
Verification of Golog Programs
over Description Logic Actions

Dissertation

zur Erlangung des akademischen Grades
Doktoringenieur (Dr.-Ing.)

vorgelegt an der
Technischen Universität Dresden

Fakultät Informatik

eingereicht von
Dipl.-Inf. Benjamin Zarrieß

geboren am 4. November 1985 in Stendal

verteidigt am 2. November 2017

Gutachter:
Prof. Dr.-Ing. Franz Baader

Technische Universität Dresden

Prof. Sebastian Sardiña, Ph.D.
RMIT University Melbourne

Dresden, im Juli 2018

Acknowledgements

This work was financially supported by the Deutsche Forschungsgemeinschaft (DFG) in the
research unit FOR 1513 on Hybrid Reasoning for Intelligent Systems.

I am indebted to my supervisor Franz Baader for his generous support and patience. To
my colleague Jens Claßen for all his advice and guidance during the whole period of this
work.

I am thankful to Sebastian Sardiña for his work as the external reviewer of this thesis. I
would also like to thank my colleagues Anni-Yasmin Turhan, Barbara Morawska, İsmail İlkan
Ceylan, Stefan Borgwardt and Marcel Lippmann for their support.

Contents

1 Introduction 1
1.1 Action Theories in the Situation Calculus . 2
1.2 Action Formalisms based on Description Logics 6
1.3 The Golog Family of Action Programming Languages 10
1.4 Formal Verification . 11
1.5 Outline and Contributions of the Thesis . 14

2 Preliminaries 17
2.1 First-Order Dynamical Systems . 17
2.2 Description Logics and Action Languages . 27

2.2.1 Basic Notions of Description Logics . 27
2.2.2 Integrating DL Knowledge Bases and Actions 33

2.3 Transition Systems and Temporal Logic . 41
2.4 ConGolog Programs over FO Dynamical Systems 44

2.4.1 Syntax and Semantics of ConGolog . 45
2.4.2 The Verification Problem . 52

3 Towards Decidable Fragments of ConGolog 55
3.1 Termination and Failure . 55
3.2 Undecidability of DL-based ConGolog with Guarded Pick 58
3.3 Reachable Subprogram Expressions . 62
3.4 Abstract Transition Systems and Bisimulations 73

4 Verifying Pick-Free Programs over Local-Effect Actions 79
4.1 Local-Effect Actions . 79
4.2 Dynamic Types and Local Effects . 81
4.3 Deciding the Verification Problem . 94
4.4 Hardness of the Verification Problem . 103
4.5 Summary . 109

5 Limits of Decidable Verification with Non-Local Effect Actions 111
5.1 Undecidability due to Non-Local Effects . 111
5.2 General Dynamic Types and Regression . 119

5.2.1 Dynamic Types in Presence of Non-Local Effects 120
5.2.2 Propositional Abstraction of DL-ConGolog Programs 131

5.3 Decidable Fragments of DL-ConGolog . 134
5.3.1 An Acyclicity Condition . 135
5.3.2 Flat Effect Representations . 142

5.4 Summary and Related Work . 147

iii

iv Contents

6 Decidable Reasoning about Actions with Knowledge and Sensing 149
6.1 Epistemic First-Order Dynamical Systems . 150
6.2 An Agent Language with Sensing . 152

6.2.1 An Epistemic DL . 152
6.2.2 Consistency of Boolean KBs under the SNA 156
6.2.3 Actions with Sensing Results . 160

6.3 Relation to the Epistemic Situation Calculus . 163
6.3.1 Basic Notion of the Epistemic Situation Calculus 163
6.3.2 Basic Action Theories and Epistemic FO-DSs 168

6.4 Deciding the Epistemic Projection Problem . 174
6.5 Summary and Related Work . 194

7 Verification of Knowledge-Based Programs 195
7.1 Knowledge-Based Programs and Temporal Properties 196
7.2 Programs over Unconditional Ground Actions . 203

7.2.1 Deciding the Verification Problem with Sensing 204
7.2.2 Lowering the Complexity . 211

7.3 Programs over Ground Actions with Conditional Effects 216
7.4 A Deciable Pick-Operator with Epistemic Guards 227

7.4.1 Knowledge States after Local Sensing . 228
7.4.2 A Pick-Operator with Epistemic Guards 233

7.5 Summary and Discussion . 234

8 Conclusions 237
8.1 Main Results . 237
8.2 Future Work . 238

Chapter 1

Introduction

The central subject of this thesis is the verification problem in the Golog family of programming
languages [Lev+97; DLL00]. Informally, the verification problem asks whether or not a
program is doing what it is supposed to do. Formal verification is concerned with methods
that can provide mathematical proofs or disproofs of program correctness. For this, one
first has to formally specify the required properties of the program. Then one would like to
verify that all possible executions of the given program satisfy the specification. However,
when considering fully automated verification one is faced with Rice’s theorem. It states
that all non-trivial, semantic properties of programs are undecidable. No algorithm that
takes an arbitrary program and a formal specification as input and decides the correctness
of the program w.r.t. the specification can exist. One approach to cope with this problem
is to use algorithms for the general problem that are sound but might come without a
termination guarantee, or are even incomplete. Another approach is to identify expressive
relevant fragments of the language that admit efficient decision procedures for the verification
problem. In this thesis we are interested in the latter approach for programs written in the
Golog language.

Golog is a family of action programming languages designed for the high-level control of
autonomous agents who act in a dynamic and incompletely known world. For example, it
has been successfully used for the high-level control of mobile robots [Bur+99]. To write
a Golog program the programmer first provides a logical action theory that consists of a
knowledge base that incompletely describes the initial state of the world, and a description
of preconditions and effects of user-definable primitive actions, which are considered to
be atomic and stand for the basic abilities of the agent to change the world. To describe
a complex (possibly open-ended) task programming constructs such as loops, if-then-else
statements, and constructs for non-deterministic choice are available to combine actions
defined in the underlying action theory. Resolving the non-determinism is then left to the
interpreter of the program. Since the initial state is only incompletely known, evaluating the
branching conditions and choosing the next legal action of the program requires the ability
to reason about the preconditions and effects of the primitive actions. However, especially
due to the non-deterministic nature of Golog and the uncertainty about the initial state,
testing can be very difficult or even impossible. Therefore, automated verification of Golog
programs is an active and challenging research topic. For example, if a Golog program is
used for the high-level control of a mobile robot, it is highly desirable to be able to guarantee
that the program satisfies certain properties before actually executing it on the robot.

In Golog, the underlying action formalisms is the Situation Calculus [MH69; Rei01a] which
employs first-order logic as its underlying knowledge representation language. This choice
results in a very expressive and flexible language, but it causes basic reasoning problems to be

1

2 Chapter 1 Introduction

undecidable and infeasible in practice. In particular, the verification problem is undecidable
as well.

In this thesis, we eliminate this particular source of undecidability by using action for-
malisms based on Description Logics (DLs). DLs [Baa+10] can be viewed as decidable
fragments of first-order logic. The main objective of this thesis is to identify non-trivial
expressive DL-based fragments of Golog and suitable temporal specification languages for
which the verification problem is decidable.

In the remainder of this chapter, a brief, informal introduction to Golog and verification is
given, and some of the relevant literature is reviewed. In Section 1.1, we give an impression
of how actions are represented in an action theory formulated in the Situation Calculus.
Section 1.2 is an introduction to action formalisms based on DLs. Afterwards in Section 1.3,
we consider some details about the Golog family of programming languages. Section 1.4
gives an abstract overview of verification methods and how they have already been applied
to Golog. In Section 1.5, an outline of the thesis is presented and the main contributions are
summarized.

1.1 Action Theories in the Situation Calculus

When writing a Golog program for the control of an agent, the programmer first provides an
action theory formulated in the Situation Calculus. An action theory provides incomplete
information about the initial state of the world and describes the basic abilities of agents
to change the world in a way that enables reasoning about the outcome of actions. In this
section, we briefly introduce some of the basic concepts of the classical Situation Calculus,
consider epistemic extensions for representing sensing actions and mention some of the
other existing action formalisms and their relation to the Situation Calculus.

Reiter’s Basic Action Theories

The Situation Calculus [MH69] is a well-established language for representing and reasoning
about change in (second-order) predicate logic. We mainly consider the variant introduced
by Reiter and his colleagues in [Rei91] and [PR99]. A detailed presentation with many
additional results can be found in the book [Rei01a].

The language distinguishes first-order terms of three different sorts: object, action and
situation. Fluent predicate symbols (fluents for short) are available to describe properties and
relations between objects that might change as the result of an action execution. Formally,
actions are first-oder terms such as, for example, the following expressions:

repair(x), drop(box),

where repair and drop are action names viewed as function symbols with arguments of
sort object, x is a variable of sort object and box is an object name viewed as a constant
symbol. Of course, only ground actions can be executed. Also variables of sort action are
available ranging over the (possibly infinite) domain of actions. Unique name axioms for the
finite set of relevant action names are part of the action theory.

A situation is formalized as a first-order term as well. It is a sequence of ground actions
denoting the history of actions that have been executed so far starting in the initial situation

1.1 Action Theories in the Situation Calculus 3

represented by the constant S0. To be able to talk about the world in a particular situation
each fluent has an argument of sort situation in the last position. For example, the sentence

¬Broken(box, S0)∧ Broken
�

box, do(drop(box), S0)
�

says that initially the box is not broken but is broken after doing the action drop(box) in
the initial situation, where do(drop(box), S0) is the situation term representing the situation
after doing the action drop(box) in S0. The domain of all situations is an infinite tree rooted
in S0 and is built using the function symbol do. For example, if first the action α0 and then
afterwards α1 is executed in some situation s, then the resulting situation term is denoted by
do(α1, do(α0, s)).

It is a common prerequisite that a useful representation of action effects requires a solution
to the so called frame problem. The problem deals with the question of how to obtain
a representation of action effects such that only the actual changes caused by an action
need to be explicitly represented but not the facts that remain unchanged by an action
execution. Treating situations and actions as terms in the logic (called reification) and
allowing quantification over them is one of the key features of the Situation Calculus, which
allows for an axiomatic solution of the frame problem in terms of successor state axioms
(SSA). For example, an SSA for the fluent Broken could be the following one

Broken(x , do(a, s)) ≡
��

a ≈ drop(x)
�

∨
�

Broken(x , s)∧ a 6≈ repair(x)
��

, (1.1)

where x (sort object), a (sort action) and s (sort situation) are universally quantified variables.
It says that x is broken after doing a if and only if x was dropped, or it was already broken
before and was not repaired. It follows that only the actions drop(x) and repair(x) affect
the fluent Broken. In case drop is not mentioned in the SSA of any other fluent, we can say
that drop(o) causes Broken(o) to be true and changes nothing else, where o is an arbitrary
object name.

Also so-called non-local effects can be defined. For example, we want to express that
executing drop(box) also breaks all fragile objects inside box. Consider a fluent In(x , y, s)
expressing that x is inside of y in situation s, and a fluent Fragile(x , s) for a fragile object
x in situation s. To express that dropping an object causes all fragile things inside it to be
broken as well, the axiom (1.1) is modified by replacing a ≈ drop(x) by the formula

∃y.
�

a ≈ drop(y)∧ (x ≈ y ∨ In(x , y, s)∧ Fragile(x , s))
�

. (1.2)

To axiomatize the preconditions of an action a special predicate Poss is available. For instance,
the axiom

Poss(drop(x), s) ≡ (Heavy(x , s)∧ Slippery(x , s)) ,

where x and s are universally quantified, says that drop(x) is possible if and only if x is
heavy and slippery.

A basic action theory as a whole consists of

• a sentence talking only about the initial situation,

• successor state axioms (exactly one for each relevant fluent predicate),

• one precondition axiom for each relevant action name and

4 Chapter 1 Introduction

• so-called foundational axioms.

The set of foundational axioms consist of unique name axioms for action names and a
second-order induction axiom that defines the tree-shaped structure of the domain of all
situations.

One benefit of this axiomatization is that reasoning about the effects of actions reduces
to a deduction problem in second-order logic. Consider a basic action theory Σ describing
the dynamic domain. The projection problem is the problem of deciding whether a given
fluent formula φ is true after a given ground action sequence σ has been performed in the
initial situation. One needs to check whether Σ entails the formula φ[do(σ, S0)] obtained
from φ by instantiating the situation arguments of the fluents in φ with the situation term
do(σ, S0). Due to the definitional form of successor state axioms they can be used as rewrite
rules. With a technique called regression it is possible to reduce the projection problem to a
first-order entailment problem only w.r.t. the sentence describing the initial situation.

Note that the notion of change axiomatized in a basic action theory is based on several
assumptions. First, all changes in the world are caused by the execution of an action.
Moreover, actions are

• deterministic,

• take place instantaneously,

• preconditions and effects of an action only depend on the situation in which the action
is executed, and

• there occurs only exactly one action at a time.

In this thesis, we only consider actions that are based on these assumptions. Note that
they apply only to the primitive actions. Some of the limitations can be addressed when it
comes to complex actions defined as Golog programs (Section 1.3).

Epistemic Situation Calculus

Typically, an agent has only incomplete information about its surroundings. In an epistemic
extension of an action formalism one wants to represent not only the actions but also the
perception of an agent and its abilities to acquire new information from the environment
by means of sensing. The logical formalization requires an explicit distinction between the
world-changing and the knowledge-changing effects of an action while solving the frame
problem for both.

An epistemic extension of the Situation Calculus has been introduced in [SL03]. Asking
about what is known or not known by the agent after some sequence of actions has occurred
(epistemic projection) is one of the reasoning tasks that can be characterized as a deduction
problem in the epistemic Situation Calculus based on an appropriate extension of a basic
action theory. In [SL03] the notion of knowledge and sensing is based on several simplifying
assumptions. Among them are the following ones:

• subjective truth implies objective truth, i.e. there are no false beliefs,

• the agent knows the effects of all actions, i.e. the basic action theory is known,

1.1 Action Theories in the Situation Calculus 5

• if an action is executed, then the agent is alway aware of it, i.e. the history of executed
actions is always known,

• actions only provide binary sensing results.

Moreover, only a single agent is considered. Sensing amounts to observing the truth value of
an axiom in the environment. For example, one can define an action that describes the ability
of an agent to observe whether the object named box is heavy or not, which corresponds to
observing whether Heavy(box) is true in the current situation.

The axiomatization of knowledge in [SL03] uses a possible-world semantics based on a
knowledge fluent K that has two arguments of sort situation. The atomic formula K(s, s′)
expresses that in situation s the situation s′ is considered possible. Intuitively, some formula
is known to be true in some situation s if it is true in all situation that are considered possible
in s. For the fluent K a successor state axiom is defined such that regressing knowledge for
solving projection is possible. For instance, purely sensing actions are axiomatized in a way
such that they only affect K and no other fluent.

In [LL04; LL11] another variant of the epistemic Situation Calculus called ES has been
introduced. It uses first-order modal logic. Instead of reification of states as situation terms
with appropriate axiomatizations, ES offers model operators with a special semantics for
representing and reasoning about actions and knowledge. As argued in [LL04; LL05], the
result is a language with a more “workable semantics”, where some meta-theoretic proofs
are much simpler. Reiter’s basic action theories can be formulated in ES as well.

In Chapter 6, a decidable epistemic action formalism (w.r.t. epistemic projection) is defined
with the same underlying assumptions as listed above. The corresponding relationship with
the epistemic Situation Calculus is investigated in Section 6.3.

Other Action Formalisms and their Relation to the Situation Calculus

Roughly speaking, the existing action formalisms in the literature can be divided into two
categories: on the one hand the ones that use an axiomatic approach to solve the frame
problem, and on the other hand the ones that solve it based on a more operational semantics
of actions. Another distinctive feature of action formalisms is the base logic that is available
to formulate the domain-dependent knowledge.

As introduced in the previous section, Reiter’s basic action theories are an axiomatic
approach with first-order logic as its base logic. For example, Thielscher’s Fluent Calculus
[Thi98] and the Event Calculus [KS86] belong to the same group but use different axiom-
atization techniques. The relationship between the three formalisms has been studied in
[Thi11]. The action language A [GL93] is a formalism based on propositional logic and logic
programs. Dynamic logics [HTK00] also provide an axiomatic approach to reasoning about
actions.

A prominent formalism with an operational semantics is the Action Description Language
ADL [Ped94]. Its semantics is based on a so-called state-transition model of action, where
states are represented meta-theoretically as first-order relational structures. Furthermore,
it uses an action-centric approach: for each action the domain designer provides a list of
preconditions and a list of effect descriptions. The semantics of an action is defined in terms
of a transition relation on states respecting the frame assumption. Intuitively, executing an
action corresponds to updating the respective first-order structure, that completely describes

6 Chapter 1 Introduction

the current state of the world. The language is often used as a planning formalism with a
fixed finite domain and complete information about the initial state. Later, the formalism
evolved into the standard planning language PDDL [FL03] with additional extensions. The
relative expressiveness of ADL and PDDL compared to Reiter’s basic action theories has been
investigated in detail in [CHL07; Roe14]. STRIPS [FN71] is a prominent purely propositional
formalism with an operational semantics. It is a fragment of ADL.

In order to obtain formalisms that are considerably more expressive than the propositional
ones, but still offer decidable and practical reasoning services, various action formalisms
based on description logics have been introduced (e.g. [Baa+05a; Liu+06; BLL10; GS10;
Ahm+14]). In this thesis, we consider classes of action theories with an operational semantics
and with description logics as base logics (Section 2.1 and Section 2.2).

The next section is an informal introduction to action formalisms based on description
logics.

1.2 Action Formalisms based on Description Logics

In this section, we briefly introduce the syntax of description logic knowledge bases using a
simple example. We then use this example to discuss problems that arise when one wants to
define action effects and preconditions in presence of such a knowledge base. Afterwards,
we briefly review some of the existing solutions available in the literature.

Description Logic Knowledge Bases

Description Logics (DLs) [Baa+10] are a family of logic-based knowledge representation
formalisms, that can be viewed as decidable fragments of first-order logic. The spectrum
of DLs includes inexpressive members such as EL, where certain reasoning tasks can be
decided in polynomial time [BBL05], and also expressive member such as ALC [SS91]
and ALCQIO, where deciding consistency of a knowledge base is EXPTIME-complete and
NEXPTIME-complete, respectively. Nevertheless, practical and efficient reasoning tools, that
are successfully used, exist also for those expressive DLs (e.g. [MSH09; SLG14]).

The primitive ingredients of the variable-free DL syntax are

• concept names (e.g. Device, PowerSupply, On) representing sets of objects,

• role names (e.g. ConnectedTo) describing binary relations of objects, and

• object names (e.g. laptop, battery) referring to concrete objects.

Several concept constructors are available to build complex concepts describing sets of objects.
For example,

DeviceuOnu∀ConnectedTo.{battery} (1.3)

represents the set of all those devices that are turned on and can be only connected to the
object battery. It uses the concept constructors u (conjunction), ∀ (value restriction) and
{o} (nominal). A nominal describes a singleton set.

1.2 Action Formalisms based on Description Logics 7

In first-order syntax the concept (1.3) can be written as the following formula with one
free variable x:

Device(x)∧On(x)∧∀y. (ConnectedTo(x , y)→ y ≈ battery) .

Different DLs offer different sets of concept constructors and role constructors. An overview
can be found in [Baa+10].

A DL knowledge base consists of an ABox and a TBox. The ABox is a set of ABox assertions
describing properties of concrete objects and their role relationships. For example, the
following ABox

{ (laptop À− DeviceuOn) ,

(battery À− PowerSupply) ,

((laptop,battery) À− ConnectedTo) }
(1.4)

incompletely describes the current state of world by stating that laptop is a device that is
turned on and is connected to battery, which is a power supply. An ABox is interpreted
under the open-world assumption, i.e. facts that are not a consequence of an ABox are neither
assumed to be false nor assumed to be true. Thus, we can say that an ABox provides an
incomplete description of the state of the world. A TBox is a set of terminological axioms and
consists of so-called concept inclusions such as the following one:

DeviceuOnv ∃ConnectedTo.PowerSupply. (1.5)

It states that devices that are turned on are always connected to some power supply. In
first-order syntax this axiom can be written as follows:

∀x . ((Device(x)∧On(x))→∃y. (ConnectedTo(x , y)∧ PowerSupply(y))) .

DL axioms such as the ones in (1.4) and (1.5) only describe static knowledge.

Representing Actions in Presence of a TBox

DLs are too inexpressive to axiomatize Reiter’s basic action theories. To obtain an expressive
action formalism based on DLs, a first ADL-like action formalism has been introduced by
Baader et al. in [Baa+05a]. It was shown to be a fragment of Reiter’s variant of the Situation
Calculus with a decidable projection and executability problem. The only difference is
that in [Baa+05a] also non-deterministic effects can be defined. Besides this exception, all
underlying assumptions mentioned in Section 1.1 also carry over to this formalism.

Extensions have been introduced in [Liu+06] and [BLL10]. The formalisms mainly differ
in the way the TBox is incorporated. In presence of global domain constraints provided in the
TBox one has to be aware of the ramification problem, which is the problem of determining
indirect action effects, and the qualification problem, which is the problem of determining
implicit preconditions of actions. Both are well-known representational problems. Lin and
Reiter [LR94] distinguished two kinds of state constraints: ramification constraints and
qualification constraints. The first type gives rise to indirect action effects and the second one
to implicit preconditions.

8 Chapter 1 Introduction

Ramification constraint. Consider the problem of defining the effects of an action named

α := disconnect(laptop,battery),

in a domain, where (1.4) incompletely describes the initial situation and (1.5) is treated as
a global state constraint. Consider the set eff(α) describing the set of all effects of action α:

eff(α) :=
�

〈ConnectedTo, {(laptop,battery)}〉−
	

. (1.6)

The semantics of α is given in terms of a transition relation on first-order interpretations, i.e.
the execution of α updates an interpretation. Intuitively, we can interpret this description
under the frame assumption as follows: the only specified effect in eff(α) is a delete-effect
on the role name ConnectedTo. The execution of α in a model of (1.4) and (1.5) deletes the
pair of objects (laptop,battery) from the interpretation of ConnectedTo and changes nothing
else in the model because of the frame assumption. As expected, the ABox assertion

(laptop,battery) À− ¬ConnectedTo

is true after doing α.
Note that the ABox (1.4) also has a model in which battery is the only power supply of

laptop. After executing α in such a model we obtain an interpretation, where laptop is still
turned on but is not connected to any power supply. This violates the concept inclusion (1.5).
Therefore, under a semantics that assumes that eff(α) is a complete description of all effects
of α, the domain description is inconsistent. An action semantics that properly respects (1.5)
as a global state constraint has to make sure that every model of (1.5) is transformed again
into a model of (1.5). An intuitive semantics for the present example should treat (1.5) as
a ramification constraint. It should turn off laptop after doing α by inferring the indirect
delete-effect 〈On, {laptop}〉− if battery is the only power supply of laptop before doing α.

Qualification constraint. There can also be dependencies between all three components of
the domain: the preconditions, the effects and the TBox. Now, we consider the following
ABox describing the initial situation

{(laptop À− Deviceu¬On)} (1.7)

and the action turn-on(laptop) with the following preconditions and effects

pre(turn-on(laptop)) := {laptop À− ¬On}

eff(turn-on(laptop)) :=
�

〈On, {laptop}〉+
	

.
(1.8)

We assume that both sets describe all preconditions and all effects, respectively. The only
precondition is that laptop is turned off. The execution of turn-on(laptop) adds the object
laptop to the interpretation of On. Obviously, the ABox (1.7) and the axiom (1.5) have
models where laptop is not connected to any power supply. In those models, the execution
leads to a state where laptop is turned on without being connected to any power supply
which is in contradiction with (1.5). Again, the domain model is inconsistent if we assume
that the sets of preconditions and effects given in (1.8) are complete. Now, it would be more

1.2 Action Formalisms based on Description Logics 9

intuitive to consider (1.5) as a qualification constraint that yields

(laptop À− ∃ConnectedTo.PowerSupply)

as an implicit precondition of turn-on(laptop) saying that laptop is required to be connected
to at least one power supply. Another solution would be to add an additional effect that
connects laptop with some power supply if no separate action for a connection is represented.

Usually, whether a state constraint should better be treated as a ramification or qualification
constraint depends on the particular domain and the particular action under consideration.
The concrete decision is often deferred to the user.

In [Baa+05a] both problems are avoided by carefully restricting the syntax of the TBox
(only so-called acyclic TBoxes are allowed) and the syntax of effect descriptions (called
post-conditions in [Baa+05a]). In [Liu+06] an unrestricted TBox is treated as a set of
ramification constraints and actions are extended with expressive non-deterministic features.
Unfortunately, the reasoning task of checking whether actions preserve the TBox (called
consistency) is undecidable. A simpler deterministic solution for treating concept inclusions
as ramification constraints is provided in [BLL10]. So-called (action-independent) causal
relationships can be specified by the domain designer. They are then used to derive indirect
action effects. Basic reasoning tasks such as projection and consistency with the TBox remain
decidable and have the same complexity as deciding consistency of DL knowledge bases for
most of the considered expressive DLs [BLL10].

Other DL-based action formalisms have been, for instance, introduced in [GS10] and
[Ahm+14]. In [GS10] acyclic TBoxes are integrated in the same way as in [Baa+05a]. The
reasoning tasks studied in [Ahm+14] involve general TBoxes, but indirect effects and implicit
preconditions are not considered. A notable difference is that the formalisms in [Baa+05a;
Liu+06; BLL10] only consider actions with local effects, whereas in the formalisms in [GS10;
Ahm+14] also non-local effects can be specified. A local effect only affects the objects that
are explicitly named in the action term such as laptop and battery in the example above. A
non-local effect can affect also unnamed objects such as the action drop(box) considered in
Section 1.1, that breaks all possibly unnamed fragile objects inside the box as well.

In Chapter 2, we consider an action language that allows us to abstract from a concrete
syntax of effect descriptions and generalizes some of the formalisms mentioned above.

Representing actions in presence of complex state constraints such as concept inclusions
requires also a complex and fine-grained modeling of actions in order to be able to integrate
both components. Furthermore, it is desirable to equip the user with an efficient reasoning
service for checking consistency of actions w.r.t. the state constraints.

In this thesis, we consider DL-based fragments of the action programming language Golog
for describing complex actions. Checking whether all executions of a program always respect
the TBox is then viewed as an instance of the verification problem (defined in Section 2.4).
Note that this view integrates state constraints as part of the correctness specification for a
concrete program and not as part of the underlying description of the primitive actions. A
brief general introduction to Golog is given in the following section.

10 Chapter 1 Introduction

1.3 The Golog Family of Action Programming Languages

The Golog (“Algol in logic”) family of action programming languages (e.g. [Lev+97; DLL00;
Bou+00; Sar+04]) has already been extensively studied as a language for high-level control
of autonomous agents. It is part of a knowledge representation and reasoning approach to
cognitive robotics [LR98; LL08] based on the Situation Calculus. According to Levesque and
Reiter cognitive robotics is concerned with “the study of the knowledge representation and
reasoning problems faced by an autonomous robot (or agent) in a dynamic and incompletely
known world”. In their position paper on high-level robot control [LR98] they raised, among
other questions, the following one:

“When should the inner workings of an action be available to the robot for reasoning
and when should the action be considered primitive or atomic?”

In Golog both representations are available. The (user-definable) primitives of the language
are the actions defined in an underlying basic action theory, which provides the declarative
part of the program. To describe a complex task, actions can be combined with imperative
and non-deterministic program constructs and with tests, which are first-order formulas
referring to the current state. For example, consider an agent, whose task is to repair the
faults of a certain device named dev (object name). Faults are reified as objects related to
dev via a binary fluent HasFault. An excerpt of a simple control program for such an agent
could be the following one:

while ∃x .HasFault(dev, x) do

pick(x)→ HasFault(dev, x)?;repair(dev, x);

end.

(1.9)

As long as dev has some fault, the agent non-deterministically picks one of them and repairs
it. With this highly non-deterministic program the faults are repaired one by one, but the
programmer does not fix a certain order in advance. It is the task of the interpreter of the
program to evaluate the tests and to choose a course of actions. Since the initial state is only
incompletely represented in the action theory, reasoning about the effects of the primitive
actions is required for this task. For instance, for executing the program above the successor
state axiom for HasFault and the precondition axiom of repair become relevant.

In [DLL00] an extension of Golog called ConGolog is introduced, which, among other things,
extends basic Golog [Lev+97] with (interleaved) concurrency. For example, in ConGolog one
can also model exogenous actions occurring in the environment and describe the interleaved
execution with a reactive control program of an agent. Thus, ConGolog programs are often
non-terminating. The transition semantics of ConGolog is defined axiomatically on top of
the Situation Calculus. This is done by treating program expressions as first-order terms in
the logic as well and by using quantification over programs.

In the so-called offline execution mode the interpreter first analyses the program as a
whole and computes a finite executable ground action sequence that represents a successful
terminating execution of the program. The resulting sequence is then sent to the actual
executor. This is similar to classical planning with the difference that in Golog the modeler is
equipped with a fully-fledged imperative language for providing additional control informa-
tion. Using the axiomatic semantics of Golog and ConGolog, the decision variant of the offline

1.4 Formal Verification 11

execution task can be expressed as a deduction problem in second-order logic. However,
for fragments of the language, where the initial state is given as a closed-world database,
practical implementations of offline execution systems written in Prolog are provided in
[DLL00; Rei01a].

A different view on a Golog program is obtained, if online execution is considered. In this
variant of Golog the tests in the program refer to what the executing agent itself knows or
does not know about the world at run-time. In case of incomplete information about the
world, acquiring additional information at run-time is required in order to decide on the next
action to execute. For example, to the program (1.9) one could add an online program that
describes how the agent has to use its sensors in order to identify the faults before repairing
them. A Golog variant based on the epistemic Situation Calculus [SL03], that also accounts
for online execution and sensing has been introduced in [Rei01b].

IndiGolog (incremental deterministic Golog) [Sar+04] is another member of the Golog
family that supports concurrency, online execution and sensing. Furthermore, it includes a
search operator, which allows for an integration of planning and lookahead for resolving the
non-determinism. A detailed presentation of the language with a focus on implementation
and applications can be found in [De +09].

In this thesis, we consider a ConGolog-like programming language (Chapter 2, Section
2.4). In Chapter 7, also knowledge and sensing is considered.

1.4 Formal Verification

Formal verification is concerned with the problem of checking whether all possible executions
of a given program satisfy a given formal specification. For a Turing complete programming
language and non-trivial specifications the verification problem is in general undecidable
due to Rice’s theorem. Despite this negative theoretical result, systems for formal verification
have become valuable tools that are successfully used in practice. In this section, we first
review several general approaches that are concerned with solving the verification problem
in practice. Second, we give a brief overview of existing verification methods for Golog
programs and Golog-like action languages.

General Approaches

In a recent survey paper on formal verification [BH14] three different general approaches
to formal verification are distinguished: deductive verification, model checking and abstract
interpretation. All of them are successfully used in practice [BH14].

For using deductive verification the correctness of a given program w.r.t. a specification is
formalized in a suitable logic. The logic must be expressive enough such that the correctness
of the program can be stated as a theorem in that logic. Then, the user tries to find a proof
for that theorem by using appropriate deduction methods. Due to the high expressiveness
of the logic often only semi-automated deduction methods are applicable. One example
is Hoare logic [Hoa69], where it is possible to express preconditions and postconditions
of programs. For proving such statements a proof calculus is available that requires the
user to provide loop invariants. Other methods express program correctness in higher-order
logic and employ a proof assistants such as Isabelle [NPW02], or a higher-order theorem

12 Chapter 1 Introduction

prover like, for example, PVS [Owr+96]. An advantage of deductive verification is, that it is
quite generally applicable. A disadvantage is, that it often requires a huge amount of user
interaction and expert knowledge.

Model checking [CGP01; BK08], in contrast, is a fully automated approach to formal
verification. It requires that the program (or an abstraction thereof) is given in terms of
a transition system with finitely many states labeled with atomic propositions. Desirable
properties of the program are then expressed in a temporal logic. Typical categories of
such properties are safety properties (“something bad never happens”) or liveness properties
(“something good eventually happens”) [Lam77]. The verification problem amounts to
the check whether the transition system is a model of the temporal formula. Prominent
approaches are based on propositional linear-time logic LTL [Pnu77] for specifying properties
of infinite executions of a non-terminating concurrent program. The LTL model checking
problem can be efficiently solved using an automata-based approach [VW86]. For example,
one can express a property like “something good happens infinitely often”. Other popular
specification languages are the propositional branching-time temporal logics CTL and the
more expressive extension CTL∗ [CE81]. Instead of a single path, a computation is viewed as
an infinite tree where the branching comes from the non-determinism in the system model.
The logics CTL and CTL∗ offer quantification over the different outgoing paths of a state.
CTL∗ can be viewed as an extension of LTL with path quantifiers and it subsumes both logics
LTL and CTL. Symbolic model checking [Bur+90; McM93] is an efficient approach for CTL
model checking. It is based on compact encodings of the state space using variants of binary
decision diagrams. However, a disadvantage of model checking in general is, that it is only
applicable if a finite-state model of the system can be obtained.

Another verification method is abstract interpretation [CC77]. Instead of analyzing the
possibly infinite state space of the program itself, it works on finite and sound approximations
of the program executions. If the abstraction is proven correct, then this carries over to the
actual program. However, an error detected in the abstraction is not necessarily also an
error in the actual program. The method is incomplete and not fully automated, but it is
successfully applied in practice (e.g. [Ber+11]).

Verification of Golog Programs

As discussed in Section 1.3, the members of the Golog family are very flexible programming
languages. The programmer does not need to foresee all eventualities and can rely on the
interpreter of the program, that resolves the non-determinism in the program and evaluates
the tests using the action theory. However, especially in case of online execution a lot of
uncertainty is involved. The initial state is only incompletely known and relevant information
needs to be acquired at runtime by means of sensing. Moreover, in presence of exogenous
actions and concurrency writing a program is an error-prone task and makes testing very
difficult. For example, if a variant of Golog is used for the high-level control of a mobile
robot, it is highly desirable to have some guarantee that the program works as expected
before actually executing it on the robot.

Therefore, research on action programming languages such as Golog has not only been
focused on efficient interpreters but also on formal verification. The axiomatic semantics of
Golog and ConGolog in second-order logic is directly amenable to deductive verification: a
first approach in [DTR97] considers verification of temporal properties of non-terminating

1.4 Formal Verification 13

Golog programs. Program correctness is formulated as a deduction problem in second-order
logic extended with fixpoint constructors.

In [Liu02] a Hoare logic calculus for terminating Golog programs has been introduced.
Verification of ConGolog programs using the higher-order theorem prover PVS has been
investigated in [SLL02].

A first fully automated verification method for a core fragment of ConGolog has been
introduced in [CL08]. Program properties of non-terminating programs can be expressed
in a first-order extension of CTL. The verification algorithm in [CL08] combines deductive
verification and model checking. The overall algorithm is inspired by a standard CTL model
checking algorithm. But in order to deal with the first-order representations, it makes calls
to a solver of deduction problems in first-order logic during its runs, that are not guaranteed
to be terminating. The algorithm has been also extended to temporal properties written in a
first-order variant of CTL∗ [CL10]. In this extension the algorithm needs to solve deduction
problems in second-order logic.

In this work, we are interested in achieving decidability of the verification problem of Golog
programs by restricting the expressiveness of the language. One source of undecidability
is the use of full first-order as base logic. To overcome this problem we consider action
formalism based on description logics such as the ones introduced in Section 1.2. First
decidability results for the verification problem based on the action formalism in [Baa+05a]
can be found in [BLM10]. However, instead of an actual Golog program over DL actions,
this approach considers infinite sequences of actions accepted by a given Büchi automaton.
As the logic for specifying properties of infinite sequences of DL actions, the approach uses
the temporalized DL ALCO-LTL [BGL12], which extends propositional LTL by allowing for
the use of DL axioms in place of propositional letters. For example, one can express that the
object laptop is infinitely often connected to some power supply:

GF(laptop À− ∃ConnectedTo.PowerSupply),

where the letters G (“globally”) and F (“eventually”) are temporal modalities. In [Lip14] the
decidability result has been extended to a setting, where the action formalism in [BLL10] in-
stead of the one in [Baa+05a] is used to describe the primitive actions. The exact complexities
of the problems studied in [BLM10] and [Lip14] are still open.

In this thesis, we consider actual Golog-like programs instead of Büchi automata. Moreover,
we extend the decidability results obtained in [BLM10; Lip14] towards more expressive
action languages and specification languages. The goal is to further explore the boundary
between decidable and undecidable fragments of Golog programs over DL actions in order
to widen the applicability of the verification methods.

We develop an abstraction technique that allows us to reduce the verification problem for
restricted classes of Golog programs and temporal properties to a decidable propositional
model checking problem. For pick-free ConGolog programs over DL actions with only local
effects and CTL∗ properties we obtain tight complexity results. One main limitation of the
action formalisms in [Baa+05a; BLL10] is that only local effects can be described. We observe
that an extension towards non-local effects leads to undecidability of the verification even for
rather inexpressive DLs. However, we are able to identify syntactical restrictions on action
descriptions that allow us to regain decidability in presence of non-local effects.

In order to extend our decidability results towards online executions of Golog programs,

14 Chapter 1 Introduction

we introduce a new action formalism based on the DL ALCO, where also sensing actions
can be represented. We study the complexity of the verification problem for knowledge-based
ConGolog programs over such actions.

1.5 Outline and Contributions of the Thesis

In this section, we present an outline of the structure of the thesis and summarize the main
contributions. Many of the results in this thesis have already been published in [BZ13; ZC14;
ZC15b; ZC15a; ZC16].

• In Chapter 2, we define the basic notions we use to formalize the verification problem
for a general class of ConGolog programs. The term L-definability of a finite set of
ground actions, where L is a fragment of first-order logic, is defined. To be able to
instantiate L with a decidable logic, an expressive description logic is defined that has
the same expressiveness as the two-variable fragment of first-order logic with counting
C2 [GOR97]. This DL serves as an “umbrella logic” for the different DLs considered
in the thesis. The semantics of a ConGolog program is defined in terms of a possibly
infinite transition system, where each state is labeled with a first-order interpretation
representing the current state of the world. Finally, the verification problem is formalized
as an infinite-state model checking problem for CTL∗ properties over L-axioms, where
L denotes the base logic under consideration.

• In Chapter 3, we start investigating the computational properties of the verification
problem. After showing some properties of the program semantics defined in Chapter
2, we prove that the verification problem for Golog programs over non-ground actions
defined in a simple ALC-action theory is already undecidable. The unbounded pick-
operator for non-deterministically choosing action arguments is identified as one
of the main sources of undecidability. Therefore, in the following only pick-free
ConGolog programs over finitely many ground actions are considered. To prepare
the abstraction technique for pick-free programs used in the subsequent chapters, the
notion of a reachable subprogram expression is defined, and we show that there are at
most exponentially many of them measured w.r.t. the size of the program. Moreover,
the notion of a context-bisimilar abstraction of a possibly infinite transition system
is defined. The abstraction is a propositional transition system. Intuitively, context-
bisimilarity ensures that the concrete transition system and the abstract one satisfy the
same temporal properties.

The properties of the program semantics, which handles terminating, non-terminating
and failing runs of a program in a uniform way, and the results regarding the number
of reachable subprograms have already been published in

[BZ13] Franz Baader and Benjamin Zarrieß. “Verification of Golog Programs over
Description Logic Actions”. In: Frontiers of Combining Systems - 9th International
Symposium, FroCoS 2013, Nancy, France, September 18-20, 2013. Proceedings. Ed. by
Pascal Fontaine, Christophe Ringeissen, and Renate A. Schmidt. Vol. 8152. Lecture
Notes in Computer Science. Springer, 2013, pp. 181–196. URL: https://doi.org/
10.1007/978-3-642-40885-4_12.

https://doi.org/10.1007/978-3-642-40885-4_12
https://doi.org/10.1007/978-3-642-40885-4_12

1.5 Outline and Contributions of the Thesis 15

• In Chapter 4, we consider the verification problem for

– pick-free L-ConGolog programs over L-definable actions with only local effects, and

– CTL∗ properties over L-axioms,

where L is a DL between ALC and ALCQIO. We prove decidability of the verification
problem by showing that a finite bisimilar abstraction of the transition system induced
by the program is effectively computable. This allows us to reduce the problem to a
finite-state model checking problem for propositional CTL∗ properties. The abstraction
technique is based on the newly introduced notion of a dynamic type of an interpretation.
Intuitively, executing the program in interpretations of the same dynamic type leads to
the same behavior. There are only finitely many dynamic types, and realizability of a
given set of type elements can be reduced to a consistency check in the underlying DL
L. The idea behind this abstraction technique was first presented in

[BZ13] Franz Baader and Benjamin Zarrieß. “Verification of Golog Programs over
Description Logic Actions”. In: Frontiers of Combining Systems - 9th International
Symposium, FroCoS 2013, Nancy, France, September 18-20, 2013. Proceedings. Ed. by
Pascal Fontaine, Christophe Ringeissen, and Renate A. Schmidt. Vol. 8152. Lecture
Notes in Computer Science. Springer, 2013, pp. 181–196. URL: https://doi.org/
10.1007/978-3-642-40885-4_12

and further developed in

[ZC14] Benjamin Zarrieß and Jens Claßen. “Verifying CTL* Properties of GOLOG Pro-
grams over Local-Effect Actions”. In: ECAI 2014 - 21st European Conference on Artificial
Intelligence, 18-22 August 2014, Prague, Czech Republic - Including Prestigious Applica-
tions of Intelligent Systems (PAIS 2014). Ed. by Torsten Schaub, Gerhard Friedrich, and
Barry O’Sullivan. Vol. 263. Frontiers in Artificial Intelligence and Applications. IOS
Press, 2014, pp. 939–944. URL: https://doi.org/10.3233/978-1-61499-419-
0-939.

Furthermore, we show that the verification problem is 2EXPTIME-complete if

L ∈ {ALCO, ALCIO, ALCQO}, and

CO-N2EXPTIME-complete if L= ALCQIO.

• The class of programs over actions with only local effects is rather inexpressive, because
only a fixed finite number of named objects is affected by an action execution. In
Chapter 5, we push the decidability border further towards pick-free L-ConGolog
programs over L-definable actions with possibly non-local effects. We prove that
non-local action effects lead to undecidability of verification already for the rather
inexpressive base logic ELI⊥. Decidability can be regained by imposing syntactical
restrictions on the effect definitions of the actions. One decidable class is obtained by
disallowing cyclic dependencies between fluents and another one by allowing only
quantifier-free formulas for describing the effects. Decidability is shown by generalizing
the abstraction technique from Chapter 4. The base logic L in this chapter is the DL
that covers full C2. Again, we consider temporal specifications formulated in CTL∗

over L-axioms. The results are based on the publication

https://doi.org/10.1007/978-3-642-40885-4_12
https://doi.org/10.1007/978-3-642-40885-4_12
https://doi.org/10.3233/978-1-61499-419-0-939
https://doi.org/10.3233/978-1-61499-419-0-939

16 Chapter 1 Introduction

[ZC16] Benjamin Zarrieß and Jens Claßen. “Decidable Verification of Golog Programs
over Non-Local Effect Actions”. In: Proceedings of the Thirtieth AAAI Conference on
Artificial Intelligence, February 12-17, 2016, Phoenix, Arizona, USA.. Ed. by Dale
Schuurmans and Michael P. Wellman. AAAI Press, 2016, pp. 1109–1115. URL: http:
//www.aaai.org/ocs/index.php/AAAI/AAAI16/paper/view/12283.

• In Chapter 6, we extend ALCO-action theories over local effect actions with a simple
notion of sensing. ALCO is chosen as a simple prototypical DL. We embed this language
into the epistemic Situation Calculus ES [LL04; LL11] to justify our semantics. The
epistemic projection problem with projection queries formulated in the epistemic DL
ALCOK [Don+98] is shown to be EXPTIME-complete. Thus, the problem is not harder
than standard reasoning in ALCO. The results in this chapter are published in

[ZC15b] Benjamin Zarrieß and Jens Claßen. “Verification of Knowledge-Based Pro-
grams over Description Logic Actions”. In: Proceedings of the Twenty-Fourth Interna-
tional Joint Conference on Artificial Intelligence (IJCAI 2015). Ed. by Qiang Yang and
Michael Wooldridge. AAAI Press, 2015, pp. 3278–3284.

• In Chapter 7, we consider knowledge-based ConGolog programs over actions defined in
ALCO-action theories with sensing that we have introduced in the previous chapter.
Tests in the program are formulated in ALCOK, and we consider CTL∗ properties over
ALCOK-axioms. A decidability result for the corresponding verification problem is
obtained. For some fragments we are able to show tight complexity results. Among
those fragments are also fragments with an EXPTIME-complete verification problem.
Thus, under suitable restrictions the verification problem can be simpler than in the
non-epistemic case. Moreover, we are able to reintroduce a restricted variant of the pick
operator. We show that for programs with the restricted pick operator the verification
problem reduces to the ground action case. Some of the results in this chapter are
published in

[ZC15b] Benjamin Zarrieß and Jens Claßen. “Verification of Knowledge-Based Pro-
grams over Description Logic Actions”. In: Proceedings of the Twenty-Fourth Interna-
tional Joint Conference on Artificial Intelligence (IJCAI 2015). Ed. by Qiang Yang and
Michael Wooldridge. AAAI Press, 2015, pp. 3278–3284.

• In Chapter 8, we conclude and give some directions for future work.

http://www.aaai.org/ocs/index.php/AAAI/AAAI16/paper/view/12283
http://www.aaai.org/ocs/index.php/AAAI/AAAI16/paper/view/12283

Chapter 2

Preliminaries

In this chapter, the basic definitions used in this thesis are provided. We define first-order
dynamical systems and our notion of definability of actions (Section 2.1), basic notions of
description logics and action theories based on them (Section 2.2), transition systems and
temporal logic (Section 2.3) and ConGolog programs and the verification problem (Section
2.4).

2.1 First-Order Dynamical Systems

In this section we introduce a general model of first-order dynamical systems. It is inspired
by Pednault’s state-transition model of action introduced in [Ped94]. In our setting states are
given as first-order relational structures (FO interpretations) and the meaning of an action is
described as a transition relation on interpretations.

We consider standard first-order logic with equality (FO for short) over a fixed vocabulary.

Definition 2.1. The vocabulary consists of the following countably infinite and pairwise
disjoint sets of:

• predicate names NF = {F, F0, F1, . . .} and each predicate name F ∈ NF is associated with
an arity ar(F) ∈ N and ar(F)> 0;

• variable names NV = {x , y, x0, x1, . . .} and

• object names NO = {o, o1, o2, . . .}.

We assume that for each n ∈ N, n > 0 countably infinitely many predicate names F ∈ NF
exist with ar(F) = n. And we assume that the set of all variable names is linearly ordered.

The set of all object terms is given by NV ∪NO.
We use the notation x̄ , ō and t̄ to denote tuples of variable names, object names and object

terms, respectively. Î

The syntax of FO formulas over the vocabulary NF,NV,NO is defined in the usual way.

Definition 2.2. An FO formula φ is built according the following syntax rule

φ ::= F(t1, . . . , tn) | t1 ≈ t2 | ¬φ | φ ∧φ | φ ∨φ | ∃x .φ | ∀x .φ,

where F ∈ NF stands for a predicate name with arity ar(F) = n, t1, t2, . . . , tn are object
terms and x ∈ NV is a variable name. The Boolean connectives “→” (implication) and “≡”
(equivalence) are defined as the usual abbreviations.

An FO formula ψ without any free occurrences of variables is called sentence. Î

17

18 Chapter 2 Preliminaries

The semantics is given in terms of first-order interpretations (interpretations for short).

Definition 2.3. A first-order interpretation I is a pair of the form I = (∆I , ·I), where ∆I is
a non-empty domain and ·I a function that maps each predicate name F ∈ NF to an ar(F)-ary
relation over ∆I , denoted by FI ⊆ (∆I)ar(F), and each object name o ∈ NO to an element
oI ∈∆I . The set FI is called the extension of F under I.

A variable assignment µ for I = (∆I , ·I) is a total function of the form µ : NV→∆I . Let
t ∈ NV ∪NO. We define

tI,µ :=

¨

µ(t), for t ∈ NV;

tI , for t ∈ NO.

Let x ∈ NV and d ∈∆I and µ a variable assignment for I. µ[x 7→ d] is a variable assignment
for I obtained from µ by mapping x to d. Let φ be an FO formula. Satisfaction of φ in I,µ,
denoted by I,µ |= φ, is defined by induction on the structure of φ as follows

I,µ |= F(t1, . . . , tn) iff (tI,µ
1 , . . . , tI,µ

n) ∈ FI ;

I,µ |= t1 ≈ t2 iff tI,µ
1 = tI,µ

2 ;

I,µ |= ¬φ1 iff I,µ 6|= φ1;

I,µ |= φ1 ∧φ2 iff I,µ |= φ1 and I,µ |= φ2;

I,µ |= φ1 ∨φ2 iff I,µ |= φ1 or I,µ |= φ2;

I,µ |= ∃x .φ1 iff I,µ[x 7→ d] |= φ1 for some d ∈∆I ;

I,µ |= ∀x .φ1 iff I,µ[x 7→ d] |= φ1 for all d ∈∆I .

For an FO sentence ψ we write I |=ψ to denote that ψ is satisfied in I. A knowledge base is
a finite set of FO sentences. An interpretation I is a model of a knowledge base KB, written
as I |= KB, iff each element of KB is satisfied in I. M(KB) denotes the set of all models of a
knowledge base KB.

Let φ be an FO formula and x1, . . . , xn exactly the variable names that occur free in φ
with x i < x i+1 for all i ∈ {1, . . . , n− 1}. The extension of φ under I = (∆I , ·I), denoted by
φI , is defined as follows

φI := {(d1, . . . , dn) ∈ (∆I)
n | I,µ[x1 7→ d1] · · · [xn 7→ dn] |= φ for some µ for I}.

Î

We distinguish classes of interpretations satisfying certain assumptions regarding the
interpretation of object names.

Definition 2.4. An interpretation I = (∆I , ·I) satisfies the unique name assumption (UNA)
for object names iff for any two distinct individuals o, o′ ∈ NO it holds that oI 6= o′I . I
satisfies the standard name assumption (SNA) iff ∆I = NO and oI = o for all o ∈ NO. Î

Next, we define the syntax of actions. Syntactically, actions are defined as terms built from
action names with an arity that possibly have object terms as arguments.

2.1 First-Order Dynamical Systems 19

Definition 2.5. Let NA be a countable infinite set of action names disjoint with NF ∪NV ∪NO.
Each action name α ∈ NA has an arity, denoted by ar(α) ∈ N, such that for each arity
k = 0,1, 2, . . . there are infinitely many action names in NA with arity k.

The set of all action terms over NA, NV and NO, denoted by Term(NA,NV,NO), is defined as
the smallest set satisfying the following conditions:

• α ∈ Term(NA,NV,NO) for any α ∈ NAwith ar(α) = 0, and

• if α ∈ NA with ar(α)> 0 and t̄ ∈ (NV ∪NO)ar(α), then α(t̄) ∈ Term(NA,NV,NO).

Action terms that contain variable names can be instantiated. A variable mapping ν is a total
function of the form ν : NV ∪ NO → NO that maps object terms to object names such that
ν(o) = o for all o ∈ NO.

Let α(t1, . . . , tk) be an action term built using the action name α ∈ NA with ar(α) = k,
and ν a variable mapping. The ground action term α(ν(t1), . . . ,ν(tk)) is called the ground
instantiation of α(t1, . . . , tk) w.r.t. ν.

For a set of action terms Act ⊆ Term(NA,NV,NO), the set ground(Act) denotes the set of
all possible ground instantiations of action terms in Act. To simplify the notation we will
sometimes omit the tuple of arguments when writing an action term. The symbol α will also
stand for an action term. It will be clear from the context whether an action name or action
term is meant. We will often use the bold symbols α,α0,α1, . . . ,β ,β0, . . . to denote ground
action terms. Î

Semantically, a ground action term is understood as a name of an operator that updates
first-order interpretations. The semantics of actions will be given in terms of a transition
relation between interpretations. For this purpose, the notion of a first-order dynamical
system (FO-DS for short) is introduced. In our view of a dynamical system an interpretation
completely describes the current state of the world. An FO-DS defines executability of a
ground action in an interpretation and how an interpretation is changing as the result of an
action execution. The state space of an FO-DS is a set of interpretations. We assume that
there are only finitely many relevant (possibly non-ground) action terms and finitely many
relevant predicate names called fluents whose extensions are possibly subject to changes.

Definition 2.6. A first-order dynamical system (FO-DS) D is a tuple

D= (I, Iini, F ,Act, E = 〈add,del〉,Pre)

that consists of the following components:

• I is a (possibly uncountable) set of interpretations called the state space of D;

• Iini ⊆ I is the set of initial states;

• F ⊂ NF is a finite set of relevant predicate names (also called fluents);

• Act ⊂ Term(NA,NV,NO) is a finite set of relevant action terms;

• E = 〈add,del〉 is a pair of two functions, where add (called positive effect function) and
del (called negative effect function) are total functions that map each interpretation
I = (∆I , ·I) ∈ I, ground action α ∈ ground(Act) and fluent F ∈ F to sets

add(I,α, F) ⊆ (∆I)
ar(F) and del(I,α, F) ⊆ (∆I)

ar(F);

20 Chapter 2 Preliminaries

• Pre is a binary precondition relation with Pre ⊆ I× ground(Act).

The sets add(I,α, F) and del(I,α, F) are called add-sets and delete-sets, respectively. Î

In the following we often write D= (I, Iini, F ,Act, E ,Pre) to denote an FO-DS and do not
name add and del explicitly.

The effect functions in E completely describe the effect of executing a ground action in an
interpretation. Given an interpretation, a ground action and an n-ary fluent, add comprises
the set of n-tuples from the domain that are added to the extension of the respective fluent
predicate and del the set of n-tuples that are deleted from it. Before the transition relation
on interpretations induced by E is defined an example for an FO-DS is given.

Example 2.7. An example domain with devices and power supplies is considered. In the
following, we describe a first-order dynamical system for this domain. We use a countably
infinite set of object names

NO := {d0,d1,d2, . . .} ∪ {p0,p1,p2, . . .}.

As state space I we choose the set of all first-order structures satisfying the SNA, i.e. the set
of all interpretations having NO as their domain.

A set F of four fluent predicates is chosen as follows: ConnectedTo (ConTo for short) is
binary and interpreted as a subset of NO × NO and PowerSupply (PowerS for short) Device
(Dev for short) and On are unary fluents and interpreted as subsets of NO.

The initial state space Iini consists of those interpretations I = (NO, ·I) satisfying the
following constraints

d0 ∈ DevI , p0 ∈ PowerSI , d0 /∈ OnI , (d0,p0) /∈ ConToI .

The set of action terms Act in this example consists of the ground terms

disable(p0),turn-on(d0) and connect(d0,p0).

We represent the effect functions E = 〈add,del〉 by providing explicit definitions of the
corresponding add- and delete-sets. The action turn-on(d0) turns d0 on, if it is connected
to a power supply, and changes nothing else. For all I ∈ I we have

add(I,turn-on(d0), On) :=

(

{d0} if there is a y ∈ PowerSI with (d0, y) ∈ ConToI ,

; otherwise.

All delete-sets and the other remaining add-sets involving turn-on(d0) are empty. The action
connect(d0,p0) simply connects d0 and p0 and changes nothing else. We have for all I ∈ I

add(I,connect(d0,p0), ConTo) := {(d0,p0)}

and in the remaining cases the add- and delete-sets are empty. After disable(p0), p0 is no

2.1 First-Order Dynamical Systems 21

longer a power supply

del(I,disable(p0), PowerS) := {p0} for all I ∈ I,

and all devices with p0 as their only connected power supply are no longer members of the
set On. Thus, we have the following delete-set for all I ∈ I:

del(I,disable(p0), On) := {x ∈ DevI | (x ,p0) ∈ ConToI and

there is no y ∈ PowerSI with

y 6= p0 and (x , y) ∈ ConToI}.

No other fluent predicate is affected by disable(p0). The remaining sets involving the
action disable(p0) are empty.

Preconditions are given as follows: for all I ∈ I we have

(I,turn-on(d0)) ∈ Pre iff d0 ∈ DevI ;

(I,connect(d0,p0)) ∈ Pre iff d0 ∈ DevI ;

(I,disable(p0)) ∈ Pre iff p0 ∈ PowerSI .

Î

The effect functions E = 〈add,del〉 of an FO-DS uniquely determine a transition relation
on the state space that is defined as follows.

Definition 2.8. Let D = (I, Iini, F ,Act, E ,Pre) be an FO-DS as above with the pair of effect
functions E = 〈add,del〉, and let α ∈ ground(Act) be a ground action, and I, I′ ∈ I two
interpretations. We say that α transforms I into I′, written as

I ⇒αD I′,

iff the following conditions are satisfied:

• ∆I =∆I′;

• FI′ = (FI \ del(I,α, F))∪ add(I,α, F) for all fluents F ∈ F ;

• X I′ = X I for all X ∈ NO ∪ (NF \F).

We also use the notation⇒D for transformations caused by executing a sequence of ground
actions. Let σ = α0α1 · · ·αn ∈ ground(Act)∗ for some n > 0 be a ground action sequence,
and J , Y ∈ I two interpretations. We write

J ⇒σD Y

iff there exists a sequence of interpretations I0, . . . , In+1 with I j ∈ I for all j ∈ {0, . . . , n+ 1};
Ii ⇒

αi
D Ii+1 for all i ∈ {0, . . . , n}; and I0 = J and In+1 = Y. Î

For any ground action α ∈ ground(Act) and interpretation I ∈ I the successor interpretation
I′ ∈ I with I ⇒αD I′ is unique, if it exists. It is possible that an interpretation I′ satisfying

22 Chapter 2 Preliminaries

the three conditions of⇒αD does not exist in I. In the following we only consider FO-DSs
where for each α ∈ ground(Act) the transition relation ⇒αD is right-total, i.e. a successor
interpretation always exists in the state space I.

Example 2.9 (2.7 continued). An interpretation I0 = (NO, ·I0) (satisfying the SNA) from
the initial state space of the FO-DS described in Example 2.7 interprets the relevant fluent
predicates as follows:

DevI0 := {d0,d1,d2, . . .}, PowerSI0 := {p0,p1},
ConToI0 := {(d1,p0), (d1,p1), (d2,p0)}, OnI0 := {d1,d2}.

Furthermore, an interpretation J0 = (NO, ·J0) is given by the following sets

DevJ0 := {d0,d1,d2, . . .}, PowerSJ0 := {p0,p1}, ConToJ0 := {(d0,p1)}, OnJ0 := ;.

We consider the execution of the action sequence

σ = connect(d0,p0) turn-on(d0) disable(p0).

in I0 and J0. It leads to interpretations I1 and J1 with I0⇒σD I1 and J0⇒σD J1, where D is
the FO-DS described in Example 2.7 and we have

PowerSI1 := {p1}, ConToI1 := {(d1,p0), (d1,p1), (d2,p0), (d0,p0)}, OnI1 := {d1}

and

PowerSJ1 := {p1}, ConToJ1 := {(d0,p1), (d0,p0)}, OnJ1 := {d0}.

The interpretation of Dev remains unchanged in both cases. Note that in I0 the device d1 is
also connected to the power supply p1. Thus, the device is not affected by disabling p0 and it
stays on in I1. The same applies to the device d0 in J0 and J1. Î

To simplify the technical treatment we have defined the effect functions add and del as total
functions that are independent of the possibility relation. Another choice would have been
to consider them as partial functions that are only defined if the ground action is possible in
the interpretation.

It is possible that the two sets add(I,α, F) and del(I,α, F) overlap. In this case the chosen
“add-after-delete semantics” of the transition relation gives precedence to the corresponding
add-set. For example, in PDDL this is handled in the same way. However, an unambiguous
consistent representation of an FO-DS should ensure that add-sets and delete-sets are always
disjoint.

We assume that F consists of all the predicate names that are relevant for the domain
including also those predicates that are assumed to be rigid. In this case the functions add
and del always yield the empty set for a rigid predicate name.

Although our model of a first-order dynamical system is quite general, there are several
simplifying assumptions we have adopted (see Section 1.1):

• Actions are deterministic. There always exists a unique successor interpretation.

2.1 First-Order Dynamical Systems 23

• We consider only instantaneous actions. Actions do not have any duration.

• In each step only one action can be executed. There is no simultaneous execution of
more than one action.

• The possibility of a ground action and its effects only depend on the current state.

Next, we define projection and executability.

Definition 2.10. Let D = (I, Iini, F ,Act, E ,Pre) be as above, ϕ a FO sentence (that mentions
only predicate names from F), andσ = α0α1 · · ·αn ∈ ground(Act)∗ a ground action sequence.

We say that ϕ is true in D after executing σ iff for all interpretations I ∈ Iini the transformed
interpretation I′ ∈ I with I ⇒σD I′ satisfies I′ |= ϕ.

We say that σ is executable in an interpretation I ∈ I iff there exists a sequence of inter-
pretations I0, . . . , In with I j ∈ I for all j ∈ {0, . . . , n}, Ii ⇒

αi
D Ii+1 and (Ii ,αi) ∈ Pre for all

i ∈ {0, . . . , n− 1} and I0 = I.
We say that σ is executable in D iff σ is executable in all interpretations I ∈ Iini. Î

So far we haven’t made any assumptions about a particular representation of the pair of
effect functions E = 〈add,del〉 and the precondition relation Pre. In Example 2.7 we have
described E und Pre using standard set notation. We now define a representation where it is
ensured that effects and preconditions of actions have a certain structure that is definable
in first-order logic. The goal of such a representation is to enable first-order reasoning
about actions. One basic assumption we make is that preconditions and action effects are
context-dependent w.r.t. a context that is definable as a finite set of FO sentences. If a finite
set of ground actions is considered, then a corresponding context consists of all relevant
properties (formulated as FO sentences) that are needed to characterize preconditions and
effects of actions in a certain state. (Recall that states are first-order interpretations in our
view.) Furthermore, the static type (w.r.t. a context) of a state is the subset of the context
consisting of exactly those properties that are indeed true in the state.

First, the notion of a context and the static type of an interpretation w.r.t. a context is
defined formally.

Definition 2.11. A context, denoted by C, is a finite set of FO sentences that is closed under
negation, i.e. for each ψ ∈ C we have also ¬ψ ∈ C (modulo elimination of double negation).

Let C be a context and F ⊂ NF a finite set of relevant predicate names. We say that C is a
context over F iff the sentences in C mention only predicate names from F .

A static type w.r.t. C is a maximal (w.r.t. ⊆) subset of C that has a model. The set of all
static types w.r.t. C is denoted by SC . Let I be an interpretation. The static type of I w.r.t. C,
denoted by s-typeC(I), is given by

s-typeC(I) := {ψ ∈ C | I |=ψ}.

Î

Obviously, it holds that s-typeC(I) ∈SC for all interpretations I and for all types s ∈SC
we have s= s-typeC(I) for some I.

24 Chapter 2 Preliminaries

Example 2.12 (2.7 and 2.9 continued). For the FO-DS in Example 2.7 the following sentences
are relevant

ϕ1 := Dev(d0),

ϕ2 := PowerS(p0),

ϕ3 := ∃x . (ConTo(d0, x)∧ PowerS(x)) ,

ϕ4 := On(d0), and

ϕ5 := ConTo(d0,p0).

ϕ1 is relevant for the precondition of turn-on(d0) and connect(d0,p0), ϕ2 is the precondi-
tion of disable(p0), satisfaction of ϕ3 is relevant for the outcome of turn-on(d0) and ϕ4
and ϕ5 are needed to describe the initial situation. A context C is given by

C :=
�

ϕ1,¬ϕ1,ϕ2,¬ϕ2,ϕ3,¬ϕ3,ϕ4,¬ϕ4,ϕ5,¬ϕ5

	

.

Now consider the interpretations I0, I1, J0 and J1 from Example 2.9. The static types of
them w.r.t. C are as follows:

s-typeC(I0) = s-typeC(J0) =
�

ϕ1,ϕ2,¬ϕ3,¬ϕ4,¬ϕ5

	

;

s-typeC(I1) =
�

ϕ1,¬ϕ2,¬ϕ3,¬ϕ4,ϕ5

	

;

s-typeC(J1) =
�

ϕ1,¬ϕ2,ϕ3,ϕ4,ϕ5

	

.

Î

Based on the notion of static types we define several conditions for an appropriate repre-
sentation of action effects and preconditions.

Definition 2.13. Let A be a finite set of ground action terms. An FO-admissible representation
of A is given as a tuple of the form

ΣA = (KB, F , C,E+,E−,PreC),

that consists of the following components:

• a finite set of relevant fluents F ,

• an FO knowledge base KB over F as an incomplete description of the initial situation,

• a context C over F with ϕ ∈ C for all sentences ϕ ∈ KB, and

• a pair of effectively computable functions (E+,E−), that map each tuple

(s,α, F) ∈SC × A×F

to an FO formula
E+[s,α, F] and E−[s,α, F], respectively,

that is formulated over F and has exactly ar(F) many free variables, and

• a decidable relation PreC ⊆SC × A.

2.1 First-Order Dynamical Systems 25

Î

An FO-admissible representation induces a first-order dynamical system.

Definition 2.14. Let A be a finite set of ground action terms and

ΣA = (KB, F , C,E+,E−,PreC)

an FO-admissible representation of A. The FO-DS induced by ΣA, denoted by D(ΣA), is an
FO-DS the form

D(ΣA) = (I, M(KB), F , A, E ,Pre),

where the state space is given by

I :=
�

J
�

� there exists I ∈M(KB) with ∆J =∆I and oJ = oI for all o ∈ NO
	

;

and where E = 〈add,del〉 and Pre are defined as follows

• for all I ∈ I and all (α, F) ∈ A×F we have

add(I,α, F) :=
�

E+[s,α, F]
�I

and del(I,α, F) :=
�

E−[s,α, F]
�I

,

with s= s-typeC(I), and

• for all I ∈ I and all α ∈ A it holds that

(s-typeC(I),α) ∈ PreC iff (I,α) ∈ Pre.

Î

In an FO-admissible representation of a finite set of ground actions we require that the
add-sets and delete-sets are first-order definable and context-dependent w.r.t. a context that
is defined as a set of FO sentences. The definitions of the add-sets and delete-sets in form
of FO formulas are effectively computable given the static type, the ground action and the
fluent. Note that the restriction on E+ and E− does not guarantee a solution to the frame
problem. For example, if both functions are explicitly given in terms of a complete table with
formulas for each tuple (s,α, F) ∈SC × A×F , then this representation does not count as a
solution to the frame problem.

Moreover, it is decidable whether a ground action is executable in an interpretation that is
abstracted in terms of its static type. The initial states are exactly the models of KB and the
state space of D(ΣA) is the set of all interpretations for which a model of the initial KB exists
that has the same domain and agrees with the interpretation on the mapping of object names.
Since actions do not affect the domain and interpretation of object names, it is guaranteed
that the induced transition relation⇒α

D(ΣA)
on the state space is right-total for all α ∈ A.

The notion of an FO-admissible representation can be refined in case a syntactical fragment
of first-oder logic is considered as a base logic.

Definition 2.15. Let L be a syntactical fragment of FO and ΣA = (KB, F , C,E+,E−,PreC) an
FO-admissible representation for a finite set of ground actions A.

We say that ΣA is an L-admissible representation of A iff the following conditions are
satisfied

26 Chapter 2 Preliminaries

• the fluents in F satisfy the requirements of L regarding the arity,

• C and KB consist of L-axioms, and

• the computable functions E+ and E− map each tuple (s,α, F) ∈SC×A×F to formulas
E+[s,α, F] and E−[s,α, F] that are formulated in L.

Î

Next, we define L-definability of a finite set of ground actions in an FO-DS.

Definition 2.16. Let D= (I, Iini, F ,Act, E ,Pre) be an FO-DS and A ⊆ ground(Act) a finite set
of ground actions. The restriction of D to A is the FO-DS of the form

D|A = (I, Iini, F , A, E |A ,PreA),

where I, Iini, and F are the same as in D and E |A and PreA denote the restrictions of E and
Pre, respectively, to the actions in A.

Let L be a syntactical fragment of FO and C an L-context over F . We say that A is
L-definable in D w.r.t. C iff there exists an L-admissible representation of the form

ΣA = (KB, F , C,E+,E−,PreC) such that D|A =D(ΣA)

And, A is L-definable in D iff there exists an L-context C over F such that A is L-definable in
D w.r.t. C. Î

Note that L-definability of a set of ground actions in an FO-DS also implies that the set of
initial states in the FO-DS is equal to the set of all models of some L-KB.

Example 2.17 (2.7 and 2.12 continued). The ground actions

A := {connect(d0,p0), turn-on(d0), disable(p0)}

are FO-definable in the FO-DS described in Example 2.7 w.r.t. the context C given in Example
2.12. We briefly sketch (some parts of) a possible FO-admissible representation for A. The
initial state space corresponds to the set of all models of the sentence

Dev(d0)∧ PowerS(p0)∧¬On(d0)∧¬ConTo(d0,p0).

Obviously, the add-sets and delete-sets of the actions are first-order definable. Functions
E+, E− providing first-order formulas can be explicitly described. For instance, consider the
action turn-on(d0) and the fluent On. For all static types s ∈SC the add-set is defined by

E+[s,turn-on(d0), On] :=

¨

x ≈ d0 if ∃x . (ConTo(d0, x)∧ PowerS(x)) ∈ s,
x 6≈ x otherwise.

Next, consider the action disable(p0) and the unary fluent predicate On. The delete-set
formula E−[s,disable(p0), On] is defined for all s ∈SC by

Dev(x)∧ ConTo(x ,p0)∧¬∃y. (PowerS(y)∧ y 6≈ p0 ∧ ConTo(x , y)) . (2.1)

It describes devices that are not connected to any power supply different from p0. Î

2.2 Description Logics and Action Languages 27

2.2 Description Logics and Action Languages

In this section, we consider first-order dynamical systems based on decidable Description
Logics [Baa+10]. We first recall basic notion of DLs and then consider dynamical systems
with a DL as its base logic.

2.2.1 Basic Notions of Description Logics

In this section we briefly recall basic notions of DLs that are relevant for this thesis.

Syntax and Semantics

We consider a decidable DL named DL. It is as expressive as the two-variable fragment of
first-order logic with counting and equality. The name “DL” is just a short cut for an expressive
umbrella DL. DL is very similar to the Description Logic introduced in [Bor96].

The usual naming scheme for the sub-logics is introduced later.
The two main ingredients in DLs are concepts and roles. Intuitively, a concept describes a

set of objects and a role a binary relation between objects.

Definition 2.18 (syntax of concepts and roles). To describe sets of objects and binary relations
between them, the following countably infinite sets of symbols are available:

• concept names NC = {A, B, . . .},

• role names NR = {P,Q, . . .} and

in addition also object names NO and variable names NV are available. All the sets are
pairwise disjoint. From these names complex concept and role descriptions can be formed
using several concept constructors and role constructors. The set of all DL-concept descriptions
(set of all concepts for short) and the set of all DL-role descriptions (set of all roles for short)
are defined by mutual induction as the smallest sets satisfying the following conditions:

1. Every concept name A∈ NC is a concept and the symbols> (top concept) and⊥ (bottom
concept) are concepts.

2. Every role name P ∈ NR is a role and the symbol id (identity role) is a role.

3. If t ∈ NO ∪NV is an object term, C and D concepts, R a role and n a natural number,
the also the following expressions are concepts: {t} (nominal), ¬C (negation), C u D
(conjunction) and ≥nR.C (at least restriction).

4. If R and S are roles and C and D concepts, then also the following descriptions are
roles: inv(R) (inverse role), ¬R (role negation), R u S (role conjunction) and C × D
(concept product).

Corresponding syntax rules for concepts C and roles R are given as follows

C ::= A | > | ⊥ | {t} | ¬C | C u C | ≥n R.C

R ::= P | id | inv(R) | ¬R | Ru R | C × C .

Î

28 Chapter 2 Preliminaries

Concepts and roles without variable names are called ground. For an example of a ground
concept see (1.3) in Section 1.2. The variable names occurring in nominals are placeholders
for object names and are handled using syntactical substitutions.

Definition 2.19 (grounding of concepts and roles). A variable mapping ν is a total function
of the form ν : NV ∪NO→ NO such that ν(o) = o for all o ∈ NO. Given a concept C , role R
and a variable mapping ν, the corresponding ground concept and ground role, denoted by Cν

and Rν, respectively, are defined by mutual induction as follows:

• Aν := A, Pν := P, >ν :=>, ⊥ν :=⊥ and idν := id, where A∈ NC and P ∈ NR;

• {t}ν := {ν(t)}, (¬C)ν := ¬Cν, (CuD)ν := CνuDν and (≥nR.C)ν :=≥n Rν.Cν, where
t ∈ NV ∪NO, C and D are concept, R a role and n a natural number;

• (inv(R))ν := inv(Rν), (¬R)ν := ¬Rν, (RuS)ν := RνuSν and (C×D)ν := Cν×Dν, where
R and S are roles and C and D concepts.

Î

The semantics of ground concepts and ground roles is defined in terms of first-order
interpretations I = (∆I , ·I) such that concept names are interpreted as unary predicate
names from NF and role names as binary predicate names from NF.

Definition 2.20 (semantics of ground concepts and ground roles). Let I = (∆I , ·I) be an
interpretation. The function ·I maps each concept name A∈ NC to a set AI ⊆∆I , each role
name P to a binary relation PI ⊆ ∆I ×∆I and each object name o ∈ NO to an element
oI ∈∆I . The mapping ·I is extended to complex ground concepts C and ground roles R. The
image sets CI and RI are called extension of C and R, respectively, under I and are defined
inductively as given in the third column of Table 2.1, where C and D denote ground concepts,
R and S ground roles and o and o′ object names. Î

Note that > and ⊥ can be defined as abbreviations using a concept name, negation and
conjunction. The list given in Table 2.1 contains concept constructors and role constructors
not mentioned in Definition 2.18. In the table C , D and R, S stand for possibly complex
ground concepts and roles, respectively, but we sometimes also use the constructors to built
concepts with nominals that contain variable names. U is a fixed symbol denoting the
universal role (or “top role”), it is the role-counterpart of the top concept. We will later use
the additional constructors to define sub-logics of DL.

The additional concept constructors C t D (disjunction), ∃R.C (existential restriction),
∀R.C (value restriction) and ≤nR.C (at most restriction) in the table do not increase the
expressiveness of DL. They can be equivalently expressed using only the constructors
mentioned in Definition 2.18:

C t D ≡ ¬(¬C u¬D), ∃R.C ≡≥1 R.C ,

∀R.C ≡ ¬(≥1 R.¬C), ≤nR.C ≡ ¬(≥(n+ 1)R.C).

2.2 Description Logics and Action Languages 29

Concepts

constructor syntax extension under I = (∆I , ·I) FO mapping trx(·)

concept name A∈ NC AI ⊆∆I A(x)
top concept > ∆I x = x

bottom concept ⊥ ; x 6= x

negation ¬C ∆I \ CI ¬trx(C)
conjunction C u D CI ∩ DI trx(C)∧ trx(D)
disjunction C t D CI ∪ DI trx(C)∨ trx(D)
existential restriction ∃R.C {d | ∃e ∈∆I .(d, e) ∈ RI ∧ e ∈ CI} ∃y.(trx ,y(R)∧ tr y(C))
value restriction ∀R.C {d | ∀e ∈∆I .(d, e) ∈ RI→ e ∈ CI} ∀y.(trx ,y(R)→ tr y(C))
nominal {o} {oI} x = o

at most restriction ≤nR.C {d | |{e | (d, e) ∈ RI ∧ e ∈ CI}| ≤ n} ∃≤n y.(trx ,y(R)∧ tr y(C))
at least restriction ≥nR.C {d | |{e | (d, e) ∈ RI ∧ e ∈ CI}| ≥ n} ∃≥n y.(trx ,y(R)∧ tr y(C))

Roles

constructor syntax extension under I = (∆I , ·I) FO mapping trx ,y(·)

role name P ∈ NR PI ⊆∆I ×∆I P(x , y)
inverse role inv(R) {(e, d) | (d, e) ∈ RI} tr y,x(R)
identity role id {(d, d) | d ∈∆I} x = y

universal role U ∆I ×∆I x = x ∧ y = y

role negation ¬R (∆I ×∆I) \ RI ¬trx ,y(R)
role conjunction Ru S RI ∩ SI trx ,y(R)∧ trx ,y(S)
role disjunction Rt S RI ∪ SI trx ,y(R)∨ trx ,y(S)
role difference R \ S RI \ SI trx ,y(R)∧¬trx ,y(S)
nominal role {(o, o′)} {(oI , o′I)} x = o ∧ y = o′

concept product C × D CI × DI trx(C)∧ tr y(D)

Table 2.1: List of concept and role constructors

30 Chapter 2 Preliminaries

The same holds for the additional role constructors U (universal role), RtS (role disjunction),
R \ S (role difference) and {(o, o′)} (nominal role):

Rt S ≡ ¬(¬Ru¬S), R \ S ≡ Ru¬S,

U ≡>×>, {(o, o′)} ≡ {o} × {o′}.

In a DL-knowledge base (DL-KB for short) axioms stating facts about certain objects, so
called ABox assertions, and axioms representing general domain knowledge, called concept
inclusions (CIs), are distinguished.

Definition 2.21 (syntax of axioms and KBs). Let C and D be possibly non-ground concept
descriptions, R a possibly non-ground role description and t, t ′ ∈ NV ∪NO object terms. ABox
assertions are of the form

• t À− C (concept assertion) or

• (t, t ′) À− R (positive role assertion) or (t, t ′) À− ¬R (negative role assertion) or

• t ≈ t ′ or t 6≈ t ′ (equality and inequality assertion, respectively).

A concept inclusion (CI) is of the form
C v D.

An ABox assertion or CI is called ground, if no variable names occur in it. An ABox A is a
finite set of ground ABox assertions and a TBox T is a finite set of ground CIs. A knowledge
base (KB) K = (T , A) consists of a TBox T and an ABox A.

We also consider Boolean combinations of ABox assertions and concept inclusions. A
Boolean KB ψ is built according to the following syntax rule

ψ ::= t À− C | (t, t ′) À− R | (t, t ′) À− ¬R | t ≈ t ′ | t 6≈ t ′ | C v D | ¬ψ |ψ∧ψ |ψ∨ψ.

A Boolean ABox is a Boolean KB with only ABox assertions as propositions. The set of variable
names occurring in a Boolean KB ψ is denoted by FVar(ψ). A ground Boolean KB (ABox) is a
Boolean KB (ABox) without variable names.

Concept and role assertions of the form t À− A, t À− ¬A, (t, t ′) À− P or (t, t ′) À− ¬P, where A
is a concept name, P a role name and t, t ′ object terms, are called ABox literals (literals for
short). Î

Definition 2.22. Let ν : NV ∪ NO → NO be a variable mapping and ψ a Boolean KB. The
ground Boolean KB ψν is defined by induction on the structure of ψ as follows:

• (t À− C)ν := ν(t) À− Cν, where t À− C is a concept assertion,

• ((t, t ′) À− R)ν := (ν(t),ν(t ′)) À− Rν, ((t, t ′) À− ¬R)ν := (ν(t),ν(t ′)) À− ¬Rν, where
(t, t ′) À− R and (t, t ′) À− ¬R are role assertions and

• (t ≈ t ′)ν := ν(t) ≈ ν(t ′), (t 6≈ t ′)ν := ν(t) 6≈ ν(t ′), where t ≈ t ′ and t 6≈ t ′ are
equality and inequality assertions, respectively, and

• (C v D)ν := Cν v Dν, where C v D is a concept inclusion and

2.2 Description Logics and Action Languages 31

• (¬ψ1)ν := ¬ψν1, (ψ0 ∧ψ1)ν :=ψν0 ∧ψ
ν
1 and (ψ0 ∨ψ1)ν :=ψν0 ∨ψ

ν
1, where ψ0 and

ψ1 are Boolean KBs.

Î

If not stated otherwise, we implicitly assume in the following that all concepts, roles, ABox
assertions, CIs, ABoxes, TBoxes and Boolean KBs are ground.

Definition 2.23 (semantics of axioms and KBs). Let o, o′ ∈ NO, C a concept, R a role, ψ1
and ψ2 Boolean KBs and I = (∆I , ·I) an interpretation. Satisfaction of a Boolean KB ψ in I,
denoted by I |=ψ, is defined inductively as follows:

I |= o À− C iff oI ∈ CI

I |= (o, o′) À− R iff (oI , o′I) ∈ RI

I |= (o, o′) À− ¬R iff (oI , o′I) /∈ RI

I |= o ≈ o′ iff oI = o′I

I |= o 6≈ o′ iff oI 6= o′I

I |= C v D iff CI ⊆ DI

I |= ¬ψ1 iff I 6|=ψ1

I |=ψ1 ∧ψ2 iff I |=ψ1 and I |=ψ2

I |=ψ1 ∨ψ2 iff I |=ψ1 or I |=ψ2.

We say that the interpretation I is a model of the Boolean KB ψ iff I |=ψ.
An interpretation I is a model of a KB K = (T , A), denoted by I |= K, iff all axioms in A

and T are satisfied in I.
We say that K is consistent iff K has a model. A Boolean KB ψ is entailed by K, denoted by

K |=ψ, iff all models of K are also models of ψ. Î

Note that ABox assertions can be equivalently formulated as concept inclusions and vice
versa. However, this is not the case for all sub-logics of DL we consider later.

Other kinds of DL axioms are defined as abbreviations as follows:

• role inclusion: Rv S := ∃(R \ S).>v⊥,

• concept and role equivalence: C ≡ D := C v D ∧ D v C , R≡ S := Rv S ∧ S v R.

Furthermore, the following abbreviations are used:

• TRUE := o À− >, and

• FALSE := o À− ⊥,

where o is an arbitrary but fixed object name.
A concept equivalence with a concept name on the left-hand side can be viewed as an

abbreviation of a complex concept. A set of such non-circular abbreviations is called acyclic
TBox and is formally defined as follows.

32 Chapter 2 Preliminaries

Definition 2.24. A concept equivalence of the form A≡ C , where A is a concept name, is
called concept definition. An acyclic TBox T is a finite set of concept definitions with unique
left-hand sides that satisfies the following restriction: there is no sequence of the form

A1 ≡ C1 ∈ T , . . . Ak ≡ Ck ∈ T for some k ≥ 1

such that Ai+1 is mentioned in Ci for all i ∈ {1, . . . , k− 1}, and A1 = Ak and C1 = Ck.
A concept name A that occurs on the left-hand side of some definition in T is called defined

name in T . Î

Reasoning in presence of an acyclic TBox can be reduced to reasoning w.r.t. the empty
TBox by exhaustively replacing all defined names by their corresponding right-hand side.

Let X be a concept, role, ABox, TBox, KB or Boolean KB. The size of X , denoted by |X |, is
defined in the usual way as the number of symbols needed to write X . Numbers in at most
and at least restrictions are assumed to be encoded in binary.

Different DLs and Relation to First-Order Logic

In order to find an appropriate trade-off between expressiveness and complexity of reasoning,
in the literature on DLs often only sub-logics of full DL are considered. Specific restricted
DLs differ in the set of concept and role constructors that are allowed. A basic DL that is a
sub-logic of DL is called ALC. An ALC-concept C is built according to the following syntax
rule:

C ::= A | ¬C | C u C | C t C | ∃P.C | ∀P.C ,

where A∈ NC and P ∈ NR. ALC-roles are role names. Complex roles are not allowed. Other
DLs between ALC and DL are obtained by allowing further constructors for concepts and
roles.

The name of a DL that extends ALC with some constructors is obtained by appending
corresponding letters or symbols given in Table 2.2 to the string ALC. For instance, the DL
ALCQIO extends ALC with at least and at most restrictions, inverse roles and nominals.
Thus, in ALCQIO the full set of concept constructors is available but roles are restricted to
be either role names or inverses of role names. Symbols for additional role constructors are
added in parentheses as a superscript of the name. For example the DL ALCQIO(U) extends
ALCQIO with the universal role and the DL named by ALCQIO(id,¬,u,×) corresponds to full
DL.

Let L be the name of a particular DL. L-ABox assertions, L-ABoxes, L-CIs, L-TBoxes or
Boolean L-KBs are constructed by using only L-concepts and L-roles. Note that if R is an
L-role, then (t, t ′) À− ¬R is also an L-ABox assertion even if L does not support role negation.
If no particular name of a DL is mentioned, then we assume that DL is used.

DL concepts, roles and axioms can be translated to first-order logic using standard methods
[Bor96].

Definition 2.25 (translation to FO syntax). For the translation concept names are viewed as
elements of NF with arity one and role names as elements of NF with arity two. Let x , y ∈ NV
be variable names. The functions trx(·) and tr y(·) map ground concepts to FO formulas with
one free variable x and y, respectively, and the functions trx ,y(·) and tr y,x(·) map ground
roles to FO formulas with free variables x and y. trx(·) and trx ,y(·) are defined as given in

2.2 Description Logics and Action Languages 33

Concept Role

DL name constructor DL name constructor

ALC

top concept I inverse role

bottom concept ·(,id) identity role

negation ·(,U) universal role

conjunction ·(,¬) role negation

disjunction ·(,u) role conjunction

existential restriction ·(,t) role disjunction

value restriction ·(,diff) role difference

Q at most restriction ·(,o) nominal role

at least restriction ·(,×) concept product

O nominal

Table 2.2: Names of different DLs

fourth column of Table 2.1 and tr y(·) and tr y,x(·) are defined as trx(·) and trx ,y(·) but with x
and y swapped. For axioms a function tr(·) is defined as follows:

tr(o À− C) := ∃x .(x ≈ o ∧ trx(C)),

tr((o, o′) À− R) := ∃x , y.(x ≈ o ∧ y ≈ o′ ∧ trx ,y(R)),

tr((o, o′) À− ¬R) := ¬tr((o, o′) À− R),

tr(C v D) := ∀x .(trx(C)→ trx(D)),

tr(o ≈ o′) := o ≈ o′,

tr(o 6≈ o′) := o 6≈ o′.

Î

2.2.2 Integrating DL Knowledge Bases and Actions

We introduce the notion of a DL-action theory that can be viewed as a specific class of
DL-admissible representations.

Note that in context with DLs we consider FO-DSs of the form D= (I, Iini, F ,Act, E ,Pre),
where F is the finite set of all relevant concept names and role names.

According to Definition 2.15 an L-admissible representation for a finite set of ground
actions A and a DL L is of the form ΣA = (K, F , C,E+,E−,PreC), where

• the context C consists of Boolean L-KBs and

• the computable functions E+[·] and E−[·] provide possibly complex L-concepts and

34 Chapter 2 Preliminaries

L-roles defining the add-sets and delete-sets for the relevant concept names and role
names, respectively.

Our notion of a DL-admissible representation for a set of ground actions seems to be
general enough to capture the meaning of deterministic ground actions definable in the action
languages considered in [Baa+05a; BLL10; GS10; Ahm+14]. However, we do not provide a
formal proof for this claim.

We introduce DL-action theories as a formalism where the domain modeler explicitly
provides a (complete) list of preconditions and so-called effect descriptions for each action.
Even though we use the word “theory” a DL-action theory is not a set of axioms formulated
in a logic that allows us to talk about actions. Instead, we introduce a special syntax with
a semantics directly given in terms of an FO-DS. A DL-action theory is a special case of a
DL-admissible representation. For such theories we will then briefly discuss several ways to
integrate a TBox as a set of global state constraints.

DL-Action Theories

The notion of a general effect description provides a syntactical schema for describing the
changes caused by an action execution.

Definition 2.26. Effect descriptions (effects for short) are expressions of the form

• ψ Â 〈A, C〉+ or ψ Â 〈P, R〉+ (called positive effect on A or P, respectively) or

• ψ Â 〈A, C〉− or ψ Â 〈P, R〉− (called negative effect on A or P, respectively),

where ψ stands for a possibly non-ground Boolean KB, A for a concept name, C for a possibly
non-ground concept, P for a role name and R for a possibly non-ground role. ψ is called
effect condition and C and R effect descriptors.

The expression ψ Â 〈F, X 〉± stands for a positive or negative effect description on a role
name or concept name F .

An unconditional effect is an effect, where the effect condition ψ is a tautology. In this case
we omit the effect condition and write just

〈F, X 〉± instead of TRUE Â 〈F, X 〉±.

The instantiation of an effect description given a variable mapping is defined in the obvious
way. Let ν be a variable mapping and e = ψ Â 〈F, X 〉± an effect. With eν we denote the
ground instantiated effect given by ψν Â 〈F, X ν〉±.

Effects of the form
ψ Â 〈A, {t}〉± or ψ Â

P, {(t, t ′)}
�±

,

where t and t ′ are object terms are called local effects.
Let L be a DL. An effect ψ Â 〈F, X 〉± is called an L-effect iff ψ is a Boolean L-KB and X

is an L-concept or L-role. A local effect is called local L-effect iff the effect condition is a
Boolean L-KB. Î

For instance, a positive and ground effect like ψ Â 〈A, C〉+ changes the interpretation
of the concept name A by adding all instances of the concept C to A. These changes are

2.2 Description Logics and Action Languages 35

triggered only if the effect condition ψ is true. In case of a local effect the effect descriptor C
is just a nominal of the form {o}. It means that only the single object the name o refers to
is added to A. To define local effects nominals and nominal roles are needed, because an
L-effect is required to have an effect descriptor formulated in L. However, when we call an
effect description a “local L-effect” for some specific DL L we only require that the effect
condition has to be a Boolean L-KB but L need not necessarily offer nominals or nominal
roles. Let LO(o) be the extension of L with nominal concepts and nominal roles. According
to our definition every local L-effect is an LO(o)-effect.

Example 2.27 (2.7 continued). Consider the action disable(p0) from Example 2.7. The
effects of this action can be described using ALCO-effects. Dev, PowerS and On are viewed
as concept names and ConTo as a role name. We have the following delete effect on PowerS:

〈PowerS, {p0}〉
−.

p0 is deleted from PowerS. It is an unconditional local effect. Only the object p0 is affected.
Furthermore, the action for disabling p0 turns off all devices without any other power supply
in reserve. This is represented using the following (non-local) effect:

〈On, Devu ∃ConTo.{p0} u ∀ConTo.(¬PowerSt {p0})〉
−.

All instances of the concept

Devu ∃ConTo.{p0} u ∀ConTo.(¬PowerSt {p0})

describing the set of devices with p0 as the only connected power supply are deleted from
On. Î

As an auxiliary notion we define the update of an interpretation given a set of unconditional
effects.

Definition 2.28. Let I = (∆I , ·I) be an interpretation and E a finite set of unconditional
ground effect descriptions. The update of I w.r.t. E is an interpretation, denoted by IE, that
is defined as follows:

∆IE :=∆I ;

FIE
:=
�

FI \
�
⋃

〈F,X 〉−∈E

X I��∪
⋃

〈F,X 〉+∈E

X I for all F ∈ NC ∪NR;

oIE
:= oI for all o ∈ NO.

Î

Next, we introduce the syntax of DL-action theories.

Definition 2.29. A DL-action theory is a tuple Σ= (K,Act,pre,eff), where

• K is a DL KB,

• Act is a finite set of action terms with pairwise different action names,

36 Chapter 2 Preliminaries

• pre associates each action term α(t̄) ∈ Act with a set of (possibly non-ground) Boolean
DL-KBs, denoted by pre(α(t̄)), and

• eff associates each action term α(t̄) ∈ Act with a set of effects, denoted by eff(α(t̄)).

We assume that for all α(t̄) ∈ Act the sets pre(α(t̄)) and eff(α(t̄)) are explicitly given and the
expressions therein mention only object terms that are arguments of α(t̄).

Since the action terms in Act have pairwise different action names, we can uniquely extend
eff and pre to the set of all ground actions ground(Act) as follows: For any α ∈ ground(Act)
such that α is the ground instantiation of α(t̄) ∈ Act with ν we define

pre(α) := {ψ1
ν, . . . ,ψn

ν} and eff(α) := {e1
ν, . . . ,em

ν}

where pre(α(t̄)) = {ψ1, . . . ,ψn} and eff(α(t̄)) = {e1, . . . ,em} for some n, m≥ 0.
The DL-action theory Σ is called local effect action theory iff for all α(t̄) ∈ Act the set

eff(α(t̄)) contains only local effects. Let L ⊆ DL be a DL.

• Σ is an L-action theory iff K is an L-KB, and for all α(t̄) ∈ Act the set pre(α(t̄)) consists
of Boolean L-KBs and the effects eff(α) are L-effects.

• And Σ is called a local effect L-action theory iff K is an L-KB, and for all α(t̄) ∈ Act the
set pre(α(t̄)) consists of Boolean L-KBs and the effects eff(α(t̄)) are local L-effects.

Î

Next, we define the semantics of a DL-action theory in terms of an FO-DS.

Definition 2.30. Let Σ= (K,Act,pre,eff) be a DL-action theory with

Act = {α1(t̄1), . . . ,αn(t̄n)}

for some n> 0. The FO-DS induced by Σ is an FO-DS

D(Σ) = (I, M(K), F ,Act, E ,Pre)

over the state space

I := {J | there exists I ∈M(K) with ∆J =∆I and oJ = oI for all o ∈ NO};

and with F , E and Pre defined as follows:

1. F consists of all those concept names and role names that are mentioned in K, in the
effect descriptions in the sets eff(α1(t̄1)), . . . ,eff(αn(t̄n)) and in the preconditions in
pre(α1(t̄1)), . . . ,pre(αn(t̄n)).

2. For all (I,α, F) ∈ I× ground(Act)×F we define

add(I,α, F) :=
⋃

ψÂ〈F,X 〉+∈eff(α),
I|=ψ

X I and del(I,α, F) :=
⋃

ψÂ〈F,X 〉−∈eff(α),
I|=ψ

X I .

2.2 Description Logics and Action Languages 37

action term α pre(α) eff(α)

turn-on(x) {(x À− Dev)}
�

〈On, {x}〉+
	

connect(x , y) {(x À− Dev), (y À− PowerS)}
�

〈ConTo, {(x , y)}〉+
	

disconnect(x , y) {(x À− Dev), (y À− PowerS)}
�

〈ConTo, {(x , y)}〉−
	

Table 2.3: Example action descriptions

3. For all I ∈ I and all α ∈ ground(Act) we define

(I,α) ∈ Pre iff (I |= ϕ for all ϕ ∈ pre(α)).

Î

The semantics ensures that all effects in the set eff(α) of a ground action α take place
simultaneously. The set eff(α) completely represents all changes caused by an execution of α,
i.e. only the effects in eff(α) are executed in case the effect condition is satisfied and nothing
else is changed. Consequently, the transition semantics of D(Σ) can be also characterized in
terms of interpretation updates.

Lemma 2.31. Let Σ = (K,Act,pre,eff) be a DL-action theory and I an interpretation from the
state space of the induced FO-DS D(Σ) and α ∈ ground(Act) a ground action. It holds that

I ⇒α
D(Σ) IE with E= {〈F, X 〉± |ψ Â 〈F, X 〉± ∈ eff(α) and I |=ψ}.

Proof. We omit the proof. The lemma directly follows from the definitions.

Example 2.32. We model a simple domain about electrical devices (represented by the
concept name Dev), that can be on, i.e. can be instances of the concept name On, and can
be connected to power supplies (PowerS) via the role name ConTo. We use the individual
names dev for a particular device and main-socket for a particular power supply.

For now, assume that the TBox T of the initial knowledge base K is empty. The ABox A of
K describing the initial situation consists of the facts:

(dev À− Devu¬On), (main-socket À− PowerS). (2.2)

Consider the following action terms that are part of Act:

turn-on(x),connect(x , y),disconnect(x , y) (2.3)

The preconditions and effects for these non-ground actions are given in Table 2.3. The
actions only have local unconditional effects. For example the ground instance turn-on(dev)
is possible in any model of the assertions in (2.2) because dev is a device. Executing
turn-on(dev) in an interpretation adds the object dev to the extension of On and changes
nothing else. Î

38 Chapter 2 Preliminaries

A DL-action theory Σ = (K,Act,pre,eff) yields a DL-admissible representation of any finite
set of ground actions A ⊆ ground(Act). It is easy to see that all ground actions in an FO-DS
induced by a DL-action theory are DL-definable w.r.t. a DL-context.

Lemma 2.33. LetΣ = (K,Act,pre,eff) be an L-action theory for some DL L with ALC ⊆ L ⊆ DL
and A ⊆ ground(Act) a finite set of ground actions. It holds that the actions in A are L(diff,t)-
definable in the FO-DS D(Σ) induced by Σ w.r.t. the context

CA =
⋃

α∈A

�

{ψ,¬ψ |ψ ∈ pre(α)} ∪ {ψ,¬ψ |ψ Â 〈F, X 〉± ∈ eff(α)}
�

.

Proof. An L(diff,t)-admissible representation for A of the form ΣA = (K, F , CA,E+,E−,PreCA
),

where F consists of all the names mentioned in Σ, can be defined by

E+[s,α, F] :=
⊔

{X |ψ Â 〈F, X 〉+ ∈ eff(α),ψ ∈ s} and

E−[s,α, F] :=
⊔

{X |ψ Â 〈F, X 〉− ∈ eff(α),ψ ∈ s}

for all (s,α, F) ∈SCA
× A×F and

(s,α) ∈ PreCA
iff pre(α) ⊆ s, for all (s,α) ∈SCA

× A.

For a finite set of concepts/roles M ,
⊔

M denotes the disjunction of all concepts/roles
contained in M . We assume

⊔

; :=⊥ in case of concepts and
⊔

; := P \ P for some P ∈ NR
in case of roles. It follows that D(Σ)|A =D(ΣA)

For a DL-admissible representation an equivalent DL-action theory is computable.

Lemma 2.34. Let L be a DL, A a finite set of ground action terms and

ΣA = (K, F , C,E+,E−,PreC)

an L-admissible representation of A. It holds that an L-action theory Σ = (K, A,pre,eff) is
computable such that D(ΣA) =D(Σ).

Proof. K and A are already given and it remains to define pre and eff. A Boolean L-KB
describing the precondition of an action α ∈ A is given as follows:

ψα :=
∨

s∈SC ,
(s,α)∈PreC

�

∧

ϕ∈s
ϕ

�

.

Since PreC is decidable, ψα is computable. We define pre(α) := {ψα} for all α ∈ A. The
corresponding effect descriptions for each ground action α ∈ A are obtained as follows:

eff(α) :=

¨

�
∧

ϕ∈s
ϕ
�

Â

F,E+[s,α, F]
�+

�

�

�

�

�

s ∈SC ,α ∈ A, F ∈ F

«

∪

¨

�
∧

ϕ∈s
ϕ
�

Â

F,E−[s,α, F]
�−

�

�

�

�

�

s ∈SC ,α ∈ A, F ∈ F

«

.

2.2 Description Logics and Action Languages 39

This completes the definition of the general L-action theory Σ. It is straightforward to show
that D(ΣA) =D(Σ).

Thus, we view DL-action theories as a canonical DL-admissible representations of dynamical
systems. In the next subsection, the role of the TBox as a set of global state constraints is
discussed. We review the example from Section 1.2 more formally.

Qualification and Ramification Problem

With the semantics given in Definition 2.30 the TBox neither affects the executability of an
action nor its effects. It might happen that a ground action α is executed in a model I of a
global TBox T but the updated interpretation I′ with I ⇒αD I′ violates a CI in T . According
to Lin and Reiter’s view on state constraints [LR94] there are two possible ways to interpret
this violation:

1. The violated CI is a qualification constraint. Consequently, a not explicitly stated
precondition of α was violated in I and it is not possible to execute α in I.

2. The violated CI is a ramification constraint and triggers indirect effects. The set eff(α)
is incomplete and additional changes are needed in order to keep the CI satisfied.

We now adapt the semantics of DL-action theories and incorporate the TBox as a set
of qualification constraints. Let Σ = (K = (T , A),Act,pre,eff) be a DL-action theory and
D(Σ) = (I, M(K), F ,Act, E ,Pre) the induced FO-DS. To obtain a semantics that respects the
TBox we replace Pre with a relation denoted by PreT that is defined as follows

(I,α) ∈ PreT iff (I′ |= T with I ⇒α
D(Σ) I′ and I |= ϕ for all ϕ ∈ pre(α)). (2.4)

for all (I,α) ∈ I× ground(Act).
We consider an example similar to the one in Section 1.2.

Example 2.35. We continue Example 2.32 about devices and their power supplies. Now the
initial KB consists of a single concept inclusion:

K = (T = {DevuOnv ∃ConTo.PowerS},

A= {(dev À− Dev), (dev À− ¬On), (main-socket À− PowerS})).
(2.5)

We consider the following sets of all relevant action terms and concept/role names.

Act = {turn-on(x),connect(x , y),disconnect(x , y)};
F = {PowerS, Dev, On, ConTo}.

The preconditions and effects of actions are defined as in Table 2.3. Consider an interpretation

40 Chapter 2 Preliminaries

I that is given as follows:

∆I := {dev, d1, d2, . . .} ∪ {main-socket, s1, s2, . . .},
devI := dev,

main-socketI :=main-socket,
DevI := {dev, d1, d2, . . .},

PowerSI := {main-socket, s1, s2, . . .},
OnI := ;,

ConToI := ;.

Obviously, I is a model of T and A. Now, consider the ground instance turn-on(dev) of
turn-on(x) with

pre(turn-on(dev)) = {(dev À− Dev)} eff(turn-on(dev)) = {〈On, {dev}〉+}.

The execution of turn-on(dev) in I leads to an interpretation I′, where OnI′ = {dev} but
the extension of ConTo remains empty, because this fluent is not affected by turn-on(dev).
Consequently, I′ violates the global TBox

I′ 6|= DevuOnv ∃ConTo.PowerS.

According to (2.4) T prevents the execution:

(I,turn-on(dev)) /∈ PreT .

turn-on(dev) is not executable in I because dev is not connected to any power supply. In
presence of the TBox preserving possibility relation there is no need to explicitly formulate

(x À− ∃ConTo.PowerS)

as a precondition of turn-on(x). It is knowledge already modeled in the T . In this case, the
semantics of the possibility relation preventing turn-on(dev) leads to an intuitive behavior.
The action of connecting a device to a power supply and the action of turning the device
on are modeled as separate actions. The explicitly specified preconditions of both actions
however do not allow a conclusion about which of the two should be done first, but the TBox
does it in this case.

Next, we consider the execution of the sequence

connect(dev,main-socket),turn-on(dev),disconnect(dev,main-socket)

in the interpretation I. First, dev is connected to main-socket. This action goes through and
turn-on(dev) becomes possible and its execution leads to an interpretation J with

ConToJ = {(dev,main-socket)} and OnJ = {dev}.

2.3 Transition Systems and Temporal Logic 41

However, the action disconnect(dev,main-socket) with the effect

eff(disconnect(dev,main-socket)) = {〈ConTo, {(dev,main-socket)}〉−}

(according to Table 2.3) is not possible in J . With an execution in J the device dev would
loose its only power supply, but would be still turned on, because there are no effects on On
specified. This would lead again to a violation of the TBox. Hence, the disconnect action
is not possible according to the semantics with qualification constraints (2.4). However, in
this particular case it would be more desirable to have a semantics that allows us to use the
concept inclusion as a ramification constraint to infer 〈On, {dev}〉− as an indirect effect of
the disconnection. The problem can be fixed by directly specifying the effects as follows:

eff(disconnect(x , y)) = { 〈ConTo, {(x , y)}〉−,

(x À− ∀ConTo.(¬PowerSt {y}))Â 〈On, {x}〉−

The conditional effect ensures that if y is the only power supply of x before the disconnection,
then after y is disconnected from x , the device x will be off. Now, the action sequence is
executable and has the expected effects. Î

In the following we do not fix the TBox to be a set of qualification constraints as given in
(2.4). Instead, we consider temporal specifications where the preservation of a TBox can be
expressed.

2.3 Transition Systems and Temporal Logic

In this section, transition systems are introduced as basic models for completely describing
the behavior of a dynamical systems. As a logic for specifying desired properties of such
systems a first-order extension of the propositional branching-time temporal logic CTL∗ [CE81]
is considered.

Transition Systems and FO-CTL∗

A transition system is a directed graph where the nodes represent the states of the system
and the edges are transitions between states. We distinguish different kinds of transition
systems depending on the labeling of the states.

Definition 2.36. Let LT be a set of state labels. A transition system over LT is a tuple

T= (QT, IT, ,→T,λT),

where

• QT is a set of states and IT ⊆QT a set of initial states;

• ,→T ⊆QT×QT is the transition relation such that for each state q ∈QT there is at least
one state q′ ∈QT such that (q, q′) ∈,→T;

• λT : QT → LT is a total labeling function that maps each state to an element of the
label set LT.

42 Chapter 2 Preliminaries

T is called a first-order transition system iff LT is a set of first-order interpretations and the
labeling function λT : q 7→ Iq maps each state q ∈QT to a first-order interpretation Iq.

Let AP be a finite set of atomic propositions (propositional letters). T is called a proposi-
tional transition system over AP iff LT = 2AP, i.e. the labeling function λT maps each state to
a set of atomic propositions from AP.

Instead of

(q, q′) ∈ ,→T we often write q ,→T q′.

A path π in T is an infinite sequence of the form π = q0q1q2 · · · , where qi ∈ QT and
qi ,→T qi+1 holds for all i ≥ 0. Given a path π = q0q1q2 · · · and an index j ∈ {0, 1, 2, . . .} the
path q jq j+1q j+2 · · · is denoted by π[j..] and the jth state in π is denoted by π[j]. The set of
all paths in T starting in a state q ∈QT is denoted by paths(T, q). Î

The trace of a path is the infinite sequence of the corresponding state labels. In [Pnu77]
Pnueli introduced the propositional linear-time logic LTL for specifying and reasoning about
temporal properties of infinite program executions. Propositional LTL formulas are inter-
preted over traces of paths representing on-going executions. Given that a program is
abstracted in terms of a propositional transition system program correctness w.r.t. a specifica-
tion that is formulated in LTL is formalized as a so-called model checking problem. It asks
whether all the traces of all paths in a given transition system satisfy a given LTL specification.

Other popular specification languages for verification are the propositional branching-time
temporal logics CTL and CTL∗ [CE81] introduced by Clarke and Emerson. Instead of a single
path, a computation is viewed as an infinite tree where the branching comes from the non-
determinism in the system model. In addition to LTL the logics CTL and CTL∗ offer explicit
quantification over the different outgoing paths of a state. In CTL the use of path quantifiers
is restricted and the logic is incomparable to LTL regarding expressiveness. CTL∗ can be
viewed as an extension of LTL with path quantifiers and it subsumes both logics LTL and
CTL.

In a first-order transition system such as the one induced by an FO-DS the trace of a
path is an infinite sequence of FO interpretations. To talk about properties of a particular
state represented by an FO interpretation one would like to use FO sentences instead of just
propositional letters. For specifying desired behavior in a first-order transition system we
define an extension of (propositional) CTL∗ called FO-CTL∗, where FO sentences are used in
place of propositions. Also the corresponding DL-based fragments are defined.

Definition 2.37 (syntax of FO-CTL∗ formulas). Formulas describing properties of a state
and of a path are distinguished. FO-CTL∗ state formulas Φ and FO-CTL∗ path formulas Ψ are
built according to the following syntax rules:

Φ ::= % | ¬Φ | Φ∧Φ | EΨ | AΨ;

Ψ ::= Φ | ¬Ψ | Ψ ∧Ψ | XΨ | Ψ UΨ,
(2.6)

where % stands for an FO sentence.
Let L ⊆ DL be a DL. We define the logic L-CTL∗ as a syntactical fragment of FO-CTL∗.

State and path formulas are built using the rules as given above but the atomic state formula

2.3 Transition Systems and Temporal Logic 43

% is now restricted to be an L-axiom according to the following rule

% ::= C v D | o À− C | (o, o′) À− R | (o, o′) À− ¬R, (2.7)

where C and D stand for L-concepts, o, o′ for object names and R for an L-role. The family
of logics, where L can be instantiated with any DL is called DL-CTL∗.

The propositional fragment of FO-CTL∗ is obtained by restricting % to be an atomic
proposition. Î

Any FO sentence is an FO-CTL∗ state formula. The symbols E and A are the path quantifiers.
EΨ is true in a state iff there is some path starting in this state that satisfies the FO-CTL∗ path
formula Ψ and AΨ is true iff all paths from this state respect Ψ. To formulate properties of
paths the temporal modalities X and U are available. XΨ says that Ψ holds from the next state
on and Ψ1 UΨ2 expresses that Ψ1 should hold until Ψ2 becomes true. Additional temporal
modalities for formulating path formulas are defined as abbreviations as follows

• FΨ (read as “eventually Ψ”) abbreviates TRUE UΨ and

• GΨ (“globally Ψ”) abbreviates ¬F¬Ψ,

where TRUE stands for a tautology.
FO-CTL∗ formulas are interpreted over first-order transition systems.

Definition 2.38. Let Φ be an FO-CTL∗ state formula, I= (QI, II, ,→I,λI) a first-order tran-
sition system over some label set consisting of interpretations and q ∈Q a state. Satisfaction
of Φ in I, q, denoted by I, q |= Φ, is defined inductively as follows:

I, q |= % iff Iq |= %, where % is an FO sentence and Iq = λI(q),

I, q |= ¬Φ′ iff I, q 6|= Φ′

I, q |= Φ1 ∧Φ2 iff I, q |= Φ1 and I, q |= Φ2

I, q |= Φ1 ∨Φ2 iff I, q |= Φ1 or I, q |= Φ2

I, q |= EΨ iff I,π |= Ψ for some π ∈ paths(I, q),

I, q |= AΨ iff I,π |= Ψ for all π ∈ paths(I, q),

satisfaction of an FO-CTL∗ path formula Ψ in a path π in I, denoted by I,π |= Ψ, is defined
as follows:

I,π |= Φ iff I,π[0] |= Φ
I,π |= ¬Ψ ′ iff I,π 6|= Ψ ′

I,π |= Ψ1 ∧Ψ2 iff I,π |= Ψ1 and I,π |= Ψ2

I,π |= Ψ1 ∨Ψ2 iff I,π |= Ψ1 or I,π |= Φ2

I,π |= XΨ ′ iff I,π[1..] |= Ψ ′

I,π |= Ψ1 UΨ2 iff there exists a j with j ≥ 0 such that I,π[j..] |= Ψ2 and

for all k with 0≤ k < j we have I,π[k..] |= Ψ1.

Let T = (QT, IT, ,→T,λT) be a propositional transition system with the labeling function
λT : QT → 2AP, where AP is a finite set of atomic propositions. Furthermore, let Φ be a

44 Chapter 2 Preliminaries

propositional CTL∗ state formula over AP and Ψ a propositional CTL∗ path formula over AP.
Satisfaction of Φ in T, q with q ∈ QT is defined as above except for the atomic case with
Φ= % for some % ∈ AP. In this case we define

T, q |= % iff % ∈ λT(q).

Satisfaction of Ψ in T,π, where π is a path in T, is defined as in the FO case. Î

The definition also covers the semantics of DL-CTL∗, because every DL axiom can be
written as an FO sentence.

The temporal logic FO-LTL can be defined as syntactical fragment of FO-CTL∗. FO-LTL
formulas correspond to FO-CTL∗ path formulas without path quantifiers.

Propositional Model Checking

Next, we focus on the propositional case. The finite-state model checking problem takes as
input a finite propositional transition system and a propositional CTL∗ state formula over a
fixed set of atomic propositions. A propositional transition system is finite if the set of states
is finite.

Definition 2.39 (propositional CTL∗ model checking). Let T= (QT, IT, ,→T,λT) be a finite
propositional transition system over the label set 2AP and Φ a propositional CTL∗ state formula
over AP.

We say that T models Φ, denoted by T |= Φ, iff T, q |= Φ for all initial states q ∈ IT. Î

The complexity of the model checking problem is measured w.r.t. the size of the finite
propositional transition system (sum of the number of states and the number of transitions)
and the length of the temporal formula.

Theorem 2.40 (complexity of model checking). Let n be the size of the finite propositional
transition system and m the length of the CTL∗ state formula.

1. The propositional CTL∗ model checking problem is decidable with a time bound

p(n) · 2p(m)

for some polynomial p.

2. The propositional CTL∗ model checking problem is decidable in PSPACE.

Proofs and more details can be found in [BK08].
In the following we will deal with infinite first-order transition systems where the transitions

between states are caused by actions. Finite propositional transition systems will serve as
abstractions that allow to apply model checking algorithms.

2.4 ConGolog Programs over FO Dynamical Systems

Golog as first introduced by Levesque et al. [Lev+97] is a programming language that allows
to combine actions, defined in an action theory, and tests using a set of imperative and

2.4 ConGolog Programs over FO Dynamical Systems 45

non-deterministic programming constructs. ConGolog [DLL00] is an extension of Golog with
an interleaving construct for modeling concurrency. In [DLL00] ConGolog is defined within
the Situation Calculus. Here, we consider programs over actions whose meaning is defined
in terms of a first-order dynamical system. The semantics of ConGolog programs is given in
terms of a first-order transition system. This allows us to define the problem whether a given
program satisfies a given temporal specification as a (first-order) model checking problem.

2.4.1 Syntax and Semantics of ConGolog

We focus only on a core fragment of ConGolog similar to the fragment considered in [CL08].
For instance, features like (possibly recursive) procedures or prioritized interleaving are
omitted.

Definition 2.41 (syntax of ConGolog). Let D = (I, Iini, F ,Act, E ,Pre) be an FO-DS. The
set of all program expressions over D is defined as the smallest set satisfying the following
conditions:

1. The empty program, denoted by 〈〉, is a program expression over D.

2. Every action α(t̄) ∈ Act is a program expression over D.

3. If ψ is an FO formula over F , then the test ψ? is a program expression over D.

4. If δ is a program expression over D, then the non-deterministic iteration (δ∗) is a
program expression over D.

5. If δ1 and δ2 are program expressions over D, then the sequence (δ1;δ2), the non-
deterministic choice between programs (δ1|δ2) and the interleaving of programs (δ1‖δ2)
are also program expressions over D.

6. If x̄ is a tuple of variable names, ψ an FO formula with only free occurrences of
variables from x̄ and δ a program expression over D, then

(pick(x̄)→ψ?;δ) (non-deterministic choice of arguments)

is also a program expression over D. The expression pick(x̄)→ψ? is called guarded
pick.

A variable name occurs free in a program expression over D iff it is not bound by a guarded
pick operator. And a program expression is called closed iff it has no free variables, and it is
called pick-free iff no guarded pick expressions occur.

A ConGolog program over D is of the form P = (D,δ), where δ is a closed program
expression over the FO-DS D. Î

A ConGolog program consists of an FO-DS and a program expression. In this thesis, we
consider FO-DSs induced by a DL-action theory or, more general, by a DL-admissible repre-
sentation. However, the following definitions are independent of the concrete representation
of the FO-DS. The meaning of the programming constructs can be explained as follows.

• Every atomic action is a program.

46 Chapter 2 Preliminaries

• A question mark turns an FO formula into a test. Intuitively, a program consisting of a
test ψ? terminates if ψ is satisfied and fails otherwise.

• The construct δ∗ means executing the program δ zero or more times.

• To do (δ1;δ2) one has to start with executing δ1 and after the termination of δ1 the
execution continues with δ2.

• The program (δ1|δ2) offers a choice between program δ1 or δ2.

• To execute the interleaved program (δ1‖δ2) one can choose among the next possible
actions from δ1 or from δ2.

• The pick operator (pick(x̄) → ψ?;δ) is used to instantiate free variables in δ. The
interpreter of the program is supposed to non-deterministically choose some objects
for the variables x̄ that pass the test ψ and then the program δ is instantiated and
executed with the chosen objects.

For the definition of the program semantics some further notions are needed. The meaning
of a guarded pick expression that binds variables in tests and action terms is defined in terms
of substitutions that replace variable names by object names.

Example 2.42. We consider a program in the device domain from Example 2.35. It one
by one picks the power supplies connected to dev and disconnects them until the device is
powered off. The program expression is given as follows:

�

dev À− On?;
�

pick(x)→ (dev, x) À− ConTo?;disconnect(dev, x)
� �∗

;dev À− ¬On?

Î

Let δ be a program expression with free variables and ν a variable mapping, the closed
program expression δν is obtained from δ by simultaneously replacing each occurrence of a
free variable x in δ by the object name ν(x). Next, we define the notion of a program state
and a transition relation among them.

Definition 2.43. Let D = (I, Iini, F ,Act, E ,Pre) be a FO-DS. A program state over D (program
state for short) is a tuple of the form

〈I,σ,ξ〉,

where

• I ∈ I represents the current state of the world,

• σ ∈ ground(Act)∗ is the history of actions occurred so far and

• ξ is a closed program expression over D denoting the program that remains to be
executed.

The set of all program states over D is denoted by States(D). The set Final(D) denotes the
set of all final program states over D and is defined by induction on the size of program
expressions as the smallest set satisfying the following conditions:

2.4 ConGolog Programs over FO Dynamical Systems 47

1. 〈I,σ, 〈〉〉 ∈ Final(D);

2. 〈I,σ,ψ?〉 ∈ Final(D), if I |=ψ;

3. 〈I,σ,δ∗〉 ∈ Final(D);

4. 〈I,σ,δ1;δ2〉 ∈ Final(D), if 〈I,σ,δ1〉 ∈ Final(D) and 〈I,σ,δ2〉 ∈ Final(D);

5. 〈I,σ,δ1|δ2〉 ∈ Final(D), if 〈I,σ,δ1〉 ∈ Final(D) or 〈I,σ,δ2〉 ∈ Final(D);

6. 〈I,σ,δ1‖δ2〉 ∈ Final(D), if 〈I,σ,δ1〉 ∈ Final(D) and 〈I,σ,δ2〉 ∈ Final(D);

7. 〈I,σ,pick(x̄)→ψ?;δ〉 ∈ Final(D), if I |=ψν and 〈I,σ,δν〉 ∈ Final(D) for some ν.

A transition relation
→D ⊆ States(D)×States(D)

is defined by induction on the size of program expressions as the smallest set satisfying the
following conditions:

1. 〈I,σ,α〉 →D 〈I′,σ ·α, 〈〉〉, if I ⇒αD I′ and (I,α) ∈ Pre;

2. 〈I,σ,δ∗〉 →D 〈I′,σ ·α,δ′;δ∗〉, if 〈I,σ,δ〉 →D 〈I′,σ ·α,δ′〉;

3. 〈I,σ,δ1;δ2〉 →D 〈I′,σ ·α,δ′1;δ2〉, if 〈I,σ,δ1〉 →D 〈I′,σ ·α,δ′1〉;

4. 〈I,σ,δ1;δ2〉 →D 〈I′,σ ·α,δ′2〉, if 〈I,σ,δ1〉 ∈ Final(D) and

〈I,σ,δ2〉 →D 〈I′,σ ·α,δ′2〉;

5. 〈I,σ,δ1|δ2〉 →D 〈I′,σ ·α,δ′〉, if 〈I,σ,δ1〉 →D 〈I′,σ,δ′〉 or 〈I,σ,δ2〉 →D 〈I′,σ,δ′〉

6. 〈I,σ,δ1‖δ2〉 →D 〈I′,σ ·α,δ′1‖δ2〉, if 〈I,σ,δ1〉 →D 〈I′,σ ·α,δ′1〉;

7. 〈I,σ,δ1‖δ2〉 →D 〈I′,σ ·α,δ1‖δ′2〉, if 〈I,σ,δ2〉 →D 〈I′,σ ·α,δ′2〉;

8. 〈I,σ,pick(x̄)→ψ?;δ〉 →D 〈I′,σ ·α,δ′〉, if I |=ψν and

〈I,σ,δν〉 →D 〈I′,σ ·α,δ′〉 for some ν.

The set of all failure states over D, denoted by Fail(D), is defined as follows:

Fail(D) := {〈I,σ,δ〉 ∈ States(D) | 〈I,σ,δ〉 /∈ Final(D) and

there exists no q ∈ States(D) with 〈I,σ,δ〉 →D q}.

Î

The transition rules and the definition of the final states are the same as the ones introduced
by Claßen and Lakemeyer in their logic [CL08] for reasoning about ConGolog. They also
discuss the relationship of their semantics with the classical semantics of Golog provided
in terms of axioms formulated in second-order predicate logic [Lev+97; DLL00] within the
Situation Calculus.

Consider the transition rule 8. dealing with a guarded pick expression. The pick non-
deterministically instantiates variable names with object names. Thus, the pick only ranges

48 Chapter 2 Preliminaries

over the named part of the interpretation domain. In Claßen’s and Lakemeyer’s semantics the
pick ranges over the whole fixed domain of countably infinite standard names. Thus, under
the SNA with NO as the set of standard names, our semantics is compatible with Claßen’s
and Lakemeyer’s definition. However, we don’t provide a formal proof for this claim. Also
note that since pick(x̄)→ψ?;δ is a closed program expression, the free variables in ψ and
δ are among x̄ .

The following lemma is a direct consequence of the definition. It states that a transition in
“→D” is always caused by an executable ground action.

Lemma 2.44. Let D = (I, Iini, F ,Act, E ,Pre) be an FO-DS and let 〈I,σ,δ〉 and 〈I′,σ′,δ′〉
be program states over D such that 〈I,σ,δ〉 →D 〈I′,σ′,δ′〉. There exists a ground action
α ∈ ground(Act) that is a ground instance of an action term occurring in δ such that (I,α) ∈ Pre,
I ⇒αD J and σ′ = σ ·α.

Proof. The proof is by induction on the structure of the closed program expression δ. For the
base case where δ is a ground action the claim follows immediately from the definition of
the transition relation. For complex expressions, the induction step is straightforward using
the transition rules and the induction hypothesis.

Note that in our semantics tests do not cause any transition step. Tests can be viewed as
preconditions of the next primitive ground action to be executed. This is compatible with
the semantics used in [CL08; SD09] but different from the original semantics in [DLL00].

Before the first-oder transition system induced by a program is defined we introduce a
workaround to deal with dead-end program states that might occur in the transition relation
defined above. Failure states do not have an outgoing transition and also final states do not
necessarily have one. To handle non-terminating, terminating and failing executions in a
uniform way some additional “dummy actions” that indicate termination and failure of a
program, respectively, are defined. Note that failure in our case means that the program
execution is stuck before reaching a final program state.

Definition 2.45 (termination and failure). We use the following names from the vocabulary:

• two unary predicate names Final and Fail from NF;

• an object name prog ∈ NO and

• two action names ε, f ∈ NA with arity zero.

Let D = (I, Iini, F ,Act, E ,Pre) be an FO-DS, where the names Final and Fail are not contained
in F , the object name prog and the actions ε and f are not contained in Act. The extension of
D with ε and f, denoted by D] {ε, f}, is an FO-DS given as follows

D] {ε, f}= (I, I′ini, F ∪ {Final, Fail},Act∪ {ε, f}, Eε,f, Preε,f),

with
I′ini = {I ∈ Iini | I |= ¬Final(prog)∧¬Fail(prog)},

and the effect functions Eε,f = 〈addε,f,delε,f〉 are obtained from E = 〈add,del〉 as follows:

addε,f(I,α, F) := add(I,α, F) and delε,f(I,α, F) := del(I,α, F)

2.4 ConGolog Programs over FO Dynamical Systems 49

for all I ∈ I, α ∈ ground(Act), F ∈ F .
It remains to define the effects of ε and f and the effects of the actions in ground(Act) on

the names Final and Fail.

• The action ε indicates termination and causes Final(prog) to be true and changes
nothing else. For all I ∈ I we define

– addε,f(I,ε, Final) := {progI} and addε,f(I,ε, F) := ; for all F ∈ F ∪ {Fail};

– delε,f(I,ε, F) := ; for all F ∈ F ∪ {Final, Fail}.

• The action f indicates a failure and causes Fail(prog) to be true and changes nothing
else. For all I ∈ I we define

– addε,f(I, f, Fail) := {progI} and addε,f(I, f, F) := ; for all F ∈ F ∪ {Final};

– delε,f(I, f, F) := ; for all F ∈ F ∪ {Final, Fail}.

• The fluents Final and Fail are not affected by any other action different from ε and f,
respectively. For all I ∈ I we define

– addε,f(I,α, Final) := delε,f(I,α, Final) := ; for all α ∈ ground(Act)∪ {f};

– addε,f(I,α, Fail) := delε,f(I,α, Fail) := ; for all α ∈ ground(Act)∪ {ε}.

The actions ε and f are always possible. We define

(I,ε) ∈ Preε,f and (I, f) ∈ Preε,f for all I ∈ I.

For all I ∈ I and all α ∈ ground(Act) we define (I,α) ∈ Preε,f iff (I,α) ∈ Pre. Î

In the following we assume that all FO-DSs can be extended as defined above. We are
now ready to define the first-order transition system induced by a program.

Definition 2.46. Let P = (D,δ) be a ConGolog program over D = (I, Iini, F ,Act, E ,Pre). The
first-order transition system induced by P is a transition system over the label set I, denoted
by

IP = (QP , IP , ,→P ,λP),

and consists of

• the set of states

QP := {〈I,σ,ρ〉 ∈ States(D] {ε, f}) | the symbols ε, f, Final, Fail do not occur in ρ};

• the set of initial states given by

IP := {〈I, 〈〉,δ〉 | I ∈ Iini, I |= ¬Final(prog)∧¬Fail(prog)}

and

• the transition relation ,→P⊆QP ×QP that is defined as the smallest set satisfying the
following conditions:

– 〈I,σ,ρ〉 ,→P 〈J ,σ ·α,ξ〉, if 〈I,σ,ρ〉 →D]{ε,f} 〈J ,σ ·α,ξ〉;

50 Chapter 2 Preliminaries

– 〈I,σ,ρ〉 ,→P 〈J ,σ · ε, 〈〉〉, if 〈I,σ,ρ〉 ∈ Final(D] {ε, f}) and I ⇒ε
D]{ε,f} J ;

– 〈I,σ,ρ〉 ,→P 〈J ,σ · f,ρ〉, if 〈I,σ,ρ〉 ∈ Fail(D] {ε, f}) and I ⇒f

D]{ε,f} J .

• the labeling function λP : 〈I,σ,ρ〉 7→ I for each 〈I,σ,ρ〉 ∈QP .

Î

The program expression δ in the program P = (D,δ) is a program expression over D. By
our assumption on D the names ε, f, Final and Fail are not mentioned in δ. Consequently,
we also disallow these names in the program expressions of the states in the transition system
IP . We use States(D] {ε, f}) instead of States(D) to define QP because we allow that the
actions ε and f occur in the action history of final and failure states. The execution of δ
starts in an initial state, with the empty action history and we define that an initial state is
labeled with the literals ¬Final(prog) and ¬Fail(prog). The program states are progressed
according to the transition rules used to define the relation→D]{ε,f}. A path fragment that
leads to a final state or failure state is extended to an infinite path using the actions ε or f,
respectively. IP is a proper transition system where each state has at least one successor
state (the proof is postponed to Section 3.1, Lemma 3.1).

The program semantics allows to distinguish different kinds of paths.

Definition 2.47. Let π be a path in the transition system IP of a ConGolog program

P = (D,δ0)

of the form

π= 〈I0, 〈〉,δ0〉 ,→P 〈I1,α1,δ1〉 ,→P 〈I2,α1α2,δ2〉 ,→P · · ·

with 〈I0, 〈〉,δ0〉 ∈ IP .
π is called a non-terminating and non-failing execution of δ0 in I0, iff for all i ≥ 0:

〈Ii ,α1 · · ·αi ,δi〉 →D 〈Ii+1,α1 · · ·αiαi+1,δi+1〉.

π is a terminating execution iff there exists an index j ≥ 0 such that

〈I j ,α1 · · ·α j ,δ j〉 ∈ Final(D) and

〈Ii ,α1 · · ·αi ,δi〉 →D 〈Ii+1,α1 · · ·αiαi+1,δi+1〉 for all i = 0, . . . , j − 1 and

δ` = 〈〉,α` = ε and I`−1⇒εD]{ε,f} I` for all ` > j.

π is a failing execution iff there is an index j > 0 such that

〈I j ,α1 · · ·α j ,δ j〉 ∈ Fail(D) and

〈Ii ,α1 · · ·αi ,δi〉 →D 〈Ii+1,α1 · · ·αiαi+1,δi+1〉 for all i = 0, . . . , j − 1 and

δ` = δ j ,α` = f and I`−1⇒
f

D]{ε,f} I` for all ` > j.

Î

2.4 ConGolog Programs over FO Dynamical Systems 51

The proof that this characterization indeed partitions the set of all paths starting in some
initial state is postponed to Lemma 3.2 in Section 3.1.

With the available programming constructs while-loops and if-then-else statements can be
expressed as follows:

while ψ do δ end := (ψ?;δ)∗; (¬ψ)?;

if ψ then δ1 else δ2 end := (ψ?;δ1) | ((¬ψ)?;δ2).

For example, the program expression in Example 2.42 is a while-loop with non-deterministic
choice in the body of the loop. The primitive actions definable in an FO-DS are instantaneous
and not time consuming. However, simple (discrete) “durative actions” can be incorporated
into a ConGolog program using interleaving. The basic idea described in [DLL00] is to
decompose a complex ongoing action into a start-action initiating the process and an end-
action terminating it, whereas in the meantime also other actions might occur. A similar
approach is used in the PDDL standard to incorporate durative actions [FL03]. The following
example describes an agent that is charging a battery.

Example 2.48. We extend the domain with devices and power supplies from Example 2.32
and 2.35. The following ABox assertions describe an initial situation

bat À− (Batteryu PowerSu¬Charging), dev À− (Devu∀ConTo.{bat} uOn).

The battery bat is the only connected power supply for the device dev that is initially turned
on. The agent is able to initiate the charging of bat in case the battery is not broken:

pre(start-charge(bat)) := {bat À− Battery},

eff(start-charge(bat)) :=
�

〈Charging, {bat}〉+
	

.

There are exogenous events that stand for the end of the charging and the end of the
discharging process of bat. They are modeled using the following actions:

pre(recharged(bat)) := {bat À− Charging};

eff(recharged(bat)) :=
�

〈PowerS, {bat}〉+, 〈Charging, {bat}〉−
	

;

pre(discharged(bat)) := {bat À− (¬Chargingu PowerS)};

eff(discharged(bat)) :=
�

〈PowerS, {bat}〉−, 〈On, C〉−
	

, where

C := Devu ∃ConTo.{bat} u ∀ConTo.(¬PowerSt {bat}).

After charging it, bat becomes a power supply in case it is not broken. The occurrence of the
action discharged(bat) indicates that bat is fully discharged. Thus, it is no longer a power
supply and we have the side effect that those devices that are connected to bat and are not
connected to any other power supply are turned off.

The following program expression describes a non-terminating control loop of an agent
that initiates the charging of the battery in case it is fully discharged and it turns the device
on in case its battery is fully charged. While the battery is charging or in use the agent is

52 Chapter 2 Preliminaries

waiting and executes the action idle with pre(idle) = eff(idle) = ;.

δagent := while TRUE do

if (bat À− Charging) then

idle;

else

(bat À− ¬PowerS)?;start-charge(bat) |
(bat À− PowerS)∧ (dev À− ¬On)?;turn-on(dev) |
(bat À− PowerS)∧ (dev À− On)?;idle;

end;

end.

Another loop describes the exogenous actions in the environment affecting the charge of the
battery:

δnature := while TRUE do discharged(bat) | recharged(bat) end.

The overall behavior is described by the concurrent program (δagent ‖ δnature). The part of the
program that describes the actions that are under the control of the agent is deterministic.
Note that each action is guarded with tests that are mutually exclusive. However, the program
δnature is non-deterministic which reflects the uncertainty about the length of the charging
and discharging period. The capacity of the battery is unknown. For instance, the following
infinite action sequence is a possible execution of (δagent ‖ δnature):

discharged(bat)
�

start-charge(bat) recharged(bat) discharged(bat)
�ω

(2.8)

This particular extreme case of an execution describes the behavior in presence of an unusable
battery with zero capacity. The agent is not able to turn the device on again.

Note that the example does not model the actual continuous increase and decrease of the
energy level in the battery taking place between start-charge(bat) and recharged(bat)
and recharged(bat) and discharged(bat), respectively. Of course, a simple discretization
of these processes could be easily added within our framework using intermediate actions.
Clearly, the model of the battery is rather high-level and covers only some aspects of the
system. Î

2.4.2 The Verification Problem

In this section we define the verification problem for ConGolog programs. The input consists
of the program and a temporal property that specifies the desired behavior. The question is
whether all executions of the program satisfy the temporal specification.

Definition 2.49 (verification problem). Let P be a ConGolog program and Φ an FO-CTL∗

state formula. We say that Φ is valid in P iff IP , q0 |= Φ holds for all initial states q0 ∈ IP of
the transition system IP = (QP , IP , ,→P ,λP) induced by P. Φ is said to be satisfiable in P iff
IP , q0 |= Φ for some initial state q0 ∈ IP .

The verification problem is the problem of determining whether Φ is valid in P. Î

2.4 ConGolog Programs over FO Dynamical Systems 53

It holds that Φ is valid in P iff ¬Φ is not satisfiable in P.

Example 2.50. We specify some properties of the program in the domain described in
Example 2.48. The test guarding the turn-on action ensures that the concept inclusion in
(2.5) globally holds on all paths which can be expressed with the following state formula:

AG(EDevuOnv ∃ConTo.PowerS).

Thus, the problem whether all executions of a program respect a given L-TBox constraint is
expressible in L-CTL∗

The following state formula expresses that once the battery is now longer a power supply
and not yet charging, the agent immediately initiates the charging process:

AG
�

bat À− (¬PowerSu¬Charging)→AX(bat À− Charging)
�

.

The following path formula describes an execution where the battery is infinitely often a
power supply and infinitely often not, and it supplies energy for at least one time point after
charging is completed:

Ψfair := GF(bat À− PowerS)∧GF(bat À− ¬PowerS)∧

G
�

(bat À− Charging)∧X(bat À− ¬Chargingu PowerS)→XX(bat À− PowerS)
�

.

The formula rules out executions like (2.8) and those where the battery from some time
point on is charging forever, or never gets discharged. Under this assumption it holds that
the device is infinitely often turned on:

A(Ψfair→GF(dev À− On))

Î

Using the literals Final(prog) and Fail(prog) maintained by the termination and failure
action, respectively, we can also express the verification of postconditions of programs that
are supposed to be terminating. Let ψ be a Boolean KB characterizing a desired goal state.
Validity of

E(¬Fail(prog)U (Final(prog)∧ψ))

ensures that a non-failing and terminating execution to a goal state is possible from all initial
states. To check partial correctness w.r.t. ψ one can verify the following formula

AG(Final(prog)→ψ).

Total correctness of a program w.r.t. ψ corresponds to validity of AF(Final(prog)∧ψ) in the
program.

Chapter 3

Towards Decidable Fragments of ConGolog

This chapter has three parts. In the first part (Section 3.1), some properties of the program
semantics are proven in order to justify the treatment of terminating and failing executions.
In Section 3.2, we start our investigation of the computational properties of the verification
problem. The main goal is to identify fragments of ConGolog and of the specification language
for which verification is decidable. The first step is to restrict the base logic to a decidable
DL. We obtain a simple DL-based setting

• by using a DL-action theory for representing the underlying dynamical system,

• by restricting the tests in the program to Boolean DL KBs and

• by formulating the temporal specification in DL-CTL∗.

However, it is shown that even in a simple DL-based setting as describe above the verification
problem is undecidable. Non-ground actions and the guarded pick expressions in programs
are identified as one the main suspects for causing undecidability. Therefore, our focus in the
subsequent sections 3.3 and 3.4 is on pick-free program expressions over a finite set of ground
actions. Before concrete decidable fragments are discussed, we set up the overall framework
for proving decidability. First, a finite representation of the set of all reachable subprogram
expression is provided. Second, an appropriate notion of abstraction and bisimulation is
established.

3.1 Termination and Failure

It remains to be shown that each state in the FO transition system induced by a ConGolog
program has at least one successor state. Furthermore, we have to show that the set of all
paths in the transition system (according to Definition 2.47) can be partitioned into three
sets of

• non-terminating and non-failing executions,

• terminating executions, and

• failing executions.

Lemma 3.1. Let P = (D,δ) be a ConGolog program over D = (I, Iini, F ,Act, E ,Pre), and let
IP = (QP , IP , ,→P ,λP) be the transition system induced by P. It holds that for every q ∈QP
there exists q′ ∈QP such that q ,→P q′.

55

56 Chapter 3 Towards Decidable Fragments of ConGolog

Proof. Let q ∈QP and assume q = 〈I,σ,ρ〉. First, assume

q /∈ Final(D] {ε, f}) and q /∈ Fail(D] {ε, f}).

By definition q /∈ Fail(D] {ε, f})∪ Final(D] {ε, f}) implies that there exists a successor state

q′ ∈ States(D] {ε, f}) with q→D]{ε,f} q′.

By definition of QP the symbols ε, f, Final and Fail do not occur in ρ. By induction on
the structure of ρ it can be shown that the same holds for the program expression in the
successor state q′, because the transition relation→D]{ε,f} does not introduce new symbols.
It follows that q′ ∈QP .

Next, assume 〈I,σ,ρ〉 ∈ Final(D] {ε, f}). There exists a program state

〈I′,σ · ε, 〈〉〉 ∈ States(D] {ε, f}) with I ⇒ε
D]{ε,f} I′.

Obviously, 〈I′,σ · ε, 〈〉〉 ∈QP . By definition of ,→P we have

〈I,σ,ρ〉 ,→P 〈I′,σ · ε, 〈〉〉.

Assume 〈I,σ,ρ〉 ∈ Fail(D] {ε, f}). There exists a program state

〈I′,σ · f,ρ〉 ∈ States(D] {ε, f}) with I ⇒f

D]{ε,f} I′.

Obviously, 〈I′,σ · f,ρ〉 ∈QP . By definition of ,→P we have

〈I,σ,ρ〉 ,→P 〈I′,σ · f,ρ〉.

As a consequence we get that IP is a well-defined FO transition system. Recall that for a
program P = (D,δ) the symbol “→D” stands for the transition relation on program states
over D and “→D]{ε,f}” for transitions between states over D] {ε, f}, i.e. states that are
allowed to have the termination action ε and the action indicating failure f in their action
history. The actual transition relation “,→P” of the transition system induced by P extends
“→D” by transitions in final and failure states.

The following lemma shows that the characterization in Definition 2.47 of the different
paths covers all possible executions of a program.

Lemma 3.2. Let P = (D,δ) be a ConGolog program over D= (I, Iini, F ,Act, E ,Pre),

IP = (QP , IP , ,→P ,λP)

the transition system induced by P and 〈I,σ,ρ〉 ∈QP a state reachable from an initial state.

1. There are action sequences σ′ and σ′′ with σ = σ′ ·σ′′ such that σ′ ∈ ground(Act)∗ and
σ′′ ∈ {ε}∗ or σ′′ ∈ {f}∗.

2. Let σ ∈ ground(Act)∗. It holds that

3.1 Termination and Failure 57

a) 〈I,σ,ρ〉 →D]{ε,f} q′ iff 〈I,σ,ρ〉 →D q′ for all q′ ∈ States(D] {ε, f});
b) 〈I,σ,ρ〉 ∈ Final(D] {ε, f}) iff 〈I,σ,ρ〉 ∈ Final(D);
c) 〈I,σ,ρ〉 ∈ Fail(D] {ε, f}) iff 〈I,σ,ρ〉 ∈ Fail(D).

Proof. 1. The proof is by induction on the length n of the action sequence σ occurring in
the reachable state 〈I,σ,ρ〉. Obviously, the claim holds for n= 0.

Now, let n> 0 and let σ = bσ ·α such that

〈J , bσ,ξ〉 ,→P 〈I,σ,ρ〉

and 〈J , bσ,ξ〉 is reachable from an initial state. By induction we assume that

bσ = bσ′ · bσ′′ with bσ′ ∈ ground(Act)∗ and bσ′′ ∈ {ε}∗ or bσ′′ ∈ {f}∗.

It has to be shown that also σ can be written in that way. We distinguish three cases
regarding bσ′′.

bσ′′ = 〈〉 : Thus, we have bσ ∈ ground(Act)∗. According to the definition of “,→P” there
are three possible cases. First, assume

〈J , bσ,ξ〉 →D]{ε,f} 〈I, bσ ·α,ρ〉.

Lemma 2.44 implies that α is the ground instance of an action term in ξ and
J �ε,fposs α and J ⇒α

D]{ε,f} I. The action terms in ξ are contained in Act. It follows
that α ∈ ground(Act). Consequently, σ = bσ ·α satisfies the claim. The two remain-
ing cases according to the definition of “,→P” are 〈J , bσ,ξ〉 ∈ Final(D] {ε, f})
and α = ε or 〈J , bσ,ξ〉 ∈ Fail(D] {ε, f}) and α = f. In both cases σ = bσ ·α has
the desired form.

bσ′′ 6= 〈〉 ∧ bσ′′ ∈ {ε}∗ : It follows that ξ = 〈〉 and 〈J , bσ,ξ〉 ∈ Final(D] {ε, f}). With
ξ = 〈〉 it is implied that 〈J , bσ,ξ〉 has no successor in “→D]{ε,f}”. According to
the definition of ,→P , we have σ = bσ · ε. Therefore, σ satisfies the claim.

bσ′′ 6= 〈〉 ∧ bσ′′ ∈ {f}∗ : According to the definition of ,→P there must be a reachable
state

〈Y, σ̃,ξ〉 ∈ Fail(D] {ε, f})

that is the predecessor of 〈J , bσ,ξ〉 with Y ⇒f

D]{ε,f} J and bσ = σ̃ · f. We show

that 〈J , bσ,ξ〉 ∈ Fail(D] {ε, f}) is implied. Since Y ⇒f

D]{ε,f} J , the definition of
Eε,f implies

FY = FJ for all F ∈ F and oY = oJ for all o ∈ NO.

It follows that for all β ∈ ground(Act):

Y �ε,fposs β iff Y �poss β iff J �poss β iff J �ε,fposs β .

Furthermore, all tests in ξ mention only predicates from F . Therefore,

〈Y, σ̃,ξ〉 ∈ Fail(D] {ε, f}) implies 〈J , bσ,ξ〉 ∈ Fail(D] {ε, f})

58 Chapter 3 Towards Decidable Fragments of ConGolog

According to the definition it follows that σ = bσ · f and σ is of the desired form.

2. 〈I,σ,ρ〉 ∈ QP with σ ∈ ground(Act)∗ implies 〈I,σ,ρ〉 ∈ States(D). Using a simple
induction proof on the structure of ρ

〈I,σ,ρ〉 ∈ Final(D] {ε, f}) iff 〈I,σ,ρ〉 ∈ Final(D) (3.1)

can be shown directly. Let q′ ∈ States(D] {ε, f}). The claim

〈I,σ,ρ〉 →D]{ε,f} q′ iff 〈I,σ,ρ〉 →D q′ (3.2)

can be shown by induction on the structure of ρ. We only prove the base case, where ρ
is of the form ρ = α for some ground action α. 〈I,σ,α〉 ∈QP implies α ∈ ground(Act).
It holds that 〈I,σ,α〉 →D]{ε,f} 〈I′,σ ·α, 〈〉〉

iff I ⇒α
D]{ε,f} I′ and I �ε,fposs α

iff I ⇒αD I′ and I �poss α (by definition of Eε,f and �ε,fposs)

iff 〈I,σ,α〉 →D 〈I′,σ ·α, 〈〉〉.

The third claim

〈I,σ,ρ〉 ∈ Fail(D] {ε, f}) iff 〈I,σ,ρ〉 ∈ Fail(D)

follows from (3.1) and (3.2).

It is a direct consequence of this lemma that there are only the three types of paths defined
in Definition 2.47.

3.2 Undecidability of DL-based ConGolog with Guarded Pick

It comes as no surprise that the verification problem is undecidable even if the base logic
is a decidable DL and the underlying dynamical system is represented with a local effect
DL-action theory. We show undecidability for an instance of the verification problem with an
input that consists of:

• a local effect ALC-action theory Σ= (K,Act,pre,eff),

• a closed program expression δ composed of actions from Act and with tests formulated
as ABox assertions and

• an ALC-CTL∗ state formula Φ.

The problem is to check whether Φ is valid in P = (D(Σ),δ). We interpret the programs
under the SNA with NO as the set of standard names (see Definition 2.4). It turns out
that one of the main sources of undecidability are the guarded pick expressions. We show
undecidability by a reduction of the halting problem of two-counter machines [Min67].

3.2 Undecidability of DL-based ConGolog with Guarded Pick 59

Definition 3.3. A two-counter machine M manipulates the non-negative integer values of two
counters, denoted by c0 and c1 in the following. A machine M is given by a finite sequence
of instructions of the form

M= J0; · · · ;Jm.

Let i, j ∈ {0, . . . , m} and ` ∈ {0, 1}. Each instruction in the sequence J0, . . . , Jm has one of the
following forms:

• Inc(`, i) : Increment c` by one and jump to instruction Ji .

• Dec(`, i, j) : If c` = 0 jump to Ji , else if c` > 0 decrement c` by one and jump to J j .

• Halt: The machine stops.

A configuration of M is of the form (i, n0, n1)where i ∈ {0, . . . , m} is the index of the instruction
to be executed next and v0, v1 ∈ N are the values of the two counters. M induces a transition
relation on configurations, denoted by `M, that is defined as explained above. Î

We assume that both counters are initialized with zero and that the execution of the
machine M starts with instruction J0. We say that M halts iff there exists a computation such
that

(0, 0, 0) `M∗ (j, n0, n1)

for some n0, n1 ∈ N and J j = Halt. This means that a configuration with the halting instruction
is reachable from the initial configuration (0, 0, 0). The problem of deciding whether a given
two-counter machine halts is undecidable [Min67].

Now we describe how a machine M = J0; · · · ;Jm over the two counters c0 and c1 is
simulated in a Golog program. The following concept names, object names and action terms
are used:

• There are concept names J0, . . . , Jm and Halt and an object name s such that the literal
Ji(s) is true for some i = 0, . . . , m iff the i-th instruction is the next one to be executed.
Halt(s) indicates that the machine is in its halting state.

• We use two role names P0, P1 and two objects a0 and a1 to represent the counter values.
The current value of counter c0 corresponds to the number of objects related to the
object a0 via the role P0 and analogously the value of counter c1 is the number of
P1-successors of a1.

• For each counter c`, ` ∈ {0, 1} there is an increment and a decrement action, denoted
by inc`(a`, x) and dec`(a`, x), respectively. Jumping to the i-th instruction with
i ∈ {0, . . . , m} is done using the action jumpi(s). And there is an action for entering
the halting state halt(s).

The initial situation is described by the ABox

AM = { s À− J0 u¬J1 u¬J2 u · · · u ¬Jm u¬Halt,

a0 À− (∀P0.⊥), a1 À− (∀P1.⊥)}.
(3.3)

60 Chapter 3 Towards Decidable Fragments of ConGolog

The machine starts with the instruction J0 and is not in the halting state. The last two
assertions express that a0 and a1 are not related to any object via the role P0 and P1,
respectively. In our encoding of the counter values, this corresponds to an initialization with
the value zero. Next, we define the preconditions and effects of the primitive actions using
the mappings pre and eff. The inc`(a`, x) action adds the argument x as a new P`-successor
of a` and dually, the dec`(a`, x) action decrements the `-th counter by deleting a P`-successor
of a`:

pre(inc`(a`, x)) = {(a`, x) À− ¬P`}, eff(inc`(a`, x)) =
�

〈P`, {(a`, x)}〉+
	

,

pre(dec`(a`, x)) = {(a`, x) À− P`}, eff(dec`(a`, x)) =
�

〈P`, {(a`, x)}〉−
	

with ` ∈ {0,1}. The jumpi(s) action makes the label of the i-th instruction s À− Ji true and
falsifies all the other labels. halt(s) sets s À− Halt to true. We have

pre(jumpi(s)) = ;, eff(jumpi(s)) =
�

〈Ji , {s}〉
+	∪

¦

J j , {s}
�− | j ∈ {0, . . . , m} and i 6= j

©

,

pre(halt(s)) = ;, eff(halt(s)) =
�

〈Halt, {s}〉+
	

with i ∈ {0, . . . , m}. For each instruction Jk with k ∈ {0, . . . , m} a program expression δk is
defined. In case Jk = Inc(`, i) we define δk as follows:

pick(x)→ ((a`, x) À− ¬P`)?;inc`(a`, x);jumpi(s).

An object satisfying the precondition of the increment of the `-th counter is chosen, it is then
executed and the label of the next instruction is made true. If Jk = Dec(`, i, j), then

if a` À− (∀P`.⊥) then jumpi(s) else pick(x)→ ((a`, x) À− P`)?;dec`(a`, x);jump j(s) end.

The assertion a` À− (∀P`.⊥) is tested to check whether the `-th counter is zero. In the
if-branch we directly jump to the i-th instruction and in the else branch the decrement is
instantiated, executed and the next instruction is preset. The program for the remaining
case with Jk = Halt is just the ground action halt(s). The program expression δM for the
machine M is assembled as follows:

δM :=while ¬Halt(s) do (s À− J0?;δ0) | (s À− J1?;δ1) | · · · | (s À− Jm?;δm) end.

The overall Golog program is based on the local effect ALC-action theory

ΣM = (KM,ActM,eff,pre),

where ActM is the set of action terms described above. The initial knowledge base KM consists
only of the ABox AM (see (3.3)). The TBox is empty. It is now straightforward to prove the
following lemma.

Lemma 3.4. Let PM = (D(ΣM),δM) be the Golog program simulating the two-counter machine
M as defined above. It holds that the ALC-CTL∗ state formula EF(s À− Halt) is satisfiable in PM
iff M halts.

3.2 Undecidability of DL-based ConGolog with Guarded Pick 61

Recall that the variables in the tests and actions are substituted with object names from the
countably infinite set NO according to the semantics of guarded pick expressions. Since we
have made the SNA, there is always an infinite supply of objects for the next increment of a
counter. Thus, the program that implements the increment instruction never fails. This is no
longer true if the SNA and UNA are both dropped. To handle also this case we only have to
add the inequality assertion a0 6≈ a1 to AM. The preconditions and guards of the increment
and decrement actions ensure that the program still counts correctly. However, there are
initial states with interpretations I for which the set {oI | o ∈ NO} is finite. In this case, the
cardinality of {oI | o ∈ NO} introduces an upper bound on the possible counter values. In
case one of the counters tries to exceed the bound with an increment the precondition and
guard ensure that the program enters a failure state. This behavior excludes false positives,
i.e. initial states satisfying EF(s À− Halt) in case M never halts. And even if the SNA and UNA
are not made, a canonical interpretation that interprets all object names differently and
satisfies the initial ABox AM obviously exists. Since Lemma 3.4 only requires satisfiability, the
existence of a single initial state from which all increments go through is sufficient. Therefore,
the undecidability result is not affected by the SNA or UNA.

Note that we don’t use the full expressiveness of ALC-CTL∗. The property EF(s À− Halt)
is formulated within the CTL fragment of ALC-CTL∗. Furthermore, the halting problem
can be also formulated as an ALC-LTL verification problem. Obviously, the state formula
EFs À− Halt) is satisfied in some initial state iff there exists an infinite path satisfying the
ALC-LTL formula F(s À− Halt). Undecidability also carries over to the verification of ALC-CTL
and ALC-LTL specifications.

Theorem 3.5. Verifying ALC-CTL properties of Golog programs based on local effect ALC-action
theories is undecidable.

For the reduction we have used only a small fragment of ALC. The value restriction ∀P`.⊥
in the initial ABox is the only complex concept occurring in the program.

It turns out that guarded pick expressions cause problems even if we further restrict the
other available programming constructs and also disallow iteration. Under the SNA the pick
can act as an additional existential quantifier. We can exploit this feature to reduce Boolean
conjunctive query entailment w.r.t. an ALC-TBox to the verification problem.

Definition 3.6. A Boolean conjunctive query (BCQ) is an FO sentence of the form ∃ x̄ .ψ,
where ψ is a conjunction of positive and negative literals with unary and binary predicate
names. All variable names in ψ are among x̄ . Let I be an interpretation. Satisfaction of
∃ x̄ .ψ in I is defined using the usual first-order logic semantics. A BCQ ∃ x̄ .ψ is entailed by
an ALC-TBox T iff ∃ x̄ .ψ is satisfied in all models of T . Î

In this general case BCQ entailment w.r.t. an ALC-TBox is undecidable as shown by Rosati
[Ros07]. The undecidability result also holds for BCQs without object names. In this case,
it is obvious that the SNA is without loss of generality. For an ALC-TBox T and BCQ ∃ x̄ .ψ
without object names it holds that ∃ x̄ .ψ is satisfied in all models of T iff ∃ x̄ .ψ is satisfied in
all models of T that satisfy the SNA.

Let T be an ALC-TBox and ∃ x̄ .ψ a BCQ without object names. ψ can be viewed as a
conjunction of ABox literals. We define a local effect ALC-action theory with a single ground

62 Chapter 3 Towards Decidable Fragments of ConGolog

action:

Σ= (K = (T , A= {a À− ¬A}),Act = {α(a)},pre,eff),

where pre(α(a)) := ; and eff(α(a)) :=
�

〈A, {a}〉+
	

and a ∈ NO and A is a concept name not
mentioned in T . A guarded pick expression that checks ∃ x̄ .ψ is given as follows:

δ = pick(x̄)→ψ?;α(a).

Once the guard is passed the literal a À− A is set to true by α(a). The ALC-CTL state formula
EX(a À− A) is satisfied in an initial state 〈I, 〈〉,δ〉 of the program P = (D(Σ),δ) iff an
instantiation of the variables x̄ can be chosen such that the instantiated ψ is satisfied in the
model I of T . It is easy to see that EX(a À− A) is valid in P iff ∃ x̄ .ψ is entailed by T .

Theorem 3.7. Verifying ALC-CTL properties of Golog programs based on local effect ALC-action
theories under the SNA is undecidable even if iteration is disallowed and only a single ground
action is used.

3.3 Reachable Subprogram Expressions

In this section ConGolog programs P = (D,δ) are considered, where δ is pick-free. In this
cases the program expression δ only mentions a finite set of ground actions. For this restricted
programs we introduce a finite representation of the set of all reachable subprograms. The
results in this section are independent of a particular representation of D.

We start with recapitulating the possible sources of infiniteness in the transition system
of a program. States are triples consisting of a first-order interpretation, a ground action
sequence and a closed program expression. The initial KB of the underlying dynamical
system provides only incomplete information and has infinitely many models. This leads to
infinitely many initial states in the transition system of the program. In the third component
of each state, we keep track of the program expression representing the part of the program
that remains to be executed. Fortunately, this state component is not an additional source of
infiniteness if only ground actions are used and we show in the following that there are only
finitely many reachable subprograms. This is an important auxiliary result we later use to
show decidability of the verification problem in fragments of ConGolog.

To define the set of all reachable subprograms, we consider the “symbolic execution” of a
program. For this purpose, a program expression is split up into its atomic pieces that are
then executed one by one. Such an atomic piece is called guarded action. It is a ground
action preceded by a (possibly empty) sequence of tests.

Definition 3.8. Let D= (I, Iini, F ,Act, E ,Pre) be an FO-DS. A program expression over D is
called guarded action if it is of the form

ψ1?; (ψ2?; (. . . ; (ψn?;α))),

where α ∈ ground(Act), n ≥ 0 and each ψi? for i = 1, · · · , n is a test. We will often use the
symbol a to denote a guarded action. If n = 0, then the guarded action is actually an ordinary

3.3 Reachable Subprogram Expressions 63

head(〈〉) := {ε};

head(α) := {α} for all α ∈ ground(Act);
head(ψ?) := {ψ?;ε};
head(δ∗) := {ε} ∪ head(δ);
head(δ1;δ2) := {a | a=ψ1?; ...;ψn?;α ∈ head(δ1)∧α 6= ε} ∪

{ψ1?; . . . ;ψn?;a | ψ1?; ...;ψn?;ε ∈ head(δ1) ∧ a ∈ head(δ2)};
head(δ1|δ2) := head(δ1)∪ head(δ2);

head(δ1‖δ2) := {a | a=ψ1?; . . . ;ψn?;α ∈ head(δi)∧ i ∈ {1, 2} ∧α 6= ε} ∪
{ψ1?; . . . ;ψn?;a | ψ1?; . . . ;ψn?;ε ∈ head(δi) ∧

a ∈ head(δ j) ∧ i, j ∈ {1,2}, i 6= j};

Figure 3.1: Head of a program expression

ground action, and thus a may also denote a ground action. The preceding sequence of tests
is called guard. When writing a guarded action we will often omit the parentheses.

Let I be an interpretation. The guarded action ψ1?; · · · ;ψn?;α is executable in I iff

I |=ψi for all i = 1, . . . , n and I �poss α.

Î

Next, we introduce two functions head(·) and tail(·, ·). Intuitively, head(δ) contains those
guarded actions that can be executed first when executing the program expression δ. For
a ∈ head(δ), tail(a,δ) yields the remainder of the program, i.e., the part that still needs to
be executed after a has been executed. Due to the non-deterministic nature of ConGolog
programs, tail(a,δ) is also a set of program expressions rather than a single one.

In the remainder of this section we always assume that program expressions are pick-free.
The function head(·) is formally defined as follows.

Definition 3.9. The function head(·) maps a program expression over some first-oder dy-
namical system D = (I, Iini, F ,Act, E ,Pre) to a set of guarded actions over D] {ε, f}. It is
defined by induction on the structure of program expressions as given in Figure 3.1. Î

The empty program represents the final state which means that ε is executed next. Since
tests do not cause a separate execution step, the head of a test is given by the termination
action ε preceded by the test itself as a guard. Executing δ∗ means executing δ zero ore
more times. Hence, the head of δ∗ consists of the termination action ε and the heads of δ.
Consider the definition of head(δ1;δ2). In this case, we first have to execute the program
δ1. Therefore, the first guarded action to be executed for the sequence is one of the heads
of δ1. However, if ψ1?; . . . ;ψn?;ε is contained in the head of δ1, then δ1 can terminate
successfully if the tests are satisfied. But in this case the subsequent program δ2 still needs to
be executed. Therefore, we must continue with a head of δ2. This is achieved by replacing ε

64 Chapter 3 Towards Decidable Fragments of ConGolog

in ψ1?; · · · ;ψn?;ε with a head of δ2. Our definition of head(δ1‖δ2) can be explained in a
similar way. To do δ1|δ2 a head of δ1 or one of δ2 has to be done in the next step.

Next, we need to define the program(s) that remain to be executed once a guarded action
from the head has been executed.

Definition 3.10. The function tail(·, ·) maps a guarded action over D] {ε, f} and a program
expression over D to a set of program expressions over D.

• If a /∈ head(δ), then tail(a,δ) = ;.

• If a ∈ head(δ) and a=ψ1?; ...;ψn?;ε for some n≥ 0, then tail(a,δ) = {〈〉}.

• If a ∈ head(δ) and a = ψ1?; ...;ψn?;α with α 6= ε for some n ≥ 0, then tail(a,δ) is
defined by induction on size of δ as given in Figure 3.2.

Î

tail(a,α) := {〈〉}
tail(a,ψ?) := {〈〉}
tail(a,δ∗) := {δ′; (δ)∗ | δ′ ∈ tail(a,δ)};
tail(a,δ1;δ2) := {δ′;δ2 | δ′ ∈ tail(a,δ1)} ∪

{δ′′ | ∃ j, 0≤ j ≤ n such that ψ1?; ...;ψ j?;ε ∈ head(δ1) ∧
ψ j+1?; ...;ψn?;α ∈ head(δ2) ∧
δ′′ ∈ tail(ψ j+1?; ...;ψn?;α,δ2)};

tail(a,δ1|δ2) := tail(a,δ1)∪ tail(a,δ2);

tail(a,δ1‖δ2) := {δ′‖δ2 | δ′ ∈ tail(a,δ1)} ∪ {δ1‖δ′ | δ′ ∈ tail(a,δ2)} ∪
{δ′′ | ∃ j, 0≤ j ≤ n such that ψ1?; ...;ψ j?;ε ∈ head(δi) ∧

ψ j+1?; ...;ψn?;α ∈ head(δi′) ∧
δ′′ ∈ tail(ψ j+1?; ...;ψn?;α,δi′)∧ i, i′ ∈ {1,2}, i 6= i′};

In the definitions of tail(a,δ∗), tail(a,δ1;δ2), and tail(a,δ1‖δ2), we omit δ′ if δ′ = 〈〉.

Figure 3.2: Tail of a program expression and one of its heads

Intuitively, executing a program “symbolically” means first executing a guarded action of
its head, then a guarded action of the head of its tail, etc. We call a program expression that
can be reached by a sequence of such head and tail applications a reachable subprogram.

Definition 3.11. Let δ be a program expression over some FO-DS D. The program expression
ρ over D is a reachable subprogram of δ if there is an n≥ 0 and program expressions over D
δ0,δ1, . . . , δn such that δ0 = δ, δn = ρ, and for all i = 0, · · · , n−1 there exists ai ∈ head(δi)
such that δi+1 ∈ tail(ai ,δi). We denote the set of all reachable subprograms of δ by sub(δ). We

3.3 Reachable Subprogram Expressions 65

say that the program expression ρ is reachable in n≥ 0 steps from δ if a sequence of program
expressions of length n satisfying the conditions above exists. The set subn(δ) ⊆ sub(δ)
denotes the set of all subprograms reachable in n steps from δ. Î

One can also obtain a graph representation of sub(δ) and define

δ
a
→ δ′ iff a ∈ head(δ)∧δ′ ∈ tail(a,δ).

The resulting graph corresponds to the characteristic graphs of ConGolog programs used
in [CL08]. We show that the definitions of head and tail are correct by establishing the
correspondence with the transition semantics given in Definition 2.43.

Lemma 3.12. Let D = (I, Iini, F ,Act, E ,Pre) be an FO-DS and 〈I,σ,δ〉 ∈ States(D) a program
state over D.

1. 〈I,σ,δ〉 ∈ Final(D) iff there exists a guarded action a=ψ1?; · · · ;ψn?;ε ∈ head(δ) for
some n≥ 0 such that a is executable in I.

2. 〈I,σ,δ〉 →D 〈I′,σ · α,δ′〉 iff there exists a guarded action a = ψ1?; · · · ;ψn?;α ∈
head(δ) for some n≥ 0 and α 6= ε such that δ′ ∈ tail(a,δ) and a is executable in I.

Proof. We show the claims by induction on the structure of δ.

δ = 〈〉 :

1. By definition of the set of final states we have 〈I,σ, 〈〉〉 ∈ Final(D) for all inter-
pretations and action sequences. The definition of head yields ε ∈ head(〈〉) and
ε is executable in all interpretations.

2. According to the transition rules states of the form 〈I,σ, 〈〉〉 do not have any
outgoing transition w.r.t. “→D”. And it holds that head(〈〉) = {ε}. This implies
the claim.

δ = α :

1. By definition of the set of final states we have 〈I,σ,α〉 /∈ Final(D) for all inter-
pretations and action sequences. Since program expressions do not contain the
action ε we have α 6= ε and ε /∈ head(α) = {α}.

2. For all states of the form 〈I,σ,α〉 ∈ States(D) we have α /∈ {ε, f}. It holds that

〈I,σ,α〉 →D 〈I′,σ ·α,δ′〉

iff δ′ = 〈〉 and I �poss α (by definition of “→D”)

iff head(α) = {α}, tail(α,α) = {〈〉} and α is executable in I (by definition of
head and tail).

δ =ψ? :

1. Obviously, it holds that head(ψ?) = {ψ?;ε}. We have 〈I,σ,ψ?〉 ∈ Final(D)

66 Chapter 3 Towards Decidable Fragments of ConGolog

iff I |=ψ

iff the guarded action ψ?;ε is executable in I, because ε is possible in all
interpretations.

2. States of the form 〈I,σ,ψ?〉 do not have any outgoing transition w.r.t. “→D” and
head(ψ?) = {ψ?;ε} which implies the claim.

δ = δ1;δ2 :

1. It holds that 〈I,σ,δ1;δ2〉 ∈ Final(D)

iff 〈I,σ,δ1〉 ∈ Final(D) and 〈I,σ,δ1〉 ∈ Final(D) (by definition of the set of
final states)

iff there are guarded actions with

ψ1?; · · · ;ψn?;ε ∈ head(δ1) and ψ′1?; · · · ;ψ′m?;ε ∈ head(δ2)

for some n, m≥ 0 such that both are executable in I (by using the induction
hypothesis)

iff there exists a guarded action ψ1?; · · · ;ψn?;ψ′1?; · · · ;ψ′m?;ε ∈ head(δ1;δ2)
for some n, m≥ 0 that is executable in I (by using the definition of the head
function and the definition of executability of guarded actions).

2. It holds that 〈I,σ,δ1;δ2〉 →D 〈I′,σ ·α,δ′〉

iff one of the following is true

– δ′ = δ′1;δ2 such that 〈I,σ,δ1〉 →D 〈I′,σ ·α,δ′1〉 or

– δ′ = δ′2 such that 〈I,σ,δ1〉 ∈ Final(D) and 〈I,σ,δ2〉 →D 〈I′,σ ·α,δ′2〉

(by definition of “→D”)

iff one of the following is true

– δ′ = δ′1;δ2 and there exists a guarded action a = ψ1?; · · · ;ψn?;α ∈
head(δ1) for some n ≥ 0 such that α /∈ {ε, f} and a is executable in I
and δ′1 ∈ tail(a,δ1)

– δ′ = δ′2 and there exists a guarded action ψ′1?; · · · ;ψ′m?;ε ∈ head(δ1)
for some m≥ 0 such that ψ′1?; · · · ;ψ′m?;ε is executable in I and there
exists a guarded action a′ = Òψ1?; · · · ; Òψk?;α ∈ head(δ2) for some k ≥ 0
such that α /∈ {ε, f} and a′ is executable in I and δ′2 ∈ tail(a′,δ2)

(by induction and claim 1.).

iff one of the following is true

– δ′ = δ′1;δ2 and there exists a guarded action a = ψ1?; · · · ;ψn?;α ∈
head(δ1;δ2) for some n≥ 0 such that α /∈ {ε, f} and a is executable in
I and δ′ ∈ tail(a,δ1;δ2)

– δ′ = δ′2 and there exists a guarded action

ba=ψ′1?; · · · ;ψ′m?; Òψ1?; · · · ; Òψk?;α ∈ head(δ1;δ2)

3.3 Reachable Subprogram Expressions 67

for some m, k ≥ 0 such that α /∈ {ε, f} and ba is executable in I and
δ′ ∈ tail(ba,δ1;δ2)

(by definition of head and tail). This finishes the proof of the claim.

δ = ζ∗ :

1. By definition of the set of final states we have 〈I,σ,ζ∗〉 ∈ Final(D) for all inter-
pretations and action sequences and by definition of the head function we have
ε ∈ head(ζ∗) and ε is possible in any interpretation.

2. It holds that 〈I,σ,ζ∗〉 →D 〈I′,σ ·α,δ′〉

iff δ′ = ζ′; (ζ)∗ and 〈I,σ,ζ〉 →D 〈I′,σ ·α,ζ′〉 (by definition of “→D”)

iff δ′ = ζ′; (ζ)∗ and there exists a guarded action a =ψ1?; · · · ;ψn?;α ∈ head(ζ)
for some n ≥ 0 such that α /∈ {ε, f}, a is executable in I and ζ′ ∈ tail(a,ζ)
(by induction)

iff δ′ = ζ′; (ζ)∗ and there exists a guarded action a = ψ1?; · · · ;ψn?;α ∈
head(ζ∗) for some n ≥ 0 such that α /∈ {ε, f}, a is executable in I and
δ′ ∈ tail(a,ζ∗) (by definition of head and tail).

δ = δ1|δ2 :

1. It holds that 〈I,σ,δ1|δ2〉 ∈ Final(D)

iff 〈I,σ,δ1〉 ∈ Final(D) or 〈I,σ,δ2〉 ∈ Final(D) (by definition of the set of final
state)

iff there exists a guarded action ψ1?; · · · ;ψn?;ε ∈ head(δ1) for some n ≥
0 such that ψ1?; · · · ;ψn?;ε is executable in I or there exists a guarded
action ψ′1?; · · · ;ψ′m?;ε ∈ head(δ2) for some m ≥ 0 and ψ′1?; · · · ;ψ′m?;ε is
executable in I (by using the induction hypothesis)

iff there exists a guarded action Òψ1?; · · · ; Òψk?;ε ∈ head(δ1|δ2) for some k ≥
0 such that Òψ1?; · · · ; Òψk?;ε is executable in I (by definition of the head
function).

2. It holds that 〈I,σ,δ1|δ2〉 →D 〈I′,σ ·α,δ′〉

iff one of the following is true

– 〈I,σ,δ1〉 →D 〈I′,σ ·α,δ′〉 or

– 〈I,σ,δ2〉 →D 〈I′,σ ·α,δ′〉

(by definition of “→D”)

iff one of the following is true

– there exists a guarded action a=ψ1?; · · · ;ψn?;α ∈ head(δ1) for some
n≥ 0 such that α /∈ {ε, f}, a is executable in I and δ′ ∈ tail(a,δ1) or

– there exists a guarded action a′ =ψ′1?; · · · ;ψ′m?;α ∈ head(δ2) for some
m≥ 0 such that α /∈ {ε, f}, a′ is executable in I and δ′ ∈ tail(a′,δ2)

68 Chapter 3 Towards Decidable Fragments of ConGolog

(by induction)

iff there exists a guarded action ba = Òψ1?; · · · ; Òψk?;α ∈ head(δ1|δ2) for some
k ≥ 0 such that ba is executable in I and δ′ ∈ tail(ba,δ1|δ2) (by definition of
the head and tail function).

δ = δ1‖δ2 : We omit the proof. It is similar to the case with δ = δ1;δ2.

The program expressions occurring in the reachable part of the transition system of a
ConGolog program P = (D,δ), where δ is pick-free, are contained in sub(δ). It also follows
that in a reachable failure state 〈I,σ,ζ〉 ∈ Fail(D) of P no guarded action in the head of ζ is
executable in I.

The next step is to show that the cardinality of sub(δ) is finite and bounded by the length
of δ. It might be the case that a subprogram expression ρ ∈ sub(δ) of δ is longer than δ
itself in presence of the iteration constructor. First, we define the length and the star height
of a program expression.

Definition 3.13. Let δ be a program expression over some FO-DS D. The length of δ,
denoted by |δ|, is defined as follows:

|〈〉| := 1;

|α(t̄)| := 1 for some action term α(t̄);

|ψ?| := 1;

|δ∗| := |δ|+ 1;

|δ1 ? δ2| := |δ1|+ |δ2|+ 1 with ? ∈ {; , |,‖}.

The star height of δ, denoted by h(δ), is the maximal nesting depth of the iteration construct
·∗ and is defined as follows:

h(〈〉) := 0;

h(α(t̄)) := 0 for some action term α(t̄);

h(ψ?) := 0;

h(δ∗) := h(δ) + 1;

h(δ1 ? δ2) :=max(h(δ1),h(δ2)) with ? ∈ {; , |,‖}.

Î

Before we establish a bound on the cardinality of sub(δ) and on the length of subprogram
expressions, another auxiliary lemma about the structure of subprogram expressions is
needed.

Lemma 3.14. Let δ,δ1 and δ2 be program expressions over some FO-DS D.

1. For ρ ∈ sub(δ∗) it holds that ρ is of the form 〈〉, (δ)∗ or δ′; (δ)∗ with δ′ ∈ sub(δ).

2. For ρ ∈ sub(δ1;δ2) it holds that ρ is of the form (i) δ′1;δ2 with δ′1 ∈ sub(δ1) or of the
form (ii) δ′2 with δ′2 ∈ sub(δ2).

3.3 Reachable Subprogram Expressions 69

3. For ρ ∈ sub(δ1|δ2) it holds that ρ = δ1|δ2 or ρ ∈ sub(δ1) or ρ ∈ sub(δ2).

4. For ρ ∈ sub(δ1‖δ2) it holds that either ρ = δ′1‖δ
′
2 with δ′1 ∈ sub(δ1) and δ′2 ∈ sub(δ2)

or ρ ∈ sub(δi) with i ∈ {1, 2}.

Proof. For any program expression δ over some FO-DS D we have

sub(δ) =
∞
⋃

n=0

subn(δ),

where subn(δ) is the set of all subprograms that are reachable from δ in n steps. The proof
is by induction on n.

1. We show that if ρ ∈ subn(δ∗), then ρ is of the form 〈〉, (δ)∗ or δ′; (δ)∗ with δ′ ∈ sub(δ)
for all n ∈ N.

n= 0 : It holds that sub0((δ)∗) = {(δ)∗}.

n= 1 : Let ρ ∈ sub1((δ)∗). Since head((δ)∗) = {ε}∪head(δ) by definition of the head
function, it either holds that ρ ∈ tail(ε, (δ)∗) or ρ ∈ tail(a, (δ)∗) with a ∈ head(δ).
In the first case we have ρ = 〈〉 and in the second case we have ρ = δ′; (δ)∗ by
definition of tail(·, ·).

n→ n+ 1 : Let ρ′ ∈ subn+1((δ)∗). By definition of the reachable subprograms there
exists a program expression ρ ∈ subn((δ)∗) such that ρ′ ∈ sub1(ρ). The induction
hypothesis implies that ρ has one of the following forms: 〈〉, (δ)∗ or δ′; (δ)∗ with
δ′ ∈ sub(δ). If ρ = 〈〉, then also ρ′ = 〈〉. If ρ = (δ)∗, then also ρ′ has the desired
form as shown in the base case with n= 1.

Now, assume ρ = δ′; (δ)∗ for some δ′ ∈ sub(δ) and ρ′ ∈ sub1(δ′; (δ)∗). There
exists a ∈ head(δ′; (δ)∗) such that ρ′ ∈ tail(a,δ′; (δ)∗). The definition of the tail
function for sequences of program expression yields the following:

ρ′ ∈ {δ′′; (δ)∗ | δ′′ ∈ tail(a,δ′)} ∪ {δ′′ | δ′′ ∈ tail(a′, (δ)∗)}

for some guarded action a′. Now, assume ρ′ ∈ {δ′′; (δ)∗ | δ′′ ∈ tail(a,δ′)}. By
assumption on ρ = δ′; (δ)∗ we know that δ′ ∈ sub(δ). With

δ′′ ∈ sub(δ′) ⊆ sub(δ)

it follows that ρ′ has the form as required in the claim. Next, assume ρ′ ∈ {δ′′ |
δ′′ ∈ tail(a′, (δ)∗)}. Consequently, ρ′ ∈ sub1((δ)∗) and using the proof of the base
case with n= 1 the claim follows. This finishes the induction step.

2. If ρ ∈ subn(δ1;δ2), then ρ is of the form (i) δ′1;δ2 with δ′1 ∈ sub(δ1) or of the form
(ii) δ′2 with δ′2 ∈ sub(δ2) for all n ∈ N.

n= 0 : It is implied by the definition of the subprograms that sub0(δ1;δ2) = {δ1;δ2}.
δ1;δ2 is of the form (i).

n= 1 : Let ρ ∈ sub1(δ1;δ2). There exists a guarded action a ∈ head(δ1;δ2) such that
ρ ∈ tail(a,δ1;δ2). By definition of tail(a,δ1;δ2), ρ is of the form (i) or (ii).

70 Chapter 3 Towards Decidable Fragments of ConGolog

n→ n+ 1 : Let ρ ∈ subn+1(δ1;δ2). There exists θ ∈ subn(δ1;δ2) such that ρ ∈
sub1(θ). By induction, θ is of the form (i) or (ii). Assume θ = δ′1;δ2 for some
δ′1 ∈ sub(δ1). Since ρ ∈ tail(a,δ′1;δ2) for a guarded action a ∈ head(δ′1;δ2), it
is implied that either ρ = δ′′1 ;δ2 with δ′′1 ∈ tail(a,δ′1) or there exists a′ such that
ρ = δ′2 with δ′2 ∈ tail(a′,δ2). In the fist case ρ has the form (i), because it follows
that δ′′1 ∈ sub(δ1). In the latter case ρ has the form (ii). Now assume θ = δ′2
with δ′2 ∈ sub(δ2). In this case ρ has the form (ii).

3. If ρ ∈ subn(δ1|δ2), then ρ = δ1|δ2 or ρ ∈ sub(δ1) or ρ ∈ sub(δ2) for all n ∈ N.

n= 0 : We have sub0(δ1|δ2) = {δ1|δ2}.

n= 1 : Let ρ ∈ sub1(δ1|δ2). There exists a guarded action a ∈ head(δ1|δ2) =
head(δ1) ∪ head(δ2) such that ρ ∈ tail(a,δ1|δ2) = tail(a,δ1) ∪ tail(a,δ2). Thus,
ρ ∈ sub(δ1)∪ sub(δ2).

n→ n+ 1 : Let ρ ∈ subn+1(δ1|δ2) with n ≥ 1. There exists θ ∈ subn(δ1|δ2) and
a ∈ head(θ) with ρ ∈ tail(a,θ). Using the induction hypothesis we obtain ρ ∈
sub1(θ) ⊆ sub(δi) with i ∈ {1,2}.

4. If ρ ∈ subn(δ1‖δ2), then either ρ = δ′1‖δ
′
2 with δ′1 ∈ sub(δ1) and δ′2 ∈ sub(δ2) or

ρ ∈ sub(δi) with i ∈ {1,2} for all n ∈ N.

n= 1 : Let ρ ∈ sub1(δ1‖δ2). There exists a guarded action a ∈ head(δ1‖δ2) such that
ρ ∈ tail(a,δ1‖δ2). By definition of tail(a,δ1‖δ2) we have that ρ = δ′1‖δ2 with
δ′1 ∈ sub(δ1) or ρ = δ1‖δ′2 with δ′2 ∈ sub(δ2) or ρ = δ′i with δ′i ∈ sub(δi). In
the definition of the tails, we have omitted the empty program. Therefore in the
latter case the expression δ′i can be written as δ′i‖〈〉 or as 〈〉‖δ′i .

n→ n+ 1 : Let ρ ∈ subn+1(δ1‖δ2). There exists θ ∈ subn(δ1‖δ2) such that ρ ∈
sub1(θ). By induction, we have that θ = δ′1‖δ

′
2 with δ′1 ∈ sub(δ1) and δ′2 ∈

sub(δ2) or θ ∈ sub(δi) with i = 1, 2. Since ρ ∈ sub1(θ), we have that ρ = δ′′1‖δ
′
2

with δ′′1 ∈ sub(δ′1) or ρ = δ′1‖δ
′′
2 with δ′′2 ∈ sub(δ′2) or ρ = δ′′i with δ′′i ∈ sub(δ′i).

Obviously, δ′′i ∈ sub(δi) for i = 1,2.

Now, we are ready to prove some upper bounds on the number and the length of subpro-
grams.

Theorem 3.15. Let δ be a program expression over some FO-DS D.

1. It holds that |sub(δ)| ≤ 2|δ|.

2. If the interleaving construct does not occur in δ, then |sub(δ)| ≤ |δ|+ 1.

3. For a subprogram expression ρ ∈ sub(δ) it holds that |ρ| ≤ (h(δ) + 1) · |δ|.

Proof. The following equalities and inequalities are a consequence of Lemma 3.14.

a) |sub(α)|= 2, |sub(ψ?)|= 2, |sub(〈〉)|= 1 for some action term α and test ψ?;

b) |sub((δ)∗)| ≤ |sub(δ)|+ 1;

3.3 Reachable Subprogram Expressions 71

c) |sub(δ1;δ2)| ≤ |sub(δ1)|+ |sub(δ2)|;

d) |sub(δ1|δ2)| ≤ |sub(δ1)|+ |sub(δ2)|;

e) |sub(δ1‖δ2)| ≤ |sub(δ1)| · |sub(δ2)|.

Note that for instance the program expression ρ1 for some ρ1 ∈ sub(δ1) and ρ1‖〈〉 denote
the same reachable subprogram of δ1‖δ2. Therefore we obtain the inequality e).

1. We prove
|sub(δ)| ≤ 2|δ|

by induction on the structure of δ using a)-e). The inequality is satisfied if δ is an action
term, a test or the empty program. Assume δ is of the form ρ∗ and |sub(ρ)| ≤ 2|ρ|.
With b) and the induction hypothesis it follows that

|sub(ρ∗)| ≤ |sub(ρ)|+ 1≤ 2|ρ| + 1< 2|ρ|+1 = 2|ρ
∗|.

Assume δ is of the form ρ1 ? ρ2 with ? ∈ {; , |} and |sub(ρi)| ≤ 2|ρi |, i = 1,2. With c)
and d) and the induction hypothesis we obtain

|sub(ρ1 ? ρ2)| ≤ |sub(ρ1)|+ |sub(ρ2)| ≤ 2|ρ1| + 2|ρ2| < 2|ρ1|+|ρ2|+1 = 2|(ρ1?ρ2)|.

Assume δ is of the form ρ1 ‖ ρ2 using d) it follows that

|sub(ρ1 ‖ ρ2)| ≤ 2|ρ1| · 2|ρ2| = 2|ρ1|+|ρ2| < 2|(ρ1‖ρ2)|.

2. Assume δ does not contain the interleaving constructor. We prove

|sub(δ)| ≤ |δ|+ 1.

by induction on the structure of δ using a)-d). It is easy to see that the claim is true
in case δ is an action term, a test or the empty program. Let δ be of the form ρ∗ and
assume |sub(ρ)| ≤ |ρ|+ 1. With b) and the induction hypothesis it follows that

|sub(ρ∗)| ≤ |sub(ρ)|+ 1≤ |ρ|+ 1+ 1= |ρ∗|+ 1.

Let δ be of the form ρ1 ? ρ2 with ? ∈ {; , |} and |sub(ρi)| ≤ |ρi|+ 1, i = 1,2. With c)
and d) and the induction hypothesis we obtain

|sub(ρ1 ? ρ2)| ≤ |sub(ρ1)|+ |sub(ρ2)| ≤ |ρ1|+ 1+ |ρ2|+ 1= |ρ1 ? ρ2|+ 1.

3. Let ρ ∈ sub(δ). By induction on the structure of δ we prove that

|ρ| ≤ (h(δ) + 1) · |δ|.

The claim is trivial in case δ is an action term, a test or the empty program.

δ = ξ∗ : Let δ be of the form ξ∗ and ρ ∈ sub(ξ∗). According to Lemma 3.14 we
have that ρ is of the form 〈〉 or ξ∗ or ξ′; (ξ)∗ for some ξ′ ∈ sub(ξ). The claim is

72 Chapter 3 Towards Decidable Fragments of ConGolog

obviously true for 〈〉 and ξ∗. Assume ρ is of the form ξ′; (ξ)∗ for some ξ′ ∈ sub(ξ).
By induction it holds that |ξ′| ≤ (h(ξ) + 1) · |ξ|. It holds that

|ξ′; (ξ)∗|

= |ξ′|+ |ξ∗|+ 1

≤ (h(ξ) + 1) · |ξ|+ |ξ∗|+ 1 (by induction)

= h(ξ∗) · (|ξ∗| − 1) + |ξ∗|+ 1 (with h(ξ) = h(ξ∗)− 1 and |ξ|= |ξ∗| − 1)

= (h(ξ∗) + 1) · |ξ∗| − h(ξ∗) + 1

= (h(ξ∗) + 1) · |ξ∗| − h(ξ) (with h(ξ∗) = h(ξ) + 1)

< (h(ξ∗) + 1) · |ξ∗|.

δ = ξ1;ξ2 : Let δ be of the form ξ1;ξ2 and ρ ∈ sub(ξ1;ξ2). According to Lemma
3.14 either ρ = ξ′1;ξ2 for some ξ′1 ∈ sub(ξ1) or ρ = ξ′2 for some ξ′2 ∈ sub(ξ2). In
the latter case the claim follows directly from the induction hypothesis. Assume
ρ = ξ′1;ξ2 for some ξ′1 ∈ sub(ξ1). It holds that

|ξ′1;ξ2|= |ξ′1|+ |ξ2|+ 1

≤ (h(ξ1) + 1) · |ξ1|+ |ξ2|+ 1 (by induction)

= h(ξ1) · |ξ1|+ |ξ1;ξ2|

< (h(ξ1;ξ2) + 1) · |ξ1;ξ2|.

δ = ξ1‖ξ2 : Let δ be of the form ξ1‖ξ2 and ρ ∈ sub(ξ1‖ξ2). According to Lemma
3.14 either ρ = ξ′1‖ξ

′
2 with ξ′1 ∈ sub(ξ1) and ξ′2 ∈ sub(ξ2) or ρ ∈ sub(ξi) for

some i ∈ {1,2}. In the latter case the claim directly follows from the induction
hypothesis. Assume ρ = ξ′1‖ξ

′
2 with ξ′1 ∈ sub(ξ1) and ξ′2 ∈ sub(ξ2). It holds that

|(ξ′1‖ξ
′
2)|= |ξ

′
1|+ |ξ

′
2|+ 1

≤ (h(ξ1) + 1) · |ξ1|+ (h(ξ2) + 1) · |ξ2|+ 1 (by induction)

= h(ξ1) · |ξ1|+ h(ξ2) · |ξ2|+ |(ξ1‖ξ2)|

≤ max(h(ξ1),h(ξ2)) · (|ξ1|+ |ξ2|) + |(ξ1‖ξ2)|

< (h(ξ1‖ξ2) + 1) · |(ξ1‖ξ2)|.

δ = ξ1|ξ2 : Let δ be of the form ξ1|ξ2 and ρ ∈ sub(ξ1|ξ2). According to Lemma 3.14
either ρ ∈ sub(ξ1) or ρ ∈ sub(ξ2). The claim follows directly from the induction
hypothesis.

Note that, in the presence of the interleaving operator, the exponential bound is actually
reached. Consider the program expression

δ = α1 ‖ (α2 ‖ · · · (αn−1 ‖ αn) · · ·).

We claim that sub(δ) contains at least 2n many reachable subprograms. In fact, it is easy to
see that for every subset {i1, . . . , ik} ⊆ {1, . . . , n} with i1 ≤ · · · ≤ ik the expression

αi1 ‖ (αi2 ‖ · · · (αik−1
‖ αik) · · ·)

3.4 Abstract Transition Systems and Bisimulations 73

is a reachable subprogram of δ.

3.4 Abstract Transition Systems and Bisimulations

In this section, the notion of a propositional bisimilar abstraction of a pick-free program
over ground actions is defined. The transition system of a ConGolog program is an infinite
first-order transition system. Ideally, we would like to obtain a finite propositional abstraction
that preserves all temporal properties of the original infinite transition system and can be
used as an input for a model checking procedure in order to decide the verification problem.
For this purpose, the abstraction has to exactly mimic the behavior of the concrete system. To
capture this formally we adapt the standard notions of simulation and bisimulation relations
[Mil71] to our setting. Intuitively, bisimulation relations are used to characterize behavioral
equivalence of transition systems.

First, the class of ConGolog programs over a set of L-definable ground actions, where L is
some fragment of FO, is defined.

Definition 3.16. Let L be some fragment of FO and let P = (D,δ) be ConGolog program
over an FO-DS D = (I, Iini, F ,Act, E ,Pre), where δ is a pick-free program expression over
ground actions. P is called a pick-free L-ConGolog program iff the following conditions are
satisfied

• the set of all ground actions occurring in δ is L-definable in D, and

• the tests occurring in δ are formulated in L.

Let C be an L-context over F . We say that C is a proper context for P iff the following
conditions are satisfied

• the set of all ground actions in δ are L-definable in D w.r.t. C and

• for all test ψ? occurring in δ we have ψ ∈ C.

The subclass of programs, where the base logic L is restricted to a DL, is called DL-ConGolog.
Î

In the remainder of this section L denotes an arbitrary fragment of FO.
For an L-ConGolog program a proper context always exists. A context can always be ex-

tended with additional sentences. The following lemma directly follows from the definitions.

Lemma 3.17. Let D = (I, Iini, F ,Act, E ,Pre) be an FO-DS, A ⊆ ground(Act) a finite set of
ground actions, and C and C′ L-contexts over F with C ⊆ C′.

It holds that if A is L-definable in D w.r.t. C, then A is also L-definable in D w.r.t. C′.

An L-context that is part of an L-admissible representation can always be extended with
the L-tests occurring in a program expression or the L-axioms in a temporal specification.

Since a proper context for an L-ConGolog program contains all the tests in the program,
executability of a guarded action is fully determined by the static type of the interpretation
that represents the current state.

74 Chapter 3 Towards Decidable Fragments of ConGolog

Lemma 3.18. Let P = (D,δ) be a pick-free L-ConGolog program with the FO-DS D =
(I, Iini, F ,Act, E ,Pre) and let C be a proper L-context for P. For two interpretations I, J ∈ I with
s-typeC(I) = s-typeC(J) and a reachable subprogram ρ ∈ sub(δ) it holds that a is executable
in I iff a is executable in J for any a ∈ head(ρ).

Proof. Let ρ ∈ sub(δ) and a =ψ1?; · · · ;ψn?;α ∈ head(ρ) for some n≥ 0. The definition of
the head function ensures that the testsψ1?, . . . ,ψn? occur in δ andψ1, . . . ,ψn are therefore
contained in C. The assumption s-typeC(I) = s-typeC(J) for two interpretations I, J ∈ I
implies that I |= ψi iff J |= ψi for all i = 1, . . . , n. Let A be the set of all ground actions
occurring in δ. Since P is a pick-free L-ConGolog program and C a proper context for P, there
exists an L-admissible representation ΣA = (KB, F , C,E+,E−,PreC) of A with D|A =D(ΣA).
Let PreA be the precondition relation of D(ΣA). It coincides with the relation in D for the
actions in A. By definition we have (s-typeC(Y),β) ∈ PreC iff (Y,β) ∈ PreA for all Y ∈ I and
all β ∈ A.

Therefore, s-typeC(I) = s-typeC(J) implies (I,α) ∈ Pre iff (J ,α) ∈ Pre. Consequently, a
is executable in I iff it is executable in J .

Executability of guarded actions can be defined on the level of static types. Let C be an
L-context, s ∈SC a static type and ψ a Boolean combination of formulas from C. s is viewed
as a Boolean valuation of the axioms in C. Satisfaction of ψ in s, denoted by s |=C ψ, is
defined in the obvious way.

Definition 3.19. Let P = (D(ΣA),δ) be a pick-free L-ConGolog program, where A is the
set of all ground actions occurring in δ, ΣA = (KB, F , C,E+,E−,PreC) an L-admissible rep-
resentation of A and C a proper L-context for P. Furthermore, let ρ ∈ sub(δ) a reachable
subprogram of δ, a=ψ1?; · · · ;ψn?;α ∈ head(ρ) a guarded action and s ∈SC a static type.

We say that a is executable in s iff s |=C ψ1 ∧ · · · ∧ψn and (s,α) ∈ PreC . Î

The next lemma is a direct consequence of Lemma 3.18 and the definition above.

Lemma 3.20. Let P = (D(ΣA),δ) and ΣA = (KB, F , C,E+,E−,PreC) be as in Definition 3.19,
ρ ∈ sub(δ) a reachable subprogram of δ, a ∈ head(ρ) a guarded action and I an interpretation
from the state space of D(ΣA). It holds that a is executable in I iff it is executable in s-typeC(I).

We define the notion of a bisimulation relation between states of a first-order transition
system and of a propositional one based on a context and its static types. A bisimulation
requires that transitions preserve static types.

Definition 3.21. Let C be an L-context, AP a finite set of atomic propositions such that a
bijection ιC : C→ AP between C and AP exists, and let I= (QI, II, ,→I,λI) be a first-order
transition system and T = (QT, IT, ,→T,λT) a propositional transition system over AP. A
binary relation 'C ⊆QI×QT is called C-bisimulation iff the following conditions are satisfied:

• qI'C qT implies λT(qT) = {ιC(ψ) |ψ ∈ s-typeC(I)}, where λI(qI) = I.

• If qI'C qT and there is a transition qI ,→I q′I, then there exists a transition qT ,→T q′T
such that q′I'C q′T.

• If qI'C qT and there is a transition qT ,→T q′T, then there exists a transition qI ,→I q′I
such that q′I'C q′T.

3.4 Abstract Transition Systems and Bisimulations 75

The relation 'C is extended to paths as follows. Let π be a path in I and p a path in T.
We write π'C p iff π[i]'C p[i] for all i ≥ 0.

We say that I and T are C-bisimilar iff there exists a C-bisimulation 'C ⊆ QI ×QT such
that

• for all qI ∈ II there exists qT ∈ IT such that qI'C qT and

• for all qT ∈ IT there exists qI ∈ II such that qI'C qT.

Î

The definition of a C-bisimulation leads to the notion of a bisimilar propositional abstraction
of a program.

Definition 3.22. Let P = (D,δ) be an L-ConGolog program, C a proper L-context for P, AP
a finite set of atomic propositions and T = (QT, IT, ,→T,λT) a propositional transition system
over AP.

We say that T is a bisimilar propositional abstraction of P w.r.t. C iff the following conditions
are satisfied

• There exists a bijection ιC : C→ AP between C and AP.

• The transition system IP induced by P and the propositional transition system T are
C-bisimilar.

Î

C-bisimilarity ensures that satisfaction of temporal properties over axioms in C is preserved
in the abstract transition system. We first introduce some additional notions needed for the
proof. Let C be an L-context, AP a finite set of atomic proposition, ιC a bijection between C
and AP and Ξ an L-CTL∗ state or path formula such that all axioms in Ξ are contained in C.
With ιC(Ξ) we denote the propositional CTL∗ formula over AP that is obtained from Ξ be
replacing all occurrences of axioms in Ξ by their image in ιC .

The following auxiliary lemma states a property of paths starting in two C-bisimilar states.

Lemma 3.23. Let 'C ⊆QI ×QT be a C-bisimulation between states of a first-order transition
system I and states in a propositional transition system T as defined in Definition 3.21.

For states qI 'C qT it holds that for every path πI ∈ paths(I, qI) there exists a path πT ∈
paths(T, qT) such that πI'C πT, and vice versa: for every path πT ∈ paths(T, qT) there exists
a path πI ∈ paths(I, qI) such that πI'C πT.

Now we are ready to prove the lemma about preserving temporal properties in a C-bisimilar
propositional abstraction.

Lemma 3.24. Let C be an L-context, AP a finite set of atomic propositions such that a bijection
ιC : C → AP between C and AP exists, and let I = (QI, II, ,→I,λI) be a first-order transition
system, T= (QT, IT, ,→T,λT) a propositional transition system over AP and 'C ⊆QI ×QT a
C-bisimulation.

1. For an L-CTL∗ state formula Φ that mentions only axioms from C it holds that if qI'C qT
for two states, then I, qI |= Φ iff T, qT |= ιC(Φ).

76 Chapter 3 Towards Decidable Fragments of ConGolog

2. For an L-CTL∗ path formula Ψ that mentions only axioms from C it holds that if πI'CπT

for two paths, then I,πI |= Ψ iff T,πT |= ιC(Ψ).

Proof. Let 'C ⊆ QI ×QT be a C-bisimulation as stated in the claim, and ιC the bijection
between C and the set of atomic propositions AP.

For the base case we assume that Φ = % for some L-axiom %. By assumption on Φ we
have that % ∈ C. For two states qI'C qT it holds that I, qI |= %

iff IqI |= % with λI(qI) = IqI

iff % ∈ s-typeC(IqI) since % ∈ C

iff ιC(%) ∈ λT(qT) since qI'C qT implies λT(qT) = {ιC(%′) | %′ ∈ s-typeC(IqI)}

iff T, qT |= ιC(%).

For the induction step assume that Claim 1 holds for Φ1,Φ2 and Claim 2 for Ψ.

Φ= ¬Φ1 : It holds that I, qI |= ¬Φ1

iff I, qI 6|= Φ1

iff T, qT 6|= ιC(Φ1) (using the induction hypothesis)

iff T, qT |= ιC(¬Φ1).

Φ= Φ1 ∧Φ2 : It holds that I, qI |= Φ1 ∧Φ2

iff I, qI |= Φ1 and I, qI |= Φ2

iff T, qT |= ιC(Φ1) and T, qT |= ιC(Φ2) (using the induction hypothesis)

iff T, qT |= ιC(Φ1 ∧Φ2).

Φ= EΨ : It holds that I, qI |= EΨ

iff there exists a path πI ∈ paths(I, qI) such that I,πI |= Ψ

iff there exists a path πI ∈ paths(I, qI) such that I,πI |= Ψ and there exists a path
πT ∈ paths(T, qT) such that πI'C πT by assumption qI'C qT and Lemma 3.23

iff there exists πT ∈ paths(T, qT) such that T,πT |= ιC(Ψ) (using the induction
hypothesis)

iff T, qT |= ιC(EΨ).

Assume Claim 1 holds for Φ and Claim 2 for Ψ1 and Ψ2. Let πI'C πT.

Ψ = Φ : We have I,πI |= Φ

iff I,πI[0] |= Φ

iff T,πT[0] |= ιC(Φ) (using πI 'C πT implies πI[0] 'C πT[0] and the induction
hypothesis)

iff T,πT |= ιC(Φ).

Ψ = ¬Ψ1 : It holds that I,πI |= ¬Ψ1

iff I,πI 6|= Ψ1

3.4 Abstract Transition Systems and Bisimulations 77

iff T,πT 6|= ιC(Ψ1) (using the induction hypothesis)

iff T,πT |= ιC(¬Ψ1).

Φ= Φ1 ∧Φ2 : It holds that I,πI |= Ψ1 ∧Ψ2

iff I,πI |= Ψ1 and I,πI |= Ψ2

iff T,πT |= ιC(Ψ1) and T,πT |= ιC(Ψ2) (using the induction hypothesis)

iff T,πT |= ιC(Ψ1 ∧Ψ2).

Ψ = XΨ1 : It holds that I,πI |= XΨ1

iff I,πI[1..] |= Ψ1

iff T,πT[1..] |= ιC(Ψ1) (with πI[1..]'C πT[1..] and the induction hypothesis)

iff T,πT |= ιC(XΨ1).

Ψ = Ψ1 UΨ2 : It holds that I,πI |= Ψ1 UΨ2

iff there exists a k such that I,πI[k..] |= Ψ2 and I,πI[j..] |= Ψ1 holds for all
j = 0, . . . , k− 1

iff there exists a k such that T,πT[k..] |= ιC(Ψ2) and T,πT[j..] |= ιC(Ψ1) for all
j = 0, . . . , k − 1 (with πI[i..]'C πT[i..] for all i = 0,1,2, . . . and the induction
hypothesis)

iff T,πT |= ιC(Ψ1 UΨ2).

It follows from this lemma that if we can effectively compute a finite bisimilar propositional
abstraction of a pick-free L-ConGolog program w.r.t. a proper context, then the verification
problem boils down to a decidable propositional model checking problem.

Chapter 4

Verifying Pick-Free Programs over Local-Effect
Actions

In this chapter, the class of pick-free DL-ConGolog programs is considered. We investigate
the computational properties of the verification problem for the restricted case in which all
actions only have local effects. An action has only local effects if only the named objects
mentioned in the respective action term are affected by its execution. In the literature on
reasoning about actions the restriction to only local-effect actions is quite common. For
instance, in [VLL08] it has be shown that progression in a Situation Calculus action theory is
first-order definable for local-effect actions. Note that also in the DL-based action formalism
introduced in [Baa+05a] only local-effect actions can be defined.

We first choose this simple class of programs to introduce our main abstraction technique.
Our general approach to prove decidability is based on a construction of a finite bisimilar
propositional abstraction that allows a reduction to propositional model checking. Further-
more, we make use of previous work on reasoning about local-effect actions in a DL-based
setting and reuse some techniques that were first developed in [Baa+05a] for reducing the
projection problem to a standard DL reasoning problem. We also investigate the complexity
of the verification problem for pick-free programs based on local effect DL-action theories
(see Definition 2.29).

4.1 Local-Effect Actions

Local-effect actions are defined as a syntactical restriction.

Definition 4.1. Let L be a syntactical fragment of FO, A a finite set of ground action terms,
and ΣA = (KB, F , C,E+,E−,PreC) an L-admissible representation of A. We say that ΣA is an
L-admissible local-effect representation of A iff for all

(s,α, F) ∈ (SC × A×F) with ar(F) = n for some n> 0

it holds that the formulas E+[s,α, F] and E−[s,α, F] are disjunctions of formulas of the form

x1 ≈ o1 ∧ · · · ∧ xn ≈ on (4.1)

where the object names o1, . . . , on are mentioned as arguments of the action term α. Thus,
each formula E+[s,α, F] and E−[s,α, F] enumerates a finite set of object tuples.

In the following, we use LocA = (K, F , C,L+,L−,PreC) to denote a L-admissible local-effect

79

80 Chapter 4 Verifying Pick-Free Programs over Local-Effect Actions

representation of A. For a tuple of object names ō we write

ō ∈ L+[s,α, F] or ō ∈ L−[s,α, F]

to denote that x̄ ≈ ō (abbreviation of 4.1) is a disjunct in L+[s,α, F] or L−[s,α, F], respectively.
Î

If L is a DL, then the formula (4.1) can be written as a nominal {o} in case F is a concept
name or as a nominal role {(o, o′)} if F is a role name.

Notice that a local-effect L-action theory of the form Σ = (K, A,pre,eff) (Definition 2.29),
where A is a finite set of ground action terms, can be viewed as an L-admissible local-effect
representation of A for some DL L.

In this chapter, we consider pick-free DL-ConGolog programs over local-effect actions and
the following instance of the verification problem.

Definition 4.2. Let L ⊆ DL be a DL. A pick-free L-ConGolog program over local effect actions
consists of the following components:

• a finite set of relevant ground actions terms A,

• an L-admissible local effect representation LocA = (K, F , C,L+,L−,PreC) of A, and

• a pick-free program expression δ, where all action terms mentioned in δ are contained
in A and for all tests ψ? occurring in δ the formula ψ is a Boolean L-KB contained in
the relevant context C.

Let A, LocA and δ be as described above and Φ an L-CTL∗ state formula over axioms contained
in C. The verification problem asks whether Φ is valid in P = (D(LocA),δ). Î

In the remainder of this chapter L denotes an arbitrary DL that is a sublogic of DL. In this
chapter we do not make the UNA but we assume that different object names mentioned in
the input are also interpreted differently.

Note that the program given in Example 2.48 is almost a pick-free ALCIO-ConGolog
program over local-effect actions. The only action with non-local effects is discharged(bat).
There can be an unbounded number of unknown devices connected to bat that are affected in
case bat gets fully discharged. A local-effect version of the action can be obtained by adding
the following ABox assertion to the description of the initial situation:

bat À− ∀inv(ConTo).{dev}.

It expresses that only the object dev is connected to bat. Fully discharging bat now only
affects the two named objects bat and dev. The set of all effects of discharged(bat,dev)
can be redefined as follows:

eff(discharged(bat,dev)) := { 〈PowerS, {bat}〉−,

(dev À− ∀ConTo.{bat})Â 〈On, {dev}〉−}.
(4.2)

4.2 Dynamic Types and Local Effects 81

4.2 Dynamic Types and Local Effects

In this subsection, we introduce our abstraction technique for pick-free DL-ConGolog pro-
grams over local-effect actions.

Even in case of only local-effects the induced transition system is infinite. There are
infinitely many initial states since the initial knowledge base has infinitely many models.
To deal with this problems we are looking for an equivalence relation on the relevant state
space which allows us to construct a bisimilar abstraction.

Let LocA = (K, F , C,L+,L−,PreC) be an L-admissible local-effect representation of A and

D(LocA) = (I, M(K), F , A, E ,Pre)

the induced FO-DS. A proper equivalence relation on the state space

∼ ⊆ I× I

should have the following properties:

(D1) If I ∼ J , then s-typeC(I) = s-typeC(J).

(D2) If I ∼ J , then for all α ∈ A and all I′ and J ′ with I ⇒α
D(LocA)

I′ and J ⇒α
D(LocA)

J ′ it
also holds that I′ ∼ J ′.

These two conditions can be viewed as a reformulation of the definition of C-bisimulations
in Definition 3.21 that guarantee behavioral equivalence. First, the goal is to obtain such
a relation as an equivalence relation on the state space with finitely many equivalence
classes. And second, appropriate finite representations of these equivalence classes should
be effectively computable.

A first idea to construct an equivalence relation is to choose a “large enough” context C
such that the relation that is defined by

s-typeC(I) = s-typeC(J)

also guarantees property (D2). As the next example shows it is at least not obvious how to
define such a context.

Example 4.3. As a running example in this chapter we define a program using the concept
names PowerS and Dev, the role name ConTo, the object names dev and bat and the ground
action term toggle(dev,bat). The initial situation is described by the ABox

A := {dev À− Dev, bat À− PowerS, (dev,bat) À− ConTo}.

The action toggle(dev,bat) toggles the connection between dev and bat and has the follow-
ing preconditions and effects

pre(toggle(dev,bat)) := ;,
eff(toggle(dev,bat)) := {¬ ((dev,bat) À− ConTo)Â 〈ConTo, {(dev,bat)}〉+,

((dev,bat) À− ConTo)Â 〈ConTo, {(dev,bat)}〉−}.

82 Chapter 4 Verifying Pick-Free Programs over Local-Effect Actions

The local-effect action theory is given by

Σ := (K := (T := ;, A), A := {toggle(dev,bat)},pre,eff).

A program expression and a temporal property are given by

δ :=
�

toggle(dev,bat)
�∗

and Φ := EG (dev À− ∃ConTo.PowerS) .

Thus, the program executes toggle(dev,bat) zero or more times and the property describes
a state with a path where dev is always connected to some power supply. One can identify
the following two relevant axioms in this domain:

ϕcon := ((dev,bat) À− ConTo) and ϕ∃ := (dev À− ∃ConTo.PowerS) .

As a proper context C for the program we choose

C := {ϕcon,ϕ∃,¬ϕcon,¬ϕ∃}.

In this context, we simply ignore the initial facts (dev À− Dev) and (bat À− PowerS) because the
concept names Dev and PowerS are not affected by actions in this example. Two interpretation
I1, I2 ∈ ID(Σ) are defined over the set of standard names

NO := {dev,dev1,dev2, . . .} ∪ {bat,bat1,bat2, . . .}

such that for all i ∈ {1,2} we have

PowerSIi := {bat,bat1,bat2, . . .};
DevIi := {dev,dev1,dev2, . . .};
ConToI1 := {(dev,bat)} and

ConToI2 := {(dev,bat), (dev,bat1)}.

I1 and I2 are identical except for the interpretation of the role name ConTo. In I2 the object
dev has bat1 as an additional connected power supply. Let J1 and J2 be the interpretations
with I1⇒αD(Σ) J1 and I2⇒αD(Σ) J2 and α= toggle(dev,bat). We have

s-typeC(I1) = s-typeC(I2) and s-typeC(J1) 6= s-typeC(J2)

because ¬ϕ∃ ∈ s-typeC(J1) but ϕ∃ ∈ s-typeC(J2). Thus, equal static types do not necessarily
guarantee that the observable behavior is also equal. With the chosen context C, I1 and I2
cannot be distinguished. Î

Intuitively, the static type does not necessarily take into account how the interpretation
evolves. The context may contain complex concept with quantification over the whole
domain. It becomes apparent that also domain elements of interpretations, that are not
referred to by any of the objects mentioned in the actions, are relevant for the outcome of an
action. To deal with this problem we are going to introduce dynamic types as an appropriate
extension of static types. To distinguish different interpretations by means of dynamic types
we directly take all the effects of ground action sequences into account.

4.2 Dynamic Types and Local Effects 83

Some auxiliary notions are defined first.

Definition 4.4. Let A be a finite set of ground actions and LocA = (K, F , C,L+,L−,PreC) an
L-admissible local effect representation of A. For a static type s ∈SC and action α ∈ A we
define a set of unconditional local effect descriptions (see Def. 2.26), denoted by LocA(s,α), as
follows

LocA(s,α) := {〈A, {o}〉+ | A∈ F ∩NC, o ∈ L+[s,α, A]}∪
{〈A, {o}〉− | A∈ F ∩NC, o ∈ L−[s,α, A]}∪

{

P, {(o, o′)}
�+ | P ∈ F ∩NR, (o, o′) ∈ L+[s,α, P]}∪

{

P, {(o, o′)}
�− | P ∈ F ∩NR, (o, o′) ∈ L−[s,α, P]}.

The set of all relevant local effects, denoted by Lit(LocA), is defined by

Lit(LocA) :=
⋃

s∈SC ,
α∈A

LocA(s,α).

Î

The functions L+[·] and L−[·] are computable. Thus, also the sets LocA(s,α) are com-
putable. The following lemma is a direct consequence of the definitions above.

Lemma 4.5. Let A and LocA be as in Def. 4.4 and D(LocA) the induced FO-DS. For each α ∈ A
and state I in D(LocA) it holds that I ⇒α

D(LocA)
IL with L = LocA(s,α).

Proof. The claim follows directly from Definition 4.4, the definition of interpretation updates
(Definition 2.28) and Lemma 2.31.

Also the effects of a sequence of actions can be described as a single set of local effects as
we show in the following.

For a set of unconditional local effects L ⊆ Lit(LocA) the set of complementary effects,
denoted by ¬L, is given by

¬L := {〈F, X 〉+ | 〈F, X 〉− ∈ L} ∪ {〈F, X 〉− | 〈F, X 〉+ ∈ L}.

We can reduce iterated update operations with local effects to an update with a single set
of local effects:

Lemma 4.6. Let A, LocA and Lit(LocA) be as in Def. 4.4, L,L′ ⊆ Lit(LocA) sets of local effects
and I an interpretation. It holds that

(IL)L
′
= I((L\¬L

′)∪L′).

Proof. By definition of the update operation we have

∆(IL)L
′ =∆I((L\¬L′)∪L′) =∆I

and

o(I
L)L
′

= oI((L\¬L
′)∪L′)
= oI for all o ∈ NO.

84 Chapter 4 Verifying Pick-Free Programs over Local-Effect Actions

Next, we show

A(I
L)L
′

= AI((L\¬L
′)∪L′)

for all A∈ NC. Let A∈ NC. With the definition of updates and basic set theory it follows that

A(I
L)L
′

= AIL
\ {bI | 〈A, {b}〉− ∈ L′} ∪ {bI | 〈A, {b}〉+ ∈ L′}

=
�

�

(AI \ {bI | 〈A, {b}〉− ∈ L})∪ {bI | 〈A, {b}〉+ ∈ L}
�

\ {bI | 〈A, {b}〉− ∈ L′}
�

∪

{bI | 〈A, {b}〉+ ∈ L′}

=
�

AI \ {bI | 〈A, {b}〉− ∈ L}
�

\ {bI | 〈A, {b}〉− ∈ L′} ∪
�

{bI | 〈A, {b}〉+ ∈ L} \ {bI | 〈A, {b}〉− ∈ L′}
�

∪
{bI | 〈A, {b}〉+ ∈ L′}.

=
�

AI \
�

{bI | 〈A, {b}〉− ∈ L} ∪ {bI | 〈A, {b}〉− ∈ L′}
�

�

∪
�

{bI | 〈A, {b}〉+ ∈ L} \ {bI | 〈A, {b}〉− ∈ L′}
�

∪
{bI | 〈A, {b}〉+ ∈ L′}.

=
�

AI \
�

{bI | 〈A, {b}〉− ∈ L, 〈A, {b}〉+ /∈ L′} ∪ {bI | 〈A, {b}〉− ∈ L′}
�

�

∪

{bI | 〈A, {b}〉+ ∈ L, 〈A, {b}〉− /∈ L′} ∪
{bI | 〈A, {b}〉+ ∈ L′}.

=
�

AI \
�

{bI | 〈A, {b}〉− ∈ (L \ ¬L′)} ∪ {bI | 〈A, {b}〉− ∈ L′}
�

�

∪

{bI | 〈A, {b}〉+ ∈ (L \ ¬L′)} ∪
{bI | 〈A, {b}〉+ ∈ L′}.

= AI((L\¬L
′)∪L′)

.

We omit the proof for role names. It is analogous to the one for concept names.

Thus, the resulting interpretation after executing a sequence of local-effect actions from
A can be expressed as an update of the initial interpretation w.r.t. a subset of Lit(LocA).
As a consequence of this lemma it follows that there are only finitely many reachable
interpretations from a fixed initial state in the transition system induced by a program
over local effect actions, because there are only finitely many possible updates of an initial
interpretation.

Based on these observations we can now define an appropriate representation of dynamic
types in presence of local-effect actions.

Definition 4.7. Let A be a finite set of ground actions, LocA = (K, F , C,L+,L−,PreC) an
L-admissible local effect representation of A and Lit(LocA) the set of all relevant local effects
as defined above.

4.2 Dynamic Types and Local Effects 85

A dynamic type w.r.t. Lit(LocA) and C is a set

t ⊆ C × 2Lit(LocA)

satisfying the following two conditions

• t is complete: for all ψ ∈ C and all L ⊆ Lit(LocA) it holds that (ψ,L) ∈ t or (¬ψ,L) ∈ t
(modulo elimination of double negation).

• t is realizable: there exists an interpretation I in the state space I of D(LocA) such that
for all (ψ,L) ∈ t it holds that IL |=ψ.

The set of all dynamic types w.r.t. Lit(LocA) and C is denoted by D-Types(LocA).
Let I be an element of the state space of D(LocA). The dynamic type of I in D(LocA),

denoted by d-typelocC (I), is defined by

d-typelocC (I) := {(ψ,L) |ψ ∈ C,L ⊆ Lit(LocA), IL |=ψ}.

Î

A dynamic type is a set of pairs. A pair of the form (ψ,L), where ψ is a context axiom and
L a set of unconditional local effects, belongs to a dynamic type of an interpretation I if ψ is
true after an update of I with L.

Example 4.8 (Example 4.3 continued). The context is C := {ϕcon,ϕ∃,¬ϕcon,¬ϕ∃} with

ϕcon := ((dev,bat) À− ConTo) and ϕ∃ := (dev À− ∃ConTo.PowerS) .

There is only the single action toggle(dev,bat) in the action theory Σ. Thus, the set of all
relevant effects is given by

Lit(Σ) :=
�

〈ConTo, {(dev,bat)}〉+, 〈ConTo, {(dev,bat)}〉−
	

.

For the construction of the dynamic types the following subsets of Lit(Σ) are relevant:

L0 := ;; L1 :=
�

〈ConTo, {(dev,bat)}〉+
	

; L2 :=
�

〈ConTo, {(dev,bat)}〉−
	

.

Note that L0 describes the effects of the empty action sequence. Since ϕcon is true initially,
L1 describes the changes after an even number of toggle(dev,bat) executions and L2 is
the set of all effects of action sequences that consist of an odd number of toggle(dev,bat)
actions. Thus, we capture all relevant changes of the program. We can ignore the set
�

〈ConTo, {(dev,bat)}〉+, 〈ConTo, {(dev,bat)}〉−
	

because it leads to the same update as L1.
We consider the dynamic types of I1 and I2 (see Example 4.3). Recall that in I1 the power

supply bat is the only one connected to dev whereas in I2 there are two power supplies for
dev. Our notion of dynamic types captures this difference. The dynamic types of I1 and I2
w.r.t. Lit(Σ) and C are

d-typelocC (I1) = {(ϕcon,L0), (ϕ∃,L0), (ϕcon,L1), (ϕ∃,L1), (¬ϕcon,L2), (¬ϕ∃,L2)};

d-typelocC (I2) = {(ϕcon,L0), (ϕ∃,L0), (ϕcon,L1), (ϕ∃,L1), (¬ϕcon,L2), (ϕ∃,L2)}.

86 Chapter 4 Verifying Pick-Free Programs over Local-Effect Actions

We have that ϕ∃ is false in the update of I1 with L2 but is still true in the corresponding
update of I2. Note that the two types described above are the only relevant realizable
dynamic types in this domain. ϕcon and ϕ∃ are true initially according in to the initial KB.
Therefore, the pairs (ϕcon,L0) and (ϕ∃,L0) are fixed. Connecting dev and bat (as it is done
with L1) obviously causes ϕcon and ϕ∃ to be true. Consequently, the pairs (ϕcon,L1) and
(ϕ∃,L1) are part of every realizable dynamic type. The same is true for the pair (¬ϕcon,L2).
Hence, there are only two realizable dynamic types satisfying the initial KB. Î

Next, we prove some basic properties of dynamic types.

Lemma 4.9. Let D(LocA) = (I, M(K), F , A, E ,�poss) be the FO-DS induced by LocA.

1. D-Types(LocA) =
�

d-typelocC (I) | I ∈ I
	

.

2. For all I, J ∈ I it holds that

d-typelocC (I) = d-typelocC (J) implies s-typeC(I) = s-typeC(J).

3. For all I, J ∈ I and all α ∈ A it holds that

d-typelocC (I) = d-typelocC (J) implies d-typelocC (I
′) = d-typelocC (J

′), where

I ⇒α
D(LocA)

I′ and J ⇒α
D(LocA)

J ′.

Proof. Let D(LocA) = (I, M(K), F , A, E ,�poss) be the FO-DS induced by LocA.

1. Let t ∈ D-Types(LocA) and I ∈ I such that IL |=ψ for all (ψ,L) ∈ t. Such an interpre-
tation exists because t is realizable. We show that t= d-typelocC (I). By assumption, we
have t ⊆ d-typelocC (I). We show d-typelocC (I) ⊆ t. Let (ψ′,L′) ∈ d-typelocC (I) and assume
to the contrary that (ψ′,L′) /∈ t. Since t is complete it follows that (¬ψ′,L′) ∈ t, which
implies IL′ |= ¬ψ′. This is a contradiction to (ψ′,L′) ∈ d-typelocC (I). It is implied that
D-Types(LocA) ⊆

�

d-typelocC (I) | I ∈ I
	

. It is easy to see that the set d-typelocC (J) for
some J ∈ I is complete and realizable. Therefore,

�

d-typelocC (I) | I ∈ I
	

⊆ D-Types(LocA).

2. The claim follows from

ψ ∈ s-typeC(I) iff I |=ψ iff I; |=ψ iff (ψ,;) ∈ d-typelocC (I)

for any ψ ∈ C and I ∈ I.

3. Let I ∈ I, α ∈ A and I′ with I ⇒αD I′. Lemma 4.5 implies that

I′ = ILα with Lα = LocA(s-typeC(I),α)

We first prove that for any element (ψ,L) ∈ C × 2Lit(LocA) it holds that

(ψ,L) ∈ d-typelocC (I
′) iff (ψ, (Lα \ ¬L)∪ L) ∈ d-typelocC (I). (4.3)

We have (ψ,L) ∈ d-typelocC (I
′)

4.2 Dynamic Types and Local Effects 87

iff I′L |=ψ

iff (ILα)L |=ψ (with I′ = ILα)

iff I((Lα\¬L)∪L) |=ψ (Lemma 4.6)

iff (ψ, (Lα \ ¬L)∪ L) ∈ d-typelocC (I).

Next, we consider another interpretation J ∈ I and the corresponding resulting
interpretation J ′ with J ⇒α

D(LocA)
J ′. Assume d-typelocC (I) = d-typelocC (J) and let

(ψ,L) ∈ C × 2Lit(LocA). We have (ψ,L) ∈ d-typelocC (I
′)

iff (ψ, (Lα \ ¬L)∪ L) ∈ d-typelocC (I) (by (4.3))

iff (ψ, (Lα \ ¬L)∪ L) ∈ d-typelocC (J) (by assumption d-typelocC (I) = d-typelocC (J))

iff (ψ,L) ∈ d-typelocC (J
′).

Intuitively, the dynamic type of a particular interpretation not only provides the set of
relevant axioms that are true now (static type) but also those axioms that are true in all
possible future evolutions of it.

We obtain that the binary relation on I defined by

d-typelocC (I) = d-typelocC (J)

satisfies the properties D1 (Lemma 4.9.2) and D2 (Lemma 4.9.3). Furthermore, there are
only finitely many dynamic types.

Checking Realizability in ALCQIO

To use dynamic types for constructing an abstract transition system of a program we have
to show that the set of all dynamic types is effectively computable. We prove this for the
standard DL ALCQIO as a base logic. Given an ALCQIO-context C and the set of relevant
local effects Lit(LocA) all finitely many complete subsets of C × 2Lit(LocA) can be enumerated.
It remains to be shown that checking realizability of a complete subset of C × 2Lit(LocA) is
decidable.

For a complete subset t ⊆ C × 2Lit(LocA) based on an ALCQIO-context C we construct a
reduction ALCQIO-KB Kt

red that is consistent iff t is realizable.
With Ind(A) we denote the finite set of all object names occurring in A, which corresponds

to the objects mentioned in Lit(LocA).
We can assume without loss of generality that all Boolean KBs in C are of the form

o À− C ,¬(o À− C), C v D or ¬(C v D), (4.4)

where o is an object name and C and D are ALCQIO-concepts. Instead of a context with
complex Boolean combinations of axioms it is sufficient to consider all ABox assertions and
concept inclusions occurring in the context and their negation. Positive and negative role

88 Chapter 4 Verifying Pick-Free Programs over Local-Effect Actions

assertions are written as concept assertions using nominals according to the following rules

(o, o′) À− R o À− (∃R.{o′}),
(o, o′) À− ¬R o À− (∀R.¬{o′}).

Note that in ALCQIO the role R is restricted to be a role name or the inverse of a role name.
The idea for the construction of the reduction knowledge base is based on the so called

reduction approach that was first introduced in [Baa+05a] for solving the projection problem.
An extension to a setting with concept inclusions is given in [BLL10]. The main idea is to
encode an interpretation and all its possible updates into a single model of the reduction
knowledge base by introducing new auxiliary concept names and role names. It is sufficient
to consider subsets of literals L ⊆ Lit(LocA) that are non-contradictory. L is non-contradictory
iff there are no effects of the form

¦

P, {(o, o′)}
�+

,

P, {(o, o′)}
�−© ⊆ L or

�

〈A, {o}〉+, 〈A, {o}〉−
	

⊆ Lit(LocA).

For the construction the notion of a sub-concept is used.

Definition 4.10. Given an ALCQIO-concept C , the set of all subconcepts of C , denoted by
sub(C), is defined inductively as follows:

sub(C) := {C} with C of the form >,⊥, or A, with A∈ NC, or {o} with o ∈ NO;

sub(C) := {C} ∪ sub(C ′)∪ sub(D′) with C of the form C ′ u D′ or C ′ t D′,

sub(C) := {C} ∪ sub(C ′) with C of the form ¬C ′,∃R.C ′,∀R.C ′,≥n R.C ′ or ≤nR.C ′.

For a Boolean ALCQIO-KB or a set of Boolean ALCQIO-KBs X , the set of all subconcepts
occurring in X , denoted by sub(X), is defined accordingly. Î

Furthermore, let I = (∆I , ·I) be an interpretation. The domain elements in

{oI | o ∈ Ind(A)}

are called named and all the other elements in ∆I \ {oI | o ∈ Ind(A)} unnamed.
For a given ALCQIO-admissible local effect representation LocA = (K, F , C,L+,L−,PreC)

of A the following new concept names and role names not contained in F are used for the
reduction:

• for each non-contradictory set of effects L ⊆ Lit(LocA) and each name F ∈ F there
is a fresh name denoted by F (L). In case L = ; the name F (;) represents the initial
interpretation of F and F (L) with L 6= ; stands for the named part of the extension of F
after an update with L.

• for each non-contradictory set of effects L ⊆ Lit(LocA) and each concept C ∈ sub(C) a
newly introduced concept name T (L)C encodes the extension of C after an update with
the effects in L.

Furthermore, a new name N is introduced representing the named part of the domain. To

4.2 Dynamic Types and Local Effects 89

define N the following concept definition is used:

N ≡
⊔

o∈Ind(A)
{o}.

For each newly introduced concept name of the form T (L)C with C ∈ sub(C) and non-
contradictory set L ⊆ Lit(LocA) a corresponding concept definition is defined by induction on
the structure of C in Figure 4.1. In case R is of the form inv(P) the expressions R(;) and R(L)

stand for the roles inv(P(;)) and inv(P(L)), respectively. The TBox, denoted by

Tsub(C),

is defined as the set of all concept definitions for all the new concept names T (L)C with
C ∈ sub(C) and L ⊆ Lit(LocA).

T (L)A ≡ (N u A(L))t (¬N u A(;)), with A∈ F ∩NC;

T (L)B ≡ B with B of the form {o},> or ⊥;

T (L)¬C ≡ ¬T (L)C ;

T (L)CuD ≡ T (L)C u T (L)D ;

T (L)CtD ≡ T (L)C t T (L)D ;

T (L)∃R.C ≡
�

N u
�

(∃R(;).(¬N u T (L)C))t (∃R
(L).(N u T (L)C))

�

�

t

(¬N u ∃R(;).T (L)C);

T (L)∀R.C ≡
�

N →
�

(∀R(;).(¬N → T (L)C))u (∀R(L).(N → T (L)C))
�

�

u

(¬N →∀R(;).T (L)C);

T (L)≥m R.C ≡
�

N u
⊔

0≤ j≤m

�

≥ j R(L).(N u T (L)C)u≥(m− j)R(;).(¬N u T (L)C)
�

�

t

(¬N u≥mR(;).T (L)C).

Figure 4.1: Concept definition for T (L)C

To capture the changes on the relevant names we define an ABox A(L)eff for each non-

90 Chapter 4 Verifying Pick-Free Programs over Local-Effect Actions

contradictory set of effects L ⊆ Lit(LocA) as follows:

A(L)eff :=
�

o À− A(L)
�

� 〈A, {o}〉+ ∈ L
	

∪
�

o À− ¬A(L)
�

� 〈A, {o}〉− ∈ L
	

∪
¦

(o, o′) À− P(L)
�

�

�

P, {(o, o′)}
�+ ∈ L

©

∪
¦

(o, o′) À− ¬P(L)
�

�

�

P, {(o, o′)}
�− ∈ L

©

∪
�

o À− (A(;)→ A(L))
�

� A∈ F ∩NC, o ∈ Ind(A), 〈A, {o}〉− /∈ L
	

∪
�

o À− (¬A(;)→¬A(L)) | A∈ F ∩NC, o ∈ Ind(A), 〈A, {o}〉+ /∈ L
	

∪
¦

o À− (∃P(;).{o′}→∃P(L).{o′})
�

�

� P ∈ F ∩NR, o, o′ ∈ Ind(A),

P, {(o, o′)}
�−
/∈ L
©

∪
¦

o À− (∀P(;).¬{o′}→∀P(L).¬{o′})
�

�

� P ∈ F ∩NR, o, o′ ∈ Ind(A),

P, {(o, o′)}
�+
/∈ L
©

.

In A(L)eff we first state that all effects in L are satisfied after the update. And second, we encode
the frame assumption for all the named elements and relevant names. In other words: only
the changes listed in L are realized and nothing else is changing. For the dynamic type all
possible updates are relevant. Therefore we consider the union for all non-contradictory sets
of literals:

Aeff :=
⋃

L⊆Lit(LocA),
L is non-contradictory

A(L)eff . (4.5)

Next, we define the part of the reduction knowledge base that refers to a specific complete
subset t ⊆ C×2Lit(LocA). For the negated concept inclusions in C, we introduce some additional
object names that serve as witnesses for the violation of a concept inclusion. For each CI
C v D ∈ C and each non-contradictory set of literals L ⊆ Lit(LocA) we use a fresh separate
object name o¬(CvD),L not contained in Ind(A) and not mentioned in C. We now define the
following ABox and TBox for a given t using the concept names defined in Tsub(C):

At
red := {o À− T (L)C | (o À− C ,L) ∈ t} ∪

{o À− ¬T (L)C | (¬(o À− C),L) ∈ t} ∪

{o¬(CvD),L À− T (L)C u¬T (L)D | (¬(C v D),L) ∈ t};

T t
red := {T (L)C v T (L)D | (C v D,L) ∈ t}.

The reduction knowledge base Kt
red consists of the TBox

Tsub(C) ∪ T t
red ∪ {N ≡

⊔

o∈Ind(A)
{o}}

and the ABox

At
red ∪Aeff ∪ {o 6≈ o′ | o, o′ ∈ Ind(A)}.

We require that all the named objects from Ind(A) are interpreted differently. But the
newly introduced object names o¬(CvD),L might refer to named or to unnamed elements.

4.2 Dynamic Types and Local Effects 91

The following lemma describes the main properties of Tsub(C) and Aeff.

Lemma 4.11. Let LocA = (K, F , C,L+,L−,PreC) be an ALCQIO-admissible local effect repre-
sentation and D(LocA) = (I, M(K), F , A, E ,�poss) the induced FO-DS.

1. For every interpretation I ∈ I with I |= {o 6≈ o′ | o, o′ ∈ Ind(A)} there exists an interpre-
tation J with

J |= Tsub(C) ∪

(

N ≡
⊔

o∈Ind(A)
{o}

)

and J |= Aeff ∪
�

o 6≈ o′ | o, o′ ∈ Ind(A)
	

such that

a) for all non-contradictory sets of effects L ⊆ Lit(LocA) it holds that

IL |= o À− A iff J |= o À− A(L),

for all concept names A∈ F and o ∈ Ind(A), and

IL |= (o′, o′′) À− P iff J |= (o′, o′′) À− P(L)

for all P ∈ F and o′, o′′ ∈ Ind(A);

b) for all non-contradictory sets of effects L ⊆ Lit(LocA) and concepts C ∈ sub(C) it
holds that CIL

=
�

T (L)C

�J
.

2. For every interpretation J with

J |= Tsub(C) ∪

(

N ≡
⊔

o∈Ind(A)
{o}

)

and J |= Aeff ∪
�

o 6≈ o′ | o, o′ ∈ Ind(A)
	

there exists an interpretation I ∈ I such that

a) for all non-contradictory sets of literals L ⊆ Lit(LocA) it holds that

IL |= o À− A iff J |= o À− A(L),

for all A∈ F and o ∈ Ind(A), and

IL |= (o′, o′′) À− P iff J |= (o′, o′′) À− P(L)

for all role names P ∈ F and o′, o′′ ∈ Ind(A);

b) for all non-contradictory sets of literals L ⊆ Lit(LocA) and concepts C ∈ sub(C) it
holds that CIL

=
�

T (L)C

�J
.

Proof. For the construction of Tsub(C) and Aeff we have used the ideas from [Baa+05a] and
[Lip14]. The proof works by following the lines of the proof of Lemma 15 in [Baa+05b] and
the proof of Lemma 6.30 in [Lip14]. We outline the main steps in the following.

1. Let I = (∆I , ·I) ∈ I be an interpretation with I |= {o 6≈ o′ | o, o′ ∈ Ind(A)}. We define
a corresponding interpretation J = (∆J , ·J) as follows:

92 Chapter 4 Verifying Pick-Free Programs over Local-Effect Actions

• ∆J :=∆I ;

• oJ := oI for every o ∈ NO;

• NJ :=
�

oJ
�

� o ∈ Ind(A)
	

;

•
�

A(L)
�J

:= AIL
for every L ⊆ Lit(LocA) and A∈ F ∩NC;

•
�

P(L)
�J

:= PIL
for every L ⊆ Lit(LocA) and P ∈ F ∩NR;

•
�

T (L)C

�J
:= CIL

for every L ⊆ Lit(LocA) and C ∈ sub(C).

By definition J satisfies the properties 1a and 1b. It remains to be shown that

J |= Tsub(C) and J |= Aeff.

First, we show J |= Aeff. Let L ⊆ Lit(LocA) be non-contradictory. It has to be shown
that J |= A(L)eff . Let 〈A, {o}〉+ ∈ L. It holds that IL |= o À− A. Consequently, with property

1a we have J |= o À− A(L). The cases with effects in L of the form

P, {o, o′}
�±

, 〈A, {o}〉−

are similar. Let A∈ F ∩NC and o ∈ Ind(A). First, assume 〈A, {o}〉− /∈ L. It follows that
I |= o À− A implies IL |= o À− A. With property 1a it follows that J |= o À−

�

A(;)→ A(L)
�

.
The other cases are analogous.

For the proof of J |= Tsub(C) the following properties are needed:

AI \ NJ = AIL
\ NJ for all A∈ F ∩NC,L ⊆ Lit(LocA),

and similarly for all P ∈ F ∩NR

PI \ (NJ × NJ) = PIL
\ (NJ × NJ) for all L ⊆ Lit(LocA).

Using these properties it can be shown by induction on the structure of concepts that
J satisfies all definitions in Tsub(C).

2. The proof of this direction is omitted. It is easy to see that the steps used in the proof
of Lemma 6.30 in [Lip14] can be adapted to the present setting as well.

Finally, we are ready to prove that consistency of Kt
red corresponds to realizability of t.

Lemma 4.12. Let LocA = (K, F , C,L+,L−,PreC) be as above and t ⊆ C × 2Lit(LocA) a complete
set. It holds that Kt

red is consistent (without the UNA) iff t is realizable.

Proof. Let t be as in the claim. Let L ⊆ Lit(LocA). A corresponding non-contradictory set
denoted by bL is defined as follows:

bL := {〈F, {ō}〉− | 〈F, {ō}〉− ∈ L, 〈F, {ō}〉+ /∈ L} ∪ {〈F, {ō}〉+ ∈ L}.

bL consists of all positive effects contained in L and of all negative ones from L that have no
positive counterpart in L. We give precedence to positive effects which is compatible with

4.2 Dynamic Types and Local Effects 93

the semantics of actions. Therefore, for any set of effects L and interpretation I ∈ I it holds
that IL = IbL. It follows that if t is realizable, then

(ψ,L) ∈ t iff (ψ,bL) ∈ t

for all elements (ψ,L) ∈ t. Consequently, it is sufficient to consider only non-contradictory
sets of literals.

“⇒”: First, we assume that Kt
red is consistent and show that t is realizable. There exists

an interpretation J with J |= Kt
red. From Lemma 4.11 it follows that there exists an

interpretation I ∈ I with CIL
=
�

T (L)C

�J
for all non-contradictory sets of effects L and

concepts C ∈ sub(C). It easy to see that d-typelocC (I) = t.

“⇐”: Assume t is realizable. There exists an interpretation I ∈ I with d-typelocC (I) = t. For
any interpretation I′ satisfying

∆I′ =∆I ;

FI′ = FI for all F ∈ F and

oI′ = oI for all object names o occurring in A or C

it holds that d-typelocC (I) = d-typelocC (I
′). Since the new object names of the form

o¬(CvD),L do not occur in A or C, the dynamic type of an interpretation is independent
of the interpretation of the new object names. Consequently, we can choose an
interpretation Y ∈ I such that Y has the same domain as I, agrees with I on the
interpretation of all relevant names in A and C and in addition satisfies

oY
¬(CvD),L ∈ (C u¬D)Y iff (¬(C v D),L) ∈ d-typelocC (Y).

The chosen interpretation Y satisfies d-typelocC (Y) = d-typelocC (I) = t. According to
Lemma 4.11 there exists an interpretation J such that

J |= Tsub(C) ∪ {N ≡
⊔

o∈Ind(A)
{o}} and J |= Aeff ∪ {o 6≈ o′ | o, o′ ∈ Ind(A)} and

CYL
=
�

T (L)C

�J
for all non-contradictory sets of literals L and concepts C ∈ sub(C). It

easily follows that J |= At
red and J |= T t

red. Therefore, we have J |= Kt
red.

Note that the reduction approach also works within a smaller base logic

L ∈ {ALCO, ALCIO, ALCQO}.

Inverse roles and at least restrictions and at most restrictions are not needed to formulate
the reduction knowledge base.

94 Chapter 4 Verifying Pick-Free Programs over Local-Effect Actions

4.3 Deciding the Verification Problem

Finally, we can assemble a finite bisimilar propositional abstraction of the transition system
induced by an ALCQIO-ConGolog program over local effect actions.

Let LocA = (K, F , C,L+,L−,PreC) be an ALCQIO-admissible local effect representation of
a finite set of ground actions A such that the concept names Final and Fail are not contained
in F and the actions ε and f are not contained in A. The termination action ε and the failure
action f are definable as local effect actions.

We define the termination and failure extension of LocA. Let

B := A∪ {ε, f}.

The extension is an ALCQIO-admissible local effect representation, denoted by LocB, that is
obtained from LocA as follows. We have

LocB = (K∪ {¬(prog À− Final),¬(prog À− Fail)},
F ∪ {Final, Fail},
CB := C ∪ {(prog À− Final), (prog À− Fail),¬(prog À− Final),¬(prog À− Fail)},
L+,L−,

PreCB
),

where the functions L+,L− are extended such that the following conditions are satisfied:

LocB(s,α) = LocA(s∩ C,α) for all (s,α) ∈SCB
× A, and

LocB(s,ε) = {〈Final, {prog}〉+} for all s ∈SCB
, and

LocB(s, f) = {〈Fail, {prog}〉+} for all s ∈SCB
.

The extended possibility relation PreCB
is defined by

(s,α) ∈ PreCB
iff ((s∩ C),α) ∈ PreC , for all (s,α) ∈SCB

× A, and

(s,ε) ∈ PreCB
and (s, f) ∈ PreCB

, for all s ∈SCB
.

To stay formally correct we view the symbols ε and f as abbreviations of ground action
terms with prog as the single argument. The definition of LocB defines the effects and
preconditions of ε and f as defined in Definition 2.45. We have

D(LocA)] {ε, f}=D(LocB). (4.6)

We define a bisimilar propositional abstraction based on the set of all dynamic types and
the characterization of the reachable subprograms sub(δ) using the head and tail function.

Definition 4.13. Let P = (D(LocA),δ) be an ALCQIO-ConGolog program over local effect
actions where A, δ and LocA = (K, F , C,L+,L−,PreC) are as described in Definition 4.2.
Furthermore, let B = A∪ {ε, f}, LocB the termination and failure extension of LocA, CB the
context in LocB and AP a finite set of atomic propositions with a bijection ι : CB→ AP.

4.3 Deciding the Verification Problem 95

The abstraction of IP is a propositional transition system

TP = (QTP
, ITP

, ,→TP
,λTP

)

over AP, where

• QTP
:= D-Types(LocB)× {L | L ⊆ Lit(LocB)} × sub(δ);

• ITP
:=
�

(t,;,δ) ∈QTP

�

� (ϕ,;) ∈ t for all ϕ occurring in the initial KB of LocB

	

;

• ,→TP
:=
��

(t,L,ρ), (t′,L′,ρ′)
�

∈QTP
×QTP

�

� t= t′, (i) or (ii)
	

with

(i) there exists a guarded action a = ψ1?; · · · ;ψn?;α ∈ head(ρ) such that a is
executable in the static type s= {ψ ∈ CB | (ψ,L) ∈ t}, and

L′ =
�

L \ ¬LocA(s,α)
�

∪ LocA(s,α)

and ρ′ ∈ tail(a,ρ);

(ii) there is no guarded action contained in head(ρ) that is executable in the static
type s= {ψ ∈ CB | (ψ,L) ∈ t} and we have

L′ =
�

L \ ¬LocA(s, f)
�

∪ LocA(s, f)

and ρ = ρ′;

• λTP
: (t,L,ρ) 7→ {ι(ψ) | (ψ,L) ∈ t} for all (t,L,ρ) ∈QTP

.

Î

An abstract state in QTP
consists of three components: a dynamic type, a set of local

effects representing the effects of the action sequence that has been executed so far and
a reachable subprogram of δ representing the program that remains to be executed. The
execution starts with a dynamic type of a model of the initial KB. Given the dynamic type of
the initial model and the set of effects representing the accumulated effects of the action
history, the static type s of the current state is uniquely determined. Based on the static type
executability of guarded actions from the head of the current program expression can be
decided. Executability of a guarded action in a static type is defined as in Definition 3.19.
The corresponding effects are computable in using LocB, and the next program expression is
obtained using the tail function. Note that the abstract transition relation does not progress
the dynamic type. In an abstract state we keep the dynamic type of the initial model and
only update the set of effects and the remaining program. This is sufficient because the
dynamic type of an initial model encodes the static types of all possible future evolutions of
this model. The current static type itself is sufficient to determine the successor states.

Example 4.14 (Example 4.3 and 4.8 continued). Recall that we consider the following
program

δ :=
�

toggle(dev,bat)
�∗

.

96 Chapter 4 Verifying Pick-Free Programs over Local-Effect Actions

(t1,L0,δ) : {ϕcon,ϕ∃,¬ϕε} (t1,Lε, 〈〉) : {ϕcon,ϕ∃,ϕε}

(t1,L2,δ) : {¬ϕcon,¬ϕ∃,¬ϕε} (t1,L2 ∪ Lε, 〈〉) : {¬ϕcon,¬ϕ∃,ϕε}

(t1,L1,δ) : {ϕcon,ϕ∃,¬ϕε} (t1,L1 ∪ Lε, 〈〉) : {ϕcon,ϕ∃,ϕε}

Figure 4.2: Abstract transition system reachable from (t1,L0,δ)

with the sets of relevant effects

L0 := ;; L1 :=
�

〈ConTo, {(dev,bat)}〉+
	

;

L2 :=
�

〈ConTo, {(dev,bat)}〉−
	

; Lε :=
�

〈Final, {prog}〉+
	

and the context C consisting of the following axioms and their corresponding negation:

ϕcon := ((dev,bat) À− ConTo) ,ϕ∃ := (dev À− ∃ConTo.PowerS) and ϕε := prog À− Final

As we have seen in Example 4.8, there are the following two realizable dynamic types (not
considering the termination action):

t1 := {(ϕcon,L0), (ϕ∃,L0), (ϕcon,L1), (ϕ∃,L1), (¬ϕcon,L2), (¬ϕ∃,L2)};
t2 := {(ϕcon,L0), (ϕ∃,L0), (ϕcon,L1), (ϕ∃,L1), (¬ϕcon,L2), (ϕ∃,L2)}.

The abstract transition system has two initial states: (t1,L0,δ) and (t2,L0,δ). The reachable
part from (t1,L0,δ) is depicted in Figure 4.2. The transition system starting from (t2,L0,δ) is
exactly the same with the difference that the states (t2,L2,δ) and (t2,L2 ∪ Lε, 〈〉) are labeled
with ϕ∃ instead of ¬ϕ∃. Î

Lemma 4.15. TP is effectively computable.

Proof. We consider the transition system

TP = (QTP
, ITP

, ,→TP
,λTP

)

as defined above. First, the set D-Types(LocA) is effectively computable. All finitely many
complete subsets of C × 2Lit(LocA) can be enumerated and checking realizability of a complete
set is decidable due to Lemma 4.12. According to Theorem 3.15 sub(δ) is finite. The
characterization of the reachable subprograms based on the head and tail function yields
that sub(δ) is effectively computable. Therefore, QTP

and ITP
are effectively computable. It

4.3 Deciding the Verification Problem 97

is decidable to check whether
(t,L,ρ) ,→TP

(t,L′,ρ′)

holds for two states in QTP
: The static type {ψ | (ψ,L) ∈ t} can be read off given t and L. The

guarded actions in head(ρ) are effectively computable as well as the program expressions
in tail(a,ρ) for some a ∈ head(ρ). Since the static type is part of the abstract state and the
precondition is provided by Σ, checking executability of a guarded action in a given state is
decidable. The effects of a ground action are explicitly in Σ. Therefore, the accumulated
effects of a successor state are effectively computable as well.

Let I be the state space of D(LocB) and CB the context in LocB with B = A∪{ε, f}. A relation
“'CB

” between the states of

IP = (QP , IP , ,→P ,λP) and TP = (QTP
, ITP

, ,→TP
,λTP

)

is defined as follows: we have

〈I,σ,ρ〉 'CB
(t,L,ρ′) iff the following conditions are satisfied

• 〈I,σ,ρ〉 is reachable from some initial state 〈I0, 〈〉,δ〉 ∈ IP such that

t= d-typelocCB
(I0) and I = IL

0 ;

• ρ = ρ′.

Lemma 4.16. 'CB
is a CB-bisimulation.

Proof. Let I be the state space of D(LocB) and CB the context of the extended representation
LocB with B = A ∪ {ε, f}. Recall that TP is a propositional transition system over AP and
ι : CB→ AP is a bijection.

Assume 〈I,σ,ρ〉 'CB
(t,L,ρ) for two states 〈I,σ,ρ〉 ∈ QP and (t,L,ρ) ∈ QTP

. There
exists I0 ∈ I such that 〈I,σ,ρ〉 is reachable from the initial state 〈I0, 〈〉,δ〉 ∈ IP and

d-typelocCB
(I0) = t and I = IL

0 .

First, we show that
λTP
((t,L,ρ)) = {ι(ψ) |ψ ∈ s-typeCB

(I)}.

We have

λTP
((t,L,ρ)) = {ι(ψ) | (ψ,L) ∈ t}

= {ι(ψ) | (ψ,L) ∈ d-typelocCB
(I0)}

= {ι(ψ) | IL
0 |=ψ}

= {ι(ψ) | I |=ψ}
= {ι(ψ) |ψ ∈ s-typeCB

(I)}.

Let

s= {ψ ∈ CB | (ψ,L) ∈ t}.

98 Chapter 4 Verifying Pick-Free Programs over Local-Effect Actions

〈I,σ,ρ〉 'CB
(t,L,ρ) implies s-typeCB

(I) = s. We have to show that for every outgoing
transition of 〈I,σ,ρ〉 there is a matching transition from (t,L,ρ) leading to a state that
is in 'CB

-relation with the successor of 〈I,σ,ρ〉 and vice versa. We distinguish four cases
regarding σ.

(I) First, assume σ ∈ A∗. We distinguish three types of transitions: a transition via an
action from A, a transition with the termination action ε and one with the failing
action f.

(a) It holds that 〈I,σ,ρ〉 ,→P 〈I′,σ ·α,ρ′〉 for some α ∈ A

iff 〈I,σ,ρ〉 →D(LocA)]{ε,f} 〈I
′,σ ·α,ρ′〉 for some α ∈ A (by definition of ,→P)

iff 〈I,σ,ρ〉 →D(LocA) 〈I
′,σ ·α,ρ′〉 for some α ∈ A (by Lemma 3.2)

iff there exists a guarded action a = Λ1; · · · ;Λn;α ∈ head(ρ) for some n≥ 0 and
α ∈ A such that ρ′ ∈ tail(a,ρ) and a is executable in I and I ⇒α

D(LocA)
I′ (by

Lemma 2.44 and Lemma 3.12)

iff there exists a guarded action a = Λ1; · · · ;Λn;α ∈ head(ρ) for some n ≥ 0
and α ∈ A such that ρ′ ∈ tail(a,ρ) and a is executable in s-typeCB

(I) = s and
I′ = ILocA(s,α) (by Lemma 3.20 and Lemma 4.5).

(b) It holds that 〈I,σ,ρ〉 ,→P 〈I′,σ · ε,ρ′〉

iff 〈I,σ,ρ〉 ∈ Final(D(LocA)] {ε, f}), ρ′ = 〈〉 and I ⇒ε
D(LocA)]{ε,f}

I′

iff 〈I,σ,ρ〉 ∈ Final(D(LocA)), ρ′ = 〈〉 and I ⇒ε
D(LocA)]{ε,f}

I′ (by Lemma 3.2)

iff there exists a = Λ1; · · · ;Λn;ε ∈ head(ρ) for some n ≥ 0 such that a is
executable in I and I ⇒ε

D(LocA)]{ε,f}
I′ (by Lemma 3.12)

iff there exists a = Λ1; · · · ;Λn;ε ∈ head(ρ) for some n ≥ 0 such that a is
executable in s-typeCB

(I) = s and I′ = ILocB(s,ε) (by Lemma 3.20 and by
Lemma 4.5).

(c) It holds that 〈I,σ,ρ〉 ,→P 〈I′,σ · f,ρ〉

iff 〈I,σ,ρ〉 ∈ Fail(D(LocA)]{ε, f}) and I ⇒f

D(LocA)]{ε,f}
I′ (by definition of ,→P)

iff 〈I,σ,ρ〉 ∈ Fail(D(LocA)) and I ⇒f

D(LocA)]{ε,f}
I′ (by Lemma 3.2)

iff there exists no a ∈ head(ρ) such that a is executable in I and

I ⇒f

D(LocA)]{ε,f}
I′

(by Lemma 3.12)

iff there exists no a ∈ head(ρ) such that a is executable in s-typeCB
(I) = s and

I′ = ILocB(s,f) (by Lemma 3.20 and by Lemma 4.5).

Let 〈I,σ,ρ〉 ,→P 〈I′,σ ·β ,ρ〉 be an arbitrary outgoing transition of 〈I,σ,ρ〉. We have
β ∈ A∪ {ε, f}. Using (Ia), (Ib), (Ic) and the definition of ,→TP

it follows that

(t,L,ρ) ,→TP

�

t,
�

L \ ¬LocB(s,β)
�

∪ LocB(s,β),ρ
′�,

4.3 Deciding the Verification Problem 99

where s= {ψ ∈ CB | (ψ,L) ∈ t}= s-typeCB
(I). As shown above, we have

I′ = ILocB(s,β) and I = I0
L with t= d-typelocCB

(I0).

Lemma 4.6 implies

I′ = I0

�

L\¬LocB(s,β)∪LocB(s,β)
�

.

Consequently,

〈I′,σ · β ,ρ〉 'CB

�

t,
�

L \ ¬LocB(s,β)
�

∪ LocB(s,β),ρ
′�.

Let (t,L,ρ) ,→TP
(t,L′,ρ′) be an outgoing transition of (t,L,ρ) in TP . It follows that

L′ =
�

L \ ¬LocB(s,γ)
�

∪ LocB(s,γ)

for some γ ∈ A ∪ {ε, f} with s = {ψ ∈ CB | (ψ,L) ∈ t}. If γ = f, then there is no
guarded action in head(ρ) that is executable in s. Otherwise, if γ ∈ A∪{ε}, then there
exists a = Λ1; · · · ;Λn;ε ∈ head(ρ) for some n ≥ 0 such that a is executable in s and
ρ′ ∈ tail(a,ρ). Using (Ia), (Ib) and (Ic) it follows that

〈I,σ,ρ〉 ,→P 〈ILocB(s,γ),σ · γ,ρ′〉.

As shown above, we obtain

〈ILocB(s,γ),σ · γ,ρ′〉 'CB
(t,L′,ρ′).

(II) We assume σ = bσ · ε for some bσ ∈ (A∗ · {ε}∗). Since 〈I,σ,ρ〉 is reachable from an
initial state, we have ρ = 〈〉.

It holds that 〈I,σ, 〈〉〉 ,→P 〈I′,σ′,ρ′〉 iff

σ′ = σ · ε,ρ′ = 〈〉 and I ⇒ε
D(LocA)]{ε,f}

I′.

Since head(〈〉) = {ε} and ε is executable in all static types, we have

(t,L, 〈〉) ,→TP

�

t,
�

L \ ¬LocB(s,ε)
�

∪ LocB(s,ε), 〈〉
�

by definition of ,→TP
. It can be shown that 〈I,σ, 〈〉〉 'CB

(t,L, 〈〉) implies also

〈I′,σ · ε, 〈〉〉 'CB

�

t,
�

L \ ¬LocB(s,ε)
�

∪ LocB(s,ε), 〈〉
�

.

The other direction is analogous, because both states above are the only successor
states in case ρ = 〈〉.

(III) We assume σ = bσ · σ̃ with bσ ∈ A∗ and σ̃ ∈ {f}∗ with |σ̃| ≥ 1. As a consequence of
Lemma 3.2 we have that only the failure action leads to a successor state of 〈I,σ,ρ〉.
Since f was already executed before, the literal prog À− Fail is already true in I and

100 Chapter 4 Verifying Pick-Free Programs over Local-Effect Actions

executing f does not change anything. Thus, we have

〈I,σ,ρ〉 ,→P 〈I′,σ ·α,ρ′〉 implies I′ = I,α= f and ρ′ = ρ.

Consequently, 〈I,σ · f,ρ〉 is the only successor state of 〈I,σ,ρ〉.
Since 〈I,σ,ρ〉 is reachable from the initial state 〈I0, 〈〉,δ〉, there must states in IP of
the form 〈J , bσ,ρ〉 and 〈J ′, bσ · f,ρ〉 such that

〈I0, 〈〉,δ〉 ,→P
∗ 〈J , bσ,ρ〉 ,→P 〈J ′, bσ · f,ρ〉 ,→P

∗ 〈I,σ,ρ〉

We have 〈J , bσ,ρ〉 ∈ Fail(D(LocA)) and J ′ = J {〈Fail,{prog}〉+} and I = J ′. It follows that

s-typeC(J) = s-typeCB
(I)∩ C = s∩ C

with s= {ψ ∈ CB | (ψ,L) ∈ t}. Let a ∈ head(ρ) be an arbitrary guarded action. With
Lemma 3.12 〈J , bσ,ρ〉 ∈ Fail(D(LocA)) implies that a is not executable in J . Therefore,
a is also not executable in s due to Lemma 3.20. It follows that

�

t,
�

L \ ¬LocB(s, f)
�

∪ LocB(s, f),ρ
�

is the only successor state of (t,L,ρ). I |= (prog À− Fail), I0 |= (prog À− ¬Fail) and
I = I0

L imply 〈Fail, {prog}〉+ ∈ L. It follows that

L =
�

L \ ¬LocB(s, f)
�

∪ LocB(s, f).

The transition (t,L,ρ) ,→TP
(t,L,ρ) is the only outgoing transition of (t,L,ρ). It is

easy to see that

〈I,σ,ρ〉 'CB
(t,L,ρ) implies 〈I,σ · f,ρ〉 'CB

(t,L,ρ).

It remains to be shown that IP and TP are actually CB-bisimilar. For this we have to prove
that the respective initial states are related via 'CB

.

Lemma 4.17. TP is a bisimilar propositional abstraction of P w.r.t. CB.

Proof. We have shown that 'CB
is a CB-bisimulation. For every initial state 〈I0, 〈〉,δ〉 ∈ IP it

holds that (d-typelocCB
(I0),;,δ) ∈ ITP

and

〈I0, 〈〉,δ〉 'CB
(d-typelocCB

(I0),;,δ).

And, for every initial state (t,;,δ) ∈ ITP
there is a model J0 of K with

J0 |= (prog À− ¬Final)∧ (prog À− ¬Fail)

such that d-typelocCB
(J0) = t. It follows that 〈J0, 〈〉,δ〉 ∈ IP and 〈J0, 〈〉,δ〉 'C (t,;,δ).

To decide whether an ALCQIO-CTL∗ state formula Φ over axioms in C is valid in P it
suffices to check whether TP models ι(Φ) which is a decidable model checking problem.

4.3 Deciding the Verification Problem 101

Theorem 4.18. Verifying ALCQIO-CTL∗ properties of ALCQIO-ConGolog programs over local
effect actions is decidable.

Proof. The input program consists of a finite set of ground action terms A, an ALCQIO-
admissible local effect representation LocA and a program expression δ satisfying the re-
striction formulated in Definition 4.2. According to Lemma 4.15 and 4.17 a finite bisimilar
propositional abstraction of the program is computable. Thus, the verification problem boils
down to a decidable propositional CTL∗ model checking problem.

The reduction to a propositional model checking also yields some complexity bounds. An
upper bound on the size of TP can be obtained. Let

n := |C|+ |Lit(LocA)|.

The dynamic types are subsets of C × 2Lit(LocA) and it holds that

|D-Types(LocA)| ≤ 22n
.

Consequently,
22n
· 2n · 2|δ|

is an upper bound on the number of states in the abstract transition system.
The notion of an ALCQIO-admissible local effect representation only requires that the

effects of an action are effectively computable. To obtain complexity bounds for the verifica-
tion problem we consider the case where action effects and preconditions are specified in a
local effect ALCQIO-action theory Σ = (K, A,pre,eff) where A is the finite set of all relevant
ground actions. The effect descriptions and preconditions of an action α ∈ A are directly
given by eff(α) and pre(α), respectively. The size of the input of the verification problem is the
sum of:

• the number of symbols needed to write down the initial KB K,

• the number of symbols needed to write down the effect descriptions in
⋃

α∈A eff(α)
and the Boolean KBs in

⋃

α∈A pre(α),

• the length of the program expression δ and the number symbols needed to write down
the temporal property.

The natural numbers in at most and at least restriction are assumed to be encoded as binary
strings.

Lemma 4.19. Verifying L-CTL∗ properties of an L-ConGolog program over local effect actions
that are specified in a local effect L-action theory is decidable

1. in 2EXPTIME if L ∈ {ALCO, ALCIO, ALCQO}, and

2. in CO-N2EXPTIME if L= ALCQIO.

Proof. Let L ∈ {ALCO, ALCIO, ALCQO, ALCQIO}. The input for the verification problem
consists of:

102 Chapter 4 Verifying Pick-Free Programs over Local-Effect Actions

• a local effect L-action theory Σ = (K, A,pre,eff), where A is a finite set of ground
actions

• a pick-free program expression over actions from A, and with tests formulated as
Boolean L-KBs

• an L-CTL∗ state formula Φ.

We assume that {ε, f} ⊆ A and the preconditions and effects of the termination and failure
action are defined as described above. And we assume that the literals prog À− ¬Final and
prog À− ¬Fail are contained in K. The relevant L-context C consists of all axioms contained in
K, all effect conditions occurring in

⋃

α∈A eff(α), all Boolean KBs in
⋃

α∈A pre(α), all Boolean
KBs occurring in the tests in δ and all axioms mentioned in Φ. The set of all relevant local
effects Lit(Σ) is given by

Lit(Σ) := {〈F, X 〉± | α ∈ A,ψ Â 〈F, X 〉± ∈ eff(α) for some ψ}.

1. Assume L ∈ {ALCO, ALCIO, ALCQO}. We describe a decision procedure for deciding
whether Φ is valid in P = (D(Σ),δ). First, the set D-Types(Σ, C) that consists of all
complete and realizable subsets of C × 2Lit(Σ) is computed. To do this we construct for
each complete subset t ⊆ C × 2Lit(Σ) that satisfies

• (prog À− ¬Final,;) ∈ t, (prog À− ¬Fail,;) ∈ t, and

• (ϕ,;) ∈ t for all axioms ϕ in K

the reduction L-KB Kt
red and check whether it is consistent. If it is consistent, then t

is included in D-Types(Σ, C). Each set t is exponentially large in the size of the input.
The corresponding KB Kt

red is of exponential size as well and and can be computed in
exponential time. L-KB consistency checking is in EXPTIME measured w.r.t. the size of
the KB. Thus, checking consistency of Kt

red is in 2EXPTIME w.r.t. the size of the input.
Since there are double exponentially many subsets of C × 2Lit(Σ), the computation of
D-Types(Σ, C) can be done with a double exponential time upper bound measured
w.r.t. the size of the input. Next, we have to check whether

TP , (t,;,δ) |= ιC(Φ)

holds for all t ∈ D-Types(Σ, C). It is sufficient to consider the fragment of TP that is
reachable from a given initial state (t,;,δ). This reachable fragment is denoted by Tt

P
for a given t ∈ D-Types(Σ, C). To compute Tt

P it is sufficient to consider the states in

{t} × 2Lit(Σ) × sub(δ).

According to Theorem 3.15 the set sub(δ) is at most exponentially large in |δ| and
the size of the subprogram expressions is polynomial in the size of δ. Thus, the set
{t} × 2Lit(Σ) × sub(δ) contains at most exponentially many elements in the size of
the input. The computation of the transition relation ,→TP

on {t} × 2Lit(Σ) × sub(δ)
can be done in polynomial time in the size of {t} × 2Lit(Σ) × sub(δ). Consequently,
the computation of Tt

P requires exponential time in the size of the input and Tt
P is

4.4 Hardness of the Verification Problem 103

exponentially large. Furthermore, we have

TP , (t,;,δ) |= ιC(Φ) iff Tt
P , (t,;,δ) |= ιC(Φ).

According to Theorem 2.40 the check whether Tt
P , (t,;,δ) |= ιC(Φ) holds can be done

in exponential space and in double exponential time. Since D-Types(Σ, C) contains at
most double exponentially many elements in the size of the input, one has to perform at
most double exponentially many calls to a propositional CTL∗ model checker and each
of these calls requires at most double exponential time. Consequently, the verification
problem is decidable in 2EXPTIME.

2. It holds that Φ is valid in P = (D(Σ),δ) iff ¬Φ is not satisfiable in P = (D(Σ),δ).
It follows that the complement problem of the satisfiability problem has the same
complexity as the validity problem. We show that if L = ALCQIO, then the satisfiability
problem is decidable in N2EXPTIME.

A composition of three Turing machines T1, T2 and T3 is constructed. T1 is deterministic
and computes a set of ALCQIO-KBs and accepts. T2 takes as input a set of ALCQIO-
KBs and guesses one of them and accepts. T3 takes as input a single ALCQIO-KB and
checks its consistency. T1 executes the following steps:

• all subsets t ⊆ C × 2Lit(Σ) with (prog À− ¬Final,;) ∈ t, (prog À− ¬Fail,;) ∈ t, and
(ϕ,;) ∈ t for all axioms ϕ in K are enumerated;

• for all those sets t the transition system Tt
P and the KB Kt

red is constructed;

• Tt
P , (t,;,δ) |= ιC(Φ) is checked for all t;

• the output of T1 is the set of all KBs Kt
red where Tt

P , (t,;,δ) |= ιC(Φ) is true.

As argued above the steps can be done in 2EXPTIME. The nondeterministic machine T2
that guesses one of the KBs of the output of T1 gets an input of double exponential size
and runs with a double exponential time upper bound. The nondeterministic machine
T3 that checks consistency of an ALCQIO-KB runs in time exponential in the size of
the KB. The input for T3 is the output of T2. A run of the composite machine consisting
of T1, T2 and T3 is accepting iff T3 reaches an accepting state. It is a nondeterministic
machine with a double exponential time upper bound.

4.4 Hardness of the Verification Problem

The question is whether the decision procedure described in the previous section is actually
worst case optimal. To show hardness of the verification problem we reduce the consistency
problem of DL-KBs with nominal schemas [Krö+11] to the verification problem for programs
over local effect actions. A nominal schema is a non-ground nominal concept of the form
{x}, where x ∈ NV is a variable name. The variable names range over a given finite set of
object names. A KB with nominal schemas is consistent iff the (exponentially large) set of all
possible groundings is consistent.

104 Chapter 4 Verifying Pick-Free Programs over Local-Effect Actions

Definition 4.20. Let L ∈ {ALCO, ALCIO, ALCQO, ALCQIO} be a DL. An L-CI with nominal
schemas is an L-CI of the form C v D, where C and D are non-ground L-concepts. An L-KB
with nominal schemas is a finite set of L-CIs with nominal schemas.

Let S be an L-KB with nominal schemas and Var the finite set of all variable names
occurring in S, and let Obj be a finite set of object names. We define the set of all possible
groundings of S w.r.t. Obj as follows:

ground(S,Obj) :=
⋃

CvD∈S
{Cν v Dν | ν with ν(x) ∈ Obj for all x ∈ Var}.

We say that S is consistent w.r.t. Obj iff the TBox ground(S,Obj) is consistent. Î

Example 4.21. Let x , y and z be variable names, Obj a finite set of object names and ConTo
a role name. The CI with nominal schemas

{x} u ∃ConTo.({y} u ∃ConTo.{z})v {x} u ∃ConTo.{z}

is consistent iff the restriction of ConTo to objects from Obj is transitive. Another example
describes persons whose parents are married:

∃HasFather.{y} u ∃HasMother.({z} u ∃Married.{y})v PersonWithMarriedParents.

According to the semantics the variable names in nominal schemas are implicitly universally
quantified over a given finite domain of object names. Î

If the given set of object names has cardinality m, then a CI with n different variable
names has mn possible groundings. The set of all possible groundings of a KB with nominal
schemas w.r.t. a finite set of object names can be exponentially large. Actually in [KR14] it is
shown that nominal schemas cause an increase of the complexity of KB consistency by one
exponential.

Theorem 4.22 ([KR14]). Deciding consistency of an L-KB with nominal schemas w.r.t. a finite
set of object names is 2EXPTIME-complete if L ∈ {ALCO, ALCIO, ALCQO} and N2EXPTIME-
complete in case L= ALCQIO.

To show hardness of the verification problem we reduce consistency of a KB with nominal
schemas to the verification problem: for a given L-KB S with nominal schemas and a finite
set of object names Obj we construct a local effect L-action theory

ΣS,Obj = (KS,Obj, AS,Obj,eff,pre),

a program expression δS,Obj and a temporal property ΦS,Obj of polynomial size such that S is
consistent w.r.t. Obj iff ΦS,Obj is satisfiable in P = (D(ΣS,Obj),δS,Obj). Let

Var = {x1, . . . , xn}

be the set of all variable names occurring in S and let

Obj= {o1, . . . , om} for some m≥ 1.

4.4 Hardness of the Verification Problem 105

The idea is to construct a non-deterministic program that goes through all possible groundings
of the variable names.

For the reduction we use the following additional fresh names not mentioned in S:

• for each variable name x occurring in S we choose a fresh concept name A[x], and

• a literal s À− AllGrounded to indicate that all variables are instantiated.

The extension of A[x] in a particular state is supposed to contain exactly the object that
instantiates the variable x . Next, we define ΣS,Obj = (KS,Obj, AS,Obj,eff,pre). The initial KB is
given by

KS,Obj = (T = {A[x]v {o1} t · · · t {om} | x ∈ Var},
A= {s À− ¬AllGrounded}).

We use the following set of ground action terms:

AS,Obj = {groundx(o) | x ∈ Var, o ∈ Obj} ∪ {clear(o1, . . . , om)} ∪ {finished(s)}.

The action groundx(o) is used to instantiate the variable x with object o. For each pair
(x , o) ∈ Var×Obj we define preconditions and effects as follows:

pre(groundx(o)) = ;, eff(groundx(o)) =
�

〈A[x], {o}〉+
	

.

To instantiate the variable x with object o we add o to the extension of A[x]. The action
finished(s) is used to indicate that all variables are instantiated:

pre(finished(s)) = ;, eff(finished(s)) =
�

〈AllGrounded, {s}〉+
	

. (4.7)

The action clear(o1, . . . , om) resets the instantiation of the variables:

pre(clear(o1, . . . , om)) = ;,

eff(clear(o1, . . . , om)) =
�

〈A[x], {o}〉−
�

� x ∈ Var, o ∈ Obj
	

∪
�

〈AllGrounded, {s}〉−
	

.

For each variable name x i ∈ Var the program expression δx i nondeterministically chooses an
instantiation:

δx i := (groundx i
(o1) | groundx i

(o2) | · · · | groundx i
(om)).

The overall program expression that generates all possible groundings is given as follows:

δS,Obj := (clear(o1, . . . , om);δ
x1;δx2; · · · ;δxn;finished(s))∗ ; FALSE?.

For a CI C v D ∈ S the CI bC v bD is obtained from C v D by simultaneously replacing all
occurrences of the concepts {x} with x ∈ Var in C and D by the corresponding concept name
A[x]. The temporal property is defined as follows:

ΦS,Obj := AG

�

(s À− AllGrounded)→

�

∧

CvD∈S

bC v bD

��

.

106 Chapter 4 Verifying Pick-Free Programs over Local-Effect Actions

The size of ΣS,Obj, δS,Obj and ΦS,Obj is quadratic in the size of S and Obj. The claim we
prove in the following is that S is consistent w.r.t. Obj iff ΦS,Obj is satisfiable in the program
P = (D(ΣS,Obj),δS,Obj). Obviously, if P is executed in models, where the concept names A[x]
with x ∈ Var are initially interpreted as empty sets, then whenever s À− AllGrounded is true
the concept names A[x] are interpreted as singleton sets that contain objects from Obj.

Lemma 4.23. Let P = (D(ΣS,Obj),δS,Obj) be as defined above and 〈I,σ,ρ〉 a state in the
transition system IP = (QP , IP , ,→P ,λP) of P that satisfies the following conditions

• there exists an initial state 〈I0, 〈〉,δS,Obj〉 ∈ IP with 〈I0, 〈〉,δS,Obj〉 ,→P
∗ 〈I,σ,ρ〉;

• I |= s À− AllGrounded.

It holds that for all x ∈ Var there exists an object name o ∈ Obj such that (A[x])I = {oI}.

Proof. Let 〈I,σ,ρ〉 be a state in the transition system IP satisfying the conditions described
above. The definition of δS,Obj ensures that there are no reachable final states. There are
also no failure states because all actions in AS,Obj are always possible. Let

D(ΣS,Obj) = (F , KS,Obj, AS,Obj, E ,�poss)

be the FO-DS induced by ΣS,Obj. Since 〈I,σ,ρ〉 is reachable from an initial state there is a
model I0 |= KS,Obj such that

I0⇒σD I.

Since the ABox assertion s À− AllGrounded is true in I, the state 〈I,σ,ρ〉 was reached by
executing finished(s). It follows that σ is of the form

σ = σ′ clear(o1, . . . , om) groundx1
(o j1) · · ·groundxn

(o jn) finished(s)

for some action sequence σ′ ∈ A∗S,Obj and objects o j1 , . . . , o jn ∈ Obj. Now, I0 ⇒σD I implies
that there exists an interpretation I′ satisfying the following conditions:

• (A[x])I
′
= ; for all x ∈ Var;

• I0⇒
σ′clear(o1,...,om)
D I′ and

• I′⇒
groundx1

(o j1)
D I′1⇒

groundx2
(o j2)

D · · · ⇒
groundxn (o jn)
D I′n⇒

finished(s)
D I.

It follows that

(A[x i])
I = {oI

ji
} for all i = 1, . . . , n.

We are now ready to prove that consistency of S w.r.t. Obj implies satisfiability of ΦS,Obj in
P.

Lemma 4.24. If S is consistent w.r.t. Obj, then ΦS,Obj is satisfiable in P = (D(ΣS,Obj),δS,Obj).

4.4 Hardness of the Verification Problem 107

Proof. Assume that S is consistent w.r.t. Obj. Let

D(ΣS,Obj) = (F , KS,Obj, AS,Obj, E ,�poss)

be the FO-DS induced by ΣS,Obj. The newly introduced concept names A[x1], . . . , A[xn] and
AllGrounded do not occur in S. Therefore, there exists an interpretation I with

I |= ground(S,Obj) and I |= KS,Obj.

Consequently, 〈I, 〈〉,δS,Obj〉 is an initial state in IP . We have to show that

IP , 〈I, 〈〉,δS,Obj〉 |= AG
�

s À− AllGrounded→
�
∧

CvD∈S

bC v bD
��

.

Let π ∈ paths(IP , 〈I, 〈〉,δS,Obj〉) and j ≥ 0 a natural number such that

IP ,π[j] |= s À− AllGrounded.

Let π[j] = 〈J ,σ,ρ〉. It follows that I ⇒σD J . Since all the concept and role names occurring
in S are not affected by the actions in AS,Obj, we have that I |= ground(S,Obj) implies also
J |= ground(S,Obj). Furthermore, due to Lemma 4.23 it follows that there are object names
o j1 , . . . , o jn ∈ Obj such that

(A[x i])
J = {oJ

ji
} for all i = 1, . . . , n.

There exists a variable mapping νσ such that νσ(x i) = o ji for all i = 1, . . . , n. With J |=
ground(S,Obj) it follows that

J |=
∧

CvD∈S
Cνσ v Dνσ .

Due to (A[x i])J = {νσ(x i)}J for all i = 1, . . . , n it follows that

J |=
∧

CvD∈S

bC v bD.

Consequently, we have

IP ,π[j] |= s À− AllGrounded→
�
∧

CvD∈S

bC v bD
�

.

Note that π ∈ paths(IP , 〈I, 〈〉,δS,Obj〉) and j ≥ 0 are arbitrarily chosen. The claim follows
directly.

The proof of the other direction is also straightforward.

Lemma 4.25. If ΦS,Obj is satisfiable in P = (D(ΣS,Obj),δS,Obj), then S is consistent w.r.t. Obj.

Proof. Let
D(ΣS,Obj) = (F , KS,Obj, AS,Obj, E ,�poss)

108 Chapter 4 Verifying Pick-Free Programs over Local-Effect Actions

be the FO-DS induced by ΣS,Obj. Assume there is an initial state 〈I, 〈〉,δS,Obj〉 in IP such that
IP , 〈I, 〈〉,δS,Obj〉 |= ΦS,Obj. We show that for an arbitrary variable mapping νwith ν(x i) ∈ Obj
for all i = 1, . . . , n it holds that

I |=
∧

CvD∈S
Cν v Dν.

This implies I |= ground(S,Obj). For an arbitrary but fixed ν with ν(x i) ∈ Obj for all
i = 1, . . . , n we consider the following action sequence

σν = clear(o1, . . . , om);groundx1
(ν(x1)); · · · ;groundxn

(ν(xn));finished(s)

Obviously, σν is executable in I and is admitted in δS,Obj. There exists an interpretation J ν

with I ⇒σ
ν

D J ν and subprogram ρ ∈ sub(δS,Obj) such that 〈J ν,σν,ρ〉 is a state in IP and is
reachable from 〈I, 〈〉,δS,Obj〉. Initially, we have

I |= {A[x]v {o1} t · · · t {om} | x ∈ Var}.

It follows that after executing σ in I the resulting interpretation J ν satisfies:

(A[x i])
J ν

= {ν(x i)
J ν

} for all i = 1, . . . , n and J ν |= s À− AllGrounded.

The assumption IP , 〈I, 〈〉,δS,Obj〉 |= ΦS,Obj implies that

J ν |=
∧

CvD∈S

bC v bD.

With (A[x i])J
ν
= {ν(x i)J

ν
} for all i = 1, . . . , n it follows that

J ν |=
∧

CvD∈S
Cν v Dν.

For all concept, role and object names X mentioned in S it holds that X J ν
= X I , because

the execution of σν in I changes only the interpretation of the names A[x1], . . . , A[xn] and
AllGrounded that are not occurring in S. It follows that

I |=
∧

CvD∈S
Cν v Dν.

Since the grounding ν with ν(x i) ∈ Obj for all i = 1, . . . , n was arbitrarily chosen, we obtain
I |= ground(S,Obj).

The reduction of reasoning with nominal schemas to the satisfiability problem leads to the
matching lower bounds for the verification problem.

Theorem 4.26. Verifying L-CTL∗ properties of an L-ConGolog program over local effect actions
that are specified in an local effect L-action theory is

1. 2EXPTIME-complete if L ∈ {ALCO, ALCIO, ALCQO}, and

2. CO-N2EXPTIME-complete if L= ALCQIO.

4.5 Summary 109

Proof. Checking whether an L-CTL∗ state formula Φ is satisfiable in an L-ConGolog program
over local effect actions of the form P = (D(Σ),δ), where Σ is a local effect L-action theory
is 2EXPTIME-hard if L ∈ {ALCO, ALCIO, ALCQO}, and N2EXPTIME-hard if L = ALCQIO.
This is a consequence of Lemma 4.24 and 4.25 and Theorem 4.22. It holds that Φ is valid
in P iff ¬Φ is not satisfiable. Therefore, the validity problem has the same complexity as
the complement problem of the satisfiability problem. Thus, validity is 2EXPTIME-hard if
L ∈ {ALCO, ALCIO, ALCQO}, and CO-N2EXPTIME-hard if L = ALCQIO. Together with
Lemma 4.19 we obtain completeness for the respective complexity classes.

The hardness result already holds for L-CTL properties, and in case of unconditional
actions, where executability and action effects do not depend on the context.

4.5 Summary

In this chapter, we have obtained a fragment of ConGolog programs and temporal properties
for which the verification problem is decidable. In this fragment, we have restricted the base
logic to a DL L ranging from ALCO to ALCQIO, primitive actions are restricted to local
effect actions, the pick-operator is dropped and as the verification logic we have used CTL∗

over L-axioms. Decidability was shown by introducing an abstraction technique that allows
us to reduce the verification problem to a decidable model checking problem. Moreover,
we have obtained tight complexity results in case local effect L-action theories are used for
representing the underlying first-order dynamical system. The complexity upper bounds we
have obtained are the same as for the verification problems studied in [BLM10] and [Lip14].
However, in [BLM10] and [Lip14] no matching lower bounds are given.

Chapter 5

Limits of Decidable Verification with Non-Local
Effect Actions

The goal in this chapter is to further push the decidability border for the verification problem
towards programs over actions with non-local effects. The focus is on DL-ConGolog programs
(see Definition 3.16), i.e. pick-free programs over a finite set of DL-definable ground actions,
and DL-CTL∗ specifications.

We have seen in the previous chapter that restricting action effects to local effects leads
to a decidable fragment of DL-ConGolog. Allowing only actions with local effects is a quite
strong restriction and leads to a domain where only a fixed finite set of named objects is
affected by action executions. In some domains it is more natural to also take non-local
effects of actions into account, especially under the open-world assumption. We call an effect
non-local if the changes affect also unnamed objects. For instance in a transportation domain
the action of moving a box from one location to another location affects not only the box
itself but also the (unboundedly many, unmentioned) items that are currently contained
in the box. In a DL-action theory it is possible to define actions with non-local effects (see
Example 2.32). However, if we use such actions inside a loop of a program the verification
problem easily becomes undecidable (Section 5.1). Thus, we observe that the restriction
to pick-free programs over a finite set of DL-definable ground actions does not guarantee
decidability. To investigate the sources of undecidability in more detail we first generalize our
notion of dynamic types from local effect actions to ground actions defined in an arbitrary
DL-admissible representation of a dynamical system (Section 5.2). In presence of non-local
effects there are in general infinitely many dynamic types. In Section 5.3 we define two
incomparable syntactic restrictions on the effect representation of actions that allow us to
partition the state space into sets of interpretations of only finitely many dynamic types. In
these restricted representations actions still might have non-local effects but we can show that
verifying DL-ConGolog programs based on these restricted DL-admissible representations is
decidable via a reduction to propositional model checking. In Section 5.4, we summarize
the results and briefly review related work.

5.1 Undecidability due to Non-Local Effects

In this section, we consider the verification problem with an input that consists of the
following components:

• an L-action theory Σ= (K, A,eff,pre), where A is a finite set of ground action terms;

111

112 Chapter 5 Limits of Decidable Verification with Non-Local Effect Actions

homeI r1 r2 r3
LeftI LeftI LeftI

∈
(CurrentRoom)I

∈
(Room)I

∈
(Room)I ,

(∃Right.CurrentRoom)I

∈
(Room)I

Figure 5.1: Example model with rooms

• a pick-free program expression δ, where all actions terms in δ are contained in A and
all tests in δ consists of ground Boolean L-KBs;

• an L-CTL∗ state formula Φ.

We assume L ⊆ DL. Note that the programs P = (D(Σ),δ) described above are L-ConGolog
programs (according to Definition 3.16). The only difference compared to the setting in the
previous chapter is that now the actions in the set A are allowed to have non-local effects. The
add-sets and delete-sets of actions may contain also an unbounded number of objects. Even
though in this restricted setting the domain only consists of finitely many ground actions,
DL-ConGolog programs are still Turing complete. The verification problem is undecidable.
Before we present the proof, we consider an example to illustrate the expressive power of
programs over actions with non-local effects.

Example 5.1. We model a domain of a mobile robot moving along a corridor of rooms.
Initially only the starting point is named in the knowledge base. The robot can move in one
step to the room that is left or right adjacent to the room the robot is currently located in.
Furthermore, the robot can change its direction. Some static global properties of the relevant
fluents are described using a TBox with the following axioms:

Left≡ inv(Right) (5.1)

Roomv≤1 Right.Roomu≤1 Left.Room (5.2)

CurrentRoomv Room (5.3)

>v≤1 U .CurrentRoomu≤1 U .Dir (5.4)

Dirv {left} t {right} (5.5)

{home} v Roomu ∃Left.Room (5.6)

Roomu ∃Left.{home} v ⊥ (5.7)

Right and Left are role names representing the adjacency relation among rooms. According
to (5.2) there is at most one room to the right of each room and at most one to the left. The
concept name CurrentRoom is supposed to describe the room the robot is currently located
in and Dir captures the direction the robot is currently facing to. The CI (5.4) ensures that
both names are interpreted as singleton sets. Note that U is the universal role. The robot is
either facing to the left or to the right according to (5.5). There is a room named home that
is located to the left of some room (5.6). The inclusion (5.7) says that there is no room to the
left of home. In other words, home is the leftmost room on the corridor. Initially, the robot is
at home and is facing to the right. The ABox of the initial KB consists of the following ABox

5.1 Undecidability due to Non-Local Effects 113

literals:

(home À− CurrentRoom), (right À− Dir).

There are two ground actions denoted by move-fwd and turn. Consider an interpretation
I = (∆I , ·I) that is a model of the initial KB and satisfies

CurrentRoomI = {homeI},
DirI = {rightI} and

(r1,homeI) ∈ RightI for some r1 ∈ RoomI .

The domain element r1 represents the room that is located to the right of home in I and
home is to the left of r1. Figure 5.1 shows a sketch of I. Since I satisfies the CI (5.2), we
have

(Roomu ∃Right.CurrentRoom)I = {r1}.

The robot is currently in home and is facing into the direction of the room r1. The execution
of move-fwd in I should result in an interpretation J , where

CurrentRoomJ = {r1}

is true. The effects of move-fwd are therefore defined as follows:

eff(move-fwd) := { 〈CurrentRoom, CurrentRoom〉−,

(right À− Dir)Â 〈CurrentRoom, Roomu ∃Right.CurrentRoom〉+,

(left À− Dir)Â 〈CurrentRoom, Roomu ∃Left.CurrentRoom〉+}.

Moving forward to the next room is only possible if there actually is a room next to the
current one. We have pre(move-fwd) := {ψfwd}, where ψfwd is a Boolean KB given by

ψfwd := (right À− Dir)→ (CurrentRoomv ∃Left.Room) ∧
(left À− Dir)→ (CurrentRoomv ∃Right.Room).

We assume that making turns is always possible: pre(turn) := ;. The effects are given as
follows

eff(turn) := { (right À− Dir)Â 〈Dir, {left}〉+, (right À− Dir)Â 〈Dir, {right}〉−,

(left À− Dir)Â 〈Dir, {right}〉+, (left À− Dir)Â 〈Dir, {left}〉−}.

We can now write a control program for a robot that moves back and forth and visits all
rooms along the corridor:

while TRUE do (¬ψfwd?;turn)∗;ψfwd?;move-fwd end.

Î

The idea we have used to implement the moves of the robot in the example above can be
reused to simulate a two-counter machine. In the TBox a (static) chain of unbounded length

114 Chapter 5 Limits of Decidable Verification with Non-Local Effect Actions

with a fixed origin is axiomatized. The origin represents the zero value. For each counter a
concept name is introduced, and pushing these concept names back and forth in the chain
corresponds to a decrement and increment operation, respectively. Undecidability is shown
by reducing the halting problem of two-counter machines to the verification problem.

Theorem 5.2. Verifying ALCQIO-CTL∗ properties of ALCQIO-ConGolog programs based on
ALCQIO-action theories is undecidable.

Proof. For the reduction we use the same machine model as in Definition 3.3. We formulate
a program simulating a two-counter machine with two counters c0 and c1. The program of
the counter machine consists a list of instructions given by M= J0; · · · ;Jm as described in
Def. 3.3.

The following concept, role and object names are introduced:

• two concept names C0 and C1, one for each counter;

• concept names Halt and J0, . . . , Jm (one name for each instruction);

• a role name Succ and object names 0 and p.

• We use the name Pred to abbreviate the role inv(Succ), i.e. the inverse of Succ.

To represent the values of the counters in an interpretation we define an infinite chain of
objects starting in 0 using the role name Succ. We ensure that in each interpretation I,
d ∈ CI

`
with `= 0, 1 is true for exactly one domain element d in this chain. The distance of

this element d from 0 in the Succ-chain represents the value of the counter c`.
M is in a halting configuration if p À− Halt is true and Ji is the currently executed instruction

iff the corresponding literal p À− Ji is true.
An ALCQIO-action theory ΣM is defined. The initial KB is denoted by KM = (TM, AM). The

ABox for describing the initial situation is given as follows:

AM = {p À− (¬Haltu J0 u¬J1 u · · · u ¬Jm)} (5.8)

The machine is not in its halting state and J0 is the first instruction to be executed. In the
TBox an infinite Succ-chain is defined:

TM = { > v ≤1 Succ.¬{0} u≥1 Succ.¬{0},
¬{0} v ≤1 Pred.>u≥1 Pred.>}.

Thus, each element has exactly one successor (via the role Succ) that is not equal to 0 and
each element except for 0 has exactly one predecessor (with role Pred referring to the inverse
of Succ). The concepts in the sequence

{0},∃Pred.{0},∃Pred.(∃Pred.{0}), . . . , (5.9)

where Pred := inv(Succ), are interpreted as pairwise disjoint singleton sets in all models of
TM. The sequence of their extensions under a model of TM represents the natural numbers
0, 1, 2, This structure is enforced by TM and will remain unchanged. The extension of the
role Succ won’t be affected by any action.

5.1 Undecidability due to Non-Local Effects 115

There is one action term for each instruction Ji of M and two actions for initializing the
two counters. The finite set of relevant ground action terms is given by

ActM := {inst0(0, p), . . . ,instm(0, p),init1,init2(0)}.

The two initialization actions have the following preconditions and effects:

pre(init1) := ;, eff(init1) := {〈C0,>〉−, 〈C1,>〉−},
pre(init2(0)) := ;, eff(init2(0)) := {〈C0, {0}〉+, 〈C1, {0}〉+}.

We make sure that the extensions of C0 and C1 are singleton sets containing 0.

The kth instruction is possible iff the literal p À− Jk is true. For all k ∈ {1, . . . , m} we have

pre(instk(0, p)) := {p À− Jk}.

If the kth instruction Jk of M is an increment instruction of the form Inc(`, i) with k, i ∈
{0, . . . , m} and ` ∈ {0,1}, then the effects of instk(0, p) are defined as follows:

eff(instk(0, p)) := {〈C`,∃Pred.C`〉
+, 〈C`, C`〉

−,

〈Jk, {p}〉−, 〈Ji , {p}〉
+}.

(5.10)

The concept ∃Pred.C` refers to the element in the Succ-chain whose predecessor in this chain
is the current instance of C`. This instance of ∃Pred.C` is added to C` and the old instance of
C` is deleted. Intuitively, C` is shifted to the right in the Succ-chain. With the last two (local)
effects the program counter is set to the subsequent ith instruction.

If the kth instruction is a decrement of the form Dec(`, i, j) with i, j ∈ {0, . . . , m} and
`= {0, 1}, then the conditional effects are defined as follows:

eff(instk(0, p)) := {(0 À− ¬C`)Â 〈C`,∃Succ.C`〉
+,

(0 À− ¬C`)Â 〈C`, C`〉
−,

〈Jk, {p}〉−,

(0 À− C`)Â 〈Ji , {p}〉
+,

(0 À− ¬C`)Â

J j , {p}
�+}.

(5.11)

The condition (0 À− ¬C`) indicates that the value of the counter c` is greater than zero. The
decrement is realized by moving C` to the left in the Succ-chain. The new instance of C` is
exactly the element whose successor is in C` and the old instance of C` is deleted from C`.
In case the value of the `th counter is zero the program counter is set to the ith instruction
and nothing else is changed. Otherwise, the program counter is set to the jth instruction.

The effects of instk(0, p) in case Jk is the halting instruction are given by

eff(instk(0, p)) := {〈Halt, {p}〉+}. (5.12)

The ALCQIO-ConGolog program PM = (D(ΣM),δM) consists of the FO-DS D(ΣM) induced
by ΣM and the following program expression with one while-loop and cascading if-then-else

116 Chapter 5 Limits of Decidable Verification with Non-Local Effect Actions

statements:

δM := init1;init2(0);

while (p À− ¬Halt) do

((p À− J0)?;inst0(0, p);) | · · · | ((p À− Jm)?;instm(0, p))

end.

(5.13)

Validity of the following state formula in PM says that M eventually halts on all execution
paths:

ΦM := AF(p À− Halt).

It has to be shown that ΦM is valid in PM iff M halts. We only give an outline of the proof:
First of all, we observe that each state in the transition system of PM has exactly one unique

successor state. The program is deterministic. Next, we define a function that maps each
reachable state (after initialization) in the transition system of PM to a configuration of M.
To abbreviate the concepts in the sequence (5.9) we use the following notation:

∃Pred0.{0} := {0}

∃Predn.{0} := ∃Pred.(∃Predn−1.{0}) for all n≥ 1.

(5.14)

Let
IM = (QM, IM, ,→M,λM)

be the transition system induced by PM. With QM we denote the set of all states 〈J ,σ,ρ〉 ∈QM
satisfying the following properties:

• σ = init1init2(0)σ′ for some sequence σ′ ∈ ActM∗, and

• 〈I, 〈〉,δM〉 ,→M
∗ 〈J ,σ,ρ〉 for some initial state 〈I, 〈〉,δM〉 ∈ IM.

There exists a function conf that maps those states to configurations of M with the following
property: For all states 〈J ,σ,ρ〉 ∈QM it holds that

conf(〈J ,σ,ρ〉) = (i, n0, n1) iff J |= (p À− Ji) ∧
(C0)

J = (∃Predn0 .{0})J ∧
(C1)

J = (∃Predn1 .{0})J .

By induction on the length of σ it can be shown that such a unique function conf exists. Next,
we can show that for all states 〈J ,σ,ρ〉 ∈QM with conf(〈J ,σ,ρ〉) = (i, n0, n1) the following
holds:

• If Ji 6= Halt, then there exists exactly one successor state 〈J ′,σ′,ρ′〉 ∈QM with

〈J ,σ,ρ〉 ,→M 〈J ′,σ′,ρ′〉,

and conf(〈J ,σ,ρ〉) `M conf(〈J ′,σ′,ρ′〉).

• Otherwise, if Ji = Halt, then either J |= p À− Halt or there exists exactly one successor
state 〈J ′,σ′,ρ′〉 with J ′ |= p À− Halt.

5.1 Undecidability due to Non-Local Effects 117

One also has to show that each execution of M leads to a corresponding path in the transition
system of PM. For each execution of M

(i0, n0
0, n0

1) `M (i1, n1
0, n1

1) `M · · · `M (ik, nk
0, nk

1)

with (i0, n0
0, n0

1) = (0,0,0). and all initial states 〈I, 〈〉,δM〉 ∈ IM there exists an initial path
fragment

〈I0,σ0,δ0〉 ,→M 〈I1,σ1,δ1〉 ,→M · · · ,→M 〈Ik+2,σk+2,δk+2〉

such that 〈I0,σ0,δ0〉= 〈I, 〈〉,δM〉, σ1 = init1 and σ2 = init1init2(0) and

conf(〈Iz+2,σz+2,δz+2〉) = (iz , nz
0, nz

1) for all z = 0, . . . , k.

Thus, for each execution of M there is matching execution of PM and vice versa. It follows
that ΦM is valid in PM iff M halts.

It is possible to strengthen the undecidability result by further restricting the expressive
power of the base logic to the DL ELI⊥ that does not offer number restrictions, nominals,
negation and disjunction. ELI⊥-concepts C and ELI⊥-roles R are built according to the
following syntax rules:

C ::=> | ⊥ | A | C u C | ∃R.C ,

R ::= P | inv(P),

where A ∈ NC and P ∈ NR. ELI⊥ is rather inexpressive compared to ALCQIO, but a
simulation of a two counter machine with an ELI⊥-ConGolog program is still possible.

Corollary 5.3. Undecidability already holds for programs based on an ELI⊥-action theory.

Proof (sketch). We modify the program PM = (D(ΣM),δM) and the property ΦM used in the
previous reduction. We reuse the concept names: C0 and C1 for the two counters, Halt for
the halting state, J0, . . . , Jm for the different instructions and the roles Succ and

Pred := inv(Succ)

to represent the chain. Now, we do not axiomatize the chain in the TBox as before but
create it “on-the-fly” using actions. For this purpose the concept name V captures the already
created finite portion of the chain and the concept name Max captures the current rightmost
elements in the chain. The extension of V will be expanded stepwise and we will ensure
that the successors of elements in Max are not in V . Instead of the object names 0 and p we
now use two rigid concept names Zero and State. The CI Zerov C` is supposed to indicate
that the value of the `th counter is equal to zero, Statev Ji says that the ith instruction is
executed next, and Statev Halt indicates the halting state. We require that Zero and State
are interpreted as non-empty sets. We use an object name o and the following initial ABox:

AM := {o À− Zerou State}.

The TBox TM is empty. To initialize the machine there are two actions init1 and init2 with

118 Chapter 5 Limits of Decidable Verification with Non-Local Effect Actions

the following preconditions and effects:

pre(init1) := ;,
eff(init1) := {〈C0,>〉−, 〈C1,>〉−, 〈V,>〉−, 〈Max,>〉−, 〈Halt,>〉−, 〈J0,>〉−, . . . , 〈Jm,>〉−};

The extension of all concept names are emptied except for Zero and State. Next, we initialize
the two counters and the label for the first instruction.

pre(init2) := ;
eff(init2) := {〈C0, Zero〉+, 〈C1, Zero〉+, 〈V, Zero〉+, 〈Max, Zero〉+, 〈J0, State〉+}.

Let n be the maximum value one of the two counters has reached so far during the execution
of M. The representation of the counter values is done by partitioning the extension of V
into n different pairwise disjoint sets given by the extensions of the following concepts:

Zero,∃Pred.Zero,∃Pred.(∃Pred.Zero), . . . ,∃Predn.Zero

We call this sets layers in the following. We enforce this structure in all interpretations that
are reachable from an initial state. This is done by using appropriate preconditions of actions.
The concept name Max always stores the maximum layer. Initially, after doing init2 the
extension of V only consists of the extension of Zero, which at the same time also represents
the maximum layer.

Next, we define the preconditions and effects of the ground actions inst0, . . . ,instm. In
case the kth instruction is an increment of the `th counter of the form Inc(`, i) we have

pre(instk) := {Statev Jk,

Max v ∃Succ.>,

∃Pred.Max u V v⊥}

eff(instk) := { 〈C`,∃Pred.C`〉
+, 〈C`, C`〉

−,

C` vMax Â 〈Max,∃Pred.C`〉
+,

C` vMax Â 〈Max, Max〉−,

C` vMax Â 〈V,∃Pred.C`〉
+,

〈Jk, State〉−,

〈Ji , State〉+},

The two preconditions Max v ∃Succ.> and ∃Pred.Max u V v ⊥ are needed in case the
increment exceeds the previous upper bound of both counters. Max v ∃Succ.> ensures that
a new non-empty layer (consisting of the successors of the elements in Max) exists. The new
layer ∃Pred.Max has to be disjoint with all previous ones (∃Pred.Maxu V v⊥). The effects
〈C`,∃Pred.C`〉

+ and 〈C`, C`〉
− shift C` to the next layer. In all legal states it is ensured that

the extensions of C` and ∃Pred.C` represent two consecutive disjoint layers in the extension
of V . The three conditional effects are triggered in case the previous upper bound needs to
be incremented. The effects shift the maximum layer and expand the extension of V with the

5.2 General Dynamic Types and Regression 119

new layer. The effect descriptions on Ji and Jk implement the jump to the next instruction.
In case the kth instruction is a decrement of the form Dec(`, i, j) we have

pre(instk) := {Statev Jk}
eff(instk) := {C` u Zerov⊥Â 〈C`, V u ∃Succ.C`〉

+,

C` u Zerov⊥Â 〈C`, C`〉
−,

C` u Zerov⊥Â

J j , State
�+

,

〈Jk, State〉−,

Zerov C` Â 〈Ji , State〉+}.

The extensions of V and Max remain unchanged. The only precondition ensures that we
are in the correct state. The CI Zero v C` represents the zero test. Since the concepts C`
and Zero always consist of exactly one whole layer in V , the extensions of both concepts are
either identical or disjoint. Thus, the disjointness axiom C` u Zerov⊥ expresses a proper
non-zero test. The shift of C` to do the decrement is implemented as expected. The concept
V u∃Succ.C` represents the layer in V , where all elements have successors in C`. V is needed
as a conjunct, because there can be pair (d, d ′) ∈ SuccI with d /∈ V I and d ∈ (C`)I .

In case the kth instruction is the halting instruction we have

pre(instk) := {Statev Jk},
eff(instk) := {〈Halt, State〉+}.

The program expression is given by

δM := init1;init2; (inst0 | inst1 | · · · | instm)
∗; (Statev Halt)?

We claim that M reaches a halting configuration iff the ELI⊥-CTL∗ state formula

ΦM := AX(AX(AG(StateuHaltv⊥)))

is not valid in PM. The two next-operators are needed to skip the states before initialization.
We omit a detailed proof.

5.2 General Dynamic Types and Regression

In this section, an abstraction technique for (unrestricted) DL-ConGolog programs is intro-
duced. Due to the undecidability of the verification problem the technique does not lead to a
decision procedure. In the general case the abstraction we introduce is a possibly infinite
context-bisimilar propositional transition system. Two examples of decidable classes where
the abstraction technique actually leads to a finite state system are introduced later in the
subsequent sections. Here, we only introduce the basic constructions for the general case.

The abstraction technique for programs over local effect actions is based on the notion of a
dynamic type of an interpretation. The execution of actions and programs in interpretations
of the same dynamic type leads to an indistinguishable behavior w.r.t. the set of all relevant
axioms (context). This is achieved by encoding not only the static type of an interpretation

120 Chapter 5 Limits of Decidable Verification with Non-Local Effect Actions

but also the static types of all possible updates in the dynamic type. In the local effect case
we can describe the changes caused by an arbitrary action sequence as a finite set of effect
descriptions taken from a finite set of relevant effects. This leads to finitely many possible
changes and to finitely many dynamic types which in turn allows the construction of a finite
bisimilar abstraction of the transition system of the program.

In this section we generalize the notion of dynamic types to a domain with arbitrary
DL-definable actions. We basically use the same idea as for the local effect case. However,
now we have to deal with effects of the form 〈F, X 〉±, where X is a complex concept or role
and possibly mentions other concept and role names. In this general setting, it is no longer
sufficient to only consider finitely many of such effects. Therefore, the generalized definition
leads to a possibly infinite set of dynamic types.

5.2.1 Dynamic Types in Presence of Non-Local Effects

In the sequel, we first collect a couple of preliminary notions needed for the definition of
dynamic types.

First, we represent the effects of DL-definable actions as a set of effect descriptions.

Definition 5.4. Let A be a finite set of ground actions and ΣA = (K, F , C,E+,E−,PreC) a
DL-admissible representation of A. For an action α ∈ A and static type s ∈SC the effects of
executing α in s are defined as follows:

ΣA(s,α) :=
¦

F,E+[s,α, F]
�+
�

�

� F ∈ F
©

∪
¦

F,E−[s,α, F]
�−
�

�

� F ∈ F
©

.

Since the concepts or roles E+[s,α, F] and E−[s,α, F] are computable for any given tuple
(s,α, F) ∈SC × A×F , the sets ΣA(s,α) are also computable. Î

Executing an action α ∈ A in an interpretation I means updating I with ΣA(s-typeC(I),α).

Lemma 5.5. Let A be a finite set of ground actions,ΣA = (K, F , C,E+,E−,PreC) a DL-admissible
representation of A and D(ΣA) = (I, M(K)F , A, E ,�poss) the induced FO-DS. For all I ∈ I and
all α ∈ A it holds that I ⇒α

D(ΣA)
IE with E= ΣA(s-typeC(I),α).

Next, we show that also the changes caused by a sequence of ground actions can be
defined as a set of DL-effects. The representation ΣA provides definitions of the add-sets
and delete-sets for each individual ground action in form of DL-concepts or DL-roles. The
problem is how to obtain the corresponding definitions for sequences of actions. Consider
the FO-DS

D(ΣA) = (I, M(K)F , A, E ,�poss)

induced byΣA, a fluent F ∈ F , an action sequenceσ = α0α1 · · ·αn ∈ A∗ and an interpretation
I0 ∈M(K). The execution of σ in I0 generates a sequence of interpretations:

I0⇒
α0
D(ΣA)

I1⇒
α1
D(ΣA)
· · · ⇒αn

D(ΣA)
In+1.

Clearly, there are sets X+σ ⊆∆
ar(F)
I0

and X−σ ⊆∆
ar(F)
I0

such that

FIn+1 = (FI0 \ X−σ)∪ X+σ ,

5.2 General Dynamic Types and Regression 121

where X+σ is the set the execution of σ in I0 adds to FI0 and X−σ the set that is deleted.
By assumption on ΣA we can compute for each i ∈ {0, . . . , n} two concepts (or roles) that
provide a definition of the corresponding add-set add(Ii ,αi , F) and delete-set del(Ii ,αi , F)
in Ii. The question is how to obtain definitions of the sets X+σ and X−σ in I0 (given the
definitions of the inidividual add- an delete-sets). Note that for all i ∈ {0, . . . , n} we have

add(Ii ,αi , F) =
�

E+[s-typeC(Ii),αi , F]
�Ii and del(Ii ,αi , F) =

�

E−[s-typeC(Ii),αi , F]
�Ii .

Thus, the definitions given by E+[·] and E−[·] for the ith action in the sequence refer to the
interpretation Ii , but to define the sets X+σ and X−σ in I0 we need a definition that only refers
to the initial interpretation I0.

To obtain such definitions in form of DL-concepts and roles we use a well-known technique
called regression. In Reiter’s basic action theories it can be used for solving the projection
problem [Rei91]: given a sequence of actions σ and a formula ϕ the regression of ϕ through
σ is a formula that is true before doing σ iff ϕ is true after doing σ. We define a single-
step regression operator for concepts, roles and Boolean KBs through a given set of effect
descriptions.

Definition 5.6. Let E be a set of unconditional effect descriptions. For a ground DL-concept
C and DL-role R the regression of C and R, respectively, through E, denoted by R[C ,E] and
R[R,E], respectively, is a DL-concept and DL-role, respectively, that is defined inductively as
given in Figure 5.2. The regression operator is also defined for a Boolean DL-KB. Î

The operator materializes all effects on the syntax level. The next lemma states that the
regression result correctly captures the extension of the concept or role after an update with
the corresponding set of effects.

Lemma 5.7. Let I be an interpretation over NC,NR and NO, E a set of effects, C a DL-concept,
R a DL-role and ψ a Boolean DL-KB. It holds that

1. (R[C ,E])I = CIE
;

2. (R[R,E])I = RIE
;

3. I |=R[ψ,E] iff IE |=ψ.

Proof. We prove the first claim for concept names. Let A∈ NC. We have

(R[A,E])I =
�

�

Au
l

〈A,C〉−∈E

¬C
�

t
⊔

〈A,C〉+∈E

C
�I

=
�

AI ∩
⋂

〈A,C〉−∈E

(∆I \ CI)
�

∪
⋃

〈A,C〉+∈E

CI

=
�

AI \
�

⋃

〈A,C〉−∈E

CI
��

∪
⋃

〈A,C〉+∈E

CI

= AIE
.

The proof for role names is analogous. For complex concepts, complex roles and Boolean
KBs the proof is by structural induction.

122 Chapter 5 Limits of Decidable Verification with Non-Local Effect Actions

R[A,E] :=
�

Au
l

〈A,C〉−∈E

¬C
�

t
⊔

〈A,C〉+∈E

C , with A∈ NC;

R[>,E] :=>
R[⊥,E] :=⊥
R[{o},E] := {o};
R[¬C ,E] := ¬R[C ,E];
R[C u D,E] :=R[C ,E]uR[D,E];
R[Ξ R.C ,E] := ΞR[R,E].R[C ,E] with Ξ ∈ {∃,∀,≥ n};

For a role R, the regression R[R,E] is defined as follows:

R[P,E] :=
�

P \
�

⊔

〈P,R〉−∈E

R
��

t
⊔

〈P,R〉+∈E

R, with P ∈ NR;

R[inv(R),E] := inv(R[R,E])
R[id,E] := id;

R[{(o, o′)},E] := {(o, o′)};
R[¬R,E] := ¬R[R,E];
R[Ru S,E] :=R[R,E]uR[S,E];
R[C × D,E] :=R[C ,E]×R[D,E];

For a Boolean KB ψ we have:

R[C v D,E] :=R[C ,E]vR[D,E];
R[¬ψ,E] := ¬R[ψ,E]
R[ψ1 ∧ψ2,E] :=R[ψ1,E]∧R[ψ2,E].

Figure 5.2: Regression in DL w.r.t. a set of effects

5.2 General Dynamic Types and Regression 123

Using the regression operator sets of effect descriptions can be accumulated.

Definition 5.8. Let E0 and E1 be two sets of unconditional DL-effects. We define the
accumulation of E0 and E1 as the union of three sets. With Regr(E1,E0) we denote the set of
effects obtained by regressing the effect descriptors of all effects in E1 through E0:

Regr(E1,E0) := {〈F,R[Y,E0]〉
± | 〈F, Y 〉± ∈ E1}.

The next set of effects, denoted by Diff+(E0,E1), is obtained by subtracting the effect descrip-
tors of negative effects in E1 from the positive ones in E0:

Diff+(E0,E1) :=

¨®

F,
�

X u
d

〈F,Y 〉−∈E1

¬R[Y,E0]
�

¸+ �
�

�

�

�

〈F, X 〉+ ∈ E0

«

The accumulation of E0 and E1, denoted by E0 \ E1, is a set of effects defined as the union:

E0 \ E1 := Regr(E1,E0)∪Diff+(E0,E1)∪ {〈F, X 〉− ∈ E0}.

Î

What we want to achieve is that first updating an interpretation I with E0 and than
afterwards with E1 gives the same result as a single update of I with the combined set of
effects denoted by E0 \ E1. Therefore, we need to regress the effect descriptors of the effects
in E1 through E0 to take into account that the update with E0 occurs before the update
with E1. This is captured by including Regr(E1,E0). The set Diff+(E0,E1) is needed when an
addition in E0 is afterwards canceled by a deletion effect in E1. The negative effects in E0
are kept without any rewriting. It might be the case that a positive effect in E1 overwrites a
negative one in E0 but due to the add-after-delete semantics of updates it is not necessary to
make this explicit.

Lemma 5.9. Let I be an interpretation over NC,NR and NO and E0 and E1 two sets of DL-effects.
It holds that

(IE0)E1 = IE0\E1 .

Proof. The semantics of updates with sets of effects in Definition 2.28 implies that

∆(IE0)E1 =∆IE0\E1 and o(I
E0)E1

= oIE0\E1 for all o ∈ NO.

Let F ∈ NC ∪NR. We show that also

F (I
E0)E1

= FIE0\E1 holds.

We have that the interpretation (IE0)E1 is the update of IE0 with E1 and IE0 is the update of
I with E0. Using the definition of updates we obtain

F (I
E0)E1

=
�

FIE0 \
�

⋃

〈F,Y 〉−∈E1

Y IE0
��

∪
⋃

〈F,Y 〉+∈E1

Y IE0 .

124 Chapter 5 Limits of Decidable Verification with Non-Local Effect Actions

In the next steps we rewrite the expression on the right-hand side of the equation to obtain a

definition of the set F (I
E0)E1

that refers only to the interpretation I. For better readability we
introduce some abbreviations:

M+ :=
⋃

〈F,Y 〉+∈E1

Y IE0 and M− :=
⋃

〈F,Y 〉−∈E1

Y IE0

With Lemma 5.7 it follows that

M+ =
⋃

〈F,Y 〉+∈E

R[Y,E0]
I and M− =

⋃

〈F,Y 〉−∈E1

R[Y,E0]
I . (5.15)

The definition of FIE0 yields (we assume that “\” binds stronger than “∪”)

FIE0 \M− ∪M+

=
�

FI \
� ⋃

〈F,X 〉−∈E0

X I
�

∪
⋃

〈F,X 〉+∈E0

X I
�

\M− ∪M+

=
�

FI \
� ⋃

〈F,X 〉−∈E0

X I
�

�

\M− ∪
⋃

〈F,X 〉+∈E0

(X I \M−)∪M+

= FI \
�� ⋃

〈F,X 〉−∈E0

X I
�

∪M−
�

∪
⋃

〈F,X 〉+∈E0

(X I \M−)∪M+

With (5.15) it follows that

F (I
E0)E1

=
�

FI \
�

⋃

〈F,X 〉−∈E0

X I ∪
⋃

〈F,Y 〉−∈E1

R[Y,E0]
I
��

∪

⋃

〈F,X 〉+∈E0

�

X I \
�

⋃

〈F,Y 〉−∈E1

R[Y,E0]
I�
�

∪

⋃

〈F,Y 〉+∈E1

R[Y,E0]
I .

Obviously, it holds that

X I \
�

⋃

〈F,Y 〉−∈E1

R[Y,E0]
I�=

�

X u
l

〈F,Y 〉−∈E1

¬R[Y,E0]
�I

.

5.2 General Dynamic Types and Regression 125

With the equations above and the definition of E0 \ E1 we obtain

F (I
E0)E1

=
�

FI \
�

⋃

〈F,X 〉−∈E0

X I ∪
⋃

〈F,Y 〉−∈E1

R[Y,E0]
I
��

∪

⋃

〈F,X 〉+∈E0

�

X u
l

〈F,Y 〉−∈E1

¬R[Y,E0]
�I
∪

⋃

〈F,Y 〉+∈E1

R[Y,E0]
I .

= FIE0\E1 .

The lemma above is a generalization of Lemma 4.6 to arbitrary sets of effects. The
definition of E0 \ E1 possibly leads to an overlap of positive and negative effects because the
negative effects in E0 are not rewritten.

Definition 5.10. Let E be a finite set of unconditional effect descriptions. We say that E is
coherent iff for all pairs of effects of the form {〈F, X 〉+, 〈F, Y 〉−} ⊆ E for some fluent F ∈ NF it
is implied that X I ∩ Y I = ; for all interpretations I. Î

A coherence-preserving version of the accumulation operator can be easily obtained: let
E0 and E1 be two set of unconditional DL-effects. The negative counterpart of Diff+(E0,E1)
is defined by

Diff−(E0,E1) :=

¨®

F,
�

X u
d

〈F,Y 〉+∈E1

¬R[Y,E0]
�

¸− �
�

�

�

�

〈F, X 〉− ∈ E0

«

.

The coherence-preserving accumulation of E0 and E1, denoted by E0 \c E1, is defined as
follows

E0 \c E1 := Regr(E1,E0)∪Diff+(E0,E1)∪Diff−(E0,E1).

Note that interpretation updates with sets of effect descriptions are defined with an add-after-
delete semantics. In case of an overlap precedence is given to the corresponding add-effect.
Due to this semantics both accumulations lead to exactly the same update result.

Lemma 5.11. Let E0 and E1 be two sets of unconditional DL-effects. The coherence-preserving
accumulation of E0 and E1 has the following properties.

1. If E0 and E1 are coherent, then also E0 \c E1 is coherent.

2. Let I be an interpretation over NC,NR and NO. It holds that IE0\E1 = IE0\cE1 .

Proof. We have

E0 \c E1 = Regr(E1,E0)∪Diff+(E0,E1)∪Diff−(E0,E1).

126 Chapter 5 Limits of Decidable Verification with Non-Local Effect Actions

Assume E0 and E1 are coherent. We prove that E0 \c E1 is coherent. Let

{〈F, X 〉+, 〈F, Y 〉−} ⊆ E0 \c E1.

We have to show that X I ∩ Y I = ; for all interpretations I. We distinguish three cases.

(i) Assume {〈F, X 〉+, 〈F, Y 〉−} ⊆ Regr(E1,E0). Thus, there are effects 〈F, X1〉
+ ∈ E1 and

〈F, Y1〉
− ∈ E1 such that X =R[X1,E0] and Y =R[Y1,E0]. Let I be an interpretation.

It holds that

X I ∩ Y I = (R[X1,E0])
I ∩ (R[Y1,E0])

I (Lemma 5.7)
= X IE0

1 ∩ Y IE0

1
(E1 is coherent)

= ;.

(ii) Assume 〈F, X 〉+ ∈ Diff+(E0,E1) and 〈F, Y 〉− ∈ Diff−(E0,E1). Thus, there are effects
〈F, X0〉

+ ∈ E0 and 〈F, Y0〉
− ∈ E0 such that

X = X0 u
d

〈F,Z〉−∈E1

¬R[Z ,E0] and Y = Y0 u
d

〈F,W 〉+∈E1

¬R[W,E0].

Let I be an interpretation. It holds that

X I ∩ Y I =
�

X0 u
d

〈F,Z〉−∈E1

¬R[Z ,E0]
�I
∩
�

Y0 u
d

〈F,W 〉+∈E1

¬R[W,E0]
�I

.

It follows that X I ⊆ X I
0 and Y I ⊆ Y I

0 . X I
0 and Y I

0 are disjoint, because E0 is coherent.
Obviously, it follows that X I and Y I are disjoint.

(iii) Assume 〈F, X 〉+ ∈ Regr(E1,E0) and 〈F, Y 〉− ∈ Diff−(E0,E1). Thus, there are effects
〈F, X1〉

+ ∈ E1 and and 〈F, Y0〉
− ∈ E0 such that

X =R[X1,E0] and Y = Y0 u
d

〈F,W 〉+∈E1

¬R[W,E0].

Let I be an interpretation. It follows that

Y I = Y I
0 \

�

⋃

〈F,W 〉+∈E1

(R[W,E0])
I
�

.

We have

X I = (R[X1,E0])
I ⊆

�

⋃

〈F,W 〉+∈E1

(R[W,E0])
I
�

.

Consequently, X I ∩ Y I = ;.

(iv) The case with 〈F, X 〉+ ∈ Diff+(E0,E1) and 〈F, Y 〉− ∈ Regr(E1,E0) is analogous to the
previous case.

It follows that E0 \c E1 is coherent. For the proof of the second part of the lemma consider
an interpretation I over NC,NR and NO. We show that

IE0\E1 = IE0\cE1 .

5.2 General Dynamic Types and Regression 127

Both updated interpretations have the same domain and interpret object names in the same
way. Let F ∈ NC ∪NR. We have

FIE0\E1 = FI \M− ∪M+

where

M− =
�

⋃

〈F,Z〉−∈ (E0\E1)

ZI
�

=
⋃

〈F,X 〉−∈E0

X I ∪
⋃

〈F,Y 〉−∈E1

R[Y,E0]
I and

M+ =
�

⋃

〈F,Z〉+∈ (E0\E1)

ZI
�

=
⋃

〈F,X 〉+∈E0

�

X u
l

〈F,Y 〉−∈E1

¬R[Y,E0]
�I
∪

⋃

〈F,Y 〉+∈E1

R[Y,E0]
I .

With \c we have

FIE0\cE1 = FI \M−c ∪M+c

with

M−c =
�

⋃

〈F,Z〉−∈ (E0\cE1)

ZI
�

=
⋃

〈F,X 〉−∈E0

�

X u
l

〈F,Y 〉+∈E1

¬R[Y,E0]
�I
∪

⋃

〈F,Y 〉−∈E1

R[Y,E0]
I and

M+c =
�

⋃

〈F,Z〉+∈ (E0\cE1)

ZI
�

=
⋃

〈F,X 〉+∈E0

�

X u
l

〈F,Y 〉−∈E1

¬R[Y,E0]
�I
∪

⋃

〈F,Y 〉+∈E1

R[Y,E0]
I .

It follows that

M+ = M+c and M−c ⊆ M−.

Hence,

(FI \M−) ⊆ (FI \M−c) and FIE0\E1 ⊆ FIE0\cE1 .

It remains to be shown that FIE0\cE1 ⊆ FIE0\E1 also holds. Assume to the contrary that
there exists d̄ ∈ (∆I)ar(F) with d̄ ∈ FIE0\cE1 and d̄ /∈ FIE0\E1 . With M+ = M+c it follows that
d̄ ∈ (FI \M−c) and d̄ /∈ (FI \M−). Therefore, d̄ ∈ M− and d̄ /∈ M−c . It follows that

d̄ /∈
⋃

〈F,Y 〉−∈E1

(R[Y,E0])
I and d̄ ∈ X I for some 〈F, X 〉− ∈ E0.

Furthermore, d̄ /∈ M−c implies

d̄ /∈
⋃

〈F,X 〉−∈E0

�

X u
l

〈F,Y 〉+∈E1

¬R[Y,E0]
�I

.

128 Chapter 5 Limits of Decidable Verification with Non-Local Effect Actions

Since d̄ ∈ X I for some 〈F, X 〉− ∈ E0, it follows that

d̄ /∈
� l

〈F,Y 〉+∈E1

¬R[Y,E0]
�I

.

Thus, there exists an effect 〈F, Y 〉+ ∈ E1 such that d̄ ∈ (R[Y,E0])I . Consequently, d̄ ∈ M+

which yields d̄ ∈ FIE0\E1 which is a contradiction to our initial assumption. Therefore, we
have FIE0\cE1 = FIE0\E1 .

In the following we do not care about coherence and use \ instead of \c because it
simplifies the technical treatment. As above, consider the execution of a ground action
sequence σ = α0α1 · · ·αn ∈ A∗ in an interpretation I0, where ΣA = (K, F , C,E+,E−,PreC) is
a DL-admissible representation of A:

I0⇒
α0
D(ΣA)

I1⇒
α1
D(ΣA)
· · · ⇒αn

D(ΣA)
In+1.

The changes in I0 caused by the execution ofσ can be described by the following accumulated
set of DL-effects:

ΣA(s0,α0) \ ΣA(s1,α1) \ · · · \ ΣA(sn,αn)

with si = s-typeC(Ii) for all i ∈ {0, . . . , n}.

Example 5.12. Consider the action move-fwd defined in Example 5.1. The execution affects
the extension of the concept name CurrentRoom (abbreviated with CR in the following). In
case the robot is facing right (right À− Direction is true) move-fwd has the effects:

Emv = {〈CR, CR〉−, 〈CR,∃Right.CR〉+}.

The effects of two consecutive moves can be computed using regression and the accumulation
operator. The regression of CR through Emv is given by

R[CR,Emv] = (CRu¬CRt ∃Right.CR)≡ ∃Right.CR.

For two consecutive moves we obtain

Regr(Emv,Emv) =
¦

〈CR,∃Right.CR〉−,

CR,
�

∃Right.(∃Right.CR)
��+©

, and

Diff+(Emv,Emv) =
¦

CR,
�

∃Right.CRu¬∃Right.CR
��+©

.

The overall accumulation is given by

Emv \ Emv =
¦

〈CR, CR〉−, 〈CR,∃Right.CR〉−,

CR,
�

∃Right.(∃Right.CR)
��+©

.

The positive effect of two consecutive moves on CR is defined with two nested existential
restrictions. Intuitively, the concept describes exactly the room that is two steps away from
the initial current room. In case of n consecutive moves the accumulation produces a
nested existential restriction of depth n pointing to the room n steps away from the initial
position. Î

5.2 General Dynamic Types and Regression 129

For the construction of a dynamic type for ΣA we consider all possible changes caused by
action sequences over A. This means all possible accumulations of effect sets of the form
ΣA(s,α) with s ∈SC and α ∈ A are relevant. Before we define the set of all relevant effects
based on the accumulation operator a few more auxiliary definitions are needed.

We define a containment relation on sets of effects modulo equivalence.

Definition 5.13. Let E and E′ be two sets of effects. We write E â E′ iff the following
conditions are satisfied:

• for any positive effects 〈F, X 〉+ ∈ E there exists a positive effect 〈F, Y 〉+ ∈ E′ such that
X ≡ Y is valid;

• for any negative effect 〈F, X 〉− ∈ E there exists a negative effect 〈F, Y 〉− ∈ E′ such that
X ≡ Y is valid.

Furthermore, we write E≡ E′ if both directions E â E′ and E ã E′ are satisfied. Î

Next, we define closure under accumulations as a property of a set of effects.

Definition 5.14. Let A be a finite set of ground action terms, ΣA = (K, F , C,E+,E−,PreC) a
DL-admissible representation of A, and E a (possibly infinite) set of DL-effects over F .

We say that E is closed under accumulations w.r.t. ΣA iff for all finite subsets E ⊆ E and for
all (s,α) ∈SC × A it holds that (E \ ΣA(s,α)) â E. Î

Note that (; \ E) = E. Therefore, we have ΣA(s,α) â E for all (s,α) ∈ SC × A if E is
closed under accumulations w.r.t. ΣA. For a DL-admissible representation

ΣA = (K, F , C,E+,E−,PreC)

a set of effects that is closed under accumulations w.r.t. ΣA always exists. To prove this we
inductively define a sequence of sets of effects E0,E1,E2, . . . as follows:

E0 :=
⋃

(s,α) ∈ SC×A

ΣA(s,α);

Ei := Ei−1 ∪
⋃

(s,α) ∈ SC×A

�

⋃

E⊆Ei−1,
E is finite

(E \ ΣA(s,α))
�

for all i > 0.

It can be shown that the set of effects given by

∞
⋃

i=0

Ei

is closed under accumulations w.r.t. ΣA. The construction of dynamic types is based on an
arbitrary but fixed set of effects that is closed under accumulations w.r.t. the DL-admissible
representation under consideration.

Definition 5.15. Let A be a finite set of ground action terms,

ΣA = (K, F , C,E+,E−,PreC)

130 Chapter 5 Limits of Decidable Verification with Non-Local Effect Actions

a DL-admissible representation of A and E a set of effects over F that is closed under
accumulations w.r.t. ΣA. Furthermore, let D(ΣA) = (I, M(K)F , A, E ,�poss) be the FO-DS
induced by ΣA.

A dynamic type t w.r.t. ΣA and E is a set

t ⊆ C × {E | E ⊆ E,E is finite }

satisfying the following two conditions

• t is complete: for allψ ∈ C and all finite sets E ⊆ E it holds that (ψ,E) ∈ t or (¬ψ,E) ∈ t
(modulo elimination of double negation).

• t is realizable: there exists an interpretation I ∈ I such that for all (ψ,E) ∈ t it holds
that IE |=ψ.

The set of all dynamic types w.r.t. ΣA and E is denoted by D-Types(ΣA,E).
Let I ∈ I be an interpretation. The dynamic type of I w.r.t. ΣA and E is defined by

d-typeEΣA
(I) := {(ψ,E) |ψ ∈ C,E ⊆ E,E is finite, IE |=ψ}.

Î

The completeness and realizability conditions for dynamic types imply that

D-Types(ΣA,E) = {d-typeEΣA
(I) | I ∈ I}.

If interpretations have same dynamic type, then all possible respective future evolutions
of them have the same static type. This is the key property ensuring that executing action
sequences from A∗ in interpretations of the same dynamic type leads to indistinguishable
observable behavior w.r.t. the given context.

Lemma 5.16. Let A be a finite set of ground action terms, ΣA = (K, F , C,E+,E−,PreC) a
DL-admissible representation of A, D(ΣA) = (F , K, A, E ,�poss) the induced FO-DS and E a set
of effects over F that is closed under accumulations w.r.t. ΣA.

For two interpretations I, J ∈ I and an action sequence σ ∈ A∗ it holds that

d-typeEΣA
(I) = d-typeEΣA

(J) implies s-typeC(I
′) = s-typeC(J

′), where

I ⇒σ
D(ΣA)

I′ and J ⇒σ
D(ΣA)

J ′.

Proof. Let σ = α1α2 · · ·αn ∈ A∗, I0, J0 ∈ I with d-typeEΣA
(I0) = d-typeEΣA

(J0) and consider
the execution of σ in I0 and J0:

I0⇒
α1
D(ΣA)

I1⇒
α2
D(ΣA)
· · · ⇒αn

D(ΣA)
In and J0⇒

α1
D(ΣA)

J1⇒
α2
D(ΣA)
· · · ⇒αn

D(ΣA)
Jn.

We show d-typeEΣA
(I0) = d-typeEΣA

(J0) implies s-typeC(In) = s-typeC(Jn) by induction on n.
Let n= 0. It holds that

ψ ∈ s-typeC(I0) iff (ψ,;) ∈ d-typeEΣA
(I0) iff (ψ,;) ∈ d-typeEΣA

(J0) iff ψ ∈ s-typeC(J0).

5.2 General Dynamic Types and Regression 131

Let n> 0 and assume that there are static types s0, . . . , sn−1 ∈SC such that

si = s-typeC(Ii) = s-typeC(Ji) for all i = 0, . . . , n− 1. (5.16)

The effects of executing σ in I0 and J0 can be describes by the following set:

Eσ = ΣA(s0,α1) \ (ΣA(s1,α2) \ (· · · \ ΣA(sn−1,αn)))

With the induction hypothesis (5.16) and Lemma 5.9 it follows that

In = I0
Eσ and Jn = J0

Eσ .

Since E is closed under accumulations, it can be shown that Eσ â E. Let bE ⊆ E be a set of
effects with Eσ ≡ bE. For all ψ ∈ C:

ψ ∈ s-typeC(In)

iff I0
Eσ |=ψ (with In = I0

Eσ and the definition of static types)

iff I0
bE |=ψ (with Eσ ≡ bE)

iff (ψ, bE) ∈ d-typeEΣA
(I0) (definition of dynamic types and bE ⊆ E,ψ ∈ C)

iff (ψ, bE) ∈ d-typeEΣA
(J0) (assumption d-typeEΣA

(I0) = d-typeEΣA
(J0))

iff J0
bE |=ψ (definition of dynamic types and bE ⊆ E,ψ ∈ C)

iff I0
Eσ |=ψ (Eσ ≡ bE)

iff Jn |=ψ (with Jn = J0
Eσ)

iff ψ ∈ s-typeC(Jn) (definition of static types).

5.2.2 Propositional Abstraction of DL-ConGolog Programs

In this section we show that the dynamic types defined in the previous subsection allow us
to define a bisimilar (possibly infinite) propositional abstraction of the transition system
induced by a DL-ConGolog program. The abstraction we are going to define is based on the
following components:

• a finite set A of ground action terms;

• an DL-admissible representation of A of the form ΣA = (K, F , C,E+,E−,PreC);

• a pick-free program expression δ, where all action terms are from A and for all tests of
the form ψ? in δ it holds that ψ is a Boolean combination of axioms from C;

• a set E of effects over F that closed under accumulations w.r.t. ΣA.

132 Chapter 5 Limits of Decidable Verification with Non-Local Effect Actions

The termination and failure actions ε and f are handled in the same way as in the local effect
case (see Section 4.3). To avoid additional notation we make the following assumptions
regarding termination and failure: the actions ε and f are contained in A, the concept
names Final and Fail are contained in F , the assertions (prog À− Final), (prog À− Fail) and
there negations are contained in C, and ¬(prog À− Final) and ¬(prog À− Fail) are contained
in K. The symbols ε, f, Final and Fail are not mentioned in δ. For all s ∈ SC we have
ΣA(s,ε) = {〈Final, {prog}〉+} and ΣA(s, f) = {〈Fail, {prog}〉+}. The names Final and Fail are
not affected by any other actions in A. In the following we directly refer to D(ΣA) instead of
D(ΣA)] {ε, f}.

An abstract state consists of the dynamic type of the interpretation in which the execution
of δ was started, the set of effects of the action sequence that has been executed so far and the
program that remains to be executed. Using the accumulation operator the program transition
relation can be lifted to a relation between abstract states. The definition generalizes the
construction for the local effect case (see Definition 4.13).

Definition 5.17. Let A, ΣA = (K, F , C,E+,E−,PreC), δ and E be as described above. Fur-
thermore, let AP be a finite set of atomic propositions with a bijection ι : C→ AP.

The abstraction of P = (D(ΣA),δ) w.r.t. E is a propositional transition system

TP,E = (QP,E, IP,E, ,→P,E,λP,E)

over AP, where

• QP,E := D-Types(ΣA,E)× {E | E ⊆ E,E is finite} × sub(δ);

• IP,E :=
�

(t,;,δ) ∈QP,E

�

� (ϕ,;) ∈ t for all ϕ occurring in K
	

;

• ,→P,E:=
��

(t,E,ρ), (t′,E′,ρ′)
�

∈QP,E ×QP,E

�

� t= t′, (i) or (ii)
	

with

(i) there exists a guarded action a = ψ1?; · · · ;ψn?;α ∈ head(ρ) such that a is
executable in the static type s= {ψ ∈ C | (ψ,E) ∈ t}, and

E′ ≡ E \ ΣA(s,α)

and ρ′ ∈ tail(a,ρ);

(ii) there is no guarded action contained in head(ρ) that is executable in the static
type s= {ψ ∈ C | (ψ,E) ∈ t} and we have

E′ ≡ E \ ΣA(s, f)

and ρ = ρ′;

• λP,E : (t,E,ρ) 7→ {ι(ψ) | (ψ,E) ∈ t} for all (t,E,ρ) ∈QP,E.

Î

In the sequel we prove that the transition system IP = (QP , IP , ,→P ,λP) induced by
P = (D(ΣA),δ) and the abstraction TP,E = (QP,E, IP,E, ,→P,E,λP,E) are C-bisimilar. A binary
relation

'C⊆QP ×QP,E

5.2 General Dynamic Types and Regression 133

is defined as follows: we have

〈I,σ,ρ〉 'C (t,E,ρ′) iff the following conditions are satisfied

• 〈I,σ,ρ〉 is reachable from some initial state 〈I0, 〈〉,δ〉 ∈ IP such that t= d-typeEΣA
(I0)

and I = I0
E, and

• ρ = ρ′.

Lemma 5.18. TP,E is a bisimilar propositional abstraction of P w.r.t. C.

Proof. We follow the lines of the proof of Lemma 4.16. First, we have to show that 'C is a
C-bisimulation. Let I be the state space of D(ΣA) and ι the bijection between C and AP.

Assume 〈I,σ,ρ〉 'C (t,E,ρ) for two states 〈I,σ,ρ〉 ∈ QP and (t,L,ρ) ∈ QP,E. There
exists I0 ∈ I such that 〈I,σ,ρ〉 is reachable from an initial state 〈I0, 〈〉,δ〉 ∈ IP,E such that

d-typeEΣA
(I0) = t and I = IE

0 .

It follows that
λP,E((t,E,ρ)) = {ι(ψ) |ψ ∈ s-typeC(I)}.

Let

s= {ψ ∈ C | (ψ,E) ∈ t}.

〈I,σ,ρ〉 'C (t,E,ρ) implies s-typeC(I) = s. We have to show that for every outgoing
transition of 〈I,σ,ρ〉 there is a matching transition from (t,E,ρ) leading to a state that is in
'C-relation with the successor of 〈I,σ,ρ〉 and vice versa. As in the proof of Lemma 4.16 we
distinguish three cases regarding the action history σ:

• the actions ε and f do not occur in σ;

• σ is of the form σp ·σs, where the actions ε and f do not occur in σp and the suffix is
of the form σs ∈ {ε}∗ with |σs| ≥ 1;

• σ is of the form σp ·σs, where the actions ε and f do not occur in σp and the suffix is
of the form σs ∈ {f}∗ with |σs| ≥ 1.

According to Lemma 3.2 this covers all possible cases.

(I) Assume that the actions ε and f do not occur in σ. Consider a transition

〈I,σ,ρ〉 ,→P 〈I′,σ ·α,ρ′〉.

As shown in the proof of Lemma 4.16 it holds that α ∈ A \ {f}

iff there exists a guarded action a =ψ1?; · · · ;ψn?;α ∈ head(ρ) for some n≥ 0 such
that a is executable in I and I ⇒α

D(ΣA)
I′ and ρ′ ∈ tail(a,ρ)

iff there exists a guarded action a =ψ1?; · · · ;ψn?;α ∈ head(ρ) for some n≥ 0 such
that a is executable in s and I′ = IΣA(s,α) and ρ′ ∈ tail(a,ρ).

And, we have α= f

134 Chapter 5 Limits of Decidable Verification with Non-Local Effect Actions

iff there is no guarded action a ∈ head(ρ) that is executable in I, ρ′ = ρ and
I ⇒f

D(ΣA)
I′

iff there is no guarded action a ∈ head(ρ) that is executable in s, ρ′ = ρ and
I′ = IΣA(s,f).

Since E is closed under accumulations w.r.t. ΣA and E ⊆ E, it holds that

E \ ΣA(s,α) â E.

Thus, there exists E′ ⊆ E such that E′ ≡ E \ ΣA(s,α). Consequently, the existence of
the transition 〈I,σ,ρ〉 ,→P 〈I′,σ ·α,ρ′〉 implies

(t,E,ρ) ,→P,E (t,E′,ρ′) with 〈I′,σ ·α,ρ′〉 'C (t,E′,ρ′).

Assume there is a transition (t,E,ρ) ,→P,E (t,E′,ρ′) with E′ ≡ E \ ΣA(s,α) for some
α ∈ A. It follows that there is a transition

〈I,σ,ρ〉 ,→P 〈I′,σ ·α,ρ′〉 with 〈I′,σ ·α,ρ′〉 'C (t,E′,ρ′).

(II) Assume σ = σp ·σs where the suffix satisfies σs ∈ {ε}∗ and |σs| ≥ 1. It follows that
ρ = 〈〉, head(〈〉) = {ε}, I |= (prog À− Final) and ((prog À− Final),E) ∈ t. The definition
of ,→P and of ,→P,E imply that 〈I,σ ·ε, 〈〉〉 and (t,E′, 〈〉) with E′ ≡ E \ 〈Final, {prog}〉+

are the only successors of 〈I,σ,ρ〉 and (t,E,ρ), respectively. Note that ((prog À−
Final),E) ∈ t implies 〈Final, {prog}〉+ ∈ E which implies E ≡ E \ 〈Final, {prog}〉+. It
follows that

〈I,σ · ε, 〈〉〉 'C (t,E′, 〈〉).

(III) Assume there is a suffix σs of σ with σs ∈ {f}∗ and |σs| ≥ 1. As shown in proof
of Lemma 4.16 it follows that 〈I,σ,ρ〉 and (t,E,ρ) are failure states where f is the
only executable action. The execution of f does not cause any changes. 〈I,σ · f,ρ〉
is the only successor state of 〈I,σ,ρ〉. All successor states of (t,E,ρ) are of the form
(t,E′,ρ) with E≡ E′ and there exists at least one successor. We have that E′ ≡ E and
〈I,σ,ρ〉 'C (t,E,ρ) implies

〈I,σ · f,ρ〉 'C (t,E′,ρ).

We have 〈I0, 〈〉,δ〉 'C (d-typeEΣA
(I0),;,δ) for all initial interpretations I0 ∈ Iini in D(ΣA).

5.3 Decidable Fragments of DL-ConGolog

In general the propositional bisimilar abstraction of a DL-ConGolog defined in the previous
section has infinitely many states because there can be infinitely many dynamic types.
In this section we consider two syntactical restrictions on the underlying DL-admissible
representation that allow us to regain decidability via a construction of a finite bisimilar
abstraction. The first one (defined in Section 5.3.1) only allows acyclic dependencies between
fluents in the effect representation. The second one (Section 5.3.2) restricts the DL syntax for
defining the add-sets and delete-sets to a sub-DL where essentially no quantifiers are involved.

5.3 Decidable Fragments of DL-ConGolog 135

Both classes of DL-admissible representations are incomparable regarding expressiveness
but include the class of local effect representations. In both cases we are able to show that a
finite set of all relevant effect descriptions can be computed. This leads to an effective way of
computing a finite bisimilar abstraction, which in turn makes DL-CTL∗ verification decidable.
In this section we always use DL as the base logic.

5.3.1 An Acyclicity Condition

In Example 5.1 we have defined the ground action move-fwd describing the ability of a
mobile robot to move to the room that is adjacent to the room the robot is currently located
in. To define the current room after doing move-fwd we refer to the current room before
doing the action. Thus, in the effect representation there is a cyclic dependency involving
the concept name CurrentRoom.

Given a DL-admissible representation for a finite set of ground action we define a directed
graph that captures such dependencies between the relevant fluents.

Definition 5.19. Let A be a finite set of ground action terms and ΣA = (K, F , C,E+,E−,PreC)
a DL-admissible representation of A. The dependency graph ofΣA, denoted by G(ΣA) = (F , E),
is a finite directed graph where

• the set of nodes is the set of relevant fluents F and

• E ⊆ F × F is the set of edges such that (F, F ′) ∈ E iff F ′ occurs in E+[s,α, F] or in
E−[s,α, F] for some s ∈SC and some α ∈ A.

We say that ΣA is acyclic iff the dependency graph G(ΣA) is acyclic.
For an acyclic graph G(ΣA) = (F , E) and F ∈ F the length of the longest path in G(ΣA)

starting in F is called the depth of F in ΣA and is denoted by depthΣA
(F). The corresponding

depth of an acyclic DL-admissible representation ΣA is given by

depth(ΣA) :=max({depthΣA
(F) | F ∈ F}).

Î

If the actions in A only have local effects, then G(ΣA) is obviously acyclic. There are no
dependencies at all because in the local effect case disjunctions of nominal concepts and
disjunctions of nominal roles are sufficient to define the effects.

Example 5.20. First, we consider the domain with devices and batteries from Example
2.48. There, preconditions and effects are defined using a DL-action theory. The corre-
sponding DL-admissible representation is defined as given in the proof of Lemma 2.33. The
(acyclic) dependency graph consists of the following edges due to the non-local effect of
discharged(bat) on the concept name On:

(On, EDev), (On, ConTo), (On, PowerS).

On has depth one and all other fluents have depth zero.
The graph of the action theory in Example 5.1 contains a self-loop on the concept name

CurrentRoom. Î

136 Chapter 5 Limits of Decidable Verification with Non-Local Effect Actions

Now, we consider DL-ConGolog programs over ground actions with an underlying acyclic
DL-admissible representation. In the following we show that the acyclicity allows us to
obtain a finite set of effect descriptions that is closed under accumulations. First, some more
auxiliary notions are defined.

Definition 5.21. Let A be a finite set of ground action terms and ΣA = (K, F , C,E+,E−,PreC)
an acyclic DL-admissible representation of A. For a concept or role X over F we define the
depth of X w.r.t. ΣA by

depthΣA
(X) :=max({depthΣA

(F) | F ∈ F and F occurs in X }).

For a set of effects E over F and a number n the set E≤n is the restriction of E to effects
on fluents with a depth smaller or equal n. For F ∈ F the sets of all relevant (positive and
negative) effect descriptors are given by

Pos(F) := {X | 〈F, X 〉+ ∈ ΣA(s,α) for some s ∈SC and some α ∈ A}
Neg(F) := {X | 〈F, X 〉− ∈ ΣA(s,α) for some s ∈SC and some α ∈ A}.

Î

The next lemma follows directly from the definitions.

Lemma 5.22. Let A be a finite set of ground action terms and ΣA = (K, F , C,E+,E−,PreC) an
acyclic DL-admissible representation of A.

1. For a fluent F ∈ F and X ∈ Pos(F)∪Neg(F) it holds that depthΣA
(F) > depthΣA

(X) if
depthΣA

(F)> 0 and depthΣA
(X) = 0 if depthΣA

(F) = 0.

2. Let X be a concept or role over F with depthΣA
(X) = n and E a set of effects over F . It

holds that R[X ,E] =R[X ,E≤n] and depthΣA
(R[X ,E]) = n.

Due to the acyclicity condition it is ensured that for the definition of the effects on a
fluent F only fluents with a depth strictly smaller than the depth of F are used. Therefore,
regression does not increase the depth of a concept or role.

Next, we define the (finite) set of all relevant effect descriptions, where “relevant” refers
to closure under accumulations. The set is constructed stepwise. First, all relevant effects
on fluents of depth zero are defined because these fluents do not depend on other fluents.
Given this set, we can proceed with the fluents of depth one because they only depend on
fluents of depth zero. This is continued until we reach the maximum depth determined by
the acyclic dependency graph of the underlying effect representation.

Definition 5.23. Let A be a finite set of ground action terms and

ΣA = (K, F , C,E+,E−,PreC)

an acyclic DL-admissible representation of A and depth(ΣA) = n for some n ≥ 0. We
inductively define a sequence of length n of sets of effect descriptions over F denoted by

E0,E1, . . . ,En.

5.3 Decidable Fragments of DL-ConGolog 137

such that the set Ei for some 0 ≤ i ≤ n represents the set of all relevant effects on fluents
with a depth ≤ i. For i = 0 we define

E0 := Add0 ∪Del0,

where Add0 is the set of all add-effects on fluents of depth zero:

Add0 :=

�

F, X u
d

Y∈D
¬Y
·+ �
�

�

�

F ∈ F ,depthΣA
(F) = 0, X ∈ Pos(F), D ⊆ Neg(F)

�

,

and Del0 the corresponding set of all delete-effects:

Del0 =
�

〈F, X 〉−
�

� F ∈ F ,depthΣA
(F) = 0, X ∈ Neg(F)

	

.

Next, let 0< i ≤ n and assume Ei−1 is already defined. The set Ei is defined as follows:

Ei := Ei−1 ∪Addi ∪Deli ,

where

Addi :=

��

F,R[X ,E]u
d

(Y,E′)∈R
¬R[Y,E′]

�+ �
�

�

�

depthΣA
(F) = i, X ∈ Pos(F),E ⊆ Ei−1,

R ⊆
�

Neg(F)×Ei−1
�

�

and

Deli := {〈F,R[X ,E]〉− | depthΣA
(F) = i, X ∈ Neg(F),E ⊆ Ei−1}.

The set of all relevant effects is given by E := En. In the definition of Add0 and Addi , i > 0 the
conjuncts

d

Y∈D
¬Y and

d

(Y,E′)∈R
¬R[Y,E′],

respectively, are omitted in case D = ; and R= ;, respectively. Î

The definition of the set E is constructive. Given an acyclic DL-admissible representation
ΣA = (K, F , C,E+,E−,PreC), it can be effectively computed. E is closed under accumulations.

Lemma 5.24. Let A be a finite set of ground action terms and ΣA = (K, F , C,E+,E−,PreC) an
acyclic DL-admissible representation of A and let E be the set of all relevant effects as defined
above.

It holds that E is closed under accumulations w.r.t. ΣA.

Proof. Let depth(ΣA) = n for some n ≥ 0. Let s ∈ SC , α ∈ A and E ⊆ E. We consider an
effect e ∈ (E \ ΣA(s,α)) and show that there is an equivalent effect in E. According to
Definition 5.8 we have

(E \ ΣA(s,α)) := Regr(ΣA(s,α),E)∪Diff+(E,ΣA(s,α))∪ {〈F, X 〉− ∈ E}.

138 Chapter 5 Limits of Decidable Verification with Non-Local Effect Actions

The case e ∈ {〈F, X 〉− ∈ E} is trivial. We go through the remaining cases.

Case 1: e is of the form 〈F, X 〉± with

depthΣA
(F) = 0 and 〈F, X 〉± ∈ Regr(ΣA(s,α),E).

There exists 〈F, Y 〉± ∈ ΣA(s,α) such that 〈F, X 〉± = 〈F,R[E, Y]〉±. It follows that
depthΣA

(Y) = 0 with Lemma 5.22. Consequently, we have R[E, Y] = Y = X . Since
〈F, Y 〉± ∈ ΣA(s,α) it follows that Y ∈ Pos(F)∪Neg(F) and 〈F, Y 〉± ∈ E0. Hence, e ∈ E0.

Case 2: e is a positive effect of the form 〈F, X 〉+ with

depthΣA
(F) = 0 and 〈F, X 〉+ ∈ Diff+(E,ΣA(s,α))

There exists

F, X ′
�+ ∈ E such that

X = X ′ u
l

〈F,Y 〉−∈ΣA(s,α)

¬R[Y,E].

depthΣA
(F) = 0 and Lemma 5.22 yield

X = X ′ u
l

〈F,Y 〉−∈ΣA(s,α)

¬Y. (5.17)

Since by assumption

F, X ′
�+ ∈ E ⊆ E and depthΣA

(F) = 0, it follows that

F, X ′
�+ ∈ E0.

Therefore, by definition of E0 there exists bX ∈ Pos(F) and a set D ⊆ Neg(F) such that

X ′ = bX u
l

bY∈D

¬bY . (5.18)

Let D′ = D∪{Y | 〈F, Y 〉− ∈ ΣA(s,α)}. Obviously, D′ ⊆ Neg(F). With (5.17) and (5.18)
it follows that

X ≡ bX u
l

bY ′∈D′

¬bY ′ and

�

F, bX u
d

bY ′∈D′
¬bY ′

�+

∈ E0.

Case 3: e is of the form 〈F, X 〉± with

depthΣA
(F) = f , 0< f ≤ n and 〈F, X 〉± ∈ Regr(ΣA(s,α),E).

There exists 〈F, Y 〉± ∈ ΣA(s,α) such that X =R[Y,E]. It follows with Lemma 5.22 that
depthΣA

(Y)≤ f − 1. We obtain

X =R[Y,E] =R[Y,E≤ f −1].

5.3 Decidable Fragments of DL-ConGolog 139

The assumption E ⊆ E implies E≤ f −1 ⊆ E f −1. Since Y ∈ Pos(F)∪Neg(F) we get

F,R[Y,E≤ f −1]
�± ∈ E f .

Case 4: e is of the form 〈F, X 〉+ with

depthΣA
(F) = f , 0< f ≤ n and 〈F, X 〉+ ∈ Diff+(E,ΣA(s,α)).

There exists

F, X ′
�+ ∈ E such that

X = X ′ u
l

〈F,Y 〉−∈ΣA(s,α)

¬R[Y,E].

With Lemma 5.22 and depthΣA
(Y)≤ f − 1 for all 〈F, Y 〉− ∈ ΣA(s,α) we obtain

X = X ′ u
l

〈F,Y 〉−∈ΣA(s,α)

¬R[Y,E≤ f −1]. (5.19)

F, X ′
�+ ∈ Add f ∩E implies that there are

Z ∈ Pos(F),EZ ⊆ E f −1 and R ⊆ (Neg(F)×E f −1)

such that

X ′ =R[Z ,EZ]u
l

(bZ ,bE)∈R

¬R[bZ , bE]. (5.20)

Let

R′ =R∪ {(Y,E≤ f −1) | 〈F, Y 〉− ∈ ΣA(s,α)}.

With (5.19) and (5.20) it follows that

X ≡R[Z ,EZ]u
l

(bZ ′,bE′)∈R′

¬R[bZ ′, bE′] and

*

F,R[Z ,EZ]u
l

(bZ ′,bE′)∈R′

¬R[bZ ′, bE′]

++

∈ E f .

Since E is finite and computable the set of all dynamic types w.r.t. ΣA and E is finite and
computable as well. All complete subsets of C×2E can be enumerated. Checking realizability
can be reduced to a decidable DL-consistency problem using the regression operator.

Lemma 5.25. Let A be a finite set of ground action terms and ΣA = (K, F , C,E+,E−,PreC) an
acyclic DL-admissible representation of A and let E be the set of all relevant effects as defined
above.

140 Chapter 5 Limits of Decidable Verification with Non-Local Effect Actions

The set of all dynamic types w.r.t. ΣA and E is effectively computable.

Proof. E is a finite set. Let t ⊆ C × 2E be such that (ψ,E) ∈ t or (¬ψ,E) ∈ t for all ψ ∈ C and
all E ⊆ E. It holds that t is realizable iff the following Boolean DL-KB has a model:

∧

(ϕ,E) ∈ t

R[ϕ,E].

Thus, the problem whether a given subset of C × 2E is realizable is decidable. Consequently,
D-Types(ΣA,E) is computable.

We consider the verification problem where the input consists of the following components:

• a finite set A of ground action terms;

• an acyclic DL-admissible representation of A of the form ΣA = (K, F , C,E+,E−,PreC);

• a pick-free program expression δ, where all action terms are from A and for all tests of
the form ψ? in δ we have ψ ∈ C;

• a DL-CTL∗ state formula Φ over axioms from C.

We want to check whether Φ is valid in P = (D(ΣA),δ). Note that C is a proper DL-context
for P according to Definition 3.16.

Theorem 5.26. Verifying DL-CTL∗ properties of DL-ConGolog programs over ground actions
with an acyclic DL-admissible representation is decidable.

Proof. We can compute a finite set of effects E that is closed under accumulations w.r.t. ΣA.
Thus, according to Lemma 5.25 the set of all dynamic types w.r.t. ΣA and E is computable.
Therefore, a finite bisimilar propositional abstraction of the program is effectively computable:
The finite set of all abstract states D-Types(ΣA,E) × 2E × sub(δ) can be enumerated. By
assumption on ΣA the effects of a ground action given a static type is computable. The result
of the accumulation operator on two finite sets of effects is computable as well. Furthermore,
checking equivalence of DL-concept and DL-roles is decidable and the head and tail functions
are decidable as well. It follows that the transition relation on the set of abstract states
is decidable. Obviously, the label of the states is also computable. Thus, the verification
problem boils down to a decidable model checking problem.

The result strengthens the decidability result formulated in Theorem 4.18 for programs over
local effect actions. Note that actions with only local effects do not cause any dependencies
between fluents. The model used in Example 2.48 includes an action with non-local effects
but it only has acyclic dependencies. A classical example domain from the literature that has
non-local effect actions is the logistics domain. It was introduced in [Bac01] and is designed
for planning benchmarks. In [Yeh+12] a Situation Calculus axiomatization of the domain
is used for experiments with a projection solver. It considers an open-world setting where
different kinds of vehicles transport items between different locations. The Situation Calculus
theory in [Yeh+12] uses a DL as its base logic and can be viewed as an acyclic DL-admissible
representation. We consider a simplified version of this domain in the following example.

5.3 Decidable Fragments of DL-ConGolog 141

Example 5.27. A DL-action theory for a simple transportation domain is described. There
are items that are loaded into at most one box (related via the role name Loaded). Boxes
and items are located in at most one room (via the role name In). The TBox consists of the
following role inclusions and concept inclusions:

T = {Loadedv Item× Box, Itemv≤1 Loaded.Box, Box u Itemv⊥
Inv (Box t Item)× Room, Box t Itemv≤1 In.Room}.

An initial situation with two named rooms, two named boxes and one named item is described
using the following ABox assertions:

A= {b1 À− (Box u ∃In.{r1}), b2 À− (Box u ∃In.{r2}), i À− (Itemu ∃In.{r1} u ∀Loaded.⊥)}.

We define the ground action move-to(b1, r1, r2) for moving the box b1 from room r1 to room
r2 as follows:

pre(move-to(b1, r1, r2)) := {(b1, r1) À− In};
eff(move-to(b1, r1, r2)) := { 〈In, ({b1} t ∃Loaded.{b1})× {r1}〉

−,

〈In, ({b1} t ∃Loaded.{b1})× {r2}〉
+}.

The concept {b1}t∃Loaded.{b1} describes the box b1 itself and the set of loaded items inside
b1. Both, the box and its content move to the new room r2. The actions move-to(b1, r2, r1),
move-to(b2, r1, r2) and move-to(b2, r2, r1) are defined similarly. There is another action
load(i,b1) for loading the item i into the box b1:

pre(load(i,b1)) := {(>v≤1 U .(∃inv(In).{i} t ∃inv(In).{b1})};
eff(load(i,b1)) := {〈Loaded, {(i,b1)}〉

+}.

The concept ∃inv(In).{i} describes the set of rooms the item i is located in and ∃inv(In).{b1}
the rooms of b1. Note that in models of the TBox both concepts are interpreted as singleton
sets. The precondition expresses that the disjunction of both concepts is a singleton set
using an at most restriction on the universal role. Thus, the precondition is satisfied if both
objects are located in the same room. The preconditions and effects of the ground action
term load(i,b2) are defined analogously. The DL-admissible representation given by T , A,
pre, and eff for the set of ground actions described above is acyclic. There is only a single
dependency between In and Loaded. The action theory has depth one. For instance, one
could verify that the TBox T is preserved by any ground action sequence. Î

The cycle caused by the action move-fwd in Example 5.1 is avoided in the example above
by requiring that the starting point and the target of the move are explicitly named in the
argument of the move action. The consequence is that the moves are restricted to an a priori
fixed finite set of named rooms whereas in Example 5.1 moves to an unbounded number of
unknown rooms are possible as well.

142 Chapter 5 Limits of Decidable Verification with Non-Local Effect Actions

5.3.2 Flat Effect Representations

In this section we introduce another decidable fragment of DL-ConGolog over actions with
possibly non-local effects. It is based on the observation that cyclic dependencies between
fluents are only problematic if quantifiers are involved. We define flat DL-admissible rep-
resentations, where the definitions of the add-sets and delete-sets are formulated in the
quantifier-free fragment of FO2. In this restricted case it is possible to show that only a
finite number of effect descriptions is relevant. Once we have shown this, the abstraction
technique in 5.2 yields a finite bisimilar abstraction.

We consider an example with “flat" cyclic dependencies between fluents.

Example 5.28. We extend the domain in Example 5.27 with an additional action. We
consider the action of pouring the content of b1 into b2. It is defined as follows:

pre(pour(b1,b2)) := {> v ≤1 U .(∃inv(In).{b1} t ∃inv(In).{b2})}
eff(pour(b1,b2)) := { 〈Loaded,∃Loaded.{b1} × {b1}〉

−

〈Loaded,∃Loaded.{b1} × {b2}〉
+}

The precondition says that b1 and b2 have to be in the same room. The effect is that b1 is
empty and all items that were contained in b1 before doing the action are contained in b2
after doing the action. In the fluent dependency graph the move action leads to an edge
from In to Loaded and Loaded has a self-loop attached to it due to the non-local effect of
pour(b1,b2). However, all effect definitions in this example can be defined in FO2 without
quantifiers. For instance, the role ∃Loaded.{b1} × {b2} can be equivalently formulated as the
quantifier-free formula

Loaded(x ,b1)∧ y ≈ b2

in FO syntax. (Note that it is not possible to formulate effects of the move-fwd in Example
5.1 without quantifiers.) Î

First, a sublogic called DLQF of DL is defined. It corresponds to the quantifier-free fragment
of FO2 (two-variable fragment of FO).

Definition 5.29. DLQF-concepts C and DLQF-roles R are built according to the following
syntax rules

C ::=> | {o} | A | ∃P.{o} | ∃inv(P).{o} | ∃(idu P).> | ∀U .(¬{o} t C) | ¬C | C u C ,

R ::= id | P | inv(P) | >× C | C ×> | ¬R | Ru R.

where o ∈ NO, A ∈ NC and P ∈ NR. Disjunction of concepts and roles and other Boolean
connectors are obtained as usual. The set of all atomic DLQF-concepts is the smallest set
satisfying the following conditions:

• every concept of the form >, {o}, A,∃P.{o},∃inv(P).{o} and ∃(idu P).> is atomic, and

• if B is of the form >, {o}, A,∃P.{o},∃inv(P).{o} or ∃(id u P).> and o ∈ NO, then also
∀U .(¬{o} t B) is atomic.

Atomic DLQF-roles are of the form id, P, inv(P) or >× B or B ×>, where B stands for an
atomic DLQF-concept. Î

5.3 Decidable Fragments of DL-ConGolog 143

DLQF-concepts capture the quantifier-free formulas of FO2 with exactly one free variable.
Using the translation of DL syntax into FO syntax (see Definition 2.6) the atomic DLQF-
concepts of the form ∃P.{o},∃inv(P).{o} and ∃(iduP).> translate to the following FO2-atoms:

trx(∃P.{o}) = ∃y.(P(x , y)∧ y ≈ o)≡FO P(x , o),

trx(∃inv(P).{o}) = ∃y.(P(y, x)∧ y ≈ o)≡FO P(o, x),

trx(∃(idu P).>) = ∃y.(x ≈ y ∧ P(x , y)∧ x ≈ x)≡FO P(x , x).

Furthermore, > translates to x ≈ x , A to A(x) and {o} to x ≈ o. DLQF-concepts of the form
∀U .(¬{o} t C) are used to express ground atoms. For an interpretation I = (∆I , ·I) it holds
that

(∀U .(¬{o} t C))I =∆I iff I |= o À− C , and

(∀U .(¬{o} t C))I = ; iff I 6|= o À− C .

For example, the FO2-formula A(x)∧ P(o, o′), where o and o′ are object names, is equivalent
to the concept

Au∀U .(¬{o} t ∃P.{o′}).

Note that the role assertion (o, o′) À− P is equivalent to the concept assertion o À− ∃P.{o′}.
Atomic DLQF-roles id, P, and inv(P) correspond to FO2-atoms with exactly two free vari-

ables of the form x ≈ y, P(x , y) and P(y, x), respectively. For example, the FO2 formula
A(x)∧ A(y) is equivalent to the role (A×>)u (>× A) and the formula

A(x)∨ P1(y, x)∨¬(P1(x , o)∧ P2(o
′, y))

is equivalent to the DLQF-role

(A×>)t inv(P1)t¬
�

�

(∃P1.{o})×>
�

u
�

>× (∃inv(P2).{o′})
�

�

.

We define a conjunctive normal form (CNF) for DLQF-concepts and DLQF-roles.

Definition 5.30. A DLQF-concept or DLQF-role L is called a literal iff L is atomic or the
negation of an atomic DLQF-concept or DLQF-role, respectively. A DLQF-clause is a disjunction
of the form L1 t · · · t Ln, for some n≥ 0, where the Lis are literals.

We say that a DLQF-concept or DLQF-role is in CNF iff it is of the form C1 u · · · u Cm, for
some m≥ 0, where the C js are DLQF-clauses. Î

To transform a DLQF-concept or DLQF-role into a Boolean combination of atomic concepts
or roles, respectively, the following equivalences can be used as rewrite rules (applied from
left to right):

∀U .(¬{o} t (C u D))≡ ∀U .(¬{o} t C)u∀U .(¬{o} t D);

∀U .(¬{o} t (¬C))≡ ¬∀U .(¬{o} t C);

∀U .(¬{o} t (∀U .(¬{o′} t C)))≡ ∀U .(¬{o′} t C).
(5.21)

144 Chapter 5 Limits of Decidable Verification with Non-Local Effect Actions

Similar equivalences hold for concept products:

>× (C u D)≡ (>× C)u (>× D);

>× (¬C)≡ ¬(>× C);

(C u D)×> ≡ (C ×>)u (D×>);
(¬C)×> ≡ ¬(C ×>).

(5.22)

Note that C and D stand for arbitrary complex concepts and o and o′ for object names.
Every DLQF-concept and DLQF-role can be transformed into CNF using the equivalences
above and the standard CNF transformation for propositional logic. Let X be a DLQF-concept
or DLQF-role, the corresponding expression in CNF is denoted by cnf(X).

To define the class of flat DL-admissible representations we require that the corresponding
computable functions E+[·] and E−[·] provide an output formulated in DLQF.

Definition 5.31. Let A be a finite set of ground action terms and ΣA = (K, F , C,E+,E−,PreC)
a DL-admissible representation. We call ΣA flat iff for all (s,α, F) ∈SC × A×F the concepts
(or roles) E+[s,α, F] and E−[s,α, F] are formulated in DLQF. Î

For example, the action theories in Example 5.27 and 5.28 are flat DL-admissible repre-
sentations.

Note that the context C can be an arbitrary DL-context. Let F ∈ NC ∪ NR be a concept
name or role name, an unconditional effect description of the form

〈F, X 〉±

is called DLQF-effect iff X is a DLQF-concept or DLQF-role, respectively.

Given a flat DL-admissible representation ΣA = (K, F , C,E+,E−,PreC) for a finite set
of actions A, the effects of executing a ground action α ∈ A in an interpretation of type
s ∈ SC can be described as a set of DLQF-effects denoted by ΣA(s,α) (see Definition 5.4).
Next, we will show that also the effects of action sequences in a flat representation can be
described as sets of DLQF-effects. The accumulation of effect sets according to 5.8 involves
regression. Thus, it suffices to show that for a given DLQF-concept or DLQF-role X and a set of
DLQF-effects E, the regression result R[X ,E] can be transformed into DLQF. The regression
results may contain complex inverse roles. They can be removed by applying the following
equivalences, where R and S stand for possibly complex DL-roles, from left to right:

inv(inv(R))≡ R;

inv(id)≡ id;

inv(Ru S)≡ inv(R)u inv(S);
inv(¬R)≡ ¬inv(R);

inv(C × D)≡ D× C .

(5.23)

The regression of atomic DLQF-concepts of the form ∃P.{o} and ∃inv(P).{o} through a set of
DLQF-effects yields DL-concepts of the form ∃R.{o} and ∃(idu R).>, where R is a possibly

5.3 Decidable Fragments of DL-ConGolog 145

complex DLQF-role. To deal with such concepts we exploit the following equivalences

∃(Ru S).{o} ≡ ∃R.{o} u ∃S.{o};
∃(¬R).{o} ≡ ¬∃R.{o};
∃id.{o} ≡ {o};

∃(>× C).{o} ≡ ∀U .(¬{o} t C);

∃(C ×>).{o} ≡ C .

(5.24)

Next, we consider concepts of the form ∃(iduR).>, where R is a (possibly complex) DLQF-role.
We have

∃(idu (Ru S)).>≡ ∃(idu R).>u∃(idu S).>;

∃(idu¬R).>≡ ¬∃(idu R).>;

∃(idu inv(R)).>≡ ∃(idu R).>;

∃(idu id).>≡>;

∃(idu (>× C)).>≡ C;

∃(idu (C ×>)).>≡ C .

(5.25)

Lemma 5.32. Let X be a DLQF-concept or DLQF-role and E a set of DLQF-effects. The regression
R[X ,E] of X through E can be equivalently transformed into DLQF.

Proof. We have that R[X ,E] ≡ R[cnf(X),E]. It suffices to prove the claim for the case
where X is atomic, because the regression operator can be pushed inside until it only
appears in front of atoms. In case X is of the form >, {o}, A, id or P for a concept name
A, object name o and role name P the claim is immediately satisfied by assumption on E
and by definition of regression (see Figure 5.2). The regression of atoms of the form ∃P.{o},
∃inv(P).{o}, ∃(idu P).>, inv(P), >× B and B ×>, where B is atomic, can be transformed
into corresponding DLQF expressions using the equivalences (5.23), (5.24) and (5.25) as
rewrite rules from left to right.

It now follows that sets of unconditional DLQF-effects can be accumulated.

Lemma 5.33. Let E0 and E1 be sets of unconditional DLQF-effects. It holds that the effects in
E0 \ E1 can be equivalently transformed to DLQF-effects.

Proof. According to Definition 5.8 we have

E0 \ E1 := Regr(E1,E0)∪Diff+(E0,E1)∪ {〈F, X 〉− ∈ E0}.

Lemma 5.32 and the assumption on E0 and E1 imply that the effects in Regr(E1,E0) and
Diff+(E0,E1) can be formulated in DLQF. The same is true for {〈F, X 〉− ∈ E0} by assumption
on E0.

Let ΣA = (K, F , C,E+,E−,PreC) be a flat DL-admissible representation for a finite set of
actions A. There are finitely many concept names, role names and object names mentioned
in the effect definitions E+[s,α, F], E−[s,α, F], where s ∈ SC and α ∈ A. Thus, there are
finitely many DLQF-concept literals and finitely many DLQF-role literals that can be built

146 Chapter 5 Limits of Decidable Verification with Non-Local Effect Actions

using these names. With LC(ΣA) we denote the set of all DLQF-concept literals over the names
relevant in ΣA and with LR(ΣA) the corresponding set of all DLQF-role literals. There are
infinitely many syntactically different DLQF-concepts and DLQF-roles that can be built using a
finite set of literals, but there are only finitely many equivalence classes w.r.t. “≡”. To obtain
a representative for each equivalence class we consider the CNF of a DLQF-concept or role
and view it as a set of sets of literals.

Definition 5.34. Let A be a finite set of ground action terms, ΣA = (K, F , C,E+,E−,PreC) a
flat DL-admissible representation of A and LC(ΣA) and LR(ΣA) the sets of literals as defined
above. The set of all relevant effects, denoted by E, is defined as follows:

E := {〈A, C〉+, 〈A, C〉− | A∈ F ∩NC, C ⊆ 2LC(ΣA)} ∪

{〈P, R〉+, 〈P, R〉− | P ∈ F ∩NR, R ⊆ 2LR(ΣA)}.

Î

Note that a set C ⊆ 2LC(ΣA) stands for the DLQF-concept

C :=
l

D∈C

�

⊔

L∈D
L
�

in CNF, and analogous for roles.
Since we have already shown that the accumulation of DLQF-effect sets can be expressed

within DLQF, it is now straightforward to prove that the set E is closed under accumulations
w.r.t. ΣA.

Lemma 5.35. Let A be a finite set of ground actions, ΣA = (K, F , C,E+,E−,PreC) a flat DL-
admissible representation of A. The set of all relevant effects E as defined above is closed under
accumulations w.r.t. ΣA.

Proof. Let E ⊆ E, s ∈ SC and α ∈ A. By assumption E and ΣA(s,α) are sets of DLQF-
effects over names mentioned in in the effect definitions provided by E+[·] and E−[·]. Let
〈F, X 〉± ∈ (E \ ΣA(s,α)). According to Lemma 5.32 and 5.33 X can be transformed into
DLQF without introducing new names. Let cnf(X) be the CNF of X viewed as a set of sets of
literals. It follows that cnf(X) ⊆ 2LC(ΣA), if F is a concept name, and cnf(X) ⊆ 2LR(ΣA), if F is
a role name. By definition of E we have 〈F,cnf(X)〉± ∈ E and X ≡ cnf(X).

Since E is finite we obtain finitely many dynamic types.

Lemma 5.36. Let A be a finite set of ground action terms and ΣA = (K, F , C,E+,E−,PreC) a
flat DL-admissible representation of A and let E be the set of all relevant effects as defined above.

The set of all dynamic types w.r.t. ΣA and E is effectively computable.

Proof. The proof is analogous to the proof of Lemma 5.25.

Analogous to the verification problem for DL-ConGolog based on an acyclic action repre-
sentations the input consists of the following components:

• a finite set A of ground action terms;

5.4 Summary and Related Work 147

• a flat DL-admissible representation of A of the form ΣA = (K, F , C,E+,E−,PreC);

• a pick-free program expression δ, where all action terms are from A and for all tests of
the form ψ? in δ we have ψ ∈ C;

• a DL-CTL∗ state formula Φ over axioms from C.

We want to check whether Φ is valid in P = (D(ΣA),δ). The construction of a finite C-
bisimilar abstraction of P works in the same way as for the acyclic case. This leads to the
following decidability result.

Theorem 5.37. Verifying DL-CTL∗ properties of DL-ConGolog programs over ground actions
with a flat DL-admissible representation is decidable.

The result generalizes the decidability result for programs over local effect actions (Theo-
rem 4.18). Note that a DL-admissible local effect representation can be equivalently described
as a flat (and acyclic) DL-admissible representation.

5.4 Summary and Related Work

Summary

In this chapter, we have shown undecidability and decidability results for verifying DL-CTL∗

properties of DL-ConGolog programs over non-local effect actions. Non-local action effects
easily lead to undecidability even for rather inexpressive DLs (Corollary 5.3). However,
we have identified two expressive (incomparable) fragments of DL-ConGolog programs
for which verification is decidable. One decidable class is obtained by disallowing cyclic
dependencies between fluents (Theorem 5.26) and the other one by resorting to so-called
flat (quantifier-free) effect definitions (Theorem 5.37). Both classes are considerably more
expressive than the one based only on local effects, and involve actions that possibly affect
an unbounded number of unnamed objects. Decidability is obtained by a reduction to
propositional model checking using a generalization of the abstraction technique introduced
in the previous chapter.

Related Work

Another decidability result for a verification task in a fragment of the Situation Calculus has
been obtained in [Ter99]. In this fragment only propositional fluents are available but the
domain of all actions can be infinite. Branching-time temporal properties of the infinite tree
of all executable situations are considered. Decidability is shown by reducing the verification
problem to a decidable emptiness problem of an appropriate tree automata model.

Recently, the class of Bounded Situation Calculus Action Theories [DLP16] has been in-
troduced as an approach to achieve decidability of the verification problem for first-order
µ-calculus properties. The class is based on a semantical restriction requiring that the exten-
sion of each fluent in each situation is bounded by some constant. Nevertheless, an infinite
object domain and also an infinite action domain is present whereas in our case only a
finite domain of actions is considered. However, due to the boundedness assumption, for
instance, DL KBs cannot be integrated, because DL KBs are usually interpreted without such

148 Chapter 5 Limits of Decidable Verification with Non-Local Effect Actions

an assumption. A decidability result for verifying ConGolog programs over bounded action
theories has been obtained in [De +16b].

In a DL-based setting, (un)decidability of verification of so-called Description Logic Knowl-
edge and Action Bases has been studied in [Har+13]. The action formalism is based on a
different notion of change compared to ours. The states in this formalism are finite ABoxes
that can be extended with new individuals during an execution. This leads to a different
source of infiniteness of the underlying transition system.

Chapter 6

Decidable Reasoning about Actions with
Knowledge and Sensing

We consider dynamical systems where in addition to the current state of the world also the
subjective incomplete view of a single agent on this world is modeled. This allows us to
distinguish between the world-changing and the knowledge-changing effects of an action.
Clearly, the decision of an agent with incomplete information about its surroundings on what
to do next depends on what is known or not known by the agent at the time the decision has
to be made.

Example 6.1. As a running example in this chapter we consider an agent that takes care
of a possibly faulty electrical device. Assume the (static) knowledge base K of the agent
includes facts about the current status of the device but also information about possible
faults provided in the manual of the device. The agent has sensors to scan the display of the
device in order to receive error messages reporting about faults. In addition, the agent also
has actuators at its disposal to repair certain faults. Let’s say K contains the assertion

dev À− ∃HasFault.>

about the faulty device named dev. We assume that faults have identifiers that are objects in
the domain and HasFault is a role name relating devices to their faults. The axiom says that
dev has some fault but not which one it is. Since K only provides incomplete information,
it might be the case that the identity of the faults of dev are not given in K and need to be
figured out by the knowledge-based agent using its sensors. Î

To handle such domains we define an epistemic DL-based action formalism and extend
our DL-action theories with a simple notion of sensing actions that describe the ability of an
agent to gain new information from the environment. For the sake of simplicity, we use the
basic prototypical DL ALCO.

A question that arises in the example is whether the agent is able to identify and repair the
faults of dev given the knowledge provided in K and the sensing actions. It might also happen
that dev has unknown faults, i.e. faults that are not named in K. A basic reasoning problem
that is relevant for answering this question is the epistemic projection problem. The projection
problem asks whether a given formula (called projection query) is true after executing a
sequence of actions. In our setting, the projection query is formulated in the epistemic DL
ALCOK [Don+98] that extends ALCO with a knowledge operator K. For instance, in our
example the K is useful to explicitly talk about known and unknown faults in the projection
query. To decide the epistemic projection problem we reduce it to a standard DL reasoning

149

150 Chapter 6 Decidable Reasoning about Actions with Knowledge and Sensing

task by combining known methods for answering static epistemic queries [Don+98; MRG11]
with the reduction approach developed for the non-epistemic projection problem [Baa+05a].

The chapter is organized as follows. In Section 6.1, we formally define epistemic first-
order dynamical systems (epistemic FO-DS for short) as a general meta-level structure for
describing the meaning of world-changing and knowledge-changing actions. In Section
6.2, we define the epistemic projection problem for projection queries formulated in the
epistemic DL ALCOK and actions represented in a DL-action theory with sensing actions.
In Section 6.3, we show that our semantics of action theories is theoretically well-founded
on existing epistemic extensions of the Situation Calculus [SL03; LL04; LL11]. We provide
an embedding into the modal variant of the epistemic Situation Calculus ES [LL04; LL11].
In Section 6.4, we investigate the complexity of the epistemic projection problem. A brief
summary of the chapter is provided in Section 6.5.

6.1 Epistemic First-Order Dynamical Systems

An epistemic first-order dynamical system is a meta-level structure for describing the meaning
of a set of ground action terms. It is an epistemic extension of an FO-DS. A state in this
system is an epistemic interpretation.

Definition 6.2. An epistemic interpretation is a pair of the form (I, W), where W is a non-
empty set of first-oder interpretations that satisfy the SNA and I is an element of W. Î

We consider the same signature as for ordinary FO-DSs (see Definition 2.1). All interpre-
tations have a fixed common countably infinite domain given by the set of all object names
NO (see Definition 2.4).

As before, the interpretation I in (I, W) completely describes the current state of the
world. W is a set of possible worlds represents the epistemic state (or knowledge state) of a
single agent. With requiring I ∈W we assume that the real world I is always considered
possible.

Definition 6.3. An epistemic first-oder dynamical system (epistemic FO-DS) is a tuple

DK = (I, Iini, F ,Act, E ,Pre,∼s)

that extends an ordinary FO-DS D= (I, Iini, F ,Act, E ,Pre) (considered under the SNA) with
a sensing compatibility relation

∼s ⊆ I× ground(Act)× I.

Instead of (I,α, J) ∈ ∼s we choose to write I ∼αs J . The state space of DK, denoted by IK,
is the following set of epistemic interpretations:

IK := {(I, W) |W ⊆ I, I ∈W}.

We sometimes also write DK = (I, Iini, F ,Act, E ,Pre,∼s) as a pair of the form

DK = (D= (I, Iini, F ,Act, E ,Pre),∼s).

Î

6.1 Epistemic First-Order Dynamical Systems 151

In the following

I always denotes the set of all interpretations satisfying the SNA.

and IK the set of all epistemic interpretations. Thus, all epistemic FO-DSs have the same
state space. We therefore often omit I as the first element of the tuple when writing an
epistemic FO-DS. Consider an FO sentence φ and a state (I, W) ∈ IK. We say that φ is
known in (I, W) iff φ is true in all interpretations J ∈W. For example, if W = {I}, then the
agent has complete knowledge and knows everything about the current state of the world.
In the opposite extreme case we have

W = {J = (∆J , ·J) |∆J = NO and oJ = o for all o ∈ NO}.

It means that all interpretations (satisfying the SNA) are considered possible. Consequently,
the agent does not know anything about I (note that the identity of all object names is
known because they are interpreted in the same way in all possible worlds according to the
SNA). Intuitively, the less worlds are contained in W the more the agent knows about I. The
relation I ∼αs J for a ground action α means that the worlds I and J agree on the sensing
result provided by α. The transition relation induced by E and ∼s is defined as follows.

Definition 6.4. Let DK = (Iini, F ,Act, E ,Pre,∼s) be an epistemic FO-DS that extends the
FO-DS D= (I, Iini, F ,Act, E ,Pre). Furthermore, let α ∈ ground(Act) be a ground action and
(I, W), (I′, W ′) ∈ IK two epistemic interpretations. We say that α transforms (I, W) into
(I′, W ′), written as

(I, W) =⇒αDK
(I′, W ′),

iff the following conditions are satisfied

• I ⇒αD I′;

• W ′ = {J ′ | J ⇒αD J ′ for some J ∈W with I ∼αs J }.

Let σ = α0α1 · · ·αn ∈ ground(Act∗) for some n ≥ 0 be a sequence of ground actions and
(I, W) and (J , V) two epistemic interpretations. We write (I, W) =⇒σDK

(J , V) iff there exists

a sequence of epistemic interpretations (I0, W0), . . . , (In+1, Wn+1) such that (Ii , Wi) =⇒
αi
DK

(Ii+1, Wi+1) for all i = 0, . . . , n+ 1 and (I, W) = (I0, W0) and (J , V) = (In+1, Wn+1). Î

Note that “⇒αD” for a ground action α is the ordinary transition relation of an FO-DS
determined by E (see Definition 2.8). The effect function E captures the physical effects of
an action. The real world I in an epistemic interpretation (I, W) is updated according to E .
Those interpretations J ∈W that are sensing compatible with I are updated with E as well
and yield the new epistemic state whereas those interpretations that do not agree with I on
the sensing result of α are discarded. In our semantics the real world itself and all possible
worlds that are sensing compatible with the real world are updated using the same pair E of
effect functions. Thus, the agent is fully aware of all effects of an action and perceives the
occurrences of all actions.

Example 6.5. Consider an FO sentenceφ over some finite set of fluents F and some epistemic
FO-DS DK = (Iini, F ,Act, E ,Pre,∼s). In DK we define a ground action αφ ∈ Act as a purely

152 Chapter 6 Decidable Reasoning about Actions with Knowledge and Sensing

sensing action that stands for the ability of the agent to check the truth of φ. There are no
world changing effects:

add(I,αφ , F) = del(I,αφ , F) = ; for all I ∈ I and all F ∈ F ,

with D= (I, Iini, F ,Act, E ,Pre). The sensing compatibility relation for αφ is defined by

I ∼αφs J iff (I |= φ⇔ J |= φ)

for all I, J ∈ I. Consider two epistemic states (I, W), (J , W) ∈ IK with I |= φ and J |=
¬φ. In case αφ is executed in (I, W) the agent observes that φ is true and discards all
interpretations where φ is false:

(I, W) =⇒αφDK
(I, W ′) with W ′ = {Y ∈W | I ∼αφs Y}.

Since φ is true in I, the resulting epistemic state W ′ consists of those interpretations from W
where φ is true as well. In case of (J , W) it is the other way round. We obtain the epistemic
state with all interpretations from W where φ is false. Thus, by executing αφ the agent gets
to know whether φ is true and nothing else is changed. Î

6.2 An Agent Language with Sensing

In this section we extend DL-action theories with a simple notion of sensing for describing
the basic abilities of an agent to gain new information from the environment. Equipped
with an action theory the agent should be able to check whether a chosen action sequence
leads to the expected result before actually executing it. To formulate subjective projection
queries that refer to what the agent knows or does not know we choose a DL extended with
a knowledge modality. In the next subsection we recall basic notions of the epistemic DL
ALCOK [Don+98]. Afterwards, action theories and the epistemic projection problem as a
basic reasoning task are defined.

6.2.1 An Epistemic DL

Epistemic extensions of DLs have been well studied (see for instance [Don+98; Cal+07b;
uR11; Meh14]). In most of these works the main motivation of enriching a DL with an
epistemic operator was to obtain a more expressive query language that allows for knowledge
base introspection. Donini et al. [Don+98] introduced an epistemic DL called ALCK. It is an
extension of ALC with a knowledge operator K for concepts and roles that is interpreted
using a possible world semantics under the SNA. The resulting logic was mainly considered
as an epistemic language for querying standard (objective) ALC knowledge bases. Mehdi
and Rudolph [uR11; Meh14] studied the problem of answering epistemic subsumption and
instance queries in presence of the more expressive DLs SRIQ and SROIQ.

Following [Don+98]we define ALCOK, i.e. ALCK with nominals. The knowledge modality
will be later useful for formulating subjective projection queries.

6.2 An Agent Language with Sensing 153

Definition 6.6. ALCOK-concepts C and ALCOK-roles R are built according to the following
syntax rules:

C ::=> | ⊥ | A | {o} | ¬C | C t C | C u C | ∃R.C | ∀R.C | KC;

R ::= P | KR,

where A ranges over NC, o over NO and P over NR. Note that every ALCO-concept/role
(without a K) is also an ALCOK-concept/role. ALCK-concepts are ALCOK-concepts without
nominals. Î

Intuitively, the epistemic concept KC describes the set of all those objects that belong
to C in all possible worlds. And likewise, the role KR captures all pairs of objects that are
R-related in all possible worlds. We use the concept constructor KwC (known whether) as an
abbreviation of the concept KC tK¬C . Intuitively, an object belongs to KwC if all possible
worlds agree on the membership of this object to C .

The knowledge operator is also allowed in front of axioms.

Definition 6.7. A Boolean ALCOK-KB ψ is built according to the following syntax rule

ψ ::= t À− C | (t, t ′) À− R | C v D | t ≈ t ′ | ¬ψ |ψ∧ψ | Kψ,

where t, t ′ ∈ NO ∪ NV are object terms, C and D stand for ALCOK-concepts and R for
an ALCOK-role. The expressions t À− C , (t, t ′) À− R and t ≈ t ′ are called ALCOK-ABox
assertions and C v D an ALCOK-concept inclusion. A Boolean ALCOK-KB is called Boolean
ALCOK-ABox if it is a Boolean combination of ABox assertions.

A Boolean ALCOK-KB is called ground if no variable names are mentioned. Let ν :
NV ∪ NO → NO be a variable mapping and ψ a Boolean ALCOK-KB. The grounding of ψ
with ν, denoted by ψν, is a ground Boolean ALCOK-KB obtained from ψ by replacing all
occurrences of all variable names x in ψ with ν(x). Î

As for concepts we use

Kwψ (“knowing whether ψ is true”)

as an abbreviation of Kψ∨K¬ψ.
An ALCOK-concept, ALCOK-role or Boolean ALCOK-KB is called subjective if all occurring

concept names and role names occur within the scope of a K. It is called objective if no K
occurs at all. Thus, the objective concepts, roles and Boolean KBs are the non-epistemic ones.
For instance,

• the concepts {o}, > and ⊥ are both: objective and subjective;

• a concept of the form AuKB, where A and B are concept names, is neither subjective
nor objective.

The semantics is defined in terms of epistemic interpretations.

Definition 6.8. Let (I, W) be an epistemic interpretation. The induced interpretation function,
denoted by ·I,W , maps ALCOK-concepts to subsets of NO and ALCOK-roles to subsets of

154 Chapter 6 Decidable Reasoning about Actions with Knowledge and Sensing

constructor image of the mapping ·I,W

P ∈ NR PI

KR
⋂

J∈W RJ ,W

A∈ NC AI

> NO

⊥ ;
{o} {oI}
¬C ∆ \ CI,W

C u D CI,W ∩ DI,W

C t D CI,W ∪ DI,W

∃R.C {o | ∃o′ ∈ NO.(o, o′) ∈ RI,W ∧ o′ ∈ CI,W}
∀R.C {o | ∀o′ ∈ NO.(o, o′) ∈ RI,W→ o′ ∈ CI,W}
KC

⋂

J∈W(C
J ,W)

Table 6.1: Syntax and semantics of ALCOK-roles and ALCOK-concepts

NO ×NO and is defined inductively as given in Table 6.1. The satisfaction relation between
epistemic interpretations and ground Boolean ALCOK-KBs, denoted by “||=”, is inductively
defined as follows:

(I, W) ||= o À− C iff oI ∈ CI,W

(I, W) ||= (o1, o2) À− R iff (oI
1 , oI

2) ∈ RI,W

(I, W) ||= C v D iff CI,W ⊆ DI,W

(I, W) ||= o1 ≈ o2 iff oI
1 = oI

2

(I, W) ||= ¬ψ iff (I, W) 6||=ψ
(I, W) ||=ψ1 ∧ψ2 iff (I, W) ||=ψ1 and (I, W) |=ψ2

(I, W) ||= Kψ iff (J , W) ||=ψ for all J ∈W.

Î

For interpreting an objective concept, role or Boolean KB in an epistemic interpretation
(I, W) the epistemic state W is irrelevant. For an objective concept or role X it holds that
X I,W = X I , and for an objective Boolean KB we have (I, W) ||=ψ iff I |=ψ for all epistemic
interpretations (I, W). If we deal with a subjective concept or role X , we sometimes write
X W instead of X I,W .

In presence of nested knowledge constructors the following equalities are true for an
arbitrary epistemic interpretation (I, W), ALCOK-role R and ALCOK-concept C:

(KR)W = (KKR)W ; (KC)W = (KKC)W ; (K¬KC)I,W = (¬KC)I,W .

6.2 An Agent Language with Sensing 155

Analogously, for an arbitrary Boolean ALCOK-KB ψ we have

(I, W) ||= Kψ iff (I, W) |= KKψ;

(I, W) ||= K¬Kψ iff (I, W) |= ¬Kψ.

In the following we assume that an ALCOK-role is either an atomic role name P or an
epistemic role of the form KP with P ∈ NR.

Next, we define the notion of epistemic entailments via an entailment relation between
ALCO-KBs and Boolean ALCOK-KBs.

Definition 6.9. Let K be an (objective) ALCO-KB consisting of an ABox and a TBox as
defined in Definition 2.21. A set of interpretations M is called an epistemic model iff the
following conditions are satisfied:

• for all I ∈M it holds that I satisfies the SNA and I |= K;

• for all sets of SNA-interpretations M′ with M (M′ there exists J ∈M′ with J 6|= K.

Let ψ be a Boolean ALCOK-KB. We say that ψ is epistemically entailed by K, written as
K ||=ψ, iff for all epistemic models M of K and all I ∈M it holds that (I, M) ||=ψ. Î

If K is consistent under the SNA, then it has a unique epistemic model denoted by M(K).
It holds that

M(K) = {I |∆I = NO, oI = o for all o ∈ NO, I |= K}.

Note that for example the concept inclusion >v {o} is unsatisfiable under the SNA but
is satisfied in a first-order interpretation I = (∆I , ·I) where ∆I only consists of a single
element and all object names are mapped to this element. This incompatibility problem with
the standard semantics does not occur if nominals are disallowed in the TBox. The following
Lemma is a consequence of Theorem 13 in [MRG11].

Lemma 6.10. Let K = (T , A) be an ALC-KB, ψ a Boolean ALCO-KB, and Obj the finite set of
all object names occurring in K and ψ. Furthermore, let

K′ = (T , A∪ {o 6≈ o′ | o, o′ ∈ Obj, o 6= o′}).

It holds that K ||=ψ iff K′ |=ψ.

In K′ we enforce unique names for the object names in Obj. Every finite model of K′ can
be lifted to an infinite model of K′ satisfying the SNA such that both satisfy the same Boolean
ALCO-KBs. The lemma is also true in case A is an ALCO-ABox and T an ALC-TBox.

Example 6.11. We consider a domain with electrical devices as before (concept name EDev)
that might have faults (concept name Fault and role name HasFault). Some faults are critical
(concept name CriticalFault). The TBox T consists of the following CIs:

T = {∃HasFault.>v EDev, EDevv ∀HasFault.Fault, CriticalFaultv Fault}.

156 Chapter 6 Decidable Reasoning about Actions with Knowledge and Sensing

The first two CIs define the domain and range of the role HasFault. The last one says that
every critical fault is a fault. Some ground facts about the current situation are given in the
following ABox A:

A= {dev À− EDev, (dev,err01) À− ¬HasFault, (dev,err02) À− ¬HasFault}.

There is an electrical device named dev. Assume the object names err01 and err02 are
identifiers of possible faults mentioned in the manual of dev. And, we know that currently
dev does not have these two faults. Assume K = (T , A) is everything we know about the
domain. Thus, in the epistemic model of K the two faults err01 and err02 are the only known
faults. But due to the open world assumption there are faults not mentioned in K. For
example, the following epistemic concept assertions about dev are epistemically entailed by
K:

dev À− ¬Kw(∃HasFault.>) “It is not known whether dev has a fault.”;

dev À− ∀(KHasFault).⊥ “dev has no known faults.”;

dev À− K(∀HasFault.¬KFault) “It is known that all faults of dev are unknown ones”.

Î

6.2.2 Consistency of Boolean KBs under the SNA

In this section, we prove that the problem of deciding consistency of Boolean ALCO-KBs
under the SNA is EXPTIME-complete. EXPTIME-completeness without the SNA is a consequence
of a corresponding result for the more expressive DL SHOQ(u) in [Lip14] (Corollary 3.34,
page 54). For instance, >v {o1}t{o2} has no SNA-model but is consistent without the SNA.
Both semantics are not compatible. However, it is easy to reduce consistency under the SNA
to standard consistency.

First, we show that a model with unnamed elements can be lifted to a model with an
infinite domain.

Definition 6.12. Let Obj ⊂ NO be a finite set of object names and I = (∆I , ·I) an inter-
pretation. The lifting of I w.r.t. Obj is an interpretation I` = (∆I` , ·I

`
) that is defined as

follows:

∆I` := {oI | o ∈ Obj} ∪ (∆I \ {oI | o ∈ Obj})×N;

AI` := {oI | oI ∈ AI , o ∈ Obj} ∪
{〈d, i〉 | d ∈ (∆I \ {oI | o ∈ Obj})∩ AI , i ∈ N} for all A∈ NC;

PI` := {(oI
1 , oI

2) | o
I
1 , oI

2 ∈ {o
I | o ∈ Obj}, (oI

1 , oI
2) ∈ PI} ∪

{(o1, 〈d, i〉) | oI
1 ∈ {o

I | o ∈ Obj}, d ∈ (∆I \ {oI | o ∈ Obj}), i ∈ N, (o1, d) ∈ PI} ∪
{(〈d, i〉, o2) | oI

2 ∈ {o
I | o ∈ Obj}, d ∈ (∆I \ {oI | o ∈ Obj}), i ∈ N, (d, o2) ∈ PI} ∪

{(〈d, i〉, 〈e, j〉) | d, e ∈ (∆I \ {oI | o ∈ Obj})∧ i, j ∈ N∧ (d, e) ∈ PI} for all P ∈ NR;

bI` :=

¨

bI bI ∈ {oI | o ∈ Obj}
〈bI , 0〉 bI ∈ (∆I \ {oI | o ∈ Obj})

for all b ∈ NO.

6.2 An Agent Language with Sensing 157

Î

We show that lifting an interpretation does not harm its model property.

Lemma 6.13. Let Obj, I and I` be as in Definition 6.12.

1. Let C be an ALCO-concept such that all object names mentioned in C are from Obj.

a) For all d ∈ {oI | o ∈ Obj} it holds that d ∈ CI iff d ∈ CI` .

b) For all 〈d, i〉 ∈ (∆I \ {oI | o ∈ Obj})×N it holds that d ∈ CI iff 〈d, i〉 ∈ CI` .

2. Let ψ be a Boolean ALCO-KB such that all object names mentioned in ψ are from Obj. It
holds that I |=ψ iff I` |=ψ.

Proof.

1. The proof is by induction on the structure of C . Let

bI ∈ {oI | o ∈ Obj} for some b ∈ Obj, and

〈d, i〉 ∈ (∆I \ {oI | o ∈ Obj})×N.

C => : a) We have bI ∈ (>)I iff bI ∈∆I iff bI ∈∆I` iff bI ∈ (>)I
`
.

b) d ∈ >I iff 〈d, i〉 ∈ >I` because d ∈ (∆I \{oI | o ∈ Obj}) holds by assumption.

C = A : for some A∈ NC.

a) It holds that bI ∈ AI iff bI ∈ AI` with bI ∈ {oI | o ∈ Obj} by definition of
AI` .

b) It holds that d ∈ AI iff 〈d, i〉 ∈ AI` by definition of AI` .

C = {a} : for some a ∈ Obj.

a) It holds that bI ∈ ({a})I iff bI = aI iff bI = aI iff bI = aI` (with aI = aI`

because a ∈ Obj and aI ∈ {oI | o ∈ Obj}) iff bI ∈ ({a})I
`
.

b) With d ∈ (∆I \ {oI | o ∈ Obj}) and a ∈ Obj it follows that d /∈ {a}I and
〈d, i〉 /∈ {a}I

`
.

C = D1 u D2 : Assume both claims are true for D1 and D2.

a) It holds that bI(D1uD2)I iff bI ∈ DI
1 and bI ∈ DI

2 iff bI ∈ DI`
1 and bI ∈ DI`

2

iff bI ∈ (D1 u D2)I
`
.

b) It holds that d(D1uD2)I iff d ∈ DI
1 and d ∈ DI

2 iff 〈d, i〉 ∈ DI`
1 and 〈d, i〉 ∈ DI`

2

iff 〈d, i〉 ∈ (D1 u D2)I
`
.

C = ¬D : Assume both claims are true for D.

a) It holds that bI ∈ (¬D) iff bI /∈ DI iff bI /∈ DI` iff bI ∈ (¬D)I
`
.

b) It holds that d ∈ (¬D) iff d /∈ DI iff 〈d, i〉 /∈ DI` iff 〈d, i〉 ∈ (¬D)I
`
.

C = ∃P.D : Assume both claims are true for D.

158 Chapter 6 Decidable Reasoning about Actions with Knowledge and Sensing

a) It holds that bI ∈ (∃P.D)I

iff there exists e ∈∆I such that (bI , e) ∈ PI and e ∈ DI

iff there exists e ∈ {oI | o ∈ Obj} such that (bI , e) ∈ PI and e ∈ DI , or there
exists e ∈ (∆I \ {oI | o ∈ Obj}) such that (bI , e) ∈ PI and e ∈ DI

iff there exists e ∈ {oI | o ∈ Obj} such that (bI , e) ∈ PI` and e ∈ DI` , or
there exists e ∈ (∆I \{oI | o ∈ Obj}) and i ∈ N such that (bI , 〈e, i〉) ∈ PI`

and 〈e, i〉 ∈ DI`

iff bI ∈ (∃P.D)I
`
.

b) This case is analogous to a).

2. Without loss of generality we can restrict our attention to a Boolean combination of
concept inclusions. We prove the claim for a single concept inclusion. The property for
Boolean combinations follows immediately.

Let C v D be an ALCO-CI that mentions only object names from Obj. We show that

I |= C v D iff I` |= C v D.

“⇒”: Assume I |= C v D. Let x ∈ CI` . We either have x ∈ {oI | o ∈ Obj} or
x ∈ (∆I \ {oI | o ∈ Obj})×N.

First, assume x ∈ {oI | o ∈ Obj}. We have that 1 implies x ∈ CI and with I |= C v D
we get x ∈ DI . Again 1 yields x ∈ DI` .

Second, assume x = 〈d, i〉 for some d ∈ (∆I \ {oI | o ∈ Obj}) and i ∈ N. 〈d, i〉 ∈ CI`

implies d ∈ CI with 1. Since I |= C v D we get d ∈ DI , and 〈d, i〉 ∈ DI` with 1. It
follows that I` |= C v D.

“⇐”: Assume I` |= C v D. Let d ∈ CI .

First, assume d ∈ {oI | o ∈ Obj}. With 1 and the assumption I` |= C v D it follows
that d ∈ DI .

Second, assume d ∈ (∆I \ {oI | o ∈ Obj}). We have d ∈ CI implies 〈d, i〉 ∈ CI` for
all i ∈ N which implies 〈d, i〉 ∈ DI` with I` |= C v D. Using 1 we obtain d ∈ DI .
Consequently, I |= C v D.

Any interpretation I that has at least one unnamed element (i.e. (∆I \ {oI | o ∈ Obj}) is
non-empty) can be lifted to an interpretation with a countably infinite domain. If in addition
all object names in Obj have unique names, then the we can define an SNA-interpretation
that is isomorphic to the lifting and models the same Boolean ALCO-KBs over object names
from Obj. For the proof we need the notion of a renamed interpretation.

Definition 6.14 (renamed interpretation). Let Y = (∆Y , ·Y) be an interpretation with an
arbitrary countably infinite domain ∆Y . Let ι : ∆Y → NO be a bijection. The renamed

6.2 An Agent Language with Sensing 159

interpretation of Y with ι, denoted by ι(Y), is defined as follows:

∆ι(Y) := NO;

oι(Y) := o for all o ∈ NO;

Aι(Y) := {ι(d) | d ∈ AY} for all A∈ NC;

Pι(Y) := {(ι(d), ι(e)) | (d, e) ∈ PY} for all P ∈ NR.

Î

Lemma 6.15. Let Obj ⊂ NO be a finite set of object names and I = (∆I , ·I) an interpretation
such that∆I is countably infinite and aI 6= bI holds for all a, b ∈ Obj with a 6= b. Furthermore,
let ι :∆I → NO be a bijection with ι(oI) = o for all o ∈ Obj.

For any Boolean ALCO-KB ψ that mentions only object names from Obj it holds that

I |=ψ iff ι(I) |=ψ.

Proof. In case I satisifies aI 6= bI for all a, b ∈ Obj with a 6= b a bijection ι :∆I → NO with
ι(oI) = o for all o ∈ Obj exists.

For a role name P ∈ NR we have

(d, e) ∈ PI iff (ι(d), ι(e)) ∈ Pι(I)

by definition of ι(I). Let C be an ALCO-concept that mentions only object names from Obj.
By induction on the structure of C it can be shown that d ∈ CI iff ι(d) ∈ C ι(I) which implies
I |=ψ iff ι(I) |=ψ for Boolean ALCO-KBs ψ with only object names from Obj.

The existence of an unnamed element can be enforced with a Boolean ALCO-KB and
also the unique name assumption for a finite set of object names can be expressed using
inequality assertions. Therefore, consistency under the SNA boils down to consistency w.r.t.
the standard semantics.

Lemma 6.16. Let ψ be a Boolean ALCO-KB and Obj(ψ) the set of all object names mentioned
in ψ. Furthermore, let

unnamed(ψ) := ¬
�

>v
⊔

o∈Obj(ψ)
{o}
�

and UNA(ψ) :=
∧

a,b∈Obj(ψ);
a 6=b

¬
�

{a} v {b}
�

.

It holds that ψ has a model that satisfies the SNA iff

ψ∧ unnamed(ψ)∧UNA(ψ)

is consistent under the standard semantics (without the SNA and without the UNA).

Proof. “⇒”: Let I be an interpretation satisfying the SNA such that I |=ψ holds. It is easy
to see that I |= unnamed(ψ)∧UNA(ψ).

“⇐": Assume there is an arbitrary interpretation I = (∆I , ·I) such that

I |=ψ∧ unnamed(ψ)∧UNA(ψ)

160 Chapter 6 Decidable Reasoning about Actions with Knowledge and Sensing

holds. Given I we construct a model of ψ satisfying the SNA. It follows that

(∆I \ {oI | o ∈ Obj(ψ)})

is non-empty. Consequently, the lifting of I w.r.t. Obj(ψ), denoted by I`, has a countably
infinite domain. Lemma 6.13 implies

I` |=ψ∧ unnamed(ψ)∧UNA(ψ).

Therefore, a bijection ι :∆I` → NO with ι(oI`) = o for all o ∈ Obj(ψ) exists. Let J := ι(I`)
be the renamed interpretation. Lemma 6.15 implies

J |=ψ.

Obviously, J satisfies the SNA.

As a consequence we get that consistency under the SNA is in EXPTIME. In ALC the SNA
is without loss of generality. Thus, the EXPTIME lower bound comes from the consistency
problem of ALC-KBs.

Corollary 6.17. Consistency of Boolean ALCO-KBs under the SNA is EXPTIME-complete.

6.2.3 Actions with Sensing Results

We define an extension of local effect ALCO-action theories (see Definition 2.29) where
actions now also have sensing results. In our model sensing corresponds to the ability of an
agent to observe the truth of an objective Boolean ALCO-KB.

Definition 6.18. An epistemic ALCO-action theory is a tuple

Σs = (Σ = (K,Act,pre,eff),sense),

that consists of a

• local effect ALCO-action theory Σ= (K,Act,pre,eff);

• a function sense that associates any of the action terms α(t̄) ∈ Act to an (objective)
Boolean ALCO-KB, denoted by sense(α(t̄)), that mentions only object terms included
in the arguments t̄.

For any α(ō) ∈ ground(Act) such that α(ō) is the ground instantiation of some α(t̄) ∈ Act
with ν we define

sense(α(ō)) :=ψν with ψ= sense(α(t̄)).

In the following we often write the action theory as a 5-tuple Σs = (K,Act,pre,eff,sense)
instead of Σs = (Σ,sense) with Σ= (K,Act,pre,eff). Î

In addition to the preconditions and effects, an epistemic ALCO-action theory explicitly
provides a Boolean KBs for each action. By an execution of a ground action α ∈ ground(Act)

6.2 An Agent Language with Sensing 161

the agent is able to observe the truth of the Boolean ALCO-KB sense(α). sense(α) is objective
since sensors only provide information about the outside world.

In case an action α(t̄) is a purely physical action (without any sensing result) we define
sense(α(t̄)) := TRUE. Note that effect conditions are restricted to be objective as well since
eff is supposed to only encode physical effects.

The size of an epistemic ALCO-action theory Σs = (K,Act,pre,eff,sense), denoted by |Σs|,
is given by the number of all symbols needed to write down K, the preconditions, effects,
and sensing property for all actions in Act.

The semantics of an epistemic ALCO-action theory is given terms of an epistemic FO-DS.

Definition 6.19. Let Σs = (Σ = (K,Act,pre,eff),sense) be an epistemic ALCO-action theory.
The epistemic FO-DS induced by Σs, denoted by DK(Σs), is an epistemic FO-DS

DK(Σs) = (I, M(K), F ,Act, E ,�poss,∼s),

that consists of the FO-DS D(Σ) = (I, M(K), F ,Act, E ,�poss) induced by Σ under the SNA
and a sensing compatibility relation that is given by

∼s:= {(I,α, J) ∈ I× ground(Act)× I | I |= sense(α) iff J |= sense(α)}.

Î

Example 6.20. We describe an action theory in our domain with electrical devices and faults.
The initial KB is given by

T = {∃HasFault.>v EDev, EDevv ∀HasFault.Fault, CriticalFaultv Fault};
A= {dev À− (EDevu¬On), err01 À− Fault}.

The TBox is the same as in Example 6.11. The ABox describes an electrical device dev that
is currently not on and the agent is aware of a single fault named err01. The agent has the
following actions at its disposal:

Act = {turn-on(x),repair(x , y),sense-fault(x , y),sense-on(x)}.

We have

pre(turn-on(x)) := {(x À− EDev)};

eff(turn-on(x)) :=
�

(x À− (¬∃HasFault.CriticalFault))Â 〈On, {x}〉+
	

;

sense(turn-on(x)) := (x À− >).

The agent is able to turn on electrical devices. The action has the desired effect only if the
device does not have a critical fault. It is possible to repair a fault y of a device x:

pre(repair(x , y)) := {(x À− EDev), (y À− Fault)};

eff(repair(x , y)) :=
�

〈HasFault, {(x , y)}〉−
	

;

sense(repair(x , y)) := (x À− >).

162 Chapter 6 Decidable Reasoning about Actions with Knowledge and Sensing

Both actions are purely physical actions and do not produce any sensing outcome. The action
sense-on(x) is a sensing action representing the agent’s ability to perceive whether x À− On
is true in the real world:

pre(sense-on(x)) := {(x À− EDev)};
eff(sense-on(x)) := ;;

sense(sense-on(x)) := (x À− On).

Furthermore, the agent is able to check whether a device x has a certain fault y:

pre(sense-fault(x , y)) := {(x À− EDev), (y À− Fault)};
eff(sense-fault(x , y)) := ;;

sense(sense-fault(x , y)) := ((x , y) À− HasFault).

Î

Now, we are ready to define the epistemic projection problem.

Definition 6.21. Let

• Σs = (K,Act,pre,eff,sense) be an epistemic ALCO-action theory,

• σ ∈ ground(Act)∗ a ground action sequence, and

• ψ a Boolean ALCOK-KB (called projection query).

Furthermore, let DK(Σs) = (I, M(K), F ,Act, E ,�poss,∼s) be the epistemic FO-DS induced by
Σs. We say that ψ is valid after doing σ in Σs iff for all I ∈M(K) it holds that (J , M) ||=ψ
where (I, M(K)) =⇒σ

DK(Σs)
(J , M).

The epistemic projection problem takes Σs, σ and ψ as input and asks whether ψ is valid
after doing σ in Σs. Î

The initial KB K represents everything the agent knows about the initial situation. The
unique epistemic model of K is the only initial epistemic state. The projection problem asks
whether the subjective projection query is true in all possible epistemic states that evolve
from the epistemic model of K by executing a given ground action sequence.

Example 6.22. We consider the action theory from Example 6.20. In K = (T , A) it is known
that the device dev is not on. The concept assertion (dev À− K(¬On)) is epistemically entailed
by K. Now, consider the following action sequences:

σ1 := turn-on(dev) σ2 = turn-on(dev) sense-on(dev).

Initially, the agent does not know whether the effect condition

(dev À− (¬∃HasFault.CriticalFault))

of turn-on(dev) is satisfied. There are models in M(K) where dev has a critical fault and
some where this is not the case. Thus, the agent is not able to foresee the outcome of σ1. It

6.3 Relation to the Epistemic Situation Calculus 163

holds that (dev À− ¬KwOn) is valid after doing σ1. The agent looses its knowledge about the
status of dev. If the agent now in turn executes sense-on(dev), it will also come to know
whether dev has a critical fault or not, i.e. both assertions

(dev À− Kw(∃HasFault.CriticalFault)) and (dev À− KwOn)

are valid after doing σ2. Î

In our setting the agent only has incomplete information about the initial situation. Al-
though the actions are deterministic, the outcome of an action might be only partially
observable due to conditional effects.

6.3 Relation to the Epistemic Situation Calculus

To justify our action semantics we provide an embedding into the epistemic Situation Calculus
formulated in the logic ES [LL04; LL11].

In ES (Section 6.3.1) it is possible to represent Reiter’s basic action theories (BATs) [Rei91;
Rei01a] of the Situation Calculus. The language also offers modalities for talking about the
knowledge of a single agent. We consider BATs formulated in ES as an axiomatic approach
for representing (possibly epistemic) FO-DSs. In Section 6.3.2 we show that FO-definable
ground actions can be axiomatized in a BAT and vice versa: ground actions definable in a
BAT are FO-definable. And we prove a characterization of the epistemic projection problem
with epistemic ALCO-action theories as an entailment problem formulated in ES.

6.3.1 Basic Notion of the Epistemic Situation Calculus

The logic ES was first introduced by Lakemeyer and Levesque in [LL04; LL11] as a logic for
reasoning about knowledge and action. ES can be viewed as an extension of FO with specific
modal operators for talking about actions and knowledge. Actions are treated as a separate
sort in the logic and it is possible to quantify over actions. We use the same fixed signature
of predicate, variable, object and action names (NF,NV,NO, NA) as introduced in Definition
2.1 and 2.5 plus some additional symbols.

Definition 6.23 (terms and standard names). Terms of sort object and terms of sort action
are distinguished. The sets of symbols NV (object variable names), NO (object names) and
NA (action names) are given as in the Definitions 2.1 and 2.5. In addition there is one
distinguished variable name a of sort action.

• Every element of NV ∪NO is a term of sort object and

• every element of Term(NA,NV,NO)∪ {a} is a term of sort action.

Ground terms (terms without variable names) of both sorts are also treated as standard
names.

• The sets of all ground terms of sort object and of sort action are denoted by NO (object
standard names) and NA (action standard names), respectively.

• N =NO ∪NA denotes the set of all standard names.

164 Chapter 6 Decidable Reasoning about Actions with Knowledge and Sensing

Thus, we have NO = NO. To construct atomic formulas the set of predicate names (called
fluent predicates) NF with arguments of sort object is given as in Definition 2.1. In addition
there are two distinguished unary predicates Poss and SF (not contained in NF) that take an
action as argument. Î

Definition 6.24 (ES-formulas). The set of all ES-formulas is defined as the least set satisfying
the following conditions:

• If t1, ..., tk are terms of sort object, ta a term of sort action and F ∈ NF a k-ary fluent,
then F(t1, ..., tk), Poss(ta) and SF(ta) are formulas.

• If t1 and t2 are terms of the same sort, then t1 ≈ t2 is a formula.

• If φ and φ′ are formulas and v a variable, then ¬φ, φ ∧φ′, φ ∨φ′, ∃v.φ and ∀v.φ
are formulas.

• If φ is a formula and ta a term of sort action, then [ta]φ and �φ are formulas.

• If φ is a formula, then also Know(φ) and OKnow(φ) are formulas.

We understand the additional Boolean connectives → and ≡ as the usual abbreviations.
Furthermore, the symbol TRUE with TRUE := o ≈ o, for some arbitrary but fixed o ∈ NO
stands for a tautology. Î

The fluent predicates from NF describe relations among objects. The formula Poss(ta)
expresses that action ta is possible. SF(ta) is true if ta provides the truth value “true” as its
sensing result. There are the usual first-order logical connectives including quantification over
objects and actions. In the Situation Calculus the current situation of a world is characterized
by the sequence of actions that have occurred so far. To refer to future situations there are
two action modalities:

[ta]φ means that “φ is true after the action ta has occurred” and

�φ should be read as “φ is true after any sequence of actions”.

Note that the modality [ta] encloses an arbitrary (possibly non-ground) action term. A
formula of the form Know(φ) should be read as “φ is known” and OKnow(φ) as “φ is all
that is known”.

We distinguish different sets of formulas:

• Static formulas are formulas without action modalities.

• Fluent formulas are static formulas without action terms.

• Primitive formulas are of the form F(ō) or Poss(α) or SF(α) with F ∈ NF, ō ∈ (NO)ar(F)

and α ∈NA. The set of all primitive formulas is denoted by PF .

• Objective formulas do not mention Know or OKnow.

• In Subjective formulas all predicate names occur within the scope of a Know or OKnow.

6.3 Relation to the Epistemic Situation Calculus 165

For an action sequenceσ = α1 · · ·αm ∈N ∗A and a formulaφ we write [σ]φ as an abbreviation
of [α1]([α2](· · · ([αm]φ))). For a k-tuple of variables v̄ = (v1, · · · , vk) we write ∃v̄.φ as an
abbreviation of ∃v1.(∃v2.(· · · (∃vk.φ))). And for a k-tuple of terms t̄ = (t1, · · · , tk) the formula
v̄ ≈ t̄ abbreviates v1 ≈ t1 ∧ · · · ∧ vk ≈ tk.

The semantics is given in terms of worlds that have a two-dimensional structure. A world
assigns truth values to all primitive formulas (the first dimension) relative to the sequence of
ground actions that have occurred so far (the second dimension).

Definition 6.25. A world w is a total function of the form

w : PF ×N ∗A → {0,1}.

The set of all worlds is denoted by W . The symbol 〈〉 is used to denote the empty sequence
of actions. A set of worlds e ⊆W is called epistemic state. Î

To define the meaning of the epistemic operators Know and OKnow some additional notions
are needed.

Definition 6.26. Let w, w′ ∈ W be two worlds, σ ∈ N ∗A an action sequence and α ∈ NA a
ground action. Sensing compatibility of w and w′ w.r.t. σ, denoted by w'σ w′, is defined by
induction on the length of σ:

• It holds that w'〈〉 w′.

• It holds that w'σ·α w′ iff w'σ w′ and w[SF(α),σ] = w′[SF(α),σ].

Let w ∈W and σ ∈N ∗A . The progression of w through σ is a world wσ such that

wσ[ξ,σ′] = w[ξ,σ ·σ′] for all ξ ∈ PF and all σ′ ∈N ∗A .

Let e be an epistemic state, w ∈W and σ ∈ N ∗A . The progression of e through σ w.r.t. w,
denoted by ew

σ, is an epistemic state, that is defined as follows:

ew
σ := {w′σ | w

′ ∈ e, w′ 'σ w}.

Î

Quantifiers are interpreted by substituting variables with standard names of the corre-
sponding sort. Let v ∈ NV ∪ {a} be a variable, φ a formula, Nv the set of all standard names
of the same sort as v and n ∈Nv a standard name. φv

n denotes the formula that is the result
of simultaneously replacing all free occurrences of v in φ by n. The notation is also used for
tuples of variables and tuples of standard names.

Now we are ready to define the truth of sentences (formulas without variables) in an
epistemic state and a world given the history of actions, i.e. the sequence of actions that
have occurred so far.

Definition 6.27 (satisfaction of sentences). Let e ⊆W be an epistemic state w ∈ e a world
and σ ∈N ∗A an action sequence. The satisfaction relation |=ES between e, w,σ and sentences
is defined inductively by the following conditions:

1. e, w,σ |=ES ρ iff w[ρ,σ] = 1 for an ρ ∈ PF ;

166 Chapter 6 Decidable Reasoning about Actions with Knowledge and Sensing

2. e, w,σ |=ES (t1 ≈ t2) iff t1 and t2 are identical;

3. e, w,σ |=ES ¬ϕ iff e, w,σ 6|= ϕ;

4. e, w,σ |=ES ϕ1 ∧ϕ2 iff e, w,σ |=ES ϕ1 and e, w,σ |=ES ϕ2;

5. e, w,σ |=ES ϕ1 ∨ϕ2 iff e, w,σ |=ES ϕ1 or e, w,σ |=ES ϕ2;

6. e, w,σ |=ES ∃v.φ iff e, w,σ |=ES φ
v
n for some n ∈Nv;

7. e, w,σ |=ES ∀v.φ iff e, w,σ |=ES φ
v
n for all n ∈Nv;

8. e, w,σ |=ES [α]ϕ iff e, w,σ ·α |=ES ϕ;

9. e, w,σ |=ES �ϕ iff e, w,σ ·σ′ |=ES ϕ for all σ′ ∈N ∗A ;

10. e, w,σ |=ES Know(φ) iff for all w′ ∈ ew
σ: ew

σ, w′, 〈〉 |= φ;

11. e, w,σ |=ES OKnow(φ) iff for all w′ ∈W : w′ ∈ ew
σ iff ew

σ, w′, 〈〉 |= φ.

We often write e, w |=ES ϕ instead of e, w, 〈〉 |= ϕ. Let Γ be a set of sentences. We write
Γ |=ES ϕ iff for all e ⊆ W and w ∈ e we have e, w |=ES Γ (e, w |= ψ for all ψ ∈ Γ) implies
e, w |=ES ϕ. In case of objective sentences we omit the epistemic state. Î

In ES we can express basic action theories of the epistemic situation calculus as follows.

Definition 6.28. Let F ⊂ NF be a finite set of fluents A basic action theory (BAT)

Σ= Σ0 ∪Σpre ∪Σpost ∪Σsense

over F is a set of sentences mentioning only fluents from F and satisfying the following
conditions.

1. Σ0, the initial theory, is a finite set of objective fluent sentences describing the initial
state of the world.

2. Σpre is a set containing a single precondition axiom of the form

∀a.�(Poss(a)≡ ϑ),

where ϑ is a disjunction of formulas the form

∃ x̄ .(a ≈ α(t̄)∧ϕ),

such that α(t̄) ∈ Term(NA,NV,NO) and ϕ is an objective fluent formula.

3. Σpost is a finite set of successor state axioms (SSAs), one for each fluent in F , incorpo-
rating Reiter’s [Rei01a] solution to the frame problem, and encoding the effects the
actions have on the different fluents. The SSA for a fluent predicate F ∈ F has the
form

∀a.∀ x̄ .�(([a]F(x̄)) ≡ (γ+F ∨ F(x̄)∧¬γ−F)),

6.3 Relation to the Epistemic Situation Calculus 167

where the positive effect condition γ+F and negative effect condition γ−F are static formulas
with free variables x̄ and a. We assume that the positive and negative effect condi-
tions γ+F and γ−F are of a certain normal form. Both, γ+F and γ−F are (possibly empty)
disjunctions of formulas of the form

∃ ȳ .(a ≈ α(t̄)∧φ),

where α(t̄) ∈ Term(NA,NV,NO) such that the variables in t̄ are among ȳ and x̄ , and φ
is an objective fluent formula with free variables among ȳ and x̄ . Note that ȳ can be
empty in case the existential quantifiers at the front are omitted.

4. Σsense is a set containing a single sentence of the form

∀a.�(Poss(a)≡ ϑ),

where ϑ is a disjunction of formulas of the form

∃ x̄ .(a ≈ α(t̄)∧ϕ),

such that α(t̄) ∈ Term(NA,NV,NO) and ϕ is an objective fluent formula.

Î

The specific shape of the SSAs correspond to the normal form as introduced in [Rei01a].

Example 6.29. We axiomatize (some parts of the) domain from Example 6.20 using a
BAT. Here, we consider the actions turn-on(x), turn-off(x) and sense-on(x). The initial
theory Σ0 consists of the FO translations of the axioms in T and A given in Example 6.20.
The precondition axiom in Σpre requires that actions need to be instantiated with an electrical
device (unary fluent EDev):

∀a. �
�

Poss(a)≡
�

∃x .(a ≈ turn-on(x)∧ EDev(x)) ∨
∃x .(a ≈ turn-off(x)∧ EDev(x)) ∨

∃x .(a ≈ sense-on(x)∧ EDev(x))
�

�

.

The SSA for On in Σpost is given by

∀x .�([a]On(x) ≡ (a ≈ turn-on(x)∧¬∃y.(HasFault(x , y)∧ CriticalFault(y))) ∨
On(x)∧ a 6≈ turn-off(x)).

In words: it always holds that after executing an action an object x is on iff x was turned on
and had no critical fault or it was on before and was not turned off. The fluent CriticalFault
is not changing and has the SSA

∀x .�([a]CriticalFault(x) ≡ CriticalFault(x)).

168 Chapter 6 Decidable Reasoning about Actions with Knowledge and Sensing

The fluent HasFault is handled analogously. Σsense consists of the following axiom:

∀a. �
�

SF(a)≡
�

∃x .(a ≈ turn-on(x)) ∨
∃x .(a ≈ turn-off(x)) ∨

∃x .(a ≈ sense-on(x)∧On(x))
�

�

.

The actions turn-on(x) and turn-off(x) always return true as their sensing result. The
truth value of SF(sense-on(x)) is always equal to the truth value of On(x). Î

Let Σ be a BAT, σ ∈ N ∗A and φ a (possibly subjective) fluent formula. The epistemic
projection problem can be formalized in ES as the following entailment problem:

Σ∧OKnow(Σ) |=ES [σ]φ.

Thus, we assume the BAT Σ is all that is known about the world and then check whether the
truth of φ after doing σ is entailed.

6.3.2 Basic Action Theories and Epistemic FO-DSs

The goal in this section is to characterize the epistemic projection problem in our DL-based
language as an entailment problem in the epistemic Situation Calculus. As a first step towards
this characterization we have to equivalently describe the semantics of a BAT formulated in
ES in terms of an epistemic FO-DS. After doing this we will also establish the relationship
between our notion of FO-definability of ground actions in an FO-DS and actions definable
in a BAT.

To simplify the presentation we first make a few assumptions. Note that the FO formulas
considered in Section 2.1 and ES fluent formulas (formulas without action terms or modal-
ities) are built using the same sets of symbols including the fixed vocabulary NF,NO and
NV. Syntactically, we do not distinguish between the two sets of formulas. In the following
we therefore view ES fluent formulas also as FO formulas (interpreted under the SNA) and
FO formulas as ES fluent formulas. This is done to avoid additional notation in form of
mappings between FO formulas and ES fluent formulas.

As a first step we define a world that initially coincides with a given interpretation and
satisfies a given BAT.

Definition 6.30. Let Σ = Σ0 ∪Σpre ∪Σpost ∪Σsense be a BAT over a finite set F ⊂ NF and
I = (∆I , ·I) an interpretation with ∆I = NO (=NO) and oI = o for all o ∈ NO.

wΣI denotes a world satisfying the following conditions:

• For all F(ō) ∈ PF with F ∈ F it holds that

wΣI [F(ō), 〈〉] = 1 iff ō ∈ FI and

for all σ ·α ∈N ∗A : wΣI [F(ō),σ ·α] = 1 iff wΣI ,σ |=ES
�

γ+F ∨ F(x̄)∧¬γ−F
�a x̄
α ō,

where γ+F ∨ F(x̄)∧¬γ−F is the rhs of the SSA of F in Σpost.

6.3 Relation to the Epistemic Situation Calculus 169

• For all F(ō) ∈ PF with F ∈ NF \F it holds that

for all σ ∈N ∗A : wΣI [F(ō),σ] = 1 iff ō ∈ FI .

• For all Poss(α) ∈ PF with α ∈NA it holds that

for all σ ∈N ∗A : wΣI [Poss(α),σ] = 1 iff wΣI ,σ |=ES ϑ
a
α,

where Σpre = ∀a.�(Poss(a)≡ ϑ).

• For all SF(α) ∈ PF with α ∈NA it holds that

for all σ ∈N ∗A : wΣI [SF(α),σ] = 1 iff wΣI ,σ |=ES ϑ
a
α,

where Σsense = ∀a.�(SF(a)≡ ϑ).

Î

The following lemma is an easy consequence.

Lemma 6.31. Let Σ and I be as in Definition 6.30.

1. A world wΣI satisfying the conditions in Def. 6.30 exists and is uniquely determined.

2. It holds that wΣI , 〈〉 |=ES Σpre ∪Σpost ∪Σsense.

3. Let φ be an objective fluent formula over F with free variables x̄ , and ō a tuple of object
standard names of the same length as ~x. It holds that I |= φ x̄

ō iff wΣI , 〈〉 |=ES φ
x̄
ō .

We also need a corresponding construction in the other direction. The truth assignments
of a world to primitive formulas given a sequence of actions uniquely determines an inter-
pretation.

Definition 6.32. Let w be an ES world and σ ∈N ∗A . We define an FO interpretation Iσw as
follows:

• ∆Iσw :=NO;

• FIσw := {ō | w[F(ō),σ] = 1} for all F ∈ NF and

• oIσw := o for all o ∈NO.

Î

By construction the following lemma is a direct consequence.

Lemma 6.33. Let w, σ and Iσw be as above. Let φ be a fluent formula over F with free
variables x̄ , and ō a tuple of object standard names of the same length. It holds that Iσw |= φ

x̄
ō

iff w,σ |=ES φ
x̄
ō .

Now we are ready to define the epistemic FO-DS induced by a BAT.

170 Chapter 6 Decidable Reasoning about Actions with Knowledge and Sensing

Definition 6.34. Let Σ = Σ0 ∪Σpre ∪Σpost ∪Σsense be a BAT over a finite set of fluents F .
The FO-DS induced by Σ, denoted by DK(Σ) = (Iini, F ,Act, E ,�poss,∼s), is defined as follows:

• Iini = {I | wΣI , 〈〉 |=ES Σ0}.

• Act consists of all action terms from Term(NA,NV,NO)mentioned in Σpre∪Σpost∪Σsense.

• The effect functions E = 〈add,del〉 are given as follows: For each I ∈ I, α ∈ ground(Act)
and F ∈ F we define

add(I,α, F) :=
�

ō | wΣI , 〈〉 |=ES
�

γ+F
�a x̄
α ō

	

and

del(I,α, F) :=
�

ō | wΣI , 〈〉 |=ES
�

γ−F
�a x̄
α ō

	

,

where γ+F and γ−F are the positive and negative effect conditions in the SSA of F in
Σpost.

• For each I ∈ I and α ∈ ground(Act) we have:

I �poss α iff wΣI [Poss(α), 〈〉] = 1.

• The sensing compatibility relation satisfies

∼s=
�

(I,α, J) ∈ I× ground(Act)× I
�

�wΣI [SF(α), 〈〉] = wΣJ [SF(α), 〈〉]
	

.

With D(Σ) we denote the induced FO-DS (Iini, F ,Act, E ,�poss) without the sensing compati-
bility relation. Î

The defined DK(Σ) is a well-defined epistemic FO-DS. Since Σ0 only consists of objective
fluent sentences, we can view Σ0 as a first-order KB. All action terms occurring in Σpre ∪
Σpost ∪ Σsense different from the action variable a are elements of Term(NA,NV,NO). For
the set of action terms Act we have ground(Act) ⊆ NA. For each n-ary fluent F(x̄) ∈ F and
ground action α ∈ ground(Act) the instantiated positive and negative effect conditions

�

γ+F
�a
α

and
�

γ−F
�a
α

obtained from the SSA of F have only free variables among x̄ . Hence, the sets
add(I,α, F) and del(I,α, F) are well-defined sets of n-tuples from NO.

Next, we prove the correctness of the definition.

Lemma 6.35. Let Σ= Σ0 ∪Σpre ∪Σpost ∪Σsense be a BAT over F and

DK(Σ) = (Iini, F ,Act, E ,�poss,∼s)

the induced epistemic FO-DS with D(Σ) = (Iini, F ,Act, E ,�poss).

1. For all I ∈ Iini it holds that wΣI , 〈〉 |=ES Σ.

2. For all ES worlds with w, 〈〉 |=ES Σ it holds that I〈〉w ∈ Iini.

3. Let I ∈ Iini, σ ∈ ground(Act)∗ and J ∈ I with I ⇒σ
D(Σ) J .

a) For all ρ ∈ PF it holds that wΣI [ρ,σ] = wΣJ [ρ, 〈〉].

6.3 Relation to the Epistemic Situation Calculus 171

b) For all α ∈ ground(Act) it holds that wΣI [Poss(α),σ] iff J �poss α.

4. Let w be a world with w, 〈〉 |=ES Σ and σ ∈ ground(Act)∗.

a) It holds that I〈〉w ⇒
σ
D(Σ) Iσw .

b) For all α ∈ ground(Act) it holds that w[Poss(α),σ] = 1 iff Iσw �poss α.

5. Let w and ω be two worlds with

w, 〈〉 |=ES Σ and ω, 〈〉 |=ES Σ,

σ = α0 · · ·αn ∈ ground(Act)∗ an action sequence for some n ≥ 0 and I0, . . . , In+1 and
J0, . . . , Jn+1 sequences of interpretations with I0 = I〈〉w , J0 = I〈〉ω and Ii ⇒

αi
D(Σ) Ii+1 and

Ji ⇒
αi
D(Σ) Ji+1 for all i = 0, . . . , n.

It holds that w'σ ω iff (Ii ∼
αi
s Ji for all i = 0, . . . , n).

Proof. The first two claims follow directly from the definition of DK(Σ). Claim 3, 4 and 5
can be proven by induction on the length of σ. We omit further details.

As a consequence of this lemma it follows that the semantics of a BAT can be properly
characterized using an epistemic FO-DS. Furthermore, it follows that ground actions defined
in a BAT Σ= Σ0 ∪Σpre ∪Σpost (without sensing) are FO-definable in D(Σ).

Lemma 6.36. Let Σ= Σ0 ∪Σpre ∪Σpost be a BAT (without sensing) over F ,

D(Σ) = (Iini, F ,Act, E ,�poss)

the induced FO-DS and A ⊆ ground(Act) a finite set of ground actions. It holds that the actions
A are FO-definable in D(Σ).

Proof. Let α ∈ A and F ∈ F . Let γ+F and γ−F be the positive and negative effect condition,
respectively, in the SSA for F in Σpost. In the effect conditions we substitute the action
variable a by the ground term α. It can be shown that there are FO formulas that are
equivalent to

�

γ+F
�a
α

and
�

γ−F
�a
α

and provide context-free definitions of the add-set and delete-
set, respectively.

The context for the preconditions are obtained by instantiating the action variable in the
precondition axiom in Σpre.

Thus, a BAT can be viewed as an FO-admissible representation for a set of ground actions.
Lemma 6.35 also allows us to establish the relationship of the transition relation on

epistemic interpretations “=⇒σDK
” and the progression of epistemic states in ES through an

action sequence σ.

Lemma 6.37. Let Σ be a BAT over F ⊂ NF, DK(Σ) = (Iini, F ,Act, E ,�poss,∼s) the induced
epistemic FO-DS, and e ⊆W an epistemic state with w ∈ e such that

e, w |=ES Σ∧OKnow(Σ).

172 Chapter 6 Decidable Reasoning about Actions with Knowledge and Sensing

Furthermore, let σ ∈ ground(Act)∗ be an action sequence, I ∈ Iini an interpretation with I = I〈〉w
and (J , M) the epistemic interpretation with (I, W) =⇒σ

DK(Σs)
(J , M), where W = Iini. It

holds that

J = Iσw and M= {I〈〉ω |ω ∈ ew
σ}.

Proof. Note that a BAT Σ is objective. Let e ⊆W and w ∈ e with e, w |=ES Σ∧OKnow(Σ). It
is implied that e = {w ∈W | w, 〈〉 |=ES Σ}. Let σ be a ground action sequence and (J , M) the
epistemic interpretation satisfying (I〈〉w , Iini) =⇒σDK(Σs)

(J , M). It follows that J = Iσw from
Lemma 6.35.4. We prove by induction on the length of σ that M= {Iσω |ω ∈ ew

σ}.
First, assume σ = 〈〉. It follows that ew

σ = e. We have to show that Iini = {I〈〉ω | ω ∈ e}.
Let Y ∈ Iini and let ω′ = wΣY . It follows that Y = I〈〉

ω′
. Lemma 6.35.1 implies ω′, 〈〉 |=ES Σ.

Therefore, ω′ ∈ e and Y ∈ {I〈〉ω | ω ∈ e}. Consequently, Iini ⊆ {I〈〉ω | ω ∈ e}. The other
direction {I〈〉ω |ω ∈ e} ⊆ Iini follows from e = {w ∈W | w, 〈〉 |=ES Σ} and Lemma 6.35.2.

Next, assume σ = θ ·α. Let (Y, V) be such that

(I〈〉w , Iini) =⇒θDK(Σs)
(Y, V) =⇒α

DK(Σs)
(J , M).

By induction we have V = {I〈〉ω |ω ∈ ew
θ
}. We have J ′′ ∈M

iff there exists J ′ ∈ V with Y ∼αs J ′ and J ′⇒α
D(Σ) J ′′

iff there exists υ ∈ ew
θ

with Iθw ∼
α
s I〈〉υ and I〈〉υ ⇒

α
D(Σ) J ′′ (with V = {Iθω |ω ∈ ew

θ
})

iff there exists µ ∈ e with w'θ µ and Iθw ∼
α
s Iθµ and Iθµ ⇒

α
D(Σ) J ′′ (by definition of ew

θ
)

iff there exists µ ∈ e with w'θ ·α µ and Iθµ ⇒
α
D(Σ) J ′′ and J ′′ = Iθ ·αµ (by Lemma 6.35)

iff there exists µ ∈ e and µθ ·α ∈ ew
θ ·α and Iθµ ⇒

α
D(Σ) J ′′ and J ′′ = I〈〉µθ ·α (with Iθ ·αµ = I〈〉µθ ·α)

iff J ′′ ∈ {I〈〉ω |ω ∈ ew
θ ·α}.

To characterize the epistemic projection problem in an epistemic ALCO-action theory Σs in
ES we need to translate Σs to a BAT. We use the translation of DL syntax into FO syntax (see
Definition 2.25). For the sake of simplicity we only consider action theories for a finite set of
ground actions. This is sufficient because the projection problem only deals with ground
actions.

Definition 6.38. Let Σs = (K, A,pre,eff,sense) be an epistemic ALCO-action theory, where
A is a finite set of ground action terms. A corresponding BAT bΣ= Σ0 ∪Σpre ∪Σpost ∪Σsense
is defined as follows:

Σ0 := {tr(ϕ) | ϕ is an axiom in K}.

6.3 Relation to the Epistemic Situation Calculus 173

The precondition axiom in Σpre is given by

∀a. � Poss(a)≡
�

∨

α∈A
a = α∧

�

∧

ψ∈pre(α)
tr(ψ)

��

.

For each relevant concept name and role name F in Σs there is an SSA of the form

∀a.∀ x̄ .�(([a]F(x̄)) ≡ (γ+F ∨ F(x̄)∧¬γ−F))

in Σpost with

γ+F :=
∨

α∈A,
ψÂ〈F,{ō}〉+∈ eff(α)

a = α∧ x̄ = ō ∧ tr(ψ) and

γ−F :=
∨

α∈A,
ψÂ〈F,{ō}〉−∈ eff(α)

a = α∧ x̄ = ō ∧ tr(ψ).

The axiom for the sensing results is given by

∀a. � SF(a)≡
�

∨

α∈A
a = α∧ tr(sense(α))

�

.

Î

Using the FO-DS semantics of BATs it is straightforward to prove that the action theory
and the translated BAT are equivalent.

Lemma 6.39. Let Σs be an epistemic ALCO-action theory and bΣ the corresponding BAT as
defined above. It holds that DK(Σs) =DK(bΣ).

In order to translate the projection query formulated in ALCOK to an ES fluent formula
the translation function from Definition 2.25 is extended to ALCOK as follows: let KC be an
ALCOK-concept we define

trx(KC) := Know(trx(C)) and tr y(KC) := Know(tr y(C)).

The definitions for the other concept constructors are as in Definition 2.25. Similarly, for
an epistemic role KR we define trx ,y(KR) := Know(trx ,y(R)). For an epistemic Boolean
ALCOK-KB Kψ we define tr(Kψ) := Know(tr(ψ)).

Lemma 6.40. Let ψ be a Boolean ALCOK-KB, (I, W) an epistemic interpretation, e ⊆W a set
of ES worlds and w ∈ e such that I = I〈〉w and W = {I〈〉ω |ω ∈ e}. It holds that

(I, W) ||=ψ iff e, w |=ES tr(ψ).

Proof. By induction it is straightforward to prove that the FO translation tr(ψ) of a Boolean
ALCOK-KB ψ is correct. We omit the proof.

Now we are ready to prove the ES-characterization of the epistemic projection problem.

174 Chapter 6 Decidable Reasoning about Actions with Knowledge and Sensing

Theorem 6.41. Let Σs = (K, A,pre,eff,sense) be an epistemic ALCO-action theory, where A
is a finite set of ground action terms, bΣ the equivalent BAT (according to Def. 6.38), σ ∈ A∗ a
ground action sequence and ψ a Boolean ALCOK-KB. It holds that ψ is valid after doing σ in
Σs iff

bΣ∧OKnow(bΣ) |=ES [σ]tr(ψ).

Proof. Let DK(Σs) = (I, M(K), F ,Act, E ,�poss,∼s). We have DK(Σs) = DK(bΣ) by Lemma
6.39.

“⇒”: Assume that ψ is valid after doing σ in Σs. Let e ⊆W and w ∈ e such that

e, w |=ES bΣ∧OKnow(bΣ).

We have to show that e, w,σ |=ES tr(ψ). From Lemma 6.35 and DK(Σs) =DK(bΣ) it follows
that I〈〉w ∈M(K), where M(K) is the initial state space of DK(bΣ). Let (J , M) be the epistemic
interpretation with (I〈〉w , M(K)) =⇒σ

DK(Σs)
(J , M). Lemma 6.37 implies that

J = Iσw and M= {I〈〉ω |ω ∈ ew
σ}

It follows that J = I〈〉wσ . Lemma 6.40 implies

ew
σ, wσ, 〈〉 |=ES tr(ψ)

since we have (J , M) ||=ψ by assumption. Now,

ew
σ, wσ, 〈〉 |=ES tr(ψ) implies e, w,σ |=ES tr(ψ).

“⇐”: Assume bΣ ∧ OKnow(bΣ) |=ES [σ]tr(ψ). Let I ∈ M(K) and (J , M) the epistemic
interpretation that satisfies (I, M(K)) =⇒σ

DK(Σs)
(J , M). We have to show that (J , M) ||=ψ.

Let
w= wbΣ

I and e = {wbΣ
Y | Y ∈M(K)}

Lemma 6.35.1 and 6.35.2 imply e = {w ∈W | w, 〈〉 |=ES bΣ}. Consequently,

e, w |=ES bΣ∧OKnow(bΣ).

By assumption we have
e, w |=ES [σ]tr(ψ).

This implies
ew
σ, wσ, 〈〉 |=ES tr(ψ).

With Lemma 6.37 and 6.40 it follows that (J , M) ||=ψ.

6.4 Deciding the Epistemic Projection Problem

In Theorem 6.41 we have characterized the epistemic projection problem in our DL-based
language as a standard entailment problem in the epistemic Situation Calculus. The Represen-
tation Theorem for ES [LL04] provides us with a method for reducing projection to standard

6.4 Deciding the Epistemic Projection Problem 175

(non-modal) first-order reasoning by eliminating the action and knowledge modalities in the
projection query. To deal with the action modality regression is used to obtain a sentence
that refers only to the initial situation. Given the initial KB subformulas of the form Know(φ)
are then replaced by objective formulas φ′ that capture the known instances of φ w.r.t. the
initial KB. To obtain a decision procedure for the projection problem we show that a similar
reduction can be done within ALCO. We combine the reduction approach used in [Baa+05a]
for the non-epistemic projection problem and a method for rewriting subjective concepts
and roles to objective ones in the projection query resembling the Representation Theorem
[Lev84; LL01] in presence of only-knowing. We show that the epistemic projection problem
is EXPTIME-complete.

First, we consider some basic properties of knowledge states that evolve from the initial
epistemic model by executing a sequence of ground actions.

In the following Obj(Σs) denotes the finite set of all object names that are mentioned in
the epistemic ALCO-action theory Σs under consideration.

The elements of Obj(Σs) are called named elements and the ones in NO \Obj(Σs) are called
unnamed elements. The next lemma basically says that in a knowledge state reached by
executing a sequence of ground actions the unnamed elements are indistinguishable.

Lemma 6.42. Let Σs = (K, A,pre,eff,sense) be an epistemic ALCO-action theory and let
DK(Σs) = (M(K), F , A, E ,Pre,∼s) be the induced epistemic FO-DS.

Furthermore, let σ ∈ A∗ and (J , M) the epistemic interpretation with

(I, M(K)) =⇒σ
DK(Σs)

(J , M)

for some I ∈M(K).

1. Let KD be an ALCOK-concept where D is objective. It holds that

�

KD
�M ∩

�

NO \Obj(Σs)
�

6= ; implies (NO \Obj(Σs)) ⊆
�

KD
�M

.

2. Let KP be an epistemic role with P ∈ NR. It holds that if (d, e) ∈ (KP)M for some
d ∈ NO \ Obj(Σs) and e ∈ NO, then (c, e) ∈ (KP)M for all c ∈ NO \ Obj(Σs); and if
(d, e) ∈ (KP)M for some e ∈ NO \ Obj(Σs) and d ∈ NO, then (d, c) ∈ (KP)M for all
c ∈ NO \Obj(Σs).

We first present an outline of the proof. Donini et. al [Don+98] showed that the interpre-
tations contained in the epistemic model M(K) of an ALC-KB K are closed under renaming
of unnamed elements. Unnamed elements are indistinguishable. We use this observation for
the proof of Lemma 6.42 as follows. Assume to the contrary that there exist two unnamed
elements d, e ∈ NO \ Obj(Σs) such that d ∈

�

KD
�M

and e /∈
�

KD
�M

. We show that there
exists an interpretation Y ∈M such that d ∈ DY but e /∈ DY . To obtain the contradiction we
construct an interpretation Y ′ also contained in M with d /∈ DY by just “swapping” the two
unnamed elements d and e in Y. For the proof some auxiliary lemmas are needed.

We show that updating a renamed interpretation yields an isomorphic interpretation if
names of named elements are fixed.

Lemma 6.43. Let I be an interpretation, ι : NO → NO a bijection with ι(o) = o for all
o ∈ Obj(Σs), L a set of local effects, C an ALCO-concept, and ψ a Boolean ALCO-KB, where all
object names mentioned in L, C and ψ are from Obj(Σs). Furthermore, let J := ι(I).

176 Chapter 6 Decidable Reasoning about Actions with Knowledge and Sensing

1. o ∈ AIL
iff ι(o) ∈ AJ L

for all o ∈ NO and A∈ NC;

2. (o, o′) ∈ PIL
iff (ι(o), ι(o′)) ∈ PJ L

for all o, o′ ∈ NO and P ∈ NR;

3. o ∈ CIL
iff ι(o) ∈ CJ L

for all o ∈ NO;

4. IL |=ψ iff J L |=ψ.

Proof.

1. Let A∈ NC and d ∈ NO. We show d ∈ AIL
iff ι(d) ∈ AJ L

. By the definition of renamed
interpretations we have d ∈ AI iff ι(d) ∈ AJ .

Furthermore it holds that d ∈ {o | 〈A, {o}〉− ∈ L}

iff there exists 〈A, {d}〉− ∈ L,

iff ι(d) = d and 〈A, {d}〉− ∈ L, by assumption on ι

iff ι(d) ∈ {o | 〈A, {o}〉− ∈ L}.

We also have d ∈ {o | 〈A, {o}〉+ ∈ L} iff ι(d) ∈ {o | 〈A, {o}〉+ ∈ L}. By the definition of
interpretation updates it now follows that d ∈ AIL

iff ι(d) ∈ AJ L
.

2. The proof is analogous to the proof of claim 1.

3. The claim is proven by induction on the structure of C .

C = A : for some A∈ NC. See proof of claim 1.

C = {o} : for some o ∈ Obj(Σs). We get d ∈ {o}I
L

iff d ∈ {oIL
} iff d = o iff ι(d) = o iff

ι(d) ∈ {oJ L
} iff ι(d) ∈ {o}J

L
.

We omit the proof of the remaining cases.

4. The claim directly follows from the other three claims.

In particular, we have that renaming unnamed elements does not change the dynamic
type of interpretations. It remains to be shown that a relevant context can be chosen such
that two interpretations with the same dynamic type w.r.t. that context also given the same
sensing result.

Let Σs = (K, A,pre,eff,sense) be an epistemic ALCO-action theory, where A is a finite set
of ground action terms. The set of all relevant local effects in Σs, denoted by Lit(Σs), are given
by

Lit(Σs) :=
�

〈F, X 〉±
�

�ψ Â 〈F, X 〉± ∈ eff(α) for some α ∈ A
	

. (6.1)

The relevant ALCO-context for Σs is given by

C := {ψ,¬ψ | ψ Â 〈F, {ō}〉± ∈ eff(α) for some α ∈ A, or

ψ= sense(α) for some α ∈ A, or

ψ is an axiom in K}.

(6.2)

6.4 Deciding the Epistemic Projection Problem 177

The preconditions are not relevant for the projection problem and are omitted. Dynamic
types w.r.t. Lit(Σs) and C are defined as in Definition 4.7.

Lemma 6.44. Let DK(Σs) = (D= (M(K), F , A, E ,Pre),∼s) be the epistemic FO-DS induced
by Σs = (K, A,pre,eff,sense), α0α1 · · ·αn ∈ A∗ a sequence of ground actions,

(I0, W0) =⇒
α0
DK(Σs)

(I1, W1) =⇒
α1
DK(Σs)

· · ·=⇒αn
DK(Σs)

(In+1, Wn+1)

a sequence of epistemic interpretations with W0 =M(K) and Y0, Y1, . . . , Yn+1 a sequence of
interpretations such that

• Y j ∈W j for all j = 0, . . . , n+ 1 and

• Yi ⇒
αi
D Yi+1 for all i = 0, . . . , n.

Furthermore, let J0 ∈M(K) be an interpretation with d-typelocC (J0) = d-typelocC (Y0).
It holds that for each j ∈ {0, . . . , n+ 1} there exists a set of local effects L j ⊆ Lit(Σs) such that

J0
L j ∈W j and Y j = Y0

L j .

Proof. The proof is by induction on the length of the action sequence.
base case:
We assume n = 0. For j = 0 the claim trivially holds for L0 = ;. Let j = 1. By def-
inition it holds that Y1 = Y0

L0 with L0 = {〈F, X 〉± | ψ Â 〈F, X 〉± ∈ eff(α0), Y0 |= ψ}.
d-typelocC (Y0) = d-typelocC (J0) implies s-typeC(Y0) = s-typeC(J0). Hence, Y0 ∼

α0
s J0 and

J0⇒
α0
D J0

L0 . Consequently, J0
L0 ∈W1.

induction step:
We assume that there exists a set of local effects L ⊆ Lit(Σs) such that Yn = Y0

L and J0
L ∈Wn.

Due to the assumption we have s-typeC(Yn) = s-typeC(J0
L). It follows that Yn ∼

αn
s J0

L. Let
L′ := {〈F, X 〉± |ψ Â 〈F, X 〉± ∈ eff(αn), Yn |=ψ}. We have Yn+1 = Yn

L′ and

Y0
L\¬L′∪L′ ∈Wn+1 and J0

L\¬L′∪L′ ∈Wn+1.

Finally we are ready to prove Lemma 6.42.

Proof of Lemma 6.42. Let DK(Σs) = (M(K), F , A, E ,Pre,∼s) be the epistemic FO-DS, I0 ∈
M(K) and

(I0, W0) =⇒
α0
DK(Σs)

(I1, W1) =⇒
α1
DK(Σs)

· · ·=⇒αn
DK(Σs)

(In+1, Wn+1)

the sequence of epistemic interpretations obtained by executing σ = α0 · · ·αn in (I0, W0)
with W0 =M(K) and Wn+1 =M.

1. Assume
�

KD
�M ∩

�

NO \Obj(Σs)
�

6= ; for an ALCO-concept D. We want to show that

(NO \Obj(Σs)) ⊆
�

KD
�M

.

178 Chapter 6 Decidable Reasoning about Actions with Knowledge and Sensing

Assume to the contrary that there is an anonymous elements e ∈ NO \Obj(Σs) such that
e /∈ (KD)M. Consequently, there exists a sequence of interpretations Y0, Y1, . . . , Yn+1
such that Yi ∈Wi for all i = 0, . . . , n+1, Y j ⇒

α j

D Y j+1 for all j = 0, . . . , n and e /∈ DYn+1 .

We choose an anonymous element d ∈ NO \Obj(Σs) with d ∈ (KD)M. By assumption
such an element exists. Furthermore, we choose a bijection ι : NO → NO such that
ι(o) = o for all o ∈ Obj(Σs) and ι(e) = d and ι(d) = e. Let J0 := ι(Y0). Using
Lemma 6.43.4 it follows that d-typelocC (J0) = d-typelocC (Y0) as required for Lemma 6.44.
Therefore, Lemma 6.44 implies that there exists a set of literals L ⊆ Lit(Σs) such that
J0

L ∈M and Yn+1 = Y0
L. With Lemma 6.43.3, e /∈ DYn+1 implies ι(e) /∈ DJ0

L
. Since

ι(e) = d and J0
L ∈M it follows that d /∈ (KD)M which is a contradiction.

2. Let (d, e) ∈ NO ×NO and (d, e) ∈ (KP)M for some P ∈ NR. Assume d ∈ NO \Obj(Σs).
We want to show that

(c, e) ∈ (KP)M for all c ∈ NO \Obj(Σs)

is implied. Assume to the contrary that there is an element a ∈ NO \ Obj(Σs) such
that (a, e) /∈ (KP)M. As in the proof of 1 we can choose a sequence of interpretations
Y0, Y1, . . . , Yn+1 with Yi ∈Wi for all i = 0, . . . , n+ 1, Y j ⇒

α j

D Y j+1 for all j = 0, . . . , n
and (a, e) /∈ PYn+1 . Renaming Y0 such that d and a are swapped yields an interpretation
that is indistinguishable from Y0 leads to a contradiction with the assumption (d, e) ∈
(KP)M.

The second part of the claim where e is unnamed can be shown with symmetrical
arguments.

Even though actions have only local effects, the knowledge about unnamed object may
also change as the following example shows.

Example 6.45. We define an epistemic ALCO-action theory that consists of the following
components: an initial knowledge base given by

K := (T := ;, A := {b À− (∀P.¬A)}),

and a single ground action

A := {α} with eff(α) := {〈A, {a}〉−} and pre(α) := ;,sense(α) := (a À− >).

Thus, initially it is only known that all objects that are related to the object name b via the
role name P do not belong to A. The only ground action α removes the object a from A and
changes nothing else. We are interested in the known instances of the concept:

C = ∀P.(¬At¬{a})

Initially, b is the only known instance of C . However, after doing α all objects are known
instances of C . It holds that

K 6|=>v C and
�

KC
�M(K)

= {b}.

6.4 Deciding the Epistemic Projection Problem 179

¹X ,κº := X with X ∈ NC ∪ {>,⊥} or X = {o} for some o ∈ Obj(Σs)

¹¬D,κº := ¬¹D,κº

¹D1 u D2,κº := ¹D1,κºu ¹D2,κº

¹D1 t D2,κº := ¹D1,κºt ¹D2,κº

¹∃P.E,κº := ∃P.¹E,κº

¹∀P.E,κº := ∀P.¹E,κº

¹KD,κº :=
⊔

κ(K¹D,κº)

¹∃(KP).D,κº :=
⊔

X∈Nom(Σs)

�

X u ∃P.
��

⊔

κ(X , P)
�

u ¹D,κº
��

¹∀(KP).D,κº := ¬¹∃KP.¬D,κº.

Figure 6.1: Operator for rewriting K using an instance function

After executing α in (I, M(K)) =⇒α
DK(Σs)

(J , M) for some I ∈M(K) we get
�

KC
�M
= NO.

Thus, it is possible that the set of all known instances of an ALCO-concept C can be expanded
with unnamed elements by executing a local effect action. Î

In the following we use Lemma 6.42 to equivalently rewrite epistemic concepts into
objective concepts using nominals. We have shown that if the concept D is objective, then
the epistemic concept KD is interpreted in an evolving knowledge state as a set of objects
that either consists

• only of named objects, or

• it consists of all unnamed object plus possibly some of the named objects.

Thus, we observe that the set (KD)M ⊆ NO, where M is a knowledge state reached via
executing a sequence of ground actions, is definable (in any interpretation) as a concept
that only mentions nominals: a finite set of named objects is definable with a disjunction of
nominal concepts, and the concept

¬

⊔

o∈Obj(Σs)

{o}

!

is a definition of the set of all unnamed objects.
To obtain such a definition we introduce the auxiliary notion of an instance function. The

intuition is that the instance function captures known instances of concepts and known role
relationships of object names represented as a set of nominal concepts.

Definition 6.46. Let Obj(Σs) the finite set of object names mentioned in the input. An
instance function maps concepts of the form KD to a subset of

Nom(Σs) := {{o} | o ∈ Obj(Σs)} ∪ {¬N} with N :=
⊔

o∈Obj(Σs)

{o} (6.3)

180 Chapter 6 Decidable Reasoning about Actions with Knowledge and Sensing

and an element of Nom(Σs) and a role name to a subset of Nom(Σs). Let W be a knowledge
state. The instance function of W, denoted by κW , is defined as follows.

κW(KD) := {{o} | o ∈ (KD)W , o ∈ Obj(Σs)} ∪
{¬N | ∃c.c ∈ NO \Obj(Σs), c ∈ (KD)W};

κW({o}, P) :=
�

{b}
�

� (o, b) ∈ (KP)W , b ∈ Obj(Σs)
	

∪
�

¬N
�

� ∃c.c ∈ NO \Obj(Σs), (o, c) ∈ (KP)W
	

κW(¬N , P) :=
�

{b}
�

� b ∈ Obj(Σs),∃c.c ∈ NO \Obj(Σs), (c, b) ∈ (KP)W
	

∪
�

¬N
�

� ∃c, d.c, d ∈ NO \Obj(Σs), (c, d) ∈ (KP)W
	

for all concepts of the form KD, o ∈ Obj(Σs) and P ∈ NR. Î

We define an operator ¹·, ·º that rewrites possibly epistemic concepts into purely objective
ones given an instance function.

Definition 6.47. Given an ALCOK-concept D over object names from Obj(Σs) and an in-
stance function κ, an objective concept ¹D,κº is defined by induction on the structure of D
as shown in Figure 6.1 where Nom(Σs) is defined as in (6.3). Î

Lemma 6.48. Let DK(Σs) = (M(K), F , A, E ,Pre,∼s) be the epistemic FO-DS induced by
Σs = (K, A,pre,eff,sense), I0 ∈ M(K) an interpretation, σ ∈ A∗ a sequence of ground
actions, C an ALCOK-concept over object names from Obj(Σs) and M the epistemic state with
(I0, M(K)) =⇒σ

DK(Σs)
(Iσ, M). It holds that

CJ ,M = ¹C ,κMº
J

for any J ∈M.

Proof. It follows from the definition of ¹·, ·º that ¹C ,κMº is objective. Therefore, ¹C ,κMº
J

is well-defined. Note that the operator ¹·, ·º implies the instance function only to concepts
of the form KD where D is objective. We show the claim by induction on the structure of C .
The claim trivially holds if C is of the form A with A∈ NC, {o} with o ∈ Obj(Σs) or > or ⊥.

C = ¬D : Assume by induction DJ ,M = ¹D,κMº
J :

(¬D)J ,M = NO \ DJ ,M = NO \ ¹D,κMº
J = (¬¹D,κMº)J = ¹¬D,κMº

J .

C = KD :

“⇒”:

Let d ∈ (KD)J ,M for some J ∈M. We show d ∈ ¹KD,κMº
J . It holds that

d ∈
⋂

Y∈M
DY,M.

Since by induction we have DY,M = ¹D,κMº
Y , it is implied that

d ∈
⋂

Y∈M
¹D,κMº

Y .

6.4 Deciding the Epistemic Projection Problem 181

First, assume d ∈ Obj(Σs) is named. By definition of the instance function it follows
that {d} ∈ κM(K¹D,κMº). Therefore, {d} is a disjunct in

¹KD,κMº=
⊔

κM(K¹D,κMº).

and it follows that d ∈ ¹KD,κMº
J .

Next, assume d ∈ NO \Obj(Σs). It is implied that ¬N ∈ κM(K¹D,κMº). Therefore,
¬N is a disjunct in ¹KD,κMº with d ∈ (¬N)J . Consequently, d ∈ ¹KD,κMº

J .

“⇐”:

Let d ∈ ¹KD,κMº
J for an interpretation J ∈M and d ∈∆. We have

¹KD,κWn
º=

⊔

κM(K¹D,κMº) with

κM(K¹D,κMº) ⊆ {{o} | o ∈ Obj(Σs)} ∪ {¬N}.

First, assume d ∈ Obj(Σs). Since d /∈ (¬N)I , it follows that {d} ∈ κM(K¹D,κMº) and
therefore

d ∈
⋂

Y∈M
¹D,κMº

Y =
⋂

Y∈M
DY,M

by induction. Consequently, d ∈ (KD)J ,M.

Now, assume d ∈ NO \Obj(Σs). It follows that ¬N ∈ κM(K¹D,κMº). By definition of
κM it follows that there exists a c ∈ NO \Obj(Σs) such that

c ∈
⋂

Y∈M
¹D,κMº

Y =
⋂

Y∈M
DY,M

by induction. With c ∈ NO \Obj(Σs) and c ∈ (KD)M using Lemma 6.42 it follows that
NO \Obj(Σs) ⊆ (KD)M. Hence, d ∈ (KD)M.

C = ∃(KP).D :

“⇒:”

Let d ∈ (∃(KP).D)J ,M for some interpretation J ∈M and d ∈ NO. We prove that

d ∈ ¹(∃(KP).D),κMº
J .

There exists e ∈ DJ ,M with (d, e) ∈ (KP)M. There is exactly one Xd ∈ Nom(Σs) with
d ∈ (Xd)J and exactly one X e ∈ Nom(Σs) with e ∈ (X e)J . Note that all concepts in
Nom(Σs) are interpreted as the same set in each interpretation satisfying the SNA. By
definition of κM we have that (d, e) ∈ (KP)M implies X e ∈ κM(Xd , P). It follows that
the concept

Xd u ∃P.
��

⊔

κ(Xd , P)
�

u ¹D,κMº

�

is a disjunct in ¹(∃(KP).D),κMº. We have that J ∈M and (d, e) ∈ (KP)M implies
(d, e) ∈ PJ . By induction e ∈ DJ ,M implies e ∈ ¹D,κMº

J . Since e ∈ (X e)J and

182 Chapter 6 Decidable Reasoning about Actions with Knowledge and Sensing

X e ∈ κM(Xd , P) we get

e ∈
�

⊔

κ(Xd , P)
�J

.

Consequently,

d ∈
�

Xd u ∃P.
��

⊔

κ(Xd , P)
�

u ¹D,κMº

��J

which implies d ∈ ¹(∃(KP).D),κMº
J .

“⇐:”

Let d ∈ ¹(∃(KP).D),κMº
J for some d ∈ NO and J ∈ M. We have to show that

d ∈ (∃(KP).D)J ,M. By definition of ¹(∃(KP).D),κMº it follows that there exists Xd ∈
Nom(Σs) with d ∈ (Xd)J and an element e ∈ NO such that (d, e) ∈ PJ , e ∈ (X e)J

for some X e ∈ κM(Xd , P) and e ∈ ¹D,κMº. Using the induction hypothesis we get
e ∈ DJ ,M. Lemma 6.42 and X e ∈ κM(Xd , P) with d ∈ (Xd)J and e ∈ (X e)J implies
(d, e) ∈ (KP)M. Consequently, d ∈ d ∈ (∃(KP).D)J ,M.

We omit the remaining cases. They can be proven using the induction hypothesis and the
semantics of concepts.

One consequence of the lemma above is that the characterization formulated in Lemma
6.42 also holds for arbitrary subjective ALCOK-concepts.

Lemma 6.49. Let Σs = (K, A,pre,eff,sense) be an epistemic ALCO-action theory and let
DK(Σs) = (M(K), F , A, E ,Pre,∼s) be the induced epistemic FO-DS. Furthermore, let C be a
subjective ALCOK-concept over object names from Obj(Σs), σ ∈ A∗, I ∈M(K) and (J , M) the
epistemic interpretation with (I, M(K)) =⇒σ

DK(Σs)
(J , M). It holds that

1. CY,M = CY ′,M for all Y, Y ′ ∈M;

2. CY,M ∩
�

NO \Obj(Σs)
�

6= ; implies (NO \Obj(Σs)) ⊆ CY,M for all Y ∈M.

Proof. The proof is by induction on the structure of the subjective concept C . The first claim
generally holds for arbitrary knowledge states and arbitrary subjective concepts. The second
claim is specific to those knowledge states as described in the claim and to subjective concepts
that mention only object names from Obj(Σs). We only present proof details for the second
claim.

The cases where C is of the form {o} for some o ∈ Obj(Σs), > or ⊥ are obvious. Let C be of
the form KD, where D is an ALCOK-concept over object names from Obj(Σs). Lemma 6.48
implies (KD)Y,M = (K(¹D,κMº))Y,M for all Y ∈M. Since the concept ¹D,κMº is objective,
Lemma 6.42 yields the claim. For the induction step we distinguish the following cases.

C = D1 u D2 : Assume (D1 u D2)Y,M ∩
�

NO \Obj(Σs)
�

6= ; for some Y ∈M and let d ∈
�

NO \
Obj(Σs)

�

. We have to show that d ∈ (D1 u D2)Y,M. (D1 u D2)Y,M ∩
�

NO \Obj(Σs)
�

6= ;
implies

(Di)
Y,M ∩

�

NO \Obj(Σs)
�

6= ; for all i ∈ 1, 2.

6.4 Deciding the Epistemic Projection Problem 183

The induction hypothesis yields
�

NO \Obj(Σs)
�

⊆ (Di)
Y,M for all i ∈ {1,2}.

Hence, d ∈ (D1 u D2)Y,M.

C = ¬D : Assume (¬D)Y,M∩
�

NO \Obj(Σs)
�

6= ; for some Y ∈M and let d ∈
�

NO \Obj(Σs)
�

.
We have to show that d ∈ (¬D)Y,M. To the contrary assume d /∈ (¬D)Y,M. Con-
sequently, d ∈ DY,M. Since d ∈

�

NO \ Obj(Σs)
�

, the induction hypothesis yields
�

NO \ Obj(Σs)
�

⊆ DY,M. This is a contradiction to (¬D)Y,M ∩
�

NO \ Obj(Σs)
�

6= ;.
Therefore, d ∈ (¬D)Y,M follows.

C = ∃KP.D : This case follows directly from part two of Lemma 6.42 about epistemic roles
and the induction hypothesis.

Thus, if C is subjective, then the rewriting result ¹C ,κMº can be equivalently written as a
disjunction of concepts from Nom(Σs) (see (6.3)).

To handle the knowledge constructor in front of axioms and Boolean combinations thereof
we extend the domain operator ¹·, ·º also to epistemic Boolean KBs. For doing this, the
domain of an instance function is extended to KBs as well. An instance function κ maps
an epistemic Boolean KB of the form Kψ either to TRUE (o À− >) or FALSE (o À− ⊥), where
o ∈ NO is arbitrary but fixed.

Let κW be the instance function of an epistemic state W and Kψ an epistemic Boolean
ALCOK-KB. We define

κW(Kψ) :=

¨

o À− > if (I, W) ||=ψ for all I ∈W;

o À− ⊥ otherwise.

Let κ be an instance function andψ an epistemic Boolean ALCOK-KB. An objective Boolean
ALCO-KB, denoted by ¹ψ,κº, is defined inductively such that in addition to the definitions
in Figure 6.1 we now also have:

¹o À− C ,κº := o À− ¹C ,κº;

¹(o, o′) À− P,κº := (o, o′) À− P;

¹C v D,κº := ¹C ,κºv ¹D,κº;

¹o1 ≈ o2,κº := o1 ≈ o2;

¹¬ψ,κº := ¬¹ψ,κº;

¹ψ1 ∧ψ2,κº := ¹ψ1,κº∧ ¹ψ2,κº;

¹Kψ,κº := κ(K(¹ψ,κº)).

The following lemma is analogous to Lemma 6.48.

Lemma 6.50. Let ψ be a Boolean ALCOK-KB, W an epistemic state and κW the corresponding
instance function. It holds that

(I, W) ||=ψ iff I |= ¹ψ,κWº

184 Chapter 6 Decidable Reasoning about Actions with Knowledge and Sensing

for any interpretation I ∈W.

Since the instance function is applied only to concepts of the form KD where D is objective
and to Boolean KBs Kψ whereψ is objective, we only need to determine the known instances
of objective concepts and the entailment of objective KBs after executing the given sequence
of ground actions σ. For solving the projection problem we need to consider the instance
function of any possible epistemic state that evolves from the epistemic model of the initial
KB by executing σ. There can be more than one such epistemic state because we need to take
all possible sensing results of σ into account. Sensing in our formalization means observing
the truth of a Boolean ALCO-KB. We represent the sensing result of an action sequence as a
sequence of Boolean ALCO-KBs.

Definition 6.51. Let Σs = (K, A,pre,eff,sense) be an epistemic ALCO-action theory and
σ = α1α2 . . .αn ∈ A∗ for some n≥ 0. A sensing result of σ w.r.t. Σs is a sequence of Boolean
ALCO-KBS sσ = (ψ1, . . . ,ψn) such that for all i ∈ {1, . . . , n} we have

ψi ∈ {sense(αi),¬sense(αi)}.

Let
DK(Σs) = (D= (M(K), F , A, E ,Pre),∼s)

be the epistemic FO-DS induced by Σs and let I0 ∈M(K) be an interpretation and I0, . . . , In
the sequence of interpretations with

I0⇒
α1
D I1⇒

α2
D · · · ⇒

αn
D In.

The sensing result of σ in I0, denoted by sσ(I0), is a sensing result of σ w.r.t. Σs of the form
(ψ1, . . . ,ψn) such that I j |=ψ j+1 for all j ∈ {0, . . . , n− 1}.

We call a sensing result s′σ of σ w.r.t. Σs consistent iff there exists an interpretation
I ∈M(K) with s′σ = sσ(I).

Î

The epistemic state evolving from M(K) as the result of doing σ only depends on the
sensing result provided by the interpretation representing the actual state of the world.
Formally, for any two interpretations I, Y ∈ M(K) and there epistemic interpretations
(I′, W) and (Y ′, M) with

(I, M(K)) =⇒σ
DK(Σs)

(I′, W) and (Y, M(K)) =⇒σ
DK(Σs)

(Y ′, M)

it holds that sσ(I) = sσ(Y) implies W =M (but not necessarily I′ = Y ′).
In the following we define an objective reduction KB following Baader et al. [Baa+05a].

On the one hand it will allow us to check consistency of sensing results and on the other
hand it will serve as a representation of the resulting epistemic state that can be used to
compute the images of the corresponding instance function via standard ALCO entailment
checks.

Given

• an epistemic ALCO-action theory Σs = (K = (T , A), A,pre,eff,sense), and

• a ground action sequence σ = α1 · · ·αn ∈ A∗ for some n≥ 0,

6.4 Deciding the Epistemic Projection Problem 185

we define a Boolean ALCO-KB denoted by

Kσred

that encodes the following set of interpretations

{Iσ | I ∈M(K), I ⇒σD Iσ},

where D= (I, M(K), F , A, E ,�poss) is the FO-DS induced by (K = (T , A), A,pre,eff).
The construction is very similar to the one used for reducing realizability of dynamic types

to ALCO-KB consistency.
With sub(Σs) we denote the set of all sub-concepts occurring in the input Σs. For the

construction of Kσred we use the following additional symbols:

• for each concept name or role name F ∈ F there are new (not contained in F) concept
names or role names, respectively, of the form F (0), . . . , F (n);

• for each concept C ∈ sub(Σs) there are new (not from F) concept names T (0)C , . . . , T (n)C ;

• an object name c ∈ NO \Obj(Σs).

The TBox denoted by
T σsub(Σs)

consists of definitions for all names of the form T (i)C with C ∈ sub(Σs) and i ∈ {0, . . . , n} as
defined in Figure 6.2 and it includes the definition of the concept name Nc that stands for
the set of all named elements (including c):

Nc ≡
⊔

o∈Obj(Σs)∪{c}
{o}.

Next, the conditional action effects are incorporated. The effect conditions are expressed
using the newly defined concept names of the form T (i)C : Let ψ be a Boolean ALCO-KB with
sub(ψ) ⊆ sub(Σs) and with object names from Obj(Σs)∪ {c} and let i ∈ {0, . . . , n}. The i-th
copy of ψ is a Boolean ALCO-KB, denoted by ψ(i), that is obtained from ψ by replacing each
CI C v D in ψ by T (i)C v T (i)D , each concept assertion o À− C in ψ by o À− T (i)C and each role
assertion (o, o′) À− P in ψ by (o, o′) À− P(i).

For each ground action αi in σ with i ∈ {1, . . . , n} the following Boolean KB captures the
action effects:

A(i)eff :=
∧

ψÂ〈A,{o}〉+∈eff(αi)

ψ(i−1)→
�

o À− A(i)
�

∧

∧

ψÂ〈A,{o}〉−∈eff(αi)

ψ(i−1)→¬
�

o À− A(i)
�

∧

∧

ψÂ〈P,{(o,o′)}〉+∈eff(αi)

ψ(i−1)→
�

(o, o′) À− P(i)
�

∧

∧

ψÂ〈P,{(o,o′)}〉−∈eff(αi)

ψ(i−1)→¬
�

(o, o′) À− P(i)
�

.

186 Chapter 6 Decidable Reasoning about Actions with Knowledge and Sensing

T (i)A ≡ (Nc u A(i))t (¬Nc u A(0)), with A∈ F ∩NC;

T (i)B ≡ B with B of the form {o},> or ⊥;

T (i)¬C ≡ ¬T (i)C ;

T (i)CuD ≡ T (i)C u T (i)D ;

T (i)CtD ≡ T (i)C t T (i)D ;

T (i)∃P.C ≡
�

Nc u
�

(∃P(0).(¬Nc u T (i)C))t (∃P
(i).(Nc u T (i)C))

�

�

t

(¬Nc u ∃P(0).T
(i)
C);

T (i)∀P.C ≡
�

Nc →
�

(∀P(0).(¬Nc → T (i)C))u (∀P(i).(Nc → T (i)C))
�

�

u

(¬Nc →∀P(0).T (i)C).

Figure 6.2: Concept definition for T (i)C

The Boolean KB A(i)min for each αi in σ axiomatizes the frame assumption for named object
names:

A(i)min :=

∧

o∈Obj(Σs)∪{c}

�

∧

A∈F∩NC

γi
A,o

�

!

∧

∧

o,o′∈Obj(Σs)∪{c}

�

∧

P∈F∩NR

γi
P,o,o′

�

!

,

where

γi
A,o :=

�

o À− A(i−1)
�

∧
∧

ψÂ〈A,{o}〉−∈eff(αi)

¬ψ(i−1)

!

→
�

o À− A(i)
�

!

∧

¬
�

o À− A(i−1)
�

∧
∧

ψÂ〈A,{o}〉+∈eff(αi)

¬ψ(i−1)

!

→¬
�

o À− A(i)
�

γi
P,o,o′ :=

�

(o, o′) À− P(i−1)
�

∧
∧

ψÂ〈P,{(o,o′)}〉−∈eff(αi)

¬ψ(i−1)

!

→
�

(o, o′) À− P(i)
�

!

∧

¬
�

(o, o′) À− P(i−1)
�

∧
∧

ψÂ〈P,{(o,o′)}〉+∈eff(αi)

¬ψ(i−1)

!

→¬
�

(o, o′) À− P(i)
�

.

The overall reduction KB is given by

Kσred := T σsub(Σs)
∧

�

∧

ϕ occurs in K
ϕ(0)

�

∧A(0)eff ∧ · · · ∧A(n)eff ∧A(0)min ∧ · · · ∧A(n)min. (6.4)

Since we also want to use the reduction KB for rewriting the subjective projection query
into an objective one, it is necessary to extend Kσred with additional concept definitions for

6.4 Deciding the Epistemic Projection Problem 187

sub-concepts occurring within the scope of a K in the given projection query. To keep the
size of the resulting objective rewriting result small an additional acyclic ALCO-TBox is
considered.

Let Ta be an acyclic ALCO-TBox such that

• all defined concept names in Ta are not contained in F , and

• all other non-defined concept names plus all role names in Ta are contained in F .

Let X be an ALCO-concept or a Boolean ALCO-KB over concept names and role names from
F and defined concept names from Ta. For each sub-concept C ∈ sub(X)∪ sub(Ta) and each
i ∈ {0, . . . , n} a new concept name T (i)C is introduced. With

T σsub(X ,Ta)
(6.5)

we denote the conjunction of the following concept definitions:

• for all C ∈ sub(X)∪ sub(Ta) where C is not a defined name in Ta, and all i ∈ {0, . . . , n}
a definition of T (i)C according to Figure 6.2;

• T (i)A ≡ T (i)D for each definition A≡ D ∈ Ta and each i ∈ {0, . . . , n}.

Let Y be a Boolean ALCO-KB or an ALCO-concept. With YTa
we denote the Boolean KB or

concept obtained from Y be exhaustively replacing each occurrence of a defined name in Ta
in Y with the corresponding right-hand side of the definition.

In the next lemma we show that the models of Kσred correctly encode the sequences of
interpretations generated from models of K by σ. In the following we only talk about
interpretations satisfying the SNA.

Lemma 6.52. Let DK(Σs) = (D= (M(K), F , A, E ,Pre),∼s) be the epistemic FO-DS induced
by Σs. Let σ = α1α2 . . .αn ∈ A∗ be a sequence of ground actions,

and let X , Ta and
Kσred ∧ T σsub(X ,Ta)

be as described above.

1. For every sequence I0, . . . , In with I0 ∈M(K) and I0 ⇒
α1
D I1 ⇒

α2
D · · · ⇒

αn
D In, there

exists a J such that J |= Kσred and it holds that

I j |=ψTa
iff J |=ψ(j) , for all j ∈ {0, . . . , n}

and for any Boolean ALCO-KB ψ with sub(ψ) ⊆ sub(Σs)∪ sub(X , Ta).

2. For every interpretation J with J |= Kσred, there exists I0 ∈ M(K) such that for the
sequence I0, . . . , In with I0⇒

α1
D I1⇒

α2
D · · · ⇒

αn
D In it holds that

I j |=ψTa
iff J |=ψ(j) , for all j ∈ {0, . . . , n}

and for any Boolean ALCO-KB ψ with sub(ψ) ⊆ sub(Σs)∪ sub(X , Ta).

188 Chapter 6 Decidable Reasoning about Actions with Knowledge and Sensing

Proof. Essentially, the proof works in the same way as the one given in [Baa+05b] (page 17,
Theorem 14).

Let sσ = (ψ1, . . . ,ψn) be a sensing result of σ w.r.t. Σs. The corresponding reduction KB,
denoted by Ksen(sσ), is given by:

Ksen(sσ) :=ψ1
(0) ∧ψ2

(1) ∧ · · · ∧ψn
(n−1).

Lemma 6.53. Let Σs, σ be as above and s′σ a sensing result of σ w.r.t. Σs.
It holds that s′σ is consistent w.r.t. Σs iff the Boolean ALCO-KB Kσred ∧Ksen(s′σ) is consistent.

Proof. Let DK(Σs) = (D= (M(K), F , A, E ,Pre),∼s).
“⇒”:
Assume there exists an I0 ∈M(K) such that s′σ = sσ(I0). Let I0, . . . , In be such that

I0⇒
α1
D I1⇒

α2
D · · · ⇒

αn
D In.

Let s′σ = sσ(I0) = (ψ1, . . . ,ψn). For all j ∈ {0, . . . , n− 1} it holds by assumption that

I j |=ψ j+1.

From Lemma 6.52.1 it follows that there exists a model J such that J |= Kσred and

J |=ψ j+1
(j) for all j ∈ {0, . . . , n− 1}.

This implies J |= Kσred ∧Ksen(s′σ).
“⇐”:
Assume Kσred ∧Ksen(s′σ) is consistent with s′σ = (ψ1, . . . ,ψn). There exists a model J such
that

J |= Kσred ∧Ksen(s′σ).

It follows from Lemma 6.52.2 that there exists I0 ∈ M(K) such that for the sequence
I0, . . . , In with

I0⇒
α1
D I1⇒

α2
D · · · ⇒

αn
D In.

it holds that I j |=ψ j+1 for all j ∈ {0, . . . , n− 1}. Consequently, s′σ = sσ(I0).

Using the reduction KB for the sensing results we can now represent the knowledge state
after a sequence of ground actions has been performed.

Lemma 6.54. Let Σs, DK(Σs), σ, X and Ta be as described above.
Furthermore, let I ∈M(K) be an initial model and (Iσ, M) the epistemic interpretation with

(I, M(K)) =⇒σ
DK(Σs)

(Iσ, M).

1. For every interpretation Y ∈M there exists an interpretation J such that

J |= Kσred ∧ T σsub(X ,Ta)
∧Ksen(s′σ)

and Y |= ψTa
iff J |= ψ(n) for any Boolean ALCO-KB ψ with sub(ψ) ⊆ sub(Σs) ∪

sub(X , Ta).

6.4 Deciding the Epistemic Projection Problem 189

2. For every interpretation J with

J |= Kσred ∧ T σsub(X ,Ta)
∧Ksen(s′σ)

there exists Y ∈M such that and Y |= ψTa
iff J |= ψ(n) for any Boolean ALCO-KB ψ

with sub(ψ) ⊆ sub(Σs)∪ sub(X , Ta).

Proof. Let σ = α1 · · ·αn for some n≥ 0, I0 ∈M(K) and (I0, M(K)), (I1, W1), . . . , (In, Wn)
the sequence of epistemic interpretations with

(I0, M(K)) =⇒α1
DK(Σs)

(I1, W1) =⇒
α2
DK(Σs)

· · ·=⇒αn
DK(Σs)

(In, Wn).

1. Let Jn ∈Wn. There exists a sequence J0, . . . , Jn with

J j ⇒
α j+1

D J j+1 for all j ∈ {0, . . . , n− 1} and Ji ∈Wi for all i ∈ {0, . . . , n}.

It follows that Ii ∼
αi
s Ji for all i ∈ {0, . . . , n}. Therefore, sσ(I0) = sσ(J0).

Lemma 6.52.1 implies that there is a model J with

J |= Kσred ∧ T σsub(X ,Ta)

such that for all i ∈ {0, . . . , n} it holds that Ji |= ψTa
iff J |= ψ(i) for any Boolean

ALCO-KB ψ with sub(ψ) ⊆ sub(X , Ta)∪ sub(Σs). Consequently,

J |= Ksen(sσ(J0)).

With sσ(I0) = sσ(J0) this implies the claim.

2. As for the other direction, Lemma 6.52.2 implies the claim.

Now, we are ready to define an algorithm for rewriting the projection query into an
objective Boolean ALCO-KB given a consistent sensing result of the action sequence under
consideration. The input consists of the following components:

• an epistemic ALCO-action theory Σs = (K = (T , A), A,pre,eff,sense),

• a ground action sequence σ = α1 · · ·αn ∈ A∗ for some n≥ 0,

• a Boolean ALCOK-KB ψ (projection query)

• a consistent sensing result sσ of σ w.r.t. Σs.

Let DK(Σs) = (D = (M(K), F , A, E ,Pre),∼s) and I ∈M(K) such that sσ = sσ(I) and let
(Iσ, M) be the epistemic interpretation with (I, M(K)) =⇒σ

DK(Σs)
(Iσ, M). We assume that

all names mentioned in the projection query are contained in F and Obj(Σs).
The output of the algorithm is an acyclic ALCO-TBox Ta and an (objective) Boolean ALCO-

KB ϕ such that ϕTa
is equivalent to ¹ψ,κMº. The TBox Ta is used to obtain a representation

of ¹ψ,κMº that is of polynomial size.

190 Chapter 6 Decidable Reasoning about Actions with Knowledge and Sensing

The execution starts with the pair consisting of the empty TBox and the projection query:

(Ta = ;,ψ).

In each execution step either an epistemic sub-concept of the form KD or ∃(KP).D, where D
is subjective, or an epistemic sub-KB K%, where % is objective, is chosen and rewritten into
an objective expression by computing the image of the instance function determined by the
given sensing result.

Let Ta be an acyclic ALCO-TBox such that all concept names and role names in Ta are
either defined concept names in Ta or are contained in F and let KD be an ALCOK-concept,
where D is objective and mentions only concept names and role names from F and Ta and
only object names from Obj(Σs). We define a set κκsσ (KD) ⊆ Nom(Σs), where Nom(Σs) is
defined in (6.3), as follows

κsσ(KD) :=
¦

{o}
�

�

� o ∈ Obj(Σs), Kσred ∧ T σsub(D,Ta)
∧Ksen(sσ) |=

�

o À− T (n)D

�©

∪
¦

¬N
�

�

�Kσred ∧ T σsub(D,Ta)
∧Ksen(sσ) |=

�

c À− T (n)D

�©

.
(6.6)

Let P ∈ F be a role name. We define κsσ(X , P) ⊆ Nom(Σs) for some X ∈ Nom(Σs) as follows
as follows:

κsσ({o}, P) :=
�

{o′}
�

� o′ ∈ Obj(Σs), Kσred ∧Ksen(sσ) |= (o, o′) À− P(n)
	

∪
�

¬N
�

�Kσred ∧Ksen(sσ) |= (o, c) À− P(n)
	

for all o ∈ Obj(Σs);

κsσ(¬N , P) :=
�

{o′}
�

� o′ ∈ Obj(Σs), Kσred ∧Ksen(sσ) |= (c, o′) À− P(n)
	

∪
�

¬N
�

�Kσred ∧Ksen(sσ) |= (c, c) À− P(n)
	

.

(6.7)

Let Ta be as above and K% a Boolean ALCOK-KB, where % is objective and mentions only
concept and role names from F and Ta and object names from Obj(Σs). We define

κsσ(K%) :=

¨

o À− > if Kσred ∧ T σsub(%,Ta)
∧Ksen(sσ) |= %(n);

o À− ⊥ otherwise.
(6.8)

Next, using the instance function κsσ we define the rewrite steps via a transition relation
on pairs of an acyclic TBox and a Boolean ALCOK-KB.

Definition 6.55. Let Ta be an acyclic ALCO-TBox where all concept names and role names
in Ta except for the defined names are contained in F and let ϕ be a Boolean ALCOK-KB
over F and defined names from Ta.

A binary rewrite relation “`κsσ ” between pairs of the form (Ta,ϕ) is defined as follows.

(Ta,ϕ) `KD
κsσ
(T ′a ,ϕ′) : iff KD ∈ sub(ϕ) is a sub-concept, D is objective, Ta = T ′a , and ϕ′ is

obtained from ϕ by replacing each occurrence of KD in ϕ by the following concept
⊔

κsσ(KD).

6.4 Deciding the Epistemic Projection Problem 191

(Ta,ϕ) `∃(KP).D
κsσ

(T ′a ,ϕ′) : iff ∃(KP).D ∈ sub(ϕ) is a sub-concept, D is objective,

T ′a := Ta ∪ {AD ≡ D},

where AD is a new concept name not occurring in Ta and in F , and ϕ′ is obtained from
ϕ by replacing each occurrence of ∃(KP).D in ϕ by the concept

⊔

X∈Nom(Σs)

�

X u ∃P.
��

⊔

κsσ(X , P)
�

u AD

��

,

(Ta,ϕ) `K%κsσ (T
′
a ,ϕ′) : iff K% is a sub-KB of ϕ, % is objective, Ta = T ′a and ϕ′ is obtained from

be replacing each occurrence of K% in ϕ by κsσ(K%).

Î

The rewrite steps follow the definition of the rewriting operator in Figure 6.1. To rewrite
an epistemic value restriction of the form ∀(KP).D we replace it with ¬∃(KP).¬D and use
the transition rule for existential restrictions.

Starting with the pair (;,ψ) the algorithm performs possible rewrite steps as defined above
until a K-free Boolean ALCO-KB is reached. There can be more than one possible rewrite
step we can perform on one pair. However, it can be shown that all possible choices lead to
the same outcome. We write

(;,ψ) `∗κsσ (Ta,ϕ)

to express that (Ta,ϕ) is obtained from (;,ψ) via a sequence of rewrite steps. In each step
the number of K symbols decreases by one. Thus, the number of rewrite steps we need to
take to reach the final pair (Ta,ϕ), where ϕ is objective, is bounded by the number of K
symbols occurring in the initial projection query ψ.

Lemma 6.56. Let Σs, DK(Σs), σ, ψ and sσ be as above. Furthermore, let I ∈M(K) with
sσ = sσ(I), M the epistemic state with (I, M(K)) =⇒σ

DK(Σs)
(Iσ, M) and Ta an acyclic

ALCO-TBox and ϕ a Boolean ALCO-KB with (;,ψ) `∗κsσ (Ta,ϕ). For all J ∈M it holds that

J |= ϕTa
iff J |= ¹ψ,κMº.

Proof. Let (T1,φ1) and (T2,φ2) be two pairs reached from (;,ψ) such that

(;,ψ) `∗κsσ (T1,φ1) `X
κsσ
(T2,φ2)

where X is an epistemic concept or KB. For an arbitrary J ∈M we show that

(J , M) ||= (φ1)T1
iff (J , M) ||= (φ2)T2

. (6.9)

Assume X = KD ∈ sub(φ1), where D is an objective concept. We have T1 = T2 and φ2 is
obtained from φ1 by replacing each occurrence of KD in φ1 by

⊔

κsσ(KD). We show that

κsσ(KD) = κM(K(DT1
)),

192 Chapter 6 Decidable Reasoning about Actions with Knowledge and Sensing

where M is the epistemic state as given in the claim. Let o ∈ Obj(Σs) and |σ| = n. Using the
definition of κsσ(KD) and Lemma 6.54 it follows that {o} ∈ κsσ(KD)

iff Kσred ∧ T σsub(D,T1)
∧Ksen(sσ) |= o À− T (n)D

iff J |= ϕ(n) with ϕ = (o À− D) for every model J of Kσred ∧ T σsub(D,T1)
∧Ksen(sσ)

iff Y |= o À− DT1
for every Y ∈M (by Lemma 6.54)

iff o ∈ (K(DT1
))M

iff {o} ∈ κM(K(DT1
)).

Using analogous arguments it can be shown that ¬N ∈ κsσ(KD) iff ¬N ∈ κM(K(DT1
)). Since

D and DT1
are objective, it follows that

⊔

κsσ(KD) = ¹K(DT1
),κMº.

With Lemma 6.48 we obtain

X Y,M
T1

= (K(DT1
))Y,M = (¹K(DT1

),κMº)
Y =

�
⊔

κsσ(KD)
�Y

.

Thus, X and its substitute in φ2 have the same instances under M w.r.t. T1. The claim (6.9)
follows. The remaining cases where X is of the form ∃(KP).D or K% according to Definition
6.55 can be handled in an analogous way.

Let (Ta,ϕ) be such that ϕ is objective and (;,ψ) `∗κsσ (Ta,ϕ). By induction on the number
of rewrite steps and (6.9) it follows that

(J , M) ||=ψ iff (J , M) ||= ϕTa
iff J |= ϕTa

for all J ∈M. Lemma 6.50 implies J |= ϕTa
iff J |= ¹ψ,κMº, for all J ∈M.

Let Σs = (K, A,pre,eff,sense) be an epistemic ALCO-action theory, σ ∈ A∗ with |σ| = n
a sequence and ψ a projection query. The algorithm for deciding the epistemic projection
problem, denoted by

proj(Σs,σ,ψ),

consists of the following steps

1. The set of all consistent sensing results of σ w.r.t. Σs is computed: for all sensing
results sσ of σ w.r.t. Σs = (K, A,pre,eff,sense) the Boolean ALCO-KB

Kσred ∧Ksen(sσ) (6.10)

is computed and checked for consistency.

2. For each consistent sensing result sσ of σ w.r.t. Σs the pair (Ta,ϕ), where ϕ is objective
and (;,ψ) `∗κsσ (Ta,ϕ) holds, is computed. For each pair the following entailment
check is performed

Kσred ∧ T σsub(ϕ,Ta)
∧Ksen(sσ) |= ϕ(n). (6.11)

6.4 Deciding the Epistemic Projection Problem 193

If for all pairs (Ta,ϕ) the entailment (6.11) is true, then the answer of the projection
problem is “yes”, written as proj(Σs,σ,ψ) = TRUE, and “no” otherwise, written as
proj(Σs,σ,ψ) = FALSE.

Lemma 6.57. Let Σs, σ and ψ be as above. It holds that proj(Σs,σ,ψ) = TRUE iff ψ is valid
after doing σ in Σs.

Proof. “⇒”: Assume proj(Σs,σ,ψ) = TRUE. Let I ∈M(K) be an arbitrary model. We have
to show that

(Iσ, W) ||=ψ

where (I, M(K)) =⇒σ
DK(Σs)

(Iσ, W). Let sσ be the sensing result of σ in I. It follows
that Kσred ∧Ksen(sσ) is consistent. Let (Ta,ϕ) be the pair of an acyclic ALCO-TBox and an
objective Boolean ALCO-KB such that (;,ψ) `∗κsσ (Ta,ϕ). Lemma 6.54 implies that there

is a model J of Kσred ∧ T σsub(ϕ,Ta)
∧Ksen(sσ) such that J |= ϕ(n) iff Iσ |= ϕTa

. Since we have
proj(Σs,σ,ψ) = TRUE by assumption, it holds that

Kσred ∧ T σsub(ϕ,Ta)
∧Ksen(sσ) |= ϕ(n).

It follows that Iσ |= ϕTa
. Lemma 6.56 implies Iσ |= ¹ψ,κWº. Lemma 6.50 implies that

(Iσ, W) ||=ψ.
“⇐”:
Assume ψ is valid after doing σ in Σs. We have to show that proj(Σs,σ,ψ) = TRUE. To

the contrary assume proj(Σs,σ,ψ) = FALSE. Thus, there exists a sensing result sσ of σ w.r.t.
Σs such that Kσred ∧Ksen(sσ) is consistent, but for the pair (Ta,ϕ), where (;,ψ) `∗κsσ (Ta,ϕ)
and ϕ is objective, it holds that

Kσred ∧ T σsub(ϕ,Ta)
∧Ksen(sσ) 6|= ϕ(n). (6.12)

Since Kσred ∧Ksen(sσ) is consistent, Lemma 6.53 implies that sσ is consistent w.r.t. Σs, i.e.
there exists a model I ∈M(K) such that sσ is the sensing result of σ in I. Let (Iσ, W) be the
epistemic interpretation satisfying (I, M(K)) =⇒σ

DK(Σs)
(Iσ, W). (6.12) implies that there is

a model J |= Kσred ∧ T σsub(ϕ,Ta)
∧Ksen(sσ) such that J 6|= ϕ(n). Lemma 6.54 implies that there

exists Y ∈W such that Y 6|= ϕTa
. With Lemma 6.56 it follows that Y 6|= ¹ψ,κWº. Lemma

6.50 yields (Y, W) 6||= ψ. Y ∈ W implies that there exists a model Y0 ∈M(K) such that
(Y0, M(K)) =⇒σ

DK(Σs)
(Y, W). Thus, (Y, W) 6||=ψ is a contradiction to the assumption that

ψ is valid after doing σ in Σs.

The algorithm described above yields a decision procedure for the projection problem with
an EXPTIME upper bound. For an action sequence σ of length n there are 2n possible sensing
results. For each sensing result sσ the Boolean ALCO-KB Kσred ∧Ksen(sσ) is of polynomial
size and the consistency check is in EXPTIME (Corollary 6.17). Thus, exponentially many
EXPTIME checks are required to compute the set of all consistent sensing results. For each
consistent sensing result the objective rewriting of the projection query given by (Ta,ϕ) with
(;,ψ) `∗κsσ (Ta,ϕ) can be computed in EXPTIME by making polynomially many calls to an
EXPTIME decision procedure that decides entailment in ALCO: the number of rewrite steps is
linearly bounded by the number of K symbols in the projection query ψ. There is exactly one

194 Chapter 6 Decidable Reasoning about Actions with Knowledge and Sensing

rewrite step for each K in ψ. To rewrite an epistemic concept |Obj(Σs)|+ 1 many entailment
checks are required, for an epistemic role (|Obj(Σs)|+ 1)× (|Obj(Σs)|+ 1) many and for an
epistemic KB only one entailment check is needed.

The matching lower bound comes from the EXPTIME-hard consistency problem of ALCO-
KBs under the SNA (see 6.17).

Theorem 6.58. Projection in epistemic ALCO-action theories is EXPTIME-complete.

6.5 Summary and Related Work

We have introduced an action formalism based on the DL ALCO with sensing actions. It can
be viewed as a fragment of the epistemic Situation Calculus ES [LL04; LL11]. We have shown
that the projection problem is EXPTIME-complete. Thus, it is not harder than projection in
the non-epistemic case. The epistemic DL ALCOK we have chosen to formulate projection
queries is quite expressive. The knowledge modality can be applied to axioms, concepts and
also to roles. Due to the semantics that guarantees a unique epistemic model of the initial
knowledge base, it is possible to use a similar reduction to non-modal reasoning as the one
presented in [LL04] within the chosen DL ALCO.

Another DL-based action formalism with sensing has been introduced in [De +97]. It uses
the epistemic DL ALCK to axiomatize action effects by viewing certain role names as actions,
that relate a starting state to an end state. However, the frame problem is not solved in this
formalism.

Another decidable fragment of the epistemic Situation Calculus has been obtained in
[LL14]. The fragment is not based on syntactic restrictions as ours. Decidability is achieved
by using a weaker inference mechanism.

Chapter 7

Verification of Knowledge-Based Programs

In this chapter we investigate the computational properties of temporal verification of
ConGolog programs over actions defined in an epistemic ALCO-action theory and with
subjective tests formulated as Boolean ALCOK-KBs. As temporal specification language we
consider CTL∗ over Boolean ALCOK-KBs.

Example 7.1. As an example we consider the control program of an agent whose task is
to identify and repair faults of a device named dev. The goal is to safely turn dev on after
identifying and repairing the faults of dev. The basic abilities of the agent are described in
the epistemic ALCO-action theory in Example 6.20. In addition there is the purely physical
ground action raise-alarm that just sets a notification flag to true and is defined as a local
effect action. The action skip does not cause any changes. The program in Figure 7.1

while dev À− ∃(KHasFault).(KFault) do

pick(x)→ K ((dev, x) À− HasFault)?;repair(dev, x);

end;

while ¬K (dev À− ∀HasFault.¬KFault) do

pick(x)→ K (x À− Fault)∧¬Kw((dev, x) À− HasFault)?;

sense-fault(dev, x);

if K ((dev, x) À− HasFault) then repair(dev, x) else skip;

end;

turn-on(dev);sense-on(dev);
if K (dev À− ¬On) then raise-alarm else skip;

Figure 7.1: Program for fault detection and repair

describes the following behavior: with the first while-loop the agent repairs one by one in
an arbitrary order all the faults dev is known to have. The second loop deals with all those
known faults for which it is unknown whether dev has them or not. As long as the agent
does not know that dev has no known fault, a known fault x is chosen non-deterministically
for which it is unknown whether dev has it or not. The agent then senses whether dev has
this fault and repairs it if necessary. After completing the second loop the agent turns the
device on and checks if this was successful and if not an alarm is raised.

Thus, with this program we also want to achieve that the agent is aware of the fact that

195

196 Chapter 7 Verification of Knowledge-Based Programs

its knowledge about faults is incomplete and that its abilities to identify and repair them are
limited. The following specifications describe some desirable properties of the program

• the program always terminates;

• eventually it is known that dev is on or it is known that dev has an unknown critical
fault;

• the TBox of the underlying action theory is always known, i.e. the TBox is always part
the agent’s knowledge state

Î

The remainder of this chapter is organized as follows. In Section 7.1, we formally define
knowledge-based programs and the verification problem for (possibly epistemic) temporal
properties. In Section 7.2, we investigate the complexity of the verification problem for
programs over unconditional ground actions. In case an action does not have conditional
effects the outcome is immediately observable to the agent because the action causes the
same changes in every possible world. Under this restriction we single out two fragments
where the verification of subjective temporal properties is EXPTIME-complete. This lowers the
complexity by one exponential compared to the verification problem for ALCO-ConGolog
over local effect actions (Theorem 4.18). Decidability of the verification problem for programs
over ground actions with conditional effects is shown in Section 7.3. In Section 7.4, we
revisit the guarded pick operator. We are able to identify restrictions on the guards such
that the verification problem becomes decidable. A summary of the results can be found in
Section 7.5.

7.1 Knowledge-Based Programs and Temporal Properties

First, we define syntax and semantics of knowledge-based ALCOK-ConGolog programs.

Syntax and Semantics of ALCOK-ConGolog

We define programs over actions defined in an epistemic ALCO-action theory and with tests
formulated as subjective Boolean ALCOK-KBs. The programming constructs are the same as
for ConGolog programs over FO-DSs (Definition 2.41).

Definition 7.2. Let Σs = (K,Act,pre,eff,sense) be an epistemic ALCO-action theory and
DK(Σs) = (M(K), F ,Act, E ,Pre,∼s) the induced epistemic FO-DS. A program expression δ
over DK(Σs) is built according to the following grammar:

δ ::= 〈〉 | α(t̄) |ψ? | (δ;δ) | (δ|δ) | (δ‖δ) | pick(x̄)→ψ?;δ,

where 〈〉 is the empty program, α(t̄) ∈ Act is an action term,ψ stands for a subjective Boolean
ALCOK-KB over concept names and role names from F and x̄ is a tuple of variable names.
δ is called pick-free if no guarded pick expressions occur in δ, and δ is called closed if all
variable names are bound by a guarded pick.

7.1 Knowledge-Based Programs and Temporal Properties 197

A knowledge-based ALCOK-ConGolog program is of the form

P = (DK(Σs),δ),

where Σs is an epistemic ALCO-action theory and δ a closed program expression over
DK(Σs). Î

The definition of the program semantics is analogous to the semantics of ConGolog over
FO-DSs with the only difference that program states now contain an epistemic interpretation
instead of only an ordinary FO interpretation. Ground actions are only executed if they
are known to be possible, i.e. the preconditions are satisfied in all possible worlds of the
knowledge state. Together with the restriction to subjective tests we achieve that the choice
of the next action only depends on the current knowledge state of the program state.

Definition 7.3. Let Σs = (K,Act,pre,eff,sense) be an epistemic ALCO-action theory and
DK(Σs) = (M(K), F ,Act, E ,Pre,∼s) the induced epistemic FO-DS.

A program state over DK(Σs) is a tuple of the form

〈(I, W),σ,ρ〉, where

(I, W) is an epistemic interpretation, σ ∈ ground(Act)∗ a ground action sequence and ρ a
closed program expression over DK(Σs).

The set of all program states over DK(Σs) is denoted by States(DK(Σs)).
The set Final(DK(Σs)) denotes the set of all final program states over DK(Σs) and is defined

by induction on the size of program expressions as the smallest set satisfying the following
conditions:

1. 〈(I, W),σ, 〈〉〉 ∈ Final(DK(Σs));

2. 〈(I, W),σ,ψ?〉 ∈ Final(DK(Σs)), if (I, W) ||=ψ;

3. 〈(I, W),σ,δ∗〉 ∈ Final(DK(Σs));

4. 〈(I, W),σ,δ1;δ2〉 ∈ Final(DK(Σs)),

if 〈(I, W),σ,δ1〉 ∈ Final(DK(Σs)) and 〈(I, W),σ,δ2〉 ∈ Final(DK(Σs));

5. 〈(I, W),σ,δ1|δ2〉 ∈ Final(DK(Σs)),

if 〈(I, W),σ,δ1〉 ∈ Final(DK(Σs)) or 〈(I, W),σ,δ2〉 ∈ Final(DK(Σs));

6. 〈(I, W),σ,δ1‖δ2〉 ∈ Final(DK(Σs)),

if 〈(I, W),σ,δ1〉 ∈ Final(DK(Σs)) and 〈(I, W),σ,δ2〉 ∈ Final(DK(Σs));

7. 〈(I, W),σ,pick(x̄)→ψ?;δ〉 ∈ Final(DK(Σs)),

if (I, W) ||=ψν and 〈(I, W),σ,δν〉 ∈ Final(DK(Σs)) for some ν.

A transition relation

→DK(Σs) ⊆ States(DK(Σs))×States(DK(Σs))

is defined by induction on the size of program expressions as the smallest set satisfying the
following conditions:

198 Chapter 7 Verification of Knowledge-Based Programs

1. 〈(I, W),σ,α〉 →DK(Σs) 〈(I
′, W ′),σ ·α, 〈〉〉,

if (I, W) =⇒αDK
(I′, W ′) and J �poss α for all J ∈W;

2. 〈I, W,σ,δ∗〉 →DK(Σs) 〈(I
′, W ′),σ ·α,δ′;δ∗〉,

if 〈(I, W),σ,δ〉 →DK(Σs) 〈(I
′, W ′),σ ·α,δ′〉;

3. 〈(I, W),σ,δ1;δ2〉 →DK(Σs) 〈(I
′, W ′),σ ·α,δ′1;δ2〉,

if 〈(I, W),σ,δ1〉 →DK(Σs) 〈(I
′, W ′),σ ·α,δ′1〉;

4. 〈(I, W),σ,δ1;δ2〉 →DK(Σs) 〈(I
′, W ′),σ ·α,δ′2〉,

if 〈(I, W),σ,δ1〉 ∈ Final(DK(Σs)) and 〈(I, W),σ,δ2〉 →DK(Σs) 〈(I
′, W ′),σ ·α,δ′2〉;

5. 〈(I, W),σ,δ1|δ2〉 →DK(Σs) 〈(I
′, W ′),σ ·α,δ′〉,

if 〈(I, W),σ,δ1〉 →DK(Σs) 〈(I
′, W ′),σ,δ′〉 or 〈(I, W),σ,δ2〉 →DK(Σs) 〈(I

′, W ′),σ,δ′〉

6. 〈(I, W),σ,δ1‖δ2〉 →DK(Σs) 〈(I
′, W ′),σ ·α,δ′1‖δ2〉,

if 〈(I, W),σ,δ1〉 →DK(Σs) 〈(I
′, W ′),σ ·α,δ′1〉;

7. 〈(I, W),σ,δ1‖δ2〉 →DK(Σs) 〈(I
′, W ′),σ ·α,δ1‖δ′2〉,

if 〈(I, W),σ,δ2〉 →DK(Σs) 〈(I
′, W ′),σ ·α,δ′2〉;

8. 〈(I, W),σ,pick(x̄)→ψ?;δ〉 →DK(Σs) 〈(I
′, W ′),σ ·α,δ′〉,

if I, W ||=ψν and〈(I, W),σ,δν〉 →DK(Σs) 〈(I
′, W ′),σ ·α,δ′〉 for some ν.

The set of all failure states over DK(Σs), denoted by Fail(DK(Σs)), is defined as follows:

Fail(DK(Σs)) := {〈(I, W),σ,δ〉 ∈ States(DK(Σs)) | (i) and (ii)}

(i) 〈(I, W),σ,δ〉 /∈ Final(DK(Σs))

(ii) there is no q ∈ States(DK(Σs)) with 〈(I, W),σ,δ〉 →DK(Σs) q.

Î

The next program state via→DK(Σs) is reached by executing the next ground action that is
known to be possible.

Lemma 7.4. Let 〈(I, W),σ,ρ〉 and 〈I′, W ′,σ′,ρ′〉 be two program states over the epistemic
FO-DS DK(Σs) = (M(K), F ,Act, E ,Pre,∼s). It holds that if

〈(I, W),σ,ρ〉 →DK(Σs) 〈(I
′, W ′),σ′,ρ′〉,

then there exists α ∈ ground(Act) such that

σ′ = σ ·α and J �poss α for all J ∈W.

7.1 Knowledge-Based Programs and Temporal Properties 199

The handling of final and failure states is done in the same way as in the non-epistemic
case. The termination and failure extension of DK(Σs), denoted by

DK(Σs)] {ε, f},

is defined as in Definition 2.45 regarding E and �poss, and the termination and failure actions
do not have sensing results, i.e. we have I ∼εs J and I ∼f

s J for all interpretations I and
J . Both actions are definable as local effect actions in an extended epistemic ALCO-action
theory, denoted by Σs]{ε, f}, that is obtained from Σs by adding the literals (prog À− ¬Final)
and (prog À− ¬Fail) to the initial KB and by defining preconditions, effects and sensing results
of ε and f as follows:

pre(ε) = pre(f) := ;,

eff(ε) :=
�

〈Final, {prog}〉+
	

,eff(f) :=
�

〈Fail, {prog}〉+
	

,

sense(ε) = sense(f) := TRUE.

It holds that

DK(Σs)] {ε, f}=DK(Σs] {ε, f}).

Using the epistemic FO-DS DK(Σs] {ε, f}) we are now ready to define the transition system
of a knowledge-based program. It is a straightforward adaption of the definition for ordinary
ConGolog programs over FO-DSs.

Definition 7.5. Let P = (DK(Σs),δ) be a knowledge-based ALCOK-ConGolog program. We
write Σe

s as abbreviation of Σs] {ε, f} and write Ke to denote the initial KB of the extended
action theory Σe

s .
The transition system induced by P, denoted by

IP = (QP , IP , ,→P ,λP),

consists of

• the set of states

QP := {〈(I, W),σ,ρ〉 ∈ States(Σe
s) | the symbols ε, f, Final, Fail do not occur in ρ};

• the set of initial states given by

IP := {〈(I, W), 〈〉,δ〉 |W =M(Ke)}, and

• the transition relation ,→P⊆QP ×QP that is defined as the smallest set satisfying the
following conditions:

– 〈(I, W),σ,ρ〉 ,→P 〈(J , M),σ ·α,ξ〉,
if 〈(I, W),σ,ρ〉 →DK(Σe

s)
〈(J , M),σ ·α,ξ〉;

– 〈(I, W),σ,ρ〉 ,→P 〈(J , M),σ · ε, 〈〉〉,
if 〈(I, W),σ,ρ〉 ∈ Final(DK(Σe

s)) and (I, W) =⇒εDK
(J , M);

200 Chapter 7 Verification of Knowledge-Based Programs

– 〈(I, W),σ,ρ〉 ,→P 〈(J , M),σ · f,ρ〉,

if 〈(I, W),σ,ρ〉 ∈ Fail(DK(Σe
s)) and (I, W) =⇒f

DK
(J , M).

• the labeling function λP : 〈(I, W),σ,ρ〉 7→ (I, W) for each 〈(I, W),σ,ρ〉 ∈QP .

Î

The partition of the set of all infinite paths in the transition system into non-terminating
and non-failing executions, terminating executions and failing executions (Definition 2.47
and Lemma 3.2) is carried over to the epistemic case in the obvious way. Note that for all
states 〈(I, W),σ,ρ〉 ∈QI reachable from an initial state it holds that

I |= prog À− Final iff (I, W) ||= K (prog À− Final) and

I |= prog À− Fail iff (I, W) ||= K (prog À− Fail) .

Verification Problem

To specify the correctness of knowledge-based ALCOK-ConGolog programs we define the
temporal logic called ALCOK-CTL∗.

The syntax of ALCOK-CTL∗ state formulas and ALCOK-CTL∗ path formulas is defined in
the same way as for FO-CTL∗ (Definition 2.37) but with Boolean ALCOK-KBs in place of FO
sentences.

An ALCOK-CTL∗ state or path formula is called subjective, if all Boolean ALCOK-KBs
occurring in it are subjective, and objective if all KBs are objective.

The semantics is defined in terms of transition systems where states are labeled with
epistemic interpretations. Let I= (QI, II, ,→I,λI) be a transition system, where each state
is labeled with an epistemic interpretation, and let q ∈QI be a state and π a path in I.

Satisfaction of an ALCOK-CTL∗ state formula Φ in I, q, denoted by I, q |= Φ, and satisfaction
of an ALCOK-CTL∗ path formula Ψ in I,π, denoted I,π |= Ψ, is defined as in Definition 2.38
except for the atomic case where the state formula is of the form Φ=ψ for some Boolean
ALCOK-KB ψ. In this case we have

I, q |=ψ iff (I, W) ||=ψ where (I, W) = λI (q).

Definition 7.6 (verification problem). Let P = (DK(Σs),δ) be a knowledge-based ALCOK-
ConGolog program and Φ an ALCOK-CTL∗ state formula. We say that Φ is valid in P iff
IP , q0 |= Φ holds for all initial states q0 ∈ IP of the transition system IP = (QP , IP , ,→P ,λP)
induced by P. Φ is said to be satisfiable in P iff IP , q0 |= Φ for some initial state q0 ∈ IP .

The verification problem is the problem of determining whether or not Φ is valid in P. Î

For instance, it can be expressed that the TBox T (considered as a conjunction of concept
inclusions) of the underlying action theories is always known: AG (KT) . This means the
TBox is always part of the knowledge state of the agent and is available to evaluate the
tests in the program. The following subjective formula describes a desirable outcome of the
program in Example 7.1:

AF (K (dev À− On)∨K (dev À− (∃HasFault. (CriticalFaultu¬KFault)))) .

7.1 Knowledge-Based Programs and Temporal Properties 201

Bisimulation and Abstraction for Programs over Ground Actions

We consider knowledge-based ALCOK-ConGolog programs P = (DK(Σs),δ), where δ is
pick-free and Σs is an epistemic ALCO-action theory for a finite set of ground actions. For
such programs we define propositional abstractions based on context-bisimulations in the
same way as for ordinary ConGolog programs.

The definition of a guarded action (Definition 3.8) over DK(Σs]{ε, f}) is carried over from
the non-epistemic case in the obvious way. Let Σs = (K, A,pre,eff,sense),

a=ψ1?; · · · ;ψn?;α

a guarded action over DK(Σs] {ε, f}) for some n ≥ 0 and let (I, W) be an epistemic
interpretation. We say that a is executable in (I, W) iff

(I, W) |=ψi for all i = 1, . . . , n and J |= pre(α) for all J ∈W.

Let δ be a pick-free program expression over DK(Σs). The functions head(·), tail(·, ·) and the
set of all reachable sub-programs sub(δ) are defined analogously to Definition 3.9, 3.10 and
3.11. Lemma 3.12 and Theorem 3.15 are true for the epistemic case as well. We leave this
without a proof.

We define static types of epistemic interpretations. Let (I, W) be an epistemic interpretation
and C an ALCOK-context. The static type of (I, W) w.r.t. C, denoted by s-typeC(I, W), is
given by

s-typeC(I, W) := {ψ ∈ C | (I, W) ||=ψ}.

The set of all static types w.r.t. C, denoted by SC , is given by

SC := {s ⊆ C | there exists an (I, W) with s= s-typeC(I, W)}.

Next, we define the relevant context of a knowledge-based program.

Definition 7.7. Let P = (DK(Σs),δ) be a knowledge-based ALCOK-ConGolog program,
where δ is pick-free and Σs = (K, A,pre,eff,sense) with A being a finite set of ground actions.
The relevant ALCOK-context CP for P is given by

CP := {ψ,¬ψ | ψ Â 〈F, {ō}〉± ∈ eff(α) for some α ∈ A, or

ψ= sense(α) for some α ∈ A, or

ψ= K
�
∧

pre(α)
�

for some α ∈ A, or

ψ is an axiom in K, or

ψ? is a test occurring in δ, or

ψ= K(prog À− Final) or ψ= K(prog À− Fail)}.

An ALCOK-context C is called a proper context for P iff CP ⊆ C. Î

Executability of a guarded action can be defined on the level of static types.

202 Chapter 7 Verification of Knowledge-Based Programs

Definition 7.8. Let P = (DK(Σs),δ) be as in Definition 7.7, C a proper context for P, CK the
subjective sub-context of C with

CK := {ψ ∈ C |ψ is subjective},

and let s ∈SCK
be a static type and a=ψ1?; · · · ;ψn?;α ∈ head(ρ) for some ρ ∈ sub(δ) a

guarded action.
We say that a is executable in s iff ψi ∈ s for all i = 1, . . . , n and K

�∧

pre(α)
�

∈ s. Î

The following lemma is a direct consequence of the definitions above. It is the epistemic
counterpart of Lemma 3.20.

Lemma 7.9. Let P = (DK(Σs),δ) be as in Definition 7.7, CK the subjective sub-context of a
proper context C for P, (I, W) an epistemic interpretation and a ∈ head(ρ) for some ρ ∈ sub(δ).
It holds that a is executable in (I, W) iff it is executable in s-typeCK

(I, W).

The definition of a C-bisimulation extends naturally to ALCOK-contexts and transition
systems where states are labeled with epistemic interpretations.

Definition 7.10. Let C be an ALCOK-context, AP a finite set of atomic propositions such that
a bijection ιC : C→ AP between C and AP exists, and let I= (QI, II, ,→I,λI) be a transition
system, where λI labels each state with an epistemic interpretation, and let

T= (QT, IT, ,→T,λT)

be a propositional transition system over AP. A binary relation 'C ⊆ QI × QT is called
C-bisimulation iff the following conditions are satisfied:

• qI'C qT implies λT(qT) = {ιC(ψ) |ψ ∈ s-typeC(I, W)}, where λI(qI) = (I, W).

• If qI'C qT and there is a transition qI ,→I q′I, then there exists a transition qT ,→T q′T
such that q′I'C q′T.

• If qI'C qT and there is a transition qT ,→T q′T, then there exists a transition qI ,→I q′I
such that q′I'C q′T.

We say that I and T are C-bisimilar iff there exists a C-bisimulation 'C ⊆QI ×QT such that

• for all qI ∈ II there exists qT ∈ IT such that qI'C qT and

• for all qT ∈ IT there exists qI ∈ II such that qI'C qT.

Î

We are now ready to define the notion of a propositional abstraction of a knowledge-based
program that preserves temporal properties.

Definition 7.11. Let P = (DK(Σs),δ) be as in Definition 7.7, C a proper context for P, and
AP a finite set of atomic propositions and T = (QT, IT, ,→T,λT) a propositional transition
system over AP.

We say that T is a bisimilar propositional abstraction of P w.r.t. C iff the following conditions
are satisfied

7.2 Programs over Unconditional Ground Actions 203

• There exists a bijection ιC : C→ AP between C and AP.

• The transition system IP induced by P and the propositional transition system T are
C-bisimilar.

Î

We have that C-bisimilar transition systems are indistinguishable w.r.t. the valid temporal
formulas. This is analogous to Lemma 3.24.

Lemma 7.12. Let C be an ALCOK-context, I a transition system where states are labeled
with epistemic interpretations, T a propositional transition system over a finite set of atomic
propositions AP with a bijection ιC : C→ AP such that I and T are C-bisimilar.

For an ALCOK-CTL∗ state formula Φ over Boolean KBs from C it holds that

Φ is valid in I iff ιC(Φ) is valid in T,

where ιC(Φ) is the propositional CTL∗ state formula obtained from Φ by replacing all Boolean
KBs occurring in Φ by their image in ιC .

7.2 Programs over Unconditional Ground Actions

In this section we investigate the complexity of the verification problem for knowledge-based
ALCOK-ConGolog programs over ground actions with only unconditional effects.

We call P = (DK(Σs),δ) a knowledge-based ALCOK-ConGolog program over unconditional
ground actions iff it satisfies the following restrictions:

• Σs = (K, A,pre,eff,sense) is an epistemic ALCO-action theory, where A is a finite set
of ground actions, and for all α ∈ A the effects in eff(α) are unconditional local effects
of the form

P, {(o, o′)}
�±

or 〈A, {o}〉±;

• δ is a pick-free program expression over DK(Σs).

The size of a program P = (DK(Σs),δ) is given by the size of Σs and the size of δ. The
hardness proof for ALCO-ConGolog based on a local effect ALCO-action theory (Section
4.4) also works in this case.

Corollary 7.13. The verification problem for ALCOK-CTL∗ properties and knowledge-based
ALCOK-ConGolog programs over unconditional ground actions without sensing is 2EXPTIME-
hard.

Proof. The reduction in Section 4.4 of the consistency problem of an ALCO-KB with nominal
schemas w.r.t. a finite set of object names to the verification problem works without any
modifications. We only need to extend the non-epistemic ALCO-action theory

ΣS,Obj = (KS,Obj, AS,Obj,eff,pre)

204 Chapter 7 Verification of Knowledge-Based Programs

with sensing results. We define sense(α) := TRUE for all α ∈ AS,Obj. Thus, all actions are
purely physical ones and do not provide any additional observations. With this extension the
action theory ΣS,Obj, the program expression δS,Obj and the temporal property ΦS,Obj defined
in Section 4.4 satisfy all the above mentioned restrictions.

If we allow sensing but restrict the temporal property to a subjective one, then we still
have 2EXPTIME-hardness.

Corollary 7.14. The verification problem for subjective ALCOK-CTL∗ temporal properties and
knowledge-based ALCOK-ConGolog programs over unconditional ground actions is 2EXPTIME-
hard.

Proof. Again, the reduction given in Section 4.4 only needs to be slightly modified. We define
sense(α) := TRUE for all α ∈

�

AS,Obj \ {finished(s)}
	

and

sense(finished(s)) :=
∧

CvD∈S

bC v bD.

Now we can use the following subjective temporal property for the reduction:

ΦS,Obj := AG

�

K(s À− AllGrounded)→K

�

∧

CvD∈S

bC v bD

��

.

7.2.1 Deciding the Verification Problem with Sensing

Next, we show that the problem is in 2EXPTIME. For simplicity we only consider temporal
properties over Boolean ALCOK-KBs that are either objective or subjective. In the following
we consider a proper ALCOK-context C for the given program P that can be partitioned into
a subjective and objective part:

C = CK] Co,

where CK consists of all subjective Boolean ALCOK-KBs and Co consists of all relevant objective
Boolean ALCO-KBs. The abstraction is based on the set of all relevant local effects of actions
in Σs = (K, A,pre,eff,sense) given by

Lit(Σs) :=

�

⋃

α∈A
eff(α)

�

∪
�

〈Final, {prog}〉+, 〈Fail, {prog}〉+
	

.

With D-Types(Co,Lit(Σs)) we denote the set of all dynamic types w.r.t. Co and Lit(Σs) according
to Definition 4.7. An abstraction of a program state consists of the following components:

• a dynamic type t ∈ D-Types(Co,Lit(Σs)) as an abstraction of the initial model describing
the environment the program is executed in;

• a subset ts ⊆ t describing the part of the environment that was observed so far by
means of sensing;

7.2 Programs over Unconditional Ground Actions 205

• a set of local effects L ⊆ Lit(Σs) as the accumulated effects of the action history;

• the remaining program ρ ∈ sub(δ).

The static type of the abstract state w.r.t. the objective context Co is uniquely determined by
the dynamic type t of the world state and the accumulated effects L. Next, we show that the
sensing result of an action sequence σ ∈ A∗ in an interpretation I can be represented as a
subset of Co × 2Lit(Σs).

Definition 7.15. Let Σs = (K, A,pre,eff,sense) be an epistemic ALCO-action theory, where
eff(α) is a set of unconditional local effects for each ground action α ∈ A. First, we extend
eff(·) to sequences in A∗.

For some σ ∈ A∗ the set of effects eff(σ) is defined inductively as follows:

eff(〈〉) := ;

eff(σ′ ·α) :=
�

eff(σ′) \ ¬eff(α)
�

∪ eff(α) with σ′ ∈ A∗ and α ∈ A.

Let C be an ALCO-context such that {sense(α),¬sense(α)} ⊆ C holds for all α ∈ A, Lit(Σs)
the set of all relevant effects, α1 · · ·αn ∈ A∗ for some n≥ 0 an action sequence and

sσ = (ψ1, . . . ,ψn)

a sensing result of σ w.r.t. Σs. The corresponding subset of C × 2Lit(Σs) is defined as follows:

ts(sσ) := {(ψ1,;)} ∪ {(ψi ,eff(α1 · · ·αi−1)) | i ∈ {2, . . . , n}}.

Î

It is easy to see that the sensing result of an action sequence uniquely determines the
resulting knowledge state.

Lemma 7.16. Let Σs = (K, A,pre,eff,sense), C and Lit(Σs) be as above,

DK(Σs) = (D= (M(K), F , A, E ,Pre),∼s)

the induced epistemic FO-DS, σ ∈ A∗ an action sequence, I ∈M(K) and (Iσ, M) the epistemic
interpretation with (I, M(K)) =⇒σDK

(Iσ, M). It holds that

M= {J eff(σ) | J ∈M(K), ts(sσ(I)) = ts(sσ(J))}.

Given the current sensing result ts ⊆ Co × 2Lit(Σs), the accumulated effects L and the initial
KB K we construct a representation of the current knowledge state in form of a reduction KB.
With this reduction KB, which is a Boolean ALCO-KB, the static type of the knowledge state
w.r.t. CK can be determined. The reduction KB has the same structure as the KB for checking
realizability of dynamic types in presence of local effects (Lemma 4.12) and the one used for
solving the epistemic projection problem (Lemma 6.54).

Definition 7.17. Let ts ⊆ Co × 2Lit(Σs) be a representation of the sensing results, F the set of
all concept names and role names occurring in Co and Lit(Σs), Obj(Σs) the set of all object
names mentioned in Co and Lit(Σs), and sub(Co) the set of all sub-concepts occurring in Co.

206 Chapter 7 Verification of Knowledge-Based Programs

We define a Boolean ALCO-KB
Kts

red

that uses the following fresh concept, role and object names: for each non-contradictory set
L ⊆ Lit(Σs), each F ∈ F and each concept C ∈ sub(Co) there are concept/role names F (L) and
concept names T (L)C ; a concept name Nc representing the set of all named elements including
c; and there is a distinguished object name c ∈ NO \Obj(Σs).

Let ψ ∈ Co and L ⊆ Lit(Σs) a non-contradictory set of effects. The copy ψ(L) is obtained
from ψ be replacing each C v D in ψ by T (L)C v T (L)D , each o À− C by o À− T (L)C and each
(o, o′) À− P by (o, o′) À− P(L).

The TBox
Tsub(Co)

consists of the following definitions

• for each new name T (L)C a definition as defined in Figure 4.1 but with Nc instead of N ,
and

• the definition Nc ≡
⊔

o∈Obj(Σs)∪{c}
{o}.

The ABox
Aeff

consists of all assertions of the ABox given in (4.5). Finally, we define

Kts
red := Tsub(Co) ∧Aeff ∧

∧

ϕ in K
ϕ(;) ∧

∧

(ψ,L) ∈ ts

ψ(L).

We also allow for an additional acyclic TBox similar to the one in (6.5). Let Ta be an acyclic
ALCO-TBox such that

• all defined concept names in Ta are not contained in F , and

• all other non-defined concept names and all role names in Ta are contained in F .

Let X be an ALCO-concept or a Boolean ALCO-KB over concept names and role names from
F and defined concept names from Ta. For each sub-concept C ∈ sub(X)∪ sub(Ta) and each
non-contradictory set L ⊆ Lit(Σs) a new concept name T (L)C is introduced. With

Tsub(X ,Ta) (7.1)

we denote the conjunction of the following concept definitions:

• for all C ∈ sub(X) ∪ sub(Ta) where C is not a defined name in Ta, and all non-
contradictory sets L ⊆ Lit(Σs) a definition of T (L)C according to Figure 4.1 as above;

• T (L)A ≡ T (L)D for each definition A≡ D ∈ Ta and each non-contradictory set L ⊆ Lit(Σs) .

Let Y be a Boolean ALCO-KB or an ALCO-concept. With YTa
we denote the Boolean KB or

concept obtained from Y be exhaustively replacing each occurrence of a defined name in Ta
in Y with the corresponding right-hand side of the definition. Î

7.2 Programs over Unconditional Ground Actions 207

The following lemma describes the essential property of the reduction KB analogous to
Lemma 6.52.

Lemma 7.18. Let Σs = (K, A,pre,eff,sense), Co, Lit(Σs), F , Obj(Σs) and ts ⊆ Co × 2Lit(Σs)

be as above, and Ta an acyclic ALCO-TBox such that all defined concept names in Ta are not
contained in F , and all other non-defined concept names and all role names in Ta are contained
in F , and let X be an ALCO-concept or a Boolean ALCO-KB over concept names and role names
from F and defined concept names from Ta, and object names from Obj(Σs).

1. For every I ∈M(K) there exists a J such that

J |= Tsub(Co) ∧Aeff ∧
∧

ϕ in K
ϕ(;) ∧ Tsub(X ,Ta)

and it holds that

IL |=ψTa
iff J |=ψ(L) , for all non-contradictory L ⊆ Lit(Σs)

and for any Boolean ALCO-KB ψ with sub(ψ) ⊆ sub(Co)∪ sub(X , Ta).

2. For every interpretation J with

J |= Tsub(Co) ∧Aeff ∧
∧

ϕ in K
ϕ(;) ∧ Tsub(X ,Ta),

there exists I ∈M(K) such that it holds that

IL |=ψTa
iff J |=ψ(L) , for all non-contradictory L ⊆ Lit(Σs)

and for any Boolean ALCO-KB ψ with sub(ψ) ⊆ sub(Co)∪ sub(X , Ta).

Proof. Essentially, the proof works in the same way as the one given in [Baa+05b] (page 17,
Theorem 14).

The next lemma is a direct consequence.

Lemma 7.19. Let Σs = (K, A,pre,eff,sense), DK(Σs), Co, Lit(Σs), F , X and Ta be as above.
Furthermore let σ ∈ A∗ be an action sequence, I ∈M(K), ts = ts(sσ(I)) and (Iσ, M) the
epistemic interpretation with (I, M(K)) =⇒σDK

(Iσ, M).

1. For every Y ∈M there exists a J such that J |= Kts
red ∧ Tsub(X ,Ta) and it holds that

Y |=ψTa
iff J |=ψ(L) with L = eff(σ)

for any Boolean ALCO-KB ψ with sub(ψ) ⊆ sub(Co)∪ sub(X , Ta).

2. For every interpretation J with J |= Kts
red ∧ Tsub(X ,Ta), there exists Y ∈M such that it

holds that

Y |=ψTa
iff J |=ψ(L) with L = eff(σ)

for any Boolean ALCO-KB ψ with sub(ψ) ⊆ sub(Co)∪ sub(X , Ta).

208 Chapter 7 Verification of Knowledge-Based Programs

We can now define an instance function based on entailments of Kts
red analogous to (6.6),

(6.7) and (7.4).

Definition 7.20. Let ts ⊆ Co × 2Lit(Σs), L ⊆ Lit(Σs) a non-contradictory set, F the set of all
relevant concept and role names and Obj(Σs) the set of all relevant object names. Furthermore
let Ta be an acyclic ALCO-TBox such that all concept names and role names in Ta are either
defined concept names in Ta or are contained in F and let KD be an ALCOK-concept, where
D is objective and mentions only concept names and role names from F and Ta and only
object names from Obj(Σs).

We define a set κts,L(KD) ⊆ Nom(Σs), where Nom(Σs) is defined in (6.3), as follows

κts,L(KD) :=
¦

{o}
�

�

� o ∈ Obj(Σs), Kts
red ∧ Tsub(D,Ta) |=

�

o À− T (n)D

�©

∪
¦

¬N
�

�

�Kts
red ∧ Tsub(D,Ta) |=

�

c À− T (n)D

�©

.
(7.2)

Let P ∈ F be a role name. We define κsσ(X , P) ⊆ Nom(Σs) for some X ∈ Nom(Σs) as follows
as follows:

κts,L({o}, P) :=
�

{o′}
�

� o′ ∈ Obj(Σs), Kts
red |= (o, o′) À− P(n)

	

∪
�

¬N
�

�Kts
red |= (o, c) À− P(n)

	

for all o ∈ Obj(Σs);

κts,L(¬N , P) :=
�

{o′}
�

� o′ ∈ Obj(Σs), Kts
red |= (c, o′) À− P(n)

	

∪
�

¬N
�

�Kts
red |= (c, c) À− P(n)

	

.

(7.3)

Let Ta be as above and K% a Boolean ALCOK-KB, where % is objective and mentions only
concept and role names from F and Ta and object names from Obj(Σs). We define

κts,L(K%) :=

¨

TRUE if Kts
red ∧ Tsub(%,Ta) |= %

(n);

FALSE otherwise.
(7.4)

Î

Based on the instance function κts,L as defined above a corresponding rewrite relation,
denoted by

`ts,L,

for subjective Boolean ALCOK-KBs is defined as in Definition 6.55. As a consequence of
Lemma 7.19 we have that Lemma 6.56 holds for `ts,L as well.

Thus, given ts and L as an abstraction of the current knowledge state the static type w.r.t.
the subjective context CK can be determined by rewriting the KBs in CK into objective ones
and then checking whether they are entailed by Kts

red.
We are now ready to define the abstract transition system.

Definition 7.21. Let P = (DK(Σs),δ) be a knowledge-based ALCOK-ConGolog program
over unconditional ground actions with Σs = (K, A,pre,eff,sense), IP the induced transition
system, and let C = CK] Co be a proper context for P that consists of subjective or objective
Boolean ALCOK-KBs, and AP a finite set of atomic propositions with a bijection ιC : C→ AP.

7.2 Programs over Unconditional Ground Actions 209

The abstraction of IP w.r.t. C is a propositional transition system

TP = (QTP
, ITP

, ,→TP
,λTP

)

over AP, where

• QTP
:= {(t, ts,L,ρ) | t ∈ D-Types(Co,Lit(Σs)), ts ⊆ t,L ⊆ Lit(Σs),ρ ∈ sub(δ)};

• ITP
:=
�

(t,;,;,δ) ∈QTP

�

� (ϕ,;) ∈ t,∀ϕ.ϕ occurring in the initial KB of Σs] {ε, f}
	

;

• for each state (t, ts,L,ρ) ∈QTP
the label set λTP

(t, ts,L,ρ) is defined as follows

– for each ψ ∈ Co it holds that ιC(ψ) ∈ λTP
(t, ts,L,ρ) iff (ψ,L) ∈ t;

– for each ψ ∈ CK it holds that ιC(ψ) ∈ λTP
(t, ts,L,ρ) iff for the objective rewriting

(Ta,ϕ) with (;,ψ) `
∗

ts,L
(Ta,ϕ) it holds that Kts

red ∧ Tsub(ϕ,Ta) |= ϕ
(L);

• ,→TP
:=
��

(t, ts,L,ρ), (t′, t′s,L
′,ρ′)

�

∈QTP
×QTP

�

� t= t′, (i) or (ii)
	

with

(i) there exists a guarded action a=ψ1?; · · · ;ψn?;α ∈ head(ρ) such that

– a is executable in the static type s= {ψ ∈ CK | ιC(ψ) ∈ λTP
(t, ts,L,ρ)}, and

– L′ = (L \ ¬eff(α))∪ eff(α) and ρ′ ∈ tail(a,ρ) and

– t′s = ts ∪ ({(sense(α),L), (¬sense(α),L)} ∩ t).

(ii) there is no guarded action contained in head(ρ) that is executable in the static
type s= {ψ ∈ CK | ιC(ψ) ∈ λTP

(t, ts,L,ρ)} and we have

L′ = (L \ ¬eff(f))∪ eff(f)

and ρ = ρ′, and t′s = ts.

Î

To determine the subjective label of an abstract state the representation of the knowledge
state in form of the reduction KB is used. Since the KBs in CK are subjective, the resulting
rewriting is interpreted in the same way in each possible world (Lemma 6.49). Abstract
states a progressed by choosing an executable guarded action, adding the respective effects,
choosing the remaining program and by updating the sensing result. In the second component
of each state we keep track of all observations made throughout the execution. If α ∈
A is executed and L are the currently accumulated effects, then either (sense(α),L) or
(¬sense(α),L) is contained in the dynamic type representing the world state. After doing α
the pair contained in t is added to the sensing result.

We show that TP is bisimilar propositional abstraction of P. Let IP = (QP , IP , ,→P ,λP)
be the transition system induced by P and TP = (QTP

, ITP
, ,→TP

,λTP
) the abstraction of IP

w.r.t. C. We define a relation
'C⊆QP ×QTP

such that

〈(I, W),σ,ρ〉 'C (t, ts,L,θ) iff the following conditions are satisfied

210 Chapter 7 Verification of Knowledge-Based Programs

• there exists 〈(I0, M(K)), 〈〉,δ〉 ∈ IP such that 〈(I0, M(K)), 〈〉,δ〉 ,→P
∗ 〈(I, W),σ,ρ〉

and t= d-typelocCo
(I0), I = I0

L and ts = ts(sσ(I0)), and

• ρ = θ .

Lemma 7.22. 'C is a C-bisimulation.

Proof. Let
DK(Σs) = (D= (M(K), F , A, E ,Pre),∼s).

Let 〈(I, W),σ,ρ〉 ∈ QP and (t, ts,L,θ) ∈ QTP
such that 〈(I, W),σ,ρ〉 'C (t, ts,L,θ). Let

I0 ∈M(K) such that

• 〈(I0, M(K)), 〈〉,δ〉 ,→P
∗ 〈(I, W),σ,ρ〉 and

• t= d-typelocCo
(I0),

• I = I0
L and ts = ts(sσ(I0)).

It follows that
(I0, M(K)) =⇒σDK

(I, W) and L = eff(σ).

First, we show that

λTP
(t, ts,L,θ) = {ιC(ψ) |ψ ∈ s-typeC(I, W)}. (7.5)

For all ψ ∈ Co it is easy to see that

ψ ∈ s-typeC(I, W) iff ψ ∈ s-typeCo
(I) iff

ψ ∈ s-typeCo
(I0

L) iff

(ψ,L) ∈ t= d-typelocCo
(I0) iff

ιC(ψ) ∈ λTP
(t, ts,L,θ).

Let ψ ∈ CK. It holds that ψ ∈ s-typeC(I, W)

iff (I, W) |=ψ

iff I |= ¹ψ,κWº

iff J |= ¹ψ,κWº for all J ∈W (Lemma 6.49)

iff J |= ϕTa
for all J ∈W for the objective rewriting (;,ψ) `

∗

ts,L
(Ta,ϕ) due to Lemma

6.56 and 7.19 and Definition 7.20

iff Kts
red ∧ Tsub(ϕ,Ta) |= ϕ

(L) for the objective rewriting (;,ψ) `
∗

ts,L
(Ta,ϕ)

iff ιC(ψ) ∈ λTP
(t, ts,L,θ).

It remains to be shown that for each successor of 〈(I, W),σ,ρ〉 there is a successor of
(t, ts,L,θ) such that both successor or in'C-relation, and vice versa. Assume σ ∈ A. Consider
a transition

〈(I, W),σ,ρ〉 ,→P 〈(J , M),σ ·α,ζ〉

7.2 Programs over Unconditional Ground Actions 211

with α ∈ A. It follows that there exists a guarded action a=ψ1?; · · · ;ψn?;α ∈ head(ρ) for
some n≥ 0 that is executable in (I, W) and ζ ∈ tail(a,ρ). It follows that

J = Ieff(α) = I0
E with E= (L \ ¬eff(α))∪ eff(α). (7.6)

Since a is executable in (I, W), (7.5) implies that a is executable in

{ψ ∈ CK | ιC(ψ) ∈ λTP
(t, ts,L,ρ)}.

It follows that

(t, ts,L,ρ) ,→TP
(t, t′s,E,ζ) with t′s = ts ∪ ({(sense(α),L), (¬sense(α),L)} ∩ t) .

It is easy to show that
〈(J , M),σ ·α,ζ〉 'C (t, t

′
s,E,ζ).

The other direction is analogous. We omit the remaining cases. The proof works following
the same lines as in the proof of Lemma 4.16.

Thus, the abstraction defined in Definition 7.21 is a bisimilar propositional abstraction of
P w.r.t. the chosen proper context C. It is finite and effectively computable. The property
can be verified via propositional model checking.

Theorem 7.23. The verification problem for ALCOK-CTL∗ properties and knowledge-based
ALCOK-ConGolog programs over unconditional ground actions is 2EXPTIME-complete.

Proof. The set of all dynamic types D-Types(Co,Lit(Σs)) can be computed in 2EXPTIME and
there are at most double exponentially many types. Thus, there are at most double exponen-
tially many abstract states. For each abstract state of the form (t, ts,L,ρ) the corresponding
reduction KB Kts

red is of exponential size. The label set λTP
(t, ts,L,ρ) is computable with a

polynomially of entailment checks of exponential size. Therefore, for each state the label
set is computable in 2EXPTIME. Checking whether or not there is a transition between
two abstract states given the label sets can be done in polynomial time. The computation
of the bisimilar propositional abstraction of P w.r.t. the chosen proper context C can be
done in double exponential time. To decide the verification problem a propositional CTL∗

model checker is called with a transition system of double exponential size. Since the model
checking algorithm requires polynomial time in the size of the transition system, the model
checker requires double exponential time w.r.t. the size of the input.

7.2.2 Lowering the Complexity

In this section we consider additional restrictions on the verification problem of knowledge-
based ALCOK-ConGolog programs over unconditional ground actions that admit a decision
procedure in EXPTIME. One such fragment is obtained by disallowing sensing results and by
restricting the specification to ALCOK-CTL∗ formulas over only subjective Boolean ALCOK-
KBs. In the other fragment actions may have sensing results but have no physical effects.

212 Chapter 7 Verification of Knowledge-Based Programs

The Case without Sensing and only Subjective Temporal Properties

First, we consider knowledge-based ALCOK-ConGolog programs over unconditional ground
actions P = (DK(Σs),δ), where the underlying action theory Σs = (K, A,pre,eff,sense) in
addition has the following property

sense(α) = TRUE for all α ∈ A.

Furthermore, we consider only ALCOK-CTL∗ state formulas over subjective Boolean ALCOK-
KBs.

The abstraction is constructed based on a proper context C = Co] CK, where the objective
part Co only consists of the axioms contained in the initial KB K. For the decision which
action to execute next only CK is relevant. Since the temporal property also only refers to the
knowledge state, it is sufficient to construct a CK-bimilar abstraction. Intuitively, the actual
world state is irrelevant for the verification. In this fragment there is no interaction between
the world state and the knowledge state, because there are no conditional effects, i.e. the
outcome of an action is immediately observable, and no observations can be made through
sensing.

For the abstraction it is sufficient to keep track of the accumulated effects and the remaining
program expression. Thus, we obtain a transition system with at most exponentially many
states.

Definition 7.24. Let P = (DK(Σs),δ) be a knowledge-based ALCOK-ConGolog programs
over unconditional ground actions with Σs = (K, A,pre,eff,sense) and sense(α) = TRUE for
all α ∈ A, and let CK be the subjective part of a proper context for P and AP a set of atomic
propositions with a bijection ιCK

: CK→ AP.
Let IP be the transition system induced by P. The abstraction of IP w.r.t. CK is a proposi-

tional transition system
TP = (QTP

, ITP
, ,→TP

,λTP
)

over AP, where

• QTP
:= Lit(Σs)× sub(δ);

• ITP
:= {(;,δ)};

• for each (L,ρ) ∈QTP
we have

λTP
(L,ρ) := {ιCK

(ψ) |ψ ∈ CK,proj(Σs
L,αL,ψ) = TRUE}, where

αL is a ground action term with all object names mentioned in L as arguments, and
Σs

L = (K, {αL},pre,eff,sense) is an epistemic ALCO-action theory with pre(αL) = ;,
eff(αL) = L, sense(αL) = TRUE and K is the initial KB that includes the assertions

(prog À− ¬Final) and (prog À− ¬Fail).

• ,→TP
:=
��

(L,ρ), (L′,ρ′)
�

∈QTP
×QTP

(i) or (ii)
	

with

(i) there exists a guarded action a=ψ1?; · · · ;ψn?;α ∈ head(ρ) such that

7.2 Programs over Unconditional Ground Actions 213

– a is executable in the static type s= {ψ ∈ CK | ιCK
(ψ) ∈ λTP

(L,ρ)}, and

– L′ = (L \ ¬eff(α))∪ eff(α) and ρ′ ∈ tail(a,ρ) ;

(ii) there is no guarded action contained in head(ρ) that is executable in the static
type s= {ψ ∈ CK | ιCK

(ψ) ∈ λTP
(L,ρ)} and we have

L′ = (L \ ¬eff(f))∪ eff(f)

and ρ = ρ′.

Î

The transition system only has a single initial state given by (;,δ). To determine the
(subjective) label of an abstract state of the form (L,δ) we check for each ψ ∈ CK whether
or not ψ is known after an update of the initial KB K with L. This check is described as
an epistemic projection problem with a single action that has L as its set of effects. The
transition relation on abstract states is defined as usual.

We show that TP is a CK-bisimilar abstraction of IP . Let IP = (QP , IP , ,→P ,λP) be the
transition system induced by P and TP = (QTP

, ITP
, ,→TP

,λTP
) the abstraction of IP w.r.t.

CK. We define a relation
'CK
⊆QP ×QTP

such that

〈(I, W),σ,ρ〉 'CK
(L,θ) iff the following conditions are satisfied

• there exists 〈(I0, M(K)), 〈〉,δ〉 ∈ IP such that 〈(I0, M(K)), 〈〉,δ〉 ,→P
∗ 〈(I, W),σ,ρ〉

and I = I0
L;

• ρ = θ .

Lemma 7.25. 'CK
is a CK-bisimulation.

Proof. Let
DK(Σs) = (D= (M(K), F , A, E ,Pre),∼s).

Let 〈(I, W),σ,ρ〉 ∈QP and (L,ρ) ∈QTP
such that 〈(I, W),σ,ρ〉 'CK

(L,ρ). Let I0 ∈M(K)
such that

• 〈(I0, M(K)), 〈〉,δ〉 ,→P
∗ 〈(I, W),σ,ρ〉 and

• I = I0
L.

It follows that
(I0, M(K)) =⇒σDK

(I, W) and L = eff(σ).

Since the actions in σ only have unconditional effects and provide no sensing results, it
follows that

W = {J L | J ∈M(K)}. (7.7)

214 Chapter 7 Verification of Knowledge-Based Programs

We show that

λTP
(L,ρ) = {ιCK

(ψ) |ψ ∈ s-typeCK
(I, W)}.

Let Σs
L = (K, {αL},pre,eff,sense) with pre(αL) = ;, eff(αL) = L and sense(αL) = TRUE.

It holds that ιCK
(ψ) ∈ λTP

(L,ρ) for some ψ ∈ CK

iff proj(Σs
L,αL,ψ) = TRUE

iff for all J0 ∈M(K) we have (Y, M) ||=ψ with (J0, M(K)) =⇒α
L

DK
(Y, M)

iff (Y, M) ||=ψ with M= {J L | J ∈M(K)} for some Y ∈M (since ψ is subjective and
by definition of Σs

L)

iff ψ ∈ s-typeCK
(I, W) (with (7.7)).

We omit the proof that both states have matching successor that are 'CK
-related. A successor

〈(I, W),σ,ρ〉 of is obtained by choosing the next possible ground action α from the head
of ρ, by updating all possible worlds in W with the unconditional effects in eff(α) and
by choosing a remaining program expression. In the same way the abstract state (L,ρ) is
progressed: accumulating L and the effects of the next possible action and updating ρ. Since
the subjective static type of (I, W) and the subjective label of (L,ρ) coincide, the same actions
are possible in both states. It follows that the respective successor states are 'CK

-related as
well.

It follows that IP and TP are CK-bisimilar. Thus, TP is a finite bisimilar propositional
abstraction of P w.r.t. CK. CTL∗ properties over Boolean ALCOK-KBs from CK can be verified
by checking whether they are modeled by TP .

Theorem 7.26. The verification problem for ALCOK-CTL∗ formulas over subjective Boolean
ALCOK-KBs and knowledge-based ALCOK-ConGolog programs over unconditional ground
actions without sensing is EXPTIME-complete.

Proof. The abstract transition system TP defined above has at most |Lit(Σs)× sub(δ)| many
states. Therefore there are at most exponentially many states that can be enumerated in
EXPTIME as a consequence of Theorem 3.15. To determine the labels we have to solve an
instance of the epistemic projection problem for each state and each relevant subjective
KB ψ ∈ CK. This can be done in EXPTIME (Theorem 6.58). Checking whether there is a
transition between two labeled states can be done in polynomial time in the size of the input.
Thus, TP is of exponential size and can be computed in exponential time. To verify a given
CTL∗ state formula Φ over subjective KBs from the relevant context CK a propositional CTL∗

model checker is called with TP and Φ as input. The model checking problem can be solved
in polynomial time w.r.t. the size of the transition system and in exponential time in the size
of the temporal formula. Thus, the model checking task can be solved in exponential time in
the size of the input.

The EXPTIME lower bound comes from the consistency problem of ALCO-KBs.

7.2 Programs over Unconditional Ground Actions 215

The Case with purely Sensing Actions

Next, we consider the fragment where actions have no physical effects at all. The program
only describes observations made by the agent. We consider knowledge-based ALCOK-
ConGolog programs of the form P = (DK(Σs),δ) with the following restrictions:

• Σs = (K, A,pre,eff,sense) is an epistemic ALCO-action theory for a finite set of ground
actions A with eff(α) = ; for all α ∈ A;

• δ is a pick-free program expression over DK(Σs).

Again, we consider only proper ALCOK-contexts of P of the form C = CK] Co, where CK is
the subjective part and Co the objective one. We do not consider Boolean ALCOK-KBs that
are neither objective nor subjective.

Intuitively, executing a purely sensing action is nothing more than just adding new objective
axioms to the knowledge base of the agent. In the abstraction of the program the state of
the world is represented as its static type w.r.t. Co. Since actions do not have any effects on
the world state, this part remains unchanged. The current knowledge state is just a subset of
the static type of the world state.

We define an abstract propositional transition system as follows.

Definition 7.27. Let P = (DK(Σs),δ) be a knowledge-based ALCOK-ConGolog programs
over purely sensing actions with Σs = (K, A,pre,eff,sense) where A is a finite set of ground
actions, and let C = CK] Co be a proper context for P and AP a set of atomic propositions
with a bijection ιC : C→ AP.

Let IP be the transition system induced by P. The abstraction of IP w.r.t. C is a propositional
transition system

TP = (QTP
, ITP

, ,→TP
,λTP

)

over AP, where

• QTP
:= {(s, ss,ρ) ∈SCo

×SCo
× sub(δ) | ss ⊆ s};

• ITP
:= {(s, ss,ρ) ∈QTP

| ϕ ∈ s for all ϕ ∈ K∪ {(prog À− ¬Final), (prog À− ¬Fail)},
ss = K∪ {(prog À− ¬Final), (prog À− ¬Fail)},
ρ = δ};

• for each (s, ss,ρ) ∈QTP
we have

λTP
(s, ss,ρ) := {ιC(ψ) |ψ ∈ s} ∪ {ιC(ψ) |ψ ∈ CK,proj(Σs(ss), 〈〉,ψ) = TRUE},

where Σs(ss) = (ss,;,pre,eff,sense);

• ,→TP
:=
��

(s, ss,ρ), (s′, s′s,ρ
′)
�

∈QTP
×QTP

�

� (i) or (ii) or (ii)
	

with

(i) there exists a guarded action a = ψ1?; · · · ;ψn?;α ∈ head(ρ) with α ∈ A such
that

– s= s′, and

– a is executable in the static type {ψ ∈ CK | ιC(ψ) ∈ λTP
(s, ss,ρ)}, and

216 Chapter 7 Verification of Knowledge-Based Programs

– s′s = ss ∪ ({sense(α),¬sense(α)} ∩ s), and

– ρ′ ∈ tail(a,ρ) ;

(ii) there exists a guarded action a=ψ1?; · · · ;ψn?;ε ∈ head(ρ) such that

– a is executable in the static type {ψ ∈ CK | ιC(ψ) ∈ λTP
(s, ss,ρ)}, and

– s′ = s \ {(prog À− ¬Final)} ∪ {(prog À− Final)} and

– s′s = ss \ {(prog À− ¬Final)} ∪ {(prog À− Final)}, and

– ρ′ ∈ tail(a,ρ) ;

(iii) there is no guarded action contained in head(ρ) that is executable in the static
type {ψ ∈ CK | ιC(ψ) ∈ λTP

(s, ss,ρ)} and we have

s′ = s \ {(prog À− ¬Fail)} ∪ {(prog À− Fail)}
s′s = ss \ {(prog À− ¬Fail)} ∪ {(prog À− Fail)}

and ρ = ρ′.

Î

Initially, the knowledge base

K∪ {(prog À− ¬Final), (prog À− ¬Fail)}

describes everything that is known. It is the representation of the initial knowledge in the
transition system. For an abstract state of the form (s, ss,ρ) the corresponding subjective
label is obtained by answering epistemic projection queries w.r.t. the empty action sequence,
where ss is treated as the current knowledge base.

A labeled abstract state is progressed by choosing a next possible action determined by the
subjective label, by adding the sensed Boolean KB to the knowledge state and by updating
the remaining program. In case the termination or failing action is executed also the static
type of the world state is updated.

It can be shown that IP and TP are C-bisimilar. TP is of exponential size and can be
computed in exponential time. This leads to the following result. We omit further details of
the proof.

Theorem 7.28. The verification problem for ALCOK-CTL∗ formulas and knowledge-based
ALCOK-ConGolog programs over purely sensing actions is EXPTIME-complete.

7.3 Programs over Ground Actions with Conditional Effects

In this section we consider the case where actions might have conditional effects. We prove
decidability of the verification problem for programs over conditional ground actions.

We consider knowledge-based ALCOK-ConGolog programs of the form P = (DK(Σs),δ),
where

• Σs = (K, A,pre,eff,sense) is an unrestricted epistemic ALCO-action theory for a finite
set of ground actions A, and

7.3 Programs over Ground Actions with Conditional Effects 217

• δ is a pick-free program expression over DK(Σs).

In addition we have given a proper ALCOK-context C = Co] CK for P partitioned into a
objective and subjective part as before.

Due to conditional effects of an action it might happen that the outcome of an action is
unknown. An action execution can lead to different changes on different possible worlds.
This requires an abstraction technique that takes the different types of the possible worlds into
account. The general idea is to finitely represent the knowledge state in terms of the possible
static types w.r.t. an appropriate objective context. This objective context is constructed
such that from the set of all possible objective static types the subjective static type of the
represented knowledge state can be derived. To represent how the possible worlds evolve
we consider the corresponding dynamic types.

First, we define the set of all instance functions with a domain that consists of all epistemic
concepts, roles and KBs occurring in the context.

Definition 7.29. Let P = (DK(Σs),δ) be an ALCOK-ConGolog program as described above,
C a proper ALCOK-context for P, F the set of all relevant concept and role names in DK(Σs),
Obj(Σs) the set of all relevant object names mentioned in Σs and Nom(Σs) the set of all
nominal concepts as defined in (6.3).

With subCK(C) we denote the set of all (sub-)concepts of the form KD and with subKBK (C)
the set of all Boolean sub-KBs of the form Kϕ mentioned in C. The set of all relevant instance
functions w.r.t. C, denoted by FC , consists of all total functions κ of the form

κ : subCK(C)∪ (Nom(Σs)× (F ∩NR))∪ subKBK (C)→ 2Nom(Σs) ∪ {TRUE, FALSE}, (7.8)

where

• each KD ∈ subCK(C) is mapped to a set κ(KD) ⊆ Nom(Σs),

• each pair (X , P) ∈ (Nom(Σs)× (F ∩NR)) to a set κ(X , P) ⊆ Nom(Σs), and

• each Kϕ ∈ subKBK (C) to κ(Kϕ) ∈ {TRUE, FALSE}.

Î

We sometimes also consider partial instance functions that are only defined for a subset of
the domain specified in (7.8).

Consider an epistemic concept or KB of the form KX and an instance function κ. The
operator ¹·, ·º (Definition 6.47) first rewrites X and then applies the instance function to
K¹X ,κº. We define a modified version of the rewriting operator that produces an equivalent
result but applies the instance function directly to KX without first applying the rewriting
operator to X . This is done to ensure that an instance function with a domain specified in
(7.8) is sufficient to obtain an objective rewriting.

Definition 7.30. Let C and FC be as above, and let C be a sub-concept occurring in C, ψ a
Boolean sub-KB occurring in C and κ ∈ FC . The rewriting of C w.r.t. κ, denoted by ‖C ,κ‖, is
an ALCO-concept defined by induction on the structure of C in exactly the same way ¹C ,κº
is defined except for the case where C is of the form KD. In this case we have

‖KD,κ‖ :=
⊔

κ(KD).

218 Chapter 7 Verification of Knowledge-Based Programs

Similarly, the rewriting of ψ w.r.t. κ, denoted by ‖ψ,κ‖, is defined inductively in the same
way as ¹ψ,κº except for the case where ψ is of the form Kϕ. In this case we have

‖Kϕ,κ‖ := κ(Kϕ).

Î

The result ‖C ,κ‖ and ‖ψ,κ‖ is well-defined also for partial instance functions κ, if κ is
defined for all sub-concepts KD in C or in ψ, respectively, for all sub-KBs of ψ of the form
Kϕ and for all pairs (X , P) ∈ (Nom(Σs)× (F ∩NR)), where KP occurs in C orψ, respectively.
Both operators ¹·, ·º and ‖·, ·‖ give the same result if instantiated with the instance function
for a knowledge state.

Lemma 7.31. Let P = (DK(Σs),δ) be a knowledge-based ALCOK-ConGolog program over
ground actions, IP = (QP , IP , ,→P ,λP) the induced transition system, C a proper ALCOK-
context for P and 〈(I, W),σ,ρ〉 ∈ QP a program state reachable from an initial state in IP .
Furthermore, let κW be the instance function for W (Def. 6.46) and let κ′W be the restriction of
κW to the domain according to (7.8).

For each sub-concept C and Boolean sub-KB ϕ occurring in C it holds that

¹C ,κWº= ‖C ,κ′W‖ and ¹ϕ,κWº= ‖ϕ,κ′W‖.

The instance functions in FC provide enough information to rewrite concepts and KBs
occurring in C into equivalent objective formulas. To obtain the relevant objective context
we consider all possible rewritings with instance functions from FC . The result is called
knowledge closure.

Definition 7.32. Let C = Co] CK be an ALCOK-context over F , where all Boolean KBs in Co
are objective and all Boolean KBs in CK are subjective, and let Obj(Σs) be the finite set of all
relevant object names, and FC the set of all relevant instance functions w.r.t. C. Furthermore,
let c ∈ NO \Obj(Σs) be an arbitrary but fixed object name not occurring in Obj(Σs).

The knowledge closure of C, denoted by bC, is the following object context

bC := Co ∪
{(¬) (‖ψ,κ‖) |ψ ∈ CK,κ ∈ FC} ∪
�

(¬)
�

(o, o′) À− P
� �

� P ∈ F ∩NR, (o, o′) ∈ (Obj(Σs)∪ {c})× (Obj(Σs)∪ {c})
	

∪
�

(¬) (o À− (‖D,κ‖))
�

�KD ∈ subCK(C),κ ∈ FC , o ∈ Obj(Σs)∪ {c}
	

∪
�

(¬) (‖ϕ,κ‖)
�

�Kϕ ∈ subKBK (C),κ ∈ FC
	

.

Î

We show that the static type of an epistemic interpretation (I, W) w.r.t. C is uniquely
determined by the set of static types of the worlds in W w.r.t. the knowledge closure bC. First,
we define an instance function for a given set of static types w.r.t. bC.

Definition 7.33. Let C = Co] CK, Obj(Σs), F and bC be as above and let S
bC be the set of all

static types w.r.t. bC and S ⊆S
bC a subset.

7.3 Programs over Ground Actions with Conditional Effects 219

The corresponding instance function κS ∈ FC is defined as follows. Let {o} ∈ Nom(Σs) with
o ∈ Obj(Σs) and P ∈ F ∩NR. We define

κS({o}, P) := {{a} ∈ Nom(Σs) | a ∈ Obj(Σs), ((o, a) À− P) ∈ s for all s ∈ S} ∪
{¬N | ((o, c) À− P) ∈ s for all s ∈ S}.

κS(¬N , P) := {{a} ∈ Nom(Σs) | a ∈ Obj(Σs), ((c, a) À− P) ∈ s for all s ∈ S} ∪
{¬N | ((c, c) À− P) ∈ s for all s ∈ S}.

On subCK(C) and subKBK (C) the function κS is defined by induction on the nesting depth of K
symbols. Let KC ∈ subCK(C), where C is objective. We define

κS(KC) :=
�

{a} ∈ Nom(Σs) | a ∈ Obj(Σs), (a À− C) ∈
⋂

S
	

�

¬N
�

�

� (c À− C) ∈
⋂

S for some c ∈ NO \Obj(Σs)
	

.

Let KD ∈ subCK(C) and assume κS is already defined for all concepts KC occurring in D and
for all pairs in (Nom(Σs)× (F ∩NR)). We define

κS(KD) :=
�

{a} ∈ Nom(Σs)
�

�

� a ∈ Obj(Σs), (a À− (‖D,κS‖)) ∈
⋂

S
	

�

¬N
�

�

� (c À− (‖D,κS‖)) ∈
⋂

S for some c ∈ NO \Obj(Σs)
	

.

Let K% ∈ subKBK (C), where % is objective. We define

κS(K%) :=

¨

TRUE if % ∈
⋂

S;

FALSE otherwise.

Let Kϕ ∈ subKBK (C) and assume κS is defined for all concepts of the form KD occurring in ϕ,
for all pairs (Nom(Σs)× (F ∩NR)) and for all Boolean KBs of the form K% occurring in ϕ.
We define

κS(Kϕ) :=

¨

TRUE if ‖ϕ,κS‖ ∈
⋂

S;

FALSE otherwise.

Î

It can be shown that κS is a well-defined instance function with κS ∈ FC .

Lemma 7.34. Let C and bC be as above and 〈(I, W),σ,ρ〉 a reachable program state in the
transition system induced by P = (DK(Σs),δ) and let S :=

�

s-type
bC(J)

�

�J ∈W
	

. Furthermore,
let κW be the instance function for W and κ′W the restriction of κW to the domain

subCK(C)∪ (Nom(Σs)× (F ∩NR))∪ subKBK (C).

It holds that
κS = κ

′
W .

Proof. Let ({o}, P) ∈ Nom(Σs) × (F ∩ NR) with o ∈ NO and let a ∈ Obj(Σs). It holds that

220 Chapter 7 Verification of Knowledge-Based Programs

{a} ∈ κW({o}, P)

iff (o, a) ∈ (KP)W

iff J |= (o, a) À− P for all J ∈W

iff ((o, a) À− P) ∈ s-type
bC(J) for all J ∈W (by definition of bC)

iff ((o, a) À− P) ∈ s for all s ∈ S

iff {a} ∈ κS({o}, P).

Furthermore, it holds that ¬N ∈ κW({o}, P)

iff there exists b ∈ NO \Obj(Σs) such that (o, b) ∈ (KP)W

iff (o, a) ∈ (KP)W for all a ∈ NO \Obj(Σs) (by Lemma 6.42)

iff there exists c ∈ NO \ Obj(Σs) such that ((o, c) À− P) ∈ s-type
bC(J) for all J ∈ W (by

definition of bC)

iff there exists c ∈ NO \Obj(Σs) such that ((o, c) À− P) ∈ s for all s ∈ S

iff ¬N ∈ κS({o}, P).

With similar arguments it can be shown that κW(¬N , P) = κS(¬N , P). For the subset
subCK(C)∪ sub

KB
K (C) of the domain the proof works by induction on the nesting depth of K-

symbols. For the base case let KD ∈ subCK(C) with D being objective. It holds that (a À− D) ∈ bC
for all a ∈ Obj(Σs) and (c À− D) ∈ bC for some c ∈ NO \ Obj(Σs) by definition of bC. With
S =

�

s-type
bC(J)

�

�J ∈W
	

it directly follows that κS(KD) = κW(KD).
For the induction step consider an epistemic concept KC ∈ subCK(C). For all sub-concepts

KD occurring in C we assume by induction κS(KD) = κW(KD) and for all roles (X , P) ∈
(Nom(Σs)× (F ∩NR)) we have κS(X , P) = κW(X , P) as shown above. It follows that

‖C ,κS‖= ‖C ,κW‖
L. 7.31
= ¹C ,κWº (7.9)

and it holds that (a À− ‖C ,κS‖) ∈ bC for all a ∈ Obj(Σs) and (c À− ‖C ,κS‖) ∈ bC for some
c ∈ NO \Obj(Σs) by definition of bC. Using (7.9) and Lemma 6.48 it can be shown that

κS(KC) = κW(KC).

Similarly, one can show that κS(Kψ) = κW(Kψ) is true for all Kψ ∈ subKBK (C).

We can now define satisfaction of a Boolean KB from the context in an abstraction of an
epistemic interpretation in terms of static types w.r.t. the knowledge closure of the context.
Let S ⊆S

bC , s ∈ S and ψ ∈ C. Satisfaction of ψ in (s, S), denoted by (s, S) |=C ψ, is defined
by:

(s, S) |=C ψ iff ‖ψ,κS‖ ∈ s.

7.3 Programs over Ground Actions with Conditional Effects 221

Lemma 7.35. Let C and bC be as above and 〈(I, W),σ,ρ〉 a reachable program state in the
transition system induced by P = (DK(Σs),δ) and let S :=

�

s-type
bC(J)

�

�J ∈W
	

, s :=
s-type

bC(I) and ψ ∈ C. It holds that

(I, W) ||=ψ iff (s, S) |=C ψ.

We introduce a few more auxiliary notions needed for the abstraction. The abstraction of
a program state consists of the dynamic type of each possible world, the set of accumulated
effects for each individual dynamic type and the remaining program expression.

Definition 7.36. Let P = (DK(Σs),δ) be a knowledge-based ALCOK-ConGolog program
over ground actions with Σs = (K, A,pre,eff,sense), where A is a finite set of ground actions,
and let C = Co] CK be a proper ALCOK-context P, bC the knowledge closure of C and
D-Types(bC,Lit(Σs)) the set of all dynamic types w.r.t. bC and Lit(Σs).

An abstract program state of P w.r.t. C is a tuple of the form

(d,K,ρ)

with K ⊆ D-Types(bC,Lit(Σs))× 2Lit(Σs), d ∈ K and ρ ∈ sub(δ). For a tuple

(t,L) ∈ D-Types(bC,Lit(Σs))× 2Lit(Σs)

we define the corresponding static type

s-type
bC(t,L) := {ψ | (ψ,L) ∈ t}.

Let (d,K,ρ) be an abstract program state and

s := s-type
bC(d) and S := {s-type

bC(t,L) | (t,L) ∈ K}.

We say that a guarded action ψ1?; · · · ;ψn?;α ∈ head(ρ) for some n ≥ 0 is executable in
(d,K) iff (s, S) |=C ψi for all i = 1, . . . , n and (s, S) |=C K

�∧

pre(α)
�

.
Let α ∈ A and s ∈ S

bC . The effects of executing α in a world of static type s, denoted by
eff
bC(s,α), is defined as the following subset of Lit(Σs):

eff
bC(s,α) :=

�

〈F, X 〉±
�

�ψ Â 〈F, X 〉± ∈ eff(α),ψ ∈ s
	

.

The sensing compatibility relation is lifted to the level of static types as well. We define

∼bCs :=
�

(s,α, s′) ∈S
bC × A×S

bC

�

� sense(α) ∈ s iff sense(α) ∈ s′
	

.

Next, we define the lifting of the transition relation induced by DK(Σs) to the abstraction
of epistemic interpretations. Let α ∈ A, K,K′ ⊆ D-Types(bC,Lit(Σs))× 2Lit(Σs) and d ∈ K and
d′ ∈ K′. We say that the execution of α in (d,K) transforms (d,K) into (d′,K′), written as

(d,K) =⇒α
bC
(d′,K′),

iff the following conditions are satisfied

222 Chapter 7 Verification of Knowledge-Based Programs

(P1) d′ = (t,L′) with d= (t,L) and

L′ =
�

L \ ¬eff
bC(s-type

bC(d),α)
�

∪ eff
bC(s-type

bC(d),α);

(P2) it holds that (t′,E′) ∈ K′ iff there exists (t′,E) ∈ K such that

�

s-type
bC(d),α,s-type

bC(t
′,E)

�

∈ ∼bCs

and
E′ =

�

E \ ¬eff
bC(s
′,α)

�

∪ eff
bC(s
′,α)

with s′ = s-type
bC(t
′,E).

The extension of =⇒α
bC

for some α ∈ A to a relation =⇒σ
bC

for some sequence σ ∈ A∗ is defined
in the usual way.

We also extend the definition of eff
bC(s,α) to dynamic types and sequences of ground

actions. Let t ∈ d-typeloc
bC
(bC,Lit(Σs)) and σ ∈ A∗. The set of effects of executing σ in t, denoted

by Eff
bC(t,σ), is defined by induction on the length of σ as follows:

Eff
bC(t, 〈〉) := ;

and for θ ∈ A∗, Lθ = Eff
bC(t,θ) and α ∈ A we define

Eff
bC(t,θ ·α) := Lθ \ ¬effbC(s-type

bC(t,Lθ),α)∪ effbC(s-type
bC(t,Lθ),α).

Furthermore, the sensing compatibility relation is extended to dynamic types and sequences
of actions as well. Let σ ∈ A∗ and t, t′ ∈ D-Types(bC,Lit(Σs)). Sensing compatibility of t and t′

w.r.t. σ, denoted by t�bC〈〉 t
′, is defined by induction on the length of σ as follows:

t�bC〈〉 t
′

is true for arbitrary pairs of dynamic types; and if σ is of the form θ ·α we have

t�bCθ ·α t
′ iff t�bCθ t

′ and
�

s-type
bC(t,EffbC(t,θ)),α,s-type

bC(t
′,Eff

bC(t
′,θ))

�

∈ ∼bCs .

Î

Given a pair
(t,L) ∈ D-Types(bC,Lit(Σs))× 2Lit(Σs)

The type t represents the dynamic type of an initial world and L is the set of accumulated
effects of the actions executed so far in worlds of this type. L represents the current progress
and points to the current static type denoted by s-type

bC(t,L). Note that the abstract transition
relation =⇒α

bC
only updates the set of accumulated effects attached to a dynamic type. The

dynamic type itself is not subject to any changes.
We show that the lifting of executability and transformation of ground actions to the level

of types respects the underlying action semantics.

7.3 Programs over Ground Actions with Conditional Effects 223

Lemma 7.37. Let P, Σs and bC be as in Definition 7.36,

DK(Σs) = (D= (M(K), F , A, E ,Pre),∼s)

the epistemic FO-DS induced by Σs, and IP = (QP , IP , ,→P ,λP) the transition system induced
by P, and let 〈(I, W),σ,ρ〉 ∈QP be a program state and 〈(I0, M(K)), 〈〉,δ〉 ∈ IP such that

〈(I0, M(K)), 〈〉,δ〉 ,→P
∗ 〈(I, W),σ,ρ〉.

1. It holds that
I = I0

Lσ with Lσ = Eff
bC(d-typeloc

bC
(I0),σ);

and for each J ∈W there exists a model J0 ∈M(K) such that

J = J0
Eσ with Eσ = Eff

bC(d-typeloc
bC
(J0),σ) with d-typeloc

bC
(I0)�

bC
σ d-typeloc

bC
(J0)

2. Let (dI ,KW) be the abstraction of (I, W) in 〈(I, W),σ,ρ〉 given by

dI = (d-typeloc
bC
(I0),Lσ) with Lσ = Eff

bC(d-typeloc
bC
(I0),σ);

KW =

(

(d-typeloc
bC
(J0),Eσ)

�

�

�

�

�

J0 ∈M(K),Eσ = Eff
bC(d-typeloc

bC
(J0),σ),

d-typeloc
bC
(I0)�

bC
σ d-typeloc

bC
(J0)

)

.

(dI ,KW) has the following properties

a) It holds that s-type
bC(dI) = s-type

bC(I) and
�

s-type
bC(d
′)
�

� d′ ∈ KW
	

=
�

s-type
bC(J) | J ∈W

	

.

b) A guarded action a ∈ head(ρ) is executable in (I, W) iff a is executable in (dI ,KW).

c) Let d0 = (d-typeloc
bC
(I0),;) and K0 =

¦

(d-typeloc
bC
(J0),;)

�

�

�J0 ∈M(K)
©

. It holds that

(d0,K0) =⇒σ
bC
(dI ,KW).

Proof. 1. We have
〈(I0, M(K)), 〈〉,δ〉 ,→P

∗ 〈(I, W),σ,ρ〉,

which implies (I0, M(K)) =⇒σDK
(I, W). The proof is by induction on the length of σ.

The base case with σ = 〈〉 is trivial. Assume σ is of the form θ ·α. There exists an
epistemic interpretation (Yθ , Mθ) such that

(I0, M(K)) =⇒θDK
(Yθ , Mθ) =⇒αDK

(I, W).

It follows that Yθ ⇒αD I. Thus, we have

I = Yθ Lα with Lα = {〈F, X 〉± |ψ Â 〈F, X 〉± ∈ eff(α), Yθ |=ψ}.

224 Chapter 7 Verification of Knowledge-Based Programs

By induction we have

Yθ = I0
Lθ with Lθ = Eff

bC(d-typeloc
bC
(I0),θ).

It follows that s-type
bC(Yθ) = s-type

bC(d-typeloc
bC
(I0),Lθ) and hence

Lα = eff
bC(s-type

bC(d-typeloc
bC
(I0),Lθ),α).

It follows that

I = I0
Lθ \¬Lα∪Lα with (Lθ \ ¬Lα ∪ Lα) = Eff

bC(d-typeloc
bC
(I0),θ ·α).

Let J ∈W. It follows that there exists Jθ ∈Mθ such that

Yθ ∼αs Jθ and Jθ ⇒αD J .

By induction there exists J0 ∈M(K) such that

Jθ = J0
Eff

bC(d-typeloc
bC
(J0),θ) and d-typeloc

bC
(I0)�

bC
θ d-typeloc

bC
(J0).

Using Jθ ⇒αD J it can be shown that

J = J0
Eff

bC(d-typeloc
bC
(J0),θ ·α).

Now, d-typeloc
bC
(I0)�

bC
θ
d-typeloc

bC
(J0) and Jθ ⇒αD J yields

d-typeloc
bC
(I0)�

bC
θ ·α d-typeloc

bC
(J0).

2. dI and KW as described in the claim are unique and always exist. 2a follows from 1.
and Definition 7.36, and 2b is a consequence of 2a and 7.35.

The proof of 2c is by induction on the length of σ. The case σ = 〈〉 is trivial. For the
induction step assume σ to be of the form θ ·α with θ ∈ A∗ and α ∈ A. There exists a
state 〈(Y, N),θ ,ζ〉 ∈QTP

such that

〈(I0, M(K)), 〈〉,δ〉 ,→P
∗ 〈(Y, N),θ ,ζ〉 ,→P 〈(I, W),θ ·α,ρ〉

Let

dY := (d-typeloc
bC
(I0),Lθ) with Lθ = Eff

bC(d-typeloc
bC
(I0),θ);

KN =

(

(d-typeloc
bC
(J0),Eθ)

�

�

�

�

�

J0 ∈M(K),Eθ = Eff
bC(d-typeloc

bC
(J0),θ),

d-typeloc
bC
(I0)�

bC
θ d-typeloc

bC
(J0)

)

.

The induction hypothesis yields (d0,K0) =⇒θ
bC
(dY ,KN). We show that

(dY ,KN) =⇒α
bC
(dI ,KW).

7.3 Programs over Ground Actions with Conditional Effects 225

We have Y ⇒αD I. Let Lα =
�

〈F, X 〉±
�

�ψ Â 〈F, X 〉± ∈ eff(α) and Y |=ψ
	

. It follows that

Lα = eff(s-type
bC(Y),α)

2a
= eff(s-type

bC(dY),α)

Lemma 4.5 yields I = YLα . With Y = I0
Lθ and Lemma 4.6 it follows that

I = I0
Lθ \¬Lα∪ Lα .

Hence, dI = (d-typeloc
bC
(I0),Lθ \ ¬Lα ∪ Lα). Consequently, dI satisfies (P1) required by

the definition of “=⇒α
bC
”.

Next, we show that KW satisfies (P2). Let (t,L) ∈ KW . We have to show that a pair
(t,E) ∈ KN exists such that

�

s-type
bC(dY),α,s-type

bC(t,E)
�

∈ ∼bCs

and

L = E \ ¬eff(s-type
bC(t,E),α)∪ eff(s-type

bC(t,E),α).

By definition of KW we have that (t,L) ∈ KW implies that there exists some J0 ∈M(K)
with

t= d-typeloc
bC
(J0),L = Eff

bC(d-typeloc
bC
(J0),θ ·α) and d-typeloc

bC
(I0)�

bC
θ ·α d-typeloc

bC
(J0).

It follows that E= Eff
bC(d-typeloc

bC
(J0),θ) satisfies the property as required, i.e.

(d-typeloc
bC
(J0),EffbC(d-typeloc

bC
(J0),θ)) ∈ KN .

For the proof of the other direction of (P2) consider (t′,Eθ) ∈ KN such that

(s-type
bC(dY),α,s-type

bC(t
′,Eθ)) ∈∼

bC
s .

We have to show that (t′,Eθ ·α) ∈ KW with

Eθ ·α = Eθ \ ¬effbC(s-type
bC(t
′,Eθ),α)∪ effbC(s-type

bC(t
′,Eθ),α).

Since (t′,Eθ) ∈ KN , we have that t′ = d-typeloc
bC
(J0) for some J0 ∈M(K) such that

Eθ = Eff
bC(t
′,θ) and d-typeloc

bC
(I0)�

bC
θ
t′. It follows that

Eθ ·α = Eff
bC(t
′,θ ·α).

With (s-type
bC(dY),α,s-type

bC(t
′,Eθ)) ∈∼

bC
s and d-typeloc

bC
(I0)�

bC
θ
t′ it follows that

d-typeloc
bC
(I0)�

bC
θ ·α t
′

Therefore, (t′,Eθ ·α) ∈ KW .

226 Chapter 7 Verification of Knowledge-Based Programs

We are now ready to define the abstraction of the transition system induced by P. We
consider the termination and failure extensionΣs]{ε, f} ofΣs but still useΣs in the definition
for better readability.

Definition 7.38. Let P = (DK(Σs),δ) be a knowledge-based ALCOK-ConGolog program
over ground actions with Σs = (K, A,pre,eff,sense), where A is a finite set of ground actions,
and let C = Co] CK be a proper ALCOK-context for P, bC the knowledge closure of C,
D-Types(bC,Lit(Σs)) the set of all dynamic types w.r.t. bC and Lit(Σs) and AP a finite set of
atomic propositions with a bijection ιC : C→ AP.

Let IP be the transition system induced by P. The abstraction of IP w.r.t. C is a propositional
transition system

TP = (QTP
, ITP

, ,→TP
,λTP

)

over AP, where

• QTP
:=
�

(d,K,ρ)
�

�K ⊆ D-Types(bC,Lit(Σs))× 2Lit(Σs),d ∈ K,ρ ∈ sub(δ)
	

;

• ITP
:=
�

(d,K,ρ) ∈QTP

�

�K= {(t,;) | (ϕ,;) ∈ t for all ϕ occurring in K},ρ = δ
	

;

• for each (d,K,ρ) ∈QTP
we have

λTP
(d,K,ρ) := {ιC(ψ) | (s, S) |=C ψ,ψ ∈ C}, where

s= s-type
bC(d) and S = {s-type

bC(d
′) | d′ ∈ K}.

• ,→TP
:=
��

(d,K,ρ), (d′,K′,ρ′)
�

∈QTP
×QTP

(i) or (ii)
	

with

(i) there exists a guarded action a =ψ1?; · · · ;ψn?;α ∈ head(ρ) for some n≥ 0 such
that

– a is executable in (d,K), and

– (d,K) =⇒α
bC
(d′,K′) and ρ′ ∈ tail(a,ρ).

(ii) there is no guarded action contained in head(ρ) that is executable in (d,K) and
we have (d,K) =⇒f

bC
(d′,K′) and ρ = ρ′.

Î

We show that TP = (QTP
, ITP

, ,→TP
,λTP

) is a bisimilar propositional abstraction of P. Let
IP = (QP , IP , ,→P ,λP) be the transition system induced by P. We define a relation

'C⊆QP ×QTP

such that

〈(I, W),σ,ρ〉 'C (d,K,ρ) iff the following conditions are satisfied

• there exists 〈(I0, M(K)), 〈〉,δ〉 ∈ IP such that 〈(I0, M(K)), 〈〉,δ〉 ,→P
∗ 〈(I, W),σ,ρ〉

and

– d= (d-typeloc
bC
(I0),L) and L = Eff

bC(d-typeloc
bC
(I0),σ);

7.4 A Deciable Pick-Operator with Epistemic Guards 227

– K=

(d-typeloc
bC
(J0),E)

�

�

�

�

�

�

�

�

J0 ∈M(K),E= Eff
bC(d-typeloc

bC
(J0),σ),

d-typeloc
bC
(I0)�

bC
σ d-typeloc

bC
(J0)

.

• ρ = θ .

It is easy to prove that 'C is a C-bisimulation using Lemma 7.35 and Lemma 7.37.

Lemma 7.39. 'C is a C-bisimulation.

For each abstract initial state (d,K,δ) ∈ ITP
it holds that

K=
¦

(d-typeloc
bC
(J0),;)

�

�

�J0 ∈M(K)
©

.

It follows that each abstract initial state is C-bisimilar to an initial state in IP and vice versa.
Therefore, TP is a finite C-bsimilar propositional abstraction of IP .

Next, we count the number of states in TP and determine an upper bound of the complexity
of computing TP .

First, we observe that the set FC of all relevant instance functions w.r.t. C is exponentially
large in the size of C and Σs. Second, the knowledge closure bC is therefore also at most
exponentially large in the size of Σs and C. Thus, the cardinality of

bC × 2Lit(Σs)

is exponentially bounded as well. Consequently, there are at most double-exponentially
many dynamic types in D-Types(bC,Lit(Σs)). Realizability of a complete subset of bC × 2Lit(Σs)

can be checked in 2EXPTIME using the method given in Chapter 4, Section 4.2. We obtain
that D-Types(bC,Lit(Σs)) is computable in 2EXPTIME. The knowledge state component of
the abstract states in TP consists of subsets of D-Types(bC,Lit(Σs)). Therefore, there are at
most triple-exponentially many states in TP . We obtain a 3EXPTIME upper bound for the
verification problem.

Theorem 7.40. The verification problem for ALCOK-CTL∗ properties and knowledge-based
ALCOK-ConGolog programs over ground actions is decidable in 3EXPTIME.

7.4 A Deciable Pick-Operator with Epistemic Guards

So far, we have only obtained decidability results for programs over ground actions. We now
add a restricted version of the pick-operator. Consider the guarded pick expression used in
Example 7.1:

pick(x)→ K ((dev, x) À− HasFault)?;repair(dev, x);

pick(x)→ K (x À− Fault)∧¬Kw((dev, x) À− HasFault)?;sense-fault(dev, x)

In this example, only a known instance of a concept and an object that is related via an
epistemic role to some other named object is chosen. In such simple cases, we will show that

228 Chapter 7 Verification of Knowledge-Based Programs

only named object mentioned in the action theory can be chosen. As a consequence we can
remove the pick-operator by means of grounding and obtain decidability.

To make this work we impose several restrictions on the action theory and on the guards
of the pick-operator we allow in the program.

Definition 7.41. Let Σs = (K,Act,pre,eff,sense) be an epistemic ALCO-action theory with
K = (T , A). We say that Σs is an action theory with only local sensing iff the following
restrictions are satisfied:

• T is an ALC-TBox, i.e. nominals are disallowed;

• for each α(t̄) ∈ Act the preconditions in pre(α(t̄)) the effect conditions of the effects
in eff(α(t̄)) and sense(α(t̄)) are restricted to be Boolean ALCO-ABoxes, i.e. concept
inclusions are disallowed.

Î

In the next section, we show that disallowing sensing of concept inclusions and using
an initial KB with an ALC-TBox leads to simple knowledge states, where certain epistemic
concepts and epistemic roles have a finite extensions of only named objects.

7.4.1 Knowledge States after Local Sensing

In this section, we consider an epistemic ALCO-action theory with only local sensing of the
form

Σs = (K, A,pre,eff,sense),

where A is a finite set of ground action terms. Obj(Σs) is the set of all object names mentioned
in Σs and C an ALCO-context that consists exactly of the axioms in K, all preconditions, all
effect conditions, all sensing properties, and the respective negated formulas. Lit(Σs) is the
set of all relevant local effects.

Definition 7.41 implies that C consists only of Boolean ALCO-ABoxes and ALC-concept
inclusions and their negations contained in the initial TBox.

We consider the following property of the knowledge states that evolve from the epistemic
model M(K) by executing a sequence of ground actions.

Lemma 7.42. Let Σs = (K, A,pre,eff,sense) be as described above and let

DK(Σs) = (M(K), F , A, E ,Pre,∼s)

be the induced epistemic FO-DS. Furthermore, letσ ∈ A∗, P ∈ NR a role name, C an ALC-concept,
I ∈M(K) and (J , M) the epistemic interpretation with

(I, M(K)) =⇒σ
DK(Σs)

(J , M).

It holds that

1. if K 6|=>v C, then (KC)M ⊆ Obj(Σs) and

2. (KP)M ⊆ Obj(Σs)×Obj(Σs).

7.4 A Deciable Pick-Operator with Epistemic Guards 229

Before we prove this lemma we consider the static case where the action sequence is
empty. A proof for this case was given by Mehdi [Meh14] (page 76, Lemma 4) also using the
swapping technique for unnamed elements from [Don+98]. The proof can be outlined as
follows. Assume to the contrary that there exists an unnamed element d ∈∆ \Obj(Σs) such
that d ∈ (KC)M(K). Since K 6|= > v C , there exists a model J ∈M(K) and an anonymous
element e ∈ NO \ Obj(Σs) such that e /∈ CJ . Now consider a bijection ι : NO → NO with
ι(e) = d and ι(d) = e and ι(o) = o for all o ∈ Obj(Σs). The renaming ι just swaps the two
unnamed elements d and e. The renaming of the model J using ι yields an interpretation,
denoted by ι(J), that is isomorphic to J and is also a model of K. Thus, from J ∈M(K) and
e /∈ CJ it follows that ι(J) ∈M(K) and ι(e) /∈ C ι(J). With ι(e) = d we get a contradiction
to the assumption d ∈ (KC)M(K).

The proof we found for the dynamic case is a bit more involved. To reuse the idea described
above we need to show that if initially K 6|=>v C holds, then we can still find in the resulting
knowledge state M an interpretation Y such that there exists an unnamed domain element
not contained in the extension of C under Y. This domain element will serve as the “swap
partner” for the unnamed known instance d of KD under M and will lead to the contradiction
as in the static case.

In the following we introduce several auxiliary notions we need for the construction of
such an interpretation Y ∈M. First, an operation that merges two interpretations together
in one is defined.

Definition 7.43. Let I0 and I1 be two interpretations satisfying the SNA. The sum of I0 and
I1 is an interpretation, denoted by I0 ⊕ I1, that is defined as follows:

∆I0⊕I1 := NO × {0,1};
AI0⊕I1 := {〈d, 0〉 | d ∈ AI0} ∪ {〈d, 1〉 | d ∈ AI1} for all A∈ NC

PI0⊕I1 := {(〈d, 0〉, 〈e, 0〉) | (d, e) ∈ PI0} ∪ {(〈d, 1〉, 〈e, 1〉) | (d, e) ∈ PI1} for all P ∈ NR

oI0⊕I1 := 〈o, 0〉 for all o ∈ NO.

Î

Note that the operation is non-commutative due to the interpretation of object names. We
now consider a renaming of the sum I0 ⊕ I1 that interprets the named part of the domain
given by Obj(Σs) as in I0.

Lemma 7.44. Let I0, I1 and I0 ⊕ I1 be as above, ι : NO × {0,1} → NO a bijection such that
ι(〈o, 0〉) = o for all o ∈ Obj(Σs), L ⊆ Lit(Σs) a set of local effects, C an ALCO-concept, ψ a
Boolean ALCO-ABox, where all object names mentioned in C and ψ are contained in Obj(Σs).
Furthermore, let J := ι(I0 ⊕ I1).

1. d ∈ AI0
L

iff ι(〈d, 0〉) ∈ AJ L
for all d ∈ NO and A∈ NC;

2. (d, e) ∈ PI0
L

iff
�

ι(〈d, 0〉), ι(〈e, 0〉)
�

∈ PJ L
for all d, e ∈ NO and P ∈ NR;

3. d ∈ CI0
L

iff ι(〈d, 0〉) ∈ CJ L
for all d ∈ NO;

4. I0
L |=ψ iff J L |=ψ.

230 Chapter 7 Verification of Knowledge-Based Programs

Proof.

1. Let d ∈ NO and A∈ NO and L ⊆ Lit(Σs) a set of literals. First we show

d ∈ AI0 iff ι(〈d, 0〉) ∈ AJ . (7.10)

Using the definitions we get d ∈ AI0 iff 〈d, 0〉 ∈ AI0⊕I1 iff ι(〈d, 0〉) ∈ Aι(I0⊕I1). Since
L mentions only individuals from Obj(Σs) and by construction ι(〈o, 0〉) = o for all
o ∈ Obj(Σs), it follows that

d ∈ {o | 〈A, {o}〉+ ∈ L} iff ι(〈d, 0〉) ∈ {o | 〈A, {o}〉+ ∈ L} (7.11)

and

d ∈ {o | 〈A, {o}〉− ∈ L} iff ι(〈d, 0〉) ∈ {o | 〈A, {o}〉− ∈ L}. (7.12)

By definition of interpretation updates and (7.10), (7.11) and (7.12) it follows that

d ∈ AI0
L

iff ι(〈d, 0〉) ∈ AJ L
.

2. The proof is analogous to the proof of 1.

3. The proof is by induction on the structure of C .

C = A : for some A∈ NC, see 1.

C = {o}: for some o ∈ Obj(Σs). It holds that d ∈ {o}I0
L

iff d ∈ {oI0
L
}

iff d ∈ {o}

iff d = o

iff ι(〈d, 0〉) = o

iff ι(〈d, 0〉) ∈ {o}

iff ι(〈d, 0〉) ∈ {oJ L
}

iff ι(〈d, 0〉) ∈ {o}J
L
.

C = ¬D: It holds that d ∈ (¬D)I0
L

iff d /∈ DI0
L

iff ι(〈d, 0〉) /∈ DJ L
(by induction)

iff ι(〈d, 0〉) ∈ (¬D)J
L
.

C = D1 u D2: It holds that d ∈ (D1 u D2)I0
L

iff d ∈ DI0
L

1 and d ∈ DI0
L

2

iff ι(〈d, 0〉) ∈ DJ L

1 and ι(〈d, 0〉) ∈ DJ L

2 (by induction)

iff ι(〈d, 0〉) ∈ (D1 u D2)J
L
.

7.4 A Deciable Pick-Operator with Epistemic Guards 231

C = ∃P.D: It holds that d ∈ (∃P.D)I0
L

iff there exists an e ∈ NO s.t. (d, e) ∈ PI0
L

and e ∈ DI0
L

iff
�

ι(〈d, 0〉), ι(〈e, 0〉)
�

∈ PJ L
(by claim 2.) and ι(〈e, 0〉) ∈ DJ0

L
(by induction)

iff ι(〈d, 0〉) ∈ (∃P.D)J
L
.

The last equivalence holds because (d, e) ∈ rJ L
and ι−(d) = 〈d ′, 0〉 for some

d ′ ∈ NO implies ι−(e) = 〈e′, 0〉 for some e′ ∈ NO.

4. It follows from claim 2 and 3 and the fact that ι(〈o, 0〉) = o for all o ∈ Obj(Σs).

Thus, the construction ensures that I0 and the renamed interpretation ι(I0 ⊕ I1) with
ι(〈o, 0〉) = o for all o ∈ Obj(Σs) have the same dynamic type w.r.t. Lit(Σs) and the context C.
However, the I1-part of ι(I0 ⊕ I1) is not affected by updates as shown in the next lemma.

Lemma 7.45. Let I0, I1 and I0 ⊕ I1 be as above, ι : NO × {0,1} → NO a bijection such that
ι(〈o, 0〉) = o for all o ∈ Obj(Σs), L ⊆ Lit(Σs) a set of local effects, C an ALC-concept and
J := ι(I0 ⊕ I1).

1. d ∈ AI1 iff ι(〈d, 1〉) ∈ AJ L
for all d ∈ NO and A∈ NC;

2. (d, e) ∈ PI1 iff
�

ι(〈d, 1〉), ι(〈e, 1〉)
�

∈ PJ L
for all d, e ∈ NO and P ∈ NR;

3. d ∈ CI1 iff ι(〈d, 1〉) ∈ CJ L
for all d ∈ NO.

Proof.

1. Due to the construction of J := ι(I0 ⊕ I1) it holds that d ∈ AI1 iff 〈d, 1〉 ∈ AI0⊕I1

iff ι(〈d, 1〉) ∈ Aι(I0⊕I1). By definition of ι it holds that ι(〈d, 1〉) /∈ Obj(Σs) for all
d ∈ NO. Since L contains only individuals from Obj(Σs), it follows that ι(〈d, 1〉) ∈ AJ

iff ι(〈d, 1〉) ∈ AJ L
. Consequently, d ∈ AI1 iff ι(〈d, 1〉) ∈ AJ L

.

2. The proof is analogous to the proof of claim 1.

3. The proof is by induction on the structure of the ALC-concept C using claim 1 and 2
and the property that for all (d, e) ∈ NO×NO and P ∈ NR it holds that (d, e) ∈ PJ L

and
ι−(d) = 〈d ′, 1〉 for some d ′ ∈ NO implies ι−(e) = 〈e′, 1〉 for some e′ ∈ NO.

We can now prove that I0 and ι(I0 ⊕ I1) have the same dynamic type w.r.t. Lit(Σs) and C.

Lemma 7.46. Let I0, I1 and I0 ⊕ I1 be as above, ι : NO × {0,1} → NO a bijection such that
ι(〈o, 0〉) = o for all o ∈ Obj(Σs) and d-typelocC (I0) and d-typelocC (ι(I0 ⊕ I1)) the dynamic type
of I0 and ι(I0 ⊕ I1), respectively, w.r.t. Lit(Σs) and C. It holds that

d-typelocC (I0) = d-typelocC (ι(I0 ⊕ I1)).

232 Chapter 7 Verification of Knowledge-Based Programs

Proof. C consists of Boolean ALCO-ABoxes and of Boolean ALC-KBs of the form C v D and
¬(C v D) with C v D ∈ T , where T is the TBox of the initial KB K. Let J := ι(I0 ⊕ I1). Due
to Lemma 7.44.4 we have

(ψ,L) ∈ d-typelocC (I0) iff (ψ,L) ∈ d-typelocC (J)

for all L ⊆ Lit(Σs) and all Boolean ALCO-ABoxes ψ in C.
Let (C v D,L) ∈ C × 2Lit(Σs) for some C v D ∈ T . First, assume (C v D,L) ∈ d-typelocC (I0).

Let d ∈ CJ L
. First, assume d = ι(〈e, 0〉) for some e ∈ NO. We have that ι(〈e, 0〉) ∈ CJ L

implies e ∈ CI0
L

with Lemma 7.44. With I0
L |= C v D it follows that e ∈ DI0

L
. Lemma 7.44

implies ι(〈e, 0〉) ∈ DJ L
. Second, assume d = ι(〈e, 1〉) for some e ∈ NO. With Lemma 7.45

we have that ι(〈e, 1〉) ∈ CJ L
implies e ∈ CI1 . With I1 ∈M(K) and C v D ∈ T it follows that

I1 |= C v D. Hence, e ∈ DI1 and due to Lemma 7.45 we also get ι(〈e, 1〉) ∈ DJ L
. It follows

that (C v D,L) ∈ d-typelocC (J).
Next, assume (C v D,L) ∈ d-typelocC (J). We show that (C v D,L) ∈ d-typelocC (I0). Let

e ∈ CI0
L
. Lemma 7.44 implies ι(〈e, 0〉) ∈ CJ L

. By assumption it follows that ι(〈e, 0〉) ∈ DJ L
.

Again Lemma 7.44 yields e ∈ DI0
L
. Hence, CI0

L
⊆ DI0

L
. Consequently,

(C v D,L) ∈ d-typelocC (I0).

Now we are ready to prove Lemma 7.42.

Proof of Lemma 7.42. Let I0 ∈ M(K), σ an action sequence, (Iσ, M) the epistemic in-
terpretation with (I0, M(K)) =⇒σ

DK(Σs)
(Iσ, M), C an ALC-concept with K 6|= > v C and

P ∈ NR.

1. We have to show that
�

KC
�M ⊆ Obj(Σs). Let d ∈

�

KC
�M

. Assume to the contrary
that d ∈ NO \ Obj(Σs). Since K 6|= > v C , there exists Y0 ∈ M(K) and e ∈ NO
such that e /∈ CY0 . Consider the sum I0 ⊕Y0. Obviously, there exists a bijection
ι : NO × {0,1} → NO such that ι(〈o, 0〉) = o for all o ∈ Obj(Σs) and ι(〈e, 1〉) = d. Let
J := ι(I0 ⊕Y0) be the corresponding renamed interpretation. From Lemma 7.44 and
7.45 it follows that J ∈M(K). Lemma 7.46 implies that I0 and J have the same
dynamic type. Due to Lemma 6.44 there exists a set of local effects L ⊆ Lit(Σs) such
that J L ∈M and Iσ = I0

L. Using Lemma 7.45.3 it holds that e ∈ (¬C)Y0 implies
ι(〈e, 1〉) ∈ (¬C)J

L
. Since ι(〈e, 1〉) = d and J L ∈M it follows that d /∈

�

KC
�M

. This is

a contradiction to d ∈
�

KC
�M

. Thus, there is no unnamed element in
�

KC
�M

.

2. Let (d, e) ∈ (KP)M. We show that (d, e) ∈ Obj(Σs) × Obj(Σs). First, assume to the
contrary that d ∈ NO \Obj(Σs). Let Y0 ∈M(K) be an arbitrary model and I0 ⊕Y0 the
sum of I0 and Y0. Since d /∈ Obj(Σs), there exists a bijection ι : NO ×{0, 1} → NO such
that

ι(〈o, 0〉) = o for all o ∈ Obj(Σs) and ι(〈d, 1〉) = d and ι(〈e, 0〉) = e.

7.4 A Deciable Pick-Operator with Epistemic Guards 233

Let J := ι(I0 ⊕Y0) be the corresponding renamed interpretation. As in the first
part of the lemma we can show that there exists a set of local effects L ⊆ Lit(Σs)
such that J L ∈ M. By definition of the sum it holds that

�

〈d, 1〉, 〈e, 0〉
�

/∈ PI0⊕Y0

which implies also
�

ι(〈d, 1〉), ι(〈e, 0〉)
�

/∈ Pι(I0⊕Y0). The bijection ι is defined such that
ι(〈d, 1〉) /∈ Obj(Σs). Therefore,

�

ι(〈d, 1〉), ι(〈e, 0〉)
�

/∈
¦

(o, o′)
�

�

�

P, {(o, o′)}
�+ ∈ L

©

⊆ Obj(Σs)×Obj(Σs).

Consequently, we have
�

ι(〈d, 1〉), ι(〈e, 0〉)
�

/∈ PJ L
with J = ι(I0 ⊕Y0). Hence,

�

d, e
�

/∈
PJ L

. Since J L ∈M, this is a contradiction to the assumption (d, e) ∈ (KP)M and
d /∈ Obj(Σs). Using symmetric arguments it can be shown that also the assumption
e /∈ NO \Obj(Σs) leads to a contradiction.

7.4.2 A Pick-Operator with Epistemic Guards

To achieve decidability in presence of the pick-operator we restrict sensing to local sensing
and guard the pick with ABox assertions of the form (x À− KC) or ((x , y) À− KP), where C
satisfies K 6|= > v C for the initial KB K with an ALC-TBox. Lemma 7.42 implies that this
leads to finitely many possible choices among the set of named objects. Consequently, a
pick-operator guarded like this can be removed by grounding using the non-deterministic
choice constructor “|”.

We formally define the class of ALCOK-ConGolog with restricted guarded pick-operators.

Definition 7.47. Let P = (DK(Σs),δ) be an ALCOK-ConGolog program. We say that P has
only restricted guarded pick expressions iff the following conditions are satisfied:

• Σs = (K,Act,pre,eff,sense) offers only local sensing;

• all tests in δ are Boolean ALCOK-ABoxes;

• for each guarded pick expression (pick(x̄)→ψ?;ρ) occurring in δ it holds that ψ is
of the form ϕ ∧ψ′, where all variables in x̄ occur in ϕ and ϕ is restricted to be a
conjunction of ABox assertions of the form

(t À− KC) or ((t, t ′) À− KP)

with K 6|=>v C .

Î

The tests are restricted to Boolean ALCOK-ABoxes. This ensures that we can choose a
relevant context CP for P that only consists of Boolean ALCOK-ABoxes except for the concept
inclusions in the initial ALC-TBox and their negation.

Next, the grounding of P is defined.

234 Chapter 7 Verification of Knowledge-Based Programs

Definition 7.48. Let P = (DK(Σs),δ) be an ALCOK-ConGolog program with only restricted
guarded pick expressions. Furthermore, let Σs = (K,Act,pre,eff,sense) be the underlying
action theory and Obj(Σs) the set of all object names mentioned in Σs.

The grounding of P is an ALCOK-ConGolog program over ground actions of the form

bP = (DK(cΣs), bδ),

where cΣs is obtained from Σs by ground instantiating all action terms in Act with object
names from Obj(Σs) in all possible ways. Let (pick(x̄)→ψ?;ρ) be a guarded pick expression
occurring in δ and let

Òψ1; bρ1, . . . , Òψn; bρn

be all program expressions obtained from (pick(x̄)→ψ?;ρ) by instantiating the free occur-
rences of the variables x̄ in ψ;ρ with object names from Obj(Σs). bδ is then obtained from δ
by exhaustively replacing each (pick(x̄)→ψ?;ρ) in δ by the program expression

Òψ1; bρ1 | · · · | Òψn; bρn.

Î

Using Lemma 7.42 it is straightforward to show that P and the grounding bP satisfy the same
ALCOK-CTL∗ properties over Boolean ALCOK-ABoxes and concept inclusions contained in
the initial KB of P. With Theorem 7.40 we obtain decidability of the verification problem.

Theorem 7.49. Verifying ALCOK-CTL∗ properties over Boolean ALCOK-ABoxes and ALC-
concept inclusions from the initial KB of a knowledge-based ALCOK-ConGolog program with
only restricted guarded pick expressions is decidable.

7.5 Summary and Discussion

Main Results

In this chapter, we have shown decidability and complexity results for the verification problem
of knowledge-based ALCOK-ConGolog programs and ALCOK-CTL∗ properties.

The verification problem for programs over unconditional ground actions is 2EXPTIME-
complete (Theorem 7.23). Thus, the complexity is the same as for (non-epistemic) ALCO-
ConGolog programs over ground actions with only local effects (Theorem 4.26).

An EXPTIME-complete fragment of knowledge-based ALCOK-ConGolog over unconditional
ground actions can be obtained by disallowing sensing and by resorting to only subjective
temporal properties. Intuitively, with this restriction we completely decouple the verification
problem from the actual state of the environment. No sensing is involved and the outcome
of the actions is immediately observable due to the unconditional effects. Adding sensing
and/or temporal properties with objective Boolean KBs to the fragment leads again to
2EXPTIME-hardness (Corollary 7.13 and 7.14).

Another EXPTIME-complete fragment is obtained by disallowing world-changing effects
and considering a program over purely sensing actions.

In case of conditional effects the abstraction technique is much more involved. We have
used a technique that abstracts the knowledge state as a set of dynamic types. Decidability is

7.5 Summary and Discussion 235

effects unconditional unconditional no effects conditional

sensing no yes yes yes/no

subjective ALCOK-CTL∗ EXP 2EXP EXP ≤ 3EXP

objective ALCOK-CTL∗ 2EXP 2EXP EXP ≤ 3EXP

Table 7.1: Complexity of verifying pick-free knowledge-based programs

shown with a 3EXPTIME upper bound. It is left as an open problem whether this bound is
tight.

By disallowing sensing of concept inclusions and imposing some other restrictions we
were able to add a restricted variant of the guarded pick operator to our decidable fragment
(Theorem 7.49).

Related Work

The complexity of verifying postconditions of terminating knowledge-based programs in a
propositional setting has been investigated in [LZ12].

Golog-like programs over DL-ontologies have been studied in [Cal+07a]. However, a
distinction between world-changing and knowledge-changing effects of actions is not made.
The actions only operate on the knowledge base.

Decidable verification of temporal properties of online executions with sensing in the
framework of the bounded Situation Calculus has been studied in [De +16a].

Future Work

One direction for future work is to further explore the computational complexity of verification
of knowledge-based ALCOK-ConGolog programs. There are various fragments for which
the complexity is still open.

Another direction is to further push the decidability border towards a more expressive
language. One of the main limitations of our fragment is, that actions can be only instantiated
with named objects. It is not possible to verify an agent that is able to discover previously
anonymous objects during its execution. Also extensions to probabilistic beliefs and noisy
sensing [BHL99] are relevant in order to improve the applicability of our methods.

Chapter 8

Conclusions

In this chapter, we first summarize the main results and then provide some directions for
future research.

8.1 Main Results

The goal of this thesis was to explore the boundary between decidable and undecidable
fragments of the verification problem for programs in the Golog family of action programming
languages. One of the sources of undecidability is the use of first-order logic as the base
logic for defining the underlying domain theory and the tests in the program. To overcome
this problem we have defined a general class of action formalisms based on description
logics. DLs are expressive and well-suited for efficient reasoning in presence of the open-
world assumption. Building on previous results on decidable reasoning in DL-based action
languages we have extended the applicability of the reasoning methods to considerably more
expressive languages than in previous works.

We have introduced an abstraction technique that we have used to obtain decidability and
complexity results for the verification problem for Golog programs over DL-definable actions
and specifications formulated in temporalized Description Logics. In the fragments that we
have considered the transition system of the program has infinitely many states. We have
used our abstraction technique to show that a finite propositional abstraction of the infinite
transition system is effectively computable. This finite transition system can be given as an
input to a model checking tool.

In Chapter 4, we have considered the verification problem for L-ConGolog programs over
L-definable actions with only local effects, and CTL∗ properties over L-axioms, where L is a
DL between ALC and ALCQIO. We have shown that the verification problem is 2EXPTIME-
complete if L ∈ {ALCO, ALCIO, ALCQO}, and CO-N2EXPTIME-complete if L= ALCQIO.

In Chapter 5, the decidability boundary for programs over non-local effect actions is
explored. We have identified two expressive classes of DL-ConGolog programs over ground
actions for which verifying DL-CTL∗ properties is decidable.

In Chapter 6, we have defined a decidable fragment of the epistemic Situation Calculus
based on the prototypical basic DL ALCO. In this language we can distinguish between world-
changing and knowledge-changing effects of an action. We have shown that the epistemic
projection problem for queries formulated in the epistemic DL ALCOK is EXPTIME-complete.
Thus, the problem is not harder than standard reasoning in ALCO.

In Chapter 7, we have studied the verification problem for knowledge-based ConGolog
programs based on ALCOK and the action language defined in Chapter 6. We have in-
vestigated how the complexity of the verification problem is affected by the interactions

237

238 Chapter 8 Conclusions

between sensing and physical effects of actions. We have identified 2EXPTIME-complete and
EXPTIME-complete fragments for the verification of subjective and objective CTL∗ properties
over ALCOK-axioms. Moreover, a restricted version of the pick-operator was added to
the decidable fragment. In the previously considered fragments this construct was always
excluded.

8.2 Future Work

The exact complexity of the verification problem is still open for many variants of the
considered fragments. For example, for the decidable classes with non-local effect actions
in Chapter 5 the complexity is unknown. Furthermore, it is interesting to explore whether
the results in Chapter 6 can be used for an implementation of a Golog interpreter based on
description logics.

Moreover, it is desirable to further extend the expressiveness of the obtained languages in
several directions:

• The expressiveness of the temporal specification language used in this thesis is quite
restricted because temporal operators can be applied only to axioms and not to concepts
or roles. One could consider also the verification of properties with temporal properties
within the scope of quantifiers.

• One could extend the verification method towards decision-theoretic [Bou+00] exten-
sions of Golog.

• The notion of sensing we have adopted is quite abstract. To obtain a more realistic
model it is important to take into account that sensors are noisy. A logical formalization
for quantitative sensor models is considered, for instance, in [BHL99].

Bibliography

[Ahm+14] Shqiponja Ahmetaj et al. “Managing Change in Graph-Structured Data Using
Description Logics”. In: Proceedings of the Twenty-Eighth AAAI Conference on
Artificial Intelligence (AAAI 2014). Ed. by Carla E. Brodley and Peter Stone.
AAAI Press, 2014, pp. 966–973.

[Baa+05a] Franz Baader et al. “Integrating Description Logics and Action Formalisms:
First Results”. In: Proceedings of the Twentieth National Conference on Artificial
Intelligence (AAAI 2005). Ed. by Manuela M. Veloso and Subbarao Kambhampati.
AAAI Press, 2005, pp. 572–577.

[Baa+05b] F. Baader et al. Integrating Description Logics and Action Formalisms for Rea-
soning about Web Services. LTCS-Report LTCS-05-02. Germany: Chair for Au-
tomata Theory, Institute for Theoretical Computer Science, Dresden University
of Technology, 2005. URL: http://lat.inf.tu-dresden.de/research/
reports.html..

[Baa+10] Franz Baader et al. The Description Logic Handbook: Theory, Implementation
and Applications. 2nd. New York, NY, USA: Cambridge University Press, 2010.

[Bac01] Fahiem Bacchus. “The AIPS ’00 Planning Competition”. In: AI Magazine 22.3
(2001), pp. 47–56. URL: http://www.aaai.org/ojs/index.php/aimaga
zine/article/view/1571.

[BBL05] Franz Baader, Sebastian Brandt, and Carsten Lutz. “Pushing the EL Envelope”.
In: IJCAI-05, Proceedings of the Nineteenth International Joint Conference on
Artificial Intelligence, Edinburgh, Scotland, UK, July 30 - August 5, 2005. Ed. by
Leslie Pack Kaelbling and Alessandro Saffiotti. Professional Book Center, 2005,
pp. 364–369. URL: http://ijcai.org/Proceedings/05/Papers/0372.
pdf.

[Ber+11] Julien Bertrane et al. “Static analysis by abstract interpretation of embedded
critical software”. In: ACM SIGSOFT Software Engineering Notes 36.1 (2011),
pp. 1–8. URL: http://doi.acm.org/10.1145/1921532.1921553.

[BGL12] Franz Baader, Silvio Ghilardi, and Carsten Lutz. “LTL over description logic
axioms”. In: ACM Trans. Comput. Log. 13.3 (2012), 21:1–21:32. URL: http:
//doi.acm.org/10.1145/2287718.2287721.

[BH14] Bernhard Beckert and Reiner Hähnle. “Reasoning and Verification: State of the
Art and Current Trends”. In: IEEE Intelligent Systems 29.1 (2014), pp. 20–29.
URL: https://doi.org/10.1109/MIS.2014.3.

[BHL99] Fahiem Bacchus, Joseph Y. Halpern, and Hector J. Levesque. “Reasoning about
Noisy Sensors and Effectors in the Situation Calculus”. In: Artificial Intelligence
111.1–2 (1999), pp. 171–208.

239

http://lat.inf.tu-dresden.de/research/reports.html.
http://lat.inf.tu-dresden.de/research/reports.html.
http://www.aaai.org/ojs/index.php/aimagazine/article/view/1571
http://www.aaai.org/ojs/index.php/aimagazine/article/view/1571
http://ijcai.org/Proceedings/05/Papers/0372.pdf
http://ijcai.org/Proceedings/05/Papers/0372.pdf
http://doi.acm.org/10.1145/1921532.1921553
http://doi.acm.org/10.1145/2287718.2287721
http://doi.acm.org/10.1145/2287718.2287721
https://doi.org/10.1109/MIS.2014.3

240 Bibliography

[BK08] Christel Baier and Joost-Pieter Katoen. Principles of model checking. MIT Press,
2008.

[BLL10] Franz Baader, Marcel Lippmann, and Hongkai Liu. “Using Causal Relationships
to Deal with the Ramification Problem in Action Formalisms Based on Descrip-
tion Logics”. In: Logic for Programming, Artificial Intelligence, and Reasoning -
17th International Conference, LPAR-17, Yogyakarta, Indonesia, October 10-15,
2010. Proceedings. 2010, pp. 82–96. URL: http://dx.doi.org/10.1007/
978-3-642-16242-8_7.

[BLM10] Franz Baader, Hongkai Liu, and Anees ul Mehdi. “Verifying Properties of Infi-
nite Sequences of Description Logic Actions”. In: Proceedings of the Nineteenth
European Conference on Artificial Intelligence (ECAI 2010). Ed. by Helder Coelho,
Rudi Studer, and Michael Wooldridge. Vol. 215. Frontiers in Artificial Intelli-
gence and Applications. IOS Press, 2010, pp. 53–58.

[Bor96] Alexander Borgida. “On the Relative Expressiveness of Description Logics and
Predicate Logics”. In: Artif. Intell. 82.1-2 (1996), pp. 353–367. URL: http:
//dx.doi.org/10.1016/0004-3702(96)00004-5.

[Bou+00] Craig Boutilier et al. “Decision-Theoretic, High-Level Agent Programming in
the Situation Calculus”. In: Proceedings of the Seventeenth National Conference
on Artificial Intelligence (AAAI 2000). Ed. by Henry Kautz and Bruce Porter.
AAAI Press, 2000, pp. 355–362.

[Bur+90] Jerry R. Burch et al. “Symbolic Model Checking: 10ˆ20 States and Beyond”.
In: Proceedings of the Fifth Annual Symposium on Logic in Computer Science
(LICS ’90), Philadelphia, Pennsylvania, USA, June 4-7, 1990. IEEE Computer
Society, 1990, pp. 428–439. URL: https://doi.org/10.1109/LICS.1990.
113767.

[Bur+99] Wolfram Burgard et al. “Experiences with an Interactive Museum Tour-Guide
Robot”. In: Artificial Intelligence 114.1–2 (1999), pp. 3–55.

[BZ13] Franz Baader and Benjamin Zarrieß. “Verification of Golog Programs over
Description Logic Actions”. In: Frontiers of Combining Systems - 9th International
Symposium, FroCoS 2013, Nancy, France, September 18-20, 2013. Proceedings.
Ed. by Pascal Fontaine, Christophe Ringeissen, and Renate A. Schmidt. Vol. 8152.
Lecture Notes in Computer Science. Springer, 2013, pp. 181–196. URL: https:
//doi.org/10.1007/978-3-642-40885-4_12.

[Cal+07a] Diego Calvanese et al. “Actions and Programs over Description Logic Ontolo-
gies”. In: Proceedings of the 2007 International Workshop on Description Logics
(DL2007), Brixen-Bressanone, near Bozen-Bolzano, Italy, 8-10 June, 2007. Ed. by
Diego Calvanese et al. Vol. 250. CEUR Workshop Proceedings. CEUR-WS.org,
2007. URL: http://ceur-ws.org/Vol-250/paper_74.pdf.

[Cal+07b] Diego Calvanese et al. “EQL-Lite: Effective First-Order Query Processing in
Description Logics”. In: IJCAI 2007, Proceedings of the 20th International Joint
Conference on Artificial Intelligence, Hyderabad, India, January 6-12, 2007. 2007,
pp. 274–279. URL: http://ijcai.org/Proceedings/07/Papers/042.
pdf.

http://dx.doi.org/10.1007/978-3-642-16242-8_7
http://dx.doi.org/10.1007/978-3-642-16242-8_7
http://dx.doi.org/10.1016/0004-3702(96)00004-5
http://dx.doi.org/10.1016/0004-3702(96)00004-5
https://doi.org/10.1109/LICS.1990.113767
https://doi.org/10.1109/LICS.1990.113767
https://doi.org/10.1007/978-3-642-40885-4_12
https://doi.org/10.1007/978-3-642-40885-4_12
http://ceur-ws.org/Vol-250/paper_74.pdf
http://ijcai.org/Proceedings/07/Papers/042.pdf
http://ijcai.org/Proceedings/07/Papers/042.pdf

Bibliography 241

[CC77] Patrick Cousot and Radhia Cousot. “Abstract Interpretation: A Unified Lattice
Model for Static Analysis of Programs by Construction or Approximation of
Fixpoints”. In: Conference Record of the Fourth ACM Symposium on Principles
of Programming Languages, Los Angeles, California, USA, January 1977. Ed. by
Robert M. Graham, Michael A. Harrison, and Ravi Sethi. ACM, 1977, pp. 238–
252. URL: http://doi.acm.org/10.1145/512950.512973.

[CE81] Edmund M. Clarke and E. Allen Emerson. “Design and Synthesis of Synchroniza-
tion Skeletons Using Branching-Time Temporal Logic”. In: Logics of Programs,
Workshop, Yorktown Heights, New York, May 1981. 1981, pp. 52–71. URL: http:
//dx.doi.org/10.1007/BFb0025774.

[CGP01] Edmund M. Clarke, Orna Grumberg, and Doron A. Peled. Model checking. MIT
Press, 2001. URL: http://books.google.de/books?id=Nmc4wEaLXFEC.

[CHL07] Jens Claßen, Yuxiao Hu, and Gerhard Lakemeyer. “A Situation-Calculus Seman-
tics for an Expressive Fragment of PDDL”. In: Proceedings of the Twenty-Second
AAAI Conference on Artificial Intelligence (AAAI 2007). Ed. by Robert C. Holte
and Adele E. Howe. AAAI Press, 2007, pp. 956–961.

[CL08] Jens Claßen and Gerhard Lakemeyer. “A Logic for Non-Terminating Golog Pro-
grams”. In: Proceedings of the Eleventh International Conference on the Principles
of Knowledge Representation and Reasoning (KR 2008). Ed. by Gerhard Brewka
and Jérôme Lang. AAAI Press, 2008, pp. 589–599.

[CL10] Jens Claßen and Gerhard Lakemeyer. “On the Verification of Very Expressive
Temporal Properties of Non-terminating Golog Programs”. In: ECAI 2010 - 19th
European Conference on Artificial Intelligence, Lisbon, Portugal, August 16-20,
2010, Proceedings. Ed. by Helder Coelho, Rudi Studer, and Michael Wooldridge.
Vol. 215. Frontiers in Artificial Intelligence and Applications. IOS Press, 2010,
pp. 887–892. URL: https://doi.org/10.3233/978-1-60750-606-5-
887.

[De +09] Giuseppe De Giacomo et al. “IndiGolog: A High-Level Programming Language
for Embedded Reasoning Agents”. In: Multi-Agent Programming: Languages,
Platforms and Applications. Ed. by Rafael H. Bordini et al. Springer, 2009.
Chap. 2, pp. 31–72.

[De +16a] Giuseppe De Giacomo et al. “Progression and Verification of Situation Calculus
Agents with Bounded Beliefs”. In: Studia Logica 104.4 (2016), pp. 705–739.
URL: https://doi.org/10.1007/s11225-015-9626-z.

[De +16b] Giuseppe De Giacomo et al. “Verifying ConGolog Programs on Bounded Situa-
tion Calculus Theories”. In: Proceedings of the Thirtieth AAAI Conference on Artifi-
cial Intelligence, February 12-17, 2016, Phoenix, Arizona, USA. Ed. by Dale Schu-
urmans and Michael P. Wellman. AAAI Press, 2016, pp. 950–956. URL: http:
//www.aaai.org/ocs/index.php/AAAI/AAAI16/paper/view/12470.

http://doi.acm.org/10.1145/512950.512973
http://dx.doi.org/10.1007/BFb0025774
http://dx.doi.org/10.1007/BFb0025774
http://books.google.de/books?id=Nmc4wEaLXFEC
https://doi.org/10.3233/978-1-60750-606-5-887
https://doi.org/10.3233/978-1-60750-606-5-887
https://doi.org/10.1007/s11225-015-9626-z
http://www.aaai.org/ocs/index.php/AAAI/AAAI16/paper/view/12470
http://www.aaai.org/ocs/index.php/AAAI/AAAI16/paper/view/12470

242 Bibliography

[De +97] Giuseppe De Giacomo et al. “Planning with Sensing for a Mobile Robot”. In:
Recent Advances in AI Planning, 4th European Conference on Planning, ECP’97,
Toulouse, France, September 24-26, 1997, Proceedings. Ed. by Sam Steel and
Rachid Alami. Vol. 1348. Lecture Notes in Computer Science. Springer, 1997,
pp. 156–168. URL: https://doi.org/10.1007/3-540-63912-8_83.

[DLL00] Giuseppe De Giacomo, Yves Lespérance, and Hector J. Levesque. “ConGolog, a
concurrent programming language based on the situation calculus”. In: Artificial
Intelligence 121.1–2 (2000), pp. 109–169.

[DLP16] Giuseppe De Giacomo, Yves Lespérance, and Fabio Patrizi. “Bounded situation
calculus action theories”. In: Artif. Intell. 237 (2016), pp. 172–203. URL: https:
//doi.org/10.1016/j.artint.2016.04.006.

[Don+98] Francesco M. Donini et al. “An Epistemic Operator for Description Logics”. In:
Artif. Intell. 100.1-2 (1998), pp. 225–274. URL: http://dx.doi.org/10.
1016/S0004-3702(98)00009-5.

[DTR97] Giuseppe De Giacomo, Evgenia Ternovska, and Raymond Reiter. “Non-terminating
Processes in the Situation Calculus”. In: Working Notes of “Robots, Softbots, Im-
mobots: Theories of Action, Planning and Control”, AAAI’97 Workshop. 1997.

[FL03] Maria Fox and Derek Long. “PDDL2.1: An Extension to PDDL for Expressing
Temporal Planning Domains”. In: Journal of Artificial Intelligence Research 20
(2003), pp. 61–124.

[FN71] Richard Fikes and Nils J. Nilsson. “STRIPS: A New Approach to the Application
of Theorem Proving to Problem Solving”. In: Artificial Intelligence 2.3/4 (1971),
pp. 189–208.

[GL93] Michael Gelfond and Vladimir Lifschitz. “Representing Action and Change by
Logic Programs”. In: Journal of Logic Programming 17.2 (1993), pp. 301–321.

[GOR97] Erich Grädel, Martin Otto, and Eric Rosen. “Two-Variable Logic with Counting is
Decidable”. In: Proceedings, 12th Annual IEEE Symposium on Logic in Computer
Science, Warsaw, Poland, June 29 - July 2, 1997. IEEE Computer Society, 1997,
pp. 306–317. URL: https://doi.org/10.1109/LICS.1997.614957.

[GS10] Yilan Gu and Mikhail Soutchanski. “A description logic based situation calculus”.
In: Annals of Mathematics and Artificial Intelligence 58.1–2 (2010), pp. 3–83.

[Har+13] Babak Bagheri Hariri et al. “Description Logic Knowledge and Action Bases”.
In: J. Artif. Intell. Res. 46 (2013), pp. 651–686. URL: https://doi.org/10.
1613/jair.3826.

[Hoa69] C. A. R. Hoare. “An Axiomatic Basis for Computer Programming”. In: Commun.
ACM 12.10 (1969), pp. 576–580. URL: http://doi.acm.org/10.1145/
363235.363259.

[HTK00] David Harel, Jerzy Tiuryn, and Dexter Kozen. Dynamic Logic. Cambridge, MA,
USA: MIT Press, 2000.

https://doi.org/10.1007/3-540-63912-8_83
https://doi.org/10.1016/j.artint.2016.04.006
https://doi.org/10.1016/j.artint.2016.04.006
http://dx.doi.org/10.1016/S0004-3702(98)00009-5
http://dx.doi.org/10.1016/S0004-3702(98)00009-5
https://doi.org/10.1109/LICS.1997.614957
https://doi.org/10.1613/jair.3826
https://doi.org/10.1613/jair.3826
http://doi.acm.org/10.1145/363235.363259
http://doi.acm.org/10.1145/363235.363259

Bibliography 243

[KR14] Markus Krötzsch and Sebastian Rudolph. “Nominal Schemas in Description
Logics: Complexities Clarified”. In: Principles of Knowledge Representation and
Reasoning: Proceedings of the Fourteenth International Conference, KR 2014,
Vienna, Austria, July 20-24, 2014. 2014. URL: http://www.aaai.org/ocs/
index.php/KR/KR14/paper/view/8027.

[Krö+11] Markus Krötzsch et al. “A better uncle for OWL: nominal schemas for integrating
rules and ontologies”. In: Proceedings of the 20th International Conference on
World Wide Web, WWW 2011, Hyderabad, India, March 28 - April 1, 2011. 2011,
pp. 645–654. URL: http://doi.acm.org/10.1145/1963405.1963496.

[KS86] Robert A. Kowalski and Marek J. Sergot. “A Logic-based Calculus of Events”.
In: New Generation Computing 4.1 (1986), pp. 67–95.

[Lam77] Leslie Lamport. “Proving the Correctness of Multiprocess Programs”. In: IEEE
Trans. Software Eng. 3.2 (1977), pp. 125–143. URL: https://doi.org/10.
1109/TSE.1977.229904.

[Lev+97] Hector J. Levesque et al. “GOLOG: A Logic Programming Language for Dynamic
Domains”. In: Journal of Logic Programming 31.1–3 (1997), pp. 59–83.

[Lev84] Hector J. Levesque. “Foundations of a Functional Approach to Knowledge
Representation”. In: Artificial Intelligence 23.2 (1984), pp. 155–212.

[Lip14] Marcel Lippmann. “Temporalised description logics for monitoring partially
observable events”. PhD thesis. Dresden University of Technology, 2014. URL:
http://nbn-resolving.de/urn:nbn:de:bsz:14-qucosa-147977.

[Liu+06] Hongkai Liu et al. “Reasoning About Actions Using Description Logics with
General TBoxes”. In: Logics in Artificial Intelligence, 10th European Conference,
JELIA 2006, Liverpool, UK, September 13-15, 2006, Proceedings. 2006, pp. 266–
279. URL: http://dx.doi.org/10.1007/11853886_23.

[Liu02] Yongmei Liu. “A Hoare-Style Proof System for Robot Programs”. In: Proceedings
of the Eighteenth National Conference on Artificial Intelligence (AAAI 2002). Ed.
by Rina Dechter, Michael Kearns, and Rich Sutton. AAAI Press, 2002, pp. 74–79.

[LL01] Hector J. Levesque and Gerhard Lakemeyer. The Logic of Knowledge Bases. MIT
Press, 2001.

[LL04] Gerhard Lakemeyer and Hector J. Levesque. “Situations, Si! Situation Terms,
No!” In: Proceedings of the Ninth International Conference on the Principles
of Knowledge Representation and Reasoning (KR 2004). Ed. by Didier Dubois,
Christopher A. Welty, and Mary-Anne Williams. AAAI Press, 2004, pp. 516–526.

[LL05] Gerhard Lakemeyer and Hector J. Levesque. “Semantics for a useful fragment
of the situation calculus”. In: Proceedings of the Nineteenth International Joint
Conference on Artificial Intelligence (IJCAI 2005). Ed. by Leslie Pack Kaelbling
and Alessandro Saffiotti. Professional Book Center, 2005, pp. 490–496.

[LL08] Hector J. Levesque and Gerhard Lakemeyer. “Cognitive Robotics”. In: Founda-
tions of Artificial Intelligence 3 (2008), pp. 869–886.

http://www.aaai.org/ocs/index.php/KR/KR14/paper/view/8027
http://www.aaai.org/ocs/index.php/KR/KR14/paper/view/8027
http://doi.acm.org/10.1145/1963405.1963496
https://doi.org/10.1109/TSE.1977.229904
https://doi.org/10.1109/TSE.1977.229904
http://nbn-resolving.de/urn:nbn:de:bsz:14-qucosa-147977
http://dx.doi.org/10.1007/11853886_23

244 Bibliography

[LL11] Gerhard Lakemeyer and Hector J. Levesque. “A semantic characterization of a
useful fragment of the situation calculus with knowledge”. In: Artif. Intell. 175.1
(2011), pp. 142–164. URL: http://dx.doi.org/10.1016/j.artint.
2010.04.005.

[LL14] Gerhard Lakemeyer and Hector J. Levesque. “Decidable Reasoning in a Frag-
ment of the Epistemic Situation Calculus”. In: Proceedings of the Fourtenth
International Conference on the Principles of Knowledge Representation and Rea-
soning (KR 2014). Ed. by Thomas Eiter, Chitta Baral, and Giuseppe De Giacomo.
AAAI Press, 2014, pp. 468–477.

[LR94] Fangzhen Lin and Raymond Reiter. “State Constraints Revisited”. In: Journal of
Logic and Computation 4.5 (1994), pp. 655–678.

[LR98] Hector J. Levesque and Raymond Reiter. “High-level robotic control: Beyond
planning. A position paper”. In: AAAI 1998 Spring Symposium: Integrating
Robotics Research: Taking the Next Big Leap. 1998.

[LZ12] Jérôme Lang and Bruno Zanuttini. “Knowledge-Based Programs as Plans - The
Complexity of Plan Verification”. In: ECAI 2012 - 20th European Conference on
Artificial Intelligence. Including Prestigious Applications of Artificial Intelligence
(PAIS-2012) System Demonstrations Track, Montpellier, France, August 27-31
, 2012. 2012, pp. 504–509. URL: https://doi.org/10.3233/978-1-
61499-098-7-504.

[McM93] Kenneth L. McMillan. Symbolic model checking. Kluwer, 1993.

[Meh14] Anees ul Mehdi. “Epistemic Reasoning in OWL 2 DL”. PhD thesis. Karlsruhe
Institute of Technology, 2014. URL: http://digbib.ubka.uni-karlsruhe.
de/volltexte/1000039963.

[MH69] John McCarthy and Patrick Hayes. “Some philosophical problems from the
standpoint of artificial intelligence”. In: Machine Intelligence 4. Ed. by B. Meltzer
and D. Michie. New York: American Elsevier, 1969, pp. 463–502.

[Mil71] Robin Milner. “An Algebraic Definition of Simulation Between Programs”. In:
Proceedings of the 2nd International Joint Conference on Artificial Intelligence.
London, UK, September 1-3, 1971. Ed. by D. C. Cooper. William Kaufmann,
1971, pp. 481–489. URL: http://ijcai.org/Proceedings/71/Papers/
044.pdf.

[Min67] Marvin L. Minsky. Computation: Finite and Infinite Machines. Upper Saddle
River, NJ, USA: Prentice-Hall, Inc., 1967.

[MRG11] Anees Mehdi, Sebastian Rudolph, and Stephan Grimm. “Epistemic Querying
of OWL Knowledge Bases”. In: The Semantic Web: Research and Applications -
8th Extended Semantic Web Conference, ESWC 2011, Heraklion, Crete, Greece,
May 29-June 2, 2011, Proceedings, Part I. 2011, pp. 397–409. URL: http:
//dx.doi.org/10.1007/978-3-642-21034-1_27.

[MSH09] Boris Motik, Rob Shearer, and Ian Horrocks. “Hypertableau Reasoning for
Description Logics”. In: J. Artif. Intell. Res. 36 (2009), pp. 165–228. URL: https:
//doi.org/10.1613/jair.2811.

http://dx.doi.org/10.1016/j.artint.2010.04.005
http://dx.doi.org/10.1016/j.artint.2010.04.005
https://doi.org/10.3233/978-1-61499-098-7-504
https://doi.org/10.3233/978-1-61499-098-7-504
http://digbib.ubka.uni-karlsruhe.de/volltexte/1000039963
http://digbib.ubka.uni-karlsruhe.de/volltexte/1000039963
http://ijcai.org/Proceedings/71/Papers/044.pdf
http://ijcai.org/Proceedings/71/Papers/044.pdf
http://dx.doi.org/10.1007/978-3-642-21034-1_27
http://dx.doi.org/10.1007/978-3-642-21034-1_27
https://doi.org/10.1613/jair.2811
https://doi.org/10.1613/jair.2811

Bibliography 245

[NPW02] Tobias Nipkow, Lawrence C. Paulson, and Markus Wenzel. Isabelle/HOL - A Proof
Assistant for Higher-Order Logic. Vol. 2283. Lecture Notes in Computer Science.
Springer, 2002. URL: https://doi.org/10.1007/3-540-45949-9.

[Owr+96] Sam Owre et al. “PVS: Combining Specification, Proof Checking, and Model
Checking”. In: Computer Aided Verification, 8th International Conference, CAV
’96, New Brunswick, NJ, USA, July 31 - August 3, 1996, Proceedings. Ed. by
Rajeev Alur and Thomas A. Henzinger. Vol. 1102. Lecture Notes in Computer
Science. Springer, 1996, pp. 411–414. URL: https://doi.org/10.1007/3-
540-61474-5_91.

[Ped94] Edwin P. D. Pednault. “ADL and the State-Transition Model of Action”. In:
Journal of Logic and Computation 4.5 (1994), pp. 467–512.

[Pnu77] Amir Pnueli. “The Temporal Logic of Programs”. In: 18th Annual Symposium
on Foundations of Computer Science, Providence, Rhode Island, USA, 31 October
- 1 November 1977. 1977, pp. 46–57. URL: http://dx.doi.org/10.1109/
SFCS.1977.32.

[PR99] Fiora Pirri and Raymond Reiter. “Some Contributions to the Metatheory of the
Situation Calculus”. In: Journal of the ACM 46.3 (1999), pp. 325–361.

[Rei01a] Raymond Reiter. Knowledge in Action: Logical Foundations for Specifying and
Implementing Dynamical Systems. MIT Press, 2001.

[Rei01b] Raymond Reiter. “On knowledge-based programming with sensing in the sit-
uation calculus”. In: ACM Transactions on Computational Logic 2.4 (2001),
pp. 433–457.

[Rei91] Raymond Reiter. “The Frame Problem in the Situation Calculus: A simple
Solution (sometimes) and a Completeness Result for Goal Regression”. In:
Artificial Intelligence and Mathematical Theory of Computation: Papers in Honor
of John McCarthy (1991), pp. 359–380.

[Roe14] Gabriele Roeger. “Planning techniques and the action language Golog”. PhD
thesis. University of Freiburg, 2014. URL: http://nbn-resolving.de/urn:
nbn:de:bsz:25-opus-98599.

[Ros07] Riccardo Rosati. “The Limits of Querying Ontologies”. In: Database Theory -
ICDT 2007, 11th International Conference, Barcelona, Spain, January 10-12,
2007, Proceedings. 2007, pp. 164–178. URL: http://dx.doi.org/10.1007/
11965893_12.

[Sar+04] Sebastian Sardiña et al. “On the Semantics of Deliberation in Indigolog - from
Theory to Implementation”. In: Ann. Math. Artif. Intell. 41.2-4 (2004), pp. 259–
299. URL: https://doi.org/10.1023/B:AMAI.0000031197.13122.aa.

[SD09] Sebastian Sardiña and Giuseppe De Giacomo. “Composition of ConGolog Pro-
grams”. In: IJCAI 2009, Proceedings of the 21st International Joint Conference on
Artificial Intelligence, Pasadena, California, USA, July 11-17, 2009. Ed. by Craig
Boutilier. 2009, pp. 904–910. URL: http://ijcai.org/Proceedings/09/
Papers/154.pdf.

https://doi.org/10.1007/3-540-45949-9
https://doi.org/10.1007/3-540-61474-5_91
https://doi.org/10.1007/3-540-61474-5_91
http://dx.doi.org/10.1109/SFCS.1977.32
http://dx.doi.org/10.1109/SFCS.1977.32
http://nbn-resolving.de/urn:nbn:de:bsz:25-opus-98599
http://nbn-resolving.de/urn:nbn:de:bsz:25-opus-98599
http://dx.doi.org/10.1007/11965893_12
http://dx.doi.org/10.1007/11965893_12
https://doi.org/10.1023/B:AMAI.0000031197.13122.aa
http://ijcai.org/Proceedings/09/Papers/154.pdf
http://ijcai.org/Proceedings/09/Papers/154.pdf

246 Bibliography

[SL03] Richard B. Scherl and Hector J. Levesque. “Knowledge, action, and the frame
problem”. In: Artificial Intelligence 144.1–2 (2003), pp. 1–39.

[SLG14] Andreas Steigmiller, Thorsten Liebig, and Birte Glimm. “Konclude: System
description”. In: J. Web Sem. 27 (2014), pp. 78–85. URL: https://doi.org/
10.1016/j.websem.2014.06.003.

[SLL02] Steven Shapiro, Yves Lespérance, and Hector J. Levesque. “The cognitive agents
specification language and verification environment for multiagent systems”.
In: Proceedings of the First International Joint Conference on Autonomous Agents
and Multiagent Systems (AAMAS 2002). Ed. by Maria Gini et al. ACM Press,
2002, pp. 19–26.

[SS91] Manfred Schmidt-Schauß and Gert Smolka. “Attributive Concept Descriptions
with Complements”. In: Artif. Intell. 48.1 (1991), pp. 1–26. URL: https://
doi.org/10.1016/0004-3702(91)90078-X.

[Ter99] Eugenia Ternovskaia. “Automata Theory for Reasoning About Actions”. In: Pro-
ceedings of the Sixteenth International Joint Conference on Artificial Intelligence
(IJCAI 1999). Ed. by Thomas Dean. Morgan Kaufmann Publishers Inc., 1999,
pp. 153–159.

[Thi11] Michael Thielscher. “A unifying action calculus”. In: Artificial Intelligence 175.1
(2011), pp. 120–41.

[Thi98] Michael Thielscher. “Introduction to the Fluent Calculus”. In: Electron. Trans.
Artif. Intell. 2 (1998), pp. 179–192. URL: http://www.ep.liu.se/ej/
etai/1998/006/.

[uR11] Anees ul Mehdi and Sebastian Rudolph. “Revisiting Semantics for Epistemic
Extensions of Description Logics”. In: Proceedings of the Twenty-Fifth AAAI
Conference on Artificial Intelligence (AAAI 2011). Ed. by Wolfram Burgard and
Dan Roth. AAAI Press, 2011.

[VLL08] Stavros Vassos, Gerhard Lakemeyer, and Hector J. Levesque. “First-Order Strong
Progression for Local-Effect Basic Action Theories”. In: Proceedings of the
Eleventh International Conference on the Principles of Knowledge Representa-
tion and Reasoning (KR 2008). Ed. by Gerhard Brewka and Jérôme Lang. AAAI
Press, 2008, pp. 662–672.

[VW86] Moshe Y. Vardi and Pierre Wolper. “Automata-Theoretic Techniques for Modal
Logics of Programs”. In: J. Comput. Syst. Sci. 32.2 (1986), pp. 183–221. URL:
https://doi.org/10.1016/0022-0000(86)90026-7.

[Yeh+12] Wael Yehia et al. “Experimental Results on Solving the Projection Problem in
Action Formalisms Based on Description Logics”. In: Proceedings of the 2012
International Workshop on Description Logics, DL-2012, Rome, Italy, June 7-10,
2012. 2012. URL: http://ceur-ws.org/Vol-846/paper_15.pdf.

https://doi.org/10.1016/j.websem.2014.06.003
https://doi.org/10.1016/j.websem.2014.06.003
https://doi.org/10.1016/0004-3702(91)90078-X
https://doi.org/10.1016/0004-3702(91)90078-X
http://www.ep.liu.se/ej/etai/1998/006/
http://www.ep.liu.se/ej/etai/1998/006/
https://doi.org/10.1016/0022-0000(86)90026-7
http://ceur-ws.org/Vol-846/paper_15.pdf

Bibliography 247

[ZC14] Benjamin Zarrieß and Jens Claßen. “Verifying CTL* Properties of GOLOG Pro-
grams over Local-Effect Actions”. In: ECAI 2014 - 21st European Conference
on Artificial Intelligence, 18-22 August 2014, Prague, Czech Republic - Includ-
ing Prestigious Applications of Intelligent Systems (PAIS 2014). Ed. by Torsten
Schaub, Gerhard Friedrich, and Barry O’Sullivan. Vol. 263. Frontiers in Artifi-
cial Intelligence and Applications. IOS Press, 2014, pp. 939–944. URL: https:
//doi.org/10.3233/978-1-61499-419-0-939.

[ZC15a] Benjamin Zarrieß and Jens Claßen. “Decidable Verification of Knowledge-Based
Programs over Description Logic Actions with Sensing”. In: Proceedings of the
Twenty-Eighth International Workshop on Description Logics (DL 2015). Ed. by
Diego Calvanese and Boris Konev. Vol. 1350. CEUR Workshop Proceedings.
CEUR-WS.org, 2015.

[ZC15b] Benjamin Zarrieß and Jens Claßen. “Verification of Knowledge-Based Programs
over Description Logic Actions”. In: Proceedings of the Twenty-Fourth Interna-
tional Joint Conference on Artificial Intelligence (IJCAI 2015). Ed. by Qiang Yang
and Michael Wooldridge. AAAI Press, 2015, pp. 3278–3284.

[ZC16] Benjamin Zarrieß and Jens Claßen. “Decidable Verification of Golog Programs
over Non-Local Effect Actions”. In: Proceedings of the Thirtieth AAAI Conference
on Artificial Intelligence, February 12-17, 2016, Phoenix, Arizona, USA. Ed. by
Dale Schuurmans and Michael P. Wellman. AAAI Press, 2016, pp. 1109–1115.
URL: http://www.aaai.org/ocs/index.php/AAAI/AAAI16/paper/
view/12283.

https://doi.org/10.3233/978-1-61499-419-0-939
https://doi.org/10.3233/978-1-61499-419-0-939
http://www.aaai.org/ocs/index.php/AAAI/AAAI16/paper/view/12283
http://www.aaai.org/ocs/index.php/AAAI/AAAI16/paper/view/12283

	Introduction
	Action Theories in the Situation Calculus
	Action Formalisms based on Description Logics
	The Golog Family of Action Programming Languages
	Formal Verification
	Outline and Contributions of the Thesis

	Preliminaries
	First-Order Dynamical Systems
	Description Logics and Action Languages
	Basic Notions of Description Logics
	Integrating DL Knowledge Bases and Actions

	Transition Systems and Temporal Logic
	ConGolog Programs over FO Dynamical Systems
	Syntax and Semantics of ConGolog
	The Verification Problem

	Towards Decidable Fragments of ConGolog
	Termination and Failure
	Undecidability of DL-based ConGolog with Guarded Pick
	Reachable Subprogram Expressions
	Abstract Transition Systems and Bisimulations

	Verifying Pick-Free Programs over Local-Effect Actions
	Local-Effect Actions
	Dynamic Types and Local Effects
	Deciding the Verification Problem
	Hardness of the Verification Problem
	Summary

	Limits of Decidable Verification with Non-Local Effect Actions
	Undecidability due to Non-Local Effects
	General Dynamic Types and Regression
	Dynamic Types in Presence of Non-Local Effects
	Propositional Abstraction of DL-ConGolog Programs

	Decidable Fragments of DL-ConGolog
	An Acyclicity Condition
	Flat Effect Representations

	Summary and Related Work

	Decidable Reasoning about Actions with Knowledge and Sensing
	Epistemic First-Order Dynamical Systems
	An Agent Language with Sensing
	An Epistemic DL
	Consistency of Boolean KBs under the SNA
	Actions with Sensing Results

	Relation to the Epistemic Situation Calculus
	Basic Notion of the Epistemic Situation Calculus
	Basic Action Theories and Epistemic FO-DSs

	Deciding the Epistemic Projection Problem
	Summary and Related Work

	Verification of Knowledge-Based Programs
	Knowledge-Based Programs and Temporal Properties
	Programs over Unconditional Ground Actions
	Deciding the Verification Problem with Sensing
	Lowering the Complexity

	Programs over Ground Actions with Conditional Effects
	A Deciable Pick-Operator with Epistemic Guards
	Knowledge States after Local Sensing
	A Pick-Operator with Epistemic Guards

	Summary and Discussion

	Conclusions
	Main Results
	Future Work

