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Abstract

In the research field of Description Logics (DLs) checking satisfiability of ALCQ
has been investigated thoroughly and is therefore well-known. The DL ALCSCC
extends ALCQ with constraints over role successors using quantifier-free frag-
ments (QF) of Boolean Algebra (BA) and Presburger Arithmetics (PA). Check-
ing satisfiability of this DL has been proven to be decidable and PSpace-complete.
In this work we provide a tableau algorithm to check satisfiability of ALCSCC
concepts and prove its correctness.

5



6



Contents

1 Introduction 9
1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
1.2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2 Preliminaries 13
2.1 QFBAPA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.2 ALCSCC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

3 Tableau for ALCSCC 19
3.1 Transforming an ABox into a formula . . . . . . . . . . . . . . . 20
3.2 Solution of a formula . . . . . . . . . . . . . . . . . . . . . . . . . 21
3.3 The Tableau Algorithm . . . . . . . . . . . . . . . . . . . . . . . 24

4 Correctness 27
4.1 Termination . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
4.2 Soundness and Completeness . . . . . . . . . . . . . . . . . . . . 30

5 Conclusion 35

7



8 CONTENTS



Chapter 1

Introduction

1.1 Motivation

In traditional databases stored data objects do not have any relation with each
other unless explicitly stated. However we can extract additional information
about these objects if we use database systems which employ semantics. Imag-
ine we want to add data entries for two people (Anna and Beth) to a traditional
database. Anna is a teacher at the local school. Beth is a student of her class.
In our database we save their names, the class that Beth attends as well as the
class that Anna teaches. As we do not explicitly encode their student-teacher
relationship the traditional database does not know about it. If we use an
ontology-based system we can deduce this information by making use of seman-
tics. These semantics are described by a set of rules (axioms). In our example
one axiom would be that if a teacher teaches a class and students attend the
same class, then there is a student-teacher relationship between the teacher
and these students. By applying this axiom the ontology-based database can
automatically deduce that Anna is the teacher of Beth. Popular use-cases for
ontology-based systems are databases for biological and medical research [4].
As an example ontologies can be used to automatically fill in missing informa-
tion about patients which are helpful in diagnostics. Another major use-case
for ontologies is the Semantic Web, which is an extension of the World Wide
Web with standards given by the World Wild Web Consortium (W3C)1. These
standards allow a more effective way of combining information from different
sources.
An Ontology (in the field of computer science) can be viewed as formal rep-
resentation of a certain domain of interest. The relationships between entities
in an ontology-based database are formulated by a fragment of first-order logic
(FOL). This fragment of FOL is called Description Logic (DL) and is a family of
knowledge representation systems. DLs mainly consist of concepts, which cor-
respond to unary relations in FOL, and relations between the concepts, which

1https://www.w3.org/standards/semanticweb/, last accessed on December 22, 2020
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correspond to binary relations in FOL. To create more complex (compound)
concepts we can combine concepts by using operators like u, t, v, ∃ and ∀. For
example the statement “All Humans who have children are parents” can be for-
malized in DL as Humanu∃hasChild.> v Parent, where Human and Parent
are concept names and hasChild is a role name. This statement can also be
formalized with a numerical restriction: Humanu ≥ 1hasChild.> v Parent.
A knowledge base consists of a TBox, which contains the axioms, and an ABox,
which contains assertions about certain individual names (objects).
The process of determining whether some statement can be concluded from a
set of information is called reasoning. Reasoning can be done by adding this
statement in negated form (as an axiom or assertion) to the set of information
(TBox or ABox) and then checking whether the updated knowledge base is now
unsatisfiable. If it is unsatisfiable, the statement can be concluded from the
information set. Being able to check the satisfiability of DL statements is there-
fore a valuable tool to conduct reasoning in ontology systems. The DL ALCQ
[5, 9] has been investigated thoroughly and therefore we know a lot about its
satisfiability. This DL allows conjunctions (u), disjunctions (t), negations (¬)
and number restrictions (≤ n r C and ≥ n r C, where n is a number, r a role
name and C a concept). In [5] Hollunder and Baader proved that checking
satisfiability of a ALCQ concept without a TBox is in PSpace and otherwise in
ExpTime.
The DL ALCSCC [1] extends ALCQ with set constraints and cardinality con-
straints over role successors, which use the logic of QFBAPA (quantifier-free
fragment of Boolean Algebra with Presburger Arithmetic) [7]. Instead of the
quantifiers ∃ and ∀ we use set expressions (Boolean Algebra) and numerical
constraints (Presburger Arithmetic). For example Humanu ≥ 1hasChild.> v
Parent is written in ALCSCC as Human u succ(|hasChild| ≥ 1) v Parent.
This DL is more expressive than ALCQ because every quantified restriction of
the form ≤ n r.C or ≥ n r.C can be written in ALCSCC as succ(|r ∩ C| ≤ 1)
or succ(|r ∩ C| ≥ 1) respectively. However a constraint like succ(|r| = |s|) can
not be formulated in ALCQ [1]. Because of this extension checking satisfiability
over ALCSCC becomes more complicated. Nevertheless in [1] Baader has shown
that the satisfiability problem for ALCSCC is still PSpace-complete.
In this work we present a tableau algorithm for ALCSCC. While a tableau
algorithm leads to a runtime complexity worse than PSpace, the benefit of a
tableau algorithm is that we gain a satisfying interpretation (a correct assign-
ment without contradiction) of the concepts, which is also called witness. A
tableau algorithm consists of completion rules which are applied to the asser-
tions of the ABox. By applying these rules new assertions that can be derived
from the original assertions are added to the ABox. If we can no longer apply
any rules and the ABox contains a contradiction, then the ABox is unsatisfiable.
Otherwise it is satisfiable. The main difficulty in creating the completion rules
for ALCSCC is that unlike in ALCQ, the number of successors is not bounded.
By adding role successors the cardinalities in a constraint can vary. For exam-
ple if we have a constraint succ(|r| = |s|), then the bound for the number of
s-successors is equal to the number of r-successors we already have. During a
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tableau algorithm we can add, merge or replace r-successors which changes the
bound for the number of s-successors. To deal with the changing cardinalities of
ALCSCC we transform the assertions with cardinalities to a QFBAPA formula
and use a QFBAPA solver to determine whether the formula is satisfiable or
not. If the formula is not satisfiable, there must be a contradiction. If the solver
returns a solution, we add new assertions accordingly. Since we use a solver that
is capable of returning every possible solution, there can be an infinite number
of solutions. We can show that we can shorten each of these solutions to a
bounded number of role successors without losing any information.

1.2 Related Work

The tableau algorithm is a popular tool to solve the satisfiability problem for
description logics. Hence a lot of research has been done trying to formulate
tableau algorithms for different description logic languages. In [5] Hollunder
and Baader present a tableau algorithm for checking the satisfiability of an
ABox in the DL ALCQ. This satisfiability problem is PSpace-hard. The pre-
sented algorithm consists of five rules which can be applied to the ABox in
non-deterministic order. Two of these rules are decomposing rules for u and t.
Furthermore there is a rule that decides whether a successor of an individual
name also contributes in any other numerical assertion, which helps to deter-
mine the exact number of role successors. The last two rules add and replace
individual names to the ABox according to the numerical restrictions. This is
can lead to an endless loop of adding and replacing invidual names. To avoid
endless loops, the authors introduces a concept of safeness, which has a similar
purpose as blocking in other tableau algorithms: Individual names can only be
replaced if they fullfill the safeness criteria. In [10] Tobies presented an opti-
mized tableau algorithm for ALCQ, which runs in PSpace. This optimization
is achieved by saving an integer which denotes the number of successors already
introduced to satisfy a restriction ≥ n r.C, instead of keeping all n possible
successors.
In [6] Horrocks et al. published tableau algorithms for SHIF concepts and
SI concepts. The DL SI extends the DL ALC with transitive and inverse role
names. The DL SHIF further extends SI with role hierarchy and functional
restrictions. For both DLs the tableau algorithm has to have a blocking tech-
nique to avoid infinite chains of introducing elements with the same properties
which can be caused by transitive or inverse roles. For SI the tableau algorithm
does not only look at the successors but also the predecessors of the considered
individual names when dealing with a ∀-assertion. In case of ∃-assertions the
algorithm first determines whether the considered individual name x is blocked
or not. It is blocked if an ancestor (a non-direct predecessor) is blocked or if
an ancestor has “simila” assertions as x. This algorithm runs in PSpace. For
SHIF the tableau algorithm has to ensure that the considered individual name
x is not pair-wise blocked for any rule. Being pair-wise blocked means that for a
predecessor y of x there are two ancestors of x, such that they behave “similar”
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to y and x. In [3] a DL called SHQ (also known as ALCQHR+) from the SI
family is presented. This DL does not have inverse roles, but a role hierarchy
and numerical restrictions. The difficulty of creating a tableau algorithm for
this DL is that with numerical restrictions an infinite chain of adding individual
names can prevent the termination of the algorithm. Hence the same blocking
technique for the SI families is used.
Regarding the DL ALCSCC, which is considered in this work, Baader provides
a solution for the satisfiability problem without a TBox in [1], which is PSpace-
complete: For a part of the Abox we guess the values (true or false) of the
top-level atoms (concepts). This can already lead to a false result, which would
mean that the ABox is unsatisfiable. If not, then the ABox is reformulated into
a QFBAPA formula. Then the formula is extended with constraints over the
Venn regions of the concepts. For the new formula we test whether it returns
true or false with a satisfiability algorithm for QFBAPA. This satisfiability al-
gorithm runs in NP. If the algorithm returns false we are done. If it returns
true, we create a concept for every guessed Venn region. Then the algorithm
is applied on these new concepts recursively. If it return false, the ABox is
unsatisfiable, otherwise satisfiable.



Chapter 2

Preliminaries

In order to be able to follow the construction of the tableau algorithm for
ALCSCC this section provides a number of important definitions on QFBAPA
and ALCSCC.

2.1 QFBAPA

The logic QFBAPA [7] combines boolean algebra (BA) over a sets of symbols
with Presburger arithmetic (PA). Terms in boolean algebra over a symbol set
T are comprised of conjunctions (∩) and/or disjunctions (∪) of symbols. These
symbols can also be used in negated form (s¬, s ∈ T ). Terms in Presburger
arithmetic are additions of natural numbers. In QFBAPA we construct set
terms using boolean algebra and create cardinality terms over the cardinalities
of those set terms with the help of Presburger arithmetic. As multiplications can
be constructed as chained additions, we also allow multiplication in cardinality
terms. QFBAPA allows the construction of inclusion and comparison constrains
over set and cardinality terms. This is defined as:

Definition 1 (QFBAPA). Let T be a finite set of symbols

• set terms over T are:

– empty set ∅ and universal set U
– every set symbol in T

– if s, t are set terms then so are s ∩ t, s ∪ t and s¬

• set constraints over T are

– s ⊆ t and s 6⊆ t
– s = t and s 6= t

where s, t are set terms

13
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• cardinality terms over T are:

– every number n ∈ N
– |s| if s is a set term

– if k, l are cardinality terms then so are k + l and n · k, n ∈ N

• cardinality constraints over T are:

– k = l and k 6= l

– k < l and k ≥ l
– k ≤ l and k > l

– n dvd k and n ¬dvd k (n dvd k: n divides k)

where k, l are cardinality terms and n ∈ N

A QFBAPA formula φ consists of disjunctions (∨) and/or conjunctions (∧) of
(possible negated) cardinality constraints, where every set symbol is represented
as a set variable.
Set constraints of the form s ⊆ t can be expressed as cardinality constraints like
|s∩ t¬| ≤ 0. Analogously s 6⊆ t can be expressed as |s∩ t¬| > 0. Set constraints
of the form s = t can be written as |s ∩ t¬| ≤ 0 and |s¬ ∩ t| ≤ 0. Analogously
for s 6= t. As all set constraints can be written as cardinality constraints we
will not use them any further. For better readability we write k ≤ l instead of
l ≥ k, k + 1 ≤ l instead of k < l and k ≤ l and l ≤ k instead of k = l.
As an example for a QFBAPA formula consider the symbols T = {l, a, n, e, f}
and the constraints |l| = 2, |l| = |a|, |e ∩ f¬| = 0, |n ∩ f¬| = 0. A formula can
be written as:

|l| = 2 ∧ |l| = |a| ∧ |e ∩ f¬| = 0 ∧ |n ∩ f¬| = 0 (2.1)

To satisfy this formula we have to create a semantic that satisfies all cardinality
constraints (since all constraints are connected with ∧). In this case we need
two elements which are in the semantic of l and therefore also two elements in
the semantic of a.
The semantics of QFBAPA, called substitutions, are defined as follows:

Definition 2 (Substitutions of QFBAPA). A substitution σ over a symbol set
T is a mapping that assigns

• U to a finite set σ(U)

• every symbol a in T to σ(a) ⊆ σ(U)

• ∅ to σ(∅) = ∅

• σ(s ∩ t) := σ(s) ∩ σ(t), σ(s ∪ t) := σ(s) ∪ σ(t)

• σ(s¬) := σ(U)\σ(s)
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• σ(|s|) := |σ(s)|

• σ(k + l) := σ(k) + σ(l), σ(n · k) := n · σ(k)

Given cardinality terms k, l we say that σ satisfies

• k ≤ l iff σ(k) ≤ σ(l)

• ndvd l iff ∃m ∈ N : n ·m = σ(l)

The substitution σ is a solution of a QFBAPA formula φ if it evaluates the
formula to >. A QFBAPA formula is satisfiable if it has a solution σ and is
unsatisfiable otherwise.
For Equation (2.1) a possible solution σ is: Let σ(U) = {leg1, leg 2, arm1, arm 2, nose, ear1, ear2}
and:

• σ(l) = {leg1, leg2}

• σ(a) = {arm1, arm2}

• σ(n) = {nose}

• σ(e) = {ear1, ear 2}

• σ(f) = {nose, ear1, ear2}

This interpretation satisfies the formula because σ(|l|) = 2 = σ(|k|), σ(|n ∩
f¬|) = 0 and σ(|e ∩ f¬|) = 0.
Now we can interpret our formula as:

• we have 2 legs

• we have as many legs as arms

• nose and two ears are both in the same set hence they belong to a common
body part (face)

In [7] Kuncak and Rincard show that checking satisfiability of QFBAPA formu-
las is a NP-complete problem.

2.2 ALCSCC
Next we define the parts and semantics of the description logic ALCSCC [1].
Let C be a set of concept names and R a set of role names, such that C and R
are disjoint.

Definition 3 (ALCSCC). ALCSCC concepts over C and R are defined induc-
tively as:

• all concept names in C

• if C,D are ALCSCC concepts over C and R then so are:

– ¬C
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– C tD
– C uD

• if c is a QFBAPA cardinality constraint over a set T of role names in R
and ALCSCC concepts over C and R then succ(c) is an ALCSCC concept
over C and R

An ALCSCC ABox A is a finite set of assertions of the form x : C and
(x, y) : r, where C is a ALCSCC concept, r ∈ R and x, y are individual names.
The set I(A) is the set of individual names occurring in A.
Regarding Equation (2.1) we can now construct an ABox of specific individual
names. Let C = {Legs,Arms, Female} and R = {bodyParts}. A possible
ABox, which states that an individual name Anna has two legs and two arms
and is female, is:

{Anna : succ(|Legs∩bodyParts| = 2)usucc(|Legs| = |Arms|)uFemale} (2.2)

Similar to the substitutions for QFBAPA we now define the semantics for
ALCSCC which are called interpretations.

Definition 4 (Interpretations of ALCSCC). An interpretation I = (∆I , ·I)
over an ALCSCC ABox A consists of a non-empty set ∆I and a mapping ·I
which maps:

• each individual name x ∈ I(A) to xI ∈ ∆I

• each concept name A ∈ C to AI ⊆ ∆I

• each role name r ∈ R to rI ⊆ ∆I ×∆I , such that every element in ∆I

has a finite number of successors.

The set rI(x) contains all elements y such that (x, y) ∈ rI i.e. it contains all
r-successors of x.
For compound concepts the mapping ·I is extended inductively as follows

• >I = ∆I and ⊥I= ∅I

• (C uD)I := CI ∩DI , (C tD)I := CI ∪DI

• (¬C)I := ∆I\CI

• succ(c)I = {x ∈ ∆I |the mapping ·Ix satisfies c}

The mapping ·Ix is a QFBAPA substitution that maps ∅ to ∅I , U to UIx :=
{
⋃

r∈R r
I(x)}, every concept C occurring in c to CIx := CI ∩ UIx and every

role name r occurring in c to rIx := rI(x).
I is a model of A iff

• x : C iff xI ∈ CI

• (x, y) : r iff (xI , yI) ∈ rI
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We can define a model I of the ABox defined in (2.2) by setting ∆I =
{AnnaI , Leg1I , Leg2I , Arm1I , Arm2I} and

• FemaleI = {AnnaI}

• LegI = {Leg1I , Leg2I}

• ArmI = {Arm1I , Arm2I}

• bodyPartI = {(Anna, Leg1), (Anna, Leg2), (Anna,Arm1), (Anna,Arm2)}

By mapping Anna to AnnaI , Leg1 to Leg1I and so on we see that this inter-
pretation satisfies the ABox: AnnaI is indeed in succ(|Legs∩bodyParts| = 2)I

because Leg1I , Leg2I ∈ bodyPartIAnna ∩LegIAnna . Analogously for the second
succ-assertion.
Next we define the negated normal form (NNF) for ALCSCC. By transforming
all concepts into NNF we avoid nested negations e.g. ¬(¬(¬(A ∪ B))) which
helps to formulate the rules for the tableau algorithm.

Definition 5 (Negation Normal Form). A ALCSCC concept is in negation
normal form (NNF ) if the negation sign ¬ only appears in front of a concept
name or above a role name. Let C be an arbitrary ALCSCC concept. With
NNF (C) we denote the concept which is obtained by applying the the following
rules on C until none of them are applicable anymore.

1 ¬> → ⊥

2 ¬ ⊥ → >

3 ¬¬C → C

4 ¬(C uD) → ¬C t ¬D

5 ¬(C tD) → ¬C u ¬D

6 C¬ → ¬C

7 ¬succ(c) → succ(¬c)

8 ¬(k ≤ l) → l ≤ k

9 ¬(n dvd k) → n ¬dvd k

10 ¬(n ¬dvd k) → n dvd k

11 (s ∩ t)¬ → s¬ ∪ t¬

12 (s ∪ t)¬ → s¬ ∩ t¬

13 (s¬)¬ → s

The rule C¬ → ¬C is necessary because C¬ can be a result of s¬, where
s is a set term. C¬ can be transformed into ¬C: For every substitution σ for
a concept C based on QFBAPA it holds that σ(C¬) = σ(U)\σ(C) and for ev-
ery interpretation I based on ALCSCC it holds that (¬C)I = ∆I\CI . Since
σ(U) ⊆ ∆I we can conclude that every element in σ(C¬) is also in (¬C)I .
All rules used to obtain the NNF can be applied in linear time. For rules 1-5
this is shown in [5],[9]. For rules 6-11 this can be shown analogously because
we only shift the negation signs. Rules 11, 12 and 13 work similarly to rules 4,
5 and 3 respectively.
Regarding the normal form we additionally replace every disjunction and con-
junction in form as u and t in every succ(c) concept with ∩ and ∪. We can do
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this because for an arbitrary interpretation I for each x, y ∈ ∆I it holds that
y ∈ (C uD)Ix iff y ∈ (C ∩D)Ix :

y ∈ (C uD)Ix

y ∈ (C uD)I ∩ UIx

y ∈ CI ∩DI ∩ UIx

y ∈ (CI ∩ UIx) ∩ (DI ∩ UIx)

y ∈ CIx ∩DIx

y ∈ (C ∩D)Ix

↔
↔
↔
↔
↔

Next we define the size of an ALCSCC concept C inductively over concepts,
set terms and cardinality constraints. This definition is necessary for the termi-
nation proof.

• size(r) = size(C) = 1 if r ∈ R, C ∈ C

• size(n) = size(|k|) = 1 if n ∈ N, k cardinality term

• size(¬C) = size(C) + 1

• size(k¬) = size(k) + 1

• size(C uD) = size(C tD) = size(C) + size(D) + 1

• size(k ∩ l) = size(k ∪ l) = size(k) + size(l) + 1

• size(|k|) = size(k)

• size(succ(c)) =

{
1 + size(k) + size(l) c = k ≤ l
1 + size(l) c = ndvd l
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Tableau for ALCSCC

The tableau algorithm is a popular tool to check satisfiability. Even though the
complexity of tableau algorithms can grow exponentially one advantage of them
is that they do not only check if an Abox is satisfiable but also return an inter-
pretation that satisfies this ABox (witness) if one exists. A tableau algorithm
consists of completion rules that are used to iteratively add new assertions to
the ABox that are derived from pre-existing assertions. These rules are exhaus-
tively applied to the Abox until there are no more applicable rules. For some
completion rules like the rule for disjunctions (x : C u D), the algorithm can
decide which assertion is added to the ABox (either x : C or x : D). If such a
choice results in a clash the algorithm back tracks to the point of the decision
and tries an alternative choice instead. If all choices end in a clash, then the
ABox is unsatisfiable.
Before clashes can be defined we first need to introduce the concept of induced
interpretations. Induced interpretations can be used to count the number of
successors of any individual name after any rule application and hereby detect
violated assertions.

Definition 6 (Induced Interpretation). An interpretation I(A) can be induced
from an ABox A through the following steps:

• for each individual name x ∈ I(A) we introduce xI(A) and add it to ∆I(A)

• for each x : C such that C is a concept name we add xI(A) to CI(A)

• for each (x, y) : r such that r is a role name we add (xI(A), yI(A)) to rI(A)

Definition 7 (Violated assertion). Let A be an ABox and x be an individual
name in I(A). An assertion x : succ(c) is violated if xI(A) /∈ succ(c)I(A).

Violated assertions can sometimes be resolved by applying further comple-
tion rules. However if we find a violated assertion and can no longer apply any
rules there is a clash. Aside from unresolvable violated assertions there are other
kinds of situations that are also labelled as clashes.

19
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Definition 8 (Clash). An ABox A contains a clash if

• {x :⊥} ⊆ A or

• {x : C, x : ¬C} ⊆ A or

• {(x, y) : r, (x, y) : ¬r} ⊆ A or

• x : succ(c) ∈ A violated and no more rules are applicable

3.1 Transforming an ABox into a formula

One major difficulty of creating a tableau algorithm for ALCSCC is its numerical
arithmetic in the form of successor-assertions. The application of rules can
change the number of successors which can in turn influence the number of
successors that are demanded by certain constraints. Furthermore it introduces
the problem of nested successor assertions.

Definition 9 (Nested Level). Let A = {x : C} be an ABox. An individual
name lays in the i-th nested level if it is the i-th individual name in a role chain
beginning from x, where the individual name x is in the 0th nested level. A
direct successor of x is in the 1st nested level.

In some DLs we are able to describe the successor of a successor like ∃r.(∃r.C),
such that the number of needed successors is fixed. However in ALCSCC such
boundaries can vary like in x : succ(|succ(|A| < |B|)| > |A|). The number of
successors needed to satisfy succ(|A| < |B|) depends on how many successors
x already has in A. By applying rules the number of successors for x in A can
change. Hence we use a QFBAPA solver whenever we want to add successors
for an individual name x. To do this we first collect all succ-assertions regard-
ing x and then transform them into a QFBAPA formula for the next nested
level, which means we only consider the direct successors of x. We assume that
the ABox is already in NNF . To create an example for a transformation we
consider the following ABox:

Example 1.

A = {x : succ(1 ≤ |succ(|A| ≤ |B ∩ r|)|), x : succ(|A| ≤ |B|), x : C}

with C = {A,B,C} and R = {r}

In this example the first assertion states that x must have at least one
successor y which in turn has at least as many successors in B ∩ r as in A. The
individual names for succ(|A| ≤ |B ∩ r|) are on a different nested level than
the ones for succ(|A| ≤ |B|). The second assertion states that x has at least as
many successors in B as in A.
We start by gathering all succ-assertion regarding x and then transform the
cardinality constraints into a formula by carrying out the following steps:
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• replace all role names r with Xr

• replace all concepts names C with XC

• replace all succ(c) with Xsucc(c)

• connect all formulas with ∧

• include the conjunct U = Xr1 ∪ · · · ∪Xrn , r1, . . . , rn ∈ R

We replace (compound) concepts and role names with set variables, so a solver
can assign elements to them. The last step is important because sometimes it
is not explicitly stated what kind of successor an individual name has. However
a successor must always be “connected” to its predecessor by at least one role
name. Through the last step we ensure that every element (successor) is assigned
to a set variable, which represents a role name.
In our example we have five set variables: XA, XB , Xr, Xsucc(|A|≤|B∩r|) and U .
The QFBAPA formula for Example 1 is:

φ = 1 ≤ |Xsucc(|A|≤|B∩r|)| ∧ |XA| ≤ |XB | ∧ U = Xr (3.1)

We can use the solver to get a possible solution, if there is one. We make
two assumptions about the QFBAPA solver so we can use it in the tableau
algorithm.

Assumption 1. We assume that every considered QFABAPA solver is correct
which means

• it terminates for all QFBAPA formulas

• a formula is satisfiable iff it returns a solution

Assumption 2. Let φ be an arbitrary QFBAPA formula. We assume that
every considered QFABAPA solver is able to return all possible solutions of φ.

3.2 Solution of a formula

By Assumption 2 the QFBAPA solver can return infinitely many solutions for
some formulas. For instance the solver can find infinitely many solutions for
Example 1: Increasing the number of successors in B will always yield new
valid solutions as long as the number of successors in A is kept lower. However
this means that the tableau algorithm is sometimes working on an infinite so-
lution space and hence might not terminate. Therefore we limit the considered
solutions to some pre-computed upper bound. For Integer Linear Programming
(ILP) problems, that can be described as systems of linear equalities, there are
already known ways to compute upper bounds as is shown in [8]. Thus we want
to transform our formulas into a linear system of equalities of the form Mx = b,
where M and b describe our cardinality constraints and x is the solution i.e.
denotes the numbers of elements we have to assign to set variables to satisfy the
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formula.

First, we notice that every inequality in a QFBAPA formula can be rewrit-
ten as n1 · |X1| ± · · · ± ni · |Xi| Q I, Q∈ {≤,≥,=}, where n1, . . . , ni, I ∈
Z are a constants. The numbers n1, . . . , ni are called pre-factors. Let c =
succ(|A| ≤ |B ∩ r|). We can rearrange φ of Example 1 (3.1) as:

φ′ = |Xc| ≥ 1 ∧ |XA| − |XB | ≤ 0 ∧ |U ∩X¬r | = 0 ∧ |U¬ ∩Xr| = 0 (3.2)

Next we transform the two inequalities into equalities by adding slack variables
I1 and I2:

φ′′ =|Xc| − I1 = 1 ∧ |XA| − |XB |+ I2 = 0∧
|U ∩X¬r | = 0 ∧ |U¬ ∩Xr| = 0 (3.3)

At the moment it is not clear whether the set variables are overlapping, which
would be problematic for a system of linear equations, because its variables must
be disjoint. To ensure disjoint variables we consider Venn regions, which are of
the form Xi

1∩· · ·∩Xi
k. The subscript i is either 0 or 1. X0

1 denotes X¬1 and X1
1

denotes X1. As we have 5 set variables, there are 25 = 32 Venn regions. The
number of Venn regions grows exponentially with the number of set variables.
In [1] it is stated that there exists a number N , which is polynomial in the size
of φ, such that at most N Venn regions are not empty if there exists a solution.

Lemma 1 (Lemma 3 from [1]). For every QFBAPA formula φ there is a number
N , which is polynomial in the size of φ and can be computed in polynomial time
such that for every solution σ of φ there exists a solution σ′ of φ such that:

• |{v|v is a Venn region and σ′(v) 6= ∅}| ≤ N

• {v|v is a Venn region and σ′(v) 6= ∅} ⊆ {v|v is a Venn region and σ(v) 6=
∅}

We can guess a number N of Venn regions, which are non-empty (in non-
deterministic polynomial time). For Example 1 we know that any Venn region
within X¬r or U¬ must be empty, because every element must be in U and since
U = Xr they must all be in Xr. Therefore we can drop 24 Venn regions. We
construct M and b such that instead of assigning elements to set variables we
assign them to the remaining 8 Venn regions. That means that for the vector
x the entry xk, 1 ≤ k ≤ 8, denotes the number of elements in the k-th Venn
region. As there are four equations and two slack variables the matrix M has
four rows and ten columns with mij , 1 ≤ i ≤ 4 and 1 ≤ j ≤ 10, denoting
the sum of pre-factors of the set variables, in which the j-th Venn region is
included, occurring in the i-th equation. Let the column vectors describing the
Venn regions be in the following order:

• v1 = XA ∩XB ∩Xc ∩Xr ∩ U ∩ I¬1 ∩ I¬2

• v2 = XA ∩XB ∩X¬c ∩Xr ∩ U ∩ I¬1 ∩ I¬2
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• v3 = XA ∩X¬B ∩Xc ∩Xr ∩ U ∩ I¬1 ∩ I¬2

• v4 = XA ∩X¬B ∩X¬c ∩Xr ∩ U ∩ I¬1 ∩ I¬2

• v5 = X¬A ∩XB ∩Xc ∩Xr ∩ U ∩ I¬1 ∩ I¬2

• v6 = X¬A ∩XB ∩X¬c ∩Xr ∩ U ∩ I¬1 ∩ I¬2

• v7 = X¬A ∩X¬B ∩Xc ∩Xr ∩ U ∩ I¬1 ∩ I¬2

• v8 = X¬A ∩X¬B ∩X¬c ∩Xr ∩ U ∩ I¬1 ∩ I¬2

The last two vectors describe the slack variables:

• v9 = X¬A ∩X¬B ∩X¬c ∩X¬r ∩ U¬ ∩ I1 ∩ I¬2

• v10 = X¬A ∩X¬B ∩X¬c ∩X¬r ∩ U¬ ∩ I¬1 ∩ I2

We now create the linear system of equations:


1 0 1 0 1 0 1 0 1 0
0 0 1 1 −1 −1 0 0 0 1
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0





x1
x2
x3
x4
x5
x6
x7
x8
x9
x10


=
(

1 0 0 0
)

Note that a2,1 and a2,2 are 0 because the pre-factors of |XA| and |XB | in the
second equation are 1 and −1 and the Venn regions v1 and v2 are both included
in XA and XB . If xi = 0, then the i-th Venn region is empty. The last two
rows of M , which represent the equations |U ∩X¬r | = 0 and |U¬ ∩Xr| = 0, are
lines of zeros because we omit the Venn regions, in which U ∩X¬r and U¬ ∩Xr

are included.
Now that we have created a linear system of equations we are able to calculate an
upper bound for the number of elements within the Venn regions. The following
theorem from [8] can be used to establish an upper bound for the solution of
the ILP problem in NP:

Theorem 1 (Theorem 1 from [8]). Let A ∈ Zm × Zn be a matrix and b ∈ Zm

a vector. If x ∈ Nn is a solution of Ax = b, then there exists a solution x′ such
that all entries are integers between 0 and n · (m ·maxi,j{|aij |, |bi|})2·m+1.

We take a look now in the proof of this theorem to understand how the solu-
tion is decreased. We distinguish between two cases. LetM = m·maxi,j{|aij |}m,
F = {i|xi > M} and vi be the i-th column of A
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• If there exist integers αi, for all i ∈ F , such that
∑

i∈F αi · vi = 0 and
∃i : αi > 0 then x′ = x− d, dj = αj if j ∈M else dj = 0, 1 ≤ j ≤ n.

• Else: There must be a vector h ∈ {0,±1,±2, · · · ±M}m such that hT vi ≥
1, i ∈ F . We premultiply A and b with hT and get the equation:

hTAx = hT b

We then can follow that each xi is already smaller than the n · (m ·
maxi,j{|aij |, |bi|})2·m+1.

In both cases we never increase any xi which means we do not have to add
elements to any Venn regions to consider a solution within the upper bound.
Therefore we are able to calculate an upper bound for the number of elements
in each Venn region of the solutions returned by the QFBAPA solver a priori,
which is important for the termination proof.
In Example 1 the upper bound for all xi is 10·(4·max{|1|, |−1|})2·4+1 = 2621440,
which means that we can discard any solution in which a Venn region has more
than 2621440 elements.

3.3 The Tableau Algorithm

Now that we have described how to deal with the numerical challenges of
ALCSCC we construct a tableau algorithm for an ABox in ALCSCC. The al-
gorithm can be divided into two repeating steps. The first step decomposes
disjunctions and conjunctions of concepts into basic concepts. This step con-
siders disjunctions before conjunctions. The second step transforms successor
assertions of a selected individual name into a QFBAPA formula. In the second
step an upper bound for the number of elements in each Venn region is calcu-
lated. Then a solver is used to find a possible solution within this bound, if the
ABox is satisfiable. The second step can only be applied if all conjunctions and
disjunctions have already been decomposed by the first step.

Definition 10 (Tableau for ALCSCC). The completion rules for an ALCSCC
ABox A in NNF are as follows.
First step:

• u-rule: A contains x : C1 u C2 but not both x : C1 and x : C2

→ A := A ∪ {x : C1, x : C2}

• t-rule: A contains x : C1 t C2 but neither x : C1 nor x : C2

→ A := A ∪ {x : C1} or A := A ∪ {x : C2}

Second step:

• successor-rule: A contains an individual name x which has at least one
violated assertion of the form x : succ(c), this rule has not been applied
for x yet and no rules from step 1 are applicable:
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– gather all assertions of the form x : succ(c) into a set S
– transform S into a QFBAPA formula φ as in Section 3.1

– calculate the upper bound as in Theorem 1

If the QFBAPA solver returns unsatisfiable, then A := A ∪ {x :⊥}
If the QFBAPA solver returns satisfiable, then select one solution σ within
the upper bound. For each e ∈ σ(U), we introduce a new individual name
ye and

– if e ∈ XC we set A := A ∪ {ye : C}
– if e ∈ Xsucc(c) we set A = A ∪ {ye : succ(c)}
– if e ∈ Xr, r ∈ R, we set A := A ∪ {(x, ye) : r}
– if e /∈ XC we set A := A ∪ {ye : ¬C}
– if e /∈ Xsucc(c) we set A := A ∪ {ye : NNF (¬succ(c))}
– if e /∈ Xr, r ∈ R, we have A := A ∪ {(x, ye) : ¬r}

A complete ABox is an ABox for which no more rules of the tableau algorithm
are applicable.
Next an example run of this algorithm over the following ABox is given:

Example 2.

A = {x : succ(1 ≤ |succ(|A| ≤ |B ∩ r|)|) u succ(|A| ≤ |B|) u C}

Initially the u-rule is applicable hence it is applied first, which results in an
ABox identical to the one given in Example 1. Now neither the u- nor the t-
rule is applicable. Therefore the successor-rule is applied: Every succ-assertion
regarding x is gathered in a set S := {x : succ(1 ≤ |succ(|A| ≤ |B ∩ r|)|), x :
succ(|A| ≤ |B|)} and then converted to a QFBAPA formula which is identical
to the one presented in Equation (3.1). The upper bound for the number of
elements in this formula is 2621440 (see Section 3.2). If the formula had been
unsatisfiable, x :⊥ would have been added to the ABox. This would result in
the termination of the tableau algorithm as there would be no more applicable
rules and no point to backtrack to. However as the formula is satisfiable the
solver must return a solution, because of Assumption 1. We see that the formula
is satisfiable with Xsucc(|A|≤|B∩r|) = {f}, XA = {}, XB = {e} and Xr = {e, f}.
Because of the constraint U = {Xr} contained in the formula every element
must be in Xr i.e. every successor is an r-successor. The QFBAPA solver is
capable of returning this solution because of Assumption 2. Obviously in this
solution every Venn-region has less than 2621440 elements. Next two individual
names ye and yf are introduced for the elements e and f and the assertions
ye : B, (x, ye) : r, yf : succ(|A| ≤ |B ∩ r|) and (x, yf ) : r are added to A. For
the next two graphics we omitted the information that x satisfies the concepts
succ(1 ≤ |succ(|A| ≤ |B ∩ r|)|) u succ(|A| ≤ |B|) u C, succ(1 ≤ |succ(|A| ≤
|B ∩ r|)|) and succ(|A| ≤ |B|) due to readability:
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x

ye yf

C

B succ(|A| ≤ |B ∩ r|)

r r

Then the successor-rule is applied to yf because no rules of step 1 are ap-
plicable. Since yf : succ(|A| ≤ |B ∩ r|) is the only succ-assertion it is sufficient
to introduce an r-successor satisfying the concept B. We assume that the QF-
BAPA solver returns the solution XB = Xr = {g}. Therefore the algorithm
introduces an individual name yg and adds yg : B and (yf , yg) : r to A.

x

ye yf

yg

C

B succ(|A| ≤ |B ∩ r|)

B

r r

r

The algorithm only adds assertions for individual names which are currently
considered in the first step or which are introduced in the second step. Hence if
all possible rules are applied to the individual name x and there is no clash, then
all assertions of x must remain satisfied until the tableau algorithm terminates.
In the next chapter we formally prove the correctness of this algorithm.



Chapter 4

Correctness

To prove the correctness of the tableau algorithm we have to show the following
statements:

• The tableau algorithm terminates for every input.

• If no more rules are applicable on a clash-free ABoxA, thenA is satisfiable.

• If A is satisfiable, then the tableau algorithm terminates without a clash.

For all proofs we make use of Assumptions 1 and 2. First we prove that the
algorithm always terminates.

4.1 Termination

An ABox is called a derived ABox if it is the result of a finite number of rule
applications on an ABox.

We can show that each of the completion rules must terminate:

• u- and t-rule: Both rules terminate because they decompose finite com-
pound concepts.

• successor-rule: Since ABoxes are finite they can only have a finite subset
S of successor-assertions and therefore the algorithm can always create a
(finite) QFBAPA formula. By Assumption 1 the QFBAPA solver always
terminates and returns a finite solution. Therefore only a finite number of
successors are added during the application of this rule. Hence this rule
application always terminates.

To prove termination we map every ABox A to an element Ψ(A) of a set Q.
Each Ψ(A) consists of triples ψA(x) for each individual name x. Let ≺ be an
strict partial ordering, which is an irreflexive (if a ≺ b then b 6≺ a) and transitive
(if a ≺ b and b ≺ c then a ≺ c) relation (with a, b, c being comparable elements).

27
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If we can show that ≺ is well-founded (e.g. there is no infinite decreasing chain)
and that for every ABox A′, which is derivable from an ABox A, it must hold
that Ψ(A′) ≺ Ψ(A) and Ψ(A) 6≺ Ψ(A′), then the termination of the algorithm
can be concluded.
Each triple in Q consists of a multiset of natural numbers and two natural
numbers. A multiset of natural numbers M ′ is smaller than another multiset
of natural numbers M if we can obtain M ′ from M by replacing at least one
number n of M with natural numbers, which are all smaller than n, or by
deleting at least one number of M . For example M ′ = {2, 2, 2, 1, 5} is smaller
than M = {2, 3, 5} because it can be obtained by replacing the second entry 3
of M with 2, 2, 1. We say that the empty multiset {} is always smaller than any
multiset of natural numbers. Since the multisets consist of natural numbers,
which can be ordered by the strict partial order <, they can also be ordered
by ≺. A triple T1 = (x1, x2, x3) is smaller than a triple T2 = (y1, y2, y3) if
T1 is lexicographically smaller (from left to right) than T2 which means that
for the first i ∈ {1, 2, 3} where xi 6= yi it holds that xi is smaller than yi.
Because we have triples of numbers they can also be ordered by ≺. Therefore
Ψ(A′) ≺ Ψ(A) if we can replace at least one triple ψA(x) in Ψ(A) with at least
one triple ψA′(x′), such that ψA′(x′) ≺ ψA(x) or if we can remove at least one
triple from Ψ(A) in order to obtain Ψ(A′).
Note that in Section 2.2 we require that each instance of C uD and C tD in a
cardinality term is replaced by C ∩D and C ∪D respectively.
Now we describe what the triples in Q look like.

Definition 11. Let A be a derived ABox. The multiset Ψ(A) consists of triples.
Each triple ψA(x) represents one individual name x:

• The first component ψA,1(x) is the natural number max{size(C)|x : C ∈
A}.

• The second component ψA,2(x) is a multiset which contains the natural
numbers size(CuD) for each assertion x : CuD ∈ A for which the u-rule
is applicable. Respectively for x : C tD.

• The third component ψA,3(x) is the number 1 if the successor-rule is
applicable and 0 otherwise.

For the ABox A in Example 2 we have the following multiset:

Ψ(A) = {ψA(x)} = {(7, {7, 7}, 0)} (4.1)

After decomposing we get the ABox A1, which is used in Example 1.

Ψ(A1) = {ψA1(x)} = {(7, {}, 2)} (4.2)

We can see that ψA′,2(x) ≺ ψA,2(x) because A1 does not contain any conjunc-
tions on which the u-rule is applicable anymore. Therefore it does not matter
that the third entry of the triple ψA(x) has grown. Hence ψA′(x) ≺ ψA(x)
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which means Ψ(A′) ≺ Ψ(A).
Next the successor-rule is applied and we add two new individual names ye and
yf to obtain A2. Therefore two new triples have to be added:

Ψ(A2) = {ψA2(x), ψA2(ye), ψA2(yf )} = {(7, {}, 0), (1, {}, 0), (3, {}, 1)} (4.3)

We see that ψA2(x), ψA2(ye) and ψA2(yf ) are smaller than ψA1(x) so it holds
that Ψ(A2) ≺ Ψ(A1).
We then apply the successor-rule on last time to yf which results in the multiset:

Ψ(A3) = {ψA3(x), ψA3(ye), ψA3(yf ), ψA3(yg)} =

{(7, {}, 0), (1, {}, 0), (3, {}, 0), (2, {}, 0)} (4.4)

The newly introduced triple ψA3(yg) is smaller then ψA2(yf ), because ψA3,1(yg) <
ψA2,1(yf ), and therefore Ψ(A3) ≺ Ψ(A2) ≺ Ψ(A1) ≺ Ψ(A).
We finally prove the termination of the algorithm.

Lemma 2. For any ABox A = {x : C} the tableau algorithm terminates.

Proof. We show that if A′ is derivable from A by applying a rule from Definition
3.3, then it holds that: Ψ(A′) ≺ Ψ(A).

• A′ is obtained from A by applying the u-rule on x : C uD: The first com-
ponent remains unchanged because size(C) ≤ size(CuD) and size(D) ≤
size(C u D). It holds that ψA′,2(x) ≺ ψA,2(x) because the number
size(CuD) is removed from ψA,2(x) (as we can only apply the u-rule once
on x : C uD). In case C and/or D happen to be disjunctions or conjunc-
tions ψA′,2(x) still becomes smaller because size(C) < size(C)+size(D)+
1 = size(C uD) (respectively for size(D)). Hence ψA′(x) ≺ ψA(x).
For any other individual name y, where y 6= x, the triple ψA(y) remains
unchanged.

• A′ is obtained from A by applying the t-rule on x : C tD: analogously
as for the u-rule.

• A′ is obtained from A by applying the successor-rule on x : succ(c):
ψA,1(x) remains unchanged because no assertions are added for x. This
rule is applicable, as both the u-rule and t-rule are not applicable on A
and we have not applied this rule for x yet. Because neither the u-rule
nor the t-rule is applied, ψA,2(x) remains unchanged. It also holds that
ψA,3(x) = 1 because the successor-rule can be applied on an assertion of
x. After applying the successor-rule it holds that ψA′,3(x) = 0. Therefore
ψA′(x) ≺ ψA(x).
For every freshly introduced individual name y we have to add a triple
ψA′(y) to Ψ(A′). For every y : C ∈ A′ we know that C must be part
of a cardinality constraint c such that x : succ(c) ∈ A and therefore
size(succ(c)) > size(C). That means that max{size(C)|y : C ∈ A′} is
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always smaller than max{size(C)|x : C ∈ A′} by the definition of size(C).
Hence ψA′,1(y) < ψA′,1(x) and therefore ψA′(y) ≺ ψA′(x).
For any other individual name z, where z 6= x and z = y, the triple ψA(y)
remains unchanged.

Hence in all three cases Ψ(A′) can be obtained from Ψ(A) by replacing ψA(x)
with the smaller triple ψA′(x). For any newly introduced individual names we
showed that the new triples must be smaller than ψA′(x). Therefore Ψ(A′) ≺
Ψ(A).
Because we work with natural numbers the ordering< over them is well-founded.
Therefore we also know that ≺ for multisets over natural numbers is also well-
founded [2, Theorem 2.5.5]. Since the natural numbers and multisets of natural
numbers can be ordered by a well-founded ordering, the triples which are con-
structed after Definition 11, which are “lexicographical products of two termi-
nating relations” [2, Theorem 2.4.2], can be ordered by a well-founded ordering
as well. Therefore ≺ over the multisets of these triples is well-founded, too [2,
Theorem 2.5.5].

4.2 Soundness and Completeness

Next we prove the correctness of the algorithm, i.e. that the algorithm termi-
nates with a clash-free ABox iff the ABox is satisfiable.

Lemma 3 (Soundness). If the tableau algorithm is applied on an ABox A =
{x : C} and terminates without a clash, then A is satisfiable.

Proof. Let A′ be the returned ABox after the algorithm terminated. By Lemma
2 the tableau algorithm must always terminate. Since no assertions are removed
during the algorithm it must hold that A ⊆ A′. Hence if an interpretation I
satisfies A′ then it also satisfies A. Let I(A′) be the induced interpretation of
A′. We show that I(A′) indeed satisfies A′ by induction over the concepts:
For each concept name C ∈ C where x : C ∈ A′, it holds that xI(A

′) ∈ CI(A′)

by the definition of induced interpretations (induction base).
We consider x : C where C is a compound concept (induction step):

• C = ¬D: Since A′ does not contain a clash, x : C ∈ A implies x : D /∈ A.
D must be a concept name, because A′ is in NNF . Therefore by the
definition of induced interpretations and x : D /∈ A it holds that xI(A

′) /∈
DI(A

′) which implies xI(A
′) ∈ ∆I(A

′)\DI(A′) = CI(A
′).

• C = D u E: After the algorithm terminates, the u-rule is no longer
applicable. That means that there is an individual name x, such that {x :
D,x : E} ⊆ A′. By the induction hypothesis it holds that xI(A

′) ∈ DI(A′)

and xI(A
′) ∈ EI(A′). Therefore xI(A

′) ∈ DI(A′) ∩ EI(A′) = CI(A
′).

• C = D t E: After the algorithm terminates, the t-rule is not applicable
anymore. That means that there is an individual name x, such that {x :
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D,x : E} ∩ A′ 6= ∅. By the induction hypothesis it holds that xI(A
′) ∈

DI(A
′) or xI(A

′) ∈ EI(A′). Therefore xI(A
′) ∈ DI(A′) ∪ EI(A′) = CI(A

′).

• C = succ(c): Since A′ does not contain a clash, the QFBAPA solver must
have returned a solution. If the solution is empty, then no individual names
need to be introduced to satisfy x : C and therefore xI(A

′) ∈ CI(A′). If
the solution is not empty, then a new individual name ye is introduced
for the ABox for each e ∈ U . Therefore the induced interpretation is also

updated with a new element y
I(A′)
e . For each e ∈ XC we have ye : C ∈ A′.

Therefore y
I(A′)
e must be in CI(A

′). For each e ∈ Xr we have (x, ye) : r ∈
A′ and therefore (xI(A

′), y
I(A′)
e ) ∈ rI(A′). Lastly for each e ∈ Xsucc(d) we

have ye : succ(d) ∈ A′. By the induction hypothesis it must hold that

y
I(A′)
e ∈ succ(d)I(A

′). Since the solver returns a valid solution, we know
that xI(A

′) ∈ succ(c)I(A′).

As I(A′) satisfies A′ and it holds that A ⊆ A′, I(A′) must also satisfy A.

Next we prove that the algorithm can construct ABoxes with which every
possible model within the pre-computed upper bound can be induced.

Lemma 4 (Completeness). If A := {x : C} is satisfiable then the tableau
algorithm terminates without a clash.

Proof. By Lemma 2 we know that the tableau algorithm always terminates.
It remains to show that the algorithm terminates returning a clash-free ABox.
Since A is satisfiable it does not contain a clash. Let I = (∆I , ·I) be an
interpretation which satisfies A. We show that if Ai does not contain a clash
and I satisfiesAi, thenAi+1 can be obtained fromAi by applying a rule without
introducing a clash and while maintaining satisfiability by I.
As stated I satisfies the clash-free ABox A =: A0 (induction base). Let Ai be a
clash-free ABox which is satisfied by I (induction hypothesis). We distinguish
cases based on the rules applied on Ai to obtain Ai+1 (induction step):

• the algorithm applies the u-rule on x : CuD: The interpretation I satisfies
Ai+1 = Ai∪{x : C, x : D} because by the hypothesis I already satisfies Ai

and hence also x : C uD. That means that xI ∈ (C uD)I and therefore
{x,C, x : D} ∪ Ai is satisfied by I.

• the algorithm applies the t-rule on x : C t D: It has to be shown that
either Ai+1 = Ai ∪ {x : C} or Ai+1 = Ai ∪ {x : D} is satisfied by I. By
the induction hypothesis Ai is satisfied by I and hence xI = (C t D)I .
So either xI ∈ CI and hence the algorithm chooses Ai+1 = Ai ∪ {x : C}
or xI ∈ DI and hence the algorithm chooses Ai+1 = Ai ∪ {x : D}. In
both cases I satisfies Ai+1.

• the algorithm applies the succ-rule on x : succ(c): It has to be shown that
during that step successors are added such that I satisfies Ai+1. First all
succ-assertions are gathered in a set S, transformed to a QFBAPA formula
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φ(x) and given to a solver that returns all possible solutions within an
upper bound. Because Ai is satisfiable, S is also satisfiable (subset of Ai).
Hence there have to be solutions which are returned by the solver. We need
to show that the solver is capable of returning a solution within the upper
bound, such that Ai+1 is satisfied by I. In case xI has no successors, the
empty solution must be a valid solution, which can be returned the solver.
If I is finite and the number of x’s successors within each Venn region is
within our upper bound, then we can create a solution σ induced by I,
which can be returned by our solver. In any other case it has to be shown
that a (finite) solution can be created from I, which the solver is able to
return. We know that xI must have a finite number of successors in I.
Therefore we can create a solution σ based on that: Let σ be an empty
solution. For each e ∈

⋃
r∈R r

I(x) we add e to σ(U):

– for each (xI , e) ∈ rI add e to σ(Xr)

– for each e ∈ CI add e to σ(XC)

– for each e ∈ succ(c)I add e to σ(Xc)

It is clear that if the solver returns this solution, then I satisfies Ai+1. If
each Venn region of this solution has more elements than the calculated
upper bound, we can reduce the number of successors by applying the
following steps [8]: Convert the QFBAPA formula to a system of linear
equations An = b like in Section 3.2. There has to be a solution, because
S is satisfiable. Let n be a solution to this system such that nk = |{e|e ∈
σ(Xi

1)∩· · ·∩σ(Xi
m)}|, where Xi

1∩· · ·∩Xi
m is the k-th Venn region. Then

n can be reduced to n′ like shown in Section 3.2. With the help of n′ a new
solution σ′ is created by adding n′k successors to the k-th Venn region. It
holds that (†):

– σ∗(U) ⊆ σ(U)

– for each e ∈ σ∗(U): e ∈ σ∗(Xv) iff e ∈ σ(Xm)
with m ∈ C ∪R ∪ {succ(c)|x : succ(c) ∈ Ai}

This holds true because no successors are added to any Venn-region in
order to obtain n′.
The algorithm then creates individual names according to the solution σ′,
which leads to the satisfaction of all succ-assertions of x. For each element
e ∈ σ′(U) there is an individual name ye such that:

– ye : C ∈ Ai+1 iff e ∈ σ′(XC), C ∈ C

– ye : succ(c) ∈ Ai+1 iff e ∈ σ′(Xsucc(c))

– (x, ye) : r ∈ Ai+1 iff e ∈ σ′(Xr)

Because of (†) it can be concluded that:

– ye : C ∈ Ai+1 iff e ∈ σ(XC), C ∈ C
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– ye : succ(c) ∈ Ai+1 iff e ∈ σ(Xsucc(c))

– (x, ye) : r ∈ Ai+1 iff e ∈ σ(Xr)

Since σ is induced by I:

– ye : C ∈ Ai+1 iff e ∈ CI , C ∈ C

– ye : succ(c) ∈ Ai+1 iff e ∈ succ(c)I

– (x, ye) : r ∈ Ai+1 iff (xI , e) ∈ rI

Hence we can extend I by yIe = e which satisfies Ai+1.
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Chapter 5

Conclusion

The description logic ALCSCC is an extension of the well-known description
logic ALCQ which adds set constraints and cardinality constraints over role
successors. These role successors are hard to deal with when checking satisfia-
bility of ALCSCC concepts. This work presents a way of checking satisfiability
of ALCSCC concepts, by constructing a tableau algorithm which uses a QF-
BAPA solver to deal with role successors. In [10] Tobies and Ganzinger show
that checking satisfiability for ALCSCC is in PSpace, however the tableau al-
gorithm we present runs in 2ExpSpace: We know that for each successor-rule
application there can be an exponential number of successors introduced in the
worst case which is shown in Section 3.2. Each of the newly added successors
is also capable of introducing exponentially many successors. The advantage of
using a tableau algorithm is that it does not only check satisfiability but also
returns a satisfying interpretation (model) for the concept.
For future works the presented algorithm can be extended for ALCSCC con-
cepts w.r.t. a TBox. In [1] Baader proves that the satisfiability problem w.r.t.
a TBox is in ExpTime. One approach to extend the algorithm would be to add
all information that can be concluded from the TBox first, i.e. if it holds that
C v D (every individual name in C is also in D) and x : C, then x : D has to be
added to the ABox. This has to be done for every newly introduced individual
name.
One drawback of the presented tableau algorithm is that it relies on a QFBAPA
solver which is used as a black-box solver. Therefore an interesting extension to
this work would be to modify the tableau algorithm such that it works without
using a black-box solver. Doing this would most likely require the introduction
of blocking techniques to prevent endless loops of adding and merging (or re-
placing) individual names like it has been done for ALCQ and the SI families.
Another interesting area to do research on is the pre-computed upper bound. In
the presented work this bound grows exponentially with the number of successor
assertions, which causes the complexity to be in 2ExpSpace. Finding a smaller
upper bound would prove that the algorithm does have a lower complexity.
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