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Abstract

Description logics (DLs) [ ; ; ; : ] are a family of formal knowl-
edgerepresentaﬁonIanguagesused|naruﬂoa|Nmemgencetx>descmbeeandreasor1aboutthe
concepts of an application domain. In particular, they are providing formalization for ontologies
and the semantic web. The most specific concept (msc) [ ]is an inference task that can
support the bottom-up construction of knowledge bases in description logics. The most specific
concept of an individual is the least concept that has this individual as an instance

In description logics which contain existential restrictions, the most specific concept does
not always exist in the case of acyclic ABoxes. However, the latest results [ ] show that
the existence of the msc w.r.t. an individual can be decided in polynomial time. Also, the
role-depth of these most specific generalizations is polynomially bounded by the size of the
input, which yields a decision procedure for the existence problem. The polynomial bound can
be used to compute the msc if it exists. Otherwise, the computed concept can still serve as an
approximation{ ]. However, computing the msc could take at least exponential time if the
msc is exponentially large. Also, the previous approach does not make it clear how to compute
the most specific concept in practice

First, we revisit the previous approach for constructing the msc of an individual w.r.t. a general
EL-TBox. We present a new method for tree unravelling of an interpretation and introduce a
characteristic concept w.r.t. the least tree unravelling. Moreover, we provide a new approach
and an algorithm to decide the existence of the msc in polynomial time without relying on
computing the concept. Then, one can compute the actual msc in exponential time. Finally,
we provide an experimental evaluation to state that the concept constructed from the new
approach has a smaller bound than the bound of the concept constructed from the previous

approach.
Keywords— description logic, ontologies, most specific concept, polynomial time algorithms
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1 Introduction

In philosophy, an ontology [ ]is the philosophical study of being in general, where concepts
such as existence, being, becoming, and reality are studied. It includes the questions of
how entities are grouped into basic categories and which of these entities exist on the most
fundamental level. In computer science, an ontology [ ] represents an abstract, simplified
view of the relevant entities (objects, concepts, and relations) that exist in the domain of interest.

Ontology engineering is a field that studies methods for building an ontology. It aims to
describe the knowledge of software applications, enterprises and business procedures for a par-
ticular domain. Supporting such applications require that the knowledge is presented precisely,
so that it can be processed by automated tools. Ontology languages, such as OWL [ ]
is used to overcome this problem by defining a formal syntax and semantics to describe the
knowledge of a particular domain.

Description Logics (DLs) are logic-based knowledge representation languages [ ]
which are used to provide the formal foundation of the ontology language OWL for application
domains such as the Semantic Web, biology and medicine, and engineering domains [ 1.

It separates domain knowledge into a terminological part (called TBox) and an assertional part
(called ABox), while the combination of both TBox and ABox is called a knowledge base (KB).
The TBox describes the relations between concepts of an application domain, and the ABox
describes the individual objects of an application domain and their relations. Concepts are
built using concept and role names, and individual objects are built using concept and role
assertions.

DLs are less expressive than first-order logic, but the core reasoning problems like the
subsumption and the instance problem are usually decidable. Therefore, studying those
problems is highly important in scientific and industrial fields. In applications of DL systems,
it turned out that building and maintaining large DL knowledge bases can be facilitated by
procedures for other, non-standard inference problems [ ]. The non-standard inferences
were introduced to maintain and support building large DL knowledge bases. An example of
the non-standard inferences is generating a new concept from an individual (Also called the
most specific concept of an individual).

Computing the most specific concept [ ] is mainly used in the bottom-up construction
of the knowledge base. This methodology allows the user to give an example of an individual
belonging to the concept to be defined instead of defining the relevant concepts of an application
domain from scratch. Thus, the knowledge engineer can use the computed concept as a starting
point for defining the concept.

Moreover, since large ontologies might contain errors [ ] often detected when DL
reasoners compute unwanted consequences, it has gained interest in detecting errors in
the data such that the unwanted consequences no longer follow, while keeping the other

12



1 Introduction

consequences are preserved. An optimal repair is the repair with the least number of other
conseqguences are removed. Most of the previous approaches of the ontology repairing rely
on the syntactic nature of the ontology without relying on the semantic nature. The recent
work [ ] was addressed to compute the optimal repair of ABoxes, where the unwanted
consequences are described as concept assertions. It also shows that the existence of such a
type of repair can be decided by computing the most specific concept.

Unfortunately, the most specific concept does not always exist in ££. It was investigated
before by [ ] in the presence of a cyclic description logic ££-TBox (which allows for
conjunctions, existential restrictions and the top concept), where the bottom-up construction
of the knowledge base was used.

Example 1. consider the following knowledge base [ I:
Ky = (0, A1), with Ay = {r(a,a), C(a)}

The msc of the individual a does not exist, as the TBox T = @ is empty, while the ABox A is
cyclic [ ], due to the fact there is no least concept such that the individual a is an instance.
The reason is that the concept C has more specific concept 3r.C, and 3r.C has more specific
concept 33r.C and so on, while this cycle in A4 is not covered by any cycle in T;. However,
consider the modified knowledge base:

Ky = (T2, Ap), with Ay .= {r(a,a), (@)}, and T, := {C C 3r.C}
Since the cycle in A; is covered by 7>, we obtain that C is the msc of a.

The first approach to decide the existence of the most specific concept [ ] shows that
deciding the existence of the msc w.r.t. an individual can be done in polynomial time, where
the construction of the generalization concept is computed up to a given k, a bound on the
maximal nestings of quantifiers. However, this approach rely on computing the concept to
decide the existence of the msc. Therefore, in practice it is still necessary to provide an efficient
algorithm to decide the existence of the msc without relying on computing the concept.

Through the thesis, we provide an algorithm for deciding the most specific concept and prove
its correctness and completeness. We show that the algorithm decides the existence of the msc
in a polynomial run-time. Also, we provide an experimental evaluation to state the difference
between the previous and new approach in terms of the bounded role-depth of the concept.

1.1 Thesis Structure

We begin with the preliminaries for the notation and terminology used throughout the thesis
in Chapter 2. Then we start with the first part, which is about the first attempt to decide the
existence of the most specific concept in Chapter 3. In Chapter 4, we introduce the least tree
unravelling as a new approach for tree unravelling of an interpretation and show the difference
between the new approach for tree unravelling and the previous one. Furthermore, we continue
with the least tree unravelling of an interpretation and employ it for deciding the existence of
the most specific concept. At the same time, we introduce a representation of interpretations
as a graph and define a simulation between graphs.

Chapter 5 constitutes the final part of this thesis, in which we present the implementation. In
the second part of this chapter, we prove that the algorithm runs in polynomial time. We also
prove the correctness and completeness of the introduced algorithm.

Finally, in Chapter 6 we show experimental results to show the difference between the newly
introduced approach and the previous approach in terms of the size of the bounded role-depth
of the concept and the time required to decide the existence of the msc.

To lead the future work, In the final Chapter 7, we summarize our findings and point to some
future work.

13



2 Preliminaries

This chapter introduces the general notation and terminology we use throughout this thesis. It
is based on [ ] with some extensions. Note that these preliminaries are for description
logics in general. In contrast, the background of more specific topics (e.g. the tree unravelling
and the k-characteristic concept) will be given later when needed.

The chapter starts with an introduction of the description logic E£. Then it introduces the
syntax and semantics of the DL ££ and continues with the definition of canonical models and
simulation relations between two interpretations. In the end, it introduces the formal definition
of the most specific concept of an individual.

2.1 The Description Logic ££

We start with defining the syntax of ££ and the knowledge base (KB). Then we define the
semantics of ££. A knowledge base is defined with the help of a set of constructors, starting
with a set N¢ of concept names, a set Ny of role names and a set N, of individual names. The sets
Ne¢, Ngp and N are pairwise disjoint and countable infinite.

Definition 2.1.1 (££-concept). Let A € N¢ and r € Ng, EL-concepts C are then built according
to the following syntax rule:
Co=TIJA|CnD|3rC

where T is the top concept, and D is an EL-concept.
To be able measure the complexity of concepts, we need a notion of role-depth of concepts.

Definition 2.1.2 (role-depth). Let C be a E£-concept. The role - depth of the concept C (rd(C)) is
inductively defined as follows:

« rd(A) = rd(T) =0, for all A € C.
+ rd(C M D) = max{rd(C), rd(D)}, for all concepts C,D.
* rd3r.C) = 1+ rd(C), for all r € Np and concepts C.

To illustrate this, consider the following example.
Example 2. Consider a concept C := 3r.(3r.(3sAN3Ir3s.7)). Then rd(C) = 3.

Definition 2.1.3 (General concept inclusion). Let C, D be £L-concepts. A general concept
inclusion (GCl) is an expression of the form C C D. C = D is called a concept definition and it is an
abbreviationfor CC D, D C C.

14



2 Preliminaries

A terminological TBox T is a finite set of concept definitions. A general TBox T is a finite set of
GCls.

Definition 2.1.4 (Acyclic TBox). ([ ]) Let T be a TBox. We call T is an acyclic TBox if one
of the following hold:

+ There is no concept name in T that uses itself, and
* No concept name occurs more than once on the left-hand side of a concept definition in
J.

Otherwise, T is cyclic.
Definition 2.1.5 (Assertion). Leta, b € N;,r € Np and C € N¢, then:

+ ((a) is called a concept assertion.
» r(a, b) is called role assertion. a is called r-predecessor of b, and b is called r-successor of a.

An ABox A is a finite set of concept and role assertions. The set N, 4 denotes the set of
individual names occurring in ABox A.

Definition 2.1.6 (Acyclic ABox). Let A be an ABox. We call A is an acyclic ABox if there exists no
individual a such that a occurs as r-successor of b and as r’-predecessor of ¢, for all r, r’ € Ng
and b, c € N; 4. Otherwise, A is cyclic.

A knowledge base X consists of a TBox and an ABox (X = (T, .A)). The set sub(X) denotes the
set of sub-concepts occurring in X, where X is a concept, ABox, TBox or a knowledge base. The
set Ngx denotes the set of role names occurring in X.

The semantics of €£-concepts are defined in terms of interpretations J = (4%, 7) [ ].

Definition 2.1.7 (Interpretation). An interpretation J = (4°, 7) consists of a non-empty set A’ of
individuals and a mapping - that maps

+ every concept A € Nc to aset A C A7
+ every role r € N to a binary relation r’ C A7 x A7,
- every individual name g € N, to an element ¢’ € 4.

Given an interpretation J, both syntax and semantics of €£-concepts, TBox and ABox are
summarized in Table 2.1. An interpretation J is said to satisfy a GCI C € Dif (7 € D’. An
interpretation J is called a model of a TBox T if it satisfies all GCls in 7. Let C(a) be a concept
assertion. Then an interpretation J is said to satisfy C(a) if a” € (7. Let r(a, b) be a role assertion.
Then an interpretation J is said to satisfy r(a, b) if (°, 67) € 7. An interpretation J is called a
model of an ABox A if it satisfies all concept and role assertions. An interpretation J is said to
be a model of a knowledge base X if it satisfies both T and A. Since we are only considering
&L, we sometimes write ‘concept’ and TBox' instead of '€L£-concept’ and '€ L-TBox, respectively.
Subsumption and instance checking are considered essential reasoning tasks that are generalized
to computing the most specific concept of an individual. These two reasoning tasks in €£ can
be decided in polynomial time [ 1.

Definition 2.1.8 (Instance checking and subsumption). Let X = (7, A) be a knowledge base, let
C, D be a EL£-concepts and g an individual name that occurs in A, then:

« gis aninstance of Cw.rt. 7 (A =g C(a)) iff @’ € 7 holds for all models J of X.
+ Cis subsumed by Dw.r.t. T(C Ty D) iff ( € D holds for all models J of 7.

15



2 Preliminaries

Table 2.1 The syntax and semantics of £L-concept, TBox and ABox w.r.t. an interpretation J.

name of constructor Syntax Semantics
concept name A € N¢ A Al cp
role name r € Np r rcph xp
top-concept T N
conjunction cnb OnD’
existential restriction ~ 3Ir.C  {xe A’ |3y : xy)erP Aye T}
Gl ccpo dcp
concept definition C=D CO=pD
individual name a a’ e N
concept assertion AQ) a e A

role assertion ria,b) (d’,b’) e r?

2.2 The Most Specific Concept

Roughly speaking, the most specific concept of a given individual a is a generalization of a into
a complex concept such that the concept is the most specific one of which an individual is an
instance. The most specific concept of an individual a is defined based on subsumption and
instance checking.

Definition 2.2.1 (Most specific concept). Let X = (T, A) be a knowledge base and a € N, 4 be
an individual name. A concept C is the most specific concept of a w.r.t. X (C = mscy(a)) if the
following statements hold:

- X = Ca).
* X = D(a) implies C Cq D.

As explained in [ ] the msc does not always exist in £, in case we have a cyclic A.
However, if there is no msc, then one can approximate the msc concept by adding a bounded
role-depth k of the concepts C and D. Then concept C is called a role-depth bounded msc of a
w.r.t. K.(k-mscac(a)). Both msc and k-msc are unique up to equivalence in EL.

2.3 The Canonical Model and The Simulation Relation

The computation of the msc is based on the characterizations of instance checking and sub-
sumption. Thus, such characterizations w.r.t. general TBoxes was introduced in [ ] by
employing both canonical models and simulation relations. Ahomomorphism between the syntax
trees of concepts was used to characterize subsumptions in the knowledge base with an empty
TBox [ ]. Also, simulation relation plays the same role as homomorphism, and if applied
on the canonical models, then it can also be used to characterize subsumptions. As shown
in [ ], the decision of the existence of msc of an individual a w.r.t. X requires establishing
a simulation relation between the canonical model and the constructed concept up to some
bound k. Therefore, we will introduce the canonical model and simulation that we will use to
decide the existence of msc.

Definition 2.3.1 (Canonical model of a concept). Let T be a TBox, J a model of T, and C a
concept. The canonical model I¢c 5 of C and T is defined as follows:

» N7 = {dc}u{dc | 3r.C" € sub(C) U sub(7)}.

16



2 Preliminaries

« AcT = {dp € A7 | DCq A}, forall A€ Ne.
e = {(dp, dp) € A7 | DTy 3r.D' for 3r.D" € sub(7)}, for all r € Np.

This definition can be extended to be the canonical model of a knowledge base.

Definition 2.3.2 (Canonical model of a knowledge base). Let X = (T, A) be a knowledge base.
The canonical model J of K is defined as follows:

« Nx = 1{dy | dg € Nja} U{dc | 3r.C € sub(X)}.

c A= {d, € A% | K |2 Al0)} U {dc € A% | C Cq A}, forall A € Nc.

« 7%= {(dg, dp)|CE D' € sub(T),8 |= D' C 3r.D, o< € (Fx}, for all r € Np.
» ¢’ :=dg, foralla € N, 4.

Let J be an interpretation, d € A’. Then, (J,d) is said to be a pointed interpretation, where J is
rooted on d. The simulation relations are defined between pointed interpretations.

Definition 2.3.3 (Simulation). Let (J1,d) and (J,,d") be interpretations. The binary relation
S C A x A% is called a simulation from J; to J; if all the following statements hold:

(S1) For every pair (e1,e5) € S it holds: e; € A7 implies e, € A%, for all A € N¢.

(S2) if (e1,e2) € Sand (er,f1) € r’1, then there exists some f, € A2 such that (f;,/>) € S and
(e2.f2) € ',

A pointed interpretation (J4, d) is said to be simulated by a pointed interpretation (J,, d’)
(written as (31, d) < (3, d")) if there exists a simulation S € A7 x A% with (d, d’) € S. Note that
the relation < is transitive and reflexive. A pointed interpretation (J4, d) is said to be simulation
equivalent to a pointed interpretation (J,, d’) (written as (J4, d) = (35, d")) if both (34, d) < (35, d")
and (7, d") < (34, d) hold.

As shown [ ; ], the canonical model has essential properties.

Lemma 2.3.4. Let C be a concept and T be a TBox.
(1) de € %7, for all dg € Aco.
(2) Ic s a model of 7.
(3) (Icq, dp) = (I, dp), for all concepts C' and all dp € A7 n plos,

(4) For all models 3 of T and all d € 4, the following statements are equivalent:
ded.
* Ucgdc) £, 0)

(5) Forevery concept C and D, the following statements are equivalent:

- CCqD.
. dc = Dl
* (Ipg.dp) S Tcg, deo).

Case (5) of the previous lemma allows us to give a characterization of the subsumption task,
as shown in [ 1. If C &5 D, then ¢ € DY, for all models 7 of 7. Hence, 7 € Dar, and
dc € D’<7. Moreover, we have that (Ip7, dp) < (Ic7, dc).

Similarly, in order to characterize the instance problem, consider the following lemma.

Lemma 2.3.5. Let X be a knowledge base. Ix has the following properties:
1. Jx is a model of X.

2. For every concept C, the following statements are equivalent:
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2 Preliminaries

- X | Cla)
* dg e CJK.

By definition of 2.1.8, we have that ¢ is an instance of Cw.r.t. T (A =g C(0)) iff &’ € 7 holds
for all models J of K. Therefore, if Jx is the canonical model of X, then for every concept C we
have that X = C(0) iff dy € (7.

18



3 The Previous Approach for
Computing The Msc

In this chapter, we revisit the previous approach [ ] for computing the msc. We introduce
the tree unravelling of an interpretation J. Then we present the construction of a concept
from tree unravelling up to some bound k and show that it is sufficient to generate candidate
concepts up to upper bound k. Then we show that an msc exists iff there exists a simulation
equivalent relation between the pointed interpretation (Jx, dg) w.r.t. an individual a and the
canonical model of one of the generated concepts.

3.1 The Tree Unravelling

Every interpretation J can be represented as a tree by taking an individual d as a root node and
using as nodes all paths o = drydr,d>rs..., where the nodes {d, dy, d>, ...} are elements from 4
and {ry,ry, ...} are role names. (g is a path in interpretation 7 if the individuals d; and dj+1 are
connected via r},,, for all i € N). The nodes of the tree correspond to individual d; in the path o,
and the edges of the tree correspond to role r; in the path o.

Definition 3.1.1 (Tree unravelling of an interpretation). Let J be an interpretation and d € A’
w.r.t. Nc and Ng. The tree unravelling 34 of 3 in d is defined as follows:

- Ndo= {dl’1dq/’2...l’ndn | (d;, div1) € r/’JH ANOLi<nAdy = d}
« A= {ad' | ad’ € A% Nd' € A}, for all A € Ne.
« = {(g,ard') | (g,0rd") € N4 x A4}, for all r € Np.

|| denotes the number of role names occurring in g, where g € A”. Given @ = dryd1r;...rndy,
tail(o) = d, is the last individual occuring in o (also called the tail of o).

Example 3. Consider The following knowledge base X:
X = (@, A), with A = {r(a, b),s(a, b), r(a, ), r(c, b)}.

Now we consider the pointed interpretation (J«, dy) as shown in Figure 3.1a. We can see
in Figure 3.1b that (I, dy) is unravelled into a finite tree. However, if the interpretation contains
a loop, then the tree unravelling of the interpretation is infinite.

An interpretation J is unravelled into an infinite tree in case it contains a loop (cyclic path).
Since the concept can only be constructed from a finite tree, therefore it is essential to unravel
the tree up to depth k. Jga denotes the finite sub-tree with root d, of the tree unravelling I,
containing all elements up to depth k.
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r r
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a) Interpretation (Jx, dy). b) Tree unravelling J4, of (Jx, da).

r

Figure 3.1 The pointed interpretation (Jx, dg) with no loop and the tree unravelling J,, of
(Jx, dg) 34, constructed w.r.t. Example 3.

Definition 3.1.2 (Tree unravelling of an interpretation with a bounded role-depth). Let J be an
interpretation, k € Nand d € A7 w.r.t. Nc and Ng. The tree unravelling I, of Jin d up to bound k
is defined as follows:

c Nd = {dﬁdql’z...fkdk | (d;, disq) € I’/-jH NO<i<kAdy= O’}
» A= {ad" | ad' € N Nd" € A A |a| <k}, forall Ae Ne.
« = {(g,0rd") | (0,0rd") € N x N A |a] <k}, forallr € Np.

3.2 The Characteristic Concept w.r.t. A Tree Unravelling

Each finite tree interpretation can be translated into a so-called characteristic concept.

Definition 3.2.1 (Characteristic concept). Let (J,d) be an interpretation. The k-characteristic
conce,oth(J, d) is defined as follows':

X01,d)y =THA € Nc | d e A}
- X9, d) = X0, ] THIrXE @, d) | (d, d) e ).

reNgx
Example 4. Consider The following knowledge base X1 = (T7, A1):

T = {C C E|/’.C}.
« Ay = {s(a, b), r(a,a),sb,a), C(a), D(b)}.

As shown in Figure 3.2a the interpretation (Jx,,dy) has two loops. Therefore, it can be
unravelled into an infinite tree in Figure 3.2b. In order to translate it into a complex concept, it
is essential to unravel the tree up to some bound, see Figure 3.2c. Thus, by Definition 3.2.1 we
obtain the concept XZ(JgQ ,dg)=Cn3r(Cn3r.Cn3s.0)n3s.(Dn3s.C). In the next section, we
will show the previous approach [ ] to decide the existence of msc by employing simulation
relation and characteristic concept.

3.3 Characterizing The Existence of The Msc

We recall some of the essential lemmas that are obtained from [ 1. First, we start with an
important lemma, which establishes the relation between the tree unravelling J,, and mscx(a).

TFor a set N of concepts, [N is abbreviation for Meey C. If N'is empty, then [N is T.
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a) (Jx,, da). b) 94, of (Ix,, do). €) 35 of (Jx,, do).

Figure 3.2 The interpretation (Jx,, dg) with two loops, the tree unravelling 34, of (Jx,, dy) and
the tree unravelling Jf,g constructed w.r.t. Example 4.

Lemma 3.3.1. ([. ) Let Iy, be the tree unravelling of (Jx, do) in dg and C be k-mscx(a). It holds
that Jga S (jcg, Olc)

To illustrate the previous lemma, if the concept C is a k-mscx(a), then the canonical model of
C simulates the tree unravelling up to k.

The decision of whether the concept C is an msc or not can be obtained from the following
lemma.

Lemma 3.3.2. ([/173]) The concept C is the most specific concept of a w.r.t. X iff (Jgc, da) = (I, dc).

Since the concept C can be constructed from a finite tree interpretation, it is required to
define an upper bound to which the interpretation is unravelled. The upper bound is defined
as follows.

Lemma 3.3.3. ([. ) Let m = max({rd(F) | F € sub(XK)})and n := | N, 4 |. If mscs(a) exists, then
To, do) < jgj+m+1'

We are not only interested in computing the k-mscq(a) with some bound k, but also in deciding
the existence of mscy(a) for all k € N and compute msc(a) if it exists. This can be characterized
by the following lemma.

Lemma 3.3.4. (/. 1) Let K be a knowledge base. mscx(a) exists iff there exists a k such that the
canonical model oka(Jx, dy)w.r.t. T simulates (J, dg).

To decide the existence of the msc of an individual g w.r.t. X first we compute the upper
bound k w.rt. Lemma 3.3.3. Then the set M of L-characteristic concepts of (Jx, dg) such that
M = {X"(Jx, dg) | L < k}. Finally, for each concept C € M, C is the msc iff the canonical model of
concept Cw.r.t. T simulates (Jx, dg) w.r.t. the individual a (Jx, da) < e, de)). We illustrate this
with the following example.

27



3 The Previous Approach for Computing The Msc

C,3s.D D,3s.C

D,3s.C C,3s.D

a) (Jx, da)- b) (Jxc, da) S (Ic 7, de), with € = XO(Jx, dl).

Figure 3.3 The interpretation (Jx,, dg), the simulation relation from (J, dg) to (I¢c 7, d¢), where
C = XO(Jg, dg) w.r.t. Example 5.

Example 5. Consider the following knowledge base X = (7, A):

+ T={CC3s.D,DLC 3Is.C}.
« A ={s(a,b)sb,a),Ca),Db)}.

In Figure 3.3 it is sufficient to generate concept with k = 0, as the canonical model of the
concept X0y, dg) w.r.t. T simulates (Jx, dg). Thus X°(Jx, dg) is msck(a). Since computing the
concept C could be done in exponential time in case the concept C is exponentially large,
therefore in practice deciding the existence of the msc with the previous method could be
done in exponential time.

In the next chapter, we introduce a new method for unravelling an interpretation. Then we
employ this method to provide a more efficient way to decide the existence of the mscin a
polynomial-time algorithm, which yields an efficient computation of the msc if it exists.

22



4 Towards Polynomial Computation

In this chapter, we revisit the sufficient condition from [ ] for characterizing the existence
of an msc in the terminological TBoxes. Then we introduce a new method for a tree unravelling
of an interpretation J. Moreover, we show the difference between the previous and the new
method for the unravelling of an interpretation J. Moreover, we show that the newly introduced
method for tree unravelling has a tighter upper bound. Thus, the characteristic concept can be
constructed w.r.t. this new method. Also, we use this newly introduced method in a polynomial
approach for deciding the existence of the msc. Furthermore, we show the correctness and
completeness of this Algorithm. Finally, we show that it decides the existence of the msc w.r.t.
an individual in polynomial time.

The most specific concept always exists if the ABox is acyclic. However, it need not to exist in
the case of cyclic ABox. As in Example 1 the most specific concept w.r.t. a does not exist in X,
due to the fact that A1 is cyclic. However, it exists in K, even that A; is cyclic. One can observe
that not all cyclic paths cause this problem. The result from [ ], which was defined w.r.t.
terminological cycles, shows that the msc exists iff every cyclic path in A is simulated by at least
one cyclic path in T. However, we cannot ensure that it is still holds in the case of E£-TBoxes.
Intuitively, the goal is to extend this result to the case where we have a general ££-TBoxes.

InLemma 3.3.2, a concept Cis the msc of an individual a iff there exists a simulation equivalence
between (J«, d,) and the canonical model of C w.r.t. T, where the concept C is constructed from
the tree unravelling of (J«, dy) up to some bound k.

By Definition 2.3.2, if the interpretation J¢ contains cyclic paths, then these cyclic paths
might generated by T or A. Hence, (Jx, dg) w.r.t. an individual g contains all cyclic paths from
which a is reachable. Therefore, it is sufficient to check, whether (Jx, dy) contains cycles or not.
These cycles in the interpretation lead to the tree unravelling growing infinitely, while the tree
unravelling of the Definition 3.1.1 cannot distinguish the existence of cycles in the interpretation.
One direction to overcome such a problem is to use an upper bound k to which the tree is
unravelled. Another direction is to define a new method for unravelling, a so-called least tree
unravelling.

4.1 The Least Tree Unravelling

Roughly speaking, a least tree unravelling of an interpretation J is a tree unravelling, where
each path g = dridir5...rmdm, contains only distinct individuals from A%, If the A7 is finite, then
the tree constructed w.r.t. the least tree unravelling is also finite.

Definition 4.1.1 (Least tree unravelling of interpretation). Let J be an interpretation and d € A’
w.r.t. Nc and Ng. The least tree unravelling 34 of Jin d is defined as follows:
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4 Towards Polynomial Computation

e N9 = {dridyryiady | (@ di) € iy AO< i< |A7) Ady = dA, {d, i, i} € &
are distinct individuals}.

« A= {od' | ad' € A nd' e AT}, forall A e Ne.

« rYa = {(g,0rd") | (0,0rd") € A'¢ x A7}, for all r & Np.

To illustrate the difference between the tree unravelling and the least tree unravelling, con-
sider (Jx,, dg) defined w.r.t. X4 of Example 1. Since A4 is cyclic, the previous method for the
tree unravelling grows infinitely. However, the tree constructed w.r.t. the least tree unravelling
will have only tree depth equal to 1 ( see Figure 4.1).

T T

O,
O

a) Tree unravelling 34, of (Jx, da). b) Least tree unravelling 7'y, of (Jx, da).

Figure 4.1 The tree unravelling J4, and the least tree unravelling 'y, constructed w.r.t. (Jx,, da)
in Example 1.

By this definition, it is ensured that the tree constructed w.r.t. the least tree unravelling 7’y of J
has a bounded depth k such that k < |A7| +1. Hence, the tree is always finite, as each individual
d € A appears only once in path drds...rp_1dn_1. Given a path o = dryds...rpdp, tail(o) could be
an element that occurs only at the end of g, or somewhere else in g. One can observe that if an
interpretation J contains a cyclic path g = dr1d,...rpdy, then tail(o) € {d, d4, ...d,-1}, otherwise
the path is acyclic.

This characterization leads to checking the cycles in the interpretation J. If A is finite, then
the concept X¥(J, d) constructed w.r.t. the least tree unravelling always terminates. The concept
X(J,d) denotes the k-characteristic concept constructed w.r.t. the least tree unravelling, where
k = |A7| +1. If the interpretation J is acyclic, the tree unravelling of J and the least tree
unravelling of 3 have the same tree depth. Hence, the characteristic concept C constructed
w.r.t. the least tree unravelling coincides with the characteristic concept €’ constructed w.r.t.
the tree unravelling. Thus, Icg, dc) = Jo g, der). Hence, C' is a mscx(a) iff Cis a mscs(a).

Corollary 4.1.2. Let X = (T, A) be a knowledge base, where T and A are acyclic. Let C and C’ be the
k-characteristic concepts constructed w.r.t. the tree unravelling of (Jx, dy), with k € N and the least
tree unravelling of (I, dy) respectively. Then C is a msc(a) iff C' is a mscx(a).

Proof. = Suppose that Cis a mscx(a), then by the Lemma 3.3.2, (Ic, dc) = (Ix, dg). Since T
and A are acyclic, then by the Definition 4.1.1 A% C A% . For every path g = drid;...rd, €
(g, da) we have that taillo) ¢ {d,d1,...dn1}. Also, the tree unravelling is finite due
to the fact that 7 and A are acyclic. Hence, N = Aldo. Therefore, the concept ('
constructed w.r.t. the least tree unravelling and the concept C are identical. Moreover,
(Jcg,dc) = [Teg,der). By Lemma 3.3.2, we obtain that (¢, der) = (Ix, dg) and the concept
C"is a mscy(a).

& The other direction can be proved analogously.
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4 Towards Polynomial Computation

We still need to ensure whether Corollary 4.1.2 holds if A is cyclic. In the next section, we will
introduce terminology that is essential in showing that the concept constructed w.r.t. the least
tree unravelling coincides with the concept constructed w.r.t the tree unravelling. In the next
section, we introduce a mechanism to convert an interpretation into a so-called ££-graph.

4.2 An EL-Graph

We start by defining interpretations in terms of graphs. Furthermore, we define a mechanism
to convert a graph into an interpretation. Thus, the obtained interpretation can be used to
construct a characteristic concept w.r.t. the least tree unravelling.

Definition 4.2.1 (££-Graph). (From [ 1) An €L-graph is a directed graph G = (V, E, Ind, V),
such that:

+ Vis a set of nodes.

* ECV x Ngx Visasetof edges labeled by role names.

- YV = 2Ncjs g function that labels each node v € V with sets of concepts L C Ne.

« Ind : V — 2Mis a function that assigns each node v € V to a set of individual names.

We denote the root node of G by vp. A set pe(E, v) is the set of all edges with a node v as a
predecessor.

Definition 4.2.2 (Sub-graph). Let Gy = (V4,Eq,Ind4, Y1) be an EL-graph. The £L-graph G, =
(V2, B2, Indy, Y7) is said to be a sub-graph of Gy (G, C Gy) iff the following statements hold:

<V C VL

+ E; C Ey such that for every e = (v,r,d) € £, we have v, d € V5.
© Yo(v) C Y4(v), forallv e Vs,

+ Ind>(v) C Indq(v), for all v € V5.

The interpretation J can be translated into an ££-graph by the following definition.

Definition 4.2.3 (Interpretation as a graph). (From [ ) Let I = (4%, -7) be an interpretation
and d be an element in A7, The graph' Gy = (V4, E5, Indy, Y5) of the interpretation J is defined as
follows:

« Vy are the elements of A7, with vo = d.
CEy={ry) | reNg xy) er'}.

* Ya(v) = {L € Nc|v € [7},forallv € &7,

* Indg(v) = {a € Ny|v € &’}, forallv € A7.

Given a graph G = (V,E,Ind,Y), a node v/ € V is said to be directly reachable from a node
v € V (denoted by reachgec(v, V")), if there exists a path o fromvto v/ and |g| =1 (|| denotes
the number of role names occurring in ). More precisely, v/ € V is directly reachable from a
node v € V iff there exists an edge (v,r, V') € E. Anode v/ € V is said to be reachable from a
node v € V (denoted by reach(v, ")), if there exists a path g = vry..r,v/ from v to v/.

A path g = vpryvy...rpvy is said to be reachable from a node v € V, if the node vy is reachable
from v (denoted by reach(v,d)). We denote by head(o) the first element of the path g =
Vol Vi...rmVn, While tail(o) denotes the last element of the path g = vorivy...rpvi.

Proposition 4.2.4. ([ ) Let G = (V,E,Ind,Y) be an EL-graph, v,v' nodes of V. It is decidable in
polynomial time whether v’ is reachable from v.

"We write graph to refer to ££-graph.
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In order to construct a characteristic concept, it is essential to provide a mechanism to
translate a graph G into an interpretation Jg, which is defined as follows.

Definition 4.2.5. [Interpretation from graph] Let G = (V,E,Ind,Y) be a graph, X = (T,A) a
knowledge base. The interpretation I w.r.t. Ng, Nc and N, 4 is defined as follows:

C N =V,

s Ao ={d, | AcY(v)Av e V] forallAe Ne.

« 6 = {(dy,dy) | (v,r,V') € E}, forallr € Ng.

» 0% = {dy|a € Indv)nv e V}, foralla € Nia.

As we are interested in characterizing the cycles of J, we need to distinguish between the
cyclic paths and the acyclic paths of Gy. This can be obtained from the following definition.

Definition 4.2.6 (Cyclic path). Let Gy = (Vg, £, Indy, Y5) be a graph. A cyclic path Gy is a path of Gy
such that:

* Gg = {xorXx1..nXn | X, i) Xj+1) € Eg A Xn € {X0, X1, .. Xna1 }AO i <nAn < | Vgl }

| Go | denotes the number of role names occurring in Gg. The set Gg,qes denotes the set of all
cyclic paths Gg of Gj.

To be able to distinguish between the cycles of J that are generated from 7 and A, we need
to construct sub-graphs Gj , and Gy5 of Gy.

Definition 4.2.7 (ABox graph). Let X = (7,.A) be a knowledge base, a an individual, Gy =
(Vg, Eq, Inds, Yy) be the graph of (Jx, dy). The ABox graph Gga = (Vg4, Ega,INdy 4, Y5,4) iS a sub-
graph of Gy such that:

. Vj"/{ = {V e Vy ’ /ﬂd(V) < N/,A}.

CEa = rny) | (y) € rIxd Ax,y e Vyal.

* Yyu(v) = {L € Nc|v e Uxd}, forallv e Vg 4.
* Indg A(v) = Inds(v), for all v € Vg 4.

V4 denotes the set of nodes that are generated by A.
The graph Gy can be defined similarly.

Definition 4.2.8 (TBox graph). Let X = (7, A) be a knowledge base, a an individual, G =
(Vg, Eg,Indy, Y5) be the graph of (Jx, dg). The TBox graph Gyg = (Vi, Ege, Indy s, Y3.7) is a sub-graph
of Gy such that:

. Vglg' = {\/ e Vy | /nd(\/) $ N/,/{}~

c Eyg = {0, r,y) | (xy) e %) A x,y e Vyg).

* Yyq(v) = {L € Nc|v € [Vxdo)}, forallv € Vyg.
* Indgg(v) = Inds(v), for all v € V.

Vg denotes the set of nodes that are generated by 7.

We observe that G5 4 and Gg g are unique w.r.t. the same model (Jx, dg). Moreover, it is clear
to see that Ggg and Gg 4 are sub-graphs of Gy, where Gy 5 and Gg 4 are disjoint (see Figure 4.2).

From the fact that Gy 4 and Gy are sub-graphs of Gy, where Gy is the graph of (I, dg), one
can observe that adding all paths 0 € Gy to Gy 4 that are reachable from any node v in Gy 4
allows us to obtain back Gy.

Definition 4.2.9 (Canonical graph). Let Gy = (V4, £1,Ind, Y1) be the graph of (Jx, dy), Gy 4 the
ABox graph of Gy, Gy = (V, E», Ind;, Y>) a sub-graph of Gy 4. We define as canonical graph of G,
w.r.t. G1 as the graph Gg,6, = (V6,,6,, EG,,6,.1NdG,.6,, Y6,.6,) such that:
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r

p
( ) C,arC (r> ( } C,ar.C C,ar.C % ri
r

G, 3ar.C

a) Gy w.r.t. (Jg,, da). b) Gg 4 w.r.t. Gy. €) Gy wW.rt. Gy.

Figure 4.2 The graph Gy defined w.r.t. (Jx,, dg) of Example 1. The graphs Gy 4 and Gy w.r.t. Gy.

* V6,6, = Vo U{V € Vq | V'isreachable fromv A Ind (V') & Nja,v € Va}.
* E6 = {.ry)eEr | Xy € Vs,6}

. YGz,G1 (V) = Yq (V), forallv e VGz,G1~

* Indg, 6, (v) = Ind(v), for all v e Vg, 6,

Example 6. Consider The following knowledge base X = (T, A):

+ T={CC3rD}.
« A ={s(a,b), Ca)}.

The previous definition adds only those nodes and edges that are generated by Gq g (See Fig-
ure 4.3 of Example 6). As a consequence of the previous definition, we obtain that the canonical
graph Gg, ,,6, Of Gy4 W.rt. Gy gives us back Gy. Thus, we have that (Gg, ,,6,, Vo) IS identical to
(Gy,vp). Moreover, if A is acyclic, then constructing a concept C w.r.t. the least tree unravelling
of JGGM,GJ we have that by the Corollary 4.1.2 (Ic ) = (I, dg).

C,ar.D D C,ar.D C,ar.D D
S
a) A graph Gw.rt. (I, dg). b) A sub-graph G’ of G.  ¢) A canonical graph Ggr .

Figure 4.3 A graph G constructed w.r.t. (Ji, dy), @ sub-graph G’ of G, and the canonical graph
Gg g wW.rt. G and G.

From the definitions 4.2.2, 4.2.9 and 4.2.7, we can obtain the following Lemma that charac-
terizes the relation between two sub-graphs of the ABox graph G4 constructed w.r.t. the same

graph.

Lemma 4.2.10. Let G = (V,E,Ind,Y) be the EL-graph of (Ix,dqa), G1 = (V4,Eq,Indy, Y1), Go =
(V2, Ez,Indy, Y>) be two sub-graphs of the ABox graph Gy such that G1 C Gy. Then Gg, 6 =
(V6,.6:E6,,6,1nds, 6, Y6,,6) € Ge,.6 = (V6,6 Ec,6 1Nds,,6. Y6,,6)

Proof. Assume that G1 C G». Then by the Definition 4.2.2, we have the following:

<V C V).

- £1 CE.

* Yq(v) C Y5(v), forallv e V;.

+ Indq(v) C Ind>(v), for all v € V.

Also, from the construction of the Definition 4.2.9, we have that the canonical graph Gg, ¢ is a
sub-graph of G such that:
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* Vg, ¢ contains all nodes from V4 together with all nodes v € Vg such that v is reachable
fromanode Vv € V.

+ Eg, ¢ contains all edges e = (x,r,y) € E such thatx,y € V5, 6.

* Y6,6(v) CY(v)such thatv € Vs, 6.

* Indg, ¢(v) C Ind(v) such that v € Vg, 6.

The canonical graph Gg, ¢ is constructed analogously. Then by construction of the Defini-
tion 4.2.9 if there exists a node v such that v € Vi, ¢ A v & V4, then v must be reachable from a
node v/ € V3 where v’ € V4. Since V4 C V5, then the node v/ is also in V5, and v must be in Gg, 6
and v ¢ V5. Therefore, Vg, ¢ is a subset of Vi, ¢ (V5,6 € V6,,6)-

Similarly, if there exists an edge e = (x,1,y) € Eg, 6, thene = (x,r,y) € Eg, . Due to the fact
thatx,y € Vg, g and x,y € Vg, 6. From Vs, ¢ C Vi, 6 we have that Vg, ¢ is also a subset of Y5, ¢
(Y6,.6 € Y6,,6)- O

We can also characterize the edges that are added in the canonical graphs of two sub-graphs
of the ABox graph G4 w.r.t. the same graph Gy. This can be characterized as follows.

Lemma 4.2.11. Let G = (V,E, Ind,Y) be the EL-graph of (Jx, dg), Vg be the set of nodes in G that are
generated by T, G1 = (V1, Eq,Indy, Y1), Go = (V2, B2, Ind>, Y2) be two sub-graphs of the ABox graph G 4.
Forvy € VGW,G/VZ &= VGZ,G /fYGq,G(V’I) - YGZ,G(V2)/ (vh,r,v) € EGW,G and v € Vg, then (vo,r,v) € EGZ,G
where GG1,G = (VG1,Gr EGW,(;, /I’]dgmg, YGW,G) and GGQ,G = (\/(32,@, EGZ,G/ /I’]O’G%@ YGZ,G) are the canonical
graphs of Gy and G, w.r.t. G.

Proof. We assume that ontology is in normal form. An ontology is in a normal form if every
existential restriction occurs in axioms of the following form:

- drALC B. Or,
« AC dr.B.

By construction of the Definition 4.2.9 we have that all nodes v € Vg that are added to Gg, ¢
must be reachable from a node v4 € V4. Therefore, there must exists an edge (v4,r,v) € Eg, 6,
where v € Vg. Also by construction of the Definition 2.3.2, the edge (v4,r,v) € Eg, ¢ exists in
Ga, 6 iff (v1,v) € r’*. Moreover, we can obtain the set of concept names M such that every
C € M we have v, € (P<. Similarly, we can obtain the set of concepts M’ such that every
C' € M we have vy, € CP%. If Yg, 6(v1) C Y6,6(v2), then M C M'. Hence, we have that every
concept C € M, we have that v, € (?%. Hence, as a consequence of the construction of the
Definition 2.3.2,we have that (v3,v) € r’* and (v4,v) € r’x, for the same role name r. Hence, the
node v € Vo must be reachable from the node v, € Vg, . Therefore, there must exists an edge
(v2,r,v) € Eg, 6. ]

As graphs are used to represent the interpretations, then it is necessary to define the
simulation explicitly in terms of graphs.

4.3 The Simulation Over Graphs

Definition 4.3.1. [Simulation over graphs] Let Gy = (V4, Eq,Ind1, Y1), Go = (V5,E», Ind, Y5) be
&L-graphs, v € V4 be a node, v/ € V, be a node. A binary relation S C V; x V5 is called a
simulation from (G1,v) to (G, V') if all the following conditions are satisfied:

(S1) If (v1,v2) € S, then Y1(vq) C Ya(vo).

(52) If (v1,v2) € S, and (vq,r,v;) € Eq, then there exists some v;, € V5 such that (v, Vv5) € S, and
(vo,1,V5) € Es.
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Figure 4.4 The simulation S from path g to o’ .

We write S : (G1,Vv) < (G, V') to express that there exists a simulation S from G to G, such that
(v,v) € S. We write S : (Gq,v) = (G, V') to express that there exists a simulation equivalence
between Gy and G (Gy,Vv) < (G, V') and (Go, V') < (Gy, V).

It is easy to see that the set of all simulations from G4 to G, is closed under arbitrary unions,
if G; and G, are finite. Consequently, there always exists a greatest simulation from G to Gy. If
Gy and G; are finite, then this greatest simulation can be computed in polynomial time [ 1.
As a consequence of this fact, we obtain the following proposition.

Proposition 4.3.2. ([ ) Let G1, Gy be two finite EL-graphs, v a node of G1 and v/ a node of
Gy. Itis decidable in polynomial time whether there exists a simulation S : (Gq,v) < (G, V') such that
(v,V) es.

Definition 4.3.3 (Simulation over paths). Let G be a graph constructed w.r.t. an interpretation J,
0,0’ be two paths occurring in G. A path 0 = xor7... is said to be simulated by 0" = xprixgrs... iff
there exists a simulation S such that (x;, x/) € S, for all 0 < 7and xg = x;. We write S: 0 < 0’ to
express that there exists a simulation S from o to ¢’ (see Figure 4.4).

Definition 4.3.4 (Simulation over edges). Let G = (V, E,Ind,Y) be an EL-graph, e = (v,r,d), e’ =
(v, r,d’) be two edges occurring in E. e is said to be simulated by e’ (e < ¢€) if the following
conditions are satisfied:

< Y(v) C V().
+ There exists a simulation S such that (d, d’) € S.

4.4 Computing The Msc w.r.t. The Least Tree Unravelling

Now we are ready to construct the most specific concept w.r.t. the least tree unravelling. Instead
of generating all the candidate concepts up to upper bound k and check whether the simulation
equivalence holds between the canonical model of one of the candidates w.r.t. 7 and (Jx, da),
we employ the Lemmas 3.3.2 and 4.1.2 to decide the existence of the msc w.r.t. an individual.

Intuitively, we construct a sub-interpretation (7, dg) of (Jx, dy) up to equivalence, such that
(@, dg) < (Ix, dg) and (Ix, dg) < (77, dg). We construct a sub-graph mscG = (Vinseg, Emsca, INdmsca,
Ymscg) Of ABox graph G4 by recursively copying nodes and concepts related to them from
the graph canM = (V, E, Ind,Y) of (Jx, dg) starting from the root node vy. Vg is the node that
represents the individual a. We define the construction of mscG in terms of an algorithm. The
algorithms that we will be used in the following sections of this chapter, will be captured in
Chapter 5.

2We may just write (Gy,v) < (G, V) instead of S : (Gq,v) < (G,, V'), if the simulation relation is not important in the
context.
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4.4.1 Deciding The Existence of The Msc

From Now we use the graph mscG = (Vinsco, Emsce, INdmscc, Ymscs) tO represent the graph that
we want to construct, the graph canM = (V, E, Ind, Y) to represent the graph of (Jx, dy) and the
graph temp; = (V4, E¢, Indy, Y¢) to be the canonical graph of mscG w.r.t. canM after the termination
of the recursive call of the Algorithm 2.

We start by taking X = (7, A) and the individual a as inputs. Then canM is constructed w.r.t.
(390 da)~

We initialize mscGo = (VinscGyr EmscGyr INdmscGyr Ymsca,) @s follows:

* VimscG, = Vo), where vy is the root node of canM.
* EmscGo =0

* Ymscco (Vo) = Y(Vp).

: /ndmscGo(‘/O) =da.

Then, recursively we visit every node v € V4 (recall the Definition 4.2.7) and add the edges if
needed. More precisely, for 0 <7 < | V4|, we do the following:

- we build temp; = (V;, £;, Ind;, Y;) to be the canonical graph of mscG; w.r.t. canM.
- for each edge (v, r,d) € pe(E, v), we check whether there exists an edge (v, r,d’) € pe(Ej, v)
such that (v, r, d) is simulated by (v, r, d").

We can define mscG; = (Vinsc, Emscc, INdmscc, Ymscs,) where i > 0 as follows:

* Vinscg, = Vimscg, U {Ind(d) € N4 | there exists some v € Vs, , and forall (v,r,d") e
pe(Ej,v) such that (v, r, d) € pe(E,v) w.rt. canM A (v, r,d) £ (v,r,d")}.

* Emscg, = {(v.r,d) € pe(E,V)|v,d € Vinses, }-

* Yinseg (V) = Y(v), for all v € Vipses,.

* INdmsec,(v) = Ind(v), for all v € Vipse,.

In the previous definition, only nodes that are contained in V4 are added to Vs, Since the
number of nodes of the graph G is finite, then also the size of V4 is finite. Also, the number of
edges in £ is finite. Therefore, we ensure that the Algorithm terminates.

After Algorithm terminates, we obtain that mscG is a sub-graph of ABox graph G4. The reason
is that mscG contains only nodes from V4. Moreover, we observe that there exists always a
simulation equivalence between (tempy, vp) and (canM, vp). This can be characterized by the
following lemmas.

Lemma4.4.1. Let X = (T, .A) be a knowledge base, canM = (V, E, Ind, Y) be the graph of (I, dg), and
mscG = (Vmsco, Emsca, INdmsca, Ymsca) be a graph constructed after the termination of Algorithm 1.
It holds that (canM, vp) < (tempy, vo), where temp; = (V, Et, Indy, Y:) is the canonical graph of mscG
w.r.t. canM.

Proof. Let G4 = (Va,Ea, Indy, Ys) be an ABox graph constructed w.r.t. canM. Let Gy = (Vs, Eq,
Indy, Y7) be a TBox graph constructed w.r.t. canM.

We start defining a relation S; C V x V;, fori € {0,1, ..., |Va|}, where temp; = (V;, E;, Ind;, Y;) is
the canonical graph of mscG w.r.t. canM that is constructed at each recursive call. The relation
Siis defined by following the steps of the Algorithm 1:

1. As shown in Line 4, the graph mscG is initialized as an empty graph. Then the root node
Vo in canM is added to mscGq together with its set of concepts. Therefore, So = {(vo, )}
where vg, v are the root nodes of canM and mscGg respectively.

2. Then, all nodes in V4 are visited only once, starting from the root node vy that contains
the individual a (as shown in Algorithm 2):
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* At each recursive call, a node v is the current node, temp; = (V;, E;, Ind;, Y;) is con-
structed to be the canonical graph of mscG; w.r.t. canM, where mscG; is the graph
that is obtained at the recursive call /.

+ Given a node v, a set pe(E,v) = {(v,r,V') € E} is the set of edges from canM that
contains v as a predecessor, a set pe(E;, v) = {(v,r,V') € E;} is the set of edges from
temp that contains v as a predecessor.

+ An edge e € pe(E, v) is added to mscG; if there exists no edge e’ € pe(E;, v) such that e
is simulated by e’ (see Line 10 of Algorithm 2).

Anedge e = (v,r,V') € E is said to be simulated by an edge ¢’ = (d,r,d’) € E; iff the
following hold:

- Y(v) C Yi(d) and Y(v) C Yi(d').

- There exists a simulation S such that (v, d") € S.

- Then we have one of two cases:

(A) There exists anedge e’ = (v,r,d’) € pe(E;, v) that simulates the edge e = (v, 1, V') €
pe(E,v) and e’ € Vg, then there exists a simulation S such that (v/,d’) € S. We
then have that S; = Si.4 U S.

(B) Otherwise, e = (v,r,V') € pe(E,v) is added to mscG;. Hence, S; = Si-q U {(V/,V))}.

3. Algorithm 2 terminates after all nodes are visited and for every edge e € £, there is an
edge ¢’ € £; such that e is simulated by e’.

As a consequence of Lemma 4.2.10, we have that temp; C temp;.1, forall0 <7< |Vy4|. Therefore,
if there exists a simulation from a node v € V to a node v/ € temp;, then there exists also a
simulation from v € V to v/ € tempjs, for all 0 < i< |Vy|. Let temp; = (V, Et, Indy, Yr) be the
canonical graph of mscG w.r.t. canM that is constructed after the Algorithm 2 terminates.
Claim: Forevery i€ {0, .., |V4]}, S satisfies:

(5'1) Forevery (v,V) € S;, Y(v) C Yi(V)).
(S2) Ifi>0: forevery(v,V') € Sy and (v, r,e) € E, there exists (V/,r, €') € £, (e, €') € S;.

Proof of Claim: We prove by induction over i.

Base Induction: / = 0. Then, Sg = (v, Vo), where vy, vg are the root nodes of canM and temps.
The Algorithm 1 copies vp to mscG together with its concepts. Therefore, (A) is satisfied. (B) is
also satisfied, because i = 0.

Induction Step: Assume /> 0 and that claim holds for S;_1.

(5'1) Take some (v,V) € S;. If (v,V)) € 51, then (S'1) holds from the induction hypothesis.
Assume (v, V') € 5;§;.1. This means we are in one of two cases:

(1) From (A) we have that S; = Sy USand (v,V) € S, or

(1) From (B) we have that S; = Si-1 U {(v,v)}, and Y(v) = Yi(v).
In case (1), S is a simulation, and thus Y(v) C Y:(v/) by (S1). In case (Il), Y(v) = Yi(v) follows
directly.

(S'2) Take some (v,V) € Si.1. If (v,V') € Si, then (§'2) holds from the induction hypothesis.
Assume (v, V') € Si-1 8-, and there exists an edge (v,r, d) € E. Then there are two cases
depending on whether (v, r, d) € E is simulated by some (V/,r,d’) € E; or not:

() From (A) we have that S; = S_q U Swhere (d,d’) € Sand (V/,r,d’) € E. Or
(I) From (B) we have that S; =S4 U {(d, d)}, and (v, r, d) € E;.
In both cases, we have that (S'2) is satisfied.
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|
We write S; to denote the relation Sy C V x Vi, where t = | V4 |.
From the claim we have that the relation S; C V x V; defines a simulation from canM =
(V,E,Ind,Y) to temp; = (V;, Et, Ind;, Yy) as follows:

+ Take (v,V') € S\S¢-1, (v, r,e) € E. Then e must be from S; because we already processed all
successors of nodes. We have one of two cases.

(I) e was not processed in the last step but in an earlier step. That means S; C Si1,
where (¢, €’) € S;. The Algorithm 2 would add (V/,r, €’) to Epscg and (e, €’) € S, unless it
is already there. Since this is the last step of the Algorithm 2, then (V/, r, ') must be
already in Epsc6 and thus also in £;. It follows that (S2) is also satisfied for (v, V/).

(I) e was processed in the last step. Because we always process one node in each
step, then e = v. This means that (v,r,v) € E. If (V,r,€') € E; such that (canM,v) <
(temps_q, €') through the simulation S, then S; = S U S and thus (v,€’) € S;. Then
also (S2) is satisfied for (v, V'). Otherwise, £; = E..1 U {(V/,r,v)} and S = Si-1 U {(V/, )}
so that (S2) is also satisfied.

Hence, the relation S; C V x V; defines a simulation from canM to temp;, where temp; is the
canonical graph of mscG w.r.t. canM that is obtained after Algorithm 2 terminates. O

Lemma 4.4.2. Let X = (T, A) be a knowledge base, graph canM = (V, E, Ind,Y) be the graph of
(g, dg), and graph mscG = (Vinscg, Emsce, INdmsca, Ymsca) be the graph obtained after the termination
of Algorithm 1. It holds that (canM, vo) < (tempy, Vo), where temp; = (V;, E¢, Ind, V1) is the canonical
graph of mscG w.r.t. canM.

Proof. Again, after the recursive call of the Algorithm 2, The mscG graph is obtained such that
the mscG graph is a sub-graph canM, and also Jyscc € Jeanm (recall the Definition 4.2.5). As
consequence also the canonical graph temp = (V;, £, Indy, Y:) of mscG w.r.t. canM is a sub-graph
of the canM graph. Hence, also Jiemp, € Jcanm. Therefore, there exists a simulation from temp to
canM, due to that each node v € V; has a corresponding node v/ € V with Yy(v) C Y(v') and each
edge (vq,r,v2) € Et has a corresponding edge (v;, r,v5) € E with Yi(vq) C Y(v;) and Yi(vy) C Y(v5).
Hence, it holds that (temp, vo) < (canM, vp) after the Algorithm 1 terminates. O

Since there exists always a simulation equivalence between (tempy, vo) and (canM, vq) after
Algorithm 1 terminates and the fact that mscG contains only nodes from V., it is not a sufficient
condition to decide the existence of the msc w.r.t. a. It is still essential to check whether mscG
contains a cycle or not. If there exists a cyclic path g in mscG, then o is not simulated by any
path from temp;. This allows us to obtain that if mscG is cyclic, then this cyclic path is generated
by A. Therefore, there exists no msc w.r.t. a. The reason is that J that is obtained from mscG
would contain a loop. Therefore, the tree unravelling of J is infinite. One can employ the least
tree unravelling of J to construct the characteristic concept C. Then we can check whether Cis
the msc or not by Lemma 3.3.2.

Example 7. Consider the knowledge base X = (T, A):

- T={AC JdrA}L
+ A ={s(a, b)rb,c),rb, d),rd d),Ad)ADb),BC)}.
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Figure 4.5 canM constructed w.r.t. (Jx, dy), the graphs mscGg, mscGy, mscG, obtained at the
end of each recursive call.

Algorithm 2 starts with two initial graphs mscGg and canM. mscGg is initialized with only root
node a in Algorithm 1. The graph mscGp contains only g and no edges. Then Algorithm 2 visits
node g, and builds tempg to be the canonical graph of mscGg w.rt. canM. Then it checks every
edges e € pe(E, a) in canM whether there exists an edge e’ € pe(E, a) in tempg such that e is
simulated by €’. Since the node a contains only one edge e = (a, s, b) where Ind(a), Ind(b) € N 4,
therefore there is no simulation to it by any edge e from tempg. Hence, the edge e = (a, s, b) is
added to mscGy.

Then Algorithm 2 visits the next node which is b and builds temp, of mscG, w.r.t. canM. Since
E, in canM contains three edges e; = (b, r,d), e; = (b, r,¢), e3 = (b, r, b), it checks whether any of
these edges can be simulated by an edge from £, in temp+. In this case we have that e, = (b, r, d)
in £, of canM is simulated by e’ = (b, r, A) in £, of tempq. Therefore, the Algorithm skips adding
this edge to mscGy. We have also that es = (b, r, b) in £, of canM is simulated by e’ = (b, r, A) in
Ep, of tempq. Hence, it is also skipped. However, the edge e = (b, r, ¢) is not simulated by any
edge from £, in temp+. Hence, e is added to mscG,. Now we have only node ¢ in mscG that
should be visited before the recursive call terminates. In the last recursive call since the node ¢
has no successors, the algorithm 2 terminates. In Figure 4.5, we can see the graphs generated
of Example 7 by Algorithm 1.

Finally, there is still needed to check whether there exists a simulation equivalence between
(tempy, vo) and (canM, vp). We also need to check whether mscG contains a cycle. This two checks
are done after the recursive call of Algorithm 2 and it returns to continue with remaining steps
in Algorithm 1(see Figure 4.6).

canM temps
s ,3r.
B A 3drA

a) tempy. b) The simulation equivalence (canM, vp) =~ (temps, vo).

Figure 4.6 temp; constructed w.r.t. mscG, and canM, the simulation equivalence between
(tempy, vo) and (canM, vp).
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As we can see in Figure 4.6 that after Algorithm 1 terminates, there exists a simulation
equivalence between (tempy, vo) and (canM, vp).

However, there could be the case that there exists the msc of g, even though mscG contains
a cycle. To illustrate this consider the following example.

Example 8. Consider the knowledge base X = (T, A):

- T={AC drA}L
« A ={r(a,b),rb,a),r(a,c),rcd),Ad)}.

- O

G~

a) canM. b) mscG.

Figure 4.7 canM of (3, dy) and mscG w.r.t. Example 8.

In the previous example, we have that mscG contains a cyclic path, although there exists the
msc of a. The concept C = 3r.(3r.A) is the msc of a.

Therefore, it is not sufficient to check directly whether mscG is cyclic. It is still necessary to
find the least sub-graph of mscG such that every path g = vriviravs... in mscG is not simulated
by any path @’ = vrivirvs... in tempy, with v; # v/ for some /> 0.

A i

a)g <. b) mscG.

Figure 4.8 g < ¢/, where g in mscG and ¢’ in temp;, and the resulting sub-graph of mscG.

In Figure 4.8, we remove the path g in mscG since it is simulated by the path g. Hence, we
obtain that the final mscG is the least graph such that (tempy, vo) simulates (canM, vp). Then, if
mscG is acyclic, then there exists the msc of a. One can construct the characteristic concept C
w.r.t. 3 of mscG.

Based on this construction of mscG, we observe the following.

Lemma 4.4.3. Let X = (T, A) be a knowledge base, canM = (V, E, Ind, Y) be the graph of (Jx, dg),
mscG = (Vinsca, Emsca, INdmsca, Ymsca) be a graph constructed after the termination of Algorithm 1, and
temp; = (V;, E¢, Ind:, Vi) be the canonical graph of mscG w.r.t. canM. Then For every (v, r,v1), (v, r,v2) €
E: satisfy one of the following conditions:
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* V1 =V
 Or, (tempy, v1) & (tempy, v2).

Proof. InLine 6 of Algorithm 1 it calls Algorithm 4, where Algorithm 4 intuitively finds a least graph
of mscG such that the simulation equivalence relation between (temp, vo) and (canM, vp) still
holds. By construction of the Algorithm 4 in Line 5, every edge (v,r, V') € Epscs is removed from
mscG if there exists an edge (v, r,v”) € E; such that (v, r, V') is simulated by (v, r, v”). Therefore,
Algorithm 1 ensures all edges e € E,scc cannot be simulated by any edge e’ € E;. This means
given two edges (v, r,v1),(v,r,v2) € E; we have one of the following cases:

(A) (tempy, v1) £ (tempy, v2).
(B) Or, (tempy, v1) S (tempy, v2).

- Case (A) coincides with the our second condition.

+ Case (B). Assume that (tempy, v1) < (tempy, v2). Due to the fact that all edges e = (v, r,v4) €
Emsce is not simulated by any edge e’ = (v,r,v») € E;. Then, if e = (v, r, v4) is simulated by
edge e = (v,r,v,), then e = ¢’. Therefore, also vy = v,.

O

As a consequence of the construction of Algorithm 1, one can observe that every edge e =
(v, r,V') € Emsce 1S not simulated by any edge €’ = (v, r,v”) € E; such that v/ # v”, where temp; =
(V4 E¢, Ind, Y1) is the canonical graph of mscG w.r.t. canM that is obtained after termination of
the algorithm. This can be characterized by the following lemma.

Lemma4.4.4. LetcanM = (Veanm, Ecanm, INAcanmn, Yeanm) be the graph of (Jsc, dg), mscG = (Vinses, Emscs
,Indmsca, Ymscs) the graph obtained after Algorithm 1 terminates, temp: = (V;, E, Ind:, ;) the canoni-
cal graph of mscG w.r.t. canM. Then, every infinite path g = vorivirv;... € mscG is not simulated
by an infinite path o’ = voryvirVs... € tempy such that v € Vi, (mscG,v;) < (tempy, V), and v; + v/
forsome i > Q.

Proof. By construction of Algorithm 1:

1. As shown in Line 4, the graph mscG is initialized as an empty graph. Then the root node
Vo in canM is added to mscGq together with its set of concepts.

2. Then, all nodes in V4 are visited only once, starting from the root node vy that contains
the individual a (as shown in Algorithm 2):

+ At each recursive call, a node v is the current node, temp; = (V;, E;, Ind;, Y;) is con-
structed to be the canonical graph of mscG; w.r.t. canM, where mscG; is the graph
that is obtained at the recursive call /.

+ Given anode v, a set pe(E,v) = {(v,r,V') € E} is the set of edges from canM that has
v as a predecessor, a set pe(E;, v) = {(v,r,V) € E;} is the set of edges from temp; that
has v as a predecessor.

* In Line 15 of Algorithm 2 an edge e € pe(E, v) is added to mscG,; if there exists no
edge ¢’ € pe(E;, v) such that e is simulated by e’ (recall the Definition 4.3.4).

3. Let temp; = (V;, E¢, Ind;, Y;) be the canonical graph of mscG w.r.t. canM after Algorithm 2
terminates.

4. Algorithm 2 terminates after all nodes are visited and for every edge e € £, thereis an edge
e’ € E; such that e is simulated by e’. Also we can observe that every edge e € pe(Epmsc, V)
is not simulated by any edge e’ € pe(E;, v)Ae' + e, for every node v € V5. Otherwise, the
edge e would not be added to mscG. Moreover, every edge e = (v,1,V') € Epscg We have

35



4 Towards Polynomial Computation

thatv,v' € V4 (V4 is a set of nodes occurring in canM such that the nodes are generated
by A). Due to the fact that e is not simulated by any of the edges that are added from the
canonical graph of mscG w.r.t. canM (recall the Definition 4.2.9).

Now Suppose that there exists a cyclic path in mscG. This means that there exists an infinite
path g = vgrivirnvs... € mscG such that every edge (vi1, 11, Vi) € Emscs IS NOt simulated by an
edge (Vi1, 1, Vi) € Er, where v/ € Vg andv; + v/, for all / > 0. Otherwise, the edge (vi_1, 1, v;)
would not exist in Epscg. Hence, o = voriviravs... € mscG is not simulated by any infinite path
0’ = vorivinVvs... € tempe such that v; € Vg and v; + v/ for some /> 0. O

We recall that Algorithm 1 constructs mscG graph such that (tempy, vo) =~ (canM, vg). Also it
checks whether mscG contains a cyclic path or not. If mscG contains a cyclic path, then there
exists no msc of individual a. Otherwise, there exists an msc of g, and one then use convert
mscG into an interpretation J,scc and use the interpretation to compute the msc.

Since deciding the existence of the msc with this approach does not rely on computing the
concept, it is easy to see that it can be decided in polynomial time. Then, the constructed graph
can be used to construct a possibly exponentially large concept. Also we can observe that
role-depth of (Jscs, dg) is bounded by | Vyses|. Therefore, it is sufficient to construct up to
| Vimsco | to decide the existence of the msc.

4.5 proofs

4.5.1 Correctness

Theorem 4.5.1 (CORRECTNESS). If the Algorithm 1 returns true, then there exists a most specific
concept w.r.t. individual a.

Proof. Assume that Algorithm 1 returns true. By the Definition 4.2.5, the interpretation Jegnu is
constructed w.r.t. the canM graph, and the interpretation s is constructed w.r.t. the mscG
graph. A concept C is the characteristic concept obtained w.r.t. least tree unravelling of the
interpretation J,scg, where k = | A’ | This means that by Line 8, we have the following:

* There exists a simulation equivalence between Iy and the canonical model of the concept
C W.r.t. T( JCG/’)M ~ (JC"T, dC).

+ Graph mscG contains no cycle; Meaning that there is no path vqeq...epv, with v, = vy, for
allee E,andforallv e V.

Since the mscG graph contains no cycle, then J,,s¢ contains no cycle and by the definition of
least tree unravelling, every path o = drid...rpd, of mscG, we have that {d, d4, ..., d,} are distinct
individuals; Tail(o) ¢ {d,d1, ..., dn-1}, where path g = d, dqry...rpdy, for all paths 0 € 7' mseq,.
Moreover, By Lemmmas 4.4.2 and 4.4.1 we have that (temp, vp) = (canM, vp), where temp is the
canonical graph of mscG w.r.t. canM. While mscG is acyclic, it can be unravelled into a finite
tree. Then the concept C is constructed w.r.t. the least tree unravelling of J,s.. We have that
(Jcr,dc) = (Ix, dg). By Lemma 3.3.2, we obtain that the concept C is the msc of the individual
a. ]

4.5.2 Completeness

Theorem 4.5.2 (COMPLETENESS). If there exists a most specific concept w.r.t. individual a, then
Algorithm 1 returns true.

Proof. Assume that there exists a most specific concept w.r.t. individual a. Now suppose by
contradiction that Algorithm 1 returns false. Then by Line 8, either:
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(A) There exists no simulation equivalence between canM and the canonical graph temp of
mscG w.r.t. canM, where canM is the graph of (I, dy) and mscG is the graph obtained after
the Algorithm 1 terminates.

(B) Or, the constructed mscG = (Vinsc, Emsca, INdmsca, Ymsca) Graph has a cycle.

Case (A). Suppose that (canM, vp) # (temp, vp). Then it is a contradiction for Lemmas 4.4.2
and 4.4.1. After the Algorithm 1 terminates, there must exists a simulation equivalence between
(canM, vp) and (tempy, vo).

Case (B). Suppose that mscG is cyclic. By construction of Algorithm 1:

1. As shown in Line 4, the graph mscG is initialized as an empty graph. Then the root node
Vo in canM is added to mscGq together with its set of concepts.

2. Then, all nodes in V4 are visited only once, starting from the root node vy that contains
the individual a (as shown in Algorithm 2):

+ At each recursive call, a node v is the current node, temp; = (Vj, E;, Ind;, Y;) is con-
structed to be the canonical graph of mscG; w.r.t. canM, where mscG; is the graph
that is obtained at the recursive call /.

- Given anode v, a set pe(E,v) = {(v,r,V') € E} is the set of edges from canM that has
v as a predecessor, a set pe(E;, v) = {(v,r,V') € E;} is the set of edges from temp; that
has v as a predecessor.

* In Line 15 of Algorithm 2, an edge e € pe(E, v) is added to mscG; if there exists no
edge e’ € pe(E;,v) such that e is simulated by e’ (recall the Definition 4.3.4).

+ If there exists an edge e’ = (v, r, d’) € pe(E;, v) that simulates the edge e = (v, 1, V) €
pe(E,v), then we skip adding edge e to mscG;. Otherwise, e is added to mscG;.

3. Let temp; = (V4, E¢, Ind;, Yt) be the canonical graph of mscG w.r.t. canM after Algorithm 2
terminates.

4. Algorithm 2 terminates after all nodes are visited and for every edge e € £, thereis an edge
e’ € E; such that e is simulated by e’. Also we can observe that every edge e € pe(Epsc, V)
is not simulated by any edge e’ € pe(E;, v)A\e’ + e, for every node v € Vss. Otherwise, the
edge e would not be added to mscG. Moreover, every edge e = (v,1,V') € Epscc We have
thatv,v' € V4 (V4 is a set of nodes occurring in canM such that the nodes are generated
by A). Due to the fact that e is not simulated by any of the edges that are added from the
canonical graph of mscG w.r.t. canM (recall the Definition 4.2.9).

So, if there is a cyclic path g = vgrivirvs... in the mscG graph, then g = vprqvirav,... contains
elements from V4. Furthermore, from 4.4.4 we have that this path o is not simulated by any
cyclic path 0’ = voryVvirVvs... € tempe such that v/ € Vg, (mscG, vi) < (tempy, vi), and v; # v; for
some /> 0.

Now suppose that a concept Cp is mscx(a). Then by Lemma 3.3.2 we have that (J¢, 7, dc,) =
(Jx, da). Let Go = (V5,, Eg,, Inds,, Ys,) be a graph constructed w.r.t. (Je, 7, dc,). Since canM =
(V,E,Ind,Y)is the graph of (Jx, dg), we have that (Go, Vo) =~ (canM, vy).

Also by Lemmas 4.4.2 and 4.4.1 we have that (canM,vp) = (temp, Vo), where temp; =
(V4, Et, Indy, Yr) is the canonical graph of mscG w.r.t. canM. Let S, S’ be simulations such that:

i) S (tempr,vo) S (canM, vo).
i) S": (canM, vp) < (tempy, Vo).

Since (tempy, vo) =~ (canM, vp) and (canM, vg) = (Gg, Vo), we have that there exists a simulation
equivalence between Gg and tempy i.e.((Go, Vo) = (temp, vp)). Let Sq, S, be simulations such that:

1) Sq: (tempy, vo) < (Go, Vo).
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2) 52 : (GO, VO) 5 (templfr VO)~

Due to the fact that mscG is cyclic, then there must exists an infinite path = vorivirvs... €
mscG. Hence, from 1) there must exists an infinite path o’ = vorivirnvs... € Go such that
(v;,vi) € Sq forall />0 and for some >0, vj/ € Vg and \/jQ1 ¢ V. Due to the fact that the concept
Co can only be constructed from a finite tree unravelling. Therefore, the cyclic path comes only
from the nodes in V.

Moreover, from 2) there must exists a path 0” = voriv{rvj... € temp: such that such that
(v/,v/') € S; for all/ > 0. We conclude that 0 Ss, 0" Ss, 0”. Also, (mscG, V) <s, (Go,vj’) <s,
(tempy, vj”) forallj > 0.

By Lemma 4.4.4, we one of two cases:

’ /4
A)v/—\/j.

B) Or,v/" ¢ Vyand v, + v/

Case A). Assume that v; = V/”- Since (\//_wv/g) e S,, we have that YGO(\//_Q - Yt(vj’g). By
Lemma 4.4.3 we have that \/j’j1 has ‘/f as a successor. Assume that V/” = vj’ € V3. Then, we have
that v, = V/” = \/j/. We have that the cyclic path g in mscG contains only nodes v such that v € V.
Then it is a contradiction that v; = v/ = vj, where v/ € Vs.

Case B'). Assume that \/j” ¢ Vrand v # \/j”. Then, by Lemmma 4.4.4 we have either one of the

following conditions:

Hi /4
|)vj—\/j.

i) Or, (mscG,v) & (tempy, V"),

- Case f). Suppose that v; = v/". Then, itis a contradiction for the assumption that v; + v/".
+ Case ). Suppose that (mscG, v)) £ (temp:, \//-”). Then it also contradicts the assumption that
0 < 0”. Due to the fact that (mscG, v)) < (tempy, \/j”) forallj > 0.
Therefore, it is a contradiction for Case B').

Hence, we have that a contradiction for Case (B) that mscG is acyclic. Since we have a con-
tradiction for Cases (A) and (B), we conclude that if there exists a most specific concept w.r.t.
individual g, then Algorithm 1 must return true. O

4.5.3 Polynomial Time Complexity

Theorem 4.5.3 (COMPLEXITY). Let X = (T, A) be a knowledge base. the Algorithm 1 decides the
existence of the most specific concept w.r.t. an individual a in polynomial time.

Proof. We start with Algorithm 1, which constructs the mscG = (Vinscg, Emsca, INdmsca, Ymsce)
graph from canM = (V,E, Ind,Y). Starting from the root node in canM, Algorithm 2 is called
recursively, to visit nodes v; € V and adds edges e € E to Epscs. At each recursive call, The
temp; = (V;, E;, Ind;, ;) graph is the canonical graph of mscG w.r.t. canM with i is the number of
recursive calls of the Algorithm 2.

Then we go over all edges eq = (v4,r,v}) € EAvy € V, and check whether there exists an
edge e; = (vo,1,v5) € Ei Avy € V), such that ey is simulated by e,. It is known that constructing
such a simulation between two graphs can be computed in polynomial time in the size of two
graphs canM and temp; [ ]. Therefore, Algorithm 2 can be computed in polynomial time
w.r.t. the size of two graphs O((|V| x | E])?), given that the simulation has the complexity of
o(| V] x [E]).
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4 Towards Polynomial Computation

Assuming that the canM graph is a Complete graph, where all vertices are connected directly
with an edge, then |E| = |V |?. The worst-case time complexity will be O(| V|”). Assuming that
the canM graph is a path; Meaning that each node has only one successor, then |E| = 1. The
best-case time complexity will be O(] V). Since both best and worst-case time complexities
belong to the polynomial time complexity class, the Algorithm 1 decides the existence of the
most specific concept w.r.t. the individual g in polynomial time. O
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In this chapter, we specify an algorithm for deciding the existence of the msc w.r.t. an individual,
and it computes the concept if it exists. Moreover, we present an example to describe the
construction of the msc.

5.1 The Algorithm

In this section, we describe all the algorithms that we were using to compute the msc if it exists.
We use a popular reasoner to reason about ontology. ELK [ ] is a specialized reasoner
for the lightweight ontology language OWL £L. It is used to compute the concept related to
each individual. Also, it is used in building the canonical model of A. The program is available
at [Nad], where Java programming [ ]is used. The reason to choose the programming
language is that the OWL API [ ] is available in Java. OWL APl is a Java API that allows us to
create and manipulate OWL ontologies.

Let X = (T, A) be a knowledge base, g be an individual. Since we assume that T is normalized
TBox, then we normalize 7. Then, we check whether the individual a exists in A. If a & N, 4,
then return false. Otherwise, we build the canonical model I of K. Then we construct the
pointed interpretation (Jx, dy) from J5. Now the interpretation (Jx, dgy) are used as inputs for
the Algorithm 1.

The Algorithm 1 starts with constructing a graph canM = (V,E,Ind,Y) from (I, d,) (See
Line 1 of Algorithm 1). Then initializes a graph mscG = (Vinsco, Emsce, INdmsca, Ymscs) @s an empty
graph. Furthermore, the root node containing the individual a is added to mscG. The algorithm
traverses all nodes of canM and adds edges and nodes to mscG if needed. For this reason, the
algorithm uses two lists visited and non-visited to keep track of the visited and the non-visited
nodes in canM. Recursively visit nodes of canM starting from the root node. This recursive call
is done using the Algorithm 2.

The Algorithm 2 takes initially the root node v, two graphs canM, mscG and the lists visited,
non-visited as inputs. It checks whether the node v is already visited before or not. If yes, then
it terminates. Otherwise, it adds the node v to visited to make sure that the algorithm will
terminate after visiting all nodes only once. Then it builds a graph temp; = (V;, £, Ind;, Y;) to be
the canonical graph of mscG w.r.t. canM (recall the Definition 4.2.9), where / is the number
of the recursive calls of Algorithm 2. Let pe(E, v) be the set of edges in canM with the node v
as predecessor, and pe(E;, v) be the set of edges in mscG with the node v as predecessor. It
goes over the edges of pe(E, v) and check for every edge e = (v,r, V') € pe(Eq,v) whether there
exists an edge e’ = (v, r, d) € pe(E, v) such that e is simulated by €’ (recall the Definition 4.3.4).
If no, then the algorithm adds e to mscG with its nodes. Furthermore, it checks whether the
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successor node v/ has been visited before or not. If yes, then it is ignored. Otherwise, it is
added to the non-visited list. After checking every edge e € pe(E, v) and adding all edges that are
not simulated by any edge e’ € pe(E;, v), the algorithm picks a new node to be visited in its next
recursive call. For that, the algorithm picks the first element in the non-visited list. Picking the
first element of the list ensures that the nodes of canM are traversed in the breadth-first order.

Algorithm 3 is the algorithm that checks given two edges e, e’ whether there exists a simulation
frometoe’. It takes an edge e = (v, r,vq) from canM and an edge €’ = (v2, r,v5) from temp;. Then
it checks whether Y(vq) C Yi(vz) and Y(v7) C Yi(v5). If yes, then it checks whether there exists a
simulation from canM to temp starting from v/ in canM and v5 in temp;. If it also returns TRUE,
then ¢’ simulates e and returns TRUE. If any of these checks fail, then e’ does not simulate e,
and it will return FALSE.

After the recursive call of the Algorithm 2, it is still essential to construct the least graph of
mscG, where every edge e in Epscg is not simulated by any edge €’ in Egemp,. Algorithm 4 is the
algorithm which performs this operation. It generates all edges of nodes recursively starting
from the root node vy and does the following:

* The set (Ensca, V) IS the set containing all edges e of mscG with root node v;. The set
(Etemp,, Vi) Is the set containing all edges e of temp with root node v;.

- for each edge e € (Epscs, Vi), we check whether there exists a edge €' € (Eremp,, Vi) SUCh
thate < e’ ande +¢€'.

- If the edge e is simulated by €/, then we remove the edge e from Escc.

After Algorithm 4 removes all simulated edges, we still need to remove the nodes v € V56
such that vis not reachable from vg. Then, we obtain the least graph mscG such that (tempy, vo) =~
(canM, vq).

Finally, the Algorithm 1 checks whether there exists a simulation equivalence between
(canM, vp) and (tempy, vp), where tempy is the canonical graph of mscG w.r.t. canM that is obtained
after Algorithm 2 terminates. Also, it checks whether mscG contains a cycle. If both checks
return TRUE, then Algorithm 1 returns TRUE and mscG is the most specific concept w.r.t. the
individual a. Otherwise, there is no msc w.r.t. a.

Algorithm 1: BuildMsc function. For an individual @ and an ontology O. The function call
is BuildMsc(a,0)

Input: a, O /* individual a and ontology O */
Output: Boolean
1 (V,E, Ind,Y) < CanonicalModel(a) /* set (Jx,dy) to canM */

2 non-visited < {vo € V|vg isroot node} /* initialize the set of non visited nodes to root
node vo of canM */

3 visited «— @ /* initialize the set of visited nodes to empty */

4 (VimscG) Emsce, INdmsca, Ymsca) < ({vo € V} 8, (vo; Y(vo))) /* intialize mscG with vy € V and
its concepts */

5 visitNode(non-visited.pop(), non-visited, visited, mscG, canM) /* recursively add nodes and
edges from canM to mscG */

6 LeastGraph(mscG, canM) /* construct the least graph of mscG */

7 (Vi Et, Ind, Yr) < CanonicalGraph(mscG, canM) — /* construct the canonical graph temp; */

8 if (tempy, vo) =~ (canM, vp) AND Cyclic(mscG) = FALSE /* check whether mscG is cyclic and

there exists a simulation equivalence between (tempy, Vo) and (canM, vo) */
9 then
10 | return TRUE /% Msc exists */
11 else
12 | return FALSE /* No msc exists */
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Algorithm 2: visitNode recursive function. For a node v, a set non-visited of non visited
nodes, a set visited of visited nodes, a graph mscG = (Vinsco, Emsce, INdmscc, Ymscs) and graph
canM = (V, E, Ind, Y). The initial function call is visitNode(vp,non-visited,visited,mscG,canM).

Input: v, non-visited, visited, mscG, canM /* node v, sets non-visited and visited of visited
and non visited nodes, Graphs mscG and canM */

Output: mscG /* the constructed mscG */
1 if v & visited /* check whether v is not visited before */
2 then
3 (Viemp: Etemp: INGtemp, Yiemp) <= CanonicalGraph(mscG, canM) /» construct temp; of mscG,
w.r.t. canM */
4 | visited « visited U {v € V} /* add v to set visited */
5 for (v,r,d) € pe(E,v) Nd € Vg /* loop over the edges e pe(f,v), and successor node d
is an individual */
do
simulated «— FALSE /* flag for the simulation of edges */
for (v,r,d") € Pe(Etemp, V) /* find a corresponding edge €' € pe(Eiemp, V) such that e < e’
*/
do
10 if simulatedBy((v, r,d),(v,r,d"), canM, temp) = TRUE /* check whether
(v,r,d) < (v,r,d) */
11 then
12 L simulated «— TRUE /* found a simulation from (v,r,d) to (v,r,d") */
13 if simulated = FALSE /* check whether there is no simulation with any edge
€' € pe(Eiemp, V) to e € peE,v) */
14 then
15 mscG «— (Vmsecc Ud € V, Emscg U (v, 1, d) € pe(E, V), Ymseg U (d; Y(d))) /% add edge
(v,r,d) € pe(E,v) and node d €V to mscG */
16 if d ¢ visited /* check whether node d is already visited before */
17 then
18 non-visited « non-visited U {d € V} /* add node d to the non visited set of
nodes */
19 else
20 if non-visited + @ /* non-visited contains nodes that still need to be visited */
21 then
22 visitNode(non-visited.pop(), non-visited, visited, mscG, canM) /* visit the first
L element of non-visited */
23 return mscG /* return the constructed graph mscG */
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Algorithm 3: SimulatedBy function. For an edge (v,r,d) € pe(E,v), an edge (v,r,d") €
pe(Eemp, V), @ graph canM = (V,E,Ind,Y) and temp = (Viemp, Etemp, INQtemp, Yiemp). The
function call is SimulatedBy((v, r, d), (v, r, d"), canM, temp)

Input: (v,r,d), (v,r,d"), canM, temp /* edges (v,r,d), (v,r,d) and graphs canM, temp */
Output: Boolean
1 if Y(d) C Yiemp(d') /* check whether the set of concepts on d is subset of the set of
concepts on d' */
2 then
3 if (canM, d) < (temp, d’) /* check whether there exists a simulation from (canM,d) to
(temp,d") */
4 then
5 L return TRUE /% (v,rd) <, rd) */
else
| return FALSE /% (v,r,d) £ (v, r,d) */
8 else
9 L return FALSE /% (v,rd) £ (v, r,d) */

Algorithm 4: LeastGraph function. For a graph mscG = (Vinscg, Emsc, 1NAmsca, Ymscs), @
graph canM = (V, E, Ind, Y). The function call is LeastGraph(mscG,canM)

Input: mscG, canM /* graphs mscG and canM */
Output: mscG /* the least graph of mscG */
1 forv € Ve do
/* remove edges from mscG */

2 temp «— CanonicalGraph(mscG, canM)

3 for e € (Epseg, V) do

4 for e’ € (Eremp, v) do

5 if e < e’ AND e + ¢’ then

6 L Emsc < Emscg \ {e} /* remove the simulated edges from Ens */
. .

/* remove nodes from mscG */

9 if pe(Epmscg, d) =0 /* check whether d has no successors */

10 then

1 if (V/,r,d) & Emscs /* check whether d has no predessor */

12 then

13 Vinscg < Vimsecg \ {d € Vinscg}  /* remove the node that is not reachable and has
L no successors */

14 return mscG
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In this chapter, we provide an experimental evaluation of a different set of benchmarks. We
state the hardware setup that was used to evaluate the benchmarks. Then, we provide the
selected set of instances from the different benchmarks. Finally, we provide experimental
results to state the difference between the previous and the new approach within a timeout of
1,600 seconds.

6.1 Experimental Setting

6.1.1 Hardware Setup

All experiments have been performed on a machine equipped with 11th Gen Intel(R) Core(TM)
i7-11370H with four 3.30GHz cores and 16GB of RAM operated by Windows 11 (21H2 version).
Each task has been given a 1,600-second timeout. This timeout includes the time required to
decide the existence of the msc and the time required to manipulate the input ontology.

6.1.2 Benchmarks

We considered a set of instances from three benchmark sets. The set consists of 155 instances
from BioPortal which includes ontologies from applications in biology and medicine [ 1,
109 instances from OWL reasoner evaluation (ORE) 2015 competition [ ], and 2091 in-
stances from the Manchester OWL repository [ ]. This set is filtered to contain only those
instances such that each instance contains at least one individual with at least one successor.
We write ‘ORE', ‘BIO" and ‘MOR' to express the instances from OWL reasoner evaluation (ORE)
2015 competition, BioPortal and the Manchester OWL repository respectively. We write ‘ALL’
to express the full set of instances. For each instance, we select the individual with the most
number of successors as our input.

6.2 Experimental Results

In this section, we provide experimental results to compare the new approach with the previous
approach. First, we show the number of decided and undecided instances w.r.t. a timeout of
1,600 seconds. Then, we show the time required to decide the existence of the msc. Finally,
we show the difference between the maximal role-depth k that would have been used for
Lemma 3.3.3, and the role-depth actually explored by our method.
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In Table 6.1, the leftmost “Benchmark” column indicates each benchmark set, while “instance”
indicates the number of instances. Sub-columns “Decided” and “Undecided” represent the
number of solved and unsolved instances within the timeout of 1,600 seconds. The sub-column
“Total" represents the total number of the selected instances per each set. The row “ALL"
represents the full set of the selected instances.

Table 6.1 The number of decided and undecided instances with a 1,600 seconds timeout.

Number of Instances
Benchmark Decided Undecided Total

ORE 95 14 109
BIO 148 /7 155
MOR 2003 88 2091
ALL 2246 109 2355

We acknowledge that all experimental results and all drawn conclusions are based on a single
benchmark set.

Table 6.2 The comparison between the maximal role-depth of the previous and new approach.

Role-Depth
Benchmark Set min median mean max
ORE Previous 2315.00 61779602.00 34415772599 2075238298.00
New 1.00 1.00 1.67 10.00
BIO Previous 3.00 99514450 25039500.90 2101075370.00
New 1.00 2.50 1.89 11.00
MOR Previous 3.00 327.00 13954266.52 2082188164.00
New 1.00 2.00 1.80 21.00
ALL Previous 3.00 2250.50 28651480.83 2101075370.00
New 1.00 1.50 1.80 21.00

In Table 6.2, the leftmost “Benchmark” column indicates each benchmark set, and “Role-
depth” indicates the role-depth explored by Algorithm 1 and respectively the role-depth bound
from Lemma 3.3.3. Sub-columns “min”, “median”, “mean”, and “max” present information about
instances which did not include time out for a given setup in seconds. Their meaning is self-
explanatory, i.e. "min” and “max” stand for minimal and maximal role-depth required to decide
the existence of the msc in an instance within a setup. “Mean” and “median” denote the mean
and median of role-depth required needed to solve all instances within a setup. As mentioned
before, timed-out instances are not included in this analysis. Rows “Previous” and “New” indicate
the computation of the role-depth in the previous- and the new approach per each benchmark
set.

As we can see that the role-depth of the interpretation with the new approach is significantly
smaller than the one we obtained from the previous one.

Figure 6.1 shows how often there existed an MSC, respectively did not exist one, w.r.t. the
individual, for the benchmarks "ORE"” and "BIO". It decides whether there exists or not within
the timeout. Therefore, we exclude those instances that exceeded the timeout. In the “ORE”
benchmark set of Figure 6.1a, we can see that Algorithm 1 was able to find the msc of an
individual in all instances without exceeding the timeout. Therefore, the number of instances
where the msc of an individual exists was 95. However, in the “BIO” benchmark set of Figure 6.1b,
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Figure 6.1 Bar plots indicating the number of instances with msc and No msc w.r.t. “ORE” and
“BIO” within the timeout.

we have that the number of instances with no msc exists was 13, while the number of instances
with the msc was 135.
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Figure 6.2 Bar plots indicating the number of instances with msc and No msc w.r.t. “MOR”
and "ALL" within the timeout.

Figure 6.2 indicates the existence of the msc w.r.t. an individual for both “MOR" and "ALL"
benchmarks. It decides whether there exists or not within the timeout. Therefore, we exclude
those instances that exceeded the timeout. In the “MOR” benchmark set of Figure 6.2a, the
number of instances with msc exists was 1837, while the number of instances with no msc
exists was 166. Also, In the “ALL" benchmark set, we have that the number of instances with
msc exists was 2067, while the number of instances with no msc exists was 179. Table 6.3
summarizes the number of instances with msc and no msc found that was computed with
Algorithm 1.

Table 6.3 The number of instances with msc and with no msc exists.

Number of Instances
Benchmark Msc No Msc Total

ORE 95 0 95
BIO 135 13 148
MOR 1837 166 2003
ALL 2067 179 2246

Figure 6.3 indicates the time required to decide the existence of the msc w.r.t. an individual
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Figure 6.3 Line plots indicating the time required to decide the existence of the msc. In
both plots, the instances are sorted in ascending order by the time required,
where x-axes indicate the time (in seconds) and y-axes indicate the number of
instances.

within 1,600 seconds, where the line highlighted in “red” indicates the time for instances with
the msc and the line highlighted in “blue” indicates the time for instances without the msc. Since
all instances of “ORE” have the msc, therefore we can see in Figure 6.3a that there is no line
highlighted “blue”. In Figure 6.3b, we see that the number of instances without the msc required
more time to be computed than the number of instances with the msc in “BIO” instances.
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Figure 6.4 Line plots indicating the time required to decide the existence of the msc. In
both plots, the instances are sorted in ascending order by the time required,
where x-axes indicate the time (in seconds) and y-axes indicate the number of
instances.

Figure 6.4 indicates the time required to decide the existence of the msc w.r.t. an individual
within 1,600 seconds, where the line highlighted in “red” indicates the time for instances with
the msc and the line highlighted in “blue” indicates the time for instances without the msc.
Figure 6.4a of “"MOR" instances shows that the number of instances without the msc exists
is smaller than the number of instances with the msc. However, the time consumed in the
instances with no msc w.r.t. an individual is larger than the time consumed in the instances
with msc. This is due to the time required to find the least graph and remove the simulated
paths in the cyclic graphs.

Figures 6.5 and 6.6 indicate the computed bounded role-depth of the previous- and the new
approach, where the line highlighted in “red” indicates the role-depth of the previous approach
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Figure 6.5 Line plots indicating the bounded role-depth of the previous- and new
approach. In both plots, the instances are sorted in ascending order by the
bounded role-depth, where x-axes indicate the bounded role-depth and y-axes
indicate the number of instances.

and the line highlighted in “blue” indicates the role-depth of the new approach.

As we can see that the overall bounded role-depth of the new approach has a significantly
smaller number than the one we obtained from the previous approach. Therefore, deciding
the existence of the msc w.r.t. an individual using the new approach is much better in terms of
performance and time required than deciding the existence of the msc w.r.t. an individual using
the previous approach. Thus, constructing the concept w.r.t. the new bound is much smaller in
terms of the size of the concept than constructing the concept w.r.t. the previous bound.
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Figure 6.6 Line plots indicating the bounded role-depth of the previous- and new
approach. In both plots, the instances are sorted in ascending order by the
bounded role-depth, where x-axes indicate the bounded role-depth and y-axes
indicate the number of instances.

We can summarize that the new approach provides an efficient mechanism for deciding the
existence of the msc. Also, it has a smaller bound than the previous bound. Finally, the new
approach does not rely on constructing the concept. Thus, it is polynomial even if constructing
the concept could take exponential time in case that concept was exponentially large. Although
computing the concept could take exponential time, it is still better to compute it with our
new method. The reason is that the role-depth computed by our new method is significantly
smaller than the one obtained from Lemma 3.3.3. Thus, computing the concept from the new
approach would take less time than computing it from the previous approach even that the
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concept was exponentially large.
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7 Conclusion and Future Work

Computing the most specific concept is a non-standard inference task that supports bottom-up
construction of the knowledge base. It is the least concept which has an individual as an
instance.

We have revisited the previous approach from [ ] which computes the most specific
concept w.r.t. an individual in the presence of terminological TBoxes.

We have presented the previous approach for deciding the existence of the msc w.r.t. an
individual from [ ] in the presence of general TBoxes. We have shown that in practice, the
previous approach does not explain how to decide the existence of the msc practically without
constructing the msc explicitly, which could be exponentially large.

In Chapter 4, we have introduced a new approach for deciding the existence of the msc w.r.t.
an individual without relying on constructing the concept. The main idea of the new approach
is to construct a sub-interpretation of the canonical model such that there exists a simulation
equivalence between the canonical graph of the sub-interpretation and the canonical model.
We observed that it is only necessary to construct the sub-interpretation in the cyclic ABoxes,
as the msc always exists in the acyclic ABoxes.

Moreover, in Chapter 5, we have presented an implementation of our approach. We have
introduced an efficient method to decide the existence of the msc practically. We have provided
correctness and completeness proofs of our newly introduced approach. Also, we have shown
that it has polynomial run-time.

Finally, in Chapter 6, we have provided an experimental evaluation to state the difference
between both approaches in terms of bounded role-depth. Also, we have shown the time
performance of the new approach for deciding the existence of the msc. We have observed that
our new approach has smaller maximal role-depth than the one obtained from the previous
approach from [ ]. Also, the concept computed with our new approach is smaller the one
computed from the previous approach. We have acknowledged that the method takes a longer
time in the instances the msc does not exist than the instance with msc exists.

7.1 Future Work

The Future work on the practical side is to implement the newly introduced approach in the
context of ontology repairing. This can be achieved by integrating the new approach with the
procedure provided by [Kri] and integrate it with the existing tools [ 1.

On the theoretical side, we would like extend the results towards knowledge bases formulated
in more expressive Horn-DLs than EL.
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