Nöthnitzer Str. 46 01187 Dresden Tel.: 0351/463-38237 Tel.: 0351/463-39171

5. Exercises for the Course "Description Logics"

Exercise 22:

Let C and D be \mathcal{ALC} -concepts that use only the constructors \neg , \sqcap , and \sqcup , but not $\exists r.C$ and $\forall r.C$. With C, we can associate a propositional formula φ_C by replacing each concept name A with a propositional variable p_A , " \sqcup " with " \lor ", and " \sqcap " with " \land ". Similarly for D and φ_D . Prove that $C \sqsubseteq D$ iff $\varphi_C \to \varphi_D$ is valid in propositional logic.

Exercise 23:

Consider the following combinations of concepts C and TBoxes \mathcal{T} . Determine whether C is satisfiable w.r.t. \mathcal{T} :

- $C = A \sqcap B, \ \mathcal{T} = \{A \sqsubseteq \exists r. X \sqcap \exists r. \neg X, \ A \sqsubseteq \forall r. Y, \ B \equiv (\leq 1 \, r. Y)\}$
- $C = A \sqcap B, \mathcal{T} = \{A \sqsubseteq (\geq 5r.A) \sqcap (\leq 2r.X), B \sqsubseteq (\leq 2r.\neg X)\}$
- $C = A \sqcap \neg X, \mathcal{T} = \{A \sqsubseteq \exists r.B, B \sqsubseteq \exists r^-.X, X \sqsubseteq \forall r. (\leq 1 r^-.\top)\}$

Exercise 24:

Prove that the concept $\forall r^- \perp$ cannot be expressed in ALC, i.e., that there is no ALC-concept that is equivalent to $\forall r^- \perp$.

Exercise 25:

Prove that the concept $(\leq 1 r. \top)$ cannot be expressed in \mathcal{ALC} .

Proceed as follows: assume that C is an \mathcal{ALC} -concept equivalent to $(\leq 1 r. \top)$, and take a model \mathcal{I} of C.¹ Construct a model \mathcal{I}_{ω} as follows:

- $\Delta^{\mathcal{I}_{\omega}} := \Delta^{\mathcal{I}} \times \mathbb{N};$
- $A^{\mathcal{I}_{\omega}} := \{ \langle d, i \rangle \mid d \in A^{\mathcal{I}} \text{ and } i \ge 0 \};$
- $r^{\mathcal{I}_{\omega}} := \{ (\langle d, i \rangle, \langle d', i' \rangle) \mid (d, d') \in r^{\mathcal{I}} \text{ and } i, i' \ge 0 \}.$

Prove that \mathcal{I}_{ω} is a model of C and conclude that C is not equivalent to $(\leq 1 \, r. \top)$. Can $(\leq 1 \, n. \top)$ be expressed in \mathcal{ALC} , for any $n \geq 0$?

Exercise 26:

Assume we want to define the concept of those students that attend *all* CL courses, using concept names such as **Student** and **CL-Course** and role names such as **attends**. Can this be expressed in \mathcal{ALC} ? If not, propose a new concept-forming constructor that allows to express it. Define its syntax and semantics.

¹We call \mathcal{I} a model of C if $C^{\mathcal{I}} \neq \emptyset$.