Nöthnitzer Str. 46 01187 Dresden Tel.: 0351/463-38237 Tel.: 0351/463-39171

7. Exercises for the Course "Description Logics"

Exercise 31:

Prove that, in \mathcal{ALCO} , knowledge base consistency can be polynomially reduced to satisfiability of concepts w.r.t. TBoxes.

Exercise 32:

Extend the mappings π_x and π_y of \mathcal{ALC} -concept descriptions to first-order formulas given in the lecture to \mathcal{ALCI} , \mathcal{ALCQ} , and \mathcal{ALCO} .

Exercise 33:

Reconsider the algorithm for converting an \mathcal{ALC} -concept description into negation normal form, which works by exhaustively applying the following rules:

$\neg\top \rightarrow$	\perp	$\neg(C \sqcap D)$	\rightarrow	$\neg C \sqcup \neg D$
$\neg \perp \rightarrow$	\top	$\neg(C \sqcup D)$	\rightarrow	$\neg C \sqcap \neg D$
$\neg \neg C \rightarrow $	C	$\neg \forall r.C$	\rightarrow	$\exists r. \neg C$
		$\neg \exists r.C$	\rightarrow	$\forall r. \neg C$

Prove that the algorithm generates an equivalent concept description, and that it needs only polynomial time.

Exercise 34:

Use the tableau algorithm from the lecture to decide whether the following subsumption holds:

$$\neg \forall r.A \sqcap \forall r.((\forall r.B) \sqcup A) \sqsubseteq \forall r.\neg(\exists r.A) \sqcap \exists r.\exists r.B$$

Exercise 35:

Extend the proof of Lemma 3.4 (local correctness) to the \sqcap -rule and the \forall -rule.

Exercise 36:

Reconsider the proof of Point 1 of Lemma 3.5 (soundness). Fill in the remaining cases in the inductive proof that $\mathcal{I}_{\mathcal{A}}$ satisfies every assertion $C(x) \in \mathcal{A}$.