
Unification, matching and disunification in the
description logic EL

an Stelle einer Habilitationsschrift

vorgelegt an der
Technischen Universität Dresden

Fakultät Informatik

eingereicht von
Dr. Barbara Morawska

Betreuender Hochschullehrer: Prof. Dr.-Ing. Franz Baader

Dresden, Januar 2017

Ich erkläre, dass die Habilitationsschrift vom mir selbst und ohne
andere als die darin angegebenen Hilfsmittel angefertigt sowie die
wörtlich oder inhaltlich übernommenen Stellen als solche gekennze-
ichnet wurden.

Hereby I declare that the habilitation thesis was written by myself
and with no other means than those indicated in it. All literal or
content citations are indicated as such.

Barbara Morawska

Contents

1 Introduction 1
1.1 Overview of the thesis . 4

2 Subsumption in EL 7

3 Unification in EL 9
3.1 Type zero . 10
3.2 NP-completeness . 11

4 Without Top: unification in EL−> 21
4.1 In PSpace . 22
4.2 PSpace hardness . 23

5 Unification and matching in EL with a TBox 25
5.1 Unification modulo acyclic TBoxes 26
5.2 Matching in EL with a TBox . 27
5.3 Unification modulo cycle-restricted TBoxes 29

6 Disunification in EL 31
6.1 Connection to admissibility problem 33
6.2 Dismatching . 34
6.3 Local disunification . 34

7 Conclusions 37

Bibliography 39

Appendices: submitted publications 47

v

1 Introduction

The description logic EL belongs to a big family of Description Logics (DLs).
DLs are logical formalisms designed specially to represent knowledge expressed
in various concepts, definitions and statements describing different domains of
interest. Such a formal, well-structured and high-level formalism should facili-
tate building intelligent applications automatizing many tasks concerned with
using knowledge, maintaining it, extending it and reasoning based on this knowl-
edge. Thus the research about DLs aims at a better understanding of the human
way of thinking and reasoning (as an area of Artificial Intelligence), but on the
other hand it is aimed at solving very practical problems of knowledge repre-
sentation in various applications. One can mention for example the following
areas, where DLs make significant contributions.

• Databases. DLs provide means for conceptual modeling of various entity-
relationship models. They provide tools to analyze and optimize queries.
They help at the conceptual level in integration of many data sources into
one Domain Conceptual Schema [11, 54, 48].

• Semantic Web. DLs provide formal understanding of the expressions in
the Web Ontology Language (OWL) and provide the established standards
for the subsets of OWL.1

• Big biomedical ontologies like Snomed CT2 or Gene Ontology3.
DLs provide tools to maintain and analyze these big knowledge bases.

The family of description logics comprises logics which differ one from the
other with respect to their expressive power. The expressive power of a logic
results from the language constructors that this logic offers and from the kind
of axioms that can be expressed. There is a trade off between expressivity of a
description logic and the complexity of reasonings that one can perform within
such logic [46]. The very expressive description logics, which were proposed for
the application in some real-word databases, have very bad worst case reasoning
complexity, e.g., [38, 43].

1https://www.w3.org/TR/owl2-profiles/
2http://www.ihtsdo.org/snomed-ct
3http://geneontology.org/

1

https://www.w3.org/TR/owl2-profiles/
http://www.ihtsdo.org/snomed-ct
http://geneontology.org/

1 Introduction

On the other hand, some description logics with weak expressive power, show
very good complexity of reasonings. Moreover they find applications in many
areas where modeling of a domain does not require very rich and powerful logical
constructs.

There are two of such small description logics which are of special interests
for us. Namely, EL and FL0. As all other DLs, these logics provide a finite set
of concept names and roles, from which they allow to construct more complex
concept terms. The following table shows the constructors provided by EL or
FL0 together with their interpretation I over a non-empty domain ∆I .

name notation interpretation over a non-empty domain ∆I

top > ∆I

concept name A AI ⊆ ∆I

role name r rI ⊆ ∆I ×∆I

intersection C uD CI ∩DI
value restriction ∀r.C {x ∈ ∆I | for every y, (x, y) ∈ rI implies y ∈ CI}
existential restriction ∃r.C {x ∈ ∆I | there is y, (x, y) ∈ rI and y ∈ CI}

Table 1.1: Constructors of EL and FL0

The description logic EL allows to construct concept terms from a set NC

of concept names and a set NR of role names, using the constructors: > (top
constructor), u (concept intersection) and ∃r.C (existential restriction). FL0

differs from EL, in allowing ∀r.C (value restriction) in place of the existential
restriction.

For example, if Pain and Head are concept names and location is a role
name, then Pain u ∃location.Head is a concept term in EL, which obviously
describes a headache. On the other hand if Doctor, Child are concept names
and has patient is a role name, then Doctoru∀has patient.Child is an FL0-
concept term, which describes pediatricians.

Since neither of these two small description logics has a negation, all con-
cept terms constructed in these logics are consistent. The standard reasoning
problem in these logics is deciding subsumption between concept terms.

Given two concept terms C,D, we say that D subsumes C (C is subsumed
by D), C v D, if for every interpretation I, CI ⊆ DI .

For example the concept term ∃has patient.(Child u Female) is subsumed
by a concept term ∃has patient.Child, because in all possible interpreta-
tions of concept names Child, Female and the role name has patient, due
to the properties of the logical constructors (defined in Table 1.1), the exten-
sion of ∃has patient.(Child u Female) will be a subset of the extension of
∃has patient.Child.

2

In both FL0 and EL, the subsumption problem is decidable in polynomial
time [46, 14].

Having defined subsumption between concepts, we define also the equivalence.
For two concept terms C,D, C is equivalent to D, C ≡ D iff C v D and

D v C.4

Expressive power of the description logics EL and FL0 is determined by the
above mentioned constructors, but also by a kind of axioms that can be ex-
pressed and assumed in order to capture more exactly the intended interpre-
tation of a given domain of knowledge. The axioms in the form of statements
of equivalences or of subsumptions between concept terms are a part of the so
called knowledge base. The knowledge base contains usually a TBox (set of
the just mentioned axioms), ABox (statements about individual elements of an
interpretation) and sometimes also RBox (the statements about properties of
relations between elements in an interpretation). In this thesis we will be con-
cerned only with the first component of a knowledge base, i.e., a TBox, which is
a set of equivalence or subsumption statements between concepts (in Section 5).

A TBox extends expressivity of a description logic and although similar, the
logics EL and FL0 begin to differ much, when we extend their expressivity in
this way. Standard reasoning tasks in FL0 become more complex, while EL
retains a polynomial complexity. Therefore, in contrast to FL0, EL is used in
practical applications. It is used to define biomedical ontologies. The biomedical
ontologies like Snomed CT or the Gene Ontology or part of Galen[50] can
be seen as TBoxes written in the language of EL. An extension of EL became
also a standard for a subset of OWL 2, OWL 2 EL5,[10]. EL is also a subject
of intensive research in the area of OBDA, [54].

Unification modulo an equational theory E is concerned with the question of
how to make a pair of terms (or a set of such pairs) equivalent modulo E , using
substitution of terms for variables.

For example, the concept term Woman u Doctor u ∃has patient.Child is not
equivalent to the concept term Female u Human u Pediatritian, although they
intuitively denote the same concept. We discover that they are in fact equivalent,
if we see that Woman is equivalent to Female u Human and Pediatritian is equiv-
alent to Doctor u ∃.has patient.Child. Thus we can say that a mapping which
substitutes Woman by the concept term Human u Female and Pediatritian by
the concept term Doctor u ∃.has patient.Child shows the intuitive equiva-
lence of the above concepts. From the point of view of unification the concept
names Woman and Pediatritian are treated in this example as variables.

Such pairs of intentionally equivalent concept terms can occur, when differ-

4In this thesis we will use ≡ (equivalence) in the meaning just defined. The equality sign =
denotes a syntactic identity.

5http://www.w3.org/TR/2012/REC-owl2-profiles-20121211/#OWL_2_EL

3

http://www.w3.org/TR/2012/REC-owl2-profiles-20121211/#OWL_2_EL

1 Introduction

ent ontology engineers introduce extensions of an ontology independent of each
other. Unification could be used here to detect and prevent such redundan-
cies, by providing unifiers in the form of sets of definitions for the previously
undefined concepts. Such a set of definitions can be used to unfold redundant
concepts and replace them in an ontology with the result, or can be treated as
an extension of a knowledge base.

Unification was first considered in the context of description logics as a new
non-standard reasoning task with the possible application in detecting redun-
dant concepts in big ontologies. The theory E which we consider here is the
equational theory defined by equivalence of concepts modulo properties of a
description logic. In the case of EL it is the theory of an idempotent Abelian
monoid where unity is top, with monotonic operators [53], while in the case of
FL0, it is the theory of an idempotent Abelian monoid with homomorphisms,
[20].

At first the focus of this kind of research was put on the logic FL0. In [20] it
was shown that the unification problem (modulo the equational theory of FL0)
is decidable, but ExpTime-complete. In this thesis, we focus on unification in
the description logic EL (i.e., modulo the equational theory of EL), which turns
out to be more promising for applications due to its better complexity.

Not much is known about the complexity of unification problem in more
expressive DLs. If we add negation to EL, then we obtain the description logic
ALC, which corresponds to the basic (multi)-modal logic K [52]. Decidability of
unification in K is a long-standing open problem. Undecidability of unification
in some extensions of K was shown in [55]. These undecidability results imply
undecidability of unification in more expressive DLs (e.g., SHIQ, [39])

1.1 Overview of the thesis

Before delving into the main subject of the thesis, in Section 2 we briefly recall a
syntactic characterization of subsumption. Each of our results for the unification
in EL is based on a convenient characterization of subsumption in EL or in
extensions thereof. Such characterizations contain basic intuitions needed to
understand subsequent constructions.

This thesis presents a selection of 9 publications, containing our results on
unification in EL.

1. In Section 3 we present the type zero result and then prove decidability of
unification in EL. For the decidability result we present first a brute-force
algorithm deciding unifiability of an EL-unification problem. This algo-
rithm does not provide a basis for a practical implementation, therefore we
present also two other algorithms, which are more practical: one based on
transformation rules and the other based on SAT-reduction. Both these

4

1.1 Overview of the thesis

alogrithms show complementary behavior: the first is faster in obtaining
a positive answer, and the second is faster obtaining the negative one. Pa-
pers: [18] (type zero, brute-force algorithm), [17] (SAT-based algorithm),
[19] (rule-based algorithm).

2. In Section 4 we present unification in EL−>, i.e., in EL without the top con-
structor. For the reasons explained later, removing top from constructors
of EL, brings us nearer to the practical applications of unification algo-
rithms. Surprisingly, this small change in the logic, causes a significant
increase in the complexity of a decision procedure. Paper: [4].

3. In Section 5, we present various attempts to extend the unification pro-
cedures to EL with a TBox, which might not be acyclic. Papers: [19]
(unification in EL with acyclic TBoxes), [16] (matching in EL with general
TBoxes), [8](unification in EL modulo cycle-restricted TBoxes), [6] (rule-
based algorithm for this case), [9] (SAT-based algorithm for this case).

4. Finally, in Section 6, we present partial results on a generalization of uni-
fication to include negative constraints, i.e., disunification in EL (without
considering a general or restricted TBox). Paper: [7] (dismatching and
local disunification).

5

2 Subsumption in EL
As was already mentioned in the Introduction, deciding subsumption between
concept terms is the standard problem in the description logic EL. The problem
is decidable in polynomial time [1, 10]. Since all the results presented in this
thesis depend on the properties of subsumption, we explain here those of them
that are necessary to understand the following sections. All these properties
follow from the semantic interpretation of the logical constructors as presented
in Table 1.1 and the following semantic definition of subsumption.

Definition 1. Given two concept terms C,D, C v D iff for every interpretation
I over a non-empty domain ∆I , CI ⊆ DI holds.1

Concept intersection and existential restrictions are monotonic w.r.t. sub-
sumption: for each concept terms C,D and a role name r, C u D v D and
∃r.(C uD) u ∃r.D v ∃r.(C uD).

Because of these monotonicity properties, the following reduction rules pre-
serve the equivalence (subsumption in both directions) of concept terms.

For all EL-concept terms C,D, each concept name A and each role name r:

• C u > ≡ > u C −→ C,

• A u A −→ A,

• if C v D, then ∃r.C u ∃r.D −→ ∃r.C.

Because these rules preserve the equivalence between concept terms and any
reduction chain of concept terms using these rules terminates, we can assume
that the concept terms we are working with are reduced.

Associativity and commutativity of conjunction constructor allows to present
each concept term C in the form of a conjunction:

A1 u · · · u An u ∃r1.D1 u · · · u ∃rm.Dm

where A1, . . . , An are concept names and D1, . . . , Dm are concept terms and
n,m ≥ 0.

Using this form of concept terms, we can formulate a syntactic characteriza-
tion of the subsumption in EL, in the following theorem.

1From Table 1.1, CI , DI are sets of elements in ∆I .

7

2 Subsumption in EL

Theorem 1. (characterization of subsumption)
Let C := A1 u · · · u An u ∃r1.D1 u · · · u ∃rm.Dm and
D := B1 u · · · uBk u ∃r1.E1 u · · · u ∃rl.El.
Then C v D iff

• {B1, . . . , Bk} ⊆ {A1, . . . , An} and

• for each i ∈ {1, . . . , l}, there is j ∈ {1, . . . ,m} such that ri = rj and
Dj v Ei.

This theorem follows from a similar characterization of equivalence in EL in
[45].

An important property of subsumption is that the order defined by its inverse
is well-founded, [18].

Definition 2. Let C,D be EL-concept terms. We say that C �is D (C is bigger
than D w.r.t. subsumption inverse order) iff C @ D.

The well-foundedness of this order leads to a notion of minimal unifiers, (Def-
inition 9).

8

3 Unification in EL
In order to formally define unification in the description logic EL, we divide the
set of concept names NC into disjoint subsets: set of concept constants Nc and
a set of concept variables Var. Intuitively, the concepts in Var are those that
have definitions or which we allow to be defined in an extension of the knowledge
base.

A substitution σ is a mapping from Var into the set of EL-concept terms.
This mapping is extended to all EL-concept terms in a standard way.

In the definition of an EL-unification problem, instead of referring to the
equivalence of concept terms, we refer to subsumption between such terms. Since
the equivalence between concept terms is defined by two subsumptions between
them holding in both directions, and since any subsumption can be defined
as equivalence between some concept terms, we propose here an approach to
unification in EL that is equivalent to the standard one, but turns out to be
more convenient. We have adopted this approach for the first time in [8].

Definition 3. An EL-unification problem is a set

Γ := {C1 v? D1, . . . , Cn v? Dn}

where C1, . . . , Dn are EL-concept terms. The substitution σ is a unifier of Γ, if
σ(C1) v σ(D1), . . . , σ(Cn) v σ(Dn). We say that in this case Γ is solvable or
unifiable.

The subsumption symbols decorated with ·?, denote subsumption constraints
as opposed to subsumption statements. They are also called goal subsumptions,
as the goal of a unification algorithm is to find a substitution that makes them
true.

The set of concept variables occurring in Γ will be denoted by Var(Γ). Some
general remarks about substitutions are useful here. We say that a substitution
σ is ground iff for each variable X, where X is in the domain of σ (i.e., X 6=
σ(X)), σ(X) does not contain variables.

Since for any substitution σ and any variable X, σ(X) is a finite term, there
is a partial strict (acyclic) order on variables determined by σ.

Definition 4. Let X, Y be two variables. X �σ Y iff σ(Y) is a proper subterm
of σ(X). We say that �σ is the partial order on variables induced by σ.

9

3 Unification in EL

It is very convenient to restrict a unification problem to a flat form. This
is possible without any loss of generality, but greatly simplifies concepts and
proofs, which otherwise would have to use involved arguments based on induc-
tion on the structure of terms. Hence here we introduce the notion of a flat
concept term, and a flat unification problem.

Definition 5. A concept term C is flat iff one of the following conditions holds:

• C is a concept name (i.e., a constant or a variable);

• C is of the form ∃r.D and D is either a variable or >;

• C is a conjunction of flat concept terms.

An EL-unification problem Γ := {C1 v? D1, . . . , Cn v? Dn} is flat iff
C1, . . . Cn, D1, . . . , Dn are flat concept terms.

By introducing new variables and subsumptions, we can transform in poly-
nomial time any EL-unification problem Γ into a flat EL-unification problem Γ′

such that Γ is solvable iff Γ′ is solvable [18]. We will therefore assume from now
on that all EL-unification problems are flat, if not stated otherwise.

3.1 Type zero

As in the general theory of equational unification, EL-subsitutions can be par-
tially ordered with respect to a given set of variables X and the instantiation
preorder [21]. We define:
σ ≤X γ iff there is a substitution λ such that, for each X ∈ X , γ(X) ≡ λ(σ(X)).

A given EL-unification problem determines a complete set of its unifiers. The
set is empty, if the problem is not unifiable and otherwise it can be finite or
infinite. Formally we define this set as follows.

Definition 6. Let Γ be an EL-unification problem and let X be the set of
variables in Γ. The set of substitutions M is called a complete set of unifiers of
Γ iff it satisfies the following properties:

• every element of M is a unifier of Γ;

• if γ is a unifier of Γ, then there is σ ∈M such that σ ≤X γ;

If moreover for every σ, γ ∈ M , σ ≤X γ implies σ = γ, we say that M is a
minimal complete set of unifiers of Γ. In this case, we call the unifiers in M
most general unifiers of Γ.

10

3.2 NP-completeness

Equational theories can be divided into 4 main types, according to the car-
dinality of minimal complete sets of unifiers of unification problems in those
theories, [21].

We say that a given equational theory E is of type:

• unitary iff for each E-unification problem a minimal complete set of E-
unifiers exists and it has cardinality 1,

• finitary iff for each E-unification problem a minimal compete set of E-
unifiers exists and it has finite cardinality,

• infinitary iff for each E-unification problem a minimal complete set of E-
unifiers exists and there is an E-unification problem for which this set is
infinite,

• zero iff there is at least one E-unification problem which does not have a
minimal complete set of E-unifiers.

A natural question is to ask what type has the equational theory of EL.
Interestingly, for the related description logic FL0, it was discovered, in [2], that
the equational theory of FL0 is of type zero. In fact it was shown in this paper
that the theory of idempotent Abelian monoids with only one homomorphism
is of type zero. In our first paper on unification in EL, [18], we show that the
equational theory of EL is also of type zero.

Theorem 2. EL-unification is of type zero.

In the proof of this theorem we show a simple EL-unification problem that
has type zero. The problem is the following.

Γ := {∃r.Y v? X}

Γ is unifiable, and the simplest1 unifier maps X, Y to >. But for every unifier
σ of Γ we can find another one which is strictly more general than σ. Hence
there cannot exists a non-empty set containing only most general unifiers.

3.2 NP-completeness

The above type zero result means that one usual approach to unification modulo
equational theories does not work. Namely, we cannot compute the minimal
complete set of unifiers for any given problem in a theory. Type zero says that
this would not be complete in the case of EL-unification problems. There are

1This is the only minimal unifier for this problem, Definition 9.

11

3 Unification in EL

EL-unification problems which do not have a minimal complete set of unifiers,
but are unifiable anyway.

Despite this negative result, as in the case of FL0, we can decide if an EL-
unification problem is solvable. We cannot compute a set of most general uni-
fiers, but we compute a set of local unifiers instead.

In order to explain this notion, we use the notion of an atom.

Definition 7. An EL-concept term is called an atom iff it is a concept name
(constant or variable) or an existential restriction of the form ∃r.D.
The set of atoms of a concept term C, At(C) is defined recursively:

• if C = >, At(C) := ∅,

• if C is a concept name, then At(C) := {C},

• if C = ∃r.D, then At(C) := {C} ∪At(D),

• if C = C1 u C2, then At(C) := At(C1) ∪At(C2).

The set of atoms of an EL-unification problem Γ := {C1 v? D1, . . . , Cn v? Dn}
is At(Γ) := At(C1) ∪ · · · ∪At(Cn) ∪At(D1) ∪ · · · ∪At(Dn).

With the notion of an atom, we can reformulate Theorem 1 in the following
way.

Theorem 3. Let C,D be EL-concept terms and C = C1u· · ·uCm, D = D1u· · ·u
Dn, where C1, . . . , Dn are atoms. Then C v D iff for each index j, 1 ≤ j ≤ n,
there is an index i, 1 ≤ i ≤ m, such that Ci v Dj.

Notice that since we have restricted (wlg) EL-unification problems to flat
EL-unification problems (Definition 5), the set At(Γ) contains only flat atoms.

Now we define local substitutions.

Definition 8. Let At be a set of EL-atoms and Var a set of concept variables,
and let σ be a substitution. Let Sσ be an assignment of atoms from At to
variables defined in the following way.

Sσ(X) := {A ∈ At | A 6∈ Var and σ(X) v σ(A)}

Then we say that σ is local for variables in Var w.r.t. local atoms in At iff
for each variable X in Var, σ(X) ≡ d

A∈S(X) σ(A).2

We say that σ is a local solution of a unification problem Γ, iff σ is a unifier
of Γ and σ is local for variables in Var(Γ) w.r.t. At(Γ).

2Notice that we have defined a local assignment S with atoms that are not variables. In our
papers attached to this thesis, we use the notion of non-variable atoms in such context.

12

3.2 NP-completeness

Given σ as in the above definition, we say that Sσ is induced by σ. Later we
will see that our unification algorithms first construct S which satisfies an acyclic
order on variables (Definition 4), which then allows us to define a substitution
σS. We say then, that σS is induced by S.

In our papers on which this thesis is based, we defined locality of a substitution
in a slightly different, but equivalent way to Definition 8 (e.g., [6]). Basically,
we define there a local substitution as one, that is induced by a non-cyclic
assignment S of non-variable atoms to variables.

Obviously, for a finite set of atoms At and a finite set of variables, there
are finitely many (exponentially many) local substitutions. If we consider only
variables in an EL-unification problem Γ and At := At(Γ), then obviously,
there are only finitely many local substitutions defined in this way. The main
idea behind the EL-unification decision procedure in [18] is to show that if a
problem Γ has solution, then it has a local solution. This leads to the following
result.

Theorem 4 ([18]). The EL-unification problem is NP-complete.

The hardness part of this claim follows from the fact that already EL-matching,
a simpler problem that can be solved by a unification procedure, is NP-hard.3

For the in NP part of the claim, we describe a non-deterministic polynomial
procedure that decides if an EL-unification problem is unifiable. The procedure
is a brute force, guess and then check algorithm, (Algorithm 1).

In the step 3(a), the algorithm checks if the order on variables induced by S
(Definition 4) is really acyclic. Hence this step contains an Occur Check, which
can be preformed as a reachability test on a graph in polynomial time.

The algorithm is obviously sound. In [18] we have proved that it is also
complete, because for every unifier of Γ, there is a local unifier.

The algorithm is obviously nondeterministic, but in order for it to run in
polynomial time, one has to be careful about how the checking in 3(b) is done.
If we allow to define a fully expanded substitution σ based on the sets SX , then
the size of such substitution may already be exponential. If we check if the sub-
sumptions in σ(Γ) hold after having performed an unfolding of σ on Γ, then the
algorithm is worst-case exponential (the nondeterministic polynomial time for
choice in steps 1, 2 and 3(a) are dominated by the exponential deterministic time
needed for step 3(b)). This problem of exploding size of a unification problem
under a substitution, appears already in the syntactic unification. The expo-
nential explosion could be avoided in this case by structure sharing, or in other
words, by preventing a substitution from expanding, and instead presenting it
in the so called triangular form [25].

3We come back to the matching problem in Section 5.2.

13

3 Unification in EL

Algorithm 1 (Brute Force Algorithm)

Input: EL-unification problem Γ
Output: YES if Γ is unifiable, NO otherwise.

1: (Guessing part) For each variable X ∈ Var(Γ) guess an assignment of sets
of atoms SX , SX ⊆ At(Γ).

2: Define an order on variables: X � Y iff

• Y occurs in SX or

• there is a variable Z, Z occurs in SX and Z � Y

3: (Checking part)

(a) If � is acyclic, define a subsitution σ for each X ∈ Var(Γ) :

• if X is minimal w.r.t. � and SX = {C1, . . . , Cn},
σ(X) := C1 u · · · u Cn and for SX = ∅, σ(X) := >,

• if SX = {C1, . . . , Cn} 6= ∅ and for every Y , X � Y , σ(Y) is
defined, σ(X) := σ(C1) u · · · u σ(Cn).

(b) if σ is a unifier of Γ, return YES ;

otherwise return NO.

14

3.2 NP-completeness

Here we have used the same idea, by preventing the algorithm from expanding
the concept terms with the substitution σ. Instead, we treat σ as a set of defi-
nitions of concept names occurring in Γ. The checking in step 3(b) can be then
done by the subsumption decision procedure which decides the subsumptions
modulo definitions in σ [31].

We have provided two kinds of proofs for the completeness of Algorithm 1.
The first one presented in [18] is quite involved, based on a replacement of each
non-local atom in the range of a solution, by a conjunction of local atoms. We
show that due to the monotonic properties of constructors, such a replacement
preserves subsumptions, and thus preserves unifying properties of a solution.
This replacing process has to terminate, because the terms used in the range of
a substitution are finite.

We can also notice that a replacement of non-local atoms by a conjunction
of local ones yields a solution with is smaller w.r.t. the inverse of subsumption
order. This order is well-founded. The minimal solutions w.r.t. this order are
the so called minimal unifiers which have to be local ([18], Proposition 2).

We recall here the definition of a minimal unifier, as its role is similar to the
one of the most general unifier (Definition 6), not with respect to all unifiers,
but with respect to the local ones.

Definition 9. (minimal unifiers)

• Let σ, θ be two EL-substitutions and let X be a set of variables. We say
that σ ≺X θ iff for each variable X ∈ X , σ(X) v θ(X) and there is at
least one variable Y ∈ X such that σ(Y) @ θ(Y).

• Let σ an EL-unifier of a unification problem Γ. We say that σ is a minimal
unifier of Γ if there is no EL-unifier of Γ, θ, such that θ ≺Var(Γ) σ.

The second type of completeness proof of Algorithm 1 appeared e.g., in [17].
It shows that having any solution, one can construct another solution using only
atoms from At(Γ), which is thus local and smaller than the original one, but
not necessary minimal.

Rule-based algorithm

Algorithm 1 depends on blind guessing and checking and therefore is not fit
for a practical implementation. In [19] we introduce a goal-oriented algorithm,
which makes choices only if necessary for finding a solution. The algorithm
presented there is formulated as working on goal equivalences instead of goal
subsumptions as presented here, (see Definition 3 and the explanations there).

The goal-oriented algorithm (Algorithm 2) is defined based on a set of trans-
formation rules, which are to be applied exhaustively to a given EL-unification

15

3 Unification in EL

problem and transform it into a solved form much in the style of the Martelli
and Montanari algorithm for the syntactic unification, [47].

Some of the rules are to be applied eagerly and some are chosen in a don’t
know -non-deterministic way. If a non-eager rule is chosen to solve a goal sub-
sumption, it can also involve a don’t know kind of non-deterministic choice of
the way it is applied. On the other hand, like in the Martelli and Montanari al-
gorithm [47], a choice of unsolved subsumption for a non-eager rule application
is don’t care-non-deterministic.

At first all subsumptions, with the exception of the subsumptions with a
variable on the right-hand, side are unsolved. This means that the subsumptions
of the form C1 u · · · u Cn v? X are solved by definition and this is maintained
throughout the run. Notice that if there are no other constraints on the variable
X in the unification problem, then the variable is substituted by > in any
computed unifiers.

Each rule application, either fails or solves one goal subsumption. The algo-
rithm applies rules to unsolved goal subsumptions only.

The algorithm maintains an assignment S of non-variable atoms in At(Γ) to
each variable. Initially, all variables are assigned the empty set of atoms. This
assignment is basically the same assignment as in Algorithm 1, guessed in step
1. Here this guess is restricted by the process of solving the goal subsumptions.
Extending S produces a dependency order on variables. Namely, X �S Y iff

• ∃r.Y ∈ S(X) for a role name r ∈ Nr or

• there is a variable Z, such that ∃r.Z ∈ S(X) for a role name r ∈ Nr, and
Z �S Y

The algorithm while defining the assignment for variables tries to construct an
order on variables which could be induced by a substitution as in Definition 4.

If a rule application requires an extension of the assignment S(X) for a vari-
able X, the algorithm performs a kind of the Occurs Check, by checking if the
dependency order �X on variables defined by S becomes cyclic by such an ex-
tension. If yes, it fails on the given non-deterministic choices made already in
the run.

If by a rule application a local non-variable atom D is added to a set S(X),
then for each solved goal subsumption of the form C1 u · · · u Cn v? X, a new
goal subsumption C1 u · · · u Cn v? D is added to the current set of unsolved
goal subsumptions.

The completeness argument shows that the unifier computed by a successful
run of the algorithm is smaller w.r.t. the order on substitutions defined in Def-
inition 9 than a unifier which could guide the non-deterministic choices in this
run.

16

3.2 NP-completeness

Algorithm 2 (Rule-based Algorithm)

Input: flat EL-unification problem Γ0

Output: ”YES” if Γ is unifiable, ”NO” otherwise.
1: Γ := Γ0

2: for each X ∈ Var(Γ), S(X) := ∅
3: While Γ contains an unsolved subsumption, apply the steps (1) and (2).

1. Apply eager rules to the unsolved subsumptions;

2. If no eager rule is applicable, choose an unsolved subsumption s.
Choose a rule applicable to s and apply it. If no rule is applicable
to s or the rule applied fails, then return NO.

4: Return YES

The algorithm, as presented here is a decision procedure, but it can be easily
modified to compute local unifiers. Nevertheless it will not compute all local
unifiers. The set of computed unifiers is a subset of all local unifiers and contains
the set of all minimal unifiers. For each local unifier that is not discovered by
the algorithm, there is a minimal one that is smaller w.r.t. the order defined in
Definition 9, than the first one.

Sat reduction

An algorithm which is somewhat more similar to the “guess and check” strategy
of Algorithm 1, is the one we proposed in [17]. It transforms a given flat EL-
unification problem Γ into a set of propositional clauses C(Γ) such that the size
of C(Γ) is polynomial in the size of Γ and Γ is unifiable iff C(Γ) is satisfiable.
Hence we reduce EL-unification problem to satisfiability in propositional logic
(SAT). From the point of view of applications, this enables us to use highly-
optimized SAT solvers, [37].

This translation into SAT is inspired by the Kapur and Narendran’s transla-
tion of ACIU-unification problems into satisfiability in propositional Horn logic
(HornSAT) in [42].4 In fact EL-equational theory defined by equivalence be-
tween concept terms, is an ACIU theory, where the only associative, commu-
tative, idempotent operator is the concept intersection (u) with top (>) as its
unit element, extended with existential restrictions, which are in fact very much
like free functions, except that they have the property of being monotonic with
respect to concept subsumption.

The translation to SAT requires coding each subsumption between atoms in
At(Γ) as a propositional variable. In [17], we decided to introduce propositional

4This reduction was extended to ACI-disunification in [24].

17

3 Unification in EL

variables to express dis-subsumptions rather than subsumptions. Hence the
propositional variables are of the form [C 6v D]. The meaning of these variables
is determined by the following requirement on a valuation τ satisfying the set
of clauses C(Γ), [17, Lemma 5]:

if τ([C 6v D]) = 0, then σ(C) v σ(D).

For a valuation satisfying C(Γ), it is not necessary that the converse of this
implication holds. τ will correctly determine a unifier σ, for which maybe the
converse implication does not hold. We allowed this flexibility of encoding in
order to have smaller set of clauses C(Γ) and thus to get the solution faster.

The choice of encoding dis-subsumptions rather than subsumptions, followed
from an idea to avoid as much as possible non-Horn clauses in C(Γ). Non-Horn
clauses are a source of non-determinism in solving SAT problems, and since
EL-unification is NP-complete, it is not possible to eliminate completely Horn
clauses from the encoding.

For example a goal subsumption C1u· · ·uCn v? D, where D is a non-variable
atom, holds according to the characterization of subsumption in Theorem 3, if
and only if C1 v D, . . . Cn v D. Moreover, if D v E for a non-variable atom
E, then C1 v E, . . . , Cn v E.

These properties (constraints) are encoded with dis-subsumption variables
into the clauses:

1. [C1 6v D] ∧ · · · ∧ [Cn 6v D]→

2. for each non-variable atom E of Γ: [C1 6v E] ∧ · · · ∧ [Cn 6v E]→ [D 6v E]

Obviously, these are Horn clauses, hence they are easy for a SAT procedure.
If we choose rather to encode the subsumption using propositional variables of
the type: [C v D], then the above clauses would have to be reversed and thus
become non-Horn.

Avoiding explosion of non-deterministic choices in this place, does not mean
we can do it everywhere. In fact, our encoding has to deal also with other proper-
ties of subsumption or rather dis-subsumption in our case. And the unavoidable
non-Horn clauses appear while encoding the transitivity of subsumption using
propositional variables expressing dis-subsumption.

For each 3 atoms of Γ, C1, C2, C3,

[C1 6v C3]→ [C1 6v C2] ∨ [C2 6v C3]

This last part of the encoding shows that the set C(Γ) contains more than n3

clauses, if n is the number of all atoms of Γ.
In our implementations of the SAT-based algorithm [5], we have noticed that

working with dis-subsumptions or subsumptions does not make a difference.

18

3.2 NP-completeness

Algorithm 3 (SAT-based Algorithm)

Input: flat EL-unification problem Γ
Output: ”YES” if Γ is unifiable, ”NO” otherwise.

1: Create a set of propositional clauses C(Γ) encoding:

• goal subsumptions in Γ,

• properties of subsumption in EL,

• partial strict order on variables.

2: Run a highly-optimized SAT-solver on C(Γ) and
if the solver answers ”satisfiable”, return YES,
otherwise return NO.

This is maybe due to the power of the modern SAT-solvers. In [9], while ex-
tending this procedure, we returned to a more intuitive encoding of the goal
subsumptions as propositional variables representing subsumptions rather than
dis-subsumptions. The latest version of UEL5, uses this last encoding in the
SAT-reduction.

Apart from propositional variables encoding dis-subsumption, we have propo-
sitional variables of the form [X > Y] for each pair of variables X, Y ∈ Var(Γ).
The clauses in C(Γ) containing these propositional variables have to encode
the partial strict order of Definition 4. The clauses encoding irreflexivity and
transitivity are Horn. The non-Horn clauses are needed to express connection
between dis-subsumption and the order. For each variable X and a non-variable
atom ∃r.Y which are in the set of atoms of Γ:

→ [X > Y] ∨ [X 6v ∃r.Y]

The schema of the algorithm is presented as Algorithm 3.
In the SAT-based approach we can take advantage of the highly-optimized,

state of the art SAT solvers. For example, in our implementation of Algorithm 3
in UEL, we used MiniSat6 and the recent version uses SAT4J7. It turns
out that in our implementation of both rule-based and SAT-based algorithms,
the SAT-based algorithm returns a negative answer faster than the rule-based
algorithm. But the SAT-based algorithm is often worse than the rule-based,
when the goal is unifiable. The rule-based algorithm usually finds a positive
answer faster.

5http://uel.sourceforge.net
6http://minisat.se
7http://www.sat4j.org/

19

http://uel.sourceforge.net
http://minisat.se
http://www.sat4j.org/

4 Without Top: unification in
EL−>

Unification algorithms for the description logic EL were meant to find applica-
tions in maintenance of large medical ontologies like SNOMED CT. A unification
algorithm should help to find concepts equivalent w.r.t. a plausible interpreta-
tion. It would moreover propose a set of definitions (a solution), which makes
such equivalence explicit.

Alas, a crucial role in this algorithms plays the logical constructor >, which
is always interpreted as the set containing everything, i.e., the whole domain. A
variable, with an empty set of non-variable atoms assigned to it by an algorithm
would be defined by >.

SNOMED CT on the other hand, does not allow > into definitions of its
concepts. There is only one top concept in SNOMED, namely SNOMED CT
concept. It is used as the root of a concept hierarchy. To define another
concept as equivalent to > would make this concept redundant in the hierarchy.
But on the other hand a usual EL-unifier may suggest to a user to define a
concept name as >. This would not make any sense to the user.

To address this problem in [4] and [3], we define there the description logic
EL−> as providing all the constructors of EL with the exception of >.

It is also interesting from a theoretical point of view to see how much influence
removing the top constructor from the logic has on the unification problem.
For related equational theories such a change does not affect the complexity of
unification. For example, consider the simple equational theory ACIU i.e., EL
without existential restrictions. As mentioned above, unification in ACIU is in
P.1 If the unit (U), and thus > is removed from ACIU, we obtain the theory
ACI.2 The complexity of unification in ACI is the same as that for ACIU [42].

In a more general context, where multiple functions are allowed, some of which
are uninterpreted or satisfy ACI, or else ACIU properties, unification becomes
NP-complete. The complexity of unification in this context is the same if unit
is not allowed.

1This complexity is obtained by reducing this kind of unification problems to propositional
Horn-SAT problems.

2The solution is obtained by the same procedure as in the case of ACIU, but without the
prior guessing which variables are top that causes their elimination from the goal.

21

4 Without Top: unification in EL−>

As another example, let us consider the small description logic FL0. Unifi-
cation in FL0 is Exptime-complete, and it is the same if > is removed form
FL0.

One can obtain the effect of removal > from a unifier, by adding negative
constraints > 6v? X to an FL0-unification problem and then use disunification
techniques from [22]. This way of solving unification in EL−>, i.e., using dis-
matching for EL, is not possible. In FL0 we need to prevent only substitution
of > for variables given in the unification problem and all other occurrences
of > in the range of solution are reducible due to the properties of universal
restriction (∀) provided by FL0. In contrast, in EL > cannot be reduced in
this way. Hence we have to deal with possible occurrences of > at any depth of
existential restrictions in the range of a unifier. Such occurrences of > cannot
be prevented by adding negative constraints for goal variables as in the case of
FL0.

Surprisingly, it turns out that in the case of unification in EL the complexity
of the problem increases from NP to PSpace if > is removed from the logic.

The methods used for solving the problem are quite different from those used
for EL when top is available. We have to proceed similar as in case of FL0, where
a unification problem has been reduced to a problem of solving formal languages
equations, [20]. The equations in the case of EL−> are of a type that can be
solved in PSpace, while in the case of FL0, solving the equations occurring
there is EXPTIME complete. We show the in PSpace result by a reduction to
the emptiness problem for alternating automata. PSpace hardness is obtained
by a reduction of the emptiness problem of the intersection of deterministic finite
automata (DFA) [44, 35], to the unification problem in EL−>.

Theorem 5. Unification in EL−> is PSpace complete.

4.1 In PSpace

Removing > from the set of constructors of EL−> restricts its expressive power,
but does not restrict the allowed interpretations in this logic. Hence Theo-
rem 1 characterizing subsumption remains valid for EL−>-concept terms. Since
an EL−>-unification problem is also an EL-unification problem, the unification
algorithms may compute EL-unifiers for EL−>-unification problems. If such
unifiers contain >, they are not allowed in EL−> though.

Hence, by the completeness result in [18], we know that for each solution γ of
a unification problem Γ in EL−>, there is a local unifier σ of Γ in EL, such that
γ �V ar(Γ) σ (Definition 9). Our algorithm tries to correct σ by adding concept
terms to the conjunctions of concept terms substituted by it for variables. The
concept terms that are used in this process are minimal w.r.t. the inverse of the
subsumption order. If top is present, it is the smallest element in this order.

22

4.2 PSpace hardness

But since we do not have top, the minimal elements are concept names and
(ground) existential restrictions of the form ∃r1.(. . . ∃rn.A) . . .), where A is a
concept name. We call such concept terms particles.

By introducing particles, we depart from the realm of locality, but only in
a controlled way. Especially, we allow only ground particles. If we want to
add such a particle as a conjunct to the conjunction σ(X), we have to consider
all goal subsumptions of the form: C1 u · · · u Cn v? X. They are already
satisfied by σ, especially if X is send by σ to >. These subsumptions can be
used to define an alternating automaton, which accepts all particles with which
we can extend σ. Such an automaton has universal states denoting concept
variables and existential states for subsumptions. We need ε-transitions from
states representing variables to states representing subsumptions and also from
states representing subsumptions to states representing concept names which
are top-level conjuncts of the subsumptions. Hence in order to decide if a
particle can be used to extend a local unifier σ, we use the emptiness test for
an alternating automaton with ε-transitions. Such test can be done in PSpace
[41].

4.2 PSpace hardness

In [4] and [3] we show how the PSpace complete problem of the intersection
emptiness for deterministic finite automata (DFA) can be reduced to a unifica-
tion problem in EL−>. For such a reduction we consider only automata which
accept a non-empty language and in which all states are reachable from a start
state.

Let A be a DFA. We construct an EL−>-unification problem Γ in the following
way. Every state in A is represented by a concept variable, and we use only one
concept name A, which represents every accept state. We define the set of role
names NR as the set of alphabet symbols of the automaton, and define the goal
subsumptions: C1 u · · · u Cn v? X, where Ci = ∃α.Y if α is a symbol in the
alphabet of the given automaton, and a state represented by Y is reached by
reading α from the state represented by X.

Let X be a variable in Γ corresponding to the initial state of A. We have the
following connection between A and Γ:

• If γ is an EL−>-unifier of Γ, then for every particle ∃ω.A of γ(X), ω ∈
L(A), where L(A) is the language accepted by A.

• If ω ∈ L(A), then there is a ground substitution, which is a unifier of Γ in
EL−>.

The intersection emptiness problem is given by finitely many DFA’s
A1, . . . ,Ak. We ask if the intersection of the languages accepted by these DFA’s

23

4 Without Top: unification in EL−>

is empty. We can assume that each of the languages is non-empty and that
the automata A1, . . . ,Ak have disjoint sets of states. The flat EL−> unification
problem is now defined by:

Γ :=
⋃

i∈{1,...,k}
(ΓAi

∪ {XAi
v? Y })

where Y is a new variable, ΓAi
is a EL−>-unification problem for the automaton

Ai, and XAi
is a variable of ΓAi

representing the start state of Ai. For thus
defined Γ, we can show that Γ is unifiable in EL−> iff the intersection of the
languages of A1, . . . ,Ak is non-empty.

24

5 Unification and matching in EL
with a TBox

In the introduction, we have mentioned that the expressive power of a descrip-
tion logic depends on the one hand, on the language tools, i.e., logical construc-
tors, and on the other hand, on the sort of axioms that can be assumed for given
modeling applications.

A set of such axioms is called a TBox or an ontology. The axioms are termi-
nological, if they can be treated as a set of definitions. A concept definition is
an equation statement A ≡ C, which has on its left-hand side a concept name
A, while the right-hand side is not restricted i.e., an arbitrary concept term. We
say that a TBox is a terminology or an acyclic TBox, if

• it is a set of definitions,

• every defined concept has a unique definition, and

• the set does not contain cyclic dependencies between the defined concepts.

In the case of acyclic TBoxes, we can clearly separate defined concept names
from the undefined, primitive ones.

If cyclic dependencies between defined concepts do appear, we say that the
terminology is cyclic, or that the TBox is a cyclic TBox. If the assumption about
unique name definition is satisfied, we can still separate defined from primitive
concepts.

More general than all these kinds of TBoxes mentioned above are the so
called general TBoxes, which can contain any subsumption statements between
concept terms. Such statements are called concept inclusions or general concept
inclusions, abbreviated with the name GCIs.

Assuming a TBox T restricts the set of interpretations admissible in a logic
to models of T . We say that an interpretation I is a model of T if it satisfies
each definition (concept inclusion) contained in T .

In this section we present our results on unification in EL extended with
different kinds of TBoxes ([19, 8, 9, 6]). As generalizations of EL, unification
in all these extensions of EL (if decidable) inherits the lower complexity bound,
i.e., NP-hardness, from unification in EL.

25

5 Unification and matching in EL with a TBox

In the context of unification, we generally assume that every TBox is ground,
i.e., we do not allow the concept names occurring in the TBox to be variables.
The intuition behind this restriction is that the unifier can define an extension
of a TBox, but cannot change the definitions present in it. In the case of
acyclic TBoxes, we can assume some primitive concepts from the ontology to
be variables. This corresponds to the intuition, that a unifier may suggest some
definitions for undefined concepts in an ontology.

5.1 Unification modulo acyclic TBoxes

The unification problem in EL modulo an acyclic TBox was addressed in [19]. It
is obvious that subsumption w.r.t. such a TBox can be reduced to subsumption
without TBox, by expanding the occurrences of the defined concepts with their
definitions and then checking subsumption. This however may result in an
exponential blow-up and thus the procedure for checking subsumption would
not be polynomial. There is however another, polynomial procedure to decide
subsumption in EL w.r.t. an acyclic TBox, [1].

Using the same expansion, we can also reduce unification in EL modulo an
acyclic TBox to unification without such a TBox. But then, because of a possible
exponential blow-up, the procedure would be nondeterministic exponential.

Nevertheless, in [19], we show that unification in EL modulo an acyclic TBox
is of the same complexity as the unification without a TBox, i.e., it is NP-
complete, when the size of TBox is either counted as constant or is part of the
input. This is obtained by reducing EL-unification modulo acyclic TBoxes to
EL-unification without a TBox.

Theorem 6. EL-unification modulo acyclic TBoxes can be reduced in polyno-
mial time to EL-unification.

We do not extend the unification problem with the TBox, but treat the TBox
as a part of the problem, and thus avoid a possible exponential blow-up in the
size of the input.

Basically, we define Γ(T), a unification problem in dag-solved form, that cor-
responds to the TBox T and is solved together with the given EL-unification
problem Γ as a part of the problem: Γ∪Γ(T). Variables in Γ(T) correspond to
the defined concept names and are called system variables. Adding Γ(T) to the
unification problem is equivalent to a succinct encoding (by structure sharing)
of the unfolding of a given unification problem with the TBox T . Since T is
part of the input (or of constant size), and Γ(T) is of the same size as T , adding
Γ(T) to the unification problem can be done in polynomial time.

We show in [19] that this reduction provides a sound and complete decision
procedure for EL-unification modulo an acyclic TBox.

26

5.2 Matching in EL with a TBox

It is worthwhile to mention that the medical ontology Snomed CT, which
is the main target of the intended applications of EL-unification algorithms, is
an acyclic EL-TBox, or rather an acyclic EL−>- TBox. In the implementation
UEL [15], we adopt the above described way of dealing with acyclic TBoxes.
We pull into a given unification problem an ontology and integrate it into the
problem. Since the ontology is very big, it would be impossible to do it in a
straightforward way. Instead, we extract a module which is a part of the entire
ontology relevant for our problem. To be more precise, the module contains
definitions of the concepts used in the problem and is closed under the action
of adding the definitions of the concepts used in the module.

5.2 Matching in EL with a TBox

Before considering unification with general TBoxes, we turn here to an easier
and less general problem, namely, the problem of matching. Usually a matching
problem is defined as a set of pairs of terms containing variables. A solution
for such a problem is a substitution, which is to be applied to the first elements
of the pairs of terms. Such an application of the substitution should make the
terms in each pair equivalent to each other [49].

Since the variables in the second elements of the pairs cannot be substituted,
we can rename them and treat them as constants. In this way, one can re-
duce each matching problem to a unification problem and apply a unification
algorithm to solve it. This may be not optimal from the point of view of com-
plexity, since maybe there are ways to solve matching faster than using tools
for unification. In the case of EL with a general TBox such a reduction of a
matching problem is not possible, since we do not have a unification algorithm
for unification in EL modulo a general TBox, nor do we know if this problem
is decidable. Nevertheless, in [16], we present an NP decision procedure for
matching in EL with a TBox.

In the context of the description logic EL, matching is defined on pairs of
concept terms, where one of these terms is ground. As usual in the case of EL,
we define matching using subsumption rather than equivalence. The following
is the formal definition.

Definition 10. An EL-matching problem is a finite set

Γ = {C1 v? D1, . . . , Cn v? Dn}

of subsumptions between EL-concept terms which may contain variables, where
for each i, 1 ≤ i ≤ n, either Ci or Di is ground.
A substitution σ is a matcher of Γ iff it solves all subsumptions in Γ, i.e.,
σ(C1) v σ(D1), . . . , σ(Cn) v σ(Dn).

27

5 Unification and matching in EL with a TBox

One major difference between our approach to unification problems in EL
and the approach to matching is that we cannot conveniently flatten matching
problems without losing the property of one side ground goal subsumptions.

It should be noticed that matching has been since a long time a subject of
interest in the context of DLs. It first appeared in applications of the Classic
system [28]. In [29], Borgida and McGuinnness proposed to use matching as a
special query, which returns a concept. Such queries could be used as a means
to filter out the unimportant aspects of large concept descriptions appearing
in knowledge bases of Classic. Another major application of matching in the
context of DLs is the integration of knowledge bases by prompting interschema
assertions to the integrator [27].

Originally matching in DLs was considered without TBoxes, because there
were only acyclic TBoxes considered at that time, and as in the case of unifica-
tion, an acyclic TBox can be reduced away by unfolding.

There are three special cases of matching problems defined in EL.

1. An EL-matching problem Γ is a matching problem modulo equivalence if
C v? D ∈ Γ implies D v? C ∈ Γ. This kind of EL-matching problems
(without TBoxes) were considered in [12, 13].

2. An EL-matching problem Γ is a left-ground matching problem modulo sub-
sumption if C v? D ∈ Γ implies that C is ground. This kind of EL-
matching problems coincides with matching modulo subsumption consid-
ered (without TBoxes) also in [12, 13].

3. An EL-matching problem Γ is a right-ground matching problem modulo
subsumption if C v? D ∈ Γ implies that D is ground. This kind of
EL-matching has not been considered before.

We show the following results in [16].

Theorem 7. Let Γ be an EL-matching problem and T a general EL-TBox.

1. If Γ is a left-ground EL-matching problem, then we can decide in polyno-
mial time whether Γ has a matcher w.r.t. T or not.

2. If Γ is a right-ground EL-matching problem, then we can decide in poly-
nomial time whether Γ has a matcher w.r.t. T or not.

3. In general, the problem of deciding if Γ has a matcher w.r.t. T or not is
NP-complete.

The first two statements are shown by proving that Γ is matchable iff a special
kind of substitution is a matcher. Checking if this substitution is a matcher takes
polynomial time [31]. To prove the third statement, we notice that matching in
EL is NP-hard even without general TBoxes [45], and then we introduce a rule
based procedure that solves the problem in NP.

28

5.3 Unification modulo cycle-restricted TBoxes

5.3 Unification modulo cycle-restricted TBoxes

The problem of unification in EL extended with general TBoxes is a long stand-
ing open problem. Research in this area allowed us to find cases where the local
approach (as in the case of EL alone) still works. The case we describe here is
the unification problem in EL with a cycle-restricted TBox. Such a TBox is a
kind of general TBox, i.e., a set of GCIs, which satisfy a restriction on cycles in
the subsumption chains between concepts which the TBox implies. Namely, we
forbid that subsumptions of the form C v ∃ω.C, where C is any concept term
and ω is a sequence of role names, are consequences of the TBox. For example
a GCI ∃child.Human v Human is allowed, but a GCI Human v ∃parent.Human
does not satisfy this restriction. This restriction is sufficient to allow us to
prove the locality of unification: any unifiable EL-unification problem w.r.t. a
cycle-restricted TBox has a local unifier. On the other hand, if the restriction is
not satisfied, unification is not local any more. We illustrate it with the following
example.

Let T := {B v ∃s.D,D v B}. Let the unification problem be: Γ :=
{A1 uB ≡? Y1, A2 uB ≡? Y2,∃s.Y1 v? X, ∃s.Y2 v? X,X v? ∃s.X}

It is obvious that Γ has a unifier: γ := {Y1 7→ A1 u B, Y2 7→ A2 u B,X 7→
∃s.B}. This solution is not local, since ∃s.B is not a substitution of any non-
variable atom in Γ or in T . In [9] we show that Γ does not have any local
solutions.

• In [8], we presented a brute force algorithm in the style of Algorithm 1 for
the case of EL with a cycle-restricted TBox.

• In [9] we presented an algorithm based on a translation into SAT, in the
spirit of Algorithm 3.

• In [6] we presented an algorithm based on a set of transformation rules
similar to Algorithm 2.

In the last two papers presented in this thesis ([9, 6]), we show that the
solution works also if a cycle-restricted TBox contains role inclusion axioms of
the form r v s for role names r, s ∈ NR and transitivity axioms of the form
r ◦ r v r, for a role name r ∈ NR. When EL is extended with such a TBox,
it is called ELHR+ [10], where H stands for role hierarchy induced by the role
inclusion axioms and R+ indicates allowing role transitivity axioms. In [9] we
show that checking if a TBox containing axioms of ELHR+ is cycle-restricted
can be done in polynomial time, by looking for the forbidden cycles only within
the set of concept names together with the top constructor.

The above mentioned rule-based unification algorithm relies on a polynomial
subsumption procedure for this logic. Such a procedure for subsumption in
ELHR+ was provided in [31, 10].

29

5 Unification and matching in EL with a TBox

The new proof techniques required to solve unification in ELHR+ with cycle-
restricted TBoxes, lead us to develop new and interesting characterizations of
subsumption between concept terms in ELHR+ .

For the SAT-based algorihtm in [9] we have designed a term rewriting system
that characterizes subsumption. For the rule-based algorithm in [6] we have
designed a characterization of subsumption in ELHR+ by a Gentzen-style cal-
culus on expressions of the form C `T D which are sequents in our calculus.
We show that C `T D iff C vT D. A similar Gentzen-style characterization of
subsumption in EL w.r.t. TBoxes was developed in [36].

30

6 Disunification in EL
In this section we come back to consider the description logic EL without
TBoxes. We will focuse on another generalization of the unification problem
in EL, namely disunification in EL.

In [7], we have proposed disunification as a means to restrict the set of local
unifiers to those that satisfy some reasonable constraints, from a point of view of
a user, e.g., an ontology engineer. A disunification problem is defined by positive
and negative constraints. The positive part is a usual unification problem. By
adding negative constraints, one can prevent many undesirable solutions of this
problem and present a user with a smaller and thus more manageable set of
unifiers.

We do not know yet if the problem of disunification in EL is in general decid-
able, but we have some decidability results about interesting, restricted cases:
local disunification and dismatching in EL.

As was mentioned above, disunification and unification in a logic are special
cases of unification and disunification modulo equational theories (defined w.r.t.
logical equivalence, [19]). Disunification modulo equational theories has been
a topic of extended research, e.g., [33, 32, 23, 34]. Informally speaking, a dis-
unification problem consists of a positive part, which is a set of goal equations,
and a negative part which is a set of dis-equations. The first part is a unifi-
cation problem modulo an equational theory. A substitution for variables is a
solution of a disunification problem, if it solves the unification part while the
negative part is also satisfied. A dis-equation in the negative part is satisfied, if
it is not valid (not true in all models). Disunification in the equational theories
of finitary unification type is reducible to unification and if one can effectively
compute the finite complete set of unifiers of a unification problem, it is also
decidable. For such theories the following procedure solves disunification. In
the first step we compute a finite complete set of unifiers of the positive part of
a disunification problem and in the second step, we check if any one of them is a
solution for the negative part. Unfortunately, the unification in the equational
theory corresponding to EL is of type zero. This means that a unification prob-
lem in EL may not have a finite complete set of most general solutions. Hence it
is not possible to use the above described reduction to solve disunification in EL.
Another small description logic FL0 also has unification type zero. Nevertheless
it is possible to tweak the decision procedure for unification in FL0 in such a
way that it solves also disunification, [22]. This proves that the disunification

31

6 Disunification in EL

problem in FL0 has the same complexity as unification in FL0, i.e., complete
for the class ExpTime. The DL EL seems to be more difficult in this respect.
Our results presented here are obtained also by extending the methods devel-
oped for solving unification in EL, but they do not work for the general case.
The reason is that the decidability proof of unification in EL relies heavily on
locality of the problem. Disunification problems in EL are not necessarily local,
in the sense that there are disunification problems which have solutions but do
not have local solutions (Definition 8).

As usually in the case of EL, we define the disunification problem in terms
of subsumptions and equivalence is treated as an abbreviation for two way sub-
sumptions. We define here the disunification problem in an as general way as
possible, taking advantage of the negation and combining the constraints with
all boolean constructors.

Definition 11. An EL-disunification problem Γ is a formula built from goal
subsumptions (C v? D, where C,D are EL-concept terms possibly containing
variables) using the logical connectives ∧,∨ and ¬.
C ≡? D is an abbreviation of (C v? D) ∧ (D v? C).
C 6≡? D is an abbreviation of (C 6v? D) ∨ (D 6v? C).
C 6v? D is an abbreviation of ¬(C v? D) and is called a goal dissubsumption.
A basic disunification problem is a conjunction of goal subsumptions and dis-
subsumptions.

A substitution σ is a solution for Γ if:

• Γ = Γ1 ∨ Γ2 and σ solves Γ1 or σ solves Γ2;

• Γ = Γ1 ∧ Γ2 and σ solves Γ1 and σ solves Γ2;

• Γ = ¬Γ1 and σ is not a solution for Γ1;

• Γ = C v? D and σ(C) v σ(D).

There is a straightforward reduction of disunification problems to basic dis-
unification problems. If we view all subsumptions and dissubsumptions in a
disunification problem Γ as propositional variables, we obtain a propositional
formula, which is equivalent to a disjunction of satisfying valuations for the vari-
ables. We non-deterministically choose one such valuation which corresponds
to a basic disunification problem. A solution to this problem is obviously a so-
lution to the original Γ. On the other hand, a solution of Γ defines a satisfying
valuation for the propositional formula mentioned above. This reduction is of
the non-deterministic polynomial complexity, which matches the lower bound
(NP hardness) for any procedure for disunification in EL, since disunification
generalizes unification and thus inherits the lower complexity bounds.

32

6.1 Connection to admissibility problem

In the following we restrict the disunification problems to basic disunification
problems and consider them as sets of goal subsumptions and dissubsumptions.

The characterization of dissubsumption, which we use here, is based on the
contrapositive of Theorem 3.

Theorem 8. For two concepts terms C,D, C 6v D iff there is a top level atom
D′ of D such that for all top-level atoms C ′ of C, C ′ 6v D′.
For two atoms C,D, C 6v D iff either

1. C or D is a concept name and C 6= D,

2. C = ∃s.C ′, D = ∃r.D′ and s 6= r,

3. C = ∃r.C ′, D = ∃r.D′ and C ′ 6v D′

In contrast to unification, disunification is not equivalent to ground disuni-
fication, which asks for ground solutions only. Disunification is also more de-
pendent on a given signature than unification. The intuition that justifies this
statement stems from the first statement of the above theorem that requires a
top-level atom to witness a dissubsumption. A disunification algorithm should
either guess or compute such atom for a given goal dissubsumption, and this
construction depends very much on the symbols provided by a signature.

6.1 Connection to admissibility problem

Since Description Logics and Modal Logics are so closely related, results from
both areas carry over to one another [52]. There is an interesting connection
between the disunification problem in EL and the admissibility problem in the
modal logic corresponding to EL [26, 40, 51]. Informally speaking, an inference
rule is admissible in a logic, if it does not increase the set of theorems of this
logic. An inference rule is of the form:

A1, . . . , Am
B1, . . . , Bn

where A1, . . . , Bn are formulas that may contain variables. An inference rule
is thus a schema for its infinitely many instances. The meaning of such a rule
corresponds to the meaning of a clause: A1∧· · ·∧Am → B1∨· · ·∨Bn. In order
for the rule to be admissible, even if the implication is not true in all models,
the following implication must be true: if there is a substitution σ, such that
σ(A1) ∧ · · · ∧ σ(Am) ≡ >, then σ(B1) ≡ > or . . . or σ(Bn) ≡ >.

Obviously, this is the case iff the disunification problem

{A1 ≡? >, . . . , Am ≡? >, B1 6≡? >, . . . , Bn 6≡? >} (6.1)

does not have a solution.

33

6 Disunification in EL

6.2 Dismatching

Dismatching problems in EL are the disunification problems in which the neg-
ative part may contain a dissubsumption C 6v? D only if C or D is a ground
concept.

Note that the disunification problem (6.1) which corresponds to a non-addmissible
inference rule in a modal logic, is in fact a dismatching problem. Hence since
we show in [7] that dismatching in EL is decidable, and in fact, NP-complete,
we can transfer this result immediately to the corresponding modal logic.

Although dismatching in EL is a restricted form of disunification, we have
found out that it is sufficient for many practical applications. It is enough to
add to a unification problem some dismatching constraints to improve results.

Theorem 9. Dismatching in EL is NP-complete.

A dismatching problem, just like it is in the case of matching, cannot be
conveniently flattened as it is the case for unification problems, without ceasing
to have the property of one side ground dissubsumptions. Nevertheless, the goal
subsumptions (the positive part) that it contains can be flattened. Moreover
we can flatten the non-ground side of a dissubsumption: if C 6v? D is a part of
a problem Γ and e.g., D is ground while C is not, then we can flatten C. This
yields a new dismatching problem Γ′, because flattening adds only subsumptions
to the positive part of a dismatching problem. It is easy to see that a solution
for Γ can be extended so as to be a solution for Γ′. And a solution for Γ′ is a
solution for Γ.

In order to prove the theorem we need only to show the in NP part of the
statement. In order to do it, we present a non-deterministic polynomial proce-
dure of flattening the dissubsumptions, reducing the problem to a local disuni-
fication problem. Contrary to the usual flattening of a unification problem, the
flattening in this reduction involves a don’t know kind of non-determinism.

The problem of local disunification is NP-complete, which is explained in the
next section.

6.3 Local disunification

A local disunification problem in EL is given by a set of goal subsumptions and
dissubsumptions exactly like in the case of disunifcation in EL, Definition 11.
The only difference is that here we check for the existence of local solutions for
a problem (see Definition 8).

Theorem 10. Local disunification in EL is NP-complete.

34

6.3 Local disunification

The statement of the theorem should now be obvious. The NP-hardness
follows from the NP-hardness of unification in EL, and for the in NP part, we
can just guess a local assignment S for variables in a problem and then check if
the substitution induced by S is a solution.

35

7 Conclusions

This thesis presents a selection of the main results in connection to unification
in the description logic EL. All of them:

• the unification problem in EL,

• its extension to include acyclic or cycle-restricted TBoxes,

• its restriction to matching with general TBoxes,

• dismatching and local disunifictation

are contained in the NP complexity class. Only removing the top constructor
(>) took us beyond NP into PSpace complexity.

The main principle used to achieve these results was to show that it is sufficient
to restrict the search space for solutions to the local solutions. And since each
one of them is of polynomial size, constructed from a polynomial size set of local
atoms, we can guess one in polynomial non-deterministic time.

The interesting unification problems that are still unsolved, like unification
in EL with general TBoxes, disunification in EL or the unification problem in a
combination of EL and FL0, require perhaps different techniques. A promising
approach is perhaps a new computational model in [30], which provided us with
a practical way to solve unification in FL0.

The algorithms for unification in EL, together with a local disunification al-
gorithm, are implemented in our system UEL [15]. UEL takes as input a unifi-
cation problem and an acyclic ontology and outputs a unifier, or computes all
unifiers, if the problem is unifiable. UEL gives its user the choice of using the
SAT-based algorithm or the rule-based algorithm. A new ASP-based algorithm,
which should improve the one based on SAT is being developed. As mentioned
above, the behavior of the SAT-based and the rule-based algorithms is comple-
mentary in our experiments. SAT is better in detecting negative answers, while
the rule-based approach is better in computing the first unifier if there is one.

UEL can work as a Protégé1 plug-in and its recent version has a special option
for facilitating working with the Snomed CT ontology. It is constantly being
improved with the intent to make it more suitable for practical purposes. These
practical goals are situated in the realm of ontology maintenance: e.g., checking

1http://protege.stanford.edu/

37

http://protege.stanford.edu/

7 Conclusions

for redundancies in extensions of Snomed CT, or designing new concepts that
are to be located in a given place in the hierarchy of concepts in the ontology.
UEL is open source and can be downloaded at https://sourceforge.net/

projects/uel/.

38

https://sourceforge.net/projects/uel/
https://sourceforge.net/projects/uel/

Bibliography

[1] Franz Baader. “Terminological Cycles in a Description Logic with Ex-
istential Restrictions”. In: IJCAI-03, Proceedings of the Eighteenth In-
ternational Joint Conference on Artificial Intelligence, Acapulco, Mexico,
August 9-15, 2003. Ed. by Georg Gottlob and Toby Walsh. Morgan Kauf-
mann, 2003, pp. 325–330. url: http://ijcai.org/Proceedings/03/
Papers/048.pdf#A#.

[2] Franz Baader. “Unification in Commutative Theories”. In: J. Symb. Com-
put. 8.5 (1989), pp. 479–497. doi: 10.1016/S0747-7171(89)80055-0.
url: http://dx.doi.org/10.1016/S0747-7171(89)80055-0.

[3] Franz Baader, Nguyen Thanh Binh, Stefan Borgwardt, and Barbara
Morawska. “Deciding Unifiability and Computing Local Unifiers in the
Description Logic EL without Top Constructor”. In: Notre Dame Journal
of Formal Logic (2016). In press.

[4] Franz Baader, Nguyen Thanh Binh, Stefan Borgwardt, and Barbara
Morawska. “Unification in the Description Logic EL without the Top Con-
cept”. In: Proceedings of the 23rd International Conference on Automated
Deduction (CADE 2011). Ed. by Nikolaj Bjørner and Viorica Sofronie-
Stokkermans. Vol. 6803. Lecture Notes in Computer Science. Wroclaw,
Poland: Springer-Verlag, 2011, pp. 70–84.

[5] Franz Baader, Stefan Borgwardt, Julian Mendez, and Barbara Morawska.
“UEL: Unification Solver for EL”. In: Proceedings of the 2012 Interna-
tional Workshop on Description Logics, DL-2012, Rome, Italy, June 7-
10, 2012. Ed. by Yevgeny Kazakov, Domenico Lembo, and Frank Wolter.
Vol. 846. CEUR Workshop Proceedings. CEUR-WS.org, 2012. url: http:
//ceur-ws.org/Vol-846/paper_8.pdf.

[6] Franz Baader, Stefan Borgwardt, and Barbara Morawska. “A Goal-
Oriented Algorithm for Unification in ELHR+ w.r.t. Cycle-Restricted On-
tologies”. In: AI 2012: Advances in Artificial Intelligence - 25th Aus-
tralasian Joint Conference, Sydney, Australia, December 4-7, 2012. Pro-
ceedings. Ed. by Michael Thielscher and Dongmo Zhang. Vol. 7691. Lec-
ture Notes in Computer Science. Springer, 2012, pp. 493–504. isbn: 978-
3-642-35100-6. doi: 10.1007/978-3-642-35101-3_42.

39

http://ijcai.org/Proceedings/03/Papers/048.pdf#A#
http://ijcai.org/Proceedings/03/Papers/048.pdf#A#
http://dx.doi.org/10.1016/S0747-7171(89)80055-0
http://dx.doi.org/10.1016/S0747-7171(89)80055-0
http://ceur-ws.org/Vol-846/paper_8.pdf
http://ceur-ws.org/Vol-846/paper_8.pdf
http://dx.doi.org/10.1007/978-3-642-35101-3_42

Bibliography

[7] Franz Baader, Stefan Borgwardt, and Barbara Morawska. “Dismatching
and Local Disunification in EL”. In: Proceedings of the 26th International
Conference on Rewriting Techniques and Applications (RTA’15). Ed. by
Maribel Fernández. Vol. 36. Leibniz International Proceedings in Infor-
matics. Warsaw, Poland: Dagstuhl Publishing, 2015, pp. 40–56.

[8] Franz Baader, Stefan Borgwardt, and Barbara Morawska. “Extending
Unification in EL Towards General TBoxes”. In: Principles of Knowl-
edge Representation and Reasoning: Proceedings of the Thirteenth Inter-
national Conference, KR 2012, Rome, Italy, June 10-14, 2012. Ed. by
Gerhard Brewka, Thomas Eiter, and Sheila A. McIlraith. AAAI Press,
2012. isbn: 978-1-57735-560-1. url: http://www.aaai.org/ocs/index.
php/KR/KR12/paper/view/4491.

[9] Franz Baader, Stefan Borgwardt, and Barbara Morawska. “SAT-Encoding
of Unification in ELH R+ w.r.t. Cycle-Restricted Ontologies”. In: Proceed-
ings of the 6th International Joint Conference on Automated Reasoning
(IJCAR’12). Vol. 7364. Lecture Notes in Artificial Intelligence. Manch-
ester, UK: Springer-Verlag, 2012, pp. 30–44.

[10] Franz Baader, Sebastian Brandt, and Carsten Lutz. “Pushing the EL En-
velope”. In: IJCAI-05, Proceedings of the Nineteenth International Joint
Conference on Artificial Intelligence, Edinburgh, Scotland, UK, July 30
- August 5, 2005. Ed. by Leslie Pack Kaelbling and Alessandro Saffiotti.
Professional Book Center, 2005, pp. 364–369. isbn: 978-0-938075-93-6.
url: http://ijcai.org/Proceedings/05/Papers/0372.pdf.

[11] Franz Baader, Diego Calvanese, Deborah L. McGuinness, Daniele Nardi,
and Peter F. Patel-Schneider, eds. The Description Logic Handbook: The-
ory, Implementation, and Applications. New York, NY, USA: Cambridge
University Press, 2003. isbn: 0-521-78176-0.

[12] Franz Baader and Ralf Küsters. “Matching Concept Descriptions with
Existential Restrictions”. In: KR 2000, Principles of Knowledge Repre-
sentation and Reasoning Proceedings of the Seventh International Confer-
ence, Breckenridge, Colorado, USA, April 11-15, 2000. Ed. by Anthony
G. Cohn, Fausto Giunchiglia, and Bart Selman. Morgan Kaufmann, 2000,
pp. 261–272.

[13] Franz Baader, Ralf Küsters, Alexander Borgida, and Deborah L. McGuin-
ness. “Matching in Description Logics”. In: J. Log. Comput. 9.3 (1999),
pp. 411–447. doi: 10.1093/logcom/9.3.411.

[14] Franz Baader, Ralf Küsters, and Ralf Molitor. “Computing Least Common
Subsumers in Description Logics with Existential Restrictions”. In: Pro-
ceedings of the Sixteenth International Joint Conference on Artificial In-

40

http://www.aaai.org/ocs/index.php/KR/KR12/paper/view/4491
http://www.aaai.org/ocs/index.php/KR/KR12/paper/view/4491
http://ijcai.org/Proceedings/05/Papers/0372.pdf
http://dx.doi.org/10.1093/logcom/9.3.411

Bibliography

telligence, IJCAI 99, Stockholm, Sweden, July 31 - August 6, 1999. 2 Vol-
umes, 1450 pages. Ed. by Thomas Dean. Morgan Kaufmann, 1999, pp. 96–
103. isbn: 978-1-55860-613-5. url: http://ijcai.org/Proceedings/
99-1/Papers/015.pdf.

[15] Franz Baader, Julian Mendez, and Barbara Morawska. “UEL: Unification
Solver for the Description Logic EL – System Description”. In: Proceedings
of the 6th International Joint Conference on Automated Reasoning (IJ-
CAR’12). Vol. 7364. Lecture Notes in Artificial Intelligence. Manchester,
UK: Springer-Verlag, 2012, pp. 45–51.

[16] Franz Baader and Barbara Morawska. “Matching with Respect to Gen-
eral Concept Inclusions in the Description Logic EL”. In: KI 2014: Ad-
vances in Artificial Intelligence - 37th Annual German Conference on AI,
Stuttgart, Germany, September 22-26, 2014. Proceedings. Ed. by Carsten
Lutz and Michael Thielscher. Vol. 8736. Lecture Notes in Computer Sci-
ence. Springer, 2014, pp. 135–146. isbn: 978-3-319-11205-3. doi: 10.1007/
978-3-319-11206-0_14.

[17] Franz Baader and Barbara Morawska. “SAT Encoding of Unification in
EL”. In: Proceedings of the 17th International Conference on Logic for
Programming, Artifical Intelligence, and Reasoning (LPAR-17). Ed. by
Christian G. Fermüller and Andrei Voronkov. Vol. 6397. Lecture Notes in
Computer Science (subline Advanced Research in Computing and Soft-
ware Science). Yogyakarta, Indonesia: Springer-Verlag, Oct. 2010, pp. 97–
111.

[18] Franz Baader and Barbara Morawska. “Unification in the Description
Logic EL”. In: Proceedings of the 20th International Conference on
Rewriting Techniques and Applications (RTA 2009). Ed. by Ralf Treinen.
Vol. 5595. Lecture Notes in Computer Science. Springer-Verlag, 2009,
pp. 350–364.

[19] Franz Baader and Barbara Morawska. “Unification in the Description
Logic EL”. In: Logical Methods in Computer Science 6.3 (2010). Special
Issue of the 20th International Conference on Rewriting Techniques and
Applications; also available at http://arxiv.org/abs/1006.2289.

[20] Franz Baader and Paliath Narendran. “Unification of Concept Terms in
Description Logics”. In: J. Symbolic Computation 31.3 (2001), pp. 277–
305.

[21] Franz Baader and Tobias Nipkow. Term rewriting and all that. Cambridge
University Press, 1998. isbn: 978-0-521-45520-6.

41

http://ijcai.org/Proceedings/99-1/Papers/015.pdf
http://ijcai.org/Proceedings/99-1/Papers/015.pdf
http://dx.doi.org/10.1007/978-3-319-11206-0_14
http://dx.doi.org/10.1007/978-3-319-11206-0_14

Bibliography

[22] Franz Baader and Alexander Okhotin. “Solving Language Equations and
Disequations with Applications to Disunification in Description Logics and
Monadic Set Constraints”. In: Logic for Programming, Artificial Intelli-
gence, and Reasoning - 18th International Conference, LPAR-18, Mérida,
Venezuela, March 11-15, 2012. Proceedings. Ed. by Nikolaj Bjørner and
Andrei Voronkov. Vol. 7180. Lecture Notes in Computer Science. Springer,
2012, pp. 107–121. isbn: 978-3-642-28716-9. doi: 10.1007/978-3-642-
28717-6_11.

[23] Franz Baader and Klaus U. Schulz. “Combination Techniques and De-
cision Problems for Disunification”. In: Rewriting Techniques and Appli-
cations, 5th International Conference, RTA-93, Montreal, Canada, June
16-18, 1993, Proceedings. Ed. by Claude Kirchner. Vol. 690. Lecture Notes
in Computer Science. Springer, 1993, pp. 301–315. isbn: 978-3-540-56868-
1. doi: 10.1007/3-540-56868-9_23.

[24] Franz Baader and Klaus U. Schulz. “Combination techniques and deci-
sion problems for disunification”. In: Theoretical Computer Science 142.2
(1995), pp. 229–255. issn: 0304-3975. doi: http://dx.doi.org/10.

1016/0304-3975(94)00277-0. url: http://www.sciencedirect.com/
science/article/pii/0304397594002770.

[25] Franz Baader and Wayne Snyder. “Unification Theory”. In: Handbook of
Automated Reasoning (in 2 volumes). Ed. by John Alan Robinson and
Andrei Voronkov. Elsevier and MIT Press, 2001, pp. 445–532.

[26] Sergey Babenyshev, Vladimir V. Rybakov, Renate A. Schmidt, and
Dmitry Tishkovsky. “A Tableau Method for Checking Rule Admissibil-
ity in S4”. In: Electr. Notes Theor. Comput. Sci. 262 (2010), pp. 17–32.
doi: 10.1016/j.entcs.2010.04.003.

[27] A. Borgida and R. Küsters. What’s not in a name? Initial Explorations
of a Structural Approach to Integrating Large Concept Knowledge-Bases.
Tech. rep. DCS-TR-391. Rutgers University, USA, 1999.

[28] Alexander Borgida, Ronald J. Brachman, Deborah L. McGuinness, and
Lori Alperin Resnick. “CLASSIC: A Structural Data Model for Objects”.
In: Proceedings of the 1989 ACM SIGMOD International Conference on
Management of Data, Portland, Oregon, May 31 - June 2, 1989. Ed. by
James Clifford, Bruce G. Lindsay, and David Maier. ACM Press, 1989,
pp. 58–67. doi: 10.1145/67544.66932. url: http://doi.acm.org/10.
1145/67544.66932.

[29] Alexander Borgida and Deborah L. McGuinness. “Asking Queries about
Frames”. In: Proceedings of the 1996 International Workshop on De-
scription Logics, November 2-4, 1996, Cambridge, MA, USA. Ed. by Lin

42

http://dx.doi.org/10.1007/978-3-642-28717-6_11
http://dx.doi.org/10.1007/978-3-642-28717-6_11
http://dx.doi.org/10.1007/3-540-56868-9_23
http://dx.doi.org/http://dx.doi.org/10.1016/0304-3975(94)00277-0
http://dx.doi.org/http://dx.doi.org/10.1016/0304-3975(94)00277-0
http://www.sciencedirect.com/science/article/pii/0304397594002770
http://www.sciencedirect.com/science/article/pii/0304397594002770
http://dx.doi.org/10.1016/j.entcs.2010.04.003
http://dx.doi.org/10.1145/67544.66932
http://doi.acm.org/10.1145/67544.66932
http://doi.acm.org/10.1145/67544.66932

Bibliography

Padgham, Enrico Franconi, Manfred Gehrke, Deborah L. McGuinness,
and Peter F. Patel-Schneider. Vol. WS-96-05. AAAI Technical Report.
AAAI Press, 1996, pp. 15–24. isbn: 978-1-57735-014-9.

[30] Stefan Borgwardt and Barbara Morawska. “Finding Finite Herbrand Mod-
els”. In: Logic for Programming, Artificial Intelligence, and Reasoning
- 18th International Conference, LPAR-18, Mérida, Venezuela, March
11-15, 2012. Proceedings. Ed. by Nikolaj Bjørner and Andrei Voronkov.
Vol. 7180. Lecture Notes in Computer Science. Springer, 2012, pp. 138–
152. isbn: 978-3-642-28716-9. doi: 10.1007/978-3-642-28717-6_13.

[31] Sebastian Brandt. “On Subsumption and Instance Problem in ELH w.r.t.
General TBoxes”. In: Proceedings of the 2004 International Workshop on
Description Logics (DL2004), Whistler, British Columbia, Canada, June
2004.

[32] Wray L. Buntine and Hans-Jürgen Bürckert. “On Solving Equations and
Disequations”. In: J. ACM 41.4 (1994), pp. 591–629. doi: 10 . 1145 /

179812.179813. url: http://doi.acm.org/10.1145/179812.179813.

[33] Hubert Comon. “Disunification: A Survey”. In: Computational Logic -
Essays in Honor of Alan Robinson. 1991, pp. 322–359.

[34] Agostino Dovier, Carla Piazza, and Enrico Pontelli. “Disunification in
ACI1 Theories”. In: Constraints 9.1 (Jan. 2004), pp. 35–91. issn: 1383-
7133. doi: 10.1023/B:CONS.0000006182.84033.6e. url: http://dx.
doi.org/10.1023/B:CONS.0000006182.84033.6e.

[35] Michael R. Garey and David S. Johnson. Computers and Intractability:
A Guide to the Theory of NP-Completeness. W. H. Freeman, 1979. isbn:
978-0-7167-1044-8.

[36] Martin Hofmann. “Proof-Theoretic Approach to Description-Logic”. In:
20th IEEE Symposium on Logic in Computer Science (LICS 2005), 26-
29 June 2005, Chicago, IL, USA, Proceedings. 2005, pp. 229–237. doi:
10.1109/LICS.2005.38. url: http://doi.ieeecomputersociety.org/
10.1109/LICS.2005.38.

[37] S. Hölldobler, N. Manthey, V.H. Nguyen, J. Stecklina, and P. Steinke. “A
Short Overview on Modern Parallel SAT-Solvers”. In: Proceedings of the
International Conference on Advanced Computer Science and Information
Systems. Ed. by I. Wasito et.al. 2011, pp. 201–206.

[38] Ian Horrocks and Ulrike Sattler. “A Tableaux Decision Procedure for
SHOIQ”. In: IJCAI-05, Proceedings of the Nineteenth International Joint
Conference on Artificial Intelligence, Edinburgh, Scotland, UK, July 30
- August 5, 2005. 2005, pp. 448–453. url: http : / / ijcai . org /

Proceedings/05/Papers/0759.pdf.

43

http://dx.doi.org/10.1007/978-3-642-28717-6_13
http://dx.doi.org/10.1145/179812.179813
http://dx.doi.org/10.1145/179812.179813
http://doi.acm.org/10.1145/179812.179813
http://dx.doi.org/10.1023/B:CONS.0000006182.84033.6e
http://dx.doi.org/10.1023/B:CONS.0000006182.84033.6e
http://dx.doi.org/10.1023/B:CONS.0000006182.84033.6e
http://dx.doi.org/10.1109/LICS.2005.38
http://doi.ieeecomputersociety.org/10.1109/LICS.2005.38
http://doi.ieeecomputersociety.org/10.1109/LICS.2005.38
http://ijcai.org/Proceedings/05/Papers/0759.pdf
http://ijcai.org/Proceedings/05/Papers/0759.pdf

Bibliography

[39] Ian Horrocks, Ulrike Sattler, and Stephan Tobies. “Practical Reasoning
for Very Expressive Description Logics”. In: CoRR cs.LO/0005013 (2000).
url: http://arxiv.org/abs/cs.LO/0005013.

[40] Rosalie Iemhoff and George Metcalfe. “Proof theory for admissible rules”.
In: Ann. Pure Appl. Logic 159.1 (2009), pp. 171–186. doi: 10.1016/j.
apal.2008.10.011.

[41] Tao Jiang and B. Ravikumar. “A Note on the Space Complexity of Some
Decision Problems for Finite Automata”. In: Inf. Process. Lett. 40.1 (Oct.
1991), pp. 25–31. issn: 0020-0190. doi: 10.1016/S0020-0190(05)80006-
7. url: http://dx.doi.org/10.1016/S0020-0190(05)80006-7.

[42] Deepak Kapur and Paliath Narendran. “Complexity of Unification Prob-
lems with Associative-Commutative Operators”. In: J. Autom. Reasoning
9.2 (1992), pp. 261–288. doi: 10.1007/BF00245463.

[43] Yevgeny Kazakov. “SRIQ and SROIQ are Harder than SHOIQ”. In:
Proceedings of the 21st International Workshop on Description Logics
(DL2008), Dresden, Germany, May 13-16, 2008. 2008. url: http://

ceur-ws.org/Vol-353/Kazakov.pdf.

[44] Dexter Kozen. “Lower Bounds for Natural Proof Systems”. In: 18th An-
nual Symposium on Foundations of Computer Science, Providence, Rhode
Island, USA, 31 October - 1 November 1977. IEEE Computer Society,
1977, pp. 254–266. doi: 10.1109/SFCS.1977.16.

[45] Ralf Küsters. Non-Standard Inferences in Description Logics. Vol. 2100.
Lecture Notes in Computer Science. Springer, 2001. isbn: 3-540-42397-4.
doi: 10.1007/3-540-44613-3. url: http://dx.doi.org/10.1007/3-
540-44613-3.

[46] Hector J. Levesque and Ronald J. Brachman. “Expressiveness and
tractability in knowledge representation and reasoning.” In: Computa-
tional Intelligence 3.1 (1987), pp. 78–93. issn: 1467-8640. doi: 10.1111/
j.1467-8640.1987.tb00176.x. url: http://dx.doi.org/10.1111/j.
1467-8640.1987.tb00176.x.

[47] Alberto Martelli and Ugo Montanari. “An Efficient Unification Algo-
rithm”. In: ACM Trans. Program. Lang. Syst. 4.2 (Apr. 1982), pp. 258–
282. issn: 0164-0925. doi: 10.1145/357162.357169. url: http://doi.
acm.org/10.1145/357162.357169.

[48] Antonella Poggi, Domenico Lembo, Diego Calvanese, Giuseppe De Gia-
como, Maurizio Lenzerini, and Riccardo Rosati. “Linking Data to Ontolo-
gies”. In: J. Data Semantics 10 (2008), pp. 133–173. doi: 10.1007/978-
3-540-77688-8_5. url: http://dx.doi.org/10.1007/978-3-540-
77688-8_5.

44

http://arxiv.org/abs/cs.LO/0005013
http://dx.doi.org/10.1016/j.apal.2008.10.011
http://dx.doi.org/10.1016/j.apal.2008.10.011
http://dx.doi.org/10.1016/S0020-0190(05)80006-7
http://dx.doi.org/10.1016/S0020-0190(05)80006-7
http://dx.doi.org/10.1016/S0020-0190(05)80006-7
http://dx.doi.org/10.1007/BF00245463
http://ceur-ws.org/Vol-353/Kazakov.pdf
http://ceur-ws.org/Vol-353/Kazakov.pdf
http://dx.doi.org/10.1109/SFCS.1977.16
http://dx.doi.org/10.1007/3-540-44613-3
http://dx.doi.org/10.1007/3-540-44613-3
http://dx.doi.org/10.1007/3-540-44613-3
http://dx.doi.org/10.1111/j.1467-8640.1987.tb00176.x
http://dx.doi.org/10.1111/j.1467-8640.1987.tb00176.x
http://dx.doi.org/10.1111/j.1467-8640.1987.tb00176.x
http://dx.doi.org/10.1111/j.1467-8640.1987.tb00176.x
http://dx.doi.org/10.1145/357162.357169
http://doi.acm.org/10.1145/357162.357169
http://doi.acm.org/10.1145/357162.357169
http://dx.doi.org/10.1007/978-3-540-77688-8_5
http://dx.doi.org/10.1007/978-3-540-77688-8_5
http://dx.doi.org/10.1007/978-3-540-77688-8_5
http://dx.doi.org/10.1007/978-3-540-77688-8_5

Bibliography

[49] P. Raulefs, J. Siekmann, P. Szabó, and E. Unvericht. “A Short Survey
on the State of the Art in Matching and Unification Problems”. In:
SIGSAM Bull. 13.2 (May 1979), pp. 14–20. issn: 0163-5824. doi: 10.

1145/1089208.1089210. url: http://doi.acm.org/10.1145/1089208.
1089210.

[50] Alan L. Rector and Ian R. Horrocks. “Experience building a large, re-
usable medical ontology using a description logic with transitivity and
concept inclusions”. In: In Proc. of the Workshop on Ontological Engi-
neering. 1997, pp. 414–418.

[51] V. V. Rybakov. Admissibility of Inference Rules. Vol. 136. Studies in Logic
and the Foundations of Mathematics. Amsterdam: North-Holland Pub-
lishing Co., 1997.

[52] Klaus Schild. “A Correspondence Theory for Terminological Logics: Pre-
liminary Report”. In: Proceedings of the 12th International Joint Con-
ference on Artificial Intelligence. Sydney, Australia, August 24-30, 1991.
1991, pp. 466–471. url: http : / / ijcai . org / Proceedings / 91 - 1 /

Papers/072.pdf.

[53] Viorica Sofronie-Stokkermans. “Locality and subsumption testing in EL
and some of its extensions”. In: Advances in Modal Logic 7, papers from the
seventh conference on ”Advances in Modal Logic,” held in Nancy, France,
9-12 September 2008. 2008, pp. 315–339. url: http://www.aiml.net/
volumes/volume7/Sofronie-Stokkermans.pdf.

[54] Giorgio Stefanoni and Boris Motik. “Answering Conjunctive Queries over
EL Knowledge Bases with Transitive and Reflexive Roles”. In: Proceedings
of the Twenty-Ninth AAAI Conference on Artificial Intelligence, January
25-30, 2015, Austin, Texas, USA. 2015, pp. 1611–1617. url: http://
www.aaai.org/ocs/index.php/AAAI/AAAI15/paper/view/9310.

[55] Frank Wolter and Michael Zakharyaschev. “Undecidability of the unifi-
cation and admissibility problems for modal and description logics”. In:
ACM Trans. Comput. Log. 9.4 (2008). doi: 10.1145/1380572.1380574.
url: http://doi.acm.org/10.1145/1380572.1380574.

45

http://dx.doi.org/10.1145/1089208.1089210
http://dx.doi.org/10.1145/1089208.1089210
http://doi.acm.org/10.1145/1089208.1089210
http://doi.acm.org/10.1145/1089208.1089210
http://ijcai.org/Proceedings/91-1/Papers/072.pdf
http://ijcai.org/Proceedings/91-1/Papers/072.pdf
http://www.aiml.net/volumes/volume7/Sofronie-Stokkermans.pdf
http://www.aiml.net/volumes/volume7/Sofronie-Stokkermans.pdf
http://www.aaai.org/ocs/index.php/AAAI/AAAI15/paper/view/9310
http://www.aaai.org/ocs/index.php/AAAI/AAAI15/paper/view/9310
http://dx.doi.org/10.1145/1380572.1380574
http://doi.acm.org/10.1145/1380572.1380574

Appendix: submitted publications

47

Unification in the Description Logic EL

Franz Baader and Barbara Morawska

Theoretical Computer Science, TU Dresden, Germany
{baader,morawska}@tcs.inf.tu-dresden.de

Abstract. The Description Logic EL has recently drawn considerable
attention since, on the one hand, important inference problems such as
the subsumption problem are polynomial. On the other hand, EL is used
to define large biomedical ontologies. Unification in Description Logics
has been proposed as a novel inference service that can, for example, be
used to detect redundancies in ontologies. The main result of this paper
is that unification in EL is decidable. More precisely, EL-unification is
NP-complete, and thus has the same complexity as EL-matching. We
also show that, w.r.t. the unification type, EL is less well-behaved: it
is of type zero, which in particular implies that there are unification
problems that have no finite complete set of unifiers.

1 Introduction

Description logics (DLs) [5] are a family of logic-based knowledge representa-
tion formalisms, which can be used to represent the conceptual knowledge of
an application domain in a structured and formally well-understood way. They
are employed in various application domains, such as natural language process-
ing, configuration, databases, and biomedical ontologies, but their most notable
success so far is the adoption of the DL-based language OWL [15] as standard
ontology language for the semantic web.

In DLs, concepts are formally described by concept terms, i.e., expressions
that are built from concept names (unary predicates) and role names (binary
predicates) using concept constructors. The expressivity of a particular DL is
determined by which concept constructors are available in it. From a semantic
point of view, concept names and concept terms represent sets of individuals,
whereas roles represent binary relations between individuals. For example, using
the concept name Woman, and the role name child, the concept of all women
having a daughter can be represented by the concept term

Woman � ∃child.Woman,

and the concept of all women having only daughters by

Woman � ∀child.Woman.

Knowledge representation systems based on DLs provide their users with various
inference services that allow them to deduce implicit knowledge from the explic-
itly represented knowledge. For instance, the subsumption algorithm allows one to

R. Treinen (Ed.): RTA 2009, LNCS 5595, pp. 350–364, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

Unification in the Description Logic EL 351

determine subconcept-superconcept relationships. For example, the concept term
Woman subsumes the concept term Woman � ∃child.Woman since all instances of
the second term are also instances of the first term, i.e., the second term is al-
ways interpreted as a subset of the first term. With the help of the subsumption
algorithm, a newly introduced concept term can automatically be placed at the
correct position in the hierarchy of the already existing concept terms.

Two concept terms C, D are equivalent (C ≡ D) if they subsume each other,
i.e., if they always represent the same set of individuals. For example, the terms
∀child.Rich � ∀child.Woman and ∀child.(Rich � Woman) are equivalent since the
value restriction operator (∀r.C) distributes over the conjunction operator (�). If
we replaced the value restriction operator by the existential restriction operator
(∃r.C), then this equivalence would no longer hold. However, for this operator,
we still have the equivalence

∃child.Rich � ∃child.(Woman � Rich) ≡ ∃child.(Woman � Rich).

The equivalence test can, for example, be used to find out whether a concept
term representing a particular notion has already been introduced, thus avoid-
ing multiple introduction of the same concept into the concept hierarchy. This
inference capability is very important if the knowledge base containing the con-
cept terms is very large, evolves during a long time period, and is extended and
maintained by several knowledge engineers. However, testing for equivalence of
concepts is not always sufficient to find out whether, for a given concept term,
there already exists another concept term in the knowledge base describing the
same notion. For example, assume that one knowledge engineer has defined the
concept of all women having a daughter by the concept term

Woman � ∃child.Woman.

A second knowledge engineer might represent this notion in a somewhat more
fine-grained way, e.g., by using the term Female � Human in place of Woman.
The concept terms Woman � ∃child.Woman and

Female � Human � ∃child.(Female � Human)

are not equivalent, but they are meant to represent the same concept. The
two terms can obviously be made equivalent by substituting the concept name
Woman in the first term by the concept term Female � Human. This leads us to
unification of concept terms , i.e., the question whether two concept terms can
be made equivalent by applying an appropriate substitution, where a substitu-
tion replaces (some of the) concept names by concept terms. Of course, it is
not necessarily the case that unifiable concept terms are meant to represent the
same notion. A unifiability test can, however, suggest to the knowledge engineer
possible candidate terms.

Unification in DLs was first considered in [9] for a DL called FL0, which
has the concept constructors conjunction (�), value restriction (∀r.C), and
the top concept (�). It was shown that unification in FL0 is decidable and

352 F. Baader and B. Morawska

ExpTime-complete, i.e., given an FL0-unification problem, we can effectively
decide whether it has a solution or not, but in the worst-case, any such de-
cision procedure needs exponential time. This result was extended in [7] to a
more expressive DL, which additional has the role constructor transitive clo-
sure. Interestingly, the unification type of FL0 had been determined almost a
decade earlier in [1]. In fact, as shown in [9], unification in FL0 corresponds to
unification modulo the equational theory of idempotent Abelian monoids with
several homomorphisms. In [1] it was shown that, already for a single homomor-
phism, unification modulo this theory has unification type zero, i.e., there are
unification problems for this theory that do not have a minimal complete set of
unifiers. In particular, such unification problems cannot have a finite complete
set of unifiers.

In this paper, we consider unification in the DL EL. The EL-family consists
of inexpressive DLs whose main distinguishing feature is that they provide their
users with existential restrictions (∃r.C) rather than value restrictions (∀r.C) as
the main concept constructor involving roles. The core language of this family is
EL, which has the top concept, conjunction, and existential restrictions as con-
cept constructors. This family has recently drawn considerable attention since,
on the one hand, the subsumption problem stays tractable (i.e., decidable in
polynomial time) in situations where FL0, the corresponding DL with value re-
strictions, becomes intractable: subsumption between concept terms is tractable
for both FL0 and EL, but allowing the use of concept definitions or even more
expressive terminological formalisms makes FL0 intractable [2,16,4], whereas it
leaves EL tractable [3,13,4]. On the other hand, although of limited expressive
power, EL is nevertheless used in applications, e.g., to define biomedical ontolo-
gies. For example, both the large medical ontology Snomed ct1 and the Gene
Ontology2 can be expressed in EL, and the same is true for large parts of the
medical ontology Galen [18]. The importance of EL can also be seen from the
fact that the new OWL2 standard3 contains a sub-profile OWL2 EL, which is
based on (an extension of) EL.

Unification in EL has, to the best of our knowledge, not been investigated
before, but matching (where one side of the equation(s) to be solved does not
contain variables) has been considered in [6,17]. In particular, it was shown in
[17] that the decision problem, i.e., the problem of deciding whether a given EL-
matching problem has a matcher or not, is NP-complete. Interestingly, FL0 be-
haves better w.r.t. matching than EL: for FL0, the decision problem is tractable
[8]. In this paper, we show that, w.r.t. the unification type, FL0 and EL be-
have the same: just as FL0, the DL EL has unification type zero. However,
w.r.t. the decision problem, EL behaves much better than FL0: EL-unification
is NP-complete, and thus has the same complexity as EL-matching.

In the next section, we define the DL EL and unification in EL more formally.
In Section 3, we recall the characterisation of subsumption and equivalence in

1 http://www.ihtsdo.org/snomed-ct/
2 http://www.geneontology.org/
3 See http://www.w3.org/TR/owl2-profiles/

Unification in the Description Logic EL 353

EL from [17], and in Section 4 we use this to show that unification in EL has
type zero. In Section 5, we show that unification in EL is NP-complete, and in
Section 6 we point out that our results for EL-unification imply that unification
modulo the equational theory of semilattices with monotone operators [19] is
NP-complete and of unification type zero.

More information about Description Logics can be found in [5], and about
unification theory in [12].

2 Unification in EL
First, we define the syntax and semantics of EL-concept terms as well as the
subsumption and the equivalence relation on these terms.

Starting with a set Ncon of concept names and a set Nrole of role names,
EL-concept terms are built using the concept constructors top concept (�),
conjunction (�), and existential restriction (∃r.C). The semantics of EL is defined
in the usual way, using the notion of an interpretation I = (DI , ·I), which
consists of a nonempty domain DI and an interpretation function ·I that assigns
binary relations on DI to role names and subsets of DI to concept terms, as
shown in the semantics column of Table 1.

Table 1. Syntax and semantics of EL

Name Syntax Semantics

concept name A AI ⊆ DI
role name r rI ⊆ DI × DI
top-concept � �I = DI
conjunction C � D (C � D)I = CI ∩ DI

existential restriction ∃r.C (∃r.C)I = {x | ∃y : (x, y) ∈ rI ∧ y ∈ CI}
subsumption C 	 D CI ⊆ DI

equivalence C ≡ D CI = DI

The concept term C is subsumed by the concept term D (written C � D)
iff CI ⊆ DI holds for all interpretations I. We say that C is equivalent to
D (written C ≡ D) iff C � D and D � C, i.e., iff CI = DI holds for all
interpretations I. The concept term C is strictly subsumed by the concept term
D (written C � D) iff C � D and C 	≡ D.

A concept definition is of the form A
.
= C where A is a concept name and

C is a concept term. A TBox T is a finite set of concept definitions such that
no concept name occurs more than once on the left-hand side of a concept
definition in T . The TBox T is called acyclic if there are no cyclic dependencies
between its concept definitions. The interpretation I is a model of the TBox
T iff AI = CI holds for all concept definitions A

.
= C in T . Subsumption

and equivalence w.r.t. a TBox are defined as follows: C �T D (C ≡T D) iff
CI ⊆ DI (CI = DI) holds for all models I of T . Subsumption and equivalence

354 F. Baader and B. Morawska

w.r.t. an acyclic TBox can be reduced to subsumption and equivalence of concept
terms (without TBox) by expanding the concept terms w.r.t. the TBox, i.e., by
replacing defined concepts (i.e., concept names occurring on the left-hand side of
a definition) by their definitions (i.e., the corresponding right-hand sides) until
all defined concepts have been replaced. This expansion process may, however,
result in an exponential blow-up [10].

In order to define unification of concept terms, we first introduce the notion
of a substitution operating on concept terms. To this purpose, we partition
the set of concepts names into a set Nv of concept variables (which may be
replaced by substitutions) and a set Nc of concept constants (which must not
be replaced by substitutions). Intuitively, Nv are the concept names that have
possibly been given another name or been specified in more detail in another
concept term describing the same notion. The elements of Nc are the ones of
which it is assumed that the same name is used by all knowledge engineers (e.g.,
standardised names in a certain domain).

A substitution σ is a mapping from Nv into the set of all EL-concept terms.
This mapping is extended to concept terms in the obvious way, i.e.,

– σ(A) := A for all A ∈ Nc,
– σ(�) := �,
– σ(C � D) := σ(C) � σ(D), and
– σ(∃r.C) := ∃r.σ(C).

Definition 1. An EL-unification problem is of the form Γ = {C1 ≡? D1, . . . ,
Cn ≡? Dn}, where C1, D1, . . . Cn, Dn are EL-concept terms. The substitution σ
is a unifier (or solution) of Γ iff σ(Ci) ≡ σ(Di) for i = 1, . . . , n. In this case, Γ
is called solvable or unifiable.

When we say that EL-unification is decidable (NP-complete), then we mean
that the following decision problem is decidable (NP-complete): given an EL-
unification problem Γ , decide whether Γ is solvable or not.

As usual, unifiers can be compared using the instantiation preorder ≤•. Let
Γ be an EL-unification problem, V the set of variables occurring in Γ , and σ, θ
two unifiers of this problem. We define

σ ≤• θ iff there is a substitution λ such that θ(X) ≡ λ(σ(X)) for all X ∈ V.

If σ ≤• θ, then we say that θ is an instance of σ.

Definition 2. Let Γ be an EL-unification problem. The set of substitutions M is
called a complete set of unifiers for Γ iff it satisfies the following two properties:

1. every element of M is a unifier of Γ ;
2. if θ is a unifier of Γ , then there exists a unifier σ ∈ M such that σ ≤• θ.

The set M is called a minimal complete set of unifiers for Γ iff it additionally
satisfies

3. if σ, θ ∈ M , then σ ≤• θ implies σ = θ.

Unification in the Description Logic EL 355

The unification type of a given unification problem is determined by the existence
and cardinality of such a minimal complete set.

Definition 3. Let Γ be an EL-unification problem. This problem has type uni-
tary (finitary, infinitary) iff it has a minimal complete set of unifiers of cardi-
nality 1 (finite cardinality, infinite cardinality). If Γ does not have a minimal
complete set of unifiers, then it is of type zero.

Note that the set of all unifiers of a given EL-unification problem is always a
complete set of unifiers. However, this set is usually infinite and redundant (in
the sense that some unifiers are instances of others). For a unitary or finitary
EL-unification problem, all unifiers can be represented by a finite complete set of
unifiers, whereas for problems of type infinitary or zero this is no longer possible.
In fact, if a problem has a finite complete set of unifiers M , then it also has a
finite minimal complete set of unifiers, which can be obtained by iteratively
removing redundant elements from M . For an infinite complete set of unifiers,
this approach of removing redundant unifiers may be infinite, and the set reached
in the limit need no longer be complete. This is what happens for problems of
type zero. The difference between infinitary and type zero is that a unification
problem of type zero cannot even have a non-redundant complete set of unifiers,
i.e., every complete set of unifiers must contain different unifiers σ, θ such that
σ ≤• θ.

When we say that EL has unification type zero, we mean that there exists
an EL-unification problem that has type zero. Before we can prove that this is
indeed the case, we must first have a closer look at equivalence in EL.

3 Equivalence and Subsumption in EL
In order to characterise equivalence of EL-concept terms, the notion of a reduced
EL-concept term is introduced in [17]. A given EL-concept term can be trans-
formed into an equivalent reduced term by applying the following rules modulo
associativity and commutativity of conjunction:

C � � → C for all EL-concept terms C

A � A → A for all concept names A ∈ Ncon

∃r.C � ∃r.D → ∃r.C for all EL-concept terms C, D with C � D

Obviously, these rules are equivalence preserving. We say that the EL-concept
term C is reduced if none of the above rules is applicable to it (modulo asso-
ciativity and commutativity of �). The EL-concept term D is a reduced form
of C if D is reduced and can be obtained from C by applying the above rules
(modulo associativity and commutativity of �). The following theorem is an easy
consequence of Theorem 6.3.1 on page 181 of [17].

Theorem 1. Let C, D be EL-concept terms, and Ĉ, D̂ reduced forms of C, D,
respectively. Then C ≡ D iff Ĉ is identical to D̂ up to associativity and commu-
tativity of �.

356 F. Baader and B. Morawska

This theorem can also be used to derive a recursive characterisation of subsump-
tion in EL. In fact, if C � D, then C � D ≡ C, and thus C and C � D have
the same reduced form. Thus, during reduction, all concept names and existen-
tial restrictions of D must be “eaten up” by corresponding concept names and
existential restrictions of C.

Corollary 1. Let C = A1 � . . . � Ak � ∃r1.C1 � . . . � ∃rm.Cm and D = B1 �
. . .�B� �∃s1.D1� . . .�∃sn.Dn, where A1, . . . , Ak, B1, . . . , B� are concept names.
Then C � D iff {B1, . . . , B�} ⊆ {A1, . . . , Ak} and for every j, 1 ≤ j ≤ n, there
exists an i, 1 ≤ i ≤ m, such that ri = sj and Ci � Dj.

Note that this corollary also covers the cases where some of the numbers k, �, m, n
are zero. The empty conjunction should then be read as �. The following lemma,
which is an immediate consequence of this corollary, will be used in our proof
that EL has unification type zero.

Lemma 1. If C, D are reduced EL-concept terms such that ∃r.D � C, then C
is either �, or of the form C = ∃r.C1 � . . . � ∃r.Cn where n ≥ 1; C1, . . . , Cn are
reduced and pairwise incomparable w.r.t. subsumption; and D � C1, . . . , D � Cn.
Conversely, if C, D are EL-concept terms such that C = ∃r.C1 � . . . �∃r.Cn and
D � C1, . . . , D � Cn, then ∃r.D � C.

In the proof of decidability of EL-unification, we will make use of the fact that
the inverse strict subsumption order is well-founded.

Proposition 1. There is no infinite sequence C0, C1, C2, C3, . . . of EL-concept
terms such that C0 � C1 � C2 � C3 � · · · .

Proof. We define the role depth of an EL-concept term C as the maximal nesting
of existential restrictions in C. Let n0 be the role depth of C0. Since C0 � Ci

for i ≥ 1, it is an easy consequence of Corollary 1 that the role depth of Ci is
bounded by n0, and that Ci contains only concept and role names occurring in
C0. In addition, it is known that, for a given natural number n0 and finite sets
of concept names C and role names R, there are, up to equivalence, only finitely
many EL-concept term built using concept names from C and role names from
R and of a role depth bounded by n0 [11]. Consequently, there are indices i < j
such that Ci ≡ Cj . This contradicts our assumption that Ci � Cj . ��

4 An EL-Unification Problem of Type Zero

To show that EL has unification type zero, we exhibit an EL-unification problem
that has this type.

Theorem 2. Let X, Y be variables. The EL-unification problem Γ := {X �
∃r.Y ≡? ∃r.Y } has unification type zero.

Unification in the Description Logic EL 357

Proof. It is enough to show that any complete set of unifiers for this problem
is redundant, i.e., contains two different unifiers that are comparable w.r.t. the
instantiation preorder. Thus, let M be a complete set of unifiers for Γ .

First, note that M must contain a unifier that maps X to an EL-concept
term not equivalent to � or ∃r.�. In fact, consider a substitution τ such that
τ(X) = ∃r.A and τ(Y) = A. Obviously, τ is a unifier of Γ . Thus, M must contain
a unifier σ such that σ ≤• τ . In particular, this means that there is a substitution λ
such that ∃r.A = τ(X) ≡ λ(σ(X)). Obviously, σ(X) ≡ � (σ(X) ≡ ∃r.�) would
imply λ(σ(X)) ≡ � (λ(σ(X)) ≡ ∃r.�), and thus ∃r.A ≡ � (∃r.A ≡ ∃r.�), which
is, however, not the case.

Thus, let σ ∈ M be such that σ(X) 	≡ � and σ(X) 	≡ ∃r.�. Without loss of
generality, we assume that C := σ(X) and D := σ(Y) are reduced. Since σ is a
unifier of Γ , we have ∃r.D � C. Consequently, Lemma 1 yields that C is of the
form C = ∃r.C1 � . . . � ∃r.Cn where n ≥ 1, C1, . . . , Cn are reduced and pairwise
incomparable w.r.t. subsumption, and D � C1, . . . , D � Cn.

We use σ to construct a new unifier σ̂ as follows:

σ̂(X) := ∃r.C1 � . . . � ∃r.Cn � ∃r.Z

σ̂(Y) := D � Z

where Z is a new variable (i.e., one not occurring in C, D). The second part of
Lemma 1 implies that σ̂ is indeed a unifier of Γ .

Next, we show that σ̂ ≤• σ. To this purpose, we consider the substitution λ
that maps Z to C1, and does not change any of the other variables. Then we
have λ(σ̂(X)) = ∃r.C1 � . . . � ∃r.Cn � ∃r.C1 ≡ ∃r.C1 � . . . � ∃r.Cn = σ(X) and
λ(σ̂(Y)) = D � C1 ≡ D = σ(Y). Note that the second equivalence holds since
we have D � C1.

Since M is complete, there exists a unifier θ ∈ M such that θ ≤• σ̂. Transitivity
of the relation ≤• thus yields θ ≤• σ. Since σ and θ both belong to M , we have
completed the proof of the theorem once we have shown that σ 	= θ. Assume
to the contrary that σ = θ. Then we have σ ≤• σ̂, and thus there exists a
substitution μ such that μ(σ(X)) ≡ σ̂(X), i.e.,

∃r.μ(C1) � . . . � ∃r.μ(Cn) ≡ ∃r.C1 � . . . � ∃r.Cn � ∃r.Z. (1)

Recall that the concept terms C1, . . . , Cn are reduced and pairwise incomparable
w.r.t. subsumption. In addition, since σ(X) = ∃r.C1 � . . .�∃r.Cn is reduced and
not equivalent to ∃r.�, none of the concept terms C1, . . . , Cn can be equivalent
to �. Finally, Z is a concept name that does not occur in C1, . . . , Cn. All this
implies that ∃r.C1 � . . . � ∃r.Cn � ∃r.Z is reduced. Obviously, any reduced form
for ∃r.μ(C1)� . . .�∃r.μ(Cn) is a conjunction of at most n existential restrictions.
Thus, Theorem 1 shows that the above equivalence (1) actually cannot hold.

To sum up, we have shown that M contains two distinct unifiers σ, θ such
that θ ≤• σ. Since M was an arbitrary complete set of unifiers for Γ , this shows
that this unification problem cannot have a minimal complete set of unifiers. ��

358 F. Baader and B. Morawska

5 The Decision Problem

Before we can describe our decision procedure for EL-unification, we must in-
troduce some notation. An EL-concept term is called an atom iff it is a concept
name (i.e., concept constant or concept variable) or an existential restriction
∃r.D. Obviously, any EL-concept term is (equivalent to) a conjunction of atoms,
where the empty conjunction is �. The set At(C) of atoms of an EL-concept
term C is defined inductively: if C = �, then At(C) := ∅; if C is a concept name,
then At(C) := {C}; if C = ∃r.D then At(C) := {C} ∪ At(D); if C = C1 � C2,
then At(C) := At(C1) ∪ At(C2).

Concept names and existential restrictions ∃r.D where D is a concept name or
� are called flat atoms. The EL-unification problem Γ is flat iff it only contains
equations of the following form:

– X ≡? C where X is a variable and C is a non-variable flat atom;
– X1 � . . . � Xm ≡? Y1 � . . . � Yn where X1, . . . , Xm, Y1, . . . , Yn are variables.

By introducing new concept variables and eliminating �, any EL-unification
problem Γ can be transformed in polynomial time into a flat EL-unification
problem Γ ′ such that Γ is solvable iff Γ ′ is solvable. Thus, we may assume
without loss of generality that our input EL-unification problems are flat. Given
a flat EL-unification problem Γ = {C1 ≡? D1, . . . , Cn ≡? Dn}, we call the atoms
of C1, D1, . . . , Cn, Dn the atoms of Γ .

The unifier σ of Γ is called reduced (ground) iff, for all concept variables X oc-
curring in Γ , the EL-concept term σ(X) is reduced (does not contain variables).
Obviously, Γ is solvable iff it has a reduced ground unifier. Given a ground uni-
fier σ of Γ , we consider the set At(σ) of all atoms of σ(X), where X ranges over
all variables occurring in Γ . We call the elements of At(σ) the atoms of σ.

Given EL-concept terms C, D, we define C >is D iff C � D. Proposition 1
says that the strict order >is defined this way is well-founded. This order is
monotone in the following sense.

Lemma 2. Let C, D, D′ be EL-concept terms such that D >is D′ and C is
reduced and contains at least one occurrence of D. If C′ is obtained from C by
replacing all occurrences of D by D′, then C >is C′.

Proof. We prove the lemma by induction on the size of C. If C = D, then
C′ = D′, and thus C = D >is D′ = C′. Thus, assume that C 	= D. In this
case, C obviously cannot be a concept name. If C = ∃r.C1, then D occurs in
C1. By induction, we can assume that C1 >is C′

1, where C′
1 is obtained from

C1 by replacing all occurrences of D by D′. Thus, we have C = ∃r.C1 >is

∃r.C′
1 = C′ by Corollary 1. Finally, assume that C = C1 � . . . � Cn for n >

1 atoms C1, . . . , Cn. Since C is reduced, these atoms are incomparable w.r.t.
subsumption, and since D occurs in C we can assume without loss of generality
that D occurs in C1. Let C′

1, . . . , C
′
n be respectively obtained from C1, . . . , Cn

by replacing every occurrence of D by D′, and then reducing the concept term
obtained this way. By induction, we have C1 >is C′

1. Assume that C 	>is C′.

Unification in the Description Logic EL 359

Since the concept constructors of EL are monotone w.r.t. subsumption �, we
have C � C′, and thus C 	>is C′ means that C ≡ C′. Consequently, C =
C1 � . . . � Cn and the reduced form of C′

1 � . . . � C′
n must be equal up to

associativity and commutativity of �. If C′
1 � . . . � C′

n is not reduced, then
its reduced form is actually a conjunction of m < n atoms, which contradicts
C ≡ C′. If C′

1 � . . .�C′
n is reduced, then C1 >is C′

1 implies that there is an i 	= 1
such that Ci ≡ C′

1. However, then Ci ≡ C′
1 � C1 contradicts the fact that the

atoms C1, . . . , Cn are incomparable w.r.t. subsumption. ��

We use the order >is on EL-concept terms to define a well-founded order on
ground unifiers. Since >is is well-founded, its multiset extension >m is also well-
founded. Given a ground unifier σ of Γ , we consider the multiset S(σ) of all
EL-concept terms σ(X), where X ranges over all concept variables occurring in
Γ . For two ground unifiers σ, θ of Γ , we define σ � θ iff S(σ) >m S(θ). The
ground unifier σ of Γ is minimal iff there is no ground unifier θ of Γ such that
σ � θ. The following proposition is an easy consequence of the fact that � is
well-founded.

Proposition 2. Let Γ be an EL-unification problem. Then Γ is solvable iff it
has a minimal reduced ground unifier.

In the following, we show that minimal reduced ground unifiers of flat EL-
unification problems satisfy properties that make it easy to check (with an NP-
algorithm) whether such a unifier exists or not.

Lemma 3. Let Γ be a flat EL-unification problem and γ a minimal reduced
ground unifier of Γ . If C is an atom of γ, then there is a non-variable atom D
of Γ such that C ≡ γ(D).

Proof. Since γ is ground, C is either a concept constant or an existential re-
striction. First, assume that C = A for a concept constant A, but there is no
non-variable atom D of Γ such that A ≡ γ(D). This simply means that A does
not occur in Γ . Let γ′ be the substitution obtained from γ by replacing every
occurrence of A by �. Since equivalence in EL is preserved under replacing con-
cept names by �, and since A does not occur in Γ , it is easy to see that γ′ is
also a unifier of Γ . However, since γ � γ′, this contradicts our assumption that
γ is minimal.

Second, assume that C = ∃r.C1, but there is no non-variable atom D of Γ
such that C ≡ γ(D). We assume that C is maximal (w.r.t. subsumption) with
this property, i.e., for every atom C′ of γ with C � C′, there is a non-variable
atom D′ of Γ such that C′ ≡ γ(D′). Let D1, . . . , Dn be all the atoms of Γ
with C � γ(Di) (i = 1, . . . , n). By our assumptions on C, we actually have
C � γ(Di) and, by Lemma 1, the atom Di is also an existential restriction

Di = ∃r.D′
i (i = 1, . . . , n). The conjunction D̂ := γ(D1) � . . . � γ(Dn) obviously

subsumes C. We claim that this subsumption relationship is actually strict. In
fact, if n = 0, then D̂ = �, and since C is an atom, it is not equivalent to
�. If n ≥ 1, then C = ∃r.C1 � ∃r.γ(D′

1) � . . . � ∃r.γ(Dn) would imply (by

360 F. Baader and B. Morawska

Corollary 1) that there is an i, 1 ≤ i ≤ n, with C1 � γ(D′
i). However, this would

yield C = ∃r.C1 � ∃r.γ(D′
i) = γ(Di), which contradicts the fact that C � γ(Di).

Thus, we have shown that C � D̂. The substitution γ′ is obtained from γ by
replacing every occurrence of C by D̂. Lemma 2 implies that γ � γ′. Thus, to
obtain the desired contradiction, it is sufficient to show that γ′ is a unifier of Γ .

First, consider an equation of the form X ≡? E in Γ , where X is a variable
and E is a non-variable flat atom. If E is a concept constant, then γ(X) = E, and
thus γ′(X) = γ(X), which shows that γ′ solves this equation. Thus, assume that
E = ∃r.E′. Since γ is reduced, we actually have γ(X) = ∃r.γ(E′). If C occurs in

γ(E′), then each replacement of C by D̂ in γ(E′) is matched by the corresponding
replacement in γ(X). Thus, in this case γ′ again solves the equation. Finally,
assume that C = γ(X). But then C ≡ γ(E) for a non-variable atom E of Γ ,
which contradicts our assumption on C.

Second, consider an equation of the form X1 � . . .�Xm ≡? Y1 � . . .�Yn where
X1, . . . , Xm, Y1, . . . , Yn are variables. Then L := γ(X1�. . .�Xm) and R := γ(Y1�
. . .�Yn) reduce to the same reduced EL-concept term J . Let L′, R′, J ′ be the EL-
concept terms respectively obtained from L, R, J by replacing every occurrence
of C by D̂. We prove that L′ = γ′(X1 � . . .�Xm) and R′ = γ′(Y1 � . . .�Yn) both
reduce to J ′, which shows that γ′ solves this equation. It is enough to show that
the reductions are invariant under the replacement of C by D̂. Obviously, all the
interesting reductions are of the form E1 �E2 → E1 where E1, E2 are existential
restrictions such that E1 � E2. Since γ is reduced, we can assume that E1, E2

are reduced. Let E′
1, E

′
2 be respectively obtained from E1, E2 by replacing every

occurrence of C by D̂. We must show that E′
1 � E′

2 reduces to E′
1. For this,

it is enough to show that E′
1 � E′

2. Assume that an occurrence of C in E1 is
actually needed to have the subsumption E1 � E2. Then there is an existential
restriction C′ in E2 such that C � C′. If C = C′, then both are replaced by D̂,
and thus this replacement is harmless. Otherwise, C � C′. Since C′ is an atom
of γ, maximality of C yields that there is a non-variable atom D′ of Γ such that
C′ ≡ γ(D′). Now C � C′ ≡ γ(D′) implies that there is an i, 1 ≤ i ≤ n, such

that D′ = Di. Thus, C′ is actually one of the conjuncts of D̂, which again shows
that replacing C by D̂ is harmless. Thus, we have shown that E′

1 � E′
2, which

completes the proof of the lemma. ��
The next proposition is an easy consequence of this lemma.

Proposition 3. Let Γ be a flat EL-unification problem and γ a minimal reduced
ground unifier of Γ . If X is a concept variable occurring in Γ , then γ(X) ≡ �
or there are non-variable atoms D1, . . . , Dn (n ≥ 1) of Γ such that γ(X) ≡
γ(D1) � . . . � γ(Dn).

Proof. If γ(X) 	≡ �, then it is a non-empty conjunction of atoms, i.e., there are
atoms C1, . . . , Cn (n ≥ 1) such that γ(X) = C1 � . . . � Cn. Then C1, . . . , Cn are
atoms of γ, and thus Lemma 3 yields non-variable atoms D1, . . . , Dn of Γ such
that Ci ≡ γ(Di) for i = 1, . . . n. Consequently, γ(X) ≡ γ(D1) � . . . � γ(Dn). ��
This proposition suggests the following non-deterministic algorithm for deciding
solvability of a given flat EL-unification problem Γ :

Unification in the Description Logic EL 361

1. For every variable X occurring in Γ , guess a finite, possibly empty, set SX

of non-variable atoms of Γ .
2. We say that the variable X directly depends on the variable Y if Y occurs

in an atom of SX . Let depends on be the transitive closure of directly de-
pends on. If there is a variable that depends on itself, then the algorithm
returns “fail.” Otherwise, there exists a strict linear order > on the variables
occurring in Γ such that X > Y if X depends on Y .

3. We define the substitution σ along the linear order >:
– If X is the least variable w.r.t. >, then SX does not contain any variables.

We define σ(X) to be the conjunction of the elements of SX , where the
empty conjunction is �.

– Assume that σ(Y) is defined for all variables Y < X . Then SX only
contains variables Y for which σ(Y) is already defined. If SX is empty,
then we define σ(X) := �. Otherwise, let SX = {D1, . . . , Dn}. We define
σ(X) := σ(D1) � . . . � σ(Dn).

4. Test whether the substitution σ computed in the previous step is a unifier
of Γ . If this is the case, then return σ; otherwise, return “fail.”

This algorithm is trivially sound since it only returns substitutions that are
unifiers of Γ . In addition, it obviously always terminates. Thus, to show correct-
ness of our algorithm, it is sufficient to show that it is complete.

Lemma 4 (completeness). If Γ is solvable, then there is a way of guessing
in Step 1 subsets SX of the non-variable atoms of Γ such that the depends on
relation determined in Step 2 is acyclic and the substitution σ computed in Step 3
is a unifier of Γ .

Proof. If Γ is solvable, then it has a minimal reduced ground unifier γ. By
Proposition 3, for every variable X occurring in Γ we have γ(X) ≡ � or there
are non-variable atoms D1, . . . , Dn (n ≥ 1) of Γ such that γ(X) ≡ γ(D1) �
. . . � γ(Dn). If γ(X) ≡ �, then we define SX := ∅. Otherwise, we define SX :=
{D1, . . . , Dn}.

We show that the relation depends on induced by these sets SX is acyclic, i.e.,
there is no variable X such that X depends on itself. If X directly depends on Y ,
then Y occurs in an element of SX . Since SX consists of non-variable atoms of
the flat unification problem Γ , this means that there is a role name r such that
∃r.Y ∈ SX . Consequently, we have γ(X) � ∃r.γ(Y). Thus, if X depends on X ,
then there are k ≥ 1 role names r1, . . . , rk such that γ(X) � ∃r1. · · · ∃rk.γ(X).
This is clearly not possible since γ(X) cannot be subsumed by an EL-concept
term whose role depth is larger than the role depth of γ(X).

To show that the substitution σ induced by the sets SX is a unifier of Γ ,
we prove that σ is equivalent to γ, i.e., σ(X) ≡ γ(X) holds for all variables X
occurring in Γ . The substitution σ is defined along the linear order >. If X is the
least variable w.r.t. >, then SX does not contain any variables. If SX is empty,
then σ(X) = � ≡ γ(X). Otherwise, let SX = {D1, . . . , Dn}. Since the atoms Di

do not contain variables, we have Di = γ(Di). Thus, the definitions of SX and
of σ yield σ(X) = D1 � . . . � Dn = γ(D1) � . . . � γ(Dn) ≡ γ(X).

362 F. Baader and B. Morawska

Assume that σ(Y) ≡ γ(Y) holds for all variables Y < X . If SX = ∅, then
we have again σ(X) = � ≡ γ(X). Otherwise, let SX = {D1, . . . , Dn}. Since the
atoms Di contain only variables that are smaller than X , we have σ(Di) ≡ γ(Di)
by induction. Thus, the definitions of SX and of σ yield σ(X) = σ(D1) � . . . �
σ(Dn) ≡ γ(D1) � . . . � γ(Dn) ≡ γ(X). ��
Note that our proof of completeness actually shows that, up to equivalence, the
algorithm returns all minimal reduced ground unifiers of Γ .

Theorem 3. EL-unification is NP-complete.

Proof. NP-hardness follows from the fact that EL-matching is NP-complete [17].
To show that the problem can be decided by a non-deterministic polynomial-
time algorithm, we analyse the complexity of our algorithm. Obviously, guessing
the sets SX (Step 1) can be done within NP. Computing the depends on relation
and checking it for acyclicity (Step 2) is clearly polynomial.

Steps 3 and 4 are more problematic. In fact, since a variable may occur in
different atoms of Γ , the substitution σ computed in Step 3 may be of exponential
size. This is actually the same reason that makes a naive algorithm for syntactic
unification compute an exponentially large most general unifier [12]. As in the
case of syntactic unification, the solution to this problem is basically structure
sharing. Instead of computing the substitution σ explicitly, we view its definition
as an acyclic TBox. To be more precise, for every concept variable X occurring
in Γ , the TBox Tσ contains the concept definition X

.
= � if SX = ∅ and

X
.
= D1 � . . . � Dn if SX = {D1, . . . , Dn} (n ≥ 1). Instead of computing σ in

Step 3, we compute Tσ. Because of the acyclicity test in Step 2, we know that
Tσ is an acyclic TBox. The size of Tσ is obviously polynomial in the size of Γ ,
and thus this modified Step 3 is polynomial. It is easy to see that applying the
substitution σ is the same as expanding the concept terms C, D w.r.t. the TBox
Tσ. This implies that, for every equation C ≡? D in Γ , we have C ≡Tσ D iff
σ(C) ≡ σ(D). Thus, testing whether σ is a unifier of Γ can be reduced to testing
whether C ≡Tσ D holds for every equation C ≡? D in Γ . Since subsumption
(and thus equivalence) in EL w.r.t. acyclic TBoxes can be decided in polynomial
time [3],4 this completes the proof of the theorem. ��

6 Unification in Semilattices with Monotone Operators

Unification problems and their types were originally not introduced for Descrip-
tion Logics, but for equational theories [12]. In this section, we show that the
above results for unification in EL can actually be viewed as results for an
equational theory. As shown in [19], the equivalence problem for EL-concept
terms corresponds to the word problem for the equational theory of semilattices
with monotone operators. In order to define this theory, we consider a signa-
ture ΣSLmO consisting of a binary function symbol ∧, a constant symbol 1, and
finitely many unary function symbols f1, . . . , fn. Terms can then be built using
these symbols and additional variable symbols and free constant symbols.

4 Of course, the polynomial-time subsumption algorithm does not expand the TBox.

Unification in the Description Logic EL 363

Definition 4. The equational theory of semilattices with monotone operators
is defined by the following identities:

SLmO := {x ∧ (y ∧ z) = (x ∧ y) ∧ z, x ∧ y = y ∧ x, x ∧ x = x, x ∧ 1 = x} ∪
{fi(x ∧ y) ∧ fi(y) = fi(x ∧ y) | 1 ≤ i ≤ n}

A given EL-concept term C using only roles r1, . . . , rn can be translated into
a term tC over the signature ΣSLmO by replacing each concept constant A by
a corresponding free constants a, each concept variable X by a corresponding
variable x, � by 1, � by ∧, and ∃ri by fi. For example, the EL-concept term
C = A � ∃r1.� � ∃r3.(X � B) is translated into tC = a ∧ f1(1) ∧ f3(x ∧ b).
Conversely, any term over the signature ΣSLmO can be translated back into an
EL-concept term.

Lemma 5. Let C, D be EL-concept term using only roles r1, . . . , rn. Then C ≡
D iff tC =SLmO tD.

As an immediate consequence of this lemma, we have that unification in the
DL EL corresponds to unification modulo the equational theory SLmO . Thus,
Theorem 2 implies that SLmO has unification type zero, and Theorem 3 implies
that SLmO-unification is NP-complete.

Corollary 2. The equational theory SLmO of semilattices with monotone oper-
ators has unification type zero, and deciding solvability of an SLmO-unification
problem is an NP-complete problem.

7 Conclusion

In this paper, we have shown that unification in the DL EL is of type zero
and NP-complete. There are interesting differences between the behaviour of EL
and the closely related DL FL0 w.r.t. unification and matching. Though the
unification types coincide for these two DLs, the complexities of the decision
problems differ: FL0-unification is ExpTime-complete, and thus considerably
harder than EL-unification. In contrast, FL0-matching is polynomial, and thus
considerably easier than EL-matching, which is NP-complete.

It is well-known that there is a close connection between modal logics and
DLs [5]. For example, the DL ALC, which can be obtained by adding negation
to EL or FL0, corresponds to the basic (multi-)modal logic K. Decidability of
unification in K is a long-standing open problem. Recently, undecidability of
unification in some extensions of K (for example, by the universal modality)
was shown in [20]. The undecidability results in [20] also imply undecidability of
unification in some expressive DLs (e.g., SHIQ). The unification types of some
modal (and related) logics have been determined by Ghilardi; for example in
[14] he shows that K4 and S4 have unification type finitary. Unification in sub-
Boolean modal logics (i.e., modal logics that are not closed under all Boolean
operations, such as the modal logic equivalent of EL) has, to the best of our
knowledge, not been considered in the modal logic literature.

364 F. Baader and B. Morawska

References

1. Baader, F.: Unification in commutative theories. J. of Symbolic Computation 8(5)
(1989)

2. Baader, F.: Terminological cycles in KL-ONE-based knowledge representation lan-
guages. In: Proc. AAAI 1990 (1990)

3. Baader, F.: Terminological cycles in a description logic with existential restrictions.
In: Proc. IJCAI 2003 (2003)

4. Baader, F., Brandt, S., Lutz, C.: Pushing the EL envelope. In: Proc. IJCAI 2005
(2005)

5. Baader, F., Calvanese, D., McGuinness, D., Nardi, D., Patel-Schneider, P.F. (eds.):
The Description Logic Handbook: Theory, Implementation, and Applications.
Cambridge University Press, Cambridge (2003)

6. Baader, F., Küsters, R.: Matching in description logics with existential restrictions.
In: Proc. KR 2000 (2000)

7. Baader, F., Küsters, R.: Unification in a description logic with transitive closure
of roles. In: Nieuwenhuis, R., Voronkov, A. (eds.) LPAR 2001. LNCS (LNAI),
vol. 2250, p. 217. Springer, Heidelberg (2001)

8. Baader, F., Küsters, R., Borgida, A., McGuinness, D.L.: Matching in description
logics. J. of Logic and Computation 9(3) (1999)

9. Baader, F., Narendran, P.: Unification of concepts terms in description logics. J.
of Symbolic Computation 31(3) (2001)

10. Baader, F., Nutt, W.: Basic description logics. In: [5] (2003)
11. Baader, F., Sertkaya, B., Turhan, A.-Y.: Computing the least common subsumer

w.r.t. a background terminology. J. of Applied Logic 5(3) (2007)
12. Baader, F., Snyder, W.: Unification theory. In: Handbook of Automated Reasoning,

vol. I. Elsevier Science Publishers, Amsterdam (2001)
13. Brandt, S.: Polynomial time reasoning in a description logic with existential re-

strictions, GCI axioms, and—what else. In: Proc. ECAI 2004 (2004)
14. Ghilardi, S.: Best solving modal equations. Ann. Pure Appl. Logic 102(3) (2000)
15. Horrocks, I., Patel-Schneider, P.F., van Harmelen, F.: From SHIQ and RDF to

OWL: The making of a web ontology language. Journal of Web Semantics 1(1)
(2003)

16. Kazakov, Y., de Nivelle, H.: Subsumption of concepts in FL0 for (cyclic) terminolo-
gies with respect to descriptive semantics is PSPACE-complete. In: Proc. DL 2003.
CEUR Electronic Workshop Proceedings (2003), http://CEUR-WS.org/Vol-81/

17. Küsters, R.: Non-Standard Inferences in Description Logics. LNCS (LNAI),
vol. 2100. Springer, Heidelberg (2001)

18. Rector, A., Horrocks, I.: Experience building a large, re-usable medical ontology
using a description logic with transitivity and concept inclusions. In: Proc. AAAI
1997 (1997)

19. Sofronie-Stokkermans, V.: Locality and subsumption testing in EL and some of its
extensions. In: Proc. AiML 2008 (2008)

20. Wolter, F., Zakharyaschev, M.: Undecidability of the unification and admissibility
problems for modal and description logics. ACM Trans. Comput. Log. 9(4) (2008)

SAT Encoding of Unification in EL

Franz Baader and Barbara Morawska�

Theoretical Computer Science, TU Dresden, Germany
{baader,morawska}@tcs.inf.tu-dresden.de

Abstract. Unification in Description Logics has been proposed as a
novel inference service that can, for example, be used to detect redun-
dancies in ontologies. In a recent paper, we have shown that unification
in EL is NP-complete, and thus of a complexity that is considerably
lower than in other Description Logics of comparably restricted expres-
sive power. In this paper, we introduce a new NP-algorithm for solving
unification problems in EL, which is based on a reduction to satisfiabil-
ity in propositional logic (SAT). The advantage of this new algorithm
is, on the one hand, that it allows us to employ highly optimized state-
of-the-art SAT solvers when implementing an EL-unification algorithm.
On the other hand, this reduction provides us with a proof of the fact
that EL-unification is in NP that is much simpler than the one given in
our previous paper on EL-unification.

1 Introduction

Description logics (DLs) [3] are a well-investigated family of logic-based knowl-
edge representation formalisms. They can be used to represent the relevant con-
cepts of an application domain using concept terms, which are built from concept
names and role names using certain concept constructors. The DL EL offers the
constructors conjunction (�), existential restriction (∃r.C), and the top concept
(�). This description logic has recently drawn considerable attention since, on
the one hand, important inference problems such as the subsumption problem
are polynomial in EL [1,2]. On the other hand, though quite inexpressive, EL
can be used to define biomedical ontologies. For example, both the large medical
ontology Snomed CT and the Gene Ontology1 can be expressed in EL.

Unification in description logics has been proposed in [6] as a novel inference
service that can, for example, be used to detect redundancies in ontologies.
There, it was shown that, for the DL FL0, which differs from EL by offering
value restrictions (∀r.C) in place of existential restrictions, deciding unifiability
is an ExpTime-complete problem. In [4], we were able to show that unification
in EL is of considerably lower complexity: the decision problem is “only” NP-
complete. However, the unification algorithm introduced in [4] to establish the
NP upper bound is a brutal “guess and then test” NP-algorithm, and thus it is
unlikely that a direct implementation of it will perform well in practice.

� Supported by DFG under grant BA 1122/14-1
1 See http://www.ihtsdo.org/snomed-ct/ and http://www.geneontology.org/

C. Fermüller and A. Voronkov (Eds.): LPAR-17, LNCS 6397, pp. 97–111, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

98 F. Baader and B. Morawska

In this report, we present a new decision procedure for EL-unification that
takes a given EL-unification problem Γ and translates it into a set of proposi-
tional clauses C(Γ) such that (i) the size of C(Γ) is polynomial in the size of
Γ , and (ii) Γ is unifiable iff C(Γ) is satisfiable. This allows us to use a highly-
optimized SAT-solver such as MiniSat2 to decide solvability of EL-unification
problems. Our SAT-translation is inspired by Kapur and Narendran’s transla-
tion of ACIU-unification problems into satisfiability in propositional Horn logic
(HornSAT) [9]. The connection between EL-unification and ACIU-unification is
due to the fact that (modulo equivalence) the conjunction constructor in EL is
associative, commutative, and idempotent, and has the top concept � as a unit.
Existential restrictions are similar to free unary functions symbols in ACIU, with
the difference that existential restrictions are monotonic w.r.t. subsumption.

It should be noted that the proof of correctness of our translation into SAT
does not depend on the results in [4]. Consequently, this translation provides us
with a new proof of the fact that EL-unification is in NP. This proof is much
simpler than the original proof of this fact in [4].

2 Unification in EL
Starting with a set Ncon of concept names and a set Nrole of role names, EL-
concept terms are built using the following concept constructors: the nullary
constructor top-concept (�), the binary constructor conjunction (C�D), and for
every role name r ∈ Nrole , the unary constructor existential restriction (∃r.C).
The semantics of EL is defined in the usual way, using the notion of an in-
terpretation I = (DI , ·I), which consists of a nonempty domain DI and an
interpretation function ·I that assigns binary relations on DI to role names and
subsets of DI to concept terms, as shown in the semantics column of Table 1.

Table 1. Syntax and semantics of EL

Name Syntax Semantics

concept name A AI ⊆ DI
role name r rI ⊆ DI × DI
top-concept � �I = DI
conjunction C � D (C � D)I = CI ∩ DI

existential restriction ∃r.C (∃r.C)I = {x | ∃y : (x, y) ∈ rI ∧ y ∈ CI}
subsumption C 	 D CI ⊆ DI

equivalence C ≡ D CI = DI

The concept term C is subsumed by the concept term D (written C � D)
iff CI ⊆ DI holds for all interpretations I. We say that C is equivalent to
D (written C ≡ D) iff C � D and D � C, i.e., iff CI = DI holds for all
interpretations I.

2 http://minisat.se/

SAT Encoding of Unification in EL 99

The following lemma provides us with a useful characterization of subsumption
in EL [4].

Lemma 1. Let C, D be EL-concept terms such that

C = A1 � . . . � Ak � ∃r1.C1 � . . . � ∃rm.Cm,
D = B1 � . . . � B� � ∃s1.D1 � . . . � ∃sn.Dn,

where A1, . . . , Ak, B1, . . . , B� are concept names. Then C � D iff

– {B1, . . . , B�} ⊆ {A1, . . . , Ak} and
– for every j, 1 ≤ j ≤ n, there exists i, 1 ≤ i ≤ m, s.t. ri = sj and Ci � Dj.

When defining unification in EL, we assume that the set of concepts names
is partitioned into a set Nv of concept variables (which may be replaced by
substitutions) and a set Nc of concept constants (which must not be replaced
by substitutions). A substitution σ is a mapping from Nv into the set of all EL-
concept terms. This mapping is extended to concept terms in the usual way, i.e.,
by replacing all occurrences of variables in the term by their σ-images.

A substitution σ induces the following binary relation >σ on variables:

X >σ Y iff there are n ≥ 1 role names r1, . . . , rn ∈ Nrole such that

σ(X) � σ(∃r1. · · · ∃rn.Y).

The following lemma is an easy consequence of Lemma 1.

Lemma 2. The relation >σ is a strict partial order.

Unification tries to make concept terms equivalent by applying a substitution.

Definition 1. An EL-unification problem is of the form Γ = {C1 ≡? D1, . . . ,
Cn ≡? Dn}, where C1, D1, . . . Cn, Dn are EL-concept terms. The substitution σ
is a unifier (or solution) of Γ iff σ(Ci) ≡ σ(Di) for i = 1, . . . , n. In this case, Γ
is called solvable or unifiable.

Note that Lemma 2 implies that the variable X cannot unify with the concept
term ∃r1. · · · ∃rn.X (n≥1), i.e., the EL-unification problem {X ≡?∃r1. · · · ∃rn.X}
does not have a solution. This means that an EL-unification algorithm has to
realize a kind of occurs check.

We will assume without loss of generality that our EL-unification problems are
flattened in the sense that they do not contain nested existential restrictions. To
define this notion in more detail, we need to introduce the notion of an atom. An
EL-concept term is called an atom iff it is a concept name (i.e., concept constant
or concept variable) or an existential restriction ∃r.D. A non-variable atom is an
atom that is not a concept variable. The set of atoms of an EL-concept term C
consists of all the subterms of C that are atoms. For example, A�∃r.(B �∃r.�)
has the atom set {A, ∃r.(B � ∃r.�), B, ∃r.�}.

Obviously, any EL-concept term is (equivalent to) a conjunction of atoms,
where the empty conjunction is �. The following lemma is an easy consequence
of Lemma 1.

100 F. Baader and B. Morawska

Lemma 3. Let C, D be EL-concept terms such that C = C1 � . . . � Cm and
D = D1 � . . . � Dn, where D1, . . . , Dn are atoms. Then C � D iff for every
j, 1 ≤ j ≤ n, there exists an i, 1 ≤ i ≤ m, such that Ci � Dj.

In our reduction, we will restrict the attention (without loss of generality) to
unification problems that are built from atoms without nested existential re-
strictions. To be more precise, concept names and existential restrictions ∃r.D
where D is a concept name are called flat atoms. An EL-concept term is flat
iff it is a conjunction of flat atoms (where the empty conjunction is �). The
EL-unification problem Γ is flat iff it consists of equations between flat EL-
concept terms. By introducing new concept variables and eliminating �, any
EL-unification problem Γ can be transformed in polynomial time into a flat
EL-unification problem Γ ′ such that Γ is solvable iff Γ ′ is solvable. Thus, we
may assume without loss of generality that our input EL-unification problems
are flat. Given a flat EL-unification problem Γ = {C1 ≡? D1, . . . , Cn ≡? Dn},
we call the atoms of C1, D1, . . . , Cn, Dn the atoms of Γ .

3 The SAT Encoding

In the following, let Γ be a flat EL-unification problem. We show how to translate
Γ into a set of propositional clauses C(Γ) such that (i) the size of C(Γ) is
polynomial in the size of Γ , and (ii) Γ is unifiable iff C(Γ) is satisfiable. The
main idea underlying this translation is that we want to guess, for every pair of
atoms A, B of the flat unification problem Γ , whether or not A is subsumed by
B after the application of the unifier σ to be computed. In addition, we need
to guess a strict partial order > on the variables of Γ , which corresponds to (a
subset of) the strict partial order >σ induced by σ.

Thus, we use the following propositional variables:

– [A��B] for every pair A, B of atoms of Γ ;

– [X>Y] for every pair of variables occurring in Γ .

Note that we use non-subsumption rather than subsumption for the propositional
variables of the first kind since this will allow us to translate the equations of the
unification problem into Horn clauses (à la Kapur and Narendran [9]). However,
we will have to “pay” for this since expressing transitivity of subsumption then
requires the use of non-Horn clauses.

Given a flat EL-unification problem Γ , the set C(Γ) consists of the following
clauses:

(1) Translation of the equations of Γ . For every equation A1 � · · · � Am ≡?

B1 � · · · � Bn of Γ , we create the following Horn clauses, which express that
any atom that occurs as a top-level conjunct on one side of an equivalence must
subsume a top-level conjunct on the other side:3

3 See Lemma 3.

SAT Encoding of Unification in EL 101

1. For every non-variable atom C ∈ {A1, . . . , Am}:

[B1 ��C] ∧ . . . ∧ [Bn ��C] →
2. For every non-variable atom C ∈ {B1, . . . , Bn}:

[A1 ��C] ∧ . . . ∧ [Am ��C] →
3. For every non-variable atom C of Γ s.t. C �∈ {A1, . . . , Am, B1, . . . , Bn}:

[A1 ��C] ∧ . . . ∧ [Am ��C] → [Bj ��C] for j = 1, . . . , n

[B1 ��C] ∧ . . . ∧ [Bn ��C] → [Ai ��C] for i = 1, . . . , m

(2) Translation of the relevant properties of subsumption in EL.

1. For every pair of distinct concept constants A, B occurring in Γ , we say that
A cannot be subsumed by B:

→ [A��B]
2. For every pair of distinct role names r, s and atoms ∃r.A, ∃s.B of Γ , we say

that ∃r.A cannot be subsumed by ∃s.B:

→ [∃r.A��∃s.B]
3. For every pair ∃r.A, ∃r.B of atoms of Γ , we say that ∃r.A can only be

subsumed by ∃r.B if A is already subsumed by B:

[A��B] → [∃r.A��∃r.B]
4. For every concept constant A and every atom ∃r.B of Γ , we say that A and

∃r.B are not in a subsumption relationship

→ [A��∃r.B] and → [∃r.B ��A]
5. Transitivity of subsumption is expressed using the non-Horn clauses:

[C1 ��C3] → [C1 ��C2] ∨ [C2 ��C3] where C1, C2, C3 are atoms of Γ .

Note that there are further properties that hold for subsumption in EL (e.g.,
the fact that A � B implies ∃r.A � ∃r.B), but that are not needed to ensure
soundness of our translation.

(3) Translation of the relevant properties of >.

1. Transitivity and irreflexivity of > can be expressed using the Horn clauses:

[X>X] → and [X>Y] ∧ [Y >Z] → [X>Z],
where X, Y, Z are concept variables occurring in Γ .

2. The connection between this order and the order >σ is expressed using the
non-Horn clauses:

→ [X>Y] ∨ [X ��∃r.Y],
where X, Y are concept variables occurring in Γ and ∃r.Y is an atom of Γ .

Since the number of atoms of Γ is linear in the size of Γ , it is easy to see
that C(Γ) is of size polynomial in the size of Γ , and that it can be computed
in polynomial time. Note, however, that without additional optimizations, the
polynomial can be quite big. If the size of Γ is n, then the number of atoms of Γ
is in O(n). The number of possible propositional variables is thus in O(n2). The
size of C(Γ) is dominated by the number of clauses expressing the transitivity
of subsumption and the transitivity of the order on variables. Thus, the size of
C(Γ) is in O((n2)3) = O(n6).

102 F. Baader and B. Morawska

Example 1. It is easy to see that the EL-unification problem Γ := {X �∃r.X ≡?

X} does not have a solution. The set of clauses C(Γ) has the following elements:

(1) The only clause created in (1) is: [X ��∃r.X] → .
(2) Among the clauses introduced in (2) is the following:

5. [∃r.X ��∃r.X] → [∃r.X ��X] ∨ [X ��∃r.X]
(3) The following clauses are created in (3):

1. [X>X] →
2. → [X>X] ∨ [X ��∃r.X].

This set of clauses is unsatisfiable. In fact, [X ��∃r.X] needs to be assigned the
truth value 0 because of (1). Consequently, (3)2. implies that [X>X] needs to
be assigned the truth value 1, which then falsifies (3)1.

The next example considers an equation where the right-hand side is the top
concept, which is the empty conjunction of flat atoms.

Example 2. The EL-unification problem Γ := {A � B ≡? �} has no solution.
In (1)1. we need to construct clauses for the atoms A and B on the left-hand

side. Since the right-hand side of the equation is the empty conjunction (i.e.,
n = 0), the left-hand sides of the implications generated this way are empty, i.e.,
both atoms yield the implication → , in which both the left-hand side and the
right-hand side is empty. An empty left-hand side is read as true (1), whereas an
empty right-hand side is read as false (0). Thus, this implication is unsatisfiable.

Theorem 1 (Soundness and completeness). Let Γ be a flat EL-unification
problem. Then, Γ is solvable iff C(Γ) is satisfiable.

We prove this theorem in the next two subsections, one devoted to the proof of
soundness and the other to the proof of completeness. After the formal proof,
we will also explain the reduction on a more intuitive level. Since our translation
into SAT is polynomial and SAT is in NP, Theorem 1 shows that EL-unification
is in NP. NP-hardness follows from the fact that EL-matching is known to be
NP-hard [10]: in fact, matching problems are special unification problems where
the terms on the right-hand sides of the equations do not contain variables.

Corollary 1. EL-unification is NP-complete.

3.1 Soundness

To prove soundness, we assume that C(Γ) is satisfiable. We must show that this
implies that Γ is solvable. In order to define a unifier of Γ , we take a propositional
valuation τ that satisfies C(Γ), and use τ to define an assignment of sets SX of
non-variable atoms of Γ to the variables X of Γ :

SX := {C | C non-variable atom of Γ s.t. τ([X ��C]) = 0}.

Given this assignment of sets of non-variable atoms to the variables in Γ , we say
that the variable X directly depends on the variable Y if Y occurs in an atom of
SX . Let depends on be the transitive closure of directly depends on. We define
the binary relation >d on variables as X >d Y iff X depends on Y.

SAT Encoding of Unification in EL 103

Lemma 4. Let X, Y be variables occurring in Γ .

1. If X >d Y , then τ([X>Y]) = 1.
2. The relation >d is irreflexive, i.e., X �>d X.

Proof. (1) If X directly depends on the variable Y , then Y appears in a non-
variable atom of SX . This atom must be of the form ∃r.Y . By the construction
of SX , ∃r.Y ∈ SX can only be the case if τ([X ��∃r.Y]) = 0. Since C(Γ) contains
the clause → [X>Y] ∨ [X ��∃r.Y], this implies τ([X>Y]) = 1.

Since the transitivity clauses introduced in (3)1. are satisfied by τ , we also
have that τ([X>Y]) = 1 whenever X depends on the variable Y .

(2) If X depends on itself, then τ([X>X]) = 1 by the first part of this lemma.
This is, however, impossible since τ satisfies the clause [X>X] → . ��

The second part of this lemma shows that the relation >d, which is transitive
by definition, is a strict partial order. We can now use the sets SX to define a
substitution σ along the strict partial order >d:

4

– If X is a minimal variable w.r.t. >d, then σ(X) is the conjunction of the
elements of SX , where the empty conjunction is �.

– Assume that σ(Y) is already defined for all variables Y such that X >d Y ,
and let SX = {D1, . . . , Dn}. We define σ(X) := σ(D1) � . . . � σ(Dn), where
again the empty conjunction (in case n = 0) is �.

Note that the substitution σ defined this way is actually a ground substitution,
i.e., for all variables X occurring in Γ we have that σ(X) does not contain
variables. In the following, we will say that this substitution is induced by the
valuation τ . Before we can show that σ is a unifier of Γ , we must first prove the
following lemma.

Lemma 5. Let C1, C2 be atoms of Γ . If τ([C1 ��C2]) = 0, then σ(C1) � σ(C2).

Proof. Assume that τ([C1 ��C2]) = 0. First, consider the case where C1 is a
variable. If C2 is not a variable, then (by the construction of σ) τ([C1 ��C2]) = 0
implies that σ(C2) is a conjunct of σ(C1), and hence σ(C1) � σ(C2). If C2

is a variable, then τ([C1 ��C2]) = 0, together with the transitivity clauses of
(2)5., implies that every conjunct of σ(C2) is also a conjunct of σ(C1), which
again yields σ(C1) � σ(C2). Second, consider the case where σ(C2) = �. Then
σ(C1) � σ(C2) obviously holds.

Hence, it remains to prove the lemma for the cases when C1 is not a variable
(i.e., it is a concept constant or an existential restriction) and σ(C2) is not �.
We use induction on the role depth of σ(C1)�σ(C2), where the role depth of an
EL-concept term is the maximal nesting of existential restrictions in this term.
To be more precise, if D1, D2, C1, C2 are atoms of Γ , then we define (D1, D2) �
(C1, C2) iff the role depth of σ(D1) � σ(D2) is greater than the role depth of
σ(C1) � σ(C2).

4 >d is well-founded since Γ contains only finitely many variables.

104 F. Baader and B. Morawska

We prove the lemma by induction on �. The base case for this induction is
the case where σ(C1) and σ(C2) have role depth 0, i.e., both are conjunctions of
concept constants. Since C1 is not a variable, this implies that C1 is a concept
constant. The atom C2 is either a concept constant or a concept variable. We
consider these two cases:

– Let C2 be a concept constant (and thus C2 = σ(C2)). Since τ([C1 ��C2]) = 0
and the clauses introduced in (2)1. of the translation to SAT are satisfied by
τ , we have C2 = C1, and thus σ(C1) � σ(C2).

– Assume that C2 is a variable. Since the role depth of σ(C2) is 0 and σ(C2) is
not �, σ(C2) is a non-empty conjunction of concept constants, i.e., σ(C2) =
B1 � · · · � Bn for n ≥ 1 constants B1, . . . , Bn such that τ([C2 ��Bi]) = 0 for
i = {1, . . . , n}. Then, since τ satisfies the transitivity clauses introduced in
(2)5. of the translation to SAT, τ([C1 ��Bi]) = 0 for i = {1, . . . , n}. Since τ
satisfies the clauses introduced in (2)1. of the translation to SAT, Bi must
be identical to C1 for i = {1, . . . , n}. Hence, σ(C2) = B1 � · · · � Bn ≡ C1 =
σ(C1), which implies σ(C1) � σ(C2).

Now we assume by induction that the statement of the lemma holds for all pairs
of atoms D1, D2 such that (C1, C2) � (D1, D2). Notice that, if C1 is a constant,
then σ(C2) cannot contain an atom of the form ∃r.D as a top-level conjunct.
In fact, this could only be the case if either C2 is an existential restriction, or
C2 is a variable and SC2 contains an existential restriction. In the first case,
τ([C1 ��C2]) = 0 would then imply that one of the clauses introduced in (2)4. is
not satisfied by τ . In the second case, τ would either need to violate one of the
transitivity clauses introduced in (2)5. or one of the clauses introduced in (2)4.
Thus, σ(C2) cannot contain an atom of the form ∃r.D as a top-level conjunct.
This implies that σ(C1) � σ(C2) has role depth 0, which actually means that we
are in the base case. Therefore, we can assume that C1 is not a constant.

Since C1 is not a variable, we have only one case to consider: C1 is of the
form C1 = ∃r.C. Then, because of the clauses in (2)4. and the transitivity
clauses in (2)5., σ(C2) cannot contain a constant as a conjunct. If C2 is an
existential restriction C2 = ∃s.D, then τ([C1 ��C2]) = 0, together with the clauses
in (2)2. yields r = s. Consequently, τ([C1 ��C2]) = 0, together with the clauses
in (2)3., yields τ([C ��D] = 0. By induction, this implies σ(C) � σ(D), and thus
σ(C1) = ∃r.σ(C) � ∃r.σ(D) = σ(C2).

If C2 is a variable, then (by the construction of σ and the clauses in (2)4.)
σ(C2) must be a conjunction of atoms of the form ∃r1.σ(D1), . . . , ∃rn.σ(Dn),
where τ([C2 ��∃ri.Di]) = 0 for i = 1, . . . , n. The transitivity clauses in (2)5. yield
τ([∃r.C ��∃r1.D1]) = . . . = τ([∃r.C ��∃rn.Dn]) = 0, and the clauses in (2)2. yield
r1 = · · · = rn = r. Using the clauses in (2)3., we thus obtain τ([C ��D1]) = . . . =
τ([C ��Dn]) = 0. Induction yields σ(C) � σ(D1), . . . , σ(C) � σ(Dn), which in
turn implies σ(C1) = ∃r.σ(C) � ∃r1.σ(D1) � · · · � ∃rn.σ(Dn) = σ(C2). ��
Now we can easily prove the soundness of the translation.

Proposition 1 (Soundness). The substitution σ induced by a satisfying valu-
ation of C(Γ) is a unifier of Γ .

SAT Encoding of Unification in EL 105

Proof. We have to show, for each equation A1 � . . . � Am ≡? B1 � . . . � Bn in Γ ,
that σ(A1) � . . . � σ(Am) ≡ σ(B1) � . . . � σ(Bn). Both sides of this equivalence
are conjunctions of ground atoms, i.e., σ(A1) � . . . � σ(Am) = E1 � . . . � El and
σ(B1)�. . .�σ(Bn) = F1�. . .�Fk. By Lemma 3, we can prove that the equivalence
holds by showing that, for each Fi, there is an Aj such that σ(Aj) � Fi, and for
each Ej , there is a Bi such that σ(Bi) � Ej . Here we show only the first part
since the other one can be shown in the same way.

First, assume that Fi = σ(Bν) for a non-variable atom Bν ∈ {B1, . . . , Bn}.
Since the clauses introduced in (1)2. of the translation are satisfied by τ , there is
an Aj such that τ([Aj ��Bν]) = 0. By Lemma 5, this implies σ(Aj) � σ(Bν) = Fi.

If there is no non-variable atom Bν ∈ {B1, . . . , Bn} such that σ(Bν) = Fi,
then there is a variable Bν such that the atom Fi is a conjunct of σ(Bν). By the
construction of σ, we know that there is a non-variable atom C of Γ such that
Fi = σ(C) and τ([Bν ��C]) = 0. By our assumption, C is not in {B1, . . . , Bn}.
Since the clauses created in (1)3. are satisfied by τ , there is an Aj such that
τ([Aj ��C]) = 0. By Lemma 5, this implies σ(Aj) � σ(C) = Fi. ��

3.2 Completeness

To show completeness, assume that Γ is solvable, and let γ be a unifier Γ . We
must show that there is a propositional valuation τ satisfying all the clauses in
C(Γ). We define the propositional valuation τ as follows:

– for all atoms C, D of Γ , we define τ([C ��D]) := 1 if γ(C) �� γ(D); and
τ([C ��D]) := 0 if γ(C) � γ(D).

– for all variables X, Y occurring in Γ , we define τ([X>Y]) := 1 if X >γ Y ;
and τ([X>Y]) := 0 otherwise.

In the following, we call τ the valuation induced by γ. We show that τ satisfies
all the clauses that are created by our translation:

(1) In (1) of the translation we create three types of Horn clauses for each
equation A1 � · · · � Am ≡? B1 � · · · � Bn.
1. If C ∈ {A1, . . . , Am} is a non-variable atom, then C(Γ) contains the

clause [B1 ��C] ∧ · · · ∧ [Bn ��C] → .
The fact that C is a non-variable atom (i.e., a concept constant or

an existential restriction) implies that γ(C) is also a concept constant or
an existential restriction. Since γ is a unifier of the equation, Lemma 3
implies there must be an atom Bi such that γ(Bi) � γ(C). Therefore
τ([Bi ��C]) = 0, and the clause is satisfied by τ .

2. The clauses generated in (1)2. of the translation can be treated similarly.
3. If C is a non-variable atom of Γ that does not belong to {A1, . . . , Am,

B1, . . . , Bn}, then C(Γ) contains the clause [A1 ��C] ∧ · · · ∧ [Am ��C] →
[Bk ��C] for k = 1, . . . , n. (The symmetric clauses also introduced in (1)3.
can be treated similarly.)

To show that this clause is satisfied by τ , assume that τ([Bk ��C]) = 0,
i.e., γ(Bk) � γ(C). We must show that this implies τ([Aj ��C]) = 0 for
some j.

106 F. Baader and B. Morawska

Now, γ(A1) � · · · � γ(Am) ≡ γ(B1) � · · · � γ(Bn) � γ(Bk) � γ(C)
implies that there is an Aj such that γ(Aj) � γ(C), by Lemma 3. Thus,
or definition of τ yields τ([Aj ��C]) = 0.

(2) Now we look at the clauses introduced in (2). Since two constants cannot be
in a subsumption relationship, the clauses in (2)1. are satisfied by τ . Simi-
larly, the clauses in (2)2. are satisfied by τ since no existential restriction can
subsume another one built using a different role name. The clauses in (2)3.
are satisfied because γ(∃r.A) � γ(∃r.B) implies γ(A) � γ(B), by Lemma 1.
In a similar way we can show that all clauses in (2)4. and (2)5. are satisfied
by our valuation τ . Indeed, these clauses just describe valid properties of the
subsumption relation in EL.

(3) The clauses introduced in (3) all describe valid properties of the strict partial
order >γ ; hence they are satisfied by τ .

Proposition 2 (Completeness). The valuation τ induced by a unifier of Γ
satisfies C(Γ).

3.3 Some Comments Regarding the Reduction

We have shown above that our SAT reduction is sound and complete in the sense
that the (flat) EL-unification problem Γ is solvable iff its translation C(Γ) into
a SAT problem is satisfiable. This proof is, of course, a formal justification of
our definition of this translation. Here, we want to explain some aspects of this
translation on a more intuitive level.

Basically, the clauses generated in (1) enforce that “enough” subsumption
relationships hold to have a unifier, i.e., solve each equation. What “enough”
means is based on Lemma 3: once we have applied the unifier, every atom on
one side of the (instantiated) equation must subsume an (instantiated) conjunct
on the other side. Such an atom can either be an instance of a non-variable atom
(i.e., an existential restriction or a concept constant) occurring on this side of the
equation, or it is introduced by the instantiation of a variable. The first case is
dealt with by the clauses in (1)1. and (1)2. whereas the second case is dealt with
by (1)3. A valuation of the propositional variables of the form [A��B] guesses
such subsumptions, and the clauses generated in (1) ensure that enough of them
are guessed for solving all equations. However, it is not sufficient to guess enough
subsumptions. We also must make sure that these subsumptions can really be
made to hold by applying an appropriate substitution. This is the role of the
clauses introduced in (2). Basically, they say that two existential restrictions can
only subsume each other if they are built using the same role name, and their
direct subterms subsume each other. Two concept constants subsume each other
iff they are equal, and there cannot be a subsumption relation between a concept
constant and an existential restriction. To ensure that all such consequences of
the guessed subsumptions are really taken into account, transitivity of subsump-
tion is needed. Otherwise, we would, for example, not detect the conflict caused
by guessing that [A��X] and [X ��B] should be evaluated to 0, i.e., that (for the
unifier σ to be constructed) we have σ(A) � σ(X) � σ(B) for distinct concept

SAT Encoding of Unification in EL 107

constants A, B. These kinds of conflicts correspond to what is called a clash
failure in syntactic unification [8].

Example 3. To see the clauses generated in (1) and (2) of the translation at
work, let us consider a simple example, where we assume that A, B are distinct
concept constants and X, Y are distinct concept variables. Consider the equation

∃r.X ≡? ∃r.Y, (1)

which in (1)1. and (1)2. yields the clauses

[∃r.Y ��∃r.X] → and [∃r.X ��∃r.Y] → (2)

These clauses state that, for any unifier σ of the equation (1) we must have
σ(∃r.Y) � σ(∃r.X) and σ(∃r.X) � σ(∃r.Y). However, stating just these two
clauses is not sufficient: we must also ensure that the assignments for the vari-
ables X and Y really realize these subsumptions. To see this, assume that we
have the additional equation

X � Y ≡? A � B, (3)

which yields the clauses

[X ��A] ∧ [Y ��A] → and [X ��B] ∧ [Y ��B] → (4)

One possible way of satisfying these two clauses is to set

τ([X ��A]) = 0 = τ([Y ��B]) and τ([X ��B]) = 1 = τ([Y ��A]). (5)

The substitution σ induced by this valuation replaces X by A and Y by B,
and thus clearly does not satisfy the subsumptions σ(∃r.Y) � σ(∃r.X) and
σ(∃r.X) � σ(∃r.Y). Choosing the incorrect valuation (5) is prevented by the
clauses introduced in (2) of the translation. In fact, in (2)3. we introduce the
clauses

[X ��Y] → [∃r.X ��∃r.Y] and [Y ��X] → [∃r.Y ��∃r.X] (6)

Together with the clauses (2), these clauses can be used to deduce the clauses

[X ��Y] → and [Y ��X] → (7)

Together with the transitivity clauses introduced in (2)5.:

[X ��B] → [X ��Y] ∨ [Y ��B] and [Y ��A] → [Y ��X] ∨ [X ��A] (8)

the clauses (7) prevent the valuation (5).

This example illustrates, among other things, why the clauses introduced in
(2)3. of the translation are needed. In fact, without the clauses (6), the incorrect
valuation (5) could not have been prevented.

One may wonder why we only construct the implications in (2)3., but not the
implications in the other direction:

[∃r.A��∃r.B] → [A��B]

The reason is that these implications are not needed to ensure soundness.

108 F. Baader and B. Morawska

Example 4. Consider the unification problem

{X ≡? A, Y ≡? ∃r.X, Z ≡? ∃r.A},

which produces the clauses [X ��A] → , [Y ��∃r.X] → , [Z ��∃r.A] → .
The clause [X ��A] → states that, in any unifier σ of the first equation, we

must have σ(X) � σ(A). Though this does imply that σ(∃r.X) � σ(∃r.A), there
is no need to state this with the clause [∃r.X ��∃r.A] → since this subsumption
is not needed to solve the equation. Thus, it actually does not hurt if a valua-
tion evaluates [∃r.X ��∃r.A] with 1. In fact, this decision does not influence the
substitution for X that is computed from the valuation.

Expressed on a more technical level, the crucial tool for proving soundness is
Lemma 5, which says that τ([C1 ��C2]) = 0 implies σ(C1) � σ(C2) for the sub-
stitution σ induced by τ . This lemma does not state, and our proof of soundness
does not need, the implication in the other direction. As illustrated in the above
example, it may well be the case that σ(C1) � σ(C2) although the satisfying
valuation τ evaluates [C1 ��C2] to 1. The proof of Lemma 5 is by induction on
the role depth, and thus reduces the problem of showing a subsumption rela-
tionship for terms of a higher role depth to the problem of showing subsumption
relationships for terms of a lower role depth. This is exactly what the clauses in
(2)3. allow us to do. The implications in the other direction are not required for
this. They would be needed for proving the other direction of the lemma, but
this is not necessary for proving soundness.

Until now, we have not mentioned the clauses generated in (3). Intuitively,
they are there to detect what are called occurs check failures in the terminology
of syntactic unification [8]. To be more precise, the variables of the form [X>Y]
together with the clauses generated in (3)1. are used to guess a strict partial order
on the variables occurring in the unification problem. The clauses generated in
(3)2. are used to enforce that only variables Y smaller than X can occur in the
set SX defined by a satisfying valuation. This makes it possible to use the sets
SX to define a substitution σ by induction on the strict partial order. Thus, this
order realizes what is called a constant restriction in the literature on combining
unification algorithms [7]. We have already seen the clauses generated in (3) at
work in Example 1.

4 Connection to the Original “in NP” Proof

It should be noted that, in the present paper, we give a proof of the fact that
EL-unification is in NP that is independent of the proof in [4]. The only result
from [4] that we have used is the characterization of subsumption (Lemma 1),
which is an easy consequence of known results for EL [10]. In [4], the “in NP”
result is basically shown as follows:

1. define a well-founded partial order � on substitutions and use this to show
that any solvable EL-unification problem has a ground unifier that is minimal
w.r.t. this order;

SAT Encoding of Unification in EL 109

2. show that minimal ground unifiers are local in the sense that they are built
from atoms of Γ ;

3. use the locality of minimal ground unifiers to devise a “guess and then test”
NP-algorithm for generating a minimal ground unifier.

The proof of 2., which shows that a non-local unifier cannot be minimal, is quite
involved. Compared to that proof, the proof of soundness and completeness given
in the present paper is much simpler.

In order to give a closer comparison between the approach used in [4] and
the one employed in the present paper, let us recall some of the definitions and
results from [4] in more detail:

Definition 2. Let Γ be a flat EL-unification problem, and γ be a ground unifier
of Γ . Then γ is called local if, for each variable X in Γ , there are n ≥ 0 non-
variable atoms D1, . . . , Dn of Γ such that γ(X) = γ(D1) � · · · � γ(Dn), where
the empty conjunction is �.

The “guess and then test” algorithm in [4] crucially depends on the fact that any
solvable EL-unification problem has a local unifier. This result can be obtained
as an easy consequence of our proof of soundness and completeness.

Corollary 2. Let Γ be a flat EL-unification problem that is solvable. Then Γ
has a local unifier.

Proof. Since Γ is solvable, our completeness result implies that C(Γ) is satis-
fiable. Let τ be a valuation that satisfies C(Γ), and let σ be the unifier of Γ
induced by τ in our proof of soundness. Locality of σ is an immediate conse-
quence of the definition of σ. ��

This shows that one does not really need the notion of minimality, and the
quite involved proof that minimal unifiers are local given in [4], to justify the
completeness of the “guess and then test” algorithm from [4]. However, in [4]
minimal unifiers are also used to show a stronger completeness result for the
“guess and then test” algorithm: it is shown that (up to equivalence) every
minimal ground unifier is computed by the algorithm. In the following, we show
that this is also the case for the unification algorithm obtained through our
reduction.

Definition 3. Let σ and γ be substitutions, and Γ be an EL-unification problem.
We define

– γ � σ if, for each variable X in Γ , we have γ(X) � σ(X);
– γ ≡ σ if γ � σ and σ � γ, and γ � σ if γ � σ and σ �≡ γ;
– γ is a minimal unifier of Γ if there is no unifier σ of Γ such that γ � σ.

As a corollary to our soundness and completeness proof, we can show that any
minimal ground unifier σ of Γ is computed by our reduction, in the sense that
it is induced by a satisfying valuation of C(Γ).

110 F. Baader and B. Morawska

Corollary 3. Let Γ be a flat EL-unification problem. If γ is a minimal ground
unifier of Γ , then there is a unifier σ, induced by a satisfying valuation τ of
C(Γ), such that σ ≡ γ.

Proof. Let γ be a minimal ground unifier of Γ , and τ the satisfying valuation
of C(Γ) induced by γ. We show that the unifier σ of Γ induced by τ satisfies
γ � σ. Minimality of γ then implies γ ≡ σ.

We must show that, for each variable X occurring in Γ , we have γ(X) � σ(X).
We prove this by well-founded induction on the strict partial order > defined as
X > Y iff τ([X>Y]) = 1.5

Let X be a minimal variable with respect to this order. Since τ satisfies the
clauses in (3)2., the set SX induced by τ (see the proof of soundness) contains
only ground atoms. Let SX = {C1, . . . , Cn} for n ≥ 0 ground atoms. If n = 0,
then σ(X) = �, and thus γ(X) � σ(X) is trivially satisfied. Otherwise, we have
σ(X) = σ(C1)�. . .�σ(Cn) = C1�. . .�Cn, and we know, for each i ∈ {1, . . . , n},
that τ([X ��Ci]) = 0 by the definition of SX . Since τ is the valuation induced
by the unifier γ, this implies that γ(X) � γ(Ci) = Ci. Consequently, we have
shown that γ(X) � C1 � . . . � Cn = σ(X).

Now we assume, by induction, that we have γ(Y) � σ(Y) for all variables
Y such that X > Y . Let SX = {C1, . . . , Cn} for n ≥ 0 non-variable atoms
of Γ . If n = 0, then σ(X) = �, and thus γ(X) � σ(X) is again trivially
satisfied. Otherwise, we have σ(X) = σ(C1) � · · · � σ(Cn), and we know, for
each i ∈ {1, . . . , n}, that τ([X ��Ci]) = 0 by the definition of SX . Since τ is the
valuation induced by the unifier γ, this implies that γ(X) � γ(Ci). for each
i ∈ {1, . . . , n}. Since all variables occurring in C1, . . . , Cn are smaller than X
and since the concept constructors of EL are monotonic w.r.t. subsumption, we
have by induction that γ(Ci) � σ(Ci) for each i ∈ {1, . . . , n}. Consequently, we
have γ(X) � γ(C1) � . . . � γ(Cn) � σ(C1) � · · · � σ(Cn) = σ(X). ��

Table 2. Experimental Results

Size #InVars(#FlatVars) #Atoms #PropVars #Clauses OverallTime MiniSatTime

10 2(5) 10 125 895 58 ms 0 ms
10 2(5) 11 146 1 184 79 ms 4 ms
22 2(10) 24 676 13 539 204 ms 4 ms
22 2(10) 25 725 15 254 202 ms 8 ms
22 2(10) 25 725 15 254 211 ms 8 ms
22 3(11) 26 797 17 358 222 ms 8 ms

5 Conclusion

The results presented in this paper are of interest both from a theoretical and
a practical point of view. From the theoretical point of view, this paper gives a
new proof of the fact that EL-unification is in NP, which is considerably simpler

5 The clauses in C(Γ) make sure that this is indeed a strict partial order. It is trivially
well-founded since Γ contains only finitely many variables.

SAT Encoding of Unification in EL 111

than the original proof given in [4]. We have also shown that the stronger com-
pleteness result for the “guess and then test” NP algorithm of [4] (all minimal
ground unifiers are computed) holds as well for the new algorithm presented in
this paper. From the practical point of view, the translation into propositional
satisfiability allows us to employ highly optimized state of the art SAT solvers
when implementing an EL-unification algorithm.

We have actually implemented the SAT translation described in this paper in
Java, and have used MiniSat for the satisfiability check. Until now, we have not
yet optimized the translation, and we have tested the algorithm only on rela-
tively small (solvable) unification problems extracted from Snomed CT. Table 1
shows the first experimental results obtained for these problems. The first col-
umn counts the size of the input problem (number of occurrences of concept and
role names); the second column the number of concept variables before and after
flattening; the third column the number of atoms in the flattened unification
problem; the fourth column the number of propositional variables introduced
by our translation; the fifth column the number of clauses introduced by our
translation; the sixth column the overall run-time (in milliseconds) for decid-
ing whether a unifier exists; and the seventh column the time (in milliseconds)
needed by MiniSat for deciding the satisfiability of the generated clause set.

In [5] we have introduced a more goal-oriented variant of the brutal “guess
and then test” algorithm of [4], which tries to transform a given flat unification
problem into solved form. However, without any smart backtracking strategies, a
first implementation of this algorithm cannot compete with the SAT translation
presented in this paper.

References

1. Baader, F.: Terminological cycles in a description logic with existential restrictions.
In: Proc. IJCAI 2003. Morgan Kaufmann, Los Altos (2003)

2. Baader, F., Brandt, S., Lutz, C.: Pushing the EL envelope. In: Proc. IJCAI 2005.
Morgan Kaufmann, Los Altos (2005)

3. Baader, F., Calvanese, D., McGuinness, D., Nardi, D., Patel-Schneider, P.F. (eds.):
The Description Logic Handbook: Theory, Implementation, and Applications.
Cambridge University Press, Cambridge (2003)

4. Baader, F., Morawska, B.: Unification in the description logic EL. In: Treinen, R.
(ed.) RTA 2009. LNCS, vol. 5595, pp. 350–364. Springer, Heidelberg (2009)

5. Baader, F., Morawska, B.: Unification in the description logic EL. In: Logical Meth-
ods in Computer Science (to appear, 2010)

6. Baader, F., Narendran, P.: Unification of concepts terms in description logics. J.
of Symbolic Computation 31(3), 277–305 (2001)

7. Baader, F., Schulz, K.: Unification in the union of disjoint equational theories:
Combining decision procedures. J. of Symbolic Computation 21(2), 211–243 (1996)

8. Baader, F., Snyder, W.: Unification theory. In: Handbook of Automated Reasoning,
vol. I. Elsevier Science Publishers, Amsterdam (2001)

9. Kapur, D., Narendran, P.: Complexity of unification problems with associative-
commutative operators. J. Automated Reasoning 9, 261–288 (1992)

10. Küsters, R. (ed.): Non-Standard Inferences in Description Logics. LNCS (LNAI),
vol. 2100, p. 33. Springer, Heidelberg (2001)

Logical Methods in Computer Science
Vol. 6 (3:17) 2010, pp. 1–31
www.lmcs-online.org

Submitted Oct. 21, 2009
Published Sep. 4, 2010

UNIFICATION IN THE DESCRIPTION LOGIC EL

FRANZ BAADER AND BARBARA MORAWSKA

Theoretical Computer Science, TU Dresden, Germany
e-mail address: {baader,morawska}@tcs.inf.tu-dresden.de

Abstract. The Description Logic EL has recently drawn considerable attention since, on
the one hand, important inference problems such as the subsumption problem are polyno-
mial. On the other hand, EL is used to define large biomedical ontologies. Unification in
Description Logics has been proposed as a novel inference service that can, for example,
be used to detect redundancies in ontologies. The main result of this paper is that unifica-
tion in EL is decidable. More precisely, EL-unification is NP-complete, and thus has the
same complexity as EL-matching. We also show that, w.r.t. the unification type, EL is
less well-behaved: it is of type zero, which in particular implies that there are unification
problems that have no finite complete set of unifiers.

1. Introduction

Description logics (DLs) [6] are a family of logic-based knowledge representation for-
malisms, which can be used to represent the conceptual knowledge of an application domain
in a structured and formally well-understood way. They are employed in various application
domains, such as natural language processing, configuration of technical systems, databases,
and biomedical ontologies, but their most notable success so far is the adoption of the DL-
based language OWL [20] as standard ontology language for the semantic web.

In DLs, concepts are formally described by concept terms, i.e., expressions that are
built from concept names (unary predicates) and role names (binary predicates) using con-
cept constructors. The expressivity of a particular DL is determined by which concept
constructors are available in it. From a semantic point of view, concept names and concept
terms represent sets of individuals, whereas roles represent binary relations between indi-
viduals. For example, using the concept name Woman, and the role name child, the concept
of women having a daughter can be represented by the concept term

Woman ⊓ ∃ child.Woman,

and the concept of women having only daughters by

Woman ⊓ ∀ child.Woman.

1998 ACM Subject Classification: F.4.1, I.2.3, I.2.4.
Key words and phrases: knowledge representation, unification, Description Logics, complexity.
Supported by DFG under grant BA 1122/14–1.

LOGICAL METHODSl IN COMPUTER SCIENCE DOI:10.2168/LMCS-6 (3:17) 2010
c© F. Baader and B. Morawska
CC© Creative Commons

2 F. BAADER AND B. MORAWSKA

Knowledge representation systems based on DLs provide their users with various inference
services that allow them to deduce implicit knowledge from the explicitly represented knowl-
edge. An important inference problem solved by DL systems is the subsumption problem:
the subsumption algorithm allows one to determine subconcept-superconcept relationships.
For example, the concept term Woman subsumes the concept term Woman ⊓∃ child.Woman
since all instances of the second term are also instances of the first term, i.e., the second
term is always interpreted as a subset of the first term. With the help of the subsumption
algorithm, a newly introduced concept term can automatically be placed at the correct
position in the hierarchy of the already existing concept terms.

Two concept terms C,D are equivalent (C ≡ D) if they subsume each other, i.e., if
they always represent the same set of individuals. For example, the terms ∀ child.Rich ⊓
∀ child.Woman and ∀ child.(Rich⊓Woman) are equivalent since the value restriction operator
(∀ r.C) distributes over the conjunction operator (⊓). If we replace the value restriction
operator by the existential restriction operator (∃ r.C), then this equivalence no longer
holds. However, for this operator, we still have the equivalence

∃ child.Rich ⊓ ∃ child.(Woman ⊓ Rich) ≡ ∃ child.(Woman ⊓ Rich).

The equivalence test can, for example, be used to find out whether a concept term repre-
senting a particular notion has already been introduced, thus avoiding multiple introduction
of the same concept into the concept hierarchy. This inference capability is very important
if the knowledge base containing the concept terms is very large, evolves during a long time
period, and is extended and maintained by several knowledge engineers. However, testing
for equivalence of concepts is not always sufficient to find out whether, for a given concept
term, there already exists another concept term in the knowledge base describing the same
notion. On the one hand, different knowledge engineers may use different names for con-
cepts, like Male versus Masculine. On the other hand, they may model on different levels of
granularity. For example, assume that one knowledge engineer has defined the concept of
men loving fast cars by the concept term

Human ⊓ Male ⊓ ∃ loves.Sports car.

A second knowledge engineer might represent this notion in a somewhat different way, e.g.,
by using the concept term

Man ⊓ ∃ loves.(Car ⊓ Fast).

These two concept terms are not equivalent, but they are meant to represent the same
concept. The two terms can obviously be made equivalent by substituting the concept
name Sports car in the first term by the concept term Car ⊓ Fast and the concept name
Man in the second term by the concept term Human ⊓ Male. This leads us to unification
of concept terms, i.e., the question whether two concept terms can be made equivalent by
applying an appropriate substitution, where a substitution replaces (some of the) concept
names by concept terms. Of course, it is not necessarily the case that unifiable concept
terms are meant to represent the same notion. A unifiability test can, however, suggest
to the knowledge engineer possible candidate terms. A unifier (i.e., a substitution whose
application makes the two terms equivalent) then proposes appropriate definitions for the
concept names. In our example, we know that, if we define Man as Human ⊓ Male and
Sports car as Car ⊓ Fast, then the concept terms Human ⊓ Male ⊓ ∃ loves.Sports car and
Man ⊓ ∃ loves.(Car ⊓ Fast) are equivalent w.r.t. these definitions.

UNIFICATION IN THE DESCRIPTION LOGIC EL 3

Unification in DLs was first considered in [12] for a DL called FL0, which has the
concept constructors conjunction (⊓), value restriction (∀ r.C), and the top concept (⊤). It
was shown that unification in FL0 is decidable and ExpTime-complete, i.e., given an FL0-
unification problem, we can effectively decide whether it has a solution or not, but in the
worst-case, any such decision procedure needs exponential time. This result was extended
in [8] to a more expressive DL, which additionally has the role constructor transitive closure.
Interestingly, the unification type of FL0 had been determined almost a decade earlier in
[2]. In fact, as shown in [12], unification in FL0 corresponds to unification modulo the
equational theory of idempotent Abelian monoids with several homomorphisms. In [2] it
was shown that, already for a single homomorphism, unification modulo this theory has
unification type zero, i.e., there are unification problems for this theory that do not have
a minimal complete set of unifiers. In particular, such unification problems cannot have a
finite complete set of unifiers.

In this paper, we consider unification in the DL EL. The EL-family consists of inexpres-
sive DLs whose main distinguishing feature is that they provide their users with existential
restrictions (∃ r.C) rather than value restrictions (∀ r.C) as the main concept constructor
involving roles. The core language of this family is EL, which has the top concept, conjunc-
tion, and existential restrictions as concept constructors. This family has recently drawn
considerable attention since, on the one hand, the subsumption problem stays tractable
(i.e., decidable in polynomial time) in situations where FL0, the corresponding DL with
value restrictions, becomes intractable: subsumption between concept terms is tractable
for both FL0 and EL [25, 10], but allowing the use of concept definitions or even more
expressive terminological formalisms makes FL0 intractable [26, 3, 23, 5], whereas it leaves
EL tractable [4, 17, 5]. On the other hand, although of limited expressive power, EL is
nevertheless used in applications, e.g., to define biomedical ontologies. For example, both
the large medical ontology Snomed ct1 and the Gene Ontology2 can be expressed in EL,
and the same is true for large parts of the medical ontology Galen [27]. The importance
of EL can also be seen from the fact that the new OWL 2 standard3 contains a sub-profile
OWL 2EL, which is based on (an extension of) EL.

Unification in EL has, to the best of our knowledge, not been investigated before, but
matching (where one side of the equation(s) to be solved does not contain variables) has
been considered in [7, 24]. In particular, it was shown in [24] that the decision problem, i.e.,
the problem of deciding whether a given EL-matching problem has a matcher or not, is NP-
complete. Interestingly, FL0 behaves better w.r.t. matching than EL: for FL0, the decision
problem is tractable [9]. In this paper, we show that, w.r.t. the unification type, FL0 and
EL behave the same: just as FL0, the DL EL has unification type zero. However, w.r.t.
the decision problem, EL behaves much better than FL0: EL-unification is NP-complete,
and thus has the same complexity as EL-matching.

Regarding unification in DLs that are more expressive than EL and FL0, one must
look at the literature on unification in modal logics. It is well-known that there is a close
connection between modal logics and DLs [6]. For example, the DL ALC, which can be
obtained by adding negation to EL or FL0, corresponds to the basic (multi-)modal logic K.
Decidability of unification in K is a long-standing open problem. Recently, undecidability
of unification in some extensions of K (for example, by the universal modality) was shown

1http://www.ihtsdo.org/snomed-ct/
2http://www.geneontology.org/
3See http://www.w3.org/TR/owl2-profiles/

4 F. BAADER AND B. MORAWSKA

in [29]. The undecidability results in [29] also imply undecidability of unification in some
expressive DLs (e.g., SHIQ [21]). The unification types of some modal (and related)
logics have been determined by Ghilardi; for example in [19] he shows that K4 and S4 have
unification type finitary. Unification in sub-Boolean modal logics (i.e., modal logics that are
not closed under all Boolean operations, such as the modal logics corresponding to EL and
FL0) has, to the best of our knowledge, not been considered in the modal logic literature.

In addition to unification of concept terms as introduced until now, we will also consider
unification w.r.t. a so-called acyclic TBox in this article. Until now, we have only talked
about concept terms, i.e., complex descriptions of concepts that are built from concept
and role names using the concept constructors of the given DL. In applications of DLs,
it is, of course, inconvenient to always use such complex descriptions when referring to
concepts. For this reason, DLs are usually also equipped with a terminological formalism.
In its simplest form, this formalism allows to introduce abbreviations for concept terms.
For example, the two concept definitions

Mother ≡ Woman ⊓ ∃ child.Human and Woman ≡ Human ⊓ Female

introduce the abbreviation Woman for the concept term Human ⊓ Female and the abbre-
viation Mother for the concept term Human ⊓ Female ⊓ ∃ child.Human. A finite set of such
concept definitions is called an acyclic TBox if it is unambiguous (i.e., every concept name
occurs at most once as left-hand side) and acyclic (i.e., there are no cyclic dependencies
between concept definitions). These restrictions ensure that every defined concept (i.e.,
concept name occurring on the left-hand side of a definition) has a unique expansion to a
concept term that it abbreviates. Inference problems like subsumption and unification can
also be considered w.r.t. such acyclic TBoxes. As mentioned above, the complexity of the
subsumption problem increases for the DL FL0 if acyclic TBoxes are taken into account
[26]. In contrast, for EL, the complexity of the subsumption problem stays polynomial in
the presence of acyclic TBoxes. We show that, for unification in EL, adding acyclic TBoxes
is also harmless, i.e., unification in EL w.r.t. acyclic TBoxes is also NP-complete.

This article is structured as follows. In the next section, we define the DL EL and
unification in EL more formally. In Section 3, we recall the characterization of subsumption
and equivalence in EL from [24], and in Section 4 we use this to show that unification
in EL has type zero. In Section 5, we show that unification in EL is NP-complete. The
unification algorithm establishing the complexity upper bound is a typical “guess and then
test” NP-algorithm, and thus it is unlikely that a direct implementation of this algorithm
will perform well in practice. In Section 6, we introduce a more goal-oriented unification
algorithm for EL, in which non-deterministic decisions are only made if they are triggered
by “unsolved parts” of the unification problem. In Section 7, we point out that our results
for EL-unification imply that unification modulo the equational theory of semilattices with
monotone operators [28] is NP-complete and of unification type zero.

More information about Description Logics can be found in [6], and about unification
theory in [16]. This article is an extended version of a paper [11] published in the pro-
ceedings of the 20th international Conference on Rewriting Techniques and applications
(RTA’09). In addition to giving more detailed proofs, we have added the goal-oriented
unification algorithm (Section 6) and the treatment of unification modulo acyclic TBoxes
(Subsection 2.3).

UNIFICATION IN THE DESCRIPTION LOGIC EL 5

Name Syntax Semantics

concept name A AI ⊆ DI
role name r rI ⊆ DI × DI
top-concept ⊤ ⊤I = DI
conjunction C ⊓ D (C ⊓ D)I = CI ∩ DI

existential restriction ∃ r.C (∃ r.C)I = {x | ∃ y : (x, y) ∈ rI ∧ y ∈ CI}
subsumption C ⊑ D CI ⊆ DI

equivalence C ≡ D CI = DI

Table 1: Syntax and semantics of EL

2. Unification in EL
In this section, we first define the syntax and semantics of EL-concept terms as well as

the subsumption and the equivalence relation on these terms. Then, we introduce unification
of EL-concept terms, and finally extend this notion to unification modulo an acyclic TBox.

2.1. The Description Logic EL. Starting with a set Ncon of concept names and a set
Nrole of role names, EL-concept terms are built using the following concept constructors:
the nullary constructor top-concept (⊤), the binary constructor conjunction (C ⊓ D), and
for every role name r ∈ Nrole , the unary constructor existential restriction (∃ r.C). The
semantics of EL is defined in the usual way, using the notion of an interpretation I =
(DI , ·I), which consists of a nonempty domain DI and an interpretation function ·I that
assigns binary relations on DI to role names and subsets of DI to concept terms, as shown
in the semantics column of Table 1.

The concept term C is subsumed by the concept term D (written C ⊑ D) iff CI ⊆ DI

holds for all interpretations I. We say that C is equivalent to D (written C ≡ D) iff
C ⊑ D and D ⊑ C, i.e., iff CI = DI holds for all interpretations I. The concept term
C is strictly subsumed by the concept term D (written C ⊏ D) iff C ⊑ D and C 6≡ D.
It is well-known that subsumption (and thus also equivalence) of EL-concept terms can be
decided in polynomial time [10].

2.2. Unification of concept terms. In order to define unification of concept terms, we
first introduce the notion of a substitution operating on concept terms. To this purpose,
we partition the set of concepts names into a set Nv of concept variables (which may be
replaced by substitutions) and a set Nc of concept constants (which must not be replaced by
substitutions). Intuitively, Nv are the concept names that have possibly been given another
name or been specified in more detail in another concept term describing the same notion.
The elements of Nc are the ones of which it is assumed that the same name is used by all
knowledge engineers (e.g., standardized names in a certain domain).

A substitution σ is a mapping from Nv into the set of all EL-concept terms. This
mapping is extended to concept terms in the obvious way, i.e.,

• σ(A) := A for all A ∈ Nc,
• σ(⊤) := ⊤,
• σ(C ⊓ D) := σ(C) ⊓ σ(D), and

6 F. BAADER AND B. MORAWSKA

• σ(∃ r.C) := ∃ r.σ(C).

Definition 2.1. An EL-unification problem is of the form Γ = {C1 ≡? D1, . . . , Cn ≡? Dn},
where C1,D1, . . . , Cn,Dn are EL-concept terms. The substitution σ is a unifier (or solution)
of Γ iff σ(Ci) ≡ σ(Di) for i = 1, . . . , n. In this case, Γ is called solvable or unifiable.

When we say that EL-unification is decidable, then we mean that the following decision
problem is decidable: given an EL-unification problem Γ, decide whether Γ is solvable or
not. Accordingly, we say that EL-unification is NP-complete if this decision problem is
NP-complete.

In the following, we introduce some standard notions from unification theory [16], but
formulated for the special case of EL-unification rather than for an arbitrary equational
theory. Unifiers can be compared using the instantiation preorder ≤•. Let Γ be an EL-
unification problem, V the set of variables occurring in Γ, and σ, θ two unifiers of this
problem. We define

σ ≤• θ iff there is a substitution λ such that θ(X) ≡ λ(σ(X)) for all X ∈ V.

If σ ≤• θ, then we say that θ is an instance of σ.

Definition 2.2. Let Γ be an EL-unification problem. The set of substitutions M is called
a complete set of unifiers for Γ iff it satisfies the following two properties:

(1) every element of M is a unifier of Γ;
(2) if θ is a unifier of Γ, then there exists a unifier σ ∈ M such that σ ≤• θ.

The set M is called a minimal complete set of unifiers for Γ iff it additionally satisfies

(3) if σ, θ ∈ M , then σ ≤• θ implies σ = θ.

The unification type of a given unification problem is determined by the existence and
cardinality4 of such a minimal complete set.

Definition 2.3. Let Γ be an EL-unification problem. This problem has type

• unitary iff it has a minimal complete set of unifiers of cardinality 1;
• finitary iff it has a finite minimal complete set of unifiers;
• infinitary iff it has an infinite minimal complete set of unifiers;
• zero iff it does not have a minimal complete set of unifiers.

Note that the set of all unifiers of a given EL-unification problem is always a complete
set of unifiers. However, this set is usually infinite and redundant (in the sense that some
unifiers are instances of others). For a unitary or finitary EL-unification problem, all unifiers
can be represented by a finite complete set of unifiers, whereas for problems of type infinitary
or zero this is no longer possible. In fact, if a problem has a finite complete set of unifiers
M , then it also has a finite minimal complete set of unifiers, which can be obtained by
iteratively removing redundant elements from M . For an infinite complete set of unifiers,
this approach of removing redundant unifiers may be infinite, and the set reached in the
limit need no longer be complete. This is what happens for problems of type zero. The
difference between infinitary and type zero is that a unification problem of type zero cannot
even have a non-redundant complete set of unifiers, i.e., every complete set of unifiers must
contain different unifiers σ, θ such that σ ≤• θ. More information on unification type zero
can be found in [1].

4It is easy to see that the cardinality of a minimal complete set of unifiers is uniquely determined by the
unification problem.

UNIFICATION IN THE DESCRIPTION LOGIC EL 7

When we say that EL has unification type zero, we mean that there exists an EL-
unification problem that has type zero. Before we can prove in Section 4 that this is indeed
the case, we must have a closer look at equivalence in EL in Section 3. But first, we consider
unification modulo acyclic TBoxes.

2.3. Unification modulo acyclic TBoxes. A concept definition is of the form A
.
= C

where A is a concept name and C is a concept term. A TBox T is a finite set of concept
definitions such that no concept name occurs more than once on the left-hand side of a
concept definition in T . The TBox T is called acyclic if there are no cyclic dependencies
between its concept definitions. To be more precise, we say that the concept name A directly
depends on the concept name B in a TBox T if T contains a concept definition A

.
= C

and B occurs in C. Let depends on be the transitive closure of the relation directly depends
on. Then T contains a terminological cycle if there is a concept name A that depends on
itself. Otherwise, T is called acyclic. Given a TBox T , we call a concept name A a defined
concept if it occurs as the left-side of a concept definition A

.
= C in T . All other concept

names are called primitive concepts.
The interpretation I is a model of the TBox T iff AI = CI holds for all concept

definitions A
.
= C in T . Subsumption and equivalence w.r.t. a TBox are defined as follows:

C ⊑T D (C ≡T D) iff CI ⊆ DI (CI = DI) holds for all models I of T .
Subsumption and equivalence w.r.t. an acyclic TBox can be reduced to subsumption

and equivalence of concept terms (without TBox) by expanding the concept terms w.r.t.
the TBox: given a concept term C, its expansion CT w.r.t. the acyclic TBox T is obtained
by exhaustively replacing all defined concept names A occurring on the left-hand side of
concept definitions A

.
= C in T by their defining concept terms C. Given concept terms

C,D, we have C ⊑T D iff CT ⊑ DT [14]. The same is true for equivalence, i.e., C ≡T D
iff CT ≡ DT . This expansion process may, however, result in an exponential blow-up
[26, 14], and thus this reduction of subsumption and equivalence w.r.t. an acyclic TBox
to subsumption and equivalence without a TBox is not polynomial. Nevertheless, in EL,
subsumption (and thus also equivalence) w.r.t. acyclic TBoxes can be decided in polynomial
time [4].

In our definition of unification modulo acyclic TBoxes, we assume that all defined
concepts are concept constants. In fact, defined concepts already have a definition in the
given TBox, and thus it does not make sense to introduce new ones for them by unification.
In this setting, a substitution σ is a mapping from Nv into the set of all EL-concept terms
not containing any defined concepts.5 The extension of σ to concept terms is defined as in
the previous subsection, and its application to T is defined as

σ(T) := {A .
= σ(C) | A

.
= C ∈ T }.

Definition 2.4. An EL-unification problem modulo an acyclic TBox is of the form Γ =
{C1 ≡?

T D1, . . . , Cn ≡?
T Dn}, where C1,D1, . . . , Cn,Dn are EL-concept terms, and T is an

acyclic EL-TBox. The substitution σ is a unifier (or solution) of Γ modulo T iff σ(Ci) ≡σ(T)

σ(Di) for i = 1, . . . , n. In this case, Γ is called solvable modulo T or unifiable modulo T .

Coming back to our example from the introduction, assume that one knowledge engineer
has written the concept definition

Real man
.
= Human ⊓ Male ⊓ ∃ loves.Sports car.

5This restriction prevents the unifier from introducing cycles into the TBox.

8 F. BAADER AND B. MORAWSKA

to the TBox, whereas a second one has written the definition

Stupid man
.
= Man ⊓ ∃ loves.(Car ⊓ Fast),

where all the concept names occurring on the left-hand side of these definitions are primitive
concepts. Then the substitution that replaces Sports car by Car⊓Fast and Man by Human⊓
Male is a unifier of {Real man ≡?

T Stupid man} w.r.t. the TBox T consisting of these two
definitions.

Using expansion, we can reduce unification modulo an acyclic TBox to unification
without a TBox. In fact, the following lemma is an easy consequence of the fact that
σ(CT) = σ(C)σ(T) holds for all EL-concept terms C.

Lemma 2.5. The substitution σ is a unifier of {C1 ≡?
T D1, . . . , Cn ≡?

T Dn} modulo T iff

it is a unifier of {CT
1 ≡? DT

1 , . . . , CT
n ≡? DT

n }.
Since expansion can cause an exponential blow-up, this is not a polynomial reduction.

In the remainder of this subsection, we show that there actually exists a polynomial-time
reduction of unification modulo an acyclic TBox to unification without a TBox.

We say that the EL-unification problem Γ is in dag-solved form if it can be written as
Γ = {X1 ≡? C1, . . . ,Xn ≡? Cn}, where X1, . . . ,Xn are distinct concept variables such that,
for all i ≤ n, Xi does not occur in Ci, . . . , Cn. For i = 1, . . . , n, let σi be the substitution
that maps Xi to Ci and leaves all other variables unchanged. We define the substitution
σΓ as

σΓ(Xi) := σn(· · · (σi(Xi)) · · ·)
for i = 1, . . . , n, and σΓ(X) := X for all other variables X. The following is an instance of
a well-known fact from unification theory [22].

Lemma 2.6. Let Γ = {X1 ≡? C1, . . . ,Xn ≡? Cn} be an EL-unification problem in dag-
solved form. Then, the set {σΓ} is a complete set of unifiers for Γ.

There is a close relationship between acyclic TBoxes and unification problems in dag-
solved form. In fact, if T is an acyclic TBox, then there is an enumeration A1, . . . , An of
the defined concepts in T such that T = {A1

.
= C1, . . . , An

.
= Cn} and Ai does not occur

in Ci, . . . , Cn. Consequently, the corresponding unification problem

Γ(T) := {A1 ≡? C1, . . . , An ≡? Cn}
(where A1, . . . , An are now viewed as concept variables) is in dag-solved form. In addition,
it is easy to see that, for any EL-concept term C, we have CT = σΓ(T)(C).

Lemma 2.7. The EL-unification problem Γ = {C1 ≡?
T D1, . . . , Cn ≡?

T Dn} is solvable

modulo the acyclic TBox T iff {C1 ≡? D1, . . . , Cn ≡? Dn} ∪ Γ(T) is solvable.6

Proof. Assume that θ is a unifier of Γ = {C1 ≡?
T D1, . . . , Cn ≡?

T Dn} modulo T . Then it

is a unifier of Γ̂ := {CT
1 ≡? DT

1 , . . . , CT
n ≡? DT

n }, by Lemma 2.5. Since CT
i = σΓ(T)(Ci)

and DT
i = σΓ(T)(Di), we have Γ̂ = {σΓ(T)(Ci) ≡? σΓ(T)(Di) | 1 ≤ i ≤ n}. Consequently, if

we define the substitution τ by setting τ(X) := θ(σΓ(T)(X)) for all concept variables and

defined concepts X, then τ is a unifier of {C1 ≡? D1, . . . , Cn ≡? Dn}. In addition, since
σΓ(T) is a unifier of Γ(T), τ is also a unifier of {C1 ≡? D1, . . . , Cn ≡? Dn} ∪ Γ(T).

6Note that the defined concepts of T are treated as concept constants in Γ, and as concept variables in
{C1 ≡? D1, . . . , Cn ≡? Dn} ∪ Γ(T).

UNIFICATION IN THE DESCRIPTION LOGIC EL 9

Conversely, assume that τ is a unifier of {C1 ≡? D1, . . . , Cn ≡? Dn} ∪ Γ(T). In partic-
ular, this implies that τ is a unifier of Γ(T). By Lemma 2.6, {σΓ(T)} is a complete set of
unifiers for Γ(T), and thus there is a substitution θ such that τ(X) = θ(σΓ(T)(X)) for all

concept variables occurring in the unification problem {C1 ≡? D1, . . . , Cn ≡? Dn} ∪ Γ(T).
Since CT

i = σΓ(T)(Ci) and DT
i = σΓ(T)(Di), this implies that θ is a unifier of {CT

1 ≡?

DT
1 , . . . , CT

n ≡? DT
n }, and thus of Γ = {C1 ≡?

T D1, . . . , Cn ≡?
T Dn} modulo T , by

Lemma 2.5.

Since the size of Γ(T) is basically the same as the size of T , the size of Γ ∪ Γ(T) is
linear in the size of Γ and T . Thus, the above lemma provides us with a polynomial-time
reduction of EL-unification w.r.t. acyclic TBoxes to EL-unification.

Theorem 2.8. EL-unification w.r.t. acyclic TBoxes can be reduced in polynomial time to
EL-unification.

3. Equivalence and subsumption in EL
In order to characterize equivalence of EL-concept terms, the notion of a reduced EL-

concept term is introduced in [24]. A given EL-concept term can be transformed into an
equivalent reduced term by applying the following rules modulo associativity and commu-
tativity of conjunction:

C ⊓ ⊤ → C for all EL-concept terms C

A ⊓ A → A for all concept names A ∈ Ncon

∃ r.C ⊓ ∃ r.D → ∃ r.C for all EL-concept terms C,D with C ⊑ D

Obviously, these rules are equivalence preserving. We say that the EL-concept term D is
reduced if none of the above rules is applicable to it (modulo associativity and commutativity
of ⊓), and that C can be reduced to D if D can be obtained from C by applying the above
rules (modulo associativity and commutativity of ⊓). The EL-concept term D is a reduced
form of C if C can be reduced to D and D is reduced. The following theorem is an easy
consequence of Theorem 6.3.1 on page 181 of [24].

Theorem 3.1. Let C,D be EL-concept terms, and Ĉ, D̂ reduced forms of C,D, respectively.

Then C ≡ D iff Ĉ is identical to D̂ up to associativity and commutativity of ⊓.

This theorem can also be used to derive a recursive characterization of subsumption in
EL. In fact, if C ⊑ D, then C ⊓ D ≡ C, and thus C and C ⊓ D have the same reduced
form. Thus, during reduction, all concept names and existential restrictions of D must be
“eaten up” by corresponding concept names and existential restrictions of C.

Corollary 3.2. Let C = A1 ⊓ . . . ⊓ Ak ⊓ ∃ r1.C1 ⊓ . . . ⊓ ∃ rm.Cm and D = B1 ⊓ . . . ⊓ Bℓ ⊓
∃ s1.D1 ⊓ . . . ⊓ ∃ sn.Dn, where A1, . . . , Ak, B1, . . . , Bℓ are concept names. Then C ⊑ D iff
{B1, . . . , Bℓ} ⊆ {A1, . . . , Ak} and for every j, 1 ≤ j ≤ n, there exists an i, 1 ≤ i ≤ m, such
that ri = sj and Ci ⊑ Dj .

Note that this corollary also covers the cases where some of the numbers k, ℓ,m, n are
zero. The empty conjunction should then be read as ⊤. The following lemma, which is an
immediate consequence of this corollary, will be used in our proof that EL has unification
type zero.

10 F. BAADER AND B. MORAWSKA

Lemma 3.3. If C,D are reduced EL-concept terms such that ∃ r.D ⊑ C, then C is either
⊤, or of the form C = ∃ r.C1 ⊓ . . . ⊓ ∃ r.Cn where n ≥ 1; C1, . . . , Cn are reduced and
pairwise incomparable w.r.t. subsumption; and D ⊑ C1, . . . ,D ⊑ Cn. Conversely, if C,D
are EL-concept terms such that C = ∃ r.C1 ⊓ . . . ⊓ ∃ r.Cn and D ⊑ C1, . . . ,D ⊑ Cn, then
∃ r.D ⊑ C.

The following lemma states several other obvious consequences of Corollary 3.2.

Lemma 3.4.

(1) The existential restriction ∃ r.C is reduced iff C is reduced.
(2) Let C1 ⊓ . . . ⊓ Cn be concept names or existential restrictions. Then the conjunction

C1 ⊓ . . . ⊓ Cn is reduced iff C1, . . . , Cn are reduced and pairwise incomparable w.r.t.
subsumption.

(3) Let C = C1 ⊓ . . . ⊓ Cm and D = D1 ⊓ . . . ⊓ Dn be conjunctions of EL-concept terms.
If, for all i, 1 ≤ i ≤ n, there exists j, 1 ≤ j ≤ m, such that Cj ⊑ Di, then C ⊑ D.
If D1, . . . ,Dn are concept names or existential restrictions, then the implication in the
other direction also holds.

In the proof of decidability of EL-unification, we will make use of the fact that the
inverse strict subsumption order is well-founded.

Proposition 3.5. There is no infinite sequence C0, C1, C2, C3, . . . of EL-concept terms such
that C0 ⊏ C1 ⊏ C2 ⊏ C3 ⊏ · · · .
Proof. We define the role depth of an EL-concept term C as the maximal nesting of exis-
tential restrictions in C. Let n0 be the role depth of C0. Since C0 ⊑ Ci for i ≥ 1, it is an
easy consequence of Corollary 3.2 that the role depth of Ci is bounded by n0, and that Ci

contains only concept and role names occurring in C0. In addition, it is known that, for a
given natural number n0 and finite sets of concept names Ncon and role names Nrole , there
are, up to equivalence, only finitely many EL-concept terms built using concept names from
C and role names from R and of a role depth bounded by n0 [15]. Consequently, there are
indices i < j such that Ci ≡ Cj . This contradicts our assumption that Ci ⊏ Cj .

4. An EL-unification problem of type zero

To show that EL has unification type zero, we exhibit an EL-unification problem that
has this type.

Theorem 4.1. Let X,Y be variables. The EL-unification problem Γ := {X ⊓ ∃ r.Y ≡?

∃ r.Y } has unification type zero.

Proof. It is enough to show that any complete set of unifiers for this problem is redundant,
i.e., contains two different unifiers that are comparable w.r.t. the instantiation preorder.
Thus, let M be a complete set of unifiers for Γ.

First, note that M must contain a unifier that maps X to an EL-concept term not
equivalent to ⊤ or ∃ r.⊤. In fact, consider a substitution τ such that τ(X) = ∃ r.A and
τ(Y) = A. Obviously, τ is a unifier of Γ. Thus, M must contain a unifier σ such that σ ≤• τ .
In particular, this means that there is a substitution λ such that ∃ r.A = τ(X) ≡ λ(σ(X)).
Obviously, σ(X) ≡ ⊤ would imply λ(σ(X)) ≡ ⊤, and thus ∃ r.A ≡ ⊤, which is, however,

UNIFICATION IN THE DESCRIPTION LOGIC EL 11

not the case. Similarly, σ(X) ≡ ∃ r.⊤ would imply λ(σ(X)) ≡ ∃ r.⊤, and thus ∃ r.A ≡ ∃ r.⊤,
which is also not the case.

Thus, let σ ∈ M be such that σ(X) 6≡ ⊤ and σ(X) 6≡ ∃ r.⊤. Without loss of generality,
we assume that C := σ(X) and D := σ(Y) are reduced. Since σ is a unifier of Γ, we have
∃ r.D ⊑ C. Consequently, Lemma 3.3 yields that C is of the form C = ∃ r.C1 ⊓ . . . ⊓ ∃ r.Cn

where n ≥ 1, C1, . . . , Cn are reduced and pairwise incomparable w.r.t. subsumption, and
D ⊑ C1, . . . ,D ⊑ Cn.

We use σ to construct a new unifier σ̂ as follows:

σ̂(X) := ∃ r.C1 ⊓ . . . ⊓ ∃ r.Cn ⊓ ∃ r.Z

σ̂(Y) := D ⊓ Z

where Z is a new variable (i.e., one not occurring in C,D). The second part of Lemma 3.3
implies that σ̂ is indeed a unifier of Γ.

Next, we show that σ̂ ≤• σ. To this purpose, we consider the substitution λ that
maps Z to C1, and does not change any of the other variables. Then we have λ(σ̂(X)) =
∃ r.C1⊓. . .⊓∃ r.Cn⊓∃ r.C1 ≡ ∃ r.C1⊓. . .⊓∃ r.Cn = σ(X) and λ(σ̂(Y)) = D⊓C1 ≡ D = σ(Y).
Note that the second equivalence holds since we have D ⊑ C1.

Since M is complete, there exists a unifier θ ∈ M such that θ ≤• σ̂. Transitivity of the
relation ≤• thus yields θ ≤• σ. Since σ and θ both belong to M , we have completed the proof
of the theorem once we have shown that σ 6= θ. Assume to the contrary that σ = θ. Then
we have σ ≤• σ̂, and thus there exists a substitution µ such that µ(σ(X)) ≡ σ̂(X), i.e.,

∃ r.µ(C1) ⊓ . . . ⊓ ∃ r.µ(Cn) ≡ ∃ r.C1 ⊓ . . . ⊓ ∃ r.Cn ⊓ ∃ r.Z. (4.1)

Recall that the concept terms C1, . . . , Cn are reduced and pairwise incomparable w.r.t.
subsumption. In addition, since σ(X) = ∃ r.C1 ⊓ . . . ⊓ ∃ r.Cn is reduced and not equivalent
to ∃ r.⊤, none of the concept terms C1, . . . , Cn can be equivalent to ⊤. Finally, Z is a concept
name that does not occur in C1, . . . , Cn. All this implies that ∃ r.C1 ⊓ . . . ⊓ ∃ r.Cn ⊓ ∃ r.Z is
reduced. Obviously, any reduced form for ∃ r.µ(C1) ⊓ . . . ⊓ ∃ r.µ(Cn) is a conjunction of at
most n existential restrictions. Thus, Theorem 3.1 shows that the above equivalence (4.1)
actually cannot hold.

To sum up, we have shown that M contains two distinct unifiers σ, θ such that θ ≤• σ.
Since M was an arbitrary complete set of unifiers for Γ, this shows that this unification
problem cannot have a minimal complete set of unifiers.

5. The decision problem

Before we can describe our decision procedure for EL-unification, we must introduce
some notation. An EL-concept term is called an atom iff it is a concept name (i.e., concept
constant or concept variable) or an existential restriction ∃ r.D.7 Obviously, any EL-concept
term is (equivalent to) a conjunction of atoms, where the empty conjunction is ⊤. The set
At(C) of atoms of an EL-concept term C is defined inductively: if C = ⊤, then At(C) := ∅;
if C is a concept name, then At(C) := {C}; if C = ∃ r.D then At(C) := {C} ∪ At(D); if
C = C1 ⊓ C2, then At(C) := At(C1) ∪ At(C2).

Concept names and existential restrictions ∃ r.D where D is a concept name or ⊤ are
called flat atoms. An EL-concept term is flat iff it is a conjunction of flat atoms (where the

7Note that ⊤ is not an atom.

12 F. BAADER AND B. MORAWSKA

empty conjunction is ⊤). The EL-unification problem Γ is flat iff it consists of equations
between flat EL-concept terms. By introducing new concept variables and eliminating
⊤, any EL-unification problem Γ can be transformed in polynomial time into a flat EL-
unification problem Γ′ such that Γ is solvable iff Γ′ is solvable. Thus, we may assume
without loss of generality that our input EL-unification problems are flat. Given a flat EL-
unification problem Γ = {C1 ≡? D1, . . . , Cn ≡? Dn}, we call the atoms of C1,D1, . . . , Cn,Dn

the atoms of Γ. Atoms of Γ that are not variables (i.e., not elements of Nv) are called non-
variable atoms of Γ.

The unifier σ of Γ is called reduced iff, for all concept variables X occurring in Γ, the
EL-concept term σ(X) is reduced. It is ground iff, for all concept variables X occurring in
Γ, the EL-concept term σ(X) does not contain variables. Obviously, Γ is solvable iff it has
a reduced ground unifier. Given a ground unifier σ of Γ, the atoms of σ are the atoms of
all the concept terms σ(X), where X ranges over all variables occurring in Γ.

Remark 5.1. In the following, we consider situations where all occurrences of a given
reduced atom D in a reduced concept term C are replaced by a more general concept
term, i.e., by a concept term D′ with D ⊏ D′. However, when we say occurrence of D
in C, we mean occurrence modulo equivalence (≡) rather than syntactic occurrence. For
example, if C = ∃ r.(A ⊓ B) ⊓ ∃ r.(B ⊓ A), D = ∃ r.(A ⊓ B), and D′ = ∃ r.A, then the term
obtained by replacing all occurrences of D in C by D′ should be ∃ r.A ⊓ ∃ r.A, and not
∃ r.A ⊓ ∃ r.(B ⊓ A). Since C and D are reduced, equivalence is actually the same as being
identical up to associativity and commutativity of ⊓. In particular, this means that any
concept term that (syntactically) occurs in C and is equivalent to the atom D is also an
atom, i.e., only atoms can be replaced by D′. In order to make this meaning of occurrence
explicit we will call it occurrence modulo AC in the following. We will write D1 =AC D2 to
express that the atoms D1 and D2 are identical up to associativity and commutativity of
⊓. Obviously, D1 =AC D2 implies D1 ≡ D2.

Lemma 5.2. Let C,D,D′ be EL-concept terms such that D is a reduced atom, D ⊏ D′,
and C is reduced and contains at least one occurrence of D modulo AC. If C ′ is obtained
from C by replacing all occurrences of D by D′, then C ⊏ C ′.

Proof. We prove the lemma by induction on the size of C. If C =AC D, then C ′ = D′,
and thus C ≡ D ⊏ D′ = C ′, which yields C ⊏ C ′. Thus, assume that C 6=AC D. In
this case, C cannot be a concept name since it contains the atom D. If C = ∃ r.C1, then
D occurs in C1 modulo AC . By induction, we can assume that C1 ⊏ C ′

1, where C ′
1 is

obtained from C1 by replacing all occurrences of D (modulo AC) by D′. Thus, we have
C = ∃ r.C1 ⊏ ∃ r.C ′

1 = C ′ by Corollary 3.2. Finally, assume that C = C1⊓ . . .⊓Cn for n > 1
atoms C1, . . . , Cn. Since C is reduced, these atoms are incomparable w.r.t. subsumption,
and since the atom D occurs in C modulo AC we can assume without loss of generality
that D occurs in C1 modulo AC . Let C ′

1, . . . , C
′
n be respectively obtained from C1, . . . , Cn

by replacing every occurrence of D (modulo AC) by D′, and then reducing the concept
term obtained this way. By induction, we have C1 ⊏ C ′

1. Assume that C 6⊏ C ′. Since the
concept constructors of EL are monotone w.r.t. subsumption ⊑, we have C ⊑ C ′, and thus
C 6⊏ C ′ means that C ≡ C ′. Consequently, C = C1 ⊓ . . . ⊓ Cn and the reduced form of
C ′
1⊓. . .⊓C ′

n must be equal up to associativity and commutativity of ⊓. If C ′
1⊓. . .⊓C ′

n is not
reduced, then its reduced form is actually a conjunction of m < n atoms, which contradicts
C ≡ C ′. If C ′

1 ⊓ . . . ⊓ C ′
n is reduced, then C1 ⊏ C ′

1 implies that there is an i 6= 1 such that

UNIFICATION IN THE DESCRIPTION LOGIC EL 13

Ci ≡ C ′
1. However, then Ci ≡ C ′

1 ⊐ C1 contradicts the fact that the atoms C1, . . . , Cn are
incomparable w.r.t. subsumption.

Proposition 3.5 says that the inverse strict subsumption order on concept terms is
well-founded. We use this fact to obtain a well-founded strict order ≻ on ground unifiers.

Definition 5.3. Let σ, θ be ground unifiers of Γ. We define

(1) σ � θ iff σ(X) ⊑ θ(X) holds for all variables X occurring in Γ.
(2) σ ≻ θ iff σ � θ and θ 6� σ, i.e., iff σ(X) ⊑ θ(X) holds for all variables X occurring in

Γ, and σ(X) ⊏ θ(X) holds for at least one variable X occurring in Γ.

If Γ contains n variables, then � is the n-fold product of the order ⊑ with itself. Since
the strict part ⊏ of the inverse subsumption order ⊑ is well-founded by Proposition 3.5, the
strict part ≻ of � is also well-founded [13]. The ground unifier σ of Γ is called is-minimal
iff there is no ground unifier θ of Γ such that σ ≻ θ. The following proposition is an easy
consequence of the fact that ≻ is well-founded.

Proposition 5.4. Let Γ be an EL-unification problem. Then Γ is solvable iff it has an
is-minimal reduced ground unifier.

In the following, we show that is-minimal reduced ground unifiers of flat EL-unification
problems satisfy properties that make it easy to check (with an NP-algorithm) whether such
a unifier exists or not.

Lemma 5.5. Let Γ be a flat EL-unification problem and γ an is-minimal reduced ground
unifier of Γ. If C is an atom of γ, then there is a non-variable atom D of Γ such that
C ≡ γ(D).

The main idea underlying the proof of this crucial lemma is that an atom C of a unifier
σ that violates the condition of the lemma (i.e., that is not of the form C ≡ γ(D) for a

non-variable atom D of Γ) can be replaced by a concept term D̂ such that C ⊏ D̂, which
yields a unifier of Γ that is smaller than σ w.r.t. ≻.

Before proving the lemma formally, let us illustrate this idea by two examples.

Example 5.6. First, consider the unification problem

Γ1 := {∃ r.X ⊓ ∃ r.A ≡? ∃ r.X}.
The substitution σ1 := {X 7→ A ⊓ B} is a unifier of Γ1 that does not satisfy the condition
of Lemma 5.5. In fact, B is an atom of σ1, but none of the non-variable atoms D of Γ1

(which are A, ∃ r.A, and ∃ r.X) satisfy B ≡ σ1(D). The unifier σ1 is not is-minimal since
γ1 := {X 7→ A}, which can be obtained from σ1 by replacing the offending atom B with
⊤, is a unifier of Γ1 that is smaller than σ1 w.r.t. ≻. The unifier γ1 is is-minimal, and it
clearly satisfies the condition of Lemma 5.5.

Second, consider the unification problem

Γ2 := {X ⊓ ∃ r.A ⊓ ∃ r.B ≡? X}.
The substitution σ2 := {X 7→ ∃ r.(A ⊓ B)} is a unifier of Γ2 that does not satisfy the
condition of Lemma 5.5. In fact, ∃ r.(A ⊓ B) is an atom of σ2, but none of the non-variable
atoms D of Γ2 (which are A, B, ∃ r.A, and ∃ r.B) satisfy ∃ r.(A ⊓ B) ≡ σ2(D). The unifier
σ2 is not is-minimal since γ2 := {X 7→ ∃ r.A ⊓ ∃ r.B}, which can be obtained from σ2

by replacing the offending atom ∃ r.(A ⊓ B) with ∃ r.A ⊓ ∃ r.B, is a unifier of Γ2 that is

14 F. BAADER AND B. MORAWSKA

smaller than σ2 w.r.t. ≻. The unifier γ2 is is-minimal, and it clearly satisfies the condition
of Lemma 5.5.

Proof of Lemma 5.5. Assume that γ is an is-minimal reduced ground unifier of Γ. Since γ
is reduced, all atoms of γ are reduced. In particular, this implies that C is reduced, and
since γ is ground, we know that C is either a concept constant or an existential restriction.

First, assume that C is of the form A for a concept constant A, but there is no non-
variable atom D of Γ such that A ≡ γ(D). This simply means that A does not appear in
Γ. Let γ′ be the substitution obtained from γ by replacing every occurrence of A by ⊤.
Since equivalence in EL is preserved under replacing concept names by ⊤, and since A does
not appear in Γ, it is easy to see that γ′ is also a unifier of Γ. However, since γ ≻ γ′, this
contradicts our assumption that γ is is-minimal.

Second, assume that C is an existential restriction of the form ∃ r.C1, but there is no
non-variable atom D of Γ such that C ≡ γ(D). We assume that C is maximal (w.r.t.
subsumption) with this property, i.e., for every atom C ′ of γ with C ⊏ C ′, there is a non-
variable atom D′ of Γ such that C ′ ≡ γ(D′). Let D1, . . . ,Dℓ be all the non-variable atoms
of Γ with C ⊑ γ(Di) (i = 1, . . . , ℓ). By our assumptions on C, we actually have C ⊏ γ(Di)
and, by Lemma 3.3, the atom Di is also an existential restriction Di = ∃ r.D′

i (i = 1, . . . , ℓ).
We consider the conjunction

D̂ := γ(D1) ⊓ . . . ⊓ γ(Dℓ),

which is ⊤ in case ℓ = 0.

Definition 5.7. Given an EL-concept term F , the concept term F [C/D̂] is obtained from F

by replacing every occurrence of C (modulo AC) by D̂. The substitution γ[C/D̂] is obtained

from γ by replacing every occurrence of C (modulo AC) by D̂, i.e., γ[C/D̂](X) := γ(X)[C/D̂]

for all variables X.

We will show in the following that γ[C/D̂] is a unifier of Γ that is smaller than γ w.r.t.
≻. This will then again contradict our assumption that γ is is-minimal.

Lemma 5.8. γ ≻ γ[C/D̂].

Proof. Obviously, D̂ subsumes C. We claim that this subsumption relationship is actually

strict. In fact, if ℓ = 0, then D̂ = ⊤, and since C is an atom, it is not equivalent to ⊤.
If ℓ ≥ 1, then C = ∃ r.C1 ⊒ ∃ r.γ(D′

1) ⊓ . . . ⊓ ∃ r.γ(D′
ℓ) would imply (by Corollary 3.2)

that there is an i, 1 ≤ i ≤ ℓ, with C1 ⊒ γ(D′
i). However, this would yield C = ∃ r.C1 ⊒

∃ r.γ(D′
i) = γ(Di), which contradicts the fact that C ⊏ γ(Di). Thus, we have shown that

C ⊏ D̂. Lemma 5.2 implies that γ ≻ γ′.

To complete the proof of Lemma 5.5, it remains to show the next lemma.

Lemma 5.9. γ[C/D̂] is a unifier of Γ.

Proof. Consider an equation in Γ of the form L1⊓. . .⊓Lm ≡? R1⊓. . .⊓Rn where L1, . . . , Lm

and R1, . . . , Rn are flat atoms, and define L := γ(L1⊓. . .⊓Lm) and R := γ(R1⊓. . .⊓Rn). We
know that L,R are conjunctions of atoms of the form L = A1⊓. . .⊓Aµ and R = B1⊓. . .⊓Bν ,
where each conjunct A1, . . . , Aµ, B1, . . . , Bν is a reduced ground atom that is either an atom
of γ or equal to γ(E) for a non-variable atom E of Γ. Since γ is a unifier of Γ, we have
L ≡ R.

UNIFICATION IN THE DESCRIPTION LOGIC EL 15

(1) Since C is an atom, we obviously have L[C/D̂] = A
[C/D̂]
1 ⊓ . . . ⊓ A

[C/D̂]
µ and R[C/D̂] =

B
[C/D̂]
1 ⊓ . . . ⊓ B

[C/D̂]
ν . Now, we show that L[C/D̂] = γ[C/D̂](L1 ⊓ . . . ⊓ Lm) and R[C/D̂] =

γ[C/D̂](R1 ⊓ . . . ⊓ Rn). We concentrate on proving the first identity since the second
one can be shown analogously. To show the first identity, it is enough to prove that

γ(Lj)
[C/D̂] = γ[C/D̂](Lj) holds for all j, 1 ≤ j ≤ m.

(a) If Lj is a variable X, then γ[C/D̂](X) = γ(X)[C/D̂] holds by the definition of γ[C/D̂].

(b) If Lj is a concept constant A, then A[C/D̂] = A since C is an existential restriction.

Thus, we have γ[C/D̂](A) = A = A[C/D̂] = γ(A)[C/D̂].
(c) Otherwise, Lj is an existential restriction ∃ rj.L

′
j . By our assumption on C, we

have C 6≡ γ(Lj), and thus γ(Lj)
[C/D̂] = ∃ rj .

(
γ(Lj)

[C/D̂]
)
. In addition, we have

γ[C/D̂](Lj) = ∃ rj.γ
[C/D̂](L′

j). Thus, it is enough to show γ(L′
j)

[C/D̂] = γ[C/D̂](L′
j).

Since Lj is a flat atom, we know that L′
j is either a concept constant, the top-concept

⊤, or a concept variable. In the first to cases, we can show γ(L′
j)

[C/D̂] = γ[C/D̂](L′
j)

as in (1b), and in the third case we can show this identity as in (1a).

(2) Because of (1), if we can prove that L[C/D̂] ≡ R[C/D̂], then we have shown that γ[C/D̂]

solves the equation L1 ⊓ . . . ⊓ Lm ≡? R1 ⊓ . . . ⊓ Rn.

Without loss of generality, we concentrate on showing that L[C/D̂] ⊑ R[C/D̂]. Since

L[C/D̂] = A
[C/D̂]
1 ⊓ . . . ⊓ A

[C/D̂]
µ and R[C/D̂] = B

[C/D̂]
1 ⊓ . . . ⊓ B

[C/D̂]
ν , it is thus sufficient

to show that, for every i, 1 ≤ i ≤ ν, there exists a j, 1 ≤ j ≤ µ, such that A
[C/D̂]
j ⊑

B
[C/D̂]
i (see (3) of Lemma 3.4). Since L = A1 ⊓ . . . ⊓ Aµ ⊑ B1 ⊓ . . . ⊓ Bν = R and

A1, . . . , Aµ, B1, . . . , Bν are atoms, we actually know that, for every i, 1 ≤ i ≤ ν, there
exists a j, 1 ≤ j ≤ µ, such that Aj ⊑ Bi. Thus, it is sufficient to show that Aj ⊑ Bi

implies A
[C/D̂]
j ⊑ B

[C/D̂]
i . This is an easy consequence of the next lemma since Ai, Bj

satisfy the conditions of this lemma.

Lemma 5.10. Let A,B be reduced ground atoms such that B is an atom of γ or of the

form γ(D) for a non-variable atom D of Γ. If A ⊑ B, then A[C/D̂] ⊑ B[C/D̂].

Proof. We show A[C/D̂] ⊑ B[C/D̂] by induction on the size of A.

(1) First, assume that A =AC C, which implies that A[C/D̂] = D̂ = γ(D1) ⊓ . . . ⊓ γ(Dn).
(a) If B is of the form B ≡ γ(D) for a non-variable atom D of Γ, then there is an

h, 1 ≤ h ≤ n, such that D = Dh, which shows that A[C/D̂] ⊑ B. Since C ⊑ D̂ and

the constructors of EL are monotone w.r.t. subsumption, we also have B ⊑ B[C/D̂],

and thus A[C/D̂] ⊑ B[C/D̂].

(b) Assume that B is an atom of γ. If B =AC C, then B[C/D̂] = D̂, and thus A[C/D̂] =

B[C/D̂], which implies A[C/D̂] ⊑ B[C/D̂]. Otherwise, since C,B are reduced atoms,
B 6=AC C implies B 6≡ C. Together with C ≡ A ⊑ B, this shows that C ⊏ B.
Thus, the maximality of C implies that there is a non-variable atom D of Γ such

that B ≡ γ(D). Thus, we are actually in case (a), which yields A[C/D̂] ⊑ B[C/D̂].
(2) Now, assume that A 6=AC C. If there is no occurrence (modulo AC) of C in A, then

we have A[C/D̂] = A ⊑ B ⊑ B[C/D̂].

16 F. BAADER AND B. MORAWSKA

Otherwise, A is of the form A = ∃ s.E and C occurs in E (modulo AC). Obviously,
A ⊑ B then implies that B is of the form B = ∃ s.F with E ⊑ F . The concept
terms E,F are conjunctions of reduced ground atoms, i.e., E = E1 ⊓ . . . ⊓ Eκ and F =
F1 ⊓ . . . ⊓ Fλ where E1, . . . , Eκ, F1, . . . , Fλ are reduced ground atoms. By Corollary 3.2,
for every h, 1 ≤ h ≤ λ, there exists k, 1 ≤ k ≤ κ such that Ek ⊑ Fh.

In order to be able to assume, by induction, that Ek ⊑ Fh implies E
[C/D̂]
k ⊑ F

[C/D̂]
h ,

we must show that the conditions in the statement of the lemma hold for the concept
terms Ek, Fh, where Ek plays the rôle of A and Fh plays the rôle of B. Since we already
know that E1, . . . , Eκ, F1, . . . , Fλ are reduced ground atoms, it is sufficient to show that
each of the atoms F1, . . . , Fλ is an atom of γ or of the form γ(D) for a non-variable
atom D of Γ. We know that B = ∃ s.(F1 ⊓ . . . ⊓ Fλ) is an atom of γ or an instance
(w.r.t. γ) of a non-variable atom of Γ. In the first case, the atoms F1, . . . , Fλ are clearly
also atoms of γ. In the second case, B = γ(D′) for a non-variable atom D′ of Γ. If D′

is a ground atom, then F1, . . . , Fλ are also ground atoms that are atoms of Γ, and thus
they are instances (w.r.t. γ) of non-variable atoms of Γ. Otherwise, since Γ is flat, D′

is of the form ∃ s.X for a variable X and γ(X) = F1 ⊓ . . . ⊓ Fλ. In this case, F1, . . . , Fλ

are clearly atoms of γ.
Thus, we can assume by induction:

(∗) for every h, 1 ≤ h ≤ λ, there exists k, 1 ≤ k ≤ κ such that E
[C/D̂]
k ⊑ F

[C/D̂]
h

It remains to show that this implies A[C/D̂] ⊑ B[C/D̂].

(a) If B 6=AC C, then A[C/D̂] = ∃ s.(E
[C/D̂]
1 ⊓ . . . ⊓ E

[C/D̂]
κ) and B[C/D̂] = ∃ s.(F

[C/D̂]
1 ⊓

. . . ⊓ F
[C/D̂]
λ), and thus property (∗) yields A[C/D̂] ⊑ B[C/D̂].

(b) Assume that B =AC C. In this case, C cannot occur (modulo AC) in any of the

concept terms F1, . . . , Fh, which implies that B = ∃ s.(F1⊓ . . .⊓Fλ) = ∃ s.(F
[C/D̂]
1 ⊓

. . .⊓F
[C/D̂]
λ). Since we have A[C/D̂] = ∃ s.(E

[C/D̂]
1 ⊓ . . .⊓E

[C/D̂]
κ), property (∗) yields

A[C/D̂] ⊑ B. Since we also have B ⊑ B[C/D̂], this yields A[C/D̂] ⊑ B[C/D̂].

Thus, we have shown in all cases that A[C/D̂] ⊑ B[C/D̂], which completes the proof of
Lemma 5.10.

Overall, we have thus completed the proof of Lemma 5.5. The next proposition is an
easy consequence of this lemma.

Proposition 5.11. Let Γ be a flat EL-unification problem and γ an is-minimal reduced
ground unifier of Γ. If X is a concept variable occurring in Γ, then γ(X) ≡ ⊤ or there are
non-variable atoms D1, . . . ,Dn (n ≥ 1) of Γ such that γ(X) ≡ γ(D1) ⊓ . . . ⊓ γ(Dn).

Proof. If γ(X) 6≡ ⊤, then it is a non-empty conjunction of atoms, i.e., there are atoms
C1, . . . , Cn (n ≥ 1) such that γ(X) = C1 ⊓ . . . ⊓ Cn. Then C1, . . . , Cn are atoms of γ,
and thus Lemma 5.5 yields non-variable atoms D1, . . . ,Dn of Γ such that Ci ≡ γ(Di) for
i = 1, . . . n. Consequently, γ(X) ≡ γ(D1) ⊓ . . . ⊓ γ(Dn).

This proposition suggests the following non-deterministic algorithm for deciding solv-
ability of a given flat EL-unification problem.

Algorithm 5.12. Let Γ be a flat EL-unification problem.

UNIFICATION IN THE DESCRIPTION LOGIC EL 17

(1) For every variable X occurring in Γ, guess a finite, possibly empty, set SX of non-variable
atoms of Γ.

(2) We say that the variable X directly depends on the variable Y if Y occurs in an atom of
SX . Let depends on be the transitive closure of directly depends on. If there is a variable
that depends on itself, then the algorithm returns “fail.” Otherwise, there exists a strict
linear order > on the variables occurring in Γ such that X > Y if X depends on Y .

(3) We define the substitution σ along the linear order >:
• If X is the least variable w.r.t. >, then SX does not contain any variables. We define

σ(X) to be the conjunction of the elements of SX , where the empty conjunction is ⊤.
• Assume that σ(Y) is defined for all variables Y < X. Then SX only contains variables

Y for which σ(Y) is already defined. If SX is empty, then we define σ(X) := ⊤.
Otherwise, let SX = {D1, . . . ,Dn}. We define σ(X) := σ(D1) ⊓ . . . ⊓ σ(Dn).

(4) Test whether the substitution σ computed in the previous step is a unifier of Γ. If this
is the case, then return σ; otherwise, return “fail.”

This algorithm is trivially sound since it only returns substitutions that are unifiers of
Γ. In addition, it obviously always terminates. Thus, to show correctness of our algorithm,
it is sufficient to show that it is complete.

Lemma 5.13 (Completeness). If Γ is solvable, then there is a way of guessing in Step 1
subsets SX of the non-variable atoms of Γ such that the depends on relation determined in
Step 2 is acyclic and the substitution σ computed in Step 3 is a unifier of Γ.

Proof. If Γ is solvable, then it has an is-minimal reduced ground unifier γ. By Proposi-
tion 5.11, for every variable X occurring in Γ we have γ(X) ≡ ⊤ or there are non-variable
atoms D1, . . . ,Dn (n ≥ 1) of Γ such that γ(X) ≡ γ(D1) ⊓ . . . ⊓ γ(Dn). If γ(X) ≡ ⊤, then
we define SX := ∅. Otherwise, we define SX := {D1, . . . ,Dn}.

We show that the relation depends on induced by these sets SX is acyclic, i.e., there is
no variable X such that X depends on itself. If X directly depends on Y , then Y occurs in
an element of SX . Since SX consists of non-variable atoms of the flat unification problem
Γ, this means that there is a role name r such that ∃ r.Y ∈ SX . Consequently, we have
γ(X) ⊑ ∃ r.γ(Y). Thus, if X depends on X, then there are k ≥ 1 role names r1, . . . , rk such
that γ(X) ⊑ ∃ r1. · · · ∃ rk.γ(X). This is clearly not possible since γ(X) cannot be subsumed
by an EL-concept term whose role depth is larger than the role depth of γ(X).

To show that the substitution σ induced by the sets SX is a unifier of Γ, we prove
that σ is equivalent to γ, i.e., σ(X) ≡ γ(X) holds for all variables X occurring in Γ. The
substitution σ is defined along the linear order >. If X is the least variable w.r.t. >, then
the elements of SX do not contain any variables. If SX is empty, then σ(X) = ⊤ ≡ γ(X).
Otherwise, let SX = {D1, . . . ,Dn}. Since the atoms Di do not contain variables, we have
Di = γ(Di). Thus, the definitions of SX and of σ yield σ(X) = D1 ⊓ . . . ⊓ Dn = γ(D1) ⊓
. . . ⊓ γ(Dn) ≡ γ(X).

Assume that σ(Y) ≡ γ(Y) holds for all variables Y < X. If SX = ∅, then we have
again σ(X) = ⊤ ≡ γ(X). Otherwise, let SX = {D1, . . . ,Dn}. Since the atoms Di contain
only variables that are smaller than X, we have σ(Di) ≡ γ(Di) by induction. Thus, the
definitions of SX and of σ yield σ(X) = σ(D1)⊓. . .⊓σ(Dn) ≡ γ(D1)⊓. . .⊓γ(Dn) ≡ γ(X).

Note that our proof of completeness actually shows that, up to equivalence, the algo-
rithm returns all is-minimal reduced ground unifiers of Γ.

Theorem 5.14. EL-unification is NP-complete.

18 F. BAADER AND B. MORAWSKA

Proof. NP-hardness follows from the fact that EL-matching is NP-complete [24].8 To show
that the problem can be decided by a non-deterministic polynomial-time algorithm, we
analyze the complexity of our algorithm. Obviously, guessing the sets SX (Step 1) can be
done within NP. Computing the depends on relation and checking it for acyclicity (Step 2)
is clearly polynomial.

Steps 3 and 4 are more problematic. In fact, since a variable may occur in different
atoms of Γ, the substitution σ computed in Step 3 may be of exponential size. This is
actually the same reason that makes a naive algorithm for syntactic unification compute
an exponentially large most general unifier [16]. As in the case of syntactic unification, the
solution to this problem is basically structure sharing. Instead of computing the substitution
σ explicitly, we view its definition as an acyclic TBox. To be more precise, for every concept
variable X occurring in Γ, the TBox Tσ contains the concept definition X

.
= ⊤ if SX = ∅

and X
.
= D1 ⊓ . . .⊓Dn if SX = {D1, . . . ,Dn} (n ≥ 1). Instead of computing σ in Step 3, we

compute Tσ. Because of the acyclicity test in Step 2, we know that Tσ is an acyclic TBox.
The size of Tσ is obviously polynomial in the size of Γ, and thus this modified Step 3 is
polynomial.

It is easy to see that applying the substitution σ to a concept term C is the same as
expanding C w.r.t. the TBox Tσ, i.e., σ(C) = CTσ . This implies that, for every equation
C ≡? D in Γ, we have C ≡Tσ D iff σ(C) ≡ σ(D). Thus, testing in Step 4 whether σ is a
unifier of Γ can be reduced to testing whether C ≡Tσ D holds for every equation C ≡? D
in Γ. Since subsumption (and thus equivalence) in EL w.r.t. acyclic TBoxes can be decided
in polynomial time [4], this completes the proof of the theorem.

In Subsection 2.3, we have shown that there exists a polynomial-time reduction of
unification modulo an acyclic TBox to unification without a TBox. Thus, Theorem 5.14
also yields the exact complexity for EL-unification w.r.t. acyclic TBoxes.

Corollary 5.15. EL-unification w.r.t. acyclic TBoxes is NP-complete.

Proof. The problem is in NP since Theorem 2.8 states that there is a polynomial-time
reduction of EL-unification w.r.t. acyclic TBoxes to EL-unification, and we have just shown
that EL-unification is in NP.

NP-hardness for EL-unification w.r.t. acyclic TBoxes follows from NP-hardness of EL-
unification since EL-unification can be viewed as the special case of EL-unification w.r.t.
acyclic TBoxes where the TBox is empty.

6. A goal-oriented algorithm

The NP-algorithm introduced in the previous section is a typical “guess and then test”
NP-algorithm, and thus it is unlikely that a direct implementation of this algorithm will
perform well in practice. Here, we introduce a more goal-oriented unification algorithm for
EL, in which non-deterministic decisions are only made if they are triggered by “unsolved
parts” of the unification problem.

As in the previous section, we assume without loss of generality that our input unifica-
tion problem Γ0 is flat. For a given flat equation C ≡? D, the concept terms C,D are thus

8The NP-hardness proof in [24] is by reduction of SAT. This reduction employs two concept constants
and four role names. However, the roles are mainly used to encode several (matching) equations into a single
one. When using a set of equations rather than a single equation, one role name is sufficient.

UNIFICATION IN THE DESCRIPTION LOGIC EL 19

conjunctions of flat atoms. We will often view such an equation as consisting of four sets:
the left-hand side C is given by the set of variables occurring in the top-level conjunction of
C, together with the set of non-variable atoms occurring in this top-level conjunction; the
right-hand side D is given by the set of variables occurring in the top-level conjunction of
D, together with the set of non-variable atoms occurring in this top-level conjunction. To
be more precise, let e denote the equation C ≡? D, where C = X1 ⊓ . . .⊓Xm ⊓A1 ⊓ . . .⊓Ak

and D = Y1 ⊓ . . . ⊓ Yn ⊓ B1 ⊓ . . . ⊓ Bℓ for concept variables X1, . . . ,Xm, Y1, . . . , Yn and
non-variable atoms A1, . . . , Ak, B1, . . . Bℓ. Then we define

LVar(e) := {X1, . . . ,Xm}, RVar(e) := {Y1, . . . , Yn},
LAto(e) := {A1, . . . , Ak}, RAto(e) := {B1, . . . Bℓ}.

Obviously, the equation e : C ≡? D is uniquely determined (up to associativity, commutativ-
ity, and idempotency of conjunction) by the four sets LVar(e),LAto(e),RVar (e),RAto(e).
Instead of viewing an equation e as being given by a pair of concept terms, we can thus
also view it as being given by these four sets. In the following, it will often be convenient
to employ this representation of equations. If, with this point of view, we say that we add
an atom to the set LAto(e) or RAto(e), then this means, for the other point of view, that
we conjoin this atom to the top-level conjunction of the left-hand side or right-hand side of
the equation. In addition, if we say that the equation e contains the variable X, then we
mean that X ∈ LVar(e)∪RVar (e). Similarly, if we say that the left-hand side of e contains
X, then we mean that X ∈ LVar(e), and if we say that the right-hand side of e contains
X, then we mean that X ∈ RVar(e)).9

In addition to the unification problem itself, the algorithm also maintains, for every
variable X occurring in the input problem Γ0, a set SX of non-variable atoms of Γ0. Initially,
all the sets SX are empty. We call the set SX the current assignment for X, and the collection
of all these sets the current assignment. Throughout the run of our goal-oriented algorithm,
we will ensure that the current assignment is acyclic in the sense that no variable depends
on itself w.r.t. this assignment (see (2) of Algorithm 5.12). An acyclic assignment induces
a substitution σ, as defined in (3) of Algorithm 5.12. We call this substitution the current
substitution. Initially, the current substitution maps all variables to ⊤.

The algorithm applies rules that can

(1) change an equation of the unification problem by adding non-variable atoms of the input
problem Γ0 to one side of the equation;

(2) introduce a new flat equation of the form C ⊓B ≡ B, where C,B are atoms of the input
problem Γ0 or ⊤;

(3) add non-variable atoms of the input problem Γ0 to the sets SX .

Another property that is maintained throughout the run of our algorithm is that all equa-
tions e are expanded w.r.t. the current assignment in the following sense: for all variables
X we have

A ∈ SX ∧ X ∈ LVar(e) ⇒ A ∈ LAto(e) and A ∈ SX ∧ X ∈ RVar(e) ⇒ A ∈ RAto(e).

Given a flat equation e that contains the variable X, the expansion of e w.r.t. the assignment
SX for X is defined as follows: if X ∈ LVar(e) then all elements of SX are added to LAto(e),
and if X ∈ RVar(e) then all elements of SX are added to RAto(e).

9 Note that occurrences of X inside non-variable atoms ∃ r.X ∈ LAto(e) ∪ RAto(e) are not taken into
consideration here.

20 F. BAADER AND B. MORAWSKA

The L-variant of the Eager-Assignment rule applies to the equation e if there is an
unfinished variable X ∈ LVar(e) such that

• all variables Z ∈ (LVar(e) \ {X}) ∪ RVar(e) are finished;
• LAto(e) = ∅.
Its application sets SX := RAto(e).

(1) If this makes the current assignment cyclic, then return “fail.”
(2) Otherwise, label X as finished and expand all equations containing X w.r.t.

the new assignment for X.

Figure 1: The Eager-Assignment rule in its L-variant. The R-variant is obtained by ex-
changing the rôles of the two sides of the equation.

The following lemma is an immediate consequence of the definition of expanded equa-
tions and of the construction of the current substitution.

Lemma 6.1. If the equation C ≡? D is expanded w.r.t. the current assignment, then
LAto(C ≡? D) = RAto(C ≡? D) implies that the current substitution σ solves this equation,
i.e., σ(C) ≡ σ(D).

We say that an equation e is solved if LAto(e) = RAto(e). An atom A ∈ LAto(e) ∩
RAto(e) is called solved in e; atoms A ∈ LAto(e) ∪ RAto(e) that are not solved in e are
called unsolved in e. Obviously, an equation e is solved iff all atoms A ∈ LAto(e)∪RAto(e)
are solved in e.

Basically, in each step, the goal-oriented algorithm considers an unsolved equation and
an unsolved atom in this equation, and tries to solve it. Picking the unsolved equation and
the unsolved atom in it is don’t care non-deterministic, i.e., there is no need to backtrack
over such a choice. Once an unsolved equation and an unsolved atom in it was picked,
don’t know non-determinism comes in since there may be several possibilities for how to
solve this atom in the equation, some of which may lead to overall success whereas others
won’t. In some cases, however, a given equation uniquely determines the assignment for a
certain variable X. In this case, we make this assignment and then label the variable X as
finished. This has the effect that the set SX can no longer be extended. Initially, none of
the variables occurring in the input unification problem is labeled as finished. We say that
the variable X is unfinished if it is not labeled as finished.

Algorithm 6.2. Let Γ0 be a flat EL-unification problem. We define Γ := Γ0 and SX := ∅
for all variables X occurring in Γ0. None of these variables is labeled as finished.

As long as Γ contains an unsolved equation, do the following:

(1) If the Eager-Assignment rule applies to some equation e, then apply it to this equation
(see Figure 1).

(2) Otherwise, let e be an unsolved equation and A an unsolved atom in e. If neither
of the rules Decomposition (see Figure 2) and Extension (see Figure 3) applies to A
in e, then return “fail.” If one of these rules applies to A in e, then (don’t know)
non-deterministically choose one of these rules and apply it.

Once all equations of Γ are solved, return the substitution σ that is induced by the current
assignment.

The Eager-Assignment rule is described in Figure 1. Note that, after a non-failing
application of this rule, the equation it was applied to is solved since the expansion of this

UNIFICATION IN THE DESCRIPTION LOGIC EL 21

The L-variant of the Decomposition rule applies to the unsolved atom A in the equa-
tion e if

• A ∈ LAto(e) \ RAto(e);
• A is of the form A = ∃ r.C;
• there is at least one atom of the form ∃ r.B ∈ RAto(e).

Its application chooses (don’t know) non-deterministically an atom of the form ∃ r.B ∈
RAto(e) and

• adds ∃ r.C to RAto(e);
• creates a new equation C ⊓ B ≡? B and expands it w.r.t. the assignments of all

variables contained in this equation, unless this equation has already been generated
before. If the equation has already been generated before, it is not generated again.

Figure 2: The Decomposition rule in its L-variant. The R-variant is obtained by exchanging
the rôles of the two sides of the equation.

equation w.r.t. the new assignment for X adds all elements of RAto(e) to LAto(e). As an
example, consider the equations

Y ≡? ⊤, Z ≡? ∃ r.⊤, X ⊓ Y ≡? Z,

and assume that SX = SY = SZ = ∅ and none of the three variables X,Y,Z is finished.
An application of the Eager-Assignment rule to the first equation labels Y as finished, but
does not change anything else. The subsequent application of the Eager-Assignment rule
to the second equation changes the assignment for Z to SZ = {∃ r.⊤}, labels Z as finished,
and expands the second and the third equation w.r.t. the new assignment for Z. Thus, we
now have the equations

Y ≡? ⊤, Z ⊓ ∃ r.⊤ ≡? ∃ r.⊤, X ⊓ Y ≡? Z ⊓ ∃ r.⊤.

Since Y,Z are finished, the Eager-Assignment rule can now be applied to the third equation.
This changes the assignment for X to SX = {∃ r.⊤}, labels X as finished, and adds ∃ r.⊤
to the left-hand side of the third equation. Now all equations are solved. The current
assignment induces a substitution σ with σ(X) = ∃ r.⊤ = σ(Z) and σ(Y) = ⊤, which is a
unifier of the original set of equations.

The Decomposition rule is described in Figure 2. This rule solves the unsolved atom
A = ∃ r.C by adding it to the other side. For this to be admissible, one needs a more specific
atom ∃ r.B on that side, where the “more specific” is meant to hold after application of the
unifier. Thus, to ensure that the unifier σ computed by the algorithm satisfies σ(∃ r.B) ⊑
σ(∃ r.C), the rule adds the new equation C ⊓ B ≡? B. Obviously, if the substitution σ
solves this equation, then it satisfies σ(B) ⊑ σ(C), and thus σ(∃ r.B) ⊑ σ(∃ r.C). As an
example, consider the equation

∃ r.X ⊓ ∃ r.A ≡? ∃ r.A,

and assume that SX = ∅ and that X is unfinished. An application of the L-variant of the
Decomposition rule to this equation adds ∃ r.X to the right-hand side of this equation, and
thus solves it. In addition, it generates the new equation X ⊓ A ≡? A, which is solved.
The current assignment induces a substitution σ with σ(X) = ⊤, which solves the original
equation.

22 F. BAADER AND B. MORAWSKA

The L-variant of the Extension rule applies to the unsolved atom A of the equation e
if

• A ∈ LAto(e) \ RAto(e);
• there is at least one unfinished variable X ∈ RAto(e)

Its application chooses (don’t know) non-deterministically an unfinished variable X ∈
RAto(e) and adds A to SX .

• If this makes the current assignment cyclic, then return “fail.”
• Otherwise, expand all equations containing X w.r.t. the new

assignment for X.

Figure 3: The Extension rule in its L-variant. The R-variant is obtained by exchanging the
rôles of the two sides of the equation.

The Extension rule is described in Figure 3. Basically, this rule solves the unsolved
atom A by extending with this atom the assignment of an unfinished variable contained in
the other side of the equation. As an example, consider the equation

A ⊓ ∃ r.⊤ ≡? ∃ r.⊤ ⊓ X,

where A is a concept constant, SX = ∅, and X is unfinished. An application of the Extension
rule to A in this equation extends the assignment for X to SX = {A}, and expands this
equation by adding A to the right-hand side. The equation obtained this way is solved. The
substitution σ induced by the current assignment replaces X by A, and solves the original
equation.

Theorem 6.3. Algorithm 6.2 is an NP-algorithm for testing solvability of flat EL-unifica-
tion problems.

First, we show that the algorithm is indeed an NP-algorithm. For this, we consider
all runs of the algorithm, where for every (don’t care) non-deterministic choice exactly one
alternative is taken. Since a single rule application can obviously be realized in polynomial
time, it is sufficient to show the following lemma.

Lemma 6.4 (Termination). Every run of the algorithm terminates after a polynomial num-
ber of rule applications.

Proof. Each application of the Eager-Assignment rule finishes an unfinished variable. Thus,
since finished variables never become unfinished again, it can only be applied k times, where
k is the number of variables occurring in the input unification problem Γ0. This number is
clearly linearly bounded by the size of Γ0.

Every application of the Decomposition rule or the Extension rule turns an unsolved
atom in an equation into a solved one, and a solved atom in an equation never becomes
unsolved again in this equation. For a fixed equation, in the worst case every atom of Γ0

may become an unsolved atom of the equation that needs to be solved. There is, however,
only a linear number of atoms of Γ0. Each equation considered during the run of the
algorithm is either descended from an original equation of Γ0, or from an equation of the
form C ⊓ B ≡? B for atoms ∃ r.B and ∃ r.C of Γ0. Thus, the number of equations is also
polynomially bounded by the size of Γ0. Overall, this shows that the Decomposition rule
and the Extension rule can only be applied a polynomial number of times.

UNIFICATION IN THE DESCRIPTION LOGIC EL 23

Next, we show soundness of Algorithm 6.2. We call a run of this algorithm non-failing
if it terminates with a unification problem containing only solved equations.

Lemma 6.5 (Soundness). Let Γ0 be a flat EL-unification problem. The substitution σ
returned after a successful run of Algorithm 6.2 on input Γ0 is an EL-unifier of Γ0.

Proof. First, note that the rules employed by Algorithm 6.2 indeed preserve the two invari-
ants mentioned before:

(1) the current assignment is always acyclic;
(2) all equations are expanded.

In fact, whenever the current assignment is extended, the rules test acyclicity (and return
“fail,” if it is not satisfied). In addition, they expand all equations w.r.t. the new assignment.

Now, assume that the run of the algorithm has terminated with the EL-unification

problem Γ̂, in which all equations are solved. The first invariant ensures that the final
assignment constructed by the run is acyclic, and thus indeed induces a substitution σ.
Because of the second invariant, Lemma 6.1 applies, and thus we know that σ is a solution

of Γ̂.
It remains to show that the substitution σ is also a solution of the input problem Γ0. To

this purpose, we take all the equations that were considered during the run of the algorithm,
i.e., present in Γ0 or in any of the other unification problems generated during the run. Let
E denote the set of these equations. We define the relation → on E as follows: e → e′

if e was transformed into e′ using one of the rules of Algorithm 6.2. To be more precise,
the Eager-Assignment rule transforms equations containing X from the current unification
problem Γ by expanding them w.r.t. the new assignment for X. The same is true for the
Extension rule. The decomposition rule transforms an equation e containing the unsolved
atom A = ∃ r.C by adding this atom to the other side, which needs to contain an atom
of the form ∃ r.B. For this new equation e′, we have e → e′. The decomposition rule
may also generate a new equation e′′ of the form C ⊓ B ≡? B (if this equation was not
generated before). However, we do not view this equation as a successor of e w.r.t. →, i.e.,
we do not have e → e′′. Equations C ⊓ B ≡? B that are generated by an application of
the decomposition rule are called D-equations. Equations that are elements of the input
problem Γ0 are called I-equations. Any equation e′ that is not an I-equation or a D-equation
has a unique predecessor w.r.t. →, i.e., there is an equation e ∈ E such that e → e′.

Starting with the set F := Γ̂ we will now step by step extend F by a predecessor of
an equation in F until no new predecessors can be added. Since E is finite, this process
terminates after a finite number of steps. After termination we have E = F , and thus in
particular Γ0 ⊆ F . This is due to the fact that, for every element e0 of E , there are n ≥ 0

elements e1, . . . , en ∈ E such that e0 → e1 → . . . → en and en ∈ Γ̂. Thus, it is enough to
show that the set F satisfies the following invariant :

(∗) the substitution σ solves every equation in F .

Since σ is a solution of Γ̂, this invariant is initially satisfied. To prove that it is preserved
under adding predecessors of equations in F , we start with the equations of minimal role
depth. To be more precise, if the equation e is of the form C ≡? D, we define the role depth
of e w.r.t. σ to be the role depth10 of the concept term σ(C) ⊓ σ(D). The strict order ≻ on
E is defined as follows: e ≻σ e′ iff the role depth of e w.r.t. σ is larger than the role depth

10 see the proof of Proposition 3.5 for a definition.

24 F. BAADER AND B. MORAWSKA

of e′ w.r.t. σ. We write e ≈σ e′ if e and e′ have the same role depth w.r.t. σ. The following
is an easy consequence of the definition of σ and of our rules:

(∗∗) e1 → e2 → . . . → en implies e1 ≈σ e2 ≈σ . . . ≈σ en.

Assume that we have already constructed a set F such that the invariant (∗) is satisfied.
Let e′ be an equation in F such that

• there is an e ∈ E \ F with e → e′;
• e′ is of minimal role depth with this property, i.e., if f ′ ∈ F is such that e′ ≻ f ′ and f ′

has a predecessor f w.r.t. →, then f ∈ F .

If no such equation e′ exists, then we are finished, and we have E = F . Otherwise, let e′

be such an equation and e its predecessor w.r.t. →. We add e to F . In order to show that
the invariant (∗) is still satisfied, we make a case distinction according to which rule was
applied to e to produce e′:
(1) Eager-Assignment. By an application of this rule, the assignment for X is modified

from SX = ∅ to SX = {A1, . . . , An}, where A1, . . . , An are non-variable atoms. In
addition, X is labeled as finished. Since the assignment of a finished variable cannot be
changed anymore, we know that we also have SX = {A1, . . . , An} in the final assignment,
and thus σ(X) = σ(A1) ⊓ . . . ⊓ σ(An). The rule modifies equations as follows: all
equations containing X are expanded w.r.t. the assignment SX = {A1, . . . , An}. Since
e is transformed into e′ using this rule, it must contain X. We assume for the sake
of simplicity that X is contained in the left-hand side of e, but not in the right-hand
side, i.e., e is of the form C ⊓ X ≡? D and the new equation e′ ∈ Γ′ obtained from e is
C⊓X⊓A1⊓ . . .⊓An ≡? D. Since σ solves e′, we have σ(D) ≡ σ(C⊓X ⊓A1⊓ . . .⊓An) ≡
σ(C)⊓σ(A1)⊓ . . .⊓σ(An)⊓σ(A1)⊓ . . .⊓σ(An) ≡ σ(C)⊓σ(A1)⊓ . . .⊓σ(An) ≡ σ(C⊓X),
which shows that σ also solves e.

(2) Decomposition. Without loss of generality, we consider the L-variant of this rule. Thus,
the equation e is of the form D⊓∃ r.C ≡? E⊓∃ r.B, and e′ is obtained from e by adding
∃ r.C to the right-hand side, i.e., e′ is of the form D ⊓ ∃ r.C ≡? E ⊓ ∃ r.B ⊓ ∃ r.C. We
know that σ solves e′. Thus, if we can show σ(B) ⊑ σ(C), then we have σ(D ⊓∃ r.C) ≡
σ(E) ⊓ σ(∃ r.B) ⊓ σ(∃ r.C) ≡ σ(E) ⊓ σ(∃ r.B), which shows that σ solves e.

Consequently, it is sufficient to prove σ(B) ⊑ σ(C). The Decomposition rule also
generates the equation C ⊓ B ≡? B and expands it w.r.t. the assignments of all the
variables contained in this equation, unless this equation has already been generated
before. Thus, either this application or a previous one of the Decomposition rule has
generated the equation C⊓B ≡? B, and then expanded it (w.r.t. the current assignment
at that time) to an equation e1. Since atoms are never removed from an assignment, the
atoms present in the assignment at the time when the Decomposition rule generated
the equation C ⊓ B ≡? B are also present in the final assignment used to define the
substitution σ. Thus, if we can show that σ solves e1, then we have also shown that σ
solves C ⊓ B ≡? B, and thus satisfies σ(B) ⊑ σ(C).

Since equations are never completely removed by our rules, but only modified, there

is a sequence of equations e1 → e2 → . . . → en such that en ∈ Γ̂. Property (∗∗) thus
yields e1 ≈σ e2 ≈σ . . . ≈σ en. In addition, the role depth of C ⊓ B ≡? B w.r.t. σ is the
same as the role depth of e1 w.r.t. σ. Consequently, we have e′ ≻ ei for all i, 1 ≤ i ≤ n.
Now, assume that e1 6∈ F . Then there is an i > 1 such that ei ∈ F , but ei−1 ∈ E \ F .

UNIFICATION IN THE DESCRIPTION LOGIC EL 25

This contradicts our assumption that e′ is minimal. Thus, we have shown that e1 ∈ F ,
and this implies that σ solves e1.

Overall, this finishes the proof that σ solves e.
(3) Extension. By an application of this rule, the assignment for X is modified by adding

a non-variable atom A to it. Since atoms are never removed from an assignment, we
know that we also have A ∈ SX in the final assignment, and thus σ(X) ⊑ σ(A).
The rule modifies equations as follows: all equations containing X are expanded w.r.t.
the new assignment for X. Since e is transformed into e′ using this rule, it must
contain X. We assume for the sake of simplicity that X is contained in the left-hand
side of e, but not in the right-hand side, i.e., e is of the form C ⊓ X ≡? D and the
new equation e′ obtained from e is C ⊓ X ⊓ A ≡? D. Since σ solves e′, we have
σ(D) ≡ σ(C ⊓ X ⊓ A) ≡ σ(C) ⊓ σ(X) ⊓ σ(A) ≡ σ(C) ⊓ σ(X) ≡ σ(C ⊓ X), which shows
that σ also solves e.

To sum up, we have shown that the invariant (∗) is still satisfied after adding e to F . This
completes the proof of soundness of our procedure.

It remains to show completeness of Algorithm 6.2. Thus, assume that the input unifica-
tion problem Γ0 is solvable. Proposition 5.4 tells us that Γ0 then has an is-minimal reduced
ground unifier γ, and Proposition 5.11 implies that, for every variable X occurring in Γ0,
there is a set Sγ

X of non-variable atoms of Γ0 such that

γ(X) ≡ γ(
l

Sγ
X),

where, for a set of non-variable atoms S of Γ0, the expression
d

S denotes the conjunction
of the elements of S (where the empty conjunction is ⊤).

Lemma 6.6 (Completeness). Let Γ0 be a flat EL-unification problem, and assume that γ is
an is-minimal reduced ground unifier of Γ0. Then there is a successful run of Algorithm 6.2
on input Γ0 that returns a unifier σ that is equivalent to γ, i.e., satisfies σ(X) ≡ γ(X) for
all variables X occurring in Γ0.

Proof. The algorithm starts with Γ := Γ0 and the initial assignment SX := ∅ for all variables
X occurring in Γ0. It then applies rules that change Γ and the current assignment as long
as the problem Γ contains an unsolved equation.

We use γ to guide the (don’t know) non-deterministic choices to be made during the
algorithm. We show that this ensures that the run of the algorithm generated this way does
not fail and that the following invariants are satisfied throughout this run:

(I1) γ is a unifier of Γ;
(I2) for all atoms B ∈ SX there exists an atom A ∈ Sγ

X such that γ(A) ⊑ γ(B);
(I3) for all finished variables X we have γ(X) ≡ γ(

d
SX).

Before constructing a run that satisfies these invariants, let us point out two interesting
consequences that they have:

(C1) The current assignment is always acyclic. In fact, if X directly depends on Y , then
there is an atom B ∈ SX that has the form B = ∃ r.Y for some role name r. Invariant
I2 then implies that there is an A ∈ Sγ

X such that γ(X) ⊑ γ(A) ⊑ γ(B) = ∃ r.γ(Y).
Thus, if X depends on X, then there are k ≥ 1 role names r1, . . . , rk such that
γ(X) ⊑ ∃ r1. · · · ∃ rk.γ(X), which is impossible.

26 F. BAADER AND B. MORAWSKA

(C2) For each variable X occurring in Γ0, we have γ(X) ⊑ σ(X), where σ is the current
substitution induced by the current assignment. This is again a consequence of invari-
ant I2. Indeed, recall that the fact that the current assignment is acyclic implies that
there is a strict linear order > on the variables occurring in Γ such that X > Y if
X depends on Y . The current substitution σ is defined along this order. We prove
γ(X) ⊑ σ(X) by induction on this order.

Consider the least variable X. If SX = ∅, then σ(X) = ⊤, and thus γ(X) ⊑ σ(X)
is trivially satisfied. Otherwise, we know, for every B ∈ SX , that it does not contain
any variables, which implies that σ(B) = B = γ(B) ⊒ γ(A) for some atom A ∈ Sγ

X .
Obviously, this yields σ(X) = σ(

d
SX) ⊒ γ(

d
Sγ
X) = γ(X).

Now, assume that γ(Y) ⊑ σ(Y) holds for all variables Y < X. Since the concept
constructors of EL are monotone w.r.t. subsumption, this implies γ(C) ⊑ σ(C) for
all concept terms C containing only variables smaller than X. If SX is empty, then
σ(X) = ⊤ ⊒ γ(X) is trivially satisfied. Otherwise, we know, for every B ∈ SX , that
it contains only variables smaller than X. This yields σ(B) ⊒ γ(B) ⊒ γ(A) for some
atom A ∈ Sγ

X . Again, this implies σ(X) = σ(
d

SX) ⊒ γ(
d

Sγ
X) = γ(X).

Since γ was assumed to be an is-minimal unifier of Γ0, the consequence C2 implies that σ
can only be a unifier of Γ0 if σ is equivalent to γ. If the run has terminated successfully,
then the final substitution σ obtained by the run is a unifier of Γ0 (due to soundness). Thus,
in this case the computed unifier σ is indeed equivalent to γ. Consequently, to prove the
lemma, it is sufficient to construct a non-failing run of the algorithm that satisfies the above
invariants.

The invariants are initially satisfied since γ is a unifier of Γ0, the initial assignment
for all variables X occurring in Γ0 is SX = ∅, and there are no finished variables. Now,
assume that, by application of the rules of Algorithm 6.2, we have constructed a unification
problem Γ and a current assignment such that the invariants are satisfied.

(1) If all equations in Γ are solved, then the run terminates successfully, and we are done.
(2) If there is an unsolved equation to which the Eager-Assignment rule applies, then the

algorithm picks such an equation e and applies this rule to it. Without loss of generality,
we assume that the L-variant of the rule is applied. The selected equation e is of the
form

X ⊓ Z1 ⊓ . . . ⊓ Zk ≡? A1 ⊓ . . . ⊓ An ⊓ Y1 ⊓ . . . ⊓ Ym,

where A1, . . . , An are non-variable atoms, and Y1, . . . , Ym, Z1, . . . Zk are finished vari-
ables. Because the left-hand side of the equation does not contain any non-variable
atoms, we know that SX = SZ1 = . . . = SZk

= ∅ (since the algorithm keeps all equa-
tions expanded). Since Z1, . . . , Zk are finished, we thus have γ(Z1) = . . . = γ(Zk) = ⊤
(by invariant I3). We also know that SYi ⊆ {A1, . . . , An} for all i, 1 ≤ i ≤ m. Since the
variables Yi are finished, invariant I3 implies that γ(Yi) ⊒ γ(A1) ⊓ . . . ⊓ γ(An).

The new assignment for X is SX = {A1, . . . , An}, all equations containing X are
expanded w.r.t. this assignment, and X becomes a finished variable. First, we show
that I3 is satisfied. Nothing has changed for the variables that were already finished
before the application of the rule. However, X is now also finished. Thus, we must
show that γ(X) ≡ γ(

d
SX). We know that γ solves the equation e (by I1). This yields

γ(X) ≡ γ(X) ⊓ γ(Z1) ⊓ . . . ⊓ γ(Zk) ≡ γ(A1) ⊓ . . . ⊓ γ(An) ⊓ γ(Y1) ⊓ . . . ⊓ γ(Ym) ≡
γ(A1) ⊓ . . . ⊓ γ(An) = γ(

d
SX). Regarding I2, the only assignment that was changed

is the one for X. Since the new assignment for X is SX = {A1, . . . , An}, and we have

UNIFICATION IN THE DESCRIPTION LOGIC EL 27

already shown that γ(X) ≡ γ(A1)⊓ . . .⊓γ(An), the invariant I2 holds by Corollary 3.2.
Note that this also implies that the new assignment is acyclic, and thus the application
of the Eager-Assignment rule does not fail. Finally, consider the invariant I1. The rule
application modifies equations containing X by adding the atoms A1, . . . , An. Since
γ(X) ≡ γ(A1)⊓. . .⊓γ(An), an equation that was solved by γ before this modification, is
also solved by γ after this modification. To sum up, we have shown that the application
of the Eager-Assignment rule does not fail and preserves the invariants.

(3) If there is no unsolved equation to which the Eager-Assignment rule applies, then
the algorithm picks an unsolved equation e and an unsolved atom A occurring in this
equation. We must show that we can apply either the Decomposition or the Extension
rule to A in e such that the invariants stay satisfied. Without loss of generality, we
assume that the unsolved atom A occurs on the left-hand side of the equation e.
(a) First, assume that A is an existential restriction A = ∃ r.C. The selected unsolved

equation e is thus of the form

∃ r.C ⊓ A1 ⊓ . . . ⊓ Am ≡ B1 ⊓ . . . ⊓ Bn,

where A1, . . . , Am and B1, . . . , Bn are (variable or non-variable) atoms and ∃ r.C 6∈
{B1, . . . , Bn}. Since γ solves this equation (by invariant I1), Corollary 3.2 implies
that there must be an i, 1 ≤ i ≤ n, such that γ(Bi) ⊑ ∃ r.γ(C).

(i) If Bi is an existential restriction Bi = ∃ r.B, then we have γ(B) ⊑ γ(C).
We apply the Decomposition rule to A and Bi. The application of this rule
modifies the equation e to an equation e′ by adding the atom A to the right-
hand side. In addition, it generates the equation C ⊓ B ≡? B and expands it
w.r.t. the assignments of all variables contained in this equation (unless this
equation has been generated before). After the application of this rule, the
invariants I2 and I3 are still satisfied since the current assignments and the set
of finished variables remain unchanged. Regarding invariant I1, since γ solves
e, it obviously also solves e′ due to the fact that γ(Bi) ⊑ γ(A) and Bi is a
conjunct on the right-hand side of e. In addition, γ(B) ⊑ γ(C) implies that γ
also solves the equation C⊓B ≡? B. Since invariant I2 is satisfied, this implies
that γ also solves the equation obtained from C ⊓ B ≡? B by expanding it
w.r.t. the assignments of all variables contained in it.

(ii) Assume that there is no i, 1 ≤ i ≤ n, such that Bi is an existential restriction
satisfying γ(Bi) ⊑ γ(A). Thus, if Bi is such that γ(Bi) ⊑ γ(A), then we know
that Bi = X is a variable. We want to apply the Extension rule to A and X.
To be able to do this, we must first show that X is not a finished variable.
Thus, assume that X is finished, and let SX = {C1, . . . , Cℓ}. Invariant I3
yields γ(C1) ⊓ . . . ⊓ γ(Cℓ) = γ(X) = γ(Bi) ⊑ γ(A) = ∃ r.γ(C), and thus there
is a j, 1 ≤ j ≤ ℓ, such that γ(Cj) ⊑ γ(A). Since A is an existential restriction,
the non-variable atom Cj must also be an existential restriction, and since the
equation e is expanded, Cj ∈ SX occurs on the right-hand side of this equation.
This contradicts our assumption that there is no such existential restriction
on the right-hand side. Thus, we have shown that X is not finished, which
means that we can apply the Extension rule to A and X.
The application of this rule adds the atom A to the assignment for X, and
it expands all equations containing X w.r.t. this new assignment, i.e., it adds
A to the left-hand side and/or right-hand side of an equation whenever X is

28 F. BAADER AND B. MORAWSKA

contained in this side. Since we know that γ(X) ⊑ γ(A), it is easy to see
that, if γ solves an equation before this expansion, it also solves it after the
expansion. Thus invariant I1 is satisfied. Invariant I2 also remains satisfied.
In fact, if Sγ

X = {D1, . . . ,Dk}, then γ(D1) ⊓ . . . ⊓ γ(Dk) = γ(X) ⊑ γ(A)
implies that there is a j, 1 ≤ j ≤ ℓ, such that γ(Dj) ⊑ γ(A). The fact that
I2 is satisfied by the new assignment also implies that this new assignment is
acyclic, and thus the application of the Extension rule does not fail. Invariant
I3 is still satisfied since X is not finished, and the assignments of variables
different from X were not changed.

(b) Second, assume that A is a concept name. The selected unsolved equation e is thus
of the form

A ⊓ A1 ⊓ . . . ⊓ Am ≡ B1 ⊓ . . . ⊓ Bn,

where A1, . . . , Am and B1, . . . , Bn are (variable or non-variable) atoms, and A 6∈
{B1, . . . , Bn}. Since γ solves this equation (by invariant I1), Corollary 3.2 implies
that there must be an i, 1 ≤ i ≤ n, such that γ(Bi) ⊑ γ(A) = A. Since A 6∈
{B1, . . . , Bn}, we know that Bi = X is a variable. We want to apply the Extension
rule to A and X. To be able to do this, we must first show that X is not a finished
variable.
Thus, assume that X is finished, and let SX = {C1, . . . , Cℓ}. Invariant I3 yields
γ(C1) ⊓ . . . ⊓ γ(Cℓ) = γ(X) = γ(Bi) ⊑ γ(A) = A, and thus there is a j, 1 ≤ j ≤ ℓ,
such that γ(Cj) ⊑ A. Since A is a concept name, the non-variable atom Cj must
actually be equal to A, and since the equation e is expanded, Cj = A ∈ SX occurs
on the right-hand side of this equation. This contradicts our assumption that A
is an unsolved atom. Thus, we have shown that X is not finished, which means
that we can apply the Extension rule to A and X. The application of this rule
adds the atom A to the assignment for X, and it expands all equations containing
X w.r.t. this new assignment. The proof that this rule application does not fail
and preserves the invariants is identical to the one for the case where A was an
existential restriction.

To sum up, we have shown that Algorithm 6.2 always terminates (in non-deterministic
polynomial time) and that it is sound and complete. This finishes the proof of Theorem 6.3.

7. Unification in semilattices with monotone operators

Unification problems and their types were originally not introduced for Description
Logics, but for equational theories [16]. In this section, we show that the above results for
unification in EL can actually be viewed as results for an equational theory. As shown in
[28], the equivalence problem for EL-concept terms corresponds to the word problem for the
equational theory of semilattices with monotone operators. In order to define this theory,
we consider a signature ΣSLmO consisting of a binary function symbol ∧, a constant symbol
1, and finitely many unary function symbols f1, . . . , fn. Terms can then be built using these
symbols and additional variable symbols and free constant symbols.

UNIFICATION IN THE DESCRIPTION LOGIC EL 29

Definition 7.1. The equational theory of semilattices with monotone operators is defined
by the following identities:

SLmO := {x ∧ (y ∧ z) = (x ∧ y) ∧ z, x ∧ y = y ∧ x, x ∧ x = x, x ∧ 1 = x} ∪
{fi(x ∧ y) ∧ fi(y) = fi(x ∧ y) | 1 ≤ i ≤ n}

A given EL-concept term C using only roles r1, . . . , rn can be translated into a term
tC over the signature ΣSLmO by replacing each concept constant A by a corresponding free
constant a, each concept variable X by a corresponding variable x, ⊤ by 1, ⊓ by ∧, and ∃ ri
by fi. For example, the EL-concept term C = A ⊓ ∃ r1.⊤ ⊓ ∃ r3.(X ⊓ B) is translated into
tC = a∧f1(1)∧f3(x∧ b). Conversely, any term over the signature ΣSLmO can be translated
back into an EL-concept term.

Lemma 7.2. Let C,D be EL-concept term using only roles r1, . . . , rn. Then C ≡ D iff
tC =SLmO tD.

As an immediate consequence of this lemma, we have that unification in the DL EL
corresponds to unification modulo the equational theory SLmO . Thus, Theorem 4.1 implies
that SLmO has unification type zero, and Theorem 5.14 implies that SLmO -unification is
NP-complete.

Corollary 7.3. The equational theory SLmO of semilattices with monotone operators has
unification type zero, and deciding solvability of an SLmO-unification problem is an NP-
complete problem.

Since the unification problem introduced in Theorem 4.1 contains only one role r, this
is already true in the presence of a single monotone operator.

8. Conclusion

In this paper, we have shown that unification in the DL EL is of type zero and NP-
complete. There are interesting differences between the behavior of EL and the closely
related DL FL0 w.r.t. unification and matching. Though the unification types coincide for
these two DLs, the complexities of the decision problems differ: FL0-unification is ExpTime-
complete, and thus considerably harder than EL-unification. In contrast, FL0-matching is
polynomial, and thus considerably easier than EL-matching, which is NP-complete. In
addition to showing the complexity upper bound for EL-unification by a simple “guess and
then test” NP-algorithm, we have also developed a more goal-oriented NP-algorithm that
makes (don’t know) non-deterministic decisions (i.e., ones that require backtracking) only
if they are triggered by unsolved atoms in the unification problem.

As future work, we will consider also unification of concept terms for other members
of the EL-family of DLs [5]. In addition, we will investigate unification modulo more
expressive terminological formalisms. On the practical side, we will optimize and implement
the goal-oriented EL-unification algorithm developed in Section 6. We intend to test the
usefulness of this algorithm for the purpose on finding redundancies in EL-based ontologies
by considering extensions of the medical ontology Snomed ct. For example, in [18], two
different extensions of Snomed ct by so-called post-coordinated concepts were considered.
The authors used an (incomplete) equivalence test to find out how large the overlap between
the two extensions is (i.e., how many of the new concepts belonged to both extensions).
As pointed out in the introduction, the equivalence test cannot deal with situations where

30 F. BAADER AND B. MORAWSKA

different knowledge engineers use different names for concepts, or model on different levels
of granularity. We want to find out whether using unifiability rather than equivalence finds
more cases of overlapping concepts. Of course, in the case of unification one may also obtain
false positives, i.e., pairs of concepts that are unifiable, but are not meant to represent the
same (intuitive) concept. It is also important to find out how often this happens. Another
problem to be dealt with in this application is the development of heuristics for choosing
the pairs of concepts to be tested for unifiability and for deciding which concept names are
turned into variables.

References

[1] Franz Baader. Characterizations of unification type zero. In N. Dershowitz, editor, Proceedings of the
3rd International Conference on Rewriting Techniques and Applications, volume 355 of Lecture Notes
in Computer Science, pages 2–14, Chapel Hill, North Carolina, 1989. Springer-Verlag.

[2] Franz Baader. Unification in commutative theories. J. Symbolic Computation, 8(5):479–497, 1989.
[3] Franz Baader. Terminological cycles in KL-ONE-based knowledge representation languages. In Proc. of

the 8th Nat. Conf. on Artificial Intelligence (AAAI’90), pages 621–626, Boston (Ma, USA), 1990.
[4] Franz Baader. Terminological cycles in a description logic with existential restrictions. In Georg Gottlob

and Toby Walsh, editors, Proc. of the 18th Int. Joint Conf. on Artificial Intelligence (IJCAI 2003), pages
325–330, Acapulco, Mexico, 2003. Morgan Kaufmann, Los Altos.

[5] Franz Baader, Sebastian Brandt, and Carsten Lutz. Pushing the EL envelope. In Leslie Pack Kael-
bling and Alessandro Saffiotti, editors, Proc. of the 19th Int. Joint Conf. on Artificial Intelligence
(IJCAI 2005), pages 364–369, Edinburgh (UK), 2005. Morgan Kaufmann, Los Altos.

[6] Franz Baader, Diego Calvanese, Deborah McGuinness, Daniele Nardi, and Peter F. Patel-Schneider,
editors. The Description Logic Handbook: Theory, Implementation, and Applications. Cambridge Uni-
versity Press, 2003.

[7] Franz Baader and Ralf Küsters. Matching in description logics with existential restrictions. In Proc. of
the 7th Int. Conf. on Principles of Knowledge Representation and Reasoning (KR 2000), pages 261–272,
2000.

[8] Franz Baader and Ralf Küsters. Unification in a description logic with transitive closure of roles. In
Robert Nieuwenhuis and Andrei Voronkov, editors, Proc. of the 8th Int. Conf. on Logic for Programming
and Automated Reasoning (LPAR 2001), volume 2250 of Lecture Notes in Artificial Intelligence, pages
217–232, Havana, Cuba, 2001. Springer-Verlag.

[9] Franz Baader, Ralf Küsters, Alex Borgida, and Deborah L. McGuinness. Matching in description logics.
J. of Logic and Computation, 9(3):411–447, 1999.

[10] Franz Baader, Ralf Küsters, and Ralf Molitor. Computing least common subsumers in description logics
with existential restrictions. In Proc. of the 16th Int. Joint Conf. on Artificial Intelligence (IJCAI’99),
pages 96–101, 1999.

[11] Franz Baader and Barbara Morawska. Unification in the description logic EL. In Ralf Treinen, editor,
Proc. of the 20th Int. Conf. on Rewriting Techniques and Applications (RTA 2009), volume 5595 of
Lecture Notes in Computer Science, pages 350–364. Springer-Verlag, 2009.

[12] Franz Baader and Paliath Narendran. Unification of concepts terms in description logics. J. of Symbolic
Computation, 31(3):277–305, 2001.

[13] Franz Baader and Tobias Nipkow. Term Rewriting and All That. Cambridge University Press, United
Kingdom, 1998.

[14] Franz Baader and Werner Nutt. Basic description logics. In [6], pages 43–95. 2003.
[15] Franz Baader, Baris Sertkaya, and Anni-Yasmin Turhan. Computing the least common subsumer w.r.t.

a background terminology. J. of Applied Logic, 5(3):392–420, 2007.
[16] Franz Baader and Wayne Snyder. Unification theory. In J.A. Robinson and A. Voronkov, editors,

Handbook of Automated Reasoning, volume I, pages 447–533. Elsevier Science Publishers, 2001.
[17] Sebastian Brandt. Polynomial time reasoning in a description logic with existential restrictions, GCI

axioms, and—what else? In Ramon López de Mántaras and Lorenza Saitta, editors, Proc. of the 16th
Eur. Conf. on Artificial Intelligence (ECAI 2004), pages 298–302, 2004.

UNIFICATION IN THE DESCRIPTION LOGIC EL 31

[18] James R. Campbell, Alejandro Lopez Osornio, Fernan de Quiros, Daniel Luna, and Guillermo Reynoso.
Semantic interoperability and SNOMED CT: A case study in clinical problem lists. In K.A. Kuhn, J.R.
Warren, and T.-Y. Leong, editors, Proc. of the 12th World Congress on Health (Medical) Informatics
(MEDINFO 2007), pages 2401–2402. IOS Press, 2007.

[19] Silvio Ghilardi. Best solving modal equations. Ann. Pure Appl. Logic, 102(3):183–198, 2000.
[20] Ian Horrocks, Peter F. Patel-Schneider, and Frank van Harmelen. From SHIQ and RDF to OWL: The

making of a web ontology language. Journal of Web Semantics, 1(1):7–26, 2003.
[21] Ian Horrocks, Ulrike Sattler, and Stefan Tobies. Practical reasoning for very expressive description

logics. J. of the Interest Group in Pure and Applied Logic, 8(3):239–264, 2000.
[22] Jean-Pierre Jouannaud and Claude Kirchner. Solving equations in abstract algebras: A rule-based

survey of unification. In J.-L. Lassez and G. Plotkin, editors, Computational Logic: Essays in Honor of
A. Robinson. MIT Press, Cambridge, MA, 1991.

[23] Yevgeny Kazakov and Hans de Nivelle. Subsumption of concepts in FL0 for (cyclic) terminologies with
respect to descriptive semantics is PSPACE-complete. In Proc. of the 2003 Description Logic Workshop
(DL 2003). CEUR Electronic Workshop Proceedings, http://CEUR-WS.org/Vol-81/, 2003.

[24] Ralf Küsters. Non-standard Inferences in Description Logics, volume 2100 of Lecture Notes in Artificial
Intelligence. Springer-Verlag, 2001.

[25] Hector J. Levesque and Ron J. Brachman. A fundamental tradeoff in knowledge representation and
reasoning. In Ron J. Brachman and Hector J. Levesque, editors, Readings in Knowledge Representation,
pages 41–70. Morgan Kaufmann, Los Altos, 1985.

[26] Bernhard Nebel. Terminological reasoning is inherently intractable. Artificial Intelligence, 43:235–249,
1990.

[27] Alan Rector and Ian Horrocks. Experience building a large, re-usable medical ontology using a de-
scription logic with transitivity and concept inclusions. In Proceedings of the Workshop on Ontological
Engineering, AAAI Spring Symposium (AAAI’97), Stanford, CA, 1997. AAAI Press.

[28] Viorica Sofronie-Stokkermans. Locality and subsumption testing in EL and some of its extensions. In
Proc. Advances in Modal Logic (AiML’08), 2008.

[29] Frank Wolter and Michael Zakharyaschev. Undecidability of the unification and admissibility problems
for modal and description logics. ACM Trans. Comput. Log., 9(4), 2008.

This work is licensed under the Creative Commons Attribution-NoDerivs License. To view
a copy of this license, visit http://creativecommons.org/licenses/by-nd/2.0/ or send a
letter to Creative Commons, 171 Second St, Suite 300, San Francisco, CA 94105, USA, or
Eisenacher Strasse 2, 10777 Berlin, Germany

Unification in the Description Logic EL
without the Top Concept

Franz Baader1,�, Nguyen Thanh Binh2, Stefan Borgwardt1,�, and
Barbara Morawska1,�

1 TU Dresden, Germany
{baader,stefborg,morawska}@tcs.inf.tu-dresden.de

2 ETH Zürich, Switzerland
thannguy@inf.ethz.ch

Abstract. Unification in Description Logics has been proposed as a
novel inference service that can, for example, be used to detect redundan-
cies in ontologies. The inexpressive Description Logic EL is of particular
interest in this context since, on the one hand, several large biomedical
ontologies are defined using EL. On the other hand, unification in EL has
recently been shown to be NP-complete, and thus of considerably lower
complexity than unification in other DLs of similarly restricted expres-
sive power. However, EL allows the use of the top concept (�), which
represents the whole interpretation domain, whereas the large medical
ontology SNOMED CT makes no use of this feature. Surprisingly, remov-
ing the top concept from EL makes the unification problem considerably
harder. More precisely, we will show in this paper that unification in EL
without the top concept is PSpace-complete.

1 Introduction

Description logics (DLs) [4] are a well-investigated family of logic-based knowl-
edge representation formalisms. They can be used to represent the relevant con-
cepts of an application domain using concept terms, which are built from concept
names and role names using certain concept constructors. The DL EL offers the
constructors conjunction (�), existential restriction (∃r.C), and the top concept
(�). From a semantic point of view, concept names and concept terms represent
sets of individuals, whereas roles represent binary relations between individuals.
The top concept is interpreted as the set of all individuals. For example, using
the concept names Male, Female, Person and the role names child, job, the con-
cept of persons having a son, a daughter, and a job can be represented by the
EL-concept term Person � ∃child.Male � ∃child.Female � ∃job.�.

In this example, the availability of the top concept in EL allows us to state
that the person has some job, without specifying any further to which concept
this job belongs. Knowledge representation systems based on DLs provide their
users with various inference services that allow them to deduce implicit knowl-
edge from the explicitly represented knowledge. For instance, the subsumption

� Supported by DFG under grant BA 1122/14-1.

N. Bjørner and V. Sofronie-Stokkermans (Eds.): CADE 2011, LNAI 6803, pp. 70–84, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

Unification in EL without � 71

algorithm allows one to determine subconcept-superconcept relationships. For
example, the concept term ∃job.� subsumes (i.e., is a superconcept of) the con-
cept term ∃job.Boring since anyone that has a boring job at least has some job.
Two concept terms are called equivalent if they subsume each other, i.e., if they
are always interpreted as the same set of individuals.

The DL EL has recently drawn considerable attention since, on the one hand,
important inference problems such as the subsumption problem are polyno-
mial in EL [1,3]. On the other hand, though quite inexpressive, EL can be
used to define biomedical ontologies. For example, the large medical ontology
SNOMEDCT1 can be expressed in EL. Actually, if one takes a closer look at
the concept definitions in SNOMEDCT, then one sees that they do not contain
the top concept.

Unification in DLs has been proposed in [8] as a novel inference service that
can, for example, be used to detect redundancies in ontologies. For example,
assume that one knowledge engineer defines the concept of female professors as

Person � Female � ∃job.Professor,

whereas another knowledge engineer represent this notion in a somewhat differ-
ent way, e.g., by using the concept term

Woman � ∃job.(Teacher � Researcher).

These two concept terms are not equivalent, but they are nevertheless meant to
represent the same concept. They can obviously be made equivalent by sub-
stituting the concept name Professor in the first term by the concept term
Teacher � Researcher and the concept name Woman in the second term by the
concept term Person � Female. We call a substitution that makes two concept
terms equivalent a unifier of the two terms. Such a unifier proposes definitions
for the concept names that are used as variables. In our example, we know that,
if we define Woman as Person � Female and Professor as Teacher � Researcher,
then the two concept terms from above are equivalent w.r.t. these definitions.

In [8] it was shown that, for the DL FL0, which differs from EL by offering
value restrictions (∀r.C) in place of existential restrictions, deciding unifiability
is an ExpTime-complete problem. In [5], we were able to show that unification
in EL is of considerably lower complexity: the decision problem is “only” NP-
complete. The original unification algorithm for EL introduced in [5] was a brutal
“guess and then test” NP-algorithm, but we have since then also developed
more practical algorithms. On the one hand, in [7] we describe a goal-oriented
unification algorithm for EL, in which non-deterministic decisions are only made
if they are triggered by “unsolved parts” of the unification problem. On the other
hand, in [6], we present an algorithm that is based on a reduction to satisfiability
in propositional logic (SAT), and thus allows us to employ highly optimized
state-of-the-art SAT solvers for implementing an EL-unification algorithm.

As mentioned above, however, SNOMEDCT is not formulated in EL, but
rather in its sub-logic EL−�, which differs from EL in that the use of the top

1 See http://www.ihtsdo.org/snomed-ct/

72 F. Baader et al.

Table 1. Syntax and semantics of EL and EL−�

Name Syntax Semantics EL EL−�

concept name A AI ⊆ DI x x

role name r rI ⊆ DI × DI x x

top-concept � �I = DI x

conjunction C � D (C � D)I = CI ∩ DI x x

existential restriction ∃r.C (∃r.C)I = {x | ∃y : (x, y) ∈ rI ∧ y ∈ CI} x x

subsumption C 	 D CI ⊆ DI x x

equivalence C ≡ D CI = DI x x

concept is disallowed. If we employ EL-unification to detect redundancies in
(extensions of) SNOMEDCT, then a unifier may introduce concept terms that
contain the top concept, and thus propose definitions for concept names that are
of a form that is not used in SNOMEDCT. Apart from this practical motivation
for investigating unification in EL−�, we also found it interesting to see how such
a small change in the logic influences the unification problem. Surprisingly, it
turned out that the complexity of the problem increases considerably (from NP
to PSpace). In addition, compared to EL-unification, quite different methods
had to be developed to actually solve EL−�-unification problems. In particular,
we will show in this paper, that—similar to the case of FL0-unification—EL−�-
unification can be reduced to solving certain language equations. In contrast to
the case of FL0-unification, these language equations can be solved in PSpace
rather than ExpTime, which we show by a reduction to the emptiness problem
for alternating automata on finite words. Complete proofs of the results presented
in this paper can be found in [2].

2 The Description Logics EL and EL−�

Starting with a set NC of concept names and a set NR of role names, EL-concept
terms are built using the concept constructors top-concept (�), conjunction (C�
D), and existential restriction (∃r.C for every r ∈ NR). The EL-concept term C
is an EL−�-concept term if � does not occur in C. Since EL−�-concept terms
are special EL-concept terms, many definitions and results transfer from EL to
EL−�, and thus we only formulate them for EL. We will explicitly mention it if
this is not the case.

The semantics of EL and EL−� is defined in the usual way, using the notion of
an interpretation I = (DI , ·I), which consists of a nonempty domain DI and an
interpretation function ·I that assigns binary relations on DI to role names and
subsets of DI to concept terms, as shown in the semantics column of Table 1.

Unification in EL without � 73

The concept term C is subsumed by the concept term D (written C � D)
iff CI ⊆ DI holds for all interpretations I. We say that C is equivalent to
D (written C ≡ D) iff C � D and D � C, i.e., iff CI = DI holds for all
interpretations I.

An EL-concept term is called an atom iff it is a concept name A ∈ NC or
an existential restriction ∃r.D. Concept names and existential restrictions ∃r.D,
where D is a concept name or �, are called flat atoms. The set At(C) of atoms
of an EL-concept term C consists of all the subterms of C that are atoms.
For example, C = A � ∃r.(B � ∃r.�) has the atom set At(C) = {A, ∃r.(B �
∃r.�), B, ∃r.�}. Obviously, any EL-concept term C is a conjunction C = C1 �
. . . � Cn of atoms and �. We call the atoms among C1, . . . , Cn the top-level
atoms of C. The EL-concept term C is called flat if all its top-level atoms are
flat. Subsumption in EL and EL−� can be characterized as follows [7]:

Lemma 1. Let C = A1 � . . . � Ak � ∃r1.C1 � . . . � ∃rm.Cm and D = B1 � . . . �
Bl�∃s1.D1�. . .�∃sn.Dn be two EL-concept terms, where A1, . . . , Ak, B1, . . . , Bl

are concept names. Then C � D iff {B1, . . . , Bl} ⊆ {A1, . . . , Ak} and for every
j ∈ {1, . . . , n} there exists an i ∈ {1, . . . , m} such that ri = sj and Ci � Dj.

In particular, this means that C � D iff for every top-level atom D′ of D there
is a top-level atom C′ of C such that C′ � D′.

Modulo equivalence, the subsumption relation is a partial order on concept
terms. In EL, the top concept � is the greatest element w.r.t. this order. In
EL−�, there are many incomparable maximal concept terms. We will see below
that these are exactly the EL−�-concept terms of the form ∃r1. · · · ∃rn.A for
n ≥ 0 role names r1, . . . , rn and a concept name A. We call such concept terms
particles . The set Part(C) of all particles of a given EL−�-concept term C is
defined as

– Part(C) := {C} if C is a concept name,
– Part(C) := {∃r.E | E ∈ Part(D)} if C = ∃r.D,
– Part(C) := Part(C1) ∪ Part(C2) if C = C1 � C2.

For example, the particles of C = A � ∃r.(A � ∃r.B) are A, ∃r.A, ∃r.∃r.B. Such
particles will play an important role in our EL−�-unification algorithm. The
next lemma states that particles are indeed the maximal concept terms w.r.t. to
subsumption in EL−�, and that the particles subsuming an EL−�-concept term
C are exactly the particles of C.

Lemma 2. Let C be an EL−�-concept term and B a particle.

1. If B � C, then B ≡ C.
2. B ∈ Part(C) iff C � B.

3 Unification in EL and EL−�

To define unification in EL and EL−� simultaneously, let L ∈ {EL, EL−�}.
When defining unification in L, we assume that the set of concepts names is

74 F. Baader et al.

partitioned into a set Nv of concept variables (which may be replaced by sub-
stitutions) and a set Nc of concept constants (which must not be replaced by
substitutions). An L-substitution σ is a mapping from Nv into the set of all
L-concept terms. This mapping is extended to concept terms in the usual way,
i.e., by replacing all occurrences of variables in the term by their σ-images. An
L-concept term is called ground if it contains no variables, and an L-substitution
σ is called ground if the concept terms σ(X) are ground for all X ∈ Nv.

Unification tries to make concept terms equivalent by applying a substitution.

Definition 1. An L-unification problem is of the form Γ = {C1 ≡? D1, . . . ,
Cn ≡? Dn}, where C1, D1, . . . Cn, Dn are L-concept terms. The L-substitution
σ is an L-unifier of Γ iff it solves all the equations Ci ≡? Di in Γ , i.e., iff
σ(Ci) ≡ σ(Di) for i = 1, . . . , n. In this case, Γ is called L-unifiable.

In the following, we will use the subsumption C �? D as an abbreviation for the
equation C � D ≡? C. Obviously, σ solves this equation iff σ(C) � σ(D).

Clearly, every EL−�-unification problem Γ is also an EL-unification problem.
Whether Γ is L-unifiable or not may depend, however, on whether L = EL
or L = EL−�. As an example, consider the problem Γ := {A �? X, B �? X},
where A, B are distinct concept constants and X is a concept variable. Obviously,
the substitution that replaces X by � is an EL-unifier of Γ . However, Γ does not
have an EL−�-unifier. In fact, for such a unifier σ, the EL−�-concept term σ(X)
would need to satisfy A � σ(X) and B � σ(X). Since A and B are particles,
Lemma 2 would imply A ≡ σ(X) ≡ B and thus A ≡ B, which is not the case.

It is easy to see that, for both L = EL and L = EL−�, an L-unification
problem Γ has an L-unifier iff it has a ground L-unifier σ that uses only concept
and role names occurring in Γ ,2 i.e., for all variables X , the L-concept term σ(X)
is a ground term that contains only such concept and role names. In addition,
we may without loss of generality restrict our attention to flat L-unification
problems, i.e., unification problems in which the left- and right-hand sides of
equations are flat L-concept terms (see, e.g., [7]).

Given a flat L-unification problem Γ , we denote by At(Γ) the set of all atoms
of Γ , i.e., the union of all sets of atoms of the concept terms occurring in Γ . By
Var(Γ) we denote the variables that occur in Γ , and by NV(Γ) := At(Γ)\Var(Γ)
the set of all non-variable atoms of Γ .

EL-unification by guessing acyclic assignments

The NP-algorithm for EL-unification introduced in [5] guesses, for every vari-
able X occurring in Γ , a set S(X) of non-variable atoms of Γ . Given such an
assignment of sets of non-variable atoms to the variables in Γ , we say that the
variable X directly depends on the variable Y if Y occurs in an atom of S(X).
Let depends on be the transitive closure of directly depends on. If there is no
variable that depends on itself, then we call this assignment acyclic. In case the
guessed assignment is not acyclic, this run of the NP-algorithm returns “fail.”

2 Without loss of generality, we assume that Γ contains at least one concept name.

Unification in EL without � 75

Otherwise, there exists a strict linear order > on the variables occurring in Γ
such that X > Y if X depends on Y . One can then define the substitution γS

induced by the assignment S along this linear order:

– If X is the least variable w.r.t. >, then γS(X) is the conjunction of the
elements of S(X), where the empty conjunction is �.

– Assume γS(Y) is defined for all variables Y < X . If S(X) = {D1, . . . , Dn},
then γS(X) := γS(D1) � . . . � γS(Dn).

The algorithm then tests whether the substitution γS computed this way is a
unifier of Γ . If this is the case, then this run returns γS; otherwise, it returns
“fail.” In [5] it is shown that Γ is unifiable iff there is a run of this algorithm on
input Γ that returns a substitution (which is then an EL-unifier of Γ).

Why this does not work for EL−�

The EL-unifiers returned by the EL-unification algorithm sketched above need
not be EL−�-unifiers since some of the sets S(X) in the guessed assignment
may be empty, in which case γS(X) = �. This suggests the following simple
modification of the above algorithm: require that the guessed assignment is such
that all sets S(X) are nonempty. If such an assignment S is acyclic, then the
induced substitution γS is actually an EL−�-substitution, and thus the substi-
tutions returned by the modified algorithm are indeed EL−�-unifiers. However,
this modified algorithm does not always detect EL−�-unifiability, i.e., it may
return no substitution although the input problem is EL−�-unifiable.

As an example, consider the EL−�-unification problem

Γ := {A � B ≡? Y, B � C ≡? Z, ∃r.Y �? X, ∃r.Z �? X},

where X, Y, Z are concept variables and A, B, C are distinct concept constants.
We claim that, up to equivalence, the substitution that maps X to ∃r.B, Y to
A � B, and Z to B � C is the only EL−�-unifier of Γ . In fact, any EL−�-unifier
γ of Γ must map Y to A�B and Z to B�C, and thus satisfy ∃r.(A�B) � γ(X)
and ∃r.(B � C) � γ(X). Lemma 1 then yields that the only possible top-level
atom of γ(X) is ∃r.B. However, there is no non-variable atom D ∈ NV(Γ) such
that γ(D) is equivalent to ∃r.B. This shows that Γ has an EL−�-unifier, but
this unifier cannot be computed by the modified algorithm sketched above.

The main idea underlying the EL−�-unification algorithm introduced in the
next section is that one starts with an EL-unifier, and then conjoins “appro-
priate” particles to the images of the variables that are replaced by � by this
unifier. It is, however, not so easy to decide which particles can be added this
way without turning the EL-unifier into an EL−�-substitution that no longer
solves the unification problem.

4 An EL−�-Unification Algorithm

In the following, let Γ be a flat EL−�-unification problem. Without loss of gen-
erality we assume that Γ consists of subsumptions of the form C1�. . .�Cn �? D

76 F. Baader et al.

for atoms C1, . . . , Cn, D. Our decision procedure for EL−�-unifiability proceeds
in four steps.

Step 1. If S is an acyclic assignment guessed by the EL-unification algorithm
sketched above, then D ∈ S(X) implies that the subsumption γS(X) � γS(D)
holds for the substitution γS induced by S. Instead of guessing just subsumptions
between variables and non-variable atoms, our EL−�-unification algorithm starts
with guessing subsumptions between arbitrary atoms of Γ . To be more precise,
it guesses a mapping τ : At(Γ)2 → {0, 1}, which specifies which subsumptions
between atoms of Γ should hold for the EL−�-unifier that it tries to generate: if
τ(D1, D2) = 1 for D1, D2 ∈ At(Γ), then this means that the search for a unifier
is restricted (in this branch of the search tree) to substitutions γ satisfying
γ(D1) � γ(D2). Obviously, any such mapping τ also yields an assignment

Sτ (X) := {D ∈ NV(Γ) | τ(X, D) = 1},

and we require that this assignment is acyclic and induces an EL-unifier of Γ .

Definition 2. The mapping τ : At(Γ)2 → {0, 1} is called a subsumption map-
ping for Γ if it satisfies the following three conditions:

1. It respects the properties of subsumption in EL:
(a) τ(D, D) = 1 for each D ∈ At(Γ).
(b) τ(A1, A2) = 0 for distinct concept constants A1, A2 ∈ At(Γ).
(c) τ(∃r.C1, ∃s.C2) = 0 for distinct r, s ∈ NR with ∃r.C1, ∃s.C2 ∈ At(Γ).
(d) τ(A, ∃r.C) = τ(∃r.C, A) = 0 for each constant A ∈ At(Γ), role name r

and variable or constant C with ∃r.C ∈ At(Γ).
(e) If ∃r.C1, ∃r.C2 ∈ At(Γ), then τ(∃r.C1, ∃r.C2) = τ(C1, C2).
(f) For all atoms D1, D2, D3 ∈ At(Γ), if τ(D1, D2) = τ(D2, D3) = 1, then

τ(D1, D3) = 1.
2. It induces an EL-substitution, i.e., the assignment Sτ is acyclic and thus

induces a substitution γSτ

, which we will simply denote by γτ .
3. It respects the subsumptions of Γ , i.e., it satisfies the following conditions

for each subsumption C1 � . . . � Cn �? D in Γ :
(a) If D is a non-variable atom, then there is at least one Ci such that

τ(Ci, D) = 1.
(b) If D is a variable and τ(D, C) = 1 for a non-variable atom C ∈ NV(Γ),

then there is at least one Ci with τ(Ci, C) = 1.

Though this is not really necessary for the proof of correctness of our EL−�-
unification algorithm, it can be shown that the substitution γτ induced by a
subsumption mapping τ for Γ is indeed an EL-unifier of Γ . It should be noted
that γτ need not be an EL−�-unifier of Γ . In addition, γτ need not agree with τ
on every subsumption between atoms of Γ . The reason for this is that τ specifies
subsumptions which should hold in the EL−�-unifier of Γ to be constructed. To
turn γτ into such an EL−�-unifier, we may have to add certain particles, and
these additions may invalidate subsumptions that hold for γτ . However, we will
ensure that no subsumption claimed by τ is invalidated.

Unification in EL without � 77

Step 2. In this step, we use τ to turn Γ into a unification problem that has only
variables on the right-hand sides of subsumptions. More precisely, we define
ΔΓ,τ := ΔΓ ∪ Δτ , where

ΔΓ := {C1 � . . . � Cn �? X ∈ Γ | X is a variable of Γ},

Δτ := {C �? X | X is a variable and C an atom of Γ with τ(C, X) = 1}.

For an arbitrary EL−�-substitution σ, we define

Sσ(X) := {D ∈ NV(Γ) | σ(X) � σ(D)},

and write Sτ ≤ Sσ if Sτ (X) ⊆ Sσ(X) for every variable X . The following
lemma states the connection between EL−�-unifiability of Γ and of ΔΓ,τ , using
the notation that we have just introduced.

Lemma 3. Let Γ be a flat EL−�-unification problem. Then the following state-
ments are equivalent for any EL−�-substitution σ:

1. σ is an EL−�-unifier of Γ .
2. There is a subsumption mapping τ : At(Γ)2 → {0, 1} for Γ such that σ is

an EL−�-unifier of ΔΓ,τ and Sτ ≤ Sσ.

Step 3. In this step, we characterize which particles can be added in order to
turn γτ into an EL−�-unifier σ of ΔΓ,τ satisfying Sτ ≤ Sσ. Recall that particles
are of the form ∃r1. · · · ∃rn.A for n ≥ 0 role names r1, . . . , rn and a concept name
A. We write such a particle as ∃w.A, where w = r1 · · · rn is viewed as a word
over the alphabet NR of all role names. If n = 0, then w is the empty word ε
and ∃ε.A is just A.

Admissible particles are determined by solutions of a system of linear language
inclusions. These linear inclusions are of the form

Xi ⊆ L0 ∪ L1X1 ∪ . . . ∪ LnXn, (1)

where X1, . . . , Xn are indeterminates, i ∈ {1, . . . , n}, and each Li (i ∈ {0, . . . , n})
is a subset of NR ∪ {ε}. A solution θ of such an inclusion assigns sets of words
θ(Xi) ⊆ N∗

R to the indeterminates Xi such that θ(Xi) ⊆ L0 ∪ L1θ(X1) ∪ . . . ∪
Lnθ(Xn).

The unification problem ΔΓ,τ induces a finite system IΓ,τ of such inclusions.
The indeterminates of IΓ,τ are of the form XA, where X ∈ Nv and A ∈ Nc. For
each constant A ∈ Nc and each subsumption of the form C1 � . . . � Cn �? X ∈
ΔΓ,τ , we add the following inclusion to IΓ,τ :

XA ⊆ fA(C1) ∪ . . . ∪ fA(Cn), where

fA(C) :=

⎧
⎪⎪⎨
⎪⎪⎩

{r}fA(C′) if C = ∃r.C′

YA if C = Y is a variable
{ε} if C = A
∅ if C ∈ Nc \ {A}

78 F. Baader et al.

Since ΔΓ,τ contains only flat atoms, these inclusion are indeed of the form (1).
We call a solution θ of IΓ,τ admissible if, for every variable X ∈ Nv, there is

a constant A ∈ Nc such that θ(XA) is nonempty. This condition will ensure that
we can add enough particles to turn γτ into an EL−�-substitution. In order to
obtain a substitution at all, only finitely many particles can be added. Thus, we
are interested in finite solutions of IΓ,τ , i.e., solutions θ such that all the sets
θ(XA) are finite.

Lemma 4. Let Γ be a flat EL−�-unification problem and τ a subsumption map-
ping for Γ . Then ΔΓ,τ has an EL−�-unifier σ with Sτ ≤ Sσ iff IΓ,τ has a finite,
admissible solution.

Proof sketch. Given a ground EL−�-unifier σ of ΔΓ,τ with Sτ ≤ Sσ, we define
for each concept variable X and concept constant A occurring in Γ :

θ(XA) := {w ∈ N∗
R | ∃w.A ∈ Part(σ(X))}.

It can then be shown that θ is a solution of IΓ,τ . This solution is finite since any
concept term has only finitely many particles, and it is admissible since σ is an
EL−�-substitution.

Conversely, let θ be a finite, admissible solution of IΓ,τ . We define the sub-
stitution σ by induction on the dependency order > induced by Sτ as follows.
Let X be a variable of Γ and assume that σ(Y) has already been defined for all
variables Y with X > Y . Then we set

σ(X) :=
�

D∈Sτ (X)

σ(D) �
�

A∈Nc

�

w∈θ(XA)

∃w.A.

Since θ is finite and admissible, σ is a well-defined EL−�-substitution. It can be
shown that σ(X) is indeed an EL−�-unifier of ΔΓ,τ with Sτ ≤ Sσ. ��

Step 4. In this step we show how to test whether the system IΓ,τ of linear
language inclusions constructed in the previous step has a finite, admissible
solution or not. The main idea is to consider the greatest solution of IΓ,τ .

To be more precise, given a system of linear language inclusions I, we can
order the solutions of I by defining θ1 ⊆ θ2 iff θ1(X) ⊆ θ2(X) for all indeter-
minates X of I. Since θ∅, which assigns the empty set to each indeterminate of
I, is a solution of I and solutions are closed under argument-wise union, the
following clearly defines the (unique) greatest solution θ∗ of I w.r.t. this order:

θ∗(X) :=
⋃

θ solution of I
θ(X).

Lemma 5. Let X be an indeterminate in I and θ∗ the maximal solution of I.
If θ∗(X) is nonempty, then there is a finite solution θ of I such that θ(X) is
nonempty.

Unification in EL without � 79

Proof. Let w ∈ θ∗(X). We construct the finite solution θ of I by keeping only
the words of length |w|: for all indeterminates Y occurring in I we define

θ(Y) := {u ∈ θ∗(Y) | |u| ≤ |w|}.

By definition, we have w ∈ θ(X). To show that θ is indeed a solution of I,
consider an arbitrary inclusion Y ⊆ L0 ∪ L1X1 ∪ . . . ∪ LnXn in I, and assume
that u ∈ θ(Y). We must show that u ∈ L0 ∪ L1θ(X1) ∪ . . . ∪ Lnθ(Xn). Since
u ∈ θ∗(Y) and θ∗ is a solution of I, we have (i) u ∈ L0 or (ii) u ∈ Liθ

∗(Xi) for
some i, 1 ≤ i ≤ n. In the first case, we are done. In the second case, u = αu′

for some α ∈ Li ⊆ NR ∪ {ε} and u′ ∈ θ∗(Xi). Since |u′| ≤ |u| ≤ |w|, we have
u′ ∈ θ(Xi), and thus u ∈ Liθ(Xi). ��

Lemma 6. There is a finite, admissible solution of IΓ,τ iff the maximal solution
θ∗ of IΓ,τ is admissible.

Proof. If IΓ,τ has a finite, admissible solution θ, then the maximal solution of
IΓ,τ contains this solution, and is thus also admissible.

Conversely, if θ∗ is admissible, then (by Lemma 5) for each X ∈ Var(Γ) there
is a constant A(X) and a finite solution θX of IΓ,τ such that θX(XA(X)) �= ∅.
The union of these solutions θX for X ∈ Var(Γ) is the desired finite, admissible
solution. ��

Given this lemma, it remains to show how we can test admissibility of the max-
imal solution θ∗ of IΓ,τ . For this purpose, it is obviously sufficient to be able
to test, for each indeterminate XA in IΓ,τ , whether θ∗(XA) is empty or not.
This can be achieved by representing the languages θ∗(XA) using alternating
finite automata with ε-transitions (ε-AFA), which are a special case of two-way
alternating finite automata. In fact, as shown in [11], the emptiness problem for
two-way alternating finite automata (and thus also for ε-AFA) is in PSpace.

Lemma 7. For each indeterminate XA in IΓ,τ , we can construct in polynomial
time in the size of IΓ,τ an ε-AFA A(X, A) such that the language L(A(X, A))
accepted by A(X, A) is equal to θ∗(XA), where θ∗ denotes the maximal solution
of IΓ,τ .

This finishes the description of our EL−�-unification algorithm. It remains to
argue why it is a PSpace decision procedure for EL−�-unifiability.

Theorem 1. The problem of deciding unifiability in EL−� is in PSpace.

Proof. We show that the problem is in NPSpace, which is equal to PSpace by
Savitch’s theorem [14].

Let Γ be a flat EL−�-unification problem. By Lemma 3, Lemma 4, and
Lemma 6, we know that Γ is EL−�-unifiable iff there is a subsumption mapping
τ for Γ such that the maximal solution θ∗ of IΓ,τ is admissible.

Thus, we first guess a mapping τ : At(Γ)2 → {0, 1} and test whether τ is a
subsumption mapping for Γ . Guessing τ can clearly be done in NPSpace. For

80 F. Baader et al.

a given mapping τ , the test whether it is a subsumption mapping for Γ can be
done in polynomial time.

From τ we can first construct ΔΓ,τ and then IΓ,τ in polynomial time. Given
IΓ,τ , we then construct the (polynomially many) ε-AFA A(X, A), and test them
for emptiness. Since the emptiness problem for ε-AFA is in PSpace, this can
be achieved within PSpace. Given the results of these emptiness tests, we can
then check in polynomial time whether, for each concept variable X of Γ there
is a concept constant A of Γ such that θ∗(XA) = L(A(X, A)) �= ∅. If this is the
case, then θ∗ is admissible, and thus Γ is EL−�-unifiable. ��

5 PSpace-Hardness of EL−�-Unification

We show PSpace-hardness of EL−�-unification by reducing the PSpace-hard
intersection emptiness problem for deterministic finite automata (DFA) [12,9]
to the problem of deciding whether a given EL−�-unification problem has an
EL−�-unifier or not.

First, we define a translation from a given DFA A = (Q, Σ, q0, δ, F) to a set
of subsumptions ΓA. In the following, we only consider automata that accept
a nonempty language. For such DFAs we can assume without loss of generality
that there is no state q ∈ Q that cannot be reached from q0 or from which F
cannot be reached. In fact, such states can be removed from A without changing
the accepted language.

For every state q ∈ Q, we introduce a concept variable Xq. We use only one
concept constant, A, and define NR := Σ. The set ΓA is defined as follows:

ΓA := {Lq �? Xq | q ∈ Q \ F} ∪ {A � Lq �? Xq | q ∈ F}, where

Lq :=
�

α∈Σ
δ(q,α) is defined

∃α.Xδ(q,α).

Note that the left-hand sides of the subsumptions in ΓA are indeed EL−�-concept
terms, i.e., the conjunctions on the left-hand sides are nonempty. In fact, every
state q ∈ Q is either a final state or a final state is reachable by a nonempty
path from q. In the first case, A occurs in the conjunction, and in the second,
there must be an α ∈ Σ such that δ(q, α) is defined, in which case ∃α.Xδ(q,α)

occurs in the conjunction.
The following lemma, which can easily be proved by induction on |w|, connects

particles occurring in EL−�-unifiers of ΓA to words accepted by states of the
DFA A.

Lemma 8. Let q ∈ Q, w ∈ Σ∗, and γ be a ground EL−�-unifier of ΓA with
γ(Xq) � ∃w.A. Then w ∈ L(Aq), where Aq := (Q, Σ, q, δ, F) is obtained from
A by making q the initial state.

Together with Lemma 2, this lemma implies that, for every ground EL−�-unifier
γ of ΓA, the language {w ∈ Σ∗ | ∃w.A ∈ Part(γ(Xq0))} is contained in L(A).

Unification in EL without � 81

Conversely, we will show that for every word w accepted by A we can construct
a unifier γw such that ∃w.A ∈ Part(γw(Xq0)).

For the construction of γw, we first consider every q ∈ Q and try to find a
word uq of minimal length that is accepted by Aq. Such a word always exists
since we have assumed that we can reach F from every state. Taking arbitrary
such words is not sufficient, however. They need to be related in the following
sense.

Lemma 9. There exists a mapping from the states q ∈ Q to words uq ∈ L(Aq)
such that that either q ∈ F and uq = ε or there is a symbol α ∈ Σ such that
δ(q, α) is defined and uq = αuδ(q,α).

Proof. We construct the words uq by induction on the length n of a shortest
word accepted by Aq.

If n = 0, then q must be a final state. In this case, we set uq := ε.
Now, let q be a state such that a shortest word wq accepted by Aq has length

n > 0. Then wq = αw′ for α ∈ Σ and w′ ∈ Σ∗ and the transition δ(q, α) = q′ is
defined. The length of a shortest word accepted by Aq′ must be smaller than n,
since w′ is accepted by Aq′ . By induction, uq′ ∈ L(Aq′) has already been defined
and we have αuq′ ∈ L(Aq). Since αuq′ cannot be shorter than wq = αw′, it must
also be of length n. We now define uq := αuq′ . ��

We can now proceed with the definition of γw for a word w ∈ L(A). The (unique)
accepting run of A on w = w1 . . . wn yields a sequence of states q0, q1, . . . , qn

with qn ∈ F and δ(qi, wi+1) = qi+1 for every i ∈ {0, . . . , n − 1}. We define the
substitution γw as follows:

γw(Xq) := ∃uq.A �
�

i∈Iq

∃wi+1 . . . wn.A,

where Iq := {i ∈ {0, . . . , n − 1} | qi = q}. For every q ∈ Q, we include at least

the conjunct ∃uq.A in γw(Xq), and thus γw is in fact an EL−�-substitution.

Lemma 10. If w ∈ L(A), then γw is an EL−�-unifier of ΓA and γw(Xq0) �
∃w.A.

Proof. Let the unique accepting run of A on w = w1 . . . wn be given by the
sequence q0q1 . . . qn of states with qn ∈ F and δ(qi, wi+1) = qi+1 for every
i ∈ {0, . . . , n − 1}, and let γw be defined as above.

We must show that γw satisfies the subsumption constraints introduced in ΓA
for every state q ∈ Q: Lq �? Xq if q ∈ Q \ F and A � Lq �? Xq if q ∈ F , where

Lq :=
�

α∈Σ
δ(q,α) is defined

∃α.Xδ(q,α).

82 F. Baader et al.

To do this, we consider every top-level atom of γw(Xq) and show that it subsumes
the left-hand side of the above subsumption.

– Consider the conjunct ∃uq.A. If uq = ε, then q ∈ F and the left-hand side
contains the conjunct A. In this case, the subsumption is satisfied. Otherwise,
there is a symbol α ∈ Σ such that q′ := δ(q, α) is defined and uq = αuq′ .
Since ∃uq′ .A is a top-level atom of γw(Xq′), we have γ(Xq′) � ∃uq′ .A, and
thus γw(Lq) � ∃α.γw(Xq′) � ∃uq.A.

– Let i ∈ Iq, i.e., qi = q, and consider the conjunct ∃wi+1 . . . wn.A. Since we
have δ(qi, wi+1) = qi+1 and ∃wi+2 . . . wn.A is a conjunct of γw(Xqi+1),

3 we
obtain γw(Lq) � ∃wi+1.γw(Xqi+1) � ∃wi+1∃wi+2 . . . wn.A = ∃wi+1 . . . wn.A.

This shows that γw is a ground EL−�-unifier of ΓA. Furthermore, since 0 ∈
Iq0 , the particle ∃w1 . . . wn.A = ∃w.A is a top-level atom of γw(Xq0), and thus
γw(Xq0) � ∃w.A. ��

For the intersection emptiness problem one considers finitely many DFAs
A1, . . . , Ak, and asks whether L(A1) ∩ . . . ∩ L(Ak) �= ∅. Since this problem
is trivially solvable in polynomial time in case L(Ai) = ∅ for some i, 1 ≤ i ≤ k,
we can assume that the languages L(Ai) are all nonempty. Thus, we can also
assume without loss of generality that the automata Ai = (Qi, Σ, q0,i, δi, Fi)
have pairwise disjoint sets of states Qi and are reduced in the sense introduced
above, i.e., there is no state that cannot be reached from the initial state or from
which no final state can be reached. The flat EL−�-unification problem Γ is now
defined as follows:

Γ :=
⋃

i∈{1,...,k}

(
ΓAi ∪ {Xq0,i �? Y }

)
,

where Y is a new variable not contained in ΓAi for i = 1, . . . , k.

Lemma 11. Γ is unifiable in EL−� iff L(A1) ∩ . . . ∩ L(Ak) �= ∅.

Proof. If Γ is unifiable in EL−�, then it has a ground EL−�-unifier γ and there
must be a particle ∃w.A with w ∈ Σ∗ and γ(Y) � ∃w.A. Since γ(Xq0,i) �
γ(Y) � ∃w.A, Lemma 8 yields w ∈ L(Ai,q0,i) = L(Ai) for each i ∈ {1, . . . , k}.
Thus, the intersection of the languages L(Ai) is nonempty.

Conversely, let w ∈ Σ∗ be a word with w ∈ L(A1)∩. . .∩L(Ak). By Lemma 10,
we have for each of the unification problems ΓAi an EL−�-unifier γw,i such that
γw,i(Xq0,i) � ∃w.A. Since the automata have disjoint state sets, the unification
problems ΓAi do not share variables. Thus, we can combine the unifiers γw,i into

an EL−�-substitution γ by defining γ(Y) := ∃w.A and γ(Xq) := γw,i(Xq) for

each i ∈ {1, . . . , k} and q ∈ Qi. Obviously, this is an EL−�-unifier of Γ since it
satisfies the additional subsumptions Xq0,i �? Y . ��

Since the intersection emptiness problem for DFAs is PSpace-hard [12,9], this
lemma immediately yields our final theorem:

3 If i = n − 1, then ∃wi+2 . . . wn.A = A.

Unification in EL without � 83

Theorem 2. The problem of deciding unifiability in EL−� is PSpace-hard.

6 Conclusion

Unification in EL was introduced in [5] as an inference service that can sup-
port the detection of redundancies in large biomedical ontologies, which are
frequently written in this DL. Motivated by the fact that the large medical
ontology SNOMEDCT actually does not use the top concept available in EL,
we have in this paper investigated unification in EL−�, which is obtained from
EL by removing the top concept. More precisely, SNOMEDCT is a so-called
acyclic EL−�-TBox,4 rather than a collection of EL−�-concept terms. However,
as shown in [7], acyclic TBoxes can be easily handled by a unification algorithm
for concept terms.

Surprisingly, it has turned out that the complexity of unification in EL−�

(PSpace) is considerably higher than of unification in EL (NP). From a theo-
retical point of view, this result is interesting since it provides us with a natural
example where reducing the expressiveness of a given DL (in a rather minor way)
results in a drastic increase of the complexity of the unifiability problem. Regard-
ing the complexity of unification in more expressive DLs, not much is known. If
we add negation to EL, then we obtain the well-known DL ALC, which corre-
sponds to the basic (multi-)modal logic K [15]. Decidability of unification in K
is a long-standing open problem. Recently, undecidability of unification in some
extensions of K (for example, by the universal modality) was shown in [18]. These
undecidability results also imply undecidability of unification in some expressive
DLs (e.g., in SHIQ [10]).

Apart from its theoretical interest, the result of this paper also has practical
implications. Whereas practically rather efficient unification algorithm for EL
can readily be obtained by a translation into SAT [6], it is not so clear how to
turn the PSpace algorithm for EL−�-unification introduced in this paper into
a practically useful algorithm. One possibility could be to use a SAT modulo
theories (SMT) approach [13]. The idea is that the SAT solver is used to generate
all possible subsumption mappings for Γ , and that the theory solver tests the
system IΓ,τ induced by τ for the existence of a finite, admissible solution. How
well this works will mainly depend on whether we can develop such a theory
solver that satisfies well all the requirements imposed by the SMT approach.

Another topic for future research is how to actually compute EL−�-unifiers
for a unifiable EL−�-unification problem. In principle, our decision procedure
is constructive in the sense that, from appropriate successful runs of the ε-AFA
A(X, A), one can construct a finite, admissible solution of IΓ,τ , and from this an

EL−�-unifier of Γ . However, this needs to be made more explicit, and we need
to investigate what kind of EL−�-unifiers can be computed this way.

4 Note that the right-identity rules in SNOMEDCT [16] are actually not expressed
using complex role inclusion axioms, but through the SEP-triplet encoding [17].
Thus, complex role inclusion axioms are not relevant here.

84 F. Baader et al.

References

1. Baader, F.: Terminological cycles in a description logic with existential restrictions.
In: Proc. of the 18th Int. Joint Conf. on Artificial Intelligence (IJCAI 2003), pp.
325–330. Morgan Kaufmann, Los Alamitos (2003)

2. Baader, F., Binh, N.T., Borgwardt, S., Morawska, B.: Unification in the description
logic EL without the top concept. LTCS-Report 11-01, TU Dresden, Dresden,
Germany (2011), http://lat.inf.tu-dresden.de/research/reports.html

3. Baader, F., Brandt, S., Lutz, C.: Pushing the EL envelope. In: Proc. of the 19th
Int. Joint Conf. on Artificial Intelligence (IJCAI 2005), pp. 364–369. Morgan Kauf-
mann, Los Alamitos (2005)

4. Baader, F., Calvanese, D., McGuinness, D., Nardi, D., Patel-Schneider, P.F. (eds.):
The Description Logic Handbook: Theory, Implementation, and Applications.
Cambridge University Press, Cambridge (2003)

5. Baader, F., Morawska, B.: Unification in the Description Logic EL. In: Treinen, R.
(ed.) RTA 2009. LNCS, vol. 5595, pp. 350–364. Springer, Heidelberg (2009)

6. Baader, F., Morawska, B.: SAT Encoding of Unification in EL. In: Fermüller, C.G.,
Voronkov, A. (eds.) LPAR-17. LNCS, vol. 6397, pp. 97–111. Springer, Heidelberg
(2010)

7. Baader, F., Morawaska, B.: Unification in the description logic EL. Logical Methods
in Computer Science 6(3) (2010)

8. Baader, F., Narendran, P.: Unification of concept terms in description logics. J. of
Symbolic Computation 31(3), 277–305 (2001)

9. Garey, M.R., Johnson, D.S.: Computers and Intractability — A guide to NP-
completeness. W.H. Freeman and Company, San Francisco (1979)

10. Horrocks, I., Sattler, U., Tobies, S.: Practical reasoning for very expressive descrip-
tion logics. Logic Journal of the IGPL 8(3), 239–264 (2000)

11. Jiang, T., Ravikumar, B.: A note on the space complexity of some decision problems
for finite automata. Information Processing Letters 40, 25–31 (1991)

12. Kozen, D.: Lower bounds for natural proof systems. In: Annual IEEE Symposium
on Foundations of Computer Science, pp. 254–266 (1977)

13. Nieuwenhuis, R., Oliveras, A., Tinelli, C.: Solving SAT and SAT modulo theories:
From an abstract Davis-Putnam-Logemann-Loveland procedure to DPLL(T). J.
ACM 53(6), 937–977 (2006)

14. Savitch, W.J.: Relationships between nondeterministic and deterministic tape com-
plexities. Journal of Computer and System Sciences 4(2), 177–192 (1970)

15. Schild, K.: A correspondence theory for terminological logics: Preliminary report.
In: Proc. of the 12th Int. Joint Conf. on Artificial Intelligence (IJCAI 1991), pp.
466–471 (1991)

16. Spackman., K.A.: Spackman. Managing clinical terminology hierarchies using algo-
rithmic calculation of subsumption: Experience with SNOMED-RT. Journal of the
American Medical Informatics Association (2000); Fall Symposium Special Issue

17. Suntisrivaraporn, B., Baader, F., Schulz, S., Spackman, K.: Replacing SEP-Triplets
in SNOMED CT Using Tractable Description Logic Operators. In: Bellazzi, R.,
Abu-Hanna, A., Hunter, J. (eds.) AIME 2007. LNCS (LNAI), vol. 4594, pp. 287–
291. Springer, Heidelberg (2007)

18. Wolter, F., Zakharyaschev, M.: Undecidability of the unification and admissibility
problems for modal and description logics. ACM Trans. Comput. Log. 9(4) (2008)

Matching with Respect to General Concept
Inclusions in the Description Logic EL

Franz Baader and Barbara Morawska�

Theoretical Computer Science, TU Dresden, Germany
{baader,morawska}@tcs.inf.tu-dresden.de

Abstract. Matching concept descriptions against concept patterns was
introduced as a new inference task in Description Logics (DLs) almost 20
years ago, motivated by applications in the Classic system. For the DL
EL, it was shown in 2000 that matching without a TBox is NP-complete.
In this paper we show that matching in EL w.r.t. general TBoxes (i.e.,
finite sets of general concept inclusions, GCIs) is in NP by introducing
a goal-oriented matching algorithm that uses non-deterministic rules to
transform a given matching problem into a solved form by a polynomial
number of rule applications. We also investigate some tractable variants
of the matching problem w.r.t. general TBoxes.

1 Introduction

The DL EL, which offers the constructors conjunction (�), existential restric-
tion (∃r.C), and the top concept (�), has recently drawn considerable attention
since, on the one hand, important inference problems such as the subsumption
problem are polynomial in EL, even in the presence of general concept inclusions
(GCIs) [12]. On the other hand, though quite inexpressive, EL can be used to
define biomedical ontologies, such as the large medical ontology SNOMEDCT.1

Matching of concept descriptions against concept patterns is a non-standard
inference task in Description Logics, which was originally motivated by appli-
cations of the Classic system [9]. In [11], Borgida and McGuinness proposed
matching as a means to filter out the unimportant aspects of large concept de-
scriptions appearing in knowledge bases of Classic. Subsequently, matching (as
well as the more general problem of unification) was also proposed as a tool for
detecting redundancies in knowledge bases [8] and to support the integration of
knowledge bases by prompting interschema assertions to the integrator [10].

All three applications have in common that one wants to search the knowl-
edge base for concepts having a certain (not completely specified) form. This
“form” can be expressed with the help of so-called concept patterns, i.e., concept
descriptions containing variables (which stand for descriptions). For example,
assume that we want to find concepts that are concerned with individuals hav-
ing a son and a daughter sharing some characteristic. This can be expressed
� Supported by DFG under grant BA 1122/14-2.
1 See http://www.ihtsdo.org/snomed-ct/

C. Lutz and M. Thielscher (Eds.): KI 2014, LNCS 8736, pp. 135–146, 2014.
c© Springer International Publishing Switzerland 2014

136 F. Baader and B. Morawska

by the pattern D := ∃has-child.(Male � X) � ∃has-child.(Female � X), where X
is a variable standing for the common characteristic. The concept description
C := ∃has-child.(Tall � Male) � ∃has-child.(Tall � Female) matches this pattern in
the sense that, if we replace the variable X by the description Tall, the pattern
becomes equivalent to the description. Thus, the substitution σ := {X �→ Tall} is
a matcher modulo equivalence of the matching problem C ≡? D since C ≡ σ(D).

The original paper by Borgida and McGuinness actually considered matching
modulo subsumption rather than matching modulo equivalence: such a problem
is of the form C �? D, and a matcher is a substitution σ satisfying C � σ(D).
Obviously, any matcher modulo equivalence is also a matcher modulo subsump-
tion, but not vice versa. For example, the substitution σ� := {X �→ �} is a
matcher modulo subsumption of the matching problem C �? D, but it is not a
matcher modulo equivalence of C ≡? D. For both cases of matching, the original
definitions were formulated for concept descriptions without any TBox, i.e., the
subsumption or equivalence that has to be achieved by an application of the
matcher does not take a TBox into account. The reason was that at that time
TBoxes were usually acyclic, and thus could be reduced away by unfolding.

The first results on matching in DLs were concerned with sublanguages of
the Classic description language, which does not allow for existential restrictions
of the kind used above. A polynomial-time algorithm for computing matchers
modulo subsumption for a rather expressive DL was introduced in [11]. The
main drawback of this algorithm was that it required the concept patterns to be
in structural normal form, and thus it was not able to handle arbitrary match-
ing problems. In addition, the algorithm was incomplete, i.e., it did not always
find a matcher, even if one existed. For the DL ALN , a polynomial-time algo-
rithm for matching modulo subsumption and equivalence was presented in [6].
This algorithm is complete and it applies to arbitrary patterns. In [5], match-
ing in DLs with existential restrictions was investigated for the first time. In
particular, it was shown that in EL the matching problem (i.e., the problem of
deciding whether a given matching problem has a matcher or not) is polyno-
mial for matching modulo subsumption, but NP-complete for matching modulo
equivalence.

Unification is a generalization of matching where both sides of the problem are
patterns and thus the substitution needs to be applied to both sides. In [8] it was
shown that the unification problem in the DL FL0, which offers the constructors
conjunction (�), value restriction (∀r.C), and the top concept (�), is ExpTime-
complete. In contrast, unification in EL is “only” NP-complete [7]. In the results
for matching and unification mentioned until now, there was no TBox involved,
i.e., equivalence and subsumption was considered with respect to the empty
TBox. For unification in EL, first attempts were made to take general TBoxes,
i.e., finite sets of general concept inclusions (GCIs), into account. However, the
results obtained so far, which are again NP-completeness results, are restricted to
general TBoxes that satisfy a certain restriction on cyclic dependencies between
concepts [2,3].

Matching with Respect to General Concept Inclusions in the DL EL 137

For matching, we solve the general case in this paper: we show that match-
ing in EL w.r.t. general TBoxes is NP-complete by introducing a goal-oriented
matching algorithm that uses non-deterministic rules to transform a given match-
ing problem into a solved form by a polynomial number of rule applications.
The matching problems considered in this paper are actually generalizations of
matching modulo equivalence and matching modulo subsumption. For the spe-
cial case of matching modulo subsumption, we show that the problem is tractable
also in the presence of GCIs. The same is true for the dual problem where the
pattern is on the side of the subsumee rather than on the side of the subsumer.

Due to space constraints, we cannot provide complete proofs of our results.
They can be found in [1].

2 The Description Logics EL
The expressiveness of a DL is determined both by the formalism for describing
concepts (the concept description language) and the terminological formalism,
which can be used to state additional constraints on the interpretation of con-
cepts and roles in a so-called TBox.

The concept description language considered in this paper is called EL. Start-
ing with a finite set NC of concept names and a finite set NR of role names,
EL-concept descriptions are built from concept names using the constructors
conjunction (C � D), existential restriction (∃r.C for every r ∈ NR), and top
(�). Since in this paper we only consider EL-concept descriptions, we will some-
times dispense with the prefix EL.

On the semantic side, concept descriptions are interpreted as sets. To be more
precise, an interpretation I = (ΔI , ·I) consists of a non-empty domain ΔI and
an interpretation function ·I that maps concept names to subsets of ΔI and
role names to binary relations over ΔI . This function is inductively extended to
concept descriptions as follows:

�I := ΔI , (C � D)I := CI ∩ DI , (∃r.C)I := {x | ∃y : (x, y) ∈ rI ∧ y ∈ CI}

A general concept inclusion axiom (GCI) is of the form C � D for concept
descriptions C, D. An interpretation I satisfies such an axiom C � D iff CI ⊆
DI . A general EL-TBox is a finite set of GCIs. An interpretation is a model of
a general EL-TBox if it satisfies all its GCIs.

A concept description C is subsumed by a concept description D w.r.t. a
general TBox T (written C �T D) if every model of T satisfies the GCI C � D.
We say that C is equivalent to D w.r.t. T (C ≡T D) if C �T D and D �T C.
If T is empty, we also write C � D and C ≡ D instead of C �T D and
C ≡T D, respectively. As shown in [12], subsumption w.r.t. general EL-TBoxes
is decidable in polynomial time.

An EL-concept description is an atom if it is an existential restriction or a
concept name. The atoms of an EL-concept description C are the subdescriptions
of C that are atoms, and the top-level atoms of C are the atoms occurring in
the top-level conjunction of C. Obviously, any EL-concept description is the

138 F. Baader and B. Morawska

conjunction of its top-level atoms, where the empty conjunction corresponds
to �. The atoms of a general EL-TBox T are the atoms of all the concept
descriptions occurring in GCIs of T .

We say that a subsumption between two atoms is structural if their top-level
structure is compatible. To be more precise, following [2] we define structural
subsumption between atoms as follows: the atom C is structurally subsumed by
the atom D w.r.t. T (C �s

T D) iff one of the following holds:

1. C = D is a concept name,
2. C = ∃r.C′, D = ∃r.D′, and C′ �T D′.

It is easy to see that subsumption w.r.t. ∅ between two atoms implies structural
subsumption w.r.t. T , which in turn implies subsumption w.r.t. T . The matching
algorithms presented below crucially depend on the following characterization
of subsumption w.r.t. general EL-TBoxes first stated in [2]:

Lemma 1. Let T be an EL-TBox and C1, . . . , Cn, D1, . . . , Dm be atoms. Then
C1 � · · · � Cn �T D1 � · · · � Dm iff for every j ∈ {1, . . . , m}
1. there is an index i ∈ {1, . . . , n} such that Ci �s

T Dj or
2. there are atoms A1, . . . , Ak, B of T (k ≥ 0) such that

(a) A1 � · · · � Ak �T B,
(b) for every η ∈ {1, . . . , k} there is i ∈ {1, . . . , n} with Ci �s

T Aη, and
(c) B �s

T Dj.

3 Matching in EL
In addition to the set NC of concept names (which must not be replaced by sub-
stitutions), we introduce a set NV of concept variables (which may be replaced
by substitutions). Concept patterns are now built from concept names and con-
cept variables by applying the constructors of EL. A substitution σ maps every
concept variable to an EL-concept description. It is extended to concept patterns
in the usual way:

– σ(A) := A for all A ∈ NC ∪ {�},
– σ(C � D) := σ(C) � σ(D) and σ(∃r.C) := ∃r.σ(C).

An EL-concept pattern C is ground if it does not contain variables, i.e., if it is
a concept description. Obviously, a ground concept pattern is not modified by
applying a substitution.

Definition 2. Let T be a general EL-TBox.2 An EL-matching problem w.r.t.
T is a finite set Γ = {C1 �? D1, . . . , Cn �? Dn} of subsumptions between EL-
concept patterns, where for each i, 1 ≤ i ≤ n, Ci or Di is ground. A substitution σ
is a matcher of Γ w.r.t. T if σ solves all the subsumptions in Γ , i.e. if σ(C1) �T
σ(D1), . . . , σ(Cn) �T σ(Dn). We say that Γ is matchable w.r.t. T if it has a
matcher.
2 Note that the GCIs in T are built using concept descriptions, and thus do not contain

variables.

Matching with Respect to General Concept Inclusions in the DL EL 139

Matching problems modulo equivalence and subsumption are special cases of
the matching problems introduced above:

– The EL-matching problem Γ is a matching problem modulo equivalence if
C �? D ∈ Γ implies D �? C ∈ Γ . This coincides with the notion of matching
modulo equivalence considered in [6,5], but extended to a non-empty general
TBox.

– The EL-matching problem Γ is a left-ground matching problem modulo sub-
sumption if C �? D ∈ Γ implies that C is ground. This coincides with the
notion of matching modulo subsumption considered in [6,5], but again ex-
tended to a non-empty general TBox.

– The EL-matching problem Γ is a right-ground matching problem modulo
subsumption if C �? D ∈ Γ implies that D is ground. To the best of our
knowledge, this notion of matching has not been investigated before.

We will show in the following that the general case of matching, as introduced
in Definition 2, and thus also matching modulo equivalence, is NP-complete,
whereas the two notions of matching modulo subsumption are tractable, even in
the presence of GCIs.

4 Matching Modulo Subsumption

The case of left-ground matching problems modulo subsumption can be treated
as sketched in [5] for the case without a TBox. Given a general EL-TBox T and
two substitutions σ, τ , we define: σ �T τ iff σ(X) �T τ(X) for all X ∈ NV .

Consequently, if σ� denotes the substitution satisfying σ�(X) = � for all X ∈
NV , then σ �T σ� holds for all substitutions σ. Since the concept constructors
of EL are monotonic w.r.t. subsumption, this implies σ(D) �T σ�(D) for all
concept patterns D.

Lemma 3. Let Γ = {C1 �? D1, . . . , Cn �? Dn} be a left-ground matching
problem modulo subsumption. Then Γ has a matcher w.r.t. T iff σ� is a matcher
of Γ w.r.t. T .

Proof. The “if” direction is trivial. Conversely, assume that σ is a matcher of
Γ w.r.t. T . Then we have, for all i, 1 ≤ i ≤ n, that σ�(Ci) = Ci = σ(Ci) �T
σ(Di) �T σ�(Di), which shows that σ� is a matcher of Γ w.r.t. T . ��

The lemma shows that it is sufficient to test whether the substitution σ�
is a matcher of Γ , i.e., whether σ�(Ci) �T σ�(Di) holds for all i, 1 ≤ i ≤
n. Since in EL subsumption w.r.t. general TBoxes is decidable in polynomial
time, this yields a polynomial-time algorithm for left-ground matching modulo
subsumption in EL.

Theorem 4. Let Γ be a left-ground EL-matching problem modulo subsumption
and T a general EL-TBox. Then we can decide in polynomial time whether Γ
has a matcher w.r.t. T or not.

140 F. Baader and B. Morawska

The case of right-ground matching problems modulo subsumption can be treated
similarly. However, since EL does not have the bottom concept ⊥ as a concept
constructor, we cannot simply define σ⊥ as the substitution satisfying σ⊥(X) = ⊥
for all X ∈ NV , and then show that that the right-ground matching problems
modulo subsumption, Γ , has a matcher w.r.t. T iff σ⊥ is a matcher of Γ w.r.t. T .
Instead, we need to define σ⊥ in a more complicated manner.

Given a general EL-TBox T and a right-ground matching problems modulo
subsumption Γ = {C1 �? D1, . . . , Cn �? Dn}, we use ⊥(Γ, T) to denote the
EL-concept description that is the conjunction of all the atoms of T and of
D1, . . . , Dn. We now define σ⊥(Γ,T) as the substitution satisfying σ⊥(Γ,T)(X) =
⊥(Γ, T) for all X ∈ NV

Lemma 5. Let Γ = {C1 �? D1, . . . , Cn �? Dn} be a right-ground matching
problem modulo subsumption. Then Γ has a matcher w.r.t. T iff σ⊥(Γ,T) is a
matcher of Γ w.r.t. T .

Proof. The “if” direction is trivial. To see the “only-if” direction, assume that
σ is a matcher of Γ w.r.t. T . We need to show that this implies the σ⊥(Γ,T) is
also a matcher of Γ w.r.t. T , i.e., that it satisfies σ⊥(Γ,T)(C) �T D for every
subsumption C �? D ∈ Γ .

More generally, we consider subsumptions C �? D where C is a subpattern
of a pattern occurring in Γ or T and D is an atom of T or D1, . . . , Dn. We show
the following claim:

Claim: For every such subsumption C �? D, it holds that σ(C) �T D implies
σ⊥(Γ,T)(C) �T D.

Before proving the claim, let us show that this implies that σ⊥(Γ,T) solves Γ

w.r.t. T . In fact, any subsumption in Γ is of the form C �? E1 � . . . � Ek where
C is a subpattern of a pattern occurring in Γ , and E1, . . . , Ek are atoms of one
of the Di. In addition, a substitution solves C �? E1 � . . . � Ek w.r.t. T iff it
solves all the subsumptions C �? Ei for i = 1, . . . , k.

We prove the claim by induction on the size |C| of the left-hand side C of the
subsumption C �? D. Let C = F1 � . . . � F�, where F1, . . . , F� are atoms. We
distinguish the following three cases:

1. If there is an index i ∈ {1, . . . , �} such that Fi is a variable, then σ⊥(Γ,T)(Fi) �
D since D occurs as a conjunct in ⊥(Γ, T). This implies σ⊥(Γ,T)(C) �T D.

2. If there is an index i ∈ {1, . . . , �} such that Fi is ground and σ(Fi) �T D,
then σ⊥(Γ,T)(Fi) = Fi = σ(Fi) �T D. This again implies σ⊥(Γ,T)(C) �T D.

3. Assume that the above two cases do not hold. Using Lemma 1, we can
distinguish two more cases, depending on whether the first or the second
condition of the lemma applies.
(a) If the first condition applies, then there is an index i ∈ {1, . . . , �} such

that Fi �s
T D. Since Fi is neither ground nor a variable, we know

that Fi is a non-ground existential restriction. Thus, Fi = ∃r.F ′, D =
∃r.(D1 � . . . � Dm) with D1, . . . , Dm atoms, and σ(F ′) �T Di for all

Matching with Respect to General Concept Inclusions in the DL EL 141

i ∈ {1, . . . , m}. Since F ′ is a subpattern of C, Di are atoms of D, and
|F ′| < |C|, we can apply the induction hypothesis to the subsumptions
F ′ �? Di. This yields σ⊥(Γ,T)(F

′) �T Di for all i ∈ {1, . . . , m}, and thus
σ⊥(Γ,T)(C) �T D.

(b) If the second condition applies, then there are atoms A1, . . . , Ak, B of T
such that A1 � · · · � Ak �T B �T D and for each η ∈ {1, . . . , k}, there
is j ∈ {1, . . . , �} such that
i. Fj is a concept variable and σ(Fj) �T Aη, or
ii. Fj is ground and Fj �T Aη, or
iii. Fj = ∃r.F ′, Aη = ∃r.A′ and σ(F ′) �T A′.
It is sufficient to show that the subsumption relationships in 3(b)i and
3(b)iii also hold if we replace σ by σ⊥(Γ,T). For 3(b)i this can be shown
as in 1 and for 3(b)iii as in 3a.

This completes the proof of the claim, and thus of the lemma. ��

Since the size of ⊥(Γ, T) is polynomial in the size of Γ and T , this lemma
yields a polynomial-time decision procedure for right-ground matching modulo
subsumption.

Theorem 6. Let Γ be a right-ground EL-matching problem modulo subsumption
and T a general EL-TBox. Then we can decide in polynomial time whether Γ
has a matcher w.r.t. T or not.

5 The General Case

NP-hardness for the general case follows from the known NP-hardness result
for matching modulo equivalence without a TBox [5]. In the following, we show
that matching in EL w.r.t. general TBoxes is in NP by introducing a goal-
oriented matching algorithm that uses non-deterministic rules to transform a
given matching problem into a solved form by a polynomial number of rule
applications.

Let T be a general EL-TBox and Γ0 an EL-matching problem. We can assume
without loss of generality that all the subsumptions C �? D in Γ0 are such that
either C or D is non-ground. In fact, if both C and D are ground, then the
following holds:

– If C �T D, then Γ0 has a matcher w.r.t. T iff Γ0 \ {C �? D} has a matcher
w.r.t. T .

– If C ��T D, then Γ0 does not have a matcher w.r.t. T .

Consequently, we can either remove all the offending ground subsumptions with-
out changing the solvability status of the problem, or immediately decide non-
solvability. Using the fact that C �T D1 � D2 iff C �T D1 and C �T D2, we
can additionally normalize Γ0 such that the right-hand side of each subsumption
in Γ0 is an atom. We call an EL-matching problem normalized if C �? D ∈ Γ0

implies that (i) either C or D is non-ground, and (ii) D is an atom.

142 F. Baader and B. Morawska

Eager Solving (variable on the right):

Condition: A subsumption C �? X ∈ Γ where X ∈ NV .
Action:
– If there is some subsumption of the form X �? D ∈ Γ such that C ��T D,

then the rule application fails.
– Otherwise, mark C �? X as “solved.”

Eager Solving (variable on the left):

Condition: A subsumption X �? D ∈ Γ where X ∈ NV .
Action:
– If there is some subsumption of the form C �? X ∈ Γ such that C ��T D,

then the rule application fails.
– Otherwise, mark X �? D as “solved.”

Fig. 1. Eager Rules

Thus, assume that Γ0 is a normalized EL-matching problem. Our algorithm
starts with Γ := Γ0, and then applies non-deterministic rules to Γ . A non-
failing application of a rule may add subsumptions to Γ . Note, however, that
a subsumption is only added if it is not yet present. New subsumptions that
are added are marked as “unsolved,” as are initially all the subsumptions of
Γ0. A rule application may fail, which means that this attempt of solving the
matching problem was not successful. A non-failing rule application marks one
of the subsumptions in the matching problem as “solved.” Rules are applied until
all subsumptions are marked “solved” or an attempt to apply a rule has failed.

Our definition of the rules uses a function Dec(. . .) on subsumptions of the
form C �? D, where C and D are atoms and D is not a variable. A call of
Dec(C �? D) returns a (possibly empty) set of subsumptions or it fails:

1. Dec(C �? D) := {C �? D}, if C is a variable.
2. If D1, . . . , Dn are atoms, then Dec(∃r.C′ �? ∃r.(D1 � · · · � Dn)) fails if

there is an i ∈ {1, . . . , n} such that both sides of C′ �? Di are ground and
C′ ��T Di. Otherwise, Dec(∃r.C′ �? ∃r.(D1 � · · · � Dn)) := {C′ �? Di | 1 ≤
i ≤ n and C′ or Di is non-ground}.

3. If C = ∃r.C′ and D = ∃s.D′ for roles s �= r, then Dec(C �? D) fails.
4. If C = A is a concept name and D = ∃r.D′ an existential restriction, then

Dec(C �? D) fails.
5. If D = A is a concept name and C = ∃r.C′ an existential restriction, then

Dec(C �? D) fails.
6. If both C and D are ground and C ��T D then Dec(C �? D) fails, and

otherwise returns ∅.

Algorithm 7. Let Γ0 be a normalized EL-matching problem. Starting with
Γ := Γ0, apply the rules of Figure 1 and Figure 2 exhaustively in the following
order:

Matching with Respect to General Concept Inclusions in the DL EL 143

Decomposition:

Condition: This rule applies to s = C1 � · · · � Cn �? D ∈ Γ .
Action: Its application chooses an index i ∈ {1, . . . , n} and calls Dec(Ci �? D).
If this call does not fail, then it adds the returned subsumptions to Γ , and marks
s as solved. If Dec(Ci �? D) fails, it returns “failure.”

Mutation :

Condition: This rule applies to s = C1 � · · · � Cn �? D in Γ .
Action: Its application chooses atoms A1, . . . , Ak, B of T . If A1 �· · · �Ak �T B
does not hold, then it returns “failure.” Otherwise, it performs the following two
steps:
– Choose for each η ∈ {1, . . . , k} an i ∈ {1, . . . , n} and call Dec(Ci �? Aη). If

this call does not fail, it adds the returned subsumptions to Γ . Otherwise, if
Dec(Ci �? Aη) fails, the rule returns “failure.”

– If it has not failed before and Dec(B �? D) does not fail, it adds the returned
subsumptions to Γ . Otherwise, if Dec(B �? D) fails, it returns “failure.”

If these steps did not fail, then the rule marks s as solved.

Fig. 2. Non-deterministic rules

(1) Eager rule application: If an eager rule from Figure 1 applies to an un-
solved subsumption, apply it. If the rule application fails, stop and return
“failure.”

(2) Non-deterministic rule application: If no eager rule is applicable, let s
be an unsolved subsumption in Γ . Choose one of the non-deterministic rules
of Figure 2, and apply it to s. If this rule application fails, then stop and
return “failure.”

If no more rule applies and the algorithm has not stopped returning “failure,”
then return “success.”

In (2), the choice which unsolved subsumption to consider next is don’t care
non-deterministic. However, choosing which rule to apply to the chosen sub-
sumption is don’t know non-deterministic. Additionally, the application of a
non-deterministic rules may require don’t know non-deterministic choices to be
made. If a non-deterministic rule is applied to a subsumption s, then neither its
left-hand side nor its right-hand side is a variable. In fact, a subsumption that
has a variable on one of its sides is solved by one of the eager rules, which have
precedence over the non-deterministic rules.

It is easy to see that the subsumptions added by the non-deterministic rules
satisfy the normalization conditions (i) and (ii), and thus all the sets Γ generated
during a run of the algorithm are normalized EL-matching problems. The next
lemma states an important property ensured by the presence of the eager rules.

Lemma 8. If Γ is a matching problem generated during a non-failing run of
the algorithm, and both C �? X ∈ Γ and X �? D ∈ Γ are solved, then C �T D.

144 F. Baader and B. Morawska

Proof. Obviously, one of the two subsumptions was solved after the other. This
means that, when it was solved by the application of an eager rule, the other
one was already present. Since we consider a non-failing run, the application of
the eager rule did not fail, which yields C �T D. ��

Any run of the algorithm terminates after a polynomial number of steps. The
main reason for this is that there are only polynomially many subsumptions that
can occur in the matching problems Γ generated during a run.

Lemma 9. Let Γ be a matching problem generated during a run of Algorithm 7.
Then any subsumption occurring in Γ is of one of the following forms:

1. A subsumption contained in the original input matching problem Γ0.
2. A subsumption of the form C �? D where C, D are subpatterns of concept

patterns occurring in Γ0.
3. A subsumption of the form C �? A or A �? C where A is an atom of T and

C is a subpattern of a concept pattern occurring in Γ0.

Since any rule application either fails while trying to solve an unsolved sub-
sumption (in which case the algorithm stops immediately) or actually solves an
unsolved subsumption, there can be only polynomially many rule applications
during a run. In addition, it is easy to see that each rule application can be real-
ized in polynomial time, with a polynomial number of possible non-deterministic
choices. This shows that Algorithm 7 is indeed an NP-algorithm. It remains to
show that it is sound and complete.

To show soundness, assume that Γ is a matching problem obtained after ter-
mination of a non-failing run of the algorithm. Since the run terminated without
failure, all the subsumptions in Γ are solved. We use the subsumptions of the
form X �? C ∈ Γ to define a substitution σΓ . Note that the fact that Γ is
a normalized EL-matching problem implies that C is a ground pattern, i.e., a
concept description. For each variable X ∈ NV , we define

SΓ
X := {C | X �? C ∈ Γ},

and denote the conjunction of all the elements of SΓ
X as �SΓ

X , where the empty
conjunction is �. The substitution σΓ is now defined as

σΓ (X) := �SΓ
X for all X ∈ NV .

Lemma 10. σΓ is a matcher of Γ w.r.t. T .

Since the input matching problem Γ0 is contained in Γ , this lemma shows
that σΓ is a matcher also of Γ0 w.r.t. T . This completes the proof of soundness.

Regarding completeness, we can use a given matcher of Γ0 w.r.t. T to guide the
application of the non-deterministic rules such that a non-failing run is generated
(see [1] for details).

Lemma 11. Let σ be a matcher of Γ0 w.r.t. T . Then there is a non-failing and
terminating run of Algorithm 7 producing a matching problem Γ such that σ is
a matcher of Γ w.r.t. T .

Matching with Respect to General Concept Inclusions in the DL EL 145

This lemma provides the final step towards showing that Algorithm 7 is an
NP-decision procedure for matching w.r.t. general TBoxes in EL.

Theorem 12. The problem of deciding whether a given EL-matching problem
has a matcher w.r.t. a given general EL-TBox or not is NP-complete.

Let us illustrate the working of the algorithm with a small example. We con-
sider the TBox T := {C � A, C � ∃s.C, ∃s.B � ∃s.C} and the matching
problem Γ := {X � B �? ∃s.A, ∃s.B �? ∃s.X}. Obviously, this problem is nei-
ther left- nor right-ground, and thus we need to use Algorithm 7 to solve it.
In the beginning, all the subsumptions in Γ are unsolved, and no eager rule is
applicable.

In order to apply a non-deterministic rule, the algorithm chooses one of the
unsolved subsumptions. Let us assume that this is the first one, i.e., X � B �?

∃s.A. Now, we have a (don’t know non-deterministic) choice between applying
Decomposition or Mutation. Consider the case where Decomposition is applied
in such a way that it produces Dec(X �? ∃s.A) = {X �? ∃s.A}. The unsolved
subsumption X �? ∃s.A is then added to Γ , while X � B �? ∃s.A is marked as
“solved.”

Now, the algorithm applies Eager Solving (variable on the left) to X �? ∃s.A.
Since there are no subsumptions with right-hand side X , the rule application
does not fail and X �? ∃s.A is marked as “solved.”

The algorithm then chooses the only unsolved subsumption left: ∃s.B �?

∃s.X . Again, there is the choice between applying Decomposition and Mutation.
Let us assume that Decomposition is chosen, which yields Dec(∃s.B �? ∃s.X) =
{B �? X}. The subsumption ∃s.B �? ∃s.X is marked as “solved” and the
unsolved subsumption B �? X is added to Γ .

Now Eager Solving (variable on the right) is applied to this subsumption,
which leads to failure since B ��T ∃s.A.

Backtracking to the last choice point, the algorithm applies Mutation to
∃s.B �? ∃s.X . Let us assume that it chooses the atoms ∃s.B, ∃s.C of T , which is
a good choice since ∃s.B �T ∃s.C. Mutation then yields Dec(∃s.B �? ∃s.B) = ∅
and Dec(∃s.C �? ∃s.X) = {C �? X}. The subsumption ∃s.B �? ∃s.X is then
marked as “solved” and the unsolved subsumption C �? X is added to Γ .

Finally, Eager Solving (variable on the right) is applied to this subsumption,
which does not fail since C �T ∃s.A.

Since now all subsumptions are solved, no more rules apply, and the algorithm
returns “success.” The matcher computed by this run of the algorithm (as defined
in the proof of soundness) is {X �→ ∃s.A}.

6 Conclusion

We have extended the known results for matching in EL [5] to the case where
subsumption and equivalence is considered w.r.t. a non-empty general TBox, i.e.,
a non-empty set of GCIs. For the DL FL0, matching without GCIs is polynomial,
and this remains true even in the extension ALN of FL0. It would be interesting

146 F. Baader and B. Morawska

to see how one can solve matching problems w.r.t. general TBoxes in these DLs.
Since already subsumption in FL0 w.r.t. general TBoxes is ExpTime-complete
[4], the complexity of solving such matching problems is at least ExpTime-hard.
Another interesting open problem is unification in EL w.r.t. general TBoxes.

References

1. Baader, F., Morawska, B.: Matching with respect to general concept inclusions in
the description logic EL. LTCS-Report 14-03, Chair of Automata Theory, Insti-
tute of Theoretical Computer Science, Technische Universität Dresden, Dresden,
Germany (2014), http://lat.inf.tu-dresden.de/research/reports.html

2. Baader, F., Borgwardt, S., Morawska, B.: Extending unification in EL towards
general TBoxes. In: Proc. of the 13th Int. Conf. on Principles of Knowledge Rep-
resentation and Reasoning (KR 2012), pp. 568–572. AAAI Press (2012)

3. Baader, F., Borgwardt, S., Morawska, B.: A goal-oriented algorithm for unification
in ELHR+ w.r.t. cycle-restricted ontologies. In: Thielscher, M., Zhang, D. (eds.)
AI 2012. LNCS, vol. 7691, pp. 493–504. Springer, Heidelberg (2012)

4. Baader, F., Brandt, S., Lutz, C.: Pushing the EL envelope. In: Kaelbling, L.P.,
Saffiotti, A. (eds.) Proc. of the 19th Int. Joint Conf. on Artificial Intelligence (IJCAI
2005), pp. 364–369. Morgan Kaufmann, Los Altos (2005)

5. Baader, F., Küsters, R.: Matching in description logics with existential restrictions.
In: Proc. of the 7th Int. Conf. on Principles of Knowledge Representation and
Reasoning (KR 2000), pp. 261–272 (2000)

6. Baader, F., Küsters, R., Borgida, A., McGuinness, D.L.: Matching in description
logics. J. of Logic and Computation 9(3), 411–447 (1999)

7. Baader, F., Morawska, B.: Unification in the description logic EL. Logical Methods
in Computer Science 6(3) (2010)

8. Baader, F., Narendran, P.: Unification of concept terms in description logics. J. of
Symbolic Computation 31(3), 277–305 (2001)

9. Borgida, A., Brachman, R.J., McGuinness, D.L., Alperin Resnick, L.: CLASSIC:
A structural data model for objects. In: Proc. of the ACM SIGMOD Int. Conf. on
Management of Data, pp. 59–67 (1989)

10. Borgida, A., Küsters, R.: What’s not in a name? Initial explorations of a structural
approach to integrating large concept knowledge-bases. Tech. Rep. DCS-TR-391,
Rutgers University (1999)

11. Borgida, A., McGuinness, D.L.: Asking queries about frames. In: Proc. of the
5th Int. Conf. on the Principles of Knowledge Representation and Reasoning (KR
1996), pp. 340–349 (1996)

12. Brandt, S.: Polynomial time reasoning in a description logic with existential re-
strictions, GCI axioms, and—what else? In: de Mántaras, R.L., Saitta, L. (eds.)
Proc. of the 16th Eur. Conf. on Artificial Intelligence (ECAI 2004), pp. 298–302
(2004)

Extending Unification in EL towards General TBoxes∗

Franz Baader and Stefan Borgwardt and Barbara Morawska
Theoretical Computer Science, TU Dresden, Germany
{baader,stefborg,morawska}@tcs.inf.tu-dresden.de

Abstract

Unification in Description Logics (DLs) has been proposed
as an inference service that can, for example, be used to de-
tect redundancies in ontologies. The inexpressive Descrip-
tion Logic EL is of particular interest in this context since,
on the one hand, several large biomedical ontologies are de-
fined using EL. On the other hand, unification in EL has
recently been shown to be NP-complete, and thus of signifi-
cantly lower complexity than unification in other DLs of sim-
ilarly restricted expressive power. However, the unification
algorithms for EL developed so far cannot deal with general
concept inclusion axioms (GCIs). This paper makes a consid-
erable step towards addressing this problem, but the GCIs our
new unification algorithm can deal with still need to satisfy a
certain cycle restriction.

1 Introduction
The DL EL, which offers the constructors conjunction (u),
existential restriction (∃r.C), and the top concept (>), has
recently drawn considerable attention since, on the one
hand, important inference problems such as the subsump-
tion problem are polynomial in EL, even in the presence of
GCIs (Brandt 2004; Baader, Brandt, and Lutz 2005). On
the other hand, though quite inexpressive, EL can be used
to define biomedical ontologies, such as the large medical
ontology SNOMED CT.1

Unification in DLs has been proposed in (Baader and
Narendran 2001) (for the DL FL0, which differs from EL
by offering value restrictions (∀r.C) in place of existential
restrictions) as a novel inference service that can, for in-
stance, be used to detect redundancies in ontologies. For
example, assume that one developer of a medical ontology
defines the concept of a finding of severe head injury as

∃finding.(Head injury u ∃severity.Severe), (1)

whereas another one represents it as

∃finding.(Severe injury u ∃finding site.Head). (2)

These two concept descriptions are not equivalent, but they
are nevertheless meant to represent the same concept. They

∗Supported by DFG under grant BA 1122/14-1
Copyright c© 2012, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

1see http://www.ihtsdo.org/snomed-ct/

can obviously be made equivalent by treating the concept
names Head injury and Severe injury as variables, and sub-
stituting the first one by Injury u ∃finding site.Head and
the second one by Injury u ∃severity.Severe. In this case,
we say that the descriptions are unifiable, and call the sub-
stitution that makes them equivalent a unifier. Intuitively,
such a unifier proposes definitions for the concept names
that are used as variables: in our example, we know that,
if we define Head injury as Injury u ∃finding site.Head and
Severe injury as Injuryu∃severity.Severe, then the two con-
cept descriptions (1) and (2) are equivalent w.r.t. these defi-
nitions. Here equivalence holds without additional GCIs.

To motivate our interest in unification w.r.t. GCIs, assume
that the second developer uses the description

∃status.Emergency u (3)
∃finding.(Severe injury u ∃finding site.Head)

instead of (2). The descriptions (1) and (3) are not unifi-
able without additional GCIs, but they are unifiable, with
the same unifier as above, if the GCI

∃finding.∃severity.Severe v ∃status.Emergency

is present in a background ontology.
In (Baader and Morawska 2009), we were able to show

that unification in EL is of considerably lower complexity
than in FL0: the decision problem in EL is NP-complete
rather than EXPTIME-complete in FL0. In addition to
a brute-force “guess and then test” NP-algorithm (Baader
and Morawska 2009), we were able to develop a goal-
oriented unification algorithm for EL, in which nondeter-
ministic decisions are only made if they are triggered by
“unsolved parts” of the unification problem (Baader and
Morawska 2010b), and an algorithm that is based on a re-
duction to satisfiability in propositional logic (SAT) (Baader
and Morawska 2010a), which enables the use of highly-
optimized SAT solvers. In (Baader and Morawska 2010b)
it was also shown that the approaches for unification of EL-
concept descriptions (without any background ontology) can
easily be extended to the case of an acyclic TBox as back-
ground ontology without really changing the algorithms or
increasing their complexity. Basically, by viewing defined
concepts as variables, an acyclic TBox can be turned into
a unification problem that has as its unique unifier the sub-
stitution that replaces the defined concepts by unfolded ver-

568

Proceedings of the Thirteenth International Conference on Principles of Knowledge Representation and Reasoning

Name Syntax Semantics

concept name A AI ⊆ ∆I

role name r rI ⊆ ∆I ×∆I

top-concept > >I = ∆I

conjunction C uD (C uD)I = CI ∩DI

existential restr. ∃r.C (∃r.C)I = {x | ∃y :
(x, y) ∈ rI ∧ y ∈ CI}

GCI C v D CI ⊆ DI

Table 1: Syntax and semantics of EL.

sions of their definitions. For GCIs, this simple trick is not
possible.

In the present paper, we extend the brute-force “guess
and then test” NP-algorithm from (Baader and Morawska
2009) to the case of GCIs, which requires the development
of a new characterization of subsumption w.r.t. GCIs in EL.
Unfortunately, the algorithm is complete only for general
TBoxes (i.e., finite sets of GCIs) that satisfy a certain re-
striction on cycles, which, however, does not prevent all cy-
cles. For example, the cyclic GCI ∃child.Human v Human
satisfies this restriction, whereas the cyclic GCI Human v
∃parent.Human does not.

Due to space constraints, we cannot present and prove all
our results in detail here. Full proofs and a goal-oriented
algorithm for unification in ELw.r.t. cycle-restricted general
TBoxes can be found in (Baader, Borgwardt, and Morawska
2011).

2 The Description Logic EL
Starting with a finite set NC of concept names and a finite
set NR of role names, EL-concept descriptions are built us-
ing the concept constructors top-concept (>), conjunction
(CuD), and existential restriction (∃r.C for every r ∈ NR).
Nested existential restrictions ∃r1.∃r2. · · · ∃rn.C will some-
times also be written as ∃r1r2 . . . rn.C, where r1r2 . . . rn is
viewed as a word over the alphabet of role names, i.e., an
element of N∗R.

An interpretation I = (∆I , ·I) consists of a nonempty
domain ∆I and an interpretation function ·I that assigns bi-
nary relations on ∆I to role names and subsets of ∆I to
concept descriptions, as shown in the semantics column of
Table 1.

A general concept inclusion (GCI) is of the form C v
D for concept descriptions C,D, and a general TBox is a
finite set of GCIs. An interpretation I satisfies such a GCI
if CI ⊆ DI , and it is a model of the general TBox T if it
satisfies all GCIs in T .

Subsumption asks whether a given GCI C v D follows
from a general TBox T , i.e. whether every model of T sat-
isfies C v D. In this case we say C is subsumed by D w.r.t.
T and write C vT D. Subsumption in EL w.r.t. a general
TBox is known to be decidable in polynomial time (Brandt
2004). Our unification algorithm will use a polynomial-time
subsumption algorithm as a subprocedure. In order to de-
velop the unification algorithm itself, however, we need a

structural characterization of subsumption w.r.t. a general
TBox. Before we can present this characterization, we need
to introduce some new notions.

An EL-concept description is an atom if it is an existential
restriction or a concept name. The atoms of an EL-concept
description C are the subdescriptions of C that are atoms,
and the top-level atoms of C are the atoms occurring in the
top-level conjunction of C. Obviously, any EL-concept de-
scription is the conjunction of its top-level atoms, where the
empty conjunction corresponds to >. The atoms of a gen-
eral TBox T are the atoms of all the concept descriptions
occurring in T .

We say that a subsumption between two atoms is struc-
tural if their top-level structure is compatible. To be more
precise, we define structural subsumption between atoms as
follows: the atom C is structurally subsumed by the atomD
w.r.t. T (C vs

T D) iff either
• C = D is a concept name, or
• C = ∃r.C ′, D = ∃r.D′, and C ′ vT D′.
It is easy to see that subsumption w.r.t. ∅ between two atoms
implies structural subsumption w.r.t. T , which in turn im-
plies subsumption w.r.t. T . The unification algorithm pre-
sented in this paper crucially depends on the following char-
acterization of subsumption w.r.t. general TBoxes:
Lemma 1. Let T be a general TBox and C1, . . . , Cn,
D1, . . . , Dm atoms. Then C1u · · ·uCn vT D1u · · ·uDm

iff for every j ∈ {1, . . . ,m}
1. there is an index i ∈ {1, . . . , n} such that Ci vs

T Dj , or
2. there are atoms A1, . . . , Ak, B of T (k ≥ 0) such that

a) A1 u · · · uAk vT B,
b) for every η ∈ {1, . . . , k} there is i ∈ {1, . . . , n} with

Ci vs
T Aη , and

c) B vs
T Dj .

Our proof of this lemma in (Baader, Borgwardt, and
Morawska 2011) is based on a new Gentzen-style proof cal-
culus for subsumption w.r.t. a general TBox, which is simi-
lar to the one developed in (Hofmann 2005) for subsumption
w.r.t. cyclic and general TBoxes.

As mentioned in the introduction, our unification algo-
rithm is complete only for general TBoxes that satisfy a cer-
tain restriction on cycles.
Definition 2. The general TBox T is called cycle-restricted
iff there is no nonempty word w ∈ N+

R and EL-concept
description C such that C vT ∃w.C.

In (Baader, Borgwardt, and Morawska 2011) we show
that a given general TBox can easily be tested for cycle-
restrictedness. The main idea is that it is sufficient to con-
sider the cases where C is a concept name or >.
Lemma 3. Let T be a general TBox. It can be decided
in time polynomial in the size of T whether T is cycle-
restricted or not.

3 Unification in EL w.r.t. General TBoxes
We partition the set NC of concepts names into a set Nv
of concept variables (which may be replaced by substitu-
tions) and a set Nc of concept constants (which must not

569

be replaced by substitutions). A substitution σ maps every
concept variable to an EL-concept description. It can be ex-
tended to concept descriptions in the usual way:

• σ(A) := A for all A ∈ Nc ∪ {>},
• σ(C uD) := σ(C) u σ(D) and σ(∃r.C) := ∃r.σ(C).

An EL-concept description C is ground if it does not con-
tain variables. Obviously, a ground concept description is
not modified by applying a substitution. A general TBox is
ground if it does not contain variables.

Definition 4. Let T be a general TBox that is ground. An
EL-unification problem w.r.t. T is a finite set Γ = {C1 v?

D1, . . . , Cn v? Dn} of subsumptions between EL-concept
descriptions. A substitution σ is a unifier of Γ w.r.t. T
if σ solves all the subsumptions in Γ, i.e., if σ(C1) vT
σ(D1), . . . , σ(Cn) vT σ(Dn). We say that Γ is unifiable
w.r.t. T if it has a unifier.

Two remarks regarding this definition are in order. First,
note that the previous papers on unification in DLs used
equivalences C ≡? D instead of subsumptions C v? D.
This difference is, however, irrelevant since C ≡? D can be
seen as a shorthand for the two subsumptions C v? D and
D v? C, andC v? D has the same unifiers asCuD ≡? C.

Second, note that we have restricted the background gen-
eral TBox T to be ground. This is not without loss of gen-
erality. In fact, if T contained variables, then we would
need to apply the substitution also to its GCIs, and instead
of requiring σ(Ci) vT σ(Di) we would thus need to re-
quire σ(Ci) vσ(T) σ(Di), which would change the nature
of the problem considerably. The treatment of unification
w.r.t. acyclic TBoxes in (Baader and Morawska 2010b) ac-
tually considers a more general setting, where some of the
primitive concepts occurring in the TBox may be variables.
The restriction to ground general TBoxes is, however, appro-
priate for the application scenario sketched in the introduc-
tion. In this scenario, there is a fixed background ontology,
given by a general TBox, which is extended with definitions
of new concepts by several knowledge engineers. Unifica-
tion w.r.t. the background ontology is used to check whether
some of these new definitions actually are redundant, i.e.,
define the same intuitive concept. Here, some of the primi-
tive concepts newly introduced by one knowledge engineer
may be further defined by another one, but we assume that
the knowledge engineers use the vocabulary from the back-
ground ontology unchanged, i.e., they define new concepts
rather than adding definitions for concepts that already oc-
cur in the background ontology. An instance of this scenario
can, e.g., be found in (Campbell et al. 2007), where different
extensions of SNOMED CT are checked for overlaps, albeit
not by using unification, but by simply testing for equiva-
lence.

In the remainder of this section we will show that EL-
unification w.r.t. cycle-restricted TBoxes is NP-complete.
NP-hardness is an immediate consequence of the fact
that EL-unification is NP-complete w.r.t. the empty TBox
(Baader and Morawska 2009). Thus, it is enough to
show that EL-unification is still in NP w.r.t. cycle-restricted
TBoxes.

Preprocessing To simplify the description of the NP-
algorithm, it is convenient to first normalize the TBox and
the unification problem appropriately.

An atom is called flat if it is a concept name or an existen-
tial restriction of the form ∃r.A for a concept name A. The
general TBox T is called flat if it contains only GCIs of the
form A u B v C, where A,B are flat atoms or > and C is
a flat atom. The unification problem Γ is called flat if it con-
tains only flat subsumptions of the formC1u· · ·uCn v? D,
where n ≥ 0 and C1, . . . , Cn, D are flat atoms.2

Let Γ be a unification problem and T a general TBox.
By introducing auxiliary variables and concept names, re-
spectively, Γ and T can be transformed in polynomial time
into a flat unification problem Γ′ and a flat general TBox T ′
such that the unifiability status remains unchanged, i.e., Γ
has a unifier w.r.t. T iff Γ′ has a unifier w.r.t. T ′. In addi-
tion, if T was cycle-restricted, then so is T ′ (see (Baader,
Borgwardt, and Morawska 2011) for details). Thus, we can
assume without loss of generality that the input unification
problem and general TBox are flat.

Local Unifiers The main idea underlying the “in NP” re-
sult in (Baader and Morawska 2009) is to show that any EL-
unification problem that is unifiable w.r.t. the empty TBox
has a so-called local unifier. Here, we generalize the no-
tion of a local unifier to the case of unification w.r.t. cycle-
restricted TBoxes, and show that a similar locality result
holds in this case.

Let T be a flat cycle-restricted TBox and Γ a flat unifi-
cation problem. The atoms of Γ are the atoms of all the
concept descriptions occurring in Γ. We define

At := {C | C is an atom of T or of Γ} and
Atnv := At \Nv (non-variable atoms).

Every assignment S of subsets SX of Atnv to the variables
X in Nv induces the following relation >S on Nv: >S is
the transitive closure of

{(X,Y) ∈ Nv ×Nv | Y occurs in an element of SX}.
We call the assignment S acyclic if >S is irreflexive (and
thus a strict partial order). Any acyclic assignment S induces
a unique substitution σS , which can be defined by induction
along >S :

• If X is a minimal element of Nv w.r.t. >S , then we define
σS(X) :=

d
D∈SX D.

• Assume that σ(Y) is already defined for all Y such that
X >S Y . Then we define σS(X) :=

d
D∈SX σS(D).

We call a substitution σ local if it is of this form, i.e., if there
is an acyclic assignment S such that σ = σS . If the unifier
σ of Γ w.r.t. T is a local substitution, then we call it a local
unifier of Γ w.r.t. T .

Theorem 5. Let T be a flat cycle-restricted TBox and Γ a
flat unification problem. If Γ has a unifier w.r.t. T , then it
also has a local unifier w.r.t. T .

2If n = 0, then we have an empty conjunction on the left-hand
side, which as usual stands for >.

570

This theorem immediately implies that unification in EL
w.r.t. cycle-restricted TBoxes is decidable within NP. In fact,
one can guess an acyclic assignment S in polynomial time.
To check whether the induced local substitution σS is a uni-
fier of Γ w.r.t. T , we build the general TBox

TS := {X v
l

D∈SX
D,

l

D∈SX
D v X | X ∈ Nv},

and then check in polynomial time whether C vT ∪TS D
holds for all C v? D ∈ Γ. It is easy to show that this is the
case iff σS(C) vT σS(D) for all C v? D ∈ Γ.

Corollary 6. Unification in EL w.r.t. cycle-restricted
TBoxes is in NP.

Proof of Theorem 5 Assume that γ is a unifier of Γ w.r.t.
T . We define the assignment Sγ induced by γ as

SγX := {D ∈ Atnv | γ(X) vT γ(D)}.
The following lemma is the only place in the proof of The-
orem 5 where cycle-restrictedness of T is needed. Later we
will give an example (Example 9) that demonstrates that the
theorem actually does not hold if this restriction is removed.

Lemma 7. The assignment Sγ is acyclic.

Proof. Assume that Sγ is cyclic. Then there are variables
X1, . . . , Xn and role names r1, . . . , rn−1 (n ≥ 2) such that
X1 = Xn and ∃ri.Xi+1 ∈ Sγ(Xi) (i = 1, . . . , n − 1).
But then we have γ(Xi) vT ∃ri.γ(Xi+1) for
i = 1, . . . , n − 1, which yields γ(X1) vT ∃r1.γ(X2) vT
∃r1.∃r2.γ(X3) vT · · · vT ∃r1. · · · ∃rn−1.γ(Xn). Since
X1 = Xn and n ≥ 2, this contradicts our assumption that
T is cycle-restricted. Thus, Sγ must be acyclic.

Since Sγ is acyclic, it induces a substitution σSγ . To sim-
plify the notation, we call this substitution in the following
σγ . The following lemma implies that σγ is a unifier of Γ
w.r.t. T , and thus proves Theorem 5.

Lemma 8. Let C1, . . . , Cn, D ∈ At. Then γ(C1) u . . . u
γ(Cn) vT γ(D) implies σγ(C1) u . . . u σγ(Cn) vT
σγ(D).

Proof. We prove the lemma by induction over

max{rd(σγ(E)) | E ∈ {C1, . . . , Cn, D} ∧ E not ground},
where the role depth rd(C) of a concept description C is
defined as follows: rd(A) = rd(>) = 0 for A ∈ NC ,
rd(CuD) = max{rd(C), rd(D)}, rd(∃r.C) = 1+rd(C).

First, assume that D = Y ∈ Nv , and let SγY =
{D1, . . . , Dm}. By the definition of Sγ , this implies
γ(Y) vT γ(D1) u . . . u γ(Dm), and thus

γ(C1) u . . . u γ(Cn) vT γ(D1) u . . . u γ(Dm).

We apply Lemma 1 to this subsumption. Consider γ(Dj)
for some j, 1 ≤ j ≤ m. Since Dj is a non-variable atom,
γ(Dj) is an atom, and thus the first or the second case of the
lemma holds.

1. In the first case, there is an i, 1 ≤ i ≤ n, such that one of
the following two cases holds:

(i) Ci is a non-variable atom and γ(Ci) vsT γ(Dj).
By the definition of vsT , there are two possible cases.
Either both concept descriptions are the same concept
nameA, or both are existential restrictions for the same
role name r. In the first case, Ci = A = Dj , and
thus σγ(Ci) = A = σγ(Dj). In the second case,
Ci = ∃r.C ′i, Dj = ∃r.D′j , and γ(C ′i) vT γ(D′j).
Both C ′i and D′j are elements of At. The role depth
of σγ(C ′i) is obviously smaller than the role depth of
σγ(Ci). For the same reason, the role depth of σγ(D′j)
is smaller that the one of σγ(Dj). Since σγ(Dj) is a
top-level conjunct in σγ(D), the role depth of σγ(D′j)
is also smaller than the one of σγ(D). Consequently, if
Ci or Dj is non-ground, induction yields σγ(C ′i) vT
σγ(D′j), and thus also σγ(Ci) = ∃r.σγ(C ′i) vT
∃r.σγ(D′j) = σγ(Dj). If Ci, Dj are both ground, then
σγ(Ci) = Ci = γ(Ci) vT γ(Dj) = Dj = σγ(Dj).

(ii) Ci = X is a variable and the top-level conjunction of
γ(X) contains an atom E such that E vsT γ(Dj).
Then we have γ(X) vT E vT γ(Dj), and thus Dj ∈
SγX . By the definition of σγ , this implies σγ(Ci) =
σγ(X) vT σγ(Dj).

Both (i) and (ii) yield σγ(C1)u. . .uσγ(Cn) vT σγ(Dj).

2. In the second case, there are atoms A1, . . . , Ak, B of T
such that

a) A1 u . . . uAk vT B,
b) for every η, 1 ≤ η ≤ k, there is i, 1 ≤ i ≤ n, such that

one of the following two cases holds:
(i) Ci is a non-variable atom and γ(Ci) vsT Aη ,

(ii) Ci = X is a variable and the top-level conjunction of
γ(X) contains an atom E such that E vsT Aη;

c) B vsT γ(Dj).

In case (i) we have that either Ci = A = Aη is a concept
name, or both concept descriptions are existential restric-
tionsCi = ∃r.C ′i andAη = ∃r.A′η with γ(C ′i) vT A′η . In
the first case, we have σγ(Ci) = A = Aη . In the second
case, the case where Ci is ground is again trivial. Other-
wise, we can apply induction since C ′i, A

′
η ∈ At, the role

depth of σγ(C ′i) is smaller than the one of σγ(Ci), and the
role depth of A′η is not counted since it is ground. Thus,
we have σγ(C ′i) vT A′η , which yields σγ(Ci) vT Aη .
In case (ii), we again have γ(X) vT E vT Aη , and thus
Aη ∈ SγX . This yields σγ(Ci) = σγ(X) vT Aη .
For similar reasons as before, we can again show that
B vsT γ(Dj) implies B vT σγ(Dj).
To sum up, we thus have also in this case σγ(C1) u . . . u
σγ(Cn) vT A1 u . . . uAk vT B vT σγ(Dj).

Hence, we have shown that, for all j, 1 ≤ j ≤ m, we have
σγ(C1)u . . .uσγ(Cn) vT σγ(Dj), which yields σγ(C1)u
. . . u σγ(Cn) vT σγ(D1) u . . . u σγ(Dm) = σ(D). The
last identity holds since D = Y and SγY = {D1, . . . , Dm}.

It remains to consider the case where D is a non-variable
atom. But then we have

γ(C1) u . . . u γ(Cn) vT γ(D),

571

and γ(D) is an atom. As for γ(Dj) above, we can use
Lemma 1 to show that this implies σγ(C1) u . . . u σγ(Cn)
vT σγ(D).

Example 9 (Cycle-restrictedness is needed). We show
that Theorem 5 does not hold for arbitrary general TBoxes.
To this purpose, consider the general TBox T = {B v
∃s.D, D v B}, which is not cycle-restricted, and the unifi-
cation problem

Γ = {A1 uB ≡? Y1, A2 uB ≡? Y2, ∃s.Y1 v? X,
∃s.Y2 v? X, X v? ∃s.X}.

This problem has the unifier γ := {Y1 7→ A1 u B, Y2 7→
A2 u B,X 7→ ∃s.B}. However, the induced assignment
Sγ is cyclic since γ(X) = ∃s.B vT ∃s.∃s.B = γ(∃s.X)
yields ∃s.X ∈ SγX . Thus, γ does not induce a local unifier.

We claim that Γ actually does not have any local unifier
w.r.t. T . Assume to the contrary that σ is a local unifier of Γ
w.r.t. T . Then σ(X) cannot be > since > 6vT ∃s.>. Thus,
σ(X) must contain a top-level atom of the form σ(E) for
E ∈ Atnv. This atom cannot be σ(∃s.Yi) ≡T ∃s.(Ai u B)
for i ∈ {1, 2} since then σ(∃s.Yj) vT σ(E) for j ∈
{1, 2} \ {i} would not hold, contradicting the assumption
that σ solves ∃s.Yj v? X w.r.t. T . Since local unifiers are
induced by acyclic assignments, E cannot be σ(∃s.X), and
thus E must be an atom of T . However, none of the atoms
B,D,∃s.D subsume ∃s.(AjuB) w.r.t. T , again contradict-
ing the assumption that σ solves ∃s.Yj v? X w.r.t. T .

4 Conclusions
We have shown that unification in EL stays in NP in the
presence of a cycle-restricted general TBox, by giving a
brute-force NP-algorithm that tries to guess a local unifier.
This algorithm is interesting since it provides a quite sim-
ple, self-contained proof for the complexity upper-bound.
Indeed, it is much simpler than the original proof (Baader
and Morawska 2009; 2010b) of the NP-upper bound for EL
without TBoxes.

In (Baader, Borgwardt, and Morawska 2011), we also in-
troduce a goal-oriented algorithm for unification in EL in the
presence of a cycle-restricted TBox, in which nondetermin-
istic decisions are only made if they are triggered by “un-
solved parts” of the unification problem. Another advantage
of the goal-oriented algorithm is that it only generates sub-
stitutions that are unifiers, whereas the brute-force algorithm
generates all local substitutions, and requires a subsequent
test of whether this substitution is a unifier. Nevertheless,
this algorithms still requires a considerable amount of addi-
tional optimization work to be useful in practice.

On the theoretical side, the main topic for future research
is to consider unification w.r.t. unrestricted general TBoxes.
In order to generalize the brute-force algorithm in this direc-
tion, we need to find a more general notion of locality. Start-
ing with the goal-oriented algorithm (Baader, Borgwardt,
and Morawska 2011), the idea would be not to fail when
a cyclic assignment is generated, but rather to add rules that
can break such cycles, similar to what is done in procedures
for general E-unification (Morawska 2007).

References
Baader, F., and Morawska, B. 2009. Unification in the de-
scription logic EL. In Treinen, R., ed., Proc. of the 20th
Int. Conf. on Rewriting Techniques and Applications (RTA
2009), volume 5595 of Lecture Notes in Computer Science,
350–364. Springer-Verlag.
Baader, F., and Morawska, B. 2010a. SAT encoding of uni-
fication in EL. In Fermüller, C. G., and Voronkov, A., eds.,
Proc. of the 17th Int. Conf. on Logic for Programming, Ar-
tifical Intelligence, and Reasoning (LPAR-17), volume 6397
of Lecture Notes in Computer Science, 97–111. Springer-
Verlag.
Baader, F., and Morawska, B. 2010b. Unification in the
description logic EL. Logical Methods in Computer Science
6(3). Special Issue: 20th Int. Conf. on Rewriting Techniques
and Applications (RTA’09).
Baader, F., and Narendran, P. 2001. Unification of con-
cept terms in description logics. J. of Symbolic Computation
31(3):277–305.
Baader, F.; Borgwardt, S.; and Morawska, B. 2011. Uni-
fication in the description logic EL w.r.t. cycle-restricted
TBoxes. LTCS-Report 11-05, Chair of Automata Theory,
Institute of Theoretical Computer Science, Technische Uni-
versität Dresden, Dresden, Germany. See http://lat.inf.tu-
dresden.de/research/reports.html.
Baader, F.; Brandt, S.; and Lutz, C. 2005. Pushing the
EL envelope. In Kaelbling, L. P., and Saffiotti, A., eds.,
Proc. of the 19th Int. Joint Conf. on Artificial Intelligence
(IJCAI 2005), 364–369. Morgan-Kaufmann Publishers.
Brandt, S. 2004. Polynomial time reasoning in a description
logic with existential restrictions, GCI axioms, and—what
else? In de Mántaras, R. L., and Saitta, L., eds., Proc. of
the 16th Eur. Conf. on Artificial Intelligence (ECAI 2004),
298–302. IOS Press.
Campbell, J. R.; Lopez Osornio, A.; de Quiros, F.; Luna,
D.; and Reynoso, G. 2007. Semantic interoperability and
SNOMED CT: A case study in clinical problem lists. In
Kuhn, K.; Warren, J.; and Leong, T.-Y., eds., Proc. of
the 12th World Congress on Health (Medical) Informatics
(MEDINFO 2007), 2401–2402. IOS Press.
Hofmann, M. 2005. Proof-theoretic approach to description-
logic. In Proc. of the 20th IEEE Symp. on Logic in Computer
Science (LICS 2005), 229–237.
Morawska, B. 2007. General E-unification with eager vari-
able elimination and a nice cycle rule. J. of Automated Rea-
soning 39(1):77–106.

572

A Goal-Oriented Algorithm for Unification
in ELHR+ w.r.t. Cycle-Restricted Ontologies�

Franz Baader, Stefan Borgwardt, and Barbara Morawska

Theoretical Computer Science, TU Dresden, Germany
{baader,stefborg,morawska}@tcs.inf.tu-dresden.de

Abstract. Unification in Description Logics (DLs) has been proposed as
an inference service that can, for example, be used to detect redundancies
in ontologies. For the DL EL, which is used to define several large biomed-
ical ontologies, unification is NP-complete. A goal-oriented NP unifica-
tion algorithm for EL that uses nondeterministic rules to transform a
given unification problem into solved form has recently been presented.
In this paper, we extend this goal-oriented algorithm in two directions:
on the one hand, we add general concept inclusion axioms (GCIs), and
on the other hand, we add role hierarchies (H) and transitive roles (R+).
For the algorithm to be complete, however, the ontology consisting of
the GCIs and role axioms needs to satisfy a certain cycle restriction.

1 Introduction

The DL EL, which offers the constructors conjunction (�), existential restric-
tion (∃r.C), and the top concept (�), has recently drawn considerable attention
since, on the one hand, important inference problems such as the subsumption
problem are polynomial in EL, even in the presence of general concept inclusions
(GCIs) [12]. On the other hand, though quite inexpressive, EL can be used to
define biomedical ontologies, such as the large medical ontology SNOMEDCT.1
A tractable extension of EL [7], which includes role hierarchy and transitivity
axioms, is the basis of the OWL 2 EL profile of the new Web Ontology Language
OWL 2.2

Unification in DLs has been proposed in [11] as a novel inference service that
can, for instance, be used to detect redundancies in ontologies. For example,
assume that one developer of a medical ontology defines the concept of a patient
with severe injury of the frontal lobe as

∃finding.(Frontal_lobe_injury � ∃severity.Severe), (1)

whereas another one represents it as

∃finding.(Severe_injury � ∃finding_site.∃part_of.Frontal_lobe). (2)
� Supported by DFG under grant BA 1122/14-1.
1 see http://www.ihtsdo.org/snomed-ct/
2 See http://www.w3.org/TR/owl2-profiles/

M. Thielscher and D. Zhang (Eds.): AI 2012, LNCS 7691, pp. 493–504, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

494 F. Baader, S. Borgwardt, and B. Morawska

These two concept descriptions are not equivalent, but they are nevertheless
meant to represent the same concept. They can obviously be made equivalent by
treating the concept names Frontal_lobe_injury and Severe_injury as variables,
and substituting the first one by Injury � ∃finding_site.∃part_of.Frontal_lobe
and the second one by Injury � ∃severity.Severe. In this case, we say that the
descriptions are unifiable, and call the substitution that makes them equivalent
a unifier.

Our interest in unification w.r.t. GCIs, role hierarchies, and transitive roles
stems from the fact that these features are important for expressing medical
knowledge. For example, assume that the developers use the descriptions (3)
and (4) instead of (1) and (2):

∃finding.∃finding_site.∃part_of.Brain �
∃finding.(Frontal_lobe_injury � ∃severity.Severe) (3)

∃status.Emergency �
∃finding.(Severe_injury � ∃finding_site.∃part_of.Frontal_lobe) (4)

The descriptions (3) and (4) are not unifiable without additional background
knowledge, but they are unifiable, with the same unifier as above, if the GCIs

∃finding.∃severity.Severe � ∃status.Emergency,

Frontal_lobe � ∃proper_part_of.Brain

are present in a background ontology and this ontology additionally states that
part_of is transitive and proper_part_of is a subrole of part_of.

In [8], we were able to show that unification in the DL EL (without GCIs and
role axioms) is NP-complete. In addition to a brute-force “guess and then test”
NP-algorithm [8], we have developed a goal-oriented unification algorithm for
EL, in which nondeterministic decisions are only made if they are triggered by
“unsolved parts” of the unification problem [10], and an algorithm that is based
on a reduction to satisfiability in propositional logic (SAT) [9], which enables the
use of highly-optimized SAT solvers [14]. Whereas both approaches are clearly
better than the brute-force algorithm, none of them is uniformly better than the
other. First experiments with our system UEL [1] show that the SAT translation
is usually faster in deciding unifiability, but it needs more space than the goal-
oriented algorithm and it produces more uninteresting and large unifiers. In
fact, the SAT translation generates all so-called local unifiers, whereas the goal-
oriented algorithm produces all so-called minimal unifiers, though it may also
produce some non-minimal ones. The set of minimal unifiers is a subset of the
set of local unifiers, and in our experiments the minimal unifiers usually made
more sense in the application.

In [10] it was shown that the approaches for unification of EL-concept de-
scriptions (without any background ontology) mentioned above can easily be
extended to the case of a so-called acyclic TBox (a simple form of GCIs, which
basically introduce abbreviations for concept descriptions) as background on-
tology without really changing the algorithms or increasing their complexity.

A Goal-Oriented Algorithm for Unification in ELHR+ 495

For more general GCIs, such a simple solution is no longer possible. In [2],
we extended the brute-force “guess and then test” NP-algorithm from [8] to
the case of GCIs, which required the development of a new characterization of
subsumption w.r.t. GCIs in EL. Unfortunately, the algorithm is complete only
for general TBoxes (i.e., finite sets of GCIs) that satisfy a certain restriction
on cycles, which, however, does not prevent all cycles. For example, the cyclic
GCI ∃child.Human � Human satisfies this restriction, whereas the cyclic GCI
Human � ∃parent.Human does not. In [5] we provide a more practical unification
algorithm that is based on a translation into SAT, and can also deal with role
hierarchies and transitive roles, but still needs the ontology (now consisting of
GCIs and role axioms) to be cycle-restricted. In the presence of role hierarchies
(H) and transitive roles (R+), we use the name ELHR+ rather than EL for
the logic.

Motivated by our experience that, for the case of EL without background
ontology, the goal-oriented algorithm sometimes behaves better than the one
based on a translation into SAT, we introduce in this paper a goal-oriented
algorithm for unification in ELHR+ w.r.t. cycle-restricted ontologies.3 Full proofs
of the presented results can be found in [3].

2 The Description Logics EL and ELHR+

The expressiveness of a DL is determined both by the formalism for describing
concepts (the concept description language) and the terminological formalism,
which can be used to state additional constraints on the interpretation of con-
cepts and roles in a so-called ontology.

The concept description language considered in this paper is called EL. Start-
ing with a finite set NC of concept names and a finite set NR of role names,
EL-concept descriptions are built from concept names using the constructors
conjunction (C � D), existential restriction (∃r.C for every r ∈ NR), and top
(�). Since in this paper we only consider EL-concept descriptions, we will some-
times dispense with the prefix EL.

On the semantic side, concept descriptions are interpreted as sets. To be more
precise, an interpretation I = (ΔI , ·I) consists of a non-empty domain ΔI and
an interpretation function ·I that maps concept names to subsets of ΔI and
role names to binary relations over ΔI . This function is inductively extended to
concept descriptions as follows:

�I := ΔI , (C � D)I := CI ∩ DI , (∃r.C)I := {x | ∃y : (x, y) ∈ rI ∧ y ∈ CI}

A general concept inclusion axiom (GCI) is of the form C � D for concept
descriptions C, D, a role hierarchy axiom is of the form r � s for role names

3 A previous version of this paper, which considers unification in EL w.r.t. cycle-
restricted ontologies, but without role hierarchies and transitive roles, has been pre-
sented in 2012 at the Description Logic workshop (see [4]).

496 F. Baader, S. Borgwardt, and B. Morawska

r, s, and a transitivity axiom is of the form r ◦ r � r for a role name r. An
interpretation I satisfies such an axiom C � D, r � s, r ◦ r � r, respectively, iff

CI ⊆ DI , rI ⊆ sI , and rI ◦ rI ⊆ rI ,

where ◦ stands for composition of binary relations. An ELHR+-ontology is a
finite set of such axioms. It is an EL-ontology if it contains only GCIs. An
interpretation is a model of an ontology if it satisfies all its axioms.

A concept description C is subsumed by a concept description D w.r.t. an
ontology O (written C �O D) if every model of O satisfies the GCI C � D. We
say that C is equivalent to D w.r.t. O (C ≡O D) if C �O D and D �O C. If
O is empty, we also write C � D and C ≡ D instead of C �O D and C ≡O D,
respectively. As shown in [12,7], subsumption w.r.t. ELHR+-ontologies (and thus
also w.r.t. EL-ontologies) is decidable in polynomial time.

Since conjunction is interpreted as intersection, the concept descriptions (C �
D)�E and C�(D�E) are always equivalent. Thus, we dispense with parentheses
and write nested conjunctions in flat form C1 � · · · � Cn. Nested existential
restrictions ∃r1.∃r2. . . . ∃rn.C will sometimes also be written as ∃r1r2 . . . rn.C,
where r1r2 . . . rn is viewed as a word over the alphabet of role names, i.e. an
element of N∗

R.
The role hierarchy induced by O is a binary relation �O on NR, which is

defined as the reflexive-transitive closure of the relation {(r, s) | r � s ∈ O}.
Using elementary reachability algorithms, the role hierarchy can be computed
in polynomial time in the size of O. It is easy to see that r �O s implies that
rI ⊆ sI for all models I of O. Given an ELHR+ -ontology O, we call the role
t transitive w.r.t. O if O contains the axiom t ◦ t � t. If O is clear from the
context, we often omit the suffix “w.r.t. O” and call t a transitive role.

An EL-concept description is an atom if it is an existential restriction or a
concept name. The atoms of an EL-concept description C are the subdescriptions
of C that are atoms, and the top-level atoms of C are the atoms occurring in
the top-level conjunction of C. Obviously, any EL-concept description is the
conjunction of its top-level atoms, where the empty conjunction corresponds
to �. The atoms of an ELHR+ -ontology O are the atoms of all the concept
descriptions occurring in GCIs of O.

We say that a subsumption between two atoms is structural if their top-level
structure is compatible. To be more precise, following [5] we define structural
subsumption between atoms as follows: the atom C is structurally subsumed by
the atom D w.r.t. O (C �s

O D) iff one of the following holds:

1. C = D is a concept name,
2. C = ∃r.C′, D = ∃s.D′, r �O s, and C′ �O D′.
3. C = ∃r.C′, D = ∃s.D′, and C′ �O ∃t.D′ for a transitive role t such that

r �O t �O s.

It is easy to see that subsumption w.r.t. ∅ between two atoms implies struc-
tural subsumption w.r.t. O, which in turn implies subsumption w.r.t. O. The
unification algorithm presented below crucially depends on the following char-
acterization of subsumption:

A Goal-Oriented Algorithm for Unification in ELHR+ 497

Lemma 1. Let O be an ELHR+-ontology and C1, . . . , Cn, D1, . . . , Dm be atoms.
Then C1 � · · · � Cn �O D1 � · · · � Dm iff for every j ∈ {1, . . . , m}
1. there is an index i ∈ {1, . . . , n} such that Ci �s

O Dj or
2. there are atoms A1, . . . , Ak, B of O (k ≥ 0) such that

(a) A1 � · · · � Ak �O B,
(b) for every η ∈ {1, . . . , k} there is i ∈ {1, . . . , n} with Ci �s

O Aη, and
(c) B �s

O Dj.

Our proof of this lemma in [3] is based on a Gentzen-style proof calculus for
subsumption w.r.t. ELHR+-ontologies, which is similar to the one developed in
[15] for subsumption w.r.t. EL-ontologies. Although this characterization looks
identical to the one given in [2] for the case of EL-ontologies it differs from that
characterization in that it uses a more general notion of structural subsumption.
Also note that the characterization of subsumption w.r.t. ELHR+-ontologies
employed in [5] to show correctness of the the SAT translation is different from
the one given above, and it is proved using a rewriting approach rather than a
Gentzen-style proof calculus.

As mentioned in the introduction, our unification algorithm is complete only
for ELHR+ -ontologies that satisfy a certain restriction on cycles.

Definition 2. The ELHR+-ontology O is called cycle-restricted iff there is no
nonempty word w ∈ N+

R and EL-concept description C such that C �O ∃w.C.

In [5] we show that a given ELHR+ -ontology can be tested for cycle-restrictedness
in polynomial time. The main idea is that it is sufficient to consider the cases
where C is a concept name or �.

3 Unification in ELHR+

We partition the set NC into a set Nv of concept variables (which may be
replaced by substitutions) and a set Nc of concept constants (which must not be
replaced by substitutions). A substitution σ maps every concept variable to an
EL-concept description. It is extended to concept descriptions in the usual way:

– σ(A) := A for all A ∈ Nc ∪ {�},
– σ(C � D) := σ(C) � σ(D) and σ(∃r.C) := ∃r.σ(C).

An EL-concept description C is ground if it does not contain variables. Obviously,
a ground concept description is not modified by applying a substitution. An
ELHR+ -ontology is ground if it does not contain variables.

Definition 3. Let O be an ELHR+-ontology that is ground. An ELHR+-uni-
fication problem w.r.t. O is a finite set Γ = {C1 �? D1, . . . , Cn �? Dn}
of subsumptions between EL-concept descriptions. A substitution σ is a uni-
fier of Γ w.r.t. O if σ solves all the subsumptions in Γ , i.e. if σ(C1) �O
σ(D1), . . . , σ(Cn) �O σ(Dn). We say that Γ is unifiable w.r.t. O if it has a
unifier.

498 F. Baader, S. Borgwardt, and B. Morawska

Note that some of the previous papers on unification in DLs use equivalences
C ≡? D instead of subsumptions C �? D. This difference is, however, irrelevant
since C ≡? D can be seen as a shorthand for the two subsumptions C �? D and
D �? C, and C �? D has the same unifiers as C � D ≡? C. Also note that we
have restricted the background ontology O to be ground. This is not without
loss of generality. If O contained variables, then we would need to apply the
substitution also to its GCIs, and instead of requiring σ(Ci) �O σ(Di) we would
thus need to require σ(Ci) �σ(O) σ(Di), which would change the nature of the
problem considerably (see [6] for a more detailed discussion).

Preprocessing. To simplify the description of the algorithm, it is convenient
to first normalize the ontology and the unification problem appropriately. An
atom is called flat if it is a concept name or an existential restriction of the
form ∃r.A for a concept name A. The ELHR+-ontology O is called flat if it
contains only GCIs of the form A � B � C, where A, B are flat atoms or � and
C is a flat atom. The unification problem Γ is called flat if it contains only flat
subsumptions of the form C1 � · · · � Cn �? D, where n ≥ 0 and C1, . . . , Cn, D
are flat atoms.4 Let Γ be a unification problem and O an ELHR+-ontology. By
introducing auxiliary variables and concept names, respectively, Γ and O can
be transformed in polynomial time into a flat unification problem Γ ′ and a flat
ELHR+ -ontology O′ such that the unifiability status remains unchanged, i.e., Γ
has a unifier w.r.t. O iff Γ ′ has a unifier w.r.t. O′. In addition, if O was cycle-
restricted, then so is O′ (see [6] for details). Thus, we can assume without loss
of generality that the input unification problem and ontology are flat.

Local Unifiers. The main idea underlying the “in NP” results in [8,2] is to
show that any unification problem that is unifiable has a so-called local unifier.

We denote by At the set of atoms occurring as subdescriptions in subsump-
tions in Γ or axioms in O and define

Attr := At ∪ {∃t.D′ | ∃s.D′ ∈ At, t �O s, t transitive}.

Furthermore, we define the set of non-variable atoms by Atnv := Attr \ Nv.
Though the elements of Atnv cannot be variables, they may contain variables if
they are of the form ∃r.X for some role r and a variable X .

We call a function S that associates every variable X ∈ Nv with a set SX ⊆
Atnv an assignment. Such an assignment induces the following relation >S on
Nv: >S is the transitive closure of

{(X, Y) ∈ Nv × Nv | Y occurs in an element of SX}.

We call the assignment S acyclic if >S is irreflexive (and thus a strict partial
order). Any acyclic assignment S induces a unique substitution σS , which can
be defined by induction along >S :
4 If n = 0, then we have an empty conjunction on the left-hand side, which as usual

stands for �.

A Goal-Oriented Algorithm for Unification in ELHR+ 499

– If X ∈ Nv is minimal w.r.t. >S , then we define σS(X) :=
�

D∈SX
D.

– Assume that σ(Y) is already defined for all Y such that X >S Y . Then we
define σS(X) :=

�
D∈SX

σS(D).

We call a substitution σ local if it is of this form, i.e., if there is an acyclic assign-
ment S such that σ = σS . If the unifier σ of Γ w.r.t. O is a local substitution,
then we call it a local unifier of Γ w.r.t. O.

The main technical result shown in [2] is that any unifiable EL-unification
problem w.r.t. a cycle-restricted ontology has a local unifier. This yields the fol-
lowing brute-force unification algorithm for EL w.r.t. cycle-restricted ontologies:
first guess an acyclic assignment S, and then check whether the induced local
substitution σS solves Γ . As shown in [2], this algorithm runs in nondeterminis-
tic polynomial time. NP-hardness follows from the fact that already unification
in EL w.r.t. the empty ontology is NP-hard [8]. In [2] it is also shown why cycle-
restrictedness is needed: there is a non-cycle-restricted EL-ontology O and an
EL-unification problem Γ such that Γ has a unifier w.r.t. O, but it does not
have a local unifier.

4 A Goal-Oriented Unification Algorithm

The brute-force algorithm is not practical since it blindly guesses an acyclic as-
signment and only afterwards checks whether the guessed assignment induces a
unifier. We now introduce a more goal-oriented unification algorithm, in which
nondeterministic decisions are only made if they are triggered by “unsolved parts”
of the unification problem. In addition, failure due to wrong guesses can be de-
tected early. Any non-failing run of the algorithm produces a unifier, i.e., there is
no need for checking whether the assignment computed by this run really induces
a unifier. This goal-oriented algorithm generalizes the algorithm for unification
in EL (without background ontology) introduced in [10], though the rules look
quite different because in the present paper we consider unification problems that
consist of subsumptions whereas in [10] we considered equivalences. We assume
without loss of generality that the cycle-restricted ELHR+ -ontology O and the
unification problem Γ0 are flat. Given O and Γ0, the sets At, Attr, and Atnv are
defined as above. Starting with Γ0, the algorithm maintains a current unification
problem Γ and a current acyclic assignment S, which initially assigns the empty
set to all variables. In addition, for each subsumption in Γ it maintains the in-
formation on whether it is solved or not. Initially, all subsumptions are unsolved,
except those with a variable on the right-hand side. Rules are applied only to
unsolved subsumptions. A (non-failing) rule application does the following:

– it solves exactly one unsolved subsumption,
– it may extend the current assignment S, and
– it may introduce new flat subsumptions built from elements of Attr.

Each rule application that extends SX additionally expands Γ w.r.t. X as follows:
every subsumption s ∈ Γ of the form C1 � · · · � Cn �? X is expanded by adding
the subsumption C1 � · · · � Cn �? A to Γ for every A ∈ SX .

500 F. Baader, S. Borgwardt, and B. Morawska

Eager Ground Solving:

Condition: This rule applies to s = C1 � · · · � Cn �? D if it is ground.
Action: If C1 � · · · � Cn �O D does not hold, the rule application fails. Oth-
erwise, s is marked as solved.

Eager Solving:

Condition: This rule applies to s = C1 � · · · � Cn �? D if either
– there is i ∈ {1, . . . , n} such that Ci = D or Ci = X ∈ Nv and D ∈ SX , or
– D is ground and

� G �O D holds, where G is the set of all ground atoms
in {C1, . . . , Cn} ∪ ⋃

X∈{C1,...,Cn}∩Nv
SX .

Action: Its application marks s as solved.

Eager Extension:

Condition: This rule applies to s = C1�· · ·�Cn �? D if there is i ∈ {1, . . . , n}
with Ci = X ∈ Nv and {C1, . . . , Cn} \ {X} ⊆ SX .
Action: Its application adds D to SX . If this makes S cyclic, the rule appli-
cation fails. Otherwise, Γ is expanded w.r.t. X and s is marked as solved.

Fig. 1. The eager rules of the unification algorithm

Subsumptions are only added if they are not already present in Γ . If a new
subsumption is added to Γ , either by a rule application or by expansion of Γ ,
then it is initially designated unsolved, except if it has a variable on the right-
hand side. Once a subsumption is in Γ , it will not be removed. Likewise, if a
subsumption in Γ is marked as solved, then it will not become unsolved later.

If a subsumption is marked as solved, this does not mean that it is already
solved by the substitution induced by the current assignment. It may be the
case that the task of satisfying the subsumption was deferred to solving other
subsumptions which are “smaller” than the given subsumption in a well-defined
sense. The task of solving a subsumption whose right-hand side is a variable is
deferred to solving the subsumptions introduced by expansion.

The rules of the algorithm consist of the three eager rules Eager Ground Solv-
ing, Eager Solving, and Eager Extension (see Figure 1), and several nondeter-
ministic rules (see Figures 2 and 3). Eager rules are applied with higher priority
than nondeterministic rules. Among the eager rules, Eager Ground Solving has
the highest priority, then comes Eager Solving, and then Eager Extension.

Algorithm 4. Let Γ0 be a flat EL-unification problem. We set Γ := Γ0 and
SX := ∅ for all X ∈ Nv. While Γ contains an unsolved subsumption, apply the
steps (1), (2), and (3).

(1) Eager rule application: If some eager rules apply to an unsolved sub-
sumption s in Γ , apply one of highest priority. If the rule application fails,
then return “not unifiable”.

(2) Nondeterministic rule application: If no eager rule is applicable, let s be
an unsolved subsumption in Γ . If one of the nondeterministic rules applies
to s, nondeterministically choose one of these rules and apply it. If none of
these rules apply to s or the rule application fails, then return “not unifiable”.

A Goal-Oriented Algorithm for Unification in ELHR+ 501

Decomposition 1:

Condition: This rule applies to s = C1 �· · ·�Cn �? ∃s.D′ if there is an index
i ∈ {1, . . . , n} with Ci = ∃r.C′ and r �O s.
Action: Its application chooses such an index i, adds the subsumption C′ �?

D′ to Γ , expands it w.r.t. D′ if D′ is a variable, and marks s as solved.

Decomposition 2:

Condition: This rule applies to s = C1 �· · ·�Cn �? ∃s.D′ if there is an index
i ∈ {1, . . . , n} and a transitive role t with Ci = ∃r.C′ and r �O t �O s.
Action: Its application chooses such an index i, adds the subsumption C′ �?

∃t.D′ to Γ and marks s as solved.

Extension:
Condition: This rule applies to s = C1 � · · · � Cn �? D if there is an index
i ∈ {1, . . . , n} with Ci ∈ Nv .
Action: Its application chooses such an i and adds D to SCi . If this makes S
cyclic, the rule application fails. Otherwise, Γ is expanded w.r.t. Ci and s is
marked as solved.

Fig. 2. The nondeterministic rules Decomposition 1 and 2 and Extension

(3) Eager application of Decomposition: If in the previous step one of the
rules Mutation 2 or 3 was applied, do the following for all subsumptions s′

added to Γ by this rule application: If one of the rules Decomposition 1 or 2
applies to s′, nondeterministically choose one of the applicable decomposition
rules and apply it to s′.5

Once all subsumptions are solved, return the substitution σ induced by the
current assignment.

In step (2), the choice which unsolved subsumption to consider next is don’t
care nondeterministic. However, choosing which rule to apply to the chosen sub-
sumption is don’t know nondeterministic. Additionally, the application of non-
deterministic rules requires don’t know nondeterministic guessing.

The eager rules are mainly there for optimization purposes, i.e., to avoid
nondeterministic choices if a deterministic decision can be made. For example,
a ground subsumption, as considered in the Eager Ground Solving rule, either
follows from the ontology, in which case any substitution solves it, or it does
not, in which case it does not have a solution. This condition can be checked in
polynomial time using the polynomial time subsumption algorithm for ELHR+

[7]. In the case considered in the Eager Solving rule, the substitution induced
by the current assignment obviously already solves the subsumption. The Eager
Extension rule solves a subsumption that contains only a variable X and some
elements of SX on the left-hand side. The rule is motivated by the following
observation: for any assignment S′ extending the current assignment, the induced
5 Note that Decomposition 1 always applies to the new subsumptions. Whether De-

composition 2 is also applicable depends on the existence of an appropriate transitive
role t.

502 F. Baader, S. Borgwardt, and B. Morawska

Mutation 1:
Condition: This rule applies to s = C1 � · · · � Cn �? D if n > 1 and there are
atoms A1, . . . , Ak, B of O such that A1 � · · · � Ak �O B holds.
Action: Its application chooses such atoms, marks s as solved, and generates
the following subsumptions:

– it chooses for each η ∈ {1, . . . , k} an i ∈ {1, . . . , n} and adds the subsump-
tion Ci �? Aη to Γ ,

– it adds the subsumption B �? D to Γ .

Mutation 2:
Condition: This rule applies to s = ∃r.X �? D if X is a variable, D is ground,
and there are atoms ∃r1.A1, . . . , ∃rk.Ak of O such that r �O r1, . . . , r �O rk,
and ∃r1.A1 � · · · � ∃rk.Ak �O D hold.
Action: Its application chooses such atoms, adds the subsumptions ∃r.X �?

∃r1.A1, . . . , ∃r.X �? ∃rk.Ak to Γ , and marks s as solved.

Mutation 3:
Condition: This rule applies to s = ∃r.X �? ∃s.Y if X and Y are variables,
and there are atoms ∃r1.A1, . . . , ∃rk.Ak, ∃u.B of O such that r �O r1, . . . ,
r �O rk, u �O s, and ∃r1.A1 � · · · � ∃rk.Ak �O ∃u.B hold.
Action: Its application chooses such atoms, adds the subsumptions ∃r.X �?

∃r1.A1, . . . , ∃r.X �? ∃rk.Ak, ∃u.B �? ∃s.Y to Γ , and marks s as solved.

Mutation 4:
Condition: This rule applies to s = C �? ∃s.Y if C is a ground atom or �,
Y is a variable, and there is an atom ∃u.B of O such that either

– C �O ∃u.B and u �O s, or
– C �O ∃t.B for a transitive role t with u �O t �O s.

Action: Its application chooses such an atom, adds the subsumption B �? Y
to Γ , and marks s as solved.

Fig. 3. The nondeterministic Mutation rules of the unification algorithm

substitution σ′ satisfies σ′(X) ≡ σ′(C1) � . . . � σ′(Cn). Thus, if S′
X contains D,

then σ′(X) �O σ′(D), and σ′ solves the subsumption. Conversely, if σ′ solves
the subsumption, then σ′(X) �O σ′(D), and thus adding D to S′

X yields an
equivalent induced substitution.

The nondeterministic rules only come into play if no eager rules can be ap-
plied. In order to solve an unsolved subsumption s = C1 � · · · � Cn �? D, we
consider the two conditions of Lemma 1. Regarding the first condition, which
is addressed by the rules Decomposition 1 and 2 and Extension, assume that
γ is induced by an acyclic assignment S. To satisfy the first condition of the
lemma with γ, the atom γ(D) must structurally subsume a top-level atom in
γ(C1)�· · ·�γ(Cn). This atom can either be of the form γ(Ci) for an atom Ci, or
it can be of the form γ(C) for an atom C ∈ SCi and a variable Ci. In the second
case, the atom C can either already be in SCi or it can be put into SCi by an
application of the Extension rule. The two versions of Decomposition correspond
to the cases (2) and (3) in the definition of structural subsumption.

A Goal-Oriented Algorithm for Unification in ELHR+ 503

The Mutation rules cover the second condition in Lemma 1. For example, let
us analyze how Mutation 1 ensures that all the requirements of this condition
are satisfied. The rule guesses atoms A1, . . . , Ak, B such that A1 �· · ·�Ak �O B
holds. This can be checked using the polynomial-time subsumption algorithm
for ELHR+ . Whenever the second condition of Lemma 1 requires a structural
subsumption γ(E) �s

O γ(F) to hold for a (hypothetical) unifier γ of Γ , the rule
creates the new subsumption E �? F , which has to be solved later on. This way,
the rule ensures that the substitution built by the algorithm actually satisfies
the conditions of the lemma. The other mutation rules follow the same idea, but
they consider cases where only a single atom occurs on the left-hand side of the
subsumption to be solved. The reason for considering these cases separately is
that in the proof of soundness we need the newly introduced subsumptions to be
“smaller” than the subsumption that triggered their introduction. For Mutation
1 this is the case due to the smaller left-hand side (only one atom), whereas for
the other mutation rules this is not so clear. Actually, for Mutation 2 and 3, the
new subsumptions turn out to be smaller only after Decomposition is applied to
them. Mutation 4 implicitly applies a form of decomposition.

Due to the space restrictions, we cannot give more details on how to prove
that the algorithm is correct. Complete proofs of soundness, completeness and
termination can be found in [3].

Theorem 5. Algorithm 4 is an NP-decision procedure for testing solvability of
ELHR+-unification problems w.r.t. cycle-restricted ontologies.

5 Conclusions

Above, we have presented a goal-oriented NP-algorithm for unification in ELHR+

w.r.t. cycle-restricted ontologies. In [5], we have developed a reduction of this
problem to SAT, which is based on a characterization of subsumption different
from the one in Lemma 1. Though clearly better than the brute-force algorithm
introduced in [2], both algorithms suffer from a high degree of nondeterminism
due to having to guess true subsumptions between concepts built from atoms of
the background cycle-restricted ontology. We must find optimizations to tackle
this problem before an implementation becomes feasible.

On the theoretical side, the main topic for future research is to consider uni-
fication w.r.t. unrestricted ELHR+-ontologies. In order to generalize the brute-
force algorithm in this direction, we need to find a more general notion of locality.
Starting with the goal-oriented algorithm, one idea could be not to fail when a
cyclic assignment is generated, but rather to add rules that can break such cycles,
similar to what is done in procedures for general E-unification [16].

Another idea could be to use just the rules of our goal-oriented algorithm, and
not fail when a cyclic assignment S is generated. Our conjecture is that then the
background ontology O together with the cyclic TBox TS := {X ≡ �

C∈SX
C |

X ∈ Nv} induced by S satisfies C �O∪TS D for all subsumptions C �? D in
Γ0 if an appropriate hybrid semantics [13] for the combined ontology O ∪ TS

is used.

504 F. Baader, S. Borgwardt, and B. Morawska

All the results on unification in Description Logics mentioned in this paper
are restricted to relatively inexpressive logics that do not support all Boolean
operators. If we close EL under negation, then we obtain the DL ALC, which
corresponds to the modal logic K [17]. Whether unification in K is decidable is
a long-standing open problem. It is only known that relatively minor extensions
of K have an undecidable unification problem [18].

References

1. Baader, F., Borgwardt, S., Mendez, J., Morawska, B.: UEL: Unification solver for
EL. In: Proc. DL 2012. CEUR Workshop Proceedings, vol. 846 (2012)

2. Baader, F., Borgwardt, S., Morawska, B.: Extending unification in EL towards
general TBoxes. In: Proc. KR 2012, pp. 568–572. AAAI Press (2012) (short paper)

3. Baader, F., Borgwardt, S., Morawska, B.: A goal-oriented algorithm for unifica-
tion in ELHR+ w.r.t. cycle-restricted ontologies. LTCS-Report 12-05, TU Dresden,
Germany (2012), http://lat.inf.tu-dresden.de/research/reports.html

4. Baader, F., Borgwardt, S., Morawska, B.: A goal-oriented algorithm for unifica-
tion in EL w.r.t. cycle-restricted TBoxes. In: Proc. DL 2012. CEUR Workshop
Proceedings, vol. 846 (2012)

5. Baader, F., Borgwardt, S., Morawska, B.: SAT Encoding of Unification in ELHR+

w.r.t. Cycle-Restricted Ontologies. In: Gramlich, B., Miller, D., Sattler, U. (eds.)
IJCAR 2012. LNCS, vol. 7364, pp. 30–44. Springer, Heidelberg (2012)

6. Baader, F., Borgwardt, S., Morawska, B.: SAT encoding of unification in ELHR+

w.r.t. cycle-restricted ontologies. LTCS-Report 12-02, TU Dresden, Germany
(2012), http://lat.inf.tu-dresden.de/research/reports.html

7. Baader, F., Brandt, S., Lutz, C.: Pushing the EL envelope. In: Proc. IJCAI 2005,
pp. 364–369. Morgan Kaufmann (2005)

8. Baader, F., Morawska, B.: Unification in the Description Logic EL. In: Treinen, R.
(ed.) RTA 2009. LNCS, vol. 5595, pp. 350–364. Springer, Heidelberg (2009)

9. Baader, F., Morawska, B.: SAT Encoding of Unification in EL. In: Fermüller, C.G.,
Voronkov, A. (eds.) LPAR-17. LNCS, vol. 6397, pp. 97–111. Springer, Heidelberg
(2010)

10. Baader, F., Morawska, B.: Unification in the description logic EL. Log. Meth.
Comput. Sci. 6(3) (2010)

11. Baader, F., Narendran, P.: Unification of concept terms in description logics. J.
Symb. Comput. 31(3), 277–305 (2001)

12. Brandt, S.: Polynomial time reasoning in a description logic with existential re-
strictions, GCI axioms, and—what else? In: Proc. ECAI 2004, pp. 298–302 (2004)

13. Brandt, S., Model, J.: Subsumption in EL w.r.t. hybrid TBoxes. In: Furbach, U.
(ed.) KI 2005. LNCS (LNAI), vol. 3698, pp. 34–48. Springer, Heidelberg (2005)

14. Gomes, C.P., Kautz, H., Sabharwal, A., Selman, B.: Satisfiability solvers. In: Hand-
book of Knowledge Representation, pp. 89–134. Elsevier (2008)

15. Hofmann, M.: Proof-theoretic approach to description-logic. In: Proc. LICS 2005.
pp. 229–237. IEEE Press (2005)

16. Morawska, B.: General E-unification with eager variable elimination and a nice
cycle rule. J. Autom. Reasoning 39(1), 77–106 (2007)

17. Schild, K.: A correspondence theory for terminological logics: Preliminary report.
In: Proc. IJCAI 1991, pp. 466–471 (1991)

18. Wolter, F., Zakharyaschev, M.: Undecidability of the unification and admissibility
problems for modal and description logics. ACM Trans. Comput. Log. 9(4) (2008)

SAT Encoding of Unification
in ELHR+ w.r.t. Cycle-Restricted Ontologies�

Franz Baader, Stefan Borgwardt, and Barbara Morawska

Theoretical Computer Science, TU Dresden, Germany
{baader,stefborg,morawska}@tcs.inf.tu-dresden.de

Abstract. Unification in Description Logics has been proposed as an in-
ference service that can, for example, be used to detect redundancies in
ontologies. For the Description Logic EL, which is used to define several
large biomedical ontologies, unification is NP-complete. An NP unifica-
tion algorithm for EL based on a translation into propositional satisfia-
bility (SAT) has recently been presented. In this paper, we extend this
SAT encoding in two directions: on the one hand, we add general concept
inclusion axioms, and on the other hand, we add role hierarchies (H) and
transitive roles (R+). For the translation to be complete, however, the
ontology needs to satisfy a certain cycle restriction. The SAT translation
depends on a new rewriting-based characterization of subsumption w.r.t.
ELHR+ -ontologies.

1 Introduction

The Description Logic (DL) EL, which offers the constructors conjunction (�),
existential restriction (∃r.C), and the top concept (�), has recently drawn con-
siderable attention since, on the one hand, important inference problems such
as the subsumption problem are polynomial in EL, even in the presence of gen-
eral concept inclusion axioms (GCIs) [11,4]. On the other hand, though quite
inexpressive, EL can be used to define biomedical ontologies, such as the large
medical ontology SNOMEDCT.1

Unification in DLs has been proposed in [8] as a novel inference service that
can, for instance, be used to detect redundancies in ontologies. For example,
assume that one developer of a medical ontology defines the concept of a patient
with severe injury of the frontal lobe as

∃finding.(Frontal_lobe_injury � ∃severity.Severe), (1)

whereas another one represents it as

∃finding.(Severe_injury � ∃finding_site.∃part_of.Frontal_lobe). (2)

These two concept descriptions are not equivalent, but they are nevertheless
meant to represent the same concept. They can obviously be made equivalent by
� Supported by DFG under grant BA 1122/14-1.
1 See http://www.ihtsdo.org/snomed-ct/

B. Gramlich, D. Miller, and U. Sattler (Eds.): IJCAR 2012, LNAI 7364, pp. 30–44, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

SAT Encoding of Unification in ELHR+ 31

treating the concept names Frontal_lobe_injury and Severe_injury as variables,
and substituting the first one by Injury � ∃finding_site.∃part_of.Frontal_lobe
and the second one by Injury � ∃severity.Severe. In this case, we say that the
descriptions are unifiable, and call the substitution that makes them equivalent
a unifier.

To motivate our interest in unification w.r.t. GCIs, role hierarchies, and tran-
sitive roles, assume that the developers use the descriptions (3) and (4) instead
of (1) and (2):

∃finding.∃finding_site.∃part_of.Brain �
∃finding.(Frontal_lobe_injury � ∃severity.Severe) (3)

∃status.Emergency �
∃finding.(Severe_injury � ∃finding_site.∃part_of.Frontal_lobe) (4)

The descriptions (3) and (4) are not unifiable without additional background
knowledge, but they are unifiable, with the same unifier as above, if the GCIs

∃finding.∃severity.Severe � ∃status.Emergency,

Frontal_lobe � ∃proper_part_of.Brain

are present in a background ontology and this ontology additionally states that
part_of is transitive and proper_part_of is a subrole of part_of.

Most of the previous results on unification in DLs did not consider such addi-
tional background knowledge. In [8] it was shown that, for the DL FL0, which
differs from EL by offering value restrictions (∀r.C) in place of existential restric-
tions, deciding unifiability is an ExpTime-complete problem. In [5], we were able
to show that unification in EL is of considerably lower complexity: the decision
problem is NP-complete. The original unification algorithm for EL introduced in
[5] was a brutal “guess and then test” NP-algorithm, but we have since then also
developed more practical algorithms. On the one hand, in [7] we describe a goal-
oriented unification algorithm for EL, in which nondeterministic decisions are
only made if they are triggered by “unsolved parts” of the unification problem.
On the other hand, in [6], we present an algorithm that is based on a reduction
to satisfiability in propositional logic (SAT). In [7] it was also shown that the
approaches for unification of EL-concept descriptions (without any background
ontology) can easily be extended to the case of an acyclic TBox as background
ontology without really changing the algorithms or increasing their complex-
ity. Basically, by viewing defined concepts as variables, an acyclic TBox can be
turned into a unification problem that has as its unique unifier the substitution
that replaces the defined concepts by unfolded versions of their definitions.

For GCIs, this simple trick is not possible, and thus handling them requires
the development of new algorithms. In [1,2] we describe two such new algorithms:
one that extends the brute-force “guess and then test” NP-algorithm from [5] and
a more practical one that extends the goal-oriented algorithm from [7]. Both al-
gorithms are based on a new characterization of subsumption w.r.t. GCIs in EL,

32 F. Baader, S. Borgwardt, and B. Morawska

which we prove using a Gentzen-style proof calculus for subsumption. Unfortu-
nately, these algorithms are complete only for cycle-restricted TBoxes, i.e., finite
sets of GCIs that satisfy a certain restriction on cycles, which, however, does not
prevent all cycles. For example, the cyclic GCI ∃child.Human � Human satisfies
this restriction, whereas the cyclic GCI Human � ∃parent.Human does not.

In the present paper, we still cannot get rid of cycle-restrictedness of the
ontology, but extend the results of [2] in two other directions: (i) we add transitive
roles (indicated by the subscript R+ in the name of the DL) and role hierarchies
(indicated by adding the letter H to the name of the DL) to the language, which
are important for medical ontologies [17,15]; (ii) we provide an algorithm that is
based on a translation into SAT, and thus allows us to employ highly optimized
state-of-the-art SAT solvers [10] for implementing the unification algorithm. In
order to obtain the SAT translation, using the characterization of subsumption
from [2] is not sufficient, however. We had to develop a new rewriting-based
characterization of subsumption.

In the next section, we introduce the DLs considered in this paper and the
important inference problem subsumption. In Section 3 we define unification
for these DLs and recall some of the existing results for unification in EL. In
particular, we introduce in this section the notion of cycle-restrictedness, which
is required for the results on unification w.r.t. GCIs to hold. In Section 4 we then
derive rewriting-based characterizations of subsumption. Section 5 contains the
main result of this paper, which is a reduction of unification in ELHR+ w.r.t.
cycle-restricted ontologies to propositional satisfiability. The proof of correctness
of this reduction strongly depends on the characterization of subsumption shown
in the previous section.

2 The Description Logics EL, EL+, and ELHR+

The expressiveness of a DL is determined both by the formalism for describing
concepts (the concept description language) and the terminological formalism,
which can be used to state additional constraints on the interpretation of con-
cepts and roles in a so-called ontology.

Syntax and Semantics

The concept description language considered in this paper is called EL. Starting
with a finite set NC of concept names and a finite set NR of role names, EL-concept
descriptions are built from concept names using the constructors conjunction (C�
D), existential restriction (∃r.C for every r ∈ NR), and top (�).

Since in this paper we only consider EL-concept descriptions, we will some-
times dispense with the prefix EL.

On the semantic side, concept descriptions are interpreted as sets. To be more
precise, an interpretation I = (ΔI , ·I) consists of a non-empty domain ΔI and
an interpretation function ·I that maps concept names to subsets of ΔI and
role names to binary relations over ΔI . This function is extended to concept
descriptions as shown in the semantics column of Table 1.

SAT Encoding of Unification in ELHR+ 33

Table 1. Syntax and semantics of EL

Name Syntax Semantics

concept name A AI ⊆ ΔI

role name r rI ⊆ ΔI × ΔI

top � �I = ΔI

conjunction C � D (C � D)I = CI ∩ DI

existential restriction ∃r.C (∃r.C)I = {x | ∃y : (x, y) ∈ rI ∧ y ∈ CI}
general concept inclusion C 	 D CI ⊆ DI

role inclusion r1 ◦ · · · ◦ rn 	 s rI
1 ◦ · · · ◦ rI

n ⊆ sI

Ontologies

A general concept inclusion (GCI) is of the form C � D for concept descriptions
C, D, and a role inclusion is of the form r1◦· · ·◦rn � s for role names r1, . . . , rn, s.
Both are called axioms. Role inclusions of the form r◦r � r are called transitivity
axioms and of the form r � s role hierarchy axioms. An interpretation I satisfies
such an axiom if the corresponding condition in the semantics column of Table 1
holds, where ◦ in this column stands for composition of binary relations.

An EL+-ontology is a finite set of axioms. It is an ELHR+-ontology if all its
role inclusions are transitivity or role hierarchy axioms, and an EL-ontology if
it contains only GCIs. An interpretation is a model of an ontology if it satisfies
all its axioms.

Subsumption, Equivalence, and Role Hierarchy

A concept description C is subsumed by a concept description D w.r.t. an on-
tology O (written C �O D) if every model of O satisfies the GCI C � D. We
say that C is equivalent to D w.r.t. O (C ≡O D) if C �O D and D �O C. If
O is empty, we also write C � D and C ≡ D instead of C �O D and C ≡O D,
respectively. As shown in [11,4], subsumption w.r.t. EL+-ontologies (and thus
also w.r.t. ELHR+ - and EL-ontologies) is decidable in polynomial time.

Since conjunction is interpreted as intersection, the concept descriptions (C �
D)�E and C�(D�E) are always equivalent. Thus, we dispense with parentheses
and write nested conjunctions in flat form C1 � · · · � Cn. Nested existential
restrictions ∃r1.∃r2. . . . ∃rn.C will sometimes also be written as ∃r1r2 . . . rn.C,
where r1r2 . . . rn is viewed as a word over the alphabet of role names, i.e., an
element of N∗

R.
The role hierarchy induced by O is a binary relation �O on NR, which is

defined as the reflexive-transitive closure of the relation {(r, s) | r � s ∈ O}.
Using elementary reachability algorithms, the role hierarchy can be computed
in polynomial time in the size of O. It is easy to see that r �O s implies that
rI ⊆ sI for all models I of O.

34 F. Baader, S. Borgwardt, and B. Morawska

3 Unification

In order to define unification, we first introduce the notion of a substitution
operating on concept descriptions. For this purpose, we partition the set NC of
concepts names into a set Nv of concept variables (which may be replaced by
substitutions) and a set Nc of concept constants (which must not be replaced by
substitutions). A substitution σ maps every variable to an EL-concept descrip-
tion. It can be extended from variables to EL-concept descriptions as follows:

– σ(A) := A for all A ∈ Nc ∪ {�},
– σ(C �D) := σ(C) � σ(D) and σ(∃r.C) := ∃r.σ(C).

A concept description C is ground if it does not contain variables, and a substi-
tution is ground if all concept descriptions in its range are ground. Obviously, a
ground concept description is not modified by applying a substitution, and if we
apply a ground substitution to any concept description, then we obtain a ground
description. An ontology is ground if it does not contain variables.

Definition 1. Let O be a ground ontology. A unification problem w.r.t. O is a
finite set Γ = {C1 �? D1, . . . , Cn �? Dn} of subsumptions between EL-concept
descriptions. A substitution σ is a unifier of Γ w.r.t. O if σ solves all the sub-
sumptions in Γ w.r.t. O, i.e., if σ(C1) �O σ(D1), . . . , σ(Cn) �O σ(Dn). We say
that Γ is unifiable w.r.t. O if it has a unifier w.r.t. O.

We call Γ w.r.t. O an EL-, EL+-, or ELHR+ -unification problem depending on
whether and what kind of role inclusions are contained in O.

Three remarks regarding the definition of unification problems are in order.
First, note that some of the previous papers on unification in DLs used equiv-
alences C ≡? D instead of subsumptions C �? D. This difference is, however,
irrelevant since C ≡? D can be seen as a shorthand for the two subsumptions
C �? D and D �? C, and C �? D has the same unifiers as C �D ≡? C.

Second, note that—as in [2]—we have restricted the background ontologyO to
be ground. This is not without loss of generality. In fact, if O contained variables,
then we would need to apply the substitution also to its axioms, and instead of
requiring σ(Ci) �O σ(Di) we would thus need to require σ(Ci) �σ(O) σ(Di),
which would change the nature of the problem considerably. The treatment of
unification w.r.t. acyclic TBoxes in [7] actually considers a more general setting,
where some of the primitive concepts occurring in the TBox may be variables.
The restriction to ground general TBoxes is, however, appropriate for the ap-
plication scenario sketched in the introduction. In this scenario, there is a fixed
background ontology, which is extended with definitions of new concepts by sev-
eral knowledge engineers. Unification w.r.t. the background ontology is used to
check whether some of these new definitions actually are redundant, i.e., define
the same intuitive concept. Here, some of the primitive concepts newly intro-
duced by one knowledge engineer may be further defined by another one, but we
assume that the knowledge engineers use the vocabulary from the background
ontology unchanged, i.e., they define new concepts rather than adding definitions

SAT Encoding of Unification in ELHR+ 35

for concepts that already occur in the background ontology. An instance of this
scenario can, e.g., be found in [12], where different extensions of SNOMEDCT
are checked for overlaps, albeit not by using unification, but by simply testing
for equivalence.

Third, though arbitrary substitutions σ are used in the definition of a unifier,
it is actually sufficient to consider ground substitutions such that all concept
descriptions σ(X) in the range of σ contain only concept and role names occur-
ring in Γ or O. It is an easy consequence of well-known results from unification
theory [9] that Γ has a unifier w.r.t. O iff it has such a ground unifier.

Relationship to Equational Unification

Unification was originally not introduced for Description Logics, but for equa-
tional theories [9]. In [7] it was shown that unification in EL (w.r.t. the empty
ontology) is the same as unification in the equational theory SLmO of semilat-
tices with monotone operators [16]. As argued in [2], unification in EL w.r.t. a
ground EL-ontology corresponds to unification in SLmO extended with a finite
set of ground identities. In contrast to GCIs, role inclusions add non-ground
identities to SLmO (see [16] and [3] for details).

This unification-theoretic point of view sheds some light on our decision to
restrict unification w.r.t. general TBoxes to the case of general TBoxes that
are ground. In fact, if we lifted this restriction, then we would end up with a
generalization of rigid E-unification [14,13], in which the theory SLmO extended
with the identities expressing role inclusions is used as a background theory. To
the best of our knowledge, such variants of rigid E-unification have not been
considered in the literature, and are probably quite hard to solve.

Flat Ontologies and Unification Problems

To simplify the technical development, it is convenient to normalize the TBox
and the unification problem appropriately. To introduce this normal form, we
need the notion of an atom.

An atom is a concept name or an existential restriction. Obviously, every EL-
concept description C is a finite conjunction of atoms, where � is considered to
be the empty conjunction. We call the atoms in this conjunction the top-level
atoms of C. An atom is called flat if it is a concept name or an existential
restriction of the form ∃r.A for a concept name A.

The GCI C � D or subsumption C �? D is called flat if C is a conjunction of
n ≥ 0 flat atoms and D is a flat atom. The ontology O (unification problem Γ)
is called flat if all the GCIs in O (subsumptions in Γ) are flat. Given a ground
ontology O and a unification problem Γ , we can compute in polynomial time
(see [3]) a flat ontology O′ and a flat unification problem Γ ′ such that

– Γ has a unifier w.r.t. O iff Γ ′ has a unifier w.r.t. O′;
– the type of the unification problem (EL, EL+, or ELHR+) is preserved.

For this reason, we will assume in the following that all ontologies and unification
problems are flat.

36 F. Baader, S. Borgwardt, and B. Morawska

Cycle-Restricted Ontologies

The decidability and complexity results for unification w.r.t. EL-ontologies in [2],
and also the corresponding ones in the present paper, only hold if the ontologies
satisfy a restriction that prohibits certain cyclic subsumptions.

Definition 2. The EL+-ontology O is called cycle-restricted iff there is no
nonempty word w ∈ N+

R and EL-concept description C such that C �O ∃w.C.

Note that cycle-restrictedness is not a syntactic condition on the form of the ax-
ioms in O, but a semantic one on what follows from O. Nevertheless, for ELHR+ -
ontologies, this condition can be decided in polynomial time [3]. Basically, one
first shows that the ELHR+ -ontology O is cycle-restricted iff A �O ∃w.A holds
for all nonempty words w ∈ N+

R and all A ∈ NC ∪ {�}. Then, one shows that
A �O ∃w.A for some w ∈ N+

R and A ∈ NC ∪ {�} implies that there are n ≥ 1
role names r1, . . . , rn and A1, . . . , An ∈ NC ∪ {�} such that

(∗) A �O ∃r1.A1, A1 �O ∃r2.A2, . . . , An−1 �O ∃rn.An and An = A.

Using the polynomial-time subsumption algorithm for ELHR+ , we can build a
graph whose nodes are the elements of NC ∪ {�} and where there is an edge
from A to B with label r iff A �O ∃r.B. Then we can use standard reachability
algorithms to check whether this graph contains a cycle of the form (∗). The
restriction to ELHR+ stems from the fact that the proof of correctness of this
algorithm is based on Lemma 7 below, which we cannot show for EL+.

The main reason why we need cycle-restrictedness of O is that it ensures that
a substitution always induces a strict partial order on the variables.2 To be more
precise, assume that γ is a substitution. For X, Y ∈ Nv we define

X >γ Y iff γ(X) �O ∃w.γ(Y) for some w ∈ N+
R . (5)

Transitivity of >γ is an easy consequence of transitivity of subsumption, and
cycle-restrictedness of O yields irreflexivity of >γ .

Lemma 3. If O is a cycle-restricted EL+-ontology, then >γ is a strict partial
order on Nv.

4 Subsumption w.r.t. EL+- and ELHR+-Ontologies

Subsumption w.r.t. EL+-ontologies can be decided in polynomial time [4]. For
the purpose of deciding unification, however, we do not simply want a decision
procedure for subsumption, but are more interested in a characterization of
subsumption that helps us to find unifiers. The characterization of subsumption
derived here is based on a rewrite relation that uses axioms as rewrite rules from
right to left.
2 Why we need this order will become clear in Section 5.

SAT Encoding of Unification in ELHR+ 37

Proving Subsumption by Rewriting

Throughout this subsection, we assume that O is a flat EL+-ontology. Intuitively,
an axiom of the form A1� . . .�An � B ∈ O is used to replace B by A1� . . .�An

and an axiom of the form r1 ◦ . . .◦ rn � s ∈ O to replace ∃s.C by ∃r1 . . . rn.C. In
order to deal with associativity, commutativity, and idempotency of conjunction,
it is convenient to represent concept descriptions as sets of atoms rather than as
conjunctions of atoms.

Given an EL-concept description C, the description set s(C) associated with
C is defined by induction:

– s(A) := {A} for A ∈ NC and s(�) := ∅;
– s(C �D) := s(C) ∪ s(D) and s(∃r.C) := {∃r.s(C)}.

For example, if C = A � ∃r.(A � ∃r.�), then s(C) = {A, ∃r.{A, ∃r.∅}}. We call
set positions the positions in s(C) at which there is a set. In our example, we
have three set positions, corresponding to the sets {A, ∃r.{A, ∃r.∅}}, {A, ∃r.∅},
and ∅. The set position that corresponds to the whole set s(C) is called the root
position.

Our rewrite rules are of the form N ← M , where N, M are description sets.
Such a rule applies at a set position p in s(C) if the corresponding set s(C)|p
contains M , and its application replaces s(C)|p by (s(C)|p \M) ∪N (see [3] for
a more formal definition of set positions and of the application of rewrite rules).

Given a flat EL+-ontology O, the corresponding rewrite system R(O) consists
of the following rules:

– Concept inclusion (Rc): For every C � D ∈ O, R(O) contains the rule

s(C)← s(D).

– Role inclusion (Rr): For every r1 ◦ · · · ◦ rn � s ∈ O and every EL-concept
description C, R(O) contains the rule

s(∃r1 . . . rn.C)← s(∃s.C).

– Monotonicity (Rm): For every atom D, R(O) contains the rule

s(D)← ∅.

Definition 4. Let N, M be description sets. We write N ←O M if N can be
obtained from M by the application of a rule in R(O). The relation ∗←O is defined
to be the reflexive, transitive closure of ←O, i.e., N

∗←O M iff there is a chain

N = M� ←O M�−1 ←O . . .←O M0 = M

of � ≥ 0 rule applications. We call such a chain a derivation of N from M
w.r.t. O. A rewriting step in such a derivation is called a root step if it applies

a rule of the form (Rc) at the root position. We write N
(n)←−−O M to express

that there is a derivation of N from M w.r.t. O that uses at most n root steps.

38 F. Baader, S. Borgwardt, and B. Morawska

For example, if O contains the axioms � � ∃r.B and s � r, then the following
is a derivation w.r.t. O:

{A, ∃s.{A}} ←O {A, ∃r.{A}} ←O {A, ∃r.{A, ∃r.{B}}} ←O {A, ∃r.{A, ∃r.∅}}

This is a derivation without a root step, which first applies a rule of the form
(Rm), then one of the form (Rc) (not at the root position), and finally one of

the form (Rr). This shows s(A � ∃s.A)
(0)←−−O s(A � ∃r.(A � ∃r.�)).

The following theorem states that subsumption w.r.t. O corresponds to the
existence of a derivation w.r.t. O whose root steps are bounded by the number
of GCIs in O (see [3] for a proof of this result).

Theorem 5. Let O be a flat EL+-ontology containing n GCIs and C, D be two

EL-concept descriptions. Then C �O D iff s(C)
(n)←−−O s(D).

A Structural Characterization of Subsumption in ELHR+

Our translation of unification problems into propositional satisfiability problems
depends on a structural characterization of subsumption, which we can unfortu-
nately only show for ELHR+ ontologies. Throughout this subsection, we assume
that O is a flat ELHR+ -ontology. We say that r is transitive if the transitivity
axiom r ◦ r � r belongs to O.

Definition 6. Let C, D be atoms. We say that C is structurally subsumed by
D w.r.t. O (C �s

O D) iff

– C = D is a concept name,
– C = ∃r.C′, D = ∃s.D′, C′ �O D′, and r �O s, or
– C = ∃r.C′, D = ∃s.D′, and C′ �O ∃t.D′

for a transitive role t with r �O t �O s.

On the one hand, structural subsumption is a stronger property than C �O D
since it requires the atoms C and D to have “compatible” top-level structures.
On the other hand, it is weaker than subsumption w.r.t. the empty ontology, i.e.,
whenever C � D holds for two atoms C and D, then C �s

O D, but not necessarily
vice versa. If O = ∅, then the three relations �, �s

O, �O coincide on atoms. Like
� and �O, �s

O is reflexive, transitive, and closed under applying existential
restrictions (see [3] for proofs of the results mentioned in this paragraph).

Using the connection between subsumption and rewriting stated in Theo-
rem 5, we can now prove a characterization of subsumption in the presence of an
ELHR+ -ontology O that expresses subsumption in terms of structural subsump-
tions and derivations w.r.t.←O. Recall that all EL-concept descriptions are con-
junctions of atoms, that C �O D1�· · · �Dm iff C �O Dj for all j ∈ {1, . . . , m},
and C �O D iff there is an � such that s(C)

(�)←−−O s(D).

SAT Encoding of Unification in ELHR+ 39

Lemma 7. Let O be a flat ELHR+-ontology, C1, . . . , Cn, D be atoms, and � ≥ 0.

Then s(C1 � · · · � Cn)
(�)←−−O s(D) iff there is

1. an index i ∈ {1, . . . , n} such that Ci �s
O D; or

2. a GCI A1 � · · · �Ak � B in T such that
a) for every p ∈ {1, . . . , k} we have s(C1 � · · · � Cn)

(�−1)←−−−O s(Ap),

b) s(C1 � · · · � Cn)
(�)←−−O s(B), and

c) B �s
O D.

A detailed proof of this lemma is given in [3]. Here, we only want to point out
that this proof makes extensive use of the transitivity of �s

O, and that this is the
main reason why we cannot deal with general EL+-ontologies. In fact, while it is
not hard to extend the definition of structural subsumption to more general kinds
of ontologies, it is currently not clear to us how to do this such that the resulting
relation is transitive; and without transitivity of structural subsumption, we
cannot show a characterization analogous to the one in Lemma 7.

5 Reduction of Unification w.r.t. Cycle-Restricted
ELHR+-Ontologies to SAT

The main idea underlying the NP-membership results in [5] and [2] is to show
that any EL-unification problem that is unifiable w.r.t. the empty ontology and
w.r.t. a cycle-restricted EL-ontology, respectively, has a so-called local unifier.
Here, we generalize the notion of a local unifier to the case of unification w.r.t.
cycle-restricted ELHR+ -ontologies, but then go a significant step further. Instead
of using an algorithm that “blindly” generates all local substitutions and then
checks whether they are unifiers, we reduce the search for a local unifier to a
propositional satisfiability problem.

Local Unifiers

Let Γ be a flat unification problem and O be a flat, cycle-restricted ELHR+ -
ontology. We denote by At the set of atoms occurring as subdescriptions in
subsumptions in Γ or axioms in O and define

Attr := At ∪ {∃t.D′ | ∃s.D′ ∈ At, t �O s, t transitive}.
Furthermore, we define the set of non-variable atoms by Atnv := Attr\Nv. Though
the elements of Atnv cannot be variables, they may contain variables if they are
of the form ∃r.X for some role r and a variable X . We call a function S that
associates every variable X ∈ Nv with a set SX ⊆ Atnv an assignment. Such an
assignment induces the following relation >S on Nv: >S is the transitive closure
of

{(X, Y) ∈ Nv ×Nv | Y occurs in an element of SX}.
We call the assignment S acyclic if >S is irreflexive (and thus a strict partial
order). Any acyclic assignment S induces a unique substitution σS , which can
be defined by induction along >S :

40 F. Baader, S. Borgwardt, and B. Morawska

– If X is a minimal element of Nv w.r.t. >S , then we set σS(X) :=
�

D∈SX
D.

– Assume that σ(Y) is already defined for all Y such that X >S Y . Then we
define σS(X) :=

�
D∈SX

σS(D).

We call a substitution σ local if it is of this form, i.e., if there is an acyclic
assignment S such that σ = σS . Since Nv and Atnv are finite, there are only
finitely many local substitutions. Thus, if we know that any solvable unification
problem has a local unifier, then we can enumerate (or guess, in a nondetermin-
istic machine) all local substitutions and then check whether any of them is a
unifier. Thus, in general many substitutions will be generated that only in the
subsequent check turn out not to be unifiers. In contrast, our SAT reduction will
ensure that only unifiers are generated.

The Reduction

Here, we reduce unification w.r.t. cycle-restricted ELHR+ -ontologies to the satis-
fiability problem for propositional logic, which is NP-complete. This shows that
this unification problem is in NP. But more importantly, it immediately allows
us to apply highly optimized SAT solvers for solving such unification problems.

As before, we assume that Γ is a flat unification problem and O is a flat,
cycle-restricted ELHR+ -ontology. Let T be the subset of O that consists of the
GCIs in O. We define the set

Left := At ∪ {C1 � · · · � Cn | C1 � · · · �Cn �? D ∈ Γ for some D ∈ At}

that contains all atoms of Γ and O and all left-hand sides of subsumptions from
Γ . For L ∈ Left and C ∈ At, we write “C ∈ L” if C is a top-level atom of L.

The propositional variables we use for the reduction are of the form [L �
D]i for L ∈ Left, D ∈ Attr, and i ∈ {0, . . . , |T |}. The intuition underlying
these variables is that every satisfying propositional valuation induces an acyclic
assignment S such that the following holds for the corresponding substitution
σS : [L � D]i is evaluated to true by the assignment iff s(σS(L)) can be derived

from s(σS(D)) using at most i root steps, i.e., s(σS(L))
(i)←−O s(σS(D)).

Additionally, we use the propositional variables [X > Y] for X, Y ∈ Nv to
express the strict partial order >S induced by the acyclic assignment S.

The auxiliary function Dec is defined as follows for C ∈ At, D ∈ Attr:

Dec(C � D) =

⎧
⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

1 if C = D

[C � D]|T | if C and D are ground
Trans(C � D) if C = ∃r.C′, D = ∃s.D′, and r �O s

[C � D]|T | if C is a variable
0 otherwise

,

Trans(C � D) = [C′ � D′]|T | ∨
∨

t transitive
r�Ot�Os

[C′ � ∃t.D′]|T |.

SAT Encoding of Unification in ELHR+ 41

Note that C′ ∈ At and D′, ∃t.D′ ∈ Attr by the definition of Attr and since Γ and
O are flat. Here, 0 and 1 are Boolean constants representing the truth values 0
(false) and 1 (true), respectively.

The unification problem will be reduced to satisfiability of the following set of
propositional formulae. For simplicity, we do not use only clauses here. However,
our formulae can be transformed into clausal form by introducing polynomially
many auxiliary propositional variables and clauses.

Definition 8. Let Γ be a flat unification problem and O a flat, cycle-restricted
ELHR+ -ontology. The set C(Γ,O) contains the following propositional formulae:

(I) Translation of the subsumptions of Γ . For every L �? D in Γ , we intro-
duce a clause asserting that this subsumption must hold:

→ [L � D]|T |.

(II) Translation of the relevant properties of subsumption.
1) For all ground atoms C ∈ At, D ∈ Attr and i ∈ {0, . . . , |T |} such that

C �O D, we introduce a clause preventing this subsumption:

[C � D]i → .

2) For every variable Y , B ∈ Atnv, i, j ∈ {0, . . . , |T |}, and L ∈ Left, we
introduce the clause

[L � Y]i ∧ [Y � B]j → [L � B]min{|T |,i+j}.

3) For every L ∈ Left \ Nv and D ∈ Attr, we introduce the following
formulae, depending on L and D:
a) If D is a ground atom and L is not a ground atom, we introduce

[L � D]i →
∨

C∈L

Dec(C � D) ∨
∨

A1�···�Ak�B∈O
B�OD

([L � A1]
i−1 ∧ · · · ∧ [L � Ak]i−1)

for all i ∈ {1, . . . , |T |} and

[L � D]0 →
∨

C∈L

Dec(C � D).

b) If D is a non-variable, non-ground atom, we introduce

[L � D]i →
∨

C∈L

Dec(C � D)∨
∨

A atom of O
([L � A]i ∧Dec(A � D))

for all i ∈ {1, . . . , |T |} and

[L � D]0 →
∨

C∈L

Dec(C � D).

42 F. Baader, S. Borgwardt, and B. Morawska

(III) Translation of the relevant properties of >.
1) Transitivity and irreflexivity of > is expressed by the clauses

[X > X]→ and [X > Y] ∧ [Y > Z]→ [X > Z]

for all X, Y, Z ∈ Nv.
2) The connection between > and � is expressed using the clause

[X � ∃r.Y]i → [X > Y]

for every X, Y ∈ Nv, ∃r.Y ∈ Attr, and i ∈ {0, . . . , |T |}.

It is easy to see that the set C(Γ,O) can be constructed in time polynomial in
the size of Γ and O. In particular, subsumptions B �O D between ground atoms
B, D can be checked in polynomial time in the size of O [4].

There are several differences between C(Γ,O) and the clauses constructed
in [6] to solve unification in EL w.r.t. the empty ontology. The propositional
variables employed in [6] are of the form [C � D] for atoms C, D of Γ , i.e., they
stand for non-subsumption rather than subsumption. The use of single atoms
C instead of whole left-hand sides L also leads to a different encoding of the
subsumptions from Γ in part (I). The clauses in (III) are identical up to negation
of the variables [X � ∃r.Y]i. But most importantly, in [6] the properties of
subsumption expressed in (II) need only deal with subsumption w.r.t. the empty
ontology, whereas here we have to take a cycle-restricted ELHR+ -ontology into
account. We do this by expressing the characterization of subsumption given in
Lemma 7. This is also the reason why the propositional variables [L � D]i have
an additional index i: in fact, in Lemma 7 we refer to the number of root steps
in the derivation that shows the subsumption, and this needs to be modeled in
our SAT reduction.

Theorem 9. The unification problem Γ is solvable w.r.t. O iff C(Γ,O) is sat-
isfiable.

Since C(Γ,O) can be constructed in polynomial time and SAT is in NP, this
shows that unification w.r.t. cycle-restricted ELHR+ -ontologies is in NP. NP-
hardness follows from the known NP-hardness of EL-unification w.r.t. the empty
ontology [5].

Corollary 10. Unification w.r.t. cycle-restricted ELHR+-ontologies is an NP-
complete problem.

To prove Theorem 9, we must show soundness and completeness of the reduction.

Soundness of the Reduction. Let τ be a valuation of the propositional vari-
ables that satisfies C(Γ,O). We must show that then Γ has a unifier w.r.t. O.
To this purpose, we use τ to define an assignment S by

SX := {D ∈ Atnv | ∃i ∈ {0, . . . , |T |} : τ([X � D]i) = 1}.

SAT Encoding of Unification in ELHR+ 43

Using the clauses in (III), it is not hard to show [3] that X >S Y implies τ([X >
Y]) = 1. Due to the irreflexivity clause in (III), this yields that the assignment
S is acyclic. Thus, it induces a substitution σS . A proof of the following lemma
can be found in [3].

Lemma 11. If τ([L � D]i) = 1 for L ∈ Left, D ∈ Attr, and i ∈ {0, . . . , |T |},
then σS(L) �O σS(D).

Because of the clauses in (I), this lemma immediately implies that σS is a unifier
of Γ w.r.t. O.

Completeness of the Reduction. Given a unifier γ of Γ w.r.t. O, we can
define a valuation τ that satisfies C(Γ,O) as follows.

Let L ∈ Left and D ∈ Attr and i ∈ {0, . . . , |T |}. We set τ([L � D]i) := 1 iff

s(γ(L))
(i)←−O s(γ(D)). According to Theorem 5, we thus have τ([L � D]i) = 0

for all i ∈ {0, . . . , |T |} iff γ(L) �O γ(D). Otherwise, there is an i ∈ {0, . . . , |T |}
such that τ([L � D]j) = 1 for all j ≥ i, and τ([L � D]j) = 0 for all j < i.

To define the valuation of the remaining propositional variables [X > Y] with
X, Y ∈ Nv, we set τ([X > Y]) = 1 iff X >γ Y , where >γ is defined as in (5),
i.e., X >γ Y iff γ(X) �O ∃w.γ(Y) for some w ∈ N+

R .
The following lemma, whose proof can be found in [3], shows completeness of

our reduction using Lemma 7.

Lemma 12. The valuation τ satisfies C(Γ,O).

Note that cycle-restrictedness ofO is needed in order to satisfy the irreflexivity
clause [X > X] → (see Lemma 3). We cannot dispense with this clause since
it is needed in the proof of soundness to obtain acyclicity of the assignment S
constructed there. In fact, only because S is acyclic can we define the substitution
σS , which is then shown to be a unifier.

6 Conclusions

We have shown that unification w.r.t. cycle-restricted ELHR+ -ontologies can be
reduced to propositional satisfiability. This improves on the results in [1,2] in two
respects. First, it allows us to deal also with ontologies that contain transitivity
and role hierarchy axioms, which are important for medical ontologies. Second,
the SAT reduction can easily be implemented and enables us to make use of
highly optimized SAT solvers, whereas the goal-oriented algorithm in [1], while
having the potential of becoming quite efficient, requires a high amount of ad-
ditional optimization work. The main topic for future research is to investigate
whether we can get rid of cycle-restrictedness.

References

1. Baader, F., Borgwardt, S., Morawska, B.: Unification in the description logic EL
w.r.t. cycle-restricted TBoxes. LTCS-Report 11-05, Theoretical Computer Science,
TU Dresden (2011), http://lat.inf.tu-dresden.de/research/reports.html

44 F. Baader, S. Borgwardt, and B. Morawska

2. Baader, F., Borgwardt, S., Morawska, B.: Extending unification in EL towards
general TBoxes. In: Proc. of the 13th Int. Conf. on Principles of Knowledge Rep-
resentation and Reasoning. AAAI Press (2012) (short paper)

3. Baader, F., Borgwardt, S., Morawska, B.: SAT encoding of unification in ELHR+

w.r.t. cycle-restricted ontologies. LTCS-Report 12-02, Theoretical Computer Sci-
ence, TU Dresden (2012),
http://lat.inf.tu-dresden.de/research/reports.html

4. Baader, F., Brandt, S., Lutz, C.: Pushing the EL envelope. In: Kaelbling, L.P.,
Saffiotti, A. (eds.) Proc. of the 19th Int. Joint Conf. on Artificial Intelligence, pp.
364–369. Morgan Kaufmann, Los Altos (2005)

5. Baader, F., Morawska, B.: Unification in the Description Logic EL. In: Treinen, R.
(ed.) RTA 2009. LNCS, vol. 5595, pp. 350–364. Springer, Heidelberg (2009)

6. Baader, F., Morawska, B.: SAT Encoding of Unification in EL. In: Fermüller, C.G.,
Voronkov, A. (eds.) LPAR-17. LNCS, vol. 6397, pp. 97–111. Springer, Heidelberg
(2010)

7. Baader, F., Morawska, B.: Unification in the description logic EL. Logical Methods
in Computer Science 6(3) (2010)

8. Baader, F., Narendran, P.: Unification of concept terms in description logics. J. of
Symbolic Computation 31(3), 277–305 (2001)

9. Baader, F., Snyder, W.: Unification theory. In: Robinson, J.A., Voronkov, A. (eds.)
Handbook of Automated Reasoning, pp. 445–532. The MIT Press (2001)

10. Biere, A., Heule, M., van Maaren, H., Walsh, T. (eds.): Handbook of Satisfiability.
IOS Press (2009)

11. Brandt, S.: Polynomial time reasoning in a description logic with existential re-
strictions, GCI axioms, and—what else? In: de Mántaras, R.L., Saitta, L. (eds.)
Proc. of the 16th Eur. Conf. on Artificial Intelligence. pp. 298–302 (2004)

12. Campbell, J.R., Lopez Osornio, A., de Quiros, F., Luna, D., Reynoso, G.: Semantic
interoperability and SNOMED CT: A case study in clinical problem lists. In: Kuhn,
K., Warren, J., Leong, T.Y. (eds.) Proc. of the 12th World Congress on Health
(Medical) Informatics, pp. 2401–2402. IOS Press (2007)

13. Degtyarev, A., Voronkov, A.: The undecidability of simultaneous rigid
E-unification. Theor. Comput. Sci. 166(1&2), 291–300 (1996)

14. Gallier, J.H., Narendran, P., Plaisted, D.A., Snyder, W.: Rigid E-unification:
NP-completeness and applications to equational matings. Inf. Comput. 87(1/2),
129–195 (1990)

15. Seidenberg, J., Rector, A.L.: Representing Transitive Propagation in OWL. In:
Embley, D.W., Olivé, A., Ram, S. (eds.) ER 2006. LNCS, vol. 4215, pp. 255–266.
Springer, Heidelberg (2006)

16. Sofronie-Stokkermans, V.: Locality and subsumption testing in EL and some of its
extensions. In: Proc. Advances in Modal Logic (2008)

17. Suntisrivaraporn, B., Baader, F., Schulz, S., Spackman, K.: Replacing SEP-Triplets
in SNOMED CT Using Tractable Description Logic Operators. In: Bellazzi, R.,
Abu-Hanna, A., Hunter, J. (eds.) AIME 2007. LNCS (LNAI), vol. 4594, pp. 287–
291. Springer, Heidelberg (2007)

Dismatching and Local Disunification in EL
Franz Baader, Stefan Borgwardt, and Barbara Morawska∗

Theoretical Computer Science, TU Dresden, Germany
{baader,stefborg,morawska}@tcs.inf.tu-dresden.de

Abstract
Unification in Description Logics has been introduced as a means to detect redundancies in
ontologies. We try to extend the known decidability results for unification in the Description
Logic EL to disunification since negative constraints on unifiers can be used to avoid unwanted
unifiers. While decidability of the solvability of general EL-disunification problems remains an
open problem, we obtain NP-completeness results for two interesting special cases: dismatching
problems, where one side of each negative constraint must be ground, and local solvability of
disunification problems, where we restrict the attention to solutions that are built from so-called
atoms occurring in the input problem. More precisely, we first show that dismatching can be
reduced to local disunification, and then provide two complementary NP-algorithms for finding
local solutions of (general) disunification problems.

1998 ACM Subject Classification I.2.3 Deduction and Theorem Proving, I.2.4 Knowledge
Representation Formalisms and Methods

Keywords and phrases Unification, Description Logics, SAT

Digital Object Identifier 10.4230/LIPIcs.RTA.2015.40

1 Introduction

Description logics (DLs) [6] are a family of logic-based knowledge representation formalisms,
which can be used to represent the conceptual knowledge of an application domain in a
structured and formally well-understood way. They are employed in various application areas,
but their most notable success so far is the adoption of the DL-based language OWL [21]
as standard ontology language for the semantic web. DLs allow their users to define the
important notions (classes, relations) of the domain using concepts and roles; to state
constraints on the way these notions can be interpreted using terminological axioms; and to
deduce consequences such as subsumption (subclass) relationships from the definitions and
constraints. The expressivity of a particular DL is determined by the constructors available
for building concepts.

The DL EL, which offers the concept constructors conjunction (u), existential restriction
(∃r.C), and the top concept (>), has drawn considerable attention in the last decade since, on
the one hand, important inference problems such as the subsumption problem are polynomial
in EL, even with respect to expressive terminological axioms [16]. On the other hand, though
quite inexpressive, EL is used to define biomedical ontologies, such as the large medical
ontology SNOMEDCT.1 For these reasons, the most recent OWL version, OWL2, contains
the profile OWL2EL,2 which is based on a maximally tractable extension of EL [5].

∗ Supported by DFG under grant BA 1122/14-2.
1 http://www.ihtsdo.org/snomed-ct/
2 http://www.w3.org/TR/owl2-profiles/

© Franz Baader, Stefan Borgwardt, and Barbara Morawska;
licensed under Creative Commons License CC-BY

26th International Conference on Rewriting Techniques and Applications (RTA’15).
Editor: Maribel Fernández; pp. 40–56

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

F. Baader, S. Borgwardt, and B. Morawska 41

Unification in Description Logics was introduced in [12] as a novel inference service that
can be used to detect redundancies in ontologies. It is shown there that unification in the
DL FL0, which differs from EL in that existential restriction is replaced by value restriction
(∀r.C), is ExpTime-complete. The applicability of this result was not only hampered by this
high complexity, but also by the fact that FL0 is not used in practice to formulate ontologies.

In contrast, as mentioned above, EL is employed to build large biomedical ontologies for
which detecting redundancies is a useful inference service. For example, assume that one
developer of a medical ontology defines the concept of a patient with severe head injury as

Patient u ∃finding.(Head_injury u ∃severity.Severe), (1)

whereas another one represents it as

Patient u ∃finding.(Severe_finding u Injury u ∃finding_site.Head). (2)

Formally, these two concepts are not equivalent, but they are nevertheless meant to represent
the same concept. They can obviously be made equivalent by treating the concept names
Head_injury and Severe_finding as variables, and substituting the first one by Injury u
∃finding_site.Head and the second one by ∃severity.Severe. In this case, we say that the
concepts are unifiable, and call the substitution that makes them equivalent a unifier. In [10],
we were able to show that unification in EL is of considerably lower complexity than unification
in FL0: the decision problem for EL is NP-complete. The main idea underlying the proof
of this result is to show that any solvable EL-unification problem has a local unifier, i.e., a
unifier built from a polynomial number of so-called atoms determined by the unification
problem. However, the brute-force “guess and then test” NP-algorithm obtained from this
result, which guesses a local substitution and then checks (in polynomial time) whether it is
a unifier, is not useful in practice. We thus developed a goal-oriented unification algorithm
for EL, which is more efficient since nondeterministic decisions are only made if they are
triggered by “unsolved parts” of the unification problem. Another option for obtaining a more
efficient unification algorithm is a translation to satisfiability in propositional logic (SAT):
in [9] it is shown how a given EL-unification problem Γ can be translated in polynomial time
into a propositional formula whose satisfying valuations correspond to the local unifiers of Γ.

Intuitively, a unifier of two EL concepts proposes definitions for the concept names
that are used as variables: in our example, we know that, if we define Head_injury as
Injury u ∃finding_site.Head and Severe_finding as ∃severity.Severe, then the two concepts (1)
and (2) are equivalent w.r.t. these definitions. Of course, this example was constructed
such that the unifier (which is actually local) provides sensible definitions for the concept
names used as variables. In general, the existence of a unifier only says that there is a
structural similarity between the two concepts. The developer who uses unification as
a tool for finding redundancies in an ontology or between two different ontologies needs
to inspect the unifier(s) to see whether the definitions it suggests really make sense. For
example, the substitution that replaces Head_injury by Patient u Injury u ∃finding_site.Head
and Severe_finding by Patientu∃severity.Severe is also a local unifier, which however does not
make sense. Unfortunately, even small unification problems like the one in our example can
have too many local unifiers for manual inspection. In [2] we propose to restrict the attention
to so-called minimal unifiers, which form a subset of all local unifiers. In our example, the
nonsensical unifier is indeed not minimal. In general, however, the restriction to minimal
unifiers may preclude interesting local unifiers. In addition, as shown in [2], computing
minimal unifiers is actually harder than computing local unifiers (unless the polynomial
hierarchy collapses). In the present paper, we propose disunification as a more direct approach

RTA 2015

42 Dismatching and Local Disunification in EL

for avoiding local unifiers that do not make sense. In addition to positive constraints (requiring
equivalence or subsumption between concepts), a disunification problem may also contain
negative constraints (preventing equivalence or subsumption between concepts). In our
example, the nonsensical unifier can be avoided by adding the dissubsumption constraint

Head_injury 6v? Patient (3)

to the equivalence constraint (1) ≡? (2).
Unification and disunification in DLs is actually a special case of unification and disunifi-

cation modulo equational theories (see [12] and [10] for the equational theories respectively
corresponding to FL0 and EL). Disunification modulo equational theories has, e.g., been
investigated in [17, 18]. It is well-known in unification theory that for effectively finitary
equational theories, i.e., theories for which finite complete sets of unifiers can effectively be
computed, disunification can be reduced to unification: to decide whether a disunification
problem has a solution, one computes a finite complete set of unifiers of the equations and
then checks whether any of the unifiers in this set also solves the disequations. Unfortunately,
for FL0 and EL, this approach is not feasible since the corresponding equational theories
have unification type zero [10, 12], and thus finite complete sets of unifiers need not even
exist. Nevertheless, it was shown in [14] that the approach used in [12] to decide unification
(reduction to language equations, which are then solved using tree automata) can be adapted
such that it can also deal with disunification. This yields the result that disunification in
FL0 has the same complexity (ExpTime-complete) as unification.

For EL, going from unification to disunification appears to be more problematic. In fact,
the main reason for unification to be decidable and in NP is locality: if the problem has
a unifier then it has a local unifier. We will show that disunification in EL is not local in
this sense by providing an example of a disunification problem that has a solution, but no
local solution. Decidability and complexity of disunification in EL remains an open problem,
but we provide partial solutions that are of interest in practice. On the one hand, we
investigate dismatching problems, i.e., disunification problems where the negative constraints
are dissubsumptions C 6v? D for which C or D is ground (i.e., does not contain a variable).
Note that the dissubsumption (3) from above actually satisfies this restriction since Patient
is not a variable. We prove that (general) solvability of dismatching problems can be reduced
to local disunification, i.e., the question whether a given EL-disunification problem has a
local solution, which shows that dismatching in EL is NP-complete. On the other hand, we
develop two specialized algorithms to solve local disunification problems that extend the ones
for unification [9, 10]: a goal-oriented algorithm that reduces the amount of nondeterministic
guesses necessary to find a local solution, as well as a translation to SAT. The reason
we present two kinds of algorithms is that, in the case of unification, they have proved
to complement each other well in first evaluations [1]: the goal-oriented algorithm needs
less memory and finds minimal solutions faster, while the SAT reduction generates larger
data structures (of cubic size), but outperforms the goal-oriented algorithm on unsolvable
problems.

Full proofs of the results presented below can be found in [4].

2 Subsumption and dissubsumption in EL

The syntax of EL is defined based on two sets NC and NR of concept names and role names,
respectively. Concept terms are built from concept names using the constructors conjunction
(CuD), existential restriction (∃r.C for r ∈ NR), and top (>). An interpretation I = (∆I , ·I)

F. Baader, S. Borgwardt, and B. Morawska 43

Table 1 Syntax and semantics of EL.

Name Syntax Semantics

top > >I := ∆I

conjunction C uD (C uD)I := CI ∩DI

existential restriction ∃r.C (∃r.C)I := {x | ∃y.(x, y) ∈ rI ∧ y ∈ CI}

consists of a non-empty domain ∆I and an interpretation function that maps concept names
to subsets of ∆I and role names to binary relations over ∆I . This function is extended to
concept terms as shown in the semantics column of Table 1.

A concept term C is subsumed by a concept term D (written C v D) if for every
interpretation I it holds that CI ⊆ DI . We write a dissubsumption C 6v D to abbreviate
the fact that C v D does not hold. The two concept terms C and D are equivalent (written
C ≡ D) if C v D and D v C. Note that we use “=” to denote syntactic equality between
concept terms, whereas “≡” denotes semantic equivalence.

Since conjunction is interpreted as intersection, we can treat u as a commutative and
associative operator, and thus dispense with parentheses in nested conjunctions. An atom is
a concept name or an existential restriction. Hence, every concept term C is a conjunction of
atoms or >. We call the atoms in this conjunction the top-level atoms of C. Obviously, C is
equivalent to the conjunction of its top-level atoms, where the empty conjunction corresponds
to >. An atom is flat if it is a concept name or an existential restriction of the form ∃r.A
with A ∈ NC.

Subsumption in EL is decidable in polynomial time [8] and can be checked by recursively
comparing the top-level atoms of the two concept terms.

I Lemma 1 ([10]). For two atoms C,D, we have C v D iff C = D is a concept name or
C = ∃r.C ′, D = ∃r.D′, and C ′ v D′. If C,D are concept terms, then C v D iff for every
top-level atom D′ of D there is a top-level atom C ′ of C such that C ′ v D′.

We obtain the following contrapositive formulation characterizing dissubsumption.

I Lemma 2. For two concept terms C,D, we have C 6v D iff there is a top-level atom D′

of D such that for all top-level atoms C ′ of C it holds that C ′ 6v D′.

In particular, C 6v D is characterized by the existence of a top-level atom D′ of D for which
C 6v D′ holds. By further analyzing the structure of atoms, we obtain the following.

I Lemma 3. Let C,D be two atoms. Then we have C 6v D iff either
1. C or D is a concept name and C 6= D; or
2. D = ∃r.D′, C = ∃s.C ′, and r 6= s; or
3. D = ∃r.D′, C = ∃r.C ′, and C ′ 6v D′.

3 Disunification

As described in the introduction, we now partition the set NC into a set of (concept)
variables (Nv) and a set of (concept) constants (Nc). A concept term is ground if it does not
contain any variables. We define a quite general notion of disunification problems that is
similar to the equational formulae used in [18].

RTA 2015

44 Dismatching and Local Disunification in EL

I Definition 4. A disunification problem Γ is a formula built from subsumptions of the
form C v? D, where C and D are concept terms, using the logical connectives ∧, ∨, and ¬.
We use equations C ≡? D to abbreviate (C v? D) ∧ (D v? C), disequations C 6≡? D for
¬(C v? D) ∨ ¬(D v? C), and dissubsumptions C 6v? D instead of ¬(C v? D). A basic
disunification problem is a conjunction of subsumptions and dissubsumptions. A dismatching
problem is a basic disunification problem in which all dissubsumptions C 6v? D are such that
C or D is ground. Finally, a unification problem is a conjunction of subsumptions.

The definition of dismatching problems is partially motivated by the definition of matching in
description logics, where similar restrictions are imposed on unification problems [7, 11, 23].
Another motivation comes from our experience that dismatching problems already suffice to
formulate most of the negative constraints one may want to put on unification problems, as
described in the introduction.

To define the semantics of disunification problems, we now fix a finite signature Σ ⊆ NC∪NR
and assume that all disunification problems contain only concept terms constructed over
the symbols in Σ. A substitution σ maps every variable in Σ to a ground concept term
constructed over the symbols of Σ. This mapping can be extended to all concept terms
(over Σ) in the usual way. A substitution σ solves a subsumption C v? D if σ(C) v σ(D);
it solves Γ1 ∧ Γ2 if it solves both Γ1 and Γ2; it solves Γ1 ∨ Γ2 if it solves Γ1 or Γ2; and it
solves ¬Γ if it does not solve Γ. A substitution that solves a given disunification problem is
called a solution of this problem. A disunification problem is solvable if it has a solution.

In contrast to unification, in disunification it does make a difference whether or not
solutions may contain variables from Nv ∩ Σ or additional symbols from (NC ∪ NR) \ Σ [17].
In the context of the application sketched in the introduction, restricting solutions to ground
terms over Σ is appropriate: the finite signature Σ contains exactly the symbols that occur
in the ontology to be checked for redundancy, and since a solution σ is supposed to provide
definitions for the variables in Σ, it should not use the variables themselves to define them;
moreover, definitions that contain symbols that are not in Σ would be meaningless to the
user.

Reduction to basic disunification problems

We will consider only basic disunification problems in the following. The reason is that there
is a straightforward NP-reduction from solvability of arbitrary disunification problems to
solvability of basic disunification problems. In this reduction, we view all subsumptions
occurring in the disunification problem as propositional variables and guess a satisfying
valuation of the resulting propositional formula. It then suffices to check solvability of the
basic disunification problem obtained as the conjunction of all subsumptions evaluated to
true and the negations of all subsumptions evaluated to false. Since the problems considered
in the following sections are all NP-complete, the restriction to basic disunification problems
does not affect our complexity results. In the following, we thus restrict the attention to
basic disunification problems, which we simply call disunification problems and consider them
to be sets of subsumptions and dissubsumptions.

Reduction to flat disunification problems

We further simplify our analysis by considering flat disunification problems, which means
that they may only contain flat dissubsumptions of the form C1 u · · · uCn 6v? D1 u · · · uDm

F. Baader, S. Borgwardt, and B. Morawska 45

for flat atoms C1, . . . , Cn, D1, . . . , Dm with m,n ≥ 0,3 and flat subsumptions of the form
C1 u · · · u Cn v? D1 for flat atoms C1, . . . , Cn, D1 with n ≥ 0.

The restriction to flat disunification problems is without loss of generality: to flatten con-
cept terms, one can simply introduce new variables and equations to abbreviate subterms [10].
Moreover, a subsumption of the form C v? D1 u · · · uDm is equivalent to C v? D1, . . . ,
C v? Dm. Any solution of a disunification problem Γ can be extended to a solution of the
resulting flat disunification problem Γ′, and conversely every solution of Γ′ also solves Γ.

This flattening procedure also works for unification problems. However, dismatching
problems cannot without loss of generality be restricted to being flat since the introduction
of new variables to abbreviate subterms may destroy the property that one side of each
dissubsumption is ground (see also Section 4).

For solving flat unification problems, it has been shown that it suffices to consider so-called
local solutions [10], which are restricted to use only the atoms occurring in the input problem.
We extend this notion to disunification as follows. Let Γ be a flat disunification problem.
We denote by At the set of all (flat) atoms occurring as subterms in Γ, by Var the set of
variables occurring in Γ, and by Atnv := At \ Var the set of non-variable atoms of Γ. Let
S : Var→ 2Atnv be an assignment (for Γ), i.e. a function that assigns to each variable X ∈ Var
a set SX ⊆ Atnv of non-variable atoms. The relation >S on Var is defined as the transitive
closure of {(X,Y) ∈ Var2 | Y occurs in an atom of SX}. If this defines a strict partial order,
i.e. >S is irreflexive, then S is called acyclic. In this case, we can define the substitution
σS inductively along >S as follows: if X is minimal, then σS(X) :=

d
D∈SX D; otherwise,

assume that σS(Y) is defined for all Y ∈ Var with X > Y , and define

σS(X) :=
l

D∈SX
σS(D).

It is easy to see that the concept terms σS(D) are ground and constructed from the symbols
of Σ, and hence σS is a valid candidate for a solution of Γ according to Definition 4.

I Definition 5. Let Γ be a flat disunification problem. A substitution σ is called local if
there exists an acyclic assignment S for Γ such that σ = σS . The disunification problem Γ
is locally solvable if it has a local solution, i.e. a solution that is a local substitution. Local
disunification is the problem of checking flat disunification problems for local solvability.

Note that assignments and local solutions are defined only for flat disunification problems.
Obviously, local disunification is decidable in NP: We can guess an assignment S, and

check it for acyclicity and whether the induced substitution solves the disunification problem
in polynomial time. It has been shown [10] that unification in EL is local in the sense that the
equivalent flattened problem has a local solution iff the original problem is solvable. Hence
not only local, but also general solvability of unification problems in EL can be decided in
NP. In addition, this shows that NP-hardness already holds for local unification, and thus
also for local disunification.

I Fact 6. Deciding local solvability of flat disunification problems in EL is NP-complete.

The next example shows that disunification in EL is not local in this sense.

I Example 7. Consider the flat disunification problem

Γ := {X v? B, A uB u C v? X, ∃r.X v? Y, > 6v? Y, Y 6v? ∃r.B}

3 Recall that the empty conjunction is >.

RTA 2015

46 Dismatching and Local Disunification in EL

with variables X,Y and constants A,B,C. The substitution σ with σ(X) := A uB uC and
σ(Y) := ∃r.(A u C) is a solution of Γ. For σ to be local, the atom ∃r.(A u C) would have to
be of the form σ(D) for a non-variable atom D occurring in Γ. But the only candidates for
D are ∃r.X and ∃r.B, none of which satisfy ∃r.(A u C) = σ(D).

We show that Γ cannot have another solution that is local. Assume to the contrary
that Γ has a local solution γ. We know that γ(Y) cannot be > since γ must solve the first
dissubsumption. Furthermore, none of the constants A,B,C can be a top-level atom of γ(Y)
since this would contradict the third subsumption. That leaves only the non-variable atoms
∃r.γ(X) and ∃r.B, which are ruled out by the last dissubsumption since both γ(X) and B
are subsumed by B.

The decidability and complexity of general solvability of disunification problems is still open.
In the following, we first consider the special case of solving dismatching problems, for which
we show a similar result as for unification: every dismatching problem can be polynomially
reduced to a flat problem that has a local solution iff the original problem is solvable. The
main difference is that this reduction is nondeterministic. In this way, we reduce dismatching
to local disunification. We then provide two different NP-algorithms for the latter problem
by extending the rule-based unification algorithm from [10] and adapting the SAT encoding
of unification problems from [9]. These algorithms are more efficient than the brute-force
“guess and then test” procedure on which our argument for Fact 6 was based.

4 Reducing dismatching to local disunification

As mentioned in Section 3, we cannot restrict our attention to flat dismatching problems
without loss of generality. Instead, the nondeterministic algorithm we present in the following
reduces any dismatching problem Γ to a flat disunification problem Γ′ with the property that
local solvability of Γ′ is equivalent to the solvability of Γ. Since the algorithm takes at most
polynomial time in the size of Γ, this shows that dismatching in EL is NP-complete. For
simplicity, we assume that the subsumptions and the non-ground sides of the dissubsumptions
have already been flattened using the approach mentioned in the previous section. This
retains the property that all dissubsumptions have one ground side and does not affect the
solvability of the problem.

Our procedure exhaustively applies a set of rules to the (dis)subsumptions in a dismatching
problem (see Figures 1 and 2). In these rules, C1, . . . , Cn and D1, . . . , Dm are atoms. The
rule Left Decomposition includes the special case where the left-hand side of s is >, in which
case s is simply removed from the problem. Note that at most one rule is applicable to any
given (dis)subsumption. The choice which (dis)subsumption to consider next is don’t care
nondeterministic, but the choices in the rules Right Decomposition and Solving Left-Ground
Dissubsumptions are don’t know nondeterministic.

I Algorithm 8. Let Γ0 be a dismatching problem. We initialize Γ := Γ0. While any of the
rules of Figures 1 and 2 is applicable to any element of Γ, choose one such element and apply
the corresponding rule. If any rule application fails, then return “failure”.

To see that every run of the nondeterministic algorithm terminates in polynomial time,
note that each rule application takes only polynomial time in the size of the chosen
(dis)subsumption. In particular, subsumptions between ground atoms can be checked in
polynomial time [8]. Additionally, we can show that the algorithm needs at most polynomially
many rule applications since each rule application decreases the following measure on Γ: we
sum up all sizes of (dis)subsumptions in Γ to which a rule is still applicable, where the size

F. Baader, S. Borgwardt, and B. Morawska 47

Right Decomposition:
Condition: This rule applies to s = C1 u · · · u Cn 6v? D1 u · · · uDm if m = 0 or m > 1, and
C1, . . . , Cn, D1, . . . , Dm are atoms.
Action: If m = 0, then fail. Otherwise, choose an index i ∈ {1, . . . , m} and replace s by
C1 u · · · u Cn 6v? Di.

Left Decomposition:
Condition: This rule applies to s = C1 u · · ·uCn 6v? D if n = 0 or n > 1, C1, . . . , Cn are atoms,
and D is a non-variable atom.
Action: Replace s by C1 6v? D, . . . , Cn 6v? D.

Atomic Decomposition:
Condition: This rule applies to s = C 6v? D if C and D are non-variable atoms.
Action: Apply the first case that matches s:
a) if C and D are ground and C v D, then fail;
b) if C and D are ground and C 6v D, then remove s from Γ;
c) if C or D is a constant, then remove s from Γ;
d) if C = ∃r.C′ and D = ∃s.D′ with r 6= s, then remove s from Γ;
e) if C = ∃r.C′ and D = ∃r.D′, then replace s by C′ 6v? D′.

Figure 1 Decomposition rules.

of C v? D or C 6v? D is defined as |C| · |D|, and |C| is the number of symbols needed to
write down C (for details, see [4]).

Note that the Solving rule for left-ground dissubsumptions is not limited to non-flat
dissubsumptions, and thus the algorithm completely eliminates all left-ground dissubsump-
tions from Γ. It is also easy to see that, if the algorithm is successful, then the resulting
disunification problem Γ is flat. We now prove that this nondeterministic procedure is correct
in the following sense.

I Lemma 9. The dismatching problem Γ0 is solvable iff there is a successful run of Algorithm 8
such that the resulting flat disunification problem Γ has a local solution.

Proof Sketch. Soundness (i.e., the if direction) is easy to show, using Lemmas 1–3. Showing
completeness (i.e., the only-if direction) is more involved. Basically, given a solution γ of Γ0,
we can use γ to guide the rule applications and extend γ to the newly introduced variables
such that each rule application is successful and the invariant “γ solves all (dis)subsumptions
of Γ” is maintained. Once no more rules can be applied, we have a flat disunification
problem Γ of which the extended substitution γ is a (possibly non-local) solution. To obtain
a local solution, we denote by At, Var, and Atnv the sets as defined in Section 3 and define
the assignment S induced by γ as:

SX := {D ∈ Atnv | γ(X) v γ(D)},

for all (old and new) variables X ∈ Var. It can be shown that this assignment is acyclic and
that the induced local substitution σS solves Γ, and thus also Γ0 (see [4] for details). J

The disunification problem of Example 7 is in fact a dismatching problem. The rule Solving
Left-Ground Dissubsumptions can be used to replace > 6v? Y with Y v? ∃r.Z. The presence
of the new atom ∃r.Z makes the solution σ introduced in Example 7 local.

RTA 2015

48 Dismatching and Local Disunification in EL

Flattening Right-Ground Dissubsumptions:
Condition: This rule applies to s = X 6v? ∃r.D if X is a variable and D is ground and is not a
concept name.
Action: Introduce a new variable XD and replace s by X 6v? ∃r.XD and D v? XD.

Flattening Left-Ground Subsumptions:
Condition: This rule applies to s = C1u· · ·uCnu∃r1.D1u· · ·u∃rm.Dm v? X if m > 0,X is a
variable, C1, . . . , Cn are flat ground atoms, and ∃r1.D1, . . . , ∃rm.Dm are non-flat ground atoms.
Action: Introduce new variables XD1 , . . . , XDm and replace s by D1 v? XD1 , . . . , Dm v? XDm

and C1 u · · · u Cn u ∃r1.XD1 u · · · u ∃rm.XDm v? X.

Solving Left-Ground Dissubsumptions:
Condition: This rule applies to s = C1 u · · · u Cn 6v? X if X is a variable and C1, . . . , Cn are
ground atoms.
Action: Choose one of the following options:

Choose a constant A ∈ Σ and replace s by X v? A. If C1 u · · · u Cn v A, then fail.
Choose a role r ∈ Σ, introduce a new variable Z, replace s by X v? ∃r.Z, C1 6v? ∃r.Z, . . . ,
Cn 6v? ∃r.Z, and immediately apply Atomic Decomposition to each of these dissubsumptions.

Figure 2 Flattening and solving rules.

Together with Fact 6 and the NP-hardness of unification in EL [10], Lemma 9 yields the
following complexity result.

I Theorem 10. Deciding solvability of dismatching problems in EL is NP-complete.

5 A goal-oriented algorithm for local disunification

In this section, we present an algorithm for local disunification that is based on transformation
rules. Basically, to solve the subsumptions, this algorithm uses the rules of the goal-oriented
algorithm for unification in EL [10, 3], which produces only local unifiers. Since any local
solution of the disunification problem is a local unifier of the subsumptions in the problem, one
might think that it is then sufficient to check whether any of the produced unifiers also solves
the dissubsumptions. This would not be complete, however, since the goal-oriented algorithm
for unification does not produce all local unifiers. For this reason, we have additional rules
for solving the dissubsumptions. Both rule sets contain (deterministic) eager rules that are
applied with the highest priority, and nondeterministic rules that are only applied if no eager
rule is applicable. The goal of the eager rules is to enable the algorithm to detect obvious
contradictions as early as possible in order to reduce the number of nondeterministic choices
it has to make.

Let now Γ0 be the flat disunification problem for which we want to decide local solvability,
and let the sets At, Var, and Atnv be defined as in Section 3. We assume without loss of
generality that the dissubsumptions in Γ0 have only a single atom on the right-hand side. If
this is not the case, it can easily be achieved by exhaustive application of the nondeterministic
rule Right Decomposition (see Figure 1) without affecting the complexity of the overall
procedure.

Starting with Γ0, the algorithm maintains a current disunification problem Γ and a current
acyclic assignment S, which initially assigns the empty set to all variables. In addition, for
each subsumption or dissubsumption in Γ, it maintains the information on whether it is solved
or not. Initially, all subsumptions of Γ0 are unsolved, except those with a variable on the

F. Baader, S. Borgwardt, and B. Morawska 49

right-hand side, and all dissubsumptions in Γ0 are unsolved, except those with a variable on
the left-hand side and a non-variable atom on the right-hand side. Subsumptions of the form
C1 u · · · u Cn v? X and dissubsumptions of the form X 6v? D, for a non-variable atom D,
are called initially solved. Intuitively, they only specify constraints on the assignment SX .
More formally, this intuition is captured by the process of expanding Γ w.r.t. the variable X,
which performs the following actions:

every initially solved subsumption s ∈ Γ of the form C1 u · · · u Cn v? X is expanded by
adding the subsumption C1 u · · · u Cn v? E to Γ for every E ∈ SX , and
every initially solved dissubsumption X 6v? D ∈ Γ is expanded by adding E 6v? D to Γ
for every E ∈ SX .

A (non-failing) application of a rule of our algorithm does the following:
it solves exactly one unsolved subsumption or dissubsumption,
it may extend the current assignment S by adding elements of Atnv to some set SX ,
it may introduce new flat subsumptions or dissubsumptions built from elements of At,
it keeps Γ expanded w.r.t. all variables X.

Subsumptions and dissubsumptions are only added by a rule application or by expansion if
they are not already present in Γ. If a new subsumption or dissubsumption is added to Γ, it
is marked as unsolved, unless it is initially solved (because of its form). Solving subsumptions
and dissubsumptions is mostly independent, except for expanding Γ, which can add new
unsolved subsumptions and dissubsumptions at the same time, and may be triggered by
solving a subsumption or a dissubsumption.

The rules dealing with subsumptions are depicted in Figure 3; these three eager and two
nondeterministic rules are essentially the same as the ones in [3], with the only difference that
the background ontology T used there is empty for our purposes. Note that several rules
may be applicable to the same subsumption, and there is no preference between them. Using
Eager Ground Solving, the algorithm can immediately evaluate ground subsumptions via the
polynomial-time algorithm of [8]. If the required subsumption holds, it is marked as solved,
and otherwise Γ cannot be solvable and hence the algorithm fails. Eager Solving detects
when a subsumption trivially holds because the atom D from the right-hand side is already
present on the left-hand side, either directly or via the assignment of a variable. Eager
Extension is applicable in case the left-hand side of a subsumption is essentially equivalent
to a single variable X due to all its atoms being “subsumed by” SX . In this case, there is no
other option but to add the right-hand side atom to SX to solve the subsumption, and to
expand Γ w.r.t. this new assignment. In case none of the eager rules apply to a subsumption,
it can be solved nondeterministically by either extending the assignment of a variable that
occurs on the left-hand side (Extension), or decomposing the subsumption by looking for
matching existential restrictions on both sides (cf. Lemma 1).

The new rules for solving dissubsumptions are listed in Figure 4. These include variants
of the Left Decomposition and Atomic Decomposition rules from the previous section (see
Figure 1). In these two rules, which are eager, instead of removing dissubsumptions we
mark them as solved. Additionally, Γ may have to be expanded if such a rule adds a new
dissubsumption that is initially solved. The new nondeterministic rule Local Extension
follows the same idea as the Solving rule for left-ground dissubsumptions (see Figure 2),
but does not have to introduce new variables and atoms since we are looking only for local
solutions. Note that the left-hand side of s may be a variable, and then s is of the form
Y 6v? X. This dissubsumption is not initially solved, because X is not a non-variable atom.

I Algorithm 11. Let Γ0 be a flat disunification problem. We initialize Γ := Γ0 and SX := ∅
for all variables X ∈ Var. While Γ contains an unsolved subsumption or dissubsumption, do

RTA 2015

50 Dismatching and Local Disunification in EL

Eager Ground Solving:
Condition: This rule applies to s = C1 u · · · u Cn v? D ∈ Γ, if s is ground.
Action: The rule application fails if s does not hold. Otherwise, s is marked as solved.

Eager Solving:
Condition: This rule applies to s = C1 u · · · u Cn v? D ∈ Γ, if there is an index i ∈ {1, . . . , n},
such that Ci = D or Ci = X ∈ Var and D ∈ SX .
Action: The application of the rule marks s as solved.

Eager Extension:
Condition: This rule applies to s = C1 u · · · u Cn v? D ∈ Γ, if there is an index i ∈ {1, . . . , n},
such that Ci = X ∈ Var and {C1, . . . , Cn} \ {X} ⊆ SX .
Action: The application of the rule adds D to SX . If this makes S cyclic, the rule application
fails. Otherwise, Γ is expanded w.r.t. X and s is marked as solved.

Decomposition:
Condition: This rule applies to s = C1 u · · · u Cn v? ∃s.D ∈ Γ, if there is at least one index
i ∈ {1, . . . , n} with Ci = ∃s.C.
Action: The application of the rule chooses such an index i, adds C v? D to Γ, expands Γ
w.r.t. D if D is a variable, and marks s as solved.

Extension:
Condition: This rule applies to s = C1 u · · · u Cn v? D ∈ Γ, if there is at least one index
i ∈ {1, . . . , n} with Ci ∈ Var.
Action: The application of the rule chooses such an index i and adds D to SCi . If this makes S

cyclic, the rule application fails. Otherwise, Γ is expanded w.r.t. Ci and s is marked as solved.

Figure 3 Rules for subsumptions.

the following:
1. Eager rule application: If eager rules are applicable to some unsolved subsumption or

dissubsumption s in Γ, apply an arbitrarily chosen one to s. If the rule application fails,
return “failure”.

2. Nondeterministic rule application: If no eager rule is applicable, let s be an unsolved
subsumption or dissubsumption in Γ. If one of the nondeterministic rules applies to s,
choose one and apply it. If none of these rules apply to s or the rule application fails,
then return “failure”.

Once all (dis)subsumptions in Γ are solved, return the substitution σS that is induced by
the current assignment.

As with Algorithm 8, the choice which (dis)subsumption to consider next and which eager
rule to apply is don’t care nondeterministic, while the choice of which nondeterministic rule
to apply and the choices inside the rules are don’t know nondeterministic. Each of these
latter choices may result in a different solution σS . All proof details for the following results
can be found in [4].

I Lemma 12. Every run of Algorithm 11 terminates in time polynomial in the size of Γ0.

Proof Sketch. We can show that each (dis)subsumption that is added by a rule or by
expansion is either of the form C v? D or C 6v? D, where C,D ∈ At, or of the form
C1 u · · · u Cn v? E, where C1 u · · · u Cn is the left-hand side of a subsumption from
the original problem Γ0 and E ∈ At. Obviously, there are only polynomially many such

F. Baader, S. Borgwardt, and B. Morawska 51

Eager Top Solving:
Condition: This rule applies to s = C 6v? > ∈ Γ.
Action: The rule application fails.

Eager Left Decomposition:
Condition: This rule applies to s = C1 u · · · u Cn 6v? D ∈ Γ if n = 0 or n > 1, and D ∈ Atnv.
Action: The application of the rule marks s as solved and, for each i ∈ {1, . . . , n}, adds Ci 6v? D

to Γ and expands Γ w.r.t. Ci if Ci is a variable.

Eager Atomic Decomposition:
Condition: This rule applies to s = C 6v? D ∈ Γ if C, D ∈ Atnv.
Action: The application of the rule applies the first case that matches s:
a) if C and D are ground and C v D, then the rule application fails;
b) if C and D are ground and C 6v D, then s is marked as solved;
c) if C or D is a concept name, then s is marked as solved;
d) if C = ∃r.C′ and D = ∃s.D′ with r 6= s, then s is marked as solved;
e) if C = ∃r.C′ and D = ∃r.D′, then C′ 6v? D′ is added to Γ, Γ is expanded w.r.t. C′ if C′ is a

variable and D′ is not a variable, and s is marked as solved.

Local Extension:
Condition: This rule applies to s = C 6v? X ∈ Γ if X ∈ Var.
Action: The application of the rule chooses D ∈ Atnv and adds D to SX . If this makes S

cyclic, the rule application fails. Otherwise, the new dissubsumption C 6v? D is added to Γ, Γ is
expanded w.r.t. X, Γ is expanded w.r.t. C if C is a variable, and s is marked as solved.

Figure 4 New rules for dissubsumptions.

(dis)subsumptions. Additionally, each rule application solves at least one (dis)subsumption
and takes at most polynomial time. J

To show soundness of the procedure, assume that a run of the algorithm terminates with
success, i.e. all subsumptions and dissubsumptions are solved. Let Γ̂ be the set of all
subsumptions and dissubsumptions produced by this run, S be the final assignment, and σS
the induced substitution (see Section 3). To show that σS solves Γ̂, and hence also Γ0, we
use induction on the following order on (dis)subsumptions.

I Definition 13. Consider any (dis)subsumption s of the form C1 u · · · u Cn v? Cn+1 or
C1 u · · · u Cn 6v? Cn+1 in Γ̂.

We define m(s) := (m1(s),m2(s)), where
m1(s) := ∅ if s is ground; otherwise, m1(s) := {X1, . . . , Xm}, where {X1, . . . , Xm} is
the multiset of all variables occurring in C1, . . . , Cn, Cn+1.
m2(s) := |s|, where |s| is the size of s, i.e. the number of symbols in s.

The strict partial order � on such pairs is the lexicographic order, where the second
components are compared w.r.t. the usual order on natural numbers, and the first
components are compared w.r.t. the multiset extension of >S [13].
We extend � to Γ̂ by setting s1 � s2 iff m(s1) � m(s2).

Since multiset extensions and lexicographic products of well-founded strict partial orders
are again well-founded [13], � is a well-founded strict partial order on Γ̂. We can then use
the fact that the (dis)subsumptions produced by Algorithm 11 are always smaller w.r.t. this

RTA 2015

52 Dismatching and Local Disunification in EL

order than the (dis)subsumptions they were created from to prove the following lemma by
well-founded induction over �.

I Lemma 14. σS is a local solution of Γ̂, and thus also of its subset Γ0.

To prove completeness, assume that σ is a local solution of Γ0. We can show that σ can guide
the choices of Algorithm 11 to obtain a local solution σ′ of Γ0 such that, for every variable X,
we have σ(X) v σ′(X). The following invariants will be maintained throughout the run of
the algorithm for the current set of (dis)subsumptions Γ and the current assignment S:

I. σ is a solution of Γ. II. For each D ∈ SX , we have that σ(X) v σ(D).

By Lemma 1, chains of the form σ(X1) v σ(∃r1.X2), . . .σ(Xn−1) v σ(∃rn−1.Xn) with
X1 = Xn are impossible, and thus invariant II implies that S is acyclic. Hence, if extending S
during a rule application preserves this invariant, this extension will not cause the algorithm
to fail. In [4] it is shown that

the invariants are maintained by the operation of expanding Γ;
the application of an eager rule never fails and maintains the invariants; and
if s is an unsolved (dis)subsumption of Γ to which no eager rule applies, then there
is a nondeterministic rule that can be successfully applied to s while maintaining the
invariants.

This concludes the proof of correctness of Algorithm 11, which provides a more goal-directed
way to solve local disunification problems than blindly guessing an assignment as described
in Section 4.

I Theorem 15. The flat disunification problem Γ0 has a local solution iff there is a successful
run of Algorithm 11 on Γ0.

6 Encoding local disunification into SAT

The following reduction to SAT is a generalization of the one for unification problems in [9].
We again consider a flat disunification problem Γ and the sets At, Var, and Atnv as in Section 3.
Since we are restricting our considerations to local solutions, we can without loss of generality
assume that the sets Nv, Nc, and NR contain exactly the variables, constants, and role names
occurring in Γ. To further simplify the reduction, we assume in the following that all flat
dissubsumptions in Γ are of the form X 6v? Y for variables X,Y . This is without loss of
generality, which can be shown using a transformation similar to the flattening rules from
Section 4.

The translation into SAT uses the propositional variables [C v D] for all C,D ∈ At. The
SAT problem consists of a set of clauses Cl(Γ) over these variables that express properties
of (dis)subsumption in EL and encode the elements of Γ. The intuition is that a satisfying
valuation of Cl(Γ) induces a local solution σ of Γ such that σ(C) v σ(D) holds whenever
[C v D] is true under the valuation. The solution σ is constructed by first extracting an
acyclic assignment S out of the satisfying valuation and then computing σ := σS . We
additionally introduce the variables [X > Y] for all X,Y ∈ Nv to ensure that the generated
assignment S is indeed acyclic. This is achieved by adding clauses to Cl(Γ) that express that
>S is a strict partial order, i.e. irreflexive and transitive.

Finally, we use the auxiliary variables pC,X,D for all X ∈ Nv, C ∈ At, and D ∈ Atnv
to express the restrictions imposed by dissubsumptions of the form C 6v? X in clausal
form. More precisely, whenever [C v X] is false for some X ∈ Nv and C ∈ At, then the

F. Baader, S. Borgwardt, and B. Morawska 53

dissubsumption σ(C) 6v σ(X) should hold. By Lemma 2, this means that we need to find an
atom D ∈ Atnv that is a top-level atom of σ(X) and satisfies σ(C) 6v σ(D). This is enforced
by making the auxiliary variable pC,X,D true, which makes [X v D] true and [C v D] false
(see Definition 167).

I Definition 16. The set Cl(Γ) contains the following propositional clauses:
(I) Translation of Γ.

a. For every subsumption C1 u · · · u Cn v? D in Γ with D ∈ Atnv:
→ [C1 v D] ∨ · · · ∨ [Cn v D]

b. For every subsumption C1 u · · · uCn v? X in Γ with X ∈ Nv, and every E ∈ Atnv:
[X v E]→ [C1 v E] ∨ · · · ∨ [Cn v E]

c. For every dissubsumption X 6v? Y in Γ: [X v Y]→
(IV) Properties of subsumptions between non-variable atoms.

a. For every A ∈ Nc: → [A v A]
b. For every A,B ∈ Nc with A 6= B: [A v B]→
c. For every ∃r.A, ∃s.B ∈ Atnv with r 6= s: [∃r.A v ∃s.B]→
d. For every A ∈ Nc and ∃r.B ∈ Atnv:

[A v ∃r.B]→ and [∃r.B v A]→
e. For every ∃r.A, ∃r.B ∈ Atnv:

[∃r.A v ∃r.B]→ [A v B] and [A v B]→ [∃r.A v ∃r.B]
(VI) Transitivity of subsumption.

For every C1, C2, C3 ∈ At: [C1 v C2] ∧ [C2 v C3]→ [C1 v C3]
(VII) Dissubsumptions of the form C 6v? X with a variable X.

For every C ∈ At, X ∈ Nv:
→ [C v X] ∨∨

D∈Atnv
pC,X,D,

and additionally for every D ∈ Atnv:
pC,X,D → [X v D] and pC,X,D ∧ [C v D]→

(VIII) Properties of >.
a. For every X ∈ Nv: [X > X]→
b. For every X,Y, Z ∈ Nv: [X > Y] ∧ [Y > Z]→ [X > Z]
c. For every X,Y ∈ Nv and ∃r.Y ∈ At: [X v ∃r.Y]→ [X > Y]

The main difference to the encoding in [9] (apart from the fact that we consider (dis)sub-
sumptions here instead of equivalences) lies in the clauses 7 that ensure the presence of a
non-variable atom D that solves the dissubsumption C 6v? X (cf. Lemma 2). We also need
some additional clauses in 4 to deal with dissubsumptions. It is easy to see that Cl(Γ) can
be constructed in time cubic in the size of Γ (due to the clauses in 6 and 2).

To show soundness of the reduction, let τ be a valuation of the propositional variables
that satisfies Cl(Γ). We define the assignment Sτ as follows:

SτX := {D ∈ Atnv | τ([X v D]) = 1}.

In [4] it is shown that X >Sτ Y implies τ([X > Y]) = 1 and that this implies irreflexivity
of >Sτ . This in particular shows that Sτ is acyclic. In the following, let στ denote the
substitution σSτ induced by Sτ . In [4] it is shown that στ is a solution of Γ by proving that
for all atoms C,D ∈ At it holds that τ([C v D]) = 1 iff στ (C) v στ (D).

Since στ is obviously local, this suffices to show soundness of the reduction.

I Lemma 17. If Cl(Γ) is solvable, then Γ has a local solution.

RTA 2015

54 Dismatching and Local Disunification in EL

To show completeness, let σ be a local solution of Γ and >σ the resulting partial order on Nv,
defined as follows for all X,Y ∈ Nv:

X >σ Y iff σ(X) v ∃r1. . . .∃rn.σ(Y) for some r1, . . . , rn ∈ NR with n ≥ 1.

Note that >σ is irreflexive since X >σ X is impossible by Lemma 1, and it is transitive since
v is transitive and closed under applying existential restrictions on both sides. Thus, >σ is
a strict partial order. We define a valuation τσ as follows for all C,D ∈ At, E ∈ Atnv, and
X,Y ∈ Nv:

τσ([C v D]) :=
{

1 if σ(C) v σ(D)
0 otherwise

τσ([X > Y]) :=
{

1 if X >σ Y

0 otherwise

τσ(pC,X,E) :=
{

1 if σ(X) v σ(E) and σ(C) 6v σ(E)
0 otherwise

In [4] it is proved that τσ satisfies Cl(Γ), which shows completeness of the reduction.

I Lemma 18. If Γ has a local solution, then Cl(Γ) is solvable.

This completes the proof of the correctness of the translation presented in Definition 16,
which provides us with a reduction of local disunification (and thus also of dismatching) to
SAT. This SAT reduction has been implemented in our prototype system UEL,4 which uses
SAT4J5 as external SAT solver. First experiments show that dismatching is indeed helpful
for reducing the number and the size of unifiers. The runtime performance of the solver for
dismatching problems is comparable to the one for pure unification problems.

7 Related and future work

Since Description Logics and Modal Logics are closely related [26], results on unification in
one of these two areas carry over to the other one. In Modal Logics, unification has mostly
been considered for expressive logics with all Boolean operators [19, 20, 25]. An important
open problem in the area is the question whether unification in the basic modal logic K,
which corresponds to the DL ALC, is decidable. It is only known that relatively minor
extensions of K have an undecidable unification problem [27]. Disunification also plays an
important role in Modal Logics since it is basically the same as the admissibility problem for
inference rules [15, 22, 24] (see [4] for details).

Regarding future work, we want to investigate the decidability and complexity of general
disunification in EL, and consider also the case where non-ground solutions are allowed.
From a more practical point of view, we plan to implement also the goal-oriented algorithm
for local disunification, and to evaluate the performance of both presented algorithms on
real-world problems.

References
1 Franz Baader, Stefan Borgwardt, Julian Alfredo Mendez, and Barbara Morawska. UEL:

Unification solver for EL. In Proc. DL’12, volume 846 of CEUR-WS, pages 26–36, 2012.

4 version 1.3.0, available at http://uel.sourceforge.net/
5 http://www.sat4j.org/

F. Baader, S. Borgwardt, and B. Morawska 55

2 Franz Baader, Stefan Borgwardt, and Barbara Morawska. Computing minimal EL-unifiers
is hard. In Proc. AiML’12, 2012.

3 Franz Baader, Stefan Borgwardt, and Barbara Morawska. A goal-oriented algorithm for
unification in EL w.r.t. cycle-restricted TBoxes. In Proc. DL’12, volume 846 of CEUR-WS,
pages 37–47, 2012.

4 Franz Baader, Stefan Borgwardt, and Barbara Morawska. Dismatching and local disunfica-
tion in EL. LTCS-Report 15-03, Chair for Automata Theory, TU Dresden, Germany, 2015.
See http://lat.inf.tu-dresden.de/research/reports.html.

5 Franz Baader, Sebastian Brandt, and Carsten Lutz. Pushing the EL envelope further. In
Proc. OWLED’08, 2008.

6 Franz Baader, Diego Calvanese, Deborah McGuinness, Daniele Nardi, and Peter F. Patel-
Schneider, editors. The Description Logic Handbook: Theory, Implementation, and Appli-
cations. Cambridge University Press, 2003.

7 Franz Baader, Ralf Küsters, Alex Borgida, and Deborah L. McGuinness. Matching in
description logics. J. Logic Comput., 9(3):411–447, 1999.

8 Franz Baader, Ralf Küsters, and Ralf Molitor. Computing least common subsumers in
description logics with existential restrictions. In Proc. IJCAI’99, pages 96–101. Morgan
Kaufmann, 1999.

9 Franz Baader and Barbara Morawska. SAT encoding of unification in EL. In Proc.
LPAR’10, volume 6397 of LNCS, pages 97–111. Springer, 2010.

10 Franz Baader and Barbara Morawska. Unification in the description logic EL. Log. Meth.
Comput. Sci., 6(3), 2010.

11 Franz Baader and Barbara Morawska. Matching with respect to general concept inclusions
in the description logic EL. In Proc. KI’14, volume 8736 of LNCS, pages 135–146. Springer,
2014.

12 Franz Baader and Paliath Narendran. Unification of concept terms in description logics. J.
Symb. Comput., 31(3):277–305, 2001.

13 Franz Baader and Tobias Nipkow. Term Rewriting and All That. Cambridge University
Press, 1999.

14 Franz Baader and Alexander Okhotin. Solving language equations and disequations with
applications to disunification in description logics and monadic set constraints. In Proc.
LPAR’12, volume 7180 of LNCS, pages 107–121. Springer, 2012.

15 Sergey Babenyshev, Vladimir V. Rybakov, Renate Schmidt, and Dmitry Tishkovsky. A
tableau method for checking rule admissibility in S4. In Proc. M4M-6, 2009.

16 Sebastian Brandt. Polynomial time reasoning in a description logic with existential restric-
tions, GCI axioms, and—what else? In Proc. ECAI’04, pages 298–302, 2004.

17 Wray L. Buntine and Hans-Jürgen Bürckert. On solving equations and disequations. J. of
the ACM, 41(4):591–629, 1994.

18 Hubert Comon. Disunification: A survey. In J.-L. Lassez and G. Plotkin, editors, Compu-
tational Logic: Essays in Honor of Alan Robinson, pages 322–359. MIT Press, 1991.

19 Silvio Ghilardi. Unification through projectivity. J. Logic and Computation, 7(6):733–752,
1997.

20 Silvio Ghilardi. Unification in intuitionistic logic. J. Logic and Computation, 64(2):859–880,
1999.

21 Ian Horrocks, Peter F. Patel-Schneider, and Frank van Harmelen. From SHIQ and RDF
to OWL: The making of a web ontology language. J. Web Sem., 1(1):7–26, 2003.

22 Rosalie Iemhoff and George Metcalfe. Proof theory for admissible rules. Ann. Pure Appl.
Logic, 159(1-2):171–186, 2009.

23 Ralf Küsters. Chapter 6: Matching. In Non-Standard Inferences in Description Logics,
volume 2100 of LNCS, pages 153–227. Springer, 2001.

RTA 2015

56 Dismatching and Local Disunification in EL

24 Vladimir V. Rybakov. Admissibility of logical inference rules, volume 136 of Studies in
Logic and the Foundations of Mathematics. North-Holland Publishing Co., Amsterdam,
1997.

25 Vladimir V. Rybakov. Multi-modal and temporal logics with universal formula - reduction
of admissibility to validity and unification. J. Logic and Computation, 18(4):509–519, 2008.

26 Klaus Schild. A correspondence theory for terminological logics: Preliminary report. In
Proc. IJCAI’91, pages 466–471, 1991.

27 Frank Wolter and Michael Zakharyaschev. Undecidability of the unification and admissi-
bility problems for modal and description logics. ACM Trans. Comput. Log., 9(4), 2008.

	Introduction
	Overview of the thesis

	Subsumption in EL
	Unification in EL
	Type zero
	NP-completeness

	Without Top: unification in EL-
	In PSpace
	 PSpace hardness

	Unification and matching in EL with a TBox
	Unification modulo acyclic TBoxes
	Matching in EL with a TBox
	Unification modulo cycle-restricted TBoxes

	Disunification in EL
	Connection to admissibility problem
	Dismatching
	Local disunification

	Conclusions
	Bibliography
	Appendices: submitted publications

