ∀r.B1 u ∀r.B2,

B1 uB3 v ∀r.B1 u ∀r.B3}

Let C = A1 and D = A2. Now, we compute the lcsTex(C,D).

• Build the LFMs IC,Tex and ID,Tex

ε

{A1, B1, B2}

r

{B1, B2}

rr

{B1, B2}

. . .IC,Tex :
r r r

ε

{A2, B1, B3}

r

{B1, B3}

rr

{B1, B3}

. . .ID,Tex :
r r r

• Compute the intersection model IC,Tex ∩ ID,Tex of IC,Tex and ID,Tex and construct the
LFM of B1 u ∀r.B1 ∈ csTex(C,D).

ε

{B1}

r

{B1}

rr

{B1}

. . .IC,Tex ∩ ID,Tex :
r r r
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ε

{B1}

r

{B1}

rr

∅

. . .IAu∀r.A,Tex :
r r r

Please note that the intersection model is not equal to the LFM of B1 u∀r.B1 w.r.t. Tex.
Therefore, B1 u ∀r.B1 is not the lcsTex(C,D).

2. Let Tex2 be an extended TBox of Tex consisting the following GCIs:

{A1 v B1 uB2,

A2 v B1 uB3,

B1 uB2 v ∀r.B1 u ∀r.B2,

B1 uB3 v ∀r.B1 u ∀r.B3,

B1 v ∀r.B1}

Let C = A1 and D = A2. Now, we compute the lcsTex2
(C,D).

• Build the LFMs IC,Tex2
and ID,Tex2

that are structurally equivalent to IC,Tex2
and ID,Tex2

,
respectively.

• Compute the intersection IC,Tex2
∩ID,Tex2

of IC,Tex2
and ID,Tex2

that is structurally equiv-
alent to IC,Tex ∩ ID,Tex . Unlike the previous example, we have B1 as the lcsTex2

(C,D)

since IC,Tex2
∩ ID,Tex2

= IB1,Tex2
, ε.

So far, the condition to check whether a concept is the lcs only considers a functional model
with infinite domain elements. Now we show another solution for addressing Problem I by means
of graph models such that the problem in Problem I is decidable. First, we have to find a relation
between the fact we have in Lemma 5.4 and a condition that G is simulation-equivalent to the graph
model of the LFM of the lcs.

Lemma 5.6. Let C,D, and E be FL0-concepts and T be a TBox.
(IC,T ∩ ID,T , ε) = (IE,T , ε) iff (G, ([ε])) ' (JE,T , [εE ]) over the same set of role names.

Proof:

“⇒”: Let (IC,T ∩ ID,T , ε) = (IE,T , ε). For all w ∈ ∆IC,T ∩ID,T = ∆IE,T , we have

w ∈ AIC,T ∩ID,T iff w ∈ AIE,T , for all A ∈ NC

Let us build a relation S1 ⊆ ∆G,[ε])×∆(JE,T ,[ε]) by setting (σ, [u]) ∈ S1 iff there exists w ∈ N∗R
such that there are paths π1 = [ε]wσ in G and π2 = [εE ]w[u] in JE,T . Assume that σ ∈ AG ,
we want to show that [u] ∈ AJE,T . If σ ∈ AG , then it implies that σ ∈ AJC,T ∩JD,T . Let
σ = ([v1], [v2]). It means that
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[v1] ∈ AJC,T and [v2] ∈ AJD,T

Since there is a path π1 = [ε]wσ in G and JC,T ∩ JD,T , it also means that there are path
π3 = [εC ]w[v1] in JC,T and π4 = [εD]w[v2] and JD,T . Because JC,T and JD,T are models of
T , we know that

[εC ] ∈ (∀w.A)JC,T and [εD] ∈ (∀w.A)JD,T

It is also followed that

εC ∈ (∀w.A)IC,T and εD ∈ (∀w.A)ID,T

By the definition of intersection of functional models, then we also have

ε ∈ (∀w.A)IC,T ∩ID,T

By our assumption, we have IC,T ∩ ID,T = IE,T . It implies directly that

ε ∈ (∀w.A)IE,T

By Definition 3.18, we know that [εE ] ∈ (∀w.A)JE,T and since JE,T is a model of T and
there is a path π2 = [εE ]w[u] in JE,T , finally we have [u] ∈ AJE,T . We just showed that S1
satisfying Property 2 of Definition 4.1.
Now assume that we have (σ, σ′) ∈ rG and σ′ ∈ BG . By using the same argument as the
case σ ∈ AG , then obtain [u′] ∈ ∆JE,T with [u′] ∈ AJE,T and ([u], [u′]) ∈ rJE,T . Therefore,
(σ′, [u′]) ∈ S1. It is easy to see that ([ε, εE ]) ∈ S1 and thus S1 is a simulation.

Now, we build a relation S2 ⊆ ∆(JE,T ,[εE ])×∆(G,[ε]). By using the same setting as S1, we can
prove that S2 is a simulation. Together with S1, we obtain (G, [ε]) ' (JE,T , [εE ]).

“⇐”: Let (G, [ε]) ' (JE,T ) and IC,T ∩ ID,T and IE,T be the tree-unraveling of G and JE,T ,
respectively. Since each functional is simulation equivalent with their graph model, we also
have IC,T ∩ ID,T ' IE,T . It implies that E is the lcsT (C,D) by Lemma 5.3 and thus
IC,T ∩ ID,T = IE,T by Lemma 5.4.

As a consequence, we have the following lemma to show that the problem in Problem I is
decidable.

Lemma 5.7. Let E be a concept. E is the lcsT (C,D) iff G ' JE,T .

Proof:
A consequence of Lemma 5.4 and 5.6.
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Now, we are able to see that there is a relationship between the relational symbol “'” and “=”
when they are employed to show a relationship between IC,T ∩ ID,T and IE,T as well as to their
corresponding graph models. Even though “'” is weaker than “=”, but a simulation equivalence
“'” is more helpful and suitable to decide whether a concept is the lcs of two concept names w.r.t.
a TBox when we work on the graph models since they only have finitely many number of domain
elements. Finally, by using Corollary 5.2, we can derive characterizations for the existence of the
lcs w.r.t. FL0-TBoxes from Lemma 5.4 and Lemma 5.6 as stated in the following corollary.

Corollary 5.8.

1. The lcsT (C,D) exists iff there is a k ∈ N such that (IC,T ∩ ID,T , ε) is equal to the LFM of
Xk(IC,T ∩ ID,T , ε) w.r.t. T .

2. The lcsT (C,D) exists iff there is a k ∈ N such that G is simulation-equivalent to the graph
model of the LFM of Xk(IC,T ∩ ID,T , ε) w.r.t. T .

However, this corollary does not show any decision procedure to compute the lcsT (C,D) since
there are infinitely many k to check whether the lcs exists in finite time. The following section will
describe how to make the claims above decidable as well as to provide a solution for Problem II.
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6 Characterizations for the Existence of the Least Common Subsumer

Problem II is written as follows:

II. Let C and D be FL0-concepts and T be a TBox. Does the lcsT (C,D) exist?

As mentioned previously that we may assume that C,D are concept names occurring in a PANF
TBox T . We start answering this question by continuing the solution provided in Lemma 5.8 to
check whether the lcsT (C,D) exists. First, to simplify the notation, in the following we write Xk

to abbreviate the k-characteristic concept of the intersection model IC,T ∩ID,T . Let us recall that
Point 1 of Lemma 5.8 may also be written in the following lemma.

Lemma 6.1. The lcsT (C,D) exists iff there is a k ∈ N such that

IC,T ∩ ID,T = IXk,T .

Next, we show a property of the LFM of Xk.

Lemma 6.2. Let IXk,∅ be the LFM of Xk w.r.t. ∅ TBox for some k ∈ N. It holds that

w ∈ AIXk,T iff w ∈ AIXk,∅ , for all w ∈ N∗R with |w| ≤ k and all A ∈ NC .

Proof:
By Definition 3.2, IXk,∅ is a subinterpretation of IXk,T , which means that IXk,∅ ⊆ IXk,T . It also
implies that for all w ∈ N∗R with |w| ≤ k and all A ∈ NC we have w ∈ AIXk,∅ implies w ∈ AIXk,T .
Now it remains to show that

For all w ∈ N∗R with |w| ≤ k and all A ∈ NC we have w ∈ AIXk,T implies w ∈ AIXk,∅

We can show the claim above by induction on |w| ≤ k.

• Let |w| = 0

It means that w = ε. If ε ∈ AIXk,T , then Xk vT A. Since IC,T ∩ ID,T is a model of T
and ε ∈ (Xk)IC,T ∩ID,T , ε ∈ AIC,T ∩ID,T follows. Therefore, by definition of k-characteristic
concept, A is on the top level of Xk as a conjunct, which means that ε ∈ AIXk,∅ .

• Let 0 < |w| ≤ k
Let w = w′r for r ∈ NR and w′ ∈ N∗R, and w ∈ AIXk,T . Since |w′| < |w|, we know that
w′ ∈ (∀r.A)IXk,T . By induction hypothesis, we know that

For all Bi ∈ NC , where 1 ≤ i ≤ n, we have w′ ∈ B
I
Xk,T

i implies w′ ∈ B
I
Xk,∅

i .

Now assume
w 6∈ AIXk,∅ (13)

then w′ 6∈ ∀r.AIXk,∅ . It means that w′ ∈ (∀r.A)IXk,T because the presence of T . Therefore,
B1 u . . . uBn vT ∀r.A. By Lemma 3.10, we also have
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w′ ∈ BIC,T ∩ID,T
i , for all 1 ≤ i ≤ n.

But then, IC,T ∩ ID,T is also a model of T , which implies that w′ ∈ (∀r.A)IC,T ∩ID,T and
w ∈ AIC,T ∩ID,T . By Lemma 3.10 and definition of k-characteristic concept, it turns out that
we have w ∈ AIXk,∅ , which is a contradiction to our assumption (13).

As what we did to construct LFMs and graph models in stepwise, here we also define a new
functional interpretation which is an extended version of a given IXk,∅. This is called extended
k-subtree. The following definition can make us understand on how to build IXk,T in a graded way
with the input is IXk,∅.

Definition 6.3. (Extended k-subtree)
Let IXk,∅ be the LFM of Xk w.r.t. the empty TBox for some k ∈ N. We define an infinite sequence
of functional interpretations.

Î0, Î1, Î2, . . .

inductively as follows
Î0 := IXk,∅ (14)

and for all n ≥ 0 we define

AÎn := AÎn−1 ∪ {wr ∈ N∗R | n− 1 = |w| − k, ( u
w∈BÎn−1 ,B∈NC

B) vT ∀r.A}, for all A ∈ NC (15)

Finally, we define the extended k-subtree

ÎXk,∅ :=

∞⋃
`=0

Î` (16)

From the definition above, we have a property for the extended k-subtree described in the
following lemma.

Lemma 6.4. Let w ∈ N∗R and A ∈ NC . If |w| ≤ k, then it holds that

w ∈ AÎXk,∅ iff w ∈ AIXk,∅ .

And if |w| > k, then it holds that

w ∈ AÎXk,∅ iff w ∈ AÎn ,

where n = |w| − k.

Proof: This is explicitly written in the definition of extended k-subtree (Definition 6.3).

Next, we need to show that ÎXk,∅ is a model of T .
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Lemma 6.5. ÎXk,∅ is a model of T .

Proof:
It has to be shown that ÎXk,∅ satisfies all the GCIs in T . Let L v R ∈ T be a GCI in T . Since T
is in PANF, we assume that L and R have the following form:

L = P1 u . . . u Pn u ∀r1.A1 u . . . u ∀rm.Am (17)

R = P ′1 u . . . u P ′n′ u ∀r′1.A′1 u . . . u ∀r′m′ .A′m′ (18)

where Pi, P
′
i′ , Aj , A

′
j′ are concept names and rj , rj′ are role names for all 1 ≤ i ≤ n, 1 ≤ j ≤ m,

1 ≤ i′ ≤ n′, and 1 ≤ j′ ≤ m′.
Let w ∈ N∗R. We have to show that w ∈ LÎXk,∅ implies w ∈ RÎXk,∅ . We distinguishes the two

cases |w| < k and |w| ≥ k.

• For |w| < k

Assume w ∈ LÎXk,∅ . Consequently with (17),

w ∈ P
Î
Xk,∅

i and w ∈ (∀rj .Aj)
Î
Xk,∅ , for all 1 ≤ i ≤ n and 1 ≤ j ≤ m.

The assumption |w| < k implies |wrj | ≤ k for all 1 ≤ j ≤ m. With Lemma 6.4 it follows that

w ∈ P
Î
Xk,∅

i and wrj ∈ A
Î
Xk,∅

j , for all 1 ≤ i ≤ n and 1 ≤ j ≤ m.

Lemma 6.2 now yields

w ∈ P
I
Xk,T

i and wrj ∈ A
I
Xk,T

j , for all 1 ≤ i ≤ n and 1 ≤ j ≤ m.

Thus, w ∈ LIXk,T and since IXk,T is a model of T it follows w ∈ RIXk,T . By assumption on
the form of R (18) we get

w ∈ P
I
Xk,T

i′ and wrj′ ∈ A
I
Xk,T

j′ , for all 1 ≤ i′ ≤ n′ and 1 ≤ j′ ≤ m′.

Again using Lemma 6.2 and Lemma 6.4 we obtain

w ∈ P
I
Xk,∅

i′ and wrj′ ∈ A
I
Xk,∅

j′ , for all 1 ≤ i′ ≤ n′ and 1 ≤ j′ ≤ m′.

w ∈ P
Î
Xk,∅

i′ and wrj′ ∈ A
Î
Xk,∅

j′ , for all 1 ≤ i′ ≤ n′ and 1 ≤ j′ ≤ m′.

and thus w ∈ RÎXk,∅ .
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• For |w| ≥ k.
Let n = |w| − k and

M := u
w∈BÎn ,B∈NC

(19)

By induction on n we show that

M vT A for some A ∈ NC implies that A is a conjunct in M.

– For n = 0:
It follows that |w| = k and Î0 = IXk,∅. With Lemma 6.2, w ∈ MIXk,∅ implies w ∈
MIXk,T and because M vT A and IXk,T it follows that w ∈ AIXk,T . Lemma 6.2
implies w ∈ AIXk,∅ and therefore w ∈ AÎ0 , which implies that A is a conjunct in M by
definition of M (see (19)).

– n→ n+ 1:
Assume w = w’r and with n = |w′| − k and n+ 1 = |w| − k. Let

Q′ := u
w′∈BÎn ,B∈NC

and Q := u
w∈BÎn+1 ,B∈NC

By definition of În+1 and w = w′r with n + 1 = |w| − k it holds that Q′ vT ∀r.Q.
Obviously, Q′ vT ∀r.Q and ∀Q vT A implies Q′ vT ∀r.A. By definition of În+1 it
follows that w = w′r ∈ AÎn+1 and therefore A is a conjunct in Q.

Suppose L v R ∈ T and w ∈ LÎXk,∅ . By assumption on the form of L (17) we have

w ∈ P
Î
Xk,∅

i and wrj ∈ A
Î
Xk,∅

j , for all 1 ≤ i ≤ n and 1 ≤ j ≤ m.

Lemma 6.4 and n = |w| − k with |w| ≥ k yields

w ∈ P Îni and wrj ∈ AÎn+1

j , for all 1 ≤ i ≤ n and 1 ≤ j ≤ m.

It follows that the concept names Pi, for all 1 ≤ i ≤ n are conjuncts in M (see (19)).
Obviously, it holds that

M vT Pi for all 1 ≤ i ≤ n.

Since n = |w| − k and wrj ∈ AÎn+1

j , for all 1 ≤ j ≤ m, the definition of În+1 and (19)
implies

M vT ∀rj .Aj , for all 1 ≤ j ≤ m.

Thus we have M vT L. Since L v R ∈ T we have also

M vT ∀r′j′ .A′j′

for all value restrictions in R (see (18)). Consequently by definition of În+1 it follows
that

wr′j′ ∈ A
′În+1

j′ , for all 1 ≤ j′ ≤ m′ (20)
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And likewise we have that M vT L and L v R ∈ T implies

M vT P ′i′ , for all 1 ≤ i′ ≤ n′

for all concept names on top level of R. Consequently the names P ′i′ , for all 1 ≤ i′ ≤ n′,
are conjuncts in M as shown above. Thus we have w ∈ P

′În
i′ . Together with (20) and

Lemma 6.4 it is implied that w ∈ RÎXk,∅ .

Last, we show that actually ÎXk,∅ is equal to IXk,T .

Lemma 6.6. ÎXk,∅ = IXk,T .

Proof:
Lemma 6.5 implies that ÎXk,∅ is a functional model of Xk and T . Since ÎXk,T is the LFM of Xk

and T , by Definition 3.4 IXk,T ⊆ ÎXk,∅. It remains to be shown that ÎXk,∅ ⊆ IXk,T . Let A ∈ NC

and w ∈ N∗R. We have to show that

w ∈ AÎXk,∅ implies w ∈ AIXk,T

Due to Lemma 6.2 and 6.4 this holds if |w| ≤ k. We have to prove this also for the case |w| ≤ k.
The proof is by induction on n with n = |w| − k.

• n = 1 : Assume w = w’r with |w′| = k. Due to Lemma 6.4 and |w′| − k = 1 we have that
w′r ∈ AÎXk,∅ implies w′r ∈ AÎ1 . By definition of Î1 and w = w′r it follows that

Q vT ∀r.A with Q = u
w′∈BÎ0 ,B∈NC

B.

Since w′ ∈ QÎ0 and Î0 = ÎXk,∅, Lemma 6.2 and |w′| = k imply that w′ ∈ QIXk,T . Since
IXk,T is a model of T , Q vT ∀r.A and w′ ∈ QIXk,T yield w′r ∈ AIXk,T .

• n→ n+1 Assume w = w′r for some r ∈ NR and w′ ∈ N∗R with n := |w′|−k and n+1 = |w|−k.
Due to Lemma 6.4 and n + 1 = |w| − k we have that w ∈ AÎXk,∅ implies w ∈ AÎn+1 . By
definition of În+1 and w = w′r it follows that

Q vT ∀r.A with Q = u
w′∈BÎn ,B∈NC

B.

Since w′ ∈ QÎn and n = |w′| − k, Lemma 6.4 implies that w′ ∈ QÎXk,∅ . Note that Q is a
conjunction of concept names. Therefore the induction hypothesis for w′ implies w′ ∈ QIXk,T .
Since IXk,T is a model of T , Q vT ∀r.A and w′ ∈ QIXk,T imply that w′r ∈ AIXk,T .

We have defined the notion of extended k-subtree which turns out, has the same structure as
the LFM of Xk w.r.t. T . We continue our investigation to decide the existence of lcs by considering
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Example 5.5. According to that example, the lcsTex2(C,D) is captured through the equality between
the intersection model IC,Tex2 ∩ ID,Tex2 and the LFM of a concept A w.r.t. Tex2.

Still on the same example, in particular for the TBox Tex, the lcsTex(C,D) is not captured
through the equality between the intersection model IC,Tex ∩ID,Tex and the LFM of Au∀r.A w.r.t.
Tex. The equality for the label of w, both in IC,Tex2

∩ID,Tex2
and IE,Tex2

, where E = lcsTex2
(C,D),

for all w ∈ N∗R leads us to formalize this consideration in a general way through the following
definition.

Definition 6.7. Let I be a functional model of a TBox and w ∈ ∆I = N∗R and Q = u
w∈BI ,
B∈NC

B.

w is label synchronous in I iff
(I, w) = IQ,T

The use of the word “synchronous” in the definition above means that there is a sameness
or synchronization between the label of an element w of (IC,T ∩ ID,T ) and the label of the root
element εQ in IQ,T . We simply call an element that does not satisfy this definition is called as an
label-asynchronous element. This definition also states that if an element w is label-synchronous,
then (IC,T ∩ID,T , w) represents the LFM of a concept w.r.t T . It is obvious to see that the concept
is the concept Q = u

w∈BIC,T ∩ID,T ,
B∈NC

B.

The next lemmas states the properties of label-synchronous elements. First, we show that the
r-successor of a label-synchronous element is also label-synchronous for all r ∈ NR.

Lemma 6.8. Let I be a functional model of a TBox and w ∈ ∆I = N∗R. If w is label-synchronous
in I, then all its successors are label-synchronous.

Proof:
If w is label-synchronous, then there is a concept Q = u

w∈BIC,T ∩ID,T ,
B∈NC

B such that

(IC,T ∩ ID,T , w) = (IQ,T ), (21)

which implies that wr ∈ A(IC,T ∩ID,T ,w) iff r ∈ AIQ,T , for all r ∈ NR. Therefore, for all successors
of w, we have

Q′ = u
wr∈AIC,T ∩ID,T ,

A∈NC

A = u
r∈AIQ,T ,
A∈NC

A (22)

By definition of 3.1, we have Q vT ∀r.Q′. We have to show that wr is label-synchronous, which
means that it is enough to show that (IC,T ∩ ID,T , wr) = IQ′,T .

It is clear that (IC,T ∩ ID,T , wr) is a functional model of concept Q′ w.r.t. T . Since IQ′,T
is the LFM of concept Q′ w.r.t. T , we have IQ′,T ⊆ (IC,T ∩ ID,T , wr). It remains to show that
(IC,T ∩ ID,T , wr) ⊆ IQ′,T or for all x ∈ ∆(IC,T ∩ID,T ,wr), where x ∈ N∗R, and all A ∈ NC , we have
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x ∈ A(IC,T ∩ID,T ,wr) implies x ∈ AIQ′,T .

We show the claim above by induction on |x|.

• |x| = 0

By (22), we know that for all A ∈ NC , ε ∈ A(IC,T ∩ID,T ,wr) implies ε ∈ AIQ′,T .

• |x| > 0

Now let x = x′r, x ∈ A(IC,T ∩ID,T ,wr), and x′ ∈ P
(IC,T ∩ID,T ,wr)
i , where Pi ∈ NC , for all

1 ≤ i ≤ n. By induction hypothesis, we know that x′ ∈ P IQ′,Ti . Now assume that x 6∈ AIQ′,T
which implies Q′ 6vT ∀x.A by definition 3.1. Moreover,

Since Q vT ∀r.Q′, it is also followed that Q 6vT ∀rx.A. (23)

By (21), we know that for all A ∈ NC , x ∈ A(IC,T ∩ID,T ,w) implies x ∈ AIQ,T and by definition
3.1, we have Q vT ∀rx.A, which is a contradiction to our assumption (23). Therefore x ∈
AIQ′,T .

Then, let us show that all elements with the depth ≥ k in IXk,T are label-synchronous in
IXk,T .

Lemma 6.9. Let k ∈ N. For all w ∈ N∗R with |w| ≥ k it holds that w is label-synchronous in
IXk,T .

Proof:
Let w ∈ N∗R with |w| ≥ k. We show that w is label-synchronous in ÎXk,∅. Let

Q := u
w∈B

Î
Xk,∅ ,B∈NC

B (24)

We have to show that (ÎXk,∅, w) = IQ,T . It can be shown that ε ∈ Q(Î
Xk,∅,w). By Lemma 6.5

ÎXk,∅ is a model of T and by Lemma 3.7 (ÎXk,∅, w) is also a model of T . It follows that (ÎXk,∅, w)

is a functional model of Q w.r.t. T . Therefore, IQ,T ⊆ (ÎXk,∅, w). It remains to be shown that

(ÎXk,∅, w) ⊆ IQ,T . Let A ∈ NC and u ∈ N∗R. We show by induction on |u| that u ∈ A(Î
Xk,∅,w)

implies u ∈ AIQ,T .

• |u| = 0

Let n = |w| − k. Lemma 6.4 implies that Q (see (24)) satisfies

Q := u
w∈BÎn ,B∈NC

B

u = ε ∈ A(Î
Xk,∅,w) implies w ∈ AÎXk,∅ , which implies w ∈ AÎn and A is a conjunct in Q.

Since u = ε ∈ QIQ,T it follows that u = ε ∈ AIQ,T .
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• |u| > 0

Let u = u′r for some r ∈ NR and u′ ∈ N∗R and let n = |wu′| − k. We have to show that
u′r ∈ A(În,w) implies u′r ∈ AIQ,T .
u′r ∈ A(Î

Xk,∅,w) implies wu′r ∈ AÎXk,∅ . Lemma 6.4 implies that wu′r ∈ AÎn+1 because
n = |wu′| − k and therefore n+ 1 = |wu′| − k. By definition În+1 and since wu′r ∈ AÎn+1 we
have

M vT ∀r.A with M = u
wu′∈BÎn ,B∈NC

B.

It follows that wu′ ∈ M În implies wu′ ∈ M ÎXk,∅ by Lemma 6.4 and n = |wu′| − k. Conse-
quently, by definition of ÎXk,∅, we get u′ ∈M (Î

Xk,∅,w). Since |u′| ≤ |u| andM is a conjunction
of concept names the induction hypothesis yields u′ ∈MIQ,T . Because IQ,T is a model of T
and M vT ∀r.A holds, it follows that u′r ∈ AIQ,T . Since by assumption we have u = u′r this
finishes the proof of the induction step.

Furthermore, the equality between IC,T ∩ ID,T and IXk,T is also influenced by the fact that if all
elements w ∈ N∗R with |w| ≥ k are label-synchronous in IC,T ∩ ID,T .

Lemma 6.10. If there exists a k ∈ N such that for all w ∈ N∗R with |w| ≥ k the element w is
label-synchronous in IC,T ∩ ID,T , then it holds that IC,T ∩ ID,T = IXk,T .

Proof:
Since Xk is the k-lcsT (C,D), it implies that IXk,T ⊆ IC,T ∩ ID,T . Now, it remains to show that
for all w ∈ N∗R and all A ∈ NC , we have

w ∈ AIC,T ∩ID,T implies w ∈ AIXk,T .

By Lemma 3.10 and 6.2, we directly have

For all w ∈ N∗R with |w| < k and all A ∈ NC , w ∈ AIC,T ∩ID,T implies w ∈ AIXk,T .

Now it remains to show that for all w ∈ N∗R with |w| ≥ k and all A ∈ NC , w ∈ AIC,T ∩ID,T implies
w ∈ AIXk,T . Here we also assume that w is label-synchronous and we proof by induction on n,
where n = |w| − k.

• n = 0

It means that |w| = k and by Lemma 6.9 w is label-synchronous. Then, by Lemma 3.10 and
6.2, we know that w ∈ AIC,T ∩ID,T implies w ∈ AIXk,T , for all A ∈ NC .

• n→ n+ 1

Let w = w′r, where r ∈ NR, w′ ∈ N∗R, and w ∈ AIC,T ∩ID,T . Let w′ ∈ BIC,T ∩ID,T
i , where

Bi ∈ NC , for all 1 ≤ i ≤ n and by our assumption w′ is label-synchronous. By Definition 6.7,
we know that
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(IC,T ∩ ID,T , w
′) = IQ,T , where Q = B1 u . . . uBn.

By Lemma 6.8, it also implies that w ∈ AIQ,T and Q vT ∀r.A. By induction hypothesis, we
know that w′ ∈ B

I
Xk,T

i , for all 1 ≤ i ≤ n. This means that w′ ∈ (∀r.A)IXk,T and w ∈ AIXk,T

follows.

As a consequence of Lemma 6.9 and 6.10, we have the following lemma:

Lemma 6.11. Let k > 0. IC,T ∩ ID,T = IXk,T iff for all w ∈ N∗R with |w| ≥ k, it holds that w is
label-synchronous in IC,T ∩ ID,T and IXk,T .

Proof: A consequence of Lemma 6.9 and 6.10.

Now, let G be the graph model of IC,T ∩ID,T and IC,T ∩ID,T be the tree-unraveling of G. By
Lemma 4.4, we know that G and IC,T ∩ ID,T are simulation-equivalent. Obviously, some elements
of G may be also label-synchronous or label-asynchronous. It is written formally in the following
definition.

Definition 6.12. Let [w] ∈ ∆G and Q = u
[w]∈BG ,
B∈NC

B. [w] is label-synchronous in G iff

(G, [w]) ' (JQ,T , [ε])

As a consequence, we also have the following properties for all elements that are label-synchronous
in G.

Lemma 6.13.

1. w ∈ N∗R is label-synchronous in IC,T ∩ ID,T iff [w]∼IC,T ∈ G is label-synchronous in G.

2. If [w]∼IC,T ∈ G is label-synchronous in G, then all its successors are also label-synchronous
in G.

Proof:

1. w ∈ N∗R is label-synchronous in IC,T ∩ ID,T

iff (IC,T ∩ ID,T , w) = IQ,T , where Q = u
w∈BI ,
B∈NC

B (Definition 6.7)

iff (G, [w]) ' (JQ,T , [ε]), where Q = u
[w]∈BG ,
B∈NC

B. (By Lemma 5.6 and 3.19).

iff [w]∼IC,T ∈ G is label-synchronous in G (By Definition 6.12).
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2. If [w]∼IC,T ∈ G is label-synchronous in G, then w ∈ IC,T ∩ ID,T is also label-synchronous
in IC,T ∩ ID,T by Lemma 6.13. For the r-successor wr of w, for all r ∈ NR, wr is also
label-synchronous in IC,T ∩ ID,T by Lemma 6.8. As a consequence, the r-successor [wr] of
[w], for all r ∈ NR, is also label-synchronous in G by 6.13.

If G has a cycle that contains an element [u] which is label-asynchronous, then its successor [v]

is label-synchronous, then there will be a path in that cycle, starting from [v] that goes back to [u],
which is a contradiction for the lemma above because [u] is also a descendant of [v] and [u] has to
be a label-synchronous element which is a contradiction for Lemma 6.8. It means that whenever
we have a cycle in G that contains a label-asynchronous element, then all elements in the cycle are
also label-asynchronous. This leads to the following characterization defined as the main theorem
for the existence of the lcs.

Theorem 6.14. Let G be the graph model of IC,T ∩ ID,T .
The lcsT (C,D) exists iff all cycles in G only contains label-synchronous elements.

Proof:

“⇐”: If all cycles in G only contains label-synchronous elements, then if we unravel G, then we
obtain IC,T ∩ ID,T and all paths in IC,T ∩ ID,T have a finite prefix of label-asynchronous
elements. Let m−1 be the length of the maximal finite prefix of label-asynchronous elements
in IC,T ∩ID,T and from positionm on only contains label-synchronous elements. It means that
for all w ∈ N∗R with |w| ≥ m, w is label-synchronous and it holds that IC,T ∩ ID,T = IXm,T

by Lemma 6.11. Therefore, the lcsT (C,D) exists.

“⇒”: If the lcsT (C,D) exists, then there is a k ∈ N such that IC,T ∩ ID,T = IXk,T . By Lemma
6.11, it means that for all w ∈ N∗R, with |w| ≥ k, it holds that w is label-synchronous in IXk,T

and IC,T ∩ID,T . By Lemma 4.4, we know that IC,T ∩ID,T is the tree-unraveling of G. Then,
in order to show that all cycles in G only contains label-synchronous elements, we prove it by
contradiction. Assume there is a cycle that contains label-asynchronous elements, it implies
that all elements in this cycle are label-asynchronous. If we unravel G, then we will obtain
an infinite path, starting from ε, that only contains label-asynchronous elements. It implies
that all elements w ∈ N∗R, with |w| ≥ k, are also label-asynchronous which is a contradiction
to Lemma 6.11.

Since we know the number of cycles in G is finite and it is enough to check whether all cycles in
each cycle are label-synchronous, the theorem above provides us a decision procedure to solve the
problem for the existence of the lcs in a finite time. The theorem above also implicitly addresses
the claim in Corollary 5.8 to know how to obtain the depth k of the graph model, such that the lcs
exists. It gives rise to a practical solution for obtaining the number k that we can use to measure
the size or the role-depth of the lcs as well as to provide a solution for Problem III in Introduction.
It is described in a more detail in the next section.
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7 Upper Bound for the Role-Depth of the Least Common Subsumer

Let us recall Problem III in Introduction:

III. If the lcsT (C,D) exists, then what is the lcs? And how big is the size of the lcs?

The problem above can be handled by the following lemma.

Lemma 7.1. Let G be the graph of the intersection model IC,T ∩ID,T , n =
∣∣∆G∣∣, and NC,T be the

set of concept names occurring in the TBox T . It holds that

1. If the lcsT (C,D) exists, then (G, [ε]) ' (JXn+1,T , [ε]).

2. rd(lcsT (C,D)) ≤ 22×|NC,T |+1

Proof:

1. Since G is the graph model of IC,T ∩ ID,T and both of them are simulation-equivalent, we
can compute the n + 1-characteristic concept Xn+1 of IC,T ∩ ID,T . We choose the number
n + 1 because if we unravel G to obtain IC,T ∩ ID,T , then all finite paths of IC,T ∩ ID,T ,
with the length n + 1, contain repeated elements. It is due to the fact that there are only n
elements in G. It also means that all elements on the depth n+ 1 in IC,T ∩ID,T occur in the
cycles of G. Since the lcsT (C,D) exists, we also know that all elements on the depth n+ 1 in
IC,T ∩ ID,T are label-synchronous. By Lemma 6.11, it implies that IC,T ∩ ID,T = IXn+1,T .
Finally, by Lemma 5.6, we can infer that (G, [ε]) ' (JXn+1,T , [ε]).

2. We have assumed that C and D are concept names occurring in T . Because the elements
of JC,T and JD,T are sets of concept names occurring in T , it implies that the num-
ber of elements in JC,T and JD,T are bounded by 2|NC,T |, respectively. Next, we com-
pute the product of JC,T and JD,T to obtain the subgraph G where all elements of G are
reachable from ([ε]∼IC,T , [ε]∼ID,T ). It implies that

∣∣∆G∣∣ ≤ 2|NC,T | × 2|NC,T |. By Claim 1
of Lemma 7.1, we have to go one step further down in IC,T ∩ ID,T in order to guaran-
tee that (G, [ε]) ' (JXn+1,T , [ε]) and Xn+1 is the lcsT (C,D). Therefore, it implies that
rd(lcsT (C,D)) ≤ 22×|NC,T |+1.

By considering two claims in this lemma, we finally have two answers for Problem III that Xn+1 is
the lcsT (C,D) and the upper bound for the role-depth of lcsT (C,D) is 22×|NC,T |+1.
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8 Conclusions and Future Works

8.1 Conclusions

In this thesis, we studied a problem for the existence of the lcs w.r.t. general FL0-TBoxes. Ac-
cordingly, we presented characterizations for the existence of the lcs. Additionally, we devised a
decision procedure to find the role-depth bounded lcs or the lcs, if it exists. In order to support the
characterization for the existence and design a decision procedure to compute the lcs, the necessary
notions are needed.

We assume that the inputs for all problems for the existence of the lcs and computing the
lcs, if it exists are two concept names occurring in a TBox in PANF. We begin by computing
the least functional models (LFMs) of input concepts w.r.t. a given TBox with infinitely many
domain elements [Pen15], which eventually can be alternatively replaced by a graph model that
only has finite number of domain elements. Since we follow the conditional setting for the existence
of the lcs in EL [ZT13], we also introduced a special relation, namely simulation between functional
interpretations or graph models. The subsumption problem w.r.t. general FL0-TBoxes, which is a
basic inference for computing the lcs, can be characterized by means of a simulation.

Now we are ready to answer the three research questions mentioned in Introduction. Again,
we always assume that the input concepts C and D are concept names occurring in a PANF TBox
T . The first question is described and handled as follows:

I. Let E be an FL0-concept. Is concept E the lcs of C and D w.r.t. T ?

We provide two approaches, which are actually semantically equivalent, for the problem above
by means of LFMs and simulation as follows:

• An equality relationship between IC,T ∩ ID,T and IE,T provides us a characterization that
E is the lcsT (C,D).

• A simulation-equivalence between the corresponding graph models G and JE,T of IC,T ∩ID,T

and IE,T , respectively, serves more conditions for the existence of lcs. Since only dealing with
finite number of domain elements, this characterization offers any graph algorithm to make
this problem decidable.

The approaches above provide us characterizations to address Problem II:

II. Does the lcs of C and D w.r.t. T exist?

The answer to check whether tbe lcsT (C,D) exists is by looking for a k ∈ N such that IC,T ∩
ID,T is equal to IXk,T , where Xk is the k-characteristic concept of IC,T ∩ ID,T . However, this
characterization does not give us a decision problem since there are infinitely many k to check in
finite time. Finally, the practical solution for the question above is by checking whether all cycles
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in the graph model G of IC,T ∩ ID,T only contains label-synchronous elements. It convinces us to
see that the problem for existence of the lcsT (C,D) is decidable. Then, it leads us to supply an
algorithm to compute the lcsT (C,D) and the size of the lcs, if the lcs exists, as well as to asnwer
the last research question.

III. If the lcsT (C,D) exists, then what is the lcs? and how big is the size of the lcs?

In order to solve this problem, we traverse the graph model G until we stop at a depth k such
that all elements on this depth occur in the cycles of G and are label-synchronous. If this condition
holds, then we know that the lcsT (C,D) exists. Last, we show that the size of the lcs can be
measured by the role-depth of the lcs that is always bounded by 22×|NC,T |+1, where NC,T is the set
of all concept names occurring in T .

8.2 Future Works

As motivated in [PT11], the implementation for the results above by making a practical algorithm
integrated with existing tools in OWL will be a promising work in the future. Moreover, on the
theoretical side, the complexity problem for computing the upper bound of the role-depth of the
lcs still be an open problem, which also leads us to investigate on how big the size of the lcs is in
the size of input concepts and a given TBox. We also consider to compute generalizations with the
same setting described in this thesis for a more expressive description logic language, such as FLE .
It was already initiated in [FRR99] which can be a basic foundation for deciding the existence of
lcs, even though that work did not take any general FLE-TBoxes into account.

Another computation of non-standard inferences, which is characterizing the existence of the
most specific concept of an individual w.r.t. general FL0-TBoxes can be interestingly investigated
in the future. It is due to the presence of cyclic ABoxes, in particular role assertions, that induces
the occurrences of existential restrictions in a computed msc-concept, if it exists. Therefore, an
alternative type of FL0-model, which is not functional anymore, has to be explored thoroughly in
this work.
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