
Technische Universität Dresden
Faculty of Computer Science

Institute for Automata Theory

Measuring description logic models
using weighted tree automata

A thesis in fulfillment of the requirements for the degree of

Bachelor of Science

Jakob Krude

Matr-No.: 4818249
born 21.08.1999 in Berlin

Submitted on the 23.07.2021

First reviewer:
Dr.-Ing. Stefan Borgwardt

Second reviewer:
Prof. Heiko Vogler



Declaration of authorship

I hereby declare that I wrote the bachelor thesis I submitted today to the
examination board of the Faculty of Computer Science on the topic:

Measuring description logic models
using weighted tree automata

completely on my own and that I did not use any sources and tools othert
han those indicated. All thoughts taken directly or indirectly from external
sources are properly denoted as such.

1



Abstract

Description Logics are used in a range of different fields. The main
research areas study the applications, extensions and their complexity.
This thesis is dedicated to evaluate the quality of models for Descrip-
tion Logics. For this purpose, it is shown how weighted alternating
tree automata can be used to measure features of models. Afterwards,
based on these automata, methods are proposed to enforce features of
models to given thresholds. Finally, an alternating tree automaton is
defined which accepts exactly those models that conform to the given
feature restrictions.

2



Contents

1 Introduction 4

2 Preliminaries 6
2.1 ALC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.2 Alternating Tree Automata . . . . . . . . . . . . . . . . . . . 8
2.3 Using Alternating tree automata on ALC models . . . . . . . 10

3 Detecting the initial part 12

4 Indexed trees 19

5 Measuring description logic models 21
5.1 Measuring tree model with weighted alternating tree automata 22
5.2 Using measurements as model requirement . . . . . . . . . . . 27

6 Conclusion 30

3



1 Introduction

Structuring and formalizing knowledge is an essential step in understand-
ing a domain and represent its complex relations. Description Logics (DLs)
are becoming the de facto standard for such purposes. The key aspect of
DLs is to define concepts and their relations. A concept can be described
by defining rules that specify which properties must apply to elements of
the concept. These rules can be atomic, so-called concept names or define
relationships (roles) between elements. More complex concepts can be built
by combining two or more using concept-constructions. To improve organ-
isation further, it is possible to define hierarchies between concepts as sub-
and superconcepts.

For example, one could model a small society using DLs. “Person” and
“Job” would be atomic concepts. The concept of a worker (“Worker”) is a
person that works at a job, here “worksAt” is a relationship. A person can
live (“livesIn”) in a home (“Home”). Building on these concepts a member
(“Member”) of the society should have a job and is living in a home. De-
scribing the relation between people we can add “childOf” and require that
every child of a member is a member too.

Once formalized, it can be tested whether all rules are fulfilled for different
societies. A given society would be a set of individuals belonging to the var-
ious concepts and relations. Such a society is called an interpretation. If all
given criteria are fulfilled it is considered to be a model. For a description
of a domain, there may be more than one interpretation satisfying it. For
instance, there could be many different societies that fulfill the above con-
ditions. As illustrated, description logics offer many possibilities to describe
the individual concepts, their relations and hierarchies. However, many char-
acteristics of models can be influenced only conditionally. For example, an
interpretation could meet all the formal definitions but become unintention-
ally large. For instance, one could be interested in very small societies with
less than 50 members. These requirements do not directly affect if a concept
is fulfilled, but in which way it is fulfilled. In this respect, it can be interesting
to compare different models regarding some features, e.g. by measuring their
size or number of role connections. In this regard, models that are as small
and simple as possible could play an important role in understanding the sat-
isfiability of concepts. This is because interrelationships and dependencies
become more obvious in a model that is as concise as possible. In particu-
lar, this is relevant in the context of larger and more complicated ontologies,
where contradictions and unintended side effects may occur.

4



To solve all stated problems, defining relevant features, measuring and con-
straining models, this thesis establishes the necessary prerequisites, and after-
wards, several methods are presented for measuring models. Specifically, this
approach is based on the description logic ALC, which makes it particularly
versatile. Measuring models will be realized by using weighted alternating
tree automata. In this sense, models are considered to be tree-shaped. The
underlying idea in measuring models will therefore be to think of properties
of models as properties of trees. Trees bring an advantage in terms of a higher
degree of structure compared to general graphs. However, this may resolve in
redundant elements, that are equal with respect to some concept. They can
be thought of as duplicates of other elements and are only necessary to keep
trees cycle-free. Therefore these redundancies should be excluded from any
measurements and must be detected beforehand. Finally, several methods
are introduced to apply the measured properties as restrictions to models.
This thesis is based mainly on the results and automata from [1].

Determining similarities between concepts is a growing interest [7]. However,
most approaches focus mainly on the composition of concepts rather than the
structure of models. Furthermore, there are some extensions to ALC that
allow additional requirements. For example number restrictions in ALCN
allow to restrict the number of relationships between concepts. However,
none of these approaches is as versatile in measuring and thus constraining
models as described in this thesis. Feature-based comparisons of models
have not yet been studied and bring a new aspect to the field of description
logics.

5



2 Preliminaries

2.1 ALC
Description Logic is a broad family of languages. Individual instances differ in
expressiveness, complexity, decidability, or objective. ALC is a well-studied
DL [3] and basis for many more. ALC-concepts are built inductively from the
already mentioned atomic concept and role names. The set NC represents
all concept names and NR all role names. Every other concept is constructed
using one of following methods: Let C,D be ALC-concepts and r an ALC-
role name. Then:

• ¬C is a concept;

• C uD is a concept;

• C tD is a concept;

• ∃r.C is a concept and

• ∀r.C is a concept.

Additionally, > and ⊥ are ALC-concepts. As mentioned in the introduction
an interpretation is a pair I = (∆I , ·I), where ∆I is a non-empty set called
interpretation domain, and ·I the interpretation function. The interpretation
function assigns to every A ∈ NC a set AI ⊆ ∆I and to each role r ∈ NR

a binary relation rI ⊆ ∆I × ∆I . Further, ·I is extended to concepts as
follows:

Syntax Semantics

> ∆I

⊥ ∅
¬C ∆I \ CI

C uD CI ∩DI

C tD CI ∪DI

∃r.C {d ∈ ∆I | ∃e ∈ ∆I , (d, e) ∈ rI ∧ e ∈ CI}
∀r.C {d ∈ ∆I | ∀e ∈ ∆I : (d, e) ∈ rI =⇒ e ∈ CI}

CI is the extension of C. The notion of an extension of a concept C describes
all elements in CI . All hierarchies between ALC-concepts are described as
general concept inclusions (GCIs) of the form C v D. A set of GCIs is called
TBox. If every C v D in a given TBox T is satisfied by an interpretation
I, that is CI ⊆ DI , I is called a model of T . Accordingly, I is said to be a
model of a concept C w.r.t. T if CI 6= ∅ and I is a model of T .

6



Revisiting the example from the introduction, a possible formalization for
the society could be: Worker ≡ Person u ∃worksAt.Job and Member ≡
Worker u ∃livesIn.Home, where Person, Job, Home are concepts names and
worksAt, livesIn are role names. As mentioned in the introduction, every
child of a member is a member too: ∃childOf.Member v Member. It is
common to represent an interpretation as directed graph, where every node
represents an element from the interpretation domain and an edge represents
a relationship. Concept names to which an element belongs are expressed as
node labels. A possible interpretation for the given society description could
look like:

Person

PersonPerson

Job

Home

Home

childOf

worksAt

livesIn

worksAt

livesInlivesIn

Note that only concept names and role names are stated explicitly, compound
concept extensions follow implicitly, for example the bottom left element is
in the extension Member. This interpretation would be a model for C =
∀childOf.(∃livesIn.Home) and the already mentioned TBox, in other words
there is a child for which all parents live in a house.

Alternatively, every GCI could be defined as a concept, e.g.
¬(∃childOf.Member) t Member. This possibility to interpret TBoxes as a
concept is often used for the sake of convenience and simplicity. Specifically,
a given TBox T can be expressed as concept CT =

d
CvD∈T ¬CtD. Then an

interpretation I satisfies T iff for all elements d in ∆I applies d ∈ CT .

In the following we assume that every ALC-concept is in negation normal
form. An ALC-concept C is in negation normal form (nnf ) if any negation
occurs only directly in front of concept names. The transformation for any
concept into negation normal form can be done in linear time, NNF (C) will
be used as notation for such a transformation.

sub(C) denotes all subconcepts of C and is defined by induction over the

7



structure of C:

• If C = A ∈ NC ∪ {>,⊥}, then sub(C) = {A}

• If C = C1uC2 or C = C1tC2, then sub(C) = {C}∪sub(C1)∪sub(C2)

• If C = ¬D or C = ∃r.D or C = ∀r.D, then sub(C) = {C} ∪ sub(D)

sig(C) denotes the set of all role and concept names used in C. Both defini-
tions are taken from [3, Def. 3.10 and Def. 6.3]. As a note it should be men-
tioned that ALC allows to describe specific individuals by concept assertions
and role assertions. A finite set of ALC concept and role assertions is called
an ALC-ABox. However, this thesis is focused only on ALC-TBoxes.

2.2 Alternating Tree Automata

There are a number of different definitions used to describe alternating tree
automata. This work is based on the definitions and results from [1], in
particular on the automaton AC,T . The main purpose of AC,T is to test the
satisfiability of an ALC-concept C with respect to an ALC-TBox T , where
T is given as {> v CT }. To achieve this, conditions described in C and
CT are checked step by step on the input tree. For example, given a concept
∃r.A the automaton requires one child node that is labeled with r and fullfills
every condition of A. However, in order to measure various features, a model
is needed in which successor nodes can be addressed directly, as possible
in [4]. Although not directly expressible through the model used in this
thesis, Section 4 presents a way to simulate similar structures.

We recall the definitions from [1, Def. 1]. First the notion of a tree and tree
domain is defined. A tree domain is a prefix-closed, non-empty set D ⊆ N∗,
written as domT , where for every u ∈ N∗, i ∈ N if ui ∈ D, then u ∈ D. Let Σ
be an alphabet. A Σ-labeled tree is a pair (domT , T ), where T is a function
mapping from domT to Σ. Every element u in domT is called a node. If
there exists no i ∈ N with ui ∈ domT , u is called a leaf. For every i ∈ N,
if ui ∈ domT then ui is called a child of u. Tree(P(Σ)) is the set of all
P(Σ)-trees.

Let π(v) = u0, u1, . . . , un be the path from the root to some node u ∈ domT ,
with u0 = ε and un = u. Formally ∀k ∈ {0, . . . n− 1} : ∃i ∈ N : uki = uk+1.
Due to the properties of a tree for every u ∈ domT there is exactly one
π(u).

Given an alphabet Σ and a set of states Q, the transition function is defined
as δ : Q→ TC(Σ, Q), where TC(Σ, Q) is one of the following: true, false,

8



σ or ¬σ for σ ∈ Σ; q1 ∨ q2; q1 ∧ q2 for q1, q2 ∈ Q or ♦q,�q for q ∈ Q.

Definition 1 (alternating tree automaton). An alternating tree automaton
(ata) A working on P(Σ)-trees is a tuple A = (Σ, Q, q0, δ), where

1. Σ is a finite alphabet;

2. Q is a finite set of states;

3. q0 ∈ Q is the initial state and

4. δ is the transition function Q→ TC(Σ, Q).

The execution of an ata A over a given P(Σ)-labeled tree is called a run R
over A. Because transitions like q1 ∧ q2 are allowed R itself is a (domT ×Q)-
labeled tree, such that ε ∈ domR, R(ε) = (ε, q0), and for all u ∈ domR with
R(u) = (v, q) we have:

• δ(q) 6= false;

• if δ(q) = σ, then σ ∈ T (v); and if δ(q) = ¬σ, then σ /∈ T (v);

• if δ(q) = q1 ∧ q2, then there exists i1, i2 ∈ N with R(ui1) = (v, q1) and
R(ui2) = (v, q2);

• if δ(q) = q1 ∨ q2, then there exists i1, i2 ∈ N with R(ui1) = (v, q1) or
R(ui2) = (v, q2);

• if δ(q) = ♦q′, then there exists i, j ∈ N with R(ui) = (vj, q′) and

• if δ(q) = �q′, then for every i ∈ N with vi ∈ domT there exists j ∈ N
with R(ui) = (vj, q′).

These descriptions follow the definitions from [1, Def. 1].

Formally, AC,T is specified as an alternating parity tree automaton. The
parity property affects the acceptance for runs. Specifically, only those runs
are accepted for which the largest priority, which occurs infinitely often along
a branch, is even. However, for AC,T the priority function is defined as
Ω(q) = 0, i.e. everything is accepted. As described in the following sections,
this thesis works on the initial part of tree models, which can only contain
finitely long branches. Consequently, in this thesis the parity property is
omitted and every run is accepted.

A tree T is accepted by an ata A if there exists a run on A over T . Conse-
quently, the language L(A) is the set of all accepted trees. Also, not explicitly
mentioned complex transition conditions, like ♦(A ∨ ¬q) ∧ �false, can be
allowed without changing the expressiveness. Such an automaton that allows

9



complex transitions can be transformed into an equivalent automaton using
only simple transitions by introducing new states for each subformula [8].
The emptiness problem for ata, that is the decision problem whether L(A) = ∅,
is in ExpTime [8].

A subtree T ′ of a tree T , is similar to a tree, only that an arbitrary u ∈ N∗
can be the root. Therefore the tree domain is only prefix closed beyond u,
i.e. for every v ∈ N∗, i ∈ N if vi ∈ D then v ∈ D only applies for every
vi 6= u. However every node v ∈ domT \ {u} has to be a descendant of
u, i.e. there exists γ ∈ N∗ : v = uγ. Further domT ′ ⊆ domT and for all
v ∈ domT ′ : T ′(v) = T (v). A sub-run R starting from q ∈ Q at u ∈ domT

is a (domT × Q) labeled tree, where R(ε) = (u, q), from where on the same
rules apply as for a normal run. In other words, a sub-run can start from
any node in a tree at any state in the automaton.

2.3 Using Alternating tree automata on ALC models

In the following, some symbols will be frequently reused and therefore not
explicitly defined each time. If not stated otherwise C is an ALC-concept,
T is an ALC-TBox in the form {> v CT } and Σ = sig(C) ∪ sig(CT ). As
introduced NC is the set of all concept names and NR the set of role names,
respectively N∗R := NR ∩ Σ and N∗C := NC ∩ Σ denote those used in C and
CT . Additionally, when u and ui are used to denote nodes of a tree T , ui
refers to a child node of u, i.e. i ∈ N. As already introduced, this work is
based on ALC tree models. Tree models are formally introduced in [3, Def.
3.20]. There a tree is a graph G = (V,E) such that

• V contains a unique root, i.e. there is no edge to this node in V and

• for every e ∈ E there is at most one f ∈ E with (f, e) ∈ V .

A tree model I = (∆I , ·I) for some concept C and TBox T is a model and
additionally: (∆I ,

⋃
r∈NR

rI) is a tree. Limiting all models to be tree models
is not a limitation, because it is well known that ALC has the tree model
property [3, Theorem 3.24]. It states that every satisfiable concept C has a
tree-shaped model where the root is an element of C. The definition of a
tree domain does not allow labeled edges, therefore role names will be pushed
into labels of child nodes.

Revisiting the example of a society, defining C as ∃worksAt.Jobu∃childOf.Person
and T as {Person v ∃livesIn.Home}, a tree-shaped model could look like:

10



Person

childOf, Person

worksAt, Job

livesIn, Home

livesIn, Home

Example 1

However other models are imaginable that are not as intuitive:

Person

childOf, worksAt, livesIn,
Person, Job, Home

livesIn, Home

Too many concept names for
one node

Person

childOf, Person

childOf, Person

childOf, Person

livesIn, Home worksAt, Job

livesIn, Home

livesIn, Home

livesIn, Home

Unnecessarily deep model

11



3 Detecting the initial part

In this section the main problem of redundant elements in a tree model is
addressed. As mentioned in [1, p. 6], cycles in a given TBox T can enforce
infinite tree models. This is a well-known consequence of unravelling an
ALC-model into a tree model. The resulting tree will have infinitely long
branches that contain repetitions of nodes that are equal in the sense of
concept satisfaction w.r.t. C and CT . For the majority of features, measuring
the full tree model would be misleading and only the initial part is of concern.
For example let’s consider a society with strong work hierarchies
C = ∃employerOf.Person and T = {Person v ∃employerOf.Person}.

Person

employerOf

employerOf

Example 2

Model with cycle as a graph.

employerOf, Person

employerOf, Person

employerOf, Person

. . .

Tree-shaped model.

Measuring the number of people that are an employer of someone in the tree
model, would result in infinitely many people instead of two. In order to
avoid those problems, an extension A′C,T to AC,T defined in [1, Def. 3] is
given. The main idea behind A′C,T will be to identify equivalence of nodes
in a given tree based on which combination of concepts and sub-concepts
within C and T are fulfilled. If a node fulfills some combination of concepts
which was already fulfilled before, the automaton will halt and require the
label §. To keep track of which concepts have already been fulfilled, a tuple
of ones and zeros is carried along, where each bit represents a concept.

Definition 2. Let C be an ALC-concept, and a T be an ALC-TBox given
as {> v CT } with both C and CT in negation normal form.
Let S = sub(C) ∪ sub(CT ).
Let SCC := { C1 u · · · u Ck uNNF (¬D1) u · · · uNNF (¬Dj)

| {C1, . . . , Ck} = U ; {D1, . . . , Dj} = S \ U for U ∈ P(S)}.

12



Let cc1, . . . , ccn be an arbitrary enumeration for cci ∈ SCC.
The ata A′C,T = (Σ, Q, q0, δ)is defined as follows:

− Σ = sig(C) ∪ sig(CT ) ∪ {§}

− Q = QD ∪QR ∪ {q0, qr≥1} ∪QT ∪Qcc ∪Qcheck

− QD = {qD, qD′ | D ∈ S,D′ = NNF (¬D)}

− QR = {qr, q¬r | r ∈ NR ∩ Σ}

− Qcc = {qcci | cc1, . . . , ccn ∈ SCC}

− QT = {(qT , ω)| ω ∈ {0, 1}n}, where n = |SCC |

− Qcheck = {(qchecki , ω) | ω ∈ {0, 1}n, i ∈ {1, . . . , n}}

The transition function is defined as in AC,T :

δ(qσ) = σ
δ(qC1uC2) = qC1 ∧ qC2

δ(q∃r.C) = ♦(qr ∧ qC)
δ(q>) = true

δ(q¬σ) = ¬σ
δ(qC1tC2) = qC1 ∨ qC2

δ(q∀r.C) = �(¬qr ∨ qC)
δ(q⊥) = false

And extended with:

– δ(q0) = qC ∧ (qT , (0)n)

– δ((qT , ω)) =
∨

1≤i≤n
(qcci ∧ (qcheck,i, ω))

– δ((qchecki , ω)) = § if ω[i] = 1

– δ((qcheck,i, ω)) = ¬§ ∧ (qCT ∧�(qr≥1 ∧ (qT , ω
′))) if ω[i] = 0, where

ω′ = ω[i→ 1]

– δ(qr≥1) =
∨

r∈NR∩Σ

qr

Note that cci is a conjunction of ALC-concepts, where qcci follows the transi-
tions ofAC,T . As mentioned earlier, for all nodes must be tested if they satisfy
CT . Previously this was implemented by the transition δ(qT ) = qCT ∧ �qT
defined in AC,T . In contrast, the automaton A′C,T first guesses the concept
combination from SCC that is satisfied by the current node. Subsequently
qcheck,i tests if the concept combination was satisfied before. If that is true a
cycle was detected and the automaton halts. Only if this is not the case, the
further expansion δ(qT ) = qCT ∧�(qT , ω

′) takes place. Finally, qr≥1 ensures
that for every node beside the root at least one role name is part of the label.
This will be important for the later definition of a representation.

13



Definition 3. Given an ALC-concept C, an ALC-TBox T and a P(Σ)-
labeled tree T . Two nodes u, v ∈ domT are considered conceptual-equal if
there exists a cc ∈ SCC for which there are two sub-runs Rv, Ru that start at
(v, qcc) and (u, qcc).

Definition 4 (Accepted / Initial part). Let A = (Σ, Q, q0, δ)be an ata work-
ing on P(Σ)-trees and T be a P(Σ)-tree. Let C be an ALC-concept, and T
an ALC-TBox given as {> v CT }. Let u ∈ domT be a node of T and π(u)
the path from the root to u. u is within the accepted part of T if one of the
following is true:

1. There is no pair ui, uj in π(u) where ui and uj are conceptual-equal.

2. There are ui, uj (j > i) in π(u) that are conceptual-equal for some
cc ∈ SCC with sub-runs Rui , Ruj and:

• if u /∈ domT than Ruj would not qualify as a run anymore,

• no other conceptual-equal pair uk, ul ∈ π(u) exists with k, l < j.

The accepted part of a tree is denoted as Tacc. Note that even though redun-
dant some nodes are part of the accepted part in order to properly detect
cycles, however they can be ignored in further sections and are not part of
Tinit. With Tinit we denote the set

{u ∈ Tacc | there are no ui, uj in π(u) that are conceptual-equal}.

In order to use the recognition of conceptually equal nodes in later automata,
A′C,T requires cycles to be marked by a §, i.e. for all conceptual equal nodes
ui, uj in the accepted part § ∈ T (uj) has to be true. Finally, with Cyc(T )
we denote the set of conceptual-equal nodes:

{(v, u) ∈ Tinit × Tacc | v, u are conceptual-equal ∧ § ∈ T (u)}.

In order to get a better understanding of the introduced terms, let’s revisit
the previous example.

14



employerOf, Person

employerOf, Person

employerOf, Person

. . .

Accepted part

employerOf, Person

employerOf, Person

employerOf, Person

. . .

Initial part

employerOf, Person

employerOf,
Person

employerOf, Person

. . .

Detected cycle

The second and third node fulfill the same concept combination:
cc = ∃employerOf.Person u Person. In order to test if this is true, the fourth
node has to be part of the tree that is accepted by A′C,T .

Definition 5 (Representation). Given an ALC-concept C, an ALC-TBox T
and a P(Σ)-labeled tree T .
T represents a tree model I of C w.r.t. T if there exists a set Iinit ⊆ ∆I for
which there exists a bijection ρ : Tinit → Iinit with the following properties:

1. ρ(ε) is the root of I

2. ∀r ∈ NR : ∀d ∈ Iinit, e ∈ ∆I : (d, e) ∈ rI =⇒ ∃u ∈ Tinit, ui ∈ domT :
(ρ(u) = d) ∧ (ρ(ui) = e) ∧ ({s | (d, e) ∈ sI} = T (ui) ∩NR).

3. ∀u ∈ Tinit : ∀ui ∈ domT : ∀r ∈ NR : r ∈ T (ui) ⇐⇒ (ρ(u), ρ(ui)) ∈ rI

4. ∀A ∈ NC : ∀u ∈ Tinit : A ∈ T (u) ⇐⇒ ρ(u) ∈ AI

This definition expresses the close relationship between a P(Σ)-labeled tree
and a tree model for C w.r.t. T . Specifically, there are two sets Tinit and Iinit
which are structurally equal. This means that every node can be uniquely
assigned to an element in the interpretation domain, such that no edge may
occur in the model that does not occur in the tree and vice versa. Note that
this definition implies that in each label of a child node there must be at
least one role name. This is due to the fact that each edge in the tree model
represents a role relationship. In addition, it is required that a concept name
as label equals concept membership in the model.

15



Theorem 1. Given an ALC-concept C, an ALC-TBox T in the form {> v
CT } and a P(Σ)-labeled tree T .

1. T ∈ L(A′C,T ) =⇒ T represents a tree model of C w.r.t. T ,

2. I is a tree model of C w.r.t. T =⇒ there exists a tree T that represents
I and T ∈ L(A′C,T ).

Proof.

”1.” Let T be a P(Σ)-labeled tree that is in L(A′C,T ), i.e. there is a run R
over A′C,T of T . First an interpretation I is constructed for which it
is proven that I is a model of C w.r.t. T . Secondly we unravel the
interpretation I into a tree model I and finally it is shown that this
tree model is represented by T . The Interpretation I is constructed as

∆I = Tinit,

AI = {u ∈ Tinit | A ∈ T (u)},

rI = {(u, ui) ∈ Tinit × Tinit | r ∈ T (ui)}
∪ {(u, v) | (v, ui) ∈ Cyc(T ), r ∈ T (ui)}.

Claim 86 in [5, p. 93 f.] already showed for AC,T that for any u ∈ ∆I

and E ∈ sub(C) ∪ sub(CT ), if (u, qE) occurs as a label of a node in
R, then u ∈ EI . Note that ∆I is no longer defined as domT but Tinit.
Therefore, for E = ∃r.F there can be w ∈ domR with R(w) = (u, qE)
where R(wj) = (ui, qF ) but § ∈ T (ui) and hence ui /∈ ∆I . This
means the pair (u, ui) /∈ rI and thus ∃r.F for u ∈ ∆I is no longer
fulfilled. With induction over the size of E, as done in [5], it can be
shown that the claim still holds. If E = ∃r.F and § /∈ T (ui), then
the same argumentation as in claim 86 applies. If § ∈ T (ui) we know
that there is a v ∈ Tinit with (v, ui) ∈ Cyc(T ), where v and ui are
conceptual-equal for some cc ∈ SCC . Recalling the structure of cc as
C1u· · ·uCnu¬D1u· · ·u¬Dm, either F = Ci or F = Dj for some i or j.
As stated in the assumption, (ui, qF ) is a label of a node in R and thus
F = Ci is true for some i ∈ {1, . . . , n} since F ∈ sub(C) ∪ sub(CT ).
Furthermore, § /∈ T (v) and as a result v ∈ F I . By definition of rI ,
(u, v) ∈ rI applies for all r ∈ T (ui) from which it follows that u ∈ EI .
As in claim 86 ε ∈ CI follows from δ(q0) = qC ∧ (qT , ω). Considering
that there is always exactly one part of the disjunction from δ(qT , ω) =∨

1≤i≤n(qcci∧(qcheck,i, ω)) that is fulfilled, qT is tested for every u ∈ Tinit
thus ∀u ∈ ∆I : u ∈ CI

T . This shows that I is indeed a model of C w.r.t.
T .

16



As mentioned, I will be unravelled into I as described in [3, Def. 3.21].
First ε is chosen as root for I, as we already know that ε ∈ CI . Accord-
ingly, ∆I will be constructed from d-paths, which are sequences of nodes
ε, . . . , un−1, such that (ui, ui+1) is in some rI . AI and rI for all r ∈ Nr

and A ∈ NC will be constructed as in [3, Def. 3.21]. As last step it has
to be shown that T indeed represents I. This can be simply shown by
specifying ρ(u) 7→ π(u), for all u ∈ Tinit, i.e. each element is mapped
to its path from the root. Let Iinit = {ρ(u) | u ∈ Tinit}. Every path
π(u) is unique in T and therefore all requirements for ρ : Tinit → Iinit
immediately follow from the definition of I and hence I.

”2.” Let I = (∆I , ·I) be a tree model of C w.r.t. CT . Let d0 ∈ ∆I be the
root of I. As already described in Section 4, C and CT can contain only
finitely many existence restrictions (∃). Therefore it can be assumed
that for every d ∈ ∆I there are only a finite number of elements e ∈ ∆I

with (d, e) ∈ rI , for any r ∈ NR. Let d ∈ ∆I be an arbitrary element
and d1, . . . , dn an enumeration of all elements such that (d, di) is in
some rI . We can construct a tree T inductively from I using a mapping
ρ−1 : ∆I → domT .

ρ−1(d0) = ε

ρ−1(di) = ρ−1(d)i

T (ρ−1(d0)) = {A | d0 ∈ AI}

T (ρ−1(di)) = {r | (d, di) ∈ rI} ∪ {A | di ∈ AI}

Using Definition 3 we can define the set of all conceptual-equal nodes in
T as Cyc = {(v, u) | v, u are conceptual-equal,∃γ ∈ N∗ : u = vγ}. In
the same way Tinit is well-defined over T . Let Iinit = {d ∈ ∆I | ρ−1(d) ∈
Tinit}. As apparent, T represents I, where ρ is the inverse of ρ−1

restricted to Tinit → Iinit. For T to be accepted by A′C,T , all cycles
must be marked with §. Therefore, ∀(v, u) ∈ Cyc add § as label to
T (u). Finally, for this tree a run R over A′C,T can be constructed
starting from R(ε) = (ε, q0) and just following the transition function
δ defined for A′C,T . To be complete, every node in Tinit beside the
root will have at least one role name as a label, which follows by the
definition of ρ. This concludes the proof.

The first part (”1.”) of the proof can best be illustrated by an example. Let
C = ∃r.B t ∃s.> and T = {A v ∃r.B,B v ∃r.A,B v ∃s.>}

17



Example 3

T :
ε

A

0

r, B

1

s

00

r, A, §

01

s

. . .

I:
ε

A

10B

01

s
r

s

r

From T the model I is built: (0, ε) ∈ rI closes the detected cycle.

ε
A

ε, 0

r, B

ε, 1

s

ε, 0, 00

r, A, §
ε, 0, 01

s

. . .

The model I was unraveled into the tree model I, by substituting every
element with a d-path.

The size of S is polynomial, therefore the size of SCC is exponential. It fol-
lows that ω ∈ {0, 1}|SCC | has exponentially many digits, and thus the set of
all ω is double-exponential in the size of C and CT . As stated previously the
emptiness-test for ata is in ExpTime. This concluded that the decision prob-
lem L(A′C,T ) 6= ∅ is in 3ExpTime. As a result, the proposed extension for
AC,T that additionally detects cycles has a double exponential blowup.

18



4 Indexed trees

As a last step before measuring tree models one more extension is introduced:
addressing children of a node directly. This is necessary whenever a feature
affects more than one branch, for example measuring the maximum degree of
branching. The model for alternating tree automata in [4] would be a better
fit for this purpose, but would require a full translation of the previous work.
This is not necessary because we can simulate a similar behaviour with the
already introduced transition options. Desired is a transition equivalent to
“go the i-th child and test q′”.

However, since the previous alphabet over all sub-concepts is not ranked,there
needs to be a limit for the number of children of a node. As shown in [2],
it is sufficient to limit the maximum number of children to the number of
existential restrictions in C and CT . In the following paragraph Nk shall be
defined as Nk := {1, . . . , k}. Let Σk = Σ∪{#}∪Nk, where k is the number of
existential restrictions in C and CT . Clearly, not all tree models have exactly
k many successors for all nodes. The nodes that only fill up the number of
children are therefore called dummy nodes in the following and are marked
by the symbol #.

Definition 6. (Indexed tree) A P(Σk)-labeled tree is called indexed if for
every u ∈ domT the following characteristics apply:

• |T (u) ∩ Nk| = 1;

• if # /∈ T (u) then ∀i ∈ Nk : ∃j ∈ N : i ∈ T (uj);

let v, w be children of u, with i ∈ T (v) and j ∈ T (w);

– if j ≥ i and # ∈ T (v) then # ∈ T (w) and

– if j = i, then v and w are conceptual-equal.

The automaton Aidx will enforce each of those requirements. Note that the
last requirement is building on the previously introduced notion of conceptual-
equality. Therefore, Aidx needs the ability to check for concept-satisfaction.
In order to achieve this, the required states and transitions are reused from
A′C,T .
Aidx = (Σk, Q, qrec, δ), where Q = QD ∪ QR ∪ Qcc ∪ {qi, (qd, i)|i ∈ Nk} ∪
{qrec, q, q′} and δ is defined as:

• δ(qrec) = # ∨ (¬# ∧ q ∧ q′ ∧�qrec)

• δ(q) =
∧
i∈Nk

(♦qi ∧ (
∨
cc∈SCC

�(¬i ∨ qcc)))

19



• δ(q′) =
∧
i∈Nk

(♦(¬# ∧ i) ∨�qd,i)

• δ(qd,i) = (
∨

1≤j<i j) ∨#

• δ(qi) = i ∧
∧
j∈Nk,j 6=i ¬j

This approach has the disadvantage of dummy nodes, which would have
to be treated separately when defining transitions. One could change all
transitions of A′C,T and the following automata to ignore dummy nodes, for
example δ(q) = ♦q′ becomes δ(q) = ♦(¬# ∧ q′) and δ(q) = �q′ would
be changed to δ(q) = �(¬# ∨ q′). However, in the interest of readability
and comprehensibility we will assume that every tree is indexed and dummy
nodes are ignored,i.e. ♦ and � work as described. Finally, we can simulate the
desired transition “test q′ for the i-th child” as δ(q) = ♦(i∧¬#∧q′) and write
δ(q) = ♦iq′ as abbreviation. In the same sense δ(q) = �iq

′ is interpreted as
“for all children with index i test q′”, formally δ(q) = �(¬i∨¬#∨ q′).

20



5 Measuring description logic models

Measured features described in this section are divided into three categories:

1. features comparing branches of trees;

2. features comparing individual nodes of trees and

3. features that cover the entire tree.

Formally features of trees are measured, however due to the definition of
“represents”, this corresponds to a feature of a tree model (and specifically
their initial part). Every feature will be described as a function, where
f(Tinit) = n, n ∈ N is the measured feature of T . For every type of fea-
ture, an example is given and an automaton that computes f(Tinit). Every
example includes one general graph-based feature and a concrete idea for
tree model over ALC. Based on these measurements, requirements can be
imposed on models. Utilizing measurements as restrictions on tree models
can be achieved in two ways. Either by an ata, which tests some threshold
directly during measurement, or by combining a measuring automata with
the cut-point approach described in [1, Def. 7]. In the following section,
every tree T is assumed to represent a tree model, where cycles are marked
by §. Keep in mind that all measurements take place on tree model, and the
outcome may differ from a measurement of a model defined as a graph. For
example:

A

s r

r

Model as graph.
Extension size of A = 1.

s r, A

r,A

Model as tree.
Extension size of A = 2.

Desired is an automaton that marks certain nodes with weights, such that
the sum of all weights of a run over this automaton is the measurement for
the given feature. A weighted alternating tree automaton is nearly identi-
cal to the already defined alternating tree automaton, except for weighted
transitions. In addition to all options for transitions defined in TC(Σ, Q) the
transition function may also contain a non-negative integer.

Definition 7 ( Weighted alternating tree automata). A weighted alternating
tree automaton (wata) A working on P(Σ)-trees is a tuple A = (Σ, Q, q0, δ),
where 1. Σ is a finite alphabet; 2. Q is a finite set of states, q0 ∈ Q is the

21



initial state; and 3. δ : Q → wTC(Σ, Q) is the transition function, where
q 7→ wTC(Σ, Q) is either n ∈ N or any option from TC(Σ, Q).

This does not change anything for the definition of runs. Nodes in a run
labeled with n ∈ N do not need to satisfy any condition and can be leaves.
As before the definition closely follows [1, Def. 6], with the omission of the
parity function. In order to achieve the desired functionality, the �-fixation
has to be defined. Just as in [1, Def. 6], for any run R, the �-fixation is a
tree R′ with dom′R ⊆ domR and R′(u) = R(u) for all u ∈ dom′R, only that for
v ∈ domR if R(v) = (u, q), such that δ(q) = �q′, then there is at most one
j ∈ N with vj ∈ domR. Now the behaviour of the weighted automaton can
be expressed as a function ‖A‖: Tree(P(Σ))→ N. The weight of a �-fixation
R′ of a run R is defined as

weightA(R′) =
∑

u∈domR′ ,R′(u)=(d,q),δ(q,T (u))=n∈N

n.

If infinitely many values n > 0 occur in R′, the weight of R′ is ∞; other-
wise it is the finite sum of all weights in R′. The weight of a run R on T
is weightA(R) = supR′ �−fixation of R weightA(R′), and the behaviour of A is
‖A‖(T ) = minR run on T weightA(R).
In other words, weightA(R′) are all weights in R′ combined, weightA(R) is
the highest weight of all �-fixations and finally ‖A‖(T ) is the minimum over
all runs.

5.1 Measuring tree model with weighted alternating
tree automata

We want to measure all features only in relation to the initial part of an
ALC model, therefore no child of a node with label § is included. For every
proposed feature and weighted alternating tree automaton A that computes
f(Tinit) will apply ‖A‖(T ) = f(Tinit).

Features comparing branches

In the first approach presented here, features are considered in which branches
are compared. In general graph terms, an automaton is given which measures
the depth of a tree, and specifically in the context of ALC, an automaton
which measures the maximum number of different role names per branch.
The depth of a tree describes the longest path from the root to any leaf (or
a parent of a node labeled with §). Formally depth(T ) = max{|π(u)| | u ∈
Tinit}, where |π(u)| = |ε, u1, . . . , un| = n.

22



Adepth = (Σ, {q, qnext}, qnext, δ), where δ is defined as

• δ(qnext) = § ∨�q;

• δ(q) = 1 ∧ qnext .

Either no child exists or 1 is added as weight. However, according to the
�-fixation only one child is in any �-fixation for �q. The supremum of all
R′ is the one, where every decision resulted in the maximum overall weight,
that is precisely the longest path from the root to any leaf (or a parent of a
node labeled with §). ‖A‖(T ) is the minimum of all weights of runs, therefore
if �q is expanded, although the node was labeled with §, there is a run that
stops and the weight is smaller or equal. This concludes that ‖Adepth‖(T ) is
indeed the depth of T . As is apparent, the previous results, cycle-recognition
and indexing trees allow for very simple automata.

In the context of tree models, the greatest number of unique role names per
branch could be a practical measurement. A set of states is required that
keeps track of all visited role names. Let N∗R be Σ∩NR. Let n be the size of
N∗R. In this case rNames(T ) = max{r( π(u) ) | u ∈ Tinit}, where r(π(u)) =
|{s ∈ NR|s ∈ T (v); v ∈ π(u)}|. Let Q = {(q, ω), (qr,n+1, qnext, ω) | ω ∈ Nn},
QR = {qr, ω | r ∈ N∗R, ω ∈ Nn}. Let idx be a function from N∗R → {1, . . . , n}
A#roles = (Σ, Q ∪QR ∪ {q0}, q0, δ), where δ is defined as

• δ(q0) = (qnext, (0)n);

• δ(qnext, ω) = § ∨�(q, ω);

• δ(q, ω) = (qr,1, ω).

• δ(qr,i, ω) = (¬r ∧ (qr,i+1, ω)) ∨ (r ∧ (qi, ω
′))

• δ(qi, ω) = 1 ∧ (qr,i+1, ω
′) if ω[i] = 0, where ω′ = ω[i→ 1]

• δ(qi, ω) = (qr,i+1, ω) otherwise

• δ(qr,n+1, ω) = (qnext, ω)

The definition for A#roles is extending Adepth in is such a way, that instead
of emitting 1 for every visited node u, it is tested step by step for all r ∈ N∗R
whether r ∈ T (u). In fact, the difference could be interpreted as an added
if-clause: Only add one as weight if r ∈ T (u) was not seen before. Therefore,
the same argumentation can be applied and ‖A#roles‖(T ) is the greatest
number of unique role names per branch.

As an example, consider a society for which the different types of relationships
are modeled (“childOf”, “sibling” etc. ). One branch of a tree model of such

23



a society is a sequence of individuals, so that all of them are related. The
depth of such a tree model, is the greatest degree of separation between
the root-individual and any other individual in the model. The number of
different role names in such a branch is the diversity of relations.

Features comparing individual nodes

Another interesting property of trees is the degree of branching, it describes
the greatest number of children per node over the complete tree. Measuring
this feature requires counting the number of children, and therefore uses
the established notion of indexed trees. Here k is the number of existential
restrictions in sub(C) ∪ sub(CT ), as described in Section 4. Note that if a
node has only i children (i < k) then only for every j ∈ {1, . . . , i} there
is a child with an index j. The formal definition of degree is degree(T ) =
max{d(u) | u ∈ Tinit}, where d(u) = |{j ∈ {1, . . . , k} | ∃i ∈ N : ui ∈
domT ∧ j ∈ T (ui)})|. Let Q = {(qmeasure, j), (q, j) | j ∈ {0, . . . , k}} ∪
{(qnext,i, j) | i ∈ {1, . . . , k}, j ∈ {0, . . . , k}}.
Adegree = (Σ, Q, (q, 0), δ), where δ is defined as

• δ(q, j) = § ∨ (¬§ ∧ (qmeasure, j))

• δ(qmeasure, j) =
∨

1≤i≤k
(♦itrue ∧�i+1false ∧ (qnext,i, j)) ∨�false

• δ((qnext,i, j) = i− j ∧�(q, i) if i > j

• δ((qnext,i, j) = �(q, j) otherwise

Either no child exists (�false) or there is one child with the highest index
i. If the number of children i is higher then the previous maximum j the
difference is added as weight. Again, per �-fixation only one child is part
of any �-fixation for �(q, j). That way, the sum of all weights in a branch
will be the highest number of children measured, and the supremum of all
�-fixations is the branch with the greatest sum of weights. It should be
noted that runs can differ only by which child with index i is selected for
♦itrue and therefore all runs have the same weight.

Comparing individual nodes in the context of ALC can be used to measure
the maximum number of concept names per node. To be precise let cNames
be the feature function with cNames(T ) = max{c(u) | u ∈ Tinit}, where
c(u) = |{A ∈ NC |A ∈ T (u)}|. Let N∗C = Σ ∩ NC , the set of all concept
names in C and CT . Let CCnames = {(cc, n) | cc = A1 ∧ . . . An ∧ ¬B1 ∧
. . .¬Bm; {A1, . . . , An} = U, {B1, . . . , Bm} = N∗C \ U ; ∀U ∈ P(N∗C)}.
A#names = (Σ, Q, (q, 0), δ), where δ is defined as

24



• δ(q, j) = § ∨ (¬§ ∧ (qmeasure, j))

• δ(qmeasure, j) =
∨

(cc,i)∈CCnames

(cc ∧ (qnext,i, j))

• δ(qnext,i, j) = i− j ∧�(q, i) if i > j

• δ(qnext,i, j) = �(q, j) otherwise

Instead of measuring the number of children, A#names will measure the num-
ber of concept names. To accomplish this, the combination of concept names
that are part of the label has to be guessed. Again, there exists only one com-
bination that can be fulfilled because every combination contains all concept
names and differs by at least one negation.

Features affecting the entire tree

Not all properties compare parts of the tree, but apply to its entirety. For
example, the size of the initial part, i.e. the number of all nodes preceding
a cycle. Let size(T ) = |Tinit| be the function that describes the size of
the initial part. Let k be the number of existential restrictions in sub(C) ∪
sub(CT ).
Asize = (Σ, {qnext, q}, qnext, δ), where δ is defined as

• δ(qnext) = § ∨ (¬§ ∧ 1 ∧ q)

• δ(q) =
∧

1≤i≤k
�iq

To ensure that all nodes and thus all weights are included in a run, �q must
be simulated by addressing every child individually. As noted in Section 4, it
is not possible to prevent multiple child nodes from having the same index.
However, it can be guaranteed that all nodes with the same index behave
the same with respect to a concept combination. In the case that two child
nodes have the same index, the node with the largest subtree will be taken
into account in the total weight.

In regard of tree models over some ALC-concept C and ALC-TBox T , this
method can be applied to measure the extension of a given concept E ∈
sub(C) ∪ sub(CT ). The negation ¬E transformed to negation normal form
will be denoted as E ′ = NNF (¬E). Let sizeE(T ) be the feature function
with sizeE(T ) = |{u ∈ Tinit | ∃ sub-run over Asize,E starting from (u, qE)}.
Let QD, QR be the set of states introduced in A′C,T .
Asize,D = (Σ, {qnext, q, qmeasure}∪QE∪QR, qnext, δ), where δ is defined as

• δ(qnext) = § ∨ (¬§ ∧ qmeasure ∧ q)

25



• δ(q) =
∧

1≤i≤k
�iq

• δ(qmeasure) = (qE ∧ 1) ∨ qE′

For all states qD ∈ QD, the relevant transitions from A′C,T are reused.

In all three examples, the underlying idea of the abstract automaton can
be reused for the specific ALC related feature and is intended to serve as a
general template for features of this category. In the following, the exam-
ple of a society from the introduction is revisited in order to demonstrate
the defined features. Let C = ∃worksAt.Job u ∃childOf.Person and T as
{Person v ∃livesIn.Home}.

Example 4

Depth = 2

Person

childOf, Person

worksAt, Job

livesIn, Home

livesIn, Home

Degree = 3

Person

childOf, Person

worksAt,
Job

livesIn, Home

livesIn, Home

Extension of Home = 2
Person

childOf, Person

worksAt, Job

livesIn, Home

livesIn, Home

26



5.2 Using measurements as model requirement

Building on these automata, two methods can be formulated to utilize mea-
surements as model requirements. Let f be a feature function and n ∈ N
some threshold we want to apply over T . Desired is an ata Af,≤n, such that
T ∈ L(Af,≤n) ⇐⇒ f(Tinit) ≤ n. Especially for automata that compare
nodes, it is more intuitive to modify the weighted automaton to directly check
a threshold. We can reformulate Adegree without weights, such that it tests
for every node if the number of children is smaller than n for some n ∈ Nk.
Therefore, Adegree,≤n is a normal ata and �-fixations are no longer necessary.
Adegree,≤n = (Σ, {q, qnext, q#children}, q, δ), where δ is defined as

• δ(q) = q#children ∧ qnext
• δ(qnext) = § ∨�q

• δ(q#children) = �n+1false

Every tree is accepted where no node u in Tinit exists, with some ui ∈ domT

and ui has the index n + 1. The same idea can be applied to Adepth only
that a counter that keeps track of the remaining allowed depth is necessary.
Again n will be the threshold, which in this case is the highest allowed depth.
Adepth,≤n = (Σ, {(q, i), (qnext, i) | 0 ≤ i ≤ n}, (qnext, n), δ), where δ is defined
as

• δ(qnext, i) = § ∨ (q, ω);

• δ(q, i) = �false if i = 0.

• δ(q, i) = �(qnext, i− 1) if i > 0.

For both Adegree,≤n and Adepth,≤n it is easy to show that they accept exactly
those trees where the initial part satisfies the feature requirement.

Even though more intuitive, for some cases this approach is not universally
applicable. For other cases where constructing the weighted alternating tree
automaton is simpler, the cut-point automaton A≤n can be used. For the
sake of completeness it is specified here once again. The original definition
can be found in [1, Def. 7].

Definition 8. Given a wata A = (Σ, Q, q0, δ), the cut-point automaton
A≤n = (Σ, Q′, q′0, δ

′) for the threshold n ∈ N is an ata defined as follows:
Q′ = {(q, i) ∈ Q× N | i ≤ n} ∪ {q′0}, with δ′ defined as

δ′(q′0) =
∨

0≤i≤n
(q0, i)

27



δ′((q, i)) = δ(q) if δ(q) = σ,¬σ, true , false

δ′((q, i)) = true if δ(q) = j ≤ i

δ′((q, i)) = false if δ(q) = j > i

δ′((q, i)) = ♦(q′, i) if δ(q) = ♦q′

δ′((q, i)) = �(q′, i) if δ(q) = �q′

δ′((q, i)) = (q1, i) ∨ (q2, i) if δ(q) = q1 ∨ q2

δ′((q, i)) =
∨

0≤j≤i
(q1, j) ∧ (q2, i− j) if δ(q) = q1 ∧ q2

As stated in [1, Prop. 8] L(A≤n) = {T ∈ Tree(P(Σ)) | ‖A‖(T ) ≤ n}. The
cut-point automaton A≤n has O(n ·q) states, where q is the number of states
of the weighted automaton A. Thus, if n is encoded unary, this construction
is polynomial, otherwise it is exponential.

By using these methods, requirements can now be placed on models in order
to avoid unwanted features as described in the beginning in Section 2.3. Let
Adepth≤3,#names≤1 be the disjoint union of Adepth,≤n and A#names≤1, where
A#names≤1 is the cut-point construction for A#names. For this automaton,
only the desired first tree from Example 1 would be accepted.

Final results

First A′C,T was defined, which accepts exactly those trees that represent the
initial part of a tree model. For these initial parts different watas were spec-
ified and finally two possibilities to make requirements based on them. This
was done assuming that trees are indexed, as shown in Section 4. Finally,
we can combine all approaches. Let T be a P(Σ)-labeled tree, T an ALC-
TBox of the form {> v CT }, C an ALC-concept, f a feature function from
Tinit → N and Af some wata computing f . Accordingly Af,≤n accepts ex-
actly those trees for which f(Tinit) ≤ n. The ata A′C,T,f,≤n is the disjoint
union of A′C,T and Af,≤n, such that qα is the initial state and δ(qα) = q0∧ q′0,
where q0 is the initial state of A′C,T and q′0 the initial state of Af,≤n.

Theorem 2. L(A′C,T,f,≤n) 6= ∅ ⇐⇒ there exists a tree model of C w.r.t. T
represented by T and f(Tinit) ≤ n.

Proof (sketch). L(A′C,T,f,≤n) will be the intersection of L(A′C,T ) and L(Af,≤n).

”⇒” Let L(A′C,T,f,≤n) 6= ∅, i.e. there exists a tree T , with T ∈ L(A′C,T,f,≤n).
Therefore applies T ∈ L(A′C,T ) and by Theorem 1 follows that T rep-

28



resents a tree model of C w.r.t. T . Additionally T will be in L(Af,≤n)
concluding that f(Tinit) ≤ n

”⇐” Let T be a representation of a tree model of C w.r.t. T and f(Tinit) ≤ n.
From Theorem 1 follows that T ∈ L(A′C,T ). According to the definition
of Af,≤n, the tree will also be in L(Af,≤n). Therefore, T ∈ L(A′C,T,f,≤n)
and thus L(A′C,T,f,≤n) 6= ∅.

Af,≤n could either be a direct construction, i.e. Adegree,≤n, or build utilizing
the cut-point construction. If the construction of Af,≤n is at most double-
exponential in the size of C and CT then testing L(A′C,T,f,≤n) 6= ∅ is in
3ExpTime. This follows from the 3ExpTime complexity for A′C,T . This is
not to say that it cannot be decided faster, possible optimisations are sug-
gested in the conclusion. Note that this approach of combingA′C,T withAf,≤n
can be extended to a set of feature measuring automata {Af1,≤n1 , . . . ,Afm,≤nm},
where δ(α) = q0∧q′0,1∧· · ·∧q0,m. Respectively the complexity for this combi-
nation will be the maximum complexity of A′C,T and any used Afi,≤ni

.

29



6 Conclusion

In this thesis, a new aspect of description logic was investigated: the mea-
surement of models. First, the idea of an initial part of a tree model as well
as the notion of an indexed tree were established. Both approaches aimed to
expand the possibilities of measurement. The initial part restricts the mea-
surement to the redundancy-free part of a tree model so that conceptually
equal elements are not taken into account more than once. For this purpose,
the already defined automaton AC,T from [1], which tests the satisfiability
of concepts, has been extended to A′C,T , which can additionally recognize
redundancies in trees. Indexed trees are trees where every child node has a
unique index. Addressing child nodes by an index allows a finer control in
the modeling of automata. Features like the degree of branching would oth-
erwise not be measurable with the definitions for alternating tree automata
and weighted alternating tree automata used in this thesis.

The presented features were divided into three categories. For each feature
measuring automaton was shown how the underlying idea can be reused for
different features of the same category. Finally, it has been demonstrated
how these automata can be further utilized to constrain models to certain
sizes. This can be realized by converting the feature measuring automaton
using the cut-point construction [1]. In this context, the main focus was on
constraining feature sizes to upper bounds. However, different approaches
are possible too, e.g. ensuring a minimum size for concept extensions. As
demonstrated by example in Section 5.2, the generic approach constraining
tree models enables a straightforward combination of multiple automata,
allowing multiple features to be ensured at once.

One potential application of this work is in explaining concept satisfiability.
Recalling that a concept A is satisfiable w.r.t. a TBox T iff there exists an
interpretation I, such that AI 6= ∅ and for all C v D ∈ T : CI ⊆ DI .
However, it is not always clear why a concept is satisfiable. How and why
relations between concepts in T and A are correlated can be explored in an
example model. In this regard restricting the depth, size, and possibly more
features of such a model would help in keeping it concise and small. In this
way, it would be much easier to determine the interrelationships.

The disadvantage of this approach is the triple exponential emptiness test of
A′C,T (and thus all further automata). This results in a double exponential
blowup compared to AC,T . However, since the satisfiability check of ALC-
concepts is already exponential, the actual impact of this blowup in practice
remains to be examined. In this regard, it might be possible to express

30



A′C,T as a weak alternating tree automaton for which the test L(A) 6= ∅ is
in polynomial time [6]. Finally, to what extent the approach could be ex-
tended to measure ALC-ABoxes would be an interesting question for further
research.

31



References

[1] Franz Baader and Andreas Ecke. “Reasoning with Prototypes in the De-
scription Logic ALC Using Weighted Tree Automata”. In: Language and
Automata Theory and Applications. Springer International Publishing,
2016, pp. 63–75. doi: 10.1007/978-3-319-30000-9_5. url: https:
//doi.org/10.1007/978-3-319-30000-9_5.

[2] Franz Baader, Jan Hladik, and Rafael Peñaloza. “Automata can show
PSpace results for description logics”. In: Information and Computation
206.9 (2008). Special Issue: 1st International Conference on Language
and Automata Theory and Applications (LATA 2007), pp. 1045–1056.
issn: 0890-5401. doi: https://doi.org/10.1016/j.ic.2008.03.006.
url: https://www.sciencedirect.com/science/article/pii/

S0890540108000461.

[3] Franz Baader et al. An Introduction to Description Logic. Cambridge
University Press, 2017. doi: 10.1017/9781139025355. url: https:

//doi.org/10.1017/9781139025355.

[4] H. Comon et al. Tree Automata Techniques and Applications. Available
on: http://www.grappa.univ-lille3.fr/tata. release October, 12th
2007. 2007.

[5] Andreas Ecke. “Quantitative Methods for Similarity in Description Log-
ics”. PhD thesis. Dresden University of Technology, Germany, 2017. url:
https://nbn-resolving.org/urn:nbn:de:bsz:14-qucosa-223626.

[6] David E. Muller, Ahmed Saoudi, and Paul E. Schupp. “Alternating au-
tomata, the weak monadic theory of the tree, and its complexity”. In:
Automata, Languages and Programming. Ed. by Laurent Kott. Berlin,
Heidelberg: Springer Berlin Heidelberg, 1986, pp. 275–283. isbn: 978-3-
540-39859-2.

[7] Antonio A. Sánchez-Ruiz et al. “Measuring Similarity in Description
Logics Using Refinement Operators”. In: Case-Based Reasoning Re-
search and Development. Springer Berlin Heidelberg, 2011, pp. 289–303.
doi: 10.1007/978-3-642-23291-6_22. url: https://doi.org/10.
1007/978-3-642-23291-6_22.

[8] Thomas Wilke. “Alternating tree automata, parity games, and modal
µ-calculus”. In: Bull. Soc. Math. Belg 8 (2001), p. 2001.

32

https://doi.org/10.1007/978-3-319-30000-9_5
https://doi.org/10.1007/978-3-319-30000-9_5
https://doi.org/10.1007/978-3-319-30000-9_5
https://doi.org/https://doi.org/10.1016/j.ic.2008.03.006
https://www.sciencedirect.com/science/article/pii/S0890540108000461
https://www.sciencedirect.com/science/article/pii/S0890540108000461
https://doi.org/10.1017/9781139025355
https://doi.org/10.1017/9781139025355
https://doi.org/10.1017/9781139025355
http://www.grappa.univ-lille3.fr/tata
https://nbn-resolving.org/urn:nbn:de:bsz:14-qucosa-223626
https://doi.org/10.1007/978-3-642-23291-6_22
https://doi.org/10.1007/978-3-642-23291-6_22
https://doi.org/10.1007/978-3-642-23291-6_22

	Introduction
	Preliminaries
	ALC
	Alternating Tree Automata
	Using Alternating tree automata on ALC models

	Detecting the initial part
	Indexed trees
	Measuring description logic models
	Measuring tree model with weighted alternating tree automata
	Using measurements as model requirement

	Conclusion

