Nöthnitzer Str. 46 01187 Dresden Tel.: 0351/463-38237 Tel.: 0351/463-39171

6. Exercises for the Course "Description Logics"

Exercise 27:

Prove the following Points of Theorem 2.13:

- (a) C is satisfiable w.r.t. \mathcal{T} iff $C \not\sqsubseteq_{\mathcal{T}} \perp$;
- (b) C is satisfiable w.r.t. \mathcal{T} iff $(\mathcal{T}, \{C(a)\})$ is consistent;
- (c) a is an instance of C w.r.t. \mathcal{K} iff $(\mathcal{T}, \mathcal{A} \cup \{\neg C(a)\})$ is inconsistent.

Exercise 28:

Recall that the description logic \mathcal{ALC} is equipped with the concept constructors negation (\neg) , conjunction (\Box) , disjunction (\sqcup) , existential restriction $(\exists r.C)$, and universal restriction $(\forall r.C)$. Each subset of this set of constructors gives rise to a fragment of \mathcal{ALC} .

Identify all minimal fragments that are equivalent to \mathcal{ALC} in the sense that for every \mathcal{ALC} -concept, there is an equivalent concept in the fragment.

Exercise 29:

Let \mathcal{T} be a TBox, and $\mathsf{N}_{\mathsf{C}}^{\mathcal{T}}$ denote the set of all concept names in \mathcal{T} . Let $\approx_{\mathcal{T}}$ be the relation on $\mathsf{N}_{\mathsf{C}}^{\mathcal{T}}$ defined by setting $A \approx_{\mathcal{T}} B$ iff $A \sqsubseteq_{\mathcal{T}} B$ and $B \sqsubseteq_{\mathcal{T}} A$. It is not hard to show that $\approx_{\mathcal{T}}$ is an equivalence relation. For $A \in \mathsf{N}_{\mathsf{C}}^{\mathcal{T}}$, let [A] be the equivalence class of A w.r.t. $\approx_{\mathcal{T}}$, and let $\mathcal{C}_{\mathcal{T}}$ denote the set of all equivalence classes of $\approx_{\mathcal{T}}$. Then

- A choice function c on $\mathcal{C}_{\mathcal{T}}$ maps each $[A] \in \mathcal{C}_{\mathcal{T}}$ to an element $c([A]) \in [A]$;
- The relation " $\preceq_{\mathcal{T}}$ " on $\mathcal{C}_{\mathcal{T}}$ is defined by setting $[A] \preceq_{\mathcal{T}} [B]$ if $A \sqsubseteq_{\mathcal{T}} B$.

Let $\mathcal{K} = (\mathcal{T}, \mathcal{A})$ be a knowledge base and a an individual name. Show that

- " $\preceq_{\mathcal{T}}$ " is well-defined, i.e., if $A' \in [A]$ and $B' \in [B]$, then $A \sqsubseteq_{\mathcal{T}} B$ if and only if $A' \sqsubseteq_{\mathcal{T}} B'$.
- A set $R \subseteq \mathsf{N}^{\mathcal{T}}_{\mathsf{C}}$ of concept names is a *realization* of a w.r.t. \mathcal{K} if and only if there is a choice function f on $\mathcal{C}_{\mathcal{T}}$ such that

 $R = \{c([A]) \mid [A] \in \mathcal{C}_{\mathcal{T}}, a \text{ is an instance of } A \text{ w.r.t. } \mathcal{K}, \text{ and } [A] \text{ is minimal w.r.t. } \preceq_{\mathcal{T}} \text{ with this property} \}.$

Exercise 30:

If \mathcal{D} is a concrete domain, we use $\mathcal{ALC}(\mathcal{D})$ to denote the extension of \mathcal{ALC} with the concrete domain \mathcal{D} . Show the following:

- If f is an abstract feature, then $\exists f.C$ is equivalent to $\exists f.\top \sqcap \forall f.C$.
- Let D be a concrete domain with only unary predicates. Let ALC(D)⁻ be obtained from ALC(D) by allowing only concrete features instead of feature chains inside the concrete domain constructor. Prove that for every ALC(D)-concept, there is an equivalent ALC(D)⁻-concept.

• Let \mathcal{N} be the concrete domain introduced in the lecture. Define a new concept constructor $\forall u_1, \ldots, u_n.P$, where u_1, \ldots, u_n are feature chains and P is an *n*-ary predicate, and with the following semantics:

 $(\forall u_1, \dots, u_n.P)^{\mathcal{I}} := \{ d \in \Delta^{\mathcal{I}} \mid \forall x_1, \dots, x_n \in \Delta^{\mathcal{N}} : u_i^{\mathcal{I}}(d) = x_i \text{ for all } i \in \{1, \dots, n\} \text{ implies } (x_1, \dots, x_n) \in P^{\mathcal{N}} \}.$

Prove that the new constructor can be expressed in $\mathcal{ALC}(\mathcal{N})$, i.e., that there is an $\mathcal{ALC}(\mathcal{N})$ -concept that is equivalent to $\forall u_1, \ldots, u_n.P$, for all feature chains u_1, \ldots, u_n and all predicates $P \in \Phi^{\mathcal{N}}$.

• Repeat the previous exercise, but this time for the concrete domain \mathcal{N}' that is obtained from \mathcal{N} by dropping the predicates \geq, \leq, \geq_n and \leq_n , for all $n \geq 0$.