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ABSTRACT

Recent research in the field of Description Logic (DL) investigated the complexity of the satisfi-
ability problem for description logics that are obtained by enriching the well-known DL ALCQ
with more complex set and cardinality constraints over role successors. The algorithms that have
been proposed so far, despite providing worst-case optimal decision procedures for the concept
satisfiability problem (both without and with a terminology) lack the efficiency needed to obtain
usable implementations. In particular, the algorithm for the case without terminology is non-
deterministic and the one for the case with a terminology is also best-case exponential. The goal
of this thesis is to use well-established techniques from the field of numerical optimization, such as
column generation, in order to obtain more practical algorithms. As a starting point, efficient ap-
proaches for dealing with counting quantifiers over unary predicates based on SAT-based column
generation should be considered.
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INTRODUCTION

Description Logics (DLs) [4] are a class of logic-based formalisms for knowledge representation.
They are used as specification languages for ontologies in several areas of application, for example
in medicine [18]]. The information defined in a DL about a particular domain of discourse is built
upon predicates that describe classes of features with concept names and relationships between
elements in the ontology using role names. A description of an element is then obtained as a
Boolean combination of these predicates, resulting in a formal concept.

For example, the concept of a pizza that has at least a topping that is a vegetable and has no
pineapple on it can be formalized by the concept description

Pizza Il dtopping.Vegetable [1Vingredient.mPineapple,

which uses the concept names Pizza, vegetable and Pineapple and the role names topping and
ingredient, together with the concept constructors conjunction (1), negation (), existential re-
striction (3r.C") and value restriction (Vr.C').

Qualified number restrictions, introduced in the well-studied DL ALCQ [4], enable the spec-
ification of quantitative characteristics in a DL. In their simplest form, these restrictions convey
information about the number of role successors of an individual, together with the description
that captures those successors. For instance, the concept of a light and tasty pizza, intended as a
pizza with at least three ingredients but at most two meat-based ingredients, can be formalized as

Pizza [l (Z 3 ingredient. T) M (S 2 ingredient. Meat)

The class of constraints over role successors that are expressible in the logic QFBAPA [15], en-
compassing the ones expressible in ALCQ, has been first introduced in the field of Description
Logics with the DL ALCSCC [2]. In this setting, the constraints are generalized and defined us-
ing arbitrary Boolean combinations of role and concept names; in ALCQ, the number restrictions
have a clear syntactic form that, for instance, prevents one from encoding information about the
relationships between different role names. An example of a concept that can be expressed using

the constructors of ALCSCC is
Pizzall SuCC(preparedBy - —|eatenBy) 1 SuCC(’topp'i ng N Vegetable‘ = ’topping N Meat’)

which states that every pizza described by this concept is not eaten by any person that prepared it
and that it has the same number of meat-based and plant-based toppings.

The complexity of reasoning in the DL ALCSCC has been studied in [2]. In particular, the
problem of concept satisfrability — checking whether there are individuals that can be categorized
using a given concept description — has been thoroughly analyzed. The case where concept satis-
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fiability is tested without a supporting terminological knowledge base (also called TBox) has been
classified as a PSpAcE-complete problem. This is a positive result, because it shows that although
the DL ALCSCC is more expressive than ALCQ, the reasoning complexity remains unchanged
— ALCQ concept satisfiability without a TBox is also PSPACE-complete [4]. However, the al-
gorithm devised in [2] is not suitable for practical purposes. One reason is that its specification
employs several forms of non-deterministic guessing during its execution.

The idea of applying efficient and proven methods to deploy quantitative reasoning in DLs
with quantified number restrictions is not a novel one and has already been investigated using dif-
ferent methodologies. Promising solutions involve resorting to SAT/SMT solvers to optimize the
search phase of the reasoner [12]] or to use well-established techniques from the field of Integer Lin-
ear Programming (ILP) [7] in order to generate solutions to the given satisfiability problem [14].

A prominent technique used to solve problems in ILP is column generation [6], a method for
solving large integer linear systems by restricting the focus on a small subset of the columns of the
original coefficient matrix and incrementally adding columns by means of an oracle, halting when
an optimal solution is found. This technique has been successtully applied to reasoning services
for several logics; among these logics is the first-order fragment of counting quantifiers over unary
predicates [11], where satisfiability of a formula has been shown to be equivalent to find an integral
and non-negative solution to a linear system of inequalities over a 0/1 coefficient matrix.

We reference [2] and [11] as the works that sparked interest in the topics developed in this the-
sis; most of the references that are cited throughout this work originate from these publications.
Starting from the DL ALCSCC defined in [2] and the application of column generation tech-
nique to the problem of CQU formula satisfiability illustrated in [11], the goal of this thesis is to
come up with an algorithm to decide concept satisfiability in a variant of ALCSCC, replacing the
theoretically correct but practically inefficient algorithm given in [2] with a decision procedure
that is efficient for practical purposes, employing the column generation technique.

OutLINE.  In Chapter[2]we define some elementary notions and terminology, mainly related to
Description Logics and Integer Linear Programming, to establish a background to develop upon
in the next chapters. In particular, we take a look at two existing DLs, ALCQ and ALCSCC, that
enable quantitative reasoning over role successors and enunciate some of their relevant properties.
For the latter DL, we introduce a variant called ALCSCC thatallows reasoning over infinite sets.

In Chapterwe introduce a new DL, called ALCCOU, initially defined as a syntactic restric-
tion of ALCSCC™. Throughout the chapter, we define a bisimulation that characterizes concept
descriptions of a DL that is equivalent to ALCCOU, called ALCQL, to then provide a model-
theoretic characterization of ALCQ? as a first-order fragment that is invariant under the newly-
defined bisimulation. After that, we classify the DLs ALCQ, ALCCOU and ALCSCC™ accord-
ing to their relative expressive power. Finally, we show that ALCCOU possesses a precise charac-
terization as the first-order fragment of ALCSCC™, completing our inquiry into the theoretical
properties of ALCCOU.

In Chapterwe present the first-order fragment CQU [11] and we describe how the column
generation technique is employed to solve a linear system of inequalities. After that, we propose an
algorithm for ALCCOU concept satisfiability that combines column generation with the branch-
and-bound method for linear programming, adapting the approach taken in [11]. We show that



the algorithm that we propose is correct and terminating. We briefly conclude by delving into
complexity-related considerations for the designed decision procedure.






2 PRELIMINARIES

Before defining the logic ALCCQU, we provide some preliminary knowledge that is going to
be used throughout Chapter [3|and Chapter [4 We begin by setting the terminology regarding
first-order logic and ILP [7]. For first-order logic, we also mention the class of w-saturated inter-
pretations [8], subject of Section After that, we provide the definition of the DL ALCQ [4],
together with the notion of counting bisimulation [16] that can be used to prove properties about
the expressive power of extensions of ALCQ. Finally, we present the DL ALCSCC that strictly
extends ALCQ with expressive role successor constraints [2] and we mention results related to the
complexity of reasoning in this setting and the relative expressive power with respect to ALCQ.

2.1 FIRST-ORDER LOGIC

We assume a basic knowledge of the following concepts: propositional formula, truth assignment,

Sfirst-order formula, interpretation, variable assignment, model, satisfiability, tautology. Other-
wise, the reader is referred to any introductory textbook on propositional and first-order logic,
such as [9]. In this section, we introduce definitions and results that are relevant in further sec-
tions and that are not considered as background knowledge.

If F'is a propositional formula, we denote with y a truth assignment and with p = F' the fact
that zt isa model of F. Similarly, ¢ stands for a first-order formula — we omit the variables, where
unnecessary —, Z = (AT .Z) for a first-order interpretation, {x1/dy, . . . , ¥, /dy, } for the truth
assignment that maps the variable z; tod; € A fori = 1,...,nand Z, {z/d} | ¢(z)if L is
amodel of p(x) under the truth assignment {«/d}.

In Section We prove that the newly-introduced DL ALCCOU defined in Chapterhas a
precise characterization as a fragment of first-order logic. To do so, we rely on some fundamental
results, mentioned here.

Theorem 1 (Compactness theorem). A set of first-order formulae U is satisfiable if and only if
every finite subset of 1" is satisfiable.

Definition 1. An interpretation 7 is w-saturated if for every set of first-order formulae I" where
only finitely many individuals from AT appear as constants,

if every finite subset of I is realizable, then I' is realizable.

Theorem 2 ([8])). For cvery interpretation I there exists an interpretation T' that is w-saturated
and satisfies the same first-order sentences as I.
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2.2 LINEAR PROGRAMMING

The branch of mathematical optimization called Integer Linear Programming (ILP) [7] studies
methods and algorithms that are used to find optimal solutions to problems in linear algebra.

Here, we set the basic terminology used in Chapter[4]in the development of an algorithm to decide
ALCCOU concept satisfiability.

THE LINEAR PROGRAMMING PROBLEM. ~ Given a cost vector ¢ = (cq, . .., ¢p), asequence X =
(x1,...,xy) of decision variables and a set of linear inequalities over 21, . . ., ,, represented by
the linear system Ax ba b withb = (b1, ..., by,) and A am X n matrix, the associated linear

programming problem — also called primal problem — is

minimize ¢’ - x
(2.1)
subjectto A-xp>abandx >0

where ¢/x = 7" | ¢;x; is the cost function of the problem. If the vector x satisfies all the con-
straints of the problem it is called a feasible solution; the set of all feasible solutions is called feasible
set. A feasible solution that minimizes the cost function is called a optimal solution. Given the vec-
tor > of m inequalities where ;€ {<, >} fori = 1,...,m, we denote with >~ the vector
obtained by switching the inequalities contained in <.

The dual problem associated to A, b and c is

maximize z’ - b
: ’ / 1 (2.2)
subjecttoz - A <c andzp>a " 0

where z = (z1,...,2y,) is the vector of price variables; a vector z satisfying the constraints
of is called adual solution of (2.1).

If we additionally require that X is a vector of integers, becomes an instance of an Integer
Linear Programming (ILP) problem. Given an ILP problem, a vector X is a relaxed solution if it
satisfies all the constraints but some of its values are non-integral.

SOLVING A LINEAR PROGRAM.  There are many well-established techniques to solve integer lin-
ear programs, in both settings where feasibility or optimality of a solution are required. In Sec-
tionwe take a look at column generation [6], a method used in solving integer linear programs
that focuses only on a small subset of the problem, in order to generate optimal solutions. The
explanation of other techniques, such as the simplex method, can be found in [7].

2.3 THE DESCRIPTION LoGIC ALCO

The description logic ALCQ [4] is an extension of the well-known DL ALC with gualified num-
ber restrictions, that allow to state basic quantitative knowledge about the role successors of a given
individual.



2.3 The description logic ALCQ

Example 1. In ALCQ, it is possible to state that an individual that is a parent has at least two
daughters and at most one son. The syntactic expression that defines such a concept is

Parent [l (2 2 hasChild. Female) I (§ 1 haschild. Ma'Le).

We briefly introduce the syntax of ALCQ together with its semantics. After that, we cite a
result from [16] stating that two individuals that can be related by means of a binary relation
called counting bisimulation (16| are equivalent under ALCQ, that is, they are described by the
same concepts. We can use this equivalence relation to relate the expressive power of ALCQ to
that of other DLs.

SYNTAX AND SEMANTICS OF ALCQ.  Given disjoint finite sets N¢ and Ng of concept names
and role names, respectively, the set of ALCQ concept descriptions is defined inductively:

* Every concept name in N¢ is a ALCQ concept description;

* If C, D are ALCQ concept descriptions, 7 is a role name in Ng and n > 0 is a natural
number, then ~C (negation), C' L D (disjunction), C' 1 D (conjunction), (> n r. C)
and (< n r. C) (qualified number restrictions) are ALCQ concept descriptions.

We define the semantics of ALCQ using the notion of an interpretation. An znterpretation T
consists of a non-empty set AZ called domain and a function -~ that maps every concept name A
to aset AL C A7 and every role name 7 to a binary relation rZ C AZ x AZ. This function is
then extended to ALCQ concept descriptions as follows:

o (-C)F = AT\ T, (Cu D)t := CT U DT and (C 11 DY := CT N D
cGar O ={zec At ||{ye | (z,y) er'}| >n}
s (<nr O ={ze At ||{ye Al | (z,y) er'}| <n}

Givena ALCQ concept description C, we say that C'is satisfiable if there exists an interpretation 7
such that CZ # () — notationZ |= C. Two ALCQ concept descriptions C'and D are equivalent
— notation C' = D — if CZ = DZ holds for every interpretation Z.

COUNTING BISIMULATION. As mentioned before, it is possible to state results about the ex-
pressive power of ALCQ with respect to another description logic by means of counting bisimu-
lation [16]. In particular, we are going to use the results of this paragraph to show that the DL

ALCCOU, introduced in Chapter is more expressive than ALCQ, in Section

Definition 2. Let Z; and Z5 be interpretations. The relation p C ATt x A2 s 5 counting
bisimulation between 17 and I if

1. di p dg implies

dy € A ifand onlyifds € ALz
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foralld; € ATr,dy € AT2and A € N¢.

2. if dy p dyand Dy C 771 (dy) is finite for 7 € N, then there is a set Dy C 772(ds) such
that p contains a bijection between D1 and D».

3. ifdy p dyand Dy C 722 (d2) is finite for 7 € N, then thereisa set D1 C rl (dy) such
that p contains a bijection between D1 and D».

The individuals d; € ATt and do € A?2 are ALCQ-bisimilar — notation (I1,d1) ~.arco
(I3, d) — if there is a counting bisimulation p between Z; and Z3 such thatd; p d2 and ALCO-

equivalent — notation (Z1,d1) =acco (I2,d2) — if for all ALCQ concept descriptions C,
dy € CTifand onlyifds € C?z,

Theorem 3. If (I1,d1) ~acco (Z2,dz) then (L1, d1) =acco (T2, da).

Proof. Omitted. For details, refer to [16]. O

2.4 EXTENDING ALCQO WITH EXPRESSIVE ROLE SUCCESSOR

CONSTRAINTS
The DL ALCSCC has been first presented in [2] as an extension of ALCQ that allows to ex-
press constraints over role successors of an individual using formulae in the logic fragment QF-
BAPA [15] with structural restrictions. In this section, we introduce a semantic variant of QF-
BAPA, called QFBAPA®®, where solutions need not to be finite. After that, we define the DL
ALCSCC™, which is a variant of ALCSCC that allows for constraints expressible in QFBAPA>®

and observe what results that hold in ALCSCC, shown in 2], might not necessarily be valid in
the context of ALCSCC™®.

2.4.1 THE LoGcic QFBAPA™
The logic QFBAPA®, similarly to its well-known variant QFBAPA [15], allows one to build sez

terms as Boolean combinations over a finite set of symbols and to impose set and cardinality con-
straints expressed in Presburger arithmetics over these terms.

SET AND CARDINALITY TERMS. Given a finite set of symbols T with {0, U} N'T" = 0, the set
terms over T" are inductively defined as follows:

1. () (empty set) and U (universe) are set terms over T’;
2. all the symbols in 7" are set terms over T

3. if's, t are set terms over T" then s U ¢ (union), s N ¢ (intersection) and s° (complement) are
set terms over 1.

The cardinality terms (or Presburger expressions) over T' are inductively defined as follows:

1. every element of N is a cardinality term;
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2. if sisaset term over T then |s| is a cardinality term over T’;

3. if'k, £ are cardinality terms over 1" then k + £ (sum) and [V - ¢ (multiplication by constant)
are cardinality terms over 7', with N' € N a natural number.

CONSTRAINTS AND SOLUTIONS. Set constraints over T are assertions of theforms C t,s =t
or their negation for set terms s, t over I'. Cardinality constraints over T are assertions of the form
k =1,k > {, k > { and their negation or N dvdk — which expresses the fact that & is a multiple
of N — for cardinality terms k, £ and N a natural number. A QFBAPA®® formula consists of a
Boolean combination of set and cardinality constraints.

Aninterpretation Z = (AZ, ) over T consists of a non-empty domain set A7 and a mapping
7 that assigns the set )7 = () to the symbol ), a finite set UL C A7 to the symbol ¢ and a subset
ol C U? to each set symbol o in T'. We extend this mapping to set terms and cardinality terms
as follows:

L (sut)yf =sTut?, (snt)t = st Ntfand (s9)F = UL\ 7,

b

2. |s|F = |sI

3. (k+ 0T =k +Fand(N-0)F =N - (2.

The mapping 7 satisfies:
1. the set constraint s C tif sZ C £ and its negation if st g L,
2. the set constraint s = ¢ if sZ = tZ and its negation if st £ %,
3. the cardinality constraint k < £if kT < ¢T and its negation if kL > /L,
4. the cardinality constraint k& < £if kL < ¢T and its negation if KL > %,
5. the cardinality constraint k = ¢ if kX = ¢ and its negation if K # (Z;

6. the divisibility constraint Ndvdk if there exists a natural number M > 0 such that KL =
N - M.

The interpretation 7 satisfies the QFBAPA®® formula ¢ if it satisfies the Boolean combination
of set and cardinality constraints contained in ¢.

The main difference between QFBAPA™ and the definition of QFBAPA provided in [2] is that
QFBAPA®® set terms are not necessarily interpreted as finite sets. In particular, in QFBAPA®® itis
possible to enforce infinity of a set in every solution. For instance, the every solution that satisfies
|U| = |U| + 1 maps U to an infinite set.

Aswe are going to show in the next subsection, in ALCSCC® one can express constraints over
role successors as a finite conjunction of QFBAPA™ set and cardinality constraints over a set of
symbols related to role and concept names.
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2.4.2 THE DESCRIPTION LOoGIC ALCSCC™

The DL ALCSCC™ that we define in this section presents some non-trivial differences with re-
spect to the DL ALCSCC introduced in [2]. In ALCSCC, divisibility constraints can be used
to form role successor constraints, whereas ALCSCC restricts the admissible constraints to set
and cardinality comparison ones. On the other hand, in ALCSCC™ sets can have an infinite
interpretation. In a later paragraph, we show how divisibility constraints in ALCSCC> would
allow to specify the very strong property that an individual has only finitely many role successors.
Finally, we lift the assumption that every individual in the domain of an interpretation must have
only finitely many successors.

SYNTAX OF ALCSCC™.  Given acountable set N¢ of concept names and a fznite set Ng of role
names that are disjoint, the set of ALCSCC™ concept descriptions over the signature (N¢, Ng)
is inductively defined as follows:

1. every concept name in N¢ is an ALCSCC™ concept description;
2. if C, D are ALCSCC™ concept descriptions, then so are C' M D, C' U D and —~C;

3. if cis a set or cardinality constraint, different from a divisibility constraint, over a finite set
of symbols containing role names and ALCSCC™ concept descriptions, then succ(c) is

an ALCSCC™ concept description.

The symbols T (top) and L (bottom) are introduced as abbreviations for A LI = A and AT1 A4,
with A € Ng¢.

Example2. In ALCSCC™ we can describe an individual that is a parent and has the same number
of sons and daughters, by using the concept description

C := pParent N SUCC(’hasChild N Ma1e| = ‘hasCh'ild N Female’).

Differently from the definition of ALCSCC given in [2], we do not assume that the set of
concept names is finite. However, we still require that the set of role names N, is finite, in order

to be able to specify the semantics of ALCSCC™ as intended.

NATURAL NUMBERS AND INFINITY. We are not interested in distinguishing cardinalities of
infinite sets from one another. Therefore, we consider the set N, := N U {oo} of natural
numbers extended with the znfinity 0o, which satisfies the following axiom schemata, for all n €

N:

n—+0o00=00+n = 00, n-00 =00 N =090,

00 4+ 00 = 00+ 00 = 00, n < oo.

Hereafter, we assume that the cardinality mapping |-| maps set terms to values in N.

10
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SEmanTICS OF ALCSCC™. An interpretation Z of N¢ and N consist of a non-empty set
AZcalled domain and a mapping T that maps every concept name A € N¢ to a set AT C AT
and every role name r € N to a binary relation r%
denote the set of its r-successors in AZ by rZ(d).
The mapping - is inductively extended to ALCSCC™ concept descriptions as follows:

over AL, Fora given individual d € AT we

« (cnDY:=cTn D% (CuD) :=CTUDTand (-O)F := AT\ CF

* succ(c)? := {d € AT | I, satisties c}, where Z,; is an interpretation over set terms such
that

ple .=, Ale=yte .= U rI(d), C%.=CTnutd, rti.=rI(d)
rENR

for all ALCSCC concept descriptions C' and role names 7 occurring in c.

The interpretation Z is well-defined: indeed, we can assume by induction that C T is already
defined for every concept description C occurring in c. For every interpretation Z, it holds that
TZ = ATand 17 = ¢~ Differently from [2]}, the set U%4 is not guaranteed to be finite.

DiIVISIBILITY CONSTRAINT AND INFINITY. The definition of the DL ALCSCC in [2] allows
to specify divisibility successor constraints of the form

succ(N dvd k)

where N is a natural number and £ is a cardinality term; such a term is satisfied by Z if kT is
divisible by N. The extension of natural numbers with infinity poses a substantial issue: is the
infinity odd, even, both or neither? We can surely exclude that 0o has a specific parity: if co was
even (resp. odd), then co + 1 would be odd (resp. even), but co = 0o + 1, therefore co would
also be odd (resp. even). If 0o was assumed to be both odd and even, we would be able to state
that a concept description has only finitely many role successors using

finite := —suce(2 dvd |[U|) L —suce(3 dvd |U|)

as an additional conjunct. Similarly, if 0o was assumed to be neither odd nor even, the concept
description
finite := succ(2 dvd [U]) U suce(3 dvd [U|)

would enforce every individual in every interpretation of finite to have only finitely many role
SUCCessors.

ExPRESSIVE POWER. The ability to state constraints over role successors using QFBAPA® for-
mulae strictly increases the expressive power of ALCSCC™ with respect to ALCQ. This s already
proved to be true for ALCSCC in [2], showing that the concept description succ(|r| = |s|) has
no equivalent ALCQ concept. In Section 3.4} we provide a proof based on the use of counting

bisimulation to show that both the DLs ALCSCC* and ALCCOU (defined in Chapter are
strictly more expressive than ALCQ.

11
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CONCEPT SATISFIABILITY IN ALCSCC™  The complexity of the concept satisfiability prob-
lem in ALCSCC without a TBox has been exactly determined in [2].

Theorem 4. The problem of checking satisfiability of ALCSCC concept satisfiability is PSPACE-

complete.
Proof. Omitted. For details, refer to [2]. O

The proof given in [2] relies on the assumption that the set U7 s finite for every interpretation
7 of a QFBAPA formula; this condition is met in the original definition of ALCSCC. Under
this hypothesis, one can leverage the following result about the Venn regions over the variables of
a QFBAPA formula ¢ — if X7, ..., X}, are the variables occurring in ¢, a Venn region is a set
term of the form X' N--- N X,f"’, where X" is either X; or X¢.

Lemma 1. Forevery QFBAPA formula o, one can compute in polynomial time a number N whose
value is polynomial in the size of  such that if o is a solution of o, then there exists a solution o' of

© satisfying

‘{U | v Venn region, o' (v) # 0}‘ <N,
{v | v Venn region, o’ (v) # 0} C {v | v Venn region, o(v) # 0}.

The condition of applicability of Lemmais not met in ALCSCC™: the universe set U4 of
role successors of an individual d under an interpretation Z is not required to be finite, whereas
the semantics of QFBAPA requires that the universe is mapped to a finite set under every interpre-
tation. We conjecture, however, that Theorem[4]and Lemmal(fjought to be valid for ALCSCC™
as well.

PRACTICAL REASONING IN ALCSCC™. While the algorithm proposed in [2] establishes im-
portant complexity results and provides a worst-case optimal decision procedure for ALCSCC
concept satisfiability without a knowledge base, it lacks the practical efficiency that is desirable in
order to obtain a usable implementation. In particular, the algorithm relies on non-deterministic
operations, such as guessing a truth assignment and guessing the polynomial number of Venn
regions mentioned in Lemrna

In the next chapter, we restrict our attention to a sublogic of ALCSCC™, called ALCCOU,
where the only cardinality constraints that can be used in role successor constraints are those of
theformk < N,k = Nand k > N (or their negation) with £ a complex cardinality term
and N > 0 a natural number. We develop a model-theoretic characterization of ALCCOU as
a specific fragment of first-order logic and we show that its expressive power is placed between
ALCQ and ALCSCC™. Finally, we show that ALCCOU can be characterized as a particular
fragment of ALCSCC, namely, the fragment of ALCSCC™ that is within first-order logic.

12



3 THE DESCRIPTION LoGIic ALCCOU

In this chapter, we focus our attention to a restriction of ALCSCC™ called ALCCOU. As ex-
plained at the end of Chapter [2} the DL ALCCOU is obtained by restricting the form of the
admissible role successor constraints. Throughout the chapter, we are going to show that such a
restriction provides some interesting properties; the most interesting one is that ALCCOU can be
embedded into first-order logic using an appropriate translation, whereas there are ALCSCC™

concept descriptions that are beyond first-order logic. At the end of this chapter, we show that
ALCCOU has an exact characterization as the first-order fragment of ALCSCC™.

SYNTAX AND SEMANTICS OF ALCCOU. Given a countable set N of concept names and a
finite set N of role names that are disjoint, the set of ALCCOU concept descriptions over the
signature (N¢, NR) is inductively defined as follows:

1. every concept name in N¢ is an ALCCOU concept description;

2. if C, D are ALCCQU concept descriptions, then so are C' M D (conjunction), C' U D
(disjunction) and —C' (negation);

3. if cis a set constraint or a cardinality constraint of the form & = N,k > N ork > N or
their negation, with £ a cardinality term over a finite set of symbols containing role names
and ALCCAU concept descriptions and N € N, then succ(c) (role successor constraint)
is an ALCCOU concept description.

Hereafter, where the context makes it clear, we refer to the set terms defined over role names and

ALCCOU concept descriptions simply as set terms.

Example 3. In ALCCOU we can describe an individual that is a parent and whose children are
not living with their parents, using the concept description

C' := succ(|haschild N liveswith| = 0).

In Section 3.4 we show (using different role names) that this concept description cannot be ex-

pressed in ALCQ.

The semantics of ALCCOU in terms of an interpretation Z is defined in the same way as
the semantics of ALCSCC in Section restricted to the cardinality constraints appearing in
ALCCOU.

3.1 A NORMAL FORM FOR ALCCOU

In this section, we define a method to reduce ALCCOU role successor constraints to a specific syn-
tactic form, that s, we prove that every set and cardinality constraint can be equivalently expressed

13



3 The description logic ALCCOU

using only cardinality constraints of the form |s| > N or |s| < N where sisaset termand N a
natural number. This transformation can be used to restrict our algorithm for ALCCOU concept
satisfiability, introduced in Chapter[4} to only deal with role successor constraints containing car-
dinality constraints of the form mentioned above. Moreover, we can push the negation symbols
in the input concept description so that they only appear in front of atomic concept names. If C
is the concept description of interest, the concept nf(C') obtained by applying exhaustively these
transformations is called its ALCCOU-normal form.

Definition 3. A ALCCOU concept description C'is in ALCCOU-normal form if negation sym-
bols only appear in front of concept names occurring in C' and each role successor constraint oc-
curring in C contains a cardinality constraint of the form |s| < N or |s| > N with N a natural
number and s a set term.

BRINGING ALCCOU CONCEPTS TO NORMAL FORM. It is possible to replace every ALCCOU
role successor constraint with a restricted form, as suggested at the beginning of this section.
Set constraints can be replaced by cardinality constraints using the rules induced by the follow-
ing equivalences:
succ(s C t) = succ(|sNt°] = 0), (3.1)
succ(s = t) = succ(s C t) Msucce(t C s).

We adopt the following replacement rules to convert general cardinality constraints to expres-
sionsof theform k > N ork < N:

+ 1) Usucc(k < N —1)

|_|{|_|7, ISU.CC(]{Z NN) ’ Zz lN N}
succ(M k<t N) ~~ succ(zZ 1k > N) with >ae{<, >} (

N) (
N) ( (

succ(k = N) ~ suce( ) Msucc(k < N) (
N) ( (
)~ (
)

Finally, we employ the following rules to ensure that the negation symbol only appears in front
of concept names:

-(CMD)~-CU=D, —~(CUD)~ -~CM-D, —=C~C (3.9)
—succ(k < N) ~» succ(k > N +1), =succ(k > N) ~succ(k <N —1) (3.10)
succ(k < —1) ~ L (3.11)

The process where we first apply the rules induced by (3.1)- to get rid of set constraints
and then we exhaustively apply rules — is guaranteed to terminate: the nesting level
of role successor constraints within one another in the input concept description C'is finite and
every rule generates at most exponentially many new role successor constraints where the nesting
level is decreased.

14



3.2 ALCOLt as an equivalent formulation of ALCCOU

Theorem 5. For every ALCCOU concept description C' there exists a ALCCOU-normal form
nf(C') obtained from C in exponential time such that C' = nf(C').

Proof. We show that the application of rule (3.3)) yields an equivalent concept description; the
cases (3.4)—(3.6) and (3.10) can be proved analogously. For every interpretation Z,

succ(k > N ={d e AT | kF > N}
={de AT |kF > N +1} = succ(k > N + 1),

To prove that (3.7) yields an equivalent concept, we notice that the inequality a1 +- - - +ap > N
is equivalent to the set of inequalities

a;>N;, i=1,..., MAN  +---+ Ny = N.

The number of possible assignments of natural values to N1, ..., Nys such that Zf\il N; =N
is equal to the number of partitions of IV into exactly M parts, defined by the recurrence relation

P(N,M)=P(N —1,M — 1)+ P(N — M, M).

This means that each application of produces P(N, M) - M new role successor constraints.
The function pps(N) := P(N, M) has an asymptotic exponential growth [1], thus it generates
at most exponentially many new role successor constraints. Finally, naturally follows from
the definition of arithmetic multiplication. The last equivalence for follows from the fact
that cardinality terms can only assume non-negative values. O

To conclude this section, we observe that (3.8) could be replaced with the rules

wmwwkzNwaw%z[ﬁb

wmwrngy~wm%§{ﬁp

that still yield equivalent concept descriptions and avoid the exponential blowup caused by the
conversion of multiplication into addition in (3.8).

Now that we have detailed the process to obtain a ALCCOU-normal form, we proceed by look-
ing for a characterization of ALCCOU that comes with a deeper nature than a simple syntactic
restriction. In the next section, we show that ALCCOU is equivalent to another description logic
that is obtained by generalizing ALCQ qualified number restrictions to include more expressive
role expressions than just role names. We then investigate how this DL, called ALCQt, can be
characterized as a specific fragment of first-order logic.

3.2 ALCOt AS AN EQUIVALENT FORMULATION OF ALCCOU

In this section, we define an extension of the DL .ALCQ where qualified number restrictions
are defined on role types instead of roles, called ALCQt. This DL can be seen as a special case
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3 The description logic ALCCOU

of the DL ALCQZb [20] where the following conditions hold: 1. inverse roles are not allowed,
2. disjunction is not allowed in role expressions, 3. the set Vg is finite. The DLs ALCCOU and
ALCQOt turn out to be equivalent — as shown further in this section — although the encoding of
ALCCAU concept descriptions into ALCQOL ones is a very expensive operation, thus ruling out
the possibility of reducing ALCCOU concept satisfiability to ALCAL concept satisfiability. On
the other hand, this equivalence is handy because it allows to interchangeably use ALCOt and
ALCCOU to show properties regarding their expressive power with respect to other logics.

Syntax oF ALCQOt. Let N¢ and Ny be respectively a countable set of concept names and a
finite set of 7ole names that are disjoint. A role literal over N is either a role name 7 or its negation
—r. A ALCQOt-role type w over N is a finite conjunction of role literals where every element of
Np occurs exactly in one role literal. A role type over N is safe if it contains at least one positive
literal. The set of ALCQOt concept descriptions over N and N is inductively defined as follows:

1. every concept name A € N¢ is a ALCOt concept description;

2. it C, D are ALCQOt concept descriptions, then so are C' I D (conjunction), C'U D (inter-
section) and =C' (negation);

3. ifwis a safe role type over Ng, C'is a ALCOt concept description and N > 0 is a natural
number, then (> N w. C)and (< N w. C) (qualified number restrictions) are also
ALCOt concept descriptions.

Example 4. If Np = {r, s, t}, then the expression 7 M st is a safe role type, while ~r M —sM—t
is not a safe role type. The expression s [t is not a role type because 7 is not occurring in any
literal role, while 7 M =7 M s M ¢ is not a role type because r appears in more than one role literal.

SEmaNTICS OF ALCQt.  The semantics of ALCOt in terms of an interpretation Z is defined
similarly to the semantics of ALCQ shown in Section We extend that definition to include
role types and qualified number restrictions over role types:

. (ﬂr)z = AT x AT\ 7T and (wy M wg)I = wlz N wQI with wy and wy role types;
* For qualified number restrictions over role types,

(> Nw. C)f:={de AT |{(d,e) sz\eeCI}‘ > N},
(S Nw. C)f:={de AT |{(d,e) sz\eeCI}‘ < N}.

The following lemma shows that the negation symbol can be absorbed by a qualified number
restrictions.

Lemma 2. Given an ALCQOt concept description C, a safe role type w and N € N,

(ENw.C)=—=(>N+1w. O). (3.12)
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3.2 ALCOLt as an equivalent formulation of ALCCOU

3.2.1 ALCOt 1s a suBLoGIC OF ALCCOU

The DL ALCQt has a straightforward encoding in ALCCOU that is shown in the next lemma.
This yields a translation of ALCQt to ALCCOU in linear time with respect to the number of role

successor constraints occurring in the input concept.
Lemma 3. For each interpretation L and safe role w,
(>Nw. Ot = succ()w N Cﬁ‘ > N)Z,
(ENw C)F = succ(’w N Cﬁ‘ < N)*
where C* is the ALCCOU concept description equivalent to C.
Proof. Givend € AT, letw?(d) := {e € AT | (d,e) € w!}. Then,
(>Nw. C)Yf ={de AT |#{(d,e) ew? | e e CT} > N}
={de AT ||w'(d)nC*| > N}

because w is a safe role — thus e € U%d — and finally

={de AT ||wnC[* > N} = suce(JwnC| > N)~.

The second identity can be proved analogously. O

3.2.2 ALCCOU 15 a suBLoGIC OF ALCOt
In Lemmawe showed that ALCOt is a sublogic of ALCCQAU. The goal of this subsection is to

prove that the converse holds as well, thus obtaining the equivalence of the two DLs.
The first result that we prove is that we can replace every set term that spans over ALCCOU
concept descriptions with a unique ALCCQOU concept, yielding an equivalent constraint.

Lemma 4. Let T be an interpretation and d € AT a fixed individual. For all ALCCOU concept
descriptions C and D:

1 (=C)% = (Co)H,

2. (Cn DY = (Cn DY and (CLUDY = (CuD)™

3. Tla =Y gnd 17 = (L,
Proof. We first show the equality in (I), by using the semantics of ALCCQU concept descrip-
tions for the interpretation Z and the semantics of ALCCOU set terms for Zg. Moreover, we use

known equalities from set theory, such as the De Morgan laws and distributivity of intersection
over union. We obtain the following chain of equalities, where () follows from the set-theoretic
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3 The description logic ALCCOU

identity A\ (BNC) = (A\B)N(A\ C)and (f) from AN (B\C)=(ANB)\Cand
Ut C AT (which also means that 4Zd = (4Z4 N AT).

(€Y% = %o\ 0Tt =y \ % 0 0Ty L (@Fa\ yFay 0 (e \ OF) =
=i\ OF = U N AT\ CT LT (AT CF) =
=Urin (-0)F = (-0)*.

The equalities in (2)) are derived in a similar way; here, the equality (}) follows from the identity
Ura N Ura = Yrd. We only show the case for intersection, since the case for disjunction can be
proved analogously:

(cnbDyf =y*enCnbD?f =urn(C*nDh =
L @ty n @0 Ty = 0% DT = (C N D).

The equalities in (3) are consequences of TZd = TZ NYd = YZd and 124 = 1T NYte =
O

Using Lemma [4, we can perform a further decomposition of each set term appearing in a
ALCCOU role successor constraint into a disjoint union of set terms that have a structure that is
similar to qualified number restrictions in ALCQt.

Lemma 5. If s is a set term over role names in Ng and ALCCOU concept descriptions, then s is
equivalent to a disjoint union

N
U w; N C; (3.13)
i=1
where wj is a safe role type over N and C; is a ALCCOU concept description.

Proof. Let I be a ALCCOU interpretation and d € AL, According to ALCCOU semantics,
the inclusion s%¢ C Y4 = U,c Ng 7% (d) holds. Hence, we can replace the set term s with the
equivalentset term s := s N {J,c v, 7

By transforming s’ into its set-theoretical disjunctive normal form dnf(s’), we obtain an equiv-

alent set term of the form
N’ m;

UMs

i=1j=1

such that ¢ := (j2; s; contains at least one positive occurrence of a role name in N — this is
a consequence of the distributivity law for set unions over set intersections. Since ¢ is a set term
over role names and ALCCOU concept descriptions, we can assume thatt = tp N tc withtr a
set intersection containing only role names (or their complement) and ¢¢ a set intersection over
ALCCOU concept descriptions (or their negation).

If tg contains both r and r¢ for some € Ng, we replace ¢ with L: for every interpretation
Tandd € AZ,itholds that t¥¢ C (r N r¢)%a = () = 124, Otherwise, t corresponds to a
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3.2 ALCOLt as an equivalent formulation of ALCCOU

union of disjoint and safe role types Uf’zl w; — this is true, because there is at least one positive
occurrence of a role name 7.

Thanks to Lemmal4} it is possible to replace ¢ with a ALCCQOU concept description C; such
that tgd = C'iId. This yields the equivalence

ki
t=trNitc = wjﬂCi.
j=1

Let s” be the set term where each term ()7} s is replaced with an equivalent term U;“:l w;NC;.
If s” contains two terms w N C'and w N D with C' # D, we replace them with the equivalent set
termw N (C' U D). Finally, we obtain that s is equivalent to a disjoint union of the form

" _
s =

(wi N Cz) OJ

-

=1

The decomposition described in Lemmais worst-case exponential: if | Nr| = k, the disjoint
union might contain 2% — 1 disjoint set terms in the worst case, one for each safe role type over
Ng; moreover, the transformation to the set-theoretic disjunctive normal form is also worst-case
exponential.

Example 5. If Ng = {r, s}, applying the encoding described in Lemma [5]to the set term A U
(r° N B) yields the disjoint union
(rnsNA)U(rns“NA)U(r‘nsn (AU B)).

Theorem 6. Every role successor constraint in ALCCQU of the form succ(]s| > N) orsucc(|s| <
N) is equivalent to some ALCQL concept description.

Proof. Letsucc(|s| > N) be a role successor constraint. As a consequence of Lemma S|and the
fact that the cardinality of a disjoint union of sets is equal to the sum of the cardinalities of each
disjunct, it follows that

M
succ(|s| > N) = succ(‘Uf‘il(wi NC;)|>N) = succ(zwi NC;| > N).
i=1
Applying the replacement rule we obtain that
M
suce( Jwi NG| = N) = | I, suce(jw; N Ci = Ny) | M, N; = N}
i=1

Every role successor constraint generated by the replacement is of the form succ(jw N C| > N);
thus, we can apply Lemma([3|and obtain the equivalent ALCQt concept description

| MM (= Ny wi. ¢ | M N; = N}
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3 The description logic ALCCOU

where Cf denotes the recursive replacement of any ALCCOU role successor constraint occurring
in C; with its equivalent ALCQt concept description. The transformation is guaranteed to termi-
nate, because in each recursive application the nesting level of ALCCOU role successor constraint
is strictly decreasing and the nesting level is bounded by the nesting level of succ(|s| > NN'), which
is finite. We can show that succ(|s| < V) can be encoded in ALCQOY in a similar way. O

The encoding that we describe in the proof of Theorem [6|is worst-case double exponential
in the size of the set term s and the value IV appearing in the input role successor constraint.
The first exponent is given by the conversion to set-theoretical disjunctive normal form described
in Lemma while the second exponent is caused by the application of which, as described
in Theorem |5} could yield exponentially many new role successor constraints. This encoding is
inefficient from a practical point of view and does not constitute a convenient way to use ALCOt
reasoning services to decide concept satisfiability in ALCCOU reasoning services to ALCQOL ones,
but it is useful to characterize ALCCQOU as a sublogic of ALCOL.

Example 6. The ALCCQU role successor constraint succ(|A U (r¢ N B)| > 2) is equivalent to
the ALCOt concept description

|_| (> Ny (rf1s). A)N1(> Na (rM=s). A)N (> N3 (-rMs). AU B)).
N1+N2+N3=2

Combining the results obtained so far in Lemma [3} Theorem [5|and Theorem [ we finally

obtain the desired corollary.
Corollary 1. The description logics ALCCOU and ALCQOL are equivalent.

Using this property, we proceed by showing a characterization of ALCQt concept descriptions
as a specific fragment of first-order logic that can be transferred to ALCCOU, thanks to their
equivalence as logics.

3.3 MODEL-THEORETIC CHARACTERIZATION OF ALCO¢

By using the theoretical framework presented in [16], we are able to provide a specific character-
ization of ALCQL concept descriptions. In order to achieve this goal, we first define a notion of
ALCQt-bisimulation that generalizes the counting bisimulation introduced in Sectionby re-
placing role names with safe role types. We proceed by proving that ALCQt-bisimilarity implies
ALCQOt-equivalence for individuals in different interpretations; for the class of w-saturated inter-
pretations introduced in Chapter 2] we show that the converse is also true. Lastly, we prove that
ALCOt— thus, ALCCOU— concept descriptions are characterized as the first-order fragment
that is invariant under ALCQt-bisimulation.

The proofs shown in this section are based on the work shown in the extended version of [16].

3.3.1 ALCQOt-BISIMULATION AND INVARIANCE FOR ALCOL

We define a bisimulation for ALCOL as a generalization of the counting bisimulation introduced
in [16] and previously mentioned in Section[2.3]
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3.3 Model-theoretic characterization of ALCQt

ALCOt-BISIMULATION.  Given two interpretations Z1 and Ty, the relation p C AT x ALz jg
a ALCOt-bisimulation between Z1 and Ty if the following conditions are satisfied:

Atomic d; p do implies
dy € A ifand onlyifds € ALz

foralld; € AT',dy € AT2and A € N

Forth if dy p dy and Dy C w’i(dy) is finite for a safe role type w over Vg, then there is a set
Do C w?2(dy) such that p contains a bijection between D1 and Ds.

Back if di p doand Dy C w?? (d2) is finite for a safe role type w over Np, then there is a set
D1 C w?(dy) such that p contains a bijection between Dy and Ds.

The individuals d; € ATt and dy € A2 are: ALCQt-bisimilar — notation (Iy,dy) ~.Arcot
(Z2,da) — if there is a ALCQt-bisimulation p between Z; and Z such that dy p da; ALCOL-
equivalent — notation (Z1,d1) =accor (L2, d2) — if for all ALCOt concept descriptions C,
dy € CTvifand onlyifds € Cz,

The first property to prove is that two individuals that are related by a ALCQt-bisimulation
are ALCQt-equivalent.

Theorem 7. [f(Il, dl) ~ ALCOt (IQ, dg) then (Il, dl) = ALCOt (IQ, dg).

Proof: Dueto (Z1,d1) ~.accor (T2, ds), there exists a ALCQt-bisimulation p C ATt x AT2
satisfying dy p da. We prove that for all ALCOt concept descriptions C' and (eq, e2) € p,

e1 € CT ifand only if ey € C%2 (3.14)
by structural induction over C.

Concept names IfC' = A € N then (3.14) follows immediately from d; p da, since p satisfies
the atomic condition for an ALCQt-bisimulation.

Inductive Hypothesis Assume that, given a ALCQOt concept description C, (3.14)) holds for all
proper subconcepts D of C.

Negation Let C' = —D. Then, d; € Chriffdy € AT and d, ¢ DT, since (3.14)) holds for D
by inductive hypothesis, d; ¢ D™ iffdy ¢ D*2. Thus, dy € A2 and dy ¢ D*2, which
is equivalent to d € CZLz,

Conjunction Let C' = DM E. Then, d; € Chrifd; € D and dy € E%r. By inductive
hypothesis, holds for both D and E; thus, d; € D%t and dy € ETr iffdy € D%z
and dy € E™2 hence dy € C*2. Thanks to the semantic equivalence D U E = =(—D I
—E) it follows that also holds for C' = D Ul E.
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Qualified number restriction Assume that C' = (> N w. E), with N > 0and d; € C%1.
Let By := w?(dy) N E% then, |E1| > N. Let D1 C Ej be a subset of cardinality V.
Since D; C wh (dy) is finite, di p dg and p satisfies the forth condition for a ALCQt-
bisimulation there exists a set Dy C w?2(d3) in bijection with D1 under p. Since Dy is the
image of D1 under p and every element of D1 belongs to EZ1, by inductive hypothesis we
deduce that Dy € E”2, thus Dy C w??(dy) N E?2. We can then conclude thatdy € C*2,
since |w?2(d2) N E®2| > | D3| = N. Using the back condition and a similar argument,
we can prove that if dy € C”%2 then d; € CTt. Thanks to the semantic equivalence
(< Nw. E) =-(> N+ 1 w. E), we obtain that (3.14) holds for C = (< N w. E) as
well. ]

Thanks to Corollary [I, we obtain the following property, where the notion of ALCCOU-
equivalence is defined analogously to that of ALCQt-equivalence.

Corollary 2. [f(Il, dl) ~ ALCOt (IQ, dg) then (Il, dl) = ALCCOU (IQ, dg).

It is worth mentioning that the property of invariance under ALCQ¢-bisimulation might hold
for DLs that are more expressive than ALCQt. Indeed, as we are going to explain in Section
two individuals thatare ALCQt-bisimilar are also ALCSCC-equivalent; the fact that ACCSCC™
is strictly more expressive than ALCQt is shown in Section [3.4]

3.3.2 CHARACTERIZATION OF ALCOt CONCEPT DESCRIPTIONS

To begin this section, we show how to embed ALCQ in first-order logic by means of a translation
mapping. This implies that both the logics ALCOt and ALCCOU are fragments of first-order
logic. After that, we prove that for the class of w-saturated interpretations, ALCQt-equivalence
implies ALCQt-bisimilarity. In this way, we obtain a different but equivalent way to distinguish
individuals in different interpretations, according to the set of ALCQt concepts that they satisty.

At the end of this section, we show that the DLs ALCOt and ALCCOU can be character-
ized as the first-order fragment that is invariant under ALCQ¢-bisimulation, providing a stronger

definition for ALCCOU than a simple syntactic restriction of ALCSCC™.

FIRST-ORDER TRANSLATION OF ALCQt. We define a first-order role type translation 7, ,, that
maps role types to first-order formulas with free variables x and y, where r € Ng and w1, wo are
safe role types:

Tay(r) =1(2,y), Tey(r) = -r(x,y), "pylwi Mwa) = mpy(wi) AmTey(w).

We then proceed to define a first-order concept translation 7, that maps ALCQt concept descrip-
tions to first-order formulas with free variable x:

m.(A) == A(x) A€ N¢ 7z (2C) 1= =7, (C)
Tz(C N D) =1 (C) A1 (D) mz(CUD) =1 (C) V 7y (D)

N N N
m((Z N w. C)) = 31'1.--'3.%']\/./\ /\ Z; 7&1'3‘/\ /\(ﬂ'x,a:i(w)/\ﬂ'xi(c))
=1

i=1j=i+1
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3.3 Model-theoretic characterization of ALCQt

We do not explicitly introduce a first-order translation for (< N w. (), since (< N w. C) =
—(> N + 1 w. C) holds.

Lemma 6. For every ALCQL role type w and interpretation T

(d,e) € wk ifand only ifT,{x/d,y/e} & 7y y(w).

Proof. Holds trivially. O

Theorem 8. For every ALCOL concept description C and interpretation T
d € CT ifand only if T,{x/d} = m:(C).
Proof. By structural induction over the ALCQt concept description C'.

Concept names Assume that C = A € N¢. Then, d € ATiff Z,{z/d} | A(z) follows

from the definition of Z as a first-order interpretation.
Inductive Hypothesis Assume that the claim holds for all the proper subconcepts of C.

Negation Assume that C = —D. Then,d € CTiffd ¢ DT iff Z,{z/d} ¥ m.(D) iff
T, {z/d} = m(C).

Conjunction Assumethat C = DM E. Then,d € CTiffd € DY andd € E*iff T, {z/d} =
x(D) and Z,{x/d} | 7,(E)iff Z,{z/d} = mz(D) A mz(E). Since D U E =
—(=DMN=FE)and ¢ V1) = —(—¢ A 1)), this is sufficient to show that the claim holds
for the case of disjunction.

Number restrictions Assumethatd € (> N w. C )I . Then, there exist NV distinct individuals
di,...,dy € AT suchthat (d,d;) € wfandd; € CT fori = 1,..., N. Thanks to
Lemmal6|and the inductive hypothesis, it follows that Z, {x/d, z;/d;} |= Tz, (w) and
Z,{zi/d;} = CTfori = 1,...,N. Moreover, if d; # dj, the formula z; # z; is
satisfied by the assignment {z;/d;, x;/d;}. Therefore, Z,{z/d} = m.((> N w. C)).
We can show the opposite implication in a similar way. Since (< N w. C') = (> N +
1 w. C), this is sufficient to prove that the claim holds for all possible number restrictions.

O]

N-ARY EXISTENTIAL QUANTIFICATION IN ALCQt. Itis possible to add to ALCQOt an addi-
tional construct similar to the N-ary existential quantification introduced in [5]), without increas-
ing the expressive power. The intuitive semantics of the construct Jw.(C1, . . ., C) is that there
are IV distinct w-successors dy, . . . , d and that d; is described by C; fori = 1,..., N. We use
this construct to prove that, if we restrict our attention to w-saturated interpretations from Defi-

nition ALCQOt-equivalent individuals are ALCOt-bisimilar.
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3 The description logic ALCCOU

Let w be a safe role over Ng, N > 1 a natural number and C, ..., Cn ALCOt concept
description. Then, the semantics of the N -ary existential quantification Jw.(C1, . . ., Cn) under
an interpretation Z is defined as

Jw.(Cy,...,On)t = {;1: e AT 3y, ..y, € AT (2,y) € WA

(3.15)
/\yiEC',;Iforizl,...,N/\ /\ yl#y]}
1<i<j<N
The first-order translation of the N-ary existential quantification can be defined as:
N
me(Fw.(Ch, .., ON)) = 3a1, . an (\ (Mo, (@) AT (COY A N\ i # 2y).
i=1 1<i<j<N
(3.16)
The proof that the N-ary existential quantification can be expressed as a proper ALCQOt con-
cept description relies on the notion of a system of distinct representatives for the sets Cy, . .., Cn

— distinct individuals d1, ..., dx such thatd; € Cjfori = 1,..., N — and the following
characterization by Hall [13].

Theorem 9 (Hall). The sets C1, ..., Cn possess a system of distinct representatives if and only if
‘U?Zl Ci;| > k foreach subset {11, . ..,ir} C{1,..., N} of distinct indexes iy, . . ., i.

By using Theorem [9]and adapting the proof shown in [S] to use safe role types instead of role
names, we obtain the following result.

Theorem 10. The N-ary existential quantification constructor can be expressed in ALCQL, in
particular

Jw.(Cr, O = {(E kw Gy U0 C) | {i, ik} C{L,..., N} (3.17)

Proof. Omitted. For details, refer to [5]. O

Using Theorem we show that two ALCQt-equivalentindividuals are also ALCOt-bisimilar.
In the following proof, for every set of first-order formulae I' we denote with I'[e2 /€1 ] the set ob-
tained by replacing every occurrence of the constant eg with eq in I'.

Theorem 11. For all w-saturated interpretations 1y, Lo,
if (T1,d1) = accor (L, d2) and Iy, Iy then (I, d1) ~accor (L2, da).

Proof. We show that the relation
S = {(61,62) S AL X AI2 ‘ €1 =ALCOot 62}

is a ALCQt-bisimulation such that (dy, d2) € S. The atomic condition is trivially satisfied by .5,
by definition. To show that the forth condition of ALCQt-bisimulation is satisfied by S, assume
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3.3 Model-theoretic characterization of ALCQt

that (e1,e2) € Sandlet D1 = {dy,...,dn} C wh (d1) be finite, with w a safe role type over
Npg. We introduce a variable x; for every individual d; € D1 and consider the set of first-order
formulas T :=T7 UT¥ U Uf\il T;, where

T7 = {~(zi,2;) | di,dj € Dy Ni # j} (variables are all distinct)

'Y :={wle,z;) | d; € D1} (w-successors of e2)

T; == {m,(C) | C isa ALCQt conceptand d; € CT1} (ALCQt-type of d)
ThesetI'y := I'[eg/eq] is realizable in Z; under the variable assignment {z1/d1, ..., xn/dn}.

We now prove that I is realizable in Z5 by using the fact that Zj is w-saturated. Let " C I"be a
finite subset of T'. Let I} := I"[ea/e1]; then, I') is satisfiable in Z; under the variable assignment
{z1/dy,...,zn/dN}, because I} C T';. Without loss of generality, we can assume that I
contains I’f and I'{, since they are both finite. For every variable x; withi = 1,..., N let

t; :={C | C isan ALCOt concept and 7, (C) € I'} }.

By defining C; := []{C | C' € t;} and noticing that both T# and I'Y’ are in '}, we obtain

that
N

Iy {a1/dy, ..., an/dn} ET? ATY A\ 70, (Ch)
i=1
hence Z1, {z/e1} = mp(Fw.(Cy,...,CnN)).

Thanks to Theoremit follows thate; € Jw.(C1, ..., On)T'. We assumed that e; = 4,cor
e, thusey € Jw.(Cy,...,C N)ZQ. Using Theoremagain, this yields that I" is satisfiable in Zo.
The interpretation 7 is w-saturated by assumption, hence we conclude that I' is realizable in Zs.

Let 25 be a variable assignment such that 7, Z5 |= I"and let Dy := {Z2(x;) | d; € D1}
From Zy, Z5 |= T itfollows that d; = arcor Z2(x;); moreover, Do C w?2(dy) since To, 2o |=
I'*; finally, the mapping d; — Z»(x;) is bijection from D to Dy, thanks to I'#. Thus, the forth
condition holds for S. Using a similar argument, we can show that the back condition holds
for S. This allows us to conclude that S is a ALCOt-bisimulation between Z; and Zs such that
(dl, dg) es. ]

In order to characterize ALCQ? as the first-order fragment that is invariant under ALCQt-
bisimulation, we make use of Theorem |2} taken from [8]], that allows us to consider w-saturated
models for a set of first-order sentences, without loss of generality.

Theorem 12. Let () be a first-order formula. The following are equivalent:
1. there exists a ALCQL concept description C' such that m,(C') = ¢(x);
2. p(x) is invariant under ~ Arcoy.
Proof. Assume that there exists a ALCQOt concept description C'such that 7, (C') = ¢(z). Then,

d; € m(C)Liiffd; € pFifori € {1,2}. UsingTheoremwe obtain thatd; € 7, (C)% iffd; €
C%i. Thanks to Theorem we also know that obtain that if (Z1,d1) ~arcor (Z2,d2), then
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3 The description logic ALCCOU

dy € CTiffdy € CT2, Combining all these equivalences, we obtain that if (Z1, d1) ~arcor
(I, d), then dy € @™ iff dy € ©*2, hence the invariance of ¢ (z) under ~ 4£cot.

Assume now that ¢ () isinvariant under ~ 4 £cor but that there is no ALCQOt concept descrip-
tion C such that 7, (C') = (). This implies that () is satisfiable — since ¢(z) # L — and
that () is also satisfiable — because ¢ () Z T. We define the set of first-order translations
of ALCQt concepts that are entailed by p(x):

U(p(z)) == {m(C) | Cisa ALCQOL concept, p(z) = m,(C)}

and we show that the set of formulae U (¢ (z)) U{—p(z)} is satisfiable, using the compactness of
first-order logic. We notice that for each formula ¢)(z) € W(p(x)) there exist an interpretation
Ty and d € AT such that Ty, {z/d} E ¢(z) and Iy, {z/d} = —p(z), because of our
assumption that 7, (C') # ¢(z) for all ALCOL concepts C.

Every finite subset S of W(¢(z)) is satisfiable, since () is satisfiable and () = ¥ (¢ (z)).
Moreover, we can assume that there are Zg and d € AZS such that Zg, {z/d} = S and
Ts,{z/d} = —p(x),otherwise () = 4 ([ |cg C) would invalidate our assumption. Hence,
every finite subset of ¥ (¢(x)) U {—¢(x)} is satisfiable. We can conclude, using the compactness
of first-order logic, that the set U(p(x)) U {—¢(z)} is satisfiable.

Let Z be an interpretation satisfying Zo, {z /d2 } = ¥ (¢(x)) U {—¢(z)}; since ¥ (p(d2)) U
{=¢(d2)} is a first-order sentence, due to Theorem 2| we can assume that 7 is w-saturated.

Let T" := {m,(C) | C is a ALCQt concept, ds € CT2}. We prove by contradiction that the
set of formulae T := {p(x)} U T" is satisfiable and we prove it by contradiction. If we assume
that 7" is unsatisfiable, as a consequence of the compactness of first-order logic there is a finite set

of ALCOt concepts I such that:
1. dy € CRforallC €T,

2. {p(x)} U{m:(C) | C € '} C T isunsatisfiable.

If we define D := [ | o C, from the first point follows that dy € D?2_ From the second point
and the equality A\ o 72 (C) = T2 ([ |oer C), we obtain the tautology

= (@) = 7 (T eerC)-

Using the deduction theorem we reach the conclusion that ¢(z) = m,(—D), hence 7, (—D) €
U(p(z)). Since Iy, {z/d2} = ¥ (¢p(z)) by definition, it follows that for every ALCQt concept
C such that 7, (C) € U(p(x)), dy € CT2 holds. Hence, ¥(p(z)) C T'. Since (D) €
U (p(z)), we deduce that dy € (—D)*2; this, together with the information that do € D*2, we
reach a contradiction. Therefore, T' cannot be unsatisfiable.

Let Z; be a w-saturated interpretation satisfying 7y, {«/d;} = T. From the definition of
T follows that (Z1,d1) =acco t(Zz,dz); by Theorem 11} this implies that (Z1,d1) ~.accor
(I, ds). Since d; € ™ butdy ¢ 2, we reach a contradiction, since ¢ () is invariant un-
der ALCQt-bisimulation by hypothesis. Therefore, there exists a ALCOAt concept C' such that
7(C) = (). O

We thus proved that ALCQOt and ALCCOU are characterized as the first-order fragment that

is invariant under ALCQt-bisimulation. This property is going to be used in the next section to
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3.4 Expressive power

show that there are ALCSCC™ concept descriptions that cannot be expressed as first-order for-
mulae. Before that, we classify the DLs ALCQ, ALCCOU, ALCOt and ALCSCC™ according

to their expressive power.

3.4 EXPRESSIVE POWER

Thanks to the notions of counting bisimulation and ALCQt-bisimulation, introduced respec-
tively in Section and Section we can now classify the DLs analyszed so far according to

their expressive power.

3.4.1 RELATIVE EXPRESSIVITY OF ALCO anp ALCCOU

ALCO anp ALCCOU WITH ONLY ONE ROLE NAME ARE EQUIVALENT. When Ny contains
a unique role name 7, the description logic ALCQt degenerates to ALCQ. In this case, the only
safe role type over {r} is r itself and the only ALCQt qualified number restrictions that can be
expressed are (> N r. C) or (< N r. C), which are also ALCQ qualified number restrictions.
Therefore, thanks to Corollary ALCQ and ALCCAU are equivalent when Ng contains only

one role name.

ALCQ 15 A suBLoGIC oF ALCCOU. In the general setting, the description logic ALCQ is
a sublogic of ALCCOU. To prove that this claim holds, we show that every qualified number
restriction (< N 7. C) and (> N r. C) can be expressed in ALCCOU. In the following lemma,
let C* denote the ALCCOU translation of the ALCQO concept description C.

Lemma 7. For every interpretation I we have
(>Nr.C)Yf = succ(’r N Cﬁ‘ > N and (< N r. C)F = suec(’r N Cﬁ’ < N
Proof. Analogous to Lemma([3} O

ALCCOU 15 MORE EXPRESSIVE THAN ALCQ.  As a consequence of Theorem we can show
that there are ALCCOU concept descriptions that are not expressible in ALCQ by using in-
variance of ALCQ concept descriptions under counting bisimulation. We provide appropriate

counter-examples, highlighting features of ALCCOU that are not expressible in ALCQ.

Corollary 3. ALCQ cannot express local role disjointness, that is, there is no ALCQ-concept C
such that C' = succ(|r N s| = 0).

Proof- 1f a ALCQ concept description C' such that C' = succ(|r N s| = 0) existed, we would
obtain a contradiction. To see this, we consider the interpretations Zg and Z; shown in Figure
The relation

p := {(do, d1), (o, e1), (eo, f1)}

satisfies the axioms of Definition[2] hence (Zo, do) ~.acco (Z1,d1). Since dy € succ(|r N s| =
O)Il, it follows that d; € CZt; thanks to Theorem [3 this implies that dy € CTo. However,
do ¢ succ(|r N s| = 0)%0; hence, we would obtain a contradiction. O
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3 The description logic ALCCOU

A
p

P
T A}» Yy r @A

Figure 3.1: Two interpretations Zg and 7, depicted as graphs, that are ALCQ-bisimilar under p — repre-
sented by means of dotted arrows.

Corollary 4. ALCQ cannot express the fact that all the successors of a certain individual belonging
to a concept name A must also be filler for a role name r, that is, there is no ALCQ concept C' such
that C = succ(A C r).

Proof- 1f a ALCQ-concept description C' such that C' = succ(A C ) existed, we would obtain
a contradiction. To see this, we consider the interpretations Zy and Z; shown in Figure The
relation

p = {(do,d1), (eo, 1), (o, f1)}

is an ALCQ bisimulation, thus (Zg, dg) ~.arco (Zi,d1)anddy € Coiffdy € CT1. This
would contradict our hypothesis, since dy € succ(A C T)IO butd; ¢ succ(A C T)Il. O

3.4.2 RELATIVE EXPRESSIVITY OF ALCCOU anp ALCSCC™

ALCCOU 15 A suBLOGIC OF ALCSCC™.  The fact that ALCCOU is asublogic of ALCSCC™
is a consequence of the definition of the two DLs. Indeed, ALCCOU corresponds to the subset of
ALCSCC™ where every role successor constraint can only contain a cardinality constraint that
compare a complex cardinality term with a natural number. Since in our setting we only allow
for addition of cardinality terms and we disallow for other arithmetic operations, it is impossi-
ble to reduce a cardinality constraint of the form £ = ¢ with both k and ¢ complex cardinality
constraints to a comparison that is acceptable in ALCCOU.

ALCSCC™ 1S MORE EXPRESSIVE THAN ALCCOU.  To prove that ALCSCC™ contains con-
cept descriptions that cannot be expressed in ALCCOU, we first show that ALCSCC™ is more
expressive than ALCQt and then transfer the result to ALCCQOU using Corollary[l} The proof is
an extension of the one used in [2] to show that ALCSCC™ is more expressive than ALCQ.

Theorem 13. The ALCSCC™ concept description C' := succ(|r N A| = |r N —A|) with A €
N¢ cannot be expressed in ALCQOL. There existsa ALCSCC™ concept description C' that cannot be
expressed in ALCQ, that is, for every ALCOt concept D there exists an interpretation L such that
cT + DL,

Proof. We show by contradiction that for every ALCQt concept description D there is an inter-
pretation 7 such that C7 # DY . Assume that there exists a ALCQt concept Dy such that
C = 4rcot Do; wl.o.g. we can assume that every qualified number restriction appearing in Dy is
of the form (> K w. E) with w a safe role type, since (< K w. E) = -(> K+ 1 w. E). Let
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3.5 ALCCOU as the first-order fragment of ALCSCC™

N be the largest natural number appearing in a role successor constraintin Dgand N := N'+1.
We define the interpretation Z with domain AZ = N where the only concept or role names in-
terpreted as non-empty sets are

T ={(0,i)|i=1,...,N}, AT={1,...,N}.

Then, 0 € CZ and by assumption of equivalence 0 € DT

We observe that for 1 < 4,5 < N, (Z,i) ~arcot (Z,7): this is true because none of these
individuals has role successors — thus the back and forth conditions of ALCQOt-bisimulation are
vacuously true — and the atomic condition is trivially satisfied, since i, j € A% and i, j ¢ BZ for
each concept name B # A. In a similar way, we can argue that (Z, N + @) ~arccot (Z, N + j)
for1 <14, j < N. Thus, for every concept description I, we obtain the following cases:

1. {1,...,N} CETand{N +1,...,2N} C E*
2. {1,...,N} CETand {N +1,...,2N} C (=E)?
3. {1,...,N} C (-E)fand {N +1,...,2N} C E*
4. {1,...,N}C (=E)Tand {N +1,...,2N} C (=E)*
Let 7’ be the interpretation obtained by extending Z as follows:
P =rTU{(0,2N +1)}, AT := ATU{2N +1}.

We observe thatinZ’, (Z', i) ~arcor (Z',7)and (Z',i) ~arcot (Z,2N+1)forl <i,7 < N.

Let w, be the safe role type where only the role name r occurs positively. For w # w,, we
have that (> K w. E)? = (> K w. E) because we only add 7-successors. We show that
0€ (> K w. E)fifandonlyif0 € (> K w,. E)” by case analysis. In caseand we
obtainthat0 € (> K w,. E)because {1,..., N} C EZ;since|{1,..., N} U{2N +1}| =
N+1> Kand2N 41 € ET (due to ALCQt-bisimilarity) it follows that 0 € (> K w,.. E)*'.
In case we obtain that 0 € (> K w,. E)? because {N + 1,...,2N} C E%;since {N +
1,...,2N} C E7 it follows that 0 € (> K w,. E)". To show that in caseour claim
holds, we distinguish two additional cases for K. If K = 0, then (> 0 w,. E) = T, hence the
claim follows trivially. If K > 1,then 0 ¢ (> K w,. E)T since r7(0) N EZ = (). Thanks
to ALCOt-bisimilarity, it holds that 2N 4 1 ¢ EZ, therefore 0 ¢ (> K w,. E)*". We thus
proved that 0 € (> K w,. E)? ifand only if0 € (> K w,. E)¥". It follows that 0 € DZ'.

However, we reach a contradiction: since | N A\I/ =N+ 1land|rn —\A]I/ = N, it follows
that 0 ¢ CT'; but we assumed that C' = Dy, hence 0 € CZ" also holds. We therefore conclude
that C' cannot be equivalent to a ALCOt concept description Dy. O

3.5 ALCCOU AS THE FIRST-ORDER FRAGMENT OF ALCSCC™

Despite having a greater expressive power than ALCCOU, ALCSCC™ turns out to be indistin-
guishable from ALCCOU under ALCOt-bisimulation: indeed, in this section we show that all
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3 The description logic ALCCOU

ALCSCC™ concepts are invariant under ALCQt-bisimulation. This explains why we need to re-
sort to a different argument in order to prove that ALCSCC is more expressive than ALCCOU.
Using the characterization result provided by Theorem[12} we deduce that ALCSCC™ contains
concept descriptions that are inexpressible in first-order logic.

To prove that all ALCSCC concept descriptions are invariant under ALCQt-bisimulation,
we use the decomposition of set terms detailed in Lemma/5]

Theorem 14. ]f(Il, dl) ~ ALCOt (IQ, dg) then (Il, dl) =.Arcsce (Ig, dQ).

Proof. Dueto (Z1,d1) ~arcor (Iz2,ds), there exists a ALCOt-bisimulation p C ATt x AT2
satisfying d1 p da. We prove that, given two complex cardinality terms £ and £ over role names

and ALCSCC concept descriptions and (e, e2) € p,
e1 € succ(k > €)™ ifand only if ey € succ(k b £)%2 (3.18)

with pae {<, =, >} by structural induction. The other cases for ALCSCC™ are also appearing
in ALCCOU; thanks to Corollary we already know that the claim holds for them.

We assume the following inductive hypothesis: for every ALCSCC™ concept description D
appearing in k or £ and (e1, e2) € p,

e1 € DM ifand onlyifes € D%,

Letd; € succ(k = £)%1. Without loss of generality, and adapting Lemma to ALCSCC™ (it
can be proved in the same fashion), we assume that

N m

k=) Ni-|lwnCi|, £=) Nj-|jnCj
i=1 j=1

where w;,

w; are safe role types, Cj, Cj{ are ALCSCC™ concept descriptions and V;, IV, J/ are
natural numbers.

We show that, under the assumptions made so far,
for each term w N C’ appearing in k and € By contradlcnon, assume that [w’!

‘ wI2 dQ ) CIz

(dl CII| = 4&)12 d2 CIz
(d1) N Czl‘ 7é

we assume that

WP (d1) N CT| < |w2(dy) N CT2|, Ti(d) N CT | = Nand N € N;

under our previous assumption, this is the only possible case, because ’wIl (d1) N Cch } = o0
would imply |w?2(d2) N C%2| = o0

Let Dy be a finite subset of w?? (dg) N CT2 C w?2(dy) satisfying | Da| = N + 1. By ALCOt-
bisimilarity of d and d2 and our inductive hypothesis (similar to the argument used in Theorem
for qualified number restrictions), it follows that there exists a finite set D1 C wh (d)NnC Tt in
bijection with Ds. This leads to a contradiction, since N + 1 > V.
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3.5 ALCCOU as the first-order fragment of ALCSCC™

Thanks to what we have just shown, it follows that
Kha = Z N; - Z N; -
My = Z Nj - Z N} -

kIQd2 — kzlch — £11d1 = EIde,

)ynCcH| = )NCE| = 2,

= (124,

T T T T
/1 mcll /2 00/2

Thus, dy € succ(k = ¢)22. In a similar way, we can prove that the claim holds for the cases
succ(k < £) and succ(k > /). O

In Theorem 13| we showed that the ALCSCC™ concept description C' := succ(|r N Al =
|r N = A]) is not expressiblein ALCCQU. However, asa consequence of Theorem([14] the concept
C'is invariant under ~ 42cg¢. Thus, C cannot be expressed as a first-order formula — this is due

to Theorem
Corollary5. There are ALCSCC™ concept descriptions that cannot be expressed in first-order logic.

This result paves the road for the final result of this chapter, that shows how the DL ALCCOU
corresponds to a very specific subset of ALCSCC™, that s expressible in first-order logic and that
strengthens its definition.

Theorem 15. ALCCOU is the first-order fragment of ALCSCC™.

Proof. Let C be a ALCSCC™ concept description. If C' is not expressible in first-order logic,
then it does not belong to ALCCOU: we have shown that if C'is a ALCQOt concept description
(equivalently, a ALCCOU concept description), then it is expressible in first-order logic. On the
other hand, if C is expressible in first-order logic, from Theorem [12| follows that there exists a
ALCCOU concept description C’ that is equivalent to C, thus C'is expressible in ALCCOU.  []

We have shown how ALCCOU can be defined using a logical characterization in terms of
ALCSCC™. In the next chapter, we focus on the concept satisfiability problem for ALCCOU
without a TBox and we propose a practical algorithm to implement a decision procedure for this

problem.

31






4 CONCEPT SATISFIABILITY IN ALCCOU

We recall that in principle one could adapt the PSpack algorithm for ALCSCC concept satisfia-
bility without a TBox shown in [2]] to obtain a decision procedure for ALCCQOU concept satisfia-
bility in PSPAcE However, we already stressed the fact that the mentioned algorithm is practically
inefficient: indeed, many of its steps involve non-deterministically guessing, for instance in finding
truth assignments for the propositional formula prop(C).

The aim of this chapter is to devise an algorithm to check ALCCOU concept satisfiability that
replaces the non-deterministic guessing of [2]] with techniques borrowed from the fields of SAT
solving and ILP.

From ALCCOU CONCEPT DESCRIPTIONS TO PROPOSITIONAL FORMULAE. A subconcept
ofa ALCCOU conceptdescription C'is called an ALCCOU-atom if it is either a concept name or a
role successor constraint. Given a ALCCOU concept description C', we denote with prop(C') the
propositional formula obtained by replacing every ALCCOU-atom with a propositional variable
and the propositional connectives with the ones of ALCCOU. We can define the mapping prop
in a recursive way, as follows:

prop(A) := x4 if Aisa ACCCQU-atom  prop(—C') := = prop(C)
prop(C M D) := prop(C) A prop(D) prop(C U D) := prop(C) V prop(D).

Proposition 1. [fthe ALCCOU concept description C is satisfiable, then the propositional formula
prop(C) s satisfiable.

Proof. Assume that C'is satisfiable and let Z be an interpretation such that CF # (). Let 11 be the
truth assignment defined as follows:

p(za) :=1iff AT # () for all ALCCQU-atoms A.
Then, the truth assignment y satisfies p1 |= prop(C). O

While the encoding of C'into prop(C) yields a complete method to check for ALCCOU con-
cept satisfiability, the presence of role successor constraints prevents it from enjoying soundness,
because of the nesting of concept descriptions inside role successor constraints that is not taken
into account. This implies that by itself, converting the ALCCOU concept description C' to a
propositional formula prop(C') is not sufficient to check whether C'is satisfiable, as shown in the
next example.

Example 7. Let C' := succ(|AM —A| > 1) with A an arbitrary concept name. Let  be the
propositional formula associated with the role successor constraint in C' (up to renaming). The
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4 Concept satisfrability in ALCCOU

propositional formula prop(C') = x is satisfiable; however, C' is not satisfiable, because no role
successor of C belongs to the interpretation of AM—-A = 1.

Proposition 2. Assume that the ALCCOU concept description Chas no role successor constraint as
a subconcept. The following holds:

if prop(C) is satisfiable, then C'is satisfiable.

Proof. Trivial. O

The design of the algorithm for ALCCQU concept satisfiability proposed in this chapter ab-
stracts from the implementational details of the invoked SAT solver. We only require that the em-
ployed SAT-solver provides a correct decision procedure for propositional satisfiability and that if
the input formula is satisfiable the solver returns a model for it. Hereafter, we introduce the pro-
cedure GetsATModel((p, S) that calls the chosen SAT solver to decide whether the propositional
formula ¢ is satisfiable; if there is a model i of ¢ that is not included in S, the routine returns p,
otherwise it returns NIL.

To overcome the issue shown in Example we need to devise a procedure that considers the
content of the role successor constraints appearing in C'. To this end, we resort to a decidable first-
order fragment that admits counting quantifiers, called CQU [11], and we show how to transform
role successor constraints into a set of formulae of CQU. In this way, we can then use known
techniques to check that such an instance is satisfiable, therefore solving the problem posed by

nested ALCCOU concept descriptions.

4.1 THE FIRST-ORDER FRAGMENT CQU

In this section, we introduce the syntax and the semantics of a function-free, first-order fragment
called counting quantifiers over unary predicates (CQU) and first presented in [11]. After that,
we illustrate an approach to reduce ALCCOU concept satisfiability to CQU formula satisfiability
with additional checks

SYNTAX AND SEMANTICS OF CQU.  Given a countable set Ry of unary predicate symbols, a
counting sentence is a formula of the form I« yx.¢(z) or I> nyz.(x), where N € Nand ()
is a2 Boolean combination of symbols of R1; a #niversal sentence has the form Va.p(x), where
¢(x) is restricted as in the case of counting sentences. We say that 1) is a formula in the language
of counting quantifiers over unary predicates (CQU) if it is a finite conjunction of counting and
universal sentences; if Q and U are the sets of counting and universal sentences appearing in ),
respectively, we use the notation ¢ = (Q,U).
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4.1 The first-order fragment CQU

An interpretation A consists of a non-empty set A% and a mapping % that maps each unary
predicate p to a set pt C AT. We denote the variable assignment of x to the value d € AT with
{z/d} We define the satisfiability of a CQU formula under an interpretation Z as follows:

Z,{x/d} E p(x) iff 27 € p*

T, {e/d} E T, () d} e o

T, {x/d} = 1 Ao iff Z,{x/d} = 1 and T, {z/d} = 2
T E3Isnz.p iff‘{dGAI]I,{x/d}):gDHZN
T = <Nz iff [{d € AT | Z,{z/d} E ¢}| <N
T =V iff Z,{x/d} |= o foralld € AT,

We omit the cases for the other Boolean connectives VV, —, < that are defined as usual. A CQU
formula ) is satisfiable if there exists an interpretation Z such that Z |= 1. A setof CQU formulae
I is satisfiable, if there is an interpretation Z such that Z |= «y foreachy € T.

SEMANTIC EQUIVALENCES IN CQU. As a result of the definition of CQU semantics, there
are constructors that are not explicitly mentioned in the language syntax but that can be used in
building CQU formulae. In particular, the following semantic equivalences hold in CQU:

dr.ap = sz (4.1)
Jevzp = -IsNzy (4.2)
d_nzp = I>yrp A<yt (4.3)

Vo) = I<ox. 7 (4.4)

A NORMAL FORM FOR CQU.  Let ¢ = (Q,U) be a CQU formula. We say that 1) is in normal
form if every counting sequence in Q is of the form J< yz.p(z) or 3> yx.p(x) with p an atomic
unary predicate.

The next lemma shows that it is always possible to reason about the normal form of a CQU
formula. Indeed, every CQU formula has an equisatisfiable CQU normal form; the two formu-
las, however, are not equivalent because the transformation adds fresh predicate symbols that are
absent in the original CQU formula.

Lemma 8. For ecvery CQU formula 1) = (Q,U) there exists a CQU formula ' = (Q',U') that

is equisatisfiable and in normal form. Such a formula can be obtained from 1) in polynomial time.

Proof. The proof is adapted from [11]. We start by adding all the universal sentences of 9 to ¢/’
Let 3y .¢(z) be a counting sentence in Q. We replace (z) with

Fanz.p'(z) and Vz.(p' (z) < p(2))
in ', where p/’ is a fresh unary predicate symbol. Clearly, if 3oy x.¢(z) is satisfiable under Z,

then Jpoyz.p/ () and V. (p/ () < @(x)) are both satisfiable under 7', where A = AZ and

Pt = ©?. Similarly, if Jpqnz.p/(7) and Vz.(p' () > ¢(x)) are satisfiable under Z, then so is
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4 Concept satisfrability in ALCCOU

Foanx.(x). The resulting formula ¢’ is in normal form and has at most twice as many sentences

as . ]

Example 8. Let ) := ({I>4z.p(x) A q(x), I<gz.—p(z)}, ) bea CQU formula. Applying the
transformation described in the proof of Lemmal8} we obtain its CQU normal form

' = {Fsaz.p1(x),, I<zz.p2(x) }, {Va.p1(x) ¢ p(x) A q(x),Vo.po(z) > —p(2)}).

Let ¢ = (Q,U) be a CQU formula in normal form. Then, assuming that |Q| = k, there
are k unary predicates p1, . . ., py that are quantified in Q (not necessarily distinct). An elemen-
tary term over Q has the form e(x) := /\?:1 Ai(x), where A\j(x) corresponds either to p;(x)
or =p;(x). An elementary term e(x) is coberent if the set of CQU formulae {3x.e(x)} UU is
satisfiable.

Example9. Lety) = (Q,U) be the CQU formula in normal form obtained in Example[8} Then,
the elementary term e(z) := pi(z) A p2(z) is not coherent, since {3z.e(z)} U U entails the
formula 3z.p(x) A g(z) A =p(z). On the other hand, the elementary term €' (z) := —py(x) A
pa2() is coherent: given the interpretation Z where p? = {d} and ¢ = {e}, it holds that

I, {z/d} = {Fz.e/(z)} UU.

Since any interpretation thatsatisfies a formula ¢ = (Q, ) in CQU normal form must satisfy
U, itfollows thatin every model of 1 only coherent elementary terms are interpreted as non-empty
subsets of Z. If we assumed that a model of ¢ also satisfied a non-coherent term, we would obtain
a contradiction: if the non-coherent term e is assigned to a non-empty interpretation, it is implied,
by definition of coherent terms, that ¢/ is unsatisfiable.

FroM CQU SATISFIABILITY TO LINEAR ALGEBRA.  Given an ordering over the sentences of
Q, we can encode each elementary term e(x) over Q as a binary vector v = (v1, ..., v3) where
v; = 1if \; = p;andv; = 0if A\; = —p;. Let ky, < 2% be the number of coherent elementary
terms over Q. We encode all the coherent elementary terms in a matrix A of size k X ky, of the

form
o)
o gt

where the i-th row a; of A represents the i-th counting sequence 3, 2.p;i () in Q and the j-th
column A; = v{) a coherent elementary term over Q. If we let b := (b1, ..., b;)’ then the
linear system

A-x>xb

x > 0and x = (21,...,xy,,) is an integer vector

(4.5)

represents a reduction of the original CQU formula to solving a linear system.
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4.2 Column generation with SAT oracle

Example 10. Let ¢’ be the CQU formula in normal form obtained in Example (8, Then, the
associated linear system corresponds to

10 0] >[4
01 o™ <3

T3

with feasible solution 1 = 4, x9 = 3 and x3 = 0. We define an interpretation Z such that
p{ = {dl, dQ, dg, d4} andp% = {d5, d6, d7}. Then,I ): wl.

The example above shows that, given a solution to the linear system associated to a CQU for-
mula in normal form, it is possible to instantiate a satisfying interpretation for the formula. In-

deed, the following result holds.

Theorem 16. A formula ) = (Q,U) in CQU normal form is satisfiable if and only if the corre-
sponding linear system bhas a solution.

Proof. Omitted. The proof can be found in [11]. O

4.2 COLUMN GENERATION WITH SAT ORACLE

In this section, we show how to integrate a technique commonly employed in integer linear pro-
gramming called column generation [6] in order to decide satisfiability of a CQU formula as done
in [11]. Our goal is to use this approach the replace the non-deterministic guessing of the poly-
nomially many Venn regions that should be interpreted as non-empty used in in the algorithm
proposed in [2]. Additional information and details about the column generation technique can
be found in [6, 10} [17].

In fact, the linear system can be seen as an instance of an integer linear program ,
where we lift the optimality condition for the solution and we look just for feasibility. Let ¢ =
(Q,U) be a CQU formula in normal form. The matrix A obtained in contains all the
columns associated to coherent elementary terms over the unary predicate py, . . . , p, occurring
in Q.

A possible way to generate these columns is to transform each universal sentence U into a con-
junction of propositional formulae prop(Y{) by deleting the universal quantifiers and replacing
each unary predicate p() in u with a propositional variable p. Using a SAT solver, we can then
enumerate all the models of prop({/) and extract from each of these a column v containing the
values 4(p1), - . ., (pk) that corresponds to a coherent elementary term. A column of A ob-
tained in this way is called U-satisfying.

Example11. Let ) = (Q,U) be the CQU formula in normal form shown in Example[§] In this

case,
prop(U) = (p1 <> p A q) A (p2 <> —p).

The column (1,1) is not U-satisfying: if ;& was a valuation of prop(U) such that u(p;) =
w(p2) = 1, then both p(p) = 1and u(p) = 0 would hold. All the other columns are U-
satisfying: for example, (1,0) can be obtained with the truth assignment p satistfying p1(p) =

n(q) = 1.
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4 Concept satisfrability in ALCCOU

Lemma 9. An clementary term e over Q is coberent if and only if the corresponding vector v is

U-satisfying.

Proof. Trivial. O

Each step of the generation of A requires invoking a SAT solver; moreover, with each step the
input given to the solver increases, since we need to keep track of which columns have already been
generated. Finally, A can be exponentially large in the size of Q, since the number of coherent
elementary terms over Q can be 2% in the worst case, thus creating a very large linear system that
needs to be solved.

The intuition behind column generation 10| is that it is not always the case that we need all the
information contained in A in order to solve our problem; we can rather focus on a subset of the
elementary terms, forming a restricted problem and adding new coherent elementary terms in an
incremental fashion.

4.2.1 COLUMN GENERATION AND CQU

Givena CQU formulat) = (Q,U) in normal form and using (4.5)), the master problem associated
with 1) is a primal problem

minimize ¢’ - x
] (4.6)
subjectto A-xp>abandx >0

where Aisak x 2% matrix containing all the possible valuations of propositional formulae in-
duced by the elementary terms corresponding to Q and the cost vector c is given by the following
function: for j = 1,..., ky, ¢; = 0if and only if the column A; is U-satisfying.

Example 12. The master problem generated by the formula )’ obtained in Example(8]is

minimize x1

x
. 1 100 To| >4
subject to [1 01 0} o S[:J ;> 0,1=1,...,4
T4

We notice that ¢’ - x > 0, since both ¢ and x are non-negative vectors. Columns of A that are
not U-satistying should be interpreted as empty sets under each model of 9): therefore, if A; is
notU-satisfying, we search for solutions that satisfy 2; = 0. Thus, we only seck feasible solutions

for the problem

¢ x=0
A-x>xb (4.7)
x>0
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4.2 Column generation with SAT oracle

To avoid the explicit generation of the whole matrix A unless needed, we start the search for a
solution by focusing on a restricted master problem
minimize c;, © X

. (4.8)
subjectto A, - x, bxxband x, > 0

where A, is a matrix extracted from A with the same number of rows — adhering to [11] we set
A, = I}, — and ¢, is computed over the columns of A, as described above. If is unfeasible,
then the master problem is unfeasible as well. Assume that has a feasible solution ;..
If ¢, - x, = 0, then the vector x where every variable not appearing in . is set to 0 is a solution
for . Otherwise, we search if it is possible to decrease the objective function of by adding

acolumn of A to A,.

Example 13. The restricted problem obtained from the master problem in Example[12]is

minimize 0

. 1 0 To| >4
. - >
subject to [0 1] [3:3} - [3} o, x3 > 0.

In this case, the objective function has the constant value 0. Therefore, any integral solution to
the restricted master problem yields a solution to the original problem. For example, the solution
x9 = 4and 3 = 3 can be extended to a solution of the master problem in Exampleby setting
T1 = T4 = 0.

In column generation, the condition for searching for columns of A to be added to A, is bor-
rowed from the one used in the szmplex method 7)) and requires the presence of a dual solution
to (4.8). If the restricted problem has no dual solution, the column generation procedure fails.
Assume that has a feasible dual solution z,. The problem of choosing a column from A
that decreases the objective function of when added to A, can be stated by introducing the
reduced cost function of adding the j-th column of A to A, which is

cj = cj—zp - Aj. (4.9)

A known result from the field of linear optimization is that if c}* > 0 for all columns A, then the
solution x is optimal for both problems and [10]. Therefore, choosing a column from

A that added to A, decreases ¢, - x,, amounts fo find a feasible solution to the linear inequality
cj—z - Aj <O0.

We are interested in feasibility of the master problem, rather than in finding an optimal solution;
thus, we aim only at obtaining a non-increasing value of the objective function. Hence, we can
adapt the linear inequality to obtain

/
Cj—ZT-Ajgo.
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We are only interested adding columns of A that are {/-satisfying — this implies thatc; = 0 holds.
Thus, we are looking for a solution to the linear inequality

—z,-v<0, ve{01}" (4.10)

If (4.10)) has no solution, then the objective function of (4.6)) cannot be decreased any further. If
a feasible solution v for (4.10)) exists, then adding it as a column to A, might decrease the value of
the objective function or maintain its value, but not increasing it.

By appending the column v to A, and 0 to ¢, we obtain another instance of the restricted
problem (4.8) with smaller or equal objective function. We can then reiterate the procedure of
column generation until one of the possible outcomes is obtained:

1. we obtain a primal solution of (4.8) that satisfies c]. - x, = 0;

2. cither the primal/dual solutions of (4.8) or the solution of (4.10) are not available; in this
case, problem (4.7)) is unfeasible;

3. all the columns of A have been added, and we check whether ¢/. - x,, = ¢/ - x = 0.

Since A is a finite matrix, the column generation algorithm is exact [10]. However, to ensure
termination, we need to check that the generated column is not already appearing in A,: this is
a consequence of relaxing the inequality to be non-strict. Indeed, in the strict case, every
column A; of A is added to A, at most once, since no variable in an optimal restricted master
problem has negative reduced cost ¢ [10].

Example 14. Let
V' = ({Fzarp1(2),, 3<swpa(2)} {Vapr(x) < p(x) Ag(x),Vepa(z) < p(z)})
be a CQU formula in normal form. The restricted master problem for 9’ is initialized to

minimize T

. 1 0 X1 >4
. - > 0.
subject to {0 1] [332} - [3] x1,29 > 0

A feasible solution for this problem is 71 = 4 and x2 = 3; however, 1 # 0, therefore we try to
reduce the objective function 21 by adding a column. In order to generate a column to be added
to the restricted master problem, if possible, we solve the dual problem

maximize 4z1 + 322

<
subjectto [21 2] [(1) ﬂ - [(1)} 21 < 0,29 > 0.
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which has a feasible and integral solution z1 = 22 = 0 (in this case, it is also optimal). Since the
yielded inequality is 0 < 0, which has all the possible {/-satistying columns as solutions, we add
the column (1, 1) to the restricted master problem:

minimize x1

z
. 1 01 >[4
subjectto |:0 1 1] - | T2 Sl:?)] T1,X2,T3 Z 0.

T3
We obtain a feasible solution x1 = 4, z2 = 3 and 23 = 0 with 21 # 0. The new dual problem

maximize 427 + 329

1 0|<|1
subject to [21 ZQ] 0 11<]0 21 <0,29 >0
1 11<|0

yields the same solution 21 = 22 = 0 as in the previous iteration, which leads to the inequality
0 < 0. We add to the restricted problem the only remaining column (0, 0), obtaining

minimize x1

X1
. 1 01 O To| >4
. - > 0.
subject to [O 11 0] s 3[3] T1,T2,%3,T4 > 0
Ty

This problem has no solution such that 1 = 0. Indeed, the formula ¢ is unsatisfiable.

4.2.2 FROM LINEAR INEQUALITIES TO PROPOSITIONAL FORMULAE

Each column of A in is a binary vector: using this information, we can use a SAT solver
to generate the {/-satisfying columns of A, instead of explicitly enumerating them. This implicit
enumeration is a clear advantage, since we only generate all the columns of A in the worst-case.
In this paragraph, we show how to reduce the problem of finding a feasible solution to to
satisfiability of a propositional formula. The reduction that we use is an adaptation of the linear
encoding proposed in [21].

Hereafter, let S(L, U) denote the sum Zg:L —ziv;, withl < L < U < n. Let M =
[logy(2* 4 1)] with 2* := maxj<j<y|2i| be the number of bits necessary to represent each
component 2; of z in binary notation and B; the set containing the positions of the binary rep-
resentation of |z;| that are equal to 1. For each component v; of v we introduce a propositional
decision variable x;. To encode the k-th digit of the binary representation of S(L, U ), we intro-
duce a propositional variable s,(CL’U), with0 < k < Mg and Mg =M +logy(U — L+ 1);
when L = U, M = M holds.
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4 Concept satisfrability in ALCCOU

We map the sum S(L, U) to a propositional formula by means of the function o, recursively

defined as follows:

o (S(L, {L*UJ 1) A o(S( {L + UJ S UV ATS(LU) L<U

2 2
o(S(LU) = o) ., (L.0) 120 N
/\(sk <) A /\(sk < —xr) /\—|s L=U
keBy, keBy, k%BL
21,<0 21,20

where the propositional formula 7% (L, U) encodes the sum of S(L, | £5Y | ) and S(| 252 | +

1), U). In the definition of T5:(L, U) we introduce auxiliary propositional variables cﬁ +Ul) for
1<i< MV 1 encoding the carrying done during the addition:

CEU) ( (L) (S(()LL%”J) AS(()LLEUJH:U)))

LtU LtU
oY) . <C(i4[r]1) “ ((sj(-L’L ) /\8§" ? J—H’U))\/

J
(D gt (500 o))

= (b oy © 5503 ”)

L+U L+U
DY) — (S((]L,U) o <5((]L:Lz D _|S(()L72 J+17U)>>
L4+U L4+U
D) = (8§»L’U) = <SJ(»L7L =Dy ﬂsj(»L S c(.L’U).>>

J=1LJ
TZ(L,U) —_ /\j\/[(](D(LU) /\C(LU)>

(L)

To encode the information that —z - v is non-positive, we add the conjunct A", —s;

Theorem 17. The linear inequality —z - v > 0 bas a feasible solution that is U-satisfying (up to
matching the decision variables in v with the variables associated to the counting sentences in Q) if

and only if the propositional formula
o(S(1,n)) A AL =™ A prop(U) (4.11)

is satisfiable.

Proof. See [21] for the correctness of the reduction. Adding prop(Y) to the propositional for-
mula ensures that all of its models yield {/-satistying solutions. O
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Example 15. The encoding of the inequality seen in Example[14]is (up to renaming and simplify-
ing)

2 1
1,2 1,1 2,2 1,2
/\_'Sz( )/\—|SZ(~ )/\—|s§ )/\/\_|C‘§-7j+)1/\('01Hp/\q)/\(UQHP).

i=0 j=0
The assignment v = v2 = 1and v1 = v2 = 0 can be extracted from models of this formula;
therefore, it is legitimate to add them as columns to the restricted problem in Exampleduring
the column generation phase.

4.2.3 COLUMN GENERATION AND ALCCOU

In order to use column generation within the context of ALCCOU concept satisfiability, we need
to tackle additional challenges, such as ensuring that a generated U/-satisfying column does not
yield an unsatisfiable concept description. After the definition of the encoding of ALCCOU into
CQU, we illustrate how to overcome this issue using an introductory example.

FROM ROLE SUCCESSOR CONSTRAINTS TO CQU FORMULAE.  We define a mapping 7, from
ALCCOU set terms to unary first-order formulas that maps each role name 7 to a unary predicate
R, (x) and each ALCCQU-atom A to a unary predicate Q. (). The mapping 7, is extended to
all ALCCOU set terms as follows:

Yz(C I D) :=7,(C) Avz(D) Y (C U D) :=7,(C) V(D)
Yz (=C) == —2(C) Yz (suce(|s| = n)) := Qs(x)
v2(0) == /\ -Re(x) YaU) = \/ R.(x)

rENg r€Ng
Vo(s Nt) = 72(s) A va(t) Vo(sUt) = 7a(s) V(1)

Yz (86) i= =72 (s)

Encoding a role successor constraint of the form succ(|s| > n) or succ(|s| < n) into a CQU
formula 3>,2.7;(s) or I<,x.7,(s) seems a promising solution to check ALCCOU concept
satisfiability.

Theorem 18. If the ALCCQU role successor constraints succ(|s;| >; n;) are satisfiable for i =

1, ..., m, then the CQU instance made by the counting sentences Jpq,n, .Yz (S;) is satisfrable.

Proof. Let T be an interpretation such that d € succ(|s;| > ni)t fori = 1,...,m. We show
that Zg = Jo;n, 72 (s;) fori = 1,...,m. Since d € succ(|s;| > n;)L, there are individuals
dgl), . ,d](;) € AT such that dgl), ce dﬁf} € st Using structural induction over the set
term s, it is possible to show that dy) € s implies dgz) € ve(s)dforj = 1,...,n;, hence
Z4, {x/dgl)} = vz (si) forj = 1,...,n;. Thisallows us to conclude that Zy = J;n, 2.2 (S:)
fori =1,...,m. ]

Similarly to what mentioned in [2]], we need to take into account the semantics of the role
successor constraints in the reduction to a CQU instance. In particular, as already mentioned
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in [2]), we must ensure that the fact that every individual implied in a the set universe of a solution
is a proper role successor. In the original algorithm using QFBAPA formulas, that amounted to
adding the set constraints i/ = X, U --- U X, to the obtained formula. In our setting, we
add the universal sentence V.7, (U) to the CQU formula yielded by the encoding of a given
ALCCOU concept description.

Another problem is that further nesting of role successor constraints within one another — a
feature thatis not present in CQU — can yield an unsatisfiable concept description that is deemed
as satisfiable, when encoded into a CQU instance.

Example16. Asanexample, let C' := succ(|succ(|A M —A| > 1)| > 2) foran arbitrary concept
name A. The resulting CQU formula 3>92.Qgucc(|An-4|>1) () is clearly satisfiable; however,
C'is unsatisfiable.

This shows that we need to take into account that a certain unary predicate encodes a role suc-
cessor constraint, when checking the satisfiability of a CQU instance induced from a ALCCOU
concept description. This amounts to ensure that in the linear system (4.5)), we interpret as non-
empty predicates only those that are {/-satisfying and not yielding unsatisfiable ALCCOU con-
cepts. Hence, we need to make recursive calls to check ALCCOU concept satisfiability. We illus-
trate what this means, using an example.

Example 17. Let C' := succ(|succ(|AM —A| > 2) M —A| > 1) Msuce(|r N A] < 3). The
normal form of the CQU instance 1) induced by C'is

Q = {3211‘.]91 (l‘), Hggx.pg(w)},
U:= {Vl’pl(l') < _‘QA('%') N qucc(|Al_IﬁA|22) (x),Vx.pg(a:) A Rr(x) N QA(x)}

If we initialized the restricted master problem as

minimize 0

. - >
subject to [O J |:-%'2:| - [3] x1,T9 > 0

thenz; = 1and 2 = 3 would be a solution to the master problem, since the objective function
is always zero. However, p; — in particular, Qgycc(|An—4|>2) — cannot be interpreted as a non-
empty set, because this would imply that there is an individual belonging to the interpretation of
succ(|A M —A| > 2), which is clearly unsatisfiable.

We change the definition of the cost function such that ¢; = 0 if and only if A; is {-satisfying
and the concept description yielded by the column A; is satisfiable. In this case, the restricted
master problem would be

minimize X1

. 10 T >11
. - >
subject to [() J L@] - [3] x1,T9 > 0

since (1, 0) is U-satisfying but C,, := = A Msucc(]A M —A| > 2) is unsatisfiable.
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A dual and integral solution to this problem is z = (0, 0). Similarly to Example[14]we can add
any U-satisfying column to the restricted problem. The column (1, 1) is not U-satisfying. The
column (0, 0), on the other hand, is ¢-satisfying and yields a satisfiable concept description. In
particular, we choose the model ¢ of prop () that satisfies p(succ(|A M —A| > 2)) = Oand
p(A) = 1; this yields the concept description Cy, := A M =succ(|A M —A| > 2), which is
satisfiable. Therefore, we can add the column to the problem and proceed to check if there is a
solution that brings the objective function to 0.

Lety) = (Q,U) bea CQU formula in normal form and let v be a Uf-satisfying column. Let p
be a model of prop(Yf) that yields the column v. If atoms(Uf) is set of ALCCOU-atoms that are
encoded in U, the concept description C), is defined as

Cy =] A € atons() | 1(Qa) =1} N[ {-A| A € atons(U) A 1(Qa) = 0}.

If we combine column generation to solve the integer linear program (4.7 with a recursive con-
cept satisfiability check for each concept C, yielded by a candidate column, we obtain a method
that allows us to correctly check for ALCCOU concept satisfiability, as shown in the next section.

4.3 BRANCH-AND-PRICE FOR ALCCOU CONCEPT SATISFIABILITY

The goal of the concept satisfiability decision procedure for ALCCQOU is to find whether a given
concept description has a feasible interpretation and not a minimal one. This amounts to find a
feasible solution to the linear system that is obtained by first inducing a CQU instance ¢ in
normal form from the input concept description C' in ALCCOU normal form and then trans-
forming 1) into a linear system of inequalities — as we have seen in Section we do not explicitly
produce the system, but we obtain a solution to it by using column generation to solve (4.7).

THE ALGORITHM ALCCOU-BB.  Given a ALCCOU concept description C in ALCCOU nor-
mal form, we devise the algorithm ALCCQOU-BB that performs the following steps:

1. Using a SAT solver, we check whether prop(C') is satisfiable. If so, we get a truth assign-
ment 4 for the propositional variables in prop(C'); otherwise, we conclude that C'is un-
satisfiable — this is true, thanks to Proposition

2. Let S be the set of all the role successor constraints in C' whose associated propositional
variable is evaluated as true under £; we map S into a CQU instance ¢ = (Q,U) in nor-
mal form, using the encoding described in Theorem [18{and obtaining the normal form as
explained in Lemrna We add the universal sentence V., (/) to 1) to ensure that all the
considered invididuals are proper role successors.

3. We check whether the linear program associated to 1) is satisfiable using the branch-
and-price method [6] — branch-and-bound adapted to the context of CQU [11, [19] with
the aid of column generation — and taking care of the possible issues related to ALCCOU
outlined in SectionIf an integral solution is found, then the algorithm returns true;
otherwise, the truth assignment 1 obtained in Step [I|is discarded. The algorithm keeps
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Algorithm 1 ALCCOU-BB: ALCCOU concept satisfiability using branch-and-bound

Input: A ALCCOU concept description C' in normal form
Output: true if C is satisfiable, false otherwise.
1: noGoods « ()
2: while prop(C) has a model not belonging to noGoods do
3. 4 GetsAaTModel(prop(C'), noGoods)
if GetConstra‘ints(C, ,u) = () then

4

S return true

6. else

7 (R SetCQUInstance(GetConstraints(C, u))
8

9

PbSet < {9}
: while PbSet # () do
10: current <— GetProblem(PbSet)
11: solution — SolveRestrictedRelaxation(current)
12: if solution = NIL then
13: continue
14: else if solution is integer then
15: return true
16: else
17: var ¢ GetBranchvar(solution)
18: Pbe:t.Cde(GetBoundedProblems(Currcnt7 var))
19: end if
20: end while
21:  endif

22:  noGoods.add(u)
23: end while
24: return false

track of the truth assignments for prop(C') that yield an unsatisfiable CQU instance by
storing them in the set noGoods, which is initially empty.

A detailed version of the ALCCOU-BB algorithm is given in Algorithm Linecorresponds to
Step[l} Step2]is carried out at line[8} the lines — highlighted in Algorithm[f|— correspond

to Step

HEURISTICS FOR BRANCH-AND-BOUND. Once we obtained a CQU instance ¢ from .S, we
employ the branch-and-bound technique to solve it [19]. We initialize the set of bounded problems
PbSet with {1)}. A single iteration of the branch-and-bound method works as follows:

1. The algorithm extracts a problem from PbSet, according to the following heuristic imple-
mented in GetProblem:

a) if PbSet contains only one problem, the algorithm simply extracts it;

b) if the set contains more than one problem, the algorithm selects the one which cur-
rent solution contains the least number of non-integral components;
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4.3 Branch-and-Price for ALCCOU concept satisfiability

c) if there is a tie between problems, the one with the largest number of counting sen-
tences is chosen.

2. Thealgorithm searches for a relaxed solution to the master problem (4.7)) induced from the
chosen CQU instance using column generation.

3. Ifthe chosen problem has no feasible solution, the algorithm discards it and proceeds to the
next iteration; if it has a feasible integral solution, such a solution also satisfies the original
problem, since the solution space of the current problem is always included in that of the
original problem.

4. If the chosen problem has a feasible rational solution, then there is at least one component
x; in the current solution X that is not integral; the branching phase is then deployed by
GetBranchvar and the heuristic employed to choose the branching variable is to select the
component z; of X which non-integral value is closest to either | z; ] or [z;].

5. The bounding phase is carried by the procedure GetBoundedProblems that takes the current
CQU instance ¢ = (Q,U) and adds to PbSet the bounded problems

¢ = (QU {3y, 20 (2)}, U U{Vap'(x) & ei(x)}) (4.12)
= (QU (Bopeod @)L UL (Vo p @) & ex(@)})  (413)

where e;(z) is the elementary term corresponding to the i-th column of A.

The heuristic implemented in GetProblem is well-defined: in the first iteration of the loop, the set
contains only 1), so it is extracted with no need for a solution; if two or more problems are in the
set in the 7 + 1-th iteration, they are bounded problems that have been obtained by bounding the
search space of previously considered problems that have a feasible solution.

In choosinga LP solver, the only requirement is that the solver is able to provide, when existing,
feasible primal and dual solutions (not necessarily optimal ones); we make the assumption that the
procedure employed by the solver is correct and terminating — an example of such a procedure
is the simplex method [7]. Hereafter, we denote with GetPrimalsolution(A, >4, b, ¢) a call to the
chosen LP solver that either returns a feasible relaxed solution to or returns NILotherwise; the
procedure Getdualsolution(A, <, b, ¢) works analogously for (2.2), with the additional condi-
tion that the dual solution z is integral — otherwise, we would not be able to apply the proposi-

tional encoding described in Section

SoLvING CQU INSTANCES AND RECURSIVE SATISFIABILITY. At each stage of the branch-
and-price phase of ALCCOU-BB, we check if the relaxation of the selected CQU instance has a
solution via the SolveRestrictedRelaxation procedure, described in Algorithm This procedure
encodes the process described in Section with additional steps to ensure that the generated
column is not yielding an unsatisfiable ALCCOU concept. Assume that v is a U-satistying col-

47



4 Concept satisfrability in ALCCOU

Algorithm 2 solveRestrictedRelaxation(1))

Input: A CQU formulaty = (Q,U) in normal form with |Q| = k.
Output: A relaxed solution to 1) if it exists; NIL otherwise.

1: A< I;and c < setcost(A,U) andx < b

2: whilec’ - x > 0do

20:
21:

Z <— GetDualSolut'ion(A, >, b, C)

ifz’A <c,z<x"! Owithz integral is unfeasible then
return NIL

end if

V — GenerateColumn(Z,U)

if v = NIL then
return NIL

end if

if ALCCOU-BB(C,) then
if v isnotyetin A then

A.append(v); c.append(0)

end if

else
U.add(Vx.—y(Cy))

end if

X < GetPri malSolut'ion(A, i, b, C)

if Ax <1 b, x > 0is unfeasible then
return NIL

end if

22: end while
23: return X

umn obtained as a solution of (4.11)) or a column of I, and let ;1 be the truth assignment over (4.11)
generated by the SAT solver. The ALCCOU concept description induced by (1 is obtained as

Once C), is obtained, the algorithm makes a recursive call to check that C, is satisfiable. If C,, is
unsatisfiable and v is a column of I}, we can assign cost 1 to v and keep it in the generated matrix:
if a solution x with ¢’ - x = 0 is found, then the value of the variable associated to v must be 0,
thus it is interpreted as an empty set. We denote that procedure that computes the cost function

Cy=[ {A| Aisa ALCCQU-atom, pu(x4) = 1}
N[ {-A| Aisa ALCCQU-atom, pu(xa) = 0}.

with this additional feature with setcost(A,U).
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If v is not part of I}, and C, is unsatisfiable, the algorithm does not add v as a column to 4;
instead, the universal sentence V.=, (C)) is added. This is done because of two motivations:



4.4 Correctness of ALCCQU-BB

1. v cannot be added to A as a column that is not {/-satisfying; in generating v we assumed
that its associated cost is 0, whereas its cost as a not {/-satisfying column would be 1 accord-
ing to the cost function used in the algorithm;

2. v cannot be entirely discarded, because there might be another valuation 4’ that makes v

U-satisfying and that yields a satisfiable ALCCOU concept description.

This step is unnecessary in the simpler setting of CQU, because every atomic predicate has no hid-
den semantics, whereas ALCCQOU-atoms can be nested role successor constraints which meaning
is not taken into account.

4.4 CORRECTNESS oF ALCCOU-BB

Given a set term S, the set atoms(s) contains exactly the ALCCQU-atoms occurring in s. The
constraint depth of a ALCCOU concept description C' in normal form is recursively defined as
follows:

0 C=A€e N¢
cd(D =-D

ca(C) = 4 D) ¢ (4.15)
maX(cd(Dl), Cd(DQ)) C=D1xDy,x€ {|_|, |_|}

1+ max{cd(D) | D € atoms(s)} C = succ(|s|><n)

Lemma 10. [fcd(C) = 0, then
ALCCOU-BB(C') = true if and only if C' is satisfiable.
Moreover, ALCCOU-BB terminates.

Proof. Assume that cd(C') = 0. It follows that C' has no role successor constraint as a subcon-
cept. If the concept C s satisfiable, then p # nIL, with 1t = GetsaTModel(prop(C'), () a model
of prop(C) — this is a consequence of Proposition I} Moreover, Getconstraints(C, 1) = 0,
because of the absence of role successor constraints in C'. Therefore, ALCCOU-BB(C') returns
true.

If the concept C'is unsatisfiable, then Proposition[2]yields the unsatisfiability of prop(C'). This
means that GetsatModel(prop(C'), ) = niL. Therefore, ALCCOU-BB(C) returns false.

Termination is guaranteed, because GetSATModel is assumed to implement a correct and termi-
nating decision procedure for propositional satisfiability. O

We proceed by showing that the subprocedure of ALCCQU-BB that employs branch-and-price
to solvea CQU instance induced from a set of role successor constraints — lines[8H20|— is correct
and terminates. The proof relies on the correctness and termination of the branch-and-bound and
column generation methods (details in [10,[19]).

In particular, column generation terminates and is correct because the matrix A is finite and for
every added column the objective function is notincreased — the only additional factor we need to
take care of is to avoid adding columns that are already in the restricted master problem [10].
The termination of branch-and-bound is guaranteed when the solution space is bounded, that s,
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4 Concept satisfrability in ALCCOU

when there exist a vector t such that 0 < x < t. In our setting, the upper bound t is not guaran-
teed to exist a priori; however, linear programming ensures that if a solution to the problem
exists, then there exists a solution satisfying ; < max{b; | b = (b1,...,bx)}, thus we can
impose an artificial upper bound and ensure the termination of the branch and bound [11;19].

The section of ALCCQU-BB ranging over lines[8H20]is entered only if prop(C') has a model
f that has not being tested yet and if Getconstraints(C, pt) # (). Therefore, we can assume that
cd(C) =n + 1, withn > 0anatural number.

Theorem 19. The ALCCOU concept C in normal form is satisfiable iff ACCCQU-BB(C') returns
true. Moreover, ALCCOU-BB terminates.

Proof. By induction on cd(C'). The induction base cd(C') = 0 is covered in Lemma [10] We
assume the following inductive hypothesis, for every ALCCOU concept description D:

if cd(D) < n, then D is satisfiable if and only if ALCCOU-BB(D) = true.

Assume that cd(C') = n + 1.

Soundness Assume that ALCCOU-BB(C) = true. Then, there exists a truth assignment p
such that p = prop(C). If cetconstraints(C, 1) = (), then the interpretation Z with
do € AT defined by

do € AT ifand only if p(x 4) = 1 for all ALCCOU-atoms A in C

is a model for C'. Assume now that Getconstraints(C, i) # 0 and let ) = (Q,U) be the
CQU formula in normal form obtained from Getconstraints(C, i1). Since we assumed
that ALCCOU-BB(C) returns true, there is an integral solution x = (z1,...,Zm) to
the master problem associated to 9. Let v .= A; be a column of the matrix A
such thatz; # 0. Then, v is{{-satisfying and we can assume that there exists a valuation g1,
thatsatisfies prop (/) and yields v. Thanks to our inductive hypothesis, since cd(C,) < n,
we also know that the concept C,, yielded by v and p is satisfiable: thus,we can consider
amodel Z, of C,, and an individual d, € AZv such thatd, € C%“. We take z; disjoint
copies of Z,, and embed them in the interpretation Z by connecting each individual d,, to
dp as follows:

dy € r%(dp) if and only if 1, (R,) = 1.

Since 1, = \/reNR R,, there exists at least a role name 7 such that d,, € rZ(dp), thus d,,
is a proper role successor. Moreover, if |Q| = k, fori = 1,. .., k we obtain that

T,
dy, € 5.

)

ifand only ifv; =1

where s; is the set term referenced by the i-th counting sentence in Q. We repeat this pro-
cedure for all the columns A; such that z; # 0.
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4.4 Correctness of ALCCQU-BB

Fori = 1,...,klet S; := {x; | v. = Aj Av; = 1}. For every counting sequence
Jpa; N, 2.pi(x) in Q representing the successor constraint succ(|s;| >; V;), we obtain
that

m
ZAjil’j = Z Zi | D Ni
j=1 x;E€S;
;70
thus dg € succ(|s;| >; N;)E fori = 1,. .., k. We conclude that Z |= C.

Completeness assume that C is satisfiable under the interpretation Z and that dy € CZ. Let
be the truth assignment defined by

p(w4) = lifand onlyif dy € AZ for all ALCCQU-atoms A in C.

Then, p1 = prop(C); since noGoods = (), the algorithm ALCCOU-BB proceeds. If
S = GetConstra'ints(C, ,u) = (Z), ALCCQOU-BB returns true. Assume that S 75 @
The CQU formula in normal form 1 obtained from S is satisfiable, thanks to Lemmal8]
and Theorem|[18] Moreover, from Theorem(16|follows that the master problem hasa
feasible and integral solution. Since the branch-and-price method is proved to be correct,
an integral solution is found for one of the subproblems generated from 1), thus ALCCOU-

BB returns true.

Termination Both the branch-and-bound and the column generation methods are guaranteed
to terminate [10} 19]. Moreover, every recursive call to ALCCOU-BB comes with a con-
straint depth that is at most n; hence, by inductive hypothesis, the recursive call terminates.
Finally, the propositional formula prop(C') has a finite number of truth assignments that
are models.

O]

441 ComrLEXITY OF ALCCOU-BB
A property that is enjoyed by the original decision procedure for ALCSCC concept satisfiability

in [2] is that it can be adapted to use only a polynomial amount of space with respect to the
input concept description. Since we opted to replace non-determinism with other techniques,
our newly-defined decision procedure does not enjoy this property. In particular:

* We store all the models of prop(C') that yield a failing run of the algorithm; in the worst
case, prop(C') might have exponentially many models to test, in the size of the set of its

ALCCOU-atoms.

* Every time we check if a CQU formula is satisfiable in ALCCQU-BB, we resort to column
generation. Since we are not guessing a polynomial-sized set of columns as done in [2]
but we are generating as many columns as needed in order to find a satisfying solution, in
the worst case an exponential number of columns in the size of the number of counting
sentences in the CQU formula. Moreover, every call to the SAT oracle to obtain a column
invokes a NP-procedure.
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4 Concept satisfrability in ALCCOU

* The algorithm ALCCOU-BB requires that the input concept description C'is in normal
form. This means that the normalization preprocessing might already take exponential
time and yield an exponentially larger concept description nf(C').

During the column generation procedure, we have a worst-case exponential number of calls
to a NP subprocedure. This implies that ALCCOU-BB is a NExpT1mE-algorithm to decide
ALCCOU concept satisfiability. We remark the fact that this is a worst-case complexity result
and that in practice, the execution of ALCCOU-BB might be more efficient. The only way to
find an answer to this question is to provide an implementation of ALCCOU-BB and evaluate its
performance.
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S CONCLUSION

SuMMARY. Starting from the variant ALCSCC™ of an existing extension of ALCQ called
ALCSCC [2] with known reasoning complexity and decision procedures for concept satisfia-
bility, we proposed an algorithm that can be efficiently implemented to test concept satisfiability
in a restriction of ALCSCC™ called ALCCOU, where the only cardinality constraints that are
allowed are comparisons of complex cardinality terms against a constant natural number. The
algorithm that we presented relies on a variety of known techniques borrowed from SAT solving
and integer linear programming, applied to a first-order fragment called CQU [11] that we adapted
to represent the constraints over role successors of a given individual. This decision procedure suc-
cesstully replaces the non-deterministic steps of the original method to check ALCSCC concept
satisfiability proposed in [2], at the cost of losing some complexity-related properties regarding
space requirements.

We have also shown that ALCCQU corresponds to the subset of ALCSCC™ that lies in first-
order logic. This property strengthens our choice of analyzing ALCCOU on the one hand and
shows that the technique illustrated here cannot be applied to the whole DL ALCSCC™ without
restrictions on the other, since there exist ALCSCC™ concepts that are beyond first-order logic.
To provide an additional argument in favor of studying ALCCOU, we have classified the DLs
ALCQ, ALCCAU and ALCSCC™ according to their expressive power, obtaining a linear order

ALCQ <expr ALCCOU <expr ALCSCC™

that shows how ALCCOU constitutes a middle ground between the well-known DL ALCQ
and the rather expressive DL ALCSCC*. Moreover, we presented a third characterization of
ALCCOU as the first-order fragment that is invariant under the newly-introduced equivalence
relation of ALCQt-bisimulation.

FUTURE woRK. To substantiate the claim that the algorithm proposed in Chapteris efficient
for practical purposes, the different decision procedures for ALCSCC and ALCCOU ought to be
implemented and evaluated on a subset of instances that can be expressed by both logics. Using the
implementation of CQU-SAT provided in [11] could be a starting point for the implementation
of ALCCOU-BB.

Another interesting task would be to investigate finite-model reasoning over ALCSCC™ and
ALCCOU. In such a setting, indeed, the set of role successors of an individual is always bounded,
leading to additional guarantees — for instance, Lemma [ always holds in a finite model. Alter-
natively, one could investigate the consequences of setting an upper bound to the set of role suc-
cessors: in that case, if the bound is known, all possible role successor constraints of ALCSCC™
could be translated into first-order logic, due to the finiteness of the numerical domains that are
considered.
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S Conclusion

The algorithm that we proposed can be extended in a straightforward fashion to acyclic TBoxes,
by unfolding the definitions in the input concept description C'. A more interesting question
could be whether we can take a similar approach to reason with respect to general TBoxes, possibly
by employing suitable blocking strategies.

Finally, it would be worth considering the interaction of ALCCQOU and ALCSCC™ with
CBoxes (or their restricted versions) as in [3] and understand if our approach based on linear
programming could be employed in such a setting. A positive outcome would yield an efficient
tool to provide statistical reasoning in a DL, as described in [3].
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