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Abstract

Description logics (DLs) [Baa99; BHS04; Baa+17a; Tur13; KH17] are a family of formal knowl-edge representation languages used in artificial intelligence to describe and reason about theconcepts of an application domain. In particular, they are providing formalization for ontologiesand the semantic web. The most specific concept (msc) [BKM98] is an inference task that cansupport the bottom-up construction of knowledge bases in description logics. The most specificconcept of an individual is the least concept that has this individual as an instance.In description logics which contain existential restrictions, the most specific concept doesnot always exist in the case of acyclic ABoxes. However, the latest results [ZT13] show thatthe existence of the msc w.r.t. an individual can be decided in polynomial time. Also, therole-depth of these most specific generalizations is polynomially bounded by the size of theinput, which yields a decision procedure for the existence problem. The polynomial bound canbe used to compute the msc if it exists. Otherwise, the computed concept can still serve as anapproximation[PT11]. However, computing the msc could take at least exponential time if themsc is exponentially large. Also, the previous approach does not make it clear how to computethe most specific concept in practice.First, we revisit the previous approach for constructing themsc of an individual w.r.t. a general
EL-TBox. We present a new method for tree unravelling of an interpretation and introduce acharacteristic concept w.r.t. the least tree unravelling. Moreover, we provide a new approachand an algorithm to decide the existence of the msc in polynomial time without relying oncomputing the concept. Then, one can compute the actual msc in exponential time. Finally,we provide an experimental evaluation to state that the concept constructed from the newapproach has a smaller bound than the bound of the concept constructed from the previousapproach.
Keywords— description logic, ontologies, most specific concept, polynomial time algorithms
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1 Introduction
In philosophy, an ontology [Hof21] is the philosophical study of being in general, where conceptssuch as existence, being, becoming, and reality are studied. It includes the questions ofhow entities are grouped into basic categories and which of these entities exist on the mostfundamental level. In computer science, an ontology [SS09] represents an abstract, simplifiedview of the relevant entities (objects, concepts, and relations) that exist in the domain of interest.Ontology engineering is a field that studies methods for building an ontology. It aims todescribe the knowledge of software applications, enterprises and business procedures for a par-ticular domain. Supporting such applications require that the knowledge is presented precisely,so that it can be processed by automated tools. Ontology languages, such as OWL [Gra+08]is used to overcome this problem by defining a formal syntax and semantics to describe theknowledge of a particular domain.Description Logics (DLs) are logic-based knowledge representation languages [Baa+17b]which are used to provide the formal foundation of the ontology language OWL for applicationdomains such as the Semantic Web, biology and medicine, and engineering domains [HSG15].It separates domain knowledge into a terminological part (called TBox) and an assertional part(called ABox), while the combination of both TBox and ABox is called a knowledge base (KB).The TBox describes the relations between concepts of an application domain, and the ABoxdescribes the individual objects of an application domain and their relations. Concepts arebuilt using concept and role names, and individual objects are built using concept and roleassertions.DLs are less expressive than first-order logic, but the core reasoning problems like thesubsumption and the instance problem are usually decidable. Therefore, studying thoseproblems is highly important in scientific and industrial fields. In applications of DL systems,it turned out that building and maintaining large DL knowledge bases can be facilitated byprocedures for other, non-standard inference problems [BK06]. The non-standard inferenceswere introduced to maintain and support building large DL knowledge bases. An example ofthe non-standard inferences is generating a new concept from an individual (Also called themost specific concept of an individual).Computing the most specific concept [Baa03a] is mainly used in the bottom-up constructionof the knowledge base. This methodology allows the user to give an example of an individualbelonging to the concept to be defined instead of defining the relevant concepts of an applicationdomain from scratch. Thus, the knowledge engineer can use the computed concept as a startingpoint for defining the concept.Moreover, since large ontologies might contain errors [Baa+21] often detected when DLreasoners compute unwanted consequences, it has gained interest in detecting errors inthe data such that the unwanted consequences no longer follow, while keeping the other
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1 Introduction

consequences are preserved. An optimal repair is the repair with the least number of otherconsequences are removed. Most of the previous approaches of the ontology repairing relyon the syntactic nature of the ontology without relying on the semantic nature. The recentwork [Baa+22] was addressed to compute the optimal repair of ABoxes, where the unwantedconsequences are described as concept assertions. It also shows that the existence of such atype of repair can be decided by computing the most specific concept.Unfortunately, the most specific concept does not always exist in EL. It was investigatedbefore by [Baa03a] in the presence of a cyclic description logic EL-TBox (which allows forconjunctions, existential restrictions and the top concept), where the bottom-up constructionof the knowledge base was used.
Example 1. consider the following knowledge base [KM02]:

K1 := (∅,A1), withA1 := {r(a, a),C(a)}
The msc of the individual a does not exist, as the TBox T1 = ∅ is empty, while the ABox A1 iscyclic [Baa03a], due to the fact there is no least concept such that the individual a is an instance.The reason is that the concept C has more specific concept ∃r.C, and ∃r.C has more specificconcept ∃∃r.C and so on, while this cycle in A1 is not covered by any cycle in T1. However,consider the modified knowledge base:

K2 := (T2,A2), withA2 := {r(a, a),C(a)}, and T2 := {C ⊑ ∃r.C}
Since the cycle in A2 is covered by T2, we obtain that C is the msc of a.
The first approach to decide the existence of the most specific concept [ZT13] shows thatdeciding the existence of the msc w.r.t. an individual can be done in polynomial time, wherethe construction of the generalization concept is computed up to a given k, a bound on themaximal nestings of quantifiers. However, this approach rely on computing the concept todecide the existence of the msc. Therefore, in practice it is still necessary to provide an efficientalgorithm to decide the existence of the msc without relying on computing the concept.Through the thesis, we provide an algorithm for deciding the most specific concept and proveits correctness and completeness. We show that the algorithm decides the existence of the mscin a polynomial run-time. Also, we provide an experimental evaluation to state the differencebetween the previous and new approach in terms of the bounded role-depth of the concept.

1.1 Thesis Structure

We begin with the preliminaries for the notation and terminology used throughout the thesisin Chapter 2. Then we start with the first part, which is about the first attempt to decide theexistence of the most specific concept in Chapter 3. In Chapter 4, we introduce the least treeunravelling as a new approach for tree unravelling of an interpretation and show the differencebetween the new approach for tree unravelling and the previous one. Furthermore, we continuewith the least tree unravelling of an interpretation and employ it for deciding the existence ofthe most specific concept. At the same time, we introduce a representation of interpretationsas a graph and define a simulation between graphs.Chapter 5 constitutes the final part of this thesis, in which we present the implementation. Inthe second part of this chapter, we prove that the algorithm runs in polynomial time. We alsoprove the correctness and completeness of the introduced algorithm.Finally, in Chapter 6 we show experimental results to show the difference between the newlyintroduced approach and the previous approach in terms of the size of the bounded role-depthof the concept and the time required to decide the existence of the msc.To lead the future work, In the final Chapter 7, we summarize our findings and point to somefuture work.
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2 Preliminaries
This chapter introduces the general notation and terminology we use throughout this thesis. Itis based on [Baa+17b] with some extensions. Note that these preliminaries are for descriptionlogics in general. In contrast, the background of more specific topics (e.g. the tree unravellingand the k-characteristic concept) will be given later when needed.The chapter starts with an introduction of the description logic EL. Then it introduces thesyntax and semantics of the DL EL and continues with the definition of canonical models andsimulation relations between two interpretations. In the end, it introduces the formal definitionof the most specific concept of an individual.

2.1 The Description Logic EL

We start with defining the syntax of EL and the knowledge base (KB). Then we define thesemantics of EL. A knowledge base is defined with the help of a set of constructors, startingwith a set NC of concept names, a set NR of role names and a set NI of individual names. The sets
NC , NR and NI are pairwise disjoint and countable infinite.
Definition 2.1.1 (EL-concept). Let A ∈ NC and r ∈ NR, EL-concepts C are then built accordingto the following syntax rule:

C ::= ⊤ | A | C ⊓ D | ∃r.C
where ⊤ is the top concept, and D is an EL-concept.
To be able measure the complexity of concepts, we need a notion of role-depth of concepts.

Definition 2.1.2 (role-depth). Let C be a EL-concept. The role – depth of the concept C (rd(C)) isinductively defined as follows:
• rd(A) = rd(T ) = 0, for all A ∈ C.• rd(C ⊓ D) = max{rd(C), rd(D)}, for all concepts C,D.• rd(∃r.C) = 1 + rd(C), for all r ∈ NR and concepts C.

To illustrate this, consider the following example.
Example 2. Consider a concept C := ∃r.(∃r.(∃s.A ⊓ ∃r.∃s.T )). Then rd(C) = 3.
Definition 2.1.3 (General concept inclusion). Let C, D be EL-concepts. A general concept

inclusion (GCI) is an expression of the form C ⊑ D. C ≡ D is called a concept definition and it is anabbreviation for C ⊑ D, D ⊑ C.
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2 Preliminaries

A terminological TBox T is a finite set of concept definitions. A general TBox T is a finite set ofGCIs.
Definition 2.1.4 (Acyclic TBox). ( [Baa+17a]) Let T be a TBox. We call T is an acyclic TBox if oneof the following hold:

• There is no concept name in T that uses itself, and• no concept name occurs more than once on the left-hand side of a concept definition in
T.

Otherwise, T is cyclic.
Definition 2.1.5 (Assertion). Let a, b ∈ NI, r ∈ NR and C ∈ NC , then:

• C(a) is called a concept assertion.• r(a, b) is called role assertion. a is called r-predecessor of b, and b is called r-successor of a.
An ABox A is a finite set of concept and role assertions. The set NI,A denotes the set of

individual names occurring in ABox A.
Definition 2.1.6 (Acyclic ABox). Let A be an ABox. We call A is an acyclic ABox if there exists noindividual a such that a occurs as r-successor of b and as r ′-predecessor of c, for all r, r ′ ∈ NRand b, c ∈ NI,A. Otherwise, A is cyclic.
A knowledge base K consists of a TBox and an ABox (K = (T,A)). The set sub(X ) denotes theset of sub-concepts occurring in X , where X is a concept, ABox, TBox or a knowledge base. Theset NR,K denotes the set of role names occurring in K.The semantics of EL-concepts are defined in terms of interpretations I = (ΔI, ·I) [Baa+07].

Definition 2.1.7 (Interpretation). An interpretation I = (ΔI, ·I) consists of a non-empty set ΔI ofindividuals and a mapping ·I that maps
• every concept A ∈ NC to a set AI ⊆ ΔI.• every role r ∈ NR to a binary relation rI ⊆ ΔI × ΔI.• every individual name a ∈ NI to an element aI ∈ ΔI.

Given an interpretation I, both syntax and semantics of EL-concepts, TBox and ABox aresummarized in Table 2.1. An interpretation I is said to satisfy a GCI C ⊑ D if CI ⊆ DI. Aninterpretation I is called a model of a TBox T if it satisfies all GCIs in T. Let C(a) be a conceptassertion. Then an interpretation I is said to satisfy C(a) if aI ∈ CI. Let r(a, b) be a role assertion.Then an interpretation I is said to satisfy r(a,b) if (aI,bI) ∈ rI. An interpretation I is called amodel of an ABox A if it satisfies all concept and role assertions. An interpretation I is said tobe a model of a knowledge base K if it satisfies both T and A. Since we are only considering
EL, we sometimes write ’concept’ and ’TBox’ instead of ’EL-concept’ and ’EL-TBox’, respectively.
Subsumption and instance checking are considered essential reasoning tasks that are generalizedto computing the most specific concept of an individual. These two reasoning tasks in EL canbe decided in polynomial time [BBL05].
Definition 2.1.8 (Instance checking and subsumption). Let K = (T,A) be a knowledge base, let
C, D be a EL-concepts and a an individual name that occurs in A, then:

• a is an instance of C w.r.t. T (A |=T C(a)) iff aI ∈ CI holds for all models I of K.• C is subsumed by D w.r.t. T (C ⊑T D) iff CI ⊆ DI holds for all models I of T.
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2 Preliminaries

Table 2.1 The syntax and semantics of EL-concept, TBox and ABox w.r.t. an interpretation I.
name of constructor Syntax Semantics
concept name A ∈ NC A AI ⊆ ΔIrole name r ∈ NR r rI ⊆ ΔI × ΔItop-concept ⊤ ΔIconjunction C ⊓ D CI ∩ DI

existential restriction ∃r.C {x ∈ ΔI | ∃y : (x, y) ∈ rI ∧ y ∈ CI}
GCI C ⊑ D CI ⊆ DI

concept definition C ≡ D CI = DI

individual name a aI ∈ ΔIconcept assertion A(a) aI ∈ AIrole assertion r(a,b) (aI,bI) ∈ rI

2.2 The Most Specific Concept

Roughly speaking, the most specific concept of a given individual a is a generalization of a intoa complex concept such that the concept is the most specific one of which an individual is aninstance. The most specific concept of an individual a is defined based on subsumption andinstance checking.
Definition 2.2.1 (Most specific concept). Let K = (T,A) be a knowledge base and a ∈ NI,A bean individual name. A concept C is the most specific concept of a w.r.t. K (C = mscK(a)) if thefollowing statements hold:

• K |= C(a).• K |= D(a) implies C ⊑T D.
As explained in [Baa03a] the msc does not always exist in EL, in case we have a cyclic A.However, if there is no msc, then one can approximate the msc concept by adding a boundedrole-depth k of the concepts C and D. Then concept C is called a role-depth bounded msc of aw.r.t. K.(k-mscK(a)). Both msc and k-msc are unique up to equivalence in EL.

2.3 The Canonical Model and The Simulation Relation

The computation of the msc is based on the characterizations of instance checking and sub-sumption. Thus, such characterizations w.r.t. general TBoxes was introduced in [LW10b] byemploying both canonical models and simulation relations. A homomorphism between the syntaxtrees of concepts was used to characterize subsumptions in the knowledge base with an emptyTBox [BKM98]. Also, simulation relation plays the same role as homomorphism, and if appliedon the canonical models, then it can also be used to characterize subsumptions. As shownin [ZT13], the decision of the existence of msc of an individual a w.r.t. K requires establishinga simulation relation between the canonical model and the constructed concept up to somebound k. Therefore, we will introduce the canonical model and simulation that we will use todecide the existence of msc.
Definition 2.3.1 (Canonical model of a concept). Let T be a TBox, I a model of T, and C aconcept. The canonical model IC,T of C and T is defined as follows:

• ΔIC,T := {dC} ∪ {dC ′ | ∃r.C ′ ∈ sub(C) ∪ sub(T)}.
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2 Preliminaries

• AIC,T := {dD ∈ ΔIC,T | D ⊑T A}, for all A ∈ NC .• rIC,T := {(dD, dD′ ) ∈ ΔIC,T | D ⊑T ∃r.D′ for ∃r.D′ ∈ sub(T)}, for all r ∈ NR.
This definition can be extended to be the canonical model of a knowledge base.

Definition 2.3.2 (Canonical model of a knowledge base). Let K = (T,A) be a knowledge base.The canonical model IK of K is defined as follows:
• ΔIK := {da | da ∈ NI,A} ∪ {dC | ∃r.C ∈ sub(K)}.• AIK := {da ∈ ΔIK |K |= A(a)} ∪ {dC ∈ ΔIK | C ⊑T A}, for all A ∈ NC .• rIK := {(da, dD)|C ⊑ D′ ∈ sub(T), ∅ |= D′ ⊑ ∃r.D, aIK ∈ CIK}, for all r ∈ NR.• aIK := da, for all a ∈ NI,A.

Let I be an interpretation, d ∈ ΔI. Then, (I,d) is said to be a pointed interpretation, where I isrooted on d. The simulation relations are defined between pointed interpretations.
Definition 2.3.3 (Simulation). Let (I1,d) and (I2,d′) be interpretations. The binary relation
S ⊆ ΔI1 × ΔI2 is called a simulation from I1 to I2 if all the following statements hold:
(S1) For every pair (e1, e2) ∈ S it holds: e1 ∈ AI1 implies e2 ∈ AI2 , for all A ∈ NC .
(S2) if (e1, e2) ∈ S and (e1, f1) ∈ rI1 , then there exists some f2 ∈ ΔI2 such that (f1, f2) ∈ S and(e2, f2) ∈ rI2 .
A pointed interpretation (I1,d) is said to be simulated by a pointed interpretation (I2,d′)(written as (I1,d) ≲ (I2,d′)) if there exists a simulation S ⊆ ΔI1 × ΔI2 with (d,d′) ∈ S. Note thatthe relation ≲ is transitive and reflexive. A pointed interpretation (I1, d) is said to be simulation

equivalent to a pointed interpretation (I2,d′) (written as (I1,d) ≃ (I2,d′)) if both (I1,d) ≲ (I2,d′)and (I2, d′) ≲ (I1, d) hold.As shown [LW10b; ZT13], the canonical model has essential properties.
Lemma 2.3.4. Let C be a concept and T be a TBox.

(1) dE ∈ EIC,T , for all dE ∈ ΔIC,T .

(2) IC,T is a model of T.
(3) (IC,T , dD) ≃ (IC ′,T , dD), for all concepts C ′ and all dD ∈ ΔIC,T ∩ ΔIC′ ,T .

(4) For all models I of T and all d ∈ ΔI, the following statements are equivalent:

• d ∈ CI.• (IC,I, dC) ≲ (I, d).
(5) For every concept C and D, the following statements are equivalent:

• C ⊑T D.• dC ∈ DIC,T .• (ID,T , dD) ≲ (IC,T , dC).
Case (5) of the previous lemma allows us to give a characterization of the subsumption task,as shown in [LW10a]. If C ⊑T D, then CI ⊆ DI, for all models I of T. Hence, CI ∈ DIC,T , and

dC ∈ DIC,T . Moreover, we have that (ID,T , dD) ≲ (IC,T , dC).Similarly, in order to characterize the instance problem, consider the following lemma.
Lemma 2.3.5. Let K be a knowledge base. IK has the following properties:

1. IK is a model of K.

2. For every concept C, the following statements are equivalent:
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2 Preliminaries

• K |= C(a).• da ∈ CIK .

By definition of 2.1.8, we have that a is an instance of C w.r.t. T (A |=T C(a)) iff aI ∈ CI holdsfor all models I of K. Therefore, if IK is the canonical model of K, then for every concept C wehave that K |= C(a) iff da ∈ CIK .
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3 The Previous Approach for
Computing The Msc

In this chapter, we revisit the previous approach [ZT13] for computing the msc. We introducethe tree unravelling of an interpretation I. Then we present the construction of a conceptfrom tree unravelling up to some bound k and show that it is sufficient to generate candidateconcepts up to upper bound k. Then we show that an msc exists iff there exists a simulation
equivalent relation between the pointed interpretation (IK,da) w.r.t. an individual a and thecanonical model of one of the generated concepts.

3.1 The Tree Unravelling

Every interpretation I can be represented as a tree by taking an individual d as a root node andusing as nodes all paths σ = dr1d1r2d2r3..., where the nodes {d, d1, d2, ...} are elements from ΔIand {r1, r2, ...} are role names. (σ is a path in interpretation I if the individuals di and di+1 areconnected via rI
i+1, for all i ∈ N). The nodes of the tree correspond to individual di in the path σ,and the edges of the tree correspond to role ri in the path σ.

Definition 3.1.1 (Tree unravelling of an interpretation). Let I be an interpretation and d ∈ ΔIw.r.t. NC and NR. The tree unravelling Id of I in d is defined as follows:
• ΔId := {dr1d1r2...rndn | (di, di+1) ∈ rI

i+1 ∧ 0 ≤ i < n ∧ d0 = d}.• AId := {σd′ | σd′ ∈ ΔId ∧ d′ ∈ AI}, for all A ∈ NC .• rId := {(σ, σrd′) | (σ, σrd′) ∈ ΔId × ΔId}, for all r ∈ NR.
|σ| denotes the number of role names occurring in σ, where σ ∈ ΔI. Given σ = dr1d1r2...rndn,
tail(σ) = dn is the last individual occuring in σ (also called the tail of σ).
Example 3. Consider The following knowledge base K:
K = (∅,A), with A = {r(a,b), s(a,b), r(a, c), r(c,b)}.
Now we consider the pointed interpretation (IK,da) as shown in Figure 3.1a. We can seein Figure 3.1b that (IK, da) is unravelled into a finite tree. However, if the interpretation containsa loop, then the tree unravelling of the interpretation is infinite.An interpretation I is unravelled into an infinite tree in case it contains a loop (cyclic path).Since the concept can only be constructed from a finite tree, therefore it is essential to unravelthe tree up to depth k. Ik

da
denotes the finite sub-tree with root da of the tree unravelling Idacontaining all elements up to depth k.
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b) Tree unravelling Ida of (IK, da).
Figure 3.1 The pointed interpretation (IK, da) with no loop and the tree unravelling Ida of(IK, da) Ida constructed w.r.t. Example 3.
Definition 3.1.2 (Tree unravelling of an interpretation with a bounded role-depth). Let I be aninterpretation, k ∈ N and d ∈ ΔI w.r.t. NC and NR. The tree unravelling Id of I in d up to bound kis defined as follows:

• ΔId := {dr1d1r2...rkdk | (di, di+1) ∈ rI
i+1 ∧ 0 ≤ i < k ∧ d0 = d}.• AId := {σd′ | σd′ ∈ ΔId ∧ d′ ∈ AI ∧ |σ| ≤ k}, for all A ∈ NC .• rId := {(σ, σrd′) | (σ, σrd′) ∈ ΔId × ΔId ∧ |σ| ≤ k}, for all r ∈ NR.

3.2 The Characteristic Concept w.r.t. A Tree Unravelling

Each finite tree interpretation can be translated into a so-called characteristic concept.
Definition 3.2.1 (Characteristic concept). Let (I,d) be an interpretation. The k-characteristic
concept Xk(I, d) is defined as follows1:

• X0(I, d) =
d
{A ∈ NC | d ∈ AI}.• Xk(I, d) = X0(I, d) ⊓ d

r∈NR,K
d
{∃r.Xk–1(I, d′) | (d, d′) ∈ rI}.

Example 4. Consider The following knowledge base K1 = (T1,A1):
• T1 = {C ⊑ ∃r.C}.• A1 = {s(a,b), r(a, a), s(b, a),C(a),D(b)}.

As shown in Figure 3.2a the interpretation (IK1 ,da) has two loops. Therefore, it can beunravelled into an infinite tree in Figure 3.2b. In order to translate it into a complex concept, itis essential to unravel the tree up to some bound, see Figure 3.2c. Thus, by Definition 3.2.1 weobtain the concept X2(IK1 , da) = C ⊓ ∃r.(C ⊓ ∃r.C ⊓ ∃s.D) ⊓ ∃s.(D ⊓ ∃s.C). In the next section, wewill show the previous approach [ZT13] to decide the existence of msc by employing simulation
relation and characteristic concept.

3.3 Characterizing The Existence of The Msc

We recall some of the essential lemmas that are obtained from [ZT13]. First, we start with animportant lemma, which establishes the relation between the tree unravelling Ida and mscK(a).
1For a set N of concepts, dN is abbreviation for ⊓C∈N C. If N is empty, then d

N is ⊤.
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c) I2
da
of (IK1 , da).

Figure 3.2 The interpretation (IK1 , da) with two loops, the tree unravelling Ida of (IK1 , da) andthe tree unravelling I2
da
constructed w.r.t. Example 4.

Lemma 3.3.1. ( [ZT13]) Let Ida be the tree unravelling of (IK, da) in da and C be k-mscK(a). It holds
that Ik

da
≲ (IC,T , dC).

To illustrate the previous lemma, if the concept C is a k-mscK(a), then the canonical model of
C simulates the tree unravelling up to k.The decision of whether the concept C is an msc or not can be obtained from the followinglemma.
Lemma 3.3.2. ( [ZT13]) The concept C is the most specific concept of a w.r.t. K iff (IK, da) ≃ (IC,T , dC ).
Since the concept C can be constructed from a finite tree interpretation, it is required todefine an upper bound to which the interpretation is unravelled. The upper bound is definedas follows.

Lemma 3.3.3. ( [ZT13]) Let m := max({rd(F) | F ∈ sub(K)}) and n := |NI,A|. If mscK(a) exists, then(IK, da) ≲ In
2+m+1
da

.

We are not only interested in computing the k-mscK(a) with some bound k, but also in decidingthe existence ofmscK(a) for all k ∈ N and computemscK(a) if it exists. This can be characterizedby the following lemma.
Lemma 3.3.4. ( [ZT13]) Let K be a knowledge base. mscK(a) exists iff there exists a k such that the
canonical model of Xk(IK, da) w.r.t. T simulates (IK, da).
To decide the existence of the msc of an individual a w.r.t. K,first we compute the upperbound k w.r.t. Lemma 3.3.3. Then the set M of L-characteristic concepts of (IK,da) such that

M = {XL(IK, da) | L ≤ k}. Finally, for each concept C ∈ M, C is the msc iff the canonical model ofconcept C w.r.t. T simulates (IK, da) w.r.t. the individual a ((IK, da) ≲ (IC,T , dC)). We illustrate thiswith the following example.
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b) (IK, da) ≲ (IC,T , dC), with C = X0(IK, da).
Figure 3.3 The interpretation (IK1 , da), the simulation relation from (IK, da) to (IC,T , dC), where

C = X0(IK, da) w.r.t. Example 5.
Example 5. Consider the following knowledge base K = (T,A):

• T = {C ⊑ ∃s.D,D ⊑ ∃s.C}.• A = {s(a,b), s(b, a),C(a),D(b)}.
In Figure 3.3 it is sufficient to generate concept with k = 0, as the canonical model of theconcept X0(IK,da) w.r.t. T simulates (IK,da). Thus X0(IK,da) is mscK(a). Since computing theconcept C could be done in exponential time in case the concept C is exponentially large,therefore in practice deciding the existence of the msc with the previous method could bedone in exponential time.In the next chapter, we introduce a new method for unravelling an interpretation. Then weemploy this method to provide a more efficient way to decide the existence of the msc in apolynomial-time algorithm, which yields an efficient computation of the msc if it exists.
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4 Towards Polynomial Computation
In this chapter, we revisit the sufficient condition from [Baa03a] for characterizing the existenceof an msc in the terminological TBoxes. Then we introduce a new method for a tree unravellingof an interpretation I. Moreover, we show the difference between the previous and the newmethod for the unravelling of an interpretation I. Moreover, we show that the newly introducedmethod for tree unravelling has a tighter upper bound. Thus, the characteristic concept can beconstructed w.r.t. this new method. Also, we use this newly introduced method in a polynomialapproach for deciding the existence of the msc. Furthermore, we show the correctness andcompleteness of this Algorithm. Finally, we show that it decides the existence of the msc w.r.t.an individual in polynomial time.The most specific concept always exists if the ABox is acyclic. However, it need not to exist inthe case of cyclic ABox. As in Example 1 the most specific concept w.r.t. a does not exist in K1,due to the fact that A1 is cyclic. However, it exists in K2 even that A2 is cyclic. One can observethat not all cyclic paths cause this problem. The result from [Baa03a], which was defined w.r.t.terminological cycles, shows that the msc exists iff every cyclic path in A is simulated by at leastone cyclic path in T. However, we cannot ensure that it is still holds in the case of EL-TBoxes.Intuitively, the goal is to extend this result to the case where we have a general EL-TBoxes.In Lemma 3.3.2, a concept C is themsc of an individual a iff there exists a simulation equivalencebetween (IK, da) and the canonical model of C w.r.t. T, where the concept C is constructed fromthe tree unravelling of (IK, da) up to some bound k.By Definition 2.3.2, if the interpretation IK contains cyclic paths, then these cyclic pathsmight generated by T or A. Hence, (IK,da) w.r.t. an individual a contains all cyclic paths fromwhich a is reachable. Therefore, it is sufficient to check, whether (IK, da) contains cycles or not.These cycles in the interpretation lead to the tree unravelling growing infinitely, while the treeunravelling of the Definition 3.1.1 cannot distinguish the existence of cycles in the interpretation.One direction to overcome such a problem is to use an upper bound k to which the tree isunravelled. Another direction is to define a new method for unravelling, a so-called least treeunravelling.

4.1 The Least Tree Unravelling

Roughly speaking, a least tree unravelling of an interpretation I is a tree unravelling, whereeach path σ = dr1d1r2...rmdm contains only distinct individuals from ΔI. If the ΔI is finite, thenthe tree constructed w.r.t. the least tree unravelling is also finite.
Definition 4.1.1 (Least tree unravelling of interpretation). Let I be an interpretation and d ∈ ΔIw.r.t. NC and NR. The least tree unravelling Id of I in d is defined as follows:
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4 Towards Polynomial Computation

• ΔI′d := {dr1d1r2...rndn | (di, di+1) ∈ rI
i+1 ∧ 0 ≤ i < |ΔI| ∧ d0 = d∧ , {d, d1, ..., dn–1} ∈ ΔI

are distinct individuals}.• AI′d := {σd′ | σd′ ∈ ΔI
′
d ∧ d′ ∈ AI}, for all A ∈ NC .• rI′d := {(σ, σrd′) | (σ, σrd′) ∈ ΔI

′
d × ΔI

′
d}, for all r ∈ NR.

To illustrate the difference between the tree unravelling and the least tree unravelling, con-sider (IK1 ,da) defined w.r.t. K1 of Example 1. Since A1 is cyclic, the previous method for thetree unravelling grows infinitely. However, the tree constructed w.r.t. the least tree unravellingwill have only tree depth equal to 1 ( see Figure 4.1).
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b) Least tree unravelling I′da of (IK, da).
Figure 4.1 The tree unravelling Ida and the least tree unravelling I′da constructed w.r.t. (IK1 , da)in Example 1.
By this definition, it is ensured that the tree constructed w.r.t. the least tree unravelling I′d of Ihas a bounded depth k such that k ≤ |ΔI|+1. Hence, the tree is always finite, as each individual

d ∈ ΔI
′
d appears only once in path dr1d1...rn–1dn–1. Given a path σ = dr1d1...rndn, tail(σ) could bean element that occurs only at the end of σ, or somewhere else in σ. One can observe that if aninterpretation I contains a cyclic path σ = dr1d1...rndn, then tail(σ) ∈ {d,d1, ...dn–1}, otherwisethe path is acyclic.This characterization leads to checking the cycles in the interpretation I. If ΔI is finite, thenthe concept Xk(I, d) constructed w.r.t. the least tree unravelling always terminates. The concept

X (I, d) denotes the k-characteristic concept constructed w.r.t. the least tree unravelling, where
k = |ΔI| + 1. If the interpretation I is acyclic, the tree unravelling of I and the least treeunravelling of I have the same tree depth. Hence, the characteristic concept C constructedw.r.t. the least tree unravelling coincides with the characteristic concept C ′ constructed w.r.t.the tree unravelling. Thus, (IC,T , dC) ≃ (IC ′,T , dC ′ ). Hence, C ′ is a mscK(a) iff C is a mscK(a).
Corollary 4.1.2. LetK = (T,A) be a knowledge base, where T and A are acyclic. Let C and C ′ be the
k-characteristic concepts constructed w.r.t. the tree unravelling of (IK,da), with k ∈ N and the least

tree unravelling of (IK, da) respectively. Then C is a mscK(a) iff C ′ is a mscK(a).
Proof. ⇒ Suppose that C is a mscK(a), then by the Lemma 3.3.2, (IC,T , dC) ≃ (IK, da). Since TandA are acyclic, then by the Definition 4.1.1 ΔI′da ⊆ ΔIda . For every path σ = dr1d1...rndn ∈(I′da ,da) we have that tail(σ) ̸∈ {d,d1, ...,dn–1}. Also, the tree unravelling is finite dueto the fact that T and A are acyclic. Hence, ΔI′da = ΔIda . Therefore, the concept C ′constructed w.r.t. the least tree unravelling and the concept C are identical. Moreover,(IC,T , dC ) ≃ (IC ′,T , dC ′ ). By Lemma 3.3.2, we obtain that (IC ′,T , dC ′ ) ≃ (IK, da) and the concept

C ′ is a mscK(a).
⇐ The other direction can be proved analogously.
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We still need to ensure whether Corollary 4.1.2 holds if A is cyclic. In the next section, we willintroduce terminology that is essential in showing that the concept constructed w.r.t. the leasttree unravelling coincides with the concept constructed w.r.t the tree unravelling. In the nextsection, we introduce a mechanism to convert an interpretation into a so-called EL-graph.

4.2 An EL-Graph

We start by defining interpretations in terms of graphs. Furthermore, we define a mechanismto convert a graph into an interpretation. Thus, the obtained interpretation can be used toconstruct a characteristic concept w.r.t. the least tree unravelling.
Definition 4.2.1 (EL-Graph). (From [Baa03a]) An EL-graph is a directed graph G = (V , E, Ind, Y ),such that:

• V is a set of nodes.• E ⊆ V × NR × V is a set of edges labeled by role names.• Y : V → 2NC is a function that labels each node v ∈ V with sets of concepts L ⊆ NC .• Ind : V → 2NI is a function that assigns each node v ∈ V to a set of individual names.
We denote the root node of G by v0. A set pe(E, v) is the set of all edges with a node v as apredecessor.
Definition 4.2.2 (Sub-graph). Let G1 = (V1, E1, Ind1, Y1) be an EL-graph. The EL-graph G2 =(V2, E2, Ind2, Y2) is said to be a sub-graph of G1 (G2 ⊆ G1) iff the following statements hold:

• V2 ⊆ V1.• E2 ⊆ E1 such that for every e = (v, r, d) ∈ E2 we have v, d ∈ V2.• Y2(v) ⊆ Y1(v), for all v ∈ V2.• Ind2(v) ⊆ Ind1(v), for all v ∈ V2.
The interpretation I can be translated into an EL-graph by the following definition.

Definition 4.2.3 (Interpretation as a graph). (From [Baa03a]) Let I = (ΔI, ·I) be an interpretationand d be an element in ΔI. The graph1 GI = (VI, EI, IndI, YI) of the interpretation I is defined asfollows:
• VI are the elements of ΔI, with v0 = d.• EI = {(x, r, y) | r ∈ NR, (x, y) ∈ rI}.• YI(v) = {L ∈ NC|v ∈ LI}, for all v ∈ ΔI.• IndI(v) = {a ∈ NI|v ∈ aI}, for all v ∈ ΔI.

Given a graph G = (V , E, Ind, Y ), a node v ′ ∈ V is said to be directly reachable from a node
v ∈ V (denoted by reachdirect(v, v ′)), if there exists a path σ from v to v ′ and |σ| = 1 (|σ| denotesthe number of role names occurring in σ). More precisely, v ′ ∈ V is directly reachable from anode v ∈ V iff there exists an edge (v, r, v ′) ∈ E. A node v ′ ∈ V is said to be reachable from anode v ∈ V (denoted by reach(v, v ′)), if there exists a path σ = vr1...rnv ′ from v to v ′.A path σ = v0r1v1...rnvn is said to be reachable from a node v ∈ V , if the node v0 is reachablefrom v (denoted by reach(v, σ)). We denote by head(σ) the first element of the path σ =
v0r1v1...rnvn, while tail(σ) denotes the last element of the path σ = v0r1v1...rnvn.
Proposition 4.2.4. ( [LPP12]) Let G = (V , E, Ind, Y ) be an EL-graph, v, v ′ nodes of V. It is decidable in
polynomial time whether v ′ is reachable from v.

1We write graph to refer to EL-graph.
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In order to construct a characteristic concept, it is essential to provide a mechanism totranslate a graph G into an interpretation IG, which is defined as follows.
Definition 4.2.5. [Interpretation from graph] Let G = (V , E, Ind, Y ) be a graph, K = (T,A) aknowledge base. The interpretation IG w.r.t. NR,NC and NI,A is defined as follows:

• ΔIG = V .• AIG = {dv | A ∈ Y (v) ∧ v ∈ V}, for all A ∈ NC .• rIG = {(dv , dv ′ ) | (v, r, v ′) ∈ E}, for all r ∈ NR.• aIG = {da|a ∈ Ind(v) ∧ v ∈ V}, for all a ∈ NI,A.
As we are interested in characterizing the cycles of I, we need to distinguish between thecyclic paths and the acyclic paths of GI. This can be obtained from the following definition.

Definition 4.2.6 (Cyclic path). Let GI = (VI, EI, IndI, YI) be a graph. A cyclic path Gσ is a path of GIsuch that:
• Gσ = {x0r1x1...rnxn | (xi, ri, xi+1) ∈ EI ∧ xn ∈ {x0, x1, ..., xn–1} ∧ 0 ≤ i < n ∧ n ≤ |VI|}.

|Gσ| denotes the number of role names occurring in Gσ. The set Gcycles denotes the set of allcyclic paths Gσ of GI.
To be able to distinguish between the cycles of I that are generated from T and A, we needto construct sub-graphs G′I,A and G′′I,T of GI.

Definition 4.2.7 (ABox graph). Let K = (T,A) be a knowledge base, a an individual, GI =(VI, EI, IndI, YI) be the graph of (IK,da). The ABox graph GI,A = (VI,A, EI,A, IndI,A, YI,A) is a sub-graph of GI such that:
• VI,A = {v ∈ VI | Ind(v) ∈ NI,A}.• EI,A = {(x, r, y) | (x, y) ∈ r(IK,da) ∧ x, y ∈ VI,A}.• YI,A(v) = {L ∈ NC|v ∈ L(IK,da)}, for all v ∈ VI,A.• IndI,A(v) = IndI(v), for all v ∈ VI,A.

VA denotes the set of nodes that are generated by A.
The graph GI,T can be defined similarly.

Definition 4.2.8 (TBox graph). Let K = (T,A) be a knowledge base, a an individual, GI =(VI, EI, IndI, YI) be the graph of (IK, da). The TBox graph GI,T = (VI,T , EI,T , IndI,T , YI,T) is a sub-graphof GI such that:
• VI,T = {v ∈ VI | Ind(v) ̸∈ NI,A}.• EI,T = {(x, r, y) | (x, y) ∈ r(IK,da) ∧ x, y ∈ VI,T}.• YI,T(v) = {L ∈ NC|v ∈ L(IK,da)}, for all v ∈ VI,T .• IndI,T(v) = IndI(v), for all v ∈ VI,T .

VT denotes the set of nodes that are generated by T.
We observe that GI,A and GI,T are unique w.r.t. the same model (IK, da). Moreover, it is clearto see that GI,T and GI,A are sub-graphs of GI, where GI,T and GI,A are disjoint (see Figure 4.2).From the fact that GI,A and GI,T are sub-graphs of GI, where GI is the graph of (IK,da), onecan observe that adding all paths σ ∈ GI to GI,A that are reachable from any node v in GI,Aallows us to obtain back GI.

Definition 4.2.9 (Canonical graph). Let G1 = (V1, E1, Ind1, Y1) be the graph of (IK,da), GI,A theABox graph of G1, G2 = (V2, E2, Ind2, Y2) a sub-graph of GI,A. We define as canonical graph of G2w.r.t. G1 as the graph GG2,G1 = (VG2,G1 , EG2,G1 , IndG2,G1 , YG2,G1 ) such that:
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Figure 4.2 The graph GI defined w.r.t. (IK2 , da) of Example 1. The graphs GI,A and GI,T w.r.t. GI.

• VG2,G1 = V2 ∪ {v ′ ∈ V1 | v ′ is reachable from v ∧ Ind1(v ′) ̸∈ NI,A, v ∈ V2}.• EG2,G1 = {(x, r, y) ∈ E1 | x, y ∈ VG2,G1}.• YG2,G1 (v) = Y1(v), for all v ∈ VG2,G1 .• IndG2,G1 (v) = Ind1(v), for all v ∈ VG2,G1 .
Example 6. Consider The following knowledge base K = (T,A):

• T = {C ⊑ ∃r.D}.• A = {s(a,b),C(a)}.
The previous definition adds only those nodes and edges that are generated by GI,T (see Fig-ure 4.3 of Example 6). As a consequence of the previous definition, we obtain that the canonicalgraph GGI,A,GI

of GI,A w.r.t. GI gives us back GI. Thus, we have that (GGI,A,GI
, v0) is identical to(GI, v0). Moreover, if A is acyclic, then constructing a concept C w.r.t. the least tree unravellingof IGGI,A ,GI we have that by the Corollary 4.1.2 (IC,T) ≃ (IK, da).
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a) A graph G w.r.t. (IK, da).
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b) A sub-graph G′ of G.
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C,∃r.D
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D
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c) A canonical graph GG′,G.
Figure 4.3 A graph G constructed w.r.t. (IK, da), a sub-graph G′ of G, and the canonical graph

GG′,G w.r.t. G′ and G.
From the definitions 4.2.2, 4.2.9 and 4.2.7, we can obtain the following Lemma that charac-terizes the relation between two sub-graphs of the ABox graph GA constructed w.r.t. the samegraph.

Lemma 4.2.10. Let G = (V , E, Ind, Y ) be the EL-graph of (IK,da), G1 = (V1, E1, Ind1, Y1),G2 =(V2, E2, Ind2, Y2) be two sub-graphs of the ABox graph GA such that G1 ⊆ G2. Then GG1,G =(VG1,G, EG1,G, IndG1,G, YG1,G) ⊆ GG2,G = (VG2,G, EG2,G, IndG2,G, YG2,G).
Proof. Assume that G1 ⊆ G2. Then by the Definition 4.2.2, we have the following:

• V1 ⊆ V2.• E1 ⊆ E2.• Y1(v) ⊆ Y2(v), for all v ∈ V1.• Ind1(v) ⊆ Ind2(v), for all v ∈ V1.
Also, from the construction of the Definition 4.2.9, we have that the canonical graph GG1,G is asub-graph of G such that:
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• VG1,G contains all nodes from V1 together with all nodes v ∈ VT such that v is reachablefrom a node v ′ ∈ V1.• EG1,G contains all edges e = (x, r, y) ∈ E such that x, y ∈ VG1,G.• YG1,G(v) ⊆ Y (v) such that v ∈ VG1,G.• IndG1,G(v) ⊆ Ind(v) such that v ∈ VG1,G.
The canonical graph GG2,G is constructed analogously. Then by construction of the Defini-tion 4.2.9 if there exists a node v such that v ∈ VG1,G ∧ v ̸∈ V1, then v must be reachable from anode v ′ ∈ V1 where v ′ ∈ V1. Since V1 ⊆ V2, then the node v ′ is also in V2, and v must be in GG2,Gand v ̸∈ V2. Therefore, VG1,G is a subset of VG2,G (VG1,G ⊆ VG2,G).Similarly, if there exists an edge e = (x, r, y) ∈ EG1,G, then e = (x, r, y) ∈ EG2,G. Due to the factthat x, y ∈ VG1,G and x, y ∈ VG2,G. From VG1,G ⊆ VG2,G we have that YG1,G is also a subset of YG2,G(YG1,G ⊆ YG2,G).
We can also characterize the edges that are added in the canonical graphs of two sub-graphsof the ABox graph GA w.r.t. the same graph GI. This can be characterized as follows.

Lemma 4.2.11. Let G = (V , E, Ind, Y ) be the EL-graph of (IK, da), VT be the set of nodes in G that are

generated by T, G1 = (V1, E1, Ind1, Y1),G2 = (V2, E2, Ind2, Y2) be two sub-graphs of the ABox graph GA.

For v1 ∈ VG1,G,v2 ∈ VG2,G if YG1,G(v1) ⊆ YG2,G(v2), (v1, r, v) ∈ EG1,G and v ∈ VT , then (v2, r, v) ∈ EG2,G
where GG1,G = (VG1,G, EG1,G, IndG1,G, YG1,G) and GG2,G = (VG2,G, EG2,G, IndG1,G, YG2,G) are the canonical
graphs of G1 and G2 w.r.t. G.
Proof. We assume that ontology is in normal form. An ontology is in a normal form if everyexistential restriction occurs in axioms of the following form:

• ∃r.A ⊑ B. Or,• A ⊑ ∃r.B.
By construction of the Definition 4.2.9 we have that all nodes v ∈ VT that are added to GG1,Gmust be reachable from a node v1 ∈ V1. Therefore, there must exists an edge (v1, r, v) ∈ EG1,G,where v ∈ VT . Also by construction of the Definition 2.3.2, the edge (v1, r, v) ∈ EG1,G exists in
GG1,G iff (v1, v) ∈ rIK . Moreover, we can obtain the set of concept names M such that every
C ∈ M we have v1 ∈ CIK . Similarly, we can obtain the set of concepts M′ such that every
C ′ ∈ M′ we have v2 ∈ C ′IK . If YG1,G(v1) ⊆ YG2,G(v2), then M ⊆ M′. Hence, we have that everyconcept C ∈ M, we have that v2 ∈ CIK . Hence, as a consequence of the construction of theDefinition 2.3.2,we have that (v2, v) ∈ rIK and (v1, v) ∈ rIK , for the same role name r. Hence, thenode v ∈ VT must be reachable from the node v2 ∈ VG2,G. Therefore, there must exists an edge(v2, r, v) ∈ EG2,G.
As graphs are used to represent the interpretations, then it is necessary to define thesimulation explicitly in terms of graphs.

4.3 The Simulation Over Graphs

Definition 4.3.1. [Simulation over graphs] Let G1 = (V1, E1, Ind1, Y1), G2 = (V2, E2, Ind2, Y2) be
EL-graphs, v ∈ V1 be a node, v ′ ∈ V2 be a node. A binary relation S ⊆ V1 × V2 is called a
simulation from (G1, v) to (G2, v ′) if all the following conditions are satisfied:
(S1) If (v1, v2) ∈ S, then Y1(v1) ⊆ Y2(v2).
(S2) If (v1, v2) ∈ S, and (v1, r, v ′1) ∈ E1, then there exists some v ′2 ∈ V2 such that (v ′1, v ′2) ∈ S, and(v2, r, v ′2) ∈ E2.
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Figure 4.4 The simulation S from path σ to σ′ .
We write S : (G1, v) ≲ (G2, v ′) to express that there exists a simulation S from G1 to G2 such that(v, v ′) ∈ S. We write S : (G1, v) ≃ (G2, v ′) to express that there exists a simulation equivalencebetween G1 and G2 ((G1, v) ≲ (G2, v ′) and (G2, v ′) ≲ (G1, v)).2
It is easy to see that the set of all simulations from G1 to G2 is closed under arbitrary unions,if G1 and G2 are finite. Consequently, there always exists a greatest simulation from G1 to G2. If

G1 and G2 are finite, then this greatest simulation can be computed in polynomial time [HM01].As a consequence of this fact, we obtain the following proposition.
Proposition 4.3.2. ( [Baa03b]) Let G1,G2 be two finite EL-graphs, v a node of G1 and v ′ a node of
G2. It is decidable in polynomial time whether there exists a simulation S : (G1, v) ≲ (G2, v ′) such that(v, v ′) ∈ S.

Definition 4.3.3 (Simulation over paths). Let G be a graph constructed w.r.t. an interpretation I,
σ, σ′ be two paths occurring in G. A path σ = x0r1... is said to be simulated by σ′ = x′0r1x′0r2... iffthere exists a simulation S such that (xi, x′i ) ∈ S, for all 0 ≤ i and x0 = x′0. We write S : σ ≲ σ′ toexpress that there exists a simulation S from σ to σ′ (see Figure 4.4).
Definition 4.3.4 (Simulation over edges). Let G = (V , E, Ind, Y ) be an EL-graph, e = (v, r, d), e′ =(v ′, r,d′) be two edges occurring in E. e is said to be simulated by e′ (e ≲ e′) if the followingconditions are satisfied:

• Y (v) ⊆ Y (v ′).• There exists a simulation S such that (d, d′) ∈ S.

4.4 Computing The Msc w.r.t. The Least Tree Unravelling

Nowwe are ready to construct themost specific concept w.r.t. the least tree unravelling. Insteadof generating all the candidate concepts up to upper bound k and check whether the simulation
equivalence holds between the canonical model of one of the candidates w.r.t. T and (IK,da),we employ the Lemmas 3.3.2 and 4.1.2 to decide the existence of the msc w.r.t. an individual.Intuitively, we construct a sub-interpretation (I′,da) of (IK,da) up to equivalence, such that(I′,da) ≲ (IK,da) and (IK,da) ≲ (I′,da). We construct a sub-graphmscG = (VmscG, EmscG, IndmscG,
YmscG) of ABox graph GA by recursively copying nodes and concepts related to them fromthe graph canM = (V , E, Ind, Y ) of (IK,da) starting from the root node v0. v0 is the node thatrepresents the individual a. We define the construction of mscG in terms of an algorithm. Thealgorithms that we will be used in the following sections of this chapter, will be captured inChapter 5.

2We may just write (G1, v) ≲ (G2, v ′) instead of S : (G1, v) ≲ (G2, v ′), if the simulation relation is not important in thecontext.
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4.4.1 Deciding The Existence of The Msc

From Now we use the graph mscG = (VmscG, EmscG, IndmscG, YmscG) to represent the graph thatwe want to construct, the graph canM = (V , E, Ind, Y ) to represent the graph of (IK, da) and thegraph tempt = (Vt , Et , Indt , Yt) to be the canonical graph ofmscG w.r.t. canM after the terminationof the recursive call of the Algorithm 2.We start by taking K = (T,A) and the individual a as inputs. Then canM is constructed w.r.t.(IK, da).We initialize mscG0 = (VmscG0 , EmscG0 , IndmscG0 , YmscG0 ) as follows:
• VmscG0 = (v0), where v0 is the root node of canM.• EmscG0 = ∅.• YmscG0 (v0) = Y (v0).• IndmscG0 (v0) = a.

Then, recursively we visit every node v ∈ VA (recall the Definition 4.2.7) and add the edges ifneeded. More precisely, for 0 ≤ i ≤ |VA|, we do the following:
• we build tempi = (Vi, Ei, Indi, Yi) to be the canonical graph of mscGi w.r.t. canM.• for each edge (v, r, d) ∈ pe(E, v), we check whether there exists an edge (v, r, d′) ∈ pe(Ei, v)such that (v, r, d) is simulated by (v, r, d′).

We can define mscGi = (VmscGi , EmscGi , IndmscGi , YmscGi ), where i > 0 as follows:
• VmscGi = VmscGi–1 ∪ {Ind(d) ∈ NI,A| there exists some v ∈ VmscGi–1 and for all (v, r,d′) ∈
pe(Ei–1, v) such that (v, r, d) ∈ pe(E, v) w.r.t. canM ∧ (v, r, d) ̸≲ (v, r, d′)}.• EmscGi = {(v, r, d) ∈ pe(E, v)|v, d ∈ VmscGi}.• YmscGi (v) = Y (v), for all v ∈ VmscGi .• IndmscGi (v) = Ind(v), for all v ∈ VmscGi .

In the previous definition, only nodes that are contained in VA are added to VmscGi . Since thenumber of nodes of the graph G is finite, then also the size of VA is finite. Also, the number ofedges in E is finite. Therefore, we ensure that the Algorithm terminates.After Algorithm terminates, we obtain thatmscG is a sub-graph of ABox graph GA. The reasonis that mscG contains only nodes from VA. Moreover, we observe that there exists always asimulation equivalence between (tempt , v0) and (canM, v0). This can be characterized by thefollowing lemmas.
Lemma 4.4.1. LetK = (T,A) be a knowledge base, canM = (V , E, Ind, Y ) be the graph of (IK, da), and
mscG = (VmscG, EmscG, IndmscG, YmscG) be a graph constructed after the termination of Algorithm 1.

It holds that (canM, v0) ≲ (tempt , v0), where tempt = (Vt , Et , Indt , Yt) is the canonical graph of mscG
w.r.t. canM.

Proof. Let GA = (VA, EA, IndA, YA) be an ABox graph constructed w.r.t. canM. Let GT = (VT , ET ,
IndT , YT) be a TBox graph constructed w.r.t. canM.We start defining a relation Si ⊆ V × Vi, for i ∈ {0, 1, ..., |VA|}, where tempi = (Vi, Ei, Indi, Yi) isthe canonical graph of mscG w.r.t. canM that is constructed at each recursive call. The relation
Si is defined by following the steps of the Algorithm 1:
1. As shown in Line 4, the graph mscG is initialized as an empty graph. Then the root node

v0 in canM is added to mscG0 together with its set of concepts. Therefore, S0 = {(v0, v ′0)},where v0, v ′0 are the root nodes of canM and mscG0 respectively.
2. Then, all nodes in VA are visited only once, starting from the root node v0 that containsthe individual a (as shown in Algorithm 2):
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• At each recursive call, a node v is the current node, tempi = (Vi, Ei, Indi, Yi) is con-structed to be the canonical graph of mscGi w.r.t. canM, where mscGi is the graphthat is obtained at the recursive call i.• Given a node v, a set pe(E, v) = {(v, r, v ′) ∈ E} is the set of edges from canM thatcontains v as a predecessor, a set pe(Ei, v) = {(v, r, v ′) ∈ Ei} is the set of edges from
temp that contains v as a predecessor.• An edge e ∈ pe(E, v) is added to mscGi if there exists no edge e′ ∈ pe(Ei, v) such that eis simulated by e′ (see Line 10 of Algorithm 2).An edge e = (v, r, v ′) ∈ E is said to be simulated by an edge e′ = (d, r,d′) ∈ Ei iff thefollowing hold:
– Y (v) ⊆ Yi(d) and Y (v ′) ⊆ Yi(d′).
– There exists a simulation S such that (v ′, d′) ∈ S.

• Then we have one of two cases:
(A) There exists an edge e′ = (v, r, d′) ∈ pe(Ei, v) that simulates the edge e = (v, r, v ′) ∈

pe(E, v) and e′ ∈ VT , then there exists a simulation S such that (v ′,d′) ∈ S. Wethen have that Si = Si–1 ∪ S.(B) Otherwise, e = (v, r, v ′) ∈ pe(E, v) is added to mscGi. Hence, Si = Si–1 ∪ {(v ′, v ′)}.
3. Algorithm 2 terminates after all nodes are visited and for every edge e ∈ E, there is anedge e′ ∈ Ei such that e is simulated by e′.

As a consequence of Lemma 4.2.10, we have that tempi ⊆ tempi+1, for all 0 ≤ i < |VA|. Therefore,if there exists a simulation from a node v ∈ V to a node v ′ ∈ tempi, then there exists also asimulation from v ∈ V to v ′ ∈ tempi+1, for all 0 ≤ i < |VA|. Let tempt = (Vt , Et , Indt , Yt) be thecanonical graph of mscG w.r.t. canM that is constructed after the Algorithm 2 terminates.Claim: For every i ∈ {0, ..., |VA|}, Si satisfies:
(S’1) For every (v, v ′) ∈ Si, Y (v) ⊆ Yt(v ′).
(S’2) If i > 0: for every (v, v ′) ∈ Si–1 and (v, r, e) ∈ E, there exists (v ′, r, e′) ∈ Et , (e, e′) ∈ Si.
Proof of Claim: We prove by induction over i.Base Induction: I = 0. Then, S0 = (v0, v0), where v0, v0 are the root nodes of canM and tempt .The Algorithm 1 copies v0 tomscG together with its concepts. Therefore, (A) is satisfied. (B) isalso satisfied, because i = 0.Induction Step: Assume i > 0 and that claim holds for Si–1.
(S’1) Take some (v, v ′) ∈ Si. If (v, v ′) ∈ Si–1, then (S’1) holds from the induction hypothesis.Assume (v, v ′) ∈ Si§i–1. This means we are in one of two cases:

(I) From (A) we have that Si = Si–1 ∪ S and (v, v ′) ∈ S, or
(II) From (B) we have that Si = Si–1 ∪ {(v, v)}, and Y (v) = Yt(v).

In case (I), S is a simulation, and thus Y (v) ⊆ Yt(v ′) by (S’1). In case (II), Y (v) = Yt(v) followsdirectly.
(S’2) Take some (v, v ′) ∈ Si–1. If (v, v ′) ∈ Si–2, then (S’2) holds from the induction hypothesis.Assume (v, v ′) ∈ Si–1§i–2, and there exists an edge (v, r,d) ∈ E. Then there are two casesdepending on whether (v, r, d) ∈ E is simulated by some (v ′, r, d′) ∈ Et or not:

(I) From (A) we have that Si = Si–1 ∪ S where (d, d′) ∈ S and (v ′, r, d′) ∈ Et . Or
(II) From (B) we have that Si = Si–1 ∪ {(d, d)}, and (v ′, r, d) ∈ Et .

In both cases, we have that (S’2) is satisfied.
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■We write St to denote the relation St ⊆ V × Vt , where t = |VA|.From the claim we have that the relation St ⊆ V × Vt defines a simulation from canM =(V , E, Ind, Y ) to tempt = (Vt , Et , Indt , Yt) as follows:
• Take (v, v ′) ∈ St\St–1, (v, r, e) ∈ E. Then emust be from St because we already processed allsuccessors of nodes. We have one of two cases.

(I) e was not processed in the last step but in an earlier step. That means Si ⊆ St–1,where (e, e′) ∈ Si. The Algorithm 2 would add (v ′, r, e′) to EmscG and (e, e′) ∈ Si, unless itis already there. Since this is the last step of the Algorithm 2, then (v ′, r, e′) must bealready in EmscG and thus also in Et . It follows that (S2) is also satisfied for (v, v ′).
(II) e was processed in the last step. Because we always process one node in eachstep, then e = v. This means that (v, r, v) ∈ E. If (v ′, r, e′) ∈ Et such that (canM, v) ≲(tempt–1, e′) through the simulation S, then St = St–1 ∪ S and thus (v, e′) ∈ St . Thenalso (S2) is satisfied for (v, v ′). Otherwise, Et = Et–1 ∪ {(v ′, r, v)} and St = St–1 ∪ {(v ′, v)}so that (S2) is also satisfied.

Hence, the relation St ⊆ V × Vt defines a simulation from canM to tempt , where tempt is thecanonical graph of mscG w.r.t. canM that is obtained after Algorithm 2 terminates.
Lemma 4.4.2. Let K = (T,A) be a knowledge base, graph canM = (V , E, Ind, Y ) be the graph of(IK, da), and graph mscG = (VmscG, EmscG, IndmscG, YmscG) be the graph obtained after the termination
of Algorithm 1. It holds that (canM, v0) ≲ (tempt , v0), where tempt = (Vt , Et , Indt , Yt) is the canonical
graph of mscG w.r.t. canM.

Proof. Again, after the recursive call of the Algorithm 2, The mscG graph is obtained such thatthe mscG graph is a sub-graph canM, and also ImscG ⊆ IcanM (recall the Definition 4.2.5). Asconsequence also the canonical graph temp = (Vt , Et , Indt , Yt) of mscG w.r.t. canM is a sub-graphof the canM graph. Hence, also Itempt ⊆ IcanM. Therefore, there exists a simulation from temp to
canM, due to that each node v ∈ Vt has a corresponding node v ′ ∈ V with Yt(v) ⊆ Y (v ′) and eachedge (v1, r, v2) ∈ Et has a corresponding edge (v ′1, r, v ′2) ∈ E with Yt(v1) ⊆ Y (v ′1) and Yt(v1) ⊆ Y (v ′2).Hence, it holds that (temp, v0) ≲ (canM, v0) after the Algorithm 1 terminates.
Since there exists always a simulation equivalence between (tempt , v0) and (canM, v0) afterAlgorithm 1 terminates and the fact that mscG contains only nodes from VA, it is not a sufficientcondition to decide the existence of the msc w.r.t. a. It is still essential to check whether mscGcontains a cycle or not. If there exists a cyclic path σ in mscG, then σ is not simulated by anypath from tempt . This allows us to obtain that if mscG is cyclic, then this cyclic path is generatedby A. Therefore, there exists no msc w.r.t. a. The reason is that I that is obtained from mscGwould contain a loop. Therefore, the tree unravelling of I is infinite. One can employ the leasttree unravelling of I to construct the characteristic concept C. Then we can check whether C isthe msc or not by Lemma 3.3.2.

Example 7. Consider the knowledge base K = (T,A):
• T = {A ⊑ ∃r.A}.• A = {s(a,b), r(b, c), r(b, d), r(d, d), A(d), A(b),B(c)}.
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Figure 4.5 canM constructed w.r.t. (IK, da), the graphs mscG0,mscG1,mscG2 obtained at theend of each recursive call.
Algorithm 2 starts with two initial graphs mscG0 and canM. mscG0 is initialized with only rootnode a in Algorithm 1. The graph mscG0 contains only a and no edges. Then Algorithm 2 visitsnode a, and builds temp0 to be the canonical graph of mscG0 w.rt. canM. Then it checks everyedges e ∈ pe(E,a) in canM whether there exists an edge e′ ∈ pe(E,a) in temp0 such that e issimulated by e′. Since the node a contains only one edge e = (a, s, b) where Ind(a), Ind(b) ∈ NI,A,therefore there is no simulation to it by any edge e from temp0. Hence, the edge e = (a, s,b) isadded to mscG1.Then Algorithm 2 visits the next node which is b and builds temp1 of mscG2 w.r.t. canM. Since

Eb in canM contains three edges e1 = (b, r, d), e2 = (b, r, c), e3 = (b, r,b), it checks whether any ofthese edges can be simulated by an edge from Eb in temp1. In this case we have that e2 = (b, r, d)in Eb of canM is simulated by e′ = (b, r, A) in Eb of temp1. Therefore, the Algorithm skips addingthis edge to mscG1. We have also that e3 = (b, r,b) in Eb of canM is simulated by e′ = (b, r, A) in
Eb of temp1. Hence, it is also skipped. However, the edge e1 = (b, r, c) is not simulated by anyedge from Eb in temp1. Hence, e1 is added to mscG2. Now we have only node c in mscG thatshould be visited before the recursive call terminates. In the last recursive call since the node chas no successors, the algorithm 2 terminates. In Figure 4.5, we can see the graphs generatedof Example 7 by Algorithm 1.Finally, there is still needed to check whether there exists a simulation equivalence between(tempt , v0) and (canM, v0). We also need to check whethermscG contains a cycle. This two checksare done after the recursive call of Algorithm 2 and it returns to continue with remaining stepsin Algorithm 1(see Figure 4.6).
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Figure 4.6 tempt constructed w.r.t. mscG2 and canM, the simulation equivalence between(tempt , v0) and (canM, v0).
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As we can see in Figure 4.6 that after Algorithm 1 terminates, there exists a simulationequivalence between (tempt , v0) and (canM, v0).However, there could be the case that there exists the msc of a, even though mscG containsa cycle. To illustrate this consider the following example.
Example 8. Consider the knowledge base K = (T,A):

• T = {A ⊑ ∃r.A}.• A = {r(a,b), r(b, a), r(a, c), r(c, d), A(d)}.
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Figure 4.7 canM of (IK, da) and mscG w.r.t. Example 8.
In the previous example, we have that mscG contains a cyclic path, although there exists themsc of a. The concept C = ∃r.(∃r.A) is the msc of a.Therefore, it is not sufficient to check directly whethermscG is cyclic. It is still necessary tofind the least sub-graph of mscG such that every path σ = vr1v1r2v2... in mscG is not simulatedby any path σ′ = vr1v ′1r2v ′2... in tempt , with vi ̸= v ′

i
for some i > 0.
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Figure 4.8 σ ≲ σ′, where σ in mscG and σ′ in tempt , and the resulting sub-graph of mscG.
In Figure 4.8, we remove the path σ inmscG since it is simulated by the path σ. Hence, weobtain that the finalmscG is the least graph such that (tempt , v0) simulates (canM, v0). Then, if

mscG is acyclic, then there exists the msc of a. One can construct the characteristic concept Cw.r.t. I of mscG.Based on this construction of mscG, we observe the following.
Lemma 4.4.3. Let K = (T,A) be a knowledge base, canM = (V , E, Ind, Y ) be the graph of (IK,da),
mscG = (VmscG, EmscG, IndmscG, YmscG) be a graph constructed after the termination of Algorithm 1, and

tempt = (Vt , Et , Indt , Yt) be the canonical graph of mscG w.r.t. canM. Then For every (v, r, v1), (v, r, v2) ∈
Et satisfy one of the following conditions:
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• v1 = v2.• Or, (tempt , v1) ̸≲ (tempt , v2).
Proof. In Line 6 of Algorithm 1 it calls Algorithm 4, where Algorithm 4 intuitively finds a least graphof mscG such that the simulation equivalence relation between (tempt , v0) and (canM, v0) stillholds. By construction of the Algorithm 4 in Line 5, every edge (v, r, v ′) ∈ EmscG is removed from
mscG if there exists an edge (v, r, v ′′) ∈ Et such that (v, r, v ′) is simulated by (v, r, v ′′). Therefore,Algorithm 1 ensures all edges e ∈ EmscG cannot be simulated by any edge e′ ∈ Et . This meansgiven two edges (v, r, v1), (v, r, v2) ∈ Et we have one of the following cases:
(A) (tempt , v1) ̸≲ (tempt , v2).
(B) Or, (tempt , v1) ≲ (tempt , v2).
• Case (A) coincides with the our second condition.• Case (B). Assume that (tempt , v1) ≲ (tempt , v2). Due to the fact that all edges e = (v, r, v1) ∈
EmscG is not simulated by any edge e′ = (v, r, v2) ∈ Et . Then, if e = (v, r, v1) is simulated byedge e′ = (v, r, v2), then e = e′. Therefore, also v1 = v2.

As a consequence of the construction of Algorithm 1, one can observe that every edge e =(v, r, v ′) ∈ EmscG is not simulated by any edge e′ = (v, r, v ′′) ∈ Et such that v ′ ̸= v ′′, where tempt =(Vt , Et , Indt , Yt) is the canonical graph ofmscG w.r.t. canM that is obtained after termination ofthe algorithm. This can be characterized by the following lemma.
Lemma4.4.4. Let canM = (VcanM, EcanM, IndcanM, YcanM) be the graph of (IK, da), mscG = (VmscG, EmscG, IndmscG, YmscG) the graph obtained after Algorithm 1 terminates, tempt = (Vt , Et , Indt , Yt) the canoni-
cal graph of mscG w.r.t. canM. Then, every infinite path σ = v0r1v1r2v2... ∈ mscG is not simulated

by an infinite path σ′ = v0r1v ′1r2v ′2... ∈ tempt such that v
′
i
∈ VT , (mscG, vi) ≲ (tempt , v ′i ), and vi ̸= v ′

i

for some i > 0.
Proof. By construction of Algorithm 1:
1. As shown in Line 4, the graph mscG is initialized as an empty graph. Then the root node

v0 in canM is added to mscG0 together with its set of concepts.
2. Then, all nodes in VA are visited only once, starting from the root node v0 that containsthe individual a (as shown in Algorithm 2):

• At each recursive call, a node v is the current node, tempi = (Vi, Ei, Indi, Yi) is con-structed to be the canonical graph of mscGi w.r.t. canM, where mscGi is the graphthat is obtained at the recursive call i.• Given a node v, a set pe(E, v) = {(v, r, v ′) ∈ E} is the set of edges from canM that has
v as a predecessor, a set pe(Ei, v) = {(v, r, v ′) ∈ Ei} is the set of edges from tempi thathas v as a predecessor.• In Line 15 of Algorithm 2 an edge e ∈ pe(E, v) is added to mscGi if there exists noedge e′ ∈ pe(Ei, v) such that e is simulated by e′ (recall the Definition 4.3.4).

3. Let tempt = (Vt , Et , Indt , Yt) be the canonical graph of mscG w.r.t. canM after Algorithm 2terminates.
4. Algorithm 2 terminates after all nodes are visited and for every edge e ∈ E, there is an edge

e′ ∈ Et such that e is simulated by e′. Also we can observe that every edge e ∈ pe(EmscG, v)is not simulated by any edge e′ ∈ pe(Et , v)∧e′ ̸= e, for every node v ∈ VmscG. Otherwise, theedge e would not be added to mscG. Moreover, every edge e = (v, r, v ′) ∈ EmscG we have
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that v, v ′ ∈ VA (VA is a set of nodes occurring in canM such that the nodes are generatedby A). Due to the fact that e is not simulated by any of the edges that are added from thecanonical graph of mscG w.r.t. canM (recall the Definition 4.2.9).
Now Suppose that there exists a cyclic path inmscG. This means that there exists an infinitepath σ = v0r1v1r2v2... ∈ mscG such that every edge (vi–1, r1, vi) ∈ EmscG is not simulated by anedge (vi–1, r1, v ′i ) ∈ Et , where v ′i ∈ VT and vi ̸= v ′

i
, for all i > 0. Otherwise, the edge (vi–1, r1, vi)would not exist in EmscG. Hence, σ = v0r1v1r2v2... ∈ mscG is not simulated by any infinite path

σ′ = v0r1v ′1r2v ′2... ∈ tempt such that v ′i ∈ VT and vi ̸= v ′
i
for some i > 0.

We recall that Algorithm 1 constructs mscG graph such that (tempt , v0) ≃ (canM, v0). Also itchecks whether mscG contains a cyclic path or not. If mscG contains a cyclic path, then thereexists no msc of individual a. Otherwise, there exists an msc of a, and one then use convert
mscG into an interpretation ImscG and use the interpretation to compute the msc.Since deciding the existence of the msc with this approach does not rely on computing theconcept, it is easy to see that it can be decided in polynomial time. Then, the constructed graphcan be used to construct a possibly exponentially large concept. Also we can observe thatrole-depth of (ImscG,da) is bounded by |VmscG|. Therefore, it is sufficient to construct up to|VmscG| to decide the existence of the msc.

4.5 proofs

4.5.1 Correctness

Theorem 4.5.1 (CORRECTNESS). If the Algorithm 1 returns true, then there exists a most specific

concept w.r.t. individual a.

Proof. Assume that Algorithm 1 returns true. By the Definition 4.2.5, the interpretation IcanM isconstructed w.r.t. the canM graph, and the interpretation ImscG is constructed w.r.t. the mscGgraph. A concept C is the characteristic concept obtained w.r.t. least tree unravelling of theinterpretation ImscG, where k = |ΔImscG|. This means that by Line 8, we have the following:
• There exists a simulation equivalence between IcanM and the canonical model of the concept
C w.r.t. T ( IcanM ≃ (IC,T , dC).• Graph mscG contains no cycle; Meaning that there is no path v1e1...envn with vn = v1, forall e ∈ E, and for all v ∈ V .

Since the mscG graph contains no cycle, then ImscG contains no cycle and by the definition ofleast tree unravelling, every path σ = dr1d1...rndn ofmscG, we have that {d, d1, ..., dn} are distinctindividuals; Tail(σ) ̸∈ {d,d1, ...,dn–1}, where path σ = d,d1r1...rndn, for all paths σ ∈ I′mscGd .Moreover, By Lemmas 4.4.2 and 4.4.1 we have that (temp, v0) ≃ (canM, v0), where temp is thecanonical graph of mscG w.r.t. canM. While mscG is acyclic, it can be unravelled into a finitetree. Then the concept C is constructed w.r.t. the least tree unravelling of ImscG. We have that(IC,T ,dC) ≃ (IK,da). By Lemma 3.3.2, we obtain that the concept C is the msc of the individual
a.
4.5.2 Completeness

Theorem 4.5.2 (COMPLETENESS). If there exists a most specific concept w.r.t. individual a, then
Algorithm 1 returns true.

Proof. Assume that there exists a most specific concept w.r.t. individual a. Now suppose bycontradiction that Algorithm 1 returns false. Then by Line 8, either:
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(A) There exists no simulation equivalence between canM and the canonical graph temp of
mscG w.r.t. canM, where canM is the graph of (IK, da) andmscG is the graph obtained afterthe Algorithm 1 terminates.

(B) Or, the constructed mscG = (VmscG, EmscG, IndmscG, YmscG) Graph has a cycle.
Case (A). Suppose that (canM, v0) ̸≃ (temp, v0). Then it is a contradiction for Lemmas 4.4.2and 4.4.1. After the Algorithm 1 terminates, there must exists a simulation equivalence between(canM, v0) and (tempt , v0).Case (B). Suppose that mscG is cyclic. By construction of Algorithm 1:
1. As shown in Line 4, the graph mscG is initialized as an empty graph. Then the root node

v0 in canM is added to mscG0 together with its set of concepts.
2. Then, all nodes in VA are visited only once, starting from the root node v0 that containsthe individual a (as shown in Algorithm 2):

• At each recursive call, a node v is the current node, tempi = (Vi, Ei, Indi, Yi) is con-structed to be the canonical graph of mscGi w.r.t. canM, where mscGi is the graphthat is obtained at the recursive call i.• Given a node v, a set pe(E, v) = {(v, r, v ′) ∈ E} is the set of edges from canM that has
v as a predecessor, a set pe(Ei, v) = {(v, r, v ′) ∈ Ei} is the set of edges from tempi thathas v as a predecessor.• In Line 15 of Algorithm 2, an edge e ∈ pe(E, v) is added to mscGi if there exists noedge e′ ∈ pe(Ei, v) such that e is simulated by e′ (recall the Definition 4.3.4).• If there exists an edge e′ = (v, r,d′) ∈ pe(Ei, v) that simulates the edge e = (v, r, v ′) ∈
pe(E, v), then we skip adding edge e to mscGi. Otherwise, e is added to mscGi.

3. Let tempt = (Vt , Et , Indt , Yt) be the canonical graph of mscG w.r.t. canM after Algorithm 2terminates.
4. Algorithm 2 terminates after all nodes are visited and for every edge e ∈ E, there is an edge

e′ ∈ Et such that e is simulated by e′. Also we can observe that every edge e ∈ pe(EmscG, v)is not simulated by any edge e′ ∈ pe(Et , v)∧e′ ̸= e, for every node v ∈ VmscG. Otherwise, theedge e would not be added to mscG. Moreover, every edge e = (v, r, v ′) ∈ EmscG we havethat v, v ′ ∈ VA (VA is a set of nodes occurring in canM such that the nodes are generatedby A). Due to the fact that e is not simulated by any of the edges that are added from thecanonical graph of mscG w.r.t. canM (recall the Definition 4.2.9).
So, if there is a cyclic path σ = v0r1v1r2v2... in the mscG graph, then σ = v0r1v1r2v2... containselements from VA. Furthermore, from 4.4.4 we have that this path σ is not simulated by anycyclic path σ′ = v0r1v ′1r2v ′2... ∈ tempt such that v ′i ∈ VT , (mscG, vi) ≲ (tempt , v ′i ), and vi ̸= v ′

i
forsome i > 0.Now suppose that a concept C0 is mscK(a). Then by Lemma 3.3.2 we have that (IC0,T ,dC0 ) ≃(IK,da). Let G0 = (VG0 , EG0 , IndG0 , YG0 ) be a graph constructed w.r.t. (IC0,T ,dC0 ). Since canM =(V , E, Ind, Y ) is the graph of (IK, da), we have that (G0, v0) ≃ (canM, v0).Also by Lemmas 4.4.2 and 4.4.1 we have that (canM, v0) ≃ (tempt , v0), where tempt =(Vt , Et , Indt , Yt) is the canonical graph of mscG w.r.t. canM. Let S, S′ be simulations such that:

i) S : (tempt , v0) ≲ (canM, v0).
ii) S′ : (canM, v0) ≲ (tempt , v0).
Since (tempt , v0) ≃ (canM, v0) and (canM, v0) ≃ (G0, v0), we have that there exists a simulationequivalence between G0 and tempt i.e.,((G0, v0) ≃ (tempt , v0)). Let S1, S2 be simulations such that:
1) S1 : (tempt , v0) ≲ (G0, v0).
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2) S2 : (G0, v0) ≲ (tempt , v0).
Due to the fact that mscG is cyclic, then there must exists an infinite path σ = v0r1v1r2v2... ∈

mscG. Hence, from 1) there must exists an infinite path σ′ = v0r1v ′1r2v ′2... ∈ G0 such that(vi, v ′i ) ∈ S1 for all i > 0 and for some j > 0, v ′j ∈ VT and v ′j–1 ̸∈ VT . Due to the fact that the concept
C0 can only be constructed from a finite tree unravelling. Therefore, the cyclic path comes onlyfrom the nodes in VT .Moreover, from 2) there must exists a path σ′′ = v0r1v ′′1r2v ′′2 ... ∈ tempt such that such that(v ′
i
, v ′′
i
) ∈ S2 for all i > 0. We conclude that σ ≲S1 σ′ ≲S2 σ′′. Also, (mscG, vj) ≲S1 (G0, v ′j ) ≲S2(tempt , v ′′j ) for all j > 0.By Lemma 4.4.4, we one of two cases:

A’) vj = v ′′
j
.

B’) Or, v ′′
j
̸∈ VT and vj ̸= v ′′

j
.

Case A’). Assume that vj = v ′′
j
. Since (v ′

j–1, v ′′j–1) ∈ S2, we have that YG0 (v ′j–1) ⊆ Yt(v ′′j–1). ByLemma 4.4.3 we have that v ′′
j–1 has v ′j as a successor. Assume that v ′′j = v ′

j
∈ VT . Then, we havethat vj = v ′′

j
= v ′

j
. We have that the cyclic path σ inmscG contains only nodes v such that v ∈ VA.Then it is a contradiction that vj = v ′′

j
= v ′

j
, where v ′

j
∈ VT .Case B’). Assume that v ′′

j
̸∈ VT and vj ̸= v ′′

j
. Then, by Lemma 4.4.4 we have either one of thefollowing conditions:

i’) vj = v ′′
j
.

ii’) Or, (mscG, vj) ̸≲ (tempt , v ′′j ).
• Case i’). Suppose that vj = v ′′

j
. Then, it is a contradiction for the assumption that vj ̸= v ′′

j
.

• Case ii’). Suppose that (mscG, vj) ̸≲ (tempt , v ′′j ). Then it also contradicts the assumption that
σ ≲ σ′′. Due to the fact that (mscG, vj) ≲ (tempt , v ′′j ) for all j > 0.Therefore, it is a contradiction for Case B’).

Hence, we have that a contradiction for Case (B) that mscG is acyclic. Since we have a con-tradiction for Cases (A) and (B), we conclude that if there exists a most specific concept w.r.t.individual a, then Algorithm 1 must return true.
4.5.3 Polynomial Time Complexity

Theorem 4.5.3 (COMPLEXITY). Let K = (T,A) be a knowledge base. the Algorithm 1 decides the

existence of the most specific concept w.r.t. an individual a in polynomial time.

Proof. We start with Algorithm 1, which constructs the mscG = (VmscG, EmscG, IndmscG, YmscG)graph from canM = (V , E, Ind, Y ). Starting from the root node in canM, Algorithm 2 is calledrecursively, to visit nodes v1 ∈ V and adds edges e1 ∈ E to EmscG. At each recursive call, The
tempi = (Vi, Ei, Indi, Yi) graph is the canonical graph of mscG w.r.t. canM with i is the number ofrecursive calls of the Algorithm 2.Then we go over all edges e1 = (v1, r, v ′1) ∈ E ∧ v1 ∈ V , and check whether there exists anedge e2 = (v2, r, v ′2) ∈ Ei ∧ v2 ∈ Vi, such that e1 is simulated by e2. It is known that constructingsuch a simulation between two graphs can be computed in polynomial time in the size of twographs canM and tempi [HHK95]. Therefore, Algorithm 2 can be computed in polynomial timew.r.t. the size of two graphs O((|V|× |E|)3), given that the simulation has the complexity of
O(|V|× |E|).
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Assuming that the canM graph is a Complete graph, where all vertices are connected directlywith an edge, then |E| = |V|2. The worst-case time complexity will be O(|V|7). Assuming thatthe canM graph is a path; Meaning that each node has only one successor, then |E| = 1. Thebest-case time complexity will be O(|V|). Since both best and worst-case time complexitiesbelong to the polynomial time complexity class, the Algorithm 1 decides the existence of themost specific concept w.r.t. the individual a in polynomial time.
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5 Implementation
In this chapter, we specify an algorithm for deciding the existence of the msc w.r.t. an individual,and it computes the concept if it exists. Moreover, we present an example to describe theconstruction of the msc.

5.1 The Algorithm

In this section, we describe all the algorithms that we were using to compute the msc if it exists.We use a popular reasoner to reason about ontology. ELK [KKS12] is a specialized reasonerfor the lightweight ontology language OWL EL. It is used to compute the concept related toeach individual. Also, it is used in building the canonical model of A. The program is availableat [Nad], where Java programming [AGH05] is used. The reason to choose the programminglanguage is that the OWL API [HB09] is available in Java. OWL API is a Java API that allows us tocreate and manipulate OWL ontologies.LetK = (T,A) be a knowledge base, a be an individual. Since we assume that T is normalizedTBox, then we normalize T. Then, we check whether the individual a exists in A. If a ̸∈ NI,A,then return false. Otherwise, we build the canonical model IK of K. Then we construct thepointed interpretation (IK,da) from IK. Now the interpretation (IK,da) are used as inputs forthe Algorithm 1.The Algorithm 1 starts with constructing a graph canM = (V , E, Ind, Y ) from (IK,da) (SeeLine 1 of Algorithm 1). Then initializes a graph mscG = (VmscG, EmscG, IndmscG, YmscG) as an emptygraph. Furthermore, the root node containing the individual a is added to mscG. The algorithmtraverses all nodes of canM and adds edges and nodes to mscG if needed. For this reason, thealgorithm uses two lists visited and non-visited to keep track of the visited and the non-visitednodes in canM. Recursively visit nodes of canM starting from the root node. This recursive callis done using the Algorithm 2.The Algorithm 2 takes initially the root node v, two graphs canM,mscG and the lists visited,
non-visited as inputs. It checks whether the node v is already visited before or not. If yes, thenit terminates. Otherwise, it adds the node v to visited to make sure that the algorithm willterminate after visiting all nodes only once. Then it builds a graph tempi = (Vi, Ei, Indi, Yi) to bethe canonical graph of mscG w.r.t. canM (recall the Definition 4.2.9), where i is the numberof the recursive calls of Algorithm 2. Let pe(E, v) be the set of edges in canM with the node vas predecessor, and pe(Ei, v) be the set of edges in mscG with the node v as predecessor. Itgoes over the edges of pe(E, v) and check for every edge e = (v, r, v ′) ∈ pe(E1, v) whether thereexists an edge e′ = (v, r,d) ∈ pe(E, v) such that e is simulated by e′ (recall the Definition 4.3.4).If no, then the algorithm adds e to mscG with its nodes. Furthermore, it checks whether the
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successor node v ′ has been visited before or not. If yes, then it is ignored. Otherwise, it isadded to the non-visited list. After checking every edge e ∈ pe(E, v) and adding all edges that arenot simulated by any edge e′ ∈ pe(Ei, v), the algorithm picks a new node to be visited in its nextrecursive call. For that, the algorithm picks the first element in the non-visited list. Picking thefirst element of the list ensures that the nodes of canM are traversed in the breadth-first order.Algorithm 3 is the algorithm that checks given two edges e, e′ whether there exists a simulationfrom e to e′. It takes an edge e = (v1, r, v ′1) from canM and an edge e′ = (v2, r, v ′2) from tempi. Thenit checks whether Y (v1) ⊆ Yi(v2) and Y (v ′1) ⊆ Yi(v ′2). If yes, then it checks whether there exists asimulation from canM to temp starting from v ′1 in canM and v ′2 in tempi. If it also returns TRUE,then e′ simulates e and returns TRUE. If any of these checks fail, then e′ does not simulate e,and it will return FALSE.After the recursive call of the Algorithm 2, it is still essential to construct the least graph of
mscG, where every edge e in EmscG is not simulated by any edge e′ in Etempt . Algorithm 4 is thealgorithm which performs this operation. It generates all edges of nodes recursively startingfrom the root node v0 and does the following:

• The set (EmscG, vi) is the set containing all edges e of mscG with root node vi. The set(Etempt , vi) is the set containing all edges e of temp with root node vi.• for each edge e ∈ (EmscG, vi), we check whether there exists a edge e′ ∈ (Etempt , vi) suchthat e ≲ e′ and e ̸= e′.• If the edge e is simulated by e′, then we remove the edge e from EmscG.
After Algorithm 4 removes all simulated edges, we still need to remove the nodes v ∈ VmscGsuch that v is not reachable from v0. Then, we obtain the least graphmscG such that (tempt , v0) ≃(canM, v0).Finally, the Algorithm 1 checks whether there exists a simulation equivalence between(canM, v0) and (tempt , v0), where tempt is the canonical graph ofmscG w.r.t. canM that is obtainedafter Algorithm 2 terminates. Also, it checks whether mscG contains a cycle. If both checksreturn TRUE, then Algorithm 1 returns TRUE andmscG is the most specific concept w.r.t. theindividual a. Otherwise, there is no msc w.r.t. a.
Algorithm 1: BuildMsc function. For an individual a and an ontology O. The function callis BuildMsc(a,O)
Input: a, O /* individual a and ontology O */

Output: Boolean
1 (V , E, Ind, Y )← CanonicalModel(a) /* set (IK, da) to canM */

2 non-visited ← {v0 ∈ V|v0 is root node} /* initialize the set of non visited nodes to root

node v0 of canM */

3 visited ← ∅ /* initialize the set of visited nodes to empty */

4 (VmscG, EmscG, IndmscG, YmscG)← ({v0 ∈ V}, ∅, ⟨v0; Y (v0)⟩) /* intialize mscG with v0 ∈ V and

its concepts */

5 visitNode(non-visited.pop(),non-visited, visited,mscG, canM) /* recursively add nodes and

edges from canM to mscG */

6 LeastGraph(mscG, canM) /* construct the least graph of mscG */

7 (Vt , Et , Indt , Yt)← CanonicalGraph(mscG, canM) /* construct the canonical graph tempt */

8 if (tempt , v0) ≃ (canM, v0) AND Cyclic(mscG) = FALSE /* check whether mscG is cyclic and

there exists a simulation equivalence between (tempt , v0) and (canM, v0) */

9 then
10 return TRUE /* Msc exists */

11 else
12 return FALSE /* No msc exists */
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Algorithm 2: visitNode recursive function. For a node v, a set non-visited of non visitednodes, a set visited of visited nodes, a graphmscG = (VmscG, EmscG, IndmscG, YmscG) and graph
canM = (V , E, Ind, Y ). The initial function call is visitNode(v0,non-visited,visited,mscG,canM).
Input: v, non-visited, visited, mscG, canM /* node v, sets non-visited and visited of visited

and non visited nodes, Graphs mscG and canM */

Output: mscG /* the constructed mscG */

1 if v ̸∈ visited /* check whether v is not visited before */

2 then
3 (Vtemp, Etemp, Indtemp, Ytemp)← CanonicalGraph(mscG, canM) /* construct tempi of mscGi

w.r.t. canM */

4 visited ← visited ∪ {v ∈ V} /* add v to set visited */

5 for (v, r, d) ∈ pe(E, v) ∧ d ∈ VA /* loop over the edges e ∈ pe(E, v), and successor node d

is an individual */

6 do
7 simulated ← FALSE /* flag for the simulation of edges */

8 for (v, r, d′) ∈ pe(Etemp, v) /* find a corresponding edge e′ ∈ pe(Etempi , v) such that e ≲ e′

*/

9 do
10 if simulatedBy((v, r, d), (v, r, d′), canM, temp) = TRUE /* check whether

(v, r, d) ≲ (v, r, d′) */
11 then
12 simulated ← TRUE /* found a simulation from (v, r, d) to (v, r, d′) */
13 if simulated = FALSE /* check whether there is no simulation with any edge

e′ ∈ pe(Etempi , v) to e ∈ pe(E, v) */
14 then
15 mscG← (VmscG ∪ d ∈ V , EmscG ∪ (v, r, d) ∈ pe(E, v), YmscG ∪ ⟨d; Y (d)⟩) /* add edge

(v, r, d) ∈ pe(E, v) and node d ∈ V to mscG */

16 if d ̸∈ visited /* check whether node d is already visited before */

17 then
18 non-visited ← non-visited ∪ {d ∈ V} /* add node d to the non visited set of

nodes */

19 else
20 if non-visited ̸= ∅ /* non-visited contains nodes that still need to be visited */

21 then
22 visitNode(non-visited.pop(),non-visited, visited,mscG, canM) /* visit the first

element of non-visited */

23 return mscG /* return the constructed graph mscG */
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Algorithm 3: SimulatedBy function. For an edge (v, r,d) ∈ pe(E, v), an edge (v, r,d′) ∈
pe(Etemp, v), a graph canM = (V , E, Ind, Y ) and temp = (Vtemp, Etemp, Indtemp, Ytemp). Thefunction call is SimulatedBy((v, r, d), (v, r, d′), canM, temp)
Input: (v,r,d), (v, r, d′), canM, temp /* edges (v, r, d), (v, r, d′) and graphs canM, temp */

Output: Boolean
1 if Y (d) ⊆ Ytemp(d′) /* check whether the set of concepts on d is subset of the set of

concepts on d′ */

2 then
3 if (canM, d) ≲ (temp, d′) /* check whether there exists a simulation from (canM, d) to

(temp, d′) */
4 then
5 return TRUE /* (v, r, d) ≲ (v, r, d′) */
6 else
7 return FALSE /* (v, r, d) ̸≲ (v, r, d′) */
8 else
9 return FALSE /* (v, r, d) ̸≲ (v, r, d′) */

Algorithm 4: LeastGraph function. For a graph mscG = (VmscG, EmscG, IndmscG, YmscG), agraph canM = (V , E, Ind, Y ). The function call is LeastGraph(mscG,canM)
Input: mscG, canM /* graphs mscG and canM */

Output: mscG /* the least graph of mscG */

1 for v ∈ VmscG do
/* remove edges from mscG */

2 temp← CanonicalGraph(mscG, canM)
3 for e ∈ (EmscG, v) do
4 for e′ ∈ (Etemp, v) do
5 if e ≲ e′ AND e ̸= e′ then
6 EmscG ← EmscG \ {e} /* remove the simulated edges from EmscG */

7 ‘
8 for d ∈ VmscG do

/* remove nodes from mscG */

9 if pe(EmscG, d) = ∅ /* check whether d has no successors */

10 then
11 if (v ′, r, d) ̸∈ EmscG /* check whether d has no predessor */

12 then
13 VmscG ← VmscG \ {d ∈ VmscG} /* remove the node that is not reachable and has

no successors */

14 return mscG
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6 Evaluation
In this chapter, we provide an experimental evaluation of a different set of benchmarks. Westate the hardware setup that was used to evaluate the benchmarks. Then, we provide theselected set of instances from the different benchmarks. Finally, we provide experimentalresults to state the difference between the previous and the new approach within a timeout of1,600 seconds.

6.1 Experimental Setting

6.1.1 Hardware Setup

All experiments have been performed on a machine equipped with 11th Gen Intel(R) Core(TM)i7-11370H with four 3.30GHz cores and 16GB of RAM operated by Windows 11 (21H2 version).Each task has been given a 1,600-second timeout. This timeout includes the time required todecide the existence of the msc and the time required to manipulate the input ontology.
6.1.2 Benchmarks

We considered a set of instances from three benchmark sets. The set consists of 155 instancesfrom BioPortal which includes ontologies from applications in biology and medicine [Noy+09],109 instances from OWL reasoner evaluation (ORE) 2015 competition [Par+17], and 2091 in-stances from the Manchester OWL repository [Mat+14]. This set is filtered to contain only thoseinstances such that each instance contains at least one individual with at least one successor.We write ‘ORE’, ‘BIO’ and ‘MOR’ to express the instances from OWL reasoner evaluation (ORE)2015 competition, BioPortal and the Manchester OWL repository respectively. We write ‘ALL’to express the full set of instances. For each instance, we select the individual with the mostnumber of successors as our input.

6.2 Experimental Results

In this section, we provide experimental results to compare the new approach with the previousapproach. First, we show the number of decided and undecided instances w.r.t. a timeout of1,600 seconds. Then, we show the time required to decide the existence of the msc. Finally,we show the difference between the maximal role-depth k that would have been used forLemma 3.3.3, and the role-depth actually explored by our method.
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6 Evaluation

In Table 6.1, the leftmost “Benchmark” column indicates each benchmark set, while “instance”indicates the number of instances. Sub-columns “Decided” and “Undecided” represent thenumber of solved and unsolved instances within the timeout of 1,600 seconds. The sub-column“Total” represents the total number of the selected instances per each set. The row “ALL”represents the full set of the selected instances.
Table 6.1 The number of decided and undecided instances with a 1,600 seconds timeout.

Number of Instances
Benchmark Decided Undecided Total
ORE 95 14 109
BIO 148 7 155
MOR 2003 88 2091
ALL 2246 109 2355

We acknowledge that all experimental results and all drawn conclusions are based on a singlebenchmark set.
Table 6.2 The comparison between the maximal role-depth of the previous and new approach.

Role-Depth
Benchmark Set min median mean max

ORE Previous 2315.00 61779602.00 344157725.99 2075238298.00New 1.00 1.00 1.67 10.00
BIO Previous 3.00 995144.50 25039500.90 2101075370.00New 1.00 2.50 1.89 11.00
MOR Previous 3.00 327.00 13954266.52 2082188164.00New 1.00 2.00 1.80 21.00
ALL Previous 3.00 2250.50 28651480.83 2101075370.00New 1.00 1.50 1.80 21.00
In Table 6.2, the leftmost “Benchmark” column indicates each benchmark set, and “Role-depth” indicates the role-depth explored by Algorithm 1 and respectively the role-depth boundfrom Lemma 3.3.3. Sub-columns “min”, “median”, “mean”, and “max” present information aboutinstances which did not include time out for a given setup in seconds. Their meaning is self-explanatory, i.e. “min” and “max” stand for minimal and maximal role-depth required to decidethe existence of the msc in an instance within a setup. “Mean” and “median” denote the meanand median of role-depth required needed to solve all instances within a setup. As mentionedbefore, timed-out instances are not included in this analysis. Rows “Previous” and “New” indicatethe computation of the role-depth in the previous- and the new approach per each benchmarkset.As we can see that the role-depth of the interpretation with the new approach is significantlysmaller than the one we obtained from the previous one.Figure 6.1 shows how often there existed an MSC, respectively did not exist one, w.r.t. theindividual, for the benchmarks ”ORE” and ”BIO”. It decides whether there exists or not withinthe timeout. Therefore, we exclude those instances that exceeded the timeout. In the “ORE”benchmark set of Figure 6.1a, we can see that Algorithm 1 was able to find the msc of anindividual in all instances without exceeding the timeout. Therefore, the number of instanceswhere themsc of an individual exists was 95. However, in the “BIO” benchmark set of Figure 6.1b,
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a) ORE b) BIO
Figure 6.1 Bar plots indicating the number of instances with msc and No msc w.r.t. “ORE” and“BIO” within the timeout.
we have that the number of instances with no msc exists was 13, while the number of instanceswith the msc was 135.

a) MOR b) ALL
Figure 6.2 Bar plots indicating the number of instances with msc and No msc w.r.t. “MOR”and “ALL” within the timeout.
Figure 6.2 indicates the existence of the msc w.r.t. an individual for both “MOR” and “ALL”benchmarks. It decides whether there exists or not within the timeout. Therefore, we excludethose instances that exceeded the timeout. In the “MOR” benchmark set of Figure 6.2a, thenumber of instances with msc exists was 1837, while the number of instances with no mscexists was 166. Also, In the “ALL” benchmark set, we have that the number of instances withmsc exists was 2067, while the number of instances with no msc exists was 179. Table 6.3summarizes the number of instances with msc and no msc found that was computed withAlgorithm 1.

Table 6.3 The number of instances with msc and with no msc exists.
Number of Instances

Benchmark Msc No Msc Total
ORE 95 0 95
BIO 135 13 148
MOR 1837 166 2003
ALL 2067 179 2246

Figure 6.3 indicates the time required to decide the existence of the msc w.r.t. an individual
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a) ORE b) BIO
Figure 6.3 Line plots indicating the time required to decide the existence of the msc. Inboth plots, the instances are sorted in ascending order by the time required,where x-axes indicate the time (in seconds) and y-axes indicate the number ofinstances.

within 1,600 seconds, where the line highlighted in “red” indicates the time for instances withthe msc and the line highlighted in “blue” indicates the time for instances without the msc. Sinceall instances of “ORE” have the msc, therefore we can see in Figure 6.3a that there is no linehighlighted “blue”. In Figure 6.3b, we see that the number of instances without the msc requiredmore time to be computed than the number of instances with the msc in “BIO” instances.

a) MOR b) ALL
Figure 6.4 Line plots indicating the time required to decide the existence of the msc. Inboth plots, the instances are sorted in ascending order by the time required,where x-axes indicate the time (in seconds) and y-axes indicate the number ofinstances.
Figure 6.4 indicates the time required to decide the existence of the msc w.r.t. an individualwithin 1,600 seconds, where the line highlighted in “red” indicates the time for instances withthe msc and the line highlighted in “blue” indicates the time for instances without the msc.Figure 6.4a of “MOR” instances shows that the number of instances without the msc existsis smaller than the number of instances with the msc. However, the time consumed in theinstances with no msc w.r.t. an individual is larger than the time consumed in the instanceswith msc. This is due to the time required to find the least graph and remove the simulatedpaths in the cyclic graphs.Figures 6.5 and 6.6 indicate the computed bounded role-depth of the previous- and the newapproach, where the line highlighted in “red” indicates the role-depth of the previous approach
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a) ORE b) BIO
Figure 6.5 Line plots indicating the bounded role-depth of the previous- and newapproach. In both plots, the instances are sorted in ascending order by thebounded role-depth, where x-axes indicate the bounded role-depth and y-axesindicate the number of instances.

and the line highlighted in “blue” indicates the role-depth of the new approach.As we can see that the overall bounded role-depth of the new approach has a significantlysmaller number than the one we obtained from the previous approach. Therefore, decidingthe existence of the msc w.r.t. an individual using the new approach is much better in terms ofperformance and time required than deciding the existence of the msc w.r.t. an individual usingthe previous approach. Thus, constructing the concept w.r.t. the new bound is much smaller interms of the size of the concept than constructing the concept w.r.t. the previous bound.

a) MOR b) ALL
Figure 6.6 Line plots indicating the bounded role-depth of the previous- and newapproach. In both plots, the instances are sorted in ascending order by thebounded role-depth, where x-axes indicate the bounded role-depth and y-axesindicate the number of instances.
We can summarize that the new approach provides an efficient mechanism for deciding theexistence of the msc. Also, it has a smaller bound than the previous bound. Finally, the newapproach does not rely on constructing the concept. Thus, it is polynomial even if constructingthe concept could take exponential time in case that concept was exponentially large. Althoughcomputing the concept could take exponential time, it is still better to compute it with ournew method. The reason is that the role-depth computed by our new method is significantlysmaller than the one obtained from Lemma 3.3.3. Thus, computing the concept from the newapproach would take less time than computing it from the previous approach even that the

48



6 Evaluation

concept was exponentially large.
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7 Conclusion and Future Work
Computing the most specific concept is a non-standard inference task that supports bottom-upconstruction of the knowledge base. It is the least concept which has an individual as aninstance.We have revisited the previous approach from [Baa03a] which computes the most specificconcept w.r.t. an individual in the presence of terminological TBoxes.We have presented the previous approach for deciding the existence of the msc w.r.t. anindividual from [ZT13] in the presence of general TBoxes. We have shown that in practice, theprevious approach does not explain how to decide the existence of the msc practically withoutconstructing the msc explicitly, which could be exponentially large.In Chapter 4, we have introduced a new approach for deciding the existence of the msc w.r.t.an individual without relying on constructing the concept. The main idea of the new approachis to construct a sub-interpretation of the canonical model such that there exists a simulationequivalence between the canonical graph of the sub-interpretation and the canonical model.We observed that it is only necessary to construct the sub-interpretation in the cyclic ABoxes,as the msc always exists in the acyclic ABoxes.Moreover, in Chapter 5, we have presented an implementation of our approach. We haveintroduced an efficient method to decide the existence of the msc practically. We have providedcorrectness and completeness proofs of our newly introduced approach. Also, we have shownthat it has polynomial run-time.Finally, in Chapter 6, we have provided an experimental evaluation to state the differencebetween both approaches in terms of bounded role-depth. Also, we have shown the timeperformance of the new approach for deciding the existence of the msc. We have observed thatour new approach has smaller maximal role-depth than the one obtained from the previousapproach from [ZT13]. Also, the concept computed with our new approach is smaller the onecomputed from the previous approach. We have acknowledged that the method takes a longertime in the instances the msc does not exist than the instance with msc exists.

7.1 Future Work

The Future work on the practical side is to implement the newly introduced approach in thecontext of ontology repairing. This can be achieved by integrating the new approach with theprocedure provided by [Kri] and integrate it with the existing tools [ET12].On the theoretical side, we would like extend the results towards knowledge bases formulatedin more expressive Horn-DLs than EL.
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