
Nöthnitzer Str. 46 01187 Dresden Tel.: 0351/463-38237 Tel.: 0351/463-39171

3. Exercises for the Course "Description Logics"

Exercise 10:

Consider the (graphical representation of the) interpretation \mathcal{I} with $\Delta^{\mathcal{I}} = \{d, e, f, g\}$:

For each of the following \mathcal{ALC} -concepts C, list all elements x of $\Delta^{\mathcal{I}}$ such that $x \in C^{\mathcal{I}}$:

- $A \sqcup B$
- ∃s.¬A
- $\forall s.A$
- $\exists s. \exists s. \exists s. \exists s. A$
- $\forall t.A \sqcap \forall t.\neg A$
- $\neg \exists r.(\neg A \sqcap \neg B)$
- $\exists s.(A \sqcap \forall S. \neg B) \sqcap \neg \forall r. \exists r.(A \sqcup \neg A)$

Exercise 11:

Construct a TBox describing a supermarket. Use concept names such as Supermarket, Shop, Food, Employee, and role names such as sells and works-for.

Exercise 12:

Prove or disprove the following (for the description logic \mathcal{ALC}):

- There is a TBox that has no models at all.
- There is a TBox that has only finite models.
- Every TBox has either no models at all or infinitely many models.
- There is a TBox \mathcal{T} such that all models of \mathcal{T} are either infinite or contain a cycle (when viewed as a graph).
- For every TBox \mathcal{T} , there is an equivalent TBox \mathcal{T}' that contains only a single GCI (where two TBoxes are *equivalent* if they have the same models).

Exercise 13:

Let ${\mathcal A}$ be the ABox consisting of the following assertions:

(Ralf,Claudia) : likes	(Ralf, Jörg) : likes
(Claudia, Jörg) : is-neighbour-of	(Jörg,Andrea) : is-neighbour-of
Claudia : blond	Andrea : \neg blond

- (a) Does \mathcal{A} have a model?
- (b) Is Ralf an instance of the concept \exists likes.(blond $\sqcap \exists$ is-neighbour-of. \neg blond) in all models of \mathcal{A} ?
- (c) Is Ralf an instance of the concept \exists likes.(\exists is-neighbour-of. (\forall is-neighbour-of. \neg blond)) in all models of \mathcal{A} ?

Exercise 14:

Extend the TBox from Exercise 11 to a knowledge base by constructing an appropriate ABox.

Exercise 15:

Prove or disprove the following (for the description logic \mathcal{ALC}):

- There is an ABox that has no models at all.
- There is an ABox that has only finite models.
- Every ABox has either no model or infinitely many models.
- There is an ABox \mathcal{A} such that all models of \mathcal{A} contain a cycle (when viewed as a graph).

Exercise 16:

Let the interpretation \mathcal{I} be obtained from the interpretation \mathcal{I}' from Example 2.6 given in the lecture by the following modifications:

- *h*, *m* become instances of Student;
- u6, g4 are no longer instances of Person.

Prove that \mathcal{I}' is a model of the knowledge base = (,), where is the TBox from Example 2.4, and the ABox from Example 2.6.