
Fakultät Informatik Institut für Theoretische Informatik, Professur für Automatentheorie

Complexity and Expressive Power of
Description Logics with Numerical
Constraints
Filippo De Bortoli

Dissertation

Fakultät Informatik Institut für Theoretische Informatik, Professur für Automatentheorie

Complexity and Expressive Power of
Description Logics with Numerical
Constraints
Filippo De Bortoli

Dissertation
zur Erlangung des akademischen Grades

Doktor der Ingenieurwissenschaften (Dr.Ing-.)

Erstgutachter
Prof. Dr.Ing-. Franz Baader, Technische Universität Dresden
Zweitgutachter
Prof. Dr.in techn. Magdalena Ortiz, Technische Universität Wien
Fachreferent
Prof. Dr. Sebastian Rudolph, Technische Universität Dresden
Betreuer
Prof. Dr.Ing-. Franz Baader, Technische Universität Dresden

Eingereicht am: 8. Mai 2025
Verteidigt am: 11. August 2025

Abstract

Standard Description Logics (DLs) can encode numerical aspects of domain-specific knowledge
using number restrictions and concrete domains. The former are used to compare the number
of role successors of an individual described by a given conceptwith a fixed natural number. The
latter are used to assign concrete values (e.g. numbers) to an individual, which can be referenced
using features and constrained using predefined predicates (e.g. numerical comparisons).
Recently, number restrictions were extended using the quantifier-free fragment of Boolean

Algebra with Presburger Arithmetic (QFBAPA). In the resulting DL, called ALCSCC, reason-
ing is as complex aswith number restrictions, in spite of the increase in expressive power. In this
thesis, we develop a method to study the expressive power of ALCSCC, which has a semantics
based on finitely branching interpretations, using the locality properties satisfied by first-order
logic (FOL) over certain restricted classes of models (such as finite and finitely branching mod-
els) rather than compactness, which fails in the finitely branching case. We thus generalize our
earlier work, inwhichwe introduced a variantALCSCC∞ defined over arbitrary interpretations
and analyzed its expressive power using a bisimulation-based characterization.
Early research in DL considered cardinality restrictions (CRs) that compare the number of in-

dividuals described by a concept with a fixed natural number. Similarly to number restrictions,
CRs have been generalized using QFBAPA, obtaining extended CRs defined over finite inter-
pretations, increasing the expressive power without increasing the complexity of reasoning. We
prove that the complexity of reasoning with extended CRs over arbitrary interpretations is the
same w.r.t. the finite variant, and lift the notion of bisimulation used for ALCSCC∞ to study
their expressive power, with additional results based on 0–1 laws and model-theoretic proper-
ties used to differentiate the expressive power of different logics. We characterize the subsets of
these logics that are FOL-definable and prove that neither of the logics is fully FOL-definable.
It is known that𝜔-admissible concrete domains𝔇, such as Allen’s interval algebra, the region

connection calculus RCC8, and the rational numberswith ordering and equality, yield decidable
extensions ALC(𝔇) of ALC. If the constraint satisfaction problem (CSP) of 𝔇 is decidable in
exponential time, we show that reasoning in ALC(𝔇) is ExpTime-complete. We then look at
two notions of expressive power for logics with concrete domains. One enables the comparison
of logics with (possibly different) concrete domains, and we analyze it by using a bisimulation
that accounts for the presence of feature values and using a locality-based method as in the
case of ALCSCC. The other, called abstract expressive power, looks at the classes of first-order
interpretations that can be expressed using extensions of FOL and DLs with concrete domains,
compared towhat their counterparts without concrete domains can express. If𝔇 only has unary
predicates, the abstract expressive power remains within FOL if we are allowed to introduce
auxiliary symbols, and we obtain decidability results for some fragments of FOL extended with
𝔇 as a by-product. If we can state equality between elements of 𝔇, on the other hand, the
abstract expressive power of most first-order fragments extended by 𝔇 is beyond that of FOL,
and the two-variable fragment with concrete domains becomes undecidable. We find sufficient
conditions on𝔇 such that these extensions satisfy first-order properties such as compactness.
Finally, we studyALCOSCC(𝔇), a combination ofALCSCC and concrete domains where we

can additionally refer to specific individuals by name and use so-called feature roles. We show
that the consistency problem for this DL is ExpTime-complete, assuming that the CSP of 𝔇 is
decidable in exponential time. We show that many natural extensions to this DL, including a
tighter integration of the concrete domain and number restrictions, lead to undecidability.

Statement of authorship

I hereby certify that I have authored this document entitled Complexity and Expressive Power
of Description Logics with Numerical Constraints independently and without undue assistance
from third parties. No other than the resources and references indicated in this document have
been used. I have marked both literal and accordingly adopted quotations as such. There were
no additional persons involved in the intellectual preparation of the present document. I am
aware that violations of this declaration may lead to subsequent withdrawal of the academic
degree.
Dresden, 8th May 2025

Filippo De Bortoli

Acknowledgments

I want to start by thankingmy supervisor, Franz Baader. In the acknowledgments ofmymaster’s
thesis, which he also supervised, I wrote that “he helped me by hinting at possible directions of
work, challenging my intuitions when I was wrong, giving positive feedback when I was right
and sharing a fair amount of time staring at awhiteboard”. After somemore years spentworking
together, that still applies, though the world has slightly changed andwewent fromwhiteboards
to Zoom meetings and coffee meetings every now and then. Plus, I feel that I learnt a lot more
about the joys and intricacies of the world of academic research. And I was given more than
one chance to keep my research going, for which I am extremely grateful. Thank you for all of
this and for all that you taught me.
There are many people with whom I have shared the excitement and the frustration of the

research process, either through conversations in our office, at the canteen or while drinking
(too much) coffee. A heartfelt thank you to all the members of the logic-adjacent groups at TU
Dresden andmy teammates at theChair ofAutomataTheory. In particular, I thankmyQuantLA
fellows and former officemates Jakub and Willi, and my colleagues and scientific collaborators
Patrick and Stefan.
Iwant to thank the people that assistedmewith the administrative and bureaucratic processes

and especially Kerstin Achtruth and Petra Humann, who helped me countless times with a lot
of kindness and while patiently deciphering my spoken and written German.
I am grateful to Johannes Möbius and the conversations we had, which allowed me to see

things differently and face the challenges that I faced during this journey.
The start of my doctoral studies coincided with the beginning of my passion for bouldering,

which later brought me to vertical and outdoors climbing. I want to thank all the people that
shared this wonderful activity with me, and especially Ale, Max and Lucía for encouraging me
to climb a lot and outdoors: “der grüner Mann, der so laut schreit” is grateful for that.
I am deeply grateful to my family for supporting me from far away, with the provvidential

food packages and all the encouragement. Thank youMamma, Papà, Stefy, Diego and of course
thank you Brandy, Ginger and Whiskey.
Then comes the second family, the one that was born in Trento and that eventually spread

all over Europe. I am happy that you are still part of my life, and thank you especially to Anna,
Zambo and Jimmy for listening to my rants over the phone. We can do it!
…and then comes the third family, the one that was built over the years spent in Dresden,

which gave me the opportunity to know some of the most wholesome humans on Earth. La

5

Statement of authorship

Marti, Ivan, Jack, Ele, Fabri, Cate, Anto, Monci, Albi, Irina, who were there first and filled
my days with joy and laughter, and everybody who came afterwards and kept the good vibes
rolling. I apologize for not writing all of your names, but there would be no space left for the
thesis otherwise. Thank you from the bottom of my heart.
A huge thank you to all my friends in my hometown Verona and all over Italy and Europe: I

am happy whenever I get to meet you, and I am happy we are still in touch after so many years.
Finally, I want to thank Julia. I am grateful that you are part of my life, that you support me,

that you understand me, that we get to share a lot of nice and memorable experiences, and that
we still share snacks every day. That’s pretty romantic.

Funding. The work contained in this thesis was partially supported by the German Research
Foundation (DFG) within the Research Training Group 1763 (QuantLA) and by the German
Federal Ministry of Education and Research (BMBF, SCADS22B) and the Saxon State Ministry
for Science, Culture and Tourism (SMWK) by funding the competence center for Big Data and
AI “ScaDS.AI Dresden/Leipzig”.

6

Contents

1 Introduction 9

2 Preliminaries 16

3 Reasoning with Expressive Cardinality Constraints 33
3.1 Quantifier-free Boolean Algebra with Presburger Arithmetic 33
3.2 The DLsALCSCC andALCSCC∞ . 35
3.3 Extended Cardinality Restrictions . 36

4 Expressive Power of ALCSCC and ALCSCC∞ over Restricted Classes Of Models 42
4.1 Presburger Bisimulation . 42
4.2 ALCSCC,ALCSCC∞ and first-order logic . 45

5 Knowledge Bases that Count, and what They Can and Cannot Count 57
5.1 Expressive Power of (Boolean) TBoxes . 59
5.2 Expressive Power of (Boolean) CBoxes and ECBoxes 64
5.3 ECBoxes and the 0-1 law for FOL . 67

6 The Precise Complexity of Reasoning with 𝜔-admissible Concrete Domains 70

7 The Abstract Expressive Power of Logics with Concrete Domains 79
7.1 First-Order Logic with Concrete Domains and Abstract Expressive Power 79
7.2 First-order Properties of Logics with Concrete Domains 82
7.3 First-order (non-)definability and decidability . 87

8 The Expressive Power of DLs with Concrete Domains 97
8.1 The Expressive Power ofALC(𝔇) w.r.t. FOL(𝔇) 99
8.2 The Expressive Power ofALC∨+(𝔇) andALCfo(𝔇) 105

9 Concrete Domains Meet Cardinality Constraints 111
9.1 Syntax and Semantics ofALCOSCC(𝔇) . 111
9.2 Deciding Consistency . 113
9.3 Reasoning with ABoxes . 122
9.4 Undecidable Extensions . 126

7

Contents

10 Conclusion 132

Bibliography 139

8

1 Introduction

Description logics (DLs) [22, 13] are a well-investigated family of logic-based knowledge repre-
sentation languages, which can be used to formalize the terminological knowledge of an appli-
cation domain in amachine-processable way. They are designed to offer good tradeoffs between
expressive power and complexity of reasoning and form the theoretical backbone of theWeb on-
tology language OWL2.1 Successful applications of DLs to ontology formalization can be found
in domains such as biology and medicine [60]. For instance, large medical ontologies such as
SNOMEDCT2 and Galen3 have been developed using appropriate DLs.
A key feature of DLs is the ability to construct descriptions of complex concepts (i.e., sets

of individuals sharing certain properties) by combining concept names (unary predicates) and
role names (binary predicates) using appropriate concept constructors. For example, the con-
cept of a parent can be described as Human ⊓ ∃child.Human, where the concept name Human
and the role name child are combined using concept conjunction (⊓) and existential role restric-
tion (∃r.C). Knowledge about the relationship between concepts can then be expressed using
concept inclusions (CIs), such as

Human ⊓ ∃child.Human ⊑ ∃eligible.TaxBreak,
which says that parents are eligible for a tax break.
Such purely qualitative statements are not always sufficient to express quantitative informa-

tion (e.g. the number of children required for a tax break) that is relevant for an application
domain. To accommodate diverse application domains, the DL community has developed log-
ics with different constructors, whose expressive power [6, 73] is tailored towards what is needed
in these domains while leaving reasoning decidable. In many cases, however, the added expres-
sive power turns out to be useful also in other applications. Qualified number restrictions [33,
62, 61] that constrain the number of role successors belonging to a certain concept by a fixed
natural number can be employed in DLs to express such quantitative information. The CI
Human ⊓ (⩾ 3 child.Human) ⊑ ∃eligible.TaxBreak says that a tax break is available if one has at
least three children. To express quantitative information about the whole domain of discourse
we may use cardinality restrictions (CRs) [12, 96] which enable us e.g. to state that there are4 at

1https://www.w3.org/TR/owl2-overview/
2https://www.snomed.org/
3https://bioportal.bioontology.org/ontologies/GALEN
4https://ourworldindata.org/grapher/landline-internet-subscriptions, last accessed 10/09/2024.

9

https://www.w3.org/TR/owl2-overview/
https://www.snomed.org/
https://bioportal.bioontology.org/ontologies/GALEN
https://ourworldindata.org/grapher/landline-internet-subscriptions

1 Introduction

least thirty-seven million subscriptions to landline Internet in Germany:

|LegalGermanEntity ⊓ ∃subscribedTo.LandlineInternet| ⩾ 37000000
Concrete domain reasoning [20] can represent a different type of quantitative information, where
concrete objects such as numbers or strings can be assigned to individuals using partial functions
called features. For example, a tax break might only be available if the annual salary is not too
high. The CI Human ⊓ (≥ 3 child.Human) ⊓ ∃salary.<100,000 ⊑ ∃eligible.TaxBreak specifies at
least three children and an annual salary of less than 100,000 € as eligibility criteria for a tax
break. The study of concrete domain restrictions was motivated by a mechanical engineering
application [21]. Due to their usefulness in many application domains, they are included in
the OWL2 standard, albeit in the restricted form of unary concrete domains (called datatypes),
where all predefined predicates have arity one [63].
We can readily show that by adding any of the quantitative constructors presented in the

previous paragraph, we obtain an extension ofALC and of CIs. One way to prove this is to show
that a given DL ℒ1 can be expressed by another DL ℒ2 using the same concept and role names
by providing a semantic-preserving translation of ℒ1 concept descriptions into ℒ2, so that for
example the ALC concept ∃child.Human can be expressed by the concept (⩾ 1 child.human) in
the DL ALCQ that extends ALC with qualified number restrictions. This same technique can
be used to show that a DL, such asALC orALCQ, is a fragment of first-order logic (FOL).
Proving that each of these extensions is strictly more expressive, on the other hand, is more

challenging. The first formal investigation of the expressive power of DLs was performed in [5,
6], but in a rather ad hoc manner. More fundamental characterizations of the expressive power
of various concept description languages up to the DLALC based on themodel-theoretic notion
of bisimulation are given in [73]. This approach, pioneered by van Benthem [101] for the modal
logic K (which is a syntactic variant of ALC), characterizes a given DL as the fragment of FOL
that is invariant under an appropriate notion of bisimulation. The notion of bisimulation thus
provides a formal way to prove that one DL is more expressive than another, when using the
same concept and role names.
Aside from an increase in terms of expressive power, the introduction of qualified number re-

strictions, cardinality restrictions and concrete domain restrictions in DL research created con-
siderable algorithmic challenges. ForALCQ, the extension of the basic DLALC with qualified
number restrictions, it was open for a decade whether the increase in expressivity also increases
the complexity of reasoning if numbers in number restrictions are assumed to be represented
in binary, until Tobies [99, 96] was able to show that this complexity is unchanged w.r.t. ALC
(PSpacewithout and ExpTimewith CIs). On the other hand, it turned out that the unrestricted
use of transitive roles within number restrictions can cause undecidability [64]. The addition of
CRs also increases the complexity of reasoning: for ALCQ, consistency w.r.t. CIs is ExpTime-
complete, but consistency w.r.t. CRs isNExpTime-complete if the numbers occurring in the CRs
are assumed to be encoded in binary [96]. With unary coding of numbers, consistency staysExp-
Time-complete even w.r.t. CRs [96]. Note that, using unary coding of numbers, the number n
is assumed to contribute n to the size of the input, whereas with binary coding the size of the
number n is logn. Thus, for large numbers, assuming binary coding (or coding w.r.t. any base
larger than 1) is more realistic. It should be noted that both number restrictions and CRs can
be expressed in 𝒞2, the two-variable fragment of FOL with counting quantifiers [54, 87], whose
satisfiability problem is known to be NExpTime-complete [90].
The original decidability result for ALC(𝔇), i.e., ALC extended with an admissible concrete

domain𝔇, in [20] did not take CIs into account. In the presence of CIs, integrating even rather

10

1 Introduction

simple concrete domains into the DL ALC may cause undecidability [78, 23]. In [79], it was
proved that integrating a so-called 𝜔-admissible concrete domain into ALC leaves reasoning
decidable also in the presence of CIs. There, Allen’s interval algebra [2] and RCC8 [91] are
proved to be𝜔-admissible. Usingwell-known notions and results frommodel theory, additional
𝜔-admissible concrete domains were exhibited in [23, 24], for example the rational numbers
with comparisons𝔔 := (ℚ,<,=,>). Decidability results forALC(𝔇) in the presence of CIs for
concrete domains 𝔇 that are not 𝜔-admissible, such as integers with ordering and equality or
strings with lexicographic orderings, can be found in [36, 74, 43]. A simpler, but considerably
more restrictive way of achieving decidability is to use unary concrete domains [63].
Our goal is to look at extensions of DLs with qualified number restrictions, cardinality restric-

tions or concrete domain restrictions and study the complexity of reasoning with the obtained
DLs as well as the expressive power of these languages. Sincemany of the introduced languages
lack practical support for reasoning, it is essential to understand what capabilities cannot be
expressed by less expressive DLs that are already supported by existing reasoners. On the other
hand, studying the complexity of reasoning in the newly obtained DLs is equally crucial: know-
ing that reasoning with a certain DL is decidable or even has tight complexity bounds paves the
way for further research into practical ways to introduce these languages in existing ontologies
or improve existing reasoners with new algorithmic insights.

Beyond qualified number restrictions. The classical number restrictions available inALCQ
can only be used to compare the number of role successors of an individual with a fixed natural
number. They cannot compare the numbers of different kinds of role successors to each other
without relating them to a fixed number. To overcome this deficit, ALCQ has been extended
by allowing the statement of constraints on role successors using the quantifier-free fragment of
Boolean Algebra with Presburger Arithmetic (QFBAPA) [72], in which one can express Boolean
combinations of set constraints and numerical constraints comparing the cardinalities of finite
sets. In the resultingDL, calledALCSCC [7], we can describe humans that have exactly asmany
cars as children as

Human ⊓ succ(|own ∩ Car| = |child ∩ Human|)
without having to specify the exact numbers of cars and children. The complexity of reasoning
inALCSCC is the same as inALC andALCQ, where concept satisfiability is PSpace-complete
without a TBox and ExpTime in the presence of a TBox [7]. While the PSpace result also fol-
lows from previous work [41] on modal logics with Presburger constraints, the ExpTime result
was new. The same complexity results hold for ALCSCC∞ [16], a variant of ALCSCC where
constraints on role successors are evaluated over an infinite variant QFBAPA∞ of QFBAPA. We
review the logics QFBAPAandQFBAPA∞, as well as the definitions ofALCSCC andALCSCC∞

and their complexity results shown in [7, 16], in the first part of Chapter 3.
The reason we introduced ALCSCC∞ in [16] was to ease the comparison of its expressive

power with standard DLs, since ALCSCC is defined w.r.t. finitely branching interpretations
only. Indeed, adding cardinality constraints based on QFBAPA strictly extends the expressive
power of ALCQ. In [7] it is shown that the constraint succ(|r| = |s|), which describes individ-
uals that have the same number of r-successors as s-successors, cannot be expressed inALCQ.
We were able to show in [16] that ALCSCC∞ is not a fragment of FOL and characterized the
first-order fragment of this logic (𝒜ℒ𝒞𝒞𝒬𝒰 or equivalently ALCQt) using a form of counting
bisimulation [80].

11

1 Introduction

In Chapter 4 we prove the same results forALCSCC, where only finitely branching interpre-
tations are available. The proof techniques used in [16], whichwere inspired by the ones in [80],
cannot be employed in this setting since they depend on compactness of FOL, which does not
hold for the restriction of FOL to finitely branching interpretations. Instead, we employ a proof
technique inspired by [92, 84], which utilizes locality properties of FOL rather than compact-
ness. Interestingly, this approach can deal with arbitrary interpretations, finitely branching
interpretations, and finite interpretations in a uniform way.

Beyond cardinality restrictions. Just like classical qualified number restrictions, CRs can
only relate the cardinality of a concept to a fixed natural number. In [19], the authors introduced
and investigated an expressive class of constraints on the cardinalities of concepts in finite inter-
pretations, encompassing CRs and CBoxes, called extended cardinality restrictions. Again, the
main idea was to use QFBAPA to formulate and combine these constraints. An example of a
constraint expressible this way, but not expressible using CRs is

20 ⋅ |Car ⊓ ∃ownedBy.German ⊓ ∃fueledBy.Electricity| ⩽ |Car ⊓ ∃ownedBy.German|

which states that at most five percent of the cars driven in Germany are electric5. In [19] it is
shown that, in the DL ALC, the complexity of reasoning w.r.t. extended CRs is the same as for
reasoning w.r.t. CRs for binary coding. In addition, the paper introduces a restricted version
of this formalism called RCBox, which can express CIs, but not CRs, and shows that this way
the complexity can be lowered to ExpTime. The NExpTime upper bound for the general case
may be derived from theNExpTime upper bound in [102] for a more expressive logic with n-ary
relations and function symbols, but the ExpTime result for RCBoxes was new.
In [8, 9] the work of [7] and [19] was combined by considering extended cardinality con-

straints in ALCSCC. This turned out to be non-trivial since the local cardinality constraints
of ALCSCC may interact with the global ones in the extended cardinality constraints. Nev-
ertheless, it was shown that the complexity results (NExpTime-complete in general, and Exp-
Time-complete in the restricted case) hold not only for ALC, but also for ALCSCC. Finally,
[10] shows that the ExpTime upper bound can be extended from RCBoxes to ERCBoxes, which
partially cover CRs by using positive Boolean combinations of semi-restricted CRs.
We present the mentioned complexity results in Chapter 3 and extend them to ALCSCC∞

and arbitrary interpretations. Additionally, we analyze the complexity of the entailment prob-
lem for knowledge bases that are built using extended CRs. While for most settings this prob-
lem can be reduced to consistency checking without an increase in complexity, we show that
for semi-restricted CRs the complexity may change depending on what coefficients are used.
In Chapter 5 we look into the expressive power of TBoxes, CRs, and extended cardinality CRs
that use ALCSCC∞ concepts, by adapting methods and ideas from [80]. Here, we do not re-
strict the class of interpretations under consideration and we can therefore resort to the formal
properties of FOL mentioned above, such as compactness.

Concrete domains, 𝜔-admissibility and complexity. As mentioned above, extensions of
ALC by 𝜔-admissible concrete domains were investigated in [79] and later in [23, 24]. In [79]
the concept satisfiability problem w.r.t. an ALC(𝔇) TBox was shown to be decidable if 𝔇 is
𝜔-admissible and only contains binary relations, while [23, 24] generalized this result to cases

5https://ourworldindata.org/electric-car-sales, last accessed 25/04/2025.

12

https://ourworldindata.org/electric-car-sales

1 Introduction

where𝔇 has predicates of arbitrary arity. It was further conjectured that “it is possible to prove
ExpTime-completeness of satisfiability in ALC(𝔇) provided that satisfiability in 𝔇 can be de-
cided in ExpTime” [79]. In Chapter 6 we verify this conjecture, by providing an ExpTime upper
bound for the consistency problem for ALC(𝔇) ontologies consisting of a TBox 𝒯 and an ABox
𝒜, which is a set of concept and role assertions of the form C(a) and r(a, b) where a and b are
named individuals.

Abstract expressive power of logics with concrete domains. As mentioned above, many
DL [22] are decidable fragments of FOL, but there are also decidable DLs whose KBs cannot
always be expressed by an FOL sentence. A case in point are DLs with concrete domains, at
least at first sight. In such DLs, the abstract interpretation domain is complemented by the
concrete domain, and partial functions can be used to assign values in the concrete domain to
abstract objects, which can then be constrained using the predefined predicates of the concrete
domain. For example, assume that we want to model physical objects, collected in a concept
PO, which can be decomposed into their proper parts using a role hpp for “has proper part.” If
we want to take the weight of such objects into account, it makes sense to assign a number for
its weight to every physical object using a feature (i.e., partial function) w, and to state that this
weight is positive and that proper parts are physical objects that have a smaller weight than the
whole. Using the syntax employed above and in [79, 24], these conditions can be expressed with
the help of universal CD-restrictions w.r.t. an appropriate concrete domain by the following CI:

PO ⊑ ∀hpp.PO ⊓ ∃w. (x1 > 0) ⊓ ∀w, hppw.>(x1,x2). (1.1)

Depending on what kind of decomposition into proper parts we have in mind, we can use the
rational numbers or the integers as concrete domain. The former would be more appropri-
ate for settings like cutting a cake, where a given piece can always be cut into even smaller
parts, whereas the latter is more appropriate for settings where physical objects are composed
of finitely many atomic parts that cannot be divided any further.
If we employ the integers, then for any element of PO there is a positive integer such that

the length of all hpp-chains issuing from it are bounded by this number. Using this fact, it is
easy to show that the logic at hand is not compact, i.e., there may be unsatisfiable infinite sets of
sentences for which all finite subsets are satisfiable. In particular, this implies that the abstract
expressive power of this logic, which considers only the abstract domain and the interpretation
of concept and role names, but ignores the feature values, cannot be contained in FOL. For
the rational numbers, instead, the extensions of ALC or FOL with this concrete domain share
the compactness and downward Löwenheim-Skolem properties with FOL. The reason is that
the rational numbers with > are homomorphism 𝜔-compact, which means that a countable set
of constraints is solvable iff all its finite subsets are solvable. We can, however, prove that the
abstract expressive power of these logics is nevertheless not contained in FOL, thoughwe cannot
use a compactness argument to show this.
In Chapter 7, we investigate the impact of the choice of concrete domain 𝔇 on the formal

properties satisfied by ALC(𝔇) and the extension FOL(𝔇) of FOL by concrete domain predi-
cates. Our first main result is that FOL(𝔇) (i.e., FOL extended with the concrete domain 𝔇)
shares compactness, the downward Löwenheim-Skolem property, and the Craig interpolation
property with FOL if the employed concrete domain satisfies some reasonable model-theoretic
assumptions. On theDL side, the extensionALC(𝔇) of thewell-knownDLALC with a concrete
domain 𝔇 fulfilling the model-theoretic assumptions mentioned above satisfies compactness,

13

1 Introduction

the downward Löwenheim-Skolem property, and also the upward Löwenheim-Skolem prop-
erty. Additionally, we establish that if 𝔇 is strongly positive, homomorphism 𝜔-compact and
the finite unsatisfiable constraint systems for 𝔇 are recursively enumerable, then the unsatis-
fiable sentences of FOL(𝔇) are recursively enumerable. We provide sufficient conditions for
which the abstract expressive power of this DL is (not) contained in that of first-order logic.
As a by-product, we obtain on the one hand decidability results for several fragments of FOL
extended with unary concrete domains, and on the other hand show that even decidable frag-
ments of FOL can yield undecidable extensions, if the concrete domain can express equality of
its elements.

Comparing logics with concrete domains. While the notion of abstract expressive power
allows us to compare logics with andwithout concrete domains, it only provides limited insights
when comparing logics extended by different concrete domains. In Chapter 8 we delve into the
expressive power of DLswith concrete domains, by introducing a notion of concrete bisimulation
which also accounts for the presence of feature names. We show how this notion can be used to
separate the expressive power of DLs extended by domains over the same set but with different
relations, or DLs with the same concrete domain but different kinds of CD-restrictions. Finally,
in the spirit of Chapter 4 we find sufficient conditions on𝔇 such that ALC(𝔇) is the fragment
of FOL(𝔇) that is invariant under concrete bisimulation, even when restricted to the classes of
finite and finitely branching interpretations.

Concrete domains meet cardinality constraints. Finally, Chapter 9 is dedicated to the
combination of local cardinality constraints and concrete domain reasoning. We introduce
ALCOSCC(𝔇), a combination of the DLs ALCSCC and ALC(𝔇) with 𝜔-admissible concrete
domains 𝔇 as well as nominals (𝒪). This DL goes beyond a pure combination of number re-
strictions and concrete domains by additionally allowing for their interaction. For a numeri-
cal concrete domain, it seems natural to use the values of concrete features directly in the QF-
BAPA constraints of ALCSCC, e.g. to describe people that own more books than their age. We
show, however, that this unrestricted combination easily leads to undecidability. Instead, we
use concrete domain constraints to define feature roles, which can then be employed within QF-
BAPA constraints. For example, the feature role (salary < next salary) connects an individual
to all individuals that have a higher salary. One can use this to describe all persons that have
a lower salary than at least half of their children with succ(|child ∩ (salary < next salary)| >
|child ∩ (salary ⩾ next salary)|). However, we show that the unrestricted use of such concrete
roles also leads to undecidability. Hence, we additionally restrict them to pairs of individuals
that are already connected by a role name.
Regarding the expressive power of this DL, we combine the work done in Chapters 4 and 8

and introduce the notion of concrete Preburger bisimulation, which we employ to show that the
DL obtained by removing feature roles from ALCOSCC(𝔇) cannot express the feature roles
introduced in ALCOSCC(𝔇). The main result, concerning complexity, is that reasoning in
ALCOSCC(𝔇) stays in ExpTime if the complexity of reasoning in 𝔇 is in ExpTime. There are
few results in the literature that determine the exact complexity of reasoning in DLs with con-
crete domains [79, 74, 43], and we extend the results obtained in Chapter 6 for ExpTime-𝜔-
admissible concrete domains fromALC(𝔇) toALCOSCC(𝔇). Apart from the aforementioned
undecidability results, we show that adding transitive roles also makes reasoning undecidable,
even under strong syntactic restrictions.

14

1 Introduction

Publications

The following publications constitute the majority of the work contained in this thesis:

[14] Baader, F., De Bortoli, F.: Description Logics That Count, andWhat They Can and Cannot
Count. In: Kovacs, L., Korovin, K., Reger, G. (eds.) ANDREI-60. Automated New-era
Deductive Reasoning Event in Iberia. EPiC Series in Computing, pp. 1–25. EasyChair
(2020). https://doi.org/10.29007/ltzn

[15] Baader, F., De Bortoli, F.: Logics with Concrete Domains: First-Order Properties, Abstract
Expressive Power, and (Un)Decidability. SIGAPP Applied Computing Review 24(3), 5–17
(2024). https://doi.org/10.1145/3699839.3699840

[17] Baader, F., De Bortoli, F.: The Abstract Expressive Power of First-Order and Description
Logics with Concrete Domains. In: Proceedings of the 39th ACM/SIGAPP Symposium
on Applied Computing. SAC ’24, pp. 754–761. ACM, New York, NY, USA (2024). https:
//doi.org/10.1145/3605098.3635984

[11] Baader, F. et al.: Concrete Domains Meet Expressive Cardinality Restrictions in Descrip-
tion Logics. In: Barrett, C., Waldmann, U. (eds.) Automated Deduction – CADE 30.
LNAI,. Vol. 15943, pp. 676–695. Springer, Heidelberg (2025). https://doi.org/10.
1007/978-3-031-99984-0_35

[34] Borgwardt, S., De Bortoli, F., Koopmann, P.: The Precise Complexity of Reasoning in𝒜ℒ𝒞
with 𝜔-Admissible Concrete Domains. In: Giordano, L., Jung, J.C., Ozaki, A. (eds.) Pro-
ceedings of the 37th InternationalWorkshop onDescription Logics (DL’24). CEURWork-
shop Proceedings. CEUR-WS, Bergen, Norway (2024)

Additionally, the content of Chapters 4 and 8 is being prepared for a conference submission.

Awards. The conference paper [17] was awarded the Best Paper Award in the Information
Systems Area at the 39th ACM/SIGAPP Symposium on Applied Computing (SAC ’24). The
conference paper [16], which is based on the author’s master’s thesis and constitutes a start-
ing point for further work developed in Chapters 4 and 5 and partially published in [14], was
awarded with the Best Student Paper Award at the 12th International Symposium on Frontiers
of Combining Systems (FroCoS ’19).

15

https://doi.org/10.29007/ltzn
https://doi.org/10.1145/3699839.3699840
https://doi.org/10.1145/3605098.3635984
https://doi.org/10.1145/3605098.3635984
https://doi.org/10.1007/978-3-031-99984-0_35
https://doi.org/10.1007/978-3-031-99984-0_35

2 Preliminaries
We devote this chapter to the preliminaries. Here, we briefly introduce the notions of first-order
logic (FOL), constraint satisfaction problems (CSP), description logics (DLs) and well-established
extensions with qualified number restrictions, cardinality restrictions and concrete domain rea-
soning, as well as basic notions and results on the expressive power of FOL and DLs. Readers
that are already familiar with these topics may skip this chapter and refer to it occasionally.

First-Order Logic

In this section, we recall the syntax and semantics of first-order logic (FOL), which will serve as
the basis for defining several notions of interest in the remainder of the thesis.

Definition 2.1 (Syntax of FOL). Let 𝜎 be a set, called signature, that contains countably many
relation symbols P1, P2, …and countably many function symbols f1, f2, …, so that each relation
and function symbol is associated with a natural number k ∈ ℕ called its arity. Function symbols
of arity 0 in 𝜎 are also called constants. Given a countable set Var of variables, we inductively
define the set of 𝜎-terms as follows:

• all elements of Var and all constants of 𝜎 are 𝜎-terms;

• if t1, …, tk are 𝜎-terms and f ∈ 𝜎 is a k-ary function symbol, then f (t1,… , tk) is a 𝜎-term.

The set FOL[𝜎] of 𝜎-formulae is defined inductively, according to the following rules:

Atomic formulae if x, y are 𝜎-terms then x = y is a 𝜎-formula, and if t1, …, tk are 𝜎-terms and
P ∈ 𝜎 is a k-ary relation symbol, then P (t1,… , tk) is a 𝜎-formula;

Boolean connectives if 𝜙 and 𝜓 are 𝜎-formulae, then so are ¬𝜙 (negation), 𝜙 ∧ 𝜓 (conjunction)
and 𝜙 ∨ 𝜓 (disjunction);

Quantified formulae if 𝜙 is a 𝜎-formula and x ∈ Var a variable, then ∃x.𝜙 (existential quantifi-
cation) and ∀x.𝜙 (universal quantification) are 𝜎-formulae.

We also define 𝜙 → 𝜓 := ¬𝜙 ∨ 𝜓 (implication) and 𝜙 ↔ 𝜓 := (𝜙 → 𝜓) ∧ (𝜓 → 𝜓) (equivalence).

Definition 2.2 (Free variables and sentences). We recursively define the set free(𝜙) of free vari-
ables of a FOL[𝜎] formula 𝜙 as follows:

16

2 Preliminaries

• if 𝜙 is an atomic formula, then free(𝜙) is the set of all variables occurring in terms of 𝜙;

• free(¬𝜙) := free(𝜙) and free(𝜙 ∧ 𝜓) := free(𝜙) ∪ free(𝜓) (the definition for all other binary
Boolean connectives is equal to that of conjunction);

• free(∃x.𝜙) = free(∀x.𝜙) := free(𝜙) \ {x}.

A sentence is a formula with no free variables.

The syntax of FOL introduced in Definition 2.1 describes which symbolic expressions cor-
respond to well-defined formulae of the language. The semantics of FOL, on the other hand,
explains how to assign a meaning to well-defined formulae.

Definition 2.3 (Semantics of FOL). An interpretation ℐ of a signature 𝜎 consists of a non-empty
set Δℐ together with a mapping ⋅ℐ that assigns

• to each constant c ∈ 𝜎 an element cℐ ∈ Δℐ,

• to each k-ary function symbols f ∈ 𝜎 a function fℐ : (Δℐ)k → Δℐ and

• to each k-ary relation symbol P ∈ 𝜎 a k-ary relation P ℐ ⊆ (Δℐ)k.

A variable assignment over ℐ is a functionw : Var → Δℐ, which is extended to a term assignment
by defining

• w(c) := cℐ for all constants c ∈ 𝜎 and

• w(f (t1,… , tk)) := fℐ(w(t1),… ,w(tk)) for all k-ary function symbols f ∈ 𝜎.

Ifw is a variable assignment, we denote withw{x ↦ d} the assignmentw′ such thatw′(x) = d and
w′(y) = w(y) for every other variable in Var.
Given an interpretation ℐ of 𝜎, a term assignment w and a FOL[𝜎] formula 𝜙, we recursively

define the satisfiability relation ℐ ,w ⊧ 𝜙 as follows:

• ℐ ,w ⊧ t1 = t2 iff w(t1) = w(t2);

• ℐ ,w ⊧ P (t1,… , tk) iff (w(t1),… ,w(tk)) ∈ P ℐ;

• ℐ ,w ⊧ ¬𝜙 iff not ℐ ,w ⊧ 𝜙 (also written ℐ ,w ⊭ 𝜙);

• ℐ ,w ⊧ 𝜙 ∧ 𝜓 iff ℐ ,w ⊧ 𝜙 and ℐ ,w ⊧ 𝜓;

• ℐ ,w ⊧ 𝜙 ∨ 𝜓 iff ℐ ,w ⊧ 𝜙 or ℐ ,w ⊧ 𝜓;

• ℐ ,w ⊧ ∃x.𝜙 iff ℐ ,w{x ↦ d} ⊧ 𝜙 for some d ∈ Δℐ;

• ℐ ,w ⊧ ∀x.𝜙 iff ℐ ,w{x ↦ d} ⊧ 𝜙 for all d ∈ Δℐ.

We say that ℐ is amodel of the sentence 𝜙, in symbols ℐ ⊧ 𝜙, if ℐ ,w ⊧ 𝜙 holds for some (and thus
all) assignmentsw.1 A first-order sentence 𝜙 over a signature 𝜎 is satisfiable if it has amodel and it
is valid if every interpretation of 𝜎 is a model of 𝜙. A first-order sentence 𝜓 is a logical consequence
of 𝜙, in symbols 𝜙 ⊧ 𝜓, if every model of 𝜙 is also a model of 𝜓; we also say that 𝜙 entails 𝜓.
1Since a sentence contains no free variable, its truth value is the same, no matter what assignment is used.

17

2 Preliminaries

We can study satisfiability, validity and entailment of first-order sentences interchangeably,
since a sentence 𝜙 is valid iff its negation ¬𝜙 is unsatisfiable and 𝜓 is a logical consequence of
𝜙 is the implication 𝜙 → 𝜓 is valid, i.e. the sentence 𝜙 ∧ ¬𝜓 is unsatisfiable. In particular, we
focus on the following decision problem for FOL:

given a sentence 𝜙, does 𝜙 have a model?

An algorithm that solves this problem is said to be sound if it recognizes a satisfiable sentence
and complete if it recognizes an unsatisfiable sentence. A decision procedure is a sound and
complete algorithm that solves this decision problem and that terminates on every input 𝜙. The
famous completeness theorem of Gödel states that FOL is semidecidable: there exists a sound
and complete algorithm to enumerate all the sentences that are unsatisfiable [50], thus all the
valid sentences and all the entailments that hold between FOL sentences. However, the decision
problem is undecidable, as proved by Church [39] and Turing [100], which means that there is
no decision procedure to check satisfiability of a first-order sentence.
Two formal properties derived from the proof of the semidecidability of FOL that we will

consider throughout the thesis are compactness and recursive enumerability [45, 48, 59]. These
properties can be specified as follows:

(Countable) Compactness: LetΦ be an at most countable set of FOL sentences. If every finite
subset of Φ is satisfiable, then Φ is satisfiable;

Recursive enumerability: The set of unsatisfiable sentences in FOL is recursively enumerable
(r.e.), i.e. there is an algorithm that enumerates all unsatisfiable FOL sentences.

Decidable Fragments of First-Order Logic

One way to regain decidability of the satisfiability problem is to restrict the attention to frag-
ments of FOL, i.e. subsets that are defined according to some syntactic criteria. A family of frag-
ments that has been thorougly studied is obtained by restricting the number of distinct variables
that can occur in a formula. Among the fragments that are obtained in this way, we highlight
the one-variable, the two-variable and the three-variable fragment, respectively denoted with
FOL1, FOL2 and FOL3. If we assume that the signature 𝜎 contains no function symbol, then
the satisfiability problem for FOL2 is decidable inNExpTime even with equality predicates [53],
and it additionally enjoys the finite model property [83], that is, every satisfiable formula in this
language has a model whose domain is finite. In contrast, the satisfiability problem for FOL3
is undecidable even in the absence of both function symbols and equality predicates [66]. As
soon as we allow for function symbols in the signature, the satisfiability problem is already un-
decidable for FOL1 with equality, by reduction from the word problem for finitely generated
groups [31].
Anotherway to obtain decidable fragments of FOL is to restrict the syntax of the formulae that

occur in the scope of a quantified variable. The most notable example, in this setting, is given
by the guarded fragment [4]. Given a set of variables Var and a signature 𝜎 that is relational,
i.e. that only contains relation symbols, the set of guarded formulae (over Var and 𝜎) is defined
inductively:

Atomic formulae every expression x = y with x, y ∈ Var andR(x1,… ,xk)withR ∈ 𝜎 a k-ary
relation and x1,… ,xk ∈ Var is a guarded formula;

18

2 Preliminaries

Boolean connectives if 𝜙, 𝜓 are guarded formulae then ¬𝜙, 𝜙 ∧ 𝜓, 𝜙 ∨ 𝜓, 𝜙 → 𝜓 and 𝜙 ↔ 𝜓
are guarded formulae;

Quantified formulae if G is an atomic guarded formula, 𝜙 is a guarded formula such that
free(𝜙) ⊆ free(G) and x1,… ,xk ∈ Var then ∃x1.…∃xk. G ∧ 𝜙 and ∀x1. …∀xk.G → 𝜙
are guarded formulae.

We notice that if 𝜙(x) is a guarded formula, then ∃x.𝜙(x) and ∀x.𝜙(x) are also guarded formulae,
since we can use the tautological expression x = x to guard 𝜙 when quantifying.
The satisfiability problem for the guarded fragment of FOL, denoted with GF, is 2ExpTime-

complete and becomes ExpTime-complete by bounding the number of variables or the arity
of the predicates involved [52]. As a consequence, the satisfiability problem for GF2, the two-
variable guarded fragment of FOL, is ExpTime-complete. This fragment is especially interesting
in that it captures the expressive power of several description logics, as discussed later in this
chapter.

First-Order Logic and Counting Quantifiers

A syntactic variant of FOL is obtained by considering counting quantifiers of the form ∃⩽nx or
∃⩾nx where n is a natural number; the intuitive semantics of these quantifiers corresponds to
”there are at least/at most n x’s such that…”. Clearly, these quantifiers can be expressed using
the quantifiers that are already available in FOL. Indeed, ∃⩾nx.𝜙(x) is equivalent to

∃x1.⋯ .∃xn.((⋀1⩽i<j⩽nxi ≠ xj) ∧
n

⋀
i=1

𝜙(xi)).

As done before, we can study the complexity of the satisfiability problem for subsets of FOL
extended with counting quantifiers. For 𝒞2, the two-variable fragment of FOL with counting
quantifiers, the satisfiability problem is decidable [54, 87] and in particular NExpTime com-
plete [90]. The guarded fragment of 𝒞2, denoted with GC2, is decidable and its satisfiability
problem is ExpTime-complete [67]. Considering the syntax of the guarded fragment that we
introduced above, the fragment GC2 is obtained by extending GF2 with quantified formulae of
the form ∃⩾nx.G ∧ 𝜙 and ∃⩽nx.G ∧ 𝜙. In this case, though, formulae of the form ∃⩾nx.𝜙(x) or
∃⩽nx.𝜙(x) are specifically disallowed.

Constraint Satisfaction Problems

Let𝔇 be a relational structure, that is, a setD called the domain of𝔇 endowed with a countable
set of relations 𝜎, such that each relation P ∈ 𝜎 is associated with a number k ∈ ℕ, called its
arity, and is interpreted as a set PD ⊆ Dk. As an example, each tuple (𝕂,<,=,>) where 𝕂 is
either ℕ, ℤ or ℚ provides a relational structure where the ordering and equality relations in the
tuple are interpreted according to their standard definition over each of these sets of numbers.
We define a constraint system over a relational structure𝔇 as a set Γ of constraints of the form

P (x1,… ,xk)whereP is a k-ary relation of𝔇 and eachxi is a variable. The constraint systemΓ is
satisfiable if there is amapping h, called homomorphism or solution, that assigns each variable in
Γ to an element ofD such that (h(x1),… ,h(xk)) ∈ PD holds for every constraint P (x1,… ,xk)
in Γ. The constraint satisfaction problem (CSP) for 𝔇, denoted CSP(𝔇), asks if an input finite
constraint system Γ over𝔇 is satisfiable.

19

2 Preliminaries

Example 2.4. Let us consider the relational structure 𝔔 := (ℚ,<,=,>) of the rational numbers
with the standard ordering and equality relations, which we write infix. The constraint system
Γ := {x1 > x2,x2 > x3,x3 > x1} provides an instance ofCSP(𝔔) that is unsatisfiable: a solution h
to Γwould satisfy h(x1) > h(x1), which contradicts the interpretation of> overℚ. We observe that
CSP(𝔔) can be decided in polynomial time: given any finite constraint system Γ, we can derive a
directed graph G where we identify all variables x, y for which x = y occurs in Γ and introduce a
directed edge x → y if x < y or y > x are in Γ. Then, Γ has a solution iffG is acyclic.

A k-ary relation P is first-order definable on a relational structure𝔇 with set of relations 𝜎 if
there exists a first-order formula 𝜙(x1,… ,xk) over the signature 𝜎 such that

(d1,… , dk) ∈ PD iff𝔇, {xi ↦ di | i = 1,… , k} ⊧ 𝜙(x1,… ,xk),
where we consider𝔇 as an interpretation of 𝜎 and the satisfaction relation ⊧ is the one defined
for FOL; in this case, 𝜙(x1,… ,xk) is a definition of P .
Constraint systems are not allowed to contain negated constraints and can only express pos-

itive information. On certain structures, we can simulate negated constraints by leveraging
the way in which relations are interpreted. For example, in every constraint system Γ over the
structure 𝔔 defined in Example 2.4 we can encode the negated constraint ¬(x = y) by either
adding x < y or y < x to Γ. Here, we used the fact that the complement of the equality relation
has a first-order definition that is positive and quantifier-free, since ¬(x = y) is equivalent to
x < y ∨ y < x.

Definition 2.5. A relational structure 𝔇 with relation set 𝜎 is strongly positive if for every k-ary
relation P ∈ 𝜎 there is a quantifier-free, equality-free formula 𝜙¬P (x1,… ,xk) over 𝜎 without
negation that defines the complement of P over𝔇, that is,

(d1,… , dk) ∉ PD iff 𝔇, {xi ↦ di | i = 1,… , k} ⊧ 𝜙¬P (x1,… ,xk).

We say that𝔇 isweakly closed under negation (WCUN) if for every k-ary relationP over𝔇 the for-
mula𝜙¬P (x1,… ,xk) above is a disjunction of atomic formulae ofP1(x1,… ,xk), …,Pn(x1,… ,xk)
with P1, …, Pn k-ary relations of𝔇.
As seen above,𝔔 is both strongly positive andWCUN. In fact, every structure that isWCUN is

strongly positive. Among all relational structures that areWCUN and thus strongly positive, we
single out two classes where the definition of the complement is further restricted and allows to
reduce instances of the CSP with negated constraints to instances without negation. A strongly
positive structure𝔇 with relation set 𝜎 is

• closed under negation if the complement of any k-ary relation P ∈ 𝜎 is defined by a k-ary
relation Pc ∈ 𝜎, and

• jointly exhaustive and pairwise disjoint (JEPD) if for all k ⩾ 1, either 𝜎 has no k-ary rela-
tion, orDk is partitioned by all k-ary relations in 𝜎.

An example of a JEPD structure is given by the structure𝔔 considered in Example 2.4.
The following property motivates the usage of the term “strongly positive” above: every first-

order definable relation in a structure of this kind is positively definable.

Proposition 2.6. Every first-order definable relation on a strongly positive relational structure𝔇
has a positive definition. If a relation has a quantifier-free definition on𝔇, then it has a quantifier-
free positive definition.

20

2 Preliminaries

While theCSP of a structure is concernedwith finite constraint systems, there are situations in
which we are interested in establishing if infinite constraint systems over a relational structure
have a solution, in particular countable constraint systems. The following definition introduces
a notion of compactness for constraint systems that is similar to the notion of compactness for
countable sets of FOL sentence described in the previous section.

Definition 2.7. A relational structure𝔇 is homomorphism 𝜔-compact if for every countable con-
straint system Γ over𝔇, we have that Γ is satisfiable iff every finite subset of Γ is satisfiable.

Example 2.8. The structure 𝔔 in Example 2.4 is homomorphism 𝜔-compact [23, 24]. Indeed,
the reduction we described to check the satisfiability of a constraint system over 𝔔 tells us that a
countable constraint systemΓ is unsatisfiable iff the induced directed graphG contains a cyclex1 →
…xn → x1, which is itself induced by a finite subset of Γ. In contrast, the relational structure ℨ :=
(ℤ,<,=,>) is not homomorphism 𝜔-compact: to witness this failure, we consider the constraint
system Γ := {xq > xr | q, r ∈ ℚ, q > r}. We notice that Γ is countable and unsatisfiable in ℨ, since
any solution h requires the interval [h(x0),h(x1)] ⊆ ℤ to be dense, contradicting the fact that ℤ is
not dense; however, any finite subset of Γ is clearly satisfiable.

Description Logics

Description Logics (DLs) are a prominent family of knowledge representation languages used to
formalize ontologies, and they are the main object of investigation of this work. In this section,
we introduce the DL ALC, define its syntax and semantics and describe the decision problems
typically studied in DLs. We then discuss the complexity of the decision problems associated
to ALC and the relationship between this DL and FOL. We refer the reader to Chapter 2 and 5
of [22] for further details.
We begin by introducing the syntax of the DLALC.

Definition 2.9. Given countable, disjoint sets NC and NR of concept and role names, we induc-
tively define the set ofALC concept descriptions (or simply concepts) as follows:

Concept names, top and bottom every concept name inNC is a concept description, and so are
the symbols ⊤ (top) and ⊥ (bottom);

Boolean constructors if C,D are concept descriptions, then so are C ⊓D (conjunction), C ⊔D
(disjunction) and ¬C (negation);

Role restrictions if C is a concept description and r ∈ NR a role name, then ∃r.C (existential
restriction) and ∀r.C (value restriction) are concept descriptions.

A TBox is a finite set of concept inclusions (CIs) C ⊑ D where C,D are concept descriptions.

As seen in Chapter 1, an example of a CI written usingALC concept descriptions is

Human ⊓ ∃child.Human ⊑ ∃eligible.TaxBreak,

where concept names Human and TaxBreak and the role names child and eligible are combined
using concept conjunction and existential role restrictions.
The semantics of ALC is defined in terms of interpretations of NC and NR, which are similar

to the interpretations used to define the semantics of FOL in the previous section.

21

2 Preliminaries

Definition 2.10. An interpretation ℐ ofNC andNR consists of a non-empty setΔℐ and amapping
⋅ℐ that assigns a set Aℐ ⊆ Δℐ to A ∈ NC and a set rℐ ⊆ Δℐ × Δℐ to r ∈ NR. Given an individual
d ∈ Δℐ we denote with rℐ(d) the set of its r-successors, that is,

rℐ(d) := {e ∈ Δℐ | (d, e) ∈ rℐ}.

We define the interpretation ofALC concepts recursively by setting ⊤ℐ := Δℐ, ⊥ℐ := ∅ and

(¬C)ℐ := Δℐ \ Cℐ, (C ⊓D)ℐ := Cℐ ∩Dℐ, (C ⊔D)ℐ := Cℐ ∪Dℐ

for the Boolean constructors; lastly, we define the interpretation of role restrictions as

(∃r.C)ℐ := {d ∈ Δℐ | there exists e ∈ rℐ(d) such that e ∈ Cℐ }
(∀r.C)ℐ := {d ∈ Δℐ | if e ∈ rℐ(d) then e ∈ Cℐ }

An interpretation ℐ is amodel of the TBox 𝒯 if Cℐ ⊆ Dℐ holds for every inclusion C ⊑ D in 𝒯 .
A concept description C is satisfiable if there is an interpretation ℐ such that Cℐ ≠ ∅, and it is
satisfiable w.r.t. the TBox 𝒯 if there is a model ℐ of𝒯 such that Cℐ ≠ ∅.

Reasoning with ALC concepts and TBoxes

The decision problems that we consider forALC and the DLs that wewill introduce throughout
the thesis are the following:

Satisfiability is anALC concept C satisfiable w.r.t. anALC TBox 𝒯 ?

Consistency does anALC TBox 𝒯 have a model?

Entailment is every model of anALC TBox 𝒯 also a model of theALC CI C ⊑ D?2

For ALC and other expressive DL, we can reduce these tasks to one another in polynomial
time, that is, we can reformulate each of these reasoning tasks as a different task, where the
input is obtained by applying a polynomial time procedure to the original input. In particular,
the following relationships exist between the reasoning tasks listed above. The proof of this
theorem can be found in [22] (Theorem 2.17), except for the first item; we will prove a similar
reduction in Chapter 3 and thus omit the proof here.

Theorem 2.11. Let C,D beALC concept descriptions and𝒯 be anALC TBox. Then:

• C is satisfiable w.r.t. 𝒯 iff the TBox𝒯 ∪{⊤ ⊑ ∃r.C} is consistent, where r is a fresh role name
occurring neither in C nor in𝒯 ;

• C is satisfiable w.r.t. 𝒯 iff𝒯 does not entail the CI C ⊑ ⊥;

• 𝒯 is consistent iff ⊤ is satisfiable w.r.t. 𝒯 ;

• 𝒯 is consistent iff it does not entail the CI ⊤ ⊑ ⊥;

• 𝒯 entails C ⊑ D iff C ⊓ ¬D is unsatisfiable w.r.t𝒯 ;

2The entailment problem is also known in the literature as the subsumption problem (cf. [22]).

22

2 Preliminaries

As a consequence of these relationships, we can transfer results concerning the complexity of
performing one reasoning task to the other tasks; this is not always the case, and we will see one
example where this is not applicable in Section 3.3. The followingwell-known result establishes
the complexity of the reasoning tasks listed above forALC.

Theorem 2.12 ([95, 94]). The concept satisfiability problem for ALC is PSpace-complete if no
TBox is considered and ExpTime-complete in the presence of a TBox. The consistency and sub-
sumption problems forALC are ExpTime-complete.

The relationship with first-order logic

We can establish the decidability of the concept satisfiability problem forALC by reducing this
problem to the satisfiability problem for a decidable fragment of FOL. Given two distinct free
variables x and y, we define two mutually recursive translation functions 𝜋x and 𝜋y that assign
to eachALC concept description C a FOL formula 𝜋x(C) and 𝜋y(C). We define 𝜋x as follows:

𝜋x(A) := A(x) 𝜋x(C ⊔D) := 𝜋x(C) ∨ 𝜋x(D)
𝜋x(¬C) := ¬𝜋x(C) 𝜋x(∃r.C) := ∃y.(r(x, y) ∧ 𝜋y(C))
𝜋x(C ⊓D) := 𝜋x(C) ∧ 𝜋x(D) 𝜋x(∀r.C) := ∀y.(r(x, y) → 𝜋y(C)).

The definition of 𝜋y is obtained by swapping all occurrences of x and y in the formulae above,
so that e.g. 𝜋y(∃r.C) := ∃x.(r(y,x)∧𝜋x(C)). Using these mappings, we associate to everyALC
TBox 𝒯 a FOL sentence 𝜋(𝒯) that is the conjunction of sentences ∀x.(𝜋x(C) → 𝜋x(D)) for
every concept inclusion C ⊑ D in 𝒯 . The following holds (cf. Theorem 2.23 in [22]).

Theorem 2.13. AnALC TBox𝒯 is satisfiable iff the FOL sentence 𝜋(𝒯) is satisfiable.

Since the obtained sentence is in particular a GF2 sentence and it is obtained in polynomial
time w.r.t. the size of 𝒯 , we obtain an ExpTime upper bound for the satisfiability problem of
ALC as a corollary of Theorem 2.13 (see the previous section for a discussion of the decidability
of GF2). Moreover, this translation provides us with a view of ALC concepts descriptions and
TBoxes as fragments ofFOL over the signatureNC∪NR, namely those of formulae𝜋x(C) or𝜋(𝒯)
whereC is anALC concept and𝒯 anALC TBox [32]. Laterwe showadifferent characterization
of ALC, not in terms of the syntax of its translation into FOL, but rather as the set of formulae
whose truth is preserved by a certain relation between interpretations called bisimulation. Using
this characterization, we can prove that a certain extension ofALC adds more expressive power
to the resulting DL, justifying its deployment in a knowledge base.

Extensions of ALC

In this section, we look at extensions of ALC and concept inclusions that put an emphasis on
quantitative aspects ofmodelling. For all these extensionswe define syntax, semantics and show
complexity results for concept satisfiability and consistency.

Qualified number restrictions

The most prominent use case for constraints on the cardinalities of sets of objects in the context
of description logics is found in so-called (qualified) number restrictions [61], already introduced

23

2 Preliminaries

in the early days of the field [33, 62]. Using number restrictions, we can for example define
parents that are eligible for a tax break as those who have at least three children:

Human ⊓ (⩾ 3 child.Human) ⊑ ∃eligible.TaxBreak.

Definition 2.14 (Syntax and Semantics of ALCQ). Given countable and disjoint sets NC, NR of
concept and role names, we inductively define the set of ALCQ concept descriptions by extend-
ing Definition 2.9 with the following rule:

Qualified number restrictions if n ∈ ℕ, r ∈ NR is a role name and C is an ALCQ concept
description, then (⩾n r.C) and (⩽n r.C) areALCQ concept descriptions.

We define the interpretation ofALCQ concept descriptions recursively, by extendingDefinition 2.10
to qualified number restrictions as follows:

(⩾n r.C)ℐ := {d ∈ Δℐ | the set rℐ(d) ∩ Cℐ contains at least n elements },
(⩽n r.C)ℐ := {d ∈ Δℐ | the set rℐ(d) ∩ Cℐ contains at most n elements }.

In the previous section we showed how to translateALC concepts and TBoxes to GF2, whose
satisfiability problem is known to be ExpTime-complete. Similarly, we define a translation func-
tion that assignsALCQ concepts to GC2 formulae, by extending the mapping 𝜋x(C) defined in
the previous section to qualified number restrictions, as follows:

𝜋x((⩾n r.C)) := ∃⩾ny.(r(x, y) ∧ 𝜋y(C)),
𝜋x((⩽n r.C)) := ¬𝜋x((⩾n + 1 r.C)).

Since the satisfiability problem for GC2 is ExpTime-complete [67], we are able to deduce that
consistency of ALCQ TBoxes – and thus concept satisfiability w.r.t. a ALCQ TBox – is decid-
able in exponential time. Coupled with the fact that this problem generalizes the satisfiability
problem for ALC and is thus ExpTime-hard, we conclude that it is ExpTime-complete. This
result was already known prior to [67] establishing the complexity of reasoning in GC2. In par-
ticular, the complexity of reasoning in ALCQ has been shown to be the same as for ALC for
both concept satisfiability without a TBox [97] and w.r.t. a TBox [98], independently of whether
the numbers n occurring in the number restrictions are encoded in unary or binary. Under the
assumption of unary coding each number n contributes linearly w.r.t. n to the size of the input,
whereas under binary coding the contribution is logarithmic w.r.t. n. An assumption of binary
coding (or coding in any base larger than 1) better reflects reality, where numbers are typically
represented as sequences of bits or using decimal digits.

Theorem 2.15 ([97, 98]). The concept satisfiability problem for ALCQ is PSpace-complete if no
TBox is considered and ExpTime-complete in the presence of a TBox.

Cardinality restrictions

To formulate numerical constraints on the extensions of concepts in an interpretation we can
use cardinality restrictions (CRs) [12, 96].

Definition 2.16 (Cardinality restrictions). A cardinality restriction (CR) is an expression of the
form |C| ⩽ n or |C| ⩾ nwhere n ∈ ℕ is a natural number andC is a concept description. A CBox
is a finite set of CRs. An interpretation ℐ is amodel of the CBox 𝒞, in symbols ℐ ⊧ 𝒞, if |Cℐ| ⩾ n
holds for every CR |C| ⩾ n in 𝒞 and similarly |Cℐ| ⩽ n if |C| ⩽ n is in 𝒞.

24

2 Preliminaries

For example, the CRs3

|LegalGermanEntity ⊓ ∃subscribedTo.LandlineInternet| ⩾ 37000000

state that there are at least thirty-seven million subscriptions to landline Internet in Germany.4
The main difference between qualified number restrictions and CRs is that constraints of the
former kind are evaluated over the set of role successors of a certain individual, whereas restric-
tions of the latter type range over the whole domain of an interpretation.

Relationship with FOL. Wehave seen thatALC andALCQ can be seen as subsets of the frag-
ments GF2 and GC2 of FOL, using a translation function 𝜋x(C) that assigns to each concept in
one of these DLs a FOL formula in one free variable x in the target fragment of FOL. By extend-
ing this translation function to CRs, we are able to encode CBoxes by means of FOL sentences,
and in particular as sentences of the logic 𝒞2:

𝜋(|C| ⩾ n) := ∃⩾nx. 𝜋x(C),
𝜋(|C| ⩽ n) := ∃⩽nx. 𝜋x(C)

We define 𝜋(𝒞) as the conjunction of the translations of each CR occurring in the CBox 𝒞.

Reasoning with CRs. We can reduce reasoning w.r.t an ALC TBox to reasoning w.r.t. an
ALC CBox, since the CI C ⊑ D is in fact equivalent to the CR |C ⊓¬D| ⩽ 0; therefore, the con-
sistency problem for CBoxes is ExpTime-hard. The exact complexity of the consistency problem
for ALCQ CBoxes has been established in [96] and depends on the coding of the numbers oc-
curring in CRs. Consistency of ALCQ CBoxes was shown to be NExpTime-complete in [96] if
binary coding of numbers is used, whereas for unary coding it stays in ExpTime.

Theorem 2.17 ([96]). The consistency problem for ALCQ CBoxes is NExpTime-complete under
the assumption of binary coding and ExpTime-complete under the assumption of unary coding.

Concrete Domains

One of the shortcomings ofALC is that it does not provide an interface to refer to the attributes of
individuals, nor does it allow for the use of relations between these attributes to constrain their
value. Concrete domains address these issues and offer the opportunity to specify restrictions
over the values of certain features associated to individuals.
Formally, a concrete domain is a fixed relational structure𝔇. To enable the reference to values

of𝔇within concept descriptions, we introduce a countable setNF of feature names, disjoint from
NC and NR. We relate individuals, their role successors and values of a concrete domain using
feature paths. Hereafter, a feature path is either a feature name f ∈ NF or an expression rf
where r ∈ NR is a role name and f is a feature name. Using feature paths and the relations of
𝔇, we are ready to define the DLALC(𝔇).

3Note that the syntax we use here for CRs differs from the one introduced in [12] to make it more similar to the
syntax used later on for our extensions of CRs.

4See https://ourworldindata.org/grapher/landline-internet-subscriptions, last accessed September
10, 2024.

25

https://ourworldindata.org/grapher/landline-internet-subscriptions

2 Preliminaries

Definition 2.18 (Syntax and semantics of ALC(𝔇)). Given countable, disjoint sets NC, NR and
NF of concept, role and feature names, we inductively define the set ofALC(𝔇) concept descriptions
by extending Definition 2.9 with the following rule:

CD-restrictions if C is a concept description, P is a k-ary relation of 𝔇 and p1, …, pk are fea-
ture paths, then ∃p1,… , pk.P (existential CD-restriction) and ∀p1,… , pk.P (universal CD-
restriction) are concept descriptions.

An interpretation of disjoint sets NC, NR and NF is an interpretation ℐ of NC and NR as in Defini-
tion 2.10 extended with a set of partial functions fℐ : Δℐ ⇀ D. Given an individual d ∈ Δℐ, we
denote with fℐ(d) the value associated by fℐ to d, if it is defined, and define

pℐ(d) := {{f
ℐ(d)} p = f ,

{fℐ(e) | e ∈ rℐ(d)} p = rf .

Wedefine the interpretation ofALC(𝔇) concept descriptions recursively, by extendingDefinition 2.10
to CD-restrictions as follows:

(∃p1,… , pk.P)
ℐ := {d ∈ Δℐ | there exist vi ∈ pℐ

i
(d) for i = 1,… , k s.t. (v1,… , vk) ∈ PD },

(∀p1,… , pk.P)
ℐ := {d ∈ Δℐ | if vi ∈ pℐ

i
(d) for i = 1,… , k then (v1,… , vk) ∈ PD }.

The presence of restrictions related to a concrete domain 𝔇 can easily render concept satis-
fiability w.r.t. an ALC(𝔇) TBox undecidable [78, 23]. This is true even if the CSP associated
to 𝔇 is decidable. For example, the relational structure 𝔔+ with a ternary predicate +(x, y, z)
interpreted as the standard sum x+ y = z over the setℚ has a decidable CSP. However, one can
reduce the halting problem for two-register machines, which is known to be undecidable [82],
to concept satisfiability w.r.t. anALC(𝔔+) TBox, obtaining the following result.

Proposition 2.19 ([23]). Concept satisfiability w.r.t. TBoxes inALC(𝔔+) is undecidable.

Thus, we need stronger conditions than simple decidability of the CSP of the concrete domain
𝔇 to regain decidability of concept satisfiability w.r.t. general ALC(𝔇) TBoxes. One of these
conditions regards the compositionality of solutions of constraint systems over𝔇 and is derived
from the amalgamation property (AP) used in model theory (cf. [24]):

AP if Γ, Γ′ are constraint systems over𝔇 and

P (x1,… ,xk) ∈ Γ iff P (x1,… ,xk) ∈ Γ′

holds for all variables x1,… ,xk occurring in both Γ, Γ′ and for all k-ary predicates P over
𝔇, then Γ and Γ′ are satisfiable iff the constraint system Γ ∪ Γ′ is satisfiable.

Another condition that is used to establish decidability is concerned with the ability to express
equality of two individuals within a constraint system, where only relations of the concrete do-
main are available. A concrete domain that satisfies this property is called jointly diagonal (JD)
and is formally defined as:

JD there is a quantifier-free, equality-free first-order formula 𝜙=(x, y) over the signature of 𝔇
that defines the equality relation = between two elements of𝔇.

26

2 Preliminaries

These conditions have been combined with the JEPD and homomorphism𝜔-compactness prop-
erties introduced earlier, yielding the following class of concrete domains [79, 23]. Here, a
patchwork is a concrete domain 𝔇 that is JEPD, JD and satisfies AP. If 𝔇 is a patchwork, we
call a constraint system ℭ complete if, for all k ∈ ℕ, either 𝔇 has no k-ary predicates, or for all
v1,… , vk ∈ V (ℭ) there is exactly one k-ary predicate P over𝔇 such that P (v1,… , vk) ∈ ℭ.

Definition 2.20. A concrete domain𝔇 is 𝜔-admissible if

• 𝔇 has a finite signature,

• 𝔇 is a patchwork,

• 𝔇 is homomorphism 𝜔-compact, and

• CSP(𝔇) is decidable.

Requiring the signature of𝔇 to be finite is necessary to ensure decidability ofALC(𝔇). With-
out this assumption, one can find instances of 𝔇 that satisfy all the other conditions of Defi-
nition 6.1 such that reasoning in ALC(𝔇) is undecidable. One such example is given by the
concrete domain (ℤ, {+m | m ∈ ℤ}) where the binary relation +m relates those integers whose
difference is equal to m [24]. The conditions of Definition 6.1 are satisfied by Allen’s interval
algebra [2], the region connection calculus RCC8 [91] and𝔔 [79, 24].
If 𝔇 has finitely many k-ary relations for all k ∈ ℕ and satisfies all the conditions of Defini-

tion 2.20 except for finiteness of its signature, we can obtain an 𝜔-admissible domain by fixing
a natural number d and only considering the relations of𝔇 that have arity at most d. This is not
so restrictive, as for everyALC(𝔇) concept and TBox we can easily find such a bound d.
We also notice that the original notion of 𝜔-admissibility in [79] did not consider JD, which

was added later in [23]. The following result was shown in [79] for concrete domainswith binary
predicates and later generalized in [23] for arbitrary arities.

Theorem 2.21 ([79, 23]). Let𝔇 be a 𝜔-admissible concrete domain. Then, satisfiability of a con-
cept w.r.t. anALC(𝔇) TBox is decidable.

The Expressive Power of Logics

In the previous sections we have described several extensions of the DLALC and TBoxes. Some
of these extensions increase the complexity of reasoning, while others retain a similar complex-
ity but are not supported by existing reasoners. It is thus natural to ask: can we encode any of
these extensions inALC? Or do they effectively increase the expressive power ofALC?
We adhere to the definition of expressive power of knowledge representation languages pre-

sented in [6, 73]. According to this view, the expressive power of a concept description, a TBox
or a CBox is represented by their models, and is thus tightly related to the semantics assigned to
each of these objects. This view is also adopted inmodel theory, a research area of mathematics
which studies the relationships between the syntax of formulae in a logical language, typically
first-order logic, and the properties of the models that each of these formulae defines [44, 59].
Wemaywant to impose restrictions on the classes ofmodels consideredwhile studying the ex-

pressive power. For example, the DLALCSCC introduced in Chapter 3 is defined w.r.t. finitely
branching interpretations; to compare the expressive power of another DL with ALCSCC, we

27

2 Preliminaries

must either change the semantics of ALCSCC to account for arbitrary interpretations, or com-
pare the two DLs only w.r.t. finitely branching interpretations. Another class of models with
interesting properties is that of finite models, studied in finite model theory [44]. Many proper-
ties of first-order sentences that hold w.r.t. arbitrary interpretations, such as compactness, fail
when restricting to the class of finite interpretations.
We can however use other properties of first-order formulae that hold even if we restrict to

finite or finitely branching interpretation to study the expressive power of a logical language.
One such property, presented below, is related to the notion of quantifier depth of a FOL formula
over the signature NC ∪ NR.

Definition 2.22. The quantifier depth depth(𝜙) of a FOL formula 𝜙 over the signature NC ∪ NR
is defined as

• depth(A(x)) := 0 and depth(r(x, y)) = 0 for all A ∈ NC and r ∈ NR;

• depth(¬𝜙) := depth(𝜙);

• depth(𝜙 ∧ 𝜓) := max(depth(𝜙), depth(𝜓)) (and similarly for 𝜙 ∨ 𝜓, 𝜙 → 𝜓 and 𝜙 ↔ 𝜓);

• depth(∃x.𝜙) := depth(𝜙) + 1 and depth(∀x.𝜙) := depth(𝜙) + 1.

A fundamental result in finitemodel theory is given by theEhrenfeucht-Fraïssemethod, which
provides specific algebraic conditions to ensure that two interpretations satisfy the same FOL
formulae of quantifier depth q [44]. In particular, this method relates satisfiability of formulae
with depth at most q with the existence of q-isomorphisms, defined as follows (see [44], Defini-
tion 1.2.1 of partial isomorphism and Definition 1.3.1 of q-isomorphism).

Definition 2.23. A partial isomorphism between interpretations ℐ , 𝒥 of NC, NR is an injective
partial function p : Δℐ ⇀ Δ𝒥 s.t. d ∈ Aℐ iff p(d) ∈ A𝒥 and (d, d′) ∈ rℐ iff (p(d), p(d′)) ∈ r𝒥 holds
for all d, d′ ∈ Δℐ for which p is defined, A ∈ NC and r ∈ NR. Given q ∈ ℕ, a q-isomorphism
between d ∈ Δℐ and e ∈ Δ𝒥 is a sequence I0,… , Iq of non-empty sets of partial isomorphisms
between ℐ and𝒥 with {d ↦ e} ∈ Iq satisfying the following properties for all 0 ⩽ i < q:

i-forth if p ∈ Ii+1 and d′ ∈ Δℐ then there exists p′ ∈ Ii that extends p and such that p′(d′) = e′
for some e′ ∈ Δ𝒥;

i-back if p ∈ Ii+1 and e′ ∈ Δ𝒥 then there exists p′ ∈ Ii that extends p and such that e′ = p′(d′)
for some d′ ∈ Δℐ.

We say that d, e are q-isomorphic if there is a q-isomorphism between d and e.

The Ehrenfeucht-Fraïsse method relates the existence of a q-isomorphism between two in-
dividuals and the satisfiability of FOL formulae of quantifier depth q w.r.t. these individuals
(see [44], Theorem 1.3.2).

Theorem 2.24 (Ehrenfeucht-Fraïsse). The individuals d and e are q-isomorphic iff they satisfy
the same FOL formulae 𝜙(x) of quantifier depth at most q.

Hereafter, we write ℂ to denote a class of interpretations of NC and NR and introduce the
following classes of interpretations:

• the class ℂall of arbitrary interpretations,

28

2 Preliminaries

• the class ℂfb of finitely branching interpretations, i.e. where every individual has finitely
many role successors, and

• the class ℂfin of finite interpretations.

Clearly, ℂfin ⊆ ℂfb ⊆ ℂall holds.

Definability and equivalence. The comparison of the expressive power of the DLs ℒ and ℒ′
defined over NC and NR as concept languages is based on the notion of equivalence between an
ℒ concept C and an ℒ′ concept C′.

Definition 2.25. Let ℂ be a class of interpretations of NC and NR, and ℒ, ℒ′ two DLs defined over
NC and NR. Then, the ℒ concept C is ℂ-equivalent to the ℒ′ concept C′ if Cℐ = C′ℐ holds for
all ℐ ∈ ℂ. We say that ℒ′ can be expressed in ℒ w.r.t. ℂ if for every ℒ′ concept C′ there is an ℒ
conceptC that isℂ-equivalent toC′. We say that ℒ′ is more expressive than ℒ w.r.t. ℂ if ℒ can be
expressed in ℒ′ but ℒ′ cannot be expressed in ℒ w.r.t. ℂ.

In Chapter 2 we provided a first-order translation of ALC concepts into FOL formulae 𝜙(x)
that is equisatisfiable. While not explicitly stated, this translation shows thatALC is a fragment
of FOL, in that 𝜋x(C) provides a first-order definition of C as follows. Here, we compare an ℒ
concept C and an FOL order formula 𝜙(x) over the signature NC ∪ NR.

Definition 2.26. Let ℂ be a class of interpretations of NC and NR, and ℒ a DL defined over NC
andNR. The first-order formula 𝜙(x) is ℂ-equivalent to the ℒ conceptC if 𝜙ℐ = Cℐ for all ℐ ∈ ℂ,
where 𝜙ℐ := {d ∈ Δℐ | ℐ ⊧ 𝜙(d)}. We say that C is FOL-definable w.r.t. ℂ if it is ℂ-equivalent to
some FOL formula 𝜙(x), and that ℒ is a first-order fragment if every ℒ concept is FOL-definable.

According to Definition 2.26 bothALC andALCQ (as concept languages) are first-order frag-
ments. It is also clear thatALC can be expressed inALCQw.r.t. ℂfin, ℂfb and ℂall. To show that
ALCQ is more expressive thanALC, we can use the notion of bisimulation [73, 92].

Definition 2.27 (ALC bisimulation). Let ℐ and𝒥 be interpretations of NC and NR. The relation
𝜌 ⊆ Δℐ×Δ𝒥 is anALC bisimulation betweenℐ and𝒥 if for allA ∈ NC and all role names r ∈ NR
the following three properties are satisfied:

Atomic (d, e) ∈ 𝜌 implies d ∈ Aℐ iff e ∈ A𝒥;

Forth if (d, e) ∈ 𝜌 and d′ is an r-successor of d, then there is an r-successor e′ of e such that
(d′, e′) ∈ 𝜌;

Back if (d, e) ∈ 𝜌 and e′ is an r-successor of e, then there is an r-successor d′ of d such that
(d′, e′) ∈ 𝜌;

Two individuals d ∈ Δℐ and e ∈ Δ𝒥 are called ALC bisimilar if there is an ALC bisimulation 𝜌
between ℐ and𝒥 such that (d, e) ∈ 𝜌.

In the context of expressive power, the most important property of an ALC bisimulation is
that the elements that it relates satisfy the sameALC concepts and thus cannot be distinguished
using anALC concept description. Formally, we say that anALC conceptC or an FOL formula
𝜙(x) is ℂ-invariant underALC bisimulation if for all ℐ ,𝒥 ∈ ℂ and for everyALC bisimulation
𝜌 that relates d ∈ Δℐ and e ∈ Δ𝒥 it holds that d ∈ Cℐ iff e ∈ C𝒥 (or d ∈ 𝜙ℐ iff e ∈ 𝜙𝒥).

29

2 Preliminaries

e e′
Ar

d d′
A

d″
A

r

r

𝜌 𝜌

𝜌

Figure 2.1: A bisimulation 𝜌 between the interpretations ℐ and𝒥 .

Theorem 2.28 ([22]). EveryALC concept description is ℂall-invariant underALC bisimulation.

Using this fact, we are able to show that ALCQ cannot be expressed in ALC over the same
signature sets NC and NR. We present a strategy that will be adopted throughout the thesis: to
show that a concept C cannot be expressed w.r.t. a class of interpretations ℂ in a DL ℒ for
which we have a notion of ℒ bisimulation, we show how to find two interpretations ℐ ,𝒥 ∈ ℂ
and individuals d ∈ Cℐ and e ∉ C𝒥 that are ALC bisimilar. Combined with a result of the
form of Theorem 2.28, this is sufficient to conclude that C is not ℂ-equivalent to any concept
description in ℒ.

Proposition 2.29. There is anALCQ concept that is not ℂall-equivalent to anyALC concept.

Proof. Using the strategy outlined above, we prove by contradiction that the ALCQ concept
C := (⩾ 2 r.A) is not ℂall-equivalent to any ALC concept over NC := {A} and NR := {r}. If
C was ℂall-equivalent to an ALC concept D, then the fact that the individuals d and e in the
interpretations ℐ and 𝒥 depicted in Figure 2.1 are related by the ALC bisimulation 𝜌 implies,
together with Theorem 2.28, that d ∈ Dℐ iff e ∈ D𝒥. This leads to a contradiction, since d ∈ Cℐ,
but e ∉ C𝒥. We conclude that C andD cannot be ℂall-equivalent.

Since the interpretations ℐ and 𝒥 used in the proof of Proposition 2.29 are both finite and
finitely branching, the result holds also w.r.t. the classes ℂfb and ℂfin. Similarly to what done
for concept languages, we can compare the expressive power of TBoxes or CBoxes defined over
the same or different DLs, as well as first-order sentences 𝜙.

Definition 2.30. Letℂ be a class of interpretations ofNC andNR. Then, the TBoxes𝒯 and𝒯 ′ are
ℂ-equivalent if for all ℐ ∈ ℂ it holds that ℐ ⊧ 𝒯 iff ℐ ⊧ 𝒯 ′. The notion of equivalence for CBoxes
is defined similarly. The TBox𝒯 is FOL-definable w.r.t. ℂ if there is a sentence 𝜙 over the signature
NC ∪ NR such that ℐ ⊧ 𝒯 iff ℐ ⊧ 𝜙 for all ℐ ∈ ℂ.

We show that ALC CBoxes are more expressive than ALC TBoxes, i.e. that there is an ALC
CBox that is not equivalent to any ALC TBox, by showing that all ALC TBoxes are invariant
under (finite) disjoint unions, defined as follows.

Definition 2.31 (Disjoint unions). Given a (possibly infinite) index set 𝕀 and a family of interpre-
tations (ℐ𝜈)𝜈∈𝕀 ⊆ ℂ, their disjoint union ℐ is defined by:

Δℐ := {(d, 𝜈) | 𝜈 ∈ 𝕀 and d ∈ Δℐ𝜈},
Aℐ := {(d, 𝜈) | 𝜈 ∈ 𝕀 and d ∈ Aℐ𝜈} for all A ∈ NC,
rℐ := {((d, 𝜈), (e, 𝜈)) | 𝜈 ∈ 𝕀 and (d, e) ∈ rℐ𝜈} for all r ∈ NR.

30

2 Preliminaries

A FOL formula 𝜙(x) is ℂ-invariant under (finite) disjoint unions if for all (finite) families of in-
terpretations (ℐ𝜈)𝜈∈𝕀 ⊆ ℂ, 𝜈 ∈ 𝕀 and d ∈ Δℐ𝜈 it holds that ℐ𝜈 ⊧ 𝜙(d) iff ℐ ⊧ 𝜙((d, 𝜈)). The notion
of ℂ-invariance under (finite) disjoint unions for concepts C is defined similarly.
A TBox𝒯 isℂ-invariant under (finite) disjoint unions if, using the notation above, ℐ is a model

of 𝒯 iff every ℐ𝜈 with 𝜈 ∈ 𝕀 is a model of 𝒯 . Finally, a class ℂ of interpretations is closed under
(finite) disjoint unions if ℐ ∈ ℂ for all (ℐ𝜈)𝜈∈𝕀 ⊆ ℂ (where 𝕀 is finite).

For ALC concepts, invariance under disjoint unions can be shown to hold as a consequence
of invariance underALC bisimulations [22].

Theorem2.32. Letℂ be closed under (finite) disjoint unions. Then, everyALC concept description
is ℂ-invariant under (finite) disjoint unions.

Proof. Using the notation of Definition 2.31, we observe that the relation

𝜌 := {(d, (d, 𝜈)) | d ∈ Δℐ𝜈 , 𝜈 ∈ 𝕀} (2.1)

is anALC bisimulation between ℐ𝜈 and ℐ for every 𝜈 ∈ 𝕀. Thanks to Theorem 2.28 we conclude
that invariance under disjoint unions holds for everyALC concept description.

Using this result, we are able to show that ALC TBoxes are also ℂ-invariant under (finite)
disjoint unions, provided that ℂ is closed under (finite) disjoint unions.

Corollary 2.33. Letℂ be closedunder (finite) disjoint unions. Then, everyALC TBox isℂ-invariant
under (finite) disjoint unions.

Proof. Given an ALC TBox 𝒯 , we define the ALC concept C𝒯 := ⨅{¬C ⊔ D | C ⊑ D ∈ 𝒯 }.
Here, we use the fact that an interpretation 𝒥 is a model of 𝒯 iff C𝒥

𝒯 = Δ𝒥 and apply Theo-
rem 2.32 to this concept and to every individual inℐ andℐ𝜈 to prove that the corollary holds.

We apply Corollary 2.33 to show that ALC CBoxes are strictly more expressive than ALC
TBoxes over any class of interpretations ℂ that contains ℂfin and is closed under (finite) disjoint
unions. In particular, there is noALC TBox that isℂ-equivalent to the CR |A| ⩽ 1. If, by contra-
diction, such a TBox 𝒯 existed, then the finite interpretation ℐ containing a single individual
belonging to A would be a model of |A| ⩽ 1 and thus of 𝒯 . Using Corollary 2.33, we obtain
that the disjoint union 𝒥 of ℐ with itself is a model of 𝒯 and thus a model of |A| ⩽ 1, which
is a contradiction since A𝒥 contains two elements. Therefore, we conclude that |A| ⩽ 1 is not
ℂ-equivalent to anyALC TBox.

Useful model transformations and model properties

Another formal property ofALC concept descriptions that is especially important in the context
of reasoning is the treemodel property: if a concept is satisfiable w.r.t. a TBox, then it has amodel
that is a tree in the sense of the following definition.

Definition 2.34. A path of length ℓ in an interpretation ℐ is a sequence p := ⟨d0⋯ dℓ⟩ such that
di+1 is a role successor of di for 0 ⩽ i < ℓ, and whose endpoint is end(p) := dℓ. An interpretation
ℐ is a tree of depth ℓ if there exists d ∈ Δℐ, called the root of ℐ , such that every other element in
ℐ is connected to d by exactly one path of length at most ℓ and d is not the endpoint of a path. A
conceptC has a tree modelw.r.t. a TBox𝒯 if there is a model ℐ ofC w.r.t. 𝒯 that is a directed tree
whose root d ∈ Δℐ belongs to Cℐ.

31

2 Preliminaries

d

eA f B

sr
s

r

⟨d⟩

⟨de⟩
A

⟨df ⟩
B

⟨def ⟩
B

⟨dfe⟩
A

⋯ ⋯

r s

s r

r s

𝜌

𝜌

𝜌
𝜌

𝜌

𝜌

𝜌

Figure 2.2: An interpretation ℐ on the left and its unravelling at d on the right. These two inter-
pretations are related by anALC bisimulation, that relates d and ⟨d⟩.

A well-established technique to turn an interpretation into a tree while preserving satisfiabil-
ity is that of unravelling, which is based on the idea of showing which path was used to reach
an individual d′ from a given individual d. Using paths of starting point d ∈ Δℐ as the domain
set, we are ready to formally define the unravelling of d.
Definition 2.35 (unravelling). Given an interpretation ℐ , the unravelling of d ∈ Δℐ is the inter-
pretation 𝔲ℐ(d) whose domain Δ𝔲ℐ(d) is the set of paths in ℐ with starting point d, that is defined
over A ∈ NC and r ∈ NR as follows:

A𝔲ℐ(d) := {p ∈ Δ𝔲ℐ(d) | end(p) ∈ Aℐ}
r𝔲

ℐ(d) := {(p, p′) ∈ Δ𝔲ℐ(d) × Δ𝔲ℐ(d) | p′ = p⟨e⟩ and (end(p), e) ∈ rℐ} .
Figure 2.2 partially shows the unravelling of the individual d; the obtained unravelling (on

the right) is in particular infinite, since the interpretation ℐ (on the left) contains a cycle that
is reachable from d. Using the properties of ALC bisimulation, we use the following lemma to
show thatALC has the tree model peoperty.
Lemma 2.36. Let ℐ be an interpretation of NC and NR and d ∈ Δℐ. Then, there exists an ALC
bisimulation between ℐ and the unravelling of d that relates d and the root ⟨d⟩ of its unravelling.
Proof. It is shown in [22] that the relation

𝜌 := {(e, p) ∈ Δℐ × 𝔲ℐ(d) | e = end(p)} (2.2)

is anALC bisimulation between ℐ and the unravelling of d.

Corollary 2.37 (Tree model property). If𝒯 is anALC TBox andC anALC concept that is satis-
fiable w.r.t. 𝒯 , then C has a tree model w.r.t. 𝒯 .
One last interesting formal property ofALC is that it satisfies the finite model property, which

states that if a concept is satisfiable w.r.t. a TBox, then it has a finite model w.r.t. that TBox, i.e.
a model with a finite domain (see [22] for a detailed proof).
Theorem 2.38 (Finite model property ofALC). Let𝒯 be anALC TBox and C anALC concept.
If C has a model with respect to𝒯 , then it has a finite model w.r.t. 𝒯 .

32

3 Reasoning with Expressive
Cardinality Constraints

In this chapter, we introduce the logics QFBAPA and QFBAPA∞ [72, 16] and use them to de-
fine the DLsALCSCC andALCSCC∞ [7, 16], as well as extended cardinality restrictions (ECRs)
over finite and infinite interpretations. We present existing results on concept satisfiability w.r.t.
ALCSCC andALCSCC∞ TBoxes [7, 16] and on consistency of knowledge bases with extended
CRs over finite interpretations [19, 9], and extend the latter results to ALCSCC∞ and arbitrary
interpretations. Additionally, we establish the complexity for the entailment problem w.r.t.
knowledge bases that use extended CRs andALCSCC orALCSCC∞ concepts.
Aside from previous publications, the work contained in this chapter is based on the paper:

[14] Baader, F., De Bortoli, F.: Description Logics That Count, andWhat They Can and Cannot
Count. In: Kovacs, L., Korovin, K., Reger, G. (eds.) ANDREI-60. Automated New-era
Deductive Reasoning Event in Iberia. EPiC Series in Computing, pp. 1–25. EasyChair
(2020). https://doi.org/10.29007/ltzn

The results concerning the consistency for ERCBoxes in Section 3.3 have been adapted frompre-
viously published results on RCBoxes, while the complexity results for the entailment problem
are unpublished.

3.1 Quantifier-free Boolean Algebra with Presburger Arithmetic

In this logic one can build set terms by applying Boolean operations — intersection (∩), union
(∪), and complement (⋅c) — to set variables as well as the constants ∅ (empty set) and 𝒰 (set
universe). Set terms s, t can then be used to state inclusion (s ⊆ t) and equality constraints
(s = t) between sets. PA expressions k, ℓ are built from non-negative integer constants, PA
variables, and set cardinalities |s| using addition as well as multiplication with a non-negative
integer constant. They can be used to form numerical constraints of the form k = ℓ and k < ℓ
and n dvd ℓ where k, ℓ are PA expressions and n is a non-negative integer constant. A formula
of QFBAPA is a Boolean combination of set and numerical constraints.
The semantics of set terms and set constraints is defined using substitutions 𝜎 that assign a

finite set 𝜎(𝒰) to 𝒰 and subsets of 𝜎(𝒰) to set variables. The evaluation of set terms and set
constraints by such a substitution is defined in the obvious way, using the standard notions of

33

https://doi.org/10.29007/ltzn

3 Reasoning with Expressive Cardinality Constraints

intersection, union, complement1, inclusion, and equality for sets. PA expressions are evalu-
ated over the natural numbers ℕ. Thus, substitutions additionally assign elements of ℕ to PA
variables and cardinality expressions |s| are evaluated under 𝜎 as the cardinality of 𝜎(s). When
evaluating PA expressions w.r.t. a substitution 𝜎, we employ the usual way of adding, multiply-
ing, and comparing integers.
A solution 𝜎 of a QFBAPA formula 𝜙 is a substitution that evaluates 𝜙 to true, using the above

rules for evaluating set and numerical constraints — keeping in mind that n dvd k evaluates
to true under 𝜎 if 𝜎(k) is divisible by n— and the usual interpretation of the Boolean operators
occurring in 𝜙. The formula 𝜙 is satisfiable if it has a solution.
A variant of QFBAPA that allow sets to be infinite, called QFBAPA∞, has been introduced

in [16] . In this variant, we disallow the usage of divisibility constraints and evaluate PA expres-
sions over ℕ∞ = ℕ ∪ {∞}, i.e., the non-negative integers extended with a symbol for infinity.
A substitution 𝜎 evaluates |s| as the cardinality of 𝜎(s) if such set is finite and as ∞ if 𝜎(s) is
not finite.2 We extend the evaluation of PA expressions to ℕ∞ using the following rules ranging
overN ∈ ℕ:

1. ∞+N = N +∞ = ∞ = ∞+∞,

2. ifN ≠ 0 thenN ⋅ ∞ = ∞ = ∞ ⋅N , else 0 ⋅ ∞ = 0 = ∞ ⋅ 0,

3. N < ∞ and∞ ≮ N , as well as∞ = ∞ and∞ ≮ ∞.

Note that, in QFBAPA∞, we can enforce infinity of a set even though we do not allow the use
of ∞ as a constant. For instance, |s| = ∞ is not an admissible numerical constraint, but it is
easy to see that the constraint |s| + 1 = |s| can only be satisfied by a substitution that assigns an
infinite set to the set term s.

A normal form for set and cardinality constraints. Set constraints s ⊆ t are equivalent to the
numerical constraint |s ∩ tc| ⩽ 0 in both QFBAPA and QFBAPA∞ and so we can dispense with
them. Divisibility constraints n dvd ℓ in QFBAPA can be replaced with a numerical constraint
ℓ = n⋅|xs|wherexs is a fresh set variable. Finally, we can rewrite equivalently k < ℓ as k ⩽ ℓ+1.
Therefore, we can assumewithout loss of generality that everyQFBAPAandQFBAPA∞ formula
is a Boolean combination of atomic formulae of the form

𝛼0 + 𝛼1t1 +⋯+ 𝛼ktk ⩽ 𝛽0 + 𝛽1u1 +⋯+ 𝛽ℓuℓ (3.1)

where each expression ti, uj is either a set cardinality |s| or a PA variable and all coefficients 𝛼i,
𝛽j are natural numbers.

Satisfiability in QFBAPA and QFBAPA∞. The satisfiability problem for the logics QF-
BAPA and QFBAPA∞ is NP-complete. NP-hardness in both settings is implied by the pres-
ence of Boolean constructors in the language, which allow a reduction from e.g. propositional
satisfiability, which is NP-complete. Deriving a tight upper bound for this decision problem,
on the other hand, is non-trivial. For QFBAPA, satisfiability in non-deterministic polynomial
time has first been shown in [72] through the usage of a “sparse solution” lemma (see Fact 1
1The complement is defined w.r.t. 𝜎(𝒰), that is, 𝜎(sc) = 𝜎(𝒰) \ 𝜎(s).
2Note that we do not distinguish between different infinite cardinalities, such as countably infinite, uncountably
infinite, etc.

34

3 Reasoning with Expressive Cardinality Constraints

in [72] and Lemma 3 in [7]), which was later used to derive complexity upper bounds for rea-
soning in ALCSCC [7]. We showed in [16] that an analogous “sparse solution” lemma also
holds for QFBAPA∞, implying that satisfiability of QFBAPA∞ formulae is also decidable in non-
deterministic polynomial time.
The notion of “sparse solution” is based on a decomposition of set terms in a QFBAPA or

QFBAPA∞ formula using so-called Venn regions. If 𝜙 is a formula containing the pairwise
distinct set variablesX1,…,Xk, a Venn region for 𝜙 is a set term of the form

X
c1
1 ∩… ∩X

ck
k
,

where ci is either empty or c for i = 1,… , k. For a Venn region v for 𝜙 and a set variableX in 𝜙,
we writeX ∈ v to indicate thatX occurs without complement in v, andX ∉ v ifXc occurs in
v.
It is easy to see that we can express every set term in 𝜙 as a disjoint union of certain Venn

regions, which implies that the cardinality of that set term equals the sum of the cardinalities
of the used Venn regions. With this decomposition, we can effectively reduce the satisfiability
of a set of cardinality constraints to that of a set of linear inequalities over ℕ for QFBAPA and
ℕ∞ for QFBAPA∞. However, a naive encoding could lead to an exponential blowup, since the
number of Venn regions is exponential w.r.t. the size of 𝜙. This is where the “sparse solution”
lemma comes into play (cf. Lemma 3 in [7], Theorem 1 in [16]).

Lemma 3.1 ([7, 16]). For every QFBAPA (resp. QFBAPA∞) formula 𝜙, one can compute in poly-
nomial time a number N whose value is polynomial in the size of 𝜙 such that the following holds
for every solution 𝜎 of 𝜙: there is a solution 𝜎′ of 𝜙 such that

(i) |{v Venn region s.t. 𝜎′(v) ≠ ∅}| ≤ N , and

(ii) {v Venn region s.t. 𝜎′(v) ≠ ∅} ⊆ {v Venn region s.t. 𝜎(v) ≠ ∅}.

Using this property of QFBAPA and QFBAPA∞, we can devise a non-deterministic polyno-
mial time decision procedure to check formula satisfiability and obtain the following complexity
result.

Theorem 3.2 ([72, 7, 71, 16]). The satisfiability problem for QFBAPA and QFBAPA∞ formulae is
NP-complete.

3.2 The DLs ALCSCC and ALCSCC∞

In this section, we introduce the DLsALCSCC [7] andALCSCC∞ [16] which extendALC and
ALCQ with constraints over sets of role successors of an individual. We recall their syntax and
semantics, and complexity results for concept satisfiability (w.r.t. a TBox) obtained in [7, 16].

Definition 3.3. Given finite, disjoint sets NC of concept names and NR of role names, we induc-
tively define the set ofALCSCC concept descriptions over the signature (NC,NR) by extending Def-
inition 2.9 with the following rule:

Role successor constraint if 𝔠𝔬𝔫 is a set or numerical constraint of QFBAPA using role names
and already defined ALCSCC concept descriptions over (NC,NR) as (set) variables, then
succ(𝔠𝔬𝔫) is anALCSCC concept description over (NC,NR).

35

3 Reasoning with Expressive Cardinality Constraints

For example, theALCSCC∞ concept descriptionHuman⊓succ(|own∩Car| = |child∩Human|)
describes all persons that own as many cars as the number of children they have, without speci-
fying the exact quantities. Of course, successor constraints can also be nested, as in the concept
description Human⊓ succ(child∩Human ⊆ succ(|own∩Car| = 0)), which describes all individ-
uals whose children own no cars.

Definition 3.4. We define the interpretation of ALCSCC and ALCSCC∞ concept descriptions
recursively, by extending Definition 2.10 to role successor constraints as follows. ForALCSCC con-
cepts, we only consider finitely branching interpretations ℐ and define for d ∈ Δℐ the substitution
𝜎d that assigns to 𝒰 as the set arsℐ(d) := ⋃{rℐ(d) | r ∈ NR} of all role successors of d, to ∅ the
empty set, to each role name r occurring in 𝔠𝔬𝔫 the set rℐ(d) and to concept descriptionsD the set
Dℐ ∩ arsℐ(d) (i.e., the set of role successors of d that belong toD).3 Then d ∈ succ(𝔠𝔬𝔫)ℐ iff 𝜎d is a
solution of the QFBAPA formula 𝔠𝔬𝔫.
For ALCSCC∞ concepts we consider arbitrary interpretations and define the semantics simi-

larly, except that 𝔠𝔬𝔫 is now evaluated as a QFBAPA∞ formula.

The concept satisfiability problem is PSpace-complete in the absence of a TBox and ExpTime-
complete w.r.t. a TBox for both ALCSCC and ALCSCC∞. For ALCSCC, this has been shown
in [7], and the same ideas were adapted to show the result for ALCSCC∞ in [16]. We observe
that forALCQ andALC, the complexity of the concept satisfiability problem restricted to finite
and finitely branching interpretations is derived directly from the general case, since both DLs
satisfy the finite model property. In contrast,ALCSCC∞ contains concepts that have an infinite
model but neither a finitely branching nor a finite model. For example, the successor constraint
succ(|r| + 1 = |r|) is satisfiable by an interpretation containing an element with infinitely many
r-successors; however, the fact that n+1 ≠ n for all n ∈ ℕ implies that there cannot be a model
of this concept that is finitely branching or finite. Nevertheless, the two problems have the same
complexity.

Theorem 3.5 ([7, 16]). Concept satisfiability in ALCSCC and ALCSCC∞ is PSpace-complete
without a TBox and ExpTime-complete in the presence of a TBox.

3.3 Extended Cardinality Restrictions

So far, wehave considered knowledge bases that are purely terminological, in the formof TBoxes,
or that contain simple quantitative information, in the form of CBoxes. The cardinality restric-
tions that we may use in a CBox allow us to compare the cardinality of the interpretation of a
certain concept descriptionwith a fixed natural numbern, but do not enable other forms of com-
parison, for instance, one cannot use a CBox to compare the cardinalities of the interpretations
of different concept descriptions.
In the same spirit of the previous section, where we defined ALCSCC as a generalization of

ALCQwherewe can define constraints over sets of role successors using aQFBAPA formula, we
generalize TBoxes and CBoxes by introducing more expressive cardinality restrictions based on
QFBAPA. Some extensions that are defined here allow for Boolean combinations of cardinality
restrictions: to ease the comparison of the expressive power of terminological and quantitative
knowledge bases, we also consider Boolean variants of TBoxes and CBoxes.

3Note that, by induction, the setsDℐ are well-defined.

36

3 Reasoning with Expressive Cardinality Constraints

Definition 3.6. Given a DL language ℒ, we say that a Boolean ℒ TBox is a Boolean combination
ofℒ TBoxes, and that aBooleanℒ CBox is a Boolean combination ofℒ CBoxes (cf. Definition 2.16).
An extended CR is an inequality of the form

n0 + n1|C1| + ⋯ + nk|Ck| ⩽ m0 +m1|D1| + ⋯ +mℓ|Dℓ|, (3.2)

where theCi,Dj areℒ concept descriptions and theni,mj are natural numbers. A semi-restricted
CR is an extended CR wherem0 = 0, and a restricted CR is one that additionally satisfies n0 = 0.
Then:

• an ℒ ECBox is a Boolean combination of extended CRs,

• anℒ ERCBox is an ECBox consisting of positive Boolean combination of semi-restricted CRs
and

• an ℒ RCBox is an ERCBox consisting of a conjunction of restricted CRs.
A finite interpretation ℐ is amodel of the extended CR (3.2) if

n0 + n1|Cℐ
1 | + ⋯ + nk|Cℐ

k
| ⩽ m0 +m1|Dℐ

1 | + ⋯ +mℓ|Dℐ
ℓ | (3.3)

is true, when evaluated as a QFBAPA formula. Extending this condition, we define the notions of
model and (in)consistency for Boolean TBoxes, Boolean CBoxes, ECBoxes, ERCBoxes and RCBoxes
in the usual way. Further, we extend the notion of model and the related definitions to arbitrary
interpretations ℐ , by evaluating (3.2) as a QFBAPA∞ formula.
For a given classℂ of interpretations, an ECBox ℰ ℂ-entails an extended CR (3.2) if every model

ℐ ∈ ℂ of ℰ satisfies (3.3); the notion of ℂ-entailment of a (semi)-restricted CR w.r.t. an ERCBox
and an RCBox is defined similarly.

Extended Cardinality Constraints and Boolean CBoxes

The consistency problem for ALC and ALCSCC ECBoxes w.r.t. finite interpretations is known
to be NExpTime-complete for binary coding of numbers [19, 8, 9]. The upper bound is obtained
by a reduction from consistency of an ECBox ℰ to satisfiability of a QFBAPA formula 𝛿ℰ which
is exponentially larger than ℰ . Since the satisfiability problem for QFBAPA is NP-complete for
binary coding of numbers, as mentioned in Section 3.1, this yields the sought upper bound for
ALC and ALCSCC. We can easily transfer this upper bound to ALCSCC∞ ECBoxes evaluated
w.r.t. arbitrary interpretations by using the same translation 𝛿ℰ for ℰ and test its satisfiability in
QFBAPA∞, whose satisfiability problem is also NP-complete as argued in Section 3.1
NExpTime-hardness of the consistency problem for ECBoxes and Boolean CBoxes inALCQ,

ALCSCC and ALCSCC∞ under binary coding of numbers is a clear consequence of the com-
plexity of reasoning withALCQ CBoxes shown in Theorem 2.17.
Theorem 3.7 ([96, 19, 8, 16]). If DL ∈ {ALCQ,ALCSCC,ALCSCC∞}, then consistency of DL
Boolean CBoxes and ECBoxes is NExpTime-complete w.r.t. finite and arbitrary interpretations if
numbers are encoded in binary. For ECBoxes, NExpTime-hardness already holds for unary coding
of numbers.
The reason why the coding of numbers is irrelevant in the presence of ECBoxes is that we

can succinctly represent coefficients in the ECBoxes using PA expressions (see [19] for a more
detailed argument). In particular, a positive number n can be represented in QFBAPA using a
term sn of size at most 2 log(n) where s0 := |∅|, s2m := 2 ⋅ sm and s2m+1 := s2m + 1 form ∈ ℕ.
Thus, we can simulate binary coding of numbers even in the unary case.

37

3 Reasoning with Expressive Cardinality Constraints

Boolean TBoxes

We have seen in Chapter 2 that reasoning w.r.t. an ALCQ TBox is an ExpTime-complete prob-
lem, and in Section 3.2 we argued that the same complexity is attained for reasoning w.r.t. a
TBox inALCSCC [7] andALCSCC∞ [16]. This complexity result holds when we generalize to
Boolean TBoxes inALCQ,ALCSCC andALCSCC∞.
To prove the exponential time upper bound, we notice that consistency of a Boolean TBox𝒯

can be reduced in exponential time to checking consistency of an exponential number of TBoxes
w.r.t. the size of𝒯 . First, bring𝒯 into an equivalent Boolean TBox in disjunctive normal form;
then, we replace every negated CI ¬(C ⊑ D) with a non-negated CI ⊤ ⊑ ∃r.(C ⊓ ¬D) where r
is a fresh role name. We prove that this second step yields a correct reduction.

Proposition 3.8. Let C and D be concept descriptions over the signature (NC,NR) where NR is
non-empty. Then, the negated CI ¬(C ⊑ D) is satisfiable if and only if the CI ⊤ ⊑ ∃r.(C ⊓ ¬D)
with r a fresh role name is satisfiable.

Proof. If ℐ is amodel of¬(C ⊑ D), then there exists d ∈ (C⊓¬D)ℐ. Then, the interpretation ℐ ′

obtained by adding d as r-successor of every individual in Δℐ satisfies the CI ⊤ ⊑ ∃r.(C ⊓ ¬D).
Vice versa, it is clear that every model of ⊤ ⊑ ∃r.(C ⊓ ¬D) is also a model of ¬(C ⊑ D).

The conversion described above runs in exponential time w.r.t. the size of 𝒯 and produces a
disjunction of at most exponentially many TBoxes, each of which can be tested for consistency
in exponential time in any of the aforementioned DLs. Since 𝒯 is consistent if and only if at
least one of the obtained disjuncts is consistent, we deduce that𝒯 can be tested for consistency
in exponential time.

Theorem 3.9. Consistency of Boolean TBoxes in ALCQ, ALCSCC and ALCSCC∞ is ExpTime-
complete, both for unary and binary encoding of numbers. Consequently, entailment of aCIC ⊑ D
w.r.t. a (Boolean) TBox in these DLs is ExpTime-complete, both for unary and binary encoding of
numbers.

Proof. Hardness of this problem follows from the fact that TBoxes are a special instance of
Boolean TBoxes, and the consistency problem for TBoxes in the mentioned DLs is ExpTime-
hard. The exponential time upper bound is described above.
For the second point, we notice that 𝒯 entails C ⊑ D iff the Boolean TBox 𝒯 ∧ ¬(C ⊑ D)

is consistent, and since this reduction is polynomial the exponential time upper bound is pre-
served. ExpTime-hardness of the entailment problem follows from the fact that 𝒯 is inconsis-
tent iff it entails the CI ⊤ ⊑ ⊥.

(Semi-)restricted Cardinality Constraints

Restricted cardinality constraints over ALC concepts were first introduced in [19], as a way to
reduce the complexity of reasoning w.r.t. ECBoxes. Indeed, it was shown there that the consis-
tency problem forALC RCBoxes is ExpTime-complete. Later, the same problem was shown to
be ExpTime-complete forALCSCC [8, 9], using an approach based on type elimination. Mean-
while, ERCBoxes were introduced in [93] and there it was shown that (finite) consistency of
knowledge bases of this kind is ExpTime-complete for a DL that subsumes ALCQ but neither
ALCSCC nor ALCSCC∞. Later, this complexity result was shown to hold for ALCSCC [10],
using a type elimination algorithm to derive the upper bound.

38

3 Reasoning with Expressive Cardinality Constraints

While it would be possible to adapt the type elimination approach to show that the exponen-
tial time upper bounds for checking consistency of ALCSCC∞ RCBoxes and ERCBoxes hold,
we give here a simpler proof of this result forALCSCC∞. Recall that anALCSCC∞ ERCBoxℛ
is a positive Boolean combination of inequalities of the form

n0 + n1|C1| + ⋯ + nk|Ck| ⩽ nk+1|Ck+1| + ⋯ + nk+ℓ|Ck+ℓ|, (3.4)

where eachCi is aALCSCC∞ concept description and eachni is a natural number. In Chapter 5
we show that ERCBoxes are preserved under disjoint unions, that is, if 𝕀 is a set of models ofℛ,
then their disjoint union is also a model of ℛ. Using this fact, it is straightforward to see that
systems of inequalities (3.4) are satisfiable iff they have a solution where every concept Ci is
assigned to a set that is either empty or infinite, sincewe can take the disjoint union of countably
infinitely many copies of a solution of (3.4) and still obtain a solution. We use this last property
to reduce consistency of ALCSCC∞ ERCBoxes to consistency of Boolean ALCSCC∞ TBoxes.
First, we transform ℛ to an equivalent ERCBox in disjunctive normal form, i.e. a disjunction
of ERCBoxes ℛ1, …, ℛm where m is at most exponentially large w.r.t. ℛ and each ℛi is of
polynomial size w.r.t. ℛ. For each of these ERCBoxes, we consider a TBox 𝒯i that is initialized
as 𝒯i := ∅ for i = 1,… ,m. Then, we set c := 1 and proceed with the following steps:

1. Check if the ALCSCC∞ TBox 𝒯c is consistent. If it is inconsistent, proceed to step (3).
Otherwise, for all concepts Cj occurring in a term nj |Cj | in an inequality ofℛc, check if
Cj is satisfiable w.r.t. 𝒯c, and if not add the CI Cj ⊑ ⊥ to 𝒯c. Then, go to step (2).

2. For all inequalities (3.4) inℛc such that Ck+j ⊑ ⊥ belongs to 𝒯c for j = 1,… , ℓ, check if
n0 = 0. If n0 ≠ 0, proceed to step (3). Otherwise, add Ci ⊑ ⊥ to 𝒯c for i = 1,… , k. If no
new CI has been added to 𝒯c, then return consistent. Otherwise, go to step (1).

3. If c = m, return inconsistent, otherwise increment c by 1 and continue with step (1).
This approachhas beenused in [14] to prove that the consistency problem forALCSCC∞ RCBoxes
is decidable in exponential time. Here, we use it to provide an exponential time upper bound
for checking consistency ofALCSCC∞ ERCBoxes.

Lemma 3.10. The algorithm terminates after an exponential number of iterations, and it returns
consistent iff the ERCBoxℛ is consistent.

Proof. Termination after an exponential number of iterations is an immediate consequence of
the fact thatm is exponential in the size ofℛ, for i = 1,… ,m the size ofℛi is polynomial w.r.t.
ℛ and only polynomially many CIs of the form Cj ⊑ ⊥ can be added to 𝒯i, since the concepts
Cj for which such a CI can be added must occur in an inequality inℛi.
Now, assume thatℛ and hence its disjunctive normal form is consistent, and let ℐ be amodel

ofℛc for some 1 ⩽ c ⩽ m. By an induction on the number of iterations, it is easy to show that
we must have Cℐ = ∅ for all CIs added to 𝒯c during the run of the algorithm. Consequently,
the algorithm cannot reach Step 3 for the selected value of c, since ℐ is a model of 𝒯 . Since the
algorithm always terminates, it must thus return consistent.
Next, assume that the algorithm returns consistent, let 1 ⩽ c ⩽ m be the value for which

the algorithm terminated and let𝒯c be the corresponding TBox. Then𝒯c is consistent, and for
every concept C occurring in an inequality ofℛc such that C ⊑ ⊥ does not belong to 𝒯c, there
is amodel ℐC of𝒯 such thatCℐC ≠ ∅. Later wewill show thatALCSCC∞ TBoxes are invariant
under disjoint unions. As a consequence, this implies that there is an interpretation ℐ∞ such
that the following holds for all concepts C occurring in an inequality ofℛc:

39

3 Reasoning with Expressive Cardinality Constraints

• if C ⊑ ⊥ belongs to 𝒯c, then Cℐ∞ = ∅;

• if C ⊑ ⊥ does not belong to 𝒯c, then the cardinality of Cℐ∞ is infinite.

It remains to shows that ℐ∞ is a model ofℛc. Thus, consider an inequality (3.4) inℛc. If there
is a j with k+1 ⩽ j ⩽ k+ℓ such that Cℐ∞

j
is infinite, then this inequality is clearly satisfied by

ℐ∞. Otherwise, Cj ⊑ ⊥ belongs to 𝒯c for all k + 1 ⩽ j ⩽ k + ℓ, and thus also Ci ⊑ ⊥ belongs
to𝒯c for all i with 1 ⩽ i ⩽ k. This shows that, again, the inequality is solved. We conclude that
ℐ∞ is a model ofℛc and thus ofℛ.

Given that consistency ofALCSCC∞ TBoxes can be tested in exponential time, as seen above,
the algorithm we described above runs in exponential time. Combined with the fact that CIs
C ⊑ D are equivalent to inequalities |C ⊓ ¬D| ⩽ 0 (and, over finite models, to |C| ⩽ |C ⊓D|)
and thus reasoning with ERCBoxes is as hard as reasoning with TBoxes, we obtain the following
result forALCSCC∞ and sublogics. The analogous result forALCSCC has been proved in [10].

Proposition 3.11. The consistency problem for ERCBoxes inALCQ,ALCSCC andALCSCC∞ is
ExpTime-complete, both for unary and binary encoding of numbers.

Regarding the entailment problem for RCBoxes and ERCBoxes, we prove that the complexity
of the problem changes depending on the coefficients values occurring in the knowledge base,
as follows.

Theorem 3.12. Checking if an ERCBoxℛ entails an ERCBoxℛ′ inALCSCC andALCSCC∞ is
an ExpTime-complete problem if ℛ′ only contains inequalities (3.4) with n0 = 0 or n0 = 1, and
coNExpTime-complete otherwise.

Proof. First, we notice that the negation of a semi-restricted cardinality constraint (3.4) with
n0 = 0 orn0 = 1 is also a semi-restricted cardinality constraint. Ifwe assume that all inequalities
in ℛ′ are of this form, then by negating ℛ′ we obtain another ERCBox ℛ″. In particular, ℛ
entails ℛ′ iff ℛ ∧ ℛ″ is inconsistent, which can be checked in exponential time. Hardness of
this problem can be derived by reducing entailment of a CI w.r.t. a TBox to entailment of a
semi-restricted cardinality constraint with n0 = 0w.r.t. a ERCBox or non-entailment of a semi-
restricted cardinality constraint with n0 = 1 w.r.t. a ERCBox.
In the general case, we are able to reduce the consistency problem for ALCO ERCBoxes

(see Chapter 9 for a definition of ALCO), which is known to be NExpTime-complete [10], to
non-entailment of a semi-restricted cardinality constraint w.r.t. an ALC ERCBox. Let ℛ be an
ALCO ERCBox containing the nominals {o1},… , {on}. We transform ℛ into an ALC ERCBox
ℛ′ by first replacing each occurrence of {oi} in ℛ with a fresh concept name Ai and then, if
the unique name assumption is in place, by adding the semi-restricted cardinality constraints
|Ai| ⩾ 1 and |Ai ⊓ Aj | ⩽ 0 for 1 ⩽ i < j ⩽ n. We observe that ℛ is consistent iff ℛ′ does
not entail the semi-restricted cardinality constraint |A1| + ⋯ + |An| ⩾ n + 1. Ifℛ has a model
ℐ , we construct a model ℐ ′ of ℛ′ by setting Aℐ′

i
:= {oi}ℐ for i = 1,… ,n. Clearly, this inter-

pretation does not satisfy |A1| + ⋯ + |An| ⩾ n + 1, and we conclude that ℛ′ does not entail
this semi-restricted cardinality constraint. On the other hand, assume that ℛ′ does not entail
|A1| +⋯+ |An| ⩾ n+1. Then, there is a model ℐ ′ ofℛ′ that satisfies |A1| +⋯+ |An| ⩽ n, and
since ℐ ′ satisfies |Ai| ⩾ 1 we deduce that Aℐ′

i
contains a single individual di for i = 1,… ,n. In

particular, di and dj are distinct if i ≠ j. Then, we obtain a model ℐ ofℛ by setting {oi}ℐ := {di}

40

3 Reasoning with Expressive Cardinality Constraints

for i = 1,… ,n. We conclude that the entailment problem in consideration is coNExpTime-hard.
To prove membership in coNExpTime, it is sufficient to notice that the negation of an ERCBox
is an ECBox, and therefore we can reduce non-entailment of an ERCBox w.r.t. to another ER-
CBox to consistency of anALCSCC orALCSCC∞ ECBoxes, which is known to be decidable in
non-deterministic exponential time.

Summary

We started this chapter by introducing the DLs ALCSCC [7] and ALCSCC∞ [16] and several
generalizations of TBoxes and CBoxes based on (semi-)restricted or extended cardinality con-
straints [19, 93, 8, 10]. We reviewed the existing results on the complexity of concept satisfiability
w.r.t. an ALCSCC or ALCSCC∞ TBox, and generalized the results concerning the consistency
problem for ALCSCC ECBoxes and subclasses thereof w.r.t. finite interpretations, lifting them
to the setting where arbitrary interpretations are allowed. Then, we looked at the complexity of
the entailment problem, which can be reduced to consistency or concept satisfiability in most
cases, with the exception of the case of Boolean combinations of (semi-)restricted cardinality
constraints. There, reducibility to consistency depends on the employed coefficients, and these
coefficients influence the complexity of checking entailment. We summarize the results of this
chapter in the following table, where we assume binary coding of numbers.

ALCSCC ALCSCC∞

Concept satisfiability with no TBox PSpace-c. [7] PSpace-c. [16]
w.r.t. a TBox ExpTime-c. [7] ExpTime-c. [16]

Boolean TBox consistency ExpTime-c. ExpTime-c.
RCBox consistency ExpTime-c. [8] ExpTime-c.

ERCBox consistency ExpTime-c. [10] ExpTime-c.
entailment coNExpTime-c. coNExpTime-c.

CBox consistency NExpTime-c. [8] NExpTime-c.
ECBox consistency NExpTime-c. [8] NExpTime-c.

Complexity of entailment is only indicated where it differs from consistency, and each entry
without citation corresponds to a novel contribution of this thesis.

41

4 Expressive Power of ALCSCC and
ALCSCC∞ over Restricted Classes
Of Models

In this chapter, we investigate the expressive power of the DLALCSCC andALCSCC∞ over the
classes ℂall, ℂfb and ℂfin of arbitrary, finitely branching and finite interpretations. We introduce
the notion of Presburger (Pr) bisimulation and show thatALCSCC andALCSCC∞ concepts are
invariant under Pr bisimulation. Then, we introduce the notion of Pr (q,ℓ)-bisimulation with
q, ℓ ∈ ℕ and show that for FOL formulae 𝜙(x) invariance under Pr bisimulation is equivalent
to invariance under Pr (q,ℓ)-bisimulation for some q, ℓ ∈ ℕ. This result is used to prove that
there are ALCSCC and ALCSCC∞ concepts that are not FOL-definable. Finally, we introduce
the DL ALCQt and prove that it corresponds to the FOL-definable fragment of ALCSCC and
ALCSCC∞, and in particular it is the fragment of FOL that is invariant under Pr bisimulation.
The work contained in this chapter is based on the paper:

[18] Baader, F., De Bortoli, F.: The Expressive Power of Description Logics with Numerical
Constraints over Restricted Classes of Models. In: Thiemann, R., Weidenbach, C. (eds.)
Proceedings of the 5th International Symposiumon Frontiers of Combining Systems (Fro-
CoS ’25). LNAI,. Vol. 15979. Springer, Heidelberg (2025). https://doi.org/10.1007/
978-3-032-04167-8_2

4.1 Presburger Bisimulation

LetNC andNR be w.l.o.g. finite. This assumption is not too restrictive, as it is encountered every
time we study the expressive power of a given concept or ontology. We base our inquiry into
the expressive power ofALCSCC concepts on the notion of safe role type. A safe role type (w.r.t.
NR) is a subset 𝜏 ≠ ∅ of NR. Alternatively, we can view 𝜏 as a set term of QFBAPA, obtained as
the intersection of one or more role names r ∈ NR and all literals rc for all the remaining role
names in NR. For example, if NR = {r, s, t}, then r ∩ s ∩ tc is a safe role type, while rc ∩ sc ∩ tc,
r ∩ s and r ∩ s∩ tc ∩ rc are not. Safe role types 𝜏 are interpreted w.r.t. an interpretation ℐ as the
relation

𝜏ℐ := (⋂
r∈𝜏r

ℐ \ (⋃
r∈NR\𝜏r

ℐ)),

42

https://doi.org/10.1007/978-3-032-04167-8_2
https://doi.org/10.1007/978-3-032-04167-8_2

4 Expressive Power ofALCSCC andALCSCC∞ over Restricted Classes Of Models

which is always a subset of⋃
r∈NR

rℐ and thus always relating elements that are connected by
some role. Then, 𝜏ℐ(d) := {e ∈ Δℐ | (d, e) ∈ 𝜏ℐ} is a finite set for d ∈ Δℐ if ℐ is finitely branching,
and e ∈ arsℐ(d) iff e ∈ 𝜏ℐ(d) for exactly one safe role type 𝜏. For ALCSCC∞ we showed in [16]
that each set term s in a cardinality constraint 𝔠𝔬𝔫 within a succ-restriction can be rewritten as
the disjoint union of terms of the form 𝜏 ∩ C where 𝜏 is a safe role type and C an ALCSCC∞

concept. Adapting the proof in [16], we obtain that this property holds forALCSCC concepts.

Proposition 4.1. Let ℂ ⊆ ℂfb be a class of interpretations. Then, every ALCSCC concept of the
form succ(𝔠𝔬𝔫) is ℂ-equivalent to a concept of the form succ(𝔠𝔬𝔫′) where 𝔠𝔬𝔫′ only contains set
terms of the form 𝜏 ∩ C, where 𝜏 is a safe role type and C anALCSCC concept.

Proof. Every set term s occurring in a cardinality expression |s| in 𝔠𝔬𝔫 uses role names inNR and
ALCSCC concept descriptions as set variables. By the semantics of ALCSCC, we obtain that
𝜎d(s) = 𝜎d(s) ∩𝜎d(𝒰) = 𝜎d(s∩𝒰) = 𝜎d(s∩ (⋃NR)) holds for all ℐ ∈ ℂ and d ∈ Δℐ. Therefore,
we can replace swith the set term s∩(⋃NR). By bringing this set term into “disjunctive normal
form” using the distributivity of set intersection over set union, we obtain an equivalent set
term t that is a union of set terms of the form t′ ∩ C, where t′ is an intersection of role literals
containing at least one role positively andC is a concept description. Clearly, t′ can be expressed
as the union of one or more safe role types. After rewriting t′ this way and using distributivity
again as above, we can aggregate the resulting terms of t over the same safe role type 𝜏 into a
unique term, since (𝜏 ∩C1) ∪ (𝜏 ∩C2) is equivalent to (𝜏 ∩ (C1 ⊔C2)). Therefore, t is equivalent
to a disjoint union of terms of the form 𝜏 ∩ C.

Proposition 4.1 suggests the following definition of bisimulation. We adapt the notion of
counting bisimulation [80] to account for safe role types and define invariance w.r.t. a class
ℂ of interpretations.

Definition 4.2. Let NC and NR be finite and ℂ a class of interpretations. The binary relation
𝜌 ⊆ Δℐ × Δ𝒥 is a Presburger (Pr) bisimulation between the interpretations ℐ and 𝒥 if for all
A ∈ NC and all safe role types 𝜏 over NR the following properties are satisfied:

Atomic (d, e) ∈ 𝜌 implies d ∈ Aℐ iff e ∈ A𝒥;

Forth if (d, e) ∈ 𝜌 and D ⊆ 𝜏ℐ(d) is finite, then there is a set E ⊆ 𝜏𝒥(e) such that 𝜌 contains a
bijection betweenD and E;

Back if (d, e) ∈ 𝜌 and E ⊆ 𝜏𝒥(e) is finite, then there is a set D ⊆ 𝜏ℐ(d) such that 𝜌 contains a
bijection betweenD and E.

We call d ∈ Δℐ and e ∈ Δ𝒥 Pr bisimilar if (d, e) ∈ 𝜌 for some Pr bisimulation 𝜌 between ℐ and𝒥 .
A concept C is ℂ-invariant under Pr bisimulation if d ∈ Cℐ iff e ∈ C𝒥 holds for all Pr bisimilar
individuals d ∈ Δℐ, e ∈ Δ𝒥 with ℐ ,𝒥 ∈ ℂ.

The notion of counting bisimulation is obtained by replacing safe role types 𝜏 in Definition 4.2
with role names r. In [16] we proved thatALCSCC∞ concepts areℂall-invariant underPr bisim-
ulation. A similar property holds forALCSCC concepts: here, we only need to check that invari-
ance holds w.r.t. finitely branching interpretations, and the proof used for ALCSCC∞ in [16]
applies with minimal modifications. Since finite interpretations are finitely branching, this im-
plies ℂfin-invariance ofALCSCC concepts under Pr bisimulation.

43

4 Expressive Power ofALCSCC andALCSCC∞ over Restricted Classes Of Models

d d′
Ar

s e e′
A

e″
A

s

r

𝜌 𝜌

𝜌

Figure 4.1: A representation of a counting bisimulation 𝜌 which is not a Pr bisimulation.

Theorem4.3. EveryALCQ concept isℂall-invariant under counting bisimulation, everyALCSCC∞

concept isℂall-invariant under Pr bisimulation and everyALCSCC concept isℂfb-invariant under
Pr bisimulation.
Proof. The first two results have been proved respectively in [80] and [16]. For the last claim,
we proceed by structural induction over anALCSCC conceptC. The cases whereC is a concept
name, a conjunction of concepts or the negation of a concept are illustrated in later results for
other notions of bisimulation, so we omit themhere. We focus on the caseC = succ(𝔠𝔬𝔫), where
we inductively assume that every subconcept of C is ℂfb-invariant under Pr bisimulation. Let
ℐ ,𝒥 ∈ ℂfb and 𝜌 a Pr bisimulation relating d ∈ Δℐ and e ∈ Δ𝒥. We recall that 𝔠𝔬𝔫 is of the
form (3.1) (but contains no PA variable), and provide for everyALCSCC conceptC and safe role
type 𝜏 over NR an injective mapping from D := 𝜏ℐ(d) ∩ Cℐ to E := 𝜏𝒥(e) ∩ C𝒥 and vice versa,
thus proving that these sets have the same size and thus that 𝔠𝔬𝔫 is evaluated equally w.r.t. d
and e. This implies that d ∈ Cℐ iff e ∈ C𝒥. Since ℐ and𝒥 are finitely branching, the setsD and
E are both finite. Thanks to the forth property, we find a set E′ ⊆ 𝜏𝒥(e) such that 𝜌 contains a
bijection betweenD and E′. By our inductive hypothesis, the concept C is ℂfb-invariant under
Pr bisimulation, so we obtain that E′ ⊆ C𝒥. Then, E′ ⊆ E holds, and the bijection between
D and E′ is the sought injective mapping from D to E. Using the back property, we similarly
prove that there is an injective mapping from E toD.
Together with the other cases, this concludes our proof, thuswe conclude that everyALCSCC

concept is ℂfb-invariant under Pr bisimulation.

Comparing DLs using counting and Presburger bisimulations

First, we show thatALCSCC andALCSCC∞ are more expressive thanALCQ, using the notion
of counting bisimulation in the same spirit of Proposition 2.29.
Corollary 4.4 ([16]). Let NR = {r, s} and NC = {A}. There is no ALCQ concept description C
such that C is ℂfb-equivalent to theALCSCC concept description succ(|r ∩ s ∩A| ⩾ 1).
In fact, if succ(|r ∩ s ∩ A| ⩾ 1) was ℂfb-equivalent to an ALCQ concept description, then it

would need to beℂfb-invariant underALCQ bisimulation. However, Fig. 4.1 shows two finitely
branching interpretations in which the individuals d and e are counting bisimilar, but whereas
d belongs to succ(|r ∩ s ∩A| ⩾ 1), the individual e does not.
We can also use Pr bisimulations to compareALCSCC with other DLs with expressive count-

ing constraints. In [10], we introduced the logic ALCSCC++ where we replace the restrictions
succ(𝔠𝔬𝔫) of ALCSCC with extended ones of the form sat(𝔠𝔬𝔫). The semantics of this DL is de-
fined w.r.t. finite interpretations ℐ and restrictions sat(𝔠𝔬𝔫) are interpreted using a QFBAPA
assignment 𝜎d as in ALCSCC, with the difference that here 𝒰 is mapped to 𝜎d(𝒰) := Δℐ. We
show that the newly introduced restrictions cannot be expressed inALCSCC.

44

4 Expressive Power ofALCSCC andALCSCC∞ over Restricted Classes Of Models

Theorem 4.5. There are ALCSCC++ concepts that are not ℂfin-equivalent to any ALCSCC con-
cept.

Proof. Assume, by contradiction, that there is an ALCSCC conceptD that is ℂfin-equivalent to
C := sat(|A| ⩽ 1). Let ℐ be the interpretation consisting of a single individual d with d ∈ Aℐ,
and let 𝒥 consist of two individuals e, e′ with both e, e′ ∈ A𝒥. Clearly, d ∈ Cℐ holds while
e, e′ ∉ C𝒥. By the assumption of ℂfin-equivalence, we obtain that d ∈ Dℐ and e, e′ ∉ D𝒥.
However, the relation 𝜌 := {(d, e), (d, e′)} is a Pr bisimulation. This leads to a contradiction,
since by Theorem 4.3 it must hold that d ∈ Dℐ iff e, e′ ∈ D𝒥. Therefore, we conclude that C
andD cannot be ℂfin-equivalent.

To compare the expressive power of DLs with and without concrete domains, we introduce
in Chapter 7 the notion of abstract expressive power based on abstract models, obtained from
models ℐ that interpret NF by “forgetting” the interpretation of NF. For DLs without concrete
domains, such asALCSCC, models and abstract models coincide. Then, two conceptsC andD
are abstractlyℂ-equivalent if the abstract models ofC inℂ coincide with those ofD. Using The-
orem 4.3 we show that for some instances of 𝔇 we can find ALC(𝔇) concepts whose abstract
expressive power cannot be captured inALCSCC.

Theorem 4.6. There is anALC(𝔔) concept that is not abstractly ℂfb-equivalent to anyALCSCC
concept.

Proof. We show thatD := ∃f , rf . < is the soughtALC(𝔇) concept. Assume, by contradiction,
that there exists an ALCSCC concept C such that the finitely branching abstract models of D
coincide with the models of C. Let ℐ be the interpretation of NC and NR with Δℐ := {a} and
rℐ := {(a, a)} with r ∈ NR. Let 𝒥 be the interpretation of NC and NR whose domain is ℕ and
where n+1 is an r-successor of n for n ∈ ℕ. The relation 𝜌 := {a}×ℕ is then a Pr bisimulation,
and by Theorem 4.3 it follows that a ∈ Cℐ iff n ∈ C𝒥 for n ∈ ℕ.
Clearly, 𝒥 is an abstract model of D: by using f𝒥(n) := n for n ∈ ℕ as interpretation of

f ∈ NF, we obtain that n ∈ D𝒥 for n ∈ ℕ. By abstract ℂfb-equivalence of C and D, then,
n ∈ C𝒥 and thus a ∈ Cℐmust hold. Using abstractℂfb-equivalence again, we deduce that there
exists an interpretation of feature names fℐ(a) such that a ∈ Dℐ. This leads to a contradiction,
because a ∈ Dℐ can happen iff fℐ(a) < fℐ(a). Therefore, we conclude that C andD cannot be
abstractly ℂfb-equivalent.

4.2 ALCSCC, ALCSCC∞ and first-order logic

If a DL ℒ is defined as a fragment of first-order logic (FOL), we can prove that the corresponding
notion of L bisimulation is the most adequate for ℒ by showing that, for a given class ℂ of
interpretations of interest, a FOL formula 𝜙(x) is ℂ-invariant under L bisimulation iff it is ℂ-
equivalent to some ℒ concept. A formula 𝜙(x) is ℂ-invariant under L bisimulation if for each L
bisimulation 𝜌 that relates d ∈ Δℐ and e ∈ Δ𝒥 with ℐ ,𝒥 ∈ ℂ it holds that ℐ ⊧ 𝜙(d) iff𝒥 ⊧ 𝜙(e).
We would like to prove that the above characterization holds for ALCSCC w.r.t. Pr bisimu-

lation. However, as we will show later in this section, there are ALCSCC concepts that are not
FOL-definable w.r.t. a class ℂ of the desired form. In particular, we find sufficient conditions
on a class ℂ of interpretations such that every FOL formula 𝜙(x) is ℂ-invariant under Pr bisim-
ulation iff there are q, ℓ ∈ ℕ such that 𝜙(x) is ℂ-invariant under a parametrized version of Pr
bisimulation, called (q,ℓ)-bisimulation. Here, q and ℓ parametrize the size of sets considered

45

4 Expressive Power ofALCSCC andALCSCC∞ over Restricted Classes Of Models

a

A

b c

A

d
r s r

a1

A

b1 c1

A
r s

r

𝜌3
𝜌1

𝜌3
𝜌1𝜌2
𝜌0

Figure 4.2: A Pr (1, 3)-bisimulation between two interpretations.

in the back-and-forth conditions and the depth at which these conditions are checked, respec-
tively. We show that there are ALCSCC concepts that violate this property and are hence not
FOL-definable w.r.t. ℂ.
ForALCSCC∞, the existence of concepts that are not FOL-definable has already been showed

in [16], and a similar proof was used to show that there are ALCSCC concept that cannot be
expressed in the DLALCQ [7]. Here, we generalize both results to several classes of interpreta-
tions. We adapt the bisimulation-based characterization of modal logic with graded modalities
w.r.t. finite models in [84], which relies on the notion of (q,ℓ)-bisimulation.

Definition 4.7. Let ℐ ,𝒥 be interpretations ofNC,NR and q, ℓ ∈ ℕ. The relation 𝜌 ⊆ Δℐ×Δ𝒥 is a
Pr (q,0)-bisimulation between ℐ ,𝒥 if it satisfies the (atomic) condition of Definition 4.2, and it is
a Pr (q,ℓ + 1)-bisimulation if it is a Pr (q,ℓ)-bisimulation that additionally satisfies the following
for all safe role types 𝜏:

(q,ℓ)-forth if (d, e) ∈ 𝜌 and D ⊆ 𝜏ℐ(d) with |D| ⩽ q, then there are E ⊆ 𝜏𝒥(e) and a Pr (q,ℓ)-
bisimulation 𝜌′ that contains a bijection betweenD and E;

(q,ℓ)-back if (d, e) ∈ 𝜌 and E ⊆ 𝜏𝒥(e) with |E| ⩽ q, then there are D ⊆ 𝜏ℐ(d) and a Pr (q,ℓ)-
bisimulation 𝜌′ that contains a bijection betweenD and E.

The notions of Pr (q,ℓ)-bisimilarity and ℂ-invariance w.r.t. Pr (q,ℓ)-bisimulation are defined sim-
ilarly to how it was done in Definition 4.2.

For example, the relation 𝜌3 depicted in Figure 4.2 is a Pr (1,3)-bisimulation relating a and a1.
We notice that these individuals cannot be Pr bisimilar, due to the presence of a loop between
b1 and c1 that cannot be simulated in the other interpretation. Theorem 4.3 shows that all
ALCSCC concept are invariant under Pr bisimulation. For Pr (q,ℓ)-bisimulation, this need not
hold, as we can find an ALCSCC concept that is not invariant under Pr (q,ℓ)-bisimulation for
all values of q and ℓ.

Theorem 4.8. There is anALCSCC concept C such that, for all values of q and ℓ, the concept C
is not ℂfb-invariant under Pr (q,ℓ)-bisimulation.

Proof. Consider the ALCSCC concept C := succ(|r ∩ A| = |r ∩ ¬A|), which has been used
in [16] to show that ALCSCC∞ is not a fragment of FOL. For n,m ∈ ℕ, let ℐm,n be the finitely
branching interpretation containing individuals d and di for i = 1,… ,m + n, where r is inter-
preted as the set of tuples (d, di) for i = 1,… ,m + n, every di with i = 1,… ,m is in A and
every other individual is not in A. Given q ∈ ℕ we consider ℐq,q and ℐq,q+1, and notice that

46

4 Expressive Power ofALCSCC andALCSCC∞ over Restricted Classes Of Models

d ∈ Δℐq,q and d ∈ Δℐq,q+1 are Pr (q,ℓ)-bisimilar: the relation mapping d ∈ Δℐq,q to d ∈ Δℐq,q+1

and di ∈ Δℐq,q to di ∈ Δℐq,q+1 is a Pr (q,ℓ)-bisimulation for all ℓ ∈ ℕ. However, d ∈ Cℐq,q holds,
whereas d ∉ Cℐq,q+1 .

Our goal is now to show that this cannot happen forALCSCC concepts that areFOL-definable
w.r.t. ℂfb or ℂfin (or more generally a class ℂ of interpretations satisfying certain closure proper-
ties). The proof of this result uses certain locality properties of FOL formulae that are invariant
under Pr bisimulation.

Locality of concepts and formulae.

We observe that the counterexample to invariance under (q,ℓ)-bisimulation used in the proof
of Theorem 4.8 only depends on the choice of q and is independent of ℓ. In fact, if we were to
only parameterize restricted Pr bisimulations by ℓ and ignore q, as we will do in Chapter 8 in
the context of DLs with concrete domains, then for all ALCSCC concepts C we would be able
to find a value ℓ such that C is invariant under Pr ℓ-bisimulation. This value ℓ is dependent on
the structure of C, according to the following definition.

Definition 4.9. The depth of an ALCSCC concept C is 0 if C = A, ℓ if C = ¬D and D has
depth ℓ,max(ℓ1, ℓ2) if C = C1 ⊓ C2 and Ci has depth ℓi, and ℓ + 1 if C = succ(𝔠𝔬𝔫) and ℓ is the
maximum depth across all concepts occurring in 𝔠𝔬𝔫.

If C is an ALCSCC concept of depth ℓ, then for all interpretations ℐ and d ∈ Δℐ we only
need to consider elements reachable from d along chains of role successors of length at most ℓ
to check if d ∈ Cℐ holds. The set of first-order formulae that satisfy a similar property is defined
as follows.

Definition 4.10. Let ℐ be an interpretation. The distance of d and d′ in ℐ is the smallest value
ℓ ∈ ℕ for which there is a sequence of elements d1,… , dℓ+1 ∈ Δℐ where d1 = d, dℓ+1 = d′ and di is
a role successor or predecessor of di+1 for i = 1,… , ℓ, or∞ if such a number does not exist. The ℓ-
neighborhood𝒩ℐ

ℓ ⟦d⟧ of d is derived fromℐ by taking the substructure consisting of all individuals
with distance at most ℓ from d.
The class ℂ of interpretations is closed under neighborhoods if 𝒩ℐ

ℓ ⟦d⟧ ∈ ℂ for all ℐ ∈ ℂ,
d ∈ Δℐ and ℓ ∈ ℕ. The FOL formula 𝜙(x) is ℓ-local w.r.t. ℂ if for all ℐ ∈ ℂ and all d ∈ Δℐ we
have that ℐ ⊧ 𝜙(d) iff𝒩ℐ

ℓ ⟦d⟧ ⊧ 𝜙(d).

We observed that every ALCSCC concept of depth ℓ is ℓ-local. Clearly, we cannot argue the
same for first-order formulae𝜙(x) of quantifier depthℓ. As an example,𝜙(x) = ∃y1.∃y2.r(x, y1)∧
A(y2) is not 2-local, as any potential individual replacing y2 need not be in the 2-neighborhood
of the individual replacing x. This formula is in particular not ℓ-local for all values of ℓ.
Fortunately, we can show that every formula 𝜙(x) that is ℂ-invariant under Pr bisimulation

is ℓ-local w.r.t. ℂ for some value of ℓ dependent of the quantifier depth of 𝜙(x), provided that
ℂ is closed under neighborhoods and under finite disjoint unions of elements of ℂ as in Defini-
tion 2.31. Using the notation of Definition 2.31 we can prove, similarly to what done in Theo-
rem 2.32, that 𝜌 := {(d, (d, 𝜈)) | d ∈ Δℐ𝜈 , 𝜈 ∈ 𝕀} is a Pr bisimulation, and obtain the following
property for formulae that are ℂ-invariant under Pr bisimulation.

Proposition 4.11. Letℂ be closedunder finite disjoint unions. If aFOL formula𝜙(x) isℂ-invariant
under Pr bisimulation, then it is ℂ-invariant under finite disjoint unions.

47

4 Expressive Power ofALCSCC andALCSCC∞ over Restricted Classes Of Models

Crucially, ℂ-invariance under finite disjoint unions implies ℓ-locality w.r.t. ℂ for some value
ofℓ [51], provided that the classℂ is closedunder bothneighborhoods and finite disjoint unions1.
A class ℂ that satisfies these properties is called localizable; the classes ℂall, ℂfb and ℂfin intro-
duced in Chapter 2 are all localizable.

Lemma 4.12 ([86]). If ℂ is localizable, then any FOL formula 𝜙(x) of quantifier depth q is ℂ-
invariant under finite disjoint unions iff it is ℓ-local w.r.t. ℂ for ℓ := 2q − 1.

Combining this lemma with Proposition 4.11, we can now link ℓ-locality with invariance
under Pr bisimulation.

Corollary 4.13. If ℂ is localizable, then any FOL formula 𝜙(x) of quantifier depth q that is ℂ-
invariant under Pr bisimulation is ℓ-local w.r.t. ℂ for ℓ := 2q − 1.

Our next goal is now to show that, for FOL formulae, invariance under Pr bisimulation is
equivalent to invariance under Pr (q,ℓ) bisimulation for some q, ℓ ∈ ℕ.

The case of tree-shaped neighborhoods.

In the proof of Theorem 4.8 we exhibit, for all q ∈ ℕ, two tree-shaped interpretations whose
roots are Pr (q,ℓ)-bisimilar for all ℓ ∈ ℕ, and that are distinguished by the fact that one root
satisfies a certainALCSCC conceptC and the other does not. We show that this cannot happen
for FOL formulae 𝜙(x) that are ℓ-local and have quantifier depth q.
In particular, we consider roots of trees of depth ℓ as introduced in Definition 2.34. To prove

that if two trees of depth ℓ that have Pr (q,ℓ)-bisimilar roots d, e are such that these roots satisfy
the same formulae 𝜙(x) of quantifier depth at most q, we make use of the Ehrenfeucht-Fraïsse
method, which is based on the notion of q-isomorphism between d and e introduced in Defini-
tion 2.23. We show that aPr (q,ℓ)-bisimulation between the roots of two trees of depth ℓ induces
a q-isomorphism between these roots, leading to the following result.

Theorem 4.14. If ℐ ,𝒥 are trees of depth at most ℓ with roots d, e that are Pr (q,ℓ)-bisimilar, then
these roots satisfy the same FOL formulae 𝜙(x) of quantifier depth at most q.

Proof. If d and e are Pr (q,ℓ)-bisimilar we can define a q-isomorphism I0,… , Iq between d and
e such that for all p ∈ Iq−i and i = 0,… , q the following hold:

i-left if ⟨d0⋯ dm⟩ with d0 = d is a path in ℐ and p(dm) is defined, then for j = 0,… ,m there
is ej ∈ Δ𝒥 such that dj , ej are Pr (q, ℓ − j)-bisimilar and p(dj) = ej , and ⟨e0⋯ em⟩ with
e0 = e is a path in𝒥 ;

i-right if ⟨e0⋯ em⟩ with e0 = e is a path in 𝒥 and em = p(dm), then for j = 0,… ,m there is
dj ∈ Δℐ such that dj , ej are Pr (q, ℓ − j)-bisimilar and p(dj) = ej , and ⟨d0⋯ dm⟩ with
d0 = d is a path in ℐ ;

i-branches p is defined on individuals belonging at most i different branches of ℐ and maps to
individuals belonging to at most i diverging paths of𝒥 .

1The conditions onℂ are not stated explicitly in [51] but are implicitly assumed.

48

4 Expressive Power ofALCSCC andALCSCC∞ over Restricted Classes Of Models

Two paths are diverging if their length is greater than 1 and neither of the two is a prefix of the
other. Clearly, p := {d ↦ e} satisfies all three properties and is a partial isomorphism: d and e
satisfy the same concept names by (q,ℓ)-bisimilarity, and they vacuously agree onNR since trees
do not contain role loops. Let Iq := {{d ↦ e}}. For 0 ⩽ i < q, we assume that Iq−i is defined and
show how to define Iq−(i+1) so that i-forth and i-back in Definition 2.23 are satisfied.
Let p ∈ Iq−i and d′ ∈ Δℐ, consider the unique path ⟨d0,… , dm′⟩withm′ ⩽ ℓ between d0 := d

and dm′ := d′ in ℐ and letmwith 0 ⩽ m < m′ be the greatest value for which p(dm′) is defined.
Ifm = m′, we simply add p to Iq−(i+1). Otherwise, form ⩽ j < m′ we assume that the partial
isomorphism pj extending pwith values for dm,… , dj is defined and satisfies (i+1)-left, (i+1)-
right and (i+ 1)-branches, and show how to extend pj to pj+1 by adding a value ej+1 for dj+1 so
that pj+1 also satisfies these conditions.
Let 𝜏 be the unique safe role type s.t. (dj , dj+1) ∈ 𝜏ℐ. Then, the setD′ of 𝜏-successors of dj for

which pj is definedmust contain atmost i < q individuals: for j = m, this is a clear consequence
of i-branches, and form < j < m′ the setD′ must be empty as otherwise pj(dj) would already
have been defined, and we would contradict our definition of m. Since dj , ej must be Pr (q,
ℓ − j)-bisimilar due to i-left, i-right and their (i + 1)-versions, and D := D′ ∪ {dj+1} ⊆ 𝜏ℐ(dj)
has size i + 1 ⩽ q, there exists a set E ⊆ 𝜏𝒥(ej) of i + 1 elements and a bijection f : D ↦ E
such that dx, f (dx) are Pr (q, ℓ − (j + 1))-bisimilar for dx ∈ D. We notice that if dx ∈ D′

then pj(dx) ∈ 𝜏𝒥(ej) must hold because pj is a partial isomorphism, and that dx, pj(dx) are
(q, ℓ − (j + 1))-bisimilar by our assumptions on pj , hence we can assume that f (dx) = pj(dx).
Moreover, ej+1 := f (dj+1) ∈ E cannot be in the image of pj : this is a direct consequence of
i-branches for j = m as pj would otherwise map to values over i+ 1 different branches, and for
m < j < m′ this would contradict the definition ofm.
We define pj+1 by extending pj with pj+1(dj+1) := ej+1 and verify that it is a partial iso-

morphism. First, notice that pj is injective by assumption and that pj+1(dj+1) ≠ pj+1(dx) if
dx ≠ dj+1 by definition, hence pj+1 is injective. Next, dx ∈ Aℐ iff pj+1(dx) ∈ A𝒥 holds if pj(dx)
is defined, so it is sufficient to notice that dj+1 ∈ Aℐ iff pj+1(dj+1) ∈ A𝒥 follows from the fact
that dj+1 and ej+1 are Pr (q,ℓ−(j+1))-bisimilar thanks to the atomic condition to conclude that
pj+1 is a partial isomorphism w.r.t. NC. To check that (dx, dy) ∈ rℐ iff (pj+1(dx), pj+1(dy)) ∈ r𝒥

for all dx, dy for which pj+1 is defined, we consider the cases not covered by pj . In the first case,
dy = dj+1 withm ⩽ j < m′ and so (dx, dj+1) ∈ rℐ may occur iff dx = dj , and since we chose
pj+1(dj+1) to be a 𝜏-successor of pj+1(dj) iff dj+1 ∈ 𝜏ℐ(dj) we conclude that (dx, dj+1) ∈ rℐ iff
(pj+1(dx), pj+1(dj+1)) ∈ rℐ. In the second case, dx = dj+1 and so (dj+1, dy) ∈ rℐ may occur iff
dy = d(j+1)+1 withm < j′ := j + 1 < m′, and so we fall in the first case applied to dy = dj′+1.
We thus showed that pj+1 is a partial isomorphism w.r.t. NR and we conclude that it is a partial
isomorphism and add it to Iq−(i+1).
The process above shows that I0,… , Iq satisfies the i-forth condition for i = 0,… , q. Using a

similar strategy, we show, for a given e′ ∈ Δ𝒥, how to add p′ ∈ Iq−(i+1) that extends p ∈ Iq−i and
such that p(d′) = e′ for some d′ ∈ Δℐ, thus showing that I0,… , Iq satisfies the i-back condition
for 0 ⩽ i < q. We obtain a q-isomorphism between d and e and conclude by Theorem 2.24 that
they satisfy the same FOL formulae 𝜙(x) of quantifier depth at most q.

While not all interpretations in a class ℂ of interest need to be tree-shaped, we show that,
for every interpretation in ℂall, ℂfb or ℂfin, it is possible to find a Pr bisimilar interpretation in
this class where the ℓ-neighborhood of a specific individual d is a tree with root d. Normally,
this is achieved by unravelling [22], but this may yield an infinite interpretation, and is thus not
suitable for our setting, where we are also interested in the classℂfin. We take instead the partial

49

4 Expressive Power ofALCSCC andALCSCC∞ over Restricted Classes Of Models

unravelling of ℐ , which preserves finiteness and finite branching. Intuitively, the ℓ-unravelling
of an interpretation ℐ at an element d ∈ Δℐ applies unraveling up to length ℓ, and then adds
a copy of ℐ at the end. The exact definition of this operation, which is an adaptation of the
unravelling operation described in [22], is as follows.

Definition 4.15. Given an interpretation ℐ and ℓ ∈ ℕ, let ℐu
ℓ be the interpretation whose domain

Δℐu
ℓ is the set of all paths of ℐ of length at most ℓ, defined as follows for A ∈ NC and r ∈ NR:

Aℐu
ℓ := {p ∈ Δℐu

ℓ | end(p) ∈ Aℐ},
rℐ

u
ℓ := {(⟨d0,… , dk⟩, ⟨d0,… , dk, dk+1⟩) ∈ Δℐu

ℓ × Δℐu
ℓ | (dk, dk+1) ∈ rℐ}.

The ℓ-unravelling ℐℓ of ℐ is obtained as the union of ℐ and ℐu
ℓ where we additionally add to r

ℐℓ

all (p, e) ∈ Δℐu
ℓ ×Δℐ such that p has length ℓ and (end(p), e) ∈ rℐ. Then,ℂ is closed under partial

unravelling if ℐℓ ∈ ℂ for all ℐ ∈ ℂ and ℓ ∈ ℕ.
As mentioned above, the ℓ-unravelling of ℐ provides an element ⟨d⟩ that is Pr bisimilar to

d ∈ ℐ and whose ℓ-neighborhood is tree-shaped.
Proposition 4.16. Letℐd

ℓ be theℓ-unravelling of the interpretationℐ atd ∈ Δℐ, and ⟨d⟩ the element
corresponding to d in ℐℓ. Then,

1. The elements d ∈ Δℐ and ⟨d⟩ ∈ Δℐd
ℓ are Pr bisimilar.

2. The ℓ-neighborhood𝒩ℐd
ℓ

ℓ (⟨d⟩) of ⟨d⟩ in ℐℓ is a tree of depth at most ℓ with root ⟨d⟩.
Proof. Using the notation of Definition 4.15, we prove that

𝜌 := {(d, d) | d ∈ Δℐ} ∪ {(d, p) ∈ Δℐ × Δℐu
ℓ | d = end(p)}

is the sought relation. Given that Pr bisimulations are closed under union, it is enough to show
that all (e, p) ∈ 𝜌 satisfy the conditions of Definition 4.2 to conclude that 𝜌 is a Pr bisimulation,
as the first relation in the union trivially is an Pr bisimulation. For each (e, p) ∈ 𝜌, the (atomic)
condition is implied by definition of Aℐℓ for A ∈ NC.
Next, we show that 𝜌 satisfies (forth). Let (e, p) ∈ 𝜌 and D ⊆ 𝜏ℐ(e) a finite set for some safe

role type 𝜏 overNR. If p is a directed path of length ℓwith starting point d, then every 𝜏-successor
of p is an element of Δℐ and in particular it is a 𝜏-successor of e. We defineD′ := D and obtain a
finite subset of 𝜏ℐℓ(p) such that 𝜌 contains a bijection betweenD andD′. If, on the other hand,
p has length less than ℓ, all of its 𝜏-successors in ℐℓ are directed paths of the form p′ = p⟨e′⟩
for which (end(p), e′) ∈ 𝜏ℐ. Since end(p) = e, we deduce that p′ := p⟨e′⟩ ∈ 𝜏ℐℓ(p) holds for all
e′ ∈ 𝜏ℐ(e). Since 𝜌 contains all tuples (e′, p′) of the form above, we conclude that it contains a
bijection betweenD and the finite subsetD′ := {p⟨e′⟩ | e′ ∈ D} of 𝜏ℐℓ(p).
Finally, we show that the (back) direction holds. LetD′ ⊆ 𝜏ℐℓ(p) be a finite set. If p has length

ℓ, reusing our previous observations, we derive thatD′ ⊆ Δℐ. In particular, from e = end(p) and
the definition of rℐℓ we derive that e′ ∈ 𝜏ℐ(e) for all e′ ∈ D′. Thus, D := D′ is a finite subset
of 𝜏ℐ(e) and, since (e′, e′) ∈ 𝜌 for all e′ ∈ Δℐ, it follows that 𝜌 contains a bijection between D
andD′. If p has length less than ℓ, then each element ofD′ is a d-dipath p′ such that p′ = p⟨e′⟩
and (end(p), e′) ∈ 𝜏ℐ. Since e = end(p), it follows that e′ ∈ 𝜏ℐ(e). Moreover, (e′, p′) ∈ 𝜌 by
definition of 𝜌. We deduce that D := {end(p′) | p′ ∈ D′} ⊆ 𝜏ℐ(e) and 𝜌 contains a bijection
betweenD andD′. The relation 𝜌 satisfies all the conditions listed in Definition 4.2 and is thus
a Pr bisimulation between ℐ and ℐℓ.

50

4 Expressive Power ofALCSCC andALCSCC∞ over Restricted Classes Of Models

If d ∈ Δℐ and e ∈ Δ𝒥 are Pr (q,ℓ)-bisimilar, the result above implies that ⟨d⟩ and ⟨e⟩ are also
Pr (q,ℓ)-bisimilar. This is obtained by showing that if 𝜌 ⊆ Δℐ × Δ𝒥 is a Pr (q,ℓ)-bisimulation
between d and e and 𝜌d ⊆ Δℐℓ × Δℐ, 𝜌e ⊆ Δ𝒥 × Δ𝒥ℓ are Pr bisimulations between ⟨d⟩, d and e,
⟨e⟩ then the relation2 𝜌′ := 𝜌d ∘ 𝜌 ∘ 𝜌e is a Pr (q,ℓ)-bisimulation between ⟨d⟩ and ⟨e⟩. Since ⟨d⟩
and ⟨e⟩ are the roots of two trees of depth ℓ, we can conclude the following using Theorem 4.14.
Corollary 4.17. If ℂ is closed under partial unravelling and ℐ ,𝒥 ∈ ℂ contain d ∈ Δℐ, e ∈ Δ𝒥

that are Pr (q,ℓ)-bisimilar, then ⟨d⟩ ∈ Δℐℓ and ⟨e⟩ ∈ Δ𝒥ℓ satisfy the same ℓ-local formulae 𝜙(x) of
quantifier depth at most q.

ALCSCC goes beyond FOL.

Combining the results about locality and tree-shaped interpretations obtained so far, we show
that there is no FOL formula 𝜙(x) that behaves like the conceptC in Theorem 4.8 w.r.t. Pr (q,ℓ)-
bisimulation. Indeed, if 𝜙(x) has quantifier depth q and is ℂ-invariant under Pr bisimulation,
we are always able to find suitable values of q and ℓ and sufficient conditions on ℂ such that
𝜙(x) is ℂ-invariant under Pr (q,ℓ)-bisimulation.
The class ℂ of interpretations is closed under partial unravelling if ℐ ∈ ℂ implies ℐd

ℓ ∈ ℂ.
The following result links invariance under Pr bisimulation with invariance under Pr (q,ℓ)-
bisimulation for FOL formulae.
Theorem 4.18. Let ℂ be localizable and closed under partial unravelling. For all FOL formulae
𝜙(x), the following are equivalent:

1. 𝜙(x) is ℂ-invariant under Pr bisimulation;

2. 𝜙(x) is ℂ-invariant under Pr (q,ℓ)-bisimulation for some q, ℓ ∈ ℕ.
Proof. The implication “2 ⇒ 1” is an immediate consequence of the fact that every Pr bisimu-
lation is also a Pr (q,ℓ)-bisimulation for all q, ℓ ∈ ℕ.
To prove the other direction, we assume 1. and that 𝜙(x) has quantifier depth q. By Corol-

lary 4.13 we deduce that 𝜙(x) is ℓ-local w.r.t. ℂ for ℓ := 2q − 1. Given ℐ ,𝒥 ∈ ℂ and d ∈ Δℐ,
e ∈ Δ𝒥, we know that the ℓ-unravellings ℐd

ℓ and𝒥e
ℓ and the ℓ-neighborhoods𝒩d := 𝒩ℐd

ℓ
ℓ (⟨d⟩)

and 𝒩e := 𝒩ℐd
ℓ

ℓ (⟨e⟩) also belong to ℂ. Since 𝜙(x) is ℂ-invariant under Pr bisimulation and
ℓ-local w.r.t. ℂ we obtain

ℐ ⊧ 𝜙(d) iff ℐd
ℓ ⊧ 𝜙(⟨d⟩) iff 𝒩d ⊧ 𝜙(⟨d⟩) and

𝒥 ⊧ 𝜙(e) iff 𝒥e
ℓ ⊧ 𝜙(⟨e⟩) iff 𝒩e ⊧ 𝜙(⟨e⟩).

(by Proposition 4.16)

If 𝜌 is a Pr (q,ℓ)-bisimulation with (d, e) ∈ 𝜌, then combining this relation with the Pr bisimu-
lations linking d and ⟨d⟩ and d and ⟨e⟩ shows that there is a Pr (q,ℓ)-bisimulation 𝜌′ between ℐd

ℓ
and ℐe

ℓ with (⟨d⟩, ⟨e⟩) ∈ 𝜌′. Since such a bisimulation looks only ℓ steps into the interpretation,
the restriction of 𝜌′ to the respective ℓ-neighborhoods𝒩d and𝒩e is also aPr (q,ℓ)-bisimulation.
Proposition 4.16 says that these neighborhoods are trees of depth at most ℓ, and thus we can ap-
ply Theorem 4.14 to obtain𝒩d ⊧ 𝜙(⟨d⟩) iff𝒩e ⊧ 𝜙(⟨e⟩), Therefore, (2) holds for 𝜙(x).

Together with Theorem 4.8, this yields the desired non-definability results since the classes
ℂall, ℂfb, and ℂfin are localizable and closed under partial unravelling.
Corollary 4.19. There areALCSCC concepts that are not FOL-definable w.r.t. ℂfb.
2If 𝜌1 ⊆ A×B and 𝜌2 ⊆ B × C then 𝜌1 ∘ 𝜌2 := {(a, c) | (a, b) ∈ 𝜌1, (b, c) ∈ 𝜌2} ⊆ A× C.

51

4 Expressive Power ofALCSCC andALCSCC∞ over Restricted Classes Of Models

The first-order fragment of ALCSCC.

In [16], we have established that the FOL-definable subset ofALCSCC∞ corresponds to the DL
ALCQt. This DL can be seen both as the extension of ALCQ where safe roles types instead of
just role names can be used in qualified number restrictions, and as the restriction ofALCSCC
where only successor restrictions of the form succ(|𝜏∩C| ⩾ q) are available, where 𝜏 is a safe role
type, q ∈ ℕ, and C is anALCQt concept. To make the relationship to qualified number restric-
tions clear, we write such successor restrictions as (⩾ q 𝜏.C), and call them qualified number
restrictions. Saying that this result was proved in [16] for ALCSCC∞ means that it was shown
w.r.t. the class ℂall. In the following we prove that it also holds for the classes ℂfb and ℂfin.
To conclude this section, we show how to leverage Theorem 4.18 to show that this charac-

terization holds even w.r.t. finitely branching and finite interpretations, after proving that a
first-order formula is invariant under Pr (q,ℓ)-bisimulation iff it is equivalent to some ALCQt
concept.
Clearly, every qualified number restriction (⩾n r.C) or (⩽n r.C) inALCQ can be translated

intoALCQt. For a given role name r, let Tr be the set of safe role types 𝜏1, …, 𝜏k overNR where
r occurs positively. For a given natural number n, let Pn be the set of all tuple (n1,… ,nk) of
natural numbers whose sum is exactly n. Then, (⩽n r.C) is equivalent to theALCQt concept

⨆
(n1,…,nk)∈Pn

⨅
𝜏i∈Tr

(⩽ni 𝜏i.C⋆)

where C⋆ is recursively translated. Similarly, we define an ALCQt concept that is equivalent
ot (⩾n r.C). On the other hand, the concept used to prove that ALCSCC and ALCSCC∞ are
more expressive than ALCQ in Corollary 4.4 is actually an ALCQt concept, and therefore we
deduce thatALCQt is strictly more expressive thanALCQ.
We notice that everyALCQt concept C can be translated into a FOL formula C♯(x), and that

unlike ALCSCC and ALCSCC∞, concepts in ALCQt can only compare the cardinality of a set
of role successors with a fixed natural number. In particular, we can define for every concept a
coefficient q that is dependent on the numbers occurring in its qualified number restrictions, as
follows.

Definition 4.20. The breadth of an ALCQt concept C is 0 if C = A, q if C = ¬D and D has
breadth q,max(q1, q2) if C = C1 ⊓ C2 and Ci has breadth qi,max(q, q′) if C = (⩾ q 𝜏.D) and D
has breadth q′.

The following example shows that the notion of breadth defined above is related to the num-
ber of quantified variables used in the first-order translation ofALCQt concepts.

Example 4.21. Let NC := {A}, NR := {r} and consider the ALCQt concept C := (⩾ 3 r.A).
According to Definition 4.20 this concept has breadth 3; its first-order translation

𝜋x(C) = ∃x1.∃x2.∃x3.
3

⋀
i=1

(r(x,xi) ∧A(xi) ∧
3

⋀
j=i+1

(xi ≠ xj))

introduces three quantified variables, in addition to the free variablex. The conceptC′ := (⩽ 3 r.A)
has first-order translation

𝜋x(C′) = ∀x1.∀x2.∀x3.∀x4.
4

⋀
i=1

(r(x,xi) ∧A(xi)) ⟹
4

⋁
i=1

4

⋁
j=i+1

(xi = xj)

52

4 Expressive Power ofALCSCC andALCSCC∞ over Restricted Classes Of Models

in which four quantified variables are used. There is thus amismatch between the coefficient of the
qualified number restriction inC′ and the number of quantified variables in its first-order transla-
tion. This is not the case for the equivalent concept C″ := ¬(⩾ 4 r.A), whose translation uses four
quantified variables and which has breadth 4 according to the definition above.

We show that the breadth and the depth of anALCQt conceptC are strictly connected to the
values of q and ℓ for which C is ℂ-invariant under Pr (q,ℓ)-bisimulation. In particular, let us
consider the subsetALCQtq,ℓ of allALCQt concepts of depth at most ℓ and breadth at most q.
We observe the following.

Theorem 4.22. For all classes ℂ of interpretations and all q, ℓ ∈ ℕ, every ALCQtq,ℓ concept is
ℂ-invariant under Pr (q,ℓ)-bisimulation.

Proof. Fixed q ⩾ 0, we prove that everyALCQtq,ℓ concept is invariant underPr (q,ℓ)-bisimulation
by induction over ℓ. Let ℐ ,𝒥 ∈ ℂ be interpretations related by a Pr (q,ℓ)-bisimulation 𝜌 with
(d, e) ∈ 𝜌.
For ℓ = 0, the fact that all ALCQtq,0 concepts are Boolean combinations of concept names

and that d and e satisfy the same concept names thanks to the atomic condition satisfied by 𝜌
implies that they satisfy the same ALCQtq,0 concepts, hence that ALCQtq,0 concepts are ℂ-
invariant under Pr (q,0)-bisimulation.
Weassume inductively that everyALCQtq,ℓ concept isℂ-invariant underPr (q,ℓ)-bisimulation

and show that this implies that all ALCQtq,ℓ+1 concepts are ℂ-invariant under Pr (q,ℓ + 1)-
bisimulation. Let 𝜌 be a Pr (q,ℓ + 1)-bisimulation with (d, e) ∈ 𝜌. We show by structural in-
duction over C an ALCQtq,ℓ+1 concept that d and e satisfy the same ALCQtq,ℓ+1 concepts. If
C = A is a concept name, this trivially follows from the fact that 𝜌 satisfies the atomic condition.
We inductively assume that if aALCQtq,ℓ conceptD is a proper subconcept of C, then d ∈ Dℐ

iff e ∈ D𝒥. Let C = (⩾ q′ 𝜏.D) with D an ALCQtq,ℓ concept and q′ ⩽ q. If d ∈ Cℐ, then
there is a set DC of size q′ ⩽ q of 𝜏-successors of d such that d′ ∈ Dℐ for d′ ∈ DC . Thanks to
the (q,ℓ)-forth condition, we find a set EC of size q′ ⩽ q of 𝜏-successors of e and a bijection h
from DC to EC such that d′ and h(d′) are Pr (q,ℓ)-bisimilar for d′ ∈ DC . Using our inductive
hypothesis on ℓ, we deduce that e′ ∈ D𝒥 for e′ ∈ EC and conclude that e ∈ C𝒥. Similarly, we
show that e ∈ C𝒥 implies d ∈ Cℐ, this time using the (q,ℓ)-back condition.
If C = ¬D, then the semantics of negation and our inductive hypothesis on D imply that

d ∈ (¬D)ℐ iff d ∉ Dℐ iff e ∉ D𝒥 iff e ∈ (¬D)𝒥. The treatment is similar for C = D0 ⊓D1. We
conclude that d and e satisfy the same ALCQtq,ℓ+1 concepts, hence that ALCQtq,ℓ+1 concepts
are ℂ-invariant under Pr (q,ℓ + 1)-bisimulation. This concludes our proof by induction.

We prove that ALCQtq,ℓ, unlike ALCQt, only contains finitely many concepts (up to ℂ-
equivalence) if we assume that NC and NR are finite. This is well-known for ALC, i.e. the
modal logic K [92] and for ALCQ, i.e. modal logic with graded modalities [84] and the proof
of these facts can be easily extended to ALCQt. We observe that if we only restricted w.r.t. q,
then for q ⩾ 1 we could define concepts of arbitrary depth, and similarly if we only restricted
w.r.t. ℓ we could write concepts of arbitrary breadth for ℓ ⩾ 1, while restricting only w.r.t. ℓ is
sufficient in logics such asALC andALC(𝔇) (as shown in Chapter 8).

Proposition 4.23. If NC and NR are finite sets, then for all values of q and ℓ and all classes of
interpretations ℂ the logicALCQtq,ℓ, is finite (up to ℂ-equivalence).

53

4 Expressive Power ofALCSCC andALCSCC∞ over Restricted Classes Of Models

Proof. We fix q ⩾ 0 and proceed by induction over ℓ. For ℓ = 0, we notice that everyALCQtq,0
concept is a Boolean combination of concept names. Since NC is assumed to be finite, we con-
clude thatALCQtq,0 is finite up to ℂ-equivalence. Next, we inductively assume thatALCQtq,ℓ
is finite. Then, there exist finitely many qualified number restrictions (⩾ k 𝜏.C) with k ⩽ q,
C an ALCQtq,ℓ concept and 𝜏 a safe role type over NR (up to ℂ-equivalence). This holds by
finiteness of NC and NR. Every ALCQtq,ℓ+1 concept is equivalent to a Boolean combination of
ALCQtq,ℓ concepts and qualified number restrictions of the form above. Since there are finitely
many such combinations up to ℂ-equivalence, we conclude thatALCQtq,ℓ+1 is finite.

Thanks to the above, we are able to define a concept Bisimq

ℓ[d] describing all individuals that
are Pr (q,ℓ)-bisimilar with d ∈ Δℐ on all classes of interpretations.

Definition 4.24. Given an interpretation ℐ with d ∈ Δℐ, a safe role type 𝜏 over NR and q, ℓ ∈ ℕ
we consider the mutually recursiveALCQtq,ℓ concepts

Atomic[d] := ⨅{A ∈ NC | d ∈ Aℐ} ⊓ ⨅{¬A | A ∈ NC, d ∉ Aℐ} (atomic)
Forthq,ℓ

𝜏 [d] := ⨅
d′∈𝜏ℐ(d)Forthq,ℓ

𝜏,d′[d] ((q,ℓ)-forth)

Backq,ℓ𝜏 [d] := {¬(⩾ 1 𝜏.(⨅d′∈𝜏ℐ(d)¬Bisimq

ℓ[d′])) if q ⩾ 1
⊤ otherwise

((q,ℓ)-back)

where, assuming that k ⩾ 1 is the number of 𝜏-successors of d in (Bisimq

ℓ[d′])ℐ,

Forthq,ℓ
𝜏,d′[d] := {(⩾ k 𝜏.Bisimq

ℓ[d′]) ⊓ ¬(⩾ k + 1 𝜏.Bisimq

ℓ[d′]) if k < q,
(⩾ q 𝜏.Bisimq

ℓ[d′]) otherwise;

and finally

Bisimq

0[d] := Atomic[d]
Bisimq

ℓ+1[d] := Bisimq

ℓ[d] ⊓ ⨅{Backq,ℓ𝜏 [d] ⊓ Forthq,ℓ
𝜏 [d] | 𝜏 safe role type over NR}.

We call Bisimq

ℓ[d] the (q,ℓ)-characteristicALCQt concept of d.

If NC and NR are finite then Proposition 4.23 ensures that characteristic concepts are well-
defined, even if ℐ is not finitely branching, since the conjunctions in Forthq,ℓ

𝜏 [d] and Backq,ℓ𝜏 [d]
contain only finitely many non-equivalent conjuncts. Using the fact that (atomic), ((q,ℓ)-forth)
and ((q,ℓ)-back) in Definition 4.24 encode the corresponding properties in Definition 4.7 we
show that the relation 𝜌ℓ := {(d, e) ∈ Δℐ ×Δ𝒥 | e ∈ (Bisimq

i [d])𝒥} is a Pr (q,ℓ)-bisimulation and
obtain the following correspondence.

Theorem 4.25. LetNC,NR be finite and q, ℓ ∈ ℕ. Then, d ∈ Δℐ and e ∈ Δ𝒥 arePr (q,ℓ)-bisimilar
iff they satisfy the sameALCQtq,ℓ concepts.

Proof. If d and e are Pr (q,ℓ)-bisimilar then they satisfy the same ALCQtq,ℓ concepts by Theo-
rem 4.22. We show by induction over ℓ that the relation 𝜌 defined above satisfies all the condi-
tions stated in Definition 4.7, which implies that 𝜌 is a Pr (q,ℓ)-bisimulation. If d and e satisfy
the same ALCQtq,ℓ concepts, then d ∈ (Bisimq

ℓ[d])ℐ implies that e ∈ (Bisimq

ℓ[d])𝒥 and so we
conclude that (d, e) ∈ 𝜌.

54

4 Expressive Power ofALCSCC andALCSCC∞ over Restricted Classes Of Models

For ℓ ∈ ℕ, we observe that e ∈ (Atomic[d])ℐ iff for all A ∈ NC it holds that d ∈ Aℐ iff
e ∈ A𝒥; since this concept occurs as a conjunct in Bisimq

ℓ[d], we conclude that 𝜌ℓ fulfills the
atomic condition. In particular, this implies that 𝜌0 is a Pr (q,0)-bisimulation.
Next, we inductively assume that 𝜌ℓ is a Pr (q,ℓ)-bisimulation and show that 𝜌ℓ+1 is a Pr

(q,ℓ+1)-bisimulation. We start by showing that 𝜌ℓ+1 satisfies the (q,ℓ)-forth condition. Assume
that (d, e) ∈ 𝜌ℓ+1 and let D ⊆ 𝜏ℐ(d) be a set of size q′ ⩽ q for some safe role type 𝜏 over NR.
We partition D into sets Dd′ for d′ ∈ D with Dd′ := D ∩ (Bisimq

ℓ[d′])ℐ; then, it holds that
qd′ := |Dd′ | ⩽ q. In particular, (⩾ q′ 𝜏.(Bisimq

ℓ[d′])) with q′ ⩾ qd′ is a conjunct of Forthq,ℓ
𝜏 [d],

so we conclude that e ∈ (⩾ q′ 𝜏.(Bisimq

ℓ[d′]))𝒥, hence e ∈ (⩾ qd′ 𝜏.(Bisimq

ℓ[d′]))𝒥. Thus, there
exists a set Ed′ ⊆ Bisimq

ℓ[d′]𝒥 of 𝜏-successors of e of size qd′ . Together with the definition of
𝜌ℓ, we obtain that Dd′ × Ed′ ⊆ 𝜌ℓ, and since the two sets are of the same size we can find a
bijection fd′ ⊆ 𝜌ℓ between them. By combining all mappings fd′ with d′ ∈ D we are able to
find a bijection f ⊆ 𝜌ℓ between D and E := ⋃

d′∈D Ed′ . Since 𝜌ℓ is inductively assumed to be
a Pr (q,ℓ)-bisimulation, we conclude that 𝜌ℓ+1 satisfies (q, ℓ)-forth.
Finally, we show that 𝜌ℓ+1 satisfies the (q,ℓ)-back condition. Assume that (d, e) ∈ 𝜌ℓ+1 and

let E be a subset of 𝜏𝒥(e) of cardinality q′ ⩽ q. Since e ∈ (Bisimq

ℓ+1[d])𝒥 and Backq,ℓ𝜏 [d] is
a conjunct of Bisimq

ℓ+1[d], we deduce that for every e′ ∈ E there is some 𝜏-successor d′ of d
such that e′ ∈ Bisimq

ℓ[d′]𝒥. As done in the previous paragraph, then, we define sets Ed′ :=
E ∩ (Bisimq

ℓ[d′])𝒥 with qd′ := |Ed′ | ⩽ q and use them to find a set D ⊆ 𝜏ℐ(d) of size q′ and a
bijection f : E → D included in 𝜌ℓ, concluding that 𝜌ℓ+1 satisfies (q,ℓ)-back.
Since 𝜌ℓ+1 satisfies all the conditions of Definition 4.7, we conclude that it is a Pr (q,ℓ + 1)-

bisimulation with (d, e) ∈ 𝜌ℓ+1.

Summing up all these results, we obtain the characterization of ALCQtq,ℓ over a class of
interpretationsℂ that is localizable and closed under partial unravelling as the fragment of FOL
that is ℂ-invariant under Pr (q,ℓ)-bisimulation.

Theorem 4.26. Letℂ be localizable and closed under partial unravelling andNC,NR be finite. For
all FOL formulae 𝜙(x), the following are equivalent:

1. 𝜙(x) is ℂ-invariant under Pr bisimulation;

2. 𝜙(x) is ℂ-invariant under Pr (q,ℓ)-bisimulation for some q, ℓ ∈ ℕ;

3. 𝜙(x) is ℂ-equivalent to someALCQt concept.

Proof. The equivalence between (1) and (2) is showed in Theorem 4.18. We focus on proving
that (2) and (3) are equivalent.
Let C𝜙 := ⨆{Bisimq

ℓ[d] | ℐ ∈ ℂ, d ∈ Δℐ and ℐ ⊧ 𝜙(d)}. This is a well-formed concept
by Proposition 4.23, and we use it to show that (2) implies (3). First, assume that ℐ ⊧ 𝜙(d) with
ℐ ∈ ℂ and d ∈ Δℐ. Then, d ∈ Cℐ

𝜙 trivially follows from the fact that Bisimq

ℓ[d] occurs as a
disjunct in C𝜙. Vice versa, if d ∈ Cℐ

𝜙 then d ∈ (Bisimq

ℓ[e])ℐ for some𝒥 ∈ ℂ and e ∈ Δ𝒥, and in
particular 𝒥 ⊧ 𝜙(e). We saw in the proof of Theorem 4.25 that this implies that d and e are Pr
(q,ℓ)-bisimilar, hence that ℐ ⊧ 𝜙(d) by (2). Thus, 𝜙(x) and C𝜙 are ℂ-equivalent.
Next, let 𝜙(x) be ℂ-equivalent to the ALCQt concept C. If ℐ ,𝒥 ∈ ℂ contain d ∈ Δℐ and

e ∈ Δ𝒥 that are Pr (q,ℓ)-bisimilar, the ℂ-invariance of C under Pr (q,ℓ)-bisimulation (cf. The-
orem 4.8) and our assumption yield d ∈ 𝜙ℐ iff d ∈ Cℐ

𝜙 iff e ∈ C𝒥
𝜙 iff e ∈ 𝜙𝒥. Thus, 𝜙(x) is

ℂ-invariant under Pr (q,ℓ)-bisimulation.

55

4 Expressive Power ofALCSCC andALCSCC∞ over Restricted Classes Of Models

As a corollary of this theorem and Theorem 4.18 we obtain the characterization of ALCQt
as the first-order fragment of ALCSCC∞ and ALCSCC w.r.t. the classes of all, of all finitely
branching and of all finite interpretations.

Corollary 4.27. Let NC, NR be finite and ℂ be ℂall, ℂfb or ℂfin. Then, an ALCSCC∞ concept is
FOL-definable w.r.t. ℂ iff it is ℂ-equivalent to anALCQt concept.

Summary

We analyzed the expressive power of ALCSCC and ALCSCC∞ as concept languages using the
notion of local Presburger (Pr) bisimulation, which strengthens the known notion of counting
bisimulation [80] by applying the back-and-forth conditions to safe role types rather than role
names. We showed that both ALCSCC and ALCSCC∞ concepts are invariant under Pr bisim-
ulation and used this property to show non-definability results w.r.t. these DLs. In [16] we
showed that the first-order definable fragment of ALCSCC∞ corresponds to the DL ALCQt,
by showing that this DL is exactly the fragment of first-order logic that is invariant under Pr
bisimulation. Here, we generalized this result to bothALCSCC andALCSCC∞ w.r.t. arbitrary,
finitely branching and finite interpretations, using an approach based on strong locality prop-
erties of FOL that follows the treatment of Otto for graded modal logic (i.e. ALCQ) in terms of
counting bisimulation [84]. Using (q,ℓ)-bisimulations, we showed that ALCQt and ALCSCC
can be separated, thus showing that the latter DL contains concepts that are not first-order de-
finable and is more expressive than the former DL. Our results on the relative expressive power
ofALC,ALCQ,ALCQt,ALCSCC andALCSCC∞ are summarized in the following diagram.

FOL-definable

ALCSCC

FOL ALCSCC

ALCQt

ALCQ

ALC

In this diagram, an arrow from a node N to a node N′ means that the concept language N can
be expressed in N′ and that N is strictly less expressive than N′.

56

5 Knowledge Bases that Count, and
what They Can and Cannot Count

In Chapter 4 we analyzed the relationship between FOL formulae 𝜙(x) and ALCSCC (and
ALCSCC∞) concepts over the classes ℂall, ℂfb and ℂfin of arbitrary, finitely branching and fi-
nite interpretations of NC and NR. For each of these classes of interpretations ℂ, we determined
thatALCQt is the fragment of FOL formulae 𝜙(x) that are ℂ-invariant under Pr bisimulation.
The goal of this chapter is to study the relationship between FOL sentences and TBoxes,

CBoxes and ECBoxes written usingALCSCC∞ concepts. Due to the increased expressive power
of these formalisms, we cannot apply the methods used in the previous chapter, as many of the
employed transformations do not preserve the cardinality of the interpretations of the concepts
at hand. Therefore, we cannot readily obtain a characterization that works w.r.t. finite and
finitely branching interpretations. Instead, we focus on ALCSCC∞ concepts over ℂall, and lift
the relationship between this DL and ALCQt to (Boolean) TBoxes, to (Boolean) CBoxes and
to ECBoxes written in these DLs. We show that a (Boolean) ALCSCC∞ TBox is FOL-definable
w.r.t. ℂall iff it is ℂall-equivalent to a (Boolean) ALCQt TBox, and that an ALCSCC∞ ECBox
is FOL-definable w.r.t. ℂall iff it is ℂall-equivalent to a Boolean ALCQt CBox. Finally, we pro-
vide inexpressivity results that separate the expressive power of CBoxes, RCBoxes and (Boolean)
TBoxes w.r.t. ℂall. The work contained in this chapter is based on the paper:

[14] Baader, F., De Bortoli, F.: Description Logics That Count, andWhat They Can and Cannot
Count. In: Kovacs, L., Korovin, K., Reger, G. (eds.) ANDREI-60. Automated New-era
Deductive Reasoning Event in Iberia. EPiC Series in Computing, pp. 1–25. EasyChair
(2020). https://doi.org/10.29007/ltzn

Non-expressivity using disjoint unions. It is straightforward to deduce from Definition 3.6
that the CI C ⊑ D, the CR |C ⊓¬D| ⩽ 0 and the inequality |C ⊓¬D| ⩽ |⊥| are ℂall-equivalent.
This allows us to conclude that TBoxes are expressible w.r.t. ℂall using CBoxes, ECBoxes or
RCBoxes. It is also clear that CBoxes and RCBoxes are special instances of an ECBox. The
expressive power of CBoxes and RCBoxes, on the other hand, appears to be orthogonal. Indeed,
CBoxes only allow us to compare concept cardinalities with a fixed number, and this is explicitly
disallowed in RCBoxes (we can only simulate 0 using |⊥|). On the other hand, RCBoxes enable
us to compare the cardinalities of different concepts whereas this is not possible in CBoxes.

57

https://doi.org/10.29007/ltzn

5 Knowledge Bases that Count, and what They Can and Cannot Count

In Definition 2.31 we defined the notion of ℂ-invariance under disjoint unions for TBoxes.
Using the notation of Definition 2.31, we recall that a TBox is invariant under disjoint unions if
for every family of interpretations (ℐ𝜈)𝜈∈𝕀, the disjoint union ℐ of this family is a model of𝒯 iff
every ℐ𝜈 with 𝜈 ∈ 𝕀 is a model of 𝒯 .
While TBoxeswritten in theDLs thatwe investigated inChapter 4 areℂall-invariant under dis-

joint unions, the other formalisms analyzed in this chapter may be not. Some, such as RCBoxes
and ERCBoxes, are only closed under disjoint unions, i.e. if every interpretation ℐ𝜈 with 𝜈 ∈ 𝕀
is a model of a (E)RCBox ℛ, then the disjoint union of all ℐ𝜈 with 𝜈 ∈ 𝕀 is also a model of ℛ.
Differently from ERCBoxes, RCBoxes are also invariant under disjoint copies, i.e. invariant un-
der disjoint unions of families where every interpretation is the same. Using this property, we
deduce that ERCBoxes are more expressive than RCBoxes and less expressive than ECBoxes.

Proposition 5.1. If ℒ ∈ {ALCQ,ALCQt,ALCSCC,ALCSCC∞}, then

1. the models of ℒ TBoxes are ℂall-invariant under disjoint union;

2. the models of ℒ RCBoxes are ℂall-closed under disjoint union, ℂall-invariant under disjoint
copies but in general not ℂall-invariant under disjoint union;

3. themodels ofℒ ERCBoxes areℂall-closedunder disjoint union, but in general notℂall-invariant
under disjoint copies nor ℂall-invariant under disjoint union;

4. the models of ℒ ECBoxes or CBoxes are in general not closed under disjoint union;

5. the models of Boolean ℒ TBoxes are not closed under disjoint union.

The first point is proved by adapting Corollary 2.33 to each ℒ by using the notion of counting
or Presburger bisimulation. Regarding the positive statement in (2) we notice that, for all fami-
lies of interpretations (ℐ𝜈)𝜈∈𝕀 whose disjoint union is ℐ , the identity |Cℐ| = ∑𝜈∈𝕀 |Cℐ𝜈 | holds for
all ℒ conceptsC. Since the space of solutions of a homogeneous system of inequalities is closed
under addition and scaling, we deduce in particular that closure under disjoint unions and in-
variance under disjoint copies hold for RCBoxes. As for the negative statement in (2), consider
the RCBox |A|+|B| ⩽ |C| for concept namesA,B,C. If we consider interpretations ℐ and𝒥 in
whichAℐ contains one element,Bℐ one element,Cℐ one element,A𝒥 one element,B𝒥 one ele-
ment, andC𝒥 three elements, then the disjoint union of ℐ and𝒥 is a model of the RCBox, but ℐ
is not. For (3) an argument similar to the one for (2) can bemade to show closure under disjoint
unions. However, it is easy to see that the ERCBox |A| ⩾ 2 is not invariant under disjoint copies,
using a proof similar to the one employed to show in Chapter 2 that the models of |A| ⩽ 1 are
not closed under disjoint union. This, in turn, shows that (4), holds. Finally, we notice that the
models of the Boolean TBox (A ⊑ ⊥) ∨ (B ⊑ ⊥) are not closed under disjoint union. As an
immediate consequence of Proposition 5.1, we obtain the following inexpressibility results.

Proposition 5.2. If ℒ ∈ {ALCQ,ALCQt,ALCSCC,ALCSCC∞}, then

• ℒ TBoxes in general cannot express ℒ RCBoxes, ECBoxes, CBoxes, and Boolean TBoxes;

• ℒ RCBoxes in general cannot express ℒ ECBoxes, CBoxes, and Boolean TBoxes;

• ℒ ERCBoxes cannot express ℒ ECBoxes, CBoxes, and Boolean TBoxes.

58

5 Knowledge Bases that Count, and what They Can and Cannot Count

d

B

d′
Ar

s e

B

e′
A

e″
A

s

r

𝜌 𝜌

𝜌

Figure 5.1: Two interpretations ℐ and 𝒥 and a global counting bisimulation 𝜌, which is not a
global Pr bisimulation.

5.1 Expressive Power of (Boolean) TBoxes

In this setting, we pose finer conditions on the notion of Pr bisimulation 𝜌 introduced in Def-
inition 4.2 and require that every element in the two interpretations related by 𝜌 is covered.

Definition 5.3. A Pr bisimulation 𝜌 between ℐ and 𝒥 is global if for every d ∈ Δℐ there exists
e ∈ Δ𝒥 such that (d, e) ∈ 𝜌 (and vice versa). We say that ℐ and 𝒥 are globally Pr bisimilar if
they are related by a global Pr bisimulation. A FOL sentence 𝜙 is ℂall-invariant under global Pr
bisimulation if for all globally Pr bisimilar interpretations ℐ ,𝒥 it holds that ℐ ⊧ 𝜙 iff𝒥 ⊧ 𝜙.

The following proposition is easily derived by combining Definition 5.3 and the fact that
ALCSCC∞ concepts are ℂall-invariant under Pr bisimulation [16], combined with the analo-
gous result forALCQ w.r.t. counting bisimulation of [80].

Proposition 5.4. Every (Boolean) ALCSCC∞ (resp. ALCQ) TBox is ℂall-invariant under global
Pr (resp. counting) bisimulation.

Proof. The proof for ALCQ is detailed in [80]. For ALCSCC∞, we only need to show that two
interpretationsℐ and𝒥 that are related by a globalPr bisimulation𝜌 satisfy the sameALCSCC∞

CIs C ⊑ D. Given a CI of this kind, assume that ℐ is not a model of C ⊑ D. Then, there exists
d ∈ (C ⊓ ¬D)ℐ. By assumption, there exists e ∈ Δℐ such that (d, e) ∈ 𝜌, and since C ⊓ ¬D is
an ALCSCC∞ concept, Theorem 4.3 implies that e ∈ (C ⊓ ¬D)𝒥. Hence, 𝒥 is not a model of
C ⊑ D. Similarly, we prove that if 𝒥 is not a model of C ⊑ D, then neither is ℐ . Since every
Boolean TBox is a Boolean combination of CIs, we conclude that ℐ and 𝒥 satisfy the same
Boolean TBoxes.

Weproved earlier that BooleanALCSCC∞ TBoxes aremore expressive thanALCSCC∞ TBoxes,
as they are not closed under disjoint unions. Here, we apply the notion of global counting bisim-
ulation to show that BooleanALCQ TBoxes cannot expressALCSCC∞ TBoxes.

Corollary 5.5. There is no Boolean ALCQ TBox that is ℂall-equivalent to the ALCSCC∞ TBox
𝒯 = {B ⊑ succ(|r ∩ s ∩A| ⩾ 1).

Proof. To prove this corollary, we use the two interpretations depicted in Figure 5.1 which are
related by a global counting bisimulation 𝜌. However, the interpretation on the left is a model of
𝒯 , whereas the one on the right is not, which shows that 𝒯 cannot be equivalent to a Boolean
ALCQ TBox by Proposition 5.4.

59

5 Knowledge Bases that Count, and what They Can and Cannot Count

ALCSCC∞ TBoxes are not FOL-definable. In Theorem 4.18 we showed that for each FOL
formula 𝜙(x) ℂall-invariance underPr bisimulation holds iff 𝜙(x) isℂall-invariant underPr (q,ℓ)-
bisimulation, where q is the quantifier depth of 𝜙(x) and ℓ = 2q − 1, and used this fact to prove
that there are ALCSCC∞ concepts that are not FOL-definable w.r.t. ℂall. We can employ the
same strategy to show that there areALCSCC∞ TBoxes that are not FOL-definable w.r.t. ℂall.
We will prove in Theorem 5.13 that a FOL sentence 𝜙 isℂall-invariant under global Pr bisimu-

lation iff it isℂall-equivalent to a BooleanALCQt TBox𝒯𝜙. In particular,𝒯𝜙must be a Boolean
ALCQtq,ℓ TBox (see Chapter 4) for some values of q and ℓ, which are not explicitly related to the
quantifier depth of 𝜙. Introducing a notion of global Pr (q,ℓ)-bisimulation that combines Defi-
nitions 4.7 and 5.3 and by adapting the proof of Proposition 5.4, we deduce that every Boolean
ALCQtq,ℓ TBox and thus 𝒯𝜙 is ℂall-invariant under global Pr (q,ℓ)-bisimulation.
To show thatℂall-invariance under global Pr (q,ℓ)-bisimulation impliesℂall-invariance under

global Pr bisimulation, it is sufficient to show that every global Pr bisimulation is a global Pr
(q,ℓ)-bisimulation for all values q, ℓ ∈ ℕ. Finally, we show an analogous of Theorem 4.8 for an
ALCSCC∞ TBox.

Theorem 5.6. There is an ALCSCC∞ TBox 𝒯 such that for all q, ℓ ∈ ℕ, 𝒯 is not ℂall-invariant
under global Pr (q,ℓ)-bisimulation.

Proof. We consider theALCSCC∞ TBox𝒯 consisting of the CI⊤ ⊑ succ(|r∩A| = |r∩¬A|). By
looking at the proof of Theorem 4.8 we notice that thePr (q,ℓ)-bisimulation 𝜌 between the inter-
pretations ℐq,q and ℐq,q+1 is global. However, ℐq,q is a model of𝒯 , while ℐq,q+1 is not, obtaining
a contradiction. We conclude that𝒯 is notℂall-invariant under globalPr (q,ℓ)-bisimulation.

We thus showed that there existsALCSCC∞ TBoxes that are not FOL-definable.

Corollary 5.7. There exists anALCSCC∞ TBox that is not FOL-definable.

First-order definable (Boolean) TBoxes. As anticipated in the previous paragraph, global
bisimulations can be used to characterize the set of FOL sentences that are ℂall-equivalent to
Boolean TBoxes written in a certain DL. This is the case for global counting bisimulation in the
context of ALCQ [80]. Here, we show that global Pr bisimulation characterizes the set of FOL
sentences that areℂall-equivalent to a BooleanALCQtTBox, and thus obtain that every Boolean
ALCSCC∞ TBox that is FOL-definable w.r.t. ℂall is ℂall-equivalent to a BooleanALCQt TBox.
Previously, the semantic restriction of ALCSCC to finitely branching interpretations disal-

lowedus fromusing strongmodel-theoretic properties of first-order logic over arbitrary interpre-
tations that concern infinite sets of formulae. This is different in ALCSCC∞, whose semantics
is defined w.r.t. ℂall. First, we can use the compactness property which we mentioned in Chap-
ter 2 to extract a finite unsatisfiable set of FOL sentences from an infinite unsatisfiable set of
sentences. Second, we can use a restricted form of compactness for countable sets of FOL for-
mulae 𝜙(x1,… ,xn) w.r.t. an interpretation ℐ , provided that this is 𝜔-saturated (see e.g. [38]).

Definition 5.8. Given an interpretation ℐ ofNC andNR, letΦ(x1,… ,xn) be a countable (possibly
infinite) set of FOL formulae with free variables in {x1,… ,xn} that use names from NC and NR as
predicates symbols and that are additionally allowed to use individuals d from a finite subset ofΔℐ

as constant symbols, so that dℐ := d for all individuals in this set.

60

5 Knowledge Bases that Count, and what They Can and Cannot Count

We say that Φ(x1,… ,xn) is realizable in ℐ if there is an assignment w of x1,… ,xn in ℐ such
that ℐ ,w ⊧ 𝜙(y1,… , yk) for all 𝜙(y1,… , yk) ∈ Φ(x1,… ,xn), and that Φ(x1,… ,xn) is finitely
realizable if all its finite subsets are realizable in ℐ .
The interpretation ℐ is 𝜔-saturated if every set Φ(x1,… ,xn) of the form above is realizable in ℐ

if and only if it is finitely realizable in ℐ .

A fundamental result for FOL is that, though not every interpretation ℐ is 𝜔-saturated, we
may assume without loss of generality that ℐ is as such, as long as we are only interested in the
first-order theory of ℐ , i.e. the set of sentences that are satisfied in this interpretation (cf. [38]).

Theorem5.9. For every interpretationℐ there exists an𝜔-saturated interpretationℐ⋆ that satisfies
the same first-order sentences as ℐ .

This property of FOL does not hold when restricting to finitely branching interpretations.

Proposition 5.10. There is a finitely branching interpretation ℐ for which there is no finitely
branching interpretation ℐ⋆ that satisfies the same first-order sentences and is 𝜔-saturated.

Proof. Let ℐ be the finitely branching interpretation whose domain contains all tuples (m,n) of
natural numbers such that n ⩽ m and where

rℐ := {((m, 0), (m + 1, 0)) | m ∈ ℕ} ∪ {((m, 0), (m, i)) | m ∈ ℕ and i = 1,… ,m}.

Intuitively, ℐ contains an element with m r-successors for all values of m. This means that ℐ
satisfies the sentence ∃x.∃⩾my.r(x, y) for all values ofm.
Assume by contradiction that a finitely branching interpretation ℐ⋆ of the form above exists.

Then, the fact that ℐ⋆ and ℐ satisfy the same first-order sentences implies that the set of first-
order formulae Γ(x) containing ∃⩾my.r(x, y) for m ∈ ℕ is finitely realizable in ℐ⋆. Since this
interpretation is 𝜔-saturated, we deduce that Γ(x) is realizable in ℐ⋆ by some variable assign-
mentw. This leads to a contradiction: indeed, the fact that ℐ⋆ is finitely branching implies that
w(x)has atmostmr-successors for some value ofm, and therefore thatℐ⋆,w ⊭ ∃⩾m+1y.r(x, y).
We conclude that no such interpretation ℐ⋆ exists.

In Chapter 4 we showed that it is possible to describe the class of individuals that are Pr
(q,ℓ)-bisimilar to d ∈ Δℐ using anALCQt concept, called the characteristic concept of d. For Pr
bisimulation, this is not the case: if d belongs to an interpretation that is not finitely branching,
we may not find an ALCQt concept that describes all the individuals that are Pr bisimilar to
d. However, if ℐ is 𝜔-saturated we can show that the set of ALCQt concepts satisfied by d
effectively describes the class of individuals that belong to 𝜔-saturated interpretations and that
are Pr bisimilar to d. We can further lift this result to show that the set of ALCQt CIs that are
satisfied by ℐ describe all 𝜔-saturated interpretations that are globally Pr bisimilar to ℐ . For
ALCQ, a similar property w.r.t. counting bisimulation has been showed in [80].
A further result thatwewill need in the upcoming proof isHall’s theorem [58], which provides

a way to reduce the problem of choosing distinct representatives s1,… , sn with si ∈ Si for
i = 1,… ,n from a family of sets F = (S1,… ,Sn) to checking the satisfiability of a finite set
of cardinality constraints. If those representatives exist, we say that F has a system of distinct
representatives (SDR).

Hall’s Theorem. The family F = (S1,… ,Sn) has a system of distinct representatives iff for all
index sets I ⊆ {1,… ,n} we have ||⋃i∈I Si

|| ⩾ |I|.

61

5 Knowledge Bases that Count, and what They Can and Cannot Count

The following lemma is an immediate consequence of Hall’s theorem and shows that we can
describe the existence of a SDR for a finite family of sets of 𝜏-successors inALCQt, if these sets
correspond to extensions ofALCQt concepts.

Lemma 5.11. Given ALCQt concepts C1,… ,Cn, a safe role type 𝜏 and an interpretation ℐ with
d ∈ Δℐ, the family of sets 𝜏ℐ(d) ∩ Cℐ

i
has a SDR iff d ∈ Cℐ

sdr where

Csdr := ⨅{(⩾ k 𝜏.Ci1 ⊔⋯ ⊔ Cik
) | {i1,… , ik} ⊆ {1,… ,n} contains k elements} .

We leverage Lemma 5.11 to prove the following property of 𝜔-saturated interpretations.

Theorem5.12. Ifℐ ,𝒥 are𝜔-saturated interpretations that satisfy the sameALCQtCIs, then they
are globally Pr bisimilar.

Proof. Given the assumptions stated above, we show that the relation

𝜌 := {(d, e) ∈ Δℐ × Δ𝒥 | d and e satisfy the sameALCQt concepts}

is a global Pr bisimulation between ℐ and 𝒥 . First, we show that this relation is global in the
sense of Definition 5.3.
For d ∈ Δℐ, let Γ be the set of all FOL formulae C♯(x) that are the translation of an ALCQt

conceptC such that d ∈ Cℐ. Clearly, Γ is realizable in ℐ using the variable assignment {x ↦ d}.
We show that Γ is finitely realizable in𝒥 ; since𝒥 is 𝜔-saturated, this means that Γ is realizable
in𝒥 using a variable assignment {x ↦ e}, which implies that e ∈ Δ𝒥 satisfies the sameALCQt
concepts as d, hence (d, e) ∈ 𝜌. Every finite subset Γ′ of Γ induces anALCQt concept G that is
the conjunction of all ALCQt concepts whose translation is in Γ′. Then, the fact that d ∈ Gℐ

implies that ℐ does not satisfy the CI G ⊑ ⊥. By assumption, we deduce that 𝒥 also does not
satisfy this CI, and thus that there exists e ∈ G𝒥. Then, {x ↦ e} realizes Γ′ in 𝒥 . We conclude
that Γ is finitely realizable in𝒥 . The other direction, i.e. showing that for e ∈ Δ𝒥 there is d ∈ Δℐ

such that (d, e) ∈ 𝜌, can be proved analogously.
Next, we show that 𝜌 is a Pr bisimulation. Since (d, e) ∈ 𝜌 satisfy in particular the same

concept names, we deduce that 𝜌 trivially satisfies the atomic condition. To show that forth
holds for 𝜌, let (d, e) ∈ 𝜌 and D ⊆ 𝜏ℐ(d) be a finite set. We introduce a fresh variable xd′ for
every d′ ∈ D and consider the set of FOL formulae Γd obtained as the union of

Γ≠ := {xd′ ≠ xd″ | d′, d″ ∈ D and d′ ≠ d″} (variables are all distinct)
Γ𝜏d := {𝜏(d,xd′) | d′ ∈ D} (𝜔-successors of e2)
Td′ := {𝜋xd′

(C) | C is aALCQt concept and d′ ∈ Cℐ} for d′ ∈ D (ALCQt-type of d)

Then, Γd is realizable in ℐ by the assignment w mapping xd′ to d′ for d′ ∈ D.
We show that the set Γe obtained by replacing d with e in Γ is finitely realizable and thus

realizable (by 𝜔-saturation) in 𝒥 . Let Γ′d ⊆ Γd be a finite set containing w.l.o.g. both Γ≠ and
Γ𝜏d (as these sets are both finite) and let Γ′e be the corresponding finite subset of Γe. Further, let
td′ be the intersection of Td′ and Γ′d (thus Γ′e) for d ∈ D′; this set induces a concept Cd′ that
is the conjunction of all concepts C for which 𝜋xd′

(C) ∈ td′ . Since Γ′d is realized in ℐ by the
assignment w above, we deduce thatD′ constitues a SDR for the family of sets 𝜏ℐ(d) ∩Cℐ

d′ with
d′ ∈ D, thus that d ∈ Cℐ

sdr by Lemma 5.11. Lemma 5.11 together with the fact that d and e

satisfy the same ALCQt concepts allow us to conclude that the family of sets 𝜏𝒥(e) ∩ C𝒥
d′ with

62

5 Knowledge Bases that Count, and what They Can and Cannot Count

d′ ∈ D has a SDR, represented by the set E that contains an element e′ for each d′ ∈ D. We
conclude that the assignment w′ mapping x to e and xd′ to the corresponding e′ ∈ E realizes
Γ′e in𝒥 , therefore that Γe is realizable in𝒥 .
Let w′ be an assignment that realizes Γe in 𝒥 and let E := {w′(d′) | d′ ∈ D}. We deduce

that d′ and w′(d′) satisfy the same ALCQt concepts, hence (d′,w′(d′)) ∈ 𝜌, from the fact that
𝒥 ,w′ ⊧ Td′ for d′ ∈ D. The mapping d′ ↦ w′(d′) constitutes a bijection fromD to E thanks to
𝒥 ,w′ ⊧ Γ≠. Finally,𝒥 ,w′ ⊧ Γ𝜏e guarantees that E ⊆ 𝜏𝒥(e).
We conclude that 𝜌 satifies the forth condition. Similarly, we prove that 𝜌 satisfies the back

condition, hence that it is a Pr bisimulation.

Thanks to this property of 𝜔-saturated interpretations, we can characterize the set of Boolean
ALCQt TBoxes as the set of FOL sentences that are ℂall-invariant under global Pr bisimulation.
The analogous result forALCQ w.r.t counting bisimulation has been proved in [80].

Theorem 5.13. Let 𝜙 be a first-order sentence. Then the following are equivalent:

1. There exists a BooleanALCQt TBox that is ℂall-equivalent to 𝜙;

2. The sentence 𝜙 is ℂall-invariant under global Pr bisimulation.

Proof. Direction (1 ⟹ 2) is a direct consequence of Proposition 5.4, sinceALCQt is a sublogic
ofALCSCC∞. LetCons(𝜙) be the set of BooleanALCQTBoxes entailed by a first-order sentence
𝜙. We prove that (2 ⟹ 1), showing that if we assume (2) and Cons(𝜙) ⊭ 𝜙 we are able to
derive a contradiction. By first-order compactness, if Cons(𝜙) ⊧ 𝜙 there is a finite set of Boolean
TBoxes Γ inCons(𝜙) entailing 𝜙. SinceCons(𝜙) is closed under conjunction, the BooleanALCQ
TBox 𝒯 := ⋀Γ belongs to Cons(𝜙) and 𝒯 ⊧ 𝜙, hence the conclusion 𝒯 ≡ 𝜙.
If we assume that Cons(𝜙) ⊭ 𝜙, then Cons(𝜙) ∪ {¬𝜙} is satisfied by an interpretation ℐ− that

is w.l.o.g. 𝜔-saturated (thanks to Theorem 5.9). Moreover, we are able to show that if 𝒢 is the set
of ALCQ CIs C ⊑ D or their negation ¬(C ⊑ D) satisfied by ℐ−, then 𝒢 ∪ {𝜙} has a model ℐ+

that is w.l.o.g. 𝜔-saturated. Otherwise, first-order compactness would yield a finite subset 𝒢′ of
𝒢 such that 𝒢′ ∪ {𝜙} was also unsatisfiable. This would imply that 𝜙 → ¬⋀𝒢′ is a tautology
and ¬⋀𝒢′ ∈ Cons(𝜙) would follow accordingly. However, this would lead to a contradiction,
since both⋀𝒢′ and ¬⋀𝒢′ are now satisfied by ℐ−.
We observe that ℐ− and ℐ+ satisfy the sameALCQt CIs, and they are consequently globally

Pr bisimilar by Theorem 5.12. Finally, we contradict (2.) since ℐ+ ⊧ 𝜙 but ℐ− ⊭ 𝜙. Therefore,
we conclude that Cons(𝜙) ⊧ 𝜙.

We can refine this characterization to ALCQt TBoxes by considering first-order sentences
that are additionally ℂall-invariant under (arbitrary) disjoint unions.

Theorem 5.14. Let 𝜙 be a first-order sentence. Then the following are equivalent:

1. There exists anALCQt (resp. ALCQ) TBox𝒯 that is ℂall-equivalent to 𝜙.

2. The sentence 𝜙 is ℂall-invariant under global Pr (resp. counting) bisimulation and disjoint
unions.

Proof. ForALCQ, the proof is detailed in [80, Theorem 7]. ForALCSCC∞, this is proved anal-
ogously. In particular, the proof is similar to that of Theorem 5.13, with the following modifi-
cations.

63

5 Knowledge Bases that Count, and what They Can and Cannot Count

First, we take Cons(𝜙) as the set of CIs overALCQt concepts entailed by 𝜙. The model ℐ− of
Cons(𝜙) ∪ {¬𝜙} is considered as above. For every CI 𝔠 := (C ⊑ D) that is not entailed by 𝜙, we
are able to find a model ℐ𝔠 of 𝜙 that is not a model of 𝔠. We then define ℐ+ as the disjoint union
of all interpretations ℐ𝔠 obtained this way, and assume w.l.o.g. that ℐ+ is 𝜔-saturated. Clearly,
both ℐ− and ℐ+ satisfy the sameALCQtCIs and thus are globally Pr bisimilar by Theorem 5.12.
However, ℐ+ ⊧ 𝜙 but ℐ− ⊭ 𝜙 and therefore we must conclude that Cons(𝜙) ⊧ 𝜙.

Combining Proposition 5.4 with Theorems 5.13 and 5.14, we thus obtain the following char-
acterizations of the first order fragments of (Boolean)ALCSCC∞ TBoxes.

Theorem 5.15. Let𝒯 be a (Boolean)ALCSCC∞ TBox. Then the following are equivalent:

1. 𝒯 is FOL-definable w.r.t. ℂall;

2. 𝒯 is ℂall-equivalent to a (Boolean)ALCQt TBox.

5.2 Expressive Power of (Boolean) CBoxes and ECBoxes

We turn our attention to (Boolean) CBoxes and ECBoxes. Analogously to our treatment of
(Boolean) TBoxes, we relate the expressive power of Boolean CBoxes to an appropriate notion of
bisimulation. In order to deal with CRs rather than CIs, we need to extend our notion of a global
bisimulation to one that can also compare cardinalities of sets on the global level. The follow-
ing definition is inspired by the first-order counting games used in [56] to analyze extensions of
first-order logic by certain counting quantifiers.

Definition 5.16. A Pr (resp. counting) bisimulation 𝜌 between ℐ and𝒥 is comparative if for each
finite subsetD ⊆ Δℐ there is a set E ⊆ Δ𝒥 such that 𝜌 contains a bijection betweenD and E (and
vice versa). We say thatℐ and𝒥 are comparativelyPr (resp. counting) bisimilar if they are related
by a comparative Pr (resp. counting) bisimulation. A first-order sentence 𝜙 is ℂall-invariant under
comparative Pr (resp. counting) bisimulation if for all comparately Pr (resp. counting) bisimilar
interpretations ℐ and𝒥 it holds that ℐ ⊧ 𝜙 iff𝒥 ⊧ 𝜙.

We show that comparatively bisimilar interpretations ℐ and𝒥 assign to every conceptC sets
Cℐ and C𝒥 that are either of the same size or both infinite, leading to the following.

Theorem 5.17. Every ALCQ ECBox is ℂall-invariant under comparative counting bisimulation,
and everyALCSCC∞ ECBox is ℂall-invariant under comparative Pr bisimulation.

Proof. We illustrate the proof for Pr bisimulations; the case for counting bisimulations is proved
analogously. Let 𝜌 be a comparative Pr bisimulation between the interpretations ℐ and 𝒥 . We
show that, under this assumption, |Cℐ| = |C𝒥| holds for allALCSCC∞ conceptsC. Since every
extended CR occurring in an ECBox ℰ is of the form

N0 +N1|C1| + ⋯ +Nk|Ck| ⩽ M0 +M1|D1| + ⋯ +Mℓ|Dℓ|

withNi,Mj natural numbers and Ci,Dj ALCSCC∞ concepts, showing the above implies that
ℰ is evaluated in the same way in ℐ and 𝒥 , and thus that ℰ is invariant under comparative Pr
bisimulation.
Let n be a natural number. If |Cℐ| ⩾ n and D ⊆ Cℐ is a set of n distinct elements, the fact

that 𝜌 is comparative implies that there is a set E ⊆ Δ𝒥 of n elements and a bijection 𝜌′ ⊆ 𝜌

64

5 Knowledge Bases that Count, and what They Can and Cannot Count

betweenD and E. By Theorem 4.3 this implies that E ⊆ C𝒥 and thus that |C𝒥| ⩾ n. Similarly,
we show that |C𝒥| ⩾ n implies |Cℐ| ⩾ n.
If |Cℐ| = n for some natural number n, then the above implies that |C𝒥| = n, since |Cℐ| ⩾̸

n+1 iff |C𝒥| ⩾̸ n+1. IfCℐ is infinite, then the above implies thatC𝒥 must be infinite too, since
|C𝒥| ⩾ n iff |Cℐ| ⩾ n holds for all values of n. We conclude that |Cℐ| = |C𝒥| for all ALCSCC∞

concepts C, thus that ECBoxes are invariant under comparative Pr bisimulation.

Next, we want to show that Boolean ℒ CBoxes are exactly the first-order sentences that are
ℂall-invariant under the corresponding notion of comparative bisimulation. We show that an
analogous of Theorem 5.12 holds for comparative bisimulations w.r.t. CRs. In this case, we
apply Hall’s Theorem to show that the existence of a SDR for the family of setsCℐ

1 ,… ,Cℐ
n where

C1,… ,Cn are ℒ concepts can be described using a Boolean ℒ CBox, similarly to what done
in Lemma 5.11 using qualified number restrictions.

Lemma 5.18. Let ℒ ∈ {ALCQ,ALCQt}, ℐ ∈ ℂall, and C1,… ,Cn ℒ concepts. Then the family
(Cℐ

1 ,… ,Cℐ
n) has an SDR iff ℐ ⊧ 𝒞sdr where

𝒞sdr := {|Ci1 ⊔⋯ ⊔ Cik
| ⩾ k | {i1,… , ik} ⊆ {1,… ,n} contains k elements} .

Proposition 5.19. If ℐ , 𝒥 are 𝜔-saturated interpretations that satisfy the same ALCQt (resp.
ALCQ) CRs, then they are comparatively Pr (resp. counting) bisimilar.

Proof. We illustrate the proof for Pr bisimulations; the case for counting bisimulations is proved
analogously. Given the assumptions stated above, we show that the relation

𝜌 := {(d, e) ∈ Δℐ × Δ𝒥 | d and e satisfy the sameALCQt concepts}

is a comparative Pr bisimulation between ℐ and 𝒥 . It is already known that 𝜌 is an Pr bisimu-
lation: this has been shown in Theorem 5.12 for ALCQt. Thus, we focus on showing that 𝜌 is
comparative in the sense of Definition 5.16.
Given a finite setD ⊆ Δℐ, we introduce a fresh variable xd′ for each d′ ∈ D and consider the

set of FOL formulae Γ obtained as the union of

Γ≠ := {xd′ ≠ xd″ | d′, d″ ∈ D and d′ ≠ d″},
Θd′ := {C♯(xd′) | C is an ℒ concept and d′ ∈ Cℐ} for d′ ∈ D

and show that Γ is finitely realizable and thus realizable (by 𝜔-saturation) in𝒥 .
Let Γ′ ⊆ Γ be a finite set that contains w.l.o.g. Γ≠ (as this set is finite). For d′ ∈ D we consider

the ℒ concept description

Cd′ := ⨅{C | C♯(xd′) ∈ Γ′ ∩ Θd′},

which is well-defined since Γ′ is finite. Since the variable assignment w that maps xd′ to d′ for
d′ ∈ D trivially realizes Γ in ℐ , we obtain that

ℐ ,w ⊧ ⋀n

i=1C
♯
i
(xi) ∧ ⋀1⩽i<j⩽n(xi ≠ xj)

which implies thatD induces a SDR for the family of setsCℐ
d′ with d

′ ∈ D. Then, byLemma5.18,
we obtain that ℐ is a model of the CBox 𝒞sdr defined in this lemma. Since ℐ and 𝒥 satisfy the
same CRs, we deduce that𝒥 is also a model of 𝒞sdr. By Lemma 5.18, this implies that the family

65

5 Knowledge Bases that Count, and what They Can and Cannot Count

of sets C𝒥
d′ with d′ ∈ D also has an SDR E. Let e′ ∈ E the element associated to d′ ∈ D, i.e.

e′ ∈ C𝒥
d′ . Then, the variable assignment w

′ that maps xd′ to e′ for d′ ∈ D realizes Γ′ in𝒥 .
We obtain that Γ is realizable in𝒥 by a variable assignment w′. This implies that d′ ∈ D and

w′(d′) satisfy the sameALCQt concepts for d′ ∈ D and thus that (d′,w′(d)) ∈ 𝜌. Furthermore,
the mapping d′ ↦ w′ acts as a bijection between D and E := {w′(d′) | d′ ∈ D}. We conclude
that 𝜌 is comparative, as the other direction can be similarly proved.

We are now ready to prove the main theorem of this section.

Theorem 5.20. Let 𝜙 be a first-order sentence. Then the following are equivalent:

1. There exists a BooleanALCQt (resp. ALCQ) CBox 𝒞 that is ℂall-equivalent to 𝜙.

2. The sentence 𝜙 is ℂall-invariant under comparative Pr (resp. counting) bisimulation.

Proof. We illustrate the proof for Pr bisimulations; the case for counting bisimulations is proved
analogously. The direction (1 ⇒ 2) is a direct consequence of Theorem 5.17 since Boolean
ALCQt CBoxes are a special case ofALCQt ECBoxes.
Let Cons(𝜙) denote the set of Boolean ALCQt CBoxes entailed by the first-order sentence

𝜙. We prove (2 ⇒ 1) by showing that (2) implies Cons(𝜙) ⊧ 𝜙. In fact, if this is the case,
then compactness of first-order logic yields a finite set of BooleanALCQt CBoxes Γ ⊆ Cons(𝜙)
entailing 𝜙. But then the conjunction 𝒞 := ⋀Γ of the elements of Γ also belongs to Cons(𝜙),
and thus we have that 𝒞 is a BooleanALCQt CBox that is equivalent to 𝜙.
WeproveCons(𝜙) ⊧ 𝜙 by contradiction. Thus, assume thatCons(𝜙) ⊭ 𝜙. ThenCons(𝜙)∪{¬𝜙}

has amodel ℐ−, of which we can assumewithout loss of generality that it is𝜔-saturated (thanks
to Theorem 5.9).
Now, let 𝒢 denote the set of ALCQt CRs that are satisfied by ℐ−. We claim that 𝒢 ∪ {𝜙} has

a model. In fact, otherwise first-order compactness would yield a finite subset 𝒢′ of 𝒢 such that
𝒢′ ∪ {𝜙} also does not have a model. However, this would imply that 𝜙 → ¬⋀𝒢′ is a tautology,
which would yield ¬⋀𝒢′ ∈ Cons(𝜙). This lead to a contradiction since now both ⋀𝒢′ and
¬⋀𝒢′ would need to be satisfied by ℐ−. Thus, we have shown that 𝒢 ∪ {𝜙} has a model ℐ+, of
which can again assume that it is 𝜔-saturated.
We observe that ℐ− and ℐ+ both satisfy exactly the CRs occurring in 𝒢. Since these two

interpretations are also 𝜔-saturated, Proposition 5.19 implies that they are also comparatively
Pr bisimilar. This contradicts our assumption that (2) holds since we have ℐ+ ⊧ 𝜙, but ℐ− ⊭ 𝜙.
Thus, we have shown that (2) implies Cons(𝜙) ⊧ 𝜙, which concludes our proof.

Since ECBoxes are ℂall-invariant under comparative bisimulation by Theorem 5.17, Theo-
rem 5.20 yields the following characterization of the FOL-definable fragment of ECBoxes w.r.t.
ℂall for the DLsALCQ andALCQt.

Theorem 5.21. Let ℒ ∈ {ALCQ,ALCQt} and ℰ be an ℒ ECBox. Then the following are equiva-
lent:

1. There exists a first-order sentence 𝜙 that is ℂall-equivalent to ℰ .

2. ℰ is ℂall-equivalent to a Boolean ℒ CBox 𝒞.

66

5 Knowledge Bases that Count, and what They Can and Cannot Count

It remains to show that there areALCQ ECBoxes that are not equivalent to a first-order sen-
tence. Since it uses a technique different from the ones employed until now, we defer the proof
of this result to the next section.
We close the analysis of comparative Pr bisimulation by giving a characterization of the first-

order fragment ofALCSCC∞ ECBoxes.

Theorem 5.22. Let ℰ be anALCSCC∞ ECBox. Then the following are equivalent:

1. There exists a first-order sentence 𝜙 that is ℂall-equivalent to ℰ .

2. ℰ is ℂall-equivalent to a BooleanALCQt CBox 𝒞.

Proof. To prove (1 ⇒ 2), assume that 𝜙 is a first-order sentence equivalent to ℰ . It is easy to show
thatALCSCC∞ ECBoxes areℂall-invariant under comparativeALCQt bisimulation. Therefore,
𝜙 is also ℂall-invariant under comparative ALCQt bisimulation. By Theorem 5.20, this implies
that 𝜙, and hence ℰ , is ℂall-equivalent to a BooleanALCQt CBox 𝒞.
(2 ⇒ 1) is an immediate consequence of the fact that Boolean ALCQt CBoxes have a first-

order translation (obtained by combining Chapter 2 with the first-order translation ofALCQt).

5.3 ECBoxes and the 0-1 law for FOL
Let 𝜙 be a first-order sentence over a finite relational signature 𝛿. We denote by Ln(𝛿) the set of
interpretations over the signature 𝛿 with domain {1,… ,n}, and with Ln(𝜙) the number of these
interpretations that are models of 𝜙. We then set

ℓ(𝜙) := lim
n→∞

Ln(𝜙)
Ln(𝛿)

. (5.1)

Theorem 5.23 (0-1 law of FOL [46]). For every first-order sentence 𝜙, the limit ℓ(𝜙) always exists
and is equal to 0 or 1.

One can use this theorem to prove that a sentence of a certain logic cannot be equivalent to a
first-order sentence by showing that the corresponding limit either does not exist or is a number
different from 0 or 1. An example for the former case would be a formula whose models are
exactly the interpretations whose domain has even cardinality. We show now that ECBoxes can
yield examples for the latter case.

Proposition 5.24. The ECBox ℰ := |A| ⩽ |¬A| is not expressible as a first-order sentence.

Proof. By contradiction, assume that ℰ is equivalent to some first-order sentence 𝜙. We restrict
our attention to the relational signature 𝛿 := {A} since the only relation symbol contained in
ℰ is the concept name A. If we consider interpretations ℐ with domain Δℐ = {1,… ,n}, then
there are 2n possible ways of interpreting Aℐ, which shows that Ln(𝛿) = 2n. Among these
interpretations, the ones where |Aℐ| = j for 0 ⩽ j ⩽ n are exactly (n

j
). Therefore, the number

of interpretations with domain {1,… ,n} over 𝛿 satisfying ℰ , and hence 𝜙, is

Ln(𝜙) = ∑⌊n/2⌋
j=0 (n

j
). (5.2)

67

5 Knowledge Bases that Count, and what They Can and Cannot Count

Let ℓn(𝜙) := Ln(𝜙)/Ln(𝛿). We show that the sequence L := (ℓn(𝜙))n⩾1 is convergent and
ℓ(𝜙) := limn→∞ ℓn(𝜙) = 1/2.1 This yields a contradiction: by Theorem 5.23, it should hold that
ℓ(𝜙) = 0 or ℓ(𝜙) = 1.
We split the sequence L into two subsequences L1 := (ℓ2n(𝜙))n⩾1 and L2 := (ℓ2n+1(𝜙))n⩾1.

To show thatL converges to 1/2, it is sufficient to prove that bothL1 andL2 have this limit. First,
note that for n ⩾ 1 the following identities hold (which can, e.g., be shown by an application of
Newton’s binomial theorem):

22n+1 = 2 ⋅ ∑n

j=0(
2n+1
j
) (5.3) ∑n

j=0 (
2n
j
) = 1

2
⋅ (22n + (2n

n
)) (5.4)

By (5.3), our claim clearly holds for L2. Indeed, for n ⩾ 1 we have

ℓ2n+1(𝜙) =
∑n

j=0(
2n+1
j
)

22n+1
(5.3)=

∑n

j=0(
2n+1
j
)

2 ⋅ ∑n

j=0(
2n+1
j
)
= 1
2.

Regarding the other subsequence, note that the n-th term of L1 corresponds to

ℓ2n(𝜙) =
∑n

j=0(
2n
j
)

22n
(5.4)= 1

2 +
1
2 ⋅

(2n
n
)

4n .

We know that the following asymptotic equivalence holds [76]:

(2n
n
) ∼ 4n

√𝜋n
. (5.5)

Hence, we deduce that

lim
n→∞

ℓ2n(𝜙) =
1
2 +

1
2 lim

n→∞

(2n
n
)

4n = 1
2 +

1
2 lim

n→∞
1

√𝜋n
= 1
2.

This yields the convergence of L1 to 1/2 as desired.

The interpretations used to compute ℓ(𝜙) are always finite, and therefore Proposition 5.24
holds also w.r.t. the classes ℂfb and ℂfin of finitely branching and finite models.

Summary

We analyzed the expressive power of knowledge bases written using local and global cardinality
constraints using the notions of global and comparativePr bisimulations. We showed that the set
of Boolean ALCQt TBoxes is the fragment of first-order logic that is invariant under global Pr
bisimulation, and that Boolean ALCQt CBoxes play a similar role w.r.t. comparative Pr bisim-
ulation. Using the 0-1 law of first-order logic, we showed that even simple RCBoxes cannot be
defined in first-order logic, both w.r.t. arbitrary and finite interpretations. A classification of the
expressive power results obtained in this chapter is depicted in the following diagram.
1This was already stated in [56], but without proof.

68

5 Knowledge Bases that Count, and what They Can and Cannot Count

FOL-definable

ALCSCC∞

ECBoxes

ALCQt
ECBoxes

Bool ALCQt CBoxes

FOL ALCSCC∞ ECBoxes
ALCQt
ERCBoxes

Bool ALCQt TBoxes

FOL Bool ALCSCC∞ TBoxes
ALCQt
CBoxes ALCQt

RCBoxes

ALCQt TBoxes

FOL ALCSCC∞ TBoxes

A visual representation of the expressivity hierarchy for TBoxes and their extensions. An arrow
from a node N to a node N′means that all the languages in N, which are equivalent, are strictly
less expressive than those in N′.

69

6 The Precise Complexity of
Reasoning with 𝜔-admissible
Concrete Domains

In this chapter we focus on extensions ofALC by 𝜔-admissible concrete domains𝔇whose CSP
is decidable in exponential time. We show that, under these assumptions, the consistency prob-
lem for ALC(𝔇) ontologies is ExpTime-complete. Ontologies, in this setting, consist of a TBox
together with a set of assertions, called ABox, that state conditions on named individuals.
The work contained in this chapter is based on the paper:

[34] Borgwardt, S., De Bortoli, F., Koopmann, P.: The Precise Complexity of Reasoning in𝒜ℒ𝒞
with 𝜔-Admissible Concrete Domains. In: Giordano, L., Jung, J.C., Ozaki, A. (eds.) Pro-
ceedings of the 37th InternationalWorkshop onDescription Logics (DL’24). CEURWork-
shop Proceedings. CEUR-WS, Bergen, Norway (2024)

ExpTime-𝜔-admissible Concrete Domains

In the following, we consider ontologies 𝒪 that are the union of a TBox 𝒯 and an ABox 𝒜,
which is a finite set of concept assertions C(a) and role assertions r(a, b) where C is a concept
description, r ∈ NR a role name and a, b are named individuals taken from a countable set NI of
individual names that is disjoint from NC, NR and NF. An interpretation ℐ of NC, NR and NF is
defined over individual names by mapping a ∈ NI to an individual aℐ ∈ Δℐ. We say that ℐ is a
model of C(a) if aℐ ∈ Cℐ and of r(a, b) if (aℐ, bℐ) ∈ rℐ. The ontology 𝒪 := 𝒯 ∪𝒜 is satisfiable
if there is an interpretation ℐ that is a model of 𝒯 and that is a model of 𝒜, i.e. it satisfies all
assertions in𝒜.
We focus on ExpTime-𝜔-admissible concrete domains, which differ from 𝜔-admissible do-

mains as introduced in Chapter 2 in that we require their CSP to be decidable in exponential
time instead of simply decidable.

Definition 6.1. A concrete domain𝔇 is ExpTime-𝜔-admissible if it is 𝜔-admissible and CSP(𝔇)
is decidable in ExpTime.

70

6 The Precise Complexity of Reasoning with 𝜔-admissible Concrete Domains

Checking Consistency

Let now𝔇 be an ExpTime-𝜔-admissible concrete domain,𝒪 = 𝒜 ∪𝒯 be anALC(𝔇) ontology,
andℳ be the set of all subconcepts appearing in𝒪 and their negations. For the type elimination
algorithm, we start by defining the central notion of types, which is standard.

Definition 6.2. A set t ⊆ ℳ is a type w.r.t.𝒪 if it satisfies the following properties:

• if C ⊑ D ∈ 𝒯 and C ∈ t, thenD ∈ t;

• if ⊤ ∈ ℳ, then ⊤ ∈ t;

• if ¬D ∈ ℳ, thenD ∈ t iff ¬D ∉ t;

• ifD ⊓D′ ∈ ℳ, thenD ⊓D′ ∈ t iffD ∈ t andD′ ∈ t.

Given a model ℐ of𝒪 and an individual d ∈ Δℐ, the type of d w.r.t.𝒪 is the set

tℐ(d) := {C ∈ ℳ | d ∈ Cℐ}.

Clearly, tℐ(d) satisfies the four conditions required to be a typew.r.t.𝒪. Weuse this connection
between individuals and types to define augmented types that represent the relationship between
an individual, its role successors, and theCD-restrictions that ought to be satisfied. Hereafter, let
nex be the number of existential restrictions ∃r.C inℳ, and ncd the number of CD-restrictions
∃p1,… , pk.P in ℳ. The maximal arity of predicates P occurring in ℳ is denoted by nar, and
we define n𝒪 := nex + ncd ⋅ nar. Intuitively, each non-negated existential restriction in a type
needs a successor (and associated type) to be realized, while CD-restrictions may require nar
role successors to fulfill a certain constraint. Therefore, n𝒪 is an upper bound on the number of
successors needed to satisfy all the non-negated restrictions occurring in a type t w.r.t.𝒪.
Given a type t0, we define a constraint system associated with a sequence of types t1,… , tn𝒪

representing the role successors of a domain element with type t0. This system contains a vari-
able f i for each feature f of an individual with type ti in order to express the relevant CD-
restrictions. Concrete features that are not represented in this system can remain undefined
since their values are irrelevant for satisfying the CD-restrictions.

Definition 6.3. A local system for a type t0 w.r.t. a sequence of types t1,… , tn𝒪 is a complete con-
straint system ℭ for which there exists a successor function succ : NR(𝒪) → 𝒫({1,… ,n𝒪}), such
that, for all ∃p1,… , pk.P ∈ ℳ, the following condition holds:

∃p1,… , pk.P ∈ t0 iff there is P (v1,… , vk) ∈ ℭ for some variables v1,… , vk such that

vi = {f
0 if pi = f , or

f j if pi = rf and j ∈ succ(r).

We use a sequence instead of a set of types for the role successors, since there can be TBoxes
that require the existence of successorswith the same type that only differ in their feature values.

Example 6.4. For the consistent ontology 𝒪 := {⊤ ⊑ ∃rf , rf .<} over 𝔔 = (ℚ,<,=,>), we
have ℳ = {⊤, ¬⊤, ∃rf , rf .<, ¬∃rf , rf .<}, and the only type is t = {⊤, ∃rf , rf .<}. Any r-
successors witnessing ∃rf , rf .< for an element in a model of𝒪 have the same type t. However, we
cannot express the restriction on their f -values by the (unsatisfiable) constraint<(f t, f t), but need
to consider two copies t1, t2 of t to get the (satisfiable) constraint <(f 1, f2).

71

6 The Precise Complexity of Reasoning with 𝜔-admissible Concrete Domains

To merge the local systems associated to types of adjacent elements in a model, we introduce
the following operation. For two local systems ℭ,ℭ′, themerged system ℭ⊲i ℭ′ is obtained as the
union of ℭ and ℭ′ after replacing all variables f j in ℭ′ by fresh variables f j′ , and subsequently
replacing the variables f0′ in ℭ′ by f i. This operation identifies all features with index i in ℭ
with those of index 0 in ℭ′, while keeping the remaining variables separate.
Definition 6.5. An augmented type for𝒪 is a tuple 𝔱 := (t0,… , tn𝒪 ,ℭ𝔱)where t0,… , tn𝒪 are types
for 𝒪 and ℭ𝔱 is a local system for t0 w.r.t. t1,… , tn𝒪 with a successor function succ𝔱. The root of 𝔱
is root(𝔱) := t0. The augmented type 𝔱 is locally realizable if ℭ𝔱 has a solution and, for all concepts
∃r.C ∈ ℳ, it holds that

∃r.C ∈ root(𝔱) iff there is i ∈ succ𝔱(r) such that C ∈ ti.

An augmented type 𝔱′ patches 𝔱 at i ∈ succ𝔱(r) if root(𝔱′) = ti and the system ℭ𝔱⊲i ℭ𝔱′ has a
solution. A set of augmented types 𝕋 patches 𝔱 if, for every role name r and every i ∈ succ𝔱(r), there
is a 𝔱′ ∈ 𝕋 that patches 𝔱 at i.
For the ontology 𝒪 introduced in Example 6.4 we have n𝒪 = 2, sinceℳ only contains one

CD-restriction over a binary predicate. Using infix notation, all augmented types 𝔱 = (t, t, t,ℭ𝔱)
for 𝒪 are such that ℭ𝔱 contains the constraints f i = f i for i = 0, 1, 2, and either f 1 < f2 or
f2 < f 1. There are augmented types 𝔱 that are not locally realizable, for instance if ℭ𝔱 contains
f0 = f 1, f0 = f2, and f 1 < f2. On the other hand, there is a locally realizable augmented type
using the constraints f0 < f 1, f 1 < f2, and f0 < f2, which can patch itself both at i ∈ {1, 2}.
To additionally handle named individuals and concept and role assertions, we introduce a

structure 𝔱𝒜 that describes all ABox individuals and their connections simultaneously, similar
to the common notion of precompletion. The associated constraint system ℭ𝒜 now uses vari-
ables fa,i indexed with individual names a in addition to natural numbers i.

Definition 6.6. AnABox type for𝒪 is a tuple 𝔱𝒜 := ((𝔱a)a∈NI(𝒜),𝒜R,ℭ𝒜), where 𝔱a are augmented
types,𝒜R is a set of role assertions overNI(𝒜) andNR(𝒪), and ℭ𝒜 is a complete constraint system,
such that, for every a ∈ NI(𝒜),

• for every concept assertion C(a) ∈ 𝒜, we have C ∈ root(𝔱a);
• for every role assertion r(a, b) ∈ 𝒜, we have r(a, b) ∈ 𝒜R;

• for every ¬∃r.C ∈ root(𝔱a) and r(a, b) ∈ 𝒜R, we have C ∉ root(𝔱b);
• for every P (f j1

1 ,… , f jk
k
) ∈ ℭ𝔱a , we have P (f

a,j1
1 ,… , fa,jk

k
) ∈ ℭ𝒜;

• for every ¬∃p1,… , pk.P ∈ root(𝔱a), there can be no P (v1,… , vk) ∈ ℭ𝒜 with

vi =
⎧
⎨
⎩

fa,0 if pi = f ,
f b,0 if pi = rf and r(a, b) ∈ 𝒜R, or
fa,j if pi = rf and j ∈ succ𝔱a(r);

• the system ℭ𝒜 has a solution.

Positive occurrences of existential role or CD-restrictions in the ABox type do not need to be
handled, as these are satisfied by anonymous successors described in the augmented types 𝔱a.
Using the notions of ABox type and augmented types, we define Algorithm 1 which is based

on type elimination and constitutes a decision procedure for the consistency of𝒪.

72

6 The Precise Complexity of Reasoning with 𝜔-admissible Concrete Domains

Algorithm 1 Elimination algorithm for consistency ofALC(𝔇) ontologies
Input: AnALC(𝔇) ontology𝒪 = 𝒜 ∪𝒯
Output: consistent if𝒪 is consistent, and inconsistent otherwise
1: ℳ ← all subconcepts occurring in𝒪 and their negations
2: 𝕋 ← all augmented types for𝒪
3: while there is 𝔱 ∈ 𝕋 that is not locally realizable or not patched by 𝕋 do
4: 𝕋 ← 𝕋 \ {𝔱}
5: if there is an ABox type 𝔱𝒜 for𝒪 with 𝔱a ∈ 𝕋 for all a ∈ NI(𝒜) then
6: return consistent
7: else
8: return inconsistent

Soundness

To prove that Algorithm 1 is sound, we show how to use the set 𝕋 and the ABox type 𝔱A =
((𝔱a)a∈NI(𝒜),𝒜R,ℭ𝒜) obtained after a successful run of the elimination algorithm to define a
forest-shaped interpretation ℐ that is a model of 𝒪. The domain of this model consists of pairs
(a,w), where a ∈ NI designates a tree-shaped part of ℐ whose structure is given by the words w
over the alphabet Σ := 𝕋 × {0,… ,n𝒪}. A pair (𝔱, i) ∈ Σ describes an augmented type and the
position relative to the restriction that this augmented type fulfills w.r.t. its parent in the tree.
For a word w ∈ Σ+, we define end(w) := 𝔱 if (𝔱, j) occurs at the last position of w for some
j ∈ {0,… ,n𝒪}.
We start defining the domain of ℐ by Δ0 := {(a,wa) | a ∈ NI(𝒜), wa := (𝔱a, 0)}. Observe

that wa ∈ Σ, since 𝔱a ∈ 𝕋. Assuming that Δm is defined, we define Δm+1 based on Δm, and
subsequently construct the domain of ℐ as the union of all sets Δm. Given (a,w) ∈ Δm with
end(w) = 𝔱, we observe that, for every i ∈ succ𝔱(r), there is an augmented type 𝔲i ∈ 𝕋 patching 𝔱
at i, as otherwise 𝔱would have been eliminated from 𝕋. We use these augmented types to define
Δm+1
r [a,w] := {(a,w ⋅ (𝔲i, i)) | i ∈ succ𝔱(r)} to then obtain

Δm+1 := Δm ∪⋃{Δm+1
r [a,w] | (a,w) ∈ Δm and r ∈ NR}

and set Δℐ := ⋃
m∈ℕ Δm. The interpretation of individual, concept, and role names over ℐ is

given by

aℐ := (a,wa),
Aℐ := {(a,w) ∈ Δℐ | end(w) = 𝔱 and A ∈ root(𝔱)},
rℐ := {((a,wa), (b,wb)) | r(a, b) ∈ 𝒜R} ∪

{((a,w), (a,w′)) | (a,w) ∈ Δm and (a,w′) ∈ Δm+1
r [a,w] with m ∈ ℕ}.

Defining the interpretation of feature names in ℐ requires more work. Given (a,w) ∈ Δℐ

with end(w) = 𝔱, let ℭa,w be the constraint system obtained by replacing every variable f0 in
ℭ𝔱 with fa,w and every other variable f i in ℭ𝔱 with fa,u, where u ∈ Σ+ is the unique word of
the form w ⋅ (𝔱′, i) for which (a,u) ∈ Δℐ. Correspondingly, let ℭ0𝒜 be the result of replacing all
variables fa,0 in ℭ𝒜 by fa,wa and fa,i by fa,u, where u is the unique word of the form wa ⋅ (𝔱′, i)
for which (a,u) ∈ Δℐ. Form ∈ ℕ, let ℭm be the union of ℭ0𝒜 and all constraint systems ℭa,w for
which (a,w) ∈ Δm.

73

6 The Precise Complexity of Reasoning with 𝜔-admissible Concrete Domains

Lemma 6.7. For everym ∈ ℕ, the constraint system ℭm has a solution.

Proof. We prove the claim by induction overm ∈ ℕ. For the base casem = 0, observe that ℭ0
is equal to ℭ0𝒜 since ℭ0𝒜 already contains all local systems of the form ℭa,wa

(see Definition 6.6).
Since ℭ0𝒜 is equal to ℭ𝒜 up to renaming of variables, the fact that ℭ𝒜 has a solution implies that
ℭ0 = ℭ0𝒜 has a solution as well.
For the inductive step, we assume that ℭm has a solution and show how to extend it to a

solution of ℭm+1. We begin by observing that any constraint system ℭ that has a solution h
can be extended to a complete constraint system by using h to add any missing constraints; i.e.
if there is no constraint P (v1,… , vk) for v1,… , vk ∈ V (ℭ), but𝔇 has k-ary predicates, then we
can complete ℭ by adding the uniqueP (v1,… , vk) for which (h(v1),… ,h(vk)) ∈ PD (cf. JEPD).
Moreover, this complete constraint system also has h as a solution. Since ℭm has a solution, let
now𝔅 be the satisfiable, complete system obtained by extending ℭm in this way.
Let (a,w) ∈ Δm+1 \ Δm. By construction, there is a unique non-empty word w′ ∈ Δm and

a symbol (𝔱, i) ∈ Σ such that w = w′ ⋅ (𝔱, i). We notice that 𝔅 and ℭa,w are complete systems
that agree on the constraints over their shared variables V (𝔅) ∩ V (ℭa,w). This holds since all
shared variables are of the form fa,w, which can occur in𝔅 only inside ℭa,w′ . Both end(w′) and
𝔱 belong to 𝕋, and 𝔱 patches end(w′) at i, thus ℭa,w′ ∪ ℭa,w has a solution (cf. Definition 6.5).
In particular, the relations over the concrete domain 𝔇 satisfy JEPD, hence there cannot be a
tuple of variables v1,… , vk such that P (v1,… , vk) ∈ ℭa,w and P ′(v1,… , vk) ∈ ℭa,w′ ⊆ 𝔅 with
P ≠ P ′. Since 𝔅 and ℭa,w are complete, agree on the constraints over their shared variables,
and both have a solution (𝔅 by inductive hypothesis, and ℭa,w because 𝔱 ∈ 𝕋), property AP
implies that 𝔅 ∪ ℭa,w has a solution, which we can use to extend 𝔅 to a complete constraint
that includes ℭa,w.
We can repeat this process for every (a,w) ∈ Δm+1 \ Δm, because the different constraint

systems ℭa,w do not share variables, and thus we obtain a constraint system𝔅′ that is complete,
has a solution, and includes ℭm+1. Therefore, we conclude that ℭm+1 has a solution.

Thanks to Lemma 6.7we can define a suitable interpretation of feature names forℐ . Letℭℐ be
the union of all systems ℭm form ∈ ℕ. Every finite system𝔅 ⊆ ℭℐ is also a subsystem of ℭm for
somem ∈ ℕ. Since ℭm has a solution, it follows that𝔅 has a solution. Every finite subsystem
of ℭℐ has a solution; since𝔇 has the homomorphism 𝜔-compactness property, we infer that ℭℐ

has a solution hℐ. Using this solution, we define for every feature name f the interpretation
fℐ(a,w) := hℐ(fa,w) if fa,w occurs in ℭℐ, and leave it undefined otherwise.

Lemma 6.8. If C ∈ ℳ and (a,w) ∈ Δℐ with end(w) = 𝔱, then C ∈ root(𝔱) iff (a,w) ∈ Cℐ.

Proof. We prove this claim by structural induction over C ∈ ℳ. We first prove the two base
cases where C is either a concept name or an existential CD-restriction.

• The case C = A is trivially covered by the definition of Aℐ.

• Let C = ∃p1,… , pk.P ∈ ℳ. If C ∈ root(𝔱), by Definition 6.3 and because of 𝔱 ∈ 𝕋 there
exists a constraint P (f j1

1 ,… , f jk
k
) ∈ ℭ𝔱 such that for i = 1,… , k

– if pi = fi, then ji = 0;
– if pi = rifi, then ji ∈ succ𝔱(ri) and there exists 𝔲i ∈ 𝕋 that patches 𝔱 at ji.

74

6 The Precise Complexity of Reasoning with 𝜔-admissible Concrete Domains

Using these indices and augmented types, we define for i = 1,… , k the word

wi := {w if pi = fi,
w ⋅ (𝔲i, ji) if pi = rifi.

It follows that P (fa,w1

1 ,… , fa,wk

k
) ∈ ℭℐ, thus that (fℐ

1 (a,w1),… , fℐ
k
(a,wk)) ∈ PD by

definition of ℐ . Due to the construction of wi, we know that fℐ
i
(a,wi) ∈ pℐ

i
(a,w) holds

for i = 1,… , k, which allows us to conclude that (a,w) ∈ Cℐ.
Vice versa, assume that C ∉ root(𝔱). By Definition 6.2, this means that ¬C ∈ root(𝔱). We
show that (c1,… , ck) ∉ PD for all c1 ∈ pℐ1 (w), …, ck ∈ pℐ

k
(w). First, we consider the case

that w = wa for some a ∈ NI(𝒜), and find individual names ai and words wi such that
the variable fai,wi reflects the origin of the value ci, as follows. By construction of ℐ , one
of the following three cases must hold for each i ∈ {1,… , k}.
– If pi = fi and ci = fℐ

i
(a,wa) = hℐ(fa,wa

i
), then we set ai := a and wi := wa.

– If pi = rifi and ci = fℐ
i
(b,wb) = hℐ(f b,wb

i
) for some individual name bwith ri(a, b) ∈

𝒜R, then we set ai := b and wi := wb.

– If pi = rifi and ci = fℐ
i
(a,w′) = hℐ(fa,w′

i
) for some ri-successor (a,w′) of (a,w)

with w′ = w ⋅ (𝔱′, j) and j ∈ succ𝔱(ri), then we set ai := a and wi := w′.

By Definition 6.6 and the fact that ¬C ∈ root(𝔱), we know that P (fa1,w1

1 ,… , fak,wk

k
) can-

not be contained in ℭ0𝒜. However, by construction of ℐ , the fact that the correspond-
ing feature values are defined means that the variables fa1,w1

1 ,… , fak,wk

k
must all occur

in ℭ0𝒜. Hence, P ′(fa1,w1

1 ,… , fak,wk

k
) ∈ ℭ0𝒜 ⊆ ℭℐ for some k-ary predicate P ′ disjoint

with P by completeness of ℭ0𝒜. This means that (c1,… , ck) ∉ PD, since (c1,… , ck) =
(hℐ(fa1,w1

1),… ,hℐ(fak,wk

k
)) ∈ (P ′)D. This allows us to conclude that (a,wa) ∉ Cℐ.

For the case that w ≠ wa for all a ∈ NI(𝒜), we can use similar, but simpler, arguments,
based on ℭw (Definition 6.3) instead of ℭ0𝒜 (Definition 6.6).

Let us now assume that the claim holds forD,C1,C2 ∈ ℳ and prove the inductive cases.

• If C = ¬D ∈ ℳ, then C ∈ root(𝔱) iff D ∉ root(𝔱) iff (a,w) ∉ Dℐ iff (a,w) ∈ Cℐ, where
the equivalences hold due to Definition 6.2, the inductive hypothesis, and the semantics
of negation, respectively.

• IfC = C1⊓C2 ∈ ℳ, thenC ∈ root(𝔱) iffC1 ∈ root(𝔱) andC2 ∈ root(𝔱) iff (a,w) ∈ Cℐ
1 and

(a,w) ∈ Cℐ
2 iff (a,w) ∈ Cℐ, where the equivalences hold similarly to the case of concept

negation.

• If C = ∃r.D ∈ ℳ, then C ∈ root(𝔱) and 𝔱 ∈ 𝕋 imply that there are i ∈ succ𝔱(r) and
an augmented type 𝔱′ ∈ 𝕋 that patches 𝔱 at i such that ((a,w), (a,w′)) ∈ rℐ with w′ =
w ⋅ (𝔱′, i) and D ∈ root(𝔱′). By definition of ℐ and inductive hypothesis, we deduce that
(a,w′) ∈ Dℐ, which in turn implies (a,w) ∈ Cℐ.
Vice versa, assume that C ∉ root(𝔱), and thus ¬C ∈ root(𝔱). Any r-successor e of (a,w)
must be of one of the following forms.

75

6 The Precise Complexity of Reasoning with 𝜔-admissible Concrete Domains

– If w = wa = (𝔱a, 0), e = (b,wb), and r(a, b) ∈ 𝒜R, then ¬C ∈ root(𝔱a) implies
that D ∉ root(𝔱b) by Definition 6.6. Since end(wb) = 𝔱b, we thus obtain e ∉ Dℐ by
inductive hypothesis.

– If e = (a,w′) and end(w′) = 𝔱′ patches some i ∈ succ𝔱(r), then ¬C ∈ root(𝔱) implies
that D ∉ root(𝔱′) (see Definition 6.5). By inductive hypothesis, we conclude that
e ∉ Dℐ.

This shows that no r-successor of (a,w) can satisfyD in ℐ , and thus (a,w) ∉ Cℐ.

By Lemma 6.8 and Definition 6.2, we know that ℐ is a model of 𝒯 . By Definition 6.6 we
obtain that for each C(a) ∈ 𝒜, we have C ∈ root(𝔱a), and thus aℐ = (a,wa) = (a, (𝔱a, 0)) ∈ Cℐ.
Similarly, whenever r(a, b) ∈ 𝒜, then r(a, b) ∈ 𝒜R, and thus (aℐ, bℐ) = ((a,wa), (b,wb)) ∈ rℐ

by the construction of ℐ . Therefore, we conclude that ℐ is also a model of𝒜, and thus of𝒪. We
successfully proved the soundness of Algorithm 1.

Theorem 6.9 (Soundness). If Algorithm 1 returns consistent, then𝒪 is consistent.

Completeness

To show that Algorithm 1 is complete, let ℐ be a model of 𝒪 and define the set Tℐ of all types
that are realized in ℐ , that is,

Tℐ := {tℐ(d) | d ∈ Δℐ}.
Given that ℐ is a model of𝒪, every element of Tℐ is a type according to Definition 6.2. Using the
elements of Tℐ, we construct a set 𝕋ℐ := {𝔱ℐ(d) | d ∈ Δℐ} of augmented types. For any domain
element d ∈ Δℐ, we build the augmented type 𝔱ℐ(d) = (t0,… , tn𝒪 ,ℭd) as follows.
First, we set t0 := tℐ(d) ∈ Tℐ. Assuming that ∃ri.Ci ∈ ℳ for i = 1,… ,nex, we select types

t1,… , tnex to add to 𝔱 that realize the (possibly negated) existential role restrictions occurring in
t0. If ∃ri.Ci ∈ t0, then we can select ti as the type of an r-successor d′ of d such that d′ ∈ Cℐ

i
;

otherwise, we pick ti as the type of an arbitrary element in Δℐ.
Next, we assume that ∃pi1,… , pi

k
.Pi ∈ ℳ for i = 1,… ,ncd and define the function off(i, j) :=

nex+(i−1) ⋅nar+ j to be able to refer to the j-th path in the i-th CD-restriction above. We select
types toff(i,1),… , toff(i,nar) that realize the (possibly negated) existential CD-restrictions occurring
in t0 for i = 1,… ,ncd. If ∃pi1,… , pi

k
.Pi ∈ t0, then there exist values vij ∈ (pi

j
)ℐ(d) for j = 1,… , k

such that (vi1,… , vi
k
) ∈ PD. If pj = rf holds for some feature name f and some role name r,

let toff(i,j) be the type of an r-successor d′ of d such that vi
j
= fℐ(d). For every j = 1,… ,nar for

which toff(i,j) has not been selected this way, let toff(i,j) be the type of an arbitrary individual in
Δℐ. Similarly, if ∃pi1,… , pi

k
.Pi ∉ t0 then we set toff(i,j) be the type of an arbitrary individual in

Δℐ for j = 1,… ,nar.
The twoprocesses described in the twoprevious paragraphs yield a sequence of types t1,… , tn𝒪

that occur in Tℐ and can thus be associated to individuals d1,… , dn𝒪 ∈ Δℐ. Using these indi-
viduals, we define the local system associated to our augmented type 𝔱ℐ(d). First, we define the
constraint system ℭd that contains the constraint P (f i1

1 ,… , f ik
k
) iff (fℐ

1 (di1),… , fℐ
k
(dik)) ∈ PD

for all i1,… , ik ∈ {0,… ,n𝒪}. The successor function succd associated to this constraint system
assigns to r ∈ NR all i ∈ {1,… ,n𝒪} for which di is an r-successor of d. This concludes our
definition of 𝔱ℐ(d) for d ∈ Δℐ, and thus of 𝕋ℐ.

76

6 The Precise Complexity of Reasoning with 𝜔-admissible Concrete Domains

Claim 6.10. Every augmented type in 𝕋ℐ is locally realizable and patched in 𝕋ℐ.

Proof. Wenotice thatℭd is complete and thatℭd and succd satisfy all the conditions stated inDef-
inition 6.3 and thus constitute a local system. In addition, the mapping vd(f i) := fℐ(di) is a
solution of ℭd, and thanks to our choice of types t0,… , tn𝒪 we also obtain that the augmented
type 𝔱ℐ(d) constructed using this process is locally realizable.
Moreover, for a given augmented type 𝔱 = 𝔱ℐ(d) in 𝕋ℐ and i ∈ {0,… ,n𝒪}, our construction

yields that 𝔱′ = 𝔱ℐ(di) patches 𝔱 at i; here, di is the domain element chosen for ti in the construc-
tion of 𝔱ℐ(d). The first condition, namely that root(𝔱′) = ti, is fulfilled by construction. The sec-
ond condition, i.e. thatℭ𝔱⊲i ℭ𝔱′ has a solution, follows from the fact that the individual solutions
vd, vdi constructed above agree on the values of the shared variables vd(f i) = fℐ(di) = vdi(f0).
Together with the conditions proved during the construction of the augmented types, this en-
sures that 𝔱 is patched by 𝕋ℐ.

Therefore, no augmented type 𝔱 ∈ 𝕋ℐ is eliminated during a run of Algorithm 1, and so
𝕋ℐ ⊆ 𝕋. We further deduce that 𝕋 cannot become empty, since Tℐ is non-empty. Using 𝕋ℐ
together with our model ℐ of 𝒪 we derive an ABox type 𝔱ℐ𝒜 = ((𝔱a)a∈NI(𝒜),𝒜R,ℭ𝒜) for 𝒪. We
define each 𝔱a, a ∈ NI(𝒜), as 𝔱a := 𝔱ℐ(aℐ) ∈ 𝕋ℐ. Assuming that da,i is the domain element used
to establish the i-th type in 𝔱a for i ∈ {0,… ,n𝒪}, we define the constraint system ℭ𝒜 s.t.

P (fa1,i1
1 ,… , fak,ik

k
) ∈ ℭ𝒜 iff (fℐ

1 (da1,i1),… , fℐ
k
(dak,ik)) ∈ PD.

Finally, we define the set 𝒜R to consist of all role assertions r(a, b) for which a, b ∈ NI(𝒜),
r ∈ NR(𝒪), and (aℐ, bℐ) ∈ rℐ.

Lemma 6.11. The object 𝔱ℐ𝒜 is an ABox type for𝒪 with 𝔱a ∈ 𝕋ℐ for all a ∈ NI(𝒜).

Proof. Weshow that 𝔱ℐ𝒜 satisfies all conditions stated inDefinition 6.6. IfC(a) ∈ 𝒜 thenaℐ ∈ Cℐ

and since root(𝔱a) = tℐ(aℐ), we deduce thatC ∈ root(𝔱a). Similarly, if r(a, b) ∈ 𝒜 then (aℐ, bℐ) ∈
rℐ holds, which by definition of𝒜R implies that r(a, b) ∈ 𝒜R. If¬∃r.C ∈ root(𝔱a) and r(a, b) ∈
𝒜R, the fact that b is an r-successor of a in ℐ clearly implies that C ∉ root(𝔱b) = tℐ(bℐ) must
hold. We turn our attention to ℭ𝒜. If P (f j1

1 ,… , f jk
k
) ∈ ℭ𝔱a , then (fℐ

1 (da,j1),… , fℐ
k
(da,jk)) ∈ PD,

and by definition of ℭ𝒜 we obtain P (fa1,i1
1 ,… , fak,ik

k
) ∈ ℭ𝒜. Next, assume that a ∈ NI(𝒜) and

that P (v1,… , vk) ∈ ℭ𝒜 holds, where each variable vi is of one of the forms described in Defini-
tion 6.6 for a. Then, by definition of ℭ𝒜 we can find values ci ∈ pℐ

i
(aℐ) for i = 1,… , k such that

(c1,… , ck) ∈ PD. Therefore, it follows that ∃p1,… , pk.P ∈ root(𝔱a). At last, we observe that ℭ𝒜
has a solution, given by the interpretation of feature names over ℐ . We conclude that 𝔱ℐ𝒜 is an
ABox type for𝒪.

Thus, there is a suitable ABox type for𝒪, and Algorithm 1 returns consistent. We success-
fully showed that Algorithm 1 is complete.

Theorem 6.12 (Completeness). If𝒪 is consistent, then Algorithm 1 returns consistent.

Termination and Complexity

By showing that Algorithm 1 runs in exponential time w.r.t. the size of the input ontology𝒪, we
obtain the following complexity result, where the hardness is a trivial consequence of the fact
thatALC(𝔇) is an extension ofALC.

77

6 The Precise Complexity of Reasoning with 𝜔-admissible Concrete Domains

Theorem 6.13. Let𝔇 be an ExpTime-𝜔-admissible concrete domain. Then, the consistency prob-
lem forALC(𝔇) ontologies is ExpTime-complete.

Proof. It only remains to show that Algorithm 1 runs in exponential time. Each augmented type
𝔱 contains n𝒪 + 1 types, each of size polynomial in the input. Moreover, fixing the types in 𝔱,
there are at most n𝔇 ⋅ |Vℓ|nar distinct local systems, where n𝔇 is the number of predicates in 𝔇
and Vℓ ≤ n𝒪 ⋅|NF| the number of variables occurring in the system. It follows that the number of
augmented types is at most exponential, and thus the loop in Line 3 takes at most exponentially
many iterations. In each iteration, we need to test whether some 𝔱 ∈ 𝕋 is not locally realizable
or not patched, which amounts to a number of tests polynomial in |𝕋|, and thus exponential in
the size of𝒪. Each such test involves checking the satisfiability of complete constraint systems
ℭ𝔱 and merged systems ℭ𝔱⊲i ℭ𝔱′ . Since each (merged) system is of polynomial size, and CSP(𝔇)
is in ExpTime, these tests each take exponential time. It follows that the loop in Line 3 takes
at most exponential time in total. It remains to show that also the search for ABox types in
Line 5 takes at most exponential time. For this, it suffices to observe that there can be at most
exponentially many ABox types for 𝒪, which each have a polynomial-size constraint system
attached. This is not hard to see from Definition 6.6, since there is exactly one augmented type
for every individual in 𝒜, the set of possible role assertions in 𝒜R is polynomial in 𝒪, and the
set of variables in ℭ𝒜 is polynomial in the size of the involved augmented types.

By looking at the model built in the proof of Theorem 6.9, we notice that each element has
a finite number of role successors. Therefore, we can establish the following finitely branching
model property ofALC(𝔇) ontologies.

Corollary 6.14. AnALC(𝔇) ontology is consistent iff it has a finitely branching model.

This property justifies the usage of a tableaux algorithm with appropriate blocking condi-
tions to check consistency of an ALC(𝔇) ontology (as done in [79]). It further allows to adapt
the results obtained in Chapter 9, which are stated w.r.t. finitely branching interpretations,
since Corollary 6.14 implies that checking consistency of ALC(𝔇) ontologies w.r.t. arbitrary or
finitely branching interpretations yields the same result, at the same complexity.

Summary

In this chapter, we turned our attention to DLs that integrate concrete domain reasoning. In
particular, we introduced the notion of ExpTime-𝜔-admissible concrete domain, and proved
that the consistency problem for ALC(𝔇) ontologies is ExpTime-complete if 𝔇 is ExpTime-𝜔-
admissible, thus proving the conjecture posed in [79] regarding𝜔-admissible concrete domains,
and further showing that ABoxes containing concept and role assertions can be added without
an increase in complexity.

78

7 The Abstract Expressive Power of
Logics with Concrete Domains

In this chapter, we introduce FOLwith concrete domains and present two variants of the notion
of abstract expressive power, one where one can use auxiliary predicates on the first-order side
to express sentences of the logic with concrete domains, and one where this is not allowed.
We prove that FOL(𝔇) and DLs extended with concrete domain restrictions over the concrete

domain𝔇 share a number of interesting formal properties with FOL, provided that𝔇 is homo-
morphism 𝜔-compact and strongly positive. Then, we show, on the one hand, that FOL with a
unary concrete domain can be expressed in FOL if we are allowed to use auxiliary predicates.
In addition, if we restrict the logic with unary concrete domain to a decidable fragment like the
guarded or the two-variable fragment with counting, then decidability on the concrete domain
side yields decidability of the whole logic. On the other hand, we show thatALC extended with
a JD concrete domain cannot be expressed in FOL. We also show that adding such a concrete
domain to the decidable two-variable fragment of first-order logic causes undecidability.
The work contained in this chapter is based on the papers:

[17] Baader, F., De Bortoli, F.: The Abstract Expressive Power of First-Order and Description
Logics with Concrete Domains. In: Proceedings of the 39th ACM/SIGAPP Symposium
on Applied Computing. SAC ’24, pp. 754–761. ACM, New York, NY, USA (2024). https:
//doi.org/10.1145/3605098.3635984

[15] Baader, F., De Bortoli, F.: Logics with Concrete Domains: First-Order Properties, Abstract
Expressive Power, and (Un)Decidability. SIGAPP Applied Computing Review 24(3), 5–17
(2024). https://doi.org/10.1145/3699839.3699840

7.1 First-Order Logic with Concrete Domains and Abstract
Expressive Power

We introduce first-order logic with concrete domains, from which we can obtain DLs with con-
crete domains as fragments. Then, we define the notion of abstract expressive power of a logic
with concrete domains.

79

https://doi.org/10.1145/3605098.3635984
https://doi.org/10.1145/3605098.3635984
https://doi.org/10.1145/3699839.3699840

7 The Abstract Expressive Power of Logics with Concrete Domains

FOL with concrete domains. In Chapter 2 we defined a concrete domain 𝔇 to be a fixed
relational structure. We assume that the concrete domain 𝔇 has signature 𝜏, and consider a
first-order signature 𝜎 (which may also contain function symbols), and a countable set ℱ of
feature symbols. The formulae of first-order logic with the concrete domain 𝔇, FOL𝔇[𝜎,ℱ] (or
simply FOL(𝔇) if 𝜎 and ℱ are irrelevant or clear from the context), are obtained by extending
the inductive definition for FOL seen in Chapter 2 with the following base cases:

• definedness predicates Def(f)(t) with f ∈ ℱ and t a 𝜎-term,

• concrete domain predicates P (f1,… , fn)(t1,… , tn) with P ∈ 𝜏 of arity n, fi ∈ ℱ , and ti
𝜎-terms.

The semantics of FOL(𝔇) formulae is defined inductively, using a first-order interpretation ℐ
for 𝜎 extended with a set 𝔉 of partial functions f𝔉 : I ⇀ D for f ∈ ℱ , and an assignment w
mapping variables to individuals in ℐ . The semantics of terms, Boolean connectives and first-
order quantifiers is defined as in Chapter 2, where we denote the interpretation of a term t
by ℐ and w as tℐ,w. The new predicates are interpreted as follows, where 𝐟 := f1,… , fn and
𝐭 := t1,… , tn:

• (ℐ ,𝔉),w ⊧ Def(f)(t) if f𝔉(tℐ,w) is defined, and

• (ℐ ,𝔉),w ⊧ P (𝐟)(𝐭) if (f𝔉
1 (t

ℐ,w
1),… , f𝔉

n(tℐ,wn)) ∈ PD.

Note that (f𝔉
1 (t

ℐ,w
1),… , f𝔉

n(tℐ,wn)) ∈ PD entails that f𝔉
i
(tℐ,w

i
)must be defined for i = 1,… ,n. The

tuple (ℐ ,𝔉) is amodel of the FOL(𝔇) sentence𝜙 (i.e., formulawithout free variables), in symbols
(ℐ ,𝔉) ⊧ 𝜙, if (ℐ ,𝔉),w ⊧ 𝜙 for some (and thus all) assignments w. The notion of entailment
between FOL(𝔇) sentences is similar to that of first-order logic, i.e. 𝜙 entails 𝜓, in symbols
𝜙 ⊧ 𝜓, if every model of 𝜙 is a model of 𝜓.
If DL has a first-order translation 𝜋x mapping concepts C to FOL formulae with one free

variable x (cf. Chapter 2) we can extend this translation function to map concepts of DL(𝔇) to
formulae of FOL(𝔇), by providing the translation of CD-restrictions. We consider the variables
𝐱 := x1,… ,xk and the feature paths 𝐩 := p1,… , pk and define I ⊆ {1,… , k} such that pi = rifi
if i ∈ I and pi = fi otherwise. We then define the sequence of variables 𝐲 := y1,… , yk by
setting yi = xi if i ∈ I and yi = x otherwise, and 𝐳 as the sequence of variables yi with i ∈ I .
The translation of CD-restrictions is then defined as follows, where 𝛾(x, 𝐲) := ⋀

i∈Iri(x, yi) ∧
⋀k

i=1Def(fi)(yi):

𝜋x(∃𝐩.P (𝐱)) := ∃𝐳. (⋀
i∈Iri(x, yi) ∧ P (f1,… , fk)(𝐲)) ,

𝜋x(∀𝐩.P (𝐱)) := ∀𝐳. (𝛾(x, 𝐲) → P (f1,… , fk)(𝐲)) .
(7.1)

The semantics of TBoxes (i.e., finite sets of CIs C ⊑ D) of the DL DL(𝔇) is then defined in the
usual way by translation into FOL(𝔇) sentences: C ⊑ D is translated into ∀x.𝜋x(C) → 𝜋x(D).
It is easy to see that the semantics of CD-restrictions given by the translation in (7.1) coincides
with the direct model-theoretic semantics in Chapter 2. In [79], extensions of the predicates
of a concrete domain 𝔇 by disjunctions of its base predicates are allowed to be used in CD-
restrictions, whereas in [24] even predicates first-order definable from the base predicates are
considered. These extensions can clearly also be translated into FOL(𝔇). We denote them as
DL∨+(𝔇) and DLfo(𝔇), respectively.

80

7 The Abstract Expressive Power of Logics with Concrete Domains

Abstract expressive power. If we want to compare the expressive power of (a fragment of)
FOLwith that of (a fragment of) FOL(𝔇), we have the problem that the semantic structures they
are based on differ in that, for the latter, one additionally has a collection of partial functions
into the concrete domain. To overcome this difference, we say that the first-order interpretation
ℐ is an abstract model of the FOL(𝔇) sentence 𝜙, in symbols ℐ ⊧𝔇 𝜙, if there is an interpretation
of the feature symbols 𝔉 such that (ℐ ,𝔉) ⊧ 𝜙. The FOL sentence 𝜓 is an abstract definition of
the FOL(𝔇) sentence 𝜙 if the abstract models of 𝜙 are exactly the models of 𝜓. In this case we
also say that 𝜙 and 𝜓 are abstractly equivalent.

Example 7.1. Consider the unary concrete domain 𝔑par := (ℕ, even, odd) where even, odd are
unary relations with the standard meaning. TheALC(𝔑par) TBox

𝒯 := {A ⊑ ∃f .even(x),B ⊑ ∃f .odd(x)}

is abstractly equivalent to the ALC TBox 𝒯 ′ := {A ⊑ ¬B}. In fact, A and B must be interpreted
as disjoint sets in any model of 𝒯 . Conversely, any model of 𝒯 ′ can be extended to a model of 𝒯
by defining f to yield 0 for the elements of A, 1 for the elements of B, and no value for all other
elements.

In Section 7.3we show that such a definability result always holds for unary concrete domains.
However, to obtain this result onemay need to introduce auxiliary predicates to express the CD-
restrictions. The following definition allows for such additional predicates. Let 𝜙 be an FOL(𝔇)
sentence and 𝜓 an FOL sentence that may contain auxiliary predicates not occurring in 𝜙. Then
𝜓 is an abstract projective definition of 𝜙 if the abstract models of 𝜙 are exactly the reducts of the
models of 𝜓, where in a reduct we just forget about the interpretation of the auxiliary predicates.
In this case we say that 𝜙 and 𝜓 are abstractly projectively equivalent. The abstract expressive
power of (a fragment of) FOL(𝔇) is determined by which classes of abstract models can be
defined by its sentences.

Definition 7.2. The abstract expressive power of a fragment F of FOL(𝔇) is said to be (pro-
jectively) contained in a fragment G of FOL if every sentence of F has an abstract (projective)
definition inG.

Example 7.3. In Chapter 1 we have given an example showing that, for a concrete domain 𝔇
over the integers with predicates x > y and x > 0, the abstract expressive power of ALC(𝔇) is
not contained in FOL. The argument we have used there (which is based on the fact that FOL is
compact, butALC(𝔇) is not) also works in the projective setting. In fact, the CI (1.1) enforces that,
for any element of PO, there is a positive integer such that the length of all hpp-chains issuing from
it are bounded by this number. Assume that 𝜓 is an FOL sentence that is an abstract projective
definition of this CI. Clearly we can write, for all n ≥ 1, an FOL sentence 𝜓n that says that the
constant a is an element of PO and the starting point of an hpp-chain of length n. Then any finite
subset of {𝜓} ∪ {𝜓n | n ≥ 1} is satisfiable, but the whole set cannot be satisfiable since the CI (1.1)
enforces a finite bound on the length of chains issuing from a. Since FOL is compact, this shows
that 𝜓 cannot be a first-order sentence.

However, compactness ofALC(𝔇) for a given concrete domain𝔇 does not guarantee that its
abstract expressive power is projectively contained in FOL.

Example 7.4. Consider the concrete domain𝔔> := (ℚ,>). The results shown later in this section
imply that the logic FOL(𝔔>) is compact, and thus also its fragment ALC(𝔔>). Nevertheless, the

81

7 The Abstract Expressive Power of Logics with Concrete Domains

abstract expressive power of ALC(𝔔>) is not projectively contained in FOL. To see this, consider
the TBox

𝒯 := {⊤ ⊑ ¬(∀f , f .>(x1,x2)) ⊓ ∀f , rf .>(x1,x2)}. (7.2)

First note that, having the conjunct ¬(∀f , f .>(x1,x2)) on the right-hand side of the CI in 𝒯 , is
equivalent to requesting that f𝔉 is a total function in every model (ℐ ,𝔉) of 𝒯 . In fact, if d ∈ I is
not an element of ∀f , f .>(x1,x2), then f𝔉(d)must be defined since otherwise (according to (7.1))
the universal CD-restriction would be trivially satisfied. Conversely, if f𝔉(d) is defined, then d not
belonging to ∀f , f .>(x1,x2) boils down to requiring f𝔉(d) ⩽ f𝔉(d), which is trivially true.
Now, assume that there is a FOL formula 𝜓 that is an abstract projective definition of 𝒯 . Then

(ℚ,>), where> is the interpretation of r, is an abstract model of𝒯 . In fact, one can use the identity
function to interpret the feature f . Thus, (ℚ,>) can be extended to a model of 𝜓 (by appropriate
interpretations of the auxiliary predicates contained in𝜓, if any). Since (ℚ,>) satisfies the formula
𝜏 := ∀x, y.(r(x, y)∨x = y∨r(y,x)), we conclude that𝜓∧𝜏 is satisfiable. The upward Löwenheim-
Skolem property of FOL yields an uncountable model of 𝜓 ∧ 𝜏. Since 𝜓 is an abstract projective
definition of 𝒯 , the reduct ℜ of this uncountable model to the signature consisting of r must be
extendable to a model of 𝒯 . This means that there is an interpretation f𝔉 of f such that (ℜ,𝔉)
is a model of 𝒯 . As shown above, f𝔉 must be defined on every element of ℜ. Let 𝜈, 𝜇 be distinct
elements of ℜ. Since ℜ satisfies 𝜏, we know that either r(𝜈, 𝜇) or r(𝜇, 𝜈) holds in ℜ. Then the
restriction ∀f , rf .>(x1,x2) yields f𝔉(𝜈) ≠ f𝔉(𝜇), and thus f𝔉 is injective. However, since ℜ is
uncountable andℚ is countable, there cannot be an injective function from the domain ofℜ toℚ.

7.2 First-order Properties of Logics with Concrete Domains

We mentioned in Chapter 2 that, as a consequence of its semidecidability, FOL satisfies the
compactness property and is recursively enumerable. There are other interesting formal charac-
teristics satisfied by FOL, usually shown in any textbook in logic and model theory [45, 48, 59].
Assuming that Φ is an at most countable set of sentences in our target language and 𝜙, 𝜓 are
sentences, these properties can overall be specified as follows:

(Downward) Löwenheim-Skolem If Φ is satisfiable, then it has a model whose domain is at
most countable;

(Upward) Löwenheim-Skolem If Φ has a model with an infinite domain, then it has a model
with an uncountable domain;

(Countable) Compactness If every finite subset of Φ is satisfiable, then Φ is satisfiable;

Recursive enumerability The set of unsatisfiable sentences is recursively enumerable (r.e.).

Craig interpolation if 𝜙 entails 𝜓, then there is a sentence 𝜒whose signature is a subset of the
intersection of the signatures of 𝜙 and 𝜓, called Craig interpolant, such that 𝜙 entails 𝜒
and 𝜒 entails 𝜓.

We show that, if we assume 𝔇 to be homomorphism 𝜔-compact and strongly positive, then
FOL(𝔇) and ALC(𝔇) share most of these properties with FOL. The main tool for showing
our results is a satisfiability-preserving translation of sets of FOL(𝔇) sentences into sets of FOL
sentences.

82

7 The Abstract Expressive Power of Logics with Concrete Domains

Rewriting to first-order logic. If 𝜙(𝐱) is a FOL(𝔇) formula we derive a FOL formula 𝜙FOL(𝐱)
by replacing every atom of the form P (f1,… , fn)(t1,… , tn) with P f1,…,fn(t1,… , tn), where for
every n-ary concrete domain predicate P and features f1,… , fn we assume that P f1,…,fn is a
new n-ary predicate symbol in the first-order signature. Similarly, every atom Def(f)(t) is re-
placed with Deff (t) where Deff is a new unary predicate symbol for every feature f .
In addition to making these replacements in the given FOL(𝔇) formulae, our rewriting into

FOL also needs to specify the semantics of the new predicates P f1,…,fn and Deff . Since pred-
icates of the form P f1,…,fn may also occur negated, we must also specify how the negation of
a concrete domain relation interacts with other relations. Given a concrete domain relation
P , the concrete domain 𝔇 need not have a relation symbol for the negation of P . However,
since𝔇 is strongly positive, the negation of the n-ary relation P is defined by a quantifier-free,
positive formula 𝜙¬P (x1,… ,xn) over the relations of 𝔇. Using this formula, we introduce a
first-order formula 𝜙f1,…,fn

¬P (x1,… ,xn) to represent the negation of P f1,…,fn , where each atom
R(xi1 ,… ,xik

) with 1 ⩽ i1,… , ik ⩽ n in 𝜙¬P (x1,… ,xn) is replaced by Rfi1 ,…,fik (xi1 ,… ,xik
).

The interaction between the concrete domain relations is captured by considering constraints
systems built from them. Every set Γ of atoms of the form P f1,…,fn(x1,… ,xn) induces the con-
straint system

Γ̂ := {P (f 1x1 ,… , fn
xn
) | P f1,…,fn(x1,… ,xn) ∈ Γ},

where fx is a new variable for each feature symbol f and variable x.
Let Φ be an at most countable set of FOL(𝔇) sentences. We translate Φ into a set of FOL

sentences ΦFOL using the procedure described above. To capture the semantics of the concrete
domain predicates and the definedness predicate, we additionally consider the set of FOL sen-
tences Ψ𝔇 := Ψ1 ∪ Ψ2 where:

• the set Ψ1 contains for each predicate symbol P f1,…,fn that occurs in a sentence of ΦFOL

the sentences

∀𝐱.P f1,…,fn(𝐱) → Deff1(x1) ∧ ⋯ ∧ Deffn(xn),
∀𝐱.¬P f1,…,fn(𝐱) → 𝜙f1,…,fn

¬P (𝐱) ∨ ⋁n

i=1(¬Deffi(xi)),

with 𝐱 := x1,… ,xn, and

• the set Ψ2 contains the sentence ∀𝐱.⋀Γ → ⊥ if Γ is a finite set of atomic formulae
P f1,…,fn(x1,… ,xn) for which P f1,…,fn occurs in Ψ1, and the constraint system Γ̂ is un-
satisfiable in𝔇, where 𝐱 collects all the variables occurring in Γ.

Theorem 7.5. Let𝔇 be a strongly positive, homomorphism 𝜔-compact concrete domain. The set
Φ of FOL(𝔇) formulae is satisfiable in FOL(𝔇) iff ΦFOL ∪ Ψ𝔇 is satisfiable in FOL.

Proof. “⇐” Assume that ΦFOL ∪ Ψ𝔇 is satisfiable. Since this is a countable set of first-order for-
mulae, we apply the downward Löwenheim-Skolem property of FOL to get an at most count-
able model ℐ of ΦFOL ∪ Ψ𝔇. We show that we can extend ℐ with an interpretation 𝔉 of the
features such that (ℐ ,𝔉) is a model of Φ. To this purpose, introduce a fresh variable xd for
every d ∈ Δℐ and consider the set Γℐ consisting of all atoms P f1,…,fn(xd1 ,… ,xdn

) such that
P f1,…,fn(d1,… , dn) is satisfied inℐ , where d1,… , dn ranges over all elements ofℐ and f 1,… , fn

over all feature symbols. Due to our construction ofΨ𝔇 and the fact that ℐ is a model of this set,
we know that all finite subsets of Γ̂ℐ are satisfiable in𝔇. Since Γ̂ℐ is countable, homomorphism
𝜔-compactness implies that there exists a solution h of it in 𝔇. For all feature symbols f and

83

7 The Abstract Expressive Power of Logics with Concrete Domains

elements d ∈ Δℐ for which the variable fxd
occurs in Γ̂ℐ, we define f𝔉(d) := h(fxd

). Otherwise,
we choose an arbitrary value for f𝔉(d) if Deff (d) is true in ℐ , and leave f𝔉(d) undefined other-
wise. The fact that, together with this interpretation of the features 𝔉, the FOL interpretation ℐ
is indeed a model of Φ, is an immediate consequence of the following two claims:

1. Deff (d) is true in ℐ iff Def(f)(d) is true in (ℐ ,𝔉);
2. P f1,…,fn(d1,… , dn) is true in ℐ iff P (f1,… , fn)(d1,… , dn) is true in (ℐ ,𝔉).

To show (1), assume that Deff (d) is true in ℐ . Then f𝔉(d) is defined either by the solution
h of the constraint system Γ̂ℐ in 𝔇 or it has received some arbitrary value. If Deff (d) is not
true in ℐ , then f𝔉(d) cannot have been defined in terms of h, since otherwise an expression
P f1,…,fn(d1,… , dn) that is true in ℐ would have to exist such that f = fi and d = di. But then
Ψ𝔇 would have enforced Deff (d) to be true in ℐ , leading to a contradiction. In addition, since
Deff (d) is not true in ℐ , no arbitrary value is assigned to f𝔉(d). Thus f𝔉(d) is undefined.
Regarding (2), first assume P f1,…,fn(d1,… , dn) is true in ℐ . This implies that the formula

P f1,…,fn(xd1 ,… ,xdn
) belongs to Γℐ. Since 𝔉 was defined using a solution of Γ̂ℐ, we know that

P (f𝔉
1 (d1),… , f𝔉

n(dn)) holds in𝔇, and thus P (f1,… , fn)(d1,… , dn) is true in (ℐ ,𝔉).
Conversely, assume that P f1,…,fn(d1,… , dn) is not true in ℐ , which means that its negation

is true in ℐ . Since ℐ is a model of Ψ𝔇, this implies that 𝜙f1,…,fn
¬P (d1,… , dn) is true in ℐ , or

¬Deffi(di) is true in ℐ for some 1 ⩽ i ⩽ n.
Clearly, if ¬Deffi(di) is true in ℐ for some 1 ⩽ i ⩽ n it follows from the first claim that

Def(fi)(di) is false in (ℐ ,𝔉), hence that f𝔉
i
(di) is undefined. As a consequence, the formula

P (f1,… , fn)(d1,… , dn) cannot be true in (ℐ ,𝔉).
Next, assume that 𝜙f1,…,fn

¬P (d1,… , dn) is true in ℐ and w.l.o.g. that 𝜙¬P (x1,… ,xn) is in dis-
junctive normal form. Then, 𝜙f1,…,fn

¬P (x1,… ,xn) contains a disjunct that is a conjunction of
atomic expressions of the form Rfi1 ,…,fik (xi1 ,… ,xik

) such that, for each of the atomic expres-
sions Rfi1 ,…,fik (di1 ,… , dik) in the disjunct, this expression is true in ℐ . Following the steps
used in the only-if direction, we obtain that (f𝔉

i1
(di1),… , f𝔉

ik
(dik)) ∈ RD holds for each of these

atomic expressions. This implies that 𝜙¬P (f𝔉
1 (d1),… , f𝔉

n(dn)) holds in 𝔇. By definition of 𝜙¬P
we conclude that (f𝔉

1 (d1),… , f𝔉
n(dn)) ∉ PD, and hence that P (f1,… , fn)(d1,… , dn) is not true

in (ℐ ,𝔉). This concludes the proof of (2).
“⇒” Assume that Φ is satisfiable in FOL(𝔇) by the interpretation ℐ of the FOL part and the

interpretation 𝔉 of the features. We extend ℐ to an interpretation ℐFOL that also takes the new
predicates Deff and P f1,…,fn into account:

• d ∈ Defℐ
FOL

f iff f𝔉(d) is defined,

• (d1,… , dn) ∈ (P f1,…,fn)ℐFOL iff (f𝔉
1 (d1),… , f𝔉

n(dn)) ∈ P𝔇.
Since (ℐ ,𝔉)makesΦ true, it is easy to see that ℐFOL is a model ofΦFOL. In addition, it is a model
ofΨ𝔇 due to the semantics of CD-restrictions in FOL(𝔇) and the fact that the complement of P
in𝔇 has the positive, quantifier-free definition 𝜙¬P over𝔇.

Note that this theorem only shows that our translation from FOL(𝔇) to FOL preserves satis-
fiability. It does not imply that the abstract models of Φ coincide with the models of ΦFOL ∪Ψ𝔇.
In particular, the model we construct for Φ in our proof is always at most countable, whereas
ΦFOL ∪ Ψ𝔇 may also have uncountable models. Nevertheless, thanks to this theorem, we can
transfer most of the properties of FOL introduced above to FOL(𝔇).

84

7 The Abstract Expressive Power of Logics with Concrete Domains

Corollary 7.6. If𝔇 is strongly positive and homomorphism𝜔-compact, then FOL(𝔇) is countably
compact and satisfies the downwardLöwenheim-Skolemproperty. Homomorphism𝜔-compactness
is also a necessary condition for countable compactness. In general, FOL(𝔇) need not satisfy the
upward Löwenheim-Skolem property. If the finite unsatisfiable constraint systems for 𝔇 are r.e.,
then so are the unsatisfiable sentences of FOL(𝔇).

Proof sketch. Compactness follows from Theorem 7.5. In fact, if Φ is unsatisfiable, then this
theorem and compactness of FOL yield a finite subsetΨ ofΦFOL∪Ψ𝔇 that is unsatisfiable. Then
translating Ψ ∩ ΦFOL back to FOL(𝔇) yields an unsatisfiable finite subset of Φ. The downward
Löwenheim-Skolem property follows from the construction of the abstract model ℐ in the if-
direction of Theorem 7.5, which is at most countable.
Assume that the countable constraint system Γ for 𝔇 is a counterexample to the homomor-

phism 𝜔-compactness of𝔇. Then, the countable set of FOL(𝔇) sentences

ΦΓ := {∀x.(P (fx1 ,… , fxn
)(x,… ,x)) | P (x1,… ,xn) ∈ Γ}

is a counterexample to countable compactness of FOL(𝔇).
Next, consider the concrete domain 𝔔= := (ℚ,=,≠), which is strongly positive and easily

seen to be homomorphism 𝜔-compact. The FOL(𝔔=) sentence

𝜙up := ∀x, y.Def(f)(x) ∧ (x ≠ y → ≠(f , f)(x, y))

states that f is an injective function from the domain of an abstract model of 𝜙up into ℚ. Thus,
no abstract model of 𝜙up can have an uncountable domain, as ℚ is is countable.
Finally, assume that Φ = {𝜙} for an FOL(𝔇) sentence 𝜙. The assumption that the finite un-

satisfiable constraint systems for𝔇 are r.e. entails that the set ΦFOL ∪ Ψ𝔇 is r.e. as well. We can
now dovetail a partial decision procedure for unsatisfiability of finite sets of FOL sentences with
the enumeration of ΦFOL ∪Ψ𝔇 to get a procedure that terminates iff ΦFOL ∪Ψ𝔇 is unsatisfiable.
Together with Theorem 7.5 this shows that unsatisfiability of FOL(𝔇) sentences is partially de-
cidable, and thus r.e.

We observe that the positive results of Corollary 7.6 concerning countable compactness, the
downward Löwenheim-Skolem property, and recursive enumerability transfer from 𝔇 to all of
its reducts, i.e., all concrete domains𝔇′ with the same domain as𝔇 and a subset of the relations
of𝔇. The reason is that FOL(𝔇′) is then a sublogic of FOL(𝔇). Since (ℚ,<,=,>) is strongly pos-
itive and homomorphism 𝜔-compact, then FOL(𝔔>)where𝔔> := (ℚ,>) is countably compact
and has the downward Löwenheim-Skolem property – though, as we show in Theorem 7.16, it
does not have the upward Löwenheim-Skolem property.
ForALC with a concrete domain, we can strengthen the result of Corollary 7.6.

Corollary 7.7. Let 𝔇 be a strongly positive, homomorphism 𝜔-compact concrete domain and ℒ
be either ALC(𝔇), ALC∨+(𝔇) or ALCfo(𝔇). Then ℒ is countably compact and satisfies the up-
ward and the downward Löwenheim-Skolem property. Homomorphism 𝜔-compactness is also a
necessary condition for countable compactness.

Proof sketch. The downward Löwenheim-Skolem property and countable compactness are an
immediate consequence of the fact that ℒ can be expressed in FOL(𝔇). Regarding necessity of
homomorphism𝜔-compactness, it is easy to see that a counterexample to this property for𝔇 can
also be turned into a counterexample to countable compactness ofℒ, similar to the construction

85

7 The Abstract Expressive Power of Logics with Concrete Domains

for FOL(𝔇). The upward Löwenheim-Skolem property is an immediate consequence of the fact
that, likeALC, its extension ℒ is closed under disjoint unions1.

Craig interpolation and concrete domains. In first-order logic, theCraig Interpolation Prop-
erty (CIP) [40] ensures that an entailment 𝜙 ⊧ 𝜓 between sentences 𝜙, 𝜓 holds iff there is a sen-
tence 𝜒 whose signature is shared by both 𝜙 and 𝜓 such that 𝜙 ⊧ 𝜒 and 𝜒 ⊧ 𝜓. For first-order
languages extended with concrete domains, we define the set of available formulae based on a
first-order signature 𝜎 together with a setℱ of feature symbols. Correspondingly, we introduce
an abstract and a concrete notion of Craig interpolant for sentences in these languages.

Definition 7.8. Let 𝜙, 𝜓 be FOL(𝔇) sentences. The FOL(𝔇) sentence 𝜒 is an abstract Craig in-
terpolant of 𝜙 and 𝜓 if 𝜙 entails 𝜒, 𝜒 entails 𝜓 and every symbol in the first-order signature of 𝜒
occurs in both 𝜙 and 𝜓. We say that 𝜒 is a concrete Craig interpolant of 𝜙 and 𝜓 if every feature
symbol used in 𝜒 occurs in both 𝜙 and 𝜓. We say that FOL(𝔇) has the abstract (concrete) Craig
interpolation property if, whenever 𝜙 ⊧ 𝜓 holds for FOL(𝔇) sentence 𝜙 and 𝜓, there is an abstract
(concrete) Craig interpolant 𝜒 of 𝜙 and 𝜓.

Using Theorem 7.5 again, we can show that FOL(𝔇) satisfies the abstract Craig interpolation
property if𝔇 satisfies the conditions required by this theorem.

Theorem 7.9. Let 𝔇 be a strongly positive, homomorphism 𝜔-compact concrete domain. Then,
FOL(𝔇) satisfies the abstract Craig interpolation property.

Proof. Let 𝜙 and 𝜓 be FOL(𝔇) sentences such that 𝜙 entails 𝜓. Then, the FOL(𝔇) sentence
𝜙∧¬𝜓must be unsatisfiable. By Theorem 7.5, we deduce that the set of FOL sentences {𝜙FOL ∧
¬𝜓FOL}∪Ψ𝔇 is also unsatisfiable. By compactness of first-order logic, there exists a finite subset
Φ𝔇 ⊆ Ψ𝔇 such that the FOL sentence 𝜙FOL∧¬𝜓FOL∧𝜙𝔇 with 𝜙𝔇 := ⋀Φ𝔇 is unsatisfiable, that
is, 𝜙FOL ∧ 𝜙𝔇 ⊧ 𝜓FOL. Using the Craig interpolation property of FOL, we obtain an interpolant
𝜒FOL whose signature is in the intersection of the signatures of 𝜙FOL ∧ 𝜙𝔇 and 𝜓FOL, such that
𝜙FOL ∧ 𝜙𝔇 ⊧ 𝜒FOL and 𝜒FOL ⊧ 𝜓FOL. In particular, every predicate symbol in 𝜒FOL is either
a predicate symbol that occurs in the intersection of the first-order signatures of 𝜙 and 𝜓, or a
symbol of the form P f1,…,fn or Deff introduced by the translation into FOL.
Let 𝜒 be the FOL(𝔇) sentence obtained by replacing every atom in 𝜒FOL built using the latter

symbols with the corresponding definedness or concrete domain predicate. Then every pred-
icate symbol in the first-order signature of 𝜒 occurs in both 𝜙 and 𝜓. Thus, 𝜒 is an abstract
interpolant of 𝜙 and 𝜓 if we can show that it is entailed by 𝜙 and entails 𝜓. By monotonicity
of FOL we can deduce from 𝜙FOL ∧ 𝜙𝔇 ⊧ 𝜒FOL and 𝜒FOL ⊧ 𝜓FOL that the sets of sentences
{𝜙FOL ∧ ¬𝜒FOL} ∪ Ψ𝔇 and {𝜒FOL ∧ ¬𝜓FOL} ∪ Ψ𝔇 are both unsatisfiable. By Theorem 7.5, this
implies that 𝜙 ∧ ¬𝜒 and 𝜒 ∧ ¬𝜓 are unsatisfiable, and thus that 𝜙 ⊧ 𝜒 and 𝜒 ⊧ 𝜓.

Note that this proof cannot be used to show the concrete Craig interpolation property for
FOL(𝔇). In fact, the presence of 𝜙𝔇 in the entailment 𝜙FOL ∧ 𝜙𝔇 ⊧ 𝜓FOL means that the in-
terpolant 𝜒FOL may contain symbols of the form P f1,…,fn or Deff that contain feature symbols
not occurring in 𝜙. Consequently, 𝜒 may contain concrete domain or definedness predicates
involving feature symbols not contained in 𝜙.

1This can be shown e.g. using the notion of concrete bisimulation introduced in Chapter 8

86

7 The Abstract Expressive Power of Logics with Concrete Domains

It is unclear whether the assumptions of Theorem 7.9 are sufficient to show that FOL(𝔇)
satisfies the concrete Craig interpolation property. Our hypothesis is that we may obtain re-
sults on this concrete version, by additionally assuming that the concrete domain𝔇 satisfies an
appropriate interpolation property [35].

7.3 First-order (non-)definability and decidability

In Example 7.1 we have seen an instance of a unary concrete domain 𝔑par and an ALC(𝔑par)
TBox 𝒯 such that 𝒯 is abstractly equivalent to an ALC TBox 𝒯 ′. The first part of this subsec-
tion generalizes this result to all unary concrete domains 𝔇 that are strongly positive. To be
more precise, we show that, in this setting, every FOL(𝔇) sentence has an abstract projective
definition in FOL, and likewise every ALC(𝔇) TBox is abstractly projectively equivalent to an
ALC TBox. As a byproduct of these results, we are also able to show an interpolation result
forALC(𝔇). Under the additional assumption that CSP(𝔇) is decidable, we can prove that the
extension of the guarded or two-variable fragments with counting of FOL with such a concrete
domain remain decidable.
Example 7.4 shows an ALC(𝔔>) TBox 𝒯 that has no abstract projective definition in FOL,

where 𝔔> is homomorphism 𝜔-compact. In the second part of this subsection, we general-
ize this result from 𝔔> to countable concrete domains 𝔇 in which (in)equality is appropri-
ately definable. We show that adding such concrete domains 𝔇 to FOL destroys the upward
Löwenheim-Skolem property even if we restrict to the two-variable fragment of FOL(𝔇). We
also prove that reasoning in such a logic is undecidable, which contrasts with the case of first-
order logic with two variables, where reasoning is decidable in NExpTime [53].

Unary concrete domains

We recall that a concrete domain is unary if it contains only unary relations. Assume that 𝔇
is a strongly positive unary concrete domain. Let 𝜙 be an FOL(𝔇) sentence and Φ := {𝜙}. The
rewriting approach described in Section 7.2 produces a singleton set ΦFOL consisting of an FOL
sentence 𝜙FOL and a set Ψ𝔇 := Ψ1 ∪ Ψ2 of FOL sentences such that

• Ψ1 contains finitely many sentences ∀x.P f (x) → Deff (x) and finitely many sentences

∀x.¬P f (x) → 𝜙f¬P (x) ∨ ¬Deff (x),

• Ψ2 contains finitely many sentences of the form ∀x.Γ → ⊥ where Γ is a set of atoms
{P f

1 (x),… ,P f
n (x)} appearing in Ψ1 s.t. Γ̂ is unsatisfiable in𝔇.

The first point is justified by the fact that we can restrict our attention to the concrete domain
predicates and feature symbols that occur in 𝜙. Regarding the last point, we notice that, in
a setting where all concrete domain predicates are unary, constraints of the form P f (x) and
Qg(y), where f ≠ g or x ≠ y, cannot influence each other. Thus, one can restrict the attention to
constraint systems built using a single feature symbol f and variable x. In fact, any unsatisfiable
constraint systems must contain an unsatisfiable one of this form. Since we can again restrict
the attention to the concrete domain predicates and feature symbols occurring in 𝜙, and the
name of single variable is irrelevant, there are only finitelymany sentences of this form. Overall,
this rewriting approach yields an FOL sentence 𝜓 := 𝜙FOL ∧ ⋀Ψ𝔇. We cannot directly apply

87

7 The Abstract Expressive Power of Logics with Concrete Domains

Theorem 7.5 to conclude that 𝜙 and 𝜓 are equisatisfiable since we have not assumed that 𝔇 is
homomorphism 𝜔-compact. Even without this assumption, we obtain the stronger result that
𝜓 is a first-order abstract projective definition of 𝜙.

Corollary 7.10. Let𝔇 be a strongly positive unary concrete domain. Then, every FOL(𝔇) sentence
has an abstract projective definition in FOL.

Proof. Let 𝜙 be a FOL(𝔇) sentence and 𝜓 the FOL sentence obtained by the rewriting process
previously described. First, we show that every model of 𝜓 is an abstract model of 𝜙. Let ℐ be a
model of 𝜓. Since 𝔇 is unary, the constraint system Γℐ considered in the proof of Theorem 7.5
contains all expressions P f (xd) such that P f (d) holds in ℐ for f a feature symbol and d ∈ Δℐ.
For every feature symbol f and d ∈ Δℐ, let Γd,f be the subsystem of Γℐ containing all and only
expressions of the form P f (xd). We notice that each of these subsystems is finite, and that they
partition Γℐ. In particular, Γℐ is satisfiable in𝔇 iff Γd,f is satisfiable in𝔇 for every f and d ∈ Δℐ.
The satisfiability of each such Γd,f in 𝔇 is a consequence of the fact that ℐ is a model of 𝜓,
and thus of Ψ𝔇. Otherwise, Ψ𝔇 would contain the sentence ∀x.Γd,f → ⊥ and this would lead
to a contradiction. We conclude that Γℐ has a solution h in 𝔇, which we use as in the proof
of Theorem 7.5 to define an interpretation 𝔉 of feature symbols such that (ℐ ,𝔉) is a model of 𝜙.
Second, we must show that every abstract model of 𝜙 can be extended to a model of 𝜓 by

interpreting the new predicates of the formP f andDeff appropriately. This can be done exactly
as in the proof of Theorem 7.5.

Recall that, in the proof of Theorem 7.5, we used the downward Löwenheim-Skolem property
of first-order logic to ensure that the constraint system Γℐ is countable, a necessary requirement
to be able to apply homomorphism 𝜔-compactness. In the proof of Corollary 7.10, this was not
possible since we had to show that the given model of 𝜓 is an abstract model of 𝜙. Fortunately,
the fact that we can reduce satisfiability of Γℐ to that of the finite systems Γd,f allowed us to
dispense with this step and the requirement that𝔇 is homomorphism 𝜔-compact.
ForALC(𝔇) TBoxes𝒯 we can strengthen Corollary 7.10 by introducing a TBox𝒯𝔇 that takes

on the role ofΨ𝔇 in theFOL(𝔇) setting. First, we introduce fresh concept namesP f andDeff for
every feature name f and unary predicate P of𝔇 occurring in a concrete domain restriction of
𝒯 . If 𝜙¬P (x) is the positive, quantifier-free definition of the complement ofP over𝔇, we denote
with ⟦¬P⟧fFOL theALC concept obtained by replacing every predicateQ(x) in that formulawith
the concept name Qf and replacing conjunction and disjunction with the corresponding DL
constructors. We denote with𝒯FOL theALC TBox obtained from𝒯 by replacing ∃f .P (x)with
Pf , ∃rf .P (x)with ∃r.Pf , ∀f .P (x)with ¬Deff ⊔P f and ∀rf .P (x)with ∀r.(¬Deff ⊔P f). The
ALC TBox 𝒯𝔇 := 𝒯1 ∪𝒯2 consists of the following CIs:

• 𝒯1 contains P f ⊑ Deff and ¬P f ⊑ ⟦¬P⟧fFOL ⊔ ¬Deff for every feature name f and
unary relation P of𝔇 occurring in 𝒯 ,

• 𝒯2 contains⨅Γ ⊑ ⊥ for every feature name f and every finite set Γ of concept names P f

occurring in 𝒯1 s.t. the constraint system {P (x) | P f ∈ Γ} is unsatisfiable in𝔇.

Then, 𝒯FOL ∪𝒯𝔇 plays the role of the sentence 𝜓 in the proof of Corollary 7.10, that is, it is an
abstract projective definition of 𝒯 .

Corollary 7.11. Let 𝔇 be a strongly positive unary concrete domain. Then, every ALC(𝔇) TBox
has an abstract projective definition inALC.

88

7 The Abstract Expressive Power of Logics with Concrete Domains

Interpolation results

In the context of DLs, the following notion of interpolant related to CIs and TBoxes, akin to
that of Craig interpolant for FOL, has been used to show that an analogous version of the Craig
interpolation property holds for a number of expressive logics, includingALC [37].

Definition 7.12. Let 𝒯1, 𝒯2 be TBoxes and C1, C2 be concepts. For i = 1, 2, let N i
C
and N i

R
be

the sets of concept and role names that occur in 𝒯i or Ci. The concept I is a Craig interpolant for
𝒯1 ∪ 𝒯2 ⊧ C1 ⊑ C2 if 𝒯1 ∪ 𝒯2 ⊧ C1 ⊑ I , 𝒯1 ∪ 𝒯2 ⊧ I ⊑ C2 and I only uses concept names in
N 1

C
∩N2

C
and role names inN 1

R
∩N2

R
.

For DLs with concrete domains, we call an interpolant of the form above an abstract Craig
interpolant, and we say that a Craig interpolant is concrete if every feature name occurring in
the interpolant I is constrained in the same way as concept and role names in Definition 7.12.
Thanks to the encoding described earlier in this section and Corollary 7.11, we can adapt the
proof of Theorem 7.9 to show that, if𝔇 is unary and strongly positive, then the existence of an
abstract Craig interpolant is always guaranteed in ALC(𝔇). When this is the case, we say that
ALC(𝔇) satisfies the abstract Craig interpolation property.
But first, we must show a technical lemma that relates subsumption inALC(𝔇) to subsump-

tion in the corresponding first-order translation.

Lemma 7.13. Let𝔇 be a strongly positive unary concrete domain, let𝒯 be anALC(𝔇) TBox and
C1, C2 ALC(𝔇) concepts. Then,𝒯 ⊧ C1 ⊑ C2 iff𝒯FOL ∪𝒯𝔇 ⊧ CFOL

1 ⊑ CFOL
2 .

Proof. We observe that 𝒯 ⊧ C1 ⊑ C2 holds iff the TBox 𝒯 ′ := 𝒯 ∪ {⊤ ⊑ ∃r.(C1 ⊓ ¬C2)} with
r a fresh role name is inconsistent. To see this, first, assume that 𝒯 does not entail C1 ⊑ C2
and thus that there exists a model ℐ of 𝒯 such that d ∈ (C1 ⊓ ¬C2)ℐ for some d ∈ Δℐ. Then,
the interpretation 𝒥 obtained by expanding ℐ with r𝒥 := I × {d} is a model of 𝒯 ′, which is
thus consistent. Vice versa, if 𝒯 ′ is consistent with model ℐ , then ℐ is a model of 𝒯 in which
(C1 ⊓ ¬C2)ℐ ≠ ∅, thus C1 ⊑ C2 does not hold.
Similarly, we can show that 𝒯FOL ∪ 𝒯𝔇 ⊧ CFOL

1 ⊑ CFOL
2 iff 𝒯 ″ := 𝒯FOL ∪ 𝒯𝔇 ∪ {⊤ ⊑

∃r.(CFOL
1 ⊓ ¬CFOL

2)} with r a fresh role name is inconsistent. We notice that 𝒯 ″ is an abstract
projective definition of 𝒯 ′ as explained before Corollary 7.11. Therefore, 𝒯 ′ is inconsistent iff
𝒯 ″ is inconsistent. This allows us to conclude that 𝒯 entails C1 ⊑ C2 iff 𝒯FOL ∪ 𝒯𝔇 entails
CFOL
1 ⊑ CFOL

2 .

Theorem 7.14. Let 𝔇 be a strongly positive unary concrete domain. Then, ALC(𝔇) satisfies the
abstract Craig interpolation property.

Proof. Assume that 𝒯1 ∪ 𝒯2 ⊧ C1 ⊑ C2 with 𝒯1, 𝒯2 ALC(𝔇) TBoxes and C1, C2 ALC(𝔇)
concepts. By Lemma 7.13 we obtain that𝒯FOL

1 ∪𝒯FOL
2 ∪𝒯𝔇 ⊧ CFOL

1 ⊑ CFOL
2 , where all TBoxes

and concepts belong to ALC. Since ALC satisfies the Craig interpolation property, we can find
a Craig interpolant ICraig of 𝒯FOL

1 ∪𝒯FOL
2 ∪𝒯𝔇 ⊧ CFOL

1 ⊑ CFOL
2 as in Definition 7.12, i.e.

𝒯FOL
1 ∪𝒯FOL

2 ∪𝒯𝔇 ⊧ CFOL
1 ⊑ ICraig

𝒯FOL
1 ∪𝒯FOL

2 ∪𝒯𝔇 ⊧ ICraig ⊑ CFOL
2 .

In this case, letN i
C
be the set of concept names occurring in Ci or𝒯 ′

i := 𝒯i ∪𝒯𝔇 and similarly
define the set of role namesN i

R
for i = 1, 2. Then, ICraig uses names fromN 1

C
∩N2

C
andN 1

R
∩N2

R
.

89

7 The Abstract Expressive Power of Logics with Concrete Domains

Recall that, for a given unary relation Q of 𝔇, ⟦¬Q⟧fFOL basically is the ALC representation
of ∃f .¬Q. Let ⟦¬Q⟧f𝔇 be the ALC(𝔇) concept whose first-order translation is ⟦¬Q⟧fFOL, i.e.,
⟦¬Q⟧f𝔇 is obtained from ⟦¬Q⟧fFOL by replacing every predicateP f occurring in it with ∃f .P (x).
We need this concept to translate definedness predicates occurring in ICraig back toALC(𝔇).
Let I be the ALC(𝔇) concept obtained from ICraig by substituting every concept name Deff

in ICraig with the concept ∃f .Q(x) ⊔ ⟦¬Q⟧f𝔇, whereQ is an arbitrary unary relation over𝔇, and
every concept name P f with the CD-restriction ∃f .P (x). Then, every feature name occurring
in I occurs in the union of the sets N i

F
of feature names occurring in 𝒯i or Ci for i = 1, 2,

while concept and role names in I belong to the intersection of the respective signature sets.
Using Lemma 7.13 again, we obtain that 𝒯1 ∪ 𝒯2 ⊧ C1 ⊑ I and 𝒯1 ∪ 𝒯2 ⊧ I ⊑ C2. Therefore,
we can conclude that I is an abstract Craig interpolant for 𝒯1 ∪𝒯2 ⊧ C1 ⊑ C2.
To see that we can really apply Lemma 7.13 here, we must know that IFOL is equivalent to

ICraig in the presence of 𝒯𝔇. This boils down to showing that (∃f .Q(x) ⊔ ⟦¬Q⟧f𝔇)FOL = Qf ⊔
⟦¬Q⟧fFOL is equivalent w.r.t. 𝒯𝔇 to Deff , which is an easy consequence of the fact that 𝒯𝔇

contains the CIsQf ⊑ Deff and ¬Qf ⊑ ⟦¬Q⟧fFOL ⊔ ¬Deff .

Decidability results

Note that, in the setting introduced in this subsection, the FOL(𝔇) sentenceΨ𝔇 belongs both to
the guarded and the two-variable fragment with counting of first-order logic, which are known
to be decidable [4, 54, 87, 90]. Therefore, if the sentence 𝜙 falls into one of these fragments,
defined analogously to their first-order counterparts, it follows that the abstract projective def-
inition 𝜓 of 𝜙 used in Corollary 7.10 also falls into this fragment. To ensure that satisfiability
of FOL(𝔇) sentences belonging to one of these fragments is decidable, it is necessary to guar-
antee that Ψ𝔇 can effectively be computed. This is the case if checking satisfiability of a finite
constraint system for𝔇 is decidable.

Corollary 7.15. Let 𝔇 be a strongly positive unary concrete domain. If constraint satisfiability
for𝔇 is decidable, then satisfiability of sentences in the guarded or the two-variable fragment with
counting of FOL(𝔇) is decidable.

The first-order translations of many DLs considered in the literature actually belong to the
guarded or the two-variable fragment with counting. Since, in the unary case, the translations
of CD-restrictions into FOL(𝔇) given in (7.1) also belong to these fragments, the above corollary
yields decidability results for a great number of DLs extendedwith unary and decidable concrete
domains. However, this does not cover the decidability result for 𝒮ℋ𝒪𝒬 extended with unary
concrete domains in [63] since the transitivity of roles specifiable in that DL cannot be expressed
in the guarded or the two-variable fragment with counting.

(In)equality, non-definability, undecidability

Wehave seen above that the restriction to a unary concrete domain𝔇 ensures that everyFOL(𝔇)
sentence has an abstract projective definition in FOL. This also implies that FOL(𝔇) satisfies the
upward Löwenheim-Skolem property. Without the restriction to predicates of arity 1, this need
no longer be the case. In fact, Example 7.4 demonstrates that, if we consider the concrete domain
𝔔>, then there is an ALC(𝔔>) TBox 𝒯 that does not have an abstract projective definition in
FOL. In addition, the proof of Corollary 7.6 shows that, for the concrete domain 𝔔=, the logic

90

7 The Abstract Expressive Power of Logics with Concrete Domains

FOL(𝔔=) does not satisfy the upward Löwenheim-Skolem property. In the following, we extend
these negative results from single examples to a large class of concrete domains.
Analyzing the two concrete examples, we see that they crucially depend on the fact that

(in)equality can be expressed in the concrete domain under consideration.

Theorem 7.16. Let 𝔇 be a jointly diagonal, at most countable concrete domain. Then, FOL(𝔇)
does not have the upward Löwenheim-Skolem property.

Proof. Assume that 𝜓=(x, y) is the quantifier-free formula that expresses equality between ele-
ments ofD. Let 𝜓f

=(x, y) be the FOL(𝔇) formula obtained by replacing every atomP (x1,… ,xn)
in𝜓=withP (f ,… , f)(x1,… ,xn). Similarly to the proof of Corollary 7.6, we can define aFOL(𝔇)
sentence 𝜙up which enforces that the interpretation of f is a total and injective function from
the domain of its abstract models intoD, as follows:

𝜙up := ∀x, y.Def(f)(x) ∧ (x ≠ y → ¬𝜓f
=(x, y)).

Thus, no abstract model of 𝜙up can have an uncountable domain.

InCorollary 7.7weuse closure under disjoint union ofmodels ofALC(𝔇)TBoxes to show that
ALC(𝔇) has the upward Löwenheim-Skolem property. However, the fact that such a TBox then
always has an uncountable model is not sufficient to apply the argument used in Example 7.4 to
show that there exists anALC(𝔇) TBox that has no abstract projective first-order definition. In
fact, such an uncountable model could be the uncountable disjoint union of countable models,
and injectivity of the feature name f can possibly only be enforced on the countable sub-models.
This is why we needed the formula 𝜏 in the proof given in that example, which states that any
two distinct elements of the interpretation domain are linked by the role r. We show how to use
the JD condition to adapt the idea underlying this proof to our more general setting.

Theorem 7.17. Let𝔇 be a jointly diagonal, at most countable concrete domain. Then, there is an
ALC(𝔇) TBox that has no abstract projective definition in first-order logic.

Proof. Let equality over 𝔇 be defined by the quantifier-free, equality-free formula 𝜓=(x, y),
which is w.l.o.g. assumed to be in negation normal form.
Wedefine theALC(𝔇) conceptC= obtained by replacing eachnon-negated atomP (x1,… ,xk)

in 𝜓=(x, y) with the concept ∃f ,… , f .P (x1,… ,xk) and every negated atom ¬P (x1,… ,xk) in
𝜓=(x, y) with ¬∀f ,… , f .P (x1,… ,xk).2 We can force the interpretation of the feature name f
to be a total function (in the spirit of the CI (7.2) used in Example 7.4) with the ALC(𝔇) TBox
𝒯tot := {⊤ ⊑ C=}. Note that, in addition to requiring that every element of the abstract do-
main must have an f -value, this TBox only states that this f -value is equal to itself, which is
trivially satisfied. This construction is needed since, in contrast to FOL(𝔇), the DL ALC(𝔇) is
not equipped with definedness restrictions.
We derive from¬𝜓=(x, y) a quantifier-free, equality-free formula𝜓≠(x, y) in negation-normal

form that defines inequality over 𝔇. For every non-negated atom P (x1,… ,xk) that occurs in
𝜓≠(x, y) we introduce a fresh role name rP (x1,…,xk), a mapping 𝜆x1,…,xk

that assigns to a tuple
of individuals (d, e) ∈ D×D the tuple (d1,… , dk) ∈ Dk s.t. di = d if xi = x and di = e if xi = y,
and aCI⊤ ⊑ ∀p1,… , pk.P (x1,… ,xk)where pi = f ifxi = x and pi = rP (x1,…,xk)f ifxi = y. For
negated atoms ¬P (x1,… ,xk), we introduce a fresh role name r¬P (x1,…,xk), we define 𝜆x1,…,xk

2Since𝜓=(x, y) is quantifier-free and has {x, y} as its set of free variables, each variable xi occurring in these literals
is either x or y.

91

7 The Abstract Expressive Power of Logics with Concrete Domains

as in the non-negated case and introduce a CI ∃p1,… , pk.P (x1,… ,xk) ⊑ ⊥where feature paths
are assigned as in the non-negated case. Note that, from a semantic point of view, this CI is
equivalent to the expression ⊤ ⊑ ∀p1,… , pk.¬P (x1,… ,xk), though from a syntactic point of
view ∀p1,… , pk.¬P (x1,… ,xk) is not an admissible CD-restriction since ¬P is not a relation of
𝔇. For this reason, we had to represent the intended CI by its contrapositive. We call 𝒯≠ the
TBox containing all the CIs introduced this way.
Let𝒯 := 𝒯tot ∪𝒯≠ and assume, by contradiction, that𝒯 is abstractly projectively equivalent

to a first-order sentence 𝜙. The interpretation ℐ with countable domain Δℐ := D and

rℐ
P (x1,…,xk)

:= {(d, e) ∈ D ×D | 𝜆x1,…,xk
(d, e) ∈ PD} and

rℐ¬P (x1,…,xk)
:= {(d, e) ∈ D ×D | 𝜆x1,…,xk

(d, e) ∉ PD}

for each of the role names introduced above is an abstract model of 𝒯 , where we interpret the
feature name f using the identity on D. Then, ℐ can be extended to a model ℐFOL of 𝜙. Using
the upward Löwenheim-Skolem property of FOL, we find an uncountable interpretation𝒥 that
is elementary equivalent to ℐFOL in first-order logic (apply the property to the first-order theory
of ℐFOL, which is trivially satisfied by ℐFOL). This implies that𝒥 satisfies 𝜙; by assumption, we
can thus find an interpretation f𝔉 of f such that (𝒥 ,𝔉) is a model of 𝒯 .
Let d, e be twodistinct elements ofΔ𝒥. Assuming that𝜓r

≠(x, y) is the positive formula obtained
by replacing every non-negated occurrence ofP (x1,… ,xk) in𝜓≠(x, y)with rP (x1,…,xk)(x, y) and
every negated atom ¬P (x1,… ,xk) with r¬P (x1,…,xk), we observe that both ℐ and ℐFOL satisfy
the first-order sentence

𝜙inj := ∀x, y.(x ≠ y) ↔ 𝜓r
≠(x, y).

Since𝒥 and ℐFOL are elementary equivalent,𝒥 also satisfies 𝜙inj and thus (d, e) ∈ (𝜓r
≠)𝒥.

Since (𝒥 ,𝔉) is a model of 𝒯tot, both f𝔉(d) and f𝔉(e)must be defined. The fact that (𝒥 ,𝔉) is
a model of 𝒯≠ ensures that (d, e) ∈ (rP (x1,…,xk))𝒥 implies 𝜆x1,…,xk

(f𝔉(d), f𝔉(e)) ∈ PD for ev-
ery non-negated atom P (x1,… ,xk) occurring in 𝜓≠(x, y) and similarly (d, e) ∈ (r¬P (x1,…,xk))𝒥
implies that 𝜆x1,…,xk

(f𝔉(d), f𝔉(e)) ∉ PD for negated atoms ¬P (x1,… ,xk) in 𝜓≠(x, y). Then,
𝜓≠(f𝔉(d), f𝔉(e)) holds in𝔇, and consequently f𝔉(d) ≠ f𝔉(e), which implies that f𝔉 is an injec-
tive function. This leads to a contradiction since we know that D is at most countable, but Δ𝒥

is uncountable, and f𝔉 is supposed to be an injective function from Δ𝒥 toD. We conclude that
𝒯 is not abstractly projectively equivalent to any first-order sentence.

Let us point out that the assumptions made in this theorem are not very restrictive. As al-
ready mentioned above, JD is part of the definition of 𝜔-admissibility (cf. Definition 2.20). In
fact, what we showed is that there are concrete domains 𝔇 such that reasoning in ALC(𝔇) is
decidable and the abstract expressive power of ALC(𝔇) is not contained in that of first-order
logic. In Chapter 6, we showed that satisfiability of a concept w.r.t. a TBox written in ALC(𝔔)
with 𝔔 := (ℚ,<,=,>) is decidable in exponential time, because the concrete domain 𝔔 is 𝜔-
admissible and its CSP is decidable in polynomial time. Clearly,𝔔 is JD since equality is avail-
able as one of its relations, and its domain (the set of rational numbers) is countably infinite.

Example 7.18. We illustrate how to apply Theorem 7.17 to concrete domains whose relations have
arity greater than 2. Let𝔔max := (ℚ,max) be the concrete domain where the ternary relation max
relates x, y and z iff z is the maximum of x and y w.r.t. the standard ordering < on the rational
numbers. This concrete domain is jointly diagonal, since equality can be expressed by the formula
max(x, y,x) ∧ max(x, y, y).

92

7 The Abstract Expressive Power of Logics with Concrete Domains

Using the notation employed to prove Theorem 7.17, let𝒯tot := {⊤ ⊑ C=} with

C= := ∃f , f , f .max(x1,x2,x1) ⊓ ∃f , f , f .max(x1,x2,x2).

Inequality over 𝔔max is defined by the formula 𝜓≠(x, y) := ¬max(x, y,x) ∨ ¬max(x, y, y). We
introduce the two role names r := r¬max(x,y,x) and r′ := r¬max(x,y,y) and add to 𝒯≠ the two CIs
∃f , rf , f .max(x1,x2,x1) ⊑ ⊥ and ∃f , r′f , r′f .max(x1,x2,x2) ⊑ ⊥. Then, f𝔉 is an injective func-
tion with values in ℚ for every model (ℐ ,𝔉) of 𝒯 . Thanks to 𝒯tot we know that f𝔉 is defined for
every element of ℐ . Due to 𝒯≠, (f𝔉(d), f𝔉(e), f𝔉(d)) ∉ max𝔔max holds if (d, e) ∈ rℐ and simi-
larly (f𝔉(d), f𝔉(e), f𝔉(e)) ∉ max𝔔max if (d, e) ∈ (r′)ℐ. The interpretations considered in the proof
of Theorem 7.17 satisfy the sentence ∀x, y.(x ≠ y ↔ r(x, y) ∨ r′(x, y)), which together with the
considerations above imply that if d ≠ e then f𝔉(d) ≠ f𝔉(e) thus that f𝔉 is an injective function.
If 𝒯 was abstractly equivalent to a first-order logic sentence 𝜙, then, following the proof of The-

orem 7.17, we would be able to find an uncountable model of 𝜙, and thus an uncountable abstract
model of𝒯 , that maps injectively into a countable structure, which clearly is a contradiction.

Undecidability results

In the remainder of this section, we focus on the two-variable fragment FOL2 of first-order logic
and assume that no function symbols are allowed. Then, we know that this logic has the finite
model property [83] and is decidable in NExpTime [53]. In contrast, if𝔇 is jointly diagonal, then
the finite model property need not hold for the extension FOL2(𝔇) of FOL2 with concrete do-
mains. A counterexample is the FOL2(𝔔>) sentence ∀x.∃y.>(f , f)(x, y), whose models always
contain an infinitely descending chain of f -values f0, f1, …associated to individuals d0, d1, …,
which means that their domain must be infinite.
In general, the abstract expressive power of FOL2(𝔇) is not contained in that of FOL2 and not

even in that of full first-order logic: indeed, the sentence𝜙up used in the proof of Theorem 7.16 is
contained in FOL2(𝔇), and so this logic does not have the upward Löwenheim-Skolem property.
We are further able to show that, if 𝔇 is additionally infinite, then reasoning in FOL2(𝔇) is
undecidable. Our undecidability proof is based on a reduction from the tiling problem [29].

Definition 7.19. A tiling problemP := (T ,H ,V) consists of a finite set T of tile types and binary
relations H ,V ⊆ T × T respectively called horizontal and vertical matching conditions. The
function 𝜋: ℕ × ℕ → T is a solution of P if for all i, j ∈ ℕ it holds that (𝜋(i, j), 𝜋(i + 1, j)) ∈ H
and (𝜋(i, j), 𝜋(i, j + 1)) ∈ V .

We show how to reduce the solvability of a tiling problem P to the satisfiability of a finite set
ΦP of FOL2(𝔇) sentences. The signature used to define ΦP contains a unary predicate At(x)
for every tile type t ∈ T , two binary predicatesH(x, y) and V (x, y)meant to capture the match-
ing conditions of P and four feature symbols fH , fV , gH and gV , which are used to enforce
a grid structure on the two predicates H and V . We assume that 𝜓=(x, y) is the quantifier-
free first-order formula expressing equality over𝔇 and define 𝜓=(f , g)(x, y) in the same way as
𝜙¬P (f1,… , fn)(x1,… ,xn) from 𝜙¬P (x1,… ,xn) in Section 7.2.
We add the following sentences to guarantee that every individual in a model of ΦP has a

horizontal and vertical match and exactly one tile type, and that horizontal and vertical matches

93

7 The Abstract Expressive Power of Logics with Concrete Domains

follow the matching conditions stated in the tiling problem:

∀x.∃y.H(x, y) ∧ ∀x.∃y.V (x, y) (mat)
∀x.(⋁

t∈T (At(x)) ∧ ⋀t≠t′∈T (¬At(x) ∨ ¬At′(x))) (til-T)
∀x, y.(H(x, y) → ⋁(t,t′)∈H(At(x) ∧At′(y))) (til-H)
∀x, y.(V (x, y) → ⋁(t,t′)∈V (At(x) ∧At′(y))) (til-V)

We add sentences that force the partial functions associated to fH , fV by an interpretation 𝔉 to
be total and the mapping x ↦ (f𝔉

H
(x), f𝔉

V
(x)) to be injective:

∀x.(Def(fH)(x) ∧ Def(fV)(x)), (tot)
∀x, y.(x = y ↔ (𝜓=(fH , fH)(x, y) ∧ 𝜓=(fV , fV)(x, y))) (inj)

We add a sentence that implicitly defines and constrains the values of gH , gV associated to a
given individual:

∀x.(¬𝜓=(fH , gH)(x,x) ∧ ¬𝜓=(fV , gV)(x,x)) (irr)

Finally, we relate the binary relationsH , V and the feature symbols:

∀x, y. H(x, y) ↔ (𝜓=(gV , gV)(x, y) ∧ 𝜓=(fV , fV)(x, y)
∧ 𝜓=(gH , fH)(x, y))

(fun-H)

∀x, y. V (x, y) ↔ (𝜓=(gH , gH)(x, y) ∧ 𝜓=(fH , fH)(x, y)
∧ 𝜓=(gV , fV)(x, y))

(fun-V)

We notice that in every abstract model ℐ of ΦP the binary relations Hℐ and V ℐ are functional
and irreflexive. Indeed, assume that 𝔉 is an interpretation of feature symbols s.t. (ℐ ,𝔉) is a
model of ΦP . If (x, y) ∈ Hℐ and (x, z) ∈ Hℐ then by (fun-H)

f𝔉
H
(y) = g𝔉

H
(x) = f𝔉

H
(z) and f𝔉

V
(y) = f𝔉

V
(x) = f𝔉

V
(z)

and so by (inj) we derive that y = z; combining the previous identities with (irr) and (inj), we
deduce that f𝔉

H
(x) ≠ f𝔉

H
(y) and so x ≠ y. Similarly, we show that V ℐ is functional and irreflex-

ive in every abstract model ℐ of ΦP . The last, crucial property enjoyed by the abstract models
of ΦP is that the horizontal and vertical matching relationsH and V commute.

Lemma 7.20. If ℐ is an abstract model of ΦP thenHℐ ∘ V ℐ and V ℐ ∘Hℐ coincide and are func-
tional.

Proof. If x ∈ I , let u, v, y, z ∈ I be those individuals that satisfy (x,u) ∈ Hℐ, (u, v) ∈ V ℐ,
(x, y) ∈ V ℐ and (y, z) ∈ Hℐ, whose existence and uniqueness is guaranteed by (mat) and our
previous observation. We show that v = z.
If (ℐ ,𝔉) is a model of ΦP , we obtain the following identities:

f𝔉
H
(v) = f𝔉

H
(u) = g𝔉

H
(x) = g𝔉

H
(y) = f𝔉

H
(z), (7.3)

f𝔉
V
(v) = g𝔉

V
(u) = g𝔉

V
(x) = f𝔉

V
(y) = f𝔉

V
(z). (7.4)

Thus, we conclude that z = v using (inj).

94

7 The Abstract Expressive Power of Logics with Concrete Domains

Now that we established the crucial properties of the abstract models of ΦP , we are ready to
show the correctness of the reduction.

Lemma 7.21. Let𝔇 be an infinite, jointly diagonal concrete domain. Then,ΦP is satisfiable iff P
has a solution.

Proof. Let ℐ be an abstract model of ΦP . We define the mapping 𝜋: ℕ × ℕ → I inductively,
as follows. First, let 𝜋(0, 0) be an arbitrary individual in I , which exists since this set must be
non-empty. Assuming that for i, j ∈ ℕ the value 𝜋(i, j) := x is defined, we define 𝜋(i + 1, j) as
the unique y ∈ I such that (x, y) ∈ Hℐ and 𝜋(i, j+1) as the unique z ∈ I such that (x, z) ∈ V ℐ.
Lemma 7.20 guarantees that 𝜋 is well-defined: indeed, the individual 𝜋(i+1, j+1) is supposed
to be both the uniqueHℐ-successor of 𝜋(i, j+1) and the unique V ℐ-successor of 𝜋(i, j+1), and
the lemma ensures that these are indeed the same elements. Clearly, for all i, j ∈ ℕ

(𝜋(i, j), 𝜋(i + 1, j)) ∈ Hℐ and (𝜋(i, j), 𝜋(i, j + 1)) ∈ V ℐ. (7.5)

Using 𝜋, we define 𝜋P : ℕ × ℕ → T so that 𝜋P (i, j) := t iff 𝜋(i, j) ∈ Aℐ
t . Then, the fact that ℐ

satisfies (til-T), (til-H) and (til-V) ensures that 𝜋P is a solution to the tiling problem P .
Next, let 𝜋 be a solution of P . We define the interpretation ℐ𝜋 with domain ℕ×ℕ as follows.

For each tile type t ∈ T , we set Aℐ𝜋
t as the set of elements (i, j) for which 𝜋(i, j) = t. For each

element (i, j) in the domain, we add ((i, j), (i + 1, j)) toHℐ𝜋 and ((i, j), (i, j + 1)) to V ℐ𝜋 .
Since 𝔇 is infinite, we can assume that there is an injective function h : ℕ → D. Using this

mapping, we set f𝔉
H
(i, j) := h(i), f𝔉

V
(i, j) := h(j), g𝔉

H
(i, j) := h(i+1) and g𝔉

V
(i, j) := h(j +1). It

is straightforward to verify that ℐ𝜋 is an abstract model of ΦP .

The problem of checking if a tiling problem has a solution is undecidable [29] and we thus
conclude that our decision problem is undecidable, too, as a consequence of Lemma 7.21.

Theorem 7.22. Let𝔇 be an infinite and jointly diagonal concrete domain. Then, the satisfiability
problem for the two-variable fragment of FOL(𝔇) is undecidable.

Summary

We introduced the notion of abstract expressive power of logics with concrete domains and estab-
lished sufficient conditions on the concrete domain that ensure that the resulting extensions of
FOL andALC satisfy (countable) compactness or other important first-order properties. We an-
alyzed abstract (non-)definability and leveraged some related results to derive (un-)decidability
results for several fragments of FOL(𝔇). These results are summarised in the following tables.

95

7 The Abstract Expressive Power of Logics with Concrete Domains

FOL(𝔇) ALC(𝔇)
𝔇 is strongly positive and homomorphism 𝜔-compact
Downward Löwenheim-Skolem yes yes
Countable Compactness yes yes
Upward Löwenheim-Skolem — yes
Craig Interpolation abstract —
𝔇 is strongly positive and unary
Abstract definability FOL (projective) ALC (projective)
Craig Interpolation abstract abstract
𝔇 is countably infinite and jointly diagonal
Abstract FOL-definability no no
Upward Löwenheim-Skolem no —

The table above lists the results obtained w.r.t. the first-order properties of FOL(𝔇) and
ALC(𝔇), according to what conditions on the concrete domain𝔇 are assumed.

𝔇 strongly positive and unary 𝔇 infinite and jointly diagonal
Satisfiability of GF2(𝔇) decidable —
Satisfiability of FOL2(𝔇) decidable undecidable
Satisfiability of 𝒞2(𝔇) decidable undecidable

This second table contains the (un-)decidability results derived in this chapter.

96

8 The Expressive Power of DLs with
Concrete Domains

The focus of Chapter 7 was on the comparison of the expressive power of logics with and with-
out concrete domain reasoning, through the usage of the notion of abstract expressive power.
In this section, instead, we focus solely on logics with concrete domains. First, we define a
notion of concrete bisimulation which also accounts for the presence of feature names and CD-
restrictions, unlike the bisimulations considered so far. We show how to apply concrete bisimu-
lations to show two types of non-expressivity results for DLs with concrete domains: the first is
concerned with concepts in two extensions ofALC where the concrete domains𝔇 and𝔇′ have
the same domain set, but different relations, while the second involves concepts in extensions
of ALC that use the same concrete domain, but different kinds of CD-restrictions. After that,
we characterize ALC(𝔇) as the fragment of FOL(𝔇) that is ℂ-invariant under concrete bisim-
ulation, where ℂ is a class of interpretations of NC, NR and NF that satisfies certain properties
similar to those investigated in Chapter 4.
This work contained in this chapter is based on unpublished material, which is currently

being prepared for a conference submission.

Back-and-forth with concrete domains. We turn our attention to the expressive power of
ALC(𝔇). Here, the back-and-forth conditions associated to a bisimulation can be less restrictive
are taken from the notion of ALC bisimulation (see Chapter 2). On the other hand, we must
account for the presence of CD-restrictions and add appropriate conditions over feature values
of an individual and its role successors. Thus, we propose the following notion of bisimulation
relating members of a class ℂ of interpretations of NC, NR and NF using the relations of the
concrete domain𝔇.

Definition 8.1. Let𝔇 be a concrete domain andℐ ,𝒥 interpretations ofNC,NR andNF that assign
elements of𝔇 to features from NF. The relation 𝜌 ⊆ Δℐ × Δ𝒥 is a𝔇 bisimulation between ℐ and
𝒥 if for allA ∈ NC, all r ∈ NR, all k-ary relations P of𝔇, and all feature paths p1,… , pk over NR
and NF:

atomic if (d, e) ∈ 𝜌 then d ∈ Aℐ iff e ∈ A𝒥;

forth if (d, e) ∈ 𝜌 and d′ ∈ rℐ(d), then there is e′ ∈ r𝒥(e) such that (d′, e′) ∈ 𝜌;

97

8 The Expressive Power of DLs with Concrete Domains

back if (d, e) ∈ 𝜌 and e′ ∈ r𝒥(e), then there is d′ ∈ rℐ(d) such that (d′, e′) ∈ 𝜌.

features if (d, e) ∈ 𝜌, then there is (v1,… , vk) ∈ PD with v1 ∈ pℐ1 (d), …, vk ∈ pℐ
k
(d) iff there is

(w1,… ,wk) ∈ PD with w1 ∈ p𝒥1 (e), …, wk ∈ p𝒥
k
(e).

Bisimilarity between individuals and ℂ-invariance w.r.t. 𝔇 bisimulation are defined similarly to
how it was done in Definition 4.2 w.r.t. Pr bisimulation.

A result analogous to Theorem 4.3 holds for ALC(𝔇) concepts if the concrete domain 𝔇 is
weakly closed under negation.

Theorem 8.2. If𝔇 is WCUN and ℂ is a class of interpretations of NC, NR and NF that assign ele-
ments of𝔇 to features fromNF, then everyALC(𝔇) concept is ℂ-invariant under𝔇 bisimulation.

Proof. The proof by structural induction on the conceptC proceeds like the one forALC in [22],
except for the cases where C is an CD-restriction. We only consider these cases explicitly here.
Thus, let 𝜌 be a𝔇 bisimulation between ℐ ,𝒥 with (d, e) ∈ 𝜌. We show that d and e satisfy the
same CD-restrictions.
If C := ∃p1,… , pk.P then d ∈ Cℐ implies the existence of v1 ∈ pℐ1 (d),…,vk ∈ pℐ

k
(d) such that

(v1,… , vk) ∈ PD. Since 𝜌 satisfies features, there must be w1 ∈ p𝒥1 (e), …, wk ∈ p𝒥
k
(e) such that

(w1,… ,wk) ∈ PD, hence e ∈ C𝒥. Similarly, we can show that e ∈ C𝒥 implies d ∈ Cℐ.
If C := ∀p1,… , pk.P , then d ∈ Cℐ implies that (v1,… , vk) ∈ PD holds for all values v1 ∈

pℐ1 (d), …, vk ∈ pℐ
k
(d). Since 𝔇 is WCUN, this holds iff there are relations P1, …, PnP

of 𝔇
such that (v1,… , vk) ∉ PD

i
for i = 1,… ,nP . Using the features condition of 𝜌, we deduce that

(w1,… ,wk) ∉ PD
i
holds for all w1 ∈ p𝒥1 (e), …, wk ∈ p𝒥

k
(e) and i = 1,… ,nP . By WCUN it

follows that (w1,… ,wk) ∈ PD
i
, and we conclude that e ∈ C𝒥. The proof of the other direction

is symmetric. Therefore, d and e satisfy the same CD-restrictions.

A non-expressivity result.

We can use the notion of𝔇 bisimulation to show thatALC(𝔇) cannot express certain concepts
of the DL ALC(𝔇′), where 𝔇′ has the same domain set as 𝔇, but different relations. Coming
back to the example in the introduction, we compare the expressive power of𝔔+1 and𝔔+2, both
having domain set ℚ, where the former has a binary relation +1 relating q ∈ ℚ and q + 1 (and
the complementary relation≠+1) and the latter has a binary relation+2 relating q and q+2 (and
the complementary relation ≠+2).
These two DLs have the same abstract expressive power. In fact, we can interchange CD-

restrictions using relations +1 and ≠+1 with restrictions of the same kind (existential or uni-
versal) using relations +2 and ≠+2 . Abstract models of a concept in one of these DLs are then
the same as of the corresponding concept in the other DL: in one direction, we just double the
feature values, and in the other we halve them. Nevertheless, we can show that their concrete
expressive power, which takes the feature values into account, is incomparable.

Proposition 8.3. Letℂ beℂall,ℂfb, orℂfin. There areALC(𝔔+1) concepts that are notℂ-equivalent
to anyALC(𝔔+2) concept (and vice versa).

Proof. First, consider theALC(𝔔+1) conceptC := ∃rf , rf .+1 and assume by contradiction that
it is ℂall-equivalent to someALC(𝔔+2) conceptD. Let us consider the interpretations ℐ and𝒥
depicted in Figure 8.2. Then, a ∈ Cℐ and by equivalence a ∈ Dℐ, while a1 ∉ C𝒥 and so

98

8 The Expressive Power of DLs with Concrete Domains

a

bc d

0

0−1 1

r
r r a1

b1 c1

0

−1 1

r
r

𝜌

𝜌 𝜌 𝜌

Figure 8.1: A concrete bisimulation 𝜌 between ℐ and𝒥 .

a1 ∉ D𝒥 by equivalence. This leads to a contradiction, since the relation 𝜌 between ℐ and𝒥 is
a𝔔+2 bisimulation relating a and a1, and by Theorem 8.2 this means that a ∈ Dℐ iff a1 ∈ D𝒥.
Therefore, we conclude thatC andD cannot be equivalent w.r.t. any class of interpretations that
contains the two interpretations of Figure 8.2. Vice versa, we showwith a similar argument that
∃rf , rf .+2 cannot be expressed inALC(𝔔+1).

We can also use 𝔇 bisimulations to show that some extended CD-restrictions cannot be
simulated by normal CD-restrictions. Here, we show that ALC(𝔔) is less expressive than its
extension ALCpp(𝔔) where we allow CD-restrictions of the form ∃p1,… , pk.𝜙(x1,… ,xk) with
𝜙(x1,… ,xk) a conjunction of atomic formulae P (y1,… , yn) where y1,… , yn ∈ {x1,… ,xk} and
P is a relation of𝔔.

Proposition 8.4. Let ℂ be the class of all interpretations. There are ALCpp(𝔔) concepts that are
not equivalent to anyALC(𝔔) concept.

Proof. Consider theALCpp(𝔔) conceptC := ∃rf , rf , rf .(x < y∧y < z) and assume by contra-
diction that it is ℂ-equivalent to some ALC(𝔔) concept D. Let us consider the interpretations
ℐ and 𝒥 depicted in Figure 8.2. Then, a ∈ Cℐ and by equivalence a ∈ Dℐ, while a1 ∉ C𝒥 and
so a1 ∉ D𝒥 by equivalence. This leads to a contradiction, since the relation 𝜌 between ℐ and𝒥
is a 𝔔 bisimulation relating a and a1 and by Theorem 8.2 this means that a ∈ Dℐ iff a1 ∈ D𝒥.
Therefore, we conclude that C andD are not ℂ-equivalent.

8.1 The Expressive Power of ALC(𝔇) w.r.t. FOL(𝔇)
Our characterization of ALC(𝔇) as the fragment of FOL(𝔇) that is invariant under 𝔇 bisim-
ulation mimics the corresponding result for ALC and propositional modal logic w.r.t. FOL as
proved by Rosen [92]. In particular, it re-uses most of the constructions and results employed
in Chapter 4 forALCSCC andALCQt. In the following, we assume that the concrete domain𝔇
is WCUN and has finitely many relations; both conditions are always satisfied by 𝜔-admissible
concrete domains.
Recall that Lemma 4.12 turned out to be an important model-theoretic tool in that approach

since it provided us with locality results for FOL formulae expressing ALCSCC concepts. The
corresponding result also holds for FOL(𝔇). Note that notions like finite disjoint union and the
corresponding notions of ℂ-invariance w.r.t. classes ℂ of interpretations of NC, NR and NF are
obtained by extending Definition 2.31 to account for feature names in the obvious way. We de-
fine ℓ-neighborhoods in interpretations of NC, NR and NF by using the same notion of distance
employed in Definition 4.10. This means that the distance of two individuals in an interpreta-
tion of this kind is not influenced by concrete domain predicates, but only by role names. The

99

8 The Expressive Power of DLs with Concrete Domains

corresponding notion of ℓ-locality of a FOL(𝔇) formula and of ℂ-invariance w.r.t. classes ℂ of
interpretations of NC, NR and NF are obtained by extending Definition 4.10 using this notion of
neighborhood. In particular, the extension of ℂall, ℂfb, and ℂfin to interpretations taking feature
names into account are defined in the obvious way, and these classes are localizable.

Lemma 8.5. If ℂ is localizable, then a FOL(𝔇) formula 𝜙(x) of quantifier depth q that is ℂ-
invariant under disjoint unions is ℓ-local w.r.t. ℂ for ℓ := 2q − 1.

Proof. We adopt the same transformation used in Chapter 7 and [17, 15] to map 𝜙(x) to a FOL
formula𝜙FOL(x) of the same quantifier depth andℐ ∈ ℂ to aFOL interpretationℐFOL. Formally,
we replace every atom P (f1,… , fk)(t1,… , tk) in 𝜙(x) with P f1,…,fk(t1,… , tk), where P f1,…,fk

is a fresh k-ary predicate symbol for all k-ary relations P of 𝔇 and all f1,… , fk ∈ NF, and
every atom of the form Def(f)(t) in 𝜙(x) with Deff (t) where Deff is a new predicate symbol
for f ∈ NF. No newly quantified variable is introduced in this transformation, and so 𝜙FOL(x)
has quantifier depth q, like 𝜙(x). We associate to ℐ ∈ ℂ an expansion ℐFOL by the following
interpretation of the newly introduced predicates:

• d ∈ (Deff)
ℐFOL

iff fℐ(d) is defined

• (d1,… , dk) ∈ (P f1,…,fk)ℐFOL iff (fℐ
1 (d1),… , fℐ

k
(dk)) ∈ PD.

We denote with ℂFOL the resulting class of interpretations. By the semantics of FOL(𝔇), we
obtain that for all FOL(𝔇) formula 𝜙(x), all ℐ ∈ ℂ and all d ∈ Δℐ

ℐ ⊧ 𝜙(d) iff ℐFOL ⊧ 𝜙FOL(d). (⋆)

We fix d ∈ Δℐ and consider the ℓ-neighborhood 𝒩 of d. Let ℳ be the disjoint union of
q copies ℐ1,… ,ℐq of ℐ and q copies 𝒩1,… ,𝒩q of 𝒩 . We define ℐ⋆ as the disjoint union of
ℐ0 := ℐ andℳ, and𝒩⋄ as the disjoint union of𝒩0 := 𝒩 andℳ. For each e ∈ Δℐ, i = 0,… , q
and j = 1,… , q we denote with (e,ℐi)⋆ the individual in ℐ⋆ corresponding to e ∈ Δℐi and with
(e,ℐj)⋄ the individual in𝒩⋄ corresponding to e ∈ Δℐj . Similarly, if e ∈ Δ𝒩 then we introduce
the notation (e,𝒩i)⋄ and (e,𝒩j)⋆.
Since ℂ is localizable, we deduce that ℐ⋆,𝒩⋄ ∈ ℂ. By ℂ-invariance under disjoint union of

𝜙(x) we obtain that

ℐ ⊧ 𝜙(d) iff ℐ⋆ ⊧ 𝜙((d,ℐ0)⋆) and 𝒩 ⊧ 𝜙(d) iff 𝒩⋄ ⊧ 𝜙((d,𝒩0)⋄),

and using (⋆) we observe that

ℐ⋆ ⊧ 𝜙((d,ℐ0)⋆) iff ℐFOL
⋆ ⊧ 𝜙FOL((d,ℐ0)⋆),

𝒩⋄ ⊧ 𝜙((d,𝒩0)⋄) iff 𝒩FOL
⋄ ⊧ 𝜙FOL((d,𝒩0)⋄).

We show that (d,ℐ0)⋆ and (d,𝒩0)⋄ are q-isomorphic. By Theorem 2.24, this implies that they
satisfy the same FOL formulae of quantifier depth at most q and in particular that

ℐFOL
⋆ ⊧ 𝜙FOL((d,ℐ0)⋆) iff 𝒩FOL

⋄ ⊧ 𝜙FOL((d,𝒩0)⋄),

which together with all our previous observations implies that ℐ ⊧ 𝜙(d) iff𝒩 ⊧ 𝜙(d), hence that
𝜙(x) is ℓ-local.

100

8 The Expressive Power of DLs with Concrete Domains

Note that in this case, a partial isomorphism p between ℐFOL
⋆ and𝒩FOL

⋄ must be defined not
only in terms ofNC andNR but also according to the newly introduced definedness and concrete
predicates:

ℐFOL
⋆ ⊧ Deff (e) iff 𝒩FOL

⋄ ⊧ Deff (p(e)) and
ℐFOL
⋆ ⊧ P f1,…,fk(e1,… , ek) iff 𝒩FOL

⋄ ⊧ P f1,…,fk(p(e1),… , p(ek))

must hold for all feature names f , f1,… , fk and e, e1,… , ek in ℐFOL
⋆ . Nevertheless, we consider

the distance of two individuals in ℐFOL
⋆ and𝒩FOL

⋄ as introduced in Definition 4.10, i.e. in terms
of elements connected by roles in NR and thus consider neighborhoods in ℐFOL

⋆ and𝒩FOL
⋄ ac-

cording to this notion of distance.
Following Otto’s construction in [86], we build a q-isomorphism I0,… , Iq such that for i =

0,… , q, p ∈ Iq−i and all elements e := (e′,𝒦)⋆ of ℐFOL
⋆ for which p is defined we have that,

having defined ℓi := (2q−i − 1), the ℓi-neighborhoods of e and p(e) are equal (up to renaming
of the elements) and in particular that p(e) = (e′,𝒦′)⋄, where 𝒦 and 𝒦′ are any of the interpre-
tations considered in the construction of ℐ⋆ and𝒩⋄. First, we set Iq := {{(d,ℐ0)⋆ ↦ (d,𝒩0)⋄}}.
Since𝒩 is assumed to be the ℓ-neighborhood of d in ℐ and ℓ = ℓ0, it is clear that the mapping
in Iq satisfies our requirement of equality of the neighborhoods. It is also trivial to see that this
is a partial isomorphism w.r.t. NC, NR and the newly introduced predicates, as a consequence
of the fact that fℐ(d) = f𝒩(d) holds for all f ∈ NF. Assuming that we have defined Iq−i with
0 ⩽ i < q, we show how to define Iq−(i+1) so that i-forth Definition 2.23 is satisfied.
Let p ∈ Iq−i and e an individual in ℐFOL

⋆ . We show how to define a mapping p′ that extends p
by adding a value p′(e) for e. First, we consider the case where every element e′ for which p(e′)
is defined has distance greater than ℓi+1+1 from e. If e is of the form (d′,𝒩j)⋆, we choose p′(e)
to be of the form (d′,𝒩k)⋄ for a value 1 ⩽ k ⩽ q such that no other element of the form (d″,𝒩k)⋄
is in the image of p. This is always possible, since𝒩⋄ contains q copies of𝒩 . Similarly, we treat
the case where e is of the form (d′,ℐj)⋆. Next, we consider the case where e has distance at
most ℓi+1 + 1 from some element e′ for which p(e′) is defined. By construction of Iq−i and the
fact that p ∈ Iq−i, we deduce that e′ and p(e′) have the same ℓi-neighborhoods up to renaming.
Assuming that e′ is of the form (d′,𝒦)⋆ with 𝒦 of the form ℐj or𝒩j , we know that e is of the
form (d″,𝒦)⋆. Moreover, we know that p(e′) is of the form (d″,𝒦′)⋄ with 𝒦′ of the form ℐj or
𝒩j , and we thus choose p′(e) to be (d″,𝒦′)⋄.
We verify that the ℓi+1-neighborhoods of e and p′(e) are equal. Since for all other elements

for which p′ is defined this is a trivial consequence of p ∈ Iq−i, this is sufficient to conclude that
p′ satisfies this property for all the individuals on which is it defined. We distinguish two cases.
In the first case, this is trivially a consequence of choosing the same individual w.r.t. the same
original interpretation (either𝒩 or ℐ). In the second case, we have chosen the same individual
(up to renaming) w.r.t. the identical ℓi-neighborhoods of two elements e′ and p(e′) and both
individuals have distance at most ℓi+1+1 from e′ and p(e′) (respectively), whichmeans that the
ℓi+1-neighborhoods of e and p′(e) are fully enclosed in the larger ℓi-neighborhoods of e′ and
p(e′) and thus are identical.
What is left is to prove that p′ is a partial isomorphismw.r.t. NC,NR and the newly introduced

predicates. It is clear that p′ is injective, because of the way we choose p′(e) and by inductive
hypothesis on p. It is also clear that, by this choice, e ∈ AℐFOL

⋆ iff p′(e) ∈ A𝒩FOL
⋆ holds for

all A ∈ NC. Since p is a partial isomorphism w.r.t. NC by inductive hypothesis this is suffi-
cient to conclude that p′ is a partial isomorphism w.r.t. NC. Next, we show that p′ is a partial
isomorphism w.r.t. NR. We notice that for all e′, e″ ∈ ℐFOL

⋆ the fact that (e, e′) ∈ rℐ
FOL
⋆ iff

101

8 The Expressive Power of DLs with Concrete Domains

(p′(e), p′(e′)) ∈ r𝒩
FOL
⋆ holds follows from the fact that in this case, e′ and e″ must have distance

1 ⩽ ℓi+1 in ℐFOL
⋆ , which means that the corresponding values of p′(e′) and p′(e″) also have

distance 1 and moreover are respectively equal to e′ and e″ up to renaming. Finally, we show
that p′ is a partial isomorphism w.r.t. the newly introduced predicates. By construction of𝒩 ,
𝒩⋄ and ℐ⋆ we know that f𝒩(e′) = fℐ(e′) for all e′ ∈ Δ𝒩 and all f ∈ NF. Using the defini-
tion of disjoint union, we then obtain that fℐ⋆((e′,𝒩j)⋆) = fℐ(e′) and f𝒩⋄((e′,𝒩k)⋄) = fℐ(e′)
for all j = 1,… , q and k = 0,… , q. Clearly, for all e′ ∈ Δℐ and all f ∈ NF it also holds that
fℐ⋆((e′,ℐk)⋆) = fℐ(e′) and f𝒩⋄((e′,𝒩j)⋄) = fℐ(e′) for j = 1,… , q and k = 0,… , q. In other
words, the feature values of each individual in ℐ and 𝒩 are duplicated over all copies. This
clearly implies that ℐFOL

⋆ ⊧ Deff (e) iff𝒩FOL
⋄ ⊧ Deff (p′(e)), and this property is already satisfied

for all other elements for which p′ is defined by inductive hypothesis on p. Finally, we show
that

ℐFOL
⋆ ⊧ P f1,…,fk(e1,… , ek) iff 𝒩FOL

⋄ ⊧ P f1,…,fk(p′(e1),… , p′(ek)) (†)
Assuming that ej = (e′

j
,𝒦j) for j = 1,… , k, we have that p′(ej) = (e′

j
,𝒦′

j) by construction of p′
and the inductive hypothesis on p. Combined with the above, we obtain that

ℐFOL
⋆ ⊧ P f1,…,fk(e1,… , ek) iff ℐ ⊧ P (f1,… , fk)(e′1,… , e′

k
)

and
𝒩FOL

⋄ ⊧ P f1,…,fk(p′(e1),… , p′(ek)) iff ℐ ⊧ P (f1,… , fk)(e′1,… , e′
k
)

so we conclude that (†) holds.
We thus showed that p′ is a partial isomorphism, and that Iq−(i+1) satisfies the i-forth condi-

tion. Similarly, we show how to use p ∈ Iq−i and e′ ∈ 𝒩FOL
⋄ to add a partial isomorphism p′ to

Iq−(i+1) such that p′(e) = e′ for some e ∈ ℐFOL
⋆ , and therefore prove that Iq−i satisfies the i-back

condition. Overall, we conclude that I0,… , Iq is a q-isomorphism.
As mentioned in the first part of the proof, this implies that ℐ ⊧ 𝜙(d) iff𝒩 ⊧ 𝜙(c) and thus

that 𝜙(x) is ℓ-local w.r.t. ℂ.

In the following, we assume that the concrete domain 𝔇 is WCUN and has finitely many
relations; both conditions are always satisfied by 𝜔-admissible concrete domains [79, 24]. Fol-
lowing the approach employed in the previous section, we introduce a bounded version of 𝔇
bisimulation, where now only the depth is bounded since there are no cardinality constraints.

Definition 8.6. Letℐ ,𝒥 be interpretations ofNC,NR andNF and ℓ ∈ ℕ. The relation 𝜌 ⊆ Δℐ×Δ𝒥

is a𝔇 0-bisimulation if 𝜌 satisfies the atomic condition of Definition 8.1 and for all k-ary relations
P of𝔇 and f1,… , fk ∈ NF:

values if (d, e) ∈ 𝜌 then (fℐ
1 (d),… , fℐ

k
(d)) ∈ PD iff (f𝒥

1 (e),… , f𝒥
k
(e)) ∈ PD.

The relation 𝜌 is a𝔇 (ℓ+1)-bisimulation if it is a𝔇 ℓ-bisimulation that additionally satisfies the
features conditions of Definition 8.1, and for all r ∈ NR the following are satisfied:

ℓ-forth if (d, e) ∈ 𝜌 and d′ is a r-successor of d, then there exist a r-successor e′ of e and a 𝔇
ℓ-bisimulation 𝜌′ such that (d′, e′) ∈ 𝜌′;

ℓ-back if (d, e) ∈ 𝜌 and e′ is a r-successor of e, then there exist a r-successor d′ of d and a 𝔇
ℓ-bisimulation 𝜌′ such that (d′, e′) ∈ 𝜌′.

102

8 The Expressive Power of DLs with Concrete Domains

The notions of bisimilarity and ℂ-invariance w.r.t. 𝔇 ℓ-bisimulation are defined similarly to how
it was done in Definition 4.2.

We show that, under the assumption that the concrete domain 𝔇 is WCUN and has finitely
many relations, results analogous to Proposition 4.11, Corollary 4.13, Theorem 4.14, Proposi-
tion 4.16 and Theorem 4.18 also hold for FOL(𝔇) and ALC(𝔇), where ALC(𝔇) plays both the
role of ALCSCC and of ALCQt. Since we can prove that every FOL(𝔇) formula that is ℂ-
invariant under 𝔇 bisimulation is ℂ-invariant under finite disjoint unions similarly to what
is done in Proposition 4.11 for FOL formulae w.r.t. Pr bisimulation, we obtain the following
corollary which is analogous to Corollary 4.13.

Corollary 8.7. Ifℂ is localizable, a FOL(𝔇) formula 𝜙(x) of quantifier depth q that isℂ-invariant
under𝔇 bisimulation is ℓ-local w.r.t. ℂ for ℓ := 2q − 1.

We obtain the notions of tree and partial unravelling to interpretations of NC, NR and NF by
extending Definition 4.15 to feature names in the obvious way. For trees of depth ℓ, the corre-
sponding version of Theorem 4.14 for 𝔇 ℓ-bisimulation is simplified to the following, where
q-isomorphism is replaced by𝔇 bisimilarity.

Lemma 8.8. If ℐ ,𝒥 are trees of depth ℓ with roots d, e that are𝔇 ℓ-bisimilar, then these roots are
𝔇 bisimilar.

Proof. We show that a 𝔇 ℓ-bisimulation 𝜌 between d and e induces a 𝔇 bisimulation 𝜌′ such
that if (d′, e′) ∈ 𝜌′ then d′ and e′ have the same distance 0 ⩽ ℓ′ ⩽ ℓ from d and e and are 𝔇
(ℓ − ℓ′)-bisimilar.
We begin by setting 𝜌′ := {(d, e)}. Clearly, the tuple (d, e) satisfies the property above with

ℓ′ = 0. Assuming that (d′, e′) ∈ 𝜌′ are 𝔇 (ℓ − ℓ′)-bisimilar, for every r-successor d″ of d′ we
add to 𝜌′ a tuple (d″, e″) where e″ is an r-successor of e′ that is𝔇 (ℓ − (ℓ′ + 1))-bisimilar to d″.
This is always possible: if ℓ′ < ℓ then this is guaranteed by the (ℓ − ℓ′)-forth condition, and if
ℓ′ = ℓ then d′ has no r-successors in ℐ and so the above is vacuously true. In the first, both d″

and e″ have distance ℓ′ + 1 ⩽ ℓ from d and e. Similarly, for every r-successor e″ of e′ we add to
𝜌′ a tuple (d″, e″) where d″ is an r-successor of d′ that is𝔇 (ℓ − (ℓ′ + 1))-bisimilar to e″.
We show that the relation 𝜌′ obtained by exhaustively repeating the process above for ℓ′ =

0,… , ℓ is a 𝔇 bisimulation. Since (d′, e′) ∈ 𝜌′ implies that d′ and e′ are 𝔇 ℓ′-bisimilar with
ℓ′ ⩾ 0, it clearly holds that 𝜌′ satisfies the atomic condition. By construction of 𝜌′, the forth and
back conditions are also clearly satisfied. To see that features is satisfied by 𝜌′, let p1,… , pk be
feature paths over NR and NF. If pi = fi holds for i = 1,… , k, then the values condition of 𝔇
ℓ-bisimulations applied to d′ and e′ implies that features is satisfied for p1, …, pk. Otherwise,
pi = rifi holds for some 1 ⩽ i ⩽ k. If (v1,… , vk) ∈ PD with v1 ∈ pℐ1 (d′), …, vk ∈ pℐ

k
(d′) then d′

has some role successors, which means d′ and e′ are𝔇 ℓ′-bisimilar with ℓ′ > 0 and so we use
the features property of𝔇 ℓ′-bisimulation to derive that there are w1 ∈ p𝒥1 (e′), …, wk ∈ p𝒥

k
(e′)

such that (w1,… ,wk) ∈ PD. The other implication is proved similarly, and we conclude that
𝜌′ satisfies the features property. Therefore, 𝜌′ is a𝔇 bisimulation.

Similar to the case of Pr (q,ℓ)-bisimulation and q-isomorphism in Corollary 4.17, we obtain
the following for𝔇 ℓ-bisimulation on trees of depth ℓ.

Corollary 8.9. Ifℂ is closed under partial unravelling and ℐ ,𝒥 ∈ ℂ contain d ∈ Δℐ, e ∈ Δ𝒥 that
are𝔇 ℓ-bisimilar, then ⟨d⟩ ∈ Δℐℓ and ⟨e⟩ ∈ Δ𝒥ℓ satisfy the same ℓ-local FOL(𝔇) formulae 𝜙(x)
that are ℂ-invariant under𝔇 bisimulation.

103

8 The Expressive Power of DLs with Concrete Domains

By adapting the proof of Theorem4.18 to useCorollary 8.9 instead of Corollary 4.17 andCorol-
lary 8.7 instead of Corollary 4.13, we obtain the following analogous of Theorem 4.18 for 𝔇
bisimulation.
Theorem 8.10. Let ℂ be localizable and closed under partial unravelling. Then, a FOL(𝔇) for-
mula 𝜙(x) is ℂ-invariant under 𝔇 bisimulation iff it is ℂ-invariant under 𝔇 ℓ-bisimulation for
some value of ℓ.
To conclude, wewill show that forFOL(𝔇) formulae𝜙(x)ℂ-invariance under𝔇 ℓ-bisimulation

implies ℂ-equivalence to someALC(𝔇) concept C, where C is in particular a concept of depth
ℓ. Similarly to what was done earlier forALCQt, we defineALC(𝔇)ℓ as the subset ofALC(𝔇)
whose concepts have nesting level at most ℓ, where the depth of a CD-restriction ∃p1,… , pk.P
is 1 if pi = rifi for some i = 1,… , k and 0 otherwise. As in the case of ALCQtq,ℓ we observe
thatALC(𝔇)ℓ is finite, up to ℂ-equivalence.
Proposition 8.11. If𝔇 has finitely many relations and NC, NR, NF are finite, thenALC(𝔇)ℓ has
finitely many concepts (up to ℂ-equivalence) for all ℓ ∈ ℕ.
Proof. If NC, NR and NF are finite then there are only finitely many k-tuples of feature paths
over NR and NF for all values of k; since𝔇 has finitely many relations, this means that there are
only finitely many CD-restrictions inALC(𝔇)ℓ.
We prove that our claimholds by induction over ℓ. For ℓ = 0, this trivially holds becauseNC is

finite and by our observation regarding CD-restrictions. For the inductive step, we assume that
the claim holds for ℓ and show that the same applies for ℓ + 1. Every concept in ALC(𝔇)ℓ+1
is a Boolean combination of CD-restrictions,ALC(𝔇)ℓ concepts and role restrictions ∃r.C with
r ∈ NR and C a ALC(𝔇)ℓ concept. By inductive hypothesis, there can be only finitely many
role restrictions of this form and ALC(𝔇)ℓ concepts (up to ℂ-equivalence). Together with our
observation above on the number of CD-restrictions, we deduce that there can only be finitely
many non-equivalent Boolean combinations of the described form. Therefore, we conclude that
the claim holds forALC(𝔇)ℓ+1.
Moreover, under our assumptions on 𝔇, we obtain the invariance of ALC(𝔇)ℓ under 𝔇 ℓ-

bisimulation.
Proposition 8.12. If 𝔇 is WCUN and has finitely many relations, then ALC(𝔇)ℓ concepts are
invariant under𝔇 ℓ-bisimulation.
It is again possible, as in the case of Pr (q,ℓ)-bisimulation and ALCQtq,ℓ, to define a charac-

teristic ℓ-concept in ALC(𝔇)ℓ that describes all individuals that are 𝔇 ℓ-bisimilar to d ∈ Δℐ.
Assuming that 𝐟ℐ(d) := (fℐ

1 (d),… , fℐ
k
(d)) with f1,… , fk ∈ NF and that p1,… , pk are feature

paths over NR, NF we define

Values∃[d] := ⨅{∃f1,… ,fk.P | 𝐟ℐ(d) ∈ PD}
Values∀[d] := ⨅{∀f1,… ,fk.P | if fℐ

1 (d),… ,fℐ
k
(d) are defined then 𝐟ℐ(d) ∈ PD}

Features∃[d] := ⨅{∃p1,… ,pk.P | some tuple in pℐ1 (d) ×⋯ × pℐ
k
(d) is in PD}

Features∀[d] := ⨅{∀p1,… ,pk.P | every tuple in pℐ1 (d) ×⋯ × pℐ
k
(d) is in PD}

By Proposition 8.11, these concepts are well-defined. Next, we define

Forthℓ[d] := ⨅
r∈NR

⨅
e∈rℐ(d)∃r.Bisimℓ[e]

Backℓ[d] := ⨅
r∈NR

∀r.(⨆
e∈rℐ(d)Bisimℓ[e])

104

8 The Expressive Power of DLs with Concrete Domains

and finally introduce the concepts

Bisim0[d] := Values∃[d] ⊓ Values∀[d] ⊓ Atomic[d]
Bisimℓ+1[d] := Bisimℓ[d] ⊓ Features∃[d] ⊓ Features∀[d] ⊓ Forthℓ[d] ⊓ Backℓ[d]

where the concept Atomic[d] is defined as in Definition 4.24.

Theorem 8.13. If 𝔇 is WCUN and has finitely many relations and NC, NR, NF are finite then
d ∈ Δℐ, e ∈ Δ𝒥 are𝔇 ℓ-bisimilar iff they satisfy the sameALC(𝔇)ℓ concepts.
Proof. The proof is similar to that of Theorem 4.25, where we additionally need to test that
𝜌ℓ := {(d, e) ∈ Δℐ × Δ𝒥 | e ∈ (Bisimℓ[d])𝒥} satisfies the values condition and additionally the
features condition if ℓ > 0. To prove that 𝜌ℓ satisfies values, assume that for f1,… , fk ∈ NF and
a k-ary relation P of 𝔇 it holds that (fℐ

1 (d),… , fℐ
k
(d)) ∈ PD. Then, ∃f1,… , fk.P is a conjunct

of Values∃[d], and since e ∈ Bisimℓ[d]𝒥 we derive that (f𝒥
1 (e),… , f𝒥

k
(e)) ∈ PD. Vice versa, if

(fℐ
1 (d),… , fℐ

k
(d)) ∉ PD, then by WCUN we find k-ary predicates P1, …, PnP

such that if fℐ
j
(d)

is defined for j = 1,… , k then (fℐ
1 (d),… , fℐ

k
(d)) ∈ PD

i
holds for some 1 ⩽ i ⩽ nP . This means

that∀f1,… , fk.Pi is a conjunct ofValues∀[d]. Then, either f𝒥
j
(e) is undefined for some 1 ⩽ j ⩽ k

or (f𝒥
1 (e),… , f𝒥

k
(e)) ∈ PD

i
holds, and by WCUN this implies that (f𝒥

1 (e),… , f𝒥
k
(e)) ∉ PD. We

conclude that 𝜌ℓ satisfies values. Similarly, we verify that 𝜌ℓ satisfies features if ℓ > 0, taking
care of replacing tuples f1,… , fk ∈ NF with tuples p1,… , pk of feature paths and replacing
Values∃[d], Values∀[d] with Features∃[d], Features∀[d].

Similarly to the proof of Theorem 4.18, these results can be combined to show the following
characterization ofALC(𝔇) as the fragment of FOL(𝔇) that is invariant under𝔇 bisimulation.

Theorem 8.14. Let ℂ be localizable and closed under partial unravelling,𝔇 be WCUN and have
finitely many relations, andNC,NR,NF be finite. Then the following are equivalent for all FOL(𝔇)
formulae 𝜙(x):

1. 𝜙(x) is ℂ-invariant under𝔇 bisimulation;

2. 𝜙(x) is ℂ-invariant under𝔇 ℓ-bisimulation for some ℓ ∈ ℕ;

3. 𝜙(x) is equivalent to anALC(𝔇) concept.
Recall that, in contrast to the case of ALCSCC, where there are concepts that are not FOL-

definable, everyALC(𝔇) concept is FOL(𝔇)-definable.

8.2 The Expressive Power of ALC∨+(𝔇) and ALCfo(𝔇)
The notion of 𝔇 bisimulation we introduced is tailored to the expressive power of ALC(𝔇),
where CD-restrictions can only be the form ∃p1,… , pk.P or ∀p1,… , pk.P . Here, we consider
several variants of the notion of 𝔇 bisimulation, and show how they reflect the different ex-
pressivity of the constraints that are allowed in CD-restrictions in the DLsALC(𝔇),ALC∨+(𝔇)
andALCfo(𝔇). They are defined as follows.
Definition 8.15. Let ℐ ,𝒥 be interpretations ofNC,NR andNF and q ∈ ℕ. If p1, …, pk are feature
paths over NR, NF and P1,… ,Pn are k-ary relations of𝔇, a𝔇 bisimulation 𝜌 between ℐ and 𝒥
(cf. Definition 8.1) is

105

8 The Expressive Power of DLs with Concrete Domains

a

bc d

0

0−1 1

r
r r a1

b1 c1

0

−1 1

r
r

𝜌

𝜌 𝜌 𝜌

Figure 8.2: A concrete bisimulation 𝜌 between ℐ and𝒥 .

combined if (d, e) ∈ 𝜌 implies that there is (v1,… , vk) ∈ PD
j
with v1 ∈ pℐ1 (d), …, vk ∈ pℐ

k
(d) and

j = 1,… ,n iff there is (w1,… ,wk) ∈ PD
j
with w1 ∈ p𝒥1 (e), …, wk ∈ p𝒥

k
(e) and j = 1,… ,n;

q-isomorphic if (d, e) ∈ 𝜌 implies that for all k ⩽ q and for all v1 ∈ pℐ1 (d), …, vk ∈ pℐ
k
(d) there

are w1 ∈ p𝒥1 (e), …, wk ∈ p𝒥
k
(e) such that the mapping vi ↦ wi for i = 1,… , k is a partial

isomorphism (and vice versa).

Combined 𝔇 bisimulation and ALC∨+(𝔇)
We recall that ALC∨+(𝔇) is the extension of ALC introduced in [79] with CD-restrictions of
the form ∃p1,… , pk.𝜙 or ∀p1,… , pk.𝜙 where 𝜙 is a disjunction of k-ary predicates Pi(x1,… ,xk)
with i = 1,… ,n. In the setting of that paper, where 𝔇 is assumed to 𝜔-admissible and thus
JEPD, these restrictions do not increase the expressive power compared to ALC(𝔇). Indeed,
∃p1,… , pk.𝜙 is equivalent to the disjunction of all restrictions ∃p1,… , pk.Pi with i = 1,… ,n,
while ∀p1,… , pk.𝜙 is equivalent to ¬∃p1,… , pk.𝜙′ where 𝜙′ is the disjunction of all k-ary predi-
cates that do not occur in 𝜙.
On the other hand, we can find concrete domains𝔇 that are WCUN and not JEPD and such

thatALC∨+(𝔇) is strictly more expressive thanALC(𝔇).
Here, we consider the concrete domain 𝔔ord := (ℚ,<,⩽,⩾,>) with the set of rational num-

bers as domain and standard binary ordering relations, which is WCUN and not JEPD.

Proposition 8.16. There is anALC∨+(𝔔ord) concept that is notℂfin-equivalent to anyALC(𝔔ord)
concept.

Proof. Consider theALC∨+(𝔔ord) concept C := ∀f , rf .(<(x, y) ∨>(x, y)) and assume that C is
ℂfin-equivalent to someALC(𝔔ord) conceptC′. Using the finite interpretations ℐ and𝒥 in Fig-
ure 8.2, which are related by a 𝔇 bisimulation 𝜌, and the fact that (a, a1) ∈ 𝜌, we deduce
by Theorem 8.2 that a ∈ C′ℐ iff a1 ∈ C′𝒥. This contradicts our assumption that C and C′ are
equivalent, because a ∉ Cℐ, while a1 ∈ C𝒥.

InALC∨+(𝔇)we gain additional expressivity thanks to the presence of disjunctions of atomic
predicates of the same arity over the same tuple. If𝔇 isWCUN, then combined𝔇 bisimulations
address the fact that unsatisfied universal CD-restrictions in this DL are witnessed by a tuple of
values, associated to feature paths, that belongs to the intersection of one or more relations.

Proposition 8.17. If 𝔇 is WCUN, then every ALC∨+(𝔇) concept is ℂ-invariant under combined
𝔇 bisimulation.

106

8 The Expressive Power of DLs with Concrete Domains

a

b
1

2

r

a1

b1
1

3

r

𝜌

𝜌

Figure 8.3: A combined𝔇 bisimulation 𝜌 between ℐ and𝒥 where the concrete domain is𝔑.

Proof. The cases for concepts names, concept negation and conjunction as well as existen-
tial CD-restrictions ∃p1,… , pk.𝜙 are equal to the ones in Theorem 8.2. This last case is al-
ready covered, because we can distribute the disjunction of relations over the existential CD-
restriction ∃p1,… , pk.𝜙 and obtain a ℂ-equivalent concept that is a disjunction of simple CD-
restrictions ∃p1,… , pk.P . Thus, we only need to show that universal CD-restrictions of the form
∀p1,… , pk.𝜙with 𝜙 := ⋁n

i=1 Pi(x1,… ,xk) areℂ-invariant under combined𝔇 bisimulation. Let
𝜌 be a combined𝔇 bisimulation with (d, e) ∈ 𝜌.
If d ∉ (∀p1,… , pk.𝜙)ℐ then there are v1 ∈ pℐ1 (d), …, vk ∈ pℐ

k
(d) such that (v1,… , vk) ∉ PD

i

for i = 1,… ,n. Since𝔇 is WCUN, we can find k-ary relations P ′
1 , …, P

′
n such that (v1,… , vk) ∈

(P ′
i
)D for i = 1,… ,n. Given that 𝜌 is a concrete ∨+-bisimulation, we can find w1 ∈ p𝒥1 (e), …,

wk ∈ p𝒥
k
(e) such that (w1,… ,wk) ∈ P ′

i

D and thus (w1,… ,wk) ∉ PD
i
for i = 1,… ,n, hence e ∉

(∀p1,… , pk.𝜙)𝒥. Likewise, we show that e ∉ (∀p1,… , pk.𝜙)𝒥 implies d ∉ (∀p1,… , pk.𝜙)ℐ.

q-isomorphic bisimulation and ALCfo(𝔇)
TheDLALCq

fo(𝔇) extendsALC by allowingCD-restrictions∃p1,… , pk.𝜙 and∀p1,… , pk.𝜙where
𝜙 is a FOL formula over the relations of𝔇with k ⩽ q free variables. Then,ALCfo(𝔇) [24] is the
union of all DLsALCq

fo(𝔇) with q ∈ ℕ. Earlier, we showed that for JEPD structures𝔇 the DLs
ALC(𝔇) and ALC∨+(𝔇) have the same expressive power. Here, we show that this is not the
case forALC∨+(𝔇) andALCfo(𝔇), by looking at the JEPD concrete domain𝔑 := (ℕ,<,=,>).

Proposition 8.18. There exists aALCfo(𝔑) concept that is not ℂfin-equivalent to anyALC∨+(𝔑)
concept.

Proof. Consider theALCfo(𝔑) concept (we use infix notation to ease the reading experience)

C := ∀f , rf . (x < y → ∃z. (x < y ∧ y < z))

and assume that C is ℂfin-equivalent to some ALC∨+(𝔑) concept C′. Let ℐ and 𝒥 be the two
interpretations depicted in Figure 8.3. Given that the relation 𝜌 relating ℐ and𝒥 is a combined
𝔇 bisimulation that relates a and a1, we infer from Proposition 8.17 that a ∈ (C′)ℐ iff a1 ∈
(C′)𝒥. This contradicts our assumption that C and C′ are ℂfin-equivalent, because a ∉ Cℐ but
a1 ∈ C𝒥.

If we consider two finite and isomorphic substructures 𝔇1 and 𝔇2 of a concrete domain 𝔇,
then we know that they satisfy the same quantifier-free first-order formulae over the relations
of 𝔇. This implies that the partial isomorphism enforced by a isomorphic 𝔇 bisimulation 𝜌
with (d, e) ∈ 𝜌 between the tuple (v1,… , vk) and (w1,… ,wk) is enough to ensure that d and
e satisfy the same CD-restrictions ∃p1,… , pk.𝜓(x1,… ,xk) and ∀p1,… , pk.𝜓(x1,… ,xk) where

107

8 The Expressive Power of DLs with Concrete Domains

𝜓(x1,… ,xk) is quantifier-free. However, this condition alone is not sufficient to cover CD-
restrictions of the form above where 𝜓(x1,… ,xk) contains quantified variables. If we assume
𝔇 to be homogeneous (cf. Chapter 6), though, this turns out to be all we need to capture the full
expressive power ofALCq

fo(𝔇).

Theorem8.19. If𝔇 is homogeneous, then everyALCq

fo(𝔇) concept isℂ-invariant under q-isomorphic
ALC(𝔇) bisimulation.

Proof. Similarly to the proof of Theorem 8.2, we only need to show that if 𝔇 is homogeneous
and 𝜌 is a isomorphic 𝔇 bisimulation between ℐ ,𝒥 ∈ ℂ with (d, e) ∈ 𝜌 then d and e sat-
isfy the same existential and universal CD-restrictions in ALCq

fo(𝔇). Clearly, ∀p1,… , pk.𝜙 and
¬∃p1,… , pk. ¬𝜙 are ℂ-equivalent, and thus we only need to show that d and e satisfy the same
existential CD-restrictions.
If d ∈ (∃p1,… , pk. 𝜙)ℐ with k ⩽ q, then there are v1 ∈ pℐ1 (d), …, vk ∈ pℐ

k
(d) with k ⩽ q

such that (v1,… , vk) ∈ 𝜙D. Since 𝜌 is a q-isomorphic 𝔇 bisimulation, there are w1 ∈ p𝒥1 (e),
…, wk ∈ p𝒥

k
(e) such that the mapping h : vi ↦ wi for i = 1,… , k acts as a partial isomorphism.

Since𝔇 is homogeneous, this implies that h can be extended to an isomorphism from𝔇 to itself.
Every first-order formula is invariant under isomorphisms from a structure to itself: therefore,
(w1,… ,wk) ∈ 𝜙D holds, and we obtain that e ∈ (∃p1,… , pk. 𝜙)𝒥. Likewise, we show that
d ∈ (∃p1,… , pk. 𝜙)ℐ if e ∈ (∃p1,… , pk. 𝜙)𝒥 and conclude that d and e satisfy the same existential
CD-restrictions in ALCq

fo(𝔇). We conclude that every ALCq

fo(𝔇) concept is ℂ-invariant under
q-isomorphic𝔇 bisimulation.

Relating variants of concrete bisimulation

In Theorem 8.14 we characterizedALC(𝔇) as the fragment of FOL(𝔇) that isℂ-invariant under
𝔇 bisimulation, under some assumptions on NC, NR, NF, on the class ℂ of interpretations and
on𝔇. In particular, we assumed𝔇 to be WCUN abd have only finitely many relations.
Instead of repeating the same procedure forALC∨+(𝔇) andALCq

fo(𝔇), we provide results that
we can use to lift Theorem 8.14 to the more expressive settings by choosing an appropriate con-
crete domain𝔇′, derived from𝔇 and with the same domain set, and characterize ℂ-invariance
under combined or isomorphic 𝔇 in terms of ℂ-invariance under 𝔇′ bisimulation. Then, the
fact thatALC(𝔇′) is the fragment of FOL(𝔇′) that is ℂ-invariant under𝔇′ bisimulation implies
thatALC∨+(𝔇) is the fragment of FOL(𝔇) that is ℂ-invariant under combined𝔇 bisimulation
and thatALCq

fo(𝔇) is the fragment that is ℂ-invariant under q-isomorphic𝔇 bisimulation.
Let𝔇 be a homogeneous concrete domainwhose domain set is countable and that has finitely

many relations. We recall that a k-ary relation P is FOL-definable over𝔇 iff there is a first-order
formula 𝜓 over the relations of𝔇 and with k free variables such that PD = 𝜓D. Clearly, if𝔇 has
finitely many relations, then for every k ∈ ℕ there are only finitely many k-ary relations that
we can define with a quantifier-free FOL formula over𝔇. If𝔇 is in addition homogeneous, the
following result guarantees that the same holds even for relations that are defined by formulae
with quantified variables. This is a combination of well-known results from model theory as
described in [24] (Theorem 3 and 4).

Theorem 8.20 ([24]). A countable relational structure 𝔇 with a finite signature is homogeneous
iff it admits quantifier elimination and for all k ∈ ℕ there are only finitely many k-ary relations
that are first-order definable over𝔇.

108

8 The Expressive Power of DLs with Concrete Domains

Motivated by these results, we introduce the following concrete domain extensions by defin-
able relations.

Definition 8.21. A partial k-orbit over a concrete domain𝔇 is a non-empty setO of k-ary relations
of 𝔇. Every partial k-orbit induces a k-ary relation RO over 𝔇 defined as RD

O
:= ⋂

R∈O RD.
If 𝔇 has finitely many relations, the orbital decomposition of 𝔇 is the structure 𝔇o obtained by
replacing all relations over 𝔇 with all relations RO that are induced by a partial k-orbit O over
𝔇 with k ∈ ℕ. Given q ∈ ℕ, the first-order q-expansion of 𝔇 is the structure 𝔇q

FOL obtained by
expanding𝔇 with all first-order definable k-ary relations over𝔇 with k ⩽ q.

Thanks to Theorem 8.20, we obtain that these transformations preserve finiteness of the set
of concrete domain relations and WCUN.

Corollary 8.22. Let𝔇 beWCUNandhave finitelymany relations. Then, the orbital decomposition
of 𝔇 is WCUN and has finitely many relations. If 𝔇 is additionally homogeneous, then the FOL
q-expansion of𝔇 is WCUN and has finitely many relations for all q ∈ ℕ.

Proof. In the first case, wemust prove that𝔇o isWCUN. LetR be a k-ary relation of𝔇o, induced
by some partial k-orbit O = {R1,… ,Rm} over𝔇. Then, (d1,… , dk) ∉ RDo iff (d1,… , dk) ∉ RD

i

for i = 1,… ,m. Since 𝔇 is WCUN, (d1,… , dk) ∉ RD
i
happens iff there are k-ary relations

R1
i
,…,Rni

i
of 𝔇 such that (d1,… , dk) ∈ ⋃ni

j=1(R
j
i
)D. Thus, (d1,… , dk) ∉ RDo iff (d1,… , dk) ∈

⋂m

i=1⋃
ni

j=1(R
j
i
)D. By distributing set intersection over set union, we obtain that (d1,… , dk) is

in the union of sets of the form (R′
1)D ∩ ⋯ ∩ (R′

n)D, each of which corresponds to the orbit
O′ := {R′

1,… ,R′
n}. If O1, …, On are these k-ary orbits, then (d1,… , dk) ∈ (RO1 ∨ ⋯ ∨ ROn

)D
holds, which means that RO1 , …, ROn

represent the complement of RO.
In the second case, it is clear that every k-ary relation R𝜙 of𝔇q

FOL induced by a FOL formula
𝜙(x1,… ,xk) has a complementary k-ary relation Rc

𝜙 defined by ¬𝜙(x1,… ,xk).
Finally, the finiteness of the relation sets for the two concrete domains has been discussed

above.

We are now ready to prove the relation between ℂ-invariance under variants of concrete
bisimulation w.r.t. to𝔇, its orbit decomposition and its first-order q-expansion.
Theorem8.23. Letℂ be a class of interpretations ofNC,NR andNF and𝔇 beWCUN. The following
hold for every FOL(𝔇) formula 𝜙(x):

1. 𝜙(x) is ℂ-invariant under combined 𝔇 bisimulation iff it is ℂ-invariant under 𝔇o bisimu-
lation;

2. if 𝔇 is homogeneous, then 𝜙(x) is ℂ-invariant under q-isomorphic 𝔇 bisimulation iff it is
ℂ-invariant under𝔇fo bisimulation.

Proof. First, we show that a binary relation 𝜌 between interpretations ℐ and 𝒥 is a combined
𝔇 bisimulation iff it is a 𝔇o bisimulation. Let 𝜌 be a 𝔇o bisimulation and (d, e) ∈ 𝜌. We
consider the k-ary relations P1, …, Pn over 𝔇. Then, there are v1 ∈ pℐ1 (d), …, vk ∈ pℐ

k
(d) such

that (v1,… , vk) ∈ PD
i
for i = 1,… ,n iff (v1,… , vk) ∈ RDo

O
, where RO is the k-ary relation

induced by the partial k-orbit O := {P1,… ,Pn}. Since 𝜌 is a 𝔇o bisimulation, this happens iff
there are values w1 ∈ p𝒥1 (e), …, wk ∈ p𝒥

k
(e) such that (w1,… ,wk) ∈ RDo

O
, which holds iff

(w1,… ,wk) ∈ PD
i
for i = 1,… ,n. Therefore, 𝜌 is a combined 𝔇 bisimulation. Similarly, we

prove that if 𝜌 is a combined𝔇 bisimulation then it is a𝔇o bisimulation.

109

8 The Expressive Power of DLs with Concrete Domains

Next, we show that 𝜌 is a q-isomorphic𝔇 bisimulation iff it is a𝔇q

FOL bisimulation. Let 𝜌 be
a 𝔇q

FOL bisimulation and (d, e) ∈ 𝜌. Then,for all v1 ∈ pℐ1 (d), …, vk ∈ pℐ
k
(d) with k ⩽ q there

is a FOL formula 𝜓(x1,… ,xk) over the relations of 𝔇 that describes the isomorphism type of
(v1,… , vk). This means in particular that (v1,… , vk) ∈ R

D
q

FOL
𝜓 where R𝜓 is the k-ary relation of

𝔇q

FOL defined by 𝜓. Since 𝜌 is a 𝔇
q

FOL bisimulation, this means that there are w1 ∈ p𝒥1 (e), …,
wk ∈ p𝒥

k
(e) such that (w1,… ,wk) ∈ R

D
q

FOL
𝜓 , which in turn implies that the mapping vi ↦ wi

for i = 1,… , k is a partial isomorphism. Similarly, we show the “vice versa” direction and
conclude that 𝜌 is a q-isomorphic 𝔇 bisimulation. On the other hand, let 𝜌 be a q-isomorphic
𝔇 bisimulation and (d, e) ∈ 𝜌. Every relation R of 𝔇fo is first-order definable over 𝔇 and
thus preserved by automorphisms over this structure; since 𝔇 is homogeneous, every partial
isomorphism vi ↦ wi with vi,wi ∈ D for i = 1,… , k can be extended to an automorphism over
𝔇, which means that (v1,… , vk) ∈ RDfo implies (w1,… ,wk) ∈ RDfo .

By combining Theorems 8.14 and 8.23 we obtain the characterizations of the extensions of
ALC(𝔇) in terms of the newly introduced variants of𝔇 bisimulation.

Corollary 8.24. Let ℂ be localizable and closed under partial unravelling, NC, NR, NF be finite
and𝔇 be WCUN and with finitely many relations. Then, the following are equivalent:

• 𝜙(x) is ℂ-invariant under combined𝔇 bisimulation;

• 𝜙(x) is ℂ-equivalent to aALC∨+(𝔇) concept.

Corollary 8.25. Letℂ be localizable and closed under partial unravelling,NC,NR,NF be finite and
𝔇 be homogeneous, WCUN and with finitely many relations. Then, the following are equivalent:

• 𝜙(x) is ℂ-invariant under q-isomorphic𝔇 bisimulation;

• 𝜙(x) is ℂ-equivalent to aALCq

fo(𝔇) concept.

Summary

We introduced the notion of𝔇 bisimulation, whichweused to characterize the expressive power
of ALC(𝔇) w.r.t. FOL(𝔇), as well as to show that several of its extensions are strictly more ex-
pressive, similarly to what was done in Chapter 4. We further compared different, more restric-
tive notions of 𝔇 bisimulation, and showed how to relate them to obtain characterizations for
ALC∨+(𝔇) andALCfo(𝔇).

110

9 Concrete Domains Meet
Cardinality Constraints

In this chapter we investigate the DL ALCOSCC(𝔇), extending both ALCSCC and ALC(𝔇)
with nominals and by further allowing within succ-restrictions the usage of feature roles that
relate the feature values of an individual and of one of its successors. We show that the consis-
tency problem for TBoxes in this DL is ExpTime-complete if𝔇 is ExpTime-𝜔-admissible. Then,
we show under which conditions on𝔇we can enrich ontologies using feature assertions f (a, c)
with f a feature name, a an individual and c a constant value, without increasing the complexity
of reasoning. Finally, we look at several seemingly harmless extensions of ALCOSCC(𝔇) and
prove their undecidability.
The work contained in this chapter is based on the paper:

[11] Baader, F. et al.: Concrete Domains Meet Expressive Cardinality Restrictions in Descrip-
tion Logics. In: Barrett, C., Waldmann, U. (eds.) Automated Deduction – CADE 30.
LNAI,. Vol. 15943, pp. 676–695. Springer, Heidelberg (2025). https://doi.org/10.
1007/978-3-031-99984-0_35

9.1 Syntax and Semantics of ALCOSCC(𝔇)
Given finite, disjoint sets NC, NR and NI of concept-, role- and individual names, ALCOSCC
extends the DL ALCSCC defined in Chapter 3 with nominals {a} for a ∈ NI that can be also
used within succ-restrictions. An interpretation ℐ of NC and NR is additionally defined over NI
by mapping each a ∈ NI to an individual aℐ ∈ Δℐ.
In this DL, the concept of all individuals that are human and have a child who is not Sam can

be written as Human ⊓ ∃child.¬{Sam}.
A naive extension ofALCOSCC with concrete domain reasoning that simply combines succ-

and CD-restrictions offers limited expressive power. To improve that, we introduce feature
pointers 𝛼 of the form f or next f with f ∈ NF and define feature roles 𝛾 := P (𝛼1,… , 𝛼k), where
each 𝛼i is a feature pointer and P is a k-ary predicate of 𝔇. For example, salary is a pointer to
the salary of a given individual d, while next salary is a pointer to the salary of an individual e
that we want to compare to d; the feature role (salary < next salary) describes a binary relation
that contains (d, e) iff the salary of d is smaller than that of e.

111

https://doi.org/10.1007/978-3-031-99984-0_35
https://doi.org/10.1007/978-3-031-99984-0_35

9 Concrete Domains Meet Cardinality Constraints

Then,ALCOSCC(𝔇) is the extension ofALCOSCCwithCD-restrictions and succ-restrictions
succ(𝔠𝔬𝔫)where 𝔠𝔬𝔫 can contain feature roles as set variables. We can now describe individuals
that earn less than the majority of their children by

Cex := succ(|child ∩ (salary < next salary)| > |child ∩ (salary < next salary)c|).
Feature roles 𝛾 := P (𝛼1,… , 𝛼k) are mapped by interpretations ℐ to relations 𝛾ℐ ⊆ Δℐ ×Δℐ such
that (d, e) ∈ 𝛾ℐ iff (c1,… , ck) ∈ PD, where ci := fℐ

i
(d) if 𝛼i = fi and ci := fℐ

i
(e) if 𝛼i = next fi.

The QFBAPA assignment 𝜎d is extended to map feature roles 𝛾 to 𝛾ℐ ∩ arsℐ(d), and succ(𝔠𝔬𝔫)ℐ
is defined as before.
AnALCOSCC(𝔇) TBox 𝒯 is a finite set of concept inclusions (CIs) C ⊑ D between concepts

C,D. For example, we can describe an individual Jane that earns more than Sam, where the
role refSam always points to Sam:

𝒯ex := {⊤ ⊑ succ(refSam = {Sam}), {Jane} ⊑ ∃salary, refSam salary.> }.
A finitely branching interpretation ℐ is amodel of𝒯 ifCℐ ⊆ Dℐ holds for every CIC ⊑ D in𝒯 .
A TBox 𝒯 is consistent if it has a model.

The Expressive Power of Feature Roles

We claimed above that feature roles are added to ALCOSCC(𝔇) to provide enough expres-
sivity to e.g. define the concept Cex. Here, we consider the DL ALCSCC(𝔇) as the subset of
ALCOSCC(𝔇) without nominals occurring in concepts, and the DL ALCSCC ⊕ALC(𝔇) that
is obtained by disallowing feature roles inALCSCC(𝔇) concepts. Combining the notions of Pr
and𝔇 bisimulations defined in Chapters 4 and 8, we can formally show thatALCSCC(𝔇) and
thusALCOSCC(𝔇) is more expressive thanALCSCC ⊕ALC(𝔇).
Definition 9.1. Given interpretations ℐ and 𝒥 of NC, NR and NF, the relation 𝜌 ⊆ Δℐ × Δ𝒥 is
a concrete Presburger (CPr) bisimulation between ℐ and 𝒥 if it is a Pr bisimulation (cf. Defi-
nition 4.2) that satisfies the features condition of Definition 8.1. The notions of bisimilarity and
ℂ-invariance w.r.t. CPr bisimulation are defined similarly to what was done in Definition 4.2.
Similar toALCSCC, the DLALCSCC ⊕ALC(𝔇) satisfies Proposition 4.1, i.e. every concept

in this DL of the form succ(𝔠𝔬𝔫) is ℂfb-equivalent to a concept of the form succ(𝔠𝔬𝔫′)where 𝔠𝔬𝔫′
only contains set terms of the form 𝜏∩C, where 𝜏 is a safe role type andC anALCSCC⊕ALC(𝔇)
concept. Using this property and by adapting and combining the proofs of Theorems 4.3 and 8.2
we then obtain the following result.
Theorem 9.2. If𝔇 isWCUN then everyALCSCC⊕ALC(𝔇) concept is ℂfb-invariant under CPr
bisimulation.
Similarly towhatwas done in previous chapters, we use the invariance ofALCSCC⊕ALC(𝔇)

concepts w.r.t. CPr bisimulation to prove that feature roles cannot be expressed in this DL.
Theorem9.3. There is noALCSCC⊕ALC(𝔔) concept without feature roles that isℂfb-equivalent
to C := succ(|r ∩ (f < next f)| > |r ∩ (f < next f)c|).
Proof. Assume that there is anALCSCC⊕ALC(𝔔) conceptD that isℂfb-equivalent toC. Con-
sider the interpretations ℐ and 𝒥 depicted in Figure 9.1. Then, a ∈ Cℐ = Dℐ and a1 ∉ C𝒥 =
D𝒥. However, the relation 𝜌 := {(a, a1), (b, b1), (c, c1), (d, d1)} is a CPr bisimulation that relates a
and a1. This leads to a contradiction, since a ∈ Dℐ iff a1 ∈ D𝒥 is supposed to hold. We conclude
that C andD cannot be ℂfb-equivalent.

112

9 Concrete Domains Meet Cardinality Constraints

a

bc d

0

01 1

r
r r

a1

b1c1 d1

0

00 1

r
r r

𝜌

𝜌𝜌 𝜌

Figure 9.1: A CPr bisimulation 𝜌 between ℐ (left) and𝒥 (right) with𝔔 as concrete domain.

9.2 Deciding Consistency

Let𝔇 be anExpTime-𝜔-admissible concrete domain and𝒯 anALCOSCC(𝔇)TBox. We assume
w.l.o.g. that NC, NR, NI and NF contain exactly the names occurring in 𝒯 and that there is at
least one individual name; indeed, 𝒯 is consistent iff 𝒯 ∪ {{a} ⊑ {a}} is consistent, where a is
a fresh individual name. We define the notion of individual types, describing sets of equivalent
individual names in an interpretation.

Definition 9.4. An individual type 𝔞 w.r.t. NI is a non-empty subset of NI, and a set of individual
types 𝕀 is an individual type system forNI if 𝕀partitionsNI. Given an interpretationℐ , an individual
d ∈ Δℐ has individual type 𝔞ℐ(d) := {a ∈ NI | aℐ = d} if this set is non-empty, and d is anonymous
otherwise.

Wenow fix an individual type system 𝕀. Letℳ be the set of all subconcepts appearing in𝒯 , as
well as their negations. Employing the samenotion of typew.r.t. ℳ introduced inDefinition 6.2,
we say that a type t is named with an individual type 𝔞t if for all a ∈ NI, a ∈ 𝔞t iff {a} ∈ t, and is
anonymous if it is not named with any individual type.
Following the approach used in [7], we construct a QFBAPA formula 𝜙t that is induced by the

succ-restrictions succ(𝔠𝔬𝔫) in a type t and enriched with constraints derived from the individual
type system 𝕀 and the set of role names NR. Formally, 𝜙t is defined as the conjunction of

• 𝜙𝔠𝔬𝔫 if succ(𝔠𝔬𝔫) ∈ t and ¬𝜙𝔠𝔬𝔫 otherwise, where 𝜙𝔠𝔬𝔫 is derived from 𝔠𝔬𝔫 by replacing role
names r, feature roles 𝛾 and concepts C with set variablesXr,X𝛾 andXC , respectively;

• |⋂
a∈𝔞X{a}| ⩽ 1 for every 𝔞 ∈ 𝕀; and

• 𝒰 = ⋃
r∈NR

Xr.

All formulae 𝜙t contain exactly the same set variables and thus have the same Venn regions
(cf. Section 3.1), called the Venn regions of 𝒯 . A Venn region v of 𝒯 has individual type 𝔞v =
{a ∈ NI | X{a} ∈ v} if this set is non-empty, and v is anonymous otherwise. The following
example shows that 𝜙t does not yet account for the cardinality constraints induced by the CD-
restrictions in t.

Example 9.5. Let 𝒯 = {⊤ ⊑ (∃salary, child salary.<) ⊓ (succ(|child| ⩽ 0)) }. For every model ℐ
of 𝒯 and d ∈ Δℐ, the type t := tℐ(d) contains both conjuncts appearing in this CI. The QFBAPA
formula 𝜙t := |Xchild| ⩽ 0 ∧ 𝒰 = Xchild is satisfied by any solution assigning the empty set to 𝒰.
However, t cannot be realized: the first conjunct implies that d has a child-successor e ≠ d such
that salaryℐ(d) < salaryℐ(e), while the last conjunct forces d to have no child-successor.

113

9 Concrete Domains Meet Cardinality Constraints

To realize the CD-restrictions in t, we may need up toM𝒯 := R𝒯 ⋅P𝒯 distinct role successors,
whereR𝒯 is the number of CD-restrictions inℳ and P𝒯 is the maximal arity of predicates of𝔇
occurring inℳ. We add this information to theQFBAPA formula 𝜙twith additional constraints
over a set of pre-selected Venn regions, representing sets of role successors whose existence is
implied by the CD-restrictions in t. Let S be a set of at mostM𝒯 Venn regions v, each associated
with a natural number 0 ⩽ nv ⩽ M𝒯. By Lemma 3.1, the QFBAPA formula 𝜙t,S , which extends
𝜙t with a conjunct |v| ⩾ nv for each v ∈ S, is satisfiable iff there is a natural number n𝒯 of
polynomial size w.r.t. the size of 𝜙t and M𝒯 s.t. 𝜙t,S has a solution in which at most n𝒯 Venn
regions are non-empty. Moreover, since all formulae 𝜙t are nearly of the same size (except for
the difference between 𝜙𝔠𝔬𝔫 and¬𝜙𝔠𝔬𝔫) and |S| and the numbers nv are bounded byM𝒯, we can
assume that the bound n𝒯 is independent of the choice of S and t, is polynomial w.r.t. the size
of 𝒯 and can be computed in polynomial time.
To formalize these additional restrictions, we consider bags, i.e. functionsV assigning to every

Venn region v of 𝒯 a multiplicity V (v) ∈ ℕ, whose support supp(V) is the set of Venn regions
of 𝒯 with multiplicity V (v) ⩾ 1. The associated QFBAPA formula 𝜙V is the conjunction of the
constraint 𝒰 = ⋃ supp(V) and all constraints |v| ⩾ c where v ∈ supp(V) and c = V (v).

Definition 9.6. AVennbag for a type tw.r.t.𝒯 is a bagV ofVenn regions of𝒯 s.t. | supp(V)| ⩽ n𝒯,
V (v) ⩽ M𝒯+1 holds for all v ∈ supp(V) and the QFBAPA formula 𝜙t,V := 𝜙t ∧𝜙V is satisfiable.

By Lemma 3.1, 𝜙t,S is satisfiable iff there is a Venn bag V for t such that 𝜙t,V includes all
constraints from 𝜙t,S .
Finally, we take care of actually satisfying the CD-restrictions occurring in a type by using

complete constraint systems to describe all relevant feature values. Feature values that are not
represented in these systems correspond to undefined values. To ensure that all types agree on
the feature values of individual names, we fix an individual constraint system ℭ𝕀 w.r.t. 𝕀, i.e. a
complete constraint system over variables of the form f 𝔞, where f ∈ NF and 𝔞 ∈ 𝕀, that refer to
the feature values of named individuals. Then, we define constraint systems ℭt,V representing
the relations between the feature values associated with an individual of type t and those of its
role successors as specified by aVenn bagV for t. The systemℭt,V extendsℭ𝕀 by adding variables
of the form

• f⋆, representing the value of the feature f ∈ NF at the current individual;

• f (v,j) with v ∈ supp(V) and 1 ⩽ j ⩽ V (v) for the f -values at the successors, in order to
express the relevant CD-restrictions.

Again, not all these variables actually need to occur in the constraint system, only the ones
whose associated feature values should be defined. To handle named types and named Venn
regions, we define the indexing functions

𝜄(t) := {⋆ if t is anonymous
𝔞t otherwise

and 𝜄((v, j)) := {(v, j) if v is anonymous
𝔞v otherwise

for all v ∈ supp(V) and 1 ⩽ j ⩽ V (v). Additionally, we do not allow more variables of the
form f 𝔞 than those already contained in ℭ𝕀.

Definition 9.7. Let t be a type w.r.t.𝒯 and V a Venn bag for t. A local system for t,V is a complete
constraint system ℭt,V that includes ℭ𝕀 and no additional variables of the form f 𝔞, 𝔞 ∈ 𝕀, such that:

114

9 Concrete Domains Meet Cardinality Constraints

Algorithm 2 Type elimination algorithm forALCOSCC(𝔇)
Input: AnALCOSCC(𝔇) TBox 𝒯
Output: consistent if 𝒯 is consistent, and inconsistent otherwise
1: guess an individual type system 𝕀 and an individual constraint system ℭ𝕀
2: guess augmented types 𝔱𝔞 = (t𝔞,V𝔞,ℭ𝔞) for 𝔞 ∈ 𝕀 s.t. t𝔞 is named with 𝔞
3: 𝕋 ← {𝔱 = (t,V ,ℭ) augmented type | t is anonymous} ∪ {𝔱𝔞 | 𝔞 ∈ 𝕀}
4: while there is 𝔱 ∈ 𝕋 that is not patched by 𝕋 do 𝕋 ← 𝕋 \ {t}
5: if 𝔱𝔞 ∈ 𝕋 for all 𝔞 ∈ 𝕀 then return consistent
6: else return inconsistent

1. if C := ∃p1,… , pk.P ∈ ℳ, then C ∈ t iff P (fx1
1 ,… , fxk

k
) ∈ ℭt,V such that

xi = {𝜄(t) if pi = fi, or
𝜄((v, j)) if pi = rfi, for some 1 ⩽ j ⩽ V (v) andXr ∈ v;

2. for all set variablesXP (𝛼1,…,𝛼k), all v ∈ supp(V), and 1 ⩽ j ⩽ V (v) it holds thatXP (𝛼1,…,𝛼k) ∈
v iff P (fx1

1 ,… , fxk

k
) ∈ ℭt,V , where

xi = {𝜄(t) if 𝛼i = fi, and
𝜄((v, j)) if 𝛼i = next fi.

In the following definition, we denotewithSv the subset ofℳ that containsC ∈ ℳ ifXC ∈ v
and ¬C ∈ ℳ ifXC ∉ v (cf. Section 3.1).

Definition 9.8. An augmented type for𝒯 is a tuple 𝔱 := (t,V ,ℭ𝔱), where t is a type w.r.t.𝒯 , V is
a Venn bag for t, and ℭ𝔱 is a satisfiable local system for t,V . The root of 𝔱 is root(𝔱) := t.
An augmented type 𝔱′ = (t′,V ′,ℭ𝔱′) patches 𝔱 at (v, i), where v ∈ supp(V) and 1 ⩽ i ⩽ V (v),

if Sv ⊆ t′ and themerged system ℭ𝔱⊲(v,i) ℭ𝔱′ has a solution, where ℭ𝔱⊲(v,i) ℭ𝔱′ is obtained as the
union of ℭ𝔱 and the result of replacing all variables in ℭ𝔱′ as follows:

f⋆ ↦ f (v,i) if t′ is anonymous;
f (w,j) ↦ f (w,j)

′
for all anonymous w ∈ supp(V ′) and 1 ⩽ j ⩽ V ′(w);

f 𝔞 ↦ f 𝔞 for all 𝔞 ∈ 𝕀.

A set of augmented types 𝕋 patches 𝔱 if, for all v ∈ supp(V) and 1 ⩽ i ⩽ V (v), there is a 𝔱′ ∈ 𝕋
that patches 𝔱 at (v, i).

The merging operation identifies all features associated to (v, i) in ℭ𝔱 with those associated to
t′ in ℭ𝔱′ , while keeping the remaining variables associated to anonymous individuals separate.
If t′ is not anonymous (and thus ℭ𝔱′ contains no variable of the form f⋆) then the condition
Sv ⊆ t′ ensures that 𝔞v = 𝔞𝔱′ , and thus the variable f 𝜄((v,i)) = f 𝔞v = f 𝔞𝔱′ in ℭ𝔱 is already
identical to f 𝜄(t′) = f 𝔞𝔱′ in ℭ𝔱′ .
The augmented types are nowused byAlgorithm 2 to decide consistency of anALCOSCC(𝔇)

TBox via a type elimination approach. We show that Algorithm 2 is indeed sound and complete.

115

9 Concrete Domains Meet Cardinality Constraints

Soundness

We observe that for every patchwork𝔇, the fact that𝔇 satisfies AP (see Chapter 2) implies the
following property:

AP+ ifℂ is a finite set of constraint systems and V a set of variables such that V (𝔅)∩V (ℭ) = V
and𝔅 and ℭ agree on V for all𝔅,ℭ ∈ ℂ, then the constraint system⋃ℂ is satisfiable iff
each ℭ ∈ ℂ is satisfiable.

With this property in mind, we show that Algorithm 2 is sound.
In particular, we assume that there is a run of the type elimination algorithm that returns

consistent, and use the individual type system 𝕀 and the set 𝕋 of augmented types constructed in
this run to define a model ℐ of 𝒯 . The domain Δℐ consists of tuples (𝔞,w), where 𝔞 ∈ 𝕀 and w
is a word over the alphabet Σ of all tuples (𝔱, v, i) with 𝔱 ∈ 𝕋, v a Venn region of 𝒯 and i ⩾ 1 a
natural number. We associate to each tuple (𝔞,w) the augmented type end(𝔞,w) ∈ 𝕋 defined as
end(𝔞, 𝜀) := 𝔱𝔞 and end(𝔞,w′ ⋅ (𝔱, v, i)) := 𝔱 for w′ ∈ Σ∗.
We define Δℐ as the union of sets Δm with m ∈ ℕ, where Δ0 contains (𝔞, 𝜀) for every 𝔞 ∈ 𝕀

and Δm+1 is defined inductively in the following. Given (𝔞,w) ∈ Δm with end(𝔞,w) = 𝔱 =
(t,V ,ℭt,V) ∈ 𝕋 we observe that

• the QFBAPA formula 𝜙t has a solution 𝜎𝔞,w such that 𝜎𝔞,w(|v|) ⩾ V (v) if v ∈ supp(V) and
𝜎𝔞,w(|v|) = 0 otherwise for all Venn regions v of 𝒯 ,

• for v ∈ supp(V) and i = 1,… ,V (v) there exists an augmented type 𝔱(v,i) ∈ 𝕋 patching 𝔱
at (v, i), as otherwise 𝔱 would have been eliminated from 𝕋.

Using these augmented types, wedefine for r ∈ NR the setΔm+1
r [𝔞,w] containing (𝔞,w⋅(𝔱(v,i), v, j))

iff Xr ∈ v, root(𝔱(v,i)) is anonymous, j = 1,… , 𝜎𝔞,w(|v|) and i = max(j,V (v)). We now define
Δm+1 as the extension of Δm by all sets Δm+1

r [𝔞,w] for which r ∈ NR and (𝔞,w) ∈ Δm.
The extensions of a ∈ NI, A ∈ NC and r ∈ NR are defined as:

aℐ := (𝔞, 𝜀), where 𝔞 is the unique individual type in 𝕀 containing a;
Aℐ := {(𝔞,w) ∈ Δℐ | end(𝔞,w) = 𝔱 and A ∈ root(𝔱)};
rℐ := {((𝔞,w), (𝔟, 𝜀)) | end(𝔞,w) = 𝔱 and 𝔱𝔟 patches 𝔱 at (v, i) withXr ∈ v} ∪

{((𝔞,w), (𝔞,w′)) | (𝔞,w) ∈ Δm and (𝔞,w′) ∈ Δm+1
r [𝔞,w] with m ∈ ℕ}.

For f ∈ NF, fℐ is defined as follows. If (𝔞,w) ∈ Δℐ and end(𝔞,w) = (t,V ,ℭt,V), we extend
ℭt,V with all variables f (v,i) where i > V (v) and f ∈ NF such that f (v,V (v)) occurs in ℭt,V
and (𝔞,w ⋅ (𝔱′, v, i)) occurs in Δℐ. Then, we add all constraints P ((fx1

1)′,… , (fxk

k
)′) obtained by

replacing every occurrence of f (v,V (v)) in a constraintP (fx1
1 ,… , fxk

k
) ∈ ℭt,V with some variable

f (v,i) among those occurring in the extended system with i ⩾ V (v). In this way, the feature
values of all role successors of (𝔞,w) are handled correctly w.r.t. one another and w.r.t. those
of (𝔞,w). Next, we replace all variables f 𝔞 with f 𝔞,𝜀, all variables f⋆ with f 𝔞,w and all variables
f (v,i) with f 𝔞,u where u is the unique word of the form w ⋅ (𝔱′, v, i) for which (𝔞,u) ∈ Δℐ.
Let ℭ𝔞,w be the resulting complete constraint system and ℭm withm ∈ ℕ be the union of all

ℭ𝔞,w with (𝔞,w) ∈ Δm.

Lemma 9.9. For everym ∈ ℕ, the constraint system ℭm has a solution.

116

9 Concrete Domains Meet Cardinality Constraints

Proof. Since 𝔇 is in particular a patchwork, we can extend every constraint system ℭ over 𝔇
with a solution h to a complete and satisfiable constraint system. Indeed, the fact that 𝔇 is
JEPD implies that, for all k ∈ ℕ, either 𝔇 has no k-ary relations or for all variables v1, …, vk
the system ℭ contains at most one constraint P (v1,… , vk) with a k-ary relation P of 𝔇. If ℭ
contains no such constraint, then we can add to it the unique constraint P (v1,… , vk) for which
(h(v1),… ,h(vk)) ∈ PD holds. In this case, h is still a solution of the extended system. Hereafter,
we call a completion of a satisfiable constraint system ℭ a complete constraint system obtained
using this procedure.
Our second observation is that for all (𝔞,w) ∈ Δℐ the complete constraint system ℭ𝔞,w is

satisfiable. Assuming that end(𝔞,w) = (t,V ,ℭt,V) ∈ 𝕋, we know from Definition 9.8 that ℭt,V
has a solution h′. We extend h′ to a solution h of ℭ𝔞,w by first setting h′(f (v,i)) := h′(f (v,V (v)))
for i = V (v) + 1,… , 𝜎𝔞,w(|v|) if f (v,V (v)) occurs in ℭt,V and then renaming the variables in the
domain of h′ using the renaming used to construct ℭ𝔞,w, thus obtaining h.
We prove the claim by induction overm ∈ ℕ. Form = 0, the system ℭ0 corresponds to the

union of all systems ℭ𝔞,𝜀 with 𝔞 ∈ 𝕀. Every two systems of this form share exactly the variables
f 𝔟,𝜀 for which f 𝔟 occurs in ℭ𝕀; moreover, they agree on these variables, since they all include
(up to renaming) a copy of the complete constraint system ℭ𝕀. By AP+, we conclude that ℭ0 is
satisfiable.
Now, we inductively assume that the constraint system ℭm has a solution for m ∈ ℕ and

show that this implies that ℭm+1 is satisfiable, too. We notice that ℭm+1 is the union of ℭm and
all systems ℭ𝔞,w with (𝔞,w) ∈ Δm+1 \ Δm. By construction, for every (𝔞,w) ∈ Δm+1 \ Δm there
is a unique (𝔞,w′) ∈ Δm such that w = w′ ⋅ (𝔱, v, i) for some augmented type 𝔱 ∈ 𝕋, some
Venn region v of 𝒯 and some natural number i. In particular, 𝔱 patches end(𝔞,w′) at (v, i) by
definition of Δm+1. Let ℭ′ be a completion of ℭm and consider the complete constraint system
ℭ𝔞,w. The variables shared by ℭ′ and ℭ𝔞,w are exactly (up to renaming) those occurring in ℭ𝕀 and
those of the form f 𝔞,w for f ∈ NF that occur in the complete constraint systems ℭ𝔞,w′ and ℭ𝔞,w.
Due to the fact that 𝔱 patches end(𝔞,w′) at (v, i), we deduce that these two systems agree on their
shared variables. Given that ℭ𝔞,w′ is a subsystem of ℭ′ and that both ℭ′ and ℭ𝔞,w are complete,
we deduce that these two systems agree on their shared variables, and since both are satisfiable
we conclude that ℭ′ ∪ ℭw

𝔞 is satisfiable. By taking a completion of this constraint system and
iteratively repeating this process for every other element in (𝔞,w) ∈ Δm+1 \ Δm, we obtain a
satisfiable constraint system that includes ℭm+1 as a subsystem, which is then satisfiable.

Letℭℐ be the union of all systemsℭm withm ∈ ℕ. Every finite subsystem of ℭℐ is a subsystem
of ℭm for some m ∈ ℕ and is thus satisfiable. Thus, by homomorphism 𝜔-compactness of 𝔇,
we can infer that ℭℐ has a solution hℐ. For every f ∈ NF and (𝔞,w) ∈ Δℐ, we now define
fℐ((𝔞,w)) := hℐ(f 𝔞,w) if f 𝔞,w occurs in ℭℐ and leave it undefined otherwise.

Lemma 9.10. For all d = (𝔞,w) ∈ Δℐ and C ∈ ℳ, C ∈ root(end(d)) iff d ∈ Cℐ.

Proof. We prove this claim by structural induction over C ∈ ℳ. We assume that end(𝔞,w) =
𝔱 = (t,V ,ℭt,V) and first prove the base cases whereC is either a concept name, a nominal or an
existential CD-restriction.

• The case C = A ∈ NC is trivially covered by the definition of Aℐ.

• If C = {a}, we notice that {a} ∈ root(𝔱) iff 𝔱 = 𝔱𝔞 with a ∈ 𝔞 and 𝔞𝔱 = 𝔞; by construction of
Δℐ, this holds iff (𝔞,w) = (𝔞, 𝜀) ∈ {a}ℐ.

117

9 Concrete Domains Meet Cardinality Constraints

• Let C = ∃p1,… , pk.P ∈ ℳ. If C ∈ root(𝔱), then Definition 9.7 together with 𝔱 ∈ 𝕋
implies that there is a constraint P (fx1

1 ,… , fxk

k
) ∈ ℭt,V such that for i = 1,… , k either

xi = 𝔞i with 𝔞i ∈ 𝕀 or xi = ⋆ or xi = (vi, ji) for some vi ∈ V with 1 ⩽ ji ⩽ V (vi). In the
last case, we know that there is 𝔱(vi,ji) ∈ 𝕋 that patches 𝔱 at (vi, ji). Using these indices
and augmented types, we select for i = 1,… , k the domain elements

di = (𝔞i,wi) :=
⎧
⎨
⎩

(𝔞i, 𝜀) if xi = 𝔞i ∈ 𝕀
(𝔞,w) if xi = ⋆
(𝔞,w ⋅ (𝔱(vi,ji), vi, ji)) if xi = (vi, ji).

Then, P (f 𝔞1,w1

1 ,… , f 𝔞k,wk

k
) ∈ ℭℐ holds and thus (fℐ

1 (d1),… , fℐ
k
(dk)) ∈ PD by definition

of ℐ . We prove that (𝔞,w) ∈ Cℐ by showing that fℐ
i
(di) ∈ pℐ

i
(𝔞,w) holds for i = 1,… , k:

– If pi = fi, then xi = 𝜄(t) is either ⋆ if t is anonymous or xi = 𝔞i = 𝔞t = 𝔞 and
wi = w = 𝜀. In the former case, fℐ

i
(di) = fℐ

i
(𝔞,w) ∈ pℐ

i
(𝔞,w). In the latter case, we

have fℐ
i
(di) = fℐ

i
(𝔞i, 𝜀) ∈ pℐ

i
(𝔞,w).

– If pi = rifi, then xi = 𝜄((vi, ji)) is either (vj , ji) if vj is anonymous or xi = 𝔞i = 𝔞vi
andwi = 𝜀. Moreover, in both cases, we haveXri

∈ vi, and thus ((𝔞,w), (𝔞,wi)) ∈ rℐ
i

or ((𝔞,w), (𝔞vi , 𝜀)) ∈ rℐ
i
, respectively, Therefore, fℐ

i
(di) ∈ pℐ

i
(𝔞,w) holds in both

cases.
Vice versa, assume that C ∉ root(𝔱). We show that for all (c1,… , ck) where ci ∈ pℐ

i
(w)

for i = 1,… , k it holds that (c1,… , ck) ∉ PD. We choose individuals di = (𝔞i,wi) for
i = 1,… , k such that di = (𝔞,w) and fℐ

i
(di) = ci if pi = fi and di = (𝔞′,w′) is an

ri-successor of (𝔞,w) with fℐ
i
(di) = ci if pi = rifi. The construction of ℭ𝔞,w from ℭt,V ,

togetherwithC ∉ root(𝔱) and thus¬C ∈ root(𝔱), implies thatP (f 𝔞1,w1

1 ,… , f 𝔞k,wk

k
) ∉ ℭ𝔞,w

according to Definition 9.7. Since fℐ(di) is defined, however, f 𝔞i,wi

i
must occur in ℭ𝔞,w for

i = 1,… , k. Given that ℭ𝔞,w is complete, there must be P ′(f 𝔞1,w1

1 ,… , f 𝔞k,wk

k
) ∈ ℭ𝔞,w for

some P ′ ≠ P k-ary. The interpretation of features of ℐ is a solution of ℭℐ and thus of ℭ𝔞,w,
so we deduce that (c1,… , ck) = (fℐ

1 (d1),… , fℐ
k
(dk)) ∈ (P ′)D, hence (c1,… , ck) ∉ PD (by

JEPD).

Assume that the claim holds for C1,C2,D ∈ ℳ to prove the inductive cases.

• If C = ¬D ∈ ℳ, then C ∈ root(𝔱) iff D ∉ root(𝔱) iff (𝔞,w) ∉ Dℐ iff (𝔞,w) ∈ Cℐ, where
the equivalences hold due to Definition 6.2, the inductive hypothesis, and the semantics
of negation, respectively.

• If C = C1 ⊓ C2 ∈ ℳ, then C ∈ root(𝔱) iff Ci ∈ root(𝔱) for i = 1, 2 iff (𝔞,w) ∈ Cℐ
i
for

i = 1, 2 iff (𝔞,w) ∈ Cℐ, with equivalences justified as before.

• If C = succ(𝔠𝔬𝔫) ∈ ℳ, we show that the solution 𝜎𝔞,w of 𝜙t,V used to determine the role
successors of (𝔞,w) satisfies the formula 𝜙𝔠𝔬𝔫 iff the QFBAPA assignment 𝜁𝔞,w induced by
(𝔞,w) in ℐ is a solution of 𝔠𝔬𝔫 (recall that 𝜁𝔞,w(𝒰) = arsℐ(𝔞,w)). Since C ∈ root(𝔱) iff
𝜙𝔠𝔬𝔫 occurs in 𝜙t,V , this allows us to conclude that C ∈ root(𝔱) iff 𝜁𝔞,w is a solution of 𝔠𝔬𝔫,
which, by the semantics ofALCOSCC(𝔇), happens iff (𝔞,w) ∈ Cℐ.
To show that 𝜎𝔞,w satisfies 𝜙𝔠𝔬𝔫 iff 𝜁𝔞,w satisfies 𝔠𝔬𝔫, we construct a bijection 𝜋: 𝜁𝔞,w(𝒰) →
𝜎𝔞,w(𝒰) such that (𝔞′,w′) ∈ 𝜁𝔞,w(𝛿) iff 𝜋(𝔞′,w′) ∈ 𝜎𝔞,w(X𝛿) for each role name, concept

118

9 Concrete Domains Meet Cardinality Constraints

or feature role 𝛿. For every named element (𝔞′, 𝜀) ∈ 𝜁𝔞,w(𝒰), we define 𝜋(𝔞′, 𝜀) to be the
unique element in 𝜎𝔞,w(⋂a∈𝔞′ X{a}): since (𝔞′, 𝜀) is a role successor of (𝔞,w), we know
that 𝔱𝔞′ patches 𝔱, which means that a Venn region v with Sv ⊆ root(𝔱𝔞′) and thus 𝔞v = 𝔞′
must occur in supp(V), which means that 𝜎𝔞,w(𝒰) contains at least one element satisfying
⋂

a∈𝔞′ X{a}; moreover, there can be at most one such element since 𝜎𝔞,w satisfies 𝜙t. For
each anonymous element (𝔞,w′) with w′ = w ⋅ (𝔱(v,i), v, j), we can assign a unique ele-
ment 𝜋(𝔞′,w) ∈ 𝜎𝔞,w(v), since we created exactly 𝜎𝔞,w(|v|) many such elements w′. This
mapping 𝜋 is a bijection since named Venn regions must have cardinality 1w.r.t. 𝜎𝔞,w, we
explicitly created enough elements for each anonymous Venn region v ∈ supp(V), each
such element is a role successor of (𝔞,w) due to the constraint Xr1 ∪ ⋯ ∪Xrn

= 𝒰, and
there are no other role successors of (𝔞,w) in ℐ .
It remains to show that (𝔞′,w′) ∈ 𝜁𝔞,w(𝛿) iff 𝜋(𝔞′,w′) ∈ 𝜎𝔞,w(X𝛿). For anonymous role
successors (𝔞,w′)withw′ = w⋅(𝔱(v,i), v, j) of (𝔞,w), this amounts to showing the following:
– Xr ∈ v iff (𝔞,w′) ∈ rℐ((𝔞,w)) for all role names r ∈ NR;
– XD ∈ v iff (𝔞,w′) ∈ Dℐ for all conceptsD ∈ ℳ; and
– X𝛾 ∈ v iff (𝔞,w′) ∈ 𝛾ℐ((𝔞,w)) for all feature roles 𝛾.

The first point is a consequence of the definition of ℐ . Using again this definition, we
observe that 𝔱′ patches 𝔱 at (v, i), and thus Sv ⊆ root(𝔱(v,i)) holds. Since for D ∈ ℳ we
have that D ∈ Sv iff XD ∈ v and by inductive hypothesis we have that D ∈ root(𝔱(v,i))
iff (𝔞,w′) ∈ Dℐ, we conclude that (𝔞,w′) ∈ Dℐ iff XD ∈ v. Finally, by Definition 9.7
and using the renaming we adopted before, for 𝛾 := P (𝛼1,… , 𝛼k) we have that X𝛾 ∈
v iff P (fx1

1 ,… , fxk

k
) ∈ ℭ𝔞,w where xi = (𝔞,w) if 𝛼i = fi and xi = (𝔞,w′) if 𝛼i =

next fi. By construction of ℐ and the definition of xi, we have that P (fx1
1 ,… , fxk

k
) ∈ ℭℐ

iff (fℐ
1 (x1),… , fℐ

k
(xk)) ∈ PD, and by the semantics of ALCOSCC(𝔇) this happens iff

(𝛼ℐ1 ((𝔞,w), (𝔞,w′)),… , 𝛼ℐk((𝔞,w), (𝔞,w′))) ∈ PD, i.e. iff (𝔞,w′) ∈ 𝛾ℐ(𝔞,w).
We can show that a similar characterization for named role successors (𝔞′, 𝜀) of (𝔞,w), by
considering the unique singleton Venn region v of 𝜎𝔞,w that satisfies⋂

a∈𝔞′ X{a}.

It is a direct consequence that ℐ satisfies all CIs in 𝒯 and is thus a model of 𝒯 . Hence, 𝒯 is
consistent. Therefore, we conclude that Algorithm 2 is sound.

Theorem 9.11. If there is a run of Algorithm 2 that returns consistent, then𝒯 is consistent.

Completeness

Next, we show that Algorithm 2 is complete. Let ℐ be a model of𝒯 and 𝕀 be the individual type
system that contains an individual type 𝔞 iff 𝔞 = 𝔞ℐ(d) for some d ∈ Δℐ. Then 𝕀 is well-defined,
as every a ∈ NI is uniquely assigned to aℐ ∈ Δℐ. For 𝔞 ∈ 𝕀, we denote by 𝔞ℐ the unique d ∈ Δℐ

with 𝔞 = 𝔞ℐ(d). Further, let Tℐ := {tℐ(d) | d ∈ Δℐ} be the set of all types that are realized in ℐ .
For each individual type 𝔞 ∈ 𝕀, we define t𝔞 := tℐ(𝔞ℐ). Using 𝕀 and Tℐ, we build a constraint

system ℭ𝕀 and a set 𝕋ℐ := {𝔱ℐ(d) | d ∈ Δℐ} of augmented types, containing unique types 𝔱𝔞
whose roots are named with 𝔞 ∈ 𝕀. We define the individual constraint system ℭ𝕀 over all vari-
ables f 𝔞 with f ∈ NF and 𝔞 ∈ 𝕀 for which fℐ(𝔞ℐ) is defined, such that P (f 𝔞1

1 ,… , f 𝔞k
k
) ∈ ℭ𝕀 iff

(fℐ
1 (𝔞ℐ1),… , fℐ

k
(𝔞ℐk)) ∈ PD. Clearly, ℭ𝕀 is complete.

119

9 Concrete Domains Meet Cardinality Constraints

Next, we associate to each d ∈ Δℐ an augmented type 𝔱ℐ(d) := (tℐ(d),Vd,ℭd). If e is a role
successor of d, let ve be the Venn region of 𝒯 whose variables Xr, XC , X𝛾 for role names r,
concepts C and feature roles 𝛾 satisfy the following:

• Xr ∈ ve iff e is an r-successor of d;

• XC ∈ ve iff C ∈ tℐ(e);

• X𝛾 ∈ ve iff e ∈ 𝛾ℐ(d).

For every non-negated CD-restriction ∃p1,… , pk.P ∈ tℐ(d), we can find values ci ∈ pℐ
i
(d) for

i = 1,… , k such that (c1,… , ck) ∈ PD. If pi = rifi, this implies that there is ei ∈ rℐ
i
(d) such that

fℐ
i
(ei) = ci. We collect all these successors of d, which are at mostM𝒯 many distinct elements,

in the set Scd. For e ∈ Scd, let ne be the number of elements e′ ∈ Scd such that ve = ve′ .

Lemma 9.12. There is a Venn bag Vd for tℐ(d) w.r.t.𝒯 such that Vd(ve) = ne for all e ∈ Scd, and
for all other v ∈ supp(Vd) we have Vd(v) = 1 and there is a role successor e ∈ Δℐ \ Scd of d such
that v = ve.

Proof. Given that Scd contains at most M𝒯 elements, there can be at most M𝒯 different con-
straints |ve| ⩾ ne generated by elements e of Scd and 1 ⩽ ne ⩽ M𝒯 + 1 holds for all these
constraints. Consider the QFBAPA formula 𝜙d that is the conjunction of 𝜙tℐ(d) and the con-
straints |ve| ⩾ ne for e ∈ Scd. By construction, the QFBAPA assignment 𝜎d induced by ℐ (see
Section 9.1) is a solution of𝜙tℐ(d)with𝜎d(𝒰) = arsℐ(d), which satisfies the additional constraints
|ve| ⩾ ne with e ∈ Scd since Scd ⊆ arsℐ(d), and is thus a solution of 𝜙d. By Lemma 3.1, there is
another solution 𝜎′d of 𝜙d for which there are at most n𝒯 Venn regions v with 𝜎′d(v) ≠ ∅, and,
whenever 𝜎′d(v) ≠ ∅, then also 𝜎d(v) ≠ ∅; that is, every non-empty Venn region v according to
𝜎′d still corresponds to an element e ∈ arsℐ(d) such that ve = v. We define the bag Vd as follows:

Vd(v) :=
⎧
⎨
⎩

ne if v = ve and e ∈ Scd,
1 if v ≠ ve for e ∈ Scd and 𝜎′d(v) ≠ ∅, and
0 otherwise.

Then supp(Vd) contains at most M𝒯 Venn regions v, all satisfying Vd(v) ⩽ M𝒯 + 1. Since 𝜎′d
is also a solution of 𝜙tℐ(d),Vd

and supp(Vd) contains exactly the Venn regions that are assigned
non-empty sets by 𝜎′d, we conclude that Vd satisfies all conditions of Definition 9.6, hence that
Vd is a Venn bag for tℐ(d).

It remains to define the local systemℭd. Consider the setXd that contains 𝜄(tℐ(d)) (either⋆ or
𝔞tℐ(d)), all 𝔞 ∈ 𝕀, and all pairs (v, j)with anonymous Venn bags v ∈ supp(Vd) and 1 ⩽ j ⩽ Vd(v)
(cf. Definition 9.7). Let 𝜆d be a bijection mapping every such (v, j) to an anonymous successor e
of d satisfying ve = v, such that 𝜆d((ve, j)) ∈ Scd for all e ∈ Scd. Such a bijection exists due to
Lemma 9.12. We extend this bijection to 𝕀 by setting 𝜆d(𝔞) := 𝔞ℐ. Furthermore, we extend 𝜆d
to 𝜉d with 𝜉d(𝜄(tℐ(d))) := d. Then, 𝜉d is injective except for⋆: if d is its own role successor, it can
happen that 𝜉d(⋆) = d = 𝜉d((v, j)). We define the complete constraint system ℭd over variables
fx with f ∈ NF, x ∈ Xd, such that P (fx1

1 ,… , fxk

k
) ∈ ℭd iff (fℐ

1 (𝜉d(x1)),… , fℐ
k
(𝜉d(xk))) ∈ PD

holds for all x1,… ,xk ∈ Xd. If fℐ(𝜉d(x)) is undefined, then fx does not occur in ℭd.

Lemma 9.13. ℭd is a satisfiable local system for tℐ(d) and Vd.

120

9 Concrete Domains Meet Cardinality Constraints

Proof. Clearly, hd(fx) := fℐ(𝜉d(x)) for f ∈ NF, x ∈ Xd defines a solution of ℭd. We show that
ℭd is a local system for tℐ(d) and Vd, according to Definition 9.7:

1. We have ∃p1,… , pk.P ∈ tℐ(d) iff (c1,… , ck) ∈ PD for some values ci ∈ pℐ
i
(d) with i =

1,… , k; by construction of Vd, if pi = rifi we can find ei ∈ Scd such that (d, ei) ∈ rℐ
i

and fℐ
i
(ei) = ci, and set xi := 𝜆−1d (ei); if pi = fi (and fℐ

i
(d) = ci), we set xi := 𝜄(tℐ(d)).

In both cases, we have fℐ
i
(𝜉d(xi)) = ci. By definition of ℭd, then, (c1,… , ck) ∈ PD iff

P (fx1
1 ,… , fxk

k
) ∈ ℭd.

2. Consider any variable of the form XP (𝛼1,…,𝛼k), a Venn region v ∈ supp(Vd) and 1 ⩽
j ⩽ Vd(v). We know that v = ve for some individual e = 𝜆d(x) with x ∈ Xd, and
thus XP (𝛼1,…,𝛼k) ∈ v = ve iff (𝛼ℐ1 (d, e),… , 𝛼ℐk(d, e)) ∈ PD. Setting xi := 𝜄(tℐ(d)) if
𝛼i = fi and xi := x if 𝛼i = next fi, we obtain that (𝛼ℐ1 (d, e),… , 𝛼ℐk(d, e)) ∈ PD iff
(fℐ

1 (𝜉d(x1)),… , fℐ
k
(𝜉d(xk))) ∈ PD iff P (fx1

1 ,… , fxk

k
) ∈ ℭd.

Thus, 𝔱ℐ(d) = (tℐ(d),Vd,ℭd) is an augmented type. Furthermore, we can show that every
augmented type in 𝕋ℐ is patched in 𝕋ℐ.

Lemma 9.14. Every augmented type in 𝕋ℐ is patched in 𝕋ℐ.

Proof. Consider an augmented type 𝔱ℐ(d) = (tℐ(d),Vd,ℭd) ∈ 𝕋ℐ as defined above, v ∈ supp(Vd),
and 1 ⩽ i ⩽ Vd(v). We consider e := 𝜉d((v, i)) if v is anonymous, and e := 𝔞ℐv = 𝜉d(𝔞v)
otherwise. In both cases, we have ve = v by construction of 𝜉d. We show that 𝔱ℐ(e) patches
𝔱ℐ(d) at (v, i). First,

Sv = {C ∈ ℳ | XC ∈ v} ∪ {¬C ∈ ℳ | Xc
C
∈ v}

⊆ {C ∈ ℳ | C ∈ tℐ(e)} ∪ {¬C ∈ ℳ | C ∉ tℐ(e)}
= tℐ(e).

Second, we consider the system ℭd⊲(v,i) ℭe obtained by renaming the variables in ℭe as in Def-
inition 9.8. As discussed above, hd(fx) := fℐ(𝜉d(x)) defines a solution of ℭd, and similarly
he(fx) := fℐ(𝜉e(x)) is a solution of ℭe. In particular, hd(f 𝔞) = fℐ(𝔞ℐ) = he(f 𝔞) for all 𝔞 ∈ 𝕀
and, if e is anonymous, hd(f (v,i)) = fℐ(𝜉d((v, i))) = fℐ(e) = fℐ(𝜉e(⋆)) = he(f⋆). Thus, the
mapping h defined as the union of hd and he (after renaming) is a solution of ℭd⊲(v,i) ℭe.

If Algorithm 2 guesses 𝕀, ℭ𝕀, and 𝔱𝔞, where 𝔞 ∈ 𝕀, then the initial set 𝕋 must contain 𝕋ℐ, and
no augmented type from 𝕋ℐ can ever be removed from 𝕋. This shows that the augmented types
{𝔱𝔞 | 𝔞 ∈ NI} ⊆ 𝕋ℐ remain in 𝕋 throughout the execution of the algorithm. Since the algorithm
terminates, it thus returns consistent. We conclude that Algorithm 2 is compelte.

Theorem 9.15. If𝒯 is consistent, then there is a run of Algorithm 2 that returns consistent.

Termination and Complexity

Because Algorithm 2 runs in exponential time, we obtain a matching upper bound to the Exp-
Time-hardness inherited fromALC. Indeed, as there are at most exponentially many individual
type systems and polynomially many individual types in such a type system, all guesses can be

121

9 Concrete Domains Meet Cardinality Constraints

implemented by enumerating all choices in exponential time. The main elimination proce-
dure also runs in exponential time as the number of augmented types is exponentially bounded,
and all required tests can be performed in exponential time, provided that 𝔇 is ExpTime-𝜔-
admissible. We thus obtain the following result.

Theorem 9.16. Let𝔇 be an ExpTime-𝜔-admissible concrete domain. Then, consistency checking
inALCOSCC(𝔇) is ExpTime-complete.

Proof. ExpTime-hardness follows from ExpTime-hardness for ALC [94]. It remains to show
that Algorithm 2 can be executed in deterministic exponential time by enumerating all choices
in Lines 1 and 2 instead of guessing them. First, there are only exponentially many individual
type systems 𝕀 and individual constraint systems for Line 1 of Algorithm 2. Moreover, there are
only exponentially many augmented types (t,V ,ℭt,V) since the size of Venn bags V is bounded
polynomially and thus also ℭt,V can contain only polynomially many variables and constraints.
In addition, satisfiability of the polynomially large 𝜙t,V and ℭt,V can be checked in exponen-
tial time since satisfiability of QFBAPA formulae is NP-complete [72] and 𝔇 is ExpTime-𝜔-
admissible, respectively. Therefore, the initial set 𝕋 in Line 3 can be constructed in exponential
time and there are also only exponentially many possibilities to assign augmented types 𝔱𝔞 to
the individual types in 𝕀 in Line 2. Since each iteration of the loop in Line 4 removes one aug-
mented type from 𝕋, there can be at most exponentially many iterations. Each iteration can be
performed in exponential time, as each check for patching involves a polynomial test to check
whether Sv ⊆ t′ and an exponential check for satisfiability of a constraint system of polynomial
size, and at most exponentially many patching checks occur. By Theorems 9.11 and 9.15, we
conclude that consistency of anALCOSCC(𝔇) TBox is decidable in exponential time.

9.3 Reasoning with ABoxes

In Chapter 6 we complemented ALC(𝔇) TBoxes 𝒯 with ABoxes containing concept assertions
C(a) and role assertions r(a, b), where a, b ∈ NI, r ∈ NR, andC is a concept, with the obvious se-
mantics. InALCOSCC(𝔇), those assertions can be expressed in the TBox using nominals [22].
In the presence of a concrete domain, however, we may want to use additional kinds of asser-
tions: predicate assertions P (f1(a1),… , fk(ak)) with fi ∈ NF, ai ∈ NI, i = 1,… , k, and a k-ary
predicate P of𝔇, and feature assertions f (a, c) with f ∈ NF, a ∈ NI, and a constant c ∈ D. The
former requires every model ℐ to satisfy (fℐ

1 (aℐ1),… , fℐ
k
(aℐ

k
)) ∈ PD, and the latter states that

fℐ(aℐ) = c.
Using predicate assertions, we can rewrite the TBox𝒯ex in Section 9.1 into a single, intuitive

assertion salary(Sam) < salary(Jane). This also demonstrates how predicate assertions can be
simulated by CIs: instead of P (f1(a1),… , fk(ak)), we can use ⊤ ⊑ succ(refai

= {ai}) for i =
1,… , k and ⊤ ⊑ ∃refa1f1,… , refak

fk.P .
On the other hand, with feature assertions, we can give specific values and state, for instance,

that Sam’s salary is 100,001 € with salary(Sam, 100,001). Feature assertions seemingly increase
the expressivity, since we can use them to refer to constant values. If 𝔇 has singleton predi-
cates =c with (=c)D = {c}, then one can express f (a, c) by {a} ⊑ ∃f .=c. Since an 𝜔-admissible
concrete domain𝔇 has a finite signature, however, this only works for a fixed, finite set of val-
ues c ∈ D. Due to the JD and JEPD conditions, it turns out that feature assertions are actually
equivalent to additional singleton predicates=c that are not part of𝔇, but can be used in concepts
with the same semantics as defined above.

122

9 Concrete Domains Meet Cardinality Constraints

We notice that the results of this section also hold forALC(𝔇), as they can be shown without
resorting to succ-restrictions or nominals [34] and without relying on the fact that interpreta-
tions are finitely branching. Even if we were to impose such a restriction, though, the fact that
ALC(𝔇) ontologies have the finitely branching model property (cf. Corollary 6.14) implies that
the results of this section still apply.

Referring to feature values of named individuals We can use the roles refa introduced
above in arbitrary CD-restrictions to refer to the feature values of named individuals.
We introduce a related construction here, variants of which will be used in several of the fol-

lowing proofs. The idea is to introduce features like salarySam that can be used to express feature
roles like next salary < salarySam within succ-restrictions, in order to quantify the number of
successors with a salary smaller than Sam’s. For this purpose, the interpretation of the feature fa
needs to be such that fℐ

a (d) is equal to fℐ(aℐ) at every individual d ∈ Δℐ. The idea is to use
the role refa to enforce this, using a CI like ⊤ ⊑ ∀refaf , fa.=. However, 𝔇 does not necessarily
contain the equality predicate=, whichmeans that this may not be a valid CI inALCOSCC(𝔇).
Nevertheless, by JD, we know that there is a quantifier-free, equality-free first-order formula
𝜙=(x, y) over the signature of 𝔇 that is equivalent to x = y. Moreover, by JEPD and finiteness
of the signature, we can express negated atoms as disjunctions of positive atoms, so that wemay
assume 𝜙=(x, y) to be a disjunction of conjunctions of positive atoms.
We can use this to construct the concept Crefaf=fa that is obtained from 𝜙=(x, y) by replacing

∧ with ⊓, ∨ with ⊔ and every atom P (t1,… , tn) with ∀p1,… , pn.P , where pi = refaf whenever
ti = x and pi = fa whenever ti = y. This concept is equivalent to the intended CD-restriction
∀refaf , fa.= since refa is functional, i.e. every individual has exactly one refa-successor, namelya.
Thus, the CI⊤ ⊑ Crefaf=fa enforces that, whenever both f

ℐ(aℐ) and fℐ
a (d) are defined, then they

must be equal. Finally, we can complement this CI by similar ones to express that these feature
values are either both defined or both undefined:

∃fa, fa.= ⊑ ∃refaf , refaf .= and∃refaf , refaf .= ⊑ ∃fa, fa.=

(we can construct concepts Cfa=fa and Crefaf=refaf equivalent to ∃fa, fa.= and ∃refaf , refaf .=,
respectively, similarly to Crefaf=fa above).

Concrete domains with constants. In the following proofs, we need to check the satisfiabil-
ity of constraints that contain one or more constants. For this purpose, we assume𝔇 to be Exp-
Time-𝜔-admissible with constants, i.e. ExpTime-𝜔-admissible and such that given c1,… , ck ∈ 𝔇
we can find an encoding of these elements such that CSP(𝔇) remains decidable in exponential
time if constraints are allowed to contain c1, …, ck. Making this assumption is not unreason-
able, since it holds for the three main examples of ExpTime-𝜔-admissible concrete domains.
For 𝔔 and and Allen’s interval algebra, it is required that satisfiability of P (c, d) for constants
c and d can be decided in polynomial time [65], which is the case if all involved numbers are
given as integer fractions with the integers represented in binary. For RCC8, constants can only
denote polygonal regions in the 2D plane, with their finitely many vertices specified by rational
coordinates [75].

Lemma 9.17. For ALCOSCC(𝔇) with a concrete domain 𝔇 that is ExpTime-𝜔-admissible with
constants, the following hold:

123

9 Concrete Domains Meet Cardinality Constraints

1. we can reduce consistency of a TBox 𝒯 with additional singleton predicates to consistency
of an ontology 𝒪 with feature assertions in exponential time, where 𝒪 has polynomial size
w.r.t. 𝒯 ;

2. we can reduce consistency of an ontology 𝒪 with feature assertions to consistency of a TBox
𝒯 with additional singleton predicates in polynomial time.

Proof. We can express every feature assertion f (a, c) by {a} ⊑ ∃f .=c. For the other direction,
consider an ALCOSCC(𝔇) TBox 𝒯 that uses additional singleton predicates. We show how
to construct a TBox 𝒯 ′ and an ABox 𝒜′ that simulate all additional singleton predicates =c

in 𝒯 by using feature assertions. Since =c is unary, it can occur only in CD-restrictions of the
form ∃f .=c or ∃rf .=c and feature roles =c(f) or =c(next f). CD-restrictions ∃rf .=c can be
equivalently expressed as succ(|r ∩ ∃f .=c| ⩾ 1), and =c(next f) can directly be replaced by
∃f .=c. This means that we can assume that =c occurs only in expressions of the form ∃f .=c or
=c(f).
The main idea is to store the value c in a special feature fc by using feature assertions, and

make sure that the value of fc is equal to c at every element reachable from a named individual
by a role chain. We can then express ∃f .=c and =c(f) by making f equal to fc, for which we
exploit JD.
First, we ensure that fc is a total function by adding the axiom ⊤ ⊑ ∃fc.⊤𝔇 to 𝒯 ′, where ⊤𝔇

is interpreted as D. Although ⊤𝔇 may not be a predicate of 𝔇, by JEPD and the fact that the
signature of 𝔇 is non-empty and finite, ⊤𝔇 can be expressed as the disjunction of some k-ary
predicates P1,… ,Pm. This implies that for every d ∈ D there is exactly one k-ary predicate
Pi such that (d,… , d) ∈ PD

i
. Thus, we can write ∃f .⊤𝔇 equivalently as ∃f ,… , f .P1 ⊔ ⋯ ⊔

∃f ,… , f .Pm, where each restriction ∃f ,… , f .Pi repeats f for k times.
We next give fc the value c for all elements reachable from a named individual. We start by

adding all feature assertions fc(a, c) to𝒜′, for every individual name a occurring in𝒯 . If𝒯 does
not contain any individual names, we instead add only fc(a∗, c) for a fresh individual name a∗.
It remains to transfer this value to all reachable elements.
Since𝔇 is𝜔-admissible, equality between two variables x, y can be expressed using a formula

𝜙=(x, y) that is a disjunction of conjunctions of positive atoms over the signature of𝔇 (i.e., not
including the additional singleton predicates). Now consider the formula 𝜙=(c, y), where x is
replaced by the constant c. Since 𝜙=(c, y) is equivalent to c = y, we can find a single disjunct
𝛽(c, y) of 𝜙=(c, y) such that 𝛽(c, y) is satisfiable and equivalent to c = y; otherwise, 𝜙=(c, y)
would be satisfied also for values of y other than c. Overall, we can compute 𝛽(c, y) in exponen-
tial time, using the fact that 𝔇 is ExpTime-𝜔-admissible with constants. For every r ∈ NR(𝒪),
we now obtain the concept Cr,c from 𝛽(c, y) by replacing ∧ with ⊓ and every atom P (t1,… , tn)
with ∀p1,… , pn.P , where pi = fc if ti = c and pi = rfc if ti = y, and add the axiom ⊤ ⊑ Cr,c to
𝒯 ′. This ensures that, in every model ℐ of𝒜′ and𝒯 ′, for all elements d that are reachable from
a named individual by a sequence of role connections, we have that fℐ

c (d) = c.
We can now replace every concept of the form∃f .=c in𝒯 with a conceptCf=c that is obtained

from 𝛽(c, y) by replacing ∧ with ⊓ and atoms P (t1,… , tn) with ∃f1,… , fn.P , where fi = fc if
ti = c and fi = f if ti = y. Similarly, we can replace feature roles =c(f) by 𝛾f=c obtained
from 𝛽(c, y) by replacing ∧ with ∩ and atoms P (t1,… , tn) with P (𝛼1,… , 𝛼n), where 𝛼i = fc if
ti = c and 𝛼i = f if ti = y. The constructed TBox 𝒯 ′ and ABox 𝒜′ are of polynomial size w.r.t.
the size of 𝒯 since each assertion, concept, or concrete role fc(a, c), ∃fc.⊤𝔇, Cr,c, Cf=c, 𝛾f=c
is of linear size, the replacements of ∃f .=c by Cf=c are independent of each other since 𝛼(c, y)
cannot contain the additional singleton predicates, and similarly for 𝛾f=c.

124

9 Concrete Domains Meet Cardinality Constraints

Let now ℐ be a model of 𝒯 . By interpreting fc as the total function with fc(d) = c for all
d ∈ Δℐ and, optionally, a∗ as an arbitrary element from Δℐ, we obtain a model of 𝒜′ and 𝒯 ′.
Conversely, let ℐ ′ be a model of 𝒜′ and 𝒯 ′. We restrict ℐ ′ to the subdomain of all elements
reachable from a named element aℐ′ by a chain of role connections rℐ′ for r ∈ NR. The resulting
interpretation ℐ″ is still a model of𝒜′ and 𝒯 ′ since the evaluation of concepts on Δℐ″ does not
depend on unconnected elements from Δℐ″ \ Δℐ′ (see Section 9.1). The new axioms in 𝒜′ and
𝒯 ′ ensure that fc(d) = c holds for all d ∈ Δℐ″ , and therefore ℐ″ is also a model of 𝒯 .

Additionally, feature assertions can be expressed by predicate assertions if𝔇 is homogeneous,
i.e. such that every isomorphism between finite substructures of 𝔇 can be extended to an
isomorphism from 𝔇 to itself [24]. All known 𝜔-admissible concrete domains are homoge-
neous [24].

Lemma 9.18. For ALCOSCC(𝔇) with a concrete domain 𝔇 that is ExpTime-𝜔-admissible with
constants and homogeneous, consistency of an ontology 𝒪 with feature assertions can be reduced
to consistency of an ontology 𝒪′ without feature assertions in exponential time, where 𝒪′ is of
polynomial size w.r.t. 𝒪.

Proof. Let 𝒯 be an ALCOSCC(𝔇) TBox and 𝒜 an ABox containing feature assertions. Since
predicate assertions can be expressed by TBox axioms, it suffices to show how to simulate the
feature assertions by using predicate assertions. Let 𝒜′ result from 𝒜 by removing all feature
assertions and adding the predicate assertions P (f1(a1),… , fk(ak)) ∈ 𝒜′ for all combinations
of feature assertions fi(ai, ci) ∈ 𝒜, i = 1,… , k, with (c1,… , ck) ∈ PD. The size of 𝒜′ is
polynomial in the input, since the signature of𝔇 is fixed, andwe can compute𝒜′ in exponential
time since𝔇 is ExpTime-𝜔-admissible with constants.
It is easy to see that every model of 𝒯 and 𝒜 is also a model of 𝒜′. Conversely, let ℐ be a

model of 𝒯 and𝒜′ and let𝔇𝒜,𝔇ℐ be the finite substructures of𝔇 over the domains

D𝒜 := {c | f (a, c) ∈ 𝒜} andDℐ := {fℐ(a) | f (a, c) ∈ 𝒜},
respectively. By definition of𝒜′ and JEPD, we have (fℐ

1 (aℐ1),… , fℐ
k
(aℐ

k
)) ∈ PD iff (c1,… , ck) ∈

PD, for all combinations of feature assertions fi(ai, ci) in 𝒜. By JD, this in particular implies
that fℐ

1 (aℐ1) = fℐ
2 (aℐ2) iff f1(a1, c), f2(a2, c) ∈ 𝒜 for some value c ∈ D, which means that the

two substructures have the same number of elements. Moreover, by the first equivalence, the
mapping fℐ(aℐ) ↦ c for all f (a, c) ∈ 𝒜 is an isomorphism between 𝔇ℐ and 𝔇𝒜. Since 𝔇 is
homogeneous, there exists an isomorphism h : D → D such that h(fℐ(aℐ)) = c if f (a, c) ∈ 𝒜.
Now, we obtain ℐ ′ from ℐ by changing the interpretation of feature names to fℐ′(d) := h(fℐ(d))
iff this value is defined for f ∈ NF and d ∈ Δℐ. Since h is an isomorphism, we have Cℐ =
Cℐ′ for all conceptsC, including CD-restrictions and succ-restrictions with feature roles, which
shows that ℐ ′ is a model of𝒯 . Moreover, it also satisfies all feature assertions f (a, c) ∈ 𝒜 since
fℐ′(aℐ′) = h(fℐ(aℐ)) = c by construction.

Together, Lemmas 9.17 to 9.18 show that, under these conditions, we can use constant val-
ues (either in feature assertions or additional singleton predicates) in ALCOSCC(𝔇), without
increasing the complexity of reasoning. The following result then follows together with Theo-
rem 9.16.

Theorem 9.19. If𝔇 is ExpTime-𝜔-admissible with constants and homogeneous, then consistency
inALCOSCC(𝔇)with feature assertions andadditional singletonpredicates isExpTime-complete.

125

9 Concrete Domains Meet Cardinality Constraints

9.4 Undecidable Extensions

To conclude our investigations, we show that several extensions of ALCOSCC(𝔇), inspired by
existing DLs or obtained by seemingly harmless tweaks to the syntax and semantics, are unde-
cidable. Hereafter, we assume that the domain set of 𝔇 is infinite and that 𝔇 is JD (cf. Chap-
ter 2). If equality over 𝔇 is defined by the quantifier-free, equality-free formula 𝜙=(x, y), we
write (f = next g) to denote the set term obtained by replacing every atom P (x1,… ,xk) in
𝜙=(x, y)with the feature role P (𝛼1,… , 𝛼k), where 𝛼i = f if xi = x and 𝛼i = next g if xi = y for
i = 1,… , k, and every Boolean connective with the corresponding set operation.

Comparing set cardinalities and feature values. If𝔇 is a numerical concrete domainwhere
D is either ℕ, ℤ or ℚ, it is natural to consider comparisons between feature values of an indi-
vidual d and the cardinalities of sets of role successors of d. For example, we could describe
individuals whose age is fifteen times as much as the number of their children using the con-
cept succ(age = 15 ⋅ |child|). This could be achieved by allowing succ-restrictions to contain
mixed numerical constraints f = ℓ, where ℓ is a PA expression (cf. Section 3.1) that is allowed in
ALCOSCC(𝔇) and f ∈ NF; then, we extend ⋅ℐ by defining d ∈ succ(f = ℓ)ℐ iff fℐ(d) = 𝜎d(ℓ).
Unfortunately, for the CDs considered here, this leads to undecidability, which can be shown
by a reduction to ALC(𝔇) with the concrete domain 𝔇 = (ℕ,+1) where +1 is the successor
relation. TBox consistency in this DL is known to be undecidable [24].

Theorem 9.20. If𝔇 is a numerical concrete domain that is JD, then consistency ofALCOSCC(𝔇)
TBoxes with mixed numerical constraints is undecidable.

Proof. We force r ∈ NR to be functional with the CI ⊤ ⊑ succ(|r| ⩽ 1). We encode the CD-
restriction C := ∃p0, p1.+1 using C0 ⊓ C1, where

Ci := {succ(fi = |S| + i) if pi = fi

succ(f ′
i
= |S| + i) ⊓ succ(|ri ∩ (f ′i = next fi)| ⩾ 1) if pi = rifi.

for i = 0, 1, with fresh names S ∈ NC, f ′i ∈ NF.

Local and global cardinality constraints. It is possible to extendALCSCC by replacing succ-
restrictions, ranging over sets of role successors, with sat-restrictions sat(𝔠𝔬𝔫) ranging over the
whole domain of an interpretation. For the resulting DL, called ALCSCC++, the consistency
problem isNExpTime-complete [10]. In this DL, we can state that an individual likes all existing
cars using the concept sat(likes ∩ Car = Car); in contrast, succ(likes ∩ Car = Car) describes an
individual that likes all cars to which it is related by some role.
If we consider the DL ALCSCC++(𝔇) obtained by adding sat-restrictions in the presence of

concrete domains, then these restrictions may additionally contain feature roles. For example,
the concept sat(⊤ = (age ⩾ next age)) describes the overall oldest individuals, by saying that
their age is greater or equal to those of all individuals, while succ(⊤ = (age ⩾ next age)) de-
scribes individuals that are not younger than any individuals related to them by some role name.
Both ALCSCC++ and ALCSCC++(𝔇) are evaluated over finite interpretations. In [10], this

has been used to show that the consistency problem for the extension of ALCSCC++ with in-
verse roles is undecidable. Similarly, we can use sat-restrictions with feature roles to simulate
multiplication of cardinalities of finite sets, and thus reduce Hilbert’s tenth problem [81] to the

126

9 Concrete Domains Meet Cardinality Constraints

consistency of a ALCSCC++(𝔇) TBox, provided that 𝔇 is JD. Writing C ≡ D as a shorthand
for C ⊑ D and D ⊑ C, we can encode the equation 𝔢 = (x = y ⋅ z) over integers as a prod-
uct of cardinalities |Aℐ

x| = |Aℐ
y| ⋅ |Aℐ

z |, in three steps. First, we enforce rℐ𝔢 = Aℐ
y × Aℐ

z to hold
with Ay ≡ sat(|r𝔢| ⩾ 1) and Ay ≡ sat(r𝔢 = Az); then, we enforce |sℐ𝔢 | = |Aℐ

x| by adding
⊤ ⊑ sat(s𝔢 = (f𝔢 = next g𝔢)) and the CIs

⊤ ⊑ sat(|(g𝔢 = next f𝔢)| ⩽ 1) and Ax ⊑ sat(|(g𝔢 = next f𝔢)| ⩾ 1).

Finally, we add ⊤ ⊑ sat(|r𝔢| = |s𝔢|), so that, for every finite model ℐ of all these CIs, |Aℐ
x| =

|sℐ𝔢 | = |rℐ𝔢 | = |Aℐ
y×Aℐ

z | = |Aℐ
y| ⋅ |Aℐ

z | holds. We reduce the solvability of a system of Diophantine
equations ℰ over the natural numbers to the consistency of aALCSCC++(𝔇) TBox𝒯ℰ. Without
loss of generality, we assume that every equation in ℰ is of the form x = y ⋅ z, x = y+ z or x = n
with x, y, z variables and n a natural number. The TBox 𝒯ℰ contains a concept name Ax for
every variable x occurring in ℰ and a conjunction of CIs 𝒯𝔢 for every equation 𝔢 ∈ ℰ , built as
follows:

• if 𝔢 = (x = n), then 𝒯𝔢 contains the CI ⊤ ⊑ sat(|Ax| = n);

• if 𝔢 = (x = y + z), then 𝒯𝔢 contains the CI ⊤ ⊑ sat(|Ax| = |Ay| + |Az|);

• if 𝔢 = (x = y ⋅z), then𝒯𝔢 contains the following CIs and concept definitionsC ≡ D, which
are a shorthand for C ⊑ D andD ⊑ C:
– Ay ≡ sat(|r𝔢| ⩾ 1) and Ay ≡ sat(r𝔢 = Az) where r𝔢 is a fresh role name;
– ⊤ ⊑ sat(s𝔢 = (f𝔢 = next g𝔢)) and ⊤ ⊑ sat(|(g𝔢 = next f𝔢)| ⩽ 1) as well as Ax ⊑

sat(|(g𝔢 = next f𝔢)| ⩾ 1) with s𝔢 ∈ NR and f𝔢, g𝔢 ∈ NF fresh names;
– ⊤ ⊑ sat(|r𝔢| = |s𝔢|).

The key result for the correctness of the reduction is the following.

Lemma 9.21. If 𝔢 = (x = y ⋅ z) then |Aℐ
x| = |Aℐ

y| ⋅ |Aℐ
z | for every model ℐ of𝒯𝔢.

Proof. First, we show that rℐ𝔢 = Aℐ
y × Aℐ

z . If (d, e) ∈ rℐ𝔢 holds, then d ∈ Aℐ
y follows from

Ay ≡ sat(|r𝔢| ⩾ 1); in turn, this implies that e ∈ Aℐ
z due to Ay ≡ sat(r𝔢 = Az). Vice versa,

if d ∈ Aℐ
y and e ∈ Aℐ

z , then Ay ≡ sat(r𝔢 = Az) implies that (d, e) ∈ rℐ𝔢 . We conclude that
(d, e) ∈ rℐ𝔢 iff d ∈ Aℐ

y and e ∈ Aℐ
z .

Next, we show that |sℐ𝔢 | = |Aℐ
x|. To show that |sℐ𝔢 | ⩾ |Aℐ

x| holds, we observe that for every
e ∈ Aℐ

x there exists d ∈ Δℐ such that fℐ
𝔢 (d) = gℐ𝔢 (e) by Ax ⊑ sat(|(g𝔢 = next f𝔢)| ⩾ 1), and

this implies that (d, e) ∈ sℐ𝔢 by ⊤ ⊑ sat(s𝔢 = (f𝔢 = next g𝔢)). Thus, sℐ𝔢 contains at least as
many tuples as elements of Aℐ

x. To establish |sℐ𝔢 | ⩽ |Aℐ
x|, we notice that the function hmapping

(d, e) ∈ sℐ𝔢 to e ∈ Δℐ is an injective function from sℐ𝔢 to Aℐ
x. All the CIs in𝒯𝔢 imply that e ∈ Aℐ

x.
Assuming that h((d, e)) = h((d′, e′)) and thus e = e′, the fact that

fℐ
𝔢 (d) = gℐ𝔢 (e) = gℐ𝔢 (e′) = fℐ

𝔢 (d′)

together with⊤ ⊑ sat(|(g𝔢 = next f𝔢)| ⩽ 1) implies d = d′, hence that h is injective. Finally, we
use the CI ⊤ ⊑ sat(|r𝔢| = |s𝔢|) to conclude that

|Aℐ
x| = |sℐ𝔢 | = |rℐ𝔢 | = |Aℐ

y ×Aℐ
z | = |Aℐ

y| ⋅ |Aℐ
z |,

where the last identity holds because the domain of ℐ is finite.

127

9 Concrete Domains Meet Cardinality Constraints

Theorem 9.22. A system of Diophantine equations ℰ has a solution over the natural numbers iff
the TBox𝒯ℰ is consistent.

Proof. Assume that ℐ is a finite model of𝒯ℰ. Then, the assignment x⋆ := |Aℐ
x| to every variable

x is a solution of all equations 𝔢 ∈ ℰ . This is trivial for 𝔢 = (x = n) and 𝔢 = (x = y + z) ,
and Lemma 9.21 shows that this holds for 𝔢 = (x = y ⋅ z).
Vice versa, assume that ℰ has a solution assigning the natural number x⋆ to every variable x,

and that every value assigned by this solution is smaller or equal than the natural number nℰ.
We define the finite interpretation ℐ with domain Δℐ := {1,… ,nℰ} with Aℐ

x := {1,… ,x⋆} for
every variable x. Assuming that 𝔢 = (x = y ⋅ z), we define the interpretation of role names

rℐ𝔢 := Aℐ
y ×Aℐ

z and sℐ𝔢 := {(i, i ⋅ j) | i ∈ Aℐ
y , 1 ⩽ j ⩽ z⋆}.

To define the interpretation of feature names f𝔢, g𝔢, we assume that h𝔢 is an injective mapping
from Aℐ

y toD, which always exists since we assumed𝔇 to be infinite. Then, we define fℐ
𝔢 (i) :=

h𝔢(i) iff i ∈ Aℐ
y and gℐ𝔢 (j) := fℐ

𝔢 (i) iff i ∈ Aℐ
y and (i, j) ∈ sℐ𝔢 . It is then straightforward to verify

that ℐ is a finite model of 𝒯ℰ.

Theorem 9.23. If the concrete domain 𝔇 is infinite and JD, then the consistency problem for
ALCSCC++(𝔇) TBoxes is undecidable.

Transitive roles. Often, we may want a role name to be interpreted as a transitive relation:
for instance, trans(ancestor) in the TBox expresses the fact that the ancestor of an ancestor is
also an ancestor. The interaction between number restrictions and transitivity axioms in the
presence of role inclusions is known to lead to undecidability [64]. It is possible to regain decid-
ability by disallowing transitive roles within number restrictions, even in the presence of inverse
roles [64]. Another restriction that leads to decidability is to replace number restrictions with
role functionality axioms; in this case, decidability holds even if one additionally allows nomi-
nals and inverse roles [57].
In the DL SSCC that extends ALCSCC with transitivity axioms, consistency is undecidable

even under all syntactic constraints mentioned above. In particular, we require that numerical
constraints contain no transitive roles and no constants other than 0 or 1. We show how to
reduce the solvability of a tiling problem P (cf. Definition 7.19) to the consistency of a restricted
SSCC TBox𝒯P . Adapting the reduction introduced in [64], we introduce concept namesAt for
t ∈ T and role names h and vmeant to capture the matching conditions of P . If ℐ is a model of
𝒯P , we ensure that every d ∈ Δℐ has exactly one tile type and enforce the existence of exactly
one h- and one v-successor for d using the CI

⊤ ⊑ ⨆
t∈TAt ⊓⨅t≠t′∈T¬(At ⊓At′)

⊤ ⊑ succ(|h| = 1 ∧ |v| = 1).
(successors)

The matching conditions of P are encoded in 𝒯P by adding for t ∈ T the CIs

At ⊑ succ(h ⊆ ⨆(t,t′)∈HAt′) and At ⊑ succ(v ⊆ ⨆(t,t′)∈V At′). (matching)

For every model ℐ of 𝒯P we want to ensure that every v-successor of a h-successor of d ∈ Δℐ

is also a role successor of d, and similarly for every h-successor of a v-successor. As ℐ must be
finitely branching, though, it is not possible to simply use one transitive role r that includes both

128

9 Concrete Domains Meet Cardinality Constraints

A00

A01

A00

⋮

A10

A11

A10

⋮

A00

A01

A00

⋮

⋯

⋯

⋯

v0
h0

v1
h0

v0
h0

v0
h1

v1
h1

v0
h1

v0
h0

v1
h0

v0
h0

r 00

r 01

r 10

r 11

Figure 9.2: A representation of the structure enforced using transitive roles.

h and v, as this would imply that d has infinitely many successors. Instead, we introduce role
names hi, vj and rij with i, j ∈ {0, 1}, where rij is a transitive superrole of hi and vj thanks to

trans(rij) and hi ⊑ rij and vj ⊑ rij for i, j ∈ {0, 1}, (super)

where r ⊑ s is an abbreviation for ⊤ ⊑ succ(r ⊆ s). Then, we partition the domain with four
concept names Aij with i, j ∈ {0, 1} using a similar CI as the one used in (successors). If d is
labelled with Aij , then none of its successors should be labelled with the same concept Aij ;
further, for d the roles hi and vj act as h and v and connect to other individuals d′ labelled by
concepts Ai′j′ following the CIs

Aij ⊑ succ(h ⊆ A(1−i)j ∧ v ⊆ Ai(1−j)) and
Aij ⊑ succ(h = hi ∧ v = vj) for i, j ∈ {0, 1}. (local)

These axioms enforce an alternating pattern of roles that ensures that, if d belongs to Aij , then
it has finitely many rij-successors.
What is left is to ensure formodels ℐ of𝒯P is that the v-successor of the h-successor of d ∈ Δℐ

is equal to the h-successor of the v-successor of d. Since both are also successors of d thanks to
the presence of transitive roles, we force them to be equal by introducing the CI

⊤ ⊑ succ(|hc ∩ vc| = 1). (⋆)

The effect of (super), (local) and (⋆) on themodels of𝒯P is showed in Figure 9.2. We establish
the crucial property enjoyed by the models of 𝒯P below.

Lemma 9.24. If ℐ is a model of𝒯P , then the binary relations hℐ ∘ vℐ and vℐ ∘hℐ coincide and are
functional.

Proof. If ℐ be a model of 𝒯P , (successors) guarantees that for every d ∈ Δℐ that there are four
individuals d1, d2, e1, e2 ∈ Δℐ such that (d, d1) ∈ hℐ, (d1, d2) ∈ vℐ, (d, e1) ∈ vℐ and (e1, e2) ∈ hℐ.
By (super) and (local) we deduce that d ∈ Aℐ

ij
iff (d, d2) ∈ rℐ

ij
and (d, e2) ∈ rℐ

ij
for i, j ∈ {0, 1}.

Moreover, d2 and e2 are both different from d1 and e1, since the concepts Aij are disjoint for
i, j ∈ {0, 1} and by (local). Together with (successors), this implies that d2, e2 ∉ hℐ(d) and
d2, e2 ∉ vℐ(d). Then, we conclude by (⋆) that d2 = e2 must hold and that hℐ ∘ vℐ and vℐ ∘ hℐ

coincide.

129

9 Concrete Domains Meet Cardinality Constraints

Lemma 9.25. The tiling problem P has a solution iff𝒯P is consistent.

Proof. Let ℐ be a model of 𝒯P . We define the mapping 𝜋: ℕ × ℕ → Δℐ inductively, as follows.
First, let 𝜋(0, 0) be an arbitrary individual in ℐ , which exists since this set must be non-empty.
Assuming that for i, j ∈ ℕ the value 𝜋(i, j) := d is defined, we define 𝜋(i + 1, j) as the unique
h-successor of d in ℐ 𝜋(i, j + 1) as the unique v-successor of d in ℐ . Lemma 9.24 guarantees
that 𝜋 is well-defined: indeed, the individual 𝜋(i + 1, j + 1) is supposed to be both the unique
h-successor of 𝜋(i, j + 1) and the unique v-successor of 𝜋(i, j + 1), and the lemma ensures that
these are indeed the same elements. Clearly, for all i, j ∈ ℕ

(𝜋(i, j), 𝜋(i + 1, j)) ∈ hℐ and (𝜋(i, j), 𝜋(i, j + 1)) ∈ vℐ. (9.1)

Using 𝜋, we define 𝜋P : ℕ × ℕ → T as 𝜋P (i, j) := t iff 𝜋(i, j) ∈ Aℐ
t . Then, the fact that ℐ

satisfies (successors) and (9.1) ensures that 𝜋P is a solution of P .
Next, let 𝜋 be a solution of P . We define the interpretation ℐ𝜋 with domain ℕ×ℕ as follows.

For each tile type t ∈ T , we set Aℐ𝜋
t as the set of elements (m,n) for which 𝜋(m,n) = t. For

each element (m,n) in the domain, we add ((m,n), (m+1,n)) to hℐ𝜋 and ((m,n), (m,n+1)) to
vℐ𝜋 . Then, writing (m ≡ i mod 2) to denote that the remainder of the division ofm ∈ ℕ by 2
is i (and similarly for n and j), we set for i, j ∈ {0, 1}

A
ℐ𝜋
ij

:= {(m,n) ∈ Δℐ𝜋 | m ≡ i mod 2, n ≡ j mod 2}
h
ℐ𝜋
i

:= {((m,n), (m + 1,n)) | (m,n) ∈ A
ℐ𝜋
ij
}

v
ℐ𝜋
j

:= {((m,n), (m,n + 1)) | (m,n) ∈ A
ℐ𝜋
ij
}

r
ℐ𝜋
ij

:= h
ℐ𝜋
i
∪ v

ℐ𝜋
j

∪ {((m,n), (m + 1,n + 1)) | (m,n) ∈ A
ℐ𝜋
ij
}

It is straightforward to verify that ℐ𝜋 is a model of 𝒯P .

Theorem 9.26. Consistency in SSCC is undecidable, even if numerical constraints contain no
transitive roles and no constants other than 0 or 1.

In the above reduction, transitive roles do not explicitly occur within number restrictions.
However, the semantics of SSCC is such that every succ-restriction implicitly ranges over all
roles, including the transitive ones. If we disallow the usage of the set complement operator ⋅c
on roles, which is employed in (⋆), we could still enforce correctness of the reduction by adding
Aij ⊑ succ(|A(1−i)(1−j)| = 1) to 𝒯P , which works because of the implicit ranging over role
successors induced by the semantics of SSCC.
One may ask if lifting this semantic condition allows us to regain decidability. If we consider

the extension SSCC++ of SSCC, defined in the same spirit of ALCSCC++ w.r.t. ALCSCC, we
can replace (⋆) with Aij ⊑ sat(|rij ∩ A(1−i)(1−j)| = 1) to cause undecidability. While only
using coefficients 0 or 1, this variant requires an explicit usage of transitive roles in number
restrictions. It is unclear if the same can effect can be achieved while disallowing transitive
roles within numerical constraints.

Summary

We introduced the very expressiveDLALCOSCC(𝔇) that supports concrete domain restrictions
and role successor restrictions involving feature values. We showed that consistency in this logic

130

9 Concrete Domains Meet Cardinality Constraints

is ExpTime-complete, the same as for the basic DL ALC, if 𝔇 is ExpTime-𝜔-admissible. More-
over, we have discussed the consequences of adding assertions, transitive roles, unrestricted
semantics, or mixed constraints, most of which make the logic undecidable. Additionally to
these results, we showed that reasoning in ALCOSCC(𝔇) is undecidable if we allow the com-
parison of feature values and cardinalities of sets of role successors if𝔇 is a numerical concrete
domain.

131

10 Conclusion

This thesis provides a comprehensive view on Description Logics extended with concept or ter-
minological constructors based on cardinality constraints expressed in the logic QFBAPA or on
concrete domains. We established the complexity of reasoning in the DLs obtained by consider-
ing one extension at a time ormultiple extensions at once. In particular, we presented results for
ALCSCC, ALCSCC∞, ALC(𝔇), ALCOSCC(𝔇) and RCBoxes, ERCBoxes and ECBoxes. Fur-
ther, we investigated the expressive power of these logics, using for each a suitable notion of
bisimulation that allowed us to compare the expressive power of DLs or to characterize it w.r.t.
FOL or FOL(𝔇). To enable the comparison of logics with and without concrete domains, we
also introduced the notion of abstract expressive power and used it to derive interesting first-
order properties of logics with concrete domains.
In Chapter 3 we presented existing results on concept satisfiability w.r.t. a TBox written in

the DLsALCSCC [7] andALCSCC∞ [16], and on generalizations of TBoxes and CBoxes based
on (semi-)restricted or extended cardinality constraints [19, 93, 8, 10]. We derived complexity
results for ALCSCC and arbitrary interpretations that correspond to what was shown in these
papers w.r.t. finite or finitely branching models. Additionally, we established the complexity of
the entailment problem for Boolean combinations of (semi-)restricted cardinality constraints,
where reducibility to consistency depends on the employed coefficients, enriching the existing
landscape of complexity results for reasoning with global cardinality constraints in description
logics. The main complexity results derived in Chapter 3 are reported in Table 10.1.
In Chapter 4 we analyzed the expressive power of ALCSCC and ALCSCC∞ as concept lan-

guages using the notion of local Presburger (Pr) bisimulation, which strengthens the known no-
tion of counting bisimulation [80] by applying the back-and-forth conditions to safe role types
rather than role names. We showed that both ALCSCC and ALCSCC∞ concepts are invariant
under Pr bisimulation and used this property to show non-definability results w.r.t. these DLs.
In [16] we showed that the first-order definable fragment of ALCSCC∞ corresponds to the DL
ALCQt, by showing that this DL is exactly the fragment of first-order logic that is invariant un-
der Pr bisimulation. Here, we generalized this result to bothALCSCC andALCSCC∞ w.r.t. ar-
bitrary, finitely branching and finite interpretations, using an approach based on strong locality
properties of FOL that follows the treatment of Otto for gradedmodal logic (i.e. ALCQ) in terms
of counting bisimulation [84]. Using (q,ℓ)-bisimulations, we showed thatALCQt andALCSCC
can be separated, thus showing that the latter DL contains concepts that are not first-order de-
finable and ismore expressive than the former DL. These results are summarized in Figure 10.1,

132

10 Conclusion

ALCSCC ALCSCC∞

Concept satisfiability with no TBox PSpace-c. [7] PSpace-c. [16]
w.r.t. a TBox ExpTime-c. [7] ExpTime-c. [16]

Boolean TBox consistency ExpTime-c. ExpTime-c.
RCBox consistency ExpTime-c. [8] ExpTime-c.

ERCBox consistency ExpTime-c. [10] ExpTime-c.
entailment coNExpTime-c. coNExpTime-c.

CBox consistency NExpTime-c. [8] NExpTime-c.
ECBox consistency NExpTime-c. [8] NExpTime-c.

Table 10.1: Complexity results discussed for Chapter 3, where we assume binary coding of num-
bers. Complexity of entailment is only indicated where it differs from consistency.
Each entry without citation corresponds to a contribution of this thesis.

where we further relate the expressive power of these logics with other concept languages stud-
ied in this thesis.
Chapter 5 has been devoted to the analysis of the expressive power of knowledge bases writ-

ten using local and global cardinality constraints, which we conducted by means of global and
comparativePr bisimulations. In particular, we showed that the set of BooleanALCQt TBoxes is
the fragment of first-order logic that is invariant under global Pr bisimulation, and that Boolean
ALCQt CBoxes play a similar role w.r.t. comparative Pr bisimulation. Using the 0-1 law of
first-order logic, we showed that even simple RCBoxes cannot be defined in first-order logic,
both w.r.t. arbitrary and finite interpretations. A classification of the expressive power results
obtained in Chapter 5 is depicted in Figure 10.2.
InChapter 6we introduced the notion of ExpTime-𝜔-admissible concrete domain, and proved

that the consistency problem for ALC(𝔇) ontologies is ExpTime-complete if 𝔇 is ExpTime-𝜔-
admissible, thus proving the conjecture posed in [79] and further showing that concept and role
assertions can be added without an increase in complexity.
In Chapter 7 we studied the notion of abstract expressive power of logics with concrete do-

mains. We established sufficient conditions on the concrete domain that ensure that the result-
ing extensions of FOL and ALC satisfy (countable) compactness or other important first-order
properties, and use the notion of abstract (non-)definability to derive (un-)decidability results
for several fragments of FOL(𝔇). These results are summarised in Table 10.2 and Table 10.3.
InChapter 8we introduced a notion of bisimulation forALC(𝔇) and used it to characterize its

expressive power w.r.t. FOL(𝔇), as well as to show that several of its extensions are strictly more
expressive, similarly towhatwas done inChapter 4. Moreover, we compared different notions of
bisimulationswith concrete domains and showedhow to relate them to obtain characterizations
forALC∨+(𝔇) andALCfo(𝔇).
Finally, we presented the very expressive DL ALCOSCC(𝔇) that supports concrete domain

restrictions and role successor restrictions involving feature values. We have shown that con-
sistency in this logic is ExpTime-complete, the same as for the basic DL ALC. Moreover, we
have discussed the consequences of adding assertions, transitive roles, unrestricted semantics,
or mixed constraints, most of which make the logic undecidable. For reasoning with ExpTime-
𝜔-admissible concrete domains, we report the results obtained in Chapters 6 and 9 in Table 10.4.
Additionally to these results, in Chapter 9 we showed that reasoning inALCOSCC(𝔇) is unde-

133

10 Conclusion

FOL-definable

ALCSCC(𝔇)

ALCSCC ⊕ALC(𝔇)

ALCSCC

FOL ALCSCC

ALCQt

ALC(𝔇)

ALCQ

ALC

Figure 10.1: The relative expressivity of the concept languages studied in this thesis. An arrow
from a node N to a node N′means that the concept language N can be expressed in
N′ and that N is strictly less expressive than N′.

cidable if we allow the comparison of feature values and cardinalities of sets of role successors
if𝔇 is a numerical concrete domain.

Related Work and Open Problems

In addition to what has already been mentioned, we would like to point out other existing work
that relates to what analyzed in this thesis, highlighting potential venues for future work.

Expressive Power of ECBoxes and TBoxes over restricted classes of models. The char-
acterizations of the expressive power of box formalisms shown in Chapter 5 only hold w.r.t.
arbitrary interpretations. We have seen in Chapter 4 that, by adopting appropriate model trans-
formations, the characterization results for the expressive power of concept languages could be
also w.r.t. finitely branching and finite interpretations. We conjecture that this approach can be
adopted to generalize the results contained in Chapter 5. In [85], for instance, this locality-based
approach has been used to characterize the modal logic Kwith a global operator, which is anal-
ogous to Boolean ALC TBoxes. While the results shown in Chapter 4 and [85] use a notion of
locality based on the Gaifman graph of an interpretation, we could use other notions of locality,
such as Hanf locality, and related results from finite model theory (see e.g. [44]).

134

10 Conclusion

FOL-definable

ALCSCC∞

ECBoxes

ALCQt
ECBoxes

Bool ALCQt CBoxes

FOL ALCSCC∞ ECBoxes
ALCQt
ERCBoxes

Bool ALCQt TBoxes

FOL Bool ALCSCC∞ TBoxes
ALCQt
CBoxes ALCQt

RCBoxes

ALCQt TBoxes

FOL ALCSCC∞ TBoxes

Figure 10.2: A visual representation of the expressivity hierarchy for TBoxes and their exten-
sions. An arrow from a node N to a node N′ means that all the languages in N,
which are equivalent, are strictly less expressive than those in N′.

Conservative extensions and rewritability. The notion of expressive power employed in this
thesis focuses on the classes of models defined by a concept, knowledge base or formula over
a fixed signature. However, there are alternative notions of expressive power that allow the
usage of additional predicates in the translation of one of these objects, similarly to what we
called projective abstract definability in Chapter 7. This alternative view is based on the con-
cept of conservative extension [6]. For TBoxes, the problem of deciding if a TBox in a certain
DL admits a rewriting in a weaker DL was tackled in [80], and these results have been succes-
sively expanded to account for conservative rewritability [69]. For the extended CRs that we
investigated in Chapter 5, early results on conservative rewritability or RCBoxes and ERCBoxes
appeared in [93], where it is shown that these constructs can be expressed using a number of
powerful DL constructors. Recently, some techniques discussed in these papers have been ap-
plied to separate counting logics from non-counting ones [70]. It is yet unclear ifALCSCC con-
cepts can be conservatively rewritten inALCQ, though we suspect that by adapting the results
contained in [80] one could establish the decidability of the rewritability problem of first-order
definable ALCSCC TBoxes into ALCQ ontologies. In Chapter 7 we found instances of𝔇 such
thatALC(𝔇)TBoxes cannot be expressed inALC nor inFOL, and instances that instead allowed
us to capture the abstract expressive power of these TBoxes in FOL or even ALC. Similarly to
what we discussed for cardinality constraints, we think that by combining the techniques in [80,
69] one can investigate the problem of deciding, for a given ALC(𝔇) TBox, whether it can be
abstractly (projectively) defined in FOL (ALC).

135

10 Conclusion

FOL(𝔇) ALC(𝔇)
𝔇 is strongly positive and homomorphism 𝜔-compact
Downward Löwenheim-Skolem yes yes
Countable Compactness yes yes
Upward Löwenheim-Skolem — yes
Craig Interpolation abstract —
𝔇 is strongly positive and unary
Abstract definability FOL (projective) ALC (projective)
Craig Interpolation abstract abstract
𝔇 is countably infinite and jointly diagonal
Abstract FOL-definability no no
Upward Löwenheim-Skolem no —

Table 10.2: Abstract expressive power results shown in Chapter 7.

𝔇 strongly positive and unary 𝔇 infinite and jointly diagonal
Satisfiability of GF2(𝔇) decidable —
Satisfiability of FOL2(𝔇) decidable undecidable
Satisfiability of 𝒞2(𝔇) decidable undecidable

Table 10.3: Complexity results derived in Chapter 7.

Adding more to ALCOSCC(𝔇). In Chapter 9 we presentedALCOSCC(𝔇), a very expressive
DL that supports concrete domain restrictions and role successor restrictions involving feature
values through feature roles. We have shown that consistency in this logic is ExpTime-complete,
the same as for the basic DL ALC. While feature roles can already express a restricted form
of inverse roles, in the future, we would like to investigate the decidability and complexity of
𝒜ℒ𝒞𝒪ℐ𝒮𝒞𝒞(𝔇)with full inverse roles, for which it is known that they increase the complexity
of classical DLs with nominals and number restrictions to NExpTime [96].

Two-variable guarded fragment with Presburger counting. The logic GPres2 [27] is an
extension of GC2 with local Presburger constraints that generalizes ALCSCC and ALCSCC∞

by allowing e.g. for inverse roles. Its satisfiability problem is ExpTime-complete [26, 77] w.r.t.
finitely branching interpretations and decidable in 3NExpTime if only finite interpretations are
allowed [27]. In terms of expressive power, one could ask ifGC2 can be characterized as the first-
order fragment of GPres2 w.r.t. the classes of finitely branching and finite interpretations, per-
haps using a stronger notion of bisimulation than the one employed in Chapter 4 that is tailored
to the guarded setting. On the other hand, adding concrete domain reasoning with definedness
and concrete domain predicates as done in Chapter 7 may yield a decidable logic with very ex-
pressive cardinality constraints and concrete domains. This logic subsumes 𝒜ℒ𝒞𝒪ℐ𝒮𝒞𝒞(𝔇)
and thus, as discussed earlier, reasoning would become at least NExpTime-hard [96].

Extending the two-variable fragment with counting. As mentioned in Chapter 2 the sat-
isfiability problem for the logic 𝒞2 is NExpTime-complete for both unary and binary coding of

136

10 Conclusion

ALC(𝔇) ALCOSCC(𝔇)
Consistency ExpTime-c. ExpTime-c.
Consistency with constants (†) ExpTime-c. ExpTime-c.

SSCC ALCSCC++(𝔇)
Consistency undecidable undecidable

Table 10.4: Complexity results derived in Chapters 6 and 9, where 𝔇 is ExpTime-𝜔-admissible.
Where marked with †,𝔇 fulfills additional conditions stated in Chapter 9.

numbers [90]. We have seen in Chapter 3 that the consistency problem for ALCSCC∞ and
ALCSCC ECBoxes is similarly NExpTime-complete, both for finite and arbitrary models. The
next logical step would be to investigate the satisfiability problem for 𝒞2 extended with Pres-
burger counting.
In this context, looking at extensions of 𝒞2 with reasoning over 𝜔-admissible concrete do-

mains is not fruitful, aswe already established forFOL2 that the satisfiability problemofFOL2(𝔇)
is undecidable if𝔇 is infinite and JD (cf. Chapter 7). Additionally, the handling of concrete do-
main reasoning w.r.t. finite interpretations is not well understood, and even for less expressive
concrete domains it may be unclear how to establish decidability results. One exception would
be the case of unary concrete domains that are closed under negation: in this setting, we already
proved in Chapter 7 that reasoning in the corresponding extension of 𝒞2 is decidable.

A Unifying Theory of Concrete Domains. As mentioned earlier, there are several existing
complexity results on satisfiability w.r.t. a TBox for extensions of ALC by concrete domains
that are not 𝜔-admissible [36, 42, 43, 74] that complement our work and previous work on 𝜔-
admissible concrete domains [79, 24]. It is unclear whether these lines of research can converge,
providing generalized criteria on concrete domains that yield decidability.

Expressive power of Graph Neural Networks (GNNs). Recently, the tools used to investi-
gate the expressive power of counting logics have been employed to characterize the expressive
power of GNNs [55]. In particular, it has been shown that ALCQ corresponds to the set of
FOL-definable node classifiers that can be expressed using a class of GNNs called aggregate-
combine GNNs [25]. This result has been further extended by investigating the relationship of
GNNs and the two-guarded fragment with Presburger counting GPres2 [28] or other extensions
of ALCQ with fixpoint operators or Datalog construction [1, 89]. Given that the characteriza-
tions ofALCSCC andALC(𝔇) that we provided in Chapters 4 and 8 holds also when restricted
to finite models, it would be interesting to apply them to characterize what properties of node
classifiers that are definable in these DLs can be learnt using a GNN.

Craig interpolation and concrete domains. In the concrete domain setting, we defined vari-
ants of Craig interpolations, according to whether the feature symbols in concrete domain re-
strictions are taken into account or not. Our results in Chapter 7 tackle abstract interpolation,
where the feature symbols are ignored. It would be interesting to see whether one can also show
concrete versions of the Craig interpolation property, maybe depending onwhether the concrete
domain itself satisfies an appropriate interpolation property [35].

137

10 Conclusion

Support for reasoning. The considerable expressive power ofALCSCC and RCBoxes, paired
with their robust decidability, has been used to derive decidability for other extensions of stan-
dard DLs. For example, ALCSCC∞ has been used to show the decidability of ALC extended
with perceptron-like concepts [49], while CBoxes were already used in earlier results on DLs
with circumscription reasoning [30] and RCBoxes provide an upper bound for reasoning with
probabilistic conditionals on finite models [88]. However, practical support for reasoning with
the DLs presented in this paper is currently missing, or only partially supported through limited
encodings to OWL (e.g. [93] for RCBoxes). Similarly, reasoners for DLs with non-trivial con-
crete domains only exist for ALC(𝔇) and EL(𝔇) with so-called p-admissible concrete domains
and without feature paths [3]. A plausible venue of research in this direction would be the de-
sign and implementation of reasoners that combine logical and numerical reasoning based on
simplex, branch-and-bound, and SAT-based column generation [47] or with existing solvers for
Satisfiability Modulo Theory theories that subsume p-admissible or 𝜔-admissible concrete do-
mains. SAT-based column generation has also been used to develop a reasoner for probabilistic
conditionals [68] based on a different semantics than those defined in [88], which only con-
sider finite interpretations and thus require additional checks that are not implemented in the
reasoner presented in [68].

138

Bibliography
1. Ahvonen, V., Heiman, D., Kuusisto, A., Lutz, C.: Logical Characterizations of Recurrent Graph Neural Net-

works with Reals and Floats. Advances in Neural Information Processing Systems 37, 104205–104249 (2024).
https://papers.nips.cc/paper%5C_files/paper/2024/hash/bca7a9a0dd85e2a68420e5cae27eccfb-
Abstract-Conference.html

2. Allen, J.F.: Maintaining Knowledge about Temporal Intervals. Communications of the ACM 26(11), 832–843
(1983). https://doi.org/10.1145/182.358434

3. Alrabbaa, C., Baader, F., Borgwardt, S., Koopmann, P., Kovtunova, A.: Combining Proofs for Description Logic
and Concrete Domain Reasoning. In: Fensel, A., Ozaki, A., Roman, D., Soylu, A. (eds.) Rules and Reasoning
- 7th International Joint Conference, RuleML+RR 2023, Proceedings. LNCS, vol. 14244, pp. 54–69. Springer,
Heidelberg (2023). https://doi.org/10.1007/978-3-031-45072-3_4

4. Andréka, H., Németi, I., van Benthem, J.:Modal Languages and Bounded Fragments of Predicate Logic. Journal
of Philosophical Logic 27(3), 217–274 (1998). https://doi.org/10.1023/A:1004275029985

5. Baader, F.: A Formal Definition for the Expressive Power of Knowledge Representation Languages. In: 9th
European Conference on Artificial Intelligence, ECAI 1990, Proceedings, pp. 53–58 (1990)

6. Baader, F.: A Formal Definition for the Expressive Power of Terminological Knowledge Representation Lan-
guages. Journal of Logic and Computation 6(1), 33–54 (1996). https://doi.org/10.1093/logcom/6.1.33

7. Baader, F.: A New Description Logic with Set Constraints and Cardinality Constraints on Role Successors. In:
Dixon, C., Finger, M. (eds.) Proceedings of the 11th International Symposium on Frontiers of Combining Sys-
tems (FroCoS’17). LNCS, vol. 10483, pp. 43–59. Springer, Heidelberg (2017)

8. Baader, F.: Expressive Cardinality Constraints on𝒜ℒ𝒞𝒮𝒞𝒞Concepts. In: Proceedings of the 34th ACM/SIGAPP
Symposium on Applied Computing. SAC ’19, pp. 1123–1131. ACM, New York, NY, USA (2019). https://doi.
org/10.1145/3297280.3297390

9. Baader, F.: Expressive Cardinality Restrictions on Concepts in a Description Logic with Expressive Number Re-
strictions. ACM SIGAPP Applied Computing Review 19, 5–17 (2019). https://doi.org/10.1145/3372001.
3372002

10. Baader, F., Bednarczyk, B., Rudolph, S.: Satisfiability and Query Answering in Description Logics with Global
and Local Cardinality Constraints. In: Proceedings of the 24th European Conference on Artificial Intelligence
(ECAI 2020). Frontiers in Artificial Intelligence and Applications, pp. 616–623. IOS Press (2020). https://
doi.org/10.3233/FAIA200146

11. Baader, F., Borgwardt, S., De Bortoli, F., Koopmann, P.: Concrete Domains Meet Expressive Cardinality Re-
strictions in Description Logics. In: Barrett, C., Waldmann, U. (eds.) Automated Deduction – CADE 30. LNAI,
vol. 15943, pp. 676–695. Springer, Heidelberg (2025). https://doi.org/10.1007/978-3-031-99984-0_35

12. Baader, F., Buchheit, M., Hollander, B.: Cardinality Restrictions on Concepts. Artificial Intelligence 88(1–2),
195–213 (1996). https://doi.org/10.1016/S0004-3702(96)00010-0

13. Baader, F., Calvanese, D., McGuinness, D., Nardi, D., Patel-Schneider, P.F. (eds.): The Description Logic Hand-
book: Theory, Implementation, and Applications. Cambridge University Press (2003)

139

https://papers.nips.cc/paper%5C_files/paper/2024/hash/bca7a9a0dd85e2a68420e5cae27eccfb-Abstract-Conference.html
https://papers.nips.cc/paper%5C_files/paper/2024/hash/bca7a9a0dd85e2a68420e5cae27eccfb-Abstract-Conference.html
https://doi.org/10.1145/182.358434
https://doi.org/10.1007/978-3-031-45072-3_4
https://doi.org/10.1023/A:1004275029985
https://doi.org/10.1093/logcom/6.1.33
https://doi.org/10.1145/3297280.3297390
https://doi.org/10.1145/3297280.3297390
https://doi.org/10.1145/3372001.3372002
https://doi.org/10.1145/3372001.3372002
https://doi.org/10.3233/FAIA200146
https://doi.org/10.3233/FAIA200146
https://doi.org/10.1007/978-3-031-99984-0_35
https://doi.org/10.1016/S0004-3702(96)00010-0

Bibliography

14. Baader, F., De Bortoli, F.: Description Logics That Count, and What They Can and Cannot Count. In: Kovacs,
L., Korovin, K., Reger, G. (eds.) ANDREI-60. Automated New-era Deductive Reasoning Event in Iberia. EPiC
Series in Computing, pp. 1–25. EasyChair (2020). https://doi.org/10.29007/ltzn

15. Baader, F., De Bortoli, F.: Logics with Concrete Domains: First-Order Properties, Abstract Expressive Power,
and (Un)Decidability. SIGAPP Applied Computing Review 24(3), 5–17 (2024). https://doi.org/10.1145/
3699839.3699840

16. Baader, F., De Bortoli, F.: On the Expressive Power of Description Logics with Cardinality Constraints on Finite
and Infinite Sets. In: Herzig, A., Popescu, A. (eds.) Proceedings of the 12th International Symposium on Fron-
tiers of Combining Systems (FroCoS’19). LNCS, vol. 11715, pp. 203–219. Springer, Heidelberg (2019). https:
//doi.org/10.1007/978-3-030-29007-8_12

17. Baader, F., De Bortoli, F.: The Abstract Expressive Power of First-Order and Description Logics with Concrete
Domains. In: Proceedings of the 39th ACM/SIGAPP Symposium on Applied Computing. SAC ’24, pp. 754–761.
ACM, New York, NY, USA (2024). https://doi.org/10.1145/3605098.3635984

18. Baader, F., De Bortoli, F.: The Expressive Power of Description Logics with Numerical Constraints over Re-
stricted Classes of Models. In: Thiemann, R., Weidenbach, C. (eds.) Proceedings of the 5th International Sym-
posiumonFrontiers of Combining Systems (FroCoS ’25). LNAI, vol. 15979. Springer, Heidelberg (2025). https:
//doi.org/10.1007/978-3-032-04167-8_2

19. Baader, F., Ecke, A.: Extending the Description Logic 𝒜ℒ𝒞 with More Expressive Cardinality Constraints on
Concepts. In: Proceedings of the 3rd Global Conference on Artificial Intelligence (GCAI’17). EPiC Series in
Computing, pp. 6–19. EasyChair (2017). https://doi.org/10.29007/f3hh

20. Baader, F., Hanschke, P.: A Scheme for Integrating Concrete Domains into Concept Languages. In:Mylopoulos,
J., Reiter, R. (eds.) Proceedings of the 12th International Joint Conference on Artificial Intelligence. Sydney,
Australia, August 24-30, 1991, pp. 452–457.MorganKaufmann (1991). http://ijcai.org/Proceedings/91-
1/Papers/070.pdf

21. Baader, F., Hanschke, P.: Extensions of Concept Languages for a Mechanical Engineering Application. In:
Ohlbach, H.J. (ed.) GWAI-92: Advances in Artificial Intelligence, 16th German Conference on Artificial Intel-
ligence. LNCS, vol. 671, pp. 132–143. Springer, Heidelberg (1992). https://doi.org/10.1007/BFb0018999

22. Baader, F., Horrocks, I., Lutz, C., Sattler, U.: An Introduction to Description Logic. Cambridge University Press
(2017)

23. Baader, F., Rydval, J.: Description Logics with Concrete Domains and General Concept Inclusions Revisited. In:
Peltier, N., Sofronie-Stokkermans, V. (eds.) Automated Reasoning. LectureNotes in Computer Science, pp. 413–
431. Springer International Publishing, Cham (2020). https://doi.org/10.1007/978-3-030-51074-9_24

24. Baader, F., Rydval, J.: Using Model Theory to Find Decidable and Tractable Description Logics with Concrete
Domains. Journal of Automated Reasoning 66(3), 357–407 (2022). https://doi.org/10.1007/s10817-022-
09626-2

25. Barceló, P., Kostylev, E.V.,Monet,M., Pérez, J., Reutter, J., Silva, J.P.: The Logical Expressiveness of GraphNeural
Networks. In: International Conference on Learning Representations (2019). https://openreview.net/
forum?id=r1lZ7AEKvB

26. Bednarczyk, B., Fiuk, O.: Presburger Büchi Tree Automata with Applications to Logics with Expressive Count-
ing. In: Ciabattoni, A., Pimentel, E., de Queiroz, R.J.G.B. (eds.) Logic, Language, Information, and Computa-
tion, pp. 295–308. Springer International Publishing, Cham (2022). https://doi.org/10.1007/978-3-031-
15298-6_19

27. Bednarczyk, B., Orłowska, M., Pacanowska, A., Tan, T.: On Classical Decidable Logics Extended with Percent-
age Quantifiers and Arithmetics. arXiv:2106.15250 [cs] (2021). arXiv: 2106.15250 [cs]. http://arxiv.org/
abs/2106.15250

28. Benedikt, M., Lu, C.-H., Motik, B., Tan, T.: Decidability of Graph Neural Networks via Logical Characteriza-
tions. In: 51st International Colloquium on Automata, Languages, and Programming (ICALP 2024). Leibniz
International Proceedings in Informatics (LIPIcs), 127:1–127:20. Schloss Dagstuhl – Leibniz-Zentrum für In-
formatik (2024). https://doi.org/10.4230/LIPIcs.ICALP.2024.127

29. Berger, R.: The Undecidability of the Domino Problem. Memoirs of the American Mathematical Society 66, 72
(1966). https://mathscinet.ams.org/mathscinet-getitem?mr=216954

140

https://doi.org/10.29007/ltzn
https://doi.org/10.1145/3699839.3699840
https://doi.org/10.1145/3699839.3699840
https://doi.org/10.1007/978-3-030-29007-8_12
https://doi.org/10.1007/978-3-030-29007-8_12
https://doi.org/10.1145/3605098.3635984
https://doi.org/10.1007/978-3-032-04167-8_2
https://doi.org/10.1007/978-3-032-04167-8_2
https://doi.org/10.29007/f3hh
http://ijcai.org/Proceedings/91-1/Papers/070.pdf
http://ijcai.org/Proceedings/91-1/Papers/070.pdf
https://doi.org/10.1007/BFb0018999
https://doi.org/10.1007/978-3-030-51074-9_24
https://doi.org/10.1007/s10817-022-09626-2
https://doi.org/10.1007/s10817-022-09626-2
https://openreview.net/forum?id=r1lZ7AEKvB
https://openreview.net/forum?id=r1lZ7AEKvB
https://doi.org/10.1007/978-3-031-15298-6_19
https://doi.org/10.1007/978-3-031-15298-6_19
https://arxiv.org/abs/2106.15250
http://arxiv.org/abs/2106.15250
http://arxiv.org/abs/2106.15250
https://doi.org/10.4230/LIPIcs.ICALP.2024.127
https://mathscinet.ams.org/mathscinet-getitem?mr=216954

Bibliography

30. Bonatti, P., Lutz, C., Wolter, F.: Description Logics with Circumscription. In: Proceedings of the 10th Interna-
tional Conference on Principles of Knowledge Representation and Reasoning, KR 2006, pp. 400–410. AAAI
Press, Lake District of the United Kingdom (2006). https://aaai.org/papers/KR06-042-description-
logics-with-circumscription/

31. Boone, W.W.: TheWord Problem. Annals of Mathematics 70(2), 207–265 (1959). https://doi.org/10.2307/
1970103. JSTOR: 1970103

32. Borgida, A.: On the Relative Expressiveness of Description Logics and Predicate Logics. Artificial Intelligence
82(1), 353–367 (1996). https://doi.org/10.1016/0004-3702(96)00004-5

33. Borgida, A., Brachman, R.J., McGuinness, D.L., Alperin Resnick, L.: CLASSIC: A Structural Data Model for
Objects. In: Proc. of the ACM SIGMOD Int. Conf. on Management of Data, pp. 59–67 (1989)

34. Borgwardt, S., De Bortoli, F., Koopmann, P.: The Precise Complexity of Reasoning in 𝒜ℒ𝒞 with 𝜔-Admissible
ConcreteDomains. In: Giordano, L., Jung, J.C., Ozaki, A. (eds.) Proceedings of the 37th InternationalWorkshop
on Description Logics (DL’24). CEURWorkshop Proceedings. CEUR-WS, Bergen, Norway (2024)

35. Bruttomesso, R., Ghilardi, S., Ranise, S.: Quantifier-Free Interpolation in Combinations of Equality Interpolat-
ing Theories. ACM Transactions on Computational Logic 15(1), 1–34 (2014). https://doi.org/10.1145/
2490253

36. Carapelle, C., Turhan, A.: Description Logics Reasoning w.r.t. General TBoxes Is Decidable for Concrete Do-
mains with the EHD-Property. In: Kaminka, G.A., Fox, M., Bouquet, P., Hüllermeier, E., Dignum, V., Dignum,
F., van Harmelen, F. (eds.) ECAI 2016 – 22nd European Conference on Artificial Intelligence. Frontiers in Ar-
tificial Intelligence and Applications, pp. 1440–1448. IOS Press (2016). https://doi.org/10.3233/978-1-
61499-672-9-1440

37. ten Cate, B., Franconi, E., Seylan, I.: Beth Definability in Expressive Description Logics. Journal of Artificial
Intelligence Research 48, 347–414 (2013). https://doi.org/10.1613/jair.4057

38. Chang, C.C., Keisler, H.J.: Model theory. Elsevier, Amsterdam ; New York : New York, NY, USA (1990)
39. Church, A.: A Note on the Entscheidungsproblem. The Journal of Symbolic Logic 1(1), 40–41 (1936). https:

//doi.org/10.2307/2269326

40. Craig, W.: Three uses of the Herbrand-Gentzen theorem in relating model theory and proof theory. Journal of
Symbolic Logic 22(3), 269–285 (1957). https://doi.org/10.2307/2963594

41. Demri, S., Lugiez, D.: Complexity of modal logics with Presburger constraints. Journal Applied Logic 8(3), 233–
252 (2010)

42. Demri, S., Quaas, K.: Concrete Domains in Logics: A Survey. ACM SIGLOG News 8(3), 6–29 (2021). https:
//doi.org/10.1145/3477986.3477988

43. Demri, S., Quaas, K.: First Steps Towards Taming Description Logics with Strings. In: Gaggl, S.A., Martinez,
M.V., Ortiz, M. (eds.) Logics in Artificial Intelligence – 18th European Conference, JELIA 2023, Proceedings.
LNCS, vol. 14281, pp. 322–337. Springer, Heidelberg (2023). https://doi.org/10.1007/978-3-031-43619-
2_23

44. Ebbinghaus, H.-D., Flum, J.: Finite Model Theory. Springer, Berlin, Heidelberg (1995)
45. Ebbinghaus, H.-D., Flum, J., Thomas, W.: Mathematical Logic. Springer, New York, NY (1994)
46. Fagin, R.: Probabilities on Finite Models. Journal of Symbolic Logic 41(1), 50–58 (1976). https://doi.org/

10.1017/S0022481200051756

47. Finger, M., De Bona, G.: Algorithms for Deciding Counting Quantifiers over Unary Predicates. In: Proceedings
of the Thirty-First AAAI Conference on Artificial Intelligence (AAAI’17), pp. 3878–3884. AAAI Press (2017)

48. Fitting, M.: First-Order Logic and Automated Theorem Proving. Springer Science+Business Media, New York
(1996)

49. Galliani, P., Kutz, O., Troquard, N.: Succinctness and Complexity of 𝒜ℒ𝒞 with Counting Perceptrons. In: Pro-
ceedings of the 19th International Conference on Principles of Knowledge Representation and Reasoning, KR
2023, pp. 291–300 (2023). https://doi.org/10.24963/kr.2023/29

50. Gödel, K.: Die Vollständigkeit der Axiome des logischen Funktionenkalküls. Monatshefte für Mathematik und
Physik 37(1), 349–360 (1930). https://doi.org/10.1007/BF01696781

141

https://aaai.org/papers/KR06-042-description-logics-with-circumscription/
https://aaai.org/papers/KR06-042-description-logics-with-circumscription/
https://doi.org/10.2307/1970103
https://doi.org/10.2307/1970103
http://www.jstor.org/stable/1970103
https://doi.org/10.1016/0004-3702(96)00004-5
https://doi.org/10.1145/2490253
https://doi.org/10.1145/2490253
https://doi.org/10.3233/978-1-61499-672-9-1440
https://doi.org/10.3233/978-1-61499-672-9-1440
https://doi.org/10.1613/jair.4057
https://doi.org/10.2307/2269326
https://doi.org/10.2307/2269326
https://doi.org/10.2307/2963594
https://doi.org/10.1145/3477986.3477988
https://doi.org/10.1145/3477986.3477988
https://doi.org/10.1007/978-3-031-43619-2_23
https://doi.org/10.1007/978-3-031-43619-2_23
https://doi.org/10.1017/S0022481200051756
https://doi.org/10.1017/S0022481200051756
https://doi.org/10.24963/kr.2023/29
https://doi.org/10.1007/BF01696781

Bibliography

51. Goranko, V., Otto, M.: Model Theory of Modal Logic. In: Studies in Logic and Practical Reasoning, pp. 249–329.
Elsevier (2007). https://doi.org/10.1016/S1570-2464(07)80008-5

52. Grädel, E.: On the Restraining Power of Guards. The Journal of Symbolic Logic 64(4), 1719–1742 (1999). https:
//doi.org/10.2307/2586808. JSTOR: 2586808

53. Grädel, E., Kolaitis, P.G., Vardi,M.Y.: On theDecision Problem for Two-Variable First-Order Logic. The Bulletin
of Symbolic Logic 3(1), 53–69 (1997). https://doi.org/10.2307/421196. JSTOR: 421196

54. Grädel, E., Otto, M., Rosen, E.: Two-Variable Logic with Counting Is Decidable. In: Proceedings of the 12th
IEEE Symposium on Logic in Computer Science (LICS’97), pp. 306–317. IEEE Computer Society Press (1997)

55. Grohe, M.: The Logic of Graph Neural Networks. In: 2021 36th Annual ACM/IEEE Symposium on Logic in
Computer Science (LICS), pp. 1–17 (2021). https://doi.org/10.1109/LICS52264.2021.9470677

56. Grumbach, S., Tollu, C.: On the expressive power of counting. Theoretical Computer Science 149(1), 67–99
(1995). https://doi.org/10.1016/0304-3975(95)00026-S

57. Gutiérrez-Basulto, V., Ibáñez-García, Y.A., Jung, J.C.: Number Restrictions on Transitive Roles in Description
Logics with Nominals. In: Singh, S., Markovitch, S. (eds.) Proceedings of the Thirty-First AAAI Conference on
Artificial Intelligence, pp. 1121–1127. AAAI Press (2017). https://doi.org/10.1609/AAAI.V31I1.10678

58. Hall, P.: On Representatives of Subsets. Journal of the London Mathematical Society s1-10(1), 26–30 (1935).
https://doi.org/10.1112/jlms/s1-10.37.26

59. Hodges, W.: A Shorter Model Theory. Cambridge University Press, Cambridge ; New York (1997)
60. Hoehndorf, R., Schofield, P.N., Gkoutos, G.V.: The Role of Ontologies in Biological and Biomedical Research:

A Functional Perspective. Briefings in Bioinformatics 16(6), 1069–1080 (2015)
61. Hollunder, B., Baader, F.: Qualifying Number Restrictions in Concept Languages. In: Proceedings of the 2nd

International Conference on Principles of Knowledge Representation and Reasoning, KR 1991, pp. 335–346,
Boston (USA) (1991). http://www.kr.org/proceedings/KR-1991-proceedings-scanned.pdf

62. Hollunder, B., Nutt, W., Schmidt-Schauß, M.: Subsumption Algorithms for Concept Description Languages. In:
Proceedings of the 9th European Conference on Artificial Intelligence (ECAI’90), pp. 348–353. Pitman, London
(United Kingdom) (1990)

63. Horrocks, I., Sattler, U.: OntologyReasoning in the𝒮ℋ𝒪𝒬(𝔇)Description Logic. In: Nebel, B. (ed.) Proceedings
of the Seventeenth International Joint Conference on Artificial Intelligence, IJCAI 2001, pp. 199–204. Morgan
Kaufmann (2001)

64. Horrocks, I., Sattler, U., Tobies, S.: Practical Reasoning for Very Expressive Description Logics. Logic Journal of
the IGPL 8(3), 239–263 (2000). https://doi.org/10.1093/JIGPAL/8.3.239

65. Jonsson, P.: Constants and Finite Unary Relations in Qualitative Constraint Reasoning. Artificial Intelligence
257, 1–23 (2018). https://doi.org/10.1016/Journalartint.2017.12.003

66. Kahr, A.S., Moore, E.F., Wang, H.: Entscheidungsproblem Reduced to the ∀∃∀ Case*. Proceedings of the Na-
tional Academy of Sciences 48(3), 365–377 (1962). https://doi.org/10.1073/pnas.48.3.365

67. Kazakov, Y.: A Polynomial Translation from the Two-Variable Guarded Fragment with Number Restrictions to
the Guarded Fragment. In: Alferes, J.J., Leite, J. (eds.) Logics in Artificial Intelligence, pp. 372–384. Springer,
Berlin, Heidelberg (2004). https://doi.org/10.1007/978-3-540-30227-8_32

68. Klinov, P., Parsia, B.: Pronto: A Practical Probabilistic Description Logic Reasoner. In: Bobillo, F., Costa, P.C.G.,
d’Amato, C., Fanizzi, N., Laskey, K.B., Laskey, K.J., Lukasiewicz, T., Nickles, M., Pool, M. (eds.) Uncertainty
Reasoning for the Semantic Web II, pp. 59–79. Springer Berlin Heidelberg, Berlin, Heidelberg (2013)

69. Konev, B., Lutz, C., Wolter, F., Zakharyaschev, M.: Conservative Rewritability of Description Logic TBoxes.
In: Kambhampati, S. (ed.) Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelli-
gence, pp. 1153–1159. IJCAI/AAAI, New York, NY, USA (2016). http://www.ijcai.org/Abstract/16/167

70. Kuijer, L., Tan, T., Wolter, F., Zakharyaschev, M.: Separation and Definability in Fragments of Two-Variable
First-Order LogicwithCounting, (2025). arXiv:2504.20491 [cs.LO].https://arxiv.org/abs/2504.20491.

71. Kuncak, V., Piskac, R., Suter, P.: Ordered Sets in the Calculus of Data Structures. In: Dawar, A., Veith, H. (eds.)
Computer Science Logic. LNCS, vol. 6427, pp. 34–48. Springer, Heidelberg (2010). https://doi.org/10.
1007/978-3-642-15205-4_5

142

https://doi.org/10.1016/S1570-2464(07)80008-5
https://doi.org/10.2307/2586808
https://doi.org/10.2307/2586808
http://www.jstor.org/stable/2586808
https://doi.org/10.2307/421196
http://www.jstor.org/stable/421196
https://doi.org/10.1109/LICS52264.2021.9470677
https://doi.org/10.1016/0304-3975(95)00026-S
https://doi.org/10.1609/AAAI.V31I1.10678
https://doi.org/10.1112/jlms/s1-10.37.26
http://www.kr.org/proceedings/KR-1991-proceedings-scanned.pdf
https://doi.org/10.1093/JIGPAL/8.3.239
https://doi.org/10.1016/Journalartint.2017.12.003
https://doi.org/10.1073/pnas.48.3.365
https://doi.org/10.1007/978-3-540-30227-8_32
http://www.ijcai.org/Abstract/16/167
https://arxiv.org/abs/2504.20491
https://arxiv.org/abs/2504.20491
https://doi.org/10.1007/978-3-642-15205-4_5
https://doi.org/10.1007/978-3-642-15205-4_5

Bibliography

72. Kuncak, V., Rinard, M.: Towards Efficient Satisfiability Checking for Boolean Algebra with Presburger Arith-
metic. In: Pfenning, F. (ed.) Automated Deduction – CADE-21. LNCS, vol. 4603, pp. 215–230. Springer, Heidel-
berg (2007). https://doi.org/10.1007/978-3-540-73595-3_15

73. Kurtonina, N., de Rijke, M.: Expressiveness of Concept Expressions in First-Order Description Logics. Artificial
Intelligence 107(2), 303–333 (1999). https://doi.org/10.1016/S0004-3702(98)00109-X

74. Labai, N., Ortiz, M., Šimkus, M.: An ExpTime Upper Bound for 𝒜ℒ𝒞 with Integers. In: Calvanese, D., Erdem,
E., Thielscher, M. (eds.) Proceedings of the 17th International Conference on Principles of Knowledge Repre-
sentation and Reasoning, KR 2020, pp. 614–623 (2020). https://doi.org/10.24963/KR.2020/61

75. Li, S., Liu, W., Wang, S.: Qualitative Constraint Satisfaction Problems: An Extended Framework with Land-
marks. Artificial Intelligence 201, 32–58 (2013). https://doi.org/10.1016/Journalartint.2013.05.006

76. Lovász, L., Pelikán, J., Vesztergombi, K.: Binomial Coefficients and Pascal’s Triangle. In: DiscreteMathematics:
Elementary and Beyond, pp. 43–64. Springer NewYork, NewYork, NY (2003). https://doi.org/10.1007/0-
387-21777-0_3

77. Lu, C.-H., Tan, T.: On Two-Variable Guarded Fragment Logic with Expressive Local Presburger Constraints.
Logical Methods in Computer Science 20(3) (2024). https://doi.org/10.46298/lmcs-20(3:16)2024

78. Lutz, C.: NExpTime-complete description logics with concrete domains. ACM Transactions on Computational
Logic (TOCL) 5(4), 669–705 (2004). https://doi.org/10.1145/1024922.1024925

79. Lutz, C., Miličić, M.: A Tableau Algorithm for Description Logics with Concrete Domains and General TBoxes.
Journal of Automated Reasoning 38(1), 227–259 (2007). https://doi.org/10.1007/s10817-006-9049-7

80. Lutz, C., Piro, R., Wolter, F.: Description Logic TBoxes: Model-Theoretic Characterizations and Rewritability.
In:Walsh, T. (ed.) IJCAI 2011, Proceedings of the 22nd International Joint Conference onArtificial Intelligence,
Barcelona, Catalonia, Spain, July 16-22, 2011, pp. 983–988. IJCAI/AAAI (2011). https://doi.org/10.5591/
978-1-57735-516-8/IJCAI11-169

81. Matiyasevich, Y.V.: Hilbert’s tenth problem. With a foreword by Martin Davis. Cambridge, MA: MIT Press
(1993)

82. Minsky, M.L.: Computation: Finite and Infinite Machines. Prentice-Hall, Inc., USA (1967)
83. Mortimer, M.: On Languages with Two Variables. Mathematical Logic Quarterly 21(1), 135–140 (1975). https:

//doi.org/10.1002/malq.19750210118

84. Otto, M.: Graded Modal Logic and Counting Bisimulation, (2023). arXiv: 1910.00039 [cs, math].
85. Otto, M.: Modal and guarded characterisation theorems over finite transition systems. Annals of Pure and Ap-

plied Logic 130(1), 173–205 (2004). https://doi.org/10.1016/Journalapal.2004.04.003. https:
//www.sciencedirect.com/science/article/pii/S0168007204000685

86. Otto,M.:Model TheoreticMethods for Fragments of FO and Special Classes of (Finite) Structures. In: Finite and
AlgorithmicModel Theory. Ed. by J. Esparza, C.Michaux, andC. Steinhorn, pp. 271–338. CambridgeUniversity
Press, Cambridge (2011). https://doi.org/10.1017/CBO9780511974960.007. (Visited on 11/07/2019)

87. Pacholski, L., Szwast, W., Tendera, L.: Complexity of Two-Variable Logic with Counting. In: Proceedings of the
12th IEEE Symposium on Logic in Computer Science (LICS’97), pp. 318–327. IEEE Computer Society Press
(1997)

88. Peñaloza, R., Potyka, N.: Towards Statistical Reasoning inDescription Logics over Finite Domains. In:Moral, S.,
Pivert, O., Sánchez, D.,Marín, N. (eds.) Scalable UncertaintyManagement. Lecture Notes in Computer Science,
pp. 280–294. Springer International Publishing, Cham (2017)

89. Pflueger, M., Cucala, D.T., Kostylev, E.V.: Recurrent Graph Neural Networks and Their Connections to Bisim-
ulation and Logic. Proceedings of the AAAI Conference on Artificial Intelligence 38(13), 14608–14616 (2024).
https://doi.org/10.1609/aaai.v38i13.29377

90. Pratt-Hartmann, I.: Complexity of the Two-Variable Fragment with Counting Quantifiers. Journal of Logic,
Language and Information 14(3), 369–395 (2005). https://doi.org/10.1007/s10849-005-5791-1

91. Randell, D.A., Cui, Z., Cohn, A.G.: A Spatial Logic based on Regions and Connection. In: Nebel, B., Rich, C.,
Swartout, W.R. (eds.) Proceedings of the 3rd International Conference on Principles of Knowledge Representa-
tion and Reasoning, KR 1992, pp. 165–176. Morgan Kaufmann (1992). https://doi.org/10.5555/3087223.
3087240

143

https://doi.org/10.1007/978-3-540-73595-3_15
https://doi.org/10.1016/S0004-3702(98)00109-X
https://doi.org/10.24963/KR.2020/61
https://doi.org/10.1016/Journalartint.2013.05.006
https://doi.org/10.1007/0-387-21777-0_3
https://doi.org/10.1007/0-387-21777-0_3
https://doi.org/10.46298/lmcs-20(3:16)2024
https://doi.org/10.1145/1024922.1024925
https://doi.org/10.1007/s10817-006-9049-7
https://doi.org/10.5591/978-1-57735-516-8/IJCAI11-169
https://doi.org/10.5591/978-1-57735-516-8/IJCAI11-169
https://doi.org/10.1002/malq.19750210118
https://doi.org/10.1002/malq.19750210118
https://arxiv.org/abs/1910.00039
https://doi.org/10.1016/Journalapal.2004.04.003
https://www.sciencedirect.com/science/article/pii/S0168007204000685
https://www.sciencedirect.com/science/article/pii/S0168007204000685
https://doi.org/10.1017/CBO9780511974960.007
https://doi.org/10.1609/aaai.v38i13.29377
https://doi.org/10.1007/s10849-005-5791-1
https://doi.org/10.5555/3087223.3087240
https://doi.org/10.5555/3087223.3087240

Bibliography

92. Rosen, E.:Modal Logic over Finite Structures. Journal of Logic, Language and Information 6(4), 427–439 (1997).
https://doi.org/10.1023/A:1008275906015

93. Rudolph, J.S.: Presburger Concept Cardinality Constraints in Very Expressive Description Logics. In: Descrip-
tion Logic, Theory Combination, and All That: Essays Dedicated to Franz Baader on the Occasion of His 60th
Birthday. Ed. by C. Lutz, U. Sattler, C. Tinelli, A.-Y. Turhan, and F. Wolter, pp. 542–561. Springer International
Publishing, Cham (2019). https://doi.org/10.1007/978-3-030-22102-7_25

94. Schild, K.: ACorrespondence Theory for Terminological Logics: Preliminary Report. In: Proceedings of the 12th
International Joint Conference on Artificial Intelligence (IJCAI’91), pp. 466–471 (1991)

95. Schmidt-Schauß, M., Smolka, G.: Attributive Concept Descriptions with Complements. Artificial Intelligence
48(1), 1–26 (1991)

96. Tobies, S.: The Complexity of Reasoning with Cardinality Restrictions and Nominals in Expressive Description
Logics. Journal of Artificial Intelligence Research 12, 199–217 (2000). https://doi.org/10.1613/jair.705

97. Tobies, S.: A PSPACE Algorithm for Graded Modal Logic. In: Ganzinger, H. (ed.) Proceedings of the 16th In-
ternational Conference on Automated Deduction (CADE’99). LNAI, vol. 1632, pp. 52–66. Springer, Heidelberg
(1999)

98. Tobies, S.: Complexity Results and Practical Algorithms for Logics in Knowledge Representation. PhD thesis,
LuFG Theoretical Computer Science, RWTH-Aachen, Germany (2001). http://lat.inf.tu-dresden.de/
research/phd/Tobies-PhD-2001.pdf.

99. Tobies, S.: PSPACEReasoning forGradedModal Logics. Journal of Logic andComputation 11(1), 85–106 (2001).
https://doi.org/10.1093/LOGCOM/11.1.85

100. Turing, A.M.: On Computable Numbers, with an Application to the Entscheidungsproblem. Proceedings of the
London Mathematical Society s2-42(1), 230–265 (1937). https://doi.org/10.1112/plms/s2-42.1.230

101. van Benthem, J.:Modal Correspondence Theory. PhD thesis,Mathematical Institute, University of Amsterdam,
The Netherlands (1976).

102. Yessenov, K., Piskac, R., Kuncak, V.: Collections, Cardinalities, and Relations. In: Barthe, G., Hermenegildo,
M.V. (eds.) Proceedings of the 11th International Conference on Verification, Model Checking, and Abstract
Interpretation (VMCAI’10), pp. 380–395. Springer-Verlag (2010)

144

https://doi.org/10.1023/A:1008275906015
https://doi.org/10.1007/978-3-030-22102-7_25
https://doi.org/10.1613/jair.705
http://lat.inf.tu-dresden.de/research/phd/Tobies-PhD-2001.pdf
http://lat.inf.tu-dresden.de/research/phd/Tobies-PhD-2001.pdf
https://doi.org/10.1093/LOGCOM/11.1.85
https://doi.org/10.1112/plms/s2-42.1.230

	Umschlagseite
	Titelblatt
	Contents
	Introduction
	Preliminaries
	Reasoning with Expressive Cardinality Constraints
	Quantifier-free Boolean Algebra with Presburger Arithmetic
	The DLs ALCSCC and ALCSCC∞
	Extended Cardinality Restrictions

	Expressive Power of ALCSCC and ALCSCC∞ over Restricted Classes Of Models
	Presburger Bisimulation
	ALCSCC, ALCSCC∞ and first-order logic

	Knowledge Bases that Count, and what They Can and Cannot Count
	Expressive Power of (Boolean) TBoxes
	Expressive Power of (Boolean) CBoxes and ECBoxes
	ECBoxes and the 0-1 law for FOL

	The Precise Complexity of Reasoning with ω-admissible Concrete Domains
	The Abstract Expressive Power of Logics with Concrete Domains
	First-Order Logic with Concrete Domains and Abstract Expressive Power
	First-order Properties of Logics with Concrete Domains
	First-order (non-)definability and decidability

	The Expressive Power of DLs with Concrete Domains
	The Expressive Power of ALC(D) w.r.t. FOL(D)
	The Expressive Power of ALC∨+(D) and ALCfo(D)

	Concrete Domains Meet Cardinality Constraints
	Syntax and Semantics of ALCOSCC(D)
	Deciding Consistency
	Reasoning with ABoxes
	Undecidable Extensions

	Conclusion
	Bibliography

