TECHNISCHE
UNIVERSITAT
DRESDEN

Faculty of Computer Science Institute of Theoretical Computer Science, Chair of Automata Theory

Implementation of an Engine for
Answering Regular Path Queries
under Approximate Semantics over
ELH and ELHT | knowledge bases

Tom Ziegler

Geboren am: 1. Marz 1997 in Plauen
Matrikelnummer: 4510666
Immatrikulationsjahr: 2015

Diplomarbeit

zur Erlangung des akademischen Grades

Diplom-Informatiker (Dipl.-Inf.)

Fachreferent
Prof. Dr.-Ing. Anni-Yasmin Turhan

Betreuender Hochschullehrer
Dr. Oliver Ferndndez Gil

Eingereicht am: 10. Januar 2025

Selbststandigkeitserklarung

Hiermit versichere ich, dass ich das vorliegende Dokument mit dem Titel /mplementation
of an Engine for Answering Regular Path Queries under Approximate Semantics over ELH and
ELHT | knowledge bases selbststandig und ohne unzulassige Hilfe Dritter verfasst habe. Es
wurden keine anderen als die in diesem Dokument angegebenen Hilfsmittel und Quellen
benutzt. Die wortlichen und sinngemal Ubernommenen Zitate habe ich als solche kennt-
lich gemacht. Es waren keine weiteren Personen an der geistigen Herstellung des vorliegen-
den Dokumentes beteiligt. Mir ist bekannt, dass die Nichteinhaltung dieser Erklarung zum
nachtraglichen Entzug des Hochschulabschlusses fUhren kann.

Dresden, 10. Januar 2025

Tom Ziegler

TO m Digital unterschrieben

von Tom Ziegler
Datum: 2025.01.10

Ziegler 19:53:04 +01'00'

Abstract

The £L-family of Description Logics are a relatively well investigated field, in particular due
to £L£ and some of its extensions allowing for polynomial reasoning. This makes them the
logical choice for many applications where efficiency and scalability are required. In the
biomedical domain, ££ has been successfully employed for the development of several large
ontologies. Answering Regular Path Queries (RPQs) has been investigated for many tractable
and intractable extensions of ££, and they have found their way into SPARQL under the
name of property paths. On the other hand, approximate semantics for answering RPQs
over Description Logic Knowledge Bases have only been proposed recently. In this work,
we bridge the gap between theory and practice for answering 2RPQs under approximate
semantics over both a tractable and an intractable member of the ££-family. To this end, we
have extended the notion of approximate semantics from ELH to ELHZI,, and developed
and implemented a practical procedure to answer 2RPQs under approximate semantics for
both ELH and ELHZ ; Knowledge Bases.

Contents

(1._Introduction|
[1.7. Organization of thethesis|.

D Preliminaries
[2.1. Description LogicSs ELCH and ELHL |
[2.2. Two-way regular path queries|
03 Cera .

[3. Answering Approximate 2RPQs over ££LH and ELHZ, KBs
[3.1. Approximate semantics for 2RPQs over ELH and ELHI, KB
[3.2. Answering 2RPQs by finding shortestpaths]
[3.3. Reasoning problems under approximate semantics|

{4. Deterministic loop table construction for ELH and ELHT | |

4.1, Generalapproach|
4.2, Rule Calculationover ELH KBSo oo
4.2.1. Calculating STover ELCH KBS o
4.2.2. Calculating S2 over ELCH KBS|.
4.2.3. Calculating S3over ELCH KBS
[43. Rule calculationover ELHT | KBS|
4.3.1. Calculating ST over ELHZ | KBs| oo o
4.3.2. CalculatingS2 over ELHZ | KBs|
4.3.3. Calculating S3over ELHZ | KBs|o
4.4, Calculating spal
4.5, calculating spl

[5. Implementation|
[5.7. Overview of the implementation]

[5.2. Inputdatal
[5.2.1. Regular Path Queries and Distortion Transducers|

[5.22. OWL2 Ontologies]o
[5.3. Data modeling and representation|,
5.3.1. Conjunctions of conceptnames|
[£.3.2. Looptables|
5.4. Description of the answering process|
5.5. Testingand Evaluation|.

Contents

6. Conclusions|
[7. Bibliographyj
[Appendix

A, Algorithmsand Proofs|
[B. Construction of spand spa for ELHZ | KBs|.
[C. Approximate semanticsfor ELHLZ ||

List of Tables

[2.1. Syntax for normalized KBsinthe EL-Family| 11
[2.2. Syntaxand Semanticsfor ELHand ELHT | 12
5.1. Experimental resultsfor ELH|. L 53
5.2. Experimentalresultsfor ELHL || 53

List of Algorithms

(1. Procedurefilteredges| 23
2 Procedure fllterROleS]. o oo 24
[3 Procedure ST-ELH| 27
4. Procedure S2 -ELH] 27
5 Procedure S3I 31
6. Procedure ST-ELHT | 33
/. Subprocedure calculateSubsumees (ST-ELHZ)| 35
8. Subprocedure calculateSubsumees (S2-ELHZ ()| 40
1. Construction of spal. 42
[2. Constructionof sp| 44

1. Introduction

In this thesis, we present a deterministic procedure to answer Two-Way Regular Path Queries
under approximate semantics over ELH and ELHTI | Description Logic Knowledges Bases, and
explain how the procedure has been implemented.

For many years, there has been hardly any area of application where the size and complexity
of data needing to be stored and retrieved has not seen a constant increase. According to
recent statistics, we are currently witnessing an exponential trend on the amount of data
Created, copied or consumed each year. Reasons for the increase might go well beyond
just the availability of less expensive data storage devices, mobile phones and sensors. This
global trend not only increases the overall amount of data needing to be handled but also,
in many cases, increases the degree of connectivity between such data. Popular areas that
feature a huge amount of highly connected data include social networks, biomedical ap-
plications, as well as many applications in the area commonly referred to as the Internet of
Things (10T).

To store and query such highly connected data, graph databases present themselves as the
natural choice, and bring many advantages over relational or document-oriented databases.
In the biomedical domain, many applications of graph databases can be found [TRM21].

Regular path queries (RPQs) provide a versatile way to retrieve data from graph databases.
RPQs and their extensions are a part of SPARQL, an official recommendation by the W3C
to query RDF data. They are used to find database individuals that are connected by paths
of a certain pattern. To this end, they define a regular language, and the paths connecting
individuals must be labeled by a word within the language.

The field of Ontology-Mediated Query Answering (OMQA) further expands the versatility of
querying graph databases by extending the facts stored within a database with implicit con-
sequences obtained from the data. The character of such consequences is highly domain-
dependent and is provided by ontologies. The Web Ontology Language (OWL) provides a
standardized way to formulate, use and exchange such ontologies in the context of the se-
mantic web.

1. Introduction

However, even in the presence of an ontology, a good awareness of the application domain
is still required. In particular, a RPQ might yield no answers over a given data source, but,
given expert domain knowledge, there might be several answers that are "close enough” for
them to be included in the results. Even if a RPQ does yield answers, including such closely
related answers might better capture a users need for information.

In [FT21], approximate semantics for answering 2RPQs over Description Logic Knowledge Bases
are proposed. Intuitively, this is used to capture how closely related objects within the appli-
cation domain are. Such (dis-)similarity is measured by a numeric value called approximation
cost. A very intuitive example of such an approximation is to use the word edit distance to
capture lexicographic similarity of terms within the query and the database.

However, approximate semantics allow more than just capturing related answers. While,
in many cases, it might be desirable to preserve classical answers, i.e. exact matches of the
query within the database, this is not necessarily true for all applications. One could, for ex-
ample, disencourage the usage of certain information within a database that is expected to
be outdated or less significant, by including an appropriate approximation cost to retrieve
such results. This cost could even be changed for a different use case, all without the need
to modify the underlying database content.

In this thesis, we have developed and implemented a method for answering 2RPQs under
approximate semantics over Knowledge Bases formulated in the Description Logic (DL) ELH
or ELHTI, . The theoretical underpinning is obtained from [FT21]], and is based on reducing
the problem to finding shortest paths in a graph. This is done via the help of two relations sp
and spa. We show that a similar approach to the be problem can be taken for the DLELHT |
by providing a uniform notation for approximate semantics for both DLs. We then extend
the procedure to construct sp and spa into a practical algorithm that contains several op-
timizations while maintaining matching upper bounds. This algorithm forms the backbone
of our implementation. To the best of our knowledge, the implementation obtained during
this thesis is the first one to address this problem.

1.1. Organization of the thesis

Chapter [2] acts as an introduction to the topic and is used to declare basic terms and def-
initions. Chapter 3| introduces approximate semantics and explains the foundation of the
answering process used in our implementation. Chapter [4] constitutes the main result of
this thesis by presenting an optimized algorithm used to calculate the relations sp and spa.
Finally, Chapter[g]is used to explain the details of our implementation.

The appendix consists of three parts: Appendix A contains additional pseudocode and
proofs used in chapter[4] Appendix B and C contain a condensed and slightly revised version
of results obtained during preliminary work on this topic, done during my graduate courses
at TU Dresden.

2. Preliminaries

In this chapter, we introduce the basic terms and notations used in the subsequent chapters.
We start with a short introduction to Description Logics.

2.1. Description Logics ELH and ELHT |

In this section, we give a short introduction to the Description Logics used in this report. Our
main focus ison ELHZ , an extension of the DL £L. In general, Description Logics are used
to provide a logical representation of a certain domain of interest. To this end, a specific DL
vocabulary is used. By N¢, Ng and N, we denote three countable, disjunct sets of symbols
as follows:

+ N¢ denotes the set of concept names,
- Ng denotes the set of role names, and

- N, denotes the set of individual names.

Torepresent the knowledge about our domain, a DL vocabulary is used to build two different
kinds of expressions:

« Terminological axioms are used to describe the general properties of concepts and roles.
These constraints apply to all objects in the domain. Concept Inclusions are used to
model relations between (sets of) concepts, and role inclusion describe relations be-
tween different roles.

- Assertions state facts about specific objects in the domain. They ensure that specific
individuals participate in some concept, or that two individuals are connected by some
role.

To explain how these axioms look, we first need to introduce concept descriptions. In EL,
(complex) concept description are obtained using the constructors conjunction (AN B), exis-
tential restriction (Ir.A) and top (T). The set of all £ concept descriptions is build inductively
from N¢ and Ng according to the following syntactic rule:

C:=TJ|A|CnC|3Ir.C

EL, is the extension of ££ where we additionally allow the bottom (L) constructor. We can
futher extend ££, to ELZ, by additionally allowing inverse roles (r~) to be used in existential
restrictions. Complex concept descriptions in ££Z, are then build according to the rule:

C:=T|L|A|CcnC|3r.C|3Ir".C

10

2. Preliminaries

By allowing another type of axioms, called role inclusions, we can further extends ££ and
ELT to obtain ELH and ELHTI |, respectively. Terminological axioms for ELH and ELHT |
can then be of two types:

* General concept inclusions (GCls) are of the form C' C D, where C and D are (complex)
concept descriptions

+ role inclusions are of the form r C s. Here, » and s are role names from Ng

Assertions are of the form A(a) (concept assertion) or r(a,b) (role assertion). Here, A is a
concept name, r is a role name, and a, b are individual names.

A finite set of terminological axioms is called a T-Box, and a finite set of assertions is called
an A-Box. Together, they form a description logic Knowledge Base K = (T,.A). By Ny :=
{r= | r € Ng}, we denote the set of inverse role names, and by N& := Ng U Ny the set of
role names including their inverse. We will use |T| to denote the amount of axioms in T,
and | A| to denote the amount of axioms in .A. Consequently, we use |K| to denote |T| + | Al.
The Signature of a T-Box contains all concept names and role names occurring in 7, and is
denoted as Sig(T). The set of all individuals occuring in an A is denoted as Ind(.A).

T-Box axioms EL EL| ELH ELHI|

Ain...A,CB v v v v
AN A C L v v
rCs v v
AC3I.B reNp r€Ngp reNr reNi

. BC A reNgp re€Nrp réeNg 7“€NéE

Table 2.1.: Syntax for normalized T-Boxes for different DLs from the ££-Family. Ay, ..., A, B
denote atomic concepts from Nc U T, and r, s € Nat. Ticks (v') indicates that ax-
ioms of this form are allowed in a normalized T-Box. A condition » € Ng denotes
that axioms of this form are allowed if the condition is satisfied.

Semantics for ELH and ELHT |

We assume that ELH and ELHZ | T-Boxes are given in a normal form that only allows ax-
ioms of a certain structure. Table [2.7] summarizes the syntactic rules allowed for the pre-
sented DLs using this normal form. This is w.l.o.g., as any EL or ELHT | T-Box can be effi-
ciently transformed into normal form by introducing fresh concept names [BBLO5].

The semantics of DLs are obtained from interpretations. Such an interpretation Z is a pair
(A1), where

- AT is a non-empty set called the interpretation domain, and

- Tisthe interpretation function that assigns the elements in AZ to the concept names,
role names and individual names present in a DL KB.

11

2. Preliminaries

Such an interpretation naturally forms a graph-like structure, where the nodes are the ele-
ments from AZ, and the edges are obtained from the interpretation function. We use the
notion of paths to describe how the elements in AZ are connected:

Definition 1. Letd,d’ € AT. Apath = from dto d’ inZ is a sequence dyuidiusds... Uy dpy, SUCH
thatm > 0,dy = d,d,, = d and forall1 <j <m:

+d; € ATand u; € NS U{A? | A €N},
+ u; = A? implies d;_; = d; and d; € A%, and

* u; € N implies (d;_1,d;) € ut

We define the /abel of a path = as I(x) := uj...u,,, and use d L% ' to denote that there
exists a path from d to d’' in Z with label .

Given an interpretation Z, the semantics of the DL concept and role constructors, 7-Box
axioms and A-Box assertions that are used in this thesis are given in Table 2.2l We say that
a T-Box axiom or A-Box assertion is satisfied by Z if the inclusion given in tale holds.
Further, we say that Z is a model of a T-Box T if all axioms in ¥ are satisfied using Z, and
accordingly that Z is a model of an A-Box A if all assertions in A are satisfied.

Fora KB K = (T,A), we use Z |= K to denote that an interpretation Z is a model of K,
i.e. itis a model of both 7 and A. If there is at least one such model, we say that K is satisfi-
able.

Finally, we introduce a notion to say that a 7-Box axiom or .4-Box assertion « is satisfied
for all models Z of K. This is denoted as K = «, and we say that K entails c.

Name Syntax Semantics
Top concept T AT
Bottom concept L 1%}
Nominal {a} {da®}
Conjunction CinNCy CiIncyt

Existential restriction 3r.C {d; | there exists (dy,ds) € r* with dy € C*}

Inverse role r {(d2,dy) | (dy,dg) € T}
Concept inclusion cch ctcp?

Role inclusion rCs rLtcgt

Concept assertion A(a) o € AT

Role assertion r(a,b) (af,b?) er’

Table 2.2.: Syntax and Semantics for ELH and ELHZ | concept and role constructors, 7-Box
axioms and A-Box assertions. A denotes a concept name, Cy, C2 denote (possi-
bly complex) concept descriptions, r» denotes a role name, and a, b are individual
names.

12

2. Preliminaries

Complexity of Reasoning in E£H and ELHT |

Here, we will give a brief overview of the basic reasoning tasks over DL KBs which are used
in this report. A detailed discussion of the complexity of reasoning in ££ and its extensions
can be found in [BBLO5] and [BBLOS].

Let £ = (T, .A) be an ELH or ELHT | KB. The subsumption problem asks, given two (com-
plex) concept descriptions C, D, whether it holds that £ = C C D. In that case, we say
that C is subsumed by D. A related problem is to calculate all subsumees, i.e. given a (com-
plex) concept description C, to calculate the set of all conceptnames A e Ncst. K AC C.

Analogously, the role subsumption problem asks, given two roles r,s € Ng (r,s € NI for
ELHT) whether it holds that £ = r C s.

Finally, an instance check asks, for a concept A € N¢ and an individual a € Ind(.A), whether it
holds that K = A(a).

To shorten notation, we additionally allow sets of concept names to be used in the presence
of ELHT, KBs. Given two sets of concept names M, M" C N¢, we say that K &= M(a) iff
KE A(a)forall Ae M. Let M = {A4,.. A} and M = {By, ..., B,}. Wewrite K = M C M’
iffCEAMN..MNA,CBMN...MNB,.

For some extensions of ££, such as ELH or EL, the additional features do not impact the
complexity of these reasoning tasks. However, allowing inverse roles induces a significant
increase in complexity. Note that answering subsumption over a DL KB is independent of
the content of A. In ELH, answering subsumption is feasible in polynomial time, but is EXP-
time complete for ELHZ | [BBLOS]. Instance checking in ELH is P-complete for both data
and combined complexity, whereas combined complexity increases to EXP-time for ELHT |
(1BO1T]).

2.2. Two-way regular path queries

In the OMQA setting, Two-way regular path querys (2RPQs) are used to find pairs of individu-
als connected by a certain chain of roles. They are defined using regular languages, given by
the means of a regular expression or an non-deterministic finite automaton (NFA). In this work,
we will exclusively be using the NFA representation.

Formally, a 2RPQ gis ofthe form¢(z, y) = R(z,y), wherexz,y € Njand R = (Qw, 2, On, Iz, Fir)
is an NFA representing a regular language. The alphabet ¥ is a finite subset of N% U{A? |

A € Nc}. We use L(R) to denote the regular language represented by fR.

Regular path queries (RPQs) are a simpler, more restricted form of 2RPQs that do not use

inverse roles, i.e. 3 is a finite subset of N U {A? | A € Nc}. The more complex Conjunctive
Two-way Regular Path Queries (C2RPQs) are not considered in this report.

2.3. Certain answers and universal model

Given a satisfiable ELHZ | KB K = (T,.A), we denote the universal model of K as Ux =
(AUx Ux) We will use the definition of the universal model for an ELHZ, KB from [BO15]:

13

2. Preliminaries

The domain A¥x consists of sequences of the form aRyM;...R,M,(n > 0), where a €
Ind(A), and for every i > 1, R; € N& and M; is a conjunction of concepts from Nc U {T}.
Formally, A¥x consists of all sequences aRyM;...R,,M,, that satisfy:

clfn>1,thenT ’: My E dR. M, where My = {A eENcUT | K): A(a)}
and there does not exist M] 2 M such that T | My C 3Ry. M|

* Foreveryl <i <n,T = M; C 3R;11.M;y; and there is no M/, ; 2 M, such that
TE M, C 3R 1. M, .

It remains to fix the interpretation ¢ of the individual names, concept names, and role
names from K. This is done as follows:

a“c = q for all a € Ind(A),
AYc ={a € Ind(A) | K = A(a)} U
{e € AYc\ Ind(A) | e = ¢’ RM and A € M}, and
e = {(a,b) | K = 7(a,b)} U
{(e1,€2) |ea=e1SMand T =ESCr}iu
{(eg,e1) |ea=e1SMand T =ESCr}.

We note that AYc consists of two types of elements: The elements from A, referred to as in-
dividuals, and additional elements whose existence is implied by the axioms in 7. We will re-
fer to the latter as anonymous elements. Such elements are of the forme = aRy M;...R, M, (a €
Ind(A)). The existence of such an e € A¥x implies the existence of an element of the form
aR{M;...R, 1M, 1 € AY%, and all elements of the form aRy M;...aR,, My together create
a tree-like structure rooted at a. Given e = aR; M;...R,M,, € AYx, we use T, to denote the
sub-tree rooted at e, and we denote the final component of such a sequence as tail(e) = M,

An important property obtained from the definition of the universal model is that the tail
of an element uniquely identifies everything that happens "below”, i.e. if we have two ele-
ments e,e’ € AY¢ and tail(e) = tail(e’), the subtrees T, and T! rooted at these elements
are isomorphic [BO15]. We use T (U) to denote the set containing all tails present in U, i.e.
T(Ux) = {tail(e) | e € AUx}. For ELHI, , the elementsin T(Uy) are conjunctions of concept
names, and the maximum amount of such tails is |P(Sig(T))| — 1|Il To simplify their presen-
tation, we will slightly abuse notation and treat such conjunctions as sets of concept name

For ELH KBs, we adopt the definition of the universal model from [BOS13]. Here, the do-
main A¥x consists of sequences of the form aR,Cy ... R,,C,, and we denote the final concept
of such as a sequence as tail(e) = C,. Both constructions are closely related, and tail(e)
carries over its main property, which is to characterize the anonymous subtree rooted at a
given element. Hence, for an ELH KB, we have for two elements e, ¢’ If tail(e) = tail(e’),
then T, and T, are isomorphic [BOS13]. Accordingly, we adjust the definition of T(Ux) to
match the different domain: For an E£H KB K, we denote as T(Ux) = {tail(e) | e € AYx}
the set of tails present in Ux. Here, the elements in T(Ux) are concept names from N¢, and
the amount of entries in T(Ux) is limited by the size of Sig(T).

"Note that the empty set is not contained in T(Ux).
“This allows us to write A € M to say that A is one of the conjuncts in M, and M’ C M to say that every
conjunct in M’ also is a conjunct of M.

14

2. Preliminaries

Comparing both definitions, we note that the presence of inverse roles changes the do-
main of the universal model: While, for an ££H KB, the anonymous individuals can be char-
acterized by a sequence of role transitions and concept names, an ELHZ, KB requires a
sequence of role transitions and conjunctions of concept names. While the size of T(Ux) is
bounded by the size of T for ELH, the size of T(Ux) is exponential in the size of T under
the presence of an ELHZ | KB.

As every DL KB allows for multiple (possibly infinitely many) models, we are only interested
in answers that hold in all models of a given KB. These answers are referred to as certain
answers. The crucial property of U is that is ‘contained’ in every model of K, i.e. for each
model Z of K, there exists a homomorphism from Uy to Z.

It follows that, for a query ¢, answers in the universal model of K are answers in every model

of K. The answers to g in Uy then coincide with the set of certain answers for q for both ELH
and ELHT | KBs [BOS13], [BO15].

15

3. Answering Approximate 2RPQs
over ELH and ELHT | KBs

In this chapter, we introduce approximate semantics for ELH and ELHZ . We then pro-
ceed to explain how the problem of answering 2RPQs under approximate semantics can be
reduced to finding shortest paths in a graph.

3.1. Approximate semantics for 2RPQs over ELH and ELHT |
KBs

This section presents a notion for approximate semantics for ZRPQﬂover ELH and ELHT |
KBs as presented in [FT21], and explains the relevant terms and definitions. The approxi-
mate semantics presented here can be seen as an extension of the approximate semantics
for RPQs over graph databases proposed in [GTO5], which uses a particular form of weighted
finite-state transducers (WFTs) called distortion transducers:

Definition 2. (JGTO5])
A distortion transducer (dT) is an NFA defined as a tuple ¥ = (@, X%, 6, I, F), where:

+ Qs afinite set of states,

+ ¥ denotes a finite alphabet,

« I, F C Q are the sets of initial and final states, respectively, and
+ The transition relation § is a subset of @ x ¥ x & x N x Q]

ForagivendT ¥ = (3,Q,4,I,F), arun of ¥ onawordu € ¥* is a sequence of tuples

P = (Q17U1,U1,w17 q2)7 ceey (qn7una Un, Wn, QH-i-l)

suchthatu =wuy ... up, q1 € I, guy1 € F, and each (g;, u;, vi, wi, gi+1) € 6 fori < n.

"The definitions presented here rely on the results shown in [FT21] and[Appendix C] where C2RPQs are used.
As 2RPQs are a simpler form of C2RPQs, this applies w.l.0.g. to 2RPQs.

“To simplify notation, we assume that ¥ contains no e-transitions. This assumption can be made without loss
of generality, as demonstrated in [FT21].

16

3. Answering Approximate 2RPQs over ELH and ELHI | KBs

The weight of the run p is denoted as wt(p) := wy + --- + wy,. A run p transforms w into
v = vy...v, With cost wt(p). Let R(%,u,v) be the set of all pairs (p, wt(p)) such that pis a
run of T transforming w into v. The cost of transforming « into v via ¥ is defined as

ex(u,v) == minfwt(p) | (p,wt(p)) € R(T,u,v)}.

[FT21] extends the approximate semantics from [GTO5]] to the OMQA by using DL interpre-
tations. Here, an answer to a 2RPQ over a DL KB under approximate semantics is called an
approximate answer and is defined as follows:

Definition 3. (Definition 5, [FT21]): Let ¢(x, y) be a 2RPQ. The set of approximate answers of
g in an interpretation Z, through a dt ¥, is defined as

ansgz(q,7) := {(d,e,ndﬁ) | d,e € AT and 1. = min{cz(u,v) | u € L(R),v € X*,d Lo, e}}.

In the OMQA setting, our goal is to find answers that exist in every model of our KB. Such
an answer is called a certain approximate answer, and the approximation cost corresponds
to the most costly approximate answer for any model of K.

Definition 4. Let K = (T, A) an ELH or ELHZ, KB and ¢(x,y) a 2RPQ. The set of certain
approximate answers of g w.r.t. IC, trough a dt ¥, is defined as

gertz(q, K) = {(a, b,7Mas) | a;b € Ind(A) and

Mo = Sﬁﬁ{me | (d,e,ng) € ns< (g, T) A (d,e) = (a7,b")}}.
T

Similar to answering 2RPQs under classical semantics, we can use the universal model to
characterize the set gerts. As shown in [FT21] (for ££H) and [Appendix { (for ELHT), the
following holds:

Proposition 1. Let K = (T,.A) be an ELH or ELHIL | KB, q(x,y) a 2RPQ, and ¥ a distortion
transducer. Then, (a,b,nq) € Certz(q, K) iff (a,b,m4) iS an approximate answer of q in Ux.

3.2. Answering 2RPQs by finding shortest paths

The procedure to calculate the approximation cost of all elements (a,b, 7,5, € Certg pre-
sented in [FT21] uses a weighted graph Gy, obtained from the Cartesian product of the
query NFA, the transducer NFA, and the universal model U. It is shown that the existence
and minimal cost of paths in this graph can be used to characterize Zertz. We start by ex-
plaining how the graph Gy, is constructed.

Definition 5. (Definition 12, [FT21]) Let Z be an interpretation, R(x,y) be a 2RPQ with R =
(Qm, X, 0, Iy, Fy) and T a dt with T = (Q<, X, d«, Iz, F). The weighted graph Guxaxz =
(V,E) is defined as:

¢ V::QE}{XQQXI

+ E CV xNxVisa set of weighted edges such that ((s,¢,d),w, (s',t',d’)) € E iff its
components satisfy one of the following conditions:

- (s,0,8') € b, (t, 0,0 w,t') € bz and d 255 d, or

7
- s=¢(te,o,w,t') e dyandd =% d'.

17

3. Answering Approximate 2RPQs over ELH and ELHI | KBs

When 91 and ¥ are clear from the context, we use Gy, to denote the graph Gaxaxus .

Then, given a,b € Ind(A), calculating ngp s.t. (a,b, 14, € Certz(g, K) amounts to finding the
cost of a shortest path from a node (s, t,a) to (s/,t,b) in Gy St. s € In, s’ € Fi, t € Iz and
t' € Fz. However, as the amount of elements in A can possibly be infinite, in general, it
is not possible to construct Gy, directly. Instead, a finite graph Gy, is used to find shortest
paths of equivalent cost. We will explain how this graph is constructed.

Let Gy, be the finite subgraph of Gy, restricted to nodes (s,t,a) s.t. a is an A-Box indi-
vidual. As the amount of individuals is limited by the size of A, the amount of nodes in Gy,
is |Qx| - |Q<| - [INd(A)]. Now, for all nodes (s,t,a) in Gy, assume the following: If there is
a (possibly infinite) path from (s, t,a) to some (s',t,a) in Gy, and w* is the minimal cost
of such a path, add an edge (s, t,a), w*, (s',t,a) to Gy ,. This way, we obtain a graph Gyiy
Then, the following holds, for K either an ELH or ELHZ | KB. The corresponding proofs are
found in [FT21] and [Appendix(

Proposition 2. (Proposition 17, [FI2T])
Let Gy, , be the extension of Gy, with all the edges ((s, t, a), c*, (s',t',a)) such that: ¢* is the min-
imal cost if an a—pat/ﬂfrom (s,t,a) to (s',t',a) in Gy,.

Then, given two vertices (s, t,a) and (s',t',b), the minimal cost of a path from (s, t,a) to (s',¢',b)
s the same in Gy, and Gy,

For the construction of Gy, it is required to know which paths of minimal cost exist from
(s,t,a)to (s',t',a) in Gy,. This is achieved with the help of two relations sp and spa, referred
toas/oop tables. Entriesin sp are of the form sp[(s, t), (s',), D]El where (s, t), (s',t') € dx x s,
and D € N¢. Each such entry is associated with a value v € NU oo and represents the fol-
lowing information: Let a € Ind(A) Gy,.. If K = D(a), Gy, contains a path from (s, t,a) to
(s',t',a) with minimal cost v (or, if v = oo, there is no such path).

To construct sp, an additional relation spa is used. Entriesin spa are of the form spal(s, t), (s', '), C] =
w and represent the following information: Let e € A¥x\ Ind(.A) be an anonymous individual

in Uy If tail(e) = C, there exists an e-path of minimal cost from (s, t,e) to (s',¢,e) in Gy,

with cost w.

The idea behind the construction of spa is that tail(e) can be used to uniquely identify the
subtree of Uy rooted at e. Consequently, for two nodes (s,t,e) and (s,t,¢e') in Gy, with
tail(e) = tail(e'), for each e-path of minimal cost from (s, t,e) to (s/,t',¢e), a path of similar
cost can be found from (s, t,€’) to (¢, ¢, €’).

For ELH, the tables sp and spa can be seen as an extension of the relations Loop and ALoop
presented for answering 2RPQs under classical semantic in [BOS13]. For ELHZ |, a related
construction using only a single table Loop for answering 2RPQs under classical semantics
is presented in [BO15].

A theoretical procedure to construct spa in the presence of an E£LH KB can be found in
[FT21]. A corresponding procedure exists for ELHZ | KBs, as shown injAppendix Bl For ELH,
this procedure requires at most polynomial time in the size of &, ¥ and K. For ELHT |, the

3We use the definition of a-path (resp. e-path) from [FT21]. Intuitively speaking, an a-path is a path that never
visits any e € AYk outside the subtree rooted at a.
“We use a slightly different form for ELHT 1, as explained in section

18

3. Answering Approximate 2RPQs over ELH and ELHI | KBs

complexity increases to EXP-time in the combined size of R, ¥ and K. Although the proce-
dure can be regarded as a deterministic algorithm, it lacks any consideration regarding op-
timal performance, and a straightforward implementation would be an inefficient approach
to this problem.

In the following chapter, we give a detailed explanation on how the tables sp and spa can be
constructed for both E£LH and ELHZ | using an explicit, deterministic procedure contain-
ing several efficiency optimizations while maintaining matching upper bounds for combined
complexity. The resulting algorithm represents the main result of this work, and acts as the
core component of our implementation.

3.3. Reasoning problems under approximate semantics

To conclude this chapter, we introduce the reasoning problems that can be answered by
our implementation. The answering process is described in section|5.4;

Given an ELH or ELHT, KB K, a 2RPQ R and a dt ¥, we define the following reasoning
problems:

+ T-entailment: Given (a,b) € Ind(A) and a threshold value g, decide whether (a, b, 1,) €
Certz (g, KC) for some ngp, < p.

+ Cost computation: Given (a,b), calculate the approximation cost 7, S.t. (a,b,745) €
Certz(q, K).

+ Calculate ertz(q, K): Calculate the set of all approximate answers.

* Calculate gertf(q, K): Given a threshold value p, calculate the set of approximate an-
swers with an approximation cost of at most g, i.e. the set containing all (a, b, n45) €
Certz(q, KC) with 145 < p}.

19

4. Deterministic loop table
construction for E£LH and ELHT |

Constructing the loop tables represents the main computational challenge when answering
approximate 2RPQs over DL KBs. In this chapter, we present two deterministic algorithms
to compute the tables spa and sp, for both ELH and ELHT | .

In general, the complexity results presented in [FT21] already provide valuable insights into
how the different computation steps impact the overall effort to compute these relations.
While it is relatively easy to construct best-case and worst-case scenarios, there is a large
area in between for which it is not trivial to determine how effortful the loop table construc-
tion procedure is going to be by purely looking at the input data.

Therefore, we will use the term moderate-case scenario to refer to any situation that rep-
resents neither a best-case nor worst-case scenario, thus including, but not restricting what
can be considered an average-case scenario, i.e. a "typical input”. Note that we use the terms
best-/worst-/moderate-case scenarios only to refer to the inherent properties of the input
data, independent of the the input size. Moreover, we stick to a theoretical point of view
where we do not assess whether our input data has any real-world meaning or is optimal
amongst all equivalent representations.

The development of the algorithms presented in this chapter has been conducted with fo-
cus on the actual performance of our implementation given a limited amount of test input
data. To this end, an internal profiler, tracking computation time and memory consumption
on a per-code-line base, was used. This allowed us to evaluate the impact each part of the
computation step has on the overall performance and to identify parts that act as bottle-
necks for the entire computation.

Based on these insight, we have developed a set of optimized algorithms that aim to provide
good performance over reasonably large inputs for moderate-case scenarios. Note that in
this context, we use the term optimizations only to refer to computational steps included in
the formal algorithm, as opposed to implementation-specific optimizations, which are dis-
cussed in chapter[5

In the following, we will present our optimized algorithms for constructing spa and sp under
the presence of either an ELH or ELHT, KB.

20

4. Deterministic loop table construction for ELH and ELHT |

4.1. General approach

In general, optimizations included in these algorithms fall into one of two categories: Filtering
and Caching. However, there is no free lunch: Both types of optimizations introduce some
form of overhead not accounted for in the procedure presented in [FT21]). The idea behind
these constructions is that they can be used to skip other, computationally more expensive
operations - most notably DL reasoning tasks such as answering subsumption for complex
concept descriptions.

- Filtering: By filtering, we refer to constructions that use the deterministic behaviour of
the algorithm to eliminate parts of the input data that are guaranteed to have no im-
pact on the results. These filtering procedures are lightweight computations, usually
only introduce a minimal overhead in terms of computation time and the amount of
memory used. In this sense, these optimizations have very little impact for worst-case
scenarios, but might provide significant improvements for other scenarios.

+ Caching: Caching optimizations are such that store intermediate data during compu-
tation that otherwise could be omitted. These constructions usually introduce a sig-
nificant, but predictable amount of overhead memory consumption alongside some
computation effort required to store and retrieve these intermediate results. Such
constructions significantly reduce performance for worst-case scenarios, but provide
improved performance for all other scenarios.

The following sections give a detailed explanation of the different parts of the algorithms for
both ELH and ELHZ, . For both scenarios, we each have to compute 3 different types of
construction rules, referred to as rules S1, S2 and S3.

A correct procedure to construct spa over ELH KBs is obtained from [FT21] and acts as
a baseline for our algorithm. The same procedure can be used for ELHZ | KBs when ac-
counting for the difference in T(Ux) and a redefinition of the rules S1, S2 and S3. A detailed
explanation can be obtained from preliminary work on this topic, which is included in this
thesis as|Appendix B

This allows us to state a single procedure which applies to both E£LH and ELHZ, KBs.
The definition of rules S1, S2 and S3 obtained from [FT21] and [Appendix B| are provided
in sections4.2]and respectively. The procedure uses T(Ux) C Sig(T) for ELH KBs, and
T(Ux) € P(Sig(T)) \ {} for ELHI | KBs.

Procedure SPA
1. Initialize spalp,q,C] = oo (0r 0if p = q)
Apply rule S2 to all (p,q,C) € (Qx x Q1) x T(Uyx)
Apply rule S3 until spa does not change;
repeat
spa = f(spa)
. until spa does not change
function f
spa* := spa
Update spa by applying rule S1to all (p,q,C) € (Qn x Q)? x T(Ux) using spa*
Apply S3 until spa does not change;
end function

ok wN

21

4. Deterministic loop table construction for ELH and ELHT |

In general, Procedure SPA represents an iterative process that extends the information cur-
rently stored in the table spa with each iteration of f, until the content of spa can no longer
change. This is the case as soon as an iteration of f produced no updates. As shown in
[FT21], this is guaranteed to be the case after a maximum of (|Qun| - |Q<|)? - |T(Ux)| itera-
tions. It is notable that the values in spa can only decrease during the computation, and thus
entries of the form spalp, p, C] have a fixed value 0.

4.2. Rule Calculation over ££H KBs

To show how spa can be constructed deterministically under the presence of an ELH KB,
this section introduces procedures to calculate applications of rules S1,52 and S3. The pro-
cedures presented here are optimized for moderate-case scenarios, but match the upper
bounds obtained from [FT21] for combined complexity.

Recall that, for an ELH KB, the elements in T(Ux) are basic concepts from N¢, and the
size of T(Ux) is polynomial in the number of concept names in K.

A short remark on notation used in this section is required: All procedures presented in
this section assume the presence of an ELH KB K = (T,.A), a 2RPQ R and a distortion
Transducer ¥. To shorten notation, we will not explicitly state these as input.

We start by giving the definition of rules S1, S2 and S3 in the presence of an ELH KB as
obtained from [FT21], with R, R’, R” € Ng and A, C, D € N¢:

S1. spal(s,), (s',), C] < wi + spal(s1,t1), (52, t2), A] + wa, if C1* holds,
S2. spal(s,), (s',),C] < w, if T |= C C A, (s,u,8") €, and (t,u, A?,w, ') € b5,
S3. spal(s,t), (s, '), C] < spal(s,t), (s",t"),C] + spa[(s”",t"), (s, 1), C].

and C1*:

c1*. T ': D C HR.A, T ': R C R/, T): R C R”, (S,U,Sl) S 553, (t,u,R’,wl,tl) S (53:,
(SQ,U/,S/) € o and (tg,u,,R”_,wg,t/) € oz.

4.2.1. Calculating S1 over E£LH KBs

Here, we present a procedure to compute the result of applying rule S1 to all (p,q,C) €
(Qx x Q7)? x T(Uy), as required for one iteration of f. We note that the order in which
these rule applications are computed is arbitrary.

The deterministic procedure consists of 3 major stages: 2 filtering stages followed by one
computational stage. Subsequent stages rely on the results of the previous one, but are
otherwise independent of each other. However, only the final stage depends on the actual
values stored in the table spa. Thus, one could use additional memory to store the results
of the second stage to avoid repeating the calculation. However, we expect to obtain better
results by storing the role hierarchy instead, as discussed in section INSERT REFERENCE. The
third stage, however, needs to be computed for each iteration of f. We discuss each stage
individually before presenting the entire algorithm.

22

4. Deterministic loop table construction for ELH and ELHT |

4.2.1.1. Stage 1: Extracting transducer edges

The first stage represents a filtering optimization on the input query and transducer au-
tomaton. The input to this stage is a tuple ((s,t), (s1,t1), (s2,t2), (s',')) € (Qn x Q<)*. Its
goal is to extract such edges (t,u, R',w1,t1) € 0z and (to,u/, R"™,wsy,t) € b5 for which
corresponding edges (s, u, s1) € dn and (s2,u, s’) € dn, respectively, exist. To ensure that
condition C'1* can be satisfied, we further require R/, R” € Ng. Finally, these edges are
sorted by their cost w in ascending order. It is notable that this stage only uses information
from the query and transducer automatons.

Procedure 1 filterEdges

Input: (S,t), (slvtl)v (327t2>7 (Slvt/) S (Qm X QT)
Output: Two sorted sets down C éz and up C ox

1. set down = {(t,u, R',wi,t1) | (s,u,s1) € o, (t,u, R',wi,t1) € 0z, R" € Ng}
2: setup = {(to, ', R"",wo,t") | (s2,u,8") € o, (t2,u, R"™,wa,t') € 05, R" € NR}
3: sort down and up by cost in ascending order

Lemma 1. Let9R o 2RPQ, T a distortion transducer, and (s, t), (s1,t1), (s2,t2), (s',t) € Qux x Qg™
After Procedure filterEdges finishes, it holds that (t,u, R',w1,t1) € down iff there is (s,u, s1) €
O, and (ta,u', R~ we, t") € up iff there s (sg,u’, ") € dm.

Proof. This is a direct consequence from lines 2 and 3. O

4.2.1.2. Stage 2: Extracting feasible roles

The second stage uses the results obtained from the first stage to apply a filtering optimiza-
tion on the role names present in the ontology. As opposed to the first stage, this stage
requires DL Reasoning to check for role subsumption.

The aim of this stage is to extract only those roles r € N3 for which a corresponding pair of
transducer edges exists in down x up obtained from Stage 1. Each such r is associated with
the minimum cost wy + wy Of such an edge.

The procedure to compute these edges is presented as Procedure filterRoles. The following
lemma formalizes the results computed by this Stage.

Lemma 2. Let R be a 2RPQ, T a distortion transducer, K = (T,.A) an ELH KB, and

(s,t), (s',t), (s1,t1), (s2,t2) € (Qw X Qx). Further, let v € Ng N Sig(T). After Procedure
filterRoles finishes, it holds that (r,w) € candidateRoles iff w = wy 4+ we and wy,wq are min-
imal amongst all (t,u, R',w1,t1), (t2,u/, R" " we,t') € 6 st. T =Er C R, T Er C R,
(s,u,s1), (s2,u,8") € O.

Proof. <: Lete; = (t,u, R',wi,t1) € edgesDown and ey = (t2,u', "™, wa,t") € edgesUp S.t.
TErCR,TErCR' FromLemmall] we obtain that (s,u, s1) € éx and (sz, v, ') € dm.
Assume there is no ¢} = (t,u}, R}, wi, t1) € edgesDown s.t. T = r C R} and w] < w; (oth-
erwise, €] could have been chosen). Analogously, assume e’ was chosen s.t. wq is minimal.
Because the edges in down and up are sorted by their weight, we obtain that e(e’ respec-
tively) is the first edge processed within the for loop at line 5(14) that satisfies the condition
in line 6(15). Thus, after Procedure filterRoles finishes line 22, we have downCost = wy and
upCost = wq, and thus (r,w; + ws) € candidateRoles.

23

4. Deterministic loop table construction for ELH and ELHT |

= After Procedure filterRoles finishes, let (r,w; + w2) € candidateRoles. Then, there is
e1 = (t,u, R',w1,t1) € edgesDown st. T =r C R/, and thereisno e} = (t,u}, R}, w},t1) €
edgesDown s.t. T E r £ R} and w] < w; (otherwise, e} would have been processed be-
fore ey by the for loop in line 5). Analogously, we obtain es = (2,4, R"™,we,t") € edgesUp.
Because e; € edgesDown and e € edgesUp, we have (s, u, s1), (s2,u’,s") € d. O

Procedure 2 filterRoles

Input: sorted sets down, up C d¢ obtained from Stage 1
Output: A set candidateRoles C (Ng x N)

1. initialise candidateRoles = {}
2: forall r € Npn Sig(T) do

3 initialise cgown = 00, Cyp 1= 00

4 for all (t,u, R',wy,t1) € down do

5: if T'=r C R then

6: Set Cgown = W1

7 exit and continue at line[TQ]
8 end if

9: end for
10: if cqown = 00 then

11: discard and continue with next r
12: end if
13: for all (ta,u, "™, wsy,t') € up do
14 if T =rC R"then
15: Set cyp = wo

16 exit and continue at line[T9
17: end if

18: end for

19: if cup = oo then
20: discard and continue with next r
21: end if
22: add (7, Cdown + Ccup) tO candidateRoles
23: end for

24: return candidateRoles

4.2.1.3. Stage 3: Checking entailment and updating spa

The third stage computes the updated values for the loop table spa. While directly using
the current state of spa for the computation would yield correct results, we notice that not
all entries currently present in our loop table have to be considered. This is based on the
following observation:

+ The results obtained from Stage 2 are independent of spa and thus immutable during

the entire construction.

+ The results calculated during one run of Stage 3 only depend on the entries in spa and

the results obtained from Stage 2

24

4. Deterministic loop table construction for ELH and ELHT |

This means that a subsequent iteration of Stage 3 can only produce different results if spa
has been updated since the previous iteration. A corresponding observation based on [Pro]

is formalized in the following lemma:

Lemma 3. Consider a run of Procedure SPA. For two subsequent iterations i,i* of f, let spa’
be the state of spa at the beginning of i, and spa’" the state of spa at the beginning of i*. Then,
if the value spa(s,t), (s',t"), C] was updated during i using an application of rule ST of the form
w1 +spal’ [(s1,t1), (s2,t2), Al+ws, we have spa’’ [(s1,t1), (s2,t2), Al < spai[(s1,t1), (s2,t2), A]

Proof. Assume the contrary: If spa’’ [(s1,t1), (s2,t2), A] = spai[(s1,t1), (s2, t2), A] and
spa[(s,t), (s',t"),C] was updated with value v during iteration i* using an S1-application of
the formwy +spa’ [(s1,t1), (s2,t2), A]+ws, it follows that there are ey, 3 € 6 with ¢(e1) = w;
and c¢(eg) = wy s.t. condition C1* is satisfiable. Then, the same ey, ea could have been chosen
to update spal(s, t), (s','), C] using wy + spa‘[(s1,t1), (s2,t2), A] + we during the previous
iteration . Consequently, we would have spa’' [(s, t), (s',¢'), C] = v, which is a contradiction
to the fact that spa[(s, t), (s', '), C] was updated during i .

O

Our algorithm exploits this by keeping track of the changes applied to spa during each itera-
tion. To this end, Stage 3 receives, in addition to the actual loop table spa, a fragment of spa*
containing only entries that were updated since the previous iteration. Accordingly, the out-
putis another fragment containing only the entries of spa that were updated during this run.

To calculate the updated values, DL Reasoning is employed to retrieve all concepts C' that
satisfy C' C 3r. A, for each combination of (r,w) obtained from Stage 2 and (A, ¢) for which
an entry spa*[(s1,t1), (s2,t2), A] = ¢ with ¢ € N exists. For each such C, it is ensured that
condition C1* is satisfiable using A and r. From Lemma 2} we obtain that w is minimal for
the chosen r. Accordingly spa[(s, t), (s',t'),C] can be updated if the calculated value is lower
than the current value.

Finally, we can show that Procedure ST - ELH correctly computes all ST-Applications as re-
quired in Procedure SPA - ELH for one iteration of f. The following lemma states the equiv-
alence between these operations:

Lemma 4. Let R g 2RPQ, T a distortion transducer, K = (T, A) an ELH KB, spa a loop table,

and spa* a fragment of spa containing all entries updated since the previous iteration. After a run

of Procedure ST - ELH with result spa™*, the following holds for all (C') € T(Ux):

spa**[(s,t), (s',t"),C] = viffvisthe m/n/maﬂupdated value after applying rule S1to ((s,t), (s',t'),C).

Proof. (<) Let C' € T(Ux). We consider two cases: First, if spa[(s,t), (s',t"), C] was not up-
dated during an application of S1, there is no (¢, u, R, wy, t1), (t2,u', R"™ ,we,t') € dxand A €
T(Ux) s.t. condition C1* is satisfied and wy+spa[(s1,t1), (s2, t2), A]4+wse < spa[(s,t), (s',t'),C].
By Lemma |2} it holds that candidate Roles = &, and thus spa™* contains no entries.

For the second case, assume spa(s, t), (¢, '), C] was updated with value v by an S1-application.
Then, there is (¢,u, R, w1, t1), (t2,u', "™ Jwa,t') € 0z, (s,u,51),(s2,u’,8") € o, 1 € N% and
A € N¢ s.t. condition C'1* is satisfied, i.e. it holds that:

'We can assume that v is the minimum value amongst all S1-Applications to ((s, t), (s',t'), C)

25

4. Deterministic loop table construction for ELH and ELHT |

(l) v=wi+ Spa[(sla tl)a (525t2)a A] + wo,
(i) TErCR, TErC R’ and
(i) T = C C 3r.A

Lete = spa[(s1,t1), (s2,t2), A] and w = wi+ws. By Lemmal[2l we have (r, w) € candidateRoles.
Additionally, we obtain spa*[(s1,t1), (s2,t2), A] = ¢ from Lemma [3] and therefore (A,c¢) €
fillers. From (iii), it follows that C' € subsumees. Asv can be used to update spa(s, t), (s',t'), C],
it holds that spa[(s, t), (s',t'), C] > v, and therefore spal(s, t), (s',t'),C] > w + ¢. As a conse-
quence, we obtain spa**[(s, t), (s',t'), C] < v after processing line 14.

Assume spa**((s,t), (s',t'),C] < v. Then, there must exists some (s,w’) € candidateRoles
and (B,d) € fillersst. T = C C 3s.B and w’' + ¢ < v. By Lemma 2, this implies there
are ey = (t,u, S, wi,t1) and ea = (to,u/, 8", wh,t') € dz withw' = w) +whst. T EsC S,
T EsC 8" and d = spa*((s,t),(s,t'),B] st. T = C C 3s.B. Then, condition C'1* is sat-
isfied using e1, ea and B. Consequently spa[(s,t), (s',t'), C] could have been updated with
w) + ¢ + wh < v, which is a contradiction to v being the minimal updated value. It follows
that spa™*[(s,t), (s',t'),C] = v. O

Regarding complexity, we obtain that procedures filterEdges and filterRoles are computable
in at most polynomial time in the combined size of iR, T and K. The amount of elements in
candidateRoles is bounded by the size of Sig(7), and the amount of entries in spa* is limited
by the size of spa, hence polynomial in the combined size of R, T and K. For each combina-
tion of (r,w) € candidateRoles and (M, c) € fillers, calculating all subsumees is required.
For K an EL£H KB, this is feasible in at most polynomial time [BOS13]. In summary, we obtain
that a run of Procedure S1 - £ELH requires at most polynomial time in combined complexity.
Thus, our upper bound matches the one presented for computing all S1-Applications given
in [FT21].

4.2.2. Calculating S2 over E£LH KBs

Here, we present a procedure to calculate all S2-applications as required in line 2 of [Pro]
Note that this procedure is only applied once during the entire computation of
spa, whereas S1 and S3 Applications are repeated for each iteration of the function f.

Calculating S2-Applications can be considered a simpler and slightly adapted variant of cal-

culating S1-Applications, for which the content of spa is irrelevant. For this reason, the proce-
dure presented here shows a lot of similarities to the one presented in section above.

26

4. Deterministic loop table construction for ELH and ELHT |

Procedure 3S7 - ELH

Input: Loop table spa, partial loop table spa*
Output: A relation spa™* containing updates to spa

1: initialize empty table spa™*
2. forall p,q,p., p. € (6n x 05)* do
3 if s=s"and t =+¢: then

4: Skip and continue with next p, q, p1, b
5: end if
6: set (down,up) := filter Edges(p, q,p1,P.)

7: set candidateRoles := filter Roles(down, up)

8: set fillers := {(A,c) | spa*[p.,p., A] = ¢, A € T(Ux),c € N}
o: for all (r,w) € candidateRoles do

10: for all (A,c) € fillers do

11: Calculate subsumees := {C'| C € Sig(T) N N¢,C C Ir.A}
12 for all C € subsumees do

13: if spalp,q,C] > w + c then

14: set spa™*p, q,C] = min(spa*™*[p,q,C],w + ¢)
15: end if

16: end for

17: end for

18: end for

19: end for

20:

21: return spa™**

Procedure 4 S2 - ELH

Output: relation spa** containing all S2-Applications

1: initialize empty table spa™*

2. forall (s,t), (s',t') € (6 x 65)? do
3: if s=sandt=1t"then

4 Skip and continue with next (s, t), (s',t')

5 end if

6 set edges := {(t,u, A?,w,t') | (s,u,s) € dn, (t,u, A?,w,t") € 6z, A € Nc}

7: for all (t,u, A?,w,t") € edges do

8: Calculate subsumees :== {C' | C € T(Ux), T ECC A}
o: for all C € subsumees do
10: set spal(s,t), (s',t), C] := min(spal(s,t),(s',t'),C], w)
11 end for
12: end for
13: end for
14:

15: return spa™*

27

4. Deterministic loop table construction for ELH and ELHT |

The procedure consists of only 2 Stages, roughly corresponding to Stages 1 and 3 from
Line 6 extracts edges (¢,u, A?,w,t') € g s.t. a corresponding (s, u,s’) € dn
exists. This requires at most linear time in the size of dx and d<, and the amount of such
edges is restricted by |0z|. For each such edge, we need to compute all A € Nc N Sig(7T)
st. T &= C C A holds, which is feasible in polynomial time in the size of K [BO15]. Hence,
we obtain a P-Time upper bound in the combined size of R, ¥ and K, matching the upper
bound obtained from [FT21].

The following lemma shows that a run of Procedure S2 - ELH correctly computes all S2-
Applications.

Lemma 5. Let R a 2RPQ, T a distortion transducer, K = (T,.A) an ELH KB. Let spa’ be the state
of spa after [Procedure SPAfinishes line 2.For all C € T(Ux), the following holds:
After a run of Procedure S2 - ELH that returns spa™*, we have spa**[(s,t),(s',t"),C] = w iff
spd[(s,t), (¢',1'), C] was updated with w after applying S2 to ((s,t), (s',t'), C).

Proof. If spd’[(s,t), (s',t'), C] was not updated by an S2-Application, there is no (s, u, s') € dn
and (t,u, A?,v,t') € éz st. T = C £ A. Then, for all (t,u, A?,w,t') € edges, the set
subsumees calculated in line 8 is empty. It follows that spa™*[(s, t), (s',t’), C] is never updated.

Assume spa’[(s,t), (s',t"), C] was updated with value w. Then, there is (s,u,s’) € dz and
(t,u, A7, w,t') € dz st. T E C £ A. Hence, we have (t,u, A?,w,t') € edges, and C' €
subsumees, and consequently spa**[(s, t), (s, t'), C] < w. Assume that spa**[(s, t), (s',t'),C] <
w. Then, there is some (¢,u/, B?,v,t') € edges, and consequently (s,u/,s") € o, s.t. T |
C C Band v < w. Then, the same (s,4/,s") and (¢,v/, B?,v,t’) could have been used to
update spd’[(s,t), (s',t'), C], which is a contradiction to the fact that this entry was updated
with w.

It follows that spa**[(s, t), (s',t"), C] = spd’[(s, 1), (s', 1), C]. O

4.2.3. Calculating S3 over ££H KBs

While the procedures to calculate S1-and S2-Applications show some similarities, S3-Applications
require an entirely different approach. The deterministic procedure presented here is based

on the idea mentioned in [FT21] to calculate S3-Applications using Floyd-Warshall algorithm.

To explain the correspondence between S3-Applications and finding shortest paths in a
graph, let us recall what the information stored in spa represents:

Given an ELH or ELHT | KB K, the table spa is used to identify loops through the anony-
mous part of Uy, starting and ending at the same anonymous individual e. As explained in
section[2.3] the subtree rooted at such an individual (denoted as T.) can be uniquely iden-
tified its tail. After o iterations of f, an entry spal(s,t), (s',t'),C] = w represents the fact: If
tail(e) = C, Gy, contains a path from (s, ¢,e) to (s, ', e) with cost w and depth at most d.

The idea behind rule applications of the form spa[(s, t), (s',t'), C] < spa[(s,t), (s",t"),C] +
spa[(s”,t"), (s',¢'),C] is to combine the information currently stored in spa to find paths
p1,p2 in Gy, that go from (s, t,e) to (s”,¢”, e) and respectively from (s”,t",e) to (¢, ¢, e). By
combining such paths, we obtain a new path ps from (s, t,e) to (s',¢,e) with cost ¢(p3) =
c(p1)+c(p2). Therefore, we can update spal(s, t), (s',t"), C] with ¢(ps). As the updated values
can only decrease, there is a finite amount of S3-Applications after which the value no longer
changes.

28

4. Deterministic loop table construction for ELH and ELHT |

Consider a run of Procedure SPA and let e € AY¢ \ Ind(A) with tail(e) = C. During the
0 — th iteration of f, after exhaustively applying rule S3 to all spal(s,t), (s',t"), C], we obtain
that spa[(s, t), (s',t'), C] = ¢(p) exactly if p’ is a minimum-cost path from (s, ¢, e) to (s, ¢/, e) in
G, With maximum depth o [FT21 El From here, it is easy to see how Floyd-Warhshall could
be used on Gy, to find the updated value for this entry. However, as constructing Gy, is
not an option, we use the information stored in spa to construct a set of graphs that allow
us to find similar paths.

Note that S3-Applications only consider entries with the same C € T(Ux), meaning for dif-
ferent tails C', D € T(Ux), S3-Applications can be calculated independently of each other.
To this end, for each C € T(Uk), we define as G = (V, Ec) a weighted graph with

Ve = {(S,t) ‘ S € Oy, t € (51}
© Ec = {((s,t),w, (slvt/)) ’ Spa[(87t>v (Sl,t/),C] = ’U}}

Such a graph has exactly |Qmn - Q<| nodes and |Qg - Q<|? edges. The following lemma shows
that the cost of the shortest path from (s, t) to (s',t') in G¢ corresponds the minimum value
of spa[(s,t), (s',t'), C] after exhaustively applying S3.

Lemma 6. Let R a 2RPQ, ¥ a distortion transducer, K = (T, A) an ELH or ELHI | KB, spa a
loop table. Further, let spa’ be the state of spa after an exhaustive application of rule S3. For all
((s,1), (s',t"),C) € (6 x 65)% x T(Uy), the following holds:

Letp be a path of minimal cost from (s, t) to (s',t') in G¢. Then, we have ¢(p) = spd’|(s, t), (s',t'), C].

Proof. spa’[(s,t), (s',t"),C] < ¢(p): Assume ¢(p) # co. Then, pis a path of length n + 1 in G¢
of the form

(8,8)w1(81,t1) (8, tn)wny1 (s,) with e(p) = w1 + ... + wyg1 (n > 0)

If n =0, we have p = (s, t)w1 (¢, t'). Consequently, (s,t),wi(s',t') is an edge in G¢, and thus
spal(s,t)(s',t'),C] = wy. It follows that ¢(p) < spd’[(s, t), (s, 1), C].

For n = 1, we have a rather trivial case where p is of the form (s, t)wi(s1, t1)wa(s’,t'). Then,
we have spa*[(s,t), (s1,t1),C] = wy and spa*[(s1,t1), (s',¢'),C] = we. Consequently, we
can use a single application of S3 to update spa(s, t), (s',t'), C] using spal(s,t), (s1,t1),C] +
spal(s1,t1), (s',t'), C].

We use induction on n to show that, for all n > 1, there is a corresponding sequence of
S3-Applications s.t. spa[(s, t), (¢',t'), C] can be updated with v.

Forn = 2, pisoftheform (s, t)w1(s1,t1)wa(se, t2)ws(s’,t'). Then, thereis spa*((s,t), (s1,t1), C] =
wy, spa*[(s1,t1), (s2,t2), C] = wy and and spa*|[(se, t2), (s',t'), C] = ws. Consequently, the fol-
lowing sequence of S3 applications can be applied: First, update spa[(s,t), (s2,t2), C] with
value wy + wy, followed by an update to spal(s,t), (s',t"), C] using spa[(s,t), (s2,t2),C] +
spal(s2,ta), (s',t'), C]. We obtain spa[(s, t), (s',t'),C] = w1 + wy + ws.

’A corresponding proof for ELHZ 1 can be found in the appendix

29

4. Deterministic loop table construction for ELH and ELHT |

Fori =n+ 1, we have p is of the form (s, t), w1(s1,t1)...(Sn, tn)Wn+1(Sn+1, tnr1)wWnta(s’,).
By induction, we have spa|(s,t), (Sn+1,tnt+1), C] = w1 + ... + wyy1, and S3 can be applied to
update spal(s,t), (s',t"), C] using spa|(s,t), (sn,tn), C] + spal(sn,tn), (', "), C]

with wy + ... + wp42 = v.

This satisfies our claim, and we obtain that spa’[(s, t), (s, t'), C] < ¢(p).

c(p) < spd[(s,t),(s',t),C]: Let spd'[(s,t),(s',t'),C] = v. If v was not updated by an S3-
Application, we have v = spa(s, t), (s',t"), C]. Consequently, there is an edge ((s, t)v(s’,t') in
Ge. It follows that ¢(p) < v. Otherwise, let uq, ..., u be the sequence of S3-Applications that
were used to obtain spa’. Assume this sequence is ordered, i.e. u; was the first update and
pk the last one. In addition, we denote as spa’ the state of spa after update u;. Now, let y;
be the final update to spd’[(s, t), (s',t'), C], i.e. spd’[(s, 1), (s',t'), C] = spa’[(s,t), (s',), C].

We show by induction on the length j that, for each such sequence, there is a corresponding
path p in Ge with ¢(p) = spd’[(s, t), (s, 1), C]

For the case where j = 1, only a single application was performed, i.e. there is (s”,t")
s.t. spal(s,t), (s",t"),C| = wy, spa[(s”,t"), (s',t'),C] = wy and v = wy + wsy. Then, there are
corresponding edges ((s,t),wr, (s”,t")) and ((s”,t"), wa, (s',t')) in Ge. It follows that there
is a path p = (s, t)w1 (8", t")wa(s', ') in Ge with ¢(p) = v.

For j > 2 u; corresponds to an update spa’[(s,t), (s',t),C] = spa?[(s, 1), (s",t"),C] +
spa? Y(s",t"), (', 1), C] for some (s”,t"). By applying induction, we obtain that there are
paths p1 = (s,t)...(s",#") and pa = (5", ¢")...(s',¥') In Gy, S.t. c(p1) = spa?~Y[(s, 1), (s”,t"), O]
and ¢(p2) = spa’~1[(s,t), (s",t"),C]. By combining these paths, we obtain p’ with ¢(p’) =
spd[(s,t), (¢',t'), C], thus satisfying our claim.

As p is a path of minimal cost from (s,t) to (¢',¢), it follows that ¢(p) < ¢(p’), and conse-
quently c(p) < spa’[(s, t), (s', 1), C].

As we have shown both direction, it holds that ¢(p) = spa’[(s, t), (s, t'), C]. O

We present Procedure S3, which is used to calculate the result exhaustively applying rule S3
as required in line 3 and one iteration of f in [Procedure SPA For each C' € T(Ux), a graph
G is constructed using the content of spa, and Floyd-Warhshall is used to find the cost of
shortest paths between all nodes. By Lemma 6, the minimal cost of a path from (s,t) to
(s',t") can be used to update spa[(s,t), (s',t'), C]. Similar to Procedure S1, a relation spa**
containing only the updated entries is returned.

For ELH, the size of T(Ux) is polynomial in [Sig(T)|. Building G¢ is feasible in linear time
in the combined size of Qx and Q<. The time complexity of calculating the minimal cost of
all paths using Floyd-Warshall is [V |? ([Flo62[],[War62]), and the amount of nodes in G¢ is
exactly |@Qun x Q<|. Thus, a run of Procedure S3 is feasible in at most polynomial time in the
combined size of R, T and K.

Using Lemmalg] it is easy to see that Procedure S3 calculates the correct results.

Lemma 7. Let R a 2RPQ, ¥ a distortion transducer, K = (T, A) an ELH or ELHI | KB.
After a run of Procedure S3, forall ((s,t), (s',t'), C) € (dp xd5)? < T (Uy), we have spa**[(s,t), (s',t'),C] =
v iff v is the updated value of spal(s,t), (s',t"), C] after exhaustively applying rule S3.

30

4. Deterministic loop table construction for ELH and ELHT |

Proof. Let spa* be the state of spa used as input to Procedure S3 (before any applications of
rule S3) and spa’ be the state of spa after exhaustively applying rule S3.

By Lemma [g] for each C' € T(Ux), it holds that spa’[(s,t), (s',t),C] = w iff w is the mini-
mal cost of a path from (s, t) to (s',¢') in G¢. For an arbitrary C € T(Ux) chosen in line 2,
after the procedure reaches line 11, distance((s, t), (s',t') contains the minimal cost of path
from (s,t)to (s',t') in Go forall (s, t), (s',t') € (dm x 0%). Thus, we have spa'[(s, t), (s',t'),C] =
distance((s,t), (s',t'). Ifvwas not updated by an application of rule S3, we have spa*[(s, t), (s',t'),C] =
spd'[(s,t), (s',t'),C], and consequently spa**|(s,t), (s',t"), C] is not set. Otherwise, we have
spd[(s, 1), (¢',1),C] < spa*[(s,t),(s,t'),C], and thus spa**[(s,t), (s',t"), C] receives value v
inline 13. O]

Procedure 5 53

Input: AnELH or ELHI, KBK = (T,.A), a 2RPQ R, a dt T, loop table spa
Output: relation spa™* containing all updated entries

1: initialize empty table spa™*
2: forall C € T(Ux) do

3 set V:={(s,t) | (s,t) € (d x d5)}

& setE:={((s,),0,(s,1) | (s,) € (6 x 65)}

5. forall (s,t),(s',t') € (0 ¥ 6r5)2 do

6: if spa[(s,t), (s',t'),C] < oo then

7: add ((s,t), spa[(s,t), (s, t),C], (s',t')) t0 E
8 end if

9 end for

10: calculate distance for (V, E) using Floyd-Warshall
11: for all (s,t), (s',t') € V do

12: if distance((s,t),(s',t')) < Spa[((1), (s',t'),C)] then
13: set spa*™* = distance((s,t), (s',t"))

14: end if

15: end for

16: end for

17:

18: return spa™*

4.3. Rule calculation over ELHZ | KBs

In this section, we present deterministic, moderate-case optimized procedures to compute
S1-, S2- and S3-Applications under the presence of an ELHZ | KBs. We start by defining
rules S1, S2 and S3.

S1. spal(s,t), (s',t'), M] < w1 + spal(s1,t1), (s2,t2), M| 4+ ws, if C1* holds.
S2. spa[(s,t), (s, t),M] < w,if T EMEC A, (s,u,s") € dn, and (t,u, A7, w,t') € o,

S3. spal(s,t), (s, "), M| < spal(s,t), (s",t"), M| + spal(s”",t"), (s, 1), M].

31

4. Deterministic loop table construction for ELH and ELHT |

C2*. My CNeg, T ': M T 3dR.My, T): RCR,T ': R C R, (S,U,Sl) € O, (t,u,R’,wl,tl) S
oz, (SQ,UI,S/) S 69"]‘ and (tg,u’,R”,wg,t’) S (55.

with R, R', R” € N¥ and M, M; C Nc.

In the presence of an ELHZ , KB, calculating applications of rules S1,52 and S3 is lot harder
thanitis for ELH. Recall that, for an ELH KB, the set T(Ux) consists of single concept names
C € Sig(T)NN¢, whereas for an ELHZ | KB, the set T(Ux) contains all conjunctions of these
concept names. As introduced in chapter [2] such conjunctions will be treated as sets of
concept names.

From[Appendix B] we obtain that a single application of rule S1 requires exponential time in
the size of 7, mainly for two reasons:

+ Checking Entailment is EXP-Complete for ELHT |
+ The amount of elements in T(Ux) is exponential in the size of T

Analogously to the previous section, all procedures presented in this section assume the
presence of an ELHZ | KB K = (T,.A), a 2RPQ R and a distortion Transducer ¥.

4.3.1. Calculating S1 over ELHZ, KBs

The basic structure of the algorithm is very similar to the ££H case while accounting for
the different nature of T(Ux). However, a number of additional optimizations are employed
with the aim to avoid calculations with predictable outcome.

Again, the algorithm consists of 3 Stages. Stages 1 and 2 are almost identical to the ones
presented in section|4.2.1|with minor changes to account for the presence of inverse roles
in the ontology. To avoid repetition, the adjusted subprocedures filterfdges and filterRoles
are given in thefappendiy The third stage features two main differences to the procedure
presented for ELH, which are explained below.

In Lines 11-14, a caching optimization is employed to keep track which fillers have already
been processed in the current iteration, and potentially skip to process others if the results
cannot improve. Additionally, a more sophisticated procedure calculateSubsumees featuring
a mixture of filtering and caching optimizations is used. We present the entire procedure
first, and continue to discuss how the updates are calculated.

32

4. Deterministic loop table construction for ELH and ELHT |

Procedure 6 ST -ELHT |

Input: Loop table spa, partial loop table spa*
Output: A relation spa™* containing updates to spa

1. initialize empty table spa**
2. for all (p,q,p.,p, € (0 x d5)* do

3: if s=s andt=1t"then

4: Skip and continue with next p, q,p1,p»

5: end if

6: calculate (down,up) := filter Edges(p, q,p1,P,)

7: calculate candidateRoles := filter Roles(down, up)
8: initialise empty relation processed C T(Ux) x N

o: set fillers := {(Mu,c) | spa*[p,,p., M1] = ¢, My € T(Ux),c € N}
10: for all (My,¢) € fillersﬂdo

11: if M’ C M; and ¢ = v for some (M',v) € processed then
12: Skip and continue with next M;

13: end if

14: add (M, ¢) to processed

15: for all (r,w) € candidateRoles do

16: calculate subsumees := calculateSubsumees(r, My, w + c¢)
17: for all M € subsumees do

18: set spa*™*[p, q, M] = min(spa**[p,q, M],w + c)

19: end for

20: end for

21: endfor

22: end for

23:

24: return spa™*

2 elements are required to be processed in a specific order, see Remark

Stages 1 and 2 (lines 6 and 7) are used to extract roles r € N?{ and an associated mini-
mal cost w € N s.t. condition C2* is partially satisfiable using r. From spa*, we obtain sets
M, € T(Ux) for which the corresponding entry spa[(s1,t1), (s2,t2), M1] has been updated
since the previous iteration. Each combination of such r and M; corresponds to an expres-
sion w1+spa[(31, tl), (82, tg), Ml]—i-’wg forwhichthereis (t, u, R/, w1, tl), (tg, u/, R//, w9y, t/) € o
s.t. the following is guaranteed:

(1) thereis (s,u, s1), (s2,u’, s") € s,
@) TErCRandT Er CR,

(3) w = wy + wy is mMinimal, i.e. there is no (¢, p, ", wi, t1), (t2, p', 8", wh,t") € dn with
w) < wy Or wh < we satisfying conditions (1) and (2) for some p, p’ € N%T, S, 8" e NRi

33

4. Deterministic loop table construction for ELH and ELHT |

In order to find valid rule applications of the form
spa[(s,t), (Slat,)v M] <L wp + SP(I[(Sl,tl), (52,t2), Ml] + wa,

it remains to find such M that satisfy T &= M C 3r.M;. The following section explains how
procedure calculateSubsumees is used to find such M.

4.3.1.1. Calculating subsumees

Given r and M, a straight-forward way to find such sets M that satisfy 7 = M C 3r.M; isto
check entailment for each M € T(Ux). However, such entailment checks are computation-
ally expensive. The idea behind calculateSubsumees is to introduce a set of additional, but
computationally less expensive checks that can be used to answer T = M C 3r.M; without
using the DL Reasoner.

These optimizations use subset relations on sets M, M’ € T(Ux). We start by making some
observations that will be used to show the correctness of the construction.

The first observation is a direct consequence of applying semantics to such sets M, M’ €
T(Ux). Note that T(Uy) does not contain the empty set.

Proposition 3. Let K = (T,.A) bean ELHI | KB, M € T(Ux) and M’ C M. Then, it holds that
Te=MCM.

Proof. If M = M, this is trivially satisfied. Otherwise, let M' = {C},...,Cp,} and M = M’ U
{Crm+1,-.,Cn} (1 < m < n)with C; € Nec N Sig(T) for all i < m. Given an interpretation I,
we have M =cC'n..nCpl and M = M N Cpi! n...nC,L. It follows that MT € M,
and by applying semantics we obtain 7 = M C M. O

In the case where M’ is a strict subset of M, we say that M is more specific than M.

We can use subset relations between such sets to infer certain facts about our KB without
the need to calculate (computationally expensive) reasoning tasks. Specifically, our algorithm
makes use of the following observations:

Corollary 1. Let K = (T,.A) an ELHI, KB, v € N and M, My € T(Uy). If T = M C 3r.Mj,
it holds that T = M' © 3r.My for all M' C M.

Proof. Let I aninterpretation, M’ C M andassume T = M C 3r.M;. By applying semantics,
we obtain that there is some e € M! st. e ¢ {d1 | (d1,d2) € r!,dy € M}. By proposition 3]
it holds that 7 = M C M’, and thus M! C M'!. Hence, the same e can be found in M7, It
follows that 7 = M’ C 3r.M;. O

A similar observation can be made for the "other” direction:

Corollary 2. Let K = (T, A) an ELHI, KB, v € N5 and M, My € T(Uy). If T | M C 3r.M;,
it holds that T = M' © 3r.My for all M' 2 M.

34

4. Deterministic loop table construction for ELH and ELHT |

Proof. Let I an interpretation, M’ O M and assume 7 = M C 3r.M;. By proposition 3] it
holds that 7 = M’ C M. By applying semantics, we obtain that for each e € M/, it holds
that e € {d; | (d1,dz) € r!,dy € M;}. Because M'F C MY, the same applies to all elements
e € M'T. It follows that T = M’ C 3r.M;. O

As a preliminary step, DL Reasoning is employed to retrieve the set subsumees containing
all atomic concepts C' € Nc N Sig(T) st. T = C C 3r.M;.

Subprocedure 7 calculateSubsumees (ST - ELHL)

Input: role r € N, set M; € T(Uy), update value v € N
Output: Aset{M |T =M C Ir.M} C T(Ux)

1. initialise empty set subsumees

2: initialise empty set eliminated

3: Calculate b:={C | T =CC Ir.M;,C € Nc}
4. if b= @ then

5: let M* = {A]A € Sig(T) N N¢}

6: if T = M* C 3r.M; then

7: return subsumees = {}

8: end if

9. end if

10: for all M € T(U Y] do
11: if spa[(s,t), (s',t'), M] <= v then

12: discard and continue with next M
13: end if

14: if M Nb+# @ then
15: add M to subsumees

16: else
17: if M C M’ for some M’ € eliminated then
18: Discard and continue with next M
19: end if
20: if T = M C 3r.M; then
21 add M to subsumees
22: else
23: add M to eliminated
24: end if
25: end if
26: end for
27:

28: return subsumees

3 elements are required to be processed in a specific order, see Remark

Checking if C2* is satisfiable (Line 4-9)

The first check represents a filtering optimization to capture the case where there is no suit-
able M € T(Ux). The construction is based on the following observation:

Let M* = {A]A € Sig(T) N Nc}, i.e. the set containing all concept names from Sig(7). For
all M € T(Ux), it holds that M C M*. Thus, by Corollary it holds that if 7 = M* C 3r.My,

35

4. Deterministic loop table construction for ELH and ELHT |

we have T £ M C 3r.M; for all M € T(Ux). In that case, condition C2* is unsatisfiable, and
the procedure returns an empty set.

By Corollary[2] T = M* C 3r.M is trivially satisfied if there is at least one C € N¢ N Sig(T)
st. T | C C 3Ir.Mj, ie. the set bis not empty. In that case, testing M* C 3r.M; can be
skipped.

We proceed by iterating over all sets M e T(Ux). Recall that our subprocedure uses a
fixed w1, spal(s1,t1), (s2,t2), M;] to calculate updates of the form spa[(s,t), (s',t'), M] <<
w1 + spal(s1,t1), (s2,t2), M1] + wa. To this end, it receives an input v representing the up-
dated value. Lines 11-13 represent a simple condition to test whether the value currently
stored in spa[(s,t), (s',t'), M] can actually be improved using v.

Checking atomic subsumees (Lines 14-16)

Lines 14-16 represent another filtering optimization using the set subsumees consisting of
all atomic concepts C' € Nc N Sig(T) that satisfy 7 = C C 3r.M;. The optimization is based
on the following correspondence:

If M Nb+# @, the following holds: Let A € M Nband My = {A}. Then, T = M4 C 3r.M,;
and M4 C M. By Corollary[2} it holds that T = M C 3r.Mj. It follows that v can be used to
update spal(s,t), (s',t"), M].

Checking eliminated sets (Lines 17-19 + 23)

A caching optimization is employed to allow reusing intermediate results obtained while it-
erating over all M € T(Ux). To this end, a set eliminated is used to collect such M € T(Ux)
that satisfy 7 = M C 3r.M;. The optimization is based on the following correspondence
between such sets M’ € eliminated and a set M:

For all M'" € eliminated, it holds that T (= M’ C 3r.M;. Let M € T(Ux) s.t. there s
some M’ € eliminated with M C M’. By Corollary[T} it holds that T (& M C 3r. M.
Lines 17-19 are used to test this condition and potentially discard the current M.

Finally, if the procedure reaches line 20, an entailment check to test whether 7 = M C
Jr.M; holds, is performed. In case of a positive result, M is added to subsumees. Otherwise,
we obtain T = M C 3r.M;, and M is added to eliminated.

Note that this means the elements in eliminated are collected in the order in which the sets
M e T(Ux) are processed. The actual benefit obtained from this optimization for moderate-
case scenarios depends on the order in which the sets are collected:

Remark 1. The order in which the sets M € T(U) inline 10 are processed has an impact on
moderate-case performance. The best results are obtained if the elements are processed
in order of descending size, i.e. M' is processed after M" iff M’ c M".

The following lemma shows that calculateSubsumees calculates the correct results. As
usual, we assume the presence of a fixed (s, t), (s/,t') € (6 x 6)? and loop table spa without
explicitly stating these as inputs.

36

4. Deterministic loop table construction for ELH and ELHT |

Lemma 8. Let K = (T, A) an ELHI | KB, r € NE, My € T(Ux) and v € N. A run of calculate-
Subsumees with input r, My, v calculates the the set
{M | T E M C 3r.M,spa[(s,t), (s, t), M] > v}.

Proof. To shorten notation, let subsumees be the set returned by calculateSubsumees and
T={M|TE M LC 3Ir.M,spal(s,t),(s,t), M] > v}

= subsumees O T: Let M € T. By Corollary it holds that 7 = M* C 3r.M;, and con-
sequently the algorithm proceeds to line 10. The condition spa[(s,t), (s',t), M] > v holds
as a consequence of M € T.

At line 14, we consider two possibilities: If M Nb # @, we have M € subsumees. Otherwise,
the algorithm proceeds to line 17.

Assume there is M’ € eliminated st. M C M’,ie. T = M' © 3r.M;. Then, by Corol-
Iary we have T £ M C 3r.M;, which is a contradiction to M € T'. Therefore, there is no
such M’, and the algorithm proceeds to line 20. Finally, we have 7 = M C 3r.M; as a direct
consequence of M € T, and thus M € subsumees. As M was chosen arbitrarily, we obtain
that M € subsumees holds for all M € T, and thus subsumees D T.

< subsumees C T Let M € subsumees. In order for M to be added to subsumees, we
have (1) spal(s,t), (s',t"), M] > v (Line 11), and either:

(28) MNb+# @, o0r
(2b) Thereisno M’ € eliminated s.t. M C M’ and T = M C 3r. M,

If (2a) holds, thereissome A € M st. T = A C Ir.M;. Let My = {A}. By Corollary
it holds that 7 &= M C 3r.M;. If (2b) holds, we have T | M C 3r.M; as a direct
consequence. For both cases, we obtain in combination with (1) that 7 &= M C 3r.M; and
spal(s,t), (s',t'), M] > v holds. Thus, we have M € T. As M was chosen arbitrarily, it holds
that M e T for all M € subsumees, and therefore subsumees C T.]

Regarding combined complexity, we have that lines 3 and 6 require at most EXP-time. For
each M € T(Ux), the complexity of executing lines 11-25 is dominated by the subsumption
check required in line 20, which as well requires exponential time. We obtain that a run of
calculateSubsumees requires at most exponential time for combined complexity.

4.3.1.2. Tracking processed fillers
Recall that S1-Applications are of the form

spa[(s,t), (s',t"), M] < wy + spal(s1,t1), (s2,t2), Mi] + wo

We refer to such entries spal(s1,t1), (s2,t2), Mi] as fillers. The amount of entries that need
to be considered is already restricted by exploiting Lemma |3} However, the set of potential
fillers can still be rather large. As the processing of each such filler requires at at least one
run of calculateSubsumees (and thus EXP-Time), our procedure can greatly benefit from fur-
ther restricting the set of potential fillers.

Inlines 11-14 of procedure ST -ELHT,, an additional caching optimization is employed. The
idea is that, by keeping track of which sets have already processed, we can decide whether
a pair (My,c¢) € fillers can actually be used to find better updates than the ones already
found.

37

4. Deterministic loop table construction for ELH and ELHT |

To this end, the procedure uses a relation processed C T(Ux) x N to collect all fillers that
have been processed for the current combination of (s, t), (s',t'), (s1,t1) and (se, t2). We will
explain how the condition in line 11 can be used to decide whether a certain filler can be
skipped.

Consider a run of Procedure ST - ELHZI | until processed contains at least one element, and
let (M7, ¢) € fillers be thefiller thatis currently considered when line 11 is reached. Assume
thereis (M',v) € processeds.t. M’ C My and ¢ = v. By Lemma itholdsthat 7 &= My C M/,
and consequently 7 {= 3r.M; T 3r.M’ for all r € N&.

Let M € T(Ux) and (r,w) € candidateRoles. \We consider two cases: First, assume T -
M C 3r.M;. Then, My and r cannot be used to update spal(s, t), (s',t'), M].

Otherwise, assume spal(s, t), (s',t'), M] can be updated with value with z; = ¢+ w using
My, i.e. it holds that 7 = M C 3r.M;. Consequently, we have that T = M C 3r.M’ holds.
It follows that spa(s, t), (s',t"), M| can be updated with value z2 = v + w using M’. We have
z1 < zg only if ¢ < v. As the condition in line 11 requires ¢ = v, there are no updates to
spal(s,t), (s',t'), M] using My and r that are better than the once already found using M’
and r.

As M and (r,w) were chosen arbitrarily, this holds for all combinations of M and r. There-
fore, we can see that lines 11-14 do not change the results computed by Procedure ST -
ELHT, .

While the correctness of this construction is independent of the order in which the sets
in fillers are processed, it is obvious that actual value of the optimization depends on how
many sets can be skipped, and thus depends on smaller sets being processed first.

Remark 2. The order in which Procedure S1- ELHZ | processes the sets (M, ¢) € fillers has
an impact on moderate-case performance. The best results are obtained if the elements
are processed in order of ascending size, i.e. (M, ¢) is processed before (M',) iff M ¢ M.

The maximum amount of elements (M’,¢) in processed is bounded by the size of T(Ux).
For each element, the condition in line 11 requires checking subset containment, which is
possible in linear time using an appropriate encoding, as explained in chapter 5} Thus, an
execution of line 11 requires at most EXP-Time in the size of .

Regarding space complexity, we need to store a set M C |Sig(7) N N¢| and a constant-sized
value for each element. Therefore, storing processed requires at most exponential space in
the size of K.

While these upper bounds do not look promising, we expect that the actual amount of ele-
ments in processed remains much lower for moderate-case scenarios. Note that, to circum-
vent the EXP-space requirement, an equivalent construction could be obtained by restricting
the set fillers after line 9 to only contain such (M, ¢) where M is the smallest set among all
(M*,c), i.e. using:

fillers' := {(My,c) | (My,c) € fillers and there isno (M*,¢) € fillers with My C M*}

Calculating this restriction is possible in exponential time without requiring additional space.
We do not give details here, as we expect both variants to have comparable performance
for moderate-case scenarios.

38

4. Deterministic loop table construction for ELH and ELHT |

4.3.1.3. Correctness and runtime of Procedure S1- ELHT |

Finally, we are ready to show that Procedure S1-ELHT, correctly computes all ST-applications
as required in Procedure SPA for one iteration of f. Due to the correspondence between pro-
cedure calculateSubsumees and Line 11 of Procedure ST - ELH, the proof is almost identical

to Lemma4]and can be found in the [appendiy

Lemma 9. Let R a 2ZRPQ, T a distortion transducer, K = (T, A) an ELHI | KB, spa a loop table
and spa* a fragment of spa containing all updated entries since the previous iteration of f. For
all M € T(Ux), the following holds:

After a run of Procedure ST - ELHT |, we have spa™*|((s,t),(s',t'), M] = v iff v is the min/maﬁ
updated value after applying rule ST to ((s,t), (s',t"), M). to be continued...

For L an ELHTI, KB, procedures filterEdges and filterRoles are computable in at most expo-
nential time in the combined size of R, T and K. The amount of entries in spa* is at most
exponential in the combined size of Qu, Q< and K. Each such entry requires one execution
of lines 11-14 and one run of calculateSubsumees. Both require at most exponential time in
the size of R, T and K. We obtain that a run of Procedure S1 - ELHT | is feasible in at most
exponential time for combined complexity.

4.3.2. Calculating S2 over ELHZ, KBs

Here, we present a procedure to calculate all S2-Applications under the presence of an
ELHTI | KB.In general, this procedure is identical to|Procedure 52 - £ LH|presented in section
[4.2.2lwhen accounting for the difference in T(Ux). However, due to the increased complex-
ity for answering subsumption over ELHZ, KBs, we obtain an EXP-Time upper bound in
combined complexity for a single application of S2.

Nevertheless, this upper bound leads us to expect that there is something to be gained for
moderate-case scenarios. In similar spirit to the optimizations explained for calculating S1-
Applications over ELHTI |, we expect to increase moderate-case performance by applying
similar optimizations. To this end, we present a dedicated subprocedure calculateSubsumees

to calculate the set {M | M € T(Ux),T = M T A} as required in line 8 of [Procedure S2
The adjusted procedure S2- ELHI, can be found in the[appendix

>We can assume that v is the minimum value amongst all ST-Applications to ((s, t), (s',t"), M)

39

4. Deterministic loop table construction for ELH and ELHT |

Subprocedure 8 calculateSubsumees (S2 - ELHI)

Input: A € Nec N Sig(T)
Output: Aset{M | M € T(Ux),T E M C A} C T(Ux)

1. initialise subsumees := {}, eliminated := {}
2: Calculateb:={C | TECLC A,CeNc}UA
3: for all M € T(Ux)°|do

4: if M Nb+# @ then
5: add M to subsumees
6: else
7: if M C M’ for some M’ € eliminated then
8: Discard and continue with next M
o: end if
10: if T = M LC Athen
11 add M to subsumees
12: else
13: add M to eliminated
14 end if
15: end if
16: end for
17:

18: return subsumees

4 elements are required to be processed in a specific order, following the same idea as given in Remark

The procedure contains two optimizations: In line 2, all basic concepts C that satisfy T =
C C A are retrieved, which requires at most EXP-Time in the size of K. These are used to
handle cases where C'is one of the conjuncts in M. The size of eliminated is bounded by
|T(Ux)|, and hence the number of checks for M C M’ required in line 7 is at most exponen-
tial in the size of K. Testing M C M’ is possible in linear time using an appropriate encoding,
as explained in chapter[5] Checking Entailment as required in line 10 is feasible in EXP-Time
for ELHI | KBs [BBLOS]. We obtain that a run of Subprocedure calculateSubsumees requires
at most EXP-Time in the size of K.

From the complexity results in section we obtain that Procedure S2 - ELHI | can
be considered a linear-time procedure that makes at most polynomially many calls to an
EXP-Time subprocedure for combined complexity. This matches the upper bound for S2-
Applications presented in|B| The following lemma shows that calculateSubsumees computes
theset {M | M € T(Ux), T E M T A} C T(Ux). As usual, we assume the presence of a
fixed (S,t), (S/,t/) S ((55}{ X 53)2.

Lemma 10. Let K = (T, A) an ELHZ, KB and A € NN Sig(T). A run of Subprocedure
calculateSubsumees with input A calculates the set {M | T = M C A}.

Proof. To shorten notation, let subsumees be the set returned by Procedure calculateSub-
sumeesand T ={M | T &= M C A}.

40

4. Deterministic loop table construction for ELH and ELHT |

subsumees D T: Let M € T,i.e. T E M C A. Then, either M was added to subsumees in
line 5, or the procedure continues to line 7. Assume there is M’ € eliminated s.t. M C M'.
This implies that T = M’ C A. Let I be an interpretation. By applying semantics, it holds
that M’ ¢ Al i.e. thereis some e € M’ st. e ¢ AL, From Proposition[3] we obtain M’ € M.
Then, the same e exists in M, which is a contradiction to 7 | M C A. Consequently, there
can be no such M’, and M is added to subsumees in line 11.

subsumees C T: Let M € subsumees. If M was added to subsumees in line 5, there is
someC e Mst. T =CLC A Let M, ={C}. Obviously, we have T = M. C Aand M. C M.
By Proposition[3} it holds that 7 = M C M., and hence T = M C A. Consequently, we
have M € T.

Otherwise, M was added to subsumees in line 11. Thus, it holds that T = M C A, and
hence M € T. O

Given that the only difference between the procedures |Procedure calculateS2 - ELH)and is
Procedure calculateS2 - ELHT | is how the set subsumees is computed at line 8, it is easy to
see that the proof for Lemma(5|can be adopted for Procedure S2 - ELHT | using Lemma

Lemma 11. Let R a 2RPQ, ¥ a distortion transducer, K = (T,.A) an ELHZ | KB. Let spa* be the
state of spa after[Procedure SPAfinishes line 2. For all M € T(Uyx), the following holds:

After a run of Procedure S2-ELHT |, we have spa™|((s,t), (s',t'), M] = wiff spa*[(s, t), (s',t"), M]
was updated with w after applying S2 to ((s,t), (s',t'), C).

4.3.3. Calculating S3 over ELHZ, KBs

In section[4.2.3} a Procedure S3 is presented to compute the same results as obtained from
an exhaustive application of rules S3. As Lemma 6] and Lemma [7] hold for both ££H and
ELHTI | KBs, the same procedure can be used for both DLs. We note that the complexity of
building the Graphs G¢ and finding the cost of all shortest paths depends only on the size
of | and €. However, given the presence of an ELHZ, KB, the size of T(Ux) is exponential
in the size of Sig(7). Thus, we obtain that a single run of Procedure S3 requires exponential
time in the combined size of R, T and K.

4.4. Calculating spa

Finally, we are ready to present our final algorithm to compute the entire loop table spa
using Procedures S1, S2 and S3. Depending on whether an ELH or ELHZ | KB is used, the
respective variants of ST and S2 have to be used.

The general idea follows the nondeterministic [Procedure SPA from [FT21]). Additionally, the
algorithm exploits Lemma [3|to ensure that the input to Procedure S7 is the minimal frag-
ment spa* required to compute the correct results. This is made possible by the fact that
Procedures ST and S3 keep track of which entries of spa have been updated during their re-
spective runs. We present the entire algorithm first before continuing to show the results
are correct.

41

4. Deterministic loop table construction for ELH and ELHT |

Algorithm 1 Construction of spa

Input: AnELH or ELHT | KBK =(T,A),a2RPQ R, adtT
Output loop table spa
. initialize empty table spa*
spa := S2()
spa™* := S3(spa)
update spa with spa™*
set spal(s,t), (s,t),C] :=0forall ((s,t),C) € (dn x dz) x T(Ux)
set spa*® := spa
repeat
(spa, spa*) := f(spa, spa*)
until spa* is empty
- return spa
function f
spa® = S1(spa*)
update spa with spa*
spa™* := S3(spa)
update spa and spa* with spa™*
return (spa, spa*®)
end function

© O 0N W

—

Expressions of the form “update spa with spa* ", where spa* is a partial loop table, have the fol-
lowing meaning: For every entry spa**[(s, t), (s',t'), C] withvalue v € N, update spa[(s, t), (s',t'), C]
with v. The algorithm uses Procedure S2 to calculate the initial state of spa, which is then
gradually updated. In addition, a partial table spa* is used to keep track of updates to spa
calculated during one iteration of f, and is used as input to Procedure ST.

Lines 5 and 6 guarantee that, for the first iteration of f, all entries spa*[(s,t), (s,t),C] = 0
are present. These can never be updated (and thus need not to be considered as input for
Procedure ST), but must be present during the first execution of Procedure S7|]

Given an ELH KB K, a 2RPQ % and a distortion transducer T, we can use Lemmal4} Lemma
[Fland Lemmal7]to show the equivalence between calls to procedures S7, S2 and S3 and the
corresponding calculations required in Procedure SPA. Under the presence of an ELHTZ | KB,
the same correspondence can be found using Lemma(9] Lemma(TT]and Lemmal[7] It is not
hard to see that Algorithm 1 computes the same results as|Procedure SPA

Lemma 12. Let R a 2RPQ, T a distortion transducer, K = (T,.A) an ELH or ELHT, KB. Then,
Algorithm [2| computes the same results as Procedure SPA.

Note that procedures S2 and S3 are executed once during the initial steps. Then, each iter-
ation of f requires one execution of procedures S7 and S3, and the maximum amount of
iterations is (|Qu| - |Q<])? - | T(Ux)|. For ELH, a run of procedures S7, S2 and S3 is feasible
in at most polynomial time for combined complexity, and the size of T(Ux) is polynomial in
the size of K. Thus, for ELH, we obtain that Algorithm 1 is computable in at most polynomial
time in combined complexity.

For ELHTI, a run of procedures S7, S2 and S3 requires exponential time, and the size of
T(Ux) is exponential in the size of K. In summary, we obtain that a run of Algorithm 1 re-
quires at most exponential time for combined complexity.

’Our implementation works slightly different and never actually stores these entries, but uses an equivalent
way to process them during the first iteration.

42

4. Deterministic loop table construction for ELH and ELHT |

Together with Lemma [12] we obtain that Algorithm 1 is a deterministic procedure that cor-
rectly calculates spa. As a side result, we obtain an upper bound for combined complexity
to calculate spa over ELHT | KBs.

Lemma 13. Given a 2RPQ R, a distortion transducer €, and an ELHL | KB K, the relation spa
is computable in at most exponential time for combined complexity.

4.5. calculating sp

With the construction of spa in place, we can proceed to show how the table sp can be ob-
tained. Recall that sp is used to store information on available paths in Gy, starting and
ending at nodes with same .4-Box individual.

This information is used to construct a graph Gy, ,, which finally can be used to answer ap-
proximate queries by finding shortest paths in this graph. We assume the reader is familiar
with the general procedure, and omit giving an explanation here. A detailed discussion on
how the table sp and the graph Gy, are used to answer approximate queries can be found

in [FT21] and [Appendix B]

Note that there is a slight difference on how the tables sp are designed depending on
whetheran ELH or ELHTI | KB is considered. For an ELH KB, sp is a relation with entries of
the form

spl(s;), (s',¢), C]

where (s,t), (s, ') € (6n x 6z)? and D € T(Ux). Each such an entry is associated with a value
v € NU oo, and represents the following information: If, for an individual a € N, it holds that
D(a), there is path of minimal cost from (s, t,a) to (s',t,a) in Gy, with cost v that does not
visit any (-, -, a) expect for the first and last node.

The value for such an entry is obtained using an expression:
spl(s, 1), (s, 1), C] < wy + spal(s1,t1), (s2,t2), A] + we, if C1* holds

We notice that this expression is identical to rule S1 as used for the construction of spa.

For ELHI,, a slightly different form of sp is introduced in Here, entries are
of the form

spl(s, 1), (s, 1), d]

where (s,t), (s',t') € (dn x %)% and a € Ind(A). Again, each entry is associated with a value
v € N U oo. Very similar to the case above, such an entry represents the information that
there is path of minimal cost from (s, t,a) to (s',t,a) in Gy, with cost v that does not visit
any (., _,a) in between.

8The reason is that the construction presented invvas based on a previous version of [FT21], and
the representation of sp was changed later on. However, it is not hard to see that both representations can
be transformed into each other.

43

4. Deterministic loop table construction for ELH and ELHT |

Here, the value stored in sp[(s,t), (s',t'),a] corresponds to the minimum value obtained
from an expression of the form w; + spa[(s1, t1), (s2,t2), M1] + we s.t. condition C2* is satis-
fied. Again, we notice that this is almost identical to applications of rule S1 for ELHZ | . The
only difference is that condition C'2* is used, which is the variant of C2 where we additionally
require K = M (a).

Due to the correspondence between applications of rule ST and the expressions to cal-
culate the values in sp, it is not hard to see that sp can be constructed for both E£H and
ELHT, using slightly adapted versions of procedures ST - ELH and ST - ELHI | respec-
tively. The adjusted procedures SP - ££H and SP- ELHT | can be found in the [appendix

Therefore, the construction of sp requires only two steps: First, calculate spa using Algo-
rithm |2l Then, calculate sp by running Procedure SP with input spa once.

Algorithm 2 Construction of sp

Input: AnELH or ELHT | KBK =(T,A),a2RPQ R, adtT
Output: relation sp

1. calculate spa using Algorithm 1

2: calculate sp using Procedure SP

3: return sp

For ELH, a run of Algorithm 1 requires at most polynomial time in the size of R, ¥ and K,
and a run of Procedure SP is as well feasible in polynomial time. For ELHT |, the complexity
for both steps increases to EXP-time.

Lemma 14. For K an ELH (resp. ELHT) KB, Algorithm 2 computes sp in at most polynomial
(exponential) time for combined complexity.

This concludes this chapter. Once we have sp in place, the construction of Gy, and Gj;,
used in our implementation is a straight-forward adoption of the procedure explained in
[FT21]. The reasoning problems that can be answered by our implementation using G,
are explained in the next chapter.

44

5. Implementation

In this chapter, we discuss the implementation of the algorithms presented in chapter [4}
Our final implementation is called TinDL and can be seen as an extension of the work pre-
sented in a preceeding masters thesis. The software is implemented using the programming
language Kotlin, which provides full interoperability with existing Java sources. It is provided
as a stand-alone application using a MySQL database and Spring Boot as framework. The
entire stack of services required to run the application is provided as a docker image.

5.1. Overview of the implementation

This section will give an overview of our implementation by explaining the overall structure
and the way different components interact with each other. To this end, we will start by
explaining how input files are processed and handed to the backend logic services.

5.1.1. External frameworks
5.1.1.1. OWL API

To process OWL ontologies, our implementation uses the OWL APIﬂ [HB11] in the version
5.5.0. The OWL API framework is being released under both LGPL and Apache licencing,
allowing the usage and integration of the source code into our application. It is one of two
major frameworks for working with OWL Semantics, the other being Apachejenaﬂ which as
well is an open-source Java implementation.

Development of the OWL API goes back all the way to 2003, and was originally developed
during the WonderWeb project at University of Manchester [BVL04]. Being an open-source
project, current releases have seen contributions by various developers from different uni-
versities and nationalities, including the University of Ulm, known for their participating in
the development of reasoner such as HermiT and ELK.

Our implementation makes heavy use of the data structures and methods provided by the
framework, such as retrieving entities included in the ontology, building OWL expressions
and accessing the employed reasoner.

Thttps://github.com/owlcs/owlapi
2https://jena.apache.org/

45

https://github.com/owlcs/owlapi
https://jena.apache.org/

5. Implementation

5.1.1.2. OWL2 Reasoners

Processing of the DL reasoning tasks introduced in chapter[2] such as answering subsumption
and calculating subsumees is achieved by employing an OWL Reasoner. While a number of
different reasoner implementations exist, not all of them see active development to remain
compatible with current releases of the OWL API [Abi23]. Here, we give a short overview of
some reasoners that were successfully employed within our application:

+ HermiT: HermiT [Gli+14] is an OWL2 Reasoner originally developed at the University of
Oxford and University of Ulm in 2014. It uses a hypertableau calculus ([MSHO9]) and is
able to handle all features of the OWL2 specification. Unfortunately, the project is not
seeing active development anymore. The last official release is from 2013 and provides
compatibility with OWL API 3.4.3. However, there exist some more forks which aim to
provide compatibility with more recent versions of the OWL API. The most recent ver-
sion found are maintained in a closed-source repository and released to MavenCen-
tral. The most recent version 1.4.5.519 was released in 2020, and we were successfully
able to use this version alongside OWL API 5.5.0 within our implementation.

+ ELK: The ELK Reasoner [KKS14] is being developed at the University of UIm and is writ-
ten in Java. It is under ongoing development and currently supports reasoning over
a fragment of the OWL2 ELH profile. The aim of the project is to eventually cover the
full OWL2 EL profile. Current releases are maintained in an open-source repository
alongside a comprehensive documentation on the current state of development.

ELK is compatible with recent versions of the OWL API, and we were successfully able
to include the most current release elk-owlapi 0.6 .0 alongside OWL API 5.5.0 within
our implementation. Unfortunately, ELK currently does not support all reasoning tasks
required by our implementation, and therefore cannot be used to actually obtain cor-
rect results. However, we hope that the missing features will be added to ELK at some
point, and thus have included support for ELK in our implementation.

Evaluation of OWL2 reasoners has been subject to a numerous amount of publications in
the past years. It is beyond the scope of this work to evaluate the performance of our imple-
mentation using different reasoners. However, one can expected that a reasoner designed
specifically for tractable extensions of ££ (corresponding to the OWL2 EL profile), such as
ELK, provides better performance when dealing with £LH KBs as opposed to reasoners that
are capable of handling intractable extensions or the full OWL2 Profile, such as HermiT .

Within the current version of TinDL, accessing the services provided by such a reasoner is
done via the generalized OWL Reasoner Interface provided by the OWL API. Thus, our im-
plementation is agnostic of the actual reasoner being used. We want to point out that our
implementation has no way to determine the correctness of the results provided by the rea-
soner. Thus, it is imperative that a suitable reasoner is chosen to guarantee finding correct
results. Further, we noticed there are slight differences in how the interfaces are implement
by HermiT and ELK (mainly due issues in ELK), but were able to compensate using a dedi-
cated wrapper class when using ELK. We expect similar effort would be required in order to
use other reasoners.

3https: //github.com/liveontologies/elk-reasoner/wiki/OwlFeatures

46

https://github.com/liveontologies/elk-reasoner/wiki/OwlFeatures

5. Implementation

5.2. Input data

As the purpose of this implementation is to answer approximate 2RPQs over DL KBs, it
naturally processes 3 types of inputs: 2RPQs, Distortion Transducers, and DL KBs, the latter
given by the means of ontologies according to the OWL2 Standard. RPQs and Transducers
are expected to be given as input files using a specific format, as described below.

5.2.1. Regular Path Queries and Distortion Transducers

RPQs and Transducers are expected to be given as text files using a specific mixture of
keywords and DL vocabulary. The input format is designed to represent the form of finite
automatons. Note that, while giving 2RPQs using regular expressions might be desirable
depending on the use case, this is currently not supported by our implementation.

- file extension and encoding: The expected file format is an UTF-8 encoded text file.
Supported file extensions are either .txt or the dedicated . tinput.

- functional keywords - nodes, edges: These terms mark the beginning of a section
containing the respective data.

Such an input file contains two sections, each opened using the respective keyword. The
section nodes contains all nodes present in the query automaton. Each such node is sepa-
rated by a new line, and each such line must comply to the following format:

(node identifier), (initial node?), (final node?)
where:

* node: a string representing the unique node identifier, consisting of at least 1 charac-
ter.

+ initial node?: a string being either: true if the node is an initial node, false other-
wise

+ final node?: a string being either: true if the node is a final node, false otherwise

Accordingly, the section edges contains all edges present in the automaton. The format
of these lines depends on whether the input file represents an RPQ or a transducer.
2RPQs:

2RPQ edges are given by lines of the following format:

(sourceNode), (targetNode), (label)

where sourceNode and targetNode are node identifiers introduced in the nodes section,
and label is a string representing either a Concept assertion from {A? | A € Nc} or a DL role
name from N;E. Inverse roles are stated by using inverse(r) with » € Ng. An example is

given in figure[5.1]

47

5. Implementation

nodes Vegan?
s@, true, false

s1, false, false

SEerves
s2, false, true <:%z>
edges é
s@, s1, serves 69

s1, s1, Vegan? Q

s1, s2, inverse(serves)

Figure 5.1.: Example 2RPQ input file and its automaton representation ¢

nodes Vegan?,Vegan?,0
to, true, true serves, contains, 2
edges

serves—,Vegan?,h
t0, 10, Vegan?, Vegan?, ©

t0, tO0, serves, contains, 2

t0, t0, inverse(serves), Vegan?, 5 a

Figure 5.2.: Example transducer input file and its automaton representation Ty

Distortion Transducers:

Transducer edges differ from 2RPQ edges in the way that they use an additional outputlLa-
bel as well as the distortion cost:

(source node), (target node),
(inputlLabel), (outputlLabel), (distortionCost)

Here, inputlLabel and outputlLabel are strings in a similar format as label is for query
edges. Additionally, distortionCost is an Integer value representing the distortion cost. An

example is given in figure 5.2}

5.2.2. OWL2 Ontologies

As means to process DL KBs, OWL Ontologies according to the OWL2 specification [Gra+08]
are used. The information stored in such an ontology is access using the OWL API. TinDL sup-
ports all (even optional) syntax variants as specified for OWL2E} The following file formats
are supported:

* RDF/XML (. rdf): The standard file format for OWL2 Ontologies. Support for this ex-
tension which support is mandatory for all OWL2-compatible services.

+ OWL/XML (.owl): A different XML specification aimed to provide easier processing
using XML tools?]

+ OBO format (.obo): A syntax format developed by the Open Biological and Biomed-
ical Ontologies (OBO) Foundry, specifically designed for the biomedical domain. The
format is compatible with other OWL2 Syntax specifications ([Tir+11]).

“https://www.w3.org/TR/owl2-overview/
Fhttps://www.w3.0rg/TR/2012/REC-owl2-xml-serialization-20121211/

48

https://www.w3.org/TR/owl2-overview/
https://www.w3.org/TR/2012/REC-owl2-xml-serialization-20121211/

5. Implementation

+ Manchester Functional Syntax (.omn): A representation using Manchester Syntaxﬁ a
user-friendly syntax designed to be easily read- and writeable by humans.

+ Functional-styl Syntax (.ofn): A syntax variant aimed to allow expressions that resem-
ble the structural specification of OWL2 Ontologiesﬂ

+ Turtle (.ttl): Terse RDF Triple Language - an optional syntax specification for OWL
Ontologied?]

Our implementation uses IRIs (Internationalized Resource Identifiers, see IETF Standard
RFC3987°) to uniquely identify ontologies and their contained entities. Most ontologies fol-
low the proposed naming conventions for OWL 2, using entity IRIs that usually consist of
two parts: The base ontology IRI, and some suffix denoting the entities unique identifier
within the ontology. The suffix is separated from the ontology IRl by either the symbol #
(ontologyIRI#suffix), or is the final sequment of a path-like IRl (ontology/iri/suffix).
Examples for such IRIs are http://snomed.info/id/582220086 (SNOMED) or
http://swat.cse.lehigh.edu/onto/univ-bench.owl#Professor (LUBM).

While entity IRIs are required to be unique within an ontology, they are usually quite long
and rather inconvient to handled by an user. In order to allow a human-friendly vocabulary
for the input query and transducer, our implementation uses a specific short form of an IRl
to find matching terms within the query and transducer vocabulary. Usually, this short form
corresponds to the suffix explained above. The exact way how these short forms are gen-
erated depends on the entities IRI, and is explained in the OWL API documentatior‘m Note
that these short forms are guaranteed to be unique only if all entities within an ontology use
an appropriate naming convention. Our implementation does not verify the uniqueness of
short forms. In order to avoid ambiguity, the user must make sure the input ontology uses
appropriate entity IRIs.

These short forms could still lead to unexpected results if when importing multiple ontolo-
gies. To prevent this, TinDL does not use the import closure of the provided ontology. This
is not a restriction, but it does require the user to provide ontology files that do not rely
on imports. This, for example, can be done by using Protegée to merge all imports into one
ontology and saving the result as a new file.

5.3. Data modeling and representation

In this section, we will discuss how certain data structures are modeled within the imple-
mentation and explain why the given representation was chosen.

5.3.1. Conjunctions of concept names

The presence of an ELHT, KB requires dealing with conjunctions of concept names, which
usually are represented using sets of concept names. The size of these sets is limited only by
the amount of concept names present in the KB. In order to deal with such sets efficiently,
our implementation uses a binary representation. This is done by assigning a unique index

6https://WWW.WS.org/TR/ole—manchester—Syntax/

Thttps://www.w3.0org/TR/2012/REC-owl2-syntax-20121211/

8https://www.w3.org/TeamSubmission/turtle/

Inttps://www.ietf.org/rfc/rfc3987. txt

'9TinDL uses an instance of SimpleShortFormProvider, see http://owlcs.github.io/owlapi/apidocs_5/
org/semanticweb/owlapi/util/SimpleShortFormProvider.html

49

https://www.w3.org/TR/owl2-manchester-syntax/
https://www.w3.org/TR/2012/REC-owl2-syntax-20121211/
https://www.w3.org/TeamSubmission/turtle/
https://www.ietf.org/rfc/rfc3987.txt
http://owlcs.github.io/owlapi/apidocs_5/org/semanticweb/owlapi/util/SimpleShortFormProvider.html
http://owlcs.github.io/owlapi/apidocs_5/org/semanticweb/owlapi/util/SimpleShortFormProvider.html

5. Implementation

to each concept name, and using a binary array to denote, for each index, whether the con-
cept name is contained within the set.

The following example shows how these sets are implemented:

Let K = (T,A) be an ELHI | KB with |Sig(T) N N¢| = n, i.e. there are n distinct concept
names present in 7. Assign to each concept name ¢ a unique, fixed value i(c) from the in-
terval [0,n) s.t. i(c) # i(c) for all ¢, ¢ € Sig(T) N Nc.

Let M C (Sig(T) N Nc¢). Now, let b = (0)" be a n-ary array of binary values and b(k) denote
the value at the k-th position (0 < k£ < n). Now, for each ¢ € M, set b(i(c)) = 1. By interpret-
ing b as a binary number, we obtain a value v(b) € N,v(b) < 2™ that uniquely represents the
set.

Our implementation uses the Kotlin ULong data type, a primitive 64-bit unsigned Long Inte-
ger implementation that supports bitwise operations. While we note that this restricts the
amount of concept names to 64 when processing ELHZ, KBs, this restriction is situated
well above other limitations on amount of concept names for ELHZ | KBs that can reason-
ably be processed by our implementation, as explained in section ?? INSERT REFERENCE.

The binary representation of these sets features two major advantages for our implemen-
tation: Any conjunction can be saved using only 64 bits of memory, while at the same time
allowing for very efficient checking of equality and containment between two such sets: As-
suming a 64-bit JVM runtime is used to run TinDL, checking whether M C M’ using their
binary representation requires only a single bitwise comparison and is thus feasible in con-
stant time. The latter is heavily used during the construction of the loop tables.

For £LH KBs, concept names can be represent in a similar fashion by simply using their
index value. It is more than enough to store these using 32-bit integers. This way, a the-
oretical amount of 232 different concept names can be handled - a limit well beyond any
currently existing ontology that we are aware of.

5.3.2. Loop tables

For the construction of sp and spa as explained in chapter [4} our implementation needs
to store all information contained within these tables during the entire answering process.
Considering that the amount of entries in spa can be very large, especially for ELHZ | KBs,
the representation of this data is a crucial aspect of the implementation.

For both ELH and ELHTI,, the tables are stored using the Kotlin HashMap implementa-
tion. This is an unordered collection of Key-Value pairs, where the keys are referenced by
a numeric hash value, and the value is a 32-bit integer. Recall that an entry in spa is a tu-
ple ((s,t), (¢,t),C), where s,s',t,t" are states from R resp. ¥, and C' is either a concept
name (for ELH) or a conjunction of concept names (for ELHZ |). States from R and ¥ have
unique string identifier obtained from the input file, and C uses a unique, binary represen-
tation. We use a 32-bit hash values, computable in constant time, to encode each of these
components, and the sum of these hash values to reference a table entry.

It is important to note that HashMaps in Kotlin are collision-save, i.e. in case there are mul-
tiple keys with the same hash value, a specific comparison function is used to decide which
key was referenced when accessing the map. Our implementation makes sure there is such
a function to correctly discriminate all entries. This comparison uses the unique string iden-

50

5. Implementation

tifiers for query and transducer states, and the binary representation of the tails. Therefore,
accessing an entry in spa only requires constant time, independent of the number of entries.
This is an important property of our implementation in order to respect the upper bounds
for combined complexity obtained for the construction of sp and spa.

Considering the vast amount of read and write operations to the entries in spa required, us-
ing external memory to store spa is not an option. Unfortunately, this leads to the amount of
entries in spa being the main limiting factor for scalability of our implementation. Assuming
a 64-bit JVM runtime and a generous amount of 16GB of memory, we can quickly determine
an upper bound on the size of spa that can be stored:

Recall that the amount of entries in spa is |Qx| - |Q<| - |T(Ux)|. For each entry in spa, we
need to store a total of 64 bits (8 bytes). Using a maximum of 16GB of memory, the maxi-
mum amount of values that can be stored is approximately 23!,

Now, consider an example 2RPQ and transducer with 4 states each. Then, the maximum
size of T(Uy) that can be stored is 227. For an ELHZ | KB, the size of T(Ux) corresponds to
215I8(T)NNel _leaving us with a maximum of 27 different concept names in our KB. Looking at
existing ontologies, one quickly realizes that this restriction severely limits the use cases of
our implementation.

The Leight University Benchmark Ontology (LUBM) [GPHO5] is one of the smallest represen-
tatives of ELHZ, ontologies frequently used for benchmarking and evaluating OWL tools.
The original version of LUBM contains 43 different class names. For TinDL to be able to han-
dle this using our 4-state query and transducer, one would, in theory, require at least 1.5
Exabyte of memory. This absurd example shows a severe limitation of the approach pre-
sented in this work when dealing with ELHZ | KBs.

The situation looks far more promising when looking at ELH KBs. Here, the size of T(Ux) is
limited by the amount of concept names in the T-Box. The famous SNOMED ontology, one
of the largest ontologies present and often regarded as the ultimate challenge when eval-
uation OWL tools, currently contains approx. 360.000 classes. If we consider again a limit
of 16GB of memory, this leaves us with a factor of 6000 for |Qu| - |@<|. Looking at current
consumer-level hardware, we therefore argue that the memory requirement to store spa is
unlikely to be a limiting factor in terms of scalability when dealing with ELH KBs.

5.4. Description of the answering process

The answering procedure is initiated by providing the input files along with a run configura-
tion containing additional input data. TinDL provides a REST-API for uploading input files and
submitting run configurations. Documentation on how to use the provided endpoints and
how to submit run configurations is included with the source code.

After parsing the input query and transducer files, the ontology is loaded using the OWL
API framework. Along with loading the ontology, a set of essential services for processing
the ontology data are initialized. This includes the OWL Reasoner, embedded in a caching
utility which allows us to reuse reasoning results and to incrementally calculate the role hier-
archy using a pay-as-you-go principle. This utility also supports ‘prewarming’ the reasoning
cache, offering a significant performance improvement at the expense of preliminary pro-
cessing time and memory usage.

57

5. Implementation

Once the ontology is loaded, the tables spa and sp are calculated using an implementation
of the algorithms explained in chapter Subsequently, a graph structure representing Gy ,
is constructed using the information in sp. The construction process differs slightly depend-
ing on whether the ontology conforms to ELH or ELHZ |, but in both cases, the resulting
graph is uniform and independent of the underlying description logic.

Finally, the graph Gy, is used to obtain the appropriate results. The final step depends
on type of reasoning problem that was specified in the run configuration. In the following, it
is described how Gy, is used to answer the reasoning problems defined in section

+ cost computation: Answering the cost computation problem is achieved by running a
single-source Dijkstra algorithm on the graph structure Gy, ,. Two identifiers a,b are
obtained from the run configuration. The set of starting nodes consist of all nodes
(s,t,a) in Gy, st. s € In and t € Iz. Accordingly, the set of final nodes consists
of all nodes (¢/,t,b) st. s € Fn and ¢’ € Fz. The answer is obtained by running
a single-source Dijkstra implementation from each starting node to each final node.
The minimum value obtained from such a run is returned as result.

+ t-entailment: For answering m-entailment, the run configuration is required to contain
two identifiers a,b and a threshold value u. The result is obtained in a similar way
to the cost computation problem, but the computation is stopped as soon as a path
from (s, t,a) to (s',',b) with a cost lower than p is found. The result is a boolean value
indicating whether such a path was found.

« query answering: To compute all certain approximate answers, a Floyd-Warshall imple-
mentation is used to find the cost of a shortest path between all nodes in Gy, ,. Then,
a filtering operation is used to find all tuples (a, b,74) S.t. a,b € Ind(A) and 5, is the
minimum cost of a path from some (s, t,a) to some (s',¢',b) st. s € I, s’ € Fx,t € Iz
and t’ € Fz. The set containing all such tuples is returned.

+ threshold query answering: A threshold value u is obtained from the run configuration.
The answering procedure is similar to the query answering problem, but a set containing
only such tuples (a, b, n,,5) Where n,, < pis returned.

5.5. Testing and Evaluation

The implementation process followed the principles of Test-Driven Development (TDD). Cor-
rectness of results was validated using a set of small, hand-crafted ontologies, along with
corresponding small queries and transducers. Due to the lack of any existing implementa-
tion that could be used to verify the correctness of our prototype implementation, we did
manual calculations and used these to ensure the correctness of the individual steps of the
answering process. However, the variety of inputs we could verify in this way remains rather
limited.

We conclude this chapter by presenting the results of some experiments used to evalu-
ate our implementation in terms of computation time required to construct spa and sp. A
comprehensive evaluation covering all variants of input variables poses a very challenging
task itself, and unfortunately was beyond the scope of this thesis. However, we expect that
there are many ways to improve our results, and hope that further work on this topic can
pave the way to more robust implementations of this kind.

52

5. Implementation

We start by explaining the methodology behind our evaluation. All experiments were con-
ducted usingan ELH and ELHZ, variant of a small benchmark ontology (16 concept names,
54 axioms, 3 individuals). As input queries, the experiments used randomly generated
2RPQs MR with a fixed amount of states Qi and a fixed amount of edges ds. As input trans-
ducers, we used automatically generated transducers with a single state representing the
word edit distance between the string representation of the elements in the query alphabet
and the concept and role names present in the ontology.

We used our internal benchmarking tool to track the time required to construct the tables
spa and sp. Additionally, the amount of entries in the final table spa with values v # oo were
tracked. The results for ££H are shown in Table[5.1] For ELHT |, the results are shown in
table The size of Qun,d9x and dz used as input is specified in the first 3 columns. The
column Time spa’ shows minimum, maximum and average time required to construct the
table spa. Similar results for the construction of sp are shown in the next column. The final
column denotes the amount of entries in contained in spa with a value other than oo after
the construction was finished. Note that the time values in tableis given in milliseconds,
whereas the time values in table[5.2]are given in seconds.

The result show the expected increase in computational effort when using the ELHT | ver-
sion of the benchmark ontology. For a random query with R with |Qux| = 5 and [dn| = 15,
the construction of table spa required an average of 4.73ms for EL£LH, whereas an input of
the same size required an average of 50.11s for ELHT, - almost 10* times as long.

Time spa (MSs) Time sp (Ms) Size spa

|Qn| | |9m:| | |[0=] | min | max | avg | min | max | avg | min|max|avg
5 [1580 [1.11]300.15| 473 |1.49]10.69| 1.49 | 16 | 320 | 99
5 125(120(1.85]21497| 7.06 |1.61]1541| 353 | 16 | 320 | 172
5 |50 |1727.57]30093|17.38|517|30.89|11.14| 80 | 320 | 27

Table 5.1.: Experimental results for queries of different size for E£LH. Each experiment was
repeated 200 times to obtain the average values.

Time spa (S) Time sp (s) Size spa

|Qnl | |0m:] | [0=| | min | max avg | min | max | avg min max avg

5 15|80 |3535| 77.88 | 50.11 | 1.21| 830 | 5.83 | 783,354 | 1,304,568 | 1,251,066

5 125 (120]87.71|155.26 11531 19.04|30.21|17.21|974,921 | 1,399,851 | 1,303,035

Table 5.2.: Experimental results for queries of different size for ELHZ | . Here, each experi-
ment was repeated 10 times.

53

6. Conclusions

In this thesis, we have developed and implemented a practical procedure for answering
Two-Way Regular Path Queries over ELH and ELHT , Knowledge Bases under approximate
semantics. To this end, we have shown that the approximate semantics proposed in [FT21]
can be extended to cover the more expressive DLELHZ |, and have explained how to adapt
the answering procedure presented therein. Based on these results, we have developed a
practical algorithm that constructs the relations sp and spa, which are crucial components
of the answering procedure. Our algorithm includes several optimizations to enhance per-
formance across a range of input scenarios.

For ELH, we have shown that our algorithm constructs sp and spa in at most polynomial
time for combined complexity, and thus matches the upper bound obtained from [FT21].
For ELHI, , we already inherit EXP-Time completeness from answering 2RPQs under clas-
sical semantics [BO15], but we again obtain matching complexity results for our algorithm.
Finally, we explain several details of the implementation, including how the input data is pro-
cessed and how key data structures are represented.

To the best of our knowledge, our implementation is the first of its kind. Moreover, we
are not aware of an implementation that supports answering 2RPQs over ELH and ELHT |
KBs under classical semantics. Lacking any comparable system, we were not able to evalu-
ate our implementation in a competitive sense. Instead, we performed a basic evaluation,
measuring computation times for a small benchmark ontology with varying input query and
transducer automaton sizes.

Naturally, these experiments do not paint the complete picture. However, a comprehen-
sive evaluation of the implementation poses a very challenging task itself, and was beyond
the scope of this thesis. This can not be done by simply varying the size of the inputs. Due to
the very complex interaction between the input data, it is not trivial to determine how much
effort the single computation steps require, and how much benefit is gained from the em-
ployed optimizations. A particularly interesting task for future evaluation involves testing the
implementation on 'realistic’ inputs, i.e. non-trivial queries over ontologies that see practical
usage. However, we must acknowledge that the implementation presented here is severely
restricted in its ability to process large ontologies, mainly due to the rather large amount of
memory required. This is especially the case for computing answers over ELHZ, KBs.

Finally, we hope that our implementation sees some practical usage and can act as a foun-
dation for further improvements.

54

7. Bibliography

[Abi23]

[BBLOS]

[BBLOS]

[BO15]

[BOS13]

[BVLO4]

[Flo62]

[FT21]

[Gli+14]

Konrad Abicht. “OWL Reasoners still useable in 2023". In: ArXiv abs/2309.06888
(2023). url:https://api.semanticscholar.org/CorpusID:261705956|

F.Baader, S. Brandt, and C. Lutz. “Pushing the EL Envelope”. In: Proceedings of the
Nineteenth International Joint Conference on Artificial Intelligence [/CAI-05. Edinburgh,
UK: Morgan-Kaufmann Publishers, 2005.

Franz Baader, Sebastian Brandt, and Carsten Lutz. "Pushing the EL Envelope Fur-
ther”. In: In Proceedings of the OWLED 2008 DC Workshop on OWL: Experiences and
Directions. Ed. by Kendall Clark and Peter F. Patel-Schneider. 2008.

Meghyn Bienvenu and Magdalena” Ortiz. “Ontology-Mediated Query Answering
with Data-Tractable Description Logics”. In: Reasoning Web. Web Logic Rules: 11th
International Summer School 2015, Berlin, Germany, July 31- August 4, 2015, Tutorial
Lectures. Ed. by Wolfgang Faber and Adrian Paschke. Cham: Springer International
Publishing, 2015, pp. 218-307. isbn: 978-3-319-21768-0. doi:[18.1007/978-3-
319-21768-0.9. url: https://doi.org/10.1007/978-3-319-21768-0.9.

Meghyn Bienvenu, Magdalena Ortiz, and Mantas Simkus. “Conjunctive regular
path queries in lightweight description logics”. In: Proceedings of the Twenty-Third
International Joint Conference on Artificial Intelligence. IJCAI '13. Beijing, China: AAAI
Press, 2013, pp. 761-767. isbn: 9781577356332.

Sean Bechhofer, Raphael Volz, and Phillip Lord. “Cooking the semantic web with
the OWL API". In: vol. 2870. July 2004. isbn: 978-3-540-20362-9. doi: 10 . 10087 /
978-3-540-397/18-2_42|

Robert W. Floyd. “Algorithm 97: Shortest path”. In: Commun. ACM 5.6 (June 1962),
p. 345.issn: 0001-0782. doi:[18.1145/367766 .368168. url:|https://doi.org/
10.1145/367766.368168.

Oliver Fernandez Gil and Anni-Yasmin Turhan. “Answering Regular Path Queries
Under Approximate Semantics in Lightweight Description Logics”. In: Proceed-
ings of the 35th AAAI Conference on Artificial Intelligence (AAAI'21). AAAI Press, 2021,
pp. 6340-6348.

Birte Glimm et al. “"HermiT: An OWL 2 Reasoner”. In: Journal of Automated Rea-
soning 53 (2014), pp. 245-269. url: https : / / api . semanticscholar . org/
CorpusID:15513227.

55

https://api.semanticscholar.org/CorpusID:261705956
https://doi.org/10.1007/978-3-319-21768-0_9
https://doi.org/10.1007/978-3-319-21768-0_9
https://doi.org/10.1007/978-3-319-21768-0_9
https://doi.org/10.1007/978-3-540-39718-2_42
https://doi.org/10.1007/978-3-540-39718-2_42
https://doi.org/10.1145/367766.368168
https://doi.org/10.1145/367766.368168
https://doi.org/10.1145/367766.368168
https://api.semanticscholar.org/CorpusID:15513227
https://api.semanticscholar.org/CorpusID:15513227

[GPHO5]

[Gra+08]

[GTO5]

[HB11]

[KKS14]

[MSHO9]

[Tir+11]

[TRM21]

[War62]

7. Bibliography

Yuanbo Guo, Zhengxiang Pan, and Jeff Heflin. “LUBM: A benchmark for OWL
knowledge base systems”. In: Journal of Web Semantics 3.2 (2005). Selcted Papers
from the International Semantic Web Conference, 2004, pp. 158-182.issn: 1570-
8268. doi: https://doi.org/10.10816/7 .websem.2005 .06 .005. url: https:
//www.sciencedirect.com/science/article/pii/S1570826805000132

Bernardo Cuenca Grau et al. "OWL 2: The next step for OWL". In: Journal of Web Se-
mantics 6.4 (2008). Semantic Web Challenge 2006/2007, pp. 309-322. issn: 1570-
8268. doi: https://doi.org/10.1016/7 .websem.2008 .05 .001. url: https:
//www.sciencedirect.com/science/article/pii1/S1570826808000413.

Gosta Grahne and Alex Thomo. “Regular path queries under approximate se-
mantics”. In: Annals of Mathematics and Artificial Intelligence 46 (2005), pp. 165-
190.

Matthew Horridge and Sean Bechhofer. “The OWL API: A Java API for OWL on-
tologies”. English. In: Semantic Web 2.1 (2011), pp. 11-21. issn: 1570-0844. doi:
10.3233/SW-2011-0025.

Yevgeny Kazakov, Markus Krotzsch, and Frantisek Simancik. “The Incredible ELK:
From Polynomial Procedures to Efficient Reasoning with ££ Ontologies”. In: J.
Autom. Reasoning 53.1 (2014), pp. 1-61. doi:[10.1007/s10817-013-9296- 3.

Boris Motik, Rob Shearer, and lan Horrocks. “Hypertableau Reasoning for De-
scription Logics”. In: Journal of Artificial Intelligence Research 36 (2009), pp. 165-
228.

Syed Tirmizi et al. “Mapping between the OBO and OWL ontology languages”.
English. In: Journal of Biomedical Semantics 2(Suppl 1).S3 (2011), pp. 1-16. issn:
2041-1480. doi:10.1186/2041-1480-2-S1-S3

Santiago Timon-Reina, Mariano Rincon, and Rafael Martinez-Tomas. “An overview
of graph databases and their applications in the biomedical domain”. In: Database
2021 (May 2021), baab026. issn: 1758-0463. doi: |10. 1893 /database/baab026.
eprint: https://academic.oup.com/database/article-pdf/doi/10.10893/
database/baab026/37952095/baab026 . pdf. url: https://doi.org/10.1093/
database/baab026

Stephen Warshall. “A Theorem on Boolean Matrices”. In: /. ACM 9.1 (Jan. 1962),
pp. 11-12.issn: 0004-5411. doi:[10.1145/3211085.321107. url: https://doi.
org/10.1145/321105.321107

56

https://doi.org/https://doi.org/10.1016/j.websem.2005.06.005
https://www.sciencedirect.com/science/article/pii/S1570826805000132
https://www.sciencedirect.com/science/article/pii/S1570826805000132
https://doi.org/https://doi.org/10.1016/j.websem.2008.05.001
https://www.sciencedirect.com/science/article/pii/S1570826808000413
https://www.sciencedirect.com/science/article/pii/S1570826808000413
https://doi.org/10.3233/SW-2011-0025
https://doi.org/10.1007/s10817-013-9296-3
https://doi.org/10.1186/2041-1480-2-S1-S3
https://doi.org/10.1093/database/baab026
https://academic.oup.com/database/article-pdf/doi/10.1093/database/baab026/37952095/baab026.pdf
https://academic.oup.com/database/article-pdf/doi/10.1093/database/baab026/37952095/baab026.pdf
https://doi.org/10.1093/database/baab026
https://doi.org/10.1093/database/baab026
https://doi.org/10.1145/321105.321107
https://doi.org/10.1145/321105.321107
https://doi.org/10.1145/321105.321107

Appendix

A. Algorithms and Proofs

A.1. Calculating rule S1 for ELHZ, KBs
A.1.1. Stage 1b: Extracting transducer edges

Similar to the ELH case, the first stage extracts transducer edges of the form (¢, u, R, w1, t1)
and (te,u’, R”, we,t") that have a corresponding query edge. To account for the presence of
inverse roles in the ontology, R’ and R” can be chosen arbitrarily from N;f.

Stage 1b: Filtering transducer edges

Input: A2RPQ R, a dt g, (8, t), (81, tl), (82, tz), (8/, t/) S (Qm X QT)4
Output: Two sorted sets edgesDown C dz and edgesUp C oz

2: set edgesDown := {(t,u, R',wi,t1) | (s,u,s1) € O, (t,u, R'jwy,t1) € 65, R’ € Néc}
3: setedgesUp := {(to,u/, R" jwo, ') | (s2,u',s") € o, (t2,u, R wo,t') € 6, R" € N%}
4. sort edgesDown and edgesUp by w in ascending order

57

7. Bibliography

A.1.2. Stage 2b: Extracting feasible roles

Stage 2b: Extracting feasible roles

Input: An ELHI, KB K = (T, .A), sorted sets edgesDown C d5 and edgesUp C dz from
Stage 1b
Output: A set candidateRoles C (Ng N Sig(T) x N)

6: initialise candidateRoles = {}
7. for all R € Nr N Sig(T) do

8: initialise downCost := oo, upCost := co
o: for all (t,u, R',wy,t1) € edgesDown do
10: if T = RC R then
11 set downCost := w;
12: exit and continue at line 14
13: end if
14: end for
15: if downCost = oo then
16: discard and continue with next r
17: end if
18: for all (t2,u, R”, we,t') € edgesUp do
19: if T = R~ C R" then
20: set upCost := wo
21: exit and continue at line 23
22: end if

23: end for

24 if upCost = oo then

25: discard and continue with next r

26: end if

27: add (r, downCost + upCost) to candidateRoles
28: end forreturn candidateRoles

58

7. Bibliography

A.2. Procedure S2 - ELHT |

Procedure S2 - ELHTI |

Input: AnELHT | KBK = (T,A), a2RPQ R, adt¥
Output: relation spa containing all updated entries

1. initialize empty table spa
2. forall (s,t), (s',t') € (o x 5)? do

3: if s=s"andt=t"then

4: Skip and continue with next (s, t), (s, t)

5: end if

6: set edges := {(t,u, A?,w,t') | (s,u,s) € on, (t,u, A?,w,t') € 6z, A € N¢}

7: for all (t,u, A?,w,t") € edges do

8: Calculate subsumers := calculateSubsumers(A)
o for all M € subsumers do
10: set spa|(s,t),(s',t"), M] := min(spa|(s,t), (s, '), M], w)
1 end for
122 endfor
13: end for
14

15: return spa

A.3. Procedure SP

Procedure SP - ELH

Input: An ELH KB K = (T,.A), a 2RPQ R, a dt T, loop table spa
Output: relation sp

1: initialize splp, q,C] = oo for all (p,q,C) € (dp x 65)% x T(Uk)
2. forall p,q,p.,p, € (6 x d7)* do

3: set (down,up) := filter Edges(p, q,p1,P.)

4: set candidateRoles := filter Roles(down, up)

5 for all (r,w) € candidateRoles do

6: forall A € T(Ux) do

7: Calculate subsumees := {C' | C € T(Ux),C C Ir.A}
8: for all C € subsumees do

o: if splp,q,C] > w + spalp,, p,, A] then
10: set splp, q,C] := w + spa[p,, p,, Al
11 end if
12: end for

13: end for
14: end for

15: end for
16:

17. return sp

59

7. Bibliography

Procedure SP - ELHT |

Input: AnELHT, KBK = (T,.A), a 2RPQ R, a dt T, loop table spa
Output: relation sp

1. initialize empty relation sp

2. for all (p,q,p.,p, € (0 x d5)* do

3: calculate (down,up) := filter Edges(p, q,p1,P,)

4: calculate candidateRoles := filter Roles(down, up)

5 forall a € Ind(A) do

6: setv =00

7 Calculate M :={C | K = C(a)}

8 for all (r,w) € candidateRoles do

9: initialise eliminated := {}
10: for all My € T(Ux)|do
11: if v <w+ spalpy, p,, Mq] then
12 Discard and continue with next M;
13: end if
14:; if My, C M' for some M’ € eliminated then
15: Discard and continue with next M;
16: end if
17: if T = M C 3r.M,; then
18: set v := w + spalpy, p,, Mi]
19: else
20: add M to eliminated
21: end if
22: end for
23: end for
24: set splp,q,al =v
25: end for
26: end for

2 elements are required to be processed in a specific order, see Remark

A.4. Proof of Lemma @

Lemma. Let R g 2RPQ, T a distortion transducer, K = (T, A) an ELHI, KB, spa a loop table
and spa* a fragment of spa containing all updated entries since the previous iteration of f. For
all M € T(Ux), the following holds:

After a run of Procedure S1-ELHT,, we have spa™|[(s,t), (s',t'), M] = v iff v is the min/maE]
updated value after applying rule ST to ((s,t), (s',t"), M).

Proof. From section |4.3.1.2} we obtain that lines 11-14 of Procedure ST - ELHI, do not
change the results in spa™*, and therefore are not considered here.

(«<) Let M € T(Ux). We consider two cases: First, if spa[(s,t), (s',t'), M] was not updated
during an application of S1, there is no (¢,u, R, w1,t1), (t2,u', R wa,t') € o5 and My €
T (Ui) s.t. Condition C2* is satisfied and wi+spa(s1, t1), (s2, t2), Mi|+ws < spa[(s,t), (s',t'), M].

2We can assume that v is the minimum value amongst all non-deterministic S1-Applications to
((87t)7(sl7t/)7M)

60

7. Bibliography

By Lemma |2} it holds that candidate Roles = &, and thus spa** contains no entries.

For the second case, assume spal(s, t), (s',t"), M| was updated with value v by an S1-application.
Then, there is (t,u, R, w1, t1), (t2,u’, R jwe,t') € oz, (s,u,s1),(s2,u,8") € o, 1 € Néﬁ and
A € N¢ s.t. Condition C2* is satisfied, i.e. it holds that:

() v =w1 + spal(s1,t1), (s2,t2), M1] + wy,
(i) TErCR,TE=Er CR' and
(i) 7 = M C 3.0,

Lete = spa[(s1,t1), (s2,t2), M1]and w = wy+w,. By Lemmal[2} we have (r, w) € candidateRoles.
Additionally, we obtain spa*((s1,t1), (s2,t2), M1] = ¢ from Lemma[3] and therefore (M, ¢) €
fillers. This means there is some execution of line 11 which computes the set updates :=
{N | T | N C 3r.M,spal(s,t), (s',t'), N] > v} according to Lemma[8 As v can be used
to update spal(s, t), (s',t'), M], it holds that spa[(s,t), (s',t'), M] > v. Together with (iii), it
follows that M € updates. As a consequence, we obtain spa™*[(s,t), (s',t'), C] < v after pro-
cessing line 13.

Assume spa**[(s, t), (s',t"), M] < v. Then, there must exists some (s,w’) € candidateRoles
and (Ma,) € fillerss.t. T = M E 3s.Ms and w’ + ¢ < v. By Lemma 2, this implies there
are ey = (t,u, S, wi,t1) and ey = (to,u/, 8", wh,t') € dz withw' = wj +whH st. T E sC S,
T EsCS” and ¢ = spa*((s,t), (s',t'), Ma] st. T = C C 3s.Ms. Then, Condition C2* is sat-
isfied using eq, e2 and B. Consequently spa[(s,t), (s',t"), M| could have been updated with
w) + ¢ + wh < v, which is a contradiction to v being the minimal updated value. It follows
that spa*™*((s,t), (s',t"), M] = v.

B. Construction of sp and spa for ELHZ | KBs

In order to lift the concepts from ([FT21]]) to the ELHT | setting, we need to extend the defi-
nitions of sp and spa. The computation of these tables follows the general idea from the ££
and DLy, settings, with adjustments accounting for the different domain of U:

Similar to the ££ and DLy, settings, the table sp contains the minimal costs ¢* of an a-
path from (s, t,a)to (¢, ¢, a) in Gy, using entries of the form [(s, t), (¢, t'), a, with (s,), (s/,t') €
Qx X Qz and a € Ind(A). The table spa uses entries of the form [(s,t), (¢, t'), M], with
M C Ng, which contain the minimal cost of an e-path from (s,t,¢e) to (s¢',t',e), where
e € AYc \ Ind(A) and tail(e) = M.

By definition of Ux and Gy, , an a-path from (s,t,a) to (s',¢,a) in Gy, must be of the
form:

(s,t,a) wy (s1,t1,aRM) v (s9,ta,aRM) wy (8,1, a),

where (s, t1,aRM) 7y (s2,t2,aRM) is an aRM-path.

61

7. Bibliography

The form of such an a-path tells us that each value sp[(s,t), (s',t'), a] corresponds to the
minimal value of an expression of the form w; + spa[(s1,t1), (s2,t2), M] + wy with M =
{C1,...C, } a conjunction of concepts in set notation, such that the following condition is sat-
isfied:

Cl. M CNe, T = MyC3IRMK | My(a), TERCZ R, TR C R (s,u,s1) € on,
(t,u, R’,wl,tl) € 6, (SQ,UI,S,) € on and (tg,u/,RH,wg,t/) € 6%.

Accordingly, we present the adjusted rules for the computation of spa:
ST spa[(s,t),(s,t), M] < wy + spal(s1,t1), (s2,t2), M1] 4+ wy, if C1* holds.
S2 spa(s,t), (s, 1), M) < w,if T = MC A, (s,u,s) € dn, and (t,u, A?,w,t') € i,
S3 spal(s,t), (s,), M] < spal(s,t), (s",t"), M] + spal(s”,t"), (s, 1), M].

C1%* is the variant of C1 with K | My(a) omitted:

C1* My CNe, TEMCESRM,TERCR,TER TR (su,s1)€dn (t,u, R,wi,t1) €
(53;, (SQ,UI,S/) S (553 and (tQ,u/,R//,'wQ,t/) S (5‘3

The following procedure SPA describes how the relation spa can be build using the con-
struction rules presented above:

Procedure SPA
Input: An ELHTI, KB K = (T,.A), a distortion Transducer ¥ and a conjunct f(¢,t’) with

(QD‘%E 59{71 F)
Output Relation spa for K, T, R

1. Initialize spalp, p, M] = 0
2: Initialize spa[p, ¢, M| = oo (if p # q)
3: Apply rule S2 to all (p, q, M) € (Qn x Q1)? x P(Sig(T))
4. Apply rule S3 until spa does not change;
5. repeat
6: spa := f(spa)
7. until spa does not change
function f

Apply rule S1to all (p, ¢, M) € (Qu x Q3)* x P(Nc)
Apply rule S3 until spa does not change;
end function

B.1. Correctness of procedure SPA

Given an ELHZ, KB K, a distortion transducer ¥ and a conjunct R(t,t’) of a C2RPQ, this
section describes that the procedure SPA constructs the relation spa as defined. We use
G, to denote the graph Goxaxu -

Recall the definition of an e-path from ([FT21]): Let e € AYx. An e-path in Gy, is of the
form (s, t,e)y(s',t',e) such that:
+ v € Nimplies e € AYx \ Ind(A), and

« ~ only visits vertices (s”, ", e') such that ¢/ € A¥x \ Ind(A) and €’ € T..

62

7. Bibliography

Now, let a € Ind(A) and 7 be an a-path from (s1,¢1, a) to (s2,t2,a) S.t. it does not visit any
a’ € Ind(A), i.e. wis aloop through the anonymous subtree rootet in a. The cost ¢; of this
path corresponds to the cost of all edges visited by .

We will show that the construction rules presented here for spa are correct by expanding
the corresponding lemmas from ([FT21]):

Lemma 15. Let (s,t), (s',t') € Qu X Qz, e € AU\ Ind(A) and tail(e) = M. After SPA executes
line 4, spal(s,t), (s',t"), M| contains the minimum cost ¢* of an e-path of depth 0 from (s, t,e)
to (¢',t,e).

Proof. The proof follows the same general idea as the proof of lemma 10 in ([FT21]).

An e-path of depth 0O is of the form:

(s1,t1,€)wi(s2, ta, €)wa...wn—1(Sp, tn, €),

wheren > 1,{s,t}1 = {s,t} and {s, t}, = {¢,t'}. If Gy, does not contain a path from (s, t, e)
to (s', ¢, e), neither S2 nor S3 can be applied. Thus, we have spa[(s,t), (s',t'), M| = ¢* = .
Otherwise, let 7 be an e-path of depth 0 from (s, ¢,e) to (s',t',e) in Gy,

= spal(s,t),(s',t"), M] < ¢*. We use induction on the length n — 1 of = to show that

spal(s1,t1), (Sn,tn), M| < c(m).

The base case considers paths of length 1,i.e. n = 2. Such paths are of the form (s1, t1, e)w(sa, t2, €)

with cost () = w. The existence of such a path in Gy, implies that thereissomeu € N U {A? | A € N¢
and A € N¢ sit. (s1,u,82) € 6, (t1,u, A?,w,ts) € oz and e € AUk |t follows that A €

Mand T = M C A. Thus, S2 can be applied to obtain spa[(s1,t1), (s2,t2), M] < w.

For paths of length n > 2, we follow the same argument as ([FT21]) in Lemma 10: As-

sume that n > 2 and let m; be the sub-path (s1,t1,€)...(Sp—1, tn—1,€) and my the sub-path
(Sn—1,tn—1,€)Wn—1(8n, tn,€). The application of induction yields spal(s1,t1), (Sn—1,tn-1), M]

< ¢(m) and spal(sp—1,tn—1), (Sn,tn), M| < c(m2). Hence, since S3 is applied exhaustively, it

must be that spa[(s1,t1), ($n, tn), M| < c(7). Thus, since 7 is chosen arbitrarily, it follows that

spal(s,t), (s, t"), M] < ¢* .

< ¢* < spal(s,t), (s, '), M]. Consider an execution of line 3, followed from an exhaus-
tive application of S3in line 4. Note that an execution of line 3 can induce multiple updates
of spa[(s,t), (s',t'), M].

Let p1, .., pj be the sequence of updates performed along the exhaustive execution of line
3, and pj41, .., i the updates performed along the execution of line 4. We assume the se-
quence isinorder, i.e., u; is the first update and puy is the last one. In addition, we denote as
spa[(s', 1Y), (s", "), M'] the entry corresponding to the update y; and v; the updated value.
Let now e! € AU\ Ind(A) such that tail(e’) = M*. We show by induction on i that there ex-
ists an e’ -path of depth 0 in Gy, of the form m; = (s%, %, €?)...(s", "%, e?) such that c(m;) < v;.
We consider two cases:

+ i < j,i.e. p;corresponds to an application of S2. As an application of S2 is independent
of the current loop table entries, the following holds: An application of S2 implies that
T M C A (s4u,s") € ox, and (t',u, A?, w,t") € dz. Since tail(e’) = M, it holds

63

7. Bibliography

that ¢ € AUx. By definition of Gy, (s%, 1%, ¢),w, (s, ", ¢') is an edge in Gy,. Thus,
= (s', ', ew(s" 1", et) is an el-path of depth 0 in Gy, with ¢(r) = w = ;.

* i > j,1.e. u; corresponds to an application of S3. For the corresponding entry spa[(s, t), (s", "), M

we have entries spa[(s™,t™), (s, "), M] and

spal(s™, t"), (s™, "), M] st. (s™,t™) = (s, t"), (s™,t™) = (s',t)) and (s, t") =
(s"',#"%). If either of these entries was added during the execution of line 1, we would
have v; = oo, which contradicts the fact that an update was performed. Thus, we can
assume that1 < m,n < i, i.e. the entries were added during the previously performed
applications of S2 or S3. As S3 uses the entries currently present in the loop table, we
can further assume that there is no update p, with matching entries and g < m,n s.t.
vg < Uy OF vy < v, Thus, we have v; = vy, + v, the updated value. By induction,
there are ef-paths m and s of depth 0 in Gy, of the form (s?, %, ef)...(s"™, t'™, ') and
(8™ '™ eb).. (st et) st ¢(m) < vy and e(mr) < v,. Combining these paths, we
obtain 7 = (s%, 1%, €%)...(s", ¢, e?) with ¢(m) = ¢(m1) + ¢(m2) < v;.

O

We have shown that, after SPA executes line 4, each entry spa[(s, t), (s',t'), M| either con-
tains the minimum cost of an e-path of depth 0 from (s, ¢,e) to (s, ¢, e) in Gy, or contains
oo if no such path exists.

We will continue by showing that these results extend to all depths » > 0 w.r.t. 0 applica-
tions of f.

Lemma 16. Letd > 1, (s,1),(s',t) € Qun x Qg, e € AYK \ Ind(A) and tail(e) = M. After o
applications of f, spal(s,t), (s',t"), M] contains the minimal cost ¢* of an e-path of depth at most
0 from (s,t,e) to (st e).

Proof. We show by induction on the number of iterations d that spal(s,t), (s',t'), M] = ¢*.
We obtain the base case for » = 0 from Lemma 1. For the induction step, we show both
directions:

= spa|(s,t), (s, '), M] > ¢*. If spa(s,t),(s',t'), M] never gets updated during the exectu-
tions of f, the base case applies. Otherwise, suppose that spa[(s, t), (s, t'), M] is updated by
applications of S1 or S3.

+ S1:1f ST was applied, all conditions for C'1* were met for spa[(s,t), (s',t'), M]. There-
fore, we have some M; C Ng and R, R',R" ¢ NjRE st. TE MC 3RM,T E
RC R, T E R C R (s,u,s1) € on, (t,u, R wy,t1) € Oz, (s2,u/,s") € I and
(t2,u', R", we,t') € 0z. By the definition of Gy, we know that two edges exists in Gy,

(s,t,e)wi(s1,t1,€’) and (so, to, €)wa(s',t', €)

with e # ¢/, tail(e') = M’, (e,e’') € R and (¢/,e) € R™x. By Induction, the minimum
cost of an ¢/-path from (s1, t1, €’) to (s2, t2, €’) of depth © — 1 corresponds to the entry
in spa[(s1,t1), (s2,t2), M']. Therefore, we have ¢* < wy + spal(s1,t1), (s2,t2), M'] 4+ ws.
As the updated value of spa[(s,t), (s',t'), M] is w1 + spal(s1,t1), (s2,t2), M'] + wa, we
have spal(s,t), (s',t"), M] > ¢*.

+ S3: Applications of S3 are performed after all applications of ST and do not increase
the depth of the corresponding path in Gy,.. Therefore, we can follow the proof from
Lemma 1 for paths of depth 0.

64

7. Bibliography

< spal(s,t), (s',t'), M] < c¢*. An e-path of depth at most is of the form:

(s1,t1,€)71(52,t2,€)72...Yn—1(5n, tn, €) (7.1)
with (s = s,t1 = t,s, = §',t,, = '), where for all v; with 1 <4 < n either:

* v € N: Then, m; = (s;,t5,€)vi(si+1,ti+1, €) IS an e-path of depth 0. We obtain ¢(m;) >
spa[(si, tz‘), (5i+17 ti+1)7 M] from Lemma 1.

* (Si, t;, 6)%(81.@.1, tit1, 6) isan e—path of the form:

mi = (siyti, e)w' (s, b5, €)y (87, 17, €)w” (si41, tig,)

where e’ € T, tail(e') = M"and ©, = (s}, t;,¢")y(s},t!,e') is an €’-path of depth at most

1) V) R

0 — 1. The cost of m; is e(m;) = w' + e(nw)) + w”.
By Induction, we have ¢(x}) > spa[(s,t}), (s, t!), M']. Thus, we obtain ¢(m;

[[ERd R

spal(s;, th), (s¥,t]), M'] + w". It remains to show that spa[(s;, t;), (Sit+1, tit1), M]

(Rt R

spal(si, th), (¥, t7), M'] + w":

Rt PR

> w' +
<w' +

As m; is an e-path in Gy, the following edges must exists in Gy,

(si,tiye),w', (sh,t:,€) and (s, ¢!, e w” (si11, tiv1, €)

7 71 79 %1)

By the definition of Gy,., we have:
(si,u, 8t) € O, (ti,u, R w' t)) € oz with R’ € NZ, (e,e) € RYx
and respectively

(s u,si41) € O, (¢, u, R0’ t;11) € S with R” € NZ, (€,e) € R™x

Note that ¢’ € T, and tail(e’) = M'. From the definition of Uy, we obtain T = M C
JR.M'. As tail(e') = M’ and (e, e’) € RMx, there must exists some R with RYc C RUYx,
According to the definition of Uy, this requires T = R T R'. We follow the same
argument to show that 7 = R~ C R”.

Hence, all conditions for C'1* are satisfied. ST can be applied to obtain
spal(si; ti), (sit1, tiva), M] < w' + spal(sj, £7), (s7, 1)), M'] + w"
and thus
c(mi) = spal(si, ti), (sit1, tiv1), M].

The cost of an e-path of depth at most @ with the form of (1) is ¢ = ¢(m1) + ¢(m2) + ... +
¢(mp—1). We have shown that, for all subpaths m; with 1 <4 < n, it holds that ¢(m;) >
spal(si,t;), (si+1,ti+1), M]. Combining these results, we obtain ¢* > spal(s, t), (s',t"), M].

It follows that ¢* = spa(s, t), (s, t'), M]. O

Using these rules, we can make an interesting observation on the values added to the table:
For an entry spal(s,t), (s',t'), M|, the value can only decrease if we add more concept names
to M. This meets our intuition of the table spa - if an element satisfies additional concepts,
we can possibly find additional (better) loops starting from that element. Loops infered by
the other concepts present remain available.

65

7. Bibliography

Lemma 17. After SPA executes line 3, for each entry spa[(s,t), (s',t"), M), the following holds:
If M" C M, then spal(s,t), (s',t"), M] < spal(s,t), (s, "), M'].

Proof. Assume the contrary: Let M’ C M and spal(s,t), (s',t"), M'] < spal(s,t),(s',t"), M].
Then, spa[(s,t), (s',t), M'] was updated by an application of S2 with

TEMCA, (s,u,s) € om, (t,u, A?, w,t') € oz.

Because M’ C M, M is more specific than M’, i.e. it holds that MY C M™x. We obtain
T = M C M’ as a direct consequence of the semantics. Thus, it holds that 7 = M C A,
and hence the same u, A as above can be used to update spal(s, t), (s',t'), M] with w. We
have spal(s,t), (s',t"), M] < spa|(s,t),(s',t"), M'], which is a contradiction. O
This property of spa is preserved during (exhaustive) applications of S1,52 and S3:

Lemma 18. After SPA finishes, the following holds: If M’ C M, then spal(s,t), (s',t"), M] <
spal(s,t), (s, "), M'].

Proof. By Lemma the claim holds after SPA finishes Line 3. We only consider the final
update to spal(s,t), (s',t"), M'], which was either an application of ST or S3. Now, assume
the contrary: Let M' C M and spal(s,t), (s',t"), M'] < spa[(s,t), (s',t'), M].

+ S1:1f ST was applied to update spa(s, t), (s',t'), M'], we have

MicNe TEMC3RM, TERCER, TER CR
(S,’LL, 81) S 59{7 (tvua Rlvwhtl) € 557 (SQ,’U,/,S/) € 5%7 (t27uI7R”aw27tl) € 6‘2

Because M’ C M, we obtain T = M C M’, and thus T E M C 3R.M; for the
same M; as above. Using the same w, v, R', R”, we obtain: spa[(s,t),(s',t), M] <
wy + spa[(s,t), (s',t'), Mq] +wy = spa[(s,t), (s',t'), M'], which is a contradiction.

+ S3: If S3 was applied to update spa(s, t), (s',t'), M'], we have
spa[(s,t), (s',t"), M'] = spa[(s,t), (s",t"), M'] + spa[(s”, "), (', '), M].
Our claim yields:

spa((s,t), (s",¢"), M'] > spa|(s,t), (s",t"), M]
and
spal(s”, "), (s, t)), M'] > spa(s,t), (s",t"), M]

Thus, spa[(s,t), (s",t"), M] and spal(s,t), (s",t"), M] could have been used to update

spal(s,), (s',1'), M] < spal(s, 1), (s", "), M'|+-spa[(s", "), (s, '), M'] = spal(s, 1), (s', 1), M"],

which is a contradiction.

O]

To continue, we show that spa can be constructed in finite time by reaching a fixpoint
on the number of iterations of f. While Gy, can possibly be infinite, we notice that the
properties inherited from the universal model allow us to restrict our attention to a finite
fragment of Gy.. Let us consider the amount of vertices (s,t,e) € Qn x Qg x AU in Gy,
that differ in either s, ¢ or tail(e):

66

7. Bibliography

© 5 € Qn: |Qn| possible values
* t € Q: |Qz| possible values
* tail(e) € TUk): [TUk)| = |P(Sig(T))| = 2159 4+ 1.

Thus, there are m = (|Qw| - |@<]|) - |T(Ux)| different combinations of s, t, and tail(e). We will
use this property to show that we only have to consider paths of finite depth in Gy,

Lemma 19. Let (s,t), (s',t') € Qw x Qz and ey € AYx \ Ind(A) such that there is an eg-path
(s,t,ep)...(s",t',e0) in Gu,. . Then, there is one such path of minimal cost with depth at most

m = (|Qu| - |Q<])? - [T(Ux)|.

The proof is the same as for Lemma 23 in ([FT21]).

B.2. Running time of SPA

We show that spa can be constructed in exponential time in the combined size of T,R
and ¥ by using a fixpoint on the number of iterations of function f in procedure SPA. We
start by looking at the complexity of applications of rules S1-S3, which are used in SPA.
Corollary 3. An application of rule S1 is feasible in exponential time in the combined size of T, Q
and ¥.

Proof. An application of S1 can be done using the following steps:
+ 1) Guess M; € T(Ux) and R € NE U {A? | A € Sig(T)}
+ 2)Check T E M C 3R.M;
+ 3)Guess R, Ry st. RER|,R C Ry
+ 4) Check (s, u, 1) € dn, (t,u, R1,w,t1) € dz, (s1,u/,8") € o, (t1,u, Ro, w,t') € <

1) and 3) are non-deterministic in the size of T(Ux), 2) requires a subsumption check which
requires EXP-time in |T| for ELHT,, and 4) is feasible in polynomial time. Thus, we obtain
NPYP = EXP in combined complexity. O

Corollary 4. An application of rule S2 is feasible in exponential time in the combined size of T, Q
and ¥.

Proof. An application of S1 can be done using the following steps:

+ 1) Guess A € Sig(T) and u € Y s.t. (s,u,s') € o and (t,u, A?,w,t') € oz and w is
minimal

+ 2)Check TEMC A

1) is non-deterministic in the size of T(Ux), 2) requires a subsumption check which in turn
requires EXP-time in the size of T for ELHZ, . Thus, we obtain NPH® = EXP in combined
complexity. O

Corollary 5. An application of rule S3 is feasible in exponential time in the combined size of T, Q
and %.

Proof. An application of S3 can be done using the following steps:

67

7. Bibliography

-+ 1) For each (s”,t") € Q x T: Look up spal(s,t), (s”,t"), M] and spa[(s”,t"), (s',t'), M]
The amount of (s”,t") is |Q| - |Z|, thus the amount is polynomially bounded in combined

complexity. O

The amount of entries in spa corresponds to (|Qx| - |Q<|)? - |T(Ux)|. As the size of Qx and
Q< is polynomial and T (U) is exponential in the size of T, spa contains EXP-many entries
in the combined size of 7,9/ and %.

Next, we consider the amount of rule applications of S1, S2 and S3 at each line of spa:

+ Line 3: Apply S2 to all (p,q, M) € (Qw x Qs)? x T(Uy)). This requires EXP-many appli-
cations of S2 in the size if Sig(T).

- Line 4: Apply S3 once for all M € T(Ux). This requires EXP-many applications of S3in
the size if Sig(T).

- function f: Applying S1 to all (p,q, M) € (Qxn x Q<)? x T(Ux)) requires EXP-many
applications of S1 in the size if Sig(T). Applying rule S3 to all M € T(Ux) requires
EXP-many applications of S3 in the size of Sig(T)

Combining these results, we obtain that an execution of SPA requires at most EX P-time
in the combined size of 7, %t and T. By lemmalT8] SPA outputs the relation spa as required.
Then, we obtain the following result:

Corollary 6. The relation spa can be computed in at most EXP-time in the combined size of K, R
and %.

Proof.
O(SPA) =EXP-EXP+EXP-L+ m- (EXP-EXP +EXP - L) = EXP

where m is the maximum amount of applications of f. By Lemma m is bounded by a
number at most EXP-sized in the combined size of K, and ¥. O

C. Approximate semantics for ELHT |

In [FT21], it is shown that, for a C2RPQ ¢ and an ELH KB K, the set of approximate certain
answers Certg ¢(g, KC) can be characterized by only considering approximate matches in the
universal model U. We will show that the same holds for an C2RPQ g and K an ELHT | KB.

We start by introducing the notion of approximate matches for a C2RPQ ¢ in an interpre-
tation I. Given a dT ¥ and a p-ary combining function f, an approximate match for ¢ in I,
through T and f is a pair hﬁ = (h, h.), where:

* his a mapping terms(q) — AT s.t. h(b) = b’ for all b € terms(q) NN,

* he € NU oo Is the approximation cost for h with:

he = f min{cz(u,v) | u € L(R),v € X%, h(t) RN h(t')}
R(t,t')Eq

68

7. Bibliography

Given a k-tuple d of elements from A% and z = avars(q), H%j(ci) denotes the set of approx-

imate matches (h, h.) satisfying h(z) = d. Now, recall the definition of approximate answers
over graph databases from [FT21]:

Definition 6. Let ¢(z) ne a C2RPQ with p atoms, ¥ a distortion transducer and f a p-ary
combining function. The set of approximate answers of ¢ in an interpretation Z, through ¥
and f, is defined as:

snss 1(¢.2) = {(d.ny) | d € AT and n; = min{he | (h. h) € HEE(d)}}

We continue by showing that the definition of ¢ertz (g, K) from [FT21] can be extended to
the ELHT | setting.

Definition 7. Let K = (T, .A) be an ELHZ, KB and ¢(z) a C2RPQ with p atoms. The set of
certain approximate answers of ¢ w.r.t. K, through a dT € and a p-ary combining function f,
is defined as:

Certs 1(q,K) :=
(@) 1@ € A4 and g = sUp g | (dmg) € v 0. T) A d = 73}

To show that €erts f(g, K) is still well-defined for an ELHZ | KB, i.e. the supremum in Defin-
tion[7]always exists, we draw from the construction of the universal model in ?? the following
observation:

Proposition 4. Let K = (T, .A) be an ELHTI, KB and Uk the universal model of K. For each
model T of K there is a homomorphism hom : AYc — AT such that:

* hom(a"c) = o’ foreacha € A

* e € AYc implies hom(e) € AT for every A € N¢

« (e, €') € U< implies (hom(e), hom(e')) € r” for every r € N& U {A? | A € N¢}
A corresponding proof can be found in [BO15]. Now, we argue that the following holds:
Lemma 20. Let K = (T,.A) be an ELHI | KB, q(z) a k-ary C2RPQ with p atoms, ¥ a distortion

transducer and f a p-ary combining function. Further, let (a,n*) € ansg (q,Ux) where a is a
k-ary tuple of individual names in A.

Then, for any model T of K we have that (d,ng) € ansz ¢(q,I) implies that ng; < n*, where
d=a’.

A corresponding proof for ELH KBs can be found in [FT21]]. One can see that the notions
for approximate answers and certain approximate answers for ELH used there match the
ones given in definitions 1 and 2 for ELHT . In fact, the only difference to the ELH setting
that is relevant here lies in the domain of Ux. To this end, Proposition is used to ensure
the existence of a homomorphism hom corresponding to the one required in the argument
for ELH.

Finally, we obtain that the set Certg ¢(q, K) can be characterized by only considering matches
in Uy as a direct consequence of definition|/} This is formalized in the following corollary:

Corollary 7. Let K = (T,.A) bean ELHI |, KB, q(x) a C2RPQ with p atoms, ¥ a distortion trans-
ducer and f a p-ary combining function. Then, (a,na) € €erts ¢(q, K) iff (@, na) is an approximate
answer of q in Ux.

69

	Titelblatt
	Contents
	Introduction
	Organization of the thesis

	Preliminaries
	Description Logics ELH and ELHI
	Two-way regular path queries
	Certain answers and universal model

	Answering Approximate 2RPQs over ELH and ELHI KBs
	Approximate semantics for 2RPQs over ELH and ELHI KBs
	Answering 2RPQs by finding shortest paths
	Reasoning problems under approximate semantics

	Deterministic loop table construction for ELH and ELHI
	General approach
	Rule Calculation over ELH KBs
	Calculating S1 over ELH KBs
	Calculating S2 over ELH KBs
	Calculating S3 over ELH KBs

	Rule calculation over ELHI KBs
	Calculating S1 over ELHI KBs
	Calculating S2 over ELHI KBs
	Calculating S3 over ELHI KBs

	Calculating spa
	calculating sp

	Implementation
	Overview of the implementation
	External frameworks

	Input data
	Regular Path Queries and Distortion Transducers
	OWL2 Ontologies

	Data modeling and representation
	Conjunctions of concept names
	Loop tables

	Description of the answering process
	Testing and Evaluation

	Conclusions
	Bibliography
	Appendix
	Algorithms and Proofs
	Construction of sp and spa for ELHI KBs
	Approximate semantics for ELHI

		2025-01-10T19:53:04+0100
	Tom Ziegler

