Lehrstuhl für Automatentheorie

Institut für Theoretische Informatik, TU Dresden Prof. Dr. F. Baader Nöthnitzer Str. 46 01187 Dresden Tel.: 0351/463–38237 Tel.: 0351/463–39171

5. Exercises for the Course "Complexity and Logic"

Exercise 19:

Prove that the satisfiability of formulas of first-order predicate logic (with an equality predicate) is undecidable. To do this, use a reduction of the domino problem. How can you do it without equality?

Exercise 20:

Let L be a language. Then the closure under Kleene Star of L is defined as

$$L^* := \{ w_1 \cdots w_k \mid k \ge 0 \land w_1, \dots, w_k \in L \}.$$

Prove the following:

(a) If L, L' are in P, then $L \cup L'$ is in P.

(b) If L is in P, then L^* is in P.

Hint: For (b), it is convenient to use dynamic programming techniques.

Exercise 21:

For $A \subseteq \mathbb{N}$, define the languages $U(A) = \{1^n \mid n \in A\}$ and $B(A) = \{\hat{n} \mid n \in A\}$, where \hat{n} denotes the binary encoding of n as in the lecture. Prove that $U(A) \in \mathsf{P}$ iff $B(A) \in \mathsf{DTime}(2^{O(n)})$.

Exercise 22:

A language L is in LOGSPACE if it is decided by a 2-tape Turing machine such that

- the first tape is read-only and contains the input and
- only $d \cdot \log(n)$ cells are used on the second tape on inputs of length n, for some $d \in \mathbb{N}$.

Prove that the following languages are in LOGSPACE:

(a) $L = \{a^n b^n \mid n \ge 0\};$

(b) $L = \{w \in \{a, b\}^* \mid w \text{ is a palindrome, i.e., } w \text{ read backwards is } w\}.$

Exercise 23:

Time and space are only two examples of complexity measures for computations. The following general approach is known as *Blum complexity*. Let f be a function mapping pairs (M, w), with M a (deterministic) Turing machine and w an input for M, to nonnegative integers. Then f is a *complexity measure* if it satisfies the following conditions:

- (i) f(M, w) is defined if and only if M terminates on w;
- (ii) Given M, w, k, it is decidable whether f(M, w) = k.

Note that there may be M, w, k given as input such that M does not halt on w. Consider the following functions:

- $space'_M(w)$ is defined as the function $space_M(w)$ in the lecture, but it is undefined if M does not terminate on w.
- $ink_M(w)$ is the number of times during the finite computation of M on w that a symbol has to be overwritten by a different symbol. It is undefined if M does not terminate on w.
- $carbon_M(w)$ is the number of times during the finite computation of M on w that a symbol has to be overwritten by the same symbol. It is undefined if M does not terminate on w.

Show the following:

- (a) $time_M(w)$ and $space'_M(w)$ are complexity measures.
- (b) $ink_M(w)$ is a complexity measure.

Hint: the proof of (ii) involves show the following: if $ink_M(w) = k$, then the number of different configurations that the computation of M on w may take is finite.

(c) $carbon_M(w)$ is not a complexity measure.

Hint: To prove that (ii) is violated, reduce the word problem to the problem "carbon(M, x) = k?".