
Technische Universität Dresden

Faculty of Computer Science
Institute of Theoretical Computer Science, Chair of Automata Theory

Master’s Thesis

on

Complexity of Matching in the
Description Logic EL without the Top

concept

by

Puneetha Jangir Lok Ram Jangir
born on 5 February 1997 in Rajasthan, India

Examiner: Dr.-Ing. Stefan Borgwardt
Supervisor: Dr. Oliver Fernández Gil

October 9, 2024

Task for the preparation of a master’s
thesis

Author: Puneetha Jangir Lok Ram Jangir
Matriculation Number: 5050581
Degree: Master of Science
Course: Computational Modeling and Simulation, Logic Modeling
Title: Complexity of Matching in the Description Logic EL without
the Top concept
Supervisor: Dr. Oliver Fernández Gil
Date of Submission: 9 October 2024

Objectives of the work

• Review and study the existing literature about matching and uni-
fication in the DL EL.

• Determine the complexity of different variants of the matching
problem in the DL EL−⊤.

• Support the correctness of the new results by providing corre-
sponding algorithms and formal proofs.

1

Declaration of Authorship

I hereby certify that I have authored this document entitled Com-
plexity of Matching in the Description Logic EL without the
Top concept independently and without undue assistance from third
parties. No other than the resources and references indicated in this
document have been used. I have marked both literal and accordingly
adopted quotations as such. There were no additional persons involved
in the intellectual preparation of the present document. I am aware
that violations of this declaration may lead to subsequent withdrawal
of the academic degree.

October 9, 2024
Puneetha Jangir Lok Ram Jangir

2

Abstract

Matching and unification have been proposed as reasoning problems in
description logics that can, for example, be used to detect redundan-
cies or filter out unimportant aspects of large concept descriptions in
ontologies such as SNOMED CT 1. In the particular case of matching
in EL, the complexity of the problem was shown to be NP-complete in
[BK00] and [BM14a]. However, the problem has not been investigated
for the DL EL−⊤, which is a fragment of EL that does not allow the use
of the > concept. In this thesis, we will explore the computational com-
plexity of matching in EL−⊤. We will consider different variants of the
matching problem in EL−⊤, both in the case of an empty TBox and in
the presence of general EL−⊤-TBoxes. In particular, we will prove that
the complexity of matching w.r.t. general EL−⊤-TBoxes increases if the
> concept is not allowed. More precisely, we show that general match-
ing in EL−⊤ w.r.t. arbitrary EL−⊤-TBoxes is a PSpace-hard problem
and that it can be decided in exponential time. The complexity results
obtained in this thesis for all variants of the matching problem in EL−⊤

are summarized in Table 6.2.

1http://www.ihtsdo.org/snomed-ct

3

Acknowledgements

I would like to express my deepest gratitude to my supervisor, Dr.
Oliver Fernández Gil, for his continuous support, guidance and endless
patience throughout the course of my thesis. I am very much thankful
to him for giving me the opportunity to work on this thesis as it has
broadened my knowledge in description logics to a great extent.

I would also like to sincerely thank Dr.-Ing. Stefan Borgwardt for agree-
ing to review my thesis despite his tight schedule.

This thesis would not have been possible without the constant and un-
wavering support, care and encouragement from my friends and family,
for which I am profoundly grateful.

4

Contents

Abstract 3

1 Introduction 9
1.1 Description Logics . 9
1.2 Matching in Description Logics 11
1.3 Motivation of the thesis 12
1.4 Structure of the thesis 13

2 The Description Logics EL and EL−⊤ 15
2.1 Syntax and Semantics 15
2.2 Characterization of subsumption 18
2.3 Canonical models and Simulation relations 20

3 Matching in EL and EL−⊤ 22
3.1 Concept patterns and substitutions 22
3.2 Matching in EL . 23
3.3 Matching in EL−⊤ . 25

4 Matching modulo subsumption and matching modulo
equivalence in DL EL−⊤ 27
4.1 Lower bounds . 28

4.1.1 NP-hardness of left-ground matching in EL−⊤

w.r.t. an empty TBox 28
4.1.2 PSpace-hardness of left-ground matching in EL−⊤

w.r.t. a general EL−⊤-TBox 36
4.2 Upper bounds . 41

4.2.1 PTime complexity of right-ground matching in
EL−⊤ w.r.t. a general EL−⊤-TBox 41

4.2.2 Matching modulo equivalence in EL−⊤ 43

5

5 General matching in EL−⊤ 45
5.1 The EL Matching Algorithm 45
5.2 Why does the EL algorithm not work for EL−⊤ 48
5.3 The EL−⊤ Matching Algorithm 50
5.4 Decision procedure for the existence of common sub-

sumers without > . 52
5.5 Correctness of the EL−⊤ matching algorithm 58

5.5.1 Soundness . 58
5.5.2 Completeness 60
5.5.3 Termination and Complexity 62

6 Conclusions and Future work 63

Bibliography 64

6

List of Figures

5.1 The function Dec(. . .) from [BM14a] 46
5.2 Eager Rules for EL and EL−⊤ from [BM14a] 47
5.3 Non-deterministic Rules for EL and EL−⊤ from [BM14a] 48
5.4 The EL matching algorithm 49
5.5 Common subsumer rule for EL−⊤ 51
5.6 The EL−⊤ matching algorithm 52
5.7 Decision procedure for the existence of common sub-

sumers without > . 56

7

List of Tables

2.1 Syntax and Semantics of EL and EL−⊤ 16

6.1 Complexity results for EL from [BK00; BM14a] 64
6.2 Complexity results for EL−⊤ 64

8

Chapter 1

Introduction

1.1 Description Logics
Description Logics (DLs) [Baa+03] are a family of knowledge represen-
tation languages that have been extensively studied for their ability to
represent knowledge in a structured and precise manner. They serve
as the foundation for various applications within artificial intelligence,
enabling the representation, maintenance and reasoning of knowledge
across diverse domains. By using DLs, knowledge can be encoded in a
way that is both human-understandable and machine-processable. This
structured representation facilitates the development of applications
that can perform sophisticated reasoning to derive new knowledge, val-
idate existing information, and ensure consistency within knowledge
bases. A few applications include, (1) Ontology development: They
are widely used in ontology languages like OWL (Web Ontology Lan-
guage) 1, enabling the creation of complex ontologies that underpin the
semantic web. These ontologies support data inter-operability and se-
mantic search by providing a shared understanding of domain concepts.
(2) Medical Domain: They are used to represent and reason about
big biomedical ontologies like SNOMED CT or the Gene ontology 2.

DLs are a fragment of first-order logic and concepts in DLs are the
building blocks used to represent specific knowledge within the domain
of interest. They are constructed using concept names that represent

1https://www.w3.org/TR/owl2-profiles/
2http://geneontology.org/

9

basic categories (e.g., Human, Female) and role names that represent re-
lationships between individuals (e.g., hasChild). Concept constructors
are the operators that combine concept names and role names to form
more complex concepts. The meaning or semantics of a concept term is
defined through interpretations I, also inherited from first-order logic.
An interpretation consists of a non-empty set of individuals ∆I , that
represent the entities within the domain being described (e.g., all people
in the world) and an interpretation function ·I , that assigns meaning
to concept names and role names. Concept names are interpreted as
subsets of the domain (e.g., Human might represent all humans) and
role names are interpreted as binary relations between individuals (e.g.,
hasChild relates a parent to its children). For example, consider the
concept of ”women having daughters.” We can represent this using the
following concept term,

Human u Female u ∃hasChild.Female.

The description above specifies the intersection of being a human, a
female, and having at least one female child.

The basic building blocks can be combined to define more complex
concepts by making use of concept (or logical) constructors such as
u,t,¬, ∃ or ∀. Besides the construction of complex concepts, DLs also
offer the possibility to define ontological knowledge, i.e., to formulate
ontologies. One way to do so is using a TBox introduced in the Section
2.1.

DLs vary in their expressive power, which depends on the range of con-
structors they support and the types of axioms that can be expressed.
There is often a trade-off between expressivity and the complexity of
reasoning tasks. Highly expressive DLs may allow the representation of
complex knowledge but at the cost of increased reasoning complexity,
which can be computationally expensive. Conversely, DLs with lim-
ited expressivity like the DL EL, often enable more efficient reasoning,
making them suitable for applications where complex constructs are
unnecessary.

The DL EL is a member of the family of description logics (DLs) and is
particularly notable for its simplicity and efficiency in reasoning tasks.
The DL EL provides the concept constructors, conjunction (u), exis-
tential restriction (∃r.C), and the top concept (>). Despite its limited

10

expressivity, the bio-medical ontologies mentioned above like SNOMED
CT, make significant use of the polynomial time reasoning capabilities
that EL provides [BKM99].

One of the fundamental reasoning tasks in DLs is subsumption checking.
A concept C is subsumed by another concept D (written as, C v D),
if in every interpretation, the set of individuals satisfying C is always
a subset of the set of individuals satisfying D. Intuitively, this means
that C is a more specific concept than D. For example, the following
subsumption holds,

Human u Female u ∃hasChild.Female v Human u Female.

It is because all women having daughters are also necessarily women.
Subsumption checking has shown to be decidable in polynomial time
for the description logic EL, even in the presence of arbitrary TBoxes
[BBL05]. Subsumption checking allows to build a hierarchy of concepts,
where more specific concepts are subsumed by more general ones. We
say two concepts C and D are equivalent written as C ≡ D, if they
subsume each other, i.e., C v D and D v C. Such an equivalence check
helps identify redundancies within a knowledge base.

1.2 Matching in Description Logics
Matching or in a more general form, Unification in DLs is a process of
finding correspondences between concept descriptions and concept pat-
terns [BN01]. It serves several purposes, such as filtering out unimpor-
tant aspects of large concept descriptions [BM96], detecting redun-
dancies in knowledge bases [BN01], and aiding in the integration of
knowledge bases. Concept patterns are concept descriptions containing
variables. For example, consider a scenario where we want to identify
concepts involving individuals who have both a son and a daughter
sharing a particular characteristic. This can be represented by the pat-
tern,

D := ∃has-child.(Male uX) u ∃has-child(Female uX),

where X is a variable denoting the shared characteristic. For instance,
the concept description C := ∃has-child(Tall u Male) u ∃has-child.(Tall
uFemale) fits this pattern. By substituting X with Tall the pattern D

becomes equivalent to C. Therefore, the substitution σ := {X 7→Tall}

11

is a matcher modulo equivalence for the matching problem C ≡? D,
since C ≡ σ(D). However, the paper [BM96] focused on matching mod-
ulo subsumption rather than equivalence. In this context, the prob-
lem is formulated as C v? D, and a matcher is a substitution σ that
satisfies C v σ(D). While any matcher modulo equivalence is also a
matcher modulo subsumption, the converse is not true. For example,
the substitution στ := {X 7→ > } is a matcher modulo subsumption
for the problem C v? D, but it is not a matcher modulo equivalence
for C ≡? D.

The DL EL−⊤ consists of all concept constructors as defined for EL
with the exception that the top concept (>) is not allowed. The seman-
tics remain the same as for EL. Considering the example above, the
concept pattern X cannot be substituted with > as it is not allowed.
The substitution σ := {X 7→Tall} is a valid EL−⊤ matcher of C and
D. The matcher(s) modulo equivalence or subsumption now must be
more specific which makes the problem more computationally challeng-
ing. Exploring matching in EL−⊤ is an interesting problem as SNOMED
CT is formulated in EL−⊤. For detecting redundancies in ontologies like
SNOMED CT, matching in EL would introduce concept terms contain-
ing the > concept, whereas the only one top concept in SNOMED is
the SNOMED CT concept. It is used as the root of a concept hierarchy.
Having another > concept would make this concept redundant. There-
fore, we explore the computational complexity of matching in the DL
EL−⊤.

Different variants of matching in EL were introduced in [BM14a]. Match-
ing modulo subsumption, specifically left-ground and right-ground match-
ing modulo subsumption was shown to be in PTime. Matching mod-
ulo equivalence w.r.t. an empty TBox was shown to be NP-complete
in [BK00]. General matching in EL is decidable and was also shown
to be NP-complete in [BK00; BM14a], even in the presence of arbi-
trary TBoxes. However, unification in EL−⊤ was shown to be PSpace-
complete in [Baa+11b].

1.3 Motivation of the thesis
The main goal of this thesis is to decide the solvability of matching in
EL−⊤. When considering EL−⊤, the dynamics of matching undergo a

12

significant transformation, which we will explore in detail. Consider an
EL matching problem Γ,

Γ := {A uB v? X,A v? X},

where A and B are concept names and X is a concept variable. In order
to find a substitution σ that solves the subsumption constraints in Γ,
we need to ensure that σ satisfies A u B v? σ(X) and A v? σ(X).
Obviously, the substituion that replaces X by > is an EL matcher of
Γ. However, Γ does not have an EL−⊤ matcher. Every EL−⊤ matching
problem Γ is also an EL matching problem and if σ is an EL−⊤ matcher
of Γ, it is also an EL matcher of Γ, but the converse is not true. As
shown in the example above, Γ does not have an EL−⊤ matcher and
if it exists there are no methods available to find one. For this reason,
it is worthwile to investigate matching in EL−⊤. Matching in EL−⊤

poses several challenges. The main challenge is the reduced flexibility
in pattern formulation due to the absence of > concept. This specificity
required by EL−⊤ can lead to more accurate and relevant matchers.

1.4 Structure of the thesis
The thesis is structured as follows,

• In chapter 2, we will formally introduce description logics EL and
EL−⊤ along with basic notions related to these logics.

• In chapter 3, we will define the matching problem in EL−⊤ and
introduce different variants of this problem, whose computational
complexities will be explored throughout the thesis.

• In chapter 4, we demonstrate that left-ground matching mod-
ulo subsumption in EL−⊤ is NP-complete when considering an
empty TBox, and becomes PSpace-hard in the presence of gen-
eral EL−⊤-TBoxes. Additionally, we examine the impact of these
results on the complexity of matching modulo equivalence. How-
ever, we show that the complexity of right-ground matching mod-
ulo subsumption in EL−⊤ remains in PTime.

• In chapter 5, we prove that general matching in EL−⊤ is in Exp-
Time, using ideas from the goal oriented matching algorithm pre-
sented in [BM14a]. We will also present an algorithm to decide

13

the existence of common subsumers without > w.r.t. a general
EL−⊤-TBox in this chapter.

• In chapter 6, we summarize the complexity results of the differ-
ent matching problems presented in the thesis and propose some
directions for future work.

14

Chapter 2

The Description Logics EL
and EL−>

In this chapter, we introduce definitions that will be used in the subse-
quent chapters. We start by formally introducing the syntax and seman-
tics for the logics EL and EL−⊤. Basic notions related to these logics
are also presented. Next, we define characterization of subsumption in
EL and state some properties of subsumption in this logic. Finally, we
define canonical models, simulation relations and related notions that
will be used in the algorithms presented in chapter 5.

2.1 Syntax and Semantics
The syntax is based on a finite set of concept names NC and role names
NR. EL concept descriptions are built using the constructors conjunc-
tion (C uD), existential restriction (∃r.C) and top (>). The set of EL
concept descriptions is the smallest set satisfying the conditions below:

• A is an EL concept description, for all A ∈ NC .

• If C, D are EL concept descriptions, then C u D is also an EL
concept description.

• If C is an EL concept description and r ∈ NR a role name, then
∃r.C is also an EL concept description.

The DL EL−⊤ is fragment of EL where the use of top-concept > is
not allowed, i.e, concept descriptions in EL−⊤ are EL concepts that

15

do not contain >. Most of the definitions that follow are given for EL,
otherwise it is explicitly stated that it is for EL−⊤.

The semantics of EL and EL−⊤ are defined using standard first-order
logic interpretations. An interpretation I = (∆I , ·I), consists of a non-
empty domain ∆I , and an interpretation function ·I that assigns sub-
sets of ∆I to each concept name and binary relations over ∆I to each
role name. For the semantics of complex concept descriptions, refer
Table 2.1.

Let C and D be two EL concepts. A general concept inclusion (GCI)
is an expression of the form C v D. A general EL-TBox is a finite set
of such GCIs. We say that C v D is satisfied in an interpretation I if
CI ⊆ DI . An interpretation I is a model of a TBox T if it satisfies all
GCIs in T .

Name Syntax Semantics
top concept > >I = ∆I

concept name A AI ⊆ ∆I

role name r rI ⊆ ∆I ×∆I

conjunction C uD (C uD)I = CI ∩DI

existential restriction ∃r.C (∃r.C)I = {x | ∃y :
(x, y) ∈ rI ∧ y ∈ CI}

Table 2.1: Syntax and Semantics of EL and EL−⊤

Next, we will define the notion of atoms and particles. For a concept
description C, we will also define the notion of sub-concepts and role-
depth.

Definition 2.1.1. An EL concept description is called an atom if it is
a concept name or an existential restriction. The set At(C) of all atoms
of an EL concept description C is defined as follows:

• If C is >, then At(C) := ∅

• If C is a concept name, then At(C) := {C}.

• If C = ∃r.D, then At(C) := {C} ∪ At(D).

• If C = C1 u C2, then At(C) := At(C1) ∪ At(C2).

16

Flat atoms are concept names A or existential restrictions ∃r.D, where
D is a concept name or >. Note that in EL−⊤, the concept D cannot
be >. A concept description is flat if it is a conjunction of flat atoms.

Every EL concept description C is defined as a conjunction of atoms
C1, . . . , Cn, with n ≥ 0, which are called the top level atoms of C. The
case where n = 0 yields an empty conjunction that corresponds to the
> concept. However, for EL−⊤ the top level atoms of C are defined as
particles, as the > concept is not allowed.

Definition 2.1.2. Particles are concept terms of the form ∃r1.∃r2. . . . ∃rn.A
(abbreviated as ∃r1 . . . rn.A) for role names r1, . . . , rn and a concept
name A. The set Part(C) of all particles of an EL−⊤-concept term C

is defined as follows:

• If C is a concept name, Part(C) := {C}.

• If C = ∃r.D, then Part(C) := {∃r.M | M ∈ Part(D)}.

• If C = C1 u C2, then Part(C) := Part(C1) ∪ Part(C2).

For example, the particles of the concept Au∃r.(Au∃r.(AuB)) where
A,B ∈ NC and r ∈ NR, are A, ∃r.A, ∃rr.A and ∃rr.B.

Definition 2.1.3. [BF16] Let C be an EL concept description. The set
sub(C) of sub-concepts of C is defined as follows:

• If C = > or C ∈ NC , then sub(C) = {C}.

• If C = C1 u C2, then sub(C) = {C} ∪ sub(C1) ∪ sub(C2).

• If C = ∃r.D, then sub(C) = {C} ∪ sub(D).

Let T be an EL-TBox, for all GCIs in T the set sub(T) can be analo-
gously defined as follows,

sub(T) :=
∪

C⊑D∈T

(sub(C) ∪ sub(D)).

Definition 2.1.4. [BF16] For a concept description C, the role-depth
rd(C) of C is defined as follows:

• If C = > or C ∈ NC , then rd(C) = 0.

• If C = ∃r.D, then rd(C) = rd(D) + 1.

17

• If C = C1 u C2, then rd(C) = max{rd(C1), rd(C2)}.

Subsumption and equivalence relations between two EL concepts w.r.t.
a general EL-TBox T are defined below.

An EL concept description C is subsumed by another EL concept
description D w.r.t. a general EL-TBox T (written as C vT D) iff
CI ⊆ DI holds in all models I of T . The concept C is equivalent to D

w.r.t. T (written as C ≡T D) iff C vT D and D vT C in every model
I of T . If T is empty, we write C v D and C ≡ D instead of C vT D

and C ≡T D.

2.2 Characterization of subsumption
In this section, we define the characterization of subsumption for both
the logics EL and EL−⊤ . Based on these characterizations, some prop-
erties about the subsumption relation in the considered logics are pro-
vided. These properties will also be used in algorithms presented in
Chapter 5 for matching in EL−⊤.

The characterization of subsumption w.r.t. an empty TBox is defined
below.

Lemma 2.2.1. [BM10] Let C = A1 u . . .uAk u ∃r1.C1 u . . .u ∃rm.Cm

and D = B1 u . . . u Bl u ∃s1.D1 u . . . u ∃sn.Dn be two EL-concept
terms, where A1, . . . , Ak,B1, . . . , Bl are concept names. Then C v D iff
{B1, . . . , Bl} ⊆ {A1, . . . , Ak} and for every j ∈ {1, . . . , n} there exists
an i ∈ {1, . . . ,m} such that ri = sj and Ci v Dj.

As stated in [Baa+11b], the characterization of subsumption in EL also
holds for EL−⊤-concept descriptions.

The consequence of the characterization in Lemma 2.2.1 is the following
lemma.

Lemma 2.2.2. [BM10] Let C be an EL−⊤-concept term and B a par-
ticle.

1. If B v C, then B ≡ C.

2. B ∈ Part(C) iff C v B.

18

The lemma above states a property of subsumption that will be useful
later on.

The characterization of subsumption w.r.t. a general EL-TBox T is
presented next. As defined for EL in [BBM12], subsumption between
two atoms in EL is structural if their top-level structure is compatible.
More precisely, consider two EL−⊤-atoms C and D, we say that C is
structurally subsumed by D w.r.t. T (C vs

T D) iff the following holds,

1. C = D is a concept name, or

2. C = ∃r.C ′, D = ∃r.D′, and C ′ vT D′.

The characterization of subsumption presented above also holds w.r.t. a
general EL−⊤-TBox [Baa+11b]. This characterization will also be used
in the algorithms presented in Chapter 5 for matching in EL−⊤.

Lemma 2.2.3. [BBM12] Let T be an EL-TBox and C1, ..., Cn, D1, ..., Dm

be EL atoms. Then C1 u · · · u Cn vT D1 u · · · uDm holds iff for every
j ∈ {1, . . . ,m},

1. there is an index i ∈ {1, . . . , n} such that Ci vs
T Dj or

2. there are atoms A1, . . . , Ak, B of T (k ≥ 0) such that

(a) A1 u · · · u Ak vT B,

(b) for every η ∈ {1, . . . , k} there is i ∈ {1, . . . , n} with Ci vs
T

Aη, and

(c) B vs
T Dj

An alternative characterization of subsumption can be stated in terms
of canonical models, as described in [ZT13a; LW10].

Lemma 2.2.4. [LW10] Let C and D be two EL concepts and T be an
EL-TBox. The following conditions are equivalent:

1. C vT D.

2. dC ∈ DIC,T .

The property of characteristic concepts as shown below in Lemma 2.2.5
will be used in the matching algorithms for EL−⊤ in chapter 5.

Lemma 2.2.5. [ZT13a] Let (I, d) and (J , e) be interpretations. Then
e ∈ (Xℓ(I, d))J iff (Iℓ

d, d) ≲ (J , e).

19

2.3 Canonical models and Simulation re-
lations

The purpose of this section is to introduce notions that are crucial to
the algorithms presented in chapter 5 to decide matching in EL−⊤.

We start by defining the canonical model of an EL concept C and and
an EL-TBox T as shown below.

Definition 2.3.1. [LW10] Let C be an EL concept and T be an EL-
TBox. The canonical model IC,T of C and T is defined as:

• ∆IC,T := {dC} ∪ {dC′ | ∃r.C ′ ∈ sub(C) ∪ sub(T)};

• AIC,T := {dD | D vT A}, for all A ∈ NC ;

• rIC,T := {(dD, dD′) | D vT ∃r.D′ for ∃r.D′ ∈ sub(T) or ∃r.D′ is
a conjunct in D}, for all r ∈ NR.

Simulation relations between interpretations can be used to identify
some properties of the canonical models.

Operations on these interpretations include tree unraveling of the in-
terpretation and construction of characteristic concepts.

Definition 2.3.2. [LW10] Let I1 and I2 be interpretations and S ⊆
∆I1 ×∆I2 . Then, S is called a simulation from I1 to I2 if the following
conditions are satisfied:

• For all concept names A ∈ NC and all (e1, e2) ∈ S it holds:
e1 ∈ AI1 implies e2 ∈ AI2 .

• For all role names r ∈ NR and all (e1, e2) ∈ S, and all f1 ∈ ∆I1

with (e1, f1) ∈ rI1 , there exists f2 ∈ ∆I2 such that (e2, f2) ∈ rI2

and (f1, f2) ∈ S.

An interpretation I with d ∈ ∆I is denoted as (I, d). If there exists
a simulation S ⊆ ∆I × ∆J with (d, e) ∈ S then we say that (I, d) is
simulated by (J , e) denoted as (I, d) ≲ (J , e).

The product of two interpretations is defined as follows.

Definition 2.3.3. Let I and J be interpretations. The product inter-

20

pretation I × J is defined by

∆I×J := ∆I ×∆J ;

AI×J := {(d, e) | (d, e) ∈ ∆I×J ∧ d ∈ AI ∧ e ∈ AJ }, for all A ∈ NC ;

rI×J := {((d, e), (f, g)) | ((d, e), (f, g)) ∈ ∆I×J ×∆I×J

∧ (d, f) ∈ rI ∧ (e, g) ∈ rJ }, for all r ∈ NR.

Given an interpretation I and an element d of the domain ∆I . The
interpretation can be unravelled into a possibly infinite tree with root
d. The nodes of this tree are words that correspond to a path in I
starting from d. Now, π = dr1d1r2d2r3 · · · is a path in an interpretation
I if the domain elements di and di+1 are connected via rIi+1 for all
1 ≤ i ≤ N.

Definition 2.3.4. [ZT13a] Let I be an interpretation with d ∈ ∆I .
The tree unraveling Id of I in d is defined as follows:

∆Id := {dr1d1r2 · · · rndn | (di, di+1) ∈ rIi+1 ∧ 0 ≤ i < n ∧ d0 = d ∧ n ≥ 0};
AId := {σd′ | σd′ ∈ ∆Id ∧ d′ ∈ AI}, for all A ∈ NC ;

rId := {(σ, σrd′) | (σ, σrd′) ∈ ∆Id ×∆Id}, for all r ∈ NR.

The length of an element τ ∈ ∆Id , denoted by |τ |, is the number of
role names occurring in τ . If τ is of the form dr1d1r2 · · · rmdm, then dm
is the tail of τ denoted by tail(σ) = dm. The interpretation Iℓ

d denotes
the finite subtree rooted at d of the tree unraveling Id containing all
elements up to depth k. Such a finite tree can be translated into a
complex concept known as the k-characteristic concept.

Definition 2.3.5. [ZT13b] Let (I, d) be the tree unraveling Id of I in
d. The k-characteristic concept Xk(I, d) is defined as follows:

X0(I, d) :=
l

{A ∈ NC | d ∈ AI}

Xk(I, d) := X0(I, d) u
l

r∈NR

l
{∃r.Xk−1(I, d′) | (d, d′) ∈ rI}.

21

Chapter 3

Matching in EL and EL−>

In this chapter, we define the matching problem for DLs EL and EL−⊤.
In order to do that, we first introduce the notion of concept patterns
and substitutions. Examples on how the solvability status of a specific
instance of matching problem in EL and EL−⊤ are affected by the
concept constructors allowed and the types of TBoxes used will also be
shown. We will also define special cases of matching problems whose
computational complexity will be analysed in the subsequent chapters.

3.1 Concept patterns and substitutions
To define the EL matching problem, we partition the set of concept
names NC into two sets: one of concept variables Nv and one of concept
constants Nc. A concept pattern is a concept that is constructed using
Nc ∪Nv as the set of concept names NC using the constructors of EL,
without > in case of EL−⊤. An EL concept description is ground if
it does not contain any variables. A substitution σ is a finite mapping
from concept variables Nv to concept constants Nc, i.e., there are only
finitely many variables that are not mapped to itself. This mapping is
extended to arbitrary concept descriptions as follows:

• σ(A) := A, for all A ∈ NC ∪ {>}

• σ(C uD) := σ(C) u σ(D)

• σ(∃r.C) := ∃r.σ(C)

22

Example 3.1.1. Let Nv = {X,Y } and Nc = {A,B,C}. Consider a
concept pattern,

C = X u A,

where X is a concept variable and {A,C} are concept constants. Con-
sider a substitution σ that maps X to B, i.e., σ = {X 7→ B}. Applying
σ to the concept pattern C, we get,

σ(C) = σ(X u A) = σ(X) u σ(A) = B u A.

In EL, a substitution σ maps every concept variable to an EL-concept
description which may contain >. However, in EL−⊤, a substitution σ

maps concept variables to EL−⊤ concept descriptions. The substitution
σ is called a ground substitution if for some variable X in Nv the concept
description σ(X) is ground. A general TBox T is called ground if no
variable from Nv occurs in any GCI of T .

3.2 Matching in EL
An EL matching problem is defined as follows.

Definition 3.2.1. [BM14a] Let T be a ground general EL-TBox. An
EL-matching problem w.r.t. T is a finite set Γ := {C1 v? D1, . . . , Cn v?

Dn} of subsumption constraints between EL-concept patterns, where
for each i, 1 ≤ i ≤ n, Ci or Di is ground. A substitution σ is an EL
matcher of Γ w.r.t. T if σ solves all the subsumption constraints in Γ,
i.e., if

σ(C1) vT σ(D1), . . . , σ(Cn) vT σ(Dn).

We say that Γ is matchable w.r.t. T if it has a matcher.

An EL−⊤ matching problem is defined in a similar way with one key dif-
ference that Γ is a finite set of subsumption constraints between EL−⊤

concept patterns and a ground and general EL−⊤-TBox is considered.
In this case, the substitution that solves all subsumption constraints in
Γ is now an EL−⊤ matcher.

Matching problems modulo subsumption and equivalence are specific
variants of the matching problem introduced in Definition 3.2.1 as also
stated in [BM14a].

23

• The EL matching problem Γ is a matching problem modulo equiv-
alence if C v? D ∈ Γ implies D v? C ∈ Γ. We usually write
C ≡ D when referring to a matching problem modulo equiva-
lence.

• The EL matching problem Γ is a left-ground matching problem
modulo subsumption if C v? D ∈ Γ implies that C is ground.

• The EL matching problem Γ is a right-ground matching problem
modulo subsumption if C v? D ∈ Γ implies that D is ground.

In this thesis, we investigate the computational complexity of the match-
ing problems introduced above in EL−⊤. We will consider both cases
where T = ∅ (i.e., no TBox is present) and when T 6= ∅ (i.e., consider-
ing a ground and general EL−⊤-TBox).

Example 3.2.2. Consider the following instance where T is empty,

Γ := {A v? X, B v? X},

where A and B are EL concepts and X is a variable. A substitution σ

that replaces X by > is an EL matcher of Γ. However, Γ does not have
an EL−⊤ matcher.

Now, consider the case where a ground general EL-TBox T := {B v A}
is present. The substitution σ satisfies the subsumptions A vT A and
B vT A, which implies that the concept name A is an EL−⊤ matcher
of Γ. Note that, the substitution σ = {X 7→ >} is a matcher of Γ even
in the presence of T . Overall, Γ is a matching problem that not only
has solutions with > but also without >.

When the > concept is not allowed, the problem of finding a matcher
becomes more difficult because > acts as a universal matcher. Without
>, matchers must be more specific. In the EL−⊤ case, a substitution
must find a concept that satisfies the subsumptions in Γ in a more
constrained way. For example, the substitution σ = {X 7→ >} trivially
satisfies the conditions because both A v > and B v > hold. However,
when > is not allowed, we need to find a more specific concept σ(X)

that simultaneously subsumes both A and B, i.e., σ = {X 7→ A} as
A vT A and B vT A holds.

Finding a suitable EL−⊤ matcher involves computing a specific concept
that subsumes all the other concepts in Γ. This often requires analyz-

24

ing the structure of the concepts in the TBox (if one exists), making
the problem more computationally demanding compared to when >
is allowed. It involves more complex reasoning, particularly when deal-
ing with large TBoxes or complex concept hierarchies. This makes the
matching problem more challenging in EL−⊤ compared to the standard
EL setting.

3.3 Matching in EL−>

In this section, we outline the decision problem considered in this thesis.

Given an instance of an EL−⊤ matching problem Γ and a general EL−⊤-
TBox T , as described in section 3.2, the goal is to determine whether
Γ has an EL−⊤ matcher or not w.r.t. T .

In order to define such a problem, the notion of normalized match-
ing problems is needed. This notion will be used in the algorithms for
matching in EL−⊤ presented in Chapter 5.

Definition 3.3.1. An EL matching problem is called normalized if
C v? D ∈ Γ implies that,

• either C or D is non-ground, and

• D is an atom.

Next, we provide some reductions between the different variants of the
matching problem from Section 3.2. Based on this, in certain cases, we
will be able to transfer lower bounds and upper bounds (complexity
results) obtained for one variant into another.

Left-ground matching is a particular case of matching modulo equiva-
lence. This is justified by the following lemma.

Lemma 3.3.2. [BK99a] A substitution σ solves a left-ground EL−⊤

matching problem C v? D where C is ground iff it solves C ≡? C uD.

From the lemma above, we can say that any left-ground matching prob-
lem can be transformed in polynomial time into an equivalent matching
problem modulo equivalence, i.e., if a matcher for a left-ground match-
ing problem modulo subsumption exists then it is also a matcher for the
matching problem modulo equivalence. So, any lower bounds shown for
left-ground matching also applies to matching modulo equivalence. An

25

algorithm solving matching problem modulo equivalence also solves a
left-ground matching problem.

However, a matcher for a right-ground matching problem modulo sub-
sumption is not a matcher for the matching problem modulo equiva-
lence because a right-ground matching problem cannot be reduced to
a matching problem modulo equivalence. Hence, the lower bound for
right-ground matching problem cannot be applied to matching modulo
equivalence.

Every matching problem modulo equivalence can be expressed as a
general matching problem, since in both cases, variables can occur on
either side of the subsumption constraints. Since left-ground matching
is a particular case of matching modulo equivalence, and the latter a
particular case of general matching, the lower-bounds are transferred
in this direction, i.e., a lower bound for left-ground matching can be
applied to matching modulo equivalence which in turn applies to gen-
eral matching. Since all these problems are particular cases of general
matching, an algorithm solving general matching also solves the other
problems. Hence, an upper bound for general matching is also an upper
bound for the the rest.

26

Chapter 4

Matching modulo
subsumption and matching
modulo equivalence in DL
EL−>

In this chapter, we will analyze the complexity of solving left-ground
and right-ground matching modulo subsumption, and matching modulo
equivalence for EL−⊤. For this, we will consider the case of an empty
TBox and the case where a general EL−⊤-TBox is present.

For EL, both left-ground and right-ground matching modulo subsump-
tion have been shown to be in PTime in [BM14a], even in the presence
of general EL-TBoxes. In this thesis, we extend these results to EL−⊤,
where right-ground matching modulo subsumption remains in PTime,
even when considering general EL−⊤-TBoxes. However, for left-ground
matching modulo subsumption, the complexity increases significantly
in EL−⊤. We show that it becomes NP-complete when dealing with
an empty TBox and further increases to PSpace-hard in the presence
of a general EL−⊤-TBox. These results highlight a notable difference
between EL and EL−⊤ w.r.t. left-ground matching.

Next, we explore matching modulo equivalence in EL−⊤. We show that
the complexity remains in NP with an empty TBox, mirroring the result
for EL as established in [BK99c]. Since left-ground matching is a partic-
ular case of matching modulo equivalence (as discussed in Section 3.3),

27

this also implies that both left-ground matching and matching modulo
equivalence are NP-complete w.r.t. an empty TBox in EL−⊤.

Finally, when considering general EL−⊤-TBoxes, matching modulo equiv-
alence becomes PSpace-hard, as inherited from the left-ground match-
ing problem. While no specific algorithm is presented for left-ground
matching or matching modulo equivalence in the presence of arbitrary
TBoxes, the general matching algorithm presented in Chapter 5 can be
applied, providing an upper bound of in ExpTime. Therefore, a gap re-
mains in fully determining the complexity of left-ground matching and
matching modulo equivalence w.r.t. general EL−⊤-TBoxes. For simplic-
ity, from now on we will refer to right-ground and left-ground matching
problems modulo subsumption as right-ground and left-ground match-
ing problems.

This chapter is structured as follows: we begin by examining the lower
bound for left-ground matching in EL−⊤, providing two key reductions.
Following that, we present the complexity results for the upper bound
of right-ground matching and matching modulo equivalence in EL−⊤.

4.1 Lower bounds

4.1.1 NP-hardness of left-ground matching in EL−>

w.r.t. an empty TBox
In this section, we show that left-ground matching in EL−⊤ w.r.t. an
empty TBox is NP-hard. To show this, we present a reduction from the
well-known NP-complete problem - the 3SAT problem.

A propositional formula in conjunctive normal form (CNF) is a con-
junction of one or more clauses, where each clause is a disjunction of
literals. Formally, a literal is either a propositional variable x or its
negation ¬x. A CNF formula φ with n variables and m clauses can be
expressed as,

φ = (l1,1 ∨ l1,2 ∨ . . . ∨ l1,k1) ∧ (l2,1 ∨ l2,2 ∨ . . . ∨ l2,k2) ∧ . . .∧
(lm,1 ∨ lm,2 ∨ . . . ∨ lm,km),

where li,j are literals, and each clause (li,1∨li,2∨. . .∨li,ki) is a disjunction
of literals for 1 ≤ i ≤ m.

28

In the specific case of 3-CNF, each clause contains exactly three literals.
Therefore, a 3-CNF formula is a CNF formula where each clause is
restricted to three literals. An example of a 3-CNF formula is:

φ = (x1 ∨ x2 ∨ x3) ∧ (x4 ∨ x5 ∨ x6) ∧ (x7 ∨ x8 ∨ x9).

The 3-SAT problem asks whether there exists an assignment of truth
values (true or false) to the variables in a 3-CNF formula that makes
the entire formula true. If such an assignment exists, the formula is
satisfiable; otherwise, it is unsatisfiable. The 3-SAT problem is known
to be NP-complete [GJ79].

We adapt the idea from [BK00], where it was shown that the com-
plexity of solving matching modulo equivalence in EL w.r.t. an empty
TBox is NP-hard. For the reduction, we consider a propositional for-
mula φ in 3CNF, where each clause only contains three literals. For any
such propositional formula φ, we construct a left-ground EL−⊤ match-
ing problem Γφ. This construction encodes the satisfiability of φ into
a matching problem, where finding an EL−⊤ matcher corresponds to
finding a satisfying assignment for the variables of φ. The encoding is
done in a way such that a solution to the matching problem exists iff
the original propositional formula is satisfiable, i.e.,

φ is satisfiable iff Γφ has an EL−⊤ matcher.

The reduction for the construction of Γφ is defined in two steps:

Step 1: Propositional assignment encoding:

We define a propositional assignment encoding where each literal xi and
¬xi in φ is associated to concept variables Xi and X i, with 1 ≤ i ≤ n,
and n stands for the number of propositional variables in φ. In addition,
we use concept constants At and Af to represent true and false.

Let r be role name and i an index with 1 ≤ i ≤ n. We define the
following subsumption constraints:

C := ∃r.(At u ∃r.Af) u ∃r.(Af u ∃r.At)

v?

D := ∃r.(X1 u ∃r.X1) u . . . u ∃r.(Xn u ∃r.Xn)

(4.1)

29

and,
P := At u Af

v?

Q := X1 uX1 u . . . uXn uXn.

(4.2)

Lemma 4.1.1. For all EL−⊤ substitutions σ,

σ(C) v σ(D) and P v Q

iff
(σ(Xi) ≡ At ∧ σ(X i) ≡ Af) or (σ(Xi) ≡ Af ∧ σ(X i) ≡ At),

for every i, where 1 ≤ i ≤ n.

Proof. (⇒) Assuming that a substitution σ solves the subsumption
relations σ(C) v σ(D) and P v Q, we show that the properties on
the right-hand side (R.H.S.) of the lemma are also satisfied. To show
the implication, it is enough to prove it for an arbitrary i. Hence, the
following subsumption relations also hold:

∃r.(At u ∃r.Af) u ∃r.(Af u ∃r.At)

v
∃r.(X1 u ∃r.X1)

(4.3)

and,
At u Af

v
X1 uX1

(4.4)

From the subsumption P v Q, we know that X1 and X1 can only
be substituted with concept constants At (representing ”true”) and Af

(representing ”false”). This is because σ cannot assign > to the variables
as it a substitution in EL−⊤. In particular, the structure P := AtuAf on
the L.H.S. ensures that X1 and X1 must be assigned concept constants
At and Af or a conjunction of both.

It remains to show that X1 and X1 gets assigned different concept
constants. Considering (X1 ≡ At and X1 ≡ At) or (X1 ≡ Af and X1 ≡
Af), we prove by contradiction that the subsumption σ(C) v σ(D)

will no longer hold as it contradicts our initial assumption on σ. The

30

subsumption relation 4.3 results in,

∃r.(At u ∃r.Af) u ∃r.(Af u ∃r.At)

v
∃r.(At u ∃r.At)

or
∃r.(At u ∃r.Af) u ∃r.(Af u ∃r.At)

v
∃r.(Af u ∃r.Af).

The above subsumption does not hold because the concept C is no
longer subsumed by the concept D as the subsumption relation is vi-
olated. This can be said using the characterization of subsumption
w.r.t. empty TBoxes shown in Lemma 2.2.1. Since the variables can-
not be substituted with the same concept constants or with existential
restrictions (from subsumption P v Q), we conclude that the substi-
tution σ must replace each variable with either At or Af . Specifically,
(σ(Xi) ≡ At ∧ σ(X i) ≡ Af) or (σ(Xi) ≡ Af ∧ σ(X i) ≡ At).

(⇐) Assuming that a substitution σ satisfies the properties on the
R.H.S. of Lemma 4.1.1, i.e., (σ(Xi) ≡ At ∧ σ(X i) ≡ Af) or (σ(Xi) ≡
Af ∧ σ(X i) ≡ At), we prove that σ also satisfies σ(C) v σ(D) and
P v Q.

It is enough to show that C v σ(∃r.(Xi u ∃r.X i)) and P v σ(Xi uX i)

holds for all i, i.e.,

∃r.(At u ∃r.Af) u ∃r.(Af u ∃r.At)

v
∃r.(At u ∃r.Af)

or
∃r.(At u ∃r.Af) u ∃r.(Af u ∃r.At)

v
∃r.(Af u ∃r.At)

and,

At u Af v At u Af

or

31

At u Af v Af u At.

The substitution σ clearly does not violate the subsumption relations
above as the concept on the right-hand side subsumes the concept on
the left-hand side. σ(C) v σ(D) and P v Q hold upto associativity and
commutativity of conjunction. Therefore, the properties on the R.H.S.
of the proposition do not conflict with the subsumptions on the L.H.S.
of the Lemma 4.1.1.

Step 2: Simulating the satisfiability of φ

To simulate the satisfiability of a propositional formula φ, we associate
each clause cj in φ (with 1 ≤ j ≤ m, where m denotes the number of
clauses) with a concept pattern Hj as follows,

cj = lj1 ∨ lj2 ∨ lj3 −→ Hj := Zj1 u Zj2 u Zj3, (4.5)

where Zjh = Xi if ljh = xi and Zjh = X i if ljh = ¬xi and h ∈ {1, 2, 3}.
Each literal ljh corresponds to a concept pattern Zjh.

We define the Equation 4.5 for one clause, where s is role name different
from r that does not occur in concepts C or D in the subsumption
constraint in 4.1 as follows,

G := ∃s.(At u ∃s.((At u Af) u ∃s.(At u Af)))

u∃s.((At u Af) u ∃s.(At u ∃s.(At u Af)))

u∃s.((At u Af) u ∃s.((At u Af) u ∃s.At))

v?

Hj := ∃s.(Zj1 u ∃s.(Zj2 u ∃s.Zj3)).

(4.6)

The same definition can be extended to other clauses in φ.

Lemma 4.1.2. For all EL−⊤ substitutions σ,

σ(G) v σ(Hj) and P v Q

iff
σ(Zjh) ≡ At, for at least one h ∈ {1, 2, 3},

for every j, where 1 ≤ j ≤ m and m denotes the number of clauses in
φ.

32

Proof. (⇒) Consider a substitution σ that satisfies the subsumptions
σ(G) v σ(Hj) and P v Q. We prove that σ also satisfies the property,
that at least one of the concept variables Zjh is replaced with At, i.e.,
σ(Zjh) ≡ At for some h ∈ {1, 2, 3}. We prove this by contradiction.

From the subsumption P v Q, it follows that the variables X1 and X1

can only be replaced by the concept constants At (representing ”true”)
and Af (representing ”false”). This is due to the fact that, in EL−⊤,
the substitution σ is restricted and cannot map variables to >, since >
is not part of the concept constructors.

Applying the substitution σ to 4.6 yields,

∃s.(At u ∃s.((At u Af) u ∃s.(At u Af))) v ∃s.(Af u ∃s.(Af u ∃s.Af))

or

∃s.((At u Af) u ∃s.(At u ∃s.(At u Af))) v ∃s.(Af u ∃s.(Af u ∃s.Af))

or

∃s.((At u Af) u ∃s.((At u Af) u ∃s.At)) v ∃s.(Af u ∃s.(Af u ∃s.Af))

In this case, if none of the concept variables Zj1, Zj2 or Zj3 are substi-
tuted with At, then all variables are substituted with Af , which would
mean that the left-hand side no longer subsumes the right-hand side.
Therefore, at least one of the Zjh must be substituted with At, ensuring
that at least one concept variable matches the pattern. We assume no
Zjh to be replaced by At, because for the formula φ to be satisfiable, at
least one of the conjunct should be true, which implies for the reduction
to EL−⊤, at least one of the concept variables Zjh must be substituted
with At.

The concept on the R.H.S. of the subsumption above no longer sub-
sumes the concept on the L.H.S., which implies that the L.H.S. of the
lemma 4.1.2 is true only when at least one of Zjh is replaced by At.

(⇐) For the if direction, we show that every substitution σ that replaces
at least one of the concept variables Zjh with At, also satisfies σ(G) v
σ(Hj) and P v Q. Applying σ to the equation 4.6 and replacing at
least one of concept variables Zj1 or Zj2 or Zj3 with At results in the
following,

33

∃s.(At u ∃s.((At u Af) u ∃s.(At u Af))) v ∃s.(At u ∃s.(Af u ∃s.Af))

or

∃s.((At u Af) u ∃s.(At u ∃s.(At u Af))) v ∃s.(Af u ∃s.(At u ∃s.Af))

or

∃s.((At u Af) u ∃s.((At u Af) u ∃s.At)) v ∃s.(Af u ∃s.(Af u ∃s.At))

The subsumption constraint 4.2 results in,

At u Af v At u Af

This follows from 4.5 and Lemma 4.1.1, where Zjh ≡ Xi implies Xi ≡ At

and Zjh ≡ X i implies Xi ≡ Af . The subsumption relation for the above
clearly holds which implies that when at least one of Zjh is replaced
with At, the L.H.S. of Lemma 4.1.2 also holds.

Next, we will see how we can combine the previous two steps to con-
struct from φ, a left-ground EL−⊤ matching problem Γφ. The final
construction is as follows:

Let s1, . . . , sm be distinct role names for each clause cj not occurring
in C nor in D. Then,

Γφ := {C v? D, ∃s1.G u . . . u ∃sm.G v?

∃s1.H1 u . . . u ∃sm.Hm, P v? Q}
(4.7)

Lemma 4.1.3. φ is satisfiable iff Γφ has a matcher in EL−⊤.

Proof. (⇒) Suppose φ is a satisfiable propositional formula, then there
exists a truth assignment t that satisfies φ. We build a substitution σt

from this truth assignment. If the propositional variable xi is true, then
At gets assigned to the concept variable Xi and Af to X i, and if xi is
false, then Af is assigned to the concept variable Xi and At is assigned
to X i. This is shown below,

σt(Xi) = At and σt(X i) = Af ; when t(xi) = true

σt(Xi) = Af and σt(X i) = At; when t(xi) = false

34

By the construction of σt, we can say that the substitution matches the
property (σ(Xi) ≡ At∧σ(X i) ≡ Af) or (σ(Xi) ≡ Af∧σ(X i) ≡ At) from
Lemma 4.1.1. Applying the lemma, we obtain that the subsumptions
σt(C) v σt(D) and σt(P) v σt(Q) holds.

It remains to show that the subsumption constraint ∃s1.G u . . . u
∃sm.G v? ∃s1.H1 u . . . u ∃sm.Hm also holds. For the first part, since
we considered a different role name for each of the clauses in φ, we
know that si 6= sj, for all 1 ≤ i, j ≤ m. This is the same as show-
ing σt(G) v σt(Hi) for all 1 ≤ i ≤ m. Consider an arbitrary i, with
1 ≤ i ≤ m. Since t satisfies the propositional formula φ or t |= φ, we
know there exists a literal cjh in the clause cj such that t |= cjh, because
to satisfy a clause at least one of the literals must be satisfied. We will
now consider both instances where the literal is (a) a positive instance,
xi = true and (b) a negative instance, xi = false.

• If cjh = xi, then t(xi) = true, this means σt(Xi) = At by con-
struction of the substitution σt. Hence, σt(Zjh) = At, because
Zjh = Xi (from 4.5) by the definition of the concept pattern Hj.
Therefore, from Lemma 4.1.2 we obtain that σt(G) v σt(H) or
σ(G) v σ(H) holds.

• If cjh = ¬xi, then t(xi) = false, this means σt(X i) = At by con-
struction. Hence, σt(Zjh) = At, because Zjh = X i. From Lemma
4.1.2, we have σt(G) v σt(H) or σ(G) v σ(H).

Hence, we can say that the substitution σt that we built from the propo-
sitional assignment t satisfies all the subsumptions of our matching
problem Γφ. This proves the only-if direction.

(⇐) For this direction, we assume that the matching problem Γφ has
a matcher σt that solves all the subsumptions in Γφ. We use this sub-
stitution σt to build a truth assignment that satisfies the propositional
formula φ.

We have shown that every clause in φ can be represented as a concept
pattern Hj as shown in 4.5. From 4.1.2, we know that to satisfy a clause
at least one of the literals must be mapped to a positive instance, i.e.,
xi = true or Xi = At. From 4.5 we can see that, Zjh = At when
ljh = xi and xi = true or vice-versa. By Lemma 4.1.1, we can see
that when σt is matcher of σt(C) v σt(D), then the variables Xi and

35

X i are always mapped to At and Af respectively or vice-versa. The
subsumption σt(P) v σt(Q) ensures that the variables are only mapped
to concept constants At and Af for true and false and not existential
restrictions or others.

To sum up, the properties used by the substitution σt, simulates the
propositional assignment encodings and satisfiability of clauses in the
propositional formula φ. Hence, we can say that whenever Γφ has an
EL−⊤ matcher σt, then φ has a satisfying truth assignment t.

Reduction from 3SAT to left-ground matching in EL−⊤ takes
polynomial time

To show that this reduction takes PTime, we take any propositional
formula φ and construct a left-ground matching problem Γφ in EL−⊤.
This construction can be done in polynomial time in the size of the
propositional formula because the concept patterns that we build in
Γφ are of polynomial size and there is no operation involved of more
than polynomial time to construct these concept patterns from φ. Since
Lemma 4.1.3 shows that our reduction is correct, we obtain the follow-
ing lower bound for left-ground matching in EL−⊤.

Theorem 4.1.4. Deciding whether a left-ground EL−⊤-matching prob-
lem modulo subsumption has an EL−⊤ matcher or not w.r.t. an empty
TBox is NP-hard.

4.1.2 PSpace-hardness of left-ground matching in
EL−> w.r.t. a general EL−>-TBox

In this section, we will show that left-ground matching modulo sub-
sumption in EL−⊤ in the presence of a general EL−⊤-TBox is PSpace-
hard. We prove this by reducing the intersection emptiness problem for
a sequence of deterministic finite automatas (DFAs), which is known to
be PSpace-hard [Koz77], to left-ground matching in EL−⊤ using TBox
axioms. Let us first understand the idea behind this reduction and later
see how can we adapt it to matching in EL−⊤.

Definition 4.1.5. A deterministic finite automaton (DFA) is a tuple
A = (Q,Σ, q0, δ, F) consisting of,

• a finite set of states Q,

36

• a finite alphabet Σ of input symbols,

• an initial state q0 ∈ Q,

• a transition function δ : Q× Σ → Q and

• a set F ⊆ Q of final states.

A configuration of A is a pair (q, w), where q ∈ Q and w ∈ Σ∗. The
transition function δ induces the following binary relation `A between
configurations: (q, w) `A (q′, w′) iff either

• w = w′ and q′ ∈ δ(q, ε) (ε-transition) or

• w = αw′ and q′ ∈ δ(q, α) for some α ∈ Σ (α-transition).

The second kind of transition is only possible if w 6= ε, i.e., there is still
a part of the input word left to read.

A run of A is a finite, nonempty tree labeled by configurations of A.
An input word w ∈ Σ∗ is accepted by A iff there is a successful run of
A, the root of which is labeled by (q0, w). The language recognized by
A is L(A) := {w ∈ Σ∗ | w is accepted by A}.

The intersection emptiness problem considers finitely many DFAs A1, . . . ,Ak,
and asks whether L(A1) ∩ . . . ∩ L(Ak) 6= ∅. Since this problem is triv-
ially solvable in polynomial time in case L(Ai) = ∅ for some 1 ≤ i ≤ k,
all languages L(Ai) are assumed to be nonempty.

In [Baa+11a], each DFA Ai (where 1 ≤ i ≤ n) in the sequence of
automatas is translated into a set of subsumption constraints ΓAi

. The
set of constraints ΓAi

is meant to simulate the behaviour of A. Variables
are used on both sides (unification) to capture loops in the automaton.
It can also be assumed without loss of generality, that the automata
Ai = (Qi,Σ, q0,i, δi, Fi) have pairwise disjoint sets of states Qi, i.e.,
there is no state that cannot be reached from the initial state or from
which no final state can be reached. Such states can be removed from
A without changing the accepted language.

The subsumption constraints in the unification problem are considered
to be flat, i.e., they consist of equations between flat concept terms,
defined in 2.1.1. By introducing new concept variables and eliminating
>, every EL−⊤-unification problem Γ can be transformed in polynomial
time into a flat EL−⊤-unification problem Γ′, such that Γ is solvable iff

37

Γ′ is solvable [BM10].

To capture the set of words accepted by the automaton A, the prop-
erty that ”if σ is a ground EL−⊤ unifier of ΓA with σ(Xq) v ∃w.A
then w ∈ L(Aq) where q is the initial state” was used. Conversely, ”if
w ∈ L(Aq) with q as the initial state then σ is an EL−⊤ unifier of
ΓA with σ(Xq) v ∃w.A”. This property becomes important when deal-
ing with the intersection emptiness problem, where we are concerned
with finding whether a common word that is accepted by a sequence
of automatas Ai for 1 ≤ i ≤ k. To address this, a flat EL−⊤ unifi-
cation problem was formulated by combining all the constraints ΓAi

(from each automaton Ai) in a way that captures a common word ac-
cepted by all automatas. The unification problem is EL−⊤-unifiable iff
the intersection of the languages of the automata is non-empty, i.e.,
L(A1) ∩ . . . ∩ L(Ak) 6= ∅.

Keeping in mind the assumptions previously discussed and the prop-
erties above, we will adopt an approach similar to the one outlined in
[Baa+11a], but with a key difference - we allow variables on only one
side of the subsumption constraints. It is necessary because we want to
reduce the intersection emptiness problem to matching. Additionally,
the TBox is used to simulate the behavior of automatas Ai that ac-
cepts a common word. This adaptation preserves the core idea while
addressing the specific requirements of matching in EL−⊤.

Given an automata A = (Q,Σ, q0, δ, F). For every state q ∈ Q, we
introduce a new concept constant Bq. Let Aq = (Q,Σ, q0, δ, F) be an
automata obtained from A, by making q the initial state. With NR = Σ,
the set of GCIs in the TBox TA are defined as follows,

TA := {Bqf v A | q ∈ F} ∪

{Bq v
l
α∈Σ

δ(q,α) is defined

∃α.Bδ(q,α) | q ∈ Q \ F},

where Bqf and A are concept constants.

The first GCI represents the final state where there is no input symbol
left to read and the second GCI represents the transition from one state
to another δ : q × α → q′, with an input symbol α.

We prove the following,

38

Lemma 4.1.6. Let q ∈ Q, w ∈ Σ∗. If Bq vTA ∃w.A, then w ∈ L(Aq).

Proof. We prove this by induction on the length of w.

For the base case, if |w| = 0, then q must be a final state in w ∈ L(Aq).
This implies ∃w.A = A, which means the empty word is accepted by
Aq. Since, |w| = 0 implies q ∈ F , then Bq vTA A.

For the inductive step, let w = α′w′ with α′ ∈ Σ, w′ ∈ Σ∗. Since Bq vTA
∃w.A then from the second GCI in T , it follows that Bq vTA ∃α′.∃w′.A.
By structure of subsumption in Lemma 2.2.3, this implies that there
exists a state q′ such that, Bδ(q,α′) vTA ∃w′.A. By induction, we know
that w′ is accepted by Aδ(q,α′). Thus, w = α′w′ is also accepted by
Aq.

From the proof above we can assume that the word corresponding to
the language accepted by the automata Aq is a particle that is always
subsumed by ∃w.A.

Note that, from every state q ∈ Q there always exists a word uq of
minimum length that is accepted by Aq as we have assumed that we
can reach F from every state.

Lemma 4.1.7. If w ∈ L(Aq), then Bq vTA ∃w.A.

Proof. Let the unique successful run of A on w = w1 . . . wn be given by
the sequence q0q1 . . . qn of states with qn ∈ F and δ(qi, wi+1) = qi+1 for
every i� ∈ {0, . . . , n−1}. We need to show that Bq vTA ∃w.A holds. In
other words, for each state qi along the run, the concept Bqi is subsumed
by ∃wi+1 . . . wn.A.

1. Consider ∃uq.A.

• If uq = ε (the empty word), then q ∈ F . In this case, Bq vTA
A, so the subsumption Bq vTA ∃uq.A is trivially satisfied.

• Otherwise, by construction there is a transition δ(q, α) = q′

with uq = αuq′ . Since, ∃uq′ .A subsumes Bq′ , we have Bq′ vTA
∃uq′ .A. Therefore, ∃α.Bq′ vTA ∃uq′ .A, which implies that
Bq vTA ∃uq.A.

2. Consider ∃wi+1 . . . wn.A where qi ∈ {q0, . . . , qn−1}.

39

• Since, δ(qi, wi+1) = qi+1 and by induction Bqi+1
vTA ∃wi+2 . . . wn.A

we know that ∃wi+1.Bqi+1
vTA ∃wi+1 . . . wn.A. Thus, Bqi is

subsumed by ∃wi+1 . . . wn.A, i.e., Bqi vTA ∃wi+1 . . . wn.A

This shows that for each state qi in the successful run of Aq on w, the
concept Bqi is subsumed by ∃wi+1 . . . wn.A. Specifically, since the run
starts at state q0 and ends in an accepting state qn, we have Bq vTA
∃w1 . . . wn.A = ∃w.A. This completes the proof of the reduction in both
directions.

The intersection emptiness problem considers finitely many automatas
A1, . . . ,Ak with 1 ≤ k ≤ n and asks whether L(A1) ∩ . . . ∩ L(Ak) 6= ∅.
Therefore, we need to consider one TBox TA for every automata Ak.

The general EL−⊤-TBox is defined as follows,

T :=
∪

i∈{1,...,k}

TAi

and the left-ground EL−⊤ matching problem is defined as follows,

Γ := {
∪

i∈{1,...,k}

Bq0,i v? Y },

where Y is a new variable.

Lemma 4.1.8. Γ has an EL−⊤ matcher w.r.t. T iff L(A1) ∩ . . . ∩
L(Ak) 6= ∅.

Proof. (⇒) Assume that Γ has an EL−⊤ matcher σ. Then, the substitu-
tion σ satisfies the subsumption Bq0,i vT σ(Y) for all i ∈ {1, . . . , k}. We
know that, Bq0,i vTA,i

σ(Y) and σ(Y) vT ∃w.A holds for some word
w ∈ Σ∗. This is because except for the concept name A the TBoxes
TAi

used to build T do not share other concept names. Transitivity
of subsumption implies that Bq0,i vTA,i

∃w.A. Applying Lemma 4.1.6
to Bq0,i vTA,i

∃w.A, it follows that w ∈ L(Ai) for every i. Therefore,
w ∈ L(A1)∩. . .∩L(Ak), implying that the intersection of the languages
L(Ai) is nonempty.

(⇐) Suppose there exists a word w ∈ Σ∗ such that w ∈ L(A1) ∩
. . . ∩ L(Ak). By lemma 4.1.7, since w ∈ L(Ai) for each i ∈ {1, . . . , k},
we have Bq0,i vTA,i

∃w.A for every i. We define a substitution σ as

40

σ(Y) := ∃w.A and we have Bq0,i vTA,i
∃w.A for each q in the respective

states of Ai. Given that T :=
∪

i TAi
and considering Γ, the substitution

Bq0,i vT σ(Y) holds for all i. Therefore, σ is an EL−⊤ matcher of Γ.

Theorem 4.1.9. Deciding whether a left-ground EL−⊤-matching prob-
lem modulo subsumption has an EL−⊤ matcher or not w.r.t. a general
EL−⊤-TBox is PSpace-hard.

For the complexity of matching modulo equivalence for EL−⊤ in the
presence of a general EL−⊤-TBox, we have shown in theorem above that
left-ground EL−⊤ matching modulo subsumption w.r.t. a general EL−⊤-
TBox is PSpace-hard. As we have reduced the intersection emptiness
problem for a sequence of DFAs (general case in unification) to left-
ground EL−⊤ matching w.r.t. a general EL−⊤-TBox (particular case),
we can say that this result also holds for matching modulo equivalence
in EL−⊤ as stated in the theorem below.

Theorem 4.1.10. Deciding whether a matching problem modulo equiv-
alence in EL−⊤ has an EL−⊤ matcher or not w.r.t. a general EL−⊤-
TBox is PSpace-hard.

4.2 Upper bounds
In this section, we will show that the complexity of the right-ground
matching problem in EL−⊤ w.r.t. a general EL−⊤-TBox remains in
PTime. We will also show that matching modulo equivalence w.r.t. the
empty TBox in EL−⊤ is in NP. This, together with the NP-hard lower
bound shown for left-ground matching in Theorem 4.2.7, implies that
the problem is NP-complete, the same as for EL.

4.2.1 PTime complexity of right-ground matching
in EL−> w.r.t. a general EL−>-TBox

For EL, deciding whether a right-ground matching problem has a matcher
or not w.r.t. a general EL-TBox can be done in PTime [BM14a]. We
will show that this is also the case for EL−⊤.

Given a general EL-TBox T and a right-ground matching problem
Γ = {C1 v? D1, . . . , Cn v? Dn}. The EL concept description ⊥ (Γ, T)

is used to denote the EL-concept description that is the conjunction

41

of all the atoms of T and of D1, . . . , Dn. The substitution σ⊥(Γ,T) is
defined as σ⊥(Γ,T)(X) = ⊥ (Γ, T) for all X ∈ NV .

Lemma 4.2.1. [BM14a] Let Γ = {C1 v? D1, . . . , Cn v? Dn} be a right-
ground EL matching problem modulo subsumption and T be a general
EL-TBox. Then Γ has a matcher w.r.t. T iff σ⊥(Γ,T) is a matcher of Γ
w.r.t. T .

We can restrict our attention to σ⊥(Γ,T) as it is the most specific concept
that can be considered as a matcher of the problem. By the construction
of σ⊥(Γ,T), it is easy to see that σ⊥(Γ,T) is also an EL−⊤ substitution,
if the problem being considered was an EL−⊤ right-ground matching
problem.

Example 4.2.2. Let us understand this with the help of an exam-
ple. Consider a right-ground matching problem Γ in EL−⊤, where the
concept σ⊥(Γ,T) does not contain >. Consider,

T = {∃s.B v ∃s.C, C v ∃s.C, C v A}
Γ = {X u B v? ∃s.A}

The matcher of Γ is defined as σ⊥(Γ,T)(X) =⊥ (Γ, T) for all X ∈ NV .
⊥ (Γ, T) represents the conjunction of all atoms in T and of D1, . . . , Dn,
i.e.,

σ⊥(Γ,T)(X) = A u B u C u ∃s.A u ∃s.B u ∃s.C

It is evident that σ⊥(Γ,T)(X) does not contain > due to its construc-
tion. It is easy to see that the subsumption X u B v? ∃s.A of Γ, the
subsumption σ⊥(Γ,T)(X)uB vT ∃s.A holds. By construction of σ⊥(Γ,T)

it is clear that it is an EL−⊤-concept description, which also makes it
an EL−⊤-matcher of the problem.

Lemma 4.2.3. Let Γ = {C1 v? D1, . . . , Cn v? Dn} be a right-ground
EL−⊤ matching problem modulo subsumption and T be a general EL−⊤-
TBox. Then Γ has an EL−⊤-matcher w.r.t. T iff σ⊥(Γ,T) is an EL−⊤-
matcher of Γ w.r.t. T .

Proof. The ”if” direction is trivial. For the ”only-if” direction, assume
that σ is an EL−⊤-matcher of Γ w.r.t. T . We need to show that this
implies σ⊥(Γ,T) is also an EL−⊤-matcher of Γ w.r.t. T , i.e., it satisfies

42

σ⊥(Γ,T)(C) vT σ⊥(Γ,T)(D) for every subsumption C v? D ∈ Γ. Since, σ
is an EL−⊤-matcher of Γ w.r.t. T , for every subsumption Ci v? Di in Γ

where 1 ≤ i ≤ n, we have σ(Ci) vT σ(Di). From Lemma 4.2.1, we know
that Γ has an EL matcher w.r.t. T iff σ⊥(Γ,T) is an EL matcher of Γ w.r.t.
T . By construction, σ⊥(Γ,T) must also satisfy σ⊥(Γ,T)(C) vT σ⊥(Γ,T)(D).
Thus, if σ is an EL−⊤-matcher of Γ w.r.t. T , then by construction,
σ⊥(Γ,T) must also an EL−⊤-matcher of Γ w.r.t. T .

The size of σ⊥(Γ,T) is polynomial in the size of Γ and T , as it only
includes symbols existing in Γ and in T . Deciding if a right-ground
matching problem in EL−⊤ w.r.t. an empty T has matcher also takes
polynomial time, because the construction of σ⊥(Γ,T) will consider only
atoms from D1, . . . , Dn as the TBox is empty. Therefore, the complexity
of deciding whether a right-ground matching problem has an EL−⊤-
matcher or not w.r.t. a general EL−⊤-TBox remains the same, i.e., in
PTime.

Theorem 4.2.4. Deciding whether a right-ground EL−⊤-matching prob-
lem modulo subsumption has an EL−⊤ matcher or not w.r.t. a general
EL−⊤-TBox takes polynomial time.

4.2.2 Matching modulo equivalence in EL−>

In [BK99c; BM14a], matching modulo equivalence for EL was shown
to be NP-complete even in the presence of general EL-TBoxes. NP-
hardness of matching modulo equivalence in EL−⊤ w.r.t. an empty
TBox follows from NP-hardness of left-ground matching in EL−⊤ w.r.t.
an empty TBox from theorem 4.1.4. To show that matching modulo
equivalence in EL−⊤ w.r.t. an empty TBox is in NP, we reuse the result
from [BK00], where it was shown that matching modulo equivalence for
EL is in NP.

To show the in NP result, it is sufficient to show that every solvable
EL−⊤ matching problem Γ has an EL−⊤ matcher such that,

1. its size is polynomially bounded in the size of Γ, and

2. it uses only concept names and role names already contained in
Γ.

To prove the above statement, let us consider n to be the total number

43

of symbols occurring in Γ. The structure of the concepts in Γ provide a
structure to any potential matcher. Therefore, the size of any matcher
of Γ is at most n. Any EL−⊤ matcher of Γ cannot introduce new concept
names or role names that do not already exist in the original matching
problem. These conditions can be summarised as the following theorem.

Lemma 4.2.5. If an EL−⊤ matching problem C ≡? D ∈ Γ is solvable,
then there exists an EL−⊤ matcher such that, it is polynomially bound
to the size of the matching problem and only uses concept names and
role names already contained in Γ.

We can adapt the proofs from [BK99c] to prove Lemma 4.2.5 above.

As we already know from Theorem 4.1.4, that deciding solvability of
a left-ground EL−⊤-matching problem modulo subsumption w.r.t. an
empty TBox is NP-hard. We also know that left-ground matching is
a particular case of matching modulo equivalence. Therefore, Deciding
solvability of matching modulo equivalence in EL−⊤ w.r.t. an empty
TBox is in NP. Finally,

Theorem 4.2.6. Deciding whether a matching problem modulo equiv-
alence in EL−⊤ has an EL−⊤ matcher or not w.r.t. an empty TBox is
NP-complete.

This also leads to the following result.

Theorem 4.2.7. Deciding whether a left-ground EL−⊤-matching prob-
lem modulo subsumption has an EL−⊤ matcher or not w.r.t. an empty
TBox is NP-complete.

44

Chapter 5

General matching in EL−>

In [BM14a], deciding whether an EL matching problem has a matcher
w.r.t. to a general EL-TBox was shown to be NP-complete. To show
the in NP result, a goal-oriented matching algorithm that uses non-
deterministic rules was presented. However, general matching in EL−⊤

becomes more difficult as, PSpace-hardness w.r.t. an empty TBox was
shown in Chapter 4 [Theorem 4.1.9, 4.1.10]. In this chapter, we will
reuse the ideas from the goal oriented matching algorithm and extend it
to deal with the restriction of not using >, to solve matching in EL−⊤.
We show that the complexity of general matching in EL−⊤ w.r.t. a
general EL−⊤-TBox is in ExpTime, which inturn implies that matching
in EL−⊤ is in ExpTime.

5.1 The EL Matching Algorithm
The goal oriented matching algorithm introduced in [BM14a], uses non-
deterministic rules to transform a given matching problem Γ into solved
form Γ0 using a polynomial number of rule applications. All offending
ground subsumptions are removed without changing the solvability sta-
tus of the problem. In other words, we can assume that for all subsump-
tions C v? D in Γ0, either C or D is non-ground. If both are ground
we can immediately decide the non-solvability of the problem and the
following conditions from [BM14b] hold:

(a) If C vT D, then Γ0 has a matcher w.r.t. T iff Γ0 \ {C v? D} has
a matcher w.r.t. T .

45

1. Dec(C v? D) := {C v? D}, if C is a variable.
2. If D1, . . . , Dn are atoms, then Dec(∃r.C ′ v? ∃r.(D1 u · · · u Dn))

fails if there is an i ∈ {1, . . . , n} such that both sides of C ′ v? Di

are ground and C ′ 6vT Di. Otherwise, Dec(∃r.C ′ v? ∃r.(D1u· · ·u
Dn)) := {C ′ v? Di | 1 ≤ i ≤ n and C ′ or Di is non-ground}.

3. If C = ∃r.C ′ and D = ∃s.D′ for roles s 6= r, then Dec(C v? D)
fails.

4. If C = A is a concept name and D = ∃r.D′ an existential restric-
tion, then Dec(C v? D) fails.

5. If D = A is a concept name and C = ∃r.C ′ an existential restric-
tion, then Dec(C v? D) fails.

6. If both C and D are ground and C 6vT D then Dec(C v? D)
fails, and otherwise returns ∅.

Figure 5.1: The function Dec(. . .) from [BM14a]

(b) If C 6vT D, then Γ0 does not have a matcher w.r.t. T .

This also holds for EL−⊤.

The EL algorithm takes as input a normalized matching problem Γ0,
as shown in 3.3.1. It non-deterministically applies rules to all unsolved
subsumptions C v? D of Γ0. An unsolved subsumption is the one
that has not been treated or handled by the algorithm during its run.
New subsumptions that are not already present in Γ0 get added, if the
application of any rule succeeds. Every newly added subsumption is
marked as unsolved. Every subsumption that has a variable on either
left-hand side or the right-hand side is solved by the application of eager
rules as shown in Figure 5.2. Eager rules take precedence over the non-
deterministic rules shown in Figure 5.3. Rules are applied exhaustively
until all subsumptions are marked as solved or a rule application has
failed.

The definition of the non-deterministic rules in the algorithm applies
the function Dec(. . .) shown in Figure 5.1, to subsumptions of the form
C v? D, where C and D are atoms and D is not a variable. A call
to Dec(C v? D) returns a (possibly empty) set of subsumptions or
fails. When no more rules are applicable and the algorithm has not
returned failure, then it returns success. The algorithm terminates af-
ter polynomial number of steps as there are only polynomially many
subsumptions that are present in the matching problem Γ. The EL

46

Eager Solving – variable on the right:
Condition: An unsolved subsumption C v? X ∈ Γ where X ∈ NV .
Action:

• If there is some subsumption of the form X v? D ∈ Γ such
that C 6vT D, then the rule application fails.

• Otherwise, mark C v? X as “solved.”

Eager Solving – variable on the left:
Condition: An unsolved subsumption X v? D ∈ Γ where X ∈ NV .
Action:

• If there is some subsumption of the form C v? X ∈ Γ such
that C 6vT D, then the rule application fails.

• Otherwise, mark X v? D as “solved.”

Figure 5.2: Eager Rules for EL and EL−⊤ from [BM14a]

matching algorithm along with its steps is presented in the Figure 5.4.

Lemma 5.1.1. If the EL matching algorithm (in Figure 5.4) has a
successful run on an input matching problem Γ, then the induced sub-
stitution σΓ is an EL matcher of Γ w.r.t. T .

To show soundness as stated in the lemma above, we show that if the
EL algorithm has a successful run on an input matching problem Γ,
then Γ has an EL matcher. The subsumptions of the form X v? C ∈ Γ

are used to construct a substitution σΓ, such that the conjunction of
all the ground concepts C is matcher of Γ. We denote it as uSΓ

X (as Γ

is normalized matching problem implying that C is ground). For each
variable X ∈ NV , we define the set,

SΓ
X := {C | X v? C ∈ Γ}.

The conjunction of all the elements of SΓ
X is denoted as uSΓ

X , where the
empty conjunction is >. The substitution σΓ is defined as,

σΓ(X) := uSΓ
X for all X ∈ NV .

If no subsumptions are present then the empty conjunction > is con-
sidered as the matcher.

To show completeness, a matcher σ of Γ0 w.r.t. T is used to guide the
application of non-deterministic rules towards a non-failing run of the
algorithm.

47

Decomposition:
Condition: This rule applies to s = C1 u · · · u Cn v? D ∈ Γ
Action: Its application chooses an index i ∈ {1, . . . , n} and calls

Dec(Ci v? D). If this call does not fail, then it adds the returned
subsumptions to Γ, and marks s as solved. If Dec(Ci v? D) fails,
it returns “failure.”

Mutation:
Condition: This rule applies to s = C1 u · · · u Cn v? D ∈ Γ
Action: Its application tries to choose atoms A1, . . . , Ak, B of T such

that A1,u, · · · , Ak vT B holds. If this is not possible, then it
returns “failure.” Otherwise, it performs the following two steps:

• Choose for each η ∈ {1, . . . , k} an i ∈ {1, . . . , n} and call
Dec(Ci v? Aη). If this call does not fail, it adds the returned
subsumptions to Γ. Otherwise, Dec(Ci v? Aη) fails, the rule
returns “failure.”

• If it has not failed before and Dec(B v? D) does not
fail, it adds the returned subsumptions to Γ. Otherwise, if
Dec(B v? D) fails, it returns “failure.”

If these steps did not fail, then the rule marks s as solved.

Figure 5.3: Non-deterministic Rules for EL and EL−⊤ from [BM14a]

Lemma 5.1.2. [BM14b] Let σ be a matcher of Γ0 w.r.t. T . Then
there is a non-failing and terminating run of Algorithm 5.4 producing
a matching problem Γ such that σ is a matcher of Γ w.r.t. T .

A useful property of the EL algorithm is mentioned below,

Lemma 5.1.3. [BM14a] If Γ is a matching problem generated during a
non-failing run of the algorithm, and both C v? X ∈ Γ and X v? D ∈ Γ

are solved, then C vT D.

5.2 Why does the EL algorithm not work
for EL−>

In this section, we will first see an example why the EL algorithm does
not always work for EL−⊤.

Example 5.2.1. Consider the matching problem Γ,

48

Input: A normalized EL matching problem Γ0 and a general EL-TBox.
Output: success, if an EL matcher exists or failure, otherwise.

1. Apply the eager rules and non-deterministic rules exhaustively in
the following order,

• Apply eager rules (if applicable). If an application of an eager
rule fails, then stop and return failure.

• If no eager rule can be applied, select an unsolved subsump-
tion s in Γ. Choose one of the two non-deterministic rules
and apply it to s. If this rule application fails, then stop and
return failure.

2. If no more rules apply and the algorithm has not stopped return-
ing failure, return success.

Figure 5.4: The EL matching algorithm
from [BM14a]

Γ := {X v? ∃r.>, ∃r.A v? X} and T := {∃r.A v ∃r.>}.

Starting with the first subsumption in Γ, i.e., X v? ∃r.>, the eager rule:
variable on the left is applied which marks the subsumption as solved
as there is a subsumption of the form C v? X ∈ Γ, i.e., ∃r.A v? X

with ∃r.A vT ∃r.>. For the second subsumption, ∃r.A v? X, the eager
rule: variable on the right is applied which is also marked as solved as
there is a subsumption of the form, X v? D ∈ Γ, i.e., X v? ∃r.> with
∃r.A vT ∃r.>. Since, all subsumptions in Γ are marked as solved, the
assignment induced by the successful run of the algorithm using the
subsumption of the form X v? D ∈ Γ, i.e., X v? ∃r.> is σ(X) := ∃r.>.
Hence, the EL matcher of Γ is ∃r.>. This example, shows that it is
obviously not sound for EL−⊤, because the EL matcher comes from
the symbols in the EL matching problem Γ.

A natural question arises, whether it is possible to slightly modify the
algorithm in a way such that the newly obtained algorithm is sound
and complete for matching in EL−⊤. Is it possible for the algorithm to
answer no when such an assignment implies the presence of > in the
induced substitution. We will see how this destroys the completeness of
the algorithm and show that such a simple modification is not enough
to modify the existing EL matching algorithm into an algorithm that
works for EL−⊤.

49

Example 5.2.2. Consider the following matching problem introduced
in [Baa+11a] that has both, an EL matcher and an EL−⊤ matcher. We
will see how the slightly modified EL algorithm answers no even if an
EL−⊤ matcher of Γ exists. Let,

Γ := {A v? X, B v? X} and T := {B v A}.

Again, starting with the first subsumption in Γ, A v? X, the eager rule:
variable on the right is applied which marks the subsumption as solved
as there is no subsumption of the form X v? D ∈ Γ, such that A vT D.
The same applies to the second subsumption, B v? X and it is marked
as solved. To define the substitution σΓ, there are no subsumptions of
the form X v? D ∈ Γ. Hence, the empty conjunction or > is defined as
the EL matcher of Γ. However, Γ has an EL−⊤ matcher which is A as
B vT A and we know A v A. The algorithm answers no, as it fails to
find the EL−⊤ matcher that Γ actually has. Therefore, this modification
is not enough to make the EL algorithm work for an EL−⊤ matching
problem.

Note that, the substitution σΓ(X) := A can be thought of as a common
subsumer without > of A and B as it must satisfy both the subsumption
constraints in Γ. The limitation of the EL matching algorithm to EL−⊤

is that it does not always find the EL−⊤ matcher that the problem has.

5.3 The EL−> Matching Algorithm
In this section, we will show how we can adapt the algorithm to make
it work for EL−⊤, such that it always answers yes if an EL−⊤ matcher
exists or returns failure otherwise. The EL−⊤ matching algorithm as
described in figure 5.6 uses the same idea of the EL algorithm with
some additions. From the previous example, given the successful run of
the EL algorithm such that, X v? D ∈ Γ is empty

For an EL−⊤ matching problem Γ, if the algorithm answers yes implying
that Γ has an EL matcher, the subsumptions of the form X v? D ∈ Γ

are used. For every variable X ∈ NV , the substitution σΓ(X) := uSΓ
X

is defined where, SΓ
X := {D | X v? D ∈ Γ}. For the case where an

empty conjunction or > gets assigned to a variable as there are no sub-
sumptions of the form {X v? D ∈ Γ} and the set SΓ

X = ∅, a common

50

subsumer not containing > needs to be assigned to X as the EL−⊤

matcher of Γ. This is how we extend the EL algorithm into a new al-
gorithm for EL−⊤. More precisely, we introduce a new rule called the
common subsumer rule that decides the existence of common subsumers
without >. The common subsumer rule extends the EL matching algo-
rithm to decide general matching in EL−⊤, as shown in Figure 5.5.
We can assume the concepts assigned to the variables X ∈ NV to be
particles as we will show in the next section.

Common subsumer rule:
Condition: For any variable X ∈ NV such that, there exists at least

one subsumption of the form C v? X ∈ Γ and no subsumptions
of the form X v? D ∈ Γ.

Action: Let {C1, C2, . . . , Cn} be the set of concepts such that Ci v?

X ∈ Γ with 1 ≤ i ≤ n.
• If a common subsumer without > of {C1, C2, . . . , Cn} w.r.t.

T exists, then return ”success”.
• Otherwise, return ”failure”.

Figure 5.5: Common subsumer rule for EL−⊤

Let us see if the new algorithm works for the Example 5.2.2. When
Γ := {A v? X, B v? X} and T := {B v A}, the EL algorithm was
successful in applying all the rules therefore marking all subsumption
constraints as solved. There are no subsumptions of the form X v? C ∈
Γ. But, in the EL−⊤ matching algorithm, we can apply the common
subsumer rule since the set SΓ

X = ∅ and we have the subsumptions of
the form C1 v? X and C2 v? X in Γ which are A v? X and B v? X

and we know that B vT A. The common subsumer not containing >
is A. Therefore, the EL−⊤ matcher of the problem is the concept name
A as A v A and B vT A. If a common subsumer without > does
not exist then the algorithm returns failure indicating that an EL−⊤

matcher does not exist, which also implies that there is no EL matcher
of Γ because an EL−⊤ matcher is also an EL matcher.

The new EL−⊤ algorithm consists of an additional rule to decide the
existence of a common subsumer without >. In the next section, we will
describe methods on how such a common subsumer without > can be
computed with the help of notions introduced in the Section 2.3. Having
introduced the common subsumer rule in figure 5.5, we will introduce a

51

Input: A normalized EL−⊤ matching problem Γ0 and a general EL−⊤−
TBox.
Output: success, if an EL−⊤ exists or failure, otherwise.

1. Apply the eager rules and non-deterministic rules exhaustively in
the following order,

• Apply eager rules (if applicable). If an application of an eager
rule fails, then stop and return failure.

• If no eager rule can be applied, select an unsolved subsump-
tion s in Γ. Choose one of the two non-deterministic rules
and apply it to s. If this rule application fails, then stop and
return failure.

2. If no more rules apply and the algorithm has not stopped return-
ing failure, proceed to step 3.

3. Apply the common subsumer rule for all X ∈ NV in Γ0.
4. If no rule application fails, return success.

Figure 5.6: The EL−⊤ matching algorithm

decision procedure for the existence of common subsumer(s) without >
in the next section. The proof for the correctness of the EL−⊤ matching
algorithm is deferred to section 5.5.

5.4 Decision procedure for the existence
of common subsumers without >

For a set of concept descriptions, a common subsumer (cs) is a concept
description that subsumes all elements from the set. In this chapter, we
present an algorithm that decides whether two concepts C and D have
a common subsumer without > w.r.t. a TBox T . The algorithm can
also be extended to a sequence of concepts C1, . . . , Cm. We will show
how this can be achieved towards the end of this section.

Definition 5.4.1. Let C, D be EL−⊤ concepts and T be a general EL−⊤-
TBox. A concept E is a common subsumer without > of C and D w.r.t.
T , if both the properties are satisfied:

1. C vT E and D vT E, and

2. E does not contain >.

52

The set of common subsumers without > of two concepts is denoted as
cs−⊤

T (C,D). If there is another concept F that satisfies the properties
above, i.e., C vT F and D vT F and F does not contain >, then it
belongs to this set, as common subsumers are not unique unlike least
common subsumers [ZT13a], because being an lcs means it is the most
specific concept that is subsumed all other common subsumers and
common subsumers without > need not satisfy this property. We will
use a short-hand notation ”common subsumers or (cs)” to refer to a
common subsumer of C and D w.r.t. T that does not contain > for the
rest of the section.

If C is a common subsumer without > and has depth at most k, then
we say that C belongs to the set of common subsumers of role depth
at most k.

To decide the existence of common subsumers without > w.r.t. general
EL−⊤-TBoxes, the correctness of the computation algorithm depends
on the notion of canonical models and simulation relations introduced
in Section 2.3 [ZT13b].

We adapt the ideas from [ZT13a] to decide the existence of a least com-
mon subsumer. In order to decide the existence of a common subsumer
without > of two concepts w.r.t. to a TBox, we use the following steps.

• Identify candidates for common subsumers without >.
The set of common subsumers without > is a possibly infinite set
of common subsumers of C and D w.r.t. T .

• Characterize particles as common subsumers without >.
If a common subsumer without > exists then we prove there exists
a particle that is common subsumer without >.

To obtain the candidates for common subsumers without >, we build
the product of canonical models (IC,T , dC) and (ID,T , dD) and construct
the k-characteristic concept of this product model as introduced in
Section 2.3.3 and also shown in [ZT13b] [LW10]. The k-characteristic
concept captures all commonalities of the two input concepts C and D,
hence it is considered as a suitable candidate.

Lemma 5.4.2. [ZT13b] Let k be a natural number (k∈N).

1. Xk(IC,T × ID,T , (dC , dD)) ∈ csT (C,D).

53

2. Let E be a concept with rd(E) ≤ k and C vT E and D vT E. It
holds that Xk(IC,T × ID,T , (dC , dD)) vT E.

The lemma above states that every common subsumer E, subsumes
the k-characteristic concept (where rd(E) ≤ k). The set the all k-
characteristic concepts of the product model belongs to the set of com-
mon subsumers of C and D w.r.t. T and we can find another concept E
of role-depth ≤ k that subsumes the k-characteristic concept and is also
a common subsumer of C and D w.r.t. T . From this result in Lemma
5.4.2, we can say that we have a common subsumer without > if either
one of the k-characteristic concepts from the set does not contain > or
there is a concept E that subsumes it and does not contain >.

Lemma 5.4.3. Let C and D be two EL−⊤ concepts and T an EL−⊤-
TBox. If C and D have a common subsumer without > w.r.t. T , then
we have a common subsumer E that is a particle.

Proof. Assume that C and D have a common subsumer E without >
w.r.t. T . Then, E is a particle as it does not contain >. From Lemma
2.2.2 we can say that these particles subsume the concept E. There-
fore, to decide the existence of a common subsumer without >, we can
restrict our attention to particles, i.e., if a concept that is a common
subsumer without > of C and D exists then we can assume this concept
to be a particle (see Definition 2.1.2).

First, it is sufficient to check whether > occurs in the k-characteristic
concept, because if it does not we can say that it yields a common
subsumer without >. But, in the case where > occurs, we cannot say
that a common subsumer without > does not exist. We need to find
another concept E that subsumes the characteristic concept and does
not contain > as shown in lemma 5.4.2.

We can assume such a concept E to be a particle from Lemma 5.4.3. To
decide whether a common subsumer without > exists we can restrict
the search to particles that subsume the k-characteristic concept. The
next step is to show that if such a particle E exists, then E must be a
particle of the characteristic concept of the same role-depth as E, i.e.,
Part(Xk(I, d)) of role depth k such that rd(E) ≤ k. This check is more
stronger and we can prove that if such a concept (now a particle) exists
then it yields a common subsumer without > of C and D w.r.t. T .

54

Let (I, d) be the product graph of canonical models of C and D and
Xk(I, d) the k-characteristic concept of this product model with role
depth at most k. We can say the following,

Lemma 5.4.4. Let C and D be two EL−⊤ concepts, E be a particle and
T be a general EL−⊤-TBox. Then, we have E is a common subsumer
of C and D w.r.t. T iff E ∈ Part(Xk(I, d)) with rd(E) ≤ k.

Proof. (⇒) For this direction, assume that E is a common subsumer
of C and D w.r.t. T . We show that E belongs to the set of particles of
the k-characteristic concept with k = rd(E).

From definition 5.4.1 we have C vT E and D vT E and from Lemma
5.4.2 we know that the k-characteristic concept of C and D w.r.t. T
is subsumed by E. Applying the Lemma 2.2.4 to C vT E, we can say
that the element is the root of the canonical model of C w.r.t. T . This
implies it also belongs to the interpretation E in IC,T , i.e., dC ∈ EIC,T .
The same applies to the concept D, i.e., dD ∈ EIC,T .

The canonical models of C and D must have a path each from the root
dC and dD respectively such that the root is an instance of the particle
E. From the construction of the product model as shown in 2.3.3, we
can say that the product of the canonical models of C and D must have
a path from the root (dC , dD) such that the root is an instance of the
particle E. The construction of the characteristic concept of depth k

is based on the unraveling of the product model 2.3.4. If there exists a
path of depth k in the product model then this path must also exist in
the tree unraveling of this product model. We construct the character-
istic concept from the tree unraveling as shown in definition 2.3.5. The
existence of such a path in the unraveling implies the existence of the
concept E that is particle. Therefore, we can say that the concept E ∈
Part(Xk(I, d)) with rd(E) = k.

(⇐) For the right to left direction, assume E is a particle that belongs
to the set Part(Xk(I, d)) with rd(E) = k. From Lemma 2.2.2, we can
say that if E ∈ Part(Xk(I, d)) then Xk(I, d) v E. This result only
holds w.r.t. to an empty TBox. However, we can say that it also holds
w.r.t. a general EL−⊤-TBox because every subsumption that is true
w.r.t. to an empty TBox is also true w.r.t. a general EL−⊤-TBox. From
Lemma 5.4.2 we can say that if concept E subsumes the characteris-
tic concept of same depth then it also belongs to the set of common

55

Input: Let C and D be two EL−⊤ concepts, and T a general EL−⊤-
TBox.
Output: yes, if a common subsumer without > of C and D w.r.t. T
exists or no, otherwise.

1. Build the product graph of canonical models (IC,T , dC) and
(ID,T , dD), denoted as (IC,T × ID,T , (dC , dD)).

2. Check if there exists a path in the product graph from the root
(dC , dD) to an element labelled with a concept name.

3. If a path is found in Step 2 then return yes, otherwise return no.

Figure 5.7: Decision procedure for the existence of common subsumers without >

subsumers without > implying that E which is a particle is also a com-
mon subsumer of C and D w.r.t. T . This completes the proof in both
directions.

The previous lemma tells us that we only need to check whether some k-
characteristic concept has a particle. What remains to be shown is that
if a common subsumer without > exists then its role-depth is bounded
by the size of the product model. In other words, to decide if such a
particle exists.

If a particle ∃w.A is a common subsumer then the product model has
a path from the root to a node labelled with concept name A. In order
to decide whether a particle is a common subsumer without >, it is
sufficient to find a path in the product model. However, the product
model of two concepts is finite graph containing cycles. It is easy to find
such a path in the product graph by visiting every node, if a common
subsumer without exists. In case where it does not, we can characterize
every node as ”visited” and answer no when every node has been visited
in the process of finding such a path to a particle.

Next, we present an algorithm in 5.7 to decide the existence of common
subsumers without > of two EL−⊤concepts C and D w.r.t. T . In step 1,
building the product model takes polynomial time. In step 2, checking
the existence if a path in the product model which is finite can be
done in polynomial time. The algorithm terminates when it has found
a particle in the set Part(Xℓ(IC,T × ID,T , (dC , dD))). Hence, we can
say that the algorithm to decide the existence of a common subsumer
without > of two EL−⊤concepts C and D takes polynomial time.

56

To show soundness, we show that the algorithm returns ”yes” only when
a common subsumer of C and D without > w.r.t. T indeed exists. We
will go through each step of the algorithm to show that it answers yes
when a concept E that is a particle exists. The algorithm constructs
the ℓ-characteristic concepts (Xℓ(IC,T ×ID,T , (dC , dD))) of the product
model (IC,T × ID,T , (dC , dD)) using lemma 2.3.5, from ℓ = {0, . . . , n}.
Since the algorithm returned ”yes”, it finds a particle E in the set
Part(Xℓ(IC,T ×ID,T , (dC , dD))) for some role depth ℓ where rd(E) = ℓ.
From lemma 5.4.4 we can say that E is a common subsumer of C and
D without > w.r.t. T . Therefore, the algorithm answers ”yes” which
shows that the algorithm is indeed sound.

To show completeness, we show that the algorithm returns ”yes” when-
ever a common subsumer without > exists. We know that if the algo-
rithm answers yes, then there exists a particle or concept E that is a
common subsumer of C and D w.r.t. T . From lemma 5.4.4 there exists a
k such that this concept is a particle in Part(Xℓ(IC,T ×ID,T , (dC , dD))).
Therefore, the algorithm answers ”yes” only when it finds a common
subsumer of C and D without > w.r.t. T .

Theorem 5.4.5. Let C and D be two EL−⊤ concepts and T be a
general EL−⊤-TBox. Deciding if C and D have a common subsumer
without > w.r.t. T can be done in polynomial time.

The results shown above can be easily generalized to finding common
subsumers without > of an arbitrary set of concepts M = {C1, . . . , Cm}
w.r.t. a general EL−⊤-TBox T . In this general case, we have to take
the product model

(IC1,T × · · · × ICm,T , (dC1 ,···, dCm)),

whose size is exponential in the number of concepts in M and T . Then
the same steps as for the binary version can be applied.

Theorem 5.4.6. Deciding the existence of a common subsumer without
> of m concepts can be done in exponential time in the size of the
number of concepts in M and T .

We will prove the correctness of the EL−⊤ matching algorithm in the
next section using the decision procedure for common subsumers with-
out > in Figure 5.7.

57

5.5 Correctness of the EL−> matching al-
gorithm

5.5.1 Soundness
To prove soundness, we show that if the EL−⊤ matching algorithm
answers yes, then the input matching problem Γ has an EL−⊤ matcher
σ. If the algorithm answers yes, then it has a successful run and every
successful run induces a substitution σΓ.

Lemma 5.5.1. Let Γ be an EL−⊤ matching problem obtained after a
terminating and non-failing of the algorithm 5.3 and T be a general
EL−⊤-TBox. Then, we can say that σΓ is a matcher of Γ w.r.t. T .

Proof. We have already seen in the Lemma 5.4.4, that if a common
subsumer without > exists then there exists a particle that is a common
subsumer without >. A particle is of the form ∃w.A (see Definition
2.1.2) and it does not contain >. Therefore, we can say that the if
a variable X ∈ NV in Γ is mapped to a particle that is a common
subsumer, then it does not contain >.

Next, we show that the substitution σΓ is obtained after the successful
and terminating run of the algorithm is indeed an EL−⊤ matcher of the
original matching problem Γ0. To prove this we need to show that σΓ

actually solves all the subsumptions of the problem Γ. We go through
each type of subsumption and see how σΓ solves them. The proof idea
is very similar to the proof described in [BM14b], but now we have two
new conditions: (a) > is not allowed and (b) We have a new rule to
find the common subsumer(s) without > for subsumptions of the form
Ci v? X.

• Subsumptions of the form X v? D are solved by σΓ since σΓ(X) vT

D. This is true because D is a conjunct of σΓ(X).

• For subsumptions of the form C v? X, by definition if SΓ
X 6= ∅

then σΓ(X) = D1 u · · · uDn where for each i ∈ {1, . . . , n}, X v?

Di ∈ Γ. Given that the algorithm has successfully terminated
with the final matching problem Γ, the subsumption C v? X

as well as all subsumptions X v? Di are marked as solved in
Γ. According to Lemma 5.1.3, this implies C vT Di for all i ∈

58

{1, . . . , n}, which implies C vT D1 u · · · uDn = σΓ(X). Now, if
SΓ
X = ∅ then we have Ci v? X ∈ Γ where i ∈ {1, . . . , n}. From

the common subsumer rule if a common subsumer exists then,
cs(Ci) v σΓ(X). Hence, σΓ(X) solves Ci v? X.

• To show that σΓ solves other subsumptions s = C v? D in Γ, we
use induction over the size of s. The size of s is defined as |C|
if C is non-ground and |D| if D is non-ground. The idea is that
applying a non-deterministic rule to a subsumption s generates
new subsumptions where the size of the non-ground side is smaller
than that of the non-ground size of s. Subsumptions with a non-
ground side of size 1 which are of the form C v? X or X v?

D, have already been addressed above. For larger subsumptions,
they are solved by either Mutation or Decomposition. In case of
Decomposition, consider a subsumption s = C1 u · · · u Cn v?

D ∈ Γ solved by this rule. For some i ∈ {1, . . . , n}, the call
Dec(Ci v? D) is computed. Since this call does not fail, the cases
1,2 and 6 from the definition of Dec applies,

– Case 1: Ci is a variable and Dec(Ci v? D) = {Ci v? D}.
Thus, Ci v? D ∈ Γ and we have already seen that σΓ solves
such subsumptions, i.e., σΓ(Ci) vT D. This implies that σΓ

also solves C1 u · · · u Cn v? D.

– Case 2: Ci = ∃r.C ′ and D = ∃r.(D1 u · · · uDm). Since Dec

did not fail, we have Ci vT Dj for all subsumptions Ci v?

Dj, where both sides are ground. Non-ground subsumptions
Ci v? Dj are added to Γ and are smaller than s. Thus, σΓ

solves these subsumptions which implies that it solves s as
well.

– Case 6: Both Ci and D are ground, and Ci vT D. Since,
Dec did not fail. This implies that σΓ solves s.

• In case of Mutation, assume the subsumption s = C1u· · ·uCn v?

D ∈ Γ is solved by this rule. Since the application of this rule
does not fail, there exist atoms A1, . . . , Ak, B in T such that
A1,u · · · u Ak vT B. The rule chooses for each η ∈ {1, . . . , k}
an i ∈ {1, . . . , n} such that none of the calls Dec(Ci v? Aη)

fails. Additionally, it calls Dec(B v? D), and this call does not
fail either. Similar to the Decomposition rule, we can show that

59

all subsumptions Ci v? Aη and B v? D are solved by σΓ. This
implies that σΓ also solves s.

The input matching problem Γ0 is contained in Γ and the proof above
shows that σΓ is a matcher of Γ which implies that it also a matcher of
Γ0 w.r.t. T . This completes the proof of soundness.

5.5.2 Completeness
To prove the completeness of the algorithm we consider σ as the EL−⊤

matcher of Γ0 w.r.t. a TBox T and guide the algorithm towards a
successful and terminating run such that σ is also a matcher of Γ w.r.t.
T . The following lemma states the claim.

Lemma 5.5.2. Let σ be a an EL−⊤ matcher of Γ0 w.r.t. a TBox
T . Then there is a non-failing and terminating run of algorithm 5.6
producing a matching problem Γ such that σ is a matcher of Γ w.r.t.
T .

Proof. We show that the rule applications are performed on Γ without
failure while maintaining the following invariant,

(Inv:) All subsumptions in the matching problem Γ generated during
the execution are solved by σ. [BM14b]

Initially, for the matching problem Γ = Γ0 this invariant is satisfied since
σ was assumed to be a matcher of Γ0 with respect to T . The application
of an eager rule cannot fail since σ solves the subsumptions involved.
If Γ contains the subsumption C v? X and X v? D, then by the
invariant these subsumptions are solved by σ and thus C vT σ(X) vT

D, which by the transitivity of subsumption yields C vT D. The non-
deterministic rules use the function Dec to solve the subsumptions and
we rely on the correctness of the following claim:

Claim: If σ structurally solves the subsumption C v? D (i.e., σ(C) vs
T

σ(D)), then the call Dec(C v? D) does not fail and σ solves all the
subsumptions returned by this call. [BM14b]

To prove this claim, we consider each case of the Dec function as de-
scribed in figure 5.1.

• Case 1 is trivial as it never fails and return the input subsumption.

60

• In case 2, σ structurally solves ∃r.C ′ v? ∃r.(D1 u · · · u Dn) im-
plies that σ(C ′) vT σ(Di) for all i ∈ {1, . . . , n}. This implies
C ′ vT Di for indices i where both C ′ and Di are ground, ensur-
ing the call does not fail. Additionally, σ also solves the returned
subsumptions C ′ v? Di where one side is non-ground.

• Cases 3 and 4 do not apply because σ cannot structurally solve
the respective subsumption.

• In case 6, if C vT D, then σ must solve the ground subsumption
C v? D. This proves the claim.

To handle unsolved subsumptions s = C1u· · ·uCn v? D ∈ Γ where no
eager rule can be applied and neither D nor C1 if n = 1 is a variable, and
we know σ(C1)u· · ·uσ(Cn) vT σ(D) holds, there are three possibilities
that may justify the subsumption hierarchy.

• if n > 1 and there is an index i ∈ {1, . . . , n} such that Ci is a
variable and σ(Ci) vT σ(D). The algorithm can apply Decom-
position to s and call Dec(Ci v? D). Since Ci is a variable, this
call does not fail and returns (Ci v? D), which is added to Γ

preserving the invariant.

• If there is an index i ∈ {1, . . . , n} such that Ci is not a variable
and σ(Ci) vs

T σ(D). Here, we apply Decomposition, selecting
an index i, and call Dec(Ci v? D). Since σ structurally solves
(Ci v? D) the call does not fail and returns subsumptions solved
by σ.

• If there exist atoms A1, . . . , Ak, B of T such that A1u· · ·uAk vT

B. For each η ∈ {1, . . . , k} there is an i ∈ {1, . . . , n} such that
σ(Ci) vs

T Aη and B vs
T σ(D). In this case, apply Mutation,

selecting these atoms A1, . . . , Ak, B. Since, σ structurally solves
Ci v? Aη and B v? D, the calls to Dec in the rule does not fail
and produce only subsumptions solved by σ. Thus, mutation rule
preserves the invariant.

If Γ contains subsumptions of the form Ci v? X for all i ∈ {1, . . . , n},
the application of the common subsumer rule does not fail as cs(σ(Ci)) v?

X vT D, thereby preserving the invariant.

To sum up, the application of eager rules does not fail and maintains the
invariant. If no eager rule is applicable and an unsolved subsumption

61

remains then a non-deterministic rule can be applied that solves the
subsumption ensuring no failure and preservation of the invariant. The
application of the common subsumer rule then checks for the existence
of a common subsumer without > to σ. Consequently, the algorithm
has a successful run where σ is a matcher w.r.t. T for the final match-
ing problem Γ generated during this run. This finishes the proof of
completeness.

5.5.3 Termination and Complexity
Any rule application, as illustrated in Figure: 5.6, either fails while at-
tempting to solve an unsolved subsumption (causing the algorithm to
terminate immediately) or successfully solves an unsolved subsumption.
Hence, there are only polynomial number of rule applications during
a run. It is also easy to see that the eager rule and non-deterministic
rule application can be realised in polynomial time, with only a polyno-
mial number of possible non-deterministic choices. However, deciding
the existence a common subsumer without > of n concepts can take
exponential time.

As we already know that the complexity of the EL matching algorithm
is in NP and the EL−⊤ matching algorithm uses the same idea with
an additional component to decide the existence of common subsumers
for n ∈ N concepts.1. Since the EL−⊤ matching algorithm 5.3 may con-
tain n ∈ N, subsumptions C1 v? X, . . . , Cn v? X, the computational
complexity now depends on the complexity of deciding the existence of
common subsumers for n ∈ N concepts which takes exponential time.
We can conclude that our new algorithm to decide matching in EL−⊤

runs in exponential time. This implies that general matching in EL−⊤

can be decided in exponential time.

Theorem 5.5.3. Deciding whether a general EL−⊤ matching problem
has an EL−⊤ matcher or not w.r.t. a general EL−⊤-TBox takes expo-
nential time.

1Note that the Algorithm 5.7 for common subsumers without > only considers
two input concepts. It can be adapted to n concepts as demonstrated at the end of
Section 5.4.1

62

Chapter 6

Conclusions and Future work

In this thesis, we have investigated the computational complexity of
matching in EL−⊤, both in the case of an empty TBox and when a gen-
eral EL−⊤-TBox is present. We considered four variants of the matching
problem for EL−⊤ introduced in Section 3.2 and obtained the following
complexity results.

• PTime complexity of right-ground matching modulo subsumption
w.r.t. arbitrary TBoxes in Section 4.2.1.

• Deciding whether a left-ground matching problem modulo sub-
sumption in EL−⊤ has a matcher (w.r.t. an empty TBox) was
shown to be NP-complete, as discussed in Section 4.1, while the
presence of a general EL−⊤-TBox increases the complexity to
PSpace-hard, as shown in Theorem 4.1.9.

• Matching modulo equivalence in EL−⊤ w.r.t. an empty TBox was
also shown to be NP-complete. However, in the presence of a
general EL−⊤-TBox it becomes PSpace-hard, as demonstrated in
Section 4.2.2.

• Lastly, we showed that general matching in EL−⊤ w.r.t. a general
EL−⊤-TBox is decidable, with complexity between PSpace-hard
and in ExpTime. The new algorithm presented to decide match-
ing in EL−⊤ is based on extending the EL−⊤ matching algorithm
from [BM14a] with the algorithm to decide the existence of com-
mon subsumers without > as shown in Section 5.4.1.

The complexity results of matching in EL−⊤ significantly differ from the

63

EL
T = ∅ T 6= ∅

Left-ground matching modulo
subsumption P P

Right-ground matching modulo
subsumption P P

Matching modulo equivalence NP-complete NP-complete
General matching NP-complete NP-complete

Table 6.1: Complexity results for EL from [BK00; BM14a]

EL−⊤

T = ∅ T 6= ∅
Left-ground matching
modulo subsumption NP-complete PSpace-hard,

in ExpTime
Right-ground
matching modulo
subsumption

P P

Matching modulo
equivalence NP-complete PSpace-hard,

in ExpTime
General matching NP-hard,

in ExpTime
PSpace-hard,
in ExpTime

Table 6.2: Complexity results for EL−⊤

ones obtained for EL. Therefore, when > is not allowed in a description
logic under consideration, matching becomes more challenging. The
results are summarized in Tables 6.1 and 6.2.

As future work, demonstrating that general matching in EL−⊤ is in
PSpace would yield a matching upper bound. This will close the gap in
the complexity of the three variants of matching, i.e., left-ground match-
ing, matching modulo equivalence and general matching w.r.t. arbitrary
TBoxes. Hence, it would allow us to conclude PSpace-completeness for
all these variants. For the open gap for general matching w.r.t. an empty
TBox, whose computational complexity currently lies between NP-hard
and in ExpTime, it would be interesting to see if an NP algorithm could
be used to solve this problem resulting in NP-completeness for this case.
Additionally, exploring practical applications of the new EL−⊤ match-
ing algorithm would would be an interesting and valuable direction.

64

Bibliography

[Koz77] Dexter Kozen. “Lower bounds for natural proof systems”.
In: 18th Annual Symposium on Foundations of Computer
Science (sfcs 1977). IEEE. 1977, pp. 254–266.

[GJ79] Michael R Garey and David S Johnson. Computers and
intractability. Vol. 174. freeman San Francisco, 1979.

[BM96] Alexander Borgida and Deborah L McGuinness. “Asking
Queries about Frames.” In: KR 96 (1996), pp. 340–349.

[BK99a] F. Baader and R. Küsters. Matching Concept Descrip-
tions with Existential Restrictions Revisited. LTCS-Report
LTCS-99-13. See http://www-lti.informatik.rwth-aachen.
de/Forschung/Reports.html. Germany: LuFG Theoretical
Computer Science, RWTH Aachen, 1999. doi: https://
doi.org/10.25368/2022.98.

[BK99b] F. Baader and R. Küsters. Matching in Description Logics
with Existential Restrictions. LTCS-Report LTCS-99-07.
See http://www-lti.informatik.rwth-aachen.de/Forschung/
Reports.html. Germany: LuFg Theoretical Computer Sci-
ence, RWTH Aachen, 1999. doi: https://doi.org/10.
25368/2022.93.

[BK99c] F. Baader and R. Küsters. “Matching in Description Log-
ics with Existential Restrictions”. In: Proceedings of the In-
ternational Workshop on Description Logics 1999 (DL’99).
Ed. by P. Lambrix et al. CEUR-WS 22. Proceedings online
available from http://SunSITE.Informatik.RWTH-Aa-
chen.DE/Publications/CEUR-WS/Vol-22/
. Sweden: Linköping University, 1999.

[BKM99] F. Baader, R. Küsters, and R. Molitor. “Computing Least
Common Subsumers in Description Logics with Existen-
tial Restrictions”. In: Proceedings of the 16th International

65

https://doi.org/https://doi.org/10.25368/2022.98
https://doi.org/https://doi.org/10.25368/2022.98
https://doi.org/https://doi.org/10.25368/2022.93
https://doi.org/https://doi.org/10.25368/2022.93

Joint Conference on Artificial Intelligence (IJCAI’99). Ed.
by T. Dean. Morgan Kaufmann, 1999, pp. 96–101.

[Baa+99] F. Baader et al. “Matching in Description Logics”. In: Jour-
nal of Logic and Computation 9.3 (1999), pp. 411–447.

[BK00] F. Baader and R. Küsters. “Matching in Description Log-
ics with Existential Restrictions”. In: Proceedings of the
Seventh International Conference on Knowledge Represen-
tation and Reasoning (KR2000). Ed. by A.G. Cohn, F.
Giunchiglia, and B. Selman. San Francisco, CA: Morgan
Kaufmann Publishers, 2000, pp. 261–272.

[BN01] F. Baader and P. Narendran. “Unification of Concepts
Terms in Description Logics”. In: J. Symbolic Computa-
tion 31.3 (2001), pp. 277–305.

[Baa02] F. Baader. Terminological Cycles in a Description Logic
with Existential Restrictions. LTCS-Report LTCS-02-02.
See http://lat.inf.tu-dresden.de/research/reports.html. Ger-
many: Chair for Automata Theory, Institute for Theoret-
ical Computer Science, Dresden University of Technology,
2002. doi: https://doi.org/10.25368/2022.120.

[Baa+03] Franz Baader et al., eds. The Description Logic Handbook:
Theory, Implementation, and Applications. Cambridge Uni-
versity Press, 2003.

[BBL05] F. Baader, S. Brandt, and C. Lutz. “Pushing the EL Enve-
lope”. In: Proceedings of the Nineteenth International Joint
Conference on Artificial Intelligence IJCAI-05. Edinburgh,
UK: Morgan-Kaufmann Publishers, 2005.

[BM10] Franz Baader and Barbara Morawska. “Unification in the
Description Logic EL”. In: Logical Methods in Computer
Science 6.3 (2010). Special Issue of the 20th International
Conference on Rewriting Techniques and Applications; also
available at http://arxiv.org/abs/1006.2289.

[LW10] Carsten Lutz and Frank Wolter. “Deciding inseparability
and conservative extensions in the description logic EL”.
In: Journal of Symbolic Computation 45.2 (2010), pp. 194–
228.

[Baa+11a] Franz Baader et al. Unification in the Description Logic
EL Without the Top Concept. LTCS-Report 11-01. See
http://lat.inf.tu-dresden.de/research/reports.html. Dresden,

66

https://doi.org/https://doi.org/10.25368/2022.120

Germany: Chair of Automata Theory, Institute of Theo-
retical Computer Science, Technische Universität Dresden,
2011. doi: https://doi.org/10.25368/2022.179.

[Baa+11b] Franz Baader et al. “Unification in the Description Logic
EL without the Top Concept”. In: Proceedings of the 23rd
International Conference on Automated Deduction (CADE
2011). Ed. by Nikolaj Bjørner and Ṽiorica Sofronie-Stokkermans.
Vol. 6803. Lecture Notes in Computer Science. Wroclaw,
Poland: Springer-Verlag, 2011, pp. 70–84.

[BBM12] Franz Baader, Stefan Borgwardt, and Barbara Morawska.
“Extending Unification in EL Towards General TBoxes”.
In: Proceedings of the Thirteenth International Conference
on Principles of Knowledge Representation and Reason-
ing (KR’12). Ed. by Gerhard Brewka, Thomas Eiter, and
Sheila A. McIlraith. AAAI Press, 2012, pp. 568–572.

[Baa+12] Franz Baader et al. “UEL: Unification Solver for EL”. In:
Proceedings of the 25th International Workshop on De-
scription Logics (DL’12). Ed. by Yevgeny Kazakov, Domenico
Lembo, and Frank Wolter. Vol. 846. CEUR Workshop Pro-
ceedings. Rome, Italy, 2012, pp. 26–36.

[ZT13a] Benjamin Zarries̈ and Anni-Yasmin Turhan. Most Specific
Generalizations w.r.t. General EL-TBoxes. LTCS-Report
13-06. See http://lat.inf.tu-dresden.de/research/
reports . html. Dresden, Germany: Chair of Automata
Theory, Institute of Theoretical Computer Science, Tech-
nische Universität Dresden, 2013. doi: https://doi.org/
10.25368/2022.196.

[ZT13b] Benjamin Zarrieß and Anni-Yasmin Turhan. “Most Spe-
cific Generalizations w.r.t. General EL-TBoxes”. In: Pro-
ceedings of the 23rd International Joint Conference on
Artificial Intelligence (IJCAI’13). Beijing, China: AAAI
Press, 2013.

[BM14a] Franz Baader and Barbara Morawska. “Matching with
respect to general concept inclusions in the Description
Logic EL”. In: Proceedings of the 37th German Conference
on Artificial Intelligence (KI’14). Ed. by Carsten Lutz and
Michael Thielscher. Vol. 8736. Lecture Notes in Artificial
Intelligence. Springer-Verlag, 2014, pp. 135–146.

67

https://doi.org/https://doi.org/10.25368/2022.179
http://lat.inf.tu-dresden.de/research/reports.html
http://lat.inf.tu-dresden.de/research/reports.html
https://doi.org/https://doi.org/10.25368/2022.196
https://doi.org/https://doi.org/10.25368/2022.196

[BM14b] Franz Baader and Barbara Morawska. Matching with re-
spect to general concept inclusions in the Description Logic
EL. LTCS-Report 14-03. Dresden, Germany: Chair of Au-
tomata Theory, Institute of Theoretical Computer Science,
Technische Universität Dresden, 2014. doi: https://doi.
org/10.25368/2022.205.

[BF16] Franz Baader and Oliver Fernández Gil. Extending the
Description Logic τEL(deg) with Acyclic TBoxes. LTCS-
Report 16-02. See http://lat.inf.tu-dresden.de/research/
reports.html. Dresden, Germany: Chair for Automata The-
ory, Institute for Theoretical Computer Science, Technis-
che Universität Dresden, 2016. doi: https://doi.org/
10.25368/2022.226.

68

https://doi.org/https://doi.org/10.25368/2022.205
https://doi.org/https://doi.org/10.25368/2022.205
https://doi.org/https://doi.org/10.25368/2022.226
https://doi.org/https://doi.org/10.25368/2022.226

	Abstract
	Introduction
	Description Logics
	Matching in Description Logics
	Motivation of the thesis
	Structure of the thesis

	The Description Logics EL and EL minus top
	Syntax and Semantics
	Characterization of subsumption
	Canonical models and Simulation relations

	Matching in EL and EL minus top
	Concept patterns and substitutions
	Matching in EL
	Matching in EL minus top

	Matching modulo subsumption and matching modulo equivalence in DL EL minus top
	Lower bounds
	NP-hardness of left-ground matching in EL minus top w.r.t. an empty TBox
	PSpace-hardness of left-ground matching in EL minus top w.r.t. a general EL minus top-TBox

	Upper bounds
	PTime complexity of right-ground matching in EL without top w.r.t. a general EL without top-TBox
	Matching modulo equivalence in EL without top

	General matching in EL minus top
	The EL Matching Algorithm
	Why does the EL algorithm not work for EL minus top
	The EL minus top Matching Algorithm
	Decision procedure for the existence of common subsumers without top
	Correctness of the EL minus Top matching algorithm
	Soundness
	Completeness
	Termination and Complexity

	Conclusions and Future work
	Bibliography

		2024-10-09T22:19:12+0200
	Puneetha Jangir Lok Ram Jangir

