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ABSTRACT

Description Logics (DLs) are increasingly successful knowledge represen-
tation formalisms, useful for any application requiring implicit derivation
of knowledge from explicitly known facts. A prominent example domain
benefiting from these formalisms since the 1990s is the biomedical field.
This area contributes an intangible amount of facts and relations between
low- and high-level concepts such as the constitution of cells or interac-
tions between studied illnesses, their symptoms and remedies. DLs are
well-suited for handling large formal knowledge repositories and computing
inferable coherences throughout such data, relying on their well-founded
first-order semantics. In particular, DLs of reduced expressivity have proven
a tremendous worth for handling large ontologies due to their computational
tractability. In spite of these assets and prevailing influence, classical DLs
are not well-suited to adequately model some of the most intuitive forms of
reasoning.

The capability for abductive reasoning is imperative for any field subjected
to incomplete knowledge and the motivation to complete it with typical
expectations. When such default expectations receive contradicting evidence,
an abductive formalism is able to retract previously drawn, conflicting
conclusions. Common examples often include human reasoning or a default
characterisation of properties in biology, such as the normal arrangement of
organs in the human body. Treatment of such defeasible knowledge must be
aware of exceptional cases—such as a human suffering from the congenital
condition situs inversus—and therefore accommodate for the ability to
retract defeasible conclusions in a non-monotonic fashion. Specifically
tailored non-monotonic semantics have been continuously investigated for
DLs in the past 30 years. A particularly promising approach, is rooted in the
research by Kraus, Lehmann and Magidor for preferential (propositional)
logics and Rational Closure (RC). The biggest advantages of RC are its
well-behaviour in terms of formal inference postulates and the efficient
computation of defeasible entailments, by relying on a tractable reduction
to classical reasoning in the underlying formalism. A major contribution of
this work is a reorganisation of the core of this reasoning method, into an
abstract framework formalisation. This framework is then easily instantiated
to provide the reduction method for RC in DLs as well as more advanced
closure operators, such as Relevant or Lexicographic Closure. In spite of
their practical aptitude, we discovered that all reduction approaches fail
to provide any defeasible conclusions for elements that only occur in the
relational neighbourhood of the inspected elements. More explicitly, a
distinguishing advantage of DLs over propositional logic is the capability to
model binary relations and describe aspects of a related concept in terms of
existential and universal quantification. Previous approaches to RC (and
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ii abstract

more advanced closures) are not able to derive typical behaviour for the
concepts that occur within such quantification.

The main contribution of this work is to introduce stronger semantics for
the lightweight DL EL⊥ with the capability to infer the expected entailments,
while maintaining a close relation to the reduction method. We achieve
this by introducing a new kind of first-order interpretation that allocates
defeasible information on its elements directly. This allows to compare the
level of typicality of such interpretations in terms of defeasible information
satisfied at elements in the relational neighbourhood. A typicality preference
relation then provides the means to single out those sets of models with
maximal typicality. Based on this notion, we introduce two types of nested
rational semantics, a sceptical and a selective variant, each capable of
deriving the missing entailments under RC for arbitrarily nested quantified
concepts. As a proof of versatility for our new semantics, we also show
that the stronger Relevant Closure, can be imbued with typical information
in the successors of binary relations. An extensive investigation into the
computational complexity of our new semantics shows that the sceptical
nested variant comes at considerable additional effort, while the selective
semantics reside in the complexity of classical reasoning in the underlying
DL, which remains tractable in our case.
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1
INTRODUCTION

Any modern knowledge-based system necessitates to represent their data in
a formal and machine-readable way. The field of knowledge representation
and reasoning (KR) ([HLP’08]) studies logical foundations for applications
where not all knowledge is explicitly known, but inferable from general
rules. One of the most basic rules is logical implication, deriving truth
of some state (consequent) from truth of another (antecedent). Given
appropriate semantics, such rules are used to generate implicit conclusions
(reasoning) from explicitly known facts (representation). Among the oldest,
most well-known KR formalisms, count the propositional and first-order logic
(FOL). While those classical foundations with their formal semantics are
well-behaved and reliable in terms of obtainable consequences, this reliability
quickly becomes a liability in non-static KR scenarios. A common example
is the formalisation of human cognition. It is in our very nature to act with
respect to incomplete knowledge and to develop or adjust our set of facts,
or (more appropriately) beliefs over time. We normally drive on the right,
unless we are in the UK (or others), we assume someone is busy if they
are not answering their phone, a suspect is assumed innocent until proven
guilty, and so forth. More meaningful perhaps are the many exceptional
cases in natural sciences. The density of water behaves unusual below 4◦C,
elements further down in the periodic table have a higher electronegativity,
except for those in group 11, etc.
The reliability of classical KR formalisms is due to the expectation of

the development of knowledge, to preserve truth. At an early stage of an
investigation, a suspect must be found innocent if they cannot be proven
guilty. Classical formalisms forcibly preserve this conclusion in light of any
new evidence. However, such preservation must be contested if an assump-
tion, supplementing an incomplete set of facts, turns out to be false. The
resulting monotonic behaviour of these formalisms makes them subject to
the principle of explosion. Encountering mutually exclusive situations forces
them to derive anything, rendering their supported inferences meaningless.
When knowledge develops over time, Nute [Nut’01] explains, that it is not
preservation of truth we expect, but preservation of justification.

“[. . .] any reasoning system that preserves truth must be mono-
tonic, [. . .] [but] a reasoning system that preserves justification
will not be monotonic.”

[Nut’01, p. 152]

Extending knowledge, while preserving justification rather than truth, allows
to falsify a previously drawn conclusion. The former inference is retracted in
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2 introduction

a non-monotonic fashion, but the description of the justification for deriving
it, remains intact. If someone is suspected of a crime and all evidence is
circumstantial, they must be found innocent. When substantial evidence is
discovered, the innocence verdict must be retracted, without contesting the
rule that circumstantial evidence alone is insufficient for a guilty verdict;
perhaps this new evidence is later found inconclusive as well.

The paradigm of non-monotonic reasoning is intrinsically separate from
the underlying KR formalism. Studies in this area, including this one, detach
forms of knowledge representation from classical formalisms and merge
them with a more powerful semantics, capable of modelling the expected
behaviour.

1.1 non-monotonic reasoning

Classical Tarskian model-theoretic semantics ([TV’57]) are well-defined and
widely accepted. If all reasonable views (models) on the world support a
statement, it must be true. Monotonicity in such semantics is caused by
the set of all models decreasing monotonically with increasing constraints
(knowledge) on the world. Once truth of a statement is supported by
a set of models, this truth is never retracted by considering subsets of
those models. However, such retraction is very intuitive in the way we
obtain our own conclusions on a daily basis. Among the most popular toy
examples in this area is modelling the classification of penguins as birds, i.e.
penguin→ bird. It is legitimate for any human (or otherwise) to assume
birds to fly in general (bird → fly). Only when learning that penguins,
as specific birds, do not fly (penguin → ¬fly), we end up with a set
of mutually unsatisfiable characteristics. Unlike in classical semantics, if
retraction of one of these statements is on the table, it is not immediately
clear how a formalism should react. This predicament is even more evident
from the famous Nixon diamond. Capturing that quakers are pacifists and
republicans are not pacifists is problematic for Nixon, who is considered to
be a quaker and a republican. According to these rules, Nixon is supposed
to be a pacifist and not a pacifist at the same time. Where the penguin
example might indicate an intuitive preference for more specific information
to prevail (i.e. knowledge about penguins overriding general assumptions
on birds), such specificity is not present in the Nixon diamond.

The study of non-monotonic reasoning (NMR) explores semantics capable
of the expected consequence retraction. Ever since Sandewall [San’72]
introduced a first kind of default implication, and Hewitt [Hew’72] studied
a form of negation as failure to derive truth, the approaches to achieve non-
monotonic semantics are plentiful and manifold. Sophisticated ideas such as
McCarthy’s circumscription [McC’80], explicitly modelling and minimising
exceptional behaviour, and Reiter’s default logic [Rei’80], furnishing the
idea of default implication and completion of incomplete knowledge, are
among the foundations for many modern reasoning systems.



1.2 description logics 3

Particularly promising, and continuously investigated since the early
1990s, is the preferential approach by Kraus, Lehmann and Magidor (KLM)
[KLM’90]. They study the inferential capabilities of a weaker version of
logical implication, e.g. bird ≈ fly (birds typically fly), allowing to explicitly
model default behaviour. The appeal in their discussion on non-monotonic
inference is the well-behaviour of a class of entailment relations that are
characterised through a set of formal postulates. KLM carefully weaken
the inferential properties of classical semantics, such as monotonicity (if α
entails β, then so does α∧ γ), so as to capture entailment relations that
are not necessarily monotonic. For an example, rational monotonicity allows
to inherit the property β (implied by α) for the more specific sentence
α∧ γ, if α∧ γ does not imply the negation of β. These postulates can
be understood as a guarantee to the behaviour of an entailment relation,
capable of retraction. Consequently, the intuitively described preference of
more specific attributes (e.g. penguins not flying) is inherent for what KLM
call rational entailment relations.
In search of a practical answer to the intricate question of how to treat

default knowledge, an extended study by Lehmann and Magidor [LM’92]
introduces the rational extension of a body of default knowledge, as the
Rational Closure (RC) of said knowledge. They claim that the sensible
conclusions of a knowledge base are at least those contained in its Rational
Closure. Enthusiasm for adaptations of RC to more sophisticated KR for-
malisms comes from a simple algorithmic characterisation of its entailments,
in terms of classical semantics. In the past decade, this notion of rational
consequence has been extensively studied, in particular, for a variety of
modern KR formalisms known as Description Logics.

1.2 description logics

Description Logics (DLs) are KR formalisms whose strength lies in their
formal semantics, computational properties and range of application oppor-
tunities. The first is essentially provided from first-order logic, the formalism
that most DLs are fragments of. This fragmentation of FOL is motivated
by the two other strengths, as essential goals in the study of DLs are to
(1) provide a large range of expressive means to represent and reason over
knowledge, and (2) fully map the borders of decidability and computational
complexity in regards of such expressivity. Contributions, including this one,
are often a combination of both. From an application’s point of view, a
variety of differently expressive and complex logics, each with a variety of
supported inference mechanisms, provides a sizeable toolbox from which to
select an appropriate formalism for almost any conceivable KR task.
Among the most notable applications of DLs is the Web Ontology Lan-

guage (OWL) [HPH’03], a standard for formal representation of ontological
knowledge in the semantic web, introduced by the World Wide Web Con-
sortium. Advanced application areas such as biochemical engineering and
medicine rely on OWL and DL ontologies to query vast amounts of data
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for logical consequences that no human could possibly be asked to derive
[RBG+’97; Spa’00].

kr with description logics. The central notion in DLs is that
of a concept. On a semantic level, concepts intuitively capture classes of
objects by logical combinations of their primitive attributes. Such primitive
properties include atomic characterisations of classes of objects (concept
names), and binary relations between one object and another (role names).
Primitive elements such as the set of all Cats/Dogs or the directed relation
characterising two elements as friends can then be combined with known
logical connectives in the following manner. The concept

Catu ∃friend.(DogtCat)u¬∀eats.CatFood (1.1)

describes the set of all cats that befriend either a cat or (disjunction) a dog
and (conjunction) not only eat cat food. Such concept constructors are
evaluated in terms of sets, where for instance the elements belonging to
Catu Smart are those that belong to the intersection of all Cat and all
Smart elements. Note that DLs use a specific variant of quantification,
capturing classes for elements in the relational neighbourhood, along the
binary relations that are described by role names (friend, eats). More
formally, in terms of first-order quantification, DLs quantify over the range
of the binary relations that are represented as role names. An element d
belongs to ∃friend.Cat, if there is at least some element e, related to d
via the role friend, such that e belongs to Cat.

From concepts alone, one can derive simple consequences. For example,
the cats described in (1.1) have at least some friend (∃friend.>), or they
eat something besides cat food (∃eats.(¬CatFood)). A concept can also
be analysed for consistency, i.e. checking whether any element can possibly
satisfy this combination of properties. A trivial example for an inconsistent
concept would be the unfortunate modelling of humans that are behaving
inhumane with Humanu¬Human. When quantification is involved, such
inconsistencies are not so obvious.

More complex forms of knowledge representation are provided by describ-
ing universal relations between concepts. It could be captured that all cats
befriend only cats (Cat v ∀friend.Cat), or that, if a cat befriends a dog, it
cannot be very smart (Catu∃friend.Dog v ¬Smart), etc. Such general
statements about classes of objects are called terminological axioms. They
resemble classical implication, which, on a set-level, corresponds to inclusion.
The consequences that can be derived from such terminological knowledge
are also of terminological nature. The corresponding reasoning service is
called subsumption. Formally, one asks if (new) concept inclusions can be
implicitly derived from the explicitly modelled terminological information.
In addition to the (inclusion-)hierarchical organisation of entire classes

of objects, DLs allow to capture explicitly named individuals and place
them within this hierarchical knowledge on concepts. This placement is
formally achieved with assertional axioms, for instance, capturing explicit
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individuals such as daisy, to belong to the class of all cats, or befriend
another explicitly named individual molli:

Cat(daisy), or friend(daisy,molli)

In light of such assertive axioms, implicit class membership of individuals
can be concluded, respecting the terminological knowledge as well. For
instance, from the concept inclusions above, we would conclude daisy to
befriend only cats, and thus derive for molli to be a cat, i.e.

(∀friend.Cat)(daisy), and Cat(molli).

This reasoning service is called instance checking. Other questions about
assertional knowledge are asking for the set of all individuals belonging
to a certain concept (instance retrieval), or even formulating a complex
query as conjuncts of several retrieval questions (conjunctive query an-
swering), just to name a few. However, our work is exploring means of
reasoning that are orthogonal to the types of queries asked. Therefore,
we are only concerned with the very basic services of subsumption and
instance checking, implicitly relying on an analysis of consistency w.r.t.
terminological and assertional knowledge. This form of consistency check is
more meaningful than its concept-only variant. Considering the example
from Section 1.1, modelling birds to fly (Bird v Fly), and penguins, as
specific birds (Penguin v Bird), not to fly (Penguin v ¬Fly), leads to
the conclusion that Penguins are inconsistent with this knowledge, while
birds are not.

studying description logics. As we have just shown, Descrip-
tion Logics are composed of many separate aspects. Investigating different
compositions of concept constructors, knowledge representation axioms,
reasoning services or even non-standard semantics (e.g. multi-valued, fuzzy,
non-monotonic), is the heart of Description Logics research. The most fun-
damental variations, resulting in the characterisation of different formalisms
altogether, are considered to be on the concept constructor level. A handy
nomenclature is used to distinguish DLs in terms of their allowed construc-
tors. The boolean spectrum together with the DL quantification that we
have used above, constitutes the attribute language with complement, ALC.
The inclusions of other constructors or even axioms are usually described
by such a sequence of labels. For instance, allowing to express sub-role
relationships and essentially organise role names in a hierarchical fashion, is
signified with the additional letter H. In fact, the full OWL 2 standard is
actually based on the DL SROIQ, a powerful extension of ALC.1 At the
same time, even the basic services subsumption and instance checking are
already intractable in ALC (when including the types of axioms from above).
Motivated by the goal of tractable reasoning, it is also very appealing to
move below the expressivity of ALC.

1 The letter S is an abbreviation for ALC with transitive roles.
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Renouncing universal quantification, disjunction and negation yields the
existential language EL. EL and sub-boolean extensions (or fragments)
of it are considered prominent, lightweight DLs with tractable reasoning
capabilities. While computational superiority is gained at the cost of ex-
pressivity, not all application areas rely on the full boolean spectrum per se.
This is endorsed by large biomedical ontologies such as Snomed [Spa’00]
considering such lightweight DLs as sufficient modelling languages.

lightweight dls. In the existential language EL, only conjunction
and existential restriction are allowed as concept constructors. Intuitively, the
possible concepts in EL are of a constructive nature. Rather than capturing
restrictions of properties, existence of related elements and collections of
properties can be modelled, e.g.

Catu ∃friend.(DoguCute)u ∃eats.CatFood .

Terminological axioms are positive in the sense of Horn-logic. Satisfaction
of some properties can only lead to the entailment of more (positive) prop-
erties. Consequently, tractable reasoning algorithms employ the technique
of knowledge completion, i.e. the consequences of every concept/individual
can be derived deterministically and iteratively.

As expected, some reasoning services become trivial when certain features
are not expressible in a DL. For example, consistency checking without any
support for negation is insignificant. Essentially, any negation-free concept
can always be satisfied, regardless of the (negation-free) background termi-
nological or assertional knowledge. However, there are means of modelling
negative constraints without introducing full negation, and therefore remain-
ing below ALC. A small extension of EL is the DL EL⊥, allowing to use
⊥ as a primitive and always unsatisfiable concept. Formally, in terms of
sets, ⊥ is understood as the empty set. Due to the constructive nature
of conjunction and existential restriction, any EL concept containing ⊥ is
trivially unsatisfiable on its own. Nevertheless, utilising ⊥ in terminolog-
ical axioms provides the means to express simple forms of negation. For
example, the bird-penguin predicament could be expressed entirely in EL⊥,
by introducing a concept name Walk, in Penguin v Walk. Then, the
terminological disjointness

FlyuWalk v ⊥,

is used to ensure that no element flies and walks at the same time.

1.3 rational closure in description logics

Exploring NMR for DLs is very appealing, due to the intuitive capabilities of
non-monotonicity and the computational properties and practical applicabil-
ity of DLs. As a matter of fact, the biomedical domain, already employing
DLs as a modelling formalism, could benefit greatly from the means to model
non-monotonic behaviour, because exceptions in biology are everywhere.
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Aside from the classification of penguins as birds, the condition of situs
inversus—where the organs of the affected human appear in a mirrored
arrangement to the normal case—or, all vertebrates carrying red blood
cells—except crocodile icefish (Channichthyidae)—are more meaningful
examples; the list is inexhaustible. Unfortunately, non-monotonic reasoning
in DLs is not established enough to have brought forth a practical ontology
employing their capabilities.
Many NMR approaches from the past century have been applied to

differently expressive DLs, including the practical algorithm to capture
entailments under Rational Closure. Default terminological knowledge in
DLs is called defeasible inclusion, and as for KLM, it weakens the notion of
terminological implication. Defeasible inclusions allow to capture normality
statements such as Bird @

∼ Fly or Penguin @
∼ ¬Fly, reading for instance

“birds usually fly”.
The algorithm producing defeasible entailments based on such knowledge,

employs a reduction technique. Entailment of a defeasible consequence such
as Penguin @

∼ Feathered, is determined by enriching the query concept
(Penguin) with defeasible inclusions in the form of material-implications.
As in propositional logic, the material implication Bird → Feathered is
equivalent to the concept ¬Birdt Feathered. The defeasible query can
then be transformed into a classical query, using such concepts to restrict the
queried elements to satisfy certain defeasible statements. Specifically, the
defeasible information Bird @

∼ Feathered can be appended as a material-
implication conjunct to the left-hand side of a query, as

(¬Birdt Feathered)u Penguin v Feathered .

In this particular case, knowing that all Penguins are Birds, this classical
subsumption would be concluded from the strict terminological knowledge.
To obtain meaningful conclusions, defeasible information is only materialised
into the query, if it remains consistent together with the query concept. For
example

(¬Birdt Fly)u (¬Penguint¬Fly)u Penguin

is inconsistent (empty set) w.r.t. the strict terminological knowledge. By the
principle of explosion, its consequences become worthless (technically, the
empty set is included in every set). Hence, a set of defeasible statements that
are consistent with the query must be determined prior to materialisation.
This determination implicitly models the knowledge retraction demanded
in Section 1.1, as Bird @

∼ Fly and Penguin @
∼ ¬Fly are consistent with

Bird, but not with the more specific bird, Penguin. The difficulty in this
procedure is to determine such consistent sets. Different methods have
been studied [CMMN’14; CS’10; CS’11; CS’12], leading to differently strong
closure operators for defeasible knowledge. The study of stronger closures
is motivated to alleviate the drawback of RC by KLM known as inheritance
blocking. Intuitively, once a class is identified as exceptional (e.g. Penguin
is exceptional w.r.t. Bird), it is blocked from inheriting any defeasible
information about its more general superclass under RC.



8 introduction

Notwithstanding the above, all closures that employ materialisation fail
spectacularly when considering DL quantification. It is very easily illustrated
that the materialisation of Bird @

∼ Fly has no effect on concepts in the
relational neighbourhood:

(¬Birdt Fly)u ∃friend.Bird

describes the set of all elements that befriend some bird, and themselves
are either not birds or capable of flying. No restrictions are imposed on
the class of birds related via the role friend. Quantification is effectively
neglected in forms of defeasible reasoning that are based on materialisation.
Surprisingly, this issue has not been addressed in terms of rational closure
until our advancements in 2017 ([PT’17a; PT’17b]).
Resolving this fatal drawback of materialisation-based rational (and

stronger) entailment is the main contribution of this thesis. Materialisation-
based entailments can be viewed as propositional in nature, because de-
feasible information is only applied to the top level of query concepts. We
formally introduce a more meaningful, nested coverage of default information
and redefine the reasoning service of defeasible subsumption and instance
checking for EL⊥. The full spectrum of the semantics we investigate with
a model-theoretic characterisation is captured by two parameters.

strength: Initially, we consider the basic determination of consistent
sets of statements, resulting in rational strength. To resolve the issues
of inheritance blocking and quantification neglect at the same time,
we also study consequences of relevant strength.

coverage: As a result of aligning our semantics closely with previous
approaches to capture Rational and Relevant Closure, we are able
to recreate the original propositional coverage, in addition to two
different types of nested coverage. Sceptical nested coverage has
debuted in [PT’17a], while the selective nested coverage is introduced
here, providing even more entailments than the sceptical variant.

We formally show equivalence of reasoning with propositional coverage
and the materialisation-based reduction, as well as superiority of nested
reasoning over propositional coverage (and thus, materialisation).

1.4 structure of the thesis

This thesis is divided into three major parts. As the second and third part
present the majority of our contributions, they are each preceded by their
own introductions and structural overviews.

part i. The research question we address is composed of two aspects.
The foundations and preliminary notation of Description Logics, in particular
ALC and EL⊥, are given in Chapter 2. Chapter 3 provides a broader
introduction into the area of non-monotonic reasoning, briefly covering
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related approaches and their combinations with DLs, with a more technical
focus on reasoning under Rational Closure. Part i is purposefully not
denoted as “preliminaries”, because in addition to providing basic notations,
several original contributions, as results for classical DLs, are presented in
Section 2.4. These results provide advanced foundations, but foundations
nonetheless, for Part ii and iii.

part i i. We reorganise previous materialisation-based approaches to
RC in DLs and unify them in an abstract framework in Chapter 4. The
versatility of this framework for materialisation-based defeasible entailment
is exemplified in Chapter 6 with instantiations for the more expressive
Relevant and Lexicographic Closure. The drawbacks and insufficiencies of
the materialisation framework, motivating the final part of this thesis, are
discussed thoroughly in Chapter 5.

part i i i. Finally, our main contribution in the form of stronger, model-
theoretic semantics, is covered in full technical detail in Part iii. Our
new model formalism is introduced and analysed in terms of expressivity in
Chapter 7. This analysis is complemented with an in-depth investigation
of this new formalism’s computational properties in Chapter 8, including a
full algorithmic characterisation in Section 8.1. We conclude with a brief
discussion on open problems and potential directions for future investigations,
alongside an overview of all contributions of this thesis in Chapter 9.





Part I

FOUNDATIONS





2
DESCR IPT ION LOGICS

In this chapter we introduce the required foundations of Description Logics,
on which the remainder of this work is built. We begin by formally presenting
the basic notions of DLs in general (Section 2.1). These are exemplified
with the two prominent members ALC and EL⊥, which are the bedrock of
our investigations. Building upon these basics, we continue to introduce
the standard notions for representation of, and reasoning over knowledge
expressed in these DLs (Section 2.2). A small outlook, fitting the non-
standard notion of defeasible reasoning into the context of classical DLs,
is enclosed in Sec. 2.2. The final additions to this chapter are a brief
exposition on fundamental results (Sec. 2.3), and an investigation of more
advanced notions that are required in later parts of this work (Sec. 2.4).
The latter are somewhat unconventional in the broad area of DLs. They are
tailored specifically to our studies, and as such, contain original thoughts
and contribute preliminary results.
For a full introduction to DLs, consult Baader et al. [BHLS’17] or

[BCM+’10]. For more detailed fundamental investigations of ALC and
EL⊥ in particular, consider Schmidt-Schauß and Smolka [SS’91] and Baader
et al. [BBL’05; BLB’08], respectively.

2.1 syntax and semantics

The central syntactic construct in DLs is a concept. It is inductively defined
in terms of concept constructors, starting from the primitive building blocks
that are concept names and role names. Formally concept and role names
are taken from two disjoint sets NC and NR, respectively. By convention,
concept names are denoted either with upper case descriptive words, e.g.
Cat,Dog or in abstract examples with upper case letters near the beginning
of the alphabet (A,B). Dually, role names are denoted with either lower case
descriptive words friend, eats or lower case letters, typically starting from
and succeeding r. The most basic connectors to allow for more complex
constructions of concepts, are the boolean conjunction u, disjunction t
and negation ¬, whose meaning is aligned with that of first-order logic.
Intuitively, concepts capture classes of objects and role names describe binary
relations between objects. Using roles, quantified concepts capture sets of
elements that are related to some (existential) or only (universal) elements
of the quantified concept. In particular, the concept ∃r.C (existential
restriction) gathers those objects with at least some binary relation of type
r to an element fitting the description C. Conversely, the concept ∀r.C
(value restriction) collects those objects for which all successors through
the relation r fit the description C. Existential and value restriction are

13
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Constructor Syntax Semantics

Conjunction CuD CI ∩DI

Disjunction CtD CI ∪DI

Negation ¬C ∆I \CI

Existential
Restriction

∃r.C {d ∈ ∆I | ∃e ∈ ∆I .(d, e) ∈ rI ∧ e ∈ CI}

Value
Restriction

∀r.C {d ∈ ∆I | ∀e ∈ ∆I .(d, e) ∈ rI =⇒ e ∈ CI}

Table 2.1: Basic DL concept constructors.

what move DLs truly beyond the expressive power of propositional logic.
It is worth noting that this form of quantification can be expressed by
first-order formulas [Bor’96]. However, their syntactical variant in DLs is not
to be mistaken for a formula quantifying over a variable r, but rather over
elements in the range of the relation r. The border cases for the objects
of concern, namely every object and no object, can be captured uniformly
using the special primitive concepts top > and bottom ⊥. Intuitive uses
of > or ⊥ on a concept level are for instance ∀r.⊥, describing the class of
all objects without any r-successors, or ∃r.>, the class of all objects with
some r-successor.
Different members of the DL-family are typically distinguished by the

set of concept constructors that are allowed to express their concepts.
This is also a fundamental distinguishing aspect, in terms of computability
and expressivity of consequences in the resulting logic. When results or
definitions are independent of the underlying DL, we use the generic L to
denote any DL. The two members that are of interest in this work are ALC,
using the full spectrum of the above constructors, and its fragment EL⊥.

Definition 2.1 (Syntax of ALC and EL⊥). For a DL L, the set of all
concepts in L is denoted as C(L). Concepts in C(L) are defined in the
following inductive fashion. For any DL, NC ⊆ C(L). For ALC, if r ∈ NR,
and C,D ∈ C(ALC) then

CuD,CtD,¬C, ∃r.C, ∀r.C,>,⊥ ∈ C(ALC).

For the lightweight DL EL⊥, if r ∈ NR, and C,D ∈ C(EL⊥) then

CuD, ∃r.C,>,⊥ ∈ C(EL⊥).

If nothing is known or expected of given concepts in C(L), it is the con-
vention to denote them with upper case letters starting from and succeeding
C, even when they appear nested in another concept. For example, we
say C is quantified in the concept D u ∃r.C, where neither C nor D are
expected to be primitive concept names.

The meaning of concepts that was described intuitively as the description
of classes of objects, is formally captured by DL semantics. Because DLs



2.1 syntax and semantics 15

d e

f

Cat,
Lazy Cat

Dog

friend

fr
ie
n
d

a
fr
a
id

a
fra
id

Figure 2.1: Graph visualisation of I in Example 2.3.

are designed as fragments of first-order logic, their interpretation semantics
are akin.

Definition 2.2 (Semantics of ALC). An interpretation I = (∆I , ·I) is
comprised of a non-empty interpretation domain (short: domain) ∆I and an
extension mapping ·I . Concept names A ∈ NC are mapped to subsets of
the domain under the extension mapping, i.e. AI ⊆ ∆I , while role names
r ∈ NR are mapped to binary relations over the domain, i.e. rI ⊆ ∆I ×∆I .
The special primitive concepts > and ⊥ are mapped to >I = ∆I and
⊥I = ∅ under any interpretation I. The mapping ·I is inductively extended
to non-primitive concepts as in Table 2.1.

Given the notion of interpretations, it becomes apparent that every
concept (whether primitive or not) can be seen as a set of objects, more
explicitly, as a set of domain elements. We frequently refer to these sets,
e.g. for a concept CI , as the extension of C under I. By convention,
domain elements are often denoted with lower case letters starting from,
and succeeding d. Note that in general, there are no restrictions on what
kind of elements belong to a domain. As a matter of fact, for reasoning in
EL⊥, it is common practice to let ∆I ⊆ C(EL⊥) (cf. Sec. 2.4).

Interpretations can be described directly as a collection of subsets of the
domain (one for each concept name) and binary relations (one for each role
name). It is common practice to visualise them as directed graphs, labelling
vertices (domain elements) with sets of concept names and edges with sets
of role names. Sometimes we require to treat specific role edges within
an interpretation. For that, we use the construct r(d, e) for r ∈ NR and
d, e ∈ ∆I , calling d the predecessor and e the successor.

Example 2.3. Consider our simple and comprehensible application context
about cats and dogs. Let I = (∆I , ·I) with ∆I = {d, e, f}. Suppose
the concept names Cat, Dog, Lazy ∈ NC, and the role names friend,
afraid ∈ NR, are assigned to sets and relations in I as follows.



16 description logics

CatI = {d, e} friendI = {(d, e), (e,d), (e, f)}

DogI = {f} afraidI = {(f, e), (f,d)}

LazyI = {d}

The interpretation I is visualised, and much more easily grasped, in Fig-
ure 2.1. From I, we can derive more complex extensions, such as the set
of all lazy cats (Lazy u Cat)I = {d} or those elements having at least
some friend that is a Dog, (∃friend.Dog)I = {e}. Such consequences
are also more easily understood from visualisations such as Fig. 2.1. Thus,
in many examples, we will present the labelled graph representation of an
interpretation, rather than its set-theoretic definition.

Visual representations of interpretations, will often use • for domain
elements, if their name is irrelevant or clear from the context. The interpre-
tation I in Example 2.3 is one potential view on relations and aspects of this
particular application context. Infinitely many others, including ones with
infinite domains exist alongside I. The essence of representing knowledge
and reasoning over it in Description Logics, is to explicitly define sets of
axioms (representation) that restrict the set of all interpretations to those in
compliance with the given axioms. Implicit knowledge is then derived from
commonalities that are shared among those interpretations (reasoning).

2.2 knowledge representation and reasoning in dls

While investigating the properties of a concept in terms of interpretation
semantics can be seen as a representation and reasoning scenario already, it
is a rather inexpressive one. Formulating, for example, relations between
concepts that are expected to be satisfied in general, is a more meaningful
type of represented knowledge. One could generalise the fact that every
Cat is Smart, or that everything whose friend of a friend is a Dog should
be friendly to some Dog directly. A constraint could also be to require
the disjointness of two concepts such as Dog and Cat. We separate
the syntactic aspect of such knowledge representation from the semantic
repercussions they have on interpretations, before discussing the actual
reasoning services that are supported by this syntax and semantics.

syntax of dl knowledge representation. The examples
above are of terminological nature, that is, describing relations between
entire classes of objects, similar to logical implication. Other types of
axioms are of assertional nature, allowing to persist named elements, such
as daisy or molli, throughout all interpretations, and asserting properties
and relations onto it. This is achieved by introducing explicit names, called
individuals, taken from the set NI, which is disjoint from NC and NR. In
abstract scenarios, the convention is to use lower case letters a,b ∈ NI.
In the presence of individuals, every interpretation I is required to assign
a domain element to these individuals, i.e. aI ∈ ∆I . Continuing on
Example 2.3, I could assign for molli,daisy ∈ NI, daisyI = d and
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molliI = e. In such cases, we usually visualise the domain elements d, e
with the individual name they represent. If I is extended in precisely this
way, then f would be considered an anonymous element of the concept
Dog, in contrast to the named Cat elements daisy and molli.

There are two types of assertive axioms. One imposes a concept C onto
an individual a, intuitively expecting interpretations to assign a to a domain
element in the extension of C. The other is explicitly forcing named relations
(role edges) between two individuals.

Definition 2.4 (Terminological and Assertional Axioms). Let a,b ∈ NI be
individuals, C,D ∈ C(L) concepts and r ∈ NR a role name.

• A general concept inclusion (GCI) is an axiom C v D.

• A concept assertion is an axiom C(a).

• A role assertion is an axiom r(a,b).

A finite set of GCIs is called a TBox T , and a finite set of concept and role
assertions is called an ABox A.

An ABox and a TBox are the usual constituents of a knowledge base
(KB), signifying the representation of knowledge. Formally, a knowledge
base K = (A, T) is represented as a tuple. The following methods for
discussing the syntax of KBs (or concepts/axioms) are heavily used in the
remainder of this work.

Definition 2.5. For a KB K = (A, T), the set of subconcepts sub(K) in
K is inductively defined, starting with C,D ∈ sub(K) for C v D ∈ T or
C(a) ∈ A. For the constructors in Table 2.1, C uD,C tD ∈ sub(K)
implies C,D ∈ sub(K) and ¬C, ∃r.C, ∀r.C ∈ sub(K) implies C ∈ sub(K).
The set of quantified concepts Qc(K) in K is

Qc(K) = {C ∈ sub(K) | ∃r.C ∈ sub(K) or ∀r.C ∈ sub(K)}.

The signature of K is sig(K) = sigC(K)] sigR(K)] sigI(A), with

sigC(K) = sub(K)∩NC,

sigR(K) = {r ∈ NR | ∃r.C ∈ sub(K) or ∀r.C ∈ sub(K)
or r(a,b) ∈ A}, and

sigI(A) = {a,b ∈ NI | C(a) ∈ A or r(a,b) ∈ A}.

Remark 2.6. All of the functions in Definition 2.5 extend to axioms (e.g.
sigC(C v D)) and concepts (e.g. Qc(C)) in the natural way. On occasion,
we will also apply these notions to arbitrary tuples, e.g. sub(K,C,D, · · · ).

Looping back to the intuitively expressed GCIs from the beginning of this
section, their formal syntactic representation would be Cat v Smart (all
cats are smart), ∃friend.(∃friend.Dog) v ∃friend.Dog (befriending a
dog by proxy requires to befriend a dog directly), and Cat uDog v ⊥
(cats cannot be dogs and vice versa). We continue to supply meaning to
such axioms in terms of interpretation semantics.
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Syntax Semantics

Concept C I |= C iff CI 6= ∅
Role edge r(d, e) I |= r(d, e) iff (d, e) ∈ rI

GCI C v D I |= C v D iff CI ⊆ DI

Concept assertion C(a) I |= C(a) iff aI ∈ CI

Role assertion r(a,b) I |= r(a,b) iff (aI ,bI) ∈ rI

Table 2.2: Satisfaction of DL axioms, concepts and role edges under an inter-
pretation I = (∆I , ·I), for C,D ∈ C(L), d, e ∈ ∆I , r ∈ NR and
a,b ∈ NI.

semantics of dl knowledge representation. So far we
presented only the syntactical constructs for representing knowledge in DLs,
accompanied with some intuition on their semantics. Formally, the axioms in
a KB characterise a set of interpretations that are called models of the KB.
As in many logics, the notion of a model is tightly linked to the notion of
satisfaction. The satisfaction of axioms and other DL-structures, is defined
as follows.

Definition 2.7 (Satisfaction in DLs). An interpretation I = (∆I , ·I) satis-
fies a concept, role edge, GCI, concept assertion or role assertion according
to the condition in the third column of Table 2.2. An interpretation satisfies
a TBox (I |= T), ABox (I |= A) or KB (I |= K) iff it satisfies all axioms
they contain. The set of all models of a KB K = (A, T) is

Mod(K) = {I | I |= A and I |= T}.

Many times it is also beneficial to single out a particular domain element
and discuss properties that it satisfies specifically. This could be in relation
to a concept, saying e satisfies C in I (e ∈ CI), but also a GCI C v D, i.e.
e ∈ CI =⇒ e ∈ DI . We distinguish between an element e ∈ ∆I actively
satisfying a GCI with e ∈ CI ∩DI , or passively satisfying it, when e does
not satisfy C in the first place.

Recall the interpretation I from Example 2.3. The axiom Cat v Smart is
clearly not satisfied by I, because neither d nor e satisfy the concept Smart.
For Cat uDog v ⊥ to be satisfied, the intersection of the extensions of
Cat andDog needs to be empty (see Table 2.1 and 2.2), which is the case in
I. Less intuitively, e does satisfy ∃friend.(∃friend.Dog) v ∃friend.Dog
in I, not because it belongs to the extension of the right-hand side, but
because it does not belong to the left-hand side, and thus passively satisfies
it.

classical reasoning in description logics. One of the
elementary reasoning tasks that is typically considered for DLs, is consistency
checking. Intuitively, this means asking the question “Does the knowledge
we represented even allow satisfaction in any way?”. This notion can be
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extended to check consistency of constructs, such as concepts or GCIs, with
respect to a KB.

Definition 2.8 (Consistency of and with Knowledge Bases). A KB
K = (A, T), is consistent iff Mod(K) 6= ∅. For a concept C ∈ C(L),
C is consistent with the KB K iff there is some I ∈ Mod(K) such that
I |= C. A KB is QC-consistent iff all E ∈ Qc(K) are consistent with K.

Consistency, in particular QC-consistency, can also be seen as a property
of a KB, rather than an informative reasoning task. QC-consistency is most
useful for EL⊥ KBs K, because if E ∈ Qc(K) is not consistent with K, then
(∃r.E)I = ⊥I = ∅ holds for all I ∈ Mod(K). Thus, replacing all existential
quantifications over inconsistent quantified concepts by ⊥ always yields an
equivalent QC-consistent KB K ′ (i.e. Mod(K) = Mod(K ′)).

As described in the end of Section 2.1, the most interesting task is to find
commonalities among all models of the KB. Such commonalities can be a
variety of different properties. The most basic such properties, those that are
the subject of this work, are GCIs and concept assertions. It can be readily
seen, that an explicit representation of the fact that Dog v ∃afraid.Cat
and Cat v Smart results in all models of this KB to implicitly satisfy
Dog v ∃afraid.(Catu Smart). Similarly, asserting the property Cat to
the individual daisy (Cat(daisy)) and generally expecting all Cats to be
Smart (Cat v Smart), allows to draw the conclusion that Smart(daisy)
is satisfied in all models of the KB.

Definition 2.9 (Subsumption and Instance Checking). Let K = (A, T) be
a KB and α a query. The tuple (K,α) is called an inference problem (or
reasoning task). Given an inference problem, the projections QI((K,α)) = α
and KB((K,α)) = K are used to extract the query and KB, respectively.
An inference problem is a classical subsumption query, if α is a GCI and a
classical instance check, if α is a concept assertion. The classical inference
problem (K,α) is true under classical semantics iff

∀I ∈ Mod(K).I |= α. (2.1)

For a query C v D or D(a), C and a are denoted as the query subject,
respectively.
Referring to an inference problem as a tuple of a KB and query, allows

many of our results to remain formally clean. This will play an important
role in Part ii, where we discuss reductions allowing to decide one inference
problem, by transforming it to another. At the same time, we will also make
use of the more widely adopted notation, extending the satisfaction operator
|= that we used with single interpretations. More explicitly, for classical
entailment we shall use the shorthand K |= α (say K classically entails
α), when (K,α) is true under classical semantics. The main contributions
of this work introduce semantics going beyond classical, formally defining
different variants of the entailment operator “ |=”, to capture more expressive
queries than classical subsumption and instance checks.
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defeasible representation and reasoning. Before step-
ping into more advanced aspects of classical Description Logics, we extend
the standard notions from above by a more vague form of knowledge repre-
sentation. As argued in the beginning, knowledge is often neither fixed, nor
complete. It may develop over time and introduce aspects that contradict
previously posed axioms. If all axioms are strict, e.g. GCIs, such contradic-
tory knowledge can lead to the inconsistency of a concept w.r.t. a KB, or
even worse, the KB itself. From Definition 2.9, it becomes clear why an
inconsistent KB is counterproductive for any KR scenario. If Mod(K) = ∅,
then (2.1) is trivially satisfied for any classical query α, rendering the repre-
sented knowledge ineffectual. Likewise, if CI = ∅ in all models I ∈ Mod(K),
then K |= C v D holds trivially for any concept D. There are numerous
approaches and ideas to treat such a development of knowledge adequately.
An overview is given in Chapter 3. Here we only introduce the basic notions
that are required for the semantics we investigate.

Instead of expressing all knowledge as strict and irrefutable GCIs or
assertions, Defeasible Description Logics allow for the modelling of defeasible
axioms. Intuitively, such axioms can be understood to describe the properties
of a typical member of a concept. As such, instances of this concept are
expected to satisfy also these typical properties. They are exempt of
this, only if they satisfy more specific properties, contradicting said typical
behaviour. In a manner of speaking, this exemption can be seen as defeating
typical information.

Formally, a defeasible concept inclusion (DCI) is an axiom C @
∼ D, reading,

“elements of C are usually also elements of D”. DCIs are gathered in a
finite set, called the DBox, typically denoted with D. From here on out,
a KB is, in general, a triple K = (A, T ,D). When any of those boxes is
empty, we can freely describe K as the remaining pair, or even denote any
single box as the knowledge base as well. If required, we explicitly introduce
a KB as defeasible, if D 6= ∅, and as strict, if D = ∅. For a (general) KB
K = (A, T ,D), its strict part is formally captured with Kstrict = (A, T).
The syntactic notions of Definition 2.5 carry over to DCIs in the natural
way (essentially from GCIs). In particular, the notion of a domain element
actively/passively satisfying a DCI, is paramount for comparing “typicality”
of elements w.r.t. the represented defeasible knowledge.

To separate classical from defeasible knowledge, also in terms of inferences,
a KB K = (A, T ,D) is expected to have the same classical consequences
as Kstrict. Therefore, a knowledge base must be explicitly queried for
the entailment of defeasible knowledge, which should be determined by
taking the DBox into account. The queries we consider here, are the
defeasible variants of subsumption and instance checking. Formally, a
defeasible subsumption query is presented in the form of a DCI C @

∼ D

and the defeasible variant of an instance check is described as C{a}. The
separation of classical and defeasible instance checking is only precedented
in [CMVM’13], while earlier approaches made no such distinction, somewhat
blending them together [CS’10; CS’12]. An inference problem (K,α) is
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called defeasible, if the query α is either a defeasible subsumption or a
defeasible instance check.
Some of the original studies for defeasible logics by Loui [Lou’87] and

Nute [Nut’01] introduce strict knowledge, defeasible rules and defeaters.
The purpose of defeaters is to disable defeasible rules under the characterised
conditions. The role of strict knowledge in defeasible DLs is of course taken
on by GCIs and assertive axioms. DCIs from the DBox act as both defeasible
rules and defeaters. The motivation for defeating a rule is to maintain
consistency of the query subject, i.e. exclude contradicting DCIs.
For a brief illustration, consider the defeasible assumption that cats are

usually smart, Cat @∼ Smart, and that cats who befriend dogs are usually
not smart, Cat u ∃friend.Dog @

∼ ¬Smart. These DCIs can never be
both actively satisfied by any domain element in any interpretation. Hence,
deciding an appropriate query in a meaningful way, requires one or the other
to prevail1. How to determine this interaction between DCIs and produce
meaningful defeasible entailments of a KB is the main subject of this thesis.
A continuously studied approach from the literature is fully formalised in a
new and abstract way in Part ii. Our novel, even stronger model-theoretic
semantics are introduced and analysed in full in Part iii.

2.3 fundamental results

In the following we present several general results on classical reasoning in
DLs, that are essential in the technical parts of this work. These results
are considered folklore in the area of Description Logics, hence, we shall be
brief in their presentation. For more thorough details, the reader is politely
referred to the introductory literature once more, specifically Chapters 2,3
in [BCM+’10] and Chapter 6 in [BHLS’17].

disjoint model union property. The DL ALC and its sub-
logics all enjoy the so-called disjoint model union property (DMUP), a
notion that is quite common in modal logics2. The intuition behind this
property is that two models can easily be joined into a new interpretation
that also satisfies the given knowledge base. The practical benefit is that
this disjoint union interpretation retains some of the features that each
of the original models exhibited (cf. Example 2.10). The most common
application of this property is in proofs, when it is necessary to derive a single
model lacking or satisfying two (or more) features, which can originally be
only assumed separately for two distinct models.
Formally, the disjoint union of two interpretations I = (∆I , ·I), J =

(∆J , ·J ) is defined as I ] J = (∆I ]∆J , ·I]J ) with AI]J = AI ]AJ

and rI ] rJ . When individuals are involved in the satisfaction of a KB

1 If an element satisfies Cat and is not related to any Dog with the role friend, then it
can satisfy both DCIs, the second one passively. For argument’s sake we consider this
prevalence of the first DCI.

2 Schild [Sch’91b] showed that ALC is a syntactic variant of the modal logic K, and thus
inherits its properties, such as the DMUP.
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K, their extension under I ] J can match either that of I or J , but has
to be chosen consistently. If the DMUP is satisfied for a DL L, and the
interpretations I, J satisfy an L KB K = (A, T), then the disjoint union
of I and J also satisfies K.

Example 2.10. Suppose a KB K does not entail C v D and C v E.
A priori, we can only assume that there exists some model I with d ∈
CI \DI and some J with e ∈ CJ \ EJ . If K is an ALC KB (or below),
then I ]J is a model of K and d, e ∈ CI]J , s.t. d 6∈ DI]J and e 6∈ EI]J
are both satisfied in I ] J .

reasoning in ALC. Algorithms for reasoning in DLs are often tailored
specifically to the set of concept constructors and axioms that are available in
this DL. For ALC specifically, a form of search and backtracking is required
to investigate the different options for satisfaction that are opened up by
disjunction (t). For subsumption and instance checking w.r.t. general
concept inclusions in ALC, tableaux algorithms are typically employed
[DM’00]. Such algorithms run in exponential time, matching the lower
bound for such reasoning in ALC, as proved by Schild [Sch’91a]. In our
own complexity investigation in Chapter 8, the ExpTime-completeness of
ALC is our only concern, which is why we leave the comments on tableaux
algorithms at that.

reasoning in EL⊥. The lightweight Description Logic EL and siblings
of the so-called EL-family are predominantly studied for their computational
prowess. Baader et al. [BBL’05] and Brandt [Bra’04] show that decid-
ing classical entailment of subsumption remains P-complete, even in the
logic EL++ with GCIs. This logic encompasses EL⊥ and certain concept
constructors, allowing to model assertive knowledge—as introduced here
within the ABox—relying only on GCIs. Therefore, this tractability trivially
transfers also to the problem of deciding classical instance checks in EL⊥.

An additional product of [BBL’05; Bra’04] is the canonical model property
that members of the EL-family possess. Recall that the standard definition
of entailment in DLs relies on satisfaction of a query by all models of the
underlying knowledge base. It turns out that, in such simple DLs, there exist
models that are canonical for the set of all models, in terms of their shared
entailments. To be more precise, a model of a KB is considered canonical
(w.r.t. a certain signature), if it can be homomorphically embedded into
every other model of the KB. Consequently, if an entailment is supported by
a canonical model, it must be entailed by all models. A more formal account
of this canonicity is presented in Section 2.4, in a slightly unconventional,
but equivalent approach. The conventional formalisation of canonical
models utilises graph simulations. For a thorough exposition on that subject,
consider Lutz and Wolter [LW’10].
As a consequence of [BBL’05; Bra’04], such models can be computed

in polynomial time, and are of polynomial size in the original input. This
allows for very intuitive algorithmic solutions, in particular for computing
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non-standard inferences such as most specific concept [Neb’90; SL’83],
least common subsumer [CBH’92; Tur’07], or concept similarity [Eck’17;
EPT’15], as well as defeasible entailment [PT’17a; PT’18] (Section 8.1),
among others.

2.4 advanced notions

We close the introductory part on Description Logics with a formal account
of two notions that are specifically tailored to this thesis. As such, they are
rarely adopted in other areas of research in DLs, and count towards the
contributions of this work. The first is a straightforward extension of the set
operations intersection or subset, to interpretations over a shared domain.
For the second, we present a view on canonicity in classical EL⊥, which is
used as the main motivation for the formal construction of the defeasible
semantics introduced in Chapter 7.

set-like interpretation operations. The approach we
take in Chapter 7 to achieve non-monotonic semantics relies heavily on
interpretations sharing the same domain. Such interpretations behave very
well when treated as tuples of sets. Standard set operations can be lifted
to these interpretations, applying the operation component-wise to the
extension of every concept and role name.

Definition 2.11 (Interpretation-Operations). Let I = (∆, ·I), J = (∆, ·J )
be two interpretations over a shared domain ∆.

1. I ⊆ J iff ∀A ∈ NC, r ∈ NR.
(
AI ⊆ AJ ∧ rI ⊆ rJ

)
and ∀a ∈ NI.aI = aJ

2. I ∩ J = (∆, ·I∩J ) with AI∩J = AI ∩ AJ , rI∩J = rI ∩ rJ if
aI = aJ (for all A ∈ NC, r ∈ NR,a ∈ NI)

If I and J disagree on the extensions of individuals, then their intersection
is undefined.

A simple consequence of Definition 2.11 is that the subset relation between
two interpretations over a shared domain translates in the straightforward
way to their extension of EL⊥ concepts.

Lemma 2.12. For two interpretations I,J over a shared domain ∆, it
holds that

I ⊆ J implies CI ⊆ CJ for all C ∈ C(EL⊥).

Proof. We prove the claim by induction on the structure of C. The cases
C = A ∈ NC and C = E u F are trivial (under the hypothesis that the
claim holds for E and F). Let C = ∃r.E, for r ∈ NR and assume the claim
holds for E. By definition, (∃r.E)I = {d ∈ ∆ | ∃(d, e) ∈ rI .e ∈ EI}. From
I ⊆ J , i.e. rI ⊆ rJ and EI ⊆ EJ , we can directly conclude

(∃r.E)I ⊆ {d ∈ ∆ | ∃(d, e) ∈ rJ .e ∈ EJ }.

This preliminary result comes immediately into action in the following.
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context restriction and representability in EL⊥. In-
tuitively, every domain element of a canonical model (in EL⊥) represents
an entire class of objects (or a specific named individual). As such, these
class-representatives share precisely the information that all elements of
this class share in all models of the underlying knowledge base. One could
say, the canonical model “knows everything that the KB entails about this
class”. On the flipside, canonical models can only be used to determine
entailments, if they accommodate for enough information. More precisely,
deciding entailment of a subsumption query C v D or an instance check
D(a), is only possible if the canonical model contains a domain element
representing the concept C, or respectively, the individual a. Luckily, for
every (consistent) query subject, an appropriate canonical model can be
constructed (given that the KB is consistent). From an application’s point
of view, it also makes sense to fix, a priori, a set of concepts/individuals of
interest. Then, the corresponding canonical model needs to be computed
only once, and can be repeatedly queried for the entailments it supports.
Formally, this set of concepts/individuals of interest can be generalised as a
context of relevant terms.

Definition 2.13 (Relevant Context). A relevant context C, O (short:
context) is comprised of a set of individuals O ⊆ NI, and a set of concepts
C ⊆ C(L), over the (present) DL L. For a KB K = (A, T ,D), a context
C, O,

• contains K iff Qc(K) ⊆ C and sigI(A) ⊆ O,

• is consistent with K iff ∀C ∈ C.K 6|= C v ⊥, and

• is quantification closed iff Qc(C) ⊆ C.

Furthermore, a query α ∈ {C v D,C @
∼ D,D(a),D{a}} is said to be over

a context C, O, if C,D ∈ C and a ∈ O.

Note that we often introduce “a consistent context containing K”, implic-
itly associating its consistency with the KB K.
Requiring a canonical model to contain certain concepts (such as query

subjects), is common practice ([LW’10]). This is generalised with a relevant
context. Another widely accepted use of a context is to simplify a problem
by restricting it to a reasonable (e.g. finite) context, rather than dealing
with an unbounded number of relevant subjects (e.g. [Bon’19]). We use
the context to show that reasoning in EL⊥ can be reduced to reasoning
over models only representing concepts and individuals given in a predefined
context, if this context is sufficiently large. This is a slightly weaker result
than the canonical model property, but its exhibition is prototypical for the
construction in Chapter 7. The representation of concepts and individuals
begins with a direct association of the context in terms of an interpretation
domain.
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Definition 2.14 (Representative Domain). For a context C, O, the repre-
sentative domain is defined as

∆C,O = C∪O.

A domain element d ∈ ∆C,O is called

• a concept representative, if d ∈ C, and

• an individual representative, if d ∈ O.

Interpretations over a representative domain are called representative
interpretations, or models, if they satisfy a given KB. Note that all the
notations introduced in Section 2.1 and 2.2 clearly also apply to interpreta-
tions over representative domains. The elements in a representative domain
are given meaning in representative interpretations, by securing a form of
well-behaviour, for such interpretations.

Definition 2.15 (Standard Interpretations). For a context C, O, an inter-
pretation I over the representative domain ∆C,O is standard iff

1. C ∈ CI for all C ∈ C,

2. a = aI for all a ∈ O, and

3. d ∈ (∃r.C)I implies (d,C) ∈ rI for all d ∈ ∆C,O, C ∈ C.

The standard property of representative interpretations ensures several
things. When a domain element is associated with a concept C (or an indi-
vidual a), the standard property will ensure that an interpretation satisfying
a KB K maintains at least the information that is entailed for C (or a) by K,
within the respective domain element. The final aspect of standard interpre-
tations ensures a sort of uniform behaviour for witnesses to the satisfaction
of existential restrictions. This allows to intersect interpretations in terms
of Definition 2.11 and expect this intersection to adhere to Lemma 2.12. It
is essentially a technical attribute that simplifies a plethora of the results
throughout this entire thesis.
As promised, we capture a set of models of a KB that is restricted to

standard models over a given representative domain.

Definition 2.16 (Standard Models). For a quantification closed context
C, O, containing K, the set of all standard models of K for C, O is

Mod(K,∆C,O) = {I ∈ Mod(K) | I = (∆C,O, ·I)∧ I is standard}. (2.2)

At this point, it is clear what we meant by a “large enough” context. To
fully ensure well-behaviour in terms of Def. 2.15, it must be guaranteed
that the required witnesses to any potentially satisfied existential restriction
(those occurring in K) also occur in the context.

The reduction of classical entailment in EL⊥ to entailment under standard
representative models (over an appropriate context) is contingent on one
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essential result. We show that every arbitrary interpretation I can be
converted to a standard representative interpretation.3 This “normalised”
standard interpretation, is shown to maintain the information that I holds
for all concepts and individuals of the context. In particular, if I satisfies a
KB, it follows that the constructed standard interpretation does so as well.

Lemma 2.17. For a knowledge base K and a consistent, quantification
closed context C,O containing K and any arbitrary interpretation I =

(∆I , ·I), let J (I) = (∆C,O, ·J (I)) with

AJ (I) = {C ∈ ∆C,O | I |= C v A}
∪ {a ∈ ∆C,O | I |= A(a)}

rJ (I) = {(C,D) ∈ C×C | I |= C v ∃r.D}

∪ {(a,D) ∈ O×C | I |= (∃r.D)(a)}

∪ {(a,b) ∈ O×O | (aI ,bI) ∈ rI}

aJ (I) = a

for all A ∈ NC, r ∈ NR, a ∈ NI. It holds that

1. C ∈ DJ (I) iff I |= C v D (for C,D ∈ C),

2. a ∈ DJ (I) iff I |= D(a) (for D ∈ C, a ∈ O), and

3. I ∈ Mod(K) implies J ∈ Mod(K,∆C,O)

Proof.

claim 1 and 2. We prove Claim 1 and 2 by induction on the concept
D. The base case for D = A ∈ NC follows trivially by definition of
J (I) for both C ∈ C and a ∈ O. For the induction step D = ∃r.E,
we treat the first two claims separately, under the assumption that
the claims hold for E. The case of D = Eu F is trivial.

C ∈ (∃r.E)J (I) implies that there is some (C, F) ∈ rJ (I) with
F ∈ EJ (I) (the successor of this edge can only be some F ∈ C, by
definition of J (I)). From the induction hypothesis, it follows that
I |= F v E. By construction, (C, F) ∈ rJ (I) implies I |= C v ∃r.F,
collectively proving I |= C v ∃r.E. For the other direction, note that,
E ∈ C is guaranteed by D ∈ C and the context being quantification
closed (i.e. Qc(D) ⊆ C). Thus, I |= C v ∃r.E directly implies
(C,E) ∈ rJ (I) by construction of J (I). The induction hypothesis
implies E ∈ EJ (I) (because trivially, I |= E v E), and therefore,
C ∈ (∃r.E)J (I).

The only difference for Claim 2 is that a ∈ (∃r.E)J (I) could be the
result of (a,b) ∈ rJ (I) with b ∈ EJ (I). In this case, the induction
hypothesis is I |= E(b), which allows for two insights:

3 This transformation can be somewhat regarded as the reverse of a homomorphic embed-
ding of a standard representative model, into an arbitrary model of the KB.
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1. (aI ,bI) ∈ rI implies I |= (∃r.E)(a), proving the claim.

2. Additionally, I |= (∃r.E)(a) implies (a,E) ∈ rJ (I), show-
ing that every named witness (individual representative) to
a ∈ (∃r.E)J (I) is accompanied by the appropriate anonymous
witness E, if E ∈ C.

claim 3. First of all, the final consideration of the proof for Claim 1
and 2 (together with Claim 1 and 2), shows that J (I) satisfies
all properties of standard interpretations (Def. 2.15). Every C ∈ C
belongs to CJ (I) (Claim 1), every a ∈ O is assigned to aJ (I) (by
construction), and, regardless of the successor element witnessing
C ∈ (∃r.E)J (I) (or a ∈ (∃r.E)J (I)), (C,E) ∈ rJ (I) is satisfied
((a,E) ∈ rJ (I), respectively).

Assume J (I) does not satisfy some GCI or ABox assertion from K.
The construction of J (I), together with Claim 1 and 2, shows that
I cannot be a model of K.

Remark 2.18. Note that for the if -direction of Claim 1 and 2 in Lem. 2.17
it is enough to rely on Qc(D) ⊆ C. This property is naturally satisfied
when applying those claims to GCIs and concept assertions of a KB that is
contained in the context. The only-if -direction of the first two claims in
Lem. 2.17 does not rely on D ∈ C at all.

We rely on Remark 2.18 to prove the desired main result without explicitly
making restrictions on the context as in Claim 1 and 2 of Lem. 2.17. Finally,
this result shows that, in classical EL⊥, a restriction to a relevant context
is (almost) no restriction at all.

Theorem 2.19. For a KB K and a consistent, quantification closed context
C, O, containing K, it holds for every C ∈ C, a ∈ O, that

1. K |= C v D iff C ∈ DI for all I ∈ Mod(K,∆C,O), and

2. K |= D(a) iff a ∈ DI for all I ∈ Mod(K,∆C,O).

Proof. The only-if -direction follows trivially from Mod(K,∆C,O) ⊆ Mod(K)
and Definition 2.15 for both claims.

For the if -direction of both claims, assume there is a model I ∈ Mod(K)
that does not satisfy C v D (or D(a)). Constructing J (I) as in
Lemma 2.17 supplies a model in Mod(K,∆C,O) such that C 6∈ DJ (I)

(or a 6∈ DJ (I)). J (I) is a model of K, because we can utilise the entirety
of Lem. 2.17 and C 6∈ DJ (I) (or a 6∈ DJ (I)) relies only on the only-if -
direction of Claim 1 and 2 in the preceding lemma (i.e. not relying on
D ∈ C).

The only downside of this context restriction, is that Theorem 2.19 applies
only to queries whose subjects are part of the given context. Nevertheless,
this idea holds theoretical value, not only for the main body of this work.
Among others:
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1. Standard representative models are uniform, which allows for easy
comparison via ⊆ and combination via ∩.

2. As a matter of fact, using Lemma 2.12, it can be shown that standard
models are closed under intersection, allowing to derive a ⊆-smallest
model in Mod(K,∆C,O). This smallest model is effectively an alterna-
tive characterisation of a canonical model for the KB K.

3. Domain elements can represent entire concepts, allowing to determine
subsumption entailments by checking single elements, rather than all
members of a concept extension.

4. In many cases, it suffices to consider a finite context, resulting in
a finite representative domain. Due to finiteness of K (and thus of
sig(K)), this trivially guarantees the set Mod(K,∆C,O) to be finite.

We abstain from formally showing Point 2 of the above. A variant of
this line of arguments will be presented in Section 7.2 for an extension of
representative models that allows treatment of defeasible information and
characterisation of non-monotonic semantics for EL⊥.
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NON-MONOTONIC REASONING

“I propose to consider the question, ‘Can machines think?’ ”

Turing [Tur’50, p. 433]

Ever since Turing discussed machine intelligence, different methods have
been investigated to automate reasoning over formal knowledge (KR).
What we consider to be classical approaches, generally exhibit a monotonic
behaviour in the inferences that they are able to derive. More formally, for
knowledge bases K,K ′ and any query α:

K |= α implies K ′ |= α for K ⊆ K ′. (3.1)

While satisfaction of this property is proof of a reliable, stable, and reasonably
objective KR formalism, monotonic reasoning semantics are not suited
to adequately model some very intuitive scenarios. Knowledge is often
subjective and evolving over time. This easily results in the need to formally
represent contradictory information, be it because of discrepancies among
different sources (e.g. semantic web), or the need to express generic
behaviour in the light of incomplete information, expecting to encounter
exceptions of such behaviour in the future. Reconsider our playful example
from Chapter 2, stating that all Cats are Smart. When learning of single
individuals, such as molli befriending a Dog (which, for argument’s sake,
we shall consider to be evidence of not being Smart), this general statement
ceases to be satisfiable. More explicitly, if no interpretation can satisfy two
such axioms (say α, α ′) simultaneously, then a KB containing them (α,α ′ ∈
K) has no model. In classical formalisms, such contradictory information,
together with monotonicity, renders the extended KB meaningless, ex falso
quodlibet. A formalism that is not committed to monotonicity, could resolve
such inconsistencies by retracting either α or α ′, thereby maintaining
consistency of the KB and the value of its entailments. The main difficulty
in devising such non-monotonic formalisms has always been to provide
reasonable arguments (as a form of well-behaviour) for the fundamental
choice between α and α ′.

Since the 60s, many different formalisms have emerged. While this is by
no means a survey on non-monotonic semantics, we would like to briefly
present the fundamental idea of three different categories of formalisms
that are capable of such knowledge retraction. These are not necessarily
considered as non-monotonic in the literature. For a full overview, consult
Brewka et al. [BDK’97] or a more brief version in [Bre’89].

abductive reasoning describes the study of entailment relations
that allow specifically for the individual retraction of previously drawn

29
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conclusions, to maintain consistency within the current set of infer-
ences. A cornerstone of such reasoning mechanisms is that consis-
tency is maintained without altering previously represented knowledge.
These formalisms are most commonly referred to as non-monotonic.

belief revision studies the evolution of knowledge bases, while rely-
ing on classical semantics to compute entailments ([Gär’92]). When-
ever contradictory knowledge is learned, the KB is analysed for its
inconsistencies and revised to produce a consistent variant of this KB.
To not venture too far from the entailments of the original KB, formal
properties are imposed on such a revision, an idea originating from
Alchourrón et al. [AGM’85]. Motivated by the evolution of knowledge
in the semantic web, revision has received and continues to receive a
lot of attention also in DL research. For a brief survey, consider Qi
and Yang [QY’08].

inconsistency tolerant reasoning is studied with a slightly
different purpose ([BHS’05]). In reasoning under repair semantics, the
evolution of knowledge is not to be tempered with as done in belief
revision. In light of contradictory knowledge in the KB, information
is not being rewritten, retracted or changed in any way. However,
to obtain a useful and consistent set of consequences, consistent
subsets of the original KB are determined. It is then studied how to
supply a user with sound consequences based on a potential variety
of distinct, so-called repairs of the KB. This approach is particularly
well studied for Description Logics [BR’13; Bou’16; LLR+’10], due
to their application to (often contradictory) collaborative sources
of knowledge, as most commonly encountered in the semantic web.
Orthogonal approaches to repair semantics consider multivalued logics
(origin: [Bel’77], DL: [MMH’13]), to accommodate for inconsistent
knowledge.

Note that these categories are somewhat independent of the underlying
representation formalism. As such, they are not only remnants of the past
century but are of great influence for modern formalisms such as Description
Logics ([LLR+’10; MMH’13; QY’08]). In particular, ours is a study of
abductive reasoning in DLs. Therefore, we discuss different approaches
to achieve such reasoning in slightly more detail. The list we present in
Section 3.1 is a selection of the fundamental ideas that have already been
adopted to DLs in the past, thus, classifying them as related work for the
present contribution. This list is leading up to the immediate foundations of
our own semantics, the so-called preferential logics, which we will present
in more detail in Section 3.2.

3.1 common approaches to abductive reasoning

The following is a collection of noteworthy approaches to non-monotonic
reasoning in DLs, which are selected for two reasons:



3.1 common approaches to abductive reasoning 31

1. For their prominence among related approaches, evidenced by their
persistence and continued adaptation to new formalisms, and

2. For their successful coalescence with the KR formalism of Description
Logics.

circumscription. The technique of circumscription originates from
McCarthy [McC’80], circumscribing predicates and axioms in classical first-
order logic. The central intuition is to explicitly allow elements in the domain
to contradict certain axioms, but to impose a form of minimality on such
exceptions.
To be slightly more concrete, we move to a more intuitive version of

circumscription, not coincidentally extending classical DLs as per Bonatti
et al. [BLW’06]. Strict implications, such as Cat v SmarttAbnormal
would be modelled with exceptional cases in mind. A circumscription
pattern supplements the KB to state which concept or role names are to
be minimised. In this short example, it would be intuitive to minimise the
number of Abnormal instances. This would allow individuals such as
molli befriending a Dog to remain consistent with this strict statement.
Minimisation forces more generic individuals, e.g. daisy, to satisfy Smart,
for lack of a sufficient reason to not be Smart. It is worth noting that the
adaptation of circumscription to Description Logics exhibits an increase in
reasoning complexity [BLW’09] over classical reasoning, also in lightweight
DLs [BFS’11]. This is not always the case in adaptations of non-monotonic
semantics to DLs.

default logic. The origin of default logic is typically pointed to
Reiter [Rei’78], with a more advanced state in [Rei’80]. The essence of
default reasoning is not the acceptance of exceptional cases, but rather a
form of consistent completion of incomplete knowledge. A new form of
axiomatic implication is introduced as default rules, allowing to express “A
implies B if it is plausible to assume C”, e.g.

Cat(x) : Smart(x)

Smart(x)

That is, if x is a Cat and x satisfying Smart would be consistent with the
remaining knowledge, then gain the conclusion that x is Smart. Difficulties
in default reasoning arise when the consequents of two default rules invalidate
each other’s consistency checks, i.e.

α : ¬β

γ
and

α : ¬γ

β

Both of these rules are sound, as long as the other is not “used”. This
phenomenon is argued to be desired, because of the assumptive nature of
default rules. It leads to several extensions of the KB, which are considered
to be different coherent sets of beliefs about the world. The main question
for default reasoning is then how to combine distinct, consistent extensions



32 non-monotonic reasoning

of a KB to provide meaningful entailments. The immediate options that
come to mind are formally introduced as

sceptical: derive only consequences supported by all extensions, and

credulous: derive all consequences supported by any extension.

Adaptations of Reiter’s default logic for Description Logics were first
investigated by Baader and Hollunder [BH’92] with more advanced results
in [BH’95a]. This adaptation did not come without difficulties. Known
drawbacks from its foundation, such as a lack of precedence among default
rules, retained their severity in the DL setting. An improved variant of
default semantics in DLs has appeared in [BH’95b], aiming to resolve this
deficiency by consulting the hierarchical structure of DL concepts.

auto-epistemic logic. An idea going back to Moore [Moo’85]
is to employ an epistemic operator, allowing to capture the belief in truth
in addition to factual truth. If there is no evidence to derive the truth of a
sentence p, then it shall be believed that p is false, which is distinguishable
from the fact that p is false by the epistemic operator. An extension
of the knowledge base, providing evidence for the truth of p, forces to
retract such consequences that were only supported by the belief about ¬p.
Such semantics—their adaptations to DLs included [DLN+’98; DLN+’92;
DNR’97]—rely on a technique known as MKNF (minimal knowledge, nega-
tion as failure), a paradigm that is common also to logic programming
[AB’94; Cla’78].
A continuous wave of research towards non-monotonic semantics in

DLs and related formalisms (e.g. modal logics [BV’18a]) appears every
year. Seeing as many adapted semantics suffer from crucial drawbacks (see
Chapter 5), it is perhaps more promising to approach non-monotonicity
in DLs directly. A noteworthy approach by Bonatti et al. [BFPS’15;
BFS’10; BS’17] is introducing a notion of overriding for Description Logics.
Essentially, defeasible inclusions, describing prototypical attributes of a
normality concept, can be overridden in accordance with a priority relation,
determining prevalence among conflicting statements.

Last, but certainly not least, on this list of non-monotonic semantics are
preferential logics. With their roots in the work by Kraus et al. [KLM’90],
they provide the foundation for the semantics we introduce and discuss in
Part ii and Part iii.

3.2 preferential reasoning

The study of preferential reasoning revolves around the idea to axiomatise
the expected behaviour of an agent, in a setting where it is necessary
to draw valuable conclusions from incomplete knowledge. In case of a
contradiction, premature conclusions must be allowed to be retracted or
overridden in a non-monotonic fashion. This dynamic mechanism to draw
conclusions, based on the assumptions represented in a KB, is often denoted
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as defeasible reasoning. Preferential reasoning was originally introduced
for the propositional calculus around 1990 [KLM’90; LM’92]. The axioms
proposed by these authors are famously referred to as the KLM-postulates.
Many studies since then build on their notion of well-behaved non-monotonic
reasoning, adopting their approach to different logics [Bou’94; BMV’11b;
Del’98; LM’90].

Technically, the KLM-postulates characterise a multitude of consequence
relations. The initial set of postulates proposed by KLM classifies the set
of preferential entailment relations. Not much later, Lehmann and Magi-
dor refined this set of axioms, introducing a weak form of monotonicity,
called rational monotonicity, and in doing so, classifying a set of rational
entailment relations. The study of such relations (in any logic formalism)
usually revolves around two aspects. For one, a semantic characterisability
for each of the accepted entailment relations is investigated. This is usually
accomplished with preferential semantics, extending classical semantics
with some form of preference relation on the treated entities. In [KLM’90;
LM’92] specifically, this is a preference relation on different truth value as-
signments, or worlds (Def. 2.4 in [LM’92]). This aspect is usually leading up
to representation results of the form “this (single) preferential interpretation
satisfies certain properties iff the entailment relation it describes is prefer-
ential/rational”. While this characterisation of entailment relations through
semantic structures is inherently valuable, it lacks practicability for concrete
scenarios where some user is presented with defeasible, or (as denoted by
Lehmann and Magidor) conditional knowledge, and seeks valuable answers
to queries over such knowledge. The second aspect of preferential reasoning
emerged in [LM’92], fittingly introducing a formal notion of preference
over all rational entailment relations. Lehmann and Magidor claim that
any sensible non-monotonic entailment relation must derive at least those
entailments that are contained in the most preferred rational entailment
relation (Thesis 5.25 in [LM’92]). This most preferred entailment relation
is famously known as the Rational Closure of the knowledge base. Their
thesis lays the ground work for numerous investigations around the notion
of Rational Closure in more expressive formalisms, including Description
Logics.
To provide a better understanding for the foundation of our work, we

formally introduce the basic notions of the KLM-approach in the following.
As ours is a study revolving around Rational Closure, we refer the interested
reader to [KLM’90; LM’92] for more details on representability of preferential
and rational entailment relations.

3.2.1 What does a Conditional Knowledge Base Entail?

Lehmann and Magidor [LM’92] propose a form of knowledge representation
that weakens the notion of logical implication into what they call conditional
assertions. Such statements can express that “α normally entails β”, formally
α ∼ β. The conditionality of these assertions can be intuitively paraphrased
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(Ref) α≈ α (LLE)
|= α↔ β α≈ γ

β≈ γ

(And)
α≈ β α≈ γ
α≈ β∧ γ

(RW)
α≈ β |= β→ γ

α≈ γ

(Or)
α≈ γ β≈ γ
α∨β≈ γ

(CM)
α≈ β α≈ γ
α∧ γ≈ β

(RM)
α≈ β α 6≈ ¬γ

α∧ γ≈ β

Figure 3.1: Propositional KLM-postulates for preferential/rational entailment rela-
tions.

as “the assertion holds true under the condition that it is sound”. That is,
in light of a contradiction, the reasoning mechanism is allowed to disregard
these implications. This process can be seen as a form of defeasible
reasoning (cf. [Nut’01]), where the duty of defeaters is imposed directly
on the defeasible (here: conditional) rules. Similarly, this formulation of
the defeasibility condition has a strong resemblance to Reiter’s default rules
[Rei’80], with the difference that conditional assertions are evaluated with an
inherent specificity-based1 precedence. The lack of precedence is sometimes
criticised for default logics [BH’95b].

What we describe as the reasoning mechanism, is formally captured with
entailment relations ≈, which are essentially sets of conditional assertions,
e.g. α ∼ β ∈ ≈. We often write ≈ α ∼ β or directly α≈ β.

Definition 3.1 (Preferential and Rational Entailment Relations). An en-
tailment relation ≈ is preferential iff it satisfies the postulates reflexivity
(Ref), left logic equivalence (LLE), (And), (Or), right weakening (RW),
and cautious monotonicity (CM) (Fig. 3.1). An entailment relation ≈ is
rational iff it is preferential and satisfies the additional postulate rational
monotonicity (RM) (Fig. 3.1).

[LM’92] is more practically oriented than their original contribution
[KLM’90], in the sense that the authors inspect a full KR scenario, starting
from the representation of conditional knowledge and proposing a single
entailment relation (extending the input knowledge base), to provide mean-
ingful answers to queries over the represented knowledge.

“The question asked in the title [. . .] has no simple answer
and has probably no unique answer good for everyone in every
situation.”

[LM’92, p. 3]

Attempts to answer this question include the definition of preferential entail-
ment, i.e. to draw those conclusions that are supported by all preferential

1 Loui [Lou’87] distinguishes specificity, which is inherently syntax-dependent, from a
syntax-independent form of precedence that he calls superior evidence.
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entailment relations as well as the analogous characterisation of rational
entailment. Lehmann and Magidor illustrate inadequacies, showing that
both preferential and rational entailment are hardly more effective than
classical semantics, seeing as they remain monotonic. Consequently, they
argued that among all rational entailment relations, there would be one
allowing to draw the most sensible conclusions.

Formally, Lehmann and Magidor introduce a preference relation� over all
rational entailment relations. To not overwhelm with the technical details of
Def. 5.5 in [LM’92], we reiterate only the intuition that the authors describe
in terms of a discussion between two rational agents. Preference of one
agent over the other is determined by him attacking a conclusion that his
opponent derives and that the opponent is not able to defend. There is no
better way to describe this conversation than through the words of Lehmann
and Magidor.

“Suppose two agents, who agree on a common knowledge base,
are discussing the respective merits of two rational relations
[. . .] [≈0] and [. . .] [≈1]. A typical attack would be: your
relation contains an assertion [. . .] [α ≈1 β], that mine does
not contain (and therefore contains unsupported assertions). A
possible defense against such an attack could be: yes, but your
relation contains an assertion [. . .] [γ ≈0 δ] that mine does
not, and you yourself think that γ refers to a situation that is
more usual than the one referred to by α. Such a defense must
be accepted as valid.”

[LM’92, p. 31]

A key aspect in this intuition is the use of the term “more usual”, some-
thing that ensures precedence of more specific conditional statements over
more general ones. Rational Closure is then formalised as a collection of
conditional assertions, extending the given KB.

Definition 3.2 (Rational Closure). For a conditional knowledge base K,
if there is a rational entailment relation ≈ with K ⊆ ≈, that is preferable
(according to �) to all other rational relations extending K, then the
Rational Closure of K is

RC(K) = {α ∼ β | α≈ β}. (3.2)

The final part in [LM’92] proposes a simple algorithm to compute en-
tailments under RC, relying on a transformation of conditional assertions
α≈ β to their material implication α→ β, or (equivalently) ¬α∨β. With
this algorithm, the problem of deciding entailments under RC is effectively
reduced to classical reasoning in propositional logics.

The simplicity of materialisation-based RC has inspired numerous syntac-
tic translations to more expressive formalisms, in particular DLs [CMMN’14;
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CMM+’15; CMMV’13; CMVM’13; CS’10; CS’12; CS’13; GGOP’15]. How-
ever, such adaptations are dangerous, as features driving a formalism beyond
the expressivity of propositional logic need to be accounted for very carefully.
Most notably, the need to treat first-order quantification explicitly, is already
conveyed in [LM’90; LM’92]. We discuss the drawbacks of such immediate
adaptations thoroughly in Section 5.2. It becomes clear that stronger for-
malisms, in particular those allowing for quantification, need more attention
and a specifically tailored semantics, if meaningful entailments are to be
produced. We present our solution to this problem for rational reasoning in
EL⊥ with new, model-theoretic semantics in Part iii.



Part II

RATIONAL CLOSURE IN DESCR IPT ION
LOGICS





INTRODUCTION AND OVERVIEW

In Chapter 3, we have given a glimpse on the variety of approaches to
non-monotonic reasoning and their adaptations to DLs. The current part
continues where Section 3.2.1 left off, investigating the algorithmic charac-
terisation of RC through materialisation in the DL case.

Adaptations of Rational Closure to Description Logics are first and fore-
most a matter of definition. Many nuances of such a definition have
appeared in the literature. In order to provide a DL reasoning mechanism
worthy of the name Rational Closure, a close relation to its original notion
must be maintained. This relation is typically established by an translation
of the KLM postulates to defeasible variants of reasoning problems in DLs,
such as subsumption or instance checking. This translation allows to adopt
the basic notions of preferential or rational entailment relations (Def. 3.1) to,
e.g., defeasible subsumption relations @∼ . Consequently, defeasible reasoning
in DLs has adopted all three aspects of KLM-style research:

• Model-theoretic semantic representations of preferential and ratio-
nal entailment relations for defeasible subsumption: [BCM+’13;
BMV’11b; BV’16; BV’17a; BV’18b; GGOP’07; GGOP’10b; GOGP’09;
Var’18]

• Different characterisations of an ideal rational entailment rela-
tion: [BCM+’13; BMV’11b; BV’18b; CMMN’14; CMS’18; GG’18;
GGOP’12]

• An algorithmic characterisation of RC, relying on an efficient reduction
from a defeasible subsumption query (or instance check) to an appro-
priate classical subsumption query (or instance check): [CMMN’14;
CMM+’15; CMMV’13; CMVM’13; CS’10; CS’12; CS’13; GGOP’15]

Most adaptations of all three aspects to DLs in the literature is remark-
ably close to the original formalisation, perhaps too close, considering their
divergence in expressivity. The closest non-algorithmic characterisation
of RC was studied by Britz et al. [BMV’11b]. It is essentially a syntac-
tic translation of the preference order over rational entailment relations
(Sec. 3.2.1 and [LM’92]), based on the notion of rational subsumption
relations characterised through DL postulates, as exemplified in Figure 3.2.
Britz et al. [BMV’11b] divert this characterisation to a more intuitive one,
relying on the computation of concept ranks (Def. 4.12), based on a con-
cepts (in-)consistency in the presence of defeasible knowledge. Since then,
numerous contributions have adopted this concept rank-based characterisa-
tion as the definition of RC in DLs [Bon’19; BCM+’13; BMV’11b; BV’18b;
CMMN’14; CMS’18; GG’18; GGOP’12]. To extend the chain of equivalent
characterisations, algorithmic approaches through materialisation are many
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(RW)
C @

∼ D D v E
C @

∼ E

(CM)
(A, T ,D)≈ C{a} (A, T ,D)≈ D{b}

(A∪ {D(b)}, T ,D)≈ C{a}

Figure 3.2: Two examples for the translation of KLM-postulates, adjusted to the
inference problems of defeasible subsumption and defeasible instance
checking, respectively [CS’10].

times proven to capture RC as defined through concept ranks [CMMN’14;
CMM+’15; CMMV’13; CMVM’13; CS’10; CS’12; CS’13; GGOP’15].

We see these proofs of equivalence as an invitation to keep things simple
and streamlined in this part of our work. That is, we will move one step
further and define Rational Closure directly through materialisation and
cover concept ranks only briefly, and model-theoretic characterisations not
at all. To incorporate the resulting semantics into our strength-coverage
identification scheme, we shall assign to entailment relations based on
materialisation the coverage mat, i.e. for the most basic case of RC,
introducing (rat, mat)-semantics.

The contributions of this part are a mix of reorganising approaches from
the literature and supplementing them by the additions that we originally
published in [PT’17a; PT’17b]. The structure of this part is essentially
twofold.

a framework for materialisation. The materialisation-
based characterisation of Rational Closure as well as several proposed
extensions of it [CMMN’14; CS’12; CS’13] share so many commonalities,
that we can generalise these approaches into a single framework that is able
to (a) capture all of those extensions, (b) vary on the underlying DL, in
particular covering the special case of sub-boolean materialisation in EL⊥,
and (c) propose a clean setup for future implementations. The generic
foundations of this framework are introduced in Chapter 4, accompanied
directly by the necessary instantiations to decide defeasible subsumption and
instance checks in ALC. The flexibility of this framework is demonstrated
in Section 4.4 and Chapter 6. There, we show how to achieve reduction
algorithms relying on sub-boolean materialisation to remain entirely in the
DL EL⊥ and how to exchange single modules of this framework to obtain
much stronger entailment relations, that have been discussed as extensions
of RC.

discussion of rc in dls. Materialisation allows us to provide
simple illustrations for some severe drawbacks of RC. We will discuss the
well-known downside of inheritance blocking in Section 5.1, as well as the
less studied—but arguably more severe—issue of neglecting quantification in
defeasible consequences in Section 5.2. We make a strong case against naive
translations of aspects in propositional RC to the DL case, and argue for
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an explicit treatment of quantification in the light of defeasible knowledge.
Equality of the different characterisations clearly shows that the discussed
issues are impartial to the underlying characterisation. This discussion
provides a natural bridge to the main contribution of our work, capturing
expressive extensions of RC with new model-theoretic semantics in Part iii.





4
MATERIAL I SAT ION

Semantics for defeasible Description Logics based on materialisation are
reductions to classical reasoning. In the most basic case, we query knowl-
edge bases, containing strict as well as defeasible statements, for defea-
sible subsumptions C @

∼ D. Intuitively, we are asking whether the most
typical instances of C also satisfy the concept D. Loosely speaking, in
materialisation-based approaches, elements of the query concept C are
considered more typical, the more DCIs from the given KB they satisfy.1

At the same time, elements of a query subject such as Cat u ¬Smart

may not be able to satisfy all DCIs from the KB, e.g. Cat @
∼ Smart.

Materialisation-based approaches therefore proceed in two steps.
In the first step, it has to be determined which subset of the given DBox

can be satisfied by (elements of) the query subject. While this subset should
intuitively be as large as possible, its definition is decisive for the strength
of the resulting semantics. In the second step, the classical variant of the
respective inference is determined, while imposing the set of DCIs obtained
in the first step on the query subject. To understand this imposition,
consider the query subject Cat with the defeasible property from above.
The elements of Cat that also satisfy Cat @∼ Smart in any interpretation
can be syntactically characterised by Cat u (¬Cat t Smart), using the
material implication of the defeasible statement. Likewise, when arguing
about the specific individual daisy, this information can be asserted with
(¬Cat t Smart)(daisy), extending the ABox. This technique does not
come without its difficulties.
If intended to maintain the complexity of classical reasoning in the un-

derlying DL, the materialisations we illustrated before are not appropriate
for EL⊥ queries. When introducing concepts with full negation and dis-
junction, reasoning does not trivially remain tractable. A different form
of materialisation that is not relying on these constructors is discussed in
Section 4.4. Furthermore, determining subsets of the DBox that are consis-
tent with individuals is not always a local operation. When considering role
assertions, such as friend(molli, lilly), asserting defeasible information
on lilly might influence the defeasible information that molli is consistent
with. Deciding defeasible subsumption and instance checks is inherently
different. Specific definitions are covered separately in Section 4.2 and 4.3.
Nevertheless, the commonalities of materialisation-based approaches

outweigh their differences, allowing us to present the core of these procedures

1 In general, two domain elements in an interpretation may be of incomparable typicality
w.r.t. the subset order for the sets of DCIs they satisfy. However, in rational reasoning,
the satisfaction of subsets of the given DBox is only considered for a predetermined
totally ordered chain of subsets, ergo, the notion of being more or less typical is applicable
in the rational case.
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in terms of an abstract framework. Instantiations of this framework are
essentially parametric on a DL and a semantic strength. In Section 4.1 we
will introduce the general notions that are central to this framework, as well
as some of the basic instantiations that are required for deciding defeasible
subsumption entailment under rational materialisation-based semantics
(rat, mat).

4.1 a framework for materialisation

The framework capable of producing materialisation-based reductions for
deciding defeasible entailments with different semantic strength and relying
on different DL concept constructors, is made up of various functions.
These functions are introduced in a generic way, to manifest their duty
within the framework, while their specific definitions—hereinafter called
instantiations—are parametric on a semantic strength s, a DL L, or both.
To be more precise, consider the following notion of materialisation functions,
generalising the reduction of defeasible queries to classical queries.

Definition 4.1 (Materialisation Function). For a semantic strength s and
a DL L, MatLs () and MatL() are materialisation functions. Both types take
as input any L inference problem (K,α) and return an L inference problem
(K ′,α ′) where both K ′ and α ′ are strict. MatL() is called simple.

The function MatLs () is finally used to characterise defeasible entailment
under (s, mat)-semantics, when instantiated with a specific semantic strength
s. MatL() does not rely on a semantic strength, because its purpose is to fix
the transformation of DCIs to strict DL statements that are at the core of
any materialisation approach. We have already encountered its instantiation
for the DL ALC, relying on the usual material implication ¬CtD for a DCI
C @

∼ D [CS’10]. Clearly, when presented with an EL⊥ inference problem
(K,α), this transformation introduces concept constructors that exceed the
EL⊥ profile, hence the parametrisation of (simple) materialisation functions
by a DL L.

Definition 4.2 (ALC Simple Materialisation). The ALC material implica-
tion of a DCI is E @

∼ F = ¬Et F and for a set of DCIs E , E =
d
E@∼F∈E

E @
∼ F.

The simple materialisation function MatALC() is defined for a knowledge
base K = (A, T ,D) and any query α as

MatALC(K,α) =


(Kstrict,α) , if α is classical

(Kstrict,D uC v D) , if α = C @
∼ D

(((A∪ {D(a)}, T),C(a)) , if α = C{a}

The function MatALC() can be seen as a direct transformation from a
defeasible inference problem to a classical one, stubbornly “enriching” the
inference with all defeasible knowledge in D.
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MatLs ()Conss()Strength s

MatL()DL L

Figure 4.1: Overview and dependencies of the materialisation framework.

Simple materialisation can be considered as the core of this framework,
while its companion, equipped with a parameter for semantic strength,
is used to define defeasible entailment on the highest level. Formally,
defeasible entailment (through materialisation) can be defined in a generic
way, relying on MatLs (). Specific types of semantics are then identified
through instantiations of MatLs () on the DL L and strength s, without
needing to adjust the following definition in any way.

Definition 4.3 (Defeasible Entailment under (s, mat)-Semantics). A defea-
sible inference problem (K,α) in the DL L is true under (s, mat)-semantics
iff MatLs (K,α) is true under classical semantics. Formally,

K |=(s,mat) α iffK ′ |= α ′,

for MatLs (K,α) = (K ′,α ′).

As both functions MatL() and MatLs () return classical inference prob-
lems, we often use the shorthand “MatL(K,α)/MatLs (K,α) is true/false”,
referring to the entailment of (K ′,α ′) under classical semantics. Clearly,
simple materialisation puts us nowhere near rational consequences, as many
concepts D uC (materialising the full DBox of the input KB K) might be
unsatisfiable with Kstrict. Clearly, enriching a query subject in such a way
that it becomes unsatisfiable allows to derive any consequence about this
(enriched) subject, rendering such entailments worthless. Determining an
appropriate subset of the DBox, as per the first part of any materialisation
approach, is the responsibility of a consistent-selection function Conss(),
that is instantiated on a semantic strength s.

The dependency graph depicted in Figure 4.1 shows how the three main
components of this framework interact. The DL L and the strength s
are parameters determining the concrete definitions. As seen in Defini-
tion 4.2 the return value of a function somewhat depends on its input (e.g.
(K,α)) as well as its parameters (e.g. L). Nevertheless, instantiations
of functions are purposefully parametrised only by semantic strength and
DL as these are considered to be the distinguishing features determining
the resulting semantics. To cover the first part of materialisation-based
approaches, Conss() will be instantiated with a semantic strength s and
rely on a simple materialisation function to determine consistency of DBox
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subsets.2 A materialisation function MatLs (), finally determining entailments
under materialisation-based semantics, relies in turn on Conss() and the
corresponding simple materialisation function MatL() of the same DL. The
generality of these notions helps to emphasize the commonalities among
several semantics such as Relevant or Lexicographic Closure. In Chapter 6
we will illustrate how these more expressive semantics can be achieved by
different instantiations of only Conss(), leaving the materialisation functions
untouched. In this chapter we focus on instantiations to produce entail-
ments of rational strength, to initially illustrate what instantiations of this
framework look like.

As for materialisation functions, we capture in a very generic way, which
properties are to be expected of the input and output of a consistent-
selection function. This characterisation relies on a notion of exceptionality
that is essential in all materialisation-based procedures. It refers to a specific
kind of inconsistency, that is introduced subsequently.

Definition 4.4. (Selecting Consistent DCIs) Let K = (A, T ,D) be an L
KB, χ ∈ C(L) ∪NI a concept or individual and s a semantic strength.
Conss(K,χ) is called a consistent-selection function iff Conss(K,χ) ⊆ D
s.t. χ is not exceptional w.r.t. Conss(K,χ) and Kstrict. If χ is exceptional
already w.r.t. ∅ and Kstrict, then by convention Conss(K,χ) = ∅.

The core of consistent-selection functions is clearly the exceptionality of
a concept or individual w.r.t. a set of DCIs and an underlying knowledge
base. Intuitively, a concept C is exceptional w.r.t. a set of DCIs E and a KB
K, if no model of K contains an element satisfying C and E simultaneously.
Satisfiability of DCIs for elements in extensions of C can be reduced to
classical entailment using simple materialisation.

Definition 4.5 (Exceptionality). Let K = (A, T ,D) be a (not necessarily
defeasible) L KB and E a set of DCIs.3

1. A concept C is exceptional w.r.t. E and K iff

MatL((A, T , E),C @
∼ ⊥)

is true.

2. A DCI C @
∼ D is exceptional w.r.t. E and K iff C is exceptional w.r.t.

E and K.

3. An individual a ∈ NI is exceptional w.r.t. E and K iff

MatL((A, T , E),⊥{a})

is true.

2 Technically, Conss() relying on MatL() makes it rely indirectly on L as well. However, its
instantiations by s will be shared for any DL L. Therefore, L does not appear in the
notation of Conss() to not suggest an immediate dependency on L.

3 We carry the DBox D in the input KB, to keep this definition as general as possible. For
the same reason, exceptionality is determined w.r.t. a set of DCIs E that might stand in
no relation to the DBox D or just as well be a subset of D or D itself.
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The set of exceptional DCIs within a KB K = (A, T ,D), is defined as

Exc(K) = {C @
∼ D ∈ D | C is exceptional w.r.t. D and K}

Using this notation, we have an understanding for the purpose of
consistent-selection functions. Ideally, Conss() is applied to the query
subject (a concept or individual) and selects a consistent subset of the
input DBox that is as large as possible in some sense. In practice, the
amount of defeasible information that is selected by these functions directly
determines the semantic strength of the reasoning mechanism. To obtain
consistent subsets of a DBox in semantics of rational strength requires to
predetermine sets of DCIs that are eligible for checking consistency. This
procedure follows the original algorithm by Lehmann and Magidor [LM’92]
and iteratively produces a totally ordered, chain of decreasing subsets of
the given DBox. The benefit of this method is that it requires only a linear
number of classical entailment checks. Its drawback on the other hand,
is that, in general, it does not come close to any notion of “as large as
possible”. This issue is predominantly recognised as inheritance blocking (cf.
Section 5.1). Attempts to alleviate it, effectively propose alternative instan-
tiations of Conss() (cf. Section 6.1, 6.2), even though this modularisation
has never been formalised prior to our work.

Definition 4.6 (Rational Chain). For an L KB K = (A, T ,D), the rational
chain of K, is the following set of subsets of the DBox:

chain(K) = 〈D0, . . . ,Dn,D∞〉
such that D0 = D, Di = Exc((A, T ,Di−1)) for i > 0. The index n is the
smallest integer s.t. Exc((A, T ,Dn+1)) = Dn+1 and D∞ = Dn+1.

Clearly, chain(K) is finite, if D is finite. As for D∞, there are two
possibilities, either |D∞| > 0 or it is empty. In case D∞ 6= ∅, all antecedents
C of DCIs in D∞ are exceptional w.r.t. D∞ and K. From the original
and derived definition of Rational Closure in [BMV’11b] it becomes clear
that the antecedents in D∞ are required to support any consequence, in
order to produce entailments under RC. More intuitively, there is no rational
preference among the DCIs in D∞ that would allow removal of some subset of
D∞ to provide non-exceptionality for the remaining DCIs. As a consequence,
the DCIs in D∞, and in particular their antecedents, are considered strictly
unsatisfiable. From a semantic point of view, for every C @

∼ D ∈ D∞,
we must conclude Kstrict |= C v ⊥. As argued in [CMMN’14] from an
algorithmic point of view, D∞ provides strict information that should not be
part of the DBox. Formally, a KB K is considered well-separated iff D∞ = ∅
and Britz et al. [BCM+’13] show that every KB K can be transformed to an
equivalent well-separated KB K’, simply by replacing every C @

∼ D ∈ D∞
with C v ⊥ ∈ T .

Remark 4.7. For the remainder of this thesis, we assume all knowledge
bases to be well-separated, unless explicitly stated otherwise. Effectively,
this allows for the obvious assumption that chain(K) = 〈D0, · · · ,Dn〉 ends
with Dn = ∅ in theorems, definitions and proofs.
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For an intuition behind the rational chain and its role in the enrichment
of query subjects, consider the following example.

Example 4.8. Let K = (T ,D) with

T = {Evilu Friendly v ⊥}
D = {Cat @∼ Smart,

Catu ∃friend.Dog @
∼ ¬Smartu Friendly,

Catu ∃friend.(DoguGullible) @∼ Evil}

In this knowledge base, there are essentially two “reasons” for an element
(or concept) to be exceptional. No element can ever satisfy Friendly
at the same time as Evil, and obviously Smart u¬Smart must also be
extended to the empty set in any interpretation. Answering the question of
what to rationally conclude for typical instances of specific classes, such as
Gray Cats or Stupid Cats, requires consultation of the rational chain to
determine a consistent subset of D. We unravel Definition 4.6 step by step,
starting with D0 = D. Note the strict subsumption hierarchy between the
antecedents of our input DCIs:

Catu∃friend.(DoguGullible) v Catu∃friend.Dog v Cat (4.1)

This hierarchy is often referred to as an order of specificity, considering con-
cepts lower down in the hierarchy (Catu∃friend.Dog) to be more specific
than their subsumers (Cat). This specificity ordering implicitly influences
the construction of the rational chain, inducing a natural precedence among
DCIs.

D1 = Exc(D0) = {Catu ∃friend.Dog @
∼ ¬Smartu Friendly,

Catu ∃friend.(DoguGullible) @∼ Evil}

Intuitively, more specific concepts are influenced by more DCIs, increasing
the chance for exceptionality. For example (for brevity abbreviating the
antecedents of DCIs by A1,A2,A3 in the order they are displayed above),
in order for an element to satisfy the concept

A2 u (¬A1 t Smart)u (¬A2 t (¬Smartu Friendly))

it is forced to satisfy Smart and ¬Smart simultaneously (because A2 v
A1), which is impossible. On the other hand, elements in

A1 u (¬A1 t Smart)u (¬A2 t (¬Smartu Friendly))

are not required to satisfy ¬Smartu Friendly. Intuitively, the DCI A2 @∼
¬Smartu Friendly does not influence elements of the more general class
Cat (A1).

From the next set of exceptional DCIs, we can also see how the application
of defeasible knowledge can be staggered in arbitrary (but finitely deep)
levels, according to the hierarchy of antecedents.

D2 = Exc(D1) = {Catu ∃friend.(DoguGullible) @∼ Evil}
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As Catu∃friend.(DoguGullible) remains not exceptional with D2, we
must conclude

chain(K) = 〈D,D1,D2, ∅〉.

Being confined to the rational chain for the selection of consistent subsets
of the input DBox, leaves really only one candidate from chain(K) when
aspiring for “as much as possible” defeasible information.

Definition 4.9 (Rationally Consistent DCIs). For an L KB K with
chain(K) = 〈D0, . . . ,Dn〉 and a concept or individual χ ∈ C(L) ∪NI,
the rational consistent-selection function Consrat(K,χ) is defined as

Consrat(K,χ) = Di,

where i is the smallest integer in {0, 1, . . . ,n} s.t. χ is not exceptional w.r.t.
Di and K.

Note that Consrat() does not carry L in its notation. When used in
the definition of e.g. MatALCrat (), it is only sensible to assume the simple
materialisation function MatALC() to be used within Consrat(). Likewise for
other DLs L.

Remark 4.10. For a well-separated KB K, i.e. with Dn = ∅, concepts
or individuals that are only not exceptional w.r.t. Dn are considered as
atypical as possible, their defeasible consequences essentially coincide with
their strict consequences. Recall that the assertion of consistent subsets of
a DBox to an individual a in the ABox depends on previous such assertions
to other individuals in the relational neighbourhood of a. Consrat() (and
other instantiations), does not account for these interactions itself. This
task is referred to instantiations of MatLs (), which will rely iteratively on
“local” consistent-selections of Conss() (cf. Definition 4.16), to fully enrich
the ABox with the appropriate materialised assertions.

We have now introduced all necessary ingredients to define materialisa-
tion functions MatLs (), including a universal characterisation of defeasible
entailment relying on such functions in Definition 4.3. As described in Re-
mark 4.10, the treatment of defeasible subsumption queries and defeasible
instance checks differs notably within MatLs (). Therefore, we cover both
reasoning problems separately in Section 4.2 and 4.3, leading up to the final
instantiations of MatALCrat ().

4.2 defeasible subsumption

Instance checking and subsumption are inherently different and unless
allowing for the construction of nominal concepts ([Bon’19; BV’17a; BV’17b;
CMS’18]), need to be treated individually also in their defeasible variant. For
defeasible subsumption inferences α, the definition of the materialisation
function(s) MatLs (K,α) is straightforward and shared for any semantic
strength s and DL L.
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Definition 4.11 (Materialisation of Defeasible Subsumption). For an infer-
ence problem (K,C @

∼ D) in a DL L and a semantic strength s,

MatLs (K,C @
∼ D) = MatL(A, T , Conss(K,C)),C @

∼ D).

Conss(K,C) delivers a consistent subset of the input DBox, depending
on the strength s, that is then transformed by simple materialisation to
enrich the resulting classical subsumption query. While direct approaches
to materialisation-based reductions ([CMMN’14; CMM+’15; CMMV’13;
CMVM’13; CS’10; CS’12; CS’13; GGOP’15]) seem slightly less convoluted,
the framework approach shows almost trivially the commonalities among
different semantics and lets us switch out or adapt only what is necessary
to adapt. Consider the following observations:

1. The simple materialisation function MatALC() (Def. 4.2), together with
the consistent-selection function Consrat() (Def. 4.9) and the above
definition of materialisation for defeasible subsumption (Def. 4.11)
presents a full instantiation of the materialisation framework. Thus,
the universal definition for defeasible entailment (Def. 4.3) immedi-
ately provides the procedure to decide defeasible subsumption under
(rat, mat)-semantics.

2. ALC material implications (Def. 4.2) are clearly concepts in C(ALC).
It is also not hard to see (for the full details, see Chapter 8) that the
number of calls to MatL() that are required to compute chain(K)
are linear in the size of the input DBox. This shows that defeasible
reasoning under the materialisation-based reduction resides in the
same complexity as classical reasoning in ALC (i.e. ExpTime).
The same is not obvious for all DLs, in particular the sub-boolean
EL⊥. While EL⊥ queries are technically also ALC queries, relying
on ALC material implications in the reduction, does not obviously
guarantee the reasoning complexity to remain polynomial. It gives us
the opportunity to further showcase the simple modular exchange of
single aspects of this framework, to achieve different goals. To tailor
this reduction specifically to EL⊥, it is only necessary to define an
appropriate simple materialisation function MatEL⊥(), while Def. 4.11
and others remain untouched.

It remains to place the present entailment of defeasible subsumptions
under (rat, mat)-semantics into the context of Rational Closure through
concept ranks. As a result of [BCM+’13] this has been successfully ac-
complished. Over the years, many formalisations of materialisation have
appeared in fundamentally different ways.4 We rely on [BCM+’13] for the
most sophisticated version of the following result.

4 Earlier approaches formalised materialisation as a transformation of DCIs to GCIs
[BMV’11b], and again others utilised material implications of GCIs alongside DCIs
[CMMV’13; CMVM’13; CS’12; CS’13], which clearly results in semantics that are infer-
entially weaker than classical reasoning. The appropriate transformation is of course the
present one, which is also adopted in [BCM+’13; CMMN’14; CMM+’15; CMMV’13;
CS’10; CS’13].
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An intermediate discovery by Britz et al. [BMV’11b] shows that Rational
Closure, as syntactically translated from Lehmann and Magidor [LM’92] in
terms of a preference over rational entailment relations, can be equivalently
characterised by a ranking function for concepts.

Definition 4.12 (Concept Rank). The concept rank of an ALC concept
C in a (not necessarily well-separated) KB K = (T ,D) with chain(K) =
〈D0, . . . ,Dn,D∞〉 is rK(C) = i, if i is the smallest integer in {0, . . . ,n}
such that C is not exceptional w.r.t. Di and K. If no such i exists, then
rK(C) = ∞.5

The following characterisation of defeasible subsumption entailments
under RC in DLs has been adopted as the definition of RC in the related
literature, except for [BMV’11b], where it is presented as a consequence of
the more faithful, preference-based definition of RC à la KLM.

Definition 4.13. The Rational Closure of a KB K = (T ,D) is the set
RC(K) = {C @

∼ D | rK(C) < rK(Cu¬D) or rK(C) = ∞}.

Most of the literature utilising materialisation [BCM+’13; CMMN’14;
CMS’18] proves (or at least claims) that the entailments obtained with the
reduction through MatALCrat () coincide with the entailments characterised by
concept rank (Def. 4.13).

Theorem 4.14 ([BCM+’13]). For two concepts C,D and a KB K = (T ,D),
rK(C) < rK(Cu¬D) or rK(C) = ∞ iff MatALCrat (K,C @

∼ D) is true.

The proof of this theorem is relatively straightforward, as concept ranks
are determined by the same rational chain as the consistent subsets produced
by Consrat(). For the formal details, consult Theorem 5 in [BCM+’13] p. 17.
Note that in [BCM+’13] RC is defined through concept ranks, formalised
with an entailment relation |=6

R , and materialisation-based entailment is
characterised with the relation `rat.

4.3 defeasible instance checking

Defeasible instance checking has been approached with materialisation in
[CMVM’13; CS’10; CS’12; CS’13] for different semantic strengths. The
fundamental idea of materialisation is transferable from subsumption to
instance checking. A query subject (here, an individual) should be assigned
some predetermined consistent set of defeasible statements, to derive con-
sequences based on the defeasible part of the KB. In a naive way, this
would mean to employ Conss() to determine such consistent knowledge
and MatL(), extending the ABox appropriately, to reduce the problem to
classical instance checking. However, the defeasible instance checking vari-
ant of the KLM postulates (e.g. Fig. 3.2) as introduced in [CS’10] expect
a sort of coherence among instance checks over distinct individuals. Take

5 Note that the ranking function in [BMV’11b] is defined in a “reversed” manner to
Definition 4.12, e.g. where the rank in [BMV’11b] is 0, it will be ∞ here.



52 materialisation

Cautious Monotonicity for example (Fig. 3.2) and suppose C{a} and C{b}
are derivable from (A, T ,D) while a and b are related in the ABox (say
r(a,b) ∈ A). Extending A with D(b) may not preserve the consistent
subset of D that is selected for a by Conss() and therefore, not all con-
sequences about (defeasible) membership of a might be preserved. To
illustrate such interactions more explicitly, consider the following example.

Example 4.15. For K = (A,D), let

A = {A(a),B(b), r(a,b)}

D = {A @
∼ ∀r.(¬X),

B @
∼ X}

It is not hard to verify that Consrat(a) = Consrat(b) = D. Through
the naive method, we would conclude ∀r.(¬X){a} as well as X{b}, after
(separately) extending the ABox with (¬At ∀r.(¬X))u (¬BtX)(a), for
the former consequence, and with the same assertion for b, to obtain the
latter consequence. Applying (CM) as follows

(A, T ,D)≈ ∀r.(¬X){a} (A, T ,D)≈ X{b}
(A∪ {X(b)}, T ,D)≈ ∀r.(¬X){a}

would require any rational entailment relation to support contradicting
conclusions and thus violate the principle of defeasible reasoning.

Several of the adopted postulates refer to instance checks over potentially
distinct individuals and can therefore cause problems when determining
consistent sets of DCIs for individuals only “locally”. To ensure some sort of
coherence among defeasible instance checks for different individuals, their
consistent sets of DCIs should all be considered in the reduction algorithm
at the same time. To avoid extending the ABox with contradictory concept
assertions, the prominent approach taken in [CMVM’13; CS’10; CS’12;
CS’13] is to consider different ABox extensions, much like the default
assumption extensions studied by Reiter [Rei’80]. As a result of [CMVM’13],
such extensions are uniquely determined by processing individuals in a given
order. The distinct entailment relations relying on different ABox extensions
are therefore identified by this order as an additional parameter. Giordano
et al. [GGOP’15] consider entailments of the ABox as those that can be
derived from all ABox extensions, as in sceptical semantics for Reiter’s
default logic. For a more thorough discussion of the different options,
including the sceptical approach, consult Casini et al. [CMVM’13]. They
prove that the sceptical entailment relation does not satisfy the rationality
postulates in general, motivating us to adopt the parametrised approach of
classifying a multitude of rational entailment relations for defeasible instance
checking.
As the consistent-selection function Consrat() operates locally, we refer

the iterative extension of the input ABox to the definition of MatLs (), calling
Consrat() multiple times in the process. As opposed to the sequence of
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individuals in the given ABox, used for parametrisation of entailment relations
by [CS’10], we free this notation from being syntactically linked to the input
KB, by assuming a total preference order ≺ over all individuals NI. The
order ≺ over NI then induces a sequence seq≺(O) = 〈a1, . . . ,an〉 for every
finite subset (e.g. O = sigI(A)) of NI in the obvious way. Additionally,
we utilise our uniform notation for different semantics to capture defeasible
instance checking entailment under the given order ≺, by parametrising
the strength identifier as s≺. The definition of MatLs≺() is extended to
accept defeasible instance queries, but remains generic on the DL L and
the strength s. To allow the following definition to be reused for stronger
instantiations (Sec. 6.1, 6.2) and different DLs, we use an initialisation
function initLs≺(). It provides the initial ABox, TBox and DBox to start
the iterative processing of individuals from (cf. Rem. 4.17).

Definition 4.16 (Materialisation of Defeasible Instance Checking). For
an L KB K = (A, T ,D), a semantic strength s, a total order ≺ over NI
such that seq≺(sigI(A)) = 〈a1,a2, . . . ,an〉 and an initialisation function
initLs≺(), let

(A0, T0,D0) = initLs≺(K), (4.2)

Dai = Conss((Ai−1, T0,D0),ai), and (4.3)

(Ai,X ) = KB(MatL((Ai−1, T0,Dai),>{ai})) (4.4)

for 1 6 i 6 n. The final ABox An will be denoted with As≺ , likewise,
Ks≺ = (As≺ , T0). For simple access to each of the DBox subsets selected
for the individuals a1, . . . ,an, let

ext(Ks≺ ,ai) = Dai .

For a defeasible instance check (K,C{a}), its materialisation w.r.t. L
and s≺ is

MatLs≺(K,C{a}) = (Ks≺ ,C(a))

For rational strength and the DL ALC, the iteration in Def. 4.16 is simply
initialised with initALCrat≺(K) = K.

Remark 4.17. Note the following remarks on Definition 4.16, in particular
explaining the chained functions applied in (4.4).

• The initialisation function initLs≺() is a formality and allows later
on (Sec. 6.1, 6.2) to build more refined ABox extensions, that are
initially based on e.g. the rational ABox extension. In anticipation
of such inferentially stronger semantics, consider the initialisation
initALCrel≺((A, T ,D)) = (Arat≺ , T ,D) for ABox extensions of relevant
strength. The technical motivation for this initialisation is given in
Section 6.1.
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• In (4.3), it is important to use the initial input TBox T0 and DBox
D0 in Conss(), because the rational chain needs to be established
always w.r.t. the initial KB (it does not depend on the ABox). In
practice, the rational chain is of course computed only once, prior to
this iteration.

• The sole purpose of (4.4) is to iteratively produce Ai from the
previous ABox Ai−1. First of all, materialisation functions produce
inference problems, hence the projection (KB()) of such a pair to
its KB component. On the same note, the inference >{ai} in (4.4)
can use any arbitrary concept (and individual for that matter), as
the query does not influence the extended ABox in this type of
simple materialisation, as you can see from Def. 4.2. We rely on the
simple materialisation function because the instantiation of MatL()
determines the concept constructors used in the assertions extending
Ai−1.

• Later, we are considering relevant contexts C,O (Def. 2.13) in general
(with sigI(A) ⊆ O), possibly including individuals a 6∈ sigI(A).
Def. 4.16 extends easily to this case, by considering the sequence
of individuals seq≺(O). As long as O is finite, the resulting ABox
extension remains finite as well. It is not hard to see that individuals
in O \ sigI(A) are consistent with Conss(K,>), because K holds
no explicit information about them. Nevertheless, when DCIs of the
form > @

∼ · · · are part of the DBox, typical information might still be
inferred for those individuals.

For an illustration of this iterative ABox extension, consider the following
(less naive) approach to reason over the ABox of Example 4.15.

Example 4.18. Let K = (A,D) as in Example 4.15 and recall that if
a is a typical member of A then b is not allowed to belong to X and
vice versa. First, for a ≺ b clearly A0 = A and A1 = A ∪ {D(a)},
because a is processed first and we know Consrat(K,a) = D already from
Example 4.15. Now, when extending A1 by processing b, the outcome of
Consrat((A1,D),b) is different, because (¬BtX)(b) is no longer consistent
with A1. In particular, A1 |= (¬X)(b). From chain(K) = 〈D, ∅〉 it
follows that A2 = A1 and thus Krat≺ = A∪ {D(a)}. Thus, instantiating
Definition 4.3 with MatALCrat≺() allows to conclude (¬X)(b) under (rat≺, mat)-
semantics. In contrast, let ≺ ′ be a different order over NI, with b ≺ ′
a. Using the same arguments and the same conflict between the locally
consistent extensions for a and b, it is easy to see that Krat≺′ = A∪ {D(b)}.
Thus, we derive X(b) under (rat≺ ′ , mat)-semantics.

Example 4.18 shows clearly how entailments diverge based on the given
order over individuals. This total order over NI, can be seen to classify a
range of entailment relations that are rational if they comply with any such
order, providing something very similar to a representation result. From a
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theoretical point of view, this classification is entirely valid and the satisfac-
tion of ABox postulates (see [CMVM’13]) provides some kind of guarantee
for the behaviour of the individual entailment relations that are charac-
terised. However, from a practical point of view, it is not immediately clear
how to select appropriate orders. A number of different approaches (some
aligned with Reiter’s treatment of default extensions) are applicable and
should be argued for on a case by case basis, depending on the application
domain. As this is a theoretical contribution, we refer the interested reader
to [CMVM’13] for further investigations, such as the sceptical approach, the
analytical approach—specifying ABoxes for which all orders over individuals
produce the same entailments—and ways to determine a minimal set of
pairs of individuals in the ABox that have to be explicitly ordered by the
knowledge engineer.
We close this section by unifying the definition of Rational Closure to

include defeasible subsumption and instance checks simultaneously. Theo-
rem 4.14 shows that RC (as in Def. 4.13) might as well be defined through
materialisation, i.e. relying on (rat, mat)-semantics directly. The difference
between defeasible subsumption and instance checking is that different
orders over individuals create different Rational Closures of the knowledge
base. At the same time, deciding entailment of defeasible subsumption
(Def. 4.11) is impartial to such an order, allowing the following definition.

Definition 4.19 (Materialisation-Based Rational Closure). For an L KB
K, a defeasible inference α and a total order ≺ on NI, the Rational Closure
of K contains α ∈ RC≺(K) iff K |=(rat≺,mat) α iff MatLrat≺(K,α) is true
under classical semantics.

As an immediate corollary of Theorem 4.14 it holds that a defeasible
subsumption is contained in the RC of a KB as per Definition 4.13 iff it
belongs to RC≺(K) for any order ≺ over NI, i.e. RC(K) ⊆ RC≺(K). We
include here a formal characterisation of Rational Closure as an extension
of the input knowledge base mainly for the sake of completeness. In the
remainder we shall rely on (rat≺, mat)-semantics (|=(rat≺,mat)) as formally
defined with Definition 4.3, using the appropriate instantiations that have
been presented in this and previous sections. Note that when informally
discussing semantics characterised as a pair (s, c), we will often omit the
parameter ≺, without discriminating against defeasible instance checking in
the argument.

4.4 materialisation in EL⊥

Formalising material implications in EL⊥ without exceeding its tractable
reasoning complexity is not as straightforward as in ALC, because we cannot
rely on disjunction and negation. However, examining what is essentially the
difference of a concept C and a concept (¬Et F)uC, reveals that there
is an equivalent variant of materialisation, relying only on EL⊥ concept
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constructors. In an interpretation I, ((¬Et F)uC)I refers to the subset
of CI , such that every d ∈ ((¬Et F)uC)I

either satisfies F or does not satisfy E. (4.5)

Adding E v F as a GCI to the KB would have a similar effect, where surely
all elements in CI (in models of the extended KB) comply with Property
4.5. As a matter of fact, this version of materialisation has been adopted
in an earlier approach by Britz et al. [BMV’11b]. However, including a
GCI E v F forces all domain elements in a model of the KB to satisfy
(4.5), instead of only typical members of the concept in question. For a
simple demonstration that this kind of materialisation is too strong, consider
the EL⊥ GCIs A v ∃r.A, ∃r.B v ⊥ and the DCI A @

∼ B. If this DCI is
transformed to a strict GCI, extending the KB, we would have to conclude
(strictly) A v ⊥. However, typical elements of A (those that should satisfy
B) need not be related via r to other typical elements of A. The distinction
between top-level concepts and quantified concepts is lost with this type of
materialisation.

To restrict the elements on which to apply such a new GCI, we introduce
a fresh concept name AE@∼F and use it within the GCI AE@∼F u E v F, to
individually restrict the elements satisfying its left-hand side. Now, in all
models of the (new) KB, only (but all) elements in AE@∼F will adhere to
(4.5). Thus, to refer to the subclass of C for which (4.5) is true, we consider
the query concept AE@∼F uC. If E, F,C and the original KB are in EL⊥, so
is the modified KB and the modified query concept. For individuals, the
same argument is applied, with the difference of extending the ABox with
assertions of the form AE@∼F(a), rather than (¬Et F)(a).

Definition 4.20 (EL⊥ Simple Materialisation). Let K = (A, T ,D) be a KB
and NauxC ⊆ NC a set of auxiliary concept names s.t. sig(K)∩NauxC = ∅.
Let

• Ê @
∼ F = AE@∼F with AE@∼F ∈ N

aux
C (EL material implication),

• D̂ =
d
E@∼F∈D

Ê @
∼ F, and

• T D = T ∪ {Ê @
∼ Fu E v F | E @

∼ F ∈ D} (TBox extension).

The simple materialisation function MatEL⊥() is defined for an EL⊥ KB
K = (A, T ,D) and an EL⊥ query α as follows

MatEL⊥(K,α) =


(Kstrict,α) , if α is classical

((A, T D), D̂ uC v D) , if α = C @
∼ D

((A∪ {D̂(a)}, T D),C(a)) , if α = C{a}

Clearly, for an EL⊥ KB K = (A, T ,D), T D is an EL⊥ TBox. Intuitively,
because T D contains fresh concept names only on the left-hand side of
GCIs, none of the new GCIs will influence the consequences of a concept
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with sigC(C)∩NauxC = ∅. Formally, (A, T D) is a conservative extension
of (A, T) (for an ABox A, TBox T , DBox D in EL⊥), which means the two
KBs are inseparable in terms of their entailments over the original signature
[LW’10].

Proposition 4.21. For an EL⊥ KB (A, T), a set of DCIs E and a classical
subsumption or instance check α with sigC(α)∩NauxC = ∅, (A, T E) |= α

iff (A, T) |= α.

Proof. The if -direction is trivial, because Mod((A, T E)) ⊆ Mod((A, T)) and
for the only-if -direction, it suffices to show that from a counterexample
for (A, T) |= α, a counterexample for (A, T E) |= α can be derived. Such a
model of (A, T E) can be trivially obtained by extending all AE@∼F ∈ N

aux
C

with the empty set, trivially satisfying (A, T E), without changing any
entailments w.r.t. the original signature.

Thanks to the generality of the framework established in Section 4.1,
we almost immediately obtain a full instantiation of MatEL⊥rat (). For treat-
ing defeasible instance checks, we specify the initial KB for Def. 4.16 as
initEL⊥rat ((A, T ,D)) = (A, T D,D). To show that the EL⊥ materialisation
is working as intended, we need to prove that the result of MatALCrat () is true
if and only if the inference problem produced by MatEL⊥rat () is true (both
under classical semantics) for all EL⊥ inference problems. Because most
of the involved definitions (Def. 4.3, 4.5, 4.6, 4.9, 4.11, 4.16 and 4.19) are
identical for both ALC and EL⊥ (modulo using the respective simple mate-
rialisation function), it boils down to showing that the functions MatALC()
and MatEL⊥() produce equivalent inference queries in terms of classical
semantics, when presented with an EL⊥ defeasible inference problem. We
prove this separately for subsumption and instance checking.

Theorem 4.22. For an EL⊥ KB K = (A, T ,D) and an EL⊥ defeasible
subsumption C @

∼ D, it holds that

MatALC(K,C @
∼ D) iff MatEL⊥(K,C @

∼ D)

under classical semantics.

Proof. Assuming (A, T) to be a consistent classical knowledge base (the
alternative proves this theorem trivially), any subsumption X v Y is clas-
sically entailed by (A, T) iff it is classically entailed by T . Therefore, we
assume w.l.o.g. A = ∅, i.e. K = (T ,D). Looking at the inference queries
obtained from MatALC(K,C @

∼ D) and MatEL⊥(K,C @
∼ D) (Def. 4.2 and

4.20), we effectively need to prove

T |= D uC v D iff T D |= D̂ uC v D. (4.6)

We prove both direction by contraposition.
Recall for D = {E1 @

∼ F1, . . . ,En @
∼ Fn} that D̂ =

d
16i6nAEi@∼Fi

(AEi@∼Fi ∈ N
aux
C ) and D =

d
16i6n(¬Ei t Fi). First of all, note that

I |= T D implies
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1. I |= T , because T ⊆ T D and

2. D̂I ⊆ DI .

The latter holds, because d ∈ AI
Ei@∼Fi

and I |= AEi@∼Fi u Ei v Fi imply
d ∈ (¬Ei t Fi)I (for 1 6 i 6 n). These facts immediately prove the
contraposition of T D 6|= D̂ uC v D implying T 6|= D uC v D, because a
counterexample (model of T D) for D̂ uC v D is also a counterexample
(model of T) for D uC v D.

For the contraposition of the other direction, assume there is a model
I = (∆I , ·I) of T , s.t. ∃d ∈ (D u C)I \DI . Let J = (∆I , ·J ) with
χJ = χI for all χ ∈ sig(K,C,D) and AJ

Ei@∼Fi
= (¬Ei t Fi)I for all

1 6 i 6 n. It holds that

• XJ = XI (for X ∈ C(ALC) with sig(X) ⊆ sig(K,C,D)), i.e. J |=

T ,

• D̂J = DI (by definition of J ), and

• J |= AEi@∼Fi u Ei v Fi for all 1 6 i 6 n.

Therefore, J is a counterexample for T D |= D̂ uC v D.

Theorem 4.22 directly implies that for an EL⊥ KB K, query subject χ and
set of DCIs E , χ is exceptional w.r.t. E and K (Def. 4.5) using MatEL⊥() iff
it is when using MatALC(). Therefore, the rational chain as well as Conss()

are identical for both simple materialisation functions.6 We continue with
a very similar proof for the case of defeasible instance checking, before
concluding this section with the final result as a simple consequence of the
preceding theorems. The case of defeasible instance checking is covered
more generically, because MatLs≺(K,C{a}) involves the addition of multiple L
material implication concept assertions for different individuals in the ABox.
The idea is to prove the equivalence of entailments for two versions of an
arbitrary ABox extension, relying on the two types of material implications,
respectively.

Theorem 4.23. For an EL⊥ KB K = (A, T ,D), an EL⊥ defeasible instance
check C{a}, sets of EL⊥ DCIs D1, . . . ,Dk ⊆ D and a1, . . . ,ak ∈ sigI(A),
the following are equivalent

1. (A∪ {D̂j(aj) | 1 6 j 6 k}, T D) |= C(a)

2. (A∪ {Dj(aj) | 1 6 j 6 k}, T) |= C(a).

Proof. We assume (A, T) to be consistent, as the alternative trivially satis-
fies the claim. Let D = {E1 @∼ F1, · · · ,Em @

∼ Fm} and assume w.l.o.g. that
all Dj are non-empty, hence |Dj| = nj (1 6 nj 6 m) for all 1 6 j 6 k.
Then, the most general presentation of all Dj (1 6 j 6 k) is

Dj = {Ej1 @∼ Fj1 , · · · ,Ejnj @∼ Fjnj },

with 1 6 ji 6 m for all 1 6 i 6 nj. For a shorthand, let

6 This further supports the notation of Conss() to be independent of the DL L.
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• Â = {D̂j(aj) | 1 6 j 6 k} and

• A = {Dj(aj) | 1 6 j 6 k}.

We show both directions of the claim by contraposition.

[1⇐= 2 ] Assume I |= (A∪ Â, T D) with aI 6∈ CI and recall T ⊆ T D.
aIj ∈ AI

Eji
@
∼Fji

and I |= AEji@∼Fji u Eji v Fji directly implies aIj ∈
(¬Eji t Fji)I for all 1 6 j 6 k and 1 6 i 6 nj. Therefore I |=

(A∪A, T) and provides a counterexample for (A∪A, T) |= C(a).

[1 =⇒ 2 ] Assume I = (∆I , ·I) is a model of (A∪A, T) with aI 6∈ CI .
Construct J = (∆I , ·J ) with χJ = χI for all χ ∈ sig(K,C{a})
(including individuals) and for all E @

∼ F ∈ D, let A
J
E@∼F

= {aIj | E @
∼

F ∈ Dj}. It follows that

• XJ = XI (for X ∈ C(ALC) with sig(X) ⊆ sig(K,C{a})), i.e.
J |= (A, T),

• J |= Â (by definition of J ), and

• because aJj = aIj ∈ (¬Et F)I = (¬Et F)J for all E @
∼ F ∈ Dj

and 1 6 j 6 k, J also satisfies all AE@∼F uE v F for E @
∼ F ∈ D.

Thus J |= (A ∪ Â, T D) and provides a counterexample for (A ∪
Â, T D) |= C(a).

Note that in Theorem 4.23, the query subject a can easily be one of the
aj and if k = 1, the result implies equivalence of simple materialisation
MatALC(K,C{a}) iff MatEL⊥(K,C{a}). Consequently, in the initial iteration
of Definition 4.16, Conss() produces the same consistent DBox (for ALC and
EL⊥ materialisation) for the first processed individual. The exceptionality
of this first individual is decided with simple materialisation-based on the
original ABox, an equivalence that is covered by Theorem 4.23 with k = 1.
For any subsequent iteration, the ABox Ai−1 contains exactly the same
concept assertions, modulo the syntax of material implications. Thus,
Conss() will again determine the same set of consistent DCIs for the currently
processed individual, based on the equivalent ABox extensions at this point.
Consequently, each step of the iteration in Definition 4.16 is equivalent in
terms of the reduction to classical reasoning w.r.t. both ALC and EL⊥
(regardless of s), when the original inference problem is in EL⊥. All of
the above, including Thm. 4.22 and 4.23, is summed up by the following
corollary.

Corollary 4.24. For an EL⊥ inference problem (K,α) and a total order ≺
on NI, it holds that

MatALCrat≺(K,α) is true iff MatEL⊥rat≺(K,α) is true

under classical semantics.
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In the next chapter we discuss issues that arise from this framework
for materialisation-based procedures. Some problems are local to rational
semantics and can be somewhat alleviated by other instantiations of the
framework, i.e. varying on the semantic strength s (cf. Chapter 6). Other
drawbacks are inherent for the technique of materialisation in general,
and therefore persist for all instantiations of the framework, regardless
of semantic strength. These issues motivate the concept of coverage for
non-monotonic semantics and the need to revaluate materialisation-based
approaches.



5
DISCUSS ION

Rational Closure is often considered as a very stable foundation for non-
monotonic reasoning in modern KR systems. It is formally well-behaved
in terms of a set of rationality postulates and it allows for an efficient
reduction to classical reasoning in the underlying formalism. Adaptations of
the original RC in conditional (propositional) logic have been investigated for
first order logic [LM’90], modal logic [BMV’11a] and of course Description
Logics [Bon’19; BCM+’13; GGOP’15; PT’18]. This is evidence that RC
maintains a strong foothold in non-monotonic KR.
Nevertheless, Rational Closure still suffers from several fatal drawbacks.

As a matter of fact, much of its attention is directed precisely at such
shortcomings [BV’17a; CMMN’14; CS’12; CS’13; GG’18; PT’17a; PT’17b;
PT’18]. On the other hand, it is worth noting that, in early stages of
their research, Giordano et al. [GGOP’10a; GGOP’10b] have argued that
rational entailment is actually too strong, as it allows to draw unintuitive
conclusions. However, the entailment they discuss does not correspond to
Rational Closure.
We recognise the most important issues as the following and continue

readily to discuss the first two in depth.

inheritance blocking. Defeasible properties of a super-concept
are inherited in an all-or-nothing [GD’16] manner, regardless of their
interactions or conflicts with more specific defeasible knowledge. This
is the most widely known downside of RC that has been identified and
approached on numerous occasions [BFPS’15; BS’17; CS’12; CS’13;
PT’17b]. It occurs already for RC in conditional logic [LM’92] and it
is only natural that direct translations thereof inherit its drawbacks.
(Section 5.1)

quantification neglect. Quantified concepts are oblivious to de-
feasible information. This issue has been largely overlooked in the
literature, with only few mentions in [Bon’19; BFPS’15; KLM’90], ex-
cluding our contributions originating in [PT’17a]. We argue that truly
meaningful rational consequences, in any logic that supports forms of
quantification, must not suffer from such neglect. (Section 5.2)

dependence on the dmup. Semantic characterisations of Rational
Closure [BCM+’13; GGOP’15] are not well-defined for Description
Logics that do not enjoy the DMUP. Extensions of RC to more
expressive logics than ALC ([BV’17a; BV’17b; GD’18; GGO’18]),
relied on individual solutions for semantic characterisations, if non-
satisfaction of the DMUP ([CMS’18; GD’18]) prohibited a simple
translation of the approach for ALC. Bonatti [Bon’19] provides a
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uniform solution by generalising the notion of concept ranks and
ranked models, effectively introducing a semantic characterisation of
Rational Closure for all Description Logics.

Due to the proven equivalence of various characterisations (such as in
Thm. 4.14), any formalisation of (standard) RC suffers those shortcomings.
We rely on the materialisation framework to illustrate and discuss the first
two properties, because defeasible consequences, and thereby the causes of
problematic cases, are easily understood and portrayed in terms of material
implications. Going forward, we will often utilise ALC material implications
C @

∼ D, simply because they are handled much more easily than TBox
extensions, as required when remaining with EL⊥. Corollary 4.24 ensures
that any drawbacks or other illustrations are shared for both versions of
material implications. We refer the interested reader to [Bon’19] for an
in-depth study of the third issue. Interestingly enough, Bonatti [Bon’19]
closes his contribution with an indisputable realisation, proclaiming the
urgency of the aforementioned problems.1

“All of these limitations need to be addressed before Rational
Closure can be applied in practice.”

[Bon’19, p. 215]

5.1 inheritance-blocking

To understand inheritance blocking, consider DCIs in the rational chain of
a DBox as layered information. Their interaction with query subjects is
governed by the subsumption hierarchy of their antecedents, as indicated
by the construction of the rational chain (Def. 4.6). Recall the DCIs Cat @∼
Smart and Catu∃friend.Dog @

∼ ¬Smartu Friendly from Example 4.8
(Page 48) and consider the additional property Cat @∼ Lazy for generic
Cats. Example 4.8 already illustrated how concepts further down in the
subsumption hierarchy (here: Cat u ∃friend.Dog), are subject to more
defeasible information. Similar to Example 4.8, the rational chain for these
three DCIs (even with an empty TBox) is

chain(K) = 〈D0 = D,

D1 = {Catu ∃friend.Dog @
∼ ¬Smartu Friendly},

D2 = ∅〉.

When presented with a query subject such as the individual molli, satisfying
Cat u ∃friend.Dog, rationality dictates that due to the conflict A ∪
{D(molli)} |= ⊥(molli), more specific information, i.e. D1, shall prevail.
Intuitively speaking, the property Smart, associated with typical instances

1 To be precise, Bonatti specifically refers to the first two problems and lists a third issue
that is also addressed in [BFPS’15]. The urgency for resolving the dependence on the
DMUP is of course given by the paper [Bon’19] itself.
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of Cat, is not inherited to typical instances of Catu ∃friend.Dog (and
there is a good reason for that).
At a closer look, the conflict that keeps molli from satisfying D0

is caused by the contradictory consequences of Cat @
∼ Smart and

Catu ∃friend.Dog @
∼ ¬Smartu Friendly. Unfortunately, being bound

to the rational chain, Cat @
∼ Lazy is removed at the same time as

Cat @∼ Smart, because on the subsumption hierarchy their antecedents
are indistinguishable. In a nutshell, the removal of irrelevant defeasible
properties within a conflicting set of properties is the essence of inheritance
blocking. One would expect that if no conflict or reason for the removal
of a defeasible property exists, it should be inherited to a more specific
class/instance.

The problem causing this all-or-nothing [GD’16] effect, is that the layering
of DCIs according to the subsumption hierarchy is too coarse. For instance,
it is easy to see that all antecedents of DCIs that are topmost on their
subsumption hierarchy must be consistent with D0 in any rational chain.
Consider the additional DCI Small @∼ Cute about the typical properties
of a concept that, on its own, is completely unrelated to the concept Cat.
Without further information, Small must be topmost in the subsumption
hierarchy, hence belonging to D0. Now, any Cat suffering from the conflict
between Smart and ¬Smart (concepts and individuals alike) are also
blocked from inheriting the typical property of Small, because they are
incapable of satisfying everything in D0. Naturally, this effect does not only
rely on inheritance of properties that are consistent in D0. Deeper layers can
exhibit the same behaviour, albeit requiring more involved exemplification.
This issue of Rational Closure is known for a long time, being rooted

already in the conditional logic introduced by Lehmann and Magidor [LM’92].
Numerous approaches attempting to resolve inheritance blocking as best
as possible have appeared in the literature ([CMMN’14; CS’12; CS’13;
GG’18; Leh’95]). These attempts typically propose a stronger entailment
relation that maintains consequences under RC, but is able to derive the
missing but expected consequences as well. The quality of such extensions is
usually appraised in terms of computational complexity and a self-reflecting
analysis for satisfaction of KLM postulates. Among the most prominent, we
recognise Relevant Closure(s) (Sec. 6.1), Lexicographic Closure (Sec. 6.2)
and defeasible inheritance-based Description Logics [CS’11; CS’13]. The
first two will be covered in terms of the materialisation framework in
Chapter 6.

5.2 quantification neglect

Another severe limitation that most approaches towards RC in DLs or
extensions thereof suffer from, is the neglect of defeasible information in
quantified concepts. This behaviour is inherent with all instantiations of
the materialisation framework, rather than a single aspect of it (as it is
the case for inheritance blocking with the rational chain). Quantification
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neglect is rooted in the very idea of utilising materialised forms of defeasible
information to enrich desired consequences or to determine ranks of concepts.
Its essence lies in the following observation.

Materialisation cannot infer defeasible properties for quantified concepts
that are satisfied by the query subject.

Illustration and comprehension of this issue requires nothing more than
a single DCI, e.g. Dog @

∼ Nice. Effectively, from the typical instances of
Dog satisfying the defeasible property Nice, we are unable to conclude for
any instance that is related to an instance of Dog via a role, that it is also
related to an instance of Nice, regardless of typicality or conflict of the
predecessor instance. For defeasible subsumption, it is very easy to pinpoint
the cause of this behaviour to materialisation:

6|= (¬DogtNice)u ∃friend.Dog v ∃friend.Nice .

For defeasible instance checks, quantification neglect is not necessarily
as universal as it is for the query subjects of defeasible subsumptions,
but it persists nonetheless. For a defeasible instance check Cat{molli},
clearly the query concept Cat does not syntactically contain quantified
concepts. However, the query subject can still satisfy quantifications, even
based on defeasible information, e.g. K |=(rat≺,mat) ∃friend.Dog{molli}.
Quantification neglect occurs for individuals only when quantifications
are derived from anonymous individuals. Specifically, it matters whether
∃friend.Dog{molli} is derived from Cat @∼ ∃friend.Dog (anonymous)
or from friend(molli, lilly) and Dog(lilly) (named individual). In the
latter case, the extended knowledge base K≺ (Def. 4.16) may already assert
defeasible information for lilly, allowing to derive typical consequences
for the quantified concept Dog. However in the former case, no DCI,
materialised as an assertion for molli (or any other individual) is able to
“affect” the quantified concept Dog, aside of the normal capabilities of
universal quantification.

We argue that defeasible information should influence top-level instances,
as well as any existentially nested instances, while remaining conflict free
in the rational sense. Consider an additional DCI Dog @

∼ Angry and the
simple restriction ∃friend.Angry v ⊥. To obtain defeasible consequences
of the concept ∃friend.Dog, we would have to determine a set of DCIs that
all instances of this nested Dog can satisfy, while maintaining consistency of
the original concept ∃friend.Dog. For semantics overcoming quantification
neglect, such a selection of consistent DCIs would ideally align with a well-
chosen foundation, such as the rational chain. Then again, the issue
of inheritance blocking would transfer to the defeasible consequences of
quantified concepts as well. The most fine-grained solution here, considering
all of the above DCIs, would of course be to derive ∃friend.Nice but not
∃friend.Angry as defeasible subsumers of ∃friend.Dog.

While materialisation-based approaches to defeasible reasoning have been
subject to quantification neglect since their first appearance in the DL
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setting in [CS’10], this issue has (to the best of our knowledge) not been
addressed in terms of rational reasoning until 2017 [PT’17a]. The method
of overriding introduced by Bonatti et al. [BFPS’15] allows to individually
refer to the normal instances of a class syntactically, e.g. ∃friend.NDog.
This is different from our proposition, that defeasible information should
influence consequences on any level of existentially nested elements and
align with the rational (or relevant) selection of consistent DCIs.

Even though inheritance blocking has received a lot more attention to this
day, it is hard to compare severity or urgency of the two problems. Inheritance
blocking is somewhat logic-independent, as it persists for Rational Closure
in DL and conditional logic, while quantification neglect requires some
form of quantification to be expressible in the underlying logic. On the
other hand, the main advantage of (many) Description Logics over the
propositional calculus is the ability to express binary relations and impose
knowledge on the relational neighbourhood. Any non-monotonic extensions
of DLs not respecting this feature could be regarded as mere compositions
of propositional rational reasoning and classical DL reasoning. That being
said, both insufficiencies are orthogonal in the sense that one does not entail
the other. Therefore, individual solutions as well as combinations thereof
are not only a vital part of the present thesis, but should play a major role
in the area of Rational Closure in Description Logics in the long term.
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EXTENS IONS

Most of the extensions of Rational Closure that have been investigated
in the literature [CMMN’14; CS’12; CS’13], are motivated to resolve the
issue of inheritance blocking, while retaining computability and as many
formal properties as possible. Another concern with the proposal of stronger
semantics is not to stray too far from the KLM foundation. In particular,
attempting to adhere to their thesis that any sensible non-monotonic entail-
ment relation should be a rational extension of RC (Thesis 5.25 in [LM’92]).
As noteworthy contributions for a strengthening of RC we recognise the
following.

relevant closure. Consistent subsets of DCIs are determined by
means of consequence justification [Hor’11], also referred to as axiom
pinpointing [Peñ’09]. Relevant Closure has only been studied in the
context of DLs by Casini et al. [CMMN’14]. (see Section 6.1)

lexicographic closure. For the selection of consistent sets of
DCIs, all subsets of the DBox are ranked with tuples of natural num-
bers, measuring how many DCIs from each layer in the rational chain
they contain. These tuples are then used to define a lexicographic
order over the subset of the DBox and select the most preferred, (with
the query subject) consistent set. Versions of this closure operator
have been studied by Casini and Straccia [CS’12] and [GG’18]. (see
Section 6.2)

boolean inheritance networks. Boolean inheritance net-
works (BIN) ([Hor’94]) can be utilised to determine interactions
between DCIs and build a dependency graph with different types of
edges. Upon determining a consistent subset of the DBox for the
query subject, this network is then queried to provide a more fine
grained selection of appropriate DCIs than allowed by the rational
chain. The resulting entailment operation is still referred to as Ratio-
nal Closure, relying on the preprocessing of a BIN. It was originally
introduced for DLs by Casini and Straccia [CS’11] with more refined
results in [CS’13].

context-based defeasible subsumption. In standard RC,
defeasible subsumptions are considered under one single context.
In model-theoretic characterisations, this is contingent on classical
interpretations being extended with a single preference relation over
domain elements. Britz and Varzinczak [BV’17a; BV’18b] study the
effects of extending classical models with several preference relations,
one for every context. Defeasible subsumptions (as well as DCIs) can
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then be subscripted by a specific context and conflicts are effectively
localised within a context.

An important addition that does not really fit into the preceding list, is
the refinement of concept-rank-based RC as studied by Bonatti [Bon’19].
It is a strengthening of RC on the level of the underlying logic. Rather
than supporting more inferences, its goal is to support more expressive
Description Logics.

It is interesting to see that three of the four approaches above, essentially
investigate different strategies to determine consistent subsets of the DBox.
The algorithm that is used to ultimately determine consequences under these
stronger closures is structurally identical to the computation of entailments
under RC. In terms of the materialisation framework we constructed in
Section 4.1, they coincide on the (simple) materialisation functions and
differ only on their instantiations of Conss().1 To highlight the versatility
of the materialisation framework, we present instantiations of Conss() for
Relevant and Lexicographic Closure in the following (Sec. 6.1 and 6.2).
As a matter of fact, we also adopt the method of relevant reasoning in
Part iii of this thesis, as testament for a semantics that neither suffers
from inheritance blocking nor quantification neglect. At this time, we
conjecture that Lexicographic Closure and inheritance-based RC can be
similarly merged with our new semantics.

6.1 relevant closure

In Section 5.1 it was illustrated why Rational Closure is too coarse and
how disregarding DCIs in bulk can lead to the (undesired) removal of
conflict-free defeasible knowledge. Another point of critique is that the
candidates for consistent sets of DCIs are determined in a preprocessing
step, without a specific query subject in mind. Relevant Closure (hereinafter
also referred to as relevant reasoning or semantics of relevant strength)
aims to determine consistent sets of DCIs that are tailored specifically to
a given query subject with the finest possible granularity. An immediate
consequence of this premise is that the produced sets of DCIs are supersets
of those selected from the rational chain (for any given query subject). The
name-giving main intuition is to “associate relevance with the subsumptions
responsible for making the antecedent of a query exceptional” Sec. 4.1 in
[CMMN’14]. Formally, this type of relevance is captured in terms of (minimal)
justifications ([Hor’11; HPS’09]). Recall the notion of exceptionality for
concepts and individuals in Definition 4.5 (Page 46).

Definition 6.1 (Justification [CMMN’14]). For an L KB K = (A, T ,D), a
set of DCIs J ⊆ D and a concept or individual χ ∈ C(L)∪NI, J is called
a χ-Justification iff χ is exceptional for J and there is no J ′ ( J s.t. χ

1 As a technicality, initLs () needs individual instantiation as well. For more details on its
purpose consider Section 6.1 and 6.2.
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is exceptional w.r.t. J ′. The set of all χ-Justifications w.r.t. the KB K is
justifications(K,χ).

This particular definition of justifications is a special instance within the
area that, in general, studies minimal justifications for any type of inference.
Justification is heavily investigated in different flavours within ([BP’10a;
BP’10b; Hor’11; HPS’09; Peñ’09]) and outside ([CD’91; GHN+’04; HO’48;
LS’05]) of Description Logics. In DLs, justifications can be effectively
determined by means of automata [BP’10a] as well as extensions of general
tableaux [BP’10b]. We shall not introduce these methods in detail and rather
accept them as (decidable) black-box procedures, appropriately saturating
the set justifications(K,χ). In terms of computational complexity, the
additional step of determining justifications turns out to be non-negligible
for EL⊥. As the detailed complexity analysis of materialisation-based
entailment is referred to Chapter 8, so are the relevant results from the area
of justification.

Example 6.2. Consider the KB K = (T ,D)2

T = {FamilyCat v Cat}
D = {Smart @∼ ¬Lazy,

Cat @∼ Smart,

Cat @∼ Lazy,

Cat @∼ Loner,

FamilyCat @∼ ¬Loner}

First of all, this simple KB showcases that the rational chain is not determined
solely through the strict subsumption hierarchy induced by T , but also
somewhat through the defeasible subsumption hierarchy. Clearly,

(¬Catt Smart)u (¬Catt Lazy)u (¬Smartt¬Lazy)

cannot be satisfied by elements of Cat. This shows that Cat cannot
satisfy the entire DBox. The defeasible information about FamilyCats
conflicting with one of the assumptions about generic Cats, shows that
FamilyCat must be exceptional w.r.t. any subset of the DBox containing
both FamilyCat @∼ ¬Loner and Cat @∼ Loner. Consequently, the rational
chain of the KB is as follows:

chain(K) = 〈D0 = D,

D1 = {Cat @∼ Smart,Cat @∼ Lazy,Cat @∼ Loner,

FamilyCat @∼ ¬Loner},

D2 = {FamilyCat @∼ ¬Loner},

D3 = ∅〉

2 This KB is of propositional nature, that is, it does not utilise any form of DL quantification.
Rest assured that the ideas presented in this example remain valid with more expressive DL
consequences. We opt for simplicity, to convey an understandable intuition. Furthermore,
the forms of negation used in this KB are easily transformed into GCIs such as NotLazyu
Lazy v ⊥, allowing to transfer the arguments in this example to EL⊥ KBs.



70 extensions

Clearly, this is another good example for inheritance blocking, as any
rational consequence about FamilyCats is constrained by the rational
chain to disregard e.g. Cat @∼ Smart, even though this is not in conflict
with any (defeasible) information known for FamilyCat. Resolving this
particular conflict in a more fine-grained manner, requires to disregard
only one of the involved DCIs. On the other hand, the conflict between
Cat @

∼ Smart, Cat @
∼ Lazy and Smart @

∼ ¬Lazy is also inherited to
FamilyCat, showing that exceptionality might be witnessed by several
conflicts.

A major aspect in relevant reasoning is the strategy of how to resolve
(possibly multiple) identified conflicts in a reasonable way. This question
relates quite elegantly to Reiter’s hitting set duality [Rei’87]. Minimality of
the justifications for a conflict implies that a consistent subset of the DBox
can be found by removing at least one statement of every justification. Casini
et al. [CMMN’14] propose two methods for disregarding DCIs that appear
in the justifications of a query subject, resulting in the characterisation of
Basic and Minimal Relevant Closure. Both propose a specific removal of
relevant DCIs, that is closely aligned with the rational chain. In the effort to
obtain a semantics that extends Rational Closure, it is intuitively preferred
to remove more general DCIs, i.e. those that belong to bigger members of
the rational chain.

basic relevant closure produces consistent subsets of the DBox
by iteratively removing all DCIs along the rational chain that are
part of some exceptionality justification. This iteration begins by
removing all relevant DCIs that are exclusive to D0 and continues
with increasing indices until the current query subject is consistent
with the remaining defeasible knowledge. In Example 6.2, Basic
Relevant Closure produces the same consequences for FamilyCat
as Rational Closure, because all DCIs that are exclusive to D0 and
D1 belong to some justification for FamilyCat.

minimal relevant closure is a further refinement, reducing the
amount of removed DCIs. Only the rank-minimal DCIs of every
justification will be removed, allowing to inherit the properties Smart
and Lazy for FamilyCats, because the rank-minimal DCI in this
particular conflict is Smart @∼ ¬Lazy. (cf. Exm. 6.4)

In [CMMN’14] it was shown that Minimal Relevant Closure extends both
Rational and Basic Relevant Closure. Therefore, we skip the intermediate
step and formally define only Minimal Relevant Closure, also omitting the
keyword Minimal in the following. The semantics of relevant strength
presented in Part iii are also based on the foundation of Minimal Relevant
Closure. Furthermore, note that in [CMMN’14] only defeasible subsumption
is considered. The following instantiation enables defeasible instance check-
ing, a novel and unparalleled contribution that resolves inheritance blocking
for this type of inference.
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A formalisation of Relevant Closure in terms of the materialisation frame-
work requires little more than an appropriate instantiation of the consistent-
selection function Consrel().

Definition 6.3 (Relevant Consistent DCIs). For an L KB K with
chain(K) = 〈D0, · · · ,Dn〉, a concept or individual χ ∈ C(L) ∪NI and
justifications(K,χ) = 〈J0, · · · ,Jm〉, let

Jmini = {C @
∼ D ∈ Ji | ∀E @

∼ F ∈ Ji.rK(C) 6 rK(E)}

for 0 6 i 6 m. The relevant consistent-selection function Consrel(K,χ) is
defined as follows

Consrel(K,χ) = D \
⋃

06i6m

Jmini .

Continuing with Example 6.2 allows to show superiority of Consrel(K,χ)
over Consrat(K,χ).

Example 6.4. The two justifications for FamilyCat are clearly

J0 = {Smart @∼ ¬Lazy,Cat @∼ Smart,Cat @∼ Lazy}

J1 = {Cat @∼ Loner, FamilyCat @∼ ¬Loner}

with

Jmin0 = {Smart @∼ ¬Lazy}

Jmin1 = {Cat @∼ Loner}.

Using Consrel(K, FamilyCat) = D \ (Jmin0 ∪ Jmin1 ), we can clearly
derive

T |= Consrel(K, FamilyCat)u FamilyCat v Smartu Lazy,

something that was impossible under Rational Closure.

The definition of Consrel(K,χ) already suffices to determine defeasible
subsumption inferences under (rel, mat)-semantics using Definition 4.11.
The clear separation of functionality in the materialisation framework make
this type of instantiation particularly simple.

To determine entailment of defeasible instance checks under (rel≺, mat)-
semantics requires only to define a starting point initLrel(K) for the ABox
extension defined generically in Def. 4.16. Now, we can finally illustrate why
this initialisation is parametric on a semantic strength, rather than starting
from the original ABox in any case.

Example 6.5. Consider an extension of Example 6.2 by an ABox and an
additional GCI as K = (A, T ∪ T ′,D), with

A = {FamilyCat(molli),

Cat(daisy),

friend(daisy,molli)}

T ′ = {Smart v ∀friend.(¬Smart)}
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and T ,D as in Example 6.2. Clearly the rational chain is

chain(K) = 〈D0,D1,D2,D3〉,

as before. We assume the order ≺ over NI to assign molli ≺ daisy, to
showcase a problem that arises when initialising the algorithm in Defini-
tion 4.16 with initALCrel (K) = K. Becausemolli is considered before daisy,
the consistent subset Consrel(K,molli) is determined. It is not hard to
confirm that Consrel(K,molli) = D \ {Smart @∼ ¬Lazy,Cat @∼ Loner}.
Thus, the initial ABox is extended with (¬Catt Smart)(molli), among
others.3 This allows to draw the conclusion Smart(molli) from (A1, T ,D).
Upon determining Consrel((A1, T ,D),daisy), it is clear from the GCI in
T ′, the newly derivable fact Smart(molli), and friend(daisy,molli),
that we will not be able to derive Smart(daisy) after the ABox extension
is complete. According to our knowledge base, all Smart elements only
befriend elements that are not Smart.
So far so good, but how do the consequences under the relevant ABox

extension relate to those under the rational ABox extension? With the
same order, molli would only be (rationally) consistent with D2, hence we
would not be able to conclude Smart(molli) after the first iteration of the
extension algorithm. This in turn allows daisy to be consistent with the
DCI Cat @∼ Smart and thus, with D1, because there is no conflict derivable
through the relation friend(daisy,molli). Initialising the relevant ABox
extension with the original KB resulted in the loss of a consequence that is
derivable under RC. As we are motivated to strictly extend the consequences
obtainable through Rational Closure, we need to initialise the relevant ABox
extension appropriately.

Formally, for the initial KB in Definition 4.16 we simply use

initALCrel≺(K) = (Arat≺ , T ,D),

and

initEL⊥rel≺
(K) = (Arat≺ , T D,D),

for an ALC or EL⊥ KB K = (A, T ,D), respectively. This ensures the follow-
ing result for both types of defeasible inference, obtained for the framework
instantiation MatLrel≺(K,α). Superiority of defeasible subsumption under
Relevant Closure was shown in [CMMN’14], while superiority of defeasible
instance checking as well as its definition altogether, are our contributions
in [PT’18].

Theorem 6.6. Relevant materialisation-based reasoning is strictly stronger
than rational materialisation-based reasoning. In particular, for K =

(A, T ,D) and a defeasible subsumption or instance check α,

K |=(rat≺,mat) α =⇒ K |=(rel≺,mat) α (6.1)

K |=(rat≺,mat) α 6⇐= K |=(rel≺,mat) α (6.2)
3 Concept assertions with conjunction on the top level are clearly equivalent to separate

concept assertions for each conjunct.
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Proof. For α being a defeasible subsumption, this result appeared as Propo-
sition 2 in [CMMN’14].

Let α = C{a} and suppose K |=(rat≺,mat) α. Theorem 4.22 and 4.23
allow us to rely on ALC materialisation here and transfer the result to
EL⊥. The assumption that α is entailed by K under rational strength
implies the classical entailment (Arat≺ , T) |= C(a). From Definition 4.16
and initALCrel≺(K) = (Arat≺ , T ,D) it follows that Arat≺ ⊆ Arel≺ . Due to
monotonicity of classical reasoning, this implies that (Arel≺ , T) |= C(a),
hence K |=(rel≺,mat) α.

Example 6.4 (with the ABox from Exm. 6.5) shows that the converse
is not always true. With the appropriate initialisation, we are able to
derive Lazy{molli} from the relevant but not from the rational ABox
extension.

6.2 lexicographic closure

Determining consistent sets of DCIs in a more fine-grained manner than
provided by the rational chain goes back to the Lexicographic Closure in
[BCD+’93; Leh’95], for the propositional case. To the best of our knowledge,
justification-based reasoning was not considered for propositional defeasible
reasoning in this context. Casini and Straccia [CS’12] have lifted this more
expressive closure by a syntactic translation from the propositional to the
DL case, much like they did for Rational Closure in the first place. The
fundamental idea for Lexicographic Closure is similar to Relevant Closure,
in that all subsets of the DBox are considered to determine Conslex().
However, the approaches differ in the technique to select such a consistent
subset. Lexicographic Closure is based on a lexicographic ranking over all
subsets of the DBox. Due to its similarity in DBox-granularity with the
Relevant Closure, we can reuse Example 6.2 and be very brief with this
instantiation of the materialisation framework.

For the mathematical foundation, recall the lexicographic ordering on
strings of natural numbers of length k, to be defined as

〈n0, · · · ,nk〉 <lex 〈m0, · · · ,mk〉
iff

∃i ∈ {0, · · · , k}.
(
∀j < i.nj = mj

)
∧ni < mi

The intuition behind a lexicographic ordering of sets of DCIs, is that every
subset of the DBox D is measured by the number of DCIs it contains,
component-wise separated by their antecedents concept ranks. Recall
concept ranks from Def. 4.12 (Page 51), and note that rK(C) = i iff
C @

∼ D ∈ Di \Di+1 is an equivalent characterisation of the concept ranks
for antecedents C in D.
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Definition 6.7 (Lexicographic Rank). For a KB K = (A, T ,D), let
chain(K) = 〈D0, · · · ,Dk+1〉. For each subset U ⊆ D, the tuple
〈n0, · · · ,nk〉U is defined with

ni = |{C @
∼ D ∈ U | rK(C) = k− i}|

for 0 6 i 6 k.

The lexicographic rank of U is simply counting the number of con-
tained DCIs for every antecedent rank, in reversed order. This order-
ing gives an implicit preference on more specific (i.e. higher antecedent
rank) DCIs, when maximising the lexicographic rank. Recall K and
chain(K) from Example 6.2. In rational strength of reasoning, we were
forced to use D2 = {FamilyCat @

∼ ¬Loner} as the consistent set of
DCIs for FamilyCat. The lexicographic rank of D2 is 〈1, 0, 0〉D2 and
there are clearly more preferable (in terms of a higher lexicographic rank)
subsets of D, that are consistent with FamilyCat. Take for instance
U = Consrel(K, FamilyCat), as in Example 6.4. It is easy to see that

〈1, 0, 0〉D2 <lex 〈1, 2, 0〉U .

Ideally, the lexicographic ordering provides a most preferable set of consistent
DCIs, maximising the number of more specific DCIs in descending order.
However, there might be multiple consistent sets of DCIs with the same
lexicographic rank. This case is treated cautiously, by considering the
intersection of those rank-maximal candidates.

For a slight abuse of notation, suppose we have a universal instance of the
Cons() function, providing the set of all consistent subsets of the DBox w.r.t.
a query subject. Explicitly, for α ∈ C(L)∪NI and a KB K = (A, T ,D), let

Cons(K,α) = {U ⊆ D | α is not exceptional w.r.t. U and K}

Definition 6.8 (Lexicographic Consistent DCIs). For an L KB K with
chain(K) = 〈D0, · · · ,Dk+1〉, and a concept or individual χ ∈ C(L)∪NI,
the lexicographic consistent-selection function Conslex(K,χ) is defined as

Conslex(K,χ) =
⋂
max<lex(Cons(K,α))

formax<lex(Cons(K,α)) selecting the lexicographic-rank-maximal elements
from Cons(K,α).

As opposed to Relevant Closure, Casini and Straccia [CS’12] consider
defeasible instance checking under Lexicographic Closure. However, in
[CS’12] the ABox extensions are not initialised with the rational ABox
extension. Consequently, the effect illustrated in Example 6.5 could easily
take hold. Nevertheless, they show that the closure resulting from their ABox
extension is rational, in terms of translated KLM-postulates for instance
checks. To align the Lexicographic Closure that we present, with the ABox
extension approach taken for Relevant Closure, we define initLlex≺(K) =
initLrel≺(K) to be based on the rational ABox extension as well. While
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this does not guarantee that the satisfaction of KLM postulates carries over
from [CS’12], it ensures the second part of Lehmann and Magidor’s thesis,
by extending RC.

The following result is proven analogous to Theorem 6.6. Example 6.2 can
still be used to show superiority, and the simple argument that no consistent
set of DCIs U ( Consrat(K,χ) can be lexicographically preferable to
Consrat(K,χ), allows to conclude that the Lexicographic Closure contains
the Rational Closure.

Theorem 6.9. Lexicographic materialisation-based reasoning is strictly
stronger than rational materialisation-based reasoning. In particular, for
K = (A, T ,D) and a defeasible subsumption or instance check α,

K |=(rat≺,mat) α =⇒ K |=(lex≺,mat) α (6.3)

K |=(rat≺,mat) α 6⇐= K |=(lex≺,mat) α (6.4)
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INTRODUCTION AND OVERVIEW

In the preceding parts we have introduced the foundations for reasoning in
Description Logics and the paradigm of non-monotonic reasoning. A promis-
ing approach to combine these two foundations into defeasible reasoning,
is a reduction algorithm relying on materialisation to compute entailments
under Rational Closure. By abstracting the central notions of this reduction,
we were able to present a framework capable of deriving entailments under
several materialisation-based semantics. This branch of research evidently
strives for continued improvement, be it the incorporation of more powerful
tools to apply defeasibility [BCMV’13; BV’16; BV’17a; BV’18b], encourage
more expressive DL formalisms [Bon’19; BV’17a; BV’17b; GGO’18], or
to alleviate crucial drawbacks [CMMN’14; CS’12; CS’13; GG’18; Leh’95].
Surprisingly, until 2017 ([PT’17a; PT’17b]), studies towards the latter as-
pect have focused almost exclusively on resolving the well-known problem
of inheritance blocking (Sec. 5.1), in favour of supporting more intuitive
consequences. However, we argue that the issue of quantification neglect
(Sec. 5.2) is much more concerning, when the underlying logic distinguishes
itself from less expressive formalisms mainly by the ability to express forms
of quantification. The defeasible consequences that are produced by any
formalism suffering from quantification neglect are at best of propositional
coverage, as defeasible information is only inferred on the top level (con-
junction/disjunction) of concepts. This dulls the benefit of representing
defeasible knowledge in Description Logics, as the resulting consequences
are hardly more meaningful than their corresponding representation in
propositional logic (modulo the expressivity of classical DL consequences).

In this part we will present new model-theoretic semantics that are capable
of deriving defeasible consequences for arbitrarily nested concepts, both
for defeasible subsumption and defeasible instance checks. Our two dimen-
sional characteristic for semantics of specific strength and coverage, will be
extended by nested coverage with this model-theoretic characterisation. We
showcase the capabilities of nested semantics in both, rational and relevant
strength. The latter provides a solution for both of the aforementioned
drawbacks, introducing a very powerful form of defeasible entailment. The
main difficulty in defining nested semantics is that a formal description of
how defeasible information in DLs should be inferred for quantified con-
cepts is not easily derived from the KLM foundations. Unfortunately, the
postulates about first-order quantification that are discussed in [LM’90],
do not transfer to the restricted form of quantification in DLs. The only
occurrence of DL quantification in a discussion on the entailment of for-
mal properties appears in [BCM+’13]. However, the postulates Britz et
al. present are derived from the basic set of KLM postulates for rational
entailment relations. While they provide some insight on the behaviour
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of quantified concepts w.r.t. the propositional postulates, they obviously
do not impose additional restrictions on the entailment relation, such that
quantification neglect might be resolved. At this time there is no formal
recognition of properties, such as new postulates, describing the expected
behaviour of nested semantics in DLs. No doubt, answering this question
requires extensive studies, marking an important path for future research.
To maintain a strong foothold within the area of rational reasoning,

our nested semantics are designed in such a way that consequences about
quantified concepts align with the strength of the respective materialisation-
based (propositional) coverage. Consider for instance a query subject ∃r.A.
We propose nested rational semantics such that the consequences derivable
for the quantified occurrence of A never exceed the consequences that
would be derivable if A itself was the query subject, i.e. the consequences
derivable for A in the materialisation framework. For relevant strength,
the fine-graded nature of the consistent subset selection of the DBox
increases the complexity of our semantics. Effectively all subsets of the
DBox (exponentially many) have to be considered for quantified occurrences
of A, rather than a predetermined (linear) number of subsets.
The presentation of our nested semantics is separated into two techni-

cal chapters. In Chapter 7, the novel formalism of typicality models, is
defined and qualitatively analysed, studying the behaviour and inferable
entailments for such models. This chapter concludes by formally showing
superiority (preserving and extending entailments under RC) of nested over
materialisation-based semantics, in particular, showcasing the ability to
derive the missing consequences. An extensive study of the computational
complexity for deciding entailment under the new semantics follows in Chap-
ter 8. It includes algorithmic characterisations of entailments under nested
rational (and relevant) semantics, relying on classical DL reasoning. The
reduction from a known SAT problem is used to prove hardness of deciding
nested rational entailment, whereas hardness results for relevant strength
remain an open problem.
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TYP ICAL ITY MODELS

Quantification neglect can be illustrated with a very simple scenario. For a
solitary DCI A @

∼ B (A = T = ∅), the conclusion ∃r.A @
∼ ∃r.B cannot be

drawn with the materialisation framework, because the produced concept
(¬At B)u ∃r.A can be satisfied by an interpretation I with an element
d ∈ ((¬A t B) u ∃r.A)I , such that no element e ∈ BI is an r-successor
of d in I. The way all materialisation reductions are defined (regardless
of strength), such models are always allowed and will inevitably enable
quantification neglect.

We carefully design a semantics that—instead of considering all models
of a KB—disregards models which do not satisfy the expected DCIs at
role-successor elements. This selection of “appropriate” models is formalised
with a so-called typicality preference relation on sets of models. Reasoning
only with the most preferred sets of models effectively allows to derive
inferences including defeasible knowledge on quantified concepts. Because it
is highly non-trivial to achieve this for general models and classical semantics,
we make the first step in the right direction for a slightly restricted scenario.

In Section 2.4 we showed that for classical EL⊥ query entailment, it
suffices to consider representative models over a unique domain ∆C,O for a
certain (finite) context C, O. Because comparing (sets of) models becomes
much easier when they share a common structure, we adopt this feature
of representability for our semantics. Representative interpretations will
be extended to incorporate defeasible information. More specifically, it is
necessary to

1. capture concept representatives that are typical, in terms of satisfied
DCIs, and

2. require individual representatives to satisfy appropriate sets of DCIs.

The former is required to decide entailments C @
∼ D by checking if the

most typical C representative—the one that also satisfies Conss(K,C) (for
instantiations of s)—satisfies D in the selected set of models. Likewise,
the latter is required to decide entailments C{a} while requiring the a-
representative to satisfy the defeasible information extending the original
ABox A, i.e. As≺ . Both of these entailment conditions are aligned with
the result in Theorem 2.19, showing that it is sufficient to inspect a single
representative for deciding entailments of the KB.

Formally, we introduce typicality interpretations based on the appropriate
extensions of representative domains, called typicality domains. In such
domains, every element is associated with a set of DCIs in addition to the
original association with a concept or individual from the given context.
Our exposition is then separated into two parts.
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In the beginning (Sec. 7.1, 7.2), we follow the outline for representative
models closely (recall Sec. 2.3), lifting notions such as the standard and
model property to typicality interpretations. This provides a foundation
for the second part and shows that the restriction to a unique domain
is a natural one. The first part (much like for representative models),
concludes in a semantics characterised in terms of all typicality models. We
show that entailments under these semantics coincide with the entailments
produced by the materialisation framework, and thus consider them to be of
propositional coverage (prop). In the second part (Sec. 7.3), we strengthen
the propositional semantics by defining the discussed preference relation
over sets of typicality models and achieve two types of nested coverage
(nest).

For the remainder of Chapter 7 and 8, we assume all inference problems,
KBs, and concepts to be in EL⊥, unless specified otherwise. Note that
Theorem 4.22 and 4.23 justify using ALC material implications, to allow
for more intuitive illustrations and simpler proofs.

7.1 introducing typicality interpretations

The central notion in our extension of representative models for reasoning
over defeasible knowledge is the typicality domain. The main idea is to
extend classical representative domains by attaching to every concept- and
individual-representative a set of DCIs. The meaning of this attached
defeasible knowledge is that the respective domain element shall satisfy
the associated DCIs, something that can be enforced by extending the
classical model-property (Def. 2.7). Entailments are, as in the classical case
(Thm. 2.19), read off of the representative domain element that is associated
with the appropriate DCIs. For example to determine K |=(s,c) C @

∼ D, we
must inspect the C-representative that is associated with Conss(K,C). In
that sense, the sets of DCIs that representatives are associated with in the
typicality domain, determine the strength of the resulting semantics. Thus,
to obtain reasoning semantics of a certain strength s, the typicality domain
must be specifically constructed to align the typicality of representatives with
s. As this construction relies on Conss(K,χ), specific typicality domains
depend on an input KB K. Similar to the generality of the materialisation
framework, in terms of different instantiations on the strength s, most of the
results in this part are impartial to the specific structure of the underlying
typicality domain, giving plausibility for a generic presentation.

Definition 7.1 (Typicality Domain). For a finite set of DCIs E , and a
context C ⊆ C(EL⊥), O ⊆ NI, ∆C,O is called a typicality domain iff

1. ∆C,O ⊆ (C∪O)×P(E),

2. ∀C ∈ C.(C, ∅) ∈ ∆C,O,

3. ∀a ∈ O.|{(χ, U) ∈ ∆C,O | χ = a}| = 1

A domain element (χ, U) ∈ ∆C,O is called
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• a concept representative, if χ ∈ C, and

• an individual representative, if χ ∈ O.

Intuitively, an element (χ, U) represents either the subclass of elements
in C that satisfy the DCIs in U ⊆ E , or an individual that is required to
satisfy the DCIs in U . For generic domain elements of a typicality domain
∆C,O, we may still use the usual descriptors d, e ∈ ∆C,O.

Remark 7.2. Note that general typicality domains will not carry the set of
DCIs E in their notation, because any (finite) set of DCIs can be consid-
ered. The definition of specific typicality domains will eventually rely on a
given defeasible KB K with its finite DBox D. Every element in C∪O is
represented in ∆C,O at least once and individuals are also represented at
most once. Therefore, an important, yet simple consequence of Def. 7.1 is
that ∆C,O is finite iff the context C, O is finite. We frequently introduce
∆C,O as finite, simultaneously ensuring finiteness of C and O.

We continue to lift basic notions from representative domains (Sec. 2.4)
to typicality domains.

Definition 7.3 (Typicality Interpretation). For a context C,O, an inter-
pretation I = (∆C,O, ·I) is called a typicality interpretation iff ∆C,O is a
typicality domain over C,O.

In Theorem 2.19, it was shown that in models over a representative
domain, it suffices to check entailment for a single representative, rather
than for all instances of the query subject. This motivates that satisfaction
of defeasible inferences in typicality interpretations is also captured in terms
of the concepts satisfied by the appropriate representatives. Defeasible
instance checking has the same definition as its counterpart in classical
semantics, whereas for defeasible subsumption, we investigate the most
typical representatives of a concept in general. Intuitively, the typicality
of two representatives for the same concept are compared in terms of the
subset relation between associated DCIs.

Definition 7.4 (Satisfaction in Typicality Interpretations). For a context
C,O, a typicality interpretation I = (∆C,O, ·I), C ∈ C and a ∈ O, it holds
that

1. I |= C @
∼ D iff (C, U) ∈ DI for all (C, U) ∈ ∆C,O, such that

¬∃(C, U ′) ∈ ∆C,O with U ( U ′, and

2. I |= C{a} iff aI ∈ CI .

For the specific semantic strengths rational and relevant, the typicality
domain is defined in such a way, that there is only one ⊆-maximal U ⊆ D
(for the DBox D of the input KB) associated to each represented concept.
Specifically, for rational reasoning, this will be Consrat(K,C). The DCIs
associated with individual representatives, will be the DCIs that contributed
to the ABox extension based on the total order ≺ on NI.
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(molli, D)

(Cat, D)(Dog, D)
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Figure 7.1: The (structured) labelled graph representation for the typicality inter-
pretation I = (∆C,O, ·I) in Example 7.5.

Example 7.5. To illustrate a generic typicality interpretation, consider a
context with two concept names C = {Cat,Dog} and a single individual
O = {molli}. Figure 7.1 depicts an interpretation I over the typicality
domain

∆C,O = {(Cat, D), (Dog, D), (molli, D), (Cat, ∅), (Dog, ∅)},

with molliI = (molli, D). Because we are not discussing any specific KB
or the relation that I has to it, suppose D is an arbitrary finite set of DCIs.
The following is a list of noteworthy observations and features that can be
extracted from the labelled graph representation of I.

1. Domain elements can be (visually) grouped according to their asso-
ciated set of DCIs. For instance, in semantics of rational strength,
all domain elements can be (visually) organised as a matrix (e.g.
Fig. 7.3).

2. Note, there is only one representative for molli (due to Property 3
of Def. 7.1) but several for Cat and Dog, at least those associated
with ∅ (cf. Property 2 of Def. 7.1). Other concepts such as Happy
or Lazy can occur in the interpretation (signature) without requiring
representation, as long as they do not belong to the context.

3. Despite its specific domain, I is still a (classical) DL interpre-
tation and therefore, maintains their functionality. In particular,
the satisfaction of classical queries/GCIs/assertions/KBs remains in-
tact. Assuming molliI = (molli, D), the classical entailments
(∃friend.Dog)(molli) and ∃likes.Cat v Cat are supported by I.

4. Definition 7.4 covers the entailment of defeasible subsumptions and
instance checks by single typicality interpretations. For example, I
satisfies Cat @

∼ Lazy, because the concept representative of Cat
that is associated with a ⊆-maximal set of DCIs also satisfies Lazy.
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On the other hand, satisfaction of defeasible instance checks w.r.t.
solitary typicality interpretations coincides with satisfaction of classical
instance checks, i.e. I |= (∃friend.Happy){molli} holds as much
as I |= (∃friend.Happy)(molli).

This list of observations is not exhaustive, but it should be enough to provide
an intuition of how to read visualised typicality models in future examples.
For clarity, we will often display the labelled graph representation of an
interpretation, rather than its set-based definition. It is only important to
note that, in those cases, the labelled graph depicts the full domain and
interpretation mapping, unless stated otherwise.

7.1.1 Properties of Typicality Interpretations

We continue to lift the properties in Definition 2.15 and 2.16 to accommodate
for the added association with DCIs, beginning with the characterisation of
standard typicality interpretations.

Definition 7.6 (Standard Property). For a context C,O, a typicality inter-
pretation I = (∆C,O, ·I) is standard iff

1. (C, U) ∈ CI for all (C, U) ∈ ∆C,O,

2. aI = (a, U) ∈ ∆C,O for all a ∈ O and

3. d ∈ (∃r.F)I =⇒ (d, (F, ∅)) ∈ rI for all d ∈ ∆C,O, r ∈ NR and
F ∈ C.

The standard property of typicality interpretations is analogous to that in
the classical case (Def. 2.15), projecting the first two properties on the first
component of a typicality domain element. The last property ensures again
that existing role successors are witnessed by an appropriate representative
(as in Def. 2.15). However, now the expected successor is additionally
restricted to not be associated with any DCIs. For one, this is because
only concept representatives associated with ∅ are guaranteed to exist in
∆C,O. Also, we intuitively expect elements of a typicality domain to comply
with the defeasible information they are associated with. Thus, assigning
witnesses (for satisfied existential restrictions) that are associated with
(some) DCIs would already influence the derivable entailments for that
particular quantified concept. This intuitive compliance with associated
DCIs is formally captured by extending the standard model property to
check for domain elements satisfying their DCIs.

Definition 7.7 (Model Property). For a KB K = (A, T ,D) and a context
C,O, a typicality interpretation I = (∆C,O, ·I) is a typicality model of K
iff

1. I |= (A, T) and

2. ∀(χ, U) ∈ ∆C,O.
(
∀E @

∼ F ∈ U .((χ, U) ∈ EI =⇒ (χ, U) ∈ FI)
)
.
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Figure 7.2: The (structured) labelled graph representation for the standard typi-
cality model J = (∆C,O, ·J ) in Example 7.9.

TMod(K,∆C,O) denotes the set of all standard typicality models of K
over ∆C,O. The typicality domain ∆C,O is consistent with the KB K
iff TMod(K,∆C,O) 6= ∅.

Remark 7.8. A direct consequence of Def. 7.7 is, that (χ, U) ∈ UI

for all I ∈ TMod(K,∆C,O) and (χ, U) ∈ ∆C,O. Because all inter-
pretations I ∈ TMod(K,∆C,O) are standard (Def. 7.6), it holds for all
(C, U), (a, U ′) ∈ ∆C,O, that (C, U) ∈ CI and (a, U ′) = aI . To-
gether with the first observation, it follows that (C, U) ∈ (C u U)I and
I |= U ′(a). Clearly, TMod(K,∆C,O) ⊆ Mod(K), because of 1 in Def. 7.7.
Hence, TMod(K,∆C,O) 6= ∅ implies for all (C, U) ∈ ∆C,O that U u C is
consistent with K. Furthermore, from I |= U ′(a) (for all standard typicality
models I of K and (a, U ′) ∈ ∆C,O), it follows that

TMod(K,∆C,O) ⊆ Mod((A∪ {U ′(a) | (a, U ′) ∈ ∆C,O}, T)).

This assortment of immediate observations for standard typicality models is
very handy in several of the upcoming proofs.

Example 7.9. Recall the interpretation I from Example 7.5 (see Fig. 7.1)
and consider a specific KB K = (A, T ,D) with

A = {(Catu ∃friend.Dog)(molli)}

T = {Cat v ∃likes.Cat}
D = {Dog @

∼ Happy,Cat @∼ Lazy}

To begin with, I is not a standard model of K. While it does satisfy
molliI = (molli, D) (Property 2) and Property 1 of Def. 7.6, it lacks
the edge friend((molli, D), (Dog, ∅)), to satisfy the last aspect of the
standard property. Extending I with this edge would render it a standard
typicality interpretation, though it would still not satisfy K. In I, (molli, D)
is a counterexample for both, the satisfaction of Cat v ∃likes.Cat and
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Cat @∼ Lazy (in terms of Def. 7.7). Figure 7.2 depicts another typicality
interpretation J that does satisfy the standard model property as well as the
KB K according to Definition 7.7. As it turns out, J is the smallest extension
of I (i.e. I ⊆ J , cf. Definition 2.11) that belongs to TMod(K,∆C,O). At
the same time, J is not a ⊆-smallest element in TMod(K,∆C,O), because
the edge friend((molli, D), (Dog, D)) is superfluous for J to satisfy K
and Definition 7.6.

Typicality models will be used to determine entailments under semantics
of different strength and coverage. For variations on the strength s ∈
{rat, rel}, we explained how the construction of a specific typicality domain,
formally characterised as ∆C,O,K

s , provides the appropriate association of
represented elements with DCIs. To achieve different coverages c, we
intuitively described how the set of considered models will be reduced in
terms of a typicality preference relation. Formally, this set of considered
models is captured as a subscripted instance of TMod(), parametrised by
the specific coverage c (e.g. prop, nest) that the resulting semantics
will possess, i.e. TModc(K,∆C,O) ⊆ TMod(K,∆C,O). Defeasible entailment
under (s, c)-Semantics, using typicality models, can be captured in general,
similar to defeasible entailment in the materialisation framework (Def. 4.3).

Definition 7.10 (Defeasible Entailment under (s, c)-Semantics). A defea-
sible inference problem (K,α) is entailed under (s, c)-semantics iff

∀I ∈ TModc(K,∆C,O,K
s ).I |= α. (7.1)

where ∆C,O,K
s is the s-typicality domain for K.

As before, s includes a total order ≺ on NI if individuals and defeasible
instance checks are considered. Finally, it can be explicitly seen, how
semantics for instantiations of s and c are captured by defining ∆C,O,K

s as
well as TModc() in terms of their parameters. At first, in Sec. 7.2, we will
illustrate how the straight-forward approach, using all standard typicality
models of a KB, defines semantics that still suffer from quantification
neglect. Such semantics are considered to be of propositional coverage,
explicitly

TModprop(K,∆C,O
s ) = TMod(K,∆C,O

s ).

However, before investigating propositional coverage of rational and relevant
strength explicitly, we establish some important properties for standard
typicality models that are true for any underlying typicality domain. In
particular, the second observation in the end of Section 2.4 can be adopted
to the defeasible case, and (unlike in Sec. 2.4) we now make this result
explicit. Specifically, we show that standard typicality models are closed
under intersection, identifying a ⊆-smallest member in their midst, providing
a powerful tool for algorithmic characterisations of entailments based on
typicality models.
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7.2 minimal typicality models

Using classical representative models over a KB, entailments can be decided
if their context permits it. Specifically, K |= C v D can only be decided
using representative models over the context C, O, if it contains and is
consistent with K, is quantification closed, and C ∈ C (cf. Theorem 2.19).
In theory, considering a context to encompass all concepts and individuals
(C = C(EL⊥), O = NI) is the least restricted case, because all queries
are covered by this context. One can argue that, in practice, it suffices
to consider only finite contexts, that are still large enough w.r.t. K and
the relevant query subjects. This is mostly motivated for computability
reasons. In theoretical studies it is also a common approach to consider a
restriction to the finite case before moving to the more general variant (e.g.
[Bon’19]). For typicality interpretations, any typicality domain over a finite
context is also finite (cf. Rem. 7.2). Because KBs are always assumed to be
finite, they also occupy only a finite signature. This limits the number of
distinct typicality interpretations over that signature and a finite typicality
domain, to be finite as well. In turn, this provides some well-behavioural
properties of finite typicality interpretations/models, beginning with the
following intermediary result.

Lemma 7.11. For a finite typicality domain ∆C,O ⊆ (C∪O)×P(E) and
two standard typicality interpretations I = (∆C,O, ·I) and J = (∆C,O, ·J )
it holds that

CI∩J = CI ∩CJ for all EL⊥ concepts C with Qc(C) ⊆ C.

Proof. We prove this claim by induction on C. The cases C = A ∈ NC as
well as C = Eu F are trivial (assuming the claim holds for E and F). Let
C = ∃r.E for r ∈ NR and hypothesise that EI∩J = EI ∩ EJ .

• (∃r.E)I∩J ⊆ (∃r.E)I ∩ (∃r.E)J holds by Definition 2.11 and the
induction hypothesis, because rI∩J = rI ∩ rJ and EI∩J = EI ∩EJ .

• For (∃r.E)I∩J ⊇ (∃r.E)I ∩ (∃r.E)J , d ∈ (∃r.E)I ∩ (∃r.E)J implies
that (d, (E, ∅)) ∈ rI ∩ rJ , as well as (E, ∅) ∈ EI ∩ EJ , because I
and J are standard (Def. 7.6). It then follows by definition of ∩ and
the induction hypothesis, that d ∈ (∃r.E)I∩J .

The preceding lemma is used to show that the information shared between
two standard typicality models (for the same K and ∆C,O) suffices to
satisfy K and the standard property. More specifically, their intersection
interpretation is again a standard typicality model of K over ∆C,O.

Proposition 7.12. For a finite typicality domain ∆C,O ⊆ (C∪O)×P(E)
and a knowledge base K, TMod(K,∆C,O) is closed under intersection.

Proof. For a finite K we only need to consider the finite signature sig(K)
in TMod(K,∆C,O). Thus, ∆C,O being finite implies TMod(K,∆C,O) to be
finite. Consequently, it is sufficient to show the claim for finite intersection,
i.e.
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I,J ∈ TMod(K,∆C,O) implies I ∩ J ∈ TMod(K,∆C,O).

We need to show that I ∩J is a standard typicality interpretation (Def. 7.6)
and a model of K (Def. 7.7). TMod(K,∆C,O) 6= ∅ implies that the context
contains the necessary individuals and quantified concepts in K to yield at
least one standard typicality model of K over ∆C,O. The converse trivially
satisfies the claim.
Because I and J are standard, I ∩ J is well-defined and immediately

satisfies 2 of Def. 7.6. Additionally, Lemma 7.11 implies that I ∩J satisfies
(C, U) ∈ CI∩J for all (C, U) ∈ ∆C,O (Property 1 of Def. 7.6). Towards
the third property, for each E ∈ C, it holds that d ∈ (∃r.E)I∩J implies
d ∈ (∃r.E)I and d ∈ (∃r.E)J , again, by Lemma 7.11. The definition of
∩ and I,J each satisfying 3 in Def. 7.6, imply (d, (E, ∅)) ∈ rI∩J , making
I ∩ J a standard typicality interpretation.

A simple consequence of Lemma 7.11 is

(EI ⊆ FI)∧ (EJ ⊆ FJ ) =⇒ EI∩J ⊆ FI∩J . (?)

Thus, assuming I and J to satisfy K according to Definition 7.7,
Lemma 7.11 is sufficient to imply satisfaction of all

• GCIs in T (with (?)),

• concept assertions in A (with Lem. 7.11),

• role assertions in A (with Def. 2.11), and

• DCIs associated with domain elements (with (?)),

by I ∩ J . Hence, I ∩ J ∈ TMod(K,∆C,O).

The implication of Proposition 7.12 is (analogous to the classical case)
the existence of a ⊆-smallest typicality model in TMod(K,∆C,O).

Definition 7.13 (Minimal Typicality Model). For a finite typicality domain
∆C,O, and a KB K the minimal typicality model in TMod(K,∆C,O) is defined
as

M(K,∆C,O) =
⋂

J∈TMod(K,∆C,O)

J (7.2)

if TMod(K,∆C,O) 6= ∅.

Remark 7.14. M(K,∆C,O) is called the minimal typicality model, rather
than least, smallest or canonical, because the only role edges (besides
edges between individual representatives) that are guaranteed to be shared
among all standard typicality models of K over ∆C,O, have exclusively
elements (C, ∅) as successors. For an illustration, recall Example 7.9 with
J ∈ TMod(K,∆C,O) depicted in Figure 7.2. All standard interpretations
must contain a role successor to a concept representative associated with
∅, for all domain elements satisfying existential restrictions1. However, as

1 For all elements in existential restrictions with fillers contained in the context.
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noted in Exm. 7.9, the edge friend((molli, D), (Dog, D)) is not required
to uphold the model or standard property of J .

This behaviour is desired for standard interpretations, to guarantee closure
under intersection and thus, existence of the minimal typicality model.
Therefore, its name is derived from the minimal typicality that the ranges
of its extensions of role names are subjected to.

It follows trivially from Definition 7.13 that M(K,∆C,O) ⊆ J for all
standard typicality models J of K over ∆C,O. Thus, the previously discussed
straightforward semantics, considering all models in TMod(K,∆C,O), can
be captured by reasoning only over the minimal typicality model. In the
following, entailments under such semantics (of propositional coverage) are
compared to the entailments captured by the materialisation framework, on
a technical level. This link appropriately aligns our new formalism with the
established fundamental results.

7.2.1 Propositional Coverage vs. Materialisation

From Definition 7.13 it is obvious, that if TMod(K,∆C,O) 6= ∅ then I |= α

for all I ∈ TMod(K,∆C,O) iff M(K,∆C,O) |= α for defeasible queries α over
the context C, O. We show in this section, how minimal typicality models
can be used, to bridge from typicality model semantics of propositional
coverage to materialisation and vice versa. Initially, this correspondence
is shown for general typicality domains ∆C,O. Those results can then be
applied to the specific typicality domains that ultimately produce rational
or relevant semantics.
In the classical case of reasoning with representative interpretations,

a powerful tool was provided in Lemma 2.17. It showed that arbitrary
interpretations can be somewhat normalised into a given representative
domain, while maintaining their entailments in terms of classical queries.
This transformation is the essence of why the restriction to a fixed domain
is prosperous. We lift the transformation in Lemma 2.17 to construct
typicality interpretations from arbitrary interpretations, in terms of their
materialisation-based entailments.

Definition 7.15. For an interpretation I = (∆I , ·I) and a typicality domain
∆C,O, let τ(I,∆C,O) = (∆C,O, ·τ(I,∆C,O)) with

Aτ(I,∆C,O) = {(C, U) ∈ ∆C,O | I |= U uC v A}
∪ {(a, U) ∈ ∆C,O | I |= A(a)}

rτ(I,∆C,O) = {((C, U), (D, ∅)) ∈ (∆C,O)2 | I |= U uC v ∃r.D}

∪ {((a, U), (D, ∅)) ∈ (∆C,O)2 | I |= (∃r.D)(a)}

∪ {((a, U), (b, U ′)) ∈ (∆C,O)2 | (aI ,bI) ∈ rI}

aτ(I,∆C,O) = (a, U)

for all A ∈ NC, r ∈ NR and a ∈ O. τ(I,∆C,O) is called the typicality
interpretation transformation of I into ∆C,O.
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Intuitively, the domain elements in τ(I,∆C,O) represent the information
that I contains about each represented concept/individual, also regarding
the DCIs associated with concept representatives. As far as this tool is
concerned, it is enough to consider defeasible information only for concept
representatives. Satisfaction of defeasible information for individuals is
implicit when considering this transformation for the model of an extended
ABox. The following intermediary result, verifying the construction in Defi-
nition 7.15, is central to link entailments based on typicality interpretations
with those based on materialisation. It is analogous to the result for the
classical case in Lemma 2.17.

Lemma 7.16. For a typicality domain ∆C,O over a quantification closed
context C, O and an interpretation I with

∀(C, U) ∈ ∆C,O.(U uC)I 6= ∅, (7.3)

it holds that

1. (C, U) ∈ (U uC)τ(I,∆C,O) (for all (C, U) ∈ ∆C,O),

2. (C, U) ∈ Dτ(I,∆C,O) iff I |= U uC v D (for all (C, U) ∈ ∆C,O and
Qc(D) ⊆ C), and

3. (a, U) ∈ Dτ(I,∆C,O) iff I |= D(a) (for all (a, U) ∈ ∆C,O and
Qc(D) ⊆ C).

Proof. We prove the claims one by one, with the exception of Claim 1.
At first, we show a special case of Claim 1, where U = ∅. This special
case suffices to prove Claim 2, which in turn can be used to prove the
general case of Claim 1. In the corresponding classical case, Claim 2 would
immediately imply Claim 1. This is not the case in the present lemma,
because Claim 1 is about materialised concepts and in Claim 2, D is an
EL⊥ concept.

claim 1 (U = ∅). We begin by proving the special case of 1 where
U = ∅. Explicitly, for every (C, ∅) ∈ ∆C,O it holds that

(C, ∅) ∈ Cτ(I,∆C,O). (?)

This proof relies on a slightly different induction than usual, covering
conjunction implicitly.2 For the induction start, assume C = A1 u · · · uAn
is a conjunction of concept names Ai ∈ NC. From Def. 7.15 it directly
follows that (C, ∅) ∈ Aτ(I,∆C,O)

i for 1 6 i 6 n. For the induction step,
let C =

d
16i6nAi u

d
16j6m ∃rj.Ej.3 Because of C ∈ C and C being

quantification closed, it holds that Ej ∈ C and thus (Ej, ∅) ∈ ∆C,O for
1 6 j 6 m. Therefore, it is justified for the induction hypothesis, to assume

2 For C = Eu F, the induction hypothesis that the claim holds for E and F, would only be
justified if E, F ∈ C, something that is not a requirement for C in this lemma.

3 This is the most general representation of any EL concept. We need not consider C = ⊥,
because of assumption (7.3).
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that (?) holds for E1, . . . ,Em. It trivially holds that C is subsumed by each
of its conjuncts individually, in any interpretation. In particular, I |= C v Ai
as well as I |= C v ∃rj.Ej. Therefore, it follows from Definition 7.15 that

(C, ∅) ∈ Aτ(I,∆C,O)
i as well as ((C, ∅), (Ej, ∅)) ∈ r

τ(I,∆C,O)
j for 1 6 i 6 n

and 1 6 j 6 m. Using the induction hypothesis ((Ej, ∅) ∈ E
τ(I,∆C,O)
j ), we

conclude that (C, ∅) ∈ Cτ(I,∆C,O).

claim 2. We prove Claim 2 by (the usual) induction on D, relying only
on the special case (?) of Claim 1 The induction start, for D = A ∈ NC
holds by Def. 7.15. Assume the claim holds for two concepts E, F and
consider D = Eu F. The following are equivalent:

• (C, U) ∈ (Eu F)τ(I,∆C,O),

• (C, U) ∈ Eτ(I,∆C,O) and (C, U) ∈ Fτ(I,∆C,O),

• I |= U uC v E and I |= U uC v F (by induction hypothesis),

• I |= U uC v Eu F.

For the most involved case, consider D = ∃r.E (r ∈ NR). By assumption,
Qc(D) ⊆ C which means (E, ∅) is contained in ∆C,O.

[ =⇒ ] (C, U) ∈ (∃r.E)τ(I,∆C,O) implies the existence of an edge
((C, U), (X, ∅)) ∈ rτ(I,∆C,O) such that (X, ∅) ∈ Eτ(I,∆C,O). That
the successor element (X, ∅) has to be a concept representative,
associated with ∅, can be seen from Definition 7.15. By the induction
hypothesis, (X, ∅) ∈ Eτ(I,∆C,O) implies I |= X v E. From Def. 7.15
and ((C, U), (X, ∅)) ∈ rτ(I,∆C,O) it follows that I |= U uC v ∃r.X,
which in turn implies I |= U uC v ∃r.E.

[⇐= ] For the other direction, I |= U u C v ∃r.E directly implies
((C, U), (E, ∅)) ∈ rτ(I,∆C,O) by Def. 7.15. It then follows from
(?) (i.e. (E, ∅) ∈ Eτ(I,∆C,O)) that (C, U) ∈ (∃r.E)τ(I,∆C,O).

claim 1 (continued). Finally, we use Claim 2 to show Claim 1
for any set of DCIs U (for (C, U) ∈ ∆C,O). The induction used to prove
(?) also proves (C, U) ∈ Cτ(I,∆C,O). Assume for a contradiction that there
is E @

∼ F ∈ U s.t. (C, U) ∈ Eτ(I,∆C,O) \ Fτ(I,∆C,O). (C, U) ∈ Eτ(I,∆C,O) is
equivalent to I |= U uC v E (by Claim 2). Thus, ¬Et F being a conjunct
in U implies I |= U uC v F, contradicting (C, U) 6∈ Fτ(I,∆C,O), by Claim
2.

claim 3. For Claim 3, the direction

I |= D(a) =⇒ (a, U) ∈ Dτ(I,∆C,O) (7.4)

is proven for general EL concepts D =
d
16i6nAi u

d
16j6m ∃rj.Ej. By

the assumption Qc(D) ⊆ C, it holds for 1 6 j 6 m that (Ej, ∅) ∈ ∆C,O.
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Therefore, Claim 1 implies (Ej, ∅) ∈ E
τ(I,∆C,O)
j for 1 6 j 6 m. (a, U) ∈

(
d
16i6nAi)

τ(I,∆C,O) follows again by Definition 7.15. For 1 6 j 6 m,

I |= (∃rj.Ej)(a) implies ((a, U), (Ej, ∅)) ∈ r
τ(I,∆C,O)
j , which, using Claim

1, allows to conclude (a, U) ∈ Dτ(I,∆C,O).
We perform the same induction as for (?) to prove the other direction.

For D = A1 u · · · uAn, Def. 7.15 directly implies I |= D(a). For the
induction hypothesis, assume for m concepts E1, . . . ,Em that for any
domain element (b, U ′) ∈ ∆C,O, I |= Ej(b) iff (b, U ′) ∈ Eτ(I,∆C,O)

j

holds. For the induction step, let D =
d
16i6nAi u

d
16j6m ∃rj.Ej. As

before, I |= Ai(a) (1 6 i 6 n) holds by Def. 7.15. For 1 6 j 6 m,
(a, U) ∈ (∃rj.Ej)τ(I,∆C,O) implies the existence of ((a, U),d) ∈ rτ(I,∆C,O)

j

and d ∈ Eτ(I,∆C,O)
j . From Def. 7.15, it is clear that d can either be a

concept representative associated with ∅, or an individual representative.

case d = (F, ∅). By Claim 2, (F, ∅) ∈ Eτ(I,∆C,O)
j holds iff I |= F v Ej.

By Def. 7.15, it also holds that I |= (∃rj.F)(a), thus implying I |=

(∃rj.Ej)(a).

case d = (b, U ′). For the induction hypothesis, we assumed I |= Ej(b)

iff (b, U ′) ∈ Eτ(I,∆C,O)
j . Together with (aI ,bI) ∈ rIj (Def. 7.15), it

follows that I |= (∃rj.Ej)(a).

Remark 7.17. An application of Claim 3 in Lemma 7.16 is (a, U) ∈
Uτ(I,∆C,O) iff I |= U(a). Even though U is not an EL⊥ concept, the
“ iff ” in that claim allows to conclude the following. Suppose I |= U(a),
then for all E @

∼ F ∈ U it holds that I 6|= E(a) or I |= F(a). Claim 3
of Lem. 7.16 implies that both are equivalent to (a, U) 6∈ Eτ(I,∆C,O) and
(a, U) ∈ Fτ(I,∆C,O), respectively. Hence, showing equivalence of I |= U(a)
and (a, U) ∈ Uτ(I,∆C,O).

The transformation in Def. 7.15 is designed carefully, to maintain satisfac-
tion of the strict part of a KB and to construct a typicality interpretation
that is standard. Nevertheless, the resulting typicality interpretation is only
a standard model of a KB, if the original interpretation (over an arbitrary
domain) complies with the defeasible information associated to individual
representatives. While this seems like a convoluted prerequisite, the follow-
ing result is only applied under circumstances that naturally satisfy these
requirements, i.e. for models of an extended ABox.

Lemma 7.18. Let K = (A, T ,D) be a KB, C,O a quantification closed con-
text containing K, and ∆C,O some typicality domain with TMod(K,∆C,O) 6=
∅. For an interpretation I satisfying (7.3) as well as I |= U(a) for all
(a, U) ∈ ∆C,O, it holds that

I ∈ Mod(K) =⇒ τ(I,∆C,O) ∈ TMod(K,∆C,O). (7.5)

Proof. From I |= A, Definition 7.15 (covering role assertions) and Claim 3
of Lemma 7.16 (covering concept assertions) it follows that τ(I ,∆C,O) |= A.
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For all E v F ∈ T , it holds that

(G, U) ∈ Eτ(I,∆C,O)

=⇒ I |= (U uG) v E (Claim 2 of Lem. 7.16)

=⇒ I |= (U uG) v F (I |= E v F)

=⇒ (G, U) ∈ Fτ(I,∆C,O). (Claim 2 of Lem. 7.16)

Likewise for individual representatives,

(a, U) ∈ Eτ(I,∆C,O)

=⇒ I |= E(a) (Claim 3 of Lem. 7.16)

=⇒ I |= F(a) (I |= E v F)

=⇒ (a, U) ∈ Fτ(I,∆C,O). (Claim 3 of Lem. 7.16)

Therefore, τ(I,∆C,O) satisfies the TBox T . Note that the prerequisite
for Claim 2 and 3 of Lem. 7.16 (there: Qc(D) ⊆ C) is satisfied for E, F,
because they appear in the TBox and C,O is assumed to contain K, i.e.
Qc(K) ⊆ C.
Claim 1 of Lem. 7.16 directly provides (G, U) ∈ Uτ(I,∆C,O). Using

the argument in Remark 7.17 and the premise for I, we also conclude

(a, U) ∈ Uτ(I,∆C,O), hence showing that τ(I,∆C,O) is a typicality model
of K (Def. 7.7).
Continuing to apply Definition 7.15 and Lemma 7.16 in the same way,

allows to conclude that τ(I,∆C,O) is a standard typicality interpretation
(Def. 7.6) and thus, τ(I,∆C,O) ∈ TMod(K,∆C,O).

We are now ready to prove that simple materialisation4 (MatALC())
coincides with entailments obtained from the minimal typicality model for
representative elements associated with the given set of DCIs. Lemma 7.16
is applied in the following proof, to derive a typicality model counterexample,
when an arbitrary counterexample for a materialisation-based entailment
exists. Defeasible subsumption and defeasible instance checking is treated
separately.

Proposition 7.19. For a KB K = (A, T ,D), the finite, quantification
closed context C,O containing K and some typicality domain ∆C,O s.t.
TMod(K,∆C,O) 6= ∅, it holds for all C,D ∈ C that

(C, U) ∈ DM(K,∆C,O) iff MatALC((A, T ,U),C @
∼ D) (7.6)

Proof. We prove both directions of this claim separately, beginning with
the if -direction. Because M(K,∆C,O) is a standard model, it holds that
(C, U) ∈ (U uC)M(K,∆C,O). If U uC v D holds for all (classical) models of

4 Relying on ALC material implications greatly simplifies this proof, because no auxiliary
concept names are involved. Theorem 4.22 allows to transfer this result to simple
materialisation in EL⊥.
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(A, T), then it holds in particular for M(K,∆C,O) (due to 1 in Definition 7.7),
i.e. (C, U) ∈ DM(K,∆C,O).

For the only-if -direction, consider the intuition that, if a materialisation-
based subsumption is not entailed by the classical knowledge base, then
there is a standard typicality model as a counterexample. If any such model
does not satisfy some subsumption, then the intersection of all standard
typicality models (i.e. the minimal typicality model), clearly cannot satisfy
the subsumption. In the first step, we need to show that from any arbitrary
counterexample, we can derive a standard typicality model counterexample.

Suppose U uC v D is not entailed by (A, T), hence, there is a model I
of (A, T), s.t. ∃d ∈ (U uC)I \DI . Take any J ∈ TMod(K,∆C,O) (recall:
TMod(K,∆C,O) 6= ∅) and inspect the disjoint union J ] I, such that the
individuals are interpreted as in J , i.e. aJ]I = aJ . Even though ∆C,O is
a subdomain of ∆J]I , J ] I can be regarded as an interpretation over an
arbitrary domain. The benefit of this union is that some immediate properties
of J are still satisfied for the domain elements of ∆C,O within J ] I. To
be specific, J ] I satisfies (7.3) in Lem. 7.16, as well as the prerequisites
for the (arbitrary) input interpretation in Lem. 7.18. Furthermore, due to
the construction of disjoint unions, it still holds that J ] I 6|= (U uC) v D
and J ] I |= (A, T) (cf. Sec. 2.3). It follows from Lemma 7.16 that
the typicality interpretation transformation τ(J ] I ,∆C,O) does not satisfy
(C, U) ∈ Dτ(J]I,∆C,O). From Lemma 7.18 we know that τ(J ]I ,∆C,O) ∈
TMod(K,∆C,O). Therefore, Lemma 7.11, (C, U) 6∈ Dτ(J]I,∆C,O), and
Definition 7.13 imply (C, U) 6∈ DM(K,∆C,O).

It remains to show the analogous result for defeasible instance checking.
As before, this can be shown for general typicality domains. The difference
for instance checking, is that defeasible information has to be regarded for
all individual representatives, in case they are connected via role edges. In
Proposition 7.19, the materialisation-based subsumption used the same set
of DCIs that was associated with the concept representative of the typicality
domain. More explicitly, in the interpretations that are considered to decide
U uC v D, only elements of C that comply with U are analysed. To comply
with defeasible information associated with individual representatives, an
appropriate ABox extension is used to restrict the considered classical models
in the following result.

Proposition 7.20. For a KB K = (A, T ,D), the finite, quantification
closed context C,O containing K and some typicality domain ∆C,O s.t.
TMod(K,∆C,O) 6= ∅, it holds for all C ∈ C,a ∈ O that

(a, U) ∈ CM(K,∆C,O) iff (A∪ {U ′(b) | (b, U ′) ∈ ∆C,O}, T) |= C(a) (7.7)

Proof. For a shorthand, let K ′ = (A ∪ {U ′(b) | (b, U ′) ∈ ∆C,O}, T).
We prove both directions of this claim separately. For the if -direction,
Remark 7.8 contains the arguments that are required to show M(K,∆C,O) ∈
Mod(K ′), i.e. M(K,∆C,O) satisfies the classical part of K, and all individual
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representatives in M(K,∆C,O) satisfy their associated set of DCIs. Therefore
K ′ |= C(a) implies (a, U) ∈ CM(K,∆C,O), because aM(K,∆C,O) = (a, U).

For the only-if -direction, we proceed by contraposition. Assuming K ′ 6|=
C(a), there is a counterexample I |= K ′ s.t. aI 6∈ CI . Using the same
argument as in the proof of Proposition 7.19, we know that the disjoint
union of I with a standard typicality model J of K over ∆C,O, i.e. I ] J ,
is also a model of K (and K ′) and a counterexample to K ′ |= C(a).
Therefore, (a, U) 6∈ Cτ(I]J ,∆C,O) follows from Claim 3 of Lemma 7.16. As
before, τ(I ] J ,∆C,O) ∈ TMod(K,∆C,O) can be derived from Lemma 7.18
and thus, the intersection of all models in TMod(K,∆C,O) cannot satisfy
(a, U) ∈ CM(K,∆C,O).

The preceding propositions allow for an immediate comparison of
materialisation-based entailments against the entailments produced by typi-
cality model semantics of propositional coverage. To achieve rational and
relevant strength, we proceed to construct the specific typicality domains.

7.2.2 Propositional Rational Reasoning

For materialisation-based rational reasoning, subsets of the input DBox
that are consistent with concepts/individuals, are all selected from the
rational chain. It is easy to see that the elements on the rational chain are
totally ordered through ⊆. Thus, for subsumption, the largest consistent
subset on that chain (w.r.t. the query subject) is unique. For a defeasible
instance check C{a}, the selected DBox subset for a depends also on the
sets that have previously been selected for more preferred individuals b ≺ a.
Regardless, the set of DCIs selected for a will be unique for every order ≺.
From Definition 7.10 and 7.4 it can be seen that if concept and individual
representatives adhere to the DBox subsets, selected by Consrat() (or finally
ext(Krat≺ ,a)), then the standard models over such a typicality domain can
produce the same entailments as the materialisation framework instantiated
with rat. Recall the notation ext(Ks≺ ,a) = {U ⊆ D | U(a) ∈ As≺}

5,
providing the consistent DBox subsets that have been selected for individuals
to obtain the ABox extension (Def. 4.16).

Definition 7.21 (Rational Typicality Domain). For a KB K = (A, T ,D), a
finite, quantification closed context C, O, containing K, and a total order
≺ over NI, the rational typicality domain ∆C,O,K

rat≺ is defined as follows

∆C,O,K
rat≺ = {(C, ∅) | C ∈ C}

∪ {(C, Consrat(K,C)) | C ∈ C}
∪ {(a, ext(Krat≺ ,a)) | a ∈ O}

5 To be precise, for instantiations of the materialisation framework for EL⊥, the appropriate
concept assertion Û(a) should be used.
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a

...

D0 D1 · · · ∅

Figure 7.3: Abstract sketch of a rational typicality domain in matrix shape.

First of all, using Definition 7.21 and TModprop(), we obtain a full instan-
tiation of Definition 7.10 as

K |=(rat≺,prop) α iff ∀I ∈ TModprop(K,∆C,O,K
rat≺ ).I |= α (7.8)

for defeasible inference problems (K,α) and a total order ≺ over NI.
Let us inspect rational typicality domains ∆C,O,K

rat≺ more closely. Consider
Figure 7.3 for a sketch of an abstract rational typicality domain, representing
at least the concepts C,D and an individual a over the rational chain
chain(K) = 〈D0,D1, . . . , ∅〉. The elements of a rational domain can
be arranged in the shape of a matrix. Row labels (C,D,a, . . .) signify
domain elements (•) in this row to represent the respective concept or
individual. Column labels (D0,D1, . . . , ∅) describe the associated sets of
DCIs for the elements in that column. Notice, how there are at most 2
representatives for each concept in C and one for each individual in O.
Also, every associated set of DCIs is not only a subset of D, but a member
of chain(K). Interestingly enough, the domain of the interpretation in
Figure 7.2 (Page 86) is precisely the rational domain of the smallest context
containing K from Example 7.9, albeit not arranged as a matrix.

The ABox extension algorithm can treat individuals from O \ sigI(A), as
explained in Remark 4.17 (last point). Consequently, ∆C,O,K

rat≺ is a well-defined
typicality domain if the context, in particular O, is finite. For every concept
C ∈ C, there is a unique concept representative to check for the entailment
of a defeasible subsumption (Def. 7.4), specifically, (C, Consrat(K,C)).
While Consrat(K,C) = ∅ is entirely possible, it would simply mean that, in
this case, only one C-representative is contained in ∆C,O,K

rat≺ . By associating
DCIs produced by Consrat() to representative elements, it is ensured that
for a QC-consistent KB K and a finite, consistent6, quantification closed
context C, O, containing K, that TMod(K,∆C,O,K

rat≺ ) can never be empty.

6 Technically, if a consistent context contains a KB K, then K is automatically QC-consistent.
Consistency of the context is the stronger property, allowing to omit QC-consistency.
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Proposition 7.19 and 7.20 can be easily applied for entailments based on
TModprop(K,∆C,O,K

rat≺ ). As in the general case, TModprop(K,∆C,O,K
rat≺ ) contains

a ⊆-smallest element, the minimal (rational) typicality model M(K,∆C,O,K
rat≺ ).

Therefore, K |=(rat≺,prop) α holds iff M(K,∆C,O,K
rat≺ ) |= α.

Theorem 7.22. For a KB K = (A, T ,D), a finite, consistent, quantification
closed context C, O, containing K, a total order ≺ over NI and C,D ∈ C,
a ∈ O, it holds that

K |=(rat≺,prop) α iff K |=(rat≺,mat) α (7.9)

for α = C @
∼ D or α = C{a}.

Proof. Proving (7.9) boils down to proving the following equivalences

(C, Consrat(K,C)) ∈ DM(K,∆C,O,K
rat≺ )

iff (A, T) |= Consrat(K,C)uC v D (?)

and

(a, ext(Krat≺ ,a)) ∈ CM(K,∆C,O,K
rat≺ )

iff (A∪ {ext(Krat≺ ,b)(b) | b ∈ O}, T) |= C(a) (??)

(?) is an instance of Proposition 7.19 and (??) is an instance of Proposi-
tion 7.20.

Theorem 7.22 can be used to directly capture the information contained
in the minimal typicality model M(K,∆C,O,K

rat≺ ), using materialisation. In
Section 8.1, this characterisation of the minimal typicality model is used as a
starting point for the algorithmic characterisation of entailments under nested
coverage. It has previously appeared in [PT’17a; PT’18] as the definition of
the minimal typicality model for propositional rational semantics. Therefore,
the earlier approach to reasoning with typicality models was essentially of
algorithmic nature. Here, we have introduced an equivalent notion of the
minimal (rational) typicality model with a model-theoretic approach, as
confirmed by the following corollary.

Corollary 7.23. Let K = (A, T ,D) be a KB, C, O a consistent, quantifica-
tion closed context, containing K, ≺ a total order over NI. For the minimal
typicality model I = M(K,∆C,O,K

rat≺ ) it holds that

(C, U) ∈ AI iff MatALC((A, T ,U),C @
∼ A)

(a, U) ∈ AI iff MatALC(Krat≺ ,A(a))

((C, U), (D, ∅)) ∈ rI iff MatALC((A, T ,U),C @
∼ ∃r.D)

((a, U), (D, ∅)) ∈ rI iff MatALC(Krat≺ , (∃r.D)(a))

((a, U), (b, U ′)) ∈ rI iff r(a,b) ∈ A
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7.2.3 Propositional Relevant Reasoning

It would be naive to construct the relevant typicality domain in the same
way as the rational domain, exchanging only Consrat() with Consrel(). To
understand why, recall the intuition on preferring sets of typicality models,
which will allow to derive role edges with a more typical successor in terms
of associated DCIs. Practically, if an edge r(d, (D, ∅)) is satisfied by all
typicality models, then those models that also satisfy r(d, (D, E)) (for some
∅ ( E) will be preferred, if there is at least one. For rational reasoning, it
suffices to consider the most typical D representative in this case, because
the intermediate ones (if associated with elements from chain(K)) would
hold the same information as (D, ∅). This effect is consequential of the
way chain(K) is defined. For relevant reasoning such an effect does not
take hold. In particular, representatives associated with DCIs E between
Consrat(K,D) ( E ( Consrel(K,D), may each hold distinct information.
If only the least and most typical representatives were considered, the core
idea of fine granularity would be lost for deriving typical information about
role successors. To maintain this granularity, the relevant domain must
contain concept representatives associated with every possible DBox subset
between Consrel(K,D) and ∅.

Definition 7.24 (Relevant Typicality Domain). For a KB K = (A, T ,D),
a finite, quantification closed context C, O, containing K, and a total order
≺ over NI, let Krel≺ be the extended KB produced by Def. 4.16 for the
individuals in O. The relevant typicality domain ∆C,O,K

rel≺
is defined as follows

∆C,O,K
rel≺

= {(C, U) | C ∈ C,U ⊆ Consrel(K,C)}

∪ {(a, ext(Krel≺ ,a)) | a ∈ O}

Analogous to rational strength, we obtain a full instantiation of Defini-
tion 7.10, using Definition 7.24 and TModprop(), as

K |=(rel≺,prop) α iff ∀I ∈ TModprop(K,∆C,O,K
rel≺

).I |= α (7.10)

for defeasible inference problems (K,α) and a total order ≺ over NI. Note
that to verify I |= α, there is also a unique concept/individual representative
to check. It is easy to see that, for α = C @

∼ D, I |= α (Def. 7.4) holds iff
(C, Consrel(K,C)) ∈ DI .

Consider Figure 7.4 for an abstract illustration of a relevant domain. The
relevant domain can be arranged in the shape of the full subset lattice of the
given DBox (in Fig. 7.4 we assume |D| = 3 to allow for a small illustration).
Elements are grouped in boxes that describe the associated set of DCIs,
according to its position in the subset lattice of D. First of all, any concept
C ∈ C (e.g. •, ◦ in Fig. 7.4) is clearly consistent with Consrel(K,C) and
therefore must be consistent with every subset of Consrel(K,C). Having
representatives associated with any consistent subset of the DBox allows to
prefer models satisfying defeasible information at role successors with the
same granularity as it is achieved with materialisation for the top level of
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D

∅

a

Figure 7.4: Abstract sketch of a relevant typicality domain in lattice shape.

a query concept. For individuals (e.g. a in Fig. 7.4), the relevant domain
must still contain only one unique representative, which is of course, also
associated to the “relevant amount” of defeasible knowledge. By only
associating subsets of the DCIs produced by Consrel() to representative
elements, it is ensured for a finite, consistent, quantification closed context
C, O, containing K, that TMod(K,∆C,O,K

rel≺
) can never be empty.

The implications of Proposition 7.19 and 7.20 for entailments based on
TModprop(K,∆C,O,K

rel≺
) are analogous to those for the rational domain. As

in the general case, M(K,∆C,O,K
rel≺

) ⊆ J for all J ∈ TModprop(K,∆C,O,K
rel≺

).
Therefore, K |=(rel≺,prop) α holds iff M(K,∆C,O,K

rel≺
) |= α holds. We ob-

tain the following explicit result as a consequence of the more general
Proposition 7.19 and 7.20.

Theorem 7.25. For a KB K = (A, T ,D), a finite, consistent, quantification
closed context C, O, containing K, a total order ≺ over NI and C,D ∈ C,
a ∈ O, it holds that

K |=(rel≺,prop) α iff K |=(rel≺,mat) α (7.11)

for α = C @
∼ D or α = C{a}.

Proof. Proving Eq. 7.11 requires to prove the following equivalences

(C, Consrel(K,C)) ∈ DM(K,∆C,O,K
rel≺ )

iff (A, T) |= Consrel(K,C)uC v D (?)

and

(a, ext(Krel≺ ,a)) ∈ CM(K,∆C,O,K
rel≺ )

iff (A∪ {ext(Krel≺ ,b)(b) | b ∈ O}, T) |= C(a) (??)

(?) is proven with Proposition 7.19 and (??) is proven with Proposition 7.20.

The direct computation of the minimal typicality model over the ratio-
nal domain (Cor. 7.23) can be trivially adopted to the relevant domain.
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Correctness of this direct characterisation is an immediate consequence of
Theorem 7.25. Note that even though Corollary 7.23 relies on classical
reasoning (i.e. is polynomial for EL⊥), the size of the relevant domain is
exponential in the size of the input DBox. Therefore an exponential number
of classical entailment checks are required to compute M(K,∆C,O,K

rel≺
). While

this is one approach to determine entailments under propositional relevant
semantics, we refer to Chapter 8 for a tighter complexity result on (the
equivalent) materialisation-based relevant reasoning.

7.3 preferred sets of typicality models

The downside of propositional coverage, i.e. the use of all models of the KB,
is directly inherited from its equivalence to materialisation-based reasoning.
Many expected entailments about quantified concepts cannot be inferred
by considering all typicality models or using materialisation. The intuition
on the cause of quantification neglect has been presented in Section 5.2 for
the latter. In terms of typicality models, the conservative requirement for
role-successor witnesses (Property 3 in Def. 7.6) to be associated with no
DCIs, is the cause of this drawback. Intuitively, standard typicality models
are not obligated to satisfy defeasible information at role successor elements.
As a result, the only role edges that persist in all typicality models, are
those with a non-typical successor (role edges between individuals aside).
The missing entailments can be obtained by restricting the set of considered
models to those satisfying appropriate DCIs at role successors. Such a
restriction, however, is not trivially obtained, mainly for the following reason.

Defeasible information can be satisfied at two different role-
successors individually, but not necessarily at the same time.

(7.12)

Therefore, there is no unique subset of all models of a KB, that is “as typical
as possible” in terms of role successors satisfying as many DCIs as possible.
In this section we introduce a preference relation on sets of typicality models,
to define two different types of nested semantics using the most preferred
sets of typicality models.

sceptical. Satisfaction of an inference problem is determined by all
most preferred sets of models.

selective. Satisfaction of an inference problem is determined by a
chosen most preferred set of models.

The former has been introduced in [PT’17a] by an algorithmic construction
of so-called maximal typicality models. In [PT’17a] we proposed to itera-
tively extend the minimal typicality model by role edges with more typical
representatives for successors, until “maximal typicality” is achieved. The
present approach achieves (almost7) the same entailments under sceptical
nested semantics, but remains a model-theoretic characterisation.

7 Some refinements of the approach in [PT’17a; PT’17b] are introduced here. Motivation
for the need of these refinements is given in Section 7.3.1.
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As in Section 7.2, the notions required to introduce preference of sets
of typicality models are introduced for generic typicality domains. After
defining both nested semantics in general, we will explicitly discuss rational
and relevant strength. The relation between both types of nested semantics
is covered during the full overview of all of the discussed semantics in
Chapter 9.

7.3.1 Preference Options

To understand the lack of defeasible information at role successors in
entailments based on all typicality models, consider the implications of
Definition 7.13 (Minimal Typicality Model) and Corollary 7.23 (direct con-
struction of the minimal typicality model). The minimal typicality model
only contains role successors to concept representatives that are associated
with an empty set of DCIs. This makes the minimal typicality model an
immediate counterexample for expected entailments such as A @

∼ B ∈ D
implying ∃r.A @

∼ ∃r.B.

Example 7.26. Recall the KB K = (A, T ,D) from Example 7.9 with

A = {(Catu ∃friend.Dog)(molli)}

T = {Cat v ∃likes.Cat}
D = {Dog @

∼ Happy,Cat @∼ Lazy}

and the accompanying typicality model J = (∆C,O, ·J ) in Figure 7.2
(Page 86). As established before, J strictly extends the minimal typicality
model for ∆C,O and K, because the edge friend((molli, D), (Dog, D))
is superfluous. At the same time, J ∈ TMod(K,∆C,O) shows that it is
plausible (formally: consistent), to expect the “more typical version” of
the edge friend((molli, D), (Dog, ∅)), which is contained in all models
in TMod(K,∆C,O). Intuitively, if this plausibility exists, a set of typicality
models is preferred, if all its elements satisfy the more typical role edge. In
that sense, the preference between two sets of typicality models is witnessed
by some role edge. Note that it is important only to consider role edges
whose non-typical version (i.e. successor associated with ∅) is already
inferred, to avoid the support of arbitrary inferences.

Example 7.26 motivates the use of role edges with typical concept
representatives for successors, as means to prefer one set of typicality
models over another.
Roughly speaking, a set of modelsM1 is preferred over another set of

models M2, if all interpretations in M1 satisfy a role edge that is not
satisfied by some model inM2. As done intuitively in Example 7.26, we do
not consider arbitrary such role edges, but only those that yield the desired
effect and have an appropriate explanation to be inferred. The eligible role
edges are classified as the preference options in a typicality domain.
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Definition 7.27 (Preference Option). For a typicality domain ∆C,O, some
r ∈ NR and two elements (χ, U), (F, U ′) ∈ ∆C,O (χ ∈ C∪O, F ∈ C), the
role edge r((χ, U), (F, U ′)) is a preference option in ∆C,O iff

1. U ′ 6= ∅, (Typical Successor)

2. χ ∈ C =⇒ U 6= ∅. (Typical Predecessor)

The set of all preference options over ∆C,O is PO(∆C,O).
For a set of typicality interpretationsM over ∆C,O, a preference option

r(d, (F, U ′)) ∈ PO(∆C,O) is admissible forM iff

1. ∀I ∈ M.(d, (F, ∅)) ∈ rI , (Justified)

2. ∃I ∈ M.(d, (F, U ′)) 6∈ rI , (Not-entailed)

3. ∃I ∈ M.(d, (F, U ′)) ∈ rI . (Satisfiable)

When considering a specific KB K and its sets of typicality models, we
assume the roles used in PO(∆C,O) to be finitely bound by sigR(K).
The properties that make role edges over a typicality domain into (ad-

missible) preference options are selected with great care, as they determine
certain effects in the resulting semantics.

typical successor. First of all, we do not consider role edges with
individual representatives as the successor. Any such role edge can only
ever be inferred from ABox role assertions due to the nature of standard
typicality models. Because only one individual representative per individual
in O is present, these edges are as typical as possible. What is still missing
in the minimal typicality model, is defeasible information in (anonymous)
concept representative successors, independent of the predecessor of a role
edge. Thus, only those role edges are considered, that allow to capture a
set of models satisfying a non-empty set of DCIs at some role successor.

typical predecessor. While the type of representative is irrele-
vant for the predecessor of a preference option, it is prohibited that this
domain element is a non-typical concept representative. This is a refinement
to the approach in [PT’18], where arbitrary domain elements are allowed as
predecessors of a more typical role edge (cf. Def. 4.22 in [PT’18]). The
following example illustrates the intuition why the successors of non-typical
concept representatives should also be non-typical.

Example 7.28. Consider the extension J of the minimal typicality model
M(K,∆C,O) (for K and ∆C,O as in Example 7.9/7.26), depicted in Figure 7.5.
Note the (typical) edge ((Cat, ∅), (Cat, D)) ∈ likesJ . If only models
extending J are considered to determine entailments, then for typical Cats
((Cat, D)) it would be derived that their immediate likes successors are
not Lazy, but every even chain of likes edges (strictly longer than 1)
would point to a Lazy Cat. Thus, it is implied that typical Cats like
non-typical Cats, which in turn like typical Cats, somehow conflicting
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(molli, D)

(Cat, D)(Dog, D)

Cat,Lazy

Cat,LazyDog,Happy

(Cat, ∅)(Dog, ∅)
CatDog

likes

likes

D

∅

friend likes
likes

Figure 7.5: An extension of M(K,∆C,O) (cf. Example 7.9), with an undesired more
typical role edge.

with their lack of typicality. Even worse, if the other two likes edges
(likes((molli, D), (Cat, D)), likes((Cat, D), (Cat, D))) would be in-
ferred for a set of models extending J , then, even the classical subsumption
Cat v ∃likes.Lazy could be inferred from this set of models. Therefore,
the intuition is that, if an element is non-typical, it may only be related to
other non-typical elements.

admissible preference option. Admissibility of a preference
option is determined with respect to a set of typicality models. It is used to
identify role edges capturing “holes” in a set of models, that (if metaphorically
“filled”) could lead to a more refined set of models in terms of overall DCIs
satisfied at role successors, in the following sense.

1. No arbitrary role edge should be deduced. (Justified)

2. The preference option is not already satisfied in all members of the
present set of models. (Not-entailed)

3. The entailment of the preference option is possible in at least one of
the present models. (Satisfiable)

The third aspect of the admissible property is used in particular to determine
maximality of sets of models within the preference relation. It is also crucial
for detecting potential conflicts, prohibiting two role edges with typical
successors to be satisfied at the same time (i.e. in the same model), as
illustrated shortly, in Example 7.34.

7.3.2 Nested Typicality Preference

The intuitively described interaction of (admissible) preference options and
the preference relation over sets of typicality models is made explicit by
formalising the refinement of a set of interpretations to those satisfying a
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given role edge. Such a refinement operation relates two sets of interpre-
tations over an arbitrary but shared domain. Therefore, it is not defined
explicitly for typicality models.

Definition 7.29 (Interpretation-Set Refinement). For a set of interpreta-
tions M over a (common) domain ∆ and a role edge, r(d, e) (r ∈ NR,
d, e ∈ ∆),M is refined by r(d, e) to

M|r(d,e) = {I ∈ M | (d, e) ∈ rI}

Interpretation-set refinements are used on sets of typicality models, to
single out a preference option that is the witness to one set of typicality
models being preferred over another.

Definition 7.30 (Typicality Preference). For two sets of typicality inter-
pretationsM1,M2 over the same typicality domain ∆C,O, the typicality
preference relation <t it defined such that

M1 <tM2 iff M2 =M1|p for some p ∈ PO(∆C,O), admissible forM1.

A chainM1 <t M2 <t · · · <t Mn is called a preference chain. Such a
chain is called

• maximal iff there does not exist a set of typicality interpretationsM
s.t. Mn <tM, and

• full iff it is maximal andM1 = TMod(K,∆C,O) (for a KB K).

IfM1 <tM2 we sayM2 is more preferred thanM1. This notion of
preference is incremental in terms of the number of satisfied role edges. A
preference chainM1 <tM2 <t · · · exhibits an increase (at least) in role
edges that are satisfied in all models inMi (with increasing i > 1). Note
the following immediate observations for nested typicality preference.

Remark 7.31.

1. If M1 = ∅, there are no admissible preference options for M1. If
M1 6= ∅ andM1 <t M2, thenM2 can also not be empty (every
admissible preference option is Satisfiable inM1; Def. 7.27).

2. M1 <tM2 impliesM2 ⊂M1. M2 ⊆M1 follows promptly from
Def. 7.29. M2 6=M1 holds because an admissible preference option
is Not-entailed (Def. 7.27), i.e. admissibility requires existence of
some interpretation inM1 that cannot remain inM2. The inclusion
M2 ⊂M1 provides the desired effect of refining supported inferences,
becauseM2 retains all consequences that are entailed byM1.

3. When considering only a finite signature and a finite typicality domain,
the set of all standard typicality interpretations over said domain
and signature, is finite. In that case, the previous observation and
Def. 7.27 imply that for any set of standard typicality interpretations
M, there are only finitely many M ′ s.t. M <t M ′ and there are
no infinite preference chainsM <tM1 <t · · · .
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We discuss three effects emerging from Definition 7.30, to understand
its benefits and difficulties before defining explicit semantics based on
this preference. The three subsequent examples illustrate the benefit of
typicality preference (Exm. 7.32), a side-effect to be aware of (Exm. 7.33)
and a situation in need of explicit attention (Exm. 7.34), in that order.

Example 7.32. Continuing on Example 7.26, it can be readily seen that
p = friend((molli, D), (Dog, D)) is an admissible preference option for
TMod(K,∆C,O). It clearly satisfies the criteria to be a preference option in
∆C,O and it is Satisfiable (witnessed by J ∈ TMod(K,∆C,O) in Fig. 7.2),
Not-entailed, and Justified (both seen from M(K,∆C,O), which is simply
J without friend((molli, D), (Dog, D))). It is also not hard to see
that J is the smallest standard typicality model extending M(K,∆C,O) and
satisfying p. Therefore, TMod(K,∆C,O) <t TMod(K,∆C,O)|p and

TMod(K,∆C,O)|p = {I ∈ TMod(K,∆C,O) | J ⊆ I}.

Consequently, from all models in TMod(K,∆C,O)|p it can be concluded that
(defeasibly) molli has a Happy friend.

By construction,M1 <tM2 has (at least) one witness preference option
r(d, e). It is not necessarily the case, that (d, e) ∈ rI is the only “additional”
property that all I ∈ M2 share, as illustrated in the following example.

Example 7.33. Extend the KB from Example 7.9 into

K ′ = (A, T ∪ {∃friend.Happy v ∃friend.Cat},D).

Recall that J in Figure 7.2 only extends the minimal typicality model
M(K,∆C,O) by the edge p = friend((molli, D), (Dog, D)). Be-
cause no element in M(K,∆C,O) satisfies ∃friend.Happy, it trivially
satisfies ∃friend.Happy v ∃friend.Cat. This effectively shows that
M(K ′,∆C,O) = M(K,∆C,O) and the defeasible consequences under proposi-
tional coverage for K and K ′ coincide.8 However, using the admissible pref-
erence option p for TMod(K ′,∆C,O) now results in a set TMod(K ′,∆C,O)|p
that no longer contains J , because J does not satisfy the new GCI. A
small extension of J , that does satisfy K ′ is easy to imagine. Extending J
by the edge friend((molli, D), (Cat, ∅)) does in fact yield the smallest
member J ′ ∈ TMod(K ′,∆C,O)|p. There are two observations worth noting.

1. Expecting molli to have a typical Dog for a friend (by typicality
preference), results in the implicit conclusion that molli also befriends
a Cat.

2. With this typicality preference, there is a new admissible preference
option (i.e. friend((molli, D), (Cat, ∅))) that could be used to
incrementally refine TMod(K ′,∆C,O)|p.

8 With this extension to K ′, the context no longer contains the KB and several results
from the previous sections would fail. However, entailment w.r.t. TMod(K ′,∆C,O) and
subsets thereof remains a valid notion. Only for illustrations sake, we continue referring
to the minimal typicality model and put up with being partially imprecise in this (and
the following) example.
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(molli, D)

(Cat, D)(Dog, D)

Cat,Lazy

Cat,LazyDog,Happy

(Cat, ∅)(Dog, ∅)
CatDog

friend likes

friend likes

likes

likes

D

∅

Figure 7.6: An extension of M(K,∆C,O) (cf. Example 7.9), violating the additional
GCI ∃friend.Happyu ∃likes.Lazy v ⊥.

The effects described in Example 7.33 are implicit with the nested typicality
preference, because we are only dealing with sets of models of a given KB.
In [PT’17a; PT’17b; PT’18] these effects motivated an explicit, iterative
construction (Sec. 4.3 in [PT’18]) of typicality extensions (add an admissible
preference option to the current model) and model completions (extend the
current interpretation minimally, to reach a model of the KB). This kind
of algorithmic construction will be covered in Section 8.1, in the effort to
capture a complexity upper bound for deciding entailments in semantics
based on typicality preference.
Example 7.33 shows that the preference relation <t needs only to be

concerned with the refinement of models via admissible preference options.
Implicit information (from the KB) and the property of admissibility for all
preference options is somewhat “redetermined automatically” after every
refinement. Nevertheless, finding a maximally preferred set of typicality
models is not linear, because of the effect described in (7.12). Intuitively,
two preference options can be in conflict with each other, this is illustrated
with another small extension of the initial Example 7.9.

Example 7.34. Let

K ′′ = (A, T ∪ {∃friend.Happyu ∃likes.Lazy v ⊥},D).

As in the previous examples, p1 = friend((molli, D), (Dog, D)) is an ad-
missible preference option for M(K ′′,∆C,O) (which again, for argument’s sake,
we consider to coincide with M(K,∆C,O)). Another admissible preference op-
tion for TMod(K ′′,∆C,O) is p2 = likes((molli, D), (Cat, D)). In fact, p2
was admissible already for TMod(K,∆C,O). Again, as in Example 7.32, refin-
ing TMod(K ′′,∆C,O) with p1 allows to conclude (∃friend.Happy){molli},
but, precisely this consequence prohibits p2 from being admissible for
TMod(K ′′,∆C,O)|p1 , as illustrated in Figure 7.6. J (Fig. 7.2) is still the small-
est model in TMod(K ′′,∆C,O)|p1 , and we can show that TMod(K ′′,∆C,O)|p1
contains no interpretation that satisfies p2. All interpretations I ∈
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TMod(K ′′,∆C,O)|p1 extend J (i.e. J ⊆ I) and satisfy K ′′, in par-
ticular, T ∪ {∃friend.Happy u ∃likes.Lazy v ⊥}. It is not hard to
verify that every interpretation extending J by p2 (e.g. Fig. 7.6) can-
not satisfy ∃friend.Happy u ∃likes.Lazy v ⊥, due to the counterex-
ample (molli, D). Ergo, p2 is not Satisfiable (cf. Def. 7.27) w.r.t.
TMod(K ′′,∆C,O)|p1 .

On the other hand, p2 is Satisfiable w.r.t. TMod(K ′′,∆C,O), showing that

TMod(K ′′,∆C,O) <t TMod(K ′′,∆C,O)|p1 (7.13)

as well as

TMod(K ′′,∆C,O) <t TMod(K ′′,∆C,O)|p2 (7.14)

but neither

TMod(K ′′,∆C,O)|p1 <t (TMod(K ′′,∆C,O)|p1)|p2

nor

TMod(K ′′,∆C,O)|p2 <t (TMod(K ′′,∆C,O)|p2)|p1

are true. Simply put, whenM1 <tM2, an admissible preference option
forM1 need not be admissible forM2.

Example 7.34 shows that the transitive closure of <t is not confluent.
Formally, M <t M1 and M <t M2 does not imply that there is some
M ′ s.t. Mi <t . . . <t M ′ (i ∈ {1, 2}). This means that in general,
there are multiple distinct sets of typicality interpretations that are maximal
w.r.t. <t (starting from a particular set of interpretations). Maximality
is characterised straightforward as, M is maximal iff ¬∃M ′.M <t M ′.
Nested semantics are defined over the maximally preferred subsets of the
set of all standard typicality models.

Definition 7.35 (Maximally Preferred Sets of Typicality Models). For the
set of all typicality models TMod(K,∆C,O) of K over ∆C,O and 6∗t , the
reflexive transitive closure of <t, the set of maximally preferred sets of
typicality models (Max-TMs) is

TMax(K,∆C,O) = {M⊆ TMod(K,∆C,O) | TMod(K,∆C,O) 6∗t M
∧¬∃M ′.M <tM ′}.

We consider two options to capture entailments using Max-TMs. The
approach taken in [PT’17a; PT’17b; PT’18] investigates the sceptical9

variant, where entailments are only inferred, if supported by all maximal
typicality models. As we are dealing with sets of interpretations here (rather
than single models as in [PT’17a; PT’17b; PT’18]), this corresponds to
considering the union of all Max-TMs for TModnest(). One alternative, often

9 Throughout [PT’17a; PT’17b; PT’18] this is described as the conservative approach.



7.3 preferred sets of typicality models 109

considered in inconsistency tolerant repair semantics (e.g. [Bou’16]), is to
bravely check whether the query is entailed in any of the most preferred
sets of models. In Reiter’s default logic, this corresponds to credulous
reasoning [Rei’80]. While for instance, in systems over conflicting sensory
data it is plausible to be interested in any scenario where a potentially
critical entailment can be derived, it makes little sense for our purpose,
because contradictory knowledge would inevitably be inferred (e.g. Fig. 7.6).
However, the motivation of defeasible reasoning is to determine coherent
extensions of the original knowledge.
A third approach—originally introduced here—is to characterise the

coverage of the semantics by considering a single member of TMax(K,∆C,O).
This idea is aligned with the parametrisation for semantic strength, when
reasoning over individuals. A total order on all preference options, can be
used to uniquely identify (or select) someM∈ TMax(K,∆C,O). Intuitively,
the incremental preference over sets of models is determinised by specifying
for each set of models a (unique) most preferred, admissible preference
option.

Definition 7.36 (Preference Chain Compliance). For a finite typicality
domain ∆C,O, let <po be a total order over PO(∆C,O). A preference chain
M1 <tM2 <t . . . (withMi+1 =Mi|pi for i > 1) is compliant with <po

iff pi is the <po-minimal element out of all admissible preference options
forMi.

For any set of typicality interpretations over a finite domain ∆C,O, the set
PO(∆C,O) is clearly finite when considering only the roles in a finite signature
sig(K). Consequently, the unique <po-minimal admissible preference option
exists for every set of typicality models that has at least one admissible
preference option. If there is no admissible preference option for a set of
interpretationsM, then there does not exist a more preferred (w.r.t. <t)
set of models to begin with. Note the following additional observations
about preference chains and total orders over preference options.

Remark 7.37.

1. For a total order <po over PO(∆C,O) and a finite set of typicality
interpretationsM1 over a finite domain ∆C,O, the maximal preference
chainM1 <t . . . <tMn, compliant with <po, is unique. Finiteness
of M1 ensures the existence of maximal preference chains, while
finiteness of ∆C,O ensures that at everyMi, a unique, <po-minimal
admissible preference option exists (except for the maximally preferred
setMn).

2. For a finite typicality domain ∆C,O, every full preference chain
TMod(K,∆C,O) <t M1 <t · · · <t Mn is compliant with some
total order <po over PO(∆C,O). From such a preference chain, the
preference options p0,p1, · · · ,pn−1 are naturally enumerated, s.t.
M1 = TMod(K,∆C,O)|p0 and Mi+1 = Mi|pi (1 6 i < n). This
chain of preference options provides a total order <po over PO(∆C,O)

that the original preference chain must be compliant with.
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3. Example 7.34 already contains somewhat of an illustration for pref-
erence chain compliance. Recall K ′′, p1 and p2. For the preference
p1 <po p2, (7.13) occurs on a compliant preference chain and then no
set of models further down on the preference chain could be refined by
p2. Thus, from the Max-TM selected by <po, it will be possible to de-
rive (∃friend.Happy){molli}, but not (∃likes.Lazy){molli}. The
opposite could be inferred from any Max-TM induced by p2 <po p1.

Using preference chain compliance and the sceptical approach, we in-
troduce two sets of models to be considered for different kinds of nested
entailment.

Definition 7.38 (Nested Coverage for Typicality Models). For a KB K, a
finite typicality domain ∆C,O and <po, a total order on PO(∆C,O), let

1. TModnest(K,∆C,O) =
⋃

M∈TMax(K,∆C,O)M, and

2. TModnest<po
(K,∆C,O) =M∈ TMax(K,∆C,O), where

TMod(K,∆C,O)) <t . . . <tM

is the preference chain, compliant with <po.

Note that Definition 7.38 provides the sought after refinement of the set
of models considered to obtain semantics of propositional coverage. More
specifically,

TModnest<po
(K,∆C,O) ⊆ TModnest(K,∆C,O) ⊆ TModprop(K,∆C,O)

shows that entailments under propositional coverage are preserved in both
kinds of nested coverage, and entailments supported by a single Max-TM
clearly extend those supported by all Max-TMs. Definition 7.38 is used to
fully instantiate the definition of defeasible entailment in typicality model
semantics (Def. 7.10) for sceptical and selective nested semantics for rational
and relevant strength. In the following, we will formally show superiority of
both nested coverages over materialisation-based reasoning, for both of the
discussed strengths.

7.3.3 Nested Rational Reasoning

Naturally, nested rational semantics rely on the rational typicality domain
∆C,O,K
rat≺ (Def. 7.21). This domain and the characterisation of considered

models for nested coverage (Def. 7.38), provide two instantiations of Defini-
tion 7.10 as follows.

Definition 7.39 (Nested Rational Semantics). Let C,O ba a finite, con-
sistent context, containing the KB K and ≺ be a total order on NI. A
defeasible inference problem (K,α) is true under

• Sceptical Nested Rational Semantics
iff ∀I ∈ TModnest(K,∆C,O,K

rat≺ ).I |= α (write K |=(rat≺,nest) α), and
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• Selective Nested Rational Semantics
iff ∀I ∈ TModnest<po

(K,∆C,O,K
rat≺ ).I |= α (write K |=(rat≺,nest<po) α),

for a given total order <po on PO(∆C,O,K
rat≺ ).

With this characterisation of nested semantics, we can formally show
that both nested semantics are superior to propositional or materialisation-
based semantics, without sacrificing the entailments produced by those
foundations. The following result shows that the main goal for these novel
semantics is successfully reached.

Theorem 7.40. Sceptical and selective nested rational semantics allow for
strictly more entailments than materialisation-based semantics, i.e.

1. K |=(rat≺,mat) α =⇒ K |=(rat≺,nest) α,

2. K |=(rat≺,mat) α =⇒ K |=(rat≺,nest<po) α,

3. K |=(rat≺,mat) α 6⇐= K |=(rat≺,nest) α, and

4. K |=(rat≺,mat) α 6⇐= K |=(rat≺,nest<po) α,

for a KB K and a defeasible subsumption or instance check α.

Proof. 1 and 2 are not too involved due to the construction of Max-TMs.
Recall the equivalence of materialisation-based reasoning and propositional
semantics (Thm. 7.22). Using Remark 7.31 (Observation 2), it is clear that
TModprop(K,∆C,O,K

rat≺ ) 6∗t M implies M ⊆ TModprop(K,∆C,O,K
rat≺ ) and thus

TModnest<po
(K,∆C,O,K

rat≺ ) ⊆ TModnest(K,∆C,O,K
rat≺ ) ⊆ TModprop(K,∆C,O,K

rat≺ ).
Therefore, if α is entailed by TModprop(K,∆C,O,K

rat≺ ), then clearly, all interpre-
tations in TModnest<po

(K,∆C,O,K
rat≺ ) and TModnest(K,∆C,O,K

rat≺ ) also satisfy α
(for any <po). This argument also formally shows implication from sceptical
to selective nested semantics. Superiority of the latter is illustrated with 3
in Remark 7.37.
For 3 and 4 we already established the simple counterexample in Exam-

ple 7.32, using the KB K from Example 7.9. It is not difficult to verify that
the domain ∆C,O in those examples corresponds to ∆C,O,K

rat≺ for any order ≺
(because there is only one individual). As there are no emptiness constraints
in K (i.e. no GCIs of the form · · · v ⊥), all admissible preference op-
tions for TModprop(K,∆C,O,K

rat≺ ) can be satisfied simultaneously. Consequently,
there is exactly one set of models M ∈ TMax(K,∆C,O,K

rat≺ ). Thus, for any
order <po, M = TModnest<po

(K,∆C,O,K
rat≺ ) = TModnest(K,∆C,O,K

rat≺ ). From
satisfaction of friend((molli, D), (Dog, D)) in all models inM, it fol-
lows that K |=(rat≺,nest) (∃friend.Happy){molli} and K |=(rat≺,nest<po)

(∃friend.Happy){molli}, something that could not be derived from the
materialisation framework.

Unfortunately, the rational domain induced by K in Example 7.9 only
exhibits two levels of typicality. For simplicity and brevity, this is enough
to show the desired result and we shall not afford the space to make a
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more involved example. One could easily imagine a more complex DBox
and some TBox constraints that would result in |chain(K)| > 2. However,
as only two concept representatives per element in C exist, role successors
will be either fully typical or not typical at all. This is not the case for the
relevant domain and allows for much more intricate examples.

7.3.4 Nested Relevant Reasoning

As for propositional semantics in Section 7.2.2 and 7.2.3, the investigation
of nested relevant semantics is analogous to the preceding section.
Nested relevant semantics are naturally based on the relevant typicality

domain ∆C,O,K
rel≺

(Def. 7.24). This domain, together with the definition of
considered models for nested coverage (Def. 7.38), provides explicit nested
semantics in term of Definition 7.10 as follows.

Definition 7.41 (Nested Relevant Semantics). A defeasible inference query
(K,α) is true under

• Sceptical Nested Relevant Semantics
iff ∀I ∈ TModnest(K,∆C,O,K

rel≺
).I |= α (write K |=(rel≺,nest) α), and

• Selective Nested Relevant Semantics
iff ∀I ∈ TModnest<po

(K,∆C,O,K
rel≺

).I |= α (write K |=(rel≺,nest<po) α),
for a given total order <po on PO(∆C,O,K

rel≺
).

Before showing the analogous result to Theorem 7.40 for the rational
case, we illustrate the power of the relevant domain, both in terms of nested
coverage and a solution to inheritance blocking.

Example 7.42. For recognisability, we introduce a variant of the KB from
Example 7.9, that exhibits more intricate features, in particular the ability to
showcase inheritance blocking at role successors. Let K = (A, T ,D), with

A = {(Catu ∃friend.Dog)(molli)}

T = {Cat v ∃likes.Cat,
∃friend.Dogu Smart v ⊥, (T1)

∃friend.(Dogu ∃hates.Cat) v ⊥} (T2)

D = {Dog @
∼ Happy,Dog @

∼ ∃hates.Cat,
Cat @∼ Lazy,Cat @∼ Smart}

First of all, let us analyse this KB. From the new emptiness-constraints
in the TBox, no top-level (materialisation-based) conflict for the concept
names Cat and Dog can be derived. That is, K 6|= D uCat v ⊥ (likewise
for Dog), and thus chain(K) = 〈D, ∅〉. However, we can imagine some
domain elements that might be affected by those TBox constraints. For one,
the individual representative for molli is in conflict with (T1) (in standard
typicality models of K). Also, any element with a friend successor in Dog,
satisfying the entire DBox conflicts with (T2). These two types of conflicts
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D

D2
m

D1

∅

· · ·

Figure 7.7: Labelled graph visualisation of a typicality interpretation over (an
excerpt of) ∆C,O,K

rel≺
.

are intuitively resolved, when considering domain elements (for the latter:
the respective successor) associated to the DBox subsets

D1 = {Dog @
∼ Happy,Dog @

∼ ∃hates.Cat,Cat @∼ Lazy} and

D2 = {Dog @
∼ Happy,Cat @∼ Lazy,Cat @∼ Smart}, respectively.

Figure 7.7 contains (part of) an interpretation over an excerpt of the
relevant typicality domain in a somewhat abstracted form. To keep the visual
representation in check, we use different symbols for the first component
of representative elements. A full circle describes an element representing
Dog, empty circles are Cat representatives and the grey circle with label
m represents molli. The next abstraction is, that all domain elements are
associated with the DBox subset, labelling the surrounding rectangle, as
previously described for Figure 7.4. For instance, the molli representative
is associated with D1. To present a concise visualisation, we only care about
elements associated to the sets in chain(K) and D1, D2, hence, excluding
most of the subset lattice between D1, D2 and ∅. Also, we omit the labels
in Fig. 7.7, because the respective entailments are very similar to previous
examples. Note that edges pointing to Dog elements are always of type
friend. molli’s Cat successor is labelled with likes, and the most typical
Dog hates Cats (i.e. hates((Dog, D), (Cat, ∅))). Other Dog elements
associated with DBox subsets containing Dog @

∼ ∃hates.Cat should have
such an edge too, but these and other irrelevant edges are also omitted in
Fig. 7.7.
To see that no preference options are ever in conflict with one another,

note that the TBox can only be violated for elements with a Dog friend.
From K, this relation will only ever be entailed for molli, never for any
anonymous concept representative. As a matter of fact, the assertion in
A ensures that molli is exceptional for the full DBox D. As a result,
ext(Krel≺ ,molli) = D1 (for any ≺), whereas rational strength would have
had to associate molli with the next biggest element in chain(K), i.e. ∅.
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This allows to draw the conclusion Lazy{molli}, but this was derivable
from materialisation-based relevant reasoning as well.
From the lack of conflicts between preference options, we know that

there is only one unique Max-TM M ∈ TMax(K,∆C,O,K
rel≺

) and all I ∈ M
contain at least the solid edges displayed in Fig. 7.7. The dashed edge from
molli to the most typical Dog representative cannot be derived, as it would
violate (T2). For rational strength, there are only two options for molli’s
friend successor, either typical (here: (Dog, D)) or non-typical (here:
(Dog, ∅)). In ∆C,O,K

rel≺
, there are all the representatives in between, in partic-

ular (Dog, D2). The edge friend((molli, D1), (Dog, D2)) persists in all
I ∈ M as well, allowing to draw the conclusion (∃friend.Happy){molli}.

Example 7.42 illustrates that the defeasible information inferred for quan-
tified concepts under nested relevant semantics, does not suffer from inheri-
tance blocking. This successfully shows that two of the main drawbacks
of materialisation-based Rational Closure (Sec. 5.1, 5.2) can be resolved
using typicality models.

As for the rational case, we show that both nested semantics are stronger
than propositional or materialisation-based semantics, in the amount of
entailed inferences.

Theorem 7.43. Sceptical and selective nested relevant semantics allow for
strictly more entailments than materialisation-based semantics, i.e.

1. K |=(rel≺,mat) α =⇒ K |=(rel≺,nest) α,

2. K |=(rel≺,mat) α =⇒ K |=(rel≺,nest<po) α,

3. K |=(rel≺,mat) α 6⇐= K |=(rel≺,nest) α, and

4. K |=(rel≺,mat) α 6⇐= K |=(rel≺,nest<po) α,

for a KB K and a defeasible subsumption or instance check α.

Proof. From Observation 2 in Remark 7.31 it is clear that
TMod(K,∆C,O,K

rel≺
) 6∗t M implies M ⊆ TMod(K,∆C,O,K

rel≺
) and thus

TModnest<po
(K,∆C,O,K

rel≺
) ⊆ TModnest(K,∆C,O,K

rel≺
) ⊆ TModprop(K,∆C,O,K

rel≺
).

Therefore, all entailments supported by TModprop(K,∆C,O,K
rel≺

) are also sup-
ported by TModnest<po

(K,∆C,O,K
rel≺

) and TModnest(K,∆C,O,K
rel≺

). The equiva-
lence of propositional relevant reasoning and materialisation-based relevant
reasoning (Theorem 7.25) therefore proves 1 and 2.

For 3 and 4, a counterexample is given in Example 7.42.

For a full account of nested semantics and their relations towards each
other, up to and including Theorem 7.43, we refer to the concluding remarks
of this work in Chapter 9. We continue with the extensive investigation
of the computational complexity for the newly developed typicality-model
semantics.



8
COMPUTATIONAL COMPLEXITY

From a computational point of view, materialisation-based approaches to
determine the defeasible consequences of a knowledge base, hold practi-
cal value. They all rely on a reduction of a defeasible inference problem
to its classical counterpart. When considering ALC, the complexity of
classical reasoning (ExpTime) will be maintained for polynomial such
reductions (e.g. Rational Closure), as well as exponential ones (e.g. Rel-
evant Closure). If done appropriately, also for sub-boolean DLs such as
EL⊥ (cf. Sec. 4.4), the complexity of defeasible query entailment under
rational strength can be shown to remain polynomial altogether. Thus,
materialisation-based reasoning allows for simple practical implementations
([CMMN’14; CMM+’15; CMMV’13; GGPR’17]), by employing highly ef-
ficient DL-reasoners [GHM+’14; KKS’14]. From Theorem 7.22 and 7.25,
and especially Corollary 7.23 it is clear that determining entailments under
propositional typicality model semantics is, roughly speaking, a reformulation
of such a reduction algorithm.

It is much less intuitive, how high the computational effort is to determine
sets of typicality models that are maximal under typicality preference. The
best upper bound for the number of Max-TMs that we have been able to
prove so far, is exponential in the size of the considered typicality domain.
In addition to the different size of domain (rational vs. relevant), the
complexity also varies between the different types of nested semantics:

sceptical: All of the Max-TMs must be investigated.

selective: One specific Max-TM must be determined.

In this chapter we extensively study complexity upper bounds of all nested
semantics for rational and relevant strength, and prove a complexity lower
bound for sceptical nested rational entailment. We split the former into
two parts, separating the presentation of algorithms (Sec. 8.1) from the
analysis on their computational complexity (Sec. 8.2). The reduction from
a known SAT problem, to obtain a tight lower bound for sceptical nested
rational entailment (Sec. 8.3), is unfortunately not transferable to relevant
strength. Lower bounds for selective nested semantics, on the other hand,
are relatively easy to show for both rational and relevant strength.

8.1 algorithms for typicality models

As in the preceding chapters, a large number of results in the algorithmic
characterisation of typicality maximisation are general in terms of the
underlying typicality domain. The following two such general results are
used as the main motivation for the algorithms that we present in this

115
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section. First and foremost, we formalise the initial statement on the upper
bound for the number of Max-TMs.

Proposition 8.1. For a KB K, a quantification closed context C,O con-
taining K and a typicality domain ∆C,O, the set TMax(K,∆C,O) contains at
most exponentially many Max-TMs in the size of ∆C,O.

Proof. For n = |∆C,O|, there are at most n2 ∗ |sigR(K)| preference options
(admissibility aside) in PO(∆C,O). A simple upper bound for Max-TMs is
clearly the number of distinct sets of preference options, i.e. exponentially
many in |∆C,O|.

Remark 8.2. Of course, if one of these sets of preference options (in the
preceding proof), say P ⊆ PO(∆C,O), being satisfied provides a Max-TM,
then none of the (strict) subsets of P being satisfied provides a set of models
that is maximal w.r.t. <t. This practically reduces the upper bound to
the number of subsets of PO(∆C,O) with |PO(∆C,O)|

2 elements, which remains
exponential in |∆C,O|.

The main idea for an algorithmic characterisation rests in the intuition
that a set M ∈ TMax(K,∆C,O) can be identified through a preference
chain TMod(K,∆C,O) <t M1 <t . . . <t M. However, Proposition 8.1
shows that it is not feasible to enumerate all Max-TMs when determining
entailments under sceptical semantics. An alternate approach is to identify
a single preference chain, leading to a Max-TM that does not satisfy the
query, hence solving the complement of the decision problem at hand. For
selective semantics, we have shown that the additional input identifies a
unique preference chain, leading to a unique Max-TM. Thus, we present a
maximisation algorithm, that essentially traverses a single preference chain
(either specified by input or guessed by the algorithm), in Section 8.1.2.

To achieve this traversal, we need to provide the means to determine
admissible preference options for sets of typicality models, as well as feasible
means to handle the sets along a preference chain. To this end, the following
consequence of the typicality preference relation is the second motivational
result for this algorithmic characterisation.

Proposition 8.3. IfM1 ⊆ TMod(K,∆C,O) is closed under intersection and
M1 <tM2, thenM2 is closed under intersection.

Proof. Let r(d, e) be the admissible preference option ofM1 s.t. M2 =

M1|r(d,e). Clearly, M2 ⊆ M1, thus for J1,J2 ∈ M2, it follows that
J1 ∩ J2 ∈ M1, because M1 is closed under intersection. Both J1 and
J2 satisfy r(d, e) which implies that J1 ∩J2 satisfies r(d, e) Consequently,
J1 ∩J2 ∈M1|r(d,e) =M2.

From Proposition 8.3 and the fact that TMod(K,∆C,O) is closed under
intersection (for a finite ∆C,O, cf. Prop. 7.12), we know that everyMi along
a preference chain TMod(K,∆C,O) <tM1 <tM2 . . ., including Max-TMs
are closed under intersection and trivially contain a ⊆-smallest typicality
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model. This smallest element Ji of Mi is canonical for its respective
Mi, in the sense that Ji ⊆ I for all I ∈ Mi. Hence, these canonical
typicality models (starting from the minimal typicality model M(K,∆C,O) for
TMod(K,∆C,O)) are sufficient to determine admissible preference options.
Intuitively, for a preferenceM1 <tM2, we algorithmically construct the
canonical model for M2 from the canonical model for M1, in terms of
a minimal model completion (Section 8.1.1). This construction has been
one part of the original typicality model upgrade procedure in [PT’17a;
PT’17b].

8.1.1 Model Completion

In Example 7.9, 7.32 and 7.33 we have intuitively already applied model
completion. After expecting a preference option to be satisfied, it was
clear that more information (e.g. role edges) must be contained in any
⊆-extension of that interpretation, to satisfy the KB (Exm. 7.33). Thus, the
idea of model completion is technically not tied to the preference relation
<t, but any typicality interpretation can be (attempted to be) completed
into a model of the given KB. We introduce this completion in Algorithm 8.1
and continue to show its correctness, while its computational complexity is
determined in Section 8.2.

The intuition behind this model completion algorithm is relatively simple.
It iteratively determines if the current interpretation is a standard typicality
model of the KB. If not, there must be some counterexample given by some
domain element. The algorithm attempts to mend this counterexample,
by extending the interpretation appropriately. For instance, some domain
element d might belong to the left-hand side of some GCI (or associated
DCI), but not to the right-hand side in the current interpretation. If this
interpretation satisfies 1 of Definition 7.6 (∀C ∈ C.(C, U) ∈ CI), then it is
easy to extend it in such a way that this particular domain element and GCI
(or DCI) do not present a counterexample anymore. The element d will
be added to the appropriate concept name extensions and appropriate role
edges are introduced, so that afterwards, d belongs to the right-hand side
of the violated GCI (or DCI). Once fixed, this specific counterexample can
never be a counterexample again, if the interpretation is only ever extended.
The counterexamples with GCIs and DCIs are treated in the exact same
way. Formally, we introduce the symbol ./ ∈ {v,@∼ } to cover both cases by
using e.g. E ./ F.
The modification described above is formalised as the promotion of a

domain element within an interpretation, by a given concept. With this
alteration, we need to be careful that (new) implicitly satisfied quantifications
(e.g. d ∈ (∃r.E)J ) follow the principle of standard interpretations. In
particular, they should satisfy Property 3 of Def. 7.6 in case E ∈ C. This is
achieved with a second kind of modification on typicality interpretations,
called standardisation.
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Definition 8.4 (Promotion and Standardisation). For a typicality inter-
pretation I = (∆C,O, ·I), an element d ∈ ∆C,O and an EL concept
E =

d
16i6nAi u

d
16j6m ∃rj.Fj with Qc(E) ⊆ C, the promotion of

I w.r.t. d and E is I(d,E) = (∆C,O, ·I(d,E)) s.t.

AI(d,E) =

AI ∪ {d} , if A ∈ {A1, . . . ,An}

AI , otherwise

rI(d,E) = rI ∪ {(d, (Fj, ∅)) | 1 6 j 6 m∧ r = rj}

aI(d,E) = aI

for all A ∈ NC, r ∈ NR, a ∈ NI.
The standardisation of I is S(I) = (∆C,O, ·S(I)) s.t.

AS(I) = AI

rS(I) = rI ∪ {(d, (F, ∅)) | F ∈ C∧ d ∈ (∃r.F)I}

aS(I) = aI

for all A ∈ NC, r ∈ NR, a ∈ NI.

Combining both extensions, is called the standard promotion of I w.r.t.
d,E, formally, S(I(d,E)). The term standardisation is for lack of a more
specific term, because Def. 8.4 clearly only addresses the third property of
the definition for standard typicality interpretations. Property 1 and 2 of
Definition 7.6 will be assumed to be satisfied for the input interpretation I
in the following. While it would be possible to define a true standardisation,
explicitly taking care of the assumed properties, it is never required for
the way standardisation is utilised here. The overall starting point for
the typicality maximisation (Sec. 8.1.2) is the minimal typicality model
M(K,∆C,O), which already satisfies 1 and 2 of Def. 7.6 and will only ever be
extended throughout the algorithm.

Lemma 8.5. Let I = (∆C,O, ·I) be a typicality interpretation, d ∈ ∆C,O

and E =
d
16i6nAi u

d
16j6m ∃rj.Fj with Qc(E) ⊆ C. If I satisfies

Property 1 and 2 of Definition 7.6, then the following hold

1. d ∈ EI(d,E)

2. S(I) is a standard typicality interpretation

3. S(I(d,E)) is a standard typicality interpretation with d ∈ ES(I(d,E))

Proof.

claim 1 It follows immediately from Definition 8.4 that d ∈
(
d
16i6nAi)

I(d,E). By assumption, we know that (Fj, ∅) ∈ FIj
(1 of Def. 7.6). Clearly I ⊆ I(d,E), hence Lemma 2.12 im-
plies (Fj, ∅) ∈ F

I(d,E)
j (for 1 6 j 6 m). Again, by Def. 8.4

(d, (Fj, ∅)) ∈ r
I(d,E)
j , which, together with the preceding obser-

vation, implies d ∈ (
d
16j6m ∃rj.Fj)I(d,E).
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claim 2 This is rather trivial, as the construction of S(I) forces for every
d ∈ (∃r.F)S(I) (r ∈ NR, F ∈ C) that (d, (F, ∅)) ∈ rS(I), i.e. Property
3 of Def. 7.6. The other properties of Def. 7.6 are satisfied for I by
assumption, and thus they are satisfied for all extensions of I, in
particular S(I), by Lemma 2.12.

claim 3 Again, by Lemma 2.12, also I(d,E), as an extension of I,
satisfies the properties assumed for I. Hence, Claim 2 applies also to
I(d,E) and allows the combination of Claims 1 and 2.

We rely on standard promotions in Algorithm 8.1 and on Lemma 8.5
for showing that this construction achieves to resolve counterexamples
to the model property. However, not all such counterexamples can be
resolved this way. If a domain element d satisfies the left-hand side of a
GCI E v ⊥, then neither the current interpretation, nor any extension of it
belong to TMod(K,∆C,O). These cases need to be treated specifically by
Alg. 8.1. Intuitively, because all counterexamples are resolved by minimally
extending the interpretation, violation of E v ⊥ implies that the original
input interpretation of Alg. 8.1 cannot be completed into a model (proven
in Prop. 8.8). Therefore, in this case, Algorithm 8.1 specifically returns
failure. An example of this situation is already provided in Figure 7.6
(Page 107).

Algorithm 8.1: Minimal Model Completion

Input: KB K = (A, T ,D), typicality interpretation I = (∆C,O, ·I)
Output: typicality interpretation In or failure

1 I0 := S(I);
2 i := 0;
3 while Ii 6∈ TMod((T ,D),∆C,O) do
4 Let d = (χ, U) ∈ ∆C,O s.t. E ./ F ∈ T ∪ U and d ∈ EIi \ FIi ;
5 if F = ⊥ then
6 return failure;
7 end
8 Ii+1 := S(Ii(d, F));
9 i := i+ 1;

10 end
11 return Ii;

Note that from Line 3 of Alg. 8.1 it becomes apparent that we are only
interested in satisfying the TBox and the sets of DCIs that are associated
with every domain element. We justify this in a similar way to the limited
construction of standardisations. Clearly, it would be possible to extend an
interpretation to “make it satisfy” assertions of an ABox. However, for our
purposes, Algorithm 8.1 will only be used with input typicality interpretations
extending the minimal typicality model. From Lemma 2.12 it follows that,
if a typicality interpretation satisfies an (EL) ABox (such as M(K,∆C,O)),
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then every extension of that typicality interpretation satisfies this ABox as
well.

By slight abuse of notation and in favour of simplicity in the following,
we capture the set of all typicality models extending a given interpretation
I = (∆C,O, ·I) as

TMod(K, I) = {J ∈ TMod(K,∆C,O) | I ⊆ J }. (8.1)

Remark 8.6. Note the following observations.

1. TMod(K, I) is not necessarily non-empty. In particular, if for some
Ii in Alg. 8.1 (initialised with I) a counterexample for F v ⊥ is
encountered, then TMod(K, Ii) = ∅. Informally, this is an indication
to I containing contradictory information to the KB.

2. If I ∈ TMod(K,∆C,O), then not only I ∈ TMod(K, I) holds, but I is
clearly the ⊆-smallest model in TMod(K, I).

Before proving correctness of Algorithm 8.1, we introduce a very powerful
lemma, connecting the different interpretations Ii throughout the iterations
of this algorithm.

Lemma 8.7. Suppose Algorithm 8.1 terminates on the input K = (T ,D)
and I. For any two typicality interpretations Ik, Ij (0 6 k, j) within the
run of Alg. 8.1 on K and I, it holds that

TMod(K, Ik) = TMod(K, Ij) (8.2)

Proof. To avoid confusion about numbers of iterations and indices of
interpretations , note that we use the value that i (iteration counter in
Alg. 8.1) would have if the algorithm reached Line 9 in the current iteration,
as the iteration number. For example, in iteration 1, Line 3 checks I0
and for terminating in Line 6 at iteration n+ 1, the highest index on the
constructed interpretations Ii is i = n.
For the special case that the input interpretation I (or I0) belongs to

TMod(K,∆C,O) (i.e. the while-loop is never entered), the claim trivially
holds for k = j = 0.

The second special case is, that in I0 there exists an element (χ, U) ∈ EI0
and some E v ⊥ ∈ T in the KB. In this case, Line 6 is reached in the
first iteration of the while-loop and TMod(K, I0) = ∅, because all typicality
interpretations J with I0 ⊆ J will satisfy (χ, U) ∈ EI0 (by Lemma 2.12),
and therefore, not satisfy E v ⊥. Again, for I0 being the only interpretation
to consider, the claim trivially holds for k = j = 0.
Assume the while-loop is entered and Line 6 is not reached in the first

iteration. We show that

TMod(K, Ii) = TMod(K, Ii+1) (8.3)

holds for 0 6 i < n, for the algorithm terminating either in Line 11 after
n iterations, or in Line 6 during iteration n+ 1.1 In both cases, the last

1 The case that Alg. 8.1 terminates in Line 6 in the first iteration is covered above, therefore,
considering it to terminate not sooner than in iteration n+ 1 in Line 6 does not exclude
any cases.
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constructed interpretation is In, regardless of whether In, or failure will
be returned.
The inclusion TMod(K, Ii) ⊇ TMod(K, Ii+1) is trivial, because by con-

struction Ii ⊆ Ii+1 (see (8.1)).
For ⊆, we show that J ∈ TMod(K, Ii) implies Ii+1 ⊆ J . Because we

know Ii ⊆ Ii+1 and Ii ⊆ J , we only need to show that the information
not shared between Ii and Ii+1 is contained in J . By the assumption
about termination, we know, for E ./ F chosen in Line 4 during any iteration
from 1 to n, that F 6= ⊥. Hence, w.l.o.g.

F =
l

16h6m

Ah u
l

16l6o

∃rl.Gl

at every iteration before n+ 1. Then, by Definition 8.4, it holds for the
promotion Ii(d, F) (0 6 i < n), that d ∈ AIi(d,F)

h for all 1 6 h 6 m and
(d, (Gl, ∅)) ∈ r

Ii(d,F)
l for all 1 6 l 6 o. These are the only containments

that are (potentially) not shared between Ii and Ii(d, F) by construction
of Ii(d, F). From

• d ∈ EIi ,

• EIi ⊆ EJ (Lem. 2.12), and

• J ∈ TMod(K,∆C,O),

it follows that d ∈ FJ . This implies that d ∈ AJ
h (1 6 h 6 m) and

because J is standard, (d, (Gl, ∅)) ∈ rJl . Therefore, Ii(d, F) ⊆ J .
The promotion Ii(d, F) being contained in the standard model J , implies
(∃r.H)Ii(d,F) ⊆ (∃r.H)J for all H ∈ C, r ∈ NR by Lemma 2.12. Thus, all
role edges added to obtain S(Ii(d, F)) must also be contained J , showing
that Ii+1 = S(Ii(d, F)) ⊆ J .

This proves (8.3) for iterations 0 6 i < n (under our termination assump-
tions). If the assumption J ∈ TMod(K, Ii) is invalid, then TMod(K, Ii) = ∅
and TMod(K, Ii) ⊆ TMod(K, Ii+1) holds trivially.
For the original claim, assume w.l.o.g. k < j (k = j = 0 is covered by

the border cases). Transitive applications of (8.3) show TMod(K, Ik) =

TMod(K, Ij).

Interestingly enough, Lemma 8.7 does not rely on the outcome of Algo-
rithm 8.1, because (8.3) is shown for all iterations before termination. It is
a simple consequence, that if the algorithm terminates in Line 6 at iteration
n+ 1, with In being the last created interpretation, that TMod(K, In) = ∅
and thus TMod(K, I0) = ∅. For the time being, we include termination of
Alg. 8.1 as an assumption in Lemma 8.7, and refer the investigation for
termination and complexity to Section 8.2. Incidentally, we will show that
this model completion terminates on all finite inputs (Prop. 8.16), making
this assumption in Lem. 8.7 moot.

We use Lemma 8.7 to show that the outcome of Algorithm 8.1 is always
correct. That is, if it returns an interpretation, then this is the smallest model
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of the KB extending the input interpretation, and if it returns failure,
then no extension of the input interpretation satisfies the KB.

Proposition 8.8. Let K = (A, T ,D) be a KB and I = (∆C,O, ·I), a
typicality interpretation satisfying A and Properties 1, 2 of Def. 7.6.

1. If Algorithm 8.1 returns the typicality interpretation In, from the
input K, I, then In is the ⊆-smallest model in TMod(K, I).

2. If Algorithm 8.1 returns failure, then TMod(K, I) = ∅

Proof. We assume for Claim 2, that the last created interpretation is also
In. For both cases, it follows from I ⊆ In and Lemma 2.12, that In
satisfies A as well as 1, 2 of Def. 7.6.

claim 1. We show satisfaction of K and minimality w.r.t. ⊆ separately.

standard model. From Lemma 8.5 and the requirements for
I, it follows that all Ii (0 6 i 6 n) are standard typicality
interpretations. By assumption, the while-loop is only entered a
finite number of times and Line 6 is never reached. As soon as the
while-condition (Line 3) fails, i.e. for the returned interpretation
In, it is clear that In ∈ TMod((T ,D),∆C,O). Because I already
satisfies the ABox A, it follows from I ⊆ In and Lemma 2.12
that In ∈ TMod(K,∆C,O).

minimality. By Lemma 8.7 we know that TMod((T ,D), I0) =

TMod((T ,D), In) and from the definition of standardisation, it
is clear that TMod((T ,D), I) = TMod((T ,D), I0). Because all
models in TMod((T ,D), I) extend I and I satisfies A, it holds
that TMod((T ,D), I) = TMod(K, I). Because I ⊆ In, the same
argument shows that TMod((T ,D), In) = TMod(K, In), and
therefore TMod(K, I) = TMod(K, In). As covered in Remark 8.6,
for In ∈ TMod(K,∆C,O), it follows that In ∈ TMod(K, In) and
for all J ∈ TMod(K, In), it holds that In ⊆ J . This proves
minimality of In in TMod(K, I).

claim 2. If Algorithm 8.1 terminates in Line 6 at iteration n+ 1, then
there exists some E v ⊥ ∈ T s.t. (χ, U) ∈ EIn . From Lemma 2.12
we know that EIn ⊆ EJ for every extension J of In (In ⊆ J ).
Thus, no such J satisfies E v ⊥, showing TMod((T ,D), In) = ∅,
which implies TMod((T ,D), I) = TMod(K, I) = ∅ by Lemma 8.7.

Proposition 8.8 shows correctness of Algorithm 8.1 for all terminating
executions. Intuitively Algorithm 8.1 achieves exactly what was intended,
not only finding some extension of the input interpretation that satisfies
the input KB, but the ⊆-smallest such extension. In the following, we will
denote the returned interpretation In from running Alg. 8.1 on K, and I
as the minimal model completion of I w.r.t. K (as in [PT’17a; PT’17b;
PT’18]). Formally, we use mmc(K, I) := In and carefully include the phrase
“if it exists”, to account for Alg. 8.1 ending in failure.
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We return from this excursion on generic model completion to present
its implications in the context of typicality preference. As motivated by
Proposition 8.3, the following main result of this section links the ⊆-smallest,
models of two sets of typicality models withM1 <tM2, through the use
of minimal model completion.

Theorem 8.9. For a KB K and a finite typicality domain ∆C,O, let
M1,M2 ⊆ TMod(K,∆C,O) s.t. M1 is closed under intersection and
M1 6= ∅. Furthermore, let I1 =

⋂
J∈M1

J and assume

∀J ∈ TMod(K,∆C,O).I1 ⊆ J =⇒ J ∈M1. (8.4)

For a preference option r(d, e) over ∆C,O that is Justified and Not-entailed
inM1, let Ir(d,e) = (∆C,O, ·Ir(d,e)), with

AIr(d,e) = AI1(for A ∈ NC),
aIr(d,e) = aI1(for a ∈ NI),
sIr(d,e) = sI1(for s ∈ NR \ {r}), and
rIr(d,e) = rI1 ∪ {(d, e)}.

For the following three statements

1. M1 <t M2 with the admissible preference option r(d, e) for M1

(i.e. M2 =M1|r(d,e)),

2. mmc(K, Ir(d,e)) exists, and

3. mmc(K, Ir(d,e)) is the ⊆-smallest element inM2,

it holds that 1 is equivalent to 2; and 3 is implied by either 1 or 2.

Proof. Consider a few notes on the prerequisites of this theorem. By
construction andM1 being closed under intersection, it trivially holds that
I1 is the ⊆-smallest member ofM1. The requirement (8.4) does not affect
M1 being intersection closed, it rather ensures that no arbitrary information
can be inferred fromM1 (andM2, assuming its construction in Statement
1). A full account of (8.4) is not substantial to this proof and is therefore
referred to Remark 8.10.

1 =⇒ 2. First of all, M2 6= ∅ follows from r(d, e) being Satisfiable
in M1. By assumption and model set refinement, it holds that
M2 ⊆M1. Therefore, I1 ⊆ J for all J ∈M2 implies Ir(d,e) ⊆ J
for all J ∈ M2, by the construction of M2 and Ir(d,e). Because
M2 ⊆ TMod(K,∆C,O) it follows by the definition of TMod(K, Ir(d,e))

(8.1), that M2 ⊆ TMod(K, Ir(d,e)) and thus TMod(K, Ir(d,e)) 6= ∅.
Non-emptiness of TMod(K, Ir(d,e)) ensures that Algorithm 8.1 cannot
terminate with failure on the input K, Ir(d,e). Its termination on
all finite inputs (Prop. 8.16) ensures that mmc(K, Ir(d,e)) exists.



124 computational complexity

2 =⇒ 1. From 2 and Requirement (8.4), we conclude mmc(K, Ir(d,e)) ∈
M1. It follows that, in addition to being Justified and Not-entailed
inM1 by assumption, r(d, e) is Satisfiable and therefore admissible
w.r.t. M1. By Definition 7.30, it follows forM2 =M1|r(d,e) that
M1 <tM2.

1 =⇒ 3. Due to the equivalence of 1 and 2, we can w.l.o.g. as-
sume both. As in the proof for 2 =⇒ 1, it holds that
mmc(K, Ir(d,e)) ∈M1. Because Ir(d,e) ⊆ mmc(K, Ir(d,e)), it clearly
holds that mmc(K, Ir(d,e)) |= r(d, e) and thus mmc(K, Ir(d,e)) ∈
M2. Furthermore, because mmc(K, Ir(d,e)) ⊆ J holds for all
J ∈ TMod(K, Ir(d,e)) (by Prop. 8.8) andM2 ⊆ TMod(K, Ir(d,e)) it
follows that mmc(K, Ir(d,e)) ⊆ J for all J ∈M2.

Even though Theorem 8.9 seems rather restricted in terms of its pre-
requisites, all of those requirements are naturally met for executions of
Algorithm 8.1 during the upcoming typicality maximisation procedure. For
now, consider the following remark about Requirement (8.4) in Theorem 8.9.

Remark 8.10. Assuming the setM1 in Thm. 8.9 to be “as large as possible”,
in terms of the typicality models extending its ⊆-smallest model, has
the support of two arguments. For one, this result does not hold for
arbitrary sets M1,M2 ⊆ TMod(K,∆C,O). Consider M1 = {I1, I2} and
M2 = {I2} s.t. I1 6|= r(d, e), I2 |= r(d, e) and I1 ⊆ I2. Obviously,
M1 is intersection closed with I1 as its ⊆-smallest member. However, I2
could—aside from satisfaction of r(d, e) and I1 ⊆ I2—contain arbitrary
information, that is neither contained in I1, nor in all model extensions
of I1 satisfying r(d, e). For I1 ⊆ Ir(d,e) (as in Thm. 8.9), the minimal
model completion mmc(K, Ir(d,e)) would then not contain such arbitrary
information. Specifically, mmc(K, Ir(d,e)) ( I2 and thus, mmc(K, Ir(d,e)) 6∈
M2.

In addition, Theorem 8.9 will eventually be applied to suchM1 andM2

that are members of a preference chain

TMod(K,∆C,O) <t · · · <tM1 <tM2 <t · · · .

Requirement (8.4) is naturally satisfied for TMod(K,∆C,O) and, by construc-
tion of eachM in such a chain, it will also be naturally satisfied by those
M.

8.1.2 Typicality Maximisation

Minimal model completion, in particular Theorem 8.9, essentially provides
two tools. Proposition 8.3 motivates, that consequences of a set of models
Mi on a chain

TMod(K,∆C,O) <tM1 <tM2 <t · · · (8.5)

can be determined with the ⊆-smallest member of Mi. Transitivity of
Prop. 8.3 implies that such a smallest model exists inMi, if the chain begins
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at TMod(K,∆C,O). Theorem 8.9 shows that for two setsMi,Mi+1 in this
chain, the smallest member ofMi+1 can be constructed algorithmically from
the smallest model inMi. Once again, by transitivity, if this preference chain
begins with TMod(K,∆C,O), then it induces a chain of smallest typicality
models, beginning with M(K,∆C,O). Together with the direct construction
of M(K,∆C,O) in Corollary 7.23 by classical reasoning, this describes an
algorithmic construction of the ⊆-smallest model in any Max-TM. In the
following, we will formalise this construction.

The algorithm we propose for typicality maximisation, effectively generates
the chain of (smallest) typicality models induced by a preference chain. In
general, starting from any given typicality model, Algorithm 8.2 proceeds to
determine and select admissible preference options and incrementally extends
the current typicality model by constructing the next smallest model that
satisfies the selected preference option, using Algorithm 8.1. It continues
this iteration until no more admissible preference options exist.
The crux in Alg. 8.2 is to determine admissibility of preference options.

This is where the second, less obvious use of Theorem 8.9 is significant.
Suppose M is any member of the chain in (8.5) and I ∈ M is its ⊆-
smallest element. Obviously, the set of all preference options, PO(∆C,O),
is fixed for all interpretations over ∆C,O. Also, for every preference option
p ∈ PO(∆C,O), we can determine its Justified and Not-entailed property
w.r.t. M, directly from I. If the non-typical variant2 of p is present in I,
then it is present in all models inM (Justified). If p itself is not present in
I, then I is directly a witness to show that p is Not-entailed inM. The
property Satisfiable is more involved to establish for p w.r.t. M, because
from I, no conclusions about existence of information (role edges) in some
model in M can be drawn. The implication 2 =⇒ 1 in Theorem 8.9
provides a solution for this problem. Specifically, p ∈ PO(∆C,O) is admissible
inM, if it is Justified, Not-entailed and the minimal model completion of
I extended by p exists (Satisfiable).
For brevity in Algorithm 8.2 and hereinafter, we refer to I[p] as the
⊆-smallest extension of I, satisfying the preference option p = r(d, e), i.e.
as in the construction of Ir(d,e) in Theorem 8.9.
Algorithm 8.2 relies additionally on the input of a partial function po.

This function is used generically to select preference options for the sets
of interpretations whose smallest members are the Ii within the algorithm.
It allows to use Alg. 8.2 for deciding entailments under both sceptical and
selective nested semantics, by appropriately instantiating po. We say the
function po is admissible iff

1. po(J ) is an admissible preference option for TMod(K,J ), and

2. po(J ) is undefined iff TMod(K,J ) has no admissible preference
options,

for all J ∈ TMod(K,∆C,O). As usual, before considering explicit instantia-
tions, we present general results for Algorithm 8.2.

2 For p = r(d, (C, U)), its non-typical variant is p ′ = r(d, (C, ∅)).



126 computational complexity

Algorithm 8.2: Maximising Typicality

Input: KB K = (A, T ,D), typicality interpretation I = (∆C,O, ·I),
partial function po : TMod(K,∆C,O) 6→ PO(∆C,O)

Output: typicality interpretation In
1 I0 := I;
2 i := 0;
3 while ∃ admissible preference option for TMod(K, Ii) do
4 p := po(Ii);
5 Ii+1 := mmc(K, Ii[p]);
6 i := i+ 1;
7 end
8 return Ii;

The following intermediary lemma is a useful tool, connecting the sets of
typicality models whose ⊆-smallest members are interpretations Ii, Ii+1,
during a run of Algorithm 8.2.

Lemma 8.11. Let Algorithm 8.2 return In, running on the inputs K, I,
and an admissible po. It holds for 0 6 i < n that

TMod(K, Ii+1) = TMod(K, Ii)|p

for p selected at Line 4.

Proof. We provide arguments for both inclusions of this claim separately.
First of all, Proposition 8.8 implies that for p being admissible, mmc(K, Ii[p])
exists. From Ii[p] ⊆ Ii+1, it follows that Ii+1 and all models that extend
Ii+1 clearly belong to TMod(K, Ii)|p (proving “⊆”).

Because Ii+1 is the ⊆-smallest model that extends Ii and satisfies p (by
Proposition 8.8), every model J in TMod(K, Ii)|p, must be an extension of
Ii+1 (proving “⊇”).

We show that Algorithm 8.2 returns the ⊆-smallest model of a Max-TM
in TMax(K,∆C,O) when given appropriate inputs.

Theorem 8.12. For a KB K = (A, T ,D), a finite, consistent, and quantifi-
cation closed context C, O, containing K, and an admissible partial function
po : TMod(K,∆C,O) 6→ PO(∆C,O), let In be the interpretation returned by
Algorithm 8.2 on the input K, M(K,∆C,O), po. It holds that

1. TMod(K,∆C,O) 6∗t TMod(K, In), and

2. ¬∃M ⊆ TMod(K,∆C,O).TMod(K, In) <tM.

Proof.

claim 1. The chain of interpretations I0, I1, · · · , In in Alg. 8.2 starting
from I0 = M(K,∆C,O), provides the chain of sets of typicality models

TMod(K, I0), TMod(K, I1), · · · , TMod(K, In).



8.1 algorithms for typicality models 127

It is clear by the definition of TMod(K, Ii) (see (8.1)), that for all
0 6 i 6 n, TMod(K, Ii) is closed under intersection and satisfies
(8.4) in Theorem 8.9. Note that the while-condition in Line 3 can
be checked using Alg. 8.1 and Thm. 8.9. Also, by assumption on
po, if the while-condition is satisfied, the selection of p in Line 4 is
well-defined and the selected p is admissible for TMod(K, Ii).

From Lem. 8.11, Def. 7.30 and the fact that p is admissible for
TMod(K, Ii), it follows that TMod(K, Ii) <t TMod(K, Ii+1) holds
for all 0 6 i < n. Consequently, TMod(K,∆C,O) 6∗t TMod(K, In),
because TMod(K, I0) = TMod(K, M(K,∆C,O)) = TMod(K,∆C,O).

claim 2. For the returned model In, the while-condition in Line 3 clearly
failed, hence by Definition 7.30, there cannot be a set of models that
is more preferred than TMod(K, In) w.r.t. <t.

Theorem 8.12 shows that Algorithm 8.2 provides the means to determine
the ⊆-smallest member I of a setM∈ TMax(K,∆C,O). From Lemma 7.11
we know for a defeasible query α and this M and I, that M |= α iff
I |= α. Recall the general characterisation of nested semantics from
Definition 7.10 and 7.38. For sceptical nested semantics, entailment of
a query α needs to be verified by all sets of models in TMax(K,∆C,O).
Therefore, non-entailment of a query α holds if a single Max-TM invalidates
α. Entailments under selective nested semantics, only require to check a
single element of TMax(K,∆C,O), that is uniquely identified by a preference
relation <po over all preference options PO(∆C,O) (cf. Rem. 7.37). Both of
these checks can be implemented by specific instantiations of po for the
input of Algorithm 8.2.

sceptical nested semantics. We capture a complexity upper
bound for deciding entailment under sceptical nested semantics in terms
of the complement of this decision procedure. To decide non-entailment
of a query, only a single counterexample in a single M ∈ TMax(K,∆C,O)

needs to be found. This Max-TMM cannot be determined constructively
without enumerating all (exponentially many) Max-TMs. However, a non-
deterministic admissible partial function can allow a run of Alg. 8.2 to
guess the construction of thisM. Formally, we define the partial function
poN : TMod(K,∆C,O) 6→ PO(∆C,O) as follows. Suppose R ⊆ PO(∆C,O) is the
set of all admissible preference options for TMod(K, I).

If R = ∅ then poN(I) is undefined and otherwise, poN(I) guesses a p ∈ R.

poN() is clearly an admissible partial function, hence using it as an input
for Algorithm 8.2 does not invalidate Theorem 8.12. We show that the
resulting algorithmic characterisation of sceptical nested semantics is sound
and complete.

Proposition 8.13. Let C,O be a finite, consistent, and quantification closed
context, containing a KB K. Let M(K,∆C,O) be the minimal typicality model
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for K over ∆C,O, and α a defeasible subsumption or instance query. The
following are equivalent

1. ∃M ∈ TMax(K,∆C,O).M 6|= α,

2. Algorithm 8.2 (on input K, M(K,∆C,O), poN) can return In s.t.
In 6|= α.

Proof. The implication 2 =⇒ 1 follows quickly from Theorem 8.12. If
Algorithm 8.2 returns In, then TMod(K, In) ∈ TMax(K,∆C,O) and In 6|= α
implies TMod(K, In) 6|= α.

For the implication 1 =⇒ 2, recall Remark 7.37, stating that every full
preference chain

TMod(K,∆C,O) <tM1 <t · · · <tMn

(by assumptionMn 6|= α), induces a chain of preference options

p0,p1, · · · ,pn−1

such that each pi is admissible for Mi (i > 0, in the following, let
M0 = TMod(K,∆C,O)). Let Ri ⊆ PO(∆C,O) be the set of admissible
preference options for Mi (0 6 i 6 n). It holds for 0 6 i < n, that
pi ∈ Ri and Rn = ∅. We show by induction on i, that Algorithm 8.2 can
produce a chain of typicality interpretations

I0, I1, · · · , In

where I0 = M(K,∆C,O) and In is returned in Line 8, such that Mi =

TMod(K, Ii) (1 6 i 6 n). For the induction start, TMod(K,∆C,O) is
clearly equivalent to TMod(K, M(K,∆C,O)), by the definition of M(K,∆C,O)

(Def. 7.13).
Suppose Mi = TMod(K, Ii). We show that Ii+1 can be constructed

(Line 5) such thatMi+1 = TMod(K, Ii+1). For i < n,Mi is not maximally
preferred w.r.t. <t, specifically, it has at least the admissible preference
option pi and so does TMod(K, Ii) by the induction hypothesis. Because
pi is admissible for TMod(K, Ii), it is possible for poN to select pi in Line
4 and construct Ii+1 := mmc(K, Ii[pi]) in Line 5. From Lemma 8.11 and
the selection of pi, we know that

TMod(K, Ii+1) = TMod(K, Ii)|pi =Mi|pi =Mi+1.

Thus, it follows that Mn = TMod(K, In). Rn = ∅ implies that the
while-condition (Line 3) fails for TMod(K, In). Thus, Algorithm 8.2 can
return In and ifMn 6|= α, then by Lemma 7.11 it follows that In, as the
⊆-smallest element ofMn, also does not satisfy α.

Keep in mind that this instantiates only the coverage of the resulting
semantics. The obtained complexity upper bounds (Sec. 8.2) also vary for
running Algorithm 8.1 and 8.2 on the rational or relevant domain.
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selective nested semantics. To determine entailments under
selective nested semantics, an inquirer must supply the additional input of
a total order over the set of preference options PO(∆C,O) for the underlying
typicality domain ∆C,O. In practice, it is likely not feasible to explicitly
define this order, especially when the typicality domain is exponentially large
in the input, as for ∆C,O,K

rel≺
. One could imagine more practicable approaches,

such as defining only a strict partial order over PO(∆C,O), explicitly relating
only role edges for which a preference is sensible or required. Such a strict
partial order could then be automatically completed through “don’t care”
non-determinism into a total order. Another idea might be to define two
or more total orders on role, concept and individual names, sets of DCIs,
etc., and to derive a unique total order over PO(∆C,O) from those (smaller)
relations. In favour of generality, we leave such considerations open for
future work and the practitioners. We proceed—as with the total order
on NI for ABox extensions—assuming <po to be part of the input for
Algorithm 8.2.

From Remark 7.37 we know that a total order <po over PO(∆C,O) uniquely
determines a set M ∈ TMax(K,∆C,O), i.e. M = TModnest<po

(K,∆C,O).
This M can be deterministically constructed by Algorithm 8.2, given an
appropriate partial function for selecting preference options in Line 4. The
partial function po<po

: TMod(K,∆C,O) 6→ PO(∆C,O) is defined as follows.
For a typicality interpretation I, let R ⊆ PO(∆C,O) be the set of admissible
preference options for TMod(K, I).

If R = ∅, po<po
(I) is undefined, otherwise po<po

(I) = p, for p being the
<po-minimal element in R.

First of all, for a finite ∆C,O, R is finite and, if it is non-empty, its <po-
minimal element exists and is unique. Therefore, po<po

is clearly admissible
as well as deterministic. Thus, a run of Algorithm 8.2 on the input po<po

will also be deterministic.
In contrast to sceptical semantics—where it was necessary to prove that

any Max-TM can be reached (using poN)—for selective semantics, we need
to show that the deterministic run of Algorithm 8.2 (using po<po

), produces
the ⊆-smallest element in TModnest<po

(K,∆C,O).

Proposition 8.14. For a finite, consistent, and quantification closed context
C,O, containing a KB K, a typicality domain ∆C,O and a total order <po

over PO(∆C,O), let Algorithm 8.2 return In on the input K, M(K,∆C,O) and
po<po

. It holds that

1. In ∈ TModnest<po
(K,∆C,O), and

2. ∀J ∈ TModnest<po
(K,∆C,O) . In ⊆ J .

Proof. In favour of comprehensibility, letMk = TModnest<po
(K,∆C,O) and

M0 = TMod(K,∆C,O). Let M0 <t M1 <t · · · <t Mk be the full
preference chain that is compliant with <po. Such a chain exists and is
unique, by definition of TModnest<po

(). Given <po, there is a unique chain
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of preference options p0,p1, · · · ,pk−1 induced by the above preference
chain, s.t. Mi+1 =Mi|pi and pi is the <po-minimal admissible preference
option for Mi (for 0 6 i < k). Note that we deliberately use distinct
indices k and n, because we cannot assume n = k. We show by induction
on i, for i < n and i < k, that TMod(K, Ii) =Mi, for Ii as constructed
in Algorithm 8.2 on the input K, M(K,∆C,O) and po<po

.
For i = 0, I0 = M(K,∆C,O) and TMod(K, M(K,∆C,O)) = TMod(K,∆C,O)

holds by definition of the minimal typicality model (Def. 7.13). Suppose
TMod(K, Ii) = Mi holds when i < n, k. Let R be the set of admissible
preference options forMi. Because R is also the set of admissible preference
options for TMod(K, Ii), and R 6= ∅ (because i < k), the function po<po

selects pi, the <po-minimal element in R, in Line 4. From Lemma 8.11
it follows that TMod(K, Ii+1) = TMod(K, Ii)|pi = Mi|pi = Mi+1. It
follows that TMod(K, Ii) =Mi holds for i 6 n, k.
Assume for a contradiction that k < n. It follows that Mk has no

admissible preference options, hence the while-condition (Line 3) fails for
TMod(K, Ik), contradicting that Algorithm 8.2 returned In. An analogous
argument can be made to contradict n < k, therefore n = k must hold, i.e.
Mk = TMod(K, In). Both claims of this proposition follow directly from
TModnest<po

(K,∆C,O) = TMod(K, In).

Proposition 8.14 proves that a deterministic run of Algorithm 8.2 produces
the ⊆-smallest element in TModnest<po

(K,∆C,O). As before, this model is
canonical for TModnest<po

(K,∆C,O) and therefore, can be used to determine
entailments under selective nested semantics.

We continue to briefly and collectively instantiate decision procedures for
sceptical and selective nested semantics, coupled with both, rational and rel-
evant strength of reasoning. This concludes the algorithmic characterisation
of all nested semantics in this thesis.

rational and relevant strength. As before, the difference
between rational and relevant strength is manifested in the construction
of the underlying typicality domain. Therefore, the specific structure of
this domain plays no part in the algorithmic characterisation of Max-TMs.
Constructing the minimal typicality model for the rational or relevant domain
of a finite, consistent context can be achieved with a straightforward
algorithm relying on classical reasoning, as encouraged by Corollary 7.23.
The following explicitly shows that entailments under sceptical and selective,
rational and relevant semantics can effectively be decided with Algorithm 8.2.
It is an immediate consequence of Proposition 8.13, 8.14 and Theorem 8.12.

Corollary 8.15. Let K be a KB, C, O a finite, consistent, quantification
closed context, containing K, ≺ a total order on NI, ∆

C,O,K
rat≺ and ∆C,O,K

rel≺
the

rational and relevant typicality domains with <rat
po and <rel

po as total orders
over PO(∆C,O,K

rat≺ ) and PO(∆C,O,K
rel≺

), respectively. For a defeasible subsumption
or instance check α:
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1. K 6|=(s≺,nest) α iff Alg. 8.2 can return In on input K, M(K,∆C,O,K
s≺ ),

poN s.t. In 6|= α

2. K |=
(s≺,nest<s

po
)
α iff Alg. 8.2 returns In on input K, M(K,∆C,O,K

s≺ ),
po<s

po
s.t. In |= α

for s ∈ {rat, rel}.

Once more, both items in Corollary 8.15 are impartial to the specific
instantiation of s. Recall the bigger picture. We specifically investigate
rational strength for its solid foundation, decades of fortitude among a
manifold of approaches to defeasible reasoning and its continued impact
in this field. Relevant strength, we investigate for its ability to overcome
inheritance blocking and for its strengthening of Rational Closure overall.
Considering the generality of our construction and the characterisation of
propositional and nested coverage through typicality models, both rational
and relevant strength are mere examples for the power of typicality models.
Other approaches to overcome inheritance blocking, such as Lexicographic
Closure, could potentially be reconstructed in the typicality model paradigm.
This supports our claim that typicality models can be employed for any
Description Logic with the canonical model property, allowing to capture a
variety of differently strong and nested defeasible semantics.

We continue to investigate termination and runtime of Algorithm 8.1 and
8.2, first, for general typicality domains. Finally, the specific complexity
upper bound for rational and relevant strength, including the construction
of their respective typicality domains, instantiates these generic results.

8.2 complexity upper bounds

Using the algorithms in Section 8.1, we provide complexity upper bounds
for deciding entailments under all semantics identified through

{rat≺, rel≺}× {prop, nest, nest<po}.

The runtime of Algorithm 8.1 and 8.2 can be analysed in terms of their
generic inputs. More specifically, we initially provide complexity upper
bounds that are parametric on the size of the typicality domain on which
the input interpretations in Alg. 8.1 and 8.2 are based. To achieve rational
and relevant strength, these algorithms are finally called with typicality
models over the rational and relevant domain, respectively. Their size can
be determined in terms of the other inputs, i.e. the given KB and context.
Before investigating those typicality domains specifically, a few complexity
results of the underlying materialisation foundations, such as computation
of the rational chain, are required. Instantiation of the general runtime
results for both algorithms, then provides specific complexity upper bounds
for the decision problems of entailment under the discussed semantics.
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model completion. As introduced in Section 8.1.1, the main idea
behind model completion is a systematic rectification for each counterexam-
ple, i.e. pair of domain element and GCI or DCI, in the input interpretation.
While every iteration of the while-loop in Algorithm 8.1 fixes (at least3)
one such counterexample, it can easily introduce new counterexamples.
Nevertheless, the maximum number of possible counterexamples is poly-
nomially bounded by the size of the input KB and the typicality domain
of the input interpretation. The main idea in the following proof, is that
each such counterexample may occur at most once during an entire run of
Algorithm 8.1.

Proposition 8.16. For a KB K, a context C,O, containing K, and a
finite I = (∆C,O, ·I) (satisfying 1 and 2 of Def. 7.6), Algorithm 8.1 always
terminates and runs in polynomial time in |∆C,O| and |K| on the input K, I.

Proof. Checking the while-condition in Line 3 requires for every element
(χ, U) ∈ ∆C,O to verify (χ, U) ∈ EIi =⇒ (χ, U) ∈ FIi for every
E ./ F ∈ T ∪ U , i.e. at most |∆C,O| ∗ (|T |+ |D|) checks. If the loop is
entered, then a counterexample, as described in Line 4, has already been
found and can be used at no extra computational cost. It is not hard to
see that the order in which such elements in Line 4 are chosen is irrelevant
for the outcome of the algorithm, hence rendering Alg. 8.1 deterministic,
modulo “don’t care” non-determinism. From Definition 8.4, it is clear that
the standard promotion in Line 8 as well as the standardisation in Line 1
can be determined in polynomial time in the input.
Clearly, Ii ⊆ Ii+1 (0 6 i) holds. Therefore, if d ∈ ∆C,O and E ./

F ∈ T ∪ U are selected in iteration i (Line 4), then by Lemma 8.5 it holds
that d ∈ FIj for all j > i. Hence the pair d,E ./ F can never be selected
at Line 4 in any iteration j > i. Therefore, for finite ∆C,O and T ∪ D,
an upper bound for the number of while-iterations in Algorithm 8.1 is
n = |∆C,O| ∗ (|T |+ |D|). Clearly, if the pool of pairs d, E ./ F (i.e. at most
n pairs) is depleted after some iteration, the while-condition must fail, and
the algorithm terminates.

For every line taking at most polynomial time to compute and every line
being executed only a polynomial number of times (at most n), it follows
that Algorithm 8.1 always terminates on finite inputs K, I in polynomial
time in |∆C,O|+ |K|.

typicality maximisation. A runtime analysis of Algorithm 8.2
is slightly more involved than that for model completion. The following
lemma shows two important properties about the while-loop in Alg. 8.2.
These properties are essential to determine the runtime of the typicality
maximisation algorithm. In particular, the second property shows that its
runtime is influenced by the complexity of determining the selection of

3 As seen in Example 7.33, altering an interpretation can have implicit consequences on
the models that encompass it. Perhaps the domain element selected in the current
iteration is also the counterexample to another GCI that is implicitly resolved by the
current extensions.
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po(Ii) in Line 4. The actual runtime (and non-/determinism) of Alg. 8.2 is
therefore influenced by the input partial function, and must be analysed for
every instantiation of po() explicitly.

Lemma 8.17. Let C,O be a context containing the KB K, I be a finite
typicality model I ∈ TMod(K,∆C,O) (satisfying 1 and 2 of Def. 7.6) and po

be an admissible partial function. During a run of Algorithm 8.2 on the
input K, I, po the following holds.

1. The while-condition (Line 3) can be determined in polynomial time
in |∆C,O| and |K|.

2. The while-loop (Line 3–7) is entered at most a polynomial number
of times in |∆C,O|.

Proof. For a finite typicality domain ∆C,O, the set PO(∆C,O) is finite and
has the (loose) upper bound m = |∆C,O|2 ∗ sigR(K,C).

claim 1. Naively, it is enough to check for (up to) m preference options,
whether they satisfy the properties for admissibility w.r.t. TMod(K, Ii).
From the definition of TMod(K, Ii) (see (8.1)), it is clear that Jus-
tified and Not-entailed (Def. 7.27) can be determined directly with
Ii.4 The technique was described in the beginning of Section 8.1.2
(Page 125). For the property Satisfiable, it follows from Theorem 8.9,
that for any preference option p ∈ PO(∆C,O), mmc(K, Ii[p]) exists
iff p is admissible for TMod(K, Ii). Existence of mmc(K, Ii[p]) can
be determined in polynomial time in |∆C,O| and |K| (by Prop. 8.16).
Therefore, at most m calls to Algorithm 8.1 are required to check the
while-condition in Line 3, requiring overall polynomial time in |∆C,O|

and |K|.

claim 2. If po is admissible, then p is an admissible preference option
for TMod(K, Ii) (at any iteration i). From Ii[p] ⊆ Ii+1 it follows
that the property Not-entailed (Def. 7.27) can never be satisfied for
p w.r.t. any TMod(K, Ij) for j > i. Hence, the while-loop can only
be entered at most once for every (admissible) preference option,
providing the upper bound on the number of iterations with m.

Naturally, the actual number of calls to Algorithm 8.1 when checking the
while-condition in Algorithm 8.2 is much lower than m, as only those p
that are Justified and Not-entailed w.r.t. TMod(K, Ii) need to be checked
for the Satisfiable property. This remark goes towards optimising a run of
Alg. 8.2 and is not essential to the proof of Lemma 8.17.

4 As a side note, this strategy works naturally in every iteration i > 1, because Ii will
always be the outcome of Alg. 8.1, i.e. the ⊆-smallest element in TMod(K,Ii). It also
works in the first iteration due to the assumption I ∈ TMod(K,∆C,O) (which is naturally
satisfied for M(K,∆C,O)).
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materialisation-based foundations. To apply Proposi-
tion 8.16 and Lemma 8.17 for rational and relevant strength explicitly,
the construction of the respective typicality domains needs to be investi-
gated. From the definitions of ∆C,O,K

rat≺ (Def. 7.21) and ∆C,O,K
rel≺

(Def. 7.24),
we can see that their construction heavily relies on the computation of
Conss(K,χ) and the ABox extension Ks≺ (s ∈ {rat, rel}). While these
computations diverge vastly between rational and relevant strength, both
rest on the rational chain chain(K). Constructing chain(K) was originally
claimed to always reside in the complexity of classical reasoning for the
underlying DL in Casini and Straccia [CS’10]. This claim is only trivially
true for DLs over the full boolean spectrum, such as ALC (allowing for full
negation). Much later, in [PT’17c], we proved that the construction of
the rational chain remains polynomial also for an EL⊥ KB K. This result
has also been independently achieved by the original authors, Casini et al.
[CMS’18].

Proposition 8.18. For an EL⊥ KB K = (A, T ,D), the rational chain
chain(K) can be computed in polynomial time and is of size at most |D|.

Proof. Let chain(K) = 〈D0, · · · ,Dn〉. chain(K) must clearly be finite,
because for 0 6 i < n, Di+1 ⊂ Di by Definition 4.6 (for well-separated
KBs). For the same reason, n 6 |D|. Given Di (0 6 i < n), it takes |Di|
number of classical entailment checks to determine Di+1. More explicitly,
for every E @

∼ F ∈ Di check entailment of D̂i u E v ⊥ by (A, T D). T D

is clearly linearly big in |T ∪ D|. Thus, the claim follows from classical
entailment of subsumption in EL⊥ being decidable in polynomial time
[Baa’03; Bra’04].

Finally, the computation of the minimal typicality model, can also be
captured generically, on the input of a typicality domain ∆C,O. Its algorithmic
construction, and the complexity result thereof, are easily derived from
Corollary 7.23.

Proposition 8.19. For an EL⊥ KB K, a finite, consistent context C,O,
containing K, and a typicality domain ∆C,O, s.t. TMod(K,∆C,O) 6= ∅, the
minimal typicality model M(K,∆C,O) can be computed in polynomial time
in |∆C,O|.

Proof. Corollary 7.23 describes how to construct, specifically, the minimal
typicality model over the rational domain. We generalise the results of
this corollary for arbitrary typicality domains, to separate the construction
of the domain (relying on ABox extensions), from the construction of its
minimal typicality model (not relying on ABox extensions). In general,
for a typicality interpretation over ∆C,O to be the ⊆-smallest element in
TMod(K,∆C,O), it must contain as little information as possible. Specifically,
every domain element must follow Def. 7.6 to make the interpretation
standard and satisfy Kstrict as well as the DCIs associated to it (Def. 7.7).
This generalisation works for the rational and relevant domain in particular,
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because the associated DCIs already take Conss() and Ks≺ into account,
guaranteeing TMod(K,∆C,O,K

s≺ ) 6= ∅.
Formally, let K∆C,O = (A∪ {Û(a) | (a, U) ∈ ∆C,O}, T D). It is easy to

see that K
∆C,O,K

rat≺
= Krat≺ , thus, K∆C,O can be seen as a way to extract an

ABox extension from a given typicality domain. The only consequences of
Cor. 7.23 that need to be generalised for ∆C,O are the following (remember
that ALC can be equivalently exchanged with EL⊥ in simple materialisation
by Cor. 4.24):

(a, U) ∈ AM(K,∆C,O) iff MatEL⊥(K∆C,O ,A(a))

((a, U), (D, ∅)) ∈ rM(K,∆C,O) iff MatEL⊥(K∆C,O , (∃r.D)(a))

Note that K∆C,O is always polynomial in |K|+ |O|, because for every indi-
vidual in O, there is exactly one representative in ∆C,O.

Now, it is not hard to see that for every domain element (χ, U), there
are |sigC(K)| many classical entailment checks necessary to determine
(χ, U) ∈ AM(K,∆C,O) (for A ∈ sigC(K)). Likewise, all possible role edges
(no more than |∆C,O|2 ∗ |sigR(K)|) can each be determined with a single
classical entailment check in polynomial time ([Bra’04]).

Finally, the preceding results can be instantiated to capture complexity
upper bounds for rational and relevant reasoning. Both are treated separately
in Section 8.2.1 and 8.2.2, respectively investigating propositional, sceptical
nested, and selective nested coverage.

8.2.1 Rational Reasoning

From Definition 7.21, it is not hard to see that ∆C,O,K
rat≺ contains exactly 1

individual representative for each individual in the context and at most 2
concept representatives for each concept in C. However, to construct the
rational domain, it is necessary for many representatives, to determine a
subset of the DBox that is consistent with the individual or concept to be
represented. For individuals in particular, the full ABox extension (Def. 4.16)
Krat≺ must be computed beforehand.

Lemma 8.20. For an EL⊥ KB K = (A, T ,D), Consrat(K,χ) can be
determined in polynomial time in the size of K for χ ∈ C(EL⊥) ∪NI.
Likewise, for a set of individuals O (in general), Krat≺ can be computed
for a total order ≺ over NI, in polynomial time in |K|+ |O|.

Proof. The first claim is straightforward. Let chain(K) = 〈D0, · · · ,Dm〉
(computed in polynomial time in |K| by Prop. 8.18). At most m classical
entailment checks are required to determine a Di that is consistent with
χ, s.t. i is as small as possible (0 6 i 6 m). Specifically, for χ = C ∈
C(EL⊥), check (A, T D) 6|= D̂i u C v ⊥, and for χ = a ∈ NI, check
(A∪ {D̂i(a)}, T D) 6|= ⊥(a).

For the second claim, note that in the iterative ABox extension algorithm
(Def. 4.16), Ai+1 contains exactly one more concept assertion than Ai.
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For rational strength, initEL⊥rat≺(K) = (A, T D,D) comes at negligible extra
computational cost and shows A0, T0 and D0 to be polynomial in |K|.
Furthermore, the iteration treats every individual in O exactly once, i.e. the
final ABox is An with n = |O|. Combining these arguments shows that
throughout the iteration, Consrat() is determined always with a polynomial
input and used only a polynomial number of times, showing that Krat≺ can
be computed in polynomial time.

Relying on Lemma 8.20, it is relatively easy to show that ∆C,O,K
rat≺ can be

constructed in polynomial time. Consequently, its size remains polynomial
in the size of the KB and context.

Proposition 8.21. For an EL⊥ KB K, a finite context C,O and a total
order ≺ over NI, the rational typicality domain ∆C,O,K

rat≺ can be computed in
polynomial time in |K|, |C| and |O|.

Proof. From Lemma 8.20, it immediately follows that determining each
typical concept representative (C, Consrat(K,C)) (C ∈ C) can be done in
polynomial time and must be done |C| many times. To determine the DBox
subsets associated to individual elements, Krat≺ must be computed once,
and is then queried once for every a ∈ O, i.e. extracting ext(Krat≺ ,a).
Lemma 8.20 shows that both can be achieved in polynomial time in |K|+
|O|.

It follows directly from Proposition 8.19 and Proposition 8.21, that
the minimal typicality model over the rational typicality domain can be
computed in polynomial time in the size of the EL⊥ knowledge base and
the given context. We move on to show explicit complexity upper bounds
for propositional as well as sceptical and selective nested rational semantics.

propositional rational entailment We include the results
on propositional rational semantics here, mainly to provide a complete
list of complexity upper bounds for the decision procedures supported by
all investigated typicality model semantics at this point. There are two
ways to derive polynomiality of propositional rational semantics from the
previous results. For one, it follows from Theorem 7.22 that consequences
under propositional rational semantics can be determined through EL⊥
materialisation. Lemma 8.20 shows that this reduction remains polynomial.
On the other hand, we proved that M(K,∆C,O,K

rat≺ ) can be constructed in
polynomial time, which is also sufficient to ensure the following result, due
to the canonicity of M(K,∆C,O,K

rat≺ ) w.r.t. TMod(K,∆C,O,K
rat≺ ) (cf. Def. 7.13 and

Eq. (7.8)).

Theorem 8.22. Entailment of defeasible subsumption and defeasible in-
stance checks under (rat≺, prop) semantics can be determined in polyno-
mial time for EL⊥.



8.2 complexity upper bounds 137

sceptical nested rational entailment The difference be-
tween sceptical and selective nested semantics lies only in the input admis-
sible partial function for Algorithm 8.2. The sceptical case is rather easy
to prove, because computation of poN is a single step, i.e. the guess of
an admissible preference option. The main analysis of Alg. 8.2 is already
presented in Lemma 8.17.

Theorem 8.23. Entailment under (rat≺, nest) semantics can be deter-
mined in co-NPTime for EL⊥.

Proof. Naturally, we prove non-entailment in NPTime. Let K = (A, T ,D)
be the KB, C, O a finite context, ≺ a total order over NI, and α a defeasible
query for which to determine non-entailment by K under (rat≺, nest)
semantics. W.l.o.g., we assume the context to contain K and be consistent
and quantification closed, and α to be a query over the context. Appropriate
extensions of an arbitrary finite context that do satisfy these requirements
are at most polynomial in the size of K and α. From Proposition 8.19 and
Proposition 8.21, it is clear that the minimal typicality model M(K,∆C,O,K

rat≺ )

can be constructed in polynomial time and is of polynomial size in the input.
Proposition 8.13 allows to determine non-entailment of α, by running

Algorithm 8.2 on the input K, M(K,∆C,O,K
rat≺ ) and poN. From Lemma 8.17 we

know that all lines of Alg. 8.2 are executed at most a polynomial number of
times in the size of the present inputs and the while-condition can also be
checked in polynomial time. Proposition 8.16 (minimal model completion)
ensures that Line 5 runs in polynomial time. Hence the interpretation
In returned by Algorithm 8.2 can be computed in polynomial time in the
size of K, C, O and α (also including the computation of the minimal
typicality model). However, in Line 4, the algorithm relies on a non-
deterministic choice, resulting in non-deterministic polynomial time to decide
non-entailment of a query under (rat≺, nest) semantics.

selective nested rational entailment For selective
nested semantics, Algorithm 8.2 will be called with po<po

(cf. Corol-
lary 8.15). As opposed to poN, there is some computational effort involved
to determine the <po-minimal admissible preference option for the current
iteration. Truth of the while-condition (Line 3 in Alg. 8.2) ensures only
the existence of this preference option. The proof of the following result
distinguishes itself from Thm. 8.23 mostly by showing how expensive it is to
compute the <po-minimal admissible preference option. It turns out that
this requires no more effort than checking the while-condition

Theorem 8.24. Entailment under (rat≺, nest<po) semantics can be de-
termined in polynomial time for EL⊥.

Proof. Let K = (A, T ,D) be the KB, C, O a finite context, ≺ a total order
overNI, <po a total order over PO(∆

C,O,K
rat≺ ) and α a defeasible query for which

to determine entailment by K under (rat≺, nest<po) semantics (assuming
the same w.l.o.g. assumptions as in Thm. 8.23). As for Theorem 8.23,
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the minimal typicality model M(K,∆C,O,K
rat≺ ) is computed in polynomial time

and is of polynomial size in the input. Likewise, a run of Algorithm 8.2 on
the input K, M(K,∆C,O,K

rat≺ ) and po<po
executes every line in Alg. 8.2 only

polynomially many times.
As opposed to sceptical semantics, where Line 4 requires a simple non-

deterministic guess, po<po
actually needs to determine the <po-minimal

admissible preference option in every iteration. PO(∆C,O,K
rat≺ ) is enumerated

w.r.t. <po, starting at the <po-minimal preference option. When consider-
ing <po as an original input, this enumeration requires only linearly many
iterations, in which to check admissibility for TMod(K, Ii). This check is
performed the same way as suggested by Claim 1 of Lemma 8.17 for the
while-condition, i.e. it requires linearly many polynomial time executions (of
Alg. 8.1). If the while-condition was true, then this enumeration must even-
tually find the <po-minimal admissible preference option for TMod(K, Ii).
Finally, we have shown that also Line 4, using po<po

can be computed
in polynomial time in |K| and |∆C,O,K

rat≺ |, resulting in an overall polynomial
complexity to determine entailment under (rat≺, nest<po) semantics.

While the enumeration of preference options in the preceding proof is
sufficient to show the result, Alg. 8.2 can run a lot more efficient on the
deterministic input po<po

. Clearly, not all options in PO(∆C,O,K
rat≺ ) must

be enumerated, but only those that are Justified and Not-entailed for
TMod(K, Ii). These can be determined from Ii. Also, this enumeration can
directly be used to determine the while-condition. Finally, once the while-
condition is verified through this enumeration (as for Claim 1 of Lemma 8.17),
it already produced the interpretation mmc(K, Ii[p]) = Ii+1, for p, the <po-
minimal preference option for TMod(K, Ii). There is practically no need to
determine the <po-minimal admissible preference option in Line 4 again.

8.2.2 Relevant Reasoning

We proceed through the instantiation of the generic results in Section 8.2
for relevant strength, analogous to the instantiation for rational strength.
An analysis of the complexity to compute Consrel(K,χ) and Krel≺ , as the
foundation for the relevant typicality domain, is followed by an investigation
for the size and computability of the relevant domain itself. Finally, we show
specific results for the three coverages prop, nest and nest<po .
Looking at Definition 6.3, the obvious algorithm to determine

Consrel(K,χ), would be to compute all justifications and remove their
rank-minimal part, from the original DBox. However, seeing as in EL there
can already be exponentially many justifications for a query w.r.t. a KB
([BPS’07]), we present a much better result, which adopts the problem of
finding some justification and employs it linearly many times to determine
which DCIs are to be disregarded.

Lemma 8.25. For an EL⊥ KB K = (A, T ,D), Consrel(K,χ) and Krel≺

can be determined in ∆P
2 .
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Proof. The following strategy is effective for computing Consrel(K,χ). For
every DCI E @

∼ F ∈ Di for chain(K) = 〈D0, · · · ,Dn〉 (1 6 i 6 n), check if
there is some χ-justification J ⊆ D, s.t. E @

∼ F ∈ J and G @
∼ H 6∈ J for all

G @
∼ H ∈ Dj with j < i. Theorem 7 and Corollary 8 (mina-relevance)

in [PS’17] show that such checks are NP-complete. Thus, our algorithm
relies on polynomially many calls to an NP oracle to find (or not find) an
appropriate justification for each E @

∼ F. To clarify, if a justification J
(containing E @

∼ F) can be found such that it does not contain any DCIs
of a strictly lower antecedent-concept-rank than rK(E), then clearly E @

∼ F

belongs to some Jminx (Def. 6.3) and cannot belong to Consrel(K,χ).
Hence, Consrel(K,χ) can be computed in ∆P

2 .
The initialisation of the relevant ABox extension is polynomial by

Lemma 8.20. The only other place where the relevant ABox extension
algorithm differs from the rational variant, is the application of Consrel(),
which is shown above to be computed in ∆P

2 and is called once for every
a ∈ O.

Using Lemma 8.25, we can determine the size and required computational
effort to create the relevant typicality domain. As usual, ext(Krel≺ ,a) can
be read off of Krel≺ for every a ∈ O, after computing it once. An increase
in both size and complexity was to be expected, because the granularity
for treating consistent subsets of the DBox (w.r.t. every representative)
requires representation of (up to) the full subset lattice of the DBox.

Proposition 8.26. For an EL⊥ KB K, a finite context C,O and a total
order ≺ over NI, the relevant typicality domain ∆C,O,K

rel≺

• is of exponential size, and

• can be computed in exponential time

in |K|, |C| and |O|.

Proof. By Definition 7.24, there is exactly one domain element for every
a ∈ O and 2|Consrel(K,C)| domain elements for every C ∈ C, clearly showing
exponential size of ∆C,O,K

rel≺
.

From Lemma 8.25 it follows that the sets of DCIs that each of the most
typical representatives (concept and individual alike) are associated with,
can be computed in less than exponential time. Therefore, constructing each
of these exponentially many elements requires overall at most exponential
time.

It follows directly from Proposition 8.19 and Proposition 8.21, that the
minimal typicality model over the relevant typicality domain can be computed
in exponential time in the size of the EL⊥ knowledge base and the given
context.
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propositional relevant entailment Even though the com-
plexity result for computing the minimal typicality model over the relevant
domain gives an immediate exponential upper bound for propositional rele-
vant semantics, their equivalence to materialisation-based relevant reasoning
(Thm. 7.25) allows to prove a better upper bound using ∆P

2 computations
of Consrel(K,χ).

Theorem 8.27. Entailment under (rel≺, prop) semantics can be deter-
mined in ∆P

2 for EL⊥.

Proof. From Theorem 7.25 we know that propositional and materialisation-
based relevant semantics must share the same complexity upper bound
for deciding entailments. From Lemma 8.25 it follows that the extended
knowledge base Krel≺ can be computed in ∆P

2 and is of polynomial size
in the original KB. Thus, from Definition 4.3, 4.11, 4.16, Lemma 8.25 and
the fact that classical reasoning in EL⊥ is polynomial, we conclude the ∆P

2

upper bound for the present claim.

sceptical nested relevant entailment As in the instan-
tiation for rational strength, the main difference between sceptical and
selective nested semantics lies only in the input admissible partial function
for Algorithm 8.2. Computation of poN is a single non-deterministic step,
allowing to draw most conclusions directly from Lemma 8.17.

Theorem 8.28. Entailment under (rel≺, nest) semantics can be deter-
mined in co-NExpTime for EL⊥.

Proof. Naturally, we prove non-entailment in NExpTime. Let K =

(A, T ,D) be the KB, C, O a finite context, ≺ a total order over NI, and α
a query for which to determine non-entailment by K under (rel≺, nest)
semantics. W.l.o.g., we assume the context to be consistent, contain K
and α and be quantification closed.
Proposition 8.13 allows to determine non-entailment of α, by running

Algorithm 8.2 on the input K, M(K,∆C,O,K
rel≺

) and poN. From Lemma 8.17
we know that all lines of Alg. 8.2 are executed at most a polynomial number
of times on the present inputs and the while-condition can also be checked
in polynomial time in those inputs. As opposed to the rational domain, the
relevant domain is of exponential size, resulting in overall exponential time
to compute the while-condition and up to exponentially many executions
of the while-loop in the original inputs of this decision problem (K, α, C,
O). Likewise, Proposition 8.16 shows that Line 5 (computing mmc()) runs
in exponential time. Hence the interpretation In returned by Algorithm 8.2
can be computed in exponential time in the size of K, C, O and α (also
including the computation of the minimal typicality model).
In Line 4, Algorithm 8.2 relies on a non-deterministic choice, resulting

in non-deterministic exponential time to decide non-entailment of a query
under (rel≺, nest) semantics.
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selective nested relevant entailment Recall, that the
algorithms to compute entailment under selective and sceptical nested
semantics diverge only in Line 4 of Algorithm 8.2. The function po<po

requires non-trivial computational effort, as opposed to poN. Luckily, the
argumentation in the proof of Thm. 8.24 for the rational case, applies
analogously to the relevant case.

Theorem 8.29. Entailment under (rel≺, nest<po) semantics can be de-
termined in ExpTime for EL⊥.

Proof. Executions and checks concerning the while-loop in Alg. 8.2 are
exponential in the input of the present decision problem (i.e. K, C, O, α,
≺, <po, analogous to Thm. 8.28).
While <po is polynomial in the size of the typicality domain and thus

clearly exponential on the original input KB, it is still viewed as an original
input for deciding selective nested relevant entailment. As such, the anal-
ogous argument as for Thm. 8.24 shows that an appropriate enumeration
of preference options allows to determine the <po-minimal admissible pref-
erence option with linearly many calls to Algorithm 8.1, hence, it remains
exponential in the original input.

As briefly commented on in Section 8.1.2 (Page 129), one might con-
sider deriving <po from the other inputs, as a more practicable approach.
Even if <po is not considered an original input in future approaches, the
argument in the proof of Thm. 8.29 needs only minor adjustment to re-
main intact. It holds that |PO(∆C,O,K

rel≺
)| 6 |∆C,O,K

rel≺
|2 ∗ |sigR(K)|, thus, for

an exponentially large typicality domain, <po remains exponential in the
other inputs. Consequently, Algorithm 8.1 will be called an exponential
number of times to determine a <po-minimal preference option. However,
this does not affect the number of loop-iterations in Alg. 8.2. Specifically,
the resulting complexity is the square of an exponential rather than a
double-exponential.

8.3 complexity lower bounds

Section 8.1 and 8.2 go hand in hand, because providing an algorithmic
characterisation, together with its termination and correctness is an effective
way to prove upper bounds for the computational complexity of a decision
problem. Determining good complexity lower bounds requires a different
approach. At this time, we are able to present tight lower bounds only for
typicality model semantics of rational strength.

Just as for the upper bounds, there is no distinctive behaviour in terms of
complexity for the typicality model formalism, between defeasible subsump-
tion and instance checking. The results in this section either immediately
apply to both types of queries or translate from one to the other with a
simple argument. Additionally, the lower bounds for propositional and selec-
tive nested coverage trivially follow from their respective upper bounds (cf.
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Sec. 8.2.1) in rational strength. To elaborate, deciding entailment of defea-
sible subsumption and instance checks under any rational semantics covers
the entailment of classical consequences. Specifically, (A, T) |= C v D im-
plies (A, T ,D) |=(rat,c) C @

∼ D.5 For EL⊥ KBs and queries, this provides an
immediate polynomial lower bound for each of the discussed coverage types
c ∈ {prop, nest, nest<po}. For those coverages with the matching upper
bound (Thm. 8.22 and 8.24) we formally express this result for completeness
sake.

Theorem 8.30. Deciding entailment of defeasible subsumption or instance
checks under propositional and selective nested rational semantics is P-hard
for EL⊥.

While this lower bound applies for sceptical semantics as well, we have
been able to close the remaining gap between P and co-NP from below,
using the reduction method. That is, taking a known hardness result of
another decision problem, showing a suitable reduction to an instance of
the decision problem at hand (i.e. defeasible subsumption and instance
checking) and proving that one is solvable iff the other is solvable as well. In
the remainder of this section we present this intricate and technical reduction
from satisfiability of a (1-in-3)-positive 3sat formula, to non-entailment of
a defeasible subsumption query under sceptical nested rational semantics.
The former is a sat problem that is known to be NP-complete [GJ’79].

The upcoming exposition follows closely our initial investigation in [PT’18].
The main difference is that in [PT’18] we defined nested semantics on so-
called maximal typicality models. From Section 8.1, it can be seen that
these maximal typicality models correspond to the ⊆-smallest elements of
Max-TMs in the present formalisation. Hence, this proof for a complexity
lower bound follows the same principles as [PT’18] but exhibits a variety of
changes, from subtle adjustments in the reduction, to major differences in
the proof of correspondence (Prop. 8.32). A reduction to defeasible instance
checking is analogous and the required adjustments are described at the
end of this section. The discussion in Chapter 9 contains several thoughts
on lower bounds for semantics of relevant strength.

8.3.1 Sceptical Nested Rational Reasoning

We prove co-NP-hardness for deciding sceptical nested rational subsump-
tion entailment by a reduction from (1-in-3)-positive 3sat. As this sat
problem is NP-complete ([GJ’79]), we provide a reduction to non-entailment
of a defeasible subsumption query under (rat, nest)-semantics.

(1-in-3)-positive 3sat. A (1-in-3)-positive 3sat problem is given
with a propositional formula ϕ in conjunctive normal form, with clauses of

5 For a side note, this implication holds for any entailment relation satisfying the KLM
postulates (Ref) and (RW).
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size 3. The general representation for such a problem with n clauses and k
propositional variables V = {x1, . . . , xk} is

ϕ =

n∧
i=1

(xi1 , xi2 , xi3),

s.t. i1, i2, i3 ∈ {1, . . . , k} (i1 6= i2 6= i3) for all 1 6 i 6 n. (xi1 , xi2 , xi3) is
called a clause in ϕ. Such an instance ϕ is satisfied by a truth assignment
if in every clause in ϕ there is exactly one propositional variable that is
assigned to true (note, all variables occur as a positive literal). More formally,
a truth assignment is a function σ : V → {>,⊥}. σ is extended to apply to
a (1-in-3)-positive 3sat formula ϕ s.t. σ̂(ϕ) = > iff for all i ∈ {1, . . . ,n}
there is exactly one xij (j ∈ {1, 2, 3}) s.t. σ(xij) = >.

the reduction from (1-in-3)-positive 3sat. Intuitively,
the main correspondence of sceptical rational reasoning and satisfiability of
(1-in-3)-positive 3sat formulas lies between finding Max-TMs and finding
satisfying assignments. Thus, the idea behind this reduction is the following.
For a (1-in-3)-positive 3sat formula ϕ, we shall construct a corresponding
knowledge base (and context/query), such that a satisfying assignment for
ϕ can be transformed into a full preference chain for the KB (and context)
and vice versa. Correctness of this reduction, is then proven by the fact
that this full preference chain provides a Max-TM counterexample to the
generated query.

Given ϕ, an instance of (1-in-3)-positive 3sat, the knowledge base Kϕ
is constructed over the signature

sigC(Kϕ) = {A,B,X}∪ {Ci | 1 6 i 6 n} (8.6)

sigR(Kϕ) = {s, r1, . . . , rk}, (8.7)

where k is the number of distinct propositional variables and n the number
of clauses occurring in ϕ. W.l.o.g. we assume a linear order on the clauses
in ϕ, simply to reference them by indices 1 6 i 6 n. For explanation
purposes, assume the domain elements that are referenced in the following
to occur in the rational domain. This is formally confirmed after the full
construction of Kϕ.
The correspondence between preference chains and truth assignments

is provided by linking preference options for roles rj to the propositional
variable xj. Specifically, σ(xj) = > translates to a preference option
rj((A, D), (B, D)) being used in a preference chain. For a satisfying
assignment σ that is translated to a preference chain in this way, it will turn
out that the set of modelsM at the end of this chain is maximal w.r.t. <t.
Neither any of the ri that have not yet been used in this chain, nor the
extra role name s will provide admissible preference options for M. The
query will be constructed in such a way, that unsatisfiability of a specific
preference option for s inM will ensure that M is a counterexample to
the query’s entailment.
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The DBox in Kϕ shall be rather small

D = {B @
∼ X, (8.8)

A @
∼ ∃s.B, (8.9)

A @
∼ ∃r1.Bu . . .u ∃rk.B}. (8.10)

The remainder of the reduction can be achieved using the TBox and the
query. The strict part of Kϕ will not directly be in conflict with any defeasible
information, i.e. A and B will not be exceptional w.r.t. D and T (formally
shown after presenting Kϕ). Consequently, chain(K) = 〈D, ∅〉, simplifies
the structure of the rational domain greatly. The information contained in
the resulting minimal typicality model M(Kϕ,∆C,O,Kϕ

rat ) is mostly influenced
by this DBox. (8.9) is required “in the end”, to ensure that the query is
not entailed iff ϕ is satisfiable. (8.10) provides the property Justified (cf.
Def. 7.27) for admissibility of all preference options that will be selected on
the full preference chain. Most importantly, (8.8), ensures that the typical B
representative will satisfy X in all typicality models of Kϕ over the rational
domain. We rely heavily on this containment in X to distinguish satisfied
preference options, connecting the typical A representative with the typical
B representative (i.e. ri((A, D), (B, D))), from their atypical versions
introduced by (8.10).
The TBox is mostly made up of two types of GCIs, each capturing

information about the clauses of ϕ.

Ticonst = {∃ri1 .Xu ∃ri2 .X v ⊥, (8.11)

∃ri2 .Xu ∃ri3 .X v ⊥, (8.12)

∃ri1 .Xu ∃ri3 .X v ⊥} (8.13)

and

Ticlause = {∃ri1 .X v Ci, (8.14)

∃ri2 .X v Ci, (8.15)

∃ri3 .X v Ci } (8.16)

where the i-th clause in ϕ is (xi1 , xi2 , xi3) (1 6 i 6 n). Ticonst describes
the disjointness constraints that will allow at most one of the corresponding
preference options (e.g. ri1((A, D), (B, D))) to be used in any full prefer-
ence chain. For instance the clause (x1, x3, x5) prohibits any pair of these
three variables to be set to > at the same time. Likewise, the constraints

∃r1.Xu ∃r3.X v ⊥,
∃r3.Xu ∃r5.X v ⊥, and
∃r1.Xu ∃r5.X v ⊥

prohibit two preference options, connecting the typical A representative
with the typical B representative, using r1, r3, r5 (Justified by (8.10)), to
be satisfied by any typicality model in TMod(Kϕ,∆C,O,Kϕ

rat ). This conflict
arises, because the typical B representative satisfies B @

∼ X (8.8).



8.3 complexity lower bounds 145

The TBox Ticlause creates a kind of marker at the domain ele-
ment (A, D). If a typicality model I satisfies a preference option
rij((A, D), (B, D)) for the i-th clause using variables xij (j ∈ {1, 2, 3}),
then from I |= Ticlause it follows that (A, D) ∈ CI

i . This Ci marker
represents that at least one preference option, corresponding to a variable
of the i-th clause, is satisfied for a Max-TM. Together Ticonst and Ticlause
ensure that C1, . . . ,Cn are satisfied by (A, D) when every clause in ϕ has
exactly one variable set to >.
The role edge ((A, D), (B, D)) ∈ sM(Kϕ,∆C,O,Kϕ

rat ) (Justified by (8.9)) is
used to invert the query entailment. To be explicit, the query is

A @
∼ ∃s.X (8.17)

and the inversion is established by the following disjointness constraint.

TQ = {∃s.XuC1 u · · · uCn v ⊥} (8.18)

Intuitively, TQ ensures that the preference option s((A, D), (B, D)) can
only be satisfied if not all clauses in ϕ are satisfied. Combining the above,
results in the KB

Kϕ = (

n⋃
i=1

(Ticonst ∪ Ticlause)∪ TQ,D). (8.19)

Recall that the existence of any Max-TM as a counterexample to the query
is required to show non-entailment. It is therefore enough to show that
a satisfying assignment for ϕ can be translated to a full preference chain
providing such a counterexample, ignoring other full preference chains that
might satisfy s((A, D), (B, D)).

complexity and correctness of the reduction. We
proceed to show that this reduction is linear and that satisfiability of ϕ
corresponds to non-entailment of the constructed query under nested rational
semantics. Note that every GCI and DCI in Kϕ is of constant size, with the
exception of (8.10) and (8.18), which are linear in ϕ. Therefore, it suffices
to analyse the number of axioms in Kϕ, rather than its size in terms of
symbols6. The latter grows only linearly in the size of Kϕ, because only a
constant number of axioms grows linearly in the input.

Proposition 8.31. Kϕ can be constructed in linear time in |ϕ|.

Proof. The size of the input ϕ =
∧n
i=1(xi1 , xi2 , xi3), is 3 ∗n. The number

of constraints in D, TQ is constant and their size (as well as the size of the
query) is at most linear in the size of the input.
An algorithm constructing Kϕ needs to iterate over every clause in ϕ

exactly once, generating Ticonst and Ticlause. The TBox parts Ticonst
and Ticlause have the constant size |Ticonst| = |Ticlause| = 3 for every i.
Therefore, the total size of T amounts to ||T || = 6n+ 1 which can clearly
be generated in linear time in the size of ϕ.

6 The size of a concept is typically considered to be the number of symbols required to
represent that concept, including u, ∃, etc.
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We continue to prove the main claim required for the desired hardness
result. As typicality model semantics are defined under a given context, an
appropriate, finite, consistent, quantification closed context, containing Kϕ,
must be involved in this result.

Proposition 8.32. A (1-in-3)-positive 3sat formula ϕ is satisfiable iff
Kϕ 6|=(rat,nest) A @

∼ ∃s.X w.r.t. C = {A,B,X}, O = ∅.

Proof. This proof consists of three parts. Before proving the claim in both
directions separately, we provide the foundation for the typicality model
semantics with the rational domain induced by Kϕ and the context. Showing
both directions is then relatively straightforward, by constructing appropriate
preference chains or truth assignments, based on the respective premise.
Let ϕ consist of n clauses, using k distinct variables.

For Kϕ = (T ,D) we begin by showing chain(Kϕ) = 〈D, ∅〉 as a prereq-
uisite for ∆C,O,Kϕ

rat . Let I = (∆I , ·I) be an interpretation with ∆I = {d, e},
s.t. d ∈ (Au BuX)I , e ∈ BI and (d, e) ∈ rIi , (d, e) ∈ sI for 1 6 i 6 k.
Because no ri- or s-successor satisfies X, it trivially holds that I |= T .
Furthermore, it not hard to verify that d ∈ (AuBuXuD)I , showing that
the left-hand sides of all DCIs are not exceptional w.r.t. the entire DBox
(and T). Consequently, chain(Kϕ) = 〈D, ∅〉 by Def. 4.6.

The rational domain only contains concept representatives, because O is
empty. As shown above, all concepts in C are consistent with D. Thus, the
rational domain for Kϕ and C (omitting O hereinafter) is

∆C,Kϕ
rat = {(E, U) | E ∈ C,U ∈ chain(K)}.

For a more readable handle on the elements in ∆C,Kϕ
rat , we denote the typical

concept representatives (for E ∈ C) with tE = (E, D) and the non-typical
E representatives with uE = (E, ∅).

Clearly (A, D) (i.e. tA) is the most typical representative of A. Therefore,
the right-hand side of this proposition, Kϕ 6|=(rat,nest) A @

∼ ∃s.X, is
equivalent to

∃M ∈ TMax(Kϕ,∆C,Kϕ
rat ).∃J ∈ M.tA 6∈ (∃s.X)J . (8.20)

To prove this proposition, we show both directions separately:

(i) If ϕ is satisfiable then (8.20).

(ii) If (8.20) then there is a satisfying assignment for ϕ.

Towards (i), assume σ is a satisfying assignment for ϕ, i.e. σ̂(ϕ) = >.
Let V> = {x ∈ V | σ(x) = >} and for |V>| = m, let x1, · · · , xm be any
arbitrary (but from here on fixed) enumeration of all variables in V>. From
the set of variables that are assigned > under σ, we derive a preference
chain, starting at TMod(Kϕ,∆C,Kϕ

rat ) and iteratively refining (Def. 7.29) the
sets of models, with the preference options corresponding to those variables.
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B,X B
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s, r1, . . . , rk

(a) Minimal typicality model

B

A

X

D ∅
B,X B

A A

X X

(b) Preference options

Figure 8.1: (a) is the labelled graph visualisation of M(Kϕ,∆C,Kϕ
rat ). (b) is an

exemplification of inferred role edges from refining sets of models
extending (a) (role labels are omitted). The dashed edges are explicitly
satisfied preference options and the dotted edge illustrates inferred
edges from refining with a preference option over (tA, tB).

Specifically, let pBi = ri(tA, tB) as well as pXi = ri(tA, tX) (for 1 6 i 6 m)
and define

MB
1 =TMod(Kϕ,∆C,Kϕ

rat )|pB1
(8.21)

MB
i =MB

i−1|pBi
(for 1 < i 6 m) (8.22)

MX
1 =MB

m|pX1
(8.23)

MX
i =MX

i−1|pXi
(for 1 < i 6 m). (8.24)

pBi and pXi are the preference options corresponding to those variables
in ϕ that are set to > under σ (dashed edges in Fig. 8.1 (b)). The sets
of models MB

i and MX
i are the (intermediary) results when restricting

the set of all models, say M0 = TMod(Kϕ,∆C,Kϕ
rat ), successively, by the

chain of preference options pB1 , · · · ,pBm,pX1 , · · · ,pXm. We show admissibility
(Def. 7.27) for each preference option to its appropriate set of models (e.g.
pB2 is admissible w.r.t. MB

1 ), thus, proving the following chain of typicality
preferences:

M0 <tMB
1 <t · · · <tMB

m <tMX
1 <t · · · <tMX

m (8.25)

admissibility of pBi for MB
i−1. From (8.10), it is easy to see that

M0 |= A @
∼ ∃ri.B, or more specifically, ∀J ∈ M0.(tA,uB) ∈ rJi ,

holds for 1 6 i 6 m. Hence, all preference options pBi are Justified
forM0 and all its subsets, in particularMB

i for 1 6 i 6 m.

For the property Satisfiable, consider J = (∆C,Kϕ
rat , ·J ) with

• AJ = {tA,uA}, BJ = {tB,uB}, XJ = {tB, tX,uX},

• CJ
j = {tA} for 1 6 j 6 n,

• sJ = {(tA,uB)}, and

• rJ =

{(tA, e) | e ∈ {tB,uB, tX,uX}} if r ∈ {r1, · · · , rm}

{(tA,uB)} otherwise.
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An illustration of role edges with r ∈ {r1, · · · , rm}, are the edges in
Fig. 8.1 (b). Clearly, J |= pBi for 1 6 i 6 m, by construction. We
show J ∈ MB

m, to derive that each pBi is Satisfiable for MB
i for

1 6 i 6 m. J |= TQ, because the only s-successor in J does not
satisfy X. J |= Tjclause holds, because the only element with r-
successors is tA, and tA satisfies all Cj (1 6 j 6 n). Assume w.l.o.g.
that there is a GCI ∃rj1 .Xu∃rj2 .X v ⊥ in some Tjconst (1 6 j 6 n),
s.t. (∃rj1 .Xu ∃rj2 .X)J 6= ∅. This implies rj1 , rj2 ∈ {r1, · · · , rm} by
the construction of J . However, from the construction of Tjconst,
it follows that the j-th clause in ϕ contains both xj1 and xj2 , con-
tradicting xj1 , xj2 ∈ V> for the satisfying assignment σ, and thus
contradicting rj1 , rj2 ∈ {r1, · · · , rm}. As it is not hard to show that
J is standard and satisfies the sets of DCIs associated to each domain
element, it follows that J ∈ TMod(Kϕ,∆C,Kϕ

rat ). Furthermore, it can
be seen that J ∈ MB

i (as well as J ∈ MX
i ) for all 1 6 i 6 m,

because J satisfies all preference options used for the refinements
constructingMX

m ((8.21)–(8.24)). Consequently, J is a witness for
all pBi being Satisfiable w.r.t. MB

i−1 for all 1 6 i 6 m.

For Not-entailed, let Jl (1 6 l 6 m) coincide with J on everything
but rJll = {(tA,uB)}. Clearly, Jl 6|= pBl and it is not hard to verify
that Jl ∈ TMod(Kϕ,∆C,Kϕ

rat ). Therefore, for 1 6 i < l, it holds
that Jl ∈MB

i , showing that Jl witnesses pBl being Not-entailed in
MB
l−1. Likewise, J1 witnesses pB1 being Not-entailed w.r.t. M0.

In conclusion, every pBi is admissible for MB
i−1 (1 < i 6 m) and

pB1 is admissible for M0. Due to the construction of all MB
i , this

directly proves all relations in the chain

M0 <tMB
1 <t · · · <tMB

m

admissibility of pXi for MX
i−1. Showing admissibility of every

pXi forMX
i−1 (1 < i 6 m) and pX1 forMB

m is slightly easier than the
previous case, because, intuitively speaking, tX and uX coincide. The
second half of the chain in (8.25) is mostly a technicality, because C
must contain Kϕ, i.e. the rational domain must represent the concept
X ∈ Qc(Kϕ). Every model inMB

m satisfies all pBi (1 6 i 6 m) and
because tB ∈ XI (for all I ∈ MB

m) and models inMB
m are standard,

they all must satisfy (tA,uX) ∈ rIi (Property 3 of Def. 7.6). This
already shows that all pXi are Justified forMB

m and allMX
i .

The typicality model J , constructed in the previous case, is also a
witness for every pXi being Satisfiable w.r.t. MX

i−1, because J ∈
MX
m andMX

m ⊆MX
i (1 < i 6 m). Likewise, pX1 is Satisfiable for

MB
m.

This time, for non-entailment, let J ′l coincide with J on everything

but rJ
′
l

l = {(tA,uB), (tA, tB), (tA,uX)}. It is not hard to see that
J ′l ∈ MB

m as well as J ′l ∈ MX
i for 1 6 i < l and J ′l 6|= pXl .

As in the previous case, this shows that pXi is Not-entailed w.r.t.
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MX
i−1 for every 1 < i 6 m (likewise for pX1 andMB

m), thus, proving
admissibility of pXi and overall truth of (8.25).

It remains to show that there does not exist an admissible preference
option forMX

m, in order to conclude <t-maximality ofMX
m, i.e. that the

chain in (8.25) is full. It was shown before, that the constructed model J
belongs toMX

m and it is not hard to verify that J is the smallest model in
TMod(Kϕ,∆C,Kϕ

rat ) that satisfies all pBi and pXi , i.e. J =
⋂

I∈MX
m
I. The

remaining Justified and Not-entailed preference options w.r.t. MX
m can be

read off of J as suggested in the beginning of Section 8.1.2 (Page 125).
They are comprised of those ri(tA, tB) (1 6 i 6 k) for which σ(xi) = ⊥,
as well as s(tA, tB). Because tA ∈ CJ

j for all clauses in ϕ, i.e. 1 6 j 6 n,
no model inMX

m can satisfy s(tA, tB), i.e. contradicting the Satisfiable
property for admissibility of s(tA, tB). Additionally, every xi for which
σ(xi) = ⊥ appears in the j-th clause in ϕ together with some xl for which
σ(xl) = >. For this xl, the preference option rl(tA, tB) is satisfied in all
models inMX

m and no model can satisfy rl(tA, tB) and ri(tA, tB) at the
same time, because of ∃ri.Xu ∃rl.X v ⊥ ∈ Tjconst. Consequently,MX

m

has no admissible preference options and is <t-maximal by definition. From
the construction of J and J ∈MX

m, we can easily see that J 6|= A @
∼ ∃s.X,

concluding the proof of (i).
For showing (ii), assumeM ∈ TMax(Kϕ,∆C,Kϕ

rat ) such thatM 6|= A @
∼

∃s.X. Let the assignment σM be as follows:

σM(xi) = > iff M |= A @
∼ ∃ri.X (8.26)

for every 1 6 i 6 k. Roughly speaking, we prove satisfaction of ϕ with σM,
by unravelling the reason for s(tA, tB) not being satisfied by all models in
M. First of all, the only Justified preference option for the role s w.r.t.
TMod(Kϕ,∆C,Kϕ

rat ) is s(tA, tB), due to A @
∼ ∃s.B ∈ D. From the TBox and

DBox, it can be readily seen that no full preference chain starting from
TMod(Kϕ,∆C,Kϕ

rat ), and reachingM, can ever introduce another Justified
preference option using s, thus, we can focus our attention on s(tA, tB).
M 6|= A @

∼ ∃s.X implies that s(tA, tB) is Not-entailed w.r.t. M. However,
maximality ofM w.r.t. <t implies s(tA, tB) not to be admissible, which
leaves s(tA, tB) only to be not Satisfiable w.r.t. M. We use this observation
to derive that tA is an element of Cj in all models inM for 1 6 j 6 n as
follows.

From TMod(Kϕ,∆C,Kϕ
rat ) 6∗t M and Prop. 8.3 we know a rather technical

feature of M. For one, J =
⋂

I∈M I is the ⊆-smallest member of M
andM = TMod(Kϕ,J ). While this seems insignificant, we can use it to
conclude that (?) tA ∈ CJ

i (hence, the same holds for all I ∈ M) for
1 6 i 6 n. Suppose (?) would not be true. There would be at least one
model I ∈ M and i ∈ {1, · · · ,n} s.t. tA 6∈ CI

i . FromM = TMod(Kϕ,J )
(“M is as large as possible”) we could then conclude thatM also contains a
model I ′ ⊇ I with tA 6∈ CI ′

i and I ′ |= s(tA, tB), without I ′ contradicting
TQ. As this would contradict s(tA, tB) not being Satisfiable, (?) must be
true.
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From the containment of tA ∈ CI
i in all models I ∈ M and their

satisfaction of Ticlause (1 6 i 6 n), we conclude that (at least) one of the
following must be true:

• tA ∈ (∃ri1 .X)I ,

• tA ∈ (∃ri2 .X)I , or

• tA ∈ (∃ri3 .X)I .

Consequently, by the construction of σM, at least one variable per clause
is assigned >. Ticonst directly implies that for any set of models, in
particular M, no two preference options out of ri1(tA, tB), ri2(tA, tB)
and ri3(tA, tB) can be satisfied simultaneously for any 1 6 i 6 n. Hence,
σM assigns at most one variable per clause to >, concluding the proof of
(ii).

Even though in classical reasoning, a lower bound on subsumption check-
ing immediately translates to a lower bound on instance checking, such a
consequence is not trivial in defeasible semantics for DLs.

Remark 8.33. For a reduction to defeasible instance checking, consider
a slight change in the context C, O, the KB Kϕ and the query for which
to decide non-entailment. The context C = {B,X} and O = {a} is still
quantification closed and contains Kϕ. The KB is extended only with the
ABox A = {A(a)}, T and D remain as in (8.19). It is not hard to see
that the rational domain contains (a, U) instead of (A, U) and (A, ∅).
Naturally, the new query must be a defeasible instance check, namely
∃s.X{a}. The proof of Proposition 8.32 remains intact, when the shorthand
tA refers to (a, U). Hence, non-entailment of the defeasible instance check
∃s.X{a} corresponds to satisfiability of ϕ.

The main result for the lower bound of defeasible reasoning under scep-
tical nested rational semantics is almost an immediate consequence of
Proposition 8.32.

Theorem 8.34. Deciding entailment of defeasible subsumption or instance
checks under sceptical nested rational semantics is co-NP-hard for EL⊥.

Proof. Satisfiability of a (1-in-3)-positive 3sat formula is NP-hard, as
shown by Garey and Johnson [GJ’79]. The reduction of this satisfiability
problem to non-entailment, of defeasible subsumption (Prop. 8.32) and
defeasible instance checking (Rem. 8.33), shows co-NP-hardness for the
problem of deciding entailment of defeasible subsumption and instance
checks under sceptical nested rational semantics.

An overview and discussion of the complexity results obtained throughout
this chapter is contained in the following, final chapter.



9
CONCLUS ION , REFLECT ION AND OUTLOOK

In this thesis we have ventured deep into the innards of rational reasoning
in Description Logics, an area that provides a sizeable portion of the
research towards non-monotonic DLs. We have reorganised and unified
a variety of different entailment operations, that are all derived from the
original materialisation-based KLM algorithm for deciding propositional
entailment under Rational Closure. The generalisation of this algorithm into
an abstract framework can be considered a reflection on the established
literature, as well as a modernised contribution to this type of reasoning,
accommodating several benefits. Interchangeability of single components in
this framework shows almost trivially the commonalities and divergences
among differently strong entailment operations that are defined in terms of
materialisation. We have demonstrated the versatility of our framework by
providing explicit instantiations that are capable of producing consequences
under Rational, Relevant and Lexicographic Closure. For additional original
contributions due to our framework, we lifted the reasoning service of
defeasible instance checking to the Relevant Closure, and we have provided
instantiations that rely entirely on EL⊥ concepts, a technique that is not
trivially derived from ALC material implication. The latter proves the claim
of Casini and Straccia [CS’10] that deciding entailments under Rational
Closure in DLs remains in the complexity class of classical reasoning in
the underlying DL. We have no doubt that this framework can be used
to obtain further results and insights on the technique of materialisation-
based defeasible reasoning. An instantiation of yet another type of Rational
Closure, including a preprocessing by use of boolean inheritance networks
([CS’11]) should be as simple to reconstruct with our framework, as the
lexicographic or relevant preprocessing step. Unifying these entailment
operations allowed for a comprehensive discussion on their merits and
drawbacks. Most notably, we discovered a neglect of quantified concepts that
is inherent to all materialisation-based procedures. This fatal shortcoming
for defeasible inference in DLs has remained unresolved for the better part
of this decade.

We have identified the need to move beyond a propositional coverage of
defeasible information, if meaningful defeasible consequences for Description
Logics are to be derived. Taking advantage of representative interpretations
and the canonical model property of the lightweight DL EL⊥, we have
introduced a new kind of model formalism, explicitly attaching defeasible
information (typicality) to subjects of a query and, more importantly, to all
other domain elements that are potentially relevant in answering such a query.
This allowed the formalisation of a new type of preference over sets of these
typicality models, effectively eliminating evidence of low typicality. Preferring
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(rat≺, mat) (rel≺, mat)

(rat≺, prop) (rel≺, prop)

(rat≺, nest)

(rat≺, nest<po)

(rel≺, nest)

(rel≺, nest<po)

Thm. 7.22 Thm. 7.25

Thm. 6.6

Thm. 7.40

Thm. 7.40

Thm. 7.43

Thm. 7.43
?

??

?

Figure 9.1: Implications among all of the investigated semantics of rational and
relevant strength.

models of high typicality to be considered for deciding entailments, yields the
desired effect of deriving defeasible information for concept elements in the
arbitrarily nested relational neighbourhood of the query subject. Ultimately,
we extended the toolbox for defeasible reasoning in DLs by composing
previously investigated semantics of different strength with two types of
nested coverage. Overall, we provided explicit results of superiority and
complexity for all semantics captured by the tuples of strength and coverage

{rat≺, rel≺}× {mat, prop, nest, nest<po}

throughout this thesis.
We formally investigated relations among the covered semantics, by their

virtue in terms of entailed queries, as illustrated in Figure 9.1. The direction
of an arrow describes an implication for query entailment, e.g. if α is
entailed by K under (rat≺, prop) semantics, then it is also entailed under
(rat≺, nest) semantics. Bold arrows connect semantics whenever the proof
for this result can be found in this thesis, dashed arrows show obvious implicit
results and undirected edges indicate that the relation is unknown and could
be addressed in the future. The edges in Fig. 9.1 are complete in the sense
that a missing arrow indicates that this implication is not true, instead of
unknown (modulo transitive implications). The only result in Fig. 9.1 that
is not our own, is the implication of defeasible subsumption entailment
from (rat≺, mat)-semantics to (rel≺, mat)-semantics (cf. [CMMN’14]).
We first introduced defeasible instance checking in relevant semantics in
[PT’18].

unknown entailment implications. Showing superiority
of relevant over rational nested semantics, e.g. (rel≺, nest) over
(rat≺, nest) simply requires to provide an appropriate example, similar to
the proof for (rel≺, mat) vs. (rat≺, mat) (Thm. 6.6). Proving an impli-
cation from any rational nested semantics to its relevant variant, is much
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Rational Relevant

Propositional P-complete in ∆P
2

Selective nested P-complete in Exp

Sceptical nested co-NP-complete in co-NExp

Table 9.1: Complexity for deciding defeasible subsumption and instance checking
with typicality models.

more involved. For showing such a relation for selective nested semantics,
one would have to be especially careful with the order <po, as it is defined
on the underlying typicality domain. At least for concept representatives, it
is clearly the case that all representatives of the rational domain also belong
to the relevant domain, meaning, a total order for the rational domain
(w.r.t. concept representatives) is a strict partial over the relevant domain.
However, the same is not true if O 6= ∅. The relevant and rational domain
could potentially associate different DCIs with every individual represen-
tative, making it unclear how to derive a preference option order for the
relevant domain, which “behaves” like the order over the rational domain.
If no connection between the respective orders is imposed, this implication
will surely not hold.

We suspect the main difficulty in the relation between sceptical nested
rational and relevant semantics to be closely related to the reason for initial-
ising the relevant ABox extension (Def. 4.16) with the rationally extended
ABox (cf. Exm. 6.5). Preference options of “higher typicality than rationally
possible” could be in conflict with preference options that are conflict free
in the rational typicality domain. We leave a careful investigation to test
this suspicion for future work.

computational complexity. Any contribution to the reasoning
capabilities in Description Logics is encouraged to discuss its computational
properties in addition to its expressivity. In conclusion of our analysis for the
discussed typicality-model semantics, observe Table 9.1 for a concise overview
of the computational complexity for deciding defeasible subsumption and
instance checks under propositional and nested coverage. Theorem 8.22,
8.24 and 8.30 provide matching lower and upper bounds, showing P-
completeness for propositional and selective nested rational semantics. This
result comes at no surprise for propositional semantics due to its equivalence
to the materialisation reduction (Thm. 7.22). On the other hand, it is
encouraging, that a deterministic preference of role-edges allows to draw
conclusions based on maximal typicality, i.e. including defeasible information
at quantified concepts, without increasing the computational complexity.
When no such preference exists, an application might employ the more
cautious approach with sceptical nested coverage. Theorem 8.23 and 8.34
show that this scepticism and the requirement to verify a query w.r.t. all
possible typicality maximisations comes at considerable extra cost, being
co-NP-complete.
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At this time, our results for relevant strength of all three investigated cov-
erages remain upper bounds for deciding entailments (Sec. 8.2.2). PTime is
of course a trivial lower bound for these entailment problems, as all typicality
model semantics extend classical reasoning in EL⊥. While materialisation-
based relevant semantics for ALC [CMMN’14] are more expensive already
in the underlying classical reasoning (i.e. ExpTime-complete, [Sch’91a]),
it remains exponential to determine all justifications of an entailment. This
shows ExpTime-completeness of subsumption and instance checking for
materialisation-based relevant entailment in ALC. For EL⊥, classical rea-
soning is less complex than the computation of all (or some) justifications,
hence, a tight lower bound for relevant strength does not transfer as in the
case of ALC. Even though the computation of justifications (as required
here) is known to be NP-hard ([PS’17]), this lower bound does not trivially
translate to any of our semantics, because the entailments we calculate
justifications for, are of a very specific type (e.g. C v ⊥). As it is customary,
appropriate, known decision problems and individually tailored reductions
would be required, to close these complexity gaps for relevant strength of
defeasible reasoning with typicality models, in the future.

9.1 directions for future investigations

While selective nested coverage is computationally less costly than its
sceptical counterpart, one could argue that there is a different kind of extra
cost, hidden in the required inputs to characterise specific semantics with
nest<po . At this time, we presented this parametrisation as general as
possible, simply assuming a total order <po over the preference options of
a typicality domain as input. It seems cumbersome to practically specify
this order, especially as it might be unlikely that such a preference even
exists from an application’s point of view. Therefore, more practicable
formalisations of this requirement (as briefly discussed in Section 8.1.2)
could be an interesting direction for future research. Additionally, it is
clearly the case that <po influences the entailments under selective nested
semantics by a great deal. We suspect that, if this order satisfies certain
formal properties, it could be used to derive more intuitively understood
characteristics for the resulting entailment relation, similar to KLM-style
postulates.

On that topic, a full investigation of well-behaviour for nested semantics
has purposefully not been addressed in this thesis. While we presented many
results, typicality models are still in an early stage of their development.
Refinements, such as the above, need further analysis, before a discussion of
formal properties is useful. At this time, we can only point to the postulates
that are potentially most difficult to derive for the typicality model formalism.
Satisfaction of Rational Monotonicity (RM) and Cautious Monotonicity (CM)
in representative models requires the entailment of corresponding properties
for two distinct representative elements (e.g. (C, U) and (Cu E, U ′)).
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(CM)
C @

∼ D C @
∼ E

Cu E @
∼ D

(RM)
C @

∼ D C 6@∼ ¬E

Cu E @
∼ D

While the construction of the typicality domain guarantees this correspon-
dence on a propositional level, the typicality preference relation does not
necessarily behave appropriately.
It is worth noting that certain properties of the interplay between strict

and defeasible knowledge, could result in the set of all Max-TMs to be a
singleton. For example, if no two preference options contradict each other
in the sense of Example 7.34, it is easy to see that any preference <po

produces the same unique and only Max-TM. A trivial instance with this
property is simply any EL defeasible knowledge base, refraining from the
use of ⊥. Under such conditions, expressivity and complexity for semantics
of sceptical and selective nested coverage would coincide. Once again, a
more thorough analysis exceeds the scope of this work, but is certainly of
great interest in the immediate future of typicality models.

Furthermore, with the introduction of any new non-monotonic formalism,
its relation to surrounding approaches should be analysed. The comparison
to the foundations of Rational and Relevant Closure is extensively studied
in this work. As far as we know, no other KLM-style investigation has
explicitly addressed practical means to derive defeasible information for
quantified concepts in DLs. Somewhat related might be the approach
to model defeasibility on the level of roles [BCMV’13; BV’16; BV’17a;
BV’17b], but most of this research is studying non-practical representation
results. It is not clear how the defeasible entailment of a role relation could
lead to the entailment of defeasible concept properties in the filler of a
quantification. Varzinczak [Var’18] investigates a concept/role constructor
for typicality, that can be used anywhere in a concept, in particular also in
nested quantification. This would provide the means to individually capture
typicality of nested concepts, instead of a uniform maximisation approach
such as ours. Once again, at this time only representation results are
studied, positioning this approach in the semantic characterisability aspect
of KLM-style research.
Finally, the typicality model formalism provides only the foundation of

nested reasoning capabilities. In addition to the above and many more
analytical questions, expressive extensions of typicality models and their
capacities could be examined. Immediate options are the increase of expres-
sivity within the lightweight framework of DLs, e.g. allowing for nominals or
role constructions/hierarchies, or even considering more expressive reasoning
services, such as conjunctive query answering. By remaining with DLs that
satisfy the canonical model property, the representative approach towards
typicality models requires potentially only slight adjustments. Surely, the
most valuable and interesting direction however, is to generalise nested typi-
cality coverage, to not rely on the canonical model property of lightweight
DLs, and thus, to achieve truly meaningful defeasible consequence in ex-
pressive Description Logics.
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