
Technische Universität Dresden
Department of Computer Science

Institute of Theoretical Computer Science
Chair of Automata Theory

Prof. Dr.-Ing. Franz Baader

A thesis in fulfillment of the requirements for the degree of

Bachelor of Science

Experimental Evaluation of a Bounded
History Encoding

Thure Nebendahl

Mat.-No.: 4684126
Born September 12, 1999 in Bonn

First Reviewer: Dr.-Ing Stefan Borgwardt
Second Reviewer: Prof. Dr. Markus Krötzsch

Dresden, August 8, 2020

Declaration of Authorship

I hereby declare that I wrote the bachelor thesis I submitted today to the
examination board of the Faculty of Computer Science on the topic:

Experimental Evaluation of a Bounded History Encoding

completely on my own and that I did not use any sources and tools other
than those indicated. All thoughts taken directly or indirectly from external
sources are properly denoted as such.

Dresden, August 8, 2020

Thure Nebendahl

Abstract

The reasoning task of a temporal version of ontology-based data access
can be solved with the help of a bounded history encoding (BHE). By rewrit-
ing temporal queries, the reasoning task can be reduced to query answering
over temporal databases. The BHE under consideration in this work is one
approach to solve this task [1].

In this thesis, an implementation of this BHE is evaluated, to investigate
its helpfulness in a practical application. Criteria to assess the degree of
helpfulness are the size of the encoding, the time it takes to answer one
query per time point, and the usefulness of the answers. The BHE is applied
to observe an online automotive marketplace and then to answer a set of
specified queries at each time point. The queries were explicitly chosen to
help evaluate the BHE’s degree of helpfulness. To provide useful answers,
the BHE had to be extended by appropriate operators. The evaluation of the
extended BHE shows that it can provide useful answers in a reasonable time.
An upper bound was found for the size of the encoding, which determines
from what number of time points on the BHE is superior.

Contents

Acronyms 3

Introduction 4

1 Discrete Data Stream 5

2 Queries 7
2.1 Practical Temporal Queries 8
2.2 Random Temporal Queries 8
2.3 Expressibility . 9

3 Extensions 12
3.1 Operators �, �−, �, �− . 12
3.2 Filter Operator . 19
3.3 Metric Temporal Operators 21
3.4 Combined Extensions . 33

4 Evaluation 35
4.1 Evaluation of Practical Temporal Queries 35
4.2 Evaluation of Random Temporal Queries 37
4.3 Discussion . 41

Conclusion 42

A Complete Data Specifications 46
A.1 Complete list of all models . 46
A.2 Complete list of all aspects 48

B Complete Queries 49
B.1 Complete list of Practical Temporal Queries 49
B.2 Complete list of Random Temporal Queries 54

C Complete Proofs 74

1

List of Tables

3.1 Satisfaction relation of temporal queries �,�−,� and �− . . 12
3.2 evaln(α) with �,�−,� and �− 16
3.3 Φ0(ψ) with �,�−,� and �− 16
3.4 Φ0

i (ψ) with �,�−,� and �− 16
3.5 Satisfaction relation of temporal queries with a filter operator 19
3.6 Φ0(ψ) with a filter operator 20
3.7 Φ0

i (ψ) with a filter operator 20
3.8 Satisfaction relation of temporal queries with metric temporal

operators . 22
3.9 evaln(α) with metric temporal operators 27
3.10 Φ0(ψ) with metric temporal operators 28
3.11 Φ0

i (ψ) with metric temporal operators 29

4.1 Average time to answer a query 39

List of Figures

4.1 Encoding size of practical temporal queries compared to com-
plete history size . 36

4.2 Encoding size of random temporal queries compared to com-
plete history size . 40

2

Acronyms

BHE Bounded History Encoding

OBDA Ontology-Based Data Access

TQ Temporal Query

PTQ Practical Temporal Query

RTQ Random Temporal Query

MTO Metric Temporal Operator

SVTT System-Versioned Temporal Tables

3

Introduction

This thesis deals with a bounded history encoding (BHE) as in [2] and its
experimental application on an online automotive marketplace.

The theoretical framework for this thesis is set by [1]. In [1], a tempo-
ral version of ontology-based data access (OBDA) is considered. A generic
temporal query language is presented. The reasoning task of the temporal
OBDA is reduced to query answering over temporal databases, the so-called
temporal database monitoring problem. Three approaches to solve this prob-
lem are presented, including an algorithm that constitutes a BHE. This work
builds upon the latter approach. The algorithm will also be referred to as
the BHE, since it is the only BHE considered here.

This thesis ties in with [1] and checks the applicability of the algorithm
through a concrete application on publicly available data, collected from an
online automotive marketplace. The investigation carried out is structured
in four steps. Chapter 1 shows how the publicly accessible data is regularly
extracted from an online portal into a database. In Chapter 2 an attempt
is made to formulate practical and meaningful queries in the language of
[1]. It is to be checked, whether the query language should be extended by
additional operators. Supplementary to practical and meaningful queries,
random queries are formulated based on the idea from [3]. This ensures
that the results are valid for the entire language from [1]. The results of the
second chapter are used in the third chapter to construct concrete extensions
of the already existent query language from [1]. To analyze the algorithm,
in Chapter 4 the extended language is applied to the extracted data from
the online automotive marketplace. The goal of this chapter is to evaluate
how well the queries can be answered with the help of the BHE [1]. Criteria
for this are the size of the encoding, the time it takes to answer one query
per time point, and the usefulness of the answers. Based on the above-
mentioned investigations, the Conclusion summarizes the results to answer
the research question, i.e. to which extent the BHE is helpful in a practical
application.

4

Chapter 1

Discrete Data Stream

This chapter discusses in detail the discrete data stream used as a basis for
the investigation of the algorithm from [1]. It explains where this data comes
from, how it is retrieved, and how it can be processed. Finally, it explains
how the already existent implementation of the BHE [4] can query the data.

The publicly accessible data, which is used as a discrete data stream,
originates from the online automotive marketplace AutoScout24 [5]. It pro-
vides data on many models of various brands. The selection of collected
brands and models must be narrowed down so that the data remains man-
ageable but still delivers noticeable results. It is assumed that it is irrelevant
which exact brands and models are collected. Later, this thesis shows that
this is true. A complete list of all models can be found in Appendix A.
To create a real discrete data stream, the data is collected weekly for 10
weeks. This is the longest possible period for this thesis. To verify whether
this affects the research result, the result of the BHE [1] that is applied to
weekly collected data is compared to the result of the BHE [1], when applied
to daily collected data. Collecting the data daily artificially increases the
number of time points.

The data is collected by a scraper [6] implemented in Python, similar to
the one presented in [7]. The scraper uses the modules Beautiful Soup 4 [8],
pandas [9], and SQLalchemy [10].

First, it is specified which aspects of an individual car the scraper [6]
should cover. This is necessary because most of the data collected from a
website does not contain any information about the car. Again, it is assumed
that it is irrelevant which exact data is collected about the car. The most
noteworthy attributes, since they are used in examples in this thesis, are url,
price, and deleted. A complete list of all aspects can be found in Appendix
A.

Second, the scraper [6] searches AutoScout24 [5] for a specific brand and
model and saves the link to each offer the search yields. This is performed

5

with the Beautiful Soup 4 Soupstrainer [8]. To ensure a consistent order of
the offers, they are sorted by age, starting with the newest.

Third, once all links are saved, the scraper [6] searches every offer indi-
vidually and extracts all the previously determined aspects from the HTML,
again using Beautiful Soup 4 [8].

Fourth, the collected data is stored in a pandas DataFrame [9] to be
loaded further into an SQLite database with SQLalchemy [10]. The cor-
responding table is called autos. This final step of storing the data in an
SQLite database is required because the implementation of the BHE [4] oper-
ates on an SQLite database as well. This enables cross-language interaction
between the scraper [6] and the implementation [4].

On AutoScout24 [5], the search results consist of a maximum of 20 pages,
which then themselves contain a maximum of 20 offers. This maximum
of 400 offers per search should not have a major impact on our research
outcome. The number of brands still creates a data set with over 20,000
offers per week, which is expected to be sufficiently large to deliver noticeable
results. Thus, the maximum of 400 offers helps to keep the data manageable.

However, it also presents some challenges. With some models, offers are
added with a high frequency, so the 400 offers found since last week may all
be new. To ensure the scraper [6] searches every offer from last week again,
it scans through all previously found offers before searching for new ones.
At the same time, reviewing each offer provides a better reference to check
which offers have been deleted. If the scraper [6] tries to search for a deleted
offer, an error message is returned. This provides more certainty than just
assuming an offer has been deleted if the search results no longer contain
that offer. The latter could be a consequence of frequently added new offers.
To simplify matters, it is assumed that every deleted offer has been sold.

Although the BHE [1] only requires the data of the current time point,
instead of replacing the database, we create a new database each time. Stor-
ing all the data brings many advantages for later analysis, such as

• by querying the data one query at a time, it is easier to analyze the
impact of each query,

• each step can be repeated to check whether the results are repro-
ducible, and

• it is possible to query any partial period.

Furthermore, the storage of all data allows a comparison of the BHE [1]
with other established approaches.

6

Chapter 2

Queries

The previous chapter covered in detail how the data stream is processed
so that queries can be executed on the data. This chapter now takes a
closer look at the queries used for the investigation of the BHE [1]. It
further discusses whether the queries specified here can be expressed in the
language of [1].

The language of [1] consists of temporal queries (TQs). They can be
based on any atemporal query language Q.

Definition 2.0.1 (temporal query ct. Definition 3.2 in [1]). Given a query
language Q, temporal Q-queries are built from Q-queries as follows:

• every Q-query ψ is a temporal Q-query; and

• if φ1 and φ2 are temporal Q-queries, then so are:

– φ1 ∧ φ2 (conjunction), φ1 ∨ φ2 (disjunction),
– �φ1 (strong next), �φ1 (weak next),
– �−φ1 (strong previous), �−φ1 (weak previous),
– �φ1 (always), �−φ1 (always in the past),
– �φ1 (eventually), �−φ1 (some time in the past),
– φ1Uφ2 (until), and φ1Sφ2 (since).

The symbols �−,�−,�−,�−, and S are called past operators, the symbols
�,�,�,�, and U are future operators.

Since the implementation of the BHE [4] uses an SQLite database, the
atemporal query language Q in this thesis is SQL.

In this thesis, two different types of TQs are distinguished. First, mean-
ingful practical TQs (PTQs) and second, random TQs (RTQs) based on the
idea presented in [3].

7

2.1 Practical Temporal Queries
PTQs show whether the BHE [1] can give relevant answers to queries. This
is necessary to find out if it has practical relevance and can be used, e.g. for
market observation as it is done in this thesis. For reasons of readability,
only the following selected queries are discussed as examples:

“Which cars cost less than 10,000 at the last time point (2.1)
and cost more than 10,000 at this time point?”

“Which brands (or models) have an increased average (2.2)
price compared to the last time point?”

“Which cars cost more than 1.000.000 at one time point (2.3)
during the last 6 time points?”

A complete list of PTQs can be found in Appendix B.

2.2 Random Temporal Queries
RTQs are used to verify the impact of the queries on the overall research
outcome. They are necessary because PTQs might not be sufficiently diverse
to provide reliable results. RTQs can be constructed in any size.

Definition 2.2.1 (random temporal query ct. [3]). Let n ∈ N\{0}. Let Ops
be a set of available operators. A random TQ of size n can be constructed
by recursively constructing its subqueries as follows:

randomTQ(n)
1 if n = 0 then
2 return Q-query ψ
3 else
4 select a random operator op
5 if op is unary then
6 return op(randomTQ(n − 1))
7 else // op is binary
8 select a random m ∈ N \ {0}, m < n
9 return (randomTQ(m) op randomTQ(n − m − 1))

8

In this thesis, 100 RTQs of sizes 1 to 10 are considered. The individual
RTQs are referenced by numbers. A complete list of generated RTQs can
be found in Appendix B.

2.3 Expressibility
For RTQs, since only a predefined set of operators is used in the construction,
any RTQ can be expressed in any desired language, i.e. the language of [1],
if Ops is exactly the set of operators available in this language. In the
following Q-query ψ is defined as the SQL statement “SELECT url FROM
autos WHERE NOT deleted” which returns every car that is not sold, just
to be able to recognize the difference between a query result and the whole
table.

The expressibility of PTQs is not as easy to assess. As mentioned in
Chapter 1, autos is the table in which all offers are stored. The attribute
url is distinct for each dataset and serves as an identifier for a car. Hence,
if the query asks for cars, it will return a set of urls. This said, Query 2.1
can be translated into the language of [1] as follows:

• “[. . .] and [. . .]” indicates the conjunction operator from [1],

• “[. . .] at the last time point [. . .]” indicates either a strong previous
or a weak previous operator from [1],

• “Which cars cost less than 10,000 [. . .]” indicates the SQL statement
“SELECT url FROM autos WHERE price < 10000”, and

• “[. . .] more than 10,000 [. . .]” indicates the SQL statement “SELECT
url FROM autos WHERE price > 10000”.

Thus, a resulting query in the language of [1] is

“�−(SELECT url FROM autos WHERE price < 10000)
∧ SELECT url FROM autos WHERE price > 10000”.

Query 2.2 can be rewritten as follows:

• “[. . .] compared to the last time point?” indicates the use of the
conjunction operator from [1] with either a strong previous or a weak
previous operator from [1] as one argument, and

9

• since the query needs to compare the value of one attribute at two
different points in time it needs a restriction like “[. . .] WHERE
price1 < price2” with price1 being the average price of the first time
point and price2 the average price of the second time point.

Thus, a resulting query might be

“�−(SELECT marke, AVG(price) AS price1 FROM autos)
∧ SELECT marke, AVG(price) AS price2 FROM autos WHERE price1 < price2”.

Notice, that this kind of more sophisticated filtering is not considered in [1]
and therefore is also not considered in the implementation [4]. If expressed
with the available operators in the language of [1], the implementation of
the BHE [4] rewrites the query into the SQL statement

“SELECT * FROM result_table_XY NATURAL JOIN
(SELECT marke, AVG(price) AS price2 FROM autos WHERE price1 < price2)”

where result_table_XY denotes the table that contains the answer to the
subquery

“�−(SELECT marke, AVG(price) AS price1 FROM autos)”.

This statement is not a valid SQL statement, as there is no such column
price1 in the second part of the statement. A corresponding valid SQL
statement is

“SELECT * FROM (SELECT * FROM result_table_XY NATURAL JOIN
(SELECT marke, AVG(price) AS price2 FROM autos) WHERE price1 < price2)”

which shows, that more sophisticated filtering can be achieved by applying
another SQL statement, that contains the wanted filter, to the result of the
underlying query. Thus, to express this query in the language of [1], the
language needs to be extended by a filter operator.

Furthermore, Query 2.3 can be rewritten as follows:

“SELECT url FROM autos WHERE price > 1000000
∨�−(SELECT url FROM autos WHERE price > 1000000)
∨�−�−(SELECT url FROM autos WHERE price > 1000000)
∨�−�−�−(SELECT url FROM autos WHERE price > 1000000)
∨�−�−�−�−(SELECT url FROM autos WHERE price > 1000000)
∨�−�−�−�−�−(SELECT url FROM autos WHERE price > 1000000)”

10

This kind of query is highly complex when expressed in the language of [1].
To simplify matters, this query would need a time limit in the form of metric
temporal operators (MTOs).

Lastly, the operators �φ (always), �−φ (always in the past), �φ (eventu-
ally), �−φ (sometime in the past) were introduced in [1] but not considered
when defining the algorithm.

Consequently, it is necessary to extend the language of [1] and the im-
plementation of the BHE [4] by these missing operators, a filter operator
and MTOs.

11

Chapter 3

Extensions

It became clear that both the language from [1] and consequently the imple-
mentation of the BHE [4] must be extended to provide relevant answers to
the PTQs specified in Chapter 2. In this chapter, the extensions are intro-
duced one by one and examined for feasibility. The definitions of evaln(α),
Φ0(ψ) and Φi(ψ) from [1] are modified, upon which the modifications are
proven to be correct.

3.1 Operators �, �−, �, �−

First, the algorithm presented in [1] is extended by the operators �φ (al-
ways), �−φ (always in the past), �φ (eventually), �−φ (sometime in the
past). As a reminder, the semantics of these four TQs are defined as follows:
Definition 3.1.1 (semantics of temporal queries ct. Definition 3.3 in [1]).
Let φ be a TQ, I = (Ii)0≤i≤n a sequence of interpretations over a common
domain, a : FVar(φ) → NC a variable assignment, and i be an integer with
0 ≤ i ≤ n. The satisfaction relation I, i |= a(φ) is defined by induction on
the structure of φ as follows:

φ I, i |= a(φ) iff
�φ1 I, k |= a(φ1) for all k, i ≤ k ≤ n
�−φ1 I, k |= a(φ1) for all k, 0 ≤ k ≤ i
�φ1 I, k |= a(φ1) for some k, i ≤ k ≤ n
�−φ1 I, k |= a(φ1) for some k, 0 ≤ k ≤ i

Table 3.1: Satisfaction relation of temporal queries �,�−,� and �−

FVar(φ) denotes the set of free variables of a TQ and is defined as the
union of the sets FVar(ψ) of all queries ψ occurring in φ. NC denotes a set

12

of constants. If I, i |= a(φ), then a is called an answer to φ w.r.t. I at time
point i. The set of all answers to φ w.r.t I at time point i is denoted by
Ans(φ,I, i).

As in [1], it can be shown that

• �φ1 is equivalent to φ1 ∧ ��φ1, and

• �φ1 is equivalent to φ1 ∨ ��φ1.

Because of the way � is defined in [1], � has to be used instead of � with the
only difference that � is tautological at the last time point. It can similarly
be shown that

• �−φ1 is equivalent to φ1 ∧ �−�−φ1, and

• �−φ1 is equivalent to φ1 ∨ �−�−φ1.

Analogously to the reason as mentioned above, �− has to be used instead of
�− with the only difference that �− is tautological at the first time point.
Thus, at the last time point

• �φ1 is equivalent to φ1 because ��φ1 is tautological, and

• �φ1 is equivalent to φ1 because ��φ1 does not have any answers,

and at the first time point

• �−φ1 is equivalent to φ1 because �−�−φ1 is tautological, and

• �−φ1 is equivalent to φ1 because �−�−φ1 does not have any answers.

Proposition 3.1.2 (ct. Proposition 3.4 in [1]). For a : FVar(φ) → NC and
0 ≤ i ≤ n,

1. I, i |= a(�φ1) iff

• I, i |= a(φ1) and
• i < n implies I, i + 1 |= a(�φ1)

2. I, i |= a(�−φ1) iff

• I, i |= a(φ1) and
• i > 0 implies I, i − 1 |= a(�−φ1)

13

3. I, i |= a(�φ1) iff

• I, i |= a(φ1) or
• i < n and I, i + 1 |= a(�φ1)

4. I, i |= a(�−φ1) iff

• I, i |= a(φ1) or
• i > 0 and I, i − 1 |= a(�−φ1)

Proof. To prove the above proposition, two equivalences are demonstrated
here. The other two cases work similarly and can be found in Appendix C.
The proof works mainly based on semantics.

1. �φ1 ≡ φ1 ∧ ��φ1

I, i |= a(�φ1) (3.1)
⇔I, k |= a(φ1) for all k, i ≤ k ≤ n (3.2)
⇔I, i |= a(φ1) and (i < n implies (3.3)
I, k |= a(φ1) for all k, i + 1 ≤ k ≤ n)

⇔I, i |= a(φ1) and (i < n implies I, i + 1 |= a(�φ1)) (3.4)
⇔I, i |= a(φ1 ∧ ��φ1) (3.5)

(3.3) is equivalent to (3.2) because

– in case i < n, the query needs to be satisfied now, at time point
i, and at all future time points k, i + 1 ≤ k ≤ n, to be satisfied.
Since i < n is true, the satisfaction of future time points depends
solely on the second part of the “implies”-statement; and

– in case i = n, the query needs to be satisfied now, at time point i,
to be satisfied. There are no future time points k, n + 1 ≤ k ≤ n.
Since i = n is true, I, i |= a(φ1) is equivalent to I, k |= a(φ1)
for all k, n ≤ k ≤ n, and i < n is not true, thus the “implies”-
statement does not affect satisfaction.

14

4. �−φ1 ≡ φ1 ∨ �−�−φ1

I, i |= a(�−φ1) (3.6)
⇔I, k |= a(φ1) for some k, 0 ≤ k ≤ i (3.7)
⇔I, i |= a(φ1) or (i > 0 and (3.8)
I, k |= a(φ1) for some k, 0 ≤ k ≤ i − 1)

⇔I, i |= a(φ1) or (i > 0 and I, i − 1 |= a(�−φ1)) (3.9)
⇔I, i |= a(φ1 ∨ �−�−φ1) (3.10)

(3.8) is equivalent to (3.7) because

– in case i > 0, the query needs to be satisfied now, at time point i,
or at any past time point k, 0 ≤ k ≤ i − 1, to be satisfied. Since
i > 0 is true, the satisfaction of past time points depends solely
on the second part of the “and”-statement; and

– in case i = 0, the query needs to be satisfied now, at time point
i, to be satisfied. There are no past time points k, 0 ≤ k ≤ 0 − 1.
Since i = 0 is true, I, i |= a(φ1) is equivalent to I, k |= a(φ1)
for some k, 0 ≤ k ≤ 0, and i > 0 is not true, thus the “and”-
statement does not affect satisfaction.

The semantics of the four operators can now be used to extend the
algorithm specified in [1]. For this, the notation of answer terms is needed.
Using the same simplification as in [1], the following assumes that NV, the set
of variables, is finite and that the answers are of the form a : NV → Δ instead
of a : FVar(φ) → Δ. Ans(φ, I(n)) refers to a set of mappings a : NV → Δ,
i.e, a subset of ΔNV .

Definition 3.1.3 (answer term cf. Definition 6.1 in [1]). Let FSub(φ) denote
the set of all subqueries of φ of the form �ψ1,�ψ1,�ψ1,�ψ1 or ψ1Uψ2.
For j ≥ 0, we denote by Varφ

j the set of all variables of the form xψ
j for

ψ ∈ FSub(φ). The set ATi
φ of all answer terms for φ at i ≥ 0 is the smallest

set satisfying the following conditions:

• every set A ⊆ ΔNV is an answer term for φ at i,

• every variable xψ
j ∈ Varφ

j with j ≤ i is an answer term for φ at i, and

• if α1 and α2 are answer terms for φ at i, then so are α1 ∩ α2 and
α1 ∪ α2.

15

The functions evaln : ATn
φ → 2ΔNV , n ≥ 0 in [1] have then to be extended

as follows:

α evaln(α)
[. . .] [. . .]
x�ψ1

j with j < n Ans(�ψ1,I(n), j + 1)
x�ψ1

j with j < n Ans(�ψ1,I(n), j + 1)
x�ψ1

n ΔNV

x�ψ1
n ∅

Table 3.2: evaln(α) with �,�−,� and �−

The function Φ0(ψ) : Sub(φ) → AT0
φ in [1] has to be extended as follows:

ψ Φ0(ψ)
[. . .] [. . .]
�ψ1 Φ0(ψ1) ∩ x�ψ1

0
�−ψ1 Φ0(ψ1)
�ψ1 Φ0(ψ1) ∪ x�ψ1

0
�−ψ1 Φ0(ψ1)

Table 3.3: Φ0(ψ) with �,�−,� and �−

The function Φ0
i (ψ) : Sub(φ) → ATi

φ, i > 0 in [1] has to be extended as
follows:

ψ Φ0
i (ψ)

[. . .] [. . .]
�ψ1 Φ0

i (ψ1) ∩ x�ψ1
i

�−ψ1 Φ0
i (ψ1) ∩ Φi−1(�−ψ1)

�ψ1 Φ0
i (ψ1) ∪ x�ψ1

i

�−ψ1 Φ0
i (ψ1) ∪ Φi−1(�−ψ1)

Table 3.4: Φ0
i (ψ) with �,�−,� and �−

Sub(φ) denotes the set of all TQs occurring as temporal subqueries in φ
(including φ itself).

16

Theorem 3.1.4. The extension of the algorithm from [1] by �,�−,� and
�− preserves correctness and boundedness.

Proof. To prove that the correctness and boundedness of the algorithm is
preserved, the necessary cases are added to the corresponding proofs from
[1].

Lemma 3.1.5 (ct. Lemma 6.3 in [1]). The function Φ0 for �,�−,� and
�− is correct for 0.

Proof. It is shown by induction on the structure of the subqueries ψ ∈
Sub(φ) that evaln(Φ0(ψ)) is equal to Ans(ψ, I(n), 0) for all n ≥ 0.
If ψ = �−ψ1 or ψ = �−ψ1, then

evaln(Φ0(ψ)) = evaln(Φ0(ψ1)).

This is by induction equal to Ans(ψ1,I(n), 0) which then is, as shown in
Proposition 3.1.2, equal to Ans(ψ,I(n), 0).
If ψ = �ψ1, then

evaln(Φ0(ψ)) = evaln(Φ0(ψ1)) ∩ evaln(xψ
0)

= Ans(ψ1,I(n), 0) ∩
�

Ans(ψ, I(n), 1) if n > 0
ΔNV if n = 0

�

= Ans(ψ,I(n), 0)

If ψ = �ψ1, then

evaln(Φ0(ψ)) = evaln(Φ0(ψ1)) ∪ evaln(xψ
0)

= Ans(ψ1,I(n), 0) ∪
�

Ans(ψ, I(n), 1) if n > 0
∅ if n = 0

�

= Ans(ψ,I(n), 0)

Lemma 3.1.6 (ct. Lemma 6.4 in [1]). If Φi−1 for �,�−,� and �− is correct
for i-1, then Φ0

i for �,�−,� and �− is correct for i.

Proof. It is shown by induction on the structure of the subqueries ψ ∈
Sub(φ) that evaln(Φ0

i (ψ)) is equal to Ans(ψ,I(n), i) for all n ≥ i. This is
shown for two cases here. The other cases can be found in Appendix C.

17

If ψ = �−ψ1, then

evaln(Φ0
i (ψ)) = evaln(Φ0

i (ψ1)) ∩ evaln(Φi−1(ψ))
= Ans(ψ1,I(n), i) ∩ Ans(ψ, I(n), i − 1)
= Ans(ψ,I(n), i)

If ψ = �ψ1, then

evaln(Φ0
i (ψ)) = evaln(Φ0

i (ψ1)) ∪ evaln(xψ
i)

= Ans(ψ1,I(n), i) ∪
�

Ans(ψ,I(n), i + 1) if n > i
∅ if n = i

�

= Ans(ψ,I(n), i)

Lemma 3.1.7 (ct. Lemma 6.5 in [1]). If Φi−1 for �,�−,� and �− is correct
for i-1 and (i-1)-bounded, then we can construct a function Φi : Sub(φ) →
ATi

φ for �,�−,� and �− that is correct for i and i-bounded.

Proof. The function update(xψj

i−1), introduced in [1], needs to be extended,
before it then can be shown for all n ≥ i that evaln(xψj

i−1) is still equal
to evaln(update(xψj

i−1)). After considering the new operators, update(xψj

i−1)
looks like this:

update(xψj

i−1) :=
�

Φj−1
i (ψ1) if ψj = �ψ1 or ψj = �ψ1

Φj−1
i (ψj) if ψj = ψ1Uψ2 or ψj = �ψ1 or ψj = �ψ1

�

For ψj = �ψ1 and ψj = �ψ1, by definition

evaln(xψj

i−1) = Ans(ψj ,I(n), i).

Since Φj−1
i is correct for i, this is the same set as

evaln(Φj−1
i (ψj)) = evaln(update(xψj

i−1)).

It remains to show i-boundedness of Φi = Φk
i . In [1] this is again proven

by induction on j. It therefore suffices to add the missing cases. It is enough
to show that update(xψj

i−1) contains only variables from Varψj

i .

18

If ψj = �ψ1 or ψj = �ψ1, then update(xψj

i−1) = Φj−1
i (ψj). Since Φj−1

i

differs from Φ0
i only in the replacement of some variables with index i − 1,

Φj−1
i (ψj) = Φj−1

i (ψ1) ∩ xψj

i

or

Φj−1
i (ψj) = Φj−1

i (ψ1) ∪ xψj

i , respectively.

By the induction hypothesis Φj−1
i (ψ1) contains only variables from Varψ1

i =
Varψj

i \ {xψj

i } and Varψ1
i−1 ∩ {xψj

i−1, . . . , xψk

i−1}. Since every variable xψ
�

i−1 ∈
Varψ1

i−1 must satisfy ψ
� ∈ FSub(ψ1) the second set Varψ1

i−1 ∩ {xψj

i−1, ..., xψk

i−1}
is empty. This follows from the total order ψ1 ≺ · · · ≺ ψk on the set
FSub(φ) = {ψ1, . . . , ψk} presented in [1], i.e. ψ

� ∈ FSub(ψj)\{ψj}, and thus
ψ

� ≺ ψj .

This concludes the proof of Theorem 3.1.4.

3.2 Filter Operator
Second, the algorithm presented in [1] is extended by a filter operator. This
filter operator f [φ] denotes that the filter query f is applied to the result of
φ. Since Q-queries are not further specified, it is impossible to determine at
which position in f the result of φ should be inserted. However, it is known
that the implementation of the BHE [4] is based on SQL. Therefore it can
be defined that f is an SQL statement and the result of φ is inserted at
“SELECT * FROM φ”.

The semantics of TQs from Definition 3.1.1 are extended as follows:

Definition 3.2.1 (semantics of temporal queries with a filter operator ct.
Definition 3.3 in [1]). Let φ be a TQ, I = (Ii)0≤i≤n a sequence of interpre-
tations over a common domain, a : FVar(φ) → NC a variable assignment, f
be an SQL statement, and i be an integer with 0 ≤ i ≤ n. The satisfaction
relation I, i |= a(φ) is defined by induction on the structure of φ as follows:

φ I, i |= a(φ) iff
[. . .] [. . .]
f [φ] Ii |= a(f) and I, i |= a(φ)

Table 3.5: Satisfaction relation of temporal queries with a filter operator

19

Now Query 2.2 can be rewritten as follows:

“SELECT * FROM (�−(SELECT marke, AVG(price) AS price1 FROM autos) ∧
SELECT marke, AVG(price) AS price2 FROM autos) WHERE price1 < price2”.

The semantics of the filter operator can now be used to extend the al-
gorithm specified in [1]. The functions evaln : ATn

φ → 2ΔNV , n ≥ 0 in [1] do
not have to be extended.

The function Φ0(ψ) : Sub(φ) → AT0
φ in [1] has to be extended as follows:

ψ Φ0(ψ)
[. . .] [. . .]
f [ψ1] Ans(f [Φ0(ψ1)], I0)

Table 3.6: Φ0(ψ) with a filter operator

The function Φ0
i (ψ) : Sub(φ) → ATi

φ, i > 0 in [1] has to be extended as
follows:

ψ Φ0(ψ)
[. . .] [. . .]
f [ψ1] Ans(f [Φ0

i (ψ1)], Ii)

Table 3.7: Φ0
i (ψ) with a filter operator

Theorem 3.2.2. Extending the algorithm from [1] by a filter operator pre-
serves correctness and boundedness.

Proof. To prove that the correctness and boundedness of the algorithm is
preserved, the necessary cases are added to the corresponding proofs from
[1].

Lemma 3.2.3 (ct. Lemma 6.3 in [1]). The function Φ0 with a filter operator
is correct for 0.

Proof. It is shown by induction on the structure of the subqueries ψ ∈
Sub(φ) that evaln(Φ0(ψ)) is equal to Ans(ψ, I(n), 0) for all n ≥ 0.
If ψ = f [ψ1], then

evaln(Φ0(ψ)) = Ans(f [Φ0(ψ1)], I0) = Ans(ψ,I(n), 0).

20

Lemma 3.2.4 (ct. Lemma 6.4 in [1]). If Φi−1 with a filter operator is correct
for i-1, then Φ0

i with a filter operator is correct for i.

Proof. It is shown by induction on the structure of the subqueries ψ ∈
Sub(φ) that evaln(Φ0

i (ψ)) is equal to Ans(ψ, I(n), i) for all n ≥ i.
If ψ = f [ψ1], then

evaln(Φ0
i (ψ)) = Ans(f [Φ0

i (ψ1)], Ii) = Ans(ψ,I(n), i).

Lemma 3.2.5 (ct. Lemma 6.5 in [1]). If Φi−1 with a filter operator is correct
for i-1 and (i-1)-bounded, then we can construct a function Φi : Sub(φ) →
ATi

φ with a filter operator that is correct for i and i-bounded.

Proof. Since f [ψ1] introduces no new variables, this follows directly from
Lemma 6.5 in [1].

This concludes the proof of Theorem 3.2.2.

3.3 Metric Temporal Operators
Third, the algorithm presented in [1] is extended by MTOs. For �φ, �φ,
�−φ and �−φ the MTOs simplify composition, e.g. �3φ = �(�(�φ)). For
�φ, �−φ, �φ, �−φ, φ1Uφ2, and φ1Sφ2 MTOs restrict the number of time
points, e.g. �5φ (for 5 time points) or �5φ (some time in 5 time points).

The semantics of TQs from Definition 3.1.1 are extended as follows:

Definition 3.3.1 (semantics of temporal queries with metric temporal op-
erators ct. Definition 3.3 in [1]). Let φ be a TQ, I = (Ii)0≤i≤n a sequence
of interpretations over a common domain, a : FVar(φ) → NC a variable as-
signment, i be an integer with 0 ≤ i ≤ n, and p be an integer with p ≥ 0.

21

The satisfaction relation I, i |= a(φ) is defined by induction on the structure
of φ as follows:

φ I, i |= a(φ) iff
[. . .] [. . .]
�pφ1 i + p ≤ n and I, i + p |= a(φ1)
�pφ1 i + p ≤ n implies I, i + p |= a(φ1)
�−

p φ1 i − p ≥ 0 and I, i − p |= a(φ1)
�−

p φ1 i − p ≥ 0 implies I, i − p |= a(φ1)
�pφ1 I, k |= a(φ1) for all k, i ≤ k ≤ min(i + p, n)
�−

p φ1 I, k |= a(φ1) for all k, max(i − p, 0) ≤ k ≤ i

�pφ1 I, k |= a(φ1) for some k, i ≤ k ≤ min(i + p, n)
�−

p φ1 I, k |= a(φ1) for some k, max(i − p, 0) ≤ k ≤ i

φ1Upφ2 there is k, i ≤ k ≤ min(i + p, n), with I, k |= aφ2(φ2)
and I, j |= aφ1(φ1) for all j, i ≤ j < k

φ1Spφ2 there is k, max(i − p, 0) ≤ k ≤ i, with I, k |= aφ2(φ2)
and I, j |= aφ1(φ1) for all j, k < j ≤ i

Table 3.8: Satisfaction relation of temporal queries with metric temporal
operators

aφ1 denotes the restriction of a variable assignment a : FVar(φ) → NC to
FVar(φ1) for a subquery φ1 of φ.

Now Query 2.3 can be rewritten as follows:

“�−
6 (SELECT url FROM autos WHERE price > 1000000)”

Proposition 3.3.2 (ct. Proposition 3.4 in [1]). For a : FVar(φ) → NC,
0 ≤ i ≤ n and p = 0, I, i |= a(φ) iff I, i |= a(φ1) or I, i |= aφ2(φ2),
respectively.

Proof. To prove the above proposition, three equivalences are demonstrated
here. The missing cases work similarly and can be found in Appendix C.
The proof works mainly based on semantics.

• �0φ1 ≡ φ1

I, i |= a(�0φ1) (3.11)
⇔i + 0 ≤ n and I, i + 0 |= a(φ1) (3.12)
⇔I, i |= a(φ1) (3.13)

22

• �−
0 φ1 ≡ φ1

I, i |= a(�−
0 φ1) (3.14)

⇔I, k |= a(φ1) for all k, max(i − 0, 0) ≤ k ≤ i (3.15)
⇔I, i |= a(φ1) (3.16)

• φ1U0φ2 ≡ φ2

I, i |= a(φ1U0φ2) (3.17)
⇔there is k, i ≤ k ≤ min(i + 0, n), with I, k |= aφ2(φ2) and (3.18)

I, j |= aφ1(φ1) for all j, i ≤ j < k

⇔I, i |= aφ2(φ2) (3.19)

There are again equivalences similar to Proposition 3.1.2.

• �pφ1 is equivalent to ��p−1φ1,

• �pφ1 is equivalent to ��p−1φ1,

• �−
p φ1 is equivalent to �−�−

p−1φ1,

• �−
p φ1 is equivalent to �−�−

p−1φ1,

• �pφ1 is equivalent to φ1 ∧ ��p−1φ1,

• �−
p φ1 is equivalent to φ1 ∧ �−�−

p φ1,

• �pφ1 is equivalent to φ1 ∨ ��pφ1,

• �−
p φ1 is equivalent to φ1 ∨ �−�−

p φ1,

• φ1Upφ2 is equivalent to φ2 ∨ (φ1 ∧ �(φ1Up−1φ2)), and

• φ1Spφ2 is equivalent to φ2 ∨ (φ1 ∧ �−(φ1Sp−1φ2)).

Thus, at the last time point

• �pφ1 does not have any answers because ��p−1φ1 does not have any
answers,

• �pφ1 is tautological because ��p−1φ1 is tautological,

23

• �pφ1 is equivalent to φ1 because ��p−1φ1 is tautological,

• �pφ1 is equivalent to φ1 because ��pφ1 does not have any answers,
and

• φ1Upφ2 is equivalent to φ2 because �(φ1Up−1φ2) does not have any
answers,

and at the first time point

• �−
p φ1 does not have any answers because �−�−

p−1φ1 does not have
any answers,

• �−
p φ1 is tautological because �−�−

p−1φ1 is tautological,

• �−
p φ1 is equivalent to φ1 because �−�−

p φ1 is tautological,

• �−
p φ1 is equivalent to φ1 because �−�−

p φ1 does not have any answers,
and

• φ1Spφ2 is equivalent to φ2 because �−(φ1Sp−1φ2) does not have any
answers.

Proposition 3.3.3 (ct. Proposition 3.4 in [1]). For a : FVar(φ) → NC,
0 ≤ i ≤ n and p > 0,

1. I, i |= a(�pφ1) iff

• i < n and I, i + 1 |= a(�p−1φ1)

2. I, i |= a(�pφ1) iff

• i < n implies I, i + 1 |= a(�p−1φ1)

3. I, i |= a(�−
p φ1) iff

• i > 0 and I, i − 1 |= a(�−
p−1φ1)

4. I, i |= a(�−
p φ1) iff

• i > 0 implies I, i − 1 |= a(�−
p−1φ1)

5. I, i |= a(�pφ1) iff

• I, i |= a(φ1) and
• i < n implies I, i + 1 |= a(�p−1φ1)

24

6. I, i |= a(�−
p φ1) iff

• I, i |= a(φ1) and
• i > 0 implies I, i − 1 |= a(�−

p−1φ1)

7. I, i |= a(�pφ1) iff

• I, i |= a(φ1) or
• i < n and I, i + 1 |= a(�p−1φ1)

8. I, i |= a(�−
p φ1) iff

• I, i |= a(φ1) or
• i > 0 and I, i − 1 |= a(�−

p−1φ1)

9. I, i |= a(φ1Upφ2) iff

• I, i |= aφ2(φ2) or
• I, i |= aφ1(φ1) and i < n and I, i + 1 |= a(φ1Up−1φ2)

10. I, i |= a(φ1Spφ2) iff

• I, k |= aφ2(φ2) or
• I, i |= aφ1(φ1) and i > 0 and I, i − 1 |= a(φ1Sp−1φ2)

Proof. To prove the above proposition, three equivalences are demonstrated
here. The missing cases work similarly and can be found in Appendix C.
The proof works mainly based on semantics.

1. �pφ1 ≡ ��p−1φ1

I, i |= a(�pφ1) (3.20)
⇔i + p ≤ n and I, i + p |= a(φ1) (3.21)
⇔i < n and (i + 1) + (p − 1) ≤ n and I, (i + 1) + (p − 1) |= a(φ1)

(3.22)
⇔i < n and I, i + 1 |= a(�p−1φ1) (3.23)
⇔I, i |= a(��p−1φ1) (3.24)

25

6. �−
p φ1 ≡ φ1 ∧ �−�−

p φ1

I, i |= a(�−
p φ1) (3.25)

⇔I, k |= a(φ1) for all k, max(i − p, 0) ≤ k ≤ i (3.26)
⇔I, i |= a(φ1) and (i > 0 implies (3.27)

I, k |= a(φ1) for all k, max((i − 1) − (p − 1), 0) ≤ k ≤ i − 1)
⇔I, i |= a(φ1) and (i > 0 implies I, i − 1 |= a(�−

p−1φ1)) (3.28)
⇔I, i |= a(φ1 ∧ �−�−

p−1φ1) (3.29)

(3.27) is equivalent to (3.26) because

– in case i > 0, the query needs to be satisfied now, at time point i,
and at past time points k, max((i−1)−(p−1), 0) ≤ k ≤ i−1, to be
satisfied. Since i > 0 is true, the satisfaction of past time points
depends solely on the second part of the “implies”-statement; and

– in case i = 0, the query needs to be satisfied now, at time point i,
to be satisfied. There are no past time points k, max((i−1)−(p−
1), 0) ≤ k ≤ 0 − 1. Since i = 0 is true, I, i |= a(φ1) is equivalent
to I, k |= a(φ1) for all k, max(i − p, 0) ≤ k ≤ 0, and i > 0 is not
true, thus the “implies”-statement does not affect satisfaction.

9. φ1Upφ2 ≡ φ2 ∨ (φ1 ∧ �(φ1Up−1φ2))

I, i |= a(φ1Upφ2) (3.30)
⇔there is k, i ≤ k ≤ min(i + p, n), with I, k |= aφ2(φ2) and (3.31)
I, j |= aφ1(φ1) for all j, i ≤ j < k

⇔I, i |= aφ2(φ2) or (I, i |= aφ1(φ1) and (i < n and (3.32)
there is k, i + 1 ≤ k ≤ min((i + 1) + (p − 1), n), with
I, k |= aφ2(φ2) and I, j |= aφ1(φ1) for all j, i + 1 ≤ j < k))

⇔I, i |= aφ2(φ2) or (I, i |= aφ1(φ1) and (i < n and (3.33)
I, i + 1 |= a(φ1Up−1φ2)))

⇔I, i |= a(φ2 ∨ (φ1 ∧ �(φ1Up−1φ2))) (3.34)

(3.32) is equivalent to (3.31) because

– in case i < n, either φ2 needs to be satisfied now, at time point i,
or φ1 needs to be satisfied now, at time point i, and there needs to
be a future time point k, i+1 ≤ k ≤ min((i+1)+(p−1), n), where
φ2 is satisfied and φ1 is satisfied for all time points j, i+1 ≤ j < k,
for the query to be satisfied.

26

– in case i = n, φ2 needs to be satisfied now, at time point i,
for the query to be satisfied. There are no future time points
k, n + 1 ≤ k ≤ min((i + 1) + (p − 1), n). Since i = n is true,
I, i |= aφ2(φ2) is equivalent to there is k, n ≤ k ≤ min(i + p, n),
with I, k |= aφ2(φ2) and I, j |= aφ1(φ1) for all j, n ≤ j < k,
and i < n is not true, thus the “or”-statement does not affect
satisfaction.

The semantics of the MTOs can now be used to extend the algorithm
specified in [1].

The functions evaln : ATn
φ → 2ΔNV , n ≥ 0 in [1] have then to be extended

as follows:

α evaln(α)
[. . .] [. . .]
x
�pψ1
j with j < n Ans(�p−1ψ1,I(n), j + 1)

x
�pψ1
j with j < n Ans(�p−1ψ1,I(n), j + 1)

x
�pψ1
j with j < n Ans(�p−1ψ1,I(n), j + 1)

x
�pψ1
j with j < n Ans(�p−1ψ1,I(n), j + 1)

x
ψ1Upψ2
j with j < n Ans(ψ1Up−1ψ2,I(n), j + 1)

x
�pψ1
n ∅

x
�pψ1
n ΔNV

x
�pψ1
n ΔNV

x
�pψ1
n ∅

x
ψ1Upψ2
n ∅

Table 3.9: evaln(α) with metric temporal operators

27

The function Φ0(ψ) : Sub(φ) → AT0
φ in [1] has to be extended as follows:

ψ Φ0(ψ)
[. . .] [. . .]
�pψ1 with p > 0 x

�pψ1
0

�pψ1 with p > 0 x
�pψ1
0

�−
p ψ1 with p > 0 ∅

�−
p ψ1 with p > 0 ΔNV

�pψ1 with p > 0 Φ0(ψ1) ∩ x
�pψ1
0

�−
p ψ1 Φ0(ψ1)

�pψ1 with p > 0 Φ0(ψ1) ∪ x
�pψ1
0

�−
p ψ1 Φ0(ψ1)

ψ1Upψ2 with p > 0 Φ0(ψ2) ∪ (Φ0(ψ1) ∩ x
ψ1Upψ2
0)

ψ1Spψ2 Φ0(ψ2)
�0ψ1 Φ0(ψ1)
�0ψ1 Φ0(ψ1)
�−

0 ψ1 Φ0(ψ1)
�−

0 ψ1 Φ0(ψ1)
�0ψ1 Φ0(ψ1)
�0ψ1 Φ0(ψ1)
ψ1U0ψ2 Φ0(ψ2)

Table 3.10: Φ0(ψ) with metric temporal operators

28

The function Φ0
i (ψ) : Sub(φ) → ATi

φ, i > 0 in [1] has to be extended as
follows:

ψ Φ0
i (ψ)

[. . .] [. . .]
�pψ1 with p > 0 x

�pψ1
i

�pψ1 with p > 0 x
�pψ1
i

�−
p ψ1 with p > 0 Φi−1(�−

p−1ψ1)
�−

p ψ1 with p > 0 Φi−1(�−
p−1ψ1)

�pψ1 with p > 0 Φ0
i (ψ1) ∩ x

�pψ1
i

�−
p ψ1 with p > 0 Φ0

i (ψ1) ∩ Φi−1(�−
p−1ψ1)

�pψ1 with p > 0 Φ0
i (ψ1) ∪ x

�pψ1
i

�−
p ψ1 with p > 0 Φ0

i (ψ1) ∪ Φi−1(�−
p−1ψ1)

ψ1Upψ2 with p > 0 Φ0
i (ψ2) ∪ (Φ0

i (ψ1) ∩ x
ψ1Upψ2
i)

ψ1Spψ2 with p > 0 Φ0
i (ψ2) ∪ (Φ0

i (ψ1) ∩ Φi−1(ψ1Sp−1ψ2))
�0ψ1 Φ0

i (ψ1)
�0ψ1 Φ0

i (ψ1)
�−

0 ψ1 Φ0
i (ψ1)

�−
0 ψ1 Φ0

i (ψ1)
�0ψ1 Φ0

i (ψ1)
�−

0 ψ1 Φ0
i (ψ1)

�0ψ1 Φ0
i (ψ1)

�−
0 ψ1 Φ0

i (ψ1)
ψ1U0ψ2 Φ0

i (ψ2)
ψ1S0ψ2 Φ0

i (ψ2)

Table 3.11: Φ0
i (ψ) with metric temporal operators

Sub(φ) now includes all queries �mψ1, �mψ1, �−
mψ1, �−

mψ1, �mψ1,
�−

mψ1, �mψ1, �−
mψ1, ψ1Umψ2 and ψ1Smψ2 with m, 0 ≤ m ≤ p. FSub(φ),

the subset of queries from Sub(φ) that start with a future operator, is ex-
tended accordingly. It is noteworthy, that even though the sets denoted
by Sub(φ) and FSub(φ) for φ with MTOs are different from the sets for φ
without MTOs, they are the same size, e.g. for Query 2.3 without MTOs
Sub(φ) = {φ,�−�−�−�−�−ψ,�−�−�−�−ψ,�−�−�−ψ,�−�−ψ,�−ψ, ψ}
and with MTOs Sub(φ) = {φ,�−

5 ψ,�−
4 ψ,�−

3 ψ,�−
2 ψ,�−

1 ψ,�−
0 ψ}.

Theorem 3.3.4. Extending the algorithm from [1] by metric temporal op-
erators preserves correctness and boundedness.

29

Proof. To prove that the correctness and boundedness of the algorithm is
preserved, the necessary cases are added to the corresponding proofs from
[1].

Lemma 3.3.5 (ct. Lemma 6.3 in [1]). The function Φ0 with metric temporal
operators is correct for 0.

Proof. It is shown by induction on the structure of the subqueries ψ ∈
Sub(φ) that evaln(Φ0(ψ)) is equal to Ans(ψ,I(n), 0) for all n ≥ 0. The
missing cases can be found in Appendix C.
If ψ = �0ψ1, ψ = �0ψ1, ψ = �−

0 ψ1, ψ = �−
0 ψ1, ψ = �0ψ1, ψ = �−

0 ψ1,
ψ = �0ψ1 or ψ = �−

0 ψ1, then

evaln(Φ0(ψ)) = evaln(Φ0(ψ1)).

This is by induction equal to Ans(ψ1,I(n), 0) which then is, as shown in
Proposition 3.3.2, equal to Ans(ψ,I(n), 0).
If ψ = ψ1U0ψ2 or ψ = ψ1S0ψ2, then

evaln(Φ0(ψ)) = evaln(Φ0(ψ2)).

This is by induction equal to Ans(ψ2,I(n), 0) which then is, as shown in
Proposition 3.3.2, equal to Ans(ψ,I(n), 0).
If ψ = �−

p ψ1, ψ = �−
p ψ1, ψ = �−

p ψ1 or ψ = �−
p ψ1 and p > 0, then

evaln(Φ0(ψ)) = evaln(Φ0(ψ1)).

This is by induction equal to Ans(ψ1,I(n), 0) which then is, as shown in
Proposition 3.3.3, equal to Ans(ψ,I(n), 0).
If ψ = �pψ1 and p > 0, then

evaln(Φ0(ψ)) = evaln(x�pψ1
0)

=
�

Ans(�p−1ψ1,I(n), 1) if n > 0
∅ if n = 0

�

= Ans(ψ,I(n), 0)

If ψ = �pψ1 and p > 0, then

evaln(Φ0(ψ)) = evaln(Φ0(ψ1)) ∩ evaln(x�pψ1
0)

= Ans(ψ1,I(n), 0) ∩
�

Ans(�p−1ψ1,I(n), 1) if n > 0
ΔNV if n = 0

�

= Ans(ψ,I(n), 0)

30

If ψ = ψ1Upψ2 and p > 0, then

evaln(Φ0(ψ)) = evaln(Φ0(ψ2)) ∪ (evaln(Φ0(ψ1)) ∩ evaln(xψ1Upψ2
0))

= Ans(ψ2,I(n), 0) ∪ (Ans(ψ1,I(n), 0) ∩
�

Ans(ψ1Up−1ψ2,I(n), 1) if n > 0
∅ if n = 0

�
)

= Ans(ψ,I(n), 0)

Lemma 3.3.6 (ct. Lemma 6.4 in [1]). If Φi−1 with metric temporal operators
is correct for i-1, then Φ0

i with metric temporal operators is correct for i.

Proof. It is shown by induction on the structure of the subqueries ψ ∈
Sub(φ) that evaln(Φ0

i (ψ)) is equal to Ans(ψ, I(n), i) for all n ≥ i. The miss-
ing cases can be found in Appendix C.

If ψ = �0ψ1, ψ = �0ψ1, ψ = �−
0 ψ1, ψ = �−

0 ψ1, ψ = �0ψ1, ψ = �−
0 ψ1,

ψ = �0ψ1 or ψ = �−
0 ψ1, then

evaln(Φ0
i (ψ)) = evaln(Φ0

i (ψ1))
= Ans(ψ1,I(n), i)
= Ans(ψ,I(n), i)

If ψ = ψ1U0ψ2 or ψ = ψ1S0ψ2, then
evaln(Φ0

i (ψ)) = evaln(Φ0
i (ψ2))

= Ans(ψ2,I(n), i)
= Ans(ψ,I(n), i)

If ψ = �pψ1 and p > 0, then

evaln(Φ0
i (ψ)) = evaln(x�pψ1

i)

=
�

Ans(�p−1ψ1,I(n), i + 1) if n > i
∅ if n = i

�

= Ans(ψ,I(n), i)

If ψ = �−
p ψ1 and p > 0, then

evaln(Φ0
i (ψ)) = evaln(Φ0

i (ψ1)) ∩ evaln(Φi−1(�−
p ψ1))

= Ans(ψ1,I(n), i) ∩ Ans(�−
p−1ψ1,I(n), i − 1)

= Ans(ψ,I(n), i)

31

If ψ = ψ1Upψ2 and p > 0, then

evaln(Φ0
i (ψ)) = evaln(Φ0

i (ψ2)) ∪ (evaln(Φ0
i (ψ1)) ∩ evaln(xψ1Upψ2

i))

= Ans(ψ2,I(n), i) ∪ (Ans(ψ1,I(n), i) ∩
�

Ans(ψ1Up−1ψ2,I(n), i + 1) if n > i
∅ if n = i

�
)

= Ans(ψ,I(n), i)

Lemma 3.3.7 (ct. Lemma 6.5 in [1]). If Φi−1 with metric temporal operators
is correct for i-1 and (i-1)-bounded, then we can construct a function Φi :
Sub(φ) → ATi

φ with metric temporal operators that is correct for i and i-
bounded.

Proof. The function update(xψj

i−1), introduced in [1], needs to be extended,
before it then can be shown for all n ≥ i that evaln(xψj

i−1) is still equal to
evaln(update(xψj

i−1)). For operators with metric temporal operators, update(xψj

i−1)
looks like this:

update(xψj

i−1) :=

Φj−1
i (�p−1ψ1) if ψj = �pψ1

Φj−1
i (�p−1ψ1) if ψj = �pψ1

Φj−1
i (�p−1ψ1) if ψj = �pψ1

Φj−1
i (�p−1ψ1) if ψj = �pψ1

Φj−1
i (ψ1Up−1ψ2) if ψj = ψ1Upψ2

By definition

evaln(x�pψ1
i−1) = Ans(�p−1ψ1,I(n), i),

evaln(x�pψ1
i−1) = Ans(�p−1ψ1,I(n), i),

evaln(x�pψ1
i−1) = Ans(�p−1ψ1,I(n), i),

evaln(x�pψ1
i−1) = Ans(�p−1ψ1,I(n), i) and

evaln(xψ1Upψ2
i−1) = Ans(ψ1Up−1ψ2,I(n), i).

Since Φj−1
i is correct for i, these are the same sets as

evaln(Φj−1
i (ψj)) = evaln(update(xψj

i−1)).

It remains to show i-boundedness of Φi = Φk
i . In [1] this is again proven

by induction on j. It therefore suffices to add the missing cases. It is enough

32

to show that update(xψj

i−1) contains only variables from Varψj

i . Since Φj−1
i

differs from Φ0
i only in the replacement of some variables with index i − 1,

Φj−1
i (�p−1ψ1) = x

�pψ1
i

Φj−1
i (�p−1ψ1) = x

�pψ1
i

Φj−1
i (�p−1ψ1) = Φj−1

i (ψ1) ∩ x
�pψ1
i

Φj−1
i (�p−1ψ1) = Φj−1

i (ψ1) ∪ x
�pψ1
i

Φj−1
i (ψ1Up−1ψ2) = Φj−1

i (ψ2) ∪ (Φj−1
i (ψ1) ∩ x

ψ1Upψ2
i)

By the induction hypothesis each Φj−1
i (ψm), m = 1, 2, contains only

variables from Varψm
i = Varψj

i \ {xψj

i } and Varψm
i−1 ∩ {xψj

i−1, . . . , xψk

i−1}. Since
every variable xψ

�

i−1 ∈ Varψ1
i−1 must satisfy ψ

� ∈ FSub(ψ1) the second set
Varψ1

i−1 ∩ {xψj

i−1, ..., xψk

i−1} is empty. This follows from the total order ψ1 ≺
. . . ≺ ψk on the set FSub(φ) = {ψ1, . . . , ψk} presented in [1], i.e. ψ

� ∈
FSub(ψj) \ {ψj}, and thus ψ

� ≺ ψj .

This concludes the proof of Theorem 3.3.4.

3.4 Combined Extensions
In the following, only the extensions of the algorithm from [1] by a filter
operator and MTOs will be discussed, as �,�−,� and �− can be seen as
special cases of MTOs, where p = n − i or p = i, respectively.

From the proofs of Theorem 3.2.2 and Theorem 3.3.4 it follows, that
extending the algorithm from [1] by a filter operator and MTOs preserves
correctness and boundedness.

In terms of expressiveness, only the filter operator adds new expressive-
ness. This has already been hinted at in Chapter 2, when introducing the
MTOs and follows from Proposition 3.3.2 and Proposition 3.3.3. Since the
filter operator is defined to be an SQL statement, the expressiveness added
by introducing the filter operator is the same as an SQL statement on a
single table.

However, the MTOs are still relevant, as they can reduce the size of
queries significantly. A query without MTOs that is equivalent to, e.g. �
with a time limit t, consists of at least 2 ∗ t operators, a ∧ and a � for each
time point up to the limit. Whereas, the corresponding query with MTOs
consists of only one operator �t regardless of the size of t.

33

Lastly, it is feasible to implement the extensions as the main modification
needed are case-distinctions in the implementations of Φ0(ψ) and Φ0

i (ψ) [4].

34

Chapter 4

Evaluation

After extending the implementation of the BHE [4], the queries introduced
in Chapter 2 were evaluated at all 10 time points using this extended im-
plementation [4]. This chapter summarizes how well the queries can be
answered with the help of a BHE, regarding the size of the encoding, the
time it takes to answer one query per time point, and the usefulness of the
answers. The size of the encoding is compared to the size of the estab-
lished approach of system-versioned temporal tables (SVTT) in SQL:2011
[11], which saves the complete history.

4.1 Evaluation of Practical Temporal Queries
The BHE [1] provides meaningful answers for all specified PTQs. It answers
the query and returns what was asked for. The average time to answer one
PTQ per time point is just under 233 milliseconds. For all PTQs, the BHE
[1] stored fewer entries by the third time point at the latest. At the 10th
time point on average only 16% of the entries were stored, compared to
the SVTT [11] approach. For the examples from Chapter 2 the size of the
encodings compared to the complete history can be seen in Figure 4.1.

Since it was possible to express all PTQs by past operators only, the
PTQs show that the BHE [1] does provide meaningful answers to temporal
queries, but they do not allow reliable conclusions to be drawn for the entire
language of [1]. This is what the RTQs are intended for.

35

1 2 3 4 5 6 7 8 9 10
0

0.5

1

1.5

2

2.5

3

3.5

·105

Time Point

#
of

En
tr

ie
s

SQL:2011
Encoding Query 2.1
Encoding Query 2.2
Encoding Query 2.3

Figure 4.1: Encoding size of practical temporal queries compared to com-
plete history size

36

4.2 Evaluation of Random Temporal Queries
Up to a size of four operators, the BHE [1] behaves similarly for RTQs as
for PTQs. For 90% of the queries, the BHE [1] stores fewer entries than the
SVTT [11] approach and takes on average 375 milliseconds per query per
time point. Starting at a size of five, the number of queries for which the
BHE [1] stores fewer entries than the SVTT [11] approach falls rapidly. For
five and six operators it is 75%, for seven and eight operators it is 45% and
for nine and 10 operators it is 35%.

However, the evaluation of the RTQs over the daily collected data, a
larger number of time points, shows that for all sizes of RTQs the number
of queries for which the BHE [1] stores fewer entries than the SVTT [11]
approach increases. Thus, whether the BHE [1] stores fewer entries than the
SVTT [11] approach does not directly depend on the size of the query, but
rather on the number of time points.

A deeper analysis of the implementation of the BHE [4] shows that only
the answers to subqueries under past operators are stored. Let PSub(φ)
denote the subset of queries from Sub(φ) that start with a past operator,
analogously to FSub(φ). With PSub(φ) and the size boundary |Sub(φ)| ∗
2|FSub(φ)| ∗ |ΔNV | from [1] an upper bound can be found for when the BHE
[1] will store fewer entries than the SVTT [11] approach.

Theorem 4.2.1. There is a time point t, such that

t ∗ |ΔNV | >

 �

ψ∈PSub(φ)
2|FSub(ψ)| ∗ |ΔNV |

 + 1 ∗ |ΔNV |.

Proof. To proof Theorem 4.2.1, it is first shown that the sum is an upper
bound for the size of the encoding.

Lemma 4.2.2. The size of the encoding is bounded by
�

ψ∈PSub(φ)
2|FSub(ψ)| ∗ |ΔNV |.

Proof. From [1] it is known that the size of the encoding is bounded by

|Sub(φ)| ∗ 2|FSub(φ)| ∗ |ΔNV |.
As the analysis of the implementation of the BHE [4] showed, only answers
to subqueries under past operators are stored. Thus, |Sub(φ)| can be sub-
stituted by |PSub(φ)|, resulting in a boundary of

|PSub(φ)| ∗ 2|FSub(φ)| ∗ |ΔNV |.

37

This can be rewritten as
�

ψ∈PSub(φ)
2|FSub(φ)| ∗ |ΔNV |.

|FSub(φ)| can be replaced by |FSub(ψ)|, as for each subquery under a past
operator which answers are stored, at most all subsets of Varψ

i need to be
considered. This results in a boundary of

�

ψ∈PSub(φ)
2|FSub(ψ)| ∗ |ΔNV |.

This size boundary for the encoding can be used now to find t. The
summand 1∗ |ΔNV | indicates that additionally to the size of the encoding all
entries of the current time point are stored. For the SVTT [11] approach,
the size of the history for each time point i, 0 ≤ i ≤ n is

i�

0
|ΔNV | = i ∗ |ΔNV |,

as at each time point, all entries are stored from then on. To find a time
point t, from that the BHE [1] will store fewer entries than the SVTT [11]
approach, find i, such that

i ∗ |ΔNV | =

 �

ψ∈PSub(φ)
2|FSub(ψ)| ∗ |ΔNV |

 + 1 ∗ |ΔNV |

and then set t = i + 1.

Since |ΔNV | can be omitted the data does not influence t, if assumed that
the number of stored entries is the same at each time point. This proofs
the assumption from Chapter 1, that it is irrelevant which exact brands and
models are collected.

The size boundary presented here is smaller than or equal to the one
from [1], therefore allowing a more precise estimate of when the BHE [1]
will be advantageous.

Proposition 4.2.3.
�

ψ∈PSub(φ)
2|FSub(ψ)| ∗ |ΔNV | ≤ |Sub(φ)| ∗ 2|FSub(φ)| ∗ |ΔNV |

38

Proof.
|FSub(ψ)| ≤ |FSub(φ)|

If |FSub(ψ)| = |FSub(φ)| for all ψ ∈ PSub(φ) in order for the boundaries
to be the same size, |PSub(φ)| = |Sub(φ)| needs to hold and |FSub(ψ)| =
|FSub(φ)| = 0. Thus, only in the case that φ contains no future operators,
the boundaries are the same size, else the one presented here is smaller.

For every t ≤ 10 and every query up to t the BHE [1] stores fewer
entries than the SVTT [11] approach. However, t is an upper bound, and
therefore even for queries for which t is extremely high the BHE [1] can be
advantageous in even a few time points. For 43% of the RTQs with t > 10,
the BHE [1] stores fewer entries than the SVTT [11] approach.

The average time to answer one query per time point also increases with
t as can be seen in Table 4.1.

t time in milliseconds
t <= 10 297
10 < t <= 100 3,379
100 < t <= 1, 000 4,270
1, 000 < t <= 10, 000 10,727
t > 10, 000 47,002

Table 4.1: Average time to answer a query

The size of the encodings for Query 41 (t = 8), Query 36 (t = 15), and
Query 98 (t = 33, 554, 690) compared to the complete history can be seen
in Figure 4.2.

The evaluation of the RTQs over a partial period and the daily collected
data provides appropriate results.

39

1 2 3 4 5 6 7 8 9 10
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5
·105

Time Point

#
of

En
tr

ie
s

SQL:2011
Encoding Query 41
Encoding Query 36
Encoding Query 98

Figure 4.2: Encoding size of random temporal queries compared to complete
history size

40

4.3 Discussion
As the evaluation in 4.2 has shown, a constant number of entries at any
given time point is beneficial to estimate from which time point on the BHE
[1] is smaller than the SVTT [11] approach. Thus, a constant data stream
would give more accurate results than the variable data stream provided by
the scraper [6].

Additionally, the time available was very limited. An investigation over
a longer period would be able to confirm the trends observed. Since the
evaluation of the queries was done by hand, it was not possible to evaluate
significantly more queries, which would possibly allow further conclusions.

The evaluation in 4.2 also showed that the size of the queries, defined by
the number of operators, has no direct influence on the results. Therefore,
the size of the queries could be better defined using the number of subqueries
or the nesting depth of future operators and past operators. This would
possibly emphasize the difference between the boundary found in this thesis
and the one mentioned in [1].

To be able to express the PTQs in the language of [1], the algorithm
from [1] had to be extended. The extension by a filter operator could not
be developed generically for all relational query languages. Thus, the PTQs
can be answered on an SQL database, but for other database systems, a
different solution has to be found.

41

Conclusion

In this thesis, the BHE from [1] was investigated to find out, how helpful it
is in a practical application. Criteria to assess the degree of helpfulness are
the usefulness of the answers, the time it takes to answer one query per time
point, and the size of the encoding. The practical application in this thesis
was an observation of an online automotive marketplace. The investigation
was performed based on PTQs and RTQs.

The PTQs were defined to determine how the BHE [1] performs for
meaningful queries. To be able to evaluate the PTQs, the BHE [1] had to
be extended. As the evaluation showed, the algorithm can provide relevant
answers at each time point within a short time. The number of stored entries
was always significantly lower than with the SVTT [11] approach. From this,
it follows that the algorithm is helpful to answer PTQs.

However, the PTQs were not diverse enough to cover the whole language
from [1]. As a result, RTQs were defined to investigate further how queries
influence the time to answer one query per time point and the size of the
encoding. The evaluation showed that the size of the queries, defined by the
number of operators, had no direct influence on neither the time to answer
on query per time point nor the size of the encoding. Further investigation
of the implementation [4] showed that there is an upper bound for the size
of the encoding, which can be used to estimate from which time point t
on the implementation [4] provides an encoding which is smaller than the
SVTT [11] approach. This was confirmed by the evaluation, since for all
queries for which t ≤ 10, from t on, the encoding was smaller than the
SVTT [11] approach. The boundary found in this thesis is smaller than the
one mentioned in [1].

Outlook
In future work, the BHE [1] can be evaluated over a longer period of time on
a constant data stream. This should make the advantages of the algorithm
even more obvious.

Furthermore, MTOs could be adjusted so that Sub(φ) corresponds to the

42

intuitive meaning, i.e. Sub(�6(ψ)) = {ψ}. For this, a solution is needed,
how to manage the 6 time points, which �6(ψ) needs, in one table.

Finally, a comparison of the queries, executed on other approaches,
would be insightful to better assess the time required by the BHE [1] to
answer the queries.

43

Bibliography

[1] Stefan Borgwardt, Marcel Lippmann, and Veronika Thost. Temporal-
izing rewritable query languages over knowledge bases. Journal of Web
Semantics, 33:50–70, 2015.

[2] Jan Chomicki. Efficient checking of temporal integrity constraints using
bounded history encoding. ACM Transactions on Database Systems
(TODS), 20(2):149–186, 1995.

[3] Joshua Schneider, David Basin, Srđan Krstić, and Dmitriy Traytel. A
formally verified monitor for metric first-order temporal logic. In Inter-
national Conference on Runtime Verification, pages 310–328. Springer,
2019.

[4] Thure Nebendahl. Bounded History Encoding Implementation.

[5] AutoScout24 GmbH.

[6] Thure Nebendahl. AutoScout24 Scraper.

[7] Christopher Buhtz. AutoScout24 Mining (Teil 1) - Webscraping mit
Python.

[8] Leonard Richardson. Beautiful soup documentation. April 2007.

[9] Jeff Reback, Wes McKinney, jbrockmendel, Joris Van den Bossche, Tom
Augspurger, Phillip Cloud, gfyoung, Sinhrks, Adam Klein, Matthew
Roeschke, Simon Hawkins, Jeff Tratner, Chang She, William Ayd, Terji
Petersen, Marc Garcia, Jeremy Schendel, Andy Hayden, MomIsBest-
Friend, Vytautas Jancauskas, Pietro Battiston, Skipper Seabold, chris
b1, h vetinari, Stephan Hoyer, Wouter Overmeire, alimcmaster1, Kaiqi
Dong, Christopher Whelan, and Mortada Mehyar. pandas-dev/pandas:
Pandas 1.0.3, mar 2020.

[10] Michael Bayer. SQLAlchemy. In Amy Brown and Greg Wilson, editors,
The Architecture of Open Source Applications Volume II: Structure,
Scale, and a Few More Fearless Hacks. aosabook.org, 2012.

44

[11] Krishna Kulkarni and Jan-Eike Michels. Temporal features in SQL:
2011. ACM Sigmod Record, 41(3):34–43, 2012.

45

Appendix A

Complete Data Specifications

A.1 Complete list of all models
• AC: Cobra

• Alfa Romeo: 145, 146, 147, 155, 156, 159, 164, 4c, 75, 8c, 90, 6,
Alfasud, Alfetta, Brera, Giulia, Gt, Gtv, Mito, Montreal, Puadrifoglio,
Rz, Spider, Sprint, Sz

• Alpina: B3, B4, B5, B6, B7, B8, B9, B10, B11, B12, C1, C2, D10, D3,
D4, D5, RoadsterS

• Aston Martin: Cygnet, DB, DB7, DB9, DB11, DBS, DBX, Lagonda,
Rapide, V8, Valkyrie, Vantage, Virage, Volante

• Bentley: Arnage, Azure, Bentayga, Brooklands, Continental, Eight,
FlyingSpur, Mulsanne, S1, S2, S3, Turbo R, Turbo RT, Turbo S,

• Bmw: 1er (all), 2002, 2er (all), 3er (all), 4er (all), 5er (all), 6er (all),
7er (all), 8er (all), M-Reihe (all), M1, Z-Reihe (all),

• Bugatti: Centodieci, Chiron, Divo, EB 110, EB 112, Veyron

• DeTomaso: all

• Ferrari: 195, 206, 208, 246, 250, 275, 288, 308, 328, 330, 348, 360,
365, 400, 412, 430Scuderia, 456, 458, 488, 512, 550, 575, 599, 612,
750, 812, California, Daytona, Dino GT4, Enzo Ferrari, F12, F355,
F40, F430, F50, F512, F8 Spider, F8 Tributo, FF, FXX, GTC4 Lusso,
LaFerrari, Mondial, Monza, Portofino, Roma, Scuderia Spider 16M,
SF90 Stradale, Superamerica, Testarossa

• Fiat: 124 Spider, 500, 500 Abarth, Panda

46

• Honda: NSX

• Jaguar: 420, D-Type, Daimler, E-Pace, E-Type, F-Pace, F-Type, I-
Pace, MK II, S-Type, X-Type, X300, XE, XF, XJ, XJ12, XJ40, XJ6,
XJ8, XJR, XJS, XJSC, XK, XK8, XKR

• Lamborghini: Asterion, Aventador, Centenario, Countach, Diablo, Es-
pada, Estoque, Gallardo, Huracan, Jalpa, Lm, Miura, Murciélago,
Reventon, SianFkp 37, TerzoMillennio, UrracoP250, Urus, Veneno

• Lancia: all

• Land Rover: Defender, Discovery, Discovery Sport, Range Rover,
Range Rover Evoque, Range Rover Sport, Range Rover Velar

• Lotus: all

• Maserati: all

• Mazda: RX-7, RX-8

• McLaren: all

• Mercedes-Benz: 190, C-Klasse (all), CL (all), CLK (all), CLS (all),
E-Klasse (all), G-Klasse (all), S-Klasse (all), SL (all), SLC (all), SLK
(all), SLR, SLS

• MG: all

• Mini: 1000, 1300, Cooper, Cooper S, John Cooper Works, Cooper
Cabrio, Cooper S Cabrio, John Cooper Works Cabrio , Cooper Club-
man, Cooper S Clubman, John Cooper Works Clubman

• Nissan: GT-R, Skyline

• Porsche: 365, 550, 718 Spider, 911, 930, 964, 991, 992, 993, 996, 997,
912, 918, 924, 928, 944, 959, 968, Boxter, Carrera GT, Panamera,
Taycan

• Renault: Alpine A110, alpine A310, R5

• Rolls-Royce: all

• Ruf: all

• Tvr: all

47

A.2 Complete list of all aspects
“ABS”, “Abstandstempomat”, “Airbag hinten”, “Alarmanlage”, “Alufel-
gen”, “Anhängerkupplung”, “Anzahl Türen”, “Armlehne”, “Außenfarbe”,
“Ausstattung”, “Beheizbare Frontscheibe”, “Beheizbares Lenkrad”, “Behin-
dertengerecht”, “Beifahrerairbag”, “Berganfahrassistent”, “Bluetooth”, “Bor-
dcomputer”, “CD”, “DAB-Radio”, “Dachreling”, “Einparkhilfe Kamera”,
“Einparkhilfe selbstlenkendes System”, “Einparkhilfe Sensoren hinten”, “Ein-
parkhilfe Sensoren vorne”, “Elektr. Fensterheber”, “Elektrische Heckklappe”,
“Elektrische Seitenspiegel”, “Elektrische Sitze”, “Erstzulassung”, “ESP”,
“Fahrerairbag”, “Fahrzeughalter”, “Farbe laut Hersteller”, “Feinstaubplakette”,
“Freisprecheinrichtung”, “Garantie”, “Getönte”, “Getriebe”, “Getriebeart”,
“Händler”, “Head-up display”, “HU Prüfung”, “HU/AU neu”, “Hubraum”,
“Innenausstattung”, “Isofix”, “Karosserieform”, “Katalysator”, “Kilometer-
stand”, “Klimaanlage”, “Klimaautomatik”, “Kopfairbag”, “Kraftstoff”, “Kraft-
stoffverbrauch”, “Kurvenlicht”, “Land”, “LED-Scheinwerfer”, “LED-Tagfahrlicht”,
“Lederlenkrad”, “Leistung”, “Lichtsensor”, “Lordosenstütze”, “Luftfederung”,
“Marke”, “Massagesitze”, “Modell”, “MP3”, “Müdigkeitswarnsystem”, “Mul-
tifunktionslenkrad”, “Nachtsicht-Assistent”, “Navigationssystem”, “Nebel-
scheinwerfer”, “Nichtraucherfahrzeug”, “Notbremsassistent”, “Notrufsystem”,
“Ort”, “Panoramadach”, “Preis”, “Radio”, “Rechtslenker”, “Regensensor”,
“Reifendruckkontrollsystem”, “Schadstoffklasse”, “Schaltwippen”, “Scheck-
heftgepflegt”, “Scheiben”, “Schiebedach”, “Schiebetür”, “Schlüssellose Zen-
tralverriegelung”, “Seitenairbag”, “Servolenkung”, “Sitzbelüftung”, “Sitzheizung”,
“Sitzplätze”, “Skisack”, “Soundsystem”, “Sportfahrwerk”, “Sportpaket”, “Sport-
sitze”, “Sprachsteuerung”, “Spurhalteassistent”, “Standheizung”, “Start/Stop-
Automatik”, “Tagfahrlicht”, “teilb. Rücksitzbank”, “Tempomat”, “Totwinkel-
Assistent”, “Touchscreen”, “Traktionskontrolle”, “Tuning”, “TV”, “USB”,
“Verkehrszeichenerkennung”, “Wegfahrsperre”, “Windschott(für Cabrio)”,
“Winterreifen”, “Xenonscheinwerfer”, “Zentralverriegelung”, “Zentralverriegel-
ung mit Funkfernbedienung”

48

Appendix B

Complete Queries

B.1 Complete list of Practical Temporal Queries
These queries are given in the language from [1] and in Java-Syntax.

1. Which cars price increased some time in the past?

• �−(SELECT * FROM (SELECT * FROM φ) WHERE p1 < p2
[�−(SELECT url, price AS p1 FROM autos) ∩ SELECT url,
price AS p2 FROM autos])

• Query query1 = new EventuallyPast(new Filter (“SELECT *
FROM phi WHERE p1 < p2”,new Conjunction(new Strong-
Previous(new AtemporalQuery (“SELECT url, price AS p1
FROM autos”)), new AtemporalQuery (“SELECT url, price
AS p2 FROM autos”))));

2. Which cars price decreased by more than 20% some time in the past?

• �−(SELECT * FROM (SELECT * FROM φ) WHERE 0.8∗p1
> p2[�−(SELECT url, price AS p1 FROM autos) ∩ SELECT
url, price AS p2 FROM autos])

• Query query1 = new EventuallyPast (new Filter(“SELECT *
FROM phi WHERE 0.8*p1 > p2”,new Conjunction(new Strong-
Previous(new AtemporalQuery (“SELECT url, price AS p1
FROM autos”)), new AtemporalQuery (“SELECT url, price
AS p2 FROM autos”))));

3. For which cars did the attributes “url”, “price” and “kilometerstand”
never change?

• �−(�−(SELECT url, price, kilometerstand FROM autos) ∩
SELECT url, price, kilometerstand FROM autos)

49

• Query query1 = new AlwaysPast(new Conjunction(new Weak-
Previous(new AtemporalQuery (“SELECT url, price, kilometer-
stand FROM autos”)), new AtemporalQuery (“SELECT url,
price, kilometerstand FROM autos”)));

4. Which cars price decreased by more than 20% from one time point to
the next some time in the past 4 time points?

• �−
4 (SELECT * FROM (SELECT * FROM φ) WHERE 0.8∗p1

> p2[�−(SELECT url, price AS p1 FROM autos) ∩ SELECT
url, price AS p2 FROM autos])

• Query query1 = new EventuallyPastPredicate(new Filter(“SE-
LECT * FROM phi WHERE 0.8*p1 > p2”,new Conjunction(
new StrongPrevious(new AtemporalQuery (“SELECT url, price
AS p1 FROM autos”)), new AtemporalQuery (“SELECT url,
price AS p2 FROM autos”))), 4);

5. Which brands have an increased average price compared to the last
point in time?

• SELECT marke FROM (SELECT * FROM φ) WHERE p <
q[�−(SELECT marke, AVG(price) AS p FROM autos GROUP
BY marke) ∩ SELECT marke, AVG(price) AS q FROM autos
GROUP BY marke]

• Query query1 = new Filter (“SELECT marke FROM phi
WHERE p < q”,new Conjunction(new StrongPrevious(new
AtemporalQuery (“SELECT marke, AVG(price) AS p FROM
autos GROUP BY marke”)), new AtemporalQuery (“SELECT
marke, AVG(price) AS q FROM autos GROUP BY marke”)));

6. Which models have an increased average price compared to the last
point in time?

• SELECT modell FROM (SELECT * FROM φ) WHERE p <
q[�−(SELECT modell, AVG(price) AS p FROM autos GROUP
BY modell) ∩ SELECT modell, AVG(price) AS q FROM autos
GROUP BY modell]

• Query query1 = new Filter(“SELECT modell FROM phi
WHERE p < q”,new Conjunction(new StrongPrevious(new
AtemporalQuery (“SELECT modell, AVG(price) AS p FROM
autos GROUP BY modell”)), new AtemporalQuery (“SELECT

50

modell, AVG(price) AS q FROM autos GROUP BY modell”))
);

7. For which brands did the average price never drop from one time point
to the next in the last 5 time points?

• �−
5 (SELECT marke FROM (SELECT * FROM φ) WHERE

p <= q)[�−(SELECT marke, AVG(price) AS p FROM autos
GROUP BY marke) ∩ SELECT marke, AVG(price) AS q FROM
autos GROUP BY marke]

• Query query1 = new AlwaysPastPredicate(new Filter(“SELECT
marke FROM phi WHERE p <= q”, new Conjunction (new
StrongPrevious (new AtemporalQuery (“SELECT marke , AVG(price)
AS p FROM autos GROUP BY marke”)), new AtemporalQuery
(“SELECT marke, AVG(price) AS q FROM autos GROUP BY
marke”))), 5);

8. For which models did the average price never drop from one time point
to the next in the last 5 time points?

• �−
5 (SELECT modell FROM (SELECT * FROM φ) WHERE

p <= q)[�−(SELECT modell, AVG(price) AS p FROM autos
GROUP BY modell) ∩ SELECT modell, AVG(price) AS q FROM
autos GROUP BY modell]

• Query query1 = new AlwaysPastPredicate(new Filter(“SELECT
modell FROM phi WHERE p <= q”, new Conjunction(new
StrongPrevious (new AtemporalQuery (“SELECT modell, AVG(price)
AS p FROM autos GROUP BY modell”)), new AtemporalQuery
(“SELECT modell, AVG(price) AS q FROM autos GROUP BY
modell”))), 5);

9. For which brands did the amount of offers decrease?

• SELECT marke FROM (SELECT * FROM φ) WHERE p >
q[�−(SELECT marke, COUNT(url) AS p FROM autos GROUP
BY marke) ∩ SELECT marke, COUNT(url) AS q FROM autos
GROUP BY marke]

• Query query1 =new Filter(“SELECT marke FROM phi WHERE
p > q”,new Conjunction(new StrongPrevious(new Atempo-
ralQuery (“SELECT marke, COUNT(url) AS p FROM autos
GROUP BY marke”)), new AtemporalQuery (“SELECT marke,
COUNT(url) AS q FROM autos GROUP BY marke”)));

51

10. For which brands did the average price drop by more than 10% some
time in the past?

• �−(SELECT marke FROM (SELECT * FROM φ) WHERE
0.9 ∗ p > q[�−(SELECT marke, AVG(price) AS p FROM autos
GROUP BY marke) ∩ SELECT marke, AVG(price) AS q FROM
autos GROUP BY marke])

• Query query1 = new EventuallyPast(new Filter(“SELECT marke
FROM phi WHERE 0.9*p > q”,new Conjunction(new Strong-
Previous(new AtemporalQuery (“SELECT marke, AVG(price)
AS p FROM autos GROUP BY marke”)), new AtemporalQuery
(“SELECT marke, AVG(price) AS q FROM autos GROUP BY
marke”))));

11. Which cars were always present until the time point before they were
sold?

• �−(�−(SELECT url FROM autos)) ∩ SELECT url FROM autos
WHERE deleted

• Query query1 = new Conjunction(new StrongPrevious(new
AlwaysPast(new AtemporalQuery (“SELECT url FROM au-
tos”))), new AtemporalQuery (“SELECT url FROM autos
WHERE deleted”));

12. Which cars cost less than 10,000 at the last point in time and cost
more than 10,000 at this point in time?

• �−(SELECT url FROM autos WHERE price < 10.000) ∩ SE-
LECT url FROM autos WHERE price > 10.000

• Query query1 = new Conjunction(new StrongPrevious(new
AtemporalQuery (“SELECT url FROM autos WHERE price <
10.000”)), new AtemporalQuery (“SELECT url FROM autos
WHERE price > 10.000”));

13. Which cars cost more than 1.000.000 some time in the last 6 points in
time?

• �−
6 (SELECT url FROM autos WHERE price > 1000000)

• Query query1 = new EventuallyPastPredicate(new Atemporal-
Query (“SELECT url FROM autos WHERE price > 1000000”
), 6);

52

14. Which cars had more than 100.00km at the last time point and were
sold at this time point?

• �−(SELECT url FROM autos WHERE kilometerstand >
100000) ∩ SELECT url FROM autos WHERE deleted

• Query query1 = new Conjunction(new StrongPrevious(new
AtemporalQuery (“SELECT url FROM autos WHERE kilome-
terstand > 100000”)), new AtemporalQuery (“SELECT url
FROM autos WHERE deleted”));

15. Which cars have cost more than 1.000.000 since it cost less than
1.000.000 until it was sold?

• �−(SELECT url FROM autos WHERE price > 1000000 S SE-
LECT url FROM autos WHERE price < 1000000) ∩ SELECT
url FROM autos WHERE deleted

• Query query1 = new Conjunction (new StrongPrevious (new
Since (new AtemporalQuery (“SELECT url FROM autos
WHERE price > 1000000”), new AtemporalQuery (“SELECT
url FROM autos WHERE price < 1000000”))), new Atempo-
ralQuery (“SELECT url FROM autos WHERE deleted”));

Query i |BHE|/|History|
1 3 0.24
2 3 0.23
3 3 0.24
4 6 0.23
5 2 0.11
6 2 0.12
7 7 0.11
8 7 0.11
9 2 0.11
10 3 0.11
11 3 0.14
12 2 0.13
13 7 0.14
14 2 0.13
15 3 0.22

53

B.2 Complete list of Random Temporal Queries
These queries are given in Java-Syntax as the algorithm to generate these
queries returns queries in this syntax.

1. new SincePredicate (new AtemporalQuery (“SELECT url FROM
autos WHERE NOT deleted”), new AtemporalQuery (“SELECT url
FROM autos WHERE NOT deleted”), 6);

2. new WeakNext (new AtemporalQuery (“SELECT url FROM autos
WHERE NOT deleted”));

3. new AlwaysPredicate (new AtemporalQuery (“SELECT url FROM
autos WHERE NOT deleted”), 3);

4. new StrongNext (new AtemporalQuery (“SELECT url FROM autos
WHERE NOT deleted”));

5. new StrongPrevious (new AtemporalQuery (“SELECT url FROM
autos WHERE NOT deleted”));

6. new SincePredicate (new AtemporalQuery (“SELECT url FROM
autos WHERE NOT deleted”), new AtemporalQuery (“SELECT url
FROM autos WHERE NOT deleted”), 9);

7. new Eventually (new AtemporalQuery (“SELECT url FROM autos
WHERE NOT deleted”));

8. new Until (new AtemporalQuery (“SELECT url FROM autos
WHERE NOT deleted”),new AtemporalQuery (“SELECT url FROM
autos WHERE NOT deleted”));

9. new Disjunction (new AtemporalQuery (“SELECT url FROM au-
tos WHERE NOT deleted”), new AtemporalQuery (“SELECT url
FROM autos WHERE NOT deleted”));

10. new StrongPreviousPredicate (new AtemporalQuery (“SELECT url
FROM autos WHERE NOT deleted”), 7);

11. new StrongNext (new Disjunction (new AtemporalQuery (“SELECT
url FROM autos WHERE NOT deleted”), new AtemporalQuery (
“SELECT url FROM autos WHERE NOT deleted”)));

54

12. new AlwaysPredicate (new Disjunction (new AtemporalQuery (“SE-
LECT url FROM autos WHERE NOT deleted”), new Atemporal-
Query (“SELECT url FROM autos WHERE NOT deleted”)), 7
);

13. new Disjunction (new Always (new AtemporalQuery (“SELECT
url FROM autos WHERE NOT deleted”)), new AtemporalQuery (
“SELECT url FROM autos WHERE NOT deleted”));

14. new WeakPreviousPredicate (new AlwaysPredicate (new Atemporal-
Query (“SELECT url FROM autos WHERE NOT deleted”), 0), 6
);

15. new WeakPrevious (new Conjunction (new AtemporalQuery (“SE-
LECT url FROM autos WHERE NOT deleted”), new Atemporal-
Query (“SELECT url FROM autos WHERE NOT deleted”)));

16. new WeakNextPredicate (new StrongPrevious (new AtemporalQuery
(“SELECT url FROM autos WHERE NOT deleted”)), 5);

17. new Conjunction (new Disjunction (new AtemporalQuery (“SE-
LECT url FROM autos WHERE NOT deleted”), new Atemporal-
Query (“SELECT url FROM autos WHERE NOT deleted”)), new
AtemporalQuery (“SELECT url FROM autos WHERE NOT deleted”
));

18. new StrongPreviousPredicate (new StrongPrevious (new Atemporal-
Query (“SELECT url FROM autos WHERE NOT deleted”)), 0
);

19. new WeakPrevious (new StrongPreviousPredicate (new Atemporal-
Query (“SELECT url FROM autos WHERE NOT deleted”), 0)
);

20. new EventuallyPastPredicate (new StrongPrevious (new Atemporal-
Query (“SELECT url FROM autos WHERE NOT deleted”)), 0
);

21. new EventuallyPredicate (new Eventually (new AlwaysPastPredicate
(new AtemporalQuery (“SELECT url FROM autos WHERE NOT
deleted”), 2)), 3);

55

22. new StrongPrevious (new EventuallyPredicate (new EventuallyPredicate
(new AtemporalQuery (“SELECT url FROM autos WHERE NOT
deleted”), 0), 2));

23. new Conjunction (new AlwaysPredicate (new AtemporalQuery (“SE-
LECT url FROM autos WHERE NOT deleted”), 1), new Weak-
PreviousPredicate (new AtemporalQuery (“SELECT url FROM au-
tos WHERE NOT deleted”), 6));

24. new SincePredicate (new AlwaysPredicate (new AtemporalQuery (
“SELECT url FROM autos WHERE NOT deleted”), 8), new Always-
Past (new AtemporalQuery (“SELECT url FROM autos
WHERE NOT deleted”)), 8);

25. new AlwaysPastPredicate (new WeakNextPredicate (new Strong-
Next (new AtemporalQuery (“SELECT url FROM autos WHERE
NOT deleted”)), 2), 7);

26. new WeakPreviousPredicate (new WeakNext (new Disjunction (new
AtemporalQuery (“SELECT url FROM autos WHERE NOT deleted”
), new AtemporalQuery (“SELECT url FROM autos WHERE NOT
deleted”))), 3);

27. new Eventually (new Until (new AtemporalQuery (“SELECT url
FROM autos WHERE NOT deleted”), new StrongPrevious (new
AtemporalQuery (“SELECT url FROM autos WHERE NOT deleted”
))));

28. new StrongPrevious (new WeakNextPredicate (new Since (new
AtemporalQuery (“SELECT url FROM autos WHERE NOT deleted”
), new AtemporalQuery (“SELECT url FROM autos WHERE NOT
deleted”)), 0));

29. new StrongPrevious (new StrongPreviousPredicate (new WeakPrevious-
Predicate (new AtemporalQuery (“SELECT url FROM autos WHERE
NOT deleted”), 9), 9));

30. new SincePredicate (new AlwaysPast (new AtemporalQuery (“SE-
LECT url FROM autos WHERE NOT deleted”)), new Strong-
PreviousPredicate (new AtemporalQuery (“SELECT url FROM au-
tos WHERE NOT deleted”), 3), 0);

56

31. new AlwaysPast (new Always (new StrongPrevious (new Since (new
AtemporalQuery (“SELECT url FROM autos WHERE NOT deleted”
), new AtemporalQuery (“SELECT url FROM autos WHERE NOT
deleted”)))));

32. new Disjunction (new AtemporalQuery (“SELECT url FROM au-
tos WHERE NOT deleted”), new Since (new AtemporalQuery (
“SELECT url FROM autos WHERE NOT deleted”), new Always-
Predicate (new StrongNext (new AtemporalQuery (“SELECT url
FROM autos WHERE NOT deleted”)), 1)));

33. new StrongPrevious (new AlwaysPastPredicate (new WeakNext-
Predicate (new Conjunction (new AtemporalQuery (“SELECT url
FROM autos WHERE NOT deleted”), new AtemporalQuery (“SE-
LECT url FROM autos WHERE NOT deleted”)), 9), 4));

34. new Eventually (new Until (new Always (new AtemporalQuery (
“SELECT url FROM autos WHERE NOT deleted”)), new Even-
tually (new AtemporalQuery (“SELECT url FROM autos WHERE
NOT deleted”))));

35. new Conjunction (new Conjunction (new UntilPredicate (new Atem-
poralQuery (“SELECT url FROM autos WHERE NOT deleted”),
new AtemporalQuery (“SELECT url FROM autos WHERE NOT
deleted”), 6), new AtemporalQuery (“SELECT url FROM autos
WHERE NOT deleted”)), new StrongNextPredicate (new Atempo-
ralQuery (“SELECT url FROM autos WHERE NOT deleted”), 8)
);

36. new EventuallyPredicate (new UntilPredicate (new AtemporalQuery
(“SELECT url FROM autos WHERE NOT deleted”), new Since-
Predicate (new AlwaysPastPredicate (new AtemporalQuery (“SE-
LECT url FROM autos WHERE NOT deleted”), 4), new Atempo-
ralQuery (“SELECT url FROM autos WHERE NOT deleted”), 9),
5), 9);

37. new Conjunction (new Disjunction (new Always (new Atemporal-
Query (“SELECT url FROM autos WHERE NOT deleted”)), new
AtemporalQuery (“SELECT url FROM autos WHERE NOT deleted”
)), new AlwaysPast (new AtemporalQuery (“SELECT url FROM
autos WHERE NOT deleted”)));

57

38. new AlwaysPast (new Eventually (new StrongNextPredicate (new
StrongNext (new AtemporalQuery (“SELECT url FROM autos
WHERE NOT deleted”)), 0)));

39. new StrongNext (new EventuallyPastPredicate (new StrongNext-
Predicate (new Until (new AtemporalQuery (“SELECT url FROM
autos WHERE NOT deleted”), new AtemporalQuery (“SELECT url
FROM autos WHERE NOT deleted”)), 1), 2));

40. new StrongPrevious (new StrongNext (new UntilPredicate (new
AtemporalQuery (“SELECT url FROM autos WHERE NOT deleted”
), new SincePredicate (new AtemporalQuery (“SELECT url FROM
autos WHERE NOT deleted”), new AtemporalQuery (“SELECT url
FROM autos WHERE NOT deleted”), 7), 5)));

41. new Disjunction (new UntilPredicate (new AtemporalQuery (“SE-
LECT url FROM autos WHERE NOT deleted”) , new StrongNext-
Predicate (new WeakPreviousPredicate (new AtemporalQuery (“SE-
LECT url FROM autos WHERE NOT deleted”), 6), 2), 2),
new Eventually (new AtemporalQuery (“SELECT url FROM au-
tos WHERE NOT deleted”)));

42. new StrongNext (new WeakPreviousPredicate (new StrongNext (
new SincePredicate (new AtemporalQuery (“SELECT url FROM
autos WHERE NOT deleted”), new Always (new AtemporalQuery
(“SELECT url FROM autos WHERE NOT deleted”)), 5)), 9));

43. new StrongNext (new WeakPrevious (new WeakNextPredicate (new
UntilPredicate (new AtemporalQuery (“SELECT url FROM autos
WHERE NOT deleted”), new WeakNext (new AtemporalQuery (
“SELECT url FROM autos WHERE NOT deleted”)), 4), 4)));

44. new Disjunction (new Always (new Conjunction (new Atemporal-
Query (“SELECT url FROM autos WHERE NOT deleted”), new
AtemporalQuery (“SELECT url FROM autos WHERE NOT deleted”
))), new AlwaysPastPredicate (new WeakNext (new Atemporal-
Query (“SELECT url FROM autos WHERE NOT deleted”)), 4)
);

45. new StrongNext (new SincePredicate (new AtemporalQuery (“SE-
LECT url FROM autos WHERE NOT deleted”), new Always (new
StrongPrevious (new WeakPreviousPredicate (new AtemporalQuery
(“SELECT url FROM autos WHERE NOT deleted”), 6))), 3));

58

46. new SincePredicate (new SincePredicate (new StrongPrevious (new
EventuallyPredicate (new AtemporalQuery (“SELECT url FROM
autos WHERE NOT deleted”), 3)), new StrongPrevious (new Atem-
poralQuery (“SELECT url FROM autos WHERE NOT deleted”)),
2), new AtemporalQuery (“SELECT url FROM autos WHERE NOT
deleted”), 5);

47. new WeakPrevious (new WeakNextPredicate (new AlwaysPast (new
EventuallyPastPredicate (new AlwaysPast (new AtemporalQuery (
“SELECT url FROM autos WHERE NOT deleted”)), 5)), 4));

48. new WeakPreviousPredicate (new WeakPrevious (new StrongNext-
Predicate (new Since (new StrongPrevious (new AtemporalQuery (
“SELECT url FROM autos WHERE NOT deleted”)), new Atempo-
ralQuery (“SELECT url FROM autos WHERE NOT deleted”)), 4
)), 3);

49. new WeakNext (new EventuallyPast (new AlwaysPastPredicate (
new Until (new AtemporalQuery (“SELECT url FROM autos
WHERE NOT deleted”), new Since (new AtemporalQuery (“SE-
LECT url FROM autos WHERE NOT deleted”), new Atemporal-
Query (“SELECT url FROM autos WHERE NOT deleted”))), 2)
));

50. new StrongPrevious (new StrongNextPredicate (new StrongNext (
new StrongNextPredicate (new EventuallyPast (new Atemporal-
Query (“SELECT url FROM autos WHERE NOT deleted”)), 9
)), 2));

51. new UntilPredicate (new EventuallyPastPredicate (new AlwaysPredicate
(new Disjunction (new AtemporalQuery (“SELECT url FROM au-
tos WHERE NOT deleted”), new AtemporalQuery (“SELECT url
FROM autos WHERE NOT deleted”)), 7), 3), new Conjunction
(new AtemporalQuery (“SELECT url FROM autos WHERE NOT
deleted”), new WeakPrevious (new AtemporalQuery (“SELECT url
FROM autos WHERE NOT deleted”))), 1);

52. new StrongPreviousPredicate (new Conjunction (new StrongPrevious-
Predicate (new AtemporalQuery (“SELECT url FROM autos WHERE
NOT deleted”), 7), new EventuallyPredicate (new Disjunction (new
Since (new AtemporalQuery (“SELECT url FROM autos WHERE

59

NOT deleted”), new AtemporalQuery (“SELECT url FROM au-
tos WHERE NOT deleted”)), new AtemporalQuery (“SELECT url
FROM autos WHERE NOT deleted”)), 7)), 9);

53. new WeakPreviousPredicate (new StrongNextPredicate (new Always
(new SincePredicate (new AlwaysPastPredicate (new Atemporal-
Query (“SELECT url FROM autos WHERE NOT deleted”), 4),
new AlwaysPredicate (new AtemporalQuery (“SELECT url FROM
autos WHERE NOT deleted”), 9), 2)), 5), 0);

54. new StrongNextPredicate (new EventuallyPastPredicate (new Even-
tuallyPredicate (new Since (new WeakNext (new AtemporalQuery
(“SELECT url FROM autos WHERE NOT deleted”)), new Strong-
Next (new AtemporalQuery (“SELECT url FROM autos WHERE
NOT deleted”))), 4), 3), 5);

55. new Disjunction (new StrongNext (new SincePredicate (new Atem-
poralQuery (“SELECT url FROM autos WHERE NOT deleted”),
new AtemporalQuery (“SELECT url FROM autos WHERE NOT
deleted”), 4)), new StrongNextPredicate (new AlwaysPredicate (
new Conjunction (new AtemporalQuery (“SELECT url FROM au-
tos WHERE NOT deleted”), new AtemporalQuery (“SELECT url
FROM autos WHERE NOT deleted”)), 3), 7));

56. new StrongNextPredicate (new WeakPrevious (new StrongNext-
Predicate (new Until (new SincePredicate (new AtemporalQuery
(“SELECT url FROM autos WHERE NOT deleted”), new Atempo-
ralQuery (“SELECT url FROM autos WHERE NOT deleted”), 6),
new AlwaysPast (new AtemporalQuery (“SELECT url FROM autos
WHERE NOT deleted”))), 3)), 9);

57. new StrongPrevious (new Eventually (new Until (new Atemporal-
Query (“SELECT url FROM autos WHERE NOT deleted”), new
WeakPrevious (new WeakNextPredicate (new EventuallyPast (new
AtemporalQuery (“SELECT url FROM autos WHERE NOT deleted”
)), 6)))));

58. new WeakPreviousPredicate (new StrongPrevious (new Until (new
StrongPreviousPredicate (new AtemporalQuery (“SELECT url
FROM autos WHERE NOT deleted”), 1), new Since (new Atem-
poralQuery (“SELECT url FROM autos WHERE NOT deleted”),

60

new Eventually (new AtemporalQuery (“SELECT url FROM autos
WHERE NOT deleted”))))), 1);

59. new StrongPreviousPredicate (new Conjunction (new Eventually-
PastPredicate (new AlwaysPredicate (new WeakPrevious (new Even-
tuallyPastPredicate (new AtemporalQuery (“SELECT url FROM
autos WHERE NOT deleted”), 3)), 5), 7), new AtemporalQuery
(“SELECT url FROM autos WHERE NOT deleted”)), 6);

60. new WeakPreviousPredicate (new AlwaysPastPredicate (new Strong-
NextPredicate (new Until (new AtemporalQuery (“SELECT url
FROM autos WHERE NOT deleted”), new WeakPreviousPredicate
(new Always (new AtemporalQuery (“SELECT url FROM autos
WHERE NOT deleted”)), 4)), 4), 0), 4);

61. new UntilPredicate (new AlwaysPastPredicate (new Disjunction (
new AtemporalQuery (“SELECT url FROM autos WHERE NOT
deleted”), new Eventually (new AtemporalQuery (“SELECT url
FROM autos WHERE NOT deleted”))), 4), new Eventually (new
StrongPrevious (new StrongNext (new AtemporalQuery (“SELECT
url FROM autos WHERE NOT deleted”)))), 3);

62. new Conjunction (new AlwaysPastPredicate (new Since (new Atem-
poralQuery (“SELECT url FROM autos WHERE NOT deleted”),
new AtemporalQuery (“SELECT url FROM autos WHERE NOT de-
leted”)), 6), new AlwaysPredicate (new StrongPreviousPredicate (
new StrongPrevious (new Always (new AtemporalQuery (“SELECT
url FROM autos WHERE NOT deleted”))), 9), 5));

63. new EventuallyPredicate (new StrongNextPredicate (new Weak-
Previous (new EventuallyPredicate (new StrongPrevious (new Even-
tually (new StrongNextPredicate (new AtemporalQuery (“SELECT
url FROM autos WHERE NOT deleted”), 3))), 4)), 4), 2);

64. new SincePredicate (new UntilPredicate (new AtemporalQuery (
“SELECT url FROM autos WHERE NOT deleted”), new Even-
tuallyPredicate (new AtemporalQuery (“SELECT url FROM autos
WHERE NOT deleted”), 0), 6), new AlwaysPast (new StrongNext-
Predicate (new AlwaysPastPredicate (new AlwaysPastPredicate (
new AtemporalQuery (“SELECT url FROM autos WHERE NOT
deleted”), 9), 4), 4)), 8);

61

65. new StrongPrevious (new StrongNextPredicate (new AlwaysPast (
new EventuallyPastPredicate (new EventuallyPredicate (new Since-
Predicate (new AtemporalQuery (“SELECT url FROM autos
WHERE NOT deleted”), new Disjunction (new AtemporalQuery
(“SELECT url FROM autos WHERE NOT deleted”), new Atempo-
ralQuery (“SELECT url FROM autos WHERE NOT deleted”)), 8
), 1), 7)), 1));

66. new Until (new AlwaysPredicate (new Always (new Atemporal-
Query (“SELECT url FROM autos WHERE NOT deleted”)), 6),
new EventuallyPredicate (new StrongPrevious (new WeakNext (new
StrongPrevious (new AtemporalQuery (“SELECT url FROM autos
WHERE NOT deleted”)))), 5));

67. new StrongNext (new AlwaysPast (new Disjunction (new Atempo-
ralQuery (“SELECT url FROM autos WHERE NOT deleted”), new
AlwaysPast (new AlwaysPastPredicate (new WeakPreviousPredicate
(new WeakPrevious (new AtemporalQuery (“SELECT url FROM
autos WHERE NOT deleted”)), 9), 2)))));

68. new AlwaysPastPredicate (new AlwaysPredicate (new WeakNext-
Predicate (new StrongPrevious (new WeakPrevious (new Since (
new AtemporalQuery (“SELECT url FROM autos WHERE NOT
deleted”), new StrongNext (new AtemporalQuery (“SELECT url
FROM autos WHERE NOT deleted”))))), 2), 7), 8);

69. new Conjunction (new WeakNextPredicate (new WeakNextPredicate
(new StrongNextPredicate (new AtemporalQuery (“SELECT url
FROM autos WHERE NOT deleted”), 4), 2), 8), new Strong-
Next (new Since (new AtemporalQuery (“SELECT url FROM autos
WHERE NOT deleted”), new WeakNextPredicate (new Atemporal-
Query (“SELECT url FROM autos WHERE NOT deleted”), 2)))
);

70. new AlwaysPredicate (new UntilPredicate (new Eventually (new
EventuallyPast (new AtemporalQuery (“SELECT url FROM autos
WHERE NOT deleted”))), new StrongPrevious (new Eventually (
new StrongPreviousPredicate (new AtemporalQuery (“SELECT url
FROM autos WHERE NOT deleted”), 4))), 0), 7);

71. new AlwaysPast (new Until (new StrongPreviousPredicate (new
AtemporalQuery (“SELECT url FROM autos WHERE NOT deleted”

62

), 8), new StrongNext (new EventuallyPredicate (new Until (new
AtemporalQuery (“SELECT url FROM autos WHERE NOT deleted”
), new WeakNext (new Until (new AtemporalQuery (“SELECT
url FROM autos WHERE NOT deleted”), new AtemporalQuery (
“SELECT url FROM autos WHERE NOT deleted”)))), 2))));

72. new StrongPrevious (new Disjunction (new AtemporalQuery (“SE-
LECT url FROM autos WHERE NOT deleted”), new Until (new
Conjunction (new AtemporalQuery (“SELECT url FROM autos
WHERE NOT deleted”), new Disjunction (new StrongPrevious (new
AlwaysPastPredicate (new AtemporalQuery (“SELECT url FROM
autos WHERE NOT deleted”), 9)), new EventuallyPast (new Atem-
poralQuery (“SELECT url FROM autos WHERE NOT deleted”)))
), new AtemporalQuery (“SELECT url FROM autos WHERE NOT
deleted”))));

73. new StrongPrevious (new EventuallyPastPredicate (new WeakPrevious
(new WeakNext (new AlwaysPastPredicate (new AlwaysPredicate
(new Always (new StrongNext (new AtemporalQuery (“SELECT
url FROM autos WHERE NOT deleted”))), 1), 3))), 8));

74. new AlwaysPast (new EventuallyPastPredicate (new WeakNext-
Predicate (new AlwaysPastPredicate (new Always (new Always-
Predicate (new StrongPreviousPredicate (new StrongPrevious (new
AtemporalQuery (“SELECT url FROM autos WHERE NOT deleted”
)), 6), 8)), 8), 7), 0));

75. new StrongPrevious (new Until (new StrongNext (new Eventually-
Past (new StrongNextPredicate (new Since (new AtemporalQuery (
“SELECT url FROM autos WHERE NOT deleted”), new Until (new
AtemporalQuery (“SELECT url FROM autos WHERE NOT deleted”
), new AtemporalQuery (“SELECT url FROM autos WHERE NOT
deleted”))), 4))), new EventuallyPredicate (new AtemporalQuery
(“SELECT url FROM autos WHERE NOT deleted”), 5)));

76. new StrongNextPredicate (new SincePredicate (new Disjunction (
new WeakPrevious (new Disjunction (new AtemporalQuery (“SE-
LECT url FROM autos WHERE NOT deleted”), new Atemporal-
Query (“SELECT url FROM autos WHERE NOT deleted”))),
new StrongNext (new AlwaysPastPredicate (new AtemporalQuery
(“SELECT url FROM autos WHERE NOT deleted”), 2))), new

63

EventuallyPredicate (new AtemporalQuery (“SELECT url FROM
autos WHERE NOT deleted”), 5), 4), 6);

77. new EventuallyPastPredicate (new Conjunction (new StrongNext-
Predicate (new AtemporalQuery (“SELECT url FROM autos WHERE
NOT deleted”), 5), new Eventually (new Eventually (new Since-
Predicate (new StrongPrevious (new AtemporalQuery (“SELECT
url FROM autos WHERE NOT deleted”)), new AlwaysPast (new
AtemporalQuery (“SELECT url FROM autos WHERE NOT deleted”
)), 1)))), 5);

78. new WeakNextPredicate (new Always (new AlwaysPredicate (new
WeakNextPredicate (new UntilPredicate (new AlwaysPast (new
AlwaysPast (new AtemporalQuery (“SELECT url FROM autos WHERE
NOT deleted”))), new WeakNext (new AtemporalQuery (“SELECT
url FROM autos WHERE NOT deleted”)), 6), 3), 5)), 3);

79. new StrongPrevious (new EventuallyPredicate (new WeakPrevious (
new StrongPrevious (new WeakPrevious (new Disjunction (new Until
(new WeakPrevious (new AtemporalQuery("SELECT url FROM
autos WHERE NOT deleted")), new AtemporalQuery("SELECT
url FROM autos WHERE NOT deleted")), new AtemporalQuery(
"SELECT url FROM autos WHERE NOT deleted"))))), 2));

80. new WeakPreviousPredicate (new Since (new SincePredicate (new
Disjunction (new AtemporalQuery (“SELECT url FROM autos WHERE
NOT deleted”), new WeakNextPredicate (new EventuallyPastPredicate
(new Disjunction (new AtemporalQuery (“SELECT url FROM au-
tos WHERE NOT deleted”), new AtemporalQuery (“SELECT url
FROM autos WHERE NOT deleted”)), 7), 5)), new Atempo-
ralQuery (“SELECT url FROM autos WHERE NOT deleted”), 9
), new WeakPrevious (new AtemporalQuery (“SELECT url FROM
autos WHERE NOT deleted”))), 3);

81. new WeakNext (new Conjunction (new StrongPrevious (new Strong-
PreviousPredicate (new Conjunction (new EventuallyPredicate (new
AtemporalQuery (“SELECT url FROM autos WHERE NOT deleted”
), 8), new AtemporalQuery (“SELECT url FROM autos WHERE
NOT deleted”)), 4)), new Since (new SincePredicate (new Atem-
poralQuery (“SELECT url FROM autos WHERE NOT deleted”),
new AtemporalQuery (“SELECT url FROM autos WHERE NOT

64

deleted”), 2), new EventuallyPastPredicate (new AtemporalQuery
(“SELECT url FROM autos WHERE NOT deleted”), 0))));

82. new AlwaysPredicate (new AlwaysPast (new Eventually (new Always-
PastPredicate (new Eventually (new SincePredicate (new Atempo-
ralQuery (“SELECT url FROM autos WHERE NOT deleted”), new
Always (new Eventually (new AlwaysPast (new AtemporalQuery (
“SELECT url FROM autos WHERE NOT deleted”)))), 3)), 6)
)), 9);

83. new Always (new Always (new Since (new Always (new Since-
Predicate (new AtemporalQuery (“SELECT url FROM autos WHERE
NOT deleted”), new StrongPreviousPredicate (new AtemporalQuery
(“SELECT url FROM autos WHERE NOT deleted”), 5), 9)), new
SincePredicate (new AtemporalQuery (“SELECT url FROM autos
WHERE NOT deleted”), new Always (new EventuallyPredicate (
new AtemporalQuery (“SELECT url FROM autos WHERE NOT
deleted”), 4)), 7))));

84. new AlwaysPastPredicate (new Eventually (new WeakNextPredicate
(new SincePredicate (new AtemporalQuery (“SELECT url FROM
autos WHERE NOT deleted”), new EventuallyPredicate (new Weak-
PreviousPredicate (new SincePredicate (new EventuallyPredicate (
new SincePredicate (new AtemporalQuery (“SELECT url FROM
autos WHERE NOT deleted”), new AtemporalQuery (“SELECT url
FROM autos WHERE NOT deleted”), 3), 5), new AtemporalQuery
(“SELECT url FROM autos WHERE NOT deleted”), 6), 5), 3),
7), 4)), 8);

85. new AlwaysPastPredicate (new EventuallyPast (new WeakNext-
Predicate (new UntilPredicate (new Conjunction (new WeakNext-
Predicate (new AtemporalQuery (“SELECT url FROM autos WHERE
NOT deleted”), 2), new AtemporalQuery (“SELECT url FROM au-
tos WHERE NOT deleted”)), new StrongPreviousPredicate (new
AlwaysPastPredicate (new Conjunction (new AtemporalQuery (“SE-
LECT url FROM autos WHERE NOT deleted”), new Atemporal-
Query (“SELECT url FROM autos WHERE NOT deleted”)), 2),
1), 8), 5)), 5);

86. new Eventually (new AlwaysPastPredicate (new UntilPredicate (new
StrongNextPredicate (new EventuallyPastPredicate (new Strong-
NextPredicate (new WeakPreviousPredicate (new Eventually (new

65

WeakPrevious (new AtemporalQuery (“SELECT url FROM autos
WHERE NOT deleted”))), 0), 8), 8), 7), new AtemporalQuery (
“SELECT url FROM autos WHERE NOT deleted”), 3), 1));

87. new Conjunction (new WeakPreviousPredicate (new StrongPrevious
(new StrongPreviousPredicate (new Eventually (new WeakPrevious-
Predicate (new WeakNextPredicate (new Conjunction (new Atem-
poralQuery (“SELECT url FROM autos WHERE NOT deleted”),
new AtemporalQuery (“SELECT url FROM autos WHERE NOT
deleted”)), 4), 7)), 1)), 1), new StrongPrevious (new Atem-
poralQuery (“SELECT url FROM autos WHERE NOT deleted”))
);

88. new StrongNextPredicate (new StrongPreviousPredicate (new Since
(new SincePredicate (new Until (new AlwaysPredicate (new Atem-
poralQuery (“SELECT url FROM autos WHERE NOT deleted”), 1
), new WeakNextPredicate (new WeakPreviousPredicate (new Atem-
poralQuery (“SELECT url FROM autos WHERE NOT deleted”), 7
), 6)), new AtemporalQuery (“SELECT url FROM autos WHERE
NOT deleted”), 8), new SincePredicate (new AtemporalQuery (
“SELECT url FROM autos WHERE NOT deleted”), new Atempo-
ralQuery (“SELECT url FROM autos WHERE NOT deleted”), 4)
), 4), 2);

89. new EventuallyPredicate (new StrongNext (new Conjunction (new
EventuallyPastPredicate (new WeakNextPredicate (new Disjunction
(new AtemporalQuery (“SELECT url FROM autos WHERE NOT
deleted”), new AlwaysPastPredicate (new WeakPreviousPredicate
(new AtemporalQuery (“SELECT url FROM autos WHERE NOT
deleted”), 8), 8)), 4), 4), new Conjunction (new AtemporalQuery
(“SELECT url FROM autos WHERE NOT deleted”), new Atempo-
ralQuery (“SELECT url FROM autos WHERE NOT deleted”)))
), 5);

90. new Disjunction (new WeakNextPredicate (new Eventually (new
Disjunction (new Until (new Disjunction (new AtemporalQuery (
“SELECT url FROM autos WHERE NOT deleted”), new Atemporal-
Query (“SELECT url FROM autos WHERE NOT deleted”)), new
WeakPreviousPredicate (new StrongPreviousPredicate (new Atem-
poralQuery (“SELECT url FROM autos WHERE NOT deleted”), 1
), 3)), new AtemporalQuery (“SELECT url FROM autos WHERE

66

NOT deleted”))), 1), new EventuallyPastPredicate (new Atempo-
ralQuery (“SELECT url FROM autos WHERE NOT deleted”), 3)
);

91. new AlwaysPredicate (new Since (new Always (new Eventually-
Predicate (new AtemporalQuery (“SELECT url FROM autos WHERE
NOT deleted”), 9)), new StrongPreviousPredicate (new AlwaysPast
(new AlwaysPredicate (new AlwaysPredicate (new WeakPrevious-
Predicate (new AlwaysPast (new AtemporalQuery (“SELECT url
FROM autos WHERE NOT deleted”)), 1), 8), 0)), 1)), 2);

92. new AlwaysPast (new UntilPredicate (new SincePredicate (new
WeakNext (new AtemporalQuery (“SELECT url FROM autos WHERE
NOT deleted”)), new AlwaysPastPredicate (new StrongPrevious-
Predicate (new UntilPredicate (new AtemporalQuery (“SELECT url
FROM autos WHERE NOT deleted”), new EventuallyPastPredicate
(new AtemporalQuery (“SELECT url FROM autos WHERE NOT
deleted”), 5), 1), 3), 2), 5), new UntilPredicate (new Atem-
poralQuery (“SELECT url FROM autos WHERE NOT deleted”),
new WeakPreviousPredicate (new AtemporalQuery (“SELECT url
FROM autos WHERE NOT deleted”), 8), 3), 6));

93. new Conjunction (new AlwaysPastPredicate (new AtemporalQuery (
“SELECT url FROM autos WHERE NOT deleted”), 5), new Strong-
PreviousPredicate (new WeakPrevious (new AlwaysPredicate (new
Always (new StrongNext (new StrongPrevious (new Until (new Dis-
junction (new AtemporalQuery (“SELECT url FROM autos WHERE
NOT deleted”), new AtemporalQuery (“SELECT url FROM autos
WHERE NOT deleted”)), new AtemporalQuery (“SELECT url
FROM autos WHERE NOT deleted”))))), 5)), 1));

94. new StrongNext (new WeakPreviousPredicate (new WeakNextPredicate
(new StrongPrevious (new StrongPreviousPredicate (new Strong-
PreviousPredicate (new StrongPrevious (new StrongNext (new Even-
tuallyPastPredicate (new Until (new AtemporalQuery (“SELECT
url FROM autos WHERE NOT deleted”), new AtemporalQuery (
“SELECT url FROM autos WHERE NOT deleted”)), 3))), 7), 1
)), 8), 7));

95. new WeakNext (new StrongPrevious (new EventuallyPastPredicate
(new EventuallyPast (new EventuallyPredicate (new Disjunction
(new EventuallyPredicate (new AtemporalQuery (“SELECT url

67

FROM autos WHERE NOT deleted”), 0), new EventuallyPast-
Predicate (new Always (new Conjunction (new AtemporalQuery
(“SELECT url FROM autos WHERE NOT deleted”), new Atempo-
ralQuery (“SELECT url FROM autos WHERE NOT deleted”))),
3)), 2)), 6)));

96. new Until (new Eventually (new Since (new StrongNext (new
AtemporalQuery (“SELECT url FROM autos WHERE NOT deleted”
)), new AtemporalQuery (“SELECT url FROM autos WHERE NOT
deleted”))), new SincePredicate (new WeakPrevious (new Weak-
Next (new UntilPredicate (new AtemporalQuery (“SELECT url
FROM autos WHERE NOT deleted”), new EventuallyPastPredicate
(new AtemporalQuery (“SELECT url FROM autos WHERE NOT
deleted”), 5), 7))), new Since (new AtemporalQuery (“SELECT
url FROM autos WHERE NOT deleted”), new AtemporalQuery (
“SELECT url FROM autos WHERE NOT deleted”)), 3));

97. new EventuallyPastPredicate (new Conjunction (new Eventually-
PastPredicate (new WeakNext (new AtemporalQuery (“SELECT url
FROM autos WHERE NOT deleted”)), 1), new AlwaysPredicate (
new AlwaysPast (new AlwaysPast (new SincePredicate (new Always-
PastPredicate (new UntilPredicate (new AtemporalQuery (“SE-
LECT url FROM autos WHERE NOT deleted”), new Atemporal-
Query (“SELECT url FROM autos WHERE NOT deleted”), 3), 0
), new AtemporalQuery (“SELECT url FROM autos WHERE NOT
deleted”), 1))), 1)), 1);

98. new StrongPreviousPredicate (new WeakPrevious (new UntilPredicate
(new UntilPredicate (new Disjunction (new EventuallyPredicate (
new AtemporalQuery (“SELECT url FROM autos WHERE NOT
deleted”), 4), new StrongNextPredicate (new AtemporalQuery (
“SELECT url FROM autos WHERE NOT deleted”), 3)), new
EventuallyPastPredicate (new StrongNextPredicate (new Atempo-
ralQuery (“SELECT url FROM autos WHERE NOT deleted”), 7),
2), 6), new Always (new AtemporalQuery (“SELECT url FROM
autos WHERE NOT deleted”)), 7)), 0);

99. new AlwaysPast (new StrongNext (new StrongNext (new Conjunc-
tion (new Always (new Since (new AtemporalQuery (“SELECT
url FROM autos WHERE NOT deleted”), new Always (new Weak-
Next (new AlwaysPastPredicate (new AtemporalQuery (“SELECT

68

url FROM autos WHERE NOT deleted”), 8))))), new Always
(new AtemporalQuery (“SELECT url FROM autos WHERE NOT
deleted”))))));

100. new WeakNext (new Disjunction (new AlwaysPast (new Eventually
(new WeakNext (new EventuallyPastPredicate (new Eventually-
PastPredicate (new AtemporalQuery (“SELECT url FROM autos
WHERE NOT deleted”), 8), 7)))), new Eventually (new Even-
tuallyPredicate (new StrongPreviousPredicate (new AtemporalQuery
(“SELECT url FROM autos WHERE NOT deleted”), 9), 3))));

69

Query i |BHE|/|History| weekly |BHE|/|History| daily
1 7 0.76 0.34
2 1 0.11 4.94 · 10−2

3 1 0.11 4.94 · 10−2

4 1 0.11 4.94 · 10−2

5 2 0.22 9.79 · 10−2

6 10 1.08 0.49
7 1 0.11 4.94 · 10−2

8 1 0.11 4.94 · 10−2

9 1 0.11 4.94 · 10−2

10 8 0.78 0.38
11 1 0.11 4.94 · 10−2

12 1 0.11 4.94 · 10−2

13 1 0.11 4.94 · 10−2

14 7 0.68 0.33
15 2 0.22 9.79 · 10−2

16 2 0.22 9.79 · 10−2

17 1 0.11 4.94 · 10−2

18 2 0.22 9.79 · 10−2

19 2 0.22 9.79 · 10−2

20 2 0.22 9.79 · 10−2

21 3 0.29 0.14
22 5 0.22 9.79 · 10−2

23 7 0.68 0.33
24 2,050 1.05 0.66
25 57 0.43 0.23
26 7 0.3 0.15
27 2 0.22 9.79 · 10−2

28 3 0.22 9.79 · 10−2

29 20 1.02 0.85
30 5 0.4 0.21

70

Query i |BHE|/|History| weekly |BHE|/|History| daily
31 5 0.22 9.79 · 10−2

32 5 0.28 0.14
33 2,561 0.11 4.94 · 10−2

34 1 0.11 4.94 · 10−2

35 1 0.11 4.94 · 10−2

36 14 1.28 0.62
37 2 0.14 6.63 · 10−2

38 4 0.34 0.16
39 9 0.33 0.15
40 72 0.86 0.39
41 7 0.68 0.33
42 47 1.16 0.62
43 513 0.11 4.94 · 10−2

44 9 0.36 0.19
45 14 1.05 0.51
46 66 1.92 1.03
47 24 0.31 0.15
48 67 0.34 0.15
49 8 0.78 0.39
50 4,098 0.34 0.13
51 386 0.75 0.38
52 1,161 1.24 1.03
53 1,029 0.7 0.36
54 197 0.76 0.34
55 5 0.54 0.24
56 24 0.78 0.36
57 322 0.45 0.18
58 12 0.74 0.48
59 421 5.02 2.5
60 265 0.43 0.23

71

Query i |BHE|/|History| weekly |BHE|/|History| daily
61 11 0.73 0.4
62 28 1.1 0.71
63 273 0.11 4.94 · 10−2

64 8,222 7.58 4.98
65 29 2.13 0.86
66 4 0.22 9.79 · 10−2

67 15 1.02 0.63
68 8,199 0.74 0.42
69 5 0.28 0.14
70 8 0.81 0.37
71 137 3.83 2.61
72 14 1.13 0.63
73 185 1.27 0.83
74 69,640 0.99 0.67
75 4,131 0.72 0.32
76 260 1.87 0.97
77 644 0.72 0.38
78 3 0.17 8.33 · 10−2

79 15 0.88 0.47
80 425 14.83 9.33
81 1,284 1.37 0.67
82 78 0.61 0.51
83 303 8.92 5.1
84 67,684 20.06 11.86
85 1.97 · 105 91.34 390
86 5.28 · 105 0.33 0.15
87 210 0.85 0.39
88 3,340 34.72 17
89 81 1.37 0.7
90 8 0.71 0.34

72

Query i |BHE|/|History| weekly |BHE|/|History| daily
91 2.63 · 105 10.51 47
92 2,092 14.79 200
93 520 0.84 0.46
94 7,215 2.52 1.17
95 71 2.8 1.1
96 1,033 1.54 0.74
97 59 1.05 0.64
98 3.36 · 107 0.33 0.15
99 77 0.65 0.4
100 29 3.66 1.42

73

Appendix C

Complete Proofs

Proposition 3.1.2 (ct. Proposition 3.4 in [1]). For a : FVar(φ) → NC and
0 ≤ i ≤ n,

1. I, i |= a(�φ1) iff

• I, i |= a(φ1) and
• i < n implies I, i + 1 |= a(�φ1)

2. I, i |= a(�−φ1) iff

• I, i |= a(φ1) and
• i > 0 implies I, i − 1 |= a(�−φ1)

3. I, i |= a(�φ1) iff

• I, i |= a(φ1) or
• i < n and I, i + 1 |= a(�φ1)

4. I, i |= a(�−φ1) iff

• I, i |= a(φ1) or
• i > 0 and I, i − 1 |= a(�−φ1)

Proof. The proof works mainly on the basis of semantics.
1. �φ1 ≡ φ1 ∧ ��φ1

I, i |= a(�φ1) (C.1)
⇔I, k |= a(φ1) for all k, i ≤ k ≤ n (C.2)
⇔I, i |= a(φ1) and (i < n implies (C.3)
I, k |= a(φ1) for all k, i + 1 ≤ k ≤ n)

⇔I, i |= a(φ1) and (i < n implies I, i + 1 |= a(�φ1)) (C.4)
⇔I, i |= a(φ1 ∧ ��φ1) (C.5)

74

(C.3) is equivalent to (C.2) because

• in case i < n, the query needs to be satisfied now, at time point
i, and at all future time points k, i + 1 ≤ k ≤ n, to be satisfied.
Since i < n is true, the satisfaction of future time points depends
solely on the second part of the “implies”-statement; and

• in case i = n, the query needs to be satisfied now, at time point i,
to be satisfied. There are no future time points k, n + 1 ≤ k ≤ n.
Since i = n is true, I, i |= a(φ1) is equivalent to I, k |= a(φ1)
for all k, n ≤ k ≤ n, and i < n is not true, thus the “implies”-
statement does not affect satisfaction.

2. �−φ1 ≡ φ1 ∧ �−�−φ1

I, i |= a(�−φ1) (C.6)
⇔I, k |= a(φ1) for all k, 0 ≤ k ≤ i (C.7)
⇔I, i |= a(φ1) and (i > 0 implies (C.8)

I, k |= a(φ1) for all k, 0 ≤ k ≤ i − 1)
⇔I, i |= a(φ1) and (i > 0 implies I, i − 1 |= a(�−φ1)) (C.9)
⇔I, i |= a(φ1 ∧ �−�−φ1) (C.10)

(C.8) is equivalent to (C.7) because

• in case i > 0, the query needs to be satisfied now, at time point
i, and at all past time points k, 0 ≤ k ≤ i − 1, to be satisfied.
Since i > 0 is true, the satisfaction of past time points depends
solely on the second part of the “implies”-statement; and

• in case i = 0, the query needs to be satisfied now, at time point
i, to be satisfied. There are no past time points k, 0 ≤ k ≤ 0 − 1.
Since i = 0 is true, I, i |= a(φ1) is equivalent to I, k |= a(φ1) for all
k, 0 ≤ k ≤ 0, and i > 0 is not true, thus the “implies”-statement
does not affect satisfaction.

3. �φ1 ≡ φ1 ∨ ��φ1

I, i |= a(�φ1) (C.11)
⇔I, k |= a(φ1) for some k, i ≤ k ≤ n (C.12)
⇔I, i |= a(φ1) or (i < n and (C.13)

I, k |= a(φ1) for some k, i + 1 ≤ k ≤ n)
⇔I, i |= a(φ1) or (i < n and I, i + 1 |= a(�φ1)) (C.14)
⇔I, i |= a(φ1 ∨ ��φ1) (C.15)

75

(C.13) is equivalent to (C.12) because

• in case i < n, the query needs to be satisfied now, at time point
i, or at any future time point k, i + 1 ≤ k ≤ n, to be satisfied.
Since i < n is true, the satisfaction of future time points depends
solely on the second part of the “and”-statement; and

• in case i = n, the query needs to be satisfied now, at time point i,
to be satisfied. There are no future time points k, n + 1 ≤ k ≤ n.
Since i = n is true, I, i |= a(φ1) is equivalent to I, k |= a(φ1)
for some k, n ≤ k ≤ n, and i > 0 is not true, thus the “and”-
statement does not affect satisfaction.

4. �−φ1 ≡ φ1 ∨ �−�−φ1

I, i |= a(�−φ1) (C.16)
⇔I, k |= a(φ1) for some k, 0 ≤ k ≤ i (C.17)
⇔I, i |= a(φ1) or (i > 0 and (C.18)
I, k |= a(φ1) for some k, 0 ≤ k ≤ i − 1)

⇔I, i |= a(φ1) or (i > 0 and I, i − 1 |= a(�−φ1)) (C.19)
⇔I, i |= a(φ1 ∨ �−�−φ1) (C.20)

(C.18) is equivalent to (C.17) because

• in case i > 0, the query needs to be satisfied now, at time point i,
or at any past time point k, 0 ≤ k ≤ i − 1, to be satisfied. Since
i > 0 is true, the satisfaction of past time points depends solely
on the second part of the “and”-statement; and

• in case i = 0, the query needs to be satisfied now, at time point
i, to be satisfied. There are no past time points k, 0 ≤ k ≤ 0 − 1.
Since i = 0 is true, I, i |= a(φ1) is equivalent to I, k |= a(φ1)
for some k, 0 ≤ k ≤ 0, and i > 0 is not true, thus the “and”-
statement does not affect satisfaction.

Lemma 3.1.6 (ct. Lemma 6.4 in [1]). If Φi−1 for �,�−,� and �− is correct
for i-1, then Φ0

i for �,�−,� and �− is correct for i.

Proof. It is shown by induction on the structure of the subqueries ψ ∈
Sub(φ) that evaln(Φ0

i (ψ)) is equal to Ans(ψ, I(n), i) for all n ≥ i.

76

If ψ = �−ψ1, then

evaln(Φ0
i (ψ)) = evaln(Φ0

i (ψ1)) ∩ evaln(Φi−1(ψ))
= Ans(ψ1,I(n), i) ∩ Ans(ψ, I(n), i − 1)
= Ans(ψ,I(n), i)

If ψ = �−ψ1, then

evaln(Φ0
i (ψ)) = evaln(Φ0

i (ψ1)) ∪ evaln(Φi−1(ψ))
= Ans(ψ1,I(n), i) ∪ Ans(ψ, I(n), i − 1)
= Ans(ψ,I(n), i)

If ψ = �ψ1, then

evaln(Φ0
i (ψ)) = evaln(Φ0

i (ψ1)) ∩ evaln(xψ
i)

= Ans(ψ1,I(n), i) ∩
�

Ans(ψ,I(n), i + 1) if n > i
ΔNV if n = i

�

= Ans(ψ,I(n), i)

If ψ = �ψ1, then

evaln(Φ0
i (ψ)) = evaln(Φ0

i (ψ1)) ∪ evaln(xψ
i)

= Ans(ψ1,I(n), i) ∪
�

Ans(ψ,I(n), i + 1) if n > i
∅ if n = i

�

= Ans(ψ,I(n), i)

Proposition 3.3.2 (ct. Proposition 3.4 in [1]). For a : FVar(φ) → NC,
0 ≤ i ≤ n and p = 0, I, i |= a(φ) iff I, i |= a(φ1) or I, i |= aφ2(φ2),
respectively.

Proof. The proof works mainly on the basis of semantics.

1. �0φ1 ≡ φ1

I, i |= a(�0φ1) (C.21)
⇔i + 0 ≤ n and I, i + 0 |= a(φ1) (C.22)
⇔I, i |= a(φ1) (C.23)

77

2. �0φ1 ≡ φ1

I, i |= a(�0φ1) (C.24)
⇔i + 0 ≤ n implies I, i + 0 |= a(φ1) (C.25)
⇔I, i |= a(φ1) (C.26)

3. �−
0 φ1 ≡ φ1

I, i |= a(�−
0 φ1) (C.27)

⇔i − 0 ≥ 0 and I, i − 0 |= a(φ1) (C.28)
⇔I, i |= a(φ1) (C.29)

4. �−
0 φ1 ≡ φ1

I, i |= a(�−
0 φ1) (C.30)

⇔i − 0 ≥ 0 implies I, i − 0 |= a(φ1) (C.31)
⇔I, i |= a(φ1) (C.32)

5. �0φ1 ≡ φ1

I, i |= a(�0φ1) (C.33)
⇔I, k |= a(φ1) for all k, i ≤ k ≤ min(i + 0, n) (C.34)
⇔I, i |= a(φ1) (C.35)

6. �−
0 φ1 ≡ φ1

I, i |= a(�−
0 φ1) (C.36)

⇔I, k |= a(φ1) for all k, max(i − 0, 0) ≤ k ≤ i (C.37)
⇔I, i |= a(φ1) (C.38)

7. �0φ1 ≡ φ1

I, i |= a(�0φ1) (C.39)
⇔I, k |= a(φ1) for some k, i ≤ k ≤ min(i + 0, n) (C.40)
⇔I, i |= a(φ1) (C.41)

8. �−
0 φ1 ≡ φ1

I, i |= a(�−
0 φ1) (C.42)

⇔I, k |= a(φ1) for some k, max(i − 0, 0) ≤ k ≤ i (C.43)
⇔I, i |= a(φ1) (C.44)

78

9. φ1U0φ2 ≡ φ2

I, i |= a(φ1U0φ2) (C.45)
⇔there is k, i ≤ k ≤ min(i + 0, n), with I, k |= aφ2(φ2) and (C.46)
I, j |= aφ1(φ1) for all j, i ≤ j < k

⇔I, i |= aφ2(φ2) (C.47)

10. φ1S0φ2 ≡ φ2

I, i |= a(φ1S0φ2) (C.48)
⇔there is k, max(i − 0, 0) ≤ k ≤ i, with I, k |= aφ2(φ2) and (C.49)

I, j |= aφ1(φ1) for all j, k < j ≤ i

⇔I, i |= aφ2(φ2) (C.50)

Proposition 3.3.3 (ct. Proposition 3.4 in [1]). For a : FVar(φ) → NC,
0 ≤ i ≤ n and p > 0,

1. I, i |= a(�pφ1) iff

• i < n and I, i + 1 |= a(�p−1φ1)

2. I, i |= a(�pφ1) iff

• i < n implies I, i + 1 |= a(�p−1φ1)

3. I, i |= a(�−
p φ1) iff

• i > 0 and I, i − 1 |= a(�−
p−1φ1)

4. I, i |= a(�−
p φ1) iff

• i > 0 implies I, i − 1 |= a(�−
p−1φ1)

5. I, i |= a(�pφ1) iff

• I, i |= a(φ1) and
• i < n implies I, i + 1 |= a(�p−1φ1)

6. I, i |= a(�−
p φ1) iff

• I, i |= a(φ1) and

79

• i > 0 implies I, i − 1 |= a(�−
p−1φ1)

7. I, i |= a(�pφ1) iff

• I, i |= a(φ1) or
• i < n and I, i + 1 |= a(�p−1φ1)

8. I, i |= a(�−
p φ1) iff

• I, i |= a(φ1) or
• i > 0 and I, i − 1 |= a(�−

p−1φ1)

9. I, i |= a(φ1Upφ2) iff

• I, i |= aφ2(φ2) or
• I, i |= aφ1(φ1) and i < n and I, i + 1 |= a(φ1Up−1φ2)

10. I, i |= a(φ1Spφ2) iff

• I, k |= aφ2(φ2) or
• I, i |= aφ1(φ1) and i > 0 and I, i − 1 |= a(φ1Sp−1φ2)

Proof. The proof works mainly on the basis of semantics.

1. �pφ1 ≡ ��p−1φ1

I, i |= a(�pφ1) (C.51)
⇔i + p ≤ n and I, i + p |= a(φ1) (C.52)
⇔i < n and (i + 1) + (p − 1) ≤ n and I, (i + 1) + (p − 1) |= a(φ1)

(C.53)
⇔i < n and I, i + 1 |= a(�p−1φ1) (C.54)
⇔I, i |= a(��p−1φ1) (C.55)

2. �pφ1 is equivalent to ��p−1φ1

I, i |= a(�pφ1) (C.56)
⇔i + p ≤ n implies I, i + p |= a(φ1) (C.57)
⇔i < n implies (i + 1) + (p − 1) ≤ n implies I, (i + 1) + (p − 1) |= a(φ1)

(C.58)
⇔i < n implies I, i + 1 |= a(�p−1φ1) (C.59)
⇔I, i |= a(��p−1φ1) (C.60)

80

3. �−
p φ1 is equivalent to �−�−

p−1φ1

I, i |= a(�−
p φ1) (C.61)

⇔i − p ≥ 0 and I, i − p |= a(φ1) (C.62)
⇔i > 0 and (i − 1) − (p − 1) ≥ 0 and I, (i − 1) − (p − 1) |= a(φ1)

(C.63)
⇔i > 0 and I, i − 1 |= a(�−

p−1φ1) (C.64)
⇔I, i |= a(�−�−

p−1φ1) (C.65)

4. �−
p φ1 is equivalent to �−�−

p−1φ1

I, i |= a(�−
p φ1) (C.66)

⇔i − p ≥ 0 implies I, i − p |= a(φ1) (C.67)
⇔i > 0 implies (i − 1) − (p − 1) ≥ 0 implies I, (i − 1) − (p − 1) |= a(φ1)

(C.68)
⇔i > 0 implies I, i − 1 |= a(�−

p−1φ1) (C.69)
⇔I, i |= a(�−�−

p−1φ1) (C.70)

5. �pφ1 ≡ φ1 ∧ ��p−1φ1

I, i |= a(�pφ1) (C.71)
⇔I, k |= a(φ1) for all k, i ≤ k ≤ min(i + p, n) (C.72)
⇔I, i |= a(φ1) and (i < n implies (C.73)
I, k |= a(φ1) for all k, i + 1 ≤ k ≤ min((i + 1) + (p − 1), n))

⇔I, i |= a(φ1) and (i < n implies I, i + 1 |= a(�p−1φ1)) (C.74)
⇔I, i |= a(φ1 ∧ ��p−1φ1) (C.75)

(C.73) is equivalent to (C.72) because

• in case i < n, the query needs to be satisfied now, at time point i,
and at future time points k, i + 1 ≤ k ≤ min((i + 1) + (p − 1), n),
to be satisfied. Since i < n is true, the satisfaction of future
time points depends solely on the second part of the “implies”-
statement; and

• in case i = n, the query needs to be satisfied now, at time point
i, to be satisfied. There are no future time points k, n + 1 ≤
k ≤ min((i + 1) + (p − 1), n). Since i = n is true, I, i |= a(φ1) is

81

equivalent to I, k |= a(φ1) for all k, n ≤ k ≤ min(i + p, n), and
i < n is not true, thus the “implies”-statement does not affect
satisfaction.

6. �−
p φ1 ≡ φ1 ∧ �−�−

p φ1

I, i |= a(�−
p φ1) (C.76)

⇔I, k |= a(φ1) for all k, max(i − p, 0) ≤ k ≤ i (C.77)
⇔I, i |= a(φ1) and (i > 0 implies (C.78)

I, k |= a(φ1) for all k, max((i − 1) − (p − 1), 0) ≤ k ≤ i − 1)
⇔I, i |= a(φ1) and (i > 0 implies I, i − 1 |= a(�−

p−1φ1)) (C.79)
⇔I, i |= a(φ1 ∧ �−�−

p−1φ1) (C.80)

(C.78) is equivalent to (C.77) because

• in case i > 0, the query needs to be satisfied now, at time point i,
and at past time points k, max((i−1)−(p−1), 0) ≤ k ≤ i−1, to be
satisfied. Since i > 0 is true, the satisfaction of past time points
depends solely on the second part of the “implies”-statement; and

• in case i = 0, the query needs to be satisfied now, at time point i,
to be satisfied. There are no past time points k, max((i−1)−(p−
1), 0) ≤ k ≤ 0 − 1. Since i = 0 is true, I, i |= a(φ1) is equivalent
to I, k |= a(φ1) for all k, max(i − p, 0) ≤ k ≤ 0, and i > 0 is not
true, thus the “implies”-statement does not affect satisfaction.

7. �pφ1 ≡ φ1 ∨ ��pφ1

I, i |= a(�pφ1) (C.81)
⇔I, k |= a(φ1) for some k, i ≤ k ≤ min(i + p, n) (C.82)
⇔I, i |= a(φ1) or (i < n and (C.83)
I, k |= a(φ1) for some k, i + 1 ≤ k ≤ min((i + 1) + (p − 1), n))

⇔I, i |= a(φ1) or (i < n and I, i + 1 |= a(�p−1φ1)) (C.84)
⇔I, i |= a(φ1 ∨ ��p−1φ1) (C.85)

(C.83) is equivalent to (C.82) because

• in case i < n, the query needs to be satisfied now, at time point
i, or at any of the future time points k, i + 1 ≤ k ≤ min((i + 1) +
(p − 1), n), to be satisfied. Since i < n is true, the satisfaction
of future time points depends solely on the second part of the
“and”-statement; and

82

• in case i = n, the query needs to be satisfied now, at time point
i, to be satisfied. There are no future time points k, n + 1 ≤
k ≤ min((i + 1) + (p − 1), n). Since i = n is true, I, i |= a(φ1)
is equivalent to I, k |= a(φ1) for some k, n ≤ k ≤ min(i + p, n),
and i < n is not true, thus the “and”-statement does not affect
satisfaction.

8. �−
p φ1 ≡ φ1 ∨ �−�−

p φ1

I, i |= a(�−
p φ1) (C.86)

⇔I, k |= a(φ1) for some k, max(i − p, 0) ≤ k ≤ i (C.87)
⇔I, i |= a(φ1) or (i > 0 and (C.88)

I, k |= a(φ1) for some k, max((i − 1) − (p − 1), 0) ≤ k ≤ i − 1)
⇔I, i |= a(φ1) or (i > 0 and I, i − 1 |= a(�−

p−1φ1)) (C.89)
⇔I, i |= a(φ1 ∨ �−�−

p−1φ1) (C.90)

(C.88) is equivalent to (C.87) because

• in case i > 0, the query needs to be satisfied now, at time point
i, or at any of the past time points k, max((i − 1) − (p − 1), 0) ≤
k ≤ i − 1, to be satisfied. Since i > 0 is true, the satisfaction of
past time points depends solely on the second part of the “and”-
statement; and

• in case i = 0, the query needs to be satisfied now, at time point i,
to be satisfied. There are no past time points k, max((i−1)−(p−
1), 0) ≤ k ≤ 0 − 1. Since i = 0 is true, I, i |= a(φ1) is equivalent
to I, k |= a(φ1) for some k, max(i − p, 0) ≤ k ≤ 0, and i > 0 is
not true, thus the “and”-statement does not affect satisfaction.

83

9. φ1Upφ2 ≡ φ2 ∨ (φ1 ∧ �(φ1Up−1φ2))

I, i |= a(φ1Upφ2) (C.91)
⇔there is k, i ≤ k ≤ min(i + p, n), with I, k |= aφ2(φ2) and (C.92)
I, j |= aφ1(φ1) for all j, i ≤ j < k

⇔I, i |= aφ2(φ2) or (I, i |= aφ1(φ1) and (i < n and (C.93)
there is k, i + 1 ≤ k ≤ min((i + 1) + (p − 1), n), with
I, k |= aφ2(φ2) and I, j |= aφ1(φ1) for all j, i + 1 ≤ j < k))

⇔I, i |= aφ2(φ2) or (I, i |= aφ1(φ1) and (i < n and (C.94)
I, i + 1 |= a(φ1Up−1φ2)))

⇔I, i |= a(φ2 ∨ (φ1 ∧ �(φ1Up−1φ2))) (C.95)

(C.93) is equivalent to (C.92) because

• in case i < n, either φ2 needs to be satisfied now, at time point i,
or φ1 needs to be satisfied now, at time point i, and there needs to
be a future time point k, i+1 ≤ k ≤ min((i+1)+(p−1), n), where
φ2 is satisfied and φ1 is satisfied for all time points j, i+1 ≤ j < k,
for the query to be satisfied.

• in case i = n, φ2 needs to be satisfied now, at time point i,
for the query to be satisfied. There are no future time points
k, n + 1 ≤ k ≤ min((i + 1) + (p − 1), n). Since i = n is true,
I, i |= aφ2(φ2) is equivalent to there is k, n ≤ k ≤ min(i + p, n),
with I, k |= aφ2(φ2) and I, j |= aφ1(φ1) for all j, n ≤ j < k,
and i < n is not true, thus the “or”-statement does not affect
satisfaction.

10. φ1Spφ2 ≡ φ2 ∨ (φ1 ∧ �−(φ1Sp−1φ2))

I, i |= a(φ1Spφ2) (C.96)
⇔there is k, max(i − p, 0) ≤ k ≤ i, with I, k |= aφ2(φ2) and (C.97)

I, j |= aφ1(φ1) for all j, k < j ≤ i

⇔I, i |= aφ2(φ2) or (I, i |= aφ1(φ1) and (i > 0 and (C.98)
there is k, max((i − 1) − (p − 1), 0) ≤ k ≤ i − 1, with
I, k |= aφ2(φ2) and I, j |= aφ1(φ1) for all j, k < j ≤ i − 1))

⇔I, i |= aφ2(φ2) or (I, i |= aφ1(φ1) and (i > 0 and (C.99)
I, i − 1 |= a(φ1Sp−1φ2)))

⇔I, i |= a(φ2 ∨ (φ1 ∧ �−(φ1Sp−1φ2))) (C.100)

84

(C.98) is equivalent to (C.97) because

• in case i > 0, either φ2 needs to be satisfied now, at time point i,
or φ1 needs to be satisfied now, at time point i, and there needs to
be a past time point k, max((i−1)−(p−1), 0) ≤ k ≤ i−1, where
φ2 is satisfied and φ1 is satisfied for all time points j, k < j ≤ i−1,
for the query to be satisfied.

• in case i = 0, φ2 needs to be satisfied now, at time point i,
for the query to be satisfied. There are no past time points k,
max((i − 1) − (p − 1), 0) ≤ k ≤ 0 − 1. Since i = 0 is true,
I, i |= aφ2(φ2) is equivalent to there is k, max(i − p, 0) ≤ k ≤ 0,
with I, k |= aφ2(φ2) and I, j |= aφ1(φ1) for all j, k < j ≤ 0,
and i > 0 is not true, thus the “or”-statement does not affect
satisfaction.

Lemma 3.3.5 (ct. Lemma 6.3 in [1]). The function Φ0 with metric temporal
operators is correct for 0.

Proof. It is shown by induction on the structure of the subqueries ψ ∈
Sub(φ) that evaln(Φ0(ψ)) is equal to Ans(ψ,I(n), 0) for all n ≥ 0. The
missing cases can be found in Appendix C.
If ψ = �0ψ1, ψ = �0ψ1, ψ = �−

0 ψ1, ψ = �−
0 ψ1, ψ = �0ψ1, ψ = �−

0 ψ1,
ψ = �0ψ1 or ψ = �−

0 ψ1, then

evaln(Φ0(ψ)) = evaln(Φ0(ψ1)).

This is by induction equal to Ans(ψ1,I(n), 0) which then is, as shown in
Proposition 3.3.2, equal to Ans(ψ,I(n), 0).
If ψ = ψ1U0ψ2 or ψ = ψ1S0ψ2, then

evaln(Φ0(ψ)) = evaln(Φ0(ψ2)).

This is by induction equal to Ans(ψ2,I(n), 0) which then is, as shown in
Proposition 3.3.2, equal to Ans(ψ,I(n), 0).
If ψ = �−

p ψ1, ψ = �−
p ψ1, ψ = �−

p ψ1 or ψ = �−
p ψ1 and p > 0, then

evaln(Φ0(ψ)) = evaln(Φ0(ψ1)).

This is by induction equal to Ans(ψ1,I(n), 0) which then is, as shown in
Proposition 3.3.3, equal to Ans(ψ,I(n), 0).

85

If ψ = �pψ1 and p > 0, then

evaln(Φ0(ψ)) = evaln(x�pψ1
0)

=
�

Ans(�p−1ψ1,I(n), 1) if n > 0
∅ if n = 0

�

= Ans(ψ,I(n), 0)
If ψ = �pψ1 and p > 0, then

evaln(Φ0(ψ)) = evaln(x�pψ1
0)

=
�

Ans(�p−1ψ1,I(n), 1) if n > 0
ΔNV if n = 0

�

= Ans(ψ,I(n), 0)
If ψ = �pψ1 and p > 0, then

evaln(Φ0(ψ)) = evaln(Φ0(ψ1)) ∩ evaln(x�pψ1
0)

= Ans(ψ1,I(n), 0) ∩
�

Ans(�p−1ψ1,I(n), 1) if n > 0
ΔNV if n = 0

�

= Ans(ψ,I(n), 0)
If ψ = �pψ1 and p > 0, then

evaln(Φ0(ψ)) = evaln(Φ0(ψ1)) ∪ evaln(x�pψ1
0)

= Ans(ψ1,I(n), 0) ∪
�

Ans(�p−1ψ1,I(n), 1) if n > 0
∅ if n = 0

�

= Ans(ψ,I(n), 0)
If ψ = ψ1Upψ2 and p > 0, then

evaln(Φ0(ψ)) = evaln(Φ0(ψ2)) ∪ (evaln(Φ0(ψ1)) ∩ evaln(xψ1Upψ2
0))

= Ans(ψ2,I(n), 0) ∪ (Ans(ψ1,I(n), 0) ∩
�

Ans(ψ1Up−1ψ2,I(n), 1) if n > 0
∅ if n = 0

�
)

= Ans(ψ,I(n), 0)
If ψ = ψ1Spψ2 and p > 0, then

evaln(Φ0(ψ)) = evaln(Φ0(ψ2))
= Ans(ψ2,I(n), 0)
= Ans(ψ,I(n), 0)

86

Lemma 3.3.6 (ct. Lemma 6.4 in [1]). If Φi−1 with metric temporal operators
is correct for i-1, then Φ0

i with metric temporal operators is correct for i.
Proof. It is shown by induction on the structure of the subqueries ψ ∈
Sub(φ) that evaln(Φ0

i (ψ)) is equal to Ans(ψ, I(n), i) for all n ≥ i.

If ψ = �0ψ1, ψ = �0ψ1, ψ = �−
0 ψ1, ψ = �−

0 ψ1, ψ = �0ψ1, ψ = �−
0 ψ1,

ψ = �0ψ1 or ψ = �−
0 ψ1, then

evaln(Φ0
i (ψ)) = evaln(Φ0

i (ψ1))
= Ans(ψ1,I(n), i)
= Ans(ψ,I(n), i)

If ψ = ψ1U0ψ2 or ψ = ψ1S0ψ2, then

evaln(Φ0
i (ψ)) = evaln(Φ0

i (ψ2))
= Ans(ψ2,I(n), i)
= Ans(ψ,I(n), i)

If ψ = �pψ1 and p > 0, then

evaln(Φ0
i (ψ)) = evaln(x�pψ1

i)

=
�

Ans(�p−1ψ1,I(n), i + 1) if n > i
∅ if n = i

�

= Ans(ψ,I(n), i)

If ψ = �pψ1 and p > 0, then

evaln(Φ0
i (ψ)) = evaln(x�pψ1

i)

=
�

Ans(�p−1ψ1,I(n), i + 1) if n > i
ΔNV if n = i

�

= Ans(ψ,I(n), i)

If ψ = �−
p ψ1 and p > 0, then

evaln(Φ0
i (ψ)) = evaln(Φi−1(�−

p−1ψ1))

=
�

Ans(�−
p−1ψ1,I(n), i − 1) if i > 0

∅ if i = 0

�

= Ans(ψ,I(n), i)

87

If ψ = �−
p ψ1 and p > 0, then

evaln(Φ0
i (ψ)) = evaln(Φi−1(�−

p−1ψ1))

=
�

Ans(�−
p−1ψ1,I(n), i − 1) if i > 0

ΔNV if i = 0

�

= Ans(ψ,I(n), i)

If ψ = �pψ1 and p > 0, then

evaln(Φ0
i (ψ)) = evaln(Φ0

i (ψ1)) ∩ evaln(x�pψ1
i)

= Ans(ψ1,I(n), i) ∩
�

Ans(�p−1ψ1,I(n), i + 1) if n > i
ΔNV if n = i

�

= Ans(ψ,I(n), i)

If ψ = �−
p ψ1 and p > 0, then

evaln(Φ0
i (ψ)) = evaln(Φ0

i (ψ1)) ∩ evaln(Φi−1(�−
p ψ1))

= Ans(ψ1,I(n), i) ∩ Ans(�−
p−1ψ1,I(n), i − 1)

= Ans(ψ,I(n), i)

If ψ = �pψ1 and p > 0, then

evaln(Φ0
i (ψ)) = evaln(Φ0

i (ψ1)) ∪ evaln(x�p−1ψ1
i)

= Ans(ψ1,I(n), i) ∪
�

Ans(�p−1ψ1,I(n), i + 1) if n > i
∅ if n = i

�

= Ans(ψ,I(n), i)

If ψ = �−
p ψ1 and p > 0, then

evaln(Φ0
i (ψ)) = evaln(Φ0

i (ψ1)) ∪ evaln(Φi−1(�−
p−1ψ1))

= Ans(ψ1,I(n), i) ∪ Ans(�−
p−1ψ1,I(n), i − 1)

= Ans(ψ,I(n), i)

If ψ = ψ1Upψ2 and p > 0, then

evaln(Φ0
i (ψ)) = evaln(Φ0

i (ψ2)) ∪ (evaln(Φ0
i (ψ1)) ∩ evaln(xψ1Upψ2

i))

= Ans(ψ2,I(n), i) ∪ (Ans(ψ1,I(n), i) ∩
�

Ans(ψ1Up−1ψ2,I(n), i + 1) if n > i
∅ if n = i

�
)

= Ans(ψ,I(n), i)

88

If ψ = ψ1Spψ2 and p > 0, then

evaln(Φ0
i (ψ)) = evaln(Φ0

i (ψ2)) ∪ (evaln(Φ0
i (ψ1)) ∩ Φi−1(ψ1Sp−1ψ2))

= Ans(ψ2,I(n), i) ∪ (Ans(ψ1,I(n), i) ∩ Ans(ψ1Sp−1ψ2,I(n), i − 1))
= Ans(ψ,I(n), i)

89

