
Faculty of Computer Science Institute of Theoretical Computer Science, Chair for Automata Theory

Efficient reasoning for lightweight
temporal description logics
Timon Bertold Hoschke
Born on: 21.08.2002 in ErfurtMatriculation number: 5037642

Bachelor’s Thesis
to achieve the academic degree
Bachelor of Science (B.Sc.)

First referee
Dr.-Ing. Stefan Borgwardt
Second referee
Prof. Dr. Markus Krötzsch

Submitted on: 06.08.2024



Statement of authorship
I hereby certify that I have authored this document entitled Efficient reasoning for lightweighttemporal description logics independently and without undue assistance from third parties. Noother than the resources and references indicated in this document have been used. I havemarked both literal and accordingly adopted quotations as such. There were no additionalpersons involved in the intellectual preparation of the present document. I am aware thatviolations of this declaration may lead to subsequent withdrawal of the academic degree.
Dresden, 06.08.2024

Timon Bertold Hoschke

Mobile User



Abstract

Many real-world processes, like the weather, are time-dependent, a dimension to data that isnot widely supported in ontology-based representations. Therefore, this thesis is dedicated toimplementing the reasoning algorithm from Borgwardt, Forkel, and Kovtunova, which decidesentailment for TELH c♢,lhs
⊥ , a lightweight and tractable temporal description logic, in the Datalog-based rule engine Nemo. The implementation works on normalised ontologies specified ina temporalised sublanguage of OWL 2 EL. Furthermore, the implementation is evaluated onan ontology using real-world weather data, which shows promising results but also suggestsspecific optimisations to make reasoning viable on large datasets.



Contents
Abstract 3

1 Introduction 5

2 Preliminaries 62.1 c♢n-Operators: Metric Linear-Time Temporal Logic Operators . . . . . . . . . . . . 62.2 TELH c♢,lhs
⊥ : A Lightweight Temporal Extension of ELH⊥ . . . . . . . . . . . . . . . . 8

2.3 A Completion Algorithm for TELH c♢,lhs
⊥ . . . . . . . . . . . . . . . . . . . . . . . . . . 92.4 The Web Ontology Language . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122.5 The Nemo Rule Engine . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142.5.1 An Example Reasoner in Nemo . . . . . . . . . . . . . . . . . . . . . . . . . . 16

3 An Implementation Of The Completion Algorithm 183.1 The Temporalisation of OWL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 183.2 Reading the TBox in . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 193.3 Translation of the TBox rules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 223.4 Reading the ABox in . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 243.5 Translation of the ABox rules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
4 A Performance Evaluation 274.1 Weather Data and the Test Ontology . . . . . . . . . . . . . . . . . . . . . . . . . . 274.2 The Test Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 294.3 Discussion of Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
5 Conclusion 34

Bibliography 35

4



1 Introduction
Basing query-answering technologies for ontology-based data on description logics (DLs) of-fers a crucial advantage over traditional databases: the ability to work with incomplete data.While databases are expected to contain all the information needed to answer queries, on-tologies can use reasoning algorithms to infer missing information. Thus, it might only benecessary to provide some basic facts and the background knowledge to derive the needednew information.In applications, data is often not only incomplete but also time-dependent: the weatherchanges, stock prices fluctuate, and a patient’s health evolves. This promising prospect hasled to high interest in temporalising existing DLs [3, 17] and obtaining tractable reasoningprocedures [2]. Temporal DLs extend classical DLs with temporal operators, often from lineartemporal logic (LTL) [2, 9]. Thus, they allow the modelling of temporal data by associating factswith time points at which they are valid. For example, givesBirth(cee, dee, 2002) specifies that
cee gave birth to dee in 2002 and the axiom −♢∃givesBirth.⊤ ⊑ BiologicalMother states thatsomeone who gave birth sometime in the past is a biological mother. Although this is alreadya powerful formalism, it does not yet allow for the modelling of the distance of events. Forexample, −♢HasFeaver ⊑ Sick is quite useless, as it states that someone who has had a fever inthe past will be sick from then on till the end of time. A more reasonable axiom would be tospecify that someone is sick between two measurements of a raised body temperature, whichare at most three days apart. To be able to make such statements, Borgwardt, Forkel, andKovtunova [5] proposed TELH c♢,lhs

⊥ , a lightweight temporal DL with metric, convex temporaloperators. In this DL, the example can be formulated as cc♢3HasFeaver ⊑ Sick . It is, therefore,also possible to work with incomplete information in the temporal dimension.Borgwardt, Forkel, and Kovtunova [5] propose a reasoning algorithm for TELH c♢,lhs
⊥ which de-cides entailment, but this procedure has yet to be implemented. Thus, as a step towards mak-ing queries on temporal ontologies possible, this thesis implements the reasoning algorithmfor TELH c♢,lhs

⊥ in the modern Datalog-based rule engine Nemo and evaluates its performance.First, the necessary background knowledge is provided in Chapter 2. It includes explanationsof TELH c♢,lhs
⊥ and the temporal operators it is based upon, as well as the completion algo-rithm itself. On the more technical side, Section 2.4 and Section 2.5 introduce the ResourceDescription Framework (RDF) and the OWL 2 Web Ontology Language (OWL 2), a standard for de-scribing ontologies, and the rule engine Nemo, respectively. Second, Chapter 3 describes theimplementation of the completion algorithm in Nemo, including preprocessing steps and thetranslation of the algorithm’s rules. Following that, Chapter 4 discusses the implementation’sperformance. The algorithm is benchmarked using an ontology-based on real-world weatherdata. Finally, Chapter 5 concludes this thesis by summarising the results and discussing pos-sible future work.

5



2 Preliminaries
This chapter first introduces the metric linear-time temporal logic operators mentioned in theintroduction. Then, based on them, the temporal description logic TELH c♢,lhs

⊥ is defined. Third,
the completion algorithm for TELH c♢,lhs

⊥ is presented, and a short overview of OWL is given.Next, Datalog and the rule engine Nemo are introduced. Finally, the chapter concludes with adiscussion of the implementation of another reasoner in Nemo.

2.1 c♢♢♢n-Operators: Metric Linear-Time Temporal Logic Operators

This section introduces the metric linear-time temporal logic operators, which are later usedto define the description logic TELH c♢,lhs
⊥ . LTL formulae are constructed over a finite set P ofpropositional variables. As in Borgwardt, Forkel, and Kovtunova [5], this section only considersformulae generated from the grammar rule φ ::= p | φ ∧ φ | φ ∨ φ |♢Iφ, where p ∈ P , and Iis an interval in Z. Negation and other logical connectives like implications do not need to betaken into account, because TELH c♢,lhs

⊥ does not permit them. Therefore, they are irrelevantto this thesis. Disjunction is the only exception, as it is necessary to define the metric convexdiamond operator. An LTL formula can be satisfied by an infinite sequenceW = (wi)i∈Z, where
wi ⊆ P , called an LTL-structure. Informally, each wi represents a time point, and p occurring in
wi denotes p as true at that moment. More formally, the semantics is defined as follows [5]:

W, i |= p iff p ∈ wi, W, i |= φ ∧ ψ iffW, i |= φ andW, i |= ψ,
W, i |=♢Iφ iff ∃k ∈ I : W, i+ k |= φ, W, i |= φ ∨ ψ iffW, i |= φ orW, i |= ψ

In order to clarify the following definitions, a few derived operators are introduced with n ≥
1 [5]:

±♢φ :=♢(−∞,∞)φ +♢φ :=♢[0,∞)φ −♢φ :=♢(−∞,0]φ

cc♢φ :=♢(−∞,0]φ ∧ ♢[0,∞)φ cc♢nφ :=
∨

k,m≥0
k+m=n−1

(♢[−k,0]φ ∧ ♢[0,m]φ)

The +♢ operator conveys the notion that φ will be true at some point in the future. Thus,this operator is also known as the "eventually" operator in classical LTL. The variant −♢ requires
φ to be true at some point in the past, while ±♢ requires that φ is true at some point in thepast or the future. The operator cc♢ can be used to express a convex closure of time points,as it necessitates that φ must be true at some point in the past and the future. Finally, theoperators cc♢n denote a metric variant of cc♢, stipulating that distinct occurrences of φ must beseparated by no more than n− 1 time points, thereby enclosing an interval of length n.

6



2 Preliminaries
For a more straightforward analysis of these operators, it is helpful to focus on the effect adiamond operator has when applied to a single propositional variable p. Thus, consider theset of time points at which ⋆♢p holds when given the set of time points at which p is true. ⋆♢acts as a placeholder for any one of the previously defined operators. In the following, •♢, †♢,and ‡♢will be used similarly as placeholders for different diamond operators. The usefulness ofthe following properties will become apparent when discussing the efficiency of the reasoningalgorithm.

Definition 1 ([5]). Consider the setsDc := { cc♢}∪{ cc♢i | i ≥ 1},D± := {+♢, −♢, ±♢}, andD := D±∪Dc ofdiamond operators. Each ⋆♢∈ D induces a function ⋆♢ : 2Z → 2Z with ⋆♢(M) := {i | WM , i |= ⋆♢p}for allM ⊆ Z , with the LTL-structure WM := (wi)i∈Z such that wi := {p} if i ∈ M , and wi := ∅otherwise.
As indicated above,M represents a set of time points at which p is true and ⋆♢(M) producesthe set of time points at which ⋆♢p holds. In the following, the parenthesis in ⋆♢(M) will beomitted for a cleaner presentation. Notice, if M is empty, ⋆♢M is empty as well, for any ⋆♢ ∈

D. For any non-empty M ⊆ Z, the following expressions are obtained, where maxM is thegreatest number in M and minM the smallest. Thus, maxM represents the furthest pointin the future at which p holds, and minM is the furthest point in the past. It is possible thatmaxM is∞ and minM is −∞.
±♢M = Z +♢M = (−∞,maxM ] −♢M = [minM ,∞) cc♢M = [minM ,maxM ]

cc♢1M =M cc♢nM = {i ∈ Z | ∃j, k ∈M with j ≤ i ≤ k and k − j < n}

The effect of some diamond operators is shown in Figure 1. There, the timeline marked with
Z represents the set of all time points. As an example, p is true at −3, −2, 0, and 4. Thus,
M = {−3,−2, 0, 4} = cc♢1M , which is illustrated with red dots on the Z-time line. Each followingrow visualises a set ⋆♢M for a different ⋆♢ ∈ D noted on the left, where each dot depicts anelement in ⋆♢M . Intervals of length > 1, within which ⋆♢p is inferred to hold, are marked with. Intervals of length 1 are not explicitly shown, as M ⊆ ⋆♢M always holds. For example,
cc♢3M is the set of time points at which p is true in intervals of length 3 or less. These intervalsare [−3,−2], [−2, 0], and [i, i] with i ∈M . Thus, cc♢3M = {−3,−2,−1, 0, 4}.

Z
−6 −5 −4 −3 −2 −1 0 1 2 3 4 5 6

M

±♢M

+♢M

−♢M

cc♢M

cc♢2M

cc♢3M

cc♢4M

minM maxM

Figure 1: A graphic representation of ⋆♢M for different ⋆♢∈ D withM = {−3,−2, 0, 4}

7



2 Preliminaries
Lemma 2 ([5]). The following ordered set (D,⊆), where id2Z is the identity function on 2Z, is ob-tained using the pointwise inclusion order ⊆ on the induced:

id2Z = cc♢1 ⊆ · · · ⊆ cc♢n ⊆ cc♢n+1 ⊆ · · · ⊆ cc♢ ⊆⊆

+♢

−♢

⊆

⊆
±♢

Lemma 3 ([5]). The set D is closed under composition ◦, pointwise intersection ∩, and pointwiseunion ∪, and for any ⋆♢, •♢∈ D these operators can be computed as:
⋆♢∩ •♢= inf(D,⊆){ ⋆♢, •♢} and ⋆♢◦ •♢= ⋆♢∪ •♢= sup(D,⊆){ ⋆♢, •♢}

where inf(D,⊆) denotes the infimum in (D,⊆), and sup(D,⊆) the supremum.
Thus, notice that diamond operators can be combined by ◦, ∩, and ∪ without leaving the set

D.

2.2 TELH c♢♢♢,lhs
⊥ : A Lightweight Temporal Extension of ELH⊥

This section defines the temporal description logic TELH c♢,lhs
⊥ using the diamond operatorsfrom above. The reader is assumed to be familiar with description logics (DLs). Otherwise, for ageneral introduction to DLs, one may refer to [16].

Syntax. LetNC ,NR, andNI be disjoint sets of concept, role, and individual names, respectively.
TELH c♢,lhs

⊥ concepts are built upon atomic concepts and roles, which, in turn, are recursivelycombined to form complex concepts, as seen in Table 1, where C and D denote concepts,
A ∈ NC , r, s ∈ NR, a ∈ NI , and ⋆♢ ∈ D. If a concept C does not contain subexpressions ofthe form ⋆♢D, it is syntactically an ELH⊥ concept and is therefore referred to as an atemporalconcept.A TELH c♢,lhs

⊥ ontology O is a finite set of axioms divided into a TBox T and an ABox A. ATBox is comprised of concept inclusions (CIs) C ⊑ D and role inclusions (RIs) r ⊑ s, where C is a
TELH c♢,lhs

⊥ concept,D is an atemporal concept, r is a temporal role, and s ∈ NR. D must be anatemporal concept, as allowing the occurrence of diamond operators on the right-hand side ofa CI would make the logic undecidable [2]. The concept equivalence C ≡ D is an abbreviationfor the CIs C ⊑ D andD ⊑ C . Similarly, for RIs. An ABox includes concept assertions A(a, i) androle assertions r(a, b, i), where A ∈ NC , r ∈ NR, a, b ∈ NI , and i ∈ Z.
Semantics. An interpretation I = (∆I , ·I) consists of a non-empty domain∆I ⊇ NI and an in-terpretation function ·I . This function assigns to each atomic conceptA ∈ NC a subsetAI ⊆ ∆I ,to each individual a an element aI from ∆I , and to each atomic role r ∈ NR a binary relation
rI ⊆ ∆I ×∆I . Such an interpretation, of course, does not include a temporal dimension and,therefore, needs to be modified as follows. A temporal interpretation J = (∆J , (Ii)i∈Z) con-sists of a domain∆J and a series (Ii)i∈Z of interpretations Ii = (∆J , ·Ii)with i ∈ Z. Intuitively,each of these interpretations represents the current “state” of the concepts/roles at each timepoint i. The formal definition of the semantics can be seen in Table 1.
J satisfies a CI C ⊑ D if for all i ∈ Z, CIi ⊆ DIi holds. Likewise, a RI r ⊑ s is satisfied by
J if rIi ⊆ sIi holds for all i ∈ Z. J satisfies a concept assertion A(a, i) if a ∈ AIi holds andsimilarly, a role assertion r(a, b, i) if (a, b) ∈ rIi holds. In general, J satisfying an axiom α iswritten as J |= α. If J satisfies all axioms in an ontology O, J is called a model of O (written
J |= O). An ontology O is consistent if it has a model, and it entails α (written O |= α) if allmodels of O satisfy α. An inconsistent ontology O has no models, which is true iff O |= ⊤ ⊑ ⊥.Therefore, the completion algorithm from Borgwardt, Forkel, and Kovtunova [5] implementedin this paper focuses on deciding entailment analogous to reasoners for similar DLs [13]. In
ELH⊥ [4] as well as TELH c♢,lhs

⊥ [5], this is a tractable decision problem.

8



2 Preliminaries
The semantics for temporal roles ( ⋆♢r)Ii and concepts ( ⋆♢C)Ii might seem rather convoluted,but they are actually significantly more intuitive than they appear. First, note that the currenttime point is i. Second, observe that the set {j | d ∈ CIi}, which will be denoted asN , is almostidentical toM from Definition 1. M consists of time points at which a propositional variable istrue, and N does essentially the same in the context of DLs, as it collects the time points j atwhich an element d is in CIj . Thus, ⋆♢N is comprised of all the time points at which d is in ⋆♢C .Now, the condition i ∈ ⋆♢N checks whether d is currently in ⋆♢C or not. Thus, one could imagineapplying a diamond operator to a concept as a figurative “stretching effect” on occurrences ofelements along the time axis. So, the occurrence of element d inCIi is inferred (“stretched out”)to other time points through the application of ⋆♢ to C . For example, if d currently satisfies C ,it will, from now on, always satisfy −♢C in the future. Its occurrence got “stretched out” to everyfuture time point. Thus, the concept (−♢C)Ii contains all elements currently in CIi in additionto all the elements that were at some point in the past in C (see Figure 1). The interpretationfunction ·Ii works analogously for temporal roles.The algorithm requires an ontology’s CIs/RIs to be in the normal form:

⋆♢A ⊑ B, A1 ⊓A2 ⊑ B, ⋆♢r ⊑ s, ⋆♢A ⊑ ∃r.B, ∃r.A ⊑ B,

where ⋆♢ ∈ D, A,A1,A2,B ∈ NC ∪ {⊤,⊥}, and r, s ∈ NR. However, this normalisation comeswithout loss of generality, as complex concepts can be simulated by introducing fresh conceptand role names as abbreviations. For example, (±♢A)⊓B⊓C ⊑ D can be simulated by ±♢A ⊑ A′,
B ⊓ C ⊑ E and A′ ⊓ E ⊑ D.Axioms consisting only of atemporal concepts and roles such as A ⊑ B or r ⊑ s can betreated as their equivalent temporal counterparts cc♢1A ⊑ B and cc♢1r ⊑ s, respectively.Given Lemma 2, the notion of a unique strongest axiom entailed by an ontology O is easilyobtained. It is the axiom ⋆♢A ⊑ B ∈ O with ⋆♢◦ •♢= ⋆♢, for any other •♢A ⊑ B ∈ O. For example,
O |= ±♢A ⊑ B impliesO |= +♢A ⊑ B andO |= −♢A ⊑ B, as +♢A ⊑ ±♢A and −♢A ⊑ ±♢A. Thus, ±♢A ⊑ Bis the unique strongest axiom and −♢A ⊑ B and +♢A ⊑ B are redundant in this case. This notionwill become important when discussing redundant entailments made by the algorithm.

2.3 A Completion Algorithm for TELH c♢♢♢,lhs
⊥

This section presents the reasoning algorithm from Borgwardt, Forkel, and Kovtunova [5], theimplementation of which will be discussed in Chapter 3. The procedure works by repeatedly

Table 1: Syntax and semantics of TELH c♢,lhs
⊥

Syntax Semantics
Roles:Atomic role r rIi ⊆ ∆J ×∆J

Temporal role ⋆♢r {(d, e) ∈ ∆J ×∆J | i ∈ ⋆♢{j | (d, e) ∈ rIj}}Concepts:Atomic concept A AIi ⊆ ∆J

Temporal concept ⋆♢C {d ∈ ∆J | i ∈ ⋆♢{j | d ∈ CIj}}Top ⊤ ∆J

Bottom ⊥ ∅Conjunction C ⊓D CIi ∩DIi

Existential restriction ∃r.C {d ∈ ∆J | ∃e ∈ CIi : (d, e) ∈ rIi}Individuals:Named Individual a aJ ∈ ∆J

9



2 Preliminaries
applying the rules from Figure 2 to derive new CIs, RIs and facts from an ontology O, thusiteratively completing it. However, it is impossible to derive all subsumptions and facts, asboth D and Z (representing all time points) are infinite. Furthermore, two facts may also beseparated by an arbitrarily large amount of time points depending on the chosen scale. If thealgorithm cannot differentiate between relevant and irrelevant time points, it would need toaccess every time point, therefore increasing its runtime and memory usage. This might evenmake the algorithm infeasible for practical use.Notice, on the other hand, that the only two diamond operators that can be the result ofthe operations ∩ and ◦ without appearing in their input are cc♢ and ±♢. Namely, +♢ ∩ −♢= cc♢and +♢ ◦ −♢= ±♢. Therefore, the infinite number of diamond operators can be bypassed byrestricting the rule application to the operators that appear in the ontology, in addition to
±♢ and cc♢. Similarly, the infinite amount of time points must be restricted so that the proce-dure can be applied to O. First, consider tem(A), the set of all time points i appearing in A.Next, consider the intervals between neighbouring elements from tem(A) and the intervals
(−∞,min(tem(A))−1] and [max(tem(A))+1,∞). Now, an arbitrary number k can be chosenfrom such an interval [i, j] to represent each number within the interval, denoted as |l| := kfor all l ∈ [i, j]. The set of all representative time points is constructed as follows.

rep(A) := {|i| | i ∈ Z \ tem(A)} ∪ tem(A)

By restricting all assertions to this finite set rep(A), the infiniteness of Z and the arbitrarilylarge gaps between entries in the ABox are dealt with.As in Borgwardt et al. [5], for a cleaner representation, ⊤ and ⊥ will be treated like conceptnames, thereby allowing assertions of the form ⊤(a, i). For all concepts A ∈ NC , roles r ∈ NRand Individuals a, b ∈ NI , the abbreviations:
A(a) := {i ∈ rep(A) | A(a, i) ∈ O}
r(a, b) := {i ∈ rep(A) | r(a, b, i) ∈ O}

T1
cc♢1A ⊑ A

T2
±♢A ⊑ ⊤

T3
cc♢1r ⊑ r

T4 ⋆♢A1 ⊑ A2 •♢A2 ⊑ A3

( ⋆♢◦ •♢)A1 ⊑ A2

T5 ⋆♢r1 ⊑ r2 •♢r2 ⊑ r3
( ⋆♢◦ •♢)r1 ⊑ r3

T6 ⋆♢A ⊑ A1 •♢A ⊑ A2 A1 ⊓A2 ⊑ B
( ⋆♢∩ •♢)A ⊑ B

T7
∃r.⊥ ⊑ ⊥

T8 ⋆♢A ⊑ ∃r.A1 •♢r ⊑ s †♢A1 ⊑ B1 ∃s.B1 ⊑ B
⋆♢A ⊑ B

T8’ ⋆♢A ⊑ ∃r.A1 •♢r ⊑ s †♢A1 ⊑ B1 ∃s.B1 ⊑ B ( •♢∩ †♢) ∈ D±

(( •♢∩ †♢) ◦ ⋆♢)A ⊑ B

A1
⊤(a, i)

A2 i ∈ ⋆♢A(a) ⋆♢A ⊑ B
B(a, i)

A3 i ∈ ⋆♢r(a, b) ⋆♢r ⊑ s
s(a, b, i)

A4 A1(a, i) A2(a, i) A1 ⊓A2 ⊑ B
B(a, i)

A5 r(a, b, i) A(b, i) ∃r.A ⊑ B
B(a, i)

Figure 2: Completion rules for TELH c♢,lhs
⊥ ontologies [5]

10



2 Preliminaries
are defined. Thus, A(a) denotes the set of all time points at which a is inA, and ⋆♢A(a) refers tothe set of time points at which a is inferred to satisfy ⋆♢A (given the assertions in A, analogousto N from Section 2.2).
A,A1,A2,A3,B,B1 in the rules from Figure 2 are allowed to be instantiated by (normalised)
ELH⊥ concepts, ⊤ or ⊥ fromO, r, r1, r2, r3, s by role names fromO, ⋆♢, •♢, †♢by cc♢, ±♢or elementsofD occurring inO, a, b by individual names fromO, and i by values from rep(A), such that theresulting axioms are in normal form [5].The rules in Figure 2 consist of two parts. The preconditions of a rule (above the horizontalline) specify what needs to be satisfied so that the conclusion (below the horizontal line) canbe added to the ontology O if the concluded fact or assertion is not already in O.Also, note that the rules having CIs or RIs as a conclusion might produce redundancies be-cause of the order of the diamond operators (Lemma 2). Consider the following example:
Example 1. The onology O consists of the following axioms:
(ax1): cc♢1A ⊑ B (ax2): cc♢15B ⊑ C (ax3): ±♢B ⊑ D1 (ax4): ±♢B ⊑ D2 (ax5): D1 ⊓D2 ⊑ C.

Using the rules from Figure 2, the following derivations can be made:
cc♢15A ⊑ C by T4 on (ax1) and (ax2) (2.1)

±♢B ⊑ C by T6 on (ax3), (ax4) and (ax5) (2.2)
±♢A ⊑ C by T4 on (ax1) and (2.2) (2.3)

These derivations make (ax2) and the CI cc♢15A ⊑ C redundant, as in both cases ±♢ is the thestronger operator. Consequently, ±♢B ⊑ C already implies cc♢15B ⊑ C and ±♢A ⊑ C alreadyimplies cc♢15A ⊑ C .
Thus, to circumvent these redundancies, a derived CI ⋆♢A ⊑ B is only added to O if there isno other CI •♢A ⊑ B inO or, otherwise, if there already exists such a CI inO, then the existing CIis modified by replacing the diamond operator with ( ⋆♢◦ •♢). Note, however, that this does notnecessarily have to change the existing CI. Hence,O always includes only the unique strongestaxiom of the form ⋆♢A ⊑ B for any two concepts, A and B. RIs are handled in the same way.The T(Box) rules implement the semantics of base cases and constructors in the context ofCIs and RIs. Intuitively, T1 and T3 encode the meaning of the cc♢1-operator and, together withthe selective addition or modification of CIs/RIs, "lay the foundation" for the semantics of di-amond operators. T2 derives the trivial subsumptions that ⊤ must subsume every concept.T4 and T5 encode the semantics of subsumptions. The diamond operator of the conclusion,being the composition of the diamond operators from the preconditions, is also quite intuitiveif one again imagines the application of diamond operators to concepts as "stretching occur-rences of elements in the concept along the time axis." First, ⋆♢ “stretches” the occurrences ofelements in A1, and then •♢ “stretches” them again if it is a stronger operator. The meaning ofconjunctions is encoded in rule T6, and it also makes intuitive sense that the weaker of the twoinput diamond operators is applied to the conclusion. T8 encodes the semantics of existentialrestrictions. T8’ is a special case of T8, which might produce stronger axioms. This happenswhen •♢and †♢are both non-convex operators and •♢r(a, b)∩ †♢A1(b), for any two elements a, b,must either be empty or an interval where at least one of the boundaries is∞ or −∞. Thus,the temporal operator of the resulting axiommust be non-convex as well. T7, together with T8and T8’ propagates subsumptions by⊥ in existential restrictions. Thus, enforcing that conceptswhich are subsumed by existential restrictions involving an empty concept must themselvesbe empty.The A(Box) rules apply the TELH c♢,lhs

⊥ semantics to assertions with concrete named individu-als. First, A1 derives the trivial fact that all individuals are elements of ⊤ at all times. A2 and A3implement the meaning of subsumptions. A4 and A5 encode the semantics of the construc-tors conjunction and existential restriction, respectively.

11



2 Preliminaries
Example 2. Consider the ontology O describing observational weather data. The elementsin the domain are cities. The precipitation is measured in 10-minute intervals, and momentswith rain are registered in the concept Rain . The windspeed is measured every minute, and alocation gets inserted into the concept HighWindspeed if the windspeed exceeds 75 km/h. TheTBox T of O consists of the following axioms.

(ax1): cc♢11Rain ⊑ Rain (ax2): cc♢20HighWindspeed ⊑ Storm

(ax3): cc♢1WeatherPhenomenon ⊑ Rain (ax4): cc♢1WeatherPhenomenon ⊑ HighWindspeed

(ax5): Rain ⊓ Storm ⊑ Thunderstorm.

It is assumed that if rain fell during two consecutive measurements, it was raining as well inbetween. Additionally, it is assumed that if the windspeed exceeded 75 km/h twice within 20minutes, there was a storm above the city. The following axioms can be derived, although thelist is not exhaustive.
cc♢1Storm ⊑ Storm by T1 (2.4)

±♢Thunderstorm ⊑ ⊤ by T2 (2.5)
cc♢20WeatherPhenomenon ⊑ Storm by T4 on (ax2) and (ax4) (2.6)

cc♢1WeatherPhenomenon ⊑ Thunderstorm by T6 on (ax3), (ax5) and (2.6) (2.7)
The ABox A of O consists of the following assertions.

(ax6): Rain(Berlin, 1) (ax7): Rain(Berlin, 6)
(ax8): HighWindspeed(Berlin, 4) (ax9): HighWindspeed(Berlin, 21).

tem(A) includes the elements 1, 4, 6, and 21. Thus, rep(A) = {−1, 1, 2, 4, 5, 6, 7, 21, 34} where
−1, 2, 5, 7, and 34 are representatives of the intervals between the elements from tem(A). Thefollowing facts can be derived.

Rain(Berlin, 2) by A2 on (ax1), (ax6), and (ax7) (2.8)
Rain(Berlin, 4) by A2 on (ax1), (ax6), and (ax7) (2.9)
Rain(Berlin, 5) by A2 on (ax1), (ax6), and (ax7) (2.10)

Storm(Berlin, 4) by A2 on (ax2), (ax8), and (ax9) (2.11)
Thunderstorm(Berlin, 4) by A4 on (ax5), (2.9), and (2.11) (2.12)

This example illustrates how the algorthim deals with temporal gaps in the ABox.

2.4 The Web Ontology Language

Tools like Protégé [18] already exist that can be used to construct ontologies in OWL. Thesetools are convenient, and this standard is a well-established method of specifying ontologiesin a machine-readable format. Therefore, the algorithm from Borgwardt, Forkel, and Kov-tunova [5] will be implemented to use ontologies as input, which are specified in a sublanguageof OWL 2 corresponding to TELH c♢,lhs
⊥ . OWL is an extension of the RDF. Thus, this section pro-vides a brief overview of RDF, some of its extensions, and its relation to DLs.The World Wide Web Consortium (W3C) published a first RDF specification in 1999. Althoughthe framework was initially intended to represent metadata of web resources, it has evolvedover the years into amore general formal language for describing structured information, mak-ing the semantics of a resourcemachine-readable [11, Ch. 2]. Themain idea is to represent theinformation in the form of subject-predicate-object statements, where the subject and objectare resources or simple values, and the predicate describes the relationship between them.

12



2 Preliminaries

Table 2: The correspondences between OWL 2 EL and ELH⊥ [11]
ELH⊥ OWL 2 EL

Top ⊤ owl:ThingBottom ⊥ owl:NothingConcept A (A, rdf:type, owl:Class)Role r (r, rdf:type, owl:ObjectProperty)Individual a An individual is just a resource, which may beattributed to a class: (a, rdf:type, A)Concept Inclusion C ⊑ D (C, rdfs:subClassOf, D)Role Inclusion r ⊑ s (r, rdfs:subPropertyOf, s)Axiom (in general) α e.g. C ⊑ D The axiom α is represented by a blank node _:1:
(_:1, rdf:type, owl:Axiom),
(_:1, owl:annotatedSource, C),
(_:1, owl:annotatedProperty, rdfs:subClassOf),
(_:1, owl:annotatedTarget, D)Existential Restriction ∃r.C (_:1, rdf:type, owl:Restriction),
(_:1, owl:onProperty, r),
(_:1, owl:someValuesFrom, C)Conjunction C ⊓D ⊓ . . . (_:1, owl:intersectionOf, _:2),
(_:2, rdf:first, C), (_:2, rdf:rest, _:3),
(_:3, rdf:first, D),. . .Here the blank node _:1 represents theconjunction of the classes within the linked liststarting at _:2

These tuples (subject, predicate, object) are also called triples and comprise an RDF document.Such a document thus describes a directed, labelled graph, where the nodes represent re-sources or values, and the edges represent the relationships [11, Sec. 2.2]. InternationalizedResource Identifiers (IRIs) are used to unambiguously label resources and relationships [11, 6].A node can also refer to a concrete data value like a string or a number. In that case, the noderepresents a so-called literal and is labelled with the specific value [11, Sec. 2.1]. A third spe-cial kind of node is a blank node, which is used to represent resources without a specific IRI.They are used as distinct but anonymous placeholders when modelling many-valued relation-ships [11, Sec. 2.3.4].The RDF Schema (RDFS) extends RDF by providing a vocabulary for describing classes andproperties, where classes correspond to concepts and properties to roles. Thus, RDFS en-ables the creation of ontologies. Therefore, it is called an ontology language [11, Sec. 2.4]. AsRDFS has its limitations, OWL was developed to create more expressive ontologies [11, Ch. 4].The current version is OWL 2. OWL 2 EL is a tractable sublanguage of OWL 2, which corre-sponds to, as its name suggests, the DL EL++ (an extension of ELH⊥ [4]) and is used as thebase language before “temporalising” ontologies. Table 2 shows how syntactic elements from
ELH⊥ are constructed as triples in OWL 2 EL. The prefixes rdf:, rdfs: and owl: are usedas abbreviations for the namespaces http://www.w3.org/1999/02/22-rdf-syntax-ns#,
http://www.w3.org/2000/01/rdf-schema# and http://www.w3.org/2002/07/owl#,respectively [11].It is important to note that owl:Axiom s are used to encapsulate more complex ax-ioms. This is unnecessary for simple CIs, as seen in Table 2. However, OWL per-mits the addition of annotation properties like comments or labels to axioms. To sat-isfy this requirement, the simple CI is represented by a blank node _:1 and a new

13

http://www.w3.org/1999/02/22-rdf-syntax-ns#
http://www.w3.org/2000/01/rdf-schema#
http://www.w3.org/2002/07/owl#


2 Preliminaries
triple (_:1, rdfs:comment, "This is a generic comment") is added to the ontology.The same can be done for RIs. Additionally, complex concepts like existential restrictionsare represented by their blank node within CIs. For example, the CI ∃r.C ⊑ D mightbe encoded as (_:1, rdf:type, owl:Restriction), (_:1, owl:onProperty, r),
(_:1, owl:someValuesFrom, C), (_:1, rdfs:subClassOf, D).

2.5 The Nemo Rule Engine

Nemo is one of the most recent additions to the vast field of Datalog-based rule engines [12,14]. As such, this section provides a brief and informal overview of pure Datalog before divinginto Nemo’smore specific Datalog dialect and providing an example of an implementation of areasoning algorithm in Nemo.Datalog is a declarative database query language which essentially adapts the logic pro-gramming paradigm to relational databases [1, 7]. Similarly to languages like Prolog, Datalogprograms consist of a finite set of “if-then” rules of the form:
L0 ← L1, . . . ,Ln.

The rule can be read as “if L1 and . . . and Ln, then L0.” Each Li is an atom pi(t1, . . . , tki),and ti is a term. Terms may be constants or variables. An essential feature of Datalog is thatit permits recursion. The left-hand side of ← is called the rule’s head, and the right-handside is called the rule’s body, which may be empty. If it is, the rule is called a fact. Thereby,facts denote (analogous to an ABox) assertions of concrete information, while deductive rulesrepresent relations (analogous to TBox axioms), which make it possible to deduce facts fromother facts [7]. An example program looks like the following:
parentOf (alice, bob)←
parentOf (bob, dee)←

grandparentOf (Z,X)← parentOf (Z,Y ), parentOf (Y ,X)

where alice , bob and dee are constants, and X , Y and Z are variables.
parentOf (alice, bob) and parentOf (bob, dee) are this example program’s facts, which denote
that alice is a parent of bob and bob , in turn, is a parent of dee . Using the rule

grandparentOf (Z,X)← parentOf (Z,Y ), parentOf (Y ,X),

the fact grandparentOf (alice, dee) can be computed.
There exist several different but equivalent approaches to defining the semantics of Datalogprograms. The first approach ismodel theoretic, where the rules are viewed as logical sentencesthat specify which properties the result must satisfy. The unique result is then the smallest setof facts, which makes the sentences true. The second approach is proof-theoretic, where factsare in the result if a proof of them can be obtained from the rules. The fixpoint approachdefines the semantics of a program as a particular solution of a fixpoint equation [1].Although Datalog and logic programming are closely related, some key distinctions exist.First, differing underlying assumptions are made about how the data is supplied for a pro-gram. A logic program is assumed to contain all the necessary facts and deductive rules withinitself [7]. On the other hand, Datalog programs are assumed to run on a database, thus hav-ing a comparatively large number of facts and fewer rules. Second, logic programming allowsfunction symbols, for example, to represent complex data structures such as lists, whereasDatalog does not permit them [1].

14



2 Preliminaries
The decision problem for Datalog is as follows. Given a Datalog program split into a set offacts and a set of rules with non-empty bodies and a set of atoms without variables, do theatoms follow from the program? Keeping the set of facts fixed, whereas the set of rules and theset of atoms are inputs (the so-called data complexity), this problem is P-complete [8]. Using therules and atoms as input while keeping the set of facts fixed (the so-called program complexity)results in Datalog being ExpTime-complete [8]. However, introducing arithmetic constraints [8]or tuple generation [15] (existential rules) makes query answering undecidable.In Nemo’s Datalog dialect, the program from above would look like this:
1 parentOf(alice, bob) .
2 parentOf(bob, dee) .
3 grandparentOf(?Z, ?X) :- parentOf(?Z, ?Y), parentOf(?Y, ?X) .

In this simple case, the syntax looks almost identical to pure Datalog. The few differencesare that all rules end with . , variables are prepended with ? , and :- replaces ← . In addi-tion, Nemo increases its syntax’s expressivity with several valuable features. The most crucialfeatures used in the implementation in Chapter 3 are listed below.Nemo’s support for importing external data as predicates, especially ontologies specified inOWL 2, from files in formats such as RDF/XML, Turtle, N-Triples, and CSV is an essential feature.Of course, it also allows the export of predicates [12].
1 @import triple :- rdf{resource="example.ttl"} .
2 @export result :- csv{resource="result.csv"} .

Although Nemo does not allow the definition of one’s own function symbols, it supplies anumber of built-in functions. For example, entries can be cast from one datatype to anotherwith functions like INT(X) or STR(X) . More complex string operations can be accomplished
with START(X, Y) , specifying if X starts with Y , SUBSTR(X, i) , returning the substring of X
starting at index i , and several more [12]. It is also possible to add filters to rules, makingstatements like the subsequent one possible.

1 primarySchoolPupil(?X) :- pupil(?X), schoolYear(?X, ?year), ?year < 5 .

This rule collects all primary school pupils from all students.Additionally, Nemo supports the generation of new elements within so-called existential rules,which stipulate that a value exists but not what it exactly is. More specifically, this creates blanknodes (also nulls or named nulls), distinct but anonymous placeholders [12]. For example, thefollowing program generates unique identifiers for students.
1 student(!Id, ?Name, ?DateOfBirth) :-
2 personalInfo(?Name, ?DateOfBirth), enrolled(?Name) .

Furthermore, Nemo allows the use of negations within stratified programs. This means thatatoms may be negated as long as they are not involved in recursive dependency cycles [12].To negate a predicate, it is prefixed with ∼ .Similar to the database language SQL,Nemo supports aggregates, for example, to determinethe tuple containing the maximal value within a predicate [12]. For example:

15



2 Preliminaries

1 pupil("cee") .
2 pupil("dee") .
3 age("cee", 7) .
4 age("dee", 6) .
5 eldestPupil(?X, #max(?age)) :- pupil(?X), age(?X, ?age) .

After the program’s execution, the predicate eldestPupil contains the tuple ("cee", 7) .
Crucially, Nemo does not support the modification or removal of tuples from any predicates.This must be taken into consideration in the TELH c♢,lhs

⊥ completion algorithm implementationbecause the algorithm originally envisages the modification of diamonds added to CIs and RIs,as discussed in Section 2.3.
2.5.1 An Example Reasoner in Nemo

The Knowledge-Based Systems research group at TU Dresden, which developed Nemo, pro-vides an online demonstration1 of implementing the rules from the ELK reasoner. These rulesconstitute a completion algorithm for ontologies in EL+
⊥ [13], which is equivalent to ELH⊥, ex-cept that it also allows the composition of roles. These rules are similar to those in Figure 2,but as the input ontologies are specified in OWL 2 EL triples (see Section 2.4), they are not di-rectly applicable. The nested structures which encode DL constructors like conjunctions (seeTable 2), thus, need to be resolved before the rules become applicable. The example coversthe necessary preprocessing steps to normalise the input ontology. As the implementation inChapter 3 faces the same issue, but in a less pronounced way, some of these steps/ideas arecarried over, which is why the example is included here.The preprocessing starts by collecting all classes which appear in the input.

1 ClassObject(owl:someValuesFrom) .
2 ClassObject(rdf:first) .
3 ClassObject(rdfs:subClassOf) .
4 ClassObject(owl:equivalentClass) .
5 ClassSubject(rdfs:subClassOf) .
6 ClassSubject(owl:equivalentClass) .
7 class(?O) :- TRIPLE(?X, ?P, ?O), ClassObject(?P) .
8 class(?X) :- TRIPLE(?X, ?P, ?O), ClassSubject(?P) .

Here, the predicates ClassObject and ClassSubject are defined. They contain the in-formation for which OWL/RDFS/RDF properties a class appears as the object or as the subject,respectively. The predicate class then collects all appearing classes. Thereby, it does not dif-ferentiate between classes labelled with IRIs and blank nodes representing complex classes.The next step is to mark blank nodes as auxiliary classes. Consider existential restrictions,for example.
1 synEx(?Y,?P,?X), auxClass(?X) :-
2 TRIPLE(?X, owl:someValuesFrom, ?Y), TRIPLE(?X, owl:onProperty, ?P) .

This rule accumulates all existential restrictions in the predicate synEx and marks ?X asan auxiliary class, as the blank node represents the restriction. With all the auxiliary classesmarked as such, the classes “named” with IRIs can be collected. They are equivalent to atomicconcepts.
1 nf:isMainClass(?X) :- class(?X), ∼auxClass(?X) .

1https://tools.iccl.inf.tu-dresden.de/nemo/#

16

https://tools.iccl.inf.tu-dresden.de/nemo/#


2 Preliminaries
Now, the existential restrictions synEx(?Y,?P,?X) can recursively be normalised. This is

necessary because the class denoted by ?Y might be an auxiliary class itself. The followingrules are used for this purpose.
1 repOf(?X,?X) :- nf:isMainClass(?X) . % keep main classes unchanged
2 synExRep(?X,?P,?Rep) :- synEx(?Y,?P,?X), repOf(?Y,?Rep) .
3 nf:exists(!New,?P,?Rep) :- synExRep(?X,?P,?Rep) .
4 repOf(?X,?N) :- synExRep(?X,?P,?Rep), nf:exists(?N,?P,?Rep) .

Line 1 represents the “base case” of the repOf predicate, thereby stating that each “atomic”
class represents itself. Then, in line 2, synExRep collects all existential restrictions and re-
places ?Y with the class it represents. In line 3, all the normalised existential restrictions arecollected. nf: is an abbreviation for the namespace http://rulewerk.semantic-web.o
rg/normalForm/. The use of !New guarantees that each normalised existential restriction isrepresented by a unique identifier. The use of an existential rule is not a problem for the termi-nation of this program, as Nemo only creates a new tuple per normalised existential restriction.Finally, line 4 contains the “recursive case” where the previous blank node is registered as therepresentative of the newly created one. Note that the preprocessing of conjunctions followsthe same principles; thus, repOf also contains blank nodes and the conjunctions they repre-sent.The marking of classes and the division into “atomic” and auxiliary classes are carried overto the implementation in Chapter 3. Otherwise, the preprocessing can be simplified. Thepreprocessing in the ELK example also contains some more steps, but they are less relevantfor the later implementation.Next, two examples should suffice to show how the rules specified in the ELK reasoner canbe translated into Nemo syntax. First the rule [13]

R0
init(C)
C ⊑ C

is translated into Nemo syntax as
1 inf:subClassOf(?C,?C) :- init(?C) .

where inf: is an abbreviation for the namespace http://rulewerk.semantic-web.org
/inference/. Thus, inf:subClassOf should contain the inferred subsumptions. The secondexample is the more complex rule [13]

R+
⊓
C ⊑ D1 C ⊑ D2

C ⊑ D1 ⊓D2
: D1 ⊓D2 occurs negatively in O.

Its equivalent in Nemo syntax is the following:
1 inf:subClassOf(?C,?Y) :-
2 inf:subClassOf(?C,?D1), inf:subClassOf(?C,?D2),
3 nf:conj(?Y,?D1,?D2), nf:isSubClass(?Y) .

A (complex) concept C negatively appearing in an ontology means an axiom D ⊑ E exists,where C is a syntactic subexpression ofD [13]. The exact meaning of init(C) and the concreteideas behind each of these rules are not relevant. Nevertheless, it should be evident that onceall the necessary predicates are created, the translation of the rules is relatively straightfor-ward.

17

http://rulewerk.semantic-web.org/normalForm/
http://rulewerk.semantic-web.org/normalForm/
http://rulewerk.semantic-web.org/inference/
http://rulewerk.semantic-web.org/inference/


3 An Implementation Of The
Completion Algorithm

This chapter discusses the implementation of the completion algorithm for TELH c♢,lhs
⊥ from [5]in the Nemo rule engine. In this implementation, the whole reasoning process is divided intotwo parts. First is the computation of all possible entailments within the TBox of the providedontology. Second, the program uses the completed TBox to deduce all possible facts fromthe ABox. This can be done, as the TBox reasoning is entirely independent of the result fromthe ABox reasoning, and the ABox’s exhaustive completion depends on the completed TBox.Each part also requires some preprocessing in order to enter the provided data correctly intopredicates.

3.1 The Temporalisation of OWL

Section 2.4 described the general syntax of the OWL 2 EL standard, which originally corre-sponds to the atemporal DL EL++ [6]. To encode the subsumption ±♢C ⊑ D, one would, intheory, need to add a fourth entry to the triple (C, rdfs:subClassOf, D). However, thename triple already makes clear that this would break the standard. Thus, any subsumptionincluding a temporal concept cannot be directly added as a triple into an OWL ontology. In-stead, the subsumption is encapsulated in an owl:Axiom (see Table 2) to keep the encodingstandard-compliant. The same applies to individuals which have time points attached to theiroccurrences in classes. OWL 2 EL allows the addition of user-defined annotation propertiesto axioms. They get attached as another triple (_:1, exampleProperty, "This is a new
annotation Property"), where _:1 is the blank node representing the owl:Axiom. Note thatthe standard also permits the attachment of multiple annotation properties to one axiom.Thus, ABox assertions where the same individual satisfies the same concept at several pointsin time can be encoded as well. The structure of a temporal axiom ±♢C ⊑ D is visualised inFigure 3.

18



3 An Implementation Of The Completion Algorithm
C

owl:Class

rd
f:
ty
pe

D

rdf:type rd
fs
:s
ub
Cl
as
sO
f

_:1

owl:annotatedSource

owl
:an

not
ate

dTa
rge

t
"+-"

temp:temporalProperty

owl:annotatedProperty

Figure 3: The structure of a temporal axiom ±♢C ⊑ D in an OWL-compliant format
The chosen name for the annotation property is temp:temporalProperty . In an overload-ing manner, this property is used to encode the temporal operators as well as the time pointsof occurrences of individuals in classes. The value of this property is a string representing thediamond operator if it is attached to a CI/RI or an integer if it is attached to an owl:Axiomencapsulating the occurrences of an individual in a class.Notice that the operator ±♢ is encoded as “+-” in Figure 3. The remaining operators areencoded in a similar fashion, as can be seen in Table 3. The naming is chosen arbitrarily, butthis is an easy, unambiguous, and concise way to do it.This simple encoding is only possible as the TBox is required to be normalised. For example,to encode (±♢A) ⊓ (+♢B) ⊓ (∃( cc♢r).C) ⊑ D, the temporal operators would need to be attachedto the individual concepts/roles within the axiom, instead of the axiom as a whole.

3.2 Reading the TBox in

This section continues where Section 2.5.1 left off by discussing the preprocessing steps nec-essary to read the TBox in from an OWL ontology. As mentioned there, the code snippetmarking all classes is carried over.
1 ClassObject(owl:someValuesFrom) .
2 ClassObject(rdfs:subClassOf) .
3 ClassObject(owl:equivalentClass) .
4 ClassSubject(rdfs:subClassOf) .
5 ClassSubject(owl:equivalentClass) .
6 class(?O) :- triples(?X, ?P, ?O), ClassObject(?P) .
7 class(?X) :- triples(?X, ?P, ?O), ClassSubject(?P) .
8
9 property(?R) :- triples(?R, rdf:type, owl:ObjectProperty) .

Table 3: The diamond operators and their corresponding comments
Diamond Operator Comment

±♢ “+-”
+♢ “+”
−♢ “-”
cc♢ “con”
cc♢n “cn”, e.g. cc♢4 is encoded as “c4”

19



3 An Implementation Of The Completion Algorithm
The only addition here is that properties are also marked as such. The rest of the prepro-cessing of conjunctions and existential restrictions can be simplified as this algorithm expectsalready normalised ontologies as input. For example, conjunctions can be marked and col-lected directly, instead of first having to completely deconstruct the nested list representingthe conjunction (see Table 2).
1 conj(?idConj, ?C1, ?C2), auxClass(?idConj) :-
2 triples(?idConj, owl:intersectionOf, ?idFirst), triples(?idFirst, rdf:first, ?C1),
3 triples(?idFirst, rdf:rest, ?idRest), triples(?idRest, rdf:first, ?C2) .

Notice that this rule also accumulates the blank nodes representing auxiliary classesin the predicate auxClass . The same goes for existential restrictions in the predicate
existRestrict . Now, “main” classes are marked the same way as seen in Section 2.5.1.

1 nf:isMainClass(?X) :- class(?X), ∼auxClass(?X) .

From here on out, the preprocessing differs from the ELK example, as now axioms needto be deserialised, and their attached annotation properties need to be taken into account,which previously could safely be ignored. The first step is to collect all temporal axioms.
1 tempAxiom(?tempOp, ?C, rdfs:subClassOf, ?D), appearingTempOp(?tempOp) :-
2 triples(?id, rdf:type, owl:Axiom),
3 triples(?id, owl:annotatedSource, ?C),
4 triples(?id, owl:annotatedTarget, ?D),
5 triples(?id, owl:annotatedProperty, rdfs:subClassOf),
6 triples(?id, temp:temporalProperty, ?tempOp) .

The conditions of this rule directly follow from the structure shown in Figure 3. The predicate
commentType is used to filter out the triples which contain comments/labels. Its only two
entries are the RDFS properties rdfs:comment and rdfs:label . Notice also the predicate
appearingTempOp collecting the temporal operators appearing in the input. Additionally, theatemporal axioms are collected as well.

1 nonTempAxiom(?C, rdfs:subClassOf, ?D) :-
2 triples(?C, rdfs:subClassOf, ?D), ~tempAxiom(_, ?C, rdfs:subClassOf, ?D) .

Now, all the collected axioms can be combined into one 4-ary predicate axiom . The firstargument is the temporal operator, the second and fourth are the connected classes, and thethird is the connecting property. Temporal axioms can be added as they are.
1 axiom(?tempOp, ?C, ?type, ?D) :- tempAxiom(?tempOp, ?C, ?type, ?D) .

Axioms with conjunctions or existential restrictions need to be considered differently, as thenormal form mentioned in Section 2.3 does not permit them to be labelled with a diamond.
1 impossibleTempOp(?id, ?C, ?D) :- conj(?id, ?C, ?D) .
2 impossibleTempOp(?id, ?R, ?D) :- existRestrict(?id, ?R, ?D) .
3
4 axiom("not allowed", ?C, ?type, ?D) :-
5 nonTempAxiom(?C, ?type, ?D), impossibleTempOp(?C, _, _) .

Instead of having a temporal operator as their first entry, they receive the placeholder string“not allowed”. Other atemporal axioms, which are subsumptions of two ELH⊥ concepts, areadded with “c1” as their diamond, as described in Section 2.3.

20



3 An Implementation Of The Completion Algorithm

1 axiom("c1", ?C, ?type, ?D) :-
2 nonTempAxiom(?C, ?type, ?D), ~impossibleTempOp(?C, _, _) .

Although the rules shown here only cover CIs, the same processing is applied to RIs.The second major part of the TBox’s encoding in predicates is the implementation of the or-der on the diamonds from Lemma2, asNemo does not directly support list datatypes. First, thediamond operators, which might not appear in the input ontology but could be added duringthe reasoning process (see Section 2.3), are added to the predicate appearingTempOp :
1 appearingTempOp("c1") .
2 appearingTempOp("+-") .
3 appearingTempOp("+") .
4 appearingTempOp("-") .
5 appearingTempOp("con") .

Although +♢and −♢cannot be newly derived during the reasoning, they are incomparable andtherefore, their order needs to be considered separately. Thus, for consistency’s sake, theyare added as well. Next, the metric convex diamonds are collected and stored together withtheir specified interval length in the predicate metricTempOp :
1 metricTempOp(?Op, INT(SUBSTR(?Op, 2))) :-
2 appearingTempOp(?Op), isTrue(STRSTARTS(?Op, "c")),
3 isTrue(isInteger(INT(SUBSTR(?Op, 2)))) .

Here, isTrue is an auxiliary predicate which is only satisfied by the boolean value “true”.
This is necessary because Nemo would otherwise consider the built-in function isInteger as a
predicate. The “if”-condition of this rule can be read as follows. ?Op needs to be an operator,
which appears in the input ontology and the string, which encodes the diamond, must startwith a “c”. Additionally, the substring of ?Op starting at index 2 must be a number. Checking
this is possible, as the function INT returns nothing if the supplied string is not an integer.Now, the order of the diamonds can be computed by collecting all tuples ( ⋆♢, •♢), such that
⋆♢⊆ •♢holds. First, the order on D±∪ { cc♢} is added:

1 tempOpSequence("+", "+-") .
2 tempOpSequence("-", "+-") .
3 tempOpSequence("con", "+") .
4 tempOpSequence("con", "-") .

Next, the tuples expressing the reflexivity of the diamonds are added together with the re-lation from every metric convex diamond to cc♢:
1 tempOpSequence(?op, ?op) :- appearingTempOp(?op) .
2 tempOpSequence(?op, "con") :- metricTempOp(?op, ?i) .

Now, the order on the metric convex diamonds is imposed by comparing their intervallengths:
1 tempOpSequence(?op1, ?op2) :-
2 metricTempOp(?op1, ?i1), metricTempOp(?op2, ?i2), ?i1 < ?i2 .

To complete the order, the transitive closure is computed by adding all tuples ( ⋆♢, •♢), suchthat there exists a diamond †♢with ( ⋆♢, †♢) and ( †♢, •♢) in the predicate tempOpSequence .

21



3 An Implementation Of The Completion Algorithm

1 tempOpSequence(?op1, ?op2) :-
2 tempOpSequence(?op1, ?opInterm), tempOpSequence(?opInterm, ?op2) .

Having imposed the order, the intersection and composition of diamond operators can bedefined as 3-tuples, which have the result from the respective operation as their third element.The intersection is defined as follows:
1 tempOpIntersection("+", "-", "con") .
2 tempOpIntersection("-", "+", "con") .
3
4 tempOpIntersection(?op1, ?op2, ?op1), tempOpIntersection(?op2, ?op1, ?op1) :-
5 tempOpSequence(?op1, ?op2) .

The lines 1 and 2 add the special case +♢∩ −♢= −♢∩ +♢= cc♢. Lines 4 and 5 add the general case,where the intersection of the two diamonds is the smaller entry in the corresponding tuple intempOpSequence . The composition is defined in a similar way.
This finalises the encoding of the TBox. The next section will discuss the translation of theTBox rules into Nemo syntax.

3.3 Translation of the TBox rules

As seen in Section 2.5.1, the translations of the algorithm’s rules are quite straightforward, asall the necessary predicates are already computed. Therefore, the translation of all the rulesis omitted here, and instead, only two examples are discussed. The first example is the rule
T1

cc♢1A ⊑ A
.

It translates to the following Nemo rule.
1 inf:axiom("c1", ?A, rdfs:subClassOf, ?A) :- nf:isMainClass(?A) .

The prefix inf: is used to indicate that the predicate inf:axiom contains the inferred ax-
ioms in addition to the ones from the input ontology. The condition nf:isMainClass(?A)enforces that this rule is only instantiated for “named” classes. The second example is the rule

T8 ⋆♢A ⊑ ∃r.A1 •♢r ⊑ s †♢A1 ⊑ B1 ∃s.B1 ⊑ B
⋆♢A ⊑ B

.

Although the rule is more complex, the translation is still almost immediate.
1 inf:axiom(?tempOp1, ?A, rdfs:subClassOf, ?B) :-
2 inf:axiom(?tempOp1, ?A, rdfs:subClassOf, ?IdExRest1),
3 existRestrict(?IdExRest1, ?R, ?A1),
4 inf:axiom(?tempOp2, ?R, rdfs:subPropertyOf, ?S),
5 inf:axiom(?tempOp3, ?A1, rdfs:subClassOf, ?B1),
6 inf:axiom("not allowed", ?IdExRest2, rdfs:subClassOf, ?B),
7 existRestrict(?IdExRest2, ?S, ?B1),
8 tempOpIntersection(?tempOp2, ?tempOp3, ?tempOpIntersection),
9 ~tempOpPlusMinus(?tempOpIntersection) .

The extra conditions existRestrict(?IdExRest1, ?R, ?A1) and
existRestrict(?IdExRest2, ?S, ?B1) verify that the necessary concepts are indeedexistential restrictions. This rule includes a small optimisation, as it additionally specifies the

22



3 An Implementation Of The Completion Algorithm
filter ( •♢∩ †♢) /∈ D±. This ensures that the rules T8 and T8’ are not applied to the same axiomswhich avoids redundant entailments. The predicate tempOpPlusMinus is equivalent to D±.
Thus, the conditions tempOpIntersection(?tempOp2, ?tempOp3, ?tempOpIntersection)

and ∼tempOpPlusMinus(?tempOpIntersection) accomplish the filter ( •♢∩ †♢) /∈ D±.At this point, the TBox includes the aforementioned redundancies, as all the program didwas add new axioms to the already inferred ones. Consider Example 1 and assume that thegiven axioms were part of a larger TBox. Now, suppose that through other derivations, thefollowing two new CIs are added.
cc♢1C ⊑ E (3.1)
cc♢C ⊑ E (3.2)

This creates four different ways to apply T4 to CIs of the form ⋆♢A ⊑ C and •♢C ⊑ D (eq. (2.1) andeq. (3.1), eq. (2.1) and eq. (3.2), eq. (2.3) and eq. (3.1), eq. (2.3) and eq. (3.2)). Each combinationis checked and three new CIs are added, two of which are redundant. This behaviour cannotbe circumvented during the TBox reasoning phase.Either one accepts the redundancies and continues with the ABox reasoning phase, or onesimulates the intended behaviour of the TBox rules and provides the ABox reasoning phasewith a redundancy-free TBox. This can be achieved in several ways. One option would beto export the finished TBox and write a script in another language like Python which wouldeliminate the redundant axioms. A second option would be to declare a new predicate withinthe Nemo program and filter inf:axiom for the strongest CIs/RIs. The third alternative is tocombine both approaches, thereby splitting the TBox and ABox reasoning phase into separateprograms and using a third Nemo program to clear the TBox of redundancies. The last optionis chosen here, as this simplifies an analysis of both the TBox and ABox reasoning phase.The aforementioned Nemo program is quite simple. All it does is first classify all axioms bytheir associated temporal operator, thereby collecting all axioms with ±♢ in one predicate, allaxioms with +♢ in another and so on. Then, for each axiom ⋆♢A ⊑ B it checks the predicates withstronger temporal operators first before adding the axiom to the adjusted TBox. The followingrepresentative rule shows the collection of all axioms with ±♢.
1 plusMinusAxiom(?A, ?Connector, ?B) :- inf:axiom("+-", ?A, ?Connector, ?B) .

A special case are the metric temporal operators as they are first collected in a separatepredicate and then the strongest metric temporal operator is determined through the use ofthe aggregate function #max .
1 metricAxiom(?Op, ?i, ?A, ?Connector, ?B) :-
2 inf:axiom(?Op, ?A, ?Connector, ?B), metricTempOp(?Op, ?i) .
3 maxMetricAxiom(#max(?i), ?A, ?Connector, ?B) :-
4 metricAxiom(_, ?i, ?A, ?Connector, ?B) .

Here, the predicates inf:axiom and metricTempOp are the same as before, with
inf:axiom containing the TBox with redundant axioms. Now, the adjusted TBox can be con-structed by checking the predicates in a cascading manner.

1 adjustedAxiom("+-", ?A, ?Connector, ?B) :- plusMinusAxiom(?A, ?Connector, ?B) .
2 adjustedAxiom("+-", ?A, ?Connector, ?B) :-
3 plusAxiom(?A, ?Connector, ?B),
4 minusAxiom(?A, ?Connector, ?B),
5 ~plusMinusAxiom(?A, ?Connector, ?B).

23



3 An Implementation Of The Completion Algorithm
Consider a CI of the form ⋆♢A ⊑ B. The first line checks if there exists an axiom where ⋆♢ is ±♢.If this is the case, the axiom is added to the adjusted TBox. The second line only adds ±♢A ⊑ Bif it does not already exist, but both +♢A ⊑ B and −♢A ⊑ B do. The rest of the operators arechecked in a similar manner. The adjusted TBox is then used for the ABox reasoning phase.

3.4 Reading the ABox in

The extraction of the ABox is simpler than the TBox, as the axioms can be added directly astriples. The more interesting challenge, which is discussed later in this section, is the construc-tion of the set of representative time points rep(A) from the set tem(A). But first the temporalABox assertions need to be collected.
1 aBoxConcept(?A, ?a, ?i), tem(?i) :-
2 triples(?a, rdf:type, owl:NamedIndividual), triples(?A, rdf:type, owl:Class),
3 triples(?id, rdf:type, owl:Axiom),
4 triples(?id, owl:annotatedSource, ?a), triples(?id, owl:annotatedTarget, ?A),
5 triples(?id, ?type, ?i), commentType(?type) .

The difference to the construction of the TBox axioms is that the owl:annotatedSource isa node of the rdf:type owl:NamedIndividual . Notice that this rule only collects assertionsfor concepts and not roles. This distinction is made as the predicate for roles needs one moreentry to store the second individual. Otherwise, the construction works the same. Additionally,this rule also collects all the time points which appear in the ABox in the predicate tem .Now, using the accumulated time points, the set rep(A) can be constructed. The main ideato find the intervals between neighbouring elements in tem(A) is to create a predicate whichcollects all tuples the left entry is smaller than the right entry. Note that time pointsmay appearmultiple times as the left boundary of different intervals. Minimising the right boundary ofassociated with each left boundary results in the intervals.The following rule constructs the intervals and their sizes:
1 interval(?k, ?l) :- tem(?k), tem(?l), ?k + 1 <= ?l - 1 .

The condition ?k + 1 <= ?l - 1 ensures that the left boundary of the interval is smallerthan the right boundary and that the interval is non-empty. Next, the aggregate function #minis used to find the smallest interval for each time point:
1 minInterval(?k, #min(?l)) :- interval(?k, ?l) .

Now, the set rep(A) can be constructed as a predicate.
1 rep(?k, ?k) :- tem(?k) .
2 rep(?k + 1, ?l - 1) :- minInterval(?k, ?l) .

The second line adds the aforementioned intervals of time points which do not appear inA.Additionally, rep also includes the elements from tem as described in Section 2.3. Observethat the predicate rep has an arity of two while rep(A) is a simple set. The algorithm would,thus, also work with an unary predicate. However, the next step in the implementation is tomake queries on the completed ontology possible. Such a query might include a time point
i with i /∈ rep(A). That is why both boundaries of a represented interval [k, l] are stored, aschecking if i ∈ [k, l] holds now consists of two comparisons. The actual representative of [k, l]is just chosen to be the left boundary k.

24



3 An Implementation Of The Completion Algorithm
What remains is to explicitly add the two intervals with −∞ or∞ as their left, respectively,right boundary.
1 rep(#min(?i) - 1, "-inf") :- tem(?i) .
2 rep(#max(?i) + 1, "inf") :- tem(?i) .

The interval (−∞,min(tem(A))−1] is the only one for which the right boundary is selected asthe representative. Hence, the boundaries are switched in rep , such that the representativeis in first place. The strings “inf” and “-inf” are just placeholders for∞ and −∞. With repfinalised, the translation of the ABox rules can be discussed in the next section.

3.5 Translation of the ABox rules

Similarly to the TBox rules in Section 3.3, the translation of the ABox rules A1, A4 and A5 isuncomplicated, which is why only one of them is shown as an example.As a first example, consider the rule
A4 A1(a, i) A2(a, i) A1 ⊓A2 ⊑ B

B(a, i)
.

It translates into Nemo’s dialect as follows.
1 inf:aBoxConcept(?B, ?a, ?i) :-
2 conj(?idConj, ?A1, ?A2), inf:axiom(_, ?idConj, rdfs:subClassOf, ?B),
3 inf:aBoxConcept(?A1, ?a, ?i), inf:aBoxConcept(?A2, ?a, ?i) .

The more complicated rules are
A2 i ∈ ⋆♢A(a) ⋆♢A ⊑ B

B(a, i)
, A3 i ∈ ⋆♢r(a, b) ⋆♢r ⊑ s

s(a, b, i)

as the involvement of rep make a case distinction on the different diamond operators nec-
essary. The first case encompasses all the axioms which involve the ±♢operator.

1 inf:aBoxConcept(?B, ?a, ?i) :-
2 inf:axiom("+-", ?A, rdfs:subClassOf, ?B), rep(?i, _),
3 inf:aBoxConcept(?A, ?a, _) .

This is the simplest case, as it is only necessary to check if the individual ?a is in ?A at somepoint in time. The next two cases comprise the axioms with +♢ and −♢, respectively.
1 inf:aBoxConcept(?B, ?a, ?i) :-
2 inf:axiom("+", ?A, rdfs:subClassOf, ?B), rep(?i, _),
3 inf:aBoxConcept(?A, ?a, ?k), ?i <= ?k .
4
5 inf:aBoxConcept(?B, ?a, ?i) :-
6 inf:axiom("-", ?A, rdfs:subClassOf, ?B), rep(?i, _),
7 inf:aBoxConcept(?A, ?a, ?l), ?i >= ?l .

These cases add a check if there exist occurrences of ?a in ?A later, respectively earlier,than ?i . The fourth case is a combination of the previous two, thereby checking for occur-rences within arbitrarily-sized intervals. Thus, it encompasses the axioms containing the cc♢operator.

25



3 An Implementation Of The Completion Algorithm

1 inf:aBoxConcept(?B, ?a, ?i) :-
2 inf:axiom("con", ?A, rdfs:subClassOf, ?B), rep(?i, _),
3 inf:aBoxConcept(?A, ?a, ?k),
4 inf:aBoxConcept(?A, ?a, ?l),
5 ?i >= ?k, ?i <= ?l .

The condition ?i >= ?k and ?i <= ?l necessitates that ?i is between two occur-rences of ?a in ?A . The last case spans all axioms with metric temporal operators.
1 inf:aBoxConcept(?B, ?a, ?i) :-
2 inf:axiom(?op, ?A, rdfs:subClassOf, ?B), rep(?i, _),
3 inf:aBoxConcept(?A, ?a, ?k),
4 inf:aBoxConcept(?A, ?a, ?l),
5 metricTempOp(?op, ?n),
6 ?i >= ?k, ?i <= ?l, ?l - ?k < ?n .

The addition of ?l - ?k < ?n imposes that the interval between the occurrences of ?ain ?A has at most the size ?n specified by the operator cc♢n. The rule A3 works in the samemanner and will therefore be omitted here.This concludes the implementation of the completion algorithm for TELH c♢,lhs
⊥ from Borg-wardt, Forkel, and Kovtunova [5].

26



4 A Performance Evaluation
To test the implementation from the previous chapter, a performance evaluation is conducted.This chapter starts by discussing the constructed ontology and the data used for the evalua-tion. Then, the test setup is presented, followed by the results of the evaluation.The general approach to the evaluation is to emulate the reasoning process on a database.Therefore, the constructed TBox includes comparatively few axioms, which remain the sameduring all test runs. The ABox, on the other hand, is generated in different sizes from a largedataset from the real world. This should mimic different workloads in an application.

4.1 Weather Data and the Test Ontology

Themain idea behind the constructed ontology is to determine cities in combinationwith timesat which the weather conditions are great for playing beach volleyball. Therefore, the TBoxincludes some basic rules specifying these conditions, while the ABox is based on weatherdata from the Open Data Server of the German Meteorological Service (DWD)1. The DWDprovides, among other services, historical weather data2 from the last ∼300 years under theCreative Commons licence CC BY 4.03. The data is obtained through the Python package wet-terdienst [10].The ontology utilises three types of individuals:
• “City” individuals, which represent a German city where a weather station is located.
• “Temperature” individuals, which are the rounded integer values of the temperature ap-pearing in the ABox.
• Individuals of the form “3379@2024-06-16”, where “3379” is the ID of a weather stationand “2024-06-16” is a date. These individuals represent a whole day at a specific weatherstation. They will be referred to as “day/location individuals”.

Additionally, the time steps associated with the elements from Z are 5-minute intervals. Thus,the interpretations Ii and Ii+1 represent the state of the atmosphere at two consecutive 5-minute intervals. To populate the ABox, data is taken from the datasets shown in Table 4 [19].These datasets exist in three versions spanning different time periods. The data is from the“recent” version, which includes recent weather data and the previous 500 days. Every datasetalso includes several columns of different data, which is why the DWD’s original name of thecolumn is given as well. The DWD also provides forecast data, which would make this ontology
1https://opendata.dwd.de/2https://opendata.dwd.de/climate_environment/CDC/3https://creativecommons.org/licenses/by/4.0/

27

https://opendata.dwd.de/
https://opendata.dwd.de/climate_environment/CDC/
https://creativecommons.org/licenses/by/4.0/


4 A Performance Evaluation

Table 4: The datasets used to populate the test ontology
Dataset Path on the Open DataServer Columns used Description
air_temperature /climate_environment

/CDC/observations_ge
rmany/climate/10_min
utes/air_temperature
/recent/

TT_10 Air temperature 2 mabove the ground in10-minute intervals in °C

precipitation /climate_environment
/CDC/observations_ge
rmany/climate/5_minu
tes/precipitation/re
cent/

RS_05 Sum of the precipitationheight of the last 5minutes in mm

wind /climate_environment
/CDC/observations_ge
rmany/climate/10_min
utes/wind/recent/

FF_10 mean wind speed duringthe previous 10 minutesin m/s
sun /climate_environment

/CDC/observations_ge
rmany/climate/hourly
/sun/recent/

SD_SO sunshine duration duringthe last hour in min

cloudiness /climate_environment
/CDC/observations_ge
rmany/climate/hourly
/cloudiness/recent/

V_N total cloud cover duringthe last hour in %

more useful in a real-world application. However, the repeatability of the tests would be limitedas forecast data changes frequently. Therefore, using past data keeps this evaluation self-contained without having to provide a large dataset of recorded forecast data.The most important concepts and roles used in the ontology are explained in Table 5. Thedataset used to populate the respective predicate is given in Table 4 as well. Additionally to theconcepts shown here, the ontology also includes some auxiliary concepts, which are straight-forward in the context of their occurrences in axioms. The entire TBox can be seen in Figure 4.
The axioms (ax1) - (ax6) express the interpolation of data which is not provided in 5-minuteintervals. For example, the assumption that temperatures of 17 - 25 degrees Celsius are op-timal for playing beach volleyball is independent of the current time point. Wind data is onlyprovided in 10-minute intervals. Thus, individuals can at most appear every second i ∈ Z inthe input ABox. Therefore, (ax2) expresses the assumption that if the wind speed was under3 m/s at two of these “neighbouring” inputs, it was as well at the moment separating them.The assumed best weather conditions for playing beach volleyball are as follows. Two dry5-minute intervals are at most tenminutes apart (ax8), and additionally, the wind speed shouldbe under 3 m/s, making it playable conditions (ax10). The sky should be bright enough but notso bright that it is blinding. Thus, some cloud cover is required (ax9). The temperature shouldbe between 17 and 25 degrees Celsius (ax7, ax7’). The combination of all these conditions isconsidered the best timefor playing beach volleyball (ax11, ax12). The last two axioms (ax13,ax13’) now produce timestamped names of cities where these conditions are met.The TBox was constructed using Protégé 5.5.0 [18] and is saved in the Terse RDF Triple Lan-guage (also referred to as Turtle).

28

/climate_environment/CDC/observations_germany/climate/10_minutes/air_temperature/recent/
/climate_environment/CDC/observations_germany/climate/10_minutes/air_temperature/recent/
/climate_environment/CDC/observations_germany/climate/10_minutes/air_temperature/recent/
/climate_environment/CDC/observations_germany/climate/10_minutes/air_temperature/recent/
/climate_environment/CDC/observations_germany/climate/10_minutes/air_temperature/recent/
/climate_environment/CDC/observations_germany/climate/5_minutes/precipitation/recent/
/climate_environment/CDC/observations_germany/climate/5_minutes/precipitation/recent/
/climate_environment/CDC/observations_germany/climate/5_minutes/precipitation/recent/
/climate_environment/CDC/observations_germany/climate/5_minutes/precipitation/recent/
/climate_environment/CDC/observations_germany/climate/5_minutes/precipitation/recent/
/climate_environment/CDC/observations_germany/climate/10_minutes/wind/recent/
/climate_environment/CDC/observations_germany/climate/10_minutes/wind/recent/
/climate_environment/CDC/observations_germany/climate/10_minutes/wind/recent/
/climate_environment/CDC/observations_germany/climate/10_minutes/wind/recent/
/climate_environment/CDC/observations_germany/climate/hourly/sun/recent/
/climate_environment/CDC/observations_germany/climate/hourly/sun/recent/
/climate_environment/CDC/observations_germany/climate/hourly/sun/recent/
/climate_environment/CDC/observations_germany/climate/hourly/sun/recent/
/climate_environment/CDC/observations_germany/climate/hourly/cloudiness/recent/
/climate_environment/CDC/observations_germany/climate/hourly/cloudiness/recent/
/climate_environment/CDC/observations_germany/climate/hourly/cloudiness/recent/
/climate_environment/CDC/observations_germany/climate/hourly/cloudiness/recent/


4 A Performance Evaluation

Table 5: The most important concepts and roles in the test ontology.
Source Dataset Description

Concepts:OptimalTemperatures manually added Includes all temperature individuals which arebetween 17 and 25 degrees CelsiusNoRain precipitation Includes day/location individuals; comprises5-minute intervals in time where the weatherstation on the given day did not record anyprecipitationCloudy cloudiness Includes day/location individuals; comprises1-hour intervals in time where the weatherstation on the given day recorded a cloudcover of more or equal to 30%Sunshine sun Includes day/location individuals; comprises1-hour intervals in time where the weatherstation recorded more than one minute ofsunshineWindUnder3 wind Includes day/location individuals; comprises10-minute intervals where the wind speedwas less than 3 m/sRoles:temperatures air_temperature Relates a day/location individual for a10-minute interval to the individualrepresenting the temperature recorded atthe weather station during this intervaldataOfWeatherStation manually added Relates a city individual to all day/locationindividuals which are associated with theweather station located in the city

4.2 The Test Setup

As discussed at the end of Section 3.3 the completion process of the TBox produces redun-dancies, which can only be removed afterwards. It is, therefore, impossible to quantify theincreased reasoning time in this concrete example. However, it is possible to count the num-ber of redundant axioms and measure their effect on the time it takes to complete the ABox.Thus, the completion algorithm is run twice on the same ABox, once with the redundant TBoxand once with the adjusted one. The reasoning times are then compared. Additionally, thenumber of inferred facts and the sizes of the completed ABoxes are logged. On the one hand,this acts as a sanity check, verifying that the reasoning process is working as intended. Onthe other hand, it enables one to draw comparisons between this implementation and theimplementation of the ELK reasoner, as shown in Section 2.5.1.The evaluation of the ABox reasoning is based on a test suite consisting of a series of fullyautomated runs of the implemented algorithm on the aforementioned TBox and ABoxes ofincreasing size. The different sizes are achieved by increasing the time interval within whichthe weather data is downloaded. The interval starts with both boundaries being the 15th June2024 00:00 and is then progressively increased in 2-hour steps until the 16th June 2024 22:00,thus creating 24 individual tests. The data is taken from 5 weather stations located in cities allaround Germany: Aachen, Hamburg, Dresden, Munich, and Erfurt.Before the tests of the ABox reasoning start, the TBox is completed once, and it is saved.

29



4 A Performance Evaluation

(ax1): ±♢OptimalTemperatures ⊑ OptimalTemperatures
(ax2): cc♢4WindUnder3 ⊑ WindUnder3 (ax3): cc♢13Sunshine ⊑ Sunshine
(ax4): cc♢13Cloudy ⊑ Cloudy (ax5): cc♢3temperatures ⊑ temperatures

(ax6): cc♢dataOfWeatherStation ⊑ dataOfWeatherStation

(ax7): ∃temperatures.OptimalTemperatures ⊑ PleasantTemperatureForBeachvolleyball
(ax7’): cc♢1PleasantTemperatureForBeachvolleyball ⊑ ∃temperatures.OptimalTemperatures

(ax8): cc♢4NoRain ⊑ DryEnoughForBeachvolleyball
(ax9): Sunshine ⊓ Cloudy ⊑ PleasantSkyForBeachvolleyball

(ax10): DryEnoughForBeachvolleyball ⊓WindUnder3 ⊑ PossibleToPlayBeachvolleyball
(ax11): PleasantSkyForBeachvolleyball ⊓ PossibleToPlayBeachvolleyball

⊑ GoodTimeForBeachvolleyball
(ax12): PleasantTemperatureForBeachvolleyball ⊓ GoodTimeForBeachvolleyball

⊑ BestTimeForBeachvolleyball

(ax13): ∃dataOfWeatherStation.BestTimeForBeachvolleyball ⊑ WhereAndWhenToPlay
(ax13’): cc♢1WhereAndWhenToPlay ⊑ ∃dataOfWeatherStation.BestTimeForBeachvolleyball

Figure 4: The test ontology’s TBox
Then its redundancies are removed and the adjusted TBox is saved as well.Each test run consists of four steps. First, the weather data of the according time frame isdownloaded and preprocessed. The preparation is done using a Python script, which parsesthe data and populates the predicates shown in Table 5 according to the conditions writtenthere. After that, the concepts are saved in a CSV file, and the roles are saved in another. Thisis done as the file with the roles has four columns (role name, temporal operator, two individ-uals), whereas concepts only need three (concept name, temporal operator, one individual).Second, the Nemo program is run on the ABox and the TBox with the redundancies. Third, thesame is done with the TBox without redundancies. Finally, the reasoning times, the number ofoverall inferred facts, and the sizes of the completed ABoxes are logged. These 25 tests (TBoxreasoning + 24 ABox reasoning tests) are run three times and the resulting reasoning timesfor each input size are averaged. This should eliminate outliers and provide a more reliableresult.A more granular view of the reasoning process can be provided using the Python bindings ofNemo, as they allow access to the reasoning times on a per-rule basis. Thus, it can be analysedwhat portion of the execution time each rule takes. Although the Python bindings could beused to invoke the reasoning process, earlier testing has shown that they are a lot slower thanthe Nemo command-line client. Therefore, during the performance evaluation, the Pythonscript invokes the Nemo command-line client, and the reasoning times of each rule are onlyanalysed for the single ABox with 927 facts. This ABox covers the weather data between 00:00and 10:00 on the 15th June 2024 in Dresden and is chosen as an arbitrary example.

30



4 A Performance Evaluation
The tests were run on a desktop PC with an AMD Ryzen Octa-Core processor and 32 GBof RAM. The operating system used was Windows 11 Pro. Nemo version 0.5.2-dev (commitf55fe02d) was used for both the command-line and the Python bindings. They were compiledusing rustc version 1.78.0 and cargo version 1.78.0. The Python version used was 3.12.4.

4.3 Discussion of Results

Before discussing the reasoning times measured during the run of the test suite, the results ofthe reasoning process should be mentioned shortly. The ontology actually contains 98 timesand locations at which the conditions were optimal to play beach volleyball after its completion.The conditions were right in Munich, Hamburg and Dresden, and all the suggested times arebetween 10:00 and 19:00, which is realistic.The completion of the TBox took, on average, 4 ms. This short time is rather unsurprising,as the TBox consists of only 14 axioms. The completed TBox contains 43 axioms, including sixredundant ones. Four of them are versions of (ax1) - (ax4) with the cc♢1 operator created by T1.The other two axioms are versions of (ax5) and (ax6) also with the cc♢1 operator created by T3.These redundancies are expected.Figure 5 shows the number of facts in the completed ABox in addition to the number ofoverall inferred facts during the algorithm’s run in relation to the number of facts in the inputABox. The first insight is that the completion algorithm produces the same-sized output in-dependent of the redundancies in the TBox, which indicates that the algorithm is working asintended.The chart shows a clear linear relationship between the size of the input ABox and the size ofthe completed ABox. The trend line f(x) = 8.794x− 592.8 is obtained using the least squaresmethod. The fit, as displayed in the chart, is good.The relationship between the number of overall inferred facts and the size of the inputABox follows a polynomial of a higher degree. Using the least squares method, polynomi-als of different degrees can be fitted to the data. But already the resulting cubic function
f(x) = −8.624 · 10−8 · x3 + 0.007x2 + 10.53x − 827.5 shows a minuscule first coefficient, indi-cating that the relationship is quadratic. Fitting a second-degree polynomial to the data usingthe least squares method produces the following equation: f(x) = 0.006596x2 +11.64x−1239.The coefficient of the last term being−1239 is questionable, as it does not make sense to start

Figure 5: The number of inferred ABox facts in relation to the size of the input ABox.

31



4 A Performance Evaluation

Figure 6: The reasoning times in relation to the size of the input ABox.
with a negative number of facts. But the trend line, as displayed in Figure 5, shows a good fit.The resulting times from the test suite are shown in Figure 6. First, notice that the data isless smooth than in Figure 5. Although the times were averaged from three runs, there stillexist outliers. This is in part due to an increasing spread of the runtimes the larger the inputABox is. For example, two runs with the largest input ABox size of 4647 facts took 681 and 690seconds, respectively, while a third run took 822 seconds. The reason for this is not clear, asthese runs happened under the same conditions without any other programs running in thebackground.Even with outliers, the general trend is clear. The reasoning times with redundant axiomsin the TBox are quite a bit higher than the ones without. This is surprising, as the redundan-cies are only very few and only consist of trivial axioms. Using the least squares method thepolynomials seen in Table 6 are obtained.
Table 6: The polynomials fitted to the reasoning times in relation to the size of the input ABox.

Quadratic Polynomial Cubic Polynomial
Reasoning Times withredundancies in the TBox 0.04x2 − 35.52x+ 1.113 · 104 4.419 · 10−6 · x3 + 0.009x2

+21.73x− 9965

Reasoning Times withoutredundancies in the TBox 0.0194x2 − 4.024x− 1585
3.95 · 10−7 · x3 + 0.0167x2

+1.093x− 3470

Both datasets show the behaviour that the coefficient for the third-degree term is not signifi-cant. Thus, the quadratic polynomials are shown in Figure 6. Again, the terms of zeroth degreedo notmake sense as there should not exist a negative reasoning time, and the reasoning timeshould also not start at 11 seconds when the ABox is empty. This cannot be constant over-head, as small ABoxes take less than a second to be completed. Otherwise, their trends looklike they fit the data well. Both polynomials being quadratic also follows the trend of the overallinferred facts, which makes sense. The quadratic trend can be explained by the application ofrules A2 and A3 (see Section 3.3), where the algorithm needs to check if there exists a certaininterval within which a certain individual (or pair of individuals) appears in a concept (or a role).Therefore, the algorithm might need to check all possible combinations of elements from thepredicate rep .

32



4 A Performance Evaluation
Quantitatively, the reasoning with redundant axioms in the TBox took, on average, 1.62 timeslonger than the reasoningwithout. Similarly to the spread of the data, the ratio of the reasoningtimes was not constant but instead fluctuated within the range of 1.47 to 1.87 with a tendencyto increase with a bigger input. This shows that it is crucial to remove redundancies from theTBox before reasoning with the ABox.Overall, the performance of this implementation is promising but not optimal. Completingthe largest input, ABox takes about 400s while deriving about 194 000 facts. The implemen-tation of the rules from the ELK reasoner in Nemo, on the other hand, takes about 4 secondson the same hardware to derive 2.4 million facts from an input of about 246 000 axioms.The per-rule analysis of reasoning times revealed that about a third of the time was spentapplying each of the following two rules.
1 inf:aBoxConcept(?B, ?a, ?i) :-
2 inf:axiom(?op, ?A, rdfs:subClassOf, ?B), rep(?i, _),
3 inf:aBoxConcept(?A, ?a, ?k),
4 inf:aBoxConcept(?A, ?a, ?l),
5 metricTempOp(?op, ?n),
6 ?i >= ?k, ?i <= ?l, ?l - ?k < ?n .
7 inf:aBoxRole(?S, ?a, ?b, ?i) :-
8 inf:axiom("con", ?R, rdfs:subPropertyOf, ?S), rep(?i, _),
9 inf:aBoxRole(?R, ?a, ?b, ?k),
10 inf:aBoxRole(?R, ?a, ?b, ?l),
11 ?i >= ?k, ?i <= ?l .

This indicates that the conditions i ∈ ⋆♢A(a) and i ∈ r(a, b) from rules A2 and A3 (seeSection 2.3) are bottlenecks in the reasoning process. For convex diamonds, the imple-mented algorithm needs to check if an interval [j, k] with i ∈ [j, k], and j, k ∈ rep(A), and
A(a, j),A(a, k) ∈ A exists (similarly for r(a, b, i)). Therefore, it may check all combinations oftwo elements within rep(A), which is computationally intensive.The reasons that these cases of the rules A2 and A3 take an especially long time to executeare probably the following. The first rule is applied a lot as the TBox includes a lot of axiomswhere a metric convex diamond is applied to a concept. It can be speculated that the secondrule takes so much computation time because the entries in dataOfWeatherStation are onlyprovided in the first and last 5-minute intervals of the day. Thus, the algorithm has to inter-polate the missing information for the rest of the day because of (ax6) and, therefore, adds286 new entries per day and weather station. These new entries increase the number of com-binations of inf:aBoxRole(?R, ?a, ?b, ?k) and inf:aBoxRole(?R, ?a, ?b, ?l) . Thisintroduces more possible checks, which slows the reasoning process down. Thus, the mostproductive optimisation of the algorithm would probably be to improve these checks.An idea would be to store the intervals in which an individual occurs in a concept instead ofeach time point. This would reduce the number of entries in the aBoxConcept and aBoxRole
predicates, as then at most | rep |/2 entries per combination of concept and individual or role
and pair of individuals are needed. This would be the case if the individual alternates be-tween occurring and not occurring in the concept. However, these intervals might be subjectto change during the reasoning process as additional occurrences are derived. Therefore, in-tervals and thus entries in aBoxConcept and aBoxRole , would need to bemodified or fused,which is currently not possible in Nemo. Hence, the ABox would include a large number of re-dundant facts, which would negate the advantage of using intervals to store the occurrences.

33



5 Conclusion

In this thesis, the reasoning algorithm for TELH c♢,lhs
⊥ from Borgwardt, Forkel, and Kovtunova [5]was implemented in the Datalog-based rule engine Nemo. It allows the completion of tempo-ralised OWL ontologies. For this purpose, the extension of OWL with a new annotation prop-erty to encode temporal information was proposed. Additionally, the necessary preprocessingsteps were discussed. The construction of the order on the diamond operators and the setof representative time points was essential. Having constructed these crucial predicates, thetranslation of the rules was straightforward.The implementation was then evaluated on the completion of a synthetic ontology basedon weather data. The size of the input ABox was varied and the reasoning times were mea-sured. Additionally, the impact of redundancies in the TBox, which arise during the reasoningprocess, was analysed. The evaluation revealed that removing redundancies from the TBox iscrucial, as they significantly raise the reasoning time by a factor of 1.62 on average. Further-more, an analysis of the portions of the overall reasoning time each individual rule took toexecute demonstrated that the conditions i ∈ ⋆♢A(a) and i ∈ ⋆♢r(a, b, i) in rules A2 and A3 arebottlenecks for the implementation’s performance. Overall, the evaluation showed promisingresults, but the implementation is currently not viable for working on extensive datasets as it issignificantly slower than other established reasoners for similar, although atemporal DLs likeELK [13].Therefore, in future work, this implementation could be revisited and revised once Nemosupports the modification and deletion of existing entries in predicates. Optimisations likethe different encoding of time points suggested at the end of the previous chapter could beinvestigated. Another fruitful approach might be to apply the same ideas used to optimisethe rules in the ELK reasoner [13] to improve the TBox rules, as this should also improve theperformance if a larger TBox is input.Furthermore, this implementation should be extended with a preprocessing step that nor-malises the input ontology so that the users do not have to provide a normalised ontologythemselves. This task is not trivial because OWL 2 only supports annotation properties on thegranularity of axioms, not on the granularity of the individual concepts or roles within the ax-iom. Therefore, first a new way to encode the temporal information in OWL 2 ontologies toaccommodate nested diamond operators would need to be proposed. However, this wouldmake the algorithm more accessible and, therefore, more viable in real-world applications.Finally, a temporal extension of Datalog called DatalogMTL exists, which features metric tem-poral operators. However, they are not convex [20]. Therefore, the relationship between

TELH c♢,lhs
⊥ and DatalogMTL could be investigated.

34



Bibliography
[1] Serge Abiteboul, Richard Hull, and Victor Vianu. Foundations of Databases. Addison-Wesley, 1995. ISBN: 0-201-53771-0. URL: http://webdam.inria.fr/Alice/.
[2] A. Artale, R. Kontchakov, C. Lutz, F. Wolter, and M. Zakharyaschev. “TemporalisingTractable Description Logics”. In: 14th International Symposium on Temporal Representa-tion and Reasoning (TIME’07). 14th International Symposiumon Temporal Representationand Reasoning (TIME’07). Alicante, Spain: IEEE, 2007, pp. 11–22. DOI: 10.1109/TIME.20

07.62.
[3] Alessandro Artale, Roman Kontchakov, Alisa Kovtunova, Vladislav Ryzhikov, FrankWolter,and Michael Zakharyaschev. “Ontology-Mediated Query Answering over Temporal Data:A Survey (Invited Talk)”. In: LIPIcs, Volume 90, TIME 2017 90 (2017). In collab. with SvenSchewe, Thomas Schneider, and Jef Wijsen. Artwork Size: 37 pages, 895326 bytesISBN: 9783959770521 Medium: application/pdf Publisher: Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 1:1–1:37. DOI: 10.4230/LIPICS.TIME.2017.1.
[4] F. Baader, S. Brandt, and C. Lutz. “Pushing the EL Envelope”. In: Proceedings of theNineteenth International Joint Conference on Artificial Intelligence IJCAI-05. Edinburgh, UK:Morgan-Kaufmann Publishers, 2005.
[5] Stefan Borgwardt, Walter Forkel, and Alisa Kovtunova. “Finding New Diamonds: Tempo-ral Minimal-World Query Answering over Sparse ABoxes”. In: Rules and Reasoning. Ed.by Paul Fodor, Marco Montali, Diego Calvanese, and Dumitru Roman. Cham: SpringerInternational Publishing, 2019, pp. 3–18. DOI: 10.1007/978-3-030-31095-0_1.
[6] Diego Calvanese, Jeremy Carroll, Guiseppe De Giacomo, Jim Hendler, Ivan Herman, Par-sia Bijan, Peter F. Patel-Schneider, Alan Ruttenberg, Uli Sattler, and Michael Schneider.“OWL 2Web Ontology Language Profiles (Second Edition)”. In: (2012). Ed. by Boris Motik,Bernardo Cuenca Grau, Ian Horrocks, Zhe Wu, Achille Fokoue, and Carsten Lutz. URL:

https://www.w3.org/TR/2012/REC-owl2-profiles-20121211/.
[7] S. Ceri, G. Gottlob, and L. Tanca. “What you always wanted to know about Datalog (andnever dared to ask)”. In: IEEE Transactions on Knowledge and Data Engineering 1.1 (Mar.1989), pp. 146–166. DOI: 10.1109/69.43410.
[8] Evgeny Dantsin, Thomas Eiter, Georg Gottlob, and Andrei Voronkov. “Complexity andexpressive power of logic programming”. In: ACM Comput. Surv. 33.3 (Sept. 2001). Place:New York, NY, USA Publisher: Association for Computing Machinery, pp. 374–425. DOI:

10.1145/502807.502810.

35

http://webdam.inria.fr/Alice/
https://doi.org/10.1109/TIME.2007.62
https://doi.org/10.1109/TIME.2007.62
https://doi.org/10.4230/LIPICS.TIME.2017.1
https://doi.org/10.1007/978-3-030-31095-0_1
https://www.w3.org/TR/2012/REC-owl2-profiles-20121211/
https://doi.org/10.1109/69.43410
https://doi.org/10.1145/502807.502810


Bibliography
[9] Víctor Gutiérrez-Basulto, Jean Christoph Jung, and Roman Kontchakov. “Temporalized ELontologies for accessing temporal data: complexity of atomic queries”. In: Proceedings ofthe Twenty-Fifth International Joint Conference on Artificial Intelligence. IJCAI’16. Place: NewYork, New York, USA. AAAI Press, 2016, pp. 1102–1108.
[10] Benjamin Gutzmann and Andreas Motl. wetterdienst. Version v0.91.0. July 2024. DOI: 10

.5281/zenodo.12739518.
[11] Pascal Hitzler, Markus Krötzsch, and Sebastian Rudolph. Foundations of Semantic WebTechnologies. 1st Edition. Chapman and Hall/CRC, 2009. 456 pp. URL: https://learnin

g.oreilly.com/library/view/foundations-of-semantic/9781420090512/.
[12] Alex Ivliev, Stefan Ellmauthaler, Lukas Gerlach, Maximilian Marx, Matthias Meißner, Si-mon Meusel, and Markus Krötzsch. “Nemo: First Glimpse of a New Rule Engine”. In:Proceedings 39th International Conference on Logic Programming (ICLP 2023). Ed. by En-rico Pontelli, Stefania Costantini, Carmine Dodaro, Sarah Gaggl, Roberta Calegari, ArturD’Avila Garcez, Francesco Fabiano, Alessandra Mileo, Alessandra Russo, and FrancescaToni. Vol. 385. EPTCS. Sept. 2023, pp. 333–335. DOI: 10.4204/EPTCS.385.35.
[13] Yevgeny Kazakov, Markus Krötzsch, and František Simančík. “The Incredible ELK”. In: Jour-nal of Automated Reasoning 53.1 (June 1, 2014), pp. 1–61. DOI: 10.1007/s10817-013-9

296-3.
[14] Bas Ketsman and Paraschos Koutris. “Modern Datalog Engines”. In: Foundations andTrends® in Databases 12.1 (2022), pp. 1–68. DOI: 10.1561/1900000073.
[15] Markus Krötzsch. “Database Theory - Lecture 18: The Chase”. 2022. URL: https://icc

l.inf.tu-dresden.de/w/images/4/43/DBT2022-Lecture-18-overlay.pdf.
[16] Markus Krötzsch, Frantisek Simancik, and Ian Horrocks. “A Description Logic Primer”. In:CoRR abs/1201.4089 (2012). arXiv: 1201.4089. URL: http://arxiv.org/abs/1201.408

9.
[17] Carsten Lutz, Frank Wolter, and Michael Zakharyaschev. “Temporal Description Logics: ASurvey”. In: 2008 15th International Symposium on Temporal Representation and Reasoning.2008 15th International Symposium on Temporal Representation and Reasoning (TIME’08). Montreal, QC: IEEE, June 2008, pp. 3–14. DOI: 10.1109/TIME.2008.14.
[18] Mark A. Musen. “The protégé project: a look back and a look forward”. In: AI Matters 1.4(June 16, 2015), pp. 4–12. DOI: 10.1145/2757001.2757003.
[19] Open Data Server of the Deutscher Wetterdienst. Germany. URL: https://opendata.dwd

.de/climate_environment/CDC/.
[20] Przemysław A. Wałęga, Bernardo Cuenca Grau, Mark Kaminski, and Egor V. Kostylev.“DatalogMTL: Computational Complexity and Expressive Power”. In: Proceedings of theTwenty-Eighth International Joint Conference on Artificial Intelligence. Twenty-Eighth Inter-national Joint Conference on Artificial Intelligence {IJCAI-19}. Macao, China: InternationalJoint Conferences on Artificial Intelligence Organization, Aug. 2019, pp. 1886–1892. DOI:

10.24963/ijcai.2019/261.

36

https://doi.org/10.5281/zenodo.12739518
https://doi.org/10.5281/zenodo.12739518
https://learning.oreilly.com/library/view/foundations-of-semantic/9781420090512/
https://learning.oreilly.com/library/view/foundations-of-semantic/9781420090512/
https://doi.org/10.4204/EPTCS.385.35
https://doi.org/10.1007/s10817-013-9296-3
https://doi.org/10.1007/s10817-013-9296-3
https://doi.org/10.1561/1900000073
https://iccl.inf.tu-dresden.de/w/images/4/43/DBT2022-Lecture-18-overlay.pdf
https://iccl.inf.tu-dresden.de/w/images/4/43/DBT2022-Lecture-18-overlay.pdf
https://arxiv.org/abs/1201.4089
http://arxiv.org/abs/1201.4089
http://arxiv.org/abs/1201.4089
https://doi.org/10.1109/TIME.2008.14
https://doi.org/10.1145/2757001.2757003
https://opendata.dwd.de/climate_environment/CDC/
https://opendata.dwd.de/climate_environment/CDC/
https://doi.org/10.24963/ijcai.2019/261

	Title page
	Abstract
	Contents
	Introduction
	Preliminaries
	[c]n-Operators: Metric Linear-Time Temporal Logic Operators
	TELH[c],lhs: A Lightweight Temporal Extension of ELH
	A Completion Algorithm for TELH[c],lhs
	The Web Ontology Language
	The Nemo Rule Engine
	An Example Reasoner in Nemo


	An Implementation Of The Completion Algorithm
	The Temporalisation of OWL
	Reading the TBox in
	Translation of the TBox rules
	Reading the ABox in
	Translation of the ABox rules

	A Performance Evaluation
	Weather Data and the Test Ontology
	The Test Setup
	Discussion of Results

	Conclusion
	Bibliography

