
Context Reasoning for Role-Based Models

Dissertation

zur Erlangung des akademischen Grades
Doktoringenieur (Dr.-Ing.)

vorgelegt an der
Technischen Universität Dresden

Fakultät Informatik

eingereicht von
Dipl.-Math. Stephan Böhme

geboren am 23. April 1987 in Dresden

verteidigt am 29. Oktober 2017

Gutachter:
Prof. Dr.-Ing. Franz Baader

Technische Universität Dresden

Dr. Jeff Z. Pan
University of Aberdeen

Dresden, im Juni 2017

Abstract

In a modern world software systems are literally everywhere. These should cope with very
complex scenarios including the ability of context-awareness and self-adaptability. The
concept of roles provide the means to model such complex, context-dependent systems. In
role-based systems, the relational and context-dependent properties of objects are transferred
into the roles that the object plays in a certain context. However, even if the domain
can be expressed in a well-structured and modular way, role-based models can still be
hard to comprehend due to the sophisticated semantics of roles, contexts and different
constraints. Hence, unintended implications or inconsistencies may be overlooked. A feasible
logical formalism is required here. In this setting Description Logics (DLs) fit very well as
a starting point for further considerations since as a decidable fragment of first-order logic
they have both an underlying formal semantics and decidable reasoning problems. DLs are a
well-understood family of knowledge representation formalisms which allow to represent
application domains in a well-structured way by DL-concepts, i.e. unary predicates, and
DL-roles, i.e. binary predicates. However, classical DLs lack expressive power to formalise
contextual knowledge which is crucial for formalising role-based systems.

We investigate a novel family of contextualised description logics that is capable of express-
ing contextual knowledge and preserves decidability even in the presence of rigid DL-roles,
i.e. relational structures that are context-independent. For these contextualised description
logics we thoroughly analyse the complexity of the consistency problem. Furthermore, we
present a mapping algorithm that allows for an automated translation from a formal role-
based model, namely a Compartment Role Object Model (CROM), into a contextualised DL
ontology. We prove the semantical correctness and provide ideas how features extending
CROM can be expressed in our contextualised DLs. As final step for a completely automated
analysis of role-based models, we investigate a practical reasoning algorithm and implement
the first reasoner that can process contextual ontologies.

iii

iv

Contents

1 Introduction 1
1.1 Role-Based Systems . 1
1.2 Description Logics . 2
1.3 Contextualised Description Logics . 3
1.4 An Ontology Generator . 4
1.5 A Reasoner for Contextualised Description Logics 5
1.6 Outline of the Thesis . 5

2 Preliminaries 9
2.1 Description Logics . 9

2.1.1 Description Logic Concepts . 9
2.1.2 Boolean Knowledge Bases . 11
2.1.3 Specific Description Logics . 13

2.2 Role-Based Modelling . 14
2.2.1 Ontological Foundation of Rôles . 14
2.2.2 A Formal Role-Based Modelling Language 15

3 The Contextualised Description Logic LM⟦LO⟧ 27
3.1 Requirements for Logical Formalism . 27
3.2 Syntax and Semantics of the Contextualised Description Logic LM⟦LO⟧ 28
3.3 Complexity of the Consistency Problem in LM⟦LO⟧ 32

3.3.1 Consistency without rigid names . 38
3.3.2 Consistency with rigid role names . 39
3.3.3 Consistency with only rigid concept names 40

3.4 Contextualised Description Logics Involving EL 42
3.4.1 The Contextualised Description Logics LM⟦EL⟧ 43
3.4.2 The Contextualised Description Logics EL⟦LO⟧ 46

3.5 Adding Contextualised Concepts . 49

4 A Mapping from Role-Based Models to Description Logic Ontologies 55
4.1 Representing Role-Based Models . 55

4.1.1 A Mapping for the Vocabulary Σ . 57
4.1.2 A Mapping for the Σ-CROM M . 58
4.1.3 A Mapping for the Σ-CROA A . 59
4.1.4 A Mapping for the Σ-CROC C . 60
4.1.5 Semantic Integrity of Mapping Algorithm 61

4.2 Going beyond Σ-CROMs . 66

v

vi Contents

5 JConHT – A SHOIQ⟦SHOIQ⟧ Reasoner 69
5.1 A Black-Box Approach . 69

5.1.1 Admissibility . 69
5.1.2 Outer consistency . 72

5.2 Contextual Hypertableau . 73
5.3 Implementing JConHT and Evaluation . 81

6 Conclusions 87
6.1 Major Contributions . 87
6.2 Future Work . 87

Bibliography 89

Chapter 1

Introduction

Nowadays, we are literally everywhere surrounded by software systems. Current develop-
ments indicate a continuing growth in the future. Not only the amount of systems increases,
but also the requirements and expectations users impose on current software steadily rise.
Modern software systems should cope with very complex scenarios. This includes the ability
of context-awareness and self-adaptability. For example, a robot in a smart factory should
recognise when a human co-worker approaches and switch to a different, human-friendly
working mode accordingly. Similarly, software in autonomous cars or in the area of smart
homes needs to adapt to various situations of which some are not even stated explicitly.
Furthermore, software must be easily maintainable and, when necessary, changes on the
system should be realised without much down time which, for example, in a smart factory is
very costly.

1.1 Role-Based Systems

In order to achieve all these goals, the concept of roles is very promising. First introduced by
Bachman [BD77], roles appeared over the last decades in several fields of computer science.
Most prominent is the role-based access control [FKC03; AF11; SCF+96], albeit it is only a
special application for roles with a narrow scope. Roles are also introduced, for example,
in data modelling [Hal06], conceptual modelling [Ste00; Gui05; Ste07] and programming
languages [BBT06; Her07; BGE07].

The relational or context-dependent properties and behaviour of objects are transferred
into the roles that object plays in a certain context. This paradigm also supports Dijkstra’s
separation of concerns [Dij82] which simplifies development and maintenance of such
systems. Due to the use of roles, role-based systems can model application domains cleaner
and more structured, since ontologically different entities are modelled by different concepts.

Let us consider, for example, the concepts of Person and Customer. With an object-oriented
approach of inheritance as a specialisation relation, we could model Customer as a subclass
of Person, as not every person is a customer. On the other hand, if we restrict our domain
to a business context and add the concept of a Company, the inheritance relation would
flip and we also have Company as subclass of Customer. This conflict can be resolved by
recognising Person and Company as context-independent basic concepts, so-called natural
types and Customer as a role a person or company can play in a business context. Here, it
becomes also apparent that the concept of a context is closely related to a role.

While role-based modelling provides the means to handle and model complex and context-
dependent domains in a well-structured and modular way, the process can still be tedious,
hard and error-prone. Due to the sophisticated semantics of roles, contexts and many

1

2 Chapter 1. Introduction

different kinds of constraints, unintended implications or even inconsistencies can easily
be hidden within such a model. Since it is nearly impossible to uncover all inferences, it
becomes imperative for domain analysts to reason on role-based models to find such implicit
knowledge. Here, a feasible logical formalism is needed.

1.2 Description Logics

Description Logics (DLs) [BCM+07] are a well-known formalism for knowledge representa-
tion. They possess formal semantics and allow to define a variety of reasoning problems.

The basic building blocks in description logics are so-called concept names and role names.
Concept names denote sets of domain elements. For example, the concept names Person
or Bank denote the sets of all persons or banks in a domain. Relational structures are
represented by so-called DL role names, which are essentially binary relations on the domain.
The term “role” originates from the early knowledge representation system KL-ONE [WS92]
and has only little in common with roles of role-based systems except that it reflects the
relational property of a role. A person which is related to a bank via a DL role customer could
be seen as someone playing the role of a customer in the context of a bank. Besides that, DL
roles are merely binary relations. With the help of concept and role constructors, complex
concepts and roles can be defined. Which constructors are allowed depends on the specific
DL. Complex concepts can be used as descriptions and to classify domain elements, e.g. the
complex concept

NFL_Player⊓Healthy⊓ ∃.wins(NFL_Game) (1.1)

describes the set of all healthy NFL players who win NFL games.
With the help of concepts, we can express our knowledge about a domain through DL

axioms. General knowledge is phrased via general concept inclusions (GCIs), which state that
one concept is a sub-concept of another. For example the GCI

NFL_Player⊓Healthy⊓ ∃.wins(NFL_Game)⊑ Happy_NFL_Player (1.2)

states that a healthy NFL player who wins NFL games is a happy NFL player. Conversely, it
does not say anything on whether every happy NFL player is healthy or wins games. Facts
about a domain can be expressed via concept and role assertions. To express facts, we also
introduce individual names which denote single domain elements. As an example consider
the following axioms:

(NFL_Player⊓Healthy)(AaronRodgers) (1.3)

NFL_Game(SuperBowlXLV), (1.4)

wins(AaronRodgers, SuperBowlXLV) (1.5)

The first two concept assertions (1.3) and (1.4) state that Aaron Rodgers is a healthy NFL
player and that Super Bowl XLV is an NFL game, while (1.5) expresses that he won Super
Bowl XLV. So he is also a happy NFL player, even if not stated explicitly. A DL knowledge base
is a set of such axioms.

1.3 Contextualised Description Logics 3

AaronRodgers,
Healthy,

NFL_Player,
Happy_NFL_Player

SuperBowlXLV,
NFL_Game

wins

Figure 1.1: Interpretation that models axioms (1.2) to (1.6).

The semantics of DLs are defined in a model-theoretic way and capture exactly the above
mentioned intentions. An interpretation I consists of a domain and an interpretation
function ·I which maps concept, role and individual names, respectively, to subsets, binary
relations and elements of the domain. From there, it is exactly defined how complex concepts
must be interpreted. For example, (A⊓B)I is the intersection of AI and BI . The concept name
NFL_Player itself has no meaning and an interpretation must make sure that NFL_PlayerI

actually is the set of all NFL players.
Now, the most interesting reasoning problems are the consistency problem and the entailment

problem. A knowledge base is consistent if there exists some interpretation that models the
knowledge base, i.e. an interpretation that fulfils all the axioms. An axiom is entailed by a
knowledge base if every model of the knowledge base also models that axiom. For example,
the following axiom is entailed by (1.2) to (1.5):

Happy_NFL_Player(AaronRodgers). (1.6)

Figure 1.1 depicts an interpretation which is a model of axioms (1.2) to (1.6).
However, classical DLs lack expressive power to formalise that some individuals satisfy

certain concepts and relate to other individuals depending on a specific context which is
needed to reason on role-based systems.

1.3 Contextualised Description Logics

To overcome that deficiency in expressiveness of classical DLs, often two-dimensional DLs
are employed [KG10; KG11b; KG11a; KG16]. This approach uses one DL LM as the meta
logic to represent the contexts and their relationships to each other, and combines it with
the object logic LO that captures the relational structure within each context. Moreover,
while some pieces of information depend on the context, other pieces of information are
shared throughout all contexts. For instance, the name of a person typically stays the same
independent of the actual context. Expressing this context-independent information requires
that some concepts and roles are designated to be rigid, i.e. they are required to be interpreted
the same in all contexts. Unfortunately, if rigid roles are admitted, reasoning in the above
mentioned two-dimensional DLs of context turns out to be undecidable; see [KG10].

We propose and investigate a family of two-dimensional context DLs LM⟦LO⟧ that meets
the above requirements, but is a restricted form of the ones defined in [KG10] in the sense
that we limit the interaction of LM and LO. More precisely, in our family of context DLs the
meta logic can refer to the internal structure of each context, but not vice versa. That means
that information is viewed in a top-down manner, i.e. information of different contexts is
strictly capsuled and can only be accessed from the meta level. Hence, we cannot express, for

4 Chapter 1. Introduction

Bob,
Person

SSNhasSSN

Siemens,
Company

worksFor

hasAccessRights

PersonhasCEO
. . .

Work

Bob,
Person,

HasMoney

SSNhasSSN

Siemens,
Company

isCustomerOf

Person

Private

related

Figure 1.2: Nested interpretation that models of Axioms (1.7)– (1.13)

instance, that everybody who is employed by a company has a certain property in the context
of private life. We show that reasoning in LM⟦LO⟧ stays decidable with such a restriction,
even in the presence of rigid roles. In some sense this restriction is similar to what is done
in [BGL08; BGL12; Lip14] to obtain a decidable temporalised DL with rigid roles.

To provide a better intuition on how our formalism works, we examine the following
example. Consider these axioms:

⊤⊑ ⟦∃worksFor.{Siemens} ⊑ ∃hasAccessRights.{Siemens}⟧ (1.7)

Work ⊑ ⟦worksFor(Bob, Siemens)⟧ (1.8)

⟦(∃worksFor.⊤)(Bob)⟧ ⊑ ∃related.(Private⊓ ⟦HasMoney(Bob)⟧) (1.9)

⊤ ⊑ ⟦∃isCustomerOf.⊤⊑ HasMoney⟧ (1.10)

Private ⊑ ⟦isCustomerOf(Bob, Siemens)⟧ (1.11)

Private⊓Work ⊑ ⊥ (1.12)

¬Work ⊑ ⟦∃worksFor.⊤⊑⊥⟧ (1.13)

The ‘outside’ or meta GCIs like ⊤ ⊑ ⟦. . .⟧ express knowledge about the meta dimension
whereas the axioms inside ⟦. . .⟧ refer to knowledge in the object level. The complex meta
concept ⟦α⟧ describes all contexts in which the object axiom α holds. In detail, the first
axiom states that in all contexts somebody who works for Siemens also has access rights
to certain data. The second axiom states that Bob is an employee of Siemens in any work
context. Furthermore, Axioms (1.9) and (1.10) say intuitively that if Bob has a job, he
will earn money, which he can spend as a customer. Axiom (1.11) formalises that Bob is a
customer of Siemens in any private context. Moreover, Axiom (1.12) ensures that the private
contexts are disjoint from the work contexts. Finally, Axiom (1.13) states that the worksFor
relation only exists in work contexts.

1.4 An Ontology Generator

Besides the capability of context description logics to formalise role-based models, it is rather
hard for domain analysts—who in general are not experts in DLs—to grasp the precise
semantics of the ontology, and to define the contextualised ontology in a way that all entities

1.5 A Reasoner for Contextualised Description Logics 5

and constraints appearing in the role-based model are mapped correctly. Therefore, it would
be ideal to have an algorithm that translates role-based models into context DL knowledge
bases. In this thesis, we present exactly such a mapping.

First of all, we have to decide how to represent role-based models. Here, we focus on
two essential properties of the modelling language. It is very important that the role-based
model is already equipped with a formal semantics. Otherwise, we cannot ensure that the
intended meaning of every model is correctly translated into the ontology. Furthermore, the
modelling language needs to be expressive enough to express all concepts needed in the
role-based model. The Compartment Role Object Model (CROM)[KLG+14; KBG+15] emerged
to be a capable candidate that meets exactly the above mentioned requirements.

Next, there is some freedom on how to express roles and role-playing in an ontology. While
it is important to consider the ontological nature of roles such as identity or rigidity, we also
have to consider practical reasons. Whether some constraints of a role-based model can be
expressed in an ontology highly depends on how roles and other predicates are translated.

On the one hand, we can and will prove the semantical correctness of our translation
from role-based models into an LM⟦LO⟧ ontology. On the other hand, for practical use there
must exist some implementation of the mapping. We based our implementation on the
reference implementation for CROM1, which in turn can be used by FRaMED2, a graphical
editor allowing the specification of role-based models. In the end, our implemented mapping
produces an ontology which is specially formatted in the Web Ontology Language (OWL).
This leads to the last open part in the overall workflow.

1.5 A Reasoner for Contextualised Description Logics

A contextualised DL capable of formalising role-based models and an automated mapping
from role-based models into an ontology still helps only very little in practice, if there es no
DL reasoner available which can process such ontologies. Usually DL reasoners use OWL as
language for the input ontology. But OWL in general does not have the syntactical means to
express contextualised DL axioms. However, OWL enables us to annotate axioms which we
use to encode LM⟦LO⟧-axioms.

Although the reasoning tasks in DLs have a high complexity, DLs have been successfully
introduced as a formalism for knowledge representation. One reason for the success of DLs
is the availability of highly optimised reasoners which makes drawing logical inferences
feasible. A black-box approach for deciding consistency of an LM⟦LO⟧-ontology could benefit
from these optimised reasoners. The main idea is to divide the consistency problem into
separate subproblems each of which can be processed by a standard DL reasoner. Taking
into account the special form of the axioms of the generated ontologies further optimisations
are possible.

1.6 Outline of the Thesis

In the following, we give a short outline how the thesis is structured.

1https://github.com/Eden-06/CROM
2https://github.com/leondart/FRaMED

https://github.com/Eden-06/CROM
https://github.com/leondart/FRaMED

6 Chapter 1. Introduction

In the first section of Chapter 2, we present the basic definitions of description logics which
we will use throughout the thesis. We define the syntax and semantics of concepts, axioms
and knowledge bases and state specific DLs together with the respective complexities of
the consistency problem. We then present an ontological overview of the notion of a role
and introduce a syntactical variant of the Compartment Role Object Model, the modelling
language we use for role-based modelling.

Chapter 3 starts with an discussion about the requirements for a logical formalism in order
to be feasible in our setting, and we then introduce the contextualised description logic
LM⟦LO⟧. We again start with the definition of the syntax and semantics. For the complexity
analysis of the consistency problem, the upper bounds are investigated first. We consider the
case of the lightweight description logic EL in a separate section, which at the same time
yields the lower bounds of the complexity for more expressive contextualised DLs. For the
complexity analysis, we consider three different settings which result in different complexity
results. In the first setting, we do not allow any rigid names. In the second setting, we assume
the presence of rigid concepts, but forbid any rigid roles. In the last and complexity-wise
hardest setting, we allow both rigid concept and rigid role names. At last, we introduce
an extension of LM⟦LO⟧, and show that the consistency problem becomes undecidable in
the presence of rigid roles. The main results of this chapter, namely the complexity results
excluding the description logic SHOIQ, have already been published in [BL15b; BL15a;
BL15c]:

• Stephan Böhme and Marcel Lippmann: ‘Decidable Description Logics of Context with
Rigid Roles’. In Proc. of the 10th Int. Symp. on Frontiers of Combining Systems (FroCoS
2015), Wroclaw, Poland. Edited by Carsten Lutz and Silvio Ranise. Volume 9322.
Lecture Notes in Artificial Intelligence. Springer-Verlag, Sept. 2015, pages 17–32

• Stephan Böhme and Marcel Lippmann: ‘Decidable Contextualized DLs with Rigid
Roles’. In Proc. of the 28th Int. Workshop on Description Logics (DL 2015), Athens,
Greece. Edited by Diego Calvanese and Boris Konev. Volume 1350. CEUR Workshop
Proceedings. CEUR-WS.org, June 2015, pages 92–95

• Stephan Böhme and Marcel Lippmann: ‘Description Logics of Context with Rigid Roles
Revisited’. LTCS-Report 15-04. See http://lat.inf.tu-dresden.de/research/
reports.html. Chair of Automata Theory, TU Dresden, 2015

In Chapter 4, we present the mapping from role-based models into LM⟦LO⟧-ontologies.
We explain in detail how the different assumptions of a CROM are translated and proof that
the mapping algorithm preserves the semantics of the role-based model. We conclude the
chapter with some thoughts on how to express constraints for role-based models that go
beyond CROM. Both the formal role-based modelling language CROM and the mapping
algorithm have already been published in [KBG+15; BK17]:

• Thomas Kühn, Stephan Böhme, Sebastian Götz, and Uwe Aßmann: ‘A combined formal
model for relational context-dependent roles’. In Proc. of the 8th ACM SIGPLAN Int.
Conf. on Software Language Engineering (SLE 2015), Pittsburgh, PA, USA. edited by
Richard F. Paige, Davide Di Ruscio, and Markus Völter. ACM, Oct. 2015, pages 113–124

• Stephan Böhme and Thomas Kühn: ‘Reasoning on Context-Dependent Domain Models’.
In Proc. of the 7th Joint Int. Conf. on Semantic Technology (JIST 2017), Gold Coast, QLD,

CEUR-WS.org
http://lat.inf.tu-dresden.de/research/reports.html
http://lat.inf.tu-dresden.de/research/reports.html

1.6 Outline of the Thesis 7

Australia. Edited by Zhe Wang, Anni-Yasmin Turhan, Kewen Wang, and Xiaowang
Zhang. Volume 10675. Lecture Notes in Computer Science. Springer-Verlag, Nov.
2017, pages 69–85

Finally, in Chapter 5, we present JConHT, our reasoner for LM⟦LO⟧. To implement a
decision procedure for the consistency problem, we have to adapt some ideas of Chapter 3,
which are discussed in Section 5.1. Section 5.2 covers the analysis of the contextualised
hypertableau algorithm. We finish the chapter with some notes on the implementation and
an evaluation of our implementation. Both the contextualised hypertableau algorithm and a
system description of JConHT are also published in [BK17].

8 Chapter 1. Introduction

Chapter 2

Preliminaries

In this chapter, we will introduce the preliminaries which are necessary for the rest of the
thesis. In Section 2.1, we introduce description logics (DLs) as a well-established logical
formalism for knowledge representation and show the specific notations used in this thesis
to emphasise parameters which are important later on. A short overview of the ontological
foundations of roles followed by the presentation of the formal role-based modelling language
CROM is given in Section 2.2.

2.1 Description Logics

Description logics are a family of knowledge representation formalisms. As already outlined
in the introduction, DLs allow to represent application domains in a well-structured way.
In this section, we present the notations, definitions and known results which are used in
this thesis. For a more thorough introduction into description logics we refer the reader to
[BCM+07].

2.1.1 Description Logic Concepts

As shown in Section 1.2, DL concepts describe sets of elements. Concepts are build from
concept names, role names and individual names using concept and role constructors. Note
that in the following definitions we refer to the triple N := (NC, NR, NI) explicitly although it
is usually left implicit in standard definitions. This turns out to be useful in Chapter 3 as we
need to distinguish between different DLs and symbols used in the meta level and the object
level. Sometimes we omit N, however, if they are irrelevant or clear from the context.

Definition 2.1 (Syntax of roles over N and concepts over N). Let NC, NR, NI be countably
infinite, pairwise disjoint sets of concept names, role names, and individual names. Then, the
triple N := (NC, NR, NI) is a signature. A role r over N is either a role name, i.e. r ∈ NR, or it is
of the form s− with s ∈ NR (inverse role).

The set of concepts over N is the smallest set such that

• for all A∈ NC, then A is a concept over N (atomic concept), and

• if C and D are concepts over N, r is a role over N and a ∈ NI, then ¬C (negation),
C ⊓ D (conjunction), ∃r.C (existential restriction), {a} (nominal) and ⩾nr.C (at-least
restriction) are concepts over N. ♦

Non-atomic concepts are also called complex concepts. As usual in description logics, we use
the following abbreviations:

9

10 Chapter 2. Preliminaries

• C ⊔ D (disjunction) for ¬(¬C ⊓¬D),

• ⊤ (top) for A⊔¬A where A∈ NC is arbitrary but fixed,

• ⊥ (bottom) for ¬⊤,

• ∀r.C (value restriction) for ¬(∃r.¬C), and

• ⩽nr.C (at-most restriction) for ¬(⩾n+1r.C).

The semantics of description logic concepts are defined in a model-theoretic way using the
notion of interpretations.

Definition 2.2 (N-interpretation, Semantics of concepts over N). Let N := (NC, NR, NI)
be the signature. Then, an N-interpretation I is a pair (∆I , ·I) where the domain ∆I is a
non-empty set and the interpretation function ·I maps

• every concept name A∈ NC to a set AI ⊆∆I ,

• every role name r ∈ NR to a binary relation rI ⊆∆I ×∆I , and

• every individual name a ∈ NI to an element aI ∈∆I such that different individual names
are mapped to different elements, i.e. for a, b ∈ NI it holds that aI ̸= bI if a ̸= b.

This function is extended to inverse roles and complex concepts as follows:

• (s−)I :=
�

(d, c) ∈∆I ×∆I
�

� (c, d) ∈ s−
	

,

• (¬C)I :=∆I \ CI ,

• (C ⊓ D)I := CI ∩ DI ,

• (∃r.C)I := {d ∈∆I | there is an e ∈ CI with (d, e) ∈ rI},

• {a}I := {aI}, and

• (⩾nr.C)I := {d ∈∆I | ♯{e ∈ CI | (d, e) ∈ rI} ≥ n}.

where ♯S denotes the cardinality of the set S. ♦

For any x ∈ NC∪NR∪NI, xI is called the extension of x . Note that in the above definition of an
interpretation, we adopt the so-called unique name assumption stating that every individual
name is interpreted as a distinct element. By doing so, we emphasize that an individual
name is meant to be the identity of an individual, rather than just a tag as it is usually used
in the context of semantic web.

Now, we can look at a first example using the notions just defined.

Example 2.3. Consider the following complex concept C:

NFL_Team⊓¬AFC⊓⩾1playsFor−.(∃position.Quarterback)
⊓ ∃coaches−.{MikeMcCarthy}

It describes all NFL teams which are not in the AFC, have at least one person playing for them at
quarterback position and are coached by Mike McCarthy.

Figure 2.1 depicts an interpretation in which the Green Bay Packers are in the extension of
the above concept. ♦

2.1 Description Logics 11

GreenBayPackers,
NFL_Team, NFC

MikeMcCarthy

AaronRodgers,
NFL_PLayer

Quarterback

coaches

playsFor
position

Figure 2.1: An Interpretation I such that GreenBayPackersI ∈ CI and I |= O with C from
Example 2.3 and O from Example 2.6.

2.1.2 Boolean Knowledge Bases

With the notion of concepts at hand, we can formulate axioms to capture domain knowledge
in a so-called Boolean knowledge base (BKB). Each BKB consists of a Boolean combination of
certain axioms and an RBox which states the general knowledge about roles.

Definition 2.4 (Syntax of axioms over N and BKBs over N). Let N := (NC, NR, NI) be the
signature. Then, if C and D are concepts over N, r and s are roles over N, and {a, b} ⊆ NI, then

• C ⊑ D (general concept inclusion, GCI),

• C(a) (concept assertion),

• r(a, b) (role assertion),

• r ⊑ s (role inclusion), and

• trans(r) (transitivity axiom)

are axioms over N. Moreover, an RBox R over N is a finite set of role inclusions over N and
transitivity axioms over N. A Boolean axiom formula over N is defined inductively as follows:

• every GCI over N is a Boolean axiom formula over N,

• every concept and role assertion over N is a Boolean axiom formula over N,

• if B1, B2 are Boolean axiom formulas over N, then so are ¬B1 (axiom negation) and
B1 ∧B2 (axiom conjunction), and

• nothing else is a Boolean axiom formula over N.

Finally, a Boolean knowledge base (BKB) over N is a pair B= (B, R), where B is a Boolean
axiom formula over N and R is an RBox over N. An ontology over N is an BKB over N, where
only axiom conjunction and no axiom negation is allowed in the Boolean axiom formula. ♦

Again as usual in description logics, we use C ≡ D (concept equivalence) as abbreviation for
(C ⊑ D)∧ (D ⊑ C) and B1 ∨B2 (axiom disjunction) as abbreviation for ¬(¬B1 ∧¬B2). Often
an ontology O = (B, R) is written as a triple O = (T , A, R) where T (TBox) is the set of all
GCIs occurring in B and A (ABox) is the set of all assertion axioms occurring in B.

12 Chapter 2. Preliminaries

Definition 2.5 (Semantics of axioms over N, BKBs over N). An N-interpretation I is a
model of

• the GCI C ⊑ D over N if CI ⊆ DI ,

• the concept assertion C(a) over N if aI ∈ CI ,

• the role assertion r(a, b) over N if (aI , bI) ∈ rI ,

• the role inclusion r ⊑ s over N if rI ⊆ sI , and

• the transitivity axiom trans(r) over N if rI = (rI)+, where ·+ denotes the transitive closure
of a binary relation.

This is extended to Boolean axiom formulas over N inductively as follows:

• I is a model of ¬B1 if it is not a model of B1, and

• I is a model of B1 ∧B2 if it is a model of both B1 and B2.

We write I |= α and I |= B if I is a model of the axiom α over N or I is a model of the Boolean
axiom formula B, respectively. Furthermore, I is a model of an RBox R over N (written I |=R)
if it is a model of each axiom in R.

Finally, I is a model of the BKB B = (B, R) over N (written I |=B) if it is a model of both B
and R. We call B consistent if it has a model. The consistency problem is the problem of
deciding whether a given BKB is consistent. ♦

Note that besides the consistency problem there are several other reasoning tasks for descrip-
tion logics. The entailment problem, for instance, is the problem of deciding, given a BKB B

and an axiom β , whether B entails β , i.e. whether all models of B are also models of β .
The consistency problem, however, is fundamental in the sense that most other standard
reasoning tasks can be polynomially reduced to it in the presence of axiom negation. For
example, the entailment problem can be reduced to the inconsistency problem: B= (B, R)
entails β iff (B ∧¬β , R) is inconsistent. If we consider only an ontology O = (O, R) without
any axiom negations, we can still simulate most of the negated axioms ¬β . Let us for example
consider the GCI β = C ⊑ D. Here we can check (O ∧ (C ⊓ ¬D)(x), R) with x ∈ NI not
occurring in O for inconsistency to decide the entailment problem. Hence, we focus in this
thesis only on the consistency problem.

To show an example of an ontology, we continue contentwise with American football.

Example 2.6. Consider the following ontology O = (B,∅) with B =

NFC(GreenBayPackers) ∧
playsFor(AaronRodgers, GreenBayPackers) ∧
∃playsFor.NFL_Team⊑ NFL_Player ∧

NFL_Team≡ NFC⊔AFC ∧
NFC⊓AFC⊑⊥.

The first two axioms assert that the Green Bay Packers are in the NFC and that Aaron Rodgers
plays for Green Bay. The third axiom states that everybody who plays for an NFL team is an

2.1 Description Logics 13

NFL player. Finally, the last two axioms define NFL teams as a disjoint union of the NFC and the
AFC.

The ontology O is consistent and Figure 2.1 depicts a model of O. Note here, that it is not
coincidentally that Aaron Rodgers is in the extension of NFL_Player, since O entails

NFL_Player(AaronRodgers). ♦

2.1.3 Specific Description Logics

The specific description logics differ in the available concept and role constructors to formulate
concepts and axioms, and also in the available axioms in a knowledge base.

The prototypical description logic is ALC, the attributive language with complement. There
are no inverse roles and only negation, conjunction and existential restriction are allowed as
concept constructors. Furthermore, only GCIs, concept and role assertions are allowed as
axioms. Hence, only role names are roles in ALC and an RBox in ALC is always the empty
set. The DL ALC is the smallest propositionally closed DL [SS91]. Adding a letter to ALC
stands for certain constructors or axioms that are additionally allowed. For example, ALCI
additionally allows inverse roles in complex concepts. By the naming convention of DLs,
specific letters denote a concept or role constructor or a type of axioms that is allowed in
that DL:

• O means nominals,

• I means inverse roles,

• Q means at-least restrictions,

• H means role inclusions, and

• S means transitivity axioms.

ALC with additional transitivity axioms is called S instead of ALCS, due to its connection
to the modal logic S4. Thus, SHOIQ, for example, is the DL that allows all constructors
and axioms which are introduced above. Besides extensions of ALC, there also exist many
sublogics of ALC of which we only consider EL in this thesis. The sub-Boolean description
logic EL is the fragment of ALC where only conjunction, existential restriction, and the top
concept (which cannot be expressed as an abbreviation anymore due to the lack of negation)
are admitted.

If necessary, we clarify the specific DL used by prefixing the specific DL name, e.g. an
ALCOIQ-concept can contain all concept constructors defined in Def. 2.1 and an ALCH-RBox
can only contain role inclusions, but no transitivity axioms.

In [HST00], it is shown for SHQ that allowing arbitrary roles in number restrictions
leads to undecidability of the consistency problem. Decidability can be regained by re-
stricting roles used in number restrictions to simple roles. To define what a simple role is,
for a given BKB B = (B, R), we introduce ⊑*R as the transitive-reflexive closure of ⊑ on
R∪ {Inv(r)⊑ Inv(s) | r ⊑ s ∈R} where Inv(r) is defined as

Inv(r) :=

¨

r− if r ∈ NR, and

s if r is an inverse role with r = s−

14 Chapter 2. Preliminaries

and r ≡R s as abbreviation for r⊑*R s and s⊑*R r. A role r is transitive w.r.t. R if for some s
with r ≡R s, we have trans(s) ∈R or trans(Inv(s)) ∈R. A role r is called simple w.r.t. R if it
is neither transitive nor has any transitive sub-role, i.e. there is no s such that s⊑*R r and s is
transitive w.r.t. R.

In the rest of this thesis, we make this restriction to the syntax of SHQ and all its extensions.
This restriction is also the reason why there are no Boolean combinations of role inclusions
and transitivity axioms allowed in an RBox R over N in the above definition. Otherwise,
the notion of a simple role w.r.t. R involves reasoning. Consider, for instance, the Boolean
combination of axioms (trans(r)∨ trans(s))∧ r ⊑ s. It should be clear that s is not simple,
but this is no longer a pure syntactic check.

The complexity of the consistency problem for DL ontologies is well-investigated. Is is
EXPTIME-complete for any DL between ALC and SHOQ and NEXPTIME-complete for SHOIQ.
The lower bound for ALC was shown in [Sch91], the upper bound for SHOQ in [Tob01]. For
SHOIQ the lower and upper bound were proven in [Tob00] and [Tob01], respectively. While
for BKBs the complexity class stays the same, this is much less explored. It is in EXPTIME for
SHOQ [Lip14] and it remains in NEXPTIME for SHOIQ as a consequence of Theorem 2 in
[Pra05].

For EL-ontologies, the consistency problem is trivial since no contradictions can be ex-
pressed and, thus, every EL-ontology is consistent. On the other hand, we do not consider
EL-BKBs as it seems very unnatural to admit axiom negation while denying concept negation
at the same time.

2.2 Role-Based Modelling

In this section we present the essentials of role-based modelling needed in this thesis. By
all means this is not a thorough introduction to role-based modelling and we assume that
the reader is already familiar with the basic concepts. After discussing some ontological
foundations of roles, we introduce the Compartment Role Object Model (CROM) as a modelling
language with well-defined formal semantics. We mentioned the importance of formal
semantics of the modelling language already in the introduction and will pick up the argument
in Section 3.1 again.

To avoid the confusion with the notations, from now on we differentiate rôles as in
rôle-based systems and roles as used in description logics whenever we feel it is necessary.
Otherwise, we drop that distinction if it is clear from the context.

2.2.1 Ontological Foundation of Rôles

The word Role originated from the French word Rôle which referred to a form of rolled
parchment on which the lines were written that an actor had to memorise. Since then, a
role is a function assumed or part played by a person or thing in a certain situation.

Roles have been introduced in computer science already in 1977 by Bachman et al. He
defined a role as a behaviour pattern which may be assumed by entities of different kinds.
Since an entity can concurrently play several roles, the set of played roles characterise that
entity.

2.2 Role-Based Modelling 15

Guarino approaches roles form an ontological point of view. He, among others, developed
OntoClean [GW09], a methodology for analysing ontologies. He considers several domain-
independent metaproperties, i.e. properties which describe classes. Here, a class is merely a
set of instances, i.e. domain elements in a possible world, and a class itself can be an instance
of a metapredicate such as Role. One metaproperty that is important for roles is rigidity.
A class is rigid if all entities which are instances of that class are necessarily instances of
that class in every possible world. For example, every instance of Person will always be a
person, independent of the context or the time. But an instance of Student can cease to be
a student. Another metaproperty is dependence. A class is dependent if each instance of it
implies the existence of some other entity. The class Student can only have instances if there
are also instances of Teacher. We here omit further metaproperties and their implications
for metapredicates since they are not relevant in our setting and refer the interested reader
to [GW00a; GW00b; GW00c; WG01].

The metapredicate Role implies non-rigidity and dependence. Thus, a class which is a role
such as Student must not be rigid but dependent. That roles are dependent can be argued in
two directions. First, one can say that each role needs its co-role, e.g. a student depends on a
teacher or an orchestra musician depends on a conductor. On the other hand, a role always
depends on a context, e.g. a student only exists in a school or university and an orchestra
musician only exists in an orchestra. Anyhow, an instance of a role depends on the existence
of another entity.

Besides the analysis of Guarino, Steimann [Ste00] introduces 15 features, depicted in
Table 2.1, to classify roles. These features are completed by Kühn et al. in [KLG+14] by 11
additional features since Steimann neglected any features concerning role constraints or
the contextual nature of roles. These features show how diverse roles can be seen, and that
there is not one definition of what a role is. Based on these features, Kühn et al. [KLG+14]
propose a so-called feature model to classify role-based modelling languages, i.e. several
features organised in a tree shape from which a domain expert can select the features he
needs. These features include, for example, whether role constraints such as role implication
exist or whether the same role can be played several times by an entity.

The Compartment Role Object Model [KBG+15], which we focus on in this thesis, is one
instance of this feature model.

2.2.2 A Formal Role-Based Modelling Language

We will present here a syntactical variant of the Compartment Role Object Model published
in [KBG+15]. This variant is semantically equivalent to the CROM proposed in [KBG+15]
but we introduce it here a bit different for easier explanation of the mapping to description
logics.

Type and Instance Level

In CROM, we can model rôle-based systems via different kinds of predicates: natural types,
rôle types, compartment types and relationship types. These differ in the the above mentioned
metaproperties rigidity and dependence.

16 Chapter 2. Preliminaries

Table 2.1: Classifying features for roles [Ste00; KLG+14]

1. Roles have properties and behaviour.
2. Roles depend on relationships.
3. Objects may play different roles simultaneously.
4. Objects may play the same role (type) several times.
5. Objects may acquire and abandon roles dynamically.
6. The sequence of role acquisition and removal may be restricted.
7. Unrelated objects can play the same role.
8. Roles can play roles.
9. Roles can be transferred between objects.

10. The state of an object can be role-specific.
11. Features of an object can be role-specific.
12. Roles restrict access.
13. Different roles may share structure and behavior.
14. An object and its roles share identity.
15. An object and its roles have different identities.

16. Relationships between roles can be constrained.
17. There may be constraints between relationships.
18. Roles can be grouped and constrained together.
19. Roles depend on Compartments.
20. Compartments have properties and behaviors.
21. A Role can be part of several Compartments.
22. Compartments may play roles like objects.
23. Compartments may play roles which are part of themselves.
24. Compartments can contain other compartments.
25. Different compartments may share structure and behavior.
26. Compartments have their own identity.

• Natural types, e.g. Person or Table, are rigid and independent. Instances of natural
types, called naturals, are instances of that type until they cease to exist. A table is
always a table, independent of its function.

• Rôle types, e.g. Student, DiningTable or WorkDesk, are non-rigid and dependent. In-
stances of rôle types, called rôles, may be played by some entity in some context but
not in another. But there always must be a context in which that rôle is played. A table
might be used as a dining table in the context of a family celebration, i.e. the table
plays the role of a dining table, whereas the same table usually is used as work desk.

• Compartment types, e.g. University or FamilyCelebration, are rigid and dependent.
Intuitively, compartment types are objectified contexts. As long as an instance of a
compartment type, called compartment, exists it is of that type. But unlike naturals
a compartment depends on other entities, i.e. the rôles that are played within that
compartment.

• Relationship types, e.g. supervise, are non-rigid and dependent. But in contrast to rôle
types, which are unary predicates, relationship types are binary predicates. Hence, an
instance of a relationship type depends on the existence of the two entities that are
interrelated. An instance of supervise needs a professor who supervises and a student
who is supervised.

2.2 Role-Based Modelling 17

Besides these different types, we can restrict which entities are allowed to play which rôles
by a fills-relation which assigns each rigid type, i.e. natural types and compartment types, the
set of rôle types, so that an instance of the rigid type can only play rôles of rôle types the rigid
types fills. For example, besides tables also picnic blankets could play the rôle of a dining
table in some contexts. But not only natural types can play rôles. For example, persons
can play the rôle of an NFL player in the context of an NFL team, e.g. Aaron Rodgers is the
quarterback in the context of the Green Bay Packers. The Green Bay Packers themselves
as compartment can now play the rôle of a Super Bowl contender in the context of Super
Bowl XLV.

In a CROM, a rôle type is also explicitly assigned to a single compartment type, in which it
can be played. This is implemented through parts. Last, to each relationship type a pair of
rôle types is assigned, which are the domain and the range of the relation. Here it is asserted
that both rôle types are part of the same compartment type and that the same rôle type is
not the domain and the range.

Definition 2.7 (Compartment Role Object Model). Let NNT, NRT, NCT and NRST be finite
and mutually disjoint sets of Natural Types, Role Types, Compartment Types, and Relationship
Types, respectively. The tuple Σ = (NNT, NRT, NCT, NRST) is the vocabulary. A Compartment
Role Object Model M over Σ (Σ-CROM) is a tuple M= (fills, parts, rel) where

1. fills ⊆ (NNT ∪NCT)×NRT is a right-total binary relation,

2. parts : NCT→P is a bijection where P is an arbitrary but fixed partition of the set NRT,
and

3. rel : NRST→ S is a bijection where S ⊆
⋃

P∈P P × P is an irreflexive binary relation. ♦

In the above definition, fills specifies which rigid type is allowed to play which role type and
parts expresses in which compartment type a certain role type can be played. Finally, rel
defines the domain and range of relationship types. In the rest of this thesis, we use the
following phrases:

• T fills RT if (T, RT) ∈ fills,

• RT participates in CT if RT ∈ parts(CT),

• RST participates in CT if rel(RST) = (RT1, RT2) with {RT1, RT2} ⊆ parts(CT),

• RT1 and RT2 are related via RST if (RT1, RT2) = rel(RST), and

• RT1 is the domain of RST (dom(RST)) and RT2 is the range of RST (ran(RST)) if
(RT1, RT2) ∈ rel(RST).

Note here, that the above definition of Σ-CROM always ensures well-formedness as defined
in Definition 1 of [KBG+15]. This is unproblematic since reasoning about role-based models
does not include checking well-formedness as this is a pure syntactical check.

We will now start to introduce an example which we will use throughout this chapter to
explain some interesting aspects.

Example 2.8. We consider a banking application. In the context of a bank we have consultants
and customers where either persons or companies can be customers of a bank, but only persons

18 Chapter 2. Preliminaries

can be consultants. A customer can own savings or checking accounts. These rôles can be
attained by any physical entity which is an account. Accounts can, moreover, be the source or
the target in the context of a transaction. Transactions in turn can have the function of a money
transfer in the context of a bank and customers can issue such money transfers.

Hence, we have the following vocabulary ΣBank = (NNT,Bank, NRT,Bank, NCT,Bank, NRST,Bank)
with

NNT,Bank := {Person, Company, Account},
NRT,Bank := {Consultant, Customer, CheckingAccount, SavingsAccount, MoneyTransfer,

Source, Target},
NCT,Bank := {Bank, Transaction}, and

NRST,Bank := {advises, own_ca, own_sa, issues, trans}.

Furthermore, fills, parts, and rel are defined as follows:

fills := {(Person, Consultant), (Person, Customer), (Company, Customer),
(Account, SavingsAccount), (Account, CheckingAccount),
(Account, Source), (Account, Target), (Transaction, MoneyTransfer)}

parts(Bank) := {Consultant, Customer, CheckingAccount, SavingsAccount,
MoneyTransfer}

parts(Transaction) := {Source, Target}
rel(advises) := (Consultant, Customer)
rel(own_ca) := (Customer, CheckingAccount)
rel(own_sa) := (Customer, SavingsAccount)

rel(issues) := (Customer, MoneyTransfer)
rel(trans) := (Source, Target)

Hence, for example Person fills Customer, and Customer and advises participate in Bank.
Customer and SavingsAccount are related via own_sa since the domain of own_sa is Customer
and the range of own_sa is SavingsAccount.

Figure 2.2 depicts the whole example in graphical notation including some constraints which
we will introduce in the next sections. ♦

In our definitions, we omit to precisely define the graphical notation as they are not relevant
for reasoning on CROMs and refer to [KBG+15].

Next, we introduce instances of role-based models. An instance is based on a non-empty
domain, where each element is of exactly one type, i.e. a natural type, a rôle type or a
compartment type. Objects playing rôle in a compartment are collected in a ternary relation
plays and the relation of two rôles via a relationship type in a compartment is stored in links.

Definition 2.9 (Compartment Role Object Instance, Satisfiability). Let Σ = (NNT, NRT,
NCT, NRST) be a vocabulary. Then, a Compartment Role Object Instance I over Σ (Σ-CROI) is
a tuple I = (Γ I , type, plays, links), where

• Γ I is a non-empty domain, and

2.2 Role-Based Modelling 19

Person
name
age
profession

Company

Account

Bank

Consultant

1..*

Customer

0..*

MoneyTransfer

0..*

CheckingAccount

SavingsAccount

BankAccounts (1..1)
1..*

Transaction

Source Target

Participants (1..1)
1..1

1..1 trans 1..10..*
advises
1..* 1..1

issues

1..*

1..1 own_ca 0..*
1..*

own_sa
0..*

Natural Type
Compartment Type

Role Type

Card
Rolegroup (m..n)

Fills-Relation
CardM RST CardN

Figure 2.2: Graphical notation of a CROM for an banking application

• type : Γ I → NNT ∪NRT ∪NCT is a total function.

Based on the type-function, we can partition the domain into the set NI of naturals, i.e. all
instances of any natural type, the set RI of rôles, i.e. all instances of any rôle type, and the set CI

of compartments, i.e. all instances of any compartment type. Furthermore, the set OI of objects
denote all domain elements that are eligible to play a rôle, i.e. all naturals and compartments.

NI := {d ∈ Γ I | type(d) ∈ NNT}
RI := {d ∈ Γ I | type(d) ∈ NRT}
CI := {d ∈ Γ I | type(d) ∈ NCT}
OI := NI ∪CI

Now, plays and links are defined as follows:

• plays ⊆ OI ×CI ×RI is a ternary relation, and

• links : (NRST ×CI)→ P(RI ×RI) is a total function.

Furthermore, the set T I of all elements of type T ∈ (NNT ∪NRT ∪NCT), the set OI,c of all objects
playing a role in c, the set OI,c,RT of all objects playing an RT-role in c, and the set RI,c of all
roles played in c are defined as follows:

T I := {d ∈ Γ | type(d) = T},
OI,c := {o ∈ OI | there is some r with (o, c, r) ∈ plays}, and

OI,c,RT := {o ∈ OI | there is some r with (o, c, r) ∈ plays and r ∈ RTI}
RI,c := {r ∈ RI | there is some o with (o, c, r) ∈ plays}.

A Σ-CROI I satisfies a Σ-CROM M, denoted by I |=M, if it has the following properties:

20 Chapter 2. Preliminaries

1. The plays-relation respects fills, i.e. for each tuple (o, c, r) ∈ plays the type of o fills the
type of r:

{(o, r) | (o, ·, r) ∈ plays} ⊆ {(o, r) | there exists (T, RT) ∈ fills s.t. o ∈ T I , r ∈ RTI}.

2. The plays-relation respects parts, i.e. for each tuple (o, c, r) ∈ plays the type of r particip-
ates in the type of c:

{(c, r) | (·, c, r) ∈ plays}
⊆ {(c, r) | there exists CT ∈ NCT, RT ∈ NRT s.t. c ∈ CT I , r ∈ RTI , RT ∈ parts(CT)}.

3. Each object can only play one role of each role type in each compartment:

{(o, c, r), (o, c, r ′)} ⊆ plays implies type(r) ̸= type(r ′).

4. Each role is played by exactly one object in exactly one compartment:

|{(o, c) | (o, c, r) ∈ plays}|= 1 for all r ∈ RI .

5. Roles occurring in the image of links are played in the associated compartment, i.e. for
each (r1, r2) ∈ links(RST , c) there exists objects that play r1 and r2 in c:

{r1 | (r1, ·) ∈ links(·, c)} ∪ {r2 | (·, r2) ∈ links(·, c)} ⊆ {r | (·, c, r) ∈ plays}.

6. The links-function respects rel, i.e. for each (r1, r2) ∈ links(RST , ·) the types of r1 and r2
are related via RST:

(r1, r2) ∈ links(RST , ·) implies rel(RST) = (type(r1), type(r2)).

A Σ-CROM M is satisfiable if there exists any Σ-CROI I such that I |=M. ♦

We say that r is an RT-role and c is a CT -compartment if, respectively, type(r) = RT ∈ NRT
and type(c) = CT ∈ NCT. Furthermore, o plays r in c and o is the player of r if (o, c, r) ∈ plays,
and r1 is linked to r2 via RST in c if (r1, r2) ∈ links(RST , c).

Before we investigate how the information about aΣ-CROM can be encoded in a description
logic ontology, we have to discuss the main reasoning tasks for role-based models. The
arguably most apparent question is, given a Σ-CROM M and a Σ-CROI I, whether I is
compliant with M. But as this task rather belongs to the area of model checking, we will
not focus on that problem in this thesis. Instead, given a Σ-CROM M, it is more interesting
whether there exists any Σ-CROI that is compliant with M. Additionally, we often want to
know for a specific Σ-CROM M whether there exists a compliant Σ-CROI that fulfills certain
assertions, e.g. that a role of a certain type is played. To express this assertional knowledge,
we introduce a so-called Σ-CROA, a finite set of assertions which should additionally be
satisfied by a Σ-CROI.

2.2 Role-Based Modelling 21

Definition 2.10 (Σ-Compartment Role Object Assertions). LetΣ = (NNT, NRT, NCT, NRST)
be a vocabulary and let NM-IND and NO-IND be two non-empty, disjoint sets of meta and object
individual names disjoint from Σ. A Compartment Role Object Assertion over Σ is of the form

• T (c) with T ∈ NCT and c ∈ NM-IND (meta type assertion),

• T (a, c) with T ∈ NNT ∪NCT ∪NRT, a ∈ NO-IND and c ∈ NM-IND (object type assertion),

• play_assert(a1, c, a2) with a1, a2 ∈ NO-IND and c ∈ NM-IND (plays assertion), or

• link_assert(RST , c, a1, a2) with RST ∈ NRST and a1, a2 ∈ NO-IND and c ∈ NM-IND (link
assertion).

A set of Compartment Role Object Assertions A over Σ (Σ-CROA) is a finite set of such
assertions. We extend the Σ-CROI I to additionally map individual names to domain elements,
e.g. a ∈ NO-IND and c ∈ NM-IND are mapped to a domain elements aI ∈ Γ I and cI ∈ Γ I . A
Σ-CROI I satisfies an assertion α, denoted by I |= α, if the following conditions hold:

• if α= T (c), then cI ∈ T I ,

• if α= T (a, c), then aI ∈ T I ∩ (OI ∪RI,c),

• if α= play_assert(a1, c, a2,), then (aI
1 , cI , aI

2) ∈ plays, and

• if α = link_assert(RST , c, a1, a2), then there exist r1, r2 ∈ RI with (a1, c, r1) ∈ plays,
(a2, c, r2) ∈ plays and (rI

1 , rI
2) ∈ links(RST , cI).

A Σ-CROI I satisfies A, denoted by I |= A if it satisfies all assertions in A. ♦

Note here that the link assertion asserts for two objects that they play roles which are related
via RST , and not that the objects themselves are related. Moreover, without any assertions
there always exists a trivial CROI that satisfies M with the singleton set Γ = {o} where the
type of o is some natural type, and plays and links are empty sets. Therefore, we introduce
in the next section further constraints.

Constraint Level

When modelling a domain of interest, not only the type of an object defines whether that
object is allowed to play a certain role. In [KBG+15] additional constraints were introduced.
These can be divided into four groups.

Role constraints are the first category of constraints which state, for example, that roles
mutually exclude each other or playing one role implies playing another role. More general
these constraints are formalised with so-called role groups. These consist of a set of role types
(or again role groups), a lower and an upper bound. An object fulfills a role group if it plays
at least the lower and at most the upper bound of roles from the set of role types.

Definition 2.11 (Syntax of role groups). Let NRT be a set of role types. The set of role
groups over NRT is the smallest such that

• if RT ∈ NRT, then RT is an (atomic) role group, and

• if A1, . . . , An are role groups, k,ℓ ∈ N, then ({A1, . . . , An}, k,ℓ) is a (complex) role group.

22 Chapter 2. Preliminaries

Atoms of a role group A are defined as:

atom(A) :=

¨

{RT} if A= RT ∈ NRT
⋃n

i=1 atom(Ai) if A= ({A1, . . . , An}, k,ℓ).

Role groups that occur within other role groups are called nested. ♦

The semantics of a role group are based on aΣ-CROI and are locally evaluated for each domain
element and each compartment. The interpretation function ·I,c,o calculates recursively
whether an object fulfills the role group.

Definition 2.12 (Semantics of role groups). Given a Σ-CROI I, the semantics of a role
group A is defined for an object o ∈ OI in c ∈ CI as follows:

AI,c,o :=

⎧

⎪

⎨

⎪

⎩

1 if A= RT ∈ NRT and o plays an RT-role in c, or

if A= ({B1, . . . , Bn}, k,ℓ) and k ≤
∑n

i=1 BI,c,o
i ≤ ℓ, and

0 otherwise.

If AI,c,o = 1, we say that o fulfills A in c. ♦

Basic role constraints, for example as defined in [RG98], i.e. role implication, role equivalence
and role prohibition, can be expressed with role groups as well as much more complex ones.
In fact, any propositional formula can be emulated with role groups.

Proposition 2.13. Let ϕ be some propositional formula. Then, there exists a role group Aϕ
such that ϕ is satisfiable if and only if Aϕ can be fulfilled.

Proof. We define Aϕ inductively as follows:

if ϕ = p then Aϕ := RTp,
if ϕ = ¬ψ then Aϕ := ({Aψ}, 0, 0),
if ϕ =ψ1 ∧ψ2 then Aϕ := ({Aψ1

, Aψ2
}, 2, 2), and

if ϕ =ψ1 ∨ψ2 then Aϕ := ({Aψ1
, Aψ2
}, 1, 2).

Next, we establish a 1-to-1-relation between a valuation ρ for ϕ and a Σ-CROI I. For every
propositional variable Pi occurring in ϕ, we introduce a role type RTi and assume that o plays
an RTi-role iff ρ(Pi) = true. By induction, it follows that ρ(ϕ) = true iff o fulfills Aϕ.

The next category of constraints are occurrence constraints. These state how often a role
type or role group must at least or at most be played in a compartment. Therefore, we
introduce the notion of a cardinality, a pair (k,ℓ) ∈ N×N∞ with k ≤ ℓ. We usually denote
cardinalities by (k..ℓ). Since role types are also atomic role groups, it suffices to specify
occurrence constraints for role groups. Similar to multiplicities specified for associations in
UML class diagrams, we specify cardinality constraints for relationship types. They express
how often a role of certain type must be related via a relationship type to some other role
type.

Last but not least, the category of intra-relationship type constraints imposes constraints on
the players of roles which are related via a relationship type. For example, stating that the

2.2 Role-Based Modelling 23

relationship type isAncestorOf between the role types Parent and Child is transitive assures
the existence of a respective link between a grandparent and a grandchild. Note here, that
the transitivity is evaluated over the players and not the roles themselves.

Definition 2.14 (Constraint set). Let Σ = (NNT, NRT, NCT, NRST) be a vocabulary, let RG
be the set of role groups over NRT and let Card := N×N∞ be the set of cardinalities. Then,
a Σ-Compartment Role Object Constraint Set (Σ-CROC) C is a tuple C = (occur, card, intra)
where

• occur : NCT→ P(Card×RG),

• card : NRST→ Card×Card, and

• intra : NRST→ P(E) with E being a set of functions of the form e : P(A×B)→ {true, false}
for arbitrary sets A, B.

are total functions. The set of all non-nested role groups that appear in occur is the set of
top-level role groups RG⊤. A Σ-CROC C is compliant to a Σ-CROM if all atoms of a role group
that is in the occurrence constraints of a compartment type participate in that compartment
type. Before we define satisfiability, we introduce the following auxiliary functions:

succ(RST , r, c) := {r ′ ∈ RI | (r, r ′) ∈ links(RST , c)},
pred(RST , r, c) := {r ′ ∈ RI | (r ′, r) ∈ links(RST , c)}, and

links∗(RST , c) := {(o1, o2) | (r1, r2) ∈ links(RST , c) and (o1, c, r1), (o2, c, r2) ∈ plays}.

A Σ-CROI I satisfies C, denoted by I |= C, if it has the following properties:

1. All occurrence constraints are respected, i.e. if (k..ℓ, A) ∈ occur(CT), then in every CT -
compartment there must exist at least k and at most ℓ objects that fulfill role group A:

((k,ℓ), A) ∈ occur(CT) implies CT I ⊆
¦

c ∈ CI
�

�

� k ≤
∑

o∈OI,c
AI,c,o ≤ ℓ

©

2. All top-level rôle groups must be satisfied, i.e. if an object o plays an RT-role and RT is an
atom of a top-level rôle group A, then o must fulfill A:

(o, c, r) ∈ plays, r ∈ RTI and RT ∈ atom(A) implies AI,c,o = 1,

for all o ∈ OI , A∈ RG⊤.

3. All cardinality constraints are respected, i.e. every rôle that is played in a compart-
ment c and whose type is either the domain or the range of a relationship type RST with
card(RST) = (i.. j, k..ℓ) must have at least k and at most ℓ RST-successors in c or at
least i and at most j RST-predecessors in c, respectively:

(·, c, r) ∈ plays, r ∈ RT1
I , rel(RST) = (RT1, ·) and card(RST) = (·, k..ℓ)

implies k ≤ |succ(RST , r, c)| ≤ ℓ

(·, c, r) ∈ plays, r ∈ RT2
I , rel(RST) = (·, RT2) and card(RST) = (i.. j, ·)

implies i ≤ |pred(RST , r, c)| ≤ j

24 Chapter 2. Preliminaries

4. All intra-relationship type constraints are respected, i.e. every function f ∈ intra(RST),
evaluated over the players of the roles related via RST, must return true:

f ∈ intra(RST) implies f(links∗(RST , c)) = true
for all c in CT I s.t. RST participates in CT . ♦

The definition of satisfying a constraint model in [KBG+15] is, neglecting ϵ-roles, exactly
reflected in the above definition. With constraints being formally introduced, we can complete
the CROM for the banking application of Example 2.8 and Figure 2.2.

Example 2.15. We first define the complex rôle groups that occur in our example. The rôle
group Participants in the context of an transaction ensures that a single account cannot be both
the source and the target of an transaction. The rôle group BankAccounts states the same for
savings and checking accounts in the context of a bank. A single account cannot attain both
rôles simultaneously.

Participants := ({Source, Target}, 1, 1)

BankAccounts := ({SavingsAccount, CheckingAccount}, 1, 1)

We next analyse the occurrence constraints. In our example a bank can only exists if it contains
at least on consultant and one bank account. A transaction has exactly one source or target1.

occur(Bank) := {(1..∞, Consultant), (1..∞, BankAccounts)}
occur(Transaction) := {(1..1, Participants)}

For the appearing cardinality constraints we assume the following in the context of a bank.
A consultant must advise at least one customer but not every customer necessarily needs a
consultant. A customer does not need to have any bank account, but every bank account needs to
have an owner. A checking account has exactly one owner, a savings account could have several.
A money transfer is issued by exactly one customer and each customer issues at least one money
transfer. In the context of a transaction, there is a one-to-one connection between source and
target.

card(advises) := (0..∞, 1..∞)
card(own_ca) := (1..1, 0..∞)
card(own_sa) := (1..∞, 0..∞)

card(issues) := (1..1, 1..∞)
card(trans) := (1..1, 1..1)

The intra-relationship type constraints are empty since we do not have such constraints in our
example. ♦

At last we combine all parts of the role-based system into one constrained Σ-compartment
Object Role Model.

1Note here, that this small modelling error is made on purpose. We will discuss its logical implications later.
Actually a transaction has exactly one source and one target, and, hence, exactly two participants.

2.2 Role-Based Modelling 25

Definition 2.16 (Constrained Σ-Compartment Role Object Model). Let Σ = (NNT, NRT,
NCT, NRST) be a vocabulary, let M be a Σ-CROM, let A be a Σ-CROA and let C be a Σ-CROC.
Then, a Constrained Σ-Compartment Role Object Model Σ-CCROM is the tuple K = (M, A, C).

The satisfiability problem for Σ-CCROMs is the problem of deciding for a given Σ-CCROM
K = (M, A, C) whether there exists a Σ-CROI that satisfies M, A and C. ♦

26 Chapter 2. Preliminaries

Chapter 3

The Contextualised Description Logic LM⟦LO⟧

In the previous chapter we introduced description logics as a logical formalism for knowledge
representation as well as the Compartment Role Object Model as a modelling language for
role based models with a formal semantics. Now, the next step in our overall workflow is
to investigate whether DLs are sufficient to express CROM and, if necessary, develop an
extension of DLs which possesses the required expressive power.

Hence, we start this chapter with discussing the requirements for a feasible logical form-
alism in Section 3.1. Then, after defining the syntax and semantics of contextualised DLs
in Section 3.2, we analyse the computational complexity of the consistency problem for
contextualised DLs in Section 3.3. Particular consideration is needed in the case of EL, which
is discussed in Section 3.4. At last, we show in Section 3.5 that introducing an additional
concept constructor directly leads to undecidability.

3.1 Requirements for Logical Formalism

First we have to decide how to represent role-based models. Although nearly every large
software project starts with modelling the application domain in UML and, hence, UML is
the de facto standard as modelling language, it has several drawbacks. First of all, it has no
formally defined semantics [FEL+98]. While UML meta-models capture the precise syntax
of concepts used for modelling, they do little for answering questions of how to interpret
non-trivial UML diagrams. For example, if one wants to map UML class diagrams to a logical
formalism to be able to reason about these diagrams, one takes certain assumptions about
the intended meaning of the occurring elements. Then a domain expert modelling some
application has to trust that the logician constructed the mapping with the same semantics in
mind. Nevertheless, over the last years several approaches for formal frameworks to reason
on UML arose [Eva98; CCD+02; SMS+03; SSJ+04; BCD05; SBH+08; AN10], from which
we can adapt some ideas, e.g. how to model attributes of a UML class with DL roles and how
multiplicities of associations are modelled in [CCD+02].

The second major drawback is that UML lacks expressive power to model context-dependent
domains. There also exists some work on extending UML in that direction [SB05], but here
the semantics are even more ambiguous. Therefore, instead of trying to formalise and reason
on semantically ambiguous UML diagrams that try to capture role-based models, we focus
on role-based models that are modelled in CROM which we introduced in Chapter 2. CROM
overcomes both these deficits since it has both a well-defined, formal semantics and the
means to formulate the necessary concepts accordingly.

Next, we investigate the requirements for the logical formalism. In order to be feasible
with the workflow outlined in the introduction, we need a formalism that has the expressive

27

28 Chapter 3. The Contextualised Description Logic LM⟦LO⟧

power to capture the information in CROM on one hand but preserves decidability of the
needed reasoning tasks on the other. As shown in the preliminaries description logics serve
as a very powerful formalism in knowledge representation. Still, the main drawback might
be the expressive restrictions of ‘classical’ description logics as explained in the introduction.
Standard DLs cannot formalise contextual knowledge in a proper way which is crucial for
role-based systems. In the recent years many different approaches and extensions of DLs
have been proposed [BGH+03; BGH+04; BAF+06; BVS+09; BKP12; CP14; CP17]. However,
many were tailored to different goals, for example to support context-specific reuse of
ontologies or enable probabilistic reasoning. Additionally, these approaches have a quite
different intuition of what a context exactly is. In most cases it is simply a finite set of names.
Serafini et al. [SH12] defines contexts by a set of attribute-value declarations, one for each
dimension, e.g. time, topic or location to name a few. There is only one context for each
dimensional vector whereas in CROM there can exist many instances of one compartment
type. Furthermore, except a coverage relation, one can hardly express any other knowledge
about the contexts such as the relational structure between them. Hence, these approaches
seem not appropriate to model CROMs.

A far more promising formalism is the description logic of context ALCALC [KG10; KG16].
Klarman et al. follow the ideas of McCarthy’s formalisation of contexts [McC87; McC93]where
contexts are formal objects, that have properties and can be described, and that are organised
in a relational structure. This results in a very expressive, two-dimensional description
logic with strong interactions between the object and the context level allowing to express
information within a context that is valid in some other context. While transcending object
knowledge through contexts is very important in the general application of contextualised
knowledge, it is complexity-wise very costly, especially in the presence of rigid roles where
the consistency problem becomes undecidable.

By restricting that interaction to a top-down view of contexts, we can retain decidability.
From the meta or context level, we can impose axioms that must hold within a certain context,
but on the object level, i.e. within a context, we cannot ‘look outside’. When formalising
CROM compartments, this is exactly the needed expressiveness. For each compartment type
we want to specify the constraints which must hold within a compartment of that type. This
analysis leads us to the construction of a new contextualised description logic LM⟦LO⟧. In
Section 3.5, we show that ALC⟦ALC⟧ is indeed a sublogic of ALCALC . In Chapter 4, we will
present how a CROM can be represented in LM⟦LO⟧.

3.2 Syntax and Semantics of the Contextualised Description Logic
LM⟦LO⟧

Our approach for contextualised description logics is similar to temporal description logics as
investigated in [LWZ08] in which a temporal logic for the time dimension and a description
logic for the object dimension are combined in order to express information valid at a certain
time. We combine two, possibly different, description logics: one DL LM for the context
or meta dimension for knowledge about contexts and one DL LO for the object dimension
for knowledge within contexts. Considering the semantics, LM⟦LO⟧ can also be seen as a
restricted variant of the context description logic proposed by Klarman et al. [KG16].

3.2 Syntax and Semantics of the Contextualised Description Logic LM⟦LO⟧ 29

The contextualised DL LM⟦LO⟧ is a two-dimensional and two-sorted description logic.
Syntactically, we start with a description logic LM for the meta level to describe the relational
structure between contexts. We add one meta concept constructor that allows to refer to the
inner structure of each context. More precisely, we allow an LO-axiom to constitute a meta
concept which denotes the set of contexts in which that axiom holds.

Throughout the rest of this thesis, let M= (MC, MR, MI) and O= (OC, OR, OI) denote the
signatures for LM and LO, respectively. Thus, we call MC, MR, MI, OC, OR and OI, respectively,
the set of meta concept, role and individual names and object concept, role and individual
names.

Definition 3.1 (Syntax of LM⟦LO⟧). A concept of the object logic LO (o-concept) is an
LO-concept over O. An o-axiom is an LO-GCI over O, an LO-concept assertion over O, or an
LO-role assertion over O.

The set of concepts of the meta logic LM (m-concepts) is the smallest set such that

• for all A∈MC, A is a basic meta concept,

• for all o-axioms α, ⟦α⟧ is a referring meta concept, and

• all complex concepts that can be built with the concept constructors allowed in LM are
meta concepts.

A meta general concept inclusion (m-GCI) is a GCI C ⊑ D where C and D are m-concepts, a
meta concept assertion is a concept assertion C(s) where C is an m-concept and s ∈MI, and a
meta role assertion is simply an LM-role assertion over M. An m-axiom is an m-GCI, a meta
concept assertion or a meta role assertion.

As for DLs, a Boolean m-axiom formula is inductively defined as follows:

• every m-axiom is a Boolean m-axiom formula,

• if B1, B2 are Boolean m-axiom formulas, then so are ¬B1 and B1 ∧B2, and

• nothing else is a Boolean m-axiom formula.

Finally, a Boolean LM⟦LO⟧-knowledge base (LM⟦LO⟧-BKB) is a triple B = (B, RO, RM),
where RO is an LO-RBox over O, RM an LM-RBox over M, and B is a Boolean m-axiom formula.
An LM⟦LO⟧-ontology is an LM⟦LO⟧-BKB, where only axiom conjunction and no axiom negation
is allowed in the Boolean m-axiom formula. ♦

Essentially, m-GCIs and meta concept assertions are LM-GCIs over M and LM-concept asser-
tions over M in which additionally referring m-concepts are admitted. For the same reasons
as mentioned in the end of Section 2.1, role inclusions over O and transitivity axioms over O
are not allowed to constitute m-concepts. However, we fix an RBox RO over O that contains
such o-axioms and holds in all contexts. The same applies to role inclusions over M and
transitivity axioms over M, which are only allowed to occur in a RBox RM over M. Again,
we use the usual abbreviations (for disjunctions etc.) for m-concepts and Boolean m-axiom
formulas.

The semantics of LM⟦LO⟧ is defined by the notion of nested interpretations. These consist of
O-interpretations for the specific contexts and an M-interpretation for the relational structure
between them. We assume that all contexts speak about the same non-empty domain
(constant domain assumption). We show later that this is no real restriction.

30 Chapter 3. The Contextualised Description Logic LM⟦LO⟧

As argued earlier, in some situations it is desired that concepts or roles in the object logic
are interpreted the same in all contexts. Therefore we introduce rigid names. Let OCrig ⊆ OC
be the set of rigid object concept names and ORrig ⊆ OR be the set of rigid object role names.
Often, we refer to OCrigand ORrig simply as rigid concepts and rigid roles, as there is no such
notion on the meta level. We set OCflex := OC \OCrig and ORflex := OR \ORrig and call these
concept names and role names flexible. Moreover, following the argument for the UNA,
we assume that the identity of an individual is context-independent and, thus, individual
names of the object logic are always interpreted the same in all contexts (rigid individual
assumption).

Definition 3.2 (Nested interpretation). A nested interpretation is a tuple J = (C, ·J ,
∆J, (·Ic)c∈C), where C is a non-empty set (called set of contexts) and (C, ·J) is an M-interpreta-
tion. Moreover, for every c ∈ C, Ic := (∆J , ·Ic) is an O-interpretation such that for all c, c′ ∈ C,
we have that xIc = xIc′ for every x ∈ OI ∪OCrig ∪ORrig. ♦

We are now ready to define the semantics of LM⟦LO⟧.

Definition 3.3 (Semantics of LM⟦LO⟧). Let J = (C, ·J ,∆J, (·Ic)c∈C) be a nested interpret-
ation. The mapping ·J is extended to referring meta concepts as follows:

⟦α⟧J := {c ∈ C | Ic |= α}.

Moreover, J is a model of the m-axiom β if (C, ·J) is a model of β . This is extended to Boolean
m-axiom formulas inductively as follows:

• J is a model of ¬B1 if it is not a model of B1, and

• J is a model of B1 ∧B2 if it is a model of both B1 and B2.

We write J |= B if J is a model of the Boolean m-axiom formula B. Furthermore, J is a model
of RM (written J |=RM) if (C, ·J) is a model of RM, and J is a model of RO (written J |=RO)
if Ic is a model of RO for all c ∈ C.

Finally, J is a model of the LM⟦LO⟧-BKB B = (B, RO, RM) (written J |=B) if J is a model
of B, RO, and RM. We call B consistent if it has a model.

The consistency problem in LM⟦LO⟧ is the problem of deciding whether a given LM⟦LO⟧-BKB
is consistent. ♦

Note here, that in the above definition we do not need to consider o-axioms separately since
on the object level the semantics are defined as for the DL LO.

Now with these notions, we can refine the examples of Section 2.1.

Example 3.4. Considering again Example 2.3 and Example 2.6, we recognise that from an
ontological point of view, the occurring concepts are not modelled well. There is a qualitative
difference between the concepts of a Quarterback and an NFL_Team. In fact, NFL_Team actually
is a context within the Quaterback position makes sense. Analogous to the concept C of Ex. 2.3,
we can model the meta concept C ′ as follows:

NFL_Team⊓¬AFC⊓¬⟦∃plays.Quarterback ⊑⊥⟧⊓ ⟦Coach(MikeMcCarthy)⟧.

3.2 Syntax and Semantics of the Contextualised Description Logic LM⟦LO⟧ 31

MikeMcCarthy,
Coach

AaronRodgers,
NFL_Player

Quarterback

plays

NFL_Team, NFC,
GreenBayPackers

MikeMcCarthy Kid

AaronRodgers,
Coach

teaches_HailMarys1

JuniorPowerPackFootballClinic

organises

Figure 3.1: A Nested interpretation J such that GreenBayPackersJ ∈ C ′J and J |= O′.

It describes the context of an NFL team that is not in the AFC, has someone playing quarterback
and has Mike McCarthy as coach. Here, ∃plays.Quarterback ⊑ ⊥ is an o-axiom which builds
the m-concept ⟦∃plays.Quarterback ⊑⊥⟧.

In reference to the ontology O of Ex. 2.6 the contextualised ontology O′ could look like the
following:

NFC(GreenBayPackers) ∧
⟦(∃plays.⊤)(AaronRodgers)⟧(GreenBayPackers) ∧

NFL_Team⊑ ⟦∃plays.⊤⊑ NFL_Player⟧ ∧
NFL_Team≡ NFC⊔AFC ∧

NFC⊓AFC⊑⊥.

The first meta concept assertion states that the context of the Green Bay Packers belongs to the
meta concept NFC. The second meta concept assertion states that the Green Bay Packers are
a context in which Aaron Rodgers plays something. Furthermore, people who play something
within the context of an NFL team are NFL players, and last, the NFL is a disjoint union of the
NFC and the AFC. As before, we can entail that Aaron Rodgers is an NFL player, at least in the
context of the Packers, i.e. O′ entails

⟦NFL_Player(AaronRodgers)⟧(GreenBayPackers).

A nested interpretation J , such that Green Bay Packers are in the extension of C ′, and J is a
model of O′, is depicted in Figure 3.1. In order to show the relational structure of contexts we
added the context of the ‘Junior Football Clinic’ in J though it has nothing to do with neither C ′

nor O′. However, if we would model this with standard DLs it is not clear anymore in which
context Aaron Rodgers is a player and when he is a coach. ♦

To argue that the constant domain assumption is no serious restriction, we show that consist-
ency with varying domains can be polynomially reduced to consistency with constant domains.
Here, we can adapt the ideas of [GKW+03] and [LWZ08]. LetB be an LM⟦LO⟧-BKB and let Jv
denote a nested interpretation with varying domains, i.e. Jv = (C, ·J , (∆Ic)c∈C, (·Ic)c∈C),

1A Hail Mary pass is a very long forward pass in American football, made in desperation with only a small
chance of success.

32 Chapter 3. The Contextualised Description Logic LM⟦LO⟧

where (∆Ic)c∈C is a set of, possibly overlapping, object domains. We introduce a fresh object
concept name E that expresses the existence of an element in an object domain. W.l.o.g. we
assume that all o-GCIs are of the form⊤⊑ C . We obtain CE from the o-concept C by replacing
every o-subconcept ∃r.D with ∃r.(D ⊓ E) and every o-subconcept ⩾nr.D with ⩾nr.(D ⊓ E).
We obtain BE from B by replacing every occurrence of an o-axiom α in B with αE , where αE
is defined as follows:

αE :=

⎧

⎪

⎨

⎪

⎩

E ⊑ CE if α=⊤⊑ C ,

(CE ⊓ E)(a) if α= C(a), and

α otherwise.

Proposition 3.5. B is consistent w.r.t. varying domains if and only if BE is consistent w.r.t.
constant domains and BE is of size polynomial in the size of B.

Proof. For the ‘only if’ direction, let Jv = (C, ·J , (∆Ic)c∈C, (·Ic)c∈C) be a model of B with
varying domains. We construct the nested interpretation J = (C, ·J ,∆J, (·Ic)c∈C) with a
constant domain from Jv such that ∆J :=

⋃

c∈C∆
Ic and EIc :=∆Ic . Let I′c = (∆

Ic , ·Ic) and
Ic = (∆J , ·Ic) .

Claim: {c ∈ C | I′c |= α}= {c ∈ C | Ic |= αE}

Proof: We prove the claim by showing I′c |= α iff Ic |= αE for the different cases of α:
α=⊤⊑ C: I′c |=⊤⊑ C iff ∆Ic = CIc iff 2 EIc = CIc

E iff Ic |= E ⊑ (CE ⊓ E) = αE .
α= C(a): I′c |= C(a) iff aIc ∈ CIc . Since EIc =∆Ic , we also have aIc ∈ EIc and, hence,

Ic |= (C ⊓ E)(a).
α= r(a, b): We have α= αE and, since aIc , bIc ∈∆Ic , I′c |= α iff Ic |= αE . ⧸

Since we do not change the meta interpretation and ⟦α⟧Jv = ⟦αE⟧
J , we get that J |=BE .

For the ‘if’ direction, let J = (C, ·J ,∆J, (·Ic)c∈C) be a model of BE . Then, we define
Jv = (C, ·J , (∆I′c)c∈C, (·I

′
c)c∈C) with ∆I′c := EIc and AI′c := AIc ∩ EIc . By similar arguments as

above and due to the restriction in existential and at-least restrictions for r-successors being
in E, we have ⟦α⟧Jv = ⟦αE⟧

J and therefore Jv |=B.

The above proposition, however, does not imply that B is consistent w.r.t. constant domains
if and only if it is consistent w.r.t. varying domains. For example, with a rigid concept name
A∈ OCrig the BKB B= (⟦⊤⊑ A⟧⊓ ∃t.⟦A⊑ ∃r.¬A⟧)(c) is consistent w.r.t. varying domains,
but not w.r.t. constant domains. Nonetheless, BE is consistent w.r.t. constant domains and
checking consistency of B w.r.t. varying domains can be done by considering BE . Thus, for
the rest of the thesis, we concentrate on constant domains.

3.3 Complexity of the Consistency Problem in LM⟦LO⟧

After we introduced the syntax and semantics of our contextualised description logics, in this
section, we investigate the computational complexity of the consistency problem. Therefore,
we consider three different settings dependent on whether rigid concepts and rigid roles are

2Exchanging C with CE can be done here, as the concept E is equivalent to ⊤ for I ′c .

3.3 Complexity of the Consistency Problem in LM⟦LO⟧ 33

Table 3.1: The complexity results for the consistency problem in LM⟦LO⟧

LM

LO EL ALC SHOQ SHOIQ

Se
tt

in
g

(i
) EL constant

ALC
SHOQ
SHOIQ

Se
tt

in
g

(i
i) EL constant

ALC
SHOQ
SHOIQ

Se
tt

in
g

(i
ii) EL constant

ALC
SHOQ
SHOIQ

Settings: (i) No rigid names are allowed, i.e. OCrig = ORrig =∅. (ii) Only rigid concepts are
allowed, i.e. OCrig ̸=∅ and ORrig =∅. (iii) Rigid roles are allowed, i.e. ORrig ̸=∅.

admitted. In Setting (i) no rigid names are allowed at all. In Setting (ii) rigid concepts are
allowed, but no rigid roles. Setting (iii) then allows rigid roles. There, it is not necessary to
distinguish whether rigid concepts are admitted or not, since rigid concepts can be emulated
via rigid roles. For this, one simply replaces the rigid concept A by ∃rA.⊤ where rA is a rigid
role which does not occur in the original knowledge base.

Our results for the complexity of the consistency problem are listed in Table 3.1. Here,
it is worth noting that if no rigid names are admitted, the complexity class does not in-
crease compared to the consistency problem for the classical DL, i.e. for any LM⟦LO⟧ up
to SHOQ⟦SHOQ⟧ the consistency problem is EXPTIME-complete, if SHOIQ is involved, it is
NEXPTIME-complete. Furthermore, in the presence of rigid roles we can retain decidability.
This distinguishes our approach from the semantically similar context DL introduced by
Klarman et al. [KG10; KG16], where the consistency problem becomes undecidable when
rigid roles occur in the ontology.

Since the lower bounds already hold for the case of EL, we handle them in Section 3.4.
For the upper bounds, let in the following B = (B, RO, RM) be an LM⟦LO⟧-BKB. We proceed
similar to what was done for ALC-LTL in [BGL08; BGL12] (and SHOQ-LTL in [Lip14]) and
reduce the consistency problem to two separate decision problems.

EXPTIME-complete NEXPTIME-
complete

NEXPTIME-complete
NEXPTIME-hard

and
in N2EXPTIME

NEXPTIME-
complete

2EXPTIME-complete
2EXPTIME-hard

and
in N2EXPTIME

Th. 3.17

Th. 3.18

Th. 3.19 Th. 3.20

Th. 3.21 Th. 3.20

Th. 3.23

Th. 3.31

Th. 3.24

Th. 3.32

Th. 3.33

Th. 3.28

Th. 3.34

Th. 3.29

For the first decision problem, we consider the so-called outer abstraction, which is the
LM-BKB over M obtained by replacing each referring m-concept of the form ⟦α⟧ occurring
in B by a fresh concept name such that there is a 1–1 relationship between them.

34 Chapter 3. The Contextualised Description Logic LM⟦LO⟧

Definition 3.6 (Outer abstraction). Let B = (B, RO, RM) be an LM⟦LO⟧-BKB. Let b be the
bijection mapping every referring m-concept of the form ⟦α⟧ occurring in B to the so-called
abstracted concept name A

⟦α⟧ ∈MC, where we assume w.l.o.g. that A
⟦α⟧ does not occur in B.

1. The LM-concept Cb over M is obtained from the m-concept C by replacing every occurrence
of ⟦α⟧ by b(⟦α⟧).

2. The Boolean LM-axiom formula Bb over M is obtained from B by replacing every m-
concept C occurring in B with Cb. We call the LM-BKB Bb = (Bb, RM) the outer abstrac-
tion of B.

3. Given J = (C, ·J ,∆J, (·Ic)c∈C), its outer abstraction is the M-interpretation J b = (C, ·J
b
)

where

• for every x ∈MR ∪MI ∪ (MC \ ran(b)), we have xJ b
= xJ , and

• for every A∈ ran(b), we have AJ b
= (b−1(A))J ,

where ran(b) denotes the image of b. ♦

For simplicity, for B′ = (B′, RO, RM), where B′ is a subformula of B, we denote by (B′)b the
outer abstraction of B′ that is obtained by restricting b to the m-concepts occurring in B′.
Now let us consider the following small example.

Example 3.7. Let Bex = (Bex,∅,∅) with Bex := C ⊑ (⟦A⊑⊥⟧) ∧ (C ⊓ ⟦A(a)⟧)(c) be an
ALC⟦ALC⟧-BKB. Then, b maps ⟦A⊑⊥⟧ to A

⟦A⊑⊥⟧ and ⟦A(a)⟧ to A
⟦A(a)⟧. Thus, we have that

Bb
ex :=

�

C ⊑ (A
⟦A⊑⊥⟧) ∧ (C ⊓ A

⟦A(a)⟧)(c), ∅
�

is the outer abstraction of Bex. ♦

The following lemma makes the relationship between B and its outer abstraction Bb explicit.
It is proved by induction on the structure of B.

Lemma 3.8. Let J be a nested interpretation such that J is a model of RO. Then, J is a
model of B iff J b is a model of Bb.

Proof. Since rJ = rJ b
for all LM-role r over M, we have that J is a model of RM iff J b is a

model of RM. Thus, it is only left to show that for any m-axiom γ occurring in B, it holds
that J |= γ iff J b |= γb.

Claim: For any x ∈ C it holds that x ∈ CJ iff x ∈ (Cb)J
b
.

Proof: We prove the claim by induction on the structure of C:

3.3 Complexity of the Consistency Problem in LM⟦LO⟧ 35

C = A∈MC\ran(b): x ∈ AJ iff x ∈ (Ab)J
b

by definition of J b and since A= Ab

C = ⟦α⟧: x ∈ ⟦α⟧J iff x ∈ (A
⟦α⟧)J

b
iff x ∈ (⟦α⟧b)J

b

C = ¬D: x ∈ (¬D)J iff x /∈ DJ iff, by induction hypothesis, x /∈ (Db)J
b

iff
x ∈ (¬Db)J

b
iff x ∈ ((¬D)b)J

b

C = D ⊓ E: x ∈ (D ⊓ E)J iff x ∈ DJ and x ∈ EJ iff, by induction hypothesis,
x ∈ (Db)J

b
and x ∈ (Eb)J

b
iff x ∈ (Db ⊓ Eb)J

b
iff x ∈ ((D ⊓ E)b)J

b

C = ∃r.D: x ∈ (∃r.D)J iff there exists y ∈ C s. t. (x , y) ∈ rJ and y ∈ DJ iff there
exists y ∈ C s. t. (x , y) ∈ rJ b

and y ∈ (Db)J
b

iff x ∈ (∃r.Db)J
b

iff
x ∈ ((∃r.D)b)J

b

C = {a}: x ∈ {a}J iff x ∈ ({a}b)J
b

by definition of J b and since {a}= {a}b

C = ⩾nr.D: x ∈ (⩾nr.D)J iff there are at least n elements y ∈ C s.t. (x , y) ∈ rJ

and y ∈ DJ iff there are at least n elements y ∈ C s.t. (x , y) ∈ rJ b
and

y ∈ (Db)J
b

iff x ∈ (⩾nr.Db)J
b

iff x ∈ ((⩾nr.D)b)J
b ⧸

• If γ is of the form C ⊑ D, we have that J |= C ⊑ D iff x ∈ CJ implies x ∈ DJ iff (by
claim) x ∈ (Cb)J

b
implies x ∈ (Db)J

b
iff J b |= Cb ⊑ Db.

• If γ is of the form C(a), we have that J |= C(a) iff aJ ∈ CJ iff (by claim) aJ b
∈ (Cb)J

b

iff J b |= Cb(a).

• If γ is of the form r(a, b), we have that J |= r(a, b) iff (aJ , bJ) ∈ rJ iff (aJ b
, bJ b

) ∈ rJ b

iff J b |= r(a, b).

• If B is of the form ¬B1, we have that J |= B iff not J |= B1 iff not J b |= Bb
1 iff

J b |= Bb.

• If B is of the form B1 ∧ B2, we have that J |= B iff J |= B1 and B2 iff J b |= Bb
1 and

J b |= Bb
2 iff J b |= Bb.

Since J |= RO, J |= RM iff J b |= RM and J |= B iff J b |= Bb, we have J |= B iff
J b |=Bb.

Note that this lemma yields that consistency of B implies consistency of Bb. Thus, the
consistency of Bb is a necessary condition for the consistency of B. However, it is not
sufficient since the converse does not hold as the following example shows.

Example 3.9. Consider again Bex of Example 3.7. First, we observe that Bex is inconsistent
since the meta individual c belongs to the meta concepts C, ⟦A⊑⊥⟧ and ⟦A(a)⟧. Thus, in
any model of Bex the O-interpretation Ic must model both o-axioms A⊑⊥ and A(a) which is
obviously not possible.

However, there exists an M-interpretation H = (∆H, ·H) such that ∆H = {e}, dH = e, and
CH = AH

⟦A⊑⊥⟧ = AH
⟦A(a)⟧ = {e} which is a model of Bb

ex. Hence, Bb
ex is consistent while Bex

is not. Note that this does not contradicts Lemma 3.8 since there does not exist any nested
interpretation J such that H =J b. ♦

The above example illustrates that there exist implicit restrictions on the interpretation of the
meta level as certain combinations of concept names in ran(b) are not allowed. Therefore,
we need to ensure that these are not treated independently. For expressing such a restriction

36 Chapter 3. The Contextualised Description Logic LM⟦LO⟧

on the model H of Bb, we adapt a notion of [BGL08; BGL12]. It is also worth noting that
this problem occurs also in much less expressive DLs such as EL⊥ (i.e. EL extended with the
bottom concept).

Definition 3.10 (U -type, N-interpretation (weakly) respects (U , Y)). Let I = (∆I , ·I)
be an N-interpretation, let U ⊆ NC and let Y ⊆ P(U), where P(S) denotes the power set of S.
The U-type of d ∈ ∆I in I is defined as typeI

U(d) := {A ∈ U | d ∈ AI}. The interpretation I
respects (U , Y) if Z = Y, where

Z := {Y ⊆ U | there is some d ∈∆I with typeI
U (d) = Y }

It weakly respects (U , Y) if Z ⊆ Y. ♦

For U = ran(b), the U -type of a context c, i.e. an element c ∈ C in a nested interpretation, is
the set of all abstracted concept names of which c is an instance. In other words, it describes
all o-axioms which hold in that context. The ran(b)-type of c is also called its restricted type.
The second decision problem that we use for deciding consistency is needed to make sure
that such a set of abstracted concept names is admissible in the following sense.

Definition 3.11 (Admissibility). Let X = {X1, . . . , Xk} ⊆ P(ran(b)). We call X admissible
if there exist O-interpretations I1 = (∆, ·I1), . . . , Ik = (∆, ·Ik) such that

• xIi = xI j for all x ∈ OI ∪OCrig ∪ORrig and all i, j ∈ {1, . . . , k}, and

• every Ii , 1≤ i ≤ k, is a model of the LO-BKB BX i
= (BX i

, RO) over O where

BX i
:=

⋀

b(⟦α⟧)∈X i

α ∧
⋀

b(⟦α⟧)∈ran(b)\X i

¬α.
♦

Note that any subset X ′ ⊆ X is admissible if X is admissible. Intuitively, the sets X i in an
admissible set X consist of referring meta concepts such that the corresponding o-axioms ‘fit
together’. Consider again Example 3.9. Clearly, the set {A

⟦A⊑⊥⟧, A
⟦A(a)⟧} ∈ P(ran(b)) cannot

be contained in any admissible set X .
The next definition captures the above mentioned restriction on the model H of Bb. The set

of restricted types that occur in the meta interpretation must be a subset of some admissible
set.

Definition 3.12 (Outer consistency). Let X ⊆ P(ran(b)). We call the LM-BKB Bb over M
outer consistent w.r.t. X if there exists a model of Bb that weakly respects (ran(b), X). ♦

The next two lemmas show that the consistency problem in LM⟦LO⟧ can be decided by
checking whether there is an admissible set X such that outer abstraction of the given
LM⟦LO⟧-BKB is outer consistent w.r.t. X .

Lemma 3.13. For every M-interpretation H = (∆H, ·H), the following two statements are
equivalent:

1. There exists a model J of B with J b =H.

2. H is a model of Bb and the set {Xd | d ∈ ∆H} is admissible, where Xd is defined as
Xd := typeH

ran(b)(d).

3.3 Complexity of the Consistency Problem in LM⟦LO⟧ 37

Proof. (1⇒ 2): Let J = (C, ·J ,∆J, (·Ic)c∈C) be a model of B with J b = H. Since J b = H,
we have that C = ∆H. By Lemma 3.8, we have that H is a model of Bb. Moreover,
since b is a bijection between referring meta concepts of the form ⟦α⟧ occurring in B and
abstracted concept names of MC, we have that ran(b) is finite, and thus also that the set
X := {Xd | d ∈∆H} ⊆ P(ran(b)) is finite. Let X = {Y1, . . . , Yk}. Since C =∆H, there exists
an index function ν: C→ {1, . . . , k} such that X c = Yν(c) for every c ∈ C, i.e.

Yν(c) =
�

b(⟦α⟧) | ⟦α⟧ occurs in B and c ∈ b(⟦α⟧)H
	

=
�

b(⟦α⟧) | ⟦α⟧ occurs in B and Ic |= α
	

.

Conversely, for every µ ∈ {1, . . . , k}, there is an element c ∈ C such that ν(c) = µ. The
O-interpretations for showing admissibility of X are obtained as follows. Take c1, . . . , ck ∈ C
such that ν(c1) = 1, . . . , ν(ck) = k. Now, for every i, 1 ≤ i ≤ k, we define the O-
interpretation Gi := (∆, ·Ici). Clearly, we have that Gi |= BYi

and since J |=RO, we have that
Gi |= BYi

. Moreover, the definition of a nested interpretation yields that xGi = xG j for all
x ∈ OI ∪OCrig ∪ORrig and all i, j ∈ {1, . . . , k}. Hence, the O-interpretations G1, . . . , Gk attest
admissibility of X .

(2⇒ 1): Assume that H = (∆H, ·H) is a model of Bb and that the set X := {Xd | d ∈∆H}
is admissible. Again, since ran(b) is finite, we have that X ⊆ P(ran(b)) is finite. Let
X = {Y1, . . . , Yk}. Since X is admissible, there are O-interpretations G1 = (∆G , ·G1), . . . ,
Gk = (∆G , ·Gk) such that Gi |= BYi

and xGi = xG j for all x ∈ OI ∪ OCrig ∪ ORrig and all
i, j ∈ {1, . . . , k}. Furthermore, there exists an index function ν: ∆H→ {1, . . . , k} such that
Yν(d) = Xd for every d ∈∆H. We define a nested interpretation J = (C, ·J ,∆J, (·Ic)c∈C) as
follows:

• C :=∆H,

• xJ := xH for every x ∈MC ∪MR ∪MI,

• ∆J :=∆G , and

• xIc := xGν(c) for every x ∈ OC ∪OR ∪OI and every c ∈ C.

By construction of J , we have that xJ b
= xH for every x ∈ MR ∪ MI ∪ (MC \ ran(b)).

Let A ∈ ran(b), and let b−1(A) = ⟦α⟧. We have for every d ∈ ∆H = C that d ∈ AJ b

iff d ∈ (b−1(A))J iff d ∈ ⟦α⟧J iff Id |= α iff Gν(d) |= α iff b(⟦α⟧) = A ∈ Yν(d) (since
Gν(d) |= BYν(d)) iff A∈ Xd iff d ∈ AH. Hence, we have J b =H. Since H is a model of Bb and,
by construction of J , J is a model of RO, we have by Lemma 3.8 that J is a model of B.

The following lemma is a direct consequence of the previous one. It states that we can split
the consistency check into two subtasks.

Lemma 3.14. The LM⟦LO⟧-BKB B is consistent iff there is a set X ⊆ P(ran(b)) such that

1. X is admissible, and

2. Bb is outer consistent w.r.t. X .

Proof. (=⇒): Let J be a model of B, and let J b = (C, ·J
b
). By Lemma 3.13, we have that

J b is a model of Bb, and the set X := {typeJ b

ran(b)(c) | c ∈ C} is admissible. By construction,

J b weakly respects (ran(b), X), and hence Bb is outer consistent w.r.t. X .

38 Chapter 3. The Contextualised Description Logic LM⟦LO⟧

(⇐=): Let X = {X1, . . . , Xk} ⊆ P(ran(b)) such that X is admissible and Bb is outer consist-
ent w.r.t. X . Hence there is a model H = (∆H, ·H) of Bb that weakly respects (ran(b), X). We
define Z := {typeH

ran(b)(c) | c ∈∆
H}. Since H weakly respects (ran(b), X), we have that Z ⊆ X .

Since X is admissible, this yields admissibility of Z. Lemma 3.13 now yields consistency
of B.

Before we can analyse the complexity of the consistency problem in LM⟦LO⟧, we need to
state two complexity results for the consistency problem of SHOQ-BKBs and SHOIQ-BKBs.
For the former we follow the idea of [Lip14]. The latter is an adaptation of a proof of [Pra05].

Lemma 3.15. Deciding whether a SHOQ-BKB Bb is outer consistent w.r.t. X can be done in
time exponential in the size of Bb and linear in size of X .

Proof. It is enough to show that deciding whether Bb has a model that weakly respects
(ran(b), X) can be done in time exponential in the size of Bb and linear in the size of X .

Here, we will adapt the ideas of [Lip14]. It is not hard to see that we can adapt the notion
of a quasimodel respecting a pair (ran(b), X) of [Lip14] to a quasimodel weakly respecting
(ran(b), X). Condition (i) in Definition 3.25 of [Lip14] states that for every X ∈ X there
must exist a concept type that, restricted to ran(b), coincides with X . Hence, dropping
Condition (i) yields that the quasimodel weakly respects (ran(b), X). Then, the proof of
Lemma 3.26 of [Lip14] can be adapted such that our claim follows. This is done by dropping
the check whether Condition (i) is satisfied in Step 4 of the algorithm of [Lip14].

The only condition for which X is relevant, is Condition (h) which is checked in Step 2.
Clearly, this check can be done in time linear in the size of X .

Lemma 3.16. Deciding whether a SHOIQ-BKB Bb is outer consistent w.r.t. X can be non-
deterministically done in time exponential in the size of Bb and linear in size of X .

Proof. In [Pra05], it is shown the deciding satisfiability of a formula ϕ of the two-variable
fragment of first-order logic with counting quantifiers C2 can be done non-deterministically
in time exponential in the size of ϕ. There, Theorem 2 of [Pra05] can be adapted is such a
way that the set Π of 1-types that occur in a model can be restricted.

Since SHOIQ-BKBs are also C2-formulas and X is a set of 1-types, the claim follows.

3.3.1 Consistency without rigid names

In this section, we consider the case where neither rigid concept names nor rigid role names
are allowed.

Theorem 3.17. The consistency problem in SHOQ⟦SHOQ⟧ is in EXPTIME if OCrig = ORrig =∅.

Proof. Let B be a SHOQ⟦SHOQ⟧-BKB and Bb its outer abstraction. We can decide consistency
of B using Lemma 3.14. We define X := {X ⊆ ran(b) |BX is consistent} where BX is defined
as in Definition 3.11. We first show that X = {X1, . . . , Xk} is admissible. Let Ii be a model
of BX i

, which exists since BX i
is consistent. Since NI is countably infinite, interpretations

must respect the UNA and due to the Löwenheim-Skolem theorem, we can assume that
all models Ii, 1 ≤ i ≤ k, have a countably infinite domain. Thus, w.l.o.g. we can assume
that all models have the same domain ∆. Furthermore, we can assume that individual
names are interpreted the same. Since OCrig = ORrig =∅, the set X fulfills all conditions of

3.3 Complexity of the Consistency Problem in LM⟦LO⟧ 39

Definition 3.11 for admissibility. Thus, if Bb is outer consistent w.r.t. X , then we have by
Lemma 3.14 that B is consistent.

Conversely, assume that B is consistent. Then, by Lemma 3.14, there is an admissible set
X ′ ⊆ P(ran(b)) and Bb is outer consistent w.r.t. X ′. Since X is the maximal admissible subset
of P(ran(b)), we have X ′ ⊆ X . If Bb is outer consistent w.r.t. X ′, it is also outer consistent
w.r.t. X . Hence, B is consistent iff Bb is outer consistent w.r.t. X , which yields a decision
procedure for the consistency problem in SHOQ⟦SHOQ⟧.

It remains to analyze the complexity. There are exponentially many X ∈ P(ran(b)), but
each SHOQ-BKB BX can be constructed in time polynomial in the size of B. We can decide
consistency of BX in time exponential [Lip14]. Thus, the set X can be constructed in time
exponential in the size of B and it is of exponential size. Due to Lemma 3.15, deciding
whether Bb is outer consistent w.r.t. X can be done in time exponential in the size of Bb and
linear in the size of X . Thus, overall we can decide the consistency problem in exponential
time.

Theorem 3.18. If OCrig = ORrig = ∅, the consistency problem in SHOIQ⟦SHOIQ⟧ is in
NEXPTIME.

Proof. Let B be a SHOIQ⟦SHOIQ⟧-BKB and Bb is outer abstraction. Analogous to the proof
of Theorem 3.17, we construct the maximal admissible subset X of P(ran(b)). Again, B is
consistent iff Bb is outer consistent w.r.t. X .

In contrast to the proof of Theorem 3.17, we can decide consistency of BX non-deter-
ministically in time exponential in the size of BX . Thus, the set X can be constructed
non-deterministically in time exponential in the size of B. By Lemma 3.16, deciding whether
Bb is outer consistent w.r.t. X can be non-deterministically done in time exponential in
the size of Bb and linear in the size of X . Overall we can decide the consistency problem
non-deterministically in exponential time.

As the lower bounds already hold for LM⟦LO⟧ involving EL, we prove them separately in
Section 3.4. Anticipating the lower bounds shown in Theorems 3.23, 3.31, 3.24 and 3.32 we
obtain EXPTIME-completeness for the consistency problem in LM⟦LO⟧ for LM and LO being
DLs between EL and SHOQ, excluding EL⟦EL⟧, and NEXPTIME-completeness for LM⟦LO⟧

where either LM or LO is SHOIQ, if OCrig = ORrig =∅.

3.3.2 Consistency with rigid role names

In this section, we consider the case where rigid role names are present.

Theorem 3.19. The consistency problem in SHOIQ⟦SHOQ⟧ is in 2EXPTIME if ORrig ̸=∅.

Proof. Let B= (B, RO, RM) be a SHOIQ⟦SHOQ⟧-BKB and Bb = (Bb, RM) its outer abstrac-
tion. We can decide consistency of B using Lemma 3.14. For that, we enumerate all sets
X ⊆ P(ran(b)), which can be done in time doubly exponential in B. For each of these sets
X = {X1, . . . , Xk}, we check whether Bb is outer consistent w.r.t. X , which can be done
non-deterministically in time exponential in the size of Bb and linear in the size of X .

Then, we check X for admissibility using the renaming technique of [BGL08; BGL12].
For every i, 1 ≤ i ≤ k, every flexible concept name A occurring in Bb, and every flex-
ible role name r occurring in Bb or RO, we introduce copies A(i) and r(i). The SHOQ-

40 Chapter 3. The Contextualised Description Logic LM⟦LO⟧

BKB B
(i)
X i
= (B(i)X i

, RO
(i)) over O is obtained from BX i

(see Definition 3.11) by replacing every

occurrence of a flexible name x by x (i). We define

BX :=
�⋀

1≤i≤k
B(i)X i

,
⋃

1≤i≤k
RO
(i)
�

.

Claim: X is admissible iff BX is consistent.

Proof: We prove the claim similarly to what was done in [Lip14].
If X is admissible, then there exist O-interpretations G1 = (∆G , ·G1), . . . , Gk = (∆G , ·Gk). We

define the O-interpretation G = (∆G , ·G) as follows:

xG := xG1 for all x ∈ OCrig ∪ORrig ∪OI

(x (i))G := xGi for all A∈ (OC \OCrig)∪ (OR \ORrig)

It is not hard to verify that G is a model of BX .
If BX is consistent, then there exists a model G = (∆G , ·G). Analogously, we define the

O-interpretations G1 = (∆G , ·G1), . . . , Gk = (∆G , ·Gk) as follows:

xGi :=

¨

xG for all x ∈ OCrig ∪ORrig ∪OI

(x (i))G for all A∈ (OC \OCrig)∪ (OR \ORrig)

Again, it is not hard to verify that X is admissible. ⧸

Note that BX is of size at most exponential in B and can be constructed in exponential time.
Moreover, consistency of BX can be decided in time exponential in the size of BX [Lip14],
and thus in time doubly exponential in the size of B.

Theorem 3.20. The consistency problem in SHOIQ⟦SHOIQ⟧ is in N2EXPTIME if ORrig ̸=∅.

Proof. Let B = (B, RO, RM) be a SHOIQ⟦SHOIQ⟧-BKB and Bb = (Bb, RM) its outer ab-
straction. We proceed the same as in the proof of Theorem 3.19. Enumerating all sets
X ⊆ P(ran(b)) can still be done in time doubly exponential in the size of B, but checking for
each X whether Bb is outer consistent w.r.t. X can be done non-deterministically in time
exponential in the size of Bb and linear in the size of X .

To check X for admissibility, we again use the renaming technique of [BGL08; BGL12],
and by the same arguments as above, X is admissible iff BX is consistent. Again, BX is of
size at most exponential in B and can be constructed in exponential time, but consistency
of BX can be decided non-deterministically in time exponential in the size of BX , and thus
non-deterministically in time doubly exponential in the size of B.

Together with the lower bound shown in Theorem 3.33, we obtain 2EXPTIME-completeness
for the consistency problem in any LM⟦LO⟧ between EL⟦ALC⟧ and SHOIQ⟦SHOQ⟧ if
ORrig ̸= ∅. The consistency problem in LM⟦SHOIQ⟧ for LM between EL and SHOIQ is
2EXPTIME-hard and in N2EXPTIME, if ORrig ̸=∅.

3.3.3 Consistency with only rigid concept names

In this section, we consider the case where rigid concept are present, but rigid role names
are not allowed.

3.3 Complexity of the Consistency Problem in LM⟦LO⟧ 41

Theorem 3.21. The consistency problem in SHOIQ⟦SHOQ⟧ is in NEXPTIME if OCrig ̸= ∅
and ORrig =∅.

Proof. Let B= (B, RO, RM) be a SHOIQ⟦SHOQ⟧-BKB and Bb = (Bb, RM) its outer abstrac-
tion. We can decide consistency of B using Lemma 3.14. We first non-deterministically
guess the set X = {X1, . . . , Xk} ⊆ P(ran(b)), which is of size at most exponential in B. Due
to Lemma 3.16 we can check whether Bb is outer consistent w.r.t. X non-deterministically in
time exponential in the size of Bb and linear in the size of X .

It remains to check X for admissibility. Here we follow the ideas of [BGL08; BGL12; Lip14].
Instead of checking the consistency of BX directly, which would yield a double-exponential
time bound, we reduce it to k separate consistency checks each of which can be decided in
time exponential in the size of B. Therefore, for each individual name a in B we guess the set
of rigid concepts of which a is an instance. More precisely, let OCrig(B) ⊆ OCrig and OI(B) ⊆ OI
be the sets of all rigid concept names and individual names occurring in B, respectively. We
non-deterministically guess a set Y ⊆ P(OCrig(B)) and a mapping κ: OI(B)→ Y, which also
can be done in time exponential in the size of B.

Claim: X is admissible iff ÒBX i
has a model that respects (OCrig(B), Y), for all 1≤ i ≤ k, where

ÒBX i
is defined as:

ÒBX i
:=

⎛

⎝BX i
∧

⋀

a∈OI(B)

⎛

⎝

l

A∈κ(a)

A⊓
l

A∈OCrig(B)\κ(a)

¬A

⎞

⎠ (a), RO

⎞

⎠ .

Proof: If X is admissible, then there exists an O-interpretation Gi = (∆G , ·Gi) such that Gi is a
model of (BX i

, RO). Let Y be the set of all OCrig-types in Gi , i.e. Y = {typeGi
OCrig
(d) | d ∈∆Gi} and

let κ map d to its type, i.e. κ(d) = typeGi
OCrig
(d). It is easy to see that Gi is a model of ÒBX i

, and
by construction, Gi respects (OCrig(B), Y).

Now, assume that there exist O-interpretations G1 = (∆G1 , ·G1), . . . , Gk = (∆Gk , ·Gk) s.t.
Gi |= ÒBX i

and Gi respects (OCrig(B), Y), for all 1 ≤ i ≤ k. By the same arguments as in the
proof of Theorem 3.17, we can assume w.l.o.g. that all models have a countably infinite domain.
Since a disjoint union of Gi with itself is again a model of ÒBX i

, we can also assume that for each
Y ∈ Y there are infinitely many elements d in CY

Gi where

CY :=
l

A∈Y

A⊓
l

A∈OCrig\Y

¬A.

Hence, we can partition the domain ∆Gi into

∆Gi =
⋃

Y∈Y
Pi(Y) with Pi(Y) := {d ∈∆Gi | d ∈ CY }.

Because of the above assumptions and since Gi |=
⋀

a∈OI(B) Cκ(a)(a), there exist bijections
πi :∆G1 →∆Gi , 2≤ i ≤ k, such that

• πi(P1(Y)) = Pi(Y), for every Y ∈ Y, and

• πi(aG1) = aGi for every a ∈ OI(B).

42 Chapter 3. The Contextualised Description Logic LM⟦LO⟧

Hence, we can assume that all Gi have the same domain and interpret individual names and
rigid concept names in the same way. ⧸

The SHOQ-BKB ÒBX i
is of size polynomial in the size of B and can be constructed in time

exponential in the size of B. We can check if ÒBX i
has a model that respects (OCrig(B), Y) in

time exponential in the size of ÒBX i
[Lip14], and thus in time exponential in the size of B.

Together with the lower bounds shown in Theorem 3.28 and 3.34, we obtain NEXPTIME-
completeness for the consistency problem in LM⟦LO⟧ for LM and LO being DLs between EL
and SHOIQ, excluding EL⟦EL⟧, if OCrig ̸=∅ and ORrig =∅.

Summing up the results, we obtain the following corollary.

Corollary 3.22. For LM⟦LO⟧ between EL⟦ALC⟧ and SHOQ⟦SHOQ⟧, the consistency prob-
lem in LM⟦LO⟧ is

• EXPTIME-complete if OCrig =∅ and ORrig =∅,

• NEXPTIME-complete if OCrig ̸=∅ and ORrig =∅, and

• 2EXPTIME-complete if ORrig ̸=∅.

For SHOIQ⟦LO⟧ with LO between ALC and SHOQ, the consistency problem in SHOIQ⟦LO⟧

is

• NEXPTIME-complete if ORrig =∅, and

• 2EXPTIME-complete if ORrig ̸=∅.

For LM⟦SHOIQ⟧ with LM between EL and SHOIQ, the consistency problem in LM⟦SHOIQ⟧ is

• NEXPTIME-complete if OCrig =∅ and ORrig =∅,

• NEXPTIME-hard and in N2EXPTIME if OCrig ̸=∅ and ORrig =∅, and

• 2EXPTIME-hard and in N2EXPTIME if ORrig ̸=∅.

3.4 Contextualised Description Logics Involving EL

In this section, we give some complexity results for context DLs LM⟦LO⟧ where LM or LO
is EL. In Section 3.4.1, we consider LM⟦EL⟧ where LM is between ALC and SHOIQ. Then,
in Section 3.4.2, we consider the remaining context DLs EL⟦LO⟧ where LO is between ALC
and SHOIQ.

For EL as LM, instead of considering EL⟦LO⟧-BKBs, we allow only EL⟦LO⟧-ontologies, i.e.
conjunctions of m-axioms. It seems unnatural to allow axiom negation for a logic which
does not have concept negation. Furthermore, this would miss any practical motivation. For
EL⟦EL⟧-ontologies the consistency problem becomes trivial since all EL⟦EL⟧-ontologies are
consistent, as EL lacks to express contradictions. This restriction, however, does not yield a
better complexity in the cases of EL⟦LO⟧, where LO is between ALC and SHOQ.

3.4 Contextualised Description Logics Involving EL 43

3.4.1 The Contextualised Description Logics LM⟦EL⟧

In this section, we consider LM⟦EL⟧ where LM is between ALC and SHOIQ. We start with
the lower bounds for ALC⟦EL⟧ and SHOIQ⟦EL⟧ in the case without rigid names.

Theorem 3.23. The consistency problem in ALC⟦EL⟧ is EXPTIME-hard if no rigid names are
allowed, i.e. OCrig = ORrig =∅.

Proof. Deciding whether a given conjunction of ALC-axioms B is consistent is EXPTIME-
hard [Sch91]. Obviously, B is also an ALC⟦EL⟧-BKB.

Theorem 3.24. The consistency problem in SHOIQ⟦EL⟧ is NEXPTIME-hard if no rigid names
are allowed, i.e. OCrig = ORrig =∅.

Proof. Deciding whether a given conjunction of ALCOIQ-axioms B is consistent is NEXPTIME-
complete [Tob00]. Obviously, B is also an SHOIQ⟦EL⟧-BKB.

For the cases of rigid names, the lower bounds of NEXPTIME are obtained by a careful
reduction of the satisfiability problem in the temporalised DL EL-LTL [BT15b; BT15a], which
is a fragment of ALC-LTL introduced in [BGL08; BGL12]. For the sake of completeness, we
recall the basic definitions of L-LTL here, where L is a DL.

Definition 3.25 (Syntax of L-LTL). L-LTL-formulas over O are defined by induction:

• if α is an L-axiom over O, then α is an L-LTL-formula, and

• if φ,ψ are L-LTL-formulas over O, then so are ¬φ (negation), φ ∧ψ (conjunction),
φUψ (until), Xφ (next), and

• nothing else is an L-LTL-formula. ♦

As usual in temporal logics, we use the following abbreviations:

• φ ∨ψ (disjunction) for ¬(¬φ ∧¬ψ),

• true (tautology) for A(a)∨¬A(a) where A∈ OC is arbitrary but fixed,

• ◊φ (eventually) for true Uφ, and

• □φ (always) for ¬◊¬φ.

The semantics of L-LTL is based on DL-LTL-structures. These are sequences of O-interpre-
tations over the same non-empty domain that additionally respect rigid names and the rigid
individual assumption.

Definition 3.26 (DL-LTL-structure). A DL-LTL-structure over O is a sequence I= (Ii)i≥0
of O-interpretations (∆, ·Ii) such that xIi = xI j holds for all x ∈ OCrig∪ORrig∪OI, i, j > 0. ♦

We are now ready to define the semantics of L-LTL.

Definition 3.27 (Semantics of L-LTL). The validity of an L-LTL-formula φ in a DL-LTL-
structure I= (Ii)i≥0 at time i ≥ 0, denoted by I, i |= ϕ, is defined inductively:

44 Chapter 3. The Contextualised Description Logic LM⟦LO⟧

I, i |= α iff Ii |= α where α is an ALC-axiom over O,
I, i |= φ ∧ψ iff I, i |= φ and I, i |=ψ,
I, i |= ¬φ iff not I, i |= φ,
I, i |= Xφ iff I, i + 1 |= φ,
I, i |= φUψ iff there is k ≥ i such that I, k |=ψ and

I, j |= φ for all j with i ≤ j < k.

We call an L-LTL-structure I a model of φ if I, 0 |= φ. The satisfiability problem in L-LTL is
the question whether a given L-LTL-formula φ has a model. ♦

In [BT15b; BT15a], it is shown that the satisfiability problem in EL-LTL is NEXPTIME-hard
as soon as rigid concept names are present. We reduce the satisfiability problem in EL-LTL
to the consistency problem in ALC⟦EL⟧ to obtain the lower bounds of NEXPTIME, where
we use the fact that the lower bounds of [BT15b; BT15a] already hold for a syntactically
restricted fragment of EL-LTL.

Theorem 3.28. The consistency problem in ALC⟦EL⟧ is NEXPTIME-hard if OCrig ̸= ∅ and
ORrig =∅.

Proof. In fact, the lower bounds hold for EL-LTL-formulas of the form □φ where φ is an
EL-LTL-formula that contains only X as temporal operator [BT15a].

Let □φ be such an EL-LTL-formula over O. Now, we obtain the m-concept Cφ from φ by
replacing EL-axioms α by ⟦α⟧, ∧ by ⊓, and subformulas of the form Xψ by ∀t.Cψ ⊓ ∃t.Cψ,
where t ∈MR is arbitrary but fixed.

Claim: □φ is satisfiable iff B =⊤⊑ Cφ ⊓ ∃t.⊤ is consistent.

Proof: First, assume that □φ is satisfiable. Take any DL-LTL-structure I = (∆, ·Ii)i≥0 with
I, 0 |= □φ. We define the nested interpretation J = (C, ·J ,∆J, (·Ic)c∈C) as follows:

C := {ci | i ≥ 0},
∆J :=∆,

·Ici := ·Ii ,

tJ := {(ci , ci+1) | i ≥ 0}.

We now show that for every i ≥ 0, we have I, i |= φ iff ci ∈ CJ
φ

by induction on the structure
of φ:

φ = α : I, i |= φ iff Ii |= α iff Ici
|= α iff ci ∈ ⟦α⟧

J = CJ
φ

,

φ = ¬ψ: I, i |= φ iff I, i ̸|=ψ iff ci /∈ CJ
ψ

iff ci ∈ (¬Cψ)J = CJ
φ

,

φ =ψ1 ∧ψ2 : I, i |= φ iff I, i |=ψ1 and I, i |=ψ2 iff ci ∈ CJ
ψ1

and ci ∈ CJ
ψ2

iff ci ∈ (Cψ1
⊓ Cψ2

)J = CJ
φ

, and

φ = Xψ: I, i |= φ iff I, i + 1 |=ψ iff ci+1 ∈ CJ
ψ

iff ci ∈ (∀t.Cψ ⊓ ∃t.Cψ)J = CJ
φ

,

where α is an EL-axiom over O. It follows that I, 0 |= □φ iff J |=⊤⊑ Cφ . Furthermore, since
(ci , ci+1) ∈ tJ , we have ci ∈ (∃t.⊤)J . Thus, J |=⊤⊑ ∃t.⊤.

For the ‘if ’ direction, take any nested interpretation J = (C, ·J ,∆J, (·Ic)c∈C) that is a model
of ⊤ ⊑ Cφ ⊓ ∃t.⊤. Let P be an infinite path P = c0c1 . . . with ci ∈ C and (ci , ci+1) ∈ tJ for

3.4 Contextualised Description Logics Involving EL 45

every i ≥ 0. Such a path exists, because J |= ⊤ ⊑ ∃t.⊤. We define the nested interpretation
JP := ({ci | i ≥ 0}, ·JP ,∆J , (·Ici)i≥0) where ·JP is the restriction of ·J to the domain {ci | i ≥ 0}.

By construction we have that JP |= ⊤ ⊑ ∃t.⊤. We show by a simple case distinction that
JP |= ⊤ ⊑ Cφ. If φ does not contain any X-operator, then no meta role names occur in Cφ
and the restriction on the set of worlds preserves the entailment relation. Otherwise, Cφ is
of the form C ′

φ
⊓∀t.Cψ ⊓ ∃t.Cψ where C ′

φ
is the possibly empty conjunction contained in Cφ

that does not contain meta role names. Hence, JP |= C ′
φ

. Furthermore, since JP |=⊤⊑ ∃t.⊤,
JP |=⊤⊑ Cψ (by induction), and there is only one t-successor, we have JP |=⊤⊑ Cφ . Hence,
JP |=⊤⊑ Cφ ⊓ ∃t.⊤.

We define the DL-LTL-structure I over O as I := (∆J , ·Ii)i≥0 where ·Ii := ·Ici . Again, we
show that for every i ≥ 0, that we have ci ∈ CJP

φ
iff I, i |= φ by induction on the structure of φ:

φ = α : ci ∈ CJP
φ
= ⟦α⟧JP iff Ici

|= α iff Ii |= α iff I, i |= φ,

φ = ¬ψ: ci ∈ CJP
φ
= (¬Cψ)JP iff ci /∈ CJP

ψ
iff I, i ̸|=ψ iff I, i |= φ,

φ =ψ1 ∧ψ2 : ci ∈ CJP
φ
= (Cψ1

⊓ Cψ2
)JP iff ci ∈ CJP

ψ1
and ci ∈ CJP

ψ1
iff I, i |=ψ1 and I, i |=ψ2

iff I, i |= φ, and

φ = Xψ: ci ∈ CJP
φ
= (∀t.Cψ ⊓ ∃t.Cψ)JP iff ci+1 ∈ CJP

ψ
iff I, i + 1 |=ψ iff I, i |= φ,

where α is an EL-axiom over O. It follows that JP |=⊤⊑ Cφ iff I, 0 |= □φ. ⧸

This claim yields the lower bound of NEXPTIME for the consistency problem in ALC⟦EL⟧
if OCrig ̸=∅.

Next, we prove the upper bound of NEXPTIME for the consistency problem in the case of
rigid names.

Theorem 3.29. The consistency problem in SHOIQ⟦EL⟧ is in NEXPTIME if ORrig ̸=∅.

Proof. Let B = (B,∅, RM) be a SHOIQ⟦EL⟧-BKB and Bb = (Bb,∅) its outer abstraction.
We again use Lemma 3.14 to decide consistency of B. First, we non-deterministically
guess a set X ⊆ P(ran(b)). By Lemma 3.16, we can decide outer consistency of Bb w.r.t. X
non-deterministically in time exponential in the size of Bb and linear in the size of X .

To check X for admissibility, we construct the EL-BKB BX over O as in the proof of
Theorem 3.19. This actually is a conjunction of EL-literals over O, i.e. a conjunction of
(negated) EL-axioms over O. The following claim shows that consistency of BX can be
reduced to consistency of a conjunction of ELO⊥-axioms over O, where ELO⊥ is the extension
of EL with nominals and the bottom concept.

Claim: For every conjunction of EL-literals B over O, there exists an equisatisfiable conjunction
B′ of ELO⊥-axioms over O which is of size polynomial in the size of B.

Proof: Let B be a conjunction of EL-literals over O, i.e.

B = α1 ∧ · · · ∧αn ∧¬β1 ∧ · · · ∧ ¬βm

where αi , 1≤ i ≤ n, β j , 1≤ j ≤ m are EL-axioms over O. We define B′ as follows:

B′ = α1 ∧ · · · ∧αn ∧ γ1 ∧ · · · ∧ γm,

46 Chapter 3. The Contextualised Description Logic LM⟦LO⟧

where

γi :=

⎧

⎪

⎨

⎪

⎩

C(ai)∧ D′(ai)∧ D ⊓ D′ ⊑⊥ if βi = C ⊑ D,

A′(a)∧ A⊓ A′ ⊑⊥ if βi = A(a), and

{a} ⊓ ∃r.{b} ⊑ ⊥ if βi = r(a, b)

with A′, D′ being fresh concept names and ai being fresh individual names. It is easy to see that
if an O-interpretation I is a model of ¬β1 ∧ · · · ∧ ¬βm, there exists an extension of I that is a
model of γ1∧ · · ·∧γm. Conversely, if an O-interpretation I′ is a model of γ1∧ · · ·∧γm, it is also
a model of ¬β1∧· · ·∧¬βm. Hence B and B′ are equisatisfiable. Clearly, B′ is of size polynomial
in the size of B. ⧸

Since BX is at most exponential in B and the fact that the consistency of conjunctions of
ELO⊥-axioms can be decided in polynomial time [BBL05], we can check whether BX is
consistent in time polynomial in the size of BX and, thus, in time exponential in the size of B.

Overall, this yields the claimed upper bound.

Summming up the results of this section, we obtain the following corollary.

Corollary 3.30. For all LM between ALC and SHOIQ, the consistency problem in LM⟦EL⟧ is

• EXPTIME-complete if OCrig =∅, ORrig =∅ and LM is between ALC and SHOQ, and

• NEXPTIME-complete otherwise.

3.4.2 The Contextualised Description Logics EL⟦LO⟧

In this section, we consider EL⟦LO⟧ where LO is between ALC and SHOQ. First, we show
the lower bounds for the case without rigid names.

Theorem 3.31. The consistency problem in EL⟦ALC⟧ is EXPTIME-hard if no rigid names are
allowed, i.e. OCrig = ORrig =∅.

Proof. Deciding whether a given conjunction B = α1 ∧ · · · ∧αn of ALC-axioms is consistent is
EXPTIME-hard[Sch91]. Obviously, B is consistent iff the EL⟦ALC⟧-BKB (⟦α1⟧⊓· · ·⊓⟦αn⟧)(c)
is consistent, where c ∈MI.

Theorem 3.32. The consistency problem in EL⟦SHOIQ⟧ is NEXPTIME-hard if no rigid names
are allowed, i.e. OCrig = ORrig =∅.

Proof. Deciding whether a given conjunction B = α1 ∧ · · · ∧ αn of ALCOIQ-axioms is con-
sistent is NEXPTIME-complete [Tob00]. Obviously, B is consistent iff the EL⟦SHOIQ⟧-BKB
(⟦α1⟧⊓ · · · ⊓ ⟦αn⟧)(c) is consistent, where c ∈MI.

For the case of rigid role names, we have lower bounds of 2EXPTIME.

Theorem 3.33. The consistency problem in EL⟦ALC⟧ is 2EXPTIME-hard if ORrig ̸=∅.

Proof. To show the lower bound, we adapt the proof ideas of [BGL08; BGL12], and reduce the
word problem for exponentially space-bounded alternating Turing machines (i.e. is a given
word w accepted by the machine M) to the consistency problem in EL⟦ALC⟧ with rigid roles,

3.4 Contextualised Description Logics Involving EL 47

i.e. ORrig ̸=∅. In [BGL08; BGL12], a reduction was provided to show 2EXPTIME-hardness for
the temporalised DL ALC-LTL in the presence of rigid roles. Here, we mimic the properties
of the time dimension that are important for the reduction using a role name t ∈MR.

Our EL⟦ALC⟧-BKB is the conjunction of the EL⟦ALC⟧-BKBs introduced below. First, we
ensure that we never have a last time point:

⊤⊑ ∃t.⊤

Note that in the corresponding model, we do not enforce a t-chain since cycles are not
prohibited. This, however, is not important in the reduction.

The ALC-LTL-formula obtained in the reduction of [BGL08; BGL12] is a conjunction of
ALC-LTL-formulas of the form □φ, where φ is an ALC-LTL-formula. This makes sure that
φ holds in all (temporal) worlds. For the cases where φ is an ALC-axiom, we can simply
express this by:

⊤⊑ ⟦φ⟧

This captures all except for two conjuncts of the ALC-LTL-formula of the reduction of [BGL08;
BGL12]. There, a k-bit binary counter using concept names A′0, . . . , A′k−1 was attached to the
individual name a, which is incremented along the temporal dimension. We can express
something similar in EL⟦ALC⟧. Instead of incrementing the counter values along a sequence
of t-successors, we have to go backwards since EL does allow for branching but does not
allow for value restrictions, i.e. we cannot make sure that all t-successors behave the same.
More precisely, if the counter value n is attached to a in context c, the value n+ 1 (modulo
2k −1) must be attached to a in all of c’s t-predecessors. First, we ensure which bits must be
flipped:

⋀

i<k

�

∃t.
��

A′0(a)
�

⊓ · · · ⊓
�

A′i−1(a)
�

⊓
�

A′i(a)
��

⊑
�

(¬A′i)(a)
�

�

⋀

i<k

�

∃t.
��

A′0(a)
�

⊓ . . .⊓
�

A′i−1(a)
�

⊓
�

(¬A′i)(a)
��

⊑
�

A′i(a)
�

�

Next, we ensure that all other bits stay the same:

⋀

0<i<k

⋀

j<i

�

∃t.
�

�

(¬A′j)(a)
�

⊓
�

A′i(a)
��

⊑
�

A′i(a)
�

�

⋀

0<i<k

⋀

j<i

�

∃t.
�

�

(¬A′j)(a)
�

⊓
�

(¬A′i)(a)
��

⊑
�

(¬A′i)(a)
�

�

Note that due to the first m-axiom above, we enforce that every context has a t-successor.
By the other m-axioms, we make sure that we enforce a t-chain of length 2k. As in [BGL08;
BGL12], it is not necessary to initialize the counter. Since we decrement the counter along
the t-chain (modulo 2k − 1), every value between 0 and 2k − 1 is reached.

The conjunction of all the EL⟦ALC⟧-BKBs above yields an EL⟦ALC⟧-BKB B that is con-
sistent iff the given word w is accepted by the machine M .

Finally, we obtain a lower bound of NEXPTIME in the case of rigid concept names only.

48 Chapter 3. The Contextualised Description Logic LM⟦LO⟧

Theorem 3.34. The consistency problem in EL⟦ALC⟧ is NEXPTIME-hard if OCrig ̸= ∅ and
ORrig =∅.

Proof. To show the lower bound, we again adapt the proof ideas of [BGL08; BGL12], and
reduce an exponentially bounded version of the domino problem to the consistency problem
in EL⟦ALC⟧ with rigid concepts, i.e. OCrig ̸= ∅ and ORrig = ∅. In [BGL08; BGL12], a
reduction was provided to show NEXPTIME-hardness for the temporalised DL ALC-LTL in
the presence of rigid concepts. As in the proof of Theorem 3.33, we mimic the properties of
the time dimension that are important for the reduction using a role name t ∈MR.
Our EL⟦ALC⟧-BKB is the conjunction of the EL⟦ALC⟧-BKBs introduced below. We proceed
in a similar way as in the proof of Theorem 3.33. First, we ensure that we never have a last
time point:

⊤⊑ ∃t.⊤

Note that in the corresponding model, we do not enforce a t-chain since cycles are not
prohibited. As in the reduction in the proof of Theorem 3.33, this is not important in the
reduction here.

Next, note that since the □-operator distributes over conjunction, most of the conjuncts of
the ALC-LTL-formula of the reduction of [BGL08; BGL12] can be rewritten as conjunctions
of ALC-LTL-formulas of the form □α, where α is an ALC-axiom. As already argued in the
proof of Theorem 3.33, this can equivalently be expressed by ⊤⊑ ⟦α⟧.

In [BGL08; BGL12], a (2n + 2)-bit binary counter is employed using concept names
Z0, . . . , Z2n+1. This counter is attached to an individual name a, which is incremented along
the temporal dimension. This can be expressed in EL⟦ALC⟧ as shown in the proof of
Theorem 3.33:

⋀

i<2n+2

�

∃t.
�

⟦Z0(a)⟧⊓ . . .⊓ ⟦Zi−1(a)⟧⊓ ⟦Zi(a)⟧
�

⊑ ⟦(¬Zi)(a)⟧
�

⋀

i<2n+2

�

∃t.
�

⟦Z0(a)⟧⊓ . . .⊓ ⟦Zi−1(a)⟧⊓ ⟦(¬Zi)(a)⟧
�

⊑ ⟦Zi(a)⟧
�

⋀

0<i<2n+2

⋀

j<i

�

∃t.
��

(¬Z j)(a)
�

⊓ ⟦Zi(a)⟧
�

⊑ ⟦Zi(a)⟧
�

⋀

0<i<2n+2

⋀

j<i

�

∃t.
��

(¬Z j)(a)
�

⊓ ⟦(¬Zi)(a)⟧
�

⊑ ⟦(¬Zi)(a)⟧
�

Note that due to the first m-axiom above, we enforce that every context has a t-successor. By
the other m-axioms, we make sure that we enforce a t-chain of length 22n+2. As in [BGL08;
BGL12], it is not necessary to initialize the counter. Since we decrement the counter along
the t-chain (modulo 22n+1), every value between 0 and 22n+1 is reached.

In [BGL08; BGL12], an ALC-LTL-formula is used to express that the value of the counter is
shared by all domain elements belonging to the current (temporal) world. This is expressed
using a disjunction, which we can simulate as follows:

⋀

0≤i≤2n+1

�

⟦Zi(a)⟧⊑ ⟦⊤⊑ Zi⟧ ∧ ⟦(¬Zi)(a)⟧⊑ ⟦Zi ⊑⊥⟧
�

3.5 Adding Contextualised Concepts 49

Table 3.2: Classification of different two-dimensional temporal and contextual description
logics ([LWZ08; BGL12; KG10])

Temporal or contextual
operators

in front of/around axioms
yes no

yes
temporal LTLALC ,

ALCALC , LM⟦LO⟧
+

LTLALC ,
∅

inside concepts

no
ALC-LTL,
LM⟦LO⟧

ALC

Next, there is a concept name N , which is required to be non-empty in every (temporal)
world. We express this using a role name r ∈ OR:

⊤⊑ ⟦(∃r.N)(a)⟧

It is only left to express the following ALC-LTL-formula of [BGL08; BGL12] that states that
every world gets one domino type:

□
�⋁

d∈D

(⊤⊑ d ′)
�

For readability, let D = {d1, . . . , dk}. We use non-convexity of ALC as follows to express this:

⊤⊑
�

(d ′1 ⊔ · · · ⊔ d ′k)(a)
�

∧
⋀

1≤i≤k

�

�

d ′i (a)
�

⊑
�

⊤⊑ d ′i
�

�

The conjunction of all the EL⟦ALC⟧-BKBs above yields an EL⟦ALC⟧-BKB B that is consistent
iff the exponentially bounded version of the domino problem has a solution.

3.5 Adding Contextualised Concepts

In this section we discuss a possible extension to our contextualised description logic. We
start with a comparison to temporal description logics. Both DL-LTL-structures and nested DL
interpretations use a possible worlds semantics. Single time points or contexts are represented
in a meta dimension and for each such a meta element, or possible world, there exists one DL
interpretation on the object level. Important for both the expressivity and the complexity of
reasoning problems is how these two dimensions can interact. Syntactically, it is a question
where these meta operators, i.e. temporal or contextual, can be used.

Table 3.2 gives an overview over some two-dimensional DLs. This is not a complete
overview, but it illustrates some common properties about the complexity of the consistency
problem. Note first that neither having meta operators in front of axioms nor having meta
operators inside concepts is strictly more expressive than the other. Meta operators in front
of axioms can handle general knowledge that holds in some or all worlds. On the other

50 Chapter 3. The Contextualised Description Logic LM⟦LO⟧

hand, meta operators inside object concepts allow to access the extension of concepts in
other worlds. We illustrate this by an example taken from [LWZ08].

◊□(European_country ⊑ EU_country)
Independent_country ⊑ □Independent_country

The first temporalised GCI states that eventually, i.e. at some time point t in the future, all
European countries will forever be EU members, i.e. in every time point after t. The second
axiom says that the extension of the concept Independent_country does not decrease.

In LM⟦LO⟧, we only have the contextual operator ⟦·⟧ around axioms. We can express that
certain axioms must hold in some worlds, but we cannot access the extension of a concept
from another world, i.e. we cannot express the set of domain elements which belong to
some concept in another context. The idea is to overcome this lack of expressive power by
introducing a new contextual operator inside object concepts.

Before extending LM⟦LO⟧, we analyse some general behaviour of two-dimensional DLs.
The first common property that we want to focus on is the computational complexity if rigid
roles are present. If meta operators are allowed within object concepts, the consistency
problem becomes undecidable. This holds for all logics in the first row of Table 3.2. We
prove this negative result for LM⟦LO⟧

+ below. If meta operators are only allowed in front
of axioms, we may retain decidability, but at the cost that the consistency problem is one
exponential harder. If no rigid names are allowed, the complexity of the consistency problem
increases for logics with meta operators both in front of axioms and in object concepts:
from ExpTime-completeness for ALC to EXPSPACE-completeness for temporal LTLALC TBoxes
and to 2EXPTIME-completeness for ALCALC knowledge bases. If only one kind of meta
operators is allowed, the complexity class stays the same, i.e. the consistency problem is
ExpTime-complete in ALC⟦ALC⟧, ALC-LTL, and LTLALC .

A setting in which only rigid concepts, but no rigid roles are allowed, is only interesting if
meta operators are not allowed inside object concepts. Otherwise, rigid concepts can easily
be simulated. In LTLALC , this can be done by adding C ⊑ □C and ¬C ⊑ □¬C to the TBox. We
show below how rigid concepts can be simulated in LM⟦LO⟧

+. The contextualised description
logic LM⟦LO⟧

+ is an extension of LM⟦LO⟧ in which we additionally allow contextualised
object concepts. Therefore, we update the definition of o-concepts from Def. 3.1.

Definition 3.35 (Object concepts of LM⟦LO⟧
+). The set of concepts of the object logic

LO (o-concepts) is the smallest set such that

• for all A∈ OC, A is an object concept,

• if D is an object concept, C ∈MC, r ∈MR, then ◊r,CD is also an object concept, and

• all complex concepts that can be built with the concept constructors allowed in LO are
object concepts.

Furthermore, for a nested interpretation J = (C, ·J ,∆J, (·Ic)c∈C) the mapping ·Ic is extended
to◊r,CD as follows: (◊r,CD)Ic :={d ∈∆J | there is some c′ ∈ CJ s.t. (c, c′) ∈ rJ and d ∈ DIc′ }.

♦

Following customs of modal logic, we use □r,CD as an abbreviation for ¬◊r,C(¬D). Intuitively,
in a context c the concept ◊r,CD denotes the set of all object domain elements that belong to

3.5 Adding Contextualised Concepts 51

the concept D in some other context c′ which belongs to the meta concept C and is related
to c via r. An object domain element is in the extension of concept □r,CD in context c, if it
belongs to D in all contexts c′ that belong to the meta concept C and are related to c via r.

Thus, within a context we can talk about object elements that belong to some object
concept in some other context. This is somehow similar to XC in LTLALC , which denotes the
set of all elements that are in C in the next time point.

Example 3.36. Going back to Example 3.4, the following meta concept assertion states that
someone who plays quarterback for the Green Bay Packers must work as coach in a junior
training camp that is organised by Green Bay:

�

∃plays.Quarterback ⊑ ◊organises,JuniorFootballClinicCoach
�

(GreenBayPackers).

Note here, that Green Bay Packers and the junior training camp are two different contexts and
that this cannot be expressed in LM⟦LO⟧. ♦

The contextualised description logic ALC⟦ALC⟧+ without rigid names is a syntactical variant
of ALCALC [KG10; KG16]. Consequently, the consistency problem in ALC⟦ALC⟧+ has the
same complexity.

Theorem 3.37. The consistency problem in ALC⟦ALC⟧+ is 2EXPTIME-complete if OCrig =∅
and ORrig =∅.

Proof (Sketch). We can prove the theorem by a mutual reduction of an ALCALC and an
ALC⟦ALC⟧+ knowledge base. Without introducing the complete syntax of ALCALC , we
show how to map an ALCALC ontology into ALC⟦ALC⟧+.

Table 3.3 shows in the upper part the two special constructors for object concepts available
in ALCALC . The middle part provides the syntax and semantics of object formulas which
in turn constitute the object ontology axioms, shown in lower part. The rightmost column
defines the mapping τ which translates terms from ALCALC to ALC⟦ALC⟧+. The following
example shows how an object ontology axiom is mapped.

C : 〈C〉r(〈C〉rD ⊑ A) ⇝ C ⊑ ∃r.
�

C ⊓
�

◊r,CD ⊑ A
��

An ALCALC ontology K = (C, O) consists of a context ontology C, which is in fact a standard
ALC ontology, and of an object ontology. Given K, let us define the ALC⟦ALC⟧ ontology
BK := C ∧τ(O). It is easy to verify that a nested interpretation J is a model of K if and only
if it is a model of BK.

Conversely, for an ALC⟦ALC⟧ ontology B, we take the outer abstraction Bb as context
ontology and for each ⟦α⟧ in B, we add (A

⟦α⟧ : α) and (¬A
⟦α⟧ : ¬α) to the object ontology OB.

Again, it is easy to show that J models B iff J models KB = (Bb, OB).

The more interesting setting with rigid roles behaves much worse. One can easily show that
the consistency problem becomes undecidable.

Theorem 3.38. The consistency problem in EL⟦ALC⟧+ is undecidable if ORrig ̸=∅.

Proof. Similar to the idea of [LWZ08], we proof the claim by reduction of a well-known
undecidable problem, namely the domino problem [Ber66]: given a triple D = (D, H, V) with

52 Chapter 3. The Contextualised Description Logic LM⟦LO⟧

Table 3.3: Syntax and semantics of ALCALC , and the mapping τ to ALC⟦ALC⟧+

Syntax Semantics mapping τ(x)

〈C〉rD ·Ic = {d ∈∆ | there is c′ s.t. (c, c′) ∈ rJ , c′ ∈ CJ , d ∈ DIc′ } ◊r,CD
[C]rD ·Ic = {d ∈∆ | (c, c′) ∈ rJ and c′ ∈ CJ imply d ∈ DIc′ } □r,CD

B ⊑ D Ic |= B ⊑ D iff BIc ⊆ DIc
⟦B ⊑ D⟧

D(a) Ic |= D(a) iff aIc ∈ DIc
⟦D(a)⟧

s(a, b) Ic |= s(a, b) iff (aIc , bIc) ∈ sIc
⟦s(a, b)⟧

¬ϕ Ic |= ¬ϕ iff Ic ̸|= ϕ ¬τ(ϕ)
ϕ ∧ψ Ic |= ϕ ∧ψ iff Ic |= ϕ and Ic |=ψ τ(ϕ)⊓τ(ψ)
〈C〉rϕ Ic |= 〈C〉rϕ iff there is c′ ∈ CJ s.t. (c, c′) ∈ rJ , Ic′ |= ϕ ∃r.(C ⊓τ(ϕ))
[C]rϕ Ic |= [C]rϕ iff every c′ ∈ CJ , (c, c′) ∈ rJ implies Ic′ |= ϕ ∀r.(¬C ⊔τ(ϕ))

a : ϕ J |= a : ϕ iff Ic |= ϕ with c = aJ (τ(ϕ))(a)
C : ϕ J |= C : ϕ iff Ic |= ϕ for every c with c ∈ CJ C ⊑ τ(ϕ)

a set of domino types D = {d1, . . . , dn}, a horizontal compatibility relation H ⊆ D× D and a
vertical compatibility relation V ⊆ D× D, decide whether there exists a solution to cover the
N×N-grid with these domino types respecting the compatibility relations, i.e. does there
exist a tiling t : N×N→ D s.t. (t(i, j), t(i + 1, j)) ∈ H and (t(i, j), t(i, j + 1)) ∈ V?

We encode this problem in EL⟦ALC⟧+ with a single rigid role v ∈ ORrig. Let BD be the
conjunction of the following meta axioms. Each context represents a column of the grid.
Using a meta role h ∈MR and a rigid object role v ∈ ORrig, we ensure the existence of a grid:

⊤⊑ ∃h.⊤ (α1)

⊤⊑ ⟦⊤⊑ ∃v.⊤⟧ (α2)

Let A0, . . . , An ∈ OC be object concept names representing the given domino types. To ensure
that a single domino type is assigned to each grid position, we use

⊤⊑

�

⊤⊑ (A1 ⊔ · · · ⊔ An)⊓
l

1≤i< j≤n

¬(Ai ⊓ A j)

�

. (α3)

To enforce the compatibility relations, we use

⊤⊑
nl

i=1

�

Ai ⊑ ∀v.(
⨆

(di ,d j)∈V

A j)

�

, and (α4)

⊤⊑
nl

i=1

�

Ai ⊑
⨆

(di ,d j)∈H

□h,⊤A j

�

. (α5)

Claim: BD is consistent iff D has a solution.

3.5 Adding Contextualised Concepts 53

Proof: Assume that t is a solution for D. Then, based on t we define the nested interpretation
Jt = (N, ·Jt ,N, (·Ix)x∈N) with

hJt := {(k, k+ 1) | k ≥ 0}
vIx := {(l, l + 1) | l ≥ 0} for all n≥ 0

AIx
i := {y ∈ N | t(x , y) = di}

By definition, Jt models α1 and α2. For each object domain element y ∈ N and each Ix , x ≥ 0,
we have that y ∈ Ai

Ix and y /∈ A j
Ix , 1 ≤ j ≤ n, i ≠ j, for t(x , y) = di. Hence, Jt |= α3. By

definition, y + 1 is the only v-successor of y. If y ∈ AIx
i we know that y + 1 ∈

�⨆

(di ,d j)∈V A j

�Ix

because t is a solution and (t(x , y), t(x , y + 1)) ∈ V . Analogously, x + 1 is the only h-
successor of x and if y ∈ AIx

i , we know that y ∈
�⨆

(di ,d j)∈H A j

�Ix+1 because t is a solution and
(t(x , y), t(x + 1, y)) ∈ H. Hence, Jt |= α4 ∧α5. Thus, BD is consistent.

Assume that J = (C, ·J ,∆J, (·Ic)c∈C) is a model of BD. Let PM and POI be infinite paths
PM = c0c1 . . . and POI = o0o1 . . . with ci ∈ C, (ci , ci+1) ∈ hJ , oi ∈∆J and (oi , oi+1) ∈ vIc for
some c ∈ C. Such paths exists, because J |= α1, J |= α2 and v is a rigid role. We define the
nested interpretation JP := ({ci | i ≥ 0}, ·JP , {oi | i ≥ 0}, (·IP,ci)i≥0), where ·JP is the restriction
of ·J to the domain ci | i ≥ 0, and ·IP,ci is the restriction of ·Ici to the domain oi | i ≥ 0.

By construction, JP is a model of α1 and α2. Since α3 to α5 do not contain any existential or
at-least restrictions, the restriction of the meta and the object domain preserves the entailment
relation, and JP |= BD. We define the tiling t as follows:

t(x , y) = di if oy ∈ A
IP,cx
i .

The tiling t is a total function and well-defined, due to α3. Let o j ∈ Ak1

IP,ci , o j+1 ∈ Ak2

IP,ci and
o j ∈ Ak3

IP,ci+1 . Thus, we have t(i, j) = dk1
, t(i, j + 1) = dk2

and t(i + 1, j) = dk3
. By α4 we

know that o j ∈ ∀v.
�⨆

(dk1
,d j)∈V A j

�IP,ci and, hence, (dk1
, dk2
) ∈ V . Analogously by α5, we get

(dk1
, dk3
) ∈ H. Thus, D has a solution. ⧸

Thus, deciding whether BD is consistent is undecidable.

In Section 3.3, we discussed three different settings depending on whether rigid concept
and role names are admitted. We already obtained the complexity results for LM⟦LO⟧

+ for
Setting (i), i.e. no rigid names are allowed, and for Setting (iii), i.e. rigid roles are allowed.
With some assumptions, in LM⟦LO⟧

+, however, Setting (ii) that allows rigid concept names
but no rigid roles coincides with Setting (i), since rigid concepts can be simulated. Hence,
we obtain the following result:

Theorem 3.39. The consistency problem for SHOI⟦SHOI⟧+-ontologies is 2EXPTIME-complete
if ORrig =∅.

Proof. First, we have to simulate the universal role u. With u, we can simulate rigid concepts
and, thus, reduce the consistency problem to the case without rigid names.

Let O = (O, RO, RM) be an SHOI⟦SHOI⟧+-ontology. We first have to simulate a universal
role u on the meta level. We can assume w.l.o.g. that u ∈MR does not occur in O. We obtain
Ou from O by adding the following axioms to O:

• u− ⊑ u,

54 Chapter 3. The Contextualised Description Logic LM⟦LO⟧

• r ⊑ u, for all r ∈MR occurring in O,

• u(a, b) for all a, b ∈MI occurring in O.

Note that Ou is of size polynomial in the size of O. Assume there exists an unnamed context
in a model of O, i.e. c ∈ C such that there is no a ∈ MI occurring in O with aJ = c, and c
is not connected to any named context by some path. Then, we can always remove that
unnamed context from the interpretation and still have a model. Hence, we can assume
that every model of Ou is connected and that every context can be reached by any other
context via a path of u-edges. Note that we restrict O to SHOI⟦SHOI⟧+-ontologies, since
in an SHOI⟦SHOI⟧+-BKB, a negated meta GCI can enforce the existence of an unnamed
context that is not necessarily connected to the rest of the model.

With the help of u and contextualised concepts, we can express that A∈ OC is rigid by the
following two axioms:

⊤⊑
�

A⊑ □u,⊤A
�

⊤⊑
�

¬A⊑ □u,⊤¬A
�

Due to these axioms, the extension of A in a context c are exactly these elements which are
in A in every context c′ that is related to c via u. Thus, the extension of A is equal in every
context, i.e. A is rigid.

In [KG16], Theorem 6 states that deciding the consistency problem in SHOISHOI without
rigid names is 2EXPTIME-complete. We can again use the same translation as shown in
the proof of Theorem 3.37 and, hence, obtain 2EXPTIME-completeness for SHOI⟦SHOI⟧+-
ontologies with rigid concepts.

To sum up, we showed that adding contextualised concepts dramatically increases the
complexity. In the presence of rigid roles, the consistency problem for even less expressive
EL⟦ALC⟧+-ontologies becomes undecidable. Without rigid roles for any contextualised
DL between ALC⟦ALC⟧+ and SHOI⟦SHOI⟧+ deciding the consistency of an ontology is
2EXPTIME-complete.

Chapter 4

A Mapping from Role-Based Models to
Description Logic Ontologies

In the last chapter we introduced a family of description logics which is capable of expressing
contextualised knowledge. This provides the needed expressiveness to be able to reason on
role-based models. But due to the rather elaborate semantics both of role-based models and
of contextualised description logics it will be tedious and error-prone to manually construct
the DL ontology which exactly captures a role-based model, especially since the domain
analyst who generates the role-based model is in general not an expert in DLs. Hence, an
automated mapping from role-based models into DL would be desirable. Therefore, a formal
representation of role-based systems with a well-defined semantics is necessary which is the
case since we use role-based systems formalised in CROM.

In this chapter we will present a mapping algorithm from such role-based models into
contextualised DLs in order to automate this step. In Section 4.1, we present the mapping
algorithm along with the proof that the mapping preserves the semantics. Then, in Section 4.2
we discuss possible features of role-based systems that go beyond CROM but still can be
expressed in an ontology.

4.1 Representing Role-Based Models

We would like to emphasise here that checking well-formedness of a Σ-CROM M and
compliance of a constraint set with M is not considered here, because these are purely
syntactical checks and no reasoning is necessary. Furthermore, checking whether a given
Σ-CROI satisfies M is also not the considered task as it rather belongs to the area of model
checking and is not in the scope of this thesis. More interesting is whether there exists such a
Σ-CROI at all. Then, we can additionally test if certain axioms are entailed or whether specific
role types can be played since these questions can be reduced to the satisfiability problem.
Thus, the main objective is, given a Σ-CCROM K, to construct an ALC⟦SHOIQ⟧-ontology
BK such that BK is consistent iff K is satisfiable. Which contextualised description logic is
exactly necessary depends also on the constraints occurring in K and will be discussed in
Section 4.1.5 in more detail.

The general idea is to model compartment types as concepts on the meta level, and objects
playing a rôle, the relationship types as well as all the constraints within a compartment type
on the object level. For this, we introduce o-concepts for natural types and rôle types and a
special object role plays. The fills relation is transformed into corresponding domain and
range axioms for plays.

55

56 Chapter 4. A Mapping from Role-Based Models to Description Logic Ontologies

MikeMcCarthy,
Coach

MikeMcCarthy Coach

plays

Figure 4.1: Possibilities to formalise objects playing rôles.

Here, we made a first design decision on how to express that a rôle is played within a
compartment. There are two possibilities, depicted in Figure 4.1, which we already showed
in Example 3.4. On the one hand, we can introduce an o-concept Coach ∈ NRT and elements
playing a Coach-rôle are in the extension of RT (such as Mike McCarthy playing the rôle of a
coach in the left side of Figure 4.1). Here, an object o and a rôle r with (o, ·, r) ∈ plays would
be mapped to a single element d in the object interpretation for that compartment. This
variant is close to the ontological nature of rôles where an entity is in the extension of a rôle,
seen as unary predicate, if this entity plays that rôle. On the other hand, we can introduce
the o-concept Coach as well but disjoint from Person and we additionally introduce an object
role plays and elements playing an Coach-rôle have a plays-successor that is in the extension
of Coach (such as Mike playing the rôle of a coach in the left side of Figure 4.1). This is
closer to the semantics of Σ-CROIs, but introduces new object domain elements for each rôle
that is played. Still, we chose the latter variant, since later we need to count the number of
rôles to assure occurrence and cardinality constraints. In DLs, this can be done via qualified
number restrictions.

Generally, in a Σ-CROM, compartments are also allowed to play rôles in other compart-
ments. Within these other compartments a compartment playing a rôle does not behave
differently than a natural. Hence, we have compartment types both as meta concept names,
i.e. as contexts in which other objects play rôles, and as object concept types, i.e. as objects
that play rôles in a context. In a Σ-CROM there is a one-to-one relationship, since the
compartment as rôle-player and as context is the same object. In our formalism, we cannot
establish that tight connection, but we can assure the existence of contexts of a certain
compartment type via a meta role nested if objects of that type play rôles. Since we cannot
restrict the number of existing contexts in a nested DL interpretation, this is sufficient for the
satisfiability problem. To distinguish between compartment types as contexts and as objects,
we call the former simply contexts and the latter o-compartments and introduce a copy NCT′

of all compartment types NCT.
Relationship types are intuitively modelled as object roles. Here, it might be more natural

to span these between the played rôles instead of the players. But due to the one-to-one
correspondence between players and played rôles, we can also construct the relationship
types between the players. In doing so, we can avoid the use of role value maps, which would
cause the consistency problem to become undecidable [Sch89], to formalise intra relationship
type constraints. Even so, we can only support such constraints that are expressible in the
underlying DL.

Rôle groups are handled like rôles with an additional axiom stating that “playing” a rôle
group is equivalent to fulfilling the constraints specified in that rôle group. Furthermore, if
an object plays an atom of a top-level rôle group, that object must fulfill the rôle group. For

4.1 Representing Role-Based Models 57

the occurrence constraints we introduce a fresh individual name counter and a object role
counts and enforce that each played role or fulfilled role group is connected to this counter.
Thereby we can use qualified number restrictions to encode the occurrence constraints. For
cardinality constraints, we also utilise number restrictions.

To sum up, we consider the object signature O = (OC, OR, OI) and the meta signature
M= (MC, MR, MI) such that

• NCT ⊆MC, since every compartment type is a meta concept,

• nested ∈MR, to assure the existence of compartments that play rôles,

• NNT ∪NCT′ ⊆ OCrig, since every natural type and every o-compartment type are rigid
object concepts,

• NRT ⊆ OCflex, since every rôle type is a flexible object concept

• plays ∈ ORflex, to express the plays-relation,

• NRST ⊆ ORflex, since every relationship type is an object role,

• counter ∈ OI and counts ∈ ORflex, to express the occurrence constraints, and

• NM-IND ∈MI and NO-IND ∈ OI, to interpret individual names on their respective level.

Additionally, we introduce the following object concept names:

• AO ∈ OCrig for all objects eligible of playing rôles, i.e. naturals and o-compartments,

• ART ∈ OCflex for all rôles, and

• ARG ∈ OCflex for all instances of rôle groups since we will consider rôle groups of the
constraint set similar to rôles.

4.1.1 A Mapping for the Vocabulary Σ

In the next sections, we present the mapping from rôle-based systems into contextualised
description logics in detail. At first, we express general knowledge about occurring types
which is independent of the specific Σ-CROM.

1. Every context belongs to exactly one compartment type.

⊤⊑
⨆

CT∈NCT

CT (4.1)

CT1 ⊓ CT2 ⊑⊥ for all CT1, CT2 ∈ NCT, CT1 ̸= CT2 (4.2)

2. In every context, every natural or o-compartment and every rôle belongs to exactly
one type.

⊤⊑

�

AO ≡
⨆

NT∈NNT

NT ⊔
⨆

CT ′∈NCT′

CT ′
�

(4.3)

⊤⊑

�

ART ≡
⨆

RT∈NRT

RT

�

(4.4)

58 Chapter 4. A Mapping from Role-Based Models to Description Logic Ontologies

⊤⊑
l

T1, T2∈NNT∪NCT′∪NRT,
T1 ̸=T2

⟦T1 ⊓ T2 ⊑⊥⟧ (4.5)

3. On the object level, an element can either be a rôle, a natural or o-compartment, an
instance of a rôle group or the individual counter.

⊤⊑ ⟦AO ⊓ ART ⊑⊥⟧⊓ ⟦AO ⊓ ARG ⊑⊥⟧⊓ ⟦ART ⊓ ARG ⊑⊥⟧

⊓ ⟦¬(AO ⊔ ART ⊔ ARG)(counter)⟧
(4.6)

4. Every natural or o-compartment can play at most one RT-rôle in each context and each
rôle must be played by some object.

⊤⊑
l

RT∈NRT

⟦AO ⊑⩽1plays.RT⟧ (4.7)

⊤⊑
�

ART ⊑⩾1plays−.⊤⊓⩽1plays−.⊤
�

(4.8)

5. We formalise a general domain and range restriction for plays. Only naturals or o-
compartments can play something, and only rôles or instances of rôle groups can be
played.

⊤⊑ ⟦∃plays.⊤⊑ AO⟧ (4.9)

⊤⊑ ⟦⊤⊑ ∀plays.(ART ⊔ ARG)⟧ (4.10)

6. Finally, if an o-compartment plays a rôle in some context, the o-compartment must
also exist as context.

¬
�

CT ′⊓ ∃plays.⊤⊑⊥
�

⊑ ∃nested.CT for all CT ′ ∈ NCT′ (4.11)

4.1.2 A Mapping for the Σ-CROM M

With the general knowledge about the vocabulary Σ being set up, we can look into the
translation of the specifications for a given Σ-CROM M= (fills, parts, rel).

1. The fills-relation specifies which natural or compartment types are allowed to play
which rôle types. Hence, elements that play a certain rôle type can only be naturals or
o-compartments of types which fill that rôle type.

⊤⊑
l

RT∈NRT

�

∃plays.RT ⊑
�

⨆

(T,RT)∈fills T
��

(4.12)

Note here, that Equation (4.12) is sufficient in the sense that in conjunction with Equa-
tions (4.4) and (4.10), it entails that all plays-successors of naturals or o-compartments

4.1 Representing Role-Based Models 59

of a specific type are either instances of a rôle type that are filled by that type or
instances of a rôle group:

⊤⊑
l

T∈NNT∪NCT′

�

T ⊑ ∀plays.
�

ARG ⊔
⨆

(T,RT)∈fills RT
��

.

2. Since in a satisfying Σ-CROI the plays-relation respects parts, only RT-rôles with
RT ∈ parts(CT) exist in a CT -context.

CT ⊑

�

ART ⊑
⨆

RT∈parts(CT)

RT

�

for all CT ∈ NCT (4.13)

3. Analogous to fills restricting the domain and range of plays, the rel-function restricts
them for each relationship type.

⊤⊑ ⟦∃RST .⊤⊑ ∃plays.RT1⟧⊓ ⟦⊤⊑ ∀RST .(∃plays.RT2)⟧

for all RST ∈ NRST and rel(RST) = (RT1, RT2)
(4.14)

Note here, that due to equations (4.1), (4.4), (4.5) and (4.13) and the fact that parts’
codomain is a partition of NRT, in any context that is not in CT there are no rôles of a type
the participates in CT , e.g. the following axiom is entailed for all CT ∈ NCT:

¬CT ⊑

�

⨆

RT∈parts(CT)

RT ⊑⊥

�

4.1.3 A Mapping for the Σ-CROA A

Next, let A be a Σ-CROA. We can translate the different Compartment Role Object Assertions
into meta assertions in LM⟦LO⟧.

1. For any meta type assertion of the form CT (c) ∈ A with CT ∈ NCT and c ∈ NM-IND the
individual a must be a context of type CT .

CT (c) (4.15)

2. For any object type assertion T(a, c) ∈ A with T ∈ NNT ∪ NCT ∪ NRT, a ∈ NO-IND and
c ∈ NM-IND the individual a is a natural, an o-compartment or rôle that belongs to the
concept T in context c.

⟦T (a)⟧(c) (4.16)

3. A plays assertion play_assert(a1, c, a2) ∈ A states that a1 plays a2 in c.

⟦plays(a1, a2)⟧(c) (4.17)

60 Chapter 4. A Mapping from Role-Based Models to Description Logic Ontologies

4. A links assertion link_assert(RST , c, a1, a2) ∈ A states that a1 and a2 play rôles which
are related in c via RST . Due to the way we modelled relationship types, this is simply
the following axiom:

⟦RST (a1, a2)⟧(c) (4.18)

4.1.4 A Mapping for the Σ-CROC C

Let C be a Σ-CROC, let RG(C) denote the set of all complex rôle groups occurring in C and
let RG⊤(C) ⊆ RG(C) denote the set of all complex top-level rôle groups.

1. Analogous to rôles, rôle groups are disjoint, every instance of a rôle group must be
played by some object and every object can either fulfill or not fulfill a rôle group.

⊤⊑

�

ARG ≡
⨆

RG∈RG(C)
RG

�

⊓
l

RG1, RG2∈RG(C),
RG1 ̸=RG2

⟦RG1 ⊓ RG2 ⊑⊥⟧ (4.19)

⊤⊑
�

ARG ⊑⩾1plays−.⊤⊓⩽1plays−.⊤
�

(4.20)

⊤⊑
l

RG∈RG(C)

⟦AO ⊑⩽1plays.RG⟧ (4.21)

2. Complex rôle groups are treated like abstract rôles. An object can “play” an instance of
a rôle group. This is equivalent to fulfilling that role group. So, the object must “play”
the required number of containing rôle groups. Furthermore, if an object plays a rôle
whose type is an atom of a top-level rôle group, the object must also fulfill that rôle
group.

⊤⊑
l

RG∈RG(C),
RG=({A1,...,An},k,ℓ)

⟦∃plays.RG ≡ (⩾kplays.(A1 ⊔ · · · ⊔ An))

⊓ (⩽ℓplays.(A1 ⊔ · · · ⊔ An))⟧

(4.22)

⊤⊑
l

RG∈RG⊤(C)

�

∃plays.
�

⨆

RT∈atom(RG)
RT
�

⊑ ∃plays.RG
�

(4.23)

3. Since for the occurrence constraints we only consider objects that play any rôle in this
compartment, we assure that fulfilling a rôle group implies playing some rôle.

⊤⊑ ⟦∃plays.ARG ⊑ ∃plays.ART⟧ (4.24)

4. To capture the occurrence constraints we use an object individual name counter and
introduce an counts-role from that individual to all rôles and rôle group instances.
Thus, the occurrence constraints can be enforced with the help of qualified number
restrictions.

⊤⊑
�

ART ⊔ ARG ⊑⩾1counts−.{counter} ⊓⩽1counts−.{counter}
�

(4.25)

CT ⊑ ⟦(⩾kcounts.RG)(counter)⟧⊓ ⟦(⩽ℓcounts.RG)(counter)⟧
for all (k..ℓ, RG) ∈ occur(CT), for all CT ∈ NCT

(4.26)

4.1 Representing Role-Based Models 61

5. Cardinality constraints restrict the number of rôles that are related to rôle via a
relationship type. Rôles whose type is the domain or range of a relationship type RST
for which there exists a cardinality constraint must have the correct amount of RST
successors or predecessors, respectively.

⊤⊑
l

RST∈NRST,
rel(RST)=(RT1,RT2),
card(RST)=(i.. j,k..ℓ)

⟦∃plays.RT1 ⊑⩾kRST .⊤⊓⩽ℓRST .⊤⟧

⊓
�

∃plays.RT2 ⊑⩾iRST−.⊤⊓⩽ jRST−.⊤
�

(4.27)

6. As mentioned above, because we spanned the relationship types between the players
and not between the rôles, we can model at least some of the intra-relationship type
constraints, exactly those that are expressible in the object logic. In SHOIQ, these
would be transitivity and symmetry. Thus, we add the following role axioms to the
object RBox RO:

trans(RST) for all trans ∈ intra(RST) (4.28)

RST ⊑ RST− for all symm ∈ intra(RST) (4.29)

where trans and symm are functions that return true if and only if the binary relation,
respectively, is transitive or symmetric. But it is important to note, due to the restriction
that only simple roles are allowed to appear in number restrictions, we cannot impose
any cardinality constraints on the relationship type RST if RST is supposed to be
transitive.

4.1.5 Semantic Integrity of Mapping Algorithm

Before we establish the desired relation between the CROM and the ontology, we do a short
analysis of the required expressiveness of the meta and the object logic. To state the disjoint
union axioms we need at least ALC. As we do not need anything more on the meta level,
we can fix LM to be ALC. On the object level, we need qualified number restrictions and
inverse roles to assure that every rôle is played exactly once. If we have a single occurrence
constraint, we have to add nominals. Transitivity axioms or role hierarchies are only required
if some intra-relationship type constraint specifies a transitive or symmetric relationship type,
respectively. Table 4.1 shows a summary of the required DLs.

Anyhow, from a practical point of view not only the required DLs are relevant but also
the complexity of the reasoning. Besides the specific DL it is also important which names in
the ontology need to be rigid. We need rigid concept names for mapping natural types and
o-compartment types. Whether we also need rigid role names depends on the constraints we
want to model. Rigid roles are necessary to model attributes of natural types, e.g. the name or
date of birth of a person. Complexity-wise it is important to only map details of the role-based
model which might have logical implications. Since in the current version of CROM we do
not have any constraints based on attributes of naturals, we will not map attributes and,
hence, do not need rigid roles. In Section 4.2, we analyse some constraints beyond CROM
which we can model in LM⟦LO⟧ and therefore we also need rigid roles. Table 4.2 shows an
overview of the resulting complexities. Note here, that these are all worst-case complexities

62 Chapter 4. A Mapping from Role-Based Models to Description Logic Ontologies

Table 4.1: Summary of required DLs for LM and LO.

LO minimal ALCIQ
with occurrence constraints ALCOIQ
with intra-relationship type constraints SHOIQ

LM ALC

Table 4.2: Overview of complexities for reasoning on CROM models with (I): No attribute-
based constraints (only rigid concepts), and (II): With attribute-based constraints
(with rigid roles).

minimal
(ALC⟦ALCIQ⟧)

with occ. constr.
(ALC⟦ALCOIQ⟧)

with in.-rel. constr.
(ALC⟦SHOIQ⟧)

(I) NEXPTIME NEXPTIME-hard and in N2EXPTIME

(II) 2EXPTIME 2EXPTIME-hard and in N2EXPTIME

and that the actual reasoning effort might vary depending on the used constraints even if
the different cases, i.e. with and without intra-relationship type constraints, are in the same
complexity class.

Given a Σ-CCROM K, we obtain the ALC⟦SHOIQ⟧ ontology BK = (BK,∅, RO) where BK
is the conjunction of all meta axioms from (4.1) to (4.27) and RO is the set of all role
axioms (4.28) and (4.29).

Theorem 4.1. Let K = (M, A, C) be a Σ-CCROM. Then, K is satisfiable iff BK is consistent.

Proof. Assume that K is satisfiable and let IK denote a Σ-CROI that satisfies M, A and C. We
define the set ∆NRT,c of all rôles played in c, the set ∆RG,c of all rôle group instances fulfilled
in c, and the nested interpretation J = (C, ·J ,∆J, (·Ic)c∈C) as follows:

∆NRT,c := {r ∈ RIK | (·, c, r) ∈ plays} for all c ∈ CIK

∆RG,c := {(x , c, y) ∈ RG×CIK ×OIK | xIK,c,y = 1} for all c ∈ CIK

C := CIK

CT J := CT IK for all CT ∈ NCT

nestedJ := {(c, o) | o, c ∈ CIK , (o, c, ·) ∈ plays}

∆J := NIK ∪CIK ∪RIK ∪
⋃

c∈CIK

∆RG,c ∪ {dcounter}

NTIc := NTIK for all NT ∈ NNT

CT ′Ic := CT IK for all CT ∈ NCT

RTIc := RTIK ∩∆NRT,c for all RT ∈ NRT

RGIc := {(RG, c, y) | RGIK,c,y = 1} for all RG ∈ RG(C)
ART

Ic :=∆NRT,c

4.1 Representing Role-Based Models 63

AO
Ic := OIK

ARG
Ic :=∆RG,c

RST Ic := {(o1, o2) | there are r1, r2 s.t. (o1, c, r1), (o2, c, r2) ∈ plays and

(r1, r2) ∈ links(RST , c)}
playsIc := {(o, r) | (o, c, r) ∈ plays}

∪ {(o, rg) | rg = (x , c, o) ∈∆RG,c with xIK,c,o = 1}
countsIc := {(dcounter, y) | y ∈∆NRT,c ∪∆RG,c}

counterIc := dcounter

cJ := cIK for c ∈ NM-IND

aIc := aIK for a ∈ NO-IND

It is straight forward to show that J is a model of BK. Note, that J respects the rigid
names since all NT, CT ′, AO and individual names are interpreted the same in every
world c. Axioms (4.1), (4.2), (4.3), (4.5), (4.6), (4.9), (4.10), (4.15) to (4.21), (4.25)
are modelled by construction of J . Since ∆NRT,c ⊆

⋃

RT∈NRT
RTIK = RIK , J models (4.4).

Axioms (4.7) and (4.8) are modelled due to 3. and 4. of Definition 2.9. Assume that
c1 ∈ (¬

�

CT ′⊓ ∃plays.⊤⊑⊥
�

)J . Hence, Ic1
̸|= CT ′ ⊓ ∃plays.⊤ ⊑ ⊥. Thus, there exists

c2 ∈ (CT ′ ⊓ ∃plays.⊤)Ic1 . Therefore, (c2, c1, ·) ∈ plays, (c1, c2) ∈ nestedJ and c2 ∈ CT J .
Overall, J models Axiom (4.11). Since plays respects fills and parts, and links respects rel,
(4.12), (4.13) and (4.14) are satisfied. Axioms (4.22) to (4.24) are satisfied due to the
semantics of rôle groups and the fact that all top-level rôle groups are satisfied. IK respecting
occurrence and cardinality constraints ensures that J models (4.26) and (4.27). Finally, the
respective intra-relationship constraints imply the satisfaction of RO.

Conversely, let J = (C, ·J ,∆J, (·Ic)c∈C) denote a model of BK. W.l.o.g. we can assume
that all o-compartments that exist also play some rôles. Otherwise we could simply delete
them, and still have a model. Let ∆NNT

⊆∆J and ∆NCT
⊆∆J denote, respectively, the set of

all naturals and the set of all o-compartments, i.e.

∆NNT
:=

⋃

NT∈NNT

NTIĉ , and

∆NCT
:=

⋃

CT ′∈NCT′

CT ′Iĉ

for some ĉ ∈ C. Due to (4.11), there exists a mapping µ : ∆NNT
∪∆NCT

→ ∆NNT
∪C which

maps o-compartments to contexts of respective type, i.e.

µ(o) :=

¨

o if o ∈∆NNT
, and

c such that c ∈ CT J if o ∈ CT ′Iĉ .

W.l.o.g, we can assume that there exist sufficiently many contexts c ∈ C to assure that µ
preserves the occurrence and cardinality constraints, since we could introduce copies of c if
necessary. We define the Σ-CROI I as follows:

Γ I := CJ ∪∆NNT
∪
⋃

c∈C
ART

Ic

64 Chapter 4. A Mapping from Role-Based Models to Description Logic Ontologies

type(d) :=

¨

T if T ∈ NCT and d ∈ T J

T if T ∈ NNT ∪NRT and d ∈ T Ic for some c

(µ(o), c, r) ∈ plays iff (o, r) ∈ playsIc

(r1, r2) ∈ links(RST , c) iff (o1, r1), (o2, r2) ∈ playsIc and (o1, o2) ∈ RST Ic

I is well-defined and analogous to above one can go through the axioms step by step and
show that I satisfies K, e.g. Axiom (4.13) ensures that plays respects parts in I.

Let us consider once again Example 2.8 and Figure 2.2 to analyse some implications which
can be drawn due to the mapping into description logics.

Example 4.2. Instead of writing down all axioms of the respective ontology OBank, we will
rather point out some interesting inferences. At first we have a look at the Bank compartment
type, the rôle group BankAccounts, the relationship types own_ca and own_sa and the rôle type
Customer.

Omitting general axioms, e.g. stating that every role or rolegroup instance is played and
connected to counter, the following axioms are contained in the ontology, among others:

Bank ⊑ ⟦(⩾1counts.BankAccounts)(counter)⟧ (4.30)

⊤⊑ ⟦∃plays.BankAccounts≡⩾1plays.(CheckingAccount⊔SavingsAccount)
⊓ ⩽1plays.(CheckingAccount⊔SavingsAccount)⟧

(4.31)

⊤⊑
�

SavingsAccount ⊑⩾1own_sa−.⊤
�

(4.32)

⊤⊑
�

CheckingAccount ⊑⩾1own_ca−.⊤
�

(4.33)

⊤⊑ ⟦∃own_sa.⊤⊑ Customer⟧ (4.34)

⊤⊑ ⟦∃own_ca.⊤⊑ Customer⟧ (4.35)

In any interpretation J that satisfies OBank with c ∈ BankJ , equations (4.30) and (4.31)
entail the existence of an element in CheckingAccountIc or SavingsAccountIc . Due to (4.32)
and (4.33), there must be some element “owning a CA or SA”, which must be in CustomerIc

((4.34) and (4.35)). Hence, the following axiom can be entailed:

Bank ⊑ ⟦(⩾1counts.Customer)(counter)⟧, (4.36)

stating that the occurrence constraint for Customer is essentially 1..∗. For the Transaction
compartment type we have:

Transaction⊑ ⟦(⩾1counts.Participants⊓⩽1counts.Participants)(counter)⟧ (4.37)

⊤⊑ ⟦∃plays.Participants≡⩾1plays.(Source⊔ Target)
⊓ ⩽1plays.(Source⊔ Target)⟧

(4.38)

⊤⊑ ⟦Source⊑⩾1trans.⊤⊓⩽1trans.⊤⟧

⊓
�

Target ⊑⩾1trans−.⊤⊓⩽1trans−.⊤
� (4.39)

⊤⊑ ⟦∃trans.⊤⊑ Source⟧⊓
�

∃trans−.⊤⊑ Target
�

(4.40)

4.1 Representing Role-Based Models 65

Assume that there would be some d ∈ TransactionJ . By (4.37) and (4.38), we know that
there exists exactly one element in SourceId or TargetId . But due to (4.39) and (4.40), there
must also be an element in TargetId or SourceId , respectively. This results in two elements in
ParticipantsId which contradicts (4.37). Thus,

Transaction⊑⊥ (4.41)

is entailed. Actually, the occurrence constraints for Participants should be 2..2. Back to the Bank
compartment, we also have

⊤⊑ ⟦Customer ⊑⩾1issues.⊤⟧ (4.42)

⊤⊑
�

∃issues−.⊤⊑MoneyTransfer
�

(4.43)

⊤⊑
�

∃plays.MoneyTransfer ⊑ Transaction′
�

(4.44)

¬
�

Transaction′ ⊓ ∃plays.⊤⊑⊥
�

⊑ ∃nested.Transaction (4.45)

Due to (4.36), (4.42) and (4.43), there must be some element in MoneyTransferIc which must
be played by an element in Transaction′Ic . Thus, by (4.45) we have to have some context c2
connected to c via nested with c2 ∈ Transaction. But that contradicts (4.41).

Overall, the banking example is indeed inconsistent, due to a small modelling error in some
occurrence constraints within one compartment type that makes the whole domain model
unsatisfiable. ♦

Besides checking satisfiability in general, we can also address the following other questions
a domain analyst would be interested in:

(Q1) Is a specific compartment type CT instantiable, i.e. does there exist some Σ-CROI I s.t.
there exists a compartment c with c ∈ CT I?

(Q2) Is the rôle type RT playable, i.e. does there exist some Σ-CROI I s.t. there is some
r ∈ RTI?

(Q3) Can two rôles be linked via the relationship type RST , i.e. does there exist some
Σ-CROI I s.t. there are some r1, r2 ∈ RI , c ∈ CI with links(RST , c) = (r1, r2)?

(Q4) Can more precise constraints be entailed, i.e. do there exist some cardinalities in C
which can never be reached?

(Q5) Is some partial knowledge about an instance satisfiable, i.e. does there exist some
Σ-CROI I based on this partial knowledge?

To answer all these questions, we utilise Σ-CROAs as introduced earlier. For (Q1), we add
the meta type assertion

CT (a)

to A and check B(M,A,C) for consistency. To answer (Q2), an object type assertion of the
form

RT(a, c),

66 Chapter 4. A Mapping from Role-Based Models to Description Logic Ontologies

added to A, is sufficient. W.l.o.g. we assume that a and c do not occur in B(M,A,C) before.
Due to the other axioms already specified, the rôle must also be played. Similarly, for (Q3)
we add the link assertion

link_assert(RST , c, a1, a2).

To test whether constraints are sharp, we assert the opposite and check for inconsistency.
Here, we will directly add axioms to B(M,A,C). If, for example, there must exist at least n
roles of type RT in CT , we add

CT ⊑ ⟦(⩽ncounts.RT)(counter)⟧∧ CT (a)

to B(M,A,C) which states that there must also exist at most n RT-roles. Then, inconsistency
of B(M,A,C) would imply that there must indeed exist n+ 1 RT-roles in CT .

For Q5, we assume that we know certain facts about the domain. This could be the
existence of a compartment, a role or a link between two roles. These can all be formulated
via a Σ-CROA, with individual names adjusted accordingly. If adding all respective assertions
still preserves consistency of B(M,A,C), then there exists some Σ-CROI that satisfies M, A
and C and respects these facts.

4.2 Going beyond Σ-CROMs

In [KLG+14], Kühn et al. present a feature model for role-based modelling languages of
which the above defined CROM is one instance. To support other variants of role-based
models, the same basic ideas of our mapping can be applied. However, a detailed analysis
which features can easily be supported, is necessary. The first feature that we will discuss is
inheritance.

Let us assume, that additionally to a CROM we also have an irreflexive, asymmetric,
functional inheritance relation ≺NT over the natural types. Inheritance is intuitively captured
as a GCI:

⊤⊑⟦NTa ⊑ NTb⟧ for all NTa ≺NT NTb. (4.46)

Then, obviously we have to adjust axiom (4.5) since natural types do not need to be disjoint
anymore. This implies that if some natural type NT fills a role type RT, then every subtype
of NT also fills RT. Similarly, inheritance for compartment types could be handled. Here,
one has to make sure what exactly the intended semantics of compartment inheritance is
supposed to be. In our setting, a compartment subtype would be a specialization in the sense
that all axioms and constraints that hold for the supertype also hold for the subtype but there
could exist additional axioms or constraints in the subtype.

Some features in the feature model handle behaviour and dynamic aspects of role-based
models. These are not relevant in our case, as they have no influence on satisfiability. The
same holds for features about the ontological identity of roles and compartments. All other
features can easily be supported since only little changes to the mapping are required. These
include, among others, deep rôles, i.e. rôles which are allowed to play rôles, or whether a
rôle type can be played several times by one object in the same compartment.

4.2 Going beyond Σ-CROMs 67

Two kinds of constraints that, in our opinion, might be important in practice, were not
considered until now: Constraints based on attributes of players and temporal constraints.
The first ones are quite easy to express in LM⟦LO⟧. Besides some technical changes on the
above axioms, for each attribute atti of a natural type or o-compartment, we introduce the
rigid role atti ∈ ORrig, since we assume that attributes of a rigid type are also rigid. Here, it
might even be worth considering a description logic with concrete domains [Lut02b; Lut02a]
as the object logic. We did not investigate these extensions of DLs, but we conjecture that all
results of Chapter 3 can be transferred without much effort.

By utilising rigid types which are modelled with more detail, we can also introduce more
fine-grained constraints. For example, the fills-relation could be specified to not only require
a player of a certain rôle type to be of some specific natural type but rather to demand that
certain attributes must exist. To be allowed to “play” the rôle of an employee, a person must
have a tax ID. Going a step further, we could also restrict rôle-playing based on the values
of the attributes. In the context of USA, a person can only play president if he is a “natural
born citizen” and at least 35 years old:

USA ⊑ ⟦∃plays.President ⊑ Person⊓ ∃natural_born_citizen.{true} ⊓ ∃age≥35⟧.

Last but not least we can express additional complex constraints with arbitrary LM⟦LO⟧

axioms. For example,

⟦∃RST .(∃RST .⊤)⊑⊥⟧⊑ ⟦∃RST .⊤⊑⊥⟧

states that if there are no chains of length two for an relationship type RST , then there will
not be any RST at all in that particular compartment.

68 Chapter 4. A Mapping from Role-Based Models to Description Logic Ontologies

Chapter 5

JConHT – A SHOIQ⟦SHOIQ⟧ Reasoner

In the last chapter, we presented a mapping for role-based models into contextualised de-
scription logic ontologies. This step can be automated which helps the automated processing
and investigation of role-based models. But to obtain a full automation we need a reasoner
that is capable of handling these ontologies, and can check the consistency automatically.

Since the translation for role-based models produces LM⟦LO⟧-ontologies, i.e. conjunctions
of meta axioms, we will only consider LM⟦LO⟧-ontologies. Throughout this chapter, let
O = (O, RM, RO) denote a SHOIQ⟦SHOIQ⟧-ontology and let b denote the bijection as in
Definition 3.6. Hence, Ob denotes the outer abstraction of O. We also remind the reader
that the restricted type is the ran(b)-type (see Definition 3.10) of some element and thus a
subset of ran(b).

In this chapter, we present a practical algorithm to check consistency. Furthermore, we
implemented this algorithm and give details on the design of the implementation. Since
internally, this algorithm only calls standard DL consistency checks, we can reuse existing,
highly optimised DL reasoners.

5.1 A Black-Box Approach

In Section 3.3, we showed that we can reduce the consistency problem of LM⟦LO⟧ to two
separate decision problems. Now, the general idea for an implementation is to use performant
reasoners as black-boxes for these subtasks. In this section we discuss how the two subtasks,
namely admissibility of a set X and outer consistency w.r.t. X , can be reduced to standard
reasoning tasks.

5.1.1 Admissibility

In the definition of admissibility (Definition 3.11), where we define BX i
, we require negated

o-axioms. Negated axioms, especially negated GCIs, are usually not supported by classical
description logic reasoners. Therefore, we introduce the notion of weakly negated axioms.

Definition 5.1 (Weakly negated axioms). Let α be an axiom over N, then the weakly
negated axiom α∗ is defined as follows:

• if α= C ⊑ D, then α∗ := (C ⊓¬D)(x) where x is a fresh variable,

• if α= C(a), then α∗ := (¬C)(a), and

• for all other α, α∗ := ¬α. ♦

69

70 Chapter 5. JConHT – A SHOIQ⟦SHOIQ⟧ Reasoner

Note here, that for concept assertions the negation of the axiom ¬α and weakly negated
axiom α∗ are semantically equal, but not syntactical since ¬α uses axiom negation, while α∗

only requires concept negation. Furthermore, in the presence of nominals we could rewrite a
negated role assertion of the form ¬r(a, b) as (¬∃r.{b})(a). But as OWL reasoners in general
support negated role assertions, we keep ¬r(a, b). Moreover, this definition reflects that
α∧α∗ is inconsistent, but not that I |= α∨α∗ for all interpretations I.

Lemma 5.2. Let α be an axiom, and let I be an interpretation. Then,

1. α∧α∗ is inconsistent, and

2. if I ̸|= α, then there exists an extension I′ of I such that I′ |= α∗.

Proof. Let α= C ⊑ D and α∗ = (C ⊔¬D)(xnew). Assume that I |= α and I |= C(xnew). Then,
we know that xnew

I ∈ CI ⊆ DI . Thus we have xnew
I ∈ DI and clearly xnew

I /∈ (C ⊓¬D)I .
Hence, C ⊑ D ∧ (C ⊓¬D)(xnew) is inconsistent.

If I ̸|= C ⊑ D, then there exists d ∈ ∆I such that d ∈ CI ∩ (¬D)I . Then, the interpreta-
tion I′, obtained from I by setting xnew

I′ := d, models α∗.
For the other axioms, the weakly negated axiom is defined as the normally negated axiom

and the claim follows directly from the definition of |= (see Definition 2.5).

To check admissibility of a set of types, we distinguish whether or not rigid names are
present. In the latter case, i.e. OCrig = ORrig = ∅, the first condition of Definition 3.11 is
always fulfilled. W.l.o.g., we can interpret the individual names in the same way in every
interpretation. Therefore, we can check each BX i

separately. We show that it is sufficient to
consider the weakly negated axioms.

Lemma 5.3. If no rigid names are present, i.e. OCrig = ORrig =∅, the set X = {X1, . . . , Xk} of
restricted types is admissible iff OX i

= (OX i
, RO) is consistent for all 1 ≤ i ≤ k, where OX i

is
defined as

OX i
:=

⋀

b(⟦α⟧)∈X i

α ∧
⋀

b(⟦α⟧)∈ran(b)\X i

α∗.

Proof. Assume that X is admissible. Then there exists O-interpretations I1 = (∆, ·I1), . . . ,
Ik = (∆, ·Ik) such that every Ii, 1 ≤ i ≤ k, is a model of BX i

where BX i
is defined as in

Definition 3.11. Let Xpos,i and Xneg,i respectively denote the sets of positive and negative
induced o-axioms

Xpos,i := {α | b(⟦α⟧) ∈ X i}, and

Xneg,i := {α | b(⟦α⟧) ∈ ran(b) \ X i}.

By definition of Xpos,i and Xneg,i, Ii is a model of
⋀

α∈Xpos,i
α and

⋀

α∈Xneg,i
¬α. Now, let

Xneg,i = {αi,1, . . . ,αi,ℓi
}. We have that Ii |= ¬αi, j for 1≤ j ≤ ℓi. By Lemma 5.2, we get that

there exists Ii
′ such that Ii

′ |= αi, j
∗. By induction, we get that Ii

′ |=OX i
.

If all OX i
are consistent, there exist interpretations Ii such that Ii |=OX i

. W.l.o.g., we can
assume that the interpretations Ii share the same domain ∆ and that individual names are
interpreted in the same way. Then, Ii is a model of

⋀

b(⟦α⟧)∈X i
α,
⋀

b(⟦α⟧)∈ran(b)\X i
α∗ and RO.

Due to Lemma 5.2, Ii also models
⋀

b(⟦α⟧)∈ran(b)\X i
¬α. Hence, X is admissible.

5.1 A Black-Box Approach 71

In the former case, i.e. OCrig ∪ORrig ̸=∅, we use the renaming technique of [BGL08; BGL12]
as in the proof of Theorem 3.19. Due to the interaction of the rigid names, we must reason
over all BX i

simultaneously.

Definition 5.4 (Renamed axiom, sets of positive and negative induced renamed o-ax-
ioms, induced object ontology). Let X = {X1, . . . , Xk} be a set of restricted types and let α
be an axiom over O. For ι ∈ N, the renamed axiom α(ι) is obtained from α by replacing all
flexible concept names A, i.e. A∈ OC \OCrig, with a copy A(ι) and all flexible role names r with a
copy r(ι) where we assume w.l.o.g. that A(ι) and r(ι) do not occur in B.

Then, the set of positively induced renamed o-axioms Xpos, the set of negatively induced
renamed o-axioms Xneg, the renamed object RBox RO

′ and the induced object ontology
OX = (OX , RO

′) are defined as follows:

Xpos :=
k
⋃

i=1

{α(i) | b(⟦α⟧) ∈ X i},

Xneg :=
k
⋃

i=1

{α(i) | b(⟦α⟧) ∈ ran(b) \ X i},

RO
′ :=

k
⋃

i=1

{α(i) | α ∈RO}, and

OX :=
⋀

β∈Xpos

β ∧
⋀

β∈Xneg

β∗.
♦

Although the next lemma also holds if no rigid names are present, we state it explicitly with
rigid names, as in the other case we will use Lemma 5.3. From now on, let α always denote
an original axiom and β an renamed axiom.

Lemma 5.5. If rigid names are present, i.e. OCrig ∪ORrig ≠∅, the set X of restricted types is
admissible iff the induced object ontology OX is consistent.

Proof. We can reuse the claim made in the proof of Theorem 3.19: X is admissible iff BX is
consistent where BX is defined as

BX :=

⋀

1≤ι≤k

⋀

b(⟦α⟧)∈Xι

α(ι) ∧
⋀

b(⟦α⟧)∈ran(b)\Xι

¬α(ι)
!

, RO
′

!

.

Hence, we only have to show thatBX is consistent iffOX is consistent. Let Xneg = {β1, . . . ,βℓ}.
If there exists an O-interpretation G such that G |=BX , then we also have that G |= ¬βi

for all 1≤ i ≤ ℓ. Due to Lemma 5.2 and by induction, there is some G′ such that G′ |= β∗i for
all 1≤ i ≤ ℓ. Hence, G′ is a model of OX .

Conversely, if there exists an O-interpretation G such that G |=OX , then we also have that
G |= β∗i for all 1≤ i ≤ ℓ. By Lemma 5.2, we know that G ̸|= βi . Hence, G |= ¬βi and G |=BX .

To sum up, we can decide admissibility of X by checking, respectively, OX or OX i
for

consistency, depending on whether rigid names are present or not.

72 Chapter 5. JConHT – A SHOIQ⟦SHOIQ⟧ Reasoner

5.1.2 Outer consistency

In the decision procedures described in Section 3.3, we always construct the set X first, and
then check whether Bb is outer consistent w.r.t. X . In the general case with rigid names we
enumerate all sets X ⊆ P(ran(b)). When only rigid concept names and no rigid role names
are present, we non-deterministically guess a set X . For the case without rigid names we
construct the largest possible set X that is admissible, and argue that any Bb that is outer
consistent w.r.t. some admissible X ′ is also outer consistent w.r.t. X . Hence, we only have to
test outer consistency w.r.t. to X . But all these techniques involve the possibly unnecessary,
exponentially large construction of X . Alternatively, we can also use the following lemma,
which is a direct consequence of Lemma 3.14.

Lemma 5.6. The LM⟦LO⟧-BKB B is consistent iff there is an M-interpretation H such that
H |=Bb and ZH = {typeH

ran(b)(d) | d ∈∆
H} is admissible.

Proof. Let us assume that B is consistent. By Lemma 3.14, we know that if B is consistent,
then there exists an admissible set X such that Bb is outer consistent w.r.t X . By the definition
of outer consistency, there exists an M-interpretation H that models Bb and weakly respects
(ran(b), X). By definition, we have that ZH ⊆ X . Since every subset of an admissible set is
also admissible, Z is also admissible.

For the ‘if’ direction we assume that H |=Bb and that Z is admissible. If H |=Bb, then Bb

is outer consistent w.r.t Z. Since Z is admissible, we know, due to Lemma 3.14, that B is
consistent.

Due to Lemma 5.6, we do not need to construct the set X first. We can also enumerate all
models H of Bb, and check for each H if the occurring types are admissible. If there exist
one model of Bb, then there exists infinitely many. But we only need to check those that are
essentially different, i.e. those for which the set of occurring restricted types differs.

Definition 5.7 (Essentially equal interpretations). For an M-interpretation H, the set of
occurring, restricted types ZH is defined as

ZH := {typeH
ran(b)(d) | d ∈∆

H}.

The two M-interpretations H1 and H2 are essentially equal if ZH1
= ZH2

. ♦

Using the results of Lemma 5.3, 5.5 and 5.6, we can construct a simple algorithm, as
depicted in Algorithm 1. Here, OZi

and OZH
are respectively defined as in Lemma 5.3 and

Definition 5.4. We enumerate all essentially equal models of Bb and check for each model H
whether ZH is admissible. Note that on the object level, only classical consistency checks are
used. On the meta level, the bare information about consistency is not sufficient, since we
also need information about the restricted types occurring in the model. Hence, we need a
DL reasoner that constructs a model and, if consistent, returns the set of occurring restricted
types.

Lemma 5.8. Algorithm 1 is sound, complete, and terminating.

Proof. Up to essential equivalence, there are only finitely many models. Checking whether H
is a model and checking whether OZH

or OZi
is consistent, is decidable. Thus, Algorithm 1

terminates.

5.2 Contextual Hypertableau 73

Algorithm 1: Algorithm for checking consistency of LM⟦LO⟧-BKB B

Input : LM⟦LO⟧-BKB B

Output : true if B is consistent, false otherwise

H := {H |H |=Bb, up to essential equality}
for H ∈ H do

ZH := {typeH
ran(b)(d) | d ∈∆

H}
if B contains rigid names then

if (OZH
, RO
′) is consistent then

return true
else

ZH = {Z1, . . . , Zk}
if (OZi

, RO) is consistent for all 1≤ i ≤ k then
return true

return false

Let us assume that B is consistent. By Lemma 5.6, there exists a model H of Bb such
that ZH is admissible. W.l.o.g., we can assume that H ∈ H. Depending on whether rigid
names are present, due to Lemma 5.3 and Lemma 5.5 Algorithm 1 will successfully check
that OZi

, for all 1≤ i ≤ k, or OZH
is consistent. Hence, it returns true.

Let us assume that the algorithm returns true. Then, there is some H ∈ H such that OZi
,

for all 1≤ i ≤ k, or OZH
is consistent. By Lemma 5.3 and Lemma 5.5, we know that ZH is

admissible. Lemma 5.6 yields that B is consistent.

In Algorithm 1, we need to enumerate all models of Bb up to essential equivalence. Therefore,
we need an algorithm not only deciding the consistency of a DL ontology but where applicable
also returning information about a model. We discuss this and further issues about the core
algorithm and core reasoner which we use in the next section.

5.2 Contextual Hypertableau

We have to take several arguments into account in order to evaluate, which reasoner or
decision procedure we use as core reasoner to decide the two subtasks. First of all as
mentioned earlier, in addition to checking consistency on meta level, we also need the set
of occurring restricted types of a model. Hence, an reasoner that constructs a model is
necessary for enumerating the models of Bb. As pointed out in [MLH+15], there exist
three major approaches used in OWL reasoners: consequence-, model construction- and
rewriting-based. Consequence-based approaches are classically employed for the entailment
problem in lightweight DLs such as EL, while rewriting approaches are usually used for
specific reasoning tasks, such as for query answering. Model construction-based approaches
are utilised for expressive DLs, i.e. any extension of ALC, and try to build a model based on
the knowledge base to check consistency. These include tableau and hypertableau techniques.
Since we also need the information about the restricted types of a model, we are looking for
a model construction-based reasoner.

74 Chapter 5. JConHT – A SHOIQ⟦SHOIQ⟧ Reasoner

Furthermore, by means of maintenance, we will use the same reasoner for the meta level
and the object level. Since a dominant framework supporting OWL, the OWL API [HB11], is
implemented in Java, so is the majority of the available reasoners. Therefore, we also use
Java for our OWL-conformant reasoner and implement the OWLReasoner interface of the
OWL API.

Last but not least, the performance of the reasoner in consistency checking is important for
us. Therefore, we take a look at the OWL Reasoner Evaluation Competition Report [PMG+15],
especially at the results of the discipline: OWL DL Consistency. This discipline, among others,
was won by Konclude [SLG14], a hybrid reasoner that combines tableau calculus with a
variant of a consequence-based saturation procedure. However, due to this hybrid approach
it is unsuitable in our setting. Besides that, it is implemented in C++ and we focus on Java-
based reasoners. The next candidate is HermiT [GHM+14], a Java-implemented reasoner
based on the hypertableau calculus [MSH09]. Since it meets all our requirements, we use
HermiT as core reasoner in our implementation.

Before we discuss the details of a refinement of our algorithm with regard towards an
implementation, we present the relevant parts of the hypertableau algorithm and refer the
interested reader to [MSH07b; MSH07a; MSH09]. Like other tableau-based methods, the
hypertableau calculus tries to construct an abstraction of a model for a given ontology to
check whether that ontology is consistent. But in contrast to other tableau calculi, it operates
on a set of DL-clauses and an ABox, instead of a TBox and an ABox.

Definition 5.9 (DL-Clause [MSH09]). The concepts ⊤, ⊥, and concepts of the form A and
¬A for A ∈ MC are called literal concepts. Let MV be the set of variables disjoint from the set
of individuals MI. An atom is an expression of the form B(x), (⩾ns.B)(x), r(x , y), or x ≈ y,
for x , y ∈ MV ∪MI, B a literal concept, r an atomic role, s a role, and n a positive integer. A
DL-clause is an expression of the form

U1 ∧ · · · ∧ Um→ V1 ∨ · · · ∨ Vn

where Ui and Vj are atoms, m, n≥ 0. The conjunction U1 ∧ · · · ∧ Um is called the antecedent,
and the disjunction V1 ∨ · · · ∨ Vn is called consequent. The empty antecedent and the empty
consequent are respectively written as ⊤ and ⊥.

Let H = (∆H, ·H) be an M-interpretation and let µ : MV→∆H be a mapping from variables
to domain elements. We define ·H,µ as follows:

cH,µ :=

¨

cH if c ∈MI, and

µ(c) if c ∈MV.

Satisfaction of an atom, DL-clause, and a set of DL-clauses C in H and µ is defined in Table 5.1.
♦

In the hypertableau algorithm, a few preprocessing steps are necessary, namely elimination of
transitivity axioms, normalisation and clausification. The clausification translates a normalised
DL ontology O = (O, R) without transitivity axioms into a pair (C, A), where C is a set of
DL-clauses and A is an ABox, and O and (C, A) are equisatisfiable. Here, we omit further
details of the preprocessing steps, but emphasise that the preprocessing not only preserves
satisfiability, but also satisfiability w.r.t. essential equality. Let K be the input ontology and

5.2 Contextual Hypertableau 75

Table 5.1: Satisfaction of DL-Clauses

H,µ |= C(c) iff cH,µ ∈ CH

H,µ |= r(c, d) iff (cH,µ, dH,µ) ∈ rH

H,µ |= c ≈ d iff cH,µ = dH,µ

H,µ |=
⋀m

i=1 Ui →
⋁n

j=1 Vj iff H,µ |= Ui for each 1≤ i ≤ m implies
H,µ |= Vj for some 1≤ j ≤ n

H |=
⋀m

i=1 Ui →
⋁n

j=1 Vj iff H,µ |=
⋀m

i=1 Ui →
⋁n

j=1 Vj for all mappings µ

H |= C iff H |= r for all r ∈ C

(C, A) the clausification after normalisation. There exists a model I of K iff the exists a model
H of (C, A) such that I and H are essentially equal. Hence, it is sufficient to consider the
clausification of the outer abstraction of an LM⟦LO⟧ ontology.

As typical for tableau algorithms, the hypertableau calculus uses a blocking strategy to
ensure termination. Intuitively, in the construction of a model, a blocked individual is replaced
by its blocker. Thus, by the unravelling technique infinite models can be constructed. Here,
it is important for us, that the blocked individual and its blocker have the same restricted
type. This holds for all blocking strategies used in the hypertableau algorithm. For the sake
of conciseness, we omit the specific blocking strategy in our definition of the hypertableau
algorithm and refer to [MSH09] for a complete definition.

Definition 5.10 (Hypertableau Algorithm [MSH09]). Given a set of named individual MI,
the set of root individuals MO is the smallest set such that MI ⊆ MO, and if x ∈ MO, then
x .〈r, B, i〉 ∈MO for each role r, literal concept B and positive integer i. The set of all individuals
MA is the smallest set such that MO ⊆ MA, and if x ∈ MA, then x .i ∈ MA for each positive
integer i. x .i is a successor of x, and descendant is the transitive closure of successor.

In the hypertableau algorithm, an ABox can additionally contain

• annotatd equalities,

• ⊥, which is equivalent to the concept assertion ⊥(a) for some a ∈MI,

• assertions that contain individuals from MA and not only MI, and

• renamings of the form a 7→ b.

The ABox pruneA(c) is obtained from A by removing all assertions containing descendants
of c. The ABox mergeA(s→ t) is obtained from pruneA(s) by replacing all individuals s with
individual t in all assertions and annotation, and, if both s and t are root individuals, adding
the renaming s 7→ t.

Table 5.2 specifies derivation rules that, given an ABox A and a set of DL-Clauses C, derive
one or more ABoxes A1, . . . , An.

An ABox A contains a clash iff ⊥ ∈ A. Otherwise, A is clash-free.
For a set of DL-clauses C and an input ABox A, a derivation is a pair (T,λ) where T is a

finitely branching tree and λ is a function that labels the nodes of T with ABoxes such that for
each node t ∈ T:

• λ(t) = A if t is the root of T ,

76 Chapter 5. JConHT – A SHOIQ⟦SHOIQ⟧ Reasoner

Table 5.2: Derivation rules of the hypertableau calculus [MSH09]

If 1. r ∈ C, where r= U1 ∧ · · · ∧ Um→ V1 ∨ · · · ∨ Vn, and
2. a mapping σ from the variables in r to the individuals of A

exists such that
2.1. there is no x ∈ NV s.t. σ(x) is indirectly blocked,
2.2. σ(Ui) ∈ A for each 1≤ i ≤ m, and
2.3. σ(Vj) /∈ A for each 1≤ j ≤ n

Hyp-rule

then A1 := A∪ {⊥} if n= 0;
A j := A∪ {σ(Vj)} for 1≤ j ≤ n otherwise.

If 1. (⩾nr.B)(c) ∈ A,
2. c is not blocked in A, and
3. A does not contain individuals u1, . . . , un such that

3.1. {r(c, ui), B(ui) | 1≤ i ≤ n}∪{ui ̸≈ u j | 1≤ i < j ≤} ∈ A,
and

3.2. for each 1≤ i ≤ n, neither ui is a successor of c or ui is
not blocked in A,

≥-rule

then A1 := A∪ {r(c, t i), B(t i) | 1≤ i ≤ n} ∪ {t i ̸≈ t j | 1≤ i < j ≤}
where t1, . . . , tn are fresh, distinct successors of c.

If 1. c ≈ d ∈ A,
2. c ̸= d, and
3. neither c nor d is indirectly blocked

≈-rule
then A1 :=mergeA(c→ d) if d is a named individual, or d is a root

individual and c is not a named individual, or c is a descendant
of d;
A1 :=mergeA(d→ c) otherwise.

If c ̸≈ c ∈ A or {A(c),¬A(c)} ⊆ A where c is not directly blocked⊥-rule
then A1 := A∪ {⊥}

If 1. c ≈ d@u
⩽nr.B ∈ A,

2. u is a root individual,
3. c is a blockable individual that is not a successor of u,
4. d is a blockable individual, and
5. neither c nor d is indirectly blocked

NI-rule

then Ai :=mergeA(s→ ∥u.〈r, B, i〉∥A) for each 1≤ i ≤ n.

5.2 Contextual Hypertableau 77

• t is a leaf of T if ⊥ ∈ λ(t) or no derivation rule is applicable to λ(t) and C, and

• t has children t1, . . . , tn such that λ(t1), . . . ,λ(tn) are exactly the results of applying one
applicable rule to λ(t) and C in all other cases.

An ABox is complete iff it labels some leaf of T . ♦

Note that the annotation . . .@u
⩽nr.B used in the NI-rule does not effect the meaning of the

equality, it only records its provenance. They are introduced in the clausification, but since
the details are not important here, we omit them and refer to [MSH08].

Through the rest of this section let (C, A) be the clausification of the outer abstraction Ob.
Hence, A is an LM-ABox over M. In Algorithm 1, we need to enumerate all models for Bb up
to essential equality. The main idea is that it is sufficient to look at the complete, clash-free
ABoxes, since every model of the ontology has such a corresponding ABox.

Lemma 5.11. In any derivation for (C, A) and for each model H of (C, A), there exists some
leaf node labelled with a clash-free ABox A′ such that H′ |= A′, where H and H′ are essentially
equal.

Proof. We prove the lemma by induction on the derivation rule application. Let C be a set of
DL-clauses, let A be an ABox and let H |= (C, A).
Hyp-rule: Assume that the Hyp-rule is applicable for r= U1 ∧ · · · ∧ Um→ V1 ∨ · · · ∨ Vn ∈ C.

Then there is a mapping σ from the variables in r to the individuals in A such
that σ(Ui) ∈ A and σ(Vj) /∈ A, for each 1 ≤ i ≤ m, 1 ≤ j ≤ n. Since H |= r,
there exists mapping µ from the variables in r to elements of ∆H such that
µ(x) = σ(x)H and H,µ |= Vj for some 1≤ j ≤ n. Thus, H |= σ(Vj) and, hence,
H |= A j for some 1≤ j ≤ n.

≥-rule: If the ≥-rule is applicable, we have that ⩾nr.B(s) ∈ A. Since H |= A, there exist
d1, . . . , dn ∈ BH with (sH, di) ∈ rH. We define H′ like H, but additionally set
tH′
i = di, where t i is the fresh successor of c introduced by the ≥-rule. Hence,

H′ models A1 and is essentially equal to H.
≈-rule If the ≈-rule is applicable, we have that H |= s ≈ t ∈ A and, hence, sH = tH.

Thus, H also models A1 :=mergeA(s→ t) or A1 :=mergeA(t → s).
⊥-rule: Since A has a model, the ⊥-rule is not applicable.
NI-rule analogous to the ≈-rule.

Similar as for a set of restricted types X for which we defined admissibility (see Defini-
tion 3.11) to assure that the corresponding o-axioms ‘fit together’, we define admissibility of
an ABox.

Definition 5.12 (Admissibility of an ABox). Let A be an LM-ABox over M and let RO be
an object RBox. W.l.o.g., we assume that the meta individuals occurring in A are c1, . . . , ck. We
call A admissible if there exist O-interpretations I1 = (∆, ·I1), . . . , Ik = (∆, ·Ik) such that

• xIi = xI j for all x ∈ OCrig ∪ORrig ∪OI and all i, j ∈ {1, . . . , k}, and

• every Ii , 1≤ i ≤ k, is a model of the LO-ontology Oci
= (Oci

, RO) over O where

Oci
:=

⋀

b(⟦α⟧)∈Z+A(ci)

α∧
⋀

b(⟦α⟧)∈Z−A(ci)

α∗

78 Chapter 5. JConHT – A SHOIQ⟦SHOIQ⟧ Reasoner

with

Z+A(c) := {A∈ ran(b) | A(c) ∈ A} and

Z−A(c) := {A∈ ran(b) | ¬A(c) ∈ A}. ♦

Obviously, if A is not admissible, no model H of A will have an admissible set of occurring
restricted types ZH. If, for example, {A

⟦B(a)⟧(s), A
⟦B⊑⊥⟧(s)} ⊆ A, then for any model H the

restricted type of sH will contain A
⟦B(a)⟧ and A

⟦B⊑⊥⟧. Hence, ZH is not admissible.

Lemma 5.13. Let A′ be a LM-ABox over M such that A′ is complete and clash-free. Then, A′

is admissible if and only if there exists a model H of A′ such that ZH is admissible.

Proof. In the completeness proof for the Hypertableau Algorithm (see [MSH09], Lemma 6)
a model H(C,A) for (C, A) is constructed by an unravelling based on A′. Here, the domain
elements are paths. We can extend this interpretation to HA′ by additionally interpreting
blockable individuals as follows: if s is not blocked, then sHA′ :=

�

p | s
s

�

and if s is blocked by
t, then sHA′ :=

�

p | t
s

�

where p is a path where s does not occur. Hence, HA′ is also a model
of A′.

W.l.o.g., we assume that the meta individuals occurring in A′ are c1, . . . , ck. For any inter-
pretation H such that H |= A′, let ZH = (Z1, . . . , Zk, Zk+1, . . . , Zℓ) such that Zi = typeH

ran(b)(c
H
i)

for 1 ≤ i ≤ k. Considering the conjunction of axioms as a set of conjuncts, we have that
Oci
⊆ OZi

where Oci
(see Def. 5.12) and OZi

(see Lem. 5.3) are defined as

Oci
:=

⋀

b(⟦α⟧)∈Z+A(ci)

α∧
⋀

b(⟦α⟧)∈Z−A(ci)

α∗,

OZi
:=

⋀

b(⟦α⟧)∈Zi

α ∧
⋀

b(⟦α⟧)∈ran(b)\Zi

¬α.

If A′ is not admissible, then (Z1, . . . , Zk) cannot be admissible either. Hence, ZH is also not
admissible.

If A′ is admissible, then by definition there exist O-interpretations I1, . . . , Ik modelling
Oc1

, . . . , Ock
. First, we define Z?

A(ci) := ran(b) \ (Z+A(ci) ∪ Z−A(ci)) as the set of abstracted
concept names which do not occur neither as a positive nor negative concept assertion with
ci in A′. Note that Ii always either models α or ¬α for any o-axiom α, and that by the
construction of HA′ , HA′ |= A(c) iff A(c) ∈ A′ for any A∈MC. We define H∗ to be equal with
HA′ except that for all b(⟦α⟧) ∈ ran(b), we define b(⟦α⟧)H

∗
as

b(⟦α⟧)H
∗

:= b(⟦α⟧)HA′ ∪ {cHA′
i | b(⟦α⟧) ∈ Z?

A(ci) and Ii |= α}.

Hence, with Zi = typeH∗
ran(b)(ci) we have that I |= OZi

. Since ZH∗ = (Z1, . . . , Zk), ZH∗ is
admissible.

Note that this lemma yields that for an inadmissible ABox A′, there exists no model of (C, A)
and A′ with admissible types. Thus, due to Lemma 5.11, we know that if all ABoxes which
label leaf nodes in a derivation are not admissible, then (C, A) is inconsistent. However, the
converse does not hold. If A′ is admissible and clash-free, it is still possible that there exists
no model H of (C, A) and A′ such that ZH is admissible as the following example shows.

5.2 Contextual Hypertableau 79

Example 5.14. Let Bex = (Bex,∅,∅) with

Bex = ¬C(s) ∧ ⟦¬A(a)⟧⊑ C ∧ ¬C ⊑ ⟦A⊑⊥⟧

be an ALC⟦ALC⟧-ontology. Then,

Bb
ex =

�

¬C(s) ∧ A
⟦¬A(a)⟧ ⊑ C ∧ ¬C ⊑ A

⟦A⊑⊥⟧, ∅
�

is the outer abstraction of Bex. The normalisation and clausification of Bb
ex yields (Cex, Aex)

with

Cex = {A⟦¬A(a)⟧(x)→ C(x), ⊤→ C(x)∨ A
⟦A⊑⊥⟧(x)},

Aex = {¬C(s)}.

Any derivation of (Cex, Aex) produces a leaf node labelled with

A′ = {¬C(s), A
⟦A⊑⊥⟧(s)}.

Clearly, A′ is admissible and in any model H = (∆H, ·H) of A′ such that ZH is admissible
there exists d ∈ ∆H with sH = d and d ∈ A

⟦A⊑⊥⟧
H. Since ZH is admissible, we know that

OX :=
⋀

b(⟦α⟧)∈X α∧
⋀

b(⟦α⟧)∈ran(b)\X α
∗ must be consistent for any X ∈ ZH. Hence, in particular

X = {A
⟦A⊑⊥⟧} /∈ ZH since OX = A⊑ ⊥ ∧ ¬(¬A(a)) is inconsistent. Therefore, A

⟦¬A(a)⟧ must
also be in the restricted type of d, i.e. d ∈ A

⟦¬A(a)⟧
H. We implicitly obtain an ABox

A′′ = {¬C(s), A
⟦A⊑⊥⟧(s), A

⟦¬A(a)⟧(s)}.

Because of A
⟦¬A(a)⟧(x)→ C(x) ∈ Cex and ¬C(s) ∈ Aex, we know that H cannot be model of

(Cex, Aex). In fact, there exists no model H′ of (Cex, Aex) such that ZH′ is admissible since Bex is
inconsistent. ♦

The above example illustrates that there can exist ‘implicitly negated’ concept assertions
in a complete, clash-free meta ABox A′ like A

⟦¬A(a)⟧(s) in the above example, i.e. concept
assertions that would cause a clash if added to the ABox. In the proof of Lemma 5.13, we had
to add certain concept assertions in order to ensure admissibility. To avoid adding concept
assertions which cause such a clash, we add special DL-clauses to C. Since for every context
c ∈ C an object axiom α is either modelled by Ic or not, we can assume w.l.o.g. that either
c ∈ b(⟦α⟧)J

b
or c ∈ b(⟦α∗⟧)J

b
. Thus, we can add the DL-clause⊤→ b(⟦α⟧)(x)∨b(⟦α∗⟧)(x)

without adding any logical consequences.

Definition 5.15 (Repletion of DL-clauses). Let C be a set of LM-clauses over M and A an
LM-ABox over M. The repletion of C is obtained from C by adding the LM-clause

⊤→ A
⟦α⟧(x) ∨ A

⟦α∗⟧(x)

to C for each A
⟦α⟧ ∈ ran(b) that occurs in C or A, where A

⟦α∗⟧ = b(α∗) and α∗ is the weak
negation of α.

For an LM-ontology Ob, the repleted clausification is obtained from the clausification (C, A)
of Ob by replacing with its repletion. ♦

80 Chapter 5. JConHT – A SHOIQ⟦SHOIQ⟧ Reasoner

Algorithm 2: Algorithm for checking consistency of LM⟦LO⟧-ontology O with
Hypertableau

Input : LM⟦LO⟧-ontology O

Output : true if O is consistent, false otherwise

Preprocessing (results in (C, A)):
1. Elimination of transitivity axioms, normalisation, clausification
2. Repletion of DL-clauses

Let (T,λ) be any derivation for (C, A)
A := {A′ | there exists a leaf node in (T,λ) that is labelled with A′}
for A′ ∈ A do

if A′ is clash-free then
if O contains rigid names then

if (OA′ , RO
′) is consistent then

return true
else

Let {c1, . . . , ck} be the individuals occurring in A′

if (Oci
, RO) is consistent for all 1≤ i ≤ k then

return true

return false

In the proof of Lemma 5.13, we needed H∗, which models A
⟦α⟧(c) where A

⟦α⟧(c) /∈ A′ and
Ii |= Bci

∧α. If C is repleted and A
⟦α⟧(c) /∈ A′, then we have A

⟦α∗⟧(c) ∈ A′. Hence, we know
that Ii |= α∗ and, due to Lemma 5.2, Ii ̸|= α. Thus,H∗ is not needed anymore.

To sum up, we refine Algorithm 1, so it can be used with the hypertableau calculus. The
algorithm is depicted in Algorithm 2, where Oci

is defined as in Definition 5.12. Instead of
enumerating all models of Ob up to essential equality, we traverse the clash-free, complete
ABoxes in a derivation of (C, A) and check whether there is an admissible ABox among them.
To check admissibility, we reuse the results of Section 5.1. Thus, OA′ and RO

′ are defined
analogous to Definition 5.4. The next two lemmata show that Algorithm 2 is sound and
complete.

Lemma 5.16 (Soundness). Let O be an LM⟦LO⟧-ontology. If Algorithm 2 returns false, then
O is inconsistent.

Proof. If Algorithm 2 returns false, then in any derivation, all complete ABoxes either contain
a clash or are not admissible. Assume that O is consistent. Then, by Lemma 5.6, we know
that there is some M-interpretation H that models (C, A), where ZH is admissible. Due to
Lemmata 5.11 and 5.13, there then is some complete, clash-free ABox A′ which is admissible.
This contradicts the assumption and hence, O must be inconsistent.

Lemma 5.17 (Completeness). Let O be an LM⟦LO⟧-ontology. If Algorithm 2 returns true,
then O is consistent.

5.3 Implementing JConHT and Evaluation 81

Proof. If Algorithm 2 returns true, then there exists some clash-free, complete ABox A′ in
any derivation of (C, A) such that A′ is admissible. Due to Lemma 5.13, there exists an
M-interpretation H such that H |= A′ and ZH is admissible. If b(⟦α⟧)(c) /∈ A′, then due
to the repletion we know that b(⟦α∗⟧)(c) ∈ A′. Since α∧α∗ is inconsistent, we have that
b(⟦α⟧) /∈ typeH

ran(b)(c
H). Therefore, in the construction of H no additional assertions must be

assumed and H also models (C, A). Hence, by Lemma 5.6, O is consistent.

However, for the repletion, a lot of disjunctive DL-clauses are added to C which increases
the non-determinism tremendously. On closer inspection, we note that changing H to H∗ in
the proof of Lemma 5.13 is not dangerous in general. If H∗ additionally models A(c) with
A∈ ran(b) to ensure admissibility of ZH, where A(c) /∈ A′, then it only becomes problematic
for a DL-clause containing A in the antecedent. This is shown in Example 5.14. Conversely,
we only have to introduce the repletion clauses for A if A appears in the antecedent of some
DL-clause. Note here, that in the mapping of Chapter 4 only Axiom (4.11) contains, after
clausification, an abstracted meta concept in the antecedent. Thus, if no compartment type
plays any roles, then we do not need to add the repletion clauses to the ontology of the
role-based model.

5.3 Implementing JConHT and Evaluation

We implemented Algorithm 2 in a reasoner called JConHT – a Java-implemented Context
description logic reasoner based on HermiT. Like HermiT, it is an OWL compliant reasoner
implementing the OWLReasoner interface of the OWL API.

Nearly all reasoners use the Web Ontology Language (OWL) in order to represent an
ontology. However, in general OWL cannot express contextualised knowledge. In [BGH+03],
Bouquet et al. introduce C-OWL, an extension of the OWL syntax and semantics to allow
for the representation of contextual ontologies. But their view differs significantly from our
approach in what a context is. Therefore, we cannot use C-OWL.

But OWL has other means to enrich an ontology with more information due to OWL
annotations. Annotations associate information with an ontology, for example name of the
creator of the ontology. But also concept, role and individual names, as well as axioms, can be
annotated. We use the outer abstraction of an ontology which is a ‘normal’ DL-ontology and
define the connection between an abstracted concept name and the corresponding o-axiom
via a special OWL annotation. We decided to use the predefined OWL annotation property
rdfs:isDefinedBy for that purpose. We simply annotate the o-axiom α with the abstracted
meta concept name A

⟦α⟧. Let us again consider Example 3.7:

Example 5.18. Let O be the ALC⟦ALC⟧-ontology

O := (C ⊑ (⟦A⊑⊥⟧) ∧ (C ⊓ ⟦A(a)⟧)(c), ∅, ∅).

Then O is presented in OWL 2 functional syntax as follows:

SubclassOf(cls:C cls:A_ASubBot)
ClassAssertion(ObjectIntersectionOf(cls:C cls:A_Aa) ind:c)
SubclassOf(Annotation(rdfs:isDefinedBy cls:A_ASubBot) cls:A owl:Bottom)
ClassAssertion(Annotation(rdfs:isDefinedBy cls:A_Aa) cls:A ind:a) ♦

82 Chapter 5. JConHT – A SHOIQ⟦SHOIQ⟧ Reasoner

Furthermore, in practical applications we often encounter object axioms that must hold
independently of any context. These so-called global object axioms are of the form ⊤⊑ ⟦α⟧.
Using the above approach would introduce a new abstracted meta concept for each such
axiom and, thus, unnecessarily bloat the OWL ontology. To avoid this, we decided to use
another OWL annotation with a special meaning: rdfs:label "objectGlobal". Finally,
we need to specify which concept and role names are rigid. Since only the ontology as a
whole and single axioms can be annotated, we use annotated declaration axioms. Declaration
axioms do not affect the consequences of an OWL 2 ontology, they simply declare the existence
of an entity and associate it with an entity type. We again use a special OWL annotation:
rdfs:label "rigid". Consider a light variation of example 5.18:

Example 5.19. Let O be the ALC⟦ALC⟧-ontology

O := (⊤⊑ (⟦A⊑⊥⟧) ∧ ⟦A(a)⟧(c), ∅, ∅).

with A∈ OCrig. Then O is represented in OWL 2 functional syntax as follows:

Declaration(Annotation(rdfs:label "rigid") Class (cls:A))
ClassAssertion(cls:A_Aa ind:c)
ClassAssertion(Annotation(rdfs:isDefinedBy cls:A_Aa) cls:A ind:a)
SubclassOf(Annotation(rdfs:label "objectGlobal") cls:A owl:Bottom) ♦

In Chapter 4, we presented a mapping algorithm that translates constrained Σ-compartment
role object models into LM⟦LO⟧-ontologies. We implemented this algorithm as part of
the reference implementation of CROM1. The result of the mapping is an OWL ontology
in Manchester OWL syntax [HP12] that uses the special annotations introduced above to
encode LM⟦LO⟧.

To evaluate the implementation of our reasoner, we performed several benchmarks to
test the performance on ontologies that are based on CROM. Therefore, we used a CROM
generator, which we explain below in detail, that randomly generates models based on a
pseudorandom number generator. These models are then converted to OWL ontologies by
the above mentioned mapping. We analyse the performance based on three scenarios:

(I) variation of the number of relationship types defined in a compartment type,

(II) variation of the number of role groups defined in a compartment type, and

(III) variation of the types that are allowed to fill role types, i.e. whether compartments
are allowed to play roles.

The main idea of the CROM generator is to randomly produce role-based models which
abstracted and upscaled the banking example introduced in Chapter 4. In detail, the CROM
generator works as follows. It has three input parameters. These are an integer n, which
defines the size of the model, an integer s, which serves as the seed for the pseudorandom
number generator, and a Boolean c which determines whether compartment types can fill
role types. Any random choice is realised by a pseudorandom number generator based
on seed s. Hence, we can reproduce every generated model. For a given n, the generator
creates n compartment types, n natural types, and n2 role types, i.e. n role types for each

1https://github.com/Eden-06/CROM

https://github.com/Eden-06/CROM

5.3 Implementing JConHT and Evaluation 83

5 10 15 20 25 30 35 40
100

101

102

103

104
t in s

n

RST0
RST0.5
RST1
RST0∗

RST0.5∗

RST1∗

(a) Scenario (I): Variation of number of relationship types.

5 10 15 20 25 30 35 40
100

101

102

103

104
t in s

n

RG0
RG0.5
RG1
RG0∗

RG0.5∗

RG1∗

(b) Scenario (II): Variation of number of role groups.

5 10 15 20 25 30 35
100

101

102

103

104
t in s

n

CT=⊥
CT=⊤
CT=⊥∗

CT=⊤∗

(c) Scenario (III): Variation of whether compartments can
play roles.

Figure 5.1: Average execution times of JConHT for benchmark ontologies.

84 Chapter 5. JConHT – A SHOIQ⟦SHOIQ⟧ Reasoner

compartment type. Depending on the test series, it also generates 0, n/2 or n relationship
types per compartment type. To generate fills, we randomly select two filler types for each
role type. If c is true, these filler types can be any natural type or compartment type. If c
is false, i.e. compartment types are not allowed to play roles, then the filler types can only
be natural types. The parts-relation is determined by construction, since any role type is
already assigned to one compartment type. For rel, we randomly pick two role types of the
associated compartment type. Thus, we completely defined a Σ-CROM M. Next, we define
the constraint set.

We restricted the pairs of lower and upper bounds to {0..0,0..1, 0..∞, 1..1, 1..∞}. To
construct a role group within a compartment type, we randomly choose two role types of that
compartment type and a pair of lower and upper bounds. For the occurrence constraints we
assign one pair of lower and upper bound to each role type and each constructed role group.
Similarly, for the cardinality constraints we assign two pairs of lower and upper bounds to
each relationship type. In Section 4.1.4, we showed that our mapping can only support
limited intra-relationship constraints which in turn also restrict the cardinality constraints
for that relationship type. Therefore, we omit intra-relationship type constraints in our
benchmark.

The basic setting for the different scenarios is that we do not have any relationship types
or role groups, and that compartments are not allowed to fill roles. In Series (A) we define
0, n/2 or n relationship types per compartment type. Analogously, in Series (B) we construct
0, n/2 or n role groups per compartment type. For Scenario (III), we define n/2 relationship
types and construct n/2 role groups. We then distinguish whether or not compartments can
play roles. For each series, we start with n = 5 and increase n by steps of 5 until the reasoner
throws out-of-memory exceptions. At each single configuration, we create 100 models with
seeds from 1 to 100. We measure the time that the reasoner needs to decide consistency and
calculate the average.

Our tests were conducted on a 64-bit Ubuntu 14-04 machine equipped with an Intel Core
i5-2500 quad-core processor with a CPU clock rate of 3.3 GHz and 16 GB main memory. For
the execution of the reasoner we used Java8 by OpenJDK and restricted the maximum Java
heap size to 12GB. To measure the time needed by the reasoner to decide consistency, we used
the shell builtin command time of Unix operation systems and measured the accumulated
execution time.

Figure 5.1 shows the results of our tests. All diagrams show the average computation
time that the reasoner needed to decide consistency. In some cases, the reasoner threw an
out-of-memory exception and did not finish. We excluded these data from the average and
plotted them separately. For all data sets, their starred version denotes the average time in
the case the reasoner exited with an out-of-memory exception. If no such data point exists
for a smaller n, then all ontologies could be processed without problems. Note here, that the
time axis is logarithmic and that the reasoning time exponentially increases in the size of n,
and thus in the size of the input ontology.

In Figure 5.1a, RST0 denotes the data set where no relationship types appear. In RST0.5,
every model has n/2 relationship types and in RST1 there are n relationship types. Intuitively,
the more relationship types and, hence, cardinality constraints a model contains, the harder
it is to reason about. If only few constraints appear in the model, it is probable that the
first branch of the derivation tree in the hypertableau algorithm already yields a consistent
interpretation and no backtracking is needed. With more constraints, backtracking is needed

5.3 Implementing JConHT and Evaluation 85

more often, which increases the computation time significantly. An unsatisfiable role-based
model is the most expensive to reason upon, since here complete backtracking is necessary
before the algorithm can determine that the model is unsatisfiable. Interestingly, there is not
much difference between RST0.5 and RST1. So, once relationship types are introduced, it is
not relevant how many of them are defined. Furthermore, once out-of-memory exceptions
appear, the reasoning time of the more difficult models is distorted since they would have
needed more time if more resources would have been available. This explains the decline of
RST0.5 for higher n.

The results for Scenario (II), shown in Figure 5.1b, are similar to Scenario (I). Analogously,
RG0, RG0.5 and RG1 respectively denote the data sets where no, n/2 and n role groups appear
in the role-based model. Again, when more constraints are introduced, it gets harder to decide
satisfiability. However, it can be realised that introducing role groups is computation-wise
costlier than relationship types with cardinality constraints.

In Figure 5.1c, CT=⊥ denotes the average reasoning time if no compartments are allowed
to play roles. In CT=⊤, compartments were allowed to play roles. If compartments are
allowed to play roles, due to Axiom (4.11), we have to add the repletion clauses. These
introduce a large amount of non-determinism. This explains why the reasoning time increases
and out-of-memory exceptions appear even for smaller n.

In the end it is hard to tell whether these randomly generated role-based models give
realistic test results. The tests clearly show that more constraints directly influence the
computation time. Anyway, the application scope for role-based modelling is quite broad
and these tests only give an impression for a general setting. However, a further examination
of models within a specific topic can result in more target-oriented tests which might even
initiate further specialised optimisations in the algorithm, the implementation or both.

86 Chapter 5. JConHT – A SHOIQ⟦SHOIQ⟧ Reasoner

Chapter 6

Conclusions

6.1 Major Contributions

In this thesis, we presented an overall workflow to reason on role-based models. Proper
formalisation of contexts is crucial for role-based systems, but logical formalisms able to
express these, easily tend to become undecidable. We introduced a novel family of description
logics that is capable of expressing contextual knowledge, even in the presence of rigid roles,
i.e. relational knowledge that is context-independent. For these contextualised description
logics we did a thorough analysis on the complexity of the consistency problem, for which
we investigated different settings depending on whether rigid role names or rigid concept
names are admitted. We showed that for the least expressive setting, in which no rigid names
are allowed, the complexity class of the consistency problem does not increase compared to
the non-contextual version of that DL, namely the consistency problem is EXPTIME-complete
up to SHOQ⟦SHOQ⟧ and NEXPTIME-complete for SHOIQ⟦SHOIQ⟧. On the other hand,
allowing rigid roles, which often causes undecidability in other approaches, only increases
the complexity by one exponential. We also looked into a broad variety of description logics
ranging from the lightweight DL EL up to the very expressive DL SHOIQ and, hence, obtained
a nearly complete map of complexity results.

But the purpose of this thesis was not only to theoretically investigate a logical formalism
capable of reasoning on role-based models. We also presented a mapping from the formal
role-based modelling language CROM into contextualised DL ontologies. An implementation
of this mapping is part of the CROM implementation. We proved that the formal semantics
of the role-based model is preserved by the mapping and introduced further constraints that
exceed the current capabilities of CROM.

Finally, we implemented a reasoner for our contextualised description logics that is based
on the highly optimised existing DL reasoner HermiT [GHM+14]. During our analysis of the
complexity of the consistency problem, we showed that deciding consistency could be split
up into two subtasks. This idea was also used in our implementation. We further refined
these subproblems, so they could be processed by HermiT. Due to the special form of the
context ontology derived from CROM models, we could introduce a further optimisation
step and showed its semantic correctness.

6.2 Future Work

As mentioned earlier, the focus of this thesis was on the overall workflow of modelling and
reasoning about context-based domain models, but we also observe several linking points for

87

88 Chapter 6. Conclusions

future research. When investigating LM⟦LO⟧, we mainly focused on the consistency problem,
which was central for our goal. Besides that, query answering with context DLs would be an
interesting direction for further investigations. Recently, there has been a lot of work in the
area of temporal query answering. As our approach shares a similar setting, we are sure that
there is plenty of motivation, applications and methods available to analyse contextualised
query answering. Furthermore, there is current work on role-based databases [JKV+16], i.e.
database systems that are based on a conceptual, role-based data model to natively represent
complex data. Due to the close connection of query answering and database theory, it might
be worth investigating query answering involving role-based database systems.

Going back to the consistency problem, we still think one can narrow the gap to undecid-
ability. We added contextualised concepts to LM⟦LO⟧ which results in undecidability in the
presence of rigid roles. Quite certain, there are other, probably more restrictive, means to
further extend the expressive power of the logic while preserving decidable.

Another extension to LM⟦LO⟧ could be towards temporal logics. The combinations of
DLs with temporal logics, point-based or interval, are well understood. As both temporal
and contextualised DLs adopt a possible worlds semantics, it seems natural to also combine
temporal logics with contextualised DLs. On a more abstract level, it might be even possible
to analyse common properties of these combinations and deduce an abstract combination of
DLs with itself or with other logics. Then temporal DLs or contextualised DLs could be an
instance of that abstract combination.

The presented mapping for role-based models is based on the Compartment Role Object
Model (CROM). As CROM might be extended in the future, for example by new kinds of
constraints, there is always some future work to analyse these upcoming features and to
investigate whether they can also be represented by a contextualised DL ontology. Besides
that, an investigation where contextualised DLs can be used except for CROM will help to
detect any missing expressiveness of LM⟦LO⟧ if existent.

The last starting point for future work would be the reasoner. While we used a black
box approach, combined or integrated (tableaux) algorithms for deciding consistency are
conceivable. A different optimisation would be an even more goal-oriented reasoner, which
behaves especially well for contextualised ontologies produced from CROM models. Since,
for example, the validation of role groups is rather of combinatorial nature which is quite
hard for DL reasoners, it might be useful to use SAT solvers internally to improve overall
performance.

Bibliography

[AN10] M. Aziz Ahmad and A. Nadeem: ‘Consistency checking of UML models using
Description Logics: A critical review’. In Proc. of the 6th Int. Conf. on Emerging
Technologies (ICET 2010), Islamabad, Pakistan. IEEE, Oct. 2010, pages 310–315
(cited on page 27).

[AF11] Vijay Alturi and David F. Ferraiolo: ‘Role-Based Access Control’. In Encyclopedia
of Cryptography and Security, 2nd Ed. Edited by Henk C. A. van Tilborg and
Sushil Jajodia. Springer-Verlag, 2011, pages 1053–1055 (cited on page 1).

[BBL05] Franz Baader, Sebastian Brandt, and Carsten Lutz: ‘Pushing the EL Envelope’. In
Proc. of the 19th Int. Joint Conf. on Artificial Intelligence (IJCAI 2005), Edinburgh,
Scotland, UK. Edited by Leslie Pack Kaelbling and Alessandro Saffiotti. Morgan
Kaufmann, Los Altos, Aug. 2005, pages 364–369 (cited on page 46).

[BCM+07] Franz Baader, Diego Calvanese, Deborah L. McGuinness, Daniele Nardi, and
Peter F. Patel-Schneider, editors: The Description Logic Handbook: Theory, Im-
plementation, and Applications. 2nd edition. Cambridge University Press, 2007
(cited on pages 2, 9).

[BGL08] Franz Baader, Silvio Ghilardi, and Carsten Lutz: ‘LTL Over Description Logic
Axioms’. In Proc. of the 11th Int. Conf. on Principles of Knowledge Representation
and Reasoning (KR 2008), Sydney, Australia. Edited by Gerhard Brewka and
Jérôme Lang. AAAI Press, Sept. 2008, pages 684–694 (cited on pages 4, 33,
36, 39–41, 43, 46–49, 71, 89).

[BGL12] Franz Baader, Silvio Ghilardi, and Carsten Lutz: ‘LTL Over Description Logic
Axioms’. In ACM Transactions on Computational Logic 13(3): 2012. This is an
extended version of [BGL08] (cited on pages 4, 33, 36, 39–41, 43, 46–49, 71).

[BKP12] Franz Baader, Martin Knechtel, and Rafael Peñaloza: ‘Context-dependent views
to axioms and consequences of Semantic Web ontologies’. In Journal of Web
Semantics 12: 2012, pages 22–40 (cited on page 28).

[BD77] Charles W. Bachman and Manilal Daya: ‘The Role Concept in Data Models’. In
Proc. of the 3rd Int. Conf. on Very Large Data Bases (VLDB 1977), Tokyo, Japan.
IEEE Computer Society, Oct. 1977, pages 464–476 (cited on page 1).

[BBT06] Matteo Baldoni, Guido Boella, and Leendert W. N. van der Torre: ‘powerJava:
Ontologically Founded Roles in Object Oriented Programming Languages’. In
Proc. of the 21st Annual ACM Symposium on Applied Computing (SAC 2006),
Dijon, France. Edited by Hisham Haddad. ACM, Apr. 2006, pages 1414–1418
(cited on page 1).

89

90 Bibliography

[BGE07] Stephanie Balzer, Thomas R. Gross, and Patrick Eugster: ‘A Relational Model
of Object Collaborations and Its Use in Reasoning About Relationships’. In Proc.
of the 21st European Conf. on Object-Oriented Programming (ECOOP 2007),
Berlin, Germany. Edited by Erik Ernst. Volume 4609. Lecture Notes in Computer
Science. Springer-Verlag, July 2007, pages 323–346 (cited on page 1).

[BVS+09] Jie Bao, George Voutsadakis, Giora Slutzki, and Vasant Honavar: ‘Package-Based
Description Logics’. In Modular Ontologies: Concepts, Theories and Techniques
for Knowledge Modularization. Edited by Heiner Stuckenschmidt, Christine
Parent, and Stefano Spaccapietra. Volume 5445. Lecture Notes in Computer
Science. Springer-Verlag, 2009. Chapter 13, pages 349–371 (cited on page 28).

[BAF+06] Djamal Benslimane, Ahmed Arara, Gilles Falquet, Zakaria Maamar, Philippe
Thiran, and Faïez Gargouri: ‘Contextual Ontologies’. In Proc. of the 4th Int.
Conf. on Advances in Information Systems (ADVIS 2006), Izmir, Turkey. Edited
by Tatyana M. Yakhno and Erich J. Neuhold. Volume 4243. Lecture Notes
in Computer Science. Springer-Verlag, Oct. 2006, pages 168–176 (cited on
page 28).

[BCD05] Daniela Berardi, Diego Calvanese, and Giuseppe De Giacomo: ‘Reasoning on
UML class diagrams’. In Artificial Intelligence 168(1-2): 2005, pages 70–118
(cited on page 27).

[Ber66] Robert Berger: The Undecidability of the Domino Problem. Volume 66. Memoirs
of the AMS. American Mathematical Society, 1966 (cited on page 51).

[BK17] Stephan Böhme and Thomas Kühn: ‘Reasoning on Context-Dependent Domain
Models’. In Proc. of the 7th Joint Int. Conf. on Semantic Technology (JIST 2017),
Gold Coast, QLD, Australia. Edited by Zhe Wang, Anni-Yasmin Turhan, Kewen
Wang, and Xiaowang Zhang. Volume 10675. Lecture Notes in Computer Science.
Springer-Verlag, Nov. 2017, pages 69–85 (cited on pages 6, 7).

[BL15a] Stephan Böhme and Marcel Lippmann: ‘Decidable Contextualized DLs with
Rigid Roles’. In Proc. of the 28th Int. Workshop on Description Logics (DL 2015),
Athens, Greece. Edited by Diego Calvanese and Boris Konev. Volume 1350.
CEUR Workshop Proceedings. CEUR-WS.org, June 2015, pages 92–95 (cited
on page 6).

[BL15b] Stephan Böhme and Marcel Lippmann: ‘Decidable Description Logics of Context
with Rigid Roles’. In Proc. of the 10th Int. Symp. on Frontiers of Combining
Systems (FroCoS 2015), Wroclaw, Poland. Edited by Carsten Lutz and Silvio
Ranise. Volume 9322. Lecture Notes in Artificial Intelligence. Springer-Verlag,
Sept. 2015, pages 17–32 (cited on page 6).

[BL15c] Stephan Böhme and Marcel Lippmann: ‘Description Logics of Context with
Rigid Roles Revisited’. LTCS-Report 15-04. See http://lat.inf.tu-dresden.
de/research/reports.html. Chair of Automata Theory, TU Dresden, 2015
(cited on page 6).

CEUR-WS.org
http://lat.inf.tu-dresden.de/research/reports.html
http://lat.inf.tu-dresden.de/research/reports.html

91

[BT15a] Stefan Borgwardt and Veronika Thost: ‘LTL over EL Axioms’. LTCS-Report
15-07. Chair of Automata Theory, Institute of Theoretical Computer Science,
Technische Universität Dresden, 2015. URL: http://lat.inf.tu-dresden.
de/research/reports.html (cited on pages 43, 44).

[BT15b] Stefan Borgwardt and Veronika Thost: ‘Temporal Query Answering in the
Description Logic EL’. In Proc. of the 24th Int. Joint Conf. on Artificial Intelligence
(IJCAI 2015), Buenos Aires, Argentina. Edited by Qiang Yang and Michael
Wooldridge. AAAI Press, 2015, pages 2819–2825 (cited on pages 43, 44).

[BGH+03] Paolo Bouquet, Fausto Giunchiglia, Frank van Harmelen, Luciano Serafini, and
Heiner Stuckenschmidt: ‘C-OWL: Contextualizing Ontologies’. In The Semantic
Web - ISWC 2003, Second International Semantic Web Conference, Sanibel Island,
FL, USA, October 20-23, 2003, Proceedings, Sanibel Island, FL, USA. Edited by
Dieter Fensel, Katia P. Sycara, and John Mylopoulos. Volume 2870. Lecture
Notes in Computer Science. Springer-Verlag, Oct. 2003, pages 164–179 (cited
on pages 28, 81).

[BGH+04] Paolo Bouquet, Fausto Giunchiglia, Frank van Harmelen, Luciano Serafini,
and Heiner Stuckenschmidt: ‘Contextualizing ontologies’. In Journal of Web
Semantics 1(4): 2004, pages 325–343 (cited on page 28).

[CCD+02] Andrea Calì, Diego Calvanese, Giuseppe De Giacomo, and Maurizio Lenzerini:
‘A Formal Framework for Reasoning on UML Class Diagrams’. In Proc. of the
13th Int. Symp. on Foundations of Intelligent Systems (ISMIS 2002), Lyon, France.
Edited by Mohand-Said Hacid, Zbigniew W. Ras, Djamel A. Zighed, and Yves
Kodratoff. Volume 2366. Lecture Notes in Computer Science. Springer-Verlag,
June 2002, pages 503–513 (cited on page 27).

[CP14] Ismail Ilkan Ceylan and Rafael Peñaloza: ‘The Bayesian Description Logic
BEL’. In Proc. of the 7th Int. Joint Conf. on Automated Reasoning (IJCAR 2014).
Volume 8562. LNCS. Springer-Verlag, 2014, pages 480–494 (cited on page 28).

[CP17] Ismail Ilkan Ceylan and Rafael Peñaloza: ‘The Bayesian Ontology Language
BEL’. In Journal of Automated Reasoning 58(1): 2017, pages 67–95 (cited on
page 28).

[Dij82] Edsger W. Dijkstra: ‘On the role of scientific thought’. In Selected Writings on
Computing: A Personal Perspective. Springer-Verlag, 1982, pages 60–66 (cited
on page 1).

[Eva98] Andy Evans: ‘Reasoning with UML class diagrams’. In Proc. of the 2nd IEEE
Workshop on Industrial Strength Formal Specification Techniques (WIFT 1998),
Boca Raton, FL, USA. IEEE Computer Society, Oct. 1998, pages 102–113 (cited
on page 27).

[FKC03] David F. Ferraiolo, D. Richard Kuhn, and Ramaswamy Chandramouli: Role-based
Access Control. Artech House, 2003 (cited on page 1).

[FEL+98] Robert B. France, Andy Evans, Kevin Lano, and Bernhard Rumpe: ‘The UML as
a formal modeling notation’. In Computer Standards & Interfaces 19(7): 1998,
pages 325–334 (cited on page 27).

http://lat.inf.tu-dresden.de/research/reports.html
http://lat.inf.tu-dresden.de/research/reports.html

92 Bibliography

[GKW+03] Dov M. Gabbay, Ágnes Kurucz, Frank Wolter, and Michael Zakharyaschev:
Many-Dimensional Modal Logics: Theory and Applications. Elsevier Science,
2003 (cited on page 31).

[GHM+14] Birte Glimm, Ian Horrocks, Boris Motik, Giorgos Stoilos, and Zhe Wang: ‘Her-
miT: An OWL 2 Reasoner’. In Journal of Automated Reasoning 53(3): 2014,
pages 245–269 (cited on pages 74, 87).

[GW00a] Nicola Guarino and Christopher A. Welty: ‘A Formal Ontology of Properties’.
In Proc. of the 12th Int. Conf. on Knowledge Acquisition, Modeling and Manage-
ment (EKAW), Juan-les-Pins, France. Edited by Rose Dieng and Olivier Corby.
Volume 1937. Lecture Notes in Computer Science. Springer-Verlag, Oct. 2000,
pages 97–112 (cited on page 15).

[GW00b] Nicola Guarino and Christopher A. Welty: ‘Identity, Unity, and Individuality:
Towards a Formal Toolkit for Ontological Analysis’. In Proc. of the 14th European
Conf. on Artificial Intelligence (ECAI 2000), Berlin, Germany. Edited by Werner
Horn. IOS Press, Aug. 2000, pages 219–223 (cited on page 15).

[GW00c] Nicola Guarino and Christopher A. Welty: ‘Ontological Analysis of Taxonomic
Relationships’. In Proc. of the 19th Int. Conf. on Conceptual Modeling (ER 2000),
Salt Lake City, UT, USA. Edited by Alberto H. F. Laender, Stephen W. Liddle, and
Veda C. Storey. Volume 1920. Lecture Notes in Computer Science. Springer-
Verlag, Oct. 2000, pages 210–224 (cited on page 15).

[GW09] Nicola Guarino and Christopher A. Welty: ‘An Overview of OntoClean’. In
Handbook on Ontologies. Edited by Steffen Staab and Rudi Studer. 2nd edi-
tion. International Handbooks on Information Systems. Springer-Verlag, 2009,
pages 201–220 (cited on page 15).

[Gui05] Giancarlo Guizzardi: ‘Ontological Foundations for Structural Conceptual Mod-
els’. PhD thesis. Enschede, Netherlands: University of Twente, 2005 (cited on
page 1).

[Hal06] Terry A. Halpin: ‘Object-role modeling (ORM/NIAM)’. In Handbook on Architec-
tures of Information Systems. Edited by Peter Bernus, Kai Mertins, and Günter
Schmidt. 2nd edition. Springer-Verlag, 2006. Chapter 4, pages 81–103 (cited
on page 1).

[Her07] Stephan Herrmann: ‘A Precise Model for Contextual Roles: The Programming
Language ObjectTeams/Java’. In Applied Ontology 2(2): 2007, pages 181–207
(cited on page 1).

[HB11] Matthew Horridge and Sean Bechhofer: ‘The OWL API: A Java API for OWL
ontologies’. In Semantic Web 2(1): 2011, pages 11–21 (cited on page 74).

[HP12] Matthew Horridge and Peter Patel-Schneider: ‘OWL 2 Web Ontology Language
Manchester Syntax (Second Edition)’. W3C Note. http://www.w3.org/TR/
2012/NOTE-owl2-manchester-syntax-20121211/. W3C, Dec. 2012 (cited
on page 82).

[HST00] Ian Horrocks, Ulrike Sattler, and Stephan Tobies: ‘Practical Reasoning for Very
Expressive Description Logics’. In Journal of the Interest Group in Pure and
Applied Logic 8(3): 2000, pages 239–263 (cited on page 13).

http://www.w3.org/TR/2012/NOTE-owl2-manchester-syntax-20121211/
http://www.w3.org/TR/2012/NOTE-owl2-manchester-syntax-20121211/

93

[JKV+16] Tobias Jäkel, Thomas Kühn, Hannes Voigt, and Wolfgang Lehner: ‘Towards a
Role-Based Contextual Database’. In Proc. og the 20th East European Conf. on
Advances in Databases and Information Systems (ADBIS 2016), Prague, Czech
Republic. Edited by Jaroslav Pokorný, Mirjana Ivanovic, Bernhard Thalheim,
and Petr Saloun. Volume 9809. Lecture Notes in Computer Science. Springer-
Verlag, Aug. 2016, pages 89–103 (cited on page 88).

[KG10] Szymon Klarman and Víctor Gutiérrez-Basulto: ‘ALCALC: A Context Description
Logic’. In Proceedings of the 12th European Conference on Logics in Artificial Intel-
ligence (JELIA 2010). Edited by Tomi Janhunen and Ilkka Niemelä. Volume 6341.
Lecture Notes in Computer Science. Springer, 2010, pages 208–220 (cited on
pages 3, 28, 33, 49, 51).

[KG11a] Szymon Klarman and Víctor Gutiérrez-Basulto: ‘Two-Dimensional Description
Logics for Context-Based Semantic Interoperability’. In Proc. of the 25th AAAI
Conf. on Artificial Intelligence (AAAI 2011), San Francisco, CA, USA. Edited by
Wolfram Burgard and Dan Roth. AAAI Press, Aug. 2011 (cited on page 3).

[KG11b] Szymon Klarman and Víctor Gutiérrez-Basulto: ‘Two-Dimensional Description
Logics of Context’. In Proceedings of the 24th International Workshop on De-
scription Logics (DL 2011). Edited by Riccardo Rosati, Sebastian Rudolph, and
Michael Zakharyaschev. Volume 745. CEUR-WS.org, 2011 (cited on page 3).

[KG16] Szymon Klarman and Víctor Gutiérrez-Basulto: ‘Description logics of context’.
In Journal of Logic and Computation 26(3): 2016, pages 817–854 (cited on
pages 3, 28, 33, 51, 54).

[KBG+15] Thomas Kühn, Stephan Böhme, Sebastian Götz, and Uwe Aßmann: ‘A combined
formal model for relational context-dependent roles’. In Proc. of the 8th ACM
SIGPLAN Int. Conf. on Software Language Engineering (SLE 2015), Pittsburgh,
PA, USA. Edited by Richard F. Paige, Davide Di Ruscio, and Markus Völter.
ACM, Oct. 2015, pages 113–124 (cited on pages 5, 6, 15, 17, 18, 21, 24).

[KLG+14] Thomas Kühn, Max Leuthäuser, Sebastian Götz, Christoph Seidl, and Uwe
Aßmann: ‘A Metamodel Family for Role-Based Modeling and Programming
Languages’. In Proc. of the 7th Int. Conf. on Software Language Engineering
(SLE 2014), Västerås, Sweden. Edited by Benoît Combemale, David J. Pearce,
Olivier Barais, and Jurgen J. Vinju. Volume 8706. Lecture Notes in Computer
Science. Springer-Verlag, Sept. 2014, pages 141–160 (cited on pages 5, 15, 16,
66).

[Lip14] Marcel Lippmann: ‘Temporalised Description Logics for Monitoring Partially
Observable Events’. PhD thesis. Dresden, Germany: TU Dresden, 2014 (cited
on pages 4, 14, 33, 38–42).

[Lut02a] Carsten Lutz: ‘Description Logics with Concrete Domains—A Survey’. In Proc.
of the 4th Conf. on Advances in Modal Logic (AiML 2002), Toulouse, France.
Edited by Philippe Balbiani, Nobu-Yuki Suzuki, Frank Wolter, and Michael
Zakharyaschev. King’s College Publications, Oct. 2002, pages 265–296 (cited
on page 67).

94 Bibliography

[Lut02b] Carsten Lutz: ‘The complexity of description logics with concrete domains’.
PhD thesis. Aachen, Germany: RWTH Aachen, 2002 (cited on page 67).

[LWZ08] Carsten Lutz, Frank Wolter, and Michael Zakharyaschev: ‘Temporal Description
Logics: A Survey’. In Proc. of the 15th Int. Symp. on Temporal Representation
and Reasoning (TIME 2008), Montréal, Canada. Edited by Stéphane Demri and
Christian S. Jensen. IEEE Press, June 2008, pages 3–14 (cited on pages 28, 31,
49–51).

[MLH+15] Nicolas Matentzoglu, Jared Leo, Valentino Hudhra, Uli Sattler, and Bijan Parsia:
‘A Survey of Current, Stand-alone OWL Reasoners’. In Informal Proc. of the
4th Int. Workshop on OWL Reasoner Evaluation (ORE 2015) co-located with the
28th Int. Workshop on Description Logics (DL 2015), Athens, Greece. Edited
by Michel Dumontier, Birte Glimm, Rafael S. Gonçalves, Matthew Horridge,
Ernesto Jiménez-Ruiz, Nicolas Matentzoglu, Bijan Parsia, Giorgos B. Stamou,
and Giorgos Stoilos. Volume 1387. CEUR Workshop Proceedings. CEUR-WS.org,
June 2015, pages 68–79 (cited on page 73).

[McC87] John McCarthy: ‘Generality in Artificial Intelligence’. In Communications of the
ACM 30(12): 1987. Turing award lecture, pages 1030–1035 (cited on page 28).

[McC93] John McCarthy: ‘Notes on Formalizing Context’. In Proc. of the 13th Int. Joint
Conf. on Artificial Intelligence (IJCAI 1993), Chambéry, France. Edited by Ruzena
Bajcsy. Morgan Kaufmann, Aug. 1993, pages 555–562 (cited on page 28).

[MSH07a] Boris Motik, Rob Shearer, and Ian Horrocks: ‘A Hypertableau Calculus for
SHIQ’. In Proc. of the 20th Int. Workshop on Description Logics (DL 2007),
Brixen-Bressanone, Italy. Edited by Diego Calvanese, Enrico Franconi, Volker
Haarslev, Domenico Lembo, Boris Motik, Anni-Yasmin Turhan, and Sergio
Tessaris. Volume 250. CEUR Workshop Proceedings. CEUR-WS.org, June 2007
(cited on page 74).

[MSH07b] Boris Motik, Rob Shearer, and Ian Horrocks: ‘Optimized Reasoning in Descrip-
tion Logics Using Hypertableaux’. In Proc. of the 21st Int. Conf. on Automated De-
duction (CADE-21), Bremen, Germany. Edited by Frank Pfenning. Volume 4603.
Lecture Notes in Computer Science. Springer-Verlag, July 2007, pages 67–83
(cited on page 74).

[MSH08] Boris Motik, Rob Shearer, and Ian Horrocks: ‘Optimizing the Nominal Intro-
duction Rule in (Hyper)Tableau Calculi’. In Proc. of the 21st Int. Workshop
on Description Logics (DL 2008), Dresden, Germany. Edited by Franz Baader,
Carsten Lutz, and Boris Motik. Volume 353. CEUR Workshop Proceedings.
CEUR-WS.org, May 2008 (cited on page 77).

[MSH09] Boris Motik, Rob Shearer, and Ian Horrocks: ‘Hypertableau Reasoning for
Description Logics’. In Journal of Artificial Intelligence Research 36: 2009,
pages 165–228 (cited on pages 74–76, 78).

CEUR-WS.org
CEUR-WS.org
CEUR-WS.org

95

[PMG+15] Bijan Parsia, Nicolas Matentzoglu, Rafael S. Gonçalves, Birte Glimm, and
Andreas Steigmiller: ‘The OWL Reasoner Evaluation (ORE) 2015 Competition
Report’. In Proc. of the 11th Int. Workshop on Scalable Semantic Web Knowledge
Base Systems (SSWS 2015) co-located with 14th Int. Semantic Web Conference
(ISWC 2015), Bethlehem, PA, USA. Edited by Thorsten Liebig and Achille
Fokoue. Volume 1457. CEUR Workshop Proceedings. CEUR-WS.org, Oct. 2015,
pages 2–15 (cited on page 74).

[Pra05] Ian Pratt-Hartmann: ‘Complexity of the Two-Variable Fragment with Count-
ing Quantifiers’. In Journal of Logic, Language and Information 14(3): 2005,
pages 369–395 (cited on pages 14, 38).

[RG98] Dirk Riehle and Thomas Gross: ‘Role Model Based Framework Design and Integ-
ration’. In Proc. of the 13th ACM SIGPLAN Conf. on Object-oriented Programming,
Systems, Languages, and Applications (OOPSLA98), Vancouver, British Columbia,
Canada. Edited by Bjørn N. Freeman-Benson and Craig Chambers. ACM, Oct.
1998, pages 117–133 (cited on page 22).

[SCF+96] Ravi S. Sandhu, Edward J. Coyne, Hal L. Feinstein, and Charles E. You-
man: ‘Role-Based Access Control Models’. In IEEE Computer 29(2): Feb. 1996,
pages 38–47 (cited on page 1).

[Sch91] Klaus Schild: ‘A Correspondence Theory for Terminological Logics: Preliminary
Report’. In Proc. of the 12th Int. Joint Conf. on Artificial Intelligence (IJCAI 1991),
Sydney, Australia. Edited by John Mylopoulos and Raymond Reiter. Morgan
Kaufmann, Aug. 1991, pages 466–471 (cited on pages 14, 43, 46).

[Sch89] Manfred Schmidt-Schauß: ‘Subsumption in KL-ONE is Undecidable’. In Proc. of
the 1st Int. Conf. on Principles of Knowledge Representation and Reasoning (KR
1989), Toronto, Canada. Edited by Ronald J. Brachman, Hector J. Levesque,
and Raymond Reiter. Morgan Kaufmann, May 1989, pages 421–431 (cited on
page 56).

[SS91] Manfred Schmidt-Schauß and Gert Smolka: ‘Attributive Concept Descriptions
with Complements’. In Artificial Intelligence 48(1): 1991, pages 1–26 (cited on
page 13).

[SH12] Luciano Serafini and Martin Homola: ‘Contextualized knowledge repositories
for the Semantic Web’. In Journal of Web Semantics 12: 2012, pages 64–87
(cited on page 28).

[SB05] Quan Z. Sheng and Boualem Benatallah: ‘ContextUML: A UML-Based Modeling
Language for Model-Driven Development of Context-Aware Web Services’. In
Proc. of the 4th Int. Conf. on Mobile Business (ICMB 2005), Sydney, Australia.
IEEE Computer Society, July 2005, pages 206–212 (cited on page 27).

[SBH+08] Jocelyn Simmonds, M. Cecilia Bastarrica, Nancy Hitschfeld-Kahler, and Se-
bastián Rivas: ‘A Tool Based on DL for UML Model Consistency Checking’. In
International Journal of Software Engineering and Knowledge Engineering 18(6):
2008, pages 713–735 (cited on page 27).

CEUR-WS.org

96 Bibliography

[SSJ+04] Jocelyn Simmonds, Ragnhild Van Der Straeten, Viviane Jonckers, and Tom
Mens: ‘Maintaining Consistency between UML Models Using Description Logic’.
In L’Objet 10(2-3): 2004, pages 231–244 (cited on page 27).

[SLG14] Andreas Steigmiller, Thorsten Liebig, and Birte Glimm: ‘Konclude: System
description’. In Journal of Web Semantics 27: 2014, pages 78–85 (cited on
page 74).

[Ste00] Friedrich Steimann: ‘On the representation of roles in object-oriented and
conceptual modelling’. In Data & Knowledge Engineering 35(1): Oct. 2000,
pages 83–106 (cited on pages 1, 15, 16).

[Ste07] Friedrich Steimann: ‘The Role Data Model Revisited’. In Applied Ontology 2(2):
2007, pages 89–103 (cited on page 1).

[SMS+03] Ragnhild Van Der Straeten, Tom Mens, Jocelyn Simmonds, and Viviane Jonck-
ers: ‘Using Description Logic to Maintain Consistency between UML Models’.
In Proc. of the 6th Int. Conf. on the Unified Modeling Language, Modeling Lan-
guages and Applications (UML 2003), San Francisco, CA, USA. Edited by Perdita
Stevens, Jon Whittle, and Grady Booch. Volume 2863. Lecture Notes in Com-
puter Science. Springer-Verlag, Oct. 2003, pages 326–340 (cited on page 27).

[Tob00] Stephan Tobies: ‘The Complexity of Reasoning with Cardinality Restrictions and
Nominals in Expressive Description Logics’. In Journal of Artificial Intelligence
Research 12: 2000, pages 199–217 (cited on pages 14, 43, 46).

[Tob01] Stephan Tobies: ‘Complexity Results and Practical Algorithms for Logics in
Knowledge Representation’. PhD thesis. Aachen, Germany: RWTH Aachen,
2001 (cited on page 14).

[WG01] Christopher A. Welty and Nicola Guarino: ‘Supporting ontological analysis
of taxonomic relationships’. In Data & Knowledge Engineering 39(1): 2001,
pages 51–74 (cited on page 15).

[WS92] William A. Woods and James G. Schmolze: ‘The KL-ONE Family’. In Computers &
Mathematics with Applications 23(2-5): 1992, pages 133–177 (cited on page 2).

	Introduction
	Role-Based Systems
	Description Logics
	Contextualised Description Logics
	An Ontology Generator
	A Reasoner for Contextualised Description Logics
	Outline of the Thesis

	Preliminaries
	Description Logics
	Description Logic Concepts
	Boolean Knowledge Bases
	Specific Description Logics

	Role-Based Modelling
	Ontological Foundation of Rôles
	A Formal Role-Based Modelling Language

	The Contextualised Description Logic LM⟦LO⟧
	Requirements for Logical Formalism
	Syntax and Semantics of the Contextualised Description Logic LM⟦LO⟧
	Complexity of the Consistency Problem in LM⟦LO⟧
	Consistency without rigid names
	Consistency with rigid role names
	Consistency with only rigid concept names

	Contextualised Description Logics Involving EL
	The Contextualised Description Logics LM⟦EL⟧
	The Contextualised Description Logics LM⟦LO⟧

	Adding Contextualised Concepts

	A Mapping from Role-Based Models to Description Logic Ontologies
	Representing Role-Based Models
	A Mapping for the Vocabulary Σ
	A Mapping for the Σ-CROM M
	A Mapping for the Σ-CROA A
	A Mapping for the Σ-CROC C
	Semantic Integrity of Mapping Algorithm

	Going beyond Σ-CROMs

	JConHT – A SHOIQ⟦SHOIQ⟧ Reasoner
	A Black-Box Approach
	Admissibility
	Outer consistency

	Contextual Hypertableau
	Implementing JConHT and Evaluation

	Conclusions
	Major Contributions
	Future Work

	Bibliography

