TECHNISCHE
@ UNIVERSITAT
DRESDEN

Faculty of Computer Science Institute of Theoretical Computer Science, Chair for Automata Theory

Efficient reasoning for lightweight
temporal description logics

Timon Bertold Hoschke

Born on: 21.08.2002 in Erfurt
Matriculation number: 5037642

Bachelor’'s Thesis

to achieve the academic degree

Bachelor of Science (B.Sc.)

First referee
Dr.-Ing. Stefan Borgwardt

Second referee
Prof. Dr. Markus Krotzsch

Submitted on: 06.08.2024



Statement of authorship

| hereby certify that | have authored this document entitled Efficient reasoning for lightweight
temporal description logics independently and without undue assistance from third parties. No
other than the resources and references indicated in this document have been used. | have
marked both literal and accordingly adopted quotations as such. There were no additional
persons involved in the intellectual preparation of the present document. | am aware that
violations of this declaration may lead to subsequent withdrawal of the academic degree.

Dresden, 06.08.2024

Ay

Timon Bertold Hoschke


Mobile User


Abstract

Many real-world processes, like the weather, are time-dependent, a dimension to data that is
not widely supported in ontology-based representations. Therefore, this thesis is dedicated to
implementing the regsoning algorithm from Borgwardt, Forkel, and Kovtunova, which decides
entailment for TEL‘,HL"hS, alightweight and tractable temporal description logic, in the Datalog-
based rule engine Nemo. The implementation works on normalised ontologies specified in
a temporalised sublanguage of OWL 2 EL. Furthermore, the implementation is evaluated on
an ontology using real-world weather data, which shows promising results but also suggests
specific optimisations to make reasoning viable on large datasets.
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1 Introduction

Basing query-answering technologies for ontology-based data on description logics (DLs) of-
fers a crucial advantage over traditional databases: the ability to work with incomplete data.
While databases are expected to contain all the information needed to answer queries, on-
tologies can use reasoning algorithms to infer missing information. Thus, it might only be
necessary to provide some basic facts and the background knowledge to derive the needed
new information.

In applications, data is often not only incomplete but also time-dependent: the weather
changes, stock prices fluctuate, and a patient's health evolves. This promising prospect has
led to high interest in temporalising existing DLs [3, [17/] and obtaining tractable reasoning
procedures [2]. Temporal DLs extend classical DLs with temporal operators, often from linear
temporal logic (LTL) [2} 9]]. Thus, they allow the modelling of temporal data by associating facts
with time points at which they are valid. For example, givesBirth(cee, dee,2002) specifies that
cee gave birth to dee in 2002 and the axiom ¢3givesBirth. T T BiologicalMother states that
someone who gave birth sometime in the past is a biological mother. Although this is already
a powerful formalism, it does not yet allow for the modelling of the distance of events. For
example, OHasFeaver C Sick is quite useless, as it states that someone who has had a fever in
the past will be sick from then on till the end of time. A more reasonable axiom would be to
specify that someone is sick between two measurements of a raised body temperature, which
are at most three days apart. To be able to make such statements, Borgwardt, Forkel, and
Kovtunova [5]] proposed TEE?—[?’”‘S, a lightweight temporal DL with metric, convex temporal
operators. In this DL, the example can be formulated as ©3 HasFeaver C Sick. It is, therefore,
also possible to work with incomplete information in the temporal dimension.

Borgwardt, Forkel, and Kovtunova [5] propose a reasoning algorithm for TEE’HL"hS which de-
cides entailment, but this procedure has yet to be implemented. Thus, as a step towards mak-
ing queries on temporal ontologies possible, this thesis implements the reasoning algorithm
for TEE”H?’”‘S in the modern Datalog-based rule engine Nemo and evaluates its performance.
First, the pecessary background knowledge is provided in Chapter[2] It includes explanations
of TSE”HL’”‘S and the temporal operators it is based upon, as well as the completion algo-
rithm itself. On the more technical side, Section and Section introduce the Resource
Description Framework (RDF) and the OWL 2 Web Ontology Language (OWL 2), a standard for de-
scribing ontologies, and the rule engine Nemo, respectively. Second, Chapter[3|describes the
implementation of the completion algorithm in Nemo, including preprocessing steps and the
translation of the algorithm'’s rules. Following that, Chapter [4] discusses the implementation’s
performance. The algorithm is benchmarked using an ontology-based on real-world weather
data. Finally, Chapter[5] concludes this thesis by summarising the results and discussing pos-
sible future work.



2 Preliminaries

This chapter first introduces the metric linear-time temporal logic operators mentioned in the

introduction. Then, based on them, the temporal description logic TSE?—LL’”‘S is defined. Third,

the completion algorithm for TEE?—[?’”‘S is presented, and a short overview of OWL is given.

Next, Datalog and the rule engine Nemo are introduced. Finally, the chapter concludes with a
discussion of the implementation of another reasoner in Nemo.

2.1 ¢,-Operators: Metric Linear-Time Temporal Logic Operators

This section introduces the metric linear-time temporal logic operators, which are later used
to define the description logic TEEH?’”‘S. LTL formulae are constructed over a finite set P of
propositional variables. As in Borgwardt, Forkel, and Kovtunova [5]], this section only considers
formulae generated from the grammarrule p :=p o A p| ¢ V ¢ |Qrp, wherep € P,and I
is an interval in Z. Negation and other logical connectives like implications do not need to be
taken into account, because TEE”HL’”‘S does not permit them. Therefore, they are irrelevant
to this thesis. Disjunction is the only exception, as it is necessary to define the metric convex
diamond operator. An LTL formula can be satisfied by an infinite sequence 20 = (w;);cz, Where
w; C P, called an LTL-structure. Informally, each w; represents a time point, and p occurring in
w; denotes p as true at that moment. More formally, the semantics is defined as follows [5]:

W,i E=piffp € wi, W,ik=o AYiff i = pand W,i =1,
W,il=OrpiffIkel:W,i+k=og, W,ik=p VvV iff ik por i1y

In order to clarify the following definitions, a few derived operators are introduced with n >
1 [50:

&y = O(_Oom)go Pp = <>[0,oo)90 Qp 1= <>(—0070]‘p
0P 1= Qo0 A Qo) O = \/ Q-r0® A Qom)®)
k,m>0
k+m=n—1

The & operator conveys the notion that ¢ will be true at some point in the future. Thus,
this operator is also known as the "eventually" operator in classical LTL. The variant © requires
¢ to be true at some point in the past, while & requires that ¢ is true at some point in the
past or the future. The operator © can be used to express a convex closure of time points,
as it necessitates that ¢ must be true at some point in the past and the future. Finally, the
operators ©, denote a metric variant of ¢, stipulating that distinct occurrences of ¢ must be
separated by no more than n — 1 time points, thereby enclosing an interval of length n.
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For a more straightforward analysis of these operators, it is helpful to focus on the effect a
diamond operator has when applied to a single propositional variable p. Thus, consider the
set of time points at which &p holds when given the set of time points at which p is true. ¢
acts as a placeholder for any one of the previously defined operators. In the following, ®, ¢,
and @ will be used similarly as placeholders for different diamond operators. The usefulness of
the following properties will become apparent when discussing the efficiency of the reasoning
algorithm.

Definition 1 ([5]). Consider the sets ®¢ := {Q}U{®; | i > 1}, DT := {§,0,8}, and D := Dt UD of
diamond operators. Fach & € ® induces a function ® : 2% — 22 with (M) := {i | Wiy, i = &p}
forall M C Z, with the LTL-structure Qs := (w;)iez Such that w; := {p} ifi € M, and w; := ()
otherwise.

As indicated above, M represents a set of time points at which pis true and ©(M) produces
the set of time points at which &p holds. In the following, the parenthesis in ®(M) will be
omitted for a cleaner presentation. Notice, if M is empty, &M is empty as well, for any ¢ €
©. For any non-empty M C Z, the following expressions are obtained, where max M is the
greatest number in M and min M the smallest. Thus, max M represents the furthest point
in the future at which p holds, and min M is the furthest point in the past. It is possible that
max M is oo and min M is —oo.

&M =7 OM = (—oo,maxM| QM =[minM,c0)  ©M = [min M, maxM|
OM=M OM={icZ|3jkecMwithj<i<kandk-—j<n}

The effect of some diamond operators is shown in Figure[T] There, the timeline marked with
Z represents the set of all time points. As an example, p is true at —3, —2, 0, and 4. Thus,
M = {-3,-2,0,4} = @ M, which is illustrated with red dots on the Z-time line. Each following
row visualises a set M for a different ¢ € © noted on the left, where each dot depicts an
element in ®M. Intervals of length > 1, within which @p is inferred to hold, are marked with
——i. Intervals of length 1 are not explicitly shown, as M C &M always holds. For example,
©3M is the set of time points at which p is true in intervals of length 3 or less. These intervals
are [—3, 2|, [-2,0], and [4,i| with i € M. Thus, ©3M = {3, -2, 1,0, 4}.

min M max M
\ /
M } } } * * } * } } } * } t 7
-6 -5 -4 -3 -2 -1 0 1 2 3 4 5) 6
S ,_-—»~—— 1
OM e s
OM +
QM — . .
<:>3M L T e 3 °
<¢>4M o o ¢ °

Figure 1: A graphic representation of ®M for different ® € © with M = {-3, -2,0,4}
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Lemma 2 ([5]). The following ordered set (D, C), where idyz is the identity function on 2%, is ob-
tained using the pointwise inclusion order C on the induced:

¢
&

idyz =91 C - COnCOni1 S CO \E
-

7) O

Q

Lemma 3 ([5]). The set © is closed under composition o, pointwise intersection N, and pointwise
union U, and for any &,® € © these operators can be computed as:

©NO=infp {09} and 909 =0U0=supp {90}
where info ¢y denotes the infimum in (D, C), and sup 5 ) the supremum.

Thus, notice that diamond operators can be combined by o, N, and U without leaving the set
D.

2.2 TELH?™: A Lightweight Temporal Extension of L7,

This section defines the temporal description logic T&CH?’”‘S using the diamond operators
from above. The reader is assumed to be familiar with description logics (DLs). Otherwise, for a
general introduction to DLs, one may refer to [16].

Syntax. Let N¢, Ng, and Nj be disjoint sets of concept, role, and individual names, respectively.
7'€£7-L<i>"hs concepts are built upon atomic concepts and roles, which, in turn, are recursively
combined to form complex concepts, as seen in Table |1} where C' and D denote concepts,
A€ Ng, 7,8 € Ng,a € Ni,and ® € ©. If a concept C does not contain subexpressions of
the form &D, it is syntactically an ELH concept and is therefore referred to as an atemporal
concept.

A TEEH?’"‘S ontology O is a finite set of axioms divided into a TBox 7 and an ABox A. A
TBox is comprised of concept inclusions (Cls) C' C D and role inclusions (RIs) r C s, where C'is a
TSE?—[L’”‘S concept, D is an atemporal concept, r is a temporal role, and s € Nr. D must be an
atemporal concept, as allowing the occurrence of diamond operators on the right-hand side of
a Cl would make the logic undecidable [2]. The concept equivalence C' = D is an abbreviation
forthe ClsC C D and D C C. Similarly, for Rls. An ABox includes concept assertions A(a, i) and
role assertions r(a, b, i), where A € N¢g, r € Ng, a,b € Ny, and i € Z.

Semantics. An interpretation T = (A%, -1) consists of a non-empty domain AT > Ny and an in-
terpretation function -X. This function assigns to each atomic concept A € N¢ a subset AT C A7,
to each individual a an element a® from AZ, and to each atomic role » € Ny a binary relation
rT C AT x AT. Such an interpretation, of course, does not include a temporal dimension and,
therefore, needs to be modified as follows. A temporal interpretation J = (AY,(Z;)icz) con-
sists of a domain A7 and a series (Z;);ez of interpretations Z; = (A7, - Zi) with i € Z. Intuitively,
each of these interpretations represents the current “state” of the concepts/roles at each time
point i. The formal definition of the semantics can be seen in Table[T]

J satisfies a CI C © D if for alli € 7z, C% C D% holds. Likewise, a Rl r T s is satisfied by
J if rfi C s%i holds for all i € Z. J satisfies a concept assertion A(a, i) if a € A% holds and
similarly, a role assertion r(a,b,i) if (a,b) € % holds. In general, J satisfying an axiom « is
written as J [ a. If J satisfies all axioms in an ontology O, J is called a model of O (written
J E 0). An ontology O is consistent if it has a model, and it entails o (written O = «) if all
models of O satisfy a. An inconsistent ontology O has no models, which is true iff O =T C L.
Therefore, the completion algorithm from Borgwardt, Forkel, and Kovtunova [5] implemented
in this paper focuses on deciding entailment analogous to reasoners for similar DLs [13]. In
ELH | [4] as well as TS.CH?’”’S [5]], this is a tractable decision problem.
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The semantics for temporal roles (§r)% and concepts (©C)% might seem rather convoluted,
but they are actually significantly more intuitive than they appear. First, note that the current
time point is i. Second, observe that the set {j | d € C%i}, which will be denoted as N, is almost
identical to M from Definition[T] M consists of time points at which a propositional variable is
true, and N does essentially the same in the context of DLs, as it collects the time points j at
which an element d is in C%. Thus, &N is comprised of all the time points at which d is in ©C.
Now, the condition i € &N checks whether d is currently in ©C or not. Thus, one could imagine
applying a diamond operator to a concept as a figurative “stretching effect” on occurrences of
elements along the time axis. So, the occurrence of element d in C%: is inferred (“stretched out”)
to other time points through the application of  to C. For example, if d currently satisfies C,
it will, from now on, always satisfy &C' in the future. Its occurrence got “stretched out” to every
future time point. Thus, the concept (9C)% contains all elements currently in C%i in addition
to all the elements that were at some point in the past in C (see Figure[T). The interpretation
function % works analogously for temporal roles.

The algorithm requires an ontology's Cls/RIs to be in the normal form:

QAC B, AiMAC B, &rCs, QAC Ir.B, Ir.AC B,

where® € ©, A, A1, Ay, B € Nc U{T, L}, and r,s € Ng. However, this normalisation comes
without loss of generality, as complex concepts can be simulated by introducing fresh concept
and role names as abbreviations. For example, ($A)MBMNC C D can be simulated by &A C A’,
BNCCEand A NMECD.

Axioms consisting only of atemporal concepts and roles such as A C B or r C s can be
treated as their equivalent temporal counterparts @A C B and ©r C s, respectively.

Given Lemma [2} the notion of a unique strongest axiom entailed by an ontology O is easily
obtained. Itis the axiom ®A C B € O with & o® = &, for any other A C B € O. For example,
OESAC BimpliesO EQAC Band O QAL B,as@QAC &Aand QA C HA. Thus, YAC B
is the unique strongest axiom and ©A C B and A C B are redundant in this case. This notion
will become important when discussing redundant entailments made by the algorithm.

2.3 A Completion Algorithm for TELH™

This section presents the reasoning algorithm from Borgwardt, Forkel, and Kovtunova [5], the
implementation of which will be discussed in Chapter 3] The procedure works by repeatedly

Table 1: Syntax and semantics of Té‘ﬁ’)—[?"hs
Syntax  Semantics

Roles:

Atomic role r rti C AT x AT

Temporal role &r {(d,e) € AT x AT |ie®{j|(d,e) € rti}}
Concepts:

Atomic concept A AL C AT

Temporal concept oC {de AT |ie®{j|deCli}}
Top T AT

Bottom 1 0

Conjunction cnbD ¢%inD%

Existential restriction  3r.C  {d€ A7 |3e € C%i : (d,e) € r%i}
Individuals:

Named Individual a al € AT
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applying the rules from Figure [2] to derive new Cls, RIs and facts from an ontology O, thus
iteratively completing it. However, it is impossible to derive all subsumptions and facts, as
both © and Z (representing all time points) are infinite. Furthermore, two facts may also be
separated by an arbitrarily large amount of time points depending on the chosen scale. If the
algorithm cannot differentiate between relevant and irrelevant time points, it would need to
access every time point, therefore increasing its runtime and memory usage. This might even
make the algorithm infeasible for practical use.

Notice, on the other hand, that the only two diamond operators that can be the result of
the operations N and o without appearing in their input are @ and &. Namely, & N & =©
and & o & =8&. Therefore, the infinite number of diamond operators can be bypassed by
restricting the rule application to the operators that appear in the ontology, in addition to
$ and ©. Similarly, the infinite amount of time points must be restricted so that the proce-
dure can be applied to O. First, consider tem(.A), the set of all time points ¢ appearing in A.
Next, consider the intervals between neighbouring elements from tem(.4) and the intervals
(—oo, min(tem(A)) — 1] and [max(tem(.A)) + 1, 00). Now, an arbitrary number k& can be chosen
from such an interval [i, j] to represent each number within the interval, denoted as |I| := k
forall I €[4, j]. The set of all representative time points is constructed as follows.

rep(A) :={|i| | i € Z\ tem(A)} Utem(A)

By restricting all assertions to this finite set rep(A), the infiniteness of Z and the arbitrarily
large gaps between entries in the ABox are dealt with.

As in Borgwardt et al. [5], for a cleaner representation, T and L will be treated like concept
names, thereby allowing assertions of the form T (a, ). For all concepts A € N¢, roles r € N
and Individuals a, b € Ny, the abbreviations:

Afa) :={ierep(A)| A(a,i) € O}
r(a,b) :={i € rep(A) | r(a,b,i) € O}

QA1 C Ay QA C A
T ——-— T2 ——— T3 —— T4 — —
QAL A SACT OrCr (@o®)A1 C Ay

TS@HEW Ore C 13 QAC Ay QAC Ay A NACB

T6

(@o®)ri Crs (@NO)AC B
T7 T8 <’>A E E|7".A1 @T E S @Al E B1 HS.Bl E B
Ir.lCL QAL B

TS,@AQEIT.Al OrCs QA|C B 3s.BiC B (®n®) € D*

(©NP) )AL B
i€ ®A(a) WAL B i €®r(a,b) OrCs
AT T(a,i) A2 B(a,1) A3 s(a, b, 1)
Ai(a,i) As(a,i) A1MAC B r(a,b,i) A(b,i) Ir.ACB
A4 = - B(a,i) : : AS B(a,1i)

Figure 2: Completion rules for TSE?—[%”‘S ontologies [5]

10
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are defined. Thus, A(a) denotes the set of all time points at which a isin A, and ®A(a) refers to
the set of time points at which a is inferred to satisfy ®A (given the assertions in .4, analogous
to N from Section[2.2).

A, A1, As, A3, B, By in the rules from Figure[2] are allowed to be instantiated by (normalised)
ELH | concepts, T or L from O, r,r1, 72,73, s by role names from O, &,®, % by ©,9 or elements
of ® occurring in O, a, b by individual names from O, and i by values from rep(.A), such that the
resulting axioms are in normal form [5].

The rules in Figure [2 consist of two parts. The preconditions of a rule (above the horizontal
line) specify what needs to be satisfied so that the conclusion (below the horizontal line) can
be added to the ontology O if the concluded fact or assertion is not already in O.

Also, note that the rules having Cls or RIs as a conclusion might produce redundancies be-
cause of the order of the diamond operators (Lemmal[2). Consider the following example:

Example 1. The onology O consists of the following axioms:
(ax1):©AC B (ax2):©sBC C (ax3):9BLC D; (ax4): 9B C Dy, (ax5): DM Dy C C.

Using the rules from Figure 2] the following derivations can be made:

QAT C by T4 on (ax1) and (ax2) (2.1)
&BLC C by T6 on (ax3), (ax4) and (ax5) (2.2)
SAC C by T4 on (ax1) and (2.2) (2.3)

These derivations make (ax2) and the Cl ©;54 C C redundant, as in both cases & is the the
stronger operator. Consequently, &B C C already implies @58 C C and &4 C C already
implies @54 C C.

Thus, to circumvent these redundancies, a derived Cl ®A C B is only added to O if there is
no other CI®A C Bin O or, otherwise, if there already exists such a Clin O, then the existing Cl
is modified by replacing the diamond operator with (& o ®). Note, however, that this does not
necessarily have to change the existing Cl. Hence, O always includes only the unique strongest
axiom of the form @A C B for any two concepts, A and B. Ris are handled in the same way.

The T(Box) rules implement the semantics of base cases and constructors in the context of
Cls and RIs. Intuitively, T1 and T3 encode the meaning of the ®;-operator and, together with
the selective addition or modification of CIs/Rls, "lay the foundation" for the semantics of di-
amond operators. T2 derives the trivial subsumptions that T must subsume every concept.
T4 and T5 encode the semantics of subsumptions. The diamond operator of the conclusion,
being the composition of the diamond operators from the preconditions, is also quite intuitive
if one again imagines the application of diamond operators to concepts as "stretching occur-
rences of elements in the concept along the time axis." First, ¢ “stretches” the occurrences of
elements in Ay, and then @ “stretches” them again if it is a stronger operator. The meaning of
conjunctions is encoded in rule T6, and it also makes intuitive sense that the weaker of the two
input diamond operators is applied to the conclusion. T8 encodes the semantics of existential
restrictions. T8'is a special case of T8, which might produce stronger axioms. This happens
when @ and ¢ are both non-convex operators and ©r(a, b) N®A1(b), for any two elements a, b,
must either be empty or an interval where at least one of the boundaries is co or —oo. Thus,
the temporal operator of the resulting axiom must be non-convex as well. T7, together with T8
and T8 propagates subsumptions by L in existential restrictions. Thus, enforcing that concepts
which are subsumed by existential restrictions involving an empty concept must themselves
be empty.

The A(Box) rules apply the T8L‘7—t<i>"hs semantics to assertions with concrete named individu-
als. First, A1 derives the trivial fact that all individuals are elements of T at all times. A2 and A3
implement the meaning of subsumptions. A4 and A5 encode the semantics of the construc-
tors conjunction and existential restriction, respectively.

11
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Example 2. Consider the ontology O describing observational weather data. The elements
in the domain are cities. The precipitation is measured in 10-minute intervals, and moments
with rain are registered in the concept Rain. The windspeed is measured every minute, and a
location gets inserted into the concept HighWindspeed if the windspeed exceeds 75 km/h. The
TBox T of O consists of the following axioms.

(ax1): ©11 Rain T Rain  (ax2): @0 High Windspeed T Storm
(ax3): ©1 WeatherPhenomenon T Rain  (ax4): ©, WeatherPhenomenon T High Windspeed
(ax5): Rain M Storm T Thunderstorm.

It is assumed that if rain fell during two consecutive measurements, it was raining as well in
between. Additionally, it is assumed that if the windspeed exceeded 75 km/h twice within 20
minutes, there was a storm above the city. The following axioms can be derived, although the
list is not exhaustive.

©1Storm € Storm by T1
&Thunderstorm T T by T2
©a0 WeatherPhenomenon T Storm by T4 on (ax2) and (ax4)
©1 WeatherPhenomenon T Thunderstorm by T6 on (ax3), (ax5) and (2.6)

The ABox A of O consists of the following assertions.

(ax6): Rain(Berlin,1) (ax7). Rain(Berlin, 6)
(ax8): HighWindspeed(Berlin,4) (ax9): HighWindspeed(Berlin, 21).
tem(A) includes the elements 1,4,6, and 21. Thus, rep(A) = {-1,1,2,4,5,6,7,21,34} where

—1,2,5,7,and 34 are representatives of the intervals between the elements from tem(.A). The
following facts can be derived.

Rain(Berlin,2) by A2 on (ax1), (ax6), and (ax7) (2.8)
Rain(Berlin,4) by A2 on (ax1), (ax6), and (ax7) (2.9)
Rain(Berlin,5) by A2 on (ax1), (ax6), and (ax7) (2.10)
Storm(Berlin,4) by A2 on (ax2), (ax8), and (ax9) (2.11)
Thunderstorm(Berlin, 4) by A4 on (ax5), (2.9), and (Z.T1) (2.12)

This example illustrates how the algorthim deals with temporal gaps in the ABox.

2.4 The Web Ontology Language

Tools like Protégé [18] already exist that can be used to construct ontologies in OWL. These
tools are convenient, and this standard is a well-established method of specifying ontologies
in a machine-readable format. Therefore, the algorithm from Borgwardt, Forkel, and Kov-
tunova [5] will be implemented to yse ontologies as input, which are specified in a sublanguage
of OWL 2 corresponding to TEEH?’”‘S. OWL is an extension of the RDF. Thus, this section pro-
vides a brief overview of RDF, some of its extensions, and its relation to DLs.

The World Wide Web Consortium (W3C) published a first RDF specification in 1999. Although
the framework was initially intended to represent metadata of web resources, it has evolved
over the years into a more general formal language for describing structured information, mak-
ing the semantics of a resource machine-readable [11} Ch. 2]. The main idea is to represent the
information in the form of subject-predicate-object statements, where the subject and object
are resources or simple values, and the predicate describes the relationship between them.

12
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Table 2: The correspondences between OWL 2 EL and ELH . [11]

ELH | OWL 2 EL
Top T owl:Thing
Bottom L owl :Nothing
Concept A (A, rdf:type, owl:Class)
Role r (r, rdf:type, owl:ObjectProperty)
Individual a An individual is just a resource, which may be
attributed to a class: (a, rdf:type, A)
Concept Inclusion CCD (C, rdfs:subClassOf, D)
Role Inclusion rCs (r, rdfs:subPropertyOf, s)
Axiom (in general) aeg CC D Theaxiomaisrepresented by a blank node _:1:

(_:1, rdf:type, owl:Axiom),

_:1, owl:annotatedSource, C),

_:1, owl:annotatedProperty, rdfs:subClassOf),
_:1, owl:annotatedTarget, D)

:1, rdf:type, owl:Restriction),

_:1, owl:onProperty, r)

_:1, owl:someValuesFrom, C)

_:1, owl:intersectionOf, _:2),

_:2, rdf:first, C), (_:2, rdf:rest, _:3),
(_:3, rdf:first, D),. . .

Here the blank node _:1 represents the
conjunction of the classes within the linked list
starting at _:2

Existential Restriction 3r.C

Conjunction cnbDnm...

These tuples (subject, predicate, object) are also called triples and comprise an RDF document.
Such a document thus describes a directed, labelled graph, where the nodes represent re-
sources or values, and the edges represent the relationships [11} Sec. 2.2]. Internationalized
Resource Identifiers (IRIs) are used to unambiguously label resources and relationships [11, 6].
A node can also refer to a concrete data value like a string or a number. In that case, the node
represents a so-called literal and is labelled with the specific value [11} Sec. 2.1]. A third spe-
cial kind of node is a blank node, which is used to represent resources without a specific IRI.
They are used as distinct but anonymous placeholders when modelling many-valued relation-
ships [11} Sec. 2.3.4].

The RDF Schema (RDFS) extends RDF by providing a vocabulary for describing classes and
properties, where classes correspond to concepts and properties to roles. Thus, RDFS en-
ables the creation of ontologies. Therefore, it is called an ontology language 11, Sec. 2.4]. As
RDFS has its limitations, OWL was developed to create more expressive ontologies |11, Ch. 4].
The current version is OWL 2. OWL 2 EL is a tractable sublanguage of OWL 2, which corre-
sponds to, as its name suggests, the DL ££7" (an extension of ELH [4]) and is used as the
base language before “temporalising” ontologies. Table [2]shows how syntactic elements from
ELH, are constructed as triples in OWL 2 EL. The prefixes rdf:, rdfs: and owl: are used
as abbreviations for the namespaces http://www.w3.0rg/1999/02/22-rdf-syntax-ns#,
http://www.w3.0rg/2000/01/rdf-schema# and http://www.w3.0rg/2002/07/0owl#,
respectively [11].

It is important to note that owl:Axioms are used to encapsulate more complex ax-
ioms. This is unnecessary for simple Cls, as seen in Table However, OWL per-
mits the addition of annotation properties like comments or labels to axioms. To sat-
isfy this requirement, the simple Cl is represented by a blank node _:1 and a new
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triple (_:1, rdfs:comment, "This is a generic comment") is added to the ontology.
The same can be done for RIs. Additionally, complex concepts like existential restrictions
are represented by their blank node within Cls. For example, the CI 3».C T D might
be encoded as (_:1, rdf:type, owl:Restriction), (_:1, owl:onProperty, r),
(_:1, owl:someValuesFrom, C), (_:1, rdfs:subClassOf, D).

2.5 The Nemo Rule Engine

Nemo is one of the most recent additions to the vast field of Datalog-based rule engines [[12}
14]. As such, this section provides a brief and informal overview of pure Datalog before diving
into Nemo'’s more specific Datalog dialect and providing an example of an implementation of a
reasoning algorithm in Nemo.

Datalog is a declarative database query language which essentially adapts the logic pro-
gramming paradigm to relational databases [1,|7]. Similarly to languages like Prolog, Datalog
programs consist of a finite set of “if-then” rules of the form:

Lo+ Ly,...,L,.

The rule can be read as “if Ly and ... and L,, then Ly." Each L; is an atom p;(ti, ..., tk,),
and t; is a term. Terms may be constants or variables. An essential feature of Datalog is that
it permits recursion. The left-hand side of <« is called the rule’s head, and the right-hand
side is called the rule’s body, which may be empty. If it is, the rule is called a fact. Thereby,
facts denote (analogous to an ABox) assertions of concrete information, while deductive rules
represent relations (analogous to TBox axioms), which make it possible to deduce facts from
other facts [[7]. An example program looks like the following:

parentOf (alice, bob)
parentOf (bob, dee) +—
grandparentOf (Z, X) < parentOf (Z,Y"), parentOf (Y, X)

where alice, bob and dee are constants, and X, Y and Z are variables.
parentOf (alice, bob) and parentOf (bob, dee) are this example program'’s facts, which denote

that alice is a parent of bob and bob , in turn, is a parent of dee . Using the rule
grandparentOf (Z, X) < parentOf (Z,Y), parentOf (Y, X),

the fact grandparentOf (alice, dee) can be computed.

There exist several different but equivalent approaches to defining the semantics of Datalog
programs. The first approach is model theoretic, where the rules are viewed as logical sentences
that specify which properties the result must satisfy. The unique result is then the smallest set
of facts, which makes the sentences true. The second approach is proof-theoretic, where facts
are in the result if a proof of them can be obtained from the rules. The fixpoint approach
defines the semantics of a program as a particular solution of a fixpoint equation [[1].

Although Datalog and logic programming are closely related, some key distinctions exist.
First, differing underlying assumptions are made about how the data is supplied for a pro-
gram. Alogic program is assumed to contain all the necessary facts and deductive rules within
itself [7]. On the other hand, Datalog programs are assumed to run on a database, thus hav-
ing a comparatively large number of facts and fewer rules. Second, logic programming allows
function symbols, for example, to represent complex data structures such as lists, whereas
Datalog does not permit them [[1]).
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The decision problem for Datalog is as follows. Given a Datalog program split into a set of
facts and a set of rules with non-empty bodies and a set of atoms without variables, do the
atoms follow from the program? Keeping the set of facts fixed, whereas the set of rules and the
set of atoms are inputs (the so-called data complexity), this problem is P-complete [8]. Using the
rules and atoms as input while keeping the set of facts fixed (the so-called program complexity)
results in Datalog being ExpTime-complete [8]]. However, introducing arithmetic constraints [8]
or tuple generation [[15] (existential rules) makes query answering undecidable.

In Nemo’s Datalog dialect, the program from above would look like this:

1 parentOf(alice, bob) .
2 parentOf(bob, dee) .
3 grandparentOf(?Z, ?X) :- parentOf(?Z, ?Y), parentOf(?Y, ?X) .

In this simple case, the syntax looks almost identical to pure Datalog. The few differences
are that all rules end with ., variables are prepended with ?,and :- replaces <« . In addi-
tion, Nemo increases its syntax's expressivity with several valuable features. The most crucial
features used in the implementation in Chapter[3are listed below.

Nemo’s support for importing external data as predicates, especially ontologies specified in
OWL 2, from files in formats such as RDF/XML, Turtle, N-Triples, and CSV is an essential feature.
Of course, it also allows the export of predicates [[12].

1 @import triple :- rdf{resource="example.ttl"} .
2 @export result :- csv{resource="result.csv"} .

Although Nemo does not allow the definition of one’s own function symbols, it supplies a
number of built-in functions. For example, entries can be cast from one datatype to another
with functions like INT(X) or STR(X). More complex string operations can be accomplished

with START(X, Y), specifying if X starts with Y, SUBSTR(X, i), returning the substring of X

starting at index i, and several more [[12]. It is also possible to add filters to rules, making
statements like the subsequent one possible.

1 primarySchoolPupil(?X) :- pupil(?X), schoolYear(?X, ?year), ?year < 5 .

This rule collects all primary school pupils from all students.

Additionally, Nemo supports the generation of new elements within so-called existential rules,
which stipulate that a value exists but not what it exactly is. More specifically, this creates blank
nodes (also nulls or named nulls), distinct but anonymous placeholders [12]. For example, the
following program generates unique identifiers for students.

1 student(!Id, ?Name, ?DateOfBirth) :-
2 personalInfo(?Name, ?DateOfBirth), enrolled(?Name) .

Furthermore, Nemo allows the use of negations within stratified programs. This means that
atoms may be negated as long as they are not involved in recursive dependency cycles [[12].
To negate a predicate, it is prefixed with ~ .

Similar to the database language SQL, Nemo supports aggregates, for example, to determine
the tuple containing the maximal value within a predicate [[12]. For example:
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pupil(“cee")
pupil("dee")
age("cee", 7
age("dee", 6
eldestPupil(

(€ B N U N

) .
) .
?7X, #max(?age)) :- pupil(?X), age(?X, ?age) .

After the program'’s execution, the predicate eldestPupil contains the tuple ("cee", 7).

Crucially, Nemo does not support the modification or removal of tuples from any predicates.
This must be taken into consideration in the TEE’]—[?’”‘S completion algorithm implementation
because the algorithm originally envisages the modification of diamonds added to Cls and Rls,
as discussed in Section[2.3]

2.5.1 An Example Reasoner in Nemo

The Knowledge-Based Systems research group at TU Dresden, which developed Nemo, pro-
vides an online demonstratiorﬂ of implementing the rules from the ELK reasoner. These rules
constitute a completion algorithm for ontologies in ££ [13], which is equivalent to ELH |, ex-
cept that it also allows the composition of roles. These rules are similar to those in Figure
but as the input ontologies are specified in OWL 2 EL triples (see Section[2.4), they are not di-
rectly applicable. The nested structures which encode DL constructors like conjunctions (see
Table[2), thus, need to be resolved before the rules become applicable. The example covers
the necessary preprocessing steps to normalise the input ontology. As the implementation in
Chapter 3|faces the same issue, but in a less pronounced way, some of these steps/ideas are
carried over, which is why the example is included here.
The preprocessing starts by collecting all classes which appear in the input.

ClassObject(owl:someValuesFrom) .
ClassObject(rdf:first) .
ClassObject(rdfs:subClassOf) .
ClassObject(owl:equivalentClass) .
ClassSubject(rdfs:subClassOf) .
ClassSubject(owl:equivalentClass) .

class(?0) :- TRIPLE(?X, ?P, ?0), ClassObject(?P) .
class(?X) :- TRIPLE(?X, ?P, ?0), ClassSubject(?P) .

o N o A W N 2

Here, the predicates ClassObject and ClassSubject are defined. They contain the in-
formation for which OWL/RDFS/RDF properties a class appears as the object or as the subject,
respectively. The predicate class then collects all appearing classes. Thereby, it does not dif-
ferentiate between classes labelled with IRIs and blank nodes representing complex classes.

The next step is to mark blank nodes as auxiliary classes. Consider existential restrictions,
for example.

1 synEx(?Y,?P,?X), auxClass(?X) :-
2 TRIPLE(?X, owl:someValuesFrom, ?Y), TRIPLE(?X, owl:onProperty, ?P) .

This rule accumulates all existential restrictions in the predicate synEx and marks ?X as
an auxiliary class, as the blank node represents the restriction. With all the auxiliary classes
marked as such, the classes “named” with IRIs can be collected. They are equivalent to atomic
concepts.

1 nf:isMainClass(?X) :- class(?X), ~auxClass(?X) .

"https://tools.iccl.inf.tu-dresden.de/nemo/#
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Now, the existential restrictions synEx(?Y, ?P, ?X) can recursively be normalised. This is

necessary because the class denoted by ?Y might be an auxiliary class itself. The following
rules are used for this purpose.

repOf (?X, ?X) :- nf:isMainClass(?X) . % keep main classes unchanged
synExRep(?X, ?P, ?Rep) :- synEx(?Y,?P,?X), repOf(?Y,?Rep) .
nf:exists(!New, ?P, ?Rep) :- synExRep(?X, ?P, ?Rep) .

repOf(?X,?N) :- synExRep(?X,?P,?Rep), nf:exists(?N,?P,?Rep) .

N

Line 1 represents the “base case” of the repOf predicate, thereby stating that each “atomic”
class represents itself. Then, in line 2, synExRep collects all existential restrictions and re-
places ?Y with the class it represents. In line 3, all the normalised existential restrictions are
collected. nf: is an abbreviation for the namespace http://rulewerk.semantic-web.o
rg/normalForm/. The use of INew guarantees that each normalised existential restriction is
represented by a unique identifier. The use of an existential rule is not a problem for the termi-
nation of this program, as Nemo only creates a new tuple per normalised existential restriction.
Finally, line 4 contains the “recursive case” where the previous blank node is registered as the
representative of the newly created one. Note that the preprocessing of conjunctions follows
the same principles; thus, repOf also contains blank nodes and the conjunctions they repre-
sent.

The marking of classes and the division into “atomic” and auxiliary classes are carried over
to the implementation in Chapter 3] Otherwise, the preprocessing can be simplified. The
preprocessing in the ELK example also contains some more steps, but they are less relevant
for the later implementation.

Next, two examples should suffice to show how the rules specified in the ELK reasoner can
be translated into Nemo syntax. First the rule [13]

init(C)

R
‘ccc

is translated into Nemo syntax as

1 inf:subClassOf(?C,?C) :- init(?C) .

where inf: is an abbreviation for the namespace http://rulewerk.semantic-web.org
/inference/. Thus, inf:subClassOf should contain the inferred subsumptions. The second
example is the more complex rule [[13]]

. CC D, CC D,

: D1 M Dy occurs negatively in O.
n CC Dy Dy ! 2 & y

Its equivalent in Nemo syntax is the following:

1 inf:subClassOf(?C,?Y) :-
2 inf:subClassOf(?C,?D1), inf:subClassOf(?C,?D2),
3 nf:conj(?Y,?D1,?D2), nf:isSubClass(?Y) .

A (complex) concept C negatively appearing in an ontology means an axiom D C FE exists,
where C'is a syntactic subexpression of D [13]. The exact meaning of init(C') and the concrete
ideas behind each of these rules are not relevant. Nevertheless, it should be evident that once
all the necessary predicates are created, the translation of the rules is relatively straightfor-
ward.
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3 An Implementation Of The
Completion Algorithm

This chapter discusses the implementation of the completion algorithm for TSEH%”‘S from [5]
in the Nemo rule engine. In this implementation, the whole reasoning process is divided into
two parts. First is the computation of all possible entailments within the TBox of the provided
ontology. Second, the program uses the completed TBox to deduce all possible facts from
the ABox. This can be done, as the TBox reasoning is entirely independent of the result from
the ABox reasoning, and the ABox's exhaustive completion depends on the completed TBox.
Each part also requires some preprocessing in order to enter the provided data correctly into
predicates.

3.1 The Temporalisation of OWL

Section described the general syntax of the OWL 2 EL standard, which originally corre-
sponds to the atemporal DL ££7" [6]. To encode the subsumption €C T D, one would, in
theory, need to add a fourth entry to the triple (C, rdfs:subClassOf, D). However, the
name triple already makes clear that this would break the standard. Thus, any subsumption
including a temporal concept cannot be directly added as a triple into an OWL ontology. In-
stead, the subsumption is encapsulated in an owl :Axiom (see Table [2) to keep the encoding
standard-compliant. The same applies to individuals which have time points attached to their
occurrences in classes. OWL 2 EL allows the addition of user-defined annotation properties
to axioms. They get attached as another triple (_:1, exampleProperty, "This is a new
annotation Property"), where _:1is the blank node representing the owl : Axiom. Note that
the standard also permits the attachment of multiple annotation properties to one axiom.
Thus, ABox assertions where the same individual satisfies the same concept at several points
in time can be encoded as well. The structure of a temporal axiom €C T D is visualised in

Figure[3
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owl:Class

rdfs:subClassOf

Figure 3: The structure of a temporal axiom &C C D in an OWL-compliant format

The chosen name for the annotation property is temp:temporalProperty . In an overload-
ing manner, this property is used to encode the temporal operators as well as the time points
of occurrences of individuals in classes. The value of this property is a string representing the
diamond operator if it is attached to a CI/RI or an integer if it is attached to an owl:Axiom
encapsulating the occurrences of an individual in a class.

Notice that the operator € is encoded as “+-" in Figure 3| The remaining operators are
encoded in a similar fashion, as can be seen in Table 3] The naming is chosen arbitrarily, but
this is an easy, unambiguous, and concise way to do it.

This simple encoding is only possible as the TBox is required to be normalised. For example,
to encode (®A) 1 ($B) 1 (3(©r).C) C D, the temporal operators would need to be attached
to the individual concepts/roles within the axiom, instead of the axiom as a whole.

3.2 Reading the TBox in

This section continues where Section left off by discussing the preprocessing steps nec-
essary to read the TBox in from an OWL ontology. As mentioned there, the code snippet
marking all classes is carried over.

ClassObject(owl:someValuesFrom) .
ClassObject(rdfs:subClassOf) .
ClassObject(owl:equivalentClass) .
ClassSubject(rdfs:subClassOf) .
ClassSubject(owl:equivalentClass) .

class(?0) :- triples(?X, ?P, ?0), ClassObject(?P) .
class(?X) :- triples(?X, ?P, ?0), ClassSubject(?P) .

O W N O U W =

property(?R) :- triples(?R, rdf:type, owl:ObjectProperty) .

Table 3: The diamond operators and their corresponding comments

Diamond Operator Comment

"

9
5

<> u_n

© “con”

©n “cn”, e.g. ©4 is encoded as “c4”
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The only addition here is that properties are also marked as such. The rest of the prepro-
cessing of conjunctions and existential restrictions can be simplified as this algorithm expects
already normalised ontologies as input. For example, conjunctions can be marked and col-
lected directly, instead of first having to completely deconstruct the nested list representing
the conjunction (see Table[2).

1 conj(?idConj, ?C1, ?C2), auxClass(?idConj) :-
2 triples(?idConj, owl:intersectionOf, ?idFirst), triples(?idFirst, rdf:first, ?C1),
3 triples(?idFirst, rdf:rest, ?idRest), triples(?idRest, rdf:first, ?C2)

Notice that this rule also accumulates the blank nodes representing auxiliary classes
in the predicate auxClass. The same goes for existential restrictions in the predicate
existRestrict . Now, “main” classes are marked the same way as seen in Section

1 nf:isMainClass(?X) :- class(?X), ~auxClass(?X)

From here on out, the preprocessing differs from the ELK example, as now axioms need
to be deserialised, and their attached annotation properties need to be taken into account,
which previously could safely be ignored. The first step is to collect all temporal axioms.

1 tempAxiom(?tempOp, ?C, rdfs:subClassOf, ?D), appearingTempOp(?tempOp) :-
2 triples(?id, rdf:type, owl:Axiom),

3 triples(?id, owl:annotatedSource, ?C),

4 triples(?id, owl:annotatedTarget, ?D),

5 triples(?id, owl:annotatedProperty, rdfs:subClassOf),

6 triples(?id, temp:temporalProperty, ?tempOp)

The conditions of this rule directly follow from the structure shown in Figure[3} The predicate
commentType is used to filter out the triples which contain comments/labels. Its only two

entries are the RDFS properties rdfs:comment and rdfs:label . Notice also the predicate
appearingTempOp collecting the temporal operators appearing in the input. Additionally, the
atemporal axioms are collected as well.

1 nonTempAxiom(?C, rdfs:subClassOf, ?D) :-
2 triples(?C, rdfs:subClassOf, ?D), ~tempAxiom(_, ?C, rdfs:subClassOf, ?D)

Now, all the collected axioms can be combined into one 4-ary predicate axiom. The first
argument is the temporal operator, the second and fourth are the connected classes, and the
third is the connecting property. Temporal axioms can be added as they are.

1 axiom(?tempOp, ?C, ?type, ?D) :- tempAxiom(?tempOp, ?C, ?type, ?D)

Axioms with conjunctions or existential restrictions need to be considered differently, as the
normal form mentioned in Section [2.3]does not permit them to be labelled with a diamond.

impossibleTempOp(?id, ?C, ?D) :- conj(?id, ?C, ?D)
impossibleTempOp(?id, ?R, ?D) :- existRestrict(?id, ?R, ?D)

axiom("not allowed", ?C, ?type, ?D) :-
nonTempAxiom(?C, ?type, ?D), impossibleTempOp(?C, _, _)

Instead of having a temporal operator as their first entry, they receive the placeholder string
“not allowed”. Other atemporal axioms, which are subsumptions of two ELH, concepts, are
added with “c1” as their diamond, as described in Section
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1 axiom("c1", ?C, ?type, ?D) :-
2 nonTempAxiom(?C, ?type, ?D), ~impossibleTempOp(?C, _, _) .

Although the rules shown here only cover Cls, the same processing is applied to RIs.

The second major part of the TBox's encoding in predicates is the implementation of the or-
der on the diamonds from Lemmal[2} as Nemo does not directly support list datatypes. First, the
diamond operators, which might not appear in the input ontology but could be added during
the reasoning process (see Section , are added to the predicate appearingTempOp :

appearingTempOp("c1") .
appearingTempOp("+-") .
appearingTempOp("+"
appearingTempOp("-"
appearingTempOp ("

e W N =

) .
) .
con") .

Although ¢ and & cannot be newly derived during the reasoning, they are incomparable and
therefore, their order needs to be considered separately. Thus, for consistency’s sake, they
are added as well. Next, the metric convex diamonds are collected and stored together with
their specified interval length in the predicate metricTempOp :

1 metricTempOp(?0p, INT(SUBSTR(?0p, 2))) :-
2 appearingTempOp(?0p), isTrue(STRSTARTS(?0p, "c")),
isTrue(isInteger (INT(SUBSTR(?0p, 2)))) .

Here, isTrue is an auxiliary predicate which is only satisfied by the boolean value “true”.
This is necessary because Nemo would otherwise consider the built-in function isinteger as a

predicate. The “if"-condition of this rule can be read as follows. ?Op needs to be an operator,
which appears in the input ontology and the string, which encodes the diamond, must start
with a “c”. Additionally, the substring of ?Op starting at index 2 must be a number. Checking

this is possible, as the function INT returns nothing if the supplied string is not an integer.
Now, the order of the diamonds can be computed by collecting all tuples (&,®), such that
& C @ holds. First, the order on ®*u {©} is added:

1 tempOpSequence("+", "+-") .
2 tempOpSequence("-", "+-") .
3 tempOpSequence("con", "+") .
4 tempOpSequence("con", "-") .

Next, the tuples expressing the reflexivity of the diamonds are added together with the re-
lation from every metric convex diamond to €

1 tempOpSequence(?op, ?0p) :- appearingTempOp(?op) .
2 tempOpSequence(?op, "con") :- metricTempOp(?op, ?i) .

Now, the order on the metric convex diamonds is imposed by comparing their interval
lengths:

1 tempOpSequence(?opT1, ?0p2) :-
metricTempOp(?op1, ?i1), metricTempOp(?op2, ?i2), ?i1 < ?i2 .

N

To complete the order, the transitive closure is computed by adding all tuples (®,®), such
that there exists a diamond ¢ with (,®) and (§,®) in the predicate tempOpSequence .
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1 tempOpSequence(?opl, ?0p2) :-
2 tempOpSequence(?op1, ?opInterm), tempOpSequence(?opInterm, ?op2) .

Having imposed the order, the intersection and composition of diamond operators can be
defined as 3-tuples, which have the result from the respective operation as their third element.
The intersection is defined as follows:

tempOpIntersection("+", "-", "con")
tempOpIntersection("-", "+", "con")

tempOpIntersection(?op1, ?op2, ?opl1), tempOpIntersection(?op2, ?op1, ?opl1) :-
tempOpSequence(?op1, ?0p2)

The lines 1 and 2 add the special case $NO = ONG = ©. Lines 4 and 5 add the general case,
where the intersection of the two diamonds is the smaller entry in the corresponding tuple in
tempOpSequence . The composition is defined in a similar way.

This finalises the encoding of the TBox. The next section will discuss the translation of the
TBox rules into Nemo syntax.

3.3 Translation of the TBox rules

As seen in Section the translations of the algorithm’s rules are quite straightforward, as
all the necessary predicates are already computed. Therefore, the translation of all the rules
is omitted here, and instead, only two examples are discussed. The first example is the rule

Tl ———.
MALC A

It translates to the following Nemo rule.

1 inf:axiom("c1", ?A, rdfs:subClassOf, ?A) :- nf:isMainClass(?A) .

The prefix inf: is used to indicate that the predicate inf:axiom contains the inferred ax-
ioms in addition to the ones from the input ontology. The condition nf:isMainClass(?A)
enforces that this rule is only instantiated for “named” classes. The second example is the rule

18 QAC Ir. Ay OrCs YA, C B, 3Is.BiC B
QALC B

Although the rule is more complex, the translation is still almost immediate.

1 inf:axiom(?tempOp1, ?A, rdfs:subClassOf, ?B) :-

2 inf:axiom(?tempOp1, ?A, rdfs:subClassOf, ?IdExRest1),

3 existRestrict(?IdExRest1, ?R, ?A1),

4 inf:axiom(?tempOp2, ?R, rdfs:subPropertyOf, ?S),

5 inf:axiom(?tempOp3, ?A1, rdfs:subClassOf, ?B1),

6 inf:axiom("not allowed", ?IdExRest2, rdfs:subClassOf, ?B),

7 existRestrict(?IdExRest2, ?S, ?B1),

8 tempOpIntersection(?tempOp2, ?tempOp3, ?tempOpIntersection),
9 ~tempOpPlusMinus(?tempOpIntersection)

The extra conditions existRestrict(?IdExRest1, ?R, ?A71) and

existRestrict(?IdExRest2, ?S, ?B1) verify that the necessary concepts are indeed
existential restrictions. This rule includes a small optimisation, as it additionally specifies the
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filter (@ N®) ¢ D*. This ensures that the rules T8 and T8 are not applied to the same axioms
which avoids redundant entailments. The predicate tempOpPlusMinus is equivalent to ®*.

Thus, the conditions tempOpIntersection(?tempOp2, ?tempOp3, ?tempOpIntersection)

and ~tempOpPlusMinus(?tempOpIntersection) accomplish the filter (@ N Q) ¢ DF.

At this point, the TBox includes the aforementioned redundancies, as all the program did
was add new axioms to the already inferred ones. Consider Example[T]and assume that the
given axioms were part of a larger TBox. Now, suppose that through other derivations, the
following two new Cls are added.

©QCCE 3.1)
OCCE (3.2)

This creates four different ways to apply T4 to Cls of the form @A C C and©C C D (eq. and
eq. (3.7). eq. and eq. (3.2), eq. and eq. (3.1), eq. and eq. (3.2)). Each combination
is checked and three new Cls are added, two of which are redundant. This behaviour cannot
be circumvented during the TBox reasoning phase.

Either one accepts the redundancies and continues with the ABox reasoning phase, or one
simulates the intended behaviour of the TBox rules and provides the ABox reasoning phase
with a redundancy-free TBox. This can be achieved in several ways. One option would be
to export the finished TBox and write a script in another language like Python which would
eliminate the redundant axioms. A second option would be to declare a new predicate within
the Nemo program and filter inf:axiom for the strongest CIs/RIs. The third alternative is to
combine both approaches, thereby splitting the TBox and ABox reasoning phase into separate
programs and using a third Nemo program to clear the TBox of redundancies. The last option
is chosen here, as this simplifies an analysis of both the TBox and ABox reasoning phase.

The aforementioned Nemo program is quite simple. All it does is first classify all axioms by
their associated temporal operator, thereby collecting all axioms with & in one predicate, all
axioms with ¢ in another and so on. Then, for each axiom®A C B it checks the predicates with
stronger temporal operators first before adding the axiom to the adjusted TBox. The following
representative rule shows the collection of all axioms with §.

1 plusMinusAxiom(?A, ?Connector, ?B) :- inf:axiom("+-", ?A, ?Connector, ?B) .

A special case are the metric temporal operators as they are first collected in a separate
predicate and then the strongest metric temporal operator is determined through the use of
the aggregate function #max .

1 metricAxiom(?0p, ?i, ?A, ?Connector, ?B) :-

2 inf:axiom(?0p, ?A, ?Connector, ?B), metricTempOp(?0p, ?i) .
3 maxMetricAxiom(#max(?i), ?A, ?Connector, ?B) :-

4 metricAxiom(_, ?i, ?A, ?Connector, ?B) .

Here, the predicates inf:axiom and metricTempOp are the same as before, with

inf:axiom containing the TBox with redundant axioms. Now, the adjusted TBox can be con-
structed by checking the predicates in a cascading manner.

1 adjustedAxiom("+-", ?A, ?Connector, ?B) :- plusMinusAxiom(?A, ?Connector, ?B) .
2 adjustedAxiom("+-", ?A, ?Connector, ?B) :-

3 plusAxiom(?A, ?Connector, 7?7B),

4 minusAxiom(?A, ?Connector, ?B),

5 ~plusMinusAxiom(?A, ?Connector, ?B).
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3 An Implementation Of The Completion Algorithm

Consider a Cl of the form ©®A C B. The first line checks if there exists an axiom where ¢ is &.
If this is the case, the axiom is added to the adjusted TBox. The second line only adds A C B
if it does not already exist, but both @A C B and ©A C B do. The rest of the operators are
checked in a similar manner. The adjusted TBox is then used for the ABox reasoning phase.

3.4 Reading the ABox in

The extraction of the ABox is simpler than the TBox, as the axioms can be added directly as
triples. The more interesting challenge, which is discussed later in this section, is the construc-
tion of the set of representative time points rep(.A) from the set tem(.A). But first the temporal
ABox assertions need to be collected.

1 aBoxConcept(?A, ?a, ?i), tem(?i) :-

2 triples(?a, rdf:type, owl:NamedIndividual), triples(?A, rdf:type, owl:Class),

3 triples(?id, rdf:type, owl:Axiom),

4 triples(?id, owl:annotatedSource, ?a), triples(?id, owl:annotatedTarget, ?A),

5 triples(?id, ?type, ?i), commentType(?type) .

The difference to the construction of the TBox axioms is that the owl :annotatedSource is
anodeofthe rdf:type owl:NamedIndividual . Notice that this rule only collects assertions
for concepts and not roles. This distinction is made as the predicate for roles needs one more
entry to store the second individual. Otherwise, the construction works the same. Additionally,
this rule also collects all the time points which appear in the ABox in the predicate tem.

Now, using the accumulated time points, the set rep(.A) can be constructed. The main idea
to find the intervals between neighbouring elements in tem(.A) is to create a predicate which
collects all tuples the left entry is smaller than the right entry. Note that time points may appear
multiple times as the left boundary of different intervals. Minimising the right boundary of
associated with each left boundary results in the intervals.

The following rule constructs the intervals and their sizes:

1 interval(?k, ?1) :- tem(?k), tem(?1l), ?k + 1 <= 1?1 - 1 .

The condition ?k + 1 <= ?1 - 1 ensures that the left boundary of the interval is smaller
than the right boundary and that the interval is non-empty. Next, the aggregate function #min
is used to find the smallest interval for each time point:

1 minInterval(?k, #min(?1)) :- interval(?k, ?1) .
Now, the set rep(.A) can be constructed as a predicate.

1 rep(?k, ?k) - tem(?k) .
2 rep(?k + 1, ?1 - 1) :- minInterval(?k, ?1) .

The second line adds the aforementioned intervals of time points which do not appear in A.
Additionally, rep also includes the elements from tem as described in Section[2.3| Observe
that the predicate rep has an arity of two while rep(A) is a simple set. The algorithm would,
thus, also work with an unary predicate. However, the next step in the implementation is to
make queries on the completed ontology possible. Such a query might include a time point
iwith i ¢ rep(A). That is why both boundaries of a represented interval |k, ] are stored, as
checking if i € |k, ] holds now consists of two comparisons. The actual representative of [k, []
is just chosen to be the left boundary k.
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3 An Implementation Of The Completion Algorithm

What remains is to explicitly add the two intervals with —oo or oo as their left, respectively,
right boundary.

1 rep(#min(?i) - 1, "-inf") :- tem(?i) .
2 rep(#max(?i) + 1, "inf") :- tem(?i) .

Theinterval (—oo, min(tem(.A))—1] is the only one for which the right boundary is selected as
the representative. Hence, the boundaries are switched in rep, such that the representative
is in first place. The strings “inf” and “-inf"” are just placeholders for co and —oo. With rep
finalised, the translation of the ABox rules can be discussed in the next section.

3.5 Translation of the ABox rules

Similarly to the TBox rules in Section the translation of the ABox rules A1, A4 and A5 is
uncomplicated, which is why only one of them is shown as an example.
As a first example, consider the rule

Al(a,i) Ag(a,i) A1MAC B

A4 .
B(a,1)
It translates into Nemo’s dialect as follows.
1 inf:aBoxConcept(?B, ?a, ?i) :-
2 conj(?idConj, ?A1, ?A2), inf:axiom(_, ?idConj, rdfs:subClassOf, ?B),
3 inf:aBoxConcept(?A1, ?a, ?i), inf:aBoxConcept(?A2, ?a, ?i) .

The more complicated rules are

i€ ®A(a) ©QACB A3i€®r(a’b> orCs

A2 B(a,1) ’ s(a,b,1)

as the involvement of rep make a case distinction on the different diamond operators nec-
essary. The first case encompasses all the axioms which involve the & operator.

1 inf:aBoxConcept(?B, ?a, ?i) :-
2 inf:axiom("+-", ?A, rdfs:subClassOf, ?B), rep(?i, _),
3 inf:aBoxConcept(?A, ?a, _) .

This is the simplest case, as it is only necessary to check if the individual ?a isin ?A atsome
point in time. The next two cases comprise the axioms with ¢ and ©, respectively.

inf:aBoxConcept(?B, ?a, ?i) :-
inf:axiom("+", ?A, rdfs:subClassOf, ?B), rep(?i, _),
inf:aBoxConcept(?A, ?a, ?k), ?i <= ?k .

inf:aBoxConcept(?B, ?a, ?i) :-
inf:axiom("-", ?A, rdfs:subClassOf, ?B), rep(?i, _),
inf:aBoxConcept(?A, ?a, ?1), ?i >= ?1 .

These cases add a check if there exist occurrences of ?a in ?A later, respectively earlier,
than ?1. The fourth case is a combination of the previous two, thereby checking for occur-
rences within arbitrarily-sized intervals. Thus, it encompasses the axioms containing the ©
operator.
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3 An Implementation Of The Completion Algorithm

1 inf:aBoxConcept(?B, ?a, ?i) :-

2 inf:axiom("con", ?A, rdfs:subClassOf, ?B), rep(?i, _),
3 inf:aBoxConcept(?A, ?a, ?k),

4 inf:aBoxConcept(?A, ?a, ?1),

5 71 >= 7%k, ?1i <= 71 .

The condition ?1 >= ?k and ?i <= ?1 necessitates that ?i is between two occur-
rences of ?a in ?A . The last case spans all axioms with metric temporal operators.

1 inf:aBoxConcept(?B, ?a, ?i) :-

2 inf:axiom(?op, ?A, rdfs:subClassOf, ?B), rep(?i, _),
3 inf:aBoxConcept(?A, ?a, ?k),

4 inf:aBoxConcept(?A, ?a, ?1),

5 metricTempOp(?op, ?n),

6 ?71 >= 7%k, ?1 <= 1?1, ?1 - ?k < ?n .

The addition of ?1 - ?k < ?n imposes that the interval between the occurrences of ?a
in ?A has at most the size ?n specified by the operator ©,. The rule A3 works in the same
manner and will therefore be omitted here.

This concludes the implementation of the completion algorithm for TE,CH%”’S from Borg-
wardt, Forkel, and Kovtunova [5].
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To test the implementation from the previous chapter, a performance evaluation is conducted.
This chapter starts by discussing the constructed ontology and the data used for the evalua-
tion. Then, the test setup is presented, followed by the results of the evaluation.

The general approach to the evaluation is to emulate the reasoning process on a database.
Therefore, the constructed TBox includes comparatively few axioms, which remain the same
during all test runs. The ABox, on the other hand, is generated in different sizes from a large
dataset from the real world. This should mimic different workloads in an application.

4.1 Weather Data and the Test Ontology

The mainidea behind the constructed ontology is to determine cities in combination with times
at which the weather conditions are great for playing beach volleyball. Therefore, the TBox
includes some basic rules specifying these conditions, while the ABox is based on weather
data from the Open Data Server of the German Meteorological Service (DWDﬂ The DWD
provides, among other services, historical weather dataﬂ from the last ~300 years under the
Creative Commons licence CC BY 4.Cﬂ The data is obtained through the Python package wet-
terdienst [10].
The ontology utilises three types of individuals:

- “City" individuals, which represent a German city where a weather station is located.

+ “Temperature” individuals, which are the rounded integer values of the temperature ap-
pearing in the ABox.

+ Individuals of the form “3379@2024-06-16", where “3379" is the ID of a weather station
and “2024-06-16"is a date. These individuals represent a whole day at a specific weather
station. They will be referred to as “day/location individuals”.

Additionally, the time steps associated with the elements from Z are 5-minute intervals. Thus,
the interpretations Z; and Z; 1 represent the state of the atmosphere at two consecutive 5-
minute intervals. To populate the ABox, data is taken from the datasets shown in Table[][19].
These datasets exist in three versions spanning different time periods. The data is from the
“recent” version, which includes recent weather data and the previous 500 days. Every dataset
also includes several columns of different data, which is why the DWD's original name of the
column is given as well. The DWD also provides forecast data, which would make this ontology

"https://opendata.dwd.de/
Zhttps://opendata.dwd.de/climate_environment/CDC/
3https://creativecommons.org/licenses/by/4.0/

27


https://opendata.dwd.de/
https://opendata.dwd.de/climate_environment/CDC/
https://creativecommons.org/licenses/by/4.0/
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Table 4: The datasets used to populate the test ontology

Dataset Path on the Open Data Columns used  Description
Server

air_temperature |/climate_environment | TT_10 Air temperature 2 m
/CDC/observations_ge above the ground in
rmany/climate/10_min 10-minute intervals in °C
utes/air_temperature
/recent/

precipitation /climate_environment | RS_05 Sum of the precipitation
/CDC/observations_ge height of the last 5
rmany/climate/5_minu minutes in mm
tes/precipitation/re
cent/

wind /climate_environment | FF_ 10 mean wind speed during
/CDC/observations_ge the previous 10 minutes
rmany/climate/10_min in m/s
utes/wind/recent/

sun /climate_environment SD_SO sunshine duration during
/CDC/observations_ge the last hour in min

rmany/climate/hourly
/sun/recent/

cloudiness /climate_environment V_N total cloud cover during
/CDC/observations_ge the last hour in %
rmany/climate/hourly
/cloudiness/recent/

more useful in a real-world application. However, the repeatability of the tests would be limited
as forecast data changes frequently. Therefore, using past data keeps this evaluation self-
contained without having to provide a large dataset of recorded forecast data.

The most important concepts and roles used in the ontology are explained in Table[5} The
dataset used to populate the respective predicate is given in Table[das well. Additionally to the
concepts shown here, the ontology also includes some auxiliary concepts, which are straight-
forward in the context of their occurrences in axioms. The entire TBox can be seen in Figure[d}

The axioms (ax1) - (ax6) express the interpolation of data which is not provided in 5-minute
intervals. For example, the assumption that temperatures of 17 - 25 degrees Celsius are op-
timal for playing beach volleyball is independent of the current time point. Wind data is only
provided in 10-minute intervals. Thus, individuals can at most appear every second i € Z in
the input ABox. Therefore, (ax2) expresses the assumption that if the wind speed was under
3 m/s at two of these “neighbouring” inputs, it was as well at the moment separating them.

The assumed best weather conditions for playing beach volleyball are as follows. Two dry
5-minute intervals are at most ten minutes apart (ax8), and additionally, the wind speed should
be under 3 m/s, making it playable conditions (ax10). The sky should be bright enough but not
so bright that it is blinding. Thus, some cloud cover is required (ax9). The temperature should
be between 17 and 25 degrees Celsius (ax7, ax7’). The combination of all these conditions is
considered the best timefor playing beach volleyball (ax11, ax12). The last two axioms (ax13,
ax13’) now produce timestamped names of cities where these conditions are met.

The TBox was constructed using Protégé 5.5.0 [18] and is saved in the Terse RDF Triple Lan-
guage (also referred to as Turtle).
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/climate_environment/CDC/observations_germany/climate/10_minutes/air_temperature/recent/
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/climate_environment/CDC/observations_germany/climate/10_minutes/air_temperature/recent/
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/climate_environment/CDC/observations_germany/climate/hourly/cloudiness/recent/
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Table 5: The most important concepts and roles in the test ontology.

Source Dataset  Description

Concepts:

OptimalTemperatures  manually added Includes all temperature individuals which are
between 17 and 25 degrees Celsius

NoRain precipitation Includes day/location individuals; comprises
5-minute intervals in time where the weather
station on the given day did not record any
precipitation

Cloudy cloudiness Includes day/location individuals; comprises
1-hour intervals in time where the weather
station on the given day recorded a cloud
cover of more or equal to 30%

Sunshine sun Includes day/location individuals; comprises
1-hour intervals in time where the weather
station recorded more than one minute of
sunshine

WindUnder3 wind Includes day/location individuals; comprises
10-minute intervals where the wind speed
was less than 3 m/s

Roles:

temperatures air_temperature Relates a day/location individual for a
10-minute interval to the individual
representing the temperature recorded at
the weather station during this interval

dataOfWeatherStation  manually added  Relates a city individual to all day/location
individuals which are associated with the
weather station located in the city

4.2 The Test Setup

As discussed at the end of Section [3.3]the completion process of the TBox produces redun-
dancies, which can only be removed afterwards. It is, therefore, impossible to quantify the
increased reasoning time in this concrete example. However, it is possible to count the num-
ber of redundant axioms and measure their effect on the time it takes to complete the ABox.
Thus, the completion algorithm is run twice on the same ABox, once with the redundant TBox
and once with the adjusted one. The reasoning times are then compared. Additionally, the
number of inferred facts and the sizes of the completed ABoxes are logged. On the one hand,
this acts as a sanity check, verifying that the reasoning process is working as intended. On
the other hand, it enables one to draw comparisons between this implementation and the
implementation of the ELK reasoner, as shown in Section|2.5.1

The evaluation of the ABox reasoning is based on a test suite consisting of a series of fully
automated runs of the implemented algorithm on the aforementioned TBox and ABoxes of
increasing size. The different sizes are achieved by increasing the time interval within which
the weather data is downloaded. The interval starts with both boundaries being the 15th June
2024 00:00 and is then progressively increased in 2-hour steps until the 16th June 2024 22:00,
thus creating 24 individual tests. The data is taken from 5 weather stations located in cities all
around Germany: Aachen, Hamburg, Dresden, Munich, and Erfurt.

Before the tests of the ABox reasoning start, the TBox is completed once, and it is saved.
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(ax1): &OptimalTemperatures C OptimalTemperatures
(ax2): ©,WindUnder3 C WindUnder3 (ax3): ©;3Sunshine C Sunshine
(ax4): ©13Cloudy C Cloudy (ax5): ©stemperatures C temperatures
(ax6): ©dataOfWeatherStation C dataOfWeatherStation

(ax7). 3temperatures.OptimalTemperatures C PleasantTemperatureForBeachvolleyball

(ax7"): ©1PleasantTemperatureForBeachvolleyball C 3temperatures.OptimalTemperatures

(ax8): ©4NoRain C DryEnoughForBeachvolleyball
(ax9): Sunshine M Cloudy C PleasantSkyForBeachvolleyball
(ax10): DryEnoughForBeachvolleyball m WindUnder3 C PossibleToPlayBeachvolleyball
(ax11): PleasantSkyForBeachvolleyball 11 PossibleToPlayBeachvolleyball
C GoodTimeForBeachvolleyball
(ax12): PleasantTemperatureForBeachvolleyball 1 GoodTimeForBeachvolleyball

C BestTimeForBeachvolleyball

(ax13): 3dataOfWeatherStation.BestTimeForBeachvolleyball C WhereAndWhenToPlay
(ax13"): ©1WhereAndWhenToPlay C 3dataOfWeatherStation.BestTimeForBeachvolleyball

Figure 4: The test ontology's TBox

Then its redundancies are removed and the adjusted TBox is saved as well.

Each test run consists of four steps. First, the weather data of the according time frame is
downloaded and preprocessed. The preparation is done using a Python script, which parses
the data and populates the predicates shown in Table [5|according to the conditions written
there. After that, the concepts are saved in a CSV file, and the roles are saved in another. This
is done as the file with the roles has four columns (role name, temporal operator, two individ-
uals), whereas concepts only need three (concept name, temporal operator, one individual).
Second, the Nemo program is run on the ABox and the TBox with the redundancies. Third, the
same is done with the TBox without redundancies. Finally, the reasoning times, the number of
overall inferred facts, and the sizes of the completed ABoxes are logged. These 25 tests (TBox
reasoning + 24 ABox reasoning tests) are run three times and the resulting reasoning times
for each input size are averaged. This should eliminate outliers and provide a more reliable
result.

A more granular view of the reasoning process can be provided using the Python bindings of
Nemo, as they allow access to the reasoning times on a per-rule basis. Thus, it can be analysed
what portion of the execution time each rule takes. Although the Python bindings could be
used to invoke the reasoning process, earlier testing has shown that they are a lot slower than
the Nemo command-line client. Therefore, during the performance evaluation, the Python
script invokes the Nemo command-line client, and the reasoning times of each rule are only
analysed for the single ABox with 927 facts. This ABox covers the weather data between 00:00
and 10:00 on the 15th June 2024 in Dresden and is chosen as an arbitrary example.
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The tests were run on a desktop PC with an AMD Ryzen Octa-Core processor and 32 GB
of RAM. The operating system used was Windows 11 Pro. Nemo version 0.5.2-dev (commit
f55fe02d) was used for both the command-line and the Python bindings. They were compiled
using rustc version 1.78.0 and cargo version 1.78.0. The Python version used was 3.12.4.

4.3 Discussion of Results

Before discussing the reasoning times measured during the run of the test suite, the results of
the reasoning process should be mentioned shortly. The ontology actually contains 98 times
and locations at which the conditions were optimal to play beach volleyball after its completion.
The conditions were right in Munich, Hamburg and Dresden, and all the suggested times are
between 10:00 and 19:00, which is realistic.

The completion of the TBox took, on average, 4 ms. This short time is rather unsurprising,
as the TBox consists of only 14 axioms. The completed TBox contains 43 axioms, including six
redundant ones. Four of them are versions of (ax1) - (ax4) with the ¢, operator created by T1.
The other two axioms are versions of (ax5) and (ax6) also with the ¢, operator created by T3.
These redundancies are expected.

Figure |5| shows the number of facts in the completed ABox in addition to the number of
overall inferred facts during the algorithm'’s run in relation to the number of facts in the input
ABox. The first insight is that the completion algorithm produces the same-sized output in-
dependent of the redundancies in the TBox, which indicates that the algorithm is working as
intended.

The chart shows a clear linear relationship between the size of the input ABox and the size of
the completed ABox. The trend line f(z) = 8.794x — 592.8 is obtained using the least squares
method. The fit, as displayed in the chart, is good.

The relationship between the number of overall inferred facts and the size of the input
ABox follows a polynomial of a higher degree. Using the least squares method, polynomi-
als of different degrees can be fitted to the data. But already the resulting cubic function
f(z) = —8.624 - 1078 - 23 + 0.00722 + 10.53x — 827.5 shows a minuscule first coefficient, indi-
cating that the relationship is quadratic. Fitting a second-degree polynomial to the data using
the least squares method produces the following equation: f(x) = 0.006596x2 + 11.64x — 1239.
The coefficient of the last term being —1239 is questionable, as it does not make sense to start

2000001 g No. of overall inferred Facts

m  size of completed ABox
—— Trend No. of overall inferred Facts
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Figure 5: The number of inferred ABox facts in relation to the size of the input ABox.
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Figure 6: The reasoning times in relation to the size of the input ABox.

with a negative number of facts. But the trend line, as displayed in Figure 5] shows a good fit.

The resulting times from the test suite are shown in Figure[g] First, notice that the data is
less smooth than in Figure |5l Although the times were averaged from three runs, there still
exist outliers. This is in part due to an increasing spread of the runtimes the larger the input
ABox is. For example, two runs with the largest input ABox size of 4647 facts took 681 and 690
seconds, respectively, while a third run took 822 seconds. The reason for this is not clear, as
these runs happened under the same conditions without any other programs running in the
background.

Even with outliers, the general trend is clear. The reasoning times with redundant axioms
in the TBox are quite a bit higher than the ones without. This is surprising, as the redundan-
cies are only very few and only consist of trivial axioms. Using the least squares method the
polynomials seen in Table[f]are obtained.

Table 6: The polynomials fitted to the reasoning times in relation to the size of the input ABox.

Quadratic Polynomial Cubic Polynomial
—6 3 2
Reasoning Times with 0.0422 — 35.52z + 1.113 - 10* AA19 1075 27 10,009«
redundancies in the TBox +21.73z — 9965
- _ 3.95-1077 - 2% + 0.01672
Reasoning Times without 0.019422 — 4.024z — 1585
redundancies in the TBox +1.093z — 3470

Both datasets show the behaviour that the coefficient for the third-degree term is not signifi-
cant. Thus, the quadratic polynomials are shown in Figure[6] Again, the terms of zeroth degree
do not make sense as there should not exist a negative reasoning time, and the reasoning time
should also not start at 11 seconds when the ABox is empty. This cannot be constant over-
head, as small ABoxes take less than a second to be completed. Otherwise, their trends look
like they fit the data well. Both polynomials being quadratic also follows the trend of the overall
inferred facts, which makes sense. The quadratic trend can be explained by the application of
rules A2 and A3 (see Section [3.3), where the algorithm needs to check if there exists a certain
interval within which a certain individual (or pair of individuals) appears in a concept (or a role).
Therefore, the algorithm might need to check all possible combinations of elements from the
predicate rep .
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Quantitatively, the reasoning with redundant axioms in the TBox took, on average, 1.62 times
longer than the reasoning without. Similarly to the spread of the data, the ratio of the reasoning
times was not constant but instead fluctuated within the range of 1.47 to 1.87 with a tendency
to increase with a bigger input. This shows that it is crucial to remove redundancies from the
TBox before reasoning with the ABox.

Overall, the performance of this implementation is promising but not optimal. Completing
the largest input, ABox takes about 400s while deriving about 194 000 facts. The implemen-
tation of the rules from the ELK reasoner in Nemo, on the other hand, takes about 4 seconds
on the same hardware to derive 2.4 million facts from an input of about 246 000 axioms.

The per-rule analysis of reasoning times revealed that about a third of the time was spent
applying each of the following two rules.

inf:aBoxConcept(?B, ?a, ?i) :-
inf:axiom(?op, ?A, rdfs:subClassOf, ?B), rep(?i, _),
inf:aBoxConcept(?A, ?a, ?k)
inf:aBoxConcept(?A, ?a, ?1)
metricTempOp(?op, ?n),
?7i >= 7%k, ?1 <= 71, ?1 - ?k < ?n .
inf:aBoxRole(?S, ?a, ?b, ?i) :-
inf:axiom("con", ?R, rdfs:subProperty0f, ?S), rep(?i, _),
inf:aBoxRole(?R, ?a, ?b, ?k),
inf:aBoxRole(?R, ?a, ?b, ?1),
?i >= 7%k, ?1 <= ?1 .

© W N O U R W N
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This indicates that the conditions i € ®A(a) and i € r(a,b) from rules A2 and A3 (see
Section are bottlenecks in the reasoning process. For convex diamonds, the imple-
mented algorithm needs to check if an interval [j, k| with ¢ € [j,k], and j,k € rep(A), and
A(a,j),A(a, k) € A exists (similarly for r(a, b,4)). Therefore, it may check all combinations of
two elements within rep(.A), which is computationally intensive.

The reasons that these cases of the rules A2 and A3 take an especially long time to execute
are probably the following. The first rule is applied a lot as the TBox includes a lot of axioms
where a metric convex diamond is applied to a concept. It can be speculated that the second
rule takes so much computation time because the entries in dataOfWeatherStation are only
provided in the first and last 5-minute intervals of the day. Thus, the algorithm has to inter-
polate the missing information for the rest of the day because of (ax6) and, therefore, adds
286 new entries per day and weather station. These new entries increase the number of com-
binations of inf:aBoxRole(?R, ?a, ?b, ?k) and inf:aBoxRole(?R, ?a, ?b, ?1). This
introduces more possible checks, which slows the reasoning process down. Thus, the most
productive optimisation of the algorithm would probably be to improve these checks.

An idea would be to store the intervals in which an individual occurs in a concept instead of
each time point. This would reduce the number of entries in the aBoxConcept and aBoxRole
predicates, as then at most | rep |/2 entries per combination of concept and individual or role
and pair of individuals are needed. This would be the case if the individual alternates be-
tween occurring and not occurring in the concept. However, these intervals might be subject
to change during the reasoning process as additional occurrences are derived. Therefore, in-
tervals and thus entries in aBoxConcept and aBoxRole , would need to be modified or fused,
which is currently not possible in Nemo. Hence, the ABox would include a large number of re-
dundant facts, which would negate the advantage of using intervals to store the occurrences.
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5 Conclusion

In this thesis, the reasoning algorithm for TEEH?’”‘S from Borgwardet, Forkel, and Kovtunova [5]
was implemented in the Datalog-based rule engine Nemo. It allows the completion of tempo-
ralised OWL ontologies. For this purpose, the extension of OWL with a new annotation prop-
erty to encode temporal information was proposed. Additionally, the necessary preprocessing
steps were discussed. The construction of the order on the diamond operators and the set
of representative time points was essential. Having constructed these crucial predicates, the
translation of the rules was straightforward.

The implementation was then evaluated on the completion of a synthetic ontology based
on weather data. The size of the input ABox was varied and the reasoning times were mea-
sured. Additionally, the impact of redundancies in the TBox, which arise during the reasoning
process, was analysed. The evaluation revealed that removing redundancies from the TBox is
crucial, as they significantly raise the reasoning time by a factor of 1.62 on average. Further-
more, an analysis of the portions of the overall reasoning time each individual rule took to
execute demonstrated that the conditions i € ®A(a) and i € &r(a,b,i) in rules A2 and A3 are
bottlenecks for the implementation’s performance. Overall, the evaluation showed promising
results, but the implementation is currently not viable for working on extensive datasets as it is
significantly slower than other established reasoners for similar, although atemporal DLs like
ELK 130

Therefore, in future work, this implementation could be revisited and revised once Nemo
supports the modification and deletion of existing entries in predicates. Optimisations like
the different encoding of time points suggested at the end of the previous chapter could be
investigated. Another fruitful approach might be to apply the same ideas used to optimise
the rules in the ELK reasoner [[13] to improve the TBox rules, as this should also improve the
performance if a larger TBox is input.

Furthermore, this implementation should be extended with a preprocessing step that nor-
malises the input ontology so that the users do not have to provide a normalised ontology
themselves. This task is not trivial because OWL 2 only supports annotation properties on the
granularity of axioms, not on the granularity of the individual concepts or roles within the ax-
iom. Therefore, first a new way to encode the temporal information in OWL 2 ontologies to
accommodate nested diamond operators would need to be proposed. However, this would
make the algorithm more accessible and, therefore, more viable in real-world applications.

Finally, a temporal extension of Datalog called DatalogMTL exists, which features metric tem-
poral operators. However, they are not convex [20]. Therefore, the relationship between
TeLH™"™ and DatalogMTL could be investigated.
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