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Abstract

Ontology-mediated query answering is a popular paradigm for enriching answers to user
queries with background knowledge. For querying the absence of information, however,
there exist only few ontology-based approaches. Moreover, these proposals conflate the
closed-domain and closed-world assumption, and therefore are not suited to deal with
the anonymous objects that are common in ontological reasoning. Many real-world
applications, like processing electronic health records (EHRs), also contain a temporal
dimension, and require efficient reasoning algorithms. Moreover, since medical data is
not recorded on a regular basis, reasoners must deal with sparse data with potentially
large temporal gaps.

Our contribution consists of three main parts: Firstly, we introduce a new closed-world
semantics for answering conjunctive queries with negation over ontologies formulated in
the description logic ELH⊥, which is based on the minimal universal model. We propose
a rewriting strategy for dealing with negated query atoms, which shows that query
answering is possible in polynomial time in data complexity. Secondly, we introduce
TELH c♢,lhs

⊥ a new temporal variant of ELH⊥ that features a convexity operator. We extend
this minimal-world semantics for answering metric temporal conjunctive queries with
negation over the lightweight temporal logic TELH c♢,lhs,−

⊥ and obtain similar rewritability
and complexity results. Thirdly, apart from the theoretical results, we evaluate minimal-
world semantics in practice by selecting patients, based their EHRs, that match given
criteria.
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Chapter 1.

Introduction

Ontologies provide a semantic representation of a specific application domain and
therefore play an important part in data access in many areas like medicine [RB08],
industry [KMM+17] or the Semantic Web [BHL01; AGP14]. They can be used to
model the terminology of an application domain in a machine-processable way. In
contrast to traditional database systems, this terminological knowledge can be used
to infer new information that were only implicitly available in the data. Moreover,
the user can formulate a query based on the terminology and does not need to know
the internal relational structure of the data. In ontology-mediated query answering
(OMQA) this query is then answered over both the explicitly and the implicitly contained
information. For many ontologies Description Logics (DLs), a family of logic-based
knowledge representation languages, provide the semantic underpinnings [BHL+17;
RN14]. They are based on the notions of concepts (cancer or liver) and roles (foundIn),
which express relations between concepts (liver cancer is found in the liver) as well
as concrete data (patient 1 is diagnosed with the disease liver cancer).

Usually, DLs employ the open-world assumption, which means that information that
are not explicitly mentioned or cannot be inferred, are neither assumed to be true or
false. This assumption is a classic example for monotonic semantics: If a fact can be
inferred at some point, it will stay valid no matter how much additional knowledge is
acquired. In scenarios like the Semantic Web, where a system cannot be assumed to
have complete knowledge, the open-world assumption is very reasonable. In contrast, in
traditional database systems the closed-world assumption is employed, which means that
a fact that is not contained in the database is assumed to be false. These semantics are
non-monotonic, because, if a fact is added to the database, a fact that was false before
can become true. In many applications, both the open- and the closed-world assumption
are too strong and something intermediate is needed. Many different semantics have
been proposed that employ partial closed-world semantics [McC80; Rei80; Wol00].

Many applications, like the monitoring of sensor data [CCG10b] or the diagnoses of a
patient[CT15; TSC11], contain an inherent temporal domain. In temporalized DLs a
concept cannot only talk about the objects at a single time point, but also about objects
at other time points. For example, we can express that a certain disease is incurable by
a statement like ‘if the disease is present now, then it will also be present at all future
time points.’ In temporalized OMQA, the query language is extended by operators from
temporal logic, enabling also temporal information to be queried.

In this work we are concerned with temporalized OMQA over sparse temporal data
that contain (almost no) negation. Such a setting can be found in the patient selection
task, in which, for a given clinical study, eligible patients need to be selected based on
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Chapter 1. Introduction

their electronic health record. Such records are only available at sparse time points and
contain mostly the positive findings. We propose novel closed-world semantics and a
lightweight temporal logic that can be used in such settings. Moreover, based on the
theoretical formalism, we evaluate our approach on real world patient data.

This chapter gives an informal introduction to the topic of query answering with
non-monotonic semantics. In Section 1.1 we describe DLs and how they can be used for
OMQA. We then describe different ways to deal with incomplete information in DLs
in Section 1.3 and proceed to introduce temporalized OMQA in Section 1.4. In Section 1.5,
we provide an overview of the following chapters and specify our contributions.

1.1. Description Logics

Description Logics (DLs) are a family of logic-based knowledge representation formalisms
that can be used to express knowledge about a given domain of interest in a formally
structured way. They can be seen as a decidable fragment of first-order logic and are
closely related to modal logics.

DLs form the semantics basis of the Web Ontology Language OWL [HPV03] and are
widely used for the definition of ontologies, such as the prominent biomedical ontologies
SNOMED CT, GALEN1, or the Gene Ontology.

DLs are based on the notions of concepts (e.g. Cancer or SkinStructure), roles (e.g.
diagnosedWith, findingSite), and individuals (e.g. John, JohnsDiagnosis). More
complex concepts can be built using the Boolean operators negation (¬), disjunc-
tion (⊔), conjunction (⊓) and role restrictions. For instance, the role restriction
∃diagnosedWith.Cancer is a concept that describes the class of objects that are dia-
gnosed with cancer. Different concepts can be related to each other in general inclusion
axioms (GCIs). For example, we can say that the class of SkinCancer is included
(⊑) in the class of objects that belong to Cancer and have a findingSite that is a
SkinStructure with the following GCI:

SkinCancer ⊑ Cancer ⊓ ∃findingSite.SkinStructure. (1.1)

GCIs are collected in the terminological box (TBox), also called ontology. The assertional
box (ABox) contains the data, i.e. knowledge about specific objects such as

Patient(John), (1.2)
diagnosedWith(John,JohnsDiagnosis), (1.3)

SkinCancer(JohnsDiagnosis). (1.4)

The first assertion states that John is a member of the concept Patient. John has a
diagnosedWith relation to an object called JohnsDiagnosis, which by the third axiom
belongs to the concept of SkinCancer.

A knowledge base (KB) consists of a TBox together with an ABox. Based on the
explicit knowledge in the ABox and the TBox, additional implicit knowledge can be

1https://bioportal.bioontology.org/ontologies/GALEN
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1.2 Ontology-Mediated Query Answering

obtained from the KB. This implicit knowledge is implied by the formal semantics of
DLs. For example, suppose the TBox contains the GCI

CancerPatient ≡ ∃diagnosedWith.Cancer,

saying that belonging to the concept CancerPatient is equivalent (≡) to a diagnoses
with cancer. By the formal semantics the implicit fact that John is a cancer patient
is then entailed, even though this is not stated explicitly in the data. A foundational
reasoning task is the question whether the KB is consistent, i.e. free of contradictions.
Other reasoning tasks include the subsumption problem, where one asks if a concept is a
sub-concept of another concept. For instance, in the above example it is the case that
SkinCancer is a sub-concept of Cancer.

Depending on the application, more concept constructors can be allowed. For example,
with inverse roles (·−) we can express that each child has something that is its parent by
a GCI

Child ⊑ ∃parentOf−.⊤

where ⊤ is a special concept that denote the class of all objects. The downside of
added expressiveness is an increase in the complexity or cost of reasoning. For example,
reasoning in the basic DL ALC [SS91], which is the smallest DL that is closed under
Boolean operators, is already ExpTime-complete [BHL+17]. This means that no matter
how optimized an algorithm is, there will always be certain classes of KBs for which the
run time of the algorithm is exponential in the size of the KBs. Much of research in DL is
devoted to a better understanding of the interactions between the expressiveness and the
complexity of reasoning. An important member of the DL family are lightweight DLs, in
which reasoning is tractable, i.e. can be done in polynomial time [BBL05]. A prominent
member is the EL-family of DLs [BCM+07; Baa03], which is used for reasoning over
many medical ontologies, such as SNOMED CT2, the Gene Ontology,3 and the NCI
Thesaurus.4 In contrast to ALC, complements and disjunctions are not allowed in EL,
which makes reasoning very efficient. In the course of this work, we will be mostly
concerned with ELH⊥, a member of the EL family.

1.2. Ontology-Mediated Query Answering

In the beginning, the focus in DLs was mainly on classification tasks in the ontology.
This shifted in recent years when data integration became a major issue in many areas.
To manage and analyze large amounts of heterogeneous data, a common vocabulary
is required, which can be captured by an ontology. It provides an abstraction of the
underlying naming and relational structures of the heterogeneous data sources. In
ontology-mediated query answering (OMQA) the ABox is viewed as a set of facts, similar
to a relational database. In contrast to database queries, which evaluate the query
directly over the data, in OMQA, the query is mediated through the ontology. This way
the query is evaluated not only over the information explicitly contained in the ABox,

2http://www.snomed.org/
3http://www.geneontology.org/
4https://ncit.nci.nih.gov/
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Chapter 1. Introduction

Reasoning
System

ABox
diagnosedWith(John, JohnsDiagnosis)

SkinCancer(JohnsDiagnosis)

TBox
SkinCancer ⊑ Cancer

Query
∃y.diagnosedWith(x, y)∧Cancer(y)

Answers
John

Figure 1.1.: An illustration of a OMQA system. To answer the example query the
axiom SkinCancer ⊑ Cancer (”every object that belongs to SkinCancer
also belongs to Cancer”) in the TBox is taken into account, and the implicitly
contained answers are returned.

but also over the implicit knowledge that is entailed by the ABox together with the
ontology. To query the data, a popular choice are conjunctive queries (CQs), which
form a subset of the database query language SQL. A CQ is a conjunction of first-order
atoms. Variables may be existentially quantified (∃y.). All remaining variables are called
answer variables, meaning that they are returned in the answer. For example, the CQ

q(x) = ∃y.
(︁
diagnosedWith(x, y) ∧ Cancer(y)

)︁
(1.5)

asks for all patients x that are diagnosed with a disease y that is classified as a cancer.
The variable y is existentially quantified and will not be returned as an answer, since we
are not interested in the precise cancer diagnosis for each patient, but only need to ensure
that there exists such a diagnosis. An illustration of this setting is shown in Figure 1.1.
The reasoning system is aware of the TBox axioms and has access to the facts contained
in the ABox. If the query would be evaluated directly over the ABox, it would not
return any answers, since the facts alone do not indicate that John is diagnosedWith
Cancer, but just with SkinCancer. Without the terminological knowledge contained in
the TBox the system cannot know that SkinCancer is a form of Cancer. The reasoning
system infers this implicit fact and therefore returns John as an answer to the query.

To obtain algorithms for answering CQs, a popular technique are rewritings. The idea
is to take a CQ and rewrite it to a query in a target language, for example, a general
first-order query. The advantage is that the rewritten query can be evaluated directly
over the data using existing database systems, instead of implementing a completely new
system. For example, suppose a query asking for a ‘cancer that is found on the skin’:

∃y.Cancer(x) ∧ findingSite(x, y) ∧ SkinStructure(y) (1.6)

If the query is evaluated directly over the example KB introduced in Section 1.1, it does
not return any results. By the GCI in Equation (1.1) we know that every SkinCancer has
some findingSite that is a SkinStructure, even though it is not mentioned explicitly
in the ABox. A rewriting approach uses this knowledge and rewrites the query into

SkinCancer(x) (1.7)

4



1.3 Incomplete Knowledge

and evaluates this query (possibly among other rewritings) over the ABox, which because
of the assertion in Equation (1.4) returns JohnsDiagnosis as an answer.

Depending on the underlying DL, different rewriting strategies can be employed: In
EL, a combined rewriting is necessary, in which not only the query is rewritten, but
also the data is slightly modified [KLT+11]. Instead of rewriting to first-order queries,
in a Datalog-rewriting, the query and the data are rewritten into Datalog [AHV95], a
deductive database language.

The complexity of query answering is usually measured in two different ways: In
combined complexity, the query, the ABox and the TBox are all assumed to be inputs.
However, in most applications it is reasonable to assume that the query and the TBox
are relatively small and do not change very often compared to the possibly millions of
facts contained in the ABox, representing the potentially fast changing data. Therefore,
in this work we are more interested in the data complexity of OMQA. Here only the
size of the ABox is viewed as input, while the query and the TBox are assumed to be
constant.

1.3. Incomplete Knowledge

In many real-world scenarios the knowledge cannot be assumed to be complete. Consider
the medical examples from the previous section: Usually, only positive facts about
diseases are available and we cannot be sure if John is suffering from another disease
that is just not relevant for his cancer treatment and therefore was not mentioned in his
electronic health record (EHR). Apart from that in some DLs like EL negation is also
technically not available.

DLs usually employ the open-world assumption (OWA), i.e. it is assumed that the
knowledge in the KB is incomplete. In scenarios like the Semantic Web, were the whole
environment cannot be explored, the OWA is a reasonable choice. A fact is then entailed
by a KB only if it holds in every possible world, i.e. each world that respects axioms in the
ABox and the TBox. For example, a possible world for the KB defined in Equations (1.1)
to (1.4) could contain many other patients and John could have many other diagnoses.
It would even be possible that John and JohnsDiagnosis are names for the same object.
Under the OWA we can conclude that John is a cancer patient, since every possible world
has to contain that facts, but it is not possible to conclude that John has no other disease.
The consideration of every possibility makes the semantics monotonic. If a conclusion
can be drawn, it stays valid, no matter which additional knowledge the system obtains
at a later point in time. On the one hand, this makes conclusions very robust but on the
other hand, this limits the amount of conclusions that can be drawn. In many scenarios
this assumption is too strong. For example, an EHR usually contains mostly positive
findings of a patient. Intuitively, we would assume that a finding that is not mentioned
in the EHR is not there, even though we cannot be sure. We assume that the knowledge
in the EHR is complete to some extend and employ the closed-world assumption (CWA).
A fact is only considered to be true, if it can be inferred from the KB, and otherwise false.
With the CWA we can conclude that John has no other diseases except SkinCancer.
When we learn later, that John is also suffering from the flu, our previous conclusions
becomes invalid. Therefore, semantics based on the CWA are non-monotonic. The CWA

5



Chapter 1. Introduction

is the quasi-standard in relational database systems [Lev96]. Such systems even assume
a closed domain, i.e. there exist only the objects mentioned in the data and no further
ones. When combined with existential restrictions like in Equation (1.1), this means that
either John or JohnsDiagnosis have to be the findingSite of JohnsDiagnosis. This
is certainly not what the user expects and therefore the CWA assumption is too strong
as well. Many non-monotonic approaches have been introduced that are somewhere in
between the OWA and the CWA, for example, epistemic logic [MD80; Wol00], Reiter’s
default logic [Rei80] or Circumscription [McC80]. The difficulty here is that a formalism
can give intuitive results in a certain case, but unintuitive results in many others. Will
discuss in detail in Section 3.2, why existing non-monotonic formalisms are not suitable
to deal with anonymous individuals that are relevant in OMQA. To overcome this
limitation, in Chapter 3 we introduce minimal-world semantics.

1.4. Temporalized Description Logics
Many application domains inherently contain a temporal dimension. For example, the
EHRs of a patient certainly change over time and it is important to keep track of that.
To deal with such scenarios, a plethora of temporalized DLs has been introduced in the
literature, see for example [LWZ08; AKW+13]. In principle, a temporalized DL is a
combination of a DL with a temporal logic. There exist many different temporal logics,
however in this thesis we focus on linear-time temporal logic (LTL) [Pnu77], in which
the flow of time is assumed to be discrete and linear, i.e. each point in time has exactly
one successor.

When combining a temporal logic with a DL, the interactions need to be carefully
controlled in order to stay decidable. For example, in LTLALC, the first temporalized
DL introduced in [Sch93], temporal operators are allowed within concepts. For instance,
the concept

Researcher ⊓ ∃.authors.Publication

describes researchers that eventually ( ) author a publication. In contrast to non-
temporal DLs, this concept talks not only about the objects at a given time point, but
also involves objects at future time points.

In many scenarios, there exist certain properties that stay constant over time. We have
already seen the example of an incurable disease, which once diagnosed stays valid at all
future time points (in the live span of the patient). Other examples are properties like
being a human: one can argue that an object that is a human will always stay a human
and vice versa, an object that is not human will never become human. Such concepts
and roles are called rigid. While very desirable, rigid roles are so powerful that already
in the presence of a single rigid role, reasoning becomes undecidable, even when using
EL instead of ALC [AKL+07]. Therefore a variety of restrictions has been investigated
to regain decidability, for example by restricting temporal operators to occur only on
the left-hand side of GCIs [GJK16].

In temporalized OMQA, temporal queries are answered over temporal data. An
illustration can be found in Figure 1.2. Conceptually, the temporal data can be modeled
as a sequence of ABoxes, containing all the assertions valid at a specific time point, while
the TBox is assumed to be valid at all time points. A temporal query can ask not only

6



1.5 Outline and Contributions of the Thesis

TBox

Sequence of ABoxes

Figure 1.2.: A temporalized DL can be thought of as a single TBox together with an
ABox for each time point. The axioms in the TBox are valid at every time
point.

about relations between objects at a single time point, but also about objects at different
time points. As a simple example, with a temporal CQ we can ask for all patients that
have a ‘history of cancer,’5 i.e. those that were diagnosed with cancer at some point in
the past, using the temporal operator :

(−∞,0]
(︁
∃y.diagnosedWith(x, y) ∧ Cancer(y)

)︁
, (1.8)

where the time interval (−∞, 0] refers to the whole history (relative to the current
time point 0). More complex queries include ‘type 1 diabetes with duration at least 12
months,’6 utilizing the temporal always operator 2:

(−∞,0]2[−12,0]
(︁
∃y.diagnosedWith(x, y) ∧ Diabetes(y)

)︁
. (1.9)

In this case, we are looking for some time point t in the past ( (−∞,0]) for which during
the whole time interval [−12, 0] relative to t (that is, [t−12, t]) the patient had a diagnosis
of diabetes.

There are many applications in which data is collected in regular intervals. For
example, in stream reasoning, a continuous stream of sensor data is assumed and needs
to be processed in real time [CCG10b]. In other applications like EHRs, data are sparse.
They are only available at irregular intervals that can be years apart. If this is the case,
it is not optimal to artificially introduce all intermediate time points during reasoning.
We put a special emphasis on developing a temporal OMQA approach that can deal
with large temporal gaps in an efficient manner.

1.5. Outline and Contributions of the Thesis
In this work we are concerned with closed world semantics for temporalized OMQA over
sparse temporal data that contain (almost no) negation. The thesis is separated into
two main parts: In Part I we propose a novel closed-world semantics and a lightweight

5https://clinicaltrials.gov/ct2/show/NCT00064766
6https://clinicaltrials.gov/ct2/show/NCT02280564
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temporal extension of EL that can deal with sparse temporal data and show how to
answer temporal queries in this setting. In Part II we put the theory to practice by
evaluating a prototypical implementation on real world data. In the following we give a
brief outline of the remainder of the thesis section by section.

In Chapter 2 we give a short formal introduction to DLs. The syntax and semantics
are introduced and the complexity of reasoning in DLs is discussed. In particular, the
lightweight DL ELH⊥ is introduced, because this is the DL we are using in most of the
thesis. It provides the formal bases for the SNOMED CT ontology, which we will use
in our system for patient selection. We continue with a formal introduction of OMQA
over ELH⊥-KBs and discuss the technique of combined rewritings. In the last part of
Chapter 2 we introduce metric temporal linear logic. It is based on a discrete time line,
which in our setting are the integers. In contrast to classic linear time logic, the temporal
operators can be equipped with intervals, leading to a more concise notation.

In Chapter 3 we introduce a running example of the patient selection problem and
define which patients would intuitively be expected to satisfy a given criteria. We
then show that existing non-monotonic formalisms such as epistemic logics or closed
predicates fail to return the expected results and therefore are not suitable for the patient
selection task. We introduce minimal-world semantics in which only one model is used
for reasoning. This model is required to be universal and at the same time minimal
in the number of successors introduced per element. We show that every consistent
ELH⊥-KB has a minimal universal model that is unique up to isomorphism. Then, we use
the minimal-world semantics to answer conjunctive queries with negation (NCQs) over
ontologies formulated in the description logic ELH⊥. We propose a rewriting strategy
for dealing with negated query atoms, which shows that query answering is possible in
polynomial time in data complexity. These parts are mainly based on [BF19a; BF19b;
BF19c] where the first won the best paper award of the JELIA19 conference.

• Stefan Borgwardt and Walter Forkel: ‘Closed-World Semantics for Conjunctive
Queries with Negation over ELH⊥ Ontologies’. In Proc. JELIA Conference. Rende,
Italy: Springer, 2019, pages 371–386. doi: 10.1007/978-3-030-19570-0_24

• Stefan Borgwardt and Walter Forkel: ‘Closed-World Semantics for Conjunctive
Queries with Negation over ELH⊥ Ontologies’. In Proceedings of the 28th Interna-
tional Joint Conference on Artificial Intelligence. AAAI Press. 2019, pages 6131–
6135. doi: 10.24963/ijcai.2019/849

• Stefan Borgwardt and Walter Forkel: ‘Closed-World Semantics for Conjunctive
Queries with Negation over ELH⊥ Ontologies (Extended Abstract)’. In Proceedings
of the 32nd International Workshop on Description Logics. Volume 2373. CEUR
Workshop Proceedings. 2019. url: http://ceur-ws.org/Vol-2373/paper-
36.pdf

We finish the chapter by looking at possible extensions of minimal-world semantics to
more expressive Horn-DLs7 that support transitivity, nominals and inverse roles. We
discuss the relation of minimal-world semantics with cores, a concept from graph theory,
that overlaps with our definition of minimality in the case of ELH⊥. Unfortunately,

7Roughly speaking, a logic is Horn if it disallows all forms of disjunctions.
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cores deviate from the intuition behind minimal-world semantics when moving to more
expressive Horn-DLs.

With minimal-world semantics, we have a way to deal with negation in the queries.
In Chapter 4 we proceed by introducing the lightweight temporal logic TELH c♢,lhs

⊥ . It
is a temporal extension of the tractable language ELH⊥, which features a new class of
convex diamond operators that can be used to bridge temporal gaps in sparse data that
occur in many domains. In the medical domain, for instance, data are only available as
long as a patient is admitted to a hospital, but not in between. With the help of the
diamond operators, such gaps can be interpolated by expressions like

cc 2CancerPatient ⊑ CancerPatient,

i.e. if a person is known to be a cancer patient at two time points t, t′ that are at
most 2 months apart, then the patient was also a cancer patient at all time points in
between t and t′. We develop a completion algorithm for our logic, which shows that
entailment remains tractable. Moreover, we show that TELH c♢,lhs

⊥ is suitable to deal with
sparse temporal data: By the choice of the diamond operators, the behavior in every
intermediate interval between time points occurring in the ABox can be captured by a
single representative time point.

With the temporal logic TELH c♢,lhs
⊥ at hand we want to employ it for temporal OMQA

and introduce temporal conjunctive queries with negation (MTNCQs) as a temporal
query language in Chapter 5. In order to answer MTNCQs we construct a temporal
minimal model for a given consistent TELH c♢,lhs

⊥ -KB. Because it is not clear how the
intuition behind minimality can be retained when temporal roles are present, we disallow
temporal roles in this setting. Through a two step combined rewriting we are able to show
that MTNCQs answering in TELH c♢,lhs

⊥ w.r.t. minimal-world semantics is still tractable
in data complexity. In the first step the atemporal rewriting defined in Chapter 3 is
applied to the atemporal parts of the query. In the second step the temporal parts
are rewritten to a finite representation by exploiting the property of TELH c♢,lhs

⊥ that
intermediate intervals can be described by a constant number of representatives. This
and the previous chapter are based on the publications [BFK19; BFK20; BFK]

• Stefan Borgwardt, Walter Forkel, and Alisa Kovtunova: ‘Finding New Diamonds:
Temporal Minimal- World Query Answering over Sparse ABoxes’. In Proc. of
the 3rd International Joint Conference on Rules and Reasoning (RuleML+RR’19).
Bolzano, Italy: Springer, 2019. doi: 10.1007/978-3-030-31095-0_1

• Stefan Borgwardt, Walter Forkel, and Alisa Kovtunova: ‘Finding New Diamonds:
Temporal Minimal- World Query Answering over Sparse ABoxes (Extended Ab-
stract)’. In Proceedings of the 33rd International Workshop on Description Logics
(DL 2020). Volume 2663. CEUR Workshop Proceedings. 2020. doi: 10.1007/978-
3-030-31095-0_1

• Stefan Borgwardt, Walter Forkel, and Alisa Kovtunova: ‘Finding New Diamonds:
Temporal Minimal- World Query Answering over Sparse ABoxes’. In: Submitted
to the Journal of Theory and Practice of Logic Programming (TPLP). doi: 10.
1007/978-3-030-31095-0_1
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This concludes the theoretical part of this work and we move to Part II, where we
conduct two experiments to evaluate the suitability of our approach for the patient
selection task, which we analyzed in [BBF18]

• Franz Baader, Stefan Borgwardt, and Walter Forkel: ‘Patient Selection for Clinical
Trials Using Temporalized Ontology-Mediated Query Answering’. In Proc. HQA
Workshop. ACM, 2018, pages 1069–1074. doi: 10.1145/3184558.3191538

In Chapter 6 we discuss a prototypical implementation of a system for automatic
translation of clinical trial criteria into MTNCQs. The system uses natural language tools
and techniques to construct an intermediate structure containing the relevant information
of a given criterion. A mapping is then defined that associates each intermediate structure
to an MTNCQ. The approach is tested using criteria from ClinicalTrials.gov. For each
criterion the translation provided by the system is evaluated manually. The evaluation
shows that the system can provide correct translation to many criteria. This chapter is
based on [XFB+19]

• Chao Xu, Walter Forkel, Stefan Borgwardt, Franz Baader, and Beihai Zhou:
‘Automatic Translation of Clinical Trial Eligibility Criteria into Formal Queries’.
In Proc. of the 9th Workshop on Ontologies and Data in Life Sciencs (ODLS’19),
part of The Joint Ontology Workshops (JOWO’19). CEUR Workshop Proceedings.
2019

In Chapter 7 we assume that the criteria are already translated to MTNCQs and we
apply temporal OMQA to select patients. We shortly describe QUELK, our system
for query answering, and the input formats it requires. Moreover, we discuss the parts
in which the implementation differs from the theoretical algorithms we have developed
before. QUELK is then tested on a small dataset for patient selection. For the evaluation
we focus on criteria that contain temporal information and manually translate them to
MTNCQs. Based on existing tools we extract medical concepts occurring in the EHRs
and generate a temporal ABox automatically. We conduct two experiments to show
the importance of temporal reasoning: In the first setting, all temporal information
are ignored, effectively merging all EHRs to a single time point and using only NCQs
for querying. This is evaluated against the temporal setting, in which the MTNCQs
are evaluated over the temporal ABox. As expected the quality of the results is better
when the temporal dimension is taken into account. We end this thesis by providing
conclusions and discussing future work in Chapter 8.
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Chapter 2.

Preliminaries

In this chapter we give a short formal introduction into Description Logics (Section 2.1),
Ontology-Mediated Query Answering (Section 2.2) and Temporal Logic (Section 2.3).
For the reader familiar with these topics, this chapter may be skipped and used merely
as a reference for the exact definitions that are used in the following chapters.

2.1. Description Logics

Description Logics (DLs) are a family of logic-based knowledge representation formalisms.
In the following we give a short introduction to DL. For a more detailed introduction we
refer the reader to [BCM+07; BHL+17].

Description Logics allow the modeling of the conceptual knowledge of a given ap-
plication domain. Conceptual knowledge is represented by defining relevant concepts
of the domain. This terminology can then be used to specify properties of objects
and individuals that are part of the application domain. In contrast to some of their
predecessors, DLs are equipped with formal, logic-based semantics. This allows for
automated reasoning and therefore the inference of implicit knowledge from the explicit
knowledge contained in the knowledge base [BCM+07].

In practice a user querying a knowledge representation (KR) system expects to get a
positive or a negative answer in reasonable time. Different DLs offer different trade-offs
between their expressivity, i.e. which features it supports for describing the application
domain, and their complexity of reasoning.

2.1.1. The Basic DL ALC

In the following we give a short introduction to the basic and widely used DL ALC , first
introduced in [SS91]. Its name stands for ‘Attribute concept Language with Complement’
and it supports all three Boolean operators, i.e. conjunction, disjunction and negation.
While on the one hand it serves as the basis for many more expressive DLs, on the other
hand many light-weight DLs can be seen as fragments of ALC.

The basic building blocks of any DL are three sets: In the following, let NC ,NR and
NI be disjoint, countable infinite sets of concept names, role names and individual names,
respectively. The names from these sets can be used to define our application domain.
We start out by defining how complex concepts can be build:

Definition 2.1 (Syntax of concepts). The set of ALC concepts is the smallest set
satisfying the following:

13
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• every C ∈ NC is an ALC concept,
• the top concept ⊤ and bottom concept ⊥ are ALC concepts,
• if C,D are ALC concepts, then also C ⊓D (conjunction), C ⊔D (disjunction) and
¬C (negation/complement) are ALC concepts, and

• if r ∈ NR and C is an ALC concept, then ∃r.C (existential restriction) and ∀r.C
(universal restriction) are ALC concepts. ♢

We can use the available concept constructors of ALC to build complex concepts that
describe the properties we are interested in. Consider for example the following concept
description:

Male ⊓ ∃livesIn.(House ⊓ ∃locatedIn.(Dresden ⊔ Bautzen)) ⊓ ∀hasChild.Male (2.1)

This concept describes a male person that lives in a House in Dresden or Bautzen and
has only male children.

In Description Logics formal semantics to such concept descriptions is defined model-
theoretically using the notion of an interpretation.

Definition 2.2 (Semantics of concepts). An interpretation is a pair I = (∆I , ·I),
where the domain ∆I is a non-empty set and the interpretation function ·I assigns

• to every a ∈ NI an element aI ∈ ∆I ,
• to every C ∈ NC a set CI ⊆ ∆I , and
• to every r ∈ NR a binary relation rI ⊆ ∆I ×∆I .

The function is extended to complex concepts as follows:

• (C ⊓D)I := CI ∩DI

• (C ⊔D)I := CI ∪DI

• (¬C)I := ∆I \CI

• (∃r.C)I := {d ∈ ∆I | there exists e ∈ ∆I with (d, e) ∈ rI and e ∈ CI}

• (∀r.C)I := {d ∈ ∆I | for all e ∈ ∆I if (d, e) ∈ rI then e ∈ CI}.

A concept C is said to be satisfiable if there is an interpretation I with CI ̸= ∅. ♢

A possible interpretation I1 of the concept description in Equation (2.1) is the following:

∆I1 := {a, b, c, d}
MaleI1 := {a, d}

HouseI1 := {b}
DresdenI1 := {c}
BautzenI1 := ∅
livesInI1 := {(a, b)}

locatedInI1 := {(b, c)}
hasChildI1 := {(a, d)}

14
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Figure 2.3.: A graphical representation of two possible interpretations for the concept
description in Equation (2.1). Each object is denoted with a gray circle and
labeled with the concept names it belongs to. Each edge between objects is
labeled with the role names it satisfies.

In the interpretation I1 a male person has a livesIn-edge to an object that is a House
that is connected with a locatedIn-edge to an object belonging to the concept Dresden.
The male also has a hasChild-edge to an object that is Male. In Figure 2.3 a graphical
representation of I1 and another interpretations I2 can be seen. The interpretation
I2 might be more surprising, since there the male lives in two different houses, one
in Bautzen and one in Leipzig. Still, this satisfies the concept, since it describes the
existence of a house located in Bautzen (or Dresden). On the other hand, the constraint
that all children should be male is satisfied trivially in I2, since there are no children.

In the following we make the standard names assumption (SNA), i.e. that each
interpretation I assigns a standard name to each element a ∈ NI , formally aI = a. The
SNA is an assumption that is often made in DLs to simplify notation.

While concept descriptions already offer some expressivity, they alone do not allow to
state hierarchical knowledge between different concepts, for example, that every person
is a human.

Definition 2.4 (Syntax and Semantics of TBoxes). A general concept inclusion
(GCI) is of the form C ⊑ D, where C and D are concepts. A TBox is a finite set of
GCIs. An interpretation I is a model of a GCI C ⊑ D if CI ⊆ DI . I is a model of a
TBox T , denoted by I |= T , if I is a model of all GCIs in T . ♢

As usual, we define A ≡ B as an abbreviation for the two GCIs A ⊑ B and B ⊑ A.

Definition 2.5 (Syntax and Semantics of ABoxes). A concept assertion is of the
form C(a) and a role assertion is of the form r(a, b), where C ∈ NC , r ∈ NR, and a, b ∈ NI .
An ABox is a finite set of concept and role assertions. An interpretation I is a model (i)
of a concept assertion C(a) if aI ∈ CI , (ii) of a role assertion r(a, b) if (aI , bI) ∈ rI , and
(iii) of an ABox A, denoted by I |= A, if it is a model of all assertions in A. ♢

In the following we often call GCIs, concept and role assertions simply axioms.

Definition 2.6 (Knowledge Base). A knowledge base K = (T ,A) consists of a TBox
T and an ABox A. An interpretation I is a model of K, denoted by I |= K, if I is a
model of T and A. K is consistent if it has a model. An axiom α is entailed by K,
denoted by K |= α if every model of K is also a model of α. ♢
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Example 2.7. The following example is based on an example from [Rud11]. Let
K = (T ,A) be a KB with T containing the following GCIs:

Healthy ⊑ ¬Dead (someone that is healthy is not dead)
Cat ⊑ Dead ⊔ Alive (a cat is dead or alive)

HappyCatOwner ⊑ ∃caresFor.Cat ⊓ (a happy cat owner cares for a cat and
∀caresFor.Healthy all beings he cares for are healthy)

Let A contain the assertion that Schrödinger is a happy cat owner:

HappyCatOwner(Schrödinger)

It is easy to check that K is consistent by constructing a model of K. As an example
for entailment, it holds that K |= Cat ⊓ Healthy ⊑ Alive, i.e. a healthy cat is also alive.
The conclusion can be drawn because of the first two axioms in T : Since each cat is
Dead or Alive, and being Healthy implies not being Dead, the only possibility is that a
healthy cat is Alive. ♢

Definition 2.8 (Signature). The signature sig of a concept C is the set of all concept
and role names occurring in C. The signature of a KB K = (T ,A) is defined as

sig(T ) =
⋃︂

C⊑D∈T
sig(C) ∪ sig(D)

sig(A) =
⋃︂

C(a)∈A

{C, a} ∪
⋃︂

r(a,b)∈A

{r, a, b}

sig(K) = sig(T ) ∪ sig(A) ♢

2.1.2. Relation to First-Order Logic

As mentioned already DLs can be seen as decidable fragments of first-order logic (FOL).
Concept and role names correspond to unary and binary predicates, respectively, while
individual names correspond to constants. For example, the GCI

Parent ⊑ Person ⊓ ∃hasChild.(Male ⊔ Female)

corresponds to the FOL formula

∀x.
(︂
Parent(x) =⇒ Person(x) ∧ ∃y.

(︁
hasChild(x, y) ∧ (Male(y) ∨ Female(y))

)︁)︂
.

The translation requires the use of at most two variables x and y. This also shows
that ALC, like many other DLs belongs to the two-variable fragment of FOL, i.e. those
first-order formulas that can be written using only two variables x and y (and possibly
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requantifying them) [Bor96]. Formally, the translation function πx is defined inductively
by

πx(A) = A(x)
πx(C ⊓D) = πx(C) ∧ πx(D)
πx(C ⊔D) = πx(C) ∨ πx(D)
πx(∃r.C) = ∃y.(r(x, y) ∧ πy(C)
πx(∀r.C) = ∀y.(r(x, y) ∧ πy(C)
πx(¬C) = ¬πx(C).

The function πy is analogously defined. The translation can be extended to ABoxes and
TBoxes:

π(T ) = ∀v.
⋀︂

C⊑D∈T
(πx(C)→ πx(D)),

π(A) =
⋁︂

C(a)∈A

C(a) ∧
⋁︂

r(a,b)∈A

r(a, b)

Theorem 2.9 ([BHL+17]). Let (T ,A) be an ALC-KB. It holds that (T ,A) is satis-
fiable iff π(T ) ∧ π(A) is satisfiable.

2.1.3. Extensions of ALC

DLs differ between one another by the concept and role constructors that are available.
In the DL nomenclature additional constructors are denoted by concatenating their
corresponding letters, for example, number restrictions (N ) allow to restrict the total
number of role-successors. With number restrictions we can express by the axiom

Parent ⊑ ≥ 1.hasChild.⊤

that a parent has at least 1 child. With qualified number restrictions (Q), it is even
possible to restrict the number of role-successors that belong to a certain concept, i.e.

Car ⊑ ≥ 4.hasPart.Tire

expresses that each car has a least four tires. If the DL supports inverse roles (I), one
can express that for each tire there is a car the tire is part of, formally

Tire ⊑ ∃hasPart−.Car.

If we allow both qualified number restrictions and inverse roles in ALC, the logic we
obtain is called ALCIQ. The extension of ALC with transitivity is usually denoted by S
because of its close relationship to the modal logic S4. If nominals are available then
individual names can be used as concepts in the TBox. This can be used to restrict the
members of certain concepts. For example, the axiom

Element ⊑ {Earth,Water,Wind,Fire}
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expresses that Earth, Water, Wind, or Fire are the only elements. With role hierarchies
(H) role inclusion axioms (RIAs) can be stated such as

childOf ⊑ descendantOf,

i.e. if b is the child of a, then b is also a descendant of a. Even more expressive are role
chains (R) which allow to express axioms such as

hasChild− ◦ hasChild ⊑ hasSibling,

saying that the child of someone I am a child of is my sibling. Transitivity can be
expressed through role chains, for example the RIA

descendantOf ◦ descendantOf ⊑ descendantOf

make the role descendantOf transitive. The logic that allows all the constructors
introduced above is called SROIQ.

Throughout this thesis, we sometimes prefix some notions with the specific DL to
make clear which DL is used to construct the concepts or axioms. For instance, we may
write ‘ALC-KB’ to make clear that the KB is constructed using only concepts expressible
in ALC. If the DL under consideration is clear from the context, we omit this prefix for
ease of presentation.

2.1.4. The Complexity of Reasoning in DLs
Most of the time we are interested not only in the explicitly stated axioms and assertions
of a KB, but also in the implicit knowledge that is implied by the formal semantics of
DLs. Given a KB K = (T ,A) different reasoning problems have been investigated:

• the consistency problem asks if there is least one model of K. If there are no models
at all, the KB is inconsistent and contains a contradiction;

• the satisfiability problem is a bit more specific by asking if there is a model of T
that also satisfies a given concept C;

• the subsumption problem asks if a concept C is contained in (a sub-concept of) a
concept D in all models of T , formally T |= C ⊑ D; and

• the instance checking problem also takes A into account and asks whether an
individual a is a member of a concept C in all models of K, formally K |= C(a).

In the following we may write C ⊑T D as a notational variant to T |= C ⊑ D. The four
reasoning problems have been shown to be closely related to each another:

Theorem 2.10 ([BHL+17]). Let K = (T ,A) be an ALC-KB, C,D concepts and a an
individual name. Then the following hold:

1. C ≡T D iff C ⊑T D and D ⊑T C.

2. C ⊑T D iff C ⊓ ¬D is not satisfiable w.r.t. T .

3. C is satisfiable w.r.t. T iff C ̸⊑T ⊥, where ̸⊑T denotes the negation of ⊑T .
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4. C is satisfiable w.r.t. T iff (T ∪ {C(a)}) is consistent for a new individual a.

5. K |= C(a) iff (T,A ∪ {¬C(a)}) is inconsistent.

The above theorem does not only hold for ALC, but also for other DLs that support
negation and conjunction in complex concepts. As a consequence it is sufficient to focus
on the problem of consistency, since all others can be reduced to the consistency problem.

Of central interest to DL research is the question how efficient reasoning can be done in
a given DL and how the efficiency changes when adding or removing certain constructors
from the DL. This ‘difficulty’ is captured by the computational complexity of a problem.
It gives measures for how hard it is to solve a given decision problem, and in particular
to compute a solution to the problem. Every problem belongs to its own complexity
class, which is defined by a (non)-deterministic Turing machine and a specific resource
bound on space or computation time. In the following, we list some complexity classes
that are relevant for this thesis, in increasing order w.r.t. set inclusion:

• PTime is the class of problems that can be solved in polynomial time by a determ-
inistic Turing machine. Problems in PTime are also called tractable problems.

• NP is the class of problems that can be solved in polynomial time by a non-
deterministic Turing machine.

• PSpace is the class of problems that can be solved in polynomial space by a
(non)-deterministic Turing machine.

• ExpTime is the class of problems that can be solved in exponential time by a
deterministic Turing machine.

• NExpTime is the class of problems that can be solved in exponential time by a
non-deterministic Turing machine.

Additionally, complementary complexity classes exist, for example coNP is the class of
problems whose complements are in NP. For a more in depth introduction to computa-
tional complexity, we refer the reader to [Pap94].

Given a complexity class C a problem L is said to be C-hard if there is a reduction in
polynomial time from a problem L′ ∈ C to L. A problem is C-complete if it is in C and it
is C-hard.

Lemma 2.11 ([BHL+17]). In ALC the consistency problem is ExpTime-complete.

2.1.5. The EL family of DLs

As we have seen even basic reasoning problems such as consistency checking are already
not tractable in ALC. This has lead to the investigation of fragments of ALC that trade
some expressiveness for the benefit of tractable reasoning. In the following we introduce
a lightweight DL called ELH⊥, a slight extension of the basic DL EL by role hierarchies
and the bottom concept (⊥).

An ELH⊥ concept is defined by the following grammar rule:

C ::= A | ⊤ | ⊥ | C ⊓C | ∃r.C
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T1
A ⊑ ⊤

A1 ⊑ A2 A2 ⊑ A3T2
A1 ⊑ A3

r1 ⊑ r2 r2 ⊑ r3T3 r1 ⊑ r3

A ⊑ A1 A ⊑ A2 A1 ⊓A2 ⊑ BT4
A ⊑ B

T5 ∃r.⊥ ⊑ ⊥
A ⊑ ∃r.A1 r ⊑ s A1 ⊑ B1 ∃s.B1 ⊑ BT6

A ⊑ B

A1 ⊤(a)
A(a) A ⊑ B

A2
B(a)

r(a, b) r ⊑ s
A3

s(a, b)

A1(a) A2(a) A1 ⊓A2 ⊑ BA4
B(a)

r(a, b) A(b) ∃r.A ⊑ B
A5

B(a)

Figure 2.12.: Completion rules for ELH⊥ knowledge bases, where A,B,A1,A2,A3,B1 are
⊤, ⊥ or (normalized) ELH⊥ concepts from K; r, s, r1, r2, r3 are role names
from K; a, b are individual names from K.

where A ∈ NC and r ∈ NR. In addition to GCIs, an ELH⊥-TBox may also contain RIAs
of the form r ⊑ s where r, s ∈ NR.

In general members of the EL family do not allow negation or disjunction. However,
by the ⊥-concept it becomes possible to express concept disjointness through GCIs of
the form A ⊓B ⊑ ⊥, i.e. nothing can belong to A and B at the same time. This offers a
limited type of negation, since A⊓B ⊑ ⊥ implies A ⊑ ¬B and B ⊑ ¬A, which cannot be
expressed directly in ELH⊥.

To simplify the description of algorithms, it is often useful to require the TBox to be
in an appropriate normal form. A general ELH⊥-TBox T is in normal form if it contains
only GCIs of the following form:

A1 ⊓ · · · ⊓An ⊑ B ∃r.A ⊑ B A ⊑ ∃r.B r ⊑ s (2.2)

where A1, . . . ,An,A ∈ NC ∪ {⊤},B ∈ NC ∪ {⊥}, r, s ∈ NR, and n ≥ 1. Note that ⊥ is
allowed to occur only on the right-hand side, because GCIs with ⊥ on the left-hand side
are trivially satisfied and can therefore be omitted. For the same reason ⊤ is allowed
only on the left-hand side of GCIs.

The transformation of a general TBox T into a normalized TBox T ′ can be done in
polynomial time and introduces fresh concept names when needed, therefore the signature
of T ′ possibly becomes larger [BHL+17]. For example, the GCI A ⊓ ∃r.B ⊑ C ⊓D can
be expressed by the following normalized GCIs

A ⊓B1 ⊑ C A ⊓B1 ⊑ D ∃r.B ⊑ B1

where B1 is a fresh concept name. The transformation preserves consequences, i.e. it holds
for all concepts A,B ∈ sig(T ) that T |= A ⊑ B iff T ′ |= A ⊑ B. In the following, if not
stated otherwise we assume all ELH⊥-KBs to be normalized according to Equation (2.2).
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In ELH⊥ the subsumption problem can be decided in PTime by consequence-based
reasoning algorithms: In a normalized ELH⊥-KB, there are only polynomially many
GCIs (in normal form) that are possible consequences of the stated GCIs of the TBox.
All of these GCIs in normal form can be generated in polynomial time by the rules T1-T6
in Figure 2.12. A rule is applicable, if the rule head (above the bar) can be satisfied
by axioms in the KB. If the rule is applied the axioms in the body of the rule (below
the bar) are added to the KB, if they were not present already. If the head of a rule is
empty, it is trivially satisfied.

With the same approach the instance problem can be solved by applying the rules
A1-A5 to saturate the ABox. For more details see [BHL+17].

While without negation and disjunction the reasoning tasks cannot directly be reduced
to one another, the saturation procedure can also be used to check consistency in PTime:
If the KB is inconsistent, the GCI ⊤ ⊑ ⊥ will be derived as a consequence. Similarly, a
concept C is satisfiable if the saturation procedure does not derive the GCI ⊥ ⊑ C.

2.2. Ontology-Mediated Query Answering
So far we have seen different reasoning tasks that give us basic information about the
knowledge contained in a given KB. This can provide us with some insights, but often
more advanced reasoning tasks are required. In ontology-mediated query answering
(OMQA) the idea is to answer complex queries about the data and mediate them
using the background knowledge contained in the TBox (ontology). In the following
we introduce two query languages, namely general first-order queries and conjunctive
queries, that we will use later to query ELH⊥-KBs.

In the following let NV be a countably infinite set of variables. The set of terms is
NT := NV ∪NI , as the set of all variables and individual names.

Definition 2.13 (First-order query). A first-order query ϕ(x) is a first-order formula
built from concept atoms A(t) and role atoms r(t, t′) with A ∈ NC , r ∈ NR, and ti ∈ NT ,
using the Boolean connectives (∧,∨,¬,→) and universal and existential quantifiers
(∀x,∃x).

The free variables x of ϕ(x) are called answer variables and we say that ϕ is k-ary if
there are k answer variables.

The remaining variables are the quantified variables. We use Var(ϕ) to denote the set
of all variables in ϕ.

A query without any answer variables is called a Boolean query. ♢

As usual, the semantics are given in terms of interpretations:

Definition 2.15 (Semantics of first-order queries). Let I = (∆, ·I) be an inter-
pretation. An assignment π : Var(ϕ) → ∆I satisfies ϕ in I, if I, π |= ϕ under the
standard semantics of first-order logic shown in Figure 2.14. We write I |= ϕ if there is a
satisfying assignment for ϕ in I.

Let K be a DL-KB. A k-tuple a of individual names from Ind(K) is an answer to ϕ
in I if ϕ has a satisfying assignment π in I with π(x) = a, where Ind(K) denotes the
individual names occurring in K.

We denote the set of all answers to ϕ in I by ans(ϕ, I). ♢
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Name ϕ I, π |= ϕ iff

Concept atom A(x) π(x) ∈ AI

Role atom r(x, y) (π(x), π(y)) ∈ rI

Negation/Complement ¬ϕ1 I, π ̸|= ϕ1

Conjunction ϕ1 ∧ ϕ2 I, π |= ϕ1 and I, π |= ϕ2

Disjunction ϕ1 ∨ ϕ2 I, π |= ϕ1 or I, π |= ϕ2

Implication ϕ1 → ϕ2 I, π |= ¬ϕ1 ∨ ϕ2

Universal quantification ∀x.ϕ1 I, π{x ↦→ a} |= ϕ1 for all a ∈ ∆I

Existential quantification ∃x.ϕ1 I, π{x ↦→ a} |= ϕ1 for some a ∈ ∆I

Figure 2.14.: Semantics of first-order queries, where x, y ∈ NT , A ∈ NC , r ∈ NR, π is
an assignment extended by {a ↦→ aI | a ∈ NC}, and π{x ↦→ a} denotes the
overwriting of the mapping of x in π.

Definition 2.16 (Certain Answer Semantics). Let K be a consistent DL-KB and
let ϕ(x) be an n-ary first-order query. A k-tuple a of individual names from Ind(K) is a
certain answer to ϕ in K, if it is an answer to ϕ in all model of K.

We denote the set of all certain answers to ϕ over K by cert(ϕ,K). ♢

Example 2.17. Consider the following KB KWood containing the information that John
owns a wooden table:

WoodenTable(TableOfJohn) Table ⊑ Furniture

owns(John,TableOfJohn) WoodenTable ⊑ Table ⊓ ∃madeOf.Wood ♢

Suppose we want to find persons that own furniture that is entirely made up of wood.
We pose a first-order query with one answer variable x that should be assigned to the
persons we are interested in:

ϕ1(x) = ∀y.owns(x, y) ∧ Furniture(y)→ ∀z.madeOf(y, z) ∧ Wood(z) (2.3)

When evaluating ϕ1 over I1 in Figure 2.18, we obtain John as an answer. However, John
is not a certain answer to the query. While it is possible that John owns only a single
wooden table and that table is made entirely out of wood, it is not certain, since, for
example, I2 is also a model and provides the alternative possibility that some part of
the table could be made of metal. When using certain answer semantics, as the name
suggests, we only get answers that are certain, i.e. that hold in every possible model.

2.2.1. Conjunctive Queries
An important fragment of general first-order queries are conjunctive queries (CQs).
While not being as expressive, they are powerful enough for many use-cases and often
offer a lower complexity.
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John

TableOfJohn

a1

WoodenTable

Table

Furniture

Wood

owns

madeOf

I1 : John

TableOfJohn

a1 a2

WoodenTable

Table

Furniture

Metal Wood

owns

madeOf madeOf

I2 :

Figure 2.18.: Two possible models of the KB from Example 2.17.

Definition 2.19 (Conjunctive Query). A conjunctive query (CQ) q(x) is a first-
order query of the form ∃y. φ(x,y), where φ is a conjunction of atoms.

Abusing notation, we write α ∈ q if the atom α occurs in q, and conversely may treat
a set of atoms as a conjunction. The leaf variables x in q are those that do not occur
in any atoms of the form r(x, y). Clearly, q is satisfied in an interpretation if there is a
satisfying assignment for φ(x,y), which is often called a match for q.

Two variables y, y′ in q are connected if there exists a sequence of variables (y0, y1, . . . , yn)
in q with y0 = y, yn = y′ and for each 0 ≤ i < n there exists r(yi, yi+1) ∈ q or r(yi+1, yi) ∈ q
for r ∈ NR. A CQ q is connected if every variable is connected to every other variable in
q.

A CQ q is rooted if q has at least one answer variable and all quantified variables are
connected to an answer variable in q. ♢

Continuing our example, suppose we modify our query and ask for persons that own
some kind of furniture made out of wood. While ϕ1(x) could not be expressed as a CQ,
it is possible this time:

ϕ2(x) = ∃y.∃z.owns(x, y) ∧ Furniture(y) ∧ madeOf(y, z) ∧ Wood(z) (2.4)

For ϕ2, John is a certain answer, since in all possible worlds (models), John owns a table
that is at least made up of wood.

2.2.2. Complexity of OMQA

The complexity of OMQA depends on the underlying DL L and the chosen query
language Q. For the purpose of analyzing the complexity of answering Q-queries over
L, OMQA can be viewed as a decision problem in the following way: Given a L-KB
K = (T ,A), a k-ary Q-query ϕ(x), and a k-ary tuple a, does a ∈ cert(ϕ,K) hold?

The complexity of query answering is usually viewed in two different ways [Var82]:

• The combined complexity is measured as a function depending on the size of all
inputs, i.e. |ϕ|+ |T |+ |A|+ |a|.
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• For data complexity, all inputs except the ABox (containing the data) are assumed
to be constant. Therefore, they do not contribute to the complexity of query
answering.

The key observation is that in practice the queries are usually very small compared to the
amount of data contained in the KB. The same holds for the TBox, which might contain
thousands of axioms, but is still negligible compared to millions of data assertions. For
this reason, data complexity is generally considered to be the more useful complexity
measure in the database world as well as the OMQA world.

In ALC answering CQs is in coNP in data complexity and ExpTime in combined
complexity [OSE08]. As we will see in the following CQ answering in ELH⊥ is less
complex.
ELH⊥ enjoys the universal model property (in the literature also referred to as canonical

model property): There exist certain models that can be homomorphically mapped into
any other model. Intuitively, these models satisfy all constraints of a given KB in the
most general way [ORS11].

Definition 2.20 (Homomorphism and Universal Model). Let K be a consistent
ELH⊥-KB and I,J models of K. A mapping h : ∆I → ∆J from I to J is a homomorphism
if

• h(aI) = aJ for all a ∈ NI ,

• if d ∈ CI then h(d) ∈ CJ , for all d ∈ ∆I and C ∈ NC , and

• if (d, e) ∈ rI then (h(d), h(e)) ∈ rJ , for all d, e ∈ ∆I and r ∈ NR.

A homomorphism is said to be strong, if in the last two conditions the implications are
replaced with equivalences, i.e. d ∈ CI iff h(d) ∈ CJ and (d, e) ∈ rI iff (h(d), h(e)) ∈ rJ .
An endomorphism of I is a homomorphism h : ∆I → ∆I from I into itself.

A model I of K is a universal model of K, denoted by IK, if for all models J of K
there is a homomorphism from I to J , denoted by I → J . ♢

Because universal models can be homomorphically mapped into any other model,
every match π in a universal model IK of a consistent KB K corresponds to matches in all
other models of K. A match in a given model J can be constructed by composing π with
the respective homomorphism h from IK to J . Many proposed reasoning procedures
exploit this property to obtain optimal complexity bounds. The following lemma shows
that in order to obtain certain answers to a given query, it is sufficient to evaluate the
query exclusively over a universal model.

Lemma 2.21. Let K be a consistent ELH⊥-KB, IK a universal model of K, and q(x) a
CQ. Then cert(q,K) = ans(q, IK).

In general, universal models can be infinite so the query cannot be evaluated over them
directly in practice. To overcome this it has been shown in [LTW09] that CQ answering
over ELH⊥-KBs is combined first-order rewritable: For any CQ q and consistent KB
K = (T ,A) we can find a finite set of first-order queries QT and a finite interpretation
Ifin

K such that cert(q,K) = ⋃︁
qT ∈QT

ans(qT , Ifin
K ). Importantly, Ifin

K is independent of q, i.e.
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can be reused to answer many different queries, while QT is independent of A, i.e. each
query can be rewritten without using the (possibly large) dataset.

Consider query ϕ2 from Equation (2.4). We know that if a person owns a wooden
table, then this person also owns a piece of furniture that is made up of wood by the
GCI WoodenTable ⊑ Furniture ⊓ ∃madeOf.Wood in Example 2.17. Therefore, ϕ2 could
be rewritten to the following query:

ϕ′
2(x) = ∃y.owns(x, y) ∧ WoodenTable(y)

A finite interpretation Ifin
K can be constructed in polynomial time, essentially by ignoring

all anonymous objects from a canonical model IK:

John TableOfJohn

WoodenTable

Table

Furniture

owns

While the original query ϕ2 does not yield any answers over Ifin
K , John is still returned

as an answer to ϕ′
2 and is therefore a certain answer.

Regarding complexity, the finite interpretation Ifin
K can be constructed in polynomial

time in the size of a given KB K = (A, T ), and a single rewriting ϕ′ of a given query ϕ
can be constructed in polynomial time in the size of q and T . The obvious NP algorithm
can then be used to check whether a given tuple a is an answer, formally a ∈ ans(Ifin

K , q).
Since the rewriting is done independent of the ABox, it does not influence the data
complexity. As a consequence, CQ answering over a ELH⊥ ontology is PTime-complete
in data complexity and NP-complete in combined complexity [Ros07a; LTW09].

The EL family of DLs belongs to the class of Horn-DLs. Their distinctive feature is the
incapability of expressing disjunction, which means that Horn-DL KBs can be translated
to the Horn-fragment of FOL. Because there is no disjunction, they enjoy the universal
model property [BO15]. By exploiting this it has been shown that CQ answering stays
tractable in data complexity even up to the very expressive Horn-SROIQ [ORS11].

2.3. Metric Linear Temporal Logic
In many applications a single static object dimension is not enough. Often things change
over time, for example a patient’s diagnoses or the values of a sensor. In such cases
temporal logics need to be employed. In linear-time logics a linear flow of time is
assumed, i.e. each time point has exactly one successor. A well-investigated such logic
is Linear-Time Temporal Logic (LTL) [Pnu77]. There exist also temporal logics with a
branching flow of time, for example Computation Tree Logic (CTL) [CE81]. However, in
this thesis, we consider only combinations of DLs with LTL. In the following we briefly
introduce LTL with and without intervals in binary.

Definition 2.22 (Syntax of propositional LTL). Let P = {p1, . . . , pn} be a finite
set of propositional variables. The set of propositional LTL formulas is the smallest set
such that

• if p ∈ P, then p is a propositional LTL-formula over P; and
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-1 0 1 2 3
. . . . . .

∅ {p1, p2} {p2} {p3} {p1}
W1 :

-1 0 1 2 3
. . . . . .

{p1, p2} {p3} {p1, p2} {p2} {p3}
W2 :

Figure 2.23.: Two propositional LTL-structures W1 and W2 for Example 2.24.

• if ϕ1 and ϕ2 are propositional LTL-formulas, then so are ¬ϕ1 (negation), ϕ1 ∧ ϕ2,
(conjunction), #ϕ1 (next), #−ϕ1 (previous), ϕ1 Uϕ2 (until), and ϕ1 Sϕ2 (since). ♢

In the following we omit the set P and talk about propositional LTL-formulas rather than
propositional LTL-formulas over P. We introduce the usual abbreviations of temporal
logics:

• ϕ1 ∨ ϕ2 (disjunction) as an abbreviation for ¬(¬ϕ1 ∧ ¬ϕ2),

• ⊤ (top) as an abbreviation for an arbitrary, but fixed propositional tautology p∨¬p
for some p ∈ P,

• ⊥ (bottom) as an abbreviation for ¬⊤,

• ϕ1 (eventually) as an abbreviation for ⊤Uϕ1,

• 2ϕ1 (always) as an abbreviation for ¬ ¬ϕ1,

• −ϕ1 (once) as an abbreviation for ⊤Sϕ1,

• 2−ϕ1 (always in the past) as an abbreviation for ¬ −¬ϕ1.

The semantics is given by LTL-structures, an infinite sequence of worlds, W = (wi)i∈Z,
where wi ⊆ P . We write

W, i |= p iff p ∈ wi if p ∈ P
W, i |= ¬ϕ1 iff W, i ̸|= ϕ1

W, i |= ϕ1 ∧ ϕ2 iff W, i |= ϕ1 and W, i |= ϕ2

W, i |= #ϕ1 iff W, i+ 1 |= ϕ1

W, i |= #−ϕ1 iff W, i− 1 |= ϕ1

W, i |= ϕ1 Uϕ2 iff ∃k ∈ N : W, i+ k |= ϕ2 and W, i+ j |= ϕ1 for all 0 ≤ j < k

W, i |= ϕ1 Sϕ2 iff ∃k ∈ N : W, i− k |= ϕ2 and W, i− j |= ϕ1 for all 0 ≤ j < k

If W, 0 |= ϕ, then we call W a model of ϕ. A propositional LTL-formula ϕ is satisfiable
if ϕ has a model.

Example 2.24. Let ϕ := p1 ∧ (#¬p1) ∧ (p2 Up3) be a propositional LTL-formula. Con-
sider the two propositional LTL-structures W1 and W2 that are depicted graphically
in Figure 2.23. For W1 we have W1, 0 |= ϕ, hence ϕ is satisfiable. W2 is not a model at
time point 0, but W2,−1 |= ϕ and W2, 1 |= ϕ. ♢
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Note that while usually the natural numbers are used as timeline in LTL, we use the
integers here. Satisfiability checking in propositional LTL is known to be PSpace-
complete [SC85].

2.3.1. LTL with Binary Intervals

To make formulas more concise, we extend LTL by intervals given in binary and obtain
LTLbin. Additionally, we generalize the propositional variables to arbitrary Q-axioms,
where Q is a logic and obtain Q-LTLbin, which can be read as ‘LTLbin over Q-axioms’.

Definition 2.25. Let Q be a logic. Q-LTLbin formulas are of the form

ϕ1, ϕ2 := α | ⊤ | ¬ϕ1 | ϕ1 ∧ ϕ2 | #ϕ1 | ϕ1 UIϕ2 | ϕ1 SIϕ2 (2.5)

where α is a Q-axiom and I is an interval of the form [a, b], where a ∈ Z ∪ {−∞} and
b ∈ Z ∪ {∞}. If the boundaries are ±∞, the interval is open, but we use the same
brackets. ♢

Definition 2.26. A (temporal Q-)interpretation is a structure I = (∆I, (Ii)i∈Z), where
each Ii = (∆I, ·Ii) is a Q interpretation over ∆I (constant domain assumption) and
aIi = aIj for all a ∈ NI and i, j ∈ Z. Validity of an Q-LTLbin-formula ϕ at time point
i ∈ Z w.r.t. a temporal Q-interpretation I, denoted by I, i |= ϕ, is defined inductively as
follows:

I, i |= α iff Ii |= α (where α is a Q-axiom)
I, i |= ¬ϕ iff I, i ̸|= ϕ

I, i |= ϕ1 ∧ ϕ2 iff I, i |= ϕ1 and I, i |= ϕ2

I, i |= ϕ1 UIϕ2 iff there exists k ∈ I such that I, i+ k |= ϕ2

and for all 0 ≤ j < k : I, i+ j |= ϕ1

I, i |= ϕ1 SIϕ2 iff there exists k ∈ I such that I, i− k |= ϕ2

and for all 0 ≤ j < k : I, i− j |= ϕ1 ♢

With other words, the concept ϕ1 UIϕ2 requires ϕ2 to be satisfied at some point in
the interval I, and ϕ1 to hold at all time points before that. For instance, for W1
in Figure 2.23 it holds that W1, 0 |= p2 U[0,2]p3, but W1, 0 ̸|= p2 U[0,1]p3.

As usual, we define the following additional operators:

• the quantified next operator #iα := ⊤U[i,i]α, which states that α has to hold at
the i-th next time point;

• the quantified eventually operator Iα := ⊤UIα, which states that at some time
point in the given interval I relative to the current time point α has to hold;

• the quantified always operator 2Iα := ¬ I¬α, which states that α has to hold at
all time points in the given interval I relative to the current time point; and
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• unquantified variants of until, eventually and always:

αUβ := αU[0,∞)β

α := ⊤Uα
2α := ¬ ¬α.

• the symmetric past operators −
I , −, #−

i, 2−
I , and 2− are defined similarly by

using SI instead of UI .

The binary intervals can be simulated using usual LTL with an exponential blowup [AH93].
While this blowup cannot be avoided in general, it is shown in [LWW07] that using
intervals where the lower bound is always 0 does not increase the complexity compared
to the qualitative case. For more information see [GJO16b; BBK+17].

Lemma 2.27 (based on [BBK+17]). Each formula in Q-LTLbin is equivalent to an
Q-LTL formula. Each interval can be expressed by exponentially many disjuncts and
nestings of the #-operator.
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Chapter 3.

Minimal-World Semantics for Conjunctive
Queries with Negation

Clinical trials play an important role in the evaluation of new medications and treatments.
For example, to test a new treatment for a specific kind of cancer, this treatment needs
to pass different tests in order to be approved. Eventually, it needs to be tested on
humans. Consequently, after designing a study, the first main task is to find patients
that are eligible for the study, i.e. that satisfy all inclusion criteria and do not satisfy
any exclusion criteria. Unfortunately, in practice it is often a resource-intensive task to
recruit enough patients to get statistically meaningful results. However, the increased
usage of Electronic Health Records (EHRs) in hospitals offers a promising opportunity to
improve the recruitment process by automating parts of it. An EHR contains information
about the measurements, diagnoses, treatments and many other things of a patient.
An actual EHR can be found in Example 7.4. As emphasized in [PCD+07], a major
challenge lies in the fact that criteria are described on different levels of granularity, which
range from quite specific to very general. This can often be bridged by using medical
background knowledge that links broad categories (‘lung cancer ’) to more specific ones
(‘adenocarcinoma’) or even to more detailed descriptions (‘malignant neoplasm was found
in the left lower lobe’). Fortunately, medical ontologies such as SNOMED CT, formulated
in ELH⊥, contain a large amount of medical knowledge that can be used in an OMQA
setting. As we will see, what is missing are suitable semantics for this setting.

Therefore, in this chapter we develop new closed-world semantics and apply them
to ELH⊥. In Section 3.1 we introduce a formal patient selection problem that will serve
as motivation for our theoretical explorations. We then discuss existing non-monotonic
formalisms that could be used to solve the patient selection problem in Section 3.2.
While most of them yield intuitive results for instance queries and queries with only
answer variables, the formalisms give unexpected results in the face of negation over
anonymous individuals.

To overcome this we introduce minimal-world semantics in Section 3.3 and show that
it gives answers to CQs with negation that are intuitive w.r.t. the patient selection
problem. Through a first-order rewriting strategy, we are able to prove that reasoning is
tractable in data complexity in Section 3.4. Finally, we discuss possible generalizations
of minimal-world semantics to more expressive DLs in Section 3.5.
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3.1. The Patient Selection Problem
The following patients are inspired by actual patients in the MIMIC-III1 dataset. It is a
de-identified dataset of hospital admissions collected in two different hospitals in the US.
In total it includes data associated with over 40.000 patients who stayed in intensive
care units.

We consider three patients: Patient p1 (patient 2693 in the MIMIC-III dataset) is
diagnosed with breast cancer and an unspecified form of cancer. This often occurs when
there are multiple mentions of cancer in a patient’s EHR, which cannot be resolved to be
the same entity. Patient p2 (patient 32304 in the MIMIC-III dataset) suffers from breast
cancer and skin cancer (‘[S]tage IV breast cancer with mets to skin, bone, and liver’).
For p3 (patient 88432 in the MIMIC-III dataset), we know that p3 has breast cancer that
involves the skin (‘Skin, left breast, punch biopsy: Poorly differentiated carcinoma’).

Since SNOMED CT does not model patients, we add a special role name diagnosedWith
that connects patients with their diagnoses. One can use this to express diagnoses in two
ways. First, one can explicitly introduce individual names for diagnoses in assertions like

diagnosedWith(p1, d1), diagnosedWith(p1, d2),
BreastCancer(d1), Cancer(d2),

implying that these diagnoses are treated as distinct entities under the standard name as-
sumption. Alternatively, one can use complex assertions like ∃diagnosedWith.Cancer(p1),
which allows the logical semantics to resolve whether two diagnoses actually refer to the
same object. Since ABoxes only contain concept names, in this case one has to introduce
auxiliary definitions like

CancerPatient ≡ ∃diagnosedWith.Cancer

into the TBox. We use both variants in our example, to illustrate their different behaviors.

Example 3.1 (Patient Selection Task). We obtain the KB KC , containing know-
ledge about different kinds of cancers and cancer patients, together with information
about the three patients. The information about cancers is taken from SNOMED CT
(in simplified form):

SkinCancer ≡ Cancer ⊓ ∃findingSite.SkinStructure (T1)
BreastCancer ≡ Cancer ⊓ ∃findingSite.BreastStructure (T2)

SkinOfBreastCancer ≡ Cancer ⊓ ∃findingSite.SkinOfBreastStructure (T3)
SkinOfBreastStructure ⊑ BreastStructure ⊓ SkinStructure (T4)

Additionally, we add the following auxiliary definitions to the TBox:

CancerPatient ≡ ∃diagnosedWith.Cancer (T5)
SkinCancerPatient ≡ ∃diagnosedWith.SkinCancer (T6)

BreastCancerPatient ≡ ∃diagnosedWith.BreastCancer (T7)
1https://mimic.physionet.org
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3.2 Existing Non-Monotonic Formalisms

The EHRs are compiled into several assertions per patient yielding the following ABox:

Patient p1: BreastCancerPatient(p1) (A1)
CancerPatient(p1) (A2)

Patient p2: SkinCancerPatient(p2) (A3)
BreastCancerPatient(p2) (A4)

Patient p3: diagnosedWith(p3, c3) (A5)
SkinOfBreastCancer(c3) (A6)

For example, skin cancers and breast cancers are cancers occurring at specific parts of
the body (see T1 and T2), called ‘body structure’ in SNOMED CT, and a breast cancer
patient is someone who is diagnosed with breast cancer (see T7). This means that, in
every model of KC , every object that satisfies BreastCancerPatient (in particular p2
in A3) must have a diagnosedWith-connected object that satisfies BreastCancer, and
so on.

For a clinical trial,2 we want to find patients that have ‘breast cancer’, but not ‘breast
cancer that involves the skin.’ This can be translated into an NCQ:

qB(x) := ∃y, z.diagnosedWith(x, y) ∧ Cancer(y) ∧ findingSite(y, z) ∧
BreastStructure(z) ∧ ¬SkinStructure(z) ♢

We now describe which patients should intuitively be returned as answers. We know
that p1 is diagnosed with BreastCancer as well as Cancer. Since the former is more
specific, we assume that the latter refers to the same BreastCancer. However, since
we have no information about an involvement of the skin, p1 should be returned as an
answer to qB.

We know that p2 suffers from cancer in the skin and the breast, but not if the skin
of the breast is also affected. Since neither location is implied by the other, we assume
that they refer to distinct areas. p2 should thus be an answer to qB.

In the case of p3, it is explicitly stated that it is the same cancer that is occurring
(not necessarily exclusively) at the skin of the breast. In this case, the ABox assertions
override the distinctness assumption we made for p2. Thus, p3 should not be an answer
to qB.

3.2. Existing Non-Monotonic Formalisms

We now evaluate existing semantics on the patient selection example task. Before we
look into specific formalisms, consider Figure 3.2, which shows an interpretation IC that
is a model of KC w.r.t. the standard semantics. The domain of IC consists of the named
individuals from the ABox, namely p1, p2, p3 and c3 together with seven anonymous
individuals, depicted in circles. For each individual, the concept names next to it hold in
IC . For example, p2 is asserted to be a BreastCancerPatient, a SkinCancerPatient,
and a CancerPatient. It can be easily checked that in IC is a model. For instance, by

2https://clinicaltrials.gov/ct2/show/NCT01960803
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p1 p2 p3

c3

f3
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f2b
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CancerPatient
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BreastCancerPatient
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SkinCancerPatient
BreastCancerPatient

CancerPatient
BreastCancerPatient

Cancer
SkinCancer
BreastCancer
SkinOfBreastCancer

SkinStructure
BreastStructure

SkinOfBreastStructure

Cancer
SkinCancer

SkinStructure

Cancer
BreastCancer

BreastStructure

Cancer
BreastCancer

BreastStructure

diagnosedWith

findingSite

diagnosedWith

findingSite

diagnosedWith

findingSite

diagnosedWith

findingSite

Figure 3.2.: A canonical model IC of KC . Named individuals are depicted in squares,
anonymous objects in circles.

axioms T1, T5 and T6 it is easy to see that KC |= SkinCancerPatient ⊑ CancerPatient,
hence p2 satisfies CancerPatient in IC . Moreover IC is canonical, i.e. it satisfies KC in
the most general way, for example, by introducing c2a and c2b instead of only one merged
version of them. Having this model at hand we proceed now to discuss the behavior of
different formalisms on the patient selection task.

3.2.1. Standard Certain Answer Semantics

Certain answer semantics as defined in Section 2.2 is clearly not suited here, because one
can easily construct a model of KC in which c1 is also a skin cancer, and hence p1 is not
an element of cert(qB,KC). Moreover, under certain answer semantics answering CQs
with guarded negation is already coNP-complete [GIK+15], and hence not (combined)
rewritable. So clearly we need non-monotonic formalisms.

3.2.2. Epistemic Logic

As non-monotonic formalism, epistemic logic allows us to selectively apply closed-world
reasoning using the modal knowledge operator K. For a formula Kφ to be true, it has to
hold in all ‘connected worlds’, which is often considered to mean all possible models of
the KB, adopting an S5-like view [CDL+06]. For qB , we could read ¬SkinStructure(z)
as ‘not known to be a skin structure’, i.e. ¬KSkinStructure(z). Consider the model
IC in Figure 3.2 and the assignment π = {x ↦→ p3, y ↦→ c3, z ↦→ f3}, for which we want to
check whether it is a match for qB . Under epistemic semantics, ¬KSkinStructure(z) is
considered true if K has a (different) model in which f3 does not belong to SkinStructure.
However, f3 is an anonymous object, and hence its name is not fixed. For example, we
can easily obtain another model by renaming f3 to f1 and vice versa. Then f3 would
not be a skin structure, which means that ¬KSkinStructure(z) is true in the original
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model IC , which is not what we expected. This is a known problem with epistemic
first-order logics [Wol00].

3.2.3. Skolemization

To enforce a stricter comparison of anonymous objects between models Skolemization
could be used. The inclusion SkinOfBreastCancer ⊑ ∃findingSite.SkinOfBreast
could be rewritten as the first-order sentence

∀x.
(︂
SkinOfBreastCancer(x)→ findingSite

(︁
x, f(x)

)︁
∧ SkinOfBreast

(︁
f(x)

)︁)︂
,

where f is a fresh function symbol. This means that c3 would be connected to a finding
site that has the unique name f(c3) in every model. Queries would be evaluated over
Herbrand models only. Hence, for evaluating ¬KSkinStructure(z) when z is mapped
to f(c3), we would only be allowed to compare the behavior of f(c3) in other Herbrand
models. The general behavior of this anonymous individual is fixed, however, since in all
Herbrand models it is the finding site of c3.

While this improves the comparison by introducing pseudo-names for all anonymous in-
dividuals, it limits us in different ways: Since p3 is inferred to be a BreastCancerPatient,
the Skolemized version of BreastCancerPatient ⊑ ∃diagnosedWith.BreastCancer in-
troduces a new successor g(p3) of p3 satisfying BreastCancer, which, together with the
definition of BreastCancer, means that p3 is an answer to qB since there is an additional
breast cancer diagnosis that does not involve the skin.

3.2.4. Datalog-based Ontology Languages

In recent years many different variants of Datalog-based ontology languages with nega-
tion [HKL+13; AGP14] have been introduced. They are closely related to Skolemized
ontologies, since their semantics is often based on the so-called Skolem chase [Mar09].
This is closer to the semantics we propose in Section 3.3, in that a single canonical model
is used for all inferences. However, it suffers from the same drawback of Skolemization
described above, due to superfluous successors. To avoid this, our semantics uses a special
canonical model (see Definition 3.6), which is similar to the restricted chase [FKM+05]
or the core chase [DNR08], but always produces a unique model without having to merge
domain elements. To the best of our knowledge, there exist no complexity results for
Datalog-based languages with negation over these other chase variants. A more detailed
discussion will follow in Section 3.5.

3.2.5. Closed Predicates

Closed predicates are a way to declare, for example, the concept name SkinCancer as
‘closed’, which means that all skin cancers must be declared explicitly, and no other
SkinCancer object can exist [LSW13; AOS16]. This provides another way to give answers
to negated atoms as in qB. However, as explained in the introduction, this mechanism
is not suitable for anonymous objects since it means that only named individuals can
satisfy SkinCancer. In particular, in every model of KC c3 has to be the only individual
satisfying SkinCancer, since that is the only skin cancer that occurs in KC explicitly.
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When applied to KC , the result is even worse: Since there is no (named) SkinStructure
object, no skin structures can exist at all and KC becomes inconsistent. Closed predicates
are appropriate in cases where the KB contains a full list of all instances of a certain
concept name, and no other objects should satisfy it; but they are not suitable to infer
negative information about anonymous objects. Moreover, CQ answering with closed
predicates in ELH⊥ is already coNP-hard [LSW13].

3.3. Minimal-World Semantics for ELH⊥
We propose to answer NCQs over a special canonical model of the knowledge base. On
the one hand, this eliminates the problem of tracking anonymous objects across different
models, and on the other hand it enables us to encode our assumptions directly into the
construction of the model. The model has to satisfy the following two assumptions:

Firstly, every anonymous individual has to be implied by the KB. If all we know is
that a given patient suffers from skin cancer, there should only be diagnoses of skin
cancer or super-concepts of skin cancer, but nothing else. It is unreasonable to consider
arbitrary additional possibilities, for example, that the patient might also suffer from
diabetes, even though it was never mentioned. This assumption is captured by universal
models, which play a crucial role when answering CQs.

Secondly, the model should contain the minimum necessary number of anonymous
objects since, unlike in standard CQ answering, the precise shape and number of
anonymous objects has an impact on the semantics of negated atoms. If a patient
is known to suffer from skin cancer, we assume that there is exactly one diagnosis of
skin cancer and no other diagnosis of a generic cancer. If a patient is asserted to have
diagnoses of skin cancer and generic cancer, we assume that the two assertions refer to
the same diagnosis instead of two different ones. We do so because a diagnosis of skin
cancer implies also a diagnoses of cancer. However when a patient has skin cancer and
diabetes, the two diagnoses are unrelated and hence have to be different in a universal
model. If redundancies are intended, they need to be modeled explicitly through the use
of named individuals in the ABox.

When we combine the two assumptions, they imply that a model has to contain the
‘minimal’ number of individuals to still be a universal model.

Definition 3.3 (Minimal Universal Model). Let K be a consistent ELH⊥-KB. A
model I of K is minimal iff every endomorphism is an isomorphism. A minimal model I
of K is a minimal model of a model J of K if I is the image of an endomorphism of J .

A model of K is a minimal universal model if it is universal w.r.t. K and minimal. ♢

We will see in Section 3.5 that minimality is closely related to cores, a concept from
graph theory.

For the patient selection task (Example 3.1) this means that given KC , in contrast
to the Skolemized semantics, we will not create both a generic Cancer and another
BreastCancer successor for p1, because BreastCancer is also a Cancer, and hence the
first object is redundant. Therefore, in the minimal universal model of KC depicted
in Figure 3.2, for patient p1 only one successor is introduced to satisfy the definitions
of both BreastCancerPatient and CancerPatient at the same time. In contrast, p2
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has two successors, because BreastCancer and SkinCancer do not imply each other.
Finally, for p3 the ABox contains a single successor that is a SkinOfBreastCancer,
which implies a single findingSite-successor that satisfies both SkinStructure and
BreastStructure.

To detect whether an object required by an existential restriction ∃r.A is redundant,
we use the following notion of minimality. To obtain a clearer representation we assume
w.l.o.g. that the KB contains no equivalent concept or role names, which can be checked
in polynomial time in ELH⊥.

Definition 3.4 (Structural Subsumption). Let ∃r.A, ∃t.B be concepts withA,B ∈ NC

and r, t ∈ NR. We say that ∃r.A is structurally subsumed by ∃t.B (written ∃r.A ⊑sT ∃t.B)
if r ⊑T t and A ⊑T B.

Given a set V of existential restrictions, we say that ∃r.A ∈ V is minimal w.r.t. ⊑sT
(in V ) if there is no ∃t.B ∈ V such that ∃t.B ⊑sT ∃r.A.

A CQ q1(x) is structurally subsumed by a CQ q2(x) with the same answer variables
(written q1 ⊑sT q2) if, for all x, y ∈ x, it holds that

l

α(x)∈q1

α ⊑T
l

α(x)∈q2

α, and
l

α(x,y)∈q1

α ⊑T
l

α(x,y)∈q2

α,

where role conjunction is interpreted in the standard way [BCM+07]. ♢

In contrast to standard subsumption, ∃r.A is not structurally subsumed by ∃t.B w.r.t.
the TBox T = {∃r.A ⊑ ∃t.B}, as neither r ⊑T t nor A ⊑T B hold. Similarly, structural
subsumption for CQs considers all (pairs of) variables separately. Structural subsumption
(⊑sT ) is stronger than standard subsumption (⊑T ):

Lemma 3.5. Let K be a consistent ELH⊥-KB. For existential restrictions ∃r.A and ∃t.B
it holds that if ∃r.A ⊑sT ∃t.B then ∃r.A ⊑T ∃t.B.

Similarly, for CQs q1(x) and q2(x) with the same answer variables x, it holds that if
q1 ⊑sT q2, then cert(q1,K) ⊆ cert(q2,K).

We use this notion to construct a canonical model. As we will see later, this model is
a minimal universal model.

Definition 3.6 (Canonical Model Construction). Let K = (T ,A) be an ELH⊥-KB.
We construct the canonical model IK of K as follows:

1. Set ∆IK := NI and aIK := a for all a ∈ NI .

2. Define AIK := {a | K |= A(a)} for all A ∈ NC and rIK := {(a, b) | K |= r(a, b)} for
all r ∈ NR.

3. Repeat:
a) Select an element d ∈ ∆IK that has not been selected before and let

V := {∃r.B | d ∈ AIK and d ̸∈ (∃r.B)IK with A ⊑T ∃r.B, A,B ∈ NC}.
b) For each ∃r.B ∈ V that is minimal w.r.t. ⊑sT , add a fresh element e to ∆IK ,

for each B ⊑T A add e to AIK , and for each r ⊑T s add (d, e) to sIK .
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By IA we denote the restriction of IK to named individuals, i.e. the result of applying
only Steps 1 and 2, but not Step 3. ♢

If Step 3 is applied fairly, i.e. such that each new domain element that is created in (b)
is eventually also selected in (a), then IK is indeed a model of K (if K is consistent at
all).

Lemma 3.7. Let K = (T ,A) be a consistent and normalized ELH⊥-KB. Then, assuming
fairness of rule application, the interpretation constructed according to Definition 3.6 is
a model of K.

Proof. We show that all axioms of the KB are satisfied in IK constructed according
to Definition 3.6. It is easy to check that all ABox assertions are satisfied after Step 2 is
applied. We make a case distinction for the TBox axioms:

• Suppose a GCI of the form A1 ⊓ · · · ⊓ An ⊑ B ∈ T with n ≥ 1 and d ∈ AIK
i for

1 ≤ i ≤ n. If d ∈ NI , then it is easy to check that d ∈ BIK after Step 2. If d ̸∈ NI ,
then d was added because of some minimal ∃r.B′ in Step 3b). In this case we must
have B′ ⊑T Ai for all 1 ≤ i ≤ n and hence also B′ ⊑T B, which caused d to be
added to BIK in Step 3b).

• The case for RIAs of the form r ⊑ s ∈ T follows the same argumentation.

• Suppose a GCI of the form ∃r.A ⊑ B ∈ T and d ∈ (∃r.A)IK . Then there exists
e ∈ ∆IK with e ∈ AIK and (d, e) ∈ rIK . If e ∈ NI , then d must also be in NI , and
hence d was added to BIK in Step 2. If e ̸∈ NI , then it was added in Step 3b)
by some B1 ⊑T ∃r1.A1 with d ∈ BIK

1 and ∃r1.A1 ⊑sT ∃r.A. This implies B1 ⊑T B
and hence d was already added to B, either in Step 2 if d ∈ NI , or otherwise in
Step 3b) when d was introduced.

• Suppose a GCI of the form A ⊑ ∃r.B ∈ T and d ∈ AIK . At some point in the
construction of IK d was picked in Step 3a). Let V be defined as in this step. Then
V contains some minimal ∃r1.B1 with ∃r1.B1 ⊑sT ∃r.B. Let d′ be the individual
introduced to satisfy ∃r1.B1. Then (d, d′) ∈ rIK

1 and d′ ∈ BIK
1 and because r1 ⊑T r

and B1 ⊑T B, it also holds that (d, d′) ∈ rIK and d′ ∈ BIK . 2

Moreover, IK is universal, and therefore it holds for all CQs q that cert(q,K) = ans(q, IK).

Lemma 3.8. Let K be a consistent ELH⊥-KB and IK the canonical model obtained
through the construction in Definition 3.6. Then IK is a minimal universal model of K.

Proof. We first prove that IK is a universal model. Let I0, I1, . . . be the interpretations
obtained in the construction of IK before each application of Step 3, and let I be an
arbitrary model of K. We show by induction on i that there are h0, h1, . . . such that hi
is a homomorphism from Ii to I and hi and hi+1 agree on ∆Ii , that is hi+1(d) = hi(d)
for all d ∈ ∆Ii . The desired homomorphism is then obtained in the limit as h = ⋃︁

i≥0 hi.
The homomorphism h0 is defined by setting h0(a) := aI for all a ∈ Ind(A). Since I is

a model of A it is easy to check that all conditions for a homomorphism are satisfied.

36



3.3 Minimal-World Semantics for ELH⊥

For the induction step, assume that hi has already been defined. To define hi+1,
assume that d ∈ ∆Ii was picked in Step 3(a) and V is the set as defined in Definition 3.6.
For each ∃r.B ∈ V that is minimal w.r.t. structural subsumption, let A be a concept
name that caused ∃r.B to be in V , i.e. A ⊑T ∃r.B, and let e be the freshly introduced
domain element. Then we know that e ∈ (A′)Ii+1 for all B ⊑T A′ and (d, e) ∈ sIi+1 for
all r ⊑T s. Because hi is a homomorphism, we must have hi(d) ∈ AI and since I is
a model it is possible to find some e′ ∈ ∆I with (hi(d), e′) ∈ rI and e′ ∈ BI . Clearly,
hi+1 := hi ∪ {e ↦→ e′} is a homomorphism from Ii+1 to I.

Next, we prove that IK is minimal. By definition this means that every endomorphism of
IK has to be an isomorphism. To show this we prove the stronger statement that the only
endomorphism on IK is the identify. We use a similar setup as before: Let I0, I1, . . . be
the interpretations obtained in the construction of IK before each application of Step 3.
We show by induction on i that there are h0, h1, . . . such that hi is the only possible
homomorphism from Ii to IK and hi and hi+1 agree on ∆Ii , that is hi+1(d) = hi(d) for
all d ∈ ∆Ii . The endomorphism is then obtained in the limit as h = ⋃︁

i≥0 hi.
By definition, the homomorphism h0 has to map all constants onto itself, i.e. h0(a) = a

for all a ∈ Ind(A) and is therefore the identity function. For the induction step, assume
that hi has already been defined. To define hi+1, assume that d ∈ ∆Ii was picked in
Step 3(a) and V is the set as defined in Definition 3.6. For each ∃r.B ∈ V that is
minimal w.r.t. structured subsumption, in Step 3(b) exactly one successor e is introduced.
Suppose there would be another successor e′ of d, introduced through some minimal
∃r′.B′ and e could be mapped to e′. This would imply that ∃r′.B′ ⊑sT ∃r.B, which is a
contradiction, since we assumed ∃r.B to be minimal. Hence, such an e′ cannot exist and
therefore the only possibility is to map e onto itself.

Therefore, the only possibility is to define hi+1 := h1 ∪ {e ↦→ e}, which is the identity
function. 2

We can adopt a result from graph theory and cores, namely Theorem 11 in [Bau95],
which shows that if two structures are homomorphically equivalent then their minimal
structures are isomorphic. Since all universal models are homomorphically equivalent by
definition, this implies that every consistent ELH⊥-KB has a unique minimal universal
model (up to isomorphism), which is why the canonical model is also ‘the‘ minimal
universal model of K.

We now define the semantics of NCQs as described before, i.e. by evaluating them as
first-order formulas over the canonical model IK, which ensures that our semantics is
compatible with the usual certain-answer semantics for CQs.

Definition 3.9 (Minimal-World Semantics). Let K be a consistent ELH⊥-KB. The
(minimal-world) answers to an NCQ q over K are mwa(q,K) := ans(q, IK). ♢

For Example 3.1, we get mwa(qB,KC) = {p1, p2} (see Figure 3.2), which is exactly
as intended. Unfortunately, in general the canonical model is infinite, and we cannot
evaluate the answers directly. Hence, we employ a rewriting approach to reduce NCQ
answering over the canonical model to (first-order) query answering over IA only.
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3.4. A Combined Rewriting for NCQs

We show that NCQ answering is combined first-order rewritable. As target representation,
we obtain first-order queries of a special form.

Definition 3.10 (Filtered query). Let K = (T ,A) be an ELH⊥-KB. A filter on a
variable z is a first-order formula ψ(z) of the form(︁

∃z′.ψ+(z, z′)
)︁
→

(︁
∃z′.ψ+(z, z′) ∧ ψ−(z, z′) ∧Ψ

)︁
(3.1)

where ψ+(z, z′) is a conjunction of atoms of the form A(z′) or r(z, z′) that contains at
least one role atom, ψ−(z, z′) is a conjunction of negated atoms ¬A(z′) or ¬r(z, z′), and
Ψ is a (possibly empty) set of filters on z′.

A filtered query ϕ is of the form ∃y.
(︁
φ(x,y) ∧Ψ

)︁
where ∃y.φ(x,y) is an NCQ and

Ψ is a (possibly empty) set of filters on leaf variables in φ. It is rooted if ∃y.φ(x,y) is
rooted. ♢

Note that every NCQ is a filtered query where the set of filters Ψ is empty. Furthermore,
a filtered query can contain filters on answer variables as well as quantified variables.

We will use filters to check for the existence of ‘typical’ successors, i.e. role successors
that behave like the ones that are introduced by the canonical model construction to
satisfy an existential restriction. In particular, a typical successor does not satisfy any
superfluous concept or role atoms. For example, in Figure 3.2 the element c1 introduced
to satisfy ∃diagnosedWith.BreastCancer for p1 is a typical successor, because it satisfies
only BreastCancer and Cancer and not, e.g. SkinCancer. In contrast, the diagnosedWith-
successor c3 of p3 is atypical, since the ontology does not contain an existential restriction
∃diagnosedWith.SkinOfBreastCancer that could have introduced such a successor in
the canonical model. With a filter we can check if a given patients diagnoses are typical
cases or not. For instance the filter ψ

(∃y.diagnosedWith(x, y) ∧ BreastCancer(y))→
(∃y.diagnosedWith(x, y) ∧ BreastCancer(y) ∧ ¬SkinOfBreastCancer(y))

is satisfied for all typical cases, i.e. p1 and p2, but not for p3, which only has an atypical
cancer diagnosis.

The idea of the rewriting procedure is to not only rewrite the positive part of the
query, as in [EOŠ+12; BO15], but to also ensure that no information is lost. This
is accomplished by rewriting the negative parts and by saving the structure of the
eliminated part of the query in the filter. A filter on z ensures that the rewritten query
can only be satisfied by mapping z to an anonymous individual in the canonical model,
or to a named individual that behaves in a typical way.

Definition 3.11 (Rewriting). Let K = (T ,A) be a KB and ϕ = ∃y.φ(x,y) ∧Ψ be a
filtered query. We write ϕ→T ϕ′ if ϕ′ can be obtained from ϕ by applying the following
steps:
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(S1) Select a quantified leaf variable x̂ in φ. Let ŷ be a fresh variable and select

Pred := {y | r(y, x̂) ∈ φ} ∪ {y | ¬r(y, x̂) ∈ φ} (predecessors of x̂),
Pos := {A(x̂) ∈ φ} ∪ {r(ŷ, x̂) | r(y, x̂) ∈ φ} (positive atoms for x̂),
Neg := {¬A(x̂) ∈ φ} ∪ {¬r(ŷ, x̂) | ¬r(y, x̂) ∈ φ} (negative atoms for x̂).

(S2) Select some M ⊑T ∃s.N with M,N ∈ NC that satisfies all of the following:
(a) s(ŷ, x̂) ∧N(x̂) ⊑sT Pos, and
(b) s(ŷ, x̂) ∧N(x̂) ̸⊑sT α for all ¬α ∈ Neg.

(S3) Let M′ be the set of all M ′ ∈ NC such that M ′ ⊑T ∃s′.N ′ with N ′ ∈ NC ,
(a) ∃s′.N ′ ⊑sT ∃s.N (where ∃s.N was chosen in (S2)), and
(b) s′(ŷ, x̂) ∧N ′(x̂) ⊑sT α for some ¬α ∈ Neg.

(S4) Drop from φ every atom that contains x̂.

(S5) Replace all variables y ∈ Pred in φ with ŷ.

(S6) Add the atoms M(ŷ) and {¬M ′(ŷ) |M ′ ∈M′} to φ.

(S7) Set the new filters to Ψ′ := Ψ ∪ {ψ∗(ŷ)} \Ψx̂, where Ψx̂ := {ψ(x̂) ∈ Ψ} and

ψ∗(ŷ) :=
(︁
∃x̂. s(ŷ, x̂) ∧N(x̂)

)︁
→

(︁
∃x̂. s(ŷ, x̂) ∧N(x̂) ∧Neg∧Ψx̂

)︁
.

We write ϕ →∗
T ϕ′ if there exists a finite sequence ϕ →T · · · →T ϕ′. Furthermore, let

rewT (ϕ) := {ϕ′ | ϕ→∗
T ϕ′} denote the set of all rewritings of ϕ. ♢

Note that rewT (ϕ) may be infinite. However, for rooted NCQs it is finite and we show
later that even for non-rooted NCQs it suffices to consider a finite subset of rewT (ϕ)
(see Lemma 3.15). To see the former claim, observe that there is only a finite number of
possible subsumptions M ⊑T ∃s.N that can be used for rewriting steps. Additionally, in
every step one variable (x̂) is eliminated from the NCQ part of the filtered query. If the
query is rooted, there always exists at least one predecessor that is renamed to ŷ, hence
the introduction of ŷ never increases the number of variables. Finally, it is easy to see
that rewriting a rooted query always yields a rooted query.

The rewriting of Neg to the new negated atoms (via M′ in (S6)) ensures that we do
not lose important exclusion criteria, which may result in too many answers. Similarly,
the filters exclude atypical successors in the ABox that may result in spurious answers.
Both of these constructions are necessary.

Example 3.12. Consider the query qB from Example 3.1. Using Definition 3.11, we
obtain the first-order queries ϕB = qB, ϕ′

B, and ϕ′′
B, where

ϕ′
B = ∃y.diagnosedWith(x, y) ∧ BreastCancer(y) ∧ ¬SkinOfBreastCancer(y) ∧(︂(︁
∃z.findingSite(y, z) ∧ BreastStructure(z)

)︁
→(︁

∃z.findingSite(y, z) ∧ BreastStructure(z) ∧ ¬SkinStructure(z)
)︁)︂

39



Chapter 3. Minimal-World Semantics for Conjunctive Queries with Negation

results from choosing z in (S1), BreastCancer ⊑KC
∃findingSite.BreastStructure

in (S2), and computing M′ = {SkinOfBreastCancer} in (S3), and

ϕ′′
B = BreastCancerPatient(x) ∧(︂

(∃y.diagnosedWith(x, y) ∧ BreastCancer(y))→

(∃y.diagnosedWith(x, y) ∧ BreastCancer(y) ∧ ¬SkinOfBreastCancer(y)) ∧(︁
(∃z.findingSite(y, z) ∧ BreastStructure(z))→

(∃z.findingSite(y, z) ∧ BreastStructure(z) ∧ ¬SkinStructure(z))
)︁)︂

is obtained due to BreastCancerPatient ⊑KC
∃diagnosedWith.BreastCancer. We

omitted the redundant atoms Cancer(y) for clarity.
The finite interpretation IAC

can be seen in Figure 3.2 by ignoring all circle-shaped
nodes. When computing the answers over IAC

, we obtain

ans(ϕB, IAC
) = ∅, ans(ϕ′

B, IAC
) = ∅, and ans(ϕ′′

B, IAC
) = {p1, p2}.

For ϕ′
B, the conjunct ¬SkinOfBreastCancer(y) is necessary to exclude p3 as an answer.

In ϕ′′
B, p3 is excluded due to the filter that detects c3 as an atypical successor, because it

satisfies not only BreastCancer, but also SkinOfBreastCancer. Hence, both (S6) and (S7)
are necessary steps in our rewriting. ♢

3.4.1. Correctness

In Definition 3.11, the new filter ψ∗(ŷ) may end up inside another filter expression after
applying subsequent rewriting steps, i.e. by rewriting w.r.t. ŷ. In this case, however, the
original structure of the rewriting is preserved, including all internal filters as well as
the atoms M(ŷ), which are included implicitly by ∃s.N ⊑M , and {¬M ′(ŷ) |M ′ ∈M′},
which are included in Neg. We exploit this behavior to show that, whenever a rewritten
query is satisfied in the finite interpretation IA, then it is also satisfied in IK. This is
the most interesting part of the correctness proof, because it differs from the known
constructions for ordinary CQs, for which this step is trivial.

Lemma 3.13. Let K = (T ,A) be a consistent ELH⊥-KB and ϕ be an NCQ. Then, for
all ϕ′ ∈ rewT (ϕ),

ans(ϕ′, IA) ⊆ mwa(ϕ′,K).

Proof. Let ϕ′ = ∃y.(φ(x,y) ∧ Ψ) and π be an assignment of x,y to NI such that
IA, π |= φ(x,y). Since IA and IK coincide on the domain NI , we also have IK, π |= φ(x,y).
Consider any filter ψ(z) = ∃z′.ψ+(z, z′)→ ∃z′.(β(z, z′) ∧Ψ∗) in Ψ, where
β(z, z′) := ψ+(z, z′)∧ψ−(z, z′). Then ψ(z) was introduced at some point during the rewrit-
ing, suppose by selecting M ⊑T ∃s.N in (S2). This means that φ contains the atom M(z),
and hence d := π(z) is a named individual that is contained in MIA ⊆MIK . By (S2), this
means that IK, π |= ∃z′.ψ+(z, z′), and we have to show that IK, π |= ∃z′.(β(z, z′) ∧Ψ∗):

1. If IA, π |= ∃z′.β(z, z′), then IK, π |= ∃z′.β(z, z′) by the same argument as for φ(x,y)
above, and we can proceed by induction on the structure of the filters to show
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that the inner filters Ψ∗ are satisfied by the assignment π (extended appropriately
for z′).

2. If IA, π ̸|= ∃z′.β(z, z′), then we cannot use a named individual to satisfy the filter
ψ(z) in IK. Moreover, since IA satisfies ψ(z), we also know that IA, π ̸|= ∃z′.ψ+(z, z′).
Since ψ+(z, z′) = s(z, z′) ∧ N(z′), this implies that d /∈ (∃s.N)IA . Hence, ∃s.N
is included in the set V constructed in Step 3(a) of the canonical model con-
struction for the element d = π(z). Thus, there exists M ′ ⊑T ∃s′.N ′ such that
d ∈ (M ′)IA , d /∈ (∃s′.N ′)IA , and ∃s′.N ′ ⊑sT ∃s.N . By Step 3(b), IK must contain
an element d′ such that, for any A ∈ NC and any r ∈ NR, we have d′ ∈ AIK iff
N ′ ⊑T A and (d, d′) ∈ rIK iff s′ ⊑T r. Since N ′ ⊑T N and s′ ⊑T s, we obtain that
IK, π ∪ {z′ ↦→ d′} |= ψ+(z, z′).
We show that the assignment π ∪ {z′ ↦→ d′} also satisfies ψ−(z, z′) = Neg. Assume
to the contrary that there is ¬A(z′) ∈ Neg such that d′ ∈ AIK (the case of negated
role atoms is again analogous). Then we have N ′ ⊑T A, which shows that all
conditions of (S3) are satisfied, and hence M ′ must be included in M′. Since the
atoms {¬M ′(z) | M ′ ∈ M′} are contained in φ, we know that they are satisfied
by π in IK, i.e. d /∈ (M ′)IK and hence also d /∈ (M ′)IA , which is a contradiction.
It remains to show that the inner filters Ψ∗ are satisfied by the assignment
π ∪ {z′ ↦→ d′} in IK. Since we are now dealing with an anonymous domain
element d′, we can use similar, but simpler, arguments as above to prove this
by induction on the structure of the filters. This is possible because the atoms
s(ŷ, x̂), N(x̂) implied by M(ŷ) and the negated atoms induced by M′ are present
in the query even if the filter is integrated into another filter during a subsequent
rewriting step. 2

We can use this lemma to show correctness of our approach, i.e. the answers returned
for the union of queries given by rewT (ϕ) over IA are exactly the answers of the original
NCQ ϕ over IK.

The proof is based on existing proofs for ordinary CQs [EOŠ+12; BO15], extended
appropriately to deal with the filters.

Lemma 3.14. Let K = (T ,A) be a consistent ELH⊥ KB and let ϕ(x) be an NCQ. Then,
for all ϕ′ ∈ rewT (ϕ),

mwa(ϕ,K) =
⋃︂

ϕ′∈rewT (ϕ)
ans(ϕ′, IA).

Proof. (⊇): By Lemma 3.13, we have ans(ϕ′, IA) ⊆ mwa(ϕ′,K) = ans(ϕ′, IK).
Furthermore, there exists a sequence ϕ0 →T · · · →T ϕn (n > 0) with ϕ = ϕ0 and

ϕ′ = ϕn. Hence it is sufficient to show that ans(ϕi, IK) ⊆ ans(ϕi−1, IK) for all i, 1 ≤ i ≤ n.
Suppose the queries are of the following forms:

ϕi = ∃yi.(φi(xi,yi) ∧Ψi) (3.2)
ϕi−1 = ∃yi−1.(φi−1(xi−1,yi−1) ∧Ψi−1) (3.3)

Let πi be a satisfying assignment for φi(xi,yi) ∧Ψi in IK. Suppose ϕi−1 →T ϕi by

1. selecting variable x̂ and introducing ŷ in (S1) and
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2. selecting M ⊑T ∃s.N in (S2).

Let πi(ŷ) = d. By Step (S6), M(ŷ) ∈ φi and since πi satisfies φi, it has to hold that
d ∈ MIK . This implies that d ∈ (∃s.N)IK . Since πi satisfies the new filter ψ∗

i (ŷ) that
is constructed in (S7), and by selecting M ⊑T ∃s.N in (S2) the precondition of ψ∗

i (ŷ)
is satisfied by πi in IK, there has to be an assignment πi ∪ {x̂ ↦→ d′} that satisfies the
conclusion of ψ∗

i (ŷ).
We define the assignment πi−1 of the variables of φi−1 as follows

πi−1(z) :=

⎧⎪⎪⎨⎪⎪⎩
d′ if z = x̂

d if z ∈ Pred
πi(z) otherwise.

(3.4)

Then πi−1 is a satisfying assignment for ϕi−1 in IK. To see this, first consider an atom α
in φi−1. We show that πi−1 satisfies α in IK.

If α contains x̂, it can be of the following forms: A(x̂), ¬A(x̂), r(y, x̂) or ¬r(y, x̂) with
y ∈ Pred. For all of these cases, we know by Step (S7) that they are either implied by
s(ŷ, x̂) ∧N(x̂) or contained in Neg, with y replaced by ŷ. By the choice of d′, we know
that πi−1 satisfies each such atom.

If α does not contain x̂, then φi contains the atom α′ that is obtained from α
by replacing all of the variables from Pred with ŷ. By construction, we know that
πi−1(y) = πi(ŷ) for all y ∈ Pred and πi−1(z) = πi(z) otherwise. Since α′ is satisfied by πi
in IK, α is satisfied by πi−1 in IK.

What remains to show is that πi−1 satisfies Ψi−1. Consider any ψ(z) ∈ Ψi−1, and
distinguish the following cases:

1. If z = x̂, then ψ(x̂) ∈ Ψx̂. Since IK, πi∪{x̂ ↦→ d′} |= Ψx̂, we have IK, {x̂ ↦→ d′} |= ψ(x̂).
Therefore, since πi−1(x̂) = d′, it holds that πi−1 satisfies ψ(x̂) in IK.

2. If z ∈ Pred we know that πi−1(z) = πi(ŷ) = d. Since IK, πi |= ψ(ŷ), it also holds
that IK, πi−1 |= ψ(z).

3. Otherwise the filter is present in Ψi. In this case we know that IK, πi |= ψ(z) and
πi(z) = πi−1(z). Hence, it must also hold that IK, πi−1 |= ψ(z).

(⊆): Suppose that a ∈ mwa(ϕ,K) = ans(ϕ, IK). We have to show that there exists a
rewriting ϕ′ ∈ rewT (ϕ) and a satisfying assignment π for ϕ′ in IA such that a = π(x). To
do this, we assign a degree (a natural number) to each satisfying assignment (including
the existentially quantified variables of the NCQ part) such that a satisfying assignment
with degree 0 does not use any anonymous individuals. We then show that for each
satisfying assignment with a degree greater than 0, we can find a rewriting for which
a satisfying assignment yielding the same answer, but with a lower degree, exists. In
addition, for every such assignment π and for all filters ψ(y) in ϕ′ it should hold that,

if π(y) ∈ NI , then IA |= ψ(π(y)), (†)

i.e. all filters (at any stage of the rewriting) are satisfied within the confines of IA.
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For any element d ∈ ∆IK , we denote by |d| the minimal number of role connections
required to reach d from an element in NI , with |d| = 0 iff d ∈ NI . Additionally, for any
assignment π′ in IK, let

deg(π′) :=
∑︂

y∈dom(π′)
|π′(y)|. (3.5)

Since ϕ ∈ rewT (ϕ), to prove the claim it suffices to show that whenever there is a filtered
query ϕ1 = ∃y.φ1(x,y)∧Ψ ∈ rewT (ϕ) such that φ1 has a match π1 in IK with a = π1(x),
deg(π1) > 0, and Equation (†) holds for π1 and the filters in Ψ, then there exist ϕ2 and
π2 with the same properties, but deg(π2) < deg(π1).

Assume ϕ1 ∈ rewT (ϕ) as above, and let π1 be a match of φ1. Since deg(π1) > 0 by
assumption, there must exist a variable x̂ of φ1 such that π1(x̂) ̸∈ NI . Select x̂ such that
it is a leaf node in the sub-forest of IK induced by π1. Note that x̂ cannot be an answer
variable.

We know that π1(x̂) = dx̂ was induced by some axiom α = M ⊑T ∃s.N and element
dp ∈MIK in Definition 3.6. By the construction of IK, we know that

(i) dx̂ has just the one predecessor dp, and

(ii) dx̂ ∈ AIK iff N ⊑T A and (dp, dx̂) ∈ rIK iff s ⊑T r.

We obtain the query ϕ2 from ϕ1 through rewriting, by selecting x̂ and introducing ŷ
in (S1), and selecting α in (S2). Let Pred denote the set of predecessor variables of x̂
as defined in (S1). To see that this is a valid choice, the conditions in (S2) need to be
verified:

(S2a) For any A(x̂) ∈ φ1, we have dx̂ = π1(x̂) ∈ AIK , and hence N ⊑T A by (ii). Consider
any role atom r(y, x̂) ∈ φ1. From (i), the construction of IK (no inverse edges),
and the fact that π1 is a satisfying assignment for r(y, x̂) in IK, the only possibility
is that π1(y) = dp. Therefore (dp, dx̂) = (π1(y), π1(x̂)) ∈ rIK . By (ii), this implies
that s ⊑T r.

(S2b) Consider any ¬A(x̂) ∈ φ1, for which we must have dx̂ /∈ AIK . From (ii) we know
that N ̸⊑T A. Consider any ¬r(y, x̂) ∈ φ1. Since this is guarded by a positive role
atom as above, again the only possibility is that π1(y) = dp. Hence (dp, dx̂) /∈ rIK .
By (ii), this implies that s ̸⊑T r.

Therefore, we obtain a satisfying assignment π2 for ϕ2 in IK such that a ∈ π2(x) (and
deg(π2) < deg(π1)) by setting for all z ∈ Var(φ2):

π2(z) :=
{︄
π1(z) if z ∈ Var(φ1)
dp if z = ŷ.

To see that π2 satisfies ϕ2, we argue why it satisfies the new atoms and filter from (S6)
and (S7); the old atoms (possibly with renamed variables) remain satisfied.

The new atom M(ŷ) is satisfied since π2(ŷ) = dp ∈ MIK . Consider now an atom
¬M ′(ŷ) with M ′ ∈M′ as specified in (S6); we have to show that dp /∈ (M ′)IK . Assume to
the contrary that dp ∈ (M ′)IK . By (S3), we know that M ′ ⊑T ∃s′.N ′ ⊑sT ∃s.N . Moreover,
∃s′.N ′ must be included in the set V in Step 3(a) of Definition 3.6, because otherwise

43



Chapter 3. Minimal-World Semantics for Conjunctive Queries with Negation

we would already have dp ∈ (∃s′.N ′)IA , i.e. there would be a named individual b such
that (dp, b) ∈ (s′)IA and b ∈ (N ′)IA . Since s′ ⊑T s and N ′ ⊑T N , this would imply
(dp, b) ∈ sIA and b ∈ NIA , i.e. dp ∈ (∃s.N)IA , which shows that the anonymous object dx̂
would not have been created. Since ∃s′.N ′ is included in V and we assumed that ∃s.N
is minimal w.r.t. ⊑sT , we must have s ≡T s′ and N ≡T N ′. But then (S3b) directly
contradicts (S2b).

We now consider the filters in ϕ2. Suppose that Equation (†) holds for π1 and all
filters in ϕ1. For the ones that are only copied from ϕ1 (modulo renaming some variables
to ŷ), the property is clearly preserved. For the new filter ψ∗(ŷ), assume that π2(ŷ) ∈ NI ,
and hence we need to show that IA |= π2(ψ∗(ŷ)). Assume that there exists an element
d′ ∈ NI such that (dp, d′) ∈ sIA and d′ ∈ NIA . But then in Step 3(a) in Definition 3.6,
∃s.N could not have been added to V since dp ∈ (∃s.N)IK already holds. Hence, the
element dx̂ would have never been introduced, which is a contradiction. Therefore, in IA
the precondition of ψ∗(ŷ) is never met, which makes the filter trivially satisfied.

Finally, to show that deg(π2) < deg(π1), we make a case distinction on whether the
set Pred is empty or not. If Pred = ∅, then we essentially replace the variable x̂ in φ1
with a new variable ŷ in φ2 with |π2(ŷ)| = |dp| < |dx̂| = |π1(x̂)|. Since the remaining
variables are not affected by the rewriting step, this shows that deg(π2) < deg(π1). If
Pred ≠ ∅, then we have |π2(ŷ)| = |dp| = |π1(y)| for all y ∈ Pred. Since the variables in
Var(φ1) \ {ŷ} = Var(φ1) \ (Pred∪{x̂}) are not affected and |π1(x̂)| > 0, we conclude that

deg(π2) = |π2(ŷ)|+
∑︂

z∈Var(φ2)\{ŷ}

|π2(z)|

< |π1(x̂)|+
∑︂

y∈Pred
|π1(y)|+

∑︂
z∈Var(φ1)\(Pred ∪{x̂})

|π1(z)|

= deg(π1). 2

Under data complexity assumptions, ϕ and T , and hence rewT (ϕ), are fixed, and IA
is of polynomial size in the size of A.

For non-rooted queries the rewriting can get infinite, because we can always find a leaf
variable that is not an answer variable. For example, suppose that the TBox T consists
of the two GCIs A ⊑ ∃r.B and B ⊑ ∃r.A. Let ϕ() = ∃x.A(x)∧¬B(x) be a Boolean query.
The rewriting algorithm would produce an infinite rewriting of the form:

ϕ0 = ∃x.A(x) ∧ ¬B(x)
ϕ1 = ∃x.B(x) ∧

(︁
∃y.r(x, y) ∧A(y)→ ∃y.r(x, y) ∧A(y) ∧ ¬B(y)

)︁⏞ ⏟⏟ ⏞
ψ1(x)

ϕ2 = ∃x.A(x) ∧
(︁
∃y.r(x, y) ∧B(y)→ ∃y.r(x, y) ∧B(y) ∧ ψ1(y)

)︁⏞ ⏟⏟ ⏞
ψ2(x)

ϕ3 = ∃x.B(x) ∧
(︁
∃y.r(x, y) ∧A(y)→ ∃y.r(x, y) ∧A(y) ∧ ψ2(y)

)︁⏞ ⏟⏟ ⏞
ψ3(x)

. . .
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In the following, we show that such infinite rewritings can be avoided, since after a
certain number of rewriting steps queries will not generate any new answers.

For a query ϕ with filters Ψ, where each ψ(y) ∈ Ψ is of the form(︁
∃y′.ψ+(y, y′)

)︁
→

(︁
∃y′.ψ+(y, y′) ∧ ψ−(y, y′) ∧Ψ′)︁,

we define the nested filter depth as follows:

|ϕ| := max
ψ∈Ψ

|ψ| |ψ| := 1 + max
ψ′∈Ψ′

|ψ′|,

where the second expression is applied recursively to sub-filters.

Lemma 3.15. Let K = (T ,A) be a consistent ELH⊥ KB and let ϕ be an NCQ. Then⋃︂
ϕ′∈rewT (ϕ)

|ϕ′|≤v+NC
2
T ·NRT

ans(ϕ′, IA) =
⋃︂

ϕ′∈rewT (ϕ)
ans(ϕ′, IA).

where v denotes the number of variables in ϕ, and NCT and NRT denote the number of
concept and role names in T , respectively.

Proof. In the following, we assume a connected CQ ϕ with v variables. This is without
loss of generality since the non-connected parts in the query can be dealt with separately.

Connectedness is preserved by the rewriting algorithm and hence there are two possible
scenarios. In the first one, ϕ has only a finite number of rewritings. That happens if
after at most v rewriting steps the rewriting is of the form ∃z.φ(z) ∧Ψ(z), where φ(z)
cannot be rewritten further. Otherwise, ϕ has infinitely many rewritings. In this case,
after v rewriting steps, the rewriting and all further rewritings are of the form

∃y.
(︁
A(y) ∧Neg∧ψ(y)

)︁
, (‡)

where A ∈ NC (recall that we assume a TBox in normal form), Neg is a conjunction of
atoms of the form ¬Â(y) for Â ∈ NC , and ψ is a filter that is linearly extended in every
further rewriting step.

Assume a query ϕ0 of the form (‡) that has been further rewritten to ϕn in a sequence
of ϕ0 →T · · · →T ϕi →T · · · →T ϕn, where n ∈ N, every formula ϕj is of the form
∃y.Aj(y) ∧ Negj ∧ψj(y) for 0 ≤ j ≤ n, and there exists 1 < i < n with An = Ai,
Negn ∼= Negi and ψ+

n
∼= ψ+

i , i.e. the filters of ϕn and ϕi have the same body (up to
renaming of variables, denoted by ∼=).

We show that if there is a satisfying assignment πn for ϕn over IA, then there is also
a satisfying assignment for a query ϕ′ with |ϕ′| < |ϕn|. Suppose the nested filters in ϕn
are matched up to a nested filter depth of 0 ≤ d ≤ n.

Case 1: If d = 0, the body of ψn is not satisfied, then πn is also a match for Ai ∧Negi,
since the Ai = An, Negi = Negn and the body of ψi is the same as the body of ψn by
assumption. Clearly |ϕi| < |ϕn|.

45



Chapter 3. Minimal-World Semantics for Conjunctive Queries with Negation

Case 2: If d > 0, then we construct a match for query ϕn−1. Suppose ϕn−1 has been
rewritten to ϕn by using a GCI A ⊑T ∃r.B. Then we know that

ϕn−1 := ∃y.B(y) ∧Negn−1 ∧ψ(y)
ϕn := ∃x.A(x) ∧Negn ∧

(︁
∃y.r(x, y) ∧B(y)→ ∃y.r(x, y) ∧B(y) ∧Negn−1 ∧ψ(y)

)︁
Because d > 0, there has to be a satisfying assignment {x ↦→ a, y ↦→ b} with a, b ∈ ∆IA for
r(x, y) ∧B(y), which also satisfies Negn−1 ∧ψ(y). Then the assignment πn−1 := {y ↦→ b}
satisfies ϕn−1, and ψ(y) will then be matched up to a depth of d− 1.

This result can be used to bound the nested filter depth of queries during rewriting:
In each rewriting step the query is rewritten w.r.t. a GCI of the form A ⊑T ∃r.B with
A,B ∈ NCT and r ∈ NRT . There can be at most NC

2
T ·NRT different GCIs of this form.

Suppose a rewriting of ϕ to ϕ′ with |ϕ′| > v+NC
2
T ·NRT , where v denotes the number of

variables in ϕ. Then at least two rewritings between ϕ and ϕ′ must start with the same
expression ∃x.A(x) ∧Neg∧(∃y.r(x, y) ∧B(y)→ . . . ). By the arguments above, there are
rewritings of ϕ of nested filter depth at most v+NC

2
T ·NRT that yield the same answers

as ϕ′. 2

Hence, queries need to be rewritten only until this bound on the nested filter depth,
which does not depend on A. We obtain the claimed complexity result.

Theorem 3.16. Checking whether a given tuple a is a minimal-world answer to an
NCQ ϕ over a consistent ELH⊥-KB K can be done in polynomial time in data complexity.

As discussed in Example 3.1 it can be useful to allow complex assertions in the ABox:
The assertions of patient p3 can then be stated without introducing a new constant for
the disease by stating

∃diagnosedWith.SkinOfBreastCancer(p3).

This leads to the introduction of additional acyclic definitions T ′, which are not fixed.
The complexity nevertheless remains the same: Since T does not use the new concept
names in T ′, we can apply the rewriting only w.r.t. T , and extend IA by a polynomial
number of new elements that result from applying Definition 3.6 only w.r.t. T ′.

What is more important than the complexity result is that this approach can be used
to evaluate NCQs using standard database methods, e.g. using views to define the finite
interpretation IA based on the input data given in A, and SQL queries to evaluate the
elements of rewT (ϕ) over these views [KLT+11].

3.5. Minimal-World Semantics for more Expressive Horn
Description Logics

We have seen that in consistent ELH⊥-KBs there always is a minimal universal model,
which is unique up to isomorphism. In this section we want to extend minimal-world
semantics to more expressive DLs.
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(a) A complete graph with 5 nodes.
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(b) Star-graph G5 with 5 nodes.

v0 v1

(c) Star-graph G1.

Figure 3.17.: Example graphs.

3.5.1. Cores

It turns out that the notion of minimality is closely related to the concept of cores, a
concept first defined in finite graph theory [Fel82; HN92]. Intuitively, a minimal graph
does not contain any redundant elements w.r.t. to homomorphisms. Formally, the core
property has been characterized in different ways, all of which turn out to be equivalent
for finite structures:

• A graph G is a core if every endomorphism of G is injective.

• A graph G is a core if every endomorphism of G is surjective.

Additionally, we say a sub-graph H of a graph G is a core of G if H is the image of an
endomorphism of G. A simple example of a core is a complete graph G = (V,E), where V
denotes the set of vertices and E the set of edges. In a complete graph every pair of distinct
vertices is connected with a unique edge. An example can be found in Figure 3.17a. In a
complete graph it is not possible to map any two distinct vertices v1, v2 ∈ V onto v3 ∈ V
with some endomorphism h, because v1 and v2 are connected, formally (v1, v2) ∈ E,
but v3 is not connected to itself, formally (h(v1), h(v2)) = (v3, v3) ̸∈ E. Therefore every
complete graph is a core.

Now consider the a star-shaped graph Gn = (Vn, En) where Vn := {vi | 0 ≤ i ≤ n}
and E = {(v0, vi) | 0 < i ≤ n} for n > 0. Examples for n = 5 and n = 1 are shown
in Figure 3.17. We can construct an endomorphism h := {v0 ↦→ v0}∪{vi ↦→ v1 | 0 < i ≤ n}
that is neither injective nor surjective. Therefore G5 is not a core. The core of G5 is
obtained as the image of h, which yields the star-graph G1. In fact, it can easily be
checked that all star-graphs are homomorphically equivalent, which implies that G1 is
the unique core of all of them.

As we will see, the definitions are not equivalent anymore in infinite structures. To
distinguish the different properties we adopt the notation of [Bau95]:

Definition 3.18. Let G be a relational structure.

• I(G) holds if any endomorphism of G is an injection.

• S(G) holds if any endomorphism of G is a surjection.

• N(G) holds if any endomorphism of G is a strong homomorphism.
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ISN ≡ SN ≡ IN ≡ IS ≡ S ≡ I→N
(a) Implications in finite structures.

ISN ≡ SN
IS

IN

S

I

N
(b) Implications in infinite structures.

Figure 3.19.: Implications that hold between I,S,N and their combinations thereof.

Let X be one of the above properties or any combination of them. We write X(G) to
denote that all properties in X hold for G. G is called an X-core if X(G) holds. A
structure H is a X-core of G if H ⊆ G, G→ H, and H is a X-core. ♢

For finite relational structures, many properties (and their combinations) are equivalent
as can be seen in Figure 3.19a. For example, if I(G) holds for some finite relational
structure G, every endomorphism is an injection, which implies that the image of
every endomorphism has to be G itself. Therefore, every endomorphism is also a
surjection. Additionally, it holds for finite relational structures that (i) every finite
structure has a core, which is (ii) unique up to isomorphism, and (iii) if two structures
are homomorphically equivalent, their cores are isomorphic.

When moving to infinite structures, the situation changes and the different properties
are not equivalent anymore, as can be seen in Figure 3.19b. For a more detailed
introduction to core-like properties for infinite structures, we refer the reader to [Bau95].

In ELH⊥ we already have universal models that are not finite in general. We showed
that for any consistent ELH⊥-KB there exists a unique universal model IK for which
ISN(IK) holds (see proof of Lemma 3.8). Because of this property we were able to base
minimal-world semantics on the minimal universal model.

3.5.2. Minimal universal models beyond ELH⊥

In the following we discuss problems that arise when moving to more expressive DLs.
Since minimal-world semantics are strongly coupled to the existence of universal models
we look into more expressive Horn-DLs. In particular, we discuss extensions of EL by
nominals, inverses and transitivity. A summary can be found at the end of this section
in Table 3.24. The following examples are inspired by the examples from [Bau95].

In the first example the universal model has to contain a ray of infinite length, which
can be achieved with a combination of inverse roles and nominals:

Example 3.21. Let the Horn-ALCOI KB K1 consist of the following axioms:

A ⊑ ∃r.(A ⊓B) B ⊑ ∃r−.{a} C ⊑ ∃r.A
B ⊑ ∃r−.A C(a) ♢

In Figure 3.20 a universal model Ia of K1 is shown. Every universal model has to contain
a ray with an initial element satisfying A, but not B. The constant a is connected to
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Figure 3.20.: Ia and Ib are universal models of K1 and K2, respectively. All edges
represent r-connections. Both models contain an infinite ray of anonymous
elements starting from e0 and a is connected to each elements on the ray.

every element in the ray, so that it does not have an influence on any endomorphism of
the ray. Note that while infinite rays can be constructed in ELH⊥ as well by a simple
cyclic TBox, it is not possible to have a be connected to every element of the ray. This
makes a crucial difference. Because a is connected to every element on the ray, shifting
along the ray becomes a possibility for endomorphisms. In fact, it is the only possibility
because in order to map two consecutive elements e, e′ ∈ ∆Ia to the same target t ∈ ∆Ia ,
t would have to have an r-self-loop, formally (t, t) ∈ rIa , which cannot be the case in
any universal model of K1. Therefore, every endomorphism of Ia is of the form

hk := {a ↦→ a} ∪ {ei ↦→ ei+k | i ∈ N} for k ∈ N,

which denotes the size of the shift along the ray. It is easy to check that hk is injective for
every k ∈ N, hence for I(Ia) holds. For any k > 0, the endomorphism is not surjective,
since the first k elements of the ray are not part of the image of hk. Non-relations
are also not preserved, since e0 will be mapped to ek for any k > 0 and e0 ̸∈ BIa , but
ek ∈ BIa .

If S does not hold for Ia itself, does it hold for a substructure of of Ia? It turns out
that Ia does not even have an S-core: Every substructure obtained as the image of hk(Ia)
with k > 0 can again be shifted by at least one element and so on. So every substructure
we obtain with an endomorphism admits further endomorphisms that are not surjective.
In contrast, Ia has an N-core which can be obtained as the image of hk(Ia) for any
k > 0. Since the results are all isomorphic for any k > 0, Ia has an N-core that is unique
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up to isomorphism. However, hk(Ia) is not a model of K1, since the first element ek in
the ray of hk(Ia) belongs to both B and A, but does not have an A-successor, which
violates the axioms in K1. To summarize, for K1 there is a universal model, namely Ia,
that is an I-core, has no S-core, but an N-core that is not a model.

Unfortunately, we can construct examples where we get issues also with the I property.
We modify the KB K1 slightly to the following:

Example 3.22. Let the Horn-ALCOI KB K2 consist of the following axioms:

A ⊑ ∃r.(A ⊓B) B ⊑ ∃r−.{a} C ⊑ ∃r.A C(a) ♢

As before, Ia is a universal model for K2 and an I-core. Additionally, this time also
hk(Ia) is a universal model and I(hk(Ia)) holds for all k ∈ N. So for K2 there are two
different universal I-core models that are not isomorphic and yield different answers to
NCQs: For instance, to the query

q(x) := ∃y.r(x, y) ∧A(y) ∧ ¬B(y),

a is an answer in Ia, but not in any hk(Ia) with k > 0. Since a we be the intuitive
answer, using ‘certain core answers’, by returning only answers that are answers in every
core model, is also not an option.

To circumvent such problems, uniqueness of cores seems to be a necessary condition.
It has been shown in [Bau95] that the properties ISN and SN are the only combinations
that preserves uniqueness of a core for infinite structures. However, while ISN-cores can
guarantee uniqueness, we have already seen that for Ia not even an S-core exists, which
implies that it does not have an ISN-core either. When nominals and inverse roles are
allowed to interact, none of the properties satisfy all the requirements for a suitable core
definition to base a minimal-world semantics on.

Transitivity

If transitivity of roles is available, we can construct a ray in a manner similar to K2,
without using inverse roles or nominals:

Example 3.23. Let the Horn-S KB K3 consist of the following axioms:

A ⊑ ∃r.(A ⊓B) r ◦ r ⊑ r C ⊑ ∃r.A C(a) ♢

A universal model Ib can be found in Figure 3.20. The only difference to Ia are the
additional r-connections from every element ei with i ∈ N in the ray to every element ej
with j > i+ 1. As for Ia, all endomorphisms are of the form of hk with k ∈ N. Without
the use of an inverse role it seems impossible to require the initial element of the ray to
satisfy only A and not B as it is the case in K1. Therefore, similarly to the case of K2,
hk(Ib) is a model of K3 for every k ∈ N. This means that Ib has multiple non-isomorphic
I-cores, which makes it unsuitable for minimal-world semantics. When using IN-cores,
Ib is not a core, but hk(Ib). This means that q would not yield any answers when
evaluated over an universal IN-core model of K3, which is not the expected behavior.
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Core Definition Horn-ALCOI Horn-S
I universal models may have mul-

tiple non-isomorphic cores that
are not necessarily universal
models (see K1; Ia); unintuitive
query results (see K2 and q)

multiple non-isomorphic cores
(see K3, Ib)

S, SN, IS, ISN core does not exist (see Ia) core does not exist (see Ib)
IN, N universal models may have cores

that are not universal models
(see K1, Ia)

unintuitive query results (see K3
and q)

Table 3.24.: A summary of the different possibilities to define a core and the problems
when queries should be answered over the resulting respective universal core
models of either Horn-ALCOI-KBs, which allow the use of nominals and
inverse roles, or Horn-S, which allows transitivity.

We have seen that for ELH⊥ minimal-world semantics can be defined without any
complications. As soon as we extend it by either nominals and inverses or transitivity we
fail to find a suitable definition of minimality, no matter which combination of properties
we employ. The crucial difference between ELH⊥ and the extensions might be the degree
of the universal models: In ELH⊥ there always exists a universal model that is locally
finite, i.e. in which each element has only a finite number of successors. This property
does not hold anymore in any of the two extensions we have looked at. K1, K2 and
K3 are all KBs for which no locally-finite universal model exists, which leads to the
difficulties we discussed.
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3.5.3. Cores in Existential Rules

Recently, similar observations were made in the field of existential rules, which is a more
general setting than ELH⊥. An existential rule ρ is a first-order formula of the form

ρ = ∀x,y.φ[x,y]→ ∃z.ψ[y, z],

where φ and ψ are conjunctions of atoms containing only constants or elements from
mutually disjoint lists of variables x,y, z. The left-hand side of the implication is called
body and the right-hand side is called head. For simpler notation we omit the quantifiers
in front of the rules from now on. For example, the axioms available in (normalized)
ELH⊥ can be expressed by existential rules in the following way:

→ A(x) A(x)
→ r(x, y) r(x, y)

A(x)→ B(x) A ⊑ B
A(x)→ A1(x) ∧A2(x) A ⊑ A1 ⊓A2

r(x, y) ∧B(y)→ A(x) ∃r.B ⊑ A
A(x)→ ∃y.r(x, y) ∧B(y) A ⊑ ∃r.B

r(x, y)→ s(x, y) r ⊑ s

The semantics for existential rules are adopted from first-order logic. To construct models
of a given finite set Σ of existential rules, so-called chase algorithms are employed: They
construct a sequence of interpretations by consecutively applying rules if their body
can be homomorphically mapped to some part of the current interpretation. The chase
terminates when no more rules are applicable to any part of the model. If the chase
algorithm terminates (which it does not necessarily do), the resulting interpretation
is a model of Σ. Moreover it is universal in the sense we have defined before, which
is why certain answers to CQs can be computed in this way. Since the order of rule
application plays a crucial role in the termination of the chase, different chase algorithms
have been proposed: The standard chase does not make any assumption on the order of
rule application apart from fairness (every rule is applied at some step). In many cases
this does not terminate, which is why Deutsch, Nash, and Remmel introduced the core
chase [DNR08], where in the following core denotes the IN-core. In a singe step the core
chase first applies all applicable rules simultaneously and then minimizes the result by
computing its core. It has been shown that the core chase, in contrast to the standard
chase, is complete for finding universal models for any finitely satisfiable rule set.

However, when moving to non-finitely satisfiable rules sets, infinite interpretations
can have several non-isomorphic cores, or none at all, as is discussed in [CKM+18].
In [Krö20] it is observed that even though the core model has many good properties
for finitely satisfiable rule sets, it is not supported by any major reasoning system,
supposedly because the computation of the core in every step is expensive. To overcome
this, special cases are identified in which the standard chase can be used to compute
a core “incidentally”. The class of standard chase sequences that are guaranteed to
produce core models are characterized in terms of alternative matches.
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Figure 3.26.: Two models of Σ in Example 3.25.

Example 3.25. Consider the set Σ of existential rules given on the left, which correspond
to the DL-axioms shown on the right.

→ A(a) A(a) (3.6)
A(x)→ B(x) A ⊑ B (3.7)
A′(x)→ B′(x) A′ ⊑ B′ (3.8)
B(x)→ ∃y.r(x, y) ∧B′(y) B ⊑ ∃r.B′ (3.9)
A(x)→ ∃y.r(x, y) ∧A′(y) A ⊑ ∃r.A′ (3.10)

♢

Consider the two interpretations in Figure 3.26. Suppose the standard chase constructed
model I. During the chase I ′ was obtained through the application of a rule ρ (rule 3.9)
by the mapping h = {x ↦→ a, y ↦→ e1} and the introduction of e1. Then we can find a
homomorphism h′ : {x, y} → ∆I , that is identical with h on all variables occurring in the
body (left-hand side) of ρ, but not identical for at least one variable that occurs only in
the head (right-hand side) of ρ, by setting h′ := {x ↦→ a, y ↦→ e0}. A homomorphism that
satisfies these conditions is called an alternative match. Krötzsch shows that whenever
there are no alternative matches in a chase, then the result is a core model. However, even
when there are alternative matches the result can still be a core model. Unfortunately,
it is undecidable if some chase has alternative matches. To capture some cases where
the application of a rule might introduce alternative matches for another rule that was
applied earlier, a restrainment relation between rules is introduced that, similar to our
structural subsumption, causes specific rules to be executed before (or instead of) others.
Finally, non-monotonic negation in the core chase is investigated. In contrast to our
setting, negation is not only allowed to occur in the query, but also on the left-hand side
of TBox axioms. It is shown that this can lead to conflicts between non-monotonicity
and cores in certain cases. Moreover, the focus for Krötzsch is on finite satisfiability,
while we have infinite models and deal with this through a rewriting.

We have seen that, on the one hand, no matter which core definition is adopted,
we can either guarantee uniqueness, but not existence, or we can guarantee existence,
but lose uniqueness. On the other hand, the loss of good properties of cores for more
expressive logics causes a discrepancy from the intuition behind minimal-world semantics:
Arguably, a should be an answer to q in K1, K2 and K3 from Examples 3.21 to 3.23.
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However, this cannot be achieved using cores in any obvious way, since, for example, in
the sense of IN-cores, e0 is a redundant element and therefore it can be merged into the
chain of infinite length without it making a mathematical difference.

3.5.4. "Intuitively" Minimal Models for Horn-ALCHOIQDisj
Self

While difficult to define formally, the intuition behind minimal-world semantics seems to
be simple to grasp for a human. Based on this intuition to include just the necessary
elements, a student work [Khy20] already proposed a construction for an (intuitively)
minimal universal model for Horn-ALCHOIQDisj

Self , an extension of Horn-ALCHOIQ with
self-loops and role disjointness axioms. For the construction structural subsumption is
extended to include also qualified number restrictions. Based on the subsumption relation,
new successors are then introduced, starting from the currently minimal restriction α. If
α is satisfied, the restriction is removed from the set and the next minimal restriction β
is considered. Since α already introduced some of the successors required for β, only the
difference needed to satisfy β is introduced. Additionally, nominals need to be taken
into account when determining how many new successors need to be introduced. In
[ORS11] it has been shown that CQ answering w.r.t. certain answer semantics over
Horn-SROIQ can be reduced to CQ answering over Horn-ALCHOIQDisj

Self . Similarly, it
might be possible to show (after finding a suitable definition of minimality) that for
a given Horn-SROIQ-KB K, there is a corresponding Horn-ALCHOIQDisj

Self -KB K′ such
that the minimal universal model of K′ corresponds to a minimal universal model of K.

3.5.5. Queries beyond (N)CQs
Instead of moving to more expressive DLs, we could also use a more expressive query
language.Suppose we want to select ‘parents that have two kids’. With (N)CQs is not
possible to count successors. One possibility for adding counting capabilities to NCQs
would be to add inequalities, allowing us to pose the above query as

q(x) = ∃y1.∃y2.parentOf(x, y1) ∧ parentOf(x, y2) ∧ y1 ̸= y2.

Unfortunately, it has been shown that at least for certain answer semantics answering
CQs with general inequalities over EL⊥ is undecidable [GIK+15]. In the case of minimal-
world semantics a rewriting approach could be possible if the TBox axioms can be used
to decide when a certain inequality can occur in the anonymous part of the canonical
model. Additionally, the filters would have to be extended to deal with potentially
untypical structures in the ABox. However, with general inequalities arbitrary variables
in the query can be required to be not equal, no matter how many role connections they
are apart from each other in the structure of the query. It could be difficult to take this
into account, since the rewriting works by consecutively removing leaf variables in the
query. Without inequalities, the leaf variable depends only on its predecessor variable(s).
With inequalities, an additional layer of dependencies is introduced. Therefore, it might
be necessary to make some restrictions on the use of inequalities.

54



Chapter 4.

Temporalizing ELH⊥
In the previous chapter we have introduced minimal-world semantics for ELH⊥ ontologies
that can, for example, be used to give suitable semantics to NCQs for the patient selection
task. Apart from negation, we need to be able to represent the temporal dimension:
Many clinical trials contain temporal eligibility criteria [CT15], such as:

• “type 1 diabetes with duration at least 12 months”1; or
• “known history of heart disease or heart rhythm abnormalities”2.

Moreover, measurements, diagnoses, and treatments in a patients’ EHR are clearly
valid only for a certain amount of time. Since EHRs only contain information for specific
points in time, it is especially important to be able to infer what happened to the
patient in the meantime. For example, if a patient is diagnosed with a (currently)
incurable disease like Diabetes, they will still have the disease at any future point in
time. Similarly, if the EHR contains two entries of CD4Above2503 one week apart, one
may reasonably infer that this was true for the whole week. Qualitative temporal DLs
such as TEL♢infl [GJK16] can express the former statement by declaring Diabetes as
expanding via the axiom −Diabetes ⊑ Diabetes. We propose to extend this logic by
adding a special kind of metric temporal operators, introduced in Section 4.1, to write

cc 7CD4Above250 ⊑ CD4Above250,

making the measurement convex for a specified length of time n (e.g. 7 days). This
means that information is interpolated between time points of distance less than n,
thereby computing a convex closure of the available information. The threshold n allows
us to distinguish the case where two mentions of CD4Above250 are years apart, and are
therefore unrelated.

The distinguishing feature of TEL♢infl is that -operators are only allowed on the left-
hand side of concept inclusions [GJK16], which is also common for temporal DLs based
on DL-Lite [AKW+13; AKK+15]. In Section 4.2 we introduce TELH c♢,lhs

⊥ , an extension
of TEL♢infl by convex metric temporal operators.
We allow temporal roles like cc 2hasTreatment ⊑ hasTreatment, and provide a completion
algorithm in Section 4.3 that can deal with the problem of having large temporal gaps in
the data, e.g. in patient records. We show that reasoning in TELH c♢,lhs

⊥ remains tractable.
We end with some ideas for future work and discussion of related work in Section 4.4.

1https://clinicaltrials.gov/ct2/show/NCT02280564
2https://clinicaltrials.gov/ct2/show/NCT02873052
3The CD4 value is the ratio of T helper cells (which have the surface marker C4) to cytotoxic T cells.

A reduced ratio is associated with reduced resistance to infections [YJY+15].
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4.1. Convexity Operators

We first introduce the LTLbin operators that we will use and analyze their properties.
We consider only formulas built according to the syntax rule

φ ::= p | φ ∧ φ | φ ∨ φ | Iφ,

where p ∈ P and I is an interval in Z. More specifically, we only consider the following
derived operators, where n ≥ 1.

±φ := (−∞,∞)φ +φ := [0,∞)φ −φ := (−∞,0]φ

ccφ := (−∞,0]φ ∧ [0,∞)φ cc nφ :=
⋁︂

k,m≥0
k+m=n−1

( [−k,0]φ ∧ [0,m]φ) (4.1)

The operator + is the ‘eventually’ operator of classical LTL, and −, ± are two variants
that refer to the past, or to both past and future, respectively. The convexity operator cc

requires that φ holds both in the past and in the future, thereby distinguishing time
points that lie within an interval enclosed by time points at which φ holds. This can
be used to express the convex closure of time points, as described in the introduction.
Finally, the bounded convexity operators cc n represent a metric variant of cc , requiring
that different occurrences of φ are at most n−1 time points apart, i.e. enclose an interval
of length n.

To study the behavior of these operators, we consider their semantics in a more
abstract way: given a set of time points where a certain information is available (e.g. a
diagnosis), described by a propositional variable p, we consider the resulting set of time
points at which ⋆p holds, where ⋆ is a placeholder for one of the operators defined above
(we will similarly use •, † , ‡ as placeholders for different -operators in the following).

Definition 4.1. We consider the sets

Dc := { cc } ∪ { cc i | i ≥ 1}, D± = {−,+, ±}, and D := D± ∪Dc

of diamond operators. Each diamond operator ⋆ ∈ D induces a function ⋆ : 2Z → 2Z with
⋆(M) := {i |WM , i |= ⋆p} for all M ⊆ Z, with the LTL-structure WM := (wi)i∈Z such
that wi := {p} if i ∈M , and wi := ∅ otherwise. ♢

We will omit the parentheses in ⋆(M) for a cleaner presentation. If M is empty, then
⋆M is also empty, for any ⋆ ∈ D. For any non-empty M ⊆ Z, we obtain the following
expressions, where maxM may be ∞ and minM may be −∞.

±M = Z +M = (−∞,maxM ] −M = [minM,∞) ccM = [minM,maxM ]
cc 1M = M cc nM = {i ∈ Z | ∃j, k ∈M with j ≤ i ≤ k and k − j < n}

In this representation, the convex closure operation behind cc becomes apparent. See Fig-
ure 4.2 for a graphical illustration of the diamond operators. We now list several useful
properties of these functions.
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Figure 4.2.: A graphical illustration of the diamond operators. Suppose the predicate p
is valid at the intervals given directly above the timeline. Then for each of
temporal operator ⋆, the interval is given at which ⋆p holds.

Lemma 4.3. Using the point-wise inclusion order ⊆ on the induced functions, we obtain
the following ordered set (D,⊆), where id2Z is the identity function on 2Z:

cc 1id2Z . . . cc n cc n+1 . . . cc

+

−

±⊆ ⊆ ⊆ ⊆ ⊆ ⊆
⊆⊆
⊆

=

Proof. We only show that cc n ⊆ cc n+1 for all n ∈ N; the remaining inclusions are easy to
check. If i ∈ cc n then there exists j, k ∈M with i ∈ [j, k] and k − j < n. The same choice
of j, k is also valid for cc n+1, since k − j < n implies k − j < n+ 1. Hence i ∈ cc n+1. 2

We prove some additional technical lemmas.

Lemma 4.4. Each ⋆ ∈ D is extensive and monotone, i.e. for all M1 ⊆M2 ⊆ Z, it holds
that M1 ⊆ ⋆M1 ⊆ ⋆M2.

Proof. Extensivity follows from Lemma 4.3 and monotonicity is obvious for most of the
operators. For cc n if i ∈ cc nM1 by choosing j, k ∈M1, then since M1 ⊆M2, the choice of
j, k is also a valid choice in cc nM2 and hence i ∈ cc nM2. 2

Lemma 4.5. For all ⋆ ∈ Dc, we have ⋆{i} = {i} for all i ∈ Z. For all ⋆ ∈ D± and
M ⊆ Z, we have ⋆M = ⋃︁

i∈M ⋆{i}.

Proof. The claim for ⋆ ∈ Dc is obvious. For +, we have

+M = (−∞,maxM ] =
⋃︂
i∈M

(−∞, i] =
⋃︂
i∈M

+{i}.

The cases for − and ± are similar. 2

The most important property is the following, which allows us to combine diamond
operators without leaving the set D.
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Lemma 4.6. The set D is closed under composition ◦, point-wise intersection ∩, and
point-wise union ∪, and for any ⋆, • ∈ D these operators can be computed as:

⋆ ∩ • = inf(D,⊆){⋆, •} and • ◦ ⋆ = ⋆ ∪ • = sup(D,⊆){⋆, •},

where inf(D,⊆) denotes the infimum in (D,⊆), and sup(D,⊆) the supremum.

Proof. For the first claim, we distinguish two cases.

1. If ⋆ ⊆ •, then ⋆ ∩ • = ⋆, and similarly for • ⊆ ⋆.

2. If neither ⋆ ⊆ • nor • ⊆ ⋆, one of them must be equal to + and the other to −,
and + ∩ − = cc holds by definition.

The result is exactly the infimum w.r.t. the relation ⊆ from Lemma 4.3. The arguments
for union are similar.

We show that (• ◦ ⋆)M = (⋆ ∪ •)M holds for any M ⊆ Z. The case where M = ∅ is
trivial and we assume in the following that M ̸= ∅. We distinguish three cases.

1. Suppose that ⋆ = cc m and • = cc n and m ≥ n. By Lemma 4.4, we know that
cc mM ⊆ cc n( cc mM) = ( cc n ◦ cc m)M .
For the converse direction, let i ∈ ( cc n ◦ cc m)M . Then there exist j, k ∈ cc mM with
j ≤ i ≤ k and k − j < n. This means that there have to be a1, b1, a2, b2 ∈M with
a1 ≤ j ≤ b1, b1 − a1 < m, a2 ≤ k ≤ b2, and b2 − a2 < m.
If a2 > b1, then a1 < b2 and a2 − b1 ≤ k − j < n ≤m, and thus {a1, b1, a2, b2} ⊆M
implies that i ∈ [j, k] ⊆ [a1, b2] ⊆ cc mM . Otherwise, a2 ≤ b1 and a1 ≤ j ≤ k ≤ b2,
and hence the two intervals [a1, b1] and [a2, b2] overlap. Thus,

i ∈ [j, k] ⊆ [min{a1, a2},max{b1, b2}] = [a1, b1] ∪ [a2, b2] ⊆ cc mM.

For the case n > m, the arguments are similar, and we thus obtain

(⋆ ◦ •) = cc max(n,m) = (⋆ ∪ •).

2. Suppose that ⋆ = cc n and • ∈ D±. Then we know that minM = min ⋆M and
maxM = max ⋆M , since only elements in between the already existing elements
can be added. For the application of • this does not make a difference, hence we
have (• ◦ ⋆) = • = ⋆ ∪ •. The case where • = cc n and ⋆ ∈ D± is similar.

3. What remains is the case that ⋆, • ∈ D±. We only show the case of ⋆ = +; the
remaining cases follow the same arguments. If ⋆ = +, then +M = (−∞,maxM ]
will be transformed by applying • to either (−∞,maxM ] (if • = +), or to Z (if
• ∈ {−, ±}). In both cases, the result is (⋆ ∪ •)(M). 2
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⊥

4.2. The Temporal Description Logic TELH c♢,lhs
⊥

We define a new temporal logic based on the operators in D. The main differences to
TEL♢infl from [GJK16] are that cc n-operators may occur in concept and role inclusions,
and ABoxes may have gaps, which require special consideration during reasoning.
Definition 4.7 (Syntax of TELH c♢,lhs

⊥ ). Let NC ,NR,NI be disjoint sets of concept,
role, and individual names, respectively. A temporal role is of the form ⋆r with ⋆ ∈ D
and r ∈ NR. A TELH c♢,lhs

⊥ concept is built using the rule

C ::= A | ⊤ | ⊥ | C ⊓C | ∃r.C | ⋆C,

where A ∈ NC , ⋆ ∈ D, and r is a temporal role. Such a C is an ELH⊥ concept (or
atemporal concept) if it does not contain any diamond operators.

A TELH c♢,lhs
⊥ TBox is a finite set of concept inclusions (GCIs) C ⊑ D and role inclusion

axioms (RIAs) r ⊑ s, where C is a TELH c♢,lhs
⊥ concept, D is an atemporal concept, r is a

temporal role, and s ∈ NR. An ABox is a finite set of concept assertions A(a, i) and role
assertions r(a, b, i), where A ∈ NC , r ∈ NR, a, b ∈ NI , and i ∈ Z.

The set of time points i ∈ Z occurring in A we denote as tem(A). Also we assume
each time point is encoded in binary with at most n digits. A knowledge base (KB)
K = T ∪ A consists of a TBox T and an ABox A. ♢

In the following, we always assume a KB K = T ∪ A to be given. Moreover, we assume
NI to be non-empty.
Definition 4.8 (Semantics of TELH c♢,lhs

⊥ ). A temporal interpretation I = (∆I, (Ii)i∈Z),
is a collection of interpretations Ii = (∆I, ·Ii), i ∈ Z, over ∆I. The functions ·Ii are
extended as follows.

⊤Ii := ∆I

⊥Ii := ∅
(⋆C)Ii :=

{︁
d ∈ ∆I | i ∈ ⋆{j | d ∈ CIj}

}︁
(⋆r)Ii :=

{︁
(d, e) ∈ ∆I ×∆I | i ∈ ⋆{j | (d, e) ∈ rIj}

}︁
(C ⊓D)Ii := CIi ∩DIi

(∃r.C)Ii :=
{︁
d ∈ ∆I | ∃e ∈ CIi : (d, e) ∈ rIi

}︁
I is a model of (or satisfies)
• a concept inclusion C ⊑ D if CIi ⊆ DIi holds for all i ∈ Z,
• a role inclusion r ⊑ s if rIi ⊆ sIi holds for all i ∈ Z,
• a concept assertion A(a, i) if a ∈ AIi ,
• a role assertion r(a, b, i) if (a, b) ∈ rIi ,
• and the KB K if it satisfies all axioms in K.

This fact is denoted by I |= α, where α is an axiom (i.e. inclusion or assertion) or
a KB. An KB K is consistent if it has a model, and it entails α, written K |= α, if all
models of K satisfy α. ♢
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K is inconsistent iff K |= ⊤ ⊑ ⊥, and thus we focus on deciding entailment. In ELH⊥,
this is possible in polynomial time [BBL05].

We do not allow diamonds to occur on the right-hand side of GCIs, because that
would make the logic undecidable [AKL+07]. As usual, we can simulate GCIs involving
complex concepts by introducing fresh concept and role names as abbreviations. For
example, ∃±r.−A ⊑ B can be split into ±r ⊑ r′, −A ⊑ A′, and ∃r′.A′ ⊑ B. Hence, we can
restrict ourselves w.l.o.g. to GCIs in the following normal form:

⋆A ⊑ B, A1 ⊓A2 ⊑ B, ⋆r ⊑ s, ⋆A ⊑ ∃r.B, ∃r.A ⊑ B, (4.2)

where ⋆ ∈ D, A,A1,A2,B ∈ NC ∪ {⊥,⊤}, and r, s ∈ NR.

Convex Names
When considering axioms of the form ⋆A ⊑ A for A ∈ NC , we can first observe that
the converse direction A ⊑ ⋆A, although syntactically not allowed, trivially holds in all
interpretations. Moreover, the following implications between such equivalences follow
from Lemma 4.3:

A ≡ ±A
A ≡ +A

A ≡ −A
A ≡ cc nA . . . A ≡ cc 1A

Since {A ≡ +A,A ≡ −A} entails A ≡ ±A, it thus makes sense to consider the unique
strongest such axiom that is entailed by K (for a given A). We call A

• rigid if A ≡ ±A is the strongest such axiom,

• shrinking in case of A ≡ +A,

• expanding for A ≡ −A, and

• (n-)convex for A ≡ cc (n)A, i.e. whenever A is satisfied at two time points (with
distance < n), then it is also satisfied at all time points in between.

1-convex concept names do not satisfy any special property, and are also called flexible.
We use the same terms for role names.

4.3. A Completion Algorithm
We use the completion rules in Figure 4.9 to derive new axioms from K. For simplicity,
we treat ⊤ and ⊥ like concept names, and thus allow assertions of the form ⊤(a, i)
and ⊥(a, i) here. It is clear that we cannot derive all possible entailments of the forms
⋆A ⊑ B or A(a, i), because (1) D is infinite, and (2) Z is infinite. Moreover, there may
be arbitrarily many time points between two assertions in A (exponentially many in the
size of A if we assume time points to be encoded in binary).

To deal with (1), we restrict the rule applications to the operators that occur in K, in
addition to cc and ±, which are the only elements of D that can be obtained via ∪, ∩, or
◦ from other -operators, namely from + and −.
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T1
cc 1A ⊑ A

T2
±A ⊑ ⊤

T3
cc 1r ⊑ r

⋆A1 ⊑ A2 •A2 ⊑ A3T4 (• ◦ ⋆)A1 ⊑ A3

⋆r1 ⊑ r2 •r2 ⊑ r3T5 (• ◦ ⋆)r1 ⊑ r3

⋆A ⊑ A1 •A ⊑ A2 A1 ⊓A2 ⊑ BT6 (⋆ ∩ •)A ⊑ B

T7 ∃r.⊥ ⊑ ⊥
⋆A ⊑ ∃r.A1 •r ⊑ s †A1 ⊑ B1 ∃s.B1 ⊑ BT8

⋆A ⊑ B

⋆A ⊑ ∃r.A1 •r ⊑ s †A1 ⊑ B1 ∃s.B1 ⊑ B (• ∩ † ) ∈ D±
T8′

((• ∩ † ) ◦ ⋆)A ⊑ B

A1 ⊤(a, i)
i ∈ ⋆A(a) ⋆A ⊑ B

A2
B(a, i)

i ∈ ⋆r(a, b) ⋆r ⊑ s
A3

s(a, b, i)

A1(a, i) A2(a, i) A1 ⊓A2 ⊑ BA4
B(a, i)

r(a, b, i) A(b, i) ∃r.A ⊑ B
A5

B(a, i)

Figure 4.9.: Completion rules for TELH c♢,lhs
⊥ knowledge bases , where A,B,A1,A2,A3,B1

are ⊤, ⊥ or (normalized) ELH⊥ concepts from K; r, s, r1, r2, r3 are role names
from K; ⋆, •, † are cc , ± or elements of D occurring in K; a, b are individual
names from K; and i are values from rep(A).

For (2), we consider the set of time points tem(A) (of linear size). Additionally, consider
a maximal interval [i, j] in Z\tem(A) (where i may be −∞ and j may be∞). To represent
this interval, we choose a single representative time point k ∈ [i, j], which is denoted
by |ℓ| := k for all ℓ ∈ [i, j]. For consistency, the representative |i| for any i ∈ tem(A) is
defined as i itself. Moreover, for any k ∈ Z we denote by ⌊k⌋ := max{i ∈ tem(A) | i ≤ k}
the maximal element of tem(A) below (or equal to) k, which we consider to be −∞ in
the case that there is no such element, and similarly define ⌈k⌉. Note that ⌊i⌋ = i = ⌈i⌉
whenever i ∈ tem(A), and otherwise ⌊i⌋ < i < ⌈i⌉. By restricting all assertions to the
finite set of representative time points

rep(A) := {|i| | i ∈ Z} ⊃ tem(A),

we can encode infinitely many entailments in a finite set. We also define the following
abbreviations, for all A ∈ NC , r ∈ NR, and a, b ∈ NI (K refers to the KB after possibly
already applying some completion rules).

A(a) := {i ∈ rep(A) | A(a, i) ∈ K}
r(a, b) := {i ∈ rep(A) | r(a, b, i) ∈ K}

Hence, we can write ⋆A(a) in the completion rules to refer to the set of time points at
which ⋆A is inferred to be satisfied by a, given only the assertions in A.
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In the rules of Figure 4.9, we allow to instantiate A,B,A1,A2,A3,B1 by ⊤, ⊥ or
(normalized) ELH⊥ concepts from K, r, s, r1, r2, r3 by role names from K, ⋆, •, † by cc ,
± or elements of D occurring in K, a, b by individual names from K, and i by values
from rep(A), such that the resulting axioms are in normal form. The side conditions
(• ∩ † ) ∈ D±, i ∈ ⋆A(a), i ∈ ⋆r(a, b) can be checked in polynomial time. All rules also
apply to axioms without diamonds since we can treat A as cc 1A.

If K contains all axioms in the precondition of an instantiated rule, we consider the
axiom in its conclusion. If it is a new assertion, we add it to K. If it is a concept inclusion
⋆A ⊑ B, we check whether K already contains a GCI of the form •A ⊑ B. If not, then
we simply add ⋆A ⊑ B to K; otherwise, and if ⋆ ∪ • ̸= •, we replace •A ⊑ B by the new
axiom (⋆ ∪ •)A ⊑ B, in order to reflect the validity of both axioms at once. RIAs are
handled in the same way. For example, if we know that +A ⊑ B holds, and have just
inferred that −A ⊑ B holds as well, then ±A ⊑ B is a valid entailment, because ± ⊆ +∪−,
and thus whenever an element satisfies ±A, it must satisfy either +A or −A. In this way,
for any two concepts A,B, the KB always contains at most one axiom ⋆A ⊑ B, and
similarly for roles.

Let K∗ be the KB obtained by exhaustive application of the completion rules in
Figure 4.9 to K, where we assume for technical reasons (see the proof of Lemma 4.11)
that A2 and A3 are always applied at the same time for all i ∈ ⋆A(a) and i ∈ ⋆r(a, b),
respectively.

This process terminates since we only produce axioms of the form ⋆A ⊑ B, ⋆r ⊑ s,
A(a, i), or r(a, b, i), where ⋆ was already present in the initial K or it belongs to { cc 1, cc , ±},
i ∈ rep(A), and A,B, r, s, a, b are from K; there are only polynomially many such axioms.

To decide whether a concept assertion D(a, i) follows from K, we then simply look up
whether D(a, |i|) belongs to K∗. For a concept inclusion ⋆C ⊑ D with C,D ∈ NC , we
check whether K∗ contains an inclusion of the form •C ⊑ D with ⋆ ⊆ •, which can be
done in polynomial time (see Lemma 4.3). One can also check entailment of role axioms
in a similar way, but we omit them here for brevity.

Proposition 4.10. K is inconsistent iff ⊥(a, i) ∈ K∗ for some a ∈ NI and i ∈ rep(A).
Now let K be consistent, C be a TELH c♢,lhs

⊥ concept, D be an ELH⊥ concept, and ⋆ ∈ D.
Then K |= ⋆C ⊑ D iff either there is † ∈ D with †C ⊑ ⊥ ∈ K∗, or there is • ⊇ ⋆ with
•C ⊑ D ∈ K∗. Moreover, K |= D(a, i) iff D(a, |i|) ∈ K∗. ♢

Before we prove Lemma 4.10, we first show some auxiliary properties of the set rep(A),
which we formulate here only for concept assertions, but hold in the same way for role
assertions. We use the following abbreviations, for i ∈ Z and M ⊆ Z.

i↑ := {j ∈ Z | |j| = i}
M ↑ := {j ∈ Z | |j| ∈M}

The set M ↑ extends M by all time points i represented by any |i| ∈M .
Intuitively, the next lemma says that everything that holds between two adjacent

elements i < j of tem(A) must also hold for i and j.

Lemma 4.11. For all B ∈ NC , a ∈ NI , and i ∈ Z, if |i| ∈ B(a), if −∞ < ⌊i⌋, then
⌊i⌋ ∈ B(a), and, if ⌈i⌉ <∞, then also ⌈i⌉ ∈ B(a).
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Proof. We show that this property remains satisfied throughout the completion pro-
cess. In the beginning, this is trivial, because for all assertions B(a, i) we have
⌊i⌋ = ⌈i⌉ = |i| = i ∈ tem(A). It remains to show that this property is satisfied
whenever A2 is applied (the arguments for A3 are similar, and the arguments for A4
and A5 are simpler, because they only refer to one time point).

Let |i| ∈ ⋆A(a) and ⋆A ⊑ B ∈ K, requiring us to add B(a, |i|) to K. If i ∈ tem(A), then
the claim is trivial. If i /∈ tem(A), then we need to show that also B(a, ⌊i⌋) and B(a, ⌈i⌉)
are added to K, i.e. that ⌊i⌋, ⌈i⌉ ∈ ⋆A(a). Recall that we assumed that A2 and A3 are
always applied at the same time to all time points in ⋆A(a) and ⋆r(a, b), respectively.
We make a case distinction on the form of ⋆.

• If ⋆ = +, then there is j ∈ A(a) with j ≥ |i|. If j = |i|, then by our assumption
we must also have ⌈i⌉ ∈ A(a), and hence ⌊i⌋, ⌈i⌉ ∈ +A(a). If j > |i|, then j ≥ ⌈i⌉,
which also yields the claim.

• If ⋆ = cc n, then there are j, k ∈ A(a) with j ≤ |i| ≤ k and k − j < n. If the interval
[j, k] does not include ⌊i⌋, then by our assumption we have ⌊i⌋ ∈ A(a) ⊆ cc nA(a),
and similarly for ⌈i⌉. Otherwise, ⌊i⌋, ⌈i⌉ ∈ [j, k] ⊆ ⋆A(a).

• The other cases are similar. 2

The next lemma shows that using (⋆A(a)) ∩ rep(A) as a representative for ⋆(A(a))↑

in A2 is correct, because expanding it via ·↑ yields the same result.

Lemma 4.12. If ⋆ ∈ D and M = A(a) for A ∈ NC and a ∈ NI , then ⋆M ↑ = (⋆M)↑.

Proof. We show that i ∈ ⋆M ↑ iff |i| ∈ ⋆M , by case distinction on the form of ⋆.

• ⋆ = +: If i ∈ +M ↑, then there is j ≥ i with |j| ∈M , and thus |j| ≥ |i| and |i| ∈ +M .
Conversely, if |i| ∈ +M , then there is j ≥ |i| with |j| = j ∈ M since M ⊆ rep(A).
If |j| > |i|, then j > i, and thus i ∈ +M ↑. If |j| = |i|, then i ∈ M ↑ ⊆ +M ↑ by
Lemma 4.4.

• ⋆ = cc n: If i ∈ cc nM ↑, then there are j, k ∈ N with j ≤ i ≤ k, k − j < n, and
|j|, |k| ∈M . Thus, |j| ≤ |i| ≤ |k|. If |i| = |j| or |i| = |k|, then |i| ∈M ⊆ cc nM . Other-
wise, we replace |k| by ⌊k⌋, and get |i| ≤ ⌊k⌋ and ⌊k⌋ ∈M by Lemma 4.11. Similarly,
we replace |j| by ⌈j⌉ ∈M . Then we have ⌈j⌉ ≤ |i| ≤ ⌊k⌋ with ⌊k⌋ − ⌈j⌉ ≤ k− j < n,
and thus |i| ∈ cc nM .
If |i| ∈ cc nM , there are j, k ∈M with |j| = j ≤ |i| ≤ k = |k| and k−j < n. If |i| = |j|
or |i| = |k|, then i ∈M ↑ ⊆ cc nM ↑. Otherwise, j < i < k, and thus i ∈ cc nM ↑.

• The other cases are similar. 2

We show soundness and completeness of Proposition 4.10 separately.

Lemma 4.13 (Soundness). If •C ⊑ D ∈ K∗ and ⋆ ⊆ •, then K |= ⋆C ⊑ D. If
D(a, |i|) ∈ K∗, then K |= D(a, i).

Proof. If K is inconsistent, then it entails everything. Hence, we can assume that K
is consistent. It suffices to prove that the following holds throughout the completion
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process: there is a model I = (∆I, (Ii)i∈Z) of K such that D(a, i) ∈ K implies a ∈ DIj ,
for all i ∈ Z, j ∈ i↑, D ∈ NC , and a ∈ NI , and similarly for role assertions. This is
satisfied for all initial assertions A(a, i) ∈ K since i ∈ tem(A), and thus i↑ = {i}.

We only discuss T8′ and A2, for the other rules one can use similar arguments.
For T8′, assume that ⋆A ⊑ ∃r.A1, •r ⊑ s, †A1 ⊑ B1, and ∃s.B1 ⊑ B are satisfied

by I with (• ∩ † ) ∈ D±, and consider any d ∈ ( ‡A)Ii , where ‡ := ((• ∩ † ) ◦ ⋆). Then
i ∈ ‡M , where M := {j | d ∈ AIj}. For every ℓ ∈ ⋆M , we get d ∈ (∃r.A1)Iℓ since
I |= ⋆A ⊑ ∃r.A1. Hence, there is an element eℓ ∈ ∆I with (d, eℓ) ∈ rIℓ and eℓ ∈ A

Iℓ
1 .

Thus, (d, eℓ) ∈ (•r)Ij ⊆ sIj for all j ∈ •{ℓ} and eℓ ∈ ( †A1)Ik ⊆ BIk
1 for all k ∈ † {ℓ}. For

every k ∈ (•∩ † ){ℓ}, we thus have d ∈ (∃s.B1)Ik ⊆ BIk . Due to the fact that (•∩ † ) ∈ D±

and Lemma 4.5, we obtain i ∈ ‡M = ((• ∩ † ) ◦ ⋆)M = ⋃︁
ℓ∈⋆M

(• ∩ † ){ℓ}, thus d ∈ BIi .
For A2, let i ∈ ⋆A(a) and I |= ⋆A ⊑ B. For M = A(a), M ↑ ⊆ {j ∈ Z | a ∈ AIj} by

induction. Hence, by Lemmas 4.4 and 4.12, we have a ∈ (⋆A)Ij ⊆ BIj for all j ∈ i↑, and
thus we can safely add B(a, i) to K. 2

From this, it follows that ⊥(a, i) ∈ K∗ implies inconsistency of K, and †C ⊑ ⊥ ∈ K∗

implies K |= C ⊑ †C ≡ ⊥, and hence K |= ⋆C ≡ ⊥ ⊑ D. We now prove the remaining
direction of Lemma 4.10.

Lemma 4.14 (Completeness). If K is inconsistent, then ⊥(a, i) ∈ K∗ for some a ∈ NI

and i ∈ tem(A). If K is consistent and K |= ⋆C ⊑ D, then either †C ⊑ ⊥ ∈ K∗ or
•C ⊑ D ∈ K∗ with ⋆ ⊆ •. If K is consistent and K |= D(a, i), then D(a, |i|) ∈ K∗.

Proof. Assume that K∗ does not contain assertions of the form ⊥(a, i). We construct a
model I = (∆I, (Ii)i∈Z) of K s.t.

1. if there is no †C ⊑ ⊥ ∈ K∗ or •C ⊑ D ∈ K∗, ⋆ ⊆ •, then there are i ∈ Z and
d ∈ (⋆C)Ii with d /∈ DIi , and

2. if D(a, |i|) /∈ K∗ then a /∈ DIi .

Let NC
+ := {A ∈ NC | †A ⊑ ⊥ /∈ K∗}. We define

∆I :=
(︁
NC

+ × Z× Z
)︁
∪NI ,

BIi :=
{︁
a | B(a, |i|) ∈ K∗}︁
∪

{︁
(A, j, k) | †A ⊑ B ∈ K∗, i ∈ † {j, k}

}︁
,

rIi :=
{︁
(a, b) | r(a, b, |i|) ∈ K∗}︁
∪

{︁(︁
a, (B, ℓ, ℓ)

)︁
| †A ⊑ ∃s.B ∈ K∗, |ℓ| ∈ †A(a), ‡s ⊑ r ∈ K∗, i ∈ ‡ {ℓ}

}︁
∪

{︁(︁
(A, j, k), (B, ℓ, ℓ)

)︁
| †A ⊑ ∃s.B ∈ K∗, ℓ ∈ † {j, k}, ‡s ⊑ r ∈ K∗, i ∈ ‡ {ℓ}

}︁
.

Since NC
+ ×Z×Z =

{︁
(A, j, k) | †A ⊑ ⊤ ∈ K∗, i ∈ † {j, k}

}︁
and NI =

{︁
a | ⊤(a, |i|) ∈ K∗}︁

due to T2 and A1, in the following we can treat ⊤ like an ordinary concept name. The
same holds for ⊥ since K∗ contains no assertions of the form ⊥(a, i) and the unnamed
domain elements are restricted to NC

+.
For any a ∈ NI and A ∈ NC , let M := A(a). Then we have M ↑ = {i ∈ Z | a ∈ AIj},

and therefore Lemma 4.12 yields that

a ∈ (⋆A)Ii implies |i| ∈ ⋆A(a) (!)
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for all i ∈ Z and ⋆ ∈ D (and similarly for role assertions).
We can now prove the claims. Property 2 holds by the definition of I. To verify

Property 1, assume that there is no †C ⊑ ⊥ ∈ K∗ or •C ⊑ D ∈ K∗ with ⋆ ⊆ •. To show
that I ̸|= ⋆C ⊑ D, we make a case distinction on the form of ⋆.

• If ⋆ = ±, then the rules cannot derive both −C ⊑ D and +C ⊑ D, since otherwise
±C ⊑ D ∈ K∗. Assume w.l.o.g. that −C ⊑ D /∈ K∗. Then (C, 0, 0) ∈ CI0 due to T1
and Lemma 4.4, and thus (C, 0, 0) ∈ (±C)I1 , but 1 /∈ •{0} for any operator •

with •C ⊑ D ∈ K∗ (• cannot be −). Hence, by the construction of I we have
(C, 0, 0) /∈ DI1 .

• If ⋆ = −, then we cannot have ±C ⊑ D ∈ K∗, but the strongest possible axiom
is +C ⊑ D ∈ K∗. We can again use (C, 0, 0) as a counterexample to refute
I |= −C ⊑ D.

• If ⋆ = cc n, then K∗ may only contain cc n−1C ⊑ D. We have (C, 0, n) ∈ ( cc nC)I1 , but
1 /∈ cc n−1{0, n}, and thus (C, 0, n) /∈ DI1 .

• The other cases are similar.

We now show I |= K∗, which implies that I |= K. All assertions are satisfied by the
definition of I.

• Consider a GCI •A ⊑ B ∈ K∗. For all (A′, j, k) ∈ (•A)Ii , we have ⋆A′ ⊑ A ∈ K∗

and i ∈ • ⋆{j, k}. Since T4 is not applicable to K∗, we have †A′ ⊑ B ∈ K∗ with
(• ◦ ⋆) ⊆ † . Hence, i ∈ † {j, k}, and thus (A′, j, k) ∈ BIi .
For every a ∈ (•A)Ii , by (!) we have |i| ∈ •A(a), and hence by A2 we must have
B(a, |i|) ∈ K∗, i.e. a ∈ BIi .

• Let •A ⊑ ∃r.B ∈ K∗. For all (A′, j, k) ∈ (•A)Ii , there is ⋆A′ ⊑ A ∈ K∗ with
i ∈ • ⋆{j, k}. By T3 and T4, there are cc 1r ⊑ r, †A′ ⊑ ∃r.B ∈ K∗ with (• ◦ ⋆) ⊆ †

and i ∈ † {j, k}. Since i ∈ cc 1{i}, we have
(︁
(A′, j, k), (B, i, i)

)︁
∈ rIi . Note that

B ∈ NC
+ since any ‡B ⊑ ⊥ ∈ K∗ would yield A′ /∈ NC

+ by T7 and T8. Moreover,
by T1, (B, i, i) ∈ BIi , and hence (A′, j, k) ∈ (∃r.B)Ii .
For all a ∈ (•A)Ii , we have |i| ∈ •A(a) by (!). By T3, we obtain cc 1r ⊑ r ∈ K∗.
Since i ∈ cc 1{i}, this implies that (a, (B, i, i)) ∈ rIi . Note that B ∈ NC

+ since
otherwise A /∈ NC

+, and thus ⊥(a, j) ∈ K∗ for some j ∈ Z with a ∈ AIj , which
contradicts our assumption. By T1, it holds that (B, i, i) ∈ BIi , and we conclude
that a ∈ (∃r.B)Ii .

• Consider ∃r.A ⊑ B ∈ K∗. For all (A′, j, k) ∈ (∃r.A)Ii , there exists (B′, ℓ, ℓ) such that(︁
(A′, j, k), (B′, ℓ, ℓ)

)︁
∈ rIi and (B′, ℓ, ℓ) ∈ AIi . Thus, there are ⋆A′ ⊑ ∃s.B′, •s ⊑ r,

†B′ ⊑ A ∈ K∗ with ℓ ∈ ⋆{j, k} and i ∈ •{ℓ} ∩ † {ℓ}.
– If (• ∩ † ) ∈ Dc, then (• ∩ † ){ℓ} = {ℓ} by Lemma 4.5, and thus i = ℓ. By T8,

there is ‡A′ ⊑ B ∈ K∗ with ⋆ ⊆ ‡ , and hence i = ℓ ∈ ⋆{j, k} ⊆ ‡ {j, k}, which
shows that (A′, j, k) ∈ BIi .

– If (• ∩ † ) ∈ D±, then by T8′ there is ‡A′ ⊑ B ∈ K∗ with ((• ∩ † ) ◦ ⋆) ⊆ ‡ .
Together with Lemma 4.4, this yields i ∈ (• ∩ † ){ℓ} ⊆ (• ∩ † )⋆{j, k} ⊆ ‡ {j, k},
which again shows that (A′, j, k) ∈ BIi .
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For all a ∈ (∃r.A)Ii , there exists e ∈ AIi with (a, e) ∈ rIi .
– If e is of the form (B′, ℓ, ℓ), then we proceed as above, using T8 or T8′ to

get ‡A′ ⊑ B ∈ K∗ with |i| ∈ ‡A′(a). The only differences are that we have
|ℓ| ∈ ⋆A′(a) instead of ℓ ∈ ⋆{j, k}, and that we need to infer |i| ∈ (• ∩ † ){|ℓ|}
from i ∈ (• ∩ † ){ℓ} in case that (• ∩ † ) ∈ D±, which we can do by similar
arguments as in Lemma 4.12. By A2, we then obtain B(a, |i|) ∈ K∗, and thus
a ∈ BIi .

– If e ∈ NI , then A(e, |i|), r(a, e, |i|) ∈ K∗, and thus by A5 we have B(a, |i|) ∈ K∗,
and hence a ∈ BIi .

• The other cases are similar. 2

In the proof, we extend the standard construction of a universal model that satisfies
exactly the axioms entailed by K. To deal with cc n, we add new domain elements of
the form (A, i, j) with |j − i| = n− 1, which satisfy A at the time points i and j. These
elements can be used to distinguish the behavior of cc n from that of cc n−1.

We obtain the following result, where the lower bound follows from propositional Horn
logic [JL76].

Theorem 4.15. Entailment in TELH c♢,lhs
⊥ is PTime-complete.

We now give a small example on how TELH c♢,lhs
⊥ can be used to model temporal

behavior in the medical domain.

Example 4.16. Consider rheumatoid arthritis, an autoimmune disorder that cannot
be healed. In irregular intervals, it produces so called flare ups, that cause pain in the
joints. We formalize this knowledge as follows:

RheumatoidArthritisPatient ≡ ∃diagnosedWith.RheumatoidArthritis (4.3)
FlareUpPatient ⊑ RheumatoidArthritisPatient (4.4)

−RheumatoidArthritisPatient ⊑ RheumatoidArthritisPatient (4.5)
cc 2FlareUpPatient ⊑ FlareUpPatient (4.6)

We make the assumption that a flare up is 2-month convex, hence if two flare ups are
reported at most 2 months apart, we assume that they refer to the same flare up and
hence the flare up also present in between the two reports. By applying Rule T4 from
the completion algorithm to axioms (4.4) and (4.5), we can add

−FlareUpPatient ⊑ RheumatoidArthritisPatient

to the KB. Suppose the ABox consists of the assertions FlareUpPatient(p1, i), i ∈ {0, 4, 5, 7},
for a patient p1. The completed ABox, denoted by A∗, is illustrated in Figure 4.17,
where for simplicity we omit the individual name p1.
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. . . . . .F F F F
−1 0 2 4 5 6 7 8

A∗

rep(A)
A

F,R R F,R F,R F,R F,R R
. . .. . .

♢

Figure 4.17.: An illustration of the A∗ from Example 4.16.
RheumatoidArthritisPatient and FlareUpPatient are abbrevi-
ated by their first letters, respectively. Representatives −1, 2, 6 and 8 have
been introduced and the intervals they represent are illustrated in gray.

4.4. Discussion and Related Work
We have shown that with the current set of diamond operators reasoning in TELH c♢,lhs

⊥
remains tractable. It seems possible to allow further diamond operators in TELH c♢,lhs

⊥
axioms if they satisfy the relevant properties, i.e. D remains closed under ∩, ∪, and ◦ and
compatible with ·↑ (see Lemmas 4.3 and 4.6). For future research it would be interesting
to identify such operators.

For a general overview of temporal ontology and query languages, see [LWZ08;
AKK+17]. In the presence of a single rigid role, allowing the operator + on both
sides of EL GCIs makes subsumption undecidable [AKL+07]. In [GJK16], a variety of
restrictions is investigated to regain decidability, such as acyclic TBoxes and restrictions
on the occurrences of temporal operators. In particular, allowing the qualitative oper-
ators ±, −,+, cc only on the left-hand side of GCIs makes the logic tractable. However,
these investigations do not cover metric temporal operators and employ the assumption
that all timestamps are encoded in unary.

Similarly, combinations of EL with the branching temporal logic CTL have been
shown to have undecidable subsumption problems, but they may become tractable under
certain restrictions [GJL12; GJS14; GJS15]. Adding LTL operators to concepts was
also investigated in other DLs, like ALC (without temporal roles) [WZ00; LWZ08] and
DL-Lite [AKL+07]. Only recently, also metric variants of such logics were considered
[GJO16a; BBK+17; Tho18].
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Chapter 5.

Temporal Minimal-World Semantics for
ELH⊥

In this chapter we extend minimal-world semantics to TELH c♢,lhs,−
⊥ , a variant of TELH c♢,lhs

⊥
without temporal roles. Our query language, which we introduce in Section 5.1, extends
the temporal conjunctive queries from [BBL15b] by metric temporal operators and
negation. For example, we can use queries like

2[−12,0](∃y.diagnosedWith(x, y) ∧ Diabetes(y))

to query patients that were suffering from Diabetes during the last twelve months.
In Section 5.2 we lift the construction of the minimal universal model from ELH⊥ to
the temporal setting in TELH c♢,lhs,−

⊥ and show that also in this case such a model exists
and is uniquely defined. Using a combined rewriting approach, we show in Section 5.3
that the data complexity of query answering is not higher than for positive atemporal
queries in ELH⊥, and also provide a tight combined complexity result of ExpSpace. In
the previous chapter we already mentioned that, unlike most research on temporal query
answering [BBL15b; AKK+15], we do not assume that input data is given for all time
points in a certain interval, but rather at sporadic time points with arbitrarily large gaps.
The main technical difficulty is to determine which additional time points are relevant
for answering a query, and how to access these time points without having to fill all the
gaps. Currently, we do not support temporal roles, but conjecture in Section 5.4 that it
is possible to remove this restriction in future work. We end the chapter with a dicussion
of related work.

5.1. Metric Temporal Conjunctive Queries with Negation

Definition 5.1. Metric temporal conjunctive queries with negation (MTNCQs) are built
by the grammar rule

ϕ ::= ψ | ⊤ | ⊥ | ¬ϕ | ϕ ∧ ϕ | ϕ ∨ ϕ | ϕUIϕ | ϕSIϕ, (5.1)

where ψ is an NCQ, and I is an interval over Z. An MTNCQ ϕ is rooted/Boolean if all
NCQs in it are rooted/Boolean. ♢

MTNCQs can be seen as NCQ-LTLbin, and hence we employ the standard semantics
as defined in Definition 2.26 in Section 2.3.
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Recall that the next operator can be defined as #ϕ := ⊤U[1,1]ϕ, and similarly
#−ϕ := ⊤S[1,1]ϕ. We can also express

Iϕ := (⊤S−(I∩(−∞,0])ϕ) ∨ (⊤UI∩[0,∞)ϕ) and
2Iϕ := ¬ I¬ϕ,

and hence, by (4.1), the cc n-operators from Section 4.1.
An MTCQ (or positive MTNCQ) is an MTNCQ without negation, where we assume

that the operator 2I is nevertheless included as part of the syntax of MTCQs.

Example 5.2. Consider the criterion ‘Diagnosis of Rheumatoid Arthritis (RA) of more
than 6 months and less than 15 years.’1 This can be expressed as an MTNCQ as follows.

ϕ(x) := 2[−6,0]
(︁
∃y.diagnosedWith(x, y) ∧ RheumatoidArthritis(y)

)︁
∧ ¬2[−180,0]

(︁
∃y.diagnosedWith(x, y) ∧ RheumatoidArthritis(y)

)︁
The negated conjunct merely expresses that the data does not indicate an ongoing
rheumatoid arthritis diagnosis for the past 15 years (minimal-world semantics), rather
than that such a diagnosis is categorically ruled out by some TBox axioms (certain
answer semantics). ♢

Definition 5.3. Let K = (T ,A) be a TELH c♢,lhs
⊥ -KB, ϕ(x) an MTNCQ, a a tuple of

individual names from A, i ∈ tem(A), and I a TELH c♢,lhs
⊥ -interpretation.

The pair (a, i) is an answer to ϕ(x) w.r.t. I if I, i |= ϕ(a). The set of all answers for
ϕ w.r.t. I is denoted ans(ϕ,I).

The tuple (a, i) is a certain answer to ϕ w.r.t. K if it is an answer in every model of K;
all these tuples are collected in the set cert(ϕ,K). ♢

5.2. Minimal-World Semantics for MTNCQs
In the following let TELH c♢,lhs,−

⊥ denote the fragment of TELH c♢,lhs
⊥ in which no temporal

roles are allowed. A discussion about the challenges involved in allowing temporal roles
can be found in Section 5.4. In the definition of the model, we make use of entailment
in TELH c♢,lhs,−

⊥ , which can be checked in polynomial time as we have shown before
(see Theorem 4.15). Thus, we can exclude w.l.o.g. equivalent concept and role names.
Also, for simplicity, in the following we assume w.l.o.g. that all GCIs are in the following
stronger normal form (cf. (4.2)):

⋆A ⊑ B, A1 ⊓A2 ⊑ B, r ⊑ s, A ⊑ ∃r.B, ∃r.A ⊑ B,

i.e. -operators are allowed only in GCIs of the form ⋆A ⊑ B. In particular, disallowing
GCIs of the form ⋆A ⊑ ∃r.B allows us to draw a stronger connection to the construction
in Section 3.3; see in particular Step 3(a) in Def. 5.4 below.

Definition 5.4. The (temporal) canonical model IK = (∆IK , (Ii)i∈Z) of a KB K = (T ,A)
is obtained by the following steps.

1https://clinicaltrials.gov/ct2/show/NCT01198002
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1. Set ∆IK := NI and aIi := a for all a ∈ NI and i ∈ Z.

2. For each time point i ∈ Z, define AIi := {a | K |= A(a, i)} for all A ∈ NC and define
rIi := {(a, b) | K |= r(a, b, i)} for all r ∈ NR.

3. Repeat the following steps:
a) Select an element d ∈ ∆IK that has not been selected before and, for each

i ∈ Z, let Vi := {∃r.B | d ∈ AIi , d ̸∈ (∃r.B)Ii , A ⊑T ∃r.B, A,B ∈ NC}.
b) For each ∃r.B that is minimal in some Vi

i. add a fresh element e(i)
rB to ∆IK ,

ii. add e
(i)
rB to AIk for each ⋆B ⊑T A with k ∈ ⋆{i} and ⋆ ∈ D, and

iii. add (d, e(i)
rB) to sIi for each K |= r ⊑ s. ♢

We denote by IA the result of executing only Steps 1 and 2 of this definition, i.e.
restricting IK to the named individuals. Since there are only finitely many elements
of NI , NC , and NR that are relevant for this definition (i.e. those that occur in K), for
simplicity we often treat IA as if it had a finite object (but still infinite time) domain.

Lemma 5.5. Let K = (T ,A) be a consistent TELH c♢,lhs,−
⊥ -KB. Then the interpretation

constructed according to Definition 5.4 is a model of K.

Proof. We show that all axioms of K are satisfied in an interpretation IK = (∆IK , (Ii)i∈Z)
constructed according to Definition 5.4. It is easy to check that the ABox assertions are
satisfied after Step 2 is applied. We make a case distinction for the TBox axioms:

• Suppose a GCI of the form ⋆A ⊑ B ∈ T and i ∈ ⋆AIK(d) for some i ∈ Z and
d ∈ ∆IK , where AIK(d) := {i ∈ Z | d ∈ AIi}.
If d ∈ NI , then i ∈ ⋆{j ∈ Z | K |= A(d, j)} and since K |= ⋆A ⊑ B it also has to
hold that K |= B(d, i).
If d ̸∈ NI , then it was introduced in Step 3 at some point during the construc-
tion. Let ∃r1.B1 be the minimal concept in Vj for some j ∈ Z that caused the
introduction of d. Let • ∈ D be the strongest diamond such that •B1 ⊑T A.
Such a diamond • has to exist, otherwise ⋆AIK(d) = ∅, which would be a con-
tradiction. Then by Step 3bii) it holds that AIK(d) = •{j}. Therefore, have
that i ∈ ⋆AIK(d) = (⋆ ◦ •){j}. Moreover, •B1 ⊑T A and ⋆A ⊑T B imply that
(⋆ ◦ •)B1 ⊑T B (see Rule T4 in Figure 4.9), hence d was added to BIi in Step 3bii).

The remaining cases follow the same argumentation as in the proof of Lemma 3.7. 2

In IK each anonymous individual e(i)
rB ∈ ∆IK is connected to the rooted part of IK only

at i. Therefore, the behavior of e is entirely determined by its predecessor and i. In other
words, the only place where relevant temporal interaction can occur (without temporal
roles) is between named individuals. For this reason, in the following we consider only
rooted MTNCQs, which can be evaluated only over the parts of IK that are connected
to the named individuals.

As in the atemporal case, we show that IK is universal and can therefore be used to
answer positive queries over K under certain answer semantics.
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Lemma 5.6. Let K be a consistent TELH c♢,lhs,−
⊥ -KB. Then for every rooted MTCQ ϕ,

we have cert(ϕ,K) = ans(ϕ,IK).

Proof. The inclusion cert(ϕ,K) ⊆ ans(ϕ,IK) follows from the fact that IK is a model
of K. For the other inclusion, consider any model J = (∆J, (Ji)i≥0) of K. We prove that
(a, i) ∈ ans(ϕ,IK) implies (a, i) ∈ ans(ϕ,J) by induction on the structure of ϕ.

• If ϕ is a rooted CQ, then Ii |= ϕ(a). Moreover, since ϕ is rooted, only the rooted
part of Ii, consisting of all elements connected to named individuals, is relevant for
satisfying ϕ(a). It is easy to show that this part can be homomorphically mapped
into Ji, hence J, i |= ϕ(a).

• If ϕ = ϕ1 ∨ ϕ2, then (a, i) ∈ ans(ϕ1,IK) or (a, i) ∈ ans(ϕ2,IK), hence by in-
duction (a, i) ∈ ans(ϕ1,J) or (a, i) ∈ ans(ϕ2,J), either of which implies that
(a, i) ∈ ans(ϕ,J).

• If ϕ = ϕ1 UIϕ2, then (a, i) ∈ ans(ϕ1 UIϕ2,IK), hence there exists k ∈ I such that
(a, i+ k) ∈ ans(ϕ2,IK) and for all 0 ≤ j < k it holds that (a, i+ j) ∈ ans(ϕ1,IK).
By induction this implies that (a, i+ k) ∈ ans(ϕ2,J) and (a, i+ j) ∈ ans(ϕ1,J) for
all 0 ≤ j < k and therefore (a, i) ∈ ans(ϕ1 UIϕ2,J).

• The cases of SI , I , and 2I are similar, and therefore the claim also extends to cc n,
#, and #−. 2

Additionally, IK is a minimal model.

Lemma 5.7. IK is minimal according to Definition 3.3, i.e. every endomorphism on IK
is an isomorphism.

Proof. We prove the stronger statement that the only endomorphism of IK is identity.
Let I0,I1, . . . be the interpretations obtained in the construction of IK by Definition 5.4

before each application of Step 3 with Ii = (∆Ii , (I(k)
i )k∈Z). We show by induction on i

that all homomorphisms h0, h1, . . . , where hi is an endomorphism on Ii, are the identify
function. The only endomorphism on IK is then obtained in the limit as h = ⋃︁

i≥0 hi.
By definition of homomorphisms, h0 is determined to be of the form h0(a) := aI for

all a ∈ Ind(A), which is the identify function.
For the induction step, assume that hi has already been defined. To define hi+1,

assume that d ∈ ∆Ii was picked in Step 3(a) and Vk with k ∈ Z are the sets as defined
in Step (a). For each ∃r.B that is minimal in some Vk, let A be a concept name that
caused ∃r.B to be in Vk, i.e. A ⊑T ∃r.B, and let e(k)

rB be the freshly introduced domain
element.

Since ∃r.B is minimal in Vk and in no further construction step any successors will
be added to d, we know that e(k)

rB is the only element in the domain of ∆IK for which it
holds that

1. for all ⋆B ⊑T C: e(k)
rB ∈ (C)I(ℓ)

i+1 where ⋆ ∈ D and ℓ ∈ ⋆{k} and

2. for all r ⊑T s: (d, e(k)
rB) ∈ sI(k)

i+1 .

Hence, the only possibility is to set hi+1 := hi ∪ {e
(k)
rB ↦→ e

(k)
rB}. 2
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Thus, the following minimal-world semantics is compatible with certain answer se-
mantics for positive (rooted) queries, while keeping a tractable data complexity. Since
the construction in Definition 5.4 yields the temporal minimal universal model IK of a
given consistent KB K, the minimal-world answers to a given MTNCQ ϕ are obtained
as the answers ans(ϕ,IK) to ϕ in IK.

5.3. A Combined Rewriting for MTNCQs
Since the minimal canonical model IK may still be infinite, we now show that rooted
MTNCQ answering under minimal-world semantics is also combined first-order rewrit-
able [LTW09]. We proceed in two steps.

1. We rewrite ϕ into a metric first-order temporal logic (MFOTL) formula rewT (ϕ),
which combines first-order formulas via metric temporal operators; for details,
see [BKM+15]. This query can be evaluated over IA instead of IK. Hence, we
reduce the infinite object domain to the finite set NI(K).

2. We then further rewrite rewT (ϕ) into a three-sorted first-order formula (with
explicit variables for time points), which is then evaluated over a restriction Ifin

A
of IA that contains only finitely many time points (essentially those in rep(A),
although we modify them slightly).

For the first step, we rewrite a rooted MTNCQ ϕ by replacing each (rooted) NCQ ψ
with the first-order rewriting rewT (ψ) from Definition 3.11.2 The result is a special
kind of MFOTL formula rewT (ϕ) [BKM+15], in which atemporal first-order formulas
can be nested inside MTL-operators, similarly as in MTNCQs. The semantics is based
on a satisfaction relation I, i |= rewT (ϕ) that is defined in much the same way as for
MTNCQs, the only exception being that I, i |= rewT (ψ) for a first-order formula rewT (ψ)
is defined by Ii |= rewT (ψ), using the standard first-order semantics. We can lift the
atemporal rewritability result in a straightforward way to our temporal setting.

Lemma 5.8. Let K = (T ,A) be a consistent TELH c♢,lhs,−
⊥ -KB and ϕ be a rooted MTNCQ.

Then mwa(ϕ,K) = ans(rewT (ϕ),IA).

Proof. We prove the claim by induction over the structure of ϕ.
Suppose that ϕ is a rooted NCQ. Since ϕ does not contain temporal operators, we can

restrict our attention to a single atemporal interpretation Ii in IK = (∆IK , (Ii)i∈Z). Since
ϕ is rooted, only the ‘rooted’ part Iri of Ii, consisting only of those elements connected
to named individuals via a sequence of role connections, is relevant for evaluating ϕ
(and similarly for rewT (ϕ)). In the construction of IK (Definition 5.4), we can observe
that Iri is uniquely determined by the definition of AIi and rIi in Step 2. Moreover,
Iri is isomorphic to the (atemporal) minimal canonical model of (T ′,Ai) as defined
in Definition 3.6, where

• T ′ := {C ⊑ D | ⋆C ⊑ D ∈ T , ⋆ ∈ D±} and
2Strictly speaking, rewT (ψ) is a set of first-order formulas, which is however equivalent to the disjunction

of all these formulas.
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• Ai := {A(a) | K |= A(a, i)} ∪ {r(a, b) | K |= r(a, b, i)}.

In particular, one can observe that the temporal operators in T are irrelevant for the
behavior of the anonymous elements in Iri : In Step 3b of the construction an element
erB is only connected to object d (selected in Step 3a) in Ii and hence belongs to Iri ,
if erB is minimal in Vi. In that case erB is entirely determined by d at time point
i since ⋆C ⊑ D entails C ⊑ D. Therefore, we can restrict the attention to those
assertions entailed for time point i. Hence, we can apply Lemma 3.14 to conclude that
(a, i) ∈ mwa(ϕ,K) = ans(ϕ,IK) iff a ∈ ans(ϕ, Ii) = ans(ϕ, Iri ) = ans(rewT (ϕ), Ii,A) iff
(a, i) ∈ ans(rewT (ϕ),IA), where Ii,A is the restriction of Ii to the named individuals.

For the remaining cases, it suffices to observe that ϕ and rewT (ϕ) are built on the
same structure of temporal operators, which have the same semantics for both MTNCQs
and MFOTL queries. 2

For the second rewriting step, we restrict ourselves to finitely many time points. More
precisely, we consider the finite structure Ifin

A , which is obtained from IA by restricting
the set of time points to rep(A). By Lemma 4.10, the information contained in this
structure is already sufficient to answer atomic queries. We extend this structure a little,
by considering the two representatives i, j for each maximal interval [i, j] in Z \ tem(A).
In this way, we ensure that the ‘border’ elements are always representatives for their
respective intervals. The size of the resulting structure Ifin

A is polynomial in the size of K.

Example 5.9. Let A = {B(a, 0),B(a, 2), C(a, 9)} and T = {− cc 3B ⊓ +C ⊑ A}. Below
one can see the finite structure Ifin

A over the representative time points {−1, 0, 1, 2, 3, 8, 9, 10},
where for simplicity we omit the individual name.

. . . . . .B B C

−1 0 1 2 3 8 9 10
v v

N Nrep(A)
A

Ifin
A A,B A A,B A A

A,C . . .. . .

The rewriting from Lemma 5.8 can refer to time instants outside of rep(A). However,
when we want to evaluate a pure first-order formula over the finite structure Ifin

A , this is
not possible anymore, because the first-order quantifiers must quantify over the domain
of Ifin

A . Moreover, since the query rewT (ϕ) can contain metric temporal operators,
we need to keep track of the distance between the time points in tem(A). Hence, in
the following we assume that Ifin

A is given as a first-order structure with the domain
NI ∪ {b1, . . . , bn} ∪ rep(A) and additional predicates bit and sign such that bit(i, j),
1 ≤ j ≤ n, is true iff the jth bit of the binary representation of the time stamp i is 1,
and sign(i) is true iff i is non-negative.

Thus, we now consider three-sorted first-order formulas with the three sorts NI (for
objects), {b1, . . . , bn} (for bits) and rep(A) (for time stamps). We denote variables of sort
rep(A) by t, t′, t′′. To simplify the presentation, we do not explicitly denote the sort of all
variables, but this is always clear from the context. Every concept name is now accessed
as a binary predicate of sort NI × rep(A), e.g. A(a, i) refers to the fact that individual a
satisfies A at time point i. Similarly, role names correspond to ternary predicates of
sort NI ×NI × rep(A). It is clear that the expressions t′ ▷◁ t and even t′ − t ▷◁ m for
some constant m and ▷◁ ∈ {≥,>,=,<,≤} are definable as first-order formulas using the
natural order < on {1, . . . ,m}.
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Lemma 5.10. For rewT (ϕ) there is a constant N ∈ N such that, for every sub-formula ψ
of rewT (ϕ), every maximal interval J in Z \

⋃︁
{[i−N, i+N ] | i ∈ tem(A)}, all k, ℓ ∈ J ,

and all relevant tuples a over NI , we have IA, k |= ψ(a) iff IA, ℓ |= ψ(a).

Proof. We are going to prove a more specific statement here. Namely, let Nψ be the
sum of all interval bounds of temporal formulas in a sub-formula ψ of rewT (ϕ) (except
for ∞). Consequently, for the proof we consider instead every maximal interval J in
Z \

⋃︁
{[i−Nψ, i+Nψ] | i ∈ tem(A)}.

We show this by induction on the structure of ψ, but only consider three representative
cases; the other cases are similar.

• If ψ is the rewriting of an NCQ, then Nψ = 0 and the semantics of ψ depends only
on the interpretation at a single time point. Since k and ℓ belong to the same
maximal interval in Z \ tem(A), by Lemmas 4.13 and 4.14 and the construction
of IA, this interpretation behaves in the same way at k and at ℓ.

• If ψ is of the form ψ1 U[c1,c2]ψ2, then Nψ1 ≤ Nψ − c2 and Nψ2 ≤ Nψ − c2. Assume
that IA, k |= ψ(a). Then there exists j ∈ [c1, c2] such that

IA, k + j |= ψ2(a) and IA,m |= ψ1(a), for all m with k ≤m < k + j. (5.2)

In case that j = c1 = 0, we have IA, k |= ψ2(a). Since k and ℓ are farther
than Nψ ≥ Nψ2 from the nearest element of rep(A), by induction we also have
IA, ℓ |= ψ2(a) and thus IA, ℓ |= ψ(a) in this case. Hence, we can assume in the
following that j ≥ c1 > 0, and thus in particular IA, k |= ψ1(a).
Since both k+j and ℓ+c2 are farther than Nψ−c2 ≥ Nψ2 from the nearest element
of rep(A), by induction we have IA, ℓ+ c2 |= ψ2(a). Moreover, since IA, k |= ψ1(a)
and k as well as all elements in [ℓ, ℓ + c2] are farther than Nψ − c2 ≥ Nψ1 from
the nearest element of rep(A), by induction we have IA,m |= ψ1(a) for all m with
ℓ ≤m ≤ ℓ+ c2. Hence, IA, ℓ |= ψ(a).

• If ψ is of the form ψ1 U[c1,∞)ψ2, then we have a similar situation as above, except
that j is not bounded by c2. We can again assume that j > 0 and IA, k |= ψ1(a).
Let p be the maximal element of J . If k+j > p+c1, then k+j > ℓ and the distance
between ℓ and k + j must be at least c1. Moreover, by assumption 5.2 we have
IA,m |= ψ1(a) for all m with p < m < k+ j. Since IA, k |= ψ1(a) and all elements
in J are farther than Nψ ≥ Nψ1 from the nearest element of rep(A), by induction
we also have IA,m |= ψ1(a) for all m with ℓ ≤m ≤ p. Thus, IA, ℓ |= ψ(a).
We now consider the remaining case that k + j ≤ p+ c1. Then both k + j and
ℓ+ c1 are farther than Nψ − c1 ≥ Nψ2 from the nearest element of rep(A), and
thus by induction we have IA, ℓ+ c1 |= ψ2(a). By similar arguments as above, we
obtain IA, ℓ |= ψ(a). 2

Hence, for evaluating sub-formulas of rewT (ϕ), it suffices to keep track of time points
up to N steps away from the elements of rep(A); this includes at least one element
from each of the intervals J mentioned in Lemma 5.10, since every element of tem(A) is
immediately surrounded by two elements of rep(A).
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We exploit Lemma 5.10 in the following definition of the three-sorted first-order
formula [ψ]n(x, t) that simulates the behavior of ψ(x) at the ‘virtual’ time point t+ n,
where n ∈ [−N,N ]. Whenever we use a formula [ψ]n(x, t), we require that t denotes
a representative for t + n. Due to our assumption that each maximal interval from
Z \ tem(A) is represented by its endpoints (see Example 5.9), we know that t is a
representative for t+ n iff there is no element of rep(A) between t and t+ n. We can
encode this check in an auxiliary formula:

repn(t) := ¬∃t′. (t+ n ≤ t′ < t) ∨ (t < t′ ≤ t+ n).

Example 5.11. In Example 5.9, 3 and 8 are representatives for the missing time points
4–7, and we have Ifin

A |= rep1(3) (with N = 1). However, for ϕT = #¬C(x), we have
IA, 3 |= ϕT (a), but IA, 8 ̸|= ϕT (a), i.e. the behavior at 3 and 8 differs. To distinguish this,
we need to refer to the ‘virtual’ time point 4 (gray circled ‘v’) that is not included in Ifin

A ,
via the formula [¬C(x)]1(a, 3). By Lemma 5.10 it is sufficient to consider 4, because this
determines the behavior at 5–7 . ♢

We now define [ψ]n(x, t) recursively, for each sub-formula ψ of rewT (ϕ). If ψ is a single
rewritten NCQ, then [ψ]n(x, t) is obtained by replacing each atemporal atom A(x) by
A(x, t), and similarly for role atoms. The parameter n can be ignored here, because we
assumed that t is a representative for t+n, and hence the time points t and t+n are in-
terpreted in IA equally. For conjunctions, we set [ψ1∧ψ2]n(x, t) := [ψ1]n(x, t)∧ [ψ2]n(x, t)
and similarly for the other Boolean constructors. Finally, we demonstrate the translation
for U-formulas (the case of S-formulas is analogous). We define [ψ1 U[c1,c2]ψ2]n(x, t) as

∃t′.
⋁︂

n′∈[−N,N ]

(︃
(t+ n+ c1 ≤ t′ + n′ ≤ t+ n+ c2) ∧ repn

′(t′) ∧ [ψ2]n′(x, t′) ∧

∀t′′.
⋀︂

n′′∈[−N,N ]

(︂(︁
(t+ n ≤ t′′ + n′′ < t′ + n′) ∧ repn

′′(t′′)
)︁
→ [ψ1]n′′(x, t′′)

)︂)︃
,

where c2 may be ∞, in which case the upper bound of t+ n+ c2 can be removed.

Lemma 5.12. Let K = (T ,A) be a consistent TELH c♢,lhs,−
⊥ -KB and ϕ be an MTNCQ.

Then ans([rewT (ϕ)]0(x, t),Ifin
A ) = ans(rewT (ϕ),IA).

Proof. We show the following claim by induction on the structure of ϕ: for all i ∈ rep(A),
all n ∈ [−N,N ], all relevant tuples a, and all TNCQs ϕ such that if Ifin

A |= repn(i) then

Ifin
A |= [rewT (ϕ)]n(a, i) iff IA, i+ n |= rewT (ϕ)(a).

Since this includes the case where i ∈ tem(A), n = 0, for which Ifin
A |= rep0(i) holds, the

statement of the lemma follows.
If ϕ is an NCQ, then

Ifin
A |= [rewT (ϕ)]n(a, i) iff IA, i |= rewT (ϕ)(a) iff IA, i+ n |= rewT (ϕ)(a)

since i is a representative for i+n and a single temporal variable t is used in [rewT (ϕ)]n(x, t)
to denote ‘current’ time point in rewT (ϕ).
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For the Boolean constructors, the claim follows immediately from the semantics of
first-order logic.

We now consider a formula of the form ϕUIψ. By induction, Ifin
A |= [rewT (ψ)]n′(a, i′)

iff IA, i′ + n′ |= rewT (ψ)(a), for any time point i′ with i′ + n′ ≥ i+ n, and
Ifin

A |= [rewT (ϕ)]n′′(a, i′′) iff IA, i′′ +n′′ |= rewT (ϕ)(a) for all time points i′′ and offsets n′′

such that i+ n ≤ i′′ + n′′ < i′ + n′ (assuming w.l.o.g. that ϕ and ψ have the same answer
variables).

Hence, the formula [rewT (ϕ)UI rewT (ψ)]n(a, i) checks the conditions required for the
satisfaction of the UI -expression for all time points in ⋃︁

{[i − N, i + N ] | i ∈ rep(A)}.
However, Lemma 5.10 tells us that, if rewT (ψ) is satisfied in IA at some time point i′ +n′

with n′ > N , then this is also the case for n′ = N . Similarly, to check whether rewT (ϕ) is
satisfied at all time points between i+n and i′ +n′, it suffices to consider the time points
up to N away from some element of rep(A). Hence, Ifin

A |= [rewT (ϕ)UI rewT (ψ)]n(a, i)
iff IA, i+ n |= (rewT (ϕ)UI rewT (ϕ))(a). 2

This lemma allows us to compute in polynomial time that patient p1 from Example 4.16
is an answer to ϕ(x) from Example 5.2 exactly at time point 7. Below we summarize
our tight complexity results, which by Lemma 5.6 also hold for rooted MTCQs under
certain answer semantics.

Theorem 5.13. Answering rooted MTNCQs under minimal-world semantics over
TELH c♢,lhs,−

⊥ -KBs is ExpSpace-complete, and PTime-complete in data complexity.

Proof. ExpSpace-hardness is inherited from propositional MTL [AH94; FS08]. Moreover,
first-order formulas over finite structures can be evaluated in PSpace [Var82]. Finally,
the size of [rewT (ϕ)]0(x, t) is bounded exponentially in the size of ϕ and T : each rewritten
NCQ rewT (ψ) may be exponentially larger than ψ, and each [ψ1 UIψ2]n(x, t) introduces
exponentially many disjuncts and conjuncts (but the nesting depth of constructors in
this formula is linear in the nesting depth of ψ1 UIψ2).

For data complexity, hardness is inherited from atemporal EL [CDL+13]. Evaluating
FO(<,bit)-formulas is in DLogTime-uniform AC0 in data complexity [Lin92], and the
size of our rewriting only depends on the query and the TBox. By Lemmas 5.8 and 5.12
and since Ifin

A is of size polynomial in the size of A, deciding whether a tuple a is a
minimal-world answer of an MTNCQ w.r.t. a TELH c♢,lhs,−

⊥ -KB is possible in PTime. 2

5.4. Related Work and Discussion
In the current setting with only temporal concepts, the temporal interaction between
time points is limited to the named individuals. For the patient selection task this seems
powerful enough, since making the concept DiabetesPatient expanding is sufficient: It
is not important whether exactly the same object represents Diabetes at all involved
time points, but merely that at each such time point some successor exists that represents
the disease. In other settings temporal roles could be beneficial. While making the matter
more complicated we conjecture that is possible to extend the current construction to
deal with temporal roles such that the result is still a minimal universal model that
is also universal. For a given individual a, the number of successors that need to be
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introduced to satisfy a given existential restriction depends not only on a single time
point anymore, but on all the time points. The notion of structural subsumption needs
to be expanded to be able to deal with the temporal dimension. For example, suppose a
belongs to ∃r.A at time point t and a belongs to ∃r.A′ at some later time point t′ > t,
and the KB entails

−r ⊑ r −A ⊑ A
A ⊑ A′ −A′ ⊑ A′

i.e. r,A and A′ are expanding. Then only one fresh element e needs to be introduced
satisfying ∃r.A′ from t on. If another element e′ would be introduced to satisfy ∃r.A at
time point t′ an endomorphism could map e′ to e and hence the model would not be
minimal anymore. One has to formalize the notion ‘∃r.A subsumes ∃r.A′ for individual
a at all time points’ in order to decide how many individuals need to be introduced.
During the rewriting these steps would have to be reversed and the monotonicity of the
diamond operators could probably be exploited to obtain an efficient algorithm.

Since we are looking for minimal models, another way of admitting smaller models
could be to adopt varying domains instead of a constant domain. Generally, many
individuals are introduced that are only connected to the rooted part of the model in
one time point. So conceptually one could question why they should exist at other time
points in the first place. However, as long as we only allow rooted MTNCQs, varying
domains can be simulated by constant domains. With a rooted query there is no way
to query information about individuals that are not connected to the named part of a
model.

In this work we focus on a discrete timeline (over Z) and data facts stamped with
a single time point. However, in the literature there are other approaches how to
incorporate temporal formalisms in an ontology and the data, e.g. dense timelines, like
Q or R [CCG10a; RWZ19]; or interval-based data models, where facts are stamped with
a pair of time points denoting the interval in which they are true [KPP+16; CCG10a].
Within the discrete time point-based approach, one can distinguish between formalisms
with LTL temporal constructs and formalisms like LTLbin employing more refined metric
temporal operators from Metric Temporal Logic (MTL) [AFH96].

Combining ontology-mediated query answering with LTL operators has been investig-
ated in depth. In particular, similarly to the query language adapted in this work, there
is a multitude of works [BBL13; BT15b; BBL15a; BBL15b] investigating the complexity
of answering LTL-CQs that are obtained from LTL formulas by replacing occurrences of
propositional variables by arbitrary CQs. Moreover, the research [BLT13; BLT15] focuses
on the rewritability properties of LTL-CQs. An orthogonal approach for query rewriting
over a temporalized DL-Lite ontology was proposed in [AKW+13; AKK+15]. Here
the focus mainly lies on increasing expressivity of an ontology language by allowing a
concept or a role to be prefixed with LTL-constructs. Only recently, also metric variants
of LTL-CQs have been considered [GJO16a; BBK+17; Tho18].

Negation in queries with the classical open-world semantics results in non-tractable
(mostly coNP or even undecidable) query evaluation [Ros07b; GIK+15]. Moreover,
prior work [BT15a; BT20] on temporalized ontology-mediated query answering with
negation shows that the high complexity of temporal query answering with negation is
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mostly due to the open-world assumption for negation in a query language. There are
several approaches on how to introduce negation in ontology-mediated query answering
without losing tractability which we discussed in detail in Chapter 3. However, we also
showed that they are not suitable for dealing with negation over anonymous individuals.
This observation was the motivation for the introduction of minimal-world semantics.
Indeed, as we show by this work, by changing semantics for negation, we can apply
efficient (in data complexity) algorithms for temporal query answering with negation.
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Implementation and Experiments
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Figure 5.14.: The structure of an OMQA system for patient selection.

In Part I we were concerned with the theoretical development of temporal minimal-
world semantics. Now we assess whether the theoretical work can be used in practice for
the patient selection task introduced in Section 3.1. The following cite reiterates the
practical importance of the task for medical researchers:

“Identifying patients who meet certain criteria for placement in clinical
trials is a vital part of medical research. Finding patients for clinical trials
is a challenge, as medical studies often have complex criteria that cannot
easily be translated into a database query, but rather require examining the
clinical narratives in a patient’s records. This is time-consuming for medical
researchers who need to recruit patients, so often researchers are limited to
patients who either seek out the trial for themselves, or who are pointed
towards a particular trial by their doctor. Recruitment from particular places
or by particular people can result in selection bias towards certain populations
(e.g., people who can afford regular care, or people who exclusively use free
clinics), which in turn can bias the results of the study [...]. Developing NLP
systems that can automatically assess if a patient is eligible for a study can
both reduce the time it takes to recruit patients, and help remove bias from
clinical trials [...].” 3

A system for patient selection that uses OMQA (in addition to natural language
processing (NLP) techniques) has the structure illustrated in Figure 5.14. The overall
goal is to select eligible patients for clinical trials based on their EHRs. In order to use
an OMQA system, the following steps have to be taken:

3Cited from the website of the N2C2 2018 challenge (https://portal.dbmi.hms.harvard.edu/
projects/n2c2-2018-t1/).

83

https://portal.dbmi.hms.harvard.edu/projects/n2c2-2018-t1/
https://portal.dbmi.hms.harvard.edu/projects/n2c2-2018-t1/


1. A terminology has to be chosen that can represent the necessary medical background
knowledge. We base our vocabulary on the large biomedical ontology SNOMED CT,
which is formulated in ELH⊥ and contains more than 300.000 different concepts.
Since SNOMED CT was not developed for the representation of EHRs, we extend
it slightly.

2. The eligibility criteria need to be translated to formal queries, in our case MTNCQs
as introduced in Chapter 5. For this step it is crucial to have very accurate NLP
tools.

3. Based on the vocabulary, the EHRs have to be transformed into temporal ABoxes.
Here existing tools such as MetaMap can be used to find medical concepts in
texts. Additional steps are required to extract the time stamps from EHRs. Once
everything is lifted to the formal representations, a OMQA reasoner can be used
to compute answers.

We have implemented tools for Steps 2 and 3: We describe and evaluate our system for
the automatic translation of clinical trials to MTNCQs in Chapter 6. In Chapter 7 we
introduce QUELK, our implementation of OMQA with the minimal-world semantics, and
evaluate the feasibility of our approach on a gold-standard dataset for patient selection.
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Chapter 6.

Translating Criteria to Temporal Queries

As the demand for (semi-)automated patient recruitment based on electronic health
records (EHRs) becomes more and more urgent, the representation and formalization of
eligibility criteria of clinical trials also have attracted considerable attention. To the best
of our knowledge, however, there are no methods which can translate arbitrary eligibility
criteria into logical expressions automatically (see Section 6.1 for related work).

Our goal in this chapter is to build a prototype system that can be evaluated in
practice. The users of such a system would be medical researchers rather than logicians,
hence the tool must be able to formalize eligibility criteria of clinical trials automatically.
Since the available information is limited to EHRs, not all criteria can be evaluated by
such a system, but it can support doctors in pre-selecting patients for a later, more
thorough screening procedure.

In the following we present a prototypical implementation1 that can automatically
translate eligibility criteria into MTNCQs as introduced in Chapter 5. This can be seen
as an instance of the larger field of translating natural language into a formal language
with a precisely defined semantics.

Our translation is based on annotating eligibility criteria formulated in natural language
by certain semantic roles and additional information. The semantic annotations we use
focus on the kind of information that can be represented by our target query language,
and hence can be seen as a filtering mechanism before the final translation to MTNCQs.
Our prototype system uses existing natural language processing (NLP) techniques such
as Word2Vec [MCC+13], Stanford NLP tools2 [MSB+14], and MetaMap3 [Aro01]. We
evaluate our implementation on a random selection of criteria from clinicaltrials.gov,4
which contains more than 3.000.000 criteria from over 250.000 clinical studies. We
identify which kinds of criteria are easy or hard to translate. From this, we develop some
suggestions on how to formulate eligibility criteria so that processing them automatically
becomes easier and more accurate.

The remainder of this chapter is structured as follows: In Section 6.1 we discuss
related work on the translation of eligibility criteria to a formal language. After that
we introduce the methodology behind our approach in Section 6.2 and evaluate it on
criteria from actual clinical trials in Section 6.3. Finally, in Section 6.4 we give a short

1Our prototype implementation with instructions on how to reproduce the results can be found at
https://github.com/wko/criteria-translation.

2https://nlp.stanford.edu/
3https://metamap.nlm.nih.gov/
4https://clinicaltrials.gov
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summary of our results and discuss how the automatic translation of criteria could be
improved in the future.

6.1. Existing and Related Work

This work combines two strands of research, namely representation and formalization of
eligibility criteria and automatic translation to formal languages.

Weng et al. [WTS+10] surveyed various representation methods of eligibility criteria
and proposed a framework of five dimensions to compare them. According to different
application scenarios, different representation methods for eligibility criteria are adopted.
Bache et al. [BTM+15] proposed a general language for clinical trial investigation and
construction (ECLECTIC) by analyzing 123 criteria from 8 clinical trials. Based on our
own investigation of eligibility criteria, we propose MTNCQs as formal representation
language since it covers a wide range of criteria, profits from existing medical ontologies
and is based on a large body of research on (temporal) ontology-based query answering
[BBL15b; BBK+17].

Previous work has already considered translation of eligibility criteria.
Tu et al. [TPC+11] proposed a practical translation method based on the ERGO an-
notation, which is an intermediate representation for eligibility criteria. However, ERGO
annotation can only be done manually or semi-automatically. Milian et al. [MBT12;
MT13] focused on breast-cancer trials and summarized 165 patterns, and used these
patterns and concept recognition tools to structure criteria. After that, they gener-
ated a formal representation by projecting the concepts in criteria to the predefined
query template. There is also some work about extraction and representation of partial
knowledge in eligibility criteria. Zhou et al. [ZMP+06], Luo et al. [LYW11] and Boland
et al. [BTC+12] focused on the recognition and representation of temporal knowledge.
Huang et al. [HL07] and Enger et al. [EVØ17] proposed several methods for detecting
negated expressions.

Weng et al. [WWL+11], Luo et al. [LYW11], Bhattacharya et al. [BC13], and Chon-
drogiannis et al. [CAT+17] classified the clinical trials into limited semantic classes by
using semantic pattern recognition or machine learning methods, which is helpful for
figuring out the most prominent kinds of information expressed in clinical trials.

In the field of NLP, automatic translation from a natural language into formal language,
e.g. first-order logic formulas, is also known as automatic semantic parsing. Dong et
al. [DL16] proposed an automatic semantic parsing method based on machine learning,
different from traditional rule-based or template-based methods.

6.2. Methodology

The main idea is to use semantic annotations to bridge the gap between eligibility
criteria and formal queries. The working of our system can be broadly divided into two
stages: annotating the eligibility criterion, and then constructing a formal query from
the semantic annotations. The outline of the system is shown in Figure 6.1.
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Figure 6.1.: Outline of the translation system
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6.2.1. Semantic Annotations

Our annotations identify pieces of information that can be translated to MTNCQ
constructors, such as temporal operators, negation, and medical concepts. The design
of the annotations also incorporates knowledge about frequently occurring types of
eligibility criteria, and takes into account whether it can be reasonably expected that the
queried information can be found in EHRs. We use the MetaMap tagger to recognize
medical concepts, and we use keyword matching to recognize other concepts. As a
preprocessing step, we homogenize the NL criteria, e.g. replace ‘two’ with ‘2’ and replace
‘greater than’ with ‘>’.

The Selection of Semantic Roles

After looking at a number of eligibility criteria, we identified the following frequently
requested types of information: age, gender, diagnoses, medications, procedures, meas-
urements, and temporal context (e.g. ‘history of . . . ’). This analysis is consistent with
the results of Weng et al. [WWL+11], Luo et al. [LYW11], Bhattacharya et al. [BC13],
and Chondrogiannis et al. [CAT+17], which all rank this kind of information high in
their lists of prominent semantic classes.

Our formalization is based on SNOMED CT, which contains 19 top-level and more
than 350 second-level categories. Out of these, we identified 8 categories that correspond
to the above-listed information: clinical finding, observable entity, product, substance,
procedure, unit, family medical history, person. For now, we discard other semantic
classes from SNOMED CT, such as qualifier values (‘severe’, ‘known’, ‘isolated’) or
devices. This restriction helps to resolve some of the ambiguity of words or phrases. For
example, in SNOMED CT ‘female’ can be mapped to ‘Female structure (body structure)’
or ‘Female (finding)’; and ‘scar’ can be identified as ‘Scar (disorder)’ or ‘Scar (morphologic
abnormality)’. By excluding the types body structure and morphologic abnormality, we
obtain a more uniform representation.

However, SNOMED CT only contains medical concepts, and we additionally consider
the semantic roles age, time, number, comparison sign, negation, and conjunction.
Table 6.2 contains an overview of all semantic roles with examples. In addition to the
semantic role, we record additional information in the annotations, e.g. the precise
concept from SNOMED CT or a time interval.

Our choice of semantic roles determines the vocabulary that we will use to formulate
MTNCQs. More precisely, the concept names are restricted to the sub-concepts of the
8 categories in SNOMED CT identified above. We use the role names diagnosedWith,
takes, and undergoes to connect patients to SNOMED CT concepts, but none of the
role names from SNOMED CT itself. Additionally, we allow concrete domain predicates
like hemoglobinOf that correspond to SNOMED CT substances (e.g. Hemoglobin) and
observable entities, as well as ageOf. Finally, temporal information, negation, and
conjunction are expressed by the logical connectives of our query language.
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Semantic role Examples Representation

Age age 18–70 [lower,upper]
Time within 5 years [start, end]
Comparison sign greater than > | ≥ | ≤ | <

Partial negation other than ∧¬

Main negation no history of ¬

Number one, two, three, ... Arabic numerals
Conjunction and, or, defined by ∧,∨

From SNOMED CT (e.g. clinical finding) lung disease Concept name
Table 6.2.: List of semantic roles and representations in the semantic annotation

Concept Recognition and Semantic Role Annotation

To illustrate the annotation process, we consider the criterion ‘history of lung disease
other than asthma’;5 Table 6.3 and the end result in Figure 6.4.

The first steps are to recognize and annotate age and temporal expressions using
regular expressions. In our example, ‘history of’ is recognized by the regular expression

(a|any|prior|previous)(.*?)history of,

and then annotated by the semantic role time and the temporal interval (−∞, 0]. We
then remove the identified age expressions and temporal expressions from the EC. They
form complete semantic units, and thus removing them does not affect the meaning of
the remaining part of the EC, while it allows us to avoid accidental translation of these
expressions into SNOMED CT concepts.

On the remaining criterion, we then run the MetaMap tagger [Aro01], a tool for
recognizing concepts from the UMLS Metathesaurus, which subsumes SNOMED CT.
Given a phrase or sentence, it returns the most likely phrase-concept matches. In our
example, MetaMap does not identify any sub-phrases, and outputs the following concepts
for the whole phrase ‘lung disease other than asthma’: ‘Disorder of lung (disorder)’, ‘Lung
structure (body structure)’, ‘Asthma (disorder)’. By restricting the types as described in
Section 6.2.1, we immediately rule out ‘Lung structure’.

A larger challenge, however, is to obtain more exact phrase-concept matches. For
this, we split all sub-phrases returned by MetaMap into more sub-phrases using the
Stanford NLP tools [MSB+14]. Then we try to find the best phrase-concept matches,
by calculating a similarity value (in [0, 1]) of each sub-phrase to all candidate concepts
using Word2Vec [MCC+13] and the Levenshtein distance; we also use the synonymous
expressions provided by SNOMED CT to potentially obtain a higher similarity. To avoid
spurious matches, we use a minimum threshold of 0.66 for the similarity. In our example,
this excludes the words ‘other’ and ‘than’, because there is no candidate concept that is

5https://clinicaltrials.gov/ct2/show/NCT02548598
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Stage Output

Original Criterion history of lung disease other than asthma
Age recognition —
Time recognition history of → (time)
Remove age/time lung disease other than asthma
MetaMap lung disease other than asthma → Disorder of lung

(disorder), Lung structure (body structure), Asthma
(disorder)

Restrict semantic roles lung disease other than asthma → Disorder of lung, Asthma
Detect sub-phrases lung disease, lung, disease, other, than, asthma
Compute most similar
concept for each
sub-phrase

(lung disease, Disorder of lung) : 0.91, (lung, Disorder of
lung) : 0.81,
(disease, Disorder of lung) : 0.89, (asthma, Asthma) : 1.0

Find best matches lung disease → Disorder of lung, asthma → Asthma
Negation recognition other than → (negation)
Other semantic roles —

Table 6.3.: Example of the semantic annotation of an EC.

similar enough. The best matches for the phrases ‘lung disease’, ‘lung’, and ‘disease’ all
refer to the same concept Disorder of lung, and we use the similarity values to choose
the best of them, where we give preference to longer phrases.

It remains to recognize other semantic roles in the EC, i.e. number, negation, compar-
ison sign, and conjunction. We mainly do this by keyword or pattern matching. The
negation case is the most complex due to its various forms:

• explicit negation e.g. ‘not’, ‘except’, ‘other than’, ‘with the exception of’;

• morphological negation, e.g. ‘non-pregnant’, ‘non-healed’, ‘non-smoker’;

• implicit negation, e.g. ‘lack of’, ‘rule out’, ‘free from’.

In our prototype system, we focus on explicit negation, and consider two cases: either
the whole sentence is negated (‘patient does not have . . . ’) or only part of it (‘. . . other
than . . . ’). For conjunctions between parts of sentences, we use ‘∨’ as default annotation,
because there is no good way to map ‘and’ and ‘or’ in criteria to conjunction or
disjunction exactly, e.g. in the criterion ‘. . . including cyclosporine, systemic itraconazole
or ketoconazole, erythromycin or clarithromycin, nefazodone, verapamil and human
immunodeficiency virus protease inhibitors’6 both ‘and’ and ‘or’ have the same meaning.

The final semantic annotation for our example can be seen in Figure 6.4.

6https://clinicaltrials.gov/ct2/show/NCT02452502
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Sub-phrase

Start and
End Position

Semantic Role

Representation

Concept ID

history of

(0,11)

time

(−∞, 0]

lung disease

(12,24)

clinical finding

disorder of lung

19829001

other than

(25, 35)

negation

∧¬

asthma

(36,42)

clinical finding

asthma

195967001

Figure 6.4.: The semantic annotation for our example.

6.2.2. The Formal Queries

To obtain the final MTNCQ, we combine the different annotated phrases according to
the composibility of semantic roles and structural information. There are four kinds
of basic sub-formulas: age formulas, person formulas, medical formulas and pattern
formulas, and their translation is described in Table 6.5. For measurements, we detect
patterns in the semantic annotation that correspond to a comparison of a substance or
observable entity with a specific numerical value (including unit). Additionally, we group
adjacent SNOMED CT findings together, to translate them into a set of atoms joined
by ∨ inside the same ∃y.diagnosedWith(x, y) ∧ . . . formula. We also translate negation
between clinical findings into appropriate formulas, and do the same for products and
procedures. In our running example, ‘lung disease other than asthma’ is formalized as

∃y.diagnosedWith(x, y) ∧ DisorderOfLung(y) ∧ ¬Asthma(y).

Finally, we combine these sub-formulas using the remaining connectives and negations
and consider any time expressions. In our prototype system, we only express a single
temporal operator of the form [−n,0], which we found to be the most common in clinical
trials. Such an operator is always applied to the whole formula, e.g. we obtain

(−∞,0]
(︁
∃y.diagnosedWith(x, y) ∧ DisorderOfLung(y) ∧ ¬Asthma(y)

)︁
.

If there is more than one temporal annotation, we choose the more specific one. For
example, in ‘history of myocardial infarction, unstable angina pectoris, percutaneous
coronary intervention, congestive heart failure, hypertensive encephalopathy, stroke or
TIA within the last 6 months’7 there are ‘history of’ and ‘within the last 6 months’, and
we choose the latter.

If there are no explicit connectives, we combine medical and measurement formulas by
disjunction, and then combine them with age and person formulas by conjunction.

7https://clinicaltrials.gov/ct2/show/NCT00220220
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6.3 Experiments

Eval. Unans. Ans.

1 282 119
2 254 147
3 237 164

Eval. Good Partial Wrong

1 54 29 10
2 56 27 10
3 65 18 10

Table 6.6.: Experimental results. The right table shows the annotation of the translation
quality for the 93 criteria that were marked as ‘answerable’ (Ans.) by all
evaluators (Eval.).

6.3. Experiments

To the best of our knowledge, there are no gold standard datasets for the translation
of criteria into formal language. Therefore, we evaluated our approach on real-world
studies taken from clinicaltrials.gov.8 During the design phase we used 24 randomly
selected studies, which contained approximately 300 criteria. Our prototype system was
optimized to cover as many of these criteria as possible.

For testing, we randomly selected criteria across all studies on clinicaltrials.gov and
manually evaluated them. Due to time constraints, we managed to process 401 criteria.
We defined the following metrics: A criterion is answerable, if a) it is possible for a
human to translate it into an MTNCQ using only the vocabulary chosen in Section 6.2.1;
and b) it can in principle be answered by only looking at the EHR of a patient. Hence,
criteria that refer to the future (‘during study phase’), or ask for subjective information
(‘in the opinion of the investigator’, ‘willingness to’), are not considered answerable for
the purposes of our system. For each answerable criterion, we then evaluated the quality
of the translation. The resulting MTNCQ is labeled as good if it contains all (necessary)
information; partial if it represents at least parts of the criterion; and wrong otherwise.
These metrics are clearly subjective to some extent. To get a more reliable evaluation
and to quantify the amount of subjectivity, we let three evaluators (three of the authors
of [XFB+19]) vote independently on the test data. The results can be seen in Table 6.6.

The results indicate that the judgment on whether a criterion is answerable or not
differs between the evaluators. We found that the difference is mainly caused by two
things: Firstly, it is sometimes difficult to judge whether a concept can be represented
in SNOMED CT, because the concept name can differ significantly from the description
in the text. Secondly, many criteria contain very specific phrases, for example ‘Active
bowels inflammatory disease ([Crohn], chronic, diarrhea...)’.9 The word ‘active’ cannot
be translated into SNOMED CT, and we could translate it into a temporal constraint
only under some assumptions on the semantics of ‘active’. Some might consider this to
be not so important, while for others this renders the criterion unanswerable. Despite
the differences, at least 60% of the criteria cannot be answered, even in the opinion of
evaluator 3, who was the most optimistic. This is partially because of condition b) above.
The second reason is that quite a number of criteria cannot be represented in our formal

8https://clinicaltrials.gov/
9https://clinicaltrials.gov/ct2/show/NCT02363725
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language, either because of a lack of vocabulary in SNOMED CT, or because of missing
semantic roles (see Section 6.2.1). While the former cannot be improved on, the latter
offers room for future optimizations.

To compare the quality of the translations, we consider only criteria that have been
marked as answerable by all evaluators. This leaves 93 criteria that are analyzed on the
right-hand side of Table 6.6. The difference in the translation quality is again due to
the varying opinions of the evaluators regarding how detailed a translation needs to be
in order to be considered good. Our system is able to translate more than 50% of the
(confidently) answerable criteria, which is a promising first result. In the following, we
give examples for a good, partial, and a bad translation of our system:

‘Has a history of diabetic ketoacidosis in the last 6 months.’10

[−6,0]
(︁
∃y.diagnosedWith(x, y) ∧ KetoacidosisInDiabetesMellitus(y)

)︁
‘History of, diagnosed or suspected genital or other malignancy (excluding treated squamous cell
carcinoma of the skin), and untreated cervical dysplasia.’11

(−∞,0]

(︂
∃y.diagnosedWith(x, y)∧(︁

MalignantNeoplasticDisease(y) ∨ DysplasiaOfCervix(y)
)︁)︂

‘Primary tumors developed 5 years previous to the inclusion, except in situ cervix carcinoma or
skin basocellular cancer properly treated’12

(−∞,0]

(︂
∃y.diagnosedWith(x, y) ∧

(︁
CarcinomaInSituOfUterineCervix(y) ∨ SkinCancer(y)

)︁)︂

The second translation is partially correct, because the temporal data and the main
concepts have been recognized correctly, but ‘excluding . . . ’ was not translated. The
last translation is wrong since neither the temporal information, the negation, nor the
main concept ‘primary tumors’ have been recognized correctly. For more examples, we
refer the reader to the appendix in the extended version.

6.4. Discussion and Future Work

Formalizing eligibility criteria is a challenging task due to the gap between natural and
formal language. We have presented an automatic translation method from eligibility
criteria into formal queries, and developed a prototype system based on existing NLP
tools. We have evaluated our prototype on 401 eligibility criteria. More than 50% of
the answerable criteria have been translated correctly, which is an encouraging result
that can be improved on by optimizing the translation process as we describe below.
However, there remain certain criteria that are hard to translate (even for humans) due
to their complex structure.

10https://clinicaltrials.gov/ct2/show/NCT02269735
11https://clinicaltrials.gov/ct2/show/NCT01397097
12https://clinicaltrials.gov/ct2/show/NCT01303029
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6.4 Discussion and Future Work

While it is unreasonable to expect medical doctors to formulate clinical trial criteria
directly as MTNCQs, we nevertheless identify a few key points that can be observed
during the formulation of eligibility criteria to make the automatic translation easier:

1. Split criteria whenever possible, e.g. divide ‘diagnosed with diabetes and hyperten-
sion’ into ‘diagnosed with diabetes’ and ‘diagnosed with hypertension.’

2. Formulate every criterion as an independent description that does not depend
on other criteria or the background knowledge of clinical trials, like in ‘Known
hypersensitivity to any of the study drugs or excipients.’13

3. Avoid using nonadjacent words to express a concept, e.g. ‘. . . dermatologic,
neurologic, or psychiatric disease’14 should rather be formulated as ‘dermatologic
disease, neurologic disease, or psychiatric disease.’

We can improve the quality of our translation by collecting more regular expressions
and custom mappings, or employing specialized techniques from the literature for the
recognition of semantic roles like comparison sign or negation. Other obvious steps are
the inclusion of more concept categories from SNOMED CT such as devices, qualifiers,
and events. For example, the criterion ‘severe aortic stenosis’15 could be translated as

∃y, z.hasDiagnosis(x, y) ∧ AorticStenosis(y) ∧ severity(y, z) ∧ Severe(z)

if we annotate ‘severe’ with the SNOMED CT concept severe (qualifier value) and detect
the pattern qualifier value—finding. It is also straightforward modify our system to
output a ranked list of multiple candidate translations that the doctor may choose from.

Another interesting direction for future work is to develop a controlled natural lan-
guage [Kuh14] based on our semantic annotations. Criteria formulated in this way can
then easily be transformed into MTNCQs as we have described. With appropriate
editing support, creating new eligibility criteria that conform with this controlled natural
language would be not much more difficult than writing them as free-form text. Of
course, one should retain the possibility to add free-form criteria, which then have to be
evaluated manually.

13https://clinicaltrials.gov/ct2/show/NCT01935492
14https://clinicaltrials.gov/ct2/show/NCT00960570
15https://clinicaltrials.gov/ct2/show/NCT01951950
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Chapter 7.

Selecting Patients for Clinical Trials

In this chapter we assume that the criteria are already translated to MTNCQs and focus
on applying temporal OMQA for the selection of patients. In Section 7.1 we describe
QUELK, our system for query answering, and the input formats it requires. Moreover,
we discuss the parts in which the implementation differs from the theoretical algorithms
we have developed before. QUELK is then put to work on a small gold standard dataset
for patient selection introduced in Section 7.2. We describe the preprocessing of the
EHRs and the setup of the KB in Section 7.3. Based on existing tools we extract medical
concepts occurring in the EHRs and generate a temporal ABox automatically. We
also introduce criteria from the dataset that contain temporal information and provide
manual translations to MTNCQs for them. We conduct two experiments in Section 7.4 to
show the importance of temporal reasoning: In the first setting, all temporal information
are ignored, effectively merging all EHRs to a single time point and using only NCQs
for querying. This is evaluated against the temporal setting, in which the MTNCQs
are evaluated over the temporal ABox. As expected the quality of the results is better
when the temporal dimension is taken into account. In Section 7.5 we finish with a short
discussion of our results relative to other systems and provide some related work.

7.1. QUELK: A Prototype For Temporal Query Answering

QUELK1 is a prototypical system for answering MTNCQs over TELH c♢,lhs,−
⊥ -KBs imple-

mented in Java and Scala.
As input QUELK accepts an ontology in OWL functional-style syntax2. The temporal

information are encoded using annotations on the GCIs, class and role assertions. For
example, to make the concept Patient rigid and assert that individual p101 is a Patient
on 2173-02-04, the following axioms can be used in a TELH c♢,lhs,−

⊥ -KB:

±Patient ⊑ Patient

Patient(p101,2173-02-04)

They can be expressed in OWL functional-style by a ‘SubClassOf’-axiom and a ‘ClassAssertion’-
axiom, which can be read much like the original axioms in DL-syntax:

1The source code of QUELK can be found at https://github.com/wko/quelk.
2https://www.w3.org/TR/owl2-syntax/#Functional-Style_Syntax
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SubClassOf(
Annotation(time:diamond "rigid"^^xsd:string)
:Patient :Patient)

ClassAssertion(
Annotation(time:instant "2173-02-04T00:00:00"^^xsd:dateTime)
:Patient :p101)

The saturation of the temporal KB is implemented using the saturation algorithm
introduced in Section 4.3. To be able to deal with many facts, the saturated ABox
is then stored in a relational database management system (RDBMS), since they are
optimized for efficient storage and querying of huge amounts of data. We use our results
from Chapter 4 and Chapter 5 and store just representative time points and the interval
they represent. Interval bounds are allowed to be positive or negative infinity. The
smallest time unit in QUELK are milliseconds, which is sufficient at least for the patient
selection task.

When a MTNCQ ϕ with answer variable x is evaluated over a database Ifin
A , it is

rewritten to an SQL query that returns the correct answers when evaluated over Ifin
A .

We have shown in Chapter 5 that the rewriting of the NCQs inside ϕ is independent of
the temporal operators in the TBox (see the proof of Lemma 5.8). This means for this
step we can treat the TELH c♢,lhs,−

⊥ -TBox like an atemporal ELH⊥-TBox by omitting all
diamond operators in any axiom. We implement the atemporal rewriting of the NCQs
in ϕ using the algorithm in Section 3.4 and use the ELK reasoner3 as an optimized
black-box for computing subsumptions in ELH⊥.

In the second step, we deal with the remaining temporal parts in ϕ. Here our
implementation differs from the theoretical rewriting described in Section 5.3, because
we construct the SQL queries to work not on single time points, but on intervals instead:
The SQL query corresponding to a given NCQ φ in ϕ selects answer tuples of the form
(a, i), where a is a tuple of named individuals from Ifin

A (with the same arity as x) and
i is an interval at which a are answers to φ. Based on this representation all further
temporal operators in ϕ can be taken care of.

In order for this representation to work, all computations on intervals have to be
defined based on the bounds of the interval, since we never want to materialize the
possibly infinitely many time points in a given interval. In the following an interval
i = [a, b] is a closed interval over the integers in which a and b are also allowed to be
−∞ or ∞ (in which case the interval is open). Then i is empty (denoted by ∅) if a > b.
Let i1 = [a1, b1] and i2 = [a2, b2] be intervals. The result of the intersection can always
be represented by a new interval:

[a1, b1] ∩ [a2, b2] = [max(a1, a2),min(b1, b2)]

3https://github.com/liveontologies/elk-reasoner
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It is also easy to check that i1 and i2 are overlapping iff i1 ∩ i2 ̸= ∅. The result of the
union of two intervals can be represented by a set of intervals:

[a1, b1] ∪ [a2, b2] =
{︄
{[min(a1, a2),max(b1, b2)]} iff [a1, b1] ∩ [a2, b2] ̸= ∅
{[a1, b1], [a2, b2]} otherwise

We can also easily check if i1 is a sub-interval of (or contained in) i2, formally i1 ⊆ i2, by
checking if a2 ≤ a1 and b1 ≤ b2.

Given a set of intervals I we sometimes want to check if a given interval i is contained
in the intervals in the set. Generally, I can contain many overlapping intervals, which
makes this check more complicated. Therefore, we introduce a “normalization” operation
on I, which merges all overlapping intervals in I. In the database world this is known as
the gaps and islands problem [DDL+11] and their exist many solutions to it. For us it
is enough to know that the problem can be solved in SQL and the functions have the
following semantics for I:

islands(I) := {i | i is a maximal interval with i ⊆
⋃︂
i′∈I

i′}

gaps(I) := {i | i is a maximal interval with i ∩
⋃︂
i′∈I

i′ = ∅},

Example 7.1. An example of the results of applying the operations islands and gaps
on a set of intervals I := {[1, 5], [3, 9], [21, 28]}:

islands(I) := {[1, 9], [21, 28]}
gaps(I) := {(−∞, 0], [10, 20], [29,∞)}

♢

For easier notation we extend the two functions to sets of answer tuples. For a given set
S of answer tuples of the form (a, i), islands can be computed independently for each
answer a occurring in S and the union of all islands is returned. Gaps for answer tuples
can be computed in a similar way.

Let K = (T ,A) be a consistent TELH c♢,lhs,−
⊥ -KB and Ifin

A a finite interpretation (stored
in a relational database) containing the completion of A and just the representative time
points (we already used this notation in Section 5.3). We define the function eval that
computes the answers to an MTNCQ ϕ(x) in Ifin

A using the same semantic approach as
the actual SQL queries constructed by QUELK. For an NCQ φ, eval selects all time
points at which a is an answer to some rewriting of φ and lifts the result to the interval
level by replacing each time point i by its represented interval, denoted by i↑, formally

eval(φ,Ifin
A ) := {(a, i↑) | D, i |= φ′(a) and φ′ ∈ rewT (φ)}
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Z1 2 3 4 5 6 7 8 9 10

a b

a− 2 b− 1

a1 b1 a2 b2 a3 b3
eval(ϕ2)
shifted by bounds of U[1,2]

eval(ϕ1 U[1,2]ϕ2)

eval(ϕ1)

Figure 7.2.: An example for ϕ1 U[1,2]ϕ2. Suppose ϕ1 is valid in the three intervals [ai, bi]
with i ∈ 1, 2, 3 and ϕ2 in the interval [a, b]. The shifted interval [a− 2, b− 1]
is denoted with a dotted line. The intervals at which ϕ1 U[1,2]ϕ2 holds can
be seen below the dotted interval. Note that the interval [a1, b1] does not
satisfy the condition that b1 ≤ a− 1 and is therefore not part of the result.

For the remaining junctors eval is defined recursively as follows, where ϕ1 and ϕ2 denote
MTNCQs with the same n answer variables:

eval(ϕ1 ∧ ϕ2,I
fin
A ) := {(a, i1 ∩ i2) | (a, i1) ∈ eval(ϕ1,I

fin
A ) and (a, i2,Ifin

A ) ∈ eval(ϕ2,I
fin
A )}

eval(ϕ1 ∨ ϕ2,I
fin
A ) := eval(ϕ1,I

fin
A ) ∪ eval(ϕ2,I

fin
A )

eval(¬ϕ1,I
fin
A ) := gaps(eval(ϕ1,I

fin
A ))

eval(2[ℓ,r]ϕ1,I
fin
A ) := {(a, [a1 − ℓ, b1 − r]) | (a, [a1, b1]) ∈ eval(ϕ1,I

fin
A )}

eval( [ℓ,r]ϕ1,I
fin
A ) := {(a, [a1 − r, b1 − ℓ]) | (a, [a1, b1]) ∈ eval(ϕ1,I

fin
A )}

The metric until operator requires a bit more work. If the interval includes 0 it automat-
ically includes all time points at which ϕ2 holds. In all other cases it also depends on ϕ1.
Therefore, we make a case distinction, where ℓ > 0:

eval(ϕ1 U[0,0]ϕ2,I
fin
A ) := eval(ϕ2,I

fin
A )

eval(ϕ1 U[0,r]ϕ2,I
fin
A ) := eval(ϕ1 U[0,0]ϕ2,I

fin
A ) ∪ eval(ϕ1 U[1,r]ϕ2,I

fin
A )

eval(ϕ1 U[ℓ,r]ϕ2,I
fin
A ) := {(a, [a1, b1] ∩ [a2 − r, b2 − ℓ]) |

(a, [a1, b1]) ∈ islands(eval(ϕ1,I
fin
A )),

(a, [a2, b2]) ∈ eval(ϕ2,I
fin
A ), and

b1 ≥ a2 − 1}

For the last case, a tuple (a, i) can only be a result if (i) i is a (sub)interval of [a1, b1] at
which a is an answer to ϕ1; (ii) the time points in i are not too far away from time points
in [a2, b2] at which a is an answer to ϕ2; this is guaranteed by the shifting of [a2, b2] by
the bounds of until; and (iii) the interval [a1, b1] holds until at least the beginning of the
interval [a2, b2]. Note that because we apply the islands function here, it is sufficient to
look at a pair of intervals ([a1, b1] and [a2, b2]) at the time. Without the islands function
we would have to consider multiple intervals where a is an answer to ϕ1 at the same
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time. An illustration of the evaluation of until is given in Figure 7.2. The metric since
operator can be dealt with in a similar way.

Lemma 7.3. Let I be a model of a consistent TELH c♢,lhs
⊥ -KB, ϕ(x) a rooted MTNCQ.

Then it holds that (a, [i, i]) ∈ eval(ϕ,Ifin
A ) iff IA, i |= ϕ(a).

Proof. Here we only provide the most complex case of until, the cases for the remaining
operators can be done in a similar manner.

For easier notation, in the proof we write (a, i) ∈ eval(ϕ,Ifin
A ) to denote that there

exists (a, i′) ∈ eval(ϕ,Ifin
A ) with i ⊆ i′.

(←): Suppose IA, i |= (ϕ1 U[ℓ,r]ϕ2)(a) and 1 ≤ ℓ ≤ r. Then there exists k ∈ [ℓ, r] with
IA, i + k |= ϕ2(a) and for all 0 ≤ j < k: IA, i |= ϕ1(a). By induction we have that
(a, [i + k, i + k]) ∈ eval(ϕ2,Ifin

A ) and (a, [i + j, i + j]) ∈ eval(ϕ1,Ifin
A ) for all 0 ≤ j < k,

which implies (a, [i, i+ k − 1]) ∈ islands(eval(ϕ1,Ifin
A )). This satisfies the last condition

since b1 = i+ k − 1 ≥ i+ k − 1 = a2 − 1. What remains to show is that

i ∈ [i, i+ k − 1] ∩ [i+ k − r, i+ k − ℓ].

The first interval contains i, since 1 ≤ l ≤ k. For the second interval, since k ∈ [ℓ, r], we
know that

i+ k − r ≤ i+ r + r = i and i+ k − ℓ ≥ i+ ℓ− ℓ = i,

and hence, it also contains i. Therefore (a, [i, i]) ∈ eval(ϕ1 U[ℓ,r]ϕ2,Ifin
A ).

(→): Suppose (a, [i, i]) ∈ eval(ϕ1 U[ℓ,r]ϕ2,Ifin
A ). Then i ∈ ([a1, b1]∩ [a2− ℓ, b2− r]) for some

(a, [a1, b1] ∈ eval(ϕ1,Ifin
A ) and (a, [a2, b2] ∈ eval(ϕ2,Ifin

A ). By the third condition we know
that b1 ≥ a2 − 1 and we chose the smallest possible interval for [a1, b1] by setting a1 = i
and b1 = a2 − 1. Moreover, we consider the smallest possible case for [a2, b2] by setting
b2 = a2. We obtain

i ∈ ([i, a2 − 1] ∩ [a2 − r, a2 − ℓ]).

Since i is contained in the intersection we must have a2 − r ≤ i and i ≤ a2 − ℓ. Hence,
a2 has to be somewhere in the interval [i+ ℓ, i+ r] and there exists k ∈ [ℓ, r] such that
(a, [i+ k, i+ k]) ∈ eval(ϕ2,Ifin

A ) and (a, [i, i+ k − 1]) ∈ eval(ϕ1,Ifin
A ). By induction we

obtain that there exists k ∈ [ℓ, r] such that IA, i + k |= ϕ2(a) and for all 0 ≤ j ≤ k:
IA, i+ j |= ϕ1(a). 2

Based on these definitions QUELK constructs a SQL query that returns every possible
answer tuple and the intervals at which it is valid. To select all answers at a given
time point t, in the last step only answers are selected that are valid in an interval that
includes t. At the time of this writing, the metric temporal operators U and S are not
supported by QUELK. An implementation might be added in future versions.
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7.2. A Dataset for Patient Selection
To evaluate our system we chose the dataset from Track 1 of the 2018 N2C2 cohort
selection challenge4 which was set out to answer the question: “Can NLP systems use
narrative medical records to identify which patients meet selection criteria for clinical
trials?” [SFS+19]. It contains anonymized EHRs from 288 patients with 2− 5 records
per patient. All patients in the dataset have diabetes and most have a high risk for heart
disease. Since EHRs are formulated as free texts, they can vary in between each other.
However, most of the time they have roughly the same structure. In the following we
go through an example record given in Example 7.4 from the N2C2 dataset to give an
impression of the information it contains and the way it is structured.

4https://portal.dbmi.hms.harvard.edu/projects/n2c2-2018-t1/
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Example 7.4. An example patient record from patient 182 in the N2C2 dataset. Due
to the length of the record some parts were omitted, denoted by [...]. The record is
from an actual record, but all names and dates in the record were changed to guarantee
anonymity.

1 Record date: 2133-02-11
2
3 [...]
4
5 Patient: Daniel Doherty
6 Medical Record Number: 767 02 38
7 Room: E5316Y
8 Date of Admission: 2/10/33
9 Attending Physician: Thomas Cotton

10 PCP: Robert Bailey (Central WV)
11 Code Status: FULL
12
13 Source: Patient unable to give history b/c of mental status, Medical Record
14
15 ID/CC: 68yoM h/o schizophrenia, medication non-compliance, presents s/p cardiac

arrest.
16
17 History of Present Illness:
18 Per Dibble General Hospital Records, the patient was admitted on 2/04/33 after

collapsing in the mall. His total time down is unclear, but the patient had an
AED administered and he was shocked x2. When EMTs arrived, they found the
patient to be in VF w/ agonal breathing. CPR was administered and he was
shocked x3. After the 3rd defibrillation, the patient awoke and was in NSR. The
patient could not recall any of the events.

19
20 [...]
21
22 Review of Systems:
23 Unavailable secondary to mental status.
24
25 Past Medical/Surgical History:
26 Hypercholesterolemia
27 Hypertension
28 Schizophrenia
29 H/o abnormal SPEP
30
31 [...]
32
33 Allergies:
34 NKDA
35
36 Medications at home:
37 Aspirin 81mg qd
38 HCTZ 25mg qd
39 [...]
40 Medications on transfer:
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41 [...]
42 Social History:
43 Lives alone
44 TOB: quit 20y prior
45 ETOH: occasional
46 ILLICITS: unknown
47
48 Family History:
49 M: unknown
50 F: h/o MI
51
52 Physical Examination:
53 GEN: somnolent, easily arousable w/ manual stimulation, answers some questions,

but not very interactive, breathing at 20, mildly labored
54
55 [...]
56
57 EKG SB at 57bpm, Q in v1, III/AvF, left axis, TWI in v3-v6, new from previous.

QTc 430ms (manually calculated)
58 CXR enlarged cardiac silhouette, L basilar opacity.
59
60 Impression/Plan:
61 68yoM h/o HTN/HL, schizophrenia, medication non-compliance presents s/p VF

arrest, NSTEMI, AMS. Patient likely had ischemic VT/VF. Per outside records,
the patient does not seem to have ongoing activity of his acute coronary
syndrome. His mental status continues to be poor, and is likely multifactorial;
my suspicion is that he does have some level of anoxic brain injury as the

dominant pathology.
62
63 NSTEMI: npo p MN for cardiac cath in AM. Patient not able to consent at this

point, and does not have any clear family members that can do this for him.
Will follow his mental status exam.

64 -aspirin, metoprolol, lipitor, heparin IV.
65 -can add ACEi when he is taking po s and if BPs need further titration.
66 -mucomyst for renal prophylaxis.
67 -for risk factors, check a1c.
68 S/P VF ARREST: likely in the setting of NSTEMI
69 -cath as above.
70 -nl QTc
71 -s/p amio IV load. C/w amiodarone po load. If reversible lesion, likely

can d/c.
72 AMS: anoxic brain injury; current somnolence likely from narcotics.
73 -appreciate neurology consultation
74 -head CT
75 -c/w home zyprexa. Haldol prn.
76
77 [...]
78
79 Raul Quilici, MD
80 Pager: #99591
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Each EHR contains a record date (Line 1 in Example 7.4), which denotes when it was
recorded. It is followed by some general information like the names of the patient and
the physicians that treated the patient (Line 5-11). The “Chief Complaint” (CC) of the
patient is given in Line 15: It is a 68 year old male with a history of schizophrenia. He
is presented at the hospital with a “status post” (s/p) cardiac arrest5. The situation
before he was admitted to the hospital is explained in Line 17-18. In the past the patient
was suffering already from schizophrenia and other findings (Line 25-29). He has “no
known drug allergies” (NKDA) (Line 34). The EHR contains also information about the
medication the patient is taking regularly at home and the medications he got during
transfer to the hospital (Line 36-41). The “Social History” of the patient tells us that he
lives alone and stopped consuming tobacco 20 years ago (Line 42-46). For some diseases
the family history is relevant, in this case the patients father has a history of myocardial
infarction6 (Line 48-50) (MI). The physical examination gives some details about his
current condition and includes measurements that were taken (Line 52-58). Finally
the paragraph “Impression/Plan” summarizes the impression the physician got of the
patient, in particular that the patients cardiac arrest was likely a result of a certain kind
of myocardial infarction (NSTEMI) (Line 60-75).

The given patient has 5 EHRs in the dataset, covering a time span of about six years.

Criteria
In the N2C2 challenge 13 criteria were chosen, inspired by real studies from ClinicalTri-
als.gov. Each patient in the dataset was then categorized by medical experts into met
or not met for each criterion. Unfortunately, none of the criteria contains any form of
negation. In our experiment we focused on 5 criteria that contain a temporal dimension.
Their abbreviations and definitions are the following:

ADVANCED-CAD Advanced coronary artery disease7 (CAD), where ‘advanced’ is
defined as having two or more of the following:
• taking two or more medications to treat CAD
• history of myocardial infarction (MI)
• currently experiencing angina8

• ischemia9 in the past or present

MAJOR-DIAB Major diabetes-related complication where ‘major complication’ (as
opposed to ‘minor complication’) is defined as any of the following that are a result
of (or strongly correlated with) uncontrolled diabetes:
• amputation

5Cardiac arrest is a sudden loss of blood flow resulting from the failure of the heart to pump effect-
ively [Inc20b].

6A myocardial infarction (MI), also known as a heart attack, occurs when blood flow decreases or stops
to a part of the heart, causing damage to the heart muscle [Inc20d].

7CAD is the most common type of heart disease and happens when the arteries that supply blood to
heart muscle become hardened and narrowed [Med20].

8Angina, also known as angina pectoris, is chest pain or pressure, usually due to not enough blood flow
to the heart muscle [Inc20a].

9Ischemia is a restriction in blood supply to tissues, causing a shortage of oxygen that is needed to
keep tissue alive [Inc20c].
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• kidney damage
• skin conditions
• retinopathy10

• nephropathy11

• neuropathy12

MI-6MOS MI in the past 6 months.

ASP-FOR-MI Use of aspirin to prevent MI.

KETO-1YR Diagnosis of ketoacidosis13 in the past year.

For each criterion the dataset contains a ground-truth (GT)-labeling: Each patient
is labeled with the criteria the patient satisfies, according to the medical experts that
annotated the EHRs. For instance, patient 182 from Example 7.4 satisfies ADVANCED-
CAD, MAJOR-DIABETES and MI-6MOS.

7.3. Setup

The overall setup of the experiment is illustrated in Figure 7.5. In the following we
describe the construction of the TELH c♢,lhs,−

⊥ -KB from the EHRs and the translation of
the eligibility criteria to MTNCQs.

7.3.1. Creation of the KB

The TBox contains all of SNOMED CT. Additionally, we add the GT-concepts
ADVANCED-CAD, MAJOR-DIAB, MI-6MOS, ASP-FOR-MI and KETO-1YR, the concept Patient,
and the role diagnosedWith to the signature. The concept Patient is asserted to be
rigid, formally ±Patient ⊑ Patient. In a more general setting additional temporal
axioms could be added, for example for patients diagnosed with some incurable disease.
However, for the criteria we use in this evaluation temporal axioms are unnecessary.

The ABox is constructed by adding the diagnoses of each patient. Each EHR of each
patient is processed by the medical term tagging tool MetaMapLite14 which returns a
list of SNOMED CT concepts found in the record. The information are then added to
the ABox in the following way for each patient p and EHR e of p with timestamp i:

• p is asserted to be a patient at i by the assertion Patient(p, i).

• Then for each concept C found in e, the assertions diagnosedWith(p, a, i) and
C(a, i) are added, where a is a fresh individual.

10Retinopathy is any damage to the retina of the eyes, which may cause vision impairment [Inc20g].
11Nephropathy, is damage to or disease of a kidney [Inc20e].
12Neuropathy is a general term describing disease affecting the peripheral nerves, meaning nerves beyond

the brain and spinal cord [Inc20f].
13Diabetic ketoacidosis is a serious complication of diabetes that occurs when your body produces high

levels of blood acids called ketones [MR20].
14https://metamap.nlm.nih.gov/MetaMapLite.shtml
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Figure 7.5.: An illustration of the setup of the experiment. The SNOMED CT terms
in 288 patient records are tagged using MetaMapLite and transformed to
temporal facts. SNOMED CT is used as a TBOX together with auxiliary
axioms. 5 temporal criteria are manually translated to MTNCQs and then
the minimal-world answers are computed. The results are evaluated against
the GT-labeling of the data.

Currently there is no distinction between different roles. This could be improved in
future versions, for example by connecting the patient to medications with a takes-role
instead.

The GT-labeling assumes that the criterion is evaluated at the time point of the last
available EHR for each patient. To simplify the queries, we shift the EHRs of all patients
such that they share the last time point î. The GT-concepts are used to represent the
GT-labeling in the ontology.
For each C ∈ {ADVANCED-CAD,MAJOR-DIAB,MI-6MOS,ASP-FOR-MI,KETO-1YR} and pa-
tient p an assertion of the form C(p, î) is added if p satisfies C according to the GT-
labeling.
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7.3.2. Translation of the criteria

We translated the criteria manually to (disjunctions of) MTNCQs. A list of the
SNOMED CT concepts that were used for the respective findings is given in Table 7.6.
For example, ADVANCED-CAD corresponds to the following query:

ϕADVANCED-CAD(x) :=
[︁

−∃y.(Patient(x) ∧ diagnosedWith(x, y) ∧ CAD(y))
]︁

∧
(︂[︁

−∃y.(Patient(x) ∧ diagnosedWith(x, y) ∧ MI(y))
]︁

∨
[︁

−[−30d,0d]∃y.(Patient(x) ∧ diagnosedWith(x, y) ∧ Angina(y))
]︁

∨
[︁

−∃y.(Patient(x) ∧ diagnosedWith(x, y) ∧ Ischemia(y))
]︁)︂

To obtain better results, the query is relaxed in different ways: Firstly the criterion “taking
two or more medications” is ignored, because MetaMapLite does not tag medications;
secondly, it is sufficient if a patient satisfies one additional criterion indicating an
advanced CAD. The original query requires two or more indicators. Thirdly, “currently
experiencing angina” is relaxed to angina in the last 30 days. In the translation of
MAJOR-DIAB the criteria were again assumed to be satisfied if they are satisfied at
some time point in the past:

ϕMAJOR-DIAB(x) :=
[︁

−∃y.(Patient(x) ∧ diagnosedWith(x, y) ∧ DiabetesMellitus(y))
]︁

∧
(︂[︁

−∃y.(Patient(x) ∧ diagnosedWith(x, y) ∧ Amputation(y))
]︁

∨
[︁

−∃y.(Patient(x) ∧ diagnosedWith(x, y) ∧ KidneyDamage(y))
]︁

∨
[︁

−∃y.(Patient(x) ∧ diagnosedWith(x, y) ∧ SkinConditions(y))
]︁

∨
[︁

−∃y.(Patient(x) ∧ diagnosedWith(x, y) ∧ Retinopathy(y))
]︁

∨
[︁

−∃y.(Patient(x) ∧ diagnosedWith(x, y) ∧ Neuropathy(y))
]︁

∨
[︁

−∃y.(Patient(x) ∧ diagnosedWith(x, y) ∧ Nephropathy(y))
]︁)︂

MI-6MOS and KETO-1YR were translated directly:

ϕMI-6MOS(x) :=
[︁

−[−183d,0d]∃y.(Patient(x) ∧ diagnosedWith(x, y) ∧ MI(y))
]︁

ϕKETO-1YR(x) :=
[︁

−[−365d,0d]∃y.(Patient(x) ∧ diagnosedWith(x, y) ∧ Ketoacidosis(y))
]︁

In the criterion ASP-FOR-MI the condition that aspirin should be used to prevent MI
was relaxed to the following query asking for ‘patients that have a history of MI and a
history of (using) Aspirin’:

ϕASP-FOR-MI(x) :=
[︁

−∃y.(Patient(x) ∧ diagnosedWith(x, y) ∧ MI(y))
]︁

∧
[︁

−∃y.(Patient(x) ∧ diagnosedWith(x, y) ∧ Aspirin(y))
]︁
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Name of the finding SCTID

CAD (Coronary artery disease) http://snomed.info/id/49601007
MI (Myocardial infarction) http://snomed.info/id/22298006

Angina http://snomed.info/id/194828000
Ischemia http://snomed.info/id/52674009

Diabetes Mellitus http://snomed.info/id/73211009
Amputation http://snomed.info/id/81723002

Kidney Damage http://snomed.info/id/40095003
Skin Conditions http://snomed.info/id/422000003

Retinopathy http://snomed.info/id/29555009
Neuropathy http://snomed.info/id/386033004

Nephropathy http://snomed.info/id/90708001

Table 7.6.: The SCTIDs (SNOMED CT IDs) that correspond to the findings on the left.

7.4. Experiments

In the following let K denote the TELH c♢,lhs
⊥ -KB constructed from the EHRs in the way

described in Section 7.3.
To see the impact of using temporal information and reasoning, we distinguish two

different settings for each criterion: In the temporal setting, K and the queries are used
with all their temporal information.

In the atemporal setting, all temporal information are ignored in K as well as in the
query. More specifically, a given assertion C(a, i) is interpreted as an atemporal assertion
C(a) and similar for role assertions, while in MTNCQs, all temporal operators are
ignored. For instance, the atemporal version of ϕASP-FOR-MI is just the conjunction of its
NCQs:

∃y.(Patient(x) ∧ diagnosedWith(x, y) ∧ MI(y))
∧∃y.(Patient(x) ∧ diagnosedWith(x, y) ∧ Aspirin(y))

For each query ϕ the results are evaluated using three measures. The precision of
ϕ (in K) is the ratio of the number of returned eligible patients to the total number
of returned patients. The higher the precision of ϕ, the higher the probability that a
selected patient is indeed eligible. The recall of a ϕ (in K) is the ratio of returned eligible
patients to the total number of eligible patients. A higher recall means that fewer eligible
patients were missed by the query. The perfect system would have recall and precision
of 1. To get a good system, both precision and recall have to be as high as possible.
They are however connected: On the one hand, to increase the precision, we could focus
on patients that are eligible with a very high probability. This comes at the risk of
excluding many patients that are also eligible, and therefore often decreases the recall.
On the other hand, if a criterion is relaxed, then the recall will increase, but the precision
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Atemporal Temporal
Criterion P R F1 P R F1

ADVANCED-CAD 0.69 0.94 0.79 0.7 0.93 0.8
MAJOR-DIABETES 0.69 0.88 0.78 0.69 0.88 0.78

MI-6MOS 0.13 0.73 0.22 0.21 0.62 0.31
KETO-1YR 0.02 1 0.04 0 0 −

ASP-FOR-MI − − − − − −

Table 7.7.: Precision (P), recall (R) and the F1-score for the five criteria.

will decrease. To keep both measures in balance the F1-measure can be used. It is the
harmonic mean of precision and recall, so a perfect system would have an F1-score of 1.

To compute the measures we used the GT-concepts in the KB. For instance, all
patients satisfying MAJOR-DIAB according to the GT-labeling can be selected by the
GT-query for ϕMAJOR-DIAB, which selects all individuals that belong to the GT-concept
MAJOR-DIAB:

ϕMAJOR-DIAB-GT(x) = MAJOR-DIAB(x)

Then for each query ϕ with GT-query ϕGT, we can compute precision, recall and F1-score
of ϕ in K the following way:

precision(ϕ) := |mwa(ϕ,K) ∩mwa(ϕGT,K)|
|mwa(ϕ,K)|

recall(ϕ) := |mwa(ϕ,K) ∩mwa(ϕGT,K)|
|mwa(ϕGT,K)|

F1(ϕ) := 2 · precision(ϕ) · recall(ϕ)
precision(ϕ) + recall(ϕ)

The results for the different criteria and the atemporal and temporal queries are shown
in Table 7.7. As expected using temporal queries instead of atemporal queries increases
the precision, because a patients can be selected based on how long ago his diagnoses
are in the past. This reduces the recall on the other hand. By looking at the F1-score,
which is generally higher for the temporal queries, we can conclude that the precision
increases more that the recall decreases in comparison to the atemporal queries. So
using temporal information in a patient selection system yields better results.

In ADVANCED-CAD and MAJOR-DIABETES both the atemporal and the temporal
queries get high scores. A major reason for this might be that both criteria involve
concepts MetaMapLite is very good at tagging in. In relative terms, there is not much
difference between the two settings. When looking at the structure of the queries, we can
see that the temporal query contains a lot of ‘history of’ constructions. A (sub-)query
that starts with − is essentially equivalent to an atemporal query that is answered over
a KB in which all time points are merged together. In ADVANCED-CAD the sub-query
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asking for ‘a diagnosis of angina within the last 30 days’ causes the slight difference
between the temporal and atemporal settings.

The results for MI-6MOS are quite bad, even though the query has a very simple
structure. On the one hand, this could be because the tagger was not configured well
enough. There exist many different types and abbreviations for MIs15 and MetaMapLite
was not fine-tuned to detect all of them. With some tweaking of the tagging process
the results could be improved. On the other hand, MIs are often not mentioned directly
in the EHR, but just different symptoms that suffice to recognize a MI for a medical
expert, but are very hard to infer for a computer. Here a more sophisticated modeling
of the EHRs can make a difference. Apart from the low absolute scores for MI-6MOS,
the relative difference between the temporal and the atemporal setting, especially in the
precision, suggests that results are much better when the temporal dimension of the
EHRs is taken into account when selecting patients.

KETO-1YR has the same structure as MI-6MOS, but the difference is that in the
whole dataset there is just one patient that satisfies this criterion. The atemporal query
selected the correct patient among 54, while the temporal query returned only 4 patients,
but missed the correct one. This means the atemporal query just incidentally returned
the correct patient, because the time point of the diagnoses of ketoacidosis must have
been more than one year ago. Otherwise the temporal query would have returned the
correct patient as well.

The last criterion ASP-FOR-MI did not give any results in any setting. As mentioned
this is due to the missing medications in the KB. If MetaMapLite would be setup to also
tag medications (which it probably can), then the results here would certainly improve.
It remains unclear how big a further improvement could be if the KB contained causal
relations between diagnoses and medications.

7.5. Discussion and Related Work
With our experiment we got promising first results for our prototypical system. Of
course, a number of things could be improved in the future:

1. Since the tagger was not fine-tuned for the processing of EHRs, some concepts are
never tagged, for example medications. In many cases the resolving of abbreviations
can be improved, for example for the different kinds of MIs.

2. Currently, paragraphs like “past medical history”, “social history”, or “family
history” (Line 25-50 in Example 7.4) are processed just like every other part, even
though the concepts occurring inside the paragraph are not valid at the current
time point, but before or refer to family members instead of the patient. A more
fine-tuned tagging system should put the concepts found in these paragraphs in
the right context.

3. If criteria are not translated manually, more temporal knowledge should be put
into the KB. For our translation of the MAJOR-DIAB criterion, we used the
knowledge that diabetes is incurable, so we formulated the query accordingly. If

15For the interested reader, all the following abbreviations refer to a kind of myocardial infarction:
STEMI, NSTEMI, AMI, DMI, MI, NQMI, ACS.
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the queries are translated automatically, then such background knowledge might
not be available and should instead be contained in the KB.

In the N2C2 challenge the mean F1-score for all submissions was 0.799 with the
scores ranging from 0.2117 to 0.91. Stubbs, Filannino, Soysal, Henry, and Uzuner found
that among the 10 best performing systems 4 were rule based and 6 used rules in a
combination with machine learning [SFS+19]. Additionally, they found that systems
performed better in general when a medical export was present in the team. With the
resources available to us, we cannot beat the winning systems, yet. But the fact that rule
based approaches performed very well on this problem supports our approach. For an in
depth comparison of different statistical and rule-based approaches, we recommend the
article accompanying the system of the winning team of the N2C2 challenge [OKK+19].

Previous work has already considered using ontologies for patient selection for clinical
trials before. [PCD+07] worked with patient records from Columbia University Medical
Center that were recorded using the MED ontology [CCH+94]. They mapped MED to
SNOMED CT using a semi-automated approach that was guided by domain experts.
The patient records were then integrated using a pattern matching rule-based approach.
They showed that it is actually possible to find patient matches using an ontology, and
were able to scale their approach to one year of patient data.

[BCZ+10] focused on 200 trials about prostate cancer and annotated them manually
with UMLS concepts. As formal basis, they use OWL (which is based on DLs) together
with SWRL rules16, which allows them to add rules for temporal relations. They then
load one patient at a time into the ontology and query the studies that the patient is
eligible for. Their approach allows traceability of the results, which is a very desirable
property. While they demonstrate that patients can be selected using their formal
framework, they assume that the data are already formalized.

[TSC11] further analyzed and modeled the temporal patterns that occur in patient
data. To represent them they introduce the OWL-based CNTRO 2.0 ontology for clinical
narratives. Later, [CT15] classified most temporal statements occurring in descriptions of
clinical trials and clinical guidelines into 16 basic temporal patterns that are expressible
in CNTRO 2.0. Unfortunately, CNTRO 2.0 is not suitable for temporal query answering,
since it can express temporal statements, but does not provide a temporal semantics
and allows only rudimentary temporal inferences.

Other approaches to model temporal medical data use graph- or constraint-based
formalisms to representing and reasoning with temporal statements [HZP+05; BJ18].

For a survey regarding also non-temporal, non-logical proposals for automated pro-
cessing of EHRs and other medical data, see [KP14].

16https://www.w3.org/Submission/SWRL/
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Chapter 8.

Conclusion

In the course of the thesis we have seen that the open-world assumption is not suitable
in the medical setting, due to the absence of negative information. Apart from the
medical setting, many users of semantic technologies that have no prior experience are
surprised by the results obtained in pure open-world semantics. When they first try to
model something, they are puzzled because different conclusions are entailed than they
intended. That is because standard semantics are based on all possible models without
any restrictions, which often includes many unintended models the user never thought
of.

On the other end of the spectrum is the relational-database world, in which answers
are computed over a single model represented by the entries in the database. While this
concept is easier to grasp, it requires the user to explicitly model everything to make the
data consistent. This is not always possible, especially when ontological knowledge is
added. For instance, if a patient is a SkinCancerPatient, there has to exist an explicit
SkinCancer object in the KB, because the domain of the interpretation is fixed.

Non-monotonic formalisms are usually somewhere in between these two assumptions:
They identify a specific subset of ‘intuitively’ behaving models. What is considered
intuitive is highly dependent on subjective factors, such as the application domain
one wants to model and the user itself. Therefore, a plethora of different proposals
for non-monotonic semantics exist and every single one of them can be motivated by
some application scenario, in which the respective set of admissible models is the set of
models a potential user intends. In this thesis, we have developed novel non-monotonic
semantics and motivated them by the patient selection problem in which patients, that
satisfy criteria from a given clinical trial, need to be selected, based on their EHRs.
In Section 8.1 we provide a brief summary of the contributions of this thesis and mention
some future work in Section 8.2.

8.1. Main Results
In this thesis we have introduced minimal-world semantics, which provide non-monotonic
negation. The semantics have been motivated by the patient selection problem in Chapter 3,
which requires queries to be answered over medical data that only rarely contain neg-
ative facts. In contrast to many other non-monotonic formalisms, our semantics have
been tailored especially with OMQA in mind and hence can deal well with anonymous
individuals.

In minimal-world semantics queries are answered over a minimal universal model, which
we consider the ‘intuitively expected’ model of the user. The assumption underlying
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the minimality is that if two statements are present and the first is more specific than
the second, then the second refers to the same individual as the first. For instance
consider the statements: ‘Alice has a cold.’ and ‘Unfortunately, Alice is sick.’ With the
minimal-world assumption we conclude that Alice is sick because she has a cold and not
because of some other sickness that has not been mentioned before. We characterized
minimality in terms of endomorphisms and showed that this is closely related to the
notion of cores.

For ELH⊥ we have provided a construction of a minimal universal model and have
thereby shown existence and uniqueness (up to isomorphism) of the minimal universal
model for consistent ELH⊥-KBs. To answer NCQs we have extended the combined
rewriting approach for CQs [EOŠ+12; BO15] by filters to take into account negation. We
have shown that minimal-world answers to a given NCQ can be computed in polynomial
time in data complexity.

In Chapter 4 we have introduced TELH c♢,lhs
⊥ , an extension of ELH⊥ by temporal

operators on the left-hand side of GCIs. The temporal operators can be used to express
that a given disease is not curable, i.e. if a patient is diagnosed once, then this diagnosis
will be valid at all succeeding time points as well. Moreover, the logic features the convex
diamond operators, both in an unbounded and a bounded variant to express statements
like ‘If a patients leg was broken now and 8 days ago, then the leg was also broken in
between the two time points.’ Apart from the novel temporal operators in TELH c♢,lhs

⊥
the ABox is allowed to contain gaps, i.e. intervals of time points not occurring in the
ABox. The behavior of objects can be interpolated with the diamond operators. To
obtain an efficient reasoning procedure, we have shown that each gap can be represented
compactly by one representative time point, that captures the behavior of all time points
in the gap. We have provided a completion algorithm and have proven that entailment
checking in TELH c♢,lhs

⊥ is PTime-complete.

In Chapter 5 we have used minimal-world semantics to answer MTNCQs over TELH c♢,lhs
⊥ -

KBs. We have shown that the temporal minimal universal model exists and is unique in
this setting. Moreover, we have extended the rewriting to take into account the temporal
parts as well which has led to a query answering algorithm that is tractable in data
complexity, despite the additional expressiveness of the temporal operators.

In the last two chapters we have evaluated our theory on real world data with two
experiments. Firstly, we have implemented and evaluated a system for the automatic
translation of clinical trial criteria into MTNCQs in Chapter 6. The results have been
promising and have shown that for many criteria an automatic translation is possible.
In the second experiment, we have implemented a system for answering MTNCQs over
TELH c♢,lhs

⊥ -KBs using the minimal-world semantics. We have evaluated it by computing
answers to five manually translated criteria over a set of electronic health records. The
results have showed the feasibility of the approach. While the system is not optimized
enough to compete against other solutions yet, we have shown that temporal reasoning
leads to better results than non-temporal reasoning.
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8.2. Future Work
Some technical future work has already been discussed at the end of each chapter. Here
we would like to give some more general remarks on future research.

As mentioned already an interesting next steps would be the extension of minimal-
world semantics to more expressive Horn-DLs. In Section 3.5 we pointed out a number of
issues that need to be solved when moving to more expressive DLs. On the other hand it
would be interesting to see if minimal-world semantics can be simulated with other very
general non-monotonic formalisms such as circumscription [McC80; BLW06; BLW09].
Most likely this would not yield optimal complexity bounds as more general formalisms
usually have a higher complexity of reasoning, but it would open a new perspective on
minimal-world semantics.

Technically, it seems possible to extend the construction of the temporal minimal
universal model to temporal roles. In that case it would be very interesting to see how
the rewriting would look like and what the final data complexity of query answering
would be. Apart from the technical perspective it is not clear whether the answers in
this setting are still consistent with the intuition behind minimal-world semantics. To
further assess this, it could be beneficial to identify domains that are similar in structure
to the medical domain. These domains could then be used to empirically test if the
returned results are intuitive to the user or not.

Recently there has been a lot of interest in the explainability of the outputs of a given
system both in logic based and in statistical approaches [Mil19; BHK+20; PK20]. For
any AI system explainability is a crucial part, since otherwise the system will not be
trusted. In our OMQA setting, it should not be a problem to extract the sequence of
logical inferences that lead to the result. However, this probably long and complicated
sequence is likely not acceptable to users, who mostly are non-logicians. It is subject to
future research to find ways to present an explanation in an easy to understand way to
users.
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endomorphism, 24
entailment, 15
epistemic logic, 32
eventually, 27
existential restriction, 14
existential rule, 52
expanding, 55, 60
expressivity, 13

first-order logic, 16
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GALEN, 2
Gene Ontology, 3
general concept inclusion, 15
ground truth, 106
GT, see ground truth

homomorphism, 24
strong, 24

Horn-DLs, 25

individual
name, 13

instance checking, 18
interpretation, 14

temporal, 59
inverse roles, 17

KB, see knowledge base
knowledge base, 2, 15

linear-time temporal logic, 6, 25
locally finite, 51
LTL, see linear-time temporal logic, 25

match, 23
MetaMap, 84
metric temporal conjunctive query with

negation, see MTNCQ
MI, see myocardial infarction
MIMIC-III, 30
minimal, 34
minimal universal model, 34

temporal, 70
model, 15
monotonic, 5
MTNCQ, 69
myocardial infarction, 105

natural language processing, 85
NCI Thesaurus, 3
negation, 14
next, 27
NLP, see natural language processing
nominals, 17
normal form
ELH⊥, 20

TELH c♢,lhs
⊥ , 60

TELH c♢,lhs,−
⊥ , 70

number restrictions, 17

OMQA, see ontology-mediated query
answering, see
ontology-mediated query
answering

ontology, 2, 21
ontology-mediated query answering, 1,

3, 21
temporalized, 1

open-world assumption, 5
OWA, see open-world assumption
OWL, see Web Ontology Language

precision, 109

qualified number restrictions, 17
QUELK, 97
query

Boolean, 21, 69
conjunctive, 22
connected, 23
first-order, 21
rooted, 23, 69

recall, 109
relational database management system,

98
RIA, see role inclusion axiom
rigid, 6, 60
role

name, 13
role hierarchies, 18
role inclusion axiom, 18

satisfiability, 14, 18
Semantic Web, 5
shrinking, 60
signature, 16
Skolemization, 33
SNA, see standard names assumption
SNOMED CT, 84
standard names assumption, 15
subsumption, 18

TBox, 2, 15
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temporal logic, 6
term, 21
terminological box, see TBox
terminology, 13
top concept, 14
tractability, see PTime
transitivity, 17
Turing machine, 19

universal model, 24
universal restriction, 14

variable, 21
answer, 21
leaf, 23
quantified, 21

varying domains, 78

Web Ontology Language, 2
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