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Abstract
The EL-family of Description Logics are a relatively well investigated field, in particular dueto EL and some of its extensions allowing for polynomial reasoning. This makes them thelogical choice for many applications where efficiency and scalability are required. In thebiomedical domain, EL has been successfully employed for the development of several largeontologies. Answering Regular Path Queries (RPQs) has been investigated for many tractableand intractable extensions of EL, and they have found their way into SPARQL under thename of property paths. On the other hand, approximate semantics for answering RPQsover Description Logic Knowledge Bases have only been proposed recently. In this work,we bridge the gap between theory and practice for answering 2RPQs under approximatesemantics over both a tractable and an intractable member of the EL-family. To this end, wehave extended the notion of approximate semantics from ELH to ELHI⊥, and developedand implemented a practical procedure to answer 2RPQs under approximate semantics forboth ELH and ELHI⊥ Knowledge Bases.

4



Contents
1. Introduction 81.1. Organization of the thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2. Preliminaries 102.1. Description Logics ELH and ELHI⊥ . . . . . . . . . . . . . . . . . . . . . . . . 102.2. Two-way regular path queries . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132.3. Certain answers and universal model . . . . . . . . . . . . . . . . . . . . . . . . 13
3. Answering Approximate 2RPQs over ELH and ELHI⊥ KBs 163.1. Approximate semantics for 2RPQs over ELH and ELHI⊥ KBs . . . . . . . . . 163.2. Answering 2RPQs by finding shortest paths . . . . . . . . . . . . . . . . . . . . 173.3. Reasoning problems under approximate semantics . . . . . . . . . . . . . . . 19
4. Deterministic loop table construction for ELH and ELHI⊥ 204.1. General approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 214.2. Rule Calculation over ELH KBs . . . . . . . . . . . . . . . . . . . . . . . . . . . . 224.2.1. Calculating S1 over ELH KBs . . . . . . . . . . . . . . . . . . . . . . . . . 224.2.2. Calculating S2 over ELH KBs . . . . . . . . . . . . . . . . . . . . . . . . . 264.2.3. Calculating S3 over ELH KBs . . . . . . . . . . . . . . . . . . . . . . . . . 284.3. Rule calculation over ELHI⊥ KBs . . . . . . . . . . . . . . . . . . . . . . . . . . 314.3.1. Calculating S1 over ELHI⊥ KBs . . . . . . . . . . . . . . . . . . . . . . . 324.3.2. Calculating S2 over ELHI⊥ KBs . . . . . . . . . . . . . . . . . . . . . . . 394.3.3. Calculating S3 over ELHI⊥ KBs . . . . . . . . . . . . . . . . . . . . . . . 414.4. Calculating spa . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 414.5. calculating sp . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
5. Implementation 455.1. Overview of the implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . 455.1.1. External frameworks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 455.2. Input data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 475.2.1. Regular Path Queries and Distortion Transducers . . . . . . . . . . . . 475.2.2. OWL2 Ontologies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 485.3. Data modeling and representation . . . . . . . . . . . . . . . . . . . . . . . . . 495.3.1. Conjunctions of concept names . . . . . . . . . . . . . . . . . . . . . . . 495.3.2. Loop tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 505.4. Description of the answering process . . . . . . . . . . . . . . . . . . . . . . . . 515.5. Testing and Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

5



Contents

6. Conclusions 54

7. Bibliography 55

Appendix 57A. Algorithms and Proofs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57B. Construction of sp and spa for ELHI⊥ KBs . . . . . . . . . . . . . . . . . . . . . 61C. Approximate semantics for ELHI⊥ . . . . . . . . . . . . . . . . . . . . . . . . . 68

6



List of Tables
2.1. Syntax for normalized KBs in the EL-Family . . . . . . . . . . . . . . . . . . . . 112.2. Syntax and Semantics for ELH and ELHI⊥ . . . . . . . . . . . . . . . . . . . . 12
5.1. Experimental results for ELH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 535.2. Experimental results for ELHI⊥ . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

List of Algorithms

1. Procedure filterEdges . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 232. Procedure filterRoles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 243. Procedure S1 - ELH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 274. Procedure S2 - ELH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 275. Procedure S3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 316. Procedure S1 - ELHI⊥ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 337. Subprocedure calculateSubsumees (S1 - ELHI⊥) . . . . . . . . . . . . . . . . 358. Subprocedure calculateSubsumees (S2 - ELHI⊥) . . . . . . . . . . . . . . . . 401. Construction of spa . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 422. Construction of sp . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

7



1. Introduction

In this thesis, we present a deterministic procedure to answer Two-Way Regular Path Queriesunder approximate semantics over ELH and ELHI⊥ Description Logic Knowledges Bases, andexplain how the procedure has been implemented.

For many years, there has been hardly any area of application where the size and complexityof data needing to be stored and retrieved has not seen a constant increase. According torecent statistics, we are currently witnessing an exponential trend on the amount of datacreated, copied or consumed each year. Reasons for the increase might go well beyondjust the availability of less expensive data storage devices, mobile phones and sensors. Thisglobal trend not only increases the overall amount of data needing to be handled but also,in many cases, increases the degree of connectivity between such data. Popular areas thatfeature a huge amount of highly connected data include social networks, biomedical ap-plications, as well as many applications in the area commonly referred to as the Internet of
Things (IoT).
To store and query such highly connected data, graph databases present themselves as thenatural choice, and bring many advantages over relational or document-oriented databases.In the biomedical domain, many applications of graph databases can be found [TRM21].
Regular path queries (RPQs) provide a versatile way to retrieve data from graph databases.RPQs and their extensions are a part of SPARQL, an official recommendation by the W3Cto query RDF data. They are used to find database individuals that are connected by pathsof a certain pattern. To this end, they define a regular language, and the paths connectingindividuals must be labeled by a word within the language.
The field of Ontology-Mediated Query Answering (OMQA) further expands the versatility ofquerying graph databases by extending the facts stored within a database with implicit con-sequences obtained from the data. The character of such consequences is highly domain-dependent and is provided by ontologies. The Web Ontology Language (OWL) provides astandardized way to formulate, use and exchange such ontologies in the context of the se-
mantic web.
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1. Introduction

However, even in the presence of an ontology, a good awareness of the application domainis still required. In particular, a RPQ might yield no answers over a given data source, but,given expert domain knowledge, there might be several answers that are ”close enough” forthem to be included in the results. Even if a RPQ does yield answers, including such closelyrelated answers might better capture a users need for information.
In [FT21], approximate semantics for answering 2RPQs over Description Logic Knowledge Basesare proposed. Intuitively, this is used to capture how closely related objects within the appli-cation domain are. Such (dis-)similarity is measured by a numeric value called approximation
cost. A very intuitive example of such an approximation is to use the word edit distance tocapture lexicographic similarity of terms within the query and the database.
However, approximate semantics allow more than just capturing related answers. While,in many cases, it might be desirable to preserve classical answers, i.e. exact matches of thequery within the database, this is not necessarily true for all applications. One could, for ex-ample, disencourage the usage of certain information within a database that is expected tobe outdated or less significant, by including an appropriate approximation cost to retrievesuch results. This cost could even be changed for a different use case, all without the needto modify the underlying database content.
In this thesis, we have developed and implemented a method for answering 2RPQs underapproximate semantics over Knowledge Bases formulated in the Description Logic (DL) ELHor ELHI⊥. The theoretical underpinning is obtained from [FT21], and is based on reducingthe problem to finding shortest paths in a graph. This is done via the help of two relations spand spa. We show that a similar approach to the be problem can be taken for the DL ELHI⊥by providing a uniform notation for approximate semantics for both DLs. We then extendthe procedure to construct sp and spa into a practical algorithm that contains several op-timizations while maintaining matching upper bounds. This algorithm forms the backboneof our implementation. To the best of our knowledge, the implementation obtained duringthis thesis is the first one to address this problem.

1.1. Organization of the thesis

Chapter 2 acts as an introduction to the topic and is used to declare basic terms and def-initions. Chapter 3 introduces approximate semantics and explains the foundation of theanswering process used in our implementation. Chapter 4 constitutes the main result ofthis thesis by presenting an optimized algorithm used to calculate the relations sp and spa.Finally, Chapter 5 is used to explain the details of our implementation.
The appendix consists of three parts: Appendix A contains additional pseudocode andproofs used in chapter 4. Appendix B and C contain a condensed and slightly revised versionof results obtained during preliminary work on this topic, done during my graduate coursesat TU Dresden.
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2. Preliminaries
In this chapter, we introduce the basic terms and notations used in the subsequent chapters.We start with a short introduction to Description Logics.

2.1. Description Logics ELH and ELHI⊥

In this section, we give a short introduction to the Description Logics used in this report. Ourmain focus is on ELHI⊥, an extension of the DL EL. In general, Description Logics are usedto provide a logical representation of a certain domain of interest. To this end, a specific DL
vocabulary is used. By NC, NR and NI, we denote three countable, disjunct sets of symbolsas follows:

• NC denotes the set of concept names,
• NR denotes the set of role names, and
• NI denotes the set of individual names.

To represent the knowledge about our domain, a DL vocabulary is used to build two differentkinds of expressions:
• Terminological axioms are used to describe the general properties of concepts and roles.These constraints apply to all objects in the domain. Concept Inclusions are used tomodel relations between (sets of) concepts, and role inclusion describe relations be-tween different roles.
• Assertions state facts about specific objects in the domain. They ensure that specificindividuals participate in some concept, or that two individuals are connected by somerole.

To explain how these axioms look, we first need to introduce concept descriptions. In EL,
(complex) concept description are obtained using the constructors conjunction (A ⊓ B), exis-
tential restriction (∃r.A) and top (⊤). The set of all EL concept descriptions is build inductivelyfrom NC and NR according to the following syntactic rule:

C ::= ⊤ | A | C ⊓ C | ∃r.C

EL⊥ is the extension of EL where we additionally allow the bottom (⊥) constructor. We canfuther extend EL⊥ to ELI⊥ by additionally allowing inverse roles (r−) to be used in existentialrestrictions. Complex concept descriptions in ELI⊥ are then build according to the rule:
C ::= ⊤ | ⊥ | A | C ⊓ C | ∃r.C | ∃r−.C

10



2. Preliminaries

By allowing another type of axioms, called role inclusions, we can further extends EL and
ELI⊥to obtain ELH and ELHI⊥, respectively. Terminological axioms for ELH and ELHI⊥can then be of two types:

• General concept inclusions (GCIs) are of the form C ⊑ D, where C and D are (complex)concept descriptions
• role inclusions are of the form r ⊑ s. Here, r and s are role names from NR

Assertions are of the form A(a) (concept assertion) or r(a, b) (role assertion). Here, A is aconcept name, r is a role name, and a, b are individual names.
A finite set of terminological axioms is called a T -Box, and a finite set of assertions is calledan A-Box. Together, they form a description logic Knowledge Base K = (T , A). By N−R :=
{r− | r ∈ NR}, we denote the set of inverse role names, and by N±R := NR ∪ N−R the set ofrole names including their inverse. We will use |T | to denote the amount of axioms in T ,and |A| to denote the amount of axioms in A. Consequently, we use |K| to denote |T | + |A|.The Signature of a T -Box contains all concept names and role names occurring in T , and isdenoted as Sig(T ). The set of all individuals occuring in an A is denoted as Ind(A).

T -Box axioms EL EL⊥ ELH ELHI⊥

A1 ⊓ ...An ⊑ B ✓ ✓ ✓ ✓

A1 ⊓ ...An ⊑ ⊥ ✓ ✓

r ⊑ s ✓ ✓

A ⊑ ∃r.B r ∈ NR r ∈ NR r ∈ NR r ∈ N±R
∃r.B ⊑ A r ∈ NR r ∈ NR r ∈ NR r ∈ N±R

Table 2.1.: Syntax for normalized T -Boxes for different DLs from the EL-Family. A1, ..., An, Bdenote atomic concepts from NC ∪ ⊤, and r, s ∈ N±R . Ticks (✓) indicates that ax-ioms of this form are allowed in a normalized T -Box. A condition r ∈ NR denotesthat axioms of this form are allowed if the condition is satisfied.

Semantics for ELH and ELHI⊥

We assume that ELH and ELHI⊥ T -Boxes are given in a normal form that only allows ax-ioms of a certain structure. Table 2.1 summarizes the syntactic rules allowed for the pre-sented DLs using this normal form. This is w.l.o.g., as any EL or ELHI⊥ T-Box can be effi-ciently transformed into normal form by introducing fresh concept names [BBL05].
The semantics of DLs are obtained from interpretations. Such an interpretation I is a pair
(∆I , ·I), where

- ∆I is a non-empty set called the interpretation domain, and
- ·I is the interpretation function that assigns the elements in ∆I to the concept names,role names and individual names present in a DL KB.

11



2. Preliminaries

Such an interpretation naturally forms a graph-like structure, where the nodes are the ele-ments from ∆I , and the edges are obtained from the interpretation function. We use thenotion of paths to describe how the elements in ∆I are connected:
Definition 1. Let d, d′ ∈ ∆I . A path π from d to d′ in I is a sequence d0u1d1u2d2...umdm suchthat m ≥ 0, d0 = d, dm = d′ and for all 1 ≤ j ≤ m:

• dj ∈ ∆I and uj ∈ N±R ∪ {A? | A ∈ NC},
• uj = A? implies dj−1 = dj and dj ∈ AI , and
• uj ∈ N±R implies (dj−1, dj) ∈ uI

j

We define the label of a path π as l(π) := u1...um, and use d
I,u−−→ d′ to denote that thereexists a path from d to d′ in I with label u.

Given an interpretation I , the semantics of the DL concept and role constructors, T -Boxaxioms and A-Box assertions that are used in this thesis are given in Table 2.2. We say thata T -Box axiom or A-Box assertion is satisfied by I if the inclusion given in tale 2.2 holds.Further, we say that I is a model of a T -Box T if all axioms in T are satisfied using I , andaccordingly that I is a model of an A-Box A if all assertions in A are satisfied.
For a KB K = (T , A), we use I |= K to denote that an interpretation I is a model of K,i.e. it is a model of both T and A. If there is at least one such model, we say that K is satisfi-
able.
Finally, we introduce a notion to say that a T -Box axiom or A-Box assertion α is satisfiedfor all models I of K. This is denoted as K |= α, and we say that K entails α.

Name Syntax Semantics

Top concept ⊤ ∆I

Bottom concept ⊥ ∅

Nominal {a} {aI}

Conjunction C1 ⊓ C2 C1
I ∩ C2

I

Existential restriction ∃r.C {d1 | there exists (d1, d2) ∈ rI with d2 ∈ CI}

Inverse role r− {(d2, d1) | (d1, d2) ∈ rI}

Concept inclusion C ⊑ D CI ⊆ DI

Role inclusion r ⊑ s rI ⊆ sI

Concept assertion A(a) aI ∈ AI

Role assertion r(a, b) (aI , bI) ∈ rI

Table 2.2.: Syntax and Semantics for ELH and ELHI⊥ concept and role constructors, T -Boxaxioms and A-Box assertions. A denotes a concept name, C1, C2 denote (possi-bly complex) concept descriptions, r denotes a role name, and a, b are individualnames.
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2. Preliminaries

Complexity of Reasoning in ELH and ELHI⊥

Here, we will give a brief overview of the basic reasoning tasks over DL KBs which are usedin this report. A detailed discussion of the complexity of reasoning in EL and its extensionscan be found in [BBL05] and [BBL08].
Let K = (T , A) be an ELH or ELHI⊥ KB. The subsumption problem asks, given two (com-plex) concept descriptions C, D, whether it holds that K |= C ⊑ D. In that case, we saythat C is subsumed by D. A related problem is to calculate all subsumees, i.e. given a (com-plex) concept description C , to calculate the set of all concept names A ∈ NC s.t. K |= A ⊑ C .
Analogously, the role subsumption problem asks, given two roles r, s ∈ NR (r, s ∈ N±R for
ELHI⊥), whether it holds that K |= r ⊑ s.
Finally, an instance check asks, for a concept A ∈ NC and an individual a ∈ Ind(A), whether itholds that K |= A(a).
To shorten notation, we additionally allow sets of concept names to be used in the presenceof ELHI⊥ KBs. Given two sets of concept names M , M ′ ⊆ NC, we say that K |= M(a) iff
K |= A(a) for all A ∈ M . Let M = {A1, ...Am} and M ′ = {B1, ..., Bn}. We write K |= M ⊑ M ′

iff K |= A1 ⊓ ... ⊓ Am ⊑ B1 ⊓ ... ⊓ Bn.
For some extensions of EL, such as ELH or EL⊥, the additional features do not impact thecomplexity of these reasoning tasks. However, allowing inverse roles induces a significantincrease in complexity. Note that answering subsumption over a DL KB is independent ofthe content of A. In ELH, answering subsumption is feasible in polynomial time, but is EXP-time complete for ELHI⊥ [BBL08]. Instance checking in ELH is P-complete for both dataand combined complexity, whereas combined complexity increases to EXP-time for ELHI⊥([BO15]).

2.2. Two-way regular path queries

In the OMQA setting, Two-way regular path querys (2RPQs) are used to find pairs of individu-als connected by a certain chain of roles. They are defined using regular languages, given bythe means of a regular expression or an non-deterministic finite automaton (NFA). In this work,we will exclusively be using the NFA representation.
Formally, a 2RPQ q is of the form q(x, y) = R(x, y), where x, y ∈ NI andR = (QR, Σ, δR, IR, FR)is an NFA representing a regular language. The alphabet Σ is a finite subset of N±R ∪ {A? |
A ∈ NC}. We use L(R) to denote the regular language represented by R.
Regular path queries (RPQs) are a simpler, more restricted form of 2RPQs that do not useinverse roles, i.e. Σ is a finite subset of NR ∪ {A? | A ∈ NC}. The more complex Conjunctive
Two-way Regular Path Queries (C2RPQs) are not considered in this report.

2.3. Certain answers and universal model

Given a satisfiable ELHI⊥ KB K = (T , A), we denote the universal model of K as UK =
(∆UK , ·UK). We will use the definition of the universal model for an ELHI⊥ KB from [BO15]:

13



2. Preliminaries

The domain ∆UK consists of sequences of the form aR1M1...RnMn(n ≥ 0), where a ∈Ind(A), and for every i ≥ 1, Ri ∈ N±R and Mi is a conjunction of concepts from NC ∪ {⊤}.Formally, ∆UK consists of all sequences aR1M1...RnMn that satisfy:
• If n ≥ 1, then T |= M0 ⊑ ∃R1.M1 where M0 = {A ∈ NC ∪ ⊤ | K |= A(a)}and there does not exist M ′

1 ⊋ M1 such that T |= M0 ⊑ ∃R1.M ′
1

• For every 1 ≤ i < n, T |= Mi ⊑ ∃Ri+1.Mi+1 and there is no M ′
i+1 ⊋ Mi+1 such that

T |= Mi ⊑ ∃Ri+1.M ′
i+1 .

It remains to fix the interpretation ·UK of the individual names, concept names, and rolenames from K . This is done as follows:
aUK = a for all a ∈ Ind(A),
AUK = {a ∈ Ind(A) | K |= A(a)} ∪

{e ∈ ∆UK \ Ind(A) | e = e′RM and A ∈ M}, and
rUK = {(a, b) | K |= r(a, b)} ∪

{(e1, e2) | e2 = e1SM and T |= S ⊑ r} ∪
{(e2, e1) | e2 = e1SM and T |= S ⊑ r−}.

We note that ∆UK consists of two types of elements: The elements from A, referred to as in-
dividuals, and additional elements whose existence is implied by the axioms in T . We will re-fer to the latter as anonymous elements. Such elements are of the form e = aR1M1...RnMn(a ∈Ind(A)). The existence of such an e ∈ ∆UK implies the existence of an element of the form
aR1M1...Rn−1Mn−1 ∈ ∆UK , and all elements of the form aR1M1...aRmMM together createa tree-like structure rooted at a. Given e = aR1M1...RnMn ∈ ∆UK , we use Te to denote thesub-tree rooted at e, and we denote the final component of such a sequence as tail(e) = Mn.
An important property obtained from the definition of the universal model is that the tailof an element uniquely identifies everything that happens ”below”, i.e. if we have two ele-ments e, e′ ∈ ∆UK and tail(e) = tail(e′), the subtrees Te and T ′

e rooted at these elementsare isomorphic [BO15]. We use T(UK) to denote the set containing all tails present in UK, i.e.
T(UK) = {tail(e) | e ∈ ∆UK}. For ELHI⊥, the elements in T(UK) are conjunctions of conceptnames, and the maximum amount of such tails is |P(Sig(T ))| − 11. To simplify their presen-tation, we will slightly abuse notation and treat such conjunctions as sets of concept names2.
For ELH KBs, we adopt the definition of the universal model from [BOŠ13]. Here, the do-main ∆UK consists of sequences of the form aR1C1...RnCn, and we denote the final conceptof such as a sequence as tail(e) = Cn. Both constructions are closely related, and tail(e)carries over its main property, which is to characterize the anonymous subtree rooted at agiven element. Hence, for an ELH KB, we have for two elements e, e′: If tail(e) = tail(e′),then Te and Te′ are isomorphic [BOŠ13]. Accordingly, we adjust the definition of T(UK) tomatch the different domain: For an ELH KB K, we denote as T(UK) = {tail(e) | e ∈ ∆UK}the set of tails present in UK. Here, the elements in T(UK) are concept names from NC, andthe amount of entries in T(UK) is limited by the size of Sig(T ).

1Note that the empty set is not contained in T(UK).2This allows us to write A ∈ M to say that A is one of the conjuncts in M , and M ′ ⊆ M to say that everyconjunct in M ′ also is a conjunct of M .
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2. Preliminaries

Comparing both definitions, we note that the presence of inverse roles changes the do-main of the universal model: While, for an ELH KB, the anonymous individuals can be char-acterized by a sequence of role transitions and concept names, an ELHI⊥ KB requires asequence of role transitions and conjunctions of concept names. While the size of T(UK) isbounded by the size of T for ELH, the size of T(UK) is exponential in the size of T underthe presence of an ELHI⊥ KB.
As every DL KB allows for multiple (possibly infinitely many) models, we are only interestedin answers that hold in all models of a given KB. These answers are referred to as certain
answers. The crucial property of UK is that is ’contained’ in every model of K, i.e. for eachmodel I of K, there exists a homomorphism from UK to I .
It follows that, for a query q, answers in the universal model of K are answers in every modelof K. The answers to q in UK then coincide with the set of certain answers for q for both ELHand ELHI⊥ KBs [BOŠ13], [BO15].

15



3. Answering Approximate 2RPQs
over ELH and ELHI⊥ KBs

In this chapter, we introduce approximate semantics for ELH and ELHI⊥. We then pro-ceed to explain how the problem of answering 2RPQs under approximate semantics can bereduced to finding shortest paths in a graph.

3.1. Approximate semantics for 2RPQs over ELH and ELHI⊥
KBs

This section presents a notion for approximate semantics for 2RPQs1 over ELH and ELHI⊥KBs as presented in [FT21], and explains the relevant terms and definitions. The approxi-mate semantics presented here can be seen as an extension of the approximate semanticsfor RPQs over graph databases proposed in [GT05], which uses a particular form of weighted
finite-state transducers (WFTs) called distortion transducers:
Definition 2. ([GT05])A distortion transducer (dT) is an NFA defined as a tuple T = (Q, Σ, δ, I, F ), where:

• Q is a finite set of states,
• Σ denotes a finite alphabet,
• I, F ⊆ Q are the sets of initial and final states, respectively, and
• The transition relation δ is a subset of Q × Σ × Σ × N × Q.2

For a given dT T = (Σ, Q, δ, I, F ), a run of T on a word u ∈ Σ∗ is a sequence of tuples
ρ = (q1, u1, v1, w1, q2), ..., (qn, un, vn, wn, qn+1)

such that u = u1 . . . un, q1 ∈ I , qn+1 ∈ F , and each (qi, ui, vi, wi, qi+1) ∈ δ for i ≤ n.

1The definitions presented here rely on the results shown in [FT21] and Appendix C, where C2RPQs are used.As 2RPQs are a simpler form of C2RPQs, this applies w.l.o.g. to 2RPQs.2To simplify notation, we assume that T contains no ϵ-transitions. This assumption can be made without lossof generality, as demonstrated in [FT21].

16



3. Answering Approximate 2RPQs over ELH and ELHI⊥ KBs

The weight of the run ρ is denoted as wt(ρ) := w1 + · · · + wn. A run ρ transforms u into
v = v1 . . . vn with cost wt(ρ). Let R(T, u, v) be the set of all pairs (ρ, wt(ρ)) such that ρ is arun of T transforming u into v. The cost of transforming u into v via T is defined as

cT(u, v) := min{wt(ρ) | (ρ, wt(ρ)) ∈ R(T, u, v)}.

[FT21] extends the approximate semantics from [GT05] to the OMQA by using DL interpre-tations. Here, an answer to a 2RPQ over a DL KB under approximate semantics is called an
approximate answer and is defined as follows:
Definition 3. (Definition 5, [FT21]): Let q(x, y) be a 2RPQ. The set of approximate answers of
q in an interpretation I , through a dt T, is defined as

ãnsT(q, I) :=
{

(d, e, ηd,e) | d, e ∈ ∆I and ηd,e = min{cT(u, v) | u ∈ L(R), v ∈ Σ∗, d
I,v−−→ e}

}
.

In the OMQA setting, our goal is to find answers that exist in every model of our KB. Suchan answer is called a certain approximate answer, and the approximation cost correspondsto the most costly approximate answer for any model of K.
Definition 4. Let K = (T , A) an ELH or ELHI⊥ KB and q(x, y) a 2RPQ. The set of certain
approximate answers of q w.r.t. K, trough a dt T, is defined as

c̃ertT(q, K) :=
{

(a, b, ηa,b) | a, b ∈ Ind(A) and
ηa,b = sup

I|=K
{ηd,e | (d, e, ηd̄) ∈ ãnsT(q, I) ∧ (d, e) = (aI , bI)}

}
.

Similar to answering 2RPQs under classical semantics, we can use the universal model tocharacterize the set c̃ertT. As shown in [FT21] (for ELH) and Appendix C (for ELHI⊥), thefollowing holds:
Proposition 1. Let K = (T , A) be an ELH or ELHI⊥ KB, q(x, y) a 2RPQ, and T a distortion
transducer. Then, (a, b, ηa,b) ∈ c̃ertT(q, K) iff (a, b, ηa,b) is an approximate answer of q in UK.

3.2. Answering 2RPQs by finding shortest paths

The procedure to calculate the approximation cost of all elements (a, b, ηa,b ∈ c̃ertT pre-sented in [FT21] uses a weighted graph GUK obtained from the Cartesian product of thequery NFA, the transducer NFA, and the universal model UK. It is shown that the existenceand minimal cost of paths in this graph can be used to characterize c̃ertT. We start by ex-plaining how the graph GUK is constructed.
Definition 5. (Definition 12, [FT21]) Let I be an interpretation, R(x, y) be a 2RPQ with R =
(QR, Σ, δR, IR, FR) and T a dt with T = (QT, Σ, δT, IT, FT). The weighted graph GR×T×I =
(V , E) is defined as:

• V := QR × QT × I

• E ⊆ V × N × V is a set of weighted edges such that ((s, t, d), w, (s′, t′, d′)) ∈ E iff itscomponents satisfy one of the following conditions:
– (s, σ, s′) ∈ δR, (t, σ, σ′, w, t′) ∈ δT and d

I,σ′
−−→ d′, or

– s = s′, (t, ϵ, σ, w, t′) ∈ δT and d
I,σ−−→ d′.
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3. Answering Approximate 2RPQs over ELH and ELHI⊥ KBs

When R and T are clear from the context, we use GUK to denote the graph GR×T×UK .
Then, given a, b ∈ Ind(A), calculating ηa,b s.t. (a, b, ηa,b ∈ c̃ertT(q, K) amounts to finding thecost of a shortest path from a node (s, t, a) to (s′, t′, b) in GUK s.t. s ∈ IR, s′ ∈ FR, t ∈ IT and
t′ ∈ FT. However, as the amount of elements in ∆UK can possibly be infinite, in general, itis not possible to construct GUK directly. Instead, a finite graph G∗

UA
is used to find shortestpaths of equivalent cost. We will explain how this graph is constructed.

Let GUA be the finite subgraph of GUK restricted to nodes (s, t, a) s.t. a is an A-Box indi-vidual. As the amount of individuals is limited by the size of A, the amount of nodes in GUAis |QR| · |QT| · |Ind(A)|. Now, for all nodes (s, t, a) in GUA , assume the following: If there isa (possibly infinite) path from (s, t, a) to some (s′, t′, a) in GUK , and w∗ is the minimal costof such a path, add an edge (s, t, a), w∗, (s′, t′, a) to GUA . This way, we obtain a graph G∗
UA

.Then, the following holds, for K either an ELH or ELHI⊥ KB. The corresponding proofs arefound in [FT21] and AppendixC.
Proposition 2. (Proposition 17, [FT21])
Let G∗

UA
be the extension of GUA with all the edges ((s, t, a), c∗, (s′, t′, a)) such that: c∗ is the min-

imal cost if an a-path3 from (s, t, a) to (s′, t′, a) in GUK .

Then, given two vertices (s, t, a) and (s′, t′, b), the minimal cost of a path from (s, t, a) to (s′, t′, b)
is the same in GUK and G∗

UA
.

For the construction of G∗
UA

, it is required to know which paths of minimal cost exist from
(s, t, a) to (s′, t′, a) in GUK . This is achieved with the help of two relations sp and spa, referredto as loop tables. Entries in sp are of the form sp[(s, t), (s′, t′), D]4, where (s, t), (s′, t′) ∈ δR×δT,and D ∈ NC . Each such entry is associated with a value v ∈ N ∪ ∞ and represents the fol-lowing information: Let a ∈ Ind(A) GUK . If K |= D(a), GUK contains a path from (s, t, a) to
(s′, t′, a) with minimal cost v (or, if v = ∞, there is no such path).
To construct sp, an additional relation spa is used. Entries in spa are of the form spa[(s, t), (s′, t′), C] =
w and represent the following information: Let e ∈ ∆UK \Ind(A) be an anonymous individualin UK. If tail(e) = C , there exists an e-path of minimal cost from (s, t, e) to (s′, t′, e) in GUKwith cost w.
The idea behind the construction of spa is that tail(e) can be used to uniquely identify thesubtree of UK rooted at e. Consequently, for two nodes (s, t, e) and (s, t, e′) in GUK with
tail(e) = tail(e′), for each e-path of minimal cost from (s, t, e) to (s′, t′, e), a path of similarcost can be found from (s, t, e′) to (s′, t′, e′).
For ELH, the tables sp and spa can be seen as an extension of the relations Loop and ALooppresented for answering 2RPQs under classical semantic in [BOŠ13]. For ELHI⊥, a relatedconstruction using only a single table Loop for answering 2RPQs under classical semanticsis presented in [BO15].
A theoretical procedure to construct spa in the presence of an ELH KB can be found in[FT21]. A corresponding procedure exists for ELHI⊥ KBs, as shown in Appendix B. For ELH,this procedure requires at most polynomial time in the size of R,T and K. For ELHI⊥, the

3We use the definition of a-path (resp. e-path) from [FT21]. Intuitively speaking, an a-path is a path that nevervisits any e ∈ ∆UK outside the subtree rooted at a.4We use a slightly different form for ELHI⊥, as explained in section 4.5
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3. Answering Approximate 2RPQs over ELH and ELHI⊥ KBs

complexity increases to EXP-time in the combined size of R,T and K. Although the proce-dure can be regarded as a deterministic algorithm, it lacks any consideration regarding op-timal performance, and a straightforward implementation would be an inefficient approachto this problem.
In the following chapter, we give a detailed explanation on how the tables sp and spa can beconstructed for both ELH and ELHI⊥ using an explicit, deterministic procedure contain-ing several efficiency optimizations while maintaining matching upper bounds for combinedcomplexity. The resulting algorithm represents the main result of this work, and acts as thecore component of our implementation.

3.3. Reasoning problems under approximate semantics

To conclude this chapter, we introduce the reasoning problems that can be answered byour implementation. The answering process is described in section 5.4.
Given an ELH or ELHI⊥ KB K, a 2RPQ R and a dt T, we define the following reasoningproblems:

• τ -entailment: Given (a, b) ∈ Ind(A) and a threshold value µ, decide whether (a, b, ηa,b) ∈
c̃ertT(q, K) for some ηa,b ≤ µ.

• Cost computation: Given (a, b), calculate the approximation cost ηa,b s.t. (a, b, ηa,b) ∈
c̃ertT(q, K).

• Calculate c̃ertT(q, K): Calculate the set of all approximate answers.
• Calculate c̃ertµ

T(q, K): Given a threshold value µ, calculate the set of approximate an-swers with an approximation cost of at most µ, i.e. the set containing all (a, b, ηa,b) ∈
c̃ertT(q, K) with ηa,b ≤ µ}.
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4. Deterministic loop table
construction for ELH and ELHI⊥

Constructing the loop tables represents the main computational challenge when answeringapproximate 2RPQs over DL KBs. In this chapter, we present two deterministic algorithmsto compute the tables spa and sp, for both ELH and ELHI⊥.
In general, the complexity results presented in [FT21] already provide valuable insights intohow the different computation steps impact the overall effort to compute these relations.While it is relatively easy to construct best-case and worst-case scenarios, there is a largearea in between for which it is not trivial to determine how effortful the loop table construc-tion procedure is going to be by purely looking at the input data.
Therefore, we will use the term moderate-case scenario to refer to any situation that rep-resents neither a best-case nor worst-case scenario, thus including, but not restricting whatcan be considered an average-case scenario, i.e. a ”typical input”. Note that we use the termsbest-/worst-/moderate-case scenarios only to refer to the inherent properties of the inputdata, independent of the the input size. Moreover, we stick to a theoretical point of viewwhere we do not assess whether our input data has any real-world meaning or is optimalamongst all equivalent representations.
The development of the algorithms presented in this chapter has been conducted with fo-cus on the actual performance of our implementation given a limited amount of test inputdata. To this end, an internal profiler, tracking computation time and memory consumptionon a per-code-line base, was used. This allowed us to evaluate the impact each part of thecomputation step has on the overall performance and to identify parts that act as bottle-necks for the entire computation.
Based on these insight, we have developed a set of optimized algorithms that aim to providegood performance over reasonably large inputs for moderate-case scenarios. Note that inthis context, we use the term optimizations only to refer to computational steps included inthe formal algorithm, as opposed to implementation-specific optimizations, which are dis-cussed in chapter 5.In the following, we will present our optimized algorithms for constructing spa and sp underthe presence of either an ELH or ELHI⊥ KB.
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4. Deterministic loop table construction for ELH and ELHI⊥

4.1. General approach

In general, optimizations included in these algorithms fall into one of two categories: Filteringand Caching. However, there is no free lunch: Both types of optimizations introduce someform of overhead not accounted for in the procedure presented in [FT21]. The idea behindthese constructions is that they can be used to skip other, computationally more expensiveoperations - most notably DL reasoning tasks such as answering subsumption for complexconcept descriptions.
• Filtering: By filtering, we refer to constructions that use the deterministic behaviour ofthe algorithm to eliminate parts of the input data that are guaranteed to have no im-pact on the results. These filtering procedures are lightweight computations, usuallyonly introduce a minimal overhead in terms of computation time and the amount ofmemory used. In this sense, these optimizations have very little impact for worst-casescenarios, but might provide significant improvements for other scenarios.
• Caching: Caching optimizations are such that store intermediate data during compu-tation that otherwise could be omitted. These constructions usually introduce a sig-nificant, but predictable amount of overhead memory consumption alongside somecomputation effort required to store and retrieve these intermediate results. Suchconstructions significantly reduce performance for worst-case scenarios, but provideimproved performance for all other scenarios.

The following sections give a detailed explanation of the different parts of the algorithms forboth ELH and ELHI⊥. For both scenarios, we each have to compute 3 different types ofconstruction rules, referred to as rules S1, S2 and S3.
A correct procedure to construct spa over ELH KBs is obtained from [FT21] and acts asa baseline for our algorithm. The same procedure can be used for ELHI⊥ KBs when ac-counting for the difference in T(UK) and a redefinition of the rules S1, S2 and S3. A detailedexplanation can be obtained from preliminary work on this topic, which is included in thisthesis as Appendix B.
This allows us to state a single procedure which applies to both ELH and ELHI⊥ KBs.The definition of rules S1, S2 and S3 obtained from [FT21] and Appendix B are providedin sections 4.2 and 4.3, respectively. The procedure uses T(UK) ⊆ Sig(T ) for ELH KBs, and
T(UK) ⊆ P(Sig(T )) \ {} for ELHI⊥ KBs.
Procedure SPA

1: Initialize spa[p, q, C] = ∞ (or 0 if p = q)
2: Apply rule S2 to all (p, q, C) ∈ (QR × QT)2 × T(UK)
3: Apply rule S3 until spa does not change;
4: repeat
5: spa := f(spa)
6: until spa does not change
function f

spa∗ := spaUpdate spa by applying rule S1 to all (p, q, C) ∈ (QR × QT)2 × T(UK) using spa∗

Apply S3 until spa does not change;
end function
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4. Deterministic loop table construction for ELH and ELHI⊥

In general, Procedure SPA represents an iterative process that extends the information cur-rently stored in the table spa with each iteration of f , until the content of spa can no longerchange. This is the case as soon as an iteration of f produced no updates. As shown in[FT21], this is guaranteed to be the case after a maximum of (|QR| · |QT|)2 · |T(UK)| itera-tions. It is notable that the values in spa can only decrease during the computation, and thusentries of the form spa[p, p, C] have a fixed value 0.

4.2. Rule Calculation over ELH KBs

To show how spa can be constructed deterministically under the presence of an ELH KB,this section introduces procedures to calculate applications of rules S1,S2 and S3. The pro-cedures presented here are optimized for moderate-case scenarios, but match the upperbounds obtained from [FT21] for combined complexity.
Recall that, for an ELH KB, the elements in T(UK) are basic concepts from NC, and thesize of T(UK) is polynomial in the number of concept names in K.
A short remark on notation used in this section is required: All procedures presented inthis section assume the presence of an ELH KB K = (T , A), a 2RPQ R and a distortionTransducer T. To shorten notation, we will not explicitly state these as input.
We start by giving the definition of rules S1, S2 and S3 in the presence of an ELH KB asobtained from [FT21], with R, R′, R′′ ∈ NR and A, C, D ∈ NC:

S1. spa[(s, t), (s′, t′), C] ≪ w1 + spa[(s1, t1), (s2, t2), A] + w2, if C1∗ holds.
S2. spa[(s, t), (s′, t′), C] ≪ w, if T |= C ⊑ A, (s, u, s′) ∈ δR, and (t, u, A?, w, t′) ∈ δT,
S3. spa[(s, t), (s′, t′), C] ≪ spa[(s, t), (s′′, t′′), C] + spa[(s′′, t′′), (s′, t′), C].

and C1∗:
C1∗. T |= D ⊑ ∃R.A, T |= R ⊑ R′, T |= R ⊑ R′′, (s, u, s1) ∈ δR, (t, u, R′, w1, t1) ∈ δT,

(s2, u′, s′) ∈ δR and (t2, u′, R′′−, w2, t′) ∈ δT.
4.2.1. Calculating S1 over ELH KBs

Here, we present a procedure to compute the result of applying rule S1 to all (p, q, C) ∈
(QR × QT)2 × T(UK), as required for one iteration of f . We note that the order in whichthese rule applications are computed is arbitrary.
The deterministic procedure consists of 3 major stages: 2 filtering stages followed by onecomputational stage. Subsequent stages rely on the results of the previous one, but areotherwise independent of each other. However, only the final stage depends on the actualvalues stored in the table spa. Thus, one could use additional memory to store the resultsof the second stage to avoid repeating the calculation. However, we expect to obtain betterresults by storing the role hierarchy instead, as discussed in section INSERT REFERENCE. Thethird stage, however, needs to be computed for each iteration of f . We discuss each stageindividually before presenting the entire algorithm.
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4.2.1.1. Stage 1: Extracting transducer edges

The first stage represents a filtering optimization on the input query and transducer au-tomaton. The input to this stage is a tuple ((s, t), (s1, t1), (s2, t2), (s′, t′)) ∈ (QR × QT)4. Itsgoal is to extract such edges (t, u, R′, w1, t1) ∈ δT and (t2, u′, R′′−, w2, t′) ∈ δT for whichcorresponding edges (s, u, s1) ∈ δR and (s2, u, s′) ∈ δR, respectively, exist. To ensure thatcondition C1∗ can be satisfied, we further require R′, R′′ ∈ NR. Finally, these edges aresorted by their cost w in ascending order. It is notable that this stage only uses informationfrom the query and transducer automatons.
Procedure 1 filterEdges
Input: (s, t), (s1, t1), (s2, t2), (s′, t′) ∈ (QR × QT)
Output: Two sorted sets down ⊆ δT and up ⊆ δT

1: set down := {(t, u, R′, w1, t1) | (s, u, s1) ∈ δR, (t, u, R′, w1, t1) ∈ δT, R′ ∈ NR}
2: set up := {(t2, u′, R′′−, w2, t′) | (s2, u′, s′) ∈ δR, (t2, u, R′′−, w2, t′) ∈ δT, R′′ ∈ NR}
3: sort down and up by cost in ascending order

Lemma 1. LetR a 2RPQ,T a distortion transducer, and (s, t), (s1, t1), (s2, t2), (s′, t′) ∈ QR × QT
4.

After Procedure filterEdges finishes, it holds that (t, u, R′, w1, t1) ∈ down iff there is (s, u, s1) ∈
δR; and (t2, u′, R′′−, w2, t′) ∈ up iff there is (s2, u′, s′) ∈ δR.

Proof. This is a direct consequence from lines 2 and 3.

4.2.1.2. Stage 2: Extracting feasible roles

The second stage uses the results obtained from the first stage to apply a filtering optimiza-tion on the role names present in the ontology. As opposed to the first stage, this stagerequires DL Reasoning to check for role subsumption.The aim of this stage is to extract only those roles r ∈ N±R for which a corresponding pair oftransducer edges exists in down × up obtained from Stage 1. Each such r is associated withthe minimum cost w1 + w2 of such an edge.The procedure to compute these edges is presented as Procedure filterRoles. The followinglemma formalizes the results computed by this Stage.
Lemma 2. Let R be a 2RPQ, T a distortion transducer, K = (T , A) an ELH KB, and
(s, t), (s′, t′), (s1, t1), (s2, t2) ∈ (QR × QT). Further, let r ∈ NR ∩ Sig(T ). After ProcedurefilterRoles finishes, it holds that (r, w) ∈ candidateRoles iff w = w1 + w2 and w1, w2 are min-
imal amongst all (t, u, R′, w1, t1), (t2, u′, R′′−, w2, t′) ∈ δT s.t. T |= r ⊑ R′, T |= r ⊑ R′′,
(s, u, s1), (s2, u′, s′) ∈ δR.

Proof. ⇐: Let e1 = (t, u, R′, w1, t1) ∈ edgesDown and e2 = (t2, u′, R′′−, w2, t′) ∈ edgesUp s.t.
T |= r ⊑ R′, T |= r ⊑ R′′. From Lemma 1, we obtain that (s, u, s1) ∈ δR and (s2, u′, s′) ∈ δR.Assume there is no e′

1 = (t, u′
1, R′

1, w′
1, t1) ∈ edgesDown s.t. T |= r ⊑ R′

1 and w′
1 < w1 (oth-erwise, e′

1 could have been chosen). Analogously, assume e′ was chosen s.t. w2 is minimal.Because the edges in down and up are sorted by their weight, we obtain that e(e′ respec-tively) is the first edge processed within the for loop at line 5(14) that satisfies the conditionin line 6(15). Thus, after Procedure filterRoles finishes line 22, we have downCost = w1 and
upCost = w2, and thus (r, w1 + w2) ∈ candidateRoles.
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4. Deterministic loop table construction for ELH and ELHI⊥

⇒: After Procedure filterRoles finishes, let (r, w1 + w2) ∈ candidateRoles. Then, there is
e1 = (t, u, R′, w1, t1) ∈ edgesDown s.t. T |= r ⊑ R′, and there is no e′

1 = (t, u′
1, R′

1, w′
1, t1) ∈

edgesDown s.t. T |= r ⊑ R′
1 and w′

1 < w1 (otherwise, e′
1 would have been processed be-fore e1 by the for loop in line 5). Analogously, we obtain e2 = (t2, u′, R′′−, w2, t′) ∈ edgesUp.Because e1 ∈ edgesDown and e2 ∈ edgesUp, we have (s, u, s1), (s2, u′, s′) ∈ δR.

Procedure 2 filterRoles
Input: sorted sets down, up ⊆ δT obtained from Stage 1
Output: A set candidateRoles ⊆ (NR × N)

1: initialise candidateRoles = {}
2: for all r ∈ NR ∩ Sig(T ) do
3: initialise cdown := ∞, cup := ∞
4: for all (t, u, R′, w1, t1) ∈ down do
5: if T |= r ⊑ R′ then
6: set cdown := w17: exit and continue at line 10
8: end if
9: end for

10: if cdown = ∞ then
11: discard and continue with next r
12: end if
13: for all (t2, u, R′′−, w2, t′) ∈ up do
14: if T |= r ⊑ R′′ then
15: set cup := w216: exit and continue at line 19
17: end if
18: end for
19: if cup = ∞ then
20: discard and continue with next r
21: end if
22: add (r, cdown + cup) to candidateRoles
23: end for
24: return candidateRoles

4.2.1.3. Stage 3: Checking entailment and updating spa

The third stage computes the updated values for the loop table spa. While directly usingthe current state of spa for the computation would yield correct results, we notice that notall entries currently present in our loop table have to be considered. This is based on thefollowing observation:
• The results obtained from Stage 2 are independent of spa and thus immutable duringthe entire construction.
• The results calculated during one run of Stage 3 only depend on the entries in spa andthe results obtained from Stage 2
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4. Deterministic loop table construction for ELH and ELHI⊥

This means that a subsequent iteration of Stage 3 can only produce different results if spahas been updated since the previous iteration. A corresponding observation based on Pro-
cedure SPA is formalized in the following lemma:
Lemma 3. Consider a run of Procedure SPA. For two subsequent iterations i, i+ of f , let spai

be the state of spa at the beginning of i, and spai+ the state of spa at the beginning of i+. Then,
if the value spa[(s, t), (s′, t′), C] was updated during i+ using an application of rule S1 of the form
w1

i++spai+ [(s1, t1), (s2, t2), A]+w2
i+ , we have spai+ [(s1, t1), (s2, t2), A] < spai[(s1, t1), (s2, t2), A]

Proof. Assume the contrary: If spai+ [(s1, t1), (s2, t2), A] = spai[(s1, t1), (s2, t2), A] and
spa[(s, t), (s′, t′), C] was updated with value v during iteration i+ using an S1-application ofthe form w1+spai+ [(s1, t1), (s2, t2), A]+w2, it follows that there are e1, e2 ∈ δT with c(e1) = w1and c(e2) = w2 s.t. condition C1∗ is satisfiable. Then, the same e1, e2 could have been chosento update spa[(s, t), (s′, t′), C] using w1 + spai[(s1, t1), (s2, t2), A] + w2 during the previousiteration i. Consequently, we would have spai+ [(s, t), (s′, t′), C] = v, which is a contradictionto the fact that spa[(s, t), (s′, t′), C] was updated during i+.
Our algorithm exploits this by keeping track of the changes applied to spa during each itera-tion. To this end, Stage 3 receives, in addition to the actual loop table spa, a fragment of spa∗

containing only entries that were updated since the previous iteration. Accordingly, the out-put is another fragment containing only the entries of spa that were updated during this run.
To calculate the updated values, DL Reasoning is employed to retrieve all concepts C thatsatisfy C ⊑ ∃r.A, for each combination of (r, w) obtained from Stage 2 and (A, c) for whichan entry spa∗[(s1, t1), (s2, t2), A] = c with c ∈ N exists. For each such C , it is ensured thatcondition C1∗ is satisfiable using A and r. From Lemma 2, we obtain that w is minimal forthe chosen r. Accordingly spa[(s, t), (s′, t′), C] can be updated if the calculated value is lowerthan the current value.
Finally, we can show that Procedure S1 - ELH correctly computes all S1-Applications as re-quired in Procedure SPA - ELH for one iteration of f . The following lemma states the equiv-alence between these operations:
Lemma 4. Let R a 2RPQ, T a distortion transducer, K = (T , A) an ELH KB, spa a loop table,
and spa∗ a fragment of spa containing all entries updated since the previous iteration. After a run
of Procedure S1 - ELH with result spa∗∗, the following holds for all (C) ∈ T(UK):
spa∗∗[(s, t), (s′, t′), C] = v iff v is the minimal1 updated value after applying rule S1 to ((s, t), (s′, t′), C).

Proof. (⇐) Let C ∈ T(UK). We consider two cases: First, if spa[(s, t), (s′, t′), C] was not up-dated during an application of S1, there is no (t, u, R′, w1, t1), (t2, u′, R′′−, w2, t′) ∈ δT and A ∈
T(UK) s.t. condition C1∗ is satisfied and w1+spa[(s1, t1), (s2, t2), A]+w2 < spa[(s, t), (s′, t′), C].By Lemma 2, it holds that candidateRoles = ∅, and thus spa∗∗ contains no entries.
For the second case, assume spa[(s, t), (s′, t′), C] was updated with value v by an S1-application.Then, there is (t, u, R, w1, t1), (t2, u′, R′′−, w2, t′) ∈ δT, (s, u, s1), (s2, u′, s′) ∈ δR, r ∈ N±R and
A ∈ NC s.t. condition C1∗ is satisfied, i.e. it holds that:

1We can assume that v is the minimum value amongst all S1-Applications to ((s, t), (s′, t′), C)
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(i) v = w1 + spa[(s1, t1), (s2, t2), A] + w2,
(ii) T |= r ⊑ R′, T |= r ⊑ R′′, and
(iii) T |= C ⊑ ∃r.A.

Let c = spa[(s1, t1), (s2, t2), A] and w = w1+w2. By Lemma 2, we have (r, w) ∈ candidateRoles.Additionally, we obtain spa∗[(s1, t1), (s2, t2), A] = c from Lemma 3, and therefore (A, c) ∈
fillers. From (iii), it follows that C ∈ subsumees. As v can be used to update spa[(s, t), (s′, t′), C],it holds that spa[(s, t), (s′, t′), C] > v, and therefore spa[(s, t), (s′, t′), C] > w + c. As a conse-quence, we obtain spa∗∗[(s, t), (s′, t′), C] ≤ v after processing line 14.
Assume spa∗∗[(s, t), (s′, t′), C] < v. Then, there must exists some (s, w′) ∈ candidateRolesand (B, c′) ∈ fillers s.t. T |= C ⊑ ∃s.B and w′ + c′ < v. By Lemma 2, this implies thereare e1 = (t, u, S′, w′

1, t1) and e2 = (t2, u′, S′′−, w′
2, t′) ∈ δT with w′ = w′

1 + w′
2 s.t. T |= s ⊑ S′,

T |= s ⊑ S′′; and c′ = spa∗[(s, t), (s′, t′), B] s.t. T |= C ⊑ ∃s.B. Then, condition C1∗ is sat-isfied using e1, e2 and B. Consequently spa[(s, t), (s′, t′), C] could have been updated with
w′

1 + c′ + w′
2 < v, which is a contradiction to v being the minimal updated value. It followsthat spa∗∗[(s, t), (s′, t′), C] = v.

Regarding complexity, we obtain that procedures filterEdges and filterRoles are computablein at most polynomial time in the combined size of R,T and K. The amount of elements in
candidateRoles is bounded by the size of Sig(T ), and the amount of entries in spa∗ is limitedby the size of spa, hence polynomial in the combined size of R,T and K. For each combina-tion of (r, w) ∈ candidateRoles and (M , c) ∈ fillers, calculating all subsumees is required.For K an ELH KB, this is feasible in at most polynomial time [BOŠ13]. In summary, we obtainthat a run of Procedure S1 - ELH requires at most polynomial time in combined complexity.Thus, our upper bound matches the one presented for computing all S1-Applications givenin [FT21].

4.2.2. Calculating S2 over ELH KBs

Here, we present a procedure to calculate all S2-applications as required in line 2 of Pro-
cedure SPA. Note that this procedure is only applied once during the entire computation of
spa, whereas S1 and S3 Applications are repeated for each iteration of the function f .
Calculating S2-Applications can be considered a simpler and slightly adapted variant of cal-culating S1-Applications, for which the content of spa is irrelevant. For this reason, the proce-dure presented here shows a lot of similarities to the one presented in section 4.2.1 above.
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Procedure 3 S1 - ELH
Input: Loop table spa, partial loop table spa∗

Output: A relation spa∗∗ containing updates to spa

1: initialize empty table spa∗∗

2: for all p, q, p1, p2 ∈ (δR × δT)4 do
3: if s = s′ and t = t′: then
4: Skip and continue with next p, q, p1, p25: end if

6: set (down, up) := filterEdges(p, q, p1, p2)7: set candidateRoles := filterRoles(down, up)

8: set fillers := {(A, c) | spa∗[p1, p2, A] = c, A ∈ T(UK), c ∈ N}
9: for all (r, w) ∈ candidateRoles do

10: for all (A, c) ∈ fillers do
11: Calculate subsumees := {C | C ∈ Sig(T ) ∩ NC, C ⊑ ∃r.A}
12: for all C ∈ subsumees do
13: if spa[p, q, C] > w + c then
14: set spa∗∗[p, q, C] = min(spa∗∗[p, q, C], w + c)
15: end if
16: end for
17: end for
18: end for
19: end for
20:
21: return spa∗∗

Procedure 4 S2 - ELH
Output: relation spa∗∗ containing all S2-Applications

1: initialize empty table spa∗∗

2: for all (s, t), (s′, t′) ∈ (δR × δT)2 do
3: if s = s′ and t = t′: then
4: Skip and continue with next (s, t), (s′, t′)
5: end if
6: set edges := {(t, u, A?, w, t′) | (s, u, s′) ∈ δR, (t, u, A?, w, t′) ∈ δT, A ∈ NC}

7: for all (t, u, A?, w, t′) ∈ edges do
8: Calculate subsumees := {C | C ∈ T(UK), T |= C ⊑ A}
9: for all C ∈ subsumees do

10: set spa[(s, t), (s′, t′), C] := min(spa[(s, t), (s′, t′), C], w)
11: end for
12: end for
13: end for
14:
15: return spa∗∗
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The procedure consists of only 2 Stages, roughly corresponding to Stages 1 and 3 from
Procedure S1. Line 6 extracts edges (t, u, A?, w, t′) ∈ δT s.t. a corresponding (s, u, s′) ∈ δRexists. This requires at most linear time in the size of δR and δT, and the amount of suchedges is restricted by |δT|. For each such edge, we need to compute all A ∈ NC ∩ Sig(T )s.t. T |= C ⊑ A holds, which is feasible in polynomial time in the size of K [BO15]. Hence,we obtain a P-Time upper bound in the combined size of R,T and K, matching the upperbound obtained from [FT21].
The following lemma shows that a run of Procedure S2 - ELH correctly computes all S2-Applications.
Lemma 5. Let R a 2RPQ, T a distortion transducer, K = (T , A) an ELH KB. Let spa′ be the state
of spa after Procedure SPA finishes line 2.For all C ∈ T(UK), the following holds:
After a run of Procedure S2 - ELH that returns spa∗∗, we have spa∗∗[(s, t), (s′, t′), C] = w iff
spa′[(s, t), (s′, t′), C] was updated with w after applying S2 to ((s, t), (s′, t′), C).

Proof. If spa′[(s, t), (s′, t′), C] was not updated by an S2-Application, there is no (s, u, s′) ∈ δRand (t, u, A?, v, t′) ∈ δT s.t. T |= C ⊑ A. Then, for all (t, u, A?, w, t′) ∈ edges, the set
subsumees calculated in line 8 is empty. It follows that spa∗∗[(s, t), (s′, t′), C] is never updated.
Assume spa′[(s, t), (s′, t′), C] was updated with value w. Then, there is (s, u, s′) ∈ δT and
(t, u, A?, w, t′) ∈ δT s.t. T |= C ⊑ A. Hence, we have (t, u, A?, w, t′) ∈ edges, and C ∈
subsumees, and consequently spa∗∗[(s, t), (s′, t′), C] ≤ w. Assume that spa∗∗[(s, t), (s′, t′), C] <
w. Then, there is some (t, u′, B?, v, t′) ∈ edges, and consequently (s, u′, s′) ∈ δR, s.t. T |=
C ⊑ B and v < w. Then, the same (s, u′, s′) and (t, u′, B?, v, t′) could have been used toupdate spa′[(s, t), (s′, t′), C], which is a contradiction to the fact that this entry was updatedwith w.It follows that spa∗∗[(s, t), (s′, t′), C] = spa′[(s, t), (s′, t′), C].

4.2.3. Calculating S3 over ELH KBs

While the procedures to calculate S1- and S2-Applications show some similarities, S3-Applicationsrequire an entirely different approach. The deterministic procedure presented here is basedon the idea mentioned in [FT21] to calculate S3-Applications using Floyd-Warshall algorithm.To explain the correspondence between S3-Applications and finding shortest paths in agraph, let us recall what the information stored in spa represents:
Given an ELH or ELHI⊥ KB K, the table spa is used to identify loops through the anony-mous part of UK, starting and ending at the same anonymous individual e. As explained insection 2.3, the subtree rooted at such an individual (denoted as Te) can be uniquely iden-tified its tail. After d iterations of f , an entry spa[(s, t), (s′, t′), C] = w represents the fact: If
tail(e) = C , GUK contains a path from (s, t, e) to (s′, t′, e) with cost w and depth at most d.
The idea behind rule applications of the form spa[(s, t), (s′, t′), C] ≪ spa[(s, t), (s′′, t′′), C] +
spa[(s′′, t′′), (s′, t′), C] is to combine the information currently stored in spa to find paths
p1, p2 in GUK that go from (s, t, e) to (s′′, t′′, e) and respectively from (s′′, t′′, e) to (s′, t′, e). Bycombining such paths, we obtain a new path p3 from (s, t, e) to (s′, t′, e) with cost c(p3) =
c(p1)+c(p2). Therefore, we can update spa[(s, t), (s′, t′), C] with c(p3). As the updated valuescan only decrease, there is a finite amount of S3-Applications after which the value no longerchanges.
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Consider a run of Procedure SPA and let e ∈ ∆UK \ Ind(A) with tail(e) = C . During the
d − th iteration of f , after exhaustively applying rule S3 to all spa[(s, t), (s′, t′), C], we obtainthat spa[(s, t), (s′, t′), C] = c(p′) exactly if p′ is a minimum-cost path from (s, t, e) to (s′, t′, e) in
GUK with maximum depth d [FT21]2. From here, it is easy to see how Floyd-Warhshall couldbe used on GUK to find the updated value for this entry. However, as constructing GUK isnot an option, we use the information stored in spa to construct a set of graphs that allowus to find similar paths.
Note that S3-Applications only consider entries with the same C ∈ T(UK), meaning for dif-ferent tails C, D ∈ T(UK), S3-Applications can be calculated independently of each other.To this end, for each C ∈ T(UK), we define as GC = (VC , EC) a weighted graph with

• VC := {(s, t) | s ∈ δR, t ∈ δT}

• EC := {((s, t), w, (s′, t′)) | spa[(s, t), (s′, t′), C] = w}

Such a graph has exactly |QR · QT| nodes and |QR · QT|2 edges. The following lemma showsthat the cost of the shortest path from (s, t) to (s′, t′) in GC corresponds the minimum valueof spa[(s, t), (s′, t′), C] after exhaustively applying S3.

Lemma 6. Let R a 2RPQ, T a distortion transducer, K = (T , A) an ELH or ELHI⊥ KB, spa a
loop table. Further, let spa′ be the state of spa after an exhaustive application of rule S3. For all
((s, t), (s′, t′), C) ∈ (δR × δT)2 × T(UK), the following holds:
Let p be a path of minimal cost from (s, t) to (s′, t′) in GC . Then, we have c(p) = spa′[(s, t), (s′, t′), C].

Proof. spa′[(s, t), (s′, t′), C] ≤ c(p): Assume c(p) ̸= ∞. Then, p is a path of length n + 1 in GCof the form
(s, t)w1(s1, t1)...(sn, tn)wn+1(s′, t′) with c(p) = w1 + ... + wn+1 (n ≥ 0)

If n = 0, we have p = (s, t)w1(s′, t′). Consequently, (s, t), w1(s′, t′) is an edge in GC , and thus
spa[(s, t)(s′, t′), C] = w1. It follows that c(p) ≤ spa′[(s, t), (s′, t′), C].
For n = 1, we have a rather trivial case where p is of the form (s, t)w1(s1, t1)w2(s′, t′). Then,we have spa∗[(s, t), (s1, t1), C] = w1 and spa∗[(s1, t1), (s′, t′), C] = w2. Consequently, wecan use a single application of S3 to update spa[(s, t), (s′, t′), C] using spa[(s, t), (s1, t1), C] +
spa[(s1, t1), (s′, t′), C].
We use induction on n to show that, for all n > 1, there is a corresponding sequence ofS3-Applications s.t. spa[(s, t), (s′, t′), C] can be updated with v.
For n = 2, p is of the form (s, t)w1(s1, t1)w2(s2, t2)w3(s′, t′). Then, there is spa∗[(s, t), (s1, t1), C] =
w1, spa∗[(s1, t1), (s2, t2), C] = w2 and and spa∗[(s2, t2), (s′, t′), C] = w3. Consequently, the fol-lowing sequence of S3 applications can be applied: First, update spa[(s, t), (s2, t2), C] withvalue w1 + w2, followed by an update to spa[(s, t), (s′, t′), C] using spa[(s, t), (s2, t2), C] +
spa[(s2, t2), (s′, t′), C]. We obtain spa[(s, t), (s′, t′), C] = w1 + w2 + w3.

2A corresponding proof for ELHI⊥ can be found in the appendix 16.
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For i = n + 1, we have p is of the form (s, t), w1(s1, t1)...(sn, tn)wn+1(sn+1, tn+1)wn+2(s′, t′).By induction, we have spa[(s, t), (sn+1, tn+1), C] = w1 + ... + wn+1, and S3 can be applied toupdate spa[(s, t), (s′, t′), C] using spa[(s, t), (sn, tn), C] + spa[(sn, tn), (s′, t′), C]with w1 + ... + wn+2 = v.
This satisfies our claim, and we obtain that spa′[(s, t), (s′, t′), C] ≤ c(p).
c(p) ≤ spa′[(s, t), (s′, t′), C]: Let spa′[(s, t), (s′, t′), C] = v. If v was not updated by an S3-Application, we have v = spa[(s, t), (s′, t′), C]. Consequently, there is an edge ((s, t)v(s′, t′) in
GC . It follows that c(p) < v. Otherwise, let µ1, ..., µk be the sequence of S3-Applications thatwere used to obtain spa′. Assume this sequence is ordered, i.e. µ1 was the first update and
µk the last one. In addition, we denote as spai the state of spa after update µi. Now, let µjbe the final update to spa′[(s, t), (s′, t′), C], i.e. spa′[(s, t), (s′, t′), C] = spaj [(s, t), (s′, t′), C].
We show by induction on the length j that, for each such sequence, there is a correspondingpath p in GC with c(p) = spa′[(s, t), (s′, t′), C]:
For the case where j = 1, only a single application was performed, i.e. there is (s′′, t′′)s.t. spa[(s, t), (s′′, t′′), C] = w1, spa[(s′′, t′′), (s′, t′), C] = w2 and v = w1 + w2. Then, there arecorresponding edges ((s, t), w1, (s′′, t′′)) and ((s′′, t′′), w2, (s′, t′)) in GC . It follows that thereis a path p = (s, t)w1(s′′, t′′)w2(s′, t′) in GC with c(p) = v.
For j > 2: µj corresponds to an update spa′[(s, t), (s′, t′), C] = spaj−1[(s, t), (s′′, t′′), C] +
spaj−1[(s′′, t′′), (s′, t′), C] for some (s′′, t′′). By applying induction, we obtain that there arepaths p1 = (s, t)...(s′′, t′′) and p2 = (s′′, t′′)...(s′, t′) in GUK s.t. c(p1) = spaj−1[(s, t), (s′′, t′′), C]and c(p2) = spaj−1[(s, t), (s′′, t′′), C]. By combining these paths, we obtain p′ with c(p′) =
spa′[(s, t), (s′, t′), C], thus satisfying our claim.
As p is a path of minimal cost from (s, t) to (s′, t′), it follows that c(p) ≤ c(p′), and conse-quently c(p) ≤ spa′[(s, t), (s′, t′), C].
As we have shown both direction, it holds that c(p) = spa′[(s, t), (s′, t′), C].
We present Procedure S3, which is used to calculate the result exhaustively applying rule S3as required in line 3 and one iteration of f in Procedure SPA. For each C ∈ T(UK), a graph
GC is constructed using the content of spa, and Floyd-Warhshall is used to find the cost ofshortest paths between all nodes. By Lemma 6, the minimal cost of a path from (s, t) to
(s′, t′) can be used to update spa[(s, t), (s′, t′), C]. Similar to Procedure S1, a relation spa∗∗

containing only the updated entries is returned.
For ELH, the size of T(UK) is polynomial in |Sig(T )|. Building GC is feasible in linear timein the combined size of QR and QT. The time complexity of calculating the minimal cost ofall paths using Floyd-Warshall is |VC |3 ([Flo62],[War62]), and the amount of nodes in GC isexactly |QR × QT|. Thus, a run of Procedure S3 is feasible in at most polynomial time in thecombined size of R,T and K.
Using Lemma 6, it is easy to see that Procedure S3 calculates the correct results.
Lemma 7. Let R a 2RPQ, T a distortion transducer, K = (T , A) an ELH or ELHI⊥ KB.
After a run of Procedure S3, for all ((s, t), (s′, t′), C) ∈ (δR×δT)2×T(UK), we have spa∗∗[(s, t), (s′, t′), C] =
v iff v is the updated value of spa[(s, t), (s′, t′), C] after exhaustively applying rule S3.
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Proof. Let spa∗ be the state of spa used as input to Procedure S3 (before any applications ofrule S3) and spa′ be the state of spa after exhaustively applying rule S3.
By Lemma 6, for each C ∈ T(UK), it holds that spa′[(s, t), (s′, t′), C] = w iff w is the mini-mal cost of a path from (s, t) to (s′, t′) in GC . For an arbitrary C ∈ T(UK) chosen in line 2,after the procedure reaches line 11, distance((s, t), (s′, t′) contains the minimal cost of pathfrom (s, t) to (s′, t′) in GC for all (s, t), (s′, t′) ∈ (δR×δT). Thus, we have spa′[(s, t), (s′, t′), C] =
distance((s, t), (s′, t′). If v was not updated by an application of rule S3, we have spa∗[(s, t), (s′, t′), C] =
spa′[(s, t), (s′, t′), C], and consequently spa∗∗[(s, t), (s′, t′), C] is not set. Otherwise, we have
spa′[(s, t), (s′, t′), C] < spa∗[(s, t), (s′, t′), C], and thus spa∗∗[(s, t), (s′, t′), C] receives value vin line 13.
Procedure 5 S3
Input: An ELH or ELHI⊥ KB K = (T , A), a 2RPQ R, a dt T, loop table spa
Output: relation spa∗∗ containing all updated entries

1: initialize empty table spa∗∗

2: for all C ∈ T(UK) do
3: set V := {(s, t) | (s, t) ∈ (δR × δT)}
4: set E := {((s, t), 0, (s, t)) | (s, t) ∈ (δR × δT)}
5: for all (s, t), (s′, t′) ∈ (δR × δT)2 do
6: if spa[(s, t), (s′, t′), C] < ∞ then
7: add ((s, t), spa[(s, t), (s′, t′), C], (s′, t′)) to E
8: end if
9: end for

10: calculate distance for (V , E) using Floyd-Warshall
11: for all (s, t), (s′, t′) ∈ V do
12: if distance((s, t), (s′, t′)) < spa[((s, t), (s′, t′), C)] then
13: set spa∗∗ = distance((s, t), (s′, t′))
14: end if
15: end for
16: end for
17:
18: return spa∗∗

4.3. Rule calculation over ELHI⊥ KBs

In this section, we present deterministic, moderate-case optimized procedures to computeS1-, S2- and S3-Applications under the presence of an ELHI⊥ KBs. We start by definingrules S1, S2 and S3.
S1. spa[(s, t), (s′, t′), M ] ≪ w1 + spa[(s1, t1), (s2, t2), M1] + w2, if C1* holds.
S2. spa[(s, t), (s′, t′), M ] ≪ w, if T |= M ⊑ A, (s, u, s′) ∈ δR, and (t, u, A?, w, t′) ∈ δT,
S3. spa[(s, t), (s′, t′), M ] ≪ spa[(s, t), (s′′, t′′), M ] + spa[(s′′, t′′), (s′, t′), M ].
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C2∗. M1 ⊆ NC , T |= M ⊑ ∃R.M1, T |= R ⊑ R′, T |= R− ⊑ R′′, (s, u, s1) ∈ δR, (t, u, R′, w1, t1) ∈
δT, (s2, u′, s′) ∈ δRj and (t2, u′, R′′, w2, t′) ∈ δT.

with R, R′, R′′ ∈ N±R and M , M1 ⊆ NC.
In the presence of an ELHI⊥ KB, calculating applications of rules S1,S2 and S3 is lot harderthan it is for ELH. Recall that, for an ELH KB, the set T(UK) consists of single concept names
C ∈ Sig(T )∩NC, whereas for an ELHI⊥ KB, the set T(UK) contains all conjunctions of theseconcept names. As introduced in chapter 2, such conjunctions will be treated as sets ofconcept names.
From Appendix B, we obtain that a single application of rule S1 requires exponential time inthe size of T , mainly for two reasons:

• Checking Entailment is EXP-Complete for ELHI⊥

• The amount of elements in T(UK) is exponential in the size of T

Analogously to the previous section, all procedures presented in this section assume thepresence of an ELHI⊥ KB K = (T , A), a 2RPQ R and a distortion Transducer T.

4.3.1. Calculating S1 over ELHI⊥ KBs

The basic structure of the algorithm is very similar to the ELH case while accounting forthe different nature of T(UK). However, a number of additional optimizations are employedwith the aim to avoid calculations with predictable outcome.
Again, the algorithm consists of 3 Stages. Stages 1 and 2 are almost identical to the onespresented in section 4.2.1 with minor changes to account for the presence of inverse rolesin the ontology. To avoid repetition, the adjusted subprocedures filterEdges and filterRolesare given in the appendix. The third stage features two main differences to the procedurepresented for ELH, which are explained below.
In Lines 11-14, a caching optimization is employed to keep track which fillers have alreadybeen processed in the current iteration, and potentially skip to process others if the resultscannot improve. Additionally, a more sophisticated procedure calculateSubsumees featuringa mixture of filtering and caching optimizations is used. We present the entire procedurefirst, and continue to discuss how the updates are calculated.
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Procedure 6 S1 - ELHI⊥

Input: Loop table spa, partial loop table spa∗

Output: A relation spa∗∗ containing updates to spa

1: initialize empty table spa∗∗

2: for all (p, q, p1, p2 ∈ (δR × δT)4 do
3: if s = s′ and t = t′: then
4: Skip and continue with next p, q, p1, p25: end if

6: calculate (down, up) := filterEdges(p, q, p1, p2)7: calculate candidateRoles := filterRoles(down, up)

8: initialise empty relation processed ⊆ T(UK) × N
9: set fillers := {(M1, c) | spa∗[p1, p2, M1] = c, M1 ∈ T(UK), c ∈ N}

10: for all (M1, c) ∈ fillers3 do
11: if M ′ ⊆ M1 and c = v for some (M ′, v) ∈ processed then
12: Skip and continue with next M113: end if
14: add (M1, c) to processed
15: for all (r, w) ∈ candidateRoles do
16: calculate subsumees := calculateSubsumees(r, M1, w + c)
17: for all M ∈ subsumees do
18: set spa∗∗[p, q, M ] = min(spa∗∗[p, q, M ], w + c)
19: end for
20: end for
21: end for
22: end for
23:
24: return spa∗∗

2 elements are required to be processed in a specific order, see Remark 2

Stages 1 and 2 (lines 6 and 7) are used to extract roles r ∈ N±R and an associated mini-mal cost w ∈ N s.t. condition C2∗ is partially satisfiable using r. From spa∗, we obtain sets
M1 ∈ T(UK) for which the corresponding entry spa[(s1, t1), (s2, t2), M1] has been updatedsince the previous iteration. Each combination of such r and M1 corresponds to an expres-sion w1+spa[(s1, t1), (s2, t2), M1]+w2 for which there is (t, u, R′, w1, t1), (t2, u′, R′′, w2, t′) ∈ δRs.t. the following is guaranteed:

(1) there is (s, u, s1), (s2, u′, s′) ∈ δR,
(2) T |= r ⊑ R′ and T |= r− ⊑ R′′,
(3) w = w1 + w2 is minimal, i.e. there is no (t, ρ, S′, w′

1, t1), (t2, ρ′, S′′, w′
2, t′) ∈ δR with

w′
1 < w1 or w′

2 < w2 satisfying conditions (1) and (2) for some ρ, ρ′ ∈ N±R,T , S′, S′′ ∈ N±R
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In order to find valid rule applications of the form
spa[(s, t), (s′, t′), M ] ≪ w1 + spa[(s1, t1), (s2, t2), M1] + w2,

it remains to find such M that satisfy T |= M ⊑ ∃r.M1. The following section explains howprocedure calculateSubsumees is used to find such M .

4.3.1.1. Calculating subsumees

Given r and M1, a straight-forward way to find such sets M that satisfy T |= M ⊑ ∃r.M1 is tocheck entailment for each M ∈ T(UK). However, such entailment checks are computation-ally expensive. The idea behind calculateSubsumees is to introduce a set of additional, butcomputationally less expensive checks that can be used to answer T |= M ⊑ ∃r.M1 withoutusing the DL Reasoner.
These optimizations use subset relations on sets M , M ′ ∈ T(UK). We start by making someobservations that will be used to show the correctness of the construction.
The first observation is a direct consequence of applying semantics to such sets M , M ′ ∈
T(UK). Note that T(UK) does not contain the empty set.
Proposition 3. Let K = (T , A) be an ELHI⊥ KB, M ∈ T(UK) and M ′ ⊆ M . Then, it holds that
T |= M ⊑ M ′.

Proof. If M = M ′, this is trivially satisfied. Otherwise, let M ′ = {C1, ..., Cm} and M = M ′ ∪
{Cm+1, ..., Cn} (1 < m < n) with Ci ∈ NC ∩ Sig(T ) for all i ≤ m. Given an interpretation I ,we have M ′I = C1

I ∩ ... ∩ Cm
I and M I = M ′I ∩ Cm+1

I ∩ ... ∩ Cn
I . It follows that M I ⊆ M ′I ,and by applying semantics we obtain T |= M ⊑ M ′.

In the case where M ′ is a strict subset of M , we say that M is more specific than M ′.
We can use subset relations between such sets to infer certain facts about our KB withoutthe need to calculate (computationally expensive) reasoning tasks. Specifically, our algorithmmakes use of the following observations:
Corollary 1. Let K = (T , A) an ELHI⊥ KB, r ∈ N±

R and M , M1 ∈ T(UK). If T ̸|= M ⊑ ∃r.M1,
it holds that T ̸|= M ′ ⊑ ∃r.M1 for all M ′ ⊆ M .

Proof. Let I an interpretation, M ′ ⊆ M and assume T ̸|= M ⊑ ∃r.M1. By applying semantics,we obtain that there is some e ∈ M I s.t. e /∈ {d1 | (d1, d2) ∈ rI , d2 ∈ M1}. By proposition 3,it holds that T |= M ⊑ M ′, and thus M I ⊆ M ′I . Hence, the same e can be found in M ′I . Itfollows that T ̸|= M ′ ⊑ ∃r.M1.
A similar observation can be made for the ”other” direction:
Corollary 2. Let K = (T , A) an ELHI⊥ KB, r ∈ N±

R and M , M1 ∈ T(UK). If T |= M ⊑ ∃r.M1,
it holds that T |= M ′ ⊑ ∃r.M1 for all M ′ ⊇ M .
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Proof. Let I an interpretation, M ′ ⊇ M and assume T |= M ⊑ ∃r.M1. By proposition 3, itholds that T |= M ′ ⊑ M . By applying semantics, we obtain that for each e ∈ M I , it holdsthat e ∈ {d1 | (d1, d2) ∈ rI , d2 ∈ M1}. Because M ′I ⊆ M I , the same applies to all elements
e′ ∈ M ′I . It follows that T |= M ′ ⊑ ∃r.M1.
As a preliminary step, DL Reasoning is employed to retrieve the set subsumees containingall atomic concepts C ∈ NC ∩ Sig(T ) s.t. T |= C ⊑ ∃r.M1.

Subprocedure 7 calculateSubsumees (S1 - ELHI⊥)
Input: role r ∈ N±R , set M1 ∈ T(UK), update value v ∈ N
Output: A set {M | T |= M ⊑ ∃r.M1} ⊆ T(UK)

1: initialise empty set subsumees
2: initialise empty set eliminated
3: Calculate b := {C | T |= C ⊑ ∃r.M1, C ∈ NC}
4: if b = ∅ then
5: let M∗ = {A|A ∈ Sig(T ) ∩ NC}
6: if T ̸|= M∗ ⊑ ∃r.M1 then
7: return subsumees = {}
8: end if
9: end if

10: for all M ∈ T(UK)4 do
11: if spa[(s, t), (s′, t′), M ] <= v then
12: discard and continue with next M
13: end if
14: if M ∩ b ̸= ∅ then
15: add M to subsumees
16: else
17: if M ⊆ M ′ for some M ′ ∈ eliminated then
18: Discard and continue with next M
19: end if
20: if T |= M ⊑ ∃r.M1 then
21: add M to subsumees
22: else
23: add M to eliminated
24: end if
25: end if
26: end for
27:
28: return subsumees

3 elements are required to be processed in a specific order, see Remark 1

Checking if C2∗ is satisfiable (Line 4-9)

The first check represents a filtering optimization to capture the case where there is no suit-able M ∈ T(UK). The construction is based on the following observation:
Let M∗ = {A|A ∈ Sig(T ) ∩ NC}, i.e. the set containing all concept names from Sig(T ). Forall M ∈ T(UK), it holds that M ⊆ M∗. Thus, by Corollary 1, it holds that if T ̸|= M∗ ⊑ ∃r.M1,
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we have T ̸|= M ⊑ ∃r.M1 for all M ∈ T(UK). In that case, condition C2∗ is unsatisfiable, andthe procedure returns an empty set.
By Corollary 2, T |= M∗ ⊑ ∃r.M1 is trivially satisfied if there is at least one C ∈ NC ∩ Sig(T )s.t. T |= C ⊑ ∃r.M1, i.e. the set b is not empty. In that case, testing M∗ ⊑ ∃r.M1 can beskipped.

We proceed by iterating over all sets M ∈ T(UK). Recall that our subprocedure uses afixed w1, spa[(s1, t1), (s2, t2), M1] to calculate updates of the form spa[(s, t), (s′, t′), M ] <<
w1 + spa[(s1, t1), (s2, t2), M1] + w2. To this end, it receives an input v representing the up-dated value. Lines 11-13 represent a simple condition to test whether the value currentlystored in spa[(s, t), (s′, t′), M ] can actually be improved using v.

Checking atomic subsumees (Lines 14-16)

Lines 14-16 represent another filtering optimization using the set subsumees consisting ofall atomic concepts C ∈ NC ∩ Sig(T ) that satisfy T |= C ⊑ ∃r.M1. The optimization is basedon the following correspondence:If M ∩ b ̸= ∅, the following holds: Let A ∈ M ∩ b and MA = {A}. Then, T |= MA ⊑ ∃r.M1and MA ⊆ M . By Corollary 2, it holds that T |= M ⊑ ∃r.M1. It follows that v can be used toupdate spa[(s, t), (s′, t′), M ].

Checking eliminated sets (Lines 17-19 + 23)

A caching optimization is employed to allow reusing intermediate results obtained while it-erating over all M ∈ T(UK). To this end, a set eliminated is used to collect such M ∈ T(UK)that satisfy T ̸|= M ⊑ ∃r.M1. The optimization is based on the following correspondencebetween such sets M ′ ∈ eliminated and a set M :
For all M ′ ∈ eliminated, it holds that T ̸|= M ′ ⊑ ∃r.M1. Let M ∈ T(UK) s.t. there issome M ′ ∈ eliminated with M ⊆ M ′. By Corollary 1, it holds that T ̸|= M ⊑ ∃r.M1.Lines 17-19 are used to test this condition and potentially discard the current M .
Finally, if the procedure reaches line 20, an entailment check to test whether T |= M ⊑
∃r.M1 holds, is performed. In case of a positive result, M is added to subsumees. Otherwise,we obtain T ̸|= M ⊑ ∃r.M1, and M is added to eliminated.Note that this means the elements in eliminated are collected in the order in which the sets
M ∈ T(UK) are processed. The actual benefit obtained from this optimization for moderate-case scenarios depends on the order in which the sets are collected:
Remark 1. The order in which the sets M ∈ T(UK) in line 10 are processed has an impact onmoderate-case performance. The best results are obtained if the elements are processedin order of descending size, i.e. M ′ is processed after M ′′ iff M ′ ⊂ M ′′.

The following lemma shows that calculateSubsumees calculates the correct results. Asusual, we assume the presence of a fixed (s, t), (s′, t′) ∈ (δR×δT)2 and loop table spa withoutexplicitly stating these as inputs.
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Lemma 8. Let K = (T , A) an ELHI⊥ KB, r ∈ N±
R , M1 ∈ T(UK) and v ∈ N. A run of calculate-Subsumees with input r, M1, v calculates the the set

{M | T |= M ⊑ ∃r.M1, spa[(s, t), (s′, t′), M ] > v}.

Proof. To shorten notation, let subsumees be the set returned by calculateSubsumees and
T = {M | T |= M ⊑ ∃r.M1, spa[(s, t), (s′, t′), M ] > v}.
⇒ subsumees ⊇ T : Let M ∈ T . By Corollary 2, it holds that T |= M∗ ⊑ ∃r.M1, and con-sequently the algorithm proceeds to line 10. The condition spa[(s, t), (s′, t′), M ] > v holdsas a consequence of M ∈ T .At line 14, we consider two possibilities: If M ∩ b ̸= ∅, we have M ∈ subsumees. Otherwise,the algorithm proceeds to line 17.
Assume there is M ′ ∈ eliminated s.t. M ⊆ M ′, i.e. T ̸|= M ′ ⊑ ∃r.M1. Then, by Corol-lary 1, we have T ̸|= M ⊑ ∃r.M1, which is a contradiction to M ∈ T . Therefore, there is nosuch M ′, and the algorithm proceeds to line 20. Finally, we have T |= M ⊑ ∃r.M1 as a directconsequence of M ∈ T , and thus M ∈ subsumees. As M was chosen arbitrarily, we obtainthat M ∈ subsumees holds for all M ∈ T , and thus subsumees ⊇ T .
⇐ subsumees ⊆ T : Let M ∈ subsumees. In order for M to be added to subsumees, wehave (1) spa[(s, t), (s′, t′), M ] > v (Line 11), and either:
(2a) M ∩ b ̸= ∅, or
(2b) There is no M ′ ∈ eliminated s.t. M ⊆ M ′ and T |= M ⊑ ∃r.M1

If (2a) holds, there is some A ∈ M s.t. T |= A ⊑ ∃r.M1. Let MA = {A}. By Corollary2, it holds that T |= M ⊑ ∃r.M1. If (2b) holds, we have T |= M ⊑ ∃r.M1 as a directconsequence. For both cases, we obtain in combination with (1) that T |= M ⊑ ∃r.M1 and
spa[(s, t), (s′, t′), M ] > v holds. Thus, we have M ∈ T . As M was chosen arbitrarily, it holdsthat M ∈ T for all M ∈ subsumees, and therefore subsumees ⊆ T .
Regarding combined complexity, we have that lines 3 and 6 require at most EXP-time. Foreach M ∈ T(UK), the complexity of executing lines 11-25 is dominated by the subsumptioncheck required in line 20, which as well requires exponential time. We obtain that a run of
calculateSubsumees requires at most exponential time for combined complexity.
4.3.1.2. Tracking processed fillers

Recall that S1-Applications are of the form
spa[(s, t), (s′, t′), M ] ≪ w1 + spa[(s1, t1), (s2, t2), M1] + w2

We refer to such entries spa[(s1, t1), (s2, t2), M1] as fillers. The amount of entries that needto be considered is already restricted by exploiting Lemma 3. However, the set of potentialfillers can still be rather large. As the processing of each such filler requires at at least onerun of calculateSubsumees (and thus EXP-Time), our procedure can greatly benefit from fur-ther restricting the set of potential fillers.
In lines 11-14 of procedure S1 - ELHI⊥, an additional caching optimization is employed. Theidea is that, by keeping track of which sets have already processed, we can decide whethera pair (M1, c) ∈ fillers can actually be used to find better updates than the ones alreadyfound.
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To this end, the procedure uses a relation processed ⊆ T(UK) × N to collect all fillers thathave been processed for the current combination of (s, t), (s′, t′), (s1, t1) and (s2, t2). We willexplain how the condition in line 11 can be used to decide whether a certain filler can beskipped.
Consider a run of Procedure S1 - ELHI⊥ until processed contains at least one element, andlet (M1, c) ∈ fillers be the filler that is currently considered when line 11 is reached. Assumethere is (M ′, v) ∈ processed s.t. M ′ ⊆ M1 and c = v. By Lemma 2, it holds that T |= M1 ⊑ M ′,and consequently T |= ∃r.M1 ⊑ ∃r.M ′ for all r ∈ N±R .
Let M ∈ T(UK) and (r, w) ∈ candidateRoles. We consider two cases: First, assume T ̸|=
M ⊑ ∃r.M1. Then, M1 and r cannot be used to update spa[(s, t), (s′, t′), M ].
Otherwise, assume spa[(s, t), (s′, t′), M ] can be updated with value with z1 = c + w using
M1, i.e. it holds that T |= M ⊑ ∃r.M1. Consequently, we have that T |= M ⊑ ∃r.M ′ holds.It follows that spa[(s, t), (s′, t′), M ] can be updated with value z2 = v + w using M ′. We have
z1 < z2 only if c < v. As the condition in line 11 requires c = v, there are no updates to
spa[(s, t), (s′, t′), M ] using M1 and r that are better than the once already found using M ′

and r.
As M and (r, w) were chosen arbitrarily, this holds for all combinations of M and r. There-fore, we can see that lines 11-14 do not change the results computed by Procedure S1 -
ELHI⊥.
While the correctness of this construction is independent of the order in which the setsin fillers are processed, it is obvious that actual value of the optimization depends on howmany sets can be skipped, and thus depends on smaller sets being processed first.
Remark 2. The order in which Procedure S1- ELHI⊥ processes the sets (M , c) ∈ fillers hasan impact on moderate-case performance. The best results are obtained if the elementsare processed in order of ascending size, i.e. (M , c) is processed before (M ′, c′) iff M ⊂ M ′.

The maximum amount of elements (M ′, c) in processed is bounded by the size of T(UK).For each element, the condition in line 11 requires checking subset containment, which ispossible in linear time using an appropriate encoding, as explained in chapter 5. Thus, anexecution of line 11 requires at most EXP-Time in the size of T.Regarding space complexity, we need to store a set M ⊂ |Sig(T ) ∩ NC| and a constant-sizedvalue for each element. Therefore, storing processed requires at most exponential space inthe size of K.
While these upper bounds do not look promising, we expect that the actual amount of ele-ments in processed remains much lower for moderate-case scenarios. Note that, to circum-vent the EXP-space requirement, an equivalent construction could be obtained by restrictingthe set fillers after line 9 to only contain such (M , c) where M is the smallest set among all
(M∗, c), i.e. using:

fillers′ := {(M1, c) | (M1, c) ∈ fillers and there is no (M∗, c) ∈ fillers with M1 ⊂ M∗}

Calculating this restriction is possible in exponential time without requiring additional space.We do not give details here, as we expect both variants to have comparable performancefor moderate-case scenarios.
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4.3.1.3. Correctness and runtime of Procedure S1 - ELHI⊥

Finally, we are ready to show that Procedure S1 - ELHI⊥ correctly computes all S1-applicationsas required in Procedure SPA for one iteration of f . Due to the correspondence between pro-cedure calculateSubsumees and Line 11 of Procedure S1 - ELH, the proof is almost identicalto Lemma 4 and can be found in the appendix.
Lemma 9. Let R a 2RPQ, T a distortion transducer, K = (T , A) an ELHI⊥ KB, spa a loop table
and spa∗ a fragment of spa containing all updated entries since the previous iteration of f . For
all M ∈ T(UK), the following holds:

After a run of Procedure S1 - ELHI⊥, we have spa∗∗[(s, t), (s′, t′), M ] = v iff v is the minimal5
updated value after applying rule S1 to ((s, t), (s′, t′), M). to be continued...

For K an ELHI⊥ KB, procedures filterEdges and filterRoles are computable in at most expo-nential time in the combined size of R,T and K. The amount of entries in spa∗ is at mostexponential in the combined size of QR, QT and K. Each such entry requires one executionof lines 11-14 and one run of calculateSubsumees. Both require at most exponential time inthe size of R,T and K. We obtain that a run of Procedure S1 - ELHI⊥ is feasible in at mostexponential time for combined complexity.
4.3.2. Calculating S2 over ELHI⊥ KBs

Here, we present a procedure to calculate all S2-Applications under the presence of an
ELHI⊥ KB. In general, this procedure is identical to Procedure S2 - ELH presented in section4.2.2 when accounting for the difference in T(UK). However, due to the increased complex-ity for answering subsumption over ELHI⊥ KBs, we obtain an EXP-Time upper bound incombined complexity for a single application of S2.Nevertheless, this upper bound leads us to expect that there is something to be gained formoderate-case scenarios. In similar spirit to the optimizations explained for calculating S1-Applications over ELHI⊥, we expect to increase moderate-case performance by applyingsimilar optimizations. To this end, we present a dedicated subprocedure calculateSubsumeesto calculate the set {M | M ∈ T(UK), T |= M ⊑ A} as required in line 8 of Procedure S2 -
ELH. The adjusted procedure S2 - ELHI⊥ can be found in the appendix.

5We can assume that v is the minimum value amongst all S1-Applications to ((s, t), (s′, t′), M)
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Subprocedure 8 calculateSubsumees (S2 - ELHI⊥)
Input: A ∈ NC ∩ Sig(T )
Output: A set {M | M ∈ T(UK), T |= M ⊑ A} ⊆ T(UK)

1: initialise subsumees := {}, eliminated := {}
2: Calculate b := {C | T |= C ⊑ A, C ∈ NC} ∪ A
3: for all M ∈ T(UK)6 do
4: if M ∩ b ̸= ∅ then
5: add M to subsumees
6: else
7: if M ⊆ M ′ for some M ′ ∈ eliminated then
8: Discard and continue with next M
9: end if

10: if T |= M ⊑ A then
11: add M to subsumees
12: else
13: add M to eliminated
14: end if
15: end if
16: end for
17:
18: return subsumees

4 elements are required to be processed in a specific order, following the same idea as given in Remark 1

The procedure contains two optimizations: In line 2, all basic concepts C that satisfy T |=
C ⊑ A are retrieved, which requires at most EXP-Time in the size of K. These are used tohandle cases where C is one of the conjuncts in M . The size of eliminated is bounded by
|T(UK)|, and hence the number of checks for M ⊆ M ′ required in line 7 is at most exponen-tial in the size of K. Testing M ⊆ M ′ is possible in linear time using an appropriate encoding,as explained in chapter 5. Checking Entailment as required in line 10 is feasible in EXP-Timefor ELHI⊥ KBs [BBL05]. We obtain that a run of Subprocedure calculateSubsumees requiresat most EXP-Time in the size of K.
From the complexity results in section 4.2.2, we obtain that Procedure S2 - ELHI⊥ canbe considered a linear-time procedure that makes at most polynomially many calls to anEXP-Time subprocedure for combined complexity. This matches the upper bound for S2-Applications presented in B. The following lemma shows that calculateSubsumees computesthe set {M | M ∈ T(UK), T |= M ⊑ A} ⊆ T(UK). As usual, we assume the presence of afixed (s, t), (s′, t′) ∈ (δR × δT)2.
Lemma 10. Let K = (T , A) an ELHI⊥ KB and A ∈ NC ∩ Sig(T ). A run of Subprocedure
calculateSubsumees with input A calculates the set {M | T |= M ⊑ A}.

Proof. To shorten notation, let subsumees be the set returned by Procedure calculateSub-
sumees and T = {M | T |= M ⊑ A}.

40



4. Deterministic loop table construction for ELH and ELHI⊥

subsumees ⊇ T : Let M ∈ T , i.e. T |= M ⊑ A. Then, either M was added to subsumees inline 5, or the procedure continues to line 7. Assume there is M ′ ∈ eliminated s.t. M ⊆ M ′.This implies that T ̸|= M ′ ⊑ A. Let I be an interpretation. By applying semantics, it holdsthat M ′ ̸⊆ AI , i.e. there is some e ∈ M ′ s.t. e /∈ AI . From Proposition 3, we obtain M ′ ⊆ M .Then, the same e exists in M , which is a contradiction to T |= M ⊑ A. Consequently, therecan be no such M ′, and M is added to subsumees in line 11.
subsumees ⊆ T : Let M ∈ subsumees. If M was added to subsumees in line 5, there issome C ∈ M s.t. T |= C ⊑ A. Let Mc = {C}. Obviously, we have T |= Mc ⊑ A and Mc ⊆ M .By Proposition 3, it holds that T |= M ⊑ Mc, and hence T |= M ⊑ A. Consequently, wehave M ∈ T .
Otherwise, M was added to subsumees in line 11. Thus, it holds that T |= M ⊑ A, andhence M ∈ T .
Given that the only difference between the procedures Procedure calculateS2 - ELH and is
Procedure calculateS2 - ELHI⊥ is how the set subsumees is computed at line 8, it is easy tosee that the proof for Lemma 5 can be adopted for Procedure S2 - ELHI⊥ using Lemma 11.

Lemma 11. Let R a 2RPQ, T a distortion transducer, K = (T , A) an ELHI⊥ KB. Let spa∗ be the
state of spa after Procedure SPA finishes line 2. For all M ∈ T(UK), the following holds:
After a run of Procedure S2 - ELHI⊥, we have spa∗∗[(s, t), (s′, t′), M ] = w iff spa∗[(s, t), (s′, t′), M ]
was updated with w after applying S2 to ((s, t), (s′, t′), C).

4.3.3. Calculating S3 over ELHI⊥ KBs

In section 4.2.3, a Procedure S3 is presented to compute the same results as obtained froman exhaustive application of rules S3. As Lemma 6 and Lemma 7 hold for both ELH and
ELHI⊥ KBs, the same procedure can be used for both DLs. We note that the complexity ofbuilding the Graphs GC and finding the cost of all shortest paths depends only on the sizeof R and T. However, given the presence of an ELHI⊥ KB, the size of T(UK) is exponentialin the size of Sig(T ). Thus, we obtain that a single run of Procedure S3 requires exponentialtime in the combined size of R, T and K.

4.4. Calculating spa

Finally, we are ready to present our final algorithm to compute the entire loop table spausing Procedures S1, S2 and S3. Depending on whether an ELH or ELHI⊥ KB is used, therespective variants of S1 and S2 have to be used.
The general idea follows the nondeterministic Procedure SPA from [FT21]. Additionally, thealgorithm exploits Lemma 3 to ensure that the input to Procedure S1 is the minimal frag-ment spa∗ required to compute the correct results. This is made possible by the fact that
Procedures S1 and S3 keep track of which entries of spa have been updated during their re-spective runs. We present the entire algorithm first before continuing to show the resultsare correct.
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Algorithm 1 Construction of spa

Input: An ELH or ELHI⊥ KB K = (T , A), a 2RPQ R, a dt T
Output: loop table spa

1: initialize empty table spa∗

2: spa := S2()
3: spa∗∗ := S3(spa)
4: update spa with spa∗∗

5: set spa[(s, t), (s, t), C] := 0 for all ((s, t), C) ∈ (δR × δT) × T(UK)
6: set spa∗ := spa
7: repeat
8: (spa, spa∗) := f(spa, spa∗)
9: until spa∗ is empty

10: return spa

function f
spa∗ := S1(spa∗)update spa with spa∗

spa∗∗ := S3(spa)update spa and spa∗ with spa∗∗

return (spa, spa∗)
end function

Expressions of the form ” update spa with spa∗ ”, where spa∗ is a partial loop table, have the fol-lowing meaning: For every entry spa∗∗[(s, t), (s′, t′), C] with value v ∈ N, update spa[(s, t), (s′, t′), C]with v. The algorithm uses Procedure S2 to calculate the initial state of spa, which is thengradually updated. In addition, a partial table spa∗ is used to keep track of updates to spacalculated during one iteration of f , and is used as input to Procedure S1.
Lines 5 and 6 guarantee that, for the first iteration of f , all entries spa∗[(s, t), (s, t), C] = 0are present. These can never be updated (and thus need not to be considered as input for
Procedure S1), but must be present during the first execution of Procedure S17.
Given an ELH KB K, a 2RPQ R and a distortion transducer T, we can use Lemma 4, Lemma5 and Lemma 7 to show the equivalence between calls to procedures S1, S2 and S3 and thecorresponding calculations required in Procedure SPA. Under the presence of an ELHI⊥ KB,the same correspondence can be found using Lemma 9, Lemma 11 and Lemma 7. It is nothard to see that Algorithm 1 computes the same results as Procedure SPA.
Lemma 12. Let R a 2RPQ, T a distortion transducer, K = (T , A) an ELH or ELHI⊥ KB. Then,Algorithm 2 computes the same results as Procedure SPA.

Note that procedures S2 and S3 are executed once during the initial steps. Then, each iter-ation of f requires one execution of procedures S1 and S3, and the maximum amount ofiterations is (|QR| · |QT|)2 · |T(UK)|. For ELH, a run of procedures S1, S2 and S3 is feasiblein at most polynomial time for combined complexity, and the size of T(UK) is polynomial inthe size of K. Thus, for ELH, we obtain that Algorithm 1 is computable in at most polynomialtime in combined complexity.
For ELHI⊥, a run of procedures S1, S2 and S3 requires exponential time, and the size of
T(UK) is exponential in the size of K. In summary, we obtain that a run of Algorithm 1 re-quires at most exponential time for combined complexity.

7Our implementation works slightly different and never actually stores these entries, but uses an equivalentway to process them during the first iteration.
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Together with Lemma 12 we obtain that Algorithm 1 is a deterministic procedure that cor-rectly calculates spa. As a side result, we obtain an upper bound for combined complexityto calculate spa over ELHI⊥ KBs.
Lemma 13. Given a 2RPQ R , a distortion transducer T , and an ELHI⊥ KB K, the relation spa
is computable in at most exponential time for combined complexity.

4.5. calculating sp

With the construction of spa in place, we can proceed to show how the table sp can be ob-tained. Recall that sp is used to store information on available paths in GUK , starting andending at nodes with same A-Box individual.
This information is used to construct a graph G∗

UA
, which finally can be used to answer ap-proximate queries by finding shortest paths in this graph. We assume the reader is familiarwith the general procedure, and omit giving an explanation here. A detailed discussion onhow the table sp and the graph G∗

UA
are used to answer approximate queries can be foundin [FT21] and Appendix B.

Note that there is a slight difference on how the tables sp are designed depending onwhether an ELH or ELHI⊥ KB is considered. For an ELH KB, sp is a relation with entries ofthe form
sp[(s, t), (s′, t′), C]

where (s, t), (s′, t′) ∈ (δR×δT)2 and D ∈ T(UK). Each such an entry is associated with a value
v ∈ N∪ ∞, and represents the following information: If, for an individual a ∈ NI, it holds that
D(a), there is path of minimal cost from (s, t, a) to (s′, t′, a) in GUK with cost v that does notvisit any ( , , a) expect for the first and last node.
The value for such an entry is obtained using an expression:

sp[(s, t), (s′, t′), C] ≪ w1 + spa[(s1, t1), (s2, t2), A] + w2, if C1∗ holds
We notice that this expression is identical to rule S1 as used for the construction of spa.
For ELHI⊥, a slightly different form of sp is introduced in Appendix B8. Here, entries areof the form

sp[(s, t), (s′, t′), a]

where (s, t), (s′, t′) ∈ (δR × δT)2 and a ∈ Ind(A). Again, each entry is associated with a value
v ∈ N ∪ ∞. Very similar to the case above, such an entry represents the information thatthere is path of minimal cost from (s, t, a) to (s′, t′, a) in GUK with cost v that does not visitany ( , , a) in between.

8The reason is that the construction presented in Appendix B was based on a previous version of [FT21], andthe representation of sp was changed later on. However, it is not hard to see that both representations canbe transformed into each other.
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Here, the value stored in sp[(s, t), (s′, t′), a] corresponds to the minimum value obtainedfrom an expression of the form w1 + spa[(s1, t1), (s2, t2), M1] + w2 s.t. condition C2∗ is satis-fied. Again, we notice that this is almost identical to applications of rule S1 for ELHI⊥. Theonly difference is that condition C2∗ is used, which is the variant of C2 where we additionallyrequire K |= M(a).
Due to the correspondence between applications of rule S1 and the expressions to cal-culate the values in sp, it is not hard to see that sp can be constructed for both ELH and
ELHI⊥ using slightly adapted versions of procedures S1 - ELH and S1 - ELHI⊥ respec-tively. The adjusted procedures SP - ELH and SP - ELHI⊥ can be found in the appendix.
Therefore, the construction of sp requires only two steps: First, calculate spa using Algo-rithm 2. Then, calculate sp by running Procedure SP with input spa once.

Algorithm 2 Construction of sp

Input: An ELH or ELHI⊥ KB K = (T , A), a 2RPQ R, a dt T
Output: relation sp

1: calculate spa using Algorithm 1
2: calculate sp using Procedure SP
3: return sp

For ELH, a run of Algorithm 1 requires at most polynomial time in the size of R, T and K,and a run of Procedure SP is as well feasible in polynomial time. For ELHI⊥, the complexityfor both steps increases to EXP-time.

Lemma 14. For K an ELH (resp. ELHI⊥) KB, Algorithm 2 computes sp in at most polynomial
(exponential) time for combined complexity.

This concludes this chapter. Once we have sp in place, the construction of GUA and G∗
UAused in our implementation is a straight-forward adoption of the procedure explained in[FT21]. The reasoning problems that can be answered by our implementation using G∗
UAare explained in the next chapter.
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5. Implementation
In this chapter, we discuss the implementation of the algorithms presented in chapter 4.Our final implementation is called TinDL and can be seen as an extension of the work pre-sented in a preceeding masters thesis. The software is implemented using the programminglanguage Kotlin, which provides full interoperability with existing Java sources. It is providedas a stand-alone application using a MySQL database and Spring Boot as framework. Theentire stack of services required to run the application is provided as a docker image.

5.1. Overview of the implementation

This section will give an overview of our implementation by explaining the overall structureand the way different components interact with each other. To this end, we will start byexplaining how input files are processed and handed to the backend logic services.
5.1.1. External frameworks

5.1.1.1. OWL API

To process OWL ontologies, our implementation uses the OWL API1 [HB11] in the version5.5.0. The OWL API framework is being released under both LGPL and Apache licencing,allowing the usage and integration of the source code into our application. It is one of twomajor frameworks for working with OWL Semantics, the other being Apache Jena2, which aswell is an open-source Java implementation.Development of the OWL API goes back all the way to 2003, and was originally developedduring the WonderWeb project at University of Manchester [BVL04]. Being an open-sourceproject, current releases have seen contributions by various developers from different uni-versities and nationalities, including the University of Ulm, known for their participating inthe development of reasoner such as HermiT and ELK.Our implementation makes heavy use of the data structures and methods provided by theframework, such as retrieving entities included in the ontology, building OWL expressionsand accessing the employed reasoner.

1https://github.com/owlcs/owlapi2https://jena.apache.org/
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5.1.1.2. OWL2 Reasoners

Processing of the DL reasoning tasks introduced in chapter 2, such as answering subsumptionand calculating subsumees is achieved by employing an OWL Reasoner. While a number ofdifferent reasoner implementations exist, not all of them see active development to remaincompatible with current releases of the OWL API [Abi23]. Here, we give a short overview ofsome reasoners that were successfully employed within our application:
• HermiT : HermiT [Gli+14] is an OWL2 Reasoner originally developed at the University ofOxford and University of Ulm in 2014. It uses a hypertableau calculus ([MSH09]) and isable to handle all features of the OWL2 specification. Unfortunately, the project is notseeing active development anymore. The last official release is from 2013 and providescompatibility with OWL API 3.4.3. However, there exist some more forks which aim toprovide compatibility with more recent versions of the OWL API. The most recent ver-sion found are maintained in a closed-source repository and released to MavenCen-tral. The most recent version 1.4.5.519 was released in 2020, and we were successfullyable to use this version alongside OWL API 5.5.0 within our implementation.
• ELK: The ELK Reasoner [KKS14] is being developed at the University of Ulm and is writ-ten in Java. It is under ongoing development and currently supports reasoning overa fragment of the OWL2 EL3 profile. The aim of the project is to eventually cover thefull OWL2 EL profile. Current releases are maintained in an open-source repositoryalongside a comprehensive documentation on the current state of development.

ELK is compatible with recent versions of the OWL API, and we were successfully ableto include the most current release elk-owlapi 0.6.0 alongside OWL API 5.5.0 withinour implementation. Unfortunately, ELK currently does not support all reasoning tasksrequired by our implementation, and therefore cannot be used to actually obtain cor-rect results. However, we hope that the missing features will be added to ELK at somepoint, and thus have included support for ELK in our implementation.
Evaluation of OWL2 reasoners has been subject to a numerous amount of publications inthe past years. It is beyond the scope of this work to evaluate the performance of our imple-mentation using different reasoners. However, one can expected that a reasoner designedspecifically for tractable extensions of EL (corresponding to the OWL2 EL profile), such as
ELK, provides better performance when dealing with ELH KBs as opposed to reasoners thatare capable of handling intractable extensions or the full OWL2 Profile, such as HermiT .
Within the current version of TinDL, accessing the services provided by such a reasoner isdone via the generalized OWL Reasoner Interface provided by the OWL API. Thus, our im-plementation is agnostic of the actual reasoner being used. We want to point out that ourimplementation has no way to determine the correctness of the results provided by the rea-soner. Thus, it is imperative that a suitable reasoner is chosen to guarantee finding correctresults. Further, we noticed there are slight differences in how the interfaces are implementby HermiT and ELK (mainly due issues in ELK), but were able to compensate using a dedi-cated wrapper class when using ELK. We expect similar effort would be required in order touse other reasoners.

3https://github.com/liveontologies/elk-reasoner/wiki/OwlFeatures
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5.2. Input data

As the purpose of this implementation is to answer approximate 2RPQs over DL KBs, itnaturally processes 3 types of inputs: 2RPQs, Distortion Transducers, and DL KBs, the lattergiven by the means of ontologies according to the OWL2 Standard. RPQs and Transducersare expected to be given as input files using a specific format, as described below.
5.2.1. Regular Path Queries and Distortion Transducers

RPQs and Transducers are expected to be given as text files using a specific mixture ofkeywords and DL vocabulary. The input format is designed to represent the form of finiteautomatons. Note that, while giving 2RPQs using regular expressions might be desirabledepending on the use case, this is currently not supported by our implementation.
• file extension and encoding: The expected file format is an UTF-8 encoded text file.Supported file extensions are either .txt or the dedicated .tinput.
• functional keywords - nodes, edges: These terms mark the beginning of a sectioncontaining the respective data.

Such an input file contains two sections, each opened using the respective keyword. Thesection nodes contains all nodes present in the query automaton. Each such node is sepa-rated by a new line, and each such line must comply to the following format:

(node identifier), (initial node?), (final node?)

where:
• node: a string representing the unique node identifier, consisting of at least 1 charac-ter.
• initial node?: a string being either: true if the node is an initial node, false other-wise
• final node?: a string being either: true if the node is a final node, false otherwise

Accordingly, the section edges contains all edges present in the automaton. The formatof these lines depends on whether the input file represents an RPQ or a transducer.
2RPQs:

2RPQ edges are given by lines of the following format:

(sourceNode), (targetNode), (label)

where sourceNode and targetNode are node identifiers introduced in the nodes section,and label is a string representing either a Concept assertion from {A? | A ∈ NC} or a DL role
name from N±R . Inverse roles are stated by using inverse(r) with r ∈ NR. An example isgiven in figure 5.1.
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nodes
s0, true, false
s1, false, false
s2, false, true
edges
s0, s1, serves
s1, s1, Vegan?
s1, s2, inverse(serves)

s0 s1

s3

serves

V egan?

se
rv

es
−

Figure 5.1.: Example 2RPQ input file and its automaton representation q1

nodes
t0, true, true
edges
t0, t0, Vegan?, Vegan?, 0
t0, t0, serves, contains, 2
t0, t0, inverse(serves), Vegan?, 5 t0

V egan?, V egan?, 0
serves, contains, 2
serves−, V egan?, 5

Figure 5.2.: Example transducer input file and its automaton representation T1

Distortion Transducers:

Transducer edges differ from 2RPQ edges in the way that they use an additional outputLa-bel as well as the distortion cost:
(source node), (target node),

(inputLabel), (outputLabel), (distortionCost)

Here, inputLabel and outputLabel are strings in a similar format as label is for queryedges. Additionally, distortionCost is an Integer value representing the distortion cost. Anexample is given in figure 5.2.
5.2.2. OWL2 Ontologies

As means to process DL KBs, OWL Ontologies according to the OWL2 specification [Gra+08]are used. The information stored in such an ontology is access using the OWL API. TinDL sup-ports all (even optional) syntax variants as specified for OWL24. The following file formatsare supported:
• RDF/XML (.rdf): The standard file format for OWL2 Ontologies. Support for this ex-tension which support is mandatory for all OWL2-compatible services.
• OWL/XML (.owl): A different XML specification aimed to provide easier processingusing XML tools5
• OBO format (.obo): A syntax format developed by the Open Biological and Biomed-ical Ontologies (OBO) Foundry, specifically designed for the biomedical domain. Theformat is compatible with other OWL2 Syntax specifications ([Tir+11]).

4https://www.w3.org/TR/owl2-overview/5https://www.w3.org/TR/2012/REC-owl2-xml-serialization-20121211/
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• Manchester Functional Syntax (.omn): A representation using Manchester Syntax 6, auser-friendly syntax designed to be easily read- and writeable by humans.
• Functional-styl Syntax (.ofn): A syntax variant aimed to allow expressions that resem-ble the structural specification of OWL2 Ontologies7.
• Turtle (.ttl): Terse RDF Triple Language - an optional syntax specification for OWLOntologies8.

Our implementation uses IRIs (Internationalized Resource Identifiers, see IETF StandardRFC39879) to uniquely identify ontologies and their contained entities. Most ontologies fol-low the proposed naming conventions for OWL 2, using entity IRIs that usually consist oftwo parts: The base ontology IRI, and some suffix denoting the entities unique identifierwithin the ontology. The suffix is separated from the ontology IRI by either the symbol #(ontologyIRI#suffix), or is the final sequment of a path-like IRI (ontology/iri/suffix).Examples for such IRIs are http://snomed.info/id/58222006 (SNOMED) or
http://swat.cse.lehigh.edu/onto/univ-bench.owl#Professor (LUBM).
While entity IRIs are required to be unique within an ontology, they are usually quite longand rather inconvient to handled by an user. In order to allow a human-friendly vocabularyfor the input query and transducer, our implementation uses a specific short form of an IRIto find matching terms within the query and transducer vocabulary. Usually, this short formcorresponds to the suffix explained above. The exact way how these short forms are gen-erated depends on the entities IRI, and is explained in the OWL API documentation10. Notethat these short forms are guaranteed to be unique only if all entities within an ontology usean appropriate naming convention. Our implementation does not verify the uniqueness ofshort forms. In order to avoid ambiguity, the user must make sure the input ontology usesappropriate entity IRIs.
These short forms could still lead to unexpected results if when importing multiple ontolo-gies. To prevent this, TinDL does not use the import closure of the provided ontology. Thisis not a restriction, but it does require the user to provide ontology files that do not relyon imports. This, for example, can be done by using Protegé to merge all imports into oneontology and saving the result as a new file.

5.3. Data modeling and representation

In this section, we will discuss how certain data structures are modeled within the imple-mentation and explain why the given representation was chosen.
5.3.1. Conjunctions of concept names

The presence of an ELHI⊥ KB requires dealing with conjunctions of concept names, whichusually are represented using sets of concept names. The size of these sets is limited only bythe amount of concept names present in the KB. In order to deal with such sets efficiently,our implementation uses a binary representation. This is done by assigning a unique index
6https://www.w3.org/TR/owl2-manchester-syntax/7https://www.w3.org/TR/2012/REC-owl2-syntax-20121211/8https://www.w3.org/TeamSubmission/turtle/9https://www.ietf.org/rfc/rfc3987.txt10TinDL uses an instance of SimpleShortFormProvider, see http://owlcs.github.io/owlapi/apidocs 5/
org/semanticweb/owlapi/util/SimpleShortFormProvider.html
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to each concept name, and using a binary array to denote, for each index, whether the con-cept name is contained within the set.
The following example shows how these sets are implemented:Let K = (T , A) be an ELHI⊥ KB with |Sig(T ) ∩ NC| = n, i.e. there are n distinct conceptnames present in T . Assign to each concept name c a unique, fixed value i(c) from the in-terval [0, n) s.t. i(c) ̸= i(c′) for all c, c′ ∈ Sig(T ) ∩ NC.Let M ⊆ (Sig(T ) ∩ NC). Now, let b = (0)n be a n-ary array of binary values and b(k) denotethe value at the k-th position (0 ≤ k < n). Now, for each c ∈ M , set b(i(c)) = 1. By interpret-ing b as a binary number, we obtain a value v(b) ∈ N, v(b) < 2n that uniquely represents theset.
Our implementation uses the Kotlin ULong data type, a primitive 64-bit unsigned Long Inte-ger implementation that supports bitwise operations. While we note that this restricts theamount of concept names to 64 when processing ELHI⊥ KBs, this restriction is situatedwell above other limitations on amount of concept names for ELHI⊥ KBs that can reason-ably be processed by our implementation, as explained in section ?? INSERT REFERENCE.
The binary representation of these sets features two major advantages for our implemen-tation: Any conjunction can be saved using only 64 bits of memory, while at the same timeallowing for very efficient checking of equality and containment between two such sets: As-suming a 64-bit JVM runtime is used to run TinDL, checking whether M ⊆ M ′ using theirbinary representation requires only a single bitwise comparison and is thus feasible in con-stant time. The latter is heavily used during the construction of the loop tables.
For ELH KBs, concept names can be represent in a similar fashion by simply using theirindex value. It is more than enough to store these using 32-bit integers. This way, a the-oretical amount of 232 different concept names can be handled - a limit well beyond anycurrently existing ontology that we are aware of.

5.3.2. Loop tables

For the construction of sp and spa as explained in chapter 4, our implementation needsto store all information contained within these tables during the entire answering process.Considering that the amount of entries in spa can be very large, especially for ELHI⊥ KBs,the representation of this data is a crucial aspect of the implementation.
For both ELH and ELHI⊥, the tables are stored using the Kotlin HashMap implementa-tion. This is an unordered collection of Key-Value pairs, where the keys are referenced bya numeric hash value, and the value is a 32-bit integer. Recall that an entry in spa is a tu-ple ((s, t), (s′, t′), C), where s, s′, t, t′ are states from R resp. T, and C is either a conceptname (for ELH) or a conjunction of concept names (for ELHI⊥). States from R and T haveunique string identifier obtained from the input file, and C uses a unique, binary represen-tation. We use a 32-bit hash values, computable in constant time, to encode each of thesecomponents, and the sum of these hash values to reference a table entry.
It is important to note that HashMaps in Kotlin are collision-save, i.e. in case there are mul-tiple keys with the same hash value, a specific comparison function is used to decide whichkey was referenced when accessing the map. Our implementation makes sure there is sucha function to correctly discriminate all entries. This comparison uses the unique string iden-
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tifiers for query and transducer states, and the binary representation of the tails. Therefore,accessing an entry in spa only requires constant time, independent of the number of entries.This is an important property of our implementation in order to respect the upper boundsfor combined complexity obtained for the construction of sp and spa.
Considering the vast amount of read and write operations to the entries in spa required, us-ing external memory to store spa is not an option. Unfortunately, this leads to the amount ofentries in spa being the main limiting factor for scalability of our implementation. Assuminga 64-bit JVM runtime and a generous amount of 16GB of memory, we can quickly determinean upper bound on the size of spa that can be stored:
Recall that the amount of entries in spa is |QR| · |QT| · |T(UK)|. For each entry in spa, weneed to store a total of 64 bits (8 bytes). Using a maximum of 16GB of memory, the maxi-mum amount of values that can be stored is approximately 231.
Now, consider an example 2RPQ and transducer with 4 states each. Then, the maximumsize of T(UK) that can be stored is 227. For an ELHI⊥ KB, the size of T(UK) corresponds to
2|Sig(T )∩NC| - leaving us with a maximum of 27 different concept names in our KB. Looking atexisting ontologies, one quickly realizes that this restriction severely limits the use cases ofour implementation.
The Leight University Benchmark Ontology (LUBM) [GPH05] is one of the smallest represen-tatives of ELHI⊥ ontologies frequently used for benchmarking and evaluating OWL tools.The original version of LUBM contains 43 different class names. For TinDL to be able to han-dle this using our 4-state query and transducer, one would, in theory, require at least 1.5Exabyte of memory. This absurd example shows a severe limitation of the approach pre-sented in this work when dealing with ELHI⊥ KBs.
The situation looks far more promising when looking at ELH KBs. Here, the size of T(UK) islimited by the amount of concept names in the T-Box. The famous SNOMED ontology, oneof the largest ontologies present and often regarded as the ultimate challenge when eval-uation OWL tools, currently contains approx. 360.000 classes. If we consider again a limitof 16GB of memory, this leaves us with a factor of 6000 for |QR| · |QT|. Looking at currentconsumer-level hardware, we therefore argue that the memory requirement to store spa isunlikely to be a limiting factor in terms of scalability when dealing with ELH KBs.

5.4. Description of the answering process

The answering procedure is initiated by providing the input files along with a run configura-
tion containing additional input data. TinDL provides a REST-API for uploading input files andsubmitting run configurations. Documentation on how to use the provided endpoints andhow to submit run configurations is included with the source code.
After parsing the input query and transducer files, the ontology is loaded using the OWLAPI framework. Along with loading the ontology, a set of essential services for processingthe ontology data are initialized. This includes the OWL Reasoner, embedded in a cachingutility which allows us to reuse reasoning results and to incrementally calculate the role hier-archy using a pay-as-you-go principle. This utility also supports ’prewarming’ the reasoningcache, offering a significant performance improvement at the expense of preliminary pro-cessing time and memory usage.
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Once the ontology is loaded, the tables spa and sp are calculated using an implementationof the algorithms explained in chapter 4. Subsequently, a graph structure representing G∗
UAis constructed using the information in sp. The construction process differs slightly depend-ing on whether the ontology conforms to ELH or ELHI⊥, but in both cases, the resultinggraph is uniform and independent of the underlying description logic.

Finally, the graph G∗
UA

is used to obtain the appropriate results. The final step dependson type of reasoning problem that was specified in the run configuration. In the following, itis described how G∗
UA

is used to answer the reasoning problems defined in section 3.3.
• cost computation: Answering the cost computation problem is achieved by running asingle-source Dijkstra algorithm on the graph structure G∗

UA
. Two identifiers a, b areobtained from the run configuration. The set of starting nodes consist of all nodes

(s, t, a) in G∗
UA

s.t. s ∈ IR and t ∈ IT. Accordingly, the set of final nodes consistsof all nodes (s′, t′, b) s.t. s′ ∈ FR and t′ ∈ FT. The answer is obtained by runninga single-source Dijkstra implementation from each starting node to each final node.The minimum value obtained from such a run is returned as result.
• τ -entailment: For answering τ -entailment, the run configuration is required to containtwo identifiers a, b and a threshold value µ. The result is obtained in a similar wayto the cost computation problem, but the computation is stopped as soon as a pathfrom (s, t, a) to (s′, t′, b) with a cost lower than µ is found. The result is a boolean valueindicating whether such a path was found.
• query answering: To compute all certain approximate answers, a Floyd-Warshall imple-mentation is used to find the cost of a shortest path between all nodes in G∗

UA
. Then,a filtering operation is used to find all tuples (a, b, ηa,b) s.t. a, b ∈ Ind(A) and ηa,b is theminimum cost of a path from some (s, t, a) to some (s′, t′, b) s.t. s ∈ IR, s′ ∈ FR, t ∈ ITand t′ ∈ FT. The set containing all such tuples is returned.

• threshold query answering: A threshold value µ is obtained from the run configuration.The answering procedure is similar to the query answering problem, but a set containingonly such tuples (a, b, ηa,b) where ηa,b ≤ µ is returned.

5.5. Testing and Evaluation

The implementation process followed the principles of Test-Driven Development (TDD). Cor-rectness of results was validated using a set of small, hand-crafted ontologies, along withcorresponding small queries and transducers. Due to the lack of any existing implementa-tion that could be used to verify the correctness of our prototype implementation, we didmanual calculations and used these to ensure the correctness of the individual steps of theanswering process. However, the variety of inputs we could verify in this way remains ratherlimited.
We conclude this chapter by presenting the results of some experiments used to evalu-ate our implementation in terms of computation time required to construct spa and sp. Acomprehensive evaluation covering all variants of input variables poses a very challengingtask itself, and unfortunately was beyond the scope of this thesis. However, we expect thatthere are many ways to improve our results, and hope that further work on this topic canpave the way to more robust implementations of this kind.
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We start by explaining the methodology behind our evaluation. All experiments were con-ducted using an ELH and ELHI⊥ variant of a small benchmark ontology (16 concept names,54 axioms, 3 individuals). As input queries, the experiments used randomly generated2RPQs R with a fixed amount of states QR and a fixed amount of edges δR. As input trans-ducers, we used automatically generated transducers with a single state representing the
word edit distance between the string representation of the elements in the query alphabetand the concept and role names present in the ontology.
We used our internal benchmarking tool to track the time required to construct the tables
spa and sp. Additionally, the amount of entries in the final table spa with values v ̸= ∞ weretracked. The results for ELH are shown in Table 5.1. For ELHI⊥, the results are shown intable 5.2. The size of QR, δR and δT used as input is specified in the first 3 columns. Thecolumn ’Time spa’ shows minimum, maximum and average time required to construct thetable spa. Similar results for the construction of sp are shown in the next column. The finalcolumn denotes the amount of entries in contained in spa with a value other than ∞ afterthe construction was finished. Note that the time values in table 5.1 is given in milliseconds,whereas the time values in table 5.2 are given in seconds.
The result show the expected increase in computational effort when using the ELHI⊥ ver-sion of the benchmark ontology. For a random query with R with |QR| = 5 and |δR| = 15,the construction of table spa required an average of 4.73ms for ELH, whereas an input ofthe same size required an average of 50.11s for ELHI⊥ - almost 104 times as long.

Time spa (ms) Time sp (ms) Size spa

|QR| |δR| |δT| min max avg min max avg min max avg

5 15 80 1.11 300.15 4.73 1.49 10.69 1.49 16 320 99
5 25 120 1.85 214.97 7.06 1.61 15.41 3.53 16 320 172
5 50 172 7.57 300.93 17.38 5.17 30.89 11.14 80 320 27

Table 5.1.: Experimental results for queries of different size for ELH. Each experiment wasrepeated 200 times to obtain the average values.

Time spa (s) Time sp (s) Size spa

|QR| |δR| |δT| min max avg min max avg min max avg

5 15 80 35.35 77.88 50.11 1.21 8.30 5.83 783,354 1,304,568 1,251,066
5 25 120 87.71 155.26 115.31 9.04 30.21 17.21 974,921 1,399,851 1,303,035

Table 5.2.: Experimental results for queries of different size for ELHI⊥. Here, each experi-ment was repeated 10 times.
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In this thesis, we have developed and implemented a practical procedure for answeringTwo-Way Regular Path Queries over ELH and ELHI⊥ Knowledge Bases under approximatesemantics. To this end, we have shown that the approximate semantics proposed in [FT21]can be extended to cover the more expressive DL ELHI⊥, and have explained how to adaptthe answering procedure presented therein. Based on these results, we have developed apractical algorithm that constructs the relations sp and spa, which are crucial componentsof the answering procedure. Our algorithm includes several optimizations to enhance per-formance across a range of input scenarios.
For ELH, we have shown that our algorithm constructs sp and spa in at most polynomialtime for combined complexity, and thus matches the upper bound obtained from [FT21].For ELHI⊥, we already inherit EXP-Time completeness from answering 2RPQs under clas-sical semantics [BO15], but we again obtain matching complexity results for our algorithm.Finally, we explain several details of the implementation, including how the input data is pro-cessed and how key data structures are represented.
To the best of our knowledge, our implementation is the first of its kind. Moreover, weare not aware of an implementation that supports answering 2RPQs over ELH and ELHI⊥KBs under classical semantics. Lacking any comparable system, we were not able to evalu-ate our implementation in a competitive sense. Instead, we performed a basic evaluation,measuring computation times for a small benchmark ontology with varying input query andtransducer automaton sizes.
Naturally, these experiments do not paint the complete picture. However, a comprehen-sive evaluation of the implementation poses a very challenging task itself, and was beyondthe scope of this thesis. This can not be done by simply varying the size of the inputs. Due tothe very complex interaction between the input data, it is not trivial to determine how mucheffort the single computation steps require, and how much benefit is gained from the em-ployed optimizations. A particularly interesting task for future evaluation involves testing theimplementation on ’realistic’ inputs, i.e. non-trivial queries over ontologies that see practicalusage. However, we must acknowledge that the implementation presented here is severelyrestricted in its ability to process large ontologies, mainly due to the rather large amount ofmemory required. This is especially the case for computing answers over ELHI⊥ KBs.
Finally, we hope that our implementation sees some practical usage and can act as a foun-dation for further improvements.
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Appendix

A. Algorithms and Proofs

A.1. Calculating rule S1 for ELHI⊥ KBs

A.1.1. Stage 1b: Extracting transducer edges

Similar to the ELH case, the first stage extracts transducer edges of the form (t, u, R′, w1, t1)and (t2, u′, R′′, w2, t′) that have a corresponding query edge. To account for the presence ofinverse roles in the ontology, R′ and R′′ can be chosen arbitrarily from N±R .

Stage 1b: Filtering transducer edges
Input: A 2RPQ R, a dt T, (s, t), (s1, t1), (s2, t2), (s′, t′) ∈ (QR × QT)4

Output: Two sorted sets edgesDown ⊆ δT and edgesUp ⊆ δT

2: set edgesDown := {(t, u, R′, w1, t1) | (s, u, s1) ∈ δR, (t, u, R′, w1, t1) ∈ δT, R′ ∈ N±R }
3: set edgesUp := {(t2, u′, R′′, w2, t′) | (s2, u′, s′) ∈ δR, (t2, u, R′′, w2, t′) ∈ δT, R′′ ∈ N±R }
4: sort edgesDown and edgesUp by w in ascending order
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A.1.2. Stage 2b: Extracting feasible roles

Stage 2b: Extracting feasible roles
Input: An ELHI⊥ KB K = (T , A), sorted sets edgesDown ⊆ δT and edgesUp ⊆ δT fromStage 1b
Output: A set candidateRoles ⊆ (NR ∩ Sig(T ) × N)

6: initialise candidateRoles = {}
7: for all R ∈ NR ∩ Sig(T ) do
8: initialise downCost := ∞, upCost := ∞
9: for all (t, u, R′, w1, t1) ∈ edgesDown do

10: if T |= R ⊑ R′ then
11: set downCost := w112: exit and continue at line 14
13: end if
14: end for
15: if downCost = ∞ then
16: discard and continue with next r
17: end if
18: for all (t2, u, R′′, w2, t′) ∈ edgesUp do
19: if T |= R− ⊑ R′′ then
20: set upCost := w221: exit and continue at line 23
22: end if
23: end for
24: if upCost = ∞ then
25: discard and continue with next r
26: end if
27: add (r, downCost + upCost) to candidateRoles
28: end forreturn candidateRoles
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A.2. Procedure S2 - ELHI⊥

Procedure S2 - ELHI⊥

Input: An ELHI⊥ KB K = (T , A), a 2RPQ R, a dt T
Output: relation spa containing all updated entries

1: initialize empty table spa
2: for all (s, t), (s′, t′) ∈ (δR × δT)2 do
3: if s = s′ and t = t′: then
4: Skip and continue with next (s, t), (s′, t′)
5: end if
6: set edges := {(t, u, A?, w, t′) | (s, u, s′) ∈ δR, (t, u, A?, w, t′) ∈ δT, A ∈ NC}

7: for all (t, u, A?, w, t′) ∈ edges do
8: Calculate subsumers := calculateSubsumers(A)
9: for all M ∈ subsumers do

10: set spa[(s, t), (s′, t′), M ] := min(spa[(s, t), (s′, t′), M ], w)
11: end for
12: end for
13: end for
14:
15: return spa

A.3. Procedure SP

Procedure SP - ELH
Input: An ELH KB K = (T , A), a 2RPQ R, a dt T, loop table spa
Output: relation sp

1: initialize sp[p, q, C] = ∞ for all (p, q, C) ∈ (δR × δT)2 × T(UK)
2: for all p, q, p1, p2 ∈ (δR × δT)4 do

3: set (down, up) := filterEdges(p, q, p1, p2)4: set candidateRoles := filterRoles(down, up)

5: for all (r, w) ∈ candidateRoles do
6: for all A ∈ T(UK) do
7: Calculate subsumees := {C | C ∈ T(UK), C ⊑ ∃r.A}
8: for all C ∈ subsumees do
9: if sp[p, q, C] > w + spa[p1, p2, A] then

10: set sp[p, q, C] := w + spa[p1, p2, A]
11: end if
12: end for
13: end for
14: end for
15: end for
16:
17: return sp
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Procedure SP - ELHI⊥

Input: An ELHI⊥ KB K = (T , A), a 2RPQ R, a dt T, loop table spa
Output: relation sp

1: initialize empty relation sp
2: for all (p, q, p1, p2 ∈ (δR × δT)4 do
3: calculate (down, up) := filterEdges(p, q, p1, p2)4: calculate candidateRoles := filterRoles(down, up)

5: for all a ∈ Ind(A) do
6: set v := ∞
7: Calculate M := {C | K |= C(a)}
8: for all (r, w) ∈ candidateRoles do
9: initialise eliminated := {}

10: for all M1 ∈ T(UK)1 do
11: if v ≤ w + spa[p1, p2, M1] then
12: Discard and continue with next M113: end if
14: if M1 ⊆ M ′ for some M ′ ∈ eliminated then
15: Discard and continue with next M116: end if
17: if T |= M ⊑ ∃r.M1 then
18: set v := w + spa[p1, p2, M1]
19: else
20: add M to eliminated
21: end if
22: end for
23: end for
24: set sp[p, q, a] = v
25: end for
26: end for

2 elements are required to be processed in a specific order, see Remark 2

A.4. Proof of Lemma 9

Lemma. Let R a 2RPQ, T a distortion transducer, K = (T , A) an ELHI⊥ KB, spa a loop table
and spa∗ a fragment of spa containing all updated entries since the previous iteration of f . For
all M ∈ T(UK), the following holds:
After a run of Procedure S1 - ELHI⊥, we have spa∗∗[(s, t), (s′, t′), M ] = v iff v is the minimal2
updated value after applying rule S1 to ((s, t), (s′, t′), M).

Proof. From section 4.3.1.2, we obtain that lines 11-14 of Procedure S1 - ELHI⊥ do notchange the results in spa∗∗, and therefore are not considered here.
(⇐) Let M ∈ T(UK). We consider two cases: First, if spa[(s, t), (s′, t′), M ] was not updatedduring an application of S1, there is no (t, u, R′, w1, t1), (t2, u′, R′′, w2, t′) ∈ δT and M1 ∈
T(UK) s.t. Condition C2∗ is satisfied and w1+spa[(s1, t1), (s2, t2), M1]+w2 < spa[(s, t), (s′, t′), M ].

2We can assume that v is the minimum value amongst all non-deterministic S1-Applications to
((s, t), (s′, t′), M)
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By Lemma 2, it holds that candidateRoles = ∅, and thus spa∗∗ contains no entries.
For the second case, assume spa[(s, t), (s′, t′), M ] was updated with value v by an S1-application.Then, there is (t, u, R, w1, t1), (t2, u′, R′′, w2, t′) ∈ δT, (s, u, s1), (s2, u′, s′) ∈ δR, r ∈ N±R and
A ∈ NC s.t. Condition C2∗ is satisfied, i.e. it holds that:

(i) v = w1 + spa[(s1, t1), (s2, t2), M1] + w2,
(ii) T |= r ⊑ R′, T |= r− ⊑ R′′, and
(iii) T |= M ⊑ ∃r.M1.

Let c = spa[(s1, t1), (s2, t2), M1] and w = w1+w2. By Lemma 2, we have (r, w) ∈ candidateRoles.Additionally, we obtain spa∗[(s1, t1), (s2, t2), M1] = c from Lemma 3, and therefore (M1, c) ∈
fillers. This means there is some execution of line 11 which computes the set updates :=
{N | T |= N ⊑ ∃r.M1, spa[(s, t), (s′, t′), N ] > v} according to Lemma 8. As v can be usedto update spa[(s, t), (s′, t′), M ], it holds that spa[(s, t), (s′, t′), M ] > v. Together with (iii), itfollows that M ∈ updates. As a consequence, we obtain spa∗∗[(s, t), (s′, t′), C] ≤ v after pro-cessing line 13.
Assume spa∗∗[(s, t), (s′, t′), M ] < v. Then, there must exists some (s, w′) ∈ candidateRolesand (M2, c′) ∈ fillers s.t. T |= M ⊑ ∃s.M2 and w′ + c′ < v. By Lemma 2, this implies thereare e1 = (t, u, S′, w′

1, t1) and e2 = (t2, u′, S′′, w′
2, t′) ∈ δT with w′ = w′

1 + w′
2 s.t. T |= s ⊑ S′,

T |= s ⊑ S′′, and c′ = spa∗[(s, t), (s′, t′), M2] s.t. T |= C ⊑ ∃s.M2. Then, Condition C2∗ is sat-isfied using e1, e2 and B. Consequently spa[(s, t), (s′, t′), M ] could have been updated with
w′

1 + c′ + w′
2 < v, which is a contradiction to v being the minimal updated value. It followsthat spa∗∗[(s, t), (s′, t′), M ] = v.

B. Construction of sp and spa for ELHI⊥ KBs

In order to lift the concepts from ([FT21]) to the ELHI⊥ setting, we need to extend the defi-nitions of sp and spa. The computation of these tables follows the general idea from the ELand DLLite settings, with adjustments accounting for the different domain of UK:
Similar to the EL and DLLite settings, the table sp contains the minimal costs c∗ of an a-path from (s, t, a) to (s′, t′, a) in GUK using entries of the form [(s, t), (s′, t′), a], with (s, t), (s′, t′) ∈

QR × QT and a ∈ Ind(A). The table spa uses entries of the form [(s, t), (s′, t′), M ], with
M ⊆ NC , which contain the minimal cost of an e-path from (s, t, e) to (s′, t′, e), where
e ∈ ∆UK \ Ind(A) and tail(e) = M .

By definition of UK and GUK
, an a-path from (s, t, a) to (s′, t′, a) in GUK

must be of theform:

(s, t, a) w1 (s1, t1, aRM) γ (s2, t2, aRM) w2 (s′, t′, a),

where (s1, t1, aRM) γ (s2, t2, aRM) is an aRM -path.
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The form of such an a-path tells us that each value sp[(s, t), (s′, t′), a] corresponds to theminimal value of an expression of the form w1 + spa[(s1, t1), (s2, t2), M ] + w2 with M =
{C1, ...Cn} a conjunction of concepts in set notation, such that the following condition is sat-isfied:

C1. M ⊆ NC , T |= M0 ⊑ ∃R.M K |= M0(a), T |= R ⊑ R′, T |= R− ⊑ R′′, (s, u, s1) ∈ δR,
(t, u, R′, w1, t1) ∈ δT, (s2, u′, s′) ∈ δR and (t2, u′, R′′, w2, t′) ∈ δT.

Accordingly, we present the adjusted rules for the computation of spa:
S1 spa[(s, t), (s′, t′), M ] ≪ w1 + spa[(s1, t1), (s2, t2), M1] + w2, if C1* holds.
S2 spa[(s, t), (s′, t′), M ] ≪ w, if T |= M ⊑ A, (s, u, s′) ∈ δR, and (t, u, A?, w, t′) ∈ δT,
S3 spa[(s, t), (s′, t′), M ] ≪ spa[(s, t), (s′′, t′′), M ] + spa[(s′′, t′′), (s′, t′), M ].

C1* is the variant of C1 with K |= M0(a) omitted:
C1* M1 ⊆ NC , T |= M ⊑ ∃R.M1, T |= R ⊑ R′, T |= R− ⊑ R′′, (s, u, s1) ∈ δR, (t, u, R′, w1, t1) ∈

δT, (s2, u′, s′) ∈ δR and (t2, u′, R′′, w2, t′) ∈ δT.
The following procedure SPA describes how the relation spa can be build using the con-struction rules presented above:

Procedure SPA
Input: An ELHI⊥ KB K = (T , A), a distortion Transducer T and a conjunct R(t, t′) with

R = (QR, Σ, δR, I, F ).
Output: Relation spa for K,T,R

1: Initialize spa[p, p, M ] = 0
2: Initialize spa[p, q, M ] = ∞ (if p ̸= q)
3: Apply rule S2 to all (p, q, M) ∈ (QR × QT)2 × P(Sig(T ))
4: Apply rule S3 until spa does not change;
5: repeat
6: spa := f(spa)
7: until spa does not change
function fApply rule S1 to all (p, q, M) ∈ (QR × QT)2 × P(NC)Apply rule S3 until spa does not change;
end function

B.1. Correctness of procedure SPA

Given an ELHI⊥ KB K, a distortion transducer T and a conjunct R(t, t′) of a C2RPQ, thissection describes that the procedure SPA constructs the relation spa as defined. We use
GUK to denote the graph GR×T×UK .
Recall the definition of an e-path from ([FT21]): Let e ∈ ∆UK . An e-path in GUK is of theform (s, t, e)γ(s′, t′, e) such that:• γ ∈ N implies e ∈ ∆UK \ Ind(A), and

• γ only visits vertices (s′′, t′′, e′) such that e′ ∈ ∆UK \ Ind(A) and e′ ∈ Te.
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Now, let a ∈ Ind(A) and π be an a-path from (s1, t1, a) to (s2, t2, a) s.t. it does not visit any
a′ ∈ Ind(A), i.e. π is a loop through the anonymous subtree rootet in a. The cost ci of thispath corresponds to the cost of all edges visited by π.
We will show that the construction rules presented here for spa are correct by expandingthe corresponding lemmas from ([FT21]):
Lemma 15. Let (s, t), (s′, t′) ∈ QR × QT, e ∈ ∆UK \ Ind(A) and tail(e) = M . After SPA executes
line 4, spa[(s, t), (s′, t′), M ] contains the minimum cost c∗ of an e-path of depth 0 from (s, t, e)
to (s′, t′, e).

Proof. The proof follows the same general idea as the proof of lemma 10 in ([FT21]).
An e-path of depth 0 is of the form:

(s1, t1, e)w1(s2, t2, e)w2...wn−1(sn, tn, e),

where n > 1, {s, t}1 = {s, t} and {s, t}n = {s′, t′}. If GUK does not contain a path from (s, t, e)to (s′, t′, e), neither S2 nor S3 can be applied. Thus, we have spa[(s, t), (s′, t′), M ] = c∗ = ∞.Otherwise, let π be an e-path of depth 0 from (s, t, e) to (s′, t′, e) in GUK .
⇒: spa[(s, t), (s′, t′), M ] ≤ c∗. We use induction on the length n − 1 of π to show that

spa[(s1, t1), (sn, tn), M ] ≤ c(π).

The base case considers paths of length 1, i.e. n = 2. Such paths are of the form (s1, t1, e)w(s2, t2, e)with cost c(π) = w. The existence of such a path in GUK
implies that there is some u ∈ N±R ∪ {A? | A ∈ NC}and A ∈ NC s.t. (s1, u, s2) ∈ δR, (t1, u, A?, w, t2) ∈ δT and e ∈ AUK . It follows that A ∈

M and T |= M ⊑ A. Thus, S2 can be applied to obtain spa[(s1, t1), (s2, t2), M ] ≤ w.For paths of length n > 2, we follow the same argument as ([FT21]) in Lemma 10: As-sume that n > 2 and let π1 be the sub-path (s1, t1, e)...(sn−1, tn−1, e) and π2 the sub-path
(sn−1, tn−1, e)wn−1(sn, tn, e). The application of induction yields spa[(s1, t1), (sn−1, tn−1), M ]
≤ c(π1) and spa[(sn−1, tn−1), (sn, tn), M ] ≤ c(π2). Hence, since S3 is applied exhaustively, itmust be that spa[(s1, t1), (sn, tn), M ] ≤ c(π). Thus, since π is chosen arbitrarily, it follows that
spa[(s, t), (s′, t′), M ] ≤ c∗ .
⇐: c∗ ≤ spa[(s, t), (s′, t′), M ]. Consider an execution of line 3, followed from an exhaus-tive application of S3 in line 4. Note that an execution of line 3 can induce multiple updatesof spa[(s, t), (s′, t′), M ].Let µ1, .., µj be the sequence of updates performed along the exhaustive execution of line3, and µj+1, .., µk the updates performed along the execution of line 4. We assume the se-quence is in order, i.e., µ1 is the first update and µk is the last one. In addition, we denote as
spa[(si, ti), (s′i, t′i), M i] the entry corresponding to the update µi and vi the updated value.Let now ei ∈ ∆UK \ Ind(A) such that tail(ei) = M i. We show by induction on i that there ex-ists an ei -path of depth 0 in GUK

of the form πi = (si, ti, ei)...(s′i, t′i, ei) such that c(πi) ≤ vi.We consider two cases:

• i ≤ j, i.e. µi corresponds to an application of S2. As an application of S2 is independentof the current loop table entries, the following holds: An application of S2 implies that
T |= M i ⊑ A, (si, u, si′) ∈ δR, and (ti, u, A?, w, ti′) ∈ δT. Since tail(ei) = M i, it holds
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that ei ∈ AUK . By definition of GUK
, (si, ti, ei), w, (si′ , ti′ , ei) is an edge in GUK

. Thus,
π = (si, ti, ei)w(si′ , ti′ , ei) is an ei-path of depth 0 in GUK

with c(π) = w = vi.
• i > j, i.e. µi corresponds to an application of S3. For the corresponding entry spa[(si, ti), (s′i, t′i), M i]we have entries spa[(sm, tm), (s′m, t′m), M ] and

spa[(sn, tn), (s′n, t′n), M ] s.t. (s′m, t′m) = (sn, tn), (sm, tm) = (si, ti) and (s′n, t′n) =
(s′i, t′i). If either of these entries was added during the execution of line 1, we wouldhave vi = ∞, which contradicts the fact that an update was performed. Thus, we canassume that 1 ≤ m, n < i, i.e. the entries were added during the previously performedapplications of S2 or S3. As S3 uses the entries currently present in the loop table, wecan further assume that there is no update µg with matching entries and g < m, n s.t.
vg ≤ vm or vg ≤ vn. Thus, we have vi = vm + vn the updated value. By induction,there are ei-paths π1 and π2 of depth 0 in GUK of the form (si, ti, ei)...(s′m, t′m, ei) and
(s′m, t′m, ei)...(s′i, t′i, ei) s.t. c(π1) ≤ vm and c(π2) ≤ vn. Combining these paths, weobtain π = (si, ti, ei)...(s′i, t′i, ei) with c(π) = c(π1) + c(π2) ≤ vi.

We have shown that, after SPA executes line 4, each entry spa[(s, t), (s′, t′), M ] either con-tains the minimum cost of an e-path of depth 0 from (s, t, e) to (s′, t′, e) in GUK , or contains
∞ if no such path exists.

We will continue by showing that these results extend to all depths d > 0 w.r.t. d applica-tions of f .
Lemma 16. Let d ≥ 1, (s, t), (s′, t′) ∈ QR × QT, e ∈ ∆UK \ Ind(A) and tail(e) = M . After d
applications of f , spa[(s, t), (s′, t′), M ] contains the minimal cost c∗ of an e-path of depth at most
d from (s, t, e) to (s′, t′, e).

Proof. We show by induction on the number of iterations d that spa[(s, t), (s′, t′), M ] = c∗.We obtain the base case for d = 0 from Lemma 1. For the induction step, we show bothdirections:
⇒: spa[(s, t), (s′, t′), M ] ≥ c∗. If spa[(s, t), (s′, t′), M ] never gets updated during the exectu-tions of f , the base case applies. Otherwise, suppose that spa[(s, t), (s′, t′), M ] is updated byapplications of S1 or S3.

• S1: If S1 was applied, all conditions for C1∗ were met for spa[(s, t), (s′, t′), M ]. There-fore, we have some M1 ⊆ NC and R, R′, R′′ ∈ N±R s.t. T |= M ⊑ ∃R.M1, T |=
R ⊑ R′, T |= R− ⊑ R′′, (s, u, s1) ∈ δR, (t, u, R′, w1, t1) ∈ δT, (s2, u′, s′) ∈ δR and
(t2, u′, R′′, w2, t′) ∈ δT. By the definition of GUK , we know that two edges exists in GUK :

(s, t, e)w1(s1, t1, e′) and (s2, t2, e′)w2(s′, t′, e)

with e ̸= e′, tail(e′) = M ′, (e, e′) ∈ R′UK and (e′, e) ∈ R′′UK . By Induction, the minimumcost of an e′-path from (s1, t1, e′) to (s2, t2, e′) of depth d − 1 corresponds to the entryin spa[(s1, t1), (s2, t2), M ′]. Therefore, we have c∗ ≤ w1 + spa[(s1, t1), (s2, t2), M ′] + w2.As the updated value of spa[(s, t), (s′, t′), M ] is w1 + spa[(s1, t1), (s2, t2), M ′] + w2, wehave spa[(s, t), (s′, t′), M ] ≥ c∗.
• S3: Applications of S3 are performed after all applications of S1 and do not increasethe depth of the corresponding path in GUK . Therefore, we can follow the proof fromLemma 1 for paths of depth 0.
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⇐: spa[(s, t), (s′, t′), M ] ≤ c∗. An e-path of depth at most d is of the form:
(s1, t1, e)γ1(s2, t2, e)γ2...γn−1(sn, tn, e) (7.1)

with (s1 = s, t1 = t, sn = s′, tn = t′), where for all γi with 1 ≤ i < n either:
• γi ∈ N: Then, πi = (si, ti, e)γi(si+1, ti+1, e) is an e-path of depth 0. We obtain c(πi) ≥

spa[(si, ti), (si+1, ti+1), M ] from Lemma 1.
• (si, ti, e)γi(si+1, ti+1, e) is an e-path of the form:

πi = (si, ti, e)w′(s′
i, t′

i, e′)γ(s′′
i , t′′

i , e′)w′′(si+1, ti+1, e)

where e′ ∈ Te, tail(e′) = M ′ and π′
i = (s′

i, t′
i, e′)γ(s′′

i , t′′
i , e′) is an e′-path of depth at most

d − 1. The cost of πi is c(πi) = w′ + c(π′
i) + w′′.

By Induction, we have c(π′
i) ≥ spa[(s′

i, t′
i), (s′′

i , t′′
i ), M ′]. Thus, we obtain c(πi) ≥ w′ +

spa[(s′
i, t′

i), (s′′
i , t′′

i ), M ′] + w′′. It remains to show that spa[(si, ti), (si+1, ti+1), M ] ≤ w′ +
spa[(s′

i, t′
i), (s′′

i , t′′
i ), M ′] + w′′:

As πi is an e-path in GUK , the following edges must exists in GUK :
(si, ti, e), w′, (s′

i, t′
i, e′) and (s′′

i , t′′
i , e′)w′′(si+1, ti+1, e)

By the definition of GUK , we have:
(si, u, s′

i) ∈ δR, (ti, u, R′, w′, t′
i) ∈ δT with R′ ∈ N±R , (e, e′) ∈ R′UK

and respectively
(s′′

i , u, si+1) ∈ δR, (t′′
i , u, R′′, w′, ti+1) ∈ δT with R′′ ∈ N±R , (e′, e) ∈ R′′UK

Note that e′ ∈ Te and tail(e′) = M ′. From the definition of UK, we obtain T |= M ⊑
∃R.M ′. As tail(e′) = M ′ and (e, e′) ∈ R′UK , there must exists some R with RUK ⊆ R′UK .According to the definition of UK, this requires T |= R ⊑ R′. We follow the sameargument to show that T |= R− ⊑ R′′.
Hence, all conditions for C1∗ are satisfied. S1 can be applied to obtain

spa[(si, ti), (si+1, ti+1), M ] ≤ w′ + spa[(s′
i, t′

i), (s′′
i , t′′

i ), M ′] + w′′

and thus
c(πi) ≥ spa[(si, ti), (si+1, ti+1), M ].

The cost of an e-path of depth at most d with the form of (1) is c = c(π1) + c(π2) + ... +
c(πn−1). We have shown that, for all subpaths πi with 1 ≤ i < n, it holds that c(πi) ≥
spa[(si, ti), (si+1, ti+1), M ]. Combining these results, we obtain c∗ ≥ spa[(s, t), (s′, t′), M ].

It follows that c∗ = spa[(s, t), (s′, t′), M ].
Using these rules, we can make an interesting observation on the values added to the table:For an entry spa[(s, t), (s′, t′), M ], the value can only decrease if we add more concept namesto M. This meets our intuition of the table spa - if an element satisfies additional concepts,we can possibly find additional (better) loops starting from that element. Loops infered bythe other concepts present remain available.
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Lemma 17. After SPA executes line 3, for each entry spa[(s, t), (s′, t′), M ], the following holds:
If M ′ ⊆ M , then spa[(s, t), (s′, t′), M ] ≤ spa[(s, t), (s′, t′), M ′].

Proof. Assume the contrary: Let M ′ ⊆ M and spa[(s, t), (s′, t′), M ′] < spa[(s, t), (s′, t′), M ].Then, spa[(s, t), (s′, t′), M ′] was updated by an application of S2 with
T |= M ′ ⊑ A, (s, u, s′) ∈ δR, (t, u, A?, w, t′) ∈ δT.

Because M ′ ⊆ M , M is more specific than M ′, i.e. it holds that MUK ⊆ M ′UK . We obtain
T |= M ⊑ M ′ as a direct consequence of the semantics. Thus, it holds that T |= M ⊑ A,and hence the same u, A as above can be used to update spa[(s, t), (s′, t′), M ] with w. Wehave spa[(s, t), (s′, t′), M ] ≤ spa[(s, t), (s′, t′), M ′], which is a contradiction.
This property of spa is preserved during (exhaustive) applications of S1,S2 and S3:
Lemma 18. After SPA finishes, the following holds: If M ′ ⊆ M , then spa[(s, t), (s′, t′), M ] ≤
spa[(s, t), (s′, t′), M ′].

Proof. By Lemma 17, the claim holds after SPA finishes Line 3. We only consider the finalupdate to spa[(s, t), (s′, t′), M ′], which was either an application of S1 or S3. Now, assumethe contrary: Let M ′ ⊆ M and spa[(s, t), (s′, t′), M ′] < spa[(s, t), (s′, t′), M ].
• S1: If S1 was applied to update spa[(s, t), (s′, t′), M ′], we have

M1 ⊆ NC T |= M ′ ⊑ ∃R.M1, T |= R ⊑ R′, T |= R− ⊑ R′′,
(s, u, s1) ∈ δR, (t, u, R′, w1, t1) ∈ δT, (s2, u′, s′) ∈ δR, (t2, u′, R′′, w2, t′) ∈ δT

Because M ′ ⊆ M , we obtain T |= M ⊑ M ′, and thus T |= M ⊑ ∃R.M1 for thesame M1 as above. Using the same u, u′, R′, R′′, we obtain: spa[(s, t), (s′, t′), M ] ≤
w1 + spa[(s, t), (s′, t′), M1] + w2 = spa[(s, t), (s′, t′), M ′], which is a contradiction.

• S3: If S3 was applied to update spa[(s, t), (s′, t′), M ′], we have
spa[(s, t), (s′, t′), M ′] = spa[(s, t), (s′′, t′′), M ′] + spa[(s′′, t′′), (s′, t′), M ′].

Our claim yields:
spa[(s, t), (s′′, t′′), M ′] ≥ spa[(s, t), (s′′, t′′), M ]
and
spa[(s′′, t′′), (s′, t′), M ′] ≥ spa[(s, t), (s′′, t′′), M ]

Thus, spa[(s, t), (s′′, t′′), M ] and spa[(s, t), (s′′, t′′), M ] could have been used to update
spa[(s, t), (s′, t′), M ] ≤ spa[(s, t), (s′′, t′′), M ′]+spa[(s′′, t′′), (s′, t′), M ′] = spa[(s, t), (s′, t′), M ′],which is a contradiction.

To continue, we show that spa can be constructed in finite time by reaching a fixpointon the number of iterations of f . While GUK can possibly be infinite, we notice that theproperties inherited from the universal model allow us to restrict our attention to a finitefragment of GUK . Let us consider the amount of vertices (s, t, e) ∈ QR × QT × ∆UK in GUKthat differ in either s, t or tail(e):
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• s ∈ QR: |QR| possible values
• t ∈ QT: |QT| possible values
• tail(e) ∈ T(UK): |T(UK)| = |P(Sig(T ))| = 2|Sig(T )| + 1.

Thus, there are m = (|QR| · |QT|) · |T(UK)| different combinations of s, t, and tail(e). We willuse this property to show that we only have to consider paths of finite depth in GUK .
Lemma 19. Let (s, t), (s′, t′) ∈ QR × QT and e0 ∈ ∆UK \ Ind(A) such that there is an e0-path
(s, t, e0)...(s′, t′, e0) in GUK . Then, there is one such path of minimal cost with depth at most
m = (|QR| · |QT|)2 · |T(UK)|.

The proof is the same as for Lemma 23 in ([FT21]).
B.2. Running time of SPA

We show that spa can be constructed in exponential time in the combined size of T ,Rand T by using a fixpoint on the number of iterations of function f in procedure SPA. Westart by looking at the complexity of applications of rules S1-S3, which are used in SPA.
Corollary 3. An application of rule S1 is feasible in exponential time in the combined size of T , Q
and T.

Proof. An application of S1 can be done using the following steps:
• 1) Guess M1 ∈ T(UK) and R ∈ N±R ∪ {A? | A ∈ Sig(T )}

• 2) Check T |= M ⊑ ∃R.M1

• 3) Guess R1, R2 s.t. R ⊑ R1, R− ⊑ R2

• 4) Check (s, u, s1) ∈ δR, (t, u, R1, w, t1) ∈ δT, (s1, u′, s′) ∈ δR, (t1, u′, R2, w, t′) ∈ δT

1) and 3) are non-deterministic in the size of T(UK), 2) requires a subsumption check whichrequires EXP-time in |T | for ELHI⊥, and 4) is feasible in polynomial time. Thus, we obtain
NP EXP = EXP in combined complexity.

Corollary 4. An application of rule S2 is feasible in exponential time in the combined size of T , Q
and T.

Proof. An application of S1 can be done using the following steps:
• 1) Guess A ∈ Sig(T ) and u ∈ ΣR s.t. (s, u, s′) ∈ δR and (t, u, A?, w, t′) ∈ δT and w isminimal
• 2) Check T |= M ⊑ A

1) is non-deterministic in the size of T(UK), 2) requires a subsumption check which in turnrequires EXP-time in the size of T for ELHI⊥. Thus, we obtain NP EXP = EXP in combinedcomplexity.

Corollary 5. An application of rule S3 is feasible in exponential time in the combined size of T , Q
and T.

Proof. An application of S3 can be done using the following steps:
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• 1) For each (s′′, t′′) ∈ Q × T: Look up spa[(s, t), (s′′, t′′), M ] and spa[(s′′, t′′), (s′, t′), M ]

The amount of (s′′, t′′) is |Q| · |T|, thus the amount is polynomially bounded in combinedcomplexity.
The amount of entries in spa corresponds to (|QR| · |QT|)2 · |T(UK)|. As the size of QR and

QT is polynomial and T(UK) is exponential in the size of T , spa contains EXP-many entriesin the combined size of T ,R and T.
Next, we consider the amount of rule applications of S1, S2 and S3 at each line of spa:
• Line 3: Apply S2 to all (p, q, M) ∈ (QR × QT)2 × T(UK)). This requires EXP-many appli-cations of S2 in the size if Sig(T ).
• Line 4: Apply S3 once for all M ∈ T(UK). This requires EXP-many applications of S3 inthe size if Sig(T ).
• function f: Applying S1 to all (p, q, M) ∈ (QR × QT)2 × T(UK)) requires EXP-manyapplications of S1 in the size if Sig(T ). Applying rule S3 to all M ∈ T(UK) requiresEXP-many applications of S3 in the size of Sig(T )

Combining these results, we obtain that an execution of SPA requires at most EXP -timein the combined size of T ,R and T. By lemma 18, SPA outputs the relation spa as required.Then, we obtain the following result:
Corollary 6. The relation spa can be computed in at most EXP-time in the combined size of K,R
and T.

Proof.

O(SPA) = EXP · EXP + EXP · L + m · (EXP · EXP + EXP · L) = EXP
where m is the maximum amount of applications of f . By Lemma 19, m is bounded by anumber at most EXP-sized in the combined size of K,R and T.

C. Approximate semantics for ELHI⊥

In [FT21], it is shown that, for a C2RPQ q and an ELH KB K, the set of approximate certainanswers c̃ertT,f (q, K) can be characterized by only considering approximate matches in theuniversal model UK. We will show that the same holds for an C2RPQ q and K an ELHI⊥ KB.
We start by introducing the notion of approximate matches for a C2RPQ q in an interpre-tation I . Given a dT T and a p-ary combining function f , an approximate match for q in I ,through T and f is a pair hq,I

T,f = (h, hc), where:
• h is a mapping terms(q) → ∆I s.t. h(b) = bI for all b ∈ terms(q) ∩ NI
• hc ∈ N ∪ ∞ is the approximation cost for h with:

hc := f
R(t,t′)∈q

min{cT(u, v) | u ∈ L(R), v ∈ Σ∗, h(t) I,v−−→ h(t′)}
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Given a k-tuple d̄ of elements from ∆I and x̄ = avars(q), Hq,I
T,f (d̄) denotes the set of approx-

imate matches (h, hc) satisfying h(x̄) = d̄. Now, recall the definition of approximate answersover graph databases from [FT21]:
Definition 6. Let q(x̄) ne a C2RPQ with p atoms, T a distortion transducer and f a p-arycombining function. The set of approximate answers of q in an interpretation I , through Tand f , is defined as:

ãnsT,f (q, I) :=
{

(d̄, ηd̄) | d̄ ∈ ∆I and ηd̄ = min{hc | (h, hc) ∈ Hq,I
T,f (d̄)}

}
We continue by showing that the definition of c̃ertT,f (q, K) from [FT21] can be extended tothe ELHI⊥ setting.
Definition 7. Let K = (T , A) be an ELHI⊥ KB and q(x̄) a C2RPQ with p atoms. The set of
certain approximate answers of q w.r.t. K, through a dT T and a p-ary combining function f ,is defined as:

c̃ertT,f (q, K) :={
(ā, ηā) | ā ∈ Ind(A) and ηd̄ = sup

I|=K
{ηd̄ | (d̄, ηd̄) ∈ ãnsT,f (q, I) ∧ d̄ = āI}

}
To show that c̃ertT,f (q, K) is still well-defined for an ELHI⊥ KB, i.e. the supremum in Defin-tion 7 always exists, we draw from the construction of the universal model in ?? the followingobservation:
Proposition 4. Let K = (T , A) be an ELHI⊥ KB and UK the universal model of K. For each
model I of K there is a homomorphism hom : ∆UK → ∆I such that:

• hom(aUK) = aI for each a ∈ A

• e ∈ AUK implies hom(e) ∈ AI for every A ∈ NC

• (e, e′) ∈ rUK implies (hom(e), hom(e′)) ∈ rI for every r ∈ N±
R ∪ {A? | A ∈ NC}

A corresponding proof can be found in [BO15]. Now, we argue that the following holds:
Lemma 20. Let K = (T , A) be an ELHI⊥ KB, q(x̄) a k-ary C2RPQ with p atoms, T a distortion
transducer and f a p-ary combining function. Further, let (ā, η∗) ∈ ãnsT,f (q, UK) where ā is a
k-ary tuple of individual names in A.

Then, for any model I of K we have that (d̄, ηd̄) ∈ ãnsT,f (q, I) implies that ηd̄ ≤ η∗, where
d̄ = āI .
A corresponding proof for ELH KBs can be found in [FT21]. One can see that the notionsfor approximate answers and certain approximate answers for ELH used there match theones given in definitions 1 and 2 for ELHI⊥. In fact, the only difference to the ELH settingthat is relevant here lies in the domain of UK. To this end, Proposition 4 is used to ensurethe existence of a homomorphism hom corresponding to the one required in the argumentfor ELH.
Finally, we obtain that the set c̃ertT,f (q, K) can be characterized by only considering matchesin UK as a direct consequence of definition 7. This is formalized in the following corollary:
Corollary 7. Let K = (T , A) be an ELHI⊥ KB, q(x̄) a C2RPQ with p atoms, T a distortion trans-
ducer and f a p-ary combining function. Then, (ā, ηā) ∈ c̃ertT,f (q, K) iff (ā, ηā) is an approximate
answer of q in UK.
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