2. Exercises for the Course „Description Logics“

Exercise 6:
Let $G = (V, E)$ be a directed graph represented as a set of PROLOG facts

$$\{ \text{directly-connected}(x, y). \mid (x, y) \in E \}.$$

Consider three PROLOG programs that compute whether two nodes of a graph are connected:

(a) \(\text{connected}(x, y) : \text{directly-connected}(x, y)\)
 \(\quad \text{connected}(x, y) : \text{directly-connected}(x, z), \text{connected}(z, y)\)

(b) \(\text{connected}(x, y) : \text{directly-connected}(x, y)\)
 \(\quad \text{connected}(x, y) : \text{connected}(z, y), \text{directly-connected}(x, z)\)

(c) \(\text{connected}(x, y) : \text{directly-connected}(x, z), \text{connected}(z, y)\)
 \(\quad \text{connected}(x, y) : \text{directly-connected}(x, y)\)

Do the following:
- For each of the three programs, determine whether it is sound, complete, and terminating.
- Rewrite each program as a set of implication in first-order logic. Are the three sets logically equivalent?
- A KR formalism is declarative if the meaning of its terms is defined independently of a concrete interpreter or reasoning algorithm. Is KR in PROLOG declarative?

Exercise 7:
Let α and β be propositional formulae. Prove or disprove the following propositions:

(a) If $\varphi \rightarrow \psi$ and φ are valid, then ψ is valid.
(b) If $\varphi \rightarrow \psi$ and φ are satisfiable, then ψ is satisfiable.
(c) If $\varphi \rightarrow \psi$ is valid and φ is satisfiable, then ψ is satisfiable.

Exercise 8:
A propositional formula using only the constructors \land, \lor, and \neg is in negation normal form (NNF) if negation occurs only in front of propositional variables.

Prove that each propositional formula can be transformed into an equivalent one in NNF.

Exercise 9:
Define a generic frame that describes the prototypical object “computer science course”. Use slots

- Title,
- Lecturer,
- Type of course, and
- Hours per week.

Find other meaningful slots. Then construct an instance frame for the generic frame.