5. Exercises for the Course „Description Logics“

Exercise 22:
Let C and D be \mathcal{ALC}-concepts that use only the constructors \neg, \cap, and \cup, but not $\exists r.C$ and $\forall r.C$. With C, we can associate a propositional formula φ_C by replacing each concept name A with a propositional variable p_A, \cup with \lor, and \cap with \land. Similarly for D and φ_D. Prove that $C \equiv D$ iff $\varphi_C \rightarrow \varphi_D$ is valid in propositional logic.

Exercise 23:
Consider the following combinations of concepts C and TBoxes T. Determine whether C is satisfiable w.r.t. T:
- $C = A \cap B$, $T = \{A \sqsubseteq \exists r.X \cap \exists r.\neg X, A \sqsubseteq \forall r.Y, B \equiv (\leq 1 r.Y)\}$
- $C = A \cap B$, $T = \{A \sqsubseteq (\geq 5 r.A) \cap (\leq 2 r.X), B \sqsubseteq (\leq 2 r.\neg X)\}$
- $C = A \cap \neg X$, $T = \{A \sqsubseteq \exists r.B, B \sqsubseteq \exists r.\neg X, X \sqsubseteq \forall r.(\leq 1 r.\top)\}$

Exercise 24:
Prove that the concept $\forall r.\bot$ cannot be expressed in \mathcal{ALC}, i.e., that there is no \mathcal{ALC}-concept that is equivalent to $\forall r.\bot$.

Exercise 25:
Prove that the concept $(\leq 1 r.\top)$ cannot be expressed in \mathcal{ALC}.

Proceed as follows: assume that C is an \mathcal{ALC}-concept equivalent to $(\leq 1 r.\top)$, and take a model \mathcal{I} of C.\footnote{We call \mathcal{I} a model of C if $C^\mathcal{I} \neq \emptyset$.} Construct a model \mathcal{I}_ω as follows:
- $\Delta^{\mathcal{I}_\omega} := \Delta^\mathcal{I} \times \mathbb{N}$;
- $A^{\mathcal{I}_\omega} := \{(d, i) \mid d \in A^\mathcal{I} \text{ and } i \geq 0\}$;
- $r^{\mathcal{I}_\omega} := \{((d, i), (d', i')) \mid (d, d') \in r^\mathcal{I} \text{ and } i, i' \geq 0\}$.

Prove that \mathcal{I}_ω is a model of C and conclude that C is not equivalent to $(\leq 1 r.\top)$. Can $(\leq 1 n.\top)$ be expressed in \mathcal{ALC}, for any $n \geq 0$?

Exercise 26:
Assume we want to define the concept of those students that attend all CL courses, using concept names such as Student and CL-Course and role names such as attends. Can this be expressed in \mathcal{ALC}? If not, propose a new concept-forming constructor that allows to express it. Define its syntax and semantics.